
ptg

ptg

The Python
Standard Library

by Example

ptg

The Developer’s Library Series from Addison-Wesley provides

practicing programmers with unique, high-quality references and

tutorials on the latest programming languages and technologies they

use in their daily work. All books in the Developer’s Library are written by

expert technology practitioners who are exceptionally skilled at organizing

and presenting information in a way that’s useful for other programmers.

Developer’s Library books cover a wide range of topics, from open-

source programming languages and databases, Linux programming,

Microsoft, and Java, to Web development, social networking platforms,

Mac/iPhone programming, and Android programming.

Visit developers-library.com for a complete list of available products

Developer’s Library Series

ptg

The Python
Standard Library

by Example

Doug Hellmann

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

ptg

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Hellmann, Doug.

The Python standard library by example / Doug Hellmann.

p. cm.

Includes index.

ISBN 978-0-321-76734-9 (pbk. : alk. paper)

1. Python (Computer program language) I. Title.

QA76.73.P98H446 2011

005.13'3—dc22

2011006256

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission
in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-76734-9
ISBN-10: 0-321-76734-9

Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
First printing, May 2011

ptg

This book is dedicated to my wife, Theresa,
for everything she has done for me.

ptg

This page intentionally left blank

ptg

CONTENTS AT A GLANCE

Contents ix
Tables xxxi
Foreword xxxiii
Acknowledgments xxxvii
About the Author xxxix

INTRODUCTION 1

1 TEXT 3

2 DATA STRUCTURES 69

3 ALGORITHMS 129

4 DATES AND TIMES 173

5 MATHEMATICS 197

6 THE FILE SYSTEM 247

7 DATA PERSISTENCE AND EXCHANGE 333

8 DATA COMPRESSION AND ARCHIVING 421

9 CRYPTOGRAPHY 469

vii

ptg

viii Contents at a Glance

10 PROCESSES AND THREADS 481

11 NETWORKING 561

12 THE INTERNET 637

13 EMAIL 727

14 APPLICATION BUILDING BLOCKS 769

15 INTERNATIONALIZATION AND LOCALIZATION 899

16 DEVELOPER TOOLS 919

17 RUNTIME FEATURES 1045

18 LANGUAGE TOOLS 1169

19 MODULES AND PACKAGES 1235

Index of Python Modules 1259
Index 1261

ptg

CONTENTS

Tables xxxi
Foreword xxxiii
Acknowledgments xxxvii
About the Author xxxix

INTRODUCTION 1

1 TEXT 3
1.1 string—Text Constants and Templates 4

1.1.1 Functions 4

1.1.2 Templates 5

1.1.3 Advanced Templates 7

1.2 textwrap—Formatting Text Paragraphs 9

1.2.1 Example Data 9

1.2.2 Filling Paragraphs 10

1.2.3 Removing Existing Indentation 10

1.2.4 Combining Dedent and Fill 11

1.2.5 Hanging Indents 12

1.3 re—Regular Expressions 13

1.3.1 Finding Patterns in Text 14

1.3.2 Compiling Expressions 14

1.3.3 Multiple Matches 15

1.3.4 Pattern Syntax 16

1.3.5 Constraining the Search 28

1.3.6 Dissecting Matches with Groups 30

ix

ptg

x Contents

1.3.7 Search Options 37

1.3.8 Looking Ahead or Behind 45

1.3.9 Self-Referencing Expressions 50

1.3.10 Modifying Strings with Patterns 56

1.3.11 Splitting with Patterns 58

1.4 difflib—Compare Sequences 61

1.4.1 Comparing Bodies of Text 62

1.4.2 Junk Data 65

1.4.3 Comparing Arbitrary Types 66

2 DATA STRUCTURES 69
2.1 collections—Container Data Types 70

2.1.1 Counter 70

2.1.2 defaultdict 74

2.1.3 Deque 75

2.1.4 namedtuple 79

2.1.5 OrderedDict 82

2.2 array—Sequence of Fixed-Type Data 84

2.2.1 Initialization 84

2.2.2 Manipulating Arrays 85

2.2.3 Arrays and Files 85

2.2.4 Alternate Byte Ordering 86

2.3 heapq—Heap Sort Algorithm 87

2.3.1 Example Data 88

2.3.2 Creating a Heap 89

2.3.3 Accessing Contents of a Heap 90

2.3.4 Data Extremes from a Heap 92

2.4 bisect—Maintain Lists in Sorted Order 93

2.4.1 Inserting in Sorted Order 93

2.4.2 Handling Duplicates 95

2.5 Queue—Thread-Safe FIFO Implementation 96

2.5.1 Basic FIFO Queue 96

2.5.2 LIFO Queue 97

2.5.3 Priority Queue 98

2.5.4 Building a Threaded Podcast Client 99

2.6 struct—Binary Data Structures 102

2.6.1 Functions vs. Struct Class 102

2.6.2 Packing and Unpacking 102

ptg

Contents xi

2.6.3 Endianness 103

2.6.4 Buffers 105

2.7 weakref—Impermanent References to Objects 106

2.7.1 References 107

2.7.2 Reference Callbacks 108

2.7.3 Proxies 108

2.7.4 Cyclic References 109

2.7.5 Caching Objects 114

2.8 copy—Duplicate Objects 117

2.8.1 Shallow Copies 118

2.8.2 Deep Copies 118

2.8.3 Customizing Copy Behavior 119

2.8.4 Recursion in Deep Copy 120

2.9 pprint—Pretty-Print Data Structures 123

2.9.1 Printing 123

2.9.2 Formatting 124

2.9.3 Arbitrary Classes 125

2.9.4 Recursion 125

2.9.5 Limiting Nested Output 126

2.9.6 Controlling Output Width 126

3 ALGORITHMS 129
3.1 functools—Tools for Manipulating Functions 129

3.1.1 Decorators 130

3.1.2 Comparison 138

3.2 itertools—Iterator Functions 141

3.2.1 Merging and Splitting Iterators 142

3.2.2 Converting Inputs 145

3.2.3 Producing New Values 146

3.2.4 Filtering 148

3.2.5 Grouping Data 151

3.3 operator—Functional Interface to Built-in Operators 153

3.3.1 Logical Operations 154

3.3.2 Comparison Operators 154

3.3.3 Arithmetic Operators 155

3.3.4 Sequence Operators 157

3.3.5 In-Place Operators 158

3.3.6 Attribute and Item “Getters” 159

3.3.7 Combining Operators and Custom Classes 161

ptg

xii Contents

3.3.8 Type Checking 162

3.4 contextlib—Context Manager Utilities 163

3.4.1 Context Manager API 164

3.4.2 From Generator to Context Manager 167

3.4.3 Nesting Contexts 168

3.4.4 Closing Open Handles 169

4 DATES AND TIMES 173
4.1 time—Clock Time 173

4.1.1 Wall Clock Time 174

4.1.2 Processor Clock Time 174

4.1.3 Time Components 176

4.1.4 Working with Time Zones 177

4.1.5 Parsing and Formatting Times 179

4.2 datetime—Date and Time Value Manipulation 180

4.2.1 Times 181

4.2.2 Dates 182

4.2.3 timedeltas 185

4.2.4 Date Arithmetic 186

4.2.5 Comparing Values 187

4.2.6 Combining Dates and Times 188

4.2.7 Formatting and Parsing 189

4.2.8 Time Zones 190

4.3 calendar—Work with Dates 191

4.3.1 Formatting Examples 191

4.3.2 Calculating Dates 194

5 MATHEMATICS 197
5.1 decimal—Fixed and Floating-Point Math 197

5.1.1 Decimal 198

5.1.2 Arithmetic 199

5.1.3 Special Values 200

5.1.4 Context 201

5.2 fractions—Rational Numbers 207

5.2.1 Creating Fraction Instances 207

5.2.2 Arithmetic 210

5.2.3 Approximating Values 210

5.3 random—Pseudorandom Number Generators 211

5.3.1 Generating Random Numbers 211

ptg

Contents xiii

5.3.2 Seeding 212

5.3.3 Saving State 213

5.3.4 Random Integers 214

5.3.5 Picking Random Items 215

5.3.6 Permutations 216

5.3.7 Sampling 218

5.3.8 Multiple Simultaneous Generators 219

5.3.9 SystemRandom 221

5.3.10 Nonuniform Distributions 222

5.4 math—Mathematical Functions 223

5.4.1 Special Constants 223

5.4.2 Testing for Exceptional Values 224

5.4.3 Converting to Integers 226

5.4.4 Alternate Representations 227

5.4.5 Positive and Negative Signs 229

5.4.6 Commonly Used Calculations 230

5.4.7 Exponents and Logarithms 234

5.4.8 Angles 238

5.4.9 Trigonometry 240

5.4.10 Hyperbolic Functions 243

5.4.11 Special Functions 244

6 THE FILE SYSTEM 247
6.1 os.path—Platform-Independent Manipulation of Filenames 248

6.1.1 Parsing Paths 248

6.1.2 Building Paths 252

6.1.3 Normalizing Paths 253

6.1.4 File Times 254

6.1.5 Testing Files 255

6.1.6 Traversing a Directory Tree 256

6.2 glob—Filename Pattern Matching 257

6.2.1 Example Data 258

6.2.2 Wildcards 258

6.2.3 Single Character Wildcard 259

6.2.4 Character Ranges 260

6.3 linecache—Read Text Files Efficiently 261

6.3.1 Test Data 261

6.3.2 Reading Specific Lines 262

6.3.3 Handling Blank Lines 263

ptg

xiv Contents

6.3.4 Error Handling 263

6.3.5 Reading Python Source Files 264

6.4 tempfile—Temporary File System Objects 265

6.4.1 Temporary Files 265

6.4.2 Named Files 268

6.4.3 Temporary Directories 268

6.4.4 Predicting Names 269

6.4.5 Temporary File Location 270

6.5 shutil—High-Level File Operations 271

6.5.1 Copying Files 271

6.5.2 Copying File Metadata 274

6.5.3 Working with Directory Trees 276

6.6 mmap—Memory-Map Files 279

6.6.1 Reading 279

6.6.2 Writing 280

6.6.3 Regular Expressions 283

6.7 codecs—String Encoding and Decoding 284

6.7.1 Unicode Primer 284

6.7.2 Working with Files 287

6.7.3 Byte Order 289

6.7.4 Error Handling 291

6.7.5 Standard Input and Output Streams 295

6.7.6 Encoding Translation 298

6.7.7 Non-Unicode Encodings 300

6.7.8 Incremental Encoding 301

6.7.9 Unicode Data and Network Communication 303

6.7.10 Defining a Custom Encoding 307

6.8 StringIO—Text Buffers with a File-like API 314

6.8.1 Examples 314

6.9 fnmatch—UNIX-Style Glob Pattern Matching 315

6.9.1 Simple Matching 315

6.9.2 Filtering 317

6.9.3 Translating Patterns 318

6.10 dircache—Cache Directory Listings 319

6.10.1 Listing Directory Contents 319

6.10.2 Annotated Listings 321

6.11 filecmp—Compare Files 322

6.11.1 Example Data 323

6.11.2 Comparing Files 325

ptg

Contents xv

6.11.3 Comparing Directories 327

6.11.4 Using Differences in a Program 328

7 DATA PERSISTENCE AND EXCHANGE 333
7.1 pickle—Object Serialization 334

7.1.1 Importing 335

7.1.2 Encoding and Decoding Data in Strings 335

7.1.3 Working with Streams 336

7.1.4 Problems Reconstructing Objects 338

7.1.5 Unpicklable Objects 340

7.1.6 Circular References 340

7.2 shelve—Persistent Storage of Objects 343

7.2.1 Creating a New Shelf 343

7.2.2 Writeback 344

7.2.3 Specific Shelf Types 346

7.3 anydbm—DBM-Style Databases 347

7.3.1 Database Types 347

7.3.2 Creating a New Database 348

7.3.3 Opening an Existing Database 349

7.3.4 Error Cases 349

7.4 whichdb—Identify DBM-Style Database Formats 350

7.5 sqlite3—Embedded Relational Database 351

7.5.1 Creating a Database 352

7.5.2 Retrieving Data 355

7.5.3 Query Metadata 357

7.5.4 Row Objects 358

7.5.5 Using Variables with Queries 359

7.5.6 Bulk Loading 362

7.5.7 Defining New Column Types 363

7.5.8 Determining Types for Columns 366

7.5.9 Transactions 368

7.5.10 Isolation Levels 372

7.5.11 In-Memory Databases 376

7.5.12 Exporting the Contents of a Database 376

7.5.13 Using Python Functions in SQL 378

7.5.14 Custom Aggregation 380

7.5.15 Custom Sorting 381

7.5.16 Threading and Connection Sharing 383

7.5.17 Restricting Access to Data 384

ptg

xvi Contents

7.6 xml.etree.ElementTree—XML Manipulation API 387

7.6.1 Parsing an XML Document 387

7.6.2 Traversing the Parsed Tree 388

7.6.3 Finding Nodes in a Document 390

7.6.4 Parsed Node Attributes 391

7.6.5 Watching Events While Parsing 393

7.6.6 Creating a Custom Tree Builder 396

7.6.7 Parsing Strings 398

7.6.8 Building Documents with Element Nodes 400

7.6.9 Pretty-Printing XML 401

7.6.10 Setting Element Properties 403

7.6.11 Building Trees from Lists of Nodes 405

7.6.12 Serializing XML to a Stream 408

7.7 csv—Comma-Separated Value Files 411

7.7.1 Reading 411

7.7.2 Writing 412

7.7.3 Dialects 413

7.7.4 Using Field Names 418

8 DATA COMPRESSION AND ARCHIVING 421
8.1 zlib—GNU zlib Compression 421

8.1.1 Working with Data in Memory 422

8.1.2 Incremental Compression and Decompression 423

8.1.3 Mixed Content Streams 424

8.1.4 Checksums 425

8.1.5 Compressing Network Data 426

8.2 gzip—Read and Write GNU Zip Files 430

8.2.1 Writing Compressed Files 431

8.2.2 Reading Compressed Data 433

8.2.3 Working with Streams 434

8.3 bz2—bzip2 Compression 436

8.3.1 One-Shot Operations in Memory 436

8.3.2 Incremental Compression and Decompression 438

8.3.3 Mixed Content Streams 439

8.3.4 Writing Compressed Files 440

8.3.5 Reading Compressed Files 442

8.3.6 Compressing Network Data 443

8.4 tarfile—Tar Archive Access 448

8.4.1 Testing Tar Files 448

ptg

Contents xvii

8.4.2 Reading Metadata from an Archive 449

8.4.3 Extracting Files from an Archive 450

8.4.4 Creating New Archives 453

8.4.5 Using Alternate Archive Member Names 453

8.4.6 Writing Data from Sources Other than Files 454

8.4.7 Appending to Archives 455

8.4.8 Working with Compressed Archives 456

8.5 zipfile—ZIP Archive Access 457

8.5.1 Testing ZIP Files 457

8.5.2 Reading Metadata from an Archive 457

8.5.3 Extracting Archived Files from an Archive 459

8.5.4 Creating New Archives 460

8.5.5 Using Alternate Archive Member Names 462

8.5.6 Writing Data from Sources Other than Files 462

8.5.7 Writing with a ZipInfo Instance 463

8.5.8 Appending to Files 464

8.5.9 Python ZIP Archives 466

8.5.10 Limitations 467

9 CRYPTOGRAPHY 469
9.1 hashlib—Cryptographic Hashing 469

9.1.1 Sample Data 470

9.1.2 MD5 Example 470

9.1.3 SHA-1 Example 470

9.1.4 Creating a Hash by Name 471

9.1.5 Incremental Updates 472

9.2 hmac—Cryptographic Message Signing and Verification 473

9.2.1 Signing Messages 474

9.2.2 SHA vs. MD5 474

9.2.3 Binary Digests 475

9.2.4 Applications of Message Signatures 476

10 PROCESSES AND THREADS 481
10.1 subprocess—Spawning Additional Processes 481

10.1.1 Running External Commands 482

10.1.2 Working with Pipes Directly 486

10.1.3 Connecting Segments of a Pipe 489

10.1.4 Interacting with Another Command 490

10.1.5 Signaling between Processes 492

ptg

xviii Contents

10.2 signal—Asynchronous System Events 497

10.2.1 Receiving Signals 498

10.2.2 Retrieving Registered Handlers 499

10.2.3 Sending Signals 501

10.2.4 Alarms 501

10.2.5 Ignoring Signals 502

10.2.6 Signals and Threads 502

10.3 threading—Manage Concurrent Operations 505

10.3.1 Thread Objects 505

10.3.2 Determining the Current Thread 507

10.3.3 Daemon vs. Non-Daemon Threads 509

10.3.4 Enumerating All Threads 512

10.3.5 Subclassing Thread 513

10.3.6 Timer Threads 515

10.3.7 Signaling between Threads 516

10.3.8 Controlling Access to Resources 517

10.3.9 Synchronizing Threads 523

10.3.10 Limiting Concurrent Access to Resources 524

10.3.11 Thread-Specific Data 526

10.4 multiprocessing—Manage Processes like Threads 529

10.4.1 Multiprocessing Basics 529

10.4.2 Importable Target Functions 530

10.4.3 Determining the Current Process 531

10.4.4 Daemon Processes 532

10.4.5 Waiting for Processes 534

10.4.6 Terminating Processes 536

10.4.7 Process Exit Status 537

10.4.8 Logging 539

10.4.9 Subclassing Process 540

10.4.10 Passing Messages to Processes 541

10.4.11 Signaling between Processes 545

10.4.12 Controlling Access to Resources 546

10.4.13 Synchronizing Operations 547

10.4.14 Controlling Concurrent Access to Resources 548

10.4.15 Managing Shared State 550

10.4.16 Shared Namespaces 551

10.4.17 Process Pools 553

10.4.18 Implementing MapReduce 555

ptg

Contents xix

11 NETWORKING 561
11.1 socket—Network Communication 561

11.1.1 Addressing, Protocol Families, and Socket Types 562

11.1.2 TCP/IP Client and Server 572

11.1.3 User Datagram Client and Server 580

11.1.4 UNIX Domain Sockets 583

11.1.5 Multicast 587

11.1.6 Sending Binary Data 591

11.1.7 Nonblocking Communication and Timeouts 593

11.2 select—Wait for I/O Efficiently 594

11.2.1 Using select() 595

11.2.2 Nonblocking I/O with Timeouts 601

11.2.3 Using poll() 603

11.2.4 Platform-Specific Options 608

11.3 SocketServer—Creating Network Servers 609

11.3.1 Server Types 609

11.3.2 Server Objects 609

11.3.3 Implementing a Server 610

11.3.4 Request Handlers 610

11.3.5 Echo Example 610

11.3.6 Threading and Forking 616

11.4 asyncore—Asynchronous I/O 619

11.4.1 Servers 619

11.4.2 Clients 621

11.4.3 The Event Loop 623

11.4.4 Working with Other Event Loops 625

11.4.5 Working with Files 628

11.5 asynchat—Asynchronous Protocol Handler 629

11.5.1 Message Terminators 629

11.5.2 Server and Handler 630

11.5.3 Client 632

11.5.4 Putting It All Together 634

12 THE INTERNET 637
12.1 urlparse—Split URLs into Components 638

12.1.1 Parsing 638

12.1.2 Unparsing 641

12.1.3 Joining 642

ptg

xx Contents

12.2 BaseHTTPServer—Base Classes for Implementing Web Servers 644

12.2.1 HTTP GET 644

12.2.2 HTTP POST 646

12.2.3 Threading and Forking 648

12.2.4 Handling Errors 649

12.2.5 Setting Headers 650

12.3 urllib—Network Resource Access 651

12.3.1 Simple Retrieval with Cache 651

12.3.2 Encoding Arguments 653

12.3.3 Paths vs. URLs 655

12.4 urllib2—Network Resource Access 657

12.4.1 HTTP GET 657

12.4.2 Encoding Arguments 660

12.4.3 HTTP POST 661

12.4.4 Adding Outgoing Headers 661

12.4.5 Posting Form Data from a Request 663

12.4.6 Uploading Files 664

12.4.7 Creating Custom Protocol Handlers 667

12.5 base64—Encode Binary Data with ASCII 670

12.5.1 Base64 Encoding 670

12.5.2 Base64 Decoding 671

12.5.3 URL-Safe Variations 672

12.5.4 Other Encodings 673

12.6 robotparser—Internet Spider Access Control 674

12.6.1 robots.txt 674

12.6.2 Testing Access Permissions 675

12.6.3 Long-Lived Spiders 676

12.7 Cookie—HTTP Cookies 677

12.7.1 Creating and Setting a Cookie 678

12.7.2 Morsels 678

12.7.3 Encoded Values 680

12.7.4 Receiving and Parsing Cookie Headers 681

12.7.5 Alternative Output Formats 682

12.7.6 Deprecated Classes 683

12.8 uuid—Universally Unique Identifiers 684

12.8.1 UUID 1—IEEE 802 MAC Address 684

12.8.2 UUID 3 and 5—Name-Based Values 686

12.8.3 UUID 4—Random Values 688

12.8.4 Working with UUID Objects 689

ptg

Contents xxi

12.9 json—JavaScript Object Notation 690

12.9.1 Encoding and Decoding Simple Data Types 690

12.9.2 Human-Consumable vs. Compact Output 692

12.9.3 Encoding Dictionaries 694

12.9.4 Working with Custom Types 695

12.9.5 Encoder and Decoder Classes 697

12.9.6 Working with Streams and Files 700

12.9.7 Mixed Data Streams 701

12.10 xmlrpclib—Client Library for XML-RPC 702

12.10.1 Connecting to a Server 704

12.10.2 Data Types 706

12.10.3 Passing Objects 709

12.10.4 Binary Data 710

12.10.5 Exception Handling 712

12.10.6 Combining Calls into One Message 712

12.11 SimpleXMLRPCServer—An XML-RPC Server 714

12.11.1 A Simple Server 714

12.11.2 Alternate API Names 716

12.11.3 Dotted API Names 718

12.11.4 Arbitrary API Names 719

12.11.5 Exposing Methods of Objects 720

12.11.6 Dispatching Calls 722

12.11.7 Introspection API 724

13 EMAIL 727
13.1 smtplib—Simple Mail Transfer Protocol Client 727

13.1.1 Sending an Email Message 728

13.1.2 Authentication and Encryption 730

13.1.3 Verifying an Email Address 732

13.2 smtpd—Sample Mail Servers 734

13.2.1 Mail Server Base Class 734

13.2.2 Debugging Server 737

13.2.3 Proxy Server 737

13.3 imaplib—IMAP4 Client Library 738

13.3.1 Variations 739

13.3.2 Connecting to a Server 739

13.3.3 Example Configuration 741

13.3.4 Listing Mailboxes 741

13.3.5 Mailbox Status 744

ptg

xxii Contents

13.3.6 Selecting a Mailbox 745

13.3.7 Searching for Messages 746

13.3.8 Search Criteria 747

13.3.9 Fetching Messages 749

13.3.10 Whole Messages 752

13.3.11 Uploading Messages 753

13.3.12 Moving and Copying Messages 755

13.3.13 Deleting Messages 756

13.4 mailbox—Manipulate Email Archives 758

13.4.1 mbox 759

13.4.2 Maildir 762

13.4.3 Other Formats 768

14 APPLICATION BUILDING BLOCKS 769
14.1 getopt—Command-Line Option Parsing 770

14.1.1 Function Arguments 771

14.1.2 Short-Form Options 771

14.1.3 Long-Form Options 772

14.1.4 A Complete Example 772

14.1.5 Abbreviating Long-Form Options 775

14.1.6 GNU-Style Option Parsing 775

14.1.7 Ending Argument Processing 777

14.2 optparse—Command-Line Option Parser 777

14.2.1 Creating an OptionParser 777

14.2.2 Short- and Long-Form Options 778

14.2.3 Comparing with getopt 779

14.2.4 Option Values 781

14.2.5 Option Actions 784

14.2.6 Help Messages 790

14.3 argparse—Command-Line Option and Argument Parsing 795

14.3.1 Comparing with optparse 796

14.3.2 Setting Up a Parser 796

14.3.3 Defining Arguments 796

14.3.4 Parsing a Command Line 796

14.3.5 Simple Examples 797

14.3.6 Automatically Generated Options 805

14.3.7 Parser Organization 807

14.3.8 Advanced Argument Processing 815

ptg

Contents xxiii

14.4 readline—The GNU Readline Library 823

14.4.1 Configuring 823

14.4.2 Completing Text 824

14.4.3 Accessing the Completion Buffer 828

14.4.4 Input History 832

14.4.5 Hooks 834

14.5 getpass—Secure Password Prompt 836

14.5.1 Example 836

14.5.2 Using getpass without a Terminal 837

14.6 cmd—Line-Oriented Command Processors 839

14.6.1 Processing Commands 839

14.6.2 Command Arguments 840

14.6.3 Live Help 842

14.6.4 Auto-Completion 843

14.6.5 Overriding Base Class Methods 845

14.6.6 Configuring Cmd through Attributes 847

14.6.7 Running Shell Commands 848

14.6.8 Alternative Inputs 849

14.6.9 Commands from sys.argv 851

14.7 shlex—Parse Shell-Style Syntaxes 852

14.7.1 Quoted Strings 852

14.7.2 Embedded Comments 854

14.7.3 Split 855

14.7.4 Including Other Sources of Tokens 855

14.7.5 Controlling the Parser 856

14.7.6 Error Handling 858

14.7.7 POSIX vs. Non-POSIX Parsing 859

14.8 ConfigParser—Work with Configuration Files 861

14.8.1 Configuration File Format 862

14.8.2 Reading Configuration Files 862

14.8.3 Accessing Configuration Settings 864

14.8.4 Modifying Settings 869

14.8.5 Saving Configuration Files 871

14.8.6 Option Search Path 872

14.8.7 Combining Values with Interpolation 875

14.9 logging—Report Status, Error, and Informational Messages 878

14.9.1 Logging in Applications vs. Libraries 878

14.9.2 Logging to a File 879

14.9.3 Rotating Log Files 879

ptg

xxiv Contents

14.9.4 Verbosity Levels 880

14.9.5 Naming Logger Instances 882

14.10 fileinput—Command-Line Filter Framework 883

14.10.1 Converting M3U Files to RSS 883

14.10.2 Progress Metadata 886

14.10.3 In-Place Filtering 887

14.11 atexit—Program Shutdown Callbacks 890

14.11.1 Examples 890

14.11.2 When Are atexit Functions Not Called? 891

14.11.3 Handling Exceptions 893

14.12 sched—Timed Event Scheduler 894

14.12.1 Running Events with a Delay 895

14.12.2 Overlapping Events 896

14.12.3 Event Priorities 897

14.12.4 Canceling Events 897

15 INTERNATIONALIZATION AND LOCALIZATION 899
15.1 gettext—Message Catalogs 899

15.1.1 Translation Workflow Overview 900

15.1.2 Creating Message Catalogs from Source Code 900

15.1.3 Finding Message Catalogs at Runtime 903

15.1.4 Plural Values 905

15.1.5 Application vs. Module Localization 907

15.1.6 Switching Translations 908

15.2 locale—Cultural Localization API 909

15.2.1 Probing the Current Locale 909

15.2.2 Currency 915

15.2.3 Formatting Numbers 916

15.2.4 Parsing Numbers 917

15.2.5 Dates and Times 917

16 DEVELOPER TOOLS 919
16.1 pydoc—Online Help for Modules 920

16.1.1 Plain-Text Help 920

16.1.2 HTML Help 920

16.1.3 Interactive Help 921

16.2 doctest—Testing through Documentation 921

16.2.1 Getting Started 922

16.2.2 Handling Unpredictable Output 924

ptg

Contents xxv

16.2.3 Tracebacks 928

16.2.4 Working around Whitespace 930

16.2.5 Test Locations 936

16.2.6 External Documentation 939

16.2.7 Running Tests 942

16.2.8 Test Context 945

16.3 unittest—Automated Testing Framework 949

16.3.1 Basic Test Structure 949

16.3.2 Running Tests 949

16.3.3 Test Outcomes 950

16.3.4 Asserting Truth 952

16.3.5 Testing Equality 953

16.3.6 Almost Equal? 954

16.3.7 Testing for Exceptions 955

16.3.8 Test Fixtures 956

16.3.9 Test Suites 957

16.4 traceback—Exceptions and Stack Traces 958

16.4.1 Supporting Functions 958

16.4.2 Working with Exceptions 959

16.4.3 Working with the Stack 963

16.5 cgitb—Detailed Traceback Reports 965

16.5.1 Standard Traceback Dumps 966

16.5.2 Enabling Detailed Tracebacks 966

16.5.3 Local Variables in Tracebacks 968

16.5.4 Exception Properties 971

16.5.5 HTML Output 972

16.5.6 Logging Tracebacks 972

16.6 pdb—Interactive Debugger 975

16.6.1 Starting the Debugger 976

16.6.2 Controlling the Debugger 979

16.6.3 Breakpoints 990

16.6.4 Changing Execution Flow 1002

16.6.5 Customizing the Debugger with Aliases 1009

16.6.6 Saving Configuration Settings 1011

16.7 trace—Follow Program Flow 1012

16.7.1 Example Program 1013

16.7.2 Tracing Execution 1013

16.7.3 Code Coverage 1014

16.7.4 Calling Relationships 1017

ptg

xxvi Contents

16.7.5 Programming Interface 1018

16.7.6 Saving Result Data 1020

16.7.7 Options 1022

16.8 profile and pstats—Performance Analysis 1022

16.8.1 Running the Profiler 1023

16.8.2 Running in a Context 1026

16.8.3 pstats: Saving and Working with Statistics 1027

16.8.4 Limiting Report Contents 1028

16.8.5 Caller / Callee Graphs 1029

16.9 timeit—Time the Execution of Small Bits of Python Code 1031

16.9.1 Module Contents 1031

16.9.2 Basic Example 1032

16.9.3 Storing Values in a Dictionary 1033

16.9.4 From the Command Line 1035

16.10 compileall—Byte-Compile Source Files 1037

16.10.1 Compiling One Directory 1037

16.10.2 Compiling sys.path 1038

16.10.3 From the Command Line 1039

16.11 pyclbr—Class Browser 1039

16.11.1 Scanning for Classes 1041

16.11.2 Scanning for Functions 1042

17 RUNTIME FEATURES 1045
17.1 site—Site-Wide Configuration 1046

17.1.1 Import Path 1046

17.1.2 User Directories 1047

17.1.3 Path Configuration Files 1049

17.1.4 Customizing Site Configuration 1051

17.1.5 Customizing User Configuration 1053

17.1.6 Disabling the site Module 1054

17.2 sys—System-Specific Configuration 1055

17.2.1 Interpreter Settings 1055

17.2.2 Runtime Environment 1062

17.2.3 Memory Management and Limits 1065

17.2.4 Exception Handling 1071

17.2.5 Low-Level Thread Support 1074

17.2.6 Modules and Imports 1080

17.2.7 Tracing a Program as It Runs 1101

ptg

Contents xxvii

17.3 os—Portable Access to Operating System Specific Features 1108

17.3.1 Process Owner 1108

17.3.2 Process Environment 1111

17.3.3 Process Working Directory 1112

17.3.4 Pipes 1112

17.3.5 File Descriptors 1116

17.3.6 File System Permissions 1116

17.3.7 Directories 1118

17.3.8 Symbolic Links 1119

17.3.9 Walking a Directory Tree 1120

17.3.10 Running External Commands 1121

17.3.11 Creating Processes with os.fork() 1122

17.3.12 Waiting for a Child 1125

17.3.13 Spawn 1127

17.3.14 File System Permissions 1127

17.4 platform—System Version Information 1129

17.4.1 Interpreter 1129

17.4.2 Platform 1130

17.4.3 Operating System and Hardware Info 1131

17.4.4 Executable Architecture 1133

17.5 resource—System Resource Management 1134

17.5.1 Current Usage 1134

17.5.2 Resource Limits 1135

17.6 gc—Garbage Collector 1138

17.6.1 Tracing References 1138

17.6.2 Forcing Garbage Collection 1141

17.6.3 Finding References to Objects that Cannot Be Collected 1146

17.6.4 Collection Thresholds and Generations 1148

17.6.5 Debugging 1151

17.7 sysconfig—Interpreter Compile-Time Configuration 1160

17.7.1 Configuration Variables 1160

17.7.2 Installation Paths 1163

17.7.3 Python Version and Platform 1167

18 LANGUAGE TOOLS 1169
18.1 warnings—Nonfatal Alerts 1170

18.1.1 Categories and Filtering 1170

18.1.2 Generating Warnings 1171

ptg

xxviii Contents

18.1.3 Filtering with Patterns 1172

18.1.4 Repeated Warnings 1174

18.1.5 Alternate Message Delivery Functions 1175

18.1.6 Formatting 1176

18.1.7 Stack Level in Warnings 1177

18.2 abc—Abstract Base Classes 1178

18.2.1 Why Use Abstract Base Classes? 1178

18.2.2 How Abstract Base Classes Work 1178

18.2.3 Registering a Concrete Class 1179

18.2.4 Implementation through Subclassing 1179

18.2.5 Concrete Methods in ABCs 1181

18.2.6 Abstract Properties 1182

18.3 dis—Python Bytecode Disassembler 1186

18.3.1 Basic Disassembly 1187

18.3.2 Disassembling Functions 1187

18.3.3 Classes 1189

18.3.4 Using Disassembly to Debug 1190

18.3.5 Performance Analysis of Loops 1192

18.3.6 Compiler Optimizations 1198

18.4 inspect—Inspect Live Objects 1200

18.4.1 Example Module 1200

18.4.2 Module Information 1201

18.4.3 Inspecting Modules 1203

18.4.4 Inspecting Classes 1204

18.4.5 Documentation Strings 1206

18.4.6 Retrieving Source 1207

18.4.7 Method and Function Arguments 1209

18.4.8 Class Hierarchies 1210

18.4.9 Method Resolution Order 1212

18.4.10 The Stack and Frames 1213

18.5 exceptions—Built-in Exception Classes 1216

18.5.1 Base Classes 1216

18.5.2 Raised Exceptions 1217

18.5.3 Warning Categories 1233

19 MODULES AND PACKAGES 1235
19.1 imp—Python’s Import Mechanism 1235

19.1.1 Example Package 1236

19.1.2 Module Types 1236

ptg

Contents xxix

19.1.3 Finding Modules 1237

19.1.4 Loading Modules 1238

19.2 zipimport—Load Python Code from ZIP Archives 1240

19.2.1 Example 1240

19.2.2 Finding a Module 1241

19.2.3 Accessing Code 1242

19.2.4 Source 1243

19.2.5 Packages 1244

19.2.6 Data 1244

19.3 pkgutil—Package Utilities 1247

19.3.1 Package Import Paths 1247

19.3.2 Development Versions of Packages 1249

19.3.3 Managing Paths with PKG Files 1251

19.3.4 Nested Packages 1253

19.3.5 Package Data 1255

Index of Python Modules 1259
Index 1261

ptg

This page intentionally left blank

ptg

TABLES

1.1 Regular Expression Escape Codes 24

1.2 Regular Expression Anchoring Codes 27

1.3 Regular Expression Flag Abbreviations 45

2.1 Byte Order Specifiers for struct 104

6.1 Codec Error Handling Modes 292

7.1 The “project” Table 353

7.2 The “task” Table 353

7.3 CSV Dialect Parameters 415

10.1 Multiprocessing Exit Codes 537

11.1 Event Flags for poll() 604

13.1 IMAP 4 Mailbox Status Conditions 744

14.1 Flags for Variable Argument Definitions in argparse 815

14.2 Logging Levels 881

16.1 Test Case Outcomes 950

17.1 CPython Command-Line Option Flags 1057

17.2 Event Hooks for settrace() 1101

17.3 Platform Information Functions 1132

17.4 Path Names Used in sysconfig 1164

18.1 Warning Filter Actions 1171

xxxi

ptg

This page intentionally left blank

ptg

FOREWORD

It’s Thanksgiving Day, 2010. For those outside of the United States, and for many of

those within it, it might just seem like a holiday where people eat a ton of food, watch

some football, and otherwise hang out.

For me, and many others, it’s a time to take a look back and think about the

things that have enriched our lives and give thanks for them. Sure, we should be doing

that every day, but having a single day that’s focused on just saying thanks sometimes

makes us think a bit more broadly and a bit more deeply.

I’m sitting here writing the foreward to this book, something I’m very thankful for

having the opportunity to do—but I’m not just thinking about the content of the book,

or the author, who is a fantastic community member. I’m thinking about the subject

matter itself—Python—and specifically, its standard library.

Every version of Python shipped today contains hundreds of modules spanning

many years, many developers, many subjects, and many tasks. It contains modules for

everything from sending and receiving email, to GUI development, to a built-in HTTP

server. By itself, the standard library is a massive work. Without the people who have

maintained it throughout the years, and the hundreds of people who have submitted

patches, documentation, and feedback, it would not be what it is today.

It’s an astounding accomplishment, and something that has been the critical com-

ponent in the rise of Python’s popularity as a language and ecosystem. Without the

standard library, without the “batteries included” motto of the core team and others,

Python would never have come as far. It has been downloaded by hundreds of thou-

sands of people and companies, and has been installed on millions of servers, desktops,

and other devices.

Without the standard library, Python would still be a fantastic language, built on

solid concepts of teaching, learning, and readability. It might have gotten far enough

xxxiii

ptg

xxxiv Foreword

on its own, based on those merits. But the standard library turns it from an interesting

experiment into a powerful and effective tool.

Every day, developers across the world build tools and entire applications based

on nothing but the core language and the standard library. You not only get the ability

to conceptualize what a car is (the language), but you also get enough parts and tools to

put together a basic car yourself. It might not be the perfect car, but it gets you from A

to B, and that’s incredibly empowering and rewarding. Time and time again, I speak to

people who look at me proudly and say, “Look what I built with nothing except what

came with Python!”

It is not, however, a fait accompli. The standard library has its warts. Given its

size and breadth, and its age, it’s no real surprise that some of the modules have varying

levels of quality, API clarity, and coverage. Some of the modules have suffered “feature

creep,” or have failed to keep up with modern advances in the areas they cover. Python

continues to evolve, grow, and improve over time through the help and hard work of

many, many unpaid volunteers.

Some argue, though, that due to the shortcomings and because the standard library

doesn’t necessarily comprise the “best of breed” solutions for the areas its modules

cover (“best of” is a continually moving and adapting target, after all), that it should be

killed or sent out to pasture, despite continual improvement. These people miss the fact

that not only is the standard library a critical piece of what makes Python continually

successful, but also, despite its warts, it is still an excellent resource.

But I’ve intentionally ignored one giant area: documentation. The standard li-

brary’s documentation is good and is constantly improving and evolving. Given the

size and breadth of the standard library, the documentation is amazing for what it is. It’s

awesome that we have hundreds of pages of documentation contributed by hundreds of

developers and users. The documentation is used every single day by hundreds of thou-

sands of people to create things—things as simple as one-off scripts and as complex as

the software that controls giant robotic arms.

The documentation is why we are here, though. All good documentation and code

starts with an idea—a kernel of a concept about what something is, or will be. Outward

from that kernel come the characters (the APIs) and the storyline (the modules). In

the case of code, sometimes it starts with a simple idea: “I want to parse a string and

look for a date.” But when you reach the end—when you’re looking at the few hun-

dred unit tests, functions, and other bits you’ve made—you sit back and realize you’ve

built something much, much more vast than originally intended. The same goes for

documentation, especially the documentation of code.

The examples are the most critical component in the documentation of code, in my

estimation. You can write a narrative about a piece of an API until it spans entire books,

and you can describe the loosely coupled interface with pretty words and thoughtful use

ptg

Foreword xxxv

cases. But it all falls flat if a user approaching it for the first time can’t glue those pretty

words, thoughtful use cases, and API signatures together into something that makes

sense and solves their problems.

Examples are the gateway by which people make the critical connections—those

logical jumps from an abstract concept into something concrete. It’s one thing to

“know” the ideas and API; it’s another to see it used. It helps jump the void when

you’re not only trying to learn something, but also trying to improve existing things.

Which brings us back to Python. Doug Hellmann, the author of this book, started

a blog in 2007 called the Python Module of the Week. In the blog, he walked through

various modules of the standard library, taking an example-first approach to showing

how each one worked and why. From the first day I read it, it had a place right next to

the core Python documentation. His writing has become an indispensable resource for

me and many other people in the Python community.

Doug’s writings fill a critical gap in the Python documentation I see today: the

need for examples. Showing how and why something works in a functional, simple

manner is no easy task. And, as we’ve seen, it’s a critical and valuable body of work

that helps people every single day. People send me emails with alarming regularity

saying things like, “Did you see this post by Doug? This is awesome!” or “Why isn’t

this in the core documentation? It helped me understand how things really work!”

When I heard Doug was going to take the time to further flesh out his existing

work, to turn it into a book I could keep on my desk to dog-ear and wear out from near

constant use, I was more than a little excited. Doug is a fantastic technical writer with

a great eye for detail. Having an entire book dedicated to real examples of how over a

hundred modules in the standard library work, written by him, blows my mind.

You see, I’m thankful for Python. I’m thankful for the standard library—warts and

all. I’m thankful for the massive, vibrant, yet sometimes dysfunctional community we

have. I’m thankful for the tireless work of the core development team, past, present

and future. I’m thankful for the resources, the time, and the effort so many community

members—of which Doug Hellmann is an exemplary example—have put into making

this community and ecosystem such an amazing place.

Lastly, I’m thankful for this book. Its author will continue to be well respected and

the book well used in the years to come.

— Jesse Noller
Python Core Developer
PSF Board Member
Principal Engineer, Nasuni Corporation

ptg

This page intentionally left blank

ptg

ACKNOWLEDGMENTS

This book would not have come into being without the contributions and support of

many people.

I was first introduced to Python around 1997 by Dick Wall, while we were working

together on GIS software at ERDAS. I remember being simultaneously happy that I had

found a new tool language that was so easy to use, and sad that the company did not let

us use it for “real work.” I have used Python extensively at all of my subsequent jobs,

and I have Dick to thank for the many happy hours I have spent working on software

since then.

The Python core development team has created a robust ecosystem of language,

tools, and libraries that continue to grow in popularity and find new application areas.

Without the amazing investment in time and resources they have given us, we would

all still be spending our time reinventing wheel after wheel.

As described in the Introduction, the material in this book started out as a series of

blog posts. Each of those posts has been reviewed and commented on by members of

the Python community, with corrections, suggestions, and questions that led to changes

in the version you find here. Thank you all for reading along week after week, and

contributing your time and attention.

The technical reviewers for the book—Matt Culbreth, Katie Cunningham, Jeff

McNeil, and Keyton Weissinger—spent many hours looking for issues with the ex-

ample code and accompanying explanations. The result is stronger than I could have

produced on my own. I also received advice from Jesse Noller on the multiprocessing

module and Brett Cannon on creating custom importers.

A special thanks goes to the editors and production staff at Pearson for all their

hard work and assistance in helping me realize my vision for this book.

xxxvii

ptg

xxxviii Acknowledgments

Finally, I want to thank my wife, Theresa Flynn, who has always given me excel-

lent writing advice and was a constant source of encouragement throughout the entire

process of creating this book. I doubt she knew what she was getting herself into when

she told me, “You know, at some point, you have to sit down and start writing it.” It’s

your turn.

ptg

ABOUT THE AUTHOR

Doug Hellmann is currently a senior developer with Racemi, Inc., and communica-

tions director of the Python Software Foundation. He has been programming in Python

since version 1.4 and has worked on a variety of UNIX and non-UNIX platforms for

projects in fields such as mapping, medical news publishing, banking, and data cen-

ter automation. After a year as a regular columnist for Python Magazine, he served as

editor-in-chief from 2008–2009. Since 2007, Doug has published the popular Python
Module of the Week series on his blog. He lives in Athens, Georgia.

xxxix

ptg

This page intentionally left blank

ptg

INTRODUCTION

Distributed with every copy of Python, the standard library contains hundreds of

modules that provide tools for interacting with the operating system, interpreter, and

Internet. All of them are tested and ready to be used to jump start the development of

your applications. This book presents selected examples demonstrating how to use the

most commonly used features of the modules that give Python its “batteries included”

slogan, taken from the popular Python Module of the Week (PyMOTW) blog series.

This Book’s Target Audience

The audience for this book is an intermediate Python programmer, so although all the

source code is presented with discussion, only a few cases include line-by-line expla-

nations. Every section focuses on the features of the modules, illustrated by the source

code and output from fully independent example programs. Each feature is presented as

concisely as possible, so the reader can focus on the module or function being demon-

strated without being distracted by the supporting code.

An experienced programmer familiar with other languages may be able to learn

Python from this book, but it is not intended to be an introduction to the language. Some

prior experience writing Python programs will be useful when studying the examples.

Several sections, such as the description of network programming with sockets or

hmac encryption, require domain-specific knowledge. The basic information needed to

explain the examples is included here, but the range of topics covered by the modules

in the standard library makes it impossible to cover every topic comprehensively in

a single volume. The discussion of each module is followed by a list of suggested

sources for more information and further reading. These include online resources, RFC

standards documents, and related books.

Although the current transition to Python 3 is well underway, Python 2 is still

likely to be the primary version of Python used in production environments for years

1

ptg

2 Introduction

to come because of the large amount of legacy Python 2 source code available and

the slow transition rate to Python 3. All the source code for the examples has been

updated from the original online versions and tested with Python 2.7, the final release

of the 2.x series. Many of the example programs can be readily adapted to work with

Python 3, but others cover modules that have been renamed or deprecated.

How This Book Is Organized

The modules are grouped into chapters to make it easy to find an individual module for

reference and browse by subject for more leisurely exploration. The book supplements

the comprehensive reference guide available on http://docs.python.org, providing fully

functional example programs to demonstrate the features described there.

Downloading the Example Code

The original versions of the articles, errata for the book, and the sample code are avail-

able on the author’s web site (http://www.doughellmann.com/books/byexample).

http://www.doughellmann.com/books/byexample
http://docs.python.org

ptg

Chapter 1

TEXT

The string class is the most obvious text-processing tool available to Python program-

mers, but plenty of other tools in the standard library are available to make advanced

text manipulation simple.

Older code, written before Python 2.0, uses functions from the string module,

instead of methods of string objects. There is an equivalent method for each function

from the module, and use of the functions is deprecated for new code.

Programs using Python 2.4 or later may use string.Template as a simple way

to parameterize strings beyond the features of the string or unicode classes. While

not as feature-rich as templates defined by many of the Web frameworks or extension

modules available from the Python Package Index, string.Template is a good mid-

dle ground for user-modifiable templates where dynamic values need to be inserted into

otherwise static text.

The textwrap module includes tools for formatting text taken from paragraphs

by limiting the width of output, adding indentation, and inserting line breaks to wrap

lines consistently.

The standard library includes two modules related to comparing text values beyond

the built-in equality and sort comparison supported by string objects. re provides a

complete regular expression library, implemented in C for speed. Regular expressions

are well-suited to finding substrings within a larger data set, comparing strings against

a pattern more complex than another fixed string, and performing mild parsing.

difflib, on the other hand, computes the actual differences between sequences

of text in terms of the parts added, removed, or changed. The output of the comparison

functions in difflib can be used to provide more detailed feedback to users about

where changes occur in two inputs, how a document has changed over time, etc.

3

ptg

4 Text

1.1 string—Text Constants and Templates

Purpose Contains constants and classes for working with text.

Python Version 1.4 and later

The string module dates from the earliest versions of Python. In version 2.0, many

of the functions previously implemented only in the module were moved to methods

of str and unicode objects. Legacy versions of those functions are still available, but

their use is deprecated and they will be dropped in Python 3.0. The string module

retains several useful constants and classes for working with string and unicode

objects, and this discussion will concentrate on them.

1.1.1 Functions

The two functions capwords() and maketrans() are not moving from the string

module. capwords() capitalizes all words in a string.

import string

s = ’The quick brown fox jumped over the lazy dog.’

print s

print string.capwords(s)

The results are the same as calling split(), capitalizing the words in the resulting

list, and then calling join() to combine the results.

$ python string_capwords.py

The quick brown fox jumped over the lazy dog.

The Quick Brown Fox Jumped Over The Lazy Dog.

The maketrans() function creates translation tables that can be used with the

translate() method to change one set of characters to another more efficiently than

with repeated calls to replace().

import string

leet = string.maketrans(’abegiloprstz’, ’463611092572’)

ptg

1.1. string—Text Constants and Templates 5

s = ’The quick brown fox jumped over the lazy dog.’

print s

print s.translate(leet)

In this example, some letters are replaced by their l33t number alternatives.

$ python string_maketrans.py

The quick brown fox jumped over the lazy dog.

Th3 qu1ck 620wn f0x jum93d 0v32 7h3 142y d06.

1.1.2 Templates

String templates were added in Python 2.4 as part of PEP 292 and are intended as an

alternative to the built-in interpolation syntax. With string.Template interpolation,

variables are identified by prefixing the name with $ (e.g., $var) or, if necessary to

set them off from surrounding text, they can also be wrapped with curly braces (e.g.,

${var}).

This example compares a simple template with a similar string interpolation using

the % operator.

import string

values = { ’var’:’foo’ }

t = string.Template("""

Variable : $var

Escape : $$

Variable in text: ${var}iable

""")

print ’TEMPLATE:’, t.substitute(values)

s = """

Variable : %(var)s
Escape : %%
Variable in text: %(var)siable
"""

print ’INTERPOLATION:’, s % values

ptg

6 Text

In both cases, the trigger character ($ or %) is escaped by repeating it twice.

$ python string_template.py

TEMPLATE:

Variable : foo

Escape : $

Variable in text: fooiable

INTERPOLATION:

Variable : foo

Escape : %

Variable in text: fooiable

One key difference between templates and standard string interpolation is that

the argument type is not considered. The values are converted to strings, and the

strings are inserted into the result. No formatting options are available. For exam-

ple, there is no way to control the number of digits used to represent a floating-point

value.

A benefit, though, is that by using the safe_substitute()method, it is possible

to avoid exceptions if not all values the template needs are provided as arguments.

import string

values = { ’var’:’foo’ }

t = string.Template("$var is here but $missing is not provided")

try:
print ’substitute() :’, t.substitute(values)

except KeyError, err:

print ’ERROR:’, str(err)

print ’safe_substitute():’, t.safe_substitute(values)

Since there is no value for missing in the values dictionary, a KeyError is raised

by substitute(). Instead of raising the error, safe_substitute() catches it and

leaves the variable expression alone in the text.

$ python string_template_missing.py

ptg

1.1. string—Text Constants and Templates 7

substitute() : ERROR: ’missing’

safe_substitute(): foo is here but $missing is not provided

1.1.3 Advanced Templates

The default syntax for string.Template can be changed by adjusting the regular

expression patterns it uses to find the variable names in the template body. A simple

way to do that is to change the delimiter and idpattern class attributes.

import string

template_text = ’’’

Delimiter : %%
Replaced : %with_underscore

Ignored : %notunderscored

’’’

d = { ’with_underscore’:’replaced’,

’notunderscored’:’not replaced’,

}

class MyTemplate(string.Template):
delimiter = ’%’

idpattern = ’[a-z]+_[a-z]+’

t = MyTemplate(template_text)

print ’Modified ID pattern:’

print t.safe_substitute(d)

In this example, the substitution rules are changed so that the delimiter is % instead

of $ and variable names must include an underscore. The pattern %notunderscored

is not replaced by anything because it does not include an underscore character.

$ python string_template_advanced.py

Modified ID pattern:

Delimiter : %

Replaced : replaced

Ignored : %notunderscored

ptg

8 Text

For more complex changes, override the pattern attribute and define an entirely

new regular expression. The pattern provided must contain four named groups for cap-

turing the escaped delimiter, the named variable, a braced version of the variable name,

and any invalid delimiter patterns.

import string

t = string.Template(’$var’)

print t.pattern.pattern

The value of t.pattern is a compiled regular expression, but the original string

is available via its pattern attribute.

\$(?:

(?P<escaped>\$) | # two delimiters

(?P<named>[_a-z][_a-z0-9]*) | # identifier

{(?P<braced>[_a-z][_a-z0-9]*)} | # braced identifier

(?P<invalid>) # ill-formed delimiter exprs

)

This example defines a new pattern to create a new type of template using

{{var}} as the variable syntax.

import re
import string

class MyTemplate(string.Template):
delimiter = ’{{’

pattern = r’’’

\{\{(?:

(?P<escaped>\{\{)|

(?P<named>[_a-z][_a-z0-9]*)\}\}|

(?P<braced>[_a-z][_a-z0-9]*)\}\}|

(?P<invalid>)

)

’’’

t = MyTemplate(’’’

{{{{

{{var}}

’’’)

ptg

1.2. textwrap—Formatting Text Paragraphs 9

print ’MATCHES:’, t.pattern.findall(t.template)

print ’SUBSTITUTED:’, t.safe_substitute(var=’replacement’)

Both the named and braced patterns must be provided separately, even though

they are the same. Running the sample program generates:

$ python string_template_newsyntax.py

MATCHES: [(’{{’, ’’, ’’, ’’), (’’, ’var’, ’’, ’’)]

SUBSTITUTED:

{{

replacement

See Also:
string (http://docs.python.org/lib/module-string.html) Standard library documenta-

tion for this module.

String Methods (http://docs.python.org/lib/string-methods.html#string-methods)
Methods of str objects that replace the deprecated functions in string.

PEP 292 (www.python.org/dev/peps/pep-0292) A proposal for a simpler string sub-

stitution syntax.

l33t (http://en.wikipedia.org/wiki/Leet) “Leetspeak” alternative alphabet.

1.2 textwrap—Formatting Text Paragraphs

Purpose Formatting text by adjusting where line breaks occur in a

paragraph.

Python Version 2.5 and later

The textwrap module can be used to format text for output when pretty-printing is

desired. It offers programmatic functionality similar to the paragraph wrapping or filling

features found in many text editors and word processors.

1.2.1 Example Data

The examples in this section use the module textwrap_example.py, which contains

a string sample_text.

sample_text = ’’’

The textwrap module can be used to format text for output in

situations where pretty-printing is desired. It offers

http://docs.python.org/lib/module-string.html
http://docs.python.org/lib/string-methods.html#string-methods
www.python.org/dev/peps/pep-0292
http://en.wikipedia.org/wiki/Leet

ptg

10 Text

programmatic functionality similar to the paragraph wrapping

or filling features found in many text editors.

’’’

1.2.2 Filling Paragraphs

The fill() function takes text as input and produces formatted text as output.

import textwrap
from textwrap_example import sample_text

print ’No dedent:\n’
print textwrap.fill(sample_text, width=50)

The results are something less than desirable. The text is now left justified, but

the first line retains its indent and the spaces from the front of each subsequent line are

embedded in the paragraph.

$ python textwrap_fill.py

No dedent:

The textwrap module can be used to format

text for output in situations where pretty-

printing is desired. It offers programmatic

functionality similar to the paragraph wrapping

or filling features found in many text editors.

1.2.3 Removing Existing Indentation

The previous example has embedded tabs and extra spaces mixed into the output, so it

is not formatted very cleanly. Removing the common whitespace prefix from all lines

in the sample text produces better results and allows the use of docstrings or embedded

multiline strings straight from Python code while removing the code formatting itself.

The sample string has an artificial indent level introduced for illustrating this feature.

import textwrap
from textwrap_example import sample_text

dedented_text = textwrap.dedent(sample_text)

print ’Dedented:’

print dedented_text

ptg

1.2. textwrap—Formatting Text Paragraphs 11

The results are starting to look better:

$ python textwrap_dedent.py

Dedented:

The textwrap module can be used to format text for output in

situations where pretty-printing is desired. It offers

programmatic functionality similar to the paragraph wrapping

or filling features found in many text editors.

Since “dedent” is the opposite of “indent,” the result is a block of text with the

common initial whitespace from each line removed. If one line is already indented

more than another, some of the whitespace will not be removed.

Input like

Line one.

Line two.

Line three.

becomes

Line one.

Line two.

Line three.

1.2.4 Combining Dedent and Fill

Next, the dedented text can be passed through fill() with a few different width
values.

import textwrap
from textwrap_example import sample_text

dedented_text = textwrap.dedent(sample_text).strip()

for width in [45, 70]:

print ’%d Columns:\n’ % width

print textwrap.fill(dedented_text, width=width)

print

ptg

12 Text

This produces outputs in the specified widths.

$ python textwrap_fill_width.py

45 Columns:

The textwrap module can be used to format

text for output in situations where pretty-

printing is desired. It offers programmatic

functionality similar to the paragraph

wrapping or filling features found in many

text editors.

70 Columns:

The textwrap module can be used to format text for output in

situations where pretty-printing is desired. It offers programmatic

functionality similar to the paragraph wrapping or filling features

found in many text editors.

1.2.5 Hanging Indents

Just as the width of the output can be set, the indent of the first line can be controlled

independently of subsequent lines.

import textwrap
from textwrap_example import sample_text

dedented_text = textwrap.dedent(sample_text).strip()

print textwrap.fill(dedented_text,

initial_indent=’’,

subsequent_indent=’ ’ * 4,

width=50,

)

This makes it possible to produce a hanging indent, where the first line is indented

less than the other lines.

$ python textwrap_hanging_indent.py

The textwrap module can be used to format text for

output in situations where pretty-printing is

desired. It offers programmatic functionality

ptg

1.3. re—Regular Expressions 13

similar to the paragraph wrapping or filling

features found in many text editors.

The indent values can include nonwhitespace characters, too. The hanging indent

can be prefixed with * to produce bullet points, etc.

See Also:
textwrap (http://docs.python.org/lib/module-textwrap.html) Standard library doc-

umentation for this module.

1.3 re—Regular Expressions

Purpose Searching within and changing text using formal patterns.

Python Version 1.5 and later

Regular expressions are text-matching patterns described with a formal syntax. The

patterns are interpreted as a set of instructions, which are then executed with a string

as input to produce a matching subset or modified version of the original. The term

“regular expressions” is frequently shortened to “regex” or “regexp” in conversation.

Expressions can include literal text matching, repetition, pattern composition, branch-

ing, and other sophisticated rules. Many parsing problems are easier to solve using a

regular expression than by creating a special-purpose lexer and parser.

Regular expressions are typically used in applications that involve a lot of text

processing. For example, they are commonly used as search patterns in text-editing

programs used by developers, including vi, emacs, and modern IDEs. They are also

an integral part of UNIX command line utilities, such as sed, grep, and awk. Many

programming languages include support for regular expressions in the language syntax

(Perl, Ruby, Awk, and Tcl). Other languages, such as C, C++, and Python, support

regular expressions through extension libraries.

There are multiple open source implementations of regular expressions, each shar-

ing a common core syntax but having different extensions or modifications to their

advanced features. The syntax used in Python’s re module is based on the syntax used

for regular expressions in Perl, with a few Python-specific enhancements.

Note: Although the formal definition of “regular expression” is limited to expres-

sions that describe regular languages, some of the extensions supported by re go

beyond describing regular languages. The term “regular expression” is used here in

a more general sense to mean any expression that can be evaluated by Python’s re

module.

http://docs.python.org/lib/module-textwrap.html

ptg

14 Text

1.3.1 Finding Patterns in Text

The most common use for re is to search for patterns in text. The search() function

takes the pattern and text to scan, and returns a Match object when the pattern is found.

If the pattern is not found, search() returns None.

Each Match object holds information about the nature of the match, including the

original input string, the regular expression used, and the location within the original

string where the pattern occurs.

import re

pattern = ’this’

text = ’Does this text match the pattern?’

match = re.search(pattern, text)

s = match.start()

e = match.end()

print ’Found "%s"\nin "%s"\nfrom %d to %d ("%s")’ % \

(match.re.pattern, match.string, s, e, text[s:e])

The start() and end() methods give the indexes into the string showing where

the text matched by the pattern occurs.

$ python re_simple_match.py

Found "this"

in "Does this text match the pattern?"

from 5 to 9 ("this")

1.3.2 Compiling Expressions

re includes module-level functions for working with regular expressions as text strings,

but it is more efficient to compile the expressions a program uses frequently. The com-

pile() function converts an expression string into a RegexObject.

import re

Precompile the patterns

regexes = [re.compile(p)

ptg

1.3. re—Regular Expressions 15

for p in [’this’, ’that’]

]

text = ’Does this text match the pattern?’

print ’Text: %r\n’ % text

for regex in regexes:

print ’Seeking "%s" ->’ % regex.pattern,

if regex.search(text):

print ’match!’

else:
print ’no match’

The module-level functions maintain a cache of compiled expressions. However,

the size of the cache is limited, and using compiled expressions directly avoids the

cache lookup overhead. Another advantage of using compiled expressions is that by

precompiling all expressions when the module is loaded, the compilation work is shifted

to application start time, instead of to a point when the program may be responding to

a user action.

$ python re_simple_compiled.py

Text: ’Does this text match the pattern?’

Seeking "this" -> match!

Seeking "that" -> no match

1.3.3 Multiple Matches

So far, the example patterns have all used search() to look for single instances of

literal text strings. The findall() function returns all substrings of the input that

match the pattern without overlapping.

import re

text = ’abbaaabbbbaaaaa’

pattern = ’ab’

for match in re.findall(pattern, text):

print ’Found "%s"’ % match

ptg

16 Text

There are two instances of ab in the input string.

$ python re_findall.py

Found "ab"

Found "ab"

finditer() returns an iterator that produces Match instances instead of the

strings returned by findall().

import re

text = ’abbaaabbbbaaaaa’

pattern = ’ab’

for match in re.finditer(pattern, text):

s = match.start()

e = match.end()

print ’Found "%s" at %d:%d’ % (text[s:e], s, e)

This example finds the same two occurrences of ab, and the Match instance shows

where they are in the original input.

$ python re_finditer.py

Found "ab" at 0:2

Found "ab" at 5:7

1.3.4 Pattern Syntax

Regular expressions support more powerful patterns than simple literal text strings.

Patterns can repeat, can be anchored to different logical locations within the input, and

can be expressed in compact forms that do not require every literal character to be

present in the pattern. All of these features are used by combining literal text values

with metacharacters that are part of the regular expression pattern syntax implemented

by re.

import re

def test_patterns(text, patterns=[]):

ptg

1.3. re—Regular Expressions 17

"""Given source text and a list of patterns, look for

matches for each pattern within the text and print

them to stdout.

"""

Look for each pattern in the text and print the results

for pattern, desc in patterns:

print ’Pattern %r (%s)\n’ % (pattern, desc)

print ’ %r’ % text

for match in re.finditer(pattern, text):

s = match.start()

e = match.end()

substr = text[s:e]

n_backslashes = text[:s].count(’\\’)
prefix = ’.’ * (s + n_backslashes)

print ’ %s%r’ % (prefix, substr)

print
return

if __name__ == ’__main__’:

test_patterns(’abbaaabbbbaaaaa’,

[(’ab’, "’a’ followed by ’b’"),

])

The following examples will use test_patterns() to explore how variations

in patterns change the way they match the same input text. The output shows the input

text and the substring range from each portion of the input that matches the pattern.

$ python re_test_patterns.py

Pattern ’ab’ (’a’ followed by ’b’)

’abbaaabbbbaaaaa’

’ab’

.....’ab’

Repetition

There are five ways to express repetition in a pattern. A pattern followed by the

metacharacter * is repeated zero or more times. (Allowing a pattern to repeat zero

times means it does not need to appear at all to match.) Replace the * with + and the

pattern must appear at least once. Using ? means the pattern appears zero times or one

time. For a specific number of occurrences, use {m} after the pattern, where m is the

ptg

18 Text

number of times the pattern should repeat. And, finally, to allow a variable but limited

number of repetitions, use {m,n} where m is the minimum number of repetitions and n
is the maximum. Leaving out n ({m,}) means the value appears at least m times, with

no maximum.

from re_test_patterns import test_patterns

test_patterns(

’abbaabbba’,

[(’ab*’, ’a followed by zero or more b’),

(’ab+’, ’a followed by one or more b’),

(’ab?’, ’a followed by zero or one b’),

(’ab{3}’, ’a followed by three b’),

(’ab{2,3}’, ’a followed by two to three b’),

])

There are more matches for ab* and ab? than ab+.

$ python re_repetition.py

Pattern ’ab*’ (a followed by zero or more b)

’abbaabbba’

’abb’

...’a’

....’abbb’

........’a’

Pattern ’ab+’ (a followed by one or more b)

’abbaabbba’

’abb’

....’abbb’

Pattern ’ab?’ (a followed by zero or one b)

’abbaabbba’

’ab’

...’a’

....’ab’

........’a’

ptg

1.3. re—Regular Expressions 19

Pattern ’ab{3}’ (a followed by three b)

’abbaabbba’

....’abbb’

Pattern ’ab{2,3}’ (a followed by two to three b)

’abbaabbba’

’abb’

....’abbb’

Normally, when processing a repetition instruction, re will consume as much

of the input as possible while matching the pattern. This so-called greedy behavior

may result in fewer individual matches, or the matches may include more of the input

text than intended. Greediness can be turned off by following the repetition instruction

with ?.

from re_test_patterns import test_patterns

test_patterns(

’abbaabbba’,

[(’ab*?’, ’a followed by zero or more b’),

(’ab+?’, ’a followed by one or more b’),

(’ab??’, ’a followed by zero or one b’),

(’ab{3}?’, ’a followed by three b’),

(’ab{2,3}?’, ’a followed by two to three b’),

])

Disabling greedy consumption of the input for any patterns where zero occurrences

of b are allowed means the matched substring does not include any b characters.

$ python re_repetition_non_greedy.py

Pattern ’ab*?’ (a followed by zero or more b)

’abbaabbba’

’a’

...’a’

....’a’

........’a’

ptg

20 Text

Pattern ’ab+?’ (a followed by one or more b)

’abbaabbba’

’ab’

....’ab’

Pattern ’ab??’ (a followed by zero or one b)

’abbaabbba’

’a’

...’a’

....’a’

........’a’

Pattern ’ab{3}?’ (a followed by three b)

’abbaabbba’

....’abbb’

Pattern ’ab{2,3}?’ (a followed by two to three b)

’abbaabbba’

’abb’

....’abb’

Character Sets

A character set is a group of characters, any one of which can match at that point in the

pattern. For example, [ab] would match either a or b.

from re_test_patterns import test_patterns

test_patterns(

’abbaabbba’,

[(’[ab]’, ’either a or b’),

(’a[ab]+’, ’a followed by 1 or more a or b’),

(’a[ab]+?’, ’a followed by 1 or more a or b, not greedy’),

])

The greedy form of the expression (a[ab]+) consumes the entire string because

the first letter is a and every subsequent character is either a or b.

ptg

1.3. re—Regular Expressions 21

$ python re_charset.py

Pattern ’[ab]’ (either a or b)

’abbaabbba’

’a’

.’b’

..’b’

...’a’

....’a’

.....’b’

......’b’

.......’b’

........’a’

Pattern ’a[ab]+’ (a followed by 1 or more a or b)

’abbaabbba’

’abbaabbba’

Pattern ’a[ab]+?’ (a followed by 1 or more a or b, not greedy)

’abbaabbba’

’ab’

...’aa’

A character set can also be used to exclude specific characters. The carat (^) means

to look for characters not in the set following.

from re_test_patterns import test_patterns

test_patterns(

’This is some text -- with punctuation.’,

[(’[^-.]+’, ’sequences without -, ., or space’),

])

This pattern finds all the substrings that do not contain the characters -, ., or a

space.

$ python re_charset_exclude.py

Pattern ’[^-.]+’ (sequences without -, ., or space)

ptg

22 Text

’This is some text -- with punctuation.’

’This’

.....’is’

........’some’

.............’text’

.....................’with’

..........................’punctuation’

As character sets grow larger, typing every character that should (or should not)

match becomes tedious. A more compact format using character ranges can be used to

define a character set to include all contiguous characters between a start point and a

stop point.

from re_test_patterns import test_patterns

test_patterns(

’This is some text -- with punctuation.’,

[(’[a-z]+’, ’sequences of lowercase letters’),

(’[A-Z]+’, ’sequences of uppercase letters’),

(’[a-zA-Z]+’, ’sequences of lowercase or uppercase letters’),

(’[A-Z][a-z]+’, ’one uppercase followed by lowercase’),

])

Here the range a-z includes the lowercase ASCII letters, and the range A-Z in-

cludes the uppercase ASCII letters. The ranges can also be combined into a single

character set.

$ python re_charset_ranges.py

Pattern ’[a-z]+’ (sequences of lowercase letters)

’This is some text -- with punctuation.’

.’his’

.....’is’

........’some’

.............’text’

.....................’with’

..........................’punctuation’

Pattern ’[A-Z]+’ (sequences of uppercase letters)

’This is some text -- with punctuation.’

’T’

ptg

1.3. re—Regular Expressions 23

Pattern ’[a-zA-Z]+’ (sequences of lowercase or uppercase letters)

’This is some text -- with punctuation.’

’This’

.....’is’

........’some’

.............’text’

.....................’with’

..........................’punctuation’

Pattern ’[A-Z][a-z]+’ (one uppercase followed by lowercase)

’This is some text -- with punctuation.’

’This’

As a special case of a character set, the metacharacter dot, or period (.), indicates

that the pattern should match any single character in that position.

from re_test_patterns import test_patterns

test_patterns(

’abbaabbba’,

[(’a.’, ’a followed by any one character’),

(’b.’, ’b followed by any one character’),

(’a.*b’, ’a followed by anything, ending in b’),

(’a.*?b’, ’a followed by anything, ending in b’),

])

Combining a dot with repetition can result in very long matches, unless the non-

greedy form is used.

$ python re_charset_dot.py

Pattern ’a.’ (a followed by any one character)

’abbaabbba’

’ab’

...’aa’

Pattern ’b.’ (b followed by any one character)

ptg

24 Text

’abbaabbba’

.’bb’

.....’bb’

.......’ba’

Pattern ’a.*b’ (a followed by anything, ending in b)

’abbaabbba’

’abbaabbb’

Pattern ’a.*?b’ (a followed by anything, ending in b)

’abbaabbba’

’ab’

...’aab’

Escape Codes

An even more compact representation uses escape codes for several predefined charac-

ter sets. The escape codes recognized by re are listed in Table 1.1.

Table 1.1. Regular Expression Escape Codes

Code Meaning
\d A digit

\D A nondigit

\s Whitespace (tab, space, newline, etc.)

\S Nonwhitespace

\w Alphanumeric

\W Nonalphanumeric

Note: Escapes are indicated by prefixing the character with a backslash (\). Unfor-

tunately, a backslash must itself be escaped in normal Python strings, and that results

in expressions that are difficult to read. Using raw strings, created by prefixing the

literal value with r, eliminates this problem and maintains readability.

from re_test_patterns import test_patterns

test_patterns(

’A prime #1 example!’,

ptg

1.3. re—Regular Expressions 25

[(r’\d+’, ’sequence of digits’),

(r’\D+’, ’sequence of nondigits’),

(r’\s+’, ’sequence of whitespace’),

(r’\S+’, ’sequence of nonwhitespace’),

(r’\w+’, ’alphanumeric characters’),

(r’\W+’, ’nonalphanumeric’),

])

These sample expressions combine escape codes with repetition to find sequences

of like characters in the input string.

$ python re_escape_codes.py

Pattern ’\\d+’ (sequence of digits)

’A prime #1 example!’

.........’1’

Pattern ’\\D+’ (sequence of nondigits)

’A prime #1 example!’

’A prime #’

..........’ example!’

Pattern ’\\s+’ (sequence of whitespace)

’A prime #1 example!’

.’ ’

.......’ ’

..........’ ’

Pattern ’\\S+’ (sequence of nonwhitespace)

’A prime #1 example!’

’A’

..’prime’

........’#1’

...........’example!’

Pattern ’\\w+’ (alphanumeric characters)

’A prime #1 example!’

’A’

ptg

26 Text

..’prime’

.........’1’

...........’example’

Pattern ’\\W+’ (nonalphanumeric)

’A prime #1 example!’

.’ ’

.......’ #’

..........’ ’

..................’!’

To match the characters that are part of the regular expression syntax, escape the

characters in the search pattern.

from re_test_patterns import test_patterns

test_patterns(

r’\d+ \D+ \s+’,

[(r’\\.\+’, ’escape code’),

])

The pattern in this example escapes the backslash and plus characters, since, as

metacharacters, both have special meaning in a regular expression.

$ python re_escape_escapes.py

Pattern ’\\\\.\\+’ (escape code)

’\\d+ \\D+ \\s+’

’\\d+’

.....’\\D+’

..........’\\s+’

Anchoring

In addition to describing the content of a pattern to match, the relative location can be

specified in the input text where the pattern should appear by using anchoring instruc-

tions. Table 1.2 lists valid anchoring codes.

ptg

1.3. re—Regular Expressions 27

Table 1.2. Regular Expression Anchoring Codes

Code Meaning
^ Start of string, or line

$ End of string, or line

\A Start of string

\Z End of string

\b Empty string at the beginning or end of a word

\B Empty string not at the beginning or end of a word

from re_test_patterns import test_patterns

test_patterns(

’This is some text -- with punctuation.’,

[(r’^\w+’, ’word at start of string’),

(r’\A\w+’, ’word at start of string’),

(r’\w+\S*$’, ’word near end of string, skip punctuation’),

(r’\w+\S*\Z’, ’word near end of string, skip punctuation’),

(r’\w*t\w*’, ’word containing t’),

(r’\bt\w+’, ’t at start of word’),

(r’\w+t\b’, ’t at end of word’),

(r’\Bt\B’, ’t, not start or end of word’),

])

The patterns in the example for matching words at the beginning and end of the

string are different because the word at the end of the string is followed by punctuation

to terminate the sentence. The pattern \w+$ would not match, since . is not considered

an alphanumeric character.

$ python re_anchoring.py

Pattern ’^\\w+’ (word at start of string)

’This is some text -- with punctuation.’

’This’

Pattern ’\\A\\w+’ (word at start of string)

’This is some text -- with punctuation.’

’This’

Pattern ’\\w+\\S*$’ (word near end of string, skip punctuation)

ptg

28 Text

’This is some text -- with punctuation.’

..........................’punctuation.’

Pattern ’\\w+\\S*\\Z’ (word near end of string, skip punctuation)

’This is some text -- with punctuation.’

..........................’punctuation.’

Pattern ’\\w*t\\w*’ (word containing t)

’This is some text -- with punctuation.’

.............’text’

.....................’with’

..........................’punctuation’

Pattern ’\\bt\\w+’ (t at start of word)

’This is some text -- with punctuation.’

.............’text’

Pattern ’\\w+t\\b’ (t at end of word)

’This is some text -- with punctuation.’

.............’text’

Pattern ’\\Bt\\B’ (t, not start or end of word)

’This is some text -- with punctuation.’

.......................’t’

..............................’t’

.................................’t’

1.3.5 Constraining the Search

If it is known in advance that only a subset of the full input should be searched, the reg-

ular expression match can be further constrained by telling re to limit the search range.

For example, if the pattern must appear at the front of the input, then using match()

instead of search()will anchor the search without having to explicitly include an

anchor in the search pattern.

import re

text = ’This is some text -- with punctuation.’

pattern = ’is’

ptg

1.3. re—Regular Expressions 29

print ’Text :’, text

print ’Pattern:’, pattern

m = re.match(pattern, text)

print ’Match :’, m

s = re.search(pattern, text)

print ’Search :’, s

Since the literal text is does not appear at the start of the input text, it is not

found using match(). The sequence appears two other times in the text, though, so

search() finds it.

$ python re_match.py

Text : This is some text -- with punctuation.

Pattern: is

Match : None

Search : <_sre.SRE_Match object at 0x100d2bed0>

The search() method of a compiled regular expression accepts optional start
and end position parameters to limit the search to a substring of the input.

import re

text = ’This is some text -- with punctuation.’

pattern = re.compile(r’\b\w*is\w*\b’)

print ’Text:’, text

print

pos = 0

while True:

match = pattern.search(text, pos)

if not match:

break
s = match.start()

e = match.end()

print ’ %2d : %2d = "%s"’ % \

(s, e-1, text[s:e])

Move forward in text for the next search

pos = e

ptg

30 Text

This example implements a less efficient form of iterall(). Each time a match

is found, the end position of that match is used for the next search.

$ python re_search_substring.py

Text: This is some text -- with punctuation.

0 : 3 = "This"

5 : 6 = "is"

1.3.6 Dissecting Matches with Groups

Searching for pattern matches is the basis of the powerful capabilities provided by

regular expressions. Adding groups to a pattern isolates parts of the matching text,

expanding those capabilities to create a parser. Groups are defined by enclosing patterns

in parentheses ((and)).

from re_test_patterns import test_patterns

test_patterns(

’abbaaabbbbaaaaa’,

[(’a(ab)’, ’a followed by literal ab’),

(’a(a*b*)’, ’a followed by 0-n a and 0-n b’),

(’a(ab)*’, ’a followed by 0-n ab’),

(’a(ab)+’, ’a followed by 1-n ab’),

])

Any complete regular expression can be converted to a group and nested within a

larger expression. All repetition modifiers can be applied to a group as a whole, requir-

ing the entire group pattern to repeat.

$ python re_groups.py

Pattern ’a(ab)’ (a followed by literal ab)

’abbaaabbbbaaaaa’

....’aab’

Pattern ’a(a*b*)’ (a followed by 0-n a and 0-n b)

’abbaaabbbbaaaaa’

ptg

1.3. re—Regular Expressions 31

’abb’

...’aaabbbb’

..........’aaaaa’

Pattern ’a(ab)*’ (a followed by 0-n ab)

’abbaaabbbbaaaaa’

’a’

...’a’

....’aab’

..........’a’

...........’a’

............’a’

.............’a’

..............’a’

Pattern ’a(ab)+’ (a followed by 1-n ab)

’abbaaabbbbaaaaa’

....’aab’

To access the substrings matched by the individual groups within a pattern, use the

groups() method of the Match object.

import re

text = ’This is some text -- with punctuation.’

print text

print

patterns = [

(r’^(\w+)’, ’word at start of string’),

(r’(\w+)\S*$’, ’word at end, with optional punctuation’),

(r’(\bt\w+)\W+(\w+)’, ’word starting with t, another word’),

(r’(\w+t)\b’, ’word ending with t’),

]

for pattern, desc in patterns:

regex = re.compile(pattern)

match = regex.search(text)

print ’Pattern %r (%s)\n’ % (pattern, desc)

ptg

32 Text

print ’ ’, match.groups()

print

Match.groups() returns a sequence of strings in the order of the groups within

the expression that matches the string.

$ python re_groups_match.py

This is some text -- with punctuation.

Pattern ’^(\\w+)’ (word at start of string)

(’This’,)

Pattern ’(\\w+)\\S*$’ (word at end, with optional punctuation)

(’punctuation’,)

Pattern ’(\\bt\\w+)\\W+(\\w+)’ (word starting with t, another word)

(’text’, ’with’)

Pattern ’(\\w+t)\\b’ (word ending with t)

(’text’,)

Ask for the match of a single group with group(). This is useful when grouping is

being used to find parts of the string, but some parts matched by groups are not needed

in the results.

import re

text = ’This is some text -- with punctuation.’

print ’Input text :’, text

word starting with ’t’ then another word

regex = re.compile(r’(\bt\w+)\W+(\w+)’)

print ’Pattern :’, regex.pattern

match = regex.search(text)

print ’Entire match :’, match.group(0)

ptg

1.3. re—Regular Expressions 33

print ’Word starting with "t":’, match.group(1)

print ’Word after "t" word :’, match.group(2)

Group 0 represents the string matched by the entire expression, and subgroups are

numbered starting with 1 in the order their left parenthesis appears in the expression.

$ python re_groups_individual.py

Input text : This is some text -- with punctuation.

Pattern : (\bt\w+)\W+(\w+)

Entire match : text -- with

Word starting with "t": text

Word after "t" word : with

Python extends the basic grouping syntax to add named groups. Using names to

refer to groups makes it easier to modify the pattern over time, without having to also

modify the code using the match results. To set the name of a group, use the syntax

(?P<name>pattern).

import re

text = ’This is some text -- with punctuation.’

print text

print

for pattern in [r’^(?P<first_word>\w+)’,

r’(?P<last_word>\w+)\S*$’,

r’(?P<t_word>\bt\w+)\W+(?P<other_word>\w+)’,

r’(?P<ends_with_t>\w+t)\b’,

]:

regex = re.compile(pattern)

match = regex.search(text)

print ’Matching "%s"’ % pattern

print ’ ’, match.groups()

print ’ ’, match.groupdict()

print

Use groupdict() to retrieve the dictionary that maps group names to substrings

from the match. Named patterns also are included in the ordered sequence returned by

groups().

ptg

34 Text

$ python re_groups_named.py

This is some text -- with punctuation.

Matching "^(?P<first_word>\w+)"

(’This’,)

{’first_word’: ’This’}

Matching "(?P<last_word>\w+)\S*$"

(’punctuation’,)

{’last_word’: ’punctuation’}

Matching "(?P<t_word>\bt\w+)\W+(?P<other_word>\w+)"

(’text’, ’with’)

{’other_word’: ’with’, ’t_word’: ’text’}

Matching "(?P<ends_with_t>\w+t)\b"

(’text’,)

{’ends_with_t’: ’text’}

An updated version of test_patterns() that shows the numbered and named

groups matched by a pattern will make the following examples easier to follow.

import re

def test_patterns(text, patterns=[]):

"""Given source text and a list of patterns, look for

matches for each pattern within the text and print

them to stdout.

"""

Look for each pattern in the text and print the results

for pattern, desc in patterns:

print ’Pattern %r (%s)\n’ % (pattern, desc)

print ’ %r’ % text

for match in re.finditer(pattern, text):

s = match.start()

e = match.end()

prefix = ’ ’ * (s)

print ’ %s%r%s ’ % (prefix, text[s:e], ’ ’*(len(text)-e)),

print match.groups()

if match.groupdict():

print ’%s%s’ % (’ ’ * (len(text)-s), match.groupdict())

print
return

ptg

1.3. re—Regular Expressions 35

Since a group is itself a complete regular expression, groups can be nested within

other groups to build even more complicated expressions.

from re_test_patterns_groups import test_patterns

test_patterns(

’abbaabbba’,

[(r’a((a*)(b*))’, ’a followed by 0-n a and 0-n b’),

])

In this case, the group (a*) matches an empty string, so the return value from

groups() includes that empty string as the matched value.

$ python re_groups_nested.py

Pattern ’a((a*)(b*))’ (a followed by 0-n a and 0-n b)

’abbaabbba’

’abb’ (’bb’, ’’, ’bb’)

’aabbb’ (’abbb’, ’a’, ’bbb’)

’a’ (’’, ’’, ’’)

Groups are also useful for specifying alternative patterns. Use the pipe symbol (|)

to indicate that one pattern or another should match. Consider the placement of the pipe

carefully, though. The first expression in this example matches a sequence of a followed

by a sequence consisting entirely of a single letter, a or b. The second pattern matches

a followed by a sequence that may include either a or b. The patterns are similar, but

the resulting matches are completely different.

from re_test_patterns_groups import test_patterns

test_patterns(

’abbaabbba’,

[(r’a((a+)|(b+))’, ’a then seq. of a or seq. of b’),

(r’a((a|b)+)’, ’a then seq. of [ab]’),

])

When an alternative group is not matched but the entire pattern does match, the

return value of groups() includes a None value at the point in the sequence where the

alternative group should appear.

ptg

36 Text

$ python re_groups_alternative.py

Pattern ’a((a+)|(b+))’ (a then seq. of a or seq. of b)

’abbaabbba’

’abb’ (’bb’, None, ’bb’)

’aa’ (’a’, ’a’, None)

Pattern ’a((a|b)+)’ (a then seq. of [ab])

’abbaabbba’

’abbaabbba’ (’bbaabbba’, ’a’)

Defining a group containing a subpattern is also useful when the string matching

the subpattern is not part of what should be extracted from the full text. These groups are

called noncapturing. Noncapturing groups can be used to describe repetition patterns or

alternatives, without isolating the matching portion of the string in the value returned.

To create a noncapturing group, use the syntax (?:pattern).

from re_test_patterns_groups import test_patterns

test_patterns(

’abbaabbba’,

[(r’a((a+)|(b+))’, ’capturing form’),

(r’a((?:a+)|(?:b+))’, ’noncapturing’),

])

Compare the groups returned for the capturing and noncapturing forms of a pattern

that match the same results.

$ python re_groups_noncapturing.py

Pattern ’a((a+)|(b+))’ (capturing form)

’abbaabbba’

’abb’ (’bb’, None, ’bb’)

’aa’ (’a’, ’a’, None)

Pattern ’a((?:a+)|(?:b+))’ (noncapturing)

’abbaabbba’

ptg

1.3. re—Regular Expressions 37

’abb’ (’bb’,)

’aa’ (’a’,)

1.3.7 Search Options

The way the matching engine processes an expression can be changed using op-

tion flags. The flags can be combined using a bitwise OR operation, then passed to

compile(), search(), match(), and other functions that accept a pattern for

searching.

Case-Insensitive Matching

IGNORECASE causes literal characters and character ranges in the pattern to match both

uppercase and lowercase characters.

import re

text = ’This is some text -- with punctuation.’

pattern = r’\bT\w+’

with_case = re.compile(pattern)

without_case = re.compile(pattern, re.IGNORECASE)

print ’Text:\n %r’ % text

print ’Pattern:\n %s’ % pattern

print ’Case-sensitive:’

for match in with_case.findall(text):

print ’ %r’ % match

print ’Case-insensitive:’

for match in without_case.findall(text):

print ’ %r’ % match

Since the pattern includes the literal T, without setting IGNORECASE, the only

match is the word This. When case is ignored, text also matches.

$ python re_flags_ignorecase.py

Text:

’This is some text -- with punctuation.’

Pattern:

\bT\w+

Case-sensitive:

’This’

ptg

38 Text

Case-insensitive:

’This’

’text’

Input with Multiple Lines

Two flags affect how searching in multiline input works: MULTILINE and DOTALL. The

MULTILINE flag controls how the pattern-matching code processes anchoring instruc-

tions for text containing newline characters. When multiline mode is turned on, the

anchor rules for ^ and $ apply at the beginning and end of each line, in addition to the

entire string.

import re

text = ’This is some text -- with punctuation.\nA second line.’

pattern = r’(^\w+)|(\w+\S*$)’

single_line = re.compile(pattern)

multiline = re.compile(pattern, re.MULTILINE)

print ’Text:\n %r’ % text

print ’Pattern:\n %s’ % pattern

print ’Single Line :’

for match in single_line.findall(text):

print ’ %r’ % (match,)

print ’Multiline :’

for match in multiline.findall(text):

print ’ %r’ % (match,)

The pattern in the example matches the first or last word of the input. It matches

line. at the end of the string, even though there is no newline.

$ python re_flags_multiline.py

Text:

’This is some text -- with punctuation.\nA second line.’

Pattern:

(^\w+)|(\w+\S*$)

Single Line :

(’This’, ’’)

(’’, ’line.’)

Multiline :

(’This’, ’’)

(’’, ’punctuation.’)

ptg

1.3. re—Regular Expressions 39

(’A’, ’’)

(’’, ’line.’)

DOTALL is the other flag related to multiline text. Normally, the dot character (.)

matches everything in the input text except a newline character. The flag allows dot to

match newlines as well.

import re

text = ’This is some text -- with punctuation.\nA second line.’

pattern = r’.+’

no_newlines = re.compile(pattern)

dotall = re.compile(pattern, re.DOTALL)

print ’Text:\n %r’ % text

print ’Pattern:\n %s’ % pattern

print ’No newlines :’

for match in no_newlines.findall(text):

print ’ %r’ % match

print ’Dotall :’

for match in dotall.findall(text):

print ’ %r’ % match

Without the flag, each line of the input text matches the pattern separately. Adding

the flag causes the entire string to be consumed.

$ python re_flags_dotall.py

Text:

’This is some text -- with punctuation.\nA second line.’

Pattern:

.+

No newlines :

’This is some text -- with punctuation.’

’A second line.’

Dotall :

’This is some text -- with punctuation.\nA second line.’

Unicode

Under Python 2, str objects use the ASCII character set, and regular expression pro-

cessing assumes that the pattern and input text are both ASCII. The escape codes

ptg

40 Text

described earlier are defined in terms of ASCII by default. Those assumptions mean

that the pattern \w+ will match the word “French” but not the word “Français,” since

the ç is not part of the ASCII character set. To enable Unicode matching in Python 2,

add the UNICODE flag when compiling the pattern or when calling the module-level

functions search() and match().

import re
import codecs
import sys

Set standard output encoding to UTF-8.

sys.stdout = codecs.getwriter(’UTF-8’)(sys.stdout)

text = u’Français złoty Österreich’

pattern = ur’\w+’

ascii_pattern = re.compile(pattern)

unicode_pattern = re.compile(pattern, re.UNICODE)

print ’Text :’, text

print ’Pattern :’, pattern

print ’ASCII :’, u’, ’.join(ascii_pattern.findall(text))

print ’Unicode :’, u’, ’.join(unicode_pattern.findall(text))

The other escape sequences (\W, \b, \B, \d, \D, \s, and \S) are also processed

differently for Unicode text. Instead of assuming what members of the character set are

identified by the escape sequence, the regular expression engine consults the Unicode

database to find the properties of each character.

$ python re_flags_unicode.py

Text : Français złoty Österreich

Pattern : \w+

ASCII : Fran, ais, z, oty, sterreich

Unicode : Français, złoty, Österreich

Note: Python 3 uses Unicode for all strings by default, so the flag is not necessary.

Verbose Expression Syntax

The compact format of regular expression syntax can become a hindrance as expres-

sions grow more complicated. As the number of groups in an expression increases, it

ptg

1.3. re—Regular Expressions 41

will be more work to keep track of why each element is needed and how exactly the

parts of the expression interact. Using named groups helps mitigate these issues, but a

better solution is to use verbose mode expressions, which allow comments and extra

whitespace to be embedded in the pattern.

A pattern to validate email addresses will illustrate how verbose mode makes

working with regular expressions easier. The first version recognizes addresses that

end in one of three top-level domains: .com, .org, and .edu.

import re

address = re.compile(’[\w\d.+-]+@([\w\d.]+\.)+(com|org|edu)’,

re.UNICODE)

candidates = [

u’first.last@example.com’,

u’first.last+category@gmail.com’,

u’valid-address@mail.example.com’,

u’not-valid@example.foo’,

]

for candidate in candidates:

match = address.search(candidate)

print ’%-30s %s’ % (candidate, ’Matches’ if match else ’No match’)

This expression is already complex. There are several character classes, groups,

and repetition expressions.

$ python re_email_compact.py

first.last@example.com Matches

first.last+category@gmail.com Matches

valid-address@mail.example.com Matches

not-valid@example.foo No match

Converting the expression to a more verbose format will make it easier to extend.

import re

address = re.compile(

’’’

[\w\d.+-]+ # username

@

ptg

42 Text

([\w\d.]+\.)+ # domain name prefix

(com|org|edu) # TODO: support more top-level domains

’’’,

re.UNICODE | re.VERBOSE)

candidates = [

u’first.last@example.com’,

u’first.last+category@gmail.com’,

u’valid-address@mail.example.com’,

u’not-valid@example.foo’,

]

for candidate in candidates:

match = address.search(candidate)

print ’%-30s %s’ % (candidate, ’Matches’ if match else ’No match’)

The expression matches the same inputs, but in this extended format, it is easier

to read. The comments also help identify different parts of the pattern so that it can be

expanded to match more inputs.

$ python re_email_verbose.py

first.last@example.com Matches

first.last+category@gmail.com Matches

valid-address@mail.example.com Matches

not-valid@example.foo No match

This expanded version parses inputs that include a person’s name and email ad-

dress, as might appear in an email header. The name comes first and stands on its own,

and the email address follows surrounded by angle brackets (< and >).

import re

address = re.compile(

’’’

A name is made up of letters, and may include "."

for title abbreviations and middle initials.

((?P<name>

([\w.,]+\s+)*[\w.,]+)

\s*
Email addresses are wrapped in angle

ptg

1.3. re—Regular Expressions 43

brackets: < > but only if a name is

found, so keep the start bracket in this

group.

<

)? # the entire name is optional

The address itself: username@domain.tld

(?P<email>

[\w\d.+-]+ # username

@

([\w\d.]+\.)+ # domain name prefix

(com|org|edu) # limit the allowed top-level domains

)

>? # optional closing angle bracket

’’’,

re.UNICODE | re.VERBOSE)

candidates = [

u’first.last@example.com’,

u’first.last+category@gmail.com’,

u’valid-address@mail.example.com’,

u’not-valid@example.foo’,

u’First Last <first.last@example.com>’,

u’No Brackets first.last@example.com’,

u’First Last’,

u’First Middle Last <first.last@example.com>’,

u’First M. Last <first.last@example.com>’,

u’<first.last@example.com>’,

]

for candidate in candidates:

print ’Candidate:’, candidate

match = address.search(candidate)

if match:

print ’ Name :’, match.groupdict()[’name’]

print ’ Email:’, match.groupdict()[’email’]

else:
print ’ No match’

As with other programming languages, the ability to insert comments into ver-

bose regular expressions helps with their maintainability. This final version includes

ptg

44 Text

implementation notes to future maintainers and whitespace to separate the groups from

each other and highlight their nesting level.

$ python re_email_with_name.py

Candidate: first.last@example.com

Name : None

Email: first.last@example.com

Candidate: first.last+category@gmail.com

Name : None

Email: first.last+category@gmail.com

Candidate: valid-address@mail.example.com

Name : None

Email: valid-address@mail.example.com

Candidate: not-valid@example.foo

No match

Candidate: First Last <first.last@example.com>

Name : First Last

Email: first.last@example.com

Candidate: No Brackets first.last@example.com

Name : None

Email: first.last@example.com

Candidate: First Last

No match

Candidate: First Middle Last <first.last@example.com>

Name : First Middle Last

Email: first.last@example.com

Candidate: First M. Last <first.last@example.com>

Name : First M. Last

Email: first.last@example.com

Candidate: <first.last@example.com>

Name : None

Email: first.last@example.com

Embedding Flags in Patterns

If flags cannot be added when compiling an expression, such as when a pattern is passed

as an argument to a library function that will compile it later, the flags can be embedded

inside the expression string itself. For example, to turn case-insensitive matching on,

add (?i) to the beginning of the expression.

ptg

1.3. re—Regular Expressions 45

import re

text = ’This is some text -- with punctuation.’

pattern = r’(?i)\bT\w+’

regex = re.compile(pattern)

print ’Text :’, text

print ’Pattern :’, pattern

print ’Matches :’, regex.findall(text)

Because the options control the way the entire expression is evaluated or parsed,

they should always come at the beginning of the expression.

$ python re_flags_embedded.py

Text : This is some text -- with punctuation.

Pattern : (?i)\bT\w+

Matches : [’This’, ’text’]

The abbreviations for all flags are listed in Table 1.3.

Table 1.3. Regular Expression Flag Abbreviations

Flag Abbreviation
IGNORECASE i

MULTILINE m

DOTALL s

UNICODE u

VERBOSE x

Embedded flags can be combined by placing them within the same group. For

example, (?imu) turns on case-insensitive matching for multiline Unicode strings.

1.3.8 Looking Ahead or Behind

In many cases, it is useful to match a part of a pattern only if some other part will

also match. For example, in the email parsing expression, the angle brackets were each

marked as optional. Really, though, the brackets should be paired, and the expression

should only match if both are present or neither is. This modified version of the

ptg

46 Text

expression uses a positive look-ahead assertion to match the pair. The look-ahead as-

sertion syntax is (?=pattern).

import re

address = re.compile(

’’’

A name is made up of letters, and may include "."

for title abbreviations and middle initials.

((?P<name>

([\w.,]+\s+)*[\w.,]+

)

\s+

) # name is no longer optional

LOOKAHEAD

Email addresses are wrapped in angle brackets, but only

if they are both present or neither is.

(?= (<.*>$) # remainder wrapped in angle brackets

|

([^<].*[^>]$) # remainder *not* wrapped in angle brackets

)

<? # optional opening angle bracket

The address itself: username@domain.tld

(?P<email>

[\w\d.+-]+ # username

@

([\w\d.]+\.)+ # domain name prefix

(com|org|edu) # limit the allowed top-level domains

)

>? # optional closing angle bracket

’’’,

re.UNICODE | re.VERBOSE)

candidates = [

u’First Last <first.last@example.com>’,

u’No Brackets first.last@example.com’,

u’Open Bracket <first.last@example.com’,

u’Close Bracket first.last@example.com>’,

]

ptg

1.3. re—Regular Expressions 47

for candidate in candidates:

print ’Candidate:’, candidate

match = address.search(candidate)

if match:

print ’ Name :’, match.groupdict()[’name’]

print ’ Email:’, match.groupdict()[’email’]

else:
print ’ No match’

Several important changes occur in this version of the expression. First, the name

portion is no longer optional. That means stand-alone addresses do not match, but it

also prevents improperly formatted name/address combinations from matching. The

positive look-ahead rule after the “name” group asserts that the remainder of the string

is either wrapped with a pair of angle brackets or there is not a mismatched bracket; the

brackets are either both present or neither is. The look-ahead is expressed as a group,

but the match for a look-ahead group does not consume any of the input text. The rest

of the pattern picks up from the same spot after the look-ahead matches.

$ python re_look_ahead.py

Candidate: First Last <first.last@example.com>

Name : First Last

Email: first.last@example.com

Candidate: No Brackets first.last@example.com

Name : No Brackets

Email: first.last@example.com

Candidate: Open Bracket <first.last@example.com

No match

Candidate: Close Bracket first.last@example.com>

No match

A negative look-ahead assertion ((?!pattern)) says that the pattern does not

match the text following the current point. For example, the email recognition pattern

could be modified to ignore noreply mailing addresses automated systems commonly

use.

import re

address = re.compile(

’’’

^

ptg

48 Text

An address: username@domain.tld

Ignore noreply addresses

(?!noreply@.*$)

[\w\d.+-]+ # username

@

([\w\d.]+\.)+ # domain name prefix

(com|org|edu) # limit the allowed top-level domains

$

’’’,

re.UNICODE | re.VERBOSE)

candidates = [

u’first.last@example.com’,

u’noreply@example.com’,

]

for candidate in candidates:

print ’Candidate:’, candidate

match = address.search(candidate)

if match:

print ’ Match:’, candidate[match.start():match.end()]

else:
print ’ No match’

The address starting with noreply does not match the pattern, since the look-

ahead assertion fails.

$ python re_negative_look_ahead.py

Candidate: first.last@example.com

Match: first.last@example.com

Candidate: noreply@example.com

No match

Instead of looking ahead for noreply in the username portion of the email ad-

dress, the pattern can also be written using a negative look-behind assertion after the

username is matched using the syntax (?<!pattern).

import re

address = re.compile(

ptg

1.3. re—Regular Expressions 49

’’’

^

An address: username@domain.tld

[\w\d.+-]+ # username

Ignore noreply addresses

(?<!noreply)

@

([\w\d.]+\.)+ # domain name prefix

(com|org|edu) # limit the allowed top-level domains

$

’’’,

re.UNICODE | re.VERBOSE)

candidates = [

u’first.last@example.com’,

u’noreply@example.com’,

]

for candidate in candidates:

print ’Candidate:’, candidate

match = address.search(candidate)

if match:

print ’ Match:’, candidate[match.start():match.end()]

else:
print ’ No match’

Looking backward works a little differently than looking ahead, in that the expres-

sion must use a fixed-length pattern. Repetitions are allowed, as long as there is a fixed

number (no wildcards or ranges).

$ python re_negative_look_behind.py

Candidate: first.last@example.com

Match: first.last@example.com

Candidate: noreply@example.com

No match

A positive look-behind assertion can be used to find text following a pattern using

the syntax (?<=pattern). For example, this expression finds Twitter handles.

ptg

50 Text

import re

twitter = re.compile(

’’’

A twitter handle: @username

(?<=@)

([\w\d_]+) # username

’’’,

re.UNICODE | re.VERBOSE)

text = ’’’This text includes two Twitter handles.

One for @ThePSF, and one for the author, @doughellmann.

’’’

print text

for match in twitter.findall(text):

print ’Handle:’, match

The pattern matches sequences of characters that can make up a Twitter handle, as

long as they are preceded by an @.

$ python re_look_behind.py

This text includes two Twitter handles.

One for @ThePSF, and one for the author, @doughellmann.

Handle: ThePSF

Handle: doughellmann

1.3.9 Self-Referencing Expressions

Matched values can be used in later parts of an expression. For example, the email

example can be updated to match only addresses composed of the first and last name

of the person by including back-references to those groups. The easiest way to achieve

this is by referring to the previously matched group by id number, using \num.

import re

address = re.compile(

r’’’

The regular name

ptg

1.3. re—Regular Expressions 51

(\w+) # first name

\s+

(([\w.]+)\s+)? # optional middle name or initial

(\w+) # last name

\s+

<

The address: first_name.last_name@domain.tld

(?P<email>

\1 # first name

\.

\4 # last name

@

([\w\d.]+\.)+ # domain name prefix

(com|org|edu) # limit the allowed top-level domains

)

>

’’’,

re.UNICODE | re.VERBOSE | re.IGNORECASE)

candidates = [

u’First Last <first.last@example.com>’,

u’Different Name <first.last@example.com>’,

u’First Middle Last <first.last@example.com>’,

u’First M. Last <first.last@example.com>’,

]

for candidate in candidates:

print ’Candidate:’, candidate

match = address.search(candidate)

if match:

print ’ Match name :’, match.group(1), match.group(4)

print ’ Match email:’, match.group(5)

else:
print ’ No match’

Although the syntax is simple, creating back-references by numerical id has a

couple of disadvantages. From a practical standpoint, as the expression changes, the

groups must be counted again and every reference may need to be updated. The other

disadvantage is that only 99 references can be made this way, because if the id number

ptg

52 Text

is three digits long, it will be interpreted as an octal character value instead of a group

reference. On the other hand, if an expression has more than 99 groups, more serious

maintenance challenges will arise than not being able to refer to some groups in the

expression.

$ python re_refer_to_group.py

Candidate: First Last <first.last@example.com>

Match name : First Last

Match email: first.last@example.com

Candidate: Different Name <first.last@example.com>

No match

Candidate: First Middle Last <first.last@example.com>

Match name : First Last

Match email: first.last@example.com

Candidate: First M. Last <first.last@example.com>

Match name : First Last

Match email: first.last@example.com

Python’s expression parser includes an extension that uses (?P=name) to refer to

the value of a named group matched earlier in the expression.

import re

address = re.compile(

’’’

The regular name

(?P<first_name>\w+)

\s+

(([\w.]+)\s+)? # optional middle name or initial

(?P<last_name>\w+)

\s+

<

The address: first_name.last_name@domain.tld

(?P<email>

(?P=first_name)

\.

(?P=last_name)

ptg

1.3. re—Regular Expressions 53

@

([\w\d.]+\.)+ # domain name prefix

(com|org|edu) # limit the allowed top-level domains

)

>

’’’,

re.UNICODE | re.VERBOSE | re.IGNORECASE)

candidates = [

u’First Last <first.last@example.com>’,

u’Different Name <first.last@example.com>’,

u’First Middle Last <first.last@example.com>’,

u’First M. Last <first.last@example.com>’,

]

for candidate in candidates:

print ’Candidate:’, candidate

match = address.search(candidate)

if match:

print ’ Match name :’, match.groupdict()[’first_name’],

print match.groupdict()[’last_name’]

print ’ Match email:’, match.groupdict()[’email’]

else:
print ’ No match’

The address expression is compiled with the IGNORECASE flag on, since proper

names are normally capitalized but email addresses are not.

$ python re_refer_to_named_group.py

Candidate: First Last <first.last@example.com>

Match name : First Last

Match email: first.last@example.com

Candidate: Different Name <first.last@example.com>

No match

Candidate: First Middle Last <first.last@example.com>

Match name : First Last

Match email: first.last@example.com

Candidate: First M. Last <first.last@example.com>

Match name : First Last

Match email: first.last@example.com

ptg

54 Text

The other mechanism for using back-references in expressions chooses a different

pattern based on whether a previous group matched. The email pattern can be cor-

rected so that the angle brackets are required if a name is present, but not if the

email address is by itself. The syntax for testing to see if a group has matched is

(?(id)yes-expression|no-expression), where id is the group name or num-

ber, yes-expression is the pattern to use if the group has a value, and no-expression is

the pattern to use otherwise.

import re

address = re.compile(

’’’

^

A name is made up of letters, and may include "."

for title abbreviations and middle initials.

(?P<name>

([\w.]+\s+)*[\w.]+

)?

\s*

Email addresses are wrapped in angle brackets, but

only if a name is found.

(?(name)

remainder wrapped in angle brackets because

there is a name

(?P<brackets>(?=(<.*>$)))

|

remainder does not include angle brackets without name

(?=([^<].*[^>]$))

)

Only look for a bracket if the look-ahead assertion

found both of them.

(?(brackets)<|\s*)

The address itself: username@domain.tld

(?P<email>

[\w\d.+-]+ # username

@

([\w\d.]+\.)+ # domain name prefix

(com|org|edu) # limit the allowed top-level domains

ptg

1.3. re—Regular Expressions 55

)

Only look for a bracket if the look-ahead assertion

found both of them.

(?(brackets)>|\s*)

$

’’’,

re.UNICODE | re.VERBOSE)

candidates = [

u’First Last <first.last@example.com>’,

u’No Brackets first.last@example.com’,

u’Open Bracket <first.last@example.com’,

u’Close Bracket first.last@example.com>’,

u’no.brackets@example.com’,

]

for candidate in candidates:

print ’Candidate:’, candidate

match = address.search(candidate)

if match:

print ’ Match name :’, match.groupdict()[’name’]

print ’ Match email:’, match.groupdict()[’email’]

else:
print ’ No match’

This version of the email address parser uses two tests. If the name group matches,

then the look-ahead assertion requires both angle brackets and sets up the brackets

group. If name is not matched, the assertion requires that the rest of the text not have an-

gle brackets around it. Later, if the brackets group is set, the actual pattern-matching

code consumes the brackets in the input using literal patterns; otherwise, it consumes

any blank space.

$ python re_id.py

Candidate: First Last <first.last@example.com>

Match name : First Last

Match email: first.last@example.com

Candidate: No Brackets first.last@example.com

No match

Candidate: Open Bracket <first.last@example.com

ptg

56 Text

No match

Candidate: Close Bracket first.last@example.com>

No match

Candidate: no.brackets@example.com

Match name : None

Match email: no.brackets@example.com

1.3.10 Modifying Strings with Patterns

In addition to searching through text, re also supports modifying text using regular ex-

pressions as the search mechanism, and the replacements can reference groups matched

in the regex as part of the substitution text. Use sub() to replace all occurrences of a

pattern with another string.

import re

bold = re.compile(r’*{2}(.*?)*{2}’)

text = ’Make this **bold**. This **too**.’

print ’Text:’, text

print ’Bold:’, bold.sub(r’\1’, text)

References to the text matched by the pattern can be inserted using the \num syntax

used for back-references.

$ python re_sub.py

Text: Make this **bold**. This **too**.

Bold: Make this bold. This too.

To use named groups in the substitution, use the syntax \g<name>.

import re

bold = re.compile(r’*{2}(?P<bold_text>.*?)*{2}’, re.UNICODE)

text = ’Make this **bold**. This **too**.’

print ’Text:’, text

print ’Bold:’, bold.sub(r’\g<bold_text>’, text)

ptg

1.3. re—Regular Expressions 57

The \g<name> syntax also works with numbered references, and using it elimi-

nates any ambiguity between group numbers and surrounding literal digits.

$ python re_sub_named_groups.py

Text: Make this **bold**. This **too**.

Bold: Make this bold. This too.

Pass a value to count to limit the number of substitutions performed.

import re

bold = re.compile(r’*{2}(.*?)*{2}’, re.UNICODE)

text = ’Make this **bold**. This **too**.’

print ’Text:’, text

print ’Bold:’, bold.sub(r’\1’, text, count=1)

Only the first substitution is made because count is 1.

$ python re_sub_count.py

Text: Make this **bold**. This **too**.

Bold: Make this bold. This **too**.

subn() works just like sub(), except that it returns both the modified string and

the count of substitutions made.

import re

bold = re.compile(r’*{2}(.*?)*{2}’, re.UNICODE)

text = ’Make this **bold**. This **too**.’

print ’Text:’, text

print ’Bold:’, bold.subn(r’\1’, text)

The search pattern matches twice in the example.

$ python re_subn.py

ptg

58 Text

Text: Make this **bold**. This **too**.

Bold: (’Make this bold. This too.’, 2)

1.3.11 Splitting with Patterns

str.split() is one of the most frequently used methods for breaking apart strings to

parse them. It only supports using literal values as separators, though, and sometimes a

regular expression is necessary if the input is not consistently formatted. For example,

many plain-text markup languages define paragraph separators as two or more newline

(\n) characters. In this case, str.split() cannot be used because of the “or more”

part of the definition.

A strategy for identifying paragraphs using findall() would use a pattern like

(.+?)\n{2,}.

import re

text = ’’’Paragraph one

on two lines.

Paragraph two.

Paragraph three.’’’

for num, para in enumerate(re.findall(r’(.+?)\n{2,}’,

text,

flags=re.DOTALL)

):

print num, repr(para)

print

That pattern fails for paragraphs at the end of the input text, as illustrated by the

fact that “Paragraph three.” is not part of the output.

$ python re_paragraphs_findall.py

0 ’Paragraph one\non two lines.’

1 ’Paragraph two.’

ptg

1.3. re—Regular Expressions 59

Extending the pattern to say that a paragraph ends with two or more newlines or the

end of input fixes the problem, but makes the pattern more complicated. Converting to

re.split() instead of re.findall() handles the boundary condition automatically

and keeps the pattern simpler.

import re

text = ’’’Paragraph one

on two lines.

Paragraph two.

Paragraph three.’’’

print ’With findall:’

for num, para in enumerate(re.findall(r’(.+?)(\n{2,}|$)’,

text,

flags=re.DOTALL)):

print num, repr(para)

print

print
print ’With split:’

for num, para in enumerate(re.split(r’\n{2,}’, text)):

print num, repr(para)

print

The pattern argument to split() expresses the markup specification more pre-

cisely: Two or more newline characters mark a separator point between paragraphs in

the input string.

$ python re_split.py

With findall:

0 (’Paragraph one\non two lines.’, ’\n\n’)

1 (’Paragraph two.’, ’\n\n\n’)

2 (’Paragraph three.’, ’’)

ptg

60 Text

With split:

0 ’Paragraph one\non two lines.’

1 ’Paragraph two.’

2 ’Paragraph three.’

Enclosing the expression in parentheses to define a group causes split() to work

more like str.partition(), so it returns the separator values as well as the other

parts of the string.

import re

text = ’’’Paragraph one

on two lines.

Paragraph two.

Paragraph three.’’’

print ’With split:’

for num, para in enumerate(re.split(r’(\n{2,})’, text)):

print num, repr(para)

print

The output now includes each paragraph, as well as the sequence of newlines

separating them.

$ python re_split_groups.py

With split:

0 ’Paragraph one\non two lines.’

1 ’\n\n’

2 ’Paragraph two.’

3 ’\n\n\n’

4 ’Paragraph three.’

ptg

1.4. difflib—Compare Sequences 61

See Also:
re (http://docs.python.org/library/re.html) The standard library documentation for

this module.

Regular Expression HOWTO (http://docs.python.org/howto/regex.html) Andrew

Kuchling’s introduction to regular expressions for Python developers.

Kodos (http://kodos.sourceforge.net/) An interactive tool for testing regular expres-

sions, created by Phil Schwartz.

Python Regular Expression Testing Tool (http://www.pythonregex.com/) A Web-

based tool for testing regular expressions created by David Naffziger at Brand

Verity.com and inspired by Kodos.

Regular expression (http://en.wikipedia.org/wiki/Regular_expressions) Wikipedia

article that provides a general introduction to regular expression concepts and

techniques.

locale (page 909) Use the locale module to set the language configuration when

working with Unicode text.

unicodedata (docs.python.org/library/unicodedata.html) Programmatic access to

the Unicode character property database.

1.4 difflib—Compare Sequences

Purpose Compare sequences, especially lines of text.

Python Version 2.1 and later

The difflib module contains tools for computing and working with differences be-

tween sequences. It is especially useful for comparing text and includes functions that

produce reports using several common difference formats.

The examples in this section will all use this common test data in the

difflib_data.py module:

text1 = """Lorem ipsum dolor sit amet, consectetuer adipiscing

elit. Integer eu lacus accumsan arcu fermentum euismod. Donec

pulvinar porttitor tellus. Aliquam venenatis. Donec facilisis

pharetra tortor. In nec mauris eget magna consequat

convallis. Nam sed sem vitae odio pellentesque interdum. Sed

consequat viverra nisl. Suspendisse arcu metus, blandit quis,

rhoncus ac, pharetra eget, velit. Mauris urna. Morbi nonummy

molestie orci. Praesent nisi elit, fringilla ac, suscipit non,

tristique vel, mauris. Curabitur vel lorem id nisl porta

adipiscing. Suspendisse eu lectus. In nunc. Duis vulputate

tristique enim. Donec quis lectus a justo imperdiet tempus."""

http://docs.python.org/library/re.html
http://docs.python.org/howto/regex.html
http://kodos.sourceforge.net/
http://www.pythonregex.com/
http://en.wikipedia.org/wiki/Regular_expressions

ptg

62 Text

text1_lines = text1.splitlines()

text2 = """Lorem ipsum dolor sit amet, consectetuer adipiscing

elit. Integer eu lacus accumsan arcu fermentum euismod. Donec

pulvinar, porttitor tellus. Aliquam venenatis. Donec facilisis

pharetra tortor. In nec mauris eget magna consequat

convallis. Nam cras vitae mi vitae odio pellentesque interdum. Sed

consequat viverra nisl. Suspendisse arcu metus, blandit quis,

rhoncus ac, pharetra eget, velit. Mauris urna. Morbi nonummy

molestie orci. Praesent nisi elit, fringilla ac, suscipit non,

tristique vel, mauris. Curabitur vel lorem id nisl porta

adipiscing. Duis vulputate tristique enim. Donec quis lectus a

justo imperdiet tempus. Suspendisse eu lectus. In nunc."""

text2_lines = text2.splitlines()

1.4.1 Comparing Bodies of Text

The Differ class works on sequences of text lines and produces human-readable

deltas, or change instructions, including differences within individual lines. The default

output produced by Differ is similar to the diff command line tool under UNIX. It in-

cludes the original input values from both lists, including common values, and markup

data to indicate what changes were made.

• Lines prefixed with - indicate that they were in the first sequence, but not the

second.

• Lines prefixed with + were in the second sequence, but not the first.

• If a line has an incremental difference between versions, an extra line prefixed

with ? is used to highlight the change within the new version.

• If a line has not changed, it is printed with an extra blank space on the left column

so that it is aligned with the other output, which may have differences.

Breaking up the text into a sequence of individual lines before passing it to

compare() produces more readable output than passing it in large strings.

import difflib
from difflib_data import *

d = difflib.Differ()

diff = d.compare(text1_lines, text2_lines)

print ’\n’.join(diff)

ptg

1.4. difflib—Compare Sequences 63

The beginning of both text segments in the sample data is the same, so the first

line prints without any extra annotation.

Lorem ipsum dolor sit amet, consectetuer adipiscing

elit. Integer eu lacus accumsan arcu fermentum euismod. Donec

The third line of the data changes to include a comma in the modified text. Both

versions of the line print, with the extra information on line five showing the column

where the text is modified, including the fact that the , character is added.

- pulvinar porttitor tellus. Aliquam venenatis. Donec facilisis

+ pulvinar, porttitor tellus. Aliquam venenatis. Donec facilisis

? +

The next few lines of the output show that an extra space is removed.

- pharetra tortor. In nec mauris eget magna consequat

? -

+ pharetra tortor. In nec mauris eget magna consequat

Next, a more complex change is made, replacing several words in a phrase.

- convallis. Nam sed sem vitae odio pellentesque interdum. Sed

? - --

+ convallis. Nam cras vitae mi vitae odio pellentesque interdum. Sed

? +++ +++++ +

The last sentence in the paragraph is changed significantly, so the difference is

represented by removing the old version and adding the new.

consequat viverra nisl. Suspendisse arcu metus, blandit quis,

rhoncus ac, pharetra eget, velit. Mauris urna. Morbi nonummy

molestie orci. Praesent nisi elit, fringilla ac, suscipit non,

tristique vel, mauris. Curabitur vel lorem id nisl porta

- adipiscing. Suspendisse eu lectus. In nunc. Duis vulputate

- tristique enim. Donec quis lectus a justo imperdiet tempus.

+ adipiscing. Duis vulputate tristique enim. Donec quis lectus a

+ justo imperdiet tempus. Suspendisse eu lectus. In nunc.

ptg

64 Text

The ndiff() function produces essentially the same output. The processing is

specifically tailored for working with text data and eliminating noise in the input.

Other Output Formats

While the Differ class shows all input lines, a unified diff includes only modified

lines and a bit of context. In Python 2.3, the unified_diff() function was added to

produce this sort of output.

import difflib
from difflib_data import *

diff = difflib.unified_diff(text1_lines,

text2_lines,

lineterm=’’,

)

print ’\n’.join(list(diff))

The lineterm argument is used to tell unified_diff() to skip appending new-

lines to the control lines it returns because the input lines do not include them. Newlines

are added to all lines when they are printed. The output should look familiar to users of

subversion or other version control tools.

$ python difflib_unified.py

+++

@@ -1,11 +1,11 @@

Lorem ipsum dolor sit amet, consectetuer adipiscing

elit. Integer eu lacus accumsan arcu fermentum euismod. Donec

-pulvinar porttitor tellus. Aliquam venenatis. Donec facilisis

-pharetra tortor. In nec mauris eget magna consequat

-convallis. Nam sed sem vitae odio pellentesque interdum. Sed

+pulvinar, porttitor tellus. Aliquam venenatis. Donec facilisis

+pharetra tortor. In nec mauris eget magna consequat

+convallis. Nam cras vitae mi vitae odio pellentesque interdum. Sed

consequat viverra nisl. Suspendisse arcu metus, blandit quis,

rhoncus ac, pharetra eget, velit. Mauris urna. Morbi nonummy

molestie orci. Praesent nisi elit, fringilla ac, suscipit non,

tristique vel, mauris. Curabitur vel lorem id nisl porta

-adipiscing. Suspendisse eu lectus. In nunc. Duis vulputate

-tristique enim. Donec quis lectus a justo imperdiet tempus.

ptg

1.4. difflib—Compare Sequences 65

+adipiscing. Duis vulputate tristique enim. Donec quis lectus a

+justo imperdiet tempus. Suspendisse eu lectus. In nunc.

Using context_diff() produces similar readable output.

1.4.2 Junk Data

All functions that produce difference sequences accept arguments to indicate which

lines should be ignored and which characters within a line should be ignored. These

parameters can be used to skip over markup or whitespace changes in two versions of

a file, for example.

This example is adapted from the source for difflib.py.

from difflib import SequenceMatcher

def show_results(s):

i, j, k = s.find_longest_match(0, 5, 0, 9)

print ’ i = %d’ % i

print ’ j = %d’ % j

print ’ k = %d’ % k

print ’ A[i:i+k] = %r’ % A[i:i+k]

print ’ B[j:j+k] = %r’ % B[j:j+k]

A = " abcd"

B = "abcd abcd"

print ’A = %r’ % A

print ’B = %r’ % B

print ’\nWithout junk detection:’

show_results(SequenceMatcher(None, A, B))

print ’\nTreat spaces as junk:’

show_results(SequenceMatcher(lambda x: x==" ", A, B))

The default for Differ is to not ignore any lines or characters explicitly, but to

rely on the ability of SequenceMatcher to detect noise. The default for ndiff() is

to ignore space and tab characters.

$ python difflib_junk.py

ptg

66 Text

A = ’ abcd’

B = ’abcd abcd’

Without junk detection:

i = 0

j = 4

k = 5

A[i:i+k] = ’ abcd’

B[j:j+k] = ’ abcd’

Treat spaces as junk:

i = 1

j = 0

k = 4

A[i:i+k] = ’abcd’

B[j:j+k] = ’abcd’

1.4.3 Comparing Arbitrary Types

The SequenceMatcher class compares two sequences of any type, as long as the

values are hashable. It uses an algorithm to identify the longest contiguous matching

blocks from the sequences, eliminating junk values that do not contribute to the real

data.

import difflib
from difflib_data import *

s1 = [1, 2, 3, 5, 6, 4]

s2 = [2, 3, 5, 4, 6, 1]

print ’Initial data:’

print ’s1 =’, s1

print ’s2 =’, s2

print ’s1 == s2:’, s1==s2

print

matcher = difflib.SequenceMatcher(None, s1, s2)

for tag, i1, i2, j1, j2 in reversed(matcher.get_opcodes()):

if tag == ’delete’:

print ’Remove %s from positions [%d:%d]’ % \

(s1[i1:i2], i1, i2)

del s1[i1:i2]

ptg

1.4. difflib—Compare Sequences 67

elif tag == ’equal’:

print ’s1[%d:%d] and s2[%d:%d] are the same’ % \

(i1, i2, j1, j2)

elif tag == ’insert’:

print ’Insert %s from s2[%d:%d] into s1 at %d’ % \

(s2[j1:j2], j1, j2, i1)

s1[i1:i2] = s2[j1:j2]

elif tag == ’replace’:

print ’Replace %s from s1[%d:%d] with %s from s2[%d:%d]’ % (

s1[i1:i2], i1, i2, s2[j1:j2], j1, j2)

s1[i1:i2] = s2[j1:j2]

print ’ s1 =’, s1

print ’s1 == s2:’, s1==s2

This example compares two lists of integers and uses get_opcodes() to derive

the instructions for converting the original list into the newer version. The modifications

are applied in reverse order so that the list indexes remain accurate after items are added

and removed.

$ python difflib_seq.py

Initial data:

s1 = [1, 2, 3, 5, 6, 4]

s2 = [2, 3, 5, 4, 6, 1]

s1 == s2: False

Replace [4] from s1[5:6] with [1] from s2[5:6]

s1 = [1, 2, 3, 5, 6, 1]

s1[4:5] and s2[4:5] are the same

s1 = [1, 2, 3, 5, 6, 1]

Insert [4] from s2[3:4] into s1 at 4

s1 = [1, 2, 3, 5, 4, 6, 1]

s1[1:4] and s2[0:3] are the same

s1 = [1, 2, 3, 5, 4, 6, 1]

Remove [1] from positions [0:1]

s1 = [2, 3, 5, 4, 6, 1]

s1 == s2: True

ptg

68 Text

SequenceMatcher works with custom classes, as well as built-in types, as long

as they are hashable.

See Also:
difflib (http://docs.python.org/library/difflib.html) The standard library documenta-

tion for this module.

Pattern Matching: The Gestalt Approach (http://www.ddj.com/documents/s=
1103/ddj8807c/) Discussion of a similar algorithm by John W. Ratcliff and

D. E. Metzener, published in Dr. Dobb’s Journal in July 1988.

http://docs.python.org/library/difflib.html
http://www.ddj.com/documents/s=1103/ddj8807c/
http://www.ddj.com/documents/s=1103/ddj8807c/

ptg

Chapter 2

DATA STRUCTURES

Python includes several standard programming data structures, such as list, tuple,

dict, and set, as part of its built-in types. Many applications do not require other

structures, but when they do, the standard library provides powerful and well-tested

versions that are ready to use.

The collections module includes implementations of several data structures

that extend those found in other modules. For example, Deque is a double-ended queue

that allows the addition or removal of items from either end. The defaultdict is a

dictionary that responds with a default value if a key is missing, while OrderedDict

remembers the sequence in which items are added to it. And namedtuple extends the

normal tuple to give each member item an attribute name in addition to a numeric

index.

For large amounts of data, an array may make more efficient use of memory than

a list. Since the array is limited to a single data type, it can use a more compact

memory representation than a general purpose list. At the same time, arrays can

be manipulated using many of the same methods as a list, so it may be possible to

replace lists with arrays in an application without a lot of other changes.

Sorting items in a sequence is a fundamental aspect of data manipulation. Python’s

list includes a sort() method, but sometimes it is more efficient to maintain a list

in sorted order without resorting it each time its contents are changed. The functions in

heapq modify the contents of a list while preserving the sort order of the list with low

overhead.

Another option for building sorted lists or arrays is bisect. It uses a binary search

to find the insertion point for new items and is an alternative to repeatedly sorting a list

that changes frequently.

69

ptg

70 Data Structures

Although the built-in list can simulate a queue using the insert() and pop()

methods, it is not thread-safe. For true ordered communication between threads, use the

Queue module. multiprocessing includes a version of a Queue that works between

processes, making it easier to convert a multithreaded program to use processes instead.

struct is useful for decoding data from another application, perhaps coming from

a binary file or stream of data, into Python’s native types for easier manipulation.

This chapter covers two modules related to memory management. For highly

interconnected data structures, such as graphs and trees, use weakref to maintain ref-

erences while still allowing the garbage collector to clean up objects after they are no

longer needed. The functions in copy are used for duplicating data structures and their

contents, including recursive copies with deepcopy().

Debugging data structures can be time consuming, especially when wading

through printed output of large sequences or dictionaries. Use pprint to create easy-

to-read representations that can be printed to the console or written to a log file for

easier debugging.

And, finally, if the available types do not meet the requirements, subclass one of

the native types and customize it, or build a new container type using one of the abstract

base classes defined in collections as a starting point.

2.1 collections—Container Data Types

Purpose Container data types.

Python Version 2.4 and later

The collections module includes container data types beyond the built-in types

list, dict, and tuple.

2.1.1 Counter

A Counter is a container that tracks how many times equivalent values are added. It

can be used to implement the same algorithms for which other languages commonly

use bag or multiset data structures.

Initializing

Counter supports three forms of initialization. Its constructor can be called with a

sequence of items, a dictionary containing keys and counts, or using keyword arguments

mapping string names to counts.

ptg

2.1. collections—Container Data Types 71

import collections

print collections.Counter([’a’, ’b’, ’c’, ’a’, ’b’, ’b’])

print collections.Counter({’a’:2, ’b’:3, ’c’:1})

print collections.Counter(a=2, b=3, c=1)

The results of all three forms of initialization are the same.

$ python collections_counter_init.py

Counter({’b’: 3, ’a’: 2, ’c’: 1})

Counter({’b’: 3, ’a’: 2, ’c’: 1})

Counter({’b’: 3, ’a’: 2, ’c’: 1})

An empty Counter can be constructed with no arguments and populated via the

update() method.

import collections

c = collections.Counter()

print ’Initial :’, c

c.update(’abcdaab’)

print ’Sequence:’, c

c.update({’a’:1, ’d’:5})

print ’Dict :’, c

The count values are increased based on the new data, rather than replaced. In this

example, the count for a goes from 3 to 4.

$ python collections_counter_update.py

Initial : Counter()

Sequence: Counter({’a’: 3, ’b’: 2, ’c’: 1, ’d’: 1})

Dict : Counter({’d’: 6, ’a’: 4, ’b’: 2, ’c’: 1})

Accessing Counts

Once a Counter is populated, its values can be retrieved using the dictionary API.

ptg

72 Data Structures

import collections

c = collections.Counter(’abcdaab’)

for letter in ’abcde’:

print ’%s : %d’ % (letter, c[letter])

Counter does not raise KeyError for unknown items. If a value has not been

seen in the input (as with e in this example), its count is 0.

$ python collections_counter_get_values.py

a : 3

b : 2

c : 1

d : 1

e : 0

The elements() method returns an iterator that produces all items known to the

Counter.

import collections

c = collections.Counter(’extremely’)

c[’z’] = 0

print c

print list(c.elements())

The order of elements is not guaranteed, and items with counts less than or equal

to zero are not included.

$ python collections_counter_elements.py

Counter({’e’: 3, ’m’: 1, ’l’: 1, ’r’: 1, ’t’: 1, ’y’: 1, ’x’: 1,

’z’: 0})

[’e’, ’e’, ’e’, ’m’, ’l’, ’r’, ’t’, ’y’, ’x’]

Use most_common() to produce a sequence of the n most frequently encountered

input values and their respective counts.

ptg

2.1. collections—Container Data Types 73

import collections

c = collections.Counter()

with open(’/usr/share/dict/words’, ’rt’) as f:

for line in f:

c.update(line.rstrip().lower())

print ’Most common:’

for letter, count in c.most_common(3):

print ’%s: %7d’ % (letter, count)

This example counts the letters appearing in all words in the system dictionary

to produce a frequency distribution, and then prints the three most common letters.

Leaving out the argument to most_common() produces a list of all the items, in order

of frequency.

$ python collections_counter_most_common.py

Most common:

e: 234803

i: 200613

a: 198938

Arithmetic

Counter instances support arithmetic and set operations for aggregating results.

import collections

c1 = collections.Counter([’a’, ’b’, ’c’, ’a’, ’b’, ’b’])

c2 = collections.Counter(’alphabet’)

print ’C1:’, c1

print ’C2:’, c2

print ’\nCombined counts:’

print c1 + c2

print ’\nSubtraction:’
print c1 - c2

ptg

74 Data Structures

print ’\nIntersection (taking positive minimums):’

print c1 & c2

print ’\nUnion (taking maximums):’

print c1 | c2

Each time a new Counter is produced through an operation, any items with zero

or negative counts are discarded. The count for a is the same in c1 and c2, so subtrac-

tion leaves it at zero.

$ python collections_counter_arithmetic.py

C1: Counter({’b’: 3, ’a’: 2, ’c’: 1})

C2: Counter({’a’: 2, ’b’: 1, ’e’: 1, ’h’: 1, ’l’: 1, ’p’: 1, ’t’: 1})

Combined counts:

Counter({’a’: 4, ’b’: 4, ’c’: 1, ’e’: 1, ’h’: 1, ’l’: 1, ’p’: 1,

’t’: 1})

Subtraction:

Counter({’b’: 2, ’c’: 1})

Intersection (taking positive minimums):

Counter({’a’: 2, ’b’: 1})

Union (taking maximums):

Counter({’b’: 3, ’a’: 2, ’c’: 1, ’e’: 1, ’h’: 1, ’l’: 1, ’p’: 1,

’t’: 1})

2.1.2 defaultdict

The standard dictionary includes the method setdefault() for retrieving a value and

establishing a default if the value does not exist. By contrast, defaultdict lets the

caller specify the default up front when the container is initialized.

import collections

def default_factory():

return ’default value’

d = collections.defaultdict(default_factory, foo=’bar’)

print ’d:’, d

ptg

2.1. collections—Container Data Types 75

print ’foo =>’, d[’foo’]

print ’bar =>’, d[’bar’]

This method works well, as long as it is appropriate for all keys to have the same

default. It can be especially useful if the default is a type used for aggregating or accu-

mulating values, such as a list, set, or even int. The standard library documentation

includes several examples of using defaultdict this way.

$ python collections_defaultdict.py

d: defaultdict(<function default_factory

at 0x100d9ba28>, {’foo’: ’bar’})

foo => bar

bar => default value

See Also:
defaultdict examples (http://docs.python.org/lib/defaultdict-examples.html)

Examples of using defaultdict from the standard library documentation.

Evolution of Default Dictionaries in Python
(http://jtauber.com/blog/2008/02/27/evolution_of_default_dictionaries_in_
python/) Discussion from James Tauber of how defaultdict relates to other

means of initializing dictionaries.

2.1.3 Deque

A double-ended queue, or deque, supports adding and removing elements from either

end. The more commonly used structures, stacks, and queues are degenerate forms of

deques where the inputs and outputs are restricted to a single end.

import collections

d = collections.deque(’abcdefg’)

print ’Deque:’, d

print ’Length:’, len(d)

print ’Left end:’, d[0]

print ’Right end:’, d[-1]

d.remove(’c’)

print ’remove(c):’, d

http://docs.python.org/lib/defaultdict-examples.html
http://jtauber.com/blog/2008/02/27/evolution_of_default_dictionaries_in_python/
http://jtauber.com/blog/2008/02/27/evolution_of_default_dictionaries_in_python/

ptg

76 Data Structures

Since deques are a type of sequence container, they support some of the same

operations as list, such as examining the contents with __getitem__(), determining

length, and removing elements from the middle by matching identity.

$ python collections_deque.py

Deque: deque([’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’])

Length: 7

Left end: a

Right end: g

remove(c): deque([’a’, ’b’, ’d’, ’e’, ’f’, ’g’])

Populating

A deque can be populated from either end, termed “left” and “right” in the Python

implementation.

import collections

Add to the right

d1 = collections.deque()

d1.extend(’abcdefg’)

print ’extend :’, d1

d1.append(’h’)

print ’append :’, d1

Add to the left

d2 = collections.deque()

d2.extendleft(xrange(6))

print ’extendleft:’, d2

d2.appendleft(6)

print ’appendleft:’, d2

The extendleft() function iterates over its input and performs the equivalent

of an appendleft() for each item. The end result is that the deque contains the input

sequence in reverse order.

$ python collections_deque_populating.py

extend : deque([’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’])

append : deque([’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’, ’h’])

ptg

2.1. collections—Container Data Types 77

extendleft: deque([5, 4, 3, 2, 1, 0])

appendleft: deque([6, 5, 4, 3, 2, 1, 0])

Consuming

Similarly, the elements of the deque can be consumed from both ends or either end,

depending on the algorithm being applied.

import collections

print ’From the right:’

d = collections.deque(’abcdefg’)

while True:

try:
print d.pop(),

except IndexError:
break

print

print ’\nFrom the left:’

d = collections.deque(xrange(6))

while True:

try:
print d.popleft(),

except IndexError:
break

print

Use pop() to remove an item from the right end of the deque and popleft() to

take from the left end.

$ python collections_deque_consuming.py

From the right:

g f e d c b a

From the left:

0 1 2 3 4 5

Since deques are thread-safe, the contents can even be consumed from both ends

at the same time from separate threads.

ptg

78 Data Structures

import collections
import threading
import time

candle = collections.deque(xrange(5))

def burn(direction, nextSource):

while True:

try:
next = nextSource()

except IndexError:
break

else:
print ’%8s: %s’ % (direction, next)

time.sleep(0.1)

print ’%8s done’ % direction

return

left = threading.Thread(target=burn, args=(’Left’, candle.popleft))

right = threading.Thread(target=burn, args=(’Right’, candle.pop))

left.start()

right.start()

left.join()

right.join()

The threads in this example alternate between each end, removing items until the

deque is empty.

$ python collections_deque_both_ends.py

Left: 0

Right: 4

Right: 3

Left: 1

Right: 2

Left done

Right done

Rotating

Another useful capability of the deque is to rotate it in either direction, to skip over

some items.

ptg

2.1. collections—Container Data Types 79

import collections

d = collections.deque(xrange(10))

print ’Normal :’, d

d = collections.deque(xrange(10))

d.rotate(2)

print ’Right rotation:’, d

d = collections.deque(xrange(10))

d.rotate(-2)

print ’Left rotation :’, d

Rotating the deque to the right (using a positive rotation) takes items from the

right end and moves them to the left end. Rotating to the left (with a negative value)

takes items from the left end and moves them to the right end. It may help to visualize

the items in the deque as being engraved along the edge of a dial.

$ python collections_deque_rotate.py

Normal : deque([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Right rotation: deque([8, 9, 0, 1, 2, 3, 4, 5, 6, 7])

Left rotation : deque([2, 3, 4, 5, 6, 7, 8, 9, 0, 1])

See Also:
Deque (http://en.wikipedia.org/wiki/Deque) Wikipedia article that provides a dis-

cussion of the deque data structure.

Deque Recipes (http://docs.python.org/lib/deque-recipes.html) Examples of using

deques in algorithms from the standard library documentation.

2.1.4 namedtuple

The standard tuple uses numerical indexes to access its members.

bob = (’Bob’, 30, ’male’)

print ’Representation:’, bob

jane = (’Jane’, 29, ’female’)

print ’\nField by index:’, jane[0]

print ’\nFields by index:’

for p in [bob, jane]:

print ’%s is a %d year old %s’ % p

http://en.wikipedia.org/wiki/Deque
http://docs.python.org/lib/deque-recipes.html

ptg

80 Data Structures

This makes tuples convenient containers for simple uses.

$ python collections_tuple.py

Representation: (’Bob’, 30, ’male’)

Field by index: Jane

Fields by index:

Bob is a 30 year old male

Jane is a 29 year old female

On the other hand, remembering which index should be used for each value can

lead to errors, especially if the tuple has a lot of fields and is constructed far from

where it is used. A namedtuple assigns names, as well as the numerical index, to each

member.

Defining

namedtuple instances are just as memory efficient as regular tuples because they do

not have per-instance dictionaries. Each kind of namedtuple is represented by its own

class, created by using the namedtuple() factory function. The arguments are the

name of the new class and a string containing the names of the elements.

import collections

Person = collections.namedtuple(’Person’, ’name age gender’)

print ’Type of Person:’, type(Person)

bob = Person(name=’Bob’, age=30, gender=’male’)

print ’\nRepresentation:’, bob

jane = Person(name=’Jane’, age=29, gender=’female’)

print ’\nField by name:’, jane.name

print ’\nFields by index:’

for p in [bob, jane]:

print ’%s is a %d year old %s’ % p

As the example illustrates, it is possible to access the fields of the namedtuple

by name using dotted notation (obj.attr) as well as using the positional indexes of

standard tuples.

ptg

2.1. collections—Container Data Types 81

$ python collections_namedtuple_person.py

Type of Person: <type ’type’>

Representation: Person(name=’Bob’, age=30, gender=’male’)

Field by name: Jane

Fields by index:

Bob is a 30 year old male

Jane is a 29 year old female

Invalid Field Names

Field names are invalid if they are repeated or conflict with Python keywords.

import collections

try:
collections.namedtuple(’Person’, ’name class age gender’)

except ValueError, err:

print err

try:
collections.namedtuple(’Person’, ’name age gender age’)

except ValueError, err:

print err

As the field names are parsed, invalid values cause ValueError exceptions.

$ python collections_namedtuple_bad_fields.py

Type names and field names cannot be a keyword: ’class’

Encountered duplicate field name: ’age’

If a namedtuple is being created based on values outside of the control of the pro-

gram (such as to represent the rows returned by a database query, where the schema is

not known in advance), set the rename option to True so the invalid fields are renamed.

import collections

with_class = collections.namedtuple(

’Person’, ’name class age gender’,

rename=True)

ptg

82 Data Structures

print with_class._fields

two_ages = collections.namedtuple(

’Person’, ’name age gender age’,

rename=True)

print two_ages._fields

The new names for renamed fields depend on their index in the tuple, so the field

with name class becomes _1 and the duplicate age field is changed to _3.

$ python collections_namedtuple_rename.py

(’name’, ’_1’, ’age’, ’gender’)

(’name’, ’age’, ’gender’, ’_3’)

2.1.5 OrderedDict

An OrderedDict is a dictionary subclass that remembers the order in which its con-

tents are added.

import collections

print ’Regular dictionary:’

d = {}

d[’a’] = ’A’

d[’b’] = ’B’

d[’c’] = ’C’

for k, v in d.items():

print k, v

print ’\nOrderedDict:’
d = collections.OrderedDict()

d[’a’] = ’A’

d[’b’] = ’B’

d[’c’] = ’C’

for k, v in d.items():

print k, v

A regular dict does not track the insertion order, and iterating over it produces the

values in order based on how the keys are stored in the hash table. In an OrderedDict,

ptg

2.1. collections—Container Data Types 83

by contrast, the order in which the items are inserted is remembered and used when

creating an iterator.

$ python collections_ordereddict_iter.py

Regular dictionary:

a A

c C

b B

OrderedDict:

a A

b B

c C

Equality

A regular dict looks at its contents when testing for equality. An OrderedDict also

considers the order the items were added.

import collections

print ’dict :’,

d1 = {}

d1[’a’] = ’A’

d1[’b’] = ’B’

d1[’c’] = ’C’

d2 = {}

d2[’c’] = ’C’

d2[’b’] = ’B’

d2[’a’] = ’A’

print d1 == d2

print ’OrderedDict:’,

d1 = collections.OrderedDict()

d1[’a’] = ’A’

d1[’b’] = ’B’

d1[’c’] = ’C’

ptg

84 Data Structures

d2 = collections.OrderedDict()

d2[’c’] = ’C’

d2[’b’] = ’B’

d2[’a’] = ’A’

print d1 == d2

In this case, since the two ordered dictionaries are created from values in a different

order, they are considered to be different.

$ python collections_ordereddict_equality.py

dict : True

OrderedDict: False

See Also:
collections (http://docs.python.org/library/collections.html) The standard library

documentation for this module.

2.2 array—Sequence of Fixed-Type Data

Purpose Manage sequences of fixed-type numerical data efficiently.

Python Version 1.4 and later

The array module defines a sequence data structure that looks very much like a list,

except that all members have to be of the same primitive type. Refer to the standard

library documentation for array for a complete list of the types supported.

2.2.1 Initialization

An array is instantiated with an argument describing the type of data to be allowed,

and possibly an initial sequence of data to store in the array.

import array
import binascii

s = ’This is the array.’

a = array.array(’c’, s)

print ’As string:’, s

print ’As array :’, a

print ’As hex :’, binascii.hexlify(a)

http://docs.python.org/library/collections.html

ptg

2.2. array—Sequence of Fixed-Type Data 85

In this example, the array is configured to hold a sequence of bytes and is initial-

ized with a simple string.

$ python array_string.py

As string: This is the array.

As array : array(’c’, ’This is the array.’)

As hex : 54686973206973207468652061727261792e

2.2.2 Manipulating Arrays

An array can be extended and otherwise manipulated in the same ways as other Python

sequences.

import array
import pprint

a = array.array(’i’, xrange(3))

print ’Initial :’, a

a.extend(xrange(3))

print ’Extended:’, a

print ’Slice :’, a[2:5]

print ’Iterator:’

print list(enumerate(a))

The supported operations include slicing, iterating, and adding elements to the end.

$ python array_sequence.py

Initial : array(’i’, [0, 1, 2])

Extended: array(’i’, [0, 1, 2, 0, 1, 2])

Slice : array(’i’, [2, 0, 1])

Iterator:

[(0, 0), (1, 1), (2, 2), (3, 0), (4, 1), (5, 2)]

2.2.3 Arrays and Files

The contents of an array can be written to and read from files using built-in methods

coded efficiently for that purpose.

ptg

86 Data Structures

import array
import binascii
import tempfile

a = array.array(’i’, xrange(5))

print ’A1:’, a

Write the array of numbers to a temporary file

output = tempfile.NamedTemporaryFile()

a.tofile(output.file) # must pass an *actual* file

output.flush()

Read the raw data

with open(output.name, ’rb’) as input:

raw_data = input.read()

print ’Raw Contents:’, binascii.hexlify(raw_data)

Read the data into an array

input.seek(0)

a2 = array.array(’i’)

a2.fromfile(input, len(a))

print ’A2:’, a2

This example illustrates reading the data raw, directly from the binary file, versus

reading it into a new array and converting the bytes to the appropriate types.

$ python array_file.py

A1: array(’i’, [0, 1, 2, 3, 4])

Raw Contents: 0000000001000000020000000300000004000000

A2: array(’i’, [0, 1, 2, 3, 4])

2.2.4 Alternate Byte Ordering

If the data in the array is not in the native byte order, or needs to be swapped before

being sent to a system with a different byte order (or over the network), it is possible to

convert the entire array without iterating over the elements from Python.

import array
import binascii

def to_hex(a):

chars_per_item = a.itemsize * 2 # 2 hex digits

ptg

2.3. heapq—Heap Sort Algorithm 87

hex_version = binascii.hexlify(a)

num_chunks = len(hex_version) / chars_per_item

for i in xrange(num_chunks):

start = i*chars_per_item

end = start + chars_per_item

yield hex_version[start:end]

a1 = array.array(’i’, xrange(5))

a2 = array.array(’i’, xrange(5))

a2.byteswap()

fmt = ’%10s %10s %10s %10s’
print fmt % (’A1 hex’, ’A1’, ’A2 hex’, ’A2’)

print fmt % ((’-’ * 10,) * 4)

for values in zip(to_hex(a1), a1, to_hex(a2), a2):

print fmt % values

The byteswap() method switches the byte order of the items in the array from

within C, so it is much more efficient than looping over the data in Python.

$ python array_byteswap.py

A1 hex A1 A2 hex A2

---------- ---------- ---------- ----------

00000000 0 00000000 0

01000000 1 00000001 16777216

02000000 2 00000002 33554432

03000000 3 00000003 50331648

04000000 4 00000004 67108864

See Also:
array (http://docs.python.org/library/array.html) The standard library documenta-

tion for this module.

struct (page 102) The struct module.

Numerical Python (www.scipy.org) NumPy is a Python library for working with large

data sets efficiently.

2.3 heapq—Heap Sort Algorithm

Purpose The heapq module implements a min-heap sort algorithm suit-

able for use with Python’s lists.

Python Version New in 2.3 with additions in 2.5

http://docs.python.org/library/array.html
www.scipy.org

ptg

88 Data Structures

A heap is a tree-like data structure where the child nodes have a sort-order relationship

with the parents. Binary heaps can be represented using a list or an array organized

so that the children of element N are at positions 2*N+1 and 2*N+2 (for zero-based

indexes). This layout makes it possible to rearrange heaps in place, so it is not necessary

to reallocate as much memory when adding or removing items.

A max-heap ensures that the parent is larger than or equal to both of its children.

A min-heap requires that the parent be less than or equal to its children. Python’s heapq

module implements a min-heap.

2.3.1 Example Data

The examples in this section use the data in heapq_heapdata.py.

This data was generated with the random module.

data = [19, 9, 4, 10, 11]

The heap output is printed using heapq_showtree.py.

import math
from cStringIO import StringIO

def show_tree(tree, total_width=36, fill=’ ’):

"""Pretty-print a tree."""

output = StringIO()

last_row = -1

for i, n in enumerate(tree):

if i:

row = int(math.floor(math.log(i+1, 2)))

else:
row = 0

if row != last_row:

output.write(’\n’)
columns = 2**row

col_width = int(math.floor((total_width * 1.0) / columns))

output.write(str(n).center(col_width, fill))

last_row = row

print output.getvalue()

print ’-’ * total_width

print
return

ptg

2.3. heapq—Heap Sort Algorithm 89

2.3.2 Creating a Heap

There are two basic ways to create a heap: heappush() and heapify().

import heapq
from heapq_showtree import show_tree

from heapq_heapdata import data

heap = []

print ’random :’, data

print

for n in data:

print ’add %3d:’ % n

heapq.heappush(heap, n)

show_tree(heap)

Using heappush(), the heap sort order of the elements is maintained as new items

are added from a data source.

$ python heapq_heappush.py

random : [19, 9, 4, 10, 11]

add 19:

19

add 9:

9

19

add 4:

4

19 9

add 10:

4

ptg

90 Data Structures

10 9

19

add 11:

4

10 9

19 11

If the data is already in memory, it is more efficient to use heapify() to rearrange

the items of the list in place.

import heapq
from heapq_showtree import show_tree

from heapq_heapdata import data

print ’random :’, data

heapq.heapify(data)

print ’heapified :’

show_tree(data)

The result of building a list in heap order one item at a time is the same as building

it unordered and then calling heapify().

$ python heapq_heapify.py

random : [19, 9, 4, 10, 11]

heapified :

4

9 19

10 11

2.3.3 Accessing Contents of a Heap

Once the heap is organized correctly, use heappop() to remove the element with the

lowest value.

import heapq
from heapq_showtree import show_tree

from heapq_heapdata import data

ptg

2.3. heapq—Heap Sort Algorithm 91

print ’random :’, data

heapq.heapify(data)

print ’heapified :’

show_tree(data)

print

for i in xrange(2):

smallest = heapq.heappop(data)

print ’pop %3d:’ % smallest

show_tree(data)

In this example, adapted from the stdlib documentation, heapify() and

heappop() are used to sort a list of numbers.

$ python heapq_heappop.py

random : [19, 9, 4, 10, 11]

heapified :

4

9 19

10 11

pop 4:

9

10 19

11

pop 9:

10

11 19

To remove existing elements and replace them with new values in a single opera-

tion, use heapreplace().

import heapq
from heapq_showtree import show_tree

from heapq_heapdata import data

ptg

92 Data Structures

heapq.heapify(data)

print ’start:’

show_tree(data)

for n in [0, 13]:

smallest = heapq.heapreplace(data, n)

print ’replace %2d with %2d:’ % (smallest, n)

show_tree(data)

Replacing elements in place makes it possible to maintain a fixed-size heap, such

as a queue of jobs ordered by priority.

$ python heapq_heapreplace.py

start:

4

9 19

10 11

replace 4 with 0:

0

9 19

10 11

replace 0 with 13:

9

10 19

13 11

2.3.4 Data Extremes from a Heap

heapq also includes two functions to examine an iterable to find a range of the largest

or smallest values it contains.

import heapq
from heapq_heapdata import data

ptg

2.4. bisect—Maintain Lists in Sorted Order 93

print ’all :’, data

print ’3 largest :’, heapq.nlargest(3, data)

print ’from sort :’, list(reversed(sorted(data)[-3:]))

print ’3 smallest:’, heapq.nsmallest(3, data)

print ’from sort :’, sorted(data)[:3]

Using nlargest() and nsmallest() is only efficient for relatively small values

of n > 1, but can still come in handy in a few cases.

$ python heapq_extremes.py

all : [19, 9, 4, 10, 11]

3 largest : [19, 11, 10]

from sort : [19, 11, 10]

3 smallest: [4, 9, 10]

from sort : [4, 9, 10]

See Also:
heapq (http://docs.python.org/library/heapq.html) The standard library documen-

tation for this module.

Heap (data structure) (http://en.wikipedia.org/wiki/Heap_(data_structure))
Wikipedia article that provides a general description of heap data structures.

Priority Queue (page 98) A priority queue implementation from Queue (page 96) in

the standard library.

2.4 bisect—Maintain Lists in Sorted Order

Purpose Maintains a list in sorted order without having to call sort each

time an item is added to the list.

Python Version 1.4 and later

The bisect module implements an algorithm for inserting elements into a list while

maintaining the list in sorted order. For some cases, this is more efficient than repeatedly

sorting a list or explicitly sorting a large list after it is constructed.

2.4.1 Inserting in Sorted Order

Here is a simple example using insort() to insert items into a list in sorted order.

http://docs.python.org/library/heapq.html
http://en.wikipedia.org/wiki/Heap_(data_structure)

ptg

94 Data Structures

import bisect
import random

Use a constant seed to ensure that

the same pseudo-random numbers

are used each time the loop is run.

random.seed(1)

print ’New Pos Contents’

print ’--- --- --------’

Generate random numbers and

insert them into a list in sorted

order.

l = []

for i in range(1, 15):

r = random.randint(1, 100)

position = bisect.bisect(l, r)

bisect.insort(l, r)

print ’%3d %3d’ % (r, position), l

The first column of the output shows the new random number. The second column

shows the position where the number will be inserted into the list. The remainder of

each line is the current sorted list.

$ python bisect_example.py

New Pos Contents

--- --- --------

14 0 [14]

85 1 [14, 85]

77 1 [14, 77, 85]

26 1 [14, 26, 77, 85]

50 2 [14, 26, 50, 77, 85]

45 2 [14, 26, 45, 50, 77, 85]

66 4 [14, 26, 45, 50, 66, 77, 85]

79 6 [14, 26, 45, 50, 66, 77, 79, 85]

10 0 [10, 14, 26, 45, 50, 66, 77, 79, 85]

3 0 [3, 10, 14, 26, 45, 50, 66, 77, 79, 85]

84 9 [3, 10, 14, 26, 45, 50, 66, 77, 79, 84, 85]

44 4 [3, 10, 14, 26, 44, 45, 50, 66, 77, 79, 84, 85]

77 9 [3, 10, 14, 26, 44, 45, 50, 66, 77, 77, 79, 84, 85]

1 0 [1, 3, 10, 14, 26, 44, 45, 50, 66, 77, 77, 79, 84, 85]

ptg

2.4. bisect—Maintain Lists in Sorted Order 95

This is a simple example, and for the amount of data being manipulated, it might

be faster to simply build the list and then sort it once. But for long lists, significant time

and memory savings can be achieved using an insertion sort algorithm such as this one.

2.4.2 Handling Duplicates

The result set shown previously includes a repeated value, 77. The bisectmodule pro-

vides two ways to handle repeats. New values can be inserted to the left of existing val-

ues or to the right. The insort() function is actually an alias for insort_right(),

which inserts after the existing value. The corresponding function insort_left()

inserts before the existing value.

import bisect
import random

Reset the seed

random.seed(1)

print ’New Pos Contents’

print ’--- --- --------’

Use bisect_left and insort_left.

l = []

for i in range(1, 15):

r = random.randint(1, 100)

position = bisect.bisect_left(l, r)

bisect.insort_left(l, r)

print ’%3d %3d’ % (r, position), l

When the same data is manipulated using bisect_left() and insort_left(),

the results are the same sorted list, but the insert positions are different for the duplicate

values.

$ python bisect_example2.py

New Pos Contents

--- --- --------

14 0 [14]

85 1 [14, 85]

77 1 [14, 77, 85]

26 1 [14, 26, 77, 85]

50 2 [14, 26, 50, 77, 85]

45 2 [14, 26, 45, 50, 77, 85]

ptg

96 Data Structures

66 4 [14, 26, 45, 50, 66, 77, 85]

79 6 [14, 26, 45, 50, 66, 77, 79, 85]

10 0 [10, 14, 26, 45, 50, 66, 77, 79, 85]

3 0 [3, 10, 14, 26, 45, 50, 66, 77, 79, 85]

84 9 [3, 10, 14, 26, 45, 50, 66, 77, 79, 84, 85]

44 4 [3, 10, 14, 26, 44, 45, 50, 66, 77, 79, 84, 85]

77 8 [3, 10, 14, 26, 44, 45, 50, 66, 77, 77, 79, 84, 85]

1 0 [1, 3, 10, 14, 26, 44, 45, 50, 66, 77, 77, 79, 84, 85]

In addition to the Python implementation, a faster C implementation is available.

If the C version is present, that implementation automatically overrides the pure Python

implementation when bisect is imported.

See Also:
bisect (http://docs.python.org/library/bisect.html) The standard library documenta-

tion for this module.

Insertion Sort (http://en.wikipedia.org/wiki/Insertion_sort) Wikipedia article that

provides a description of the insertion sort algorithm.

2.5 Queue—Thread-Safe FIFO Implementation

Purpose Provides a thread-safe FIFO implementation.

Python Version At least 1.4

The Queue module provides a first-in, first-out (FIFO) data structure suitable for mul-

tithreaded programming. It can be used to pass messages or other data safely between

producer and consumer threads. Locking is handled for the caller, so many threads can

work with the same Queue instance safely. The size of a Queue (the number of ele-

ments it contains) may be restricted to throttle memory usage or processing.

Note: This discussion assumes you already understand the general nature of a

queue. If you do not, you may want to read some of the references before con-

tinuing.

2.5.1 Basic FIFO Queue

The Queue class implements a basic first-in, first-out container. Elements are added to

one end of the sequence using put(), and removed from the other end using get().

http://docs.python.org/library/bisect.html
http://en.wikipedia.org/wiki/Insertion_sort

ptg

2.5. Queue—Thread-Safe FIFO Implementation 97

import Queue

q = Queue.Queue()

for i in range(5):

q.put(i)

while not q.empty():

print q.get(),

print

This example uses a single thread to illustrate that elements are removed from the

queue in the same order they are inserted.

$ python Queue_fifo.py

0 1 2 3 4

2.5.2 LIFO Queue

In contrast to the standard FIFO implementation of Queue, the LifoQueue uses last-in,

first-out (LIFO) ordering (normally associated with a stack data structure).

import Queue

q = Queue.LifoQueue()

for i in range(5):

q.put(i)

while not q.empty():

print q.get(),

print

The item most recently put into the queue is removed by get.

$ python Queue_lifo.py

4 3 2 1 0

ptg

98 Data Structures

2.5.3 Priority Queue

Sometimes, the processing order of the items in a queue needs to be based on charac-

teristics of those items, rather than just on the order in which they are created or added

to the queue. For example, print jobs from the payroll department may take precedence

over a code listing printed by a developer. PriorityQueue uses the sort order of the

contents of the queue to decide which to retrieve.

import Queue
import threading

class Job(object):
def __init__(self, priority, description):

self.priority = priority

self.description = description

print ’New job:’, description

return
def __cmp__(self, other):

return cmp(self.priority, other.priority)

q = Queue.PriorityQueue()

q.put(Job(3, ’Mid-level job’))

q.put(Job(10, ’Low-level job’))

q.put(Job(1, ’Important job’))

def process_job(q):

while True:

next_job = q.get()

print ’Processing job:’, next_job.description

q.task_done()

workers = [threading.Thread(target=process_job, args=(q,)),

threading.Thread(target=process_job, args=(q,)),

]

for w in workers:

w.setDaemon(True)

w.start()

q.join()

This example has multiple threads consuming the jobs, which are to be processed

based on the priority of items in the queue at the time get() was called. The order

ptg

2.5. Queue—Thread-Safe FIFO Implementation 99

of processing for items added to the queue while the consumer threads are running

depends on thread context switching.

$ python Queue_priority.py

New job: Mid-level job

New job: Low-level job

New job: Important job

Processing job: Important job

Processing job: Mid-level job

Processing job: Low-level job

2.5.4 Building a Threaded Podcast Client

The source code for the podcasting client in this section demonstrates how to use the

Queue class with multiple threads. The program reads one or more RSS feeds, queues

up the enclosures for the five most recent episodes to be downloaded, and processes

several downloads in parallel using threads. It does not have enough error handling for

production use, but the skeleton implementation provides an example of how to use the

Queue module.

First, some operating parameters are established. Normally, these would come

from user inputs (preferences, a database, etc.). The example uses hard-coded values

for the number of threads and a list of URLs to fetch.

from Queue import Queue

from threading import Thread

import time
import urllib
import urlparse

import feedparser

Set up some global variables

num_fetch_threads = 2

enclosure_queue = Queue()

A real app wouldn’t use hard-coded data...

feed_urls = [’http://advocacy.python.org/podcasts/littlebit.rss’,

]

The function downloadEnclosures() will run in the worker thread and process

the downloads using urllib.

ptg

100 Data Structures

def downloadEnclosures(i, q):

"""This is the worker thread function.

It processes items in the queue one after

another. These daemon threads go into an

infinite loop, and only exit when

the main thread ends.

"""

while True:

print ’%s: Looking for the next enclosure’ % i

url = q.get()

parsed_url = urlparse.urlparse(url)

print ’%s: Downloading:’ % i, parsed_url.path

response = urllib.urlopen(url)

data = response.read()

Save the downloaded file to the current directory

outfile_name = url.rpartition(’/’)[-1]

with open(outfile_name, ’wb’) as outfile:

outfile.write(data)

q.task_done()

Once the threads’ target function is defined, the worker threads can be started.

When downloadEnclosures() processes the statement url = q.get(), it blocks

and waits until the queue has something to return. That means it is safe to start the

threads before there is anything in the queue.

Set up some threads to fetch the enclosures

for i in range(num_fetch_threads):

worker = Thread(target=downloadEnclosures,

args=(i, enclosure_queue,))

worker.setDaemon(True)

worker.start()

The next step is to retrieve the feed contents using Mark Pilgrim’s feedparser

module (www.feedparser.org) and enqueue the URLs of the enclosures. As soon as

the first URL is added to the queue, one of the worker threads picks it up and starts

downloading it. The loop will continue to add items until the feed is exhausted, and the

worker threads will take turns dequeuing URLs to download them.

Download the feed(s) and put the enclosure URLs into

the queue.

for url in feed_urls:

response = feedparser.parse(url, agent=’fetch_podcasts.py’)

www.feedparser.org

ptg

2.5. Queue—Thread-Safe FIFO Implementation 101

for entry in response[’entries’][-5:]:

for enclosure in entry.get(’enclosures’, []):

parsed_url = urlparse.urlparse(enclosure[’url’])

print ’Queuing:’, parsed_url.path

enclosure_queue.put(enclosure[’url’])

The only thing left to do is wait for the queue to empty out again, using join().

Now wait for the queue to be empty, indicating that we have

processed all the downloads.

print ’*** Main thread waiting’

enclosure_queue.join()

print ’*** Done’

Running the sample script produces the following.

$ python fetch_podcasts.py

0: Looking for the next enclosure

1: Looking for the next enclosure

Queuing: /podcasts/littlebit/2010-04-18.mp3

Queuing: /podcasts/littlebit/2010-05-22.mp3

Queuing: /podcasts/littlebit/2010-06-06.mp3

Queuing: /podcasts/littlebit/2010-07-26.mp3

Queuing: /podcasts/littlebit/2010-11-25.mp3

*** Main thread waiting

0: Downloading: /podcasts/littlebit/2010-04-18.mp3

0: Looking for the next enclosure

0: Downloading: /podcasts/littlebit/2010-05-22.mp3

0: Looking for the next enclosure

0: Downloading: /podcasts/littlebit/2010-06-06.mp3

0: Looking for the next enclosure

0: Downloading: /podcasts/littlebit/2010-07-26.mp3

0: Looking for the next enclosure

0: Downloading: /podcasts/littlebit/2010-11-25.mp3

0: Looking for the next enclosure

*** Done

The actual output will depend on the contents of the RSS feed used.

See Also:
Queue (http://docs.python.org/lib/module-Queue.html) Standard library documen-

tation for this module.

http://docs.python.org/lib/module-Queue.html

ptg

102 Data Structures

Deque (page 75) from collections (page 70) The collections module includes

a deque (double-ended queue) class.

Queue data structures (http://en.wikipedia.org/wiki/Queue_(data_structure))
Wikipedia article explaining queues.

FIFO (http://en.wikipedia.org/wiki/FIFO) Wikipedia article explaining first-in,

first-out data structures.

2.6 struct—Binary Data Structures

Purpose Convert between strings and binary data.

Python Version 1.4 and later

The struct module includes functions for converting between strings of bytes and

native Python data types, such as numbers and strings.

2.6.1 Functions vs. Struct Class

There is a set of module-level functions for working with structured values, and there

is also the Struct class. Format specifiers are converted from their string format to a

compiled representation, similar to the way regular expressions are handled. The con-

version takes some resources, so it is typically more efficient to do it once when creating

a Struct instance and call methods on the instance, instead of using the module-level

functions. The following examples all use the Struct class.

2.6.2 Packing and Unpacking

Structs support packing data into strings and unpacking data from strings using for-

mat specifiers made up of characters representing the data type and optional count and

endianness indicators. Refer to the standard library documentation for a complete list

of the supported format specifiers.

In this example, the specifier calls for an integer or long value, a two-character

string, and a floating-point number. The spaces in the format specifier are included to

separate the type indicators and are ignored when the format is compiled.

import struct
import binascii

values = (1, ’ab’, 2.7)

s = struct.Struct(’I 2s f’)

packed_data = s.pack(*values)

http://en.wikipedia.org/wiki/Queue_(data_structure)
http://en.wikipedia.org/wiki/FIFO

ptg

2.6. struct—Binary Data Structures 103

print ’Original values:’, values

print ’Format string :’, s.format

print ’Uses :’, s.size, ’bytes’

print ’Packed Value :’, binascii.hexlify(packed_data)

The example converts the packed value to a sequence of hex bytes for printing

with binascii.hexlify(), since some characters are nulls.

$ python struct_pack.py

Original values: (1, ’ab’, 2.7)

Format string : I 2s f

Uses : 12 bytes

Packed Value : 0100000061620000cdcc2c40

Use unpack() to extract data from its packed representation.

import struct
import binascii

packed_data = binascii.unhexlify(’0100000061620000cdcc2c40’)

s = struct.Struct(’I 2s f’)

unpacked_data = s.unpack(packed_data)

print ’Unpacked Values:’, unpacked_data

Passing the packed value to unpack() gives basically the same values back (note

the discrepancy in the floating-point value).

$ python struct_unpack.py

Unpacked Values: (1, ’ab’, 2.700000047683716)

2.6.3 Endianness

By default, values are encoded using the native C library notion of endianness. It is

easy to override that choice by providing an explicit endianness directive in the format

string.

import struct
import binascii

ptg

104 Data Structures

values = (1, ’ab’, 2.7)

print ’Original values:’, values

endianness = [

(’@’, ’native, native’),

(’=’, ’native, standard’),

(’<’, ’little-endian’),

(’>’, ’big-endian’),

(’!’, ’network’),

]

for code, name in endianness:

s = struct.Struct(code + ’ I 2s f’)

packed_data = s.pack(*values)

print
print ’Format string :’, s.format, ’for’, name

print ’Uses :’, s.size, ’bytes’

print ’Packed Value :’, binascii.hexlify(packed_data)

print ’Unpacked Value :’, s.unpack(packed_data)

Table 2.1 lists the byte order specifiers used by Struct.

Table 2.1. Byte Order Specifiers for struct

Code Meaning
@ Native order

= Native standard

< Little-endian

> Big-endian

! Network order

$ python struct_endianness.py

Original values: (1, ’ab’, 2.7)

Format string : @ I 2s f for native, native

Uses : 12 bytes

Packed Value : 0100000061620000cdcc2c40

Unpacked Value : (1, ’ab’, 2.700000047683716)

Format string : = I 2s f for native, standard

Uses : 10 bytes

Packed Value : 010000006162cdcc2c40

ptg

2.6. struct—Binary Data Structures 105

Unpacked Value : (1, ’ab’, 2.700000047683716)

Format string : < I 2s f for little-endian

Uses : 10 bytes

Packed Value : 010000006162cdcc2c40

Unpacked Value : (1, ’ab’, 2.700000047683716)

Format string : > I 2s f for big-endian

Uses : 10 bytes

Packed Value : 000000016162402ccccd

Unpacked Value : (1, ’ab’, 2.700000047683716)

Format string : ! I 2s f for network

Uses : 10 bytes

Packed Value : 000000016162402ccccd

Unpacked Value : (1, ’ab’, 2.700000047683716)

2.6.4 Buffers

Working with binary packed data is typically reserved for performance-sensitive sit-

uations or when passing data into and out of extension modules. These cases can be

optimized by avoiding the overhead of allocating a new buffer for each packed struc-

ture. The pack_into() and unpack_from() methods support writing to preallocated

buffers directly.

import struct
import binascii

s = struct.Struct(’I 2s f’)

values = (1, ’ab’, 2.7)

print ’Original:’, values

print
print ’ctypes string buffer’

import ctypes
b = ctypes.create_string_buffer(s.size)

print ’Before :’, binascii.hexlify(b.raw)

s.pack_into(b, 0, *values)

print ’After :’, binascii.hexlify(b.raw)

print ’Unpacked:’, s.unpack_from(b, 0)

ptg

106 Data Structures

print
print ’array’

import array
a = array.array(’c’, ’\0’ * s.size)

print ’Before :’, binascii.hexlify(a)

s.pack_into(a, 0, *values)

print ’After :’, binascii.hexlify(a)

print ’Unpacked:’, s.unpack_from(a, 0)

The size attribute of the Struct tells us how big the buffer needs to be.

$ python struct_buffers.py

Original: (1, ’ab’, 2.7)

ctypes string buffer

Before : 000000000000000000000000

After : 0100000061620000cdcc2c40

Unpacked: (1, ’ab’, 2.700000047683716)

array

Before : 000000000000000000000000

After : 0100000061620000cdcc2c40

Unpacked: (1, ’ab’, 2.700000047683716)

See Also:
struct (http://docs.python.org/library/struct.html) The standard library documenta-

tion for this module.

array (page 84) The array module, for working with sequences of fixed-type

values.

binascii (http://docs.python.org/library/binascii.html) The binascii module,

for producing ASCII representations of binary data.

Endianness (http://en.wikipedia.org/wiki/Endianness) Wikipedia article that pro-

vides an explanation of byte order and endianness in encoding.

2.7 weakref—Impermanent References to Objects

Purpose Refer to an “expensive” object, but allow its memory to be

reclaimed by the garbage collector if there are no other nonweak ref-

erences.

Python Version 2.1 and later

http://docs.python.org/library/struct.html
http://docs.python.org/library/binascii.html
http://en.wikipedia.org/wiki/Endianness

ptg

2.7. weakref—Impermanent References to Objects 107

The weakref module supports weak references to objects. A normal reference incre-

ments the reference count on the object and prevents it from being garbage collected.

This is not always desirable, either when a circular reference might be present or when

building a cache of objects that should be deleted when memory is needed. A weak

reference is a handle to an object that does not keep it from being cleaned up automati-

cally.

2.7.1 References

Weak references to objects are managed through the ref class. To retrieve the original

object, call the reference object.

import weakref

class ExpensiveObject(object):
def __del__(self):

print ’(Deleting %s)’ % self

obj = ExpensiveObject()

r = weakref.ref(obj)

print ’obj:’, obj

print ’ref:’, r

print ’r():’, r()

print ’deleting obj’

del obj

print ’r():’, r()

In this case, since obj is deleted before the second call to the reference, the ref

returns None.

$ python weakref_ref.py

obj: <__main__.ExpensiveObject object at 0x100da5750>

ref: <weakref at 0x100d99b50; to ’ExpensiveObject’ at 0x100da5750>

r(): <__main__.ExpensiveObject object at 0x100da5750>

deleting obj

(Deleting <__main__.ExpensiveObject object at 0x100da5750>)

r(): None

ptg

108 Data Structures

2.7.2 Reference Callbacks

The ref constructor accepts an optional callback function to invoke when the refer-

enced object is deleted.

import weakref

class ExpensiveObject(object):
def __del__(self):

print ’(Deleting %s)’ % self

def callback(reference):

"""Invoked when referenced object is deleted"""

print ’callback(’, reference, ’)’

obj = ExpensiveObject()

r = weakref.ref(obj, callback)

print ’obj:’, obj

print ’ref:’, r

print ’r():’, r()

print ’deleting obj’

del obj

print ’r():’, r()

The callback receives the reference object as an argument after the reference is

“dead” and no longer refers to the original object. One use for this feature is to remove

the weak reference object from a cache.

$ python weakref_ref_callback.py

obj: <__main__.ExpensiveObject object at 0x100da1950>

ref: <weakref at 0x100d99ba8; to ’ExpensiveObject’ at 0x100da1950>

r(): <__main__.ExpensiveObject object at 0x100da1950>

deleting obj

callback(<weakref at 0x100d99ba8; dead>)

(Deleting <__main__.ExpensiveObject object at 0x100da1950>)

r(): None

2.7.3 Proxies

It is sometimes more convenient to use a proxy, rather than a weak reference. Proxies

can be used as though they were the original object and do not need to be called before

ptg

2.7. weakref—Impermanent References to Objects 109

the object is accessible. That means they can be passed to a library that does not know

it is receiving a reference instead of the real object.

import weakref

class ExpensiveObject(object):
def __init__(self, name):

self.name = name

def __del__(self):

print ’(Deleting %s)’ % self

obj = ExpensiveObject(’My Object’)

r = weakref.ref(obj)

p = weakref.proxy(obj)

print ’via obj:’, obj.name

print ’via ref:’, r().name

print ’via proxy:’, p.name

del obj

print ’via proxy:’, p.name

If the proxy is accessed after the referent object is removed, a ReferenceError

exception is raised.

$ python weakref_proxy.py

via obj: My Object

via ref: My Object

via proxy: My Object

(Deleting <__main__.ExpensiveObject object at 0x100da27d0>)

via proxy:

Traceback (most recent call last):

File "weakref_proxy.py", line 26, in <module>

print ’via proxy:’, p.name

ReferenceError: weakly-referenced object no longer exists

2.7.4 Cyclic References

One use for weak references is to allow cyclic references without preventing garbage

collection. This example illustrates the difference between using regular objects and

proxies when a graph includes a cycle.

The Graph class in weakref_graph.py accepts any object given to it as the

“next” node in the sequence. For the sake of brevity, this implementation supports

ptg

110 Data Structures

a single outgoing reference from each node, which is of limited use generally, but

makes it easy to create cycles for these examples. The function demo() is a utility

function to exercise the Graph class by creating a cycle and then removing various

references.

import gc
from pprint import pprint

import weakref

class Graph(object):
def __init__(self, name):

self.name = name

self.other = None

def set_next(self, other):

print ’%s.set_next(%r)’ % (self.name, other)

self.other = other

def all_nodes(self):

"Generate the nodes in the graph sequence."

yield self

n = self.other

while n and n.name != self.name:

yield n

n = n.other

if n is self:

yield n

return
def __str__(self):

return ’->’.join(n.name for n in self.all_nodes())

def __repr__(self):

return ’<%s at 0x%x name=%s>’ % (self.__class__.__name__,

id(self), self.name)

def __del__(self):

print ’(Deleting %s)’ % self.name

self.set_next(None)

def collect_and_show_garbage():

"Show what garbage is present."

print ’Collecting...’

n = gc.collect()

print ’Unreachable objects:’, n

print ’Garbage:’,

pprint(gc.garbage)

ptg

2.7. weakref—Impermanent References to Objects 111

def demo(graph_factory):

print ’Set up graph:’

one = graph_factory(’one’)

two = graph_factory(’two’)

three = graph_factory(’three’)

one.set_next(two)

two.set_next(three)

three.set_next(one)

print
print ’Graph:’

print str(one)

collect_and_show_garbage()

print
three = None

two = None

print ’After 2 references removed:’

print str(one)

collect_and_show_garbage()

print
print ’Removing last reference:’

one = None

collect_and_show_garbage()

This example uses the gc module to help debug the leak. The DEBUG_LEAK flag

causes gc to print information about objects that cannot be seen, other than through the

reference the garbage collector has to them.

import gc
from pprint import pprint

import weakref

from weakref_graph import Graph, demo, collect_and_show_garbage

gc.set_debug(gc.DEBUG_LEAK)

print ’Setting up the cycle’

print
demo(Graph)

ptg

112 Data Structures

print
print ’Breaking the cycle and cleaning up garbage’

print
gc.garbage[0].set_next(None)

while gc.garbage:

del gc.garbage[0]

print
collect_and_show_garbage()

Even after deleting the local references to the Graph instances in demo(), the

graphs all show up in the garbage list and cannot be collected. Several dictionaries are

also found in the garbage list. They are the __dict__ values from the Graph instances

and contain the attributes for those objects. The graphs can be forcibly deleted, since the

program knows what they are. Enabling unbuffered I/O by passing the -u option to the

interpreter ensures that the output from the print statements in this example program

(written to standard output) and the debug output from gc (written to standard error)

are interleaved correctly.

$ python -u weakref_cycle.py

Setting up the cycle

Set up graph:

one.set_next(<Graph at 0x100db7590 name=two>)

two.set_next(<Graph at 0x100db75d0 name=three>)

three.set_next(<Graph at 0x100db7550 name=one>)

Graph:

one->two->three->one

Collecting...

Unreachable objects: 0

Garbage:[]

After 2 references removed:

one->two->three->one

Collecting...

Unreachable objects: 0

Garbage:[]

Removing last reference:

Collecting...

gc: uncollectable <Graph 0x100db7550>

gc: uncollectable <Graph 0x100db7590>

ptg

2.7. weakref—Impermanent References to Objects 113

gc: uncollectable <Graph 0x100db75d0>

gc: uncollectable <dict 0x100c63c30>

gc: uncollectable <dict 0x100c5e150>

gc: uncollectable <dict 0x100c63810>

Unreachable objects: 6

Garbage:[<Graph at 0x100db7550 name=one>,

<Graph at 0x100db7590 name=two>,

<Graph at 0x100db75d0 name=three>,

{’name’: ’one’, ’other’: <Graph at 0x100db7590 name=two>},

{’name’: ’two’, ’other’: <Graph at 0x100db75d0 name=three>},

{’name’: ’three’, ’other’: <Graph at 0x100db7550 name=one>}]

Breaking the cycle and cleaning up garbage

one.set_next(None)

(Deleting two)

two.set_next(None)

(Deleting three)

three.set_next(None)

(Deleting one)

one.set_next(None)

Collecting...

Unreachable objects: 0

Garbage:[]

The next step is to create a more intelligent WeakGraph class that knows how to

avoid creating cycles with regular references by using weak references when a cycle is

detected.

import gc
from pprint import pprint

import weakref

from weakref_graph import Graph, demo

class WeakGraph(Graph):
def set_next(self, other):

if other is not None:

See if we should replace the reference

to other with a weakref.

if self in other.all_nodes():

other = weakref.proxy(other)

ptg

114 Data Structures

super(WeakGraph, self).set_next(other)

return

demo(WeakGraph)

Since the WeakGraph instances use proxies to refer to objects that have already

been seen, as demo() removes all local references to the objects, the cycle is broken

and the garbage collector can delete the objects.

$ python weakref_weakgraph.py

Set up graph:

one.set_next(<WeakGraph at 0x100db4790 name=two>)

two.set_next(<WeakGraph at 0x100db47d0 name=three>)

three.set_next(<weakproxy at 0x100dac6d8 to WeakGraph at 0x100db4750>

)

Graph:

one->two->three

Collecting...

Unreachable objects: 0

Garbage:[]

After 2 references removed:

one->two->three

Collecting...

Unreachable objects: 0

Garbage:[]

Removing last reference:

(Deleting one)

one.set_next(None)

(Deleting two)

two.set_next(None)

(Deleting three)

three.set_next(None)

Collecting...

Unreachable objects: 0

Garbage:[]

2.7.5 Caching Objects

The ref and proxy classes are considered “low level.” While they are useful for

maintaining weak references to individual objects and allowing cycles to be garbage

ptg

2.7. weakref—Impermanent References to Objects 115

collected, the WeakKeyDictionary and WeakValueDictionary provide a more

appropriate API for creating a cache of several objects.

The WeakValueDictionary uses weak references to the values it holds, allow-

ing them to be garbage collected when other code is not actually using them. Using

explicit calls to the garbage collector illustrates the difference between memory han-

dling with a regular dictionary and WeakValueDictionary.

import gc
from pprint import pprint

import weakref

gc.set_debug(gc.DEBUG_LEAK)

class ExpensiveObject(object):
def __init__(self, name):

self.name = name

def __repr__(self):

return ’ExpensiveObject(%s)’ % self.name

def __del__(self):

print ’ (Deleting %s)’ % self

def demo(cache_factory):

hold objects so any weak references

are not removed immediately

all_refs = {}

create the cache using the factory

print ’CACHE TYPE:’, cache_factory

cache = cache_factory()

for name in [’one’, ’two’, ’three’]:

o = ExpensiveObject(name)

cache[name] = o

all_refs[name] = o

del o # decref

print ’ all_refs =’,

pprint(all_refs)

print ’\n Before, cache contains:’, cache.keys()

for name, value in cache.items():

print ’ %s = %s’ % (name, value)

del value # decref

Remove all references to the objects except the cache

print ’\n Cleanup:’

ptg

116 Data Structures

del all_refs

gc.collect()

print ’\n After, cache contains:’, cache.keys()

for name, value in cache.items():

print ’ %s = %s’ % (name, value)

print ’ demo returning’

return

demo(dict)

print

demo(weakref.WeakValueDictionary)

Any loop variables that refer to the values being cached must be cleared explicitly

so the reference count of the object is decremented. Otherwise, the garbage collec-

tor would not remove the objects, and they would remain in the cache. Similarly, the

all_refs variable is used to hold references to prevent them from being garbage collected

prematurely.

$ python weakref_valuedict.py

CACHE TYPE: <type ’dict’>

all_refs ={’one’: ExpensiveObject(one),

’three’: ExpensiveObject(three),

’two’: ExpensiveObject(two)}

Before, cache contains: [’three’, ’two’, ’one’]

three = ExpensiveObject(three)

two = ExpensiveObject(two)

one = ExpensiveObject(one)

Cleanup:

After, cache contains: [’three’, ’two’, ’one’]

three = ExpensiveObject(three)

two = ExpensiveObject(two)

one = ExpensiveObject(one)

demo returning

(Deleting ExpensiveObject(three))

(Deleting ExpensiveObject(two))

(Deleting ExpensiveObject(one))

ptg

2.8. copy—Duplicate Objects 117

CACHE TYPE: weakref.WeakValueDictionary

all_refs ={’one’: ExpensiveObject(one),

’three’: ExpensiveObject(three),

’two’: ExpensiveObject(two)}

Before, cache contains: [’three’, ’two’, ’one’]

three = ExpensiveObject(three)

two = ExpensiveObject(two)

one = ExpensiveObject(one)

Cleanup:

(Deleting ExpensiveObject(three))

(Deleting ExpensiveObject(two))

(Deleting ExpensiveObject(one))

After, cache contains: []

demo returning

The WeakKeyDictionary works similarly, but it uses weak references for the

keys instead of the values in the dictionary.

Warning: The library documentation for weakref contains this warning:

Caution: Because a WeakValueDictionary is built on top of a Python dictionary,

it must not change size when iterating over it. This can be difficult to ensure for

a WeakValueDictionary because actions performed by the program during iter-

ation may cause items in the dictionary to vanish “by magic” (as a side effect of

garbage collection).

See Also:
weakref (http://docs.python.org/lib/module-weakref.html) Standard library docu-

mentation for this module.

gc (page 1138) The gc module is the interface to the interpreter’s garbage collector.

2.8 copy—Duplicate Objects

Purpose Provides functions for duplicating objects using shallow or deep

copy semantics.

Python Version 1.4 and later

http://docs.python.org/lib/module-weakref.html

ptg

118 Data Structures

The copy module includes two functions, copy() and deepcopy(), for duplicating

existing objects.

2.8.1 Shallow Copies

The shallow copy created by copy() is a new container populated with references to

the contents of the original object. When making a shallow copy of a list object, a

new list is constructed and the elements of the original object are appended to it.

import copy

class MyClass:
def __init__(self, name):

self.name = name

def __cmp__(self, other):

return cmp(self.name, other.name)

a = MyClass(’a’)

my_list = [a]

dup = copy.copy(my_list)

print ’ my_list:’, my_list

print ’ dup:’, dup

print ’ dup is my_list:’, (dup is my_list)

print ’ dup == my_list:’, (dup == my_list)

print ’dup[0] is my_list[0]:’, (dup[0] is my_list[0])

print ’dup[0] == my_list[0]:’, (dup[0] == my_list[0])

For a shallow copy, the MyClass instance is not duplicated, so the reference in the

dup list is to the same object that is in my_list.

$ python copy_shallow.py

my_list: [<__main__.MyClass instance at 0x100dadc68>]

dup: [<__main__.MyClass instance at 0x100dadc68>]

dup is my_list: False

dup == my_list: True

dup[0] is my_list[0]: True

dup[0] == my_list[0]: True

2.8.2 Deep Copies

The deep copy created by deepcopy() is a new container populated with copies of

the contents of the original object. To make a deep copy of a list, a new list

ptg

2.8. copy—Duplicate Objects 119

is constructed, the elements of the original list are copied, and then those copies are

appended to the new list.

Replacing the call to copy()with deepcopy()makes the difference in the output

apparent.

dup = copy.deepcopy(my_list)

The first element of the list is no longer the same object reference, but when the

two objects are compared, they still evaluate as being equal.

$ python copy_deep.py

my_list: [<__main__.MyClass instance at 0x100dadc68>]

dup: [<__main__.MyClass instance at 0x100dadc20>]

dup is my_list: False

dup == my_list: True

dup[0] is my_list[0]: False

dup[0] == my_list[0]: True

2.8.3 Customizing Copy Behavior

It is possible to control how copies are made using the __copy__() and

__deepcopy__() special methods.

• __copy__() is called without any arguments and should return a shallow copy

of the object.

• __deepcopy__() is called with a memo dictionary and should return a deep

copy of the object. Any member attributes that need to be deep-copied should

be passed to copy.deepcopy(), along with the memo dictionary, to control for

recursion. (The memo dictionary is explained in more detail later.)

This example illustrates how the methods are called.

import copy

class MyClass:
def __init__(self, name):

self.name = name

def __cmp__(self, other):

return cmp(self.name, other.name)

ptg

120 Data Structures

def __copy__(self):

print ’__copy__()’

return MyClass(self.name)

def __deepcopy__(self, memo):

print ’__deepcopy__(%s)’ % str(memo)

return MyClass(copy.deepcopy(self.name, memo))

a = MyClass(’a’)

sc = copy.copy(a)

dc = copy.deepcopy(a)

The memo dictionary is used to keep track of the values that have been copied

already, to avoid infinite recursion.

$ python copy_hooks.py

__copy__()

__deepcopy__({})

2.8.4 Recursion in Deep Copy

To avoid problems with duplicating recursive data structures, deepcopy() uses a dic-

tionary to track objects that have already been copied. This dictionary is passed to the

__deepcopy__() method so it can be examined there as well.

This example shows how an interconnected data structure, such as a directed

graph, can assist with protecting against recursion by implementing a __deepcopy

__() method.

import copy
import pprint

class Graph:

def __init__(self, name, connections):

self.name = name

self.connections = connections

def add_connection(self, other):

self.connections.append(other)

def __repr__(self):

return ’Graph(name=%s, id=%s)’ % (self.name, id(self))

ptg

2.8. copy—Duplicate Objects 121

def __deepcopy__(self, memo):

print ’\nCalling __deepcopy__ for %r’ % self

if self in memo:

existing = memo.get(self)

print ’ Already copied to %r’ % existing

return existing

print ’ Memo dictionary:’

pprint.pprint(memo, indent=4, width=40)

dup = Graph(copy.deepcopy(self.name, memo), [])

print ’ Copying to new object %s’ % dup

memo[self] = dup

for c in self.connections:

dup.add_connection(copy.deepcopy(c, memo))

return dup

root = Graph(’root’, [])

a = Graph(’a’, [root])

b = Graph(’b’, [a, root])

root.add_connection(a)

root.add_connection(b)

dup = copy.deepcopy(root)

The Graph class includes a few basic directed-graph methods. An instance can

be initialized with a name and a list of existing nodes to which it is connected. The

add_connection() method is used to set up bidirectional connections. It is also used

by the deepcopy operator.

The __deepcopy__() method prints messages to show how it is called and man-

ages the memo dictionary contents, as needed. Instead of copying the connection list

wholesale, it creates a new list and appends copies of the individual connections to it.

That ensures that the memo dictionary is updated as each new node is duplicated and

avoids recursion issues or extra copies of nodes. As before, it returns the copied object

when it is done.

There are several cycles in the graph shown in Figure 2.1, but handling the re-

cursion with the memo dictionary prevents the traversal from causing a stack overflow

error. When the root node is copied, the output is as follows.

$ python copy_recursion.py

Calling __deepcopy__ for Graph(name=root, id=4309347072)

Memo dictionary:

{ }

ptg

122 Data Structures

root

a

b

Figure 2.1. Deepcopy for an object graph with cycles

Copying to new object Graph(name=root, id=4309347360)

Calling __deepcopy__ for Graph(name=a, id=4309347144)

Memo dictionary:

{ Graph(name=root, id=4309347072): Graph(name=root, id=4309347360),

4307936896: [’root’],

4309253504: ’root’}

Copying to new object Graph(name=a, id=4309347504)

Calling __deepcopy__ for Graph(name=root, id=4309347072)

Already copied to Graph(name=root, id=4309347360)

Calling __deepcopy__ for Graph(name=b, id=4309347216)

Memo dictionary:

{ Graph(name=root, id=4309347072): Graph(name=root, id=4309347360),

Graph(name=a, id=4309347144): Graph(name=a, id=4309347504),

4307936896: [’root’,

’a’,

Graph(name=root, id=4309347072),

Graph(name=a, id=4309347144)],

4308678136: ’a’,

4309253504: ’root’,

4309347072: Graph(name=root, id=4309347360),

4309347144: Graph(name=a, id=4309347504)}

Copying to new object Graph(name=b, id=4309347864)

The second time the root node is encountered, while the a node is being copied,

__deepcopy__() detects the recursion and reuses the existing value from the memo

dictionary instead of creating a new object.

ptg

2.9. pprint—Pretty-Print Data Structures 123

See Also:
copy (http://docs.python.org/library/copy.html) The standard library documenta-

tion for this module.

2.9 pprint—Pretty-Print Data Structures

Purpose Pretty-print data structures.

Python Version 1.4 and later

pprint contains a “pretty printer” for producing aesthetically pleasing views of data

structures. The formatter produces representations of data structures that can be parsed

correctly by the interpreter and are also easy for a human to read. The output is kept on

a single line, if possible, and indented when split across multiple lines.

The examples in this section all depend on pprint_data.py, which contains the

following.

data = [(1, { ’a’:’A’, ’b’:’B’, ’c’:’C’, ’d’:’D’ }),

(2, { ’e’:’E’, ’f’:’F’, ’g’:’G’, ’h’:’H’,

’i’:’I’, ’j’:’J’, ’k’:’K’, ’l’:’L’,

}),

]

2.9.1 Printing

The simplest way to use the module is through the pprint() function.

from pprint import pprint

from pprint_data import data

print ’PRINT:’

print data

print
print ’PPRINT:’

pprint(data)

pprint() formats an object and writes it to the data stream passed as argument

(or sys.stdout by default).

$ python pprint_pprint.py

http://docs.python.org/library/copy.html

ptg

124 Data Structures

PRINT:

[(1, {’a’: ’A’, ’c’: ’C’, ’b’: ’B’, ’d’: ’D’}), (2, {’e’: ’E’, ’g’:

’G’, ’f’: ’F’, ’i’: ’I’, ’h’: ’H’, ’k’: ’K’, ’j’: ’J’, ’l’: ’L’})]

PPRINT:

[(1, {’a’: ’A’, ’b’: ’B’, ’c’: ’C’, ’d’: ’D’}),

(2,

{’e’: ’E’,

’f’: ’F’,

’g’: ’G’,

’h’: ’H’,

’i’: ’I’,

’j’: ’J’,

’k’: ’K’,

’l’: ’L’})]

2.9.2 Formatting

To format a data structure without writing it directly to a stream (i.e., for logging), use

pformat() to build a string representation.

import logging
from pprint import pformat

from pprint_data import data

logging.basicConfig(level=logging.DEBUG,

format=’%(levelname)-8s %(message)s’,
)

logging.debug(’Logging pformatted data’)

formatted = pformat(data)

for line in formatted.splitlines():

logging.debug(line.rstrip())

The formatted string can then be printed or logged independently.

$ python pprint_pformat.py

DEBUG Logging pformatted data

DEBUG [(1, {’a’: ’A’, ’b’: ’B’, ’c’: ’C’, ’d’: ’D’}),

DEBUG (2,

DEBUG {’e’: ’E’,

DEBUG ’f’: ’F’,

ptg

2.9. pprint—Pretty-Print Data Structures 125

DEBUG ’g’: ’G’,

DEBUG ’h’: ’H’,

DEBUG ’i’: ’I’,

DEBUG ’j’: ’J’,

DEBUG ’k’: ’K’,

DEBUG ’l’: ’L’})]

2.9.3 Arbitrary Classes

The PrettyPrinter class used by pprint() can also work with custom classes, if

they define a __repr__() method.

from pprint import pprint

class node(object):
def __init__(self, name, contents=[]):

self.name = name

self.contents = contents[:]

def __repr__(self):

return (’node(’ + repr(self.name) + ’, ’ +

repr(self.contents) + ’)’

)

trees = [node(’node-1’),

node(’node-2’, [node(’node-2-1’)]),

node(’node-3’, [node(’node-3-1’)]),

]

pprint(trees)

The representations of the nested objects are combined by the PrettyPrinter

to return the full string representation.

$ python pprint_arbitrary_object.py

[node(’node-1’, []),

node(’node-2’, [node(’node-2-1’, [])]),

node(’node-3’, [node(’node-3-1’, [])])]

2.9.4 Recursion

Recursive data structures are represented with a reference to the original source of the

data, with the form <Recursion on typename with id=number>.

ptg

126 Data Structures

from pprint import pprint

local_data = [’a’, ’b’, 1, 2]

local_data.append(local_data)

print ’id(local_data) =>’, id(local_data)

pprint(local_data)

In this example, the list local_data is added to itself, creating a recursive

reference.

$ python pprint_recursion.py

id(local_data) => 4309215280

[’a’, ’b’, 1, 2, <Recursion on list with id=4309215280>]

2.9.5 Limiting Nested Output

For very deep data structures, it may not be desirable for the output to include all details.

The data may not format properly, the formatted text might be too large to manage, or

some of the data may be extraneous.

from pprint import pprint

from pprint_data import data

pprint(data, depth=1)

Use the depth argument to control how far down into the nested data structure the

pretty printer recurses. Levels not included in the output are represented by an ellipsis.

$ python pprint_depth.py

[(...), (...)]

2.9.6 Controlling Output Width

The default output width for the formatted text is 80 columns. To adjust that width, use

the width argument to pprint().

from pprint import pprint

ptg

2.9. pprint—Pretty-Print Data Structures 127

from pprint_data import data

for width in [80, 5]:

print ’WIDTH =’, width

pprint(data, width=width)

print

When the width is too low to accommodate the formatted data structure, the lines

are not truncated or wrapped if that would introduce invalid syntax.

$ python pprint_width.py

WIDTH = 80

[(1, {’a’: ’A’, ’b’: ’B’, ’c’: ’C’, ’d’: ’D’}),

(2,

{’e’: ’E’,

’f’: ’F’,

’g’: ’G’,

’h’: ’H’,

’i’: ’I’,

’j’: ’J’,

’k’: ’K’,

’l’: ’L’})]

WIDTH = 5

[(1,

{’a’: ’A’,

’b’: ’B’,

’c’: ’C’,

’d’: ’D’}),

(2,

{’e’: ’E’,

’f’: ’F’,

’g’: ’G’,

’h’: ’H’,

’i’: ’I’,

’j’: ’J’,

’k’: ’K’,

’l’: ’L’})]

See Also:
pprint (http://docs.python.org/lib/module-pprint.html) Standard library documen-

tation for this module.

http://docs.python.org/lib/module-pprint.html

ptg

This page intentionally left blank

ptg

Chapter 3

ALGORITHMS

Python includes several modules for implementing algorithms elegantly and concisely

using whatever style is most appropriate for the task. It supports purely procedural,

object-oriented, and functional styles. All three styles are frequently mixed within dif-

ferent parts of the same program.

functools includes functions for creating function decorators, enabling aspect-

oriented programming and code reuse beyond what a traditional object-oriented

approach supports. It also provides a class decorator for implementing all rich com-

parison APIs using a shortcut and partial objects for creating references to functions

with their arguments included.

The itertoolsmodule includes functions for creating and working with iterators

and generators used in functional programming. The operator module eliminates the

need for many trivial lambda functions when using a functional programming style by

providing function-based interfaces to built-in operations, such as arithmetic or item

lookup.

contextlib makes resource management easier, more reliable, and more con-

cise for all programming styles. Combining context managers and the with statement

reduces the number of try:finally blocks and indentation levels needed, while ensuring

that files, sockets, database transactions, and other resources are closed and released at

the right time.

3.1 functools—Tools for Manipulating Functions

Purpose Functions that operate on other functions.

Python Version 2.5 and later

The functools module provides tools for adapting or extending functions and other

callable objects, without completely rewriting them.
129

ptg

130 Algorithms

3.1.1 Decorators

The primary tool supplied by the functools module is the class partial, which

can be used to “wrap” a callable object with default arguments. The resulting object is

itself callable and can be treated as though it is the original function. It takes all the

same arguments as the original, and it can be invoked with extra positional or named

arguments as well. A partial can be used instead of a lambda to provide default

arguments to a function, while leaving some arguments unspecified.

Partial Objects

This example shows two simple partial objects for the function myfunc(). The

output of show_details() includes the func, args, and keywords attributes of the

partial object.

import functools

def myfunc(a, b=2):

"""Docstring for myfunc()."""

print ’ called myfunc with:’, (a, b)

return

def show_details(name, f, is_partial=False):

"""Show details of a callable object."""

print ’%s:’ % name

print ’ object:’, f

if not is_partial:

print ’ __name__:’, f.__name__

if is_partial:

print ’ func:’, f.func

print ’ args:’, f.args

print ’ keywords:’, f.keywords

return

show_details(’myfunc’, myfunc)

myfunc(’a’, 3)

print

Set a different default value for ’b’, but require

the caller to provide ’a’.

p1 = functools.partial(myfunc, b=4)

show_details(’partial with named default’, p1, True)

ptg

3.1. functools—Tools for Manipulating Functions 131

p1(’passing a’)

p1(’override b’, b=5)

print

Set default values for both ’a’ and ’b’.

p2 = functools.partial(myfunc, ’default a’, b=99)

show_details(’partial with defaults’, p2, True)

p2()

p2(b=’override b’)

print

print ’Insufficient arguments:’

p1()

At the end of the example, the first partial created is invoked without passing a

value for a, causing an exception.

$ python functools_partial.py

myfunc:

object: <function myfunc at 0x100d9bf50>

__name__: myfunc

called myfunc with: (’a’, 3)

partial with named default:

object: <functools.partial object at 0x100d993c0>

func: <function myfunc at 0x100d9bf50>

args: ()

keywords: {’b’: 4}

called myfunc with: (’passing a’, 4)

called myfunc with: (’override b’, 5)

partial with defaults:

object: <functools.partial object at 0x100d99418>

func: <function myfunc at 0x100d9bf50>

args: (’default a’,)

keywords: {’b’: 99}

called myfunc with: (’default a’, 99)

called myfunc with: (’default a’, ’override b’)

Insufficient arguments:

Traceback (most recent call last):

ptg

132 Algorithms

File "functools_partial.py", line 51, in <module>

p1()

TypeError: myfunc() takes at least 1 argument (1 given)

Acquiring Function Properties

The partial object does not have __name__ or __doc__ attributes by default,

and without those attributes, decorated functions are more difficult to debug. Using

update_wrapper() copies or adds attributes from the original function to the

partial object.

import functools

def myfunc(a, b=2):

"""Docstring for myfunc()."""

print ’ called myfunc with:’, (a, b)

return

def show_details(name, f):

"""Show details of a callable object."""

print ’%s:’ % name

print ’ object:’, f

print ’ __name__:’,

try:
print f.__name__

except AttributeError:
print ’(no __name__)’

print ’ __doc__’, repr(f.__doc__)

print
return

show_details(’myfunc’, myfunc)

p1 = functools.partial(myfunc, b=4)

show_details(’raw wrapper’, p1)

print ’Updating wrapper:’

print ’ assign:’, functools.WRAPPER_ASSIGNMENTS

print ’ update:’, functools.WRAPPER_UPDATES

print

functools.update_wrapper(p1, myfunc)

show_details(’updated wrapper’, p1)

ptg

3.1. functools—Tools for Manipulating Functions 133

The attributes added to the wrapper are defined in WRAPPER_ASSIGNMENTS, while

WRAPPER_UPDATES lists values to be modified.

$ python functools_update_wrapper.py

myfunc:

object: <function myfunc at 0x100da2050>

__name__: myfunc

__doc__ ’Docstring for myfunc().’

raw wrapper:

object: <functools.partial object at 0x100d993c0>

__name__: (no __name__)

__doc__ ’partial(func, *args, **keywords) - new function with parti

al application\n of the given arguments and keywords.\n’

Updating wrapper:

assign: (’__module__’, ’__name__’, ’__doc__’)

update: (’__dict__’,)

updated wrapper:

object: <functools.partial object at 0x100d993c0>

__name__: myfunc

__doc__ ’Docstring for myfunc().’

Other Callables

Partials work with any callable object, not just with stand-alone functions.

import functools

class MyClass(object):
"""Demonstration class for functools"""

def method1(self, a, b=2):

"""Docstring for method1()."""

print ’ called method1 with:’, (self, a, b)

return

def method2(self, c, d=5):

"""Docstring for method2"""

print ’ called method2 with:’, (self, c, d)

return

ptg

134 Algorithms

wrapped_method2 = functools.partial(method2, ’wrapped c’)

functools.update_wrapper(wrapped_method2, method2)

def __call__(self, e, f=6):

"""Docstring for MyClass.__call__"""

print ’ called object with:’, (self, e, f)

return

def show_details(name, f):

"""Show details of a callable object."""

print ’%s:’ % name

print ’ object:’, f

print ’ __name__:’,

try:
print f.__name__

except AttributeError:
print ’(no __name__)’

print ’ __doc__’, repr(f.__doc__)

return

o = MyClass()

show_details(’method1 straight’, o.method1)

o.method1(’no default for a’, b=3)

print

p1 = functools.partial(o.method1, b=4)

functools.update_wrapper(p1, o.method1)

show_details(’method1 wrapper’, p1)

p1(’a goes here’)

print

show_details(’method2’, o.method2)

o.method2(’no default for c’, d=6)

print

show_details(’wrapped method2’, o.wrapped_method2)

o.wrapped_method2(’no default for c’, d=6)

print

show_details(’instance’, o)

o(’no default for e’)

print

ptg

3.1. functools—Tools for Manipulating Functions 135

p2 = functools.partial(o, f=7)

show_details(’instance wrapper’, p2)

p2(’e goes here’)

This example creates partials from an instance and methods of an instance.

$ python functools_method.py

method1 straight:

object: <bound method MyClass.method1 of <__main__.MyClass object

at 0x100da3550>>

__name__: method1

__doc__ ’Docstring for method1().’

called method1 with: (<__main__.MyClass object at 0x100da3550>, ’n

o default for a’, 3)

method1 wrapper:

object: <functools.partial object at 0x100d99470>

__name__: method1

__doc__ ’Docstring for method1().’

called method1 with: (<__main__.MyClass object at 0x100da3550>, ’a

goes here’, 4)

method2:

object: <bound method MyClass.method2 of <__main__.MyClass object

at 0x100da3550>>

__name__: method2

__doc__ ’Docstring for method2’

called method2 with: (<__main__.MyClass object at 0x100da3550>, ’n

o default for c’, 6)

wrapped method2:

object: <functools.partial object at 0x100d993c0>

__name__: method2

__doc__ ’Docstring for method2’

called method2 with: (’wrapped c’, ’no default for c’, 6)

instance:

object: <__main__.MyClass object at 0x100da3550>

__name__: (no __name__)

__doc__ ’Demonstration class for functools’

called object with: (<__main__.MyClass object at 0x100da3550>, ’no

ptg

136 Algorithms

default for e’, 6)

instance wrapper:

object: <functools.partial object at 0x100d994c8>

__name__: (no __name__)

__doc__ ’partial(func, *args, **keywords) - new function with part

ial application\n of the given arguments and keywords.\n’

called object with: (<__main__.MyClass object at 0x100da3550>, ’e

goes here’, 7)

Acquiring Function Properties for Decorators

Updating the properties of a wrapped callable is especially useful when used in a dec-

orator, since the transformed function ends up with properties of the original “bare”

function.

import functools

def show_details(name, f):

"""Show details of a callable object."""

print ’%s:’ % name

print ’ object:’, f

print ’ __name__:’,

try:
print f.__name__

except AttributeError:
print ’(no __name__)’

print ’ __doc__’, repr(f.__doc__)

print
return

def simple_decorator(f):

@functools.wraps(f)

def decorated(a=’decorated defaults’, b=1):

print ’ decorated:’, (a, b)

print ’ ’,

f(a, b=b)

return
return decorated

def myfunc(a, b=2):

"myfunc() is not complicated"

print ’ myfunc:’, (a,b)

return

ptg

3.1. functools—Tools for Manipulating Functions 137

The raw function

show_details(’myfunc’, myfunc)

myfunc(’unwrapped, default b’)

myfunc(’unwrapped, passing b’, 3)

print

Wrap explicitly

wrapped_myfunc = simple_decorator(myfunc)

show_details(’wrapped_myfunc’, wrapped_myfunc)

wrapped_myfunc()

wrapped_myfunc(’args to wrapped’, 4)

print

Wrap with decorator syntax

@simple_decorator

def decorated_myfunc(a, b):

myfunc(a, b)

return

show_details(’decorated_myfunc’, decorated_myfunc)

decorated_myfunc()

decorated_myfunc(’args to decorated’, 4)

functools provides a decorator, wraps(), that applies update_wrapper() to

the decorated function.

$ python functools_wraps.py

myfunc:

object: <function myfunc at 0x100da3488>

__name__: myfunc

__doc__ ’myfunc() is not complicated’

myfunc: (’unwrapped, default b’, 2)

myfunc: (’unwrapped, passing b’, 3)

wrapped_myfunc:

object: <function myfunc at 0x100da3500>

__name__: myfunc

__doc__ ’myfunc() is not complicated’

decorated: (’decorated defaults’, 1)

myfunc: (’decorated defaults’, 1)

ptg

138 Algorithms

decorated: (’args to wrapped’, 4)

myfunc: (’args to wrapped’, 4)

decorated_myfunc:

object: <function decorated_myfunc at 0x100da35f0>

__name__: decorated_myfunc

__doc__ None

decorated: (’decorated defaults’, 1)

myfunc: (’decorated defaults’, 1)

decorated: (’args to decorated’, 4)

myfunc: (’args to decorated’, 4)

3.1.2 Comparison

Under Python 2, classes can define a __cmp__() method that returns -1, 0, or 1 based

on whether the object is less than, equal to, or greater than the item being compared.

Python 2.1 introduces the rich comparison methods API (__lt__(), __le__(),

__eq__(), __ne__(), __gt__(), and __ge__()), which perform a single compari-

son operation and return a Boolean value. Python 3 deprecated __cmp__() in favor of

these new methods, so functools provides tools to make it easier to write Python 2

classes that comply with the new comparison requirements in Python 3.

Rich Comparison

The rich comparison API is designed to allow classes with complex comparisons to

implement each test in the most efficient way possible. However, for classes where

comparison is relatively simple, there is no point in manually creating each of the rich

comparison methods. The total_ordering() class decorator takes a class that pro-

vides some of the methods and adds the rest of them.

import functools
import inspect
from pprint import pprint

@functools.total_ordering

class MyObject(object):
def __init__(self, val):

self.val = val

def __eq__(self, other):

print ’ testing __eq__(%s, %s)’ % (self.val, other.val)

return self.val == other.val

ptg

3.1. functools—Tools for Manipulating Functions 139

def __gt__(self, other):

print ’ testing __gt__(%s, %s)’ % (self.val, other.val)

return self.val > other.val

print ’Methods:\n’
pprint(inspect.getmembers(MyObject, inspect.ismethod))

a = MyObject(1)

b = MyObject(2)

print ’\nComparisons:’
for expr in [’a < b’, ’a <= b’, ’a == b’, ’a >= b’, ’a > b’]:

print ’\n%-6s:’ % expr

result = eval(expr)

print ’ result of %s: %s’ % (expr, result)

The class must provide implementation of __eq__() and one other rich compar-

ison method. The decorator adds implementations of the rest of the methods that work

by using the comparisons provided.

$ python functools_total_ordering.py

Methods:

[(’__eq__’, <unbound method MyObject.__eq__>),

(’__ge__’, <unbound method MyObject.__ge__>),

(’__gt__’, <unbound method MyObject.__gt__>),

(’__init__’, <unbound method MyObject.__init__>),

(’__le__’, <unbound method MyObject.__le__>),

(’__lt__’, <unbound method MyObject.__lt__>)]

Comparisons:

a < b :

testing __gt__(2, 1)

result of a < b: True

a <= b:

testing __gt__(1, 2)

result of a <= b: True

a == b:

testing __eq__(1, 2)

result of a == b: False

ptg

140 Algorithms

a >= b:

testing __gt__(2, 1)

result of a >= b: False

a > b :

testing __gt__(1, 2)

result of a > b: False

Collation Order

Since old-style comparison functions are deprecated in Python 3, the cmp argument to

functions like sort() is also no longer supported. Python 2 programs that use com-

parison functions can use cmp_to_key() to convert them to a function that returns a

collation key, which is used to determine the position in the final sequence.

import functools

class MyObject(object):
def __init__(self, val):

self.val = val

def __str__(self):

return ’MyObject(%s)’ % self.val

def compare_obj(a, b):

"""Old-style comparison function.

"""

print ’comparing %s and %s’ % (a, b)

return cmp(a.val, b.val)

Make a key function using cmp_to_key()

get_key = functools.cmp_to_key(compare_obj)

def get_key_wrapper(o):

"""Wrapper function for get_key to allow for print statements.

"""

new_key = get_key(o)

print ’key_wrapper(%s) -> %s’ % (o, new_key)

return new_key

objs = [MyObject(x) for x in xrange(5, 0, -1)]

for o in sorted(objs, key=get_key_wrapper):

print o

ptg

3.2. itertools—Iterator Functions 141

Normally, cmp_to_key() would be used directly, but in this example, an extra

wrapper function is introduced to print out more information as the key function is

being called.

The output shows that sorted() starts by calling get_key_wrapper() for each

item in the sequence to produce a key. The keys returned by cmp_to_key() are

instances of a class defined in functools that implements the rich comparison API

using the old-style comparison function passed in. After all keys are created, the se-

quence is sorted by comparing the keys.

$ python functools_cmp_to_key.py

key_wrapper(MyObject(5)) -> <functools.K object at 0x100da2a50>

key_wrapper(MyObject(4)) -> <functools.K object at 0x100da2a90>

key_wrapper(MyObject(3)) -> <functools.K object at 0x100da2ad0>

key_wrapper(MyObject(2)) -> <functools.K object at 0x100da2b10>

key_wrapper(MyObject(1)) -> <functools.K object at 0x100da2b50>

comparing MyObject(4) and MyObject(5)

comparing MyObject(3) and MyObject(4)

comparing MyObject(2) and MyObject(3)

comparing MyObject(1) and MyObject(2)

MyObject(1)

MyObject(2)

MyObject(3)

MyObject(4)

MyObject(5)

See Also:
functools (http://docs.python.org/library/functools.html) The standard library doc-

umentation for this module.

Rich comparison methods (http://docs.python.org/reference/datamodel.html#
object.__lt__) Description of the rich comparison methods from the Python

Reference Guide.

inspect (page 1200) Introspection API for live objects.

3.2 itertools—Iterator Functions

Purpose The itertools module includes a set of functions for working with

sequence data sets.

Python Version 2.3 and later

http://docs.python.org/library/functools.html
http://docs.python.org/reference/datamodel.html#object.__lt__
http://docs.python.org/reference/datamodel.html#object.__lt__

ptg

142 Algorithms

The functions provided by itertools are inspired by similar features of functional

programming languages such as Clojure and Haskell. They are intended to be fast and

use memory efficiently, and also to be hooked together to express more complicated

iteration-based algorithms.

Iterator-based code offers better memory consumption characteristics than code

that uses lists. Since data is not produced from the iterator until it is needed, all data

does not need to be stored in memory at the same time. This “lazy” processing model

uses less memory, which can reduce swapping and other side effects of large data sets,

improving performance.

3.2.1 Merging and Splitting Iterators

The chain() function takes several iterators as arguments and returns a single iterator

that produces the contents of all of them as though they came from a single iterator.

from itertools import *

for i in chain([1, 2, 3], [’a’, ’b’, ’c’]):

print i,

print

chain() makes it easy to process several sequences without constructing one

large list.

$ python itertools_chain.py

1 2 3 a b c

izip() returns an iterator that combines the elements of several iterators into

tuples.

from itertools import *

for i in izip([1, 2, 3], [’a’, ’b’, ’c’]):

print i

It works like the built-in function zip(), except that it returns an iterator instead

of a list.

ptg

3.2. itertools—Iterator Functions 143

$ python itertools_izip.py

(1, ’a’)

(2, ’b’)

(3, ’c’)

The islice() function returns an iterator that returns selected items from the

input iterator, by index.

from itertools import *

print ’Stop at 5:’

for i in islice(count(), 5):

print i,

print ’\n’

print ’Start at 5, Stop at 10:’

for i in islice(count(), 5, 10):

print i,

print ’\n’

print ’By tens to 100:’

for i in islice(count(), 0, 100, 10):

print i,

print ’\n’

islice() takes the same arguments as the slice operator for lists: start, stop, and

step. The start and step arguments are optional.

$ python itertools_islice.py

Stop at 5:

0 1 2 3 4

Start at 5, Stop at 10:

5 6 7 8 9

By tens to 100:

0 10 20 30 40 50 60 70 80 90

ptg

144 Algorithms

The tee() function returns several independent iterators (defaults to 2) based on

a single original input.

from itertools import *

r = islice(count(), 5)

i1, i2 = tee(r)

print ’i1:’, list(i1)

print ’i2:’, list(i2)

tee() has semantics similar to the UNIX tee utility, which repeats the values it

reads from its input and writes them to a named file and standard output. The iterators

returned by tee() can be used to feed the same set of data into multiple algorithms to

be processed in parallel.

$ python itertools_tee.py

i1: [0, 1, 2, 3, 4]

i2: [0, 1, 2, 3, 4]

The new iterators created by tee() share their input, so the original iterator should

not be used once the new ones are created.

from itertools import *

r = islice(count(), 5)

i1, i2 = tee(r)

print ’r:’,

for i in r:

print i,

if i > 1:

break
print

print ’i1:’, list(i1)

print ’i2:’, list(i2)

If values are consumed from the original input, the new iterators will not produce

those values:

ptg

3.2. itertools—Iterator Functions 145

$ python itertools_tee_error.py

r: 0 1 2

i1: [3, 4]

i2: [3, 4]

3.2.2 Converting Inputs

The imap() function returns an iterator that calls a function on the values in the input

iterators and returns the results. It works like the built-in map(), except that it stops

when any input iterator is exhausted (instead of inserting None values to completely

consume all inputs).

from itertools import *

print ’Doubles:’

for i in imap(lambda x:2*x, xrange(5)):

print i

print ’Multiples:’

for i in imap(lambda x,y:(x, y, x*y), xrange(5), xrange(5,10)):

print ’%d * %d = %d’ % i

In the first example, the lambda function multiplies the input values by 2. In the

second example, the lambda function multiplies two arguments, taken from separate

iterators, and returns a tuple with the original arguments and the computed value.

$ python itertools_imap.py

Doubles:

0

2

4

6

8

Multiples:

0 * 5 = 0

1 * 6 = 6

2 * 7 = 14

3 * 8 = 24

4 * 9 = 36

ptg

146 Algorithms

The starmap() function is similar to imap(), but instead of constructing a

tuple from multiple iterators, it splits up the items in a single iterator as arguments

to the mapping function using the * syntax.

from itertools import *

values = [(0, 5), (1, 6), (2, 7), (3, 8), (4, 9)]

for i in starmap(lambda x,y:(x, y, x*y), values):

print ’%d * %d = %d’ % i

Where the mapping function to imap() is called f(i1, i2), the mapping func-

tion passed to starmap() is called f(*i).

$ python itertools_starmap.py

0 * 5 = 0

1 * 6 = 6

2 * 7 = 14

3 * 8 = 24

4 * 9 = 36

3.2.3 Producing New Values

The count() function returns an iterator that produces consecutive integers, indefi-

nitely. The first number can be passed as an argument (the default is zero). There is no

upper bound argument [see the built-in xrange() for more control over the result set].

from itertools import *

for i in izip(count(1), [’a’, ’b’, ’c’]):

print i

This example stops because the list argument is consumed.

$ python itertools_count.py

(1, ’a’)

(2, ’b’)

(3, ’c’)

ptg

3.2. itertools—Iterator Functions 147

The cycle() function returns an iterator that indefinitely repeats the contents of

the arguments it is given. Since it has to remember the entire contents of the input

iterator, it may consume quite a bit of memory if the iterator is long.

from itertools import *

for i, item in izip(xrange(7), cycle([’a’, ’b’, ’c’])):

print (i, item)

A counter variable is used to break out of the loop after a few cycles in this

example.

$ python itertools_cycle.py

(0, ’a’)

(1, ’b’)

(2, ’c’)

(3, ’a’)

(4, ’b’)

(5, ’c’)

(6, ’a’)

The repeat() function returns an iterator that produces the same value each time

it is accessed.

from itertools import *

for i in repeat(’over-and-over’, 5):

print i

The iterator returned by repeat() keeps returning data forever, unless the

optional times argument is provided to limit it.

$ python itertools_repeat.py

over-and-over

over-and-over

over-and-over

over-and-over

over-and-over

ptg

148 Algorithms

It is useful to combine repeat() with izip() or imap() when invariant values

need to be included with the values from the other iterators.

from itertools import *

for i, s in izip(count(), repeat(’over-and-over’, 5)):

print i, s

A counter value is combined with the constant returned by repeat() in this

example.

$ python itertools_repeat_izip.py

0 over-and-over

1 over-and-over

2 over-and-over

3 over-and-over

4 over-and-over

This example uses imap() to multiply the numbers in the range 0 through 4 by 2.

from itertools import *

for i in imap(lambda x,y:(x, y, x*y), repeat(2), xrange(5)):

print ’%d * %d = %d’ % i

The repeat() iterator does not need to be explicitly limited, since imap() stops

processing when any of its inputs ends, and the xrange() returns only five elements.

$ python itertools_repeat_imap.py

2 * 0 = 0

2 * 1 = 2

2 * 2 = 4

2 * 3 = 6

2 * 4 = 8

3.2.4 Filtering

The dropwhile() function returns an iterator that produces elements of the input

iterator after a condition becomes false for the first time.

ptg

3.2. itertools—Iterator Functions 149

from itertools import *

def should_drop(x):

print ’Testing:’, x

return (x<1)

for i in dropwhile(should_drop, [-1, 0, 1, 2, -2]):

print ’Yielding:’, i

dropwhile() does not filter every item of the input; after the condition is false

the first time, all remaining items in the input are returned.

$ python itertools_dropwhile.py

Testing: -1

Testing: 0

Testing: 1

Yielding: 1

Yielding: 2

Yielding: -2

The opposite of dropwhile() is takewhile(). It returns an iterator that returns

items from the input iterator, as long as the test function returns true.

from itertools import *

def should_take(x):

print ’Testing:’, x

return (x<2)

for i in takewhile(should_take, [-1, 0, 1, 2, -2]):

print ’Yielding:’, i

As soon as should_take() returns False, takewhile() stops processing the

input.

$ python itertools_takewhile.py

Testing: -1

Yielding: -1

Testing: 0

ptg

150 Algorithms

Yielding: 0

Testing: 1

Yielding: 1

Testing: 2

ifilter() returns an iterator that works like the built-in filter() does for

lists, including only items for which the test function returns true.

from itertools import *

def check_item(x):

print ’Testing:’, x

return (x<1)

for i in ifilter(check_item, [-1, 0, 1, 2, -2]):

print ’Yielding:’, i

ifilter() is different from dropwhile() in that every item is tested before it

is returned.

$ python itertools_ifilter.py

Testing: -1

Yielding: -1

Testing: 0

Yielding: 0

Testing: 1

Testing: 2

Testing: -2

Yielding: -2

ifilterfalse() returns an iterator that includes only items where the test func-

tion returns false.

from itertools import *

def check_item(x):

print ’Testing:’, x

return (x<1)

for i in ifilterfalse(check_item, [-1, 0, 1, 2, -2]):

print ’Yielding:’, i

ptg

3.2. itertools—Iterator Functions 151

The test expression in check_item() is the same, so the results in this example

with ifilterfalse() are the opposite of the results from the previous example.

$ python itertools_ifilterfalse.py

Testing: -1

Testing: 0

Testing: 1

Yielding: 1

Testing: 2

Yielding: 2

Testing: -2

3.2.5 Grouping Data

The groupby() function returns an iterator that produces sets of values organized by

a common key. This example illustrates grouping related values based on an attribute.

from itertools import *
import operator
import pprint

class Point:
def __init__(self, x, y):

self.x = x

self.y = y

def __repr__(self):

return ’(%s, %s)’ % (self.x, self.y)

def __cmp__(self, other):

return cmp((self.x, self.y), (other.x, other.y))

Create a dataset of Point instances

data = list(imap(Point,

cycle(islice(count(), 3)),

islice(count(), 7),

)

)

print ’Data:’

pprint.pprint(data, width=69)

print

Try to group the unsorted data based on X values

print ’Grouped, unsorted:’

ptg

152 Algorithms

for k, g in groupby(data, operator.attrgetter(’x’)):

print k, list(g)

print

Sort the data

data.sort()

print ’Sorted:’

pprint.pprint(data, width=69)

print

Group the sorted data based on X values

print ’Grouped, sorted:’

for k, g in groupby(data, operator.attrgetter(’x’)):

print k, list(g)

print

The input sequence needs to be sorted on the key value in order for the groupings

to work out as expected.

$ python itertools_groupby_seq.py

Data:

[(0, 0),

(1, 1),

(2, 2),

(0, 3),

(1, 4),

(2, 5),

(0, 6),

(1, 7),

(2, 8),

(0, 9)]

Grouped, unsorted:

0 [(0, 0)]

1 [(1, 1)]

2 [(2, 2)]

0 [(0, 3)]

1 [(1, 4)]

2 [(2, 5)]

0 [(0, 6)]

1 [(1, 7)]

ptg

3.3. operator—Functional Interface to Built-in Operators 153

2 [(2, 8)]

0 [(0, 9)]

Sorted:

[(0, 0),

(0, 3),

(0, 6),

(0, 9),

(1, 1),

(1, 4),

(1, 7),

(2, 2),

(2, 5),

(2, 8)]

Grouped, sorted:

0 [(0, 0), (0, 3), (0, 6), (0, 9)]

1 [(1, 1), (1, 4), (1, 7)]

2 [(2, 2), (2, 5), (2, 8)]

See Also:
itertools (http://docs.python.org/library/itertools.html) The standard library docu-

mentation for this module.

The Standard ML Basis Library (www.standardml.org/Basis/) The library for

SML.

Definition of Haskell and the Standard Libraries (www.haskell.org/definition/)
Standard library specification for the functional language Haskell.

Clojure (http://clojure.org/) Clojure is a dynamic functional language that runs on the

Java Virtual Machine.

tee (http://unixhelp.ed.ac.uk/CGI/man-cgi?tee) UNIX command line tool for split-

ting one input into multiple identical output streams.

3.3 operator—Functional Interface to Built-in Operators

Purpose Functional interface to built-in operators.

Python Version 1.4 and later

Programming with iterators occasionally requires creating small functions for simple

expressions. Sometimes, these can be implemented as lambda functions, but for some

operations, new functions are not needed at all. The operator module defines func-

tions that correspond to built-in operations for arithmetic and comparison.

www.standardml.org/Basis/
http://docs.python.org/library/itertools.html
www.haskell.org/definition/
http://clojure.org/
http://unixhelp.ed.ac.uk/CGI/man-cgi?tee

ptg

154 Algorithms

3.3.1 Logical Operations

There are functions for determining the Boolean equivalent for a value, negating it to

create the opposite Boolean value, and comparing objects to see if they are identical.

from operator import *

a = -1

b = 5

print ’a =’, a

print ’b =’, b

print

print ’not_(a) :’, not_(a)

print ’truth(a) :’, truth(a)

print ’is_(a, b) :’, is_(a,b)

print ’is_not(a, b):’, is_not(a,b)

not_() includes the trailing underscore because not is a Python keyword.

truth() applies the same logic used when testing an expression in an if statement.

is_() implements the same check used by the is keyword, and is_not() does the

same test and returns the opposite answer.

$ python operator_boolean.py

a = -1

b = 5

not_(a) : False

truth(a) : True

is_(a, b) : False

is_not(a, b): True

3.3.2 Comparison Operators

All rich comparison operators are supported.

from operator import *

a = 1

b = 5.0

ptg

3.3. operator—Functional Interface to Built-in Operators 155

print ’a =’, a

print ’b =’, b

for func in (lt, le, eq, ne, ge, gt):

print ’%s(a, b):’ % func.__name__, func(a, b)

The functions are equivalent to the expression syntax using <, <=, ==, >=, and >.

$ python operator_comparisons.py

a = 1

b = 5.0

lt(a, b): True

le(a, b): True

eq(a, b): False

ne(a, b): True

ge(a, b): False

gt(a, b): False

3.3.3 Arithmetic Operators

The arithmetic operators for manipulating numerical values are also supported.

from operator import *

a = -1

b = 5.0

c = 2

d = 6

print ’a =’, a

print ’b =’, b

print ’c =’, c

print ’d =’, d

print ’\nPositive/Negative:’
print ’abs(a):’, abs(a)

print ’neg(a):’, neg(a)

print ’neg(b):’, neg(b)

print ’pos(a):’, pos(a)

print ’pos(b):’, pos(b)

ptg

156 Algorithms

print ’\nArithmetic:’
print ’add(a, b) :’, add(a, b)

print ’div(a, b) :’, div(a, b)

print ’div(d, c) :’, div(d, c)

print ’floordiv(a, b):’, floordiv(a, b)

print ’floordiv(d, c):’, floordiv(d, c)

print ’mod(a, b) :’, mod(a, b)

print ’mul(a, b) :’, mul(a, b)

print ’pow(c, d) :’, pow(c, d)

print ’sub(b, a) :’, sub(b, a)

print ’truediv(a, b) :’, truediv(a, b)

print ’truediv(d, c) :’, truediv(d, c)

print ’\nBitwise:’
print ’and_(c, d) :’, and_(c, d)

print ’invert(c) :’, invert(c)

print ’lshift(c, d):’, lshift(c, d)

print ’or_(c, d) :’, or_(c, d)

print ’rshift(d, c):’, rshift(d, c)

print ’xor(c, d) :’, xor(c, d)

There are two separate division operators: floordiv() (integer division as

implemented in Python before version 3.0) and truediv() (floating-point division).

$ python operator_math.py

a = -1

b = 5.0

c = 2

d = 6

Positive/Negative:

abs(a): 1

neg(a): 1

neg(b): -5.0

pos(a): -1

pos(b): 5.0

Arithmetic:

add(a, b) : 4.0

div(a, b) : -0.2

div(d, c) : 3

floordiv(a, b): -1.0

floordiv(d, c): 3

mod(a, b) : 4.0

ptg

3.3. operator—Functional Interface to Built-in Operators 157

mul(a, b) : -5.0

pow(c, d) : 64

sub(b, a) : 6.0

truediv(a, b) : -0.2

truediv(d, c) : 3.0

Bitwise:

and_(c, d) : 2

invert(c) : -3

lshift(c, d): 128

or_(c, d) : 6

rshift(d, c): 1

xor(c, d) : 4

3.3.4 Sequence Operators

The operators for working with sequences can be divided into four groups: build-

ing up sequences, searching for items, accessing contents, and removing items from

sequences.

from operator import *

a = [1, 2, 3]

b = [’a’, ’b’, ’c’]

print ’a =’, a

print ’b =’, b

print ’\nConstructive:’
print ’ concat(a, b):’, concat(a, b)

print ’ repeat(a, 3):’, repeat(a, 3)

print ’\nSearching:’
print ’ contains(a, 1) :’, contains(a, 1)

print ’ contains(b, "d"):’, contains(b, "d")

print ’ countOf(a, 1) :’, countOf(a, 1)

print ’ countOf(b, "d") :’, countOf(b, "d")

print ’ indexOf(a, 5) :’, indexOf(a, 1)

print ’\nAccess Items:’

print ’ getitem(b, 1) :’, getitem(b, 1)

print ’ getslice(a, 1, 3) :’, getslice(a, 1, 3)

print ’ setitem(b, 1, "d") :’, setitem(b, 1, "d"),

print ’, after b =’, b

ptg

158 Algorithms

print ’ setslice(a, 1, 3, [4, 5]):’, setslice(a, 1, 3, [4, 5]),

print ’, after a =’, a

print ’\nDestructive:’
print ’ delitem(b, 1) :’, delitem(b, 1), ’, after b =’, b

print ’ delslice(a, 1, 3):’, delslice(a, 1, 3), ’, after a =’, a

Some of these operations, such as setitem() and delitem(), modify the

sequence in place and do not return a value.

$ python operator_sequences.py

a = [1, 2, 3]

b = [’a’, ’b’, ’c’]

Constructive:

concat(a, b): [1, 2, 3, ’a’, ’b’, ’c’]

repeat(a, 3): [1, 2, 3, 1, 2, 3, 1, 2, 3]

Searching:

contains(a, 1) : True

contains(b, "d"): False

countOf(a, 1) : 1

countOf(b, "d") : 0

indexOf(a, 5) : 0

Access Items:

getitem(b, 1) : b

getslice(a, 1, 3) : [2, 3]

setitem(b, 1, "d") : None , after b = [’a’, ’d’, ’c’]

setslice(a, 1, 3, [4, 5]): None , after a = [1, 4, 5]

Destructive:

delitem(b, 1) : None , after b = [’a’, ’c’]

delslice(a, 1, 3): None , after a = [1]

3.3.5 In-Place Operators

In addition to the standard operators, many types of objects support “in-place” modifi-

cation through special operators such as +=. There are equivalent functions for in-place

modifications, too.

ptg

3.3. operator—Functional Interface to Built-in Operators 159

from operator import *

a = -1

b = 5.0

c = [1, 2, 3]

d = [’a’, ’b’, ’c’]

print ’a =’, a

print ’b =’, b

print ’c =’, c

print ’d =’, d

print

a = iadd(a, b)

print ’a = iadd(a, b) =>’, a

print

c = iconcat(c, d)

print ’c = iconcat(c, d) =>’, c

These examples demonstrate only a few of the functions. Refer to the standard

library documentation for complete details.

$ python operator_inplace.py

a = -1

b = 5.0

c = [1, 2, 3]

d = [’a’, ’b’, ’c’]

a = iadd(a, b) => 4.0

c = iconcat(c, d) => [1, 2, 3, ’a’, ’b’, ’c’]

3.3.6 Attribute and Item “Getters”

One of the most unusual features of the operator module is the concept of getters.

These are callable objects constructed at runtime to retrieve attributes of objects or

contents from sequences. Getters are especially useful when working with iterators or

generator sequences, where they are intended to incur less overhead than a lambda or

Python function.

ptg

160 Algorithms

from operator import *

class MyObj(object):
"""example class for attrgetter"""

def __init__(self, arg):

super(MyObj, self).__init__()

self.arg = arg

def __repr__(self):

return ’MyObj(%s)’ % self.arg

l = [MyObj(i) for i in xrange(5)]

print ’objects :’, l

Extract the ’arg’ value from each object

g = attrgetter(’arg’)

vals = [g(i) for i in l]

print ’arg values:’, vals

Sort using arg

l.reverse()

print ’reversed :’, l

print ’sorted :’, sorted(l, key=g)

Attribute getters work like lambda x, n=’attrname’: getattr(x, n):

$ python operator_attrgetter.py

objects : [MyObj(0), MyObj(1), MyObj(2), MyObj(3), MyObj(4)]

arg values: [0, 1, 2, 3, 4]

reversed : [MyObj(4), MyObj(3), MyObj(2), MyObj(1), MyObj(0)]

sorted : [MyObj(0), MyObj(1), MyObj(2), MyObj(3), MyObj(4)]

Item getters work like lambda x, y=5: x[y]:

from operator import *

l = [dict(val=-1 * i) for i in xrange(4)]

print ’Dictionaries:’, l

g = itemgetter(’val’)

vals = [g(i) for i in l]

print ’ values:’, vals

print ’ sorted:’, sorted(l, key=g)

ptg

3.3. operator—Functional Interface to Built-in Operators 161

print
l = [(i, i*-2) for i in xrange(4)]

print ’Tuples :’, l

g = itemgetter(1)

vals = [g(i) for i in l]

print ’ values:’, vals

print ’ sorted:’, sorted(l, key=g)

Item getters work with mappings as well as sequences.

$ python operator_itemgetter.py

Dictionaries: [{’val’: 0}, {’val’: -1}, {’val’: -2}, {’val’: -3}]

values: [0, -1, -2, -3]

sorted: [{’val’: -3}, {’val’: -2}, {’val’: -1}, {’val’: 0}]

Tuples : [(0, 0), (1, -2), (2, -4), (3, -6)]

values: [0, -2, -4, -6]

sorted: [(3, -6), (2, -4), (1, -2), (0, 0)]

3.3.7 Combining Operators and Custom Classes

The functions in the operator module work via the standard Python interfaces for

their operations, so they work with user-defined classes as well as the built-in types.

from operator import *

class MyObj(object):
"""Example for operator overloading"""

def __init__(self, val):

super(MyObj, self).__init__()

self.val = val

return
def __str__(self):

return ’MyObj(%s)’ % self.val

def __lt__(self, other):

"""compare for less-than"""

print ’Testing %s < %s’ % (self, other)

return self.val < other.val

def __add__(self, other):

"""add values"""

ptg

162 Algorithms

print ’Adding %s + %s’ % (self, other)

return MyObj(self.val + other.val)

a = MyObj(1)

b = MyObj(2)

print ’Comparison:’

print lt(a, b)

print ’\nArithmetic:’
print add(a, b)

Refer to the Python reference guide for a complete list of the special methods each

operator uses.

$ python operator_classes.py

Comparison:

Testing MyObj(1) < MyObj(2)

True

Arithmetic:

Adding MyObj(1) + MyObj(2)

MyObj(3)

3.3.8 Type Checking

The operatormodule also includes functions for testing API compliance for mapping,

number, and sequence types.

from operator import *

class NoType(object):
"""Supports none of the type APIs"""

class MultiType(object):
"""Supports multiple type APIs"""

def __len__(self):

return 0

def __getitem__(self, name):

return ’mapping’

def __int__(self):

return 0

ptg

3.4. contextlib—Context Manager Utilities 163

o = NoType()

t = MultiType()

for func in (isMappingType, isNumberType, isSequenceType):

print ’%s(o):’ % func.__name__, func(o)

print ’%s(t):’ % func.__name__, func(t)

The tests are not perfect, since the interfaces are not strictly defined, but they do

provide some idea of what is supported.

$ python operator_typechecking.py

isMappingType(o): False

isMappingType(t): True

isNumberType(o): False

isNumberType(t): True

isSequenceType(o): False

isSequenceType(t): True

See Also:
operator (http://docs.python.org/lib/module-operator.html) Standard library docu-

mentation for this module.

functools (page 129) Functional programming tools, including the total_

ordering() decorator for adding rich comparison methods to a class.

itertools (page 141) Iterator operations.

abc (page 1178) The abc module includes abstract base classes that define the APIs

for collection types.

3.4 contextlib—Context Manager Utilities

Purpose Utilities for creating and working with context managers.

Python Version 2.5 and later

The contextlib module contains utilities for working with context managers and the

with statement.

Note: Context managers are tied to the with statement. Since with is officially

part of Python 2.6, import it from __future__ before using contextlib in

Python 2.5.

http://docs.python.org/lib/module-operator.html

ptg

164 Algorithms

3.4.1 Context Manager API

A context manager is responsible for a resource within a code block, possibly creating it

when the block is entered and then cleaning it up after the block is exited. For example,

files support the context manager API to make it easy to ensure they are closed after all

reading or writing is done.

with open(’/tmp/pymotw.txt’, ’wt’) as f:

f.write(’contents go here’)

file is automatically closed

A context manager is enabled by the with statement, and the API involves two

methods. The __enter__() method is run when execution flow enters the code block

inside the with. It returns an object to be used within the context. When execution flow

leaves the with block, the __exit__() method of the context manager is called to

clean up any resources being used.

class Context(object):
def __init__(self):

print ’__init__()’

def __enter__(self):

print ’__enter__()’

return self

def __exit__(self, exc_type, exc_val, exc_tb):

print ’__exit__()’

with Context():

print ’Doing work in the context’

Combining a context manager and the with statement is a more compact way of

writing a try:finally block, since the context manager’s __exit__() method is always

called, even if an exception is raised.

$ python contextlib_api.py

__init__()

__enter__()

Doing work in the context

__exit__()

ptg

3.4. contextlib—Context Manager Utilities 165

The __enter__() method can return any object to be associated with a name

specified in the as clause of the with statement. In this example, the Context returns

an object that uses the open context.

class WithinContext(object):
def __init__(self, context):

print ’WithinContext.__init__(%s)’ % context

def do_something(self):

print ’WithinContext.do_something()’

def __del__(self):

print ’WithinContext.__del__’

class Context(object):
def __init__(self):

print ’Context.__init__()’

def __enter__(self):

print ’Context.__enter__()’

return WithinContext(self)

def __exit__(self, exc_type, exc_val, exc_tb):

print ’Context.__exit__()’

with Context() as c:

c.do_something()

The value associated with the variable c is the object returned by __enter__(),

which is not necessarily the Context instance created in the with statement.

$ python contextlib_api_other_object.py

Context.__init__()

Context.__enter__()

WithinContext.__init__(<__main__.Context object at 0x100d98a10>)

WithinContext.do_something()

Context.__exit__()

WithinContext.__del__

The __exit__() method receives arguments containing details of any exception

raised in the with block.

ptg

166 Algorithms

class Context(object):
def __init__(self, handle_error):

print ’__init__(%s)’ % handle_error

self.handle_error = handle_error

def __enter__(self):

print ’__enter__()’

return self

def __exit__(self, exc_type, exc_val, exc_tb):

print ’__exit__()’

print ’ exc_type =’, exc_type

print ’ exc_val =’, exc_val

print ’ exc_tb =’, exc_tb

return self.handle_error

with Context(True):

raise RuntimeError(’error message handled’)

print

with Context(False):

raise RuntimeError(’error message propagated’)

If the context manager can handle the exception, __exit__() should return a

true value to indicate that the exception does not need to be propagated. Returning false

causes the exception to be reraised after __exit__() returns.

$ python contextlib_api_error.py

__init__(True)

__enter__()

__exit__()

exc_type = <type ’exceptions.RuntimeError’>

exc_val = error message handled

exc_tb = <traceback object at 0x100da52d8>

__init__(False)

__enter__()

__exit__()

exc_type = <type ’exceptions.RuntimeError’>

exc_val = error message propagated

exc_tb = <traceback object at 0x100da5368>

ptg

3.4. contextlib—Context Manager Utilities 167

Traceback (most recent call last):

File "contextlib_api_error.py", line 33, in <module>

raise RuntimeError(’error message propagated’)

RuntimeError: error message propagated

3.4.2 From Generator to Context Manager

Creating context managers the traditional way, by writing a class with __enter__()

and __exit__() methods, is not difficult. But sometimes, writing everything out

fully is extra overhead for a trivial bit of context. In those sorts of situations, use the

contextmanager() decorator to convert a generator function into a context manager.

import contextlib

@contextlib.contextmanager

def make_context():

print ’ entering’

try:
yield {}

except RuntimeError, err:

print ’ ERROR:’, err

finally:
print ’ exiting’

print ’Normal:’

with make_context() as value:

print ’ inside with statement:’, value

print ’\nHandled error:’

with make_context() as value:

raise RuntimeError(’showing example of handling an error’)

print ’\nUnhandled error:’

with make_context() as value:

raise ValueError(’this exception is not handled’)

The generator should initialize the context, yield exactly one time, and then clean

up the context. The value yielded, if any, is bound to the variable in the as clause of the

with statement. Exceptions from within the with block are reraised inside the generator,

so they can be handled there.

ptg

168 Algorithms

$ python contextlib_contextmanager.py

Normal:

entering

inside with statement: {}

exiting

Handled error:

entering

ERROR: showing example of handling an error

exiting

Unhandled error:

entering

exiting

Traceback (most recent call last):

File "contextlib_contextmanager.py", line 34, in <module>

raise ValueError(’this exception is not handled’)

ValueError: this exception is not handled

3.4.3 Nesting Contexts

At times, it is necessary to manage multiple contexts simultaneously (such as when

copying data between input and output file handles, for example). It is possible to nest

with statements one inside another, but if the outer contexts do not need their own

separate block, this adds to the indention level without giving any real benefit. Using

nested() nests the contexts using a single with statement.

import contextlib

@contextlib.contextmanager

def make_context(name):

print ’entering:’, name

yield name

print ’exiting :’, name

with contextlib.nested(make_context(’A’),

make_context(’B’)) as (A, B):

print ’inside with statement:’, A, B

Program execution leaves the contexts in the reverse order in which they are

entered.

ptg

3.4. contextlib—Context Manager Utilities 169

$ python contextlib_nested.py

entering: A

entering: B

inside with statement: A B

exiting : B

exiting : A

In Python 2.7 and later, nested() is deprecated because the with statement sup-

ports nesting directly.

import contextlib

@contextlib.contextmanager

def make_context(name):

print ’entering:’, name

yield name

print ’exiting :’, name

with make_context(’A’) as A, make_context(’B’) as B:

print ’inside with statement:’, A, B

Each context manager and optional as clause are separated by a comma (,). The

effect is similar to using nested(), but avoids some of the edge-cases around error

handling that nested() could not implement correctly.

$ python contextlib_nested_with.py

entering: A

entering: B

inside with statement: A B

exiting : B

exiting : A

3.4.4 Closing Open Handles

The file class supports the context manager API directly, but some other objects that

represent open handles do not. The example given in the standard library documentation

for contextlib is the object returned from urllib.urlopen(). There are other

legacy classes that use a close() method but do not support the context manager API.

To ensure that a handle is closed, use closing() to create a context manager for it.

ptg

170 Algorithms

import contextlib

class Door(object):
def __init__(self):

print ’ __init__()’

def close(self):

print ’ close()’

print ’Normal Example:’

with contextlib.closing(Door()) as door:

print ’ inside with statement’

print ’\nError handling example:’

try:
with contextlib.closing(Door()) as door:

print ’ raising from inside with statement’

raise RuntimeError(’error message’)

except Exception, err:

print ’ Had an error:’, err

The handle is closed whether there is an error in the with block or not.

$ python contextlib_closing.py

Normal Example:

__init__()

inside with statement

close()

Error handling example:

__init__()

raising from inside with statement

close()

Had an error: error message

See Also:
contextlib (http://docs.python.org/library/contextlib.html) The standard library

documentation for this module.

PEP 343 (http://www.python.org/dev/peps/pep-0343) The with statement.

http://docs.python.org/library/contextlib.html
http://www.python.org/dev/peps/pep-0343

ptg

3.4. contextlib—Context Manager Utilities 171

Context Manager Types (http://docs.python.org/library/stdtypes.html#type
contextmanager) Description of the context manager API from the standard

library documentation.

With Statement Context Managers
(http://docs.python.org/reference/datamodel.html#context-managers) Description

of the context manager API from the Python Reference Guide.

http://docs.python.org/library/stdtypes.html#typecontextmanager
http://docs.python.org/library/stdtypes.html#typecontextmanager
http://docs.python.org/reference/datamodel.html#context-managers

ptg

This page intentionally left blank

ptg

Chapter 4

DATES AND TIMES

Python does not include native types for dates and times as it does for int, float,

and str, but there are three modules for manipulating date and time values in several

representations.

• The time module exposes the time-related functions from the underlying C

library. It includes functions for retrieving the clock time and the processor run-

time, as well as basic parsing and string-formatting tools.

• The datetime module provides a higher-level interface for date, time, and com-

bined values. The classes in datetime support arithmetic, comparison, and time

zone configuration.

• The calendar module creates formatted representations of weeks, months, and

years. It can also be used to compute recurring events, the day of the week for a

given date, and other calendar-based values.

4.1 time—Clock Time

Purpose Functions for manipulating clock time.

Python Version 1.4 and later

The time module exposes C library functions for manipulating dates and times. Since

it is tied to the underlying C implementation, some details (such as the start of the

epoch and the maximum date value supported) are platform specific. Refer to the library

documentation for complete details.

173

ptg

174 Dates and Times

4.1.1 Wall Clock Time

One of the core functions of the time module is time(), which returns the number of

seconds since the start of the epoch as a floating-point value.

import time

print ’The time is:’, time.time()

Although the value is always a float, actual precision is platform dependent.

$ python time_time.py

The time is: 1291499267.33

The float representation is useful when storing or comparing dates, but it is not

as useful for producing human-readable representations. For logging or printing time,

ctime() can be more useful.

import time

print ’The time is :’, time.ctime()

later = time.time() + 15

print ’15 secs from now :’, time.ctime(later)

The second print statement in this example shows how to use ctime() to format

a time value other than the current time.

$ python time_ctime.py

The time is : Sat Dec 4 16:47:47 2010

15 secs from now : Sat Dec 4 16:48:02 2010

4.1.2 Processor Clock Time

While time() returns a wall clock time, clock() returns processor clock time. The

values returned from clock() should be used for performance testing, benchmarking,

etc., since they reflect the actual time the program uses and can be more precise than

the values from time().

ptg

4.1. time—Clock Time 175

import hashlib
import time

Data to use to calculate md5 checksums

data = open(__file__, ’rt’).read()

for i in range(5):

h = hashlib.sha1()

print time.ctime(), ’: %0.3f %0.3f’ % (time.time(), time.clock())

for i in range(300000):

h.update(data)

cksum = h.digest()

In this example, the formatted ctime() is printed along with the floating-point

values from time() and clock() for each iteration through the loop.

Note: If you want to run the example on your system, you may have to add more

cycles to the inner loop or work with a larger amount of data to actually see a

difference in the times.

$ python time_clock.py

Sat Dec 4 16:47:47 2010 : 1291499267.446 0.028

Sat Dec 4 16:47:48 2010 : 1291499268.844 1.413

Sat Dec 4 16:47:50 2010 : 1291499270.247 2.794

Sat Dec 4 16:47:51 2010 : 1291499271.658 4.171

Sat Dec 4 16:47:53 2010 : 1291499273.128 5.549

Typically, the processor clock does not tick if a program is not doing anything.

import time

for i in range(6, 1, -1):

print ’%s %0.2f %0.2f’ % (time.ctime(),

time.time(),

time.clock())

print ’Sleeping’, i

time.sleep(i)

ptg

176 Dates and Times

In this example, the loop does very little work by going to sleep after each iteration.

The time() value increases even while the application is asleep, but the clock()

value does not.

$ python time_clock_sleep.py

Sat Dec 4 16:47:54 2010 1291499274.65 0.03

Sleeping 6

Sat Dec 4 16:48:00 2010 1291499280.65 0.03

Sleeping 5

Sat Dec 4 16:48:05 2010 1291499285.65 0.03

Sleeping 4

Sat Dec 4 16:48:09 2010 1291499289.66 0.03

Sleeping 3

Sat Dec 4 16:48:12 2010 1291499292.66 0.03

Sleeping 2

Calling sleep() yields control from the current thread and asks it to wait for the

system to wake it back up. If a program has only one thread, this effectively blocks the

app and it does no work.

4.1.3 Time Components

Storing times as elapsed seconds is useful in some situations, but there are times when

a program needs to have access to the individual fields of a date (year, month, etc.). The

time module defines struct_time for holding date and time values with components

broken out so they are easy to access. Several functions work with struct_time val-

ues instead of floats.

import time

def show_struct(s):

print ’ tm_year :’, s.tm_year

print ’ tm_mon :’, s.tm_mon

print ’ tm_mday :’, s.tm_mday

print ’ tm_hour :’, s.tm_hour

print ’ tm_min :’, s.tm_min

print ’ tm_sec :’, s.tm_sec

print ’ tm_wday :’, s.tm_wday

print ’ tm_yday :’, s.tm_yday

print ’ tm_isdst:’, s.tm_isdst

ptg

4.1. time—Clock Time 177

print ’gmtime:’

show_struct(time.gmtime())

print ’\nlocaltime:’
show_struct(time.localtime())

print ’\nmktime:’, time.mktime(time.localtime())

The gmtime() function returns the current time in UTC. localtime() returns

the current time with the current time zone applied. mktime() takes a struct_time

instance and converts it to the floating-point representation.

$ python time_struct.py

gmtime:

tm_year : 2010

tm_mon : 12

tm_mday : 4

tm_hour : 21

tm_min : 48

tm_sec : 14

tm_wday : 5

tm_yday : 338

tm_isdst: 0

localtime:

tm_year : 2010

tm_mon : 12

tm_mday : 4

tm_hour : 16

tm_min : 48

tm_sec : 14

tm_wday : 5

tm_yday : 338

tm_isdst: 0

mktime: 1291499294.0

4.1.4 Working with Time Zones

The functions for determining the current time depend on having the time zone set,

either by the program or by using a default time zone set for the system. Changing the

time zone does not change the actual time, just the way it is represented.

ptg

178 Dates and Times

To change the time zone, set the environment variable TZ, and then call tzset().

The time zone can be specified with a lot of detail, right down to the start and stop

times for daylight savings time. It is usually easier to use the time zone name and let

the underlying libraries derive the other information, though.

This example program changes the time zone to a few different values and shows

how the changes affect other settings in the time module.

import time
import os

def show_zone_info():

print ’ TZ :’, os.environ.get(’TZ’, ’(not set)’)

print ’ tzname:’, time.tzname

print ’ Zone : %d (%d)’ % (time.timezone,

(time.timezone / 3600))

print ’ DST :’, time.daylight

print ’ Time :’, time.ctime()

print

print ’Default :’

show_zone_info()

ZONES = [’GMT’,

’Europe/Amsterdam’,

]

for zone in ZONES:

os.environ[’TZ’] = zone

time.tzset()

print zone, ’:’

show_zone_info()

The default time zone on the system used to prepare the examples is US/Eastern.

The other zones in the example change the tzname, daylight flag, and timezone offset

value.

$ python time_timezone.py

Default :

TZ : (not set)

tzname: (’EST’, ’EDT’)

Zone : 18000 (5)

ptg

4.1. time—Clock Time 179

DST : 1

Time : Sat Dec 4 16:48:14 2010

GMT :

TZ : GMT

tzname: (’GMT’, ’GMT’)

Zone : 0 (0)

DST : 0

Time : Sat Dec 4 21:48:14 2010

Europe/Amsterdam :

TZ : Europe/Amsterdam

tzname: (’CET’, ’CEST’)

Zone : -3600 (-1)

DST : 1

Time : Sat Dec 4 22:48:15 2010

4.1.5 Parsing and Formatting Times

The two functions strptime() and strftime() convert between struct_time and

string representations of time values. A long list of formatting instructions is available

to support input and output in different styles. The complete list is documented in the

library documentation for the time module.

This example converts the current time from a string to a struct_time instance

and back to a string.

import time

def show_struct(s):

print ’ tm_year :’, s.tm_year

print ’ tm_mon :’, s.tm_mon

print ’ tm_mday :’, s.tm_mday

print ’ tm_hour :’, s.tm_hour

print ’ tm_min :’, s.tm_min

print ’ tm_sec :’, s.tm_sec

print ’ tm_wday :’, s.tm_wday

print ’ tm_yday :’, s.tm_yday

print ’ tm_isdst:’, s.tm_isdst

now = time.ctime()

print ’Now:’, now

ptg

180 Dates and Times

parsed = time.strptime(now)

print ’\nParsed:’
show_struct(parsed)

print ’\nFormatted:’, time.strftime("%a %b %d %H:%M:%S %Y", parsed)

The output string is not exactly like the input, since the day of the month is prefixed

with a zero.

$ python time_strptime.py

Now: Sat Dec 4 16:48:14 2010

Parsed:

tm_year : 2010

tm_mon : 12

tm_mday : 4

tm_hour : 16

tm_min : 48

tm_sec : 14

tm_wday : 5

tm_yday : 338

tm_isdst: -1

Formatted: Sat Dec 04 16:48:14 2010

See Also:
time (http://docs.python.org/lib/module-time.html) Standard library documentation

for this module.

datetime (page 180) The datetime module includes other classes for doing calcu-

lations with dates and times.

calendar (page 191) Work with higher-level date functions to produce calendars or

calculate recurring events.

4.2 datetime—Date and Time Value Manipulation

Purpose The datetime module includes functions and classes for doing

date and time parsing, formatting, and arithmetic.

Python Version 2.3 and later

datetime contains functions and classes for working with dates and times, separately

and together.

http://docs.python.org/lib/module-time.html

ptg

4.2. datetime—Date and Time Value Manipulation 181

4.2.1 Times

Time values are represented with the time class. A time instance has attributes

for hour, minute, second, and microsecond and can also include time zone

information.

import datetime

t = datetime.time(1, 2, 3)

print t

print ’hour :’, t.hour

print ’minute :’, t.minute

print ’second :’, t.second

print ’microsecond:’, t.microsecond

print ’tzinfo :’, t.tzinfo

The arguments to initialize a time instance are optional, but the default of 0 is

unlikely to be correct.

$ python datetime_time.py

01:02:03

hour : 1

minute : 2

second : 3

microsecond: 0

tzinfo : None

A time instance only holds values of time, and not a date associated with the time.

import datetime

print ’Earliest :’, datetime.time.min

print ’Latest :’, datetime.time.max

print ’Resolution:’, datetime.time.resolution

The min and max class attributes reflect the valid range of times in a single day.

$ python datetime_time_minmax.py

Earliest : 00:00:00

Latest : 23:59:59.999999

Resolution: 0:00:00.000001

The resolution for time is limited to whole microseconds.

ptg

182 Dates and Times

import datetime

for m in [1, 0, 0.1, 0.6]:

try:
print ’%02.1f :’ % m, datetime.time(0, 0, 0, microsecond=m)

except TypeError, err:

print ’ERROR:’, err

The way floating-point values are treated depends on the version of Python. Ver-

sion 2.7 raises a TypeError, while earlier versions produce a DeprecationWarning

and convert the floating-point number to an integer.

$ python2.7 datetime_time_resolution.py

1.0 : 00:00:00.000001

0.0 : 00:00:00

0.1 : ERROR: integer argument expected, got float

0.6 : ERROR: integer argument expected, got float

$ python2.6 datetime_time_resolution.py

1.0 : 00:00:00.000001

0.0 : 00:00:00

datetime_time_resolution.py:16: DeprecationWarning: integer argument

expected, got float

print ’%02.1f :’ % m, datetime.time(0, 0, 0, microsecond=m)

0.1 : 00:00:00

0.6 : 00:00:00

4.2.2 Dates

Calendar date values are represented with the date class. Instances have attributes for

year, month, and day. It is easy to create a date representing the current date using

the today() class method.

import datetime

today = datetime.date.today()

print today

print ’ctime :’, today.ctime()

tt = today.timetuple()

print ’tuple : tm_year =’, tt.tm_year

ptg

4.2. datetime—Date and Time Value Manipulation 183

print ’ tm_mon =’, tt.tm_mon

print ’ tm_mday =’, tt.tm_mday

print ’ tm_hour =’, tt.tm_hour

print ’ tm_min =’, tt.tm_min

print ’ tm_sec =’, tt.tm_sec

print ’ tm_wday =’, tt.tm_wday

print ’ tm_yday =’, tt.tm_yday

print ’ tm_isdst =’, tt.tm_isdst

print ’ordinal:’, today.toordinal()

print ’Year :’, today.year

print ’Mon :’, today.month

print ’Day :’, today.day

This example prints the current date in several formats.

$ python datetime_date.py

2010-11-27

ctime : Sat Nov 27 00:00:00 2010

tuple : tm_year = 2010

tm_mon = 11

tm_mday = 27

tm_hour = 0

tm_min = 0

tm_sec = 0

tm_wday = 5

tm_yday = 331

tm_isdst = -1

ordinal: 734103

Year : 2010

Mon : 11

Day : 27

There are also class methods for creating instances from POSIX timestamps or

integers representing date values from the Gregorian calendar, where January 1 of the

year 1 is 1 and each subsequent day increments the value by 1.

import datetime
import time

o = 733114

print ’o :’, o

ptg

184 Dates and Times

print ’fromordinal(o) :’, datetime.date.fromordinal(o)

t = time.time()

print ’t :’, t

print ’fromtimestamp(t):’, datetime.date.fromtimestamp(t)

This example illustrates the different value types used by fromordinal() and

fromtimestamp().

$ python datetime_date_fromordinal.py

o : 733114

fromordinal(o) : 2008-03-13

t : 1290874810.14

fromtimestamp(t): 2010-11-27

As with time, the range of date values supported can be determined using the min

and max attributes.

import datetime

print ’Earliest :’, datetime.date.min

print ’Latest :’, datetime.date.max

print ’Resolution:’, datetime.date.resolution

The resolution for dates is whole days.

$ python datetime_date_minmax.py

Earliest : 0001-01-01

Latest : 9999-12-31

Resolution: 1 day, 0:00:00

Another way to create new date instances uses the replace() method of an

existing date.

import datetime

d1 = datetime.date(2008, 3, 29)

print ’d1:’, d1.ctime()

ptg

4.2. datetime—Date and Time Value Manipulation 185

d2 = d1.replace(year=2009)

print ’d2:’, d2.ctime()

This example changes the year, leaving the day and month unmodified.

$ python datetime_date_replace.py

d1: Sat Mar 29 00:00:00 2008

d2: Sun Mar 29 00:00:00 2009

4.2.3 timedeltas

Future and past dates can be calculated using basic arithmetic on two datetime

objects, or by combining a datetime with a timedelta. Subtracting dates produces

a timedelta, and a timedelta can be added or subtracted from a date to produce

another date. The internal values for a timedelta are stored in days, seconds, and

microseconds.

import datetime

print "microseconds:", datetime.timedelta(microseconds=1)

print "milliseconds:", datetime.timedelta(milliseconds=1)

print "seconds :", datetime.timedelta(seconds=1)

print "minutes :", datetime.timedelta(minutes=1)

print "hours :", datetime.timedelta(hours=1)

print "days :", datetime.timedelta(days=1)

print "weeks :", datetime.timedelta(weeks=1)

Intermediate level values passed to the constructor are converted into days, sec-

onds, and microseconds.

$ python datetime_timedelta.py

microseconds: 0:00:00.000001

milliseconds: 0:00:00.001000

seconds : 0:00:01

minutes : 0:01:00

hours : 1:00:00

days : 1 day, 0:00:00

weeks : 7 days, 0:00:00

ptg

186 Dates and Times

The full duration of a timedelta can be retrieved as a number of seconds using

total_seconds().

import datetime

for delta in [datetime.timedelta(microseconds=1),

datetime.timedelta(milliseconds=1),

datetime.timedelta(seconds=1),

datetime.timedelta(minutes=1),

datetime.timedelta(hours=1),

datetime.timedelta(days=1),

datetime.timedelta(weeks=1),

]:

print ’%15s = %s seconds’ % (delta, delta.total_seconds())

The return value is a floating-point number, to accommodate subsecond durations.

$ python datetime_timedelta_total_seconds.py

0:00:00.000001 = 1e-06 seconds

0:00:00.001000 = 0.001 seconds

0:00:01 = 1.0 seconds

0:01:00 = 60.0 seconds

1:00:00 = 3600.0 seconds

1 day, 0:00:00 = 86400.0 seconds

7 days, 0:00:00 = 604800.0 seconds

4.2.4 Date Arithmetic

Date math uses the standard arithmetic operators.

import datetime

today = datetime.date.today()

print ’Today :’, today

one_day = datetime.timedelta(days=1)

print ’One day :’, one_day

yesterday = today - one_day

print ’Yesterday:’, yesterday

ptg

4.2. datetime—Date and Time Value Manipulation 187

tomorrow = today + one_day

print ’Tomorrow :’, tomorrow

print
print ’tomorrow - yesterday:’, tomorrow - yesterday

print ’yesterday - tomorrow:’, yesterday - tomorrow

This example with date objects illustrates using timedelta objects to compute

new dates, and subtracting date instances to produce timedeltas (including a negative

delta value).

$ python datetime_date_math.py

Today : 2010-11-27

One day : 1 day, 0:00:00

Yesterday: 2010-11-26

Tomorrow : 2010-11-28

tomorrow - yesterday: 2 days, 0:00:00

yesterday - tomorrow: -2 days, 0:00:00

4.2.5 Comparing Values

Both date and time values can be compared using the standard comparison operators to

determine which is earlier or later.

import datetime
import time

print ’Times:’

t1 = datetime.time(12, 55, 0)

print ’ t1:’, t1

t2 = datetime.time(13, 5, 0)

print ’ t2:’, t2

print ’ t1 < t2:’, t1 < t2

print
print ’Dates:’

d1 = datetime.date.today()

print ’ d1:’, d1

d2 = datetime.date.today() + datetime.timedelta(days=1)

ptg

188 Dates and Times

print ’ d2:’, d2

print ’ d1 > d2:’, d1 > d2

All comparison operators are supported.

$ python datetime_comparing.py

Times:

t1: 12:55:00

t2: 13:05:00

t1 < t2: True

Dates:

d1: 2010-11-27

d2: 2010-11-28

d1 > d2: False

4.2.6 Combining Dates and Times

Use the datetime class to hold values consisting of both date and time components.

As with date, there are several convenient class methods to create datetime instances

from other common values.

import datetime

print ’Now :’, datetime.datetime.now()

print ’Today :’, datetime.datetime.today()

print ’UTC Now:’, datetime.datetime.utcnow()

print

FIELDS = [’year’, ’month’, ’day’,

’hour’, ’minute’, ’second’, ’microsecond’,

]

d = datetime.datetime.now()

for attr in FIELDS:

print ’%15s: %s’ % (attr, getattr(d, attr))

As might be expected, the datetime instance has all attributes of both a date

and a time object.

ptg

4.2. datetime—Date and Time Value Manipulation 189

$ python datetime_datetime.py

Now

: 2010-11-27 11:20:10.479880

Today : 2010-11-27 11:20:10.481494

UTC Now: 2010-11-27 16:20:10.481521

year: 2010

month: 11

day: 27

hour: 11

minute: 20

second: 10

microsecond: 481752

Just as with date, datetime provides convenient class methods for creating new

instances. It also includes fromordinal() and fromtimestamp().

import datetime

t = datetime.time(1, 2, 3)

print ’t :’, t

d = datetime.date.today()

print ’d :’, d

dt = datetime.datetime.combine(d, t)

print ’dt:’, dt

combine() creates datetime instances from one date and one time instance.

$ python datetime_datetime_combine.py

t : 01:02:03

d : 2010-11-27

dt: 2010-11-27 01:02:03

4.2.7 Formatting and Parsing

The default string representation of a datetime object uses the ISO-8601 for-

mat (YYYY-MM-DDTHH:MM:SS.mmmmmm). Alternate formats can be generated using

strftime().

ptg

190 Dates and Times

import datetime

format = "%a %b %d %H:%M:%S %Y"

today = datetime.datetime.today()

print ’ISO :’, today

s = today.strftime(format)

print ’strftime:’, s

d = datetime.datetime.strptime(s, format)

print ’strptime:’, d.strftime(format)

Use datetime.strptime() to convert formatted strings to datetime instances.

$ python datetime_datetime_strptime.py

ISO : 2010-11-27 11:20:10.571582

strftime: Sat Nov 27 11:20:10 2010

strptime: Sat Nov 27 11:20:10 2010

4.2.8 Time Zones

Within datetime, time zones are represented by subclasses of tzinfo. Since tzinfo

is an abstract base class, applications need to define a subclass and provide appropriate

implementations for a few methods to make it useful. Unfortunately, datetime does

not include any actual ready-to-use implementations, although the documentation does

provide a few sample implementations. Refer to the standard library documentation

page for examples using fixed offsets, as well as a DST-aware class and more details

about creating custom time zone classes. pytz is also a good source for time zone

implementation details.

See Also:
datetime (http://docs.python.org/lib/module-datetime.html) The standard library

documentation for this module.

calendar (page 191) The calendar module.

time (page 173) The time module.

dateutil (http://labix.org/python-dateutil) dateutil from Labix extends the

datetime module with additional features.

WikiPedia: Proleptic Gregorian calendar
(http://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar) A description

of the Gregorian calendar system.

http://docs.python.org/lib/module-datetime.html
http://labix.org/python-dateutil
http://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar

ptg

4.3. calendar—Work with Dates 191

pytz (http://pytz.sourceforge.net/) World Time Zone database.

ISO 8601 (http://www.iso.org/iso/support/faqs/faqs_widely_used_standards/
widely_used_standards_other/date_and_time_format.htm) The stan-

dard for numeric representation of dates and time.

4.3 calendar—Work with Dates

Purpose The calendar module implements classes for working with

dates to manage year-, month-, and week-oriented values.

Python Version 1.4, with updates in 2.5

The calendar module defines the Calendar class, which encapsulates calculations

for values such as the dates of the weeks in a given month or year. In addition, the

TextCalendar and HTMLCalendar classes can produce preformatted output.

4.3.1 Formatting Examples

The prmonth() method is a simple function that produces the formatted text output

for a month.

import calendar

c = calendar.TextCalendar(calendar.SUNDAY)

c.prmonth(2011, 7)

The example configures TextCalendar to start weeks on Sunday, following the

American convention. The default is to use the European convention of starting a week

on Monday.

Here is what the output looks like.

$ python calendar_textcalendar.py

July 2011

Su Mo Tu We Th Fr Sa

1 2

3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

31

http://pytz.sourceforge.net/
http://www.iso.org/iso/support/faqs/faqs_widely_used_standards/widely_used_standards_other/date_and_time_format.htm
http://www.iso.org/iso/support/faqs/faqs_widely_used_standards/widely_used_standards_other/date_and_time_format.htm

ptg

192 Dates and Times

A similar HTML table can be produced with HTMLCalendar and

formatmonth(). The rendered output looks roughly the same as the plain-text

version, but is wrapped with HTML tags. Each table cell has a class attribute

corresponding to the day of the week so the HTML can be styled through CSS.

To produce output in a format other than one of the available defaults, use

calendar to calculate the dates and organize the values into week and month

ranges, and then iterate over the result. The weekheader(), monthcalendar(), and

yeardays2calendar() methods of Calendar are especially useful for that.

Calling yeardays2calendar() produces a sequence of “month row” lists. Each

list includes the months as another list of weeks. The weeks are lists of tuples made up

of day number (1–31) and weekday number (0–6). Days that fall outside of the month

have a day number of 0.

import calendar
import pprint

cal = calendar.Calendar(calendar.SUNDAY)

cal_data = cal.yeardays2calendar(2011, 3)

print ’len(cal_data) :’, len(cal_data)

top_months = cal_data[0]

print ’len(top_months) :’, len(top_months)

first_month = top_months[0]

print ’len(first_month) :’, len(first_month)

print ’first_month:’

pprint.pprint(first_month)

Calling yeardays2calendar(2011, 3) returns data for 2011, organized with

three months per row.

$ python calendar_yeardays2calendar.py

len(cal_data) : 4

len(top_months) : 3

len(first_month) : 6

first_month:

[[(0, 6), (0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 5)],

[(2, 6), (3, 0), (4, 1), (5, 2), (6, 3), (7, 4), (8, 5)],

ptg

4.3. calendar—Work with Dates 193

[(9, 6), (10, 0), (11, 1), (12, 2), (13, 3), (14, 4), (15, 5)],

[(16, 6), (17, 0), (18, 1), (19, 2), (20, 3), (21, 4), (22, 5)],

[(23, 6), (24, 0), (25, 1), (26, 2), (27, 3), (28, 4), (29, 5)],

[(30, 6), (31, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5)]]

This is equivalent to the data used by formatyear().

import calendar

cal = calendar.TextCalendar(calendar.SUNDAY)

print cal.formatyear(2011, 2, 1, 1, 3)

For the same arguments, formatyear() produces this output.

$ python calendar_formatyear.py

2011

January February March

Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa

1 1 2 3 4 5 1 2 3 4 5

2 3 4 5 6 7 8 6 7 8 9 10 11 12 6 7 8 9 10 11 12

9 10 11 12 13 14 15 13 14 15 16 17 18 19 13 14 15 16 17 18 19

16 17 18 19 20 21 22 20 21 22 23 24 25 26 20 21 22 23 24 25 26

23 24 25 26 27 28 29 27 28 27 28 29 30 31

30 31

April May June

Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa

1 2 1 2 3 4 5 6 7 1 2 3 4

3 4 5 6 7 8 9 8 9 10 11 12 13 14 5 6 7 8 9 10 11

10 11 12 13 14 15 16 15 16 17 18 19 20 21 12 13 14 15 16 17 18

17 18 19 20 21 22 23 22 23 24 25 26 27 28 19 20 21 22 23 24 25

24 25 26 27 28 29 30 29 30 31 26 27 28 29 30

July August September

Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa

1 2 1 2 3 4 5 6 1 2 3

3 4 5 6 7 8 9 7 8 9 10 11 12 13 4 5 6 7 8 9 10

10 11 12 13 14 15 16 14 15 16 17 18 19 20 11 12 13 14 15 16 17

17 18 19 20 21 22 23 21 22 23 24 25 26 27 18 19 20 21 22 23 24

24 25 26 27 28 29 30 28 29 30 31 25 26 27 28 29 30

31

ptg

194 Dates and Times

October November December

Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa

1 1 2 3 4 5 1 2 3

2 3 4 5 6 7 8 6 7 8 9 10 11 12 4 5 6 7 8 9 10

9 10 11 12 13 14 15 13 14 15 16 17 18 19 11 12 13 14 15 16 17

16 17 18 19 20 21 22 20 21 22 23 24 25 26 18 19 20 21 22 23 24

23 24 25 26 27 28 29 27 28 29 30 25 26 27 28 29 30 31

30 31

The day_name, day_abbr, month_name, and month_abbr module attributes

are useful for producing custom-formatted output (e.g., to include links in the HTML

output). They are automatically configured correctly for the current locale.

4.3.2 Calculating Dates

Although the calendar module focuses mostly on printing full calendars in various

formats, it also provides functions useful for working with dates in other ways, such as

calculating dates for a recurring event. For example, the Python Atlanta Users Group

meets on the second Thursday of every month. To calculate the meeting dates for a year,

use the return value of monthcalendar().

import calendar
import pprint

pprint.pprint(calendar.monthcalendar(2011, 7))

Some days have a 0 value. Those are days of the week that overlap with the given

month, but that are part of another month.

$ python calendar_monthcalendar.py

[[0, 0, 0, 0, 1, 2, 3],

[4, 5, 6, 7, 8, 9, 10],

[11, 12, 13, 14, 15, 16, 17],

[18, 19, 20, 21, 22, 23, 24],

[25, 26, 27, 28, 29, 30, 31]]

The first day of the week defaults to Monday. It is possible to change that setting

by calling setfirstweekday(), but since the calendar module includes constants

for indexing into the date ranges returned by monthcalendar(), it is more convenient

to skip that step in this case.

ptg

4.3. calendar—Work with Dates 195

To calculate the group meeting dates for 2011, assuming the second Thursday of

every month, the 0 values indicate whether the Thursday of the first week is included

in the month (or if the month starts, for example, on a Friday).

import calendar

Show every month

for month in range(1, 13):

Compute the dates for each week that overlaps the month

c = calendar.monthcalendar(2011, month)

first_week = c[0]

second_week = c[1]

third_week = c[2]

If there is a Thursday in the first week, the second Thursday

is in the second week. Otherwise, the second Thursday must

be in the third week.

if first_week[calendar.THURSDAY]:

meeting_date = second_week[calendar.THURSDAY]

else:
meeting_date = third_week[calendar.THURSDAY]

print ’%3s: %2s’ % (calendar.month_abbr[month], meeting_date)

So, the meeting schedule for this year is

$ python calendar_secondthursday.py

Jan: 13

Feb: 10

Mar: 10

Apr: 14

May: 12

Jun: 9

Jul: 14

Aug: 11

Sep: 8

Oct: 13

Nov: 10

Dec: 8

ptg

196 Dates and Times

See Also:
calendar (http://docs.python.org/library/calendar.html) The standard library docu-

mentation for this module.

time (page 173) Lower-level time functions.

datetime (page 180) Manipulate date values, including timestamps and time zones.

http://docs.python.org/library/calendar.html

ptg

Chapter 5

MATHEMATICS

As a general-purpose programming language, Python is frequently used to solve math-

ematical problems. It includes built-in types for managing integers and floating-point

numbers, which are suitable for the basic math that might appear in an average applica-

tion. The standard library includes modules for more advanced needs.

Python’s built-in floating-point numbers use the underlying double representa-

tion. They are sufficiently precise for most programs with mathematical requirements,

but when more accurate representations of noninteger values are needed, the decimal

and fractions modules will be useful. Arithmetic with decimal and fractional values

retains precision, but it is not as fast as the native float.

The random module includes a uniform distribution pseudorandom number gen-

erator, as well as functions for simulating many common nonuniform distributions.

The math module contains fast implementations of advanced mathematical

functions, such as logarithms and trigonometric functions. The full complement of

IEEE functions usually found in the native platform C libraries is available through

the module.

5.1 decimal—Fixed and Floating-Point Math

Purpose Decimal arithmetic using fixed and floating-point numbers.

Python Version 2.4 and later

The decimal module implements fixed and floating-point arithmetic using the model

familiar to most people, rather than the IEEE floating-point version implemented by

most computer hardware and familiar to programmers. A Decimal instance can rep-

resent any number exactly, round it up or down, and apply a limit to the number of

significant digits.

197

ptg

198 Mathematics

5.1.1 Decimal

Decimal values are represented as instances of the Decimal class. The constructor

takes as argument one integer or string. Floating-point numbers can be converted to a

string before being used to create a Decimal, letting the caller explicitly deal with the

number of digits for values that cannot be expressed exactly using hardware floating-

point representations. Alternately, the class method from_float() converts to the

exact decimal representation.

import decimal

fmt = ’{0:<25} {1:<25}’

print fmt.format(’Input’, ’Output’)

print fmt.format(’-’ * 25, ’-’ * 25)

Integer

print fmt.format(5, decimal.Decimal(5))

String

print fmt.format(’3.14’, decimal.Decimal(’3.14’))

Float

f = 0.1

print fmt.format(repr(f), decimal.Decimal(str(f)))

print fmt.format(’%.23g’ % f,

str(decimal.Decimal.from_float(f))[:25])

The floating-point value of 0.1 is not represented as an exact value in binary, so

the representation as a float is different from the Decimal value. It is truncated to

25 characters in this output.

$ python decimal_create.py

Input Output

------------------------- -------------------------

5 5

3.14 3.14

0.1 0.1

0.10000000000000000555112 0.10000000000000000555111

Decimals can also be created from tuples containing a sign flag (0 for positive, 1

for negative), a tuple of digits, and an integer exponent.

ptg

5.1. decimal—Fixed and Floating-Point Math 199

import decimal

Tuple

t = (1, (1, 1), -2)

print ’Input :’, t

print ’Decimal:’, decimal.Decimal(t)

The tuple-based representation is less convenient to create, but it does offer a

portable way of exporting decimal values without losing precision. The tuple form

can be transmitted through the network or stored in a database that does not support

accurate decimal values, and then turned back into a Decimal instance later.

$ python decimal_tuple.py

Input : (1, (1, 1), -2)

Decimal: -0.11

5.1.2 Arithmetic

Decimal overloads the simple arithmetic operators so instances can be manipulated in

much the same way as the built-in numeric types.

import decimal

a = decimal.Decimal(’5.1’)

b = decimal.Decimal(’3.14’)

c = 4

d = 3.14

print ’a =’, repr(a)

print ’b =’, repr(b)

print ’c =’, repr(c)

print ’d =’, repr(d)

print

print ’a + b =’, a + b

print ’a - b =’, a - b

print ’a * b =’, a * b

print ’a / b =’, a / b

print

print ’a + c =’, a + c

print ’a - c =’, a - c

ptg

200 Mathematics

print ’a * c =’, a * c

print ’a / c =’, a / c

print

print ’a + d =’,

try:
print a + d

except TypeError, e:

print e

Decimal operators also accept integer arguments, but floating-point values must

be converted to Decimal instances.

$ python decimal_operators.py

a = Decimal(’5.1’)

b = Decimal(’3.14’)

c = 4

d = 3.14

a + b = 8.24

a - b = 1.96

a * b = 16.014

a / b = 1.624203821656050955414012739

a + c = 9.1

a - c = 1.1

a * c = 20.4

a / c = 1.275

a + d = unsupported operand type(s) for +: ’Decimal’ and ’float’

Beyond basic arithmetic, Decimal includes the methods to find the base 10 and

natural logarithms. The return values from log10() and ln() are Decimal instances,

so they can be used directly in formulas with other values.

5.1.3 Special Values

In addition to the expected numerical values, Decimal can represent several special

values, including positive and negative values for infinity, “not a number,” and zero.

import decimal

for value in [’Infinity’, ’NaN’, ’0’]:

ptg

5.1. decimal—Fixed and Floating-Point Math 201

print decimal.Decimal(value), decimal.Decimal(’-’ + value)

print

Math with infinity

print ’Infinity + 1:’, (decimal.Decimal(’Infinity’) + 1)

print ’-Infinity + 1:’, (decimal.Decimal(’-Infinity’) + 1)

Print comparing NaN

print decimal.Decimal(’NaN’) == decimal.Decimal(’Infinity’)

print decimal.Decimal(’NaN’) != decimal.Decimal(1)

Adding to infinite values returns another infinite value. Comparing for equality

with NaN always returns false, and comparing for inequality always returns true. Com-

paring for sort order against NaN is undefined and results in an error.

$ python decimal_special.py

Infinity -Infinity

NaN -NaN

0 -0

Infinity + 1: Infinity

-Infinity + 1: -Infinity

False

True

5.1.4 Context

So far, the examples all have used the default behaviors of the decimal module.

It is possible to override settings such as the precision maintained, how rounding is

performed, error handling, etc., by using a context. Contexts can be applied for all

Decimal instances in a thread or locally within a small code region.

Current Context

To retrieve the current global context, use getcontext().

import decimal
import pprint

context = decimal.getcontext()

print ’Emax =’, context.Emax

print ’Emin =’, context.Emin

ptg

202 Mathematics

print ’capitals =’, context.capitals

print ’prec =’, context.prec

print ’rounding =’, context.rounding

print ’flags =’

pprint.pprint(context.flags)

print ’traps =’

pprint.pprint(context.traps)

This example script shows the public properties of a Context.

$ python decimal_getcontext.py

Emax = 999999999

Emin = -999999999

capitals = 1

prec = 28

rounding = ROUND_HALF_EVEN

flags =

{<class ’decimal.Clamped’>: 0,

<class ’decimal.InvalidOperation’>: 0,

<class ’decimal.DivisionByZero’>: 0,

<class ’decimal.Inexact’>: 0,

<class ’decimal.Rounded’>: 0,

<class ’decimal.Subnormal’>: 0,

<class ’decimal.Overflow’>: 0,

<class ’decimal.Underflow’>: 0}

traps =

{<class ’decimal.Clamped’>: 0,

<class ’decimal.InvalidOperation’>: 1,

<class ’decimal.DivisionByZero’>: 1,

<class ’decimal.Inexact’>: 0,

<class ’decimal.Rounded’>: 0,

<class ’decimal.Subnormal’>: 0,

<class ’decimal.Overflow’>: 1,

<class ’decimal.Underflow’>: 0}

Precision

The prec attribute of the context controls the precision maintained for new values

created as a result of arithmetic. Literal values are maintained as described.

import decimal

d = decimal.Decimal(’0.123456’)

for i in range(4):

ptg

5.1. decimal—Fixed and Floating-Point Math 203

decimal.getcontext().prec = i

print i, ’:’, d, d * 1

To change the precision, assign a new value directly to the attribute.

$ python decimal_precision.py

0 : 0.123456 0

1 : 0.123456 0.1

2 : 0.123456 0.12

3 : 0.123456 0.123

Rounding

There are several options for rounding to keep values within the desired precision.

ROUND_CEILING Always round upward toward infinity.

ROUND_DOWN Always round toward zero.

ROUND_FLOOR Always round down toward negative infinity.

ROUND_HALF_DOWN Round away from zero if the last significant digit is greater than

or equal to 5; otherwise, round toward zero.

ROUND_HALF_EVEN Like ROUND_HALF_DOWN, except that if the value is 5, then the

preceding digit is examined. Even values cause the result to be rounded down,

and odd digits cause the result to be rounded up.

ROUND_HALF_UP Like ROUND_HALF_DOWN, except if the last significant digit is 5, the

value is rounded away from zero.

ROUND_UP Round away from zero.

ROUND_05UP Round away from zero if the last digit is 0 or 5; otherwise, round toward

zero.

import decimal

context = decimal.getcontext()

ROUNDING_MODES = [

’ROUND_CEILING’,

’ROUND_DOWN’,

’ROUND_FLOOR’,

’ROUND_HALF_DOWN’,

’ROUND_HALF_EVEN’,

’ROUND_HALF_UP’,

’ROUND_UP’,

’ROUND_05UP’,

]

header_fmt = ’{:10} ’ + ’ ’.join([’{:^8}’] * 6)

ptg

204 Mathematics

print header_fmt.format(’ ’,

’1/8 (1)’, ’-1/8 (1)’,

’1/8 (2)’, ’-1/8 (2)’,

’1/8 (3)’, ’-1/8 (3)’,

)

for rounding_mode in ROUNDING_MODES:

print ’{0:10}’.format(rounding_mode.partition(’_’)[-1]),

for precision in [1, 2, 3]:

context.prec = precision

context.rounding = getattr(decimal, rounding_mode)

value = decimal.Decimal(1) / decimal.Decimal(8)

print ’{0:^8}’.format(value),

value = decimal.Decimal(-1) / decimal.Decimal(8)

print ’{0:^8}’.format(value),

print

This program shows the effect of rounding the same value to different levels of

precision using the different algorithms.

$ python decimal_rounding.py

1/8 (1) -1/8 (1) 1/8 (2) -1/8 (2) 1/8 (3) -1/8 (3)

CEILING 0.2 -0.1 0.13 -0.12 0.125 -0.125

DOWN 0.1 -0.1 0.12 -0.12 0.125 -0.125

FLOOR 0.1 -0.2 0.12 -0.13 0.125 -0.125

HALF_DOWN 0.1 -0.1 0.12 -0.12 0.125 -0.125

HALF_EVEN 0.1 -0.1 0.12 -0.12 0.125 -0.125

HALF_UP 0.1 -0.1 0.13 -0.13 0.125 -0.125

UP 0.2 -0.2 0.13 -0.13 0.125 -0.125

05UP 0.1 -0.1 0.12 -0.12 0.125 -0.125

Local Context

Using Python 2.5 or later, the context can be applied to a block of code using the with
statement.

import decimal

with decimal.localcontext() as c:

c.prec = 2

print ’Local precision:’, c.prec

print ’3.14 / 3 =’, (decimal.Decimal(’3.14’) / 3)

ptg

5.1. decimal—Fixed and Floating-Point Math 205

print
print ’Default precision:’, decimal.getcontext().prec

print ’3.14 / 3 =’, (decimal.Decimal(’3.14’) / 3)

The Context supports the context manager API used by with, so the settings only

apply within the block.

$ python decimal_context_manager.py

Local precision: 2

3.14 / 3 = 1.0

Default precision: 28

3.14 / 3 = 1.046666666666666666666666667

Per-Instance Context

Contexts also can be used to construct Decimal instances, which then inherit from the

context the precision and rounding arguments to the conversion.

import decimal

Set up a context with limited precision

c = decimal.getcontext().copy()

c.prec = 3

Create our constant

pi = c.create_decimal(’3.1415’)

The constant value is rounded off

print ’PI :’, pi

The result of using the constant uses the global context

print ’RESULT:’, decimal.Decimal(’2.01’) * pi

This lets an application select the precision of constant values separately from the

precision of user data, for example.

$ python decimal_instance_context.py

PI : 3.14

RESULT: 6.3114

ptg

206 Mathematics

Threads

The “global” context is actually thread-local, so each thread can potentially be config-

ured using different values.

import decimal
import threading
from Queue import PriorityQueue

class Multiplier(threading.Thread):
def __init__(self, a, b, prec, q):

self.a = a

self.b = b

self.prec = prec

self.q = q

threading.Thread.__init__(self)

def run(self):

c = decimal.getcontext().copy()

c.prec = self.prec

decimal.setcontext(c)

self.q.put((self.prec, a * b))

return

a = decimal.Decimal(’3.14’)

b = decimal.Decimal(’1.234’)

A PriorityQueue will return values sorted by precision, no matter

what order the threads finish.

q = PriorityQueue()

threads = [Multiplier(a, b, i, q) for i in range(1, 6)]

for t in threads:

t.start()

for t in threads:

t.join()

for i in range(5):

prec, value = q.get()

print prec, ’\t’, value

This example creates a new context using the specified value, and then installs it

within each thread.

ptg

5.2. fractions—Rational Numbers 207

$ python decimal_thread_context.py

1 4

2 3.9

3 3.87

4 3.875

5 3.8748

See Also:
decimal (http://docs.python.org/library/decimal.html) The standard library docu-

mentation for this module.

Floating Point (http://en.wikipedia.org/wiki/Floating_point) Wikipedia article on

floating-point representations and arithmetic.

Floating Point Arithmetic: Issues and Limitations
(http://docs.python.org/tutorial/floatingpoint.html) Article from the Python

tutorial describing floating-point math representation issues.

5.2 fractions—Rational Numbers

Purpose Implements a class for working with rational numbers.

Python Version 2.6 and later

The Fraction class implements numerical operations for rational numbers based on

the API defined by Rational in the numbers module.

5.2.1 Creating Fraction Instances

As with the decimal module, new values can be created in several ways. One easy

way is to create them from separate numerator and denominator values, as follows.

import fractions

for n, d in [(1, 2), (2, 4), (3, 6)]:

f = fractions.Fraction(n, d)

print ’%s/%s = %s’ % (n, d, f)

http://docs.python.org/library/decimal.html
http://en.wikipedia.org/wiki/Floating_point
http://docs.python.org/tutorial/.oatingpoint.html

ptg

208 Mathematics

The lowest common denominator is maintained as new values are computed.

$ python fractions_create_integers.py

1/2 = 1/2

2/4 = 1/2

3/6 = 1/2

Another way to create a Fraction is to use a string representation of <numera-

tor> / <denominator>:

import fractions

for s in [’1/2’, ’2/4’, ’3/6’]:

f = fractions.Fraction(s)

print ’%s = %s’ % (s, f)

The string is parsed to find the numerator and denominator values.

$ python fractions_create_strings.py

1/2 = 1/2

2/4 = 1/2

3/6 = 1/2

Strings can also use the more usual decimal or floating-point notation of a series

of digits separated by a period.

import fractions

for s in [’0.5’, ’1.5’, ’2.0’]:

f = fractions.Fraction(s)

print ’%s = %s’ % (s, f)

The numerator and denominator values represented by the floating-point value are

computed automatically.

$ python fractions_create_strings_floats.py

0.5 = 1/2

1.5 = 3/2

2.0 = 2

ptg

5.2. fractions—Rational Numbers 209

There are also class methods for creating Fraction instances directly from other

representations of rational values, such as float or Decimal.

import fractions

for v in [0.1, 0.5, 1.5, 2.0]:

print ’%s = %s’ % (v, fractions.Fraction.from_float(v))

Floating-point values that cannot be expressed exactly may yield unexpected

results.

$ python fractions_from_float.py

0.1 = 3602879701896397/36028797018963968

0.5 = 1/2

1.5 = 3/2

2.0 = 2

Using decimal representations of the values gives the expected results.

import decimal
import fractions

for v in [decimal.Decimal(’0.1’),

decimal.Decimal(’0.5’),

decimal.Decimal(’1.5’),

decimal.Decimal(’2.0’),

]:

print ’%s = %s’ % (v, fractions.Fraction.from_decimal(v))

The internal implementation of the decimal does not suffer from the precision

errors of the standard floating-point representation.

$ python fractions_from_decimal.py

0.1 = 1/10

0.5 = 1/2

1.5 = 3/2

2.0 = 2

ptg

210 Mathematics

5.2.2 Arithmetic

Once the fractions are instantiated, they can be used in mathematical expressions.

import fractions

f1 = fractions.Fraction(1, 2)

f2 = fractions.Fraction(3, 4)

print ’%s + %s = %s’ % (f1, f2, f1 + f2)

print ’%s - %s = %s’ % (f1, f2, f1 - f2)

print ’%s * %s = %s’ % (f1, f2, f1 * f2)

print ’%s / %s = %s’ % (f1, f2, f1 / f2)

All standard operators are supported.

$ python fractions_arithmetic.py

1/2 + 3/4 = 5/4

1/2 - 3/4 = -1/4

1/2 * 3/4 = 3/8

1/2 / 3/4 = 2/3

5.2.3 Approximating Values

A useful feature of Fraction is the ability to convert a floating-point number to an

approximate rational value.

import fractions
import math

print ’PI =’, math.pi

f_pi = fractions.Fraction(str(math.pi))

print ’No limit =’, f_pi

for i in [1, 6, 11, 60, 70, 90, 100]:

limited = f_pi.limit_denominator(i)

print ’{0:8} = {1}’.format(i, limited)

The value of the fraction can be controlled by limiting the denominator size.

ptg

5.3. random—Pseudorandom Number Generators 211

$ python fractions_limit_denominator.py

PI

= 3.14159265359

No limit = 314159265359/100000000000

1 = 3

6 = 19/6

11 = 22/7

60 = 179/57

70 = 201/64

90 = 267/85

100 = 311/99

See Also:
fractions (http://docs.python.org/library/fractions.html) The standard library doc

umentation for this module.

decimal (page 197) The decimal module provides an API for fixed and floating-

point math.

numbers (http://docs.python.org/library/numbers.html) Numeric abstract base

classes.

5.3 random—Pseudorandom Number Generators

Purpose Implements several types of pseudorandom number generators.

Python Version 1.4 and later

The random module provides a fast pseudorandom number generator based on the

Mersenne Twister algorithm. Originally developed to produce inputs for Monte Carlo

simulations, Mersenne Twister generates numbers with nearly uniform distribution and

a large period, making it suited for a wide range of applications.

5.3.1 Generating Random Numbers

The random() function returns the next random floating-point value from the

generated sequence. All return values fall within the range 0 <= n < 1.0.

import random

for i in xrange(5):

print ’%04.3f’ % random.random(),

print

http://docs.python.org/library/fractions.html
http://docs.python.org/library/numbers.html

ptg

212 Mathematics

Running the program repeatedly produces different sequences of numbers.

$ python random_random.py

0.809 0.485 0.521 0.800 0.247

$ python random_random.py

0.614 0.551 0.705 0.479 0.659

To generate numbers in a specific numerical range, use uniform() instead.

import random

for i in xrange(5):

print ’%04.3f’ % random.uniform(1, 100),

print

Pass minimum and maximum values, and uniform() adjusts the return values

from random() using the formula min + (max - min) * random().

$ python random_uniform.py

78.558 96.734 74.521 52.386 98.499

5.3.2 Seeding

random() produces different values each time it is called and has a very large period

before it repeats any numbers. This is useful for producing unique values or variations,

but there are times when having the same data set available to be processed in different

ways is useful. One technique is to use a program to generate random values and save

them to be processed by a separate step. That may not be practical for large amounts of

data, though, so random includes the seed() function for initializing the pseudoran-

dom generator so that it produces an expected set of values.

import random

random.seed(1)

for i in xrange(5):

print ’%04.3f’ % random.random(),

print

ptg

5.3. random—Pseudorandom Number Generators 213

The seed value controls the first value produced by the formula used to produce

pseudorandom numbers, and since the formula is deterministic, it also sets the full se-

quence produced after the seed is changed. The argument to seed() can be any hash-

able object. The default is to use a platform-specific source of randomness, if one is

available. Otherwise, the current time is used.

$ python random_seed.py

0.134 0.847 0.764 0.255 0.495

$ python random_seed.py

0.134 0.847 0.764 0.255 0.495

5.3.3 Saving State

The internal state of the pseudorandom algorithm used by random() can be saved

and used to control the numbers produced in subsequent runs. Restoring the previous

state before continuing reduces the likelihood of repeating values or sequences of val-

ues from the earlier input. The getstate() function returns data that can be used to

reinitialize the random number generator later with setstate().

import random
import os
import cPickle as pickle

if os.path.exists(’state.dat’):

Restore the previously saved state

print ’Found state.dat, initializing random module’

with open(’state.dat’, ’rb’) as f:

state = pickle.load(f)

random.setstate(state)

else:
Use a well-known start state

print ’No state.dat, seeding’

random.seed(1)

Produce random values

for i in xrange(3):

print ’%04.3f’ % random.random(),

print

ptg

214 Mathematics

Save state for next time

with open(’state.dat’, ’wb’) as f:

pickle.dump(random.getstate(), f)

Produce more random values

print ’\nAfter saving state:’

for i in xrange(3):

print ’%04.3f’ % random.random(),

print

The data returned by getstate() is an implementation detail, so this example

saves the data to a file with pickle, but otherwise treats it as a black box. If the file

exists when the program starts, it loads the old state and continues. Each run produces

a few numbers before and after saving the state to show that restoring the state causes

the generator to produce the same values again.

$ python random_state.py

No state.dat, seeding

0.134 0.847 0.764

After saving state:

0.255 0.495 0.449

$ python random_state.py

Found state.dat, initializing random module

0.255 0.495 0.449

After saving state:

0.652 0.789 0.094

5.3.4 Random Integers

random() generates floating-point numbers. It is possible to convert the results to in-

tegers, but using randint() to generate integers directly is more convenient.

import random

print ’[1, 100]:’,

ptg

5.3. random—Pseudorandom Number Generators 215

for i in xrange(3):

print random.randint(1, 100),

print ’\n[-5, 5]:’,

for i in xrange(3):

print random.randint(-5, 5),

print

The arguments to randint() are the ends of the inclusive range for the values.

The numbers can be positive or negative, but the first value should be less than the

second.

$ python random_randint.py

[1, 100]: 91 77 67

[-5, 5]: -5 -3 3

randrange() is a more general form of selecting values from a range.

import random

for i in xrange(3):

print random.randrange(0, 101, 5),

print

randrange() supports a step argument, in addition to start and stop values, so it

is fully equivalent to selecting a random value from range(start, stop, step).

It is more efficient, because the range is not actually constructed.

$ python random_randrange.py

50 10 60

5.3.5 Picking Random Items

One common use for random number generators is to select a random item from a

sequence of enumerated values, even if those values are not numbers. random includes

the choice() function for making a random selection from a sequence. This example

simulates flipping a coin 10,000 times to count how many times it comes up heads and

how many times it comes up tails.

ptg

216 Mathematics

import random
import itertools

outcomes = { ’heads’:0,

’tails’:0,

}

sides = outcomes.keys()

for i in range(10000):

outcomes[random.choice(sides)] += 1

print ’Heads:’, outcomes[’heads’]

print ’Tails:’, outcomes[’tails’]

Only two outcomes are allowed, so rather than use numbers and convert them,

the words “heads” and “tails” are used with choice(). The results are tabulated in a

dictionary using the outcome names as keys.

$ python random_choice.py

Heads: 5038

Tails: 4962

5.3.6 Permutations

A simulation of a card game needs to mix up the deck of cards and then deal the cards

to the players, without using the same card more than once. Using choice() could

result in the same card being dealt twice, so instead, the deck can be mixed up with

shuffle() and then individual cards removed as they are dealt.

import random
import itertools

FACE_CARDS = (’J’, ’Q’, ’K’, ’A’)

SUITS = (’H’, ’D’, ’C’, ’S’)

def new_deck():

return list(itertools.product(

itertools.chain(xrange(2, 11), FACE_CARDS),

SUITS,

))

ptg

5.3. random—Pseudorandom Number Generators 217

def show_deck(deck):

p_deck = deck[:]

while p_deck:

row = p_deck[:13]

p_deck = p_deck[13:]

for j in row:

print ’%2s%s’ % j,

print

Make a new deck, with the cards in order

deck = new_deck()

print ’Initial deck:’

show_deck(deck)

Shuffle the deck to randomize the order

random.shuffle(deck)

print ’\nShuffled deck:’

show_deck(deck)

Deal 4 hands of 5 cards each

hands = [[], [], [], []]

for i in xrange(5):

for h in hands:

h.append(deck.pop())

Show the hands

print ’\nHands:’
for n, h in enumerate(hands):

print ’%d:’ % (n+1),

for c in h:

print ’%2s%s’ % c,

print

Show the remaining deck

print ’\nRemaining deck:’

show_deck(deck)

The cards are represented as tuples with the face value and a letter indicating the

suit. The dealt “hands” are created by adding one card at a time to each of four lists and

then removing it from the deck so it cannot be dealt again.

ptg

218 Mathematics

$ python random_shuffle.py

Initial deck:

2H 2D 2C 2S 3H 3D 3C 3S 4H 4D 4C 4S 5H

5D 5C 5S 6H 6D 6C 6S 7H 7D 7C 7S 8H 8D

8C 8S 9H 9D 9C 9S 10H 10D 10C 10S JH JD JC

JS QH QD QC QS KH KD KC KS AH AD AC AS

Shuffled deck:

3C KH QH 6H JD AC 7S 5D 3S 10S 7H QC 2C

5C 7C 4H 6S 9D 10H 4D 2H 3D 7D 5S 10D 9H

2S 9C KC 5H 6C 8S 3H 10C JS 2D AH KD AD

4C QS 8D 8C JC 8H 4S JH QD 9S AS KS 6D

Hands:

1: 6D QD JC 4C 2D

2: KS JH 8C AD JS

3: AS 4S 8D KD 10C

4: 9S 8H QS AH 3H

Remaining deck:

3C KH QH 6H JD AC 7S 5D 3S 10S 7H QC 2C

5C 7C 4H 6S 9D 10H 4D 2H 3D 7D 5S 10D 9H

2S 9C KC 5H 6C 8S

5.3.7 Sampling

Many simulations need random samples from a population of input values. The

sample() function generates samples without repeating values and without modify-

ing the input sequence. This example prints a random sample of words from the system

dictionary.

import random

with open(’/usr/share/dict/words’, ’rt’) as f:

words = f.readlines()

words = [w.rstrip() for w in words]

for w in random.sample(words, 5):

print w

The algorithm for producing the result set takes into account the sizes of the input

and the sample requested to produce the result as efficiently as possible.

ptg

5.3. random—Pseudorandom Number Generators 219

$ python random_sample.py

pleasureman

consequency

docibility

youdendrift

Ituraean

$ python random_sample.py

jigamaree

readingdom

sporidium

pansylike

foraminiferan

5.3.8 Multiple Simultaneous Generators

In addition to module-level functions, random includes a Random class to manage the

internal state for several random number generators. All of the functions described ear-

lier are available as methods of the Random instances, and each instance can be initial-

ized and used separately, without interfering with the values returned by other instances.

import random
import time

print ’Default initializiation:\n’

r1 = random.Random()

r2 = random.Random()

for i in xrange(3):

print ’%04.3f %04.3f’ % (r1.random(), r2.random())

print ’\nSame seed:\n’

seed = time.time()

r1 = random.Random(seed)

r2 = random.Random(seed)

for i in xrange(3):

print ’%04.3f %04.3f’ % (r1.random(), r2.random())

ptg

220 Mathematics

On a system with good native random-value seeding, the instances start out in

unique states. However, if there is no good platform random-value generator, the

instances are likely to have been seeded with the current time, and therefore, produce

the same values.

$ python random_random_class.py

Default initializiation:

0.370 0.303

0.437 0.142

0.323 0.088

Same seed:

0.684 0.684

0.060 0.060

0.977 0.977

To ensure that the generators produce values from different parts of the random

period, use jumpahead() to shift one of them away from its initial state.

import random
import time

r1 = random.Random()

r2 = random.Random()

Force r2 to a different part of the random period than r1.

r2.setstate(r1.getstate())

r2.jumpahead(1024)

for i in xrange(3):

print ’%04.3f %04.3f’ % (r1.random(), r2.random())

The argument to jumpahead() should be a nonnegative integer based the number

of values needed from each generator. The internal state of the generator is scrambled

based on the input value, but not simply by incrementing it by the number of steps

given.

$ python random_jumpahead.py

ptg

5.3. random—Pseudorandom Number Generators 221

0.858 0.093

0.510 0.707

0.444 0.556

5.3.9 SystemRandom

Some operating systems provide a random number generator that has access to more

sources of entropy that can be introduced into the generator. random exposes this fea-

ture through the SystemRandom class, which has the same API as Random but uses

os.urandom() to generate the values that form the basis of all other algorithms.

import random
import time

print ’Default initializiation:\n’

r1 = random.SystemRandom()

r2 = random.SystemRandom()

for i in xrange(3):

print ’%04.3f %04.3f’ % (r1.random(), r2.random())

print ’\nSame seed:\n’

seed = time.time()

r1 = random.SystemRandom(seed)

r2 = random.SystemRandom(seed)

for i in xrange(3):

print ’%04.3f %04.3f’ % (r1.random(), r2.random())

Sequences produced by SystemRandom are not reproducible because the random-

ness is coming from the system, rather than from the software state (in fact, seed()

and setstate() have no effect at all).

$ python random_system_random.py

Default initializiation:

0.551 0.873

0.643 0.975

0.106 0.268

ptg

222 Mathematics

Same seed:

0.211 0.985

0.101 0.852

0.887 0.344

5.3.10 Nonuniform Distributions

While the uniform distribution of the values produced by random() is useful for a lot

of purposes, other distributions more accurately model specific situations. The random

module includes functions to produce values in those distributions, too. They are listed

here, but not covered in detail because their uses tend to be specialized and require more

complex examples.

Normal

The normal distribution is commonly used for nonuniform continuous values, such as

grades, heights, weights, etc. The curve produced by the distribution has a distinctive

shape that has lead to it being nicknamed a “bell curve.” random includes two functions

for generating values with a normal distribution, normalvariate() and the slightly

faster gauss(). (The normal distribution is also called the Gaussian distribution.)

The related function, lognormvariate(), produces pseudorandom values where

the logarithm of the values is distributed normally. Log-normal distributions are useful

for values that are the product of several random variables that do not interact.

Approximation

The triangular distribution is used as an approximate distribution for small sample

sizes. The “curve” of a triangular distribution has low points at known minimum and

maximum values, and a high point at the mode, which is estimated based on a “most

likely” outcome (reflected by the mode argument to triangular()).

Exponential

expovariate() produces an exponential distribution useful for simulating arrival or

interval time values for use in homogeneous Poisson processes, such as the rate of

radioactive decay or requests coming into a Web server.

The Pareto, or power law, distribution matches many observable phenomena and

was popularized by The Long Tail, by Chris Anderson. The paretovariate() func-

tion is useful for simulating allocation of resources to individuals (wealth to people,

demand for musicians, attention to blogs, etc.).

ptg

5.4. math—Mathematical Functions 223

Angular

The von Mises, or circular normal, distribution (produced by vonmisesvariate())

is used for computing probabilities of cyclic values, such as angles, calendar days, and

times.

Sizes

betavariate() generates values with the Beta distribution, which is commonly used

in Bayesian statistics and applications such as task duration modeling.

The Gamma distribution produced by gammavariate() is used for modeling the

sizes of things, such as waiting times, rainfall, and computational errors.

The Weibull distribution computed by weibullvariate() is used in failure

analysis, industrial engineering, and weather forecasting. It describes the distribution

of sizes of particles or other discrete objects.

See Also:
random (http://docs.python.org/library/random.html) The standard library docu-

mentation for this module.

Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom
number generator Article by M. Matsumoto and T. Nishimura from ACM
Transactions on Modeling and Computer Simulation, Vol. 8, No. 1, January

pp. 3–30 1998.

Mersenne Twister (http://en.wikipedia.org/wiki/Mersenne_twister) Wikipedia

article about the pseudorandom generator algorithm used by Python.

Uniform distribution [http://en.wikipedia.org/wiki/Uniform_distribution_
(continuous)] Wikipedia article about continuous uniform distributions in

statistics.

5.4 math—Mathematical Functions

Purpose Provides functions for specialized mathematical operations.

Python Version 1.4 and later

The math module implements many of the IEEE functions that would normally be

found in the native platform C libraries for complex mathematical operations using

floating-point values, including logarithms and trigonometric operations.

5.4.1 Special Constants

Many math operations depend on special constants. math includes values for π (pi)

and e.

http://docs.python.org/library/random.html
http://en.wikipedia.org/wiki/Mersenne_twister
http://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
http://en.wikipedia.org/wiki/Uniform_distribution_(continuous)

ptg

224 Mathematics

import math

print ’π: %.30f’ % math.pi

print ’e: %.30f’ % math.e

Both values are limited in precision only by the platform’s floating-point C library.

$ python math_constants.py

π: 3.141592653589793115997963468544

e: 2.718281828459045090795598298428

5.4.2 Testing for Exceptional Values

Floating-point calculations can result in two types of exceptional values. The first of

these, INF (infinity), appears when the double used to hold a floating-point value over-

flows from a value with a large absolute value.

import math

print ’{:^3} {:6} {:6} {:6}’.format(’e’, ’x’, ’x**2’, ’isinf’)

print ’{:-^3} {:-^6} {:-^6} {:-^6}’.format(’’, ’’, ’’, ’’)

for e in range(0, 201, 20):

x = 10.0 ** e

y = x*x

print ’{:3d} {!s:6} {!s:6} {!s:6}’.format(e, x, y,

math.isinf(y),

)

When the exponent in this example grows large enough, the square of x no longer

fits inside a double, and the value is recorded as infinite.

$ python math_isinf.py

e x x**2 isinf

--- ------ ------ ------

0 1.0 1.0 False

20 1e+20 1e+40 False

40 1e+40 1e+80 False

60 1e+60 1e+120 False

80 1e+80 1e+160 False

ptg

5.4. math—Mathematical Functions 225

100 1e+100 1e+200 False

120 1e+120 1e+240 False

140 1e+140 1e+280 False

160 1e+160 inf True

180 1e+180 inf True

200 1e+200 inf True

Not all floating-point overflows result in INF values, however. Calculating an ex-

ponent with floating-point values, in particular, raises OverflowError instead of pre-

serving the INF result.

x = 10.0 ** 200

print ’x =’, x

print ’x*x =’, x*x

try:
print ’x**2 =’, x**2

except OverflowError, err:

print err

This discrepancy is caused by an implementation difference in the library used by

C Python.

$ python math_overflow.py

x = 1e+200

x*x = inf

x**2 = (34, ’Result too large’)

Division operations using infinite values are undefined. The result of dividing a

number by infinity is NaN (not a number).

import math

x = (10.0 ** 200) * (10.0 ** 200)

y = x/x

print ’x =’, x

print ’isnan(x) =’, math.isnan(x)

print ’y = x / x =’, x/x

print ’y == nan =’, y == float(’nan’)

print ’isnan(y) =’, math.isnan(y)

ptg

226 Mathematics

NaN does not compare as equal to any value, even itself, so to check for NaN, use

isnan().

$ python math_isnan.py

x = inf

isnan(x) = False

y = x / x = nan

y == nan = False

isnan(y) = True

5.4.3 Converting to Integers

The math module includes three functions for converting floating-point values to

whole numbers. Each takes a different approach and will be useful in different

circumstances.

The simplest is trunc(), which truncates the digits following the decimal, leaving

only the significant digits making up the whole-number portion of the value. floor()

converts its input to the largest preceding integer, and ceil() (ceiling) produces the

largest integer following sequentially after the input value.

import math

HEADINGS = (’i’, ’int’, ’trunk’, ’floor’, ’ceil’)

print ’{:^5} {:^5} {:^5} {:^5} {:^5}’.format(*HEADINGS)

print ’{:-^5} {:-^5} {:-^5} {:-^5} {:-^5}’.format(

’’, ’’, ’’, ’’, ’’,

)

fmt = ’ ’.join([’{:5.1f}’] * 5)

TEST_VALUES = [-1.5,

-0.8,

-0.5,

-0.2,

0,

0.2,

0.5,

0.8,

1,

]

ptg

5.4. math—Mathematical Functions 227

for i in TEST_VALUES:

print fmt.format(i,

int(i),

math.trunc(i),

math.floor(i),

math.ceil(i))

trunc() is equivalent to converting to int directly.

$ python math_integers.py

i int trunk floor ceil

----- ----- ----- ----- -----

-1.5 -1.0 -1.0 -2.0 -1.0

-0.8 0.0 0.0 -1.0 -0.0

-0.5 0.0 0.0 -1.0 -0.0

-0.2 0.0 0.0 -1.0 -0.0

0.0 0.0 0.0 0.0 0.0

0.2 0.0 0.0 0.0 1.0

0.5 0.0 0.0 0.0 1.0

0.8 0.0 0.0 0.0 1.0

1.0 1.0 1.0 1.0 1.0

5.4.4 Alternate Representations

modf() takes a single floating-point number and returns a tuple containing the frac-

tional and whole-number parts of the input value.

import math

for i in range(6):

print ’{}/2 = {}’.format(i, math.modf(i/2.0))

Both numbers in the return value are floats.

$ python math_modf.py

0/2 = (0.0, 0.0)

1/2 = (0.5, 0.0)

2/2 = (0.0, 1.0)

3/2 = (0.5, 1.0)

4/2 = (0.0, 2.0)

5/2 = (0.5, 2.0)

ptg

228 Mathematics

frexp() returns the mantissa and exponent of a floating-point number, and can

be used to create a more portable representation of the value.

import math

print ’{:^7} {:^7} {:^7}’.format(’x’, ’m’, ’e’)

print ’{:-^7} {:-^7} {:-^7}’.format(’’, ’’, ’’)

for x in [0.1, 0.5, 4.0]:

m, e = math.frexp(x)

print ’{:7.2f} {:7.2f} {:7d}’.format(x, m, e)

frexp() uses the formula x = m * 2**e, and returns the values m and e.

$ python math_frexp.py

x m e

------- ------- -------

0.10 0.80 -3

0.50 0.50 0

4.00 0.50 3

ldexp() is the inverse of frexp().

import math

print ’{:^7} {:^7} {:^7}’.format(’m’, ’e’, ’x’)

print ’{:-^7} {:-^7} {:-^7}’.format(’’, ’’, ’’)

for m, e in [(0.8, -3),

(0.5, 0),

(0.5, 3),

]:

x = math.ldexp(m, e)

print ’{:7.2f} {:7d} {:7.2f}’.format(m, e, x)

Using the same formula as frexp(), ldexp() takes the mantissa and exponent values

as arguments and returns a floating-point number.

ptg

5.4. math—Mathematical Functions 229

$ python math_ldexp.py

m e x

------- ------- -------

0.80 -3 0.10

0.50 0 0.50

0.50 3 4.00

5.4.5 Positive and Negative Signs

The absolute value of a number is its value without a sign. Use fabs() to calculate the

absolute value of a floating-point number.

import math

print math.fabs(-1.1)

print math.fabs(-0.0)

print math.fabs(0.0)

print math.fabs(1.1)

In practical terms, the absolute value of a float is represented as a positive value.

$ python math_fabs.py

1.1

0.0

0.0

1.1

To determine the sign of a value, either to give a set of values the same sign or to

compare two values, use copysign() to set the sign of a known good value.

import math

HEADINGS = (’f’, ’s’, ’< 0’, ’> 0’, ’= 0’)

print ’{:^5} {:^5} {:^5} {:^5} {:^5}’.format(*HEADINGS)

print ’{:-^5} {:-^5} {:-^5} {:-^5} {:-^5}’.format(

’’, ’’, ’’, ’’, ’’,

)

for f in [-1.0,

0.0,

1.0,

ptg

230 Mathematics

float(’-inf’),

float(’inf’),

float(’-nan’),

float(’nan’),

]:

s = int(math.copysign(1, f))

print ’{:5.1f} {:5d} {!s:5} {!s:5} {!s:5}’.format(

f, s, f < 0, f > 0, f==0,

)

An extra function like copysign() is needed because comparing NaN and –NaN

directly with other values does not work.

$ python math_copysign.py

f s < 0 > 0 = 0

----- ----- ----- ----- -----

-1.0 -1 True False False

0.0 1 False False True

1.0 1 False True False

-inf -1 True False False

inf 1 False True False

nan -1 False False False

nan 1 False False False

5.4.6 Commonly Used Calculations

Representing precise values in binary floating-point memory is challenging. Some val-

ues cannot be represented exactly, and the more often a value is manipulated through

repeated calculations, the more likely a representation error will be introduced. math

includes a function for computing the sum of a series of floating-point numbers using

an efficient algorithm that minimizes such errors.

import math

values = [0.1] * 10

print ’Input values:’, values

print ’sum() : {:.20f}’.format(sum(values))

s = 0.0

ptg

5.4. math—Mathematical Functions 231

for i in values:

s += i

print ’for-loop : {:.20f}’.format(s)

print ’math.fsum() : {:.20f}’.format(math.fsum(values))

Given a sequence of ten values, each equal to 0.1, the expected value for the sum

of the sequence is 1.0. Since 0.1 cannot be represented exactly as a floating-point

value, however, errors are introduced into the sum unless it is calculated with fsum().

$ python math_fsum.py

Input values: [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]

sum() : 0.99999999999999988898

for-loop : 0.99999999999999988898

math.fsum() : 1.00000000000000000000

factorial() is commonly used to calculate the number of permutations and

combinations of a series of objects. The factorial of a positive integer n, expressed n!,

is defined recursively as (n-1)!*n and stops with 0!==1.

import math

for i in [0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.1]:

try:
print ’{:2.0f} {:6.0f}’.format(i, math.factorial(i))

except ValueError, err:

print ’Error computing factorial(%s):’ % i, err

factorial() only works with whole numbers, but it does accept float argu-

ments as long as they can be converted to an integer without losing value.

$ python math_factorial.py

0 1

1 1

2 2

3 6

4 24

5 120

Error computing factorial(6.1): factorial() only accepts integral

values

ptg

232 Mathematics

gamma() is like factorial(), except that it works with real numbers and the

value is shifted down by one (gamma is equal to (n - 1)!).

import math

for i in [0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6]:

try:
print ’{:2.1f} {:6.2f}’.format(i, math.gamma(i))

except ValueError, err:

print ’Error computing gamma(%s):’ % i, err

Since zero causes the start value to be negative, it is not allowed.

$ python math_gamma.py

Error computing gamma(0): math domain error

1.1 0.95

2.2 1.10

3.3 2.68

4.4 10.14

5.5 52.34

6.6 344.70

lgamma() returns the natural logarithm of the absolute value of gamma for the

input value.

import math

for i in [0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6]:

try:
print ’{:2.1f} {:.20f} {:.20f}’.format(

i,

math.lgamma(i),

math.log(math.gamma(i)),

)

except ValueError, err:

print ’Error computing lgamma(%s):’ % i, err

Using lgamma() retains more precision than calculating the logarithm separately

using the results of gamma().

ptg

5.4. math—Mathematical Functions 233

$ python math_lgamma.py

Error computing lgamma(0): math domain error

1.1 -0.04987244125984036103 -0.04987244125983997245

2.2 0.09694746679063825923 0.09694746679063866168

3.3 0.98709857789473387513 0.98709857789473409717

4.4 2.31610349142485727469 2.31610349142485727469

5.5 3.95781396761871651080 3.95781396761871606671

6.6 5.84268005527463252236 5.84268005527463252236

The modulo operator (%) computes the remainder of a division expression (e.g., 5

% 2 = 1). The operator built into the language works well with integers, but, as with so

many other floating-point operations, intermediate calculations cause representational

issues that result in a loss of data. fmod() provides a more accurate implementation

for floating-point values.

import math

print ’{:^4} {:^4} {:^5} {:^5}’.format(’x’, ’y’, ’%’, ’fmod’)

print ’---- ---- ----- -----’

for x, y in [(5, 2),

(5, -2),

(-5, 2),

]:

print ’{:4.1f} {:4.1f} {:5.2f} {:5.2f}’.format(

x,

y,

x % y,

math.fmod(x, y),

)

A potentially more frequent source of confusion is the fact that the algorithm used

by fmod() for computing modulo is also different from that used by %, so the sign of

the result is different.

$ python math_fmod.py

x y % fmod

---- ---- ----- -----

5.0 2.0 1.00 1.00

5.0 -2.0 -1.00 1.00

-5.0 2.0 1.00 -1.00

ptg

234 Mathematics

5.4.7 Exponents and Logarithms

Exponential growth curves appear in economics, physics, and other sciences. Python

has a built-in exponentiation operator (“**”), but pow() can be useful when a callable

function is needed as an argument to another function.

import math

for x, y in [

Typical uses

(2, 3),

(2.1, 3.2),

Always 1

(1.0, 5),

(2.0, 0),

Not-a-number

(2, float(’nan’)),

Roots

(9.0, 0.5),

(27.0, 1.0/3),

]:

print ’{:5.1f} ** {:5.3f} = {:6.3f}’.format(x, y, math.pow(x, y))

Raising 1 to any power always returns 1.0, as does raising any value to a power

of 0.0. Most operations on the not-a-number value nan return nan. If the exponent is

less than 1, pow() computes a root.

$ python math_pow.py

2.0 ** 3.000 = 8.000

2.1 ** 3.200 = 10.742

1.0 ** 5.000 = 1.000

2.0 ** 0.000 = 1.000

2.0 ** nan = nan

9.0 ** 0.500 = 3.000

27.0 ** 0.333 = 3.000

Since square roots (exponent of 12) are used so frequently, there is a separate func-

tion for computing them.

ptg

5.4. math—Mathematical Functions 235

import math

print math.sqrt(9.0)

print math.sqrt(3)

try:
print math.sqrt(-1)

except ValueError, err:

print ’Cannot compute sqrt(-1):’, err

Computing the square roots of negative numbers requires complex numbers, which

are not handled by math. Any attempt to calculate a square root of a negative value

results in a ValueError.

$ python math_sqrt.py

3.0

1.73205080757

Cannot compute sqrt(-1): math domain error

The logarithm function finds y where x = b ** y . By default, log() computes

the natural logarithm (the base is e). If a second argument is provided, that value is used

as the base.

import math

print math.log(8)

print math.log(8, 2)

print math.log(0.5, 2)

Logarithms where x is less than one yield negative results.

$ python math_log.py

2.07944154168

3.0

-1.0

There are two variations of log(). Given floating-point representation and

rounding errors, the computed value produced by log(x, b) has limited accuracy,

especially for some bases. log10() computes log(x, 10), using a more accurate

algorithm than log().

ptg

236 Mathematics

import math

print ’{:2} {:^12} {:^10} {:^20} {:8}’.format(

’i’, ’x’, ’accurate’, ’inaccurate’, ’mismatch’,

)

print ’{:-^2} {:-^12} {:-^10} {:-^20} {:-^8}’.format(

’’, ’’, ’’, ’’, ’’,

)

for i in range(0, 10):

x = math.pow(10, i)

accurate = math.log10(x)

inaccurate = math.log(x, 10)

match = ’’ if int(inaccurate) == i else ’*’

print ’{:2d} {:12.1f} {:10.8f} {:20.18f} {:^5}’.format(

i, x, accurate, inaccurate, match,

)

The lines in the output with trailing * highlight the inaccurate values.

$ python math_log10.py

i x accurate inaccurate mismatch

-- ------------ ---------- -------------------- --------

0 1.0 0.00000000 0.000000000000000000

1 10.0 1.00000000 1.000000000000000000

2 100.0 2.00000000 2.000000000000000000

3 1000.0 3.00000000 2.999999999999999556 *
4 10000.0 4.00000000 4.000000000000000000

5 100000.0 5.00000000 5.000000000000000000

6 1000000.0 6.00000000 5.999999999999999112 *
7 10000000.0 7.00000000 7.000000000000000000

8 100000000.0 8.00000000 8.000000000000000000

9 1000000000.0 9.00000000 8.999999999999998224 *

log1p() calculates the Newton-Mercator series (the natural logarithm of 1+x).

import math

x = 0.0000000000000000000000001

print ’x :’, x

print ’1 + x :’, 1+x

ptg

5.4. math—Mathematical Functions 237

print ’log(1+x):’, math.log(1+x)

print ’log1p(x):’, math.log1p(x)

log1p() is more accurate for values of x very close to zero because it uses an

algorithm that compensates for round-off errors from the initial addition.

$ python math_log1p.py

x : 1e-25

1 + x : 1.0

log(1+x): 0.0

log1p(x): 1e-25

exp() computes the exponential function (e**x).

import math

x = 2

fmt = ’%.20f’
print fmt % (math.e ** 2)

print fmt % math.pow(math.e, 2)

print fmt % math.exp(2)

As with other special-case functions, it uses an algorithm that produces more ac-

curate results than the general-purpose equivalent math.pow(math.e, x).

$ python math_exp.py

7.38905609893064951876

7.38905609893064951876

7.38905609893065040694

expm1() is the inverse of log1p() and calculates e**x - 1.

import math

x = 0.0000000000000000000000001

ptg

238 Mathematics

print x

print math.exp(x)- 1

print math.expm1(x)

Small values of x lose precision when the subtraction is performed separately, like

with log1p().

$ python math_expm1.py

1e-25

0.0

1e-25

5.4.8 Angles

Although degrees are more commonly used in everyday discussions of angles, radians

are the standard unit of angular measure in science and math. A radian is the angle

created by two lines intersecting at the center of a circle, with their ends on the circum-

ference of the circle spaced one radius apart.

The circumference is calculated as 2πr, so there is a relationship between radians

and π, a value that shows up frequently in trigonometric calculations. That relationship

leads to radians being used in trigonometry and calculus, because they result in more

compact formulas.

To convert from degrees to radians, use radians().

import math

print ’{:^7} {:^7} {:^7}’.format(’Degrees’, ’Radians’, ’Expected’)

print ’{:-^7} {:-^7} {:-^7}’.format(’’, ’’, ’’)

for deg, expected in [(0, 0),

(30, math.pi/6),

(45, math.pi/4),

(60, math.pi/3),

(90, math.pi/2),

(180, math.pi),

(270, 3/2.0 * math.pi),

(360, 2 * math.pi),

]:

ptg

5.4. math—Mathematical Functions 239

print ’{:7d} {:7.2f} {:7.2f}’.format(deg,

math.radians(deg),

expected,

)

The formula for the conversion is rad = deg * π / 180.

$ python math_radians.py

Degrees Radians Expected

------- ------- -------

0 0.00 0.00

30 0.52 0.52

45 0.79 0.79

60 1.05 1.05

90 1.57 1.57

180 3.14 3.14

270 4.71 4.71

360 6.28 6.28

To convert from radians to degrees, use degrees().

import math

print ’{:^8} {:^8} {:^8}’.format(’Radians’, ’Degrees’, ’Expected’)

print ’{:-^8} {:-^8} {:-^8}’.format(’’, ’’, ’’)

for rad, expected in [(0, 0),

(math.pi/6, 30),

(math.pi/4, 45),

(math.pi/3, 60),

(math.pi/2, 90),

(math.pi, 180),

(3 * math.pi / 2, 270),

(2 * math.pi, 360),

]:

print ’{:8.2f} {:8.2f} {:8.2f}’.format(rad,

math.degrees(rad),

expected,

)

The formula is deg = rad * 180 / π.

ptg

240 Mathematics

$ python math_degrees.py

Radians Degrees Expected

-------- -------- --------

0.00 0.00 0.00

0.52 30.00 30.00

0.79 45.00 45.00

1.05 60.00 60.00

1.57 90.00 90.00

3.14 180.00 180.00

4.71 270.00 270.00

6.28 360.00 360.00

5.4.9 Trigonometry

Trigonometric functions relate angles in a triangle to the lengths of its sides. They

show up in formulas with periodic properties such as harmonics or circular motion,

or when dealing with angles. All trigonometric functions in the standard library take

angles expressed as radians.

Given an angle in a right triangle, the sine is the ratio of the length of the

side opposite the angle to the hypotenuse (sin A = opposite/hypotenuse). The

cosine is the ratio of the length of the adjacent side to the hypotenuse (cos A = ad-

jacent/hypotenuse). And the tangent is the ratio of the opposite side to the adjacent

side (tan A = opposite/adjacent).

import math

print ’Degrees Radians Sine Cosine Tangent’

print ’------- ------- ------- -------- -------’

fmt = ’ ’.join([’%7.2f’] * 5)

for deg in range(0, 361, 30):

rad = math.radians(deg)

if deg in (90, 270):

t = float(’inf’)

else:
t = math.tan(rad)

print fmt % (deg, rad, math.sin(rad), math.cos(rad), t)

The tangent can also be defined as the ratio of the sine of the angle to its cosine,

and since the cosine is 0 for π/2 and 3π/2 radians, the tangent is infinite.

ptg

5.4. math—Mathematical Functions 241

$ python math_trig.py

Degrees Radians Sine Cosine Tangent

------- ------- ------- -------- -------

0.00 0.00 0.00 1.00 0.00

30.00 0.52 0.50 0.87 0.58

60.00 1.05 0.87 0.50 1.73

90.00 1.57 1.00 0.00 inf

120.00 2.09 0.87 -0.50 -1.73

150.00 2.62 0.50 -0.87 -0.58

180.00 3.14 0.00 -1.00 -0.00

210.00 3.67 -0.50 -0.87 0.58

240.00 4.19 -0.87 -0.50 1.73

270.00 4.71 -1.00 -0.00 inf

300.00 5.24 -0.87 0.50 -1.73

330.00 5.76 -0.50 0.87 -0.58

360.00 6.28 -0.00 1.00 -0.00

Given a point (x, y), the length of the hypotenuse for the triangle between the

points [(0, 0), (x, 0), (x, y)] is (x**2 + y**2) ** 1/2, and can be computed with

hypot().

import math

print ’{:^7} {:^7} {:^10}’.format(’X’, ’Y’, ’Hypotenuse’)

print ’{:-^7} {:-^7} {:-^10}’.format(’’, ’’, ’’)

for x, y in [# simple points

(1, 1),

(-1, -1),

(math.sqrt(2), math.sqrt(2)),

(3, 4), # 3-4-5 triangle

on the circle

(math.sqrt(2)/2, math.sqrt(2)/2), # pi/4 rads

(0.5, math.sqrt(3)/2), # pi/3 rads

]:

h = math.hypot(x, y)

print ’{:7.2f} {:7.2f} {:7.2f}’.format(x, y, h)

Points on the circle always have hypotenuse == 1.

ptg

242 Mathematics

$ python math_hypot.py

X

Y Hypotenuse

------- ------- ----------

1.00 1.00 1.41

-1.00 -1.00 1.41

1.41 1.41 2.00

3.00 4.00 5.00

0.71 0.71 1.00

0.50 0.87 1.00

The same function can be used to find the distance between two points.

import math

print ’{:^8} {:^8} {:^8} {:^8} {:^8}’.format(

’X1’, ’Y1’, ’X2’, ’Y2’, ’Distance’,

)

print ’{:-^8} {:-^8} {:-^8} {:-^8} {:-^8}’.format(

’’, ’’, ’’, ’’, ’’,

)

for (x1, y1), (x2, y2) in [((5, 5), (6, 6)),

((-6, -6), (-5, -5)),

((0, 0), (3, 4)), # 3-4-5 triangle

((-1, -1), (2, 3)), # 3-4-5 triangle

]:

x = x1 - x2

y = y1 - y2

h = math.hypot(x, y)

print ’{:8.2f} {:8.2f} {:8.2f} {:8.2f} {:8.2f}’.format(

x1, y1, x2, y2, h,

)

Use the difference in the x and y values to move one endpoint to the origin, and then

pass the results to hypot().

$ python math_distance_2_points.py

ptg

5.4. math—Mathematical Functions 243

X1 Y1 X2 Y2 Distance

-------- -------- -------- -------- --------

5.00 5.00 6.00 6.00 1.41

-6.00 -6.00 -5.00 -5.00 1.41

0.00 0.00 3.00 4.00 5.00

-1.00 -1.00 2.00 3.00 5.00

math also defines inverse trigonometric functions.

import math

for r in [0, 0.5, 1]:

print ’arcsine(%.1f) = %5.2f’ % (r, math.asin(r))

print ’arccosine(%.1f) = %5.2f’ % (r, math.acos(r))

print ’arctangent(%.1f) = %5.2f’ % (r, math.atan(r))

print

1.57 is roughly equal to π/2, or 90 degrees, the angle at which the sine is 1 and the

cosine is 0.

$ python math_inverse_trig.py

arcsine(0.0) = 0.00

arccosine(0.0) = 1.57

arctangent(0.0) = 0.00

arcsine(0.5) = 0.52

arccosine(0.5) = 1.05

arctangent(0.5) = 0.46

arcsine(1.0) = 1.57

arccosine(1.0) = 0.00

arctangent(1.0) = 0.79

5.4.10 Hyperbolic Functions

Hyperbolic functions appear in linear differential equations and are used when work-

ing with electromagnetic fields, fluid dynamics, special relativity, and other advanced

physics and mathematics.

ptg

244 Mathematics

import math

print ’{:^6} {:^6} {:^6} {:^6}’.format(

’X’, ’sinh’, ’cosh’, ’tanh’,

)

print ’{:-^6} {:-^6} {:-^6} {:-^6}’.format(’’, ’’, ’’, ’’)

fmt = ’ ’.join([’{:6.4f}’] * 4)

for i in range(0, 11, 2):

x = i/10.0

print fmt.format(x, math.sinh(x), math.cosh(x), math.tanh(x))

Whereas the cosine and sine functions enscribe a circle, the hyperbolic cosine and

hyperbolic sine form half of a hyperbola.

$ python math_hyperbolic.py

X sinh cosh tanh

------ ------ ------ ------

0.0000 0.0000 1.0000 0.0000

0.2000 0.2013 1.0201 0.1974

0.4000 0.4108 1.0811 0.3799

0.6000 0.6367 1.1855 0.5370

0.8000 0.8881 1.3374 0.6640

1.0000 1.1752 1.5431 0.7616

Inverse hyperbolic functions acosh(), asinh(), and atanh() are also

available.

5.4.11 Special Functions

The Gauss Error function is used in statistics.

import math

print ’{:^5} {:7}’.format(’x’, ’erf(x)’)

print ’{:-^5} {:-^7}’.format(’’, ’’)

for x in [-3, -2, -1, -0.5, -0.25, 0, 0.25, 0.5, 1, 2, 3]:

print ’{:5.2f} {:7.4f}’.format(x, math.erf(x))

For the error function, erf(-x) == -erf(x).

ptg

5.4. math—Mathematical Functions 245

$ python math_erf.py

x erf(x)

----- -------

-3.00 -1.0000

-2.00 -0.9953

-1.00 -0.8427

-0.50 -0.5205

-0.25 -0.2763

0.00 0.0000

0.25 0.2763

0.50 0.5205

1.00 0.8427

2.00 0.9953

3.00 1.0000

The complimentary error function is 1 - erf(x).

import math

print ’{:^5} {:7}’.format(’x’, ’erfc(x)’)

print ’{:-^5} {:-^7}’.format(’’, ’’)

for x in [-3, -2, -1, -0.5, -0.25, 0, 0.25, 0.5, 1, 2, 3]:

print ’{:5.2f} {:7.4f}’.format(x, math.erfc(x))

The implementation of erfc() avoids precision errors for small values of x when

subtracting from 1.

$ python math_erfc.py

x erfc(x)

----- -------

-3.00 2.0000

-2.00 1.9953

-1.00 1.8427

-0.50 1.5205

-0.25 1.2763

0.00 1.0000

0.25 0.7237

0.50 0.4795

1.00 0.1573

2.00 0.0047

3.00 0.0000

ptg

246 Mathematics

See Also:
math (http://docs.python.org/library/math.html) The standard library documenta-

tion for this module.

IEEE floating-point arithmetic in Python
(http://www.johndcook.com/blog/2009/07/21/ieee-arithmetic-python/) Blog

post by John Cook about how special values arise and are dealt with when doing

math in Python.

SciPy (http://scipy.org/) Open source libraries for scientific and mathematical calcu-

lations in Python.

http://docs.python.org/library/math.html
http://www.johndcook.com/blog/2009/07/21/ieee-arithmetic-python/
http://scipy.org/

ptg

Chapter 6

THE FILE SYSTEM

Python’s standard library includes a large range of tools for working with files on the

file system, building and parsing filenames, and examining file contents.

The first step in working with files is to determine the name of the file on which

to work. Python represents filenames as simple strings, but provides tools for building

them from standard, platform-independent components in os.path. List the contents

of a directory with listdir() from os, or use glob to build a list of filenames from

a pattern.

The filename pattern matching used by glob is also exposed directly through

fnmatch, so it can be used in other contexts.

dircache provides an efficient way to scan and process the contents of a directory

on the file system, and it is useful when processing files in situations where the names

are not known in advance.

After the name of the file is identified, other characteristics, such as permissions

or the file size, can be checked using os.stat() and the constants in stat.

When an application needs random access to files, linecache makes it easy to

read lines by their line number. The contents of the file are maintained in a cache, so be

careful of memory consumption.

tempfile is useful for cases that need to create scratch files to hold data tempora-

rily, or before moving it to a permanent location. It provides classes to create temporary

files and directories safely and securely. Names are guaranteed to be unique and include

random components so they are not easily guessable.

Frequently, programs need to work on files as a whole, without regard to their

content. The shutil module includes high-level file operations, such as copying files

and directories, and setting permissions.

The filecmp module compares files and directories by looking at the bytes they

contain, but without any special knowledge about their format.

247

ptg

248 The File System

The built-in file class can be used to read and write files visible on local file

systems. A program’s performance can suffer when it accesses large files through the

read() and write() interfaces, though, since they both involve copying the data

multiple times as it is moved from the disk to memory the application can see. Using

mmap tells the operating system to use its virtual memory subsystem to map a file’s

contents directly into memory accessible by a program, avoiding a copy step between

the operating system and the internal buffer for the file object.

Text data using characters not available in ASCII is usually saved in a Unicode

data format. Since the standard file handle assumes each byte of a text file represents

one character, reading Unicode text with multibyte encodings requires extra processing.

The codecs module handles the encoding and decoding automatically, so that in many

cases, a non-ASCII file can be used without any other changes.

For testing code that depends on reading or writing data from files, StringIO

provides an in-memory stream object that behaves like a file, but that does not reside

on disk.

6.1 os.path—Platform-Independent Manipulation of Filenames

Purpose Parse, build, test, and otherwise work on filenames and paths.

Python Version 1.4 and later

Writing code to work with files on multiple platforms is easy using the functions inclu-

ded in the os.path module. Even programs not intended to be ported between plat-

forms should use os.path for reliable filename parsing.

6.1.1 Parsing Paths

The first set of functions in os.path can be used to parse strings representing filenames

into their component parts. It is important to realize that these functions do not depend

on the paths actually existing; they operate solely on the strings.

Path parsing depends on a few variables defined in os:

• os.sep—The separator between portions of the path (e.g., “/” or “\”).

• os.extsep—The separator between a filename and the file “extension” (e.g.,

“.”).

• os.pardir—The path component that means traverse the directory tree up one

level (e.g., “..”).

• os.curdir—The path component that refers to the current directory (e.g., “.”).

ptg

6.1. os.path—Platform-Independent Manipulation of Filenames 249

The split() function breaks the path into two separate parts and returns a tuple

with the results. The second element of the tuple is the last component of the path,

and the first element is everything that comes before it.

import os.path

for path in [’/one/two/three’,

’/one/two/three/’,

’/’,

’.’,

’’]:

print ’%15s : %s’ % (path, os.path.split(path))

When the input argument ends in os.sep, the “last element” of the path is an

empty string.

$ python ospath_split.py

/one/two/three : (’/one/two’, ’three’)

/one/two/three/ : (’/one/two/three’, ’’)

/ : (’/’, ’’)

. : (’’, ’.’)

: (’’, ’’)

The basename() function returns a value equivalent to the second part of the

split() value.

import os.path

for path in [’/one/two/three’,

’/one/two/three/’,

’/’,

’.’,

’’]:

print ’%15s : %s’ % (path, os.path.basename(path))

The full path is stripped down to the last element, whether that refers to a file

or directory. If the path ends in the directory separator (os.sep), the base portion is

considered to be empty.

ptg

250 The File System

$ python ospath_basename.py

/one/two/three : three

/one/two/three/ :

/ :

. : .

:

The dirname() function returns the first part of the split path:

import os.path

for path in [’/one/two/three’,

’/one/two/three/’,

’/’,

’.’,

’’]:

print ’%15s : %s’ % (path, os.path.dirname(path))

Combining the results of basename() with dirname() gives the original path.

$ python ospath_dirname.py

/one/two/three : /one/two

/one/two/three/ : /one/two/three

/ : /

. :

:

splitext()works like split(), but divides the path on the extension separator,

rather than the directory separator.

import os.path

for path in [’filename.txt’,

’filename’,

’/path/to/filename.txt’,

’/’,

’’,

’my-archive.tar.gz’,

’no-extension.’,

]:

print ’%21s :’ % path, os.path.splitext(path)

ptg

6.1. os.path—Platform-Independent Manipulation of Filenames 251

Only the last occurrence of os.extsep is used when looking for the extension,

so if a filename has multiple extensions, the results of splitting it leaves part of the

extension on the prefix.

$ python ospath_splitext.py

filename.txt : (’filename’, ’.txt’)

filename : (’filename’, ’’)

/path/to/filename.txt : (’/path/to/filename’, ’.txt’)

/ : (’/’, ’’)

: (’’, ’’)

my-archive.tar.gz : (’my-archive.tar’, ’.gz’)

no-extension. : (’no-extension’, ’.’)

commonprefix() takes a list of paths as an argument and returns a single string

that represents a common prefix present in all paths. The value may represent a path

that does not actually exist, and the path separator is not included in the consideration,

so the prefix might not stop on a separator boundary.

import os.path

paths = [’/one/two/three/four’,

’/one/two/threefold’,

’/one/two/three/’,

]

for path in paths:

print ’PATH:’, path

print
print ’PREFIX:’, os.path.commonprefix(paths)

In this example, the common prefix string is /one/two/three, even though one

path does not include a directory named three.

$ python ospath_commonprefix.py

PATH: /one/two/three/four

PATH: /one/two/threefold

PATH: /one/two/three/

PREFIX: /one/two/three

ptg

252 The File System

6.1.2 Building Paths

Besides taking existing paths apart, it is frequently necessary to build paths from other

strings. To combine several path components into a single value, use join().

import os.path

for parts in [(’one’, ’two’, ’three’),

(’/’, ’one’, ’two’, ’three’),

(’/one’, ’/two’, ’/three’),

]:

print parts, ’:’, os.path.join(*parts)

If any argument to join begins with os.sep, all previous arguments are discarded

and the new one becomes the beginning of the return value.

$ python ospath_join.py

(’one’, ’two’, ’three’) : one/two/three

(’/’, ’one’, ’two’, ’three’) : /one/two/three

(’/one’, ’/two’, ’/three’) : /three

It is also possible to work with paths that include “variable” components that can

be expanded automatically. For example, expanduser() converts the tilde (~) char-

acter to the name of a user’s home directory.

import os.path

for user in [’’, ’dhellmann’, ’postgresql’]:

lookup = ’~’ + user

print ’%12s : %s’ % (lookup, os.path.expanduser(lookup))

If the user’s home directory cannot be found, the string is returned unchanged, as

with ~postgresql in this example.

$ python ospath_expanduser.py

~ : /Users/dhellmann

~dhellmann : /Users/dhellmann

~postgresql : ~postgresql

ptg

6.1. os.path—Platform-Independent Manipulation of Filenames 253

expandvars() is more general, and expands any shell environment variables

present in the path.

import os.path
import os

os.environ[’MYVAR’] = ’VALUE’

print os.path.expandvars(’/path/to/$MYVAR’)

No validation is performed to ensure that the variable value results in the name of

a file that already exists.

$ python ospath_expandvars.py

/path/to/VALUE

6.1.3 Normalizing Paths

Paths assembled from separate strings using join() or with embedded variables might

end up with extra separators or relative path components. Use normpath() to clean

them up.

import os.path

for path in [’one//two//three’,

’one/./two/./three’,

’one/../alt/two/three’,

]:

print ’%20s : %s’ % (path, os.path.normpath(path))

Path segments made up of os.curdir and os.pardir are evaluated and col-

lapsed.

$ python ospath_normpath.py

one//two//three : one/two/three

one/./two/./three : one/two/three

one/../alt/two/three : alt/two/three

ptg

254 The File System

To convert a relative path to an absolute filename, use abspath().

import os
import os.path

os.chdir(’/tmp’)

for path in [’.’,

’..’,

’./one/two/three’,

’../one/two/three’,

]:

print ’%17s : "%s"’ % (path, os.path.abspath(path))

The result is a complete path, starting at the top of the file system tree.

$ python ospath_abspath.py

. : "/private/tmp"

.. : "/private"

./one/two/three : "/private/tmp/one/two/three"

../one/two/three : "/private/one/two/three"

6.1.4 File Times

Besides working with paths, os.path includes functions for retrieving file properties,

similar to the ones returned by os.stat().

import os.path
import time

print ’File :’, __file__

print ’Access time :’, time.ctime(os.path.getatime(__file__))

print ’Modified time:’, time.ctime(os.path.getmtime(__file__))

print ’Change time :’, time.ctime(os.path.getctime(__file__))

print ’Size :’, os.path.getsize(__file__)

os.path.getatime() returns the access time, os.path.getmtime() ret-

urns the modification time, and os.path.getctime() returns the creation time.

os.path.getsize() returns the amount of data in the file, represented in bytes.

ptg

6.1. os.path—Platform-Independent Manipulation of Filenames 255

$ python ospath_properties.py

File

: ospath_properties.py

Access time : Sat Nov 27 12:19:50 2010

Modified time: Sun Nov 14 09:40:36 2010

Change time : Tue Nov 16 08:07:32 2010

Size : 495

6.1.5 Testing Files

When a program encounters a path name, it often needs to know whether the path refers

to a file, a directory, or a symlink and whether it exists. os.path includes functions for

testing all these conditions.

import os.path

FILENAMES = [__file__,

os.path.dirname(__file__),

’/’,

’./broken_link’,

]

for file in FILENAMES:

print ’File :’, file

print ’Absolute :’, os.path.isabs(file)

print ’Is File? :’, os.path.isfile(file)

print ’Is Dir? :’, os.path.isdir(file)

print ’Is Link? :’, os.path.islink(file)

print ’Mountpoint? :’, os.path.ismount(file)

print ’Exists? :’, os.path.exists(file)

print ’Link Exists?:’, os.path.lexists(file)

print

All test functions return Boolean values.

$ ln -s /does/not/exist broken_link

$ python ospath_tests.py

File : ospath_tests.py

Absolute : False

Is File? : True

Is Dir? : False

Is Link? : False

ptg

256 The File System

Mountpoint? : False

Exists? : True

Link Exists?: True

File :

Absolute : False

Is File? : False

Is Dir? : False

Is Link? : False

Mountpoint? : False

Exists? : False

Link Exists?: False

File : /

Absolute : True

Is File? : False

Is Dir? : True

Is Link? : False

Mountpoint? : True

Exists? : True

Link Exists?: True

File : ./broken_link

Absolute : False

Is File? : False

Is Dir? : False

Is Link? : True

Mountpoint? : False

Exists? : False

Link Exists?: True

6.1.6 Traversing a Directory Tree

os.path.walk() traverses all directories in a tree and calls a provided function, pass-

ing to it as arguments the directory name and the names of the contents of that directory.

import os
import os.path
import pprint

def visit(arg, dirname, names):

print dirname, arg

for name in names:

ptg

6.2. glob—Filename Pattern Matching 257

subname = os.path.join(dirname, name)

if os.path.isdir(subname):

print ’ %s/’ % name

else:
print ’ %s’ % name

print

if not os.path.exists(’example’):

os.mkdir(’example’)

if not os.path.exists(’example/one’):

os.mkdir(’example/one’)

with open(’example/one/file.txt’, ’wt’) as f:

f.write(’contents’)

with open(’example/two.txt’, ’wt’) as f:

f.write(’contents’)

os.path.walk(’example’, visit, ’(User data)’)

This example produces a recursive directory listing, ignoring .svn directories.

$ python ospath_walk.py

example (User data)

one/

two.txt

example/one (User data)

file.txt

See Also:
os.path (http://docs.python.org/lib/module-os.path.html) Standard library docu-

mentation for this module.

os (page 1108) The os module is a parent of os.path.

time (page 173) The time module includes functions to convert between the rep-

resentation used by the time property functions in os.path and easy-to-read

strings.

6.2 glob—Filename Pattern Matching

Purpose Use UNIX shell rules to find filenames matching a pattern.

Python Version 1.4 and later

http://docs.python.org/lib/module-os.path.html

ptg

258 The File System

Even though the glob API is small, the module packs a lot of power. It is useful in any

situation where a program needs to look for a list of files on the file system with names

matching a pattern. To create a list of filenames that all have a certain extension, prefix,

or any common string in the middle, use glob instead of writing custom code to scan

the directory contents.

The pattern rules for glob are not the same as the regular expressions used by

the re module. Instead, they follow standard UNIX path expansion rules. There are

only a few special characters used to implement two different wildcards and character

ranges. The patterns rules are applied to segments of the filename (stopping at the path

separator, /). Paths in the pattern can be relative or absolute. Shell variable names and

tilde (~) are not expanded.

6.2.1 Example Data

The examples in this section assume the following test files are present in the current

working directory.

$ python glob_maketestdata.py

dir

dir/file.txt

dir/file1.txt

dir/file2.txt

dir/filea.txt

dir/fileb.txt

dir/subdir

dir/subdir/subfile.txt

If these files do not exist, use glob_maketestdata.py in the sample code to

create them before running the following examples.

6.2.2 Wildcards

An asterisk (*) matches zero or more characters in a segment of a name. For example,

dir/*.

import glob
for name in glob.glob(’dir/*’):

print name

ptg

6.2. glob—Filename Pattern Matching 259

The pattern matches every path name (file or directory) in the directory “dir,”

without recursing further into subdirectories.

$ python glob_asterisk.py

dir/file.txt

dir/file1.txt

dir/file2.txt

dir/filea.txt

dir/fileb.txt

dir/subdir

To list files in a subdirectory, the subdirectory must be included in the pattern.

import glob

print ’Named explicitly:’

for name in glob.glob(’dir/subdir/*’):

print ’\t’, name

print ’Named with wildcard:’

for name in glob.glob(’dir/*/*’):

print ’\t’, name

The first case shown earlier lists the subdirectory name explicitly, while the second

case depends on a wildcard to find the directory.

$ python glob_subdir.py

Named explicitly:

dir/subdir/subfile.txt

Named with wildcard:

dir/subdir/subfile.txt

The results, in this case, are the same. If there was another subdirectory, the wild-

card would match both subdirectories and include the filenames from both.

6.2.3 Single Character Wildcard

A question mark (?) is another wildcard character. It matches any single character in

that position in the name.

ptg

260 The File System

import glob

for name in glob.glob(’dir/file?.txt’):

print name

The previous example matches all filenames that begin with file, have one more

character of any type, and then end with .txt.

$ python glob_question.py

dir/file1.txt

dir/file2.txt

dir/filea.txt

dir/fileb.txt

6.2.4 Character Ranges

Use a character range ([a-z]) instead of a question mark to match one of several

characters. This example finds all files with a digit in the name before the extension.

import glob
for name in glob.glob(’dir/*[0-9].*’):

print name

The character range [0-9] matches any single digit. The range is ordered based

on the character code for each letter/digit, and the dash indicates an unbroken range of

sequential characters. The same range value could be written as [0123456789].

$ python glob_charrange.py

dir/file1.txt

dir/file2.txt

See Also:
glob (http://docs.python.org/library/glob.html) The standard library documentation

for this module.

Pattern Matching Notation
(http://www.opengroup.org/onlinepubs/000095399/utilities/xcu_chap02.
html#tag_02_13) An explanation of globbing from The Open Group’s Shell

Command Language specification.

fnmatch (page 315) Filename-matching implementation.

http://docs.python.org/library/glob.html
http://www.opengroup.org/onlinepubs/000095399/utilities/xcu_chap02.html#tag_02_13
http://www.opengroup.org/onlinepubs/000095399/utilities/xcu_chap02.html#tag_02_13

ptg

6.3. linecache—Read Text Files Efficiently 261

6.3 linecache—Read Text Files Efficiently

Purpose Retrieve lines of text from files or imported Python modules,

holding a cache of the results to make reading many lines from the

same file more efficient.

Python Version 1.4 and later

The linecache module is used within other parts of the Python standard library when

dealing with Python source files. The implementation of the cache holds the contents

of files, parsed into separate lines, in memory. The API returns the requested line(s)

by indexing into a list, and saves time over repeatedly reading the file and pars-

ing lines to find the one desired. This method is especially useful when looking for

multiple lines from the same file, such as when producing a traceback for an error

report.

6.3.1 Test Data

This text produced by a Lorem Ipsum generator is used as sample input.

import os
import tempfile

lorem = ’’’Lorem ipsum dolor sit amet, consectetuer

adipiscing elit. Vivamus eget elit. In posuere mi non

risus. Mauris id quam posuere lectus sollicitudin

varius. Praesent at mi. Nunc eu velit. Sed augue massa,

fermentum id, nonummy a, nonummy sit amet, ligula. Curabitur

eros pede, egestas at, ultricies ac, apellentesque eu,

tellus.

Sed sed odio sed mi luctus mollis. Integer et nulla ac augue

convallis accumsan. Ut felis. Donec lectus sapien, elementum

nec, condimentum ac, interdum non, tellus. Aenean viverra,

mauris vehicula semper porttitor, ipsum odio consectetuer

lorem, ac imperdiet eros odio a sapien. Nulla mauris tellus,

aliquam non, egestas a, nonummy et, erat. Vivamus sagittis

porttitor eros.’’’

def make_tempfile():

fd, temp_file_name = tempfile.mkstemp()

os.close(fd)

f = open(temp_file_name, ’wt’)

ptg

262 The File System

try:
f.write(lorem)

finally:
f.close()

return temp_file_name

def cleanup(filename):

os.unlink(filename)

6.3.2 Reading Specific Lines

The line numbers of files read by the linecache module start with 1, but normally

lists start indexing the array from 0.

import linecache
from linecache_data import *

filename = make_tempfile()

Pick out the same line from source and cache.

(Notice that linecache counts from 1)

print ’SOURCE:’

print ’%r’ % lorem.split(’\n’)[4]
print
print ’CACHE:’

print ’%r’ % linecache.getline(filename, 5)

cleanup(filename)

Each line returned includes a trailing newline.

$ python linecache_getline.py

SOURCE:

’fermentum id, nonummy a, nonummy sit amet, ligula. Curabitur’

CACHE:

’fermentum id, nonummy a, nonummy sit amet, ligula. Curabitur\n’

ptg

6.3. linecache—Read Text Files Efficiently 263

6.3.3 Handling Blank Lines

The return value always includes the newline at the end of the line, so if the line is

empty, the return value is just the newline.

import linecache
from linecache_data import *

filename = make_tempfile()

Blank lines include the newline

print ’BLANK : %r’ % linecache.getline(filename, 8)

cleanup(filename)

Line eight of the input file contains no text.

$ python linecache_empty_line.py

BLANK : ’\n’

6.3.4 Error Handling

If the requested line number falls out of the range of valid lines in the file, getline()

returns an empty string.

import linecache
from linecache_data import *

filename = make_tempfile()

The cache always returns a string, and uses

an empty string to indicate a line which does

not exist.

not_there = linecache.getline(filename, 500)

print ’NOT THERE: %r includes %d characters’ % \

(not_there, len(not_there))

cleanup(filename)

ptg

264 The File System

The input file only has 12 lines, so requesting line 500 is like trying to read past

the end of the file.

$ python linecache_out_of_range.py

NOT THERE: ’’ includes 0 characters

Reading from a file that does not exist is handled in the same way.

import linecache

Errors are even hidden if linecache cannot find the file

no_such_file = linecache.getline(’this_file_does_not_exist.txt’, 1)

print ’NO FILE: %r’ % no_such_file

The module never raises an exception when the caller tries to read data.

$ python linecache_missing_file.py

NO FILE: ’’

6.3.5 Reading Python Source Files

Since linecache is used so heavily when producing tracebacks, one of its key features

is the ability to find Python source modules in the import path by specifying the base

name of the module.

import linecache
import os

Look for the linecache module, using

the built in sys.path search.

module_line = linecache.getline(’linecache.py’, 3)

print ’MODULE:’

print repr(module_line)

Look at the linecache module source directly.

file_src = linecache.__file__

if file_src.endswith(’.pyc’):

file_src = file_src[:-1]

print ’\nFILE:’

ptg

6.4. tempfile—Temporary File System Objects 265

with open(file_src, ’r’) as f:

file_line = f.readlines()[2]

print repr(file_line)

The cache population code in linecache searches sys.path for the named

module if it cannot find a file with that name in the current directory. This example

looks for linecache.py. Since there is no copy in the current directory, the file from

the standard library is found instead.

$ python linecache_path_search.py

MODULE:

’This is intended to read lines from modules imported -- hence if a

filename\n’

FILE:

’This is intended to read lines from modules imported -- hence if a

filename\n’

See Also:
linecache (http://docs.python.org/library/linecache.html) The standard library doc-

umentation for this module.

http://www.ipsum.com/ Lorem Ipsum generator.

6.4 tempfile—Temporary File System Objects

Purpose Create temporary file system objects.

Python Version 1.4 and later

Creating temporary files with unique names securely, so they cannot be guessed

by someone wanting to break the application or steal the data, is challenging.

The tempfile module provides several functions for creating temporary file sys-

tem resources securely. TemporaryFile() opens and returns an unnamed file,

NamedTemporaryFile() opens and returns a named file, and mkdtemp() creates

a temporary directory and returns its name.

6.4.1 Temporary Files

Applications that need temporary files to store data, without needing to share those files

with other programs, should use the TemporaryFile() function to create the files.

http://docs.python.org/library/linecache.html
http://www.ipsum.com/

ptg

266 The File System

The function creates a file, and on platforms where it is possible, unlinks it immediately.

This makes it impossible for another program to find or open the file, since there is

no reference to it in the file system table. The file created by TemporaryFile() is

removed automatically when it is closed, whether by calling close() or by using the

context manager API and with statement.

import os
import tempfile

print ’Building a filename with PID:’

filename = ’/tmp/guess_my_name.%s.txt’ % os.getpid()

temp = open(filename, ’w+b’)

try:
print ’temp:’

print ’ ’, temp

print ’temp.name:’

print ’ ’, temp.name

finally:
temp.close()

Clean up the temporary file yourself

os.remove(filename)

print
print ’TemporaryFile:’

temp = tempfile.TemporaryFile()

try:
print ’temp:’

print ’ ’, temp

print ’temp.name:’

print ’ ’, temp.name

finally:
Automatically cleans up the file

temp.close()

This example illustrates the difference in creating a temporary file using a common

pattern for making up a name, versus using the TemporaryFile() function. The file

returned by TemporaryFile() has no name.

$ python tempfile_TemporaryFile.py

Building a filename with PID:

temp:

ptg

6.4. tempfile—Temporary File System Objects 267

<open file ’/tmp/guess_my_name.1074.txt’, mode ’w+b’ at

0x100d881e0>

temp.name:

/tmp/guess_my_name.1074.txt

TemporaryFile:

temp:

<open file ’<fdopen>’, mode ’w+b’ at 0x100d88780>

temp.name:

<fdopen>

By default, the file handle is created with mode ’w+b’ so it behaves consistently

on all platforms, and the caller can write to it and read from it.

import os
import tempfile

with tempfile.TemporaryFile() as temp:

temp.write(’Some data’)

temp.seek(0)

print temp.read()

After writing, the file handle must be “rewound” using seek() in order to read

the data back from it.

$ python tempfile_TemporaryFile_binary.py

Some data

To open the file in text mode, set mode to ’w+t’ when the file is created.

import tempfile

with tempfile.TemporaryFile(mode=’w+t’) as f:

f.writelines([’first\n’, ’second\n’])
f.seek(0)

for line in f:

print line.rstrip()

ptg

268 The File System

The file handle treats the data as text.

$ python tempfile_TemporaryFile_text.py

first

second

6.4.2 Named Files

There are situations where having a named temporary file is important. For applica-

tions spanning multiple processes, or even hosts, naming the file is the simplest way

to pass it between parts of the application. The NamedTemporaryFile() function

creates a file without unlinking it, so the file retains its name (accessed with the name

attribute).

import os
import tempfile

with tempfile.NamedTemporaryFile() as temp:

print ’temp:’

print ’ ’, temp

print ’temp.name:’

print ’ ’, temp.name

print ’Exists after close:’, os.path.exists(temp.name)

The file is removed after the handle is closed.

$ python tempfile_NamedTemporaryFile.py

temp:

<open file ’<fdopen>’, mode ’w+b’ at 0x100d881e0>

temp.name:

/var/folders/9R/9R1t+tR02Raxzk+F71Q50U+++Uw/-Tmp-/tmp926BkT

Exists after close: False

6.4.3 Temporary Directories

When several temporary files are needed, it may be more convenient to create a single

temporary directory with mkdtemp() and open all the files in that directory.

ptg

6.4. tempfile—Temporary File System Objects 269

import os
import tempfile

directory_name = tempfile.mkdtemp()

print directory_name

Clean up the directory

os.removedirs(directory_name)

Since the directory is not “opened” per se, it must be removed explicitly when it is

no longer needed.

$ python tempfile_mkdtemp.py

/var/folders/9R/9R1t+tR02Raxzk+F71Q50U+++Uw/-Tmp-/tmpA7DKtP

6.4.4 Predicting Names

While less secure than strictly anonymous temporary files, including a predictable por-

tion in the name makes it possible to find the file and examine it for debugging pur-

poses. All functions described so far take three arguments to control the filenames to

some degree. Names are generated using the following formula.

dir + prefix + random + suffix

All values except random can be passed as arguments to TemporaryFile(),

NamedTemporaryFile(), and mkdtemp(). For example:

import tempfile

with tempfile.NamedTemporaryFile(

suffix=’_suffix’, prefix=’prefix_’, dir=’/tmp’,

) as temp:

print ’temp:’

print ’ ’, temp

print ’temp.name:’

print ’ ’, temp.name

The prefix and suffix arguments are combined with a random string of characters

to build the filename, and the dir argument is taken as is and used as the location of the

new file.

ptg

270 The File System

$ python tempfile_NamedTemporaryFile_args.py

temp:

<open file ’<fdopen>’, mode ’w+b’ at 0x100d881e0>

temp.name:

/tmp/prefix_kjvHYS_suffix

6.4.5 Temporary File Location

If an explicit destination is not given using the dir argument, the path used for the

temporary files will vary based on the current platform and settings. The tempfile

module includes two functions for querying the settings being used at runtime.

import tempfile

print ’gettempdir():’, tempfile.gettempdir()

print ’gettempprefix():’, tempfile.gettempprefix()

gettempdir() returns the default directory that will hold all temporary files and

gettempprefix() returns the string prefix for new file and directory names.

$ python tempfile_settings.py

gettempdir(): /var/folders/9R/9R1t+tR02Raxzk+F71Q50U+++Uw/-Tmp-

gettempprefix(): tmp

The value returned by gettempdir() is set based on a straightforward algorithm

of looking through five locations for the first place the current process can create a file.

This is the search list.

1. The environment variable TMPDIR

2. The environment variable TEMP

3. The environment variable TMP

4. A fallback, based on the platform. (RiscOS uses Wimp$ScrapDir. Windows

uses the first available of C:\TEMP, C:\TMP, \TEMP, or \TMP. Other platforms

use /tmp, /var/tmp, or /usr/tmp.)

5. If no other directory can be found, the current working directory is used.

import tempfile

tempfile.tempdir = ’/I/changed/this/path’

print ’gettempdir():’, tempfile.gettempdir()

ptg

6.5. shutil—High-Level File Operations 271

Programs that need to use a global location for all temporary files without using

any of these environment variables should set tempfile.tempdir directly by assign-

ing a value to the variable.

$ python tempfile_tempdir.py

gettempdir(): /I/changed/this/path

See Also:
tempfile (http://docs.python.org/lib/module-tempfile.html) Standard library docu-

mentation for this module.

6.5 shutil—High-Level File Operations

Purpose High-level file operations.

Python Version 1.4 and later

The shutil module includes high-level file operations such as copying and setting

permissions.

6.5.1 Copying Files

copyfile() copies the contents of the source to the destination and raises IOError

if it does not have permission to write to the destination file.

from shutil import *
from glob import glob

print ’BEFORE:’, glob(’shutil_copyfile.*’)

copyfile(’shutil_copyfile.py’, ’shutil_copyfile.py.copy’)

print ’AFTER:’, glob(’shutil_copyfile.*’)

Because the function opens the input file for reading, regardless of its type, spe-

cial files (such as UNIX device nodes) cannot be copied as new special files with

copyfile().

$ python shutil_copyfile.py

BEFORE: [’shutil_copyfile.py’]

AFTER: [’shutil_copyfile.py’, ’shutil_copyfile.py.copy’]

http://docs.python.org/lib/module-tempfile.html

ptg

272 The File System

The implementation of copyfile() uses the lower-level function copy-

fileobj(). While the arguments to copyfile() are filenames, the arguments to

copyfileobj() are open file handles. The optional third argument is a buffer length

to use for reading in blocks.

from shutil import *
import os
from StringIO import StringIO

import sys

class VerboseStringIO(StringIO):
def read(self, n=-1):

next = StringIO.read(self, n)

print ’read(%d) bytes’ % n

return next

lorem_ipsum = ’’’Lorem ipsum dolor sit amet, consectetuer adipiscing

elit. Vestibulum aliquam mollis dolor. Donec vulputate nunc ut diam.

Ut rutrum mi vel sem. Vestibulum ante ipsum.’’’

print ’Default:’

input = VerboseStringIO(lorem_ipsum)

output = StringIO()

copyfileobj(input, output)

print

print ’All at once:’

input = VerboseStringIO(lorem_ipsum)

output = StringIO()

copyfileobj(input, output, -1)

print

print ’Blocks of 256:’

input = VerboseStringIO(lorem_ipsum)

output = StringIO()

copyfileobj(input, output, 256)

The default behavior is to read using large blocks. Use -1 to read all the input at

one time, or use another positive integer to set a specific block size. This example uses

several different block sizes to show the effect.

ptg

6.5. shutil—High-Level File Operations 273

$ python shutil_copyfileobj.py

Default:

read(16384) bytes

read(16384) bytes

All at once:

read(-1) bytes

read(-1) bytes

Blocks of 256:

read(256) bytes

read(256) bytes

The copy() function interprets the output name like the UNIX command line tool

cp. If the named destination refers to a directory instead of a file, a new file is created

in the directory using the base name of the source.

from shutil import *
import os

os.mkdir(’example’)

print ’BEFORE:’, os.listdir(’example’)

copy(’shutil_copy.py’, ’example’)

print ’AFTER:’, os.listdir(’example’)

The permissions of the file are copied along with the contents.

$ python shutil_copy.py

BEFORE: []

AFTER: [’shutil_copy.py’]

copy2() works like copy(), but includes the access and modification times in

the metadata copied to the new file.

from shutil import *
import os
import time

ptg

274 The File System

def show_file_info(filename):

stat_info = os.stat(filename)

print ’\tMode :’, stat_info.st_mode

print ’\tCreated :’, time.ctime(stat_info.st_ctime)

print ’\tAccessed:’, time.ctime(stat_info.st_atime)

print ’\tModified:’, time.ctime(stat_info.st_mtime)

os.mkdir(’example’)

print ’SOURCE:’

show_file_info(’shutil_copy2.py’)

copy2(’shutil_copy2.py’, ’example’)

print ’DEST:’

show_file_info(’example/shutil_copy2.py’)

The new file has all the same characteristics as the old version.

$ python shutil_copy2.py

SOURCE:

Mode : 33188

Created : Sat Dec 4 10:41:32 2010

Accessed: Sat Dec 4 17:41:01 2010

Modified: Sun Nov 14 09:40:36 2010

DEST:

Mode : 33188

Created : Sat Dec 4 17:41:01 2010

Accessed: Sat Dec 4 17:41:01 2010

Modified: Sun Nov 14 09:40:36 2010

6.5.2 Copying File Metadata

By default when a new file is created under UNIX, it receives permissions based on

the umask of the current user. To copy the permissions from one file to another, use

copymode().

from shutil import *
from commands import *
import os

with open(’file_to_change.txt’, ’wt’) as f:

f.write(’content’)

os.chmod(’file_to_change.txt’, 0444)

ptg

6.5. shutil—High-Level File Operations 275

print ’BEFORE:’

print getstatus(’file_to_change.txt’)

copymode(’shutil_copymode.py’, ’file_to_change.txt’)

print ’AFTER :’

print getstatus(’file_to_change.txt’)

First, create a file to be modified.

#!/bin/sh

Set up file needed by shutil_copymode.py

touch file_to_change.txt

chmod ugo+w file_to_change.txt

Then, run the example script to change the permissions.

$ python shutil_copymode.py

BEFORE:

-r--r--r-- 1 dhellmann dhellmann 7 Dec 4 17:41 file_to_change.txt

AFTER :

-rw-r--r-- 1 dhellmann dhellmann 7 Dec 4 17:41 file_to_change.txt

To copy other metadata about the file use copystat().

from shutil import *
import os
import time

def show_file_info(filename):

stat_info = os.stat(filename)

print ’\tMode :’, stat_info.st_mode

print ’\tCreated :’, time.ctime(stat_info.st_ctime)

print ’\tAccessed:’, time.ctime(stat_info.st_atime)

print ’\tModified:’, time.ctime(stat_info.st_mtime)

with open(’file_to_change.txt’, ’wt’) as f:

f.write(’content’)

os.chmod(’file_to_change.txt’, 0444)

print ’BEFORE:’

show_file_info(’file_to_change.txt’)

copystat(’shutil_copystat.py’, ’file_to_change.txt’)

ptg

276 The File System

print ’AFTER:’

show_file_info(’file_to_change.txt’)

Only the permissions and dates associated with the file are duplicated with

copystat().

$ python shutil_copystat.py

BEFORE:

Mode : 33060

Created : Sat Dec 4 17:41:01 2010

Accessed: Sat Dec 4 17:41:01 2010

Modified: Sat Dec 4 17:41:01 2010

AFTER:

Mode : 33188

Created : Sat Dec 4 17:41:01 2010

Accessed: Sat Dec 4 17:41:01 2010

Modified: Sun Nov 14 09:45:12 2010

6.5.3 Working with Directory Trees

shutil includes three functions for working with directory trees. To copy a direc-

tory from one place to another, use copytree(). It recurses through the source direc-

tory tree, copying files to the destination. The destination directory must not exist in

advance.

Note: The documentation for copytree() says it should be considered a sample

implementation, rather than a tool. Consider starting with the current implemen-

tation and making it more robust, or adding features like a progress meter, before

using it.

from shutil import *
from commands import *

print ’BEFORE:’

print getoutput(’ls -rlast /tmp/example’)

copytree(’../shutil’, ’/tmp/example’)

print ’\nAFTER:’
print getoutput(’ls -rlast /tmp/example’)

ptg

6.5. shutil—High-Level File Operations 277

The symlinks argument controls whether symbolic links are copied as links or as

files. The default is to copy the contents to new files. If the option is true, new symlinks

are created within the destination tree.

$ python shutil_copytree.py

BEFORE:
ls: /tmp/example: No such file or directory

AFTER:
total 136
8 -rwxr-xr-x 1 dhellmann wheel 109 Oct 28 07:33 shutil_copymode.sh
8 -rw-r--r-- 1 dhellmann wheel 1313 Nov 14 09:39 shutil_rmtree.py
8 -rw-r--r-- 1 dhellmann wheel 1300 Nov 14 09:39 shutil_copyfile.py
8 -rw-r--r-- 1 dhellmann wheel 1276 Nov 14 09:39 shutil_copy.py
8 -rw-r--r-- 1 dhellmann wheel 1140 Nov 14 09:39 __init__.py
8 -rw-r--r-- 1 dhellmann wheel 1595 Nov 14 09:40 shutil_copy2.py
8 -rw-r--r-- 1 dhellmann wheel 1729 Nov 14 09:45 shutil_copystat.py
8 -rw-r--r-- 1 dhellmann wheel 7 Nov 14 09:45 file_to_change.txt
8 -rw-r--r-- 1 dhellmann wheel 1324 Nov 14 09:45 shutil_move.py
8 -rw-r--r-- 1 dhellmann wheel 419 Nov 27 12:49 shutil_copymode.py
8 -rw-r--r-- 1 dhellmann wheel 1331 Dec 1 21:51 shutil_copytree.py
8 -rw-r--r-- 1 dhellmann wheel 816 Dec 4 17:39 shutil_copyfileobj.py
8 -rw-r--r-- 1 dhellmann wheel 8 Dec 4 17:39 example.out

24 -rw-r--r-- 1 dhellmann wheel 9767 Dec 4 17:40 index.rst
8 -rw-r--r-- 1 dhellmann wheel 1300 Dec 4 17:41 shutil_copyfile.py.copy
0 drwxr-xr-x 3 dhellmann wheel 102 Dec 4 17:41 example
0 drwxrwxrwt 18 root wheel 612 Dec 4 17:41 ..
0 drwxr-xr-x 18 dhellmann wheel 612 Dec 4 17:41 .

To remove a directory and its contents, use rmtree().

from shutil import *
from commands import *

print ’BEFORE:’

print getoutput(’ls -rlast /tmp/example’)

rmtree(’/tmp/example’)

print ’AFTER:’

print getoutput(’ls -rlast /tmp/example’)

Errors are raised as exceptions by default, but can be ignored if the second argu-

ment is true. A special error-handler function can be provided in the third argument.

$ python shutil_rmtree.py

BEFORE:
total 136
8 -rwxr-xr-x 1 dhellmann wheel 109 Oct 28 07:33 shutil_copymode.sh

ptg

278 The File System

8 -rw-r--r-- 1 dhellmann wheel 1313 Nov 14 09:39 shutil_rmtree.py
8 -rw-r--r-- 1 dhellmann wheel 1300 Nov 14 09:39 shutil_copyfile.py
8 -rw-r--r-- 1 dhellmann wheel 1276 Nov 14 09:39 shutil_copy.py
8 -rw-r--r-- 1 dhellmann wheel 1140 Nov 14 09:39 __init__.py
8 -rw-r--r-- 1 dhellmann wheel 1595 Nov 14 09:40 shutil_copy2.py
8 -rw-r--r-- 1 dhellmann wheel 1729 Nov 14 09:45 shutil_copystat.py
8 -rw-r--r-- 1 dhellmann wheel 7 Nov 14 09:45 file_to_change.txt
8 -rw-r--r-- 1 dhellmann wheel 1324 Nov 14 09:45 shutil_move.py
8 -rw-r--r-- 1 dhellmann wheel 419 Nov 27 12:49 shutil_copymode.py
8 -rw-r--r-- 1 dhellmann wheel 1331 Dec 1 21:51 shutil_copytree.py
8 -rw-r--r-- 1 dhellmann wheel 816 Dec 4 17:39 shutil_copyfileobj.py
8 -rw-r--r-- 1 dhellmann wheel 8 Dec 4 17:39 example.out

24 -rw-r--r-- 1 dhellmann wheel 9767 Dec 4 17:40 index.rst
8 -rw-r--r-- 1 dhellmann wheel 1300 Dec 4 17:41 shutil_copyfile.py.copy
0 drwxr-xr-x 3 dhellmann wheel 102 Dec 4 17:41 example
0 drwxrwxrwt 18 root wheel 612 Dec 4 17:41 ..
0 drwxr-xr-x 18 dhellmann wheel 612 Dec 4 17:41 .

AFTER:
ls: /tmp/example: No such file or directory

To move a file or directory from one place to another, use move().

from shutil import *
from glob import glob

with open(’example.txt’, ’wt’) as f:

f.write(’contents’)

print ’BEFORE: ’, glob(’example*’)

move(’example.txt’, ’example.out’)

print ’AFTER : ’, glob(’example*’)

The semantics are similar to those of the UNIX command mv. If the source and

destination are within the same file system, the source is renamed. Otherwise, the source

is copied to the destination and then the source is removed.

$ python shutil_move.py

BEFORE: [’example.txt’]

AFTER : [’example.out’]

See Also:
shutil (http://docs.python.org/lib/module-shutil.html) Standard library documenta-

tion for this module.

http://docs.python.org/lib/module-shutil.html

ptg

6.6. mmap—Memory-Map Files 279

6.6 mmap—Memory-Map Files

Purpose Memory-map files instead of reading the contents directly.

Python Version 2.1 and later

Memory-mapping a file uses the operating system virtual memory system to access

the data on the file system directly, instead of using normal I/O functions. Memory-

mapping typically improves I/O performance because it does not involve a separate

system call for each access and it does not require copying data between buffers—the

memory is accessed directly by both the kernel and the user application.

Memory-mapped files can be treated as mutable strings or file-like objects, de-

pending on the need. A mapped file supports the expected file API methods, such as

close(), flush(), read(), readline(), seek(), tell(), and write(). It also

supports the string API, with features such as slicing and methods like find().

All the examples use the text file lorem.txt, containing a bit of Lorem Ipsum.

For reference, the text of the file follows.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Donec

egestas, enim et consectetuer ullamcorper, lectus ligula rutrum leo,

a elementum elit tortor eu quam. Duis tincidunt nisi ut ante. Nulla

facilisi. Sed tristique eros eu libero. Pellentesque vel

arcu. Vivamus purus orci, iaculis ac, suscipit sit amet, pulvinar eu,

lacus. Praesent placerat tortor sed nisl. Nunc blandit diam egestas

dui. Pellentesque habitant morbi tristique senectus et netus et

malesuada fames ac turpis egestas. Aliquam viverra fringilla

leo. Nulla feugiat augue eleifend nulla. Vivamus mauris. Vivamus sed

mauris in nibh placerat egestas. Suspendisse potenti. Mauris

massa. Ut eget velit auctor tortor blandit sollicitudin. Suspendisse

imperdiet justo.

Note: There are differences in the arguments and behaviors for mmap() between

UNIX and Windows. These differences are not fully discussed here. For more

details, refer to the standard library documentation.

6.6.1 Reading

Use the mmap() function to create a memory-mapped file. The first argument is a file

descriptor, either from the fileno() method of a file object or from os.open().

The caller is responsible for opening the file before invoking mmap() and closing it

after it is no longer needed.

ptg

280 The File System

The second argument to mmap() is a size in bytes for the portion of the file to map.

If the value is 0, the entire file is mapped. If the size is larger than the current size of

the file, the file is extended.

Note: Windows does not support creating a zero-length mapping.

An optional keyword argument, access, is supported by both platforms. Use

ACCESS_READ for read-only access, ACCESS_WRITE for write-through (assignments

to memory go directly to the file), or ACCESS_COPY for copy-on-write (assignments to

memory are not written to the file).

import mmap
import contextlib

with open(’lorem.txt’, ’r’) as f:

with contextlib.closing(mmap.mmap(f.fileno(), 0,

access=mmap.ACCESS_READ)

) as m:

print ’First 10 bytes via read :’, m.read(10)

print ’First 10 bytes via slice:’, m[:10]

print ’2nd 10 bytes via read :’, m.read(10)

The file pointer tracks the last byte accessed through a slice operation. In this

example, the pointer moves ahead 10 bytes after the first read. It is then reset to the

beginning of the file by the slice operation and moved ahead 10 bytes again by the

slice. After the slice operation, calling read() again gives bytes 11–20 in the file.

$ python mmap_read.py

First 10 bytes via read : Lorem ipsu

First 10 bytes via slice: Lorem ipsu

2nd 10 bytes via read : m dolor si

6.6.2 Writing

To set up the memory-mapped file to receive updates, start by opening it for appending

with mode ’r+’ (not ’w’) before mapping it. Then use any of the API methods that

change the data (write(), assignment to a slice, etc.).

ptg

6.6. mmap—Memory-Map Files 281

The next example uses the default access mode of ACCESS_WRITE and assigns to

a slice to modify part of a line in place.

import mmap
import shutil
import contextlib

Copy the example file

shutil.copyfile(’lorem.txt’, ’lorem_copy.txt’)

word = ’consectetuer’

reversed = word[::-1]

print ’Looking for :’, word

print ’Replacing with :’, reversed

with open(’lorem_copy.txt’, ’r+’) as f:

with contextlib.closing(mmap.mmap(f.fileno(), 0)) as m:

print ’Before:’

print m.readline().rstrip()

m.seek(0) # rewind

loc = m.find(word)

m[loc:loc+len(word)] = reversed

m.flush()

m.seek(0) # rewind

print ’After :’

print m.readline().rstrip()

f.seek(0) # rewind

print ’File :’

print f.readline().rstrip()

The word “consectetuer” is replaced in the middle of the first line in memory

and in the file.

$ python mmap_write_slice.py

Looking for : consectetuer

Replacing with : reutetcesnoc

ptg

282 The File System

Before:

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Donec

After :

Lorem ipsum dolor sit amet, reutetcesnoc adipiscing elit. Donec

File :

Lorem ipsum dolor sit amet, reutetcesnoc adipiscing elit. Donec

Copy Mode

Using the access setting ACCESS_COPY does not write changes to the file on disk.

import mmap
import shutil
import contextlib

Copy the example file

shutil.copyfile(’lorem.txt’, ’lorem_copy.txt’)

word = ’consectetuer’

reversed = word[::-1]

with open(’lorem_copy.txt’, ’r+’) as f:

with contextlib.closing(mmap.mmap(f.fileno(), 0,

access=mmap.ACCESS_COPY)

) as m:

print ’Memory Before:’

print m.readline().rstrip()

print ’File Before :’

print f.readline().rstrip()

print

m.seek(0) # rewind

loc = m.find(word)

m[loc:loc+len(word)] = reversed

m.seek(0) # rewind

print ’Memory After :’

print m.readline().rstrip()

f.seek(0)

print ’File After :’

print f.readline().rstrip()

ptg

6.6. mmap—Memory-Map Files 283

It is necessary to rewind the file handle in this example separately from the mmap

handle, because the internal state of the two objects is maintained separately.

$ python mmap_write_copy.py

Memory Before:

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Donec

File Before :

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Donec

Memory After :

Lorem ipsum dolor sit amet, reutetcesnoc adipiscing elit. Donec

File After :

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Donec

6.6.3 Regular Expressions

Since a memory-mapped file can act like a string, it can be used with other modules that

operate on strings, such as regular expressions. This example finds all sentences with

“nulla” in them.

import mmap
import re
import contextlib

pattern = re.compile(r’(\.\W+)?([^.]?nulla[^.]*?\.)’,

re.DOTALL | re.IGNORECASE | re.MULTILINE)

with open(’lorem.txt’, ’r’) as f:

with contextlib.closing(mmap.mmap(f.fileno(), 0,

access=mmap.ACCESS_READ)

) as m:

for match in pattern.findall(m):

print match[1].replace(’\n’, ’ ’)

Because the pattern includes two groups, the return value from findall() is a

sequence of tuples. The print statement pulls out the matching sentence and replaces

newlines with spaces so each result prints on a single line.

ptg

284 The File System

$ python mmap_regex.py

Nulla facilisi.

Nulla feugiat augue eleifend nulla.

See Also:
mmap (http://docs.python.org/lib/module-mmap.html) Standard library documen-

tation for this module.

os (page 1108) The os module.

contextlib (page 163) Use the closing() function to create a context manager for

a memory-mapped file.

re (page 13) Regular expressions.

6.7 codecs—String Encoding and Decoding

Purpose Encoders and decoders for converting text between different

representations.

Python Version 2.1 and later

The codecs module provides stream interfaces and file interfaces for transcoding data.

It is most commonly used to work with Unicode text, but other encodings are also

available for other purposes.

6.7.1 Unicode Primer

CPython 2.x supports two types of strings for working with text data. Old-style str

instances use a single 8-bit byte to represent each character of the string using its ASCII

code. In contrast, unicode strings are managed internally as a sequence of Unicode

code points. The code-point values are saved as a sequence of two or four bytes each,

depending on the options given when Python is compiled. Both unicode and str are

derived from a common base class and support a similar API.

When unicode strings are output, they are encoded using one of several standard

schemes so that the sequence of bytes can be reconstructed as the same text string

later. The bytes of the encoded value are not necessarily the same as the code-point

values, and the encoding defines a way to translate between the two value sets. Reading

Unicode data also requires knowing the encoding so that the incoming bytes can be

converted to the internal representation used by the unicode class.

The most common encodings for Western languages are UTF-8 and UTF-16,

which use sequences of one- and two-byte values, respectively, to represent each code

http://docs.python.org/lib/module-mmap.html

ptg

6.7. codecs—String Encoding and Decoding 285

point. Other encodings can be more efficient for storing languages where most of the

characters are represented by code points that do not fit into two bytes.

See Also:
For more introductory information about Unicode, refer to the list of references at the

end of this section. The Python Unicode HOWTO is especially helpful.

Encodings

The best way to understand encodings is to look at the different series of bytes produced

by encoding the same string in different ways. The following examples use this function

to format the byte string to make it easier to read.

import binascii

def to_hex(t, nbytes):

"""Format text t as a sequence of nbyte long values

separated by spaces.

"""

chars_per_item = nbytes * 2

hex_version = binascii.hexlify(t)

return ’ ’.join(

hex_version[start:start + chars_per_item]

for start in xrange(0, len(hex_version), chars_per_item)

)

if __name__ == ’__main__’:

print to_hex(’abcdef’, 1)

print to_hex(’abcdef’, 2)

The function uses binascii to get a hexadecimal representation of the input

byte string and then insert a space between every nbytes bytes before returning the

value.

$ python codecs_to_hex.py

61 62 63 64 65 66

6162 6364 6566

The first encoding example begins by printing the text ’pi: π’ using the raw

representation of the unicode class. The π character is replaced with the expression

ptg

286 The File System

for its Unicode code point, \u03c0. The next two lines encode the string as UTF-8 and

UTF-16, respectively, and show the hexadecimal values resulting from the encoding.

from codecs_to_hex import to_hex

text = u’pi: π’

print ’Raw :’, repr(text)

print ’UTF-8 :’, to_hex(text.encode(’utf-8’), 1)

print ’UTF-16:’, to_hex(text.encode(’utf-16’), 2)

The result of encoding a unicode string is a str object.

$ python codecs_encodings.py

Raw : u’pi: \u03c0’

UTF-8 : 70 69 3a 20 cf 80

UTF-16: fffe 7000 6900 3a00 2000 c003

Given a sequence of encoded bytes as a str instance, the decode()method trans-

lates them to code points and returns the sequence as a unicode instance.

from codecs_to_hex import to_hex

text = u’pi: π’

encoded = text.encode(’utf-8’)

decoded = encoded.decode(’utf-8’)

print ’Original :’, repr(text)

print ’Encoded :’, to_hex(encoded, 1), type(encoded)

print ’Decoded :’, repr(decoded), type(decoded)

The choice of encoding used does not change the output type.

$ python codecs_decode.py

Original : u’pi: \u03c0’

Encoded : 70 69 3a 20 cf 80 <type ’str’>

Decoded : u’pi: \u03c0’ <type ’unicode’>

ptg

6.7. codecs—String Encoding and Decoding 287

Note: The default encoding is set during the interpreter start-up process, when site

is loaded. Refer to the Unicode Defaults section from the discussion of sys for a

description of the default encoding settings.

6.7.2 Working with Files

Encoding and decoding strings is especially important when dealing with I/O opera-

tions. Whether writing to a file, a socket, or another stream, the data must use the proper

encoding. In general, all text data needs to be decoded from its byte representation as it

is read and encoded from the internal values to a specific representation as it is written.

A program can explicitly encode and decode data, but depending on the encoding used,

it can be nontrivial to determine whether enough bytes have been read in order to fully

decode the data. codecs provides classes that manage the data encoding and decoding,

so applications do not have to do that work.

The simplest interface provided by codecs is a replacement for the built-in

open() function. The new version works just like the built-in function, but adds two

new arguments to specify the encoding and desired error-handling technique.

from codecs_to_hex import to_hex

import codecs
import sys

encoding = sys.argv[1]

filename = encoding + ’.txt’

print ’Writing to’, filename

with codecs.open(filename, mode=’wt’, encoding=encoding) as f:

f.write(u’pi: \u03c0’)

Determine the byte grouping to use for to_hex()

nbytes = { ’utf-8’:1,

’utf-16’:2,

’utf-32’:4,

}.get(encoding, 1)

Show the raw bytes in the file

print ’File contents:’

with open(filename, mode=’rt’) as f:

print to_hex(f.read(), nbytes)

ptg

288 The File System

This example starts with a unicode string with the code point for π and saves the

text to a file using an encoding specified on the command line.

$ python codecs_open_write.py utf-8

Writing to utf-8.txt

File contents:

70 69 3a 20 cf 80

$ python codecs_open_write.py utf-16

Writing to utf-16.txt

File contents:

fffe 7000 6900 3a00 2000 c003

$ python codecs_open_write.py utf-32

Writing to utf-32.txt

File contents:

fffe0000 70000000 69000000 3a000000 20000000 c0030000

Reading the data with open() is straightforward, with one catch: the encoding

must be known in advance, in order to set up the decoder correctly. Some data formats,

such as XML, specify the encoding as part of the file, but usually it is up to the appli-

cation to manage. codecs simply takes the encoding as an argument and assumes it is

correct.

import codecs
import sys

encoding = sys.argv[1]

filename = encoding + ’.txt’

print ’Reading from’, filename

with codecs.open(filename, mode=’rt’, encoding=encoding) as f:

print repr(f.read())

This example reads the files created by the previous program and prints the repre-

sentation of the resulting unicode object to the console.

$ python codecs_open_read.py utf-8

Reading from utf-8.txt

u’pi: \u03c0’

ptg

6.7. codecs—String Encoding and Decoding 289

$ python codecs_open_read.py utf-16

Reading from utf-16.txt

u’pi: \u03c0’

$ python codecs_open_read.py utf-32

Reading from utf-32.txt

u’pi: \u03c0’

6.7.3 Byte Order

Multibyte encodings, such as UTF-16 and UTF-32, pose a problem when transferring

data between different computer systems, either by copying a file directly or using net-

work communication. Different systems use different ordering of the high- and low-

order bytes. This characteristic of the data, known as its endianness, depends on factors

such as the hardware architecture and choices made by the operating system and appli-

cation developer. There is not always a way to know in advance what byte order to use

for a given set of data, so the multibyte encodings include a byte-order marker (BOM)

as the first few bytes of encoded output. For example, UTF-16 is defined in such a

way that 0xFFFE and 0xFEFF are not valid characters and can be used to indicate the

byte-order. codecs defines constants for the byte-order markers used by UTF-16 and

UTF-32.

import codecs
from codecs_to_hex import to_hex

for name in [’BOM’, ’BOM_BE’, ’BOM_LE’,

’BOM_UTF8’,

’BOM_UTF16’, ’BOM_UTF16_BE’, ’BOM_UTF16_LE’,

’BOM_UTF32’, ’BOM_UTF32_BE’, ’BOM_UTF32_LE’,

]:

print ’{:12} : {}’.format(name, to_hex(getattr(codecs, name), 2))

BOM, BOM_UTF16, and BOM_UTF32 are automatically set to the appropriate

big-endian or little-endian values, depending on the current system’s native byte

order.

$ python codecs_bom.py

BOM : fffe

ptg

290 The File System

BOM_BE : feff

BOM_LE : fffe

BOM_UTF8 : efbb bf

BOM_UTF16 : fffe

BOM_UTF16_BE : feff

BOM_UTF16_LE : fffe

BOM_UTF32 : fffe 0000

BOM_UTF32_BE : 0000 feff

BOM_UTF32_LE : fffe 0000

Byte ordering is detected and handled automatically by the decoders in codecs,

but an explicit ordering can be specified when encoding.

import codecs
from codecs_to_hex import to_hex

Pick the nonnative version of UTF-16 encoding

if codecs.BOM_UTF16 == codecs.BOM_UTF16_BE:

bom = codecs.BOM_UTF16_LE

encoding = ’utf_16_le’

else:
bom = codecs.BOM_UTF16_BE

encoding = ’utf_16_be’

print ’Native order :’, to_hex(codecs.BOM_UTF16, 2)

print ’Selected order:’, to_hex(bom, 2)

Encode the text.

encoded_text = u’pi: \u03c0’.encode(encoding)
print ’{:14}: {}’.format(encoding, to_hex(encoded_text, 2))

with open(’nonnative-encoded.txt’, mode=’wb’) as f:

Write the selected byte-order marker. It is not included

in the encoded text because the byte order was given

explicitly when selecting the encoding.

f.write(bom)

Write the byte string for the encoded text.

f.write(encoded_text)

codecs_bom_create_file.py figures out the native byte ordering and then

uses the alternate form explicitly so the next example can demonstrate auto-detection

while reading.

ptg

6.7. codecs—String Encoding and Decoding 291

$ python codecs_bom_create_file.py

Native order : fffe

Selected order: feff

utf_16_be : 0070 0069 003a 0020 03c0

codecs_bom_detection.py does not specify a byte order when opening the

file, so the decoder uses the BOM value in the first two bytes of the file to determine it.

import codecs
from codecs_to_hex import to_hex

Look at the raw data

with open(’nonnative-encoded.txt’, mode=’rb’) as f:

raw_bytes = f.read()

print ’Raw :’, to_hex(raw_bytes, 2)

Reopen the file and let codecs detect the BOM

with codecs.open(’nonnative-encoded.txt’,

mode=’rt’,

encoding=’utf-16’,

) as f:

decoded_text = f.read()

print ’Decoded:’, repr(decoded_text)

Since the first two bytes of the file are used for byte-order detection, they are not

included in the data returned by read().

$ python codecs_bom_detection.py

Raw : feff 0070 0069 003a 0020 03c0

Decoded: u’pi: \u03c0’

6.7.4 Error Handling

The previous sections pointed out the need to know the encoding being used when

reading and writing Unicode files. Setting the encoding correctly is important for two

reasons. If the encoding is configured incorrectly while reading from a file, the data

ptg

292 The File System

will be interpreted incorrectly and may be corrupted or simply fail to decode. Not all

Unicode characters can be represented in all encodings, so if the wrong encoding is

used while writing, then an error will be generated and data may be lost.

codecs uses the same five error-handling options that are provided by the

encode() method of unicode and the decode() method of str, listed in

Table 6.1.

Table 6.1. Codec Error-Handling Modes

Error Mode Description
strict Raises an exception if the data cannot be converted

replace Substitutes a special marker character for data that cannot

be encoded

ignore Skips the data

xmlcharrefreplace XML character (encoding only)

backslashreplace Escape sequence (encoding only)

Encoding Errors

The most common error condition is receiving a UnicodeEncodeError when writ-

ing Unicode data to an ASCII output stream, such as a regular file or sys.stdout.

This sample program can be used to experiment with the different error-handling

modes.

import codecs
import sys

error_handling = sys.argv[1]

text = u’pi: \u03c0’

try:
Save the data, encoded as ASCII, using the error

handling mode specified on the command line.

with codecs.open(’encode_error.txt’, ’w’,

encoding=’ascii’,

errors=error_handling) as f:

f.write(text)

except UnicodeEncodeError, err:

print ’ERROR:’, err

ptg

6.7. codecs—String Encoding and Decoding 293

else:
If there was no error writing to the file,

show what it contains.

with open(’encode_error.txt’, ’rb’) as f:

print ’File contents:’, repr(f.read())

While strict mode is safest for ensuring an application explicitly sets the correct

encoding for all I/O operations, it can lead to program crashes when an exception is

raised.

$ python codecs_encode_error.py strict

ERROR: ’ascii’ codec can’t encode character u’\u03c0’ in position 4:

ordinal not in range(128)

Some of the other error modes are more flexible. For example, replace ensures

that no error is raised, at the expense of possibly losing data that cannot be converted

to the requested encoding. The Unicode character for pi (π) still cannot be encoded

in ASCII, but instead of raising an exception, the character is replaced with ? in the

output.

$ python codecs_encode_error.py replace

File contents: ’pi: ?’

To skip over problem data entirely, use ignore. Any data that cannot be encoded

will be discarded.

$ python codecs_encode_error.py ignore

File contents: ’pi: ’

There are two lossless error-handling options, both of which replace the charac-

ter with an alternate representation defined by a standard separate from the encoding.

xmlcharrefreplace uses an XML character reference as a substitute (the list of

character references is specified in the W3C document, XML Entity Definitions for
Characters).

$ python codecs_encode_error.py xmlcharrefreplace

File contents: ’pi: π’

ptg

294 The File System

The other lossless error-handling scheme is backslashreplace, which produces

an output format like the value returned when repr() of a unicode object is printed.

Unicode characters are replaced with \u followed by the hexadecimal value of the code

point.

$ python codecs_encode_error.py backslashreplace

File contents: ’pi: \\u03c0’

Decoding Errors

It is also possible to see errors when decoding data, especially if the wrong encoding

is used.

import codecs
import sys

from codecs_to_hex import to_hex

error_handling = sys.argv[1]

text = u’pi: \u03c0’
print ’Original :’, repr(text)

Save the data with one encoding

with codecs.open(’decode_error.txt’, ’w’, encoding=’utf-16’) as f:

f.write(text)

Dump the bytes from the file

with open(’decode_error.txt’, ’rb’) as f:

print ’File contents:’, to_hex(f.read(), 1)

Try to read the data with the wrong encoding

with codecs.open(’decode_error.txt’, ’r’,

encoding=’utf-8’,

errors=error_handling) as f:

try:
data = f.read()

except UnicodeDecodeError, err:

print ’ERROR:’, err

else:
print ’Read :’, repr(data)

ptg

6.7. codecs—String Encoding and Decoding 295

As with encoding, strict error-handling mode raises an exception if the byte

stream cannot be properly decoded. In this case, a UnicodeDecodeError results from

trying to convert part of the UTF-16 BOM to a character using the UTF-8 decoder.

$ python codecs_decode_error.py strict

Original : u’pi: \u03c0’

File contents: ff fe 70 00 69 00 3a 00 20 00 c0 03

ERROR: ’utf8’ codec can’t decode byte 0xff in position 0: invalid

start byte

Switching to ignore causes the decoder to skip over the invalid bytes. The result

is still not quite what is expected, though, since it includes embedded null bytes.

$ python codecs_decode_error.py ignore

Original : u’pi: \u03c0’

File contents: ff fe 70 00 69 00 3a 00 20 00 c0 03

Read : u’p\x00i\x00:\x00 \x00\x03’

In replace mode, invalid bytes are replaced with \uFFFD, the official Unicode

replacement character, which looks like a diamond with a black background containing

a white question mark.

$ python codecs_decode_error.py replace

Original : u’pi: \u03c0’

File contents: ff fe 70 00 69 00 3a 00 20 00 c0 03

Read : u’\ufffd\ufffdp\x00i\x00:\x00 \x00\ufffd\x03’

6.7.5 Standard Input and Output Streams

The most common cause of UnicodeEncodeError exceptions is code that tries to

print unicode data to the console or a UNIX pipeline when sys.stdout is not con-

figured with an encoding.

import codecs
import sys

text = u’pi: π’

ptg

296 The File System

Printing to stdout may cause an encoding error

print ’Default encoding:’, sys.stdout.encoding

print ’TTY:’, sys.stdout.isatty()

print text

Problems with the default encoding of the standard I/O channels can be difficult to

debug. This is because the program frequently works as expected when the output goes

to the console, but it causes an encoding error when it is used as part of a pipeline and

the output includes Unicode characters outside of the ASCII range. This difference in

behavior is caused by Python’s initialization code, which sets the default encoding for

each standard I/O channel only if the channel is connected to a terminal (isatty()

returns True). If there is no terminal, Python assumes the program will configure the

encoding explicitly and leaves the I/O channel alone.

$ python codecs_stdout.py

Default encoding: utf-8

TTY: True

pi: π

$ python codecs_stdout.py | cat -

Default encoding: None

TTY: False

Traceback (most recent call last):

File "codecs_stdout.py", line 18, in <module>

print text

UnicodeEncodeError: ’ascii’ codec can’t encode character

u’\u03c0’ in position 4: ordinal not in range(128)

To explicitly set the encoding on the standard output channel, use getwriter()

to get a stream encoder class for a specific encoding. Instantiate the class, passing

sys.stdout as the only argument.

import codecs
import sys

text = u’pi: π’

Wrap sys.stdout with a writer that knows how to handle encoding

Unicode data.

ptg

6.7. codecs—String Encoding and Decoding 297

wrapped_stdout = codecs.getwriter(’UTF-8’)(sys.stdout)

wrapped_stdout.write(u’Via write: ’ + text + ’\n’)

Replace sys.stdout with a writer

sys.stdout = wrapped_stdout

print u’Via print:’, text

Writing to the wrapped version of sys.stdout passes the Unicode text through

an encoder before sending the encoded bytes to stdout. Replacing sys.stdout

means that any code used by an application that prints to standard output will be able

to take advantage of the encoding writer.

$ python codecs_stdout_wrapped.py

Via write: pi: π

Via print: pi: π

The next problem to solve is how to know which encoding should be used. The

proper encoding varies based on location, language, and user or system configuration,

so hard-coding a fixed value is not a good idea. It would also be annoying for a user

to need to pass explicit arguments to every program by setting the input and output

encodings. Fortunately, there is a global way to get a reasonable default encoding using

locale.

import codecs
import locale
import sys

text = u’pi: π’

Configure locale from the user’s environment settings.

locale.setlocale(locale.LC_ALL, ’’)

Wrap stdout with an encoding-aware writer.

lang, encoding = locale.getdefaultlocale()

print ’Locale encoding :’, encoding

sys.stdout = codecs.getwriter(encoding)(sys.stdout)

print ’With wrapped stdout:’, text

ptg

298 The File System

The function locale.getdefaultlocale() returns the language and preferred

encoding based on the system and user configuration settings in a form that can be used

with getwriter().

$ python codecs_stdout_locale.py

Locale encoding : UTF8

With wrapped stdout: pi: π

The encoding also needs to be set up when working with sys.stdin. Use

getreader() to get a reader capable of decoding the input bytes.

import codecs
import locale
import sys

Configure locale from the user’s environment settings.

locale.setlocale(locale.LC_ALL, ’’)

Wrap stdin with an encoding-aware reader.

lang, encoding = locale.getdefaultlocale()

sys.stdin = codecs.getreader(encoding)(sys.stdin)

print ’From stdin:’

print repr(sys.stdin.read())

Reading from the wrapped handle returns unicode objects instead of str

instances.

$ python codecs_stdout_locale.py | python codecs_stdin.py

From stdin:

u’Locale encoding : UTF8\nWith wrapped stdout: pi: \u03c0\n’

6.7.6 Encoding Translation

Although most applications will work with unicode data internally, decoding or en-

coding it as part of an I/O operation, there are times when changing a file’s encoding

without holding on to that intermediate data format is useful. EncodedFile() takes

an open file handle using one encoding and wraps it with a class that translates the data

to another encoding as the I/O occurs.

ptg

6.7. codecs—String Encoding and Decoding 299

from codecs_to_hex import to_hex

import codecs
from cStringIO import StringIO

Raw version of the original data.

data = u’pi: \u03c0’

Manually encode it as UTF-8.

utf8 = data.encode(’utf-8’)

print ’Start as UTF-8 :’, to_hex(utf8, 1)

Set up an output buffer, then wrap it as an EncodedFile.

output = StringIO()

encoded_file = codecs.EncodedFile(output, data_encoding=’utf-8’,

file_encoding=’utf-16’)

encoded_file.write(utf8)

Fetch the buffer contents as a UTF-16 encoded byte string

utf16 = output.getvalue()

print ’Encoded to UTF-16:’, to_hex(utf16, 2)

Set up another buffer with the UTF-16 data for reading,

and wrap it with another EncodedFile.

buffer = StringIO(utf16)

encoded_file = codecs.EncodedFile(buffer, data_encoding=’utf-8’,

file_encoding=’utf-16’)

Read the UTF-8 encoded version of the data.

recoded = encoded_file.read()

print ’Back to UTF-8 :’, to_hex(recoded, 1)

This example shows reading from and writing to separate handles returned by

EncodedFile(). No matter whether the handle is used for reading or writing, the

file_encoding always refers to the encoding in use by the open file handle passed as the

first argument, and the data_encoding value refers to the encoding in use by the data

passing through the read() and write() calls.

$ python codecs_encodedfile.py

Start as UTF-8 : 70 69 3a 20 cf 80

ptg

300 The File System

Encoded to UTF-16: fffe 7000 6900 3a00 2000 c003

Back to UTF-8 : 70 69 3a 20 cf 80

6.7.7 Non-Unicode Encodings

Although most of the earlier examples use Unicode encodings, codecs can be used for

many other data translations. For example, Python includes codecs for working with

base-64, bzip2, ROT-13, ZIP, and other data formats.

import codecs
from cStringIO import StringIO

buffer = StringIO()

stream = codecs.getwriter(’rot_13’)(buffer)

text = ’abcdefghijklmnopqrstuvwxyz’

stream.write(text)

stream.flush()

print ’Original:’, text

print ’ROT-13 :’, buffer.getvalue()

Any transformation that can be expressed as a function taking a single input argu-

ment and returning a byte or Unicode string can be registered as a codec.

$ python codecs_rot13.py

Original: abcdefghijklmnopqrstuvwxyz

ROT-13 : nopqrstuvwxyzabcdefghijklm

Using codecs to wrap a data stream provides a simpler interface than working

directly with zlib.

import codecs
from cStringIO import StringIO

from codecs_to_hex import to_hex

buffer = StringIO()

stream = codecs.getwriter(’zlib’)(buffer)

ptg

6.7. codecs—String Encoding and Decoding 301

text = ’abcdefghijklmnopqrstuvwxyz\n’ * 50

stream.write(text)

stream.flush()

print ’Original length :’, len(text)

compressed_data = buffer.getvalue()

print ’ZIP compressed :’, len(compressed_data)

buffer = StringIO(compressed_data)

stream = codecs.getreader(’zlib’)(buffer)

first_line = stream.readline()

print ’Read first line :’, repr(first_line)

uncompressed_data = first_line + stream.read()

print ’Uncompressed :’, len(uncompressed_data)

print ’Same :’, text == uncompressed_data

Not all compression or encoding systems support reading a portion of the data

through the stream interface using readline() or read() because they need to find

the end of a compressed segment to expand it. If a program cannot hold the entire un-

compressed data set in memory, use the incremental access features of the compression

library, instead of codecs.

$ python codecs_zlib.py

Original length : 1350

ZIP compressed : 48

Read first line : ’abcdefghijklmnopqrstuvwxyz\n’

Uncompressed : 1350

Same : True

6.7.8 Incremental Encoding

Some of the encodings provided, especially bz2 and zlib, may dramatically change

the length of the data stream as they work on it. For large data sets, these encod-

ings operate better incrementally, working on one small chunk of data at a time. The

IncrementalEncoder and IncrementalDecoder API is designed for this purpose.

import codecs
import sys

ptg

302 The File System

from codecs_to_hex import to_hex

text = ’abcdefghijklmnopqrstuvwxyz\n’
repetitions = 50

print ’Text length :’, len(text)

print ’Repetitions :’, repetitions

print ’Expected len:’, len(text) * repetitions

Encode the text several times to build up a large amount of data

encoder = codecs.getincrementalencoder(’bz2’)()

encoded = []

print
print ’Encoding:’,

for i in range(repetitions):

en_c = encoder.encode(text, final = (i==repetitions-1))

if en_c:

print ’\nEncoded : {} bytes’.format(len(en_c))

encoded.append(en_c)

else:
sys.stdout.write(’.’)

bytes = ’’.join(encoded)

print
print ’Total encoded length:’, len(bytes)

print

Decode the byte string one byte at a time

decoder = codecs.getincrementaldecoder(’bz2’)()

decoded = []

print ’Decoding:’,

for i, b in enumerate(bytes):

final= (i+1) == len(text)

c = decoder.decode(b, final)

if c:

print ’\nDecoded : {} characters’.format(len(c))

print ’Decoding:’,

decoded.append(c)

else:
sys.stdout.write(’.’)

print

ptg

6.7. codecs—String Encoding and Decoding 303

restored = u’’.join(decoded)

print
print ’Total uncompressed length:’, len(restored)

Each time data is passed to the encoder or the decoder, its internal state is up-

dated. When the state is consistent (as defined by the codec), data is returned and the

state resets. Until that point, calls to encode() or decode() will not return any data.

When the last bit of data is passed in, the argument final should be set to True so the

codec knows to flush any remaining buffered data.

$ python codecs_incremental_bz2.py

Text length : 27

Repetitions : 50

Expected len: 1350

Encoding:...

Encoded : 99 bytes

Total encoded length: 99

Decoding:...................

............................

Decoded : 1350 characters

Decoding:..........

Total uncompressed length: 1350

6.7.9 Unicode Data and Network Communication

Like the standard input and output file descriptors, network sockets are also byte

streams, and so Unicode data must be encoded into bytes before it is written to a socket.

This server echos data it receives back to the sender.

import sys
import SocketServer

class Echo(SocketServer.BaseRequestHandler):

ptg

304 The File System

def handle(self):

Get some bytes and echo them back to the client.

data = self.request.recv(1024)

self.request.send(data)

return

if __name__ == ’__main__’:

import codecs
import socket
import threading

address = (’localhost’, 0) # let the kernel assign a port

server = SocketServer.TCPServer(address, Echo)

ip, port = server.server_address # what port was assigned?

t = threading.Thread(target=server.serve_forever)

t.setDaemon(True) # don’t hang on exit

t.start()

Connect to the server

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect((ip, port))

Send the data

WRONG: Not encoded first!

text = u’pi: π’

len_sent = s.send(text)

Receive a response

response = s.recv(len_sent)

print repr(response)

Clean up

s.close()

server.socket.close()

The data could be encoded explicitly before each call to send(), but missing one

call to send() would result in an encoding error.

$ python codecs_socket_fail.py

Traceback (most recent call last):

File "codecs_socket_fail.py", line 43, in <module>

ptg

6.7. codecs—String Encoding and Decoding 305

len_sent = s.send(text)

UnicodeEncodeError: ’ascii’ codec can’t encode character

u’\u03c0’ in position 4: ordinal not in range(128)

Using makefile() to get a file-like handle for the socket, and then wrapping that

handle with a stream-based reader or writer, means Unicode strings will be encoded on

the way into and out of the socket.

import sys
import SocketServer

class Echo(SocketServer.BaseRequestHandler):

def handle(self):

Get some bytes and echo them back to the client. There is

no need to decode them, since they are not used.

data = self.request.recv(1024)

self.request.send(data)

return

class PassThrough(object):

def __init__(self, other):

self.other = other

def write(self, data):

print ’Writing :’, repr(data)

return self.other.write(data)

def read(self, size=-1):

print ’Reading :’,

data = self.other.read(size)

print repr(data)

return data

def flush(self):

return self.other.flush()

def close(self):

return self.other.close()

ptg

306 The File System

if __name__ == ’__main__’:

import codecs
import socket
import threading

address = (’localhost’, 0) # let the kernel assign a port

server = SocketServer.TCPServer(address, Echo)

ip, port = server.server_address # what port was assigned?

t = threading.Thread(target=server.serve_forever)

t.setDaemon(True) # don’t hang on exit

t.start()

Connect to the server

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect((ip, port))

Wrap the socket with a reader and writer.

read_file = s.makefile(’r’)

incoming = codecs.getreader(’utf-8’)(PassThrough(read_file))

write_file = s.makefile(’w’)

outgoing = codecs.getwriter(’utf-8’)(PassThrough(write_file))

Send the data

text = u’pi: π’

print ’Sending :’, repr(text)

outgoing.write(text)

outgoing.flush()

Receive a response

response = incoming.read()

print ’Received:’, repr(response)

Clean up

s.close()

server.socket.close()

This example uses PassThrough to show that the data is encoded before being

sent and the response is decoded after it is received in the client.

$ python codecs_socket.py

Sending : u’pi: \u03c0’

ptg

6.7. codecs—String Encoding and Decoding 307

Writing : ’pi: \xcf\x80’

Reading : ’pi: \xcf\x80’

Received: u’pi: \u03c0’

6.7.10 Defining a Custom Encoding

Since Python comes with a large number of standard codecs already, it is unlikely that

an application will need to define a custom encoder or decoder. When it is necessary,

though, there are several base classes in codecs to make the process easier.

The first step is to understand the nature of the transformation described by the

encoding. These examples will use an “invertcaps” encoding, which converts uppercase

letters to lowercase and lowercase letters to uppercase. Here is a simple definition of an

encoding function that performs this transformation on an input string:

import string

def invertcaps(text):

"""Return new string with the case of all letters switched.

"""

return ’’.join(c.upper() if c in string.ascii_lowercase

else c.lower() if c in string.ascii_uppercase

else c

for c in text

)

if __name__ == ’__main__’:

print invertcaps(’ABC.def’)

print invertcaps(’abc.DEF’)

In this case, the encoder and decoder are the same function (as with ROT-13).

$ python codecs_invertcaps.py

abc.DEF

ABC.def

Although it is easy to understand, this implementation is not efficient, especially

for very large text strings. Fortunately, codecs includes helper functions for creating

codecs based on character maps, like invertcaps. A character map encoding is made up

of two dictionaries. The encoding map converts character values from the input string to

byte values in the output, and the decoding map goes the other way. Create the decoding

ptg

308 The File System

map first, and then use make_encoding_map() to convert it to an encoding map. The

C functions charmap_encode() and charmap_decode() use the maps to convert

their input data efficiently.

import codecs
import string

Map every character to itself

decoding_map = codecs.make_identity_dict(range(256))

Make a list of pairs of ordinal values for the lower and uppercase

letters

pairs = zip([ord(c) for c in string.ascii_lowercase],

[ord(c) for c in string.ascii_uppercase])

Modify the mapping to convert upper to lower and lower to upper.

decoding_map.update(dict((upper, lower)

for (lower, upper)

in pairs

)

)

decoding_map.update(dict((lower, upper)

for (lower, upper)

in pairs

)

)

Create a separate encoding map.

encoding_map = codecs.make_encoding_map(decoding_map)

if __name__ == ’__main__’:

print codecs.charmap_encode(’abc.DEF’, ’strict’, encoding_map)

print codecs.charmap_decode(’abc.DEF’, ’strict’, decoding_map)

print encoding_map == decoding_map

Although the encoding and decoding maps for invertcaps are the same, that may

not always be the case. make_encoding_map() detects situations where more than

one input character is encoded to the same output byte and replaces the encoding value

with None to mark the encoding as undefined.

$ python codecs_invertcaps_charmap.py

(’ABC.def’, 7)

ptg

6.7. codecs—String Encoding and Decoding 309

(u’ABC.def’, 7)

True

The character map encoder and decoder support all standard error-handling

methods described earlier, so no extra work is needed to comply with that part of the

API.

import codecs
from codecs_invertcaps_charmap import encoding_map

text = u’pi: π’

for error in [’ignore’, ’replace’, ’strict’]:

try:
encoded = codecs.charmap_encode(text, error, encoding_map)

except UnicodeEncodeError, err:

encoded = str(err)

print ’{:7}: {}’.format(error, encoded)

Because the Unicode code point for π is not in the encoding map, the strict error-

handling mode raises an exception.

$ python codecs_invertcaps_error.py

ignore : (’PI: ’, 5)

replace: (’PI: ?’, 5)

strict : ’charmap’ codec can’t encode character u’\u03c0’ in position

4: character maps to <undefined>

After the encoding and decoding maps are defined, a few additional classes need to

be set up, and the encoding should be registered. register() adds a search function

to the registry so that when a user wants to use the encoding, codecs can locate it. The

search function must take a single string argument with the name of the encoding and

return a CodecInfo object if it knows the encoding, or None if it does not.

import codecs
import encodings

def search1(encoding):

print ’search1: Searching for:’, encoding

return None

ptg

310 The File System

def search2(encoding):

print ’search2: Searching for:’, encoding

return None

codecs.register(search1)

codecs.register(search2)

utf8 = codecs.lookup(’utf-8’)

print ’UTF-8:’, utf8

try:
unknown = codecs.lookup(’no-such-encoding’)

except LookupError, err:

print ’ERROR:’, err

Multiple search functions can be registered, and each will be called in turn until

one returns a CodecInfo or the list is exhausted. The internal search function registered

by codecs knows how to load the standard codecs, such as UTF-8 from encodings,

so those names will never be passed to custom search functions.

$ python codecs_register.py

UTF-8: <codecs.CodecInfo object for encoding utf-8 at 0x100d0f530>

search1: Searching for: no-such-encoding

search2: Searching for: no-such-encoding

ERROR: unknown encoding: no-such-encoding

The CodecInfo instance returned by the search function tells codecs how to

encode and decode using all the different mechanisms supported: stateless, incremen-

tal, and stream. codecs includes base classes to help with setting up a character map

encoding. This example puts all the pieces together to register a search function that

returns a CodecInfo instance configured for the invertcaps codec.

import codecs

from codecs_invertcaps_charmap import encoding_map, decoding_map

Stateless encoder/decoder

class InvertCapsCodec(codecs.Codec):
def encode(self, input, errors=’strict’):

return codecs.charmap_encode(input, errors, encoding_map)

ptg

6.7. codecs—String Encoding and Decoding 311

def decode(self, input, errors=’strict’):

return codecs.charmap_decode(input, errors, decoding_map)

Incremental forms

class InvertCapsIncrementalEncoder(codecs.IncrementalEncoder):
def encode(self, input, final=False):

data, nbytes = codecs.charmap_encode(input,

self.errors,

encoding_map)

return data

class InvertCapsIncrementalDecoder(codecs.IncrementalDecoder):
def decode(self, input, final=False):

data, nbytes = codecs.charmap_decode(input,

self.errors,

decoding_map)

return data

Stream reader and writer

class InvertCapsStreamReader(InvertCapsCodec, codecs.StreamReader):

pass

class InvertCapsStreamWriter(InvertCapsCodec, codecs.StreamWriter):

pass

Register the codec search function

def find_invertcaps(encoding):

"""Return the codec for ’invertcaps’.

"""

if encoding == ’invertcaps’:

return codecs.CodecInfo(

name=’invertcaps’,

encode=InvertCapsCodec().encode,

decode=InvertCapsCodec().decode,

incrementalencoder=InvertCapsIncrementalEncoder,

incrementaldecoder=InvertCapsIncrementalDecoder,

streamreader=InvertCapsStreamReader,

streamwriter=InvertCapsStreamWriter,

)

return None

ptg

312 The File System

codecs.register(find_invertcaps)

if __name__ == ’__main__’:

Stateless encoder/decoder

encoder = codecs.getencoder(’invertcaps’)

text = ’abc.DEF’

encoded_text, consumed = encoder(text)

print ’Encoded "{}" to "{}", consuming {} characters’.format(

text, encoded_text, consumed)

Stream writer

import sys
writer = codecs.getwriter(’invertcaps’)(sys.stdout)

print ’StreamWriter for stdout: ’,

writer.write(’abc.DEF’)

print

Incremental decoder

decoder_factory = codecs.getincrementaldecoder(’invertcaps’)

decoder = decoder_factory()

decoded_text_parts = []

for c in encoded_text:

decoded_text_parts.append(decoder.decode(c, final=False))

decoded_text_parts.append(decoder.decode(’’, final=True))

decoded_text = ’’.join(decoded_text_parts)

print ’IncrementalDecoder converted "{}" to "{}"’.format(

encoded_text, decoded_text)

The stateless encoder/decoder base class is Codec. Override encode() and

decode() with the new implementation (in this case, calling charmap_encode()

and charmap_decode(), respectively). Each method must return a tuple contain-

ing the transformed data and the number of the input bytes or characters consumed.

Conveniently, charmap_encode() and charmap_decode() already return that

information.

IncrementalEncoder and IncrementalDecoder serve as base classes for

the incremental interfaces. The encode() and decode() methods of the incre-

mental classes are defined in such a way that they only return the actual trans-

formed data. Any information about buffering is maintained as internal state. The

invertcaps encoding does not need to buffer data (it uses a one-to-one mapping).

For encodings that produce a different amount of output depending on the data be-

ing processed, such as compression algorithms, BufferedIncrementalEncoder

ptg

6.7. codecs—String Encoding and Decoding 313

and BufferedIncrementalDecoder are more appropriate base classes, since they

manage the unprocessed portion of the input.

StreamReader and StreamWriter need encode() and decode() methods,

too, and since they are expected to return the same value as the version from Codec,

multiple inheritance can be used for the implementation.

$ python codecs_invertcaps_register.py

Encoded "abc.DEF" to "ABC.def", consuming 7 characters

StreamWriter for stdout: ABC.def

IncrementalDecoder converted "ABC.def" to "abc.DEF"

See Also:
codecs (http://docs.python.org/library/codecs.html) The standard library documen-

tation for this module.

locale (page 909) Accessing and managing the localization-based configuration set-

tings and behaviors.

io (http://docs.python.org/library/io.html) The io module includes file and stream

wrappers that handle encoding and decoding, too.

SocketServer (page 609) For a more detailed example of an echo server, see the

SocketServer module.

encodings Package in the standard library containing the encoder/decoder implemen-

tations provided by Python.

PEP 100 (www.python.org/dev/peps/pep-0100) Python Unicode Integration PEP.

Unicode HOWTO (http://docs.python.org/howto/unicode) The official guide for

using Unicode with Python 2.x.

Python Unicode Objects (http://effbot.org/zone/unicode-objects.htm) Fredrik

Lundh’s article about using non-ASCII character sets in Python 2.0.

How to Use UTF-8 with Python (http://evanjones.ca/python-utf8.html) Evan

Jones’ quick guide to working with Unicode, including XML data and the Byte-

Order Marker.

On the Goodness of Unicode (www.tbray.org/ongoing/When/200x/2003/04/06/
Unicode) Introduction to internationalization and Unicode by Tim Bray.

On Character Strings (www.tbray.org/ongoing/When/200x/2003/04/13/Strings) A

look at the history of string processing in programming languages, by Tim Bray.

Characters vs. Bytes (www.tbray.org/ongoing/When/200x/2003/04/26/UTF) Part

one of Tim Bray’s “essay on modern character string processing for computer

programmers.” This installment covers in-memory representation of text in

formats other than ASCII bytes.

www.python.org/dev/peps/pep-0100
http://effbot.org/zone/unicode-objects.htm
http://evanjones.ca/python-utf8.html
http://docs.python.org/library/codecs.html
http://docs.python.org/library/io.html
www.tbray.org/ongoing/When/200x/2003/04/06/Unicode
www.tbray.org/ongoing/When/200x/2003/04/06/Unicode
www.tbray.org/ongoing/When/200x/2003/04/13/Strings
www.tbray.org/ongoing/When/200x/2003/04/26/UTF
http://docs.python.org/howto/unicode

ptg

314 The File System

Endianness (http://en.wikipedia.org/wiki/Endianness) Explanation of endianness

in Wikipedia.

W3C XML Entity Definitions for Characters (www.w3.org/TR/xml-entity-names/)
Specification for XML representations of character references that cannot be

represented in an encoding.

6.8 StringIO—Text Buffers with a File-like API

Purpose Work with text buffers using a file-like API.

Python Version 1.4 and later

StringIO provides a convenient means of working with text in memory using the

file API (read(), write(), etc.). There are two separate implementations. The

cStringIO version is written in C for speed, while StringIO is written in Python

for portability. Using cStringIO to build large strings can offer performance savings

over some other string concatenation techniques.

6.8.1 Examples

Here are a few standard examples of using StringIO buffers:

Find the best implementation available on this platform

try:
from cStringIO import StringIO

except:
from StringIO import StringIO

Writing to a buffer

output = StringIO()

output.write(’This goes into the buffer. ’)

print >>output, ’And so does this.’

Retrieve the value written

print output.getvalue()

output.close() # discard buffer memory

Initialize a read buffer

input = StringIO(’Inital value for read buffer’)

http://en.wikipedia.org/wiki/Endianness
www.w3.org/TR/xml-entity-names/

ptg

6.9. fnmatch—UNIX-Style Glob Pattern Matching 315

Read from the buffer

print input.read()

This example uses read(), but the readline() and readlines() methods

are also available. The StringIO class also provides a seek() method for jumping

around in a buffer while reading, which can be useful for rewinding if a look-ahead

parsing algorithm is being used.

$ python stringio_examples.py

This goes into the buffer. And so does this.

Inital value for read buffer

See Also:
StringIO (http://docs.python.org/lib/module-StringIO.html) Standard library doc-

umentation for this module.

The StringIO module ::: www.effbot.org (http://effbot.org/librarybook/stringio
.htm) effbot’s examples with StringIO.

Efficient String Concatenation in Python (www.skymind.com/%7Eocrow/python_
string/) Examines various methods of combining strings and their relative

merits.

6.9 fnmatch—UNIX-Style Glob Pattern Matching

Purpose Handle UNIX-style filename comparisons.

Python Version 1.4 and later.

The fnmatch module is used to compare filenames against glob-style patterns such as

used by UNIX shells.

6.9.1 Simple Matching

fnmatch() compares a single filename against a pattern and returns a Boolean, indi-

cating whether or not they match. The comparison is case sensitive when the operating

system uses a case-sensitive file system.

import fnmatch
import os

www.effbot.org
http://effbot.org/librarybook/stringio.htm
http://effbot.org/librarybook/stringio.htm
www.skymind.com/%7Eocrow/python_string/
www.skymind.com/%7Eocrow/python_string/
http://docs.python.org/lib/module-StringIO.html

ptg

316 The File System

pattern = ’fnmatch_*.py’

print ’Pattern :’, pattern

print

files = os.listdir(’.’)

for name in files:

print ’Filename: %-25s %s’ % \

(name, fnmatch.fnmatch(name, pattern))

In this example, the pattern matches all files starting with ’fnmatch_’ and ending

in ’.py’.

$ python fnmatch_fnmatch.py

Pattern : fnmatch_*.py

Filename: __init__.py False

Filename: fnmatch_filter.py True

Filename: fnmatch_fnmatch.py True

Filename: fnmatch_fnmatchcase.py True

Filename: fnmatch_translate.py True

Filename: index.rst False

To force a case-sensitive comparison, regardless of the file system and operating

system settings, use fnmatchcase().

import fnmatch
import os

pattern = ’FNMATCH_*.PY’

print ’Pattern :’, pattern

print

files = os.listdir(’.’)

for name in files:

print ’Filename: %-25s %s’ % \

(name, fnmatch.fnmatchcase(name, pattern))

Since the OS X system used to test this program uses a case-sensitive file system,

no files match the modified pattern.

ptg

6.9. fnmatch—UNIX-Style Glob Pattern Matching 317

$ python fnmatch_fnmatchcase.py

Pattern : FNMATCH_*.PY

Filename: __init__.py False

Filename: fnmatch_filter.py False

Filename: fnmatch_fnmatch.py False

Filename: fnmatch_fnmatchcase.py False

Filename: fnmatch_translate.py False

Filename: index.rst False

6.9.2 Filtering

To test a sequence of filenames, use filter(), which returns a list of the names that

match the pattern argument.

import fnmatch
import os
import pprint

pattern = ’fnmatch_*.py’

print ’Pattern :’, pattern

files = os.listdir(’.’)

print
print ’Files :’

pprint.pprint(files)

print
print ’Matches :’

pprint.pprint(fnmatch.filter(files, pattern))

In this example, filter() returns the list of names of the example source files

associated with this section.

$ python fnmatch_filter.py

Pattern : fnmatch_*.py

Files :

[’__init__.py’,

ptg

318 The File System

’fnmatch_filter.py’,

’fnmatch_fnmatch.py’,

’fnmatch_fnmatchcase.py’,

’fnmatch_translate.py’,

’index.rst’]

Matches :

[’fnmatch_filter.py’,

’fnmatch_fnmatch.py’,

’fnmatch_fnmatchcase.py’,

’fnmatch_translate.py’]

6.9.3 Translating Patterns

Internally, fnmatch converts the glob pattern to a regular expression and uses the re

module to compare the name and pattern. The translate() function is the public API

for converting glob patterns to regular expressions.

import fnmatch

pattern = ’fnmatch_*.py’

print ’Pattern :’, pattern

print ’Regex :’, fnmatch.translate(pattern)

Some of the characters are escaped to make a valid expression.

$ python fnmatch_translate.py

Pattern : fnmatch_*.py

Regex : fnmatch_.*\.py\Z(?ms)

See Also:
fnmatch (http://docs.python.org/library/fnmatch.html) The standard library docu-

mentation for this module.

glob (page 257) The glob module combines fnmatch matching with

os.listdir() to produce lists of files and directories matching patterns.

re (page 13) Regular expression pattern matching.

http://docs.python.org/library/fnmatch.html

ptg

6.10. dircache—Cache Directory Listings 319

6.10 dircache—Cache Directory Listings

Purpose Cache directory listings, updating when the modification time of

a directory changes.

Python Version 1.4 and later

The dircache module reads directory listings from the file system and holds them in

memory.

6.10.1 Listing Directory Contents

The main function in the dircache API is listdir(), which is a wrapper around

os.listdir(). Each time it is called with a given path, dircache.listdir()

returns the same list object, unless the modification date of the directory changes.

import dircache

path = ’.’

first = dircache.listdir(path)

second = dircache.listdir(path)

print ’Contents :’

for name in first:

print ’ ’, name

print
print ’Identical:’, first is second

print ’Equal :’, first == second

It is important to recognize that the exact same list is returned each time, so it

should not be modified in place.

$ python dircache_listdir.py

Contents :

__init__.py

dircache_annotate.py

dircache_listdir.py

ptg

320 The File System

dircache_listdir_file_added.py

dircache_reset.py

index.rst

Identical: True

Equal : True

If the contents of the directory changes, it is rescanned.

import dircache
import os

path = ’/tmp’

file_to_create = os.path.join(path, ’pymotw_tmp.txt’)

Look at the directory contents

first = dircache.listdir(path)

Create the new file

open(file_to_create, ’wt’).close()

Rescan the directory

second = dircache.listdir(path)

Remove the file we created

os.unlink(file_to_create)

print ’Identical :’, first is second

print ’Equal :’, first == second

print ’Difference:’, list(set(second) - set(first))

In this case, the new file causes a new list to be constructed.

$ python dircache_listdir_file_added.py

Identical : False

Equal : False

Difference: [’pymotw_tmp.txt’]

It is also possible to reset the entire cache, discarding its contents so that each path

will be rechecked.

ptg

6.10. dircache—Cache Directory Listings 321

import dircache

path = ’/tmp’

first = dircache.listdir(path)

dircache.reset()

second = dircache.listdir(path)

print ’Identical :’, first is second

print ’Equal :’, first == second

print ’Difference:’, list(set(second) - set(first))

After resetting, a new list instance is returned.

$ python dircache_reset.py

Identical : False

Equal : True

Difference: []

6.10.2 Annotated Listings

Another interesting function provided by the dircache module is annotate(), which

modifies a list(), such as is returned by listdir(), by adding a ’/’ to the end of

the names that represent directories.

import dircache
from pprint import pprint

import os

path = ’../..’

contents = dircache.listdir(path)

annotated = contents[:]

dircache.annotate(path, annotated)

fmt = ’%25s\t%25s’

print fmt % (’ORIGINAL’, ’ANNOTATED’)

print fmt % ((’-’ * 25,)*2)

ptg

322 The File System

for o, a in zip(contents, annotated):

print fmt % (o, a)

Unfortunately for Windows users, although annotate() uses os.path.join()

to construct names to test, it always appends a ’/’, not os.sep.

$ python dircache_annotate.py

ORIGINAL ANNOTATED

------------------------- -------------------------

.DS_Store .DS_Store

.hg .hg/

.hgignore .hgignore

.hgtags .hgtags

LICENSE.txt LICENSE.txt

MANIFEST.in MANIFEST.in

PyMOTW PyMOTW/

PyMOTW.egg-info PyMOTW.egg-info/

README.txt README.txt

bin bin/

dist dist/

module module

motw motw

output output/

pavement.py pavement.py

paver-minilib.zip paver-minilib.zip

setup.py setup.py

sitemap_gen_config.xml sitemap_gen_config.xml

sphinx sphinx/

structure structure/

trace.txt trace.txt

utils utils/

See Also:
dircache (http://docs.python.org/library/dircache.html) The standard library docu-

mentation for this module.

6.11 filecmp—Compare Files

Purpose Compare files and directories on the file system.

Python Version 2.1 and later

http://docs.python.org/library/dircache.html

ptg

6.11. filecmp—Compare Files 323

The filecmp module includes functions and a class for comparing files and directories

on the file system.

6.11.1 Example Data

The examples in this discussion use a set of test files created by filecmp_

mkexamples.py.

import os

def mkfile(filename, body=None):

with open(filename, ’w’) as f:

f.write(body or filename)

return

def make_example_dir(top):

if not os.path.exists(top):

os.mkdir(top)

curdir = os.getcwd()

os.chdir(top)

os.mkdir(’dir1’)

os.mkdir(’dir2’)

mkfile(’dir1/file_only_in_dir1’)

mkfile(’dir2/file_only_in_dir2’)

os.mkdir(’dir1/dir_only_in_dir1’)

os.mkdir(’dir2/dir_only_in_dir2’)

os.mkdir(’dir1/common_dir’)

os.mkdir(’dir2/common_dir’)

mkfile(’dir1/common_file’, ’this file is the same’)

mkfile(’dir2/common_file’, ’this file is the same’)

mkfile(’dir1/not_the_same’)

mkfile(’dir2/not_the_same’)

mkfile(’dir1/file_in_dir1’, ’This is a file in dir1’)

os.mkdir(’dir2/file_in_dir1’)

os.chdir(curdir)

return

ptg

324 The File System

if __name__ == ’__main__’:

os.chdir(os.path.dirname(__file__) or os.getcwd())

make_example_dir(’example’)

make_example_dir(’example/dir1/common_dir’)

make_example_dir(’example/dir2/common_dir’)

Running filecmp_mkexamples.py produces a tree of files under the directory

example:

$ find example

example

example/dir1

example/dir1/common_dir

example/dir1/common_dir/dir1

example/dir1/common_dir/dir1/common_dir

example/dir1/common_dir/dir1/common_file

example/dir1/common_dir/dir1/dir_only_in_dir1

example/dir1/common_dir/dir1/file_in_dir1

example/dir1/common_dir/dir1/file_only_in_dir1

example/dir1/common_dir/dir1/not_the_same

example/dir1/common_dir/dir2

example/dir1/common_dir/dir2/common_dir

example/dir1/common_dir/dir2/common_file

example/dir1/common_dir/dir2/dir_only_in_dir2

example/dir1/common_dir/dir2/file_in_dir1

example/dir1/common_dir/dir2/file_only_in_dir2

example/dir1/common_dir/dir2/not_the_same

example/dir1/common_file

example/dir1/dir_only_in_dir1

example/dir1/file_in_dir1

example/dir1/file_only_in_dir1

example/dir1/not_the_same

example/dir2

example/dir2/common_dir

example/dir2/common_dir/dir1

example/dir2/common_dir/dir1/common_dir

example/dir2/common_dir/dir1/common_file

example/dir2/common_dir/dir1/dir_only_in_dir1

example/dir2/common_dir/dir1/file_in_dir1

example/dir2/common_dir/dir1/file_only_in_dir1

example/dir2/common_dir/dir1/not_the_same

ptg

6.11. filecmp—Compare Files 325

example/dir2/common_dir/dir2

example/dir2/common_dir/dir2/common_dir

example/dir2/common_dir/dir2/common_file

example/dir2/common_dir/dir2/dir_only_in_dir2

example/dir2/common_dir/dir2/file_in_dir1

example/dir2/common_dir/dir2/file_only_in_dir2

example/dir2/common_dir/dir2/not_the_same

example/dir2/common_file

example/dir2/dir_only_in_dir2

example/dir2/file_in_dir1

example/dir2/file_only_in_dir2

example/dir2/not_the_same

The same directory structure is repeated one time under the “common_dir” direc-

tories to give interesting recursive comparison options.

6.11.2 Comparing Files

cmp() compares two files on the file system.

import filecmp

print ’common_file:’,

print filecmp.cmp(’example/dir1/common_file’,

’example/dir2/common_file’),

print filecmp.cmp(’example/dir1/common_file’,

’example/dir2/common_file’,

shallow=False)

print ’not_the_same:’,

print filecmp.cmp(’example/dir1/not_the_same’,

’example/dir2/not_the_same’),

print filecmp.cmp(’example/dir1/not_the_same’,

’example/dir2/not_the_same’,

shallow=False)

print ’identical:’,

print filecmp.cmp(’example/dir1/file_only_in_dir1’,

’example/dir1/file_only_in_dir1’),

print filecmp.cmp(’example/dir1/file_only_in_dir1’,

’example/dir1/file_only_in_dir1’,

shallow=False)

ptg

326 The File System

The shallow argument tells cmp() whether to look at the contents of the file,

in addition to its metadata. The default is to perform a shallow comparison using the

information available from os.stat() without looking at content. Files of the same

size created at the same time are reported as the same, if their contents are not compared.

$ python filecmp_cmp.py

common_file: True True

not_the_same: True False

identical: True True

To compare a set of files in two directories without recursing, use cmpfiles().

The arguments are the names of the directories and a list of files to be checked in the two

locations. The list of common files passed in should contain only filenames (directories

always result in a mismatch), and the files must be present in both locations. The next

example shows a simple way to build the common list. The comparison also takes the

shallow flag, just as with cmp().

import filecmp
import os

Determine the items that exist in both directories

d1_contents = set(os.listdir(’example/dir1’))

d2_contents = set(os.listdir(’example/dir2’))

common = list(d1_contents & d2_contents)

common_files = [f

for f in common

if os.path.isfile(os.path.join(’example/dir1’, f))

]

print ’Common files:’, common_files

Compare the directories

match, mismatch, errors = filecmp.cmpfiles(’example/dir1’,

’example/dir2’,

common_files)

print ’Match :’, match

print ’Mismatch:’, mismatch

print ’Errors :’, errors

cmpfiles() returns three lists of filenames containing files that match, files that

do not match, and files that could not be compared (due to permission problems or for

any other reason).

ptg

6.11. filecmp—Compare Files 327

$ python filecmp_cmpfiles.py

Common files: [’not_the_same’, ’file_in_dir1’, ’common_file’]

Match : [’not_the_same’, ’common_file’]

Mismatch: [’file_in_dir1’]

Errors : []

6.11.3 Comparing Directories

The functions described earlier are suitable for relatively simple comparisons. For

recursive comparison of large directory trees or for more complete analysis, the dircmp

class is more useful. In its simplest use case, report() prints a report comparing two

directories.

import filecmp

filecmp.dircmp(’example/dir1’, ’example/dir2’).report()

The output is a plain-text report showing the results of just the contents of the

directories given, without recursing. In this case, the file “not_the_same” is thought

to be the same because the contents are not being compared. There is no way to have

dircmp compare the contents of files like cmp() does.

$ python filecmp_dircmp_report.py

diff example/dir1 example/dir2

Only in example/dir1 : [’dir_only_in_dir1’, ’file_only_in_dir1’]

Only in example/dir2 : [’dir_only_in_dir2’, ’file_only_in_dir2’]

Identical files : [’common_file’, ’not_the_same’]

Common subdirectories : [’common_dir’]

Common funny cases : [’file_in_dir1’]

For more detail, and a recursive comparison, use report_full_closure():

import filecmp

filecmp.dircmp(’example/dir1’, ’example/dir2’).report_full_closure()

The output includes comparisons of all parallel subdirectories.

$ python filecmp_dircmp_report_full_closure.py

diff example/dir1 example/dir2

ptg

328 The File System

Only in example/dir1 : [’dir_only_in_dir1’, ’file_only_in_dir1’]

Only in example/dir2 : [’dir_only_in_dir2’, ’file_only_in_dir2’]

Identical files : [’common_file’, ’not_the_same’]

Common subdirectories : [’common_dir’]

Common funny cases : [’file_in_dir1’]

diff example/dir1/common_dir example/dir2/common_dir

Common subdirectories : [’dir1’, ’dir2’]

diff example/dir1/common_dir/dir2 example/dir2/common_dir/dir2

Identical files : [’common_file’, ’file_only_in_dir2’, ’not_the_same’

]

Common subdirectories : [’common_dir’, ’dir_only_in_dir2’, ’file_in_d

ir1’]

diff example/dir1/common_dir/dir2/common_dir example/dir2/common_dir/

dir2/common_dir

diff example/dir1/common_dir/dir2/dir_only_in_dir2 example/dir2/commo

n_dir/dir2/dir_only_in_dir2

diff example/dir1/common_dir/dir2/file_in_dir1 example/dir2/common_di

r/dir2/file_in_dir1

diff example/dir1/common_dir/dir1 example/dir2/common_dir/dir1

Identical files : [’common_file’, ’file_in_dir1’, ’file_only_in_dir1’

, ’not_the_same’]

Common subdirectories : [’common_dir’, ’dir_only_in_dir1’]

diff example/dir1/common_dir/dir1/common_dir example/dir2/common_dir/

dir1/common_dir

diff example/dir1/common_dir/dir1/dir_only_in_dir1 example/dir2/commo

n_dir/dir1/dir_only_in_dir1

6.11.4 Using Differences in a Program

Besides producing printed reports, dircmp calculates lists of files that can be used in

programs directly. Each of the following attributes is calculated only when requested,

so creating a dircmp instance does not incur overhead for unused data.

import filecmp
import pprint

ptg

6.11. filecmp—Compare Files 329

dc = filecmp.dircmp(’example/dir1’, ’example/dir2’)

print ’Left:’

pprint.pprint(dc.left_list)

print ’\nRight:’
pprint.pprint(dc.right_list)

The files and subdirectories contained in the directories being compared are listed

in left_list and right_list.

$ python filecmp_dircmp_list.py

Left:

[’common_dir’,

’common_file’,

’dir_only_in_dir1’,

’file_in_dir1’,

’file_only_in_dir1’,

’not_the_same’]

Right:

[’common_dir’,

’common_file’,

’dir_only_in_dir2’,

’file_in_dir1’,

’file_only_in_dir2’,

’not_the_same’]

The inputs can be filtered by passing a list of names to ignore to the constructor.

By default, the names RCS, CVS, and tags are ignored.

import filecmp
import pprint

dc = filecmp.dircmp(’example/dir1’, ’example/dir2’,

ignore=[’common_file’])

print ’Left:’

pprint.pprint(dc.left_list)

print ’\nRight:’
pprint.pprint(dc.right_list)

ptg

330 The File System

In this case, the “common_file” is left out of the list of files to be compared.

$ python filecmp_dircmp_list_filter.py

Left:

[’common_dir’,

’dir_only_in_dir1’,

’file_in_dir1’,

’file_only_in_dir1’,

’not_the_same’]

Right:

[’common_dir’,

’dir_only_in_dir2’,

’file_in_dir1’,

’file_only_in_dir2’,

’not_the_same’]

The names of files common to both input directories are saved in common, and the

files unique to each directory are listed in left_only and right_only.

import filecmp
import pprint

dc = filecmp.dircmp(’example/dir1’, ’example/dir2’)

print ’Common:’

pprint.pprint(dc.common)

print ’\nLeft:’
pprint.pprint(dc.left_only)

print ’\nRight:’
pprint.pprint(dc.right_only)

The “left” directory is the first argument to dircmp(), and the “right” directory is

the second.

$ python filecmp_dircmp_membership.py

Common:

[’not_the_same’, ’common_file’, ’file_in_dir1’, ’common_dir’]

ptg

6.11. filecmp—Compare Files 331

Left:

[’dir_only_in_dir1’, ’file_only_in_dir1’]

Right:

[’dir_only_in_dir2’, ’file_only_in_dir2’]

The common members can be further broken down into files, directories, and

“funny” items (anything that has a different type in the two directories or where there

is an error from os.stat()).

import filecmp
import pprint

dc = filecmp.dircmp(’example/dir1’, ’example/dir2’)

print ’Common:’

pprint.pprint(dc.common)

print ’\nDirectories:’
pprint.pprint(dc.common_dirs)

print ’\nFiles:’
pprint.pprint(dc.common_files)

print ’\nFunny:’
pprint.pprint(dc.common_funny)

In the example data, the item named “file_in_dir1” is a file in one directory

and a subdirectory in the other, so it shows up in the funny list.

$ python filecmp_dircmp_common.py

Common:

[’not_the_same’, ’common_file’, ’file_in_dir1’, ’common_dir’]

Directories:

[’common_dir’]

Files:

[’not_the_same’, ’common_file’]

Funny:

[’file_in_dir1’]

ptg

332 The File System

The differences between files are broken down similarly.

import filecmp

dc = filecmp.dircmp(’example/dir1’, ’example/dir2’)

print ’Same :’, dc.same_files

print ’Different :’, dc.diff_files

print ’Funny :’, dc.funny_files

The file not_the_same is only being compared via os.stat(), and the contents

are not examined, so it is included in the same_files list.

$ python filecmp_dircmp_diff.py

Same : [’not_the_same’, ’common_file’]

Different : []

Funny : []

Finally, the subdirectories are also saved to allow easy recursive comparison.

import filecmp

dc = filecmp.dircmp(’example/dir1’, ’example/dir2’)

print ’Subdirectories:’

print dc.subdirs

The attribute subdirs is a dictionary mapping the directory name to new dircmp

objects.

$ python filecmp_dircmp_subdirs.py

Subdirectories:

{’common_dir’: <filecmp.dircmp instance at 0x85da0>}

See Also:
filecmp (http://docs.python.org/library/filecmp.html) The standard library docu-

mentation for this module.

Directories (page 1118) Listing the contents of a directory using os (page 1108).

difflib (page 61) Computing the differences between two sequences.

http://docs.python.org/library/filecmp.html

ptg

Chapter 7

DATA PERSISTENCE AND
EXCHANGE

There are two aspects to preserving data for long-term use: converting the data back

and forth between the object in-memory and the storage format, and working with the

storage of the converted data. The standard library includes a variety of modules that

handle both aspects in different situations.

Two modules convert objects into a format that can be transmitted or stored (a pro-

cess known as serializing). It is most common to use pickle for persistence, since it is

integrated with some of the other standard library modules that actually store the seria-

lized data, such as shelve. json is more frequently used for Web-based applications,

however, since it integrates better with existing Web service storage tools.

Once the in-memory object is converted to a format that can be saved, the next

step is to decide how to store the data. A simple flat-file with serialized objects written

one after the other works for data that does not need to be indexed in any way. Python

includes a collection of modules for storing key-value pairs in a simple database using

one of the DBM format variants when an indexed lookup is needed.

The most straightforward way to take advantage of the DBM format is shelve.

Open the shelve file, and access it through a dictionary-like API. Objects saved to the

database are automatically pickled and saved without any extra work by the caller.

One drawback of shelve, though, is that when using the default interface, there

is no way to predict which DBM format will be used, since it selects one based on

the libraries available on the system where the database is created. The format does

not matter if an application will not need to share the database files between hosts

with different libraries; but if portability is a requirement, use one of the classes in the

module to ensure a specific format is selected.

333

ptg

334 Data Persistence and Exchange

For Web applications that work with data in JSON already, using json and

anydbm provides another persistence mechanism. Using anydbm directly is a little

more work than shelve because the DBM database keys and values must be strings,

and the objects will not be re-created automatically when the value is accessed in the

database.

The sqlite3 in-process relational database is available with most Python distri-

butions for storing data in more complex arrangements than key-value pairs. It stores

its database in memory or in a local file, and all access is from within the same process

so there is no network communication lag. The compact nature of sqlite3 makes it

especially well suited for embedding in desktop applications or development versions

of Web apps.

There are also modules for parsing more formally defined formats, useful for

exchanging data between Python programs and applications written in other languages.

xml.etree.ElementTree can parse XML documents and provides several operating

modes for different applications. Besides the parsing tools, ElementTree includes an

interface for creating well-formed XML documents from objects in memory. The csv

module can read and write tabular data in formats produced by spreadsheets or database

applications, making it useful for bulk loading data or converting the data from one for-

mat to another.

7.1 pickle—Object Serialization

Purpose Object serialization.

Python Version 1.4 and later for pickle, 1.5 and later for cPickle

The pickle module implements an algorithm for turning an arbitrary Python object

into a series of bytes. This process is also called serializing the object. The byte stream

representing the object can then be transmitted or stored, and later reconstructed to

create a new object with the same characteristics.

The cPickle module implements the same algorithm, in C instead of Python. It

is many times faster than the Python implementation, so it is generally used instead of

the pure-Python implementation.

Warning: The documentation for pickle makes clear that it offers no security

guarantees. In fact, unpickling data can execute arbitrary code. Be careful using

pickle for inter-process communication or data storage, and do not trust data that

cannot be verified as secure. See Applications of Message Signatures in the hmac

section for an example of a secure way to verify the source of a pickled data source.

ptg

7.1. pickle—Object Serialization 335

7.1.1 Importing

Because cPickle is faster than pickle, it is common to first try to import cPickle,

giving it an alias of “pickle,” and then fall back on the native Python implementation in

pickle if the import fails. This means the program will use the faster implementation,

if it is available, and the portable implementation otherwise.

try:
import cPickle as pickle

except:
import pickle

The API for the C and Python versions is the same, and data can be exchanged

between programs using either version of the library.

7.1.2 Encoding and Decoding Data in Strings

This first example uses dumps() to encode a data structure as a string, and then prints

the string to the console. It uses a data structure made up of entirely built-in types.

Instances of any class can be pickled, as will be illustrated in a later example.

try:
import cPickle as pickle

except:
import pickle

import pprint

data = [{ ’a’:’A’, ’b’:2, ’c’:3.0 }]

print ’DATA:’,

pprint.pprint(data)

data_string = pickle.dumps(data)

print ’PICKLE: %r’ % data_string

By default, the pickle will contain only ASCII characters. A more efficient binary

pickle format is also available, but all the examples here use the ASCII output because

it is easier to understand in print.

$ python pickle_string.py

DATA:[{’a’: ’A’, ’b’: 2, ’c’: 3.0}]

PICKLE: "(lp1\n(dp2\nS’a’\nS’A’\nsS’c’\nF3\nsS’b’\nI2\nsa."

ptg

336 Data Persistence and Exchange

After the data is serialized, it can be written to a file, a socket, or a pipe, etc. Later,

the file can be read and the data unpickled to construct a new object with the same

values.

try:
import cPickle as pickle

except:
import pickle

import pprint

data1 = [{ ’a’:’A’, ’b’:2, ’c’:3.0 }]

print ’BEFORE: ’,

pprint.pprint(data1)

data1_string = pickle.dumps(data1)

data2 = pickle.loads(data1_string)

print ’AFTER : ’,

pprint.pprint(data2)

print ’SAME? :’, (data1 is data2)

print ’EQUAL?:’, (data1 == data2)

The newly constructed object is equal to, but not the same object as, the original.

$ python pickle_unpickle.py

BEFORE: [{’a’: ’A’, ’b’: 2, ’c’: 3.0}]

AFTER : [{’a’: ’A’, ’b’: 2, ’c’: 3.0}]

SAME? : False

EQUAL?: True

7.1.3 Working with Streams

In addition to dumps() and loads(), pickle provides convenience functions for

working with file-like streams. It is possible to write multiple objects to a stream and

then read them from the stream without knowing in advance how many objects are

written or how big they are.

try:
import cPickle as pickle

except:
import pickle

ptg

7.1. pickle—Object Serialization 337

import pprint
from StringIO import StringIO

class SimpleObject(object):

def __init__(self, name):

self.name = name

self.name_backwards = name[::-1]

return

data = []

data.append(SimpleObject(’pickle’))

data.append(SimpleObject(’cPickle’))

data.append(SimpleObject(’last’))

Simulate a file with StringIO

out_s = StringIO()

Write to the stream

for o in data:

print ’WRITING : %s (%s)’ % (o.name, o.name_backwards)

pickle.dump(o, out_s)

out_s.flush()

Set up a read-able stream

in_s = StringIO(out_s.getvalue())

Read the data

while True:

try:
o = pickle.load(in_s)

except EOFError:
break

else:
print ’READ : %s (%s)’ % (o.name, o.name_backwards)

The example simulates streams using two StringIO buffers. The first receives

the pickled objects, and its value is fed to a second from which load() reads. A simple

database format could use pickles to store objects, too (see shelve).

$ python pickle_stream.py

WRITING : pickle (elkcip)

WRITING : cPickle (elkciPc)

ptg

338 Data Persistence and Exchange

WRITING : last (tsal)

READ : pickle (elkcip)

READ : cPickle (elkciPc)

READ : last (tsal)

Besides storing data, pickles are handy for inter-process communication. For

example, os.fork() and os.pipe() can be used to establish worker processes that

read job instructions from one pipe and write the results to another pipe. The core

code for managing the worker pool and sending jobs in and receiving responses can be

reused, since the job and response objects do not have to be based on a particular class.

When using pipes or sockets, do not forget to flush after dumping each object, to push

the data through the connection to the other end. See the multiprocessing module

for a reusable worker pool manager.

7.1.4 Problems Reconstructing Objects

When working with custom classes, the class being pickled must appear in the name-

space of the process reading the pickle. Only the data for the instance is pickled, not the

class definition. The class name is used to find the constructor to create the new object

when unpickling. This example writes instances of a class to a file.

try:
import cPickle as pickle

except:
import pickle

import sys

class SimpleObject(object):
def __init__(self, name):

self.name = name

l = list(name)

l.reverse()

self.name_backwards = ’’.join(l)

return

if __name__ == ’__main__’:

data = []

data.append(SimpleObject(’pickle’))

data.append(SimpleObject(’cPickle’))

data.append(SimpleObject(’last’))

filename = sys.argv[1]

ptg

7.1. pickle—Object Serialization 339

with open(filename, ’wb’) as out_s:

Write to the stream

for o in data:

print ’WRITING: %s (%s)’ % (o.name, o.name_backwards)

pickle.dump(o, out_s)

When run, the script creates a file based on the name given as argument on the

command line.

$ python pickle_dump_to_file_1.py test.dat

WRITING: pickle (elkcip)

WRITING: cPickle (elkciPc)

WRITING: last (tsal)

A simplistic attempt to load the resulting pickled objects fails.

try:
import cPickle as pickle

except:
import pickle

import pprint
from StringIO import StringIO

import sys

filename = sys.argv[1]

with open(filename, ’rb’) as in_s:

Read the data

while True:

try:
o = pickle.load(in_s)

except EOFError:
break

else:
print ’READ: %s (%s)’ % (o.name, o.name_backwards)

This version fails because there is no SimpleObject class available.

$ python pickle_load_from_file_1.py test.dat

ptg

340 Data Persistence and Exchange

Traceback (most recent call last):

File "pickle_load_from_file_1.py", line 25, in <module>

o = pickle.load(in_s)

AttributeError: ’module’ object has no attribute ’SimpleObject’

The corrected version, which imports SimpleObject from the original script,

succeeds. Adding this import statement to the end of the import list allows the script to

find the class and construct the object.

from pickle_dump_to_file_1 import SimpleObject

Running the modified script now produces the desired results.

$ python pickle_load_from_file_2.py test.dat

READ: pickle (elkcip)

READ: cPickle (elkciPc)

READ: last (tsal)

7.1.5 Unpicklable Objects

Not all objects can be pickled. Sockets, file handles, database connections, and other

objects with run-time state that depends on the operating system or another process

may not be able to be saved in a meaningful way. Objects that have nonpicklable

attributes can define __getstate__() and __setstate__() to return a sub-

set of the state of the instance to be pickled. New-style classes can also define

__getnewargs__(), which should return arguments to be passed to the class mem-

ory allocator (C.__new__()). Use of these features is covered in more detail in the

standard library documentation.

7.1.6 Circular References

The pickle protocol automatically handles circular references between objects, so com-

plex data structures do not need any special handling. Consider the directed graph in

Figure 7.1. It includes several cycles, yet the correct structure can be pickled and then

reloaded.

import pickle

class Node(object):
"""A simple digraph"""

ptg

7.1. pickle—Object Serialization 341

root

a

c

b

Figure 7.1. Pickling a data structure with cycles

def __init__(self, name):

self.name = name

self.connections = []

def add_edge(self, node):

"Create an edge between this node and the other."

self.connections.append(node)

def __iter__(self):

return iter(self.connections)

def preorder_traversal(root, seen=None, parent=None):

"""Generator function to yield the edges in a graph.

"""

if seen is None:

seen = set()

yield (parent, root)

if root in seen:

return
seen.add(root)

for node in root:

for parent, subnode in preorder_traversal(node, seen, root):

yield (parent, subnode)

ptg

342 Data Persistence and Exchange

def show_edges(root):

"Print all the edges in the graph."

for parent, child in preorder_traversal(root):

if not parent:

continue
print ’%5s -> %2s (%s)’ % \

(parent.name, child.name, id(child))

Set up the nodes.

root = Node(’root’)

a = Node(’a’)

b = Node(’b’)

c = Node(’c’)

Add edges between them.

root.add_edge(a)

root.add_edge(b)

a.add_edge(b)

b.add_edge(a)

b.add_edge(c)

a.add_edge(a)

print ’ORIGINAL GRAPH:’

show_edges(root)

Pickle and unpickle the graph to create

a new set of nodes.

dumped = pickle.dumps(root)

reloaded = pickle.loads(dumped)

print ’\nRELOADED GRAPH:’

show_edges(reloaded)

The reloaded nodes are not the same object, but the relationship between the nodes

is maintained and only one copy of the object with multiple references is reloaded. Both

of these statements can be verified by examining the id() values for the nodes before

and after being passed through pickle.

$ python pickle_cycle.py

ORIGINAL GRAPH:

root -> a (4309376848)

a -> b (4309376912)

ptg

7.2. shelve—Persistent Storage of Objects 343

b -> a (4309376848)

b -> c (4309376976)

a -> a (4309376848)

root -> b (4309376912)

RELOADED GRAPH:

root -> a (4309418128)

a -> b (4309418192)

b -> a (4309418128)

b -> c (4309418256)

a -> a (4309418128)

root -> b (4309418192)

See Also:
pickle (http://docs.python.org/lib/module-pickle.html) Standard library documenta-

tion for this module.

Pickle: An interesting stack language
(http://peadrop.com/blog/2007/06/18/pickle-an-interesting-stack-language/)
A blog post by Alexandre Vassalotti.

Why Python Pickle is Insecure (http://nadiana.com/python-pickle-insecure)
A short example by Nadia Alramli demonstrating a security exploit using pickle.

shelve (page 343) The shelve module uses pickle to store data in a DBM

database.

7.2 shelve—Persistent Storage of Objects

Purpose The shelve module implements persistent storage for arbitrary

Python objects that can be pickled, using a dictionary-like API.

The shelve module can be used as a simple persistent storage option for Python ob-

jects when a relational database is not required. The shelf is accessed by keys, just as

with a dictionary. The values are pickled and written to a database created and managed

by anydbm.

7.2.1 Creating a New Shelf

The simplest way to use shelve is via the DbfilenameShelf class. It uses anydbm

to store the data. The class can be used directly or by calling shelve.open().

import shelve
from contextlib import closing

http://docs.python.org/lib/module-pickle.html
http://peadrop.com/blog/2007/06/18/pickle-an-interesting-stack-language/
http://nadiana.com/python-pickle-insecure

ptg

344 Data Persistence and Exchange

with closing(shelve.open(’test_shelf.db’)) as s:

s[’key1’] = { ’int’: 10, ’float’:9.5, ’string’:’Sample data’ }

To access the data again, open the shelf and use it like a dictionary.

import shelve
from contextlib import closing

with closing(shelve.open(’test_shelf.db’)) as s:

existing = s[’key1’]

print existing

This is what running both sample scripts produces.

$ python shelve_create.py

$ python shelve_existing.py

{’int’: 10, ’float’: 9.5, ’string’: ’Sample data’}

The dbm module does not support multiple applications writing to the same

database at the same time, but it does support concurrent read-only clients. If a client

will not be modifying the shelf, tell shelve to open the database in read-only mode by

passing flag=’r’.

import shelve
from contextlib import closing

with closing(shelve.open(’test_shelf.db’, flag=’r’)) as s:

existing = s[’key1’]

print existing

If the program tries to modify the database while it is opened in read-only mode,

an access error exception is generated. The exception type depends on the database

module selected by anydbm when the database was created.

7.2.2 Writeback

Shelves do not track modifications to volatile objects, by default. That means if the

contents of an item stored in the shelf are changed, the shelf must be updated explicitly

by storing the entire item again.

ptg

7.2. shelve—Persistent Storage of Objects 345

import shelve
from contextlib import closing

with closing(shelve.open(’test_shelf.db’)) as s:

print s[’key1’]

s[’key1’][’new_value’] = ’this was not here before’

with closing(shelve.open(’test_shelf.db’, writeback=True)) as s:

print s[’key1’]

In this example, the dictionary at ’key1’ is not stored again, so when the shelf is

reopened, the changes will not have been preserved.

$ python shelve_create.py

$ python shelve_withoutwriteback.py

{’int’: 10, ’float’: 9.5, ’string’: ’Sample data’}

{’int’: 10, ’float’: 9.5, ’string’: ’Sample data’}

To automatically catch changes to volatile objects stored in the shelf, open it with

writeback enabled. The writeback flag causes the shelf to remember all objects retrieved

from the database using an in-memory cache. Each cache object is also written back to

the database when the shelf is closed.

import shelve
import pprint
from contextlib import closing

with closing(shelve.open(’test_shelf.db’, writeback=True)) as s:

print ’Initial data:’

pprint.pprint(s[’key1’])

s[’key1’][’new_value’] = ’this was not here before’

print ’\nModified:’
pprint.pprint(s[’key1’])

with closing(shelve.open(’test_shelf.db’, writeback=True)) as s:

print ’\nPreserved:’
pprint.pprint(s[’key1’])

Although it reduces the chance of programmer error and can make object persis-

tence more transparent, using writeback mode may not be desirable in every situation.

The cache consumes extra memory while the shelf is open, and pausing to write every

ptg

346 Data Persistence and Exchange

cached object back to the database when it is closed slows down the application. All

cached objects are written back to the database because there is no way to tell if they

have been modified. If the application reads data more than it writes, writeback will

impact performance unnecessarily.

$ python shelve_create.py

$ python shelve_writeback.py

Initial data:

{’float’: 9.5, ’int’: 10, ’string’: ’Sample data’}

Modified:

{’float’: 9.5,

’int’: 10,

’new_value’: ’this was not here before’,

’string’: ’Sample data’}

Preserved:

{’float’: 9.5,

’int’: 10,

’new_value’: ’this was not here before’,

’string’: ’Sample data’}

7.2.3 Specific Shelf Types

The earlier examples all used the default shelf implementation. Using shelve.open()

instead of one of the shelf implementations directly is a common usage pattern,

especially if it does not matter what type of database is used to store the data. There

are times, however, when the database format is important. In those situations, use

DbfilenameShelf or BsdDbShelf directly, or even subclass Shelf for a custom

solution.

See Also:
shelve (http://docs.python.org/lib/module-shelve.html) Standard library documen-

tation for this module.

feedcache (www.doughellmann.com/projects/feedcache/) The feedcache module

uses shelve as a default storage option.

shove (http://pypi.python.org/pypi/shove/) Shove implements a similar API with

more back-end formats.

anydbm (page 347) The anydbm module finds an available DBM library to create a

new database.

http://docs.python.org/lib/module-shelve.html
www.doughellmann.com/projects/feedcache/
http://pypi.python.org/pypi/shove/

ptg

7.3. anydbm—DBM-Style Databases 347

7.3 anydbm—DBM-Style Databases

Purpose anydbm provides a generic dictionary-like interface to DBM-

style, string-keyed databases.

Python Version 1.4 and later

anydbm is a front-end for DBM-style databases that use simple string values as keys

to access records containing strings. It uses whichdb to identify databases, and then

opens them with the appropriate module. It is used as a back-end for shelve, which

stores objects in a DBM database using pickle.

7.3.1 Database Types

Python comes with several modules for accessing DBM-style databases. The imple-

mentation selected depends on the libraries available on the current system and the

options used when Python was compiled.

dbhash

The dbhash module is the primary back-end for anydbm. It uses the bsddb library to

manage database files. The semantics for using dbhash databases are the same as those

defined by the anydbm API.

gdbm

gdbm is an updated version of the dbm library from the GNU project. It works the same

as the other DBM implementations described here, with a few changes to the flags

supported by open().

Besides the standard ’r’, ’w’, ’c’, and ’n’ flags, gdbm.open() supports:

• ’f’ to open the database in fast mode. In fast mode, writes to the database are

not synchronized.

• ’s’ to open the database in synchronized mode. Changes to the database are

written to the file as they are made, rather than being delayed until the database

is closed or synced explicitly.

• ’u’ to open the database unlocked.

dbm

The dbm module provides an interface to one of several C implementations of the dbm

format, depending on how the module was configured during compilation. The module

ptg

348 Data Persistence and Exchange

attribute library identifies the name of the library configure was able to find when

the extension module was compiled.

dumbdbm

The dumbdbm module is a portable fallback implementation of the DBM API when

no other implementations are available. No external dependencies are required to use

dumbdbm, but it is slower than most other implementations.

7.3.2 Creating a New Database

The storage format for new databases is selected by looking for each of these modules

in order:

• dbhash

• gdbm

• dbm

• dumbdbm

The open() function takes flags to control how the database file is managed.

To create a new database when necessary, use ’c’. Using ’n’ always creates a new

database, overwriting an existing file.

import anydbm

db = anydbm.open(’/tmp/example.db’, ’n’)

db[’key’] = ’value’

db[’today’] = ’Sunday’

db[’author’] = ’Doug’

db.close()

In this example, the file is always reinitialized.

$ python anydbm_new.py

whichdb reports the type of database that was created.

import whichdb

print whichdb.whichdb(’/tmp/example.db’)

ptg

7.3. anydbm—DBM-Style Databases 349

Output from the example program will vary, depending on which modules are

installed on the system.

$ python anydbm_whichdb.py

dbhash

7.3.3 Opening an Existing Database

To open an existing database, use flags of either ’r’ (for read-only) or ’w’ (for read-

write). Existing databases are automatically given to whichdb to identify, so as long as

a file can be identified, the appropriate module is used to open it.

import anydbm

db = anydbm.open(’/tmp/example.db’, ’r’)

try:
print ’keys():’, db.keys()

for k, v in db.iteritems():

print ’iterating:’, k, v

print ’db["author"] =’, db[’author’]

finally:
db.close()

Once open, db is a dictionary-like object, with support for the usual methods.

$ python anydbm_existing.py

keys(): [’author’, ’key’, ’today’]

iterating: author Doug

iterating: key value

iterating: today Sunday

db["author"] = Doug

7.3.4 Error Cases

The keys of the database need to be strings.

import anydbm

db = anydbm.open(’/tmp/example.db’, ’w’)

ptg

350 Data Persistence and Exchange

try:
db[1] = ’one’

except TypeError, err:

print ’%s: %s’ % (err.__class__.__name__, err)

finally:
db.close()

Passing another type results in a TypeError.

$ python anydbm_intkeys.py

TypeError: Integer keys only allowed for Recno and Queue DB’s

Values must be strings or None.

import anydbm

db = anydbm.open(’/tmp/example.db’, ’w’)

try:
db[’one’] = 1

except TypeError, err:

print ’%s: %s’ % (err.__class__.__name__, err)

finally:
db.close()

A similar TypeError is raised if a value is not a string.

$ python anydbm_intvalue.py

TypeError: Data values must be of type string or None.

See Also:
anydbm (http://docs.python.org/library/anydbm.html) The standard library docu-

mentation for this module.

shelve (page 343) Examples for the shelve module, which uses anydbm to store

data.

7.4 whichdb—Identify DBM-Style Database Formats

Purpose Examine existing DBM-style database file to determine what

library should be used to open it.

Python Version 1.4 and later

http://docs.python.org/library/anydbm.html

ptg

7.5. sqlite3—Embedded Relational Database 351

The whichdb module contains one function, whichdb(), that can be used to examine

an existing database file to determine which of the DBM libraries should be used to

open it. It returns the string name of the module to use to open the file, or None if there

is a problem opening the file. If it can open the file but cannot determine the library to

use, it returns an empty string.

import anydbm
import whichdb

db = anydbm.open(’/tmp/example.db’, ’n’)

db[’key’] = ’value’

db.close()

print whichdb.whichdb(’/tmp/example.db’)

The results from running the sample program will vary, depending on the modules

available on the system.

$ python whichdb_whichdb.py

dbhash

See Also:
whichdb (http://docs.python.org/lib/module-whichdb.html) Standard library docu-

mentation for this module.

anydbm (page 347) The anydbm module uses the best available DBM implementation

when creating new databases.

shelve (page 343) The shelve module provides a mapping-style API for DBM

databases.

7.5 sqlite3—Embedded Relational Database

Purpose Implements an embedded relational database with SQL support.

Python Version 2.5 and later

The sqlite3 module provides a DB-API 2.0 compliant interface to SQLite, an

in-process relational database. SQLite is designed to be embedded in applications,

instead of using a separate database server program, such as MySQL, PostgreSQL,

or Oracle. It is fast, rigorously tested, and flexible, making it suitable for prototyping

and production deployment for some applications.

http://docs.python.org/lib/module-whichdb.html

ptg

352 Data Persistence and Exchange

7.5.1 Creating a Database

An SQLite database is stored as a single file on the file system. The library manages

access to the file, including locking it to prevent corruption when multiple writers

use it. The database is created the first time the file is accessed, but the application

is responsible for managing the table definitions, or schema, within the database.

This example looks for the database file before opening it with connect() so it

knows when to create the schema for new databases.

import os
import sqlite3

db_filename = ’todo.db’

db_is_new = not os.path.exists(db_filename)

conn = sqlite3.connect(db_filename)

if db_is_new:

print ’Need to create schema’

else:
print ’Database exists, assume schema does, too.’

conn.close()

Running the script twice shows that it creates the empty file if it does not exist.

$ ls *.db

ls: *.db: No such file or directory

$ python sqlite3_createdb.py

Need to create schema

$ ls *.db

todo.db

$ python sqlite3_createdb.py

Database exists, assume schema does, too.

ptg

7.5. sqlite3—Embedded Relational Database 353

Table 7.1. The "project" Table

Column Type Description
name text Project name

description text Long project description

deadline date Due date for the entire project

Table 7.2. The "task" Table

Column Type Description
id number Unique task identifier

priority integer Numerical priority; lower is more important

details text Full task details

status text Task status (one of new, pending, done, or canceled).

deadline date Due date for this task

completed_on date When the task was completed

project text The name of the project for this task

After creating the new database file, the next step is to create the schema to define

the tables within the database. The remaining examples in this section all use the same

database schema with tables for managing tasks. The details of the database schema are

presented in Table 7.1 and Table 7.2.

These are the data definition language (DDL) statements to create the tables.

-- Schema for to-do application examples.

-- Projects are high-level activities made up of tasks

create table project (

name text primary key,
description text,

deadline date

);

-- Tasks are steps that can be taken to complete a project

create table task (

id integer primary key autoincrement not null,
priority integer default 1,

details text,

status text,

ptg

354 Data Persistence and Exchange

deadline date,

completed_on date,

project text not null references project(name)

);

The executescript() method of the Connection can be used to run the DDL

instructions to create the schema.

import os
import sqlite3

db_filename = ’todo.db’

schema_filename = ’todo_schema.sql’

db_is_new = not os.path.exists(db_filename)

with sqlite3.connect(db_filename) as conn:

if db_is_new:

print ’Creating schema’

with open(schema_filename, ’rt’) as f:

schema = f.read()

conn.executescript(schema)

print ’Inserting initial data’

conn.executescript("""

insert into project (name, description, deadline)

values (’pymotw’, ’Python Module of the Week’, ’2010-11-01’);

insert into task (details, status, deadline, project)

values (’write about select’, ’done’, ’2010-10-03’,

’pymotw’);

insert into task (details, status, deadline, project)

values (’write about random’, ’waiting’, ’2010-10-10’,

’pymotw’);

insert into task (details, status, deadline, project)

values (’write about sqlite3’, ’active’, ’2010-10-17’,

’pymotw’);

""")

else:
print ’Database exists, assume schema does, too.’

ptg

7.5. sqlite3—Embedded Relational Database 355

After the tables are created, a few insert statements create a sample project and

related tasks. The sqlite3 command line program can be used to examine the contents

of the database.

$ python sqlite3_create_schema.py

Creating schema

Inserting initial data

$ sqlite3 todo.db ’select * from task’

1|1|write about select|done|2010-10-03||pymotw

2|1|write about random|waiting|2010-10-10||pymotw

3|1|write about sqlite3|active|2010-10-17||pymotw

7.5.2 Retrieving Data

To retrieve the values saved in the task table from within a Python program, cre-

ate a cursor from a database connection. A cursor produces a consistent view of the

data and is the primary means of interacting with a transactional database system like

SQLite.

import sqlite3

db_filename = ’todo.db’

with sqlite3.connect(db_filename) as conn:

cursor = conn.cursor()

cursor.execute("""

select id, priority, details, status, deadline from task

where project = ’pymotw’

""")

for row in cursor.fetchall():

task_id, priority, details, status, deadline = row

print ’%2d {%d} %-20s [%-8s] (%s)’ % \

(task_id, priority, details, status, deadline)

Querying is a two-step process. First, run the query with the cursor’s execute()

method to tell the database engine what data to collect. Then, use fetchall() to

ptg

356 Data Persistence and Exchange

retrieve the results. The return value is a sequence of tuples containing the values for

the columns included in the select clause of the query.

$ python sqlite3_select_tasks.py

1 {1} write about select [done] (2010-10-03)

2 {1} write about random [waiting] (2010-10-10)

3 {1} write about sqlite3 [active] (2010-10-17)

The results can be retrieved one at a time with fetchone()or in fixed-size batches

with fetchmany().

import sqlite3

db_filename = ’todo.db’

with sqlite3.connect(db_filename) as conn:

cursor = conn.cursor()

cursor.execute("""

select name, description, deadline from project

where name = ’pymotw’

""")

name, description, deadline = cursor.fetchone()

print ’Project details for %s (%s) due %s’ % \

(description, name, deadline)

cursor.execute("""

select id, priority, details, status, deadline from task

where project = ’pymotw’ order by deadline

""")

print ’\nNext 5 tasks:’

for row in cursor.fetchmany(5):

task_id, priority, details, status, deadline = row

print ’%2d {%d} %-25s [%-8s] (%s)’ % \

(task_id, priority, details, status, deadline)

The value passed to fetchmany() is the maximum number of items to return.

If fewer items are available, the sequence returned will be smaller than the maximum

value.

ptg

7.5. sqlite3—Embedded Relational Database 357

$ python sqlite3_select_variations.py

Project details for Python Module of the Week (pymotw) due 2010-11-01

Next 5 tasks:

1 {1} write about select [done] (2010-10-03)

2 {1} write about random [waiting] (2010-10-10)

3 {1} write about sqlite3 [active] (2010-10-17)

7.5.3 Query Metadata

The DB-API 2.0 specification says that after execute() has been called, the cursor

should set its description attribute to hold information about the data that will be

returned by the fetch methods. The API specifications say that the description value

is a sequence of tuples containing the column name, type, display size, internal size,

precision, scale, and a flag that says whether null values are accepted.

import sqlite3

db_filename = ’todo.db’

with sqlite3.connect(db_filename) as conn:

cursor = conn.cursor()

cursor.execute("""

select * from task where project = ’pymotw’

""")

print ’Task table has these columns:’

for colinfo in cursor.description:

print colinfo

Because sqlite3 does not enforce type or size constraints on data inserted into a

database, only the column name value is filled in.

$ python sqlite3_cursor_description.py

Task table has these columns:

(’id’, None, None, None, None, None, None)

(’priority’, None, None, None, None, None, None)

(’details’, None, None, None, None, None, None)

(’status’, None, None, None, None, None, None)

ptg

358 Data Persistence and Exchange

(’deadline’, None, None, None, None, None, None)

(’completed_on’, None, None, None, None, None, None)

(’project’, None, None, None, None, None, None)

7.5.4 Row Objects

By default, the values returned by the fetch methods as “rows” from the database are

tuples. The caller is responsible for knowing the order of the columns in the query

and extracting individual values from the tuple. When the number of values in a query

grows, or the code working with the data is spread out in a library, it is usually easier to

work with an object and access values using their column names. That way, the number

and order of the tuple contents can change over time as the query is edited, and code

depending on the query results is less likely to break.

Connection objects have a row_factory property that allows the calling code

to control the type of object created to represent each row in the query result set.

sqlite3 also includes a Row class intended to be used as a row factory. Column values

can be accessed through Row instances by using the column index or name.

import sqlite3

db_filename = ’todo.db’

with sqlite3.connect(db_filename) as conn:

Change the row factory to use Row

conn.row_factory = sqlite3.Row

cursor = conn.cursor()

cursor.execute("""

select name, description, deadline from project

where name = ’pymotw’

""")

name, description, deadline = cursor.fetchone()

print ’Project details for %s (%s) due %s’ % (

description, name, deadline)

cursor.execute("""

select id, priority, status, deadline, details from task

where project = ’pymotw’ order by deadline

""")

ptg

7.5. sqlite3—Embedded Relational Database 359

print ’\nNext 5 tasks:’

for row in cursor.fetchmany(5):

print ’%2d {%d} %-25s [%-8s] (%s)’ % (

row[’id’], row[’priority’], row[’details’],

row[’status’], row[’deadline’],

)

This version of the sqlite3_select_variations.py example has been

rewritten using Row instances instead of tuples. The row from the project table is still

printed by accessing the column values through position, but the print statement for

tasks uses keyword lookup instead, so it does not matter that the order of the columns

in the query has been changed.

$ python sqlite3_row_factory.py

Project details for Python Module of the Week (pymotw) due 2010-11-01

Next 5 tasks:

1 {1} write about select [done] (2010-10-03)

2 {1} write about random [waiting] (2010-10-10)

3 {1} write about sqlite3 [active] (2010-10-17)

7.5.5 Using Variables with Queries

Using queries defined as literal strings embedded in a program is inflexible. For

example, when another project is added to the database, the query to show the top five

tasks should be updated to work with either project. One way to add more flexibility

is to build an SQL statement with the desired query by combining values in Python.

However, building a query string in this way is dangerous and should be avoided. Fail-

ing to correctly escape special characters in the variable parts of the query can result in

SQL parsing errors, or worse, a class of security vulnerabilities known as SQL-injection
attacks, which allow intruders to execute arbitrary SQL statements in the database.

The proper way to use dynamic values with queries is through host variables
passed to execute() along with the SQL instruction. A placeholder value in the SQL

statement is replaced with the value of the host variable when the statement is executed.

Using host variables instead of inserting arbitrary values into the SQL statement before

it is parsed avoids injection attacks because there is no chance that the untrusted values

will affect how the SQL statement is parsed. SQLite supports two forms for queries

with placeholders, positional and named.

ptg

360 Data Persistence and Exchange

Positional Parameters

A question mark (?) denotes a positional argument, passed to execute() as a member

of a tuple.

import sqlite3
import sys

db_filename = ’todo.db’

project_name = sys.argv[1]

with sqlite3.connect(db_filename) as conn:

cursor = conn.cursor()

query = """select id, priority, details, status, deadline from task

where project = ?

"""

cursor.execute(query, (project_name,))

for row in cursor.fetchall():

task_id, priority, details, status, deadline = row

print ’%2d {%d} %-20s [%-8s] (%s)’ % (

task_id, priority, details, status, deadline)

The command line argument is passed safely to the query as a positional argument,

and there is no chance for bad data to corrupt the database.

$ python sqlite3_argument_positional.py pymotw

1 {1} write about select [done] (2010-10-03)

2 {1} write about random [waiting] (2010-10-10)

3 {1} write about sqlite3 [active] (2010-10-17)

Named Parameters

Use named parameters for more complex queries with a lot of parameters, or where

some parameters are repeated multiple times within the query. Named parameters are

prefixed with a colon (e.g., :param_name).

import sqlite3
import sys

ptg

7.5. sqlite3—Embedded Relational Database 361

db_filename = ’todo.db’

project_name = sys.argv[1]

with sqlite3.connect(db_filename) as conn:

cursor = conn.cursor()

query = """select id, priority, details, status, deadline from task

where project = :project_name

order by deadline, priority

"""

cursor.execute(query, {’project_name’:project_name})

for row in cursor.fetchall():

task_id, priority, details, status, deadline = row

print ’%2d {%d} %-25s [%-8s] (%s)’ % (\

task_id, priority, details, status, deadline)

Neither positional nor named parameters need to be quoted or escaped, since they

are given special treatment by the query parser.

$ python sqlite3_argument_named.py pymotw

1 {1} write about select [done] (2010-10-03)

2 {1} write about random [waiting] (2010-10-10)

3 {1} write about sqlite3 [active] (2010-10-17)

Query parameters can be used with select, insert, and update statements. They

can appear in any part of the query where a literal value is legal.

import sqlite3
import sys

db_filename = ’todo.db’

id = int(sys.argv[1])

status = sys.argv[2]

with sqlite3.connect(db_filename) as conn:

cursor = conn.cursor()

query = "update task set status = :status where id = :id"

cursor.execute(query, {’status’:status, ’id’:id})

ptg

362 Data Persistence and Exchange

This update statement uses two named parameters. The id value is used to find

the right row to modify, and the status value is written to the table.

$ python sqlite3_argument_update.py 2 done

$ python sqlite3_argument_named.py pymotw

1 {1} write about select [done] (2010-10-03)

2 {1} write about random [done] (2010-10-10)

3 {1} write about sqlite3 [active] (2010-10-17)

7.5.6 Bulk Loading

To apply the same SQL instruction to a large set of data, use executemany(). This

is useful for loading data, since it avoids looping over the inputs in Python and lets

the underlying library apply loop optimizations. This example program reads a list of

tasks from a comma-separated value file using the csv module and loads them into the

database.

import csv
import sqlite3
import sys

db_filename = ’todo.db’

data_filename = sys.argv[1]

SQL = """

insert into task (details, priority, status, deadline, project)

values (:details, :priority, ’active’, :deadline, :project)

"""

with open(data_filename, ’rt’) as csv_file:

csv_reader = csv.DictReader(csv_file)

with sqlite3.connect(db_filename) as conn:

cursor = conn.cursor()

cursor.executemany(SQL, csv_reader)

The sample data file tasks.csv contains:

deadline,project,priority,details

2010-10-02,pymotw,2,"finish reviewing markup"

ptg

7.5. sqlite3—Embedded Relational Database 363

2010-10-03,pymotw,2,"revise chapter intros"

2010-10-03,pymotw,1,"subtitle"

Running the program produces:

$ python sqlite3_load_csv.py tasks.csv

$ python sqlite3_argument_named.py pymotw

4 {2} finish reviewing markup [active] (2010-10-02)

1 {1} write about select [done] (2010-10-03)

6 {1} subtitle [active] (2010-10-03)

5 {2} revise chapter intros [active] (2010-10-03)

2 {1} write about random [done] (2010-10-10)

3 {1} write about sqlite3 [active] (2010-10-17)

7.5.7 Defining New Column Types

SQLite has native support for integer, floating point, and text columns. Data of these

types is converted automatically by sqlite3 from Python’s representation to a value

that can be stored in the database, and back again, as needed. Integer values are loaded

from the database into int or long variables, depending on the size of the value. Text

is saved and retrieved as unicode, unless the text_factory for the Connection

has been changed.

Although SQLite only supports a few data types internally, sqlite3 includes

facilities for defining custom types to allow a Python application to store any type of

data in a column. Conversion for types beyond those supported by default is enabled in

the database connection using the detect_types flag. Use PARSE_DECLTYPES if the

column was declared using the desired type when the table was defined.

import sqlite3
import sys

db_filename = ’todo.db’

sql = "select id, details, deadline from task"

def show_deadline(conn):

conn.row_factory = sqlite3.Row

cursor = conn.cursor()

cursor.execute(sql)

row = cursor.fetchone()

ptg

364 Data Persistence and Exchange

for col in [’id’, ’details’, ’deadline’]:

print ’ %-8s %-30r %s’ % (col, row[col], type(row[col]))

return

print ’Without type detection:’

with sqlite3.connect(db_filename) as conn:

show_deadline(conn)

print ’\nWith type detection:’

with sqlite3.connect(db_filename,

detect_types=sqlite3.PARSE_DECLTYPES,

) as conn:

show_deadline(conn)

sqlite3 provides converters for date and timestamp columns, using the

classes date and datetime from the datetime module to represent the values in

Python. Both date-related converters are enabled automatically when type detection is

turned on.

$ python sqlite3_date_types.py

Without type detection:

id 1 <type ’int’>

details u’write about select’ <type ’unicode’>

deadline u’2010-10-03’ <type ’unicode’>

With type detection:

id 1 <type ’int’>

details u’write about select’ <type ’unicode’>

deadline datetime.date(2010, 10, 3) <type ’datetime.date’>

Two functions need to be registered to define a new type. The adapter takes the

Python object as input and returns a byte string that can be stored in the database.

The converter receives the string from the database and returns a Python object. Use

register_adapter() to define an adapter function, and register_converter()

for a converter function.

import sqlite3
try:

import cPickle as pickle
except:

import pickle

ptg

7.5. sqlite3—Embedded Relational Database 365

db_filename = ’todo.db’

def adapter_func(obj):

"""Convert from in-memory to storage representation.

"""

print ’adapter_func(%s)\n’ % obj

return pickle.dumps(obj)

def converter_func(data):

"""Convert from storage to in-memory representation.

"""

print ’converter_func(%r)\n’ % data

return pickle.loads(data)

class MyObj(object):
def __init__(self, arg):

self.arg = arg

def __str__(self):

return ’MyObj(%r)’ % self.arg

Register the functions for manipulating the type.

sqlite3.register_adapter(MyObj, adapter_func)

sqlite3.register_converter("MyObj", converter_func)

Create some objects to save. Use a list of tuples so

the sequence can be passed directly to executemany().

to_save = [(MyObj(’this is a value to save’),),

(MyObj(42),),

]

with sqlite3.connect(db_filename,

detect_types=sqlite3.PARSE_DECLTYPES) as conn:

Create a table with column of type "MyObj"

conn.execute("""

create table if not exists obj (

id integer primary key autoincrement not null,

data MyObj

)

""")

cursor = conn.cursor()

Insert the objects into the database

cursor.executemany("insert into obj (data) values (?)", to_save)

ptg

366 Data Persistence and Exchange

Query the database for the objects just saved

cursor.execute("select id, data from obj")

for obj_id, obj in cursor.fetchall():

print ’Retrieved’, obj_id, obj, type(obj)

print

This example uses pickle to save an object to a string that can be stored in

the database, a useful technique for storing arbitrary objects, but one that does not

allow querying based on object attributes. A real object-relational mapper, such as

SQLAlchemy, that stores attribute values in separate columns will be more useful for

large amounts of data.

$ python sqlite3_custom_type.py

adapter_func(MyObj(’this is a value to save’))

adapter_func(MyObj(42))

converter_func("ccopy_reg\n_reconstructor\np1\n(c__main__\nMyObj\np2

\nc__builtin__\nobject\np3\nNtRp4\n(dp5\nS’arg’\np6\nS’this is a val

ue to save’\np7\nsb.")

converter_func("ccopy_reg\n_reconstructor\np1\n(c__main__\nMyObj\np2

\nc__builtin__\nobject\np3\nNtRp4\n(dp5\nS’arg’\np6\nI42\nsb.")

Retrieved 1 MyObj(’this is a value to save’) <class ’__main__.MyObj’

>

Retrieved 2 MyObj(42) <class ’__main__.MyObj’>

7.5.8 Determining Types for Columns

There are two sources for type information about the values returned by a query. The

original table declaration can be used to identify the type of a real column, as shown

earlier. A type specifier can also be included in the select clause of the query itself using

the form as "name [type]".

import sqlite3
try:

import cPickle as pickle
except:

import pickle

ptg

7.5. sqlite3—Embedded Relational Database 367

db_filename = ’todo.db’

def adapter_func(obj):

"""Convert from in-memory to storage representation.

"""

print ’adapter_func(%s)\n’ % obj

return pickle.dumps(obj)

def converter_func(data):

"""Convert from storage to in-memory representation.

"""

print ’converter_func(%r)\n’ % data

return pickle.loads(data)

class MyObj(object):
def __init__(self, arg):

self.arg = arg

def __str__(self):

return ’MyObj(%r)’ % self.arg

Register the functions for manipulating the type.

sqlite3.register_adapter(MyObj, adapter_func)

sqlite3.register_converter("MyObj", converter_func)

Create some objects to save. Use a list of tuples so we can pass

this sequence directly to executemany().

to_save = [(MyObj(’this is a value to save’),),

(MyObj(42),),

]

with sqlite3.connect(db_filename,

detect_types=sqlite3.PARSE_COLNAMES) as conn:

Create a table with column of type "text"

conn.execute("""

create table if not exists obj2 (

id integer primary key autoincrement not null,

data text

)

""")

cursor = conn.cursor()

Insert the objects into the database

cursor.executemany("insert into obj2 (data) values (?)", to_save)

ptg

368 Data Persistence and Exchange

Query the database for the objects just saved,

using a type specifier to convert the text

to objects.

cursor.execute(’select id, data as "pickle [MyObj]" from obj2’)

for obj_id, obj in cursor.fetchall():

print ’Retrieved’, obj_id, obj, type(obj)

print

Use the detect_types flag PARSE_COLNAMES when the type is part of the query

instead of the original table definition.

$ python sqlite3_custom_type_column.py

adapter_func(MyObj(’this is a value to save’))

adapter_func(MyObj(42))

converter_func("ccopy_reg\n_reconstructor\np1\n(c__main__\nMyObj\np2

\nc__builtin__\nobject\np3\nNtRp4\n(dp5\nS’arg’\np6\nS’this is a val

ue to save’\np7\nsb.")

converter_func("ccopy_reg\n_reconstructor\np1\n(c__main__\nMyObj\np2

\nc__builtin__\nobject\np3\nNtRp4\n(dp5\nS’arg’\np6\nI42\nsb.")

Retrieved 1 MyObj(’this is a value to save’) <class ’__main__.MyObj’

>

Retrieved 2 MyObj(42) <class ’__main__.MyObj’>

7.5.9 Transactions

One of the key features of relational databases is the use of transactions to maintain

a consistent internal state. With transactions enabled, several changes can be made

through one connection without effecting any other users until the results are committed
and flushed to the actual database.

Preserving Changes

Changes to the database, either through insert or update statements, need to be saved

by explicitly calling commit(). This requirement gives an application an opportu-

nity to make several related changes together, so they are stored atomically instead of

ptg

7.5. sqlite3—Embedded Relational Database 369

incrementally, and avoids a situation where partial updates are seen by different clients

connecting to the database simultaneously.

The effect of calling commit() can be seen with a program that uses several

connections to the database. A new row is inserted with the first connection, and then

two attempts are made to read it back using separate connections.

import sqlite3

db_filename = ’todo.db’

def show_projects(conn):

cursor = conn.cursor()

cursor.execute(’select name, description from project’)

for name, desc in cursor.fetchall():

print ’ ’, name

return

with sqlite3.connect(db_filename) as conn1:

print ’Before changes:’

show_projects(conn1)

Insert in one cursor

cursor1 = conn1.cursor()

cursor1.execute("""

insert into project (name, description, deadline)

values (’virtualenvwrapper’, ’Virtualenv Extensions’,

’2011-01-01’)

""")

print ’\nAfter changes in conn1:’

show_projects(conn1)

Select from another connection, without committing first

print ’\nBefore commit:’

with sqlite3.connect(db_filename) as conn2:

show_projects(conn2)

Commit then select from another connection

conn1.commit()

print ’\nAfter commit:’

with sqlite3.connect(db_filename) as conn3:

show_projects(conn3)

ptg

370 Data Persistence and Exchange

When show_projects() is called before conn1 has been committed, the results

depend on which connection is used. Since the change was made through conn1, it sees

the altered data. However, conn2 does not. After committing, the new connection

conn3 sees the inserted row.

$ python sqlite3_transaction_commit.py

Before changes:

pymotw

After changes in conn1:

pymotw

virtualenvwrapper

Before commit:

pymotw

After commit:

pymotw

virtualenvwrapper

Discarding Changes

Uncommitted changes can also be discarded entirely using rollback(). The

commit() and rollback() methods are usually called from different parts of the

same try:except block, with errors triggering a rollback.

import sqlite3

db_filename = ’todo.db’

def show_projects(conn):

cursor = conn.cursor()

cursor.execute(’select name, description from project’)

for name, desc in cursor.fetchall():

print ’ ’, name

return

with sqlite3.connect(db_filename) as conn:

print ’Before changes:’

show_projects(conn)

ptg

7.5. sqlite3—Embedded Relational Database 371

try:

Insert

cursor = conn.cursor()

cursor.execute("""delete from project

where name = ’virtualenvwrapper’

""")

Show the settings

print ’\nAfter delete:’

show_projects(conn)

Pretend the processing caused an error

raise RuntimeError(’simulated error’)

except Exception, err:

Discard the changes

print ’ERROR:’, err

conn.rollback()

else:
Save the changes

conn.commit()

Show the results

print ’\nAfter rollback:’

show_projects(conn)

After calling rollback(), the changes to the database are no longer present.

$ python sqlite3_transaction_rollback.py

Before changes:

pymotw

virtualenvwrapper

After delete:

pymotw

ERROR: simulated error

After rollback:

pymotw

virtualenvwrapper

ptg

372 Data Persistence and Exchange

7.5.10 Isolation Levels

sqlite3 supports three locking modes, called isolation levels, that control the tech-

nique used to prevent incompatible changes between connections. The isolation level

is set by passing a string as the isolation_level argument when a connection is opened,

so different connections can use different values.

This program demonstrates the effect of different isolation levels on the order of

events in threads using separate connections to the same database. Four threads are

created. Two threads write changes to the database by updating existing rows. The

other two threads attempt to read all the rows from the task table.

import logging
import sqlite3
import sys
import threading
import time

logging.basicConfig(

level=logging.DEBUG,

format=’%(asctime)s (%(threadName)-10s) %(message)s’,
)

db_filename = ’todo.db’

isolation_level = sys.argv[1]

def writer():

my_name = threading.currentThread().name

with sqlite3.connect(db_filename,

isolation_level=isolation_level) as conn:

cursor = conn.cursor()

cursor.execute(’update task set priority = priority + 1’)

logging.debug(’waiting to synchronize’)

ready.wait() # synchronize threads

logging.debug(’PAUSING’)

time.sleep(1)

conn.commit()

logging.debug(’CHANGES COMMITTED’)

return

def reader():

my_name = threading.currentThread().name

with sqlite3.connect(db_filename,

isolation_level=isolation_level) as conn:

ptg

7.5. sqlite3—Embedded Relational Database 373

cursor = conn.cursor()

logging.debug(’waiting to synchronize’)

ready.wait() # synchronize threads

logging.debug(’wait over’)

cursor.execute(’select * from task’)

logging.debug(’SELECT EXECUTED’)

results = cursor.fetchall()

logging.debug(’results fetched’)

return

if __name__ == ’__main__’:

ready = threading.Event()

threads = [

threading.Thread(name=’Reader 1’, target=reader),

threading.Thread(name=’Reader 2’, target=reader),

threading.Thread(name=’Writer 1’, target=writer),

threading.Thread(name=’Writer 2’, target=writer),

]

[t.start() for t in threads]

time.sleep(1)

logging.debug(’setting ready’)

ready.set()

[t.join() for t in threads]

The threads are synchronized using an Event from the threading module. The

writer() function connects and makes changes to the database, but does not commit

before the event fires. The reader() function connects, and then waits to query the

database until after the synchronization event occurs.

Deferred

The default isolation level is DEFERRED. Using deferred mode locks the database, but

only once a change is begun. All the previous examples use deferred mode.

$ python sqlite3_isolation_levels.py DEFERRED

2010-12-04 09:06:51,793 (Reader 1) waiting to synchronize

2010-12-04 09:06:51,794 (Reader 2) waiting to synchronize

2010-12-04 09:06:51,795 (Writer 1) waiting to synchronize

ptg

374 Data Persistence and Exchange

2010-12-04 09:06:52,796 (MainThread) setting ready

2010-12-04 09:06:52,797 (Writer 1) PAUSING

2010-12-04 09:06:52,797 (Reader 1) wait over

2010-12-04 09:06:52,798 (Reader 1) SELECT EXECUTED

2010-12-04 09:06:52,798 (Reader 1) results fetched

2010-12-04 09:06:52,799 (Reader 2) wait over

2010-12-04 09:06:52,800 (Reader 2) SELECT EXECUTED

2010-12-04 09:06:52,800 (Reader 2) results fetched

2010-12-04 09:06:53,799 (Writer 1) CHANGES COMMITTED

2010-12-04 09:06:53,829 (Writer 2) waiting to synchronize

2010-12-04 09:06:53,829 (Writer 2) PAUSING

2010-12-04 09:06:54,832 (Writer 2) CHANGES COMMITTED

Immediate

Immediate mode locks the database as soon as a change starts and prevents other cursors

from making changes until the transaction is committed. It is suitable for a database with

complicated writes, but more readers than writers, since the readers are not blocked

while the transaction is ongoing.

$ python sqlite3_isolation_levels.py IMMEDIATE

2010-12-04 09:06:54,914 (Reader 1) waiting to synchronize

2010-12-04 09:06:54,915 (Reader 2) waiting to synchronize

2010-12-04 09:06:54,916 (Writer 1) waiting to synchronize

2010-12-04 09:06:55,917 (MainThread) setting ready

2010-12-04 09:06:55,918 (Reader 1) wait over

2010-12-04 09:06:55,919 (Reader 2) wait over

2010-12-04 09:06:55,919 (Writer 1) PAUSING

2010-12-04 09:06:55,919 (Reader 1) SELECT EXECUTED

2010-12-04 09:06:55,919 (Reader 1) results fetched

2010-12-04 09:06:55,920 (Reader 2) SELECT EXECUTED

2010-12-04 09:06:55,920 (Reader 2) results fetched

2010-12-04 09:06:56,922 (Writer 1) CHANGES COMMITTED

2010-12-04 09:06:56,951 (Writer 2) waiting to synchronize

2010-12-04 09:06:56,951 (Writer 2) PAUSING

2010-12-04 09:06:57,953 (Writer 2) CHANGES COMMITTED

Exclusive

Exclusive mode locks the database to all readers and writers. Its use should be limited

in situations where database performance is important, since each exclusive connection

blocks all other users.

ptg

7.5. sqlite3—Embedded Relational Database 375

$ python sqlite3_isolation_levels.py EXCLUSIVE

2010-12-04 09:06:58,042 (Reader 1) waiting to synchronize

2010-12-04 09:06:58,043 (Reader 2) waiting to synchronize

2010-12-04 09:06:58,044 (Writer 1) waiting to synchronize

2010-12-04 09:06:59,045 (MainThread) setting ready

2010-12-04 09:06:59,045 (Writer 1) PAUSING

2010-12-04 09:06:59,046 (Reader 2) wait over

2010-12-04 09:06:59,045 (Reader 1) wait over

2010-12-04 09:07:00,048 (Writer 1) CHANGES COMMITTED

2010-12-04 09:07:00,076 (Reader 1) SELECT EXECUTED

2010-12-04 09:07:00,076 (Reader 1) results fetched

2010-12-04 09:07:00,079 (Reader 2) SELECT EXECUTED

2010-12-04 09:07:00,079 (Reader 2) results fetched

2010-12-04 09:07:00,090 (Writer 2) waiting to synchronize

2010-12-04 09:07:00,090 (Writer 2) PAUSING

2010-12-04 09:07:01,093 (Writer 2) CHANGES COMMITTED

Because the first writer has started making changes, the readers and second writer

block until it commits. The sleep() call introduces an artificial delay in the writer

thread to highlight the fact that the other connections are blocking.

Autocommit

The isolation_level parameter for the connection can also be set to None to enable

autocommit mode. With autocommit enabled, each execute() call is committed

immediately when the statement finishes. Autocommit mode is suited for short transac-

tions, such as those that insert a small amount of data into a single table. The database

is locked for as little time as possible, so there is less chance of contention between

threads.

In sqlite3_autocommit.py, the explicit call to commit() has been

removed and the isolation level is set to None, but otherwise, it is the same as

sqlite3_isolation_levels.py. The output is different, however, since both

writer threads finish their work before either reader starts querying.

$ python sqlite3_autocommit.py

2010-12-04 09:07:01,176 (Reader 1) waiting to synchronize

2010-12-04 09:07:01,177 (Reader 2) waiting to synchronize

2010-12-04 09:07:01,181 (Writer 1) waiting to synchronize

2010-12-04 09:07:01,184 (Writer 2) waiting to synchronize

2010-12-04 09:07:02,180 (MainThread) setting ready

ptg

376 Data Persistence and Exchange

2010-12-04 09:07:02,181 (Writer 1) PAUSING

2010-12-04 09:07:02,181 (Reader 1) wait over

2010-12-04 09:07:02,182 (Reader 1) SELECT EXECUTED

2010-12-04 09:07:02,182 (Reader 1) results fetched

2010-12-04 09:07:02,183 (Reader 2) wait over

2010-12-04 09:07:02,183 (Reader 2) SELECT EXECUTED

2010-12-04 09:07:02,184 (Reader 2) results fetched

2010-12-04 09:07:02,184 (Writer 2) PAUSING

7.5.11 In-Memory Databases

SQLite supports managing an entire database in RAM, instead of relying on a disk

file. In-memory databases are useful for automated testing, when the database does not

need to be preserved between test runs, or when experimenting with a schema or other

database features. To open an in-memory database, use the string ’:memory:’ instead

of a filename when creating the Connection. Each ’:memory:’ connection creates

a separate database instance, so changes made by a cursor in one do not effect other

connections.

7.5.12 Exporting the Contents of a Database

The contents of an in-memory database can be saved using the iterdump() method

of the Connection. The iterator returned by iterdump() produces a series of strings

that together build SQL instructions to recreate the state of the database.

import sqlite3

schema_filename = ’todo_schema.sql’

with sqlite3.connect(’:memory:’) as conn:

conn.row_factory = sqlite3.Row

print ’Creating schema’

with open(schema_filename, ’rt’) as f:

schema = f.read()

conn.executescript(schema)

print ’Inserting initial data’

conn.execute("""

insert into project (name, description, deadline)

values (’pymotw’, ’Python Module of the Week’, ’2010-11-01’)

""")

ptg

7.5. sqlite3—Embedded Relational Database 377

data = [

(’write about select’, ’done’, ’2010-10-03’, ’pymotw’),

(’write about random’, ’waiting’, ’2010-10-10’, ’pymotw’),

(’write about sqlite3’, ’active’, ’2010-10-17’, ’pymotw’),

]

conn.executemany("""

insert into task (details, status, deadline, project)

values (?, ?, ?, ?)

""", data)

print ’Dumping:’

for text in conn.iterdump():

print text

iterdump() can also be used with databases saved to files, but it is most useful

for preserving a database that would not otherwise be saved. This output has been edited

to fit on the page while remaining syntactically correct.

$ python sqlite3_iterdump.py

Creating schema

Inserting initial data

Dumping:

BEGIN TRANSACTION;

CREATE TABLE project (

name text primary key,

description text,

deadline date

);

INSERT INTO "project" VALUES(’pymotw’,’Python Module of the

Week’,’2010-11-01’);

CREATE TABLE task (

id integer primary key autoincrement not null,

priority integer default 1,

details text,

status text,

deadline date,

completed_on date,

project text not null references project(name)

);

INSERT INTO "task" VALUES(1,1,’write about

select’,’done’,’2010-10-03’,NULL,’pymotw’);

INSERT INTO "task" VALUES(2,1,’write about

ptg

378 Data Persistence and Exchange

random’,’waiting’,’2010-10-10’,NULL,’pymotw’);

INSERT INTO "task" VALUES(3,1,’write about

sqlite3’,’active’,’2010-10-17’,NULL,’pymotw’);

DELETE FROM sqlite_sequence;

INSERT INTO "sqlite_sequence" VALUES(’task’,3);

COMMIT;

7.5.13 Using Python Functions in SQL

SQL syntax supports calling functions during queries, either in the column list or where
clause of the select statement. This feature makes it possible to process data before

returning it from the query and can be used to convert between different formats, per-

form calculations that would be clumsy in pure SQL, and reuse application code.

import sqlite3

db_filename = ’todo.db’

def encrypt(s):

print ’Encrypting %r’ % s

return s.encode(’rot-13’)

def decrypt(s):

print ’Decrypting %r’ % s

return s.encode(’rot-13’)

with sqlite3.connect(db_filename) as conn:

conn.create_function(’encrypt’, 1, encrypt)

conn.create_function(’decrypt’, 1, decrypt)

cursor = conn.cursor()

Raw values

print ’Original values:’

query = "select id, details from task"

cursor.execute(query)

for row in cursor.fetchall():

print row

print ’\nEncrypting...’
query = "update task set details = encrypt(details)"

cursor.execute(query)

ptg

7.5. sqlite3—Embedded Relational Database 379

print ’\nRaw encrypted values:’

query = "select id, details from task"

cursor.execute(query)

for row in cursor.fetchall():

print row

print ’\nDecrypting in query...’

query = "select id, decrypt(details) from task"

cursor.execute(query)

for row in cursor.fetchall():

print row

Functions are exposed using the create_function() method of the

Connection. The parameters are the name of the function (as it should be used from

within SQL), the number of arguments the function takes, and the Python function to

expose.

$ python sqlite3_create_function.py

Original values:

(1, u’write about select’)

(2, u’write about random’)

(3, u’write about sqlite3’)

(4, u’finish reviewing markup’)

(5, u’revise chapter intros’)

(6, u’subtitle’)

Encrypting...

Encrypting u’write about select’

Encrypting u’write about random’

Encrypting u’write about sqlite3’

Encrypting u’finish reviewing markup’

Encrypting u’revise chapter intros’

Encrypting u’subtitle’

Raw encrypted values:

(1, u’jevgr nobhg fryrpg’)

(2, u’jevgr nobhg enaqbz’)

(3, u’jevgr nobhg fdyvgr3’)

(4, u’svavfu erivrjvat znexhc’)

(5, u’erivfr puncgre vagebf’)

(6, u’fhogvgyr’)

Decrypting in query...

ptg

380 Data Persistence and Exchange

Decrypting u’jevgr nobhg fryrpg’

Decrypting u’jevgr nobhg enaqbz’

Decrypting u’jevgr nobhg fdyvgr3’

Decrypting u’svavfu erivrjvat znexhc’

Decrypting u’erivfr puncgre vagebf’

Decrypting u’fhogvgyr’

(1, u’write about select’)

(2, u’write about random’)

(3, u’write about sqlite3’)

(4, u’finish reviewing markup’)

(5, u’revise chapter intros’)

(6, u’subtitle’)

7.5.14 Custom Aggregation

An aggregation function collects many pieces of individual data and summarizes it in

some way. Examples of built-in aggregation functions are avg() (average), min(),

max(), and count().

The API for aggregators used by sqlite3 is defined in terms of a class with two

methods. The step() method is called once for each data value as the query is pro-

cessed. The finalize() method is called one time at the end of the query and should

return the aggregate value. This example implements an aggregator for the arithmetic

mode. It returns the value that appears most frequently in the input.

import sqlite3
import collections

db_filename = ’todo.db’

class Mode(object):
def __init__(self):

self.counter = collections.Counter()

def step(self, value):

print ’step(%r)’ % value

self.counter[value] += 1

def finalize(self):

result, count = self.counter.most_common(1)[0]

print ’finalize() -> %r (%d times)’ % (result, count)

return result

with sqlite3.connect(db_filename) as conn:

ptg

7.5. sqlite3—Embedded Relational Database 381

conn.create_aggregate(’mode’, 1, Mode)

cursor = conn.cursor()

cursor.execute("""

select mode(deadline) from task where project = ’pymotw’

""")

row = cursor.fetchone()

print ’mode(deadline) is:’, row[0]

The aggregator class is registered with the create_aggregate() method of the

Connection. The parameters are the name of the function (as it should be used from

within SQL), the number of arguments the step() method takes, and the class to use.

$ python sqlite3_create_aggregate.py

step(u’2010-10-03’)

step(u’2010-10-10’)

step(u’2010-10-17’)

step(u’2010-10-02’)

step(u’2010-10-03’)

step(u’2010-10-03’)

finalize() -> u’2010-10-03’ (3 times)

mode(deadline) is: 2010-10-03

7.5.15 Custom Sorting

A collation is a comparison function used in the order by section of an SQL query.

Custom collations can be used to compare data types that could not otherwise be sorted

by SQLite internally. For example, a custom collation would be needed to sort the

pickled objects saved in sqlite3_custom_type.py.

import sqlite3
try:

import cPickle as pickle
except:

import pickle

db_filename = ’todo.db’

def adapter_func(obj):

return pickle.dumps(obj)

ptg

382 Data Persistence and Exchange

def converter_func(data):

return pickle.loads(data)

class MyObj(object):
def __init__(self, arg):

self.arg = arg

def __str__(self):

return ’MyObj(%r)’ % self.arg

def __cmp__(self, other):

return cmp(self.arg, other.arg)

Register the functions for manipulating the type.

sqlite3.register_adapter(MyObj, adapter_func)

sqlite3.register_converter("MyObj", converter_func)

def collation_func(a, b):

a_obj = converter_func(a)

b_obj = converter_func(b)

print ’collation_func(%s, %s)’ % (a_obj, b_obj)

return cmp(a_obj, b_obj)

with sqlite3.connect(db_filename,

detect_types=sqlite3.PARSE_DECLTYPES,

) as conn:

Define the collation

conn.create_collation(’unpickle’, collation_func)

Clear the table and insert new values

conn.execute(’delete from obj’)

conn.executemany(’insert into obj (data) values (?)’,

[(MyObj(x),) for x in xrange(5, 0, -1)],

)

Query the database for the objects just saved

print ’Querying:’

cursor = conn.cursor()

cursor.execute("""

select id, data from obj order by data collate unpickle

""")

for obj_id, obj in cursor.fetchall():

print obj_id, obj

ptg

7.5. sqlite3—Embedded Relational Database 383

The arguments to the collation function are byte strings, so they must be unpickled

and converted to MyObj instances before the comparison can be performed.

$ python sqlite3_create_collation.py

Querying:

collation_func(MyObj(5), MyObj(4))

collation_func(MyObj(4), MyObj(3))

collation_func(MyObj(4), MyObj(2))

collation_func(MyObj(3), MyObj(2))

collation_func(MyObj(3), MyObj(1))

collation_func(MyObj(2), MyObj(1))

7 MyObj(1)

6 MyObj(2)

5 MyObj(3)

4 MyObj(4)

3 MyObj(5)

7.5.16 Threading and Connection Sharing

For historical reasons having to do with old versions of SQLite, Connection objects

cannot be shared between threads. Each thread must create its own connection to the

database.

import sqlite3
import sys
import threading
import time

db_filename = ’todo.db’

isolation_level = None # autocommit mode

def reader(conn):

my_name = threading.currentThread().name

print ’Starting thread’

try:
cursor = conn.cursor()

cursor.execute(’select * from task’)

results = cursor.fetchall()

print ’results fetched’

ptg

384 Data Persistence and Exchange

except Exception, err:

print ’ERROR:’, err

return

if __name__ == ’__main__’:

with sqlite3.connect(db_filename,

isolation_level=isolation_level,

) as conn:

t = threading.Thread(name=’Reader 1’,

target=reader,

args=(conn,),

)

t.start()

t.join()

Attempts to share a connection between threads result in an exception.

$ python sqlite3_threading.py

Starting thread

ERROR: SQLite objects created in a thread can only be used in that

same thread.The object was created in thread id 4299299872 and

this is thread id 4311166976

7.5.17 Restricting Access to Data

Although SQLite does not have user access controls found in other, larger, relational

databases, it does have a mechanism for limiting access to columns. Each connection

can install an authorizer function to grant or deny access to columns at runtime based

on any desired criteria. The authorizer function is invoked during the parsing of SQL

statements and is passed five arguments. The first is an action code indicating the type of

operation being performed (reading, writing, deleting, etc.). The rest of the arguments

depend on the action code. For SQLITE_READ operations, the arguments are the name

of the table, the name of the column, the location in the SQL statement where the access

is occurring (main query, trigger, etc.), and None.

import sqlite3

db_filename = ’todo.db’

ptg

7.5. sqlite3—Embedded Relational Database 385

def authorizer_func(action, table, column, sql_location, ignore):

print ’\nauthorizer_func(%s, %s, %s, %s, %s)’ % \

(action, table, column, sql_location, ignore)

response = sqlite3.SQLITE_OK # be permissive by default

if action == sqlite3.SQLITE_SELECT:

print ’requesting permission to run a select statement’

response = sqlite3.SQLITE_OK

elif action == sqlite3.SQLITE_READ:

print ’requesting access to column %s.%s from %s’ % \

(table, column, sql_location)

if column == ’details’:

print ’ ignoring details column’

response = sqlite3.SQLITE_IGNORE

elif column == ’priority’:

print ’ preventing access to priority column’

response = sqlite3.SQLITE_DENY

return response

with sqlite3.connect(db_filename) as conn:

conn.row_factory = sqlite3.Row

conn.set_authorizer(authorizer_func)

print ’Using SQLITE_IGNORE to mask a column value:’

cursor = conn.cursor()

cursor.execute("""

select id, details from task where project = ’pymotw’

""")

for row in cursor.fetchall():

print row[’id’], row[’details’]

print ’\nUsing SQLITE_DENY to deny access to a column:’

cursor.execute("""

select id, priority from task where project = ’pymotw’

""")

for row in cursor.fetchall():

print row[’id’], row[’details’]

This example uses SQLITE_IGNORE to cause the strings from the task.details

column to be replaced with null values in the query results. It also prevents all access to

ptg

386 Data Persistence and Exchange

the task.priority column by returning SQLITE_DENY, which in turn causes SQLite

to raise an exception.

$ python sqlite3_set_authorizer.py

Using SQLITE_IGNORE to mask a column value:

authorizer_func(21, None, None, None, None)

requesting permission to run a select statement

authorizer_func(20, task, id, main, None)

requesting access to column task.id from main

authorizer_func(20, task, details, main, None)

requesting access to column task.details from main

ignoring details column

authorizer_func(20, task, project, main, None)

requesting access to column task.project from main

1 None

2 None

3 None

4 None

5 None

6 None

Using SQLITE_DENY to deny access to a column:

authorizer_func(21, None, None, None, None)

requesting permission to run a select statement

authorizer_func(20, task, id, main, None)

requesting access to column task.id from main

authorizer_func(20, task, priority, main, None)

requesting access to column task.priority from main

preventing access to priority column

Traceback (most recent call last):

File "sqlite3_set_authorizer.py", line 51, in <module>

""")

sqlite3.DatabaseError: access to task.priority is prohibited

The possible action codes are available as constants in sqlite3, with names pre-

fixed SQLITE_. Each type of SQL statement can be flagged, and access to individual

columns can be controlled as well.

ptg

7.6. xml.etree.ElementTree—XML Manipulation API 387

See Also:
sqlite3 (http://docs.python.org/library/sqlite3.html) The standard library documen-

tation for this module.

PEP 249 (www.python.org/dev/peps/pep-0249)—DB API 2.0 Specification A stan-

dard interface for modules that provide access to relational databases.

SQLite (www.sqlite.org/) The official site of the SQLite library.

shelve (page 343) Key-value store for saving arbitrary Python objects.

SQLAlchemy (http://sqlalchemy.org/) A popular object-relational mapper that sup-

ports SQLite among many other relational databases.

7.6 xml.etree.ElementTree—XML Manipulation API

Purpose Generate and parse XML documents.

Python Version 2.5 and later

The ElementTree library includes tools for parsing XML using event-based and

document-based APIs, searching parsed documents with XPath expressions, and cre-

ating new or modifying existing documents.

Note: All examples in this section use the Python implementation of

ElementTree for simplicity, but there is also a C implementation in xml.etree.

cElementTree.

7.6.1 Parsing an XML Document

Parsed XML documents are represented in memory by ElementTree and Element

objects connected in a tree structure based on the way the nodes in the XML document

are nested.

Parsing an entire document with parse() returns an ElementTree instance.

The tree knows about all data in the input document, and the nodes of the tree can

be searched or manipulated in place. While this flexibility can make working with the

parsed document more convenient, it typically takes more memory than an event-based

parsing approach since the entire document must be loaded at one time.

The memory footprint of small, simple documents (such as this list of podcasts

represented as an OPML outline) is not significant:

<?xml version="1.0" encoding="UTF-8"?>

<opml version="1.0">
<head>

<title>My Podcasts</title>
<dateCreated>Sun, 07 Mar 2010 15:53:26 GMT</dateCreated>

http://docs.python.org/library/sqlite3.html
www.python.org/dev/peps/pep-0249
http://sqlalchemy.org/
www.sqlite.org/

ptg

388 Data Persistence and Exchange

<dateModified>Sun, 07 Mar 2010 15:53:26 GMT</dateModified>
</head>
<body>
<outline text="Fiction">

<outline
text="tor.com / category / tordotstories" type="rss"

xmlUrl="http://www.tor.com/rss/category/TorDotStories"

htmlUrl="http://www.tor.com/" />
</outline>
<outline text="Python">

<outline
text="PyCon Podcast" type="rss"

xmlUrl="http://advocacy.python.org/podcasts/pycon.rss"

htmlUrl="http://advocacy.python.org/podcasts/" />
<outline

text="A Little Bit of Python" type="rss"

xmlUrl="http://advocacy.python.org/podcasts/littlebit.rss"

htmlUrl="http://advocacy.python.org/podcasts/" />
</outline>

</body>
</opml>

To parse the file, pass an open file handle to parse().

from xml.etree import ElementTree

with open(’podcasts.opml’, ’rt’) as f:

tree = ElementTree.parse(f)

print tree

It will read the data, parse the XML, and return an ElementTree object.

$ python ElementTree_parse_opml.py

<xml.etree.ElementTree.ElementTree object at 0x100dca350>

7.6.2 Traversing the Parsed Tree

To visit all children in order, use iter() to create a generator that iterates over the

ElementTree instance.

ptg

7.6. xml.etree.ElementTree—XML Manipulation API 389

from xml.etree import ElementTree

import pprint

with open(’podcasts.opml’, ’rt’) as f:

tree = ElementTree.parse(f)

for node in tree.iter():

print node.tag

This example prints the entire tree, one tag at a time.

$ python ElementTree_dump_opml.py

opml

head

title

dateCreated

dateModified

body

outline

outline

outline

outline

outline

To print only the groups of names and feed URLs for the podcasts, leave out all

data in the header section by iterating over only the outline nodes and print the text
and xmlUrl attributes by looking up the values in the attrib dictionary.

from xml.etree import ElementTree

with open(’podcasts.opml’, ’rt’) as f:

tree = ElementTree.parse(f)

for node in tree.iter(’outline’):

name = node.attrib.get(’text’)

url = node.attrib.get(’xmlUrl’)

if name and url:

print ’ %s’ % name

print ’ %s’ % url

else:
print name

ptg

390 Data Persistence and Exchange

The ’outline’ argument to iter() means processing is limited to only nodes

with the tag ’outline’.

$ python ElementTree_show_feed_urls.py

Fiction

tor.com / category / tordotstories

http://www.tor.com/rss/category/TorDotStories

Python

PyCon Podcast

http://advocacy.python.org/podcasts/pycon.rss

A Little Bit of Python

http://advocacy.python.org/podcasts/littlebit.rss

7.6.3 Finding Nodes in a Document

Walking the entire tree like this, searching for relevant nodes, can be error prone. The

previous example had to look at each outline node to determine if it was a group

(nodes with only a text attribute) or a podcast (with both text and xmlUrl). To

produce a simple list of the podcast feed URLs, without names or groups, the logic

could be simplified using findall() to look for nodes with more descriptive search

characteristics.

As a first pass at converting the first version, an XPath argument can be used to

look for all outline nodes.

from xml.etree import ElementTree

with open(’podcasts.opml’, ’rt’) as f:

tree = ElementTree.parse(f)

for node in tree.findall(’.//outline’):

url = node.attrib.get(’xmlUrl’)

if url:

print url

The logic in this version is not substantially different than the version using

getiterator(). It still has to check for the presence of the URL, except that it does

not print the group name when the URL is not found.

$ python ElementTree_find_feeds_by_tag.py

ptg

7.6. xml.etree.ElementTree—XML Manipulation API 391

http://www.tor.com/rss/category/TorDotStories

http://advocacy.python.org/podcasts/pycon.rss

http://advocacy.python.org/podcasts/littlebit.rss

It is possible to take advantage of the fact that the outline nodes are only nested

two levels deep. Changing the search path to .//outline/outline means the loop

will process only the second level of outline nodes.

from xml.etree import ElementTree

with open(’podcasts.opml’, ’rt’) as f:

tree = ElementTree.parse(f)

for node in tree.findall(’.//outline/outline’):

url = node.attrib.get(’xmlUrl’)

print url

All outline nodes nested two levels deep in the input are expected to have the

xmlURL attribute referring to the podcast feed, so the loop can skip checking for the

attribute before using it.

$ python ElementTree_find_feeds_by_structure.py

http://www.tor.com/rss/category/TorDotStories

http://advocacy.python.org/podcasts/pycon.rss

http://advocacy.python.org/podcasts/littlebit.rss

This version is limited to the existing structure, though, so if the outline nodes are

ever rearranged into a deeper tree, it will stop working.

7.6.4 Parsed Node Attributes

The items returned by findall() and iter() are Element objects, each represent-

ing a node in the XML parse tree. Each Element has attributes for accessing data pulled

out of the XML. This can be illustrated with a somewhat more contrived example input

file, data.xml.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <top>
3 <child>Regular text.</child>
4 <child_with_tail>Regular text.</child_with_tail>"Tail" text.

ptg

392 Data Persistence and Exchange

5 <with_attributes name="value" foo="bar" />
6 <entity_expansion attribute="This & That">
7 That & This

8 </entity_expansion>
9 </top>

The attributes of a node are available in the attrib property, which acts like a

dictionary.

from xml.etree import ElementTree

with open(’data.xml’, ’rt’) as f:

tree = ElementTree.parse(f)

node = tree.find(’./with_attributes’)

print node.tag

for name, value in sorted(node.attrib.items()):

print ’ %-4s = "%s"’ % (name, value)

The node on line five of the input file has two attributes, name and foo.

$ python ElementTree_node_attributes.py

with_attributes

foo = "bar"

name = "value"

The text content of the nodes is available, along with the tail text that comes after

the end of a close tag.

from xml.etree import ElementTree

with open(’data.xml’, ’rt’) as f:

tree = ElementTree.parse(f)

for path in [’./child’, ’./child_with_tail’]:

node = tree.find(path)

print node.tag

print ’ child node text:’, node.text

print ’ and tail text :’, node.tail

The child node on line three contains embedded text, and the node on line four

has text with a tail (including whitespace).

ptg

7.6. xml.etree.ElementTree—XML Manipulation API 393

$ python ElementTree_node_text.py

child

child node text: Regular text.

and tail text :

child_with_tail

child node text: Regular text.

and tail text : "Tail" text.

XML entity references embedded in the document are converted to the appropriate

characters before values are returned.

from xml.etree import ElementTree

with open(’data.xml’, ’rt’) as f:

tree = ElementTree.parse(f)

node = tree.find(’entity_expansion’)

print node.tag

print ’ in attribute:’, node.attrib[’attribute’]

print ’ in text :’, node.text.strip()

The automatic conversion means the implementation detail of representing certain

characters in an XML document can be ignored.

$ python ElementTree_entity_references.py

entity_expansion

in attribute: This & That

in text : That & This

7.6.5 Watching Events While Parsing

The other API for processing XML documents is event based. The parser generates

start events for opening tags and end events for closing tags. Data can be extracted

from the document during the parsing phase by iterating over the event stream, which

is convenient if it is not necessary to manipulate the entire document afterward or hold

the entire parsed document in memory.

These are the types of events.

ptg

394 Data Persistence and Exchange

start A new tag has been encountered. The closing angle bracket of the tag was

processed, but not the contents.

end The closing angle bracket of a closing tag has been processed. All the children

were already processed.

start-ns Start a namespace declaration.

end-ns End a namespace declaration.

iterparse() returns an iterable that produces tuples containing the name of the

event and the node triggering the event.

from xml.etree.ElementTree import iterparse

depth = 0

prefix_width = 8

prefix_dots = ’.’ * prefix_width

line_template = ’’.join([’{prefix:<0.{prefix_len}}’,

’{event:<8}’,

’{suffix:<{suffix_len}} ’,

’{node.tag:<12} ’,

’{node_id}’,

])

EVENT_NAMES = [’start’, ’end’, ’start-ns’, ’end-ns’]

for (event, node) in iterparse(’podcasts.opml’, EVENT_NAMES):

if event == ’end’:

depth -= 1

prefix_len = depth * 2

print line_template.format(

prefix=prefix_dots,

prefix_len=prefix_len,

suffix=’’,

suffix_len=(prefix_width - prefix_len),

node=node,

node_id=id(node),

event=event,

)

if event == ’start’:

depth += 1

ptg

7.6. xml.etree.ElementTree—XML Manipulation API 395

By default, only end events are generated. To see other events, pass the list of

desired event names to iterparse(), as in this example.

$ python ElementTree_show_all_events.py

start opml 4309429072

..start head 4309429136

....start title 4309429200

....end title 4309429200

....start dateCreated 4309429392

....end dateCreated 4309429392

....start dateModified 4309429584

....end dateModified 4309429584

..end head 4309429136

..start body 4309429968

....start outline 4309430032

start outline 4309430096

end outline 4309430096

....end outline 4309430032

....start outline 4309430160

start outline 4309430224

end outline 4309430224

start outline 4309459024

end outline 4309459024

....end outline 4309430160

..end body 4309429968

end opml 4309429072

The event style of processing is more natural for some operations, such as con-

verting XML input to some other format. This technique can be used to convert lists of

podcasts (from the earlier examples) from an XML file to a CSV file, so they can be

loaded into a spreadsheet or database application.

import csv
from xml.etree.ElementTree import iterparse

import sys

writer = csv.writer(sys.stdout, quoting=csv.QUOTE_NONNUMERIC)

group_name = ’’

for (event, node) in iterparse(’podcasts.opml’, events=[’start’]):

ptg

396 Data Persistence and Exchange

if node.tag != ’outline’:

Ignore anything not part of the outline

continue
if not node.attrib.get(’xmlUrl’):

Remember the current group

group_name = node.attrib[’text’]

else:
Output a podcast entry

writer.writerow((group_name, node.attrib[’text’],

node.attrib[’xmlUrl’],

node.attrib.get(’htmlUrl’, ’’),

)

)

This conversion program does not need to hold the entire parsed input file in mem-

ory, and processing each node as it is encountered in the input is more efficient.

$ python ElementTree_write_podcast_csv.py

"Fiction","tor.com / category / tordotstories","http://www.tor.com/r\

ss/category/TorDotStories","http://www.tor.com/"

"Python","PyCon Podcast","http://advocacy.python.org/podcasts/pycon.\

rss","http://advocacy.python.org/podcasts/"

"Python","A Little Bit of Python","http://advocacy.python.org/podcas\

ts/littlebit.rss","http://advocacy.python.org/podcasts/"

Note: The output from ElementTree_write_podcast_csv.py has been refor-

matted to fit on this page. The output lines ending with \ indicate an artificial line

break.

7.6.6 Creating a Custom Tree Builder

A potentially more efficient means of handling parse events is to replace the stan-

dard tree builder behavior with a custom version. The ElementTree parser uses an

XMLTreeBuilder to process the XML and call methods on a target class to save

the results. The usual output is an ElementTree instance created by the default

TreeBuilder class. Replacing TreeBuilder with another class allows it to receive

the events before the Element nodes are instantiated, saving that portion of the

overhead.

The XML-to-CSV converter from the previous section can be reimplemented as a

tree builder.

ptg

7.6. xml.etree.ElementTree—XML Manipulation API 397

import csv
from xml.etree.ElementTree import XMLTreeBuilder

import sys

class PodcastListToCSV(object):

def __init__(self, outputFile):

self.writer = csv.writer(outputFile,

quoting=csv.QUOTE_NONNUMERIC)

self.group_name = ’’

return

def start(self, tag, attrib):

if tag != ’outline’:

Ignore anything not part of the outline

return
if not attrib.get(’xmlUrl’):

Remember the current group

self.group_name = attrib[’text’]

else:
Output a podcast entry

self.writer.writerow((self.group_name, attrib[’text’],

attrib[’xmlUrl’],

attrib.get(’htmlUrl’, ’’),

)

)

def end(self, tag):

Ignore closing tags

pass
def data(self, data):

Ignore data inside nodes

pass
def close(self):

Nothing special to do here

return

target = PodcastListToCSV(sys.stdout)

parser = XMLTreeBuilder(target=target)

with open(’podcasts.opml’, ’rt’) as f:

for line in f:

parser.feed(line)

parser.close()

ptg

398 Data Persistence and Exchange

PodcastListToCSV implements the TreeBuilder protocol. Each time a new

XML tag is encountered, start() is called with the tag name and attributes. When a

closing tag is seen, end() is called with the name. In between, data() is called when

a node has content (the tree builder is expected to keep up with the “current” node).

When all the input is processed, close() is called. It can return a value, which will be

returned to the user of the XMLTreeBuilder.

$ python ElementTree_podcast_csv_treebuilder.py

"Fiction","tor.com / category / tordotstories","http://www.tor.com/r\

ss/category/TorDotStories","http://www.tor.com/"

"Python","PyCon Podcast","http://advocacy.python.org/podcasts/pycon.\

rss","http://advocacy.python.org/podcasts/"

"Python","A Little Bit of Python","http://advocacy.python.org/podcas\

ts/littlebit.rss","http://advocacy.python.org/podcasts/"

Note: The output from ElementTree_podcast_csv_treebuidler.py has

been reformatted to fit on this page. The output lines ending with \ indicate an

artificial line break.

7.6.7 Parsing Strings

To work with smaller bits of XML text, especially string literals that might be embedded

in the source of a program, use XML() and the string containing the XML to be parsed

as the only argument.

from xml.etree.ElementTree import XML

parsed = XML(’’’

<root>

<group>

<child id="a">This is child "a".</child>

<child id="b">This is child "b".</child>

</group>

<group>

<child id="c">This is child "c".</child>

</group>

</root>

’’’)

print ’parsed =’, parsed

ptg

7.6. xml.etree.ElementTree—XML Manipulation API 399

def show_node(node):

print node.tag

if node.text is not None and node.text.strip():

print ’ text: "%s"’ % node.text

if node.tail is not None and node.tail.strip():

print ’ tail: "%s"’ % node.tail

for name, value in sorted(node.attrib.items()):

print ’ %-4s = "%s"’ % (name, value)

for child in node:

show_node(child)

return

for elem in parsed:

show_node(elem)

Unlike with parse(), the return value is an Element instance instead of an

ElementTree. An Element supports the iterator protocol directly, so there is no need

to call getiterator().

$ python ElementTree_XML.py

parsed = <Element ’root’ at 0x100dcba50>

group

child

text: "This is child "a"."

id = "a"

child

text: "This is child "b"."

id = "b"

group

child

text: "This is child "c"."

id = "c"

For structured XML that uses the id attribute to identify unique nodes of interest,

XMLID() is a convenient way to access the parse results.

from xml.etree.ElementTree import XMLID

tree, id_map = XMLID(’’’

<root>

ptg

400 Data Persistence and Exchange

<group>

<child id="a">This is child "a".</child>

<child id="b">This is child "b".</child>

</group>

<group>

<child id="c">This is child "c".</child>

</group>

</root>

’’’)

for key, value in sorted(id_map.items()):

print ’%s = %s’ % (key, value)

XMLID() returns the parsed tree as an Element object, along with a dictionary

mapping the id attribute strings to the individual nodes in the tree.

$ python ElementTree_XMLID.py

a = <Element ’child’ at 0x100dcab90>

b = <Element ’child’ at 0x100dcac50>

c = <Element ’child’ at 0x100dcae90>

See Also:
Outline Processor Markup Language, OPML (http://www.opml.org/) Dave

Winer’s OPML specification and documentation.

XML Path Language, XPath (http://www.w3.org/TR/xpath/) A syntax for identi-

fying parts of an XML document.

XPath Support in ElementTree (http://effbot.org/zone/element-xpath.htm) Part of

Fredrick Lundh’s original documentation for ElementTree.

csv (page 411) Read and write comma-separated-value files.

7.6.8 Building Documents with Element Nodes

In addition to its parsing capabilities, xml.etree.ElementTree also supports creat-

ing well-formed XML documents from Element objects constructed in an application.

The Element class used when a document is parsed also knows how to generate a

serialized form of its contents, which can then be written to a file or other data stream.

There are three helper functions useful for creating a hierarchy of Element nodes.

Element() creates a standard node, SubElement() attaches a new node to a parent,

and Comment() creates a node that serializes using XML’s comment syntax.

http://www.opml.org/
http://www.w3.org/TR/xpath/
http://effbot.org/zone/element-xpath.htm

ptg

7.6. xml.etree.ElementTree—XML Manipulation API 401

from xml.etree.ElementTree import (Element,

SubElement,

Comment,

tostring,

)

top = Element(’top’)

comment = Comment(’Generated for PyMOTW’)

top.append(comment)

child = SubElement(top, ’child’)

child.text = ’This child contains text.’

child_with_tail = SubElement(top, ’child_with_tail’)

child_with_tail.text = ’This child has regular text.’

child_with_tail.tail = ’And "tail" text.’

child_with_entity_ref = SubElement(top, ’child_with_entity_ref’)

child_with_entity_ref.text = ’This & that’

print tostring(top)

The output contains only the XML nodes in the tree, not the XML declaration with

version and encoding.

$ python ElementTree_create.py

<top><!--Generated for PyMOTW--><child>This child contains text.</ch

ild><child_with_tail>This child has regular text.</child_with_tail>A

nd "tail" text.<child_with_entity_ref>This & that</child_with_en

tity_ref></top>

The & character in the text of child_with_entity_ref is converted to the

entity reference & automatically.

7.6.9 Pretty-Printing XML

ElementTree makes no effort to format the output of tostring() so it is easy to

read, because adding extra whitespace changes the contents of the document. To make

the output easier to follow, the rest of the examples will use xml.dom.minidom to

reparse the XML and then use its toprettyxml() method.

ptg

402 Data Persistence and Exchange

from xml.etree import ElementTree

from xml.dom import minidom

def prettify(elem):

"""Return a pretty-printed XML string for the Element.

"""

rough_string = ElementTree.tostring(elem, ’utf-8’)

reparsed = minidom.parseString(rough_string)

return reparsed.toprettyxml(indent=" ")

The updated example now looks like the following:

from xml.etree.ElementTree import Element, SubElement, Comment

from ElementTree_pretty import prettify

top = Element(’top’)

comment = Comment(’Generated for PyMOTW’)

top.append(comment)

child = SubElement(top, ’child’)

child.text = ’This child contains text.’

child_with_tail = SubElement(top, ’child_with_tail’)

child_with_tail.text = ’This child has regular text.’

child_with_tail.tail = ’And "tail" text.’

child_with_entity_ref = SubElement(top, ’child_with_entity_ref’)

child_with_entity_ref.text = ’This & that’

print prettify(top)

The output is easier to read.

$ python ElementTree_create_pretty.py

<?xml version="1.0" ?>

<top>

<!--Generated for PyMOTW-->

<child>

This child contains text.

</child>

ptg

7.6. xml.etree.ElementTree—XML Manipulation API 403

<child_with_tail>

This child has regular text.

</child_with_tail>

And "tail" text.

<child_with_entity_ref>

This & that

</child_with_entity_ref>

</top>

In addition to the extra whitespace for formatting, the xml.dom.minidom pretty-

printer also adds an XML declaration to the output.

7.6.10 Setting Element Properties

The previous example created nodes with tags and text content, but did not set any

attributes of the nodes. Many of the examples from Parsing an XML Document worked

with an OPML file listing podcasts and their feeds. The outline nodes in the tree

used attributes for the group names and podcast properties. ElementTree can be used

to construct a similar XML file from a CSV input file, setting all the element attributes

as the tree is constructed.

import csv
from xml.etree.ElementTree import (Element,

SubElement,

Comment,

tostring,

)

import datetime
from ElementTree_pretty import prettify

generated_on = str(datetime.datetime.now())

Configure one attribute with set()

root = Element(’opml’)

root.set(’version’, ’1.0’)

root.append(

Comment(’Generated by ElementTree_csv_to_xml.py for PyMOTW’)

)

head = SubElement(root, ’head’)

title = SubElement(head, ’title’)

ptg

404 Data Persistence and Exchange

title.text = ’My Podcasts’

dc = SubElement(head, ’dateCreated’)

dc.text = generated_on

dm = SubElement(head, ’dateModified’)

dm.text = generated_on

body = SubElement(root, ’body’)

with open(’podcasts.csv’, ’rt’) as f:

current_group = None

reader = csv.reader(f)

for row in reader:

group_name, podcast_name, xml_url, html_url = row

if current_group is None or group_name != current_group.text:

Start a new group

current_group = SubElement(body, ’outline’,

{’text’:group_name})

Add this podcast to the group,

setting all its attributes at

once.

podcast = SubElement(current_group, ’outline’,

{’text’:podcast_name,

’xmlUrl’:xml_url,

’htmlUrl’:html_url,

})

print prettify(root)

This example uses two techniques to set the attribute values of new nodes. The

root node is configured using set() to change one attribute at a time. The podcast

nodes are given all their attributes at once by passing a dictionary to the node factory.

$ python ElementTree_csv_to_xml.py

<?xml version="1.0" ?>

<opml version="1.0">

<!--Generated by ElementTree_csv_to_xml.py for PyMOTW-->

<head>

<title>

My Podcasts

</title>

<dateCreated>

ptg

7.6. xml.etree.ElementTree—XML Manipulation API 405

2010-12-03 08:48:58.065172

</dateCreated>

<dateModified>

2010-12-03 08:48:58.065172

</dateModified>

</head>

<body>

<outline text="Books and Fiction">

<outline htmlUrl="http://www.tor.com/" text="tor.com / categor

y / tordotstories" xmlUrl="http://www.tor.com/rss/category/TorDotSto

ries"/>

</outline>

<outline text="Python">

<outline htmlUrl="http://advocacy.python.org/podcasts/" text="

PyCon Podcast" xmlUrl="http://advocacy.python.org/podcasts/pycon.rss

"/>

</outline>

<outline text="Python">

<outline htmlUrl="http://advocacy.python.org/podcasts/" text="

A Little Bit of Python" xmlUrl="http://advocacy.python.org/podcasts/

littlebit.rss"/>

</outline>

<outline text="Python">

<outline htmlUrl="" text="Django Dose Everything Feed" xmlUrl=

"http://djangodose.com/everything/feed/"/>

</outline>

</body>

</opml>

7.6.11 Building Trees from Lists of Nodes

Multiple children can be added to an Element instance together with the extend()

method. The argument to extend() is any iterable, including a list or another

Element instance.

from xml.etree.ElementTree import Element, tostring

from ElementTree_pretty import prettify

top = Element(’top’)

children = [

Element(’child’, num=str(i))

ptg

406 Data Persistence and Exchange

for i in xrange(3)

]

top.extend(children)

print prettify(top)

When a list is given, the nodes in the list are added directly to the new parent.

$ python ElementTree_extend.py

<?xml version="1.0" ?>

<top>

<child num="0"/>

<child num="1"/>

<child num="2"/>

</top>

When another Element instance is given, the children of that node are added to

the new parent.

from xml.etree.ElementTree import Element, SubElement, tostring, XML

from ElementTree_pretty import prettify

top = Element(’top’)

parent = SubElement(top, ’parent’)

children = XML(

’<root><child num="0" /><child num="1" /><child num="2" /></root>’

)

parent.extend(children)

print prettify(top)

In this case, the node with tag root created by parsing the XML string has three

children, which are added to the parent node. The root node is not part of the output

tree.

$ python ElementTree_extend_node.py

<?xml version="1.0" ?>

<top>

ptg

7.6. xml.etree.ElementTree—XML Manipulation API 407

<parent>

<child num="0"/>

<child num="1"/>

<child num="2"/>

</parent>

</top>

It is important to understand that extend() does not modify any existing parent-

child relationships with the nodes. If the values passed to extend() exist somewhere

in the tree already, they will still be there and will be repeated in the output.

from xml.etree.ElementTree import Element, SubElement, tostring, XML

from ElementTree_pretty import prettify

top = Element(’top’)

parent_a = SubElement(top, ’parent’, id=’A’)

parent_b = SubElement(top, ’parent’, id=’B’)

Create children

children = XML(

’<root><child num="0" /><child num="1" /><child num="2" /></root>’

)

Set the id to the Python object id of the node

to make duplicates easier to spot.

for c in children:

c.set(’id’, str(id(c)))

Add to first parent

parent_a.extend(children)

print ’A:’

print prettify(top)

print

Copy nodes to second parent

parent_b.extend(children)

print ’B:’

print prettify(top)

print

ptg

408 Data Persistence and Exchange

Setting the id attribute of these children to the Python unique object identifier

highlights the fact that the same node objects appear in the output tree more than once.

$ python ElementTree_extend_node_copy.py

A:

<?xml version="1.0" ?>

<top>

<parent id="A">

<child id="4309786256" num="0"/>

<child id="4309786320" num="1"/>

<child id="4309786512" num="2"/>

</parent>

<parent id="B"/>

</top>

B:

<?xml version="1.0" ?>

<top>

<parent id="A">

<child id="4309786256" num="0"/>

<child id="4309786320" num="1"/>

<child id="4309786512" num="2"/>

</parent>

<parent id="B">

<child id="4309786256" num="0"/>

<child id="4309786320" num="1"/>

<child id="4309786512" num="2"/>

</parent>

</top>

7.6.12 Serializing XML to a Stream

tostring() is implemented by writing to an in-memory file-like object and then

returning a string representing the entire element tree. When working with large

amounts of data, it will take less memory and make more efficient use of the I/O

libraries to write directly to a file handle using the write() method of ElementTree.

import sys
from xml.etree.ElementTree import (Element,

SubElement,

ptg

7.6. xml.etree.ElementTree—XML Manipulation API 409

Comment,

ElementTree,

)

top = Element(’top’)

comment = Comment(’Generated for PyMOTW’)

top.append(comment)

child = SubElement(top, ’child’)

child.text = ’This child contains text.’

child_with_tail = SubElement(top, ’child_with_tail’)

child_with_tail.text = ’This child has regular text.’

child_with_tail.tail = ’And "tail" text.’

child_with_entity_ref = SubElement(top, ’child_with_entity_ref’)

child_with_entity_ref.text = ’This & that’

empty_child = SubElement(top, ’empty_child’)

ElementTree(top).write(sys.stdout)

The example uses sys.stdout to write to the console, but it could also write to

an open file or socket.

$ python ElementTree_write.py

<top><!--Generated for PyMOTW--><child>This child contains text.</ch

ild><child_with_tail>This child has regular text.</child_with_tail>A

nd "tail" text.<child_with_entity_ref>This & that</child_with_en

tity_ref><empty_child /></top>

The last node in the tree contains no text or subnodes, so it is written as an empty

tag, <empty_child />. write() takes a method argument to control the handling

for empty nodes.

import sys
from xml.etree.ElementTree import Element, SubElement, ElementTree

top = Element(’top’)

ptg

410 Data Persistence and Exchange

child = SubElement(top, ’child’)

child.text = ’Contains text.’

empty_child = SubElement(top, ’empty_child’)

for method in [’xml’, ’html’, ’text’]:

print method

ElementTree(top).write(sys.stdout, method=method)

print ’\n’

Three methods are supported.

xml The default method, produces <empty_child />.

html Produces the tag pair, as is required in HTML documents (<empty_child>

</empty_child>).

text Prints only the text of nodes, and skips empty tags entirely.

$ python ElementTree_write_method.py

xml

<top><child>Contains text.</child><empty_child /></top>

html

<top><child>Contains text.</child><empty_child></empty_child></top>

text

Contains text.

See Also:
Outline Processor Markup Language, OPML (www.opml.org/) Dave Winer’s

OPML specification and documentation.

Pretty-Print XML with Python—Indenting XML
(http://renesd.blogspot.com/2007/05/pretty-print-xml-with-python.html)
A tip from Rene Dudfield for pretty-printing XML in Python.

xml.etree.ElementTree (http://docs.python.org/library/xml.etree.elementtree.html)
The standard library documentation for this module.

ElementTree Overview (http://effbot.org/zone/element-index.htm) Fredrick

Lundh’s original documentation and links to the development versions of the

ElementTree library.

Process XML in Python with ElementTree
(http://www.ibm.com/developerworks/library/x-matters28/) IBM Developer-

Works article by David Mertz.

www.opml.org/
http://renesd.blogspot.com/2007/05/pretty-print-xml-with-python.html
http://docs.python.org/library/xml.etree.elementtree.html
http://effbot.org/zone/element-index.htm
http://www.ibm.com/developerworks/library/x-matters28/

ptg

7.7. csv—Comma-Separated Value Files 411

lxml.etree (http://codespeak.net/lxml/) A separate implementation of the Element-

Tree API based on libxml2 with more complete XPath support.

7.7 csv—Comma-Separated Value Files

Purpose Read and write comma-separated value files.

Python Version 2.3 and later.

The csv module can be used to work with data exported from spreadsheets and

databases into text files formatted with fields and records, commonly referred to as

comma-separated value (CSV) format because commas are often used to separate the

fields in a record.

Note: The Python 2.5 version of csv does not support Unicode data. There are

also issues with ASCII NUL characters. Using UTF-8 or printable ASCII is recom-

mended.

7.7.1 Reading

Use reader() to create an object for reading data from a CSV file. The reader can be

used as an iterator to process the rows of the file in order. For example

import csv
import sys

with open(sys.argv[1], ’rt’) as f:

reader = csv.reader(f)

for row in reader:

print row

The first argument to reader() is the source of text lines. In this case, it is a

file, but any iterable is accepted (a StringIO instance, list, etc.). Other optional

arguments can be given to control how the input data is parsed.

"Title 1","Title 2","Title 3"

1,"a",08/18/07

2,"b",08/19/07

3,"c",08/20/07

As it is read, each row of the input data is parsed and converted to a list of

strings.

http://codespeak.net/lxml/

ptg

412 Data Persistence and Exchange

$ python csv_reader.py testdata.csv

[’Title 1’, ’Title 2’, ’Title 3’]

[’1’, ’a’, ’08/18/07’]

[’2’, ’b’, ’08/19/07’]

[’3’, ’c’, ’08/20/07’]

The parser handles line breaks embedded within strings in a row, which is why a

“row” is not always the same as a “line” of input from the file.

"Title 1","Title 2","Title 3"

1,"first line

second line",08/18/07

Fields with line breaks in the input retain the internal line breaks when they are

returned by the parser.

$ python csv_reader.py testlinebreak.csv

[’Title 1’, ’Title 2’, ’Title 3’]

[’1’, ’first line\nsecond line’, ’08/18/07’]

7.7.2 Writing

Writing CSV files is just as easy as reading them. Use writer() to create an object

for writing, and then iterate over the rows using writerow() to print them.

import csv
import sys

with open(sys.argv[1], ’wt’) as f:

writer = csv.writer(f)

writer.writerow((’Title 1’, ’Title 2’, ’Title 3’))

for i in range(3):

writer.writerow((i+1,

chr(ord(’a’) + i),

’08/%02d/07’ % (i+1),

)

)

print open(sys.argv[1], ’rt’).read()

The output does not look exactly like the exported data used in the reader example.

ptg

7.7. csv—Comma-Separated Value Files 413

$ python csv_writer.py testout.csv

Title 1,Title 2,Title 3

1,a,08/01/07

2,b,08/02/07

3,c,08/03/07

Quoting

The default quoting behavior is different for the writer, so the second and third columns

in the previous example are not quoted. To add quoting, set the quoting arguments to

one of the other quoting modes.

writer = csv.writer(f, quoting=csv.QUOTE_NONNUMERIC)

In this case, QUOTE_NONNUMERIC adds quotes around all columns containing val-

ues that are not numbers.

$ python csv_writer_quoted.py testout_quoted.csv

"Title 1","Title 2","Title 3"

1,"a","08/01/07"

2,"b","08/02/07"

3,"c","08/03/07"

There are four different quoting options defined as constants in the csv module.

QUOTE_ALL Quote everything, regardless of type.

QUOTE_MINIMAL Quote fields with special characters (anything that would confuse a

parser configured with the same dialect and options). This is the default.

QUOTE_NONNUMERIC Quote all fields that are not integers or floats. When used with

the reader, input fields that are not quoted are converted to floats.

QUOTE_NONE Do not quote anything on output. When used with the reader, quote char-

acters are included in the field values (normally, they are treated as delimiters and

stripped).

7.7.3 Dialects

There is no well-defined standard for comma-separated value files, so the parser needs

to be flexible. This flexibility means there are many parameters to control how csv

parses or writes data. Rather than passing each of these parameters to the reader and

writer separately, they are grouped together into a dialect object.

ptg

414 Data Persistence and Exchange

Dialect classes can be registered by name so that callers of the csv module do not

need to know the parameter settings in advance. The complete list of registered dialects

can be retrieved with list_dialects().

import csv

print csv.list_dialects()

The standard library includes two dialects: excel and excel-tabs. The excel

dialect is for working with data in the default export format for Microsoft Excel, and it

also works with OpenOffice or NeoOffice.

$ python csv_list_dialects.py

[’excel-tab’, ’excel’]

Creating a Dialect

If, instead of using commas to delimit fields, the input file uses pipes (|), like this

"Title 1"|"Title 2"|"Title 3"

1|"first line

second line"|08/18/07

a new dialect can be registered using the appropriate delimiter.

import csv

csv.register_dialect(’pipes’, delimiter=’|’)

with open(’testdata.pipes’, ’r’) as f:

reader = csv.reader(f, dialect=’pipes’)

for row in reader:

print row

Using the “pipes” dialect, the file can be read just as with the comma-delimited

file.

$ python csv_dialect.py

[’Title 1’, ’Title 2’, ’Title 3’]

[’1’, ’first line\nsecond line’, ’08/18/07’]

ptg

7.7. csv—Comma-Separated Value Files 415

Table 7.3. CSV Dialect Parameters

Attribute Default Meaning
delimiter , Field separator (one character)

doublequote True Flag controlling whether quotechar

instances are doubled

escapechar None Character used to indicate an escape

sequence

lineterminator \r\n String used by writer to terminate a line

quotechar " String to surround fields containing special

values (one character)

quoting QUOTE_MINIMAL Controls quoting behavior described earlier

skipinitialspace False Ignore whitespace after the field delimiter

Dialect Parameters

A dialect specifies all the tokens used when parsing or writing a data file. Table 7.3 lists

the aspects of the file format that can be specified, from the way columns are delimited

to the character used to escape a token.

import csv
import sys

csv.register_dialect(’escaped’,

escapechar=’\\’,
doublequote=False,

quoting=csv.QUOTE_NONE,

)

csv.register_dialect(’singlequote’,

quotechar="’",

quoting=csv.QUOTE_ALL,

)

quoting_modes = dict((getattr(csv,n), n)

for n in dir(csv)

if n.startswith(’QUOTE_’)

)

for name in sorted(csv.list_dialects()):

print ’Dialect: "%s"\n’ % name

ptg

416 Data Persistence and Exchange

dialect = csv.get_dialect(name)

print ’ delimiter

= %-6r skipinitialspace = %r’ % (

dialect.delimiter, dialect.skipinitialspace)

print ’ doublequote = %-6r quoting = %s’ % (

dialect.doublequote, quoting_modes[dialect.quoting])

print ’ quotechar = %-6r lineterminator = %r’ % (

dialect.quotechar, dialect.lineterminator)

print ’ escapechar = %-6r’ % dialect.escapechar

print

writer = csv.writer(sys.stdout, dialect=dialect)

writer.writerow(

(’col1’, 1, ’10/01/2010’,

’Special chars: " \’ %s to parse’ % dialect.delimiter)

)

print

This program shows how the same data appears in several different dialects.

$ python csv_dialect_variations.py

Dialect: "escaped"

delimiter = ’,’
skipinitialspace = 0

doublequote = 0 quoting = QUOTE_NONE

quotechar = ’"’ lineterminator = ’\r\n’

escapechar = ’\\’

col1,1,10/01/2010,Special chars: \" ’ \, to parse

Dialect: "excel"

delimiter = ’,’
skipinitialspace = 0

doublequote = 1 quoting = QUOTE_MINIMAL

quotechar = ’"’ lineterminator = ’\r\n’

escapechar = None

col1,1,10/01/2010,"Special chars: "" ’ , to parse"

Dialect: "excel-tab"

delimiter = ’\t’
skipinitialspace = 0

doublequote = 1 quoting = QUOTE_MINIMAL

ptg

7.7. csv—Comma-Separated Value Files 417

quotechar = ’"’ lineterminator = ’\r\n’

escapechar = None

col1 1 10/01/2010 "Special chars: "" ’ to parse"

Dialect: "singlequote"

delimiter = ’,’ skipinitialspace = 0

doublequote = 1 quoting = QUOTE_ALL

quotechar = "’" lineterminator = ’\r\n’

escapechar = None

’col1’,’1’,’10/01/2010’,’Special chars: " ’’ , to parse’

Automatically Detecting Dialects

The best way to configure a dialect for parsing an input file is to know the correct

settings in advance. For data where the dialect parameters are unknown, the Sniffer

class can be used to make an educated guess. The sniff() method takes a sample of

the input data and an optional argument giving the possible delimiter characters.

import csv
from StringIO import StringIO

import textwrap

csv.register_dialect(’escaped’,

escapechar=’\\’,
doublequote=False,

quoting=csv.QUOTE_NONE)

csv.register_dialect(’singlequote’,

quotechar="’",

quoting=csv.QUOTE_ALL)

Generate sample data for all known dialects

samples = []

for name in sorted(csv.list_dialects()):

buffer = StringIO()

dialect = csv.get_dialect(name)

writer = csv.writer(buffer, dialect=dialect)

writer.writerow(

(’col1’, 1, ’10/01/2010’,

’Special chars " \’ %s to parse’ % dialect.delimiter)

)

samples.append((name, dialect, buffer.getvalue()))

ptg

418 Data Persistence and Exchange

Guess the dialect for a given sample, and then use the results to

parse the data.

sniffer = csv.Sniffer()

for name, expected, sample in samples:

print ’Dialect: "%s"\n’ % name

dialect = sniffer.sniff(sample, delimiters=’,\t’)
reader = csv.reader(StringIO(sample), dialect=dialect)

print reader.next()

print

sniff() returns a Dialect instance with the settings to be used for parsing the

data. The results are not always perfect, as demonstrated by the “escaped” dialect in the

example.

$ python csv_dialect_sniffer.py

Dialect: "escaped"

[’col1’, ’1’, ’10/01/2010’, ’Special chars \\" \’ \\’, ’ to parse’]

Dialect: "excel"

[’col1’, ’1’, ’10/01/2010’, ’Special chars " \’ , to parse’]

Dialect: "excel-tab"

[’col1’, ’1’, ’10/01/2010’, ’Special chars " \’ \t to parse’]

Dialect: "singlequote"

[’col1’, ’1’, ’10/01/2010’, ’Special chars " \’ , to parse’]

7.7.4 Using Field Names

In addition to working with sequences of data, the csv module includes classes for

working with rows as dictionaries so that the fields can be named. The DictReader

and DictWriter classes translate rows to dictionaries instead of lists. Keys for the

dictionary can be passed in or inferred from the first row in the input (when the row

contains headers).

ptg

7.7. csv—Comma-Separated Value Files 419

import csv
import sys

with open(sys.argv[1], ’rt’) as f:

reader = csv.DictReader(f)

for row in reader:

print row

The dictionary-based reader and writer are implemented as wrappers around the

sequence-based classes, and they use the same methods and arguments. The only dif-

ference in the reader API is that rows are returned as dictionaries instead of lists or

tuples.

$ python csv_dictreader.py testdata.csv

{’Title 1’: ’1’, ’Title 3’: ’08/18/07’, ’Title 2’: ’a’}

{’Title 1’: ’2’, ’Title 3’: ’08/19/07’, ’Title 2’: ’b’}

{’Title 1’: ’3’, ’Title 3’: ’08/20/07’, ’Title 2’: ’c’}

The DictWriter must be given a list of field names so it knows how to order the

columns in the output.

import csv
import sys

with open(sys.argv[1], ’wt’) as f:

fieldnames = (’Title 1’, ’Title 2’, ’Title 3’)

headers = dict((n,n) for n in fieldnames)

writer = csv.DictWriter(f, fieldnames=fieldnames)

writer.writerow(headers)

for i in range(3):

writer.writerow({ ’Title 1’:i+1,

’Title 2’:chr(ord(’a’) + i),

’Title 3’:’08/%02d/07’ % (i+1),

})

print open(sys.argv[1], ’rt’).read()

ptg

420 Data Persistence and Exchange

The field names are not written to the file automatically, so they need to be written

explicitly before any other data.

$ python csv_dictwriter.py testout.csv

Title 1,Title 2,Title 3

1,a,08/01/07

2,b,08/02/07

3,c,08/03/07

See Also:
csv (http://docs.python.org/library/csv.html) The standard library documentation

for this module.

PEP 305 (www.python.org/dev/peps/pep-0305) CSV File API.

http://docs.python.org/library/csv.html
www.python.org/dev/peps/pep-0305

ptg

Chapter 8

DATA COMPRESSION AND
ARCHIVING

Although modern computer systems have an ever-increasing storage capacity, the

growth of data being produced is unrelenting. Lossless compression algorithms make

up for some of the shortfall in capacity by trading time spent compressing or decom-

pressing data for the space needed to store it. Python includes interfaces to the most

popular compression libraries so it can read and write files interchangeably.

zlib and gzip expose the GNU zip library, and bz2 provides access to the more

recent bzip2 format. Both formats work on streams of data, without regard to input

format, and provide interfaces for reading and writing compressed files transparently.

Use these modules for compressing a single file or data source.

The standard library also includes modules to manage archive formats for com-

bining several files into a single file that can be managed as a unit. tarfile reads and

writes the UNIX tape archive format, an old standard still widely used today because

of its flexibility. zipfile works with archives based on the format popularized by the

PC program PKZIP, originally used under MS-DOS and Windows, but now also used

on other platforms because of the simplicity of its API and portability of the format.

8.1 zlib—GNU zlib Compression

Purpose Low-level access to GNU zlib compression library.

Python Version 2.5 and later

The zlib module provides a lower-level interface to many of the functions in the zlib

compression library from the GNU project.

421

ptg

422 Data Compression and Archiving

8.1.1 Working with Data in Memory

The simplest way to work with zlib requires holding all the data to be compressed or

decompressed in memory:

import zlib
import binascii

original_data = ’This is the original text.’

print ’Original :’, len(original_data), original_data

compressed = zlib.compress(original_data)

print ’Compressed :’, len(compressed), binascii.hexlify(compressed)

decompressed = zlib.decompress(compressed)

print ’Decompressed :’, len(decompressed), decompressed

The compress() and decompress() functions both take a string argument and

return a string.

$ python zlib_memory.py

Original : 26 This is the original text.

Compressed : 32 789c0bc9c82c5600a2928c5485fca2ccf4ccbcc41c8592d

48a123d007f2f097e

Decompressed : 26 This is the original text.

The previous example demonstrates that, for short text, the compressed version of

a string can be bigger than the uncompressed version. While the actual results depend

on the input data, for short bits of text, it is interesting to observe the compression

overhead.

import zlib

original_data = ’This is the original text.’

fmt = ’%15s %15s’
print fmt % (’len(data)’, ’len(compressed)’)

print fmt % (’-’ * 15, ’-’ * 15)

for i in xrange(5):

data = original_data * i

ptg

8.1. zlib—GNU zlib Compression 423

compressed = zlib.compress(data)

highlight = ’*’ if len(data) < len(compressed) else ’’

print fmt % (len(data), len(compressed)), highlight

The * in the output highlight the lines where the compressed data takes up more

memory than the uncompressed version.

$ python zlib_lengths.py

len(data) len(compressed)

--------------- ---------------

0 8 *
26 32 *
52 35

78 35

104 36

8.1.2 Incremental Compression and Decompression

The in-memory approach has drawbacks that make it impractical for real-world use

cases, primarily that the system needs enough memory to hold both the uncompressed

and compressed versions resident in memory at the same time. The alternative is to

use Compress and Decompress objects to manipulate data incrementally, so that the

entire data set does not have to fit into memory.

import zlib
import binascii

compressor = zlib.compressobj(1)

with open(’lorem.txt’, ’r’) as input:

while True:

block = input.read(64)

if not block:

break
compressed = compressor.compress(block)

if compressed:

print ’Compressed: %s’ % binascii.hexlify(compressed)

else:
print ’buffering...’

remaining = compressor.flush()

print ’Flushed: %s’ % binascii.hexlify(remaining)

ptg

424 Data Compression and Archiving

This example reads small blocks of data from a plain-text file and passes it to

compress(). The compressor maintains an internal buffer of compressed data. Since

the compression algorithm depends on checksums and minimum block sizes, the com-

pressor may not be ready to return data each time it receives more input. If it does not

have an entire compressed block ready, it returns an empty string. When all the data is

fed in, the flush() method forces the compressor to close the final block and return

the rest of the compressed data.

$ python zlib_incremental.py

Compressed: 7801

buffering...

buffering...

buffering...

buffering...

buffering...

Flushed: 55904b6ac4400c44f73e451da0f129b20c2110c85e696b8c40ddedd167ce1

f7915025a087daa9ef4be8c07e4f21c38962e834b800647435fd3b90747b2810eb9c4b

bcc13ac123bded6e4bef1c91ee40d3c6580e3ff52aad2e8cb2eb6062dad74a89ca904c

bb0f2545e0db4b1f2e01955b8c511cb2ac08967d228af1447c8ec72e40c4c714116e60

cdef171bb6c0feaa255dff1c507c2c4439ec9605b7e0ba9fc54bae39355cb89fd6ebe5

841d673c7b7bc68a46f575a312eebd220d4b32441bdc1b36ebf0aedef3d57ea4b26dd9

86dd39af57dfb05d32279de

8.1.3 Mixed Content Streams

The Decompress class returned by decompressobj() can also be used in situations

where compressed and uncompressed data are mixed together.

import zlib

lorem = open(’lorem.txt’, ’rt’).read()

compressed = zlib.compress(lorem)

combined = compressed + lorem

decompressor = zlib.decompressobj()

decompressed = decompressor.decompress(combined)

decompressed_matches = decompressed == lorem

print ’Decompressed matches lorem:’, decompressed_matches

ptg

8.1. zlib—GNU zlib Compression 425

unused_matches = decompressor.unused_data == lorem

print ’Unused data matches lorem :’, unused_matches

After decompressing all the data, the unused_data attribute contains any data not

used.

$ python zlib_mixed.py

Decompressed matches lorem: True

Unused data matches lorem : True

8.1.4 Checksums

In addition to compression and decompression functions, zlib includes two functions

for computing checksums of data, adler32() and crc32(). Neither checksum is

billed as cryptographically secure, and they are only intended for use for data-integrity

verification.

import zlib

data = open(’lorem.txt’, ’r’).read()

cksum = zlib.adler32(data)

print ’Adler32: %12d’ % cksum

print ’ : %12d’ % zlib.adler32(data, cksum)

cksum = zlib.crc32(data)

print ’CRC-32 : %12d’ % cksum

print ’ : %12d’ % zlib.crc32(data, cksum)

Both functions take the same arguments, a string of data and an optional value to

be used as a starting point for the checksum. They return a 32-bit signed integer value

that can also be passed back on subsequent calls as a new starting point argument to

produce a running checksum.

$ python zlib_checksums.py

Adler32: -752715298

: 669447099

CRC-32 : -1256596780

: -1424888665

ptg

426 Data Compression and Archiving

8.1.5 Compressing Network Data

The server in the next listing uses the stream compressor to respond to requests con-

sisting of filenames by writing a compressed version of the file to the socket used to

communicate with the client. It has some artificial chunking in place to illustrate the

buffering that occurs when the data passed to compress() or decompress() does

not result in a complete block of compressed or uncompressed output.

import zlib
import logging
import SocketServer
import binascii

BLOCK_SIZE = 64

class ZlibRequestHandler(SocketServer.BaseRequestHandler):

logger = logging.getLogger(’Server’)

def handle(self):

compressor = zlib.compressobj(1)

Find out what file the client wants

filename = self.request.recv(1024)

self.logger.debug(’client asked for: "%s"’, filename)

Send chunks of the file as they are compressed

with open(filename, ’rb’) as input:

while True:

block = input.read(BLOCK_SIZE)

if not block:

break
self.logger.debug(’RAW "%s"’, block)

compressed = compressor.compress(block)

if compressed:

self.logger.debug(’SENDING "%s"’,
binascii.hexlify(compressed))

self.request.send(compressed)

else:
self.logger.debug(’BUFFERING’)

ptg

8.1. zlib—GNU zlib Compression 427

Send any data being buffered by the compressor

remaining = compressor.flush()

while remaining:

to_send = remaining[:BLOCK_SIZE]

remaining = remaining[BLOCK_SIZE:]

self.logger.debug(’FLUSHING "%s"’,
binascii.hexlify(to_send))

self.request.send(to_send)

return

if __name__ == ’__main__’:

import socket
import threading
from cStringIO import StringIO

logging.basicConfig(level=logging.DEBUG,

format=’%(name)s: %(message)s’,
)

logger = logging.getLogger(’Client’)

Set up a server, running in a separate thread

address = (’localhost’, 0) # let the kernel assign a port

server = SocketServer.TCPServer(address, ZlibRequestHandler)

ip, port = server.server_address # what port was assigned?

t = threading.Thread(target=server.serve_forever)

t.setDaemon(True)

t.start()

The client connects to the socket and requests a file. Then it loops, receiving blocks

of compressed data. Since a block may not contain enough information to decompress

it entirely, the remainder of any data received earlier is combined with the new data and

passed to the decompressor. As the data is decompressed, it is appended to a buffer,

which is compared against the file contents at the end of the processing loop.

Connect to the server as a client

logger.info(’Contacting server on %s:%s’, ip, port)

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect((ip, port))

ptg

428 Data Compression and Archiving

Ask for a file

requested_file = ’lorem.txt’

logger.debug(’sending filename: "%s"’, requested_file)

len_sent = s.send(requested_file)

Receive a response

buffer = StringIO()

decompressor = zlib.decompressobj()

while True:

response = s.recv(BLOCK_SIZE)

if not response:

break
logger.debug(’READ "%s"’, binascii.hexlify(response))

Include any unconsumed data when feeding the decompressor.

to_decompress = decompressor.unconsumed_tail + response

while to_decompress:

decompressed = decompressor.decompress(to_decompress)

if decompressed:

logger.debug(’DECOMPRESSED "%s"’, decompressed)

buffer.write(decompressed)

Look for unconsumed data due to buffer overflow

to_decompress = decompressor.unconsumed_tail

else:
logger.debug(’BUFFERING’)

to_decompress = None

deal with data reamining inside the decompressor buffer

remainder = decompressor.flush()

if remainder:

logger.debug(’FLUSHED "%s"’, remainder)

buffer.write(reaminder)

full_response = buffer.getvalue()

lorem = open(’lorem.txt’, ’rt’).read()

logger.debug(’response matches file contents: %s’,
full_response == lorem)

Clean up

s.close()

server.socket.close()

ptg

8.1. zlib—GNU zlib Compression 429

Warning: This server has obvious security implications. Do not run it on a system

on the open Internet or in any environment where security might be an issue.

$ python zlib_server.py

Client: Contacting server on 127.0.0.1:55085

Client: sending filename: "lorem.txt"

Server: client asked for: "lorem.txt"

Server: RAW "Lorem ipsum dolor sit amet, consectetuer adipiscing elit

. Donec

"

Server: SENDING "7801"

Server: RAW "egestas, enim et consectetuer ullamcorper, lectus ligula

rutrum "

Server: BUFFERING

Server: RAW "leo, a

elementum elit tortor eu quam. Duis tincidunt nisi ut ant"

Server: BUFFERING

Server: RAW "e. Nulla

facilisi. Sed tristique eros eu libero. Pellentesque ve"

Server: BUFFERING

Server: RAW "l arcu. Vivamus

purus orci, iaculis ac, suscipit sit amet, pulvi"

Server: BUFFERING

Server: RAW "nar eu,

lacus.

"

Server: BUFFERING

Server: FLUSHING "55904b6ac4400c44f73e451da0f129b20c2110c85e696b8c40d

dedd167ce1f7915025a087daa9ef4be8c07e4f21c38962e834b800647435fd3b90747

b2810eb9"

Server: FLUSHING "c4bbcc13ac123bded6e4bef1c91ee40d3c6580e3ff52aad2e8c

b2eb6062dad74a89ca904cbb0f2545e0db4b1f2e01955b8c511cb2ac08967d228af14

47c8ec72"

Server: FLUSHING "e40c4c714116e60cdef171bb6c0feaa255dff1c507c2c4439ec

9605b7e0ba9fc54bae39355cb89fd6ebe5841d673c7b7bc68a46f575a312eebd220d4

b32441bd"

Server: FLUSHING "c1b36ebf0aedef3d57ea4b26dd986dd39af57dfb05d32279de"

Client: READ "780155904b6ac4400c44f73e451da0f129b20c2110c85e696b8c40d

dedd167ce1f7915025a087daa9ef4be8c07e4f21c38962e834b800647435fd3b90747

b281"

ptg

430 Data Compression and Archiving

Client: DECOMPRESSED "Lorem ipsum dolor sit amet, consectetuer "

Client: READ "0eb9c4bbcc13ac123bded6e4bef1c91ee40d3c6580e3ff52aad2e8c

b2eb6062dad74a89ca904cbb0f2545e0db4b1f2e01955b8c511cb2ac08967d228af14

47c8"

Client: DECOMPRESSED "adipiscing elit. Donec

egestas, enim et consectetuer ullamcorper, lectus ligula rutrum leo,

a

elementum elit tortor eu quam. Duis ti"

Client: READ "ec72e40c4c714116e60cdef171bb6c0feaa255dff1c507c2c4439ec

9605b7e0ba9fc54bae39355cb89fd6ebe5841d673c7b7bc68a46f575a312eebd220d4

b324"

Client: DECOMPRESSED "ncidunt nisi ut ante. Nulla

facilisi. Sed tristique eros eu libero. Pellentesque vel arcu. Vivamu

s

purus orci, iacu"

Client: READ "41bdc1b36ebf0aedef3d57ea4b26dd986dd39af57dfb05d32279de"

Client: DECOMPRESSED "lis ac, suscipit sit amet, pulvinar eu,

lacus.

"

Client: response matches file contents: True

See Also:
zlib (http://docs.python.org/library/zlib.html) The standard library documentation

for this module.

www.zlib.net/ Home page for zlib library.

www.zlib.net/manual.html Complete zlib documentation.

bz2 (page 436) The bz2 module provides a similar interface to the bzip2 compression

library.

gzip (page 430) The gzip module includes a higher-level (file-based) interface to the

zlib library.

8.2 gzip—Read and Write GNU Zip Files

Purpose Read and write gzip files.

Python Version 1.5.2 and later

The gzip module provides a file-like interface to GNU zip files, using zlib to com-

press and uncompress the data.

http://docs.python.org/library/zlib.html
www.zlib.net/
www.zlib.net/manual.html

ptg

8.2. gzip—Read and Write GNU Zip Files 431

8.2.1 Writing Compressed Files

The module-level function open() creates an instance of the file-like class GzipFile.

The usual methods for writing and reading data are provided.

import gzip
import os

outfilename = ’example.txt.gz’

with gzip.open(outfilename, ’wb’) as output:

output.write(’Contents of the example file go here.\n’)

print outfilename, ’contains’, os.stat(outfilename).st_size, ’bytes’

os.system(’file -b --mime %s’ % outfilename)

To write data into a compressed file, open the file with mode ’w’.

$ python gzip_write.py

application/x-gzip; charset=binary

example.txt.gz contains 68 bytes

Different amounts of compression can be used by passing a compresslevel argu-

ment. Valid values range from 1 to 9, inclusive. Lower values are faster and result in

less compression. Higher values are slower and compress more, up to a point.

import gzip
import os
import hashlib

def get_hash(data):

return hashlib.md5(data).hexdigest()

data = open(’lorem.txt’, ’r’).read() * 1024

cksum = get_hash(data)

print ’Level Size Checksum’

print ’----- ---------- ---------------------------------’

print ’data %10d %s’ % (len(data), cksum)

for i in xrange(1, 10):

filename = ’compress-level-%s.gz’ % i

ptg

432 Data Compression and Archiving

with gzip.open(filename, ’wb’, compresslevel=i) as output:

output.write(data)

size = os.stat(filename).st_size

cksum = get_hash(open(filename, ’rb’).read())

print ’%5d %10d %s’ % (i, size, cksum)

The center column of numbers in the output shows the size in bytes of the files

produced by compressing the input. For this input data, the higher compression values

do not necessarily pay off in decreased storage space. Results will vary, depending on

the input data.

$ python gzip_compresslevel.py

Level Size Checksum

----- ---------- ---------------------------------

data 754688 e4c0f9433723971563f08a458715119c

1 9839 3fbd996cd4d63acc70047fb62646f2ba

2 8260 427bf6183d4518bcd05611d4f114a07c

3 8221 078331b777a11572583e3fdaa120b845

4 4160 f73c478ffcba30bfe0b1d08d0f597394

5 4160 022d920880e24c1895219a31105a89c8

6 4160 45ba520d6af45e279a56bb9c67294b82

7 4160 9a834b8a2c649d4b8d509cb12cc580e2

8 4160 c1aafc7d7d58cba4ef21dfce6fd1f443

9 4160 78039211f5777f9f34cf770c2eaafc6d

A GzipFile instance also includes a writelines() method that can be used to

write a sequence of strings.

import gzip
import itertools
import os

with gzip.open(’example_lines.txt.gz’, ’wb’) as output:

output.writelines(

itertools.repeat(’The same line, over and over.\n’, 10)

)

os.system(’gzcat example_lines.txt.gz’)

As with a regular file, the input lines need to include a newline character.

ptg

8.2. gzip—Read and Write GNU Zip Files 433

$ python gzip_writelines.py

The same line, over and over.

The same line, over and over.

The same line, over and over.

The same line, over and over.

The same line, over and over.

The same line, over and over.

The same line, over and over.

The same line, over and over.

The same line, over and over.

The same line, over and over.

8.2.2 Reading Compressed Data

To read data back from previously compressed files, open the file with binary read mode

(’rb’) so no text-based translation of line endings is performed.

import gzip

with gzip.open(’example.txt.gz’, ’rb’) as input_file:

print input_file.read()

This example reads the file written by gzip_write.py from the previous section.

$ python gzip_read.py

Contents of the example file go here.

While reading a file, it is also possible to seek and read only part of the data.

import gzip

with gzip.open(’example.txt.gz’, ’rb’) as input_file:

print ’Entire file:’

all_data = input_file.read()

print all_data

expected = all_data[5:15]

rewind to beginning

input_file.seek(0)

ptg

434 Data Compression and Archiving

move ahead 5 bytes

input_file.seek(5)

print ’Starting at position 5 for 10 bytes:’

partial = input_file.read(10)

print partial

print
print expected == partial

The seek() position is relative to the uncompressed data, so the caller does not

need to know that the data file is compressed.

$ python gzip_seek.py

Entire file:

Contents of the example file go here.

Starting at position 5 for 10 bytes:

nts of the

True

8.2.3 Working with Streams

The GzipFile class can be used to wrap other types of data streams so they can use

compression as well. This is useful when the data is being transmitted over a socket or

an existing (already open) file handle. A StringIO buffer can also be used.

import gzip
from cStringIO import StringIO

import binascii

uncompressed_data = ’The same line, over and over.\n’ * 10

print ’UNCOMPRESSED:’, len(uncompressed_data)

print uncompressed_data

buf = StringIO()

with gzip.GzipFile(mode=’wb’, fileobj=buf) as f:

f.write(uncompressed_data)

ptg

8.2. gzip—Read and Write GNU Zip Files 435

compressed_data = buf.getvalue()

print ’COMPRESSED:’, len(compressed_data)

print binascii.hexlify(compressed_data)

inbuffer = StringIO(compressed_data)

with gzip.GzipFile(mode=’rb’, fileobj=inbuffer) as f:

reread_data = f.read(len(uncompressed_data))

print
print ’REREAD:’, len(reread_data)

print reread_data

One benefit of using GzipFile over zlib is that it supports the file API. How-

ever, when rereading the previously compressed data, an explicit length is passed to

read(). Leaving off the length resulted in a CRC error, possibly because StringIO

returned an empty string before reporting EOF. When working with streams of com-

pressed data, either prefix the data with an integer representing the actual amount of

data to be read or use the incremental decompression API in zlib.

$ python gzip_StringIO.py

UNCOMPRESSED: 300

The same line, over and over.

The same line, over and over.

The same line, over and over.

The same line, over and over.

The same line, over and over.

The same line, over and over.

The same line, over and over.

The same line, over and over.

The same line, over and over.

The same line, over and over.

COMPRESSED: 51

1f8b08001f96f24c02ff0bc94855284ecc4d55c8c9cc4bd551c82f4b2d5248cc4

b0133f4b8424665916401d3e717802c010000

REREAD: 300

The same line, over and over.

The same line, over and over.

The same line, over and over.

ptg

436 Data Compression and Archiving

The same line, over and over.

The same line, over and over.

The same line, over and over.

The same line, over and over.

The same line, over and over.

The same line, over and over.

The same line, over and over.

See Also:
gzip (http://docs.python.org/library/gzip.html) The standard library documentation

for this module.

bz2 (page 436) The bz2 module uses the bzip2 compression format.

tarfile (page 448) The tarfile module includes built-in support for reading com-

pressed tar archives.

zlib (page 421) The zlib module is a lower-level interface to gzip compression.

zipfile (page 457) The zipfile module gives access to ZIP archives.

8.3 bz2—bzip2 Compression

Purpose Perform bzip2 compression.

Python Version 2.3 and later

The bz2 module is an interface for the bzip2 library, used to compress data for storage

or transmission. There are three APIs provided:

• “one shot” compression/decompression functions for operating on a blob of data

• iterative compression/decompression objects for working with streams of data

• a file-like class that supports reading and writing as with an uncompressed file

8.3.1 One-Shot Operations in Memory

The simplest way to work with bz2 is to load all the data to be compressed or decom-

pressed in memory and then use compress() and decompress() to transform it.

import bz2
import binascii

original_data = ’This is the original text.’

print ’Original : %d bytes’ % len(original_data)

print original_data

http://docs.python.org/library/gzip.html

ptg

8.3. bz2—bzip2 Compression 437

print
compressed = bz2.compress(original_data)

print ’Compressed : %d bytes’ % len(compressed)

hex_version = binascii.hexlify(compressed)

for i in xrange(len(hex_version)/40 + 1):

print hex_version[i*40:(i+1)*40]

print
decompressed = bz2.decompress(compressed)

print ’Decompressed : %d bytes’ % len(decompressed)

print decompressed

The compressed data contains non-ASCII characters, so it needs to be converted

to its hexadecimal representation before it can be printed. In the output from these

examples, the hexadecimal version is reformatted to have, at most, 40 characters on

each line.

$ python bz2_memory.py

Original : 26 bytes

This is the original text.

Compressed : 62 bytes

425a683931415926535916be35a6000002938040

01040022e59c402000314c000111e93d434da223

028cf9e73148cae0a0d6ed7f17724538509016be

35a6

Decompressed : 26 bytes

This is the original text.

For short text, the compressed version can be significantly longer than the origi-

nal. While the actual results depend on the input data, it is interesting to observe the

compression overhead.

import bz2

original_data = ’This is the original text.’

fmt = ’%15s %15s’
print fmt % (’len(data)’, ’len(compressed)’)

print fmt % (’-’ * 15, ’-’ * 15)

ptg

438 Data Compression and Archiving

for i in xrange(5):

data = original_data * i

compressed = bz2.compress(data)

print fmt % (len(data), len(compressed)),

print ’*’ if len(data) < len(compressed) else ’’

The output lines ending with * show the points where the compressed data is

longer than the raw input.

$ python bz2_lengths.py

len(data) len(compressed)

--------------- ---------------

0 14 *
26 62 *
52 68 *
78 70

104 72

8.3.2 Incremental Compression and Decompression

The in-memory approach has obvious drawbacks that make it impractical for real-world

use cases. The alternative is to use BZ2Compressor and BZ2Decompressor objects

to manipulate data incrementally so that the entire data set does not have to fit into

memory.

import bz2
import binascii

compressor = bz2.BZ2Compressor()

with open(’lorem.txt’, ’r’) as input:

while True:

block = input.read(64)

if not block:

break
compressed = compressor.compress(block)

if compressed:

print ’Compressed: %s’ % binascii.hexlify(compressed)

else:
print ’buffering...’

ptg

8.3. bz2—bzip2 Compression 439

remaining = compressor.flush()

print ’Flushed: %s’ % binascii.hexlify(remaining)

This example reads small blocks of data from a plain-text file and passes it to

compress(). The compressor maintains an internal buffer of compressed data. Since

the compression algorithm depends on checksums and minimum block sizes, the com-

pressor may not be ready to return data each time it receives more input. If it does not

have an entire compressed block ready, it returns an empty string. When all the data is

fed in, the flush() method forces the compressor to close the final block and return

the rest of the compressed data.

$ python bz2_incremental.py

buffering...

buffering...

buffering...

buffering...

Flushed: 425a6839314159265359ba83a48c000014d5800010400504052fa7fe00300

0ba9112793d4ca789068698a0d1a341901a0d53f4d1119a8d4c9e812d755a67c107983

87682c7ca7b5a3bb75da77755eb81c1cb1ca94c4b6faf209c52a90aaa4d16a4a1b9c16

7a01c8d9ef32589d831e77df7a5753a398b11660e392126fc18a72a1088716cc8dedda

5d489da410748531278043d70a8a131c2b8adcd6a221bdb8c7ff76b88c1d5342ee48a7

0a12175074918

8.3.3 Mixed Content Streams

BZ2Decompressor can also be used in situations where compressed and uncom-

pressed data are mixed together.

import bz2

lorem = open(’lorem.txt’, ’rt’).read()

compressed = bz2.compress(lorem)

combined = compressed + lorem

decompressor = bz2.BZ2Decompressor()

decompressed = decompressor.decompress(combined)

decompressed_matches = decompressed == lorem

print ’Decompressed matches lorem:’, decompressed_matches

ptg

440 Data Compression and Archiving

unused_matches = decompressor.unused_data == lorem

print ’Unused data matches lorem :’, unused_matches

After decompressing all the data, the unused_data attribute contains any data

not used.

$ python bz2_mixed.py

Decompressed matches lorem: True

Unused data matches lorem : True

8.3.4 Writing Compressed Files

BZ2File can be used to write to and read from bzip2-compressed files using the usual

methods for writing and reading data.

import bz2
import contextlib
import os

with contextlib.closing(bz2.BZ2File(’example.bz2’, ’wb’)) as output:

output.write(’Contents of the example file go here.\n’)

os.system(’file example.bz2’)

To write data into a compressed file, open the file with mode ’w’.

$ python bz2_file_write.py

example.bz2: bzip2 compressed data, block size = 900k

Different compression levels can be used by passing a compresslevel argument.

Valid values range from 1 to 9, inclusive. Lower values are faster and result in less

compression. Higher values are slower and compress more, up to a point.

import bz2
import os

data = open(’lorem.txt’, ’r’).read() * 1024

print ’Input contains %d bytes’ % len(data)

for i in xrange(1, 10):

filename = ’compress-level-%s.bz2’ % i

ptg

8.3. bz2—bzip2 Compression 441

with bz2.BZ2File(filename, ’wb’, compresslevel=i) as output:

output.write(data)

os.system(’cksum %s’ % filename)

The center column of numbers in the script output is the size in bytes of the files

produced. For this input data, the higher compression values do not always pay off in

decreased storage space for the same input data. Results will vary for other inputs.

$ python bz2_file_compresslevel.py

3018243926 8771 compress-level-1.bz2

1942389165 4949 compress-level-2.bz2

2596054176 3708 compress-level-3.bz2

1491394456 2705 compress-level-4.bz2

1425874420 2705 compress-level-5.bz2

2232840816 2574 compress-level-6.bz2

447681641 2394 compress-level-7.bz2

3699654768 1137 compress-level-8.bz2

3103658384 1137 compress-level-9.bz2

Input contains 754688 bytes

A BZ2File instance also includes a writelines() method that can be used to

write a sequence of strings.

import bz2
import contextlib
import itertools
import os

with contextlib.closing(bz2.BZ2File(’lines.bz2’, ’wb’)) as output:

output.writelines(

itertools.repeat(’The same line, over and over.\n’, 10),

)

os.system(’bzcat lines.bz2’)

The lines should end in a newline character, as when writing to a regular file.

$ python bz2_file_writelines.py

The same line, over and over.

The same line, over and over.

ptg

442 Data Compression and Archiving

The same line, over and over.

The same line, over and over.

The same line, over and over.

The same line, over and over.

The same line, over and over.

The same line, over and over.

The same line, over and over.

The same line, over and over.

8.3.5 Reading Compressed Files

To read data back from previously compressed files, open the file with binary read mode

(’rb’) so no text-based translation of line endings is performed.

import bz2
import contextlib

with contextlib.closing(bz2.BZ2File(’example.bz2’, ’rb’)) as input:

print input.read()

This example reads the file written by bz2_file_write.py from the previous

section.

$ python bz2_file_read.py

Contents of the example file go here.

While reading a file, it is also possible to seek and to read only part of the data.

import bz2
import contextlib

with contextlib.closing(bz2.BZ2File(’example.bz2’, ’rb’)) as input:

print ’Entire file:’

all_data = input.read()

print all_data

expected = all_data[5:15]

ptg

8.3. bz2—bzip2 Compression 443

rewind to beginning

input.seek(0)

move ahead 5 bytes

input.seek(5)

print ’Starting at position 5 for 10 bytes:’

partial = input.read(10)

print partial

print
print expected == partial

The seek() position is relative to the uncompressed data, so the caller does not

even need to be aware that the data file is compressed. This allows a BZ2File instance

to be passed to a function expecting a regular uncompressed file.

$ python bz2_file_seek.py

Entire file:

Contents of the example file go here.

Starting at position 5 for 10 bytes:

nts of the

True

8.3.6 Compressing Network Data

The code in the next example responds to requests consisting of filenames by writing

a compressed version of the file to the socket used to communicate with the client. It

has some artificial chunking in place to illustrate the buffering that occurs when the

data passed to compress() or decompress() does not result in a complete block of

compressed or uncompressed output.

import bz2
import logging
import SocketServer
import binascii

BLOCK_SIZE = 32

class Bz2RequestHandler(SocketServer.BaseRequestHandler):

ptg

444 Data Compression and Archiving

logger = logging.getLogger(’Server’)

def handle(self):

compressor = bz2.BZ2Compressor()

Find out what file the client wants

filename = self.request.recv(1024)

self.logger.debug(’client asked for: "%s"’, filename)

Send chunks of the file as they are compressed

with open(filename, ’rb’) as input:

while True:

block = input.read(BLOCK_SIZE)

if not block:

break
self.logger.debug(’RAW "%s"’, block)

compressed = compressor.compress(block)

if compressed:

self.logger.debug(’SENDING "%s"’,
binascii.hexlify(compressed))

self.request.send(compressed)

else:
self.logger.debug(’BUFFERING’)

Send any data being buffered by the compressor

remaining = compressor.flush()

while remaining:

to_send = remaining[:BLOCK_SIZE]

remaining = remaining[BLOCK_SIZE:]

self.logger.debug(’FLUSHING "%s"’,
binascii.hexlify(to_send))

self.request.send(to_send)

return

The main program starts a server in a thread, combining SocketServer and

Bz2RequestHandler.

if __name__ == ’__main__’:

import socket
import sys
from cStringIO import StringIO

import threading

ptg

8.3. bz2—bzip2 Compression 445

logging.basicConfig(level=logging.DEBUG,

format=’%(name)s: %(message)s’,
)

Set up a server, running in a separate thread

address = (’localhost’, 0) # let the kernel assign a port

server = SocketServer.TCPServer(address, Bz2RequestHandler)

ip, port = server.server_address # what port was assigned?

t = threading.Thread(target=server.serve_forever)

t.setDaemon(True)

t.start()

logger = logging.getLogger(’Client’)

Connect to the server

logger.info(’Contacting server on %s:%s’, ip, port)

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect((ip, port))

Ask for a file

requested_file = (sys.argv[0]

if len(sys.argv) > 1

else ’lorem.txt’)

logger.debug(’sending filename: "%s"’, requested_file)

len_sent = s.send(requested_file)

Receive a response

buffer = StringIO()

decompressor = bz2.BZ2Decompressor()

while True:

response = s.recv(BLOCK_SIZE)

if not response:

break
logger.debug(’READ "%s"’, binascii.hexlify(response))

Include any unconsumed data when feeding the decompressor.

decompressed = decompressor.decompress(response)

if decompressed:

logger.debug(’DECOMPRESSED "%s"’, decompressed)

buffer.write(decompressed)

else:
logger.debug(’BUFFERING’)

ptg

446 Data Compression and Archiving

full_response = buffer.getvalue()

lorem = open(requested_file, ’rt’).read()

logger.debug(’response matches file contents: %s’,
full_response == lorem)

Clean up

server.shutdown()

server.socket.close()

s.close()

It then opens a socket to communicate with the server as a client and requests the

file. The default file, lorem.txt, contains this text.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Donec

egestas, enim et consectetuer ullamcorper, lectus ligula rutrum leo,

a elementum elit tortor eu quam. Duis tincidunt nisi ut ante. Nulla

facilisi.

Warning: This implementation has obvious security implications. Do not run it

on a server on the open Internet or in any environment where security might be an

issue.

Running bz2_server.py produces:

$ python bz2_server.py

Client: Contacting server on 127.0.0.1:55091

Client: sending filename: "lorem.txt"

Server: client asked for: "lorem.txt"

Server: RAW "Lorem ipsum dolor sit amet, cons"

Server: BUFFERING

Server: RAW "ectetuer adipiscing elit. Donec

"

Server: BUFFERING

Server: RAW "egestas, enim et consectetuer ul"

Server: BUFFERING

Server: RAW "lamcorper, lectus ligula rutrum "

Server: BUFFERING

Server: RAW "leo,

ptg

8.3. bz2—bzip2 Compression 447

a elementum elit tortor eu "

Server: BUFFERING

Server: RAW "quam. Duis tincidunt nisi ut ant"

Server: BUFFERING

Server: RAW "e. Nulla

facilisi.

"

Server: BUFFERING

Server: FLUSHING "425a6839314159265359ba83a48c000014d580001040050405

2fa7fe003000ba"

Server: FLUSHING "9112793d4ca789068698a0d1a341901a0d53f4d1119a8d4c9e

812d755a67c107"

Server: FLUSHING "98387682c7ca7b5a3bb75da77755eb81c1cb1ca94c4b6faf20

9c52a90aaa4d16"

Server: FLUSHING "a4a1b9c167a01c8d9ef32589d831e77df7a5753a398b11660e

392126fc18a72a"

Server: FLUSHING "1088716cc8dedda5d489da410748531278043d70a8a131c2b8

adcd6a221bdb8c"

Server: FLUSHING "7ff76b88c1d5342ee48a70a12175074918"

Client: READ "425a6839314159265359ba83a48c000014d5800010400504052fa7

fe003000ba"

Client: BUFFERING

Client: READ "9112793d4ca789068698a0d1a341901a0d53f4d1119a8d4c9e812d

755a67c107"

Client: BUFFERING

Client: READ "98387682c7ca7b5a3bb75da77755eb81c1cb1ca94c4b6faf209c52

a90aaa4d16"

Client: BUFFERING

Client: READ "a4a1b9c167a01c8d9ef32589d831e77df7a5753a398b11660e3921

26fc18a72a"

Client: BUFFERING

Client: READ "1088716cc8dedda5d489da410748531278043d70a8a131c2b8adcd

6a221bdb8c"

Client: BUFFERING

Client: READ "7ff76b88c1d5342ee48a70a12175074918"

Client: DECOMPRESSED "Lorem ipsum dolor sit amet, consectetuer adipi

scing elit. Donec

egestas, enim et consectetuer ullamcorper, lectus ligula rutrum leo,

a elementum elit tortor eu quam. Duis tincidunt nisi ut ante. Nulla

facilisi.

"

Client: response matches file contents: True

ptg

448 Data Compression and Archiving

See Also:
bz2 (http://docs.python.org/library/bz2.html) The standard library documentation

for this module.

bzip2.org (www.bzip.org/) The home page for bzip2.

gzip (page 430) A file-like interface to GNU zip compressed files.

zlib (page 421) The zlib module for GNU zip compression.

8.4 tarfile—Tar Archive Access

Purpose Read and write tar archives.

Python Version 2.3 and later

The tarfile module provides read and write access to UNIX tar archives, including

compressed files. In addition to the POSIX standards, several GNU tar extensions are

supported. UNIX special file types, such as hard and soft links, and device nodes are

also handled.

Note: Although tarfile implements a UNIX format, it can be used to create and

read tar archives under Microsoft Windows, too.

8.4.1 Testing Tar Files

The is_tarfile() function returns a Boolean indicating whether or not the filename

passed as an argument refers to a valid tar archive.

import tarfile

for filename in [’README.txt’, ’example.tar’,

’bad_example.tar’, ’notthere.tar’]:

try:
print ’%15s %s’ % (filename, tarfile.is_tarfile(filename))

except IOError, err:

print ’%15s %s’ % (filename, err)

If the file does not exist, is_tarfile() raises an IOError.

$ python tarfile_is_tarfile.py

README.txt False

example.tar True

http://docs.python.org/library/bz2.html
www.bzip.org/

ptg

8.4. tarfile—Tar Archive Access 449

bad_example.tar False

notthere.tar [Errno 2] No such file or directory: ’notthere.tar’

8.4.2 Reading Metadata from an Archive

Use the TarFile class to work directly with a tar archive. It supports methods for read-

ing data about existing archives, as well as modifying the archives by adding additional

files.

To read the names of the files in an existing archive, use getnames().

import tarfile
from contextlib import closing

with closing(tarfile.open(’example.tar’, ’r’)) as t:

print t.getnames()

The return value is a list of strings with the names of the archive contents.

$ python tarfile_getnames.py

[’README.txt’, ’__init__.py’]

In addition to names, metadata about the archive members is available as instances

of TarInfo objects.

import tarfile
import time
from contextlib import closing

with closing(tarfile.open(’example.tar’, ’r’)) as t:

for member_info in t.getmembers():

print member_info.name

print ’\tModified:\t’, time.ctime(member_info.mtime)

print ’\tMode :\t’, oct(member_info.mode)

print ’\tType :\t’, member_info.type

print ’\tSize :\t’, member_info.size, ’bytes’

print

Load the metadata via getmembers() and getmember().

$ python tarfile_getmembers.py

ptg

450 Data Compression and Archiving

README.txt

Modified: Sun Nov 28 13:30:14 2010

Mode : 0644

Type : 0

Size : 75 bytes

__init__.py

Modified: Sun Nov 14 09:39:38 2010

Mode : 0644

Type : 0

Size : 22 bytes

If the name of the archive member is known in advance, its TarInfo object can

be retrieved with getmember().

import tarfile
import time
from contextlib import closing

with closing(tarfile.open(’example.tar’, ’r’)) as t:

for filename in [’README.txt’, ’notthere.txt’]:

try:
info = t.getmember(filename)

except KeyError:
print ’ERROR: Did not find %s in tar archive’ % filename

else:
print ’%s is %d bytes’ % (info.name, info.size)

If the archive member is not present, getmember() raises a KeyError.

$ python tarfile_getmember.py

README.txt is 75 bytes

ERROR: Did not find notthere.txt in tar archive

8.4.3 Extracting Files from an Archive

To access the data from an archive member within a program, use the extractfile()

method, passing the member’s name.

import tarfile
from contextlib import closing

ptg

8.4. tarfile—Tar Archive Access 451

with closing(tarfile.open(’example.tar’, ’r’)) as t:

for filename in [’README.txt’, ’notthere.txt’]:

try:
f = t.extractfile(filename)

except KeyError:
print ’ERROR: Did not find %s in tar archive’ % filename

else:
print filename, ’:’

print f.read()

The return value is a file-like object from which the contents of the archive member

can be read.

$ python tarfile_extractfile.py

README.txt :

The examples for the tarfile module use this file and example.tar as

data.

ERROR: Did not find notthere.txt in tar archive

To unpack the archive and write the files to the file system, use extract() or

extractall() instead.

import tarfile
import os
from contextlib import closing

os.mkdir(’outdir’)

with closing(tarfile.open(’example.tar’, ’r’)) as t:

t.extract(’README.txt’, ’outdir’)

print os.listdir(’outdir’)

The member or members are read from the archive and written to the file system,

starting in the directory named in the arguments.

$ python tarfile_extract.py

[’README.txt’]

ptg

452 Data Compression and Archiving

The standard library documentation includes a note stating that extractall() is

safer than extract(), especially for working with streaming data where rewinding to

read an earlier part of the input is not possible. It should be used in most cases.

import tarfile
import os
from contextlib import closing

os.mkdir(’outdir’)

with closing(tarfile.open(’example.tar’, ’r’)) as t:

t.extractall(’outdir’)

print os.listdir(’outdir’)

With extractall(), the first argument is the name of the directory where the

files should be written.

$ python tarfile_extractall.py

[’__init__.py’, ’README.txt’]

To extract specific files from the archive, pass their names or TarInfo metadata

containers to extractall().

import tarfile
import os
from contextlib import closing

os.mkdir(’outdir’)

with closing(tarfile.open(’example.tar’, ’r’)) as t:

t.extractall(’outdir’,

members=[t.getmember(’README.txt’)],

)

print os.listdir(’outdir’)

When a members list is provided, only the named files are extracted.

$ python tarfile_extractall_members.py

[’README.txt’]

ptg

8.4. tarfile—Tar Archive Access 453

8.4.4 Creating New Archives

To create a new archive, open the TarFile with a mode of ’w’.

import tarfile
from contextlib import closing

print ’creating archive’

with closing(tarfile.open(’tarfile_add.tar’, mode=’w’)) as out:

print ’adding README.txt’

out.add(’README.txt’)

print
print ’Contents:’

with closing(tarfile.open(’tarfile_add.tar’, mode=’r’)) as t:

for member_info in t.getmembers():

print member_info.name

Any existing file is truncated and a new archive is started. To add files, use the

add() method.

$ python tarfile_add.py

creating archive

adding README.txt

Contents:

README.txt

8.4.5 Using Alternate Archive Member Names

It is possible to add a file to an archive using a name other than the original filename by

constructing a TarInfo object with an alternate arcname and passing it to addfile().

import tarfile
from contextlib import closing

print ’creating archive’

with closing(tarfile.open(’tarfile_addfile.tar’, mode=’w’)) as out:

print ’adding README.txt as RENAMED.txt’

ptg

454 Data Compression and Archiving

info = out.gettarinfo(’README.txt’, arcname=’RENAMED.txt’)

out.addfile(info)

print
print ’Contents:’

with closing(tarfile.open(’tarfile_addfile.tar’, mode=’r’)) as t:

for member_info in t.getmembers():

print member_info.name

The archive includes only the changed filename

$ python tarfile_addfile.py

creating archive

adding README.txt as RENAMED.txt

Contents:

RENAMED.txt

8.4.6 Writing Data from Sources Other than Files

Sometimes, it is necessary to write data into an archive directly from memory. Rather

than writing the data to a file, and then adding that file to the archive, you can use

addfile() to add data from an open file-like handle.

import tarfile
from cStringIO import StringIO

from contextlib import closing

data = ’This is the data to write to the archive.’

with closing(tarfile.open(’addfile_string.tar’, mode=’w’)) as out:

info = tarfile.TarInfo(’made_up_file.txt’)

info.size = len(data)

out.addfile(info, StringIO(data))

print ’Contents:’

with closing(tarfile.open(’addfile_string.tar’, mode=’r’)) as t:

for member_info in t.getmembers():

print member_info.name

f = t.extractfile(member_info)

print f.read()

ptg

8.4. tarfile—Tar Archive Access 455

By first constructing a TarInfo object, the archive member can be given any

name desired. After setting the size, the data is written to the archive using addfile()

and a StringIO buffer as a source of the data.

$ python tarfile_addfile_string.py

Contents:

made_up_file.txt

This is the data to write to the archive.

8.4.7 Appending to Archives

In addition to creating new archives, it is possible to append to an existing file by using

mode ’a’.

import tarfile
from contextlib import closing

print ’creating archive’

with closing(tarfile.open(’tarfile_append.tar’, mode=’w’)) as out:

out.add(’README.txt’)

print ’contents:’,

with closing(tarfile.open(’tarfile_append.tar’, mode=’r’)) as t:

print [m.name for m in t.getmembers()]

print ’adding index.rst’

with closing(tarfile.open(’tarfile_append.tar’, mode=’a’)) as out:

out.add(’index.rst’)

print ’contents:’,

with closing(tarfile.open(’tarfile_append.tar’, mode=’r’)) as t:

print [m.name for m in t.getmembers()]

The resulting archive ends up with two members.

$ python tarfile_append.py

creating archive

contents: [’README.txt’]

adding index.rst

contents: [’README.txt’, ’index.rst’]

ptg

456 Data Compression and Archiving

8.4.8 Working with Compressed Archives

Besides regular tar archive files, the tarfile module can work with archives com-

pressed via the gzip or bzip2 protocols. To open a compressed archive, modify the

mode string passed to open() to include ":gz" or ":bz2", depending on the desired

compression method.

import tarfile
import os

fmt = ’%-30s %-10s’
print fmt % (’FILENAME’, ’SIZE’)

print fmt % (’README.txt’, os.stat(’README.txt’).st_size)

for filename, write_mode in [

(’tarfile_compression.tar’, ’w’),

(’tarfile_compression.tar.gz’, ’w:gz’),

(’tarfile_compression.tar.bz2’, ’w:bz2’),

]:

out = tarfile.open(filename, mode=write_mode)

try:
out.add(’README.txt’)

finally:
out.close()

print fmt % (filename, os.stat(filename).st_size),

print [m.name

for m in tarfile.open(filename, ’r:*’).getmembers()

]

When opening an existing archive for reading, specify "r:*" to have tarfile

determine the compression method to use automatically.

$ python tarfile_compression.py

FILENAME SIZE

README.txt 75

tarfile_compression.tar 10240 [’README.txt’]

tarfile_compression.tar.gz 212 [’README.txt’]

tarfile_compression.tar.bz2 187 [’README.txt’]

See Also:
tarfile (http://docs.python.org/library/tarfile.html) The standard library documenta-

tion for this module.

http://docs.python.org/library/tarfile.html

ptg

8.5. zipfile—ZIP Archive Access 457

GNU tar manual (www.gnu.org/software/tar/manual/html_node/Standard.html)
Documentation of the tar format, including extensions.

bz2 (page 436) bzip2 compression.

contextlib (page 163) The contextlib module includes closing(), for manag-

ing file handles in with statements.

gzip (page 430) GNU zip compression.

zipfile (page 457) Similar access for ZIP archives.

8.5 zipfile—ZIP Archive Access

Purpose Read and write ZIP archive files.

Python Version 1.6 and later

The zipfile module can be used to manipulate ZIP archive files, the format popular-

ized by the PC program PKZIP.

8.5.1 Testing ZIP Files

The is_zipfile() function returns a Boolean indicating whether or not the filename

passed as an argument refers to a valid ZIP archive.

import zipfile

for filename in [’README.txt’, ’example.zip’,

’bad_example.zip’, ’notthere.zip’]:

print ’%15s %s’ % (filename, zipfile.is_zipfile(filename))

If the file does not exist at all, is_zipfile() returns False.

$ python zipfile_is_zipfile.py

README.txt False

example.zip True

bad_example.zip False

notthere.zip False

8.5.2 Reading Metadata from an Archive

Use the ZipFile class to work directly with a ZIP archive. It supports methods for

reading data about existing archives, as well as modifying the archives by adding

additional files.

www.gnu.org/software/tar/manual/html_node/Standard.html

ptg

458 Data Compression and Archiving

import zipfile

with zipfile.ZipFile(’example.zip’, ’r’) as zf:

print zf.namelist()

The namelist() method returns the names of the files in an existing archive.

$ python zipfile_namelist.py

[’README.txt’]

The list of names is only part of the information available from the archive, though.

To access all the metadata about the ZIP contents, use the infolist() or getinfo()

methods.

import datetime
import zipfile

def print_info(archive_name):

with zipfile.ZipFile(archive_name) as zf:

for info in zf.infolist():

print info.filename

print ’\tComment :’, info.comment

mod_date = datetime.datetime(*info.date_time)

print ’\tModified :’, mod_date

if info.create_system == 0:

system = ’Windows’

elif info.create_system == 3:

system = ’Unix’

else:
system = ’UNKNOWN’

print ’\tSystem :’, system

print ’\tZIP version :’, info.create_version

print ’\tCompressed :’, info.compress_size, ’bytes’

print ’\tUncompressed:’, info.file_size, ’bytes’

print

if __name__ == ’__main__’:

print_info(’example.zip’)

ptg

8.5. zipfile—ZIP Archive Access 459

There are additional fields other than those printed here, but deciphering the values

into anything useful requires careful reading of the PKZIP Application Note with the

ZIP file specification.

$ python zipfile_infolist.py

README.txt

Comment :

Modified : 2010-11-15 06:48:02

System : Unix

ZIP version : 30

Compressed : 65 bytes

Uncompressed: 76 bytes

If the name of the archive member is known in advance, its ZipInfo object can

be retrieved directly with getinfo().

import zipfile

with zipfile.ZipFile(’example.zip’) as zf:

for filename in [’README.txt’, ’notthere.txt’]:

try:
info = zf.getinfo(filename)

except KeyError:
print ’ERROR: Did not find %s in zip file’ % filename

else:
print ’%s is %d bytes’ % (info.filename, info.file_size)

If the archive member is not present, getinfo() raises a KeyError.

$ python zipfile_getinfo.py

README.txt is 76 bytes

ERROR: Did not find notthere.txt in zip file

8.5.3 Extracting Archived Files from an Archive

To access the data from an archive member, use the read() method, passing the

member’s name.

ptg

460 Data Compression and Archiving

import zipfile

with zipfile.ZipFile(’example.zip’) as zf:

for filename in [’README.txt’, ’notthere.txt’]:

try:
data = zf.read(filename)

except KeyError:
print ’ERROR: Did not find %s in zip file’ % filename

else:
print filename, ’:’

print data

print

The data is automatically decompressed, if necessary.

$ python zipfile_read.py

README.txt :

The examples for the zipfile module use

this file and example.zip as data.

ERROR: Did not find notthere.txt in zip file

8.5.4 Creating New Archives

To create a new archive, instantiate the ZipFile with a mode of ’w’. Any existing file

is truncated and a new archive is started. To add files, use the write() method.

from zipfile_infolist import print_info

import zipfile

print ’creating archive’

with zipfile.ZipFile(’write.zip’, mode=’w’) as zf:

print ’adding README.txt’

zf.write(’README.txt’)

print
print_info(’write.zip’)

By default, the contents of the archive are not compressed.

ptg

8.5. zipfile—ZIP Archive Access 461

$ python zipfile_write.py

creating archive

adding README.txt

README.txt

Comment :

Modified : 2010-11-15 06:48:00

System : Unix

ZIP version : 20

Compressed : 76 bytes

Uncompressed: 76 bytes

To add compression, the zlib module is required. If zlib is available, the com-

pression mode for individual files or for the archive as a whole can be set using

zipfile.ZIP_DEFLATED. The default compression mode is zipfile.ZIP_STORED,

which adds the input data to the archive without compressing it.

from zipfile_infolist import print_info

import zipfile
try:

import zlib
compression = zipfile.ZIP_DEFLATED

except:
compression = zipfile.ZIP_STORED

modes = { zipfile.ZIP_DEFLATED: ’deflated’,

zipfile.ZIP_STORED: ’stored’,

}

print ’creating archive’

with zipfile.ZipFile(’write_compression.zip’, mode=’w’) as zf:

mode_name = modes[compression]

print ’adding README.txt with compression mode’, mode_name

zf.write(’README.txt’, compress_type=compression)

print
print_info(’write_compression.zip’)

This time, the archive member is compressed.

ptg

462 Data Compression and Archiving

$ python zipfile_write_compression.py

creating archive

adding README.txt with compression mode deflated

README.txt

Comment :

Modified : 2010-11-15 06:48:00

System : Unix

ZIP version : 20

Compressed : 65 bytes

Uncompressed: 76 bytes

8.5.5 Using Alternate Archive Member Names

Pass an arcname value to write() to add a file to an archive using a name other than

the original filename.

from zipfile_infolist import print_info

import zipfile

with zipfile.ZipFile(’write_arcname.zip’, mode=’w’) as zf:

zf.write(’README.txt’, arcname=’NOT_README.txt’)

print_info(’write_arcname.zip’)

There is no sign of the original filename in the archive.

$ python zipfile_write_arcname.py

NOT_README.txt

Comment :

Modified : 2010-11-15 06:48:00

System : Unix

ZIP version : 20

Compressed : 76 bytes

Uncompressed: 76 bytes

8.5.6 Writing Data from Sources Other than Files

Sometimes it is necessary to write to a ZIP archive using data that did not come from

an existing file. Rather than writing the data to a file, and then adding that file to

ptg

8.5. zipfile—ZIP Archive Access 463

the ZIP archive, use the writestr() method to add a string of bytes to the archive

directly.

from zipfile_infolist import print_info

import zipfile

msg = ’This data did not exist in a file.’

with zipfile.ZipFile(’writestr.zip’,

mode=’w’,

compression=zipfile.ZIP_DEFLATED,

) as zf:

zf.writestr(’from_string.txt’, msg)

print_info(’writestr.zip’)

with zipfile.ZipFile(’writestr.zip’, ’r’) as zf:

print zf.read(’from_string.txt’)

In this case, the compress_type argument to ZipFile is used to compress the data,

since writestr() does not take an argument to specify the compression.

$ python zipfile_writestr.py

from_string.txt

Comment :

Modified : 2010-11-28 13:48:46

System : Unix

ZIP version : 20

Compressed : 36 bytes

Uncompressed: 34 bytes

This data did not exist in a file.

8.5.7 Writing with a ZipInfo Instance

Normally, the modification date is computed when a file or string is added to the archive.

A ZipInfo instance can be passed to writestr() to define the modification date and

other metadata.

import time
import zipfile
from zipfile_infolist import print_info

ptg

464 Data Compression and Archiving

msg = ’This data did not exist in a file.’

with zipfile.ZipFile(’writestr_zipinfo.zip’,

mode=’w’,

) as zf:

info = zipfile.ZipInfo(’from_string.txt’,

date_time=time.localtime(time.time()),

)

info.compress_type=zipfile.ZIP_DEFLATED

info.comment=’Remarks go here’

info.create_system=0

zf.writestr(info, msg)

print_info(’writestr_zipinfo.zip’)

In this example, the modified time is set to the current time, the data is compressed,

and a false value for create_system is used. A simple comment is also associated with

the new file.

$ python zipfile_writestr_zipinfo.py

from_string.txt

Comment : Remarks go here

Modified : 2010-11-28 13:48:46

System : Windows

ZIP version : 20

Compressed : 36 bytes

Uncompressed: 34 bytes

8.5.8 Appending to Files

In addition to creating new archives, it is possible to append to an existing archive or

add an archive at the end of an existing file (such as an .exe file for a self-extracting

archive). To open a file to append to it, use mode ’a’.

from zipfile_infolist import print_info

import zipfile

print ’creating archive’

with zipfile.ZipFile(’append.zip’, mode=’w’) as zf:

zf.write(’README.txt’)

ptg

8.5. zipfile—ZIP Archive Access 465

print
print_info(’append.zip’)

print ’appending to the archive’

with zipfile.ZipFile(’append.zip’, mode=’a’) as zf:

zf.write(’README.txt’, arcname=’README2.txt’)

print
print_info(’append.zip’)

The resulting archive contains two members:

$ python zipfile_append.py

creating archive

README.txt

Comment :

Modified : 2010-11-15 06:48:00

System : Unix

ZIP version : 20

Compressed : 76 bytes

Uncompressed: 76 bytes

appending to the archive

README.txt

Comment :

Modified : 2010-11-15 06:48:00

System : Unix

ZIP version : 20

Compressed : 76 bytes

Uncompressed: 76 bytes

README2.txt

Comment :

Modified : 2010-11-15 06:48:00

System : Unix

ZIP version : 20

Compressed : 76 bytes

Uncompressed: 76 bytes

ptg

466 Data Compression and Archiving

8.5.9 Python ZIP Archives

Python can import modules from inside ZIP archives using zipimport, if those

archives appear in sys.path. The PyZipFile class can be used to construct a module

suitable for use in this way. The extra method writepy() tells PyZipFile to scan a

directory for .py files and add the corresponding .pyo or .pyc file to the archive. If

neither compiled form exists, a .pyc file is created and added.

import sys
import zipfile

if __name__ == ’__main__’:

with zipfile.PyZipFile(’pyzipfile.zip’, mode=’w’) as zf:

zf.debug = 3

print ’Adding python files’

zf.writepy(’.’)

for name in zf.namelist():

print name

print
sys.path.insert(0, ’pyzipfile.zip’)

import zipfile_pyzipfile
print ’Imported from:’, zipfile_pyzipfile.__file__

With the debug attribute of the PyZipFile set to 3, verbose debugging is enabled

and output is produced as it compiles each .py file it finds.

$ python zipfile_pyzipfile.py

Adding python files

Adding package in . as .

Adding ./__init__.pyc

Adding ./zipfile_append.pyc

Adding ./zipfile_getinfo.pyc

Adding ./zipfile_infolist.pyc

Compiling ./zipfile_is_zipfile.py

Adding ./zipfile_is_zipfile.pyc

Adding ./zipfile_namelist.pyc

Adding ./zipfile_printdir.pyc

Adding ./zipfile_pyzipfile.pyc

Adding ./zipfile_read.pyc

Adding ./zipfile_write.pyc

ptg

8.5. zipfile—ZIP Archive Access 467

Adding ./zipfile_write_arcname.pyc

Adding ./zipfile_write_compression.pyc

Adding ./zipfile_writestr.pyc

Adding ./zipfile_writestr_zipinfo.pyc

__init__.pyc

zipfile_append.pyc

zipfile_getinfo.pyc

zipfile_infolist.pyc

zipfile_is_zipfile.pyc

zipfile_namelist.pyc

zipfile_printdir.pyc

zipfile_pyzipfile.pyc

zipfile_read.pyc

zipfile_write.pyc

zipfile_write_arcname.pyc

zipfile_write_compression.pyc

zipfile_writestr.pyc

zipfile_writestr_zipinfo.pyc

Imported from: pyzipfile.zip/zipfile_pyzipfile.pyc

8.5.10 Limitations

The zipfile module does not support ZIP files with appended comments or multidisk

archives. It does support ZIP files larger than 4 GB that use the ZIP64 extensions.

See Also:
tarfile (page 448) Read and write tar archives.

zipfile (http://docs.python.org/library/zipfile.html) The standard library documenta-

tion for this module.

zipimport (page 1240) Import Python modules from ZIP archives.

zlib (page 421) ZIP compression library.

PKZIP Application Note (www.pkware.com/documents/casestudies/APPNOTE.
TXT) Official specification for the ZIP archive format.

http://docs.python.org/library/zipfile.html
www.pkware.com/documents/casestudies/APPNOTE.TXT
www.pkware.com/documents/casestudies/APPNOTE.TXT

ptg

This page intentionally left blank

ptg

Chapter 9

CRYPTOGRAPHY

Encryption secures messages so that they can be verified as accurate and protected from

interception. Python’s cryptography support includes hashlib for generating signa-

tures of message content using standard algorithms, such as MD5 and SHA, and hmac

for verifying that a message has not been altered in transmission.

9.1 hashlib—Cryptographic Hashing

Purpose Generate cryptographic hashes and message digests.

Python Version 2.5 and later

The hashlib module deprecates the separate md5 and sha modules and makes their

API consistent. To work with a specific hash algorithm, use the appropriate constructor

function to create a hash object. From there, the objects use the same API, no matter

what algorithm is being used.

Since hashlib is “backed” by OpenSSL, all algorithms provided by that library

are available, including

• md5

• sha1

• sha224

• sha256

• sha384

• sha512

469

ptg

470 Cryptography

9.1.1 Sample Data

All the examples in this section use the same sample data:

import hashlib

lorem = ’’’Lorem ipsum dolor sit amet, consectetur adipisicing elit,

sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut

enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi

ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur. Excepteur sint occaecat cupidatat non proident, sunt in

culpa qui officia deserunt mollit anim id est laborum.’’’

9.1.2 MD5 Example

To calculate the MD5 hash, or digest, for a block of data (here an ASCII string), first

create the hash object, and then add the data and call digest() or hexdigest().

import hashlib

from hashlib_data import lorem

h = hashlib.md5()

h.update(lorem)

print h.hexdigest()

This example uses the hexdigest() method instead of digest() because the

output is formatted so it can be printed clearly. If a binary digest value is acceptable,

use digest().

$ python hashlib_md5.py

1426f365574592350315090e295ac273

9.1.3 SHA1 Example

A SHA1 digest is calculated in the same way.

import hashlib

from hashlib_data import lorem

ptg

9.1. hashlib—Cryptographic Hashing 471

h = hashlib.sha1()

h.update(lorem)

print h.hexdigest()

The digest value is different in this example because the algorithm changed from

MD5 to SHA1.

$ python hashlib_sha1.py

8173396ba8a560b89a3f3e2fcc024b044bc83d0a

9.1.4 Creating a Hash by Name

Sometimes, it is more convenient to refer to the algorithm by name in a string rather

than by using the constructor function directly. It is useful, for example, to be able to

store the hash type in a configuration file. In those cases, use new() to create a hash

calculator.

import hashlib
import sys

try:
hash_name = sys.argv[1]

except IndexError:
print ’Specify the hash name as the first argument.’

else:
try:

data = sys.argv[2]

except IndexError:
from hashlib_data import lorem as data

h = hashlib.new(hash_name)

h.update(data)

print h.hexdigest()

When run with a variety of arguments:

$ python hashlib_new.py sha1

8173396ba8a560b89a3f3e2fcc024b044bc83d0a

ptg

472 Cryptography

$ python hashlib_new.py sha256

dca37495608c68ec23bbb54ab9675bf0152db63e5a51ab1061dc9982b843e767

$ python hashlib_new.py sha512

0e3d4bc1cbc117382fa077b147a7ff6363f6cbc7508877460f978a566a0adb6dbb4c8

b89f56514da98eb94d7135e1b7ad7fc4a2d747c02af67fcd4e571bd54de

$ python hashlib_new.py md5

1426f365574592350315090e295ac273

9.1.5 Incremental Updates

The update() method of the hash calculators can be called repeatedly. Each time, the

digest is updated based on the additional text fed in. Updating incrementally is more

efficient than reading an entire file into memory, and it produces the same results.

import hashlib

from hashlib_data import lorem

h = hashlib.md5()

h.update(lorem)

all_at_once = h.hexdigest()

def chunkize(size, text):

"Return parts of the text in size-based increments."

start = 0

while start < len(text):

chunk = text[start:start+size]

yield chunk

start += size

return

h = hashlib.md5()

for chunk in chunkize(64, lorem):

h.update(chunk)

line_by_line = h.hexdigest()

ptg

9.2. hmac—Cryptographic Message Signing and Verification 473

print ’All at once :’, all_at_once

print ’Line by line:’, line_by_line

print ’Same :’, (all_at_once == line_by_line)

This example demonstrates how to update a digest incrementally as data is read or

otherwise produced.

$ python hashlib_update.py

All at once : 1426f365574592350315090e295ac273

Line by line: 1426f365574592350315090e295ac273

Same : True

See Also:
hashlib (http://docs.python.org/library/hashlib.html) The standard library docu-

mentation for this module.

Voidspace: IronPython and hashlib
(www.voidspace.org.uk/python/weblog/arch_d7_2006_10_07.shtml#e497) A

wrapper for hashlib that works with IronPython.

hmac (page 473) The hmac module.

OpenSSL (http://www.openssl.org/) An open source encryption toolkit.

9.2 hmac—Cryptographic Message Signing and Verification

Purpose The hmac module implements keyed-hashing for message au-

thentication, as described in RFC 2104.

Python Version 2.2 and later

The HMAC algorithm can be used to verify the integrity of information passed between

applications or stored in a potentially vulnerable location. The basic idea is to generate

a cryptographic hash of the actual data combined with a shared secret key. The resulting

hash can then be used to check the transmitted or stored message to determine a level

of trust, without transmitting the secret key.

Warning: Disclaimer: This book does not offer expert security advice. For the full

details on HMAC, check out RFC 2104 (http://tools.ietf.org/html/rfc2104.html).

http://docs.python.org/library/hashlib.html
www.voidspace.org.uk/python/weblog/arch_d7_2006_10_07.shtml#e497
http://www.openssl.org/
http://tools.ietf.org/html/rfc2104.html

ptg

474 Cryptography

9.2.1 Signing Messages

The new()function creates a new object for calculating a message signature. This

example uses the default MD5 hash algorithm.

import hmac

digest_maker = hmac.new(’secret-shared-key-goes-here’)

with open(’lorem.txt’, ’rb’) as f:

while True:

block = f.read(1024)

if not block:

break
digest_maker.update(block)

digest = digest_maker.hexdigest()

print digest

When run, the code reads a data file and computes an HMAC signature for it.

$ python hmac_simple.py

4bcb287e284f8c21e87e14ba2dc40b16

9.2.2 SHA vs. MD5

Although the default cryptographic algorithm for hmac is MD5, that is not the most

secure method to use. MD5 hashes have some weaknesses, such as collisions (where

two different messages produce the same hash). The SHA-1 algorithm is considered to

be stronger and should be used instead.

import hmac
import hashlib

digest_maker = hmac.new(’secret-shared-key-goes-here’,

’’,

hashlib.sha1)

with open(’hmac_sha.py’, ’rb’) as f:

while True:

block = f.read(1024)

ptg

9.2. hmac—Cryptographic Message Signing and Verification 475

if not block:

break
digest_maker.update(block)

digest = digest_maker.hexdigest()

print digest

The new() function takes three arguments. The first is the secret key, which should

be shared between the two endpoints that are communicating so both ends can use the

same value. The second value is an initial message. If the message content that needs

to be authenticated is small, such as a timestamp or an HTTP POST, the entire body of

the message can be passed to new() instead of using the update() method. The last

argument is the digest module to be used. The default is hashlib.md5. This example

substitutes hashlib.sha1.

$ python hmac_sha.py

b9e8c6737883a9d3a258a0b5090559b7e8e2efcb

9.2.3 Binary Digests

The previous examples used the hexdigest() method to produce printable digests.

The hexdigest is a different representation of the value calculated by the digest()

method, which is a binary value that may include unprintable or non-ASCII charac-

ters, including NUL. Some Web services (Google checkout, Amazon S3) use the base64

encoded version of the binary digest instead of the hexdigest.

import base64
import hmac
import hashlib

with open(’lorem.txt’, ’rb’) as f:

body = f.read()

hash = hmac.new(’secret-shared-key-goes-here’, body, hashlib.sha1)

digest = hash.digest()

print base64.encodestring(digest)

The base64 encoded string ends in a newline, which frequently needs to be

stripped off when embedding the string in http headers or other formatting-sensitive

contexts.

ptg

476 Cryptography

$ python hmac_base64.py

olW2DoXHGJEKGU0aE9fOwSVE/o4=
9.2.4 Applications of Message Signatures

HMAC authentication should be used for any public network service and any time data

is stored where security is important. For example, when sending data through a pipe or

socket, that data should be signed and then the signature should be tested before the data

is used. The extended example given here is available in the file hmac_pickle.py.

The first step is to establish a function to calculate a digest for a string and a simple

class to be instantiated and passed through a communication channel.

import hashlib
import hmac
try:

import cPickle as pickle
except:

import pickle
import pprint
from StringIO import StringIO

def make_digest(message):

"Return a digest for the message."

hash = hmac.new(’secret-shared-key-goes-here’,

message,

hashlib.sha1)

return hash.hexdigest()

class SimpleObject(object):
"""A very simple class to demonstrate checking digests before

unpickling.

"""

def __init__(self, name):

self.name = name

def __str__(self):

return self.name

Next, create a StringIO buffer to represent the socket or pipe. The example uses

a naive, but easy to parse, format for the data stream. The digest and length of the

ptg

9.2. hmac—Cryptographic Message Signing and Verification 477

data are written, followed by a new line. The serialized representation of the object,

generated by pickle, follows. A real system would not want to depend on a length

value, since if the digest is wrong, the length is probably wrong as well. Some sort of

terminator sequence not likely to appear in the real data would be more appropriate.

The example program then writes two objects to the stream. The first is written

using the correct digest value.

Simulate a writable socket or pipe with StringIO

out_s = StringIO()

Write a valid object to the stream:

digest\nlength\npickle

o = SimpleObject(’digest matches’)

pickled_data = pickle.dumps(o)

digest = make_digest(pickled_data)

header = ’%s %s’ % (digest, len(pickled_data))

print ’WRITING:’, header

out_s.write(header + ’\n’)
out_s.write(pickled_data)

The second object is written to the stream with an invalid digest, produced by

calculating the digest for some other data instead of the pickle.

Write an invalid object to the stream

o = SimpleObject(’digest does not match’)

pickled_data = pickle.dumps(o)

digest = make_digest(’not the pickled data at all’)

header = ’%s %s’ % (digest, len(pickled_data))

print ’\nWRITING:’, header

out_s.write(header + ’\n’)
out_s.write(pickled_data)

out_s.flush()

Now that the data is in the StringIO buffer, it can be read back out again. Start

by reading the line of data with the digest and data length. Then read the remaining

data, using the length value. pickle.load() could read directly from the stream, but

that assumes a trusted data stream, and this data is not yet trusted enough to unpickle it.

Reading the pickle as a string from the stream, without actually unpickling the object,

is safer.

ptg

478 Cryptography

Simulate a readable socket or pipe with StringIO

in_s = StringIO(out_s.getvalue())

Read the data

while True:

first_line = in_s.readline()

if not first_line:

break
incoming_digest, incoming_length = first_line.split(’ ’)

incoming_length = int(incoming_length)

print ’\nREAD:’, incoming_digest, incoming_length

incoming_pickled_data = in_s.read(incoming_length)

Once the pickled data is in memory, the digest value can be recalculated and

compared against the data read. If the digests match, it is safe to trust the data and

unpickle it.

actual_digest = make_digest(incoming_pickled_data)

print ’ACTUAL:’, actual_digest

if incoming_digest != actual_digest:

print ’WARNING: Data corruption’

else:
obj = pickle.loads(incoming_pickled_data)

print ’OK:’, obj

The output shows that the first object is verified and the second is deemed

“corrupted,” as expected.

$ python hmac_pickle.py

WRITING: 387632cfa3d18cd19bdfe72b61ac395dfcdc87c9 124

WRITING: b01b209e28d7e053408ebe23b90fe5c33bc6a0ec 131

READ: 387632cfa3d18cd19bdfe72b61ac395dfcdc87c9 124

ACTUAL: 387632cfa3d18cd19bdfe72b61ac395dfcdc87c9

OK: digest matches

READ: b01b209e28d7e053408ebe23b90fe5c33bc6a0ec 131

ptg

9.2. hmac—Cryptographic Message Signing and Verification 479

ACTUAL: dec53ca1ad3f4b657dd81d514f17f735628b6828

WARNING: Data corruption

See Also:
hmac (http://docs.python.org/library/hmac.html) The standard library documenta-

tion for this module.

RFC 2104 (http://tools.ietf.org/html/rfc2104.html) HMAC: Keyed-Hashing for

Message Authentication.

hashlib (page 469) The hashlib module provides MD5 and SHA1 hash generators.

pickle (page 334) Serialization library.

WikiPedia: MD5 (http://en.wikipedia.org/wiki/MD5) Description of the MD5 hash-

ing algorithm.

Authenticating to Amazon S3 Web Service
(http://docs.amazonwebservices.com/AmazonS3/2006-03-01/index.html?
S3_Authentication.html) Instructions for authenticating to S3 using HMAC-

SHA1 signed credentials.

http://docs.python.org/library/hmac.html
http://tools.ietf.org/html/rfc2104.html
http://en.wikipedia.org/wiki/MD5
http://docs.amazonwebservices.com/AmazonS3/2006-03-01/index.html?S3_Authentication.html
http://docs.amazonwebservices.com/AmazonS3/2006-03-01/index.html?S3_Authentication.html

ptg

This page intentionally left blank

ptg

Chapter 10

PROCESSES AND THREADS

Python includes sophisticated tools for managing concurrent operations using processes

and threads. Even many relatively simple programs can be made to run faster by apply-

ing techniques for running parts of the job concurrently using these modules.

subprocess provides an API for creating and communicating with secondary

processes. It is especially good for running programs that produce or consume text,

since the API supports passing data back and forth through the standard input and output

channels of the new process.

The signal module exposes the UNIX signal mechanism for sending events to

other processes. The signals are processed asynchronously, usually by interrupting what

the program is doing when the signal arrives. Signalling is useful as a coarse messaging

system, but other inter-process communication techniques are more reliable and can

deliver more complicated messages.

threading includes a high-level, object-oriented API for working with concur-

rency from Python. Thread objects run concurrently within the same process and share

memory. Using threads is an easy way to scale for tasks that are more I/O bound than

CPU bound. The multiprocessing module mirrors threading, except that instead

of a Thread class it provides a Process. Each Process is a true system process

without shared memory, but multiprocessing provides features for sharing data and

passing messages between them. In many cases, converting from threads to processes

is as simple as changing a few import statements.

10.1 subprocess—Spawning Additional Processes

Purpose Start and communicate with additional processes.

Python Version 2.4 and later

481

ptg

482 Processes and Threads

The subprocess module provides a consistent way to create and work with

additional processes. It offers a higher-level interface than some of the other modu-

les available in the standard libary, and it is intended to replace functions such as

os.system(), os.spawnv(), the variations of popen() in the os and popen2

modules, as well as the commands() module. To make it easier to compare

subprocess with those other modules, many of the examples in this section re-create

the ones used for os and popen2.

The subprocess module defines one class, Popen, and a few wrapper functions

that use that class. The constructor for Popen takes arguments to set up the new pro-

cess so the parent can communicate with it via pipes. It provides all the functionality

of the other modules and functions it replaces, and more. The API is consistent for all

uses, and many of the extra steps of overhead needed (such as closing extra file descrip-

tors and ensuring the pipes are closed) are “built in” instead of being handled by the

application code separately.

Note: The API for working on UNIX and Windows is roughly the same, but

the underlying implementation is slightly different. All examples shown here were

tested on Mac OS X. Behavior on a non-UNIX OS will vary.

10.1.1 Running External Commands

To run an external command without interacting with it in the same way as

os.system(), use the call() function.

import subprocess

Simple command

subprocess.call([’ls’, ’-1’])

The command line arguments are passed as a list of strings, which avoids the need

for escaping quotes or other special characters that might be interpreted by the shell.

$ python subprocess_os_system.py

__init__.py

index.rst

interaction.py

repeater.py

signal_child.py

signal_parent.py

ptg

10.1. subprocess—Spawning Additional Processes 483

subprocess_check_call.py

subprocess_check_output.py

subprocess_check_output_error.py

subprocess_check_output_error_trap_output.py

subprocess_os_system.py

subprocess_pipes.py

subprocess_popen2.py

subprocess_popen3.py

subprocess_popen4.py

subprocess_popen_read.py

subprocess_popen_write.py

subprocess_shell_variables.py

subprocess_signal_parent_shell.py

subprocess_signal_setsid.py

Setting the shell argument to a true value causes subprocess to spawn an inter-

mediate shell process, which then runs the command. The default is to run the command

directly.

import subprocess

Command with shell expansion

subprocess.call(’echo $HOME’, shell=True)

Using an intermediate shell means that variables, glob patterns, and other special

shell features in the command string are processed before the command is run.

$ python subprocess_shell_variables.py

/Users/dhellmann

Error Handling

The return value from call() is the exit code of the program. The caller is responsible

for interpreting it to detect errors. The check_call() function works like call(),

except that the exit code is checked, and if it indicates an error happened, then a

CalledProcessError exception is raised.

import subprocess

try:
subprocess.check_call([’false’])

ptg

484 Processes and Threads

except subprocess.CalledProcessError as err:

print ’ERROR:’, err

The false command always exits with a nonzero status code, which

check_call() interprets as an error.

$ python subprocess_check_call.py

ERROR: Command ’[’false’]’ returned nonzero exit status 1

Capturing Output

The standard input and output channels for the process started by call() are bound to

the parent’s input and output. That means the calling program cannot capture the output

of the command. Use check_output() to capture the output for later processing.

import subprocess

output = subprocess.check_output([’ls’, ’-1’])

print ’Have %d bytes in output’ % len(output)

print output

The ls -1 command runs successfully, so the text it prints to standard output is

captured and returned.

$ python subprocess_check_output.py

Have 462 bytes in output

__init__.py

index.rst

interaction.py

repeater.py

signal_child.py

signal_parent.py

subprocess_check_call.py

subprocess_check_output.py

subprocess_check_output_error.py

subprocess_check_output_error_trap_output.py

subprocess_os_system.py

subprocess_pipes.py

subprocess_popen2.py

subprocess_popen3.py

ptg

10.1. subprocess—Spawning Additional Processes 485

subprocess_popen4.py

subprocess_popen_read.py

subprocess_popen_write.py

subprocess_shell_variables.py

subprocess_signal_parent_shell.py

subprocess_signal_setsid.py

The next example runs a series of commands in a subshell. Messages are sent to

standard output and standard error before the commands exit with an error code.

import subprocess

try:
output = subprocess.check_output(

’echo to stdout; echo to stderr 1>&2; exit 1’,

shell=True,

)

except subprocess.CalledProcessError as err:

print ’ERROR:’, err

else:
print ’Have %d bytes in output’ % len(output)

print output

The message to standard error is printed to the console, but the message to standard

output is hidden.

$ python subprocess_check_output_error.py

to stderr

ERROR: Command ’echo to stdout; echo to stderr 1>&2; exit 1’ returned

nonzero exit status 1

To prevent error messages from commands run through check_output() from

being written to the console, set the stderr parameter to the constant STDOUT.

import subprocess

try:
output = subprocess.check_output(

’echo to stdout; echo to stderr 1>&2; exit 1’,

shell=True,

ptg

486 Processes and Threads

stderr=subprocess.STDOUT,

)

except subprocess.CalledProcessError as err:

print ’ERROR:’, err

else:
print ’Have %d bytes in output’ % len(output)

print output

Now the error and standard output channels are merged together, so if the com-

mand prints error messages, they are captured and not sent to the console.

$ python subprocess_check_output_error_trap_output.py

ERROR: Command ’echo to stdout; echo to stderr 1>&2; exit 1’ returned

nonzero exit status 1

10.1.2 Working with Pipes Directly

The functions call(), check_call(), and check_output() are wrappers around

the Popen class. Using Popen directly gives more control over how the command

is run and how its input and output streams are processed. For example, by passing

different arguments for stdin, stdout, and stderr, it is possible to mimic the variations

of os.popen().

One-Way Communication with a Process

To run a process and read all its output, set the stdout value to PIPE and call

communicate().

import subprocess

print ’read:’

proc = subprocess.Popen([’echo’, ’"to stdout"’],

stdout=subprocess.PIPE,

)

stdout_value = proc.communicate()[0]

print ’\tstdout:’, repr(stdout_value)

This is similar to the way popen() works, except that the reading is managed

internally by the Popen instance.

ptg

10.1. subprocess—Spawning Additional Processes 487

$ python subprocess_popen_read.py

read:

stdout: ’"to stdout"\n’

To set up a pipe to allow the calling program to write data to it, set stdin to PIPE.

import subprocess

print ’write:’

proc = subprocess.Popen([’cat’, ’-’],

stdin=subprocess.PIPE,

)

proc.communicate(’\tstdin: to stdin\n’)

To send data to the standard input channel of the process one time, pass the data to

communicate(). This is similar to using popen() with mode ’w’.

$ python -u subprocess_popen_write.py

write:

stdin: to stdin

Bidirectional Communication with a Process

To set up the Popen instance for reading and writing at the same time, use a combina-

tion of the previous techniques.

import subprocess

print ’popen2:’

proc = subprocess.Popen([’cat’, ’-’],

stdin=subprocess.PIPE,

stdout=subprocess.PIPE,

)

msg = ’through stdin to stdout’

stdout_value = proc.communicate(msg)[0]

print ’\tpass through:’, repr(stdout_value)

This sets up the pipe to mimic popen2().

ptg

488 Processes and Threads

$ python -u subprocess_popen2.py

popen2:

pass through: ’through stdin to stdout’

Capturing Error Output

It is also possible watch both of the streams for stdout and stderr, as with popen3().

import subprocess

print ’popen3:’

proc = subprocess.Popen(’cat -; echo "to stderr" 1>&2’,

shell=True,

stdin=subprocess.PIPE,

stdout=subprocess.PIPE,

stderr=subprocess.PIPE,

)

msg = ’through stdin to stdout’

stdout_value, stderr_value = proc.communicate(msg)

print ’\tpass through:’, repr(stdout_value)

print ’\tstderr :’, repr(stderr_value)

Reading from stderr works the same as with stdout. Passing PIPE tells Popen to

attach to the channel, and communicate() reads all the data from it before returning.

$ python -u subprocess_popen3.py

popen3:

pass through: ’through stdin to stdout’

stderr : ’to stderr\n’

Combining Regular and Error Output

To direct the error output from the process to its standard output channel, use STDOUT

for stderr instead of PIPE.

import subprocess

print ’popen4:’

proc = subprocess.Popen(’cat -; echo "to stderr" 1>&2’,

shell=True,

ptg

10.1. subprocess—Spawning Additional Processes 489

stdin=subprocess.PIPE,

stdout=subprocess.PIPE,

stderr=subprocess.STDOUT,

)

msg = ’through stdin to stdout\n’
stdout_value, stderr_value = proc.communicate(msg)

print ’\tcombined output:’, repr(stdout_value)

print ’\tstderr value :’, repr(stderr_value)

Combining the output in this way is similar to how popen4() works.

$ python -u subprocess_popen4.py

popen4:

combined output: ’through stdin to stdout\nto stderr\n’

stderr value : None

10.1.3 Connecting Segments of a Pipe

Multiple commands can be connected into a pipeline, similar to the way the UNIX

shell works, by creating separate Popen instances and chaining their inputs and outputs

together. The stdout attribute of one Popen instance is used as the stdin argument

for the next in the pipeline, instead of the constant PIPE. The output is read from the

stdout handle for the final command in the pipeline.

import subprocess

cat = subprocess.Popen([’cat’, ’index.rst’],

stdout=subprocess.PIPE,

)

grep = subprocess.Popen([’grep’, ’.. include::’],

stdin=cat.stdout,

stdout=subprocess.PIPE,

)

cut = subprocess.Popen([’cut’, ’-f’, ’3’, ’-d:’],

stdin=grep.stdout,

stdout=subprocess.PIPE,

)

end_of_pipe = cut.stdout

ptg

490 Processes and Threads

print ’Included files:’

for line in end_of_pipe:

print ’\t’, line.strip()

The example reproduces the following command line.

cat index.rst | grep ".. include" | cut -f 3 -d:

The pipeline reads the reStructuredText source file for this section and finds all the

lines that include other files. Then it prints the names of the files being included.

$ python -u subprocess_pipes.py

Included files:

subprocess_os_system.py

subprocess_shell_variables.py

subprocess_check_call.py

subprocess_check_output.py

subprocess_check_output_error.py

subprocess_check_output_error_trap_output.py

subprocess_popen_read.py

subprocess_popen_write.py

subprocess_popen2.py

subprocess_popen3.py

subprocess_popen4.py

subprocess_pipes.py

repeater.py

interaction.py

signal_child.py

signal_parent.py

subprocess_signal_parent_shell.py

subprocess_signal_setsid.py

10.1.4 Interacting with Another Command

All the previous examples assume a limited amount of interaction. The

communicate() method reads all the output and waits for the child process to exit

before returning. It is also possible to write to and read from the individual pipe handles

used by the Popen instance incrementally, as the program runs. A simple echo program

that reads from standard input and writes to standard output illustrates this technique.

ptg

10.1. subprocess—Spawning Additional Processes 491

The script repeater.py is used as the child process in the next example. It reads

from stdin and writes the values to stdout, one line at a time until there is no more input.

It also writes a message to stderr when it starts and stops, showing the lifetime of the

child process.

import sys

sys.stderr.write(’repeater.py: starting\n’)
sys.stderr.flush()

while True:

next_line = sys.stdin.readline()

if not next_line:

break
sys.stdout.write(next_line)

sys.stdout.flush()

sys.stderr.write(’repeater.py: exiting\n’)
sys.stderr.flush()

The next interaction example uses the stdin and stdout file handles owned by

the Popen instance in different ways. In the first example, a sequence of five numbers

is written to stdin of the process, and after each write, the next line of output is read

back. In the second example, the same five numbers are written, but the output is read

all at once using communicate().

import subprocess

print ’One line at a time:’

proc = subprocess.Popen(’python repeater.py’,

shell=True,

stdin=subprocess.PIPE,

stdout=subprocess.PIPE,

)

for i in range(5):

proc.stdin.write(’%d\n’ % i)

output = proc.stdout.readline()

print output.rstrip()

remainder = proc.communicate()[0]

print remainder

ptg

492 Processes and Threads

print
print ’All output at once:’

proc = subprocess.Popen(’python repeater.py’,

shell=True,

stdin=subprocess.PIPE,

stdout=subprocess.PIPE,

)

for i in range(5):

proc.stdin.write(’%d\n’ % i)

output = proc.communicate()[0]

print output

The repeater.py: exiting lines come at different points in the output for

each loop style.

$ python -u interaction.py

One line at a time:

repeater.py: starting

0

1

2

3

4

repeater.py: exiting

All output at once:

repeater.py: starting

repeater.py: exiting

0

1

2

3

4

10.1.5 Signaling between Processes

The process management examples for the os module include a demonstration of

signaling between processes using os.fork() and os.kill(). Since each Popen

instance provides a pid attribute with the process id of the child process, it is possible to

ptg

10.1. subprocess—Spawning Additional Processes 493

do something similar with subprocess. The next example combines two scripts. This

child process sets up a signal handler for the USR signal.

import os
import signal
import time
import sys

pid = os.getpid()

received = False

def signal_usr1(signum, frame):

"Callback invoked when a signal is received"

global received

received = True

print ’CHILD %6s: Received USR1’ % pid

sys.stdout.flush()

print ’CHILD %6s: Setting up signal handler’ % pid

sys.stdout.flush()

signal.signal(signal.SIGUSR1, signal_usr1)

print ’CHILD %6s: Pausing to wait for signal’ % pid

sys.stdout.flush()

time.sleep(3)

if not received:

print ’CHILD %6s: Never received signal’ % pid

This script runs as the parent process. It starts signal_child.py, then sends the

USR1 signal.

import os
import signal
import subprocess
import time
import sys

proc = subprocess.Popen([’python’, ’signal_child.py’])

print ’PARENT : Pausing before sending signal...’

sys.stdout.flush()

time.sleep(1)

print ’PARENT : Signaling child’

ptg

494 Processes and Threads

sys.stdout.flush()

os.kill(proc.pid, signal.SIGUSR1)

This is the output.

$ python signal_parent.py

PARENT : Pausing before sending signal...

CHILD 11298: Setting up signal handler

CHILD 11298: Pausing to wait for signal

PARENT : Signaling child

CHILD 11298: Received USR1

Process Groups / Sessions

If the process created by Popen spawns subprocesses, those children will not receive

any signals sent to the parent. That means when using the shell argument to Popen,

it will be difficult to cause the command started in the shell to terminate by sending

SIGINT or SIGTERM.

import os
import signal
import subprocess
import tempfile
import time
import sys

script = ’’’#!/bin/sh

echo "Shell script in process $$"

set -x

python signal_child.py

’’’

script_file = tempfile.NamedTemporaryFile(’wt’)

script_file.write(script)

script_file.flush()

proc = subprocess.Popen([’sh’, script_file.name], close_fds=True)

print ’PARENT : Pausing before signaling %s...’ % proc.pid

sys.stdout.flush()

time.sleep(1)

print ’PARENT : Signaling child %s’ % proc.pid

sys.stdout.flush()

ptg

10.1. subprocess—Spawning Additional Processes 495

os.kill(proc.pid, signal.SIGUSR1)

time.sleep(3)

The pid used to send the signal does not match the pid of the child of the shell

script waiting for the signal, because in this example, there are three separate processes

interacting.

1. The program subprocess_signal_parent_shell.py

2. The shell process running the script created by the main Python program

3. The program signal_child.py
$ python subprocess_signal_parent_shell.py

PARENT

: Pausing before signaling 11301...

Shell script in process 11301

+ python signal_child.py

CHILD 11302: Setting up signal handler

CHILD 11302: Pausing to wait for signal

PARENT : Signaling child 11301

CHILD 11302: Never received signal

To send signals to descendants without knowing their process id, use a process
group to associate the children so they can be signaled together. The process group

is created with os.setsid(), setting the “session id” to the process id of the current

process. All child processes inherit their session id from their parent, and since it should

only be set in the shell created by Popen and its descendants, os.setsid() should

not be called in the same process where the Popen is created. Instead, the function is

passed to Popen as the preexec_ fn argument so it is run after the fork() inside the

new process, before it uses exec() to run the shell. To signal the entire process group,

use os.killpg() with the pid value from the Popen instance.

import os
import signal im-
port subprocess
import tempfile
import time
import sys

script = ’’’#!/bin/sh

echo "Shell script in process $$"

ptg

496 Processes and Threads

set -x

python signal_child.py

’’’

script_file = tempfile.NamedTemporaryFile(’wt’)

script_file.write(script)

script_file.flush()

def show_setting_sid():

print ’Calling os.setsid() from %s’ % os.getpid()

sys.stdout.flush()

os.setsid()

proc = subprocess.Popen([’sh’, script_file.name],

close_fds=True,

preexec_fn=show_setting_sid,

)

print ’PARENT : Pausing before signaling %s...’ % proc.pid

sys.stdout.flush()

time.sleep(1)

print ’PARENT : Signaling process group %s’ % proc.pid

sys.stdout.flush()

os.killpg(proc.pid, signal.SIGUSR1)

time.sleep(3)

The sequence of events is:

1. The parent program instantiates Popen.

2. The Popen instance forks a new process.

3. The new process runs os.setsid().

4. The new process runs exec() to start the shell.

5. The shell runs the shell script.

6. The shell script forks again, and that process execs Python.

7. Python runs signal_child.py.

8. The parent program signals the process group using the pid of the shell.

9. The shell and Python processes receive the signal.

10. The shell ignores the signal.

11. The Python process running signal_child.py invokes the signal handler.

ptg

10.2. signal—Asynchronous System Events 497

$ python subprocess_signal_setsid.py

Calling os.setsid() from 11305

PARENT : Pausing before signaling 11305...

Shell script in process 11305

+ python signal_child.py

CHILD 11306: Setting up signal handler

CHILD 11306: Pausing to wait for signal

PARENT : Signaling process group 11305

CHILD 11306: Received USR1

See Also:

subprocess (http://docs.python.org/lib/module-subprocess.html) Standard library

documentation for this module.

UNIX Signals and Process Groups
(www.frostbytes.com/∼jimf/papers/signals/signals.html) A good description

of UNIX signaling and how process groups work.

os (page 1108) Although subprocess replaces many of them, the functions for

working with processes found in the os module are still widely used in existing

code.

signal (page 497) More details about using the signal module.

Advanced Programming in the UNIX(R) Environment
(www.amazon.com/Programming-Environment-Addison-Wesley-
Professional-Computing/dp/0201433079/ref=pd_bbs_3/002-2842372-
4768037?ie=UTF8&s=books&qid=1182098757&sr=8-3) Covers

working with multiple processes, such as handling signals, closing duplicated

file descriptors, etc.

pipes UNIX shell command pipeline templates in the standard library.

10.2 signal—Asynchronous System Events

Purpose Send and receive asynchronous system events.

Python Version 1.4 and later

Signals are an operating system feature that provide a means of notifying a program

of an event and having it handled asynchronously. They can be generated by the

system itself or sent from one process to another. Since signals interrupt the regular

www.frostbytes.com/~jimf/papers/signals/signals.html
http://docs.python.org/lib/module-subprocess.html
www.amazon.com/Programming-Environment-Addison-Wesley-Professional-Computing/dp/0201433079/ref=pd_bbs_3/002-2842372-4768037?ie=UTF8&s=books&qid=1182098757&sr=8-3
www.amazon.com/Programming-Environment-Addison-Wesley-Professional-Computing/dp/0201433079/ref=pd_bbs_3/002-2842372-4768037?ie=UTF8&s=books&qid=1182098757&sr=8-3
www.amazon.com/Programming-Environment-Addison-Wesley-Professional-Computing/dp/0201433079/ref=pd_bbs_3/002-2842372-4768037?ie=UTF8&s=books&qid=1182098757&sr=8-3

ptg

498 Processes and Threads

flow of the program, it is possible that some operations (especially I/O) may produce

errors if a signal is received in the middle.

Signals are identified by integers and are defined in the operating system C head-

ers. Python exposes the signals appropriate for the platform as symbols in the signal

module. The examples in this section use SIGINT and SIGUSR1. Both are typically

defined for all UNIX and UNIX-like systems.

Note: Programming with UNIX signal handlers is a nontrivial endeavor. This is

an introduction and does not include all the details needed to use signals success-

fully on every platform. There is some degree of standardization across versions of

UNIX, but there is also some variation. Consult the operating system documentation

if you run into trouble.

10.2.1 Receiving Signals

As with other forms of event-based programming, signals are received by establishing

a callback function, called a signal handler, that is invoked when the signal occurs.

The arguments to the signal handler are the signal number and the stack frame from the

point in the program that was interrupted by the signal.

import signal
import os
import time

def receive_signal(signum, stack):

print ’Received:’, signum

Register signal handlers

signal.signal(signal.SIGUSR1, receive_signal)

signal.signal(signal.SIGUSR2, receive_signal)

Print the process ID so it can be used with ’kill’

to send this program signals.

print ’My PID is:’, os.getpid()

while True:

print ’Waiting...’

time.sleep(3)

ptg

10.2. signal—Asynchronous System Events 499

This example script loops indefinitely, pausing for a few seconds each time.

When a signal comes in, the sleep() call is interrupted and the signal handler

receive_signal() prints the signal number. After the signal handler returns, the

loop continues.

Send signals to the running program using os.kill() or the UNIX command

line program kill.

$ python signal_signal.py

My PID is: 71387

Waiting...

Waiting...

Waiting...

Received: 30

Waiting...

Waiting...

Received: 31

Waiting...

Waiting...

Traceback (most recent call last):

File "signal_signal.py", line 25, in <module>

time.sleep(3)

KeyboardInterrupt

The previous output was produced by running signal_signal.py in one win-

dow, and then in another window running

$ kill -USR1 $pid

$ kill -USR2 $pid

$ kill -INT $pid

10.2.2 Retrieving Registered Handlers

To see what signal handlers are registered for a signal, use getsignal(). Pass the sig-

nal number as argument. The return value is the registered handler or one of the special

values SIG_IGN (if the signal is being ignored), SIG_DFL (if the default behavior is

being used), or None (if the existing signal handler was registered from C, rather than

from Python).

ptg

500 Processes and Threads

import signal

def alarm_received(n, stack):

return

signal.signal(signal.SIGALRM, alarm_received)

signals_to_names = dict(

(getattr(signal, n), n)

for n in dir(signal)

if n.startswith(’SIG’) and ’_’ not in n

)

for s, name in sorted(signals_to_names.items()):

handler = signal.getsignal(s)

if handler is signal.SIG_DFL:

handler = ’SIG_DFL’

elif handler is signal.SIG_IGN:

handler = ’SIG_IGN’

print ’%-10s (%2d):’ % (name, s), handler

Again, since each OS may have different signals defined, the output on other sys-

tems may vary. This is from OS X:

$ python signal_getsignal.py

SIGHUP (1): SIG_DFL

SIGINT (2): <built-in function default_int_handler>

SIGQUIT (3): SIG_DFL

SIGILL (4): SIG_DFL

SIGTRAP (5): SIG_DFL

SIGIOT (6): SIG_DFL

SIGEMT (7): SIG_DFL

SIGFPE (8): SIG_DFL

SIGKILL (9): None

SIGBUS (10): SIG_DFL

SIGSEGV (11): SIG_DFL

SIGSYS (12): SIG_DFL

SIGPIPE (13): SIG_IGN

SIGALRM (14): <function alarm_received at 0x10045b398>

SIGTERM (15): SIG_DFL

SIGURG (16): SIG_DFL

SIGSTOP (17): None

SIGTSTP (18): SIG_DFL

SIGCONT (19): SIG_DFL

ptg

10.2. signal—Asynchronous System Events 501

SIGCHLD (20): SIG_DFL

SIGTTIN (21): SIG_DFL

SIGTTOU (22): SIG_DFL

SIGIO (23): SIG_DFL

SIGXCPU (24): SIG_DFL

SIGXFSZ (25): SIG_IGN

SIGVTALRM (26): SIG_DFL

SIGPROF (27): SIG_DFL

SIGWINCH (28): SIG_DFL

SIGINFO (29): SIG_DFL

SIGUSR1 (30): SIG_DFL

SIGUSR2 (31): SIG_DFL

10.2.3 Sending Signals

The function for sending signals from within Python is os.kill(). Its use is covered

in the section on the os module, Creating Processes with os.fork().

10.2.4 Alarms

Alarms are a special sort of signal, where the program asks the OS to notify it after some

period of time has elapsed. As the standard module documentation for os points out, this

is useful for avoiding blocking indefinitely on an I/O operation or other system call.

import signal
import time

def receive_alarm(signum, stack):

print ’Alarm :’, time.ctime()

Call receive_alarm in 2 seconds

signal.signal(signal.SIGALRM, receive_alarm)

signal.alarm(2)

print ’Before:’, time.ctime()

time.sleep(4)

print ’After :’, time.ctime()

In this example, the call to sleep() does not last the full four seconds.

$ python signal_alarm.py

Before: Sun Aug 17 10:51:09 2008

ptg

502 Processes and Threads

Alarm : Sun Aug 17 10:51:11 2008

After : Sun Aug 17 10:51:11 2008

10.2.5 Ignoring Signals

To ignore a signal, register SIG_IGN as the handler. This script replaces the default

handler for SIGINT with SIG_IGN and registers a handler for SIGUSR1. Then it uses

signal.pause() to wait for a signal to be received.

import signal
import os
import time

def do_exit(sig, stack):

raise SystemExit(’Exiting’)

signal.signal(signal.SIGINT, signal.SIG_IGN)

signal.signal(signal.SIGUSR1, do_exit)

print ’My PID:’, os.getpid()

signal.pause()

Normally, SIGINT (the signal sent by the shell to a program when the user presses

Ctrl-C) raises a KeyboardInterrupt. This example ignores SIGINT and raises

SystemExit when it sees SIGUSR1. Each ^C in the output represents an attempt to

use Ctrl-C to kill the script from the terminal. Using kill -USR1 72598 from an-

other terminal eventually causes the script to exit.

$ python signal_ignore.py

My PID: 72598

^C^C^C^CExiting

10.2.6 Signals and Threads

Signals and threads do not generally mix well because only the main thread of a process

will receive signals. The following example sets up a signal handler, waits for the signal

in one thread, and sends the signal from another thread.

ptg

10.2. signal—Asynchronous System Events 503

import signal
import threading
import os
import time

def signal_handler(num, stack):

print ’Received signal %d in %s’ % \

(num, threading.currentThread().name)

signal.signal(signal.SIGUSR1, signal_handler)

def wait_for_signal():

print ’Waiting for signal in’, threading.currentThread().name

signal.pause()

print ’Done waiting’

Start a thread that will not receive the signal

receiver = threading.Thread(target=wait_for_signal, name=’receiver’)

receiver.start()

time.sleep(0.1)

def send_signal():

print ’Sending signal in’, threading.currentThread().name

os.kill(os.getpid(), signal.SIGUSR1)

sender = threading.Thread(target=send_signal, name=’sender’)

sender.start()

sender.join()

Wait for the thread to see the signal (not going to happen!)

print ’Waiting for’, receiver.name

signal.alarm(2)

receiver.join()

The signal handlers were all registered in the main thread because this is a

requirement of the signal module implementation for Python, regardless of under-

lying platform support for mixing threads and signals. Although the receiver thread

calls signal.pause(), it does not receive the signal. The signal.alarm(2) call

near the end of the example prevents an infinite block, since the receiver thread will

never exit.

ptg

504 Processes and Threads

$ python signal_threads.py

Waiting for signal in receiver

Sending signal in sender

Received signal 30 in MainThread

Waiting for receiver

Alarm clock

Although alarms can be set in any thread, they are always received by the main

thread.

import signal
import time
import threading

def signal_handler(num, stack):

print time.ctime(), ’Alarm in’, threading.currentThread().name

signal.signal(signal.SIGALRM, signal_handler)

def use_alarm():

t_name = threading.currentThread().name

print time.ctime(), ’Setting alarm in’, t_name

signal.alarm(1)

print time.ctime(), ’Sleeping in’, t_name

time.sleep(3)

print time.ctime(), ’Done with sleep in’, t_name

Start a thread that will not receive the signal

alarm_thread = threading.Thread(target=use_alarm,

name=’alarm_thread’)

alarm_thread.start()

time.sleep(0.1)

Wait for the thread to see the signal (not going to happen!)

print time.ctime(), ’Waiting for’, alarm_thread.name

alarm_thread.join()

print time.ctime(), ’Exiting normally’

The alarm does not abort the sleep() call in use_alarm().

ptg

10.3. threading—Manage Concurrent Operations 505

$ python signal_threads_alarm.py

Sun Nov 28 14:26:51 2010 Setting alarm in alarm_thread

Sun Nov 28 14:26:51 2010 Sleeping in alarm_thread

Sun Nov 28 14:26:52 2010 Waiting for alarm_thread

Sun Nov 28 14:26:54 2010 Done with sleep in alarm_thread

Sun Nov 28 14:26:54 2010 Alarm in MainThread

Sun Nov 28 14:26:54 2010 Exiting normally

See Also:
signal (http://docs.python.org/lib/module-signal.html) Standard library documenta-

tion for this module.

Creating Processes with os.fork() (page 1122) The kill() function can be used to

send signals between processes.

10.3 threading—Manage Concurrent Operations

Purpose Builds on the thread module to more easily manage several

threads of execution.

Python Version 1.5.2 and later

Using threads allows a program to run multiple operations concurrently in the same

process space. The threading module builds on the low-level features of thread to

make working with threads easier.

10.3.1 Thread Objects

The simplest way to use a Thread is to instantiate it with a target function and call

start() to let it begin working.

import threading

def worker():

"""thread worker function"""

print ’Worker’

return

threads = []

for i in range(5):

t = threading.Thread(target=worker)

http://docs.python.org/lib/module-signal.html

ptg

506 Processes and Threads

threads.append(t)

t.start()

The output is five lines with "Worker" on each:

$ python threading_simple.py

Worker

Worker

Worker

Worker

Worker

It is useful to be able to spawn a thread and pass it arguments to tell it what work to

do. Any type of object can be passed as an argument to the thread. This example passes

a number, which the thread then prints.

import threading

def worker(num):

"""thread worker function"""

print ’Worker: %s’ % num

return

threads = []

for i in range(5):

t = threading.Thread(target=worker, args=(i,))

threads.append(t)

t.start()

The integer argument is now included in the message printed by each thread:

$ python -u threading_simpleargs.py

Worker: 0

Worker: 1

Worker: 2

Worker: 3

Worker: 4

ptg

10.3. threading—Manage Concurrent Operations 507

10.3.2 Determining the Current Thread

Using arguments to identify or name the thread is cumbersome and unnecessary. Each

Thread instance has a name with a default value that can be changed as the thread

is created. Naming threads is useful in server processes made up of multiple service

threads handling different operations.

import threading
import time

def worker():

print threading.currentThread().getName(), ’Starting’

time.sleep(2)

print threading.currentThread().getName(), ’Exiting’

def my_service():

print threading.currentThread().getName(), ’Starting’

time.sleep(3)

print threading.currentThread().getName(), ’Exiting’

t = threading.Thread(name=’my_service’, target=my_service)

w = threading.Thread(name=’worker’, target=worker)

w2 = threading.Thread(target=worker) # use default name

w.start()

w2.start()

t.start()

The debug output includes the name of the current thread on each line. The lines

with “Thread-1” in the thread name column correspond to the unnamed thread w2.

$ python -u threading_names.py

worker Starting

Thread-1 Starting

my_service Starting

worker Exiting

Thread-1 Exiting

my_service Exiting

ptg

508 Processes and Threads

Most programs do not use print to debug. The logging module supports embed-

ding the thread name in every log message using the formatter code %(threadName)s.

Including thread names in log messages makes it possible to trace those messages back

to their source.

import logging
import threading
import time

logging.basicConfig(

level=logging.DEBUG,

format=’[%(levelname)s] (%(threadName)-10s) %(message)s’,
)

def worker():

logging.debug(’Starting’)

time.sleep(2)

logging.debug(’Exiting’)

def my_service():

logging.debug(’Starting’)

time.sleep(3)

logging.debug(’Exiting’)

t = threading.Thread(name=’my_service’, target=my_service)

w = threading.Thread(name=’worker’, target=worker)

w2 = threading.Thread(target=worker) # use default name

w.start()

w2.start()

t.start()

logging is also thread-safe, so messages from different threads are kept distinct

in the output.

$ python threading_names_log.py

[DEBUG] (worker) Starting

[DEBUG] (Thread-1) Starting

[DEBUG] (my_service) Starting

[DEBUG] (worker) Exiting

[DEBUG] (Thread-1) Exiting

[DEBUG] (my_service) Exiting

ptg

10.3. threading—Manage Concurrent Operations 509

10.3.3 Daemon vs. Non-Daemon Threads

Up to this point, the example programs have implicitly waited to exit until all threads

have completed their work. Programs sometimes spawn a thread as a daemon that runs

without blocking the main program from exiting. Using daemon threads is useful for

services where there may not be an easy way to interrupt the thread, or where letting

the thread die in the middle of its work does not lose or corrupt data (for example, a

thread that generates “heartbeats” for a service monitoring tool). To mark a thread as a

daemon, call its setDaemon() method with True. The default is for threads to not be

daemons.

import threading
import time
import logging

logging.basicConfig(level=logging.DEBUG,

format=’(%(threadName)-10s) %(message)s’,
)

def daemon():

logging.debug(’Starting’)

time.sleep(2)

logging.debug(’Exiting’)

d = threading.Thread(name=’daemon’, target=daemon)

d.setDaemon(True)

def non_daemon():

logging.debug(’Starting’)

logging.debug(’Exiting’)

t = threading.Thread(name=’non-daemon’, target=non_daemon)

d.start()

t.start()

The output does not include the “Exiting” message from the daemon thread,

since all of the non-daemon threads (including the main thread) exit before the daemon

thread wakes up from its two-second sleep.

$ python threading_daemon.py

(daemon) Starting

ptg

510 Processes and Threads

(non-daemon) Starting

(non-daemon) Exiting

To wait until a daemon thread has completed its work, use the join() method.

import threading
import time
import logging

logging.basicConfig(level=logging.DEBUG,

format=’(%(threadName)-10s) %(message)s’,
)

def daemon():

logging.debug(’Starting’)

time.sleep(2)

logging.debug(’Exiting’)

d = threading.Thread(name=’daemon’, target=daemon)

d.setDaemon(True)

def non_daemon():

logging.debug(’Starting’)

logging.debug(’Exiting’)

t = threading.Thread(name=’non-daemon’, target=non_daemon)

d.start()

t.start()

d.join()

t.join()

Waiting for the daemon thread to exit using join() means it has a chance to

produce its “Exiting” message.

$ python threading_daemon_join.py

(daemon) Starting

(non-daemon) Starting

(non-daemon) Exiting

(daemon) Exiting

ptg

10.3. threading—Manage Concurrent Operations 511

By default, join() blocks indefinitely. It is also possible to pass a float value

representing the number of seconds to wait for the thread to become inactive. If the

thread does not complete within the timeout period, join() returns anyway.

import threading
import time
import logging

logging.basicConfig(level=logging.DEBUG,

format=’(%(threadName)-10s) %(message)s’,
)

def daemon():

logging.debug(’Starting’)

time.sleep(2)

logging.debug(’Exiting’)

d = threading.Thread(name=’daemon’, target=daemon)

d.setDaemon(True)

def non_daemon():

logging.debug(’Starting’)

logging.debug(’Exiting’)

t = threading.Thread(name=’non-daemon’, target=non_daemon)

d.start()

t.start()

d.join(1)

print ’d.isAlive()’, d.isAlive()

t.join()

Since the timeout passed is less than the amount of time the daemon thread sleeps,

the thread is still “alive” after join() returns.

$ python threading_daemon_join_timeout.py

(daemon) Starting

(non-daemon) Starting

(non-daemon) Exiting

d.isAlive() True

ptg

512 Processes and Threads

10.3.4 Enumerating All Threads

It is not necessary to retain an explicit handle to all the daemon threads to ensure they

have completed before exiting the main process. enumerate() returns a list of active

Thread instances. The list includes the current thread, and since joining the current

thread introduces a deadlock situation, it must be skipped.

import random
import threading
import time
import logging

logging.basicConfig(level=logging.DEBUG,

format=’(%(threadName)-10s) %(message)s’,
)

def worker():

"""thread worker function"""

t = threading.currentThread()

pause = random.randint(1,5)

logging.debug(’sleeping %s’, pause)

time.sleep(pause)

logging.debug(’ending’)

return

for i in range(3):

t = threading.Thread(target=worker)

t.setDaemon(True)

t.start()

main_thread = threading.currentThread()

for t in threading.enumerate():

if t is main_thread:

continue
logging.debug(’joining %s’, t.getName())

t.join()

Because the worker is sleeping for a random amount of time, the output from this

program may vary.

$ python threading_enumerate.py

(Thread-1) sleeping 5

ptg

10.3. threading—Manage Concurrent Operations 513

(Thread-2) sleeping 4

(Thread-3) sleeping 2

(MainThread) joining Thread-1

(Thread-3) ending

(Thread-2) ending

(Thread-1) ending

(MainThread) joining Thread-2

(MainThread) joining Thread-3

10.3.5 Subclassing Thread

At start-up, a Thread does some basic initialization and then calls its run() method,

which calls the target function passed to the constructor. To create a subclass of Thread,

override run() to do whatever is necessary.

import threading
import logging

logging.basicConfig(level=logging.DEBUG,

format=’(%(threadName)-10s) %(message)s’,
)

class MyThread(threading.Thread):

def run(self):

logging.debug(’running’)

return

for i in range(5):

t = MyThread()

t.start()

The return value of run() is ignored.

$ python threading_subclass.py

(Thread-1) running

(Thread-2) running

(Thread-3) running

(Thread-4) running

(Thread-5) running

ptg

514 Processes and Threads

Because the args and kwargs values passed to the Thread constructor are saved

in private variables using names prefixed with ’__’, they are not easily accessed from

a subclass. To pass arguments to a custom thread type, redefine the constructor to save

the values in an instance attribute visible from the subclass.

import threading
import logging

logging.basicConfig(level=logging.DEBUG,

format=’(%(threadName)-10s) %(message)s’,
)

class MyThreadWithArgs(threading.Thread):

def __init__(self, group=None, target=None, name=None,

args=(), kwargs=None, verbose=None):

threading.Thread.__init__(self, group=group,

target=target,

name=name,

verbose=verbose)

self.args = args

self.kwargs = kwargs

return

def run(self):

logging.debug(’running with %s and %s’,
self.args, self.kwargs)

return

for i in range(5):

t = MyThreadWithArgs(args=(i,),

kwargs={’a’:’A’, ’b’:’B’})

t.start()

MyThreadWithArgs uses the same API as Thread, but another class could easily

change the constructor method to take more or different arguments more directly related

to the purpose of the thread, as with any other class.

$ python threading_subclass_args.py

(Thread-1) running with (0,) and {’a’: ’A’, ’b’: ’B’}

(Thread-2) running with (1,) and {’a’: ’A’, ’b’: ’B’}

(Thread-3) running with (2,) and {’a’: ’A’, ’b’: ’B’}

ptg

10.3. threading—Manage Concurrent Operations 515

(Thread-4) running with (3,) and {’a’: ’A’, ’b’: ’B’}

(Thread-5) running with (4,) and {’a’: ’A’, ’b’: ’B’}

10.3.6 Timer Threads

One example of a reason to subclass Thread is provided by Timer, also included in

threading. A Timer starts its work after a delay and can be canceled at any point

within that delay time period.

import threading
import time
import logging

logging.basicConfig(level=logging.DEBUG,

format=’(%(threadName)-10s) %(message)s’,
)

def delayed():

logging.debug(’worker running’)

return

t1 = threading.Timer(3, delayed)

t1.setName(’t1’)

t2 = threading.Timer(3, delayed)

t2.setName(’t2’)

logging.debug(’starting timers’)

t1.start()

t2.start()

logging.debug(’waiting before canceling %s’, t2.getName())

time.sleep(2)

logging.debug(’canceling %s’, t2.getName())

t2.cancel()

logging.debug(’done’)

The second timer is never run, and the first timer appears to run after the rest of

the main program is done. Since it is not a daemon thread, it is joined implicitly when

the main thread is done.

$ python threading_timer.py

(MainThread) starting timers

ptg

516 Processes and Threads

(MainThread) waiting before canceling t2

(MainThread) canceling t2

(MainThread) done

(t1) worker running

10.3.7 Signaling between Threads

Although the point of using multiple threads is to run separate operations concurrently,

there are times when it is important to be able to synchronize the operations in two

or more threads. Event objects are a simple way to communicate between threads

safely. An Event manages an internal flag that callers can control with the set()

and clear() methods. Other threads can use wait() to pause until the flag is set,

effectively blocking progress until allowed to continue.

import logging
import threading
import time

logging.basicConfig(level=logging.DEBUG,

format=’(%(threadName)-10s) %(message)s’,
)

def wait_for_event(e):

"""Wait for the event to be set before doing anything"""

logging.debug(’wait_for_event starting’)

event_is_set = e.wait()

logging.debug(’event set: %s’, event_is_set)

def wait_for_event_timeout(e, t):

"""Wait t seconds and then timeout"""

while not e.isSet():

logging.debug(’wait_for_event_timeout starting’)

event_is_set = e.wait(t)

logging.debug(’event set: %s’, event_is_set)

if event_is_set:

logging.debug(’processing event’)

else:
logging.debug(’doing other work’)

e = threading.Event()

t1 = threading.Thread(name=’block’,

ptg

10.3. threading—Manage Concurrent Operations 517

target=wait_for_event,

args=(e,))

t1.start()

t2 = threading.Thread(name=’nonblock’,

target=wait_for_event_timeout,

args=(e, 2))

t2.start()

logging.debug(’Waiting before calling Event.set()’)

time.sleep(3)

e.set()

logging.debug(’Event is set’)

The wait() method takes an argument representing the number of seconds to

wait for the event before timing out. It returns a Boolean indicating whether or not the

event is set, so the caller knows why wait() returned. The isSet() method can be

used separately on the event without fear of blocking.

In this example, wait_for_event_timeout() checks the event status without

blocking indefinitely. The wait_for_event() blocks on the call to wait(), which

does not return until the event status changes.

$ python threading_event.py

(block) wait_for_event starting

(nonblock) wait_for_event_timeout starting

(MainThread) Waiting before calling Event.set()

(nonblock) event set: False

(nonblock) doing other work

(nonblock) wait_for_event_timeout starting

(MainThread) Event is set

(block) event set: True

(nonblock) event set: True

(nonblock) processing event

10.3.8 Controlling Access to Resources

In addition to synchronizing the operations of threads, it is also important to be able

to control access to shared resources to prevent corruption or missed data. Python’s

built-in data structures (lists, dictionaries, etc.) are thread-safe as a side effect of having

ptg

518 Processes and Threads

atomic byte-codes for manipulating them (the GIL is not released in the middle of an

update). Other data structures implemented in Python, or simpler types like integers and

floats, do not have that protection. To guard against simultaneous access to an object,

use a Lock object.

import logging
import random
import threading
import time

logging.basicConfig(level=logging.DEBUG,

format=’(%(threadName)-10s) %(message)s’,
)

class Counter(object):
def __init__(self, start=0):

self.lock = threading.Lock()

self.value = start

def increment(self):

logging.debug(’Waiting for lock’)

self.lock.acquire()

try:
logging.debug(’Acquired lock’)

self.value = self.value + 1

finally:
self.lock.release()

def worker(c):

for i in range(2):

pause = random.random()

logging.debug(’Sleeping %0.02f’, pause)

time.sleep(pause)

c.increment()

logging.debug(’Done’)

counter = Counter()

for i in range(2):

t = threading.Thread(target=worker, args=(counter,))

t.start()

logging.debug(’Waiting for worker threads’)

main_thread = threading.currentThread()

ptg

10.3. threading—Manage Concurrent Operations 519

for t in threading.enumerate():

if t is not main_thread:

t.join()

logging.debug(’Counter: %d’, counter.value)

In this example, the worker() function increments a Counter instance, which

manages a Lock to prevent two threads from changing its internal state at the same

time. If the Lock was not used, there is a possibility of missing a change to the value

attribute.

$ python threading_lock.py

(Thread-1) Sleeping 0.94

(Thread-2) Sleeping 0.32

(MainThread) Waiting for worker threads

(Thread-2) Waiting for lock

(Thread-2) Acquired lock

(Thread-2) Sleeping 0.54

(Thread-1) Waiting for lock

(Thread-1) Acquired lock

(Thread-1) Sleeping 0.84

(Thread-2) Waiting for lock

(Thread-2) Acquired lock

(Thread-2) Done

(Thread-1) Waiting for lock

(Thread-1) Acquired lock

(Thread-1) Done

(MainThread) Counter: 4

To find out whether another thread has acquired the lock without holding up

the current thread, pass False for the blocking argument to acquire(). In the next

example, worker() tries to acquire the lock three separate times and counts how many

attempts it has to make to do so. In the meantime, lock_holder() cycles between

holding and releasing the lock, with short pauses in each state used to simulate load.

import logging
import threading
import time

logging.basicConfig(level=logging.DEBUG,

format=’(%(threadName)-10s) %(message)s’,
)

ptg

520 Processes and Threads

def lock_holder(lock):

logging.debug(’Starting’)

while True:

lock.acquire()

try:
logging.debug(’Holding’)

time.sleep(0.5)

finally:
logging.debug(’Not holding’)

lock.release()

time.sleep(0.5)

return

def worker(lock):

logging.debug(’Starting’)

num_tries = 0

num_acquires = 0

while num_acquires < 3:

time.sleep(0.5)

logging.debug(’Trying to acquire’)

have_it = lock.acquire(0)

try:
num_tries += 1

if have_it:

logging.debug(’Iteration %d: Acquired’,

num_tries)

num_acquires += 1

else:
logging.debug(’Iteration %d: Not acquired’,

num_tries)

finally:
if have_it:

lock.release()

logging.debug(’Done after %d iterations’, num_tries)

lock = threading.Lock()

holder = threading.Thread(target=lock_holder,

args=(lock,),

name=’LockHolder’)

holder.setDaemon(True)

holder.start()

ptg

10.3. threading—Manage Concurrent Operations 521

worker = threading.Thread(target=worker,

args=(lock,),

name=’Worker’)

worker.start()

It takes worker() more than three iterations to acquire the lock three separate

times.

$ python threading_lock_noblock.py

(LockHolder) Starting

(LockHolder) Holding

(Worker) Starting

(LockHolder) Not holding

(Worker) Trying to acquire

(Worker) Iteration 1: Acquired

(LockHolder) Holding

(Worker) Trying to acquire

(Worker) Iteration 2: Not acquired

(LockHolder) Not holding

(Worker) Trying to acquire

(Worker) Iteration 3: Acquired

(LockHolder) Holding

(Worker) Trying to acquire

(Worker) Iteration 4: Not acquired

(LockHolder) Not holding

(Worker) Trying to acquire

(Worker) Iteration 5: Acquired

(Worker) Done after 5 iterations

Re-entrant Locks

Normal Lock objects cannot be acquired more than once, even by the same thread. This

limitation can introduce undesirable side effects if a lock is accessed by more than one

function in the same call chain.

import threading

lock = threading.Lock()

print ’First try :’, lock.acquire()

print ’Second try:’, lock.acquire(0)

ptg

522 Processes and Threads

In this case, the second call to acquire() is given a zero timeout to prevent it

from blocking because the lock has been obtained by the first call.

$ python threading_lock_reacquire.py

First try : True

Second try: False

In a situation where separate code from the same thread needs to “reacquire” the

lock, use an RLock instead.

import threading

lock = threading.RLock()

print ’First try :’, lock.acquire()

print ’Second try:’, lock.acquire(0)

The only change to the code from the previous example is substituting RLock

for Lock.

$ python threading_rlock.py

First try : True

Second try: 1

Locks as Context Managers

Locks implement the context manager API and are compatible with the with statement.

Using with removes the need to explicitly acquire and release the lock.

import threading
import logging

logging.basicConfig(level=logging.DEBUG,

format=’(%(threadName)-10s) %(message)s’,
)

def worker_with(lock):

with lock:

logging.debug(’Lock acquired via with’)

ptg

10.3. threading—Manage Concurrent Operations 523

def worker_no_with(lock):

lock.acquire()

try:
logging.debug(’Lock acquired directly’)

finally:
lock.release()

lock = threading.Lock()

w = threading.Thread(target=worker_with, args=(lock,))

nw = threading.Thread(target=worker_no_with, args=(lock,))

w.start()

nw.start()

The two functions worker_with() and worker_no_with() manage the lock

in equivalent ways.

$ python threading_lock_with.py

(Thread-1) Lock acquired via with

(Thread-2) Lock acquired directly

10.3.9 Synchronizing Threads

In addition to using Events, another way of synchronizing threads is through using a

Condition object. Because the Condition uses a Lock, it can be tied to a shared

resource, allowing multiple threads to wait for the resource to be updated. In this ex-

ample, the consumer() threads wait for the Condition to be set before continuing.

The producer() thread is responsible for setting the condition and notifying the other

threads that they can continue.

import logging
import threading
import time

logging.basicConfig(

level=logging.DEBUG,

format=’%(asctime)s (%(threadName)-2s) %(message)s’,
)

def consumer(cond):

"""wait for the condition and use the resource"""

ptg

524 Processes and Threads

logging.debug(’Starting consumer thread’)

t = threading.currentThread()

with cond:

cond.wait()

logging.debug(’Resource is available to consumer’)

def producer(cond):

"""set up the resource to be used by the consumer"""

logging.debug(’Starting producer thread’)

with cond:

logging.debug(’Making resource available’)

cond.notifyAll()

condition = threading.Condition()

c1 = threading.Thread(name=’c1’, target=consumer,

args=(condition,))

c2 = threading.Thread(name=’c2’, target=consumer,

args=(condition,))

p = threading.Thread(name=’p’, target=producer,

args=(condition,))

c1.start()

time.sleep(2)

c2.start()

time.sleep(2)

p.start()

The threads use with to acquire the lock associated with the Condition. Using

the acquire() and release() methods explicitly also works.

$ python threading_condition.py

2010-11-15 09:24:53,544 (c1) Starting consumer thread

2010-11-15 09:24:55,545 (c2) Starting consumer thread

2010-11-15 09:24:57,546 (p) Starting producer thread

2010-11-15 09:24:57,546 (p) Making resource available

2010-11-15 09:24:57,547 (c2) Resource is available to consumer

2010-11-15 09:24:57,547 (c1) Resource is available to consumer

10.3.10 Limiting Concurrent Access to Resources

It is sometimes useful to allow more than one worker access to a resource at a time,

while still limiting the overall number. For example, a connection pool might support

ptg

10.3. threading—Manage Concurrent Operations 525

a fixed number of simultaneous connections, or a network application might support

a fixed number of concurrent downloads. A Semaphore is one way to manage those

connections.

import logging
import random
import threading
import time

logging.basicConfig(

level=logging.DEBUG,

format=’%(asctime)s (%(threadName)-2s) %(message)s’,
)

class ActivePool(object):
def __init__(self):

super(ActivePool, self).__init__()

self.active = []

self.lock = threading.Lock()

def makeActive(self, name):

with self.lock:

self.active.append(name)

logging.debug(’Running: %s’, self.active)

def makeInactive(self, name):

with self.lock:

self.active.remove(name)

logging.debug(’Running: %s’, self.active)

def worker(s, pool):

logging.debug(’Waiting to join the pool’)

with s:

name = threading.currentThread().getName()

pool.makeActive(name)

time.sleep(0.1)

pool.makeInactive(name)

pool = ActivePool()

s = threading.Semaphore(2)

for i in range(4):

t = threading.Thread(target=worker,

name=str(i),

args=(s, pool))

t.start()

ptg

526 Processes and Threads

In this example, the ActivePool class simply serves as a convenient way to track

which threads are able to run at a given moment. A real resource pool would allocate a

connection or some other value to the newly active thread and reclaim the value when

the thread is done. Here, it is just used to hold the names of the active threads to show

that, at most, two are running concurrently.

$ python threading_semaphore.py

2010-11-15 09:24:57,618 (0) Waiting to join the pool

2010-11-15 09:24:57,619 (0) Running: [’0’]

2010-11-15 09:24:57,619 (1) Waiting to join the pool

2010-11-15 09:24:57,619 (1) Running: [’0’, ’1’]

2010-11-15 09:24:57,620 (2) Waiting to join the pool

2010-11-15 09:24:57,620 (3) Waiting to join the pool

2010-11-15 09:24:57,719 (0) Running: [’1’]

2010-11-15 09:24:57,720 (1) Running: []

2010-11-15 09:24:57,721 (2) Running: [’2’]

2010-11-15 09:24:57,721 (3) Running: [’2’, ’3’]

2010-11-15 09:24:57,821 (2) Running: [’3’]

2010-11-15 09:24:57,822 (3) Running: []

10.3.11 Thread-Specific Data

While some resources need to be locked so multiple threads can use them, others need to

be protected so that they are hidden from threads that do not “own” them. The local()

function creates an object capable of hiding values from view in separate threads.

import random
import threading
import logging

logging.basicConfig(level=logging.DEBUG,

format=’(%(threadName)-10s) %(message)s’,
)

def show_value(data):

try:
val = data.value

except AttributeError:
logging.debug(’No value yet’)

else:
logging.debug(’value=%s’, val)

ptg

10.3. threading—Manage Concurrent Operations 527

def worker(data):

show_value(data)

data.value = random.randint(1, 100)

show_value(data)

local_data = threading.local()

show_value(local_data)

local_data.value = 1000

show_value(local_data)

for i in range(2):

t = threading.Thread(target=worker, args=(local_data,))

t.start()

The attribute local_data.value is not present for any thread until it is set in

that thread.

$ python threading_local.py

(MainThread) No value yet

(MainThread) value=1000

(Thread-1) No value yet

(Thread-1) value=71

(Thread-2) No value yet

(Thread-2) value=38

To initialize the settings so all threads start with the same value, use a subclass and

set the attributes in __init__().

import random
import threading
import logging

logging.basicConfig(level=logging.DEBUG,

format=’(%(threadName)-10s) %(message)s’,
)

def show_value(data):

try:
val = data.value

ptg

528 Processes and Threads

except AttributeError:
logging.debug(’No value yet’)

else:
logging.debug(’value=%s’, val)

def worker(data):

show_value(data)

data.value = random.randint(1, 100)

show_value(data)

class MyLocal(threading.local):
def __init__(self, value):

logging.debug(’Initializing %r’, self)

self.value = value

local_data = MyLocal(1000)

show_value(local_data)

for i in range(2):

t = threading.Thread(target=worker, args=(local_data,))

t.start()

__init__() is invoked on the same object (note the id() value), once in each

thread to set the default values.

$ python threading_local_defaults.py

(MainThread) Initializing <__main__.MyLocal object at 0x100e16050>

(MainThread) value=1000

(Thread-1) Initializing <__main__.MyLocal object at 0x100e16050>

(Thread-1) value=1000

(Thread-1) value=19

(Thread-2) Initializing <__main__.MyLocal object at 0x100e16050>

(Thread-2) value=1000

(Thread-2) value=55

See Also:
threading (http://docs.python.org/lib/module-threading.html) Standard library

documentation for this module.

thread Lower-level thread API.

multiprocessing (page 529) An API for working with processes; it mirrors the

threading API.

Queue (page 96) Thread-safe queue, useful for passing messages between threads.

http://docs.python.org/lib/module-threading.html

ptg

10.4. multiprocessing—Manage Processes like Threads 529

10.4 multiprocessing—Manage Processes like Threads

Purpose Provides an API for managing processes.

Python Version 2.6 and later

The multiprocessing module includes an API for dividing up work between mul-

tiple processes based on the API for threading. In some cases, multiprocessing

is a drop-in replacement and can be used instead of threading to take advantage of

multiple CPU cores to avoid computational bottlenecks associated with Python’s global

interpreter lock.

Due to the similarity, the first few examples here are modified from the

threading examples. Features provided by multiprocessing but not available in

threading are covered later.

10.4.1 Multiprocessing Basics

The simplest way to spawn a second process is to instantiate a Process object with a

target function and call start() to let it begin working.

import multiprocessing

def worker():

"""worker function"""

print ’Worker’

return

if __name__ == ’__main__’:

jobs = []

for i in range(5):

p = multiprocessing.Process(target=worker)

jobs.append(p)

p.start()

The output includes the word “Worker” printed five times, although it may not

come out entirely clean, depending on the order of execution, because each process is

competing for access to the output stream.

$ python multiprocessing_simple.py

Worker

Worker

ptg

530 Processes and Threads

Worker

Worker

Worker

It is usually more useful to be able to spawn a process with arguments to

tell it what work to do. Unlike with threading, in order to pass arguments to a

multiprocessing Process, the arguments must be able to be serialized using

pickle. This example passes each worker a number to be printed.

import multiprocessing

def worker(num):

"""thread worker function"""

print ’Worker:’, num

return

if __name__ == ’__main__’:

jobs = []

for i in range(5):

p = multiprocessing.Process(target=worker, args=(i,))

jobs.append(p)

p.start()

The integer argument is now included in the message printed by each worker:

$ python multiprocessing_simpleargs.py

Worker: 0

Worker: 1

Worker: 4

Worker: 2

Worker: 3

10.4.2 Importable Target Functions

One difference between the threading and multiprocessing examples is the extra

protection for __main__ used in the multiprocessing examples. Due to the way

the new processes are started, the child process needs to be able to import the script

containing the target function. Wrapping the main part of the application in a check for

__main__ ensures that it is not run recursively in each child as the module is imported.

Another approach is to import the target function from a separate script. For example,

ptg

10.4. multiprocessing—Manage Processes like Threads 531

multiprocessing_import_main.py uses a worker function defined in a second

module.

import multiprocessing
import multiprocessing_import_worker

if __name__ == ’__main__’:

jobs = []

for i in range(5):

p = multiprocessing.Process(

target=multiprocessing_import_worker.worker,

)

jobs.append(p)

p.start()

The worker function is defined in multiprocessing_import_worker.py.

def worker():

"""worker function"""

print ’Worker’

return

Calling the main program produces output similar to the first example.

$ python multiprocessing_import_main.py

Worker

Worker

Worker

Worker

Worker

10.4.3 Determining the Current Process

Passing arguments to identify or name the process is cumbersome and unnecessary.

Each Process instance has a name with a default value that can be changed as the

process is created. Naming processes is useful for keeping track of them, especially in

applications with multiple types of processes running simultaneously.

import multiprocessing
import time

ptg

532 Processes and Threads

def worker():

name = multiprocessing.current_process().name

print name, ’Starting’

time.sleep(2)

print name, ’Exiting’

def my_service():

name = multiprocessing.current_process().name

print name, ’Starting’

time.sleep(3)

print name, ’Exiting’

if __name__ == ’__main__’:

service = multiprocessing.Process(name=’my_service’,

target=my_service)

worker_1 = multiprocessing.Process(name=’worker 1’,

target=worker)

worker_2 = multiprocessing.Process(target=worker) # default name

worker_1.start()

worker_2.start()

service.start()

The debug output includes the name of the current process on each line. The

lines with Process-3 in the name column correspond to the unnamed process

worker_1.

$ python multiprocessing_names.py

worker 1 Starting

worker 1 Exiting

Process-3 Starting

Process-3 Exiting

my_service Starting

my_service Exiting

10.4.4 Daemon Processes

By default, the main program will not exit until all the children have exited. There are

times when starting a background process that runs without blocking the main program

from exiting is useful, such as in services where there may not be an easy way to

interrupt the worker or where letting it die in the middle of its work does not lose

ptg

10.4. multiprocessing—Manage Processes like Threads 533

or corrupt data (for example, a task that generates “heartbeats” for a service monitoring

tool).

To mark a process as a daemon, set its daemon attribute to True. The default is

for processes to not be daemons.

import multiprocessing
import time
import sys

def daemon():

p = multiprocessing.current_process()

print ’Starting:’, p.name, p.pid

sys.stdout.flush()

time.sleep(2)

print ’Exiting :’, p.name, p.pid

sys.stdout.flush()

def non_daemon():

p = multiprocessing.current_process()

print ’Starting:’, p.name, p.pid

sys.stdout.flush()

print ’Exiting :’, p.name, p.pid

sys.stdout.flush()

if __name__ == ’__main__’:

d = multiprocessing.Process(name=’daemon’, target=daemon)

d.daemon = True

n = multiprocessing.Process(name=’non-daemon’, target=non_daemon)

n.daemon = False

d.start()

time.sleep(1)

n.start()

The output does not include the “Exiting” message from the daemon process, since

all non-daemon processes (including the main program) exit before the daemon process

wakes up from its two-second sleep.

$ python multiprocessing_daemon.py

Starting: daemon 9842

ptg

534 Processes and Threads

Starting: non-daemon 9843

Exiting : non-daemon 9843

The daemon process is terminated automatically before the main program exits,

which avoids leaving orphaned processes running. This can be verified by looking for

the process id value printed when the program runs and then checking for that process

with a command like ps.

10.4.5 Waiting for Processes

To wait until a process has completed its work and exited, use the join() method.

import multiprocessing
import time
import sys

def daemon():

name = multiprocessing.current_process().name

print ’Starting:’, name

time.sleep(2)

print ’Exiting :’, name

def non_daemon():

name = multiprocessing.current_process().name

print ’Starting:’, name

print ’Exiting :’, name

if __name__ == ’__main__’:

d = multiprocessing.Process(name=’daemon’,

target=daemon)

d.daemon = True

n = multiprocessing.Process(name=’non-daemon’,

target=non_daemon)

n.daemon = False

d.start()

time.sleep(1)

n.start()

d.join()

n.join()

ptg

10.4. multiprocessing—Manage Processes like Threads 535

Since the main process waits for the daemon to exit using join(), the “Exiting”

message is printed this time.

$ python multiprocessing_daemon_join.py

Starting: non-daemon

Exiting : non-daemon

Starting: daemon

Exiting : daemon

By default, join() blocks indefinitely. It is also possible to pass a timeout

argument (a float representing the number of seconds to wait for the process to

become inactive). If the process does not complete within the timeout period, join()

returns anyway.

import multiprocessing
import time
import sys

def daemon():

name = multiprocessing.current_process().name

print ’Starting:’, name

time.sleep(2)

print ’Exiting :’, name

def non_daemon():

name = multiprocessing.current_process().name

print ’Starting:’, name

print ’Exiting :’, name

if __name__ == ’__main__’:

d = multiprocessing.Process(name=’daemon’,

target=daemon)

d.daemon = True

n = multiprocessing.Process(name=’non-daemon’,

target=non_daemon)

n.daemon = False

d.start()

n.start()

ptg

536 Processes and Threads

d.join(1)

print ’d.is_alive()’, d.is_alive()

n.join()

Since the timeout passed is less than the amount of time the daemon sleeps, the

process is still “alive” after join() returns.

$ python multiprocessing_daemon_join_timeout.py

Starting: non-daemon

Exiting : non-daemon

d.is_alive() True

10.4.6 Terminating Processes

Although it is better to use the poison pill method of signaling to a process that it should

exit (see Passing Messages to Processes, later in this chapter), if a process appears hung

or deadlocked, it can be useful to be able to kill it forcibly. Calling terminate() on a

process object kills the child process.

import multiprocessing
import time

def slow_worker():

print ’Starting worker’

time.sleep(0.1)

print ’Finished worker’

if __name__ == ’__main__’:

p = multiprocessing.Process(target=slow_worker)

print ’BEFORE:’, p, p.is_alive()

p.start()

print ’DURING:’, p, p.is_alive()

p.terminate()

print ’TERMINATED:’, p, p.is_alive()

p.join()

print ’JOINED:’, p, p.is_alive()

ptg

10.4. multiprocessing—Manage Processes like Threads 537

Note: It is important to join() the process after terminating it in order to give

the process management code time to update the status of the object to reflect the

termination.

$ python multiprocessing_terminate.py

BEFORE: <Process(Process-1, initial)> False

DURING: <Process(Process-1, started)> True

TERMINATED: <Process(Process-1, started)> True

JOINED: <Process(Process-1, stopped[SIGTERM])> False

10.4.7 Process Exit Status

The status code produced when the process exits can be accessed via the exitcode

attribute. The ranges allowed are listed in Table 10.1.

Table 10.1. Multiprocessing Exit Codes

Exit Code Meaning
== 0 No error was produced.

> 0 The process had an error, and exited with that code.

< 0 The process was killed with a signal of -1 * exitcode.

import multiprocessing
import sys
import time

def exit_error():

sys.exit(1)

def exit_ok():

return

def return_value():

return 1

def raises():

raise RuntimeError(’There was an error!’)

ptg

538 Processes and Threads

def terminated():

time.sleep(3)

if __name__ == ’__main__’:

jobs = []

for f in [exit_error, exit_ok, return_value, raises, terminated]:

print ’Starting process for’, f.func_name

j = multiprocessing.Process(target=f, name=f.func_name)

jobs.append(j)

j.start()

jobs[-1].terminate()

for j in jobs:

j.join()

print ’%15s.exitcode = %s’ % (j.name, j.exitcode)

Processes that raise an exception automatically get an exitcode of 1.

$ python multiprocessing_exitcode.py

Starting process for exit_error

Starting process for exit_ok

Starting process for return_value

Starting process for raises

Starting process for terminated

Process raises:

Traceback (most recent call last):

File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python

2.7/multiprocessing/process.py", line 232, in _bootstrap

self.run()

File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python

2.7/multiprocessing/process.py", line 88, in run

self._target(*self._args, **self._kwargs)

File "multiprocessing_exitcode.py", line 24, in raises

raise RuntimeError(’There was an error!’)

RuntimeError: There was an error!

exit_error.exitcode = 1

exit_ok.exitcode = 0

return_value.exitcode = 0

raises.exitcode = 1

terminated.exitcode = -15

ptg

10.4. multiprocessing—Manage Processes like Threads 539

10.4.8 Logging

When debugging concurrency issues, it can be useful to have access to the internals

of the objects provided by multiprocessing. There is a convenient module-level

function to enable logging called log_to_stderr(). It sets up a logger object using

logging and adds a handler so that log messages are sent to the standard error channel.

import multiprocessing
import logging
import sys

def worker():

print ’Doing some work’

sys.stdout.flush()

if __name__ == ’__main__’:

multiprocessing.log_to_stderr(logging.DEBUG)

p = multiprocessing.Process(target=worker)

p.start()

p.join()

By default, the logging level is set to NOTSET so no messages are produced. Pass

a different level to initialize the logger to the level of detail desired.

$ python multiprocessing_log_to_stderr.py

[INFO/Process-1] child process calling self.run()

Doing some work

[INFO/Process-1] process shutting down

[DEBUG/Process-1] running all "atexit" finalizers with priority >= 0

[DEBUG/Process-1] running the remaining "atexit" finalizers

[INFO/Process-1] process exiting with exitcode 0

[INFO/MainProcess] process shutting down

[DEBUG/MainProcess] running all "atexit" finalizers with priority >= 0

[DEBUG/MainProcess] running the remaining "atexit" finalizers

To manipulate the logger directly (change its level setting or add handlers), use

get_logger().

import multiprocessing
import logging

ptg

540 Processes and Threads

import sys

def worker():

print ’Doing some work’

sys.stdout.flush()

if __name__ == ’__main__’:

multiprocessing.log_to_stderr()

logger = multiprocessing.get_logger()

logger.setLevel(logging.INFO)

p = multiprocessing.Process(target=worker)

p.start()

p.join()

The logger can also be configured through the logging configuration file API,

using the name multiprocessing.

$ python multiprocessing_get_logger.py

[INFO/Process-1] child process calling self.run()

Doing some work

[INFO/Process-1] process shutting down

[INFO/Process-1] process exiting with exitcode 0

[INFO/MainProcess] process shutting down

10.4.9 Subclassing Process

Although the simplest way to start a job in a separate process is to use Process and

pass a target function, it is also possible to use a custom subclass.

import multiprocessing

class Worker(multiprocessing.Process):

def run(self):

print ’In %s’ % self.name

return

if __name__ == ’__main__’:

jobs = []

for i in range(5):

p = Worker()

jobs.append(p)

ptg

10.4. multiprocessing—Manage Processes like Threads 541

p.start()

for j in jobs:

j.join()

The derived class should override run() to do its work.

$ python multiprocessing_subclass.py

In Worker-1

In Worker-2

In Worker-3

In Worker-4

In Worker-5

10.4.10 Passing Messages to Processes

As with threads, a commonly used pattern for multiple processes is to divide a job up

among several workers to run in parallel. Effective use of multiple processes usually

requires some communication between them, so that work can be divided and results

can be aggregated. A simple way to communicate between processes with multipro-

cessing is to use a Queue to pass messages back and forth. Any object that can be

serialized with pickle can pass through a Queue.

import multiprocessing

class MyFancyClass(object):

def __init__(self, name):

self.name = name

def do_something(self):

proc_name = multiprocessing.current_process().name

print ’Doing something fancy in %s for %s!’ % \

(proc_name, self.name)

def worker(q):

obj = q.get()

obj.do_something()

if __name__ == ’__main__’:

queue = multiprocessing.Queue()

ptg

542 Processes and Threads

p = multiprocessing.Process(target=worker, args=(queue,))

p.start()

queue.put(MyFancyClass(’Fancy Dan’))

Wait for the worker to finish

queue.close()

queue.join_thread()

p.join()

This short example passes only a single message to a single worker, and then the

main process waits for the worker to finish.

$ python multiprocessing_queue.py

Doing something fancy in Process-1 for Fancy Dan!

A more complex example shows how to manage several workers consuming data

from a JoinableQueue and passing results back to the parent process. The poison
pill technique is used to stop the workers. After setting up the real tasks, the main

program adds one “stop” value per worker to the job queue. When a worker encounters

the special value, it breaks out of its processing loop. The main process uses the task

queue’s join() method to wait for all the tasks to finish before processing the results.

import multiprocessing
import time

class Consumer(multiprocessing.Process):

def __init__(self, task_queue, result_queue):

multiprocessing.Process.__init__(self)

self.task_queue = task_queue

self.result_queue = result_queue

def run(self):

proc_name = self.name

while True:

next_task = self.task_queue.get()

if next_task is None:

Poison pill means shutdown

ptg

10.4. multiprocessing—Manage Processes like Threads 543

print ’%s: Exiting’ % proc_name

self.task_queue.task_done()

break
print ’%s: %s’ % (proc_name, next_task)

answer = next_task()

self.task_queue.task_done()

self.result_queue.put(answer)

return

class Task(object):
def __init__(self, a, b):

self.a = a

self.b = b

def __call__(self):

time.sleep(0.1) # pretend to take some time to do the work

return ’%s * %s = %s’ % (self.a, self.b, self.a * self.b)

def __str__(self):

return ’%s * %s’ % (self.a, self.b)

if __name__ == ’__main__’:

Establish communication queues

tasks = multiprocessing.JoinableQueue()

results = multiprocessing.Queue()

Start consumers

num_consumers = multiprocessing.cpu_count() * 2

print ’Creating %d consumers’ % num_consumers

consumers = [Consumer(tasks, results)

for i in xrange(num_consumers)]

for w in consumers:

w.start()

Enqueue jobs

num_jobs = 10

for i in xrange(num_jobs):

tasks.put(Task(i, i))

Add a poison pill for each consumer

for i in xrange(num_consumers):

tasks.put(None)

ptg

544 Processes and Threads

Wait for all the tasks to finish

tasks.join()

Start printing results

while num_jobs:

result = results.get()

print ’Result:’, result

num_jobs -= 1

Although the jobs enter the queue in order, their execution is parallelized so there

is no guarantee about the order in which they will be completed.

$ python -u multiprocessing_producer_consumer.py

Creating 4 consumers

Consumer-1: 0 * 0

Consumer-2: 1 * 1

Consumer-3: 2 * 2

Consumer-4: 3 * 3

Consumer-4: 4 * 4

Consumer-1: 5 * 5

Consumer-3: 6 * 6

Consumer-2: 7 * 7

Consumer-1: 8 * 8

Consumer-4: 9 * 9

Consumer-3: Exiting

Consumer-2: Exiting

Consumer-1: Exiting

Consumer-4: Exiting

Result: 0 * 0 = 0

Result: 3 * 3 = 9

Result: 2 * 2 = 4

Result: 1 * 1 = 1

Result: 5 * 5 = 25

Result: 4 * 4 = 16

Result: 6 * 6 = 36

Result: 7 * 7 = 49

Result: 9 * 9 = 81

Result: 8 * 8 = 64

ptg

10.4. multiprocessing—Manage Processes like Threads 545

10.4.11 Signaling between Processes

The Event class provides a simple way to communicate state information between

processes. An event can be toggled between set and unset states. Users of the event

object can wait for it to change from unset to set, using an optional timeout value.

import multiprocessing
import time

def wait_for_event(e):

"""Wait for the event to be set before doing anything"""

print ’wait_for_event: starting’

e.wait()

print ’wait_for_event: e.is_set()->’, e.is_set()

def wait_for_event_timeout(e, t):

"""Wait t seconds and then timeout"""

print ’wait_for_event_timeout: starting’

e.wait(t)

print ’wait_for_event_timeout: e.is_set()->’, e.is_set()

if __name__ == ’__main__’:

e = multiprocessing.Event()

w1 = multiprocessing.Process(name=’block’,

target=wait_for_event,

args=(e,))

w1.start()

w2 = multiprocessing.Process(name=’nonblock’,

target=wait_for_event_timeout,

args=(e, 2))

w2.start()

print ’main: waiting before calling Event.set()’

time.sleep(3)

e.set()

print ’main: event is set’

When wait() times out it returns without an error. The caller is responsible for

checking the state of the event using is_set().

ptg

546 Processes and Threads

$ python -u multiprocessing_event.py

main: waiting before calling Event.set()

wait_for_event: starting

wait_for_event_timeout: starting

wait_for_event_timeout: e.is_set()-> False

main: event is setwait_for_event: e.is_set()->

True

10.4.12 Controlling Access to Resources

In situations when a single resource needs to be shared between multiple processes, a

Lock can be used to avoid conflicting accesses.

import multiprocessing
import sys

def worker_with(lock, stream):

with lock:

stream.write(’Lock acquired via with\n’)

def worker_no_with(lock, stream):

lock.acquire()

try:
stream.write(’Lock acquired directly\n’)

finally:
lock.release()

lock = multiprocessing.Lock()

w = multiprocessing.Process(target=worker_with,

args=(lock, sys.stdout))

nw = multiprocessing.Process(target=worker_no_with,

args=(lock, sys.stdout))

w.start()

nw.start()

w.join()

nw.join()

In this example, the messages printed to the console may be jumbled together if

the two processes do not synchronize their access of the output stream with the lock.

ptg

10.4. multiprocessing—Manage Processes like Threads 547

$ python multiprocessing_lock.py

Lock acquired via with

Lock acquired directly

10.4.13 Synchronizing Operations

Condition objects can be used to synchronize parts of a workflow so that some run in

parallel but others run sequentially, even if they are in separate processes.

import multiprocessing
import time

def stage_1(cond):

"""perform first stage of work,

then notify stage_2 to continue

"""

name = multiprocessing.current_process().name

print ’Starting’, name

with cond:

print ’%s done and ready for stage 2’ % name

cond.notify_all()

def stage_2(cond):

"""wait for the condition telling us stage_1 is done"""

name = multiprocessing.current_process().name

print ’Starting’, name

with cond:

cond.wait()

print ’%s running’ % name

if __name__ == ’__main__’:

condition = multiprocessing.Condition()

s1 = multiprocessing.Process(name=’s1’,

target=stage_1,

args=(condition,))

s2_clients = [

multiprocessing.Process(name=’stage_2[%d]’ % i,

target=stage_2,

args=(condition,))

for i in range(1, 3)

]

ptg

548 Processes and Threads

for c in s2_clients:

c.start()

time.sleep(1)

s1.start()

s1.join()

for c in s2_clients:

c.join()

In this example, two processes run the second stage of a job in parallel, but only

after the first stage is done.

$ python multiprocessing_condition.py

Starting s1

s1 done and ready for stage 2

Starting stage_2[1]

stage_2[1] running

Starting stage_2[2]

stage_2[2] running

10.4.14 Controlling Concurrent Access to Resources

It may be useful to allow more than one worker access to a resource at a time, while still

limiting the overall number. For example, a connection pool might support a fixed num-

ber of simultaneous connections, or a network application might support a fixed number

of concurrent downloads. A Semaphore is one way to manage those connections.

import random
import multiprocessing
import time

class ActivePool(object):
def __init__(self):

super(ActivePool, self).__init__()

self.mgr = multiprocessing.Manager()

self.active = self.mgr.list()

self.lock = multiprocessing.Lock()

def makeActive(self, name):

with self.lock:

self.active.append(name)

def makeInactive(self, name):

ptg

10.4. multiprocessing—Manage Processes like Threads 549

with self.lock:

self.active.remove(name)

def __str__(self):

with self.lock:

return str(self.active)

def worker(s, pool):

name = multiprocessing.current_process().name

with s:

pool.makeActive(name)

print ’Now running: %s’ % str(pool)

time.sleep(random.random())

pool.makeInactive(name)

if __name__ == ’__main__’:

pool = ActivePool()

s = multiprocessing.Semaphore(3)

jobs = [

multiprocessing.Process(target=worker,

name=str(i),

args=(s, pool),

)

for i in range(10)

]

for j in jobs:

j.start()

for j in jobs:

j.join()

print ’Now running: %s’ % str(pool)

In this example, the ActivePool class simply serves as a convenient way to track

which processes are running at a given moment. A real resource pool would probably

allocate a connection or some other value to the newly active process and reclaim the

value when the task is done. Here, the pool is just used to hold the names of the active

processes to show that only three are running concurrently.

$ python multiprocessing_semaphore.py

Now running: [’0’, ’1’, ’3’]

Now running: [’0’, ’1’, ’3’]

Now running: [’3’, ’2’, ’5’]

ptg

550 Processes and Threads

Now running: [’0’, ’1’, ’3’]

Now running: [’1’, ’3’, ’2’]

Now running: [’2’, ’6’, ’7’]

Now running: [’3’, ’2’, ’6’]

Now running: [’6’, ’4’, ’8’]

Now running: [’4’, ’8’, ’9’]

Now running: [’6’, ’7’, ’4’]

Now running: [’1’, ’3’, ’2’]

Now running: [’3’, ’2’, ’5’]

Now running: [’6’, ’7’, ’4’]

Now running: [’6’, ’7’, ’4’]

Now running: []

Now running: []

Now running: []

Now running: []

Now running: []

Now running: []

10.4.15 Managing Shared State

In the previous example, the list of active processes is maintained centrally in the

ActivePool instance via a special type of list object created by a Manager. The

Manager is responsible for coordinating shared information state between all of its

users.

import multiprocessing
import pprint

def worker(d, key, value):

d[key] = value

if __name__ == ’__main__’:

mgr = multiprocessing.Manager()

d = mgr.dict()

jobs = [multiprocessing.Process(target=worker, args=(d, i, i*2))

for i in range(10)

]

for j in jobs:

j.start()

for j in jobs:

ptg

10.4. multiprocessing—Manage Processes like Threads 551

j.join()

print ’Results:’, d

By creating the list through the manager, it is shared and updates are seen in all

processes. Dictionaries are also supported.

$ python multiprocessing_manager_dict.py

Results: {0: 0, 1: 2, 2: 4, 3: 6, 4: 8, 5: 10, 6: 12, 7: 14,

8: 16, 9: 18}

10.4.16 Shared Namespaces

In addition to dictionaries and lists, a Manager can create a shared Namespace.

import multiprocessing

def producer(ns, event):

ns.value = ’This is the value’

event.set()

def consumer(ns, event):

try:
value = ns.value

except Exception, err:

print ’Before event, error:’, str(err)

event.wait()

print ’After event:’, ns.value

if __name__ == ’__main__’:

mgr = multiprocessing.Manager()

namespace = mgr.Namespace()

event = multiprocessing.Event()

p = multiprocessing.Process(target=producer,

args=(namespace, event))

c = multiprocessing.Process(target=consumer,

args=(namespace, event))

c.start()

p.start()

ptg

552 Processes and Threads

c.join()

p.join()

Any named value added to the Namespace is visible to all clients that receive the

Namespace instance.

$ python multiprocessing_namespaces.py

Before event, error: ’Namespace’ object has no attribute ’value’

After event: This is the value

It is important to know that updates to the contents of mutable values in the name-

space are not propagated automatically.

import multiprocessing

def producer(ns, event):

DOES NOT UPDATE GLOBAL VALUE!

ns.my_list.append(’This is the value’)

event.set()

def consumer(ns, event):

print ’Before event:’, ns.my_list

event.wait()

print ’After event :’, ns.my_list

if __name__ == ’__main__’:

mgr = multiprocessing.Manager()

namespace = mgr.Namespace()

namespace.my_list = []

event = multiprocessing.Event()

p = multiprocessing.Process(target=producer,

args=(namespace, event))

c = multiprocessing.Process(target=consumer,

args=(namespace, event))

c.start()

p.start()

c.join()

p.join()

ptg

10.4. multiprocessing—Manage Processes like Threads 553

To update the list, attach it to the namespace object again.

$ python multiprocessing_namespaces_mutable.py

Before event: []

After event : []

10.4.17 Process Pools

The Pool class can be used to manage a fixed number of workers for simple cases

where the work to be done can be broken up and distributed between workers indepen-

dently. The return values from the jobs are collected and returned as a list. The pool

arguments include the number of processes and a function to run when starting the task

process (invoked once per child).

import multiprocessing

def do_calculation(data):

return data * 2

def start_process():

print ’Starting’, multiprocessing.current_process().name

if __name__ == ’__main__’:

inputs = list(range(10))

print ’Input :’, inputs

builtin_outputs = map(do_calculation, inputs)

print ’Built-in:’, builtin_outputs

pool_size = multiprocessing.cpu_count() * 2

pool = multiprocessing.Pool(processes=pool_size,

initializer=start_process,

)

pool_outputs = pool.map(do_calculation, inputs)

pool.close() # no more tasks

pool.join() # wrap up current tasks

print ’Pool :’, pool_outputs

The result of the map() method is functionally equivalent to the built-in map(),

except that individual tasks run in parallel. Since the pool is processing its inputs in

ptg

554 Processes and Threads

parallel, close() and join() can be used to synchronize the main process with the

task processes to ensure proper cleanup.

$ python multiprocessing_pool.py

Input : [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Built-in: [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

Starting PoolWorker-3

Starting PoolWorker-1

Starting PoolWorker-4

Starting PoolWorker-2

Pool : [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

By default, Pool creates a fixed number of worker processes and passes jobs to

them until there are no more jobs. Setting the maxtasksperchild parameter tells the pool

to restart a worker process after it has finished a few tasks, preventing long-running

workers from consuming ever-more system resources.

import multiprocessing

def do_calculation(data):

return data * 2

def start_process():

print ’Starting’, multiprocessing.current_process().name

if __name__ == ’__main__’:

inputs = list(range(10))

print ’Input :’, inputs

builtin_outputs = map(do_calculation, inputs)

print ’Built-in:’, builtin_outputs

pool_size = multiprocessing.cpu_count() * 2

pool = multiprocessing.Pool(processes=pool_size,

initializer=start_process,

maxtasksperchild=2,

)

pool_outputs = pool.map(do_calculation, inputs)

pool.close() # no more tasks

pool.join() # wrap up current tasks

print ’Pool :’, pool_outputs

ptg

10.4. multiprocessing—Manage Processes like Threads 555

The pool restarts the workers when they have completed their allotted tasks, even

if there is no more work. In this output, eight workers are created, even though there

are only ten tasks and each worker can complete two of them at a time.

$ python multiprocessing_pool_maxtasksperchild.py

Input : [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Built-in: [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

Starting PoolWorker-1

Starting PoolWorker-2

Starting PoolWorker-3

Starting PoolWorker-4

Starting PoolWorker-5

Starting PoolWorker-6

Starting PoolWorker-7

Starting PoolWorker-8

Pool : [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

10.4.18 Implementing MapReduce

The Pool class can be used to create a simple single-server MapReduce implemen-

tation. Although it does not give the full benefits of distributed processing, it does

illustrate how easy it is to break down some problems into distributable units of

work.

In a MapReduce-based system, input data is broken down into chunks for process-

ing by different worker instances. Each chunk of input data is mapped to an intermedi-

ate state using a simple transformation. The intermediate data is then collected together

and partitioned based on a key value so that all related values are together. Finally, the

partitioned data is reduced to a result set.

import collections
import itertools
import multiprocessing

class SimpleMapReduce(object):

def __init__(self, map_func, reduce_func, num_workers=None):

"""

map_func

ptg

556 Processes and Threads

Function to map inputs to intermediate data. Takes as

argument one input value and returns a tuple with the key

and a value to be reduced.

reduce_func

Function to reduce partitioned version of intermediate data

to final output. Takes as argument a key as produced by

map_func and a sequence of the values associated with that

key.

num_workers

The number of workers to create in the pool. Defaults to

the number of CPUs available on the current host.

"""

self.map_func = map_func

self.reduce_func = reduce_func

self.pool = multiprocessing.Pool(num_workers)

def partition(self, mapped_values):

"""Organize the mapped values by their key.

Returns an unsorted sequence of tuples with a key

and a sequence of values.

"""

partitioned_data = collections.defaultdict(list)

for key, value in mapped_values:

partitioned_data[key].append(value)

return partitioned_data.items()

def __call__(self, inputs, chunksize=1):

"""Process the inputs through the map and reduce functions

given.

inputs

An iterable containing the input data to be processed.

chunksize=1

The portion of the input data to hand to each worker. This

can be used to tune performance during the mapping phase.

"""

map_responses = self.pool.map(self.map_func,

inputs,

ptg

10.4. multiprocessing—Manage Processes like Threads 557

chunksize=chunksize)

partitioned_data = self.partition(

itertools.chain(*map_responses)

)

reduced_values = self.pool.map(self.reduce_func,

partitioned_data)

return reduced_values

The following example script uses SimpleMapReduce to count the “words” in

the reStructuredText source for this article, ignoring some of the markup.

import multiprocessing
import string

from multiprocessing_mapreduce import SimpleMapReduce

def file_to_words(filename):

"""Read a file and return a sequence of

(word, occurrences) values.

"""

STOP_WORDS = set([

’a’, ’an’, ’and’, ’are’, ’as’, ’be’, ’by’, ’for’, ’if’,

’in’, ’is’, ’it’, ’of’, ’or’, ’py’, ’rst’, ’that’, ’the’,

’to’, ’with’,

])

TR = string.maketrans(string.punctuation,

’ ’ * len(string.punctuation))

print multiprocessing.current_process().name, ’reading’, filename

output = []

with open(filename, ’rt’) as f:

for line in f:

if line.lstrip().startswith(’..’): # Skip comment lines

continue
line = line.translate(TR) # Strip punctuation

for word in line.split():

word = word.lower()

if word.isalpha() and word not in STOP_WORDS:

output.append((word, 1))

return output

def count_words(item):

ptg

558 Processes and Threads

"""Convert the partitioned data for a word to a

tuple containing the word and the number of occurrences.

"""

word, occurrences = item

return (word, sum(occurrences))

if __name__ == ’__main__’:

import operator
import glob

input_files = glob.glob(’*.rst’)

mapper = SimpleMapReduce(file_to_words, count_words)

word_counts = mapper(input_files)

word_counts.sort(key=operator.itemgetter(1))

word_counts.reverse()

print ’\nTOP 20 WORDS BY FREQUENCY\n’
top20 = word_counts[:20]

longest = max(len(word) for word, count in top20)

for word, count in top20:

print ’%-*s: %5s’ % (longest+1, word, count)

The file_to_words() function converts each input file to a sequence of tuples

containing the word and the number 1 (representing a single occurrence). The data

is divided up by partition() using the word as the key, so the resulting structure

consists of a key and a sequence of 1 values representing each occurrence of the word.

The partitioned data is converted to a set of tuples containing a word and the count for

that word by count_words() during the reduction phase.

$ python multiprocessing_wordcount.py

PoolWorker-1 reading basics.rst

PoolWorker-1 reading index.rst

PoolWorker-2 reading communication.rst

PoolWorker-2 reading mapreduce.rst

TOP 20 WORDS BY FREQUENCY

process : 81

multiprocessing : 43

ptg

10.4. multiprocessing—Manage Processes like Threads 559

worker : 38

after : 34

starting : 33

running : 32

processes : 32

python : 31

start : 29

class : 28

literal : 27

header : 27

pymotw : 27

end : 27

daemon : 23

now : 22

func : 21

can : 21

consumer : 20

mod : 19

See Also:
multiprocessing (http://docs.python.org/library/multiprocessing.html) The stan-

dard library documentation for this module.

MapReduce (http://en.wikipedia.org/wiki/MapReduce) Overview of MapReduce

on Wikipedia.

MapReduce: Simplified Data Processing on Large Clusters
(http://labs.google.com/papers/mapreduce.html) Google Labs presentation

and paper on MapReduce.

operator (page 153) Operator tools such as itemgetter().

threading (page 505) High-level API for working with threads.

http://docs.python.org/library/multiprocessing.html
http://en.wikipedia.org/wiki/MapReduce
http://labs.google.com/papers/mapreduce.html

ptg

This page intentionally left blank

ptg

Chapter 11

NETWORKING

Network communication is used to retrieve data needed for an algorithm running

locally, share information for distributed processing, and manage cloud services.

Python’s standard library comes complete with modules for creating network services,

as well as for accessing existing services remotely.

The low-level socket library provides direct access to the native C socket library

and can be used to communicate with any network service. select watches multiple

sockets simultaneously and is useful for allowing network servers to communicate with

multiple clients simultaneously.

The frameworks in SocketServer abstract out a lot of the repetitive work neces-

sary to create a new network server. The classes can be combined to create servers that

fork or use threads and support TCP or UDP. Only the actual message handling needs

to be provided by the application.

asyncore implements an asynchronous networking stack with a callback-based

API. It encapsulates the polling loop and buffering, and invokes appropriate handlers

when data is received. The framework in asynchat simplifies the work needed to

create bidirectional message-based protocols on top of asyncore.

11.1 socket—Network Communication

Purpose Provides access to network communication.

Python Version 1.4 and later

The socket module exposes the low-level C API for communicating over a network

using the BSD socket interface. It includes the socket class, for handling the actual

data channel, and also includes functions for network-related tasks, such as converting

a server’s name to an address and formatting data to be sent across the network.

561

ptg

562 Networking

11.1.1 Addressing, Protocol Families, and Socket Types

A socket is one endpoint of a communication channel used by programs to pass data

back and forth locally or across the Internet. Sockets have two primary properties con-

trolling the way they send data: the address family controls the OSI network layer pro-

tocol used, and the socket type controls the transport layer protocol.

Python supports three address families. The most common, AF_INET, is used for

IPv4 Internet addressing. IPv4 addresses are four bytes long and are usually represented

as a sequence of four numbers, one per byte, separated by dots (e.g., 10.1.1.5 and

127.0.0.1). These values are more commonly referred to as “IP addresses.” Almost

all Internet networking currently is done using IP version 4.

AF_INET6 is used for IPv6 Internet addressing. IPv6 is the “next generation” ver-

sion of the Internet protocol. It supports 128-bit addresses, traffic shaping, and rout-

ing features not available under IPv4. Adoption of IPv6 is still limited, but continues

to grow.

AF_UNIX is the address family for UNIX Domain Sockets (UDS), an inter-process

communication protocol available on POSIX-compliant systems. The implementation

of UDS typically allows the operating system to pass data directly from process to

process, without going through the network stack. This is more efficient than using

AF_INET, but because the file system is used as the namespace for addressing, UDS is

restricted to processes on the same system. The appeal of using UDS over other IPC

mechanisms, such as named pipes or shared memory, is that the programming interface

is the same as for IP networking. This means the application can take advantage of

efficient communication when running on a single host, but use the same code when

sending data across the network.

Note: The AF_UNIX constant is only defined on systems where UDS is supported.

The socket type is usually either SOCK_DGRAM for user datagram protocol (UDP)

or SOCK_STREAM for transmission control protocol (TCP). UDP does not require trans-

mission handshaking or other setup, but offers lower reliability of delivery. UDP mes-

sages may be delivered out of order, more than once, or not at all. TCP, by contrast,

ensures that each message is delivered exactly once and in the correct order. That

extra reliability may impose additional latency, however, since packets may need to

be retransmitted. Most application protocols that deliver a large amount of data, such

as HTTP, are built on top of TCP. UDP is commonly used for protocols where order is

less important (since the message fits in a single packet, e.g., DNS), or for multicasting
(sending the same data to several hosts).

ptg

11.1. socket—Network Communication 563

Note: Python’s socket module supports other socket types, but they are less com-

monly used and so are not covered here. Refer to the standard library documentation

for more details.

Looking Up Hosts on the Network

socket includes functions to interface with the domain name services on the network

so a program can convert the host name of a server into its numerical network address.

Applications do not need to convert addresses explicitly before using them to connect

to a server, but it can be useful when reporting errors to include the numerical address

as well as the name value being used.

To find the official name of the current host, use gethostname().

import socket

print socket.gethostname()

The name returned will depend on the network settings for the current system,

and it may change if it is on a different network (such as a laptop attached to a wire-

less LAN).

$ python socket_gethostname.py

farnsworth.hellfly.net

Use gethostbyname() to consult the operating system hostname resolution API

and convert the name of a server to its numerical address.

import socket

for host in [’homer’, ’www’, ’www.python.org’, ’nosuchname’]:

try:
print ’%s : %s’ % (host, socket.gethostbyname(host))

except socket.error, msg:

print ’%s : %s’ % (host, msg)

If the DNS configuration of the current system includes one or more domains in

the search, the name argument does not need to be a fully qualified name (i.e., it does

not need to include the domain name as well as the base hostname). If the name cannot

be found, an exception of type socket.error is raised.

ptg

564 Networking

$ python socket_gethostbyname.py

homer : 192.168.1.8

www : 192.168.1.8

www.python.org : 82.94.164.162

nosuchname : [Errno 8] nodename nor servname provided, or not known

For access to more naming information about a server, use the function

gethostbyname_ex(). It returns the canonical hostname of the server, any aliases,

and all the available IP addresses that can be used to reach it.

import socket

for host in [’homer’, ’www’, ’www.python.org’, ’nosuchname’]:

print host

try:
hostname, aliases, addresses = socket.gethostbyname_ex(host)

print ’ Hostname:’, hostname

print ’ Aliases :’, aliases

print ’ Addresses:’, addresses

except socket.error as msg:

print ’ERROR:’, msg

print

Having all known IP addresses for a server lets a client implement its own load-

balancing or fail-over algorithms.

$ python socket_gethostbyname_ex.py

homer

Hostname: homer.hellfly.net

Aliases : []

Addresses: [’192.168.1.8’]

www

Hostname: homer.hellfly.net

Aliases : [’www.hellfly.net’]

Addresses: [’192.168.1.8’]

www.python.org

Hostname: www.python.org

ptg

11.1. socket—Network Communication 565

Aliases : []

Addresses: [’82.94.164.162’]

nosuchname

ERROR: [Errno 8] nodename nor servname provided, or not known

Use getfqdn() to convert a partial name to a fully qualified domain name.

import socket

for host in [’homer’, ’www’]:

print ’%6s : %s’ % (host, socket.getfqdn(host))

The name returned will not necessarily match the input argument in any way if the

input is an alias, such as www is here.

$ python socket_getfqdn.py

homer : homer.hellfly.net

www : homer.hellfly.net

When the address of a server is available, use gethostbyaddr() to do a

“reverse” lookup for the name.

import socket

hostname, aliases, addresses = socket.gethostbyaddr(’192.168.1.8’)

print ’Hostname :’, hostname

print ’Aliases :’, aliases

print ’Addresses:’, addresses

The return value is a tuple containing the full hostname, any aliases, and all IP

addresses associated with the name.

$ python socket_gethostbyaddr.py

Hostname : homer.hellfly.net

Aliases : [’8.1.168.192.in-addr.arpa’]

Addresses: [’192.168.1.8’]

ptg

566 Networking

Finding Service Information

In addition to an IP address, each socket address includes an integer port number. Many

applications can run on the same host, listening on a single IP address, but only one

socket at a time can use a port at that address. The combination of IP address, protocol,

and port number uniquely identify a communication channel and ensure that messages

sent through a socket arrive at the correct destination.

Some of the port numbers are preallocated for a specific protocol. For example,

email servers using SMTP communicate with each other over port number 25 using

TCP, and Web clients and servers use port 80 for HTTP. The port numbers for network

services with standardized names can be looked up using getservbyname().

import socket
from urlparse import urlparse

for url in [’http://www.python.org’,

’https://www.mybank.com’,

’ftp://prep.ai.mit.edu’,

’gopher://gopher.micro.umn.edu’,

’smtp://mail.example.com’,

’imap://mail.example.com’,

’imaps://mail.example.com’,

’pop3://pop.example.com’,

’pop3s://pop.example.com’,

]:

parsed_url = urlparse(url)

port = socket.getservbyname(parsed_url.scheme)

print ’%6s : %s’ % (parsed_url.scheme, port)

Although a standardized service is unlikely to change ports, looking up the value

with a system call instead of hard coding it is more flexible when new services are

added in the future.

$ python socket_getservbyname.py

http : 80

https : 443

ftp : 21

gopher : 70

smtp : 25

imap : 143

imaps : 993

ptg

11.1. socket—Network Communication 567

pop3 : 110

pop3s : 995

To reverse the service port lookup, use getservbyport().

import socket
import urlparse

for port in [80, 443, 21, 70, 25, 143, 993, 110, 995]:

print urlparse.urlunparse(

(socket.getservbyport(port), ’example.com’, ’/’, ’’, ’’, ’’)

)

The reverse lookup is useful for constructing URLs to services from arbitrary

addresses.

$ python socket_getservbyport.py

http://example.com/

https://example.com/

ftp://example.com/

gopher://example.com/

smtp://example.com/

imap://example.com/

imaps://example.com/

pop3://example.com/

pop3s://example.com/

The number assigned to a transport protocol can be retrieved with

getprotobyname().

import socket

def get_constants(prefix):

"""Create a dictionary mapping socket module

constants to their names.

"""

return dict((getattr(socket, n), n)

for n in dir(socket)

if n.startswith(prefix)

)

protocols = get_constants(’IPPROTO_’)

ptg

568 Networking

for name in [’icmp’, ’udp’, ’tcp’]:

proto_num = socket.getprotobyname(name)

const_name = protocols[proto_num]

print ’%4s -> %2d (socket.%-12s = %2d)’ % \

(name, proto_num, const_name, getattr(socket, const_name))

The values for protocol numbers are standardized and defined as constants in

socket with the prefix IPPROTO_.

$ python socket_getprotobyname.py

icmp -> 1 (socket.IPPROTO_ICMP = 1)

udp -> 17 (socket.IPPROTO_UDP = 17)

tcp -> 6 (socket.IPPROTO_TCP = 6)

Looking Up Server Addresses

getaddrinfo() converts the basic address of a service into a list of tuples with all

the information necessary to make a connection. The contents of each tuple will vary,

containing different network families or protocols.

import socket

def get_constants(prefix):

"""Create a dictionary mapping socket module

constants to their names.

"""

return dict((getattr(socket, n), n)

for n in dir(socket)

if n.startswith(prefix)

)

families = get_constants(’AF_’)

types = get_constants(’SOCK_’)

protocols = get_constants(’IPPROTO_’)

for response in socket.getaddrinfo(’www.python.org’, ’http’):

Unpack the response tuple

family, socktype, proto, canonname, sockaddr = response

print ’Family :’, families[family]

print ’Type :’, types[socktype]

print ’Protocol :’, protocols[proto]

ptg

11.1. socket—Network Communication 569

print ’Canonical name:’, canonname

print ’Socket address:’, sockaddr

print

This program demonstrates how to look up the connection information for

www.python.org.

$ python socket_getaddrinfo.py

Family : AF_INET

Type : SOCK_DGRAM

Protocol : IPPROTO_UDP

Canonical name:

Socket address: (’82.94.164.162’, 80)

Family : AF_INET

Type : SOCK_STREAM

Protocol : IPPROTO_TCP

Canonical name:

Socket address: (’82.94.164.162’, 80)

getaddrinfo() takes several arguments for filtering the result list. The host and

port values given in the example are required arguments. The optional arguments are

family, socktype, proto, and flags. The optional values should be either 0 or one of the

constants defined by socket.

import socket

def get_constants(prefix):

"""Create a dictionary mapping socket module

constants to their names.

"""

return dict((getattr(socket, n), n)

for n in dir(socket)

if n.startswith(prefix)

)

families = get_constants(’AF_’)

types = get_constants(’SOCK_’)

protocols = get_constants(’IPPROTO_’)

for response in socket.getaddrinfo(’www.doughellmann.com’, ’http’,

socket.AF_INET, # family

ptg

570 Networking

socket.SOCK_STREAM, # socktype

socket.IPPROTO_TCP, # protocol

socket.AI_CANONNAME, # flags

):

Unpack the response tuple

family, socktype, proto, canonname, sockaddr = response

print ’Family :’, families[family]

print ’Type :’, types[socktype]

print ’Protocol :’, protocols[proto]

print ’Canonical name:’, canonname

print ’Socket address:’, sockaddr

print

Since flags includes AI_CANONNAME, the canonical name of the server, which may

be different from the value used for the lookup if the host has any aliases, is included

in the results this time. Without the flag, the canonical name value is left empty.

$ python socket_getaddrinfo_extra_args.py

Family : AF_INET

Type : SOCK_STREAM

Protocol : IPPROTO_TCP

Canonical name: homer.doughellmann.com

Socket address: (’192.168.1.8’, 80)

IP Address Representations

Network programs written in C use the data type struct sockaddr to represent IP

addresses as binary values (instead of the string addresses usually found in Python

programs). To convert IPv4 addresses between the Python representation and the C

representation, use inet_aton() and inet_ntoa().

import binascii
import socket
import struct
import sys

for string_address in [’192.168.1.1’, ’127.0.0.1’]:

packed = socket.inet_aton(string_address)

print ’Original:’, string_address

ptg

11.1. socket—Network Communication 571

print ’Packed :’, binascii.hexlify(packed)

print ’Unpacked:’, socket.inet_ntoa(packed)

print

The four bytes in the packed format can be passed to C libraries, transmitted safely

over the network, or saved to a database compactly.

$ python socket_address_packing.py

Original: 192.168.1.1

Packed : c0a80101

Unpacked: 192.168.1.1

Original: 127.0.0.1

Packed : 7f000001

Unpacked: 127.0.0.1

The related functions inet_pton() and inet_ntop() work with both IPv4 and

IPv6 addresses, producing the appropriate format based on the address family parameter

passed in.

import binascii
import socket
import struct
import sys

string_address = ’2002:ac10:10a:1234:21e:52ff:fe74:40e’

packed = socket.inet_pton(socket.AF_INET6, string_address)

print ’Original:’, string_address

print ’Packed :’, binascii.hexlify(packed)

print ’Unpacked:’, socket.inet_ntop(socket.AF_INET6, packed)

An IPv6 address is already a hexadecimal value, so converting the packed version

to a series of hex digits produces a string similar to the original value.

$ python socket_ipv6_address_packing.py

Original: 2002:ac10:10a:1234:21e:52ff:fe74:40e

Packed : 2002ac10010a1234021e52fffe74040e

Unpacked: 2002:ac10:10a:1234:21e:52ff:fe74:40e

ptg

572 Networking

See Also:
IPv6 (http://en.wikipedia.org/wiki/IPv6) Wikipedia article discussing Internet Pro-

tocol Version 6 (IPv6).

OSI Networking Model (http://en.wikipedia.org/wiki/OSI_model) Wikipedia arti-

cle describing the seven layer model of networking implementation.

Assigned Internet Protocol Numbers
(www.iana.org/assignments/protocol-numbers/protocol-numbers.xml) List

of standard protocol names and numbers.

11.1.2 TCP/IP Client and Server

Sockets can be configured to act as a server and listen for incoming messages, or con-

nect to other applications as a client. After both ends of a TCP/IP socket are connected,

communication is bidirectional.

Echo Server

This sample program, based on the one in the standard library documentation, receives

incoming messages and echos them back to the sender. It starts by creating a TCP/IP

socket.

import socket
import sys

Create a TCP/IP socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Then bind() is used to associate the socket with the server address. In this case,

the address is localhost, referring to the current server, and the port number is 10000.

Bind the socket to the port

server_address = (’localhost’, 10000)

print >>sys.stderr, ’starting up on %s port %s’ % server_address

sock.bind(server_address)

Calling listen() puts the socket into server mode, and accept() waits for an

incoming connection. The integer argument is the number of connections the system

should queue up in the background before rejecting new clients. This example only

expects to work with one connection at a time.

http://en.wikipedia.org/wiki/IPv6
http://en.wikipedia.org/wiki/OSI_model
www.iana.org/assignments/protocol-numbers/protocol-numbers.xml

ptg

11.1. socket—Network Communication 573

Listen for incoming connections

sock.listen(1)

while True:

Wait for a connection

print >>sys.stderr, ’waiting for a connection’

connection, client_address = sock.accept()

accept() returns an open connection between the server and client, along

with the client address. The connection is actually a different socket on another port

(assigned by the kernel). Data is read from the connection with recv() and transmit-

ted with sendall().

try:
print >>sys.stderr, ’connection from’, client_address

Receive the data in small chunks and retransmit it

while True:

data = connection.recv(16)

print >>sys.stderr, ’received "%s"’ % data

if data:

print >>sys.stderr, ’sending data back to the client’

connection.sendall(data)

else:
print >>sys.stderr, ’no data from’, client_address

break

finally:
Clean up the connection

connection.close()

When communication with a client is finished, the connection needs to be cleaned

up using close(). This example uses a try:finally block to ensure that close()

is always called, even in the event of an error.

Echo Client

The client program sets up its socket differently from the way a server does. Instead

of binding to a port and listening, it uses connect() to attach the socket directly to the

remote address.

ptg

574 Networking

import socket
import sys

Create a TCP/IP socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Connect the socket to the port where the server is listening

server_address = (’localhost’, 10000)

print >>sys.stderr, ’connecting to %s port %s’ % server_address

sock.connect(server_address)

After the connection is established, data can be sent through the socket with

sendall() and received with recv(), just as in the server.

try:

Send data

message = ’This is the message. It will be repeated.’

print >>sys.stderr, ’sending "%s"’ % message

sock.sendall(message)

Look for the response

amount_received = 0

amount_expected = len(message)

while amount_received < amount_expected:

data = sock.recv(16)

amount_received += len(data)

print >>sys.stderr, ’received "%s"’ % data

finally:
print >>sys.stderr, ’closing socket’

sock.close()

When the entire message is sent and a copy received, the socket is closed to free

up the port.

Client and Server Together

The client and server should be run in separate terminal windows, so they can commu-

nicate with each other. The server output shows the incoming connection and data, as

well as the response sent back to the client.

ptg

11.1. socket—Network Communication 575

$ python ./socket_echo_server.py

starting up on localhost port 10000

waiting for a connection

connection from (’127.0.0.1’, 52186)

received "This is the mess"

sending data back to the client

received "age. It will be"

sending data back to the client

received " repeated."

sending data back to the client

received ""

no data from (’127.0.0.1’, 52186)

waiting for a connection

The client output shows the outgoing message and the response from the server.

$ python socket_echo_client.py

connecting to localhost port 10000

sending "This is the message. It will be repeated."

received "This is the mess"

received "age. It will be"

received " repeated."

closing socket

$

Easy Client Connections

TCP/IP clients can save a few steps by using the convenience function

create_connection() to connect to a server. The function takes one argument, a

two-value tuple containing the server address, and derives the best address to use for

the connection.

import socket
import sys

def get_constants(prefix):

"""Create a dictionary mapping socket module

constants to their names.

"""

ptg

576 Networking

return dict((getattr(socket, n), n)

for n in dir(socket)

if n.startswith(prefix)

)

families = get_constants(’AF_’)

types = get_constants(’SOCK_’)

protocols = get_constants(’IPPROTO_’)

Create a TCP/IP socket

sock = socket.create_connection((’localhost’, 10000))

print >>sys.stderr, ’Family :’, families[sock.family]

print >>sys.stderr, ’Type :’, types[sock.type]

print >>sys.stderr, ’Protocol:’, protocols[sock.proto]

print >>sys.stderr

try:

Send data

message = ’This is the message. It will be repeated.’

print >>sys.stderr, ’sending "%s"’ % message

sock.sendall(message)

amount_received = 0

amount_expected = len(message)

while amount_received < amount_expected:

data = sock.recv(16)

amount_received += len(data)

print >>sys.stderr, ’received "%s"’ % data

finally:
print >>sys.stderr, ’closing socket’

sock.close()

create_connection() uses getaddrinfo() to find candidate connection

parameters and returns a socket opened with the first configuration that creates a

successful connection. The family, type, and proto attributes can be examined to

determine the type of socket being returned.

$ python socket_echo_client_easy.py

ptg

11.1. socket—Network Communication 577

Family : AF_INET

Type : SOCK_STREAM

Protocol: IPPROTO_TCP

sending "This is the message. It will be repeated."

received "This is the mess"

received "age. It will be"

received " repeated."

closing socket

Choosing an Address for Listening

It is important to bind a server to the correct address so that clients can communicate

with it. The previous examples all used ’localhost’ as the IP address, which limits

connections to clients running on the same server. Use a public address of the server,

such as the value returned by gethostname(), to allow other hosts to connect. This

example modifies the echo server to listen on an address specified via a command line

argument.

import socket
import sys

Create a TCP/IP socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Bind the socket to the address given on the command line

server_name = sys.argv[1]

server_address = (server_name, 10000)

print >>sys.stderr, ’starting up on %s port %s’ % server_address

sock.bind(server_address)

sock.listen(1)

while True:

print >>sys.stderr, ’waiting for a connection’

connection, client_address = sock.accept()

try:
print >>sys.stderr, ’client connected:’, client_address

while True:

data = connection.recv(16)

print >>sys.stderr, ’received "%s"’ % data

if data:

connection.sendall(data)

ptg

578 Networking

else:
break

finally:
connection.close()

A similar modification to the client program is needed before the server can be

tested.

import socket
import sys

Create a TCP/IP socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Connect the socket to the port on the server given by the caller

server_address = (sys.argv[1], 10000)

print >>sys.stderr, ’connecting to %s port %s’ % server_address

sock.connect(server_address)

try:

message = ’This is the message. It will be repeated.’

print >>sys.stderr, ’sending "%s"’ % message

sock.sendall(message)

amount_received = 0

amount_expected = len(message)

while amount_received < amount_expected:

data = sock.recv(16)

amount_received += len(data)

print >>sys.stderr, ’received "%s"’ % data

finally:
sock.close()

After starting the server with the argument farnsworth.hellfly.net, the

netstat command shows it listening on the address for the named host.

$ host farnsworth.hellfly.net

farnsworth.hellfly.net has address 192.168.1.17

ptg

11.1. socket—Network Communication 579

$ netstat -an

Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)

...

tcp4 0 0 192.168.1.17.10000 *.* LISTEN

...

Running the client on another host, passing farnsworth.hellfly.net as the

host where the server is running, produces the following.

$ hostname

homer

$ python socket_echo_client_explicit.py farnsworth.hellfly.net

connecting to farnsworth.hellfly.net port 10000

sending "This is the message. It will be repeated."

received "This is the mess"

received "age. It will be"

received " repeated."

And the server produces the following output.

$ python ./socket_echo_server_explicit.py farnsworth.hellfly.net

starting up on farnsworth.hellfly.net port 10000

waiting for a connection

client connected: (’192.168.1.8’, 57471)

received "This is the mess"

received "age. It will be"

received " repeated."

received ""

waiting for a connection

Many servers have more than one network interface, and therefore, more than

one IP address. Rather than running separate copies of a service bound to each IP

address, use the special address INADDR_ANY to listen on all addresses at the same time.

Although socket defines a constant for INADDR_ANY, it is an integer value and must

be converted to a dotted-notation string address before it can be passed to bind(). As

a shortcut, use “0.0.0.0” or an empty string (”) instead of doing the conversion.

ptg

580 Networking

import socket
import sys

Create a TCP/IP socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Bind the socket to the address given on the command line

server_address = (’’, 10000)

sock.bind(server_address)

print >>sys.stderr, ’starting up on %s port %s’ % sock.getsockname()

sock.listen(1)

while True:

print >>sys.stderr, ’waiting for a connection’

connection, client_address = sock.accept()

try:
print >>sys.stderr, ’client connected:’, client_address

while True:

data = connection.recv(16)

print >>sys.stderr, ’received "%s"’ % data

if data:

connection.sendall(data)

else:
break

finally:
connection.close()

To see the actual address being used by a socket, call its getsockname() method.

After starting the service, running netstat again shows it listening for incoming con-

nections on any address.

$ netstat -an

Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)

...

tcp4 0 0 *.10000 *.* LISTEN

...

11.1.3 User Datagram Client and Server

The user datagram protocol (UDP) works differently from TCP/IP. Where TCP is a

stream-oriented protocol, ensuring that all the data is transmitted in the right order,

UDP is a message-oriented protocol. UDP does not require a long-lived connection, so

ptg

11.1. socket—Network Communication 581

setting up a UDP socket is a little simpler. On the other hand, UDP messages must fit

within a single packet (for IPv4, that means they can only hold 65,507 bytes because

the 65,535-byte packet also includes header information) and delivery is not guaranteed

as it is with TCP.

Echo Server

Since there is no connection, per se, the server does not need to listen for and accept

connections. It only needs to use bind() to associate its socket with a port and then

wait for individual messages.

import socket
import sys

Create a UDP socket

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

Bind the socket to the port

server_address = (’localhost’, 10000)

print >>sys.stderr, ’starting up on %s port %s’ % server_address

sock.bind(server_address)

Messages are read from the socket using recvfrom(), which returns the data as

well as the address of the client from which it was sent.

while True:

print >>sys.stderr, ’\nwaiting to receive message’

data, address = sock.recvfrom(4096)

print >>sys.stderr, ’received %s bytes from %s’ % \

(len(data), address)

print >>sys.stderr, data

if data:

sent = sock.sendto(data, address)

print >>sys.stderr, ’sent %s bytes back to %s’ % \

(sent, address)

Echo Client

The UDP echo client is similar the server, but does not use bind() to attach its

socket to an address. It uses sendto() to deliver its message directly to the server

and recvfrom() to receive the response.

ptg

582 Networking

import socket
import sys

Create a UDP socket

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

server_address = (’localhost’, 10000)

message = ’This is the message. It will be repeated.’

try:

Send data

print >>sys.stderr, ’sending "%s"’ % message

sent = sock.sendto(message, server_address)

Receive response

print >>sys.stderr, ’waiting to receive’

data, server = sock.recvfrom(4096)

print >>sys.stderr, ’received "%s"’ % data

finally:
print >>sys.stderr, ’closing socket’

sock.close()

Client and Server Together

Running the server produces the following.

$ python ./socket_echo_server_dgram.py

starting up on localhost port 10000

waiting to receive message

received 42 bytes from (’127.0.0.1’, 50139)

This is the message. It will be repeated.

sent 42 bytes back to (’127.0.0.1’, 50139)

waiting to receive message

This is the client output

$ python ./socket_echo_client_dgram.py

ptg

11.1. socket—Network Communication 583

sending "This is the message. It will be repeated."

waiting to receive

received "This is the message. It will be repeated."

closing socket

11.1.4 UNIX Domain Sockets

From the programmer’s perspective, there are two essential differences between using

a UNIX domain socket and an TCP/IP socket. First, the address of the socket is a path

on the file system, rather than a tuple containing the server name and port. Second,

the node created in the file system to represent the socket persists after the socket

is closed and needs to be removed each time the server starts up. The echo server

example from earlier can be updated to use UDS by making a few changes in the setup

section.

import socket
import sys
import os

server_address = ’./uds_socket’

Make sure the socket does not already exist

try:
os.unlink(server_address)

except OSError:
if os.path.exists(server_address):

raise

The socket needs to be created with address family AF_UNIX.

Create a UDS socket

sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)

Binding the socket and managing the incoming connections works the same as

with TCP/IP sockets.

Bind the socket to the address

print >>sys.stderr, ’starting up on %s’ % server_address

sock.bind(server_address)

ptg

584 Networking

Listen for incoming connections

sock.listen(1)

while True:

Wait for a connection

print >>sys.stderr, ’waiting for a connection’

connection, client_address = sock.accept()

try:
print >>sys.stderr, ’connection from’, client_address

Receive the data in small chunks and retransmit it

while True:

data = connection.recv(16)

print >>sys.stderr, ’received "%s"’ % data

if data:

print >>sys.stderr, ’sending data back to the client’

connection.sendall(data)

else:
print >>sys.stderr, ’no data from’, client_address

break

finally:
Clean up the connection

connection.close()

The client setup also needs to be modified to work with UDS. It should assume

the file system node for the socket exists, since the server creates it by binding to the

address.

import socket
import sys

Create a UDS socket

sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)

Connect the socket to the port where the server is listening

server_address = ’./uds_socket’

print >>sys.stderr, ’connecting to %s’ % server_address

try:
sock.connect(server_address)

except socket.error, msg:

ptg

11.1. socket—Network Communication 585

print >>sys.stderr, msg

sys.exit(1)

Sending and receiving data works the same way in the UDS client as the TCP/IP

client from before.

try:

Send data

message = ’This is the message. It will be repeated.’

print >>sys.stderr, ’sending "%s"’ % message

sock.sendall(message)

amount_received = 0

amount_expected = len(message)

while amount_received < amount_expected:

data = sock.recv(16)

amount_received += len(data)

print >>sys.stderr, ’received "%s"’ % data

finally:
print >>sys.stderr, ’closing socket’

sock.close()

The program output is mostly the same, with appropriate updates for the address

information. The server shows the messages received and sent back to the client.

$ python ./socket_echo_server_uds.py

starting up on ./uds_socket

waiting for a connection

connection from

received "This is the mess"

sending data back to the client

received "age. It will be"

sending data back to the client

received " repeated."

sending data back to the client

received ""

ptg

586 Networking

no data from

waiting for a connection

The client sends the message all at once and receives parts of it back incrementally.

$ python socket_echo_client_uds.py

connecting to ./uds_socket

sending "This is the message. It will be repeated."

received "This is the mess"

received "age. It will be"

received " repeated."

closing socket

Permissions

Since the UDS socket is represented by a node on the file system, standard file system

permissions can be used to control access to the server.

$ ls -l ./uds_socket

srwxr-xr-x 1 dhellmann dhellmann 0 Sep 20 08:24 ./uds_socket

$ sudo chown root ./uds_socket

$ ls -l ./uds_socket

srwxr-xr-x 1 root dhellmann 0 Sep 20 08:24 ./uds_socket

Running the client as a user other than root now results in an error because the

process does not have permission to open the socket.

$ python socket_echo_client_uds.py

connecting to ./uds_socket

[Errno 13] Permission denied

Communication between Parent and Child Processes

The socketpair() function is useful for setting up UDS sockets for inter-process

communication under UNIX. It creates a pair of connected sockets that can be used to

communicate between a parent process and a child process after the child is forked.

ptg

11.1. socket—Network Communication 587

import socket
import os

parent, child = socket.socketpair()

pid = os.fork()

if pid:

print ’in parent, sending message’

child.close()

parent.sendall(’ping’)

response = parent.recv(1024)

print ’response from child:’, response

parent.close()

else:
print ’in child, waiting for message’

parent.close()

message = child.recv(1024)

print ’message from parent:’, message

child.sendall(’pong’)

child.close()

By default, a UDS socket is created, but the caller can also pass address family,

socket type, and even protocol options to control how the sockets are created.

$ python socket_socketpair.py

in child, waiting for message

message from parent: ping

in parent, sending message

response from child: pong

11.1.5 Multicast

Point-to-point connections handle a lot of communication needs, but passing the same

information between many peers becomes challenging as the number of direct connec-

tions grows. Sending messages separately to each recipient consumes additional pro-

cessing time and bandwidth, which can be a problem for applications such as streaming

video or audio. Using multicast to deliver messages to more than one endpoint at a time

achieves better efficiency because the network infrastructure ensures that the packets

are delivered to all recipients.

ptg

588 Networking

Multicast messages are always sent using UDP, since TCP requires an end-to-end

communication channel. The addresses for multicast, called multicast groups, are a sub-

set of the regular IPv4 address range (224.0.0.0 through 230.255.255.255) reserved for

multicast traffic. These addresses are treated specially by network routers and switches,

so messages sent to the group can be distributed over the Internet to all recipients that

have joined the group.

Note: Some managed switches and routers have multicast traffic disabled by

default. If you have trouble with the example programs, check your network hard-

ware settings.

Sending Multicast Messages

This modified echo client will send a message to a multicast group and then report all

the responses it receives. Since it has no way of knowing how many responses to expect,

it uses a timeout value on the socket to avoid blocking indefinitely while waiting for an

answer.

import socket
import struct
import sys

message = ’very important data’

multicast_group = (’224.3.29.71’, 10000)

Create the datagram socket

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

Set a timeout so the socket does not block indefinitely when trying

to receive data.

sock.settimeout(0.2)

The socket also needs to be configured with a time-to-live value (TTL) for the

messages. The TTL controls how many networks will receive the packet. Set the TTL

with the IP_MULTICAST_TTL option and setsockopt(). The default, 1, means that

the packets are not forwarded by the router beyond the current network segment. The

value can range up to 255 and should be packed into a single byte.

Set the time-to-live for messages to 1 so they do not go past the

local network segment.

ptg

11.1. socket—Network Communication 589

ttl = struct.pack(’b’, 1)

sock.setsockopt(socket.IPPROTO_IP, socket.IP_MULTICAST_TTL, ttl)

The rest of the sender looks like the UDP echo client, except that it expects multi-

ple responses so uses a loop to call recvfrom() until it times out.

try:

Send data to the multicast group

print >>sys.stderr, ’sending "%s"’ % message

sent = sock.sendto(message, multicast_group)

Look for responses from all recipients

while True:

print >>sys.stderr, ’waiting to receive’

try:
data, server = sock.recvfrom(16)

except socket.timeout:

print >>sys.stderr, ’timed out, no more responses’

break
else:

print >>sys.stderr, ’received "%s" from %s’ % \

(data, server)

finally:
print >>sys.stderr, ’closing socket’

sock.close()

Receiving Multicast Messages

The first step to establishing a multicast receiver is to create the UDP socket.

import socket
import struct
import sys

multicast_group = ’224.3.29.71’

server_address = (’’, 10000)

Create the socket

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

Bind to the server address

sock.bind(server_address)

ptg

590 Networking

After the regular socket is created and bound to a port, it can be added to the

multicast group by using setsockopt() to change the IP_ADD_MEMBERSHIP option.

The option value is the 8-byte packed representation of the multicast group address

followed by the network interface on which the server should listen for the traffic,

identified by its IP address. In this case, the receiver listens on all interfaces using

INADDR_ANY.

Tell the operating system to add the socket to the multicast group

on all interfaces.

group = socket.inet_aton(multicast_group)

mreq = struct.pack(’4sL’, group, socket.INADDR_ANY)

sock.setsockopt(socket.IPPROTO_IP, socket.IP_ADD_MEMBERSHIP, mreq)

The main loop for the receiver is just like the regular UDP echo server.

Receive/respond loop

while True:

print >>sys.stderr, ’\nwaiting to receive message’

data, address = sock.recvfrom(1024)

print >>sys.stderr, ’received %s bytes from %s’ % \

(len(data), address)

print >>sys.stderr, data

print >>sys.stderr, ’sending acknowledgement to’, address

sock.sendto(’ack’, address)

Example Output

This example shows the multicast receiver running on two different hosts. A has address

192.168.1.17 and B has address 192.168.1.8.

[A]$ python ./socket_multicast_receiver.py

waiting to receive message

received 19 bytes from (’192.168.1.17’, 51382)

very important data

sending acknowledgement to (’192.168.1.17’, 51382)

[B]$ python ./socket_multicast_receiver.py

waiting to receive message

received 19 bytes from (’192.168.1.17’, 51382)

ptg

11.1. socket—Network Communication 591

very important data

sending acknowledgement to (’192.168.1.17’, 51382)

The sender is running on host A.

$ python ./socket_multicast_sender.py

sending "very important data"

waiting to receive

received "ack" from (’192.168.1.17’, 10000)

waiting to receive

received "ack" from (’192.168.1.8’, 10000)

waiting to receive

timed out, no more responses

closing socket

The message is sent one time, and two acknowledgements of the outgoing message

are received, one from each of host A and host B.

See Also:
Multicast (http://en.wikipedia.org/wiki/Multicast) Wikipedia article describing

technical details of multicasting.

IP Multicast (http://en.wikipedia.org/wiki/IP_multicast) Wikipedia article about IP

multicasting, with information about addressing.

11.1.6 Sending Binary Data

Sockets transmit streams of bytes. Those bytes can contain text messages, as in the

previous examples, or they can be made up of binary data that has been encoded for

transmission. To prepare binary data values for transmission, pack them into a buffer

with struct.

This client program encodes an integer, a string of two characters, and a floating-

point value into a sequence of bytes that can be passed to the socket for transmission.

import binascii
import socket
import struct
import sys

Create a TCP/IP socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

http://en.wikipedia.org/wiki/Multicast
http://en.wikipedia.org/wiki/IP_multicast

ptg

592 Networking

server_address = (’localhost’, 10000)

sock.connect(server_address)

values = (1, ’ab’, 2.7)

packer = struct.Struct(’I 2s f’)

packed_data = packer.pack(*values)

print ’values =’, values

try:

Send data

print >>sys.stderr, ’sending %r’ % binascii.hexlify(packed_data)

sock.sendall(packed_data)

finally:
print >>sys.stderr, ’closing socket’

sock.close()

When sending multibyte binary data between two systems, it is important to ensure

that both sides of the connection know what order the bytes are in and how to assemble

them back into the correct order for the local architecture. The server program uses the

same Struct specifier to unpack the bytes it receives so they are interpreted in the

correct order.

import binascii
import socket
import struct
import sys

Create a TCP/IP socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

server_address = (’localhost’, 10000)

sock.bind(server_address)

sock.listen(1)

unpacker = struct.Struct(’I 2s f’)

while True:

print >>sys.stderr, ’\nwaiting for a connection’

connection, client_address = sock.accept()

ptg

11.1. socket—Network Communication 593

try:
data = connection.recv(unpacker.size)

print >>sys.stderr, ’received %r’ % binascii.hexlify(data)

unpacked_data = unpacker.unpack(data)

print >>sys.stderr, ’unpacked:’, unpacked_data

finally:
connection.close()

Running the client produces the following:

$ python ./socket_binary_client.py

values = (1, ’ab’, 2.7)

sending ’0100000061620000cdcc2c40’

closing socket

And the server shows the values it receives.

$ python ./socket_binary_server.py

waiting for a connection

received ’0100000061620000cdcc2c40’

unpacked: (1, ’ab’, 2.700000047683716)

waiting for a connection

The floating-point value loses some precision as it is packed and unpacked, but

otherwise, the data is transmitted as expected. One thing to keep in mind is that,

depending on the value of the integer, it may be more efficient to convert it to text and

then transmit, instead of using struct. The integer 1 uses one byte when represented

as a string, but four when packed into the structure.

See Also:
struct (page 102) Converting between strings and other data types.

11.1.7 Nonblocking Communication and Timeouts

By default, a socket is configured so that sending or receiving data blocks, stopping

program execution until the socket is ready. Calls to send() wait for buffer space to be

ptg

594 Networking

available for the outgoing data, and calls to recv() wait for the other program to send

data that can be read. This form of I/O operation is easy to understand, but can lead to

inefficient operation and even deadlocks if both programs end up waiting for the other

to send or receive data.

There are a few ways to work around this situation. One is to use a separate thread

for communicating with each socket. This can introduce other complexities, though,

with communication between the threads. Another option is to change the socket to not

block at all and return immediately if it is not ready to handle the operation. Use the

setblocking() method to change the blocking flag for a socket. The default value

is 1, which means to block. Passing a value of 0 turns off blocking. If the socket has

blocking turned off and it is not ready for the operation, then socket.error is raised.

A compromise solution is to set a timeout value for socket operations. Use

settimeout() to change the timeout of a socket to a floating-point value repre-

senting the number of seconds to block before deciding the socket is not ready for the

operation. When the timeout expires, a timeout exception is raised.

See Also:
socket (http://docs.python.org/library/socket.html) The standard library documen-

tation for this module.

Socket Programming HOWTO (http://docs.python.org/howto/sockets.html) An

instructional guide by Gordon McMillan, included in the standard library

documentation.

select (page 594) Testing a socket to see if it is ready for reading or writing for non-

blocking I/O.

SocketServer (page 609) Framework for creating network servers.

urllib (page 651) and urllib2 (page 667) Most network clients should use the

more convenient libraries for accessing remote resources through a URL.

asyncore (page 619) and asynchat (page 629) Frameworks for asynchronous

communication.

Unix Network Programming, Volume 1: The Sockets Networking API, 3/E By

W. Richard Stevens, Bill Fenner, and Andrew M. Rudoff. Published by

Addison-Wesley Professional, 2004. ISBN-10: 0131411551

11.2 select—Wait for I/O Efficiently

Purpose Wait for notification that an input or output channel is ready.

Python Version 1.4 and later

http://docs.python.org/library/socket.html
http://docs.python.org/howto/sockets.html

ptg

11.2. select—Wait for I/O Efficiently 595

The select module provides access to platform-specific I/O monitoring functions.

The most portable interface is the POSIX function select(), which is available on

UNIX and Windows. The module also includes poll(), a UNIX-only API, and several

options that only work with specific variants of UNIX.

11.2.1 Using select()

Python’s select() function is a direct interface to the underlying operating system

implementation. It monitors sockets, open files, and pipes (anything with a fileno()

method that returns a valid file descriptor) until they become readable or writable or

a communication error occurs. select() makes it easier to monitor multiple connec-

tions at the same time, and it is more efficient than writing a polling loop in Python using

socket timeouts, because the monitoring happens in the operating system network layer,

instead of the interpreter.

Note: Using Python’s file objects with select() works for UNIX, but is not

supported under Windows.

The echo server example from the socket section can be extended to watch for

more than one connection at a time by using select(). The new version starts out by

creating a nonblocking TCP/IP socket and configuring it to listen on an address.

import select
import socket
import sys
import Queue

Create a TCP/IP socket

server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

server.setblocking(0)

Bind the socket to the port

server_address = (’localhost’, 10000)

print >>sys.stderr, ’starting up on %s port %s’ % server_address

server.bind(server_address)

Listen for incoming connections

server.listen(5)

ptg

596 Networking

The arguments to select() are three lists containing communication channels to

monitor. The first is a list of the objects to be checked for incoming data to be read,

the second contains objects that will receive outgoing data when there is room in their

buffer, and the third includes those that may have an error (usually a combination of

the input and output channel objects). The next step in the server is to set up the lists

containing input sources and output destinations to be passed to select().

Sockets from which we expect to read

inputs = [server]

Sockets to which we expect to write

outputs = []

Connections are added to and removed from these lists by the server main loop.

Since this version of the server is going to wait for a socket to become writable before

sending any data (instead of immediately sending the reply), each output connection

needs a queue to act as a buffer for the data to be sent through it.

Outgoing message queues (socket:Queue)

message_queues = {}

The main portion of the server program loops, calling select() to block and wait

for network activity.

while inputs:

Wait for at least one of the sockets to be ready for processing

print >>sys.stderr, ’waiting for the next event’

readable, writable, exceptional = select.select(inputs,

outputs,

inputs)

select() returns three new lists, containing subsets of the contents of the lists

passed in. All the sockets in the readable list have incoming data buffered and avail-

able to be read. All the sockets in the writable list have free space in their buffer and

can be written to. The sockets returned in exceptional have had an error (the actual

definition of “exceptional condition” depends on the platform).

The “readable” sockets represent three possible cases. If the socket is the main

“server” socket, the one being used to listen for connections, then the “readable” con-

dition means it is ready to accept another incoming connection. In addition to adding

the new connection to the list of inputs to monitor, this section sets the client socket to

not block.

ptg

11.2. select—Wait for I/O Efficiently 597

Handle inputs

for s in readable:

if s is server:

A "readable" socket is ready to accept a connection

connection, client_address = s.accept()

print >>sys.stderr, ’ connection from’, client_address

connection.setblocking(0)

inputs.append(connection)

Give the connection a queue for data we want to send

message_queues[connection] = Queue.Queue()

The next case is an established connection with a client that has sent data. The data

is read with recv(), and then it is placed on the queue so it can be sent through the

socket and back to the client.

else:

data = s.recv(1024)

if data:

A readable client socket has data

print >>sys.stderr, ’ received "%s" from %s’ % \

(data, s.getpeername())

message_queues[s].put(data)

Add output channel for response

if s not in outputs:

outputs.append(s)

A readable socket without data available is from a client that has disconnected,

and the stream is ready to be closed.

else:

Interpret empty result as closed connection

print >>sys.stderr, ’ closing’, client_address

Stop listening for input on the connection

if s in outputs:

outputs.remove(s)

inputs.remove(s)

s.close()

Remove message queue

del message_queues[s]

There are fewer cases for the writable connections. If there is data in the queue for

a connection, the next message is sent. Otherwise, the connection is removed from the

ptg

598 Networking

list of output connections so that the next time through the loop, select() does not

indicate that the socket is ready to send data.

Handle outputs

for s in writable:

try:
next_msg = message_queues[s].get_nowait()

except Queue.Empty:

No messages waiting so stop checking for writability.

print >>sys.stderr, ’ ’, s.getpeername(), ’queue empty’

outputs.remove(s)

else:
print >>sys.stderr, ’ sending "%s" to %s’ % \

(next_msg, s.getpeername())

s.send(next_msg)

Finally, if there is an error with a socket, it is closed.

Handle "exceptional conditions"

for s in exceptional:

print >>sys.stderr, ’exception condition on’, s.getpeername()

Stop listening for input on the connection

inputs.remove(s)

if s in outputs:

outputs.remove(s)

s.close()

Remove message queue

del message_queues[s]

The example client program uses two sockets to demonstrate how the server with

select() manages multiple connections at the same time. The client starts by con-

necting each TCP/IP socket to the server.

import socket
import sys

messages = [’This is the message. ’,

’It will be sent ’,

’in parts.’,

]

server_address = (’localhost’, 10000)

ptg

11.2. select—Wait for I/O Efficiently 599

Create a TCP/IP socket

socks = [socket.socket(socket.AF_INET, socket.SOCK_STREAM),

socket.socket(socket.AF_INET, socket.SOCK_STREAM),

]

Connect the socket to the port where the server is listening

print >>sys.stderr, ’connecting to %s port %s’ % server_address

for s in socks:

s.connect(server_address)

Then it sends one piece of the message at a time via each socket and reads all

responses available after writing new data.

for message in messages:

Send messages on both sockets

for s in socks:

print >>sys.stderr, ’%s: sending "%s"’ % \

(s.getsockname(), message)

s.send(message)

Read responses on both sockets

for s in socks:

data = s.recv(1024)

print >>sys.stderr, ’%s: received "%s"’ % \

(s.getsockname(), data)

if not data:

print >>sys.stderr, ’closing socket’, s.getsockname()

s.close()

Run the server in one window and the client in another. The output will look like

this, with different port numbers.

$ python ./select_echo_server.py

starting up on localhost port 10000

waiting for the next event

connection from (’127.0.0.1’, 55472)

waiting for the next event

connection from (’127.0.0.1’, 55473)

received "This is the message. " from (’127.0.0.1’, 55472)

ptg

600 Networking

waiting for the next event

received "This is the message. " from (’127.0.0.1’, 55473)

sending "This is the message. " to (’127.0.0.1’, 55472)

waiting for the next event

(’127.0.0.1’, 55472) queue empty

sending "This is the message. " to (’127.0.0.1’, 55473)

waiting for the next event

(’127.0.0.1’, 55473) queue empty

waiting for the next event

received "It will be sent " from (’127.0.0.1’, 55472)

received "It will be sent " from (’127.0.0.1’, 55473)

waiting for the next event

sending "It will be sent " to (’127.0.0.1’, 55472)

sending "It will be sent " to (’127.0.0.1’, 55473)

waiting for the next event

(’127.0.0.1’, 55472) queue empty

(’127.0.0.1’, 55473) queue empty

waiting for the next event

received "in parts." from (’127.0.0.1’, 55472)

received "in parts." from (’127.0.0.1’, 55473)

waiting for the next event

sending "in parts." to (’127.0.0.1’, 55472)

sending "in parts." to (’127.0.0.1’, 55473)

waiting for the next event

(’127.0.0.1’, 55472) queue empty

(’127.0.0.1’, 55473) queue empty

waiting for the next event

closing (’127.0.0.1’, 55473)

closing (’127.0.0.1’, 55473)

waiting for the next event

The client output shows the data being sent and received using both sockets.

$ python ./select_echo_multiclient.py

connecting to localhost port 10000

(’127.0.0.1’, 55821): sending "This is the message. "

(’127.0.0.1’, 55822): sending "This is the message. "

(’127.0.0.1’, 55821): received "This is the message. "

(’127.0.0.1’, 55822): received "This is the message. "

(’127.0.0.1’, 55821): sending "It will be sent "

(’127.0.0.1’, 55822): sending "It will be sent "

(’127.0.0.1’, 55821): received "It will be sent "

ptg

11.2. select—Wait for I/O Efficiently 601

(’127.0.0.1’, 55822): received "It will be sent "

(’127.0.0.1’, 55821): sending "in parts."

(’127.0.0.1’, 55822): sending "in parts."

(’127.0.0.1’, 55821): received "in parts."

(’127.0.0.1’, 55822): received "in parts."

11.2.2 Nonblocking I/O with Timeouts

select() also takes an optional fourth parameter, which is the number of seconds

to wait before breaking off monitoring if no channels have become active. Using a

timeout value lets a main program call select() as part of a larger processing loop,

taking other actions between checking for network input.

When the timeout expires, select() returns three empty lists. Updating the

server example to use a timeout requires adding the extra argument to the select()

call and handling the empty lists after select() returns.

Wait for at least one of the sockets to be ready for processing

print >>sys.stderr, ’\nwaiting for the next event’

timeout = 1

readable, writable, exceptional = select.select(inputs,

outputs,

inputs,

timeout)

if not (readable or writable or exceptional):

print >>sys.stderr, ’ timed out, do some other work here’

continue

This “slow” version of the client program pauses after sending each message to

simulate latency or other delay in transmission.

import socket
import sys
import time

Create a TCP/IP socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Connect the socket to the port where the server is listening

server_address = (’localhost’, 10000)

print >>sys.stderr, ’connecting to %s port %s’ % server_address

sock.connect(server_address)

ptg

602 Networking

time.sleep(1)

messages = [’Part one of the message.’,

’Part two of the message.’,

]

amount_expected = len(’’.join(messages))

try:

Send data

for message in messages:

print >>sys.stderr, ’sending "%s"’ % message

sock.sendall(message)

time.sleep(1.5)

Look for the response

amount_received = 0

while amount_received < amount_expected:

data = sock.recv(16)

amount_received += len(data)

print >>sys.stderr, ’received "%s"’ % data

finally:
print >>sys.stderr, ’closing socket’

sock.close()

Running the new server with the slow client produces the following:

$ python ./select_echo_server_timeout.py

starting up on localhost port 10000

waiting for the next event

connection from (’127.0.0.1’, 55480)

waiting for the next event

received "Part one of the message." from (’127.0.0.1’, 55480)

waiting for the next event

sending "Part one of the message." to (’127.0.0.1’, 55480)

waiting for the next event

(’127.0.0.1’, 55480) queue empty

waiting for the next event

received "Part two of the message." from (’127.0.0.1’, 55480)

waiting for the next event

sending "Part two of the message." to (’127.0.0.1’, 55480)

ptg

11.2. select—Wait for I/O Efficiently 603

waiting for the next event

(’127.0.0.1’, 55480) queue empty

waiting for the next event

closing (’127.0.0.1’, 55480)

waiting for the next event

And this is the client output:

$ python ./select_echo_slow_client.py

connecting to localhost port 10000

sending "Part one of the message."

sending "Part two of the message."

received "Part one of the "

received "message.Part two"

received " of the message."

closing socket

11.2.3 Using poll()

The poll() function provides similar features to select(), but the underlying imple-

mentation is more efficient. The trade-off is that poll() is not supported under Win-

dows, so programs using poll() are less portable.

An echo server built on poll() starts with the same socket configuration code

used in the other examples.

import select
import socket
import sys
import Queue

Create a TCP/IP socket

server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

server.setblocking(0)

Bind the socket to the port

server_address = (’localhost’, 10000)

print >>sys.stderr, ’starting up on %s port %s’ % server_address

server.bind(server_address)

Listen for incoming connections

server.listen(5)

ptg

604 Networking

Keep up with the queues of outgoing messages

message_queues = {}

The timeout value passed to poll() is represented in milliseconds, instead of

seconds, so in order to pause for a full second, the timeout must be set to 1000.

Do not block forever (milliseconds)

TIMEOUT = 1000

Python implements poll() with a class that manages the registered data channels

being monitored. Channels are added by calling register(), with flags indicating

which events are interesting for that channel. The full set of flags is listed in Table 11.1.

Table 11.1. Event Flags for poll()

Event Description
POLLIN Input ready

POLLPRI Priority input ready

POLLOUT Able to receive output

POLLERR Error

POLLHUP Channel closed

POLLNVAL Channel not open

The echo server will be setting up some sockets just for reading and others to be

read from or written to. The appropriate combinations of flags are saved to the local

variables READ_ONLY and READ_WRITE.

Commonly used flag sets

READ_ONLY = (select.POLLIN |

select.POLLPRI |

select.POLLHUP |

select.POLLERR)

READ_WRITE = READ_ONLY | select.POLLOUT

The server socket is registered so that any incoming connections or data triggers

an event.

Set up the poller

poller = select.poll()

poller.register(server, READ_ONLY)

ptg

11.2. select—Wait for I/O Efficiently 605

Since poll() returns a list of tuples containing the file descriptor for the socket

and the event flag, a mapping from file descriptor numbers to objects is needed to

retrieve the socket to read or write from it.

Map file descriptors to socket objects

fd_to_socket = { server.fileno(): server,

}

The server’s loop calls poll() and then processes the “events” returned by look-

ing up the socket and taking action based on the flag in the event.

while True:

Wait for at least one of the sockets to be ready for processing

print >>sys.stderr, ’waiting for the next event’

events = poller.poll(TIMEOUT)

for fd, flag in events:

Retrieve the actual socket from its file descriptor

s = fd_to_socket[fd]

As with select(), when the main server socket is “readable,” that really means

there is a pending connection from a client. The new connection is registered with the

READ_ONLY flags to watch for new data to come through it.

Handle inputs

if flag & (select.POLLIN | select.POLLPRI):

if s is server:

A readable socket is ready to accept a connection

connection, client_address = s.accept()

print >>sys.stderr, ’ connection’, client_address

connection.setblocking(0)

fd_to_socket[connection.fileno()] = connection

poller.register(connection, READ_ONLY)

Give the connection a queue for data to send

message_queues[connection] = Queue.Queue()

Sockets other than the server are existing clients with data buffered and waiting to

be read. Use recv() to retrieve the data from the buffer.

ptg

606 Networking

else:

data = s.recv(1024)

If recv() returns any data, it is placed into the outgoing queue for the socket, and

the flags for that socket are changed using modify() so poll() will watch for the

socket to be ready to receive data.

if data:

A readable client socket has data

print >>sys.stderr, ’ received "%s" from %s’ % \

(data, s.getpeername())

message_queues[s].put(data)

Add output channel for response

poller.modify(s, READ_WRITE)

An empty string returned by recv() means the client disconnected, so

unregister() is used to tell the poll object to ignore the socket.

else:

Interpret empty result as closed connection

print >>sys.stderr, ’ closing’, client_address

Stop listening for input on the connection

poller.unregister(s)

s.close()

Remove message queue

del message_queues[s]

The POLLHUP flag indicates a client that “hung up” the connection without closing

it cleanly. The server stops polling clients that disappear.

elif flag & select.POLLHUP:

Client hung up

print >>sys.stderr, ’ closing’, client_address, ’(HUP)’

Stop listening for input on the connection

poller.unregister(s)

s.close()

The handling for writable sockets looks like the version used in the example for

select(), except that modify() is used to change the flags for the socket in the

poller, instead of removing it from the output list.

elif flag & select.POLLOUT:

Socket is ready to send data, if there is any to send.

ptg

11.2. select—Wait for I/O Efficiently 607

try:

next_msg = message_queues[s].get_nowait()

except Queue.Empty:

No messages waiting so stop checking

print >>sys.stderr, s.getpeername(), ’queue empty’

poller.modify(s, READ_ONLY)

else:

print >>sys.stderr, ’ sending "%s" to %s’ % \

(next_msg, s.getpeername())

s.send(next_msg)

And, finally, any events with POLLERR cause the server to close the socket.

elif flag & select.POLLERR:

print >>sys.stderr, ’ exception on’, s.getpeername()

Stop listening for input on the connection

poller.unregister(s)

s.close()

Remove message queue

del message_queues[s]

When the poll-based server is run together with select_echo_multiclient

.py (the client program that uses multiple sockets), this is the output.

$ python ./select_poll_echo_server.py

waiting for the next event

waiting for the next event

connection (’127.0.0.1’, 62835)

waiting for the next event

connection (’127.0.0.1’, 62836)

waiting for the next event

received "This is the message. " from (’127.0.0.1’, 62835)

waiting for the next event

sending "This is the message. " to (’127.0.0.1’, 62835)

waiting for the next event

(’127.0.0.1’, 62835) queue empty

waiting for the next event

received "This is the message. " from (’127.0.0.1’, 62836)

waiting for the next event

sending "This is the message. " to (’127.0.0.1’, 62836)

waiting for the next event

(’127.0.0.1’, 62836) queue empty

ptg

608 Networking

waiting for the next event

received "It will be sent " from (’127.0.0.1’, 62835)

waiting for the next event

sending "It will be sent " to (’127.0.0.1’, 62835)

waiting for the next event

(’127.0.0.1’, 62835) queue empty

waiting for the next event

received "It will be sent " from (’127.0.0.1’, 62836)

waiting for the next event

sending "It will be sent " to (’127.0.0.1’, 62836)

waiting for the next event

(’127.0.0.1’, 62836) queue empty

waiting for the next event

received "in parts." from (’127.0.0.1’, 62835)

received "in parts." from (’127.0.0.1’, 62836)

waiting for the next event

sending "in parts." to (’127.0.0.1’, 62835)

sending "in parts." to (’127.0.0.1’, 62836)

waiting for the next event

(’127.0.0.1’, 62835) queue empty

(’127.0.0.1’, 62836) queue empty

waiting for the next event

closing (’127.0.0.1’, 62836)

closing (’127.0.0.1’, 62836)

waiting for the next event

11.2.4 Platform-Specific Options

Less portable options provided by select are epoll, the edge polling API supported

by Linux; kqueue, which uses BSD’s kernel queue; and kevent, BSD’s kernel event
interface. Refer to the operating system library documentation for more detail about

how they work.

See Also:
select (http://docs.python.org/library/select.html) The standard library documenta-

tion for this module.

Socket Programming HOWTO (http://docs.python.org/howto/sockets.html) An

instructional guide by Gordon McMillan, included in the standard library

documentation.

socket (page 561) Low-level network communication.

SocketServer (page 609) Framework for creating network server applications.

asyncore (page 619) and asynchat (page 629) Asynchronous I/O framework.

http://docs.python.org/library/select.html
http://docs.python.org/howto/sockets.html

ptg

11.3. SocketServer—Creating Network Servers 609

UNIX Network Programming, Volume 1: The Sockets Networking API, 3/E By

W. Richard Stevens, Bill Fenner, and Andrew M. Rudoff. Published by

Addison-Wesley Professional, 2004. ISBN-10: 0131411551.

11.3 SocketServer—Creating Network Servers

Purpose Creating network servers.

Python Version 1.4 and later

The SocketServer module is a framework for creating network servers. It defines

classes for handling synchronous network requests (the server request-handler blocks

until the request is completed) over TCP, UDP, UNIX streams, and UNIX datagrams.

It also provides mix-in classes for easily converting servers to use a separate thread or

process for each request.

Responsibility for processing a request is split between a server class and a request-

handler class. The server deals with the communication issues, such as listening on a

socket and accepting connections, and the request handler deals with the “protocol”

issues like interpreting incoming data, processing it, and sending data back to the client.

This division of responsibility means that many applications can use one of the existing

server classes without any modifications and provide a request to communicate with

each other handler class for it to work with the custom protocol.

11.3.1 Server Types

There are five different server classes defined in SocketServer. BaseServer

defines the API and is not intended to be instantiated and used directly.

TCPServer uses TCP/IP sockets to communicate. UDPServer uses datagram sockets.

UnixStreamServer and UnixDatagramServer use UNIX-domain sockets and are

only available on UNIX platforms.

11.3.2 Server Objects

To construct a server, pass it an address on which to listen for requests and a request-

handler class (not instance). The address format depends on the server type and the

socket family used. Refer to the socket module documentation for details.

Once the server object is instantiated, use either handle_request() or

serve_forever() to process requests. The serve_forever() method calls

handle_request() in an infinite loop, but if an application needs to integrate the

server with another event loop or use select() to monitor several sockets for differ-

ent servers, it can call handle_request() directly.

ptg

610 Networking

11.3.3 Implementing a Server

When creating a server, it is usually sufficient to reuse one of the existing classes and

provide a custom request handler class. For other cases, BaseServer includes several

methods that can be overridden in a subclass.

• verify_request(request, client_address): Return True to process

the request or False to ignore it. For example, a server could refuse requests from

an IP range or if it is overloaded.

• process_request(request, client_address): Calls finish_requ-

est() to actually do the work of handling the request. It can also create a sepa-

rate thread or process, as the mix-in classes do.

• finish_request(request, client_address): Creates a request handler

instance using the class given to the server’s constructor. Calls handle() on the

request handler to process the request.

11.3.4 Request Handlers

Request handlers do most of the work of receiving incoming requests and deciding what

action to take. The handler is responsible for implementing the protocol on top of the

socket layer (i.e., HTTP, XML-RPC, or AMQP). The request handler reads the request

from the incoming data channel, processes it, and writes a response back out. Three

methods are available to be overridden.

• setup(): Prepares the request handler for the request. In the

StreamRequestHandler the setup() method creates file-like objects

for reading from and writing to the socket.

• handle(): Does the real work for the request. Parses the incoming request, pro-

cesses the data, and sends a response.

• finish(): Cleans up anything created during setup().

Many handlers can be implemented with only a handle() method.

11.3.5 Echo Example

This example implements a simple server/request handler pair that accepts TCP con-

nections and echos back any data sent by the client. It starts with the request handler.

import logging
import sys
import SocketServer

ptg

11.3. SocketServer—Creating Network Servers 611

logging.basicConfig(level=logging.DEBUG,

format=’%(name)s: %(message)s’,
)

class EchoRequestHandler(SocketServer.BaseRequestHandler):

def __init__(self, request, client_address, server):

self.logger = logging.getLogger(’EchoRequestHandler’)

self.logger.debug(’__init__’)

SocketServer.BaseRequestHandler.__init__(self, request,

client_address,

server)

return

def setup(self):

self.logger.debug(’setup’)

return SocketServer.BaseRequestHandler.setup(self)

def handle(self):

self.logger.debug(’handle’)

Echo the back to the client

data = self.request.recv(1024)

self.logger.debug(’recv()->"%s"’, data)

self.request.send(data)

return

def finish(self):

self.logger.debug(’finish’)

return SocketServer.BaseRequestHandler.finish(self)

The only method that actually needs to be implemented is EchoRequest-

Handler.handle(), but versions of all the methods described earlier are included

to illustrate the sequence of calls made. The EchoServer class does nothing different

from TCPServer, except log when each method is called.

class EchoServer(SocketServer.TCPServer):

def __init__(self, server_address,

handler_class=EchoRequestHandler,

):

self.logger = logging.getLogger(’EchoServer’)

self.logger.debug(’__init__’)

ptg

612 Networking

SocketServer.TCPServer.__init__(self, server_address,

handler_class)

return

def server_activate(self):

self.logger.debug(’server_activate’)

SocketServer.TCPServer.server_activate(self)

return

def serve_forever(self, poll_interval=0.5):

self.logger.debug(’waiting for request’)

self.logger.info(’Handling requests, press <Ctrl-C> to quit’)

SocketServer.TCPServer.serve_forever(self, poll_interval)

return

def handle_request(self):

self.logger.debug(’handle_request’)

return SocketServer.TCPServer.handle_request(self)

def verify_request(self, request, client_address):

self.logger.debug(’verify_request(%s, %s)’,
request, client_address)

return SocketServer.TCPServer.verify_request(self, request,

client_address)

def process_request(self, request, client_address):

self.logger.debug(’process_request(%s, %s)’,
request, client_address)

return SocketServer.TCPServer.process_request(self, request,

client_address)

def server_close(self):

self.logger.debug(’server_close’)

return SocketServer.TCPServer.server_close(self)

def finish_request(self, request, client_address):

self.logger.debug(’finish_request(%s, %s)’,
request, client_address)

return SocketServer.TCPServer.finish_request(self, request,

client_address)

def close_request(self, request_address):

self.logger.debug(’close_request(%s)’, request_address)

return SocketServer.TCPServer.close_request(self,

request_address)

ptg

11.3. SocketServer—Creating Network Servers 613

def shutdown(self):

self.logger.debug(’shutdown()’)

return SocketServer.TCPServer.shutdown(self)

The last step is to add a main program that sets up the server to run in a thread and

sends it data to illustrate which methods are called as the data is echoed back.

if __name__ == ’__main__’:

import socket
import threading

address = (’localhost’, 0) # let the kernel assign a port

server = EchoServer(address, EchoRequestHandler)

ip, port = server.server_address # what port was assigned?

Start the server in a thread

t = threading.Thread(target=server.serve_forever)

t.setDaemon(True) # don’t hang on exit

t.start()

logger = logging.getLogger(’client’)

logger.info(’Server on %s:%s’, ip, port)

Connect to the server

logger.debug(’creating socket’)

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

logger.debug(’connecting to server’)

s.connect((ip, port))

Send the data

message = ’Hello, world’

logger.debug(’sending data: "%s"’, message)

len_sent = s.send(message)

Receive a response

logger.debug(’waiting for response’)

response = s.recv(len_sent)

logger.debug(’response from server: "%s"’, response)

Clean up

server.shutdown()

logger.debug(’closing socket’)

s.close()

logger.debug(’done’)

server.socket.close()

ptg

614 Networking

Running the program produces the following.

$ python SocketServer_echo.py

EchoServer: __init__

EchoServer: server_activate

EchoServer: waiting for request

EchoServer: Handling requests, press <Ctrl-C> to quit

client: Server on 127.0.0.1:62859

client: creating socket

client: connecting to server

EchoServer: verify_request(<socket._socketobject object at 0x100e1b8

a0>, (’127.0.0.1’, 62860))

EchoServer: process_request(<socket._socketobject object at 0x100e1b

8a0>, (’127.0.0.1’, 62860))

EchoServer: finish_request(<socket._socketobject object at 0x100e1b8

a0>, (’127.0.0.1’, 62860))

EchoRequestHandler: __init__

EchoRequestHandler: setup

EchoRequestHandler: handle

client: sending data: "Hello, world"

EchoRequestHandler: recv()->"Hello, world"

EchoRequestHandler: finish

EchoServer: close_request(<socket._socketobject object at 0x100e1b8a

0>)

client: waiting for response

client: response from server: "Hello, world"

EchoServer: shutdown()

client: closing socket

client: done

Note: The port number used will change each time the program runs because the

kernel allocates an available port automatically. To make the server listen on a spe-

cific port each time, provide that number in the address tuple instead of the 0.

Here is a condensed version of the same server, without the logging calls. Only the

handle() method in the request-handler class needs to be provided.

import SocketServer

class EchoRequestHandler(SocketServer.BaseRequestHandler):

ptg

11.3. SocketServer—Creating Network Servers 615

def handle(self):

Echo the back to the client

data = self.request.recv(1024)

self.request.send(data)

return

if __name__ == ’__main__’:

import socket
import threading

address = (’localhost’, 0) # let the kernel assign a port

server = SocketServer.TCPServer(address, EchoRequestHandler)

ip, port = server.server_address # what port was assigned?

t = threading.Thread(target=server.serve_forever)

t.setDaemon(True) # don’t hang on exit

t.start()

Connect to the server

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect((ip, port))

Send the data

message = ’Hello, world’

print ’Sending : "%s"’ % message

len_sent = s.send(message)

Receive a response

response = s.recv(len_sent)

print ’Received: "%s"’ % response

Clean up

server.shutdown()

s.close()

server.socket.close()

In this case, no special server class is required since the TCPServer handles all

the server requirements.

$ python SocketServer_echo_simple.py

Sending : "Hello, world"

Received: "Hello, world"

ptg

616 Networking

11.3.6 Threading and Forking

To add threading or forking support to a server, include the appropriate mix-in in the

class hierarchy for the server. The mix-in classes override process_request() to

start a new thread or process when a request is ready to be handled, and the work is

done in the new child.

For threads, use ThreadingMixIn.

import threading
import SocketServer

class ThreadedEchoRequestHandler(SocketServer.BaseRequestHandler):

def handle(self):

Echo the back to the client

data = self.request.recv(1024)

cur_thread = threading.currentThread()

response = ’%s: %s’ % (cur_thread.getName(), data)

self.request.send(response)

return

class ThreadedEchoServer(SocketServer.ThreadingMixIn,
SocketServer.TCPServer,

):

pass

if __name__ == ’__main__’:

import socket
import threading

address = (’localhost’, 0) # let the kernel assign a port

server = ThreadedEchoServer(address, ThreadedEchoRequestHandler)

ip, port = server.server_address # what port was assigned?

t = threading.Thread(target=server.serve_forever)

t.setDaemon(True) # don’t hang on exit

t.start()

print ’Server loop running in thread:’, t.getName()

Connect to the server

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect((ip, port))

ptg

11.3. SocketServer—Creating Network Servers 617

Send the data

message = ’Hello, world’

print ’Sending : "%s"’ % message

len_sent = s.send(message)

Receive a response

response = s.recv(1024)

print ’Received: "%s"’ % response

Clean up

server.shutdown()

s.close()

server.socket.close()

The response from this threaded server includes the identifier of the thread where

the request is handled.

$ python SocketServer_threaded.py

Server loop running in thread: Thread-1

Sending : "Hello, world"

Received: "Thread-2: Hello, world"

For separate processes, use ForkingMixIn.

import os
import SocketServer

class ForkingEchoRequestHandler(SocketServer.BaseRequestHandler):

def handle(self):

Echo the back to the client

data = self.request.recv(1024)

cur_pid = os.getpid()

response = ’%s: %s’ % (cur_pid, data)

self.request.send(response)

return

class ForkingEchoServer(SocketServer.ForkingMixIn,
SocketServer.TCPServer,

):

pass

ptg

618 Networking

if __name__ == ’__main__’:

import socket
import threading

address = (’localhost’, 0) # let the kernel assign a port

server = ForkingEchoServer(address, ForkingEchoRequestHandler)

ip, port = server.server_address # what port was assigned?

t = threading.Thread(target=server.serve_forever)

t.setDaemon(True) # don’t hang on exit

t.start()

print ’Server loop running in process:’, os.getpid()

Connect to the server

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect((ip, port))

Send the data

message = ’Hello, world’

print ’Sending : "%s"’ % message

len_sent = s.send(message)

Receive a response

response = s.recv(1024)

print ’Received: "%s"’ % response

Clean up

server.shutdown()

s.close()

server.socket.close()

In this case, the process id of the child is included in the response from the server.

$ python SocketServer_forking.py

Server loop running in process: 12797

Sending : "Hello, world"

Received: "12798: Hello, world"

See Also:
SocketServer (http://docs.python.org/lib/module-SocketServer.html) Standard lib-

rary documentation for this module.

http://docs.python.org/lib/module-SocketServer.html

ptg

11.4. asyncore—Asynchronous I/O 619

asyncore (page 619) Use asyncore to create asynchronous servers that do not block

while processing a request.

SimpleXMLRPCServer (page 714) XML-RPC server built using SocketServer.

11.4 asyncore—Asynchronous I/O

Purpose Asynchronous I/O handler.

Python Version 1.5.2 and later

The asyncore module includes tools for working with I/O objects such as sockets so

they can be managed asynchronously (instead of using multiple threads or processes).

The main class provided is dispatcher, a wrapper around a socket that provides

hooks for handling events like connecting, reading, and writing when invoked from

the main loop function, loop().

11.4.1 Servers

This example illustrates using asyncore in a server and client by reimplementing

the EchoServer from the SocketServer examples. Three classes are used in the

new implementation. The first, EchoServer, receives incoming connections from

clients. This demonstration implementation closes down as soon as the first connec-

tion is accepted, so it is easier to start and stop the server while experimenting with the

code.

import asyncore
import logging

class EchoServer(asyncore.dispatcher):
"""Receives connections and establishes handlers for each client.

"""

def __init__(self, address):

self.logger = logging.getLogger(’EchoServer’)

asyncore.dispatcher.__init__(self)

self.create_socket(socket.AF_INET, socket.SOCK_STREAM)

self.bind(address)

self.address = self.socket.getsockname()

self.logger.debug(’binding to %s’, self.address)

self.listen(1)

return

ptg

620 Networking

def handle_accept(self):

Called when a client connects to the socket

client_info = self.accept()

self.logger.debug(’handle_accept() -> %s’, client_info[1])

EchoHandler(sock=client_info[0])

Only deal with one client at a time,

so close as soon as the handler is set up.

Under normal conditions, the server

would run forever or until it received

instructions to stop.

self.handle_close()

return

def handle_close(self):

self.logger.debug(’handle_close()’)

self.close()

return

Each time a new connection is accepted in handle_accept(), EchoServer cre-

ates a new EchoHandler instance to manage it. The EchoServer and EchoHandler

are defined in separate classes because they do different things. When EchoServer

accepts a connection, a new socket is established. Rather than try to dispatch to individ-

ual clients within EchoServer, an EchoHandler is created to take advantage of the

socket map maintained by asyncore.

class EchoHandler(asyncore.dispatcher):
"""Handles echoing messages from a single client.

"""

def __init__(self, sock, chunk_size=256):

self.chunk_size = chunk_size

logger_name = ’EchoHandler’

self.logger = logging.getLogger(logger_name)

asyncore.dispatcher.__init__(self, sock=sock)

self.data_to_write = []

return

def writable(self):

"""Write if data has been received."""

response = bool(self.data_to_write)

self.logger.debug(’writable() -> %s’, response)

return response

ptg

11.4. asyncore—Asynchronous I/O 621

def handle_write(self):

"""Write as much as possible of the

most recent message received.

"""

data = self.data_to_write.pop()

sent = self.send(data[:self.chunk_size])

if sent < len(data):

remaining = data[sent:]

self.data.to_write.append(remaining)

self.logger.debug(’handle_write() -> (%d) %r’,
sent, data[:sent])

if not self.writable():

self.handle_close()

def handle_read(self):

"""Read an incoming message from the client

and put it into the outgoing queue.

"""

data = self.recv(self.chunk_size)

self.logger.debug(’handle_read() -> (%d) %r’,
len(data), data)

self.data_to_write.insert(0, data)

def handle_close(self):

self.logger.debug(’handle_close()’)

self.close()

11.4.2 Clients

To create a client based on asyncore, subclass dispatcher, and provide implemen-

tations for creating the socket, reading, and writing. For EchoClient, the socket is

created in __init__() using the base-class method create_socket(). Alternative

implementations of the method may be provided, but in this case, a TCP/IP socket is

needed so the base-class version is sufficient.

class EchoClient(asyncore.dispatcher):
"""Sends messages to the server and receives responses.

"""

def __init__(self, host, port, message, chunk_size=128):

self.message = message

self.to_send = message

self.received_data = []

ptg

622 Networking

self.chunk_size = chunk_size

self.logger = logging.getLogger(’EchoClient’)

asyncore.dispatcher.__init__(self)

self.create_socket(socket.AF_INET, socket.SOCK_STREAM)

self.logger.debug(’connecting to %s’, (host, port))

self.connect((host, port))

return

The handle_connect() hook is present simply to show when it is called. Other

types of clients that need to implement connection hand-shaking or protocol negotiation

should do that work in handle_connect().

def handle_connect(self):

self.logger.debug(’handle_connect()’)

The handle_close() method is also presented to show when it is called during

processing. The base-class version closes the socket correctly, so if an application does

not need to do extra cleanup on close, the method does not need to be overridden.

def handle_close(self):

self.logger.debug(’handle_close()’)

self.close()

received_message = ’’.join(self.received_data)

if received_message == self.message:

self.logger.debug(’RECEIVED COPY OF MESSAGE’)

else:
self.logger.debug(’ERROR IN TRANSMISSION’)

self.logger.debug(’EXPECTED "%s"’, self.message)

self.logger.debug(’RECEIVED "%s"’, received_message)

return

The asyncore loop uses writable() and its sibling method readable() to

decide what actions to take with each dispatcher. Actual use of poll() or select()

on the sockets or file descriptors managed by each dispatcher is handled inside the

asyncore code and does not need to be implemented in a program using asyncore.

The program only needs to indicate whether the dispatcher wants to read or write data.

In this client, writable() returns True as long as there is data to send to the server.

readable() always returns True because the client needs to read all the data.

def writable(self):

self.logger.debug(’writable() -> %s’, bool(self.to_send))

return bool(self.to_send)

ptg

11.4. asyncore—Asynchronous I/O 623

def readable(self):

self.logger.debug(’readable() -> True’)

return True

Each time through the processing loop when writable() responds positively,

handle_write() is invoked. The EchoClient splits the message up into parts based

on the size restriction given to demonstrate how a much larger multipart message could

be transmitted using several iterations through the loop. Each time handle_write()

is called, another part of the message is written, until it is completely consumed.

def handle_write(self):

sent = self.send(self.to_send[:self.chunk_size])

self.logger.debug(’handle_write() -> (%d) %r’,
sent, self.to_send[:sent])

self.to_send = self.to_send[sent:]

Similarly, when readable() responds positively and there is data to read,

handle_read() is invoked.

def handle_read(self):

data = self.recv(self.chunk_size)

self.logger.debug(’handle_read() -> (%d) %r’,
len(data), data)

self.received_data.append(data)

11.4.3 The Event Loop

A short test script is included in the module. It sets up a server and client, and then runs

asyncore.loop() to process the communications. Creating the clients registers them

in a “map” kept internally by asyncore. The communication occurs as the loop iterates

over the clients. When the client reads zero bytes from a socket that seems readable, the

condition is interpreted as a closed connection and handle_close() is called.

if __name__ == ’__main__’:

import socket

logging.basicConfig(level=logging.DEBUG,

format=’%(name)-11s: %(message)s’,
)

address = (’localhost’, 0) # let the kernel assign a port

server = EchoServer(address)

ip, port = server.address # find out which port was assigned

ptg

624 Networking

message = open(’lorem.txt’, ’r’).read()

logging.info(’Total message length: %d bytes’, len(message))

client = EchoClient(ip, port, message=message)

asyncore.loop()

This is the output of running the program.

$ python asyncore_echo_server.py

EchoServer : binding to (’127.0.0.1’, 63985)

root : Total message length: 133 bytes

EchoClient : connecting to (’127.0.0.1’, 63985)

EchoClient : readable() -> True

EchoClient : writable() -> True

EchoServer : handle_accept() -> (’127.0.0.1’, 63986)

EchoServer : handle_close()

EchoClient : handle_connect()

EchoClient : handle_write() -> (128) ’Lorem ipsum dolor sit amet, cons

ectetuer adipiscing elit. Donec\negestas, enim et consectetuer ullamco

rper, lectus ligula rutrum ’

EchoClient : readable() -> True

EchoClient : writable() -> True

EchoHandler: writable() -> False

EchoHandler: handle_read() -> (128) ’Lorem ipsum dolor sit amet, conse

ctetuer adipiscing elit. Donec\negestas, enim et consectetuer ullamcor

per, lectus ligula rutrum ’

EchoClient : handle_write() -> (5) ’leo.\n’

EchoClient : readable() -> True

EchoClient : writable() -> False

EchoHandler: writable() -> True

EchoHandler: handle_read() -> (5) ’leo.\n’

EchoHandler: handle_write() -> (128) ’Lorem ipsum dolor sit amet, cons

ectetuer adipiscing elit. Donec\negestas, enim et consectetuer ullamco

rper, lectus ligula rutrum ’

EchoHandler: writable() -> True

EchoClient : readable() -> True

EchoClient : writable() -> False

EchoHandler: writable() -> True

EchoClient : handle_read() -> (128) ’Lorem ipsum dolor sit amet, conse

ctetuer adipiscing elit. Donec\negestas, enim et consectetuer ullamcor

ptg

11.4. asyncore—Asynchronous I/O 625

per, lectus ligula rutrum ’

EchoHandler: handle_write() -> (5) ’leo.\n’

EchoHandler: writable() -> False

EchoHandler: handle_close()

EchoClient : readable() -> True

EchoClient : writable() -> False

EchoClient : handle_read() -> (5) ’leo.\n’

EchoClient : readable() -> True

EchoClient : writable() -> False

EchoClient : handle_close()

EchoClient : RECEIVED COPY OF MESSAGE

EchoClient : handle_read() -> (0) ’’

In this example, the server, handler, and client objects are all being maintained in

the same socket map by asyncore in a single process. To separate the server from

the client, instantiate them from separate scripts and run asyncore.loop() in both.

When a dispatcher is closed, it is removed from the map maintained by asyncore, and

the loop exits when the map is empty.

11.4.4 Working with Other Event Loops

It is sometimes necessary to integrate the asyncore event loop with an event loop

from the parent application. For example, a GUI application would not want the UI to

block until all asynchronous transfers are handled—that would defeat the purpose of

making them asynchronous. To make this sort of integration easy, asyncore.loop()

accepts arguments to set a timeout and to limit the number of times the loop is run. The

effect of these options on the client can be demonstrated with an HTTP client based on

the version in the standard library documentation for asyncore.

import asyncore
import logging
import socket
from cStringIO import StringIO

import urlparse

class HttpClient(asyncore.dispatcher):

def __init__(self, url):

self.url = url

self.logger = logging.getLogger(self.url)

self.parsed_url = urlparse.urlparse(url)

ptg

626 Networking

asyncore.dispatcher.__init__(self)

self.write_buffer = ’GET %s HTTP/1.0\r\n\r\n’ % self.url

self.read_buffer = StringIO()

self.create_socket(socket.AF_INET, socket.SOCK_STREAM)

address = (self.parsed_url.netloc, 80)

self.logger.debug(’connecting to %s’, address)

self.connect(address)

def handle_connect(self):

self.logger.debug(’handle_connect()’)

def handle_close(self):

self.logger.debug(’handle_close()’)

self.close()

def writable(self):

is_writable = (len(self.write_buffer) > 0)

if is_writable:

self.logger.debug(’writable() -> %s’, is_writable)

return is_writable

def readable(self):

self.logger.debug(’readable() -> True’)

return True

def handle_write(self):

sent = self.send(self.write_buffer)

self.logger.debug(’handle_write() -> "%s"’,
self.write_buffer[:sent])

self.write_buffer = self.write_buffer[sent:]

def handle_read(self):

data = self.recv(8192)

self.logger.debug(’handle_read() -> %d bytes’, len(data))

self.read_buffer.write(data)

This main program uses the client class in a while loop, reading or writing data

once per iteration.

import asyncore
import logging

from asyncore_http_client import HttpClient

ptg

11.4. asyncore—Asynchronous I/O 627

logging.basicConfig(level=logging.DEBUG,

format=’%(name)s: %(message)s’,
)

clients = [

HttpClient(’http://www.doughellmann.com/’),

]

loop_counter = 0

while asyncore.socket_map:

loop_counter += 1

logging.debug(’loop_counter=%s’, loop_counter)

asyncore.loop(timeout=1, count=1)

Instead of a custom local while loop, asyncore.loop() could be called in the

same manner from a GUI toolkit idle handler or other mechanism for doing a small

amount of work when the UI is not busy with other event handlers.

$ python asyncore_loop.py

http://www.doughellmann.com/: connecting to (’www.doughellmann.com’,

80)

root: loop_counter=1

http://www.doughellmann.com/: readable() -> True

http://www.doughellmann.com/: writable() -> True

http://www.doughellmann.com/: handle_connect()

http://www.doughellmann.com/: handle_write() -> "GET http://www.doug

hellmann.com/ HTTP/1.0

"

root: loop_counter=2

http://www.doughellmann.com/: readable() -> True

http://www.doughellmann.com/: handle_read() -> 1448 bytes

root: loop_counter=3

http://www.doughellmann.com/: readable() -> True

http://www.doughellmann.com/: handle_read() -> 2896 bytes

root: loop_counter=4

http://www.doughellmann.com/: readable() -> True

http://www.doughellmann.com/: handle_read() -> 1318 bytes

root: loop_counter=5

http://www.doughellmann.com/: readable() -> True

http://www.doughellmann.com/: handle_close()

http://www.doughellmann.com/: handle_read() -> 0 bytes

ptg

628 Networking

11.4.5 Working with Files

Normally, asyncore is used with sockets, but sometimes it is useful to read files asyn-

chronously, too (to use files when testing network servers without requiring the network

setup, or to read or write large data files in parts, for example). For these situations,

asyncore provides the file_dispatcher and file_wrapper classes.

This example implements an asynchronous reader for files by responding with

another portion of the data each time handle_read() is called.

class FileReader(asyncore.file_dispatcher):

def writable(self):

return False

def handle_read(self):

data = self.recv(64)

print ’READ: (%d)\n%r’ % (len(data), data)

def handle_expt(self):

Ignore events that look like out of band data

pass

def handle_close(self):

self.close()

To use FileReader(), give it an open file handle as the only argument to the

constructor.

reader = FileReader(open(’lorem.txt’, ’r’))

asyncore.loop()

Note: This example was tested under Python 2.7. For Python 2.5 and earlier,

file_dispatcher does not automatically convert an open file to a file descriptor.

Use os.popen() to open the file instead, and pass the descriptor to FileReader.

Running the program produces this output.

$ python asyncore_file_dispatcher.py

READ: (64)

’Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Donec\n’

ptg

11.5. asynchat—Asynchronous Protocol Handler 629

READ: (64)

’egestas, enim et consectetuer ullamcorper, lectus ligula rutrum ’

READ: (5)

’leo.\n’

READ: (0)

’’

See Also:
asyncore (http://docs.python.org/library/asyncore.html) The standard library docu-

mentation for this module.

asynchat (page 629) The asynchat module builds on asyncore to provide a frame-

work for implementing protocols based on passing messages back and forth using

a set protocol.

SocketServer (page 609) The SocketServer module section includes another

example of the EchoServer with threading and forking variants.

11.5 asynchat—Asynchronous Protocol Handler

Purpose Asynchronous network communication protocol handler.

Python Version 1.5.2 and later

The asynchat module builds on asyncore to provide a framework for implement-

ing protocols based on passing messages back and forth between server and client.

The async_chat class is an asyncore.dispatcher subclass that receives data and

looks for a message terminator. The subclass only needs to specify what to do when data

comes in and how to respond once the terminator is found. Outgoing data is queued for

transmission via FIFO objects managed by async_chat.

11.5.1 Message Terminators

Incoming messages are broken up based on terminators, which are managed for each

async_chat instance via set_terminator(). There are three possible configura-

tions.

1. If a string argument is passed to set_terminator(), the message is considered

complete when that string appears in the input data.

2. If a numeric argument is passed, the message is considered complete when that

many bytes have been read.

3. If None is passed, message termination is not managed by async_chat.

The next EchoServer example uses both a simple string terminator and a mes-

sage length terminator, depending on the context of the incoming data. The HTTP

http://docs.python.org/library/asyncore.html

ptg

630 Networking

request handler example in the standard library documentation offers another exam-

ple of how to change the terminator based on the context. It uses a literal terminator

while reading HTTP headers and a length value to terminate the HTTP POST request

body.

11.5.2 Server and Handler

To make it easier to understand how asynchat is different from asyncore, the exam-

ples here duplicate the functionality of the EchoServer example from the asyncore

discussion. The same pieces are needed: a server object to accept connections, handler

objects to deal with communication with each client, and client objects to initiate the

conversation.

The EchoServer implementation with asynchat is essentially the same as the

one created for the asyncore example, but it has fewer logging calls:

import asyncore
import logging
import socket

from asynchat_echo_handler import EchoHandler

class EchoServer(asyncore.dispatcher):
"""Receives connections and establishes handlers for each client.

"""

def __init__(self, address):

asyncore.dispatcher.__init__(self)

self.create_socket(socket.AF_INET, socket.SOCK_STREAM)

self.bind(address)

self.address = self.socket.getsockname()

self.listen(1)

return

def handle_accept(self):

Called when a client connects to our socket

client_info = self.accept()

EchoHandler(sock=client_info[0])

Only deal with one client at a time,

so close as soon as the handler is set up.

Under normal conditions, the server

would run forever or until it received

instructions to stop.

ptg

11.5. asynchat—Asynchronous Protocol Handler 631

self.handle_close()

return

def handle_close(self):

self.close()

This version of EchoHandler is based on asynchat.async_chat instead of

the asyncore.dispatcher. It operates at a slightly higher level of abstraction,

so reading and writing are handled automatically. The buffer needs to know four

things:

• what to do with incoming data (by overriding handle_incoming_data())

• how to recognize the end of an incoming message (via set_terminator())

• what to do when a complete message is received (in found_terminator())

• what data to send (using push())

The example application has two operating modes. It is either waiting for a com-

mand of the form ECHO length\n or waiting for the data to be echoed. The mode is

toggled back and forth by setting an instance variable process_data to the method to be

invoked when the terminator is found and then changing the terminator, as appropriate.

import asynchat
import logging

class EchoHandler(asynchat.async_chat):
"""Handles echoing messages from a single client.

"""

Artificially reduce buffer sizes to illustrate

sending and receiving partial messages.

ac_in_buffer_size = 128

ac_out_buffer_size = 128

def __init__(self, sock):

self.received_data = []

self.logger = logging.getLogger(’EchoHandler’)

asynchat.async_chat.__init__(self, sock)

Start looking for the ECHO command

self.process_data = self._process_command

self.set_terminator(’\n’)
return

ptg

632 Networking

def collect_incoming_data(self, data):

"""Read an incoming message from the client

and put it into the outgoing queue.

"""

self.logger.debug(

’collect_incoming_data() -> (%d bytes) %r’,
len(data), data)

self.received_data.append(data)

def found_terminator(self):

"""The end of a command or message has been seen."""

self.logger.debug(’found_terminator()’)

self.process_data()

def _process_command(self):

"""Have the full ECHO command"""

command = ’’.join(self.received_data)

self.logger.debug(’_process_command() %r’, command)

command_verb, command_arg = command.strip().split(’ ’)

expected_data_len = int(command_arg)

self.set_terminator(expected_data_len)

self.process_data = self._process_message

self.received_data = []

def _process_message(self):

"""Have read the entire message."""

to_echo = ’’.join(self.received_data)

self.logger.debug(’_process_message() echoing %r’,
to_echo)

self.push(to_echo)

Disconnect after sending the entire response

since we only want to do one thing at a time

self.close_when_done()

As soon as the complete command is found, the handler switches to message-

processing mode and waits for the complete set of text to be received. When all the

data is available, it is pushed onto the outgoing channel. The handler is set up to be

closed once the data is sent.

11.5.3 Client

The client works in much the same way as the handler. As with the asyncore imple-

mentation, the message to be sent is an argument to the client’s constructor. When the

ptg

11.5. asynchat—Asynchronous Protocol Handler 633

socket connection is established, handle_connect() is called so the client can send

the command and message data.

The command is pushed directly, but a special “producer” class is used for the

message text. The producer is polled for chunks of data to send out over the network.

When the producer returns an empty string, it is assumed to be empty and writing stops.

The client expects just the message data in response, so it sets an integer terminator

and collects data in a list until the entire message has been received.

import asynchat
import logging
import socket

class EchoClient(asynchat.async_chat):
"""Sends messages to the server and receives responses.

"""

Artificially reduce buffer sizes to show

sending and receiving partial messages.

ac_in_buffer_size = 128

ac_out_buffer_size = 128

def __init__(self, host, port, message):

self.message = message

self.received_data = []

self.logger = logging.getLogger(’EchoClient’)

asynchat.async_chat.__init__(self)

self.create_socket(socket.AF_INET, socket.SOCK_STREAM)

self.logger.debug(’connecting to %s’, (host, port))

self.connect((host, port))

return

def handle_connect(self):

self.logger.debug(’handle_connect()’)

Send the command

self.push(’ECHO %d\n’ % len(self.message))

Send the data

self.push_with_producer(

EchoProducer(self.message,

buffer_size=self.ac_out_buffer_size)

)

We expect the data to come back as-is,

so set a length-based terminator

self.set_terminator(len(self.message))

ptg

634 Networking

def collect_incoming_data(self, data):

"""Read an incoming message from the client

and add it to the outgoing queue.

"""

self.logger.debug(

’collect_incoming_data() -> (%d) %r’,
len(data), data)

self.received_data.append(data)

def found_terminator(self):

self.logger.debug(’found_terminator()’)

received_message = ’’.join(self.received_data)

if received_message == self.message:

self.logger.debug(’RECEIVED COPY OF MESSAGE’)

else:
self.logger.debug(’ERROR IN TRANSMISSION’)

self.logger.debug(’EXPECTED %r’, self.message)

self.logger.debug(’RECEIVED %r’, received_message)

return

class EchoProducer(asynchat.simple_producer):

logger = logging.getLogger(’EchoProducer’)

def more(self):

response = asynchat.simple_producer.more(self)

self.logger.debug(’more() -> (%s bytes) %r’,
len(response), response)

return response

11.5.4 Putting It All Together

The main program for this example sets up the client and server in the same asyncore

main loop.

import asyncore
import logging
import socket

from asynchat_echo_server import EchoServer

from asynchat_echo_client import EchoClient

ptg

11.5. asynchat—Asynchronous Protocol Handler 635

logging.basicConfig(level=logging.DEBUG,

format=’%(name)-11s: %(message)s’,
)

address = (’localhost’, 0) # let the kernel give us a port

server = EchoServer(address)

ip, port = server.address # find out what port we were given

message_data = open(’lorem.txt’, ’r’).read()

client = EchoClient(ip, port, message=message_data)

asyncore.loop()

Normally, they would run in separate processes, but this makes it easier to show

the combined output.

$ python asynchat_echo_main.py

EchoClient : connecting to (’127.0.0.1’, 52590)

EchoClient : handle_connect()

EchoProducer: more() -> (128 bytes) ’Lorem ipsum dolor sit amet,

consectetuer adipiscing elit. Donec\negestas, enim et consectetue

r ullamcorper, lectus ligula rutrum\n’

EchoProducer: more() -> (38 bytes) ’leo, a elementum elit tortor

eu quam.\n’

EchoProducer: more() -> (0 bytes) ’’

EchoHandler: collect_incoming_data() -> (8 bytes) ’ECHO 166’

EchoHandler: found_terminator()

EchoHandler: _process_command() ’ECHO 166’

EchoHandler: collect_incoming_data() -> (119 bytes) ’Lorem ipsum

dolor sit amet, consectetuer adipiscing elit. Donec\negestas, eni

m et consectetuer ullamcorper, lectus ligul’

EchoHandler: collect_incoming_data() -> (47 bytes) ’a rutrum\nleo

, a elementum elit tortor eu quam.\n’

EchoHandler: found_terminator()

EchoHandler: _process_message() echoing ’Lorem ipsum dolor sit am

et, consectetuer adipiscing elit. Donec\negestas, enim et consect

etuer ullamcorper, lectus ligula rutrum\nleo, a elementum elit to

rtor eu quam.\n’

EchoClient : collect_incoming_data() -> (128) ’Lorem ipsum dolor

sit amet, consectetuer adipiscing elit. Donec\negestas, enim et c

ptg

636 Networking

onsectetuer ullamcorper, lectus ligula rutrum\n’

EchoClient : collect_incoming_data() -> (38) ’leo, a elementum el

it tortor eu quam.\n’

EchoClient : found_terminator()

EchoClient : RECEIVED COPY OF MESSAGE

See Also:
asynchat (http://docs.python.org/library/asynchat.html) The standard library docu-

mentation for this module.

asyncore (page 619) The asyncore module implements an lower-level asyn-

chronous I/O event loop.

http://docs.python.org/library/asynchat.html

ptg

Chapter 12

THE INTERNET

The Internet is a pervasive aspect of modern computing. Even small, single-use scripts

frequently interact with remote services to send or receive data. Python’s rich set of

tools for working with web protocols makes it well suited for programming web-based

applications, either as a client or a server.

The urlparse module manipulates URL strings, splitting and combining their

components, and is useful in clients and servers.

There are two client-side APIs for accessing web resources. The original urllib

and updated urllib2 offer similar APIs for retrieving content remotely, but urllib2

is easier to extend with new protocols and the urllib2.Request provides a way to

add custom headers to outgoing requests.

HTTP POST requests are usually “form encoded” with urllib. Binary data sent

through a POST should be encoded with base64 first, to comply with the message

format standard.

Well-behaved clients that access many sites as spiders or crawlers should use

robotparser to ensure they have permission before placing a heavy load on the

remote server.

To create a custom web server with Python, without requiring any external frame-

works, use BaseHTTPServer as a starting point. It handles the HTTP protocol, so

the only customization needed is the application code for responding to the incoming

requests.

Session state in the server can be managed through cookies created and parsed by

the Cookie module. Full support for expiration, path, domain, and other cookie settings

makes it easy to configure the session.

The uuid module is used for generating identifiers for resources that need unique

values. UUIDs are good for automatically generating Uniform Resource Name (URN)

637

ptg

638 The Internet

values, where the name of the resource needs to be unique but does not need to convey

any meaning.

Python’s standard library includes support for two web-based remote procedure-

call mechanisms. The JavaScript Object Notation (JSON) encoding scheme used in

AJAX communication is implemented in json. It works equally well in the client or the

server. Complete XML-RPC client and server libraries are also included in xmlrpclib

and SimpleXMLRPCServer, respectively.

12.1 urlparse—Split URLs into Components

Purpose Split URL into components.

Python Version 1.4 and later

The urlparse module provides functions for breaking URLs down into their compo-

nent parts, as defined by the relevant RFCs.

12.1.1 Parsing

The return value from the urlparse() function is an object that acts like a tuple

with six elements.

from urlparse import urlparse

url = ’http://netloc/path;param?query=arg#frag’

parsed = urlparse(url)

print parsed

The parts of the URL available through the tuple interface are the scheme, net-

work location, path, path-segment parameters (separated from the path by a semicolon),

query, and fragment.

$ python urlparse_urlparse.py

ParseResult(scheme=’http’, netloc=’netloc’, path=’/path’,

params=’param’, query=’query=arg’, fragment=’frag’)

Although the return value acts like a tuple, it is really based on a namedtuple, a

subclass of tuple that supports accessing the parts of the URL via named attributes as

well as indexes. In addition to being easier to use for the programmer, the attribute API

also offers access to several values not available in the tuple API.

ptg

12.1. urlparse—Split URLs into Components 639

from urlparse import urlparse

url = ’http://user:pwd@NetLoc:80/path;param?query=arg#frag’

parsed = urlparse(url)

print ’scheme :’, parsed.scheme

print ’netloc :’, parsed.netloc

print ’path :’, parsed.path

print ’params :’, parsed.params

print ’query :’, parsed.query

print ’fragment:’, parsed.fragment

print ’username:’, parsed.username

print ’password:’, parsed.password

print ’hostname:’, parsed.hostname, ’(netloc in lowercase)’

print ’port :’, parsed.port

The username and password are available when present in the input URL and set

to None when not. The hostname is the same value as netloc, in all lowercase. And the

port is converted to an integer when present and None when not.

$ python urlparse_urlparseattrs.py

scheme : http

netloc : user:pwd@NetLoc:80

path : /path

params : param

query : query=arg

fragment: frag

username: user

password: pwd

hostname: netloc (netloc in lowercase)

port : 80

The urlsplit() function is an alternative to urlparse(). It behaves a little

differently because it does not split the parameters from the URL. This is useful for

URLs following RFC 2396, which supports parameters for each segment of the path.

from urlparse import urlsplit

url = ’http://user:pwd@NetLoc:80/p1;param/p2;param?query=arg#frag’

parsed = urlsplit(url)

print parsed

print ’scheme :’, parsed.scheme

ptg

640 The Internet

print ’netloc :’, parsed.netloc

print ’path :’, parsed.path

print ’query :’, parsed.query

print ’fragment:’, parsed.fragment

print ’username:’, parsed.username

print ’password:’, parsed.password

print ’hostname:’, parsed.hostname, ’(netloc in lowercase)’

print ’port :’, parsed.port

Since the parameters are not split out, the tuple API will show five elements instead

of six, and there is no params attribute.

$ python urlparse_urlsplit.py

SplitResult(scheme=’http’, netloc=’user:pwd@NetLoc:80’,

path=’/p1;param/p2;param’, query=’query=arg’, fragment=’frag’)

scheme : http

netloc : user:pwd@NetLoc:80

path : /p1;param/p2;param

query : query=arg

fragment: frag

username: user

password: pwd

hostname: netloc (netloc in lowercase)

port : 80

To simply strip the fragment identifier from a URL, such as when finding a base

page name from a URL, use urldefrag().

from urlparse import urldefrag

original = ’http://netloc/path;param?query=arg#frag’

print ’original:’, original

url, fragment = urldefrag(original)

print ’url :’, url

print ’fragment:’, fragment

The return value is a tuple containing the base URL and the fragment.

$ python urlparse_urldefrag.py

original: http://netloc/path;param?query=arg#frag

url : http://netloc/path;param?query=arg

fragment: frag

ptg

12.1. urlparse—Split URLs into Components 641

12.1.2 Unparsing

There are several ways to assemble the parts of a split URL back together into a single

string. The parsed URL object has a geturl() method.

from urlparse import urlparse

original = ’http://netloc/path;param?query=arg#frag’

print ’ORIG :’, original

parsed = urlparse(original)

print ’PARSED:’, parsed.geturl()

geturl() only works on the object returned by urlparse() or urlsplit().

$ python urlparse_geturl.py

ORIG : http://netloc/path;param?query=arg#frag

PARSED: http://netloc/path;param?query=arg#frag

A regular tuple containing strings can be combined into a URL with urlun-

parse().

from urlparse import urlparse, urlunparse

original = ’http://netloc/path;param?query=arg#frag’

print ’ORIG :’, original

parsed = urlparse(original)

print ’PARSED:’, type(parsed), parsed

t = parsed[:]

print ’TUPLE :’, type(t), t

print ’NEW :’, urlunparse(t)

While the ParseResult returned by urlparse() can be used as a tuple, this

example explicitly creates a new tuple to show that urlunparse() works with normal

tuples, too.

$ python urlparse_urlunparse.py

ORIG : http://netloc/path;param?query=arg#frag

PARSED: <class ’urlparse.ParseResult’> ParseResult(scheme=’http’,

netloc=’netloc’, path=’/path’, params=’param’, query=’query=arg’,

fragment=’frag’)

ptg

642 The Internet

TUPLE : <type ’tuple’> (’http’, ’netloc’, ’/path’, ’param’,

’query=arg’, ’frag’)

NEW : http://netloc/path;param?query=arg#frag

If the input URL included superfluous parts, those may be dropped from the

reconstructed URL.

from urlparse import urlparse, urlunparse

original = ’http://netloc/path;?#’

print ’ORIG :’, original

parsed = urlparse(original)

print ’PARSED:’, type(parsed), parsed

t = parsed[:]

print ’TUPLE :’, type(t), t

print ’NEW :’, urlunparse(t)

In this case, parameters, query, and fragment are all missing in the original URL.

The new URL does not look the same as the original, but it is equivalent according to

the standard.

$ python urlparse_urlunparseextra.py

ORIG : http://netloc/path;?#

PARSED: <class ’urlparse.ParseResult’> ParseResult(scheme=’http’,

netloc=’netloc’, path=’/path’, params=’’, query=’’, fragment=’’)

TUPLE : <type ’tuple’> (’http’, ’netloc’, ’/path’, ’’, ’’, ’’)

NEW : http://netloc/path

12.1.3 Joining

In addition to parsing URLs, urlparse includes urljoin() for constructing absolute

URLs from relative fragments.

from urlparse import urljoin

print urljoin(’http://www.example.com/path/file.html’,

’anotherfile.html’)

print urljoin(’http://www.example.com/path/file.html’,

’../anotherfile.html’)

ptg

12.1. urlparse—Split URLs into Components 643

In the example, the relative portion of the path (“../”) is taken into account when

the second URL is computed.

$ python urlparse_urljoin.py

http://www.example.com/path/anotherfile.html

http://www.example.com/anotherfile.html

Nonrelative paths are handled in the same way as os.path.join() handles

them.

from urlparse import urljoin

print urljoin(’http://www.example.com/path/’,

’/subpath/file.html’)

print urljoin(’http://www.example.com/path/’,

’subpath/file.html’)

If the path being joined to the URL starts with a slash (/), it resets the URL’s path

to the top level. If it does not start with a slash, it is appended to the end of the URL’s

path.

$ python urlparse_urljoin_with_path.py

http://www.example.com/subpath/file.html

http://www.example.com/path/subpath/file.html

See Also:
urlparse (http://docs.python.org/lib/module-urlparse.html) Standard library docu-

mentation for this module.

urllib (page 651) Retrieve the contents of a resource identified by a URL.

urllib2 (page 657) Alternative API for accessing remote URLs.

RFC 1738 (http://tools.ietf.org/html/rfc1738.html) Uniform Resource Locator

(URL) syntax.

RFC 1808 (http://tools.ietf.org/html/rfc1808.html) Relative URLs.

RFC 2396 (http://tools.ietf.org/html/rfc2396.html) Uniform Resource Identifier

(URI) generic syntax.

RFC 3986 (http://tools.ietf.org/html/rfc3986.html) Uniform Resource Identifier

(URI) syntax.

http://docs.python.org/lib/module-urlparse.html
http://tools.ietf.org/html/rfc1738.html
http://tools.ietf.org/html/rfc1808.html
http://tools.ietf.org/html/rfc2396.html
http://tools.ietf.org/html/rfc3986.html

ptg

644 The Internet

12.2 BaseHTTPServer—Base Classes for
Implementing Web Servers

Purpose BaseHTTPServer includes classes that can form the basis of a

web server.

Python Version 1.4 and later

BaseHTTPServer uses classes from SocketServer to create base classes for

making HTTP servers. HTTPServer can be used directly, but the BaseHTTPRe-

questHandler is intended to be extended to handle each protocol method (GET,

POST, etc.).

12.2.1 HTTP GET

To add support for an HTTP method in a request-handler class, implement the

method do_METHOD(), replacing METHOD with the name of the HTTP method (e.g.,

do_GET(), do_POST(), etc.). For consistency, the request-handler methods take no

arguments. All the parameters for the request are parsed by BaseHTTPRequestHand-

ler and stored as instance attributes of the request instance.

This example request handler illustrates how to return a response to the client and

includes some local attributes that can be useful in building the response.

from BaseHTTPServer import BaseHTTPRequestHandler

import urlparse

class GetHandler(BaseHTTPRequestHandler):

def do_GET(self):

parsed_path = urlparse.urlparse(self.path)

message_parts = [

’CLIENT VALUES:’,

’client_address=%s (%s)’ % (self.client_address,

self.address_string()),

’command=%s’ % self.command,

’path=%s’ % self.path,

’real path=%s’ % parsed_path.path,

’query=%s’ % parsed_path.query,

’request_version=%s’ % self.request_version,

’’,

’SERVER VALUES:’,

’server_version=%s’ % self.server_version,

’sys_version=%s’ % self.sys_version,

ptg

12.2. BaseHTTPServer—Base Classes for Implementing Web Servers 645

’protocol_version=%s’ % self.protocol_version,

’’,

’HEADERS RECEIVED:’,

]

for name, value in sorted(self.headers.items()):

message_parts.append(’%s=%s’ % (name, value.rstrip()))

message_parts.append(’’)

message = ’\r\n’.join(message_parts)
self.send_response(200)

self.end_headers()

self.wfile.write(message)

return

if __name__ == ’__main__’:

from BaseHTTPServer import HTTPServer

server = HTTPServer((’localhost’, 8080), GetHandler)

print ’Starting server, use <Ctrl-C> to stop’

server.serve_forever()

The message text is assembled and then written to wfile, the file handle wrapping

the response socket. Each response needs a response code, set via send_response().

If an error code is used (404, 501, etc.), an appropriate default error message is included

in the header, or a message can be passed with the error code.

To run the request handler in a server, pass it to the constructor of HTTPServer,

as in the __main__ processing portion of the sample script.

Then start the server.

$ python BaseHTTPServer_GET.py

Starting server, use <Ctrl-C> to stop

In a separate terminal, use curl to access it.

$ curl -i http://localhost:8080/?foo=bar

HTTP/1.0 200 OK

Server: BaseHTTP/0.3 Python/2.5.1

Date: Sun, 09 Dec 2007 16:00:34 GMT

CLIENT VALUES:

client_address=(’127.0.0.1’, 51275) (localhost)

ptg

646 The Internet

command=GET

path=/?foo=bar

real path=/

query=foo=bar

request_version=HTTP/1.1

SERVER VALUES:

server_version=BaseHTTP/0.3

sys_version=Python/2.5.1

protocol_version=HTTP/1.0

12.2.2 HTTP POST

Supporting POST requests is a little more work because the base class does not parse

the form data automatically. The cgimodule provides the FieldStorage class, which

knows how to parse the form if it is given the correct inputs.

from BaseHTTPServer import BaseHTTPRequestHandler

import cgi

class PostHandler(BaseHTTPRequestHandler):

def do_POST(self):

Parse the form data posted

form = cgi.FieldStorage(

fp=self.rfile,

headers=self.headers,

environ={’REQUEST_METHOD’:’POST’,

’CONTENT_TYPE’:self.headers[’Content-Type’],

})

Begin the response

self.send_response(200)

self.end_headers()

self.wfile.write(’Client: %s\n’ % str(self.client_address))

self.wfile.write(’User-agent: %s\n’ %

str(self.headers[’user-agent’]))

self.wfile.write(’Path: %s\n’ % self.path)

self.wfile.write(’Form data:\n’)

Echo back information about what was posted in the form

for field in form.keys():

field_item = form[field]

ptg

12.2. BaseHTTPServer—Base Classes for Implementing Web Servers 647

if field_item.filename:

The field contains an uploaded file

file_data = field_item.file.read()

file_len = len(file_data)

del file_data

self.wfile.write(

’\tUploaded %s as "%s" (%d bytes)\n’ % \

(field, field_item.filename, file_len))

else:
Regular form value

self.wfile.write(’\t%s=%s\n’ %

(field, form[field].value))

return

if __name__ == ’__main__’:

from BaseHTTPServer import HTTPServer

server = HTTPServer((’localhost’, 8080), PostHandler)

print ’Starting server, use <Ctrl-C> to stop’

server.serve_forever()

Run the server in one window.

$ python BaseHTTPServer_POST.py

Starting server, use <Ctrl-C> to stop

The arguments to curl can include form data to be posted to the server by

using the -F option. The last argument, -F datafile=@BaseHTTPServer_GET.py,

posts the contents of the file BaseHTTPServer_GET.py to illustrate reading file data

from the form.

$ curl http://localhost:8080/ -F name=dhellmann -F foo=bar \

-F datafile=@BaseHTTPServer_GET.py

Client: (’127.0.0.1’, 65029)

User-agent: curl/7.19.7 (universal-apple-darwin10.0) libcurl/7.19.7

OpenSSL/0.9.8l zlib/1.2.3

Path: /

Form data:

Uploaded datafile as "BaseHTTPServer_GET.py" (2580 bytes)

foo=bar

name=dhellmann

ptg

648 The Internet

12.2.3 Threading and Forking

HTTPServer is a simple subclass of SocketServer.TCPServer and does not use

multiple threads or processes to handle requests. To add threading or forking, create a

new class using the appropriate mix-in from SocketServer.

from BaseHTTPServer import HTTPServer, BaseHTTPRequestHandler

from SocketServer import ThreadingMixIn

import threading

class Handler(BaseHTTPRequestHandler):

def do_GET(self):

self.send_response(200)

self.end_headers()

message = threading.currentThread().getName()

self.wfile.write(message)

self.wfile.write(’\n’)
return

class ThreadedHTTPServer(ThreadingMixIn, HTTPServer):

"""Handle requests in a separate thread."""

if __name__ == ’__main__’:

server = ThreadedHTTPServer((’localhost’, 8080), Handler)

print ’Starting server, use <Ctrl-C> to stop’

server.serve_forever()

Run the server in the same way as the other examples.

$ python BaseHTTPServer_threads.py

Starting server, use <Ctrl-C> to stop

Each time the server receives a request, it starts a new thread or process to

handle it.

$ curl http://localhost:8080/

Thread-1

$ curl http://localhost:8080/

ptg

12.2. BaseHTTPServer—Base Classes for Implementing Web Servers 649

Thread-2

$ curl http://localhost:8080/

Thread-3

Swapping ForkingMixIn for ThreadingMixIn would achieve similar results,

using separate processes instead of threads.

12.2.4 Handling Errors

Handle errors by calling send_error(), passing the appropriate error code and an

optional error message. The entire response (with headers, status code, and body) is

generated automatically.

from BaseHTTPServer import BaseHTTPRequestHandler

class ErrorHandler(BaseHTTPRequestHandler):

def do_GET(self):

self.send_error(404)

return

if __name__ == ’__main__’:

from BaseHTTPServer import HTTPServer

server = HTTPServer((’localhost’, 8080), ErrorHandler)

print ’Starting server, use <Ctrl-C> to stop’

server.serve_forever()

In this case, a 404 error is always returned.

$ python BaseHTTPServer_errors.py

Starting server, use <Ctrl-C> to stop

The error message is reported to the client using an HTML document, as well as

the header to indicate an error code.

$ curl -i http://localhost:8080/

HTTP/1.0 404 Not Found

Server: BaseHTTP/0.3 Python/2.5.1

ptg

650 The Internet

Date: Sun, 09 Dec 2007 15:49:44 GMT

Content-Type: text/html

Connection: close

<head>

<title>Error response</title>

</head>

<body>

<h1>Error response</h1>

<p>Error code 404.

<p>Message: Not Found.

<p>Error code explanation: 404 = Nothing matches the given URI.

</body>

12.2.5 Setting Headers

The send_header method adds header data to the HTTP response. It takes two argu-

ments: the name of the header and the value.

from BaseHTTPServer import BaseHTTPRequestHandler

import urlparse
import time

class GetHandler(BaseHTTPRequestHandler):

def do_GET(self):

self.send_response(200)

self.send_header(’Last-Modified’,

self.date_time_string(time.time()))

self.end_headers()

self.wfile.write(’Response body\n’)
return

if __name__ == ’__main__’:

from BaseHTTPServer import HTTPServer

server = HTTPServer((’localhost’, 8080), GetHandler)

print ’Starting server, use <Ctrl-C> to stop’

server.serve_forever()

This example sets the Last-Modified header to the current timestamp, format-

ted according to RFC 2822.

ptg

12.3. urllib—Network Resource Access 651

$ curl -i http://localhost:8080/

HTTP/1.0 200 OK

Server: BaseHTTP/0.3 Python/2.7

Date: Sun, 10 Oct 2010 13:58:32 GMT

Last-Modified: Sun, 10 Oct 2010 13:58:32 -0000

Response body

The server logs the request to the terminal, as in the other examples.

$ python BaseHTTPServer_send_header.py

Starting server, use <Ctrl-C> to stop

See Also:
BaseHTTPServer (http://docs.python.org/library/basehttpserver.html) The stan-

dard library documentation for this module.

SocketServer (page 609) The SocketServer module provides the base class that

handles the raw socket connection.

RFC 2822 (http://tools.ietf.org/html/rfc2822.html) The “Internet Message Format”

specifies a format for text-based messages, such as email and HTTP responses.

12.3 urllib—Network Resource Access

Purpose Accessing remote resources that do not need authentication,

cookies, etc.

Python Version 1.4 and later

The urllib module provides a simple interface for network resource access. It also

includes functions for encoding and quoting arguments to be passed over HTTP to a

server.

12.3.1 Simple Retrieval with Cache

Downloading data is a common operation, and urllib includes the urlretrieve()

function to meet this need. urlretrieve() takes arguments for the URL, a tem-

porary file to hold the data, a function to report on download progress, and data to

pass if the URL refers to a form where data should be posted. If no filename is given,

http://docs.python.org/library/basehttpserver.html
http://tools.ietf.org/html/rfc2822.html

ptg

652 The Internet

urlretrieve() creates a temporary file. The calling program can delete the file di-

rectly or treat the file as a cache and use urlcleanup() to remove it.

This example uses an HTTP GET request to retrieve some data from a web server.

import urllib
import os

def reporthook(blocks_read, block_size, total_size):

"""total_size is reported in bytes.

block_size is the amount read each time.

blocks_read is the number of blocks successfully read.

"""

if not blocks_read:

print ’Connection opened’

return
if total_size < 0:

Unknown size

print ’Read %d blocks (%d bytes)’ % (blocks_read,

blocks_read * block_size)

else:
amount_read = blocks_read * block_size

print ’Read %d blocks, or %d/%d’ % \

(blocks_read, amount_read, total_size)

return

try:
filename, msg = urllib.urlretrieve(

’http://blog.doughellmann.com/’,

reporthook=reporthook)

print
print ’File:’, filename

print ’Headers:’

print msg

print ’File exists before cleanup:’, os.path.exists(filename)

finally:
urllib.urlcleanup()

print ’File still exists:’, os.path.exists(filename)

Each time data is read from the server, reporthook() is called to report the

download progress. The three arguments are the number of blocks read so far, the size

(in bytes) of the blocks, and the size (in bytes) of the resource being downloaded. When

ptg

12.3. urllib—Network Resource Access 653

the server does not return a Content-length header, urlretrieve() does not know

how big the data should be and passes −1 as the total_size argument.

$ python urllib_urlretrieve.py

Connection opened

Read 1 blocks (8192 bytes)

Read 2 blocks (16384 bytes)

Read 3 blocks (24576 bytes)

Read 4 blocks (32768 bytes)

Read 5 blocks (40960 bytes)

Read 6 blocks (49152 bytes)

Read 7 blocks (57344 bytes)

Read 8 blocks (65536 bytes)

Read 9 blocks (73728 bytes)

Read 10 blocks (81920 bytes)

Read 11 blocks (90112 bytes)

Read 12 blocks (98304 bytes)

File: /var/folders/9R/9R1t+tR02Raxzk+F71Q50U+++Uw/-Tmp-/tmpYI9AuC

Headers:

Content-Type: text/html; charset=UTF-8

Expires: Fri, 07 Jan 2011 14:23:06 GMT

Date: Fri, 07 Jan 2011 14:23:06 GMT

Last-Modified: Tue, 04 Jan 2011 12:32:04 GMT

ETag: "f2108552-7c52-4c50-8838-8300645c40be"

X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

Server: GSE

Cache-Control: public, max-age=0, proxy-revalidate, must-revalidate

Age: 0

File exists before cleanup: True

File still exists: False

12.3.2 Encoding Arguments

Arguments can be passed to the server by encoding them and appending them to the

URL.

import urllib

query_args = { ’q’:’query string’, ’foo’:’bar’ }

encoded_args = urllib.urlencode(query_args)

ptg

654 The Internet

print ’Encoded:’, encoded_args

url = ’http://localhost:8080/?’ + encoded_args

print urllib.urlopen(url).read()

The query, in the list of client values, contains the encoded query arguments.

$ python urllib_urlencode.py

Encoded: q=query+string&foo=bar

CLIENT VALUES:

client_address=(’127.0.0.1’, 54415) (localhost)

command=GET

path=/?q=query+string&foo=bar

real path=/

query=q=query+string&foo=bar

request_version=HTTP/1.0

SERVER VALUES:

server_version=BaseHTTP/0.3

sys_version=Python/2.5.1

protocol_version=HTTP/1.0

To pass a sequence of values using separate occurrences of the variable in the

query string, set doseq to True when calling urlencode().

import urllib

query_args = { ’foo’:[’foo1’, ’foo2’] }

print ’Single :’, urllib.urlencode(query_args)

print ’Sequence:’, urllib.urlencode(query_args, doseq=True)

The result is a query string with several values associated with the same name.

$ python urllib_urlencode_doseq.py

Single : foo=%5B%27foo1%27%2C+%27foo2%27%5D

Sequence: foo=foo1&foo=foo2

To decode the query string, see the FieldStorage class from the cgi module.

Special characters within the query arguments that might cause parse problems

with the URL on the server side are “quoted” when passed to urlencode(). To quote

ptg

12.3. urllib—Network Resource Access 655

them locally to make safe versions of the strings, use the quote() or quote_plus()

functions directly.

import urllib

url = ’http://localhost:8080/~dhellmann/’

print ’urlencode() :’, urllib.urlencode({’url’:url})

print ’quote() :’, urllib.quote(url)

print ’quote_plus():’, urllib.quote_plus(url)

The quoting implementation in quote_plus() is more aggressive about the char-

acters it replaces.

$ python urllib_quote.py

urlencode() : url=http%3A%2F%2Flocalhost%3A8080%2F%7Edhellmann%2F

quote() : http%3A//localhost%3A8080/%7Edhellmann/

quote_plus(): http%3A%2F%2Flocalhost%3A8080%2F%7Edhellmann%2F

To reverse the quote operations, use unquote() or unquote_plus(), as

appropriate.

import urllib

print urllib.unquote(’http%3A//localhost%3A8080/%7Edhellmann/’)
print urllib.unquote_plus(

’http%3A%2F%2Flocalhost%3A8080%2F%7Edhellmann%2F’
)

The encoded value is converted back to a normal string URL.

$ python urllib_unquote.py

http://localhost:8080/~dhellmann/

http://localhost:8080/~dhellmann/

12.3.3 Paths vs. URLs

Some operating systems use different values for separating the components of paths in

local files than URLs. To make code portable, use the functions pathname2url() and

url2pathname() to convert back and forth.

ptg

656 The Internet

Note: Since these examples were prepared under Mac OS X, they have to explicitly

import the Windows versions of the functions. Using the versions of the functions

exported by urllib provides the correct defaults for the current platform, so most

programs do not need to do this.

import os

from urllib import pathname2url, url2pathname

print ’== Default ==’

path = ’/a/b/c’

print ’Original:’, path

print ’URL :’, pathname2url(path)

print ’Path :’, url2pathname(’/d/e/f’)

print

from nturl2path import pathname2url, url2pathname

print ’== Windows, without drive letter ==’

path = r’\a\b\c’

print ’Original:’, path

print ’URL :’, pathname2url(path)

print ’Path :’, url2pathname(’/d/e/f’)

print

print ’== Windows, with drive letter ==’

path = r’C:\a\b\c’

print ’Original:’, path

print ’URL :’, pathname2url(path)

print ’Path :’, url2pathname(’/d/e/f’)

There are two Windows examples, with and without the drive letter at the prefix

of the path.

$ python urllib_pathnames.py

== Default ==

Original: /a/b/c

URL : /a/b/c

Path : /d/e/f

ptg

12.4. urllib2—Network Resource Access 657

== Windows, without drive letter ==

Original: \a\b\c

URL : /a/b/c

Path : \d\e\f

== Windows, with drive letter ==

Original: C:\a\b\c

URL : ///C:/a/b/c

Path : \d\e\f

See Also:
urllib (http://docs.python.org/lib/module-urllib.html) Standard library documenta-

tion for this module.

urllib2 (page 657) Updated API for working with URL-based services.

urlparse (page 638) Parse URL values to access their components.

12.4 urllib2—Network Resource Access

Purpose A library for opening URLs that can be extended by defining

custom protocol handlers.

Python Version 2.1 and later

The urllib2 module provides an updated API for using Internet resources identi-

fied by URLs. It is designed to be extended by individual applications to support

new protocols or add variations to existing protocols (such as handling HTTP basic

authentication).

12.4.1 HTTP GET

Note: The test server for these examples is in BaseHTTPServer_GET.py, from

the examples for the BaseHTTPServer module. Start the server in one terminal

window, and then run these examples in another.

As with urllib, an HTTP GET operation is the simplest use of urllib2. Pass

the URL to urlopen() to get a “file-like” handle to the remote data.

http://docs.python.org/lib/module-urllib.html

ptg

658 The Internet

import urllib2

response = urllib2.urlopen(’http://localhost:8080/’)

print ’RESPONSE:’, response

print ’URL :’, response.geturl()

headers = response.info()

print ’DATE :’, headers[’date’]

print ’HEADERS :’

print ’---------’

print headers

data = response.read()

print ’LENGTH :’, len(data)

print ’DATA :’

print ’---------’

print data

The example server accepts the incoming values and formats a plain-text response

to send back. The return value from urlopen() gives access to the headers from the

HTTP server through the info() method and the data for the remote resource via

methods like read() and readlines().

$ python urllib2_urlopen.py

RESPONSE: <addinfourl at 11940488 whose fp = <socket._fileobject

object at 0xb573f0>>

URL : http://localhost:8080/

DATE : Sun, 19 Jul 2009 14:01:31 GMT

HEADERS :

Server: BaseHTTP/0.3 Python/2.6.2

Date: Sun, 19 Jul 2009 14:01:31 GMT

LENGTH : 349

DATA :

CLIENT VALUES:

client_address=(’127.0.0.1’, 55836) (localhost)

command=GET

path=/

real path=/

ptg

12.4. urllib2—Network Resource Access 659

query=

request_version=HTTP/1.1

SERVER VALUES:

server_version=BaseHTTP/0.3

sys_version=Python/2.6.2

protocol_version=HTTP/1.0

HEADERS RECEIVED:

accept-encoding=identity

connection=close

host=localhost:8080

user-agent=Python-urllib/2.6

The file-like object returned by urlopen() is iterable.

import urllib2

response = urllib2.urlopen(’http://localhost:8080/’)

for line in response:

print line.rstrip()

This example strips the trailing newlines and carriage returns before printing the

output.

$ python urllib2_urlopen_iterator.py

CLIENT VALUES:

client_address=(’127.0.0.1’, 55840) (localhost)

command=GET

path=/

real path=/

query=

request_version=HTTP/1.1

SERVER VALUES:

server_version=BaseHTTP/0.3

sys_version=Python/2.6.2

protocol_version=HTTP/1.0

HEADERS RECEIVED:

accept-encoding=identity

ptg

660 The Internet

connection=close

host=localhost:8080

user-agent=Python-urllib/2.6

12.4.2 Encoding Arguments

Arguments can be passed to the server by encoding them with urllib.urlencode()

and appending them to the URL.

import urllib
import urllib2

query_args = { ’q’:’query string’, ’foo’:’bar’ }

encoded_args = urllib.urlencode(query_args)

print ’Encoded:’, encoded_args

url = ’http://localhost:8080/?’ + encoded_args

print urllib2.urlopen(url).read()

The list of client values returned in the example output contains the encoded query

arguments.

$ python urllib2_http_get_args.py

Encoded: q=query+string&foo=bar

CLIENT VALUES:

client_address=(’127.0.0.1’, 55849) (localhost)

command=GET

path=/?q=query+string&foo=bar

real path=/

query=q=query+string&foo=bar

request_version=HTTP/1.1

SERVER VALUES:

server_version=BaseHTTP/0.3

sys_version=Python/2.6.2

protocol_version=HTTP/1.0

HEADERS RECEIVED:

accept-encoding=identity

connection=close

ptg

12.4. urllib2—Network Resource Access 661

host=localhost:8080

user-agent=Python-urllib/2.6

12.4.3 HTTP POST

Note: The test server for these examples is in BaseHTTPServer_POST.py, from

the examples for the BaseHTTPServer module. Start the server in one terminal

window, and then run these examples in another.

To send form-encoded data to the remote server using POST instead GET, pass the

encoded query arguments as data to urlopen().

import urllib
import urllib2

query_args = { ’q’:’query string’, ’foo’:’bar’ }

encoded_args = urllib.urlencode(query_args)

url = ’http://localhost:8080/’

print urllib2.urlopen(url, encoded_args).read()

The server can decode the form data and access the individual values by name.

$ python urllib2_urlopen_post.py

Client: (’127.0.0.1’, 55943)

User-agent: Python-urllib/2.6

Path: /

Form data:

q=query string

foo=bar

12.4.4 Adding Outgoing Headers

urlopen() is a convenience function that hides some of the details of how the request

is made and handled. More precise control is possible by using a Request instance

directly. For example, custom headers can be added to the outgoing request to control

the format of data returned, specify the version of a document cached locally, and tell

the remote server the name of the software client communicating with it.

ptg

662 The Internet

As the output from the earlier examples shows, the default User-agent header

value is made up of the constant Python-urllib, followed by the Python interpreter

version. When creating an application that will access web resources owned by some-

one else, it is courteous to include real user-agent information in the requests, so they

can identify the source of the hits more easily. Using a custom agent also allows them

to control crawlers using a robots.txt file (see the robotparser module).

import urllib2

request = urllib2.Request(’http://localhost:8080/’)

request.add_header(

’User-agent’,

’PyMOTW (http://www.doughellmann.com/PyMOTW/)’,

)

response = urllib2.urlopen(request)

data = response.read()

print data

After creating a Request object, use add_header() to set the user-agent value

before opening the request. The last line of the output shows the custom value.

$ python urllib2_request_header.py

CLIENT VALUES:

client_address=(’127.0.0.1’, 55876) (localhost)

command=GET

path=/

real path=/

query=

request_version=HTTP/1.1

SERVER VALUES:

server_version=BaseHTTP/0.3

sys_version=Python/2.6.2

protocol_version=HTTP/1.0

HEADERS RECEIVED:

accept-encoding=identity

connection=close

host=localhost:8080

user-agent=PyMOTW (http://www.doughellmann.com/PyMOTW/)

ptg

12.4. urllib2—Network Resource Access 663

12.4.5 Posting Form Data from a Request

The outgoing data can be added to the Request to have it posted to the server.

import urllib
import urllib2

query_args = { ’q’:’query string’, ’foo’:’bar’ }

request = urllib2.Request(’http://localhost:8080/’)

print ’Request method before data:’, request.get_method()

request.add_data(urllib.urlencode(query_args))

print ’Request method after data :’, request.get_method()

request.add_header(

’User-agent’,

’PyMOTW (http://www.doughellmann.com/PyMOTW/)’,

)

print
print ’OUTGOING DATA:’

print request.get_data()

print
print ’SERVER RESPONSE:’

print urllib2.urlopen(request).read()

The HTTP method used by the Request automatically changes from GET to

POST after the data is added.

$ python urllib2_request_post.py

Request method before data: GET

Request method after data : POST

OUTGOING DATA:

q=query+string&foo=bar

SERVER RESPONSE:

Client: (’127.0.0.1’, 56044)

User-agent: PyMOTW (http://www.doughellmann.com/PyMOTW/)

Path: /

Form data:

ptg

664 The Internet

q=query string

foo=bar

Note: Although the method is named add_data(), its effect is not cumulative.

Each call replaces the previous data.

12.4.6 Uploading Files

Encoding files for upload requires a little more work than simple forms. A complete

MIME message needs to be constructed in the body of the request so that the server can

distinguish incoming form fields from uploaded files.

import itertools
import mimetools
import mimetypes
from cStringIO import StringIO

import urllib
import urllib2

class MultiPartForm(object):
"""Accumulate the data to be used when posting a form."""

def __init__(self):

self.form_fields = []

self.files = []

self.boundary = mimetools.choose_boundary()

return

def get_content_type(self):

return ’multipart/form-data; boundary=%s’ % self.boundary

def add_field(self, name, value):

"""Add a simple field to the form data."""

self.form_fields.append((name, value))

return

def add_file(self, fieldname, filename, fileHandle,

mimetype=None):

"""Add a file to be uploaded."""

body = fileHandle.read()

if mimetype is None:

ptg

12.4. urllib2—Network Resource Access 665

mimetype = (mimetypes.guess_type(filename)[0]

or
’application/octet-stream’

)

self.files.append((fieldname, filename, mimetype, body))

return

def __str__(self):

"""Return a string representing the form data,

including attached files.

"""

Build a list of lists, each containing "lines" of the

request. Each part is separated by a boundary string.

Once the list is built, return a string where each

line is separated by ’\r\n’.

parts = []

part_boundary = ’--’ + self.boundary

Add the form fields

parts.extend(

[part_boundary,

’Content-Disposition: form-data; name="%s"’ % name,

’’,

value,

]

for name, value in self.form_fields

)

Add the files to upload

parts.extend([

part_boundary,

’Content-Disposition: file; name="%s"; filename="%s"’ % \

(field_name, filename),

’Content-Type: %s’ % content_type,

’’,

body,

]

for field_name, filename, content_type, body in self.files

)

Flatten the list and add closing boundary marker, and

then return CR+LF separated data

flattened = list(itertools.chain(*parts))

ptg

666 The Internet

flattened.append(’--’ + self.boundary + ’--’)

flattened.append(’’)

return ’\r\n’.join(flattened)

if __name__ == ’__main__’:

Create the form with simple fields

form = MultiPartForm()

form.add_field(’firstname’, ’Doug’)

form.add_field(’lastname’, ’Hellmann’)

Add a fake file

form.add_file(

’biography’, ’bio.txt’,

fileHandle=StringIO(’Python developer and blogger.’))

Build the request

request = urllib2.Request(’http://localhost:8080/’)

request.add_header(

’User-agent’,

’PyMOTW (http://www.doughellmann.com/PyMOTW/)’)

body = str(form)

request.add_header(’Content-type’, form.get_content_type())

request.add_header(’Content-length’, len(body))

request.add_data(body)

print
print ’OUTGOING DATA:’

print request.get_data()

print
print ’SERVER RESPONSE:’

print urllib2.urlopen(request).read()

The MultiPartForm class can represent an arbitrary form as a multipart MIME

message with attached files.

$ python urllib2_upload_files.py

OUTGOING DATA:

--192.168.1.17.527.30074.1248020372.206.1

Content-Disposition: form-data; name="firstname"

ptg

12.4. urllib2—Network Resource Access 667

Doug

--192.168.1.17.527.30074.1248020372.206.1

Content-Disposition: form-data; name="lastname"

Hellmann

--192.168.1.17.527.30074.1248020372.206.1

Content-Disposition: file; name="biography"; filename="bio.txt"

Content-Type: text/plain

Python developer and blogger.

--192.168.1.17.527.30074.1248020372.206.1--

SERVER RESPONSE:

Client: (’127.0.0.1’, 57126)

User-agent: PyMOTW (http://www.doughellmann.com/PyMOTW/)

Path: /

Form data:

lastname=Hellmann

Uploaded biography as "bio.txt" (29 bytes)

firstname=Doug

12.4.7 Creating Custom Protocol Handlers

urllib2 has built-in support for HTTP(S), FTP, and local file access. To add support

for other URL types, register another protocol handler. For example, to support URLs

pointing to arbitrary files on remote NFS servers, without requiring users to mount the

path before accessing the file, create a class derived from BaseHandler and with a

method nfs_open().

The protocol-specific open() method is given a single argument, the Request

instance, and it should return an object with a read() method that can be used to read

the data, an info() method to return the response headers, and geturl() to return

the actual URL of the file being read. A simple way to achieve that result is to create an

instance of urllib.addurlinfo, passing the headers, URL, and open file handle in

to the constructor.

import mimetypes
import os
import tempfile
import urllib

ptg

668 The Internet

import urllib2

class NFSFile(file):
def __init__(self, tempdir, filename):

self.tempdir = tempdir

file.__init__(self, filename, ’rb’)

def close(self):

print ’NFSFile:’

print ’ unmounting %s’ % os.path.basename(self.tempdir)

print ’ when %s is closed’ % os.path.basename(self.name)

return file.close(self)

class FauxNFSHandler(urllib2.BaseHandler):

def __init__(self, tempdir):

self.tempdir = tempdir

def nfs_open(self, req):

url = req.get_selector()

directory_name, file_name = os.path.split(url)

server_name = req.get_host()

print ’FauxNFSHandler simulating mount:’

print ’ Remote path: %s’ % directory_name

print ’ Server : %s’ % server_name

print ’ Local path : %s’ % os.path.basename(tempdir)

print ’ Filename : %s’ % file_name

local_file = os.path.join(tempdir, file_name)

fp = NFSFile(tempdir, local_file)

content_type = (mimetypes.guess_type(file_name)[0]

or
’application/octet-stream’

)

stats = os.stat(local_file)

size = stats.st_size

headers = { ’Content-type’: content_type,

’Content-length’: size,

}

return urllib.addinfourl(fp, headers, req.get_full_url())

if __name__ == ’__main__’:

tempdir = tempfile.mkdtemp()

try:
Populate the temporary file for the simulation

ptg

12.4. urllib2—Network Resource Access 669

with open(os.path.join(tempdir, ’file.txt’), ’wt’) as f:

f.write(’Contents of file.txt’)

Construct an opener with our NFS handler

and register it as the default opener.

opener = urllib2.build_opener(FauxNFSHandler(tempdir))

urllib2.install_opener(opener)

Open the file through a URL.

response = urllib2.urlopen(

’nfs://remote_server/path/to/the/file.txt’

)

print
print ’READ CONTENTS:’, response.read()

print ’URL :’, response.geturl()

print ’HEADERS:’

for name, value in sorted(response.info().items()):

print ’ %-15s = %s’ % (name, value)

response.close()

finally:
os.remove(os.path.join(tempdir, ’file.txt’))

os.removedirs(tempdir)

The FauxNFSHandler and NFSFile classes print messages to illustrate where a

real implementation would add mount and unmount calls. Since this is just a simulation,

FauxNFSHandler is primed with the name of a temporary directory where it should

look for all its files.

$ python urllib2_nfs_handler.py

FauxNFSHandler simulating mount:

Remote path: /path/to/the

Server : remote_server

Local path : tmpoqqoAV

Filename : file.txt

READ CONTENTS: Contents of file.txt

URL : nfs://remote_server/path/to/the/file.txt

HEADERS:

Content-length = 20

Content-type = text/plain

ptg

670 The Internet

NFSFile:

unmounting tmpoqqoAV

when file.txt is closed

See Also:
urllib2 (http://docs.python.org/library/urllib2.html) The standard library documen-

tation for this module.

urllib (page 651) Original URL handling library.

urlparse (page 638) Work with the URL string itself.

urllib2 – The Missing Manual (www.voidspace.org.uk/python/articles/urllib2.
shtml) Michael Foord’s write-up on using urllib2.

Upload Scripts (www.voidspace.org.uk/python/cgi.shtml#upload) Example scripts

from Michael Foord that illustrate how to upload a file using HTTP and then

receive the data on the server.

HTTP client to POST using multipart/form-data (http://code.activestate.com/
recipes/146306) Python cookbook recipe showing how to encode and post data,

including files, over HTTP.

Form content types (www.w3.org/TR/REC-html40/interact/forms.html#
h-17.13.4) W3C specification for posting files or large amounts of data via

HTTP forms.

mimetypes Map filenames to mimetype.

mimetools Tools for parsing MIME messages.

12.5 base64—Encode Binary Data with ASCII

Purpose The base64 module contains functions for translating binary

data into a subset of ASCII suitable for transmission using plain-text

protocols.

Python Version 1.4 and later

The Base64, Base32, and Base16 encodings convert 8-bit bytes to values with 6, 5,

or 4 bits of useful data per byte, allowing non-ASCII bytes to be encoded as ASCII

characters for transmission over protocols that require plain ASCII, such as SMTP.

The base values correspond to the length of the alphabet used in each encoding.

There are also URL-safe variations of the original encodings that use slightly different

alphabets.

12.5.1 Base64 Encoding

This is a basic example of encoding some text.

http://docs.python.org/library/urllib2.html
www.voidspace.org.uk/python/articles/urllib2.shtml
www.voidspace.org.uk/python/articles/urllib2.shtml
www.voidspace.org.uk/python/cgi.shtml#upload
http://code.activestate.com/recipes/146306
http://code.activestate.com/recipes/146306
www.w3.org/TR/REC-html40/interact/forms.html#h-17.13.4
www.w3.org/TR/REC-html40/interact/forms.html#h-17.13.4

ptg

12.5. base64—Encode Binary Data with ASCII 671

import base64
import textwrap

Load this source file and strip the header.

with open(__file__, ’rt’) as input:

raw = input.read()

initial_data = raw.split(’#end_pymotw_header’)[1]

encoded_data = base64.b64encode(initial_data)

num_initial = len(initial_data)

There will never be more than 2 padding bytes.

padding = 3 - (num_initial % 3)

print ’%d bytes before encoding’ % num_initial

print ’Expect %d padding bytes’ % padding

print ’%d bytes after encoding’ % len(encoded_data)

print
print encoded_data

The output shows that the 168 bytes of the original source expand to 224 bytes

after being encoded.

Note: There are no carriage returns in the encoded data produced by the library, but

the output has been wrapped artificially to make it fit better on the page.

$ python base64_b64encode.py

168 bytes before encoding

Expect 3 padding bytes

224 bytes after encoding

CgppbXBvcnQgYmFzZTY0CmltcG9ydCB0ZXh0d3JhcAoKIyBMb2FkIHRoaXMgc291c

mNlIGZpbGUgYW5kIHN0cmlwIHRoZSBoZWFkZXIuCndpdGggb3BlbihfX2ZpbGVfXy

wgJ3J0JykgYXMgaW5wdXQ6CiAgICByYXcgPSBpbnB1dC5yZWFkKCkKICAgIGluaXR

pYWxfZGF0YSA9IHJhdy5zcGxpdCgn

12.5.2 Base64 Decoding

b64decode() converts the encoded string back to the original form by taking four

bytes and converting them to the original three, using a lookup table.

ptg

672 The Internet

import base64

original_string = ’This is the data, in the clear.’

print ’Original:’, original_string

encoded_string = base64.b64encode(original_string)

print ’Encoded :’, encoded_string

decoded_string = base64.b64decode(encoded_string)

print ’Decoded :’, decoded_string

The encoding process looks at each sequence of 24 bits in the input (three bytes)

and encodes those same 24 bits spread over four bytes in the output. The equal signs

at the end of the output are padding inserted because the number of bits in the original

string was not evenly divisible by 24, in this example.

$ python base64_b64decode.py

Original: This is the data, in the clear.

Encoded : VGhpcyBpcyB0aGUgZGF0YSwgaW4gdGhlIGNsZWFyLg==

Decoded : This is the data, in the clear.

12.5.3 URL-Safe Variations

Because the default Base64 alphabet may use + and /, and those two characters are

used in URLs, it is often necessary to use an alternate encoding with substitutes for

those characters.

import base64

encodes_with_pluses = chr(251) + chr(239)

encodes_with_slashes = chr(255) * 2

for original in [encodes_with_pluses, encodes_with_slashes]:

print ’Original :’, repr(original)

print ’Standard encoding:’, base64.standard_b64encode(original)

print ’URL-safe encoding:’, base64.urlsafe_b64encode(original)

print

The + is replaced with a - and / is replaced with underscore (_). Otherwise, the

alphabet is the same.

ptg

12.5. base64—Encode Binary Data with ASCII 673

$ python base64_urlsafe.py

Original : ’\xfb\xef’

Standard encoding: ++8=

URL-safe encoding: --8=

Original : ’\xff\xff’

Standard encoding: //8=

URL-safe encoding: __8=

12.5.4 Other Encodings

Besides Base64, the module provides functions for working with Base32 and Base16

(hex) encoded data.

import base64

original_string = ’This is the data, in the clear.’

print ’Original:’, original_string

encoded_string = base64.b32encode(original_string)

print ’Encoded :’, encoded_string

decoded_string = base64.b32decode(encoded_string)

print ’Decoded :’, decoded_string

The Base32 alphabet includes the 26 uppercase letters from the ASCII set and the

digits 2 through 7.

$ python base64_base32.py

Original: This is the data, in the clear.

Encoded : KRUGS4ZANFZSA5DIMUQGIYLUMEWCA2LOEB2GQZJAMNWGKYLSFY======

Decoded : This is the data, in the clear.

The Base16 functions work with the hexadecimal alphabet.

import base64

original_string = ’This is the data, in the clear.’

print ’Original:’, original_string

encoded_string = base64.b16encode(original_string)

print ’Encoded :’, encoded_string

ptg

674 The Internet

decoded_string = base64.b16decode(encoded_string)

print ’Decoded :’, decoded_string

Each time the number of encoding bits goes down, the output in the encoded

format takes up more space.

$ python base64_base16.py

Original: This is the data, in the clear.

Encoded : 546869732069732074686520646174612C20696E2074686520636C6561

722E

Decoded : This is the data, in the clear.

See Also:
base64 (http://docs.python.org/library/base64.html) The standard library documen-

tation for this module.

RFC 3548 (http://tools.ietf.org/html/rfc3548.html) The Base16, Base32, and

Base64 data encodings.

12.6 robotparser—Internet Spider Access Control

Purpose Parse robots.txt file used to control Internet spiders.

Python Version 2.1.3 and later

robotparser implements a parser for the robots.txt file format, including a

function that checks if a given user-agent can access a resource. It is intended for use

in well-behaved spiders or other crawler applications that need to either be throttled or

otherwise restricted.

12.6.1 robots.txt

The robots.txt file format is a simple text-based access control system for computer

programs that automatically access web resources (“spiders,” “crawlers,” etc.). The file

is made up of records that specify the user-agent identifier for the program followed by

a list of URLs (or URL prefixes) the agent may not access.

This is the robots.txt file for http://www.doughellmann.com/.

User-agent: *
Disallow: /admin/

Disallow: /downloads/

http://docs.python.org/library/base64.html
http://tools.ietf.org/html/rfc3548.html

ptg

12.6. robotparser—Internet Spider Access Control 675

Disallow: /media/

Disallow: /static/

Disallow: /codehosting/

It prevents access to some parts of the site that are expensive to compute and would

overload the server if a search engine tried to index them. For a more complete set of

examples of robots.txt, refer to The Web Robots Page (see the references list later

in this section).

12.6.2 Testing Access Permissions

Using the data presented earlier, a simple crawler can test whether it is allowed to

download a page using RobotFileParser.can_fetch().

import robotparser
import urlparse

AGENT_NAME = ’PyMOTW’

URL_BASE = ’http://www.doughellmann.com/’

parser = robotparser.RobotFileParser()

parser.set_url(urlparse.urljoin(URL_BASE, ’robots.txt’))

parser.read()

PATHS = [

’/’,

’/PyMOTW/’,

’/admin/’,

’/downloads/PyMOTW-1.92.tar.gz’,

]

for path in PATHS:

print ’%6s : %s’ % (parser.can_fetch(AGENT_NAME, path), path)

url = urlparse.urljoin(URL_BASE, path)

print ’%6s : %s’ % (parser.can_fetch(AGENT_NAME, url), url)

print

The URL argument to can_fetch() can be a path relative to the root of the site

or a full URL.

$ python robotparser_simple.py

True : /

True : http://www.doughellmann.com/

ptg

676 The Internet

True : /PyMOTW/

True : http://www.doughellmann.com/PyMOTW/

False : /admin/

False : http://www.doughellmann.com/admin/

False : /downloads/PyMOTW-1.92.tar.gz

False : http://www.doughellmann.com/downloads/PyMOTW-1.92.tar.gz

12.6.3 Long-Lived Spiders

An application that takes a long time to process the resources it downloads or that

is throttled to pause between downloads should check for new robots.txt files

periodically, based on the age of the content it has downloaded already. The age is

not managed automatically, but there are convenience methods to make tracking it

easier.

import robotparser
import time
import urlparse

AGENT_NAME = ’PyMOTW’

parser = robotparser.RobotFileParser()

Using the local copy

parser.set_url(’robots.txt’)

parser.read()

parser.modified()

PATHS = [

’/’,

’/PyMOTW/’,

’/admin/’,

’/downloads/PyMOTW-1.92.tar.gz’,

]

for path in PATHS:

age = int(time.time() - parser.mtime())

print ’age:’, age,

if age > 1:

print ’rereading robots.txt’

parser.read()

parser.modified()

ptg

12.7. Cookie—HTTP Cookies 677

else:
print

print ’%6s : %s’ % (parser.can_fetch(AGENT_NAME, path), path)

Simulate a delay in processing

time.sleep(1)

print

This extreme example downloads a new robots.txt file if the one it has is more

than one second old.

$ python robotparser_longlived.py

age: 0

True : /

age: 1

True : /PyMOTW/

age: 2 rereading robots.txt

False : /admin/

age: 1

False : /downloads/PyMOTW-1.92.tar.gz

A nicer version of the long-lived application might request the modification time

for the file before downloading the entire thing. On the other hand, robots.txt files

are usually fairly small, so it is not that much more expensive to just retrieve the entire

document again.

See Also:
robotparser (http://docs.python.org/library/robotparser.html) The standard lib-

rary documentation for this module.

The Web Robots Page (www.robotstxt.org/orig.html) Description of robots.txt

format.

12.7 Cookie—HTTP Cookies

Purpose The Cookie module defines classes for parsing and creating

HTTP cookie headers.

Python Version 2.1 and later

http://docs.python.org/library/robotparser.html
www.robotstxt.org/orig.html

ptg

678 The Internet

The Cookie module implements a parser for cookies that is mostly RFC 2109

compliant. The implementation is a little less strict than the standard because MSIE

3.0x does not support the entire standard.

12.7.1 Creating and Setting a Cookie

Cookies are used as state management for browser-based applications, and as such, are

usually set by the server to be stored and returned by the client. Here is the simplest

example of creating a cookie.

import Cookie

c = Cookie.SimpleCookie()

c[’mycookie’] = ’cookie_value’

print c

The output is a valid Set-Cookie header ready to be passed to the client as part

of the HTTP response.

$ python Cookie_setheaders.py

Set-Cookie: mycookie=cookie_value

12.7.2 Morsels

It is also possible to control the other aspects of a cookie, such as the expiration, path,

and domain. In fact, all the RFC attributes for cookies can be managed through the

Morsel object representing the cookie value.

import Cookie
import datetime

def show_cookie(c):

print c

for key, morsel in c.iteritems():

print
print ’key =’, morsel.key

print ’ value =’, morsel.value

print ’ coded_value =’, morsel.coded_value

for name in morsel.keys():

ptg

12.7. Cookie—HTTP Cookies 679

if morsel[name]:

print ’ %s = %s’ % (name, morsel[name])

c = Cookie.SimpleCookie()

A cookie with a value that has to be encoded to fit into the header

c[’encoded_value_cookie’] = ’"cookie_value"’

c[’encoded_value_cookie’][’comment’] = ’Value has escaped quotes’

A cookie that only applies to part of a site

c[’restricted_cookie’] = ’cookie_value’

c[’restricted_cookie’][’path’] = ’/sub/path’

c[’restricted_cookie’][’domain’] = ’PyMOTW’

c[’restricted_cookie’][’secure’] = True

A cookie that expires in 5 minutes

c[’with_max_age’] = ’expires in 5 minutes’

c[’with_max_age’][’max-age’] = 300 # seconds

A cookie that expires at a specific time

c[’expires_at_time’] = ’cookie_value’

time_to_live = datetime.timedelta(hours=1)

expires = datetime.datetime(2009, 2, 14, 18, 30, 14) + time_to_live

Date format: Wdy, DD-Mon-YY HH:MM:SS GMT

expires_at_time = expires.strftime(’%a, %d %b %Y %H:%M:%S’)

c[’expires_at_time’][’expires’] = expires_at_time

show_cookie(c)

This example includes two different methods for setting stored cookies that expire.

One sets the max-age to a number of seconds, and the other sets expires to a date

and time when the cookie should be discarded.

$ python Cookie_Morsel.py

Set-Cookie: encoded_value_cookie="\"cookie_value\""; Comment=Value h

as escaped quotes

Set-Cookie: expires_at_time=cookie_value; expires=Sat, 14 Feb 2009 1

9:30:14

Set-Cookie: restricted_cookie=cookie_value; Domain=PyMOTW; Path=/sub

/path; secure

ptg

680 The Internet

Set-Cookie: with_max_age="expires in 5 minutes"; Max-Age=300

key = restricted_cookie

value = cookie_value

coded_value = cookie_value

domain = PyMOTW

secure = True

path = /sub/path

key = with_max_age

value = expires in 5 minutes

coded_value = "expires in 5 minutes"

max-age = 300

key = encoded_value_cookie

value = "cookie_value"

coded_value = "\"cookie_value\""

comment = Value has escaped quotes

key = expires_at_time

value = cookie_value

coded_value = cookie_value

expires = Sat, 14 Feb 2009 19:30:14

Both the Cookie and Morsel objects act like dictionaries. A Morsel responds to

a fixed set of keys:

• expires

• path

• comment

• domain

• max-age

• secure

• version

The keys for a Cookie instance are the names of the individual cookies being

stored. That information is also available from the key attribute of the Morsel.

12.7.3 Encoded Values

The cookie header needs values to be encoded so they can be parsed properly.

ptg

12.7. Cookie—HTTP Cookies 681

import Cookie

c = Cookie.SimpleCookie()

c[’integer’] = 5

c[’string_with_quotes’] = ’He said, "Hello, World!"’

for name in [’integer’, ’string_with_quotes’]:

print c[name].key

print ’ %s’ % c[name]

print ’ value=%r’ % c[name].value

print ’ coded_value=%r’ % c[name].coded_value

print

Morsel.value is always the decoded value of the cookie, while Morsel

.coded_value is always the representation to be used for transmitting the value to

the client. Both values are always strings. Values saved to a cookie that are not strings

are converted automatically.

$ python Cookie_coded_value.py

integer

Set-Cookie: integer=5

value=’5’

coded_value=’5’

string_with_quotes

Set-Cookie: string_with_quotes="He said, \"Hello, World!\""

value=’He said, "Hello, World!"’

coded_value=’"He said, \\"Hello, World!\\""’

12.7.4 Receiving and Parsing Cookie Headers

Once the client receives the Set-Cookie headers, it will return those cookies to the

server on subsequent requests using a Cookie header. An incoming Cookie header

string may contain several cookie values, separated by semicolons (;).

Cookie: integer=5; string_with_quotes="He said, \"Hello, World!\""

Depending on the web server and framework, cookies are available directly from

either the headers or the HTTP_COOKIE environment variable.

ptg

682 The Internet

import Cookie

HTTP_COOKIE = ’; ’.join([

r’integer=5’,

r’string_with_quotes="He said, \"Hello, World!\""’,

])

print ’From constructor:’

c = Cookie.SimpleCookie(HTTP_COOKIE)

print c

print
print ’From load():’

c = Cookie.SimpleCookie()

c.load(HTTP_COOKIE)

print c

To decode them, pass the string without the header prefix to SimpleCookie when

instantiating it, or use the load() method.

$ python Cookie_parse.py

From constructor:

Set-Cookie: integer=5

Set-Cookie: string_with_quotes="He said, \"Hello, World!\""

From load():

Set-Cookie: integer=5

Set-Cookie: string_with_quotes="He said, \"Hello, World!\""

12.7.5 Alternative Output Formats

Besides using the Set-Cookie header, servers may deliver JavaScript that adds

cookies to a client. SimpleCookie and Morsel provide JavaScript output via the

js_output() method.

import Cookie

c = Cookie.SimpleCookie()

c[’mycookie’] = ’cookie_value’

ptg

12.7. Cookie—HTTP Cookies 683

c[’another_cookie’] = ’second value’

print c.js_output()

The result is a complete script tag with statements to set the cookies.

$ python Cookie_js_output.py

<script type="text/javascript">

<!-- begin hiding

document.cookie = "another_cookie=\"second value\"";

// end hiding -->

</script>

<script type="text/javascript">

<!-- begin hiding

document.cookie = "mycookie=cookie_value";

// end hiding -->

</script>

12.7.6 Deprecated Classes

All these examples have used SimpleCookie. The Cookie module also provides

two other classes, SerialCookie and SmartCookie. SerialCookie can handle

any values that can be pickled. SmartCookie figures out whether a value needs to be

unpickled or if it is a simple value.

Warning: Since both these classes use pickle, they are potential security holes

and should not be used. It is safer to store state on the server and give the client a

session key instead.

See Also:
Cookie (http://docs.python.org/library/cookie.html) The standard library documen-

tation for this module.

cookielib The cookielib module for working with cookies on the client side.

RFC 2109 (http://tools.ietf.org/html/rfc2109.html) HTTP State Management Mech-

anism.

http://docs.python.org/library/cookie.html
http://tools.ietf.org/html/rfc2109.html

ptg

684 The Internet

12.8 uuid—Universally Unique Identifiers

Purpose The uuid module implements Universally Unique Identifiers, as

described in RFC 4122.

Python Version 2.5 and later

RFC 4122 defines a system for creating universally unique identifiers for resources in

a way that does not require a central registrar. UUID values are 128 bits long and, as

the reference guide says, “can guarantee uniqueness across space and time.” They are

useful for generating identifiers for documents, hosts, application clients, and other sit-

uations where a unique value is necessary. The RFC is specifically focused on creating

a Uniform Resource Name namespace and covers three main algorithms.

• Using IEEE 802 MAC addresses as a source of uniqueness

• Using pseudorandom numbers

• Using well-known strings combined with cryptographic hashing

In all cases, the seed value is combined with the system clock and a clock sequence

value used to maintain uniqueness in case the clock is set backwards.

12.8.1 UUID 1—IEEE 802 MAC Address

UUID version 1 values are computed using the MAC address of the host. The uuid

module uses getnode() to retrieve the MAC value of the current system.

import uuid

print hex(uuid.getnode())

If a system has more than one network card, and so more than one MAC, any one

of the values may be returned.

$ python uuid_getnode.py

0x1e5274040e

To generate a UUID for a host, identified by its MAC address, use the uuid1()

function. The node identifier argument is optional; leave the field blank to use the value

returned by getnode().

ptg

12.8. uuid—Universally Unique Identifiers 685

import uuid

u = uuid.uuid1()

print u

print type(u)

print ’bytes :’, repr(u.bytes)

print ’hex :’, u.hex

print ’int :’, u.int

print ’urn :’, u.urn

print ’variant :’, u.variant

print ’version :’, u.version

print ’fields :’, u.fields

print ’\ttime_low : ’, u.time_low

print ’\ttime_mid : ’, u.time_mid

print ’\ttime_hi_version : ’, u.time_hi_version

print ’\tclock_seq_hi_variant: ’, u.clock_seq_hi_variant

print ’\tclock_seq_low : ’, u.clock_seq_low

print ’\tnode : ’, u.node

print ’\ttime : ’, u.time

print ’\tclock_seq : ’, u.clock_seq

The components of the UUID object returned can be accessed through read-only

instance attributes. Some attributes, such as hex, int, and urn, are different representa-

tions of the UUID value.

$ python uuid_uuid1.py

c7887eee-ea6a-11df-a6cf-001e5274040e

<class ’uuid.UUID’>

bytes : ’\xc7\x88~\xee\xeaj\x11\xdf\xa6\xcf\x00\x1eRt\x04\x0e’

hex : c7887eeeea6a11dfa6cf001e5274040e

int : 265225098046419456611671377169708483598

urn : urn:uuid:c7887eee-ea6a-11df-a6cf-001e5274040e

variant : specified in RFC 4122

version : 1

fields : (3347611374L, 60010L, 4575L, 166L, 207L, 130232353806L)

time_low : 3347611374

time_mid : 60010

time_hi_version : 4575

clock_seq_hi_variant: 166

clock_seq_low : 207

ptg

686 The Internet

node : 130232353806

time : 135084258179448558

clock_seq : 9935

Because of the time component, each call to uuid1() returns a new value.

import uuid

for i in xrange(3):

print uuid.uuid1()

In this output, only the time component (at the beginning of the string) changes.

$ python uuid_uuid1_repeat.py

c794da9c-ea6a-11df-9382-001e5274040e

c797121c-ea6a-11df-9e67-001e5274040e

c79713a1-ea6a-11df-ac7d-001e5274040e

Because each computer has a different MAC address, running the sample program

on different systems will produce entirely different values. This example passes explicit

node ids to simulate running on different hosts.

import uuid

for node in [0x1ec200d9e0, 0x1e5274040e]:

print uuid.uuid1(node), hex(node)

In addition to a different time value, the node identifier at the end of the UUID

also changes.

$ python uuid_uuid1_othermac.py

c7a313a8-ea6a-11df-a228-001ec200d9e0 0x1ec200d9e0

c7a3f751-ea6a-11df-988b-001e5274040e 0x1e5274040e

12.8.2 UUID 3 and 5—Name-Based Values

It is also useful in some contexts to create UUID values from names instead of ran-

dom or time-based values. Versions 3 and 5 of the UUID specification use cryptographic

hash values (MD5 or SHA-1, respectively) to combine namespace-specific seed values

ptg

12.8. uuid—Universally Unique Identifiers 687

with names. There are several well-known namespaces, identified by predefined UUID

values, for working with DNS, URLs, ISO OIDs, and X.500 Distinguished Names. New

application-specific namespaces can be defined by generating and saving UUID values.

import uuid

hostnames = [’www.doughellmann.com’, ’blog.doughellmann.com’]

for name in hostnames:

print name

print ’ MD5 :’, uuid.uuid3(uuid.NAMESPACE_DNS, name)

print ’ SHA-1 :’, uuid.uuid5(uuid.NAMESPACE_DNS, name)

print

To create a UUID from a DNS name, pass uuid.NAMESPACE_DNS as the names-

pace argument to uuid3() or uuid5().

$ python uuid_uuid3_uuid5.py

www.doughellmann.com

MD5 : bcd02e22-68f0-3046-a512-327cca9def8f

SHA-1 : e3329b12-30b7-57c4-8117-c2cd34a87ce9

blog.doughellmann.com

MD5 : 9bdabfce-dfd6-37ab-8a3f-7f7293bcf111

SHA-1 : fa829736-7ef8-5239-9906-b4775a5abacb

The UUID value for a given name in a namespace is always the same, no matter

when or where it is calculated.

import uuid

namespace_types = sorted(n

for n in dir(uuid)

if n.startswith(’NAMESPACE_’)

)

name = ’www.doughellmann.com’

for namespace_type in namespace_types:

print namespace_type

namespace_uuid = getattr(uuid, namespace_type)

ptg

688 The Internet

print ’ ’, uuid.uuid3(namespace_uuid, name)

print ’ ’, uuid.uuid3(namespace_uuid, name)

print

Values for the same name in the namespaces are different.

$ python uuid_uuid3_repeat.py

NAMESPACE_DNS

bcd02e22-68f0-3046-a512-327cca9def8f

bcd02e22-68f0-3046-a512-327cca9def8f

NAMESPACE_OID

e7043ac1-4382-3c45-8271-d5c083e41723

e7043ac1-4382-3c45-8271-d5c083e41723

NAMESPACE_URL

5d0fdaa9-eafd-365e-b4d7-652500dd1208

5d0fdaa9-eafd-365e-b4d7-652500dd1208

NAMESPACE_X500

4a54d6e7-ce68-37fb-b0ba-09acc87cabb7

4a54d6e7-ce68-37fb-b0ba-09acc87cabb7

12.8.3 UUID 4—Random Values

Sometimes, host-based and namespace-based UUID values are not “different enough.”

For example, in cases where UUID is intended to be used as a hash key, a more random

sequence of values with more differentiation is desirable to avoid collisions in the hash

table. Having values with fewer common digits also makes it easier to find them in

log files. To add greater differentiation in UUIDs, use uuid4() to generate them using

random input values.

import uuid

for i in xrange(3):

print uuid.uuid4()

The source of randomness depends on which C libraries are available when uuid

is imported. If libuuid (or uuid.dll) can be loaded and it contains a function

ptg

12.8. uuid—Universally Unique Identifiers 689

for generating random values, it is used. Otherwise, os.urandom() or the random

module are used.

$ python uuid_uuid4.py

b2637198-4629-44c2-8b9b-07a6ff601a89

d1b850c6-f842-4a25-a993-6d6160dda761

50fb5234-abce-40b8-b034-ba3637dad6fc

12.8.4 Working with UUID Objects

In addition to generating new UUID values, it is possible to parse strings in standard

formats to create UUID objects, making it easier to handle comparisons and sorting

operations.

import uuid

def show(msg, l):

print msg

for v in l:

print ’ ’, v

print

input_values = [

’urn:uuid:f2f84497-b3bf-493a-bba9-7c68e6def80b’,

’{417a5ebb-01f7-4ed5-aeac-3d56cd5037b0}’,

’2115773a-5bf1-11dd-ab48-001ec200d9e0’,

]

show(’input_values’, input_values)

uuids = [uuid.UUID(s) for s in input_values]

show(’converted to uuids’, uuids)

uuids.sort()

show(’sorted’, uuids)

Surrounding curly braces are removed from the input, as are dashes (-). If the

string has a prefix containing urn: and/or uuid:, it is also removed. The remaining

text must be a string of 16 hexadecimal digits, which are then interpreted as a UUID

value.

ptg

690 The Internet

$ python uuid_uuid_objects.py

input_values

urn:uuid:f2f84497-b3bf-493a-bba9-7c68e6def80b

{417a5ebb-01f7-4ed5-aeac-3d56cd5037b0}

2115773a-5bf1-11dd-ab48-001ec200d9e0

converted to uuids

f2f84497-b3bf-493a-bba9-7c68e6def80b

417a5ebb-01f7-4ed5-aeac-3d56cd5037b0

2115773a-5bf1-11dd-ab48-001ec200d9e0

sorted

2115773a-5bf1-11dd-ab48-001ec200d9e0

417a5ebb-01f7-4ed5-aeac-3d56cd5037b0

f2f84497-b3bf-493a-bba9-7c68e6def80b

See Also:
uuid (http://docs.python.org/lib/module-uuid.html) The Standard library documen-

tation for this module.

RFC 4122 (http://tools.ietf.org/html/rfc4122.html) A Universally Unique Identifier

(UUID) URN Namespace.

12.9 json—JavaScript Object Notation

Purpose Encode Python objects as JSON strings, and decode JSON

strings into Python objects.

Python Version 2.6 and later

The jsonmodule provides an API similar to pickle for converting in-memory Python

objects to a serialized representation known as JavaScript Object Notation (JSON).

Unlike pickle, JSON has the benefit of having implementations in many languages (es-

pecially JavaScript). It is most widely used for communicating between the web server

and the client in an AJAX application, but it is also useful for other inter-application

communication needs.

12.9.1 Encoding and Decoding Simple Data Types

The encoder understands Python’s native types by default (string, unicode, int,

float, list, tuple, and dict).

http://docs.python.org/lib/module-uuid.html
http://tools.ietf.org/html/rfc4122.html

ptg

12.9. json—JavaScript Object Notation 691

import json

data = [{ ’a’:’A’, ’b’:(2, 4), ’c’:3.0 }]

print ’DATA:’, repr(data)

data_string = json.dumps(data)

print ’JSON:’, data_string

Values are encoded in a manner superficially similar to Python’s repr() output.

$ python json_simple_types.py

DATA: [{’a’: ’A’, ’c’: 3.0, ’b’: (2, 4)}]

JSON: [{"a": "A", "c": 3.0, "b": [2, 4]}]

Encoding, and then redecoding, may not give exactly the same type of object.

import json

data = [{ ’a’:’A’, ’b’:(2, 4), ’c’:3.0 }]

print ’DATA :’, data

data_string = json.dumps(data)

print ’ENCODED:’, data_string

decoded = json.loads(data_string)

print ’DECODED:’, decoded

print ’ORIGINAL:’, type(data[0][’b’])

print ’DECODED :’, type(decoded[0][’b’])

In particular, strings are converted to unicode objects and tuples become lists.

$ python json_simple_types_decode.py

DATA : [{’a’: ’A’, ’c’: 3.0, ’b’: (2, 4)}]

ENCODED: [{"a": "A", "c": 3.0, "b": [2, 4]}]

DECODED: [{’a’: ’A’, ’c’: 3.0, ’b’: [2, 4]}]

ORIGINAL: <type ’tuple’>

DECODED : <type ’list’>

ptg

692 The Internet

12.9.2 Human-Consumable vs. Compact Output

Another benefit of JSON over pickle is that the results are human-readable. The

dumps() function accepts several arguments to make the output even nicer. For

example, the sort_keys flag tells the encoder to output the keys of a dictionary in sorted,

instead of random, order.

import json

data = [{ ’a’:’A’, ’b’:(2, 4), ’c’:3.0 }]

print ’DATA:’, repr(data)

unsorted = json.dumps(data)

print ’JSON:’, json.dumps(data)

print ’SORT:’, json.dumps(data, sort_keys=True)

first = json.dumps(data, sort_keys=True)

second = json.dumps(data, sort_keys=True)

print ’UNSORTED MATCH:’, unsorted == first

print ’SORTED MATCH :’, first == second

Sorting makes it easier to scan the results by eye and also makes it possible to

compare JSON output in tests.

$ python json_sort_keys.py

DATA: [{’a’: ’A’, ’c’: 3.0, ’b’: (2, 4)}]

JSON: [{"a": "A", "c": 3.0, "b": [2, 4]}]

SORT: [{"a": "A", "b": [2, 4], "c": 3.0}]

UNSORTED MATCH: False

SORTED MATCH : True

For highly nested data structures, specify a value for indent so the output is for-

matted nicely as well.

import json

data = [{ ’a’:’A’, ’b’:(2, 4), ’c’:3.0 }]

print ’DATA:’, repr(data)

print ’NORMAL:’, json.dumps(data, sort_keys=True)

print ’INDENT:’, json.dumps(data, sort_keys=True, indent=2)

ptg

12.9. json—JavaScript Object Notation 693

When indent is a non-negative integer, the output more closely resembles that of

pprint, with leading spaces for each level of the data structure matching the indent

level.

$ python json_indent.py

DATA: [{’a’: ’A’, ’c’: 3.0, ’b’: (2, 4)}]

NORMAL: [{"a": "A", "b": [2, 4], "c": 3.0}]

INDENT: [

{

"a": "A",

"b": [

2,

4

],

"c": 3.0

}

]

Verbose output like this increases the number of bytes needed to transmit the same

amount of data, however, so it is not intended for use in a production environment. In

fact, it is possible to adjust the settings for separating data in the encoded output to

make it even more compact than the default.

import json

data = [{ ’a’:’A’, ’b’:(2, 4), ’c’:3.0 }]

print ’DATA:’, repr(data)

print ’repr(data) :’, len(repr(data))

plain_dump = json.dumps(data)

print ’dumps(data) :’, len(plain_dump)

small_indent = json.dumps(data, indent=2)

print ’dumps(data, indent=2) :’, len(small_indent)

with_separators = json.dumps(data, separators=(’,’,’:’))

print ’dumps(data, separators):’, len(with_separators)

The separators argument to dumps() should be a tuple containing the strings to

separate items in a list and keys from values in a dictionary. The default is (’, ’,

’: ’). By removing the whitespace, a more compact output is produced.

ptg

694 The Internet

$ python json_compact_encoding.py

DATA: [{’a’: ’A’, ’c’: 3.0, ’b’: (2, 4)}]

repr(data) : 35

dumps(data) : 35

dumps(data, indent=2) : 76

dumps(data, separators): 29

12.9.3 Encoding Dictionaries

The JSON format expects the keys to a dictionary to be strings. Trying to encode a

dictionary with nonstring types as keys produces an exception. (The exception type

depends on whether the pure-Python version of the module is loaded or the C speed-

ups are available, but it will be either TypeError or ValueError.) One way to work

around that limitation is to tell the encoder to skip over nonstring keys using the skipkeys
argument.

import json

data = [{ ’a’:’A’, ’b’:(2, 4), ’c’:3.0, (’d’,):’D tuple’ }]

print ’First attempt’

try:
print json.dumps(data)

except (TypeError, ValueError), err:

print ’ERROR:’, err

print
print ’Second attempt’

print json.dumps(data, skipkeys=True)

Rather than raising an exception, the nonstring key is ignored.

$ python json_skipkeys.py

First attempt

ERROR: keys must be a string

Second attempt

[{"a": "A", "c": 3.0, "b": [2, 4]}]

ptg

12.9. json—JavaScript Object Notation 695

12.9.4 Working with Custom Types

All the examples so far have used Python’s built-in types because those are supported

by json natively. It is common to need to encode custom classes, as well, and there are

two ways to do that.

Given this class to encode

class MyObj(object):
def __init__(self, s):

self.s = s

def __repr__(self):

return ’<MyObj(%s)>’ % self.s

The simple way of encoding a MyObj instance is to define a function to convert

an unknown type to a known type. It does not need to do the encoding, so it should just

convert one object to another.

import json
import json_myobj

obj = json_myobj.MyObj(’instance value goes here’)

print ’First attempt’

try:
print json.dumps(obj)

except TypeError, err:

print ’ERROR:’, err

def convert_to_builtin_type(obj):

print ’default(’, repr(obj), ’)’

Convert objects to a dictionary of their representation

d = { ’__class__’:obj.__class__.__name__,

’__module__’:obj.__module__,

}

d.update(obj.__dict__)

return d

print
print ’With default’

print json.dumps(obj, default=convert_to_builtin_type)

ptg

696 The Internet

In convert_to_builtin_type(), instances of classes not recognized by json

are converted to dictionaries with enough information to re-create the object if a pro-

gram has access to the Python modules necessary.

$ python json_dump_default.py

First attempt

ERROR: <MyObj(instance value goes here)> is not JSON serializable

With default

default(<MyObj(instance value goes here)>)

{"s": "instance value goes here", "__module__": "json_myobj",

"__class__": "MyObj"}

To decode the results and create a MyObj() instance, use the object_hook argu-

ment to loads() to tie in to the decoder so the class can be imported from the module

and used to create the instance.

The object_hook is called for each dictionary decoded from the incoming data

stream, providing a chance to convert the dictionary to another type of object. The hook

function should return the object the calling application should receive instead of the

dictionary.

import json

def dict_to_object(d):

if ’__class__’ in d:

class_name = d.pop(’__class__’)

module_name = d.pop(’__module__’)

module = __import__(module_name)

print ’MODULE:’, module.__name__

class_ = getattr(module, class_name)

print ’CLASS:’, class_

args = dict((key.encode(’ascii’), value)

for key, value in d.items())

print ’INSTANCE ARGS:’, args

inst = class_(**args)

else:
inst = d

return inst

encoded_object = ’’’

[{"s": "instance value goes here",

"__module__": "json_myobj", "__class__": "MyObj"}]

’’’

ptg

12.9. json—JavaScript Object Notation 697

myobj_instance = json.loads(encoded_object,

object_hook=dict_to_object)

print myobj_instance

Since json converts string values to unicode objects, they need to be reencoded

as ASCII strings before they can be used as keyword arguments to the class constructor.

$ python json_load_object_hook.py

MODULE: json_myobj

CLASS: <class ’json_myobj.MyObj’>

INSTANCE ARGS: {’s’: ’instance value goes here’}

[<MyObj(instance value goes here)>]

Similar hooks are available for the built-in types integers (parse_ int), floating-

point numbers (parse_ float), and constants (parse_ constant).

12.9.5 Encoder and Decoder Classes

Besides the convenience functions already covered, the json module provides classes

for encoding and decoding. Using the classes directly gives access to extra APIs for

customizing their behavior.

The JSONEncoder uses an iterable interface for producing “chunks” of encoded

data, making it easier to write to files or network sockets without having to represent an

entire data structure in memory.

import json

encoder = json.JSONEncoder()

data = [{ ’a’:’A’, ’b’:(2, 4), ’c’:3.0 }]

for part in encoder.iterencode(data):

print ’PART:’, part

The output is generated in logical units, rather than being based on any size value.

$ python json_encoder_iterable.py

PART: [

PART: {

PART: "a"

ptg

698 The Internet

PART: :

PART: "A"

PART: ,

PART: "c"

PART: :

PART: 3.0

PART: ,

PART: "b"

PART: :

PART: [2

PART: , 4

PART:]

PART: }

PART:]

The encode() method is basically equivalent to the value produced by the

expression ’ ’.join(encoder.iterencode()), with some extra error checking up

front.

To encode arbitrary objects, override the default() method with an implemen-

tation similar to the one used in convert_to_builtin_type().

import json
import json_myobj

class MyEncoder(json.JSONEncoder):

def default(self, obj):

print ’default(’, repr(obj), ’)’

Convert objects to a dictionary of their representation

d = { ’__class__’:obj.__class__.__name__,

’__module__’:obj.__module__,

}

d.update(obj.__dict__)

return d

obj = json_myobj.MyObj(’internal data’)

print obj

print MyEncoder().encode(obj)

The output is the same as the previous implementation.

$ python json_encoder_default.py

ptg

12.9. json—JavaScript Object Notation 699

<MyObj(internal data)>

default(<MyObj(internal data)>)

{"s": "internal data", "__module__": "json_myobj", "__class__":

"MyObj"}

Decoding text, and then converting the dictionary into an object, takes a little more

work to set up than the previous implementation, but not much.

import json

class MyDecoder(json.JSONDecoder):

def __init__(self):

json.JSONDecoder.__init__(self,

object_hook=self.dict_to_object)

def dict_to_object(self, d):

if ’__class__’ in d:

class_name = d.pop(’__class__’)

module_name = d.pop(’__module__’)

module = __import__(module_name)

print ’MODULE:’, module.__name__

class_ = getattr(module, class_name)

print ’CLASS:’, class_

args = dict((key.encode(’ascii’), value)

for key, value in d.items())

print ’INSTANCE ARGS:’, args

inst = class_(**args)

else:
inst = d

return inst

encoded_object = ’’’

[{"s": "instance value goes here",

"__module__": "json_myobj", "__class__": "MyObj"}]

’’’

myobj_instance = MyDecoder().decode(encoded_object)

print myobj_instance

And the output is the same as the earlier example.

ptg

700 The Internet

$ python json_decoder_object_hook.py

MODULE: json_myobj

CLASS: <class ’json_myobj.MyObj’>

INSTANCE ARGS: {’s’: ’instance value goes here’}

[<MyObj(instance value goes here)>]

12.9.6 Working with Streams and Files

All the examples so far have assumed that the encoded version of the entire data

structure could be held in memory at one time. With large data structures, it may be

preferable to write the encoding directly to a file-like object. The convenience func-

tions load() and dump() accept references to a file-like object to use for reading or

writing.

import json
from StringIO import StringIO

data = [{ ’a’:’A’, ’b’:(2, 4), ’c’:3.0 }]

f = StringIO()

json.dump(data, f)

print f.getvalue()

A socket or normal file handle would work the same way as the StringIO buffer

used in this example.

$ python json_dump_file.py

[{"a": "A", "c": 3.0, "b": [2, 4]}]

Although it is not optimized to read only part of the data at a time, the load()

function still offers the benefit of encapsulating the logic of generating objects from

stream input.

import json
from StringIO import StringIO

f = StringIO(’[{"a": "A", "c": 3.0, "b": [2, 4]}]’)

print json.load(f)

ptg

12.9. json—JavaScript Object Notation 701

Just as for dump(), any file-like object can be passed to load().

$ python json_load_file.py

[{’a’: ’A’, ’c’: 3.0, ’b’: [2, 4]}]

12.9.7 Mixed Data Streams

JSONDecoder includes raw_decode(), a method for decoding a data structure fol-

lowed by more data, such as JSON data with trailing text. The return value is the object

created by decoding the input data and an index into that data indicating where decoding

left off.

import json

decoder = json.JSONDecoder()

def get_decoded_and_remainder(input_data):

obj, end = decoder.raw_decode(input_data)

remaining = input_data[end:]

return (obj, end, remaining)

encoded_object = ’[{"a": "A", "c": 3.0, "b": [2, 4]}]’

extra_text = ’This text is not JSON.’

print ’JSON first:’

data = ’ ’.join([encoded_object, extra_text])

obj, end, remaining = get_decoded_and_remainder(data)

print ’Object :’, obj

print ’End of parsed input :’, end

print ’Remaining text :’, repr(remaining)

print
print ’JSON embedded:’

try:
data = ’ ’.join([extra_text, encoded_object, extra_text])

obj, end, remaining = get_decoded_and_remainder(data)

except ValueError, err:

print ’ERROR:’, err

Unfortunately, this only works if the object appears at the beginning of the input.

ptg

702 The Internet

$ python json_mixed_data.py

JSON first:

Object : [{’a’: ’A’, ’c’: 3.0, ’b’: [2, 4]}]

End of parsed input : 35

Remaining text : ’ This text is not JSON.’

JSON embedded:

ERROR: No JSON object could be decoded

See Also:
json (http://docs.python.org/library/json.html) The standard library documentation

for this module.

JavaScript Object Notation (http://json.org/) JSON home, with documentation and

implementations in other languages.

simplejson (http://code.google.com/p/simplejson/) simplejson, from Bob Ippolito

et al. is the externally maintained development version of the json library in-

cluded with Python 2.6 and later. It maintains backwards compatibility with

Python 2.4 and Python 2.5.

jsonpickle (http://code.google.com/p/jsonpickle/) jsonpickle allows for any

Python object to be serialized into JSON.

12.10 xmlrpclib—Client Library for XML-RPC

Purpose Client-side library for XML-RPC communication.

Python Version 2.2 and later

XML-RPC is a lightweight remote procedure call protocol built on top of HTTP and

XML. The xmlrpclibmodule lets a Python program communicate with an XML-RPC

server written in any language.

All the examples in this section use the server defined in xmlrpclib_

server.py, available in the source distribution and included here for reference.

from SimpleXMLRPCServer import SimpleXMLRPCServer

from xmlrpclib import Binary

import datetime

server = SimpleXMLRPCServer((’localhost’, 9000),

logRequests=True,

allow_none=True)

http://docs.python.org/library/json.html
http://json.org/
http://code.google.com/p/simplejson/
http://code.google.com/p/jsonpickle/

ptg

12.10. xmlrpclib—Client Library for XML-RPC 703

server.register_introspection_functions()

server.register_multicall_functions()

class ExampleService:

def ping(self):

"""Simple function to respond when called

to demonstrate connectivity.

"""

return True

def now(self):

"""Returns the server current date and time."""

return datetime.datetime.now()

def show_type(self, arg):

"""Illustrates how types are passed in and out of

server methods.

Accepts one argument of any type.

Returns a tuple with string representation of the value,

the name of the type, and the value itself.

"""

return (str(arg), str(type(arg)), arg)

def raises_exception(self, msg):

"Always raises a RuntimeError with the message passed in"

raise RuntimeError(msg)

def send_back_binary(self, bin):

"""Accepts single Binary argument, and unpacks and

repacks it to return it."""

data = bin.data

response = Binary(data)

return response

server.register_instance(ExampleService())

try:
print ’Use Control-C to exit’

server.serve_forever()

except KeyboardInterrupt:
print ’Exiting’

ptg

704 The Internet

12.10.1 Connecting to a Server

The simplest way to connect a client to a server is to instantiate a ServerProxy object,

giving it the URI of the server. For example, the demo server runs on port 9000 of

localhost.

import xmlrpclib

server = xmlrpclib.ServerProxy(’http://localhost:9000’)

print ’Ping:’, server.ping()

In this case, the ping() method of the service takes no arguments and returns a

single Boolean value.

$ python xmlrpclib_ServerProxy.py

Ping: True

Other options are available to support alternate transport. Both HTTP and HTTPS

are supported out of the box, both with basic authentication. To implement a new com-

munication channel, only a new transport class is needed. It could be an interesting

exercise, for example, to implement XML-RPC over SMTP.

import xmlrpclib

server = xmlrpclib.ServerProxy(’http://localhost:9000’, verbose=True)

print ’Ping:’, server.ping()

The verbose option gives debugging information useful for resolving communica-

tion errors.

$ python xmlrpclib_ServerProxy_verbose.py

Ping: connect: (localhost, 9000)

connect fail: (’localhost’, 9000)

connect: (localhost, 9000)

connect fail: (’localhost’, 9000)

connect: (localhost, 9000)

send: ’POST /RPC2 HTTP/1.0\r\nHost: localhost:9000\r\nUser-Agent:

xmlrpclib.py/1.0.1 (by www.pythonware.com)\r\nContent-Type: text

/xml\r\nContent-Length: 98\r\n\r\n’

ptg

12.10. xmlrpclib—Client Library for XML-RPC 705

send: "<?xml version=’1.0’?>\n<methodCall>\n<methodName>ping</met

hodName>\n<params>\n</params>\n</methodCall>\n"

reply: ’HTTP/1.0 200 OK\r\n’

header: Server: BaseHTTP/0.3 Python/2.5.1

header: Date: Sun, 06 Jul 2008 19:56:13 GMT

header: Content-type: text/xml

header: Content-length: 129

body: "<?xml version=’1.0’?>\n<methodResponse>\n<params>\n<param

>\n<value><boolean>1</boolean></value>\n</param>\n</params>\n</m

ethodResponse>\n"

True

The default encoding can be changed from UTF-8 if an alternate system is needed.

import xmlrpclib

server = xmlrpclib.ServerProxy(’http://localhost:9000’,

encoding=’ISO-8859-1’)

print ’Ping:’, server.ping()

The server automatically detects the correct encoding.

$ python xmlrpclib_ServerProxy_encoding.py

Ping: True

The allow_none option controls whether Python’s None value is automatically

translated to a nil value or whether it causes an error.

import xmlrpclib

server = xmlrpclib.ServerProxy(’http://localhost:9000’,

allow_none=True)

print ’Allowed:’, server.show_type(None)

server = xmlrpclib.ServerProxy(’http://localhost:9000’,

allow_none=False)

try:
server.show_type(None)

except TypeError as err:

print ’ERROR:’, err

ptg

706 The Internet

The error is raised locally if the client does not allow None, but it can also be

raised from within the server if it is not configured to allow None.

$ python xmlrpclib_ServerProxy_allow_none.py

Allowed: [’None’, "<type ’NoneType’>", None]

ERROR: cannot marshal None unless allow_none is enabled

12.10.2 Data Types

The XML-RPC protocol recognizes a limited set of common data types. The types can

be passed as arguments or return values and combined to create more complex data

structures.

import xmlrpclib
import datetime

server = xmlrpclib.ServerProxy(’http://localhost:9000’)

for t, v in [(’boolean’, True),

(’integer’, 1),

(’float’, 2.5),

(’string’, ’some text’),

(’datetime’, datetime.datetime.now()),

(’array’, [’a’, ’list’]),

(’array’, (’a’, ’tuple’)),

(’structure’, {’a’:’dictionary’}),

]:

as_string, type_name, value = server.show_type(v)

print ’%-12s:’ % t, as_string

print ’%12s ’ % ’’, type_name

print ’%12s ’ % ’’, value

The simple types are

$ python xmlrpclib_types.py

boolean : True

<type ’bool’>

True

integer : 1

<type ’int’>

1

ptg

12.10. xmlrpclib—Client Library for XML-RPC 707

float : 2.5

<type ’float’>

2.5

string : some text

<type ’str’>

some text

datetime : 20101128T20:15:21

<type ’instance’>

20101128T20:15:21

array : [’a’, ’list’]

<type ’list’>

[’a’, ’list’]

array : [’a’, ’tuple’]

<type ’list’>

[’a’, ’tuple’]

structure : {’a’: ’dictionary’}

<type ’dict’>

{’a’: ’dictionary’}

The supported types can be nested to create values of arbitrary complexity.

import xmlrpclib
import datetime
import pprint

server = xmlrpclib.ServerProxy(’http://localhost:9000’)

data = { ’boolean’:True,

’integer’: 1,

’floating-point number’: 2.5,

’string’: ’some text’,

’datetime’: datetime.datetime.now(),

’array’: [’a’, ’list’],

’array’: (’a’, ’tuple’),

’structure’: {’a’:’dictionary’},

}

arg = []

for i in range(3):

d = {}

d.update(data)

d[’integer’] = i

arg.append(d)

ptg

708 The Internet

print ’Before:’

pprint.pprint(arg)

print
print ’After:’

pprint.pprint(server.show_type(arg)[-1])

This program passes a list of dictionaries containing all the supported types to

the sample server, which returns the data. Tuples are converted to lists, and datetime

instances are converted to DateTime objects. Otherwise, the data is unchanged.

$ python xmlrpclib_types_nested.py

Before:

[{’array’: (’a’, ’tuple’),

’boolean’: True,

’datetime’: datetime.datetime(2008, 7, 6, 16, 24, 52, 348849),

’floating-point number’: 2.5,

’integer’: 0,

’string’: ’some text’,

’structure’: {’a’: ’dictionary’}},

{’array’: (’a’, ’tuple’),

’boolean’: True,

’datetime’: datetime.datetime(2008, 7, 6, 16, 24, 52, 348849),

’floating-point number’: 2.5,

’integer’: 1,

’string’: ’some text’,

’structure’: {’a’: ’dictionary’}},

{’array’: (’a’, ’tuple’),

’boolean’: True,

’datetime’: datetime.datetime(2008, 7, 6, 16, 24, 52, 348849),

’floating-point number’: 2.5,

’integer’: 2,

’string’: ’some text’,

’structure’: {’a’: ’dictionary’}}]

After:

[{’array’: [’a’, ’tuple’],

’boolean’: True,

’datetime’: <DateTime ’20080706T16:24:52’ at a5be18>,

’floating-point number’: 2.5,

’integer’: 0,

ptg

12.10. xmlrpclib—Client Library for XML-RPC 709

’string’: ’some text’,

’structure’: {’a’: ’dictionary’}},

{’array’: [’a’, ’tuple’],

’boolean’: True,

’datetime’: <DateTime ’20080706T16:24:52’ at a5bf30>,

’floating-point number’: 2.5,

’integer’: 1,

’string’: ’some text’,

’structure’: {’a’: ’dictionary’}},

{’array’: [’a’, ’tuple’],

’boolean’: True,

’datetime’: <DateTime ’20080706T16:24:52’ at a5bf80>,

’floating-point number’: 2.5,

’integer’: 2,

’string’: ’some text’,

’structure’: {’a’: ’dictionary’}}]

XML-RPC supports dates as a native type, and xmlrpclib can use one of two

classes to represent the date values in the outgoing proxy or when they are received from

the server. By default an internal version of DateTime is used, but the use_datetime
option turns on support for using the classes in the datetime module.

12.10.3 Passing Objects

Instances of Python classes are treated as structures and passed as a dictionary, with the

attributes of the object as values in the dictionary.

import xmlrpclib
import pprint

class MyObj:
def __init__(self, a, b):

self.a = a

self.b = b

def __repr__(self):

return ’MyObj(%s, %s)’ % (repr(self.a), repr(self.b))

server = xmlrpclib.ServerProxy(’http://localhost:9000’)

o = MyObj(1, ’b goes here’)

print ’o :’, o

pprint.pprint(server.show_type(o))

ptg

710 The Internet

o2 = MyObj(2, o)

print ’o2 :’, o2

pprint.pprint(server.show_type(o2))

When the value is sent back to the client from the server, the result is a dictionary

on the client, since there is nothing encoded in the values to tell the server (or the client)

that it should be instantiated as part of a class.

$ python xmlrpclib_types_object.py

o : MyObj(1, ’b goes here’)

["{’a’: 1, ’b’: ’b goes here’}", "<type ’dict’>",

{’a’: 1, ’b’: ’b goes here’}]

o2 : MyObj(2, MyObj(1, ’b goes here’))

["{’a’: 2, ’b’: {’a’: 1, ’b’: ’b goes here’}}",

"<type ’dict’>",

{’a’: 2, ’b’: {’a’: 1, ’b’: ’b goes here’}}]

12.10.4 Binary Data

All values passed to the server are encoded and escaped automatically. However, some

data types may contain characters that are not valid XML. For example, binary image

data may include byte values in the ASCII control range 0 to 31. To pass binary data, it

is best to use the Binary class to encode it for transport.

import xmlrpclib

server = xmlrpclib.ServerProxy(’http://localhost:9000’)

s = ’This is a string with control characters’ + ’\0’
print ’Local string:’, s

data = xmlrpclib.Binary(s)

print ’As binary:’, server.send_back_binary(data)

try:
print ’As string:’, server.show_type(s)

except xmlrpclib.Fault as err:

print ’\nERROR:’, err

If the string containing a NULL byte is passed to show_type(), an exception is

raised in the XML parser.

ptg

12.10. xmlrpclib—Client Library for XML-RPC 711

$ python xmlrpclib_Binary.py

Local string: This is a string with control characters

As binary: This is a string with control characters

As string:

ERROR: <Fault 1: "<class ’xml.parsers.expat.ExpatError’>:not

well-formed (invalid token): line 6, column 55">

Binary objects can also be used to send objects using pickle. The normal secu-

rity issues related to sending what amounts to executable code over the wire apply here

(i.e., do not do this unless the communication channel is secure).

import xmlrpclib
import cPickle as pickle
import pprint

class MyObj:
def __init__(self, a, b):

self.a = a

self.b = b

def __repr__(self):

return ’MyObj(%s, %s)’ % (repr(self.a), repr(self.b))

server = xmlrpclib.ServerProxy(’http://localhost:9000’)

o = MyObj(1, ’b goes here’)

print ’Local:’, id(o)

print o

print ’\nAs object:’

pprint.pprint(server.show_type(o))

p = pickle.dumps(o)

b = xmlrpclib.Binary(p)

r = server.send_back_binary(b)

o2 = pickle.loads(r.data)

print ’\nFrom pickle:’, id(o2)

pprint.pprint(o2)

The data attribute of the Binary instance contains the pickled version of the

object, so it has to be unpickled before it can be used. That results in a different object

(with a new id value).

ptg

712 The Internet

$ python xmlrpclib_Binary_pickle.py

Local: 4321077872

MyObj(1, ’b goes here’)

As object:

["{’a’: 1, ’b’: ’b goes here’}", "<type ’dict’>",

{’a’: 1, ’b’: ’b goes here’}]

From pickle: 4321252344

MyObj(1, ’b goes here’)

12.10.5 Exception Handling

Since the XML-RPC server might be written in any language, exception classes cannot

be transmitted directly. Instead, exceptions raised in the server are converted to Fault

objects and raised as exceptions locally in the client.

import xmlrpclib

server = xmlrpclib.ServerProxy(’http://localhost:9000’)

try:
server.raises_exception(’A message’)

except Exception, err:

print ’Fault code:’, err.faultCode

print ’Message :’, err.faultString

The original error message is saved in the faultString attribute, and fault-

Code is set to an XML-RPC error number.

$ python xmlrpclib_exception.py

Fault code: 1

Message : <type ’exceptions.RuntimeError’>:A message

12.10.6 Combining Calls into One Message

Multicall is an extension to the XML-RPC protocol that allows more than one call to

be sent at the same time, with the responses collected and returned to the caller. The

MultiCall class was added to xmlrpclib in Python 2.4.

ptg

12.10. xmlrpclib—Client Library for XML-RPC 713

import xmlrpclib

server = xmlrpclib.ServerProxy(’http://localhost:9000’)

multicall = xmlrpclib.MultiCall(server)

multicall.ping()

multicall.show_type(1)

multicall.show_type(’string’)

for i, r in enumerate(multicall()):

print i, r

To use a MultiCall instance, invoke the methods on it as with a ServerProxy,

and then call the object with no arguments to actually run the remote functions. The

return value is an iterator that yields the results from all the calls.

$ python xmlrpclib_MultiCall.py

0 True

1 [’1’, "<type ’int’>", 1]

2 [’string’, "<type ’str’>", ’string’]

If one of the calls causes a Fault, the exception is raised when the result is pro-

duced from the iterator and no more results are available.

import xmlrpclib

server = xmlrpclib.ServerProxy(’http://localhost:9000’)

multicall = xmlrpclib.MultiCall(server)

multicall.ping()

multicall.show_type(1)

multicall.raises_exception(’Next to last call stops execution’)

multicall.show_type(’string’)

try:
for i, r in enumerate(multicall()):

print i, r

except xmlrpclib.Fault as err:

print ’ERROR:’, err

ptg

714 The Internet

Since the third response, from raises_exception(), generates an exception,

the response from show_type() is not accessible.

$ python xmlrpclib_MultiCall_exception.py

0 True

1 [’1’, "<type ’int’>", 1]

ERROR: <Fault 1: "<type ’exceptions.RuntimeError’>:Next to last call

stops execution">

See Also:
xmlrpclib (http://docs.python.org/lib/module-xmlrpclib.html) The Standard library

documentation for this module.

SimpleXMLRPCServer (page 714) An XML-RPC server implementation.

12.11 SimpleXMLRPCServer—An XML-RPC Server

Purpose Implements an XML-RPC server.

Python Version 2.2 and later

The SimpleXMLRPCServer module contains classes for creating cross-platform,

language-independent servers using the XML-RPC protocol. Client libraries exist for

many other languages besides Python, making XML-RPC an easy choice for building

RPC-style services.

Note: All the examples provided here include a client module as well to interact

with the demonstration server. To run the examples, use two separate shell windows,

one for the server and one for the client.

12.11.1 A Simple Server

This simple server example exposes a single function that takes the name of a directory

and returns the contents. The first step is to create the SimpleXMLRPCServer instance

and then tell it where to listen for incoming requests (‘localhost’ port 9000 in this case).

The next step is to define a function to be part of the service and register it so the server

knows how to call it. The final step is to put the server into an infinite loop receiving

and responding to requests.

http://docs.python.org/lib/module-xmlrpclib.html

ptg

12.11. SimpleXMLRPCServer—An XML-RPC Server 715

Warning: This implementation has obvious security implications. Do not run it

on a server on the open Internet or in any environment where security might be an

issue.

from SimpleXMLRPCServer import SimpleXMLRPCServer

import logging
import os

Set up logging

logging.basicConfig(level=logging.DEBUG)

server = SimpleXMLRPCServer((’localhost’, 9000), logRequests=True)

Expose a function

def list_contents(dir_name):

logging.debug(’list_contents(%s)’, dir_name)

return os.listdir(dir_name)

server.register_function(list_contents)

Start the server

try:
print ’Use Control-C to exit’

server.serve_forever()

except KeyboardInterrupt:
print ’Exiting’

The server can be accessed at the URL http://localhost:9000 using

the client class from xmlrpclib. This example code illustrates how to call the

list_contents() service from Python.

import xmlrpclib

proxy = xmlrpclib.ServerProxy(’http://localhost:9000’)

print proxy.list_contents(’/tmp’)

The ServerProxy is connected to the server using its base URL, and then meth-

ods are called directly on the proxy. Each method invoked on the proxy is translated

into a request to the server. The arguments are formatted using XML and then sent to

the server in a POST message. The server unpacks the XML and determines which

ptg

716 The Internet

function to call based on the method name invoked from the client. The arguments are

passed to the function, and the return value is translated back to XML to be returned to

the client.

Starting the server gives:

$ python SimpleXMLRPCServer_function.py

Use Control-C to exit

Running the client in a second window shows the contents of the /tmp directory.

$ python SimpleXMLRPCServer_function_client.py

[’.s.PGSQL.5432’, ’.s.PGSQL.5432.lock’, ’.X0-lock’, ’.X11-unix’,

’ccc_exclude.1mkahl’, ’ccc_exclude.BKG3gb’, ’ccc_exclude.M5jrgo’,

’ccc_exclude.SPecwL’, ’com.hp.launchport’, ’emacs527’,

’hsperfdata_dhellmann’, ’launch-8hGHUp’, ’launch-RQnlcc’,

’launch-trsdly’, ’launchd-242.T5UzTy’, ’var_backups’]

After the request is finished, log output appears in the server window.

$ python SimpleXMLRPCServer_function.py

Use Control-C to exit

DEBUG:root:list_contents(/tmp)

localhost - - [29/Jun/2008 09:32:07] "POST /RPC2 HTTP/1.0" 200 -

The first line of output is from the logging.debug() call inside

list_contents(). The second line is from the server logging the request because

logRequests is True.

12.11.2 Alternate API Names

Sometimes, the function names used inside a module or library are not the names that

should be used in the external API. Names may change because a platform-specific

implementation is loaded, the service API is built dynamically based on a configuration

file, or real functions are to be replaced with stubs for testing. To register a function with

an alternate name, pass the name as the second argument to register_function(),

like this.

ptg

12.11. SimpleXMLRPCServer—An XML-RPC Server 717

from SimpleXMLRPCServer import SimpleXMLRPCServer

import os

server = SimpleXMLRPCServer((’localhost’, 9000))

Expose a function with an alternate name

def list_contents(dir_name):

return os.listdir(dir_name)

server.register_function(list_contents, ’dir’)

try:
print ’Use Control-C to exit’

server.serve_forever()

except KeyboardInterrupt:
print ’Exiting’

The client should now use the name dir() instead of list_contents().

import xmlrpclib

proxy = xmlrpclib.ServerProxy(’http://localhost:9000’)

print ’dir():’, proxy.dir(’/tmp’)

try:
print ’\nlist_contents():’, proxy.list_contents(’/tmp’)

except xmlrpclib.Fault as err:

print ’\nERROR:’, err

Calling list_contents() results in an error, since the server no longer has a

handler registered by that name.

$ python SimpleXMLRPCServer_alternate_name_client.py

dir(): [’ccc_exclude.GIqLcR’, ’ccc_exclude.kzR42t’,

’ccc_exclude.LV04nf’, ’ccc_exclude.Vfzylm’, ’emacs527’,

’icssuis527’, ’launch-9hTTwf’, ’launch-kCXjtT’,

’launch-Nwc3AB’, ’launch-pwCgej’, ’launch-Xrku4Q’,

’launch-YtDZBJ’, ’launchd-167.AfaNuZ’, ’var_backups’]

list_contents():

ERROR: <Fault 1: ’<type \’exceptions.Exception\’>:method

"list_contents" is not supported’>

ptg

718 The Internet

12.11.3 Dotted API Names

Individual functions can be registered with names that are not normally legal for Python

identifiers. For example, a period (.) can be included in the names to separate the name-

space in the service. The next example extends the “directory” service to add “create”

and “remove” calls. All the functions are registered using the prefix “dir.” so that the

same server can provide other services using a different prefix. One other difference in

this example is that some of the functions return None, so the server has to be told to

translate the None values to a nil value.

from SimpleXMLRPCServer import SimpleXMLRPCServer

import os

server = SimpleXMLRPCServer((’localhost’, 9000), allow_none=True)

server.register_function(os.listdir, ’dir.list’)

server.register_function(os.mkdir, ’dir.create’)

server.register_function(os.rmdir, ’dir.remove’)

try:
print ’Use Control-C to exit’

server.serve_forever()

except KeyboardInterrupt:
print ’Exiting’

To call the service functions in the client, simply refer to them with the dotted

name.

import xmlrpclib

proxy = xmlrpclib.ServerProxy(’http://localhost:9000’)

print ’BEFORE :’, ’EXAMPLE’ in proxy.dir.list(’/tmp’)

print ’CREATE :’, proxy.dir.create(’/tmp/EXAMPLE’)

print ’SHOULD EXIST :’, ’EXAMPLE’ in proxy.dir.list(’/tmp’)

print ’REMOVE :’, proxy.dir.remove(’/tmp/EXAMPLE’)

print ’AFTER :’, ’EXAMPLE’ in proxy.dir.list(’/tmp’)

Assuming there is no /tmp/EXAMPLE file on the current system, this is the output

for the sample client script.

$ python SimpleXMLRPCServer_dotted_name_client.py

ptg

12.11. SimpleXMLRPCServer—An XML-RPC Server 719

BEFORE : False

CREATE : None

SHOULD EXIST : True

REMOVE : None

AFTER : False

12.11.4 Arbitrary API Names

Another interesting feature is the ability to register functions with names that are othe-

rwise invalid Python-object attribute names. This example service registers a function

with the name “multiply args.”

from SimpleXMLRPCServer import SimpleXMLRPCServer

server = SimpleXMLRPCServer((’localhost’, 9000))

def my_function(a, b):

return a * b

server.register_function(my_function, ’multiply args’)

try:
print ’Use Control-C to exit’

server.serve_forever()

except KeyboardInterrupt:
print ’Exiting’

Since the registered name contains a space, dot notation cannot be used to access

it directly from the proxy. Using getattr() does work, however.

import xmlrpclib

proxy = xmlrpclib.ServerProxy(’http://localhost:9000’)

print getattr(proxy, ’multiply args’)(5, 5)

Avoid creating services with names like this, though. This example is provided not

necessarily because it is a good idea, but because existing services with arbitrary names

exist, and new programs may need to be able to call them.

$ python SimpleXMLRPCServer_arbitrary_name_client.py

25

ptg

720 The Internet

12.11.5 Exposing Methods of Objects

The earlier sections talked about techniques for establishing APIs using good naming

conventions and namespacing. Another way to incorporate namespacing into an API is

to use instances of classes and expose their methods. The first example can be re-created

using an instance with a single method.

from SimpleXMLRPCServer import SimpleXMLRPCServer

import os
import inspect

server = SimpleXMLRPCServer((’localhost’, 9000), logRequests=True)

class DirectoryService:
def list(self, dir_name):

return os.listdir(dir_name)

server.register_instance(DirectoryService())

try:
print ’Use Control-C to exit’

server.serve_forever()

except KeyboardInterrupt:
print ’Exiting’

A client can call the method directly as follows.

import xmlrpclib

proxy = xmlrpclib.ServerProxy(’http://localhost:9000’)

print proxy.list(’/tmp’)

The output is:

$ python SimpleXMLRPCServer_instance_client.py

[’ccc_exclude.1mkahl’, ’ccc_exclude.BKG3gb’, ’ccc_exclude.M5jrgo’,

’ccc_exclude.SPecwL’, ’com.hp.launchport’, ’emacs527’,

’hsperfdata_dhellmann’, ’launch-8hGHUp’, ’launch-RQnlcc’,

’launch-trsdly’, ’launchd-242.T5UzTy’, ’var_backups’]

The “dir.” prefix for the service has been lost, though. It can be restored by

defining a class to set up a service tree that can be invoked from clients.

ptg

12.11. SimpleXMLRPCServer—An XML-RPC Server 721

from SimpleXMLRPCServer import SimpleXMLRPCServer

import os
import inspect

server = SimpleXMLRPCServer((’localhost’, 9000), logRequests=True)

class ServiceRoot:
pass

class DirectoryService:
def list(self, dir_name):

return os.listdir(dir_name)

root = ServiceRoot()

root.dir = DirectoryService()

server.register_instance(root, allow_dotted_names=True)

try:
print ’Use Control-C to exit’

server.serve_forever()

except KeyboardInterrupt:
print ’Exiting’

By registering the instance of ServiceRoot with allow_dotted_names enabled,

the server has permission to walk the tree of objects when a request comes in to find the

named method using getattr().

import xmlrpclib

proxy = xmlrpclib.ServerProxy(’http://localhost:9000’)

print proxy.dir.list(’/tmp’)

The output of dir.list() is the same as with the previous implementations.

$ python SimpleXMLRPCServer_instance_dotted_names_client.py

[’ccc_exclude.1mkahl’, ’ccc_exclude.BKG3gb’, ’ccc_exclude.M5jrgo’,

’ccc_exclude.SPecwL’, ’com.hp.launchport’, ’emacs527’,

’hsperfdata_dhellmann’, ’launch-8hGHUp’, ’launch-RQnlcc’,

’launch-trsdly’, ’launchd-242.T5UzTy’, ’var_backups’]

ptg

722 The Internet

12.11.6 Dispatching Calls

By default, register_instance() finds all callable attributes of the instance with

names not starting with an underscore (“_”) and registers them with their name. To be

more careful about the exposed methods, custom dispatching logic can be used, as in

the following example.

from SimpleXMLRPCServer import SimpleXMLRPCServer

import os
import inspect

server = SimpleXMLRPCServer((’localhost’, 9000), logRequests=True)

def expose(f):

"Decorator to set exposed flag on a function."

f.exposed = True

return f

def is_exposed(f):

"Test whether another function should be publicly exposed."

return getattr(f, ’exposed’, False)

class MyService:
PREFIX = ’prefix’

def _dispatch(self, method, params):

Remove our prefix from the method name

if not method.startswith(self.PREFIX + ’.’):

raise Exception(’method "%s" is not supported’ % method)

method_name = method.partition(’.’)[2]

func = getattr(self, method_name)

if not is_exposed(func):

raise Exception(’method "%s" is not supported’ % method)

return func(*params)

@expose

def public(self):

return ’This is public’

def private(self):

return ’This is private’

server.register_instance(MyService())

ptg

12.11. SimpleXMLRPCServer—An XML-RPC Server 723

try:
print ’Use Control-C to exit’

server.serve_forever()

except KeyboardInterrupt:
print ’Exiting’

The public() method of MyService is marked as exposed to the XML-RPC

service while private() is not. The _dispatch() method is invoked when the client

tries to access a function that is part of MyService. It first enforces the use of a prefix

(“prefix.” in this case, but any string can be used). Then it requires the function to

have an attribute called exposed with a true value. The exposed flag is set on a function

using a decorator for convenience.

Here are a few sample client calls.

import xmlrpclib

proxy = xmlrpclib.ServerProxy(’http://localhost:9000’)

print ’public():’, proxy.prefix.public()

try:
print ’private():’, proxy.prefix.private()

except Exception, err:

print ’\nERROR:’, err

try:
print ’public() without prefix:’, proxy.public()

except Exception, err:

print ’\nERROR:’, err

And here is the resulting output, with the expected error messages trapped and

reported.

$ python SimpleXMLRPCServer_instance_with_prefix_client.py

public(): This is public

private():

ERROR: <Fault 1: ’<type \’exceptions.Exception\’>:method

"prefix.private" is not supported’>

public() without prefix:

ERROR: <Fault 1: ’<type \’exceptions.Exception\’>:method

"public" is not supported’>

There are several other ways to override the dispatching mechanism, including

subclassing directly from SimpleXMLRPCServer. Refer to the docstrings in the mod-

ule for more details.

ptg

724 The Internet

12.11.7 Introspection API

As with many network services, it is possible to query an XML-RPC server to ask it

what methods it supports and learn how to use them. SimpleXMLRPCServer includes

a set of public methods for performing this introspection. By default, they are turned

off, but can be enabled with register_introspection_functions(). Support for

system.listMethods() and system.methodHelp() can be added to a service by

defining _listMethods() and _methodHelp() on the service class.

from SimpleXMLRPCServer import (SimpleXMLRPCServer,

list_public_methods,

)

import os
import inspect

server = SimpleXMLRPCServer((’localhost’, 9000), logRequests=True)

server.register_introspection_functions()

class DirectoryService:

def _listMethods(self):

return list_public_methods(self)

def _methodHelp(self, method):

f = getattr(self, method)

return inspect.getdoc(f)

def list(self, dir_name):

"""list(dir_name) => [<filenames>]

Returns a list containing the contents of

the named directory.

"""

return os.listdir(dir_name)

server.register_instance(DirectoryService())

try:
print ’Use Control-C to exit’

server.serve_forever()

except KeyboardInterrupt:
print ’Exiting’

ptg

12.11. SimpleXMLRPCServer—An XML-RPC Server 725

In this case, the convenience function list_public_methods() scans an in-

stance to return the names of callable attributes that do not start with underscore (_).

Redefine _listMethods() to apply whatever rules are desired. Similarly, for this

basic example, _methodHelp() returns the docstring of the function, but could be

written to build a help string from another source.

This client queries the server and reports on all the publicly callable methods.

import xmlrpclib

proxy = xmlrpclib.ServerProxy(’http://localhost:9000’)

for method_name in proxy.system.listMethods():

print ’=’ * 60

print method_name

print ’-’ * 60

print proxy.system.methodHelp(method_name)

print

The system methods are included in the results.

$ python SimpleXMLRPCServer_introspection_client.py

==

list

--

list(dir_name) => [<filenames>]

Returns a list containing the contents of the named directory.

==

system.listMethods

--

system.listMethods() => [’add’, ’subtract’, ’multiple’]

Returns a list of the methods supported by the server.

==

system.methodHelp

--

system.methodHelp(’add’) => "Adds two integers together"

Returns a string containing documentation for the specified method.

ptg

726 The Internet

==

system.methodSignature

--

system.methodSignature(’add’) => [double, int, int]

Returns a list describing the signature of the method. In the

above example, the add method takes two integers as arguments

and returns a double result.

This server does NOT support system.methodSignature.

See Also:
SimpleXMLRPCServer

(http://docs.python.org/lib/module-SimpleXMLRPCServer.html) The stan-

dard library documentation for this module.

XML-RPC How To
(http://www.tldp.org/HOWTO/XML-RPC-HOWTO/index.html) Describes

how to use XML-RPC to implement clients and servers in a variety of languages.

XML-RPC Extensions (http://ontosys.com/xml-rpc/extensions.php) Specifies an

extension to the XML-RPC protocol.

xmlrpclib (page 702) XML-RPC client library.

http://docs.python.org/lib/module-SimpleXMLRPCServer.html
http://www.tldp.org/HOWTO/XML-RPC-HOWTO/index.html
http://ontosys.com/xml-rpc/extensions.php

ptg

Chapter 13

EMAIL

Email is one of the oldest forms of digital communication, but it is still one of the most

popular. Python’s standard library includes modules for sending, receiving, and storing

email messages.

smtplib communicates with a mail server to deliver a message. smtpd can be

used to create a custom mail server, and it provides classes useful for debugging email

transmission in other applications.

imaplib uses the IMAP protocol to manipulate messages stored on a server. It

provides a low-level API for IMAP clients and can query, retrieve, move, and delete

messages.

Local message archives can be created and modified with mailbox using several

standard formats, including the popular mbox and Maildir formats used by many email

client programs.

13.1 smtplib—Simple Mail Transfer Protocol Client

Purpose Interact with SMTP servers, including sending email.

Python Version 1.5.2 and later

smtplib includes the class SMTP, which can be used to communicate with mail servers

to send mail.

Note: The email addresses, hostnames, and IP addresses in the following examples

have been obscured. Otherwise, the transcripts illustrate the sequence of commands

and responses accurately.

727

ptg

728 Email

13.1.1 Sending an Email Message

The most common use of SMTP is to connect to a mail server and send a message. The

mail server host name and port can be passed to the constructor, or connect() can

be invoked explicitly. Once connected, call sendmail() with the envelope parameters

and the body of the message. The message text should be fully formed and comply with

RFC 2882, since smtplib does not modify the contents or headers at all. That means

the caller needs to add the From and To headers.

import smtplib
import email.utils
from email.mime.text import MIMEText

Create the message

msg = MIMEText(’This is the body of the message.’)

msg[’To’] = email.utils.formataddr((’Recipient’,

’recipient@example.com’))

msg[’From’] = email.utils.formataddr((’Author’,

’author@example.com’))

msg[’Subject’] = ’Simple test message’

server = smtplib.SMTP(’mail’)

server.set_debuglevel(True) # show communication with the server

try:
server.sendmail(’author@example.com’,

[’recipient@example.com’],

msg.as_string())

finally:
server.quit()

In this example, debugging is also turned on to show the communication between

the client and the server. Otherwise, the example would produce no output at all.

$ python smtplib_sendmail.py

send: ’ehlo farnsworth.local\r\n’

reply: ’250-mail.example.com Hello [192.168.1.27], pleased to meet y

ou\r\n’

reply: ’250-ENHANCEDSTATUSCODES\r\n’

reply: ’250-PIPELINING\r\n’

reply: ’250-8BITMIME\r\n’

reply: ’250-SIZE\r\n’

ptg

13.1. smtplib—Simple Mail Transfer Protocol Client 729

reply: ’250-DSN\r\n’

reply: ’250-ETRN\r\n’

reply: ’250-AUTH GSSAPI DIGEST-MD5 CRAM-MD5\r\n’

reply: ’250-DELIVERBY\r\n’

reply: ’250 HELP\r\n’

reply: retcode (250); Msg: mail.example.com Hello [192.168.1.27], pl

eased to meet you

ENHANCEDSTATUSCODES

PIPELINING

8BITMIME

SIZE

DSN

ETRN

AUTH GSSAPI DIGEST-MD5 CRAM-MD5

DELIVERBY

HELP

send: ’mail FROM:<author@example.com> size=229\r\n’

reply: ’250 2.1.0 <author@example.com>... Sender ok\r\n’

reply: retcode (250); Msg: 2.1.0 <author@example.com>... Sender ok

send: ’rcpt TO:<recipient@example.com>\r\n’

reply: ’250 2.1.5 <recipient@example.com>... Recipient ok\r\n’

reply: retcode (250); Msg: 2.1.5 <recipient@example.com>... Recipien

t ok

send: ’data\r\n’

reply: ’354 Enter mail, end with "." on a line by itself\r\n’

reply: retcode (354); Msg: Enter mail, end with "." on a line by its

elf

data: (354, ’Enter mail, end with "." on a line by itself’)

send: ’Content-Type: text/plain; charset="us-ascii"\r\nMIME-Version:

1.0\r\nContent-Transfer-Encoding: 7bit\r\nTo: Recipient <recipient@

example.com>\r\nFrom: Author <author@example.com>\r\nSubject: Simple

test message\r\n\r\nThis is the body of the message.\r\n.\r\n’

reply: ’250 2.0.0 oAT1TiRA010200 Message accepted for delivery\r\n’

reply: retcode (250); Msg: 2.0.0 oAT1TiRA010200 Message accepted for

delivery

data: (250, ’2.0.0 oAT1TiRA010200 Message accepted for delivery’)

send: ’quit\r\n’

reply: ’221 2.0.0 mail.example.com closing connection\r\n’

reply: retcode (221); Msg: 2.0.0 mail.example.com closing connection

The second argument to sendmail(), the recipients, is passed as a list. Any num-

ber of addresses can be included in the list to have the message delivered to each of

them in turn. Since the envelope information is separate from the message headers,

ptg

730 Email

it is possible to blind carbon copy (BCC) someone by including them in the method

argument, but not in the message header.

13.1.2 Authentication and Encryption

The SMTP class also handles authentication and TLS (transport layer security) encryp-

tion, when the server supports them. To determine if the server supports TLS, call

ehlo() directly to identify the client to the server and ask it what extensions are avail-

able. Then, call has_extn() to check the results. After TLS is started, ehlo() must

be called again before authenticating.

import smtplib
import email.utils
from email.mime.text import MIMEText

import getpass

Prompt the user for connection info

to_email = raw_input(’Recipient: ’)

servername = raw_input(’Mail server name: ’)

username = raw_input(’Mail username: ’)

password = getpass.getpass("%s’s password: " % username)

Create the message

msg = MIMEText(’Test message from PyMOTW.’)

msg.set_unixfrom(’author’)

msg[’To’] = email.utils.formataddr((’Recipient’, to_email))

msg[’From’] = email.utils.formataddr((’Author’,

’author@example.com’))

msg[’Subject’] = ’Test from PyMOTW’

server = smtplib.SMTP(servername)

try:
server.set_debuglevel(True)

identify ourselves, prompting server for supported features

server.ehlo()

If we can encrypt this session, do it

if server.has_extn(’STARTTLS’):

server.starttls()

server.ehlo() # reidentify ourselves over TLS connection

server.login(username, password)

ptg

13.1. smtplib—Simple Mail Transfer Protocol Client 731

server.sendmail(’author@example.com’,

[to_email],

msg.as_string())

finally:
server.quit()

The STARTTLS extension does not appear in the reply to EHLO after TLS is

enabled.

$ python smtplib_authenticated.py

Recipient: recipient@example.com

Mail server name: smtpauth.isp.net

Mail username: user@isp.net

user@isp.net’s password:

send: ’ehlo localhost.local\r\n’

reply: ’250-elasmtp-isp.net Hello localhost.local [<your IP here>]\r

\n’

reply: ’250-SIZE 14680064\r\n’

reply: ’250-PIPELINING\r\n’

reply: ’250-AUTH PLAIN LOGIN CRAM-MD5\r\n’

reply: ’250-STARTTLS\r\n’

reply: ’250 HELP\r\n’

reply: retcode (250); Msg: elasmtp-isp.net Hello localhost.local [<y

our IP here>]

SIZE 14680064

PIPELINING

AUTH PLAIN LOGIN CRAM-MD5

STARTTLS

HELP

send: ’STARTTLS\r\n’

reply: ’220 TLS go ahead\r\n’

reply: retcode (220); Msg: TLS go ahead

send: ’ehlo localhost.local\r\n’

reply: ’250-elasmtp-isp.net Hello localhost.local [<your IP here>]\r

\n’

reply: ’250-SIZE 14680064\r\n’

reply: ’250-PIPELINING\r\n’

reply: ’250-AUTH PLAIN LOGIN CRAM-MD5\r\n’

reply: ’250 HELP\r\n’

reply: retcode (250); Msg: elasmtp-isp.net Hello farnsworth.local [<

your

IP here>]

ptg

732 Email

SIZE 14680064

PIPELINING

AUTH PLAIN LOGIN CRAM-MD5

HELP

send: ’AUTH CRAM-MD5\r\n’

reply: ’334 PDExNjkyLjEyMjI2MTI1NzlAZWxhc210cC1tZWFseS5hdGwuc2EuZWFy

dGhsa

W5rLm5ldD4=\r\n’

reply: retcode (334); Msg: PDExNjkyLjEyMjI2MTI1NzlAZWxhc210cC1tZWFse

S5hdG

wuc2EuZWFydGhsaW5rLm5ldD4=

send: ’ZGhlbGxtYW5uQGVhcnRobGluay5uZXQgN2Q1YjAyYTRmMGQ1YzZjM2NjOTNjZ

Dc1MD

QxN2ViYjg=\r\n’

reply: ’235 Authentication succeeded\r\n’

reply: retcode (235); Msg: Authentication succeeded

send: ’mail FROM:<author@example.com> size=221\r\n’

reply: ’250 OK\r\n’

reply: retcode (250); Msg: OK

send: ’rcpt TO:<recipient@example.com>\r\n’

reply: ’250 Accepted\r\n’

reply: retcode (250); Msg: Accepted

send: ’data\r\n’

reply: ’354 Enter message, ending with "." on a line by itself\r\n’

reply: retcode (354); Msg: Enter message, ending with "." on a line

by itself

data: (354, ’Enter message, ending with "." on a line by itself’)

send: ’Content-Type: text/plain; charset="us-ascii"\r\nMIME-Version:

1.0\r\nContent-Transfer-Encoding: 7bit\r\nTo: Recipient

<recipient@example.com>\r\nFrom: Author <author@example.com>\r\nSubj

ect: Test

from PyMOTW\r\n\r\nTest message from PyMOTW.\r\n.\r\n’

reply: ’250 OK id=1KjxNj-00032a-Ux\r\n’

reply: retcode (250); Msg: OK id=1KjxNj-00032a-Ux

data: (250, ’OK id=1KjxNj-00032a-Ux’)

send: ’quit\r\n’

reply: ’221 elasmtp-isp.net closing connection\r\n’

reply: retcode (221); Msg: elasmtp-isp.net closing connection

13.1.3 Verifying an Email Address

The SMTP protocol includes a command to ask a server whether an address is valid.

Usually, VRFY is disabled to prevent spammers from finding legitimate email addresses.

ptg

13.1. smtplib—Simple Mail Transfer Protocol Client 733

But, if it is enabled, a client can ask the server about an address and receive a status code

indicating validity, along with the user’s full name, if it is available.

import smtplib

server = smtplib.SMTP(’mail’)

server.set_debuglevel(True) # show communication with the server

try:
dhellmann_result = server.verify(’dhellmann’)

notthere_result = server.verify(’notthere’)

finally:
server.quit()

print ’dhellmann:’, dhellmann_result

print ’notthere :’, notthere_result

As the last two lines of output here show, the address dhellmann is valid but

notthere is not.

$ python smtplib_verify.py

send: ’vrfy <dhellmann>\r\n’

reply: ’250 2.1.5 Doug Hellmann <dhellmann@mail.example.com>\r\n’

reply: retcode (250); Msg: 2.1.5 Doug Hellmann <dhellmann@mail.examp

le.com>

send: ’vrfy <notthere>\r\n’

reply: ’550 5.1.1 <notthere>... User unknown\r\n’

reply: retcode (550); Msg: 5.1.1 <notthere>... User unknown

send: ’quit\r\n’

reply: ’221 2.0.0 mail.example.com closing connection\r\n’

reply: retcode (221); Msg: 2.0.0 mail.example.com closing connection

dhellmann: (250, ’2.1.5 Doug Hellmann <dhellmann@mail.example.com>’)

notthere : (550, ’5.1.1 <notthere>... User unknown’)

See Also:
smtplib (http://docs.python.org/lib/module-smtplib.html) The Standard library

documentation for this module.

RFC 821 (http://tools.ietf.org/html/rfc821.html) The Simple Mail Transfer Protocol

(SMTP) specification.

RFC 1869 (http://tools.ietf.org/html/rfc1869.html) SMTP Service Extensions to the

base protocol.

http://docs.python.org/lib/module-smtplib.html
http://tools.ietf.org/html/rfc821.html
http://tools.ietf.org/html/rfc1869.html

ptg

734 Email

RFC 822 (http://tools.ietf.org/html/rfc822.html) “Standard for the Format of ARPA

Internet Text Messages,” the original email message format specification.

RFC 2822 (http://tools.ietf.org/html/rfc2822.html) “Internet Message Format” up-

dates to the email message format.

email The Standard library module for parsing email messages.

smtpd (page 734) Implements a simple SMTP server.

13.2 smtpd—Sample Mail Servers

Purpose Includes classes for implementing SMTP servers.

Python Version 2.1 and later

The smtpd module includes classes for building simple mail transport protocol servers.

It is the server side of the protocol used by smtplib.

13.2.1 Mail Server Base Class

The base class for all the provided example servers is SMTPServer. It handles commu-

nicating with the client and receiving incoming data, and provides a convenient hook

to override so the message can be processed once it is fully available.

The constructor arguments are the local address to listen for connections and

the remote address where proxied messages should be delivered. The method pro-

cess_message() is provided as a hook to be overridden by a derived class. It is

called when the message is completely received, and it is given these arguments.

peer

The client’s address, a tuple containing IP and incoming port.

mailfrom

The “from” information out of the message envelope, given to the server

by the client when the message is delivered. This information does not

necessarily match the From header in all cases.

rcpttos

The list of recipients from the message envelope. Again, this list does not

always match the To header, especially if a recipient is being blind carbon

copied.

data

The full RFC 2822 message body.

http://tools.ietf.org/html/rfc822.html
http://tools.ietf.org/html/rfc2822.html

ptg

13.2. smtpd—Sample Mail Servers 735

The default implementation of process_message() raises NotImplemented-

Error. The next example defines a subclass that overrides the method to print infor-

mation about the messages it receives.

import smtpd
import asyncore

class CustomSMTPServer(smtpd.SMTPServer):

def process_message(self, peer, mailfrom, rcpttos, data):

print ’Receiving message from:’, peer

print ’Message addressed from:’, mailfrom

print ’Message addressed to :’, rcpttos

print ’Message length :’, len(data)

return

server = CustomSMTPServer((’127.0.0.1’, 1025), None)

asyncore.loop()

SMTPServer uses asyncore; so to run the server, call asyncore.loop().

A client is needed to demonstrate the server. One of the examples from the section

on smtplib can be adapted to create a client to send data to the test server running

locally on port 1025.

import smtplib
import email.utils
from email.mime.text import MIMEText

Create the message

msg = MIMEText(’This is the body of the message.’)

msg[’To’] = email.utils.formataddr((’Recipient’,

’recipient@example.com’))

msg[’From’] = email.utils.formataddr((’Author’,

’author@example.com’))

msg[’Subject’] = ’Simple test message’

server = smtplib.SMTP(’127.0.0.1’, 1025)

server.set_debuglevel(True) # show communication with the server

try:
server.sendmail(’author@example.com’,

[’recipient@example.com’],

msg.as_string())

ptg

736 Email

finally:
server.quit()

To test the programs, run smtpd_custom.py in one terminal and smtpd_

senddata.py in another.

$ python smtpd_custom.py

Receiving message from: (’127.0.0.1’, 58541)

Message addressed from: author@example.com

Message addressed to : [’recipient@example.com’]

Message length : 229

The debug output from smtpd_senddata.py shows all the communication with

the server.

$ python smtpd_senddata.py

send: ’ehlo farnsworth.local\r\n’

reply: ’502 Error: command "EHLO" not implemented\r\n’

reply: retcode (502); Msg: Error: command "EHLO" not implemented

send: ’helo farnsworth.local\r\n’

reply: ’250 farnsworth.local\r\n’

reply: retcode (250); Msg: farnsworth.local

send: ’mail FROM:<author@example.com>\r\n’

reply: ’250 Ok\r\n’

reply: retcode (250); Msg: Ok

send: ’rcpt TO:<recipient@example.com>\r\n’

reply: ’250 Ok\r\n’

reply: retcode (250); Msg: Ok

send: ’data\r\n’

reply: ’354 End data with <CR><LF>.<CR><LF>\r\n’

reply: retcode (354); Msg: End data with <CR><LF>.<CR><LF>

data: (354, ’End data with <CR><LF>.<CR><LF>’)

send: ’Content-Type: text/plain; charset="us-ascii"\r\nMIME-Version:

1.0\r\n

Content-Transfer-Encoding: 7bit\r\nTo: Recipient <recipient@example.

com>\r\n

From: Author <author@example.com>\r\nSubject: Simple test message\r\

n\r\nThis

is the body of the message.\r\n.\r\n’

reply: ’250 Ok\r\n’

ptg

13.2. smtpd—Sample Mail Servers 737

reply: retcode (250); Msg: Ok

data: (250, ’Ok’)

send: ’quit\r\n’

reply: ’221 Bye\r\n’

reply: retcode (221); Msg: Bye

To stop the server, press Ctrl-C.

13.2.2 Debugging Server

The previous example shows the arguments to process_message(), but smtpd also

includes a server specifically designed for more complete debugging, called Debug-

gingServer. It prints the entire incoming message to the console and then stops pro-

cessing (it does not proxy the message to a real mail server).

import smtpd
import asyncore

server = smtpd.DebuggingServer((’127.0.0.1’, 1025), None)

asyncore.loop()

Using the smtpd_senddata.py client program from earlier, here is the output of

the DebuggingServer.

$ python smtpd_debug.py

---------- MESSAGE FOLLOWS ----------

Content-Type: text/plain; charset="us-ascii"

MIME-Version: 1.0

Content-Transfer-Encoding: 7bit

To: Recipient <recipient@example.com>

From: Author <author@example.com>

Subject: Simple test message

X-Peer: 127.0.0.1

This is the body of the message.

------------ END MESSAGE ------------

13.2.3 Proxy Server

The PureProxy class implements a straightforward proxy server. Incoming messages

are forwarded upstream to the server given as argument to the constructor.

ptg

738 Email

Warning: The standard library documentation for smtpd says, “running this has a

good chance to make you into an open relay, so please be careful.”

The steps for setting up the proxy server are similar to the debug server.

import smtpd
import asyncore

server = smtpd.PureProxy((’127.0.0.1’, 1025), (’mail’, 25))

asyncore.loop()

It prints no output, though, so to verify that it is working, look at the mail server

logs.

Oct 19 19:16:34 homer sendmail[6785]: m9JNGXJb006785:

from=<author@example.com>, size=248, class=0, nrcpts=1,

msgid=<200810192316.m9JNGXJb006785@homer.example.com>,

proto=ESMTP, daemon=MTA, relay=[192.168.1.17]

See Also:
smtpd (http://docs.python.org/lib/module-smtpd.html) The Standard library docu-

mentation for this module.

smtplib (page 727) Provides a client interface.

email Parses email messages.

asyncore (page 619) Base module for writing asynchronous servers.

RFC 2822 (http://tools.ietf.org/html/rfc2822.html) Defines the email message

format.

13.3 imaplib—IMAP4 Client Library

Purpose Client library for IMAP4 communication.

Python Version 1.5.2 and later

imaplib implements a client for communicating with Internet Message Access Proto-

col (IMAP) version 4 servers. The IMAP protocol defines a set of commands sent to

the server and the responses delivered back to the client. Most of the commands are

available as methods of the IMAP4 object used to communicate with the server.

http://docs.python.org/lib/module-smtpd.html
http://tools.ietf.org/html/rfc2822.html

ptg

13.3. imaplib—IMAP4 Client Library 739

These examples discuss part of the IMAP protocol, but they are by no means

complete. Refer to RFC 3501 for complete details.

13.3.1 Variations

Three client classes are available for communicating with servers using various mech-

anisms. The first, IMAP4, uses clear text sockets; IMAP4_SSL uses encrypted commu-

nication over SSL sockets; and IMAP4_stream uses the standard input and standard

output of an external command. All the examples here will use IMAP4_SSL, but the

APIs for the other classes are similar.

13.3.2 Connecting to a Server

There are two steps for establishing a connection with an IMAP server. First, set up the

socket connection itself. Second, authenticate as a user with an account on the server.

The following example code will read server and user information from a configuration

file.

import imaplib
import ConfigParser
import os

def open_connection(verbose=False):

Read the config file

config = ConfigParser.ConfigParser()

config.read([os.path.expanduser(’~/.pymotw’)])

Connect to the server

hostname = config.get(’server’, ’hostname’)

if verbose: print ’Connecting to’, hostname

connection = imaplib.IMAP4_SSL(hostname)

Login to our account

username = config.get(’account’, ’username’)

password = config.get(’account’, ’password’)

if verbose: print ’Logging in as’, username

connection.login(username, password)

return connection

if __name__ == ’__main__’:

c = open_connection(verbose=True)

ptg

740 Email

try:
print c

finally:
c.logout()

When run, open_connection() reads the configuration information from a

file in the user’s home directory, and then opens the IMAP4_SSL connection and

authenticates.

$ python imaplib_connect.py

Connecting to mail.example.com

Logging in as example

<imaplib.IMAP4_SSL instance at 0x928cb0>

The other examples in this section reuse this module, to avoid duplicating the code.

Authentication Failure

If the connection is established but authentication fails, an exception is raised.

import imaplib
import ConfigParser
import os

Read the config file

config = ConfigParser.ConfigParser()

config.read([os.path.expanduser(’~/.pymotw’)])

Connect to the server

hostname = config.get(’server’, ’hostname’)

print ’Connecting to’, hostname

connection = imaplib.IMAP4_SSL(hostname)

Login to our account

username = config.get(’account’, ’username’)

password = ’this_is_the_wrong_password’

print ’Logging in as’, username

try:
connection.login(username, password)

except Exception as err:

print ’ERROR:’, err

ptg

13.3. imaplib—IMAP4 Client Library 741

This example uses the wrong password on purpose to trigger the exception.

$ python imaplib_connect_fail.py

Connecting to mail.example.com

Logging in as example

ERROR: Authentication failed.

13.3.3 Example Configuration

The example account has three mailboxes: INBOX, Archive, and 2008 (a subfolder of

Archive). This is the mailbox hierarchy:

• INBOX

• Archive

– 2008

There is one unread message in the INBOX folder and one read message in

Archive/2008.

13.3.4 Listing Mailboxes

To retrieve the mailboxes available for an account, use the list() method.

import imaplib
from pprint import pprint

from imaplib_connect import open_connection

c = open_connection()

try:
typ, data = c.list()

print ’Response code:’, typ

print ’Response:’

pprint(data)

finally:
c.logout()

The return value is a tuple containing a response code and the data returned by

the server. The response code is OK, unless an error has occurred. The data for list()

is a sequence of strings containing flags, the hierarchy delimiter, and the mailbox name
for each mailbox.

ptg

742 Email

$ python imaplib_list.py

Response code: OK

Response:

[’(\\HasNoChildren) "." INBOX’,

’(\\HasChildren) "." "Archive"’,

’(\\HasNoChildren) "." "Archive.2008"’]

Each response string can be split into three parts using re or csv (see IMAP
Backup Script in the references at the end of this section for an example using csv).

import imaplib
import re

from imaplib_connect import open_connection

list_response_pattern = re.compile(

r’\((?P<flags>.*?)\) "(?P<delimiter>.*)" (?P<name>.*)’

)

def parse_list_response(line):

match = list_response_pattern.match(line)

flags, delimiter, mailbox_name = match.groups()

mailbox_name = mailbox_name.strip(’"’)

return (flags, delimiter, mailbox_name)

if __name__ == ’__main__’:

c = open_connection()

try:
typ, data = c.list()

finally:
c.logout()

print ’Response code:’, typ

for line in data:

print ’Server response:’, line

flags, delimiter, mailbox_name = parse_list_response(line)

print ’Parsed response:’, (flags, delimiter, mailbox_name)

The server quotes the mailbox name if it includes spaces, but those quotes need to

be stripped out to use the mailbox name in other calls back to the server later.

ptg

13.3. imaplib—IMAP4 Client Library 743

$ python imaplib_list_parse.py

Response code: OK

Server response: (\HasNoChildren) "." INBOX

Parsed response: (’\\HasNoChildren’, ’.’, ’INBOX’)

Server response: (\HasChildren) "." "Archive"

Parsed response: (’\\HasChildren’, ’.’, ’Archive’)

Server response: (\HasNoChildren) "." "Archive.2008"

Parsed response: (’\\HasNoChildren’, ’.’, ’Archive.2008’)

list() takes arguments to specify mailboxes in part of the hierarchy. For exam-

ple, to list subfolders of Archive, pass "Archive" as the directory argument.

import imaplib

from imaplib_connect import open_connection

if __name__ == ’__main__’:

c = open_connection()

try:
typ, data = c.list(directory=’Archive’)

finally:
c.logout()

print ’Response code:’, typ

for line in data:

print ’Server response:’, line

Only the single subfolder is returned.

$ python imaplib_list_subfolders.py

Response code: OK

Server response: (\HasNoChildren) "." "Archive.2008"

Alternately, to list folders matching a pattern, pass the pattern argument.

import imaplib

from imaplib_connect import open_connection

ptg

744 Email

if __name__ == ’__main__’:

c = open_connection()

try:
typ, data = c.list(pattern=’*Archive*’)

finally:
c.logout()

print ’Response code:’, typ

for line in data:

print ’Server response:’, line

In this case, both Archive and Archive.2008 are included in the response.

$ python imaplib_list_pattern.py

Response code: OK

Server response: (\HasChildren) "." "Archive"

Server response: (\HasNoChildren) "." "Archive.2008"

13.3.5 Mailbox Status

Use status() to ask for aggregated information about the contents. Table 13.1 lists the

status conditions defined by the standard.

Table 13.1. IMAP 4 Mailbox Status Conditions

Condition Meaning
MESSAGES The number of messages in the mailbox

RECENT The number of messages with the \Recent flag set

UIDNEXT The next unique identifier value of the mailbox

UIDVALIDITY The unique identifier validity value of the mailbox

UNSEEN The number of messages that do not have the \Seen flag set

The status conditions must be formatted as a space-separated string enclosed in

parentheses, the encoding for a “list” in the IMAP4 specification.

import imaplib
import re

from imaplib_connect import open_connection

from imaplib_list_parse import parse_list_response

ptg

13.3. imaplib—IMAP4 Client Library 745

if __name__ == ’__main__’:

c = open_connection()

try:
typ, data = c.list()

for line in data:

flags, delimiter, mailbox = parse_list_response(line)

print c.status(

mailbox,

’(MESSAGES RECENT UIDNEXT UIDVALIDITY UNSEEN)’)

finally:
c.logout()

The return value is the usual tuple containing a response code and a list of infor-

mation from the server. In this case, the list contains a single string formatted with the

name of the mailbox in quotes, and then the status conditions and values in parentheses.

$ python imaplib_status.py

(’OK’, [’"INBOX" (MESSAGES 1 RECENT 0 UIDNEXT 3 UIDVALIDITY

1222003700 UNSEEN 1)’])

(’OK’, [’"Archive" (MESSAGES 0 RECENT 0 UIDNEXT 1 UIDVALIDITY

1222003809 UNSEEN 0)’])

(’OK’, [’"Archive.2008" (MESSAGES 1 RECENT 0 UIDNEXT 2 UIDVALIDITY

1222003831 UNSEEN 0)’])

13.3.6 Selecting a Mailbox

The basic mode of operation, once the client is authenticated, is to select a mailbox

and then interrogate the server regarding the messages in the mailbox. The connection

is stateful, so after a mailbox is selected, all commands operate on messages in that

mailbox until a new mailbox is selected.

import imaplib
import imaplib_connect

c = imaplib_connect.open_connection()

try:
typ, data = c.select(’INBOX’)

print typ, data

num_msgs = int(data[0])

print ’There are %d messages in INBOX’ % num_msgs

ptg

746 Email

finally:
c.close()

c.logout()

The response data contains the total number of messages in the mailbox.

$ python imaplib_select.py

OK [’1’]

There are 1 messages in INBOX

If an invalid mailbox is specified, the response code is NO.

import imaplib
import imaplib_connect

c = imaplib_connect.open_connection()

try:
typ, data = c.select(’Does Not Exist’)

print typ, data

finally:
c.logout()

The data contains an error message describing the problem.

$ python imaplib_select_invalid.py

NO ["Mailbox doesn’t exist: Does Not Exist"]

13.3.7 Searching for Messages

After selecting the mailbox, use search() to retrieve the IDs of messages in the

mailbox.

import imaplib
import imaplib_connect
from imaplib_list_parse import parse_list_response

c = imaplib_connect.open_connection()

try:
typ, mailbox_data = c.list()

ptg

13.3. imaplib—IMAP4 Client Library 747

for line in mailbox_data:

flags, delimiter, mailbox_name = parse_list_response(line)

c.select(mailbox_name, readonly=True)

typ, msg_ids = c.search(None, ’ALL’)

print mailbox_name, typ, msg_ids

finally:
try:

c.close()

except:
pass

c.logout()

Message ids are assigned by the server and are implementation dependent. The

IMAP4 protocol makes a distinction between sequential ids for messages at a given

point in time during a transaction and UID identifiers for messages, but not all servers

implement both.

$ python imaplib_search_all.py

INBOX OK [’1’]

Archive OK [’’]

Archive.2008 OK [’1’]

In this case, INBOX and Archive.2008 each have a different message with id 1.

The other mailboxes are empty.

13.3.8 Search Criteria

A variety of other search criteria can be used, including looking at dates for the message,

flags, and other headers. Refer to section 6.4.4 of RFC 3501 for complete details.

To look for messages with ’test message 2’ in the subject, the search criteria

should be constructed as follows.

(SUBJECT "test message 2")

This example finds all messages with the title “test message 2” in all mailboxes.

import imaplib
import imaplib_connect
from imaplib_list_parse import parse_list_response

c = imaplib_connect.open_connection()

ptg

748 Email

try:
typ, mailbox_data = c.list()

for line in mailbox_data:

flags, delimiter, mailbox_name = parse_list_response(line)

c.select(mailbox_name, readonly=True)

typ, msg_ids = c.search(None, ’(SUBJECT "test message 2")’)

print mailbox_name, typ, msg_ids

finally:
try:

c.close()

except:
pass

c.logout()

There is only one such message in the account, and it is in the INBOX.

$ python imaplib_search_subject.py

INBOX OK [’1’]

Archive OK [’’]

Archive.2008 OK [’’]

Search criteria can also be combined.

import imaplib
import imaplib_connect
from imaplib_list_parse import parse_list_response

c = imaplib_connect.open_connection()

try:
typ, mailbox_data = c.list()

for line in mailbox_data:

flags, delimiter, mailbox_name = parse_list_response(line)

c.select(mailbox_name, readonly=True)

typ, msg_ids = c.search(

None,

’(FROM "Doug" SUBJECT "test message 2")’)

print mailbox_name, typ, msg_ids

finally:
try:

c.close()

except:
pass

c.logout()

ptg

13.3. imaplib—IMAP4 Client Library 749

The criteria are combined with a logical and operation.

$ python imaplib_search_from.py

INBOX OK [’1’]

Archive OK [’’]

Archive.2008 OK [’’]

13.3.9 Fetching Messages

The identifiers returned by search() are used to retrieve the contents, or partial con-

tents, of messages for further processing using the fetch() method. It takes two argu-

ments: the message to fetch and the portion(s) of the message to retrieve.

The message_ids argument is a comma-separated list of ids (e.g., "1", "1,2") or

id ranges (e.g., 1:2). The message_parts argument is an IMAP list of message seg-

ment names. As with search criteria for search(), the IMAP protocol specifies named

message segments so clients can efficiently retrieve only the parts of the message they

actually need. For example, to retrieve the headers of the messages in a mailbox, use

fetch() with the argument BODY.PEEK[HEADER].

Note: Another way to fetch the headers is BODY[HEADERS], but that form has a

side effect of implicitly marking the message as read, which is undesirable in many

cases.

import imaplib
import pprint
import imaplib_connect

imaplib.Debug = 4

c = imaplib_connect.open_connection()

try:
c.select(’INBOX’, readonly=True)

typ, msg_data = c.fetch(’1’, ’(BODY.PEEK[HEADER] FLAGS)’)

pprint.pprint(msg_data)

finally:
try:

c.close()

except:
pass

c.logout()

ptg

750 Email

The return value of fetch() has been partially parsed so it is somewhat harder to

work with than the return value of list(). Turning on debugging shows the complete

interaction between the client and the server to understand why this is so.

$ python imaplib_fetch_raw.py

13:12.54 imaplib version 2.58

13:12.54 new IMAP4 connection, tag=CFKH

13:12.54 < * OK dovecot ready.

13:12.54 > CFKH0 CAPABILITY

13:12.54 < * CAPABILITY IMAP4rev1 SORT THREAD=REFERENCES MULTIAPPEND

UNSELECT IDLE CHILDREN LISTEXT LIST-SUBSCRIBED NAMESPACE AUTH=PLAIN

13:12.54 < CFKH0 OK Capability completed.

13:12.54 CAPABILITIES: (’IMAP4REV1’, ’SORT’, ’THREAD=REFERENCES’, ’M

ULTIAPPEND’, ’UNSELECT’, ’IDLE’, ’CHILDREN’, ’LISTEXT’, ’LIST-SUBSCR

IBED’, ’NAMESPACE’, ’AUTH=PLAIN’)

13:12.54 > CFKH1 LOGIN example "password"

13:13.18 < CFKH1 OK Logged in.

13:13.18 > CFKH2 EXAMINE INBOX

13:13.20 < * FLAGS (\Answered \Flagged \Deleted \Seen \Draft $NotJun

k $Junk)

13:13.20 < * OK [PERMANENTFLAGS ()] Read-only mailbox.

13:13.20 < * 2 EXISTS

13:13.20 < * 1 RECENT

13:13.20 < * OK [UNSEEN 1] First unseen.

13:13.20 < * OK [UIDVALIDITY 1222003700] UIDs valid

13:13.20 < * OK [UIDNEXT 4] Predicted next UID

13:13.20 < CFKH2 OK [READ-ONLY] Select completed.

13:13.20 > CFKH3 FETCH 1 (BODY.PEEK[HEADER] FLAGS)

13:13.20 < * 1 FETCH (FLAGS ($NotJunk) BODY[HEADER] {595}

13:13.20 read literal size 595

13:13.20 <)

13:13.20 < CFKH3 OK Fetch completed.

13:13.20 > CFKH4 CLOSE

13:13.21 < CFKH4 OK Close completed.

13:13.21 > CFKH5 LOGOUT

13:13.21 < * BYE Logging out

13:13.21 BYE response: Logging out

13:13.21 < CFKH5 OK Logout completed.

’1 (FLAGS ($NotJunk) BODY[HEADER] {595}’,

’Return-Path: <dhellmann@example.com>\r\nReceived: from example.com

(localhost [127.0.0.1])\r\n\tby example.com (8.13.4/8.13.4) with ESM

TP id m8LDTGW4018260\r\n\tfor <example@example.com>; Sun, 21 Sep 200

ptg

13.3. imaplib—IMAP4 Client Library 751

8 09:29:16 -0400\r\nReceived: (from dhellmann@localhost)\r\n\tby exa

mple.com (8.13.4/8.13.4/Submit) id m8LDTGZ5018259\r\n\tfor example@e

xample.com; Sun, 21 Sep 2008 09:29:16 -0400\r\nDate: Sun, 21 Sep 200

8 09:29:16 -0400\r\nFrom: Doug Hellmann <dhellmann@example.com>\r\nM

essage-Id: <200809211329.m8LDTGZ5018259@example.com>\r\nTo: example@

example.com\r\nSubject: test message 2\r\n\r\n’),

)’]

The response from the FETCH command starts with the flags, and then it indicates

that there are 595 bytes of header data. The client constructs a tuple with the response

for the message, and then closes the sequence with a single string containing the right

parenthesis (“)”) the server sends at the end of the fetch response. Because of this

formatting, it may be easier to fetch different pieces of information separately or to

recombine the response and parse it in the client.

import imaplib
import pprint
import imaplib_connect

c = imaplib_connect.open_connection()

try:
c.select(’INBOX’, readonly=True)

print ’HEADER:’

typ, msg_data = c.fetch(’1’, ’(BODY.PEEK[HEADER])’)

for response_part in msg_data:

if isinstance(response_part, tuple):

print response_part[1]

print ’BODY TEXT:’

typ, msg_data = c.fetch(’1’, ’(BODY.PEEK[TEXT])’)

for response_part in msg_data:

if isinstance(response_part, tuple):

print response_part[1]

print ’\nFLAGS:’
typ, msg_data = c.fetch(’1’, ’(FLAGS)’)

for response_part in msg_data:

print response_part

print imaplib.ParseFlags(response_part)

finally:
try:

c.close()

ptg

752 Email

except:
pass

c.logout()

Fetching values separately has the added benefit of making it easy to use Parse-

Flags() to parse the flags from the response.

$ python imaplib_fetch_separately.py

HEADER:

Return-Path: <dhellmann@example.com>

Received: from example.com (localhost [127.0.0.1])

by example.com (8.13.4/8.13.4) with ESMTP id m8LDTGW4018260

for <example@example.com>; Sun, 21 Sep 2008 09:29:16 -0400

Received: (from dhellmann@localhost)

by example.com (8.13.4/8.13.4/Submit) id m8LDTGZ5018259

for example@example.com; Sun, 21 Sep 2008 09:29:16 -0400

Date: Sun, 21 Sep 2008 09:29:16 -0400

From: Doug Hellmann <dhellmann@example.com>

Message-Id: <200809211329.m8LDTGZ5018259@example.com>

To: example@example.com

Subject: test message 2

BODY TEXT:

second message

FLAGS:

1 (FLAGS ($NotJunk))

(’$NotJunk’,)

13.3.10 Whole Messages

As illustrated earlier, the client can ask the server for individual parts of the message

separately. It is also possible to retrieve the entire message as an RFC 2822 formatted

mail message and parse it with classes from the email module.

import imaplib
import email
import imaplib_connect

c = imaplib_connect.open_connection()

ptg

13.3. imaplib—IMAP4 Client Library 753

try:
c.select(’INBOX’, readonly=True)

typ, msg_data = c.fetch(’1’, ’(RFC822)’)

for response_part in msg_data:

if isinstance(response_part, tuple):

msg = email.message_from_string(response_part[1])

for header in [’subject’, ’to’, ’from’]:

print ’%-8s: %s’ % (header.upper(), msg[header])

finally:
try:

c.close()

except:
pass

c.logout()

The parser in the email module makes it very easy to access and manipulate

messages. This example prints just a few of the headers for each message.

$ python imaplib_fetch_rfc822.py

SUBJECT : test message 2

TO : example@example.com

FROM : Doug Hellmann <dhellmann@example.com>

13.3.11 Uploading Messages

To add a new message to a mailbox, construct a Message instance and pass it to the

append() method, along with the timestamp for the message.

import imaplib
import time
import email.message
import imaplib_connect

new_message = email.message.Message()

new_message.set_unixfrom(’pymotw’)

new_message[’Subject’] = ’subject goes here’

new_message[’From’] = ’pymotw@example.com’

new_message[’To’] = ’example@example.com’

new_message.set_payload(’This is the body of the message.\n’)

ptg

754 Email

print new_message

c = imaplib_connect.open_connection()

try:
c.append(’INBOX’, ’’,

imaplib.Time2Internaldate(time.time()),

str(new_message))

Show the headers for all messages in the mailbox

c.select(’INBOX’)

typ, [msg_ids] = c.search(None, ’ALL’)

for num in msg_ids.split():

typ, msg_data = c.fetch(num, ’(BODY.PEEK[HEADER])’)

for response_part in msg_data:

if isinstance(response_part, tuple):

print ’\n%s:’ % num

print response_part[1]

finally:
try:

c.close()

except:
pass

c.logout()

The payload used in this example is a simple plain-text email body. Message also

supports MIME-encoded, multipart messages.

pymotw

Subject: subject goes here

From: pymotw@example.com

To: example@example.com

This is the body of the message.

1:

Return-Path: <dhellmann@example.com>

Received: from example.com (localhost [127.0.0.1])

by example.com (8.13.4/8.13.4) with ESMTP id m8LDTGW4018260

for <example@example.com>; Sun, 21 Sep 2008 09:29:16 -0400

Received: (from dhellmann@localhost)

by example.com (8.13.4/8.13.4/Submit) id m8LDTGZ5018259

for example@example.com; Sun, 21 Sep 2008 09:29:16 -0400

ptg

13.3. imaplib—IMAP4 Client Library 755

Date: Sun, 21 Sep 2008 09:29:16 -0400

From: Doug Hellmann <dhellmann@example.com>

Message-Id: <200809211329.m8LDTGZ5018259@example.com>

To: example@example.com

Subject: test message 2

2:

Return-Path: <doug.hellmann@example.com>

Message-Id: <0D9C3C50-462A-4FD7-9E5A-11EE222D721D@example.com>

From: Doug Hellmann <doug.hellmann@example.com>

To: example@example.com

Content-Type: text/plain; charset=US-ASCII; format=flowed; delsp=yes

Content-Transfer-Encoding: 7bit

Mime-Version: 1.0 (Apple Message framework v929.2)

Subject: lorem ipsum

Date: Sun, 21 Sep 2008 12:53:16 -0400

X-Mailer: Apple Mail (2.929.2)

3:

pymotw

Subject: subject goes here

From: pymotw@example.com

To: example@example.com

13.3.12 Moving and Copying Messages

Once a message is on the server, it can be moved or copied without downloading it using

move() or copy(). These methods operate on message id ranges, just as fetch()

does.

import imaplib
import imaplib_connect

c = imaplib_connect.open_connection()

try:
Find the "SEEN" messages in INBOX

c.select(’INBOX’)

typ, [response] = c.search(None, ’SEEN’)

if typ != ’OK’:

raise RuntimeError(response)

ptg

756 Email

Create a new mailbox, "Archive.Today"

msg_ids = ’,’.join(response.split(’ ’))

typ, create_response = c.create(’Archive.Today’)

print ’CREATED Archive.Today:’, create_response

Copy the messages

print ’COPYING:’, msg_ids

c.copy(msg_ids, ’Archive.Today’)

Look at the results

c.select(’Archive.Today’)

typ, [response] = c.search(None, ’ALL’)

print ’COPIED:’, response

finally:
c.close()

c.logout()

This example script creates a new mailbox under Archive and copies the read

messages from INBOX into it.

$ python imaplib_archive_read.py

CREATED Archive.Today: [’Create completed.’]

COPYING: 1,2

COPIED: 1 2

Running the same script again shows the importance to checking return codes.

Instead of raising an exception, the call to create() to make the new mailbox reports

that the mailbox already exists.

$ python imaplib_archive_read.py

CREATED Archive.Today: [’Mailbox exists.’]

COPYING: 1,2

COPIED: 1 2 3 4

13.3.13 Deleting Messages

Although many modern mail clients use a “Trash folder” model for working with

deleted messages, the messages are not usually moved into an actual folder. Instead,

their flags are updated to add \Deleted. The operation for “emptying” the trash is

ptg

13.3. imaplib—IMAP4 Client Library 757

implemented through the EXPUNGE command. This example script finds the archived

messages with “Lorem ipsum” in the subject, sets the deleted flag, and then shows that

the messages are still present in the folder by querying the server again.

import imaplib
import imaplib_connect
from imaplib_list_parse import parse_list_response

c = imaplib_connect.open_connection()

try:
c.select(’Archive.Today’)

What ids are in the mailbox?

typ, [msg_ids] = c.search(None, ’ALL’)

print ’Starting messages:’, msg_ids

Find the message(s)

typ, [msg_ids] = c.search(None, ’(SUBJECT "Lorem ipsum")’)

msg_ids = ’,’.join(msg_ids.split(’ ’))

print ’Matching messages:’, msg_ids

What are the current flags?

typ, response = c.fetch(msg_ids, ’(FLAGS)’)

print ’Flags before:’, response

Change the Deleted flag

typ, response = c.store(msg_ids, ’+FLAGS’, r’(\Deleted)’)

What are the flags now?

typ, response = c.fetch(msg_ids, ’(FLAGS)’)

print ’Flags after:’, response

Really delete the message.

typ, response = c.expunge()

print ’Expunged:’, response

What ids are left in the mailbox?

typ, [msg_ids] = c.search(None, ’ALL’)

print ’Remaining messages:’, msg_ids

finally:
try:

c.close()

ptg

758 Email

except:
pass

c.logout()

Explicitly calling expunge() removes the messages, but calling close() has

the same effect. The difference is the client is not notified about the deletions when

close() is called.

$ python imaplib_delete_messages.py

Starting messages: 1 2 3 4

Matching messages: 1,3

Flags before: [’1 (FLAGS (\\Seen $NotJunk))’, ’3 (FLAGS (\\Seen

\\Recent $NotJunk))’]

Flags after: [’1 (FLAGS (\\Deleted \\Seen $NotJunk))’,

’3 (FLAGS (\\Deleted \\Seen \\Recent $NotJunk))’]

Expunged: [’1’, ’2’]

Remaining messages: 1 2

See Also:
imaplib (http://docs.python.org/library/imaplib.html) The standard library docu-

mentation for this module.

What is IMAP? (www.imap.org/about/whatisIMAP.html) imap.org description of

the IMAP protocol.

University of Washington IMAP Information Center (http://www.washington.edu/
imap/) Good resource for IMAP information, along with source code.

RFC 3501 (http://tools.ietf.org/html/rfc3501.html) Internet Message Access Proto-

col.

RFC 2822 (http://tools.ietf.org/html/rfc2822.html) Internet Message Format.

IMAP Backup Script (http://snipplr.com/view/7955/imap-backup-script/)
A script to backup email from an IMAP server.

rfc822 The rfc822 module includes an RFC 822 / RFC 2822 parser.

email The email module for parsing email messages.

mailbox (page 758) Local mailbox parser.

ConfigParser (page 861) Read and write configuration files.

IMAPClient (http://imapclient.freshfoo.com/) A higher-level client for talking to

IMAP servers, written by Menno Smits.

13.4 mailbox—Manipulate Email Archives

Purpose Work with email messages in various local file formats.

Python Version 1.4 and later

http://docs.python.org/library/imaplib.html
www.imap.org/about/whatisIMAP.html
http://www.washington.edu/imap/
http://www.washington.edu/imap/
http://tools.ietf.org/html/rfc3501.html
http://tools.ietf.org/html/rfc2822.html
http://snipplr.com/view/7955/imap-backup-script/
http://imapclient.freshfoo.com/

ptg

13.4. mailbox—Manipulate Email Archives 759

The mailbox module defines a common API for accessing email messages stored in

local disk formats, including:

• Maildir

• mbox

• MH

• Babyl

• MMDF

There are base classes for Mailbox and Message, and each mailbox format

includes a corresponding pair of subclasses to implement the details for that format.

13.4.1 mbox

The mbox format is the simplest to show in documentation, since it is entirely plain

text. Each mailbox is stored as a single file, with all the messages concatenated together.

Each time a line starting with "From " (“From” followed by a single space) is encoun-

tered it is treated as the beginning of a new message. Any time those characters appear

at the beginning of a line in the message body, they are escaped by prefixing the line

with ">".

Creating an mbox Mailbox

Instantiate the mbox class by passing the filename to the constructor. If the file does not

exist, it is created when add() is used to append messages.

import mailbox
import email.utils

from_addr = email.utils.formataddr((’Author’,

’author@example.com’))

to_addr = email.utils.formataddr((’Recipient’,

’recipient@example.com’))

mbox = mailbox.mbox(’example.mbox’)

mbox.lock()

try:
msg = mailbox.mboxMessage()

msg.set_unixfrom(’author Sat Feb 7 01:05:34 2009’)

msg[’From’] = from_addr

msg[’To’] = to_addr

msg[’Subject’] = ’Sample message 1’

msg.set_payload(’\n’.join([’This is the body.’,

’From (should be escaped).’,

ptg

760 Email

’There are 3 lines.\n’,
]))

mbox.add(msg)

mbox.flush()

msg = mailbox.mboxMessage()

msg.set_unixfrom(’author’)

msg[’From’] = from_addr

msg[’To’] = to_addr

msg[’Subject’] = ’Sample message 2’

msg.set_payload(’This is the second body.\n’)
mbox.add(msg)

mbox.flush()

finally:
mbox.unlock()

print open(’example.mbox’, ’r’).read()

The result of this script is a new mailbox file with two email messages.

$ python mailbox_mbox_create.py

From MAILER-DAEMON Mon Nov 29 02:00:11 2010

From: Author <author@example.com>

To: Recipient <recipient@example.com>

Subject: Sample message 1

This is the body.

>From (should be escaped).

There are 3 lines.

From MAILER-DAEMON Mon Nov 29 02:00:11 2010

From: Author <author@example.com>

To: Recipient <recipient@example.com>

Subject: Sample message 2

This is the second body.

Reading an mbox Mailbox

To read an existing mailbox, open it and treat the mbox object like a dictionary. The keys

are arbitrary values defined by the mailbox instance and are not necessary meaningful

other than as internal identifiers for message objects.

ptg

13.4. mailbox—Manipulate Email Archives 761

import mailbox

mbox = mailbox.mbox(’example.mbox’)

for message in mbox:

print message[’subject’]

The open mailbox supports the iterator protocol, but unlike true dictionary objects,

the default iterator for a mailbox works on the values instead of the keys.

$ python mailbox_mbox_read.py

Sample message 1

Sample message 2

Removing Messages from an mbox Mailbox

To remove an existing message from an mbox file, either use its key with remove() or

use del.

import mailbox

mbox = mailbox.mbox(’example.mbox’)

mbox.lock()

try:
to_remove = []

for key, msg in mbox.iteritems():

if ’2’ in msg[’subject’]:

print ’Removing:’, key

to_remove.append(key)

for key in to_remove:

mbox.remove(key)

finally:
mbox.flush()

mbox.close()

print open(’example.mbox’, ’r’).read()

The lock() and unlock() methods are used to prevent issues from simultaneous

access to the file, and flush() forces the changes to be written to disk.

$ python mailbox_mbox_remove.py

ptg

762 Email

Removing: 1

From MAILER-DAEMON Mon Nov 29 02:00:11 2010

From: Author <author@example.com>

To: Recipient <recipient@example.com>

Subject: Sample message 1

This is the body.

>From (should be escaped).

There are 3 lines.

13.4.2 Maildir

The Maildir format was created to eliminate the problem of concurrent modification to

an mbox file. Instead of using a single file, the mailbox is organized as a directory where

each message is contained in its own file. This also allows mailboxes to be nested, so

the API for a Maildir mailbox is extended with methods to work with subfolders.

Creating a Maildir Mailbox

The only real difference between creating a Maildir and mbox is that the argument to

the constructor is a directory name instead of a filename. As before, if the mailbox does

not exist, it is created when messages are added.

import mailbox
import email.utils
import os

from_addr = email.utils.formataddr((’Author’,

’author@example.com’))

to_addr = email.utils.formataddr((’Recipient’,

’recipient@example.com’))

mbox = mailbox.Maildir(’Example’)

mbox.lock()

try:
msg = mailbox.mboxMessage()

msg.set_unixfrom(’author Sat Feb 7 01:05:34 2009’)

msg[’From’] = from_addr

msg[’To’] = to_addr

msg[’Subject’] = ’Sample message 1’

msg.set_payload(’\n’.join([’This is the body.’,

’From (will not be escaped).’,

ptg

13.4. mailbox—Manipulate Email Archives 763

’There are 3 lines.\n’,
]))

mbox.add(msg)

mbox.flush()

msg = mailbox.mboxMessage()

msg.set_unixfrom(’author Sat Feb 7 01:05:34 2009’)

msg[’From’] = from_addr

msg[’To’] = to_addr

msg[’Subject’] = ’Sample message 2’

msg.set_payload(’This is the second body.\n’)
mbox.add(msg)

mbox.flush()

finally:
mbox.unlock()

for dirname, subdirs, files in os.walk(’Example’):

print dirname

print ’\tDirectories:’, subdirs

for name in files:

fullname = os.path.join(dirname, name)

print
print ’***’, fullname

print open(fullname).read()

print ’*’ * 20

When messages are added to the mailbox, they go to the new subdirectory. After

they are read, a client could move them to the cur subdirectory.

Warning: Although it is safe to write to the same Maildir from multiple processes,

add() is not thread-safe. Use a semaphore or other locking device to prevent simul-

taneous modifications to the mailbox from multiple threads of the same process.

$ python mailbox_maildir_create.py

Example

Directories: [’cur’, ’new’, ’tmp’]

Example/cur

Directories: []

Example/new

Directories: []

ptg

764 Email

*** Example/new/1290996011.M658966P16077Q1.farnsworth.local

From: Author <author@example.com>

To: Recipient <recipient@example.com>

Subject: Sample message 1

This is the body.

From (will not be escaped).

There are 3 lines.

*** Example/new/1290996011.M660614P16077Q2.farnsworth.local

From: Author <author@example.com>

To: Recipient <recipient@example.com>

Subject: Sample message 2

This is the second body.

Example/tmp

Directories: []

Reading a Maildir Mailbox

Reading from an existing Maildir mailbox works just like an mbox mailbox.

import mailbox

mbox = mailbox.Maildir(’Example’)

for message in mbox:

print message[’subject’]

The messages are not guaranteed to be read in any particular order.

$ python mailbox_maildir_read.py

Sample message 1

Sample message 2

Removing Messages from a Maildir Mailbox

To remove an existing message from a Maildir mailbox, either pass its key to remove()

or use del.

ptg

13.4. mailbox—Manipulate Email Archives 765

import mailbox
import os

mbox = mailbox.Maildir(’Example’)

mbox.lock()

try:
to_remove = []

for key, msg in mbox.iteritems():

if ’2’ in msg[’subject’]:

print ’Removing:’, key

to_remove.append(key)

for key in to_remove:

mbox.remove(key)

finally:
mbox.flush()

mbox.close()

for dirname, subdirs, files in os.walk(’Example’):

print dirname

print ’\tDirectories:’, subdirs

for name in files:

fullname = os.path.join(dirname, name)

print
print ’***’, fullname

print open(fullname).read()

print ’*’ * 20

There is no way to compute the key for a message, so use iteritems() to

retrieve the key and message object from the mailbox at the same time.

$ python mailbox_maildir_remove.py

Removing: 1290996011.M660614P16077Q2.farnsworth.local

Example

Directories: [’cur’, ’new’, ’tmp’]

Example/cur

Directories: []

Example/new

Directories: []

*** Example/new/1290996011.M658966P16077Q1.farnsworth.local

From: Author <author@example.com>

To: Recipient <recipient@example.com>

ptg

766 Email

Subject: Sample message 1

This is the body.

From (will not be escaped).

There are 3 lines.

Example/tmp

Directories: []

Maildir Folders

Subdirectories or folders of a Maildir mailbox can be managed directly through the

methods of the Maildir class. Callers can list, retrieve, create, and remove subfolders

for a given mailbox.

import mailbox
import os

def show_maildir(name):

os.system(’find %s -print’ % name)

mbox = mailbox.Maildir(’Example’)

print ’Before:’, mbox.list_folders()

show_maildir(’Example’)

print
print ’#’ * 30

print

mbox.add_folder(’subfolder’)

print ’subfolder created:’, mbox.list_folders()

show_maildir(’Example’)

subfolder = mbox.get_folder(’subfolder’)

print ’subfolder contents:’, subfolder.list_folders()

print
print ’#’ * 30

print

subfolder.add_folder(’second_level’)

print ’second_level created:’, subfolder.list_folders()

show_maildir(’Example’)

ptg

13.4. mailbox—Manipulate Email Archives 767

print
print ’#’ * 30

print

subfolder.remove_folder(’second_level’)

print ’second_level removed:’, subfolder.list_folders()

show_maildir(’Example’)

The directory name for the folder is constructed by prefixing the folder name with

a period (.).

$ python mailbox_maildir_folders.py

Example

Example/cur

Example/new

Example/new/1290996011.M658966P16077Q1.farnsworth.local

Example/tmp

Example

Example/.subfolder

Example/.subfolder/cur

Example/.subfolder/maildirfolder

Example/.subfolder/new

Example/.subfolder/tmp

Example/cur

Example/new

Example/new/1290996011.M658966P16077Q1.farnsworth.local

Example/tmp

Example

Example/.subfolder

Example/.subfolder/.second_level

Example/.subfolder/.second_level/cur

Example/.subfolder/.second_level/maildirfolder

Example/.subfolder/.second_level/new

Example/.subfolder/.second_level/tmp

Example/.subfolder/cur

Example/.subfolder/maildirfolder

Example/.subfolder/new

Example/.subfolder/tmp

Example/cur

Example/new

Example/new/1290996011.M658966P16077Q1.farnsworth.local

Example/tmp

Example

ptg

768 Email

Example/.subfolder

Example/.subfolder/cur

Example/.subfolder/maildirfolder

Example/.subfolder/new

Example/.subfolder/tmp

Example/cur

Example/new

Example/new/1290996011.M658966P16077Q1.farnsworth.local

Example/tmp

Before: []

##############################

subfolder created: [’subfolder’]

subfolder contents: []

##############################

second_level created: [’second_level’]

##############################

second_level removed: []

13.4.3 Other Formats

mailbox supports a few other formats, but none are as popular as mbox or Maildir. MH

is another multifile mailbox format used by some mail handlers. Babyl and MMDF are

single-file formats with different message separators than mbox. The single-file formats

support the same API as mbox, and MH includes the folder-related methods found in

the Maildir class.

See Also:
mailbox (http://docs.python.org/library/mailbox.html) The standard library docu-

mentation for this module.

mbox manpage from qmail (http://www.qmail.org/man/man5/mbox.html)
Documentation for the mbox format.

Maildir manpage from qmail (http://www.qmail.org/man/man5/maildir.html)
Documentation for the Maildir format.

email The email module.

mhlib The mhlib module.

imaplib (page 738) The imaplib module can work with saved email messages on

an IMAP server.

http://docs.python.org/library/mailbox.html
http://www.qmail.org/man/man5/mbox.html
http://www.qmail.org/man/man5/maildir.html

ptg

Chapter 14

APPLICATION BUILDING
BLOCKS

The strength of Python’s standard library is its size. It includes implementations of so

many aspects of a program’s structure that developers can concentrate on what makes

their application unique, instead of implementing all the basic pieces over and over

again. This chapter covers some of the more frequently reused building blocks that

solve problems common to so many applications.

There are three separate modules for parsing command-line arguments using dif-

ferent styles. getopt implements the same low-level processing model available to C

programs and shell scripts. It has fewer features than other option-parsing libraries, but

that simplicity and familiarity make it a popular choice. optparse is a more modern,

and flexible, replacement for getopt. argparse is a third interface for parsing and

validating command-line arguments, and it deprecates both getopt and optparse. It

supports converting arguments from strings to integers and other types, running call-

backs when an option is encountered, setting default values for options not provided by

the user, and automatically producing usage instructions for a program.

Interactive programs should use readline to give the user a command prompt.

It includes tools for managing history, auto-completing parts of commands, and

interactive editing with emacs and vi key-bindings. To securely prompt the user for

a password or other secret value, without echoing the value to the screen as it is typed,

use getpass.

The cmd module includes a framework for interactive, command-driven shell-

style programs. It provides the main loop and handles the interaction with the user,

so the application only needs to implement the processing callbacks for the individual

commands.

769

ptg

770 Application Building Blocks

shlex is a parser for shell-style syntax, with lines made up of tokens separated

by whitespace. It is smart about quotes and escape sequences, so text with embedded

spaces is treated as a single token. shlex works well as the tokenizer for domain-

specific languages, such as configuration files or programming languages.

It is easy to manage application configuration files with ConfigParser. It can

save user preferences between program runs and read them the next time an application

starts, or even serve as a simple data file format.

Applications being deployed in the real world need to give their users debugging

information. Simple error messages and tracebacks are helpful, but when it is difficult

to reproduce an issue, a full activity log can point directly to the chain of events that

leads to a failure. The logging module includes a full-featured API that manages log

files, supports multiple threads, and even interfaces with remote logging daemons for

centralized logging.

One of the most common patterns for programs in UNIX environments is a line-

by-line filter that reads data, modifies it, and writes it back out. Reading from files is

simple enough, but there may not be an easier way to create a filter application than by

using the fileinput module. Its API is a line iterator that yields each input line, so the

main body of the program is a simple for loop. The module handles parsing command-

line arguments for filenames to be processed or falling back to reading directly from

standard input, so tools built on fileinput can be run directly on a file or as part of a

pipeline.

Use atexit to schedule functions to be run as the interpreter is shutting down a

program. Registering exit callbacks is useful for releasing resources by logging out of

remote services, closing files, etc.

The sched module implements a scheduler for triggering events at set times in the

future. The API does not dictate the definition of “time,” so anything from true clock

time to interpreter steps can be used.

14.1 getopt—Command-Line Option Parsing

Purpose Command-line option parsing.

Python Version 1.4 and later

The getopt module is the original command-line option parser that supports the con-

ventions established by the UNIX function getopt(). It parses an argument sequence,

such as sys.argv, and returns a sequence of tuples containing (option, argument) pairs

and a sequence of nonoption arguments.

ptg

14.1. getopt—Command-Line Option Parsing 771

Supported option syntax include short- and long-form options:

-a

-bval

-b val

--noarg

--witharg=val

--witharg val

14.1.1 Function Arguments

The getopt() function takes three arguments.

• The first parameter is the sequence of arguments to be parsed. This usually comes

from sys.argv[1:] (ignoring the program name in sys.arg[0]).

• The second argument is the option definition string for single-character options.

If one of the options requires an argument, its letter is followed by a colon.

• The third argument, if used, should be a sequence of the long-style option names.

Long-style options can be more than a single character, such as --noarg or

--witharg. The option names in the sequence should not include the “--”

prefix. If any long option requires an argument, its name should have a suffix

of “=”.

Short- and long-form options can be combined in a single call.

14.1.2 Short-Form Options

This example program accepts three options. The -a is a simple flag, while -b and -c

require an argument. The option definition string is "ab:c:".

import getopt

opts, args = getopt.getopt([’-a’, ’-bval’, ’-c’, ’val’], ’ab:c:’)

for opt in opts:

print opt

The program passes a list of simulated option values to getopt() to show the

way they are processed.

ptg

772 Application Building Blocks

$ python getopt_short.py

(’-a’, ’’)

(’-b’, ’val’)

(’-c’, ’val’)

14.1.3 Long-Form Options

For a program that takes two options, --noarg and --witharg, the long-argument

sequence should be [’noarg’, ’witharg=’].

import getopt

opts, args = getopt.getopt([’--noarg’,

’--witharg’, ’val’,

’--witharg2=another’,

],

’’,

[’noarg’, ’witharg=’, ’witharg2=’])

for opt in opts:

print opt

Since this sample program does not take any short form options, the second argu-

ment to getopt() is an empty string.

$ python getopt_long.py

(’--noarg’, ’’)

(’--witharg’, ’val’)

(’--witharg2’, ’another’)

14.1.4 A Complete Example

This example is a more complete program that takes five options: -o, -v, --output,

--verbose, and --version. The -o, --output, and --version options each

require an argument.

import getopt
import sys

version = ’1.0’

verbose = False

ptg

14.1. getopt—Command-Line Option Parsing 773

output_filename = ’default.out’

print ’ARGV

:’, sys.argv[1:]

try:
options, remainder = getopt.getopt(

sys.argv[1:],

’o:v’,

[’output=’,

’verbose’,

’version=’,

])

except getopt.GetoptError as err:

print ’ERROR:’, err

sys.exit(1)

print ’OPTIONS :’, options

for opt, arg in options:

if opt in (’-o’, ’--output’):

output_filename = arg

elif opt in (’-v’, ’--verbose’):

verbose = True

elif opt == ’--version’:

version = arg

print ’VERSION :’, version

print ’VERBOSE :’, verbose

print ’OUTPUT :’, output_filename

print ’REMAINING :’, remainder

The program can be called in a variety of ways. When it is called without any

arguments at all, the default settings are used.

$ python getopt_example.py

ARGV
: []

OPTIONS : []

VERSION : 1.0

VERBOSE : False

OUTPUT : default.out

REMAINING : []

ptg

774 Application Building Blocks

A single-letter option can be a separated from its argument by whitespace.

$ python getopt_example.py -o foo

ARGV : [’-o’, ’foo’]

OPTIONS : [(’-o’, ’foo’)]

VERSION : 1.0

VERBOSE : False

OUTPUT : foo

REMAINING : []

Or the option and value can be combined into a single argument.

$ python getopt_example.py -ofoo

ARGV : [’-ofoo’]

OPTIONS : [(’-o’, ’foo’)]

VERSION : 1.0

VERBOSE : False

OUTPUT : foo

REMAINING : []

A long-form option can similarly be separate from the value.

$ python getopt_example.py --output foo

ARGV : [’--output’, ’foo’]

OPTIONS : [(’--output’, ’foo’)]

VERSION : 1.0

VERBOSE : False

OUTPUT : foo

REMAINING : []

When a long option is combined with its value, the option name and value should

be separated by a single =.

$ python getopt_example.py --output=foo

ARGV : [’--output=foo’]

OPTIONS : [(’--output’, ’foo’)]

VERSION : 1.0

ptg

14.1. getopt—Command-Line Option Parsing 775

VERBOSE : False

OUTPUT : foo

REMAINING : []

14.1.5 Abbreviating Long-Form Options

The long-form option does not have to be spelled out entirely on the command line,

as long as a unique prefix is provided.

$ python getopt_example.py --o foo

ARGV : [’--o’, ’foo’]

OPTIONS : [(’--output’, ’foo’)]

VERSION : 1.0

VERBOSE : False

OUTPUT : foo

REMAINING : []

If a unique prefix is not provided, an exception is raised.

$ python getopt_example.py --ver 2.0

ARGV : [’--ver’, ’2.0’]

ERROR: option --ver not a unique prefix

14.1.6 GNU-Style Option Parsing

Normally, option processing stops as soon as the first nonoption argument is

encountered.

$ python getopt_example.py -v not_an_option --output foo

ARGV : [’-v’, ’not_an_option’, ’--output’, ’foo’]

OPTIONS : [(’-v’, ’’)]

VERSION : 1.0

VERBOSE : True

OUTPUT : default.out

REMAINING : [’not_an_option’, ’--output’, ’foo’]

An additional function gnu_getopt() was added to the module in Python 2.3. It

allows option and nonoption arguments to be mixed on the command line in any order.

ptg

776 Application Building Blocks

import getopt
import sys

version = ’1.0’

verbose = False

output_filename = ’default.out’

print ’ARGV :’, sys.argv[1:]

try:
options, remainder = getopt.gnu_getopt(

sys.argv[1:],

’o:v’,

[’output=’,

’verbose’,

’version=’,

])

except getopt.GetoptError as err:

print ’ERROR:’, err

sys.exit(1)

print ’OPTIONS :’, options

for opt, arg in options:

if opt in (’-o’, ’--output’):

output_filename = arg

elif opt in (’-v’, ’--verbose’):

verbose = True

elif opt == ’--version’:

version = arg

print ’VERSION :’, version

print ’VERBOSE :’, verbose

print ’OUTPUT :’, output_filename

print ’REMAINING :’, remainder

After changing the call in the previous example, the difference becomes clear.

$ python getopt_gnu.py -v not_an_option --output foo

ARGV : [’-v’, ’not_an_option’, ’--output’, ’foo’]

OPTIONS : [(’-v’, ’’), (’--output’, ’foo’)]

VERSION : 1.0

ptg

14.2. optparse—Command-Line Option Parser 777

VERBOSE : True

OUTPUT : foo

REMAINING : [’not_an_option’]

14.1.7 Ending Argument Processing

If getopt() encounters “--” in the input arguments, it stops processing the remaining

arguments as options. This feature can be used to pass argument values that look like

options, such as filenames that start with a dash (“-”).

$ python getopt_example.py -v -- --output foo

ARGV : [’-v’, ’--’, ’--output’, ’foo’]

OPTIONS : [(’-v’, ’’)]

VERSION : 1.0

VERBOSE : True

OUTPUT : default.out

REMAINING : [’--output’, ’foo’]

See Also:
getopt (http://docs.python.org/library/getopt.html) The standard library documen-

tation for this module.

argparse (page 795) The argparse module replaces both getopt and optparse.

optparse (page 777) The optparse module.

14.2 optparse—Command-Line Option Parser

Purpose Command-line option parser to replace getopt.

Python Version 2.3 and later

The optparse module is a modern alternative for command-line option parsing that

offers several features not available in getopt, including type conversion, option call-

backs, and automatic help generation. There are many more features to optparse

than can be covered here, but this section will introduce some more commonly used

capabilities.

14.2.1 Creating an OptionParser

There are two phases to parsing options with optparse. First, the OptionParser

instance is constructed and configured with the expected options. Then, a sequence of

options is fed in and processed.

http://docs.python.org/library/getopt.html

ptg

778 Application Building Blocks

import optparse
parser = optparse.OptionParser()

Usually, once the parser has been created, each option is added to the parser explic-

itly, with information about what to do when the option is encountered on the command

line. It is also possible to pass a list of options to the OptionParser constructor, but

that form is not used as frequently.

Defining Options

Options should be added one at a time using the add_option()method. Any unnamed

string arguments at the beginning of the argument list are treated as option names. To

create aliases for an option (i.e., to have a short and long form of the same option), pass

multiple names.

Parsing a Command Line

After all the options are defined, the command line is parsed by passing a sequence

of argument strings to parse_args(). By default, the arguments are taken from

sys.argv[1:], but a list can be passed explicitly as well. The options are processed

using the GNU/POSIX syntax, so option and argument values can be mixed in the

sequence.

The return value from parse_args() is a two-part tuple containing a Values

instance and the list of arguments to the command that were not interpreted as

options. The default processing action for options is to store the value using the name

given in the dest argument to add_option(). The Values instance returned by

parse_args() holds the option values as attributes, so if an option’s dest is set to

"myoption", the value is accessed as options.myoption.

14.2.2 Short- and Long-Form Options

Here is a simple example with three different options: a Boolean option (-a), a simple

string option (-b), and an integer option (-c).

import optparse

parser = optparse.OptionParser()

parser.add_option(’-a’, action="store_true", default=False)

parser.add_option(’-b’, action="store", dest="b")

parser.add_option(’-c’, action="store", dest="c", type="int")

print parser.parse_args([’-a’, ’-bval’, ’-c’, ’3’])

ptg

14.2. optparse—Command-Line Option Parser 779

The options on the command line are parsed with the same rules that getopt.

gnu_getopt() uses, so there are two ways to pass values to single-character options.

The example uses both forms, -bval and -c val.

$ python optparse_short.py

(<Values at 0x100e1b560: {’a’: True, ’c’: 3, ’b’: ’val’}>, [])

The type of the value associated with ’c’ in the output is an integer, since the

OptionParser was told to convert the argument before storing it.

Unlike with getopt, “long” option names are not handled any differently by

optparse.

import optparse

parser = optparse.OptionParser()

parser.add_option(’--noarg’, action="store_true", default=False)

parser.add_option(’--witharg’, action="store", dest="witharg")

parser.add_option(’--witharg2’, action="store",

dest="witharg2", type="int")

print parser.parse_args([’--noarg’,

’--witharg’, ’val’,

’--witharg2=3’])

And the results are similar.

$ python optparse_long.py

(<Values at 0x100e1b5a8: {’noarg’: True, ’witharg’: ’val’,

’witharg2’: 3}>, [])

14.2.3 Comparing with getopt

Since optparse is supposed to replace getopt, this example reimplements the same

example program used in the section about getopt.

import optparse
import sys

print ’ARGV :’, sys.argv[1:]

parser = optparse.OptionParser()

ptg

780 Application Building Blocks

parser.add_option(’-o’, ’--output’,

dest="output_filename",

default="default.out",

)

parser.add_option(’-v’, ’--verbose’,

dest="verbose",

default=False,

action="store_true",

)

parser.add_option(’--version’,

dest="version",

default=1.0,

type="float",

)

options, remainder = parser.parse_args()

print ’VERSION :’, options.version

print ’VERBOSE :’, options.verbose

print ’OUTPUT :’, options.output_filename

print ’REMAINING :’, remainder

The options -o and --output are aliased by being added at the same time. Either

option can be used on the command line.

$ python optparse_getoptcomparison.py -o output.txt

ARGV : [’-o’, ’output.txt’]

VERSION : 1.0

VERBOSE : False

OUTPUT : output.txt

REMAINING : []

$ python optparse_getoptcomparison.py --output output.txt

ARGV : [’--output’, ’output.txt’]

VERSION : 1.0

VERBOSE : False

OUTPUT : output.txt

REMAINING : []

Any unique prefix of the long option can also be used.

ptg

14.2. optparse—Command-Line Option Parser 781

$ python optparse_getoptcomparison.py --out output.txt

ARGV

: [’--out’, ’output.txt’]

VERSION : 1.0

VERBOSE : False

OUTPUT : output.txt

REMAINING : []

14.2.4 Option Values

The default processing action is to store the argument to the option. If a type is provided

when the option is defined, the argument value is converted to that type before it is

stored.

Setting Defaults

Since options are by definition optional, applications should establish default behavior

when an option is not given on the command line. A default value for an individual

option can be provided when the option is defined using the argument default.

import optparse

parser = optparse.OptionParser()

parser.add_option(’-o’, action="store", default="default value")

options, args = parser.parse_args()

print options.o

The default value should match the type expected for the option, since no

conversion is performed.

$ python optparse_default.py

default value

$ python optparse_default.py -o "different value"

different value

Defaults can also be loaded after the options are defined using keyword arguments

to set_defaults().

ptg

782 Application Building Blocks

import optparse

parser = optparse.OptionParser()

parser.add_option(’-o’, action="store")

parser.set_defaults(o=’default value’)

options, args = parser.parse_args()

print options.o

This form is useful when loading defaults from a configuration file or other source,

instead of hard-coding them.

$ python optparse_set_defaults.py

default value

$ python optparse_set_defaults.py -o "different value"

different value

All defined options are available as attributes of the Values instance returned by

parse_args(), so applications do not need to check for the presence of an option

before trying to use its value.

import optparse

parser = optparse.OptionParser()

parser.add_option(’-o’, action="store")

options, args = parser.parse_args()

print options.o

If no default value is given for an option, and the option is not specified on the

command line, its value is None.

$ python optparse_no_default.py

None

ptg

14.2. optparse—Command-Line Option Parser 783

$ python optparse_no_default.py -o "different value"

different value

Type Conversion

optparse will convert option values from strings to integers, floats, longs, and com-

plex values. To enable the conversion, specify the type of the option as an argument to

add_option().

import optparse

parser = optparse.OptionParser()

parser.add_option(’-i’, action="store", type="int")

parser.add_option(’-f’, action="store", type="float")

parser.add_option(’-l’, action="store", type="long")

parser.add_option(’-c’, action="store", type="complex")

options, args = parser.parse_args()

print ’int : %-16r %s’ % (type(options.i), options.i)

print ’float : %-16r %s’ % (type(options.f), options.f)

print ’long : %-16r %s’ % (type(options.l), options.l)

print ’complex: %-16r %s’ % (type(options.c), options.c)

If an option’s value cannot be converted to the specified type, an error is printed

and the program exits.

$ python optparse_types.py -i 1 -f 3.14 -l 1000000 -c 1+2j

int : <type ’int’> 1

float : <type ’float’> 3.14

long : <type ’long’> 1000000

complex: <type ’complex’> (1+2j)

$ python optparse_types.py -i a

Usage: optparse_types.py [options]

optparse_types.py: error: option -i: invalid integer value: ’a’

Custom conversions can be created by subclassing the Option class. Refer to the

standard library documentation for more details.

ptg

784 Application Building Blocks

Enumerations

The choice type provides validation using a list of candidate strings. Set type to choice

and provide the list of valid values using the choices argument to add_option().

import optparse

parser = optparse.OptionParser()

parser.add_option(’-c’, type=’choice’, choices=[’a’, ’b’, ’c’])

options, args = parser.parse_args()

print ’Choice:’, options.c

Invalid inputs result in an error message that shows the allowed list of values.

$ python optparse_choice.py -c a

Choice: a

$ python optparse_choice.py -c b

Choice: b

$ python optparse_choice.py -c d

Usage: optparse_choice.py [options]

optparse_choice.py: error: option -c: invalid choice: ’d’ (choose

from ’a’, ’b’, ’c’)

14.2.5 Option Actions

Unlike getopt, which only parses the options, optparse is an option process-
ing library. Options can trigger different actions, specified by the action argument to

add_option(). Supported actions include storing the argument (singly, or as part of a

list), storing a constant value when the option is encountered (including special handling

for true/false values for Boolean switches), counting the number of times an option is

seen, and calling a callback. The default action is store, and it does not need to be

specified explicitly.

ptg

14.2. optparse—Command-Line Option Parser 785

Constants

When options represent a selection of fixed alternatives, such as operating modes of an

application, creating separate explicit options makes it easier to document them. The

store_const action is intended for this purpose.

import optparse

parser = optparse.OptionParser()

parser.add_option(’--earth’, action="store_const",

const=’earth’, dest=’element’,

default=’earth’,

)

parser.add_option(’--air’, action=’store_const’,

const=’air’, dest=’element’,

)

parser.add_option(’--water’, action=’store_const’,

const=’water’, dest=’element’,

)

parser.add_option(’--fire’, action=’store_const’,

const=’fire’, dest=’element’,

)

options, args = parser.parse_args()

print options.element

The store_const action associates a constant value in the application with the

option specified by the user. Several options can be configured to store different constant

values to the same dest name, so the application only has to check a single setting.

$ python optparse_store_const.py

earth

$ python optparse_store_const.py --fire

fire

Boolean Flags

Boolean options are implemented using special actions for storing true and false con-

stant values.

ptg

786 Application Building Blocks

import optparse

parser = optparse.OptionParser()

parser.add_option(’-t’, action=’store_true’,

default=False, dest=’flag’)

parser.add_option(’-f’, action=’store_false’,

default=False, dest=’flag’)

options, args = parser.parse_args()

print ’Flag:’, options.flag

True and false versions of the same flag can be created by configuring their dest
name to the same value.

$ python optparse_boolean.py

Flag: False

$ python optparse_boolean.py -t

Flag: True

$ python optparse_boolean.py -f

Flag: False

Repeating Options

There are three ways to handle repeated options: overwriting, appending, and count-

ing. The default is to overwrite any existing value so that the last option specified is

used. The store action works this way.

Using the append action, it is possible to accumulate values as an option is

repeated, creating a list of values. Append mode is useful when multiple responses

are allowed, since they can each be listed individually.

import optparse

parser = optparse.OptionParser()

parser.add_option(’-o’, action="append", dest=’outputs’, default=[])

ptg

14.2. optparse—Command-Line Option Parser 787

options, args = parser.parse_args()

print options.outputs

The order of the values given on the command line is preserved, in case it is

important for the application.

$ python optparse_append.py

[]

$ python optparse_append.py -o a.out

[’a.out’]

$ python optparse_append.py -o a.out -o b.out

[’a.out’, ’b.out’]

Sometimes, it is enough to know how many times an option was given, and the

associated value is not needed. For example, many applications allow the user to repeat

the -v option to increase the level of verbosity of their output. The count action incre-

ments a value each time the option appears.

import optparse

parser = optparse.OptionParser()

parser.add_option(’-v’, action="count",

dest=’verbosity’, default=1)

parser.add_option(’-q’, action=’store_const’,

const=0, dest=’verbosity’)

options, args = parser.parse_args()

print options.verbosity

Since the -v option does not take an argument, it can be repeated using the syntax

-vv as well as through separate individual options.

$ python optparse_count.py

1

ptg

788 Application Building Blocks

$ python optparse_count.py -v

2

$ python optparse_count.py -v -v

3

$ python optparse_count.py -vv

3

$ python optparse_count.py -q

0

Callbacks

Besides saving the arguments for options directly, it is possible to define callback func-

tions to be invoked when the option is encountered on the command line. Callbacks

for options take four arguments: the Option instance causing the callback, the option

string from the command line, any argument value associated with the option, and the

OptionParser instance doing the parsing work.

import optparse

def flag_callback(option, opt_str, value, parser):

print ’flag_callback:’

print ’\toption:’, repr(option)

print ’\topt_str:’, opt_str

print ’\tvalue:’, value

print ’\tparser:’, parser

return

def with_callback(option, opt_str, value, parser):

print ’with_callback:’

print ’\toption:’, repr(option)

print ’\topt_str:’, opt_str

print ’\tvalue:’, value

print ’\tparser:’, parser

return
parser = optparse.OptionParser()

parser.add_option(’--flag’, action="callback",

callback=flag_callback)

ptg

14.2. optparse—Command-Line Option Parser 789

parser.add_option(’--with’,

action="callback",

callback=with_callback,

type="string",

help="Include optional feature")

parser.parse_args([’--with’, ’foo’, ’--flag’])

In this example, the --with option is configured to take a string argument (other

types, such as integers and floats, are supported as well).

$ python optparse_callback.py

with_callback:

option: <Option at 0x100e1b3b0: --with>

opt_str: --with

value: foo

parser: <optparse.OptionParser instance at 0x100da1200>

flag_callback:

option: <Option at 0x100e1b320: --flag>

opt_str: --flag

value: None

parser: <optparse.OptionParser instance at 0x100da1200>

Callbacks can be configured to take multiple arguments using the nargs option.

import optparse

def with_callback(option, opt_str, value, parser):

print ’with_callback:’

print ’\toption:’, repr(option)

print ’\topt_str:’, opt_str

print ’\tvalue:’, value

print ’\tparser:’, parser

return

parser = optparse.OptionParser()

parser.add_option(’--with’,

action="callback",

callback=with_callback,

type="string",

nargs=2,

help="Include optional feature")

parser.parse_args([’--with’, ’foo’, ’bar’])

ptg

790 Application Building Blocks

In this case, the arguments are passed to the callback function as a tuple via the

value argument.

$ python optparse_callback_nargs.py

with_callback:

option: <Option at 0x100e1a2d8: --with>

opt_str: --with

value: (’foo’, ’bar’)

parser: <optparse.OptionParser instance at 0x100da0128>

14.2.6 Help Messages

The OptionParser automatically adds a help option to all option sets, so the user can

pass --help on the command line to see instructions for running the program. The

help message includes all the options, with an indication of whether or not they take an

argument. It is also possible to pass help text to add_option() to give a more verbose

description of an option.

import optparse

parser = optparse.OptionParser()

parser.add_option(’--no-foo’, action="store_true",

default=False,

dest="foo",

help="Turn off foo",

)

parser.add_option(’--with’, action="store",

help="Include optional feature")

parser.parse_args()

The options are listed in alphabetical order, with aliases included on the same line.

When the option takes an argument, the dest name is included as an argument name

in the help output. The help text is printed in the right column.

$ python optparse_help.py --help

Usage: optparse_help.py [options]

Options:

-h, --help show this help message and exit

ptg

14.2. optparse—Command-Line Option Parser 791

--no-foo Turn off foo

--with=WITH Include optional feature

The name WITH printed with the option --with comes from the destination vari-

able for the option. For cases where the internal variable name is not descriptive enough

to serve in the documentation, the metavar argument can be used to set a different name.

import optparse

parser = optparse.OptionParser()

parser.add_option(’--no-foo’, action="store_true",

default=False,

dest="foo",

help="Turn off foo",

)

parser.add_option(’--with’, action="store",

help="Include optional feature",

metavar=’feature_NAME’)

parser.parse_args()

The value is printed exactly as it is given, without any changes to capitalization or

punctuation.

$ python optparse_metavar.py -h

Usage: optparse_metavar.py [options]

Options:

-h, --help show this help message and exit

--no-foo Turn off foo

--with=feature_NAME Include optional feature

Organizing Options

Many applications include sets of related options. For example, rpm includes separate

options for each of its operating modes. optparse uses option groups to organize

options in the help output. The option values are all still saved in a single Values

instance, so the namespace for option names is still flat.

import optparse

parser = optparse.OptionParser()

ptg

792 Application Building Blocks

parser.add_option(’-q’, action=’store_const’,

const=’query’, dest=’mode’,

help=’Query’)

parser.add_option(’-i’, action=’store_const’,

const=’install’, dest=’mode’,

help=’Install’)

query_opts = optparse.OptionGroup(

parser, ’Query Options’,

’These options control the query mode.’,

)

query_opts.add_option(’-l’, action=’store_const’,

const=’list’, dest=’query_mode’,

help=’List contents’)

query_opts.add_option(’-f’, action=’store_const’,

const=’file’, dest=’query_mode’,

help=’Show owner of file’)

query_opts.add_option(’-a’, action=’store_const’,

const=’all’, dest=’query_mode’,

help=’Show all packages’)

parser.add_option_group(query_opts)

install_opts = optparse.OptionGroup(

parser, ’Installation Options’,

’These options control installation.’,

)

install_opts.add_option(

’--hash’, action=’store_true’, default=False,

help=’Show hash marks as progress indication’)

install_opts.add_option(

’--force’, dest=’install_force’, action=’store_true’,

default=False,

help=’Install, regardless of dependencies or existing version’)

parser.add_option_group(install_opts)

print parser.parse_args()

Each group has its own section title and description, and the options are displayed

together.

$ python optparse_groups.py -h

ptg

14.2. optparse—Command-Line Option Parser 793

Usage: optparse_groups.py [options]

Options:

-h, --help show this help message and exit

-q Query

-i Install

Query Options:

These options control the query mode.

-l List contents

-f Show owner of file

-a Show all packages

Installation Options:

These options control installation.

--hash Show hash marks as progress indication

--force Install, regardless of dependencies or existing version

Application Settings

The automatic help generation facilities use configuration settings to control several

aspects of the help output. The program’s usage string, which shows how the positional

arguments are expected, can be set when the OptionParser is created.

import optparse

parser = optparse.OptionParser(

usage=’%prog [options] <arg1> <arg2> [<arg3>...]’

)

parser.add_option(’-a’, action="store_true", default=False)

parser.add_option(’-b’, action="store", dest="b")

parser.add_option(’-c’, action="store", dest="c", type="int")

parser.parse_args()

The literal value %prog is expanded to the name of the program at runtime, so it

can reflect the full path to the script. If the script is run by python, instead of running

directly, the script name is used.

ptg

794 Application Building Blocks

$ python optparse_usage.py -h

Usage: optparse_usage.py [options] <arg1> <arg2> [<arg3>...]

Options:

-h, --help show this help message and exit

-a

-b B

-c C

The program name can be changed using the prog argument.

import optparse

parser = optparse.OptionParser(

usage=’%prog [options] <arg1> <arg2> [<arg3>...]’,

prog=’my_program_name’,

)

parser.add_option(’-a’, action="store_true", default=False)

parser.add_option(’-b’, action="store", dest="b")

parser.add_option(’-c’, action="store", dest="c", type="int")

parser.parse_args()

It is generally a bad idea to hard-code the program name in this way, though,

because if the program is renamed, the help will not reflect the change.

$ python optparse_prog.py -h

Usage: my_program_name [options] <arg1> <arg2> [<arg3>...]

Options:

-h, --help show this help message and exit

-a

-b B

-c C

The application version can be set using the version argument. When a ver-

sion value is provided, optparse automatically adds a --version option to the

parser.

ptg

14.3. argparse—Command-Line Option and Argument Parsing 795

import optparse

parser = optparse.OptionParser(

usage=’%prog [options] <arg1> <arg2> [<arg3>...]’,

version=’1.0’,

)

parser.parse_args()

When the user runs the program with the --version option, optparse prints

the version string and then exits.

$ python optparse_version.py -h

Usage: optparse_version.py [options] <arg1> <arg2> [<arg3>...]

Options:

--version show program’s version number and exit

-h, --help show this help message and exit

$ python optparse_version.py --version

1.0

See Also:
optparse (http://docs.python.org/lib/module-optparse.html) The Standard library

documentation for this module.

getopt (page 770) The getopt module, replaced by optparse.

argparse (page 795) Newer replacement for optparse.

14.3 argparse—Command-Line Option and Argument Parsing

Purpose Command-line option and argument parsing.

Python Version 2.7 and later

The argparse module was added to Python 2.7 as a replacement for optparse. The

implementation of argparse supports features that would not have been easy to add

to optparse and that would have required backwards-incompatible API changes. So,

a new module was brought into the library instead. optparse is still supported, but it

is not likely to receive new features.

http://docs.python.org/lib/module-optparse.html

ptg

796 Application Building Blocks

14.3.1 Comparing with optparse

The API for argparse is similar to the one provided by optparse, and in many cases,

argparse can be used as a straightforward replacement by updating the names of the

classes and methods used. There are a few places where direct compatibility could not

be preserved as new features were added, however.

The decision to upgrade existing programs should be made on a case-by-case basis.

If an application includes extra code to work around limitations of optparse, upgrad-

ing may reduce maintenance work. Use argparse for a new program, if it is available

on all the platforms where the program will be deployed.

14.3.2 Setting Up a Parser

The first step when using argparse is to create a parser object and tell it what argu-

ments to expect. The parser can then be used to process the command-line arguments

when the program runs. The constructor for the parser class (ArgumentParser) takes

several arguments to set up the description used in the help text for the program and

other global behaviors or settings.

import argparse
parser = argparse.ArgumentParser(

description=’This is a PyMOTW sample program’,

)

14.3.3 Defining Arguments

argparse is a complete argument-processing library. Arguments can trigger different

actions, specified by the action argument to add_argument(). Supported actions in-

clude storing the argument (singly, or as part of a list), storing a constant value when the

argument is encountered (including special handling for true/false values for Boolean

switches), counting the number of times an argument is seen, and calling a callback to

use custom processing instructions.

The default action is to store the argument value. If a type is provided, the value is

converted to that type before it is stored. If the dest argument is provided, the value is

saved using that name when the command-line arguments are parsed.

14.3.4 Parsing a Command Line

After all the arguments are defined, parse the command line by passing a sequence

of argument strings to parse_args(). By default, the arguments are taken from

sys.argv[1:], but any list of strings can be used. The options are processed

ptg

14.3. argparse—Command-Line Option and Argument Parsing 797

using the GNU/POSIX syntax, so option and argument values can be mixed in the

sequence.

The return value from parse_args() is a Namespace containing the arguments

to the command. The object holds the argument values as attributes, so if the argument’s

dest is set to "myoption", the value is accessible as args.myoption.

14.3.5 Simple Examples

Here is a simple example with three different options: a Boolean option (-a), a simple

string option (-b), and an integer option (-c).

import argparse

parser = argparse.ArgumentParser(description=’Short sample app’)

parser.add_argument(’-a’, action="store_true", default=False)

parser.add_argument(’-b’, action="store", dest="b")

parser.add_argument(’-c’, action="store", dest="c", type=int)

print parser.parse_args([’-a’, ’-bval’, ’-c’, ’3’])

There are a few ways to pass values to single-character options. The previous

example uses two different forms, -bval and -c val.

$ python argparse_short.py

Namespace(a=True, b=’val’, c=3)

The type of the value associated with ’c’ in the output is an integer, since the

ArgumentParser was told to convert the argument before storing it.

“Long” option names, with more than a single character in their name, are handled

in the same way.

import argparse

parser = argparse.ArgumentParser(

description=’Example with long option names’,

)

parser.add_argument(’--noarg’, action="store_true",

default=False)

ptg

798 Application Building Blocks

parser.add_argument(’--witharg’, action="store",

dest="witharg")

parser.add_argument(’--witharg2’, action="store",

dest="witharg2", type=int)

print parser.parse_args(

[’--noarg’, ’--witharg’, ’val’, ’--witharg2=3’]

)

The results are similar.

$ python argparse_long.py

Namespace(noarg=True, witharg=’val’, witharg2=3)

One area in which argparse differs from optparse is the treatment of nonop-

tional argument values. While optparse sticks to option parsing, argparse is a full

command-line argument parser tool and handles nonoptional arguments as well.

import argparse

parser = argparse.ArgumentParser(

description=’Example with nonoptional arguments’,

)

parser.add_argument(’count’, action="store", type=int)

parser.add_argument(’units’, action="store")

print parser.parse_args()

In this example, the “count” argument is an integer and the “units” argument is

saved as a string. If either is left off the command line, or the value given cannot be

converted to the right type, an error is reported.

$ python argparse_arguments.py 3 inches

Namespace(count=3, units=’inches’)

$ python argparse_arguments.py some inches

usage: argparse_arguments.py [-h] count units

ptg

14.3. argparse—Command-Line Option and Argument Parsing 799

argparse_arguments.py: error: argument count: invalid int value:

’some’

$ python argparse_arguments.py

usage: argparse_arguments.py [-h] count units

argparse_arguments.py: error: too few arguments

Argument Actions

Six built-in actions can be triggered when an argument is encountered.

store Save the value, after optionally converting it to a different type. This is the

default action taken if none is specified explicitly.

store_const Save a value defined as part of the argument specification, rather than

a value that comes from the arguments being parsed. This is typically used to

implement command-line flags that are not Booleans.

store_true / store_false Save the appropriate Boolean value. These actions are

used to implement Boolean switches.

append Save the value to a list. Multiple values are saved if the argument is repeated.

append_const Save a value defined in the argument specification to a list.

version Prints version details about the program and then exits.

This example program demonstrates each action type, with the minimum configu-

ration needed for each to work.

import argparse

parser = argparse.ArgumentParser()

parser.add_argument(’-s’, action=’store’,

dest=’simple_value’,

help=’Store a simple value’)

parser.add_argument(’-c’, action=’store_const’,

dest=’constant_value’,

const=’value-to-store’,

help=’Store a constant value’)

parser.add_argument(’-t’, action=’store_true’,

default=False,

dest=’boolean_switch’,

help=’Set a switch to true’)

ptg

800 Application Building Blocks

parser.add_argument(’-f’, action=’store_false’,

default=False,

dest=’boolean_switch’,

help=’Set a switch to false’)

parser.add_argument(’-a’, action=’append’,

dest=’collection’,

default=[],

help=’Add repeated values to a list’)

parser.add_argument(’-A’, action=’append_const’,

dest=’const_collection’,

const=’value-1-to-append’,

default=[],

help=’Add different values to list’)

parser.add_argument(’-B’, action=’append_const’,

dest=’const_collection’,

const=’value-2-to-append’,

help=’Add different values to list’)

parser.add_argument(’--version’, action=’version’,

version=’%(prog)s 1.0’)

results = parser.parse_args()

print ’simple_value = %r’ % results.simple_value

print ’constant_value = %r’ % results.constant_value

print ’boolean_switch = %r’ % results.boolean_switch

print ’collection = %r’ % results.collection

print ’const_collection = %r’ % results.const_collection

The -t and -f options are configured to modify the same option value, so they act

as a Boolean switch. The dest values for -A and -B are the same so that their constant

values are appended to the same list.

$ python argparse_action.py -h

usage: argparse_action.py [-h] [-s SIMPLE_VALUE] [-c] [-t] [-f]

[-a COLLECTION] [-A] [-B] [--version]

optional arguments:

-h, --help show this help message and exit

-s SIMPLE_VALUE Store a simple value

-c Store a constant value

ptg

14.3. argparse—Command-Line Option and Argument Parsing 801

-t Set a switch to true

-f Set a switch to false

-a COLLECTION Add repeated values to a list

-A Add different values to list

-B Add different values to list

--version show program’s version number and exit

$ python argparse_action.py -s value

simple_value = ’value’

constant_value = None

boolean_switch = False

collection = []

const_collection = []

$ python argparse_action.py -c

simple_value = None

constant_value = ’value-to-store’

boolean_switch = False

collection = []

const_collection = []

$ python argparse_action.py -t

simple_value = None

constant_value = None

boolean_switch = True

collection = []

const_collection = []

$ python argparse_action.py -f

simple_value = None

constant_value = None

boolean_switch = False

collection = []

const_collection = []

$ python argparse_action.py -a one -a two -a three

simple_value = None

constant_value = None

boolean_switch = False

ptg

802 Application Building Blocks

collection = [’one’, ’two’, ’three’]

const_collection = []

$ python argparse_action.py -B -A

simple_value = None

constant_value = None

boolean_switch = False

collection = []

const_collection = [’value-2-to-append’, ’value-1-to-append’]

$ python argparse_action.py --version

argparse_action.py 1.0

Option Prefixes

The default syntax for options is based on the UNIX convention of signifying

command-line switches using a dash prefix (“-”). argparse supports other prefixes,

so a program can conform to the local platform default (i.e., use “/” on Windows) or

follow a different convention.

import argparse

parser = argparse.ArgumentParser(

description=’Change the option prefix characters’,

prefix_chars=’-+/’,

)

parser.add_argument(’-a’, action="store_false",

default=None,

help=’Turn A off’,

)

parser.add_argument(’+a’, action="store_true",

default=None,

help=’Turn A on’,

)

parser.add_argument(’//noarg’, ’++noarg’,

action="store_true",

default=False)

print parser.parse_args()

ptg

14.3. argparse—Command-Line Option and Argument Parsing 803

Set the prefix_chars parameter for the ArgumentParser to a string containing all

the characters that should be allowed to signify options. It is important to understand

that although prefix_chars establishes the allowed switch characters, the individual

argument definitions specify the syntax for a given switch. This gives explicit control

over whether options using different prefixes are aliases (such as might be the case for

platform-independent, command-line syntax) or alternatives (e.g., using “+” to indicate

turning a switch on and “-” to turn it off). In the previous example, +a and -a are

separate arguments, and //noarg can also be given as ++noarg, but not as --noarg.

$ python argparse_prefix_chars.py -h

usage: argparse_prefix_chars.py [-h] [-a] [+a] [//noarg]

Change the option prefix characters

optional arguments:

-h, --help show this help message and exit

-a Turn A off

+a Turn A on

//noarg, ++noarg

$ python argparse_prefix_chars.py +a

Namespace(a=True, noarg=False)

$ python argparse_prefix_chars.py -a

Namespace(a=False, noarg=False)

$ python argparse_prefix_chars.py //noarg

Namespace(a=None, noarg=True)

$ python argparse_prefix_chars.py ++noarg

Namespace(a=None, noarg=True)

$ python argparse_prefix_chars.py --noarg

usage: argparse_prefix_chars.py [-h] [-a] [+a] [//noarg]

argparse_prefix_chars.py: error: unrecognized arguments: --noarg

ptg

804 Application Building Blocks

Sources of Arguments

In the examples so far, the list of arguments given to the parser has come from a list

passed in explicitly, or the arguments were taken implicitly from sys.argv. Passing

the list explicitly is useful when using argparse to process command-line-like instruc-

tions that do not come from the command line (such as in a configuration file).

import argparse
from ConfigParser import ConfigParser

import shlex

parser = argparse.ArgumentParser(description=’Short sample app’)

parser.add_argument(’-a’, action="store_true", default=False)

parser.add_argument(’-b’, action="store", dest="b")

parser.add_argument(’-c’, action="store", dest="c", type=int)

config = ConfigParser()

config.read(’argparse_with_shlex.ini’)

config_value = config.get(’cli’, ’options’)

print ’Config :’, config_value

argument_list = shlex.split(config_value)

print ’Arg List:’, argument_list

print ’Results :’, parser.parse_args(argument_list)

shlex makes it easy to split the string stored in the configuration file.

$ python argparse_with_shlex.py

Config : -a -b 2

Arg List: [’-a’, ’-b’, ’2’]

Results : Namespace(a=True, b=’2’, c=None)

An alternative to processing the configuration file in application code is to tell

argparse how to recognize an argument that specifies an input file containing a set of

arguments to be processed using fromfile_prefix_chars.

import argparse
from ConfigParser import ConfigParser

import shlex

ptg

14.3. argparse—Command-Line Option and Argument Parsing 805

parser = argparse.ArgumentParser(description=’Short sample app’,

fromfile_prefix_chars=’@’,

)

parser.add_argument(’-a’, action="store_true", default=False)

parser.add_argument(’-b’, action="store", dest="b")

parser.add_argument(’-c’, action="store", dest="c", type=int)

print parser.parse_args([’@argparse_fromfile_prefix_chars.txt’])

This example stops when it finds an argument prefixed with @, and then it

reads the named file to find more arguments. For example, an input file argparse_

fromfile_prefix_chars.txt contains a series of arguments, one per line.

-a

-b

2

This is the output produced when processing the file.

$ python argparse_fromfile_prefix_chars.py

Namespace(a=True, b=’2’, c=None)

14.3.6 Automatically Generated Options

argparse will automatically add options to generate help and show the version infor-

mation for the application, if configured to do so.

The add_help argument to ArgumentParser controls the help-related options.

import argparse

parser = argparse.ArgumentParser(add_help=True)

parser.add_argument(’-a’, action="store_true", default=False)

parser.add_argument(’-b’, action="store", dest="b")

parser.add_argument(’-c’, action="store", dest="c", type=int)

print parser.parse_args()

The help options (-h and --help) are added by default, but they can be disabled

by setting add_help to false.

ptg

806 Application Building Blocks

import argparse

parser = argparse.ArgumentParser(add_help=False)

parser.add_argument(’-a’, action="store_true", default=False)

parser.add_argument(’-b’, action="store", dest="b")

parser.add_argument(’-c’, action="store", dest="c", type=int)

print parser.parse_args()

Although -h and --help are de facto standard option names for requesting help,

some applications or uses of argparse either do not need to provide help or need to

use those option names for other purposes.

$ python argparse_with_help.py -h

usage: argparse_with_help.py [-h] [-a] [-b B] [-c C]

optional arguments:

-h, --help show this help message and exit

-a

-b B

-c C

$ python argparse_without_help.py -h

usage: argparse_without_help.py [-a] [-b B] [-c C]

argparse_without_help.py: error: unrecognized arguments: -h

The version options (-v and --version) are added when version is set in the

ArgumentParser constructor.

import argparse

parser = argparse.ArgumentParser(version=’1.0’)

parser.add_argument(’-a’, action="store_true", default=False)

parser.add_argument(’-b’, action="store", dest="b")

parser.add_argument(’-c’, action="store", dest="c", type=int)

print parser.parse_args()

print ’This is not printed’

ptg

14.3. argparse—Command-Line Option and Argument Parsing 807

Both forms of the option print the program’s version string and then cause it to

exit immediately.

$ python argparse_with_version.py -h

usage: argparse_with_version.py [-h] [-v] [-a] [-b B] [-c C]

optional arguments:

-h, --help show this help message and exit

-v, --version show program’s version number and exit

-a

-b B

-c C

$ python argparse_with_version.py -v

1.0

$ python argparse_with_version.py --version

1.0

14.3.7 Parser Organization

argparse includes several features for organizing argument parsers, to make imple-

mentation easier or to improve the usability of the help output.

Sharing Parser Rules

Programmers commonly to need to implement a suite of command-line tools that all

take a set of arguments and then specialize in some way. For example, if the programs

all need to authenticate the user before taking any real action, they would all need to

support --user and --password options. Rather than add the options explicitly to

every ArgumentParser, it is possible to define a parent parser with the shared options

and then have the parsers for the individual programs inherit from its options.

The first step is to set up the parser with the shared-argument definitions. Since

each subsequent user of the parent parser will try to add the same help options, causing

an exception, automatic help generation is turned off in the base parser.

import argparse

parser = argparse.ArgumentParser(add_help=False)

ptg

808 Application Building Blocks

parser.add_argument(’--user’, action="store")

parser.add_argument(’--password’, action="store")

Next, create another parser with parents set.

import argparse
import argparse_parent_base

parser = argparse.ArgumentParser(

parents=[argparse_parent_base.parser],

)

parser.add_argument(’--local-arg’,

action="store_true",

default=False)

print parser.parse_args()

And the resulting program takes all three options.

$ python argparse_uses_parent.py -h

usage: argparse_uses_parent.py [-h] [--user USER]

[--password PASSWORD]

[--local-arg]

optional arguments:

-h, --help show this help message and exit

--user USER

--password PASSWORD

--local-arg

Conflicting Options

The previous example pointed out that adding two argument handlers to a parser using

the same argument name causes an exception. The conflict resolution behavior can

be changed by passing a conflict_handler. The two built-in handlers are error (the

default) and resolve, which picks handlers based on the order in which they are added.

import argparse

parser = argparse.ArgumentParser(conflict_handler=’resolve’)

parser.add_argument(’-a’, action="store")

parser.add_argument(’-b’, action="store", help=’Short alone’)

ptg

14.3. argparse—Command-Line Option and Argument Parsing 809

parser.add_argument(’--long-b’, ’-b’,

action="store",

help=’Long and short together’)

print parser.parse_args([’-h’])

Since the last handler with a given argument name is used, in this example, the

stand-alone option -b is masked by the alias for --long-b.

$ python argparse_conflict_handler_resolve.py

usage: argparse_conflict_handler_resolve.py [-h] [-a A]

[--long-b LONG_B]

optional arguments:

-h, --help show this help message and exit

-a A

--long-b LONG_B, -b LONG_B

Long and short together

Switching the order of the calls to add_argument() unmasks the stand-alone

option.

import argparse

parser = argparse.ArgumentParser(conflict_handler=’resolve’)

parser.add_argument(’-a’, action="store")

parser.add_argument(’--long-b’, ’-b’,

action="store",

help=’Long and short together’)

parser.add_argument(’-b’, action="store", help=’Short alone’)

print parser.parse_args([’-h’])

Now both options can be used together.

$ python argparse_conflict_handler_resolve2.py

usage: argparse_conflict_handler_resolve2.py [-h] [-a A]

[--long-b LONG_B]

[-b B]

ptg

810 Application Building Blocks

optional arguments:

-h, --help show this help message and exit

-a A

--long-b LONG_B Long and short together

-b B Short alone

Argument Groups

argparse combines the argument definitions into “groups.” By default, it uses two

groups, with one for options and another for required position-based arguments.

import argparse

parser = argparse.ArgumentParser(description=’Short sample app’)

parser.add_argument(’--optional’, action="store_true", default=False)

parser.add_argument(’positional’, action="store")

print parser.parse_args()

The grouping is reflected in the separate “positional arguments” and “optional

arguments” section of the help output.

$ python argparse_default_grouping.py -h

usage: argparse_default_grouping.py [-h] [--optional] positional

Short sample app

positional arguments:

positional

optional arguments:

-h, --help show this help message and exit

--optional

The grouping can be adjusted to make it more logical in the help, so that related

options or values are documented together. The shared-option example from earlier

could be written using custom grouping so that the authentication options are shown

together in the help.

ptg

14.3. argparse—Command-Line Option and Argument Parsing 811

Create the “authentication” group with add_argument_group() and then

add each of the authentication-related options to the group, instead of the base

parser.

import argparse

parser = argparse.ArgumentParser(add_help=False)

group = parser.add_argument_group(’authentication’)

group.add_argument(’--user’, action="store")

group.add_argument(’--password’, action="store")

The program using the group-based parent lists it in the parents value, just as

before.

import argparse
import argparse_parent_with_group

parser = argparse.ArgumentParser(

parents=[argparse_parent_with_group.parser],

)

parser.add_argument(’--local-arg’,

action="store_true",

default=False)

print parser.parse_args()

The help output now shows the authentication options together.

$ python argparse_uses_parent_with_group.py -h

usage: argparse_uses_parent_with_group.py [-h] [--user USER]

[--password PASSWORD]

[--local-arg]

optional arguments:

-h, --help show this help message and exit

--local-arg

ptg

812 Application Building Blocks

authentication:

--user USER

--password PASSWORD

Mutually Exclusive Options

Defining mutually exclusive options is a special case of the option grouping feature. It

uses add_mutually_exclusive_group() instead of add_argument_group().

import argparse

parser = argparse.ArgumentParser()

group = parser.add_mutually_exclusive_group()

group.add_argument(’-a’, action=’store_true’)

group.add_argument(’-b’, action=’store_true’)

print parser.parse_args()

argparse enforces the mutual exclusivity, so that only one of the options from

the group can be given.

$ python argparse_mutually_exclusive.py -h

usage: argparse_mutually_exclusive.py [-h] [-a | -b]

optional arguments:

-h, --help show this help message and exit

-a

-b

$ python argparse_mutually_exclusive.py -a

Namespace(a=True, b=False)

$ python argparse_mutually_exclusive.py -b

Namespace(a=False, b=True)

$ python argparse_mutually_exclusive.py -a -b

usage: argparse_mutually_exclusive.py [-h] [-a | -b]

ptg

14.3. argparse—Command-Line Option and Argument Parsing 813

argparse_mutually_exclusive.py: error: argument -b: not allowed with

argument -a

Nesting Parsers

The parent parser approach described earlier is one way to share options between related

commands. An alternate approach is to combine the commands into a single program

and use subparsers to handle each portion of the command-line. The result works in

the way svn, hg, and other programs with multiple command-line actions, or subcom-

mands, do.

A program to work with directories on the file system might define commands for

creating, deleting, and listing the contents of a directory like this.

import argparse

parser = argparse.ArgumentParser()

subparsers = parser.add_subparsers(help=’commands’)

A list command

list_parser = subparsers.add_parser(

’list’, help=’List contents’)

list_parser.add_argument(

’dirname’, action=’store’,

help=’Directory to list’)

A create command

create_parser = subparsers.add_parser(

’create’, help=’Create a directory’)

create_parser.add_argument(

’dirname’, action=’store’,

help=’New directory to create’)

create_parser.add_argument(

’--read-only’, default=False, action=’store_true’,

help=’Set permissions to prevent writing to the directory’,

)

A delete command

delete_parser = subparsers.add_parser(

’delete’, help=’Remove a directory’)

delete_parser.add_argument(

’dirname’, action=’store’, help=’The directory to remove’)

ptg

814 Application Building Blocks

delete_parser.add_argument(

’--recursive’, ’-r’, default=False, action=’store_true’,

help=’Remove the contents of the directory, too’,

)

print parser.parse_args()

The help output shows the named subparsers as “commands” that can be specified

on the command line as positional arguments.

$ python argparse_subparsers.py -h

usage: argparse_subparsers.py [-h] {create,list,delete} ...

positional arguments:

{create,list,delete} commands

list List contents

create Create a directory

delete Remove a directory

optional arguments:

-h, --help show this help message and exit

Each subparser also has its own help, describing the arguments and options for

that command.

$ python argparse_subparsers.py create -h

usage: argparse_subparsers.py create [-h] [--read-only] dirname

positional arguments:

dirname New directory to create

optional arguments:

-h, --help show this help message and exit

--read-only Set permissions to prevent writing to the directory

And when the arguments are parsed, the Namespace object returned by

parse_args() includes only the values related to the command specified.

$ python argparse_subparsers.py delete -r foo

Namespace(dirname=’foo’, recursive=True)

ptg

14.3. argparse—Command-Line Option and Argument Parsing 815

14.3.8 Advanced Argument Processing

The examples so far have shown simple Boolean flags, options with string or numerical

arguments, and positional arguments. argparse also supports sophisticated argument

specification for variable-length argument lists, enumerations, and constant values.

Variable Argument Lists

A single argument definition can be configured to consume multiple arguments on the

command line being parsed. Set nargs to one of the flag values from Table 14.1, based

on the number of required or expected arguments.

Table 14.1. Flags for Variable Argument Definitions in argparse

Value Meaning
N The absolute number of arguments (e.g., 3)

? 0 or 1 arguments

* 0 or all arguments

+ All, and at least one, arguments

import argparse

parser = argparse.ArgumentParser()

parser.add_argument(’--three’, nargs=3)

parser.add_argument(’--optional’, nargs=’?’)

parser.add_argument(’--all’, nargs=’*’, dest=’all’)

parser.add_argument(’--one-or-more’, nargs=’+’)

print parser.parse_args()

The parser enforces the argument count instructions and generates an accurate

syntax diagram as part of the command help text.

$ python argparse_nargs.py -h

usage: argparse_nargs.py [-h] [--three THREE THREE THREE]

[--optional [OPTIONAL]]

[--all [ALL [ALL ...]]]

[--one-or-more ONE_OR_MORE [ONE_OR_MORE ...]]

optional arguments:

-h, --help show this help message and exit

ptg

816 Application Building Blocks

--three THREE THREE THREE

--optional [OPTIONAL]

--all [ALL [ALL ...]]

--one-or-more ONE_OR_MORE [ONE_OR_MORE ...]

$ python argparse_nargs.py

Namespace(all=None, one_or_more=None, optional=None, three=None)

$ python argparse_nargs.py --three

usage: argparse_nargs.py [-h] [--three THREE THREE THREE]

[--optional [OPTIONAL]]

[--all [ALL [ALL ...]]]

[--one-or-more ONE_OR_MORE [ONE_OR_MORE ...]]

argparse_nargs.py: error: argument --three: expected 3

argument(s)

$ python argparse_nargs.py --three a b c

Namespace(all=None, one_or_more=None, optional=None,

three=[’a’, ’b’, ’c’])

$ python argparse_nargs.py --optional

Namespace(all=None, one_or_more=None, optional=None, three=None)

$ python argparse_nargs.py --optional with_value

Namespace(all=None, one_or_more=None, optional=’with_value’,

three=None)

$ python argparse_nargs.py --all with multiple values

Namespace(all=[’with’, ’multiple’, ’values’], one_or_more=None,

optional=None, three=None)

$ python argparse_nargs.py --one-or-more with_value

Namespace(all=None, one_or_more=[’with_value’], optional=None,

three=None)

$ python argparse_nargs.py --one-or-more with multiple values

ptg

14.3. argparse—Command-Line Option and Argument Parsing 817

Namespace(all=None, one_or_more=[’with’, ’multiple’, ’values’],

optional=None, three=None)

$ python argparse_nargs.py --one-or-more

usage: argparse_nargs.py [-h] [--three THREE THREE THREE]

[--optional [OPTIONAL]]

[--all [ALL [ALL ...]]]

[--one-or-more ONE_OR_MORE [ONE_OR_MORE ...]]

argparse_nargs.py: error: argument --one-or-more: expected

at least one argument

Argument Types

argparse treats all argument values as strings, unless it is told to convert the string

to another type. The type parameter to add_argument() defines a converter function,

which is used by the ArgumentParser to transform the argument value from a string

to some other type.

import argparse

parser = argparse.ArgumentParser()

parser.add_argument(’-i’, type=int)

parser.add_argument(’-f’, type=float)

parser.add_argument(’--file’, type=file)

try:
print parser.parse_args()

except IOError, msg:

parser.error(str(msg))

Any callable that takes a single string argument can be passed as type, including

built-in types like int(), float(), and file().

$ python argparse_type.py -i 1

Namespace(f=None, file=None, i=1)

$ python argparse_type.py -f 3.14

Namespace(f=3.14, file=None, i=None)

ptg

818 Application Building Blocks

$ python argparse_type.py --file argparse_type.py

Namespace(f=None, file=<open file ’argparse_type.py’, mode ’r’ at

0x100d886f0>, i=None)

If the type conversion fails, argparse raises an exception. TypeError and

ValueError exceptions are trapped automatically and converted to a simple error mes-

sage for the user. Other exceptions, such as the IOError in the next example where the

input file does not exist, must be handled by the caller.

$ python argparse_type.py -i a

usage: argparse_type.py [-h] [-i I] [-f F] [--file FILE]

argparse_type.py: error: argument -i: invalid int value: ’a’

$ python argparse_type.py -f 3.14.15

usage: argparse_type.py [-h] [-i I] [-f F] [--file FILE]

argparse_type.py: error: argument -f: invalid float value: ’3.14.15’

$ python argparse_type.py --file does_not_exist.txt

usage: argparse_type.py [-h] [-i I] [-f F] [--file FILE]

argparse_type.py: error: [Errno 2] No such file or directory:

’does_not_exist.txt’

To limit an input argument to a value within a predefined set, use the choices
parameter.

import argparse

parser = argparse.ArgumentParser()

parser.add_argument(’--mode’, choices=(’read-only’, ’read-write’))

print parser.parse_args()

If the argument to --mode is not one of the allowed values, an error is generated

and processing stops.

$ python argparse_choices.py -h

usage: argparse_choices.py [-h] [--mode {read-only,read-write}]

ptg

14.3. argparse—Command-Line Option and Argument Parsing 819

optional arguments:

-h, --help show this help message and exit

--mode {read-only,read-write}

$ python argparse_choices.py --mode read-only

Namespace(mode=’read-only’)

$ python argparse_choices.py --mode invalid

usage: argparse_choices.py [-h] [--mode {read-only,read-write}]

argparse_choices.py: error: argument --mode: invalid choice:

’invalid’ (choose from ’read-only’, ’read-write’)

File Arguments

Although file objects can be instantiated with a single string argument, that does

not include the access mode argument. FileType provides a more flexible way of

specifying that an argument should be a file, including the mode and buffer size.

import argparse

parser = argparse.ArgumentParser()

parser.add_argument(’-i’, metavar=’in-file’,

type=argparse.FileType(’rt’))

parser.add_argument(’-o’, metavar=’out-file’,

type=argparse.FileType(’wt’))

try:
results = parser.parse_args()

print ’Input file:’, results.i

print ’Output file:’, results.o

except IOError, msg:

parser.error(str(msg))

The value associated with the argument name is the open file handle. The applica-

tion is responsible for closing the file when it is no longer being used.

$ python argparse_FileType.py -h

usage: argparse_FileType.py [-h] [-i in-file] [-o out-file]

ptg

820 Application Building Blocks

optional arguments:

-h, --help show this help message and exit

-i in-file

-o out-file

$ python argparse_FileType.py -i argparse_FileType.py -o tmp_file.txt

Input file: <open file ’argparse_FileType.py’, mode ’rt’ at

0x100d886f0>

Output file: <open file ’tmp_file.txt’, mode ’wt’ at 0x100dfa150>

$ python argparse_FileType.py -i no_such_file.txt

usage: argparse_FileType.py [-h] [-i in-file] [-o out-file]

argparse_FileType.py: error: [Errno 2] No such file or directory:

’no_such_file.txt’

Custom Actions

In addition to the built-in actions described earlier, custom actions can be defined

by providing an object that implements the Action API. The object passed to

add_argument() as action should take parameters describing the argument being

defined (all the same arguments given to add_argument()) and return a callable object

that takes as parameters the parser processing the arguments, the namespace holding

the parse results, the value of the argument being acted on, and the option_string that

triggered the action.

A class Action is provided as a convenient starting point for defining new actions.

The constructor handles the argument definitions, so only __call__() needs to be

overridden in the subclass.

import argparse

class CustomAction(argparse.Action):
def __init__(self,

option_strings,

dest,

nargs=None,

const=None,

default=None,

type=None,

choices=None,

required=False,

ptg

14.3. argparse—Command-Line Option and Argument Parsing 821

help=None,

metavar=None):

argparse.Action.__init__(self,

option_strings=option_strings,

dest=dest,

nargs=nargs,

const=const,

default=default,

type=type,

choices=choices,

required=required,

help=help,

metavar=metavar,

)

print ’Initializing CustomAction’

for name,value in sorted(locals().items()):

if name == ’self’ or value is None:

continue
print ’ %s = %r’ % (name, value)

print
return

def __call__(self, parser, namespace, values,

option_string=None):

print ’Processing CustomAction for "%s"’ % self.dest

print ’ parser = %s’ % id(parser)

print ’ values = %r’ % values

print ’ option_string = %r’ % option_string

Do some arbitrary processing of the input values

if isinstance(values, list):

values = [v.upper() for v in values]

else:
values = values.upper()

Save the results in the namespace using the destination

variable given to our constructor.

setattr(namespace, self.dest, values)

print

parser = argparse.ArgumentParser()

parser.add_argument(’-a’, action=CustomAction)

parser.add_argument(’-m’, nargs=’*’, action=CustomAction)

ptg

822 Application Building Blocks

results = parser.parse_args([’-a’, ’value’,

’-m’, ’multivalue’,

’second’])

print results

The type of values depends on the value of nargs. If the argument allows multiple

values, values will be a list even if it only contains one item.

The value of option_string also depends on the original argument specification.

For positional required arguments, option_string is always None.

$ python argparse_custom_action.py

Initializing CustomAction

dest = ’a’

option_strings = [’-a’]

required = False

Initializing CustomAction

dest = ’m’

nargs = ’*’

option_strings = [’-m’]

required = False

Initializing CustomAction

dest = ’positional’

option_strings = []

required = True

Processing CustomAction for "a"

parser = 4309267472

values = ’value’

option_string = ’-a’

Processing CustomAction for "m"

parser = 4309267472

values = [’multivalue’, ’second’]

option_string = ’-m’

Namespace(a=’VALUE’, m=[’MULTIVALUE’, ’SECOND’])

See Also:
argparse (http://docs.python.org/library/argparse.html) The standard library docu-

mentation for this module.

http://docs.python.org/lib/module-optparse.html

ptg

14.4. readline—The GNU Readline Library 823

Original argparse (http://pypi.python.org/pypi/argparse) The PyPI page for the

version of argparse from outside of the standard libary. This version is compatible

with older versions of Python and can be installed separately.

ConfigParser (page 861) Read and write configuration files.

14.4 readline—The GNU Readline Library

Purpose Provides an interface to the GNU Readline library for interacting

with the user at a command prompt.

Python Version 1.4 and later

The readline module can be used to enhance interactive command-line programs to

make them easier to use. It is primarily used to provide command-line text completion,

or “tab completion.”

Note: Because readline interacts with the console content, printing debug mes-

sages makes it difficult to see what is happening in the sample code versus what

readline is doing for free. The following examples use the logging module to write

debug information to a separate file. The log output is shown with each example.

Note: The GNU libraries needed for readline are not available on all platforms

by default. If your system does not include them, you may need to recompile the

Python interpreter to enable the module, after installing the dependencies.

14.4.1 Configuring

There are two ways to configure the underlying readline library, using a configura-

tion file or the parse_and_bind() function. Configuration options include the key-

binding to invoke completion, editing modes (vi or emacs), and many other values.

Refer to the documentation for the GNU Readline library for details.

The easiest way to enable tab-completion is through a call to parse_and_

bind(). Other options can be set at the same time. This example changes the edit-

ing controls to use “vi” mode instead of the default of “emacs.” To edit the current

input line, press ESC and then use normal vi navigation keys such as j, k, l, and h.

import readline

readline.parse_and_bind(’tab: complete’)

readline.parse_and_bind(’set editing-mode vi’)

http://pypi.python.org/pypi/argparse

ptg

824 Application Building Blocks

while True:

line = raw_input(’Prompt ("stop" to quit): ’)

if line == ’stop’:

break
print ’ENTERED: "%s"’ % line

The same configuration can be stored as instructions in a file read by the library

with a single call. If myreadline.rc contains

Turn on tab completion

tab: complete

Use vi editing mode instead of emacs

set editing-mode vi

the file can be read with read_init_file().

import readline

readline.read_init_file(’myreadline.rc’)

while True:

line = raw_input(’Prompt ("stop" to quit): ’)

if line == ’stop’:

break
print ’ENTERED: "%s"’ % line

14.4.2 Completing Text

This program has a built-in set of possible commands and uses tab-completion when

the user is entering instructions.

import readline
import logging

LOG_FILENAME = ’/tmp/completer.log’

logging.basicConfig(filename=LOG_FILENAME,

level=logging.DEBUG,

)

class SimpleCompleter(object):

def __init__(self, options):

ptg

14.4. readline—The GNU Readline Library 825

self.options = sorted(options)

return

def complete(self, text, state):

response = None

if state == 0:

This is the first time for this text,

so build a match list.

if text:

self.matches = [s

for s in self.options

if s and s.startswith(text)]

logging.debug(’%s matches: %s’,
repr(text), self.matches)

else:
self.matches = self.options[:]

logging.debug(’(empty input) matches: %s’,
self.matches)

Return the state’th item from the match list,

if we have that many.

try:
response = self.matches[state]

except IndexError:
response = None

logging.debug(’complete(%s, %s) => %s’,
repr(text), state, repr(response))

return response

def input_loop():

line = ’’

while line != ’stop’:

line = raw_input(’Prompt ("stop" to quit): ’)

print ’Dispatch %s’ % line

Register the completer function

OPTIONS = [’start’, ’stop’, ’list’, ’print’]

readline.set_completer(SimpleCompleter(OPTIONS).complete)

Use the tab key for completion

readline.parse_and_bind(’tab: complete’)

Prompt the user for text

input_loop()

ptg

826 Application Building Blocks

The input_loop() function reads one line after another until the input value is

"stop". A more sophisticated program could actually parse the input line and run the

command.

The SimpleCompleter class keeps a list of “options” that are candidates for

auto-completion. The complete() method for an instance is designed to be registered

with readline as the source of completions. The arguments are a text string to com-

plete and a state value, indicating how many times the function has been called with

the same text. The function is called repeatedly, with the state incremented each time. It

should return a string if there is a candidate for that state value or None if there are no

more candidates. The implementation of complete() here looks for a set of matches

when state is 0, and then returns all the candidate matches one at a time on subsequent

calls.

When run, the initial output is:

$ python readline_completer.py

Prompt ("stop" to quit):

Pressing TAB twice causes a list of options to be printed.

$ python readline_completer.py

Prompt ("stop" to quit):

list print start stop

Prompt ("stop" to quit):

The log file shows that complete() was called with two separate sequences of

state values.

$ tail -f /tmp/completer.log

DEBUG:root:(empty input) matches: [’list’, ’print’, ’start’, ’stop’]

DEBUG:root:complete(’’, 0) => ’list’

DEBUG:root:complete(’’, 1) => ’print’

DEBUG:root:complete(’’, 2) => ’start’

DEBUG:root:complete(’’, 3) => ’stop’

DEBUG:root:complete(’’, 4) => None

DEBUG:root:(empty input) matches: [’list’, ’print’, ’start’, ’stop’]

DEBUG:root:complete(’’, 0) => ’list’

DEBUG:root:complete(’’, 1) => ’print’

ptg

14.4. readline—The GNU Readline Library 827

DEBUG:root:complete(’’, 2) => ’start’

DEBUG:root:complete(’’, 3) => ’stop’

DEBUG:root:complete(’’, 4) => None

The first sequence is from the first TAB key-press. The completion algorithm asks

for all candidates but does not expand the empty input line. Then, on the second TAB,

the list of candidates is recalculated so it can be printed for the user.

If the next input is “l” followed by another TAB, the screen shows the following.

Prompt ("stop" to quit): list

And the log reflects the different arguments to complete().

DEBUG:root:’l’ matches: [’list’]

DEBUG:root:complete(’l’, 0) => ’list’

DEBUG:root:complete(’l’, 1) => None

Pressing RETURN now causes raw_input() to return the value, and the while
loop cycles.

Dispatch list

Prompt ("stop" to quit):

There are two possible completions for a command beginning with “s”. Typing

“s”, and then pressing TAB, finds that “start” and “stop” are candidates, but only

partially completes the text on the screen by adding a “t”.

This is what the log file shows.

DEBUG:root:’s’ matches: [’start’, ’stop’]

DEBUG:root:complete(’s’, 0) => ’start’

DEBUG:root:complete(’s’, 1) => ’stop’

DEBUG:root:complete(’s’, 2) => None

And the screen shows the following.

Prompt ("stop" to quit): st

Warning: If a completer function raises an exception, it is ignored silently and

readline assumes there are no matching completions.

ptg

828 Application Building Blocks

14.4.3 Accessing the Completion Buffer

The completion algorithm in SimpleCompleter is simplistic because it only looks

at the text argument passed to the function, but does not use any more of readline’s

internal state. It is also possible to use readline functions to manipulate the text of

the input buffer.

import readline
import logging

LOG_FILENAME = ’/tmp/completer.log’

logging.basicConfig(filename=LOG_FILENAME,

level=logging.DEBUG,

)

class BufferAwareCompleter(object):

def __init__(self, options):

self.options = options

self.current_candidates = []

return

def complete(self, text, state):

response = None

if state == 0:

This is the first time for this text,

so build a match list.

origline = readline.get_line_buffer()

begin = readline.get_begidx()

end = readline.get_endidx()

being_completed = origline[begin:end]

words = origline.split()

logging.debug(’origline=%s’, repr(origline))

logging.debug(’begin=%s’, begin)

logging.debug(’end=%s’, end)

logging.debug(’being_completed=%s’, being_completed)

logging.debug(’words=%s’, words)

if not words:

self.current_candidates = sorted(self.options.keys())

ptg

14.4. readline—The GNU Readline Library 829

else:
try:

if begin == 0:

first word

candidates = self.options.keys()

else:
later word

first = words[0]

candidates = self.options[first]

if being_completed:

match options with portion of input

being completed

self.current_candidates = [

w for w in candidates

if w.startswith(being_completed)

]

else:
matching empty string so use all candidates

self.current_candidates = candidates

logging.debug(’candidates=%s’,
self.current_candidates)

except (KeyError, IndexError), err:

logging.error(’completion error: %s’, err)

self.current_candidates = []

try:
response = self.current_candidates[state]

except IndexError:
response = None

logging.debug(’complete(%s, %s) => %s’,
repr(text), state, response)

return response

def input_loop():

line = ’’

while line != ’stop’:

line = raw_input(’Prompt ("stop" to quit): ’)

print ’Dispatch %s’ % line

ptg

830 Application Building Blocks

Register our completer function

readline.set_completer(BufferAwareCompleter(

{’list’:[’files’, ’directories’],

’print’:[’byname’, ’bysize’],

’stop’:[],

}).complete)

Use the tab key for completion

readline.parse_and_bind(’tab: complete’)

Prompt the user for text

input_loop()

In this example, commands with suboptions are being completed. The com-

plete() method needs to look at the position of the completion within the input buffer

to determine whether it is part of the first word or a later word. If the target is the first

word, the keys of the options dictionary are used as candidates. If it is not the first word,

then the first word is used to find candidates from the options dictionary.

There are three top-level commands, two of which have subcommands.

• list

– files
– directories

• print

– byname
– bysize

• stop

Following the same sequence of actions as before, pressing TAB twice gives the

three top-level commands.

$ python readline_buffer.py

Prompt ("stop" to quit):

list print stop

Prompt ("stop" to quit):

and in the log:

DEBUG:root:origline=’’

DEBUG:root:begin=0

ptg

14.4. readline—The GNU Readline Library 831

DEBUG:root:end=0

DEBUG:root:being_completed=

DEBUG:root:words=[]

DEBUG:root:complete(’’, 0) => list

DEBUG:root:complete(’’, 1) => print

DEBUG:root:complete(’’, 2) => stop

DEBUG:root:complete(’’, 3) => None

DEBUG:root:origline=’’

DEBUG:root:begin=0

DEBUG:root:end=0

DEBUG:root:being_completed=

DEBUG:root:words=[]

DEBUG:root:complete(’’, 0) => list

DEBUG:root:complete(’’, 1) => print

DEBUG:root:complete(’’, 2) => stop

DEBUG:root:complete(’’, 3) => None

If the first word is "list " (with a space after the word), the candidates for com-

pletion are different.

Prompt ("stop" to quit): list

directories files

The log shows that the text being completed is not the full line, but the portion

after list.

DEBUG:root:origline=’list ’

DEBUG:root:begin=5

DEBUG:root:end=5

DEBUG:root:being_completed=

DEBUG:root:words=[’list’]

DEBUG:root:candidates=[’files’, ’directories’]

DEBUG:root:complete(’’, 0) => files

DEBUG:root:complete(’’, 1) => directories

DEBUG:root:complete(’’, 2) => None

DEBUG:root:origline=’list ’

DEBUG:root:begin=5

DEBUG:root:end=5

DEBUG:root:being_completed=

DEBUG:root:words=[’list’]

DEBUG:root:candidates=[’files’, ’directories’]

DEBUG:root:complete(’’, 0) => files

DEBUG:root:complete(’’, 1) => directories

DEBUG:root:complete(’’, 2) => None

ptg

832 Application Building Blocks

14.4.4 Input History

readline tracks the input history automatically. There are two different sets of func-

tions for working with the history. The history for the current session can be accessed

with get_current_history_length() and get_history_item(). That same

history can be saved to a file to be reloaded later using write_history_file() and

read_history_file(). By default, the entire history is saved, but the maximum

length of the file can be set with set_history_length(). A length of −1 means no

limit.

import readline
import logging
import os

LOG_FILENAME = ’/tmp/completer.log’

HISTORY_FILENAME = ’/tmp/completer.hist’

logging.basicConfig(filename=LOG_FILENAME,

level=logging.DEBUG,

)

def get_history_items():

num_items = readline.get_current_history_length() + 1

return [readline.get_history_item(i)

for i in xrange(1, num_items)

]

class HistoryCompleter(object):

def __init__(self):

self.matches = []

return

def complete(self, text, state):

response = None

if state == 0:

history_values = get_history_items()

logging.debug(’history: %s’, history_values)

if text:

self.matches = sorted(h

for h in history_values

if h and h.startswith(text))

ptg

14.4. readline—The GNU Readline Library 833

else:
self.matches = []

logging.debug(’matches: %s’, self.matches)

try:
response = self.matches[state]

except IndexError:
response = None

logging.debug(’complete(%s, %s) => %s’,
repr(text), state, repr(response))

return response

def input_loop():

if os.path.exists(HISTORY_FILENAME):

readline.read_history_file(HISTORY_FILENAME)

print ’Max history file length:’, readline.get_history_length()

print ’Start-up history:’, get_history_items()

try:
while True:

line = raw_input(’Prompt ("stop" to quit): ’)

if line == ’stop’:

break
if line:

print ’Adding "%s" to the history’ % line

finally:
print ’Final history:’, get_history_items()

readline.write_history_file(HISTORY_FILENAME)

Register our completer function

readline.set_completer(HistoryCompleter().complete)

Use the tab key for completion

readline.parse_and_bind(’tab: complete’)

Prompt the user for text

input_loop()

The HistoryCompleter remembers everything typed and uses those values

when completing subsequent inputs.

$ python readline_history.py

Max history file length: -1

ptg

834 Application Building Blocks

Start-up history: []

Prompt ("stop" to quit): foo

Adding "foo" to the history

Prompt ("stop" to quit): bar

Adding "bar" to the history

Prompt ("stop" to quit): blah

Adding "blah" to the history

Prompt ("stop" to quit): b

bar blah

Prompt ("stop" to quit): b

Prompt ("stop" to quit): stop

Final history: [’foo’, ’bar’, ’blah’, ’stop’]

The log shows this output when the “b” is followed by two TABs.

DEBUG:root:history: [’foo’, ’bar’, ’blah’]

DEBUG:root:matches: [’bar’, ’blah’]

DEBUG:root:complete(’b’, 0) => ’bar’

DEBUG:root:complete(’b’, 1) => ’blah’

DEBUG:root:complete(’b’, 2) => None

DEBUG:root:history: [’foo’, ’bar’, ’blah’]

DEBUG:root:matches: [’bar’, ’blah’]

DEBUG:root:complete(’b’, 0) => ’bar’

DEBUG:root:complete(’b’, 1) => ’blah’

DEBUG:root:complete(’b’, 2) => None

When the script is run the second time, all the history is read from the file.

$ python readline_history.py

Max history file length: -1

Start-up history: [’foo’, ’bar’, ’blah’, ’stop’]

Prompt ("stop" to quit):

There are functions for removing individual history items and clearing the entire

history, as well.

14.4.5 Hooks

Several hooks are available for triggering actions as part of the interaction sequence.

The start-up hook is invoked immediately before printing the prompt, and the preinput
hook is run after the prompt, but before reading text from the user.

ptg

14.4. readline—The GNU Readline Library 835

import readline

def startup_hook():

readline.insert_text(’from start up_hook’)

def pre_input_hook():

readline.insert_text(’ from pre_input_hook’)

readline.redisplay()

readline.set_startup_hook(startup_hook)

readline.set_pre_input_hook(pre_input_hook)

readline.parse_and_bind(’tab: complete’)

while True:

line = raw_input(’Prompt ("stop" to quit): ’)

if line == ’stop’:

break
print ’ENTERED: "%s"’ % line

Either hook is a potentially good place to use insert_text() to modify the input

buffer.

$ python readline_hooks.py

Prompt ("stop" to quit): from startup_hook from pre_input_hook

If the buffer is modified inside the preinput hook, redisplay() must be called

to update the screen.

See Also:
readline (http://docs.python.org/library/readline.html) The standard library docu-

mentation for this module.

GNU readline (http://tiswww.case.edu/php/chet/readline/readline.html)
Documentation for the GNU Readline library.

readline init file format (http://tiswww.case.edu/php/chet/readline/readline.html#
SEC10) The initialization and configuration file format.

effbot: The readline module (http://sandbox.effbot.org/librarybook/readline.htm)
effbot’s guide to the readline module.

pyreadline (https://launchpad.net/pyreadline) pyreadline, developed as a Python-

based replacement for readline to be used in iPython (http://ipython.scipy.org/).

http://docs.python.org/library/readline.html
http://tiswww.case.edu/php/chet/readline/readline.html
http://tiswww.case.edu/php/chet/readline/readline.html#SEC10
http://tiswww.case.edu/php/chet/readline/readline.html#SEC10
http://sandbox.effbot.org/librarybook/readline.htm
https://launchpad.net/pyreadline
http://ipython.scipy.org/

ptg

836 Application Building Blocks

cmd (page 839) The cmd module uses readline extensively to implement tab-

completion in the command interface. Some of the examples here were adapted

from the code in cmd.

rlcompleter rlcompleter uses readline to add tab-completion to the interactive

Python interpreter.

14.5 getpass—Secure Password Prompt

Purpose Prompt the user for a value, usually a password, without echoing

what is typed to the console.

Python Version 1.5.2 and later

Many programs that interact with the user via the terminal need to ask the user for

password values without showing what the user types on the screen. The getpass

module provides a portable way to handle such password prompts securely.

14.5.1 Example

The getpass() function prints a prompt and then reads input from the user until return

is pressed. The input is returned as a string to the caller.

import getpass

try:
p = getpass.getpass()

except Exception, err:

print ’ERROR:’, err

else:
print ’You entered:’, p

The default prompt, if none is specified by the caller, is “Password:”.

$ python getpass_defaults.py

Password:

You entered: sekret

The prompt can be changed to any value needed.

import getpass

p = getpass.getpass(prompt=’What is your favorite color? ’)

ptg

14.5. getpass—Secure Password Prompt 837

if p.lower() == ’blue’:

print ’Right. Off you go.’

else:
print ’Auuuuugh!’

Some programs ask for a “pass phrase,” instead of a simple password, to give

better security.

$ python getpass_prompt.py

What is your favorite color?

Right. Off you go.

$ python getpass_prompt.py

What is your favorite color?

Auuuuugh!

By default, getpass() uses sys.stdout to print the prompt string. For a pro-

gram that may produce useful output on sys.stdout, it is frequently better to send

the prompt to another stream, such as sys.stderr.

import getpass
import sys

p = getpass.getpass(stream=sys.stderr)

print ’You entered:’, p

Using sys.stderr for the prompt means standard output can be redirected (to a

pipe or a file) without seeing the password prompt. The value the user enters is still not

echoed back to the screen.

$ python getpass_stream.py >/dev/null

Password:

14.5.2 Using getpass without a Terminal

Under UNIX getpass() always requires a tty it can control via termios, so input

echoing can be disabled. This means values will not be read from a nonterminal

stream redirected to standard input. The results vary when standard input is redirected,

ptg

838 Application Building Blocks

based on the Python version. Python 2.5 produces an exception if sys.stdin is

replaced.

$ echo "not sekret" | python2.5 getpass_defaults.py

ERROR: (25, ’Inappropriate ioctl for device’)

Python 2.6 and 2.7 have been enhanced to try harder to get to the tty for a process,

and no error is raised if they can access it.

$ echo "not sekret" | python2.7 getpass_defaults.py

Password:

You entered: sekret

It is up to the caller to detect when the input stream is not a tty and use an alternate

method for reading in that case.

import getpass
import sys

if sys.stdin.isatty():

p = getpass.getpass(’Using getpass: ’)

else:
print ’Using readline’

p = sys.stdin.readline().rstrip()

print ’Read: ’, p

With a tty:

$ python ./getpass_noterminal.py

Using getpass:

Read: sekret

Without a tty:

$ echo "sekret" | python ./getpass_noterminal.py

Using readline

Read: sekret

ptg

14.6. cmd—Line-Oriented Command Processors 839

See Also:
getpass (http://docs.python.org/library/getpass.html) The standard library docu-

mentation for this module.

readline (page 823) Interactive prompt library.

14.6 cmd—Line-Oriented Command Processors

Purpose Create line-oriented command processors.

Python Version 1.4 and later

The cmd module contains one public class, Cmd, designed to be used as a base class

for interactive shells and other command interpreters. By default, it uses readline for

interactive prompt handling, command-line editing, and command completion.

14.6.1 Processing Commands

A command interpreter created with Cmd uses a loop to read all lines from its input,

parse them, and then dispatch the command to an appropriate command handler. Input

lines are parsed into two parts: the command and any other text on the line. If the user

enters foo bar, and the interpreter class includes a method named do_foo(), it is

called with "bar" as the only argument.

The end-of-file marker is dispatched to do_EOF(). If a command handler returns

a true value, the program will exit cleanly. So, to give a clean way to exit the interpreter,

make sure to implement do_EOF() and have it return True.

This simple example program supports the “greet” command.

import cmd

class HelloWorld(cmd.Cmd):
"""Simple command processor example."""

def do_greet(self, line):

print "hello"

def do_EOF(self, line):

return True

if __name__ == ’__main__’:

HelloWorld().cmdloop()

Running it interactively demonstrates how commands are dispatched and shows

some of the features included in Cmd.

http://docs.python.org/library/getpass.html

ptg

840 Application Building Blocks

$ python cmd_simple.py

(Cmd)

The first thing to notice is the command prompt, (Cmd). The prompt can be con-

figured through the attribute prompt. If the prompt changes as the result of a command

processor, the new value is used to query for the next command.

(Cmd) help

Undocumented commands:

======================

EOF greet help

The help command is built into Cmd. With no arguments, help shows the list of

commands available. If the input includes a command name, the output is more verbose

and restricted to details of that command, when available.

If the command is greet, do_greet() is invoked to handle it.

(Cmd) greet

hello

If the class does not include a specific command processor for a command, the

method default() is called with the entire input line as an argument. The built-in

implementation of default() reports an error.

(Cmd) foo

*** Unknown syntax: foo

Since do_EOF() returns True, typing Ctrl-D causes the interpreter to exit.

(Cmd) ^D$

No newline is printed on exit, so the results are a little messy.

14.6.2 Command Arguments

This example includes a few enhancements to eliminate some of the annoyances and

add help for the greet command.

import cmd

class HelloWorld(cmd.Cmd):
"""Simple command processor example."""

ptg

14.6. cmd—Line-Oriented Command Processors 841

def do_greet(self, person):

"""greet [person]

Greet the named person"""

if person:

print "hi,", person

else:
print ’hi’

def do_EOF(self, line):

return True

def postloop(self):

print

if __name__ == ’__main__’:

HelloWorld().cmdloop()

The docstring added to do_greet() becomes the help text for the command.

$ python cmd_arguments.py

(Cmd) help

Documented commands (type help):

==

greet

Undocumented commands:

======================

EOF help

(Cmd) help greet

greet [person]

Greet the named person

The output shows one optional argument to greet, person. Although the argument

is optional to the command, there is a distinction between the command and the callback

method. The method always takes the argument, but sometimes, the value is an empty

string. It is left up to the command processor to determine if an empty argument is

valid or to do any further parsing and processing of the command. In this example, if a

person’s name is provided, then the greeting is personalized.

(Cmd) greet Alice

hi, Alice

ptg

842 Application Building Blocks

(Cmd) greet

hi

Whether an argument is given by the user or not, the value passed to the command

processor does not include the command itself. That simplifies parsing in the command

processor, especially if multiple arguments are needed.

14.6.3 Live Help

In the previous example, the formatting of the help text leaves something to be desired.

Since it comes from the docstring, it retains the indentation from the source file. The

source could be changed to remove the extra whitespace, but that would leave the appli-

cation code looking poorly formatted. A better solution is to implement a help handler

for the greet command, named help_greet(). The help handler is called to produce

help text for the named command.

import cmd

class HelloWorld(cmd.Cmd):
"""Simple command processor example."""

def do_greet(self, person):

if person:

print "hi,", person

else:
print ’hi’

def help_greet(self):

print ’\n’.join([’greet [person]’,

’Greet the named person’,

])

def do_EOF(self, line):

return True

if __name__ == ’__main__’:

HelloWorld().cmdloop()

In this example, the text is static but formatted more nicely. It would also be pos-

sible to use previous command state to tailor the contents of the help text to the current

context.

ptg

14.6. cmd—Line-Oriented Command Processors 843

$ python cmd_do_help.py

(Cmd) help greet

greet [person]

Greet the named person

It is up to the help handler to actually output the help message and not simply

return the help text for handling elsewhere.

14.6.4 Auto-Completion

Cmd includes support for command completion based on the names of the commands

with processor methods. The user triggers completion by hitting the tab key at an input

prompt. When multiple completions are possible, pressing tab twice prints a list of the

options.

$ python cmd_do_help.py

(Cmd) <tab><tab>

EOF greet help

(Cmd) h<tab>

(Cmd) help

Once the command is known, argument completion is handled by methods with the

prefix complete_. This allows new completion handlers to assemble a list of possible

completions using arbitrary criteria (i.e., querying a database or looking at a file or

directory on the file system). In this case, the program has a hard-coded set of “friends”

who receive a less formal greeting than named or anonymous strangers. A real program

would probably save the list somewhere, read it once and then cache the contents to be

scanned, as needed.

import cmd

class HelloWorld(cmd.Cmd):
"""Simple command processor example."""

FRIENDS = [’Alice’, ’Adam’, ’Barbara’, ’Bob’]

def do_greet(self, person):

"Greet the person"

ptg

844 Application Building Blocks

if person and person in self.FRIENDS:

greeting = ’hi, %s!’ % person

elif person:

greeting = "hello, " + person

else:
greeting = ’hello’

print greeting

def complete_greet(self, text, line, begidx, endidx):

if not text:

completions = self.FRIENDS[:]

else:
completions = [f

for f in self.FRIENDS

if f.startswith(text)

]

return completions

def do_EOF(self, line):

return True

if __name__ == ’__main__’:

HelloWorld().cmdloop()

When there is input text, complete_greet() returns a list of friends that match.

Otherwise, the full list of friends is returned.

$ python cmd_arg_completion.py

(Cmd) greet <tab><tab>

Adam Alice Barbara Bob

(Cmd) greet A<tab><tab>

Adam Alice

(Cmd) greet Ad<tab>

(Cmd) greet Adam

hi, Adam!

If the name given is not in the list of friends, the formal greeting is given.

(Cmd) greet Joe

hello, Joe

ptg

14.6. cmd—Line-Oriented Command Processors 845

14.6.5 Overriding Base Class Methods

Cmd includes several methods that can be overridden as hooks for taking actions or

altering the base class behavior. This example is not exhaustive, but it contains many

of the methods commonly useful.

import cmd

class Illustrate(cmd.Cmd):
"Illustrate the base class method use."

def cmdloop(self, intro=None):

print ’cmdloop(%s)’ % intro

return cmd.Cmd.cmdloop(self, intro)

def preloop(self):

print ’preloop()’

def postloop(self):

print ’postloop()’

def parseline(self, line):

print ’parseline(%s) =>’ % line,

ret = cmd.Cmd.parseline(self, line)

print ret

return ret

def onecmd(self, s):

print ’onecmd(%s)’ % s

return cmd.Cmd.onecmd(self, s)

def emptyline(self):

print ’emptyline()’

return cmd.Cmd.emptyline(self)

def default(self, line):

print ’default(%s)’ % line

return cmd.Cmd.default(self, line)

def precmd(self, line):

print ’precmd(%s)’ % line

return cmd.Cmd.precmd(self, line)

ptg

846 Application Building Blocks

def postcmd(self, stop, line):

print ’postcmd(%s, %s)’ % (stop, line)

return cmd.Cmd.postcmd(self, stop, line)

def do_greet(self, line):

print ’hello,’, line

def do_EOF(self, line):

"Exit"

return True

if __name__ == ’__main__’:

Illustrate().cmdloop(’Illustrating the methods of cmd.Cmd’)

cmdloop() is the main processing loop of the interpreter. Overriding it is usually

not necessary, since the preloop() and postloop() hooks are available.

Each iteration through cmdloop() calls onecmd() to dispatch the command to

its processor. The actual input line is parsed with parseline() to create a tuple con-

taining the command and the remaining portion of the line.

If the line is empty, emptyline() is called. The default implementation runs the

previous command again. If the line contains a command, first precmd() is called and

then the processor is looked up and invoked. If none is found, default() is called

instead. Finally, postcmd() is called.

Here is an example session with print statements added.

$ python cmd_illustrate_methods.py

cmdloop(Illustrating the methods of cmd.Cmd)

preloop()

Illustrating the methods of cmd.Cmd

(Cmd) greet Bob

precmd(greet Bob)

onecmd(greet Bob)

parseline(greet Bob) => (’greet’, ’Bob’, ’greet Bob’)

hello, Bob

postcmd(None, greet Bob)

(Cmd) ^Dprecmd(EOF)

onecmd(EOF)

parseline(EOF) => (’EOF’, ’’, ’EOF’)

postcmd(True, EOF)

postloop()

ptg

14.6. cmd—Line-Oriented Command Processors 847

14.6.6 Configuring Cmd through Attributes

In addition to the methods described earlier, there are several attributes for controlling

command interpreters. prompt can be set to a string to be printed each time the user

is asked for a new command. intro is the “welcome” message printed at the start of

the program. cmdloop() takes an argument for this value, or it can be set on the class

directly. When printing help, the doc_header, misc_header, undoc_header, and

ruler attributes are used to format the output.

import cmd

class HelloWorld(cmd.Cmd):
"""Simple command processor example."""

prompt = ’prompt: ’

intro = "Simple command processor example."

doc_header = ’doc_header’

misc_header = ’misc_header’

undoc_header = ’undoc_header’

ruler = ’-’

def do_prompt(self, line):

"Change the interactive prompt"

self.prompt = line + ’: ’

def do_EOF(self, line):

return True

if __name__ == ’__main__’:

HelloWorld().cmdloop()

This example class shows a command processor to let the user control the prompt

for the interactive session.

$ python cmd_attributes.py

Simple command processor example.

prompt: prompt hello

hello: help

ptg

848 Application Building Blocks

doc_header

prompt

undoc_header

EOF help

hello:

14.6.7 Running Shell Commands

To supplement the standard command processing, Cmd includes two special command

prefixes. A question mark (?) is equivalent to the built-in help command and can be

used in the same way. An exclamation point (!) maps to do_shell() and is intended

for “shelling out” to run other commands, as in this example.

import cmd
import subprocess

class ShellEnabled(cmd.Cmd):

last_output = ’’

def do_shell(self, line):

"Run a shell command"

print "running shell command:", line

sub_cmd = subprocess.Popen(line,

shell=True,

stdout=subprocess.PIPE)

output = sub_cmd.communicate()[0]

print output

self.last_output = output

def do_echo(self, line):

"""Print the input, replacing ’$out’ with

the output of the last shell command.

"""

Obviously not robust

print line.replace(’$out’, self.last_output)

def do_EOF(self, line):

return True

ptg

14.6. cmd—Line-Oriented Command Processors 849

if __name__ == ’__main__’:

ShellEnabled().cmdloop()

This echo command implementation replaces the string $out in its argument with

the output from the previous shell command.

$ python cmd_do_shell.py

(Cmd) ?

Documented commands (type help):

==

echo shell

Undocumented commands:

======================

EOF help

(Cmd) ? shell

Run a shell command

(Cmd) ? echo

Print the input, replacing ’$out’ with

the output of the last shell command

(Cmd) shell pwd

running shell command: pwd

/Users/dhellmann/Documents/PyMOTW/in_progress/cmd

(Cmd) ! pwd

running shell command: pwd

/Users/dhellmann/Documents/PyMOTW/in_progress/cmd

(Cmd) echo $out

/Users/dhellmann/Documents/PyMOTW/in_progress/cmd

(Cmd)

14.6.8 Alternative Inputs

While the default mode for Cmd() is to interact with the user through the readline

library, it is also possible to pass a series of commands to standard input using standard

UNIX shell redirection.

$ echo help | python cmd_do_help.py

ptg

850 Application Building Blocks

(Cmd)

Documented commands (type help):

==

greet

Undocumented commands:

======================

EOF help

(Cmd)

To have the program read a script file directly, a few other changes may be needed.

Since readline interacts with the terminal/tty device, rather than the standard input

stream, it should be disabled when the script will be reading from a file. Also, to avoid

printing superfluous prompts, the prompt can be set to an empty string. This example

shows how to open a file and pass it as input to a modified version of the HelloWorld

example.

import cmd

class HelloWorld(cmd.Cmd):
"""Simple command processor example."""

Disable rawinput module use

use_rawinput = False

Do not show a prompt after each command read

prompt = ’’

def do_greet(self, line):

print "hello,", line

def do_EOF(self, line):

return True

if __name__ == ’__main__’:

import sys
with open(sys.argv[1], ’rt’) as input:

HelloWorld(stdin=input).cmdloop()

With use_rawinput set to False and prompt set to an empty string, the script can

be called on this input file.

ptg

14.6. cmd—Line-Oriented Command Processors 851

greet

greet Alice and Bob

It produces this output.

$ python cmd_file.py cmd_file.txt

hello,

hello, Alice and Bob

14.6.9 Commands from sys.argv

Command-line arguments to the program can also be processed as commands for the

interpreter class, instead of reading commands from the console or a file. To use the

command-line arguments, call onecmd() directly, as in this example.

import cmd

class InteractiveOrCommandLine(cmd.Cmd):
"""Accepts commands via the normal interactive

prompt or on the command line.

"""

def do_greet(self, line):

print ’hello,’, line

def do_EOF(self, line):

return True

if __name__ == ’__main__’:

import sys
if len(sys.argv) > 1:

InteractiveOrCommandLine().onecmd(’ ’.join(sys.argv[1:]))

else:
InteractiveOrCommandLine().cmdloop()

Since onecmd() takes a single string as input, the arguments to the program need

to be joined together before being passed in.

$ python cmd_argv.py greet Command-Line User

hello, Command-Line User

ptg

852 Application Building Blocks

$ python cmd_argv.py

(Cmd) greet Interactive User

hello, Interactive User

(Cmd)

See Also:
cmd (http://docs.python.org/library/cmd.html) The standard library documentation

for this module.

cmd2 (http://pypi.python.org/pypi/cmd2) Drop-in replacement for cmd with addi-

tional features.

GNU Readline (http://tiswww.case.edu/php/chet/readline/rltop.html)
The GNU Readline library provides functions that allow users to edit input lines

as they are typed.

readline (page 823) The Python standard library interface to readline.

subprocess (page 481) Managing other processes and their output.

14.7 shlex—Parse Shell-Style Syntaxes

Purpose Lexical analysis of shell-style syntaxes.

Python Version 1.5.2 and later

The shlex module implements a class for parsing simple shell-like syntaxes. It can be

used for writing a domain-specific language or for parsing quoted strings (a task that is

more complex than it seems on the surface).

14.7.1 Quoted Strings

A common problem when working with input text is to identify a sequence of quoted

words as a single entity. Splitting the text on quotes does not always work as expected,

especially if there are nested levels of quotes. Take the following text as an example.

This string has embedded "double quotes" and ’single quotes’ in it,

and even "a ’nested example’".

A naive approach would be to construct a regular expression to find the parts of the

text outside the quotes to separate them from the text inside the quotes, or vice versa.

That would be unnecessarily complex and prone to errors resulting from edge-cases

like apostrophes or even typos. A better solution is to use a true parser, such as the

one provided by the shlex module. Here is a simple example that prints the tokens

identified in the input file using the shlex class.

http://docs.python.org/library/cmd.html
http://pypi.python.org/pypi/cmd2
http://tiswww.case.edu/php/chet/readline/rltop.html

ptg

14.7. shlex—Parse Shell-Style Syntaxes 853

import shlex
import sys

if len(sys.argv) != 2:

print ’Please specify one filename on the command line.’

sys.exit(1)

filename = sys.argv[1]

body = file(filename, ’rt’).read()

print ’ORIGINAL:’, repr(body)

print

print ’TOKENS:’

lexer = shlex.shlex(body)

for token in lexer:

print repr(token)

When run on data with embedded quotes, the parser produces the list of expected

tokens.

$ python shlex_example.py quotes.txt

ORIGINAL: ’This string has embedded "double quotes" and \’single quo

tes\’ in it,\nand even "a \’nested example\’".\n’

TOKENS:

’This’

’string’

’has’

’embedded’

’"double quotes"’

’and’

"’single quotes’"

’in’

’it’

’,’

’and’

’even’

’"a \’nested example\’"’

’.’

Isolated quotes such as apostrophes are also handled. Consider this input file.

This string has an embedded apostrophe, doesn’t it?

ptg

854 Application Building Blocks

The token with the embedded apostrophe is no problem.

$ python shlex_example.py apostrophe.txt

ORIGINAL: "This string has an embedded apostrophe, doesn’t it?"

TOKENS:

’This’

’string’

’has’

’an’

’embedded’

’apostrophe’

’,’

"doesn’t"

’it’

’?’

14.7.2 Embedded Comments

Since the parser is intended to be used with command languages, it needs to handle

comments. By default, any text following a # is considered part of a comment and

ignored. Due to the nature of the parser, only single-character comment prefixes are

supported. The set of comment characters used can be configured through the com-

menters property.

$ python shlex_example.py comments.txt

ORIGINAL: ’This line is recognized.\n# But this line is ignored.\nAnd

this line is processed.’

TOKENS:

’This’

’line’

’is’

’recognized’

’.’

’And’

’this’

’line’

’is’

’processed’

’.’

ptg

14.7. shlex—Parse Shell-Style Syntaxes 855

14.7.3 Split

To split an existing string into component tokens, the convenience function split()

is a simple wrapper around the parser.

import shlex

text = """This text has "quoted parts" inside it."""

print ’ORIGINAL:’, repr(text)

print

print ’TOKENS:’

print shlex.split(text)

The result is a list.

$ python shlex_split.py

ORIGINAL: ’This text has "quoted parts" inside it.’

TOKENS:

[’This’, ’text’, ’has’, ’quoted parts’, ’inside’, ’it.’]

14.7.4 Including Other Sources of Tokens

The shlex class includes several configuration properties that control its behavior. The

source property enables a feature for code (or configuration) reuse by allowing one

token stream to include another. This is similar to the Bourne shell source operator,

hence the name.

import shlex

text = """This text says to source quotes.txt before continuing."""

print ’ORIGINAL:’, repr(text)

print

lexer = shlex.shlex(text)

lexer.wordchars += ’.’

lexer.source = ’source’

print ’TOKENS:’

for token in lexer:

print repr(token)

ptg

856 Application Building Blocks

The string source quotes.txt in the original text receives special handling.

Since the source property of the lexer is set to "source", when the keyword is

encountered, the filename appearing on the next line is automatically included. In order

to cause the filename to appear as a single token, the . character needs to be added

to the list of characters that are included in words (otherwise “quotes.txt” becomes

three tokens, “quotes”, “.”, “txt”). This is what the output looks like.

$ python shlex_source.py

ORIGINAL: ’This text says to source quotes.txt before continuing.’

TOKENS:

’This’

’text’

’says’

’to’

’This’

’string’

’has’

’embedded’

’"double quotes"’

’and’

"’single quotes’"

’in’

’it’

’,’

’and’

’even’

’"a \’nested example\’"’

’.’

’before’

’continuing.’

The “source” feature uses a method called sourcehook() to load the additional

input source, so a subclass of shlex can provide an alternate implementation that loads

data from locations other than files.

14.7.5 Controlling the Parser

An earlier example demonstrated changing the wordchars value to control which

characters are included in words. It is also possible to set the quotes character to

use additional or alternative quotes. Each quote must be a single character, so it is

ptg

14.7. shlex—Parse Shell-Style Syntaxes 857

not possible to have different open and close quotes (no parsing on parentheses, for

example).

import shlex

text = """|Col 1||Col 2||Col 3|"""

print ’ORIGINAL:’, repr(text)

print

lexer = shlex.shlex(text)

lexer.quotes = ’|’

print ’TOKENS:’

for token in lexer:

print repr(token)

In this example, each table cell is wrapped in vertical bars.

$ python shlex_table.py

ORIGINAL: ’|Col 1||Col 2||Col 3|’

TOKENS:

’|Col 1|’

’|Col 2|’

’|Col 3|’

It is also possible to control the whitespace characters used to split words.

import shlex
import sys

if len(sys.argv) != 2:

print ’Please specify one filename on the command line.’

sys.exit(1)

filename = sys.argv[1]

body = file(filename, ’rt’).read()

print ’ORIGINAL:’, repr(body)

print

print ’TOKENS:’

lexer = shlex.shlex(body)

lexer.whitespace += ’.,’

ptg

858 Application Building Blocks

for token in lexer:

print repr(token)

If the example in shlex_example.py is modified to include periods and com-

mas, the results change.

$ python shlex_whitespace.py quotes.txt

ORIGINAL: ’This string has embedded "double quotes" and \’single quo

tes\’ in it,\nand even "a \’nested example\’".\n’

TOKENS:

’This’

’string’

’has’

’embedded’

’"double quotes"’

’and’

"’single quotes’"

’in’

’it’

’and’

’even’

’"a \’nested example\’"’

14.7.6 Error Handling

When the parser encounters the end of its input before all quoted strings are closed, it

raises ValueError. When that happens, it is useful to examine some of the properties

maintained by the parser as it processes the input. For example, infile refers to the

name of the file being processed (which might be different from the original file, if one

file sources another). The lineno reports the line when the error is discovered. The

lineno is typically the end of the file, which may be far away from the first quote.

The token attribute contains the buffer of text not already included in a valid token.

The error_leader() method produces a message prefix in a style similar to UNIX

compilers, which enables editors such as emacs to parse the error and take the user

directly to the invalid line.

import shlex

text = """This line is ok.

This line has an "unfinished quote.

ptg

14.7. shlex—Parse Shell-Style Syntaxes 859

This line is ok, too.

"""

print ’ORIGINAL:’, repr(text)

print

lexer = shlex.shlex(text)

print ’TOKENS:’

try:
for token in lexer:

print repr(token)

except ValueError, err:

first_line_of_error = lexer.token.splitlines()[0]

print ’ERROR:’, lexer.error_leader(), str(err)

print ’following "’ + first_line_of_error + ’"’

The example produces this output.

$ python shlex_errors.py

ORIGINAL: ’This line is ok.\nThis line has an "unfinished quote.\nTh

is line is ok, too.\n’

TOKENS:

’This’

’line’

’is’

’ok’

’.’

’This’

’line’

’has’

’an’

ERROR: "None", line 4: No closing quotation

following ""unfinished quote."

14.7.7 POSIX vs. Non-POSIX Parsing

The default behavior for the parser is to use a backwards-compatible style, which is not

POSIX-compliant. For POSIX behavior, set the posix argument when constructing the

parser.

ptg

860 Application Building Blocks

import shlex

for s in [’Do"Not"Separate’,

’"Do"Separate’,

’Escaped \e Character not in quotes’,

’Escaped "\e" Character in double quotes’,

"Escaped ’\e’ Character in single quotes",

r"Escaped ’\’’ \"\’\" single quote",

r’Escaped "\"" \’\"\’ double quote’,

"\"’Strip extra layer of quotes’\"",
]:

print ’ORIGINAL :’, repr(s)

print ’non-POSIX:’,

non_posix_lexer = shlex.shlex(s, posix=False)

try:
print repr(list(non_posix_lexer))

except ValueError, err:

print ’error(%s)’ % err

print ’POSIX :’,

posix_lexer = shlex.shlex(s, posix=True)

try:
print repr(list(posix_lexer))

except ValueError, err:

print ’error(%s)’ % err

print

Here are a few examples of the differences in parsing behavior.

$ python shlex_posix.py

ORIGINAL : ’Do"Not"Separate’

non-POSIX: [’Do"Not"Separate’]

POSIX : [’DoNotSeparate’]

ORIGINAL : ’"Do"Separate’

non-POSIX: [’"Do"’, ’Separate’]

POSIX : [’DoSeparate’]

ORIGINAL : ’Escaped \\e Character not in quotes’

ptg

14.8. ConfigParser—Work with Configuration Files 861

non-POSIX: [’Escaped’, ’\\’, ’e’, ’Character’, ’not’, ’in’,

’quotes’]

POSIX : [’Escaped’, ’e’, ’Character’, ’not’, ’in’, ’quotes’]

ORIGINAL : ’Escaped "\\e" Character in double quotes’

non-POSIX: [’Escaped’, ’"\\e"’, ’Character’, ’in’, ’double’,

’quotes’]

POSIX : [’Escaped’, ’\\e’, ’Character’, ’in’, ’double’, ’quotes’]

ORIGINAL : "Escaped ’\\e’ Character in single quotes"

non-POSIX: [’Escaped’, "’\\e’", ’Character’, ’in’, ’single’,

’quotes’]

POSIX : [’Escaped’, ’\\e’, ’Character’, ’in’, ’single’, ’quotes’]

ORIGINAL : ’Escaped \’\\\’\’ \\"\\\’\\" single quote’

non-POSIX: error(No closing quotation)

POSIX : [’Escaped’, ’\\ \\"\\"’, ’single’, ’quote’]

ORIGINAL : ’Escaped "\\"" \\\’\\"\\\’ double quote’

non-POSIX: error(No closing quotation)

POSIX : [’Escaped’, ’"’, ’\’"\’’, ’double’, ’quote’]

ORIGINAL : ’"\’Strip extra layer of quotes\’"’

non-POSIX: [’"\’Strip extra layer of quotes\’"’]

POSIX : ["’Strip extra layer of quotes’"]

See Also:
shlex (http://docs.python.org/lib/module-shlex.html) The Standard library docu-

mentation for this module.

cmd (page 839) Tools for building interactive command interpreters.

optparse (page 777) Command-line option parsing.

getopt (page 770) Command-line option parsing.

argparse (page 795) Command-line option parsing.

subprocess (page 481) Run commands after parsing the command line.

14.8 ConfigParser—Work with Configuration Files

Purpose Read and write configuration files similar to Windows INI files.

Python Version 1.5

Use the ConfigParser module to manage user-editable configuration files for an

application. The contents of the configuration files can be organized into groups, and

http://docs.python.org/lib/module-shlex.html

ptg

862 Application Building Blocks

several option-value types are supported, including integers, floating-point values, and

Booleans. Option values can be combined using Python formatting strings, to build

longer values such as URLs from shorter values like host names and port numbers.

14.8.1 Configuration File Format

The file format used by ConfigParser is similar to the format used by older versions

of Microsoft Windows. It consists of one or more named sections, each of which can

contain individual options with names and values.

Config file sections are identified by looking for lines starting with “[” and ending

with “]”. The value between the square brackets is the section name and can contain

any characters except square brackets.

Options are listed one per line within a section. The line starts with the name

of the option, which is separated from the value by a colon (:) or an equal sign (=).

Whitespace around the separator is ignored when the file is parsed.

This sample configuration file has a section named “bug_tracker” with three op-

tions.

[bug_tracker]

url = http://localhost:8080/bugs/

username = dhellmann

password = SECRET

14.8.2 Reading Configuration Files

The most common use for a configuration file is to have a user or system administrator

edit the file with a regular text editor to set application behavior defaults and then have

the application read the file, parse it, and act based on its contents. Use the read()

method of SafeConfigParser to read the configuration file.

from ConfigParser import SafeConfigParser

parser = SafeConfigParser()

parser.read(’simple.ini’)

print parser.get(’bug_tracker’, ’url’)

This program reads the simple.ini file from the previous section and prints the

value of the url option from the bug_tracker section.

ptg

14.8. ConfigParser—Work with Configuration Files 863

$ python ConfigParser_read.py

http://localhost:8080/bugs/

The read() method also accepts a list of filenames. Each name in turn is scanned,

and if the file exists, it is opened and read.

from ConfigParser import SafeConfigParser

import glob

parser = SafeConfigParser()

candidates = [’does_not_exist.ini’, ’also-does-not-exist.ini’,

’simple.ini’, ’multisection.ini’,

]

found = parser.read(candidates)

missing = set(candidates) - set(found)

print ’Found config files:’, sorted(found)

print ’Missing files :’, sorted(missing)

read() returns a list containing the names of the files successfully loaded, so

the program can discover which configuration files are missing and decide whether to

ignore them.

$ python ConfigParser_read_many.py

Found config files: [’multisection.ini’, ’simple.ini’]

Missing files : [’also-does-not-exist.ini’, ’does_not_exist.ini’]

Unicode Configuration Data

Configuration files containing Unicode data should be opened using the codecs mod-

ule to set the proper encoding value. Changing the password value of the original

input to contain Unicode characters and saving the results in UTF-8 encoding gives

the following.

[bug_tracker]

url = http://localhost:8080/bugs/

ptg

864 Application Building Blocks

username = dhellmann

password = ßéç®é†

The codecs file handle can be passed to readfp(), which uses the readline()

method of its argument to get lines from the file and parse them.

from ConfigParser import SafeConfigParser

import codecs

parser = SafeConfigParser()

Open the file with the correct encoding

with codecs.open(’unicode.ini’, ’r’, encoding=’utf-8’) as f:

parser.readfp(f)

password = parser.get(’bug_tracker’, ’password’)

print ’Password:’, password.encode(’utf-8’)

print ’Type :’, type(password)

print ’repr() :’, repr(password)

The value returned by get() is a unicode object, so in order to print it safely, it

must be reencoded as UTF-8.

$ python ConfigParser_unicode.py

Password: ßéç®é†

Type : <type ’unicode’>

repr() : u’\xdf\xe9\xe7\xae\xe9\u2020’

14.8.3 Accessing Configuration Settings

SafeConfigParser includes methods for examining the structure of the parsed con-

figuration, including listing the sections and options, and getting their values. This con-

figuration file includes two sections for separate web services.

[bug_tracker]

url = http://localhost:8080/bugs/

username = dhellmann

password = SECRET

[wiki]

url = http://localhost:8080/wiki/

ptg

14.8. ConfigParser—Work with Configuration Files 865

username = dhellmann

password = SECRET

And this sample program exercises some of the methods for looking at the config-

uration data, including sections(), options(), and items().

from ConfigParser import SafeConfigParser

parser = SafeConfigParser()

parser.read(’multisection.ini’)

for section_name in parser.sections():

print ’Section:’, section_name

print ’ Options:’, parser.options(section_name)

for name, value in parser.items(section_name):

print ’ %s = %s’ % (name, value)

print

Both sections() and options() return lists of strings, while items() returns

a list of tuples containing the name-value pairs.

$ python ConfigParser_structure.py

Section: bug_tracker

Options: [’url’, ’username’, ’password’]

url = http://localhost:8080/bugs/

username = dhellmann

password = SECRET

Section: wiki

Options: [’url’, ’username’, ’password’]

url = http://localhost:8080/wiki/

username = dhellmann

password = SECRET

Testing Whether Values Are Present

To test if a section exists, use has_section(), passing the section name.

from ConfigParser import SafeConfigParser

parser = SafeConfigParser()

parser.read(’multisection.ini’)

ptg

866 Application Building Blocks

for candidate in [’wiki’, ’bug_tracker’, ’dvcs’]:

print ’%-12s: %s’ % (candidate, parser.has_section(candidate))

Testing if a section exists before calling get() avoids exceptions for missing data.

$ python ConfigParser_has_section.py

wiki : True

bug_tracker : True

dvcs : False

Use has_option() to test if an option exists within a section.

from ConfigParser import SafeConfigParser

parser = SafeConfigParser()

parser.read(’multisection.ini’)

SECTIONS = [’wiki’, ’none’]

OPTIONS = [’username’, ’password’, ’url’, ’description’]

for section in SECTIONS:

has_section = parser.has_section(section)

print ’%s section exists: %s’ % (section, has_section)

for candidate in OPTIONS:

has_option = parser.has_option(section, candidate)

print ’%s.%-12s : %s’ % (section,

candidate,

has_option,

)

print

If the section does not exist, has_option() returns False.

$ python ConfigParser_has_option.py

wiki section exists: True

wiki.username : True

wiki.password : True

wiki.url : True

wiki.description : False

ptg

14.8. ConfigParser—Work with Configuration Files 867

none section exists: False

none.username : False

none.password : False

none.url : False

none.description : False

Value Types

All section and option names are treated as strings, but option values can be strings,

integers, floating-point numbers, or Booleans. There is a range of possible Boolean

values that are converted true or false. This example file includes one of each.

[ints]

positive = 1

negative = -5

[floats]

positive = 0.2

negative = -3.14

[booleans]

number_true = 1

number_false = 0

yn_true = yes

yn_false = no

tf_true = true

tf_false = false

onoff_true = on

onoff_false = false

SafeConfigParser does not make any attempt to understand the option type.

The application is expected to use the correct method to fetch the value as the desired

type. get() always returns a string. Use getint() for integers, getfloat() for

floating-point numbers, and getboolean() for Boolean values.

from ConfigParser import SafeConfigParser

parser = SafeConfigParser()

parser.read(’types.ini’)

print ’Integers:’

ptg

868 Application Building Blocks

for name in parser.options(’ints’):

string_value = parser.get(’ints’, name)

value = parser.getint(’ints’, name)

print ’ %-12s : %-7r -> %d’ % (name, string_value, value)

print ’\nFloats:’
for name in parser.options(’floats’):

string_value = parser.get(’floats’, name)

value = parser.getfloat(’floats’, name)

print ’ %-12s : %-7r -> %0.2f’ % (name, string_value, value)

print ’\nBooleans:’
for name in parser.options(’booleans’):

string_value = parser.get(’booleans’, name)

value = parser.getboolean(’booleans’, name)

print ’ %-12s : %-7r -> %s’ % (name, string_value, value)

Running this program with the example input produces the following.

$ python ConfigParser_value_types.py

Integers:

positive : ’1’ -> 1

negative : ’-5’ -> -5

Floats:

positive : ’0.2’ -> 0.20

negative : ’-3.14’ -> -3.14

Booleans:

number_true : ’1’ -> True

number_false : ’0’ -> False

yn_true : ’yes’ -> True

yn_false : ’no’ -> False

tf_true : ’true’ -> True

tf_false : ’false’ -> False

onoff_true : ’on’ -> True

onoff_false : ’false’ -> False

Options as Flags

Usually, the parser requires an explicit value for each option, but with the SafeCon-

figParser parameter allow_no_value set to True, an option can appear by itself on a

line in the input file and be used as a flag.

ptg

14.8. ConfigParser—Work with Configuration Files 869

import ConfigParser

Require values

try:
parser = ConfigParser.SafeConfigParser()

parser.read(’allow_no_value.ini’)

except ConfigParser.ParsingError, err:

print ’Could not parse:’, err

Allow stand-alone option names

print ’\nTrying again with allow_no_value=True’

parser = ConfigParser.SafeConfigParser(allow_no_value=True)

parser.read(’allow_no_value.ini’)

for flag in [’turn_feature_on’, ’turn_other_feature_on’]:

print
print flag

exists = parser.has_option(’flags’, flag)

print ’ has_option:’, exists

if exists:

print ’ get:’, parser.get(’flags’, flag)

When an option has no explicit value, has_option() reports that the option

exists and get() returns None.

$ python ConfigParser_allow_no_value.py

Could not parse: File contains parsing errors: allow_no_value.ini

[line 2]: ’turn_feature_on\n’

Trying again with allow_no_value=True

turn_feature_on

has_option: True

get: None

turn_other_feature_on

has_option: False

14.8.4 Modifying Settings

While SafeConfigParser is primarily intended to be configured by reading settings

from files, settings can also be populated by calling add_section() to create a new

section and set() to add or change an option.

ptg

870 Application Building Blocks

import ConfigParser

parser = ConfigParser.SafeConfigParser()

parser.add_section(’bug_tracker’)

parser.set(’bug_tracker’, ’url’, ’http://localhost:8080/bugs’)

parser.set(’bug_tracker’, ’username’, ’dhellmann’)

parser.set(’bug_tracker’, ’password’, ’secret’)

for section in parser.sections():

print section

for name, value in parser.items(section):

print ’ %s = %r’ % (name, value)

All options must be set as strings, even if they will be retrieved as integer, float,

or Boolean values.

$ python ConfigParser_populate.py

bug_tracker

url = ’http://localhost:8080/bugs’

username = ’dhellmann’

password = ’secret’

Sections and options can be removed from a SafeConfigParser with

remove_section() and remove_option().

from ConfigParser import SafeConfigParser

parser = SafeConfigParser()

parser.read(’multisection.ini’)

print ’Read values:\n’
for section in parser.sections():

print section

for name, value in parser.items(section):

print ’ %s = %r’ % (name, value)

parser.remove_option(’bug_tracker’, ’password’)

parser.remove_section(’wiki’)

print ’\nModified values:\n’

ptg

14.8. ConfigParser—Work with Configuration Files 871

for section in parser.sections():

print section

for name, value in parser.items(section):

print ’ %s = %r’ % (name, value)

Removing a section deletes any options it contains.

$ python ConfigParser_remove.py

Read values:

bug_tracker

url = ’http://localhost:8080/bugs/’

username = ’dhellmann’

password = ’SECRET’

wiki

url = ’http://localhost:8080/wiki/’

username = ’dhellmann’

password = ’SECRET’

Modified values:

bug_tracker

url = ’http://localhost:8080/bugs/’

username = ’dhellmann’

14.8.5 Saving Configuration Files

Once a SafeConfigParser is populated with desired data, it can be saved to a file

by calling the write() method. This makes it possible to provide a user interface for

editing the configuration settings, without having to write any code to manage the file.

import ConfigParser
import sys

parser = ConfigParser.SafeConfigParser()

parser.add_section(’bug_tracker’)

parser.set(’bug_tracker’, ’url’, ’http://localhost:8080/bugs’)

parser.set(’bug_tracker’, ’username’, ’dhellmann’)

parser.set(’bug_tracker’, ’password’, ’secret’)

parser.write(sys.stdout)

ptg

872 Application Building Blocks

The write() method takes a file-like object as argument. It writes the data out in

the INI format so it can be parsed again by SafeConfigParser.

$ python ConfigParser_write.py

[bug_tracker]

url = http://localhost:8080/bugs

username = dhellmann

password = secret

Warning: Comments in the original configuration file are not preserved when read-

ing, modifying, and rewriting a configuration file.

14.8.6 Option Search Path

SafeConfigParser uses a multistep search process when looking for an option.

Before starting the option search, the section name is tested. If the section does

not exist, and the name is not the special value DEFAULT, then NoSectionError is

raised.

1. If the option name appears in the vars dictionary passed to get(), the value from

vars is returned.

2. If the option name appears in the specified section, the value from that section is

returned.

3. If the option name appears in the DEFAULT section, that value is returned.

4. If the option name appears in the defaults dictionary passed to the construc-

tor, that value is returned. If the name is not found in any of those locations,

NoOptionError is raised.

The search path behavior can be demonstrated using this configuration file.

[DEFAULT]

file-only = value from DEFAULT section

init-and-file = value from DEFAULT section

from-section = value from DEFAULT section

from-vars = value from DEFAULT section

[sect]

section-only = value from section in file

ptg

14.8. ConfigParser—Work with Configuration Files 873

from-section = value from section in file

from-vars = value from section in file

This test program includes default settings for options not specified in the config-

uration file and overrides some values that are defined in the file.

import ConfigParser

Define the names of the options

option_names = [

’from-default’,

’from-section’, ’section-only’,

’file-only’, ’init-only’, ’init-and-file’,

’from-vars’,

]

Initialize the parser with some defaults

parser = ConfigParser.SafeConfigParser(

defaults={’from-default’:’value from defaults passed to init’,

’init-only’:’value from defaults passed to init’,

’init-and-file’:’value from defaults passed to init’,

’from-section’:’value from defaults passed to init’,

’from-vars’:’value from defaults passed to init’,

})

print ’Defaults before loading file:’

defaults = parser.defaults()

for name in option_names:

if name in defaults:

print ’ %-15s = %r’ % (name, defaults[name])

Load the configuration file

parser.read(’with-defaults.ini’)

print ’\nDefaults after loading file:’

defaults = parser.defaults()

for name in option_names:

if name in defaults:

print ’ %-15s = %r’ % (name, defaults[name])

Define some local overrides

vars = {’from-vars’:’value from vars’}

ptg

874 Application Building Blocks

Show the values of all the options

print ’\nOption lookup:’

for name in option_names:

value = parser.get(’sect’, name, vars=vars)

print ’ %-15s = %r’ % (name, value)

Show error messages for options that do not exist

print ’\nError cases:’

try:
print ’No such option :’, parser.get(’sect’, ’no-option’)

except ConfigParser.NoOptionError, err:

print str(err)

try:
print ’No such section:’, parser.get(’no-sect’, ’no-option’)

except ConfigParser.NoSectionError, err:

print str(err)

The output shows the origin for the value of each option and illustrates the way

defaults from different sources override existing values.

$ python ConfigParser_defaults.py

Defaults before loading file:

from-default = ’value from defaults passed to init’

from-section = ’value from defaults passed to init’

init-only = ’value from defaults passed to init’

init-and-file = ’value from defaults passed to init’

from-vars = ’value from defaults passed to init’

Defaults after loading file:

from-default = ’value from defaults passed to init’

from-section = ’value from DEFAULT section’

file-only = ’value from DEFAULT section’

init-only = ’value from defaults passed to init’

init-and-file = ’value from DEFAULT section’

from-vars = ’value from DEFAULT section’

Option lookup:

from-default = ’value from defaults passed to init’

from-section = ’value from section in file’

section-only = ’value from section in file’

file-only = ’value from DEFAULT section’

init-only = ’value from defaults passed to init’

ptg

14.8. ConfigParser—Work with Configuration Files 875

init-and-file = ’value from DEFAULT section’

from-vars = ’value from vars’

Error cases:

No such option : No option ’no-option’ in section: ’sect’

No such section: No section: ’no-sect’

14.8.7 Combining Values with Interpolation

SafeConfigParser provides a feature called interpolation that can be used to com-

bine values together. Values containing standard Python format strings trigger the

interpolation feature when they are retrieved with get(). Options named within the

value being fetched are replaced with their values in turn, until no more substitution is

necessary.

The URL examples from earlier in this section can be rewritten to use interpolation

to make it easier to change only part of the value. For example, this configuration file

separates the protocol, hostname, and port from the URL as separate options.

[bug_tracker]

protocol = http

server = localhost

port = 8080

url = %(protocol)s://%(server)s:%(port)s/bugs/

username = dhellmann

password = SECRET

Interpolation is performed by default each time get() is called. Pass a true value

in the raw argument to retrieve the original value, without interpolation.

from ConfigParser import SafeConfigParser

parser = SafeConfigParser()

parser.read(’interpolation.ini’)

print ’Original value :’, parser.get(’bug_tracker’, ’url’)

parser.set(’bug_tracker’, ’port’, ’9090’)

print ’Altered port value :’, parser.get(’bug_tracker’, ’url’)

print ’Without interpolation:’, parser.get(’bug_tracker’, ’url’,

raw=True)

Because the value is computed by get(), changing one of the settings being used

by the url value changes the return value.

ptg

876 Application Building Blocks

$ python ConfigParser_interpolation.py

Original value

: http://localhost:8080/bugs/

Altered port value : http://localhost:9090/bugs/

Without interpolation: %(protocol)s://%(server)s:%(port)s/bugs/

Using Defaults

Values for interpolation do not need to appear in the same section as the original option.

Defaults can be mixed with override values.

[DEFAULT]

url = %(protocol)s://%(server)s:%(port)s/bugs/

protocol = http

server = bugs.example.com

port = 80

[bug_tracker] server

= localhost port =

8080 username =

dhellmann password =

SECRET

With this configuration, the value for url comes from the DEFAULT section, and

the substitution starts by looking in bug_tracker and falling back to DEFAULT for

pieces not found.

from ConfigParser import SafeConfigParser

parser = SafeConfigParser() pars-

er.read(’interpolation_defaults.ini’)

print ’URL:’, parser.get(’bug_tracker’, ’url’)

The hostname and port values come from the bug_tracker section, but the

protocol comes from DEFAULT.

$ python ConfigParser_interpolation_defaults.py

URL: http://localhost:8080/bugs/

ptg

14.8. ConfigParser—Work with Configuration Files 877

Substitution Errors

Substitution stops after MAX_INTERPOLATION_DEPTH steps to avoid problems due to

recursive references.

import ConfigParser

parser = ConfigParser.SafeConfigParser()

parser.add_section(’sect’)

parser.set(’sect’, ’opt’, ’%(opt)s’)

try:
print parser.get(’sect’, ’opt’)

except ConfigParser.InterpolationDepthError, err:

print ’ERROR:’, err

An InterpolationDepthError exception is raised if there are too many sub-

stitution steps.

$ python ConfigParser_interpolation_recursion.py

ERROR: Value interpolation too deeply recursive:

section: [sect]

option : opt

rawval : %(opt)s

Missing values result in an InterpolationMissingOptionError exception.

import ConfigParser

parser = ConfigParser.SafeConfigParser()

parser.add_section(’bug_tracker’)

parser.set(’bug_tracker’, ’url’, ’http://%(server)s:%(port)s/bugs’)

try:
print parser.get(’bug_tracker’, ’url’)

except ConfigParser.InterpolationMissingOptionError, err:

print ’ERROR:’, err

ptg

878 Application Building Blocks

Since no server value is defined, the url cannot be constructed.

$ python ConfigParser_interpolation_error.py

ERROR: Bad value substitution:

section: [bug_tracker]

option : url

key : server

rawval : :%(port)s/bugs

See Also:
ConfigParser (http://docs.python.org/library/configparser.html) The standard lib-

rary documentation for this module.

codecs (page 284) The codecs module is for reading and writing Unicode files.

14.9 logging—Report Status, Error, and Informational
Messages

Purpose Report status, error, and informational messages.

Python Version 2.3 and later

The logging module defines a standard API for reporting errors and status information

from applications and libraries. The key benefit of having the logging API provided by

a standard library module is that all Python modules can participate in logging, so an

application’s log can include messages from third-party modules.

14.9.1 Logging in Applications vs. Libraries

Application developers and library authors can both use logging, but each audience

has different considerations to keep in mind.

Application developers configure the logging module, directing the messages

to appropriate output channels. It is possible to log messages with different verbosity

levels or to different destinations. Handlers for writing log messages to files, HTTP

GET/POST locations, email via SMTP, generic sockets, or OS-specific logging mecha-

nisms are all included. It is possible to create custom log destination classes for special

requirements not handled by any of the built-in classes.

Developers of libraries can also use logging and have even less work to do.

Simply create a logger instance for each context, using an appropriate name, and then

log messages using the standard levels. As long as a library uses the logging API with

consistent naming and level selections, the application can be configured to show or

hide messages from the library, as desired.

http://docs.python.org/library/configparser.html

ptg

14.9. logging—Report Status, Error, and Informational Messages 879

14.9.2 Logging to a File

Most applications are configured to log to a file. Use the basicConfig() function to

set up the default handler so that debug messages are written to a file.

import logging

LOG_FILENAME = ’logging_example.out’

logging.basicConfig(filename=LOG_FILENAME,

level=logging.DEBUG,

)

logging.debug(’This message should go to the log file’)

with open(LOG_FILENAME, ’rt’) as f:

body = f.read()

print ’FILE:’

print body

After running the script, the log message is written to logging_example.out.

$ python logging_file_example.py

FILE:

DEBUG:root:This message should go to the log file

14.9.3 Rotating Log Files

Running the script repeatedly causes more messages to be appended to the file. To create

a new file each time the program runs, pass a filemode argument to basicConfig()

with a value of ’w’. Rather than managing the creation of files this way, though, it is

better to use a RotatingFileHandler, which creates new files automatically and

preserves the old log file at the same time.

import glob
import logging
import logging.handlers

LOG_FILENAME = ’logging_rotatingfile_example.out’

Set up a specific logger with our desired output level

my_logger = logging.getLogger(’MyLogger’)

my_logger.setLevel(logging.DEBUG)

ptg

880 Application Building Blocks

Add the log message handler to the logger

handler = logging.handlers.RotatingFileHandler(LOG_FILENAME,

maxBytes=20,

backupCount=5,

)

my_logger.addHandler(handler)

Log some messages

for i in range(20):

my_logger.debug(’i = %d’ % i)

See what files are created

logfiles = glob.glob(’%s*’ % LOG_FILENAME)

for filename in logfiles:

print filename

The result is six separate files, each with part of the log history for the application.

$ python logging_rotatingfile_example.py

logging_rotatingfile_example.out

logging_rotatingfile_example.out.1

logging_rotatingfile_example.out.2

logging_rotatingfile_example.out.3

logging_rotatingfile_example.out.4

logging_rotatingfile_example.out.5

The most current file is always logging_rotatingfile_example.out, and

each time it reaches the size limit, it is renamed with the suffix .1. Each of the existing

backup files is renamed to increment the suffix (.1 becomes .2, etc.) and the .5 file is

erased.

Note: Obviously, this example sets the log length much too small as an extreme

example. Set maxBytes to a more appropriate value in a real program.

14.9.4 Verbosity Levels

Another useful feature of the logging API is the ability to produce different messages

at different log levels. This means code can be instrumented with debug messages, for

example, and the log level can be set so that those debug messages are not written on a

production system. Table 14.2 lists the logging levels defined by logging.

ptg

14.9. logging—Report Status, Error, and Informational Messages 881

Table 14.2. Logging Levels

Level Value
CRITICAL 50

ERROR 40

WARNING 30

INFO 20

DEBUG 10

UNSET 0

The log message is only emitted if the handler and logger are configured to emit

messages of that level or higher. For example, if a message is CRITICAL and the logger

is set to ERROR, the message is emitted (50 > 40). If a message is a WARNING and the log-

ger is set to produce only messages set to ERROR, the message is not emitted (30 < 40).

import logging
import sys

LEVELS = { ’debug’:logging.DEBUG,

’info’:logging.INFO,

’warning’:logging.WARNING,

’error’:logging.ERROR,

’critical’:logging.CRITICAL,

}

if len(sys.argv) > 1:

level_name = sys.argv[1]

level = LEVELS.get(level_name, logging.NOTSET)

logging.basicConfig(level=level)

logging.debug(’This is a debug message’)

logging.info(’This is an info message’)

logging.warning(’This is a warning message’)

logging.error(’This is an error message’)

logging.critical(’This is a critical error message’)

Run the script with an argument like “debug” or “warning” to see which messages

show up at different levels.

$ python logging_level_example.py debug

ptg

882 Application Building Blocks

DEBUG:root:This is a debug message

INFO:root:This is an info message

WARNING:root:This is a warning message

ERROR:root:This is an error message

CRITICAL:root:This is a critical error message

$ python logging_level_example.py info

INFO:root:This is an info message

WARNING:root:This is a warning message

ERROR:root:This is an error message

CRITICAL:root:This is a critical error message

14.9.5 Naming Logger Instances

All the previous log messages have “root” embedded in them. The logging module

supports a hierarchy of loggers with different names. An easy way to tell where a spe-

cific log message comes from is to use a separate logger object for each module. Every

new logger inherits the configuration of its parent, and log messages sent to a logger in-

clude the name of that logger. Optionally, each logger can be configured differently, so

that messages from different modules are handled in different ways. Here is an example

of how to log from different modules so it is easy to trace the source of the message.

import logging

logging.basicConfig(level=logging.WARNING)

logger1 = logging.getLogger(’package1.module1’)

logger2 = logging.getLogger(’package2.module2’)

logger1.warning(’This message comes from one module’)

logger2.warning(’And this message comes from another module’)

And here is the output.

$ python logging_modules_example.py

WARNING:package1.module1:This message comes from one module

WARNING:package2.module2:And this message comes from another module

There are many more options for configuring logging, including different log

message formatting options, having messages delivered to multiple destinations, and

ptg

14.10. fileinput—Command-Line Filter Framework 883

changing the configuration of a long-running application on the fly using a socket

interface. All these options are covered in depth in the library module documentation.

See Also:
logging (http://docs.python.org/library/logging.html) The standard library docu-

mentation for this module.

14.10 fileinput—Command-Line Filter Framework

Purpose Create command-line filter programs to process lines from input

streams.

Python Version 1.5.2 and later

The fileinput module is a framework for creating command-line programs for pro-

cessing text files as a filter.

14.10.1 Converting M3U Files to RSS

An example of a filter is m3utorss, a program to convert a set of MP3 files into an

RSS feed that can be shared as a podcast. The inputs to the program are one or more

m3u files listing the MP3 files to be distributed. The output is an RSS feed printed to

the console. To process the input, the program needs to iterate over the list of filenames

and.

• Open each file.

• Read each line of the file.

• Figure out if the line refers to an MP3 file.

• If it does, extract the information from the mp3 file needed for the RSS feed.

• Print the output.

All this file handling could have been coded by hand. It is not that complicated,

and with some testing, even the error handling would be right. But fileinput handles

all the details, so the program is simplified.

for line in fileinput.input(sys.argv[1:]):

mp3filename = line.strip()

if not mp3filename or mp3filename.startswith(’#’):

continue
item = SubElement(rss, ’item’)

title = SubElement(item, ’title’)

http://docs.python.org/library/logging.html

ptg

884 Application Building Blocks

title.text = mp3filename

encl = SubElement(item, ’enclosure’,

{’type’:’audio/mpeg’,

’url’:mp3filename})

The input() function takes as argument a list of filenames to examine. If the list

is empty, the module reads data from standard input. The function returns an iterator

that produces individual lines from the text files being processed. The caller just needs

to loop over each line, skipping blanks and comments, to find the references to MP3

files.

Here is the complete program.

import fileinput
import sys
import time
from xml.etree.ElementTree import Element, SubElement, tostring

from xml.dom import minidom

Establish the RSS and channel nodes

rss = Element(’rss’, {’xmlns:dc’:"http://purl.org/dc/elements/1.1/",

’version’:’2.0’,

})

channel = SubElement(rss, ’channel’)

title = SubElement(channel, ’title’)

title.text = ’Sample podcast feed’

desc = SubElement(channel, ’description’)

desc.text = ’Generated for PyMOTW’

pubdate = SubElement(channel, ’pubDate’)

pubdate.text = time.asctime()

gen = SubElement(channel, ’generator’)

gen.text = ’http://www.doughellmann.com/PyMOTW/’

for line in fileinput.input(sys.argv[1:]):

mp3filename = line.strip()

if not mp3filename or mp3filename.startswith(’#’):

continue
item = SubElement(rss, ’item’)

title = SubElement(item, ’title’)

title.text = mp3filename

encl = SubElement(item, ’enclosure’,

{’type’:’audio/mpeg’,

’url’:mp3filename})

ptg

14.10. fileinput—Command-Line Filter Framework 885

rough_string = tostring(rss)

reparsed = minidom.parseString(rough_string)

print reparsed.toprettyxml(indent=" ")

This sample input file contains the names of several MP3 files.

This is a sample m3u file

episode-one.mp3

episode-two.mp3

Running fileinput_example.py with the sample input produces XML data

using the RSS format.

$ python fileinput_example.py sample_data.m3u

<?xml version="1.0" ?>

<rss version="2.0" xmlns:dc="http://purl.org/dc/elements/1.1/">

<channel>

<title>

Sample podcast feed

</title>

<description>

Generated for PyMOTW

</description>

<pubDate>

Sun Nov 28 22:55:09 2010

</pubDate>

<generator>

http://www.doughellmann.com/PyMOTW/

</generator>

</channel>

<item>

<title>

episode-one.mp3

</title>

<enclosure type="audio/mpeg" url="episode-one.mp3"/>

</item>

<item>

<title>

episode-two.mp3

</title>

<enclosure type="audio/mpeg" url="episode-two.mp3"/>

ptg

886 Application Building Blocks

</item>

</rss>

14.10.2 Progress Metadata

In the previous example, the filename and line number being processed were not

important. Other tools, such as grep-like searching, might need that information.

fileinput includes functions for accessing all the metadata about the current line

(filename(), filelineno(), and lineno()).

import fileinput
import re
import sys

pattern = re.compile(sys.argv[1])

for line in fileinput.input(sys.argv[2:]):

if pattern.search(line):

if fileinput.isstdin():

fmt = ’{lineno}:{line}’

else:
fmt = ’{filename}:{lineno}:{line}’

print fmt.format(filename=fileinput.filename(),

lineno=fileinput.filelineno(),

line=line.rstrip())

A basic pattern-matching loop can be used to find the occurrences of the string

“fileinput” in the source for these examples.

$ python fileinput_grep.py fileinput *.py

fileinput_change_subnet.py:10:import fileinput

fileinput_change_subnet.py:17:for line in fileinput.input(files, inp

lace=True):

fileinput_change_subnet_noisy.py:10:import fileinput

fileinput_change_subnet_noisy.py:18:for line in fileinput.input(file

s, inplace=True):

fileinput_change_subnet_noisy.py:19: if fileinput.isfirstline():

fileinput_change_subnet_noisy.py:21: fileinp

ut.filename())

fileinput_example.py:6:"""Example for fileinput module.

fileinput_example.py:10:import fileinput

ptg

14.10. fileinput—Command-Line Filter Framework 887

fileinput_example.py:30:for line in fileinput.input(sys.argv[1:]):

fileinput_grep.py:10:import fileinput

fileinput_grep.py:16:for line in fileinput.input(sys.argv[2:]):

fileinput_grep.py:18: if fileinput.isstdin():

fileinput_grep.py:22: print fmt.format(filename=fileinput.fil

ename(),

fileinput_grep.py:23: lineno=fileinput.filel

ineno(),

Text can also be read from standard input.

$ cat *.py | python fileinput_grep.py fileinput

10:import fileinput

17:for line in fileinput.input(files, inplace=True):

29:import fileinput

37:for line in fileinput.input(files, inplace=True):

38: if fileinput.isfirstline():

40: fileinput.filename())

54:"""Example for fileinput module.

58:import fileinput

78:for line in fileinput.input(sys.argv[1:]):

101:import fileinput

107:for line in fileinput.input(sys.argv[2:]):

109: if fileinput.isstdin():

113: print fmt.format(filename=fileinput.filename(),

114: lineno=fileinput.filelineno(),

14.10.3 In-Place Filtering

Another common file-processing operation is to modify the contents of an in-place file.

For example, a UNIX hosts file might need to be updated if a subnet range changes.

##

Host Database

#

localhost is used to configure the loopback interface

when the system is booting. Do not change this entry.

##

127.0.0.1 localhost

255.255.255.255 broadcasthost

::1 localhost

fe80::1%lo0 localhost

ptg

888 Application Building Blocks

10.16.177.128 hubert hubert.hellfly.net

10.16.177.132 cubert cubert.hellfly.net

10.16.177.136 zoidberg zoidberg.hellfly.net

The safe way to make the change automatically is to create a new file based on

the input and then replace the original with the edited copy. fileinput supports this

method automatically using the inplace option.

import fileinput
import sys

from_base = sys.argv[1]

to_base = sys.argv[2]

files = sys.argv[3:]

for line in fileinput.input(files, inplace=True):

line = line.rstrip().replace(from_base, to_base)

print line

Although the script uses print, no output is produced because fileinput redi-

rects standard output to the file being overwritten.

$ python fileinput_change_subnet.py 10.16. 10.17. etc_hosts.txt

The updated file has the changed IP addresses of all the servers on the

10.16.0.0/16 network.

##

Host Database

#

localhost is used to configure the loopback interface

when the system is booting. Do not change this entry.

##

127.0.0.1 localhost

255.255.255.255 broadcasthost

::1 localhost

fe80::1%lo0 localhost

10.17.177.128 hubert hubert.hellfly.net

10.17.177.132 cubert cubert.hellfly.net

10.17.177.136 zoidberg zoidberg.hellfly.net

ptg

14.10. fileinput—Command-Line Filter Framework 889

Before processing begins, a backup file is created using the original name plus

.bak.

import fileinput
import glob
import sys

from_base = sys.argv[1]

to_base = sys.argv[2]

files = sys.argv[3:]

for line in fileinput.input(files, inplace=True):

if fileinput.isfirstline():

sys.stderr.write(’Started processing %s\n’ %

fileinput.filename())

sys.stderr.write(’Directory contains: %s\n’ %

glob.glob(’etc_hosts.txt*’))

line = line.rstrip().replace(from_base, to_base)

print line

sys.stderr.write(’Finished processing\n’)
sys.stderr.write(’Directory contains: %s\n’ %

glob.glob(’etc_hosts.txt*’))

The backup file is removed when the input is closed.

$ python fileinput_change_subnet_noisy.py 10.16. 10.17. etc_hosts.txt

Started processing etc_hosts.txt

Directory contains: [’etc_hosts.txt’, ’etc_hosts.txt.bak’]

Finished processing

Directory contains: [’etc_hosts.txt’]

See Also:
fileinput (http://docs.python.org/library/fileinput.html) The standard library docu-

mentation for this module.

m3utorss (www.doughellmann.com/projects/m3utorss) Script to convert M3U files

listing MP3s to an RSS file suitable for use as a podcast feed.

Building Documents with Element Nodes (page 400) More details of using Element-

Tree to produce XML.

http://docs.python.org/library/fileinput.html
www.doughellmann.com/projects/m3utorss

ptg

890 Application Building Blocks

14.11 atexit—Program Shutdown Callbacks

Purpose Register function(s) to be called when a program is closing

down.

Python Version 2.1.3 and later

The atexit module provides an interface to register functions to be called when a pro-

gram closes down normally. The sys module also provides a hook, sys.exitfunc,

but only one function can be registered there. The atexit registry can be used by

multiple modules and libraries simultaneously.

14.11.1 Examples

This is an example of registering a function via register().

import atexit

def all_done():

print ’all_done()’

print ’Registering’

atexit.register(all_done)

print ’Registered’

Since the program does not do anything else, all_done() is called right away.

$ python atexit_simple.py

Registering

Registered

all_done()

It is also possible to register more than one function and to pass arguments to the

registered functions. That can be useful to cleanly disconnect from databases, remove

temporary files, etc. Instead of keeping a special list of resources that need to be freed,

a separate cleanup function can be registered for each resource.

import atexit

def my_cleanup(name):

print ’my_cleanup(%s)’ % name

ptg

14.11. atexit—Program Shutdown Callbacks 891

atexit.register(my_cleanup, ’first’)

atexit.register(my_cleanup, ’second’)

atexit.register(my_cleanup, ’third’)

The exit functions are called in the reverse of the order in which they are regis-

tered. This method allows modules to be cleaned up in the reverse order from which

they are imported (and therefore, register their atexit functions), which should reduce

dependency conflicts.

$ python atexit_multiple.py

my_cleanup(third)

my_cleanup(second)

my_cleanup(first)

14.11.2 When Are atexit Functions Not Called?

The callbacks registered with atexit are not invoked if any of these conditions is met.

• The program dies because of a signal.

• os._exit() is invoked directly.

• A fatal error is detected in the interpreter.

An example from the subprocess section can be updated to show what happens

when a program is killed by a signal. Two files are involved, the parent and the child

programs. The parent starts the child, pauses, and then kills it.

import os
import signal
import subprocess
import time

proc = subprocess.Popen(’atexit_signal_child.py’)

print ’PARENT: Pausing before sending signal...’

time.sleep(1)

print ’PARENT: Signaling child’

os.kill(proc.pid, signal.SIGTERM)

The child sets up an atexit callback, and then sleeps until the signal arrives.

import atexit
import time
import sys

ptg

892 Application Building Blocks

def not_called():

print ’CHILD: atexit handler should not have been called’

print ’CHILD: Registering atexit handler’

sys.stdout.flush()

atexit.register(not_called)

print ’CHILD: Pausing to wait for signal’

sys.stdout.flush()

time.sleep(5)

When run, this is the output.

$ python atexit_signal_parent.py

CHILD: Registering atexit handler

CHILD: Pausing to wait for signal

PARENT: Pausing before sending signal...

PARENT: Signaling child

The child does not print the message embedded in not_called().

If a program uses os._exit(), it can avoid having the atexit callbacks

invoked.

import atexit
import os

def not_called():

print ’This should not be called’

print ’Registering’

atexit.register(not_called)

print ’Registered’

print ’Exiting...’

os._exit(0)

Because this example bypasses the normal exit path, the callback is not run.

$ python atexit_os_exit.py

To ensure that the callbacks are run, allow the program to terminate by running

out of statements to execute or by calling sys.exit().

ptg

14.11. atexit—Program Shutdown Callbacks 893

import atexit
import sys

def all_done():

print ’all_done()’

print ’Registering’

atexit.register(all_done)

print ’Registered’

print ’Exiting...’

sys.exit()

This example calls sys.exit(), so the registered callbacks are invoked.

$ python atexit_sys_exit.py

Registering

Registered

Exiting...

all_done()

14.11.3 Handling Exceptions

Tracebacks for exceptions raised in atexit callbacks are printed to the console and

the last exception raised is reraised to be the final error message of the program.

import atexit

def exit_with_exception(message):

raise RuntimeError(message)

atexit.register(exit_with_exception, ’Registered first’)

atexit.register(exit_with_exception, ’Registered second’)

The registration order controls the execution order. If an error in one callback

introduces an error in another (registered earlier, but called later), the final error message

might not be the most useful error message to show the user.

$ python atexit_exception.py

Error in atexit._run_exitfuncs:

Traceback (most recent call last):

File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python

ptg

894 Application Building Blocks

2.7/atexit.py", line 24, in _run_exitfuncs

func(*targs, **kargs)

File "atexit_exception.py", line 37, in exit_with_exception

raise RuntimeError(message)

RuntimeError: Registered second

Error in atexit._run_exitfuncs:

Traceback (most recent call last):

File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python

2.7/atexit.py", line 24, in _run_exitfuncs

func(*targs, **kargs)

File "atexit_exception.py", line 37, in exit_with_exception

raise RuntimeError(message)

RuntimeError: Registered first

Error in sys.exitfunc:

Traceback (most recent call last):

File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python

2.7/atexit.py", line 24, in _run_exitfuncs

func(*targs, **kargs)

File "atexit_exception.py", line 37, in exit_with_exception

raise RuntimeError(message)

RuntimeError: Registered first

It is usually best to handle and quietly log all exceptions in cleanup functions,

since it is messy to have a program dump errors on exit.

See Also:
atexit (http://docs.python.org/library/atexit.html) The standard library documenta-

tion for this module.

14.12 sched—Timed Event Scheduler

Purpose Generic event scheduler.

Python Version 1.4 and later

The sched module implements a generic event scheduler for running tasks at specific

times. The scheduler class uses a time function to learn the current time and a delay
function to wait for a specific period of time. The actual units of time are not important,

which makes the interface flexible enough to be used for many purposes.

The time function is called without any arguments and should return a number rep-

resenting the current time. The delay function is called with a single integer argument,

http://docs.python.org/library/atexit.html

ptg

14.12. sched—Timed Event Scheduler 895

using the same scale as the time function, and should wait that many time units before

returning. For example, the time.time() and time.sleep() functions meet these

requirements.

To support multithreaded applications, the delay function is called with argument

0 after each event is generated, to ensure that other threads also have a chance to run.

14.12.1 Running Events with a Delay

Events can be scheduled to run after a delay or at a specific time. To schedule them with

a delay, use the enter() method, which takes four arguments:

• A number representing the delay

• A priority value

• The function to call

• A tuple of arguments for the function

This example schedules two different events to run after two and three seconds,

respectively. When the event’s time comes up, print_event() is called and prints

the current time and the name argument passed to the event.

import sched
import time

scheduler = sched.scheduler(time.time, time.sleep)

def print_event(name, start):

now = time.time()

elapsed = int(now - start)

print ’EVENT: %s elapsed=%s name=%s’ % (time.ctime(now),

elapsed,

name)

start = time.time()

print ’START:’, time.ctime(start)

scheduler.enter(2, 1, print_event, (’first’, start))

scheduler.enter(3, 1, print_event, (’second’, start))

scheduler.run()

This is what running the program produces.

ptg

896 Application Building Blocks

$ python sched_basic.py

START: Sun Oct 31 20:48:47 2010

EVENT: Sun Oct 31 20:48:49 2010 elapsed=2 name=first

EVENT: Sun Oct 31 20:48:50 2010 elapsed=3 name=second

The time printed for the first event is two seconds after start, and the time for the

second event is three seconds after start.

14.12.2 Overlapping Events

The call to run() blocks until all the events have been processed. Each event is run

in the same thread, so if an event takes longer to run than the delay between events,

there will be overlap. The overlap is resolved by postponing the later event. No events

are lost, but some events may be called later than they were scheduled. In the next

example, long_event() sleeps, but it could just as easily delay by performing a long

calculation or by blocking on I/O.

import sched
import time

scheduler = sched.scheduler(time.time, time.sleep)

def long_event(name):

print ’BEGIN EVENT :’, time.ctime(time.time()), name

time.sleep(2)

print ’FINISH EVENT:’, time.ctime(time.time()), name

print ’START:’, time.ctime(time.time())

scheduler.enter(2, 1, long_event, (’first’,))

scheduler.enter(3, 1, long_event, (’second’,))

scheduler.run()

The result is that the second event is run immediately after the first event finishes,

since the first event took long enough to push the clock past the desired start time of the

second event.

$ python sched_overlap.py

START: Sun Oct 31 20:48:50 2010

BEGIN EVENT : Sun Oct 31 20:48:52 2010 first

FINISH EVENT: Sun Oct 31 20:48:54 2010 first

ptg

14.12. sched—Timed Event Scheduler 897

BEGIN EVENT : Sun Oct 31 20:48:54 2010 second

FINISH EVENT: Sun Oct 31 20:48:56 2010 second

14.12.3 Event Priorities

If more than one event is scheduled for the same time, the events’ priority values are

used to determine the order in which they are run.

import sched
import time

scheduler = sched.scheduler(time.time, time.sleep)

def print_event(name):

print ’EVENT:’, time.ctime(time.time()), name

now = time.time()

print ’START:’, time.ctime(now)

scheduler.enterabs(now+2, 2, print_event, (’first’,))

scheduler.enterabs(now+2, 1, print_event, (’second’,))

scheduler.run()

This example needs to ensure that the events are scheduled for the exact same

time, so the enterabs() method is used instead of enter(). The first argument to

enterabs() is the time to run the event, instead of the amount of time to delay.

$ python sched_priority.py

START: Sun Oct 31 20:48:56 2010

EVENT: Sun Oct 31 20:48:58 2010 second

EVENT: Sun Oct 31 20:48:58 2010 first

14.12.4 Canceling Events

Both enter() and enterabs() return a reference to the event that can be used to

cancel it later. Since run() blocks, the event has to be canceled in a different thread.

For this example, a thread is started to run the scheduler and the main processing thread

is used to cancel the event.

import sched
import threading
import time

ptg

898 Application Building Blocks

scheduler = sched.scheduler(time.time, time.sleep)

Set up a global to be modified by the threads

counter = 0

def increment_counter(name):

global counter

print ’EVENT:’, time.ctime(time.time()), name

counter += 1

print ’NOW:’, counter

print ’START:’, time.ctime(time.time())

e1 = scheduler.enter(2, 1, increment_counter, (’E1’,))

e2 = scheduler.enter(3, 1, increment_counter, (’E2’,))

Start a thread to run the events

t = threading.Thread(target=scheduler.run)

t.start()

Back in the main thread, cancel the first scheduled event.

scheduler.cancel(e1)

Wait for the scheduler to finish running in the thread

t.join()

print ’FINAL:’, counter

Two events were scheduled, but the first was later canceled. Only the second event

runs, so the counter variable is only incremented one time.

$ python sched_cancel.py

START: Sun Oct 31 20:48:58 2010

EVENT: Sun Oct 31 20:49:01 2010 E2

NOW: 1

FINAL: 1

See Also:
sched (http://docs.python.org/lib/module-sched.html) The Standard library docu-

mentation for this module.

time (page 173) The time module.

http://docs.python.org/lib/module-sched.html

ptg

Chapter 15

INTERNATIONALIZATION
AND LOCALIZATION

Python comes with two modules for preparing an application to work with multiple

natural languages and cultural settings. gettext is used to create message catalogs in

different languages, so that prompts and error messages can be displayed in a language

the user can understand. locale changes the way numbers, currency, dates, and times

are formatted to consider cultural differences, such as how negative values are indicated

and what the local currency symbol is. Both modules interface with other tools and the

operating environment to make the Python application fit in with all the other programs

on the system.

15.1 gettext—Message Catalogs

Purpose Message catalog API for internationalization.

Python Version 2.1.3 and later

The gettext module provides a pure-Python implementation compatible with the

GNU gettext library for message translation and catalog management. The tools avail-

able with the Python source distribution enable you to extract messages from a set of

source files, build a message catalog containing translations, and use that message cat-

alog to display an appropriate message for the user at runtime.

Message catalogs can be used to provide internationalized interfaces for a pro-

gram, showing messages in a language appropriate to the user. They can also be used for

other message customizations, including “skinning” an interface for different wrappers

or partners.

899

ptg

900 Internationalization and Localization

Note: Although the standard library documentation says all the necessary tools are

included with Python, pygettext.py failed to extract messages wrapped in the

ungettext call, even with the appropriate command-line options. These examples

use xgettext from the GNU gettext tool set, instead.

15.1.1 Translation Workflow Overview

The process for setting up and using translations includes five steps.

1. Identify and mark up literal strings in the source code that contain messages to
translate.
Start by identifying the messages within the program source that need to be trans-

lated and marking the literal strings so the extraction program can find them.

2. Extract the messages.
After the translatable strings in the source are identified, use xgettext to extract

them and create a .pot file, or translation template. The template is a text file

with copies of all the strings identified and placeholders for their translations.

3. Translate the messages.
Give a copy of the .pot file to the translator, changing the extension to .po.

The .po file is an editable source file used as input for the compilation step. The

translator should update the header text in the file and provide translations for all

the strings.

4. “Compile” the message catalog from the translation.
When the translator sends back the completed .po file, compile the text file to the

binary catalog format using msgfmt. The binary format is used by the runtime

catalog lookup code.

5. Load and activate the appropriate message catalog at runtime.
The final step is to add a few lines to the application to configure and load the

message catalog and install the translation function. There are a couple of ways

to do that, with associated trade-offs.

The rest of this section will examine those steps in a little more detail, starting with the

code modifications needed.

15.1.2 Creating Message Catalogs from Source Code

gettext works by looking up literal strings in a database of translations and pulling

out the appropriate translated string. There are several variations of the functions for

accessing the catalog, depending on whether the strings are Unicode or not. The usual

ptg

15.1. gettext—Message Catalogs 901

pattern is to bind the appropriate lookup function to the name “_” (a single underscore

character) so that the code is not cluttered with a lot of calls to functions with longer

names.

The message extraction program, xgettext, looks for messages embedded in

calls to the catalog lookup functions. It understands different source languages and uses

an appropriate parser for each. If the lookup functions are aliased, or extra functions are

added, give xgettext the names of additional symbols to consider when extracting

messages.

This script has a single message ready to be translated.

import gettext

Set up message catalog access

t = gettext.translation(’example’, ’locale’, fallback=True)

_ = t.ugettext

print _(’This message is in the script.’)

The example uses the Unicode version of the lookup function, ugettext(). The

text "This message is in the script." is the message to be substituted from

the catalog. Fallback mode is enabled, so if the script is run without a message catalog,

the in-lined message is printed.

$ python gettext_example.py

This message is in the script.

The next step is to extract the message and create the .pot file, using Python’s

pygettext.py or the GNU tool xgettext.

$ xgettext -o example.pot gettext_example.py

The output file produced contains the following.

SOME DESCRIPTIVE TITLE.

Copyright (C) YEAR THE PACKAGE’S COPYRIGHT HOLDER

This file is distributed under the same license

as the PACKAGE package.

FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.

#

ptg

902 Internationalization and Localization

#, fuzzy

msgid ""

msgstr ""

"Project-Id-Version: PACKAGE VERSION\n"

"Report-Msgid-Bugs-To: \n"

"POT-Creation-Date: 2010-11-28 23:16-0500\n"

"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"

"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"

"Language-Team: LANGUAGE <LL@li.org>\n"

"Language: \n"

"MIME-Version: 1.0\n"

"Content-Type: text/plain; charset=CHARSET\n"

"Content-Transfer-Encoding: 8bit\n"

#: gettext_example.py:16

msgid "This message is in the script."

msgstr ""

Message catalogs are installed into directories organized by domain and language.

The domain is usually a unique value like the application name. In this case, the

domain is gettext_example. The language value is provided by the user’s envi-

ronment at runtime through one of the environment variables, LANGUAGE, LC_ALL,

LC_MESSAGES, or LANG, depending on their configuration and platform. These exam-

ples were all run with the language set to en_US.

Now that the template is ready, the next step is to create the required directory

structure and copy the template in to the right spot. The locale directory inside the

PyMOTW source tree will serve as the root of the message catalog directory for these

examples, but it is typically better to use a directory accessible system wide so that all

users have access to the message catalogs. The full path to the catalog input source is

$localedir/$language/LC_MESSAGES/$domain.po, and the actual catalog has

the filename extension .mo.

The catalog is created by copying example.pot to locale/en_US/LC_

MESSAGES/example.po and editing it to change the values in the header and set the

alternate messages. The result is shown next.

Messages from gettext_example.py.

Copyright (C) 2009 Doug Hellmann

Doug Hellmann <doug.hellmann@gmail.com>, 2009.

#

msgid ""

msgstr ""

ptg

15.1. gettext—Message Catalogs 903

"Project-Id-Version: PyMOTW 1.92\n"

"Report-Msgid-Bugs-To: Doug Hellmann <doug.hellmann@gmail.com>\n"

"POT-Creation-Date: 2009-06-07 10:31+EDT\n"

"PO-Revision-Date: 2009-06-07 10:31+EDT\n"

"Last-Translator: Doug Hellmann <doug.hellmann@gmail.com>\n"

"Language-Team: US English <doug.hellmann@gmail.com>\n"

"MIME-Version: 1.0\n"

"Content-Type: text/plain; charset=UTF-8\n"

"Content-Transfer-Encoding: 8bit\n"

#: gettext_example.py:16

msgid "This message is in the script."

msgstr "This message is in the en_US catalog."

The catalog is built from the .po file using msgformat.

$ cd locale/en_US/LC_MESSAGES/; msgfmt -o example.mo example.po

Now when the script is run, the message from the catalog is printed instead of the

in-line string.

$ python gettext_example.py

This message is in the en_US catalog.

15.1.3 Finding Message Catalogs at Runtime

As described earlier, the locale directory containing the message catalogs is organized

based on the language with catalogs named for the domain of the program. Different

operating systems define their own default value, but gettext does not know all these

defaults. It uses a default locale directory of sys.prefix + ’/share/locale’, but

most of the time, it is safer to always explicitly give a localedir value than to depend

on this default being valid. The find() function is responsible for locating an appro-

priate message catalog at runtime.

import gettext

catalogs = gettext.find(’example’, ’locale’, all=True)

print ’Catalogs:’, catalogs

ptg

904 Internationalization and Localization

The language portion of the path is taken from one of several environment

variables that can be used to configure localization features (LANGUAGE, LC_ALL,

LC_MESSAGES, and LANG). The first variable found to be set is used. Multiple languages

can be selected by separating the values with a colon (:). To see how that works, use a

second message catalog to run a few experiments.

$ (cd locale/en_CA/LC_MESSAGES/; msgfmt -o example.mo example.po)

$ python gettext_find.py

Catalogs: [’locale/en_US/LC_MESSAGES/example.mo’]

$ LANGUAGE=en_CA python gettext_find.py

Catalogs: [’locale/en_CA/LC_MESSAGES/example.mo’]

$ LANGUAGE=en_CA:en_US python gettext_find.py

Catalogs: [’locale/en_CA/LC_MESSAGES/example.mo’,

’locale/en_US/LC_MESSAGES/example.mo’]

$ LANGUAGE=en_US:en_CA python gettext_find.py

Catalogs: [’locale/en_US/LC_MESSAGES/example.mo’,

’locale/en_CA/LC_MESSAGES/example.mo’]

Although find() shows the complete list of catalogs, only the first one in the

sequence is actually loaded for message lookups.

$ python gettext_example.py

This message is in the en_US catalog.

$ LANGUAGE=en_CA python gettext_example.py

This message is in the en_CA catalog.

$ LANGUAGE=en_CA:en_US python gettext_example.py

This message is in the en_CA catalog.

$ LANGUAGE=en_US:en_CA python gettext_example.py

This message is in the en_US catalog.

ptg

15.1. gettext—Message Catalogs 905

15.1.4 Plural Values

While simple message substitution will handle most translation needs, gettext treats

pluralization as a special case. Depending on the language, the difference between the

singular and plural forms of a message may vary only by the ending of a single word

or the entire sentence structure may be different. There may also be different forms

depending on the level of plurality. To make managing plurals easier (and, in some

cases, possible), a separate set of functions asks for the plural form of a message.

from gettext import translation

import sys

t = translation(’gettext_plural’, ’locale’, fallback=True)

num = int(sys.argv[1])

msg = t.ungettext(’%(num)d means singular.’,

’%(num)d means plural.’,

num)

Still need to add the values to the message ourself.

print msg % {’num’:num}

Use ungettext() to access the Unicode version of the plural substitution for a

message. The arguments are the messages to be translated and the item count.

$ xgettext -L Python -o plural.pot gettext_plural.py

Since there are alternate forms to be translated, the replacements are listed in an

array. Using an array allows translations for languages with multiple plural forms (e.g.,

Polish has different forms indicating the relative quantity).

SOME DESCRIPTIVE TITLE.

Copyright (C) YEAR THE PACKAGE’S COPYRIGHT HOLDER

This file is distributed under the same license

as the PACKAGE package.

FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.

#

#, fuzzy

msgid ""

msgstr ""

"Project-Id-Version: PACKAGE VERSION\n"

"Report-Msgid-Bugs-To: \n"

"POT-Creation-Date: 2010-11-28 23:09-0500\n"

ptg

906 Internationalization and Localization

"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"

"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"

"Language-Team: LANGUAGE <LL@li.org>\n"

"Language: \n"

"MIME-Version: 1.0\n"

"Content-Type: text/plain; charset=CHARSET\n"

"Content-Transfer-Encoding: 8bit\n"

"Plural-Forms: nplurals=INTEGER; plural=EXPRESSION;\n"

#: gettext_plural.py:15

#, python-format

msgid "%(num)d means singular."

msgid_plural "%(num)d means plural."

msgstr[0] ""

msgstr[1] ""

In addition to filling in the translation strings, the library needs to be told

about the way plurals are formed so it knows how to index into the array for

any given count value. The line “Plural-Forms: nplurals=INTEGER; plural=

EXPRESSION;\n” includes two values to replace manually. nplurals is an integer

indicating the size of the array (the number of translations used), and plural is a

C language expression for converting the incoming quantity to an index in the array

when looking up the translation. The literal string n is replaced with the quantity passed

to ungettext().

For example, English includes two plural forms. A quantity of 0 is treated as plural

(“0 bananas”). This is the Plural-Forms entry.

Plural-Forms: nplurals=2; plural=n != 1;

The singular translation would then go in position 0 and the plural translation in

position 1.

Messages from gettext_plural.py

Copyright (C) 2009 Doug Hellmann

This file is distributed under the same license

as the PyMOTW package.

Doug Hellmann <doug.hellmann@gmail.com>, 2009.

#

#, fuzzy

msgid ""

msgstr ""

"Project-Id-Version: PyMOTW 1.92\n"

ptg

15.1. gettext—Message Catalogs 907

"Report-Msgid-Bugs-To: Doug Hellmann <doug.hellmann@gmail.com>\n"

"POT-Creation-Date: 2009-06-14 09:29-0400\n"

"PO-Revision-Date: 2009-06-14 09:29-0400\n"

"Last-Translator: Doug Hellmann <doug.hellmann@gmail.com>\n"

"Language-Team: en_US <doug.hellmann@gmail.com>\n"

"MIME-Version: 1.0\n"

"Content-Type: text/plain; charset=UTF-8\n"

"Content-Transfer-Encoding: 8bit\n"

"Plural-Forms: nplurals=2; plural=n != 1;"

#: gettext_plural.py:15

#, python-format

msgid "%(num)d means singular."

msgid_plural "%(num)d means plural."

msgstr[0] "In en_US, %(num)d is singular."

msgstr[1] "In en_US, %(num)d is plural."

Running the test script a few times after the catalog is compiled will demonstrate

how different values of n are converted to indexes for the translation strings.

$ cd locale/en_US/LC_MESSAGES/; msgfmt -o plural.mo plural.po

$ python gettext_plural.py 0

0 means plural.

$ python gettext_plural.py 1

1 means singular.

$ python gettext_plural.py 2

2 means plural.

15.1.5 Application vs. Module Localization

The scope of a translation effort defines how gettext is installed and used with a body

of code.

Application Localization

For application-wide translations, it would be acceptable for the author to install a func-

tion like ungettext() globally using the __builtins__ namespace, because they

have control over the top level of the application’s code.

ptg

908 Internationalization and Localization

import gettext
gettext.install(’gettext_example’, ’locale’,

unicode=True, names=[’ngettext’])

print _(’This message is in the script.’)

The install() function binds gettext() to the name _() in the

__builtins__ namespace. It also adds ngettext() and other functions listed in

names. If unicode is true, the Unicode versions of the functions are used instead of the

default ASCII versions.

Module Localization

For a library, or individual module, modifying __builtins__ is not a good idea

because it may introduce conflicts with an application global value. Instead, import

or rebind the names of translation functions by hand at the top of the module.

import gettext
t = gettext.translation(’gettext_example’, ’locale’, fallback=True)

_ = t.ugettext

ngettext = t.ungettext

print _(’This message is in the script.’)

15.1.6 Switching Translations

The earlier examples all use a single translation for the duration of the program. Some

situations, especially web applications, need to use different message catalogs at dif-

ferent times, without exiting and resetting the environment. For those cases, the class-

based API provided in gettext will be more convenient. The API calls are essentially

the same as the global calls described in this section, but the message catalog object is

exposed and can be manipulated directly so that multiple catalogs can be used.

See Also:
gettext (http://docs.python.org/library/gettext.html) The standard library documen-

tation for this module.

locale (page 909) Other localization tools.

GNU gettext (www.gnu.org/software/gettext/) The message catalog formats, API,

etc., for this module are all based on the original gettext package from GNU.

The catalog file formats are compatible, and the command-line scripts have sim-

ilar options (if not identical). The GNU gettext manual (www.gnu.org/software/

http://docs.python.org/library/gettext.html
www.gnu.org/software/gettext/
www.gnu.org/software/gettext/manual/gettext.html

ptg

15.2. locale—Cultural Localization API 909

gettext/manual/gettext.html) has a detailed description of the file formats and

describes GNU versions of the tools for working with them.

Plural forms (www.gnu.org/software/gettext/manual/gettext.html#Plural-forms)
Handling of plural forms of words and sentences in different languages.

Internationalizing Python (www.python.org/workshops/1997-10/proceedings/
loewis.html) A paper by Martin von Löwis about techniques for international-

ization of Python applications.

Django Internationalization (http://docs.djangoproject.com/en/dev/topics/i18n/)
Another good source of information on using gettext, including real-life

examples.

15.2 locale—Cultural Localization API

Purpose Format and parse values that depend on location or language.

Python Version 1.5 and later

The locale module is part of Python’s internationalization and localization support

library. It provides a standard way to handle operations that may depend on the lan-

guage or location of a user. For example, it handles formatting numbers as currency,

comparing strings for sorting, and working with dates. It does not cover translation (see

the gettext module) or Unicode encoding (see the codecs module).

Note: Changing the locale can have application-wide ramifications, so the recom-

mended practice is to avoid changing the value in a library and to let the application

set it one time. In the examples in this section, the locale is changed several times

within a short program to highlight the differences in the settings of various locales.

It is far more likely that an application will set the locale once as it starts up and

then will not change it.

This section covers some of the high-level functions in the localemodule. Others

are lower level (format_string()) or relate to managing the locale for an application

(resetlocale()).

15.2.1 Probing the Current Locale

The most common way to let the user change the locale settings for an application is

through an environment variable (LC_ALL, LC_CTYPE, LANG, or LANGUAGE, depending

on the platform). The application then calls setlocale() without a hard-coded value,

and the environment value is used.

www.gnu.org/software/gettext/manual/gettext.html
www.gnu.org/software/gettext/manual/gettext.html#Plural-forms
www.python.org/workshops/1997-10/proceedings/loewis.html
www.python.org/workshops/1997-10/proceedings/loewis.html
http://docs.djangoproject.com/en/dev/topics/i18n/

ptg

910 Internationalization and Localization

import locale
import os
import pprint
import codecs
import sys

sys.stdout = codecs.getwriter(’UTF-8’)(sys.stdout)

Default settings based on the user’s environment.

locale.setlocale(locale.LC_ALL, ’’)

print ’Environment settings:’

for env_name in [’LC_ALL’, ’LC_CTYPE’, ’LANG’, ’LANGUAGE’]:

print ’\t%s = %s’ % (env_name, os.environ.get(env_name, ’’))

What is the locale?

print
print ’Locale from environment:’, locale.getlocale()

template = """

Numeric formatting:

Decimal point : "%(decimal_point)s"
Grouping positions : %(grouping)s
Thousands separator: "%(thousands_sep)s"

Monetary formatting:

International currency symbol : "%(int_curr_symbol)r"
Local currency symbol : %(currency_symbol)r

Unicode version %(currency_symbol_u)s
Symbol precedes positive value : %(p_cs_precedes)s
Symbol precedes negative value : %(n_cs_precedes)s
Decimal point : "%(mon_decimal_point)s"
Digits in fractional values : %(frac_digits)s
Digits in fractional values, international: %(int_frac_digits)s
Grouping positions : %(mon_grouping)s
Thousands separator : "%(mon_thousands_sep)s"
Positive sign : "%(positive_sign)s"
Positive sign position : %(p_sign_posn)s
Negative sign : "%(negative_sign)s"
Negative sign position : %(n_sign_posn)s

"""

ptg

15.2. locale—Cultural Localization API 911

sign_positions = {

0 : ’Surrounded by parentheses’,

1 : ’Before value and symbol’,

2 : ’After value and symbol’,

3 : ’Before value’,

4 : ’After value’,

locale.CHAR_MAX : ’Unspecified’,

}

info = {}

info.update(locale.localeconv())

info[’p_sign_posn’] = sign_positions[info[’p_sign_posn’]]

info[’n_sign_posn’] = sign_positions[info[’n_sign_posn’]]

convert the currency symbol to unicode

info[’currency_symbol_u’] = info[’currency_symbol’].decode(’utf-8’)

print (template % info)

The localeconv() method returns a dictionary containing the locale’s conven-

tions. The full list of value names and definitions is covered in the standard library

documentation.

A Mac running OS X 10.6 with all the variables unset produces this output.

$ export LANG=; export LC_CTYPE=; python locale_env_example.py

Environment settings:

LC_ALL =

LC_CTYPE =

LANG =

LANGUAGE =

Locale from environment: (None, None)

Numeric formatting:

Decimal point : "."

Grouping positions : [3, 3, 0]

Thousands separator: ","

Monetary formatting:

International currency symbol : "’USD ’"

Local currency symbol : ’$’

Unicode version $

ptg

912 Internationalization and Localization

Symbol precedes positive value : 1

Symbol precedes negative value : 1

Decimal point : "."

Digits in fractional values : 2

Digits in fractional values, international: 2

Grouping positions : [3, 3, 0]

Thousands separator : ","

Positive sign : ""

Positive sign position : Before value and symbol

Negative sign : "-"

Negative sign position : Before value and symbol

Running the same script with the LANG variable set shows how the locale and

default encoding change.

France (fr_FR):

$ LANG=fr_FR LC_CTYPE=fr_FR LC_ALL=fr_FR python locale_env_example.py

Environment settings:

LC_ALL = fr_FR

LC_CTYPE = fr_FR

LANG = fr_FR

LANGUAGE =

Locale from environment: (’fr_FR’, ’ISO8859-1’)

Numeric formatting:

Decimal point : ","

Grouping positions : [127]

Thousands separator: ""

Monetary formatting:

International currency symbol : "’EUR ’"

Local currency symbol : ’Eu’

Unicode version Eu

Symbol precedes positive value : 0

Symbol precedes negative value : 0

Decimal point : ","

Digits in fractional values : 2

Digits in fractional values, international: 2

Grouping positions : [3, 3, 0]

ptg

15.2. locale—Cultural Localization API 913

Thousands separator : " "

Positive sign : ""

Positive sign position : Before value and symbol

Negative sign : "-"

Negative sign position : After value and symbol

Spain (es_ES):

$ LANG=es_ES LC_CTYPE=es_ES LC_ALL=es_ES python locale_env_example.py

Environment settings:

LC_ALL = es_ES

LC_CTYPE = es_ES

LANG = es_ES

LANGUAGE =

Locale from environment: (’es_ES’, ’ISO8859-1’)

Numeric formatting:

Decimal point : ","

Grouping positions : [127]

Thousands separator: ""

Monetary formatting:

International currency symbol : "’EUR ’"

Local currency symbol : ’Eu’

Unicode version Eu

Symbol precedes positive value : 1

Symbol precedes negative value : 1

Decimal point : ","

Digits in fractional values : 2

Digits in fractional values, international: 2

Grouping positions : [3, 3, 0]

Thousands separator : "."

Positive sign : ""

Positive sign position : Before value and symbol

Negative sign : "-"

Negative sign position : Before value and symbol

Portugal (pt_PT):

$ LANG=pt_PT LC_CTYPE=pt_PT LC_ALL=pt_PT python locale_env_example.py

ptg

914 Internationalization and Localization

Environment settings:

LC_ALL = pt_PT

LC_CTYPE = pt_PT

LANG = pt_PT

LANGUAGE =

Locale from environment: (’pt_PT’, ’ISO8859-1’)

Numeric formatting:

Decimal point : ","

Grouping positions : []

Thousands separator: " "

Monetary formatting:

International currency symbol : "’EUR ’"

Local currency symbol : ’Eu’

Unicode version Eu

Symbol precedes positive value : 0

Symbol precedes negative value : 0

Decimal point : "."

Digits in fractional values : 2

Digits in fractional values, international: 2

Grouping positions : [3, 3, 0]

Thousands separator : "."

Positive sign : ""

Positive sign position : Before value and symbol

Negative sign : "-"

Negative sign position : Before value and symbol

Poland (pl_PL):

$ LANG=pl_PL LC_CTYPE=pl_PL LC_ALL=pl_PL python locale_env_example.py

Environment settings:

LC_ALL = pl_PL

LC_CTYPE = pl_PL

LANG = pl_PL

LANGUAGE =

Locale from environment: (’pl_PL’, ’ISO8859-2’)

ptg

15.2. locale—Cultural Localization API 915

Numeric formatting:

Decimal point : ","

Grouping positions : [3, 3, 0]

Thousands separator: " "

Monetary formatting:

International currency symbol : "’PLN ’"

Local currency symbol : ’z\xc5\x82’

Unicode version zł

Symbol precedes positive value : 1

Symbol precedes negative value : 1

Decimal point : ","

Digits in fractional values : 2

Digits in fractional values, international: 2

Grouping positions : [3, 3, 0]

Thousands separator : " "

Positive sign : ""

Positive sign position : After value

Negative sign : "-"

Negative sign position : After value

15.2.2 Currency

The earlier example output shows that changing the locale updates the currency symbol

setting and the character to separate whole numbers from decimal fractions. This ex-

ample loops through several different locales to print a positive and negative currency

value formatted for each locale.

import locale

sample_locales = [(’USA’, ’en_US’),

(’France’, ’fr_FR’),

(’Spain’, ’es_ES’),

(’Portugal’, ’pt_PT’),

(’Poland’, ’pl_PL’),

]

for name, loc in sample_locales:

locale.setlocale(locale.LC_ALL, loc)

print ’%20s: %10s %10s’ % (name,

ptg

916 Internationalization and Localization

locale.currency(1234.56),

locale.currency(-1234.56))

The output is this small table.

$ python locale_currency_example.py

USA: $1234.56 -$1234.56

France: 1234,56 Eu 1234,56 Eu-

Spain: Eu 1234,56 -Eu 1234,56

Portugal: 1234.56 Eu -1234.56 Eu

Poland: zł 1234,56 zł 1234,56-

15.2.3 Formatting Numbers

Numbers not related to currency are also formatted differently, depending on the locale.

In particular, the grouping character used to separate large numbers into readable

chunks changes.

import locale

sample_locales = [(’USA’, ’en_US’),

(’France’, ’fr_FR’),

(’Spain’, ’es_ES’),

(’Portugal’, ’pt_PT’),

(’Poland’, ’pl_PL’),

]

print ’%20s %15s %20s’ % (’Locale’, ’Integer’, ’Float’)

for name, loc in sample_locales:

locale.setlocale(locale.LC_ALL, loc)

print ’%20s’ % name,

print locale.format(’%15d’, 123456, grouping=True),

print locale.format(’%20.2f’, 123456.78, grouping=True)

To format numbers without the currency symbol, use format() instead of

currency().

$ python locale_grouping.py

Locale Integer Float

USA 123,456 123,456.78

ptg

15.2. locale—Cultural Localization API 917

France 123456 123456,78

Spain 123456 123456,78

Portugal 123456 123456,78

Poland 123 456 123 456,78

15.2.4 Parsing Numbers

Besides generating output in different formats, the locale module helps with parsing

input. It includes atoi() and atof() functions for converting the strings to integer

and floating-point values based on the locale’s numerical formatting conventions.

import locale

sample_data = [(’USA’, ’en_US’, ’1,234.56’),

(’France’, ’fr_FR’, ’1234,56’),

(’Spain’, ’es_ES’, ’1234,56’),

(’Portugal’, ’pt_PT’, ’1234.56’),

(’Poland’, ’pl_PL’, ’1 234,56’),

]

for name, loc, a in sample_data:

locale.setlocale(locale.LC_ALL, loc)

f = locale.atof(a)

print ’%20s: %9s => %f’ % (name, a, f)

The parser recognizes the grouping and decimal separator values of the locale.

$ python locale_atof_example.py

USA: 1,234.56 => 1234.560000

France: 1234,56 => 1234.560000

Spain: 1234,56 => 1234.560000

Portugal: 1234.56 => 1234.560000

Poland: 1 234,56 => 1234.560000

15.2.5 Dates and Times

Another important aspect of localization is date and time formatting.

import locale
import time

ptg

918 Internationalization and Localization

sample_locales = [(’USA’, ’en_US’),

(’France’, ’fr_FR’),

(’Spain’, ’es_ES’),

(’Portugal’, ’pt_PT’),

(’Poland’, ’pl_PL’),

]

for name, loc in sample_locales:

locale.setlocale(locale.LC_ALL, loc)

format = locale.nl_langinfo(locale.D_T_FMT)

print ’%20s: %s’ % (name, time.strftime(format))

This example uses the date formatting string for the locale to print the current date

and time.

$ python locale_date_example.py

USA: Sun Nov 28 23:53:58 2010

France: Dim 28 nov 23:53:58 2010

Spain: dom 28 nov 23:53:58 2010

Portugal: Dom 28 Nov 23:53:58 2010

Poland: ndz 28 lis 23:53:58 2010

See Also:
locale (http://docs.python.org/library/locale.html) The standard library documenta-

tion for this module.

gettext (page 899) Message catalogs for translations.

http://docs.python.org/library/locale.html

ptg

Chapter 16

DEVELOPER TOOLS

Over the course of its lifetime, Python has evolved an extensive ecosystem of modules

intended to make the lives of Python developers easier by eliminating the need to build

everything from scratch. That same philosophy has been applied to the tools develop-

ers use to do their work, even if they are not used in the final version of a program.

This chapter covers the modules included with Python to provide facilities for common

development tasks such as testing, debugging, and profiling.

The most basic form of help for developers is the documentation for code they

are using. The pydoc module generates formatted reference documentation from the

docstrings included in the source code for any importable module.

Python includes two testing frameworks for automatically exercising code and ver-

ifying that it works correctly. doctest extracts test scenarios from examples included

in documentation, either inside the source or as stand-alone files. unittest is a full-

featured automated testing framework with support for fixtures, predefined test suites,

and test discovery.

The trace module monitors the way Python executes a program, producing a

report showing how many times each line was run. That information can be used to

find code paths that are not being tested by an automated test suite and to study the

function call graph to find dependencies between modules.

Writing and running tests will uncover problems in most programs. Python helps

make debugging easier, since in most cases, unhandled errors are printed to the console

as tracebacks. When a program is not running in a text console environment, trace-

back can be used to prepare similar output for a log file or message dialog. For sit-

uations where a standard traceback does not provide enough information, use cgitb

to see details like local variable settings at each level of the stack and source context.

cgitb can also format tracebacks in HTML, for reporting errors in web applications.

919

ptg

920 Developer Tools

Once the location of a problem is identified, stepping through the code using the

interactive debugger in the pdb module can make it easier to fix by showing what path

through the code was followed to get to the error situation and experimenting with

changes using live objects and code.

After a program is tested and debugged so that it works correctly, the next step is

to work on performance. Using profile and timeit, a developer can measure the

speed of a program and find the slow parts so they can be isolated and improved.

Python programs are run by giving the interpreter a byte-compiled version of the

original program source. The byte-compiled versions can be created on the fly or once

when the program is packaged. The compileall module exposes the interface instal-

lation programs and packaging tools used to create files containing the byte code for a

module. It can be used in a development environment to make sure a file does not have

any syntax errors and to build the byte-compiled files to package when the program is

released.

At the source code level, the pyclbr module provides a class browser that a text

editor or other program can use to scan Python source for interesting symbols, such

as functions and classes, without importing the code and potentially triggering side-

effects.

16.1 pydoc—Online Help for Modules

Purpose Generates help for Python modules and classes from the code.

Python Version 2.1 and later

The pydoc module imports a Python module and uses the contents to generate help

text at runtime. The output includes docstrings for any objects that have them, and all

the classes, methods, and functions of the module are described.

16.1.1 Plain-Text Help

Running

$ pydoc atexit

produces plain-text help on the console, using a pager program if one is configured.

16.1.2 HTML Help

pydoc will also generate HTML output, either writing a static file to a local directory

or starting a web server to browse documentation online.

ptg

16.2. doctest—Testing through Documentation 921

$ pydoc -w atexit

Creates atexit.html in the current directory.

$ pydoc -p 5000

Starts a web server listening at http://localhost:5000/. The server generates

documentation on the fly as you browse.

16.1.3 Interactive Help

pydoc also adds a function help() to the __builtins__ so the same information

can be accessed from the Python interpreter prompt.

$ python

Python 2.7 (r27:82508, Jul 3 2010, 21:12:11)

[GCC 4.0.1 (Apple Inc. build 5493)] on darwin

Type "help", "copyright", "credits" or "license" for more

information.

>>> help(’atexit’)

Help on module atexit:

NAME

atexit

...

See Also:
pydoc (http://docs.python.org/library/pydoc.html) The standard library documenta-

tion for this module.

inspect (page 1200) The inspect module can be used to retrieve the docstrings for

an object programmatically.

16.2 doctest—Testing through Documentation

Purpose Write automated tests as part of the documentation for a module.

Python Version 2.1 and later

doctest tests source code by running examples embedded in the documentation and

verifying that they produce the expected results. It works by parsing the help text to

http://docs.python.org/library/pydoc.html

ptg

922 Developer Tools

find examples, running them, and then comparing the output text against the expected

value. Many developers find doctest easier to use than unittest because, in its sim-

plest form, there is no API to learn before using it. However, as the examples become

more complex, the lack of fixture management can make writing doctest tests more

cumbersome than using unittest.

16.2.1 Getting Started

The first step to setting up doctests is to use the interactive interpreter to create examples

and then copy and paste them into the docstrings in the module. Here, my_function()

has two examples given.

def my_function(a, b):

"""

>>> my_function(2, 3)

6

>>> my_function(’a’, 3)

’aaa’

"""

return a * b

To run the tests, use doctest as the main program via the -m option. Usually,

no output is produced while the tests are running, so the next example includes the -v

option to make the output more verbose.

$ python -m doctest -v doctest_simple.py

Trying:

my_function(2, 3)

Expecting:

6

ok

Trying:

my_function(’a’, 3)

Expecting:

’aaa’

ok

1 items had no tests:

doctest_simple

1 items passed all tests:

2 tests in doctest_simple.my_function

ptg

16.2. doctest—Testing through Documentation 923

2 tests in 2 items.

2 passed and 0 failed.

Test passed.

Examples cannot usually stand on their own as explanations of a function, so

doctest also allows for surrounding text. It looks for lines beginning with the

interpreter prompt (>>>) to find the beginning of a test case, and the case is ended

by a blank line or by the next interpreter prompt. Intervening text is ignored and can

have any format as long as it does not look like a test case.

def my_function(a, b):

"""Returns a * b.

Works with numbers:

>>> my_function(2, 3)

6

and strings:

>>> my_function(’a’, 3)

’aaa’

"""

return a * b

The surrounding text in the updated docstring makes it more useful to a human

reader. Because it is ignored by doctest, the results are the same.

$ python -m doctest -v doctest_simple_with_docs.py

Trying:

my_function(2, 3)

Expecting:

6

ok

Trying:

my_function(’a’, 3)

Expecting:

’aaa’

ok

1 items had no tests:

doctest_simple_with_docs

ptg

924 Developer Tools

1 items passed all tests:

2 tests in doctest_simple_with_docs.my_function

2 tests in 2 items.

2 passed and 0 failed.

Test passed.

16.2.2 Handling Unpredictable Output

There are other cases where the exact output may not be predictable, but should still be

testable. For example, local date and time values and object ids change on every test

run, the default precision used in the representation of floating-point values depends on

compiler options, and object string representations may not be deterministic. Although

these conditions cannot be controlled, there are techniques for dealing with them.

For example, in CPython, object identifiers are based on the memory address of

the data structure holding the object.

class MyClass(object):
pass

def unpredictable(obj):

"""Returns a new list containing obj.

>>> unpredictable(MyClass())

[<doctest_unpredictable.MyClass object at 0x10055a2d0>]

"""

return [obj]

These id values change each time a program runs, because the values are loaded

into a different part of memory.

$ python -m doctest -v doctest_unpredictable.py

Trying:

unpredictable(MyClass())

Expecting:

[<doctest_unpredictable.MyClass object at 0x10055a2d0>]

File "doctest_unpredictable.py", line 16, in doctest_unpredicta

ble.unpredictable

Failed example:

unpredictable(MyClass())

ptg

16.2. doctest—Testing through Documentation 925

Expected:

[<doctest_unpredictable.MyClass object at 0x10055a2d0>]

Got:

[<doctest_unpredictable.MyClass object at 0x100ea3490>]

2 items had no tests:

doctest_unpredictable

doctest_unpredictable.MyClass

1 items had failures:

1 of 1 in doctest_unpredictable.unpredictable

1 tests in 3 items.

0 passed and 1 failed.

Test Failed 1 failures.

When the tests include values that are likely to change in unpredictable ways, and

when the actual value is not important to the test results, use the ELLIPSIS option to

tell doctest to ignore portions of the verification value.

class MyClass(object):
pass

def unpredictable(obj):

"""Returns a new list containing obj.

>>> unpredictable(MyClass()) #doctest: +ELLIPSIS

[<doctest_ellipsis.MyClass object at 0x...>]

"""

return [obj]

The comment after the call to unpredictable() (#doctest: +ELLIPSIS)

tells doctest to turn on the ELLIPSIS option for that test. The ... replaces the mem-

ory address in the object id, so that portion of the expected value is ignored. The actual

output matches and the test passes.

$ python -m doctest -v doctest_ellipsis.py

Trying:

unpredictable(MyClass()) #doctest: +ELLIPSIS

Expecting:

[<doctest_ellipsis.MyClass object at 0x...>]

ok

ptg

926 Developer Tools

2 items had no tests:

doctest_ellipsis

doctest_ellipsis.MyClass

1 items passed all tests:

1 tests in doctest_ellipsis.unpredictable

1 tests in 3 items.

1 passed and 0 failed.

Test passed.

There are cases where the unpredictable value cannot be ignored, because that

would make the test incomplete or inaccurate. For example, simple tests quickly

become more complex when dealing with data types whose string representations are

inconsistent. The string form of a dictionary, for example, may change based on the

order in which the keys are added.

keys = [’a’, ’aa’, ’aaa’]

d1 = dict((k,len(k)) for k in keys)

d2 = dict((k,len(k)) for k in reversed(keys))

print ’d1:’, d1

print ’d2:’, d2

print ’d1 == d2:’, d1 == d2

s1 = set(keys)

s2 = set(reversed(keys))

print
print ’s1:’, s1

print ’s2:’, s2

print ’s1 == s2:’, s1 == s2

Because of cache collision, the internal key list order is different for the two dic-

tionaries, even though they contain the same values and are considered to be equal. Sets

use the same hashing algorithm and exhibit the same behavior.

$ python doctest_hashed_values.py

d1: {’a’: 1, ’aa’: 2, ’aaa’: 3}

d2: {’aa’: 2, ’a’: 1, ’aaa’: 3}

d1 == d2: True

ptg

16.2. doctest—Testing through Documentation 927

s1: set([’a’, ’aa’, ’aaa’])

s2: set([’aa’, ’a’, ’aaa’])

s1 == s2: True

The best way to deal with these potential discrepancies is to create tests that pro-

duce values that are not likely to change. In the case of dictionaries and sets, that might

mean looking for specific keys individually, generating a sorted list of the contents of

the data structure, or comparing against a literal value for equality instead of depending

on the string representation.

def group_by_length(words):

"""Returns a dictionary grouping words into sets by length.

>>> grouped = group_by_length([’python’, ’module’, ’of’,

... ’the’, ’week’])

>>> grouped == { 2:set([’of’]),

... 3:set([’the’]),

... 4:set([’week’]),

... 6:set([’python’, ’module’]),

... }

True

"""

d = {}

for word in words:

s = d.setdefault(len(word), set())

s.add(word)

return d

The single example is actually interpreted as two separate tests, with the first

expecting no console output and the second expecting the Boolean result of the com-

parison operation.

$ python -m doctest -v doctest_hashed_values_tests.py

Trying:

grouped = group_by_length([’python’, ’module’, ’of’,

’the’, ’week’])

Expecting nothing

ok

ptg

928 Developer Tools

Trying:

grouped == { 2:set([’of’]),

3:set([’the’]),

4:set([’week’]),

6:set([’python’, ’module’]),

}

Expecting:

True

ok

1 items had no tests:

doctest_hashed_values_tests

1 items passed all tests:

2 tests in doctest_hashed_values_tests.group_by_length

2 tests in 2 items.

2 passed and 0 failed.

Test passed.

16.2.3 Tracebacks

Tracebacks are a special case of changing data. Since the paths in a traceback depend on

the location where a module is installed on the file system on a given system, it would

be impossible to write portable tests if they were treated the same as other output.

def this_raises():

"""This function always raises an exception.

>>> this_raises()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "/no/such/path/doctest_tracebacks.py", line 14, in

this_raises

raise RuntimeError(’here is the error’)

RuntimeError: here is the error

"""

raise RuntimeError(’here is the error’)

doctest makes a special effort to recognize tracebacks and ignore the parts that

might change from system to system.

$ python -m doctest -v doctest_tracebacks.py

Trying:

this_raises()

ptg

16.2. doctest—Testing through Documentation 929

Expecting:

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "/no/such/path/doctest_tracebacks.py", line 14, in

this_raises

raise RuntimeError(’here is the error’)

RuntimeError: here is the error

ok

1 items had no tests:

doctest_tracebacks

1 items passed all tests:

1 tests in doctest_tracebacks.this_raises

1 tests in 2 items.

1 passed and 0 failed.

Test passed.

In fact, the entire body of the traceback is ignored and can be omitted.

def this_raises():

"""This function always raises an exception.

>>> this_raises()

Traceback (most recent call last):

RuntimeError: here is the error

"""

raise RuntimeError(’here is the error’)

When doctest sees a traceback header line (either “Traceback (most recent

call last):” or “Traceback (innermost last):”, depending on the version of

Python being used), it skips ahead to find the exception type and message, ignoring the

intervening lines entirely.

$ python -m doctest -v doctest_tracebacks_no_body.py

Trying:

this_raises()

Expecting:

Traceback (most recent call last):

RuntimeError: here is the error

ok

1 items had no tests:

doctest_tracebacks_no_body

ptg

930 Developer Tools

1 items passed all tests:

1 tests in doctest_tracebacks_no_body.this_raises

1 tests in 2 items.

1 passed and 0 failed.

Test passed.

16.2.4 Working around Whitespace

In real-world applications, output usually includes whitespace such as blank lines, tabs,

and extra spacing to make it more readable. Blank lines, in particular, cause issues with

doctest because they are used to delimit tests.

def double_space(lines):

"""Prints a list of lines double-spaced.

>>> double_space([’Line one.’, ’Line two.’])

Line one.

Line two.

"""

for l in lines:

print l

print
return

double_space() takes a list of input lines and prints them double-spaced with

blank lines between them.

$ python -m doctest doctest_blankline_fail.py

File "doctest_blankline_fail.py", line 13, in doctest_blankline

_fail.double_space

Failed example:

double_space([’Line one.’, ’Line two.’])

Expected:

Line one.

Got:

Line one.

<BLANKLINE>

ptg

16.2. doctest—Testing through Documentation 931

Line two.

<BLANKLINE>

1 items had failures:

1 of 1 in doctest_blankline_fail.double_space

Test Failed 1 failures.

The test fails, because it interprets the blank line after the line containing Line

one. in the docstring as the end of the sample output. To match the blank lines, replace

them in the sample input with the string <BLANKLINE>.

def double_space(lines):

"""Prints a list of lines double-spaced.

>>> double_space([’Line one.’, ’Line two.’])

Line one.

<BLANKLINE>

Line two.

<BLANKLINE>

"""

for l in lines:

print l

print
return

doctest replaces actual blank lines with the same literal before performing the

comparison, so now the actual and expected values match and the test passes.

$ python -m doctest -v doctest_blankline.py

Trying:

double_space([’Line one.’, ’Line two.’])

Expecting:

Line one.

<BLANKLINE>

Line two.

<BLANKLINE>

ok

1 items had no tests:

doctest_blankline

ptg

932 Developer Tools

1 items passed all tests:

1 tests in doctest_blankline.double_space

1 tests in 2 items.

1 passed and 0 failed.

Test passed.

Another pitfall of using text comparisons for tests is that embedded whitespace

can also cause tricky problems with tests. This example has a single extra space after

the 6.

def my_function(a, b):

"""

>>> my_function(2, 3)

6

>>> my_function(’a’, 3)

’aaa’

"""

return a * b

Extra spaces can find their way into code via copy-and-paste errors, but since they

come at the end of the line, they can go unnoticed in the source file and be invisible in

the test failure report as well.

$ python -m doctest -v doctest_extra_space.py

Trying:

my_function(2, 3)

Expecting:

6

File "doctest_extra_space.py", line 12, in doctest_extra_space.

my_function

Failed example:

my_function(2, 3)

Expected:

6

Got:

6

Trying:

my_function(’a’, 3)

ptg

16.2. doctest—Testing through Documentation 933

Expecting:

’aaa’

ok

1 items had no tests:

doctest_extra_space

1 items had failures:

1 of 2 in doctest_extra_space.my_function

2 tests in 2 items.

1 passed and 1 failed.

Test Failed 1 failures.

Using one of the diff-based reporting options, such as REPORT_NDIFF, shows the

difference between the actual and expected values with more detail, and the extra space

becomes visible.

def my_function(a, b):

"""

>>> my_function(2, 3) #doctest: +REPORT_NDIFF

6

>>> my_function(’a’, 3)

’aaa’

"""

return a * b

Unified (REPORT_UDIFF) and context (REPORT_CDIFF) diffs are also available,

for output where those formats are more readable.

$ python -m doctest -v doctest_ndiff.py

Trying:

my_function(2, 3) #doctest: +REPORT_NDIFF

Expecting:

6

File "doctest_ndiff.py", line 12, in doctest_ndiff.my_function

Failed example:

my_function(2, 3) #doctest: +REPORT_NDIFF

Differences (ndiff with -expected +actual):

- 6

? -

+ 6

ptg

934 Developer Tools

Trying:

my_function(’a’, 3)

Expecting:

’aaa’

ok

1 items had no tests:

doctest_ndiff

1 items had failures:

1 of 2 in doctest_ndiff.my_function

2 tests in 2 items.

1 passed and 1 failed.

Test Failed 1 failures.

There are cases where it is beneficial to add extra whitespace in the sample output

for the test and have doctest ignore it. For example, data structures can be easier to read

when spread across several lines, even if their representation would fit on a single line.

def my_function(a, b):

"""Returns a * b.

>>> my_function([’A’, ’B’], 3) #doctest: +NORMALIZE_WHITESPACE

[’A’, ’B’,

’A’, ’B’,

’A’, ’B’,]

This does not match because of the extra space after the [in

the list.

>>> my_function([’A’, ’B’], 2) #doctest: +NORMALIZE_WHITESPACE

[’A’, ’B’,

’A’, ’B’,]

"""

return a * b

When NORMALIZE_WHITESPACE is turned on, any whitespace in the actual and

expected values is considered a match. Whitespace cannot be added to the expected

value where none exists in the output, but the length of the whitespace sequence and

actual whitespace characters do not need to match. The first test example gets this rule

correct and passes, even though there are extra spaces and newlines. The second has

extra whitespace after [“and before”], so it fails.

ptg

16.2. doctest—Testing through Documentation 935

$ python -m doctest -v doctest_normalize_whitespace.py

Trying:

my_function([’A’, ’B’], 3) #doctest: +NORMALIZE_WHITESPACE

Expecting:

[’A’, ’B’,

’A’, ’B’,

’A’, ’B’,]

File "doctest_normalize_whitespace.py", line 13, in doctest_nor

malize_whitespace.my_function

Failed example:

my_function([’A’, ’B’], 3) #doctest: +NORMALIZE_WHITESPACE

Expected:

[’A’, ’B’,

’A’, ’B’,

’A’, ’B’,]

Got:

[’A’, ’B’, ’A’, ’B’, ’A’, ’B’]

Trying:

my_function([’A’, ’B’], 2) #doctest: +NORMALIZE_WHITESPACE

Expecting:

[’A’, ’B’,

’A’, ’B’,]

File "doctest_normalize_whitespace.py", line 21, in doctest_nor

malize_whitespace.my_function

Failed example:

my_function([’A’, ’B’], 2) #doctest: +NORMALIZE_WHITESPACE

Expected:

[’A’, ’B’,

’A’, ’B’,]

Got:

[’A’, ’B’, ’A’, ’B’]

1 items had no tests:

doctest_normalize_whitespace

1 items had failures:

2 of 2 in doctest_normalize_whitespace.my_function

2 tests in 2 items.

0 passed and 2 failed.

Test Failed 2 failures.

ptg

936 Developer Tools

16.2.5 Test Locations

All the tests in the examples so far have been written in the docstrings of the func-

tions they are testing. That is convenient for users who examine the docstrings for

help using the function (especially with pydoc), but doctest looks for tests in other

places, too. The obvious location for additional tests is in the docstrings elsewhere in the

module.

#!/usr/bin/env python

encoding: utf-8

"""Tests can appear in any docstring within the module.

Module-level tests cross class and function boundaries.

>>> A(’a’) == B(’b’)

False

"""

class A(object):
"""Simple class.

>>> A(’instance_name’).name

’instance_name’

"""

def __init__(self, name):

self.name = name

def method(self):

"""Returns an unusual value.

>>> A(’name’).method()

’eman’

"""

return ’’.join(reversed(list(self.name)))

class B(A):
"""Another simple class.

>>> B(’different_name’).name

’different_name’

"""

Docstrings at the module, class, and function levels can all contain tests.

ptg

16.2. doctest—Testing through Documentation 937

$ python -m doctest -v doctest_docstrings.py

Trying:

A(’a’) == B(’b’)

Expecting:

False

ok

Trying:

A(’instance_name’).name

Expecting:

’instance_name’

ok

Trying:

A(’name’).method()

Expecting:

’eman’

ok

Trying:

B(’different_name’).name

Expecting:

’different_name’

ok

1 items had no tests:

doctest_docstrings.A.__init__

4 items passed all tests:

1 tests in doctest_docstrings

1 tests in doctest_docstrings.A

1 tests in doctest_docstrings.A.method

1 tests in doctest_docstrings.B

4 tests in 5 items.

4 passed and 0 failed.

Test passed.

There are cases where tests exist for a module that should be included with the

source code but not in the help text for a module, so they need to be placed some-

where other than the docstrings. doctest also looks for a module-level variable called

__test__ and uses it to locate other tests. The value of __test__ should be a dictio-

nary that maps test set names (as strings) to strings, modules, classes, or functions.

import doctest_private_tests_external

__test__ = {

’numbers’:"""

ptg

938 Developer Tools

>>> my_function(2, 3)

6

>>> my_function(2.0, 3)

6.0

""",

’strings’:"""

>>> my_function(’a’, 3)

’aaa’

>>> my_function(3, ’a’)

’aaa’

""",

’external’:doctest_private_tests_external,

}

def my_function(a, b):

"""Returns a * b

"""

return a * b

If the value associated with a key is a string, it is treated as a docstring and

scanned for tests. If the value is a class or function, doctest searches them recur-

sively for docstrings, which are then scanned for tests. In this example, the module

doctest_private_tests_external has a single test in its docstring.

#!/usr/bin/env python

encoding: utf-8

#

Copyright (c) 2010 Doug Hellmann. All rights reserved.

#

"""External tests associated with doctest_private_tests.py.

>>> my_function([’A’, ’B’, ’C’], 2)

[’A’, ’B’, ’C’, ’A’, ’B’, ’C’]

"""

After scanning the example file, doctest finds a total of five tests to run.

ptg

16.2. doctest—Testing through Documentation 939

$ python -m doctest -v doctest_private_tests.py

Trying:

my_function([’A’, ’B’, ’C’], 2)

Expecting:

[’A’, ’B’, ’C’, ’A’, ’B’, ’C’]

ok

Trying:

my_function(2, 3)

Expecting:

6

ok

Trying:

my_function(2.0, 3)

Expecting:

6.0

ok

Trying:

my_function(’a’, 3)

Expecting:

’aaa’

ok

Trying:

my_function(3, ’a’)

Expecting:

’aaa’

ok

2 items had no tests:

doctest_private_tests

doctest_private_tests.my_function

3 items passed all tests:

1 tests in doctest_private_tests.__test__.external

2 tests in doctest_private_tests.__test__.numbers

2 tests in doctest_private_tests.__test__.strings

5 tests in 5 items.

5 passed and 0 failed.

Test passed.

16.2.6 External Documentation

Mixing tests in with regular code is not the only way to use doctest. Examples

embedded in external project documentation files, such as reStructuredText files, can

be used as well.

ptg

940 Developer Tools

def my_function(a, b):

"""Returns a*b

"""

return a * b

The help for this sample module is saved to a separate file, doctest_in_help.

rst. The examples illustrating how to use the module are included with the help text,

and doctest can be used to find and run them.

===============================

How to Use doctest_in_help.py

===============================

This library is very simple, since it only has one function called

‘‘my_function()‘‘.

Numbers

=======

‘‘my_function()‘‘ returns the product of its arguments. For numbers,

that value is equivalent to using the ‘‘*‘‘ operator.

::

>>> from doctest_in_help import my_function

>>> my_function(2, 3)

6

It also works with floating-point values.

::

>>> my_function(2.0, 3)

6.0

Non-Numbers

===========

Because ‘‘*‘‘ is also defined on data types other than numbers,

‘‘my_function()‘‘ works just as well if one of the arguments is a

string, a list, or a tuple.

ptg

16.2. doctest—Testing through Documentation 941

::

>>> my_function(’a’, 3)

’aaa’

>>> my_function([’A’, ’B’, ’C’], 2)

[’A’, ’B’, ’C’, ’A’, ’B’, ’C’]

The tests in the text file can be run from the command line, just as with the Python

source modules.

$ python -m doctest -v doctest_in_help.rst

Trying:

from doctest_in_help import my_function

Expecting nothing

ok

Trying:

my_function(2, 3)

Expecting:

6

ok

Trying:

my_function(2.0, 3)

Expecting:

6.0

ok

Trying:

my_function(’a’, 3)

Expecting:

’aaa’

ok

Trying:

my_function([’A’, ’B’, ’C’], 2)

Expecting:

[’A’, ’B’, ’C’, ’A’, ’B’, ’C’]

ok

1 items passed all tests:

5 tests in doctest_in_help.rst

5 tests in 1 items.

5 passed and 0 failed.

Test passed.

ptg

942 Developer Tools

Normally, doctest sets up the test execution environment to include the members

of the module being tested, so the tests do not need to import the module explicitly. In

this case, however, the tests are not defined in a Python module and doctest does not

know how to set up the global namespace, so the examples need to do the import work

themselves. All the tests in a given file share the same execution context, so importing

the module once at the top of the file is enough.

16.2.7 Running Tests

The previous examples all use the command-line test-runner built into doctest. It is

easy and convenient for a single module, but it will quickly become tedious as a package

spreads out into multiple files. There are several alternative approaches.

By Module

The instructions to run doctest against the source can be included at the bottom of

modules.

def my_function(a, b):

"""

>>> my_function(2, 3)

6

>>> my_function(’a’, 3)

’aaa’

"""

return a * b

if __name__ == ’__main__’:

import doctest
doctest.testmod()

Calling testmod() only if the current module name is __main__ ensures that

the tests are only run when the module is invoked as a main program.

$ python doctest_testmod.py -v

Trying:

my_function(2, 3)

Expecting:

6

ok

Trying:

my_function(’a’, 3)

ptg

16.2. doctest—Testing through Documentation 943

Expecting:

’aaa’

ok

1 items had no tests:

__main__

1 items passed all tests:

2 tests in __main__.my_function

2 tests in 2 items.

2 passed and 0 failed.

Test passed.

The first argument to testmod() is a module containing code to be scanned for

tests. A separate test script can use this feature to import the real code and run the tests

in each module one after another.

import doctest_simple

if __name__ == ’__main__’:

import doctest
doctest.testmod(doctest_simple)

A test suite can be constructed for the project by importing each module and run-

ning its tests.

$ python doctest_testmod_other_module.py -v

Trying:

my_function(2, 3)

Expecting:

6

ok

Trying:

my_function(’a’, 3)

Expecting:

’aaa’

ok

1 items had no tests:

doctest_simple

1 items passed all tests:

2 tests in doctest_simple.my_function

2 tests in 2 items.

2 passed and 0 failed.

Test passed.

ptg

944 Developer Tools

By File

testfile() works in a way similar to testmod(), allowing the tests to be invoked

explicitly in an external file from within the test program.

import doctest

if __name__ == ’__main__’:

doctest.testfile(’doctest_in_help.rst’)

Both testmod() and testfile() include optional parameters to control the

behavior of the tests through the doctest options. Refer to the standard library docu-

mentation for more details about those features. Most of the time, they are not needed.

$ python doctest_testfile.py -v

Trying:

from doctest_in_help import my_function

Expecting nothing

ok

Trying:

my_function(2, 3)

Expecting:

6

ok

Trying:

my_function(2.0, 3)

Expecting:

6.0

ok

Trying:

my_function(’a’, 3)

Expecting:

’aaa’

ok

Trying:

my_function([’A’, ’B’, ’C’], 2)

Expecting:

[’A’, ’B’, ’C’, ’A’, ’B’, ’C’]

ok

1 items passed all tests:

5 tests in doctest_in_help.rst

5 tests in 1 items.

ptg

16.2. doctest—Testing through Documentation 945

5 passed and 0 failed.

Test passed.

Unittest Suite

When both unittest and doctest are used for testing the same code in different

situations, the unittest integration in doctest can be used to run the tests together.

Two classes, DocTestSuite and DocFileSuite, create test suites compatible with

the test-runner API of unittest.

import doctest
import unittest

import doctest_simple

suite = unittest.TestSuite()

suite.addTest(doctest.DocTestSuite(doctest_simple))

suite.addTest(doctest.DocFileSuite(’doctest_in_help.rst’))

runner = unittest.TextTestRunner(verbosity=2)

runner.run(suite)

The tests from each source are collapsed into a single outcome, instead of being

reported individually.

$ python doctest_unittest.py

my_function (doctest_simple)

Doctest: doctest_simple.my_function ... ok

doctest_in_help.rst

Doctest: doctest_in_help.rst ... ok

Ran 2 tests in 0.006s

OK

16.2.8 Test Context

The execution context created by doctest as it runs tests contains a copy of the

module-level globals for the test module. Each test source (function, class, module)

ptg

946 Developer Tools

has its own set of global values to isolate the tests from each other somewhat, so they

are less likely to interfere with one another.

class TestGlobals(object):

def one(self):

"""

>>> var = ’value’

>>> ’var’ in globals()

True

"""

def two(self):

"""

>>> ’var’ in globals()

False

"""

TestGlobals has two methods: one() and two(). The tests in the docstring

for one() set a global variable, and the test for two() looks for it (expecting not to

find it).

$ python -m doctest -v doctest_test_globals.py

Trying:

var = ’value’

Expecting nothing

ok

Trying:

’var’ in globals()

Expecting:

True

ok

Trying:

’var’ in globals()

Expecting:

False

ok

2 items had no tests:

doctest_test_globals

doctest_test_globals.TestGlobals

2 items passed all tests:

2 tests in doctest_test_globals.TestGlobals.one

ptg

16.2. doctest—Testing through Documentation 947

1 tests in doctest_test_globals.TestGlobals.two

3 tests in 4 items.

3 passed and 0 failed.

Test passed.

That does not mean the tests cannot interfere with each other, though, if they

change the contents of mutable variables defined in the module.

_module_data = {}

class TestGlobals(object):

def one(self):

"""

>>> TestGlobals().one()

>>> ’var’ in _module_data

True

"""

_module_data[’var’] = ’value’

def two(self):

"""

>>> ’var’ in _module_data

False

"""

The module variable _module_data is changed by the tests for one(), causing

the test for two() to fail.

$ python -m doctest -v doctest_mutable_globals.py

Trying:

TestGlobals().one()

Expecting nothing

ok

Trying:

’var’ in _module_data

Expecting:

True

ok

Trying:

’var’ in _module_data

ptg

948 Developer Tools

Expecting:

False

File "doctest_mutable_globals.py", line 24, in doctest_mutable_

globals.TestGlobals.two

Failed example:

’var’ in _module_data

Expected:

False

Got:

True

2 items had no tests:

doctest_mutable_globals

doctest_mutable_globals.TestGlobals

1 items passed all tests:

2 tests in doctest_mutable_globals.TestGlobals.one

1 items had failures:

1 of 1 in doctest_mutable_globals.TestGlobals.two

3 tests in 4 items.

2 passed and 1 failed.

Test Failed 1 failures.

If global values are needed for the tests, to parameterize them for an environment

for example, values can be passed to testmod() and testfile() to have the context

set up using data controlled by the caller.

See Also:
doctest (http://docs.python.org/library/doctest.html) The standard library docu-

mentation for this module.

The Mighty Dictionary (http://blip.tv/file/3332763) Presentation by Brandon

Rhodes at PyCon 2010 about the internal operations of the dict.

difflib (page 61) Python’s sequence difference computation library, used to produce

the ndiff output.

Sphinx (http://sphinx.pocoo.org/) As well as being the documentation processing

tool for Python’s standard library, Sphinx has been adopted by many third-party

projects because it is easy to use and produces clean output in several digital and

print formats. Sphinx includes an extension for running doctests as it processes

documentation source files, so the examples are always accurate.

nose (http://somethingaboutorange.com/mrl/projects/nose/) Third-party test runner

with doctest support.

http://docs.python.org/library/doctest.html
http://blip.tv/file/3332763
http://sphinx.pocoo.org/
http://somethingaboutorange.com/mrl/projects/nose/

ptg

16.3. unittest—Automated Testing Framework 949

py.test (http://codespeak.net/py/dist/test/) Third-party test runner with doctest

support.

Manuel (http://packages.python.org/manuel/) Third-party documentation-based test

runner with more advanced test-case extraction and integration with Sphinx.

16.3 unittest—Automated Testing Framework

Purpose Automated testing framework.

Python Version 2.1 and later

Python’s unittest module, sometimes called PyUnit, is based on the XUnit frame-

work design by Kent Beck and Erich Gamma. The same pattern is repeated in many

other languages, including C, Perl, Java, and Smalltalk. The framework implemented

by unittest supports fixtures, test suites, and a test runner to enable automated test-

ing.

16.3.1 Basic Test Structure

Tests, as defined by unittest, have two parts: code to manage test dependencies

(called “fixtures”) and the test itself. Individual tests are created by subclassing Test-

Case and overriding or adding appropriate methods. For example,

import unittest

class SimplisticTest(unittest.TestCase):

def test(self):

self.failUnless(True)

if __name__ == ’__main__’:

unittest.main()

In this case, the SimplisticTest has a single test() method, which would fail

if True is ever False.

16.3.2 Running Tests

The easiest way to run unittest tests is to include

if __name__ == ’__main__’:

unittest.main()

http://codespeak.net/py/dist/test/
http://packages.python.org/manuel/

ptg

950 Developer Tools

at the bottom of each test file, and then simply run the script directly from the command

line.

$ python unittest_simple.py

.

--

Ran 1 test in 0.000s

OK

This abbreviated output includes the amount of time the tests took, along with a

status indicator for each test (the “.” on the first line of output means that a test passed).

For more detailed test results, include the –v option:

$ python unittest_simple.py -v

test (__main__.SimplisticTest) ... ok

--

Ran 1 test in 0.000s

OK

16.3.3 Test Outcomes

Tests have three possible outcomes, described in Table 16.1.

There is no explicit way to cause a test to “pass,” so a test’s status depends on the

presence (or absence) of an exception.

import unittest

class OutcomesTest(unittest.TestCase):

Table 16.1. Test Case Outcomes

Outcome Description
ok The test passes.

FAIL The test does not pass and raises an AssertionError exception.

ERROR The test raises any exception other than AssertionError.

ptg

16.3. unittest—Automated Testing Framework 951

def testPass(self):

return

def testFail(self):

self.failIf(True)

def testError(self):

raise RuntimeError(’Test error!’)

if __name__ == ’__main__’:

unittest.main()

When a test fails or generates an error, the traceback is included in the output.

$ python unittest_outcomes.py

EF.

==

ERROR: testError (__main__.OutcomesTest)

--

Traceback (most recent call last):

File "unittest_outcomes.py", line 42, in testError

raise RuntimeError(’Test error!’)

RuntimeError: Test error!

==

FAIL: testFail (__main__.OutcomesTest)

--

Traceback (most recent call last):

File "unittest_outcomes.py", line 39, in testFail

self.failIf(True)

AssertionError: True is not False

--

Ran 3 tests in 0.001s

FAILED (failures=1, errors=1)

In the previous example, testFail() fails and the traceback shows the line with

the failure code. It is up to the person reading the test output to look at the code to figure

out the meaning of the failed test, though.

ptg

952 Developer Tools

import unittest

class FailureMessageTest(unittest.TestCase):

def testFail(self):

self.failIf(True, ’failure message goes here’)

if __name__ == ’__main__’:

unittest.main()

To make it easier to understand the nature of a test failure, the fail*() and

assert*() methods all accept an argument msg, which can be used to produce a more

detailed error message.

$ python unittest_failwithmessage.py -v

testFail (__main__.FailureMessageTest) ... FAIL

==

FAIL: testFail (__main__.FailureMessageTest)

--

Traceback (most recent call last):

File "unittest_failwithmessage.py", line 36, in testFail

self.failIf(True, ’failure message goes here’)

AssertionError: failure message goes here

--

Ran 1 test in 0.000s

FAILED (failures=1)

16.3.4 Asserting Truth

Most tests assert the truth of some condition. There are a few different ways to write

truth-checking tests, depending on the perspective of the test author and the desired

outcome of the code being tested.

import unittest

class TruthTest(unittest.TestCase):

def testFailUnless(self):

self.failUnless(True)

ptg

16.3. unittest—Automated Testing Framework 953

def testAssertTrue(self):

self.assertTrue(True)

def testFailIf(self):

self.failIf(False)

def testAssertFalse(self):

self.assertFalse(False)

if __name__ == ’__main__’:

unittest.main()

If the code produces a value that can be evaluated as true, the methods

failUnless() and assertTrue() should be used. If the code produces a false value,

the methods failIf() and assertFalse() make more sense.

$ python unittest_truth.py -v

testAssertFalse (__main__.TruthTest) ... ok

testAssertTrue (__main__.TruthTest) ... ok

testFailIf (__main__.TruthTest) ... ok

testFailUnless (__main__.TruthTest) ... ok

--

Ran 4 tests in 0.000s

OK

16.3.5 Testing Equality

As a special case, unittest includes methods for testing the equality of two values.

import unittest

class EqualityTest(unittest.TestCase):

def testExpectEqual(self):

self.failUnlessEqual(1, 3-2)

def testExpectEqualFails(self):

self.failUnlessEqual(2, 3-2)

ptg

954 Developer Tools

def testExpectNotEqual(self):

self.failIfEqual(2, 3-2)

def testExpectNotEqualFails(self):

self.failIfEqual(1, 3-2)

if __name__ == ’__main__’:

unittest.main()

When they fail, these special test methods produce error messages including the

values being compared.

$ python unittest_equality.py -v

testExpectEqual (__main__.EqualityTest) ... ok

testExpectEqualFails (__main__.EqualityTest) ... FAIL

testExpectNotEqual (__main__.EqualityTest) ... ok

testExpectNotEqualFails (__main__.EqualityTest) ... FAIL

==

FAIL: testExpectEqualFails (__main__.EqualityTest)

--

Traceback (most recent call last):

File "unittest_equality.py", line 39, in testExpectEqualFails

self.failUnlessEqual(2, 3-2)

AssertionError: 2 != 1

==

FAIL: testExpectNotEqualFails (__main__.EqualityTest)

--

Traceback (most recent call last):

File "unittest_equality.py", line 45, in testExpectNotEqualFails

self.failIfEqual(1, 3-2)

AssertionError: 1 == 1

--

Ran 4 tests in 0.001s

FAILED (failures=2)

16.3.6 Almost Equal?

In addition to strict equality, it is possible to test for near equality of floating-point

numbers using failIfAlmostEqual() and failUnlessAlmostEqual().

ptg

16.3. unittest—Automated Testing Framework 955

import unittest

class AlmostEqualTest(unittest.TestCase):

def testEqual(self):

self.failUnlessEqual(1.1, 3.3-2.2)

def testAlmostEqual(self):

self.failUnlessAlmostEqual(1.1, 3.3-2.2, places=1)

def testNotAlmostEqual(self):

self.failIfAlmostEqual(1.1, 3.3-2.0, places=1)

if __name__ == ’__main__’:

unittest.main()

The arguments are the values to be compared and the number of decimal places to

use for the test.

$ python unittest_almostequal.py

.F.

==

FAIL: testEqual (__main__.AlmostEqualTest)

--

Traceback (most recent call last):

File "unittest_almostequal.py", line 36, in testEqual

self.failUnlessEqual(1.1, 3.3-2.2)

AssertionError: 1.1 != 1.0999999999999996

--

Ran 3 tests in 0.001s

FAILED (failures=1)

16.3.7 Testing for Exceptions

As previously mentioned, if a test raises an exception other than AssertionError,

it is treated as an error. This is very useful for uncovering mistakes while mod-

ifying code that has existing test coverage. There are circumstances, however, in

which the test should verify that some code does produce an exception. One exam-

ple is when an invalid value is given to an attribute of an object. In such cases,

failUnlessRaises() or assertRaises() make the code more clear than trapping

the exception in the test. Compare these two tests.

ptg

956 Developer Tools

import unittest

def raises_error(*args, **kwds):

raise ValueError(’Invalid value: ’ + str(args) + str(kwds))

class ExceptionTest(unittest.TestCase):

def testTrapLocally(self):

try:
raises_error(’a’, b=’c’)

except ValueError:
pass

else:
self.fail(’Did not see ValueError’)

def testFailUnlessRaises(self):

self.failUnlessRaises(ValueError, raises_error, ’a’, b=’c’)

if __name__ == ’__main__’:

unittest.main()

The results for both are the same, but the second test using

failUnlessRaises() is more succinct.

$ python unittest_exception.py -v

testFailUnlessRaises (__main__.ExceptionTest) ... ok

testTrapLocally (__main__.ExceptionTest) ... ok

--

Ran 2 tests in 0.000s

OK

16.3.8 Test Fixtures

Fixtures are outside resources needed by a test. For example, tests for one class may all

need an instance of another class that provides configuration settings or another shared

resource. Other test fixtures include database connections and temporary files (many

people would argue that using external resources makes such tests not “unit” tests, but

they are still tests and still useful). TestCase includes a special hook to configure and

clean up any fixtures needed by tests. To configure the fixtures, override setUp(). To

clean up, override tearDown().

ptg

16.3. unittest—Automated Testing Framework 957

import unittest

class FixturesTest(unittest.TestCase):

def setUp(self):

print ’In setUp()’

self.fixture = range(1, 10)

def tearDown(self):

print ’In tearDown()’

del self.fixture

def test(self):

print ’In test()’

self.failUnlessEqual(self.fixture, range(1, 10))

if __name__ == ’__main__’:

unittest.main()

When this sample test is run, the order of execution of the fixture and test methods

is apparent.

$ python -u unittest_fixtures.py

In setUp()

In test()

In tearDown()

.

--

Ran 1 test in 0.000s

OK

16.3.9 Test Suites

The standard library documentation describes how to organize test suites manually.

Automated test discovery is more manageable for large code bases in which related

tests are not all in the same place. Tools such as nose and py.test make it easier to

manage tests when they are spread over multiple files and directories.

See Also:
unittest (http://docs.python.org/lib/module-unittest.html) The standard library

documentation for this module.

http://docs.python.org/lib/module-unittest.html

ptg

958 Developer Tools

doctest (page 921) An alternate means of running tests embedded in docstrings or

external documentation files.

nose (http://somethingaboutorange.com/mrl/projects/nose/) A more sophisticated

test manager.

py.test (http://codespeak.net/py/dist/test/) A third-party test runner.

unittest2 (http://pypi.python.org/pypi/unittest2) Ongoing improvements to unit-

test.

16.4 traceback—Exceptions and Stack Traces

Purpose Extract, format, and print exceptions and stack traces.

Python Version 1.4 and later

The traceback module works with the call stack to produce error messages. A trace-
back is a stack trace from the point of an exception handler down the call chain to the

point where the exception was raised. Tracebacks also can be accessed from the current

call stack up from the point of a call (and without the context of an error), which is

useful for finding out the paths being followed into a function.

The functions in traceback fall into several common categories. There are func-

tions for extracting raw tracebacks from the current runtime environment (either an

exception handler for a traceback or the regular stack). The extracted stack trace is a

sequence of tuples containing the filename, line number, function name, and text of the

source line.

Once extracted, the stack trace can be formatted using functions like for-

mat_exception(), format_stack(), etc. The format functions return a list of

strings with messages formatted to be printed. There are shorthand functions for print-

ing the formatted values, as well.

Although the functions in traceback mimic the behavior of the interactive

interpreter by default, they also are useful for handling exceptions in situations where

dumping the full stack trace to the console is not desirable. For example, a web appli-

cation may need to format the traceback so it looks good in HTML, and an IDE may

convert the elements of the stack trace into a clickable list that lets the user browse the

source.

16.4.1 Supporting Functions

The examples in this section use the module traceback_example.py.

import traceback
import sys

http://somethingaboutorange.com/mrl/projects/nose/
http://codespeak.net/py/dist/test/
http://pypi.python.org/pypi/unittest2

ptg

16.4. traceback—Exceptions and Stack Traces 959

def produce_exception(recursion_level=2):

sys.stdout.flush()

if recursion_level:

produce_exception(recursion_level-1)

else:
raise RuntimeError()

def call_function(f, recursion_level=2):

if recursion_level:

return call_function(f, recursion_level-1)

else:
return f()

16.4.2 Working with Exceptions

The simplest way to handle exception reporting is with print_exc(). It uses

sys.exc_info() to obtain the exception information for the current thread, formats

the results, and prints the text to a file handle (sys.stderr, by default).

import traceback
import sys

from traceback_example import produce_exception

print ’print_exc() with no exception:’

traceback.print_exc(file=sys.stdout)

print

try:
produce_exception()

except Exception, err:

print ’print_exc():’

traceback.print_exc(file=sys.stdout)

print
print ’print_exc(1):’

traceback.print_exc(limit=1, file=sys.stdout)

In this example, the file handle for sys.stdout is substituted so the informational

and traceback messages are mingled correctly.

$ python traceback_print_exc.py

print_exc() with no exception:

None

ptg

960 Developer Tools

print_exc():

Traceback (most recent call last):

File "traceback_print_exc.py", line 20, in <module>

produce_exception()

File "/Users/dhellmann/Documents/PyMOTW/book/PyMOTW/traceback/trac

eback_example.py", line 16, in produce_exception

produce_exception(recursion_level-1)

File "/Users/dhellmann/Documents/PyMOTW/book/PyMOTW/traceback/trac

eback_example.py", line 16, in produce_exception

produce_exception(recursion_level-1)

File "/Users/dhellmann/Documents/PyMOTW/book/PyMOTW/traceback/trac

eback_example.py", line 18, in produce_exception

raise RuntimeError()

RuntimeError

print_exc(1):

Traceback (most recent call last):

File "traceback_print_exc.py", line 20, in <module>

produce_exception()

RuntimeError

print_exc() is just a shortcut for print_exception(), which requires

explicit arguments.

import traceback
import sys

from traceback_example import produce_exception

try:
produce_exception()

except Exception, err:

print ’print_exception():’

exc_type, exc_value, exc_tb = sys.exc_info()

traceback.print_exception(exc_type, exc_value, exc_tb)

The arguments to print_exception() are produced by sys.exc_info().

$ python traceback_print_exception.py

Traceback (most recent call last):

File "traceback_print_exception.py", line 16, in <module>

produce_exception()

ptg

16.4. traceback—Exceptions and Stack Traces 961

File "/Users/dhellmann/Documents/PyMOTW/book/PyMOTW/traceback/trac

eback_example.py", line 16, in produce_exception

produce_exception(recursion_level-1)

File "/Users/dhellmann/Documents/PyMOTW/book/PyMOTW/traceback/trac

eback_example.py", line 16, in produce_exception

produce_exception(recursion_level-1)

File "/Users/dhellmann/Documents/PyMOTW/book/PyMOTW/traceback/trac

eback_example.py", line 18, in produce_exception

raise RuntimeError()

RuntimeError

print_exception():

print_exception() uses format_exception() to prepare the text.

import traceback
import sys
from pprint import pprint

from traceback_example import produce_exception

try:
produce_exception()

except Exception, err:

print ’format_exception():’

exc_type, exc_value, exc_tb = sys.exc_info()

pprint(traceback.format_exception(exc_type, exc_value, exc_tb))

The same three arguments, exception type, exception value, and traceback, are

used with format_exception().

$ python traceback_format_exception.py

format_exception():

[’Traceback (most recent call last):\n’,

’ File "traceback_format_exception.py", line 17, in <module>\n

produce_exception()\n’,

’ File "/Users/dhellmann/Documents/PyMOTW/book/PyMOTW/traceback/tr

aceback_example.py", line 16, in produce_exception\n produce_exce

ption(recursion_level-1)\n’,

’ File "/Users/dhellmann/Documents/PyMOTW/book/PyMOTW/traceback/tr

aceback_example.py", line 16, in produce_exception\n produce_exce

ption(recursion_level-1)\n’,

ptg

962 Developer Tools

’ File "/Users/dhellmann/Documents/PyMOTW/book/PyMOTW/traceback/tr

aceback_example.py", line 18, in produce_exception\n raise Runtim

eError()\n’,

’RuntimeError\n’]

To process the traceback in some other way, such as formatting it differently, use

extract_tb() to get the data in a usable form.

import traceback
import sys
import os
from traceback_example import produce_exception

try:
produce_exception()

except Exception, err:

print ’format_exception():’

exc_type, exc_value, exc_tb = sys.exc_info()

for tb_info in traceback.extract_tb(exc_tb):

filename, linenum, funcname, source = tb_info

print ’%-23s:%s "%s" in %s()’ % \

(os.path.basename(filename),

linenum,

source,

funcname)

The return value is a list of entries from each level of the stack represented by the

traceback. Each entry is a tuple with four parts: the name of the source file, the line

number in that file, the name of the function, and the source text from that line with

whitespace stripped (if the source is available).

$ python traceback_extract_tb.py

format_exception():

traceback_extract_tb.py:16 "produce_exception()" in <module>()

traceback_example.py :16 "produce_exception(recursion_level-1)" in

produce_exception()

traceback_example.py :16 "produce_exception(recursion_level-1)" in

produce_exception()

traceback_example.py :18 "raise RuntimeError()" in produce_excepti

on()

ptg

16.4. traceback—Exceptions and Stack Traces 963

16.4.3 Working with the Stack

There is a similar set of functions for performing the same operations with the current

call stack instead of a traceback. print_stack() prints the current stack, without

generating an exception.

import traceback
import sys

from traceback_example import call_function

def f():

traceback.print_stack(file=sys.stdout)

print ’Calling f() directly:’

f()

print
print ’Calling f() from 3 levels deep:’

call_function(f)

The output looks like a traceback without an error message.

$ python traceback_print_stack.py

Calling f() directly:

File "traceback_print_stack.py", line 19, in <module>

f()

File "traceback_print_stack.py", line 16, in f

traceback.print_stack(file=sys.stdout)

Calling f() from 3 levels deep:

File "traceback_print_stack.py", line 23, in <module>

call_function(f)

File "/Users/dhellmann/Documents/PyMOTW/book/PyMOTW/traceback/trac

eback_example.py", line 22, in call_function

return call_function(f, recursion_level-1)

File "/Users/dhellmann/Documents/PyMOTW/book/PyMOTW/traceback/trac

eback_example.py", line 22, in call_function

return call_function(f, recursion_level-1)

File "/Users/dhellmann/Documents/PyMOTW/book/PyMOTW/traceback/trac

eback_example.py", line 24, in call_function

ptg

964 Developer Tools

return f()

File "traceback_print_stack.py", line 16, in f

traceback.print_stack(file=sys.stdout)

format_stack() prepares the stack trace in the same way that format_

exception() prepares the traceback.

import traceback
import sys
from pprint import pprint

from traceback_example import call_function

def f():

return traceback.format_stack()

formatted_stack = call_function(f)

pprint(formatted_stack)

It returns a list of strings, each of which makes up one line of the output.

$ python traceback_format_stack.py

[’ File "traceback_format_stack.py", line 19, in <module>\n form

atted_stack = call_function(f)\n’,

’ File "/Users/dhellmann/Documents/PyMOTW/book/PyMOTW/traceback/tr

aceback_example.py", line 22, in call_function\n return call_func

tion(f, recursion_level-1)\n’,

’ File "/Users/dhellmann/Documents/PyMOTW/book/PyMOTW/traceback/tr

aceback_example.py", line 22, in call_function\n return call_func

tion(f, recursion_level-1)\n’,

’ File "/Users/dhellmann/Documents/PyMOTW/book/PyMOTW/traceback/tr

aceback_example.py", line 24, in call_function\n return f()\n’,

’ File "traceback_format_stack.py", line 17, in f\n return trac

eback.format_stack()\n’]

The extract_stack() function works like extract_tb().

import traceback
import sys
import os

ptg

16.5. cgitb—Detailed Traceback Reports 965

from traceback_example import call_function

def f():

return traceback.extract_stack()

stack = call_function(f)

for filename, linenum, funcname, source in stack:

print ’%-26s:%s "%s" in %s()’ % \

(os.path.basename(filename), linenum, source, funcname)

It also accepts arguments, not shown here, to start from an alternate place in the

stack frame or to limit the depth of traversal.

$ python traceback_extract_stack.py

traceback_extract_stack.py:19 "stack = call_function(f)" in <module>

()

traceback_example.py :22 "return call_function(f, recursion_lev

el-1)" in call_function()

traceback_example.py :22 "return call_function(f, recursion_lev

el-1)" in call_function()

traceback_example.py :24 "return f()" in call_function()

traceback_extract_stack.py:17 "return traceback.extract_stack()" in

f()

See Also:
traceback (http://docs.python.org/lib/module-traceback.html) The standard library

documentation for this module.

sys (page 1055) The sys module includes singletons that hold the current exception.

inspect (page 1200) The inspect module includes other functions for probing the

frames on the stack.

cgitb (page 965) Another module for formatting tracebacks nicely.

16.5 cgitb—Detailed Traceback Reports

Purpose cgitb provides more detailed traceback information than trace-

back.

Python Version 2.2 and later

cgitb is a valuable debugging tool in the standard library. It was originally designed

for showing errors and debugging information in web applications. It was later updated

http://docs.python.org/lib/module-traceback.html

ptg

966 Developer Tools

to include plain-text output as well, but unfortunately was never renamed. This has led

to obscurity, and the module is not used as often as it could be.

16.5.1 Standard Traceback Dumps

Python’s default exception-handling behavior is to print a traceback to the standard

error output stream with the call stack leading up to the error position. This basic output

frequently contains enough information to understand the cause of the exception and

permit a fix.

def func2(a, divisor):

return a / divisor

def func1(a, b):

c = b - 5

return func2(a, c)

func1(1, 5)

This sample program has a subtle error in func2().

$ python cgitb_basic_traceback.py

Traceback (most recent call last):

File "cgitb_basic_traceback.py", line 17, in <module>

func1(1, 5)

File "cgitb_basic_traceback.py", line 15, in func1

return func2(a, c)

File "cgitb_basic_traceback.py", line 11, in func2

return a / divisor

ZeroDivisionError: integer division or modulo by zero

16.5.2 Enabling Detailed Tracebacks

While the basic traceback includes enough information to spot the error, enabling

cgitb gives more detail. cgitb replaces sys.excepthook with a function that gives

extended tracebacks.

import cgitb
cgitb.enable(format=’text’)

ptg

16.5. cgitb—Detailed Traceback Reports 967

The error report from this example is much more extensive than the original. Each

frame of the stack is listed, along with the following.

• The full path to the source file, instead of just the base name

• The values of the arguments to each function in the stack

• A few lines of source context from around the line in the error path

• The values of variables in the expression causing the error

Having access to the variables involved in the error stack can help find a logical

error that occurs somewhere higher in the stack than the line where the actual exception

is generated.

$ python cgitb_local_vars.py

<type ’exceptions.ZeroDivisionError’>

Python 2.7: /Users/dhellmann/.virtualenvs/pymotw/bin/python

Sat Dec 4 12:59:15 2010

A problem occurred in a Python script. Here is the sequence of

function calls leading up to the error, in the order they occurred.

/Users/dhellmann/Documents/PyMOTW/book/PyMOTW/cgitb/cgitb_local_var

s.py in <module>()

16 def func1(a, b):

17 c = b - 5

18 return func2(a, c)

19

20 func1(1, 5)

func1 = <function func1>

/Users/dhellmann/Documents/PyMOTW/book/PyMOTW/cgitb/cgitb_local_var

s.py in func1(a=1, b=5)

16 def func1(a, b):

17 c = b - 5

18 return func2(a, c)

19

20 func1(1, 5)

global func2 = <function func2>

a = 1

c = 0

ptg

968 Developer Tools

/Users/dhellmann/Documents/PyMOTW/book/PyMOTW/cgitb/cgitb_local_var

s.py in func2(a=1, divisor=0)

12

13 def func2(a, divisor):

14 return a / divisor

15

16 def func1(a, b):

a = 1

divisor = 0

<type ’exceptions.ZeroDivisionError’>: integer division or modulo by

zero

__class__ = <type ’exceptions.ZeroDivisionError’>

__dict__ = {}

__doc__ = ’Second argument to a division or modulo operation was

zero.’

...method references removed...

args = (’integer division or modulo by zero’,)

message = ’integer division or modulo by zero’

The above is a description of an error in a Python program. Here is

the original traceback:

Traceback (most recent call last):

File "cgitb_local_vars.py", line 20, in <module>

func1(1, 5)

File "cgitb_local_vars.py", line 18, in func1

return func2(a, c)

File "cgitb_local_vars.py", line 14, in func2

return a / divisor

ZeroDivisionError: integer division or modulo by zero

In the case of this code with a ZeroDivisionError, it is apparent that the prob-

lem is introduced in the computation of the value of c in func1(), rather than where

the value is used in func2().

The end of the output also includes the full details of the exception object (in case it

has attributes other than message that would be useful for debugging) and the original

form of a traceback dump.

16.5.3 Local Variables in Tracebacks

The code in cgitb that examines the variables used in the stack frame leading to the

error is smart enough to evaluate object attributes to display them, too.

ptg

16.5. cgitb—Detailed Traceback Reports 969

import cgitb
cgitb.enable(format=’text’, context=12)

class BrokenClass(object):
"""This class has an error.

"""

def __init__(self, a, b):

"""Be careful passing arguments in here.

"""

self.a = a

self.b = b

self.c = self.a * self.b

Really

long

comment

goes

here.

self.d = self.a / self.b

return

o = BrokenClass(1, 0)

If a function or method includes a lot of in-line comments, whitespace, or other

code that makes it very long, then having the default of five lines of context may not

provide enough direction. When the body of the function is pushed out of the code

window displayed, there is not enough context to understand the location of the error.

Using a larger context value with cgitb solves this problem. Passing an integer as the

context argument to enable() controls the amount of code displayed for each line of

the traceback.

This output shows that self.a and self.b are involved in the error-prone code.

$ python cgitb_with_classes.py | grep -v method

<type ’exceptions.ZeroDivisionError’>

Python 2.7: /Users/dhellmann/.virtualenvs/pymotw/bin/python

Sat Dec 4 12:59:16 2010

A problem occurred in a Python script. Here is the sequence of

function calls leading up to the error, in the order they occurred.

/Users/dhellmann/Documents/PyMOTW/book/PyMOTW/cgitb/cgitb_with_clas

ptg

970 Developer Tools

ses.py in <module>()

20 self.a = a

21 self.b = b

22 self.c = self.a * self.b

23 # Really

24 # long

25 # comment

26 # goes

27 # here.

28 self.d = self.a / self.b

29 return

30

31 o = BrokenClass(1, 0)

o undefined

BrokenClass = <class ’__main__.BrokenClass’>

/Users/dhellmann/Documents/PyMOTW/book/PyMOTW/cgitb/cgitb_with_clas

ses.py in __init__(self=<__main__.BrokenClass object>, a=1, b=0)

20 self.a = a

21 self.b = b

22 self.c = self.a * self.b

23 # Really

24 # long

25 # comment

26 # goes

27 # here.

28 self.d = self.a / self.b

29 return

30

31 o = BrokenClass(1, 0)

self = <__main__.BrokenClass object>

self.d undefined

self.a = 1

self.b = 0

<type ’exceptions.ZeroDivisionError’>: integer division or modulo by

zero

__class__ = <type ’exceptions.ZeroDivisionError’>

__dict__ = {}

__doc__ = ’Second argument to a division or modulo operation was

zero.’

...method references removed...

args = (’integer division or modulo by zero’,)

message = ’integer division or modulo by zero’

ptg

16.5. cgitb—Detailed Traceback Reports 971

The above is a description of an error in a Python program. Here is

the original traceback:

Traceback (most recent call last):

File "cgitb_with_classes.py", line 31, in <module>

o = BrokenClass(1, 0)

File "cgitb_with_classes.py", line 28, in __init__

self.d = self.a / self.b

ZeroDivisionError: integer division or modulo by zero

16.5.4 Exception Properties

In addition to the local variables from each stack frame, cgitb shows all properties of

the exception object. Extra properties on custom exception types are printed as part of

the error report.

import cgitb
cgitb.enable(format=’text’)

class MyException(Exception):
"""Add extra properties to a special exception

"""

def __init__(self, message, bad_value):

self.bad_value = bad_value

Exception.__init__(self, message)

return

raise MyException(’Normal message’, bad_value=99)

In this example, the bad_value property is included along with the standard mes-
sage and args values.

$ python cgitb_exception_properties.py

<class ’__main__.MyException’>

Python 2.7: /Users/dhellmann/.virtualenvs/pymotw/bin/python

Sat Dec 4 12:59:16 2010

A problem occurred in a Python script. Here is the sequence of

function calls leading up to the error, in the order they occurred.

ptg

972 Developer Tools

/Users/dhellmann/Documents/PyMOTW/book/PyMOTW/cgitb/cgitb_exception

_properties.py in <module>()

18 self.bad_value = bad_value

19 Exception.__init__(self, message)

20 return

21

22 raise MyException(’Normal message’, bad_value=99)

MyException = <class ’__main__.MyException’>

bad_value undefined

<class ’__main__.MyException’>: Normal message

__class__ = <class ’__main__.MyException’>

__dict__ = {’bad_value’: 99}

__doc__ = ’Add extra properties to a special exception\n ’

__module__ = ’__main__’

...method references removed...

args = (’Normal message’,)

bad_value = 99

message = ’Normal message’

The above is a description of an error in a Python program. Here is

the original traceback:

Traceback (most recent call last):

File "cgitb_exception_properties.py", line 22, in <module>

raise MyException(’Normal message’, bad_value=99)

MyException: Normal message

16.5.5 HTML Output

Because cgitb was originally developed for handling exceptions in web applications,

no discussion would be complete without mentioning its original HTML output for-

mat. The earlier examples all show plain-text output. To produce HTML instead, leave

out the format argument (or specify “html”). Most modern web applications are con-

structed using a framework that includes an error-reporting facility, so the HTML form

is largely obsolete.

16.5.6 Logging Tracebacks

For many situations, printing the traceback details to standard error is the best resolu-

tion. In a production system, however, logging the errors is even better. The enable()

function includes an optional argument, logdir, to enable error logging. When a direc-

tory name is provided, each exception is logged to its own file in the given directory.

ptg

16.5. cgitb—Detailed Traceback Reports 973

import cgitb
import os

cgitb.enable(logdir=os.path.join(os.path.dirname(__file__), ’LOGS’),

display=False,

format=’text’,

)

def func(a, divisor):

return a / divisor

func(1, 0)

Even though the error display is suppressed, a message is printed describing where

to go to find the error log.

$ python cgitb_log_exception.py

<p>A problem occurred in a Python script.

<p> /Users/dhellmann/Documents/PyMOTW/book/PyMOTW/cgitb/LOGS/tmpy2v8

NM.txt contains the description of this error.

$ ls LOGS

tmpy2v8NM.txt

$ cat LOGS/*.txt

<type ’exceptions.ZeroDivisionError’>

Python 2.7: /Users/dhellmann/.virtualenvs/pymotw/bin/python

Sat Dec 4 12:59:15 2010

A problem occurred in a Python script. Here is the sequence of

function calls leading up to the error, in the order they occurred.

/Users/dhellmann/Documents/PyMOTW/book/PyMOTW/cgitb/cgitb_log_excep

tion.py in <module>()

17

18 def func(a, divisor):

19 return a / divisor

20

21 func(1, 0)

func = <function func>

ptg

974 Developer Tools

/Users/dhellmann/Documents/PyMOTW/book/PyMOTW/cgitb/cgitb_log_excep

tion.py in func(a=1, divisor=0)

17

18 def func(a, divisor):

19 return a / divisor

20

21 func(1, 0)

a = 1

divisor = 0

<type ’exceptions.ZeroDivisionError’>: integer division or modulo by

zero

__class__ = <type ’exceptions.ZeroDivisionError’>

__delattr__ = <method-wrapper ’__delattr__’ of

exceptions.ZeroDivisionError object>

__dict__ = {}

__doc__ = ’Second argument to a division or modulo operation was

zero.’

__format__ = <built-in method __format__ of

exceptions.ZeroDivisionError object>

__getattribute__ = <method-wrapper ’__getattribute__’ of

exceptions.ZeroDivisionError object>

__getitem__ = <method-wrapper ’__getitem__’ of

exceptions.ZeroDivisionError object>

__getslice__ = <method-wrapper ’__getslice__’ of

exceptions.ZeroDivisionError object>

__hash__ = <method-wrapper ’__hash__’ of

exceptions.ZeroDivisionError object>

__init__ = <method-wrapper ’__init__’ of

exceptions.ZeroDivisionError object>

__new__ = <built-in method __new__ of type object>

__reduce__ = <built-in method __reduce__ of

exceptions.ZeroDivisionError object>

__reduce_ex__ = <built-in method __reduce_ex__ of

exceptions.ZeroDivisionError object>

__repr__ = <method-wrapper ’__repr__’ of

exceptions.ZeroDivisionError object>

__setattr__ = <method-wrapper ’__setattr__’ of

exceptions.ZeroDivisionError object>

__setstate__ = <built-in method __setstate__ of

exceptions.ZeroDivisionError object>

__sizeof__ = <built-in method __sizeof__ of

exceptions.ZeroDivisionError object>

__str__ = <method-wrapper ’__str__’ of

ptg

16.6. pdb—Interactive Debugger 975

exceptions.ZeroDivisionError object>

__subclasshook__ = <built-in method __subclasshook__ of type

object>

__unicode__ = <built-in method __unicode__ of

exceptions.ZeroDivisionError object>

args = (’integer division or modulo by zero’,)

message = ’integer division or modulo by zero’

The above is a description of an error in a Python program. Here is

the original traceback:

Traceback (most recent call last):

File "cgitb_log_exception.py", line 21, in <module>

func(1, 0)

File "cgitb_log_exception.py", line 19, in func

return a / divisor

ZeroDivisionError: integer division or modulo by zero

See Also:
cgitb (http://docs.python.org/library/cgitb.html) The standard library documenta-

tion for this module.

traceback (page 958) The standard library module for working with tracebacks.

inspect (page 1200) The inspect module includes more functions for examining

the stack.

sys (page 1055) The sys module provides access to the current exception value and

the excepthook handler invoked when an exception occurs.

Improved Traceback Module
(http://thread.gmane.org/gmane.comp.python.devel/110326) Discussion on

the Python development mailing list about improvements to the traceback

module and related enhancements other developers use locally.

16.6 pdb—Interactive Debugger

Purpose Python’s interactive debugger.

Python Version 1.4 and later

pdb implements an interactive debugging environment for Python programs. It includes

features to pause a program, look at the values of variables, and watch program execu-

tion step by step, so you can understand what the program actually does and find bugs

in the logic.

http://docs.python.org/library/cgitb.html
http://thread.gmane.org/gmane.comp.python.devel/110326

ptg

976 Developer Tools

16.6.1 Starting the Debugger

The first step to using pdb is causing the interpreter to enter the debugger at the right

time. There are a few different ways to do that, depending on the starting conditions

and what is being debugged.

From the Command Line

The most straightforward way to use the debugger is to run it from the command line,

giving it the program as input so it knows what to run.

1 #!/usr/bin/env python

2 # encoding: utf-8

3 #

4 # Copyright (c) 2010 Doug Hellmann. All rights reserved.

5 #

6

7 class MyObj(object):
8

9 def __init__(self, num_loops):

10 self.count = num_loops

11

12 def go(self):

13 for i in range(self.count):

14 print i

15 return
16

17 if __name__ == ’__main__’:

18 MyObj(5).go()

Running the debugger from the command line causes it to load the source file and

stop execution on the first statement it finds. In this case, it stops before evaluating the

definition of the class MyObj on line 7.

$ python -m pdb pdb_script.py

> .../pdb_script.py(7)<module>()

-> class MyObj(object):

(Pdb)

Note: Normally, pdb includes the full path to each module in the output when

printing a filename. In order to maintain clear examples, the path in the sample

output in this section has been replaced with an ellipsis (...).

ptg

16.6. pdb—Interactive Debugger 977

Within the Interpreter

Many Python developers work with the interactive interpreter while developing early

versions of modules because it lets them experiment more iteratively without the

save/run/repeat cycle needed when creating stand-alone scripts. To run the debugger

from within an interactive interpreter, use run() or runeval().

$ python

Python 2.7 (r27:82508, Jul 3 2010, 21:12:11)

[GCC 4.0.1 (Apple Inc. build 5493)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import pdb_script

>>> import pdb

>>> pdb.run(’pdb_script.MyObj(5).go()’)

> <string>(1)<module>()

(Pdb)

The argument to run() is a string expression that can be evaluated by the Python

interpreter. The debugger will parse it, and then pause execution just before the first

expression evaluates. The debugger commands described here can be used to navigate

and control the execution.

From within a Program

Both of the previous examples start the debugger at the beginning of a program. For

a long-running process where the problem appears much later in the program execu-

tion, it will be more convenient to start the debugger from inside the program using

set_trace().

1 #!/usr/bin/env python

2 # encoding: utf-8

3 #

4 # Copyright (c) 2010 Doug Hellmann. All rights reserved.

5 #

6

7 import pdb
8

9 class MyObj(object):
10

11 def __init__(self, num_loops):

12 self.count = num_loops

13

14 def go(self):

ptg

978 Developer Tools

15 for i in range(self.count):

16 pdb.set_trace()

17 print i

18 return
19

20 if __name__ == ’__main__’:

21 MyObj(5).go()

Line 16 of the sample script triggers the debugger at that point in execution.

$ python ./pdb_set_trace.py

> .../pdb_set_trace.py(17)go()

-> print i

(Pdb)

set_trace() is just a Python function, so it can be called at any point in a

program. This makes it possible to enter the debugger based on conditions inside the

program, including from an exception handler or via a specific branch of a control

statement.

After a Failure

Debugging a failure after a program terminates is called post-mortem debugging. pdb

supports post-mortem debugging through the pm() and post_mortem() functions.

1 #!/usr/bin/env python

2 # encoding: utf-8

3 #

4 # Copyright (c) 2010 Doug Hellmann. All rights reserved.

5 #

6

7 class MyObj(object):
8

9 def __init__(self, num_loops):

10 self.count = num_loops

11

12 def go(self):

13 for i in range(self.num_loops):

14 print i

15 return

ptg

16.6. pdb—Interactive Debugger 979

Here the incorrect attribute name on line 13 triggers an AttributeError

exception, causing execution to stop. pm() looks for the active traceback and starts

the debugger at the point in the call stack where the exception occurred.

$ python

Python 2.7 (r27:82508, Jul 3 2010, 21:12:11)

[GCC 4.0.1 (Apple Inc. build 5493)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> from pdb_post_mortem import MyObj

>>> MyObj(5).go()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "pdb_post_mortem.py", line 13, in go

for i in range(self.num_loops):

AttributeError: ’MyObj’ object has no attribute ’num_loops’

>>> import pdb

>>> pdb.pm()

> .../pdb_post_mortem.py(13)go()

-> for i in range(self.num_loops):

(Pdb)

16.6.2 Controlling the Debugger

The interface for the debugger is a small command language that lets you move

around the call stack, examine and change the values of variables, and control how

the debugger executes the program. The interactive debugger uses readline to accept

commands. Entering a blank line reruns the previous command again, unless it was a

list operation.

Navigating the Execution Stack

At any point while the debugger is running, use where (abbreviated w) to find out

exactly what line is being executed and where on the call stack the program is. In this

case, it is the module pdb_set_trace.py at line 17 in the go() method.

$ python pdb_set_trace.py

> .../pdb_set_trace.py(17)go()

-> print i

ptg

980 Developer Tools

(Pdb) where

.../pdb_set_trace.py(21)<module>()

-> MyObj(5).go()

> .../pdb_set_trace.py(17)go()

-> print i

To add more context around the current location, use list (l).

(Pdb) list

12 self.count = num_loops

13

14 def go(self):

15 for i in range(self.count):

16 pdb.set_trace()

17 -> print i

18 return

19

20 if __name__ == ’__main__’:

21 MyObj(5).go()

[EOF]

(Pdb)

The default is to list 11 lines around the current line (five before and five after).

Using list with a single numerical argument lists 11 lines around that line instead of the

current line.

(Pdb) list 14

9 class MyObj(object):

10

11 def __init__(self, num_loops):

12 self.count = num_loops

13

14 def go(self):

15 for i in range(self.count):

16 pdb.set_trace()

17 -> print i

18 return

19

If list receives two arguments, it interprets them as the first and last lines to include

in its output.

ptg

16.6. pdb—Interactive Debugger 981

(Pdb) list 5, 19

5 #

6

7 import pdb

8

9 class MyObj(object):

10

11 def __init__(self, num_loops):

12 self.count = num_loops

13

14 def go(self):

15 for i in range(self.count):

16 pdb.set_trace()

17 -> print i

18 return

19

Move between frames within the current call stack using up and down. up (abbre-

viated u) moves toward older frames on the stack. down (abbreviated d) moves toward

newer frames.

(Pdb) up

> .../pdb_set_trace.py(21)<module>()

-> MyObj(5).go()

(Pdb) down

> .../pdb_set_trace.py(17)go()

-> print i

Each time you move up or down the stack, the debugger prints the current location

in the same format as produced by where.

Examining Variables on the Stack

Each frame on the stack maintains a set of variables, including values local to the func-

tion being executed and global state information. pdb provides several ways to examine

the contents of those variables.

1 #!/usr/bin/env python

2 # encoding: utf-8

3 #

ptg

982 Developer Tools

4 # Copyright (c) 2010 Doug Hellmann. All rights reserved.

5 #

6

7 import pdb
8

9 def recursive_function(n=5, output=’to be printed’):

10 if n > 0:

11 recursive_function(n-1)

12 else:
13 pdb.set_trace()

14 print output

15 return
16

17 if __name__ == ’__main__’:

18 recursive_function()

The args command (abbreviated a) prints all the arguments to the function active

in the current frame. This example also uses a recursive function to show what a deeper

stack looks like when printed by where.

$ python pdb_function_arguments.py

> .../pdb_function_arguments.py(14)recursive_function()

-> return

(Pdb) where

.../pdb_function_arguments.py(17)<module>()

-> recursive_function()

.../pdb_function_arguments.py(11)recursive_function()

-> recursive_function(n-1)

.../pdb_function_arguments.py(11)recursive_function()

-> recursive_function(n-1)

.../pdb_function_arguments.py(11)recursive_function()

-> recursive_function(n-1)

.../pdb_function_arguments.py(11)recursive_function()

-> recursive_function(n-1)

.../pdb_function_arguments.py(11)recursive_function()

-> recursive_function(n-1)

> .../pdb_function_arguments.py(14)recursive_function()

-> return

(Pdb) args

n = 0

ptg

16.6. pdb—Interactive Debugger 983

output = to be printed

(Pdb) up

> .../pdb_function_arguments.py(11)recursive_function()

-> recursive_function(n-1)

(Pdb) args

n = 1

output = to be printed

(Pdb)

The p command evaluates an expression given as argument and prints the result.

Python’s print statement can be used, but it is passed through to the interpreter to be

executed rather than run as a command in the debugger.

(Pdb) p n

1

(Pdb) print n

1

Similarly, prefixing an expression with ! passes it to the Python interpreter to be

evaluated. This feature can be used to execute arbitrary Python statements, including

modifying variables. This example changes the value of output before letting the debug-

ger continue running the program. The next statement after the call to set_trace()

prints the value of output, showing the modified value.

$ python pdb_function_arguments.py

> .../pdb_function_arguments.py(14)recursive_function()

-> print output

(Pdb) !output

’to be printed’

(Pdb) !output=’changed value’

(Pdb) continue

changed value

ptg

984 Developer Tools

For more complicated values such as nested or large data structures, use pp to

“pretty-print” them. This program reads several lines of text from a file.

1 #!/usr/bin/env python

2 # encoding: utf-8

3 #

4 # Copyright (c) 2010 Doug Hellmann. All rights reserved.

5 #

6

7 import pdb
8

9 with open(’lorem.txt’, ’rt’) as f:

10 lines = f.readlines()

11

12 pdb.set_trace()

Printing the variable lines with p results in output that is difficult to read because

it wraps awkwardly. pp uses pprint to format the value for clean printing.

$ python pdb_pp.py

--Return--

> .../pdb_pp.py(12)<module>()->None

-> pdb.set_trace()

(Pdb) p lines

[’Lorem ipsum dolor sit amet, consectetuer adipiscing elit. \n’,

’Donec egestas, enim et consecte

tuer ullamcorper, lectus \n’, ’ligula rutrum leo, a elementum el

it tortor eu quam.\n’]

(Pdb) pp lines

[’Lorem ipsum dolor sit amet, consectetuer adipiscing elit. \n’,

’Donec egestas, enim et consectetuer ullamcorper, lectus \n’,

’ligula rutrum leo, a elementum elit tortor eu quam.\n’]

(Pdb)

Stepping through a Program

In addition to navigating up and down the call stack when the program is paused, it is

also possible to step through execution of the program past the point where it enters the

debugger.

ptg

16.6. pdb—Interactive Debugger 985

1 #!/usr/bin/env python

2 # encoding: utf-8

3 #

4 # Copyright (c) 2010 Doug Hellmann. All rights reserved.

5 #

6

7 import pdb
8

9 def f(n):

10 for i in range(n):

11 j = i * n

12 print i, j

13 return
14

15 if __name__ == ’__main__’:

16 pdb.set_trace()

17 f(5)

Use step to execute the current line and then stop at the next execution point—

either the first statement inside a function being called or the next line of the current

function.

$ python pdb_step.py

> .../pdb_step.py(17)<module>()

-> f(5)

The interpreter pauses at the call to set_trace() and gives control to the debug-

ger. The first step causes the execution to enter f().

(Pdb) step

--Call--

> .../pdb_step.py(9)f()

-> def f(n):

One more step moves execution to the first line of f() and starts the loop.

(Pdb) step

> .../pdb_step.py(10)f()

-> for i in range(n):

Stepping again moves to the first line inside the loop where j is defined.

ptg

986 Developer Tools

(Pdb) step

> .../pdb_step.py(11)f()

-> j = i * n

(Pdb) p i

0

The value of i is 0, so after one more step, the value of j should also be 0.

(Pdb) step

> .../pdb_step.py(12)f()

-> print i, j

(Pdb) p j

0

(Pdb)

Stepping one line at a time like this can become tedious if there is a lot of code

to cover before the point where the error occurs, or if the same function is called

repeatedly.

1 #!/usr/bin/env python

2 # encoding: utf-8

3 #

4 # Copyright (c) 2010 Doug Hellmann. All rights reserved.

5 #

6

7 import pdb
8

9 def calc(i, n):

10 j = i * n

11 return j

12

13 def f(n):

14 for i in range(n):

15 j = calc(i, n)

16 print i, j

17 return
18

19 if __name__ == ’__main__’:

20 pdb.set_trace()

21 f(5)

ptg

16.6. pdb—Interactive Debugger 987

In this example, there is nothing wrong with calc(), so stepping through it each

time it is called in the loop in f() obscures the useful output by showing all the lines

of calc() as they are executed.

$ python pdb_next.py

> .../pdb_next.py(21)<module>()

-> f(5)

(Pdb) step

--Call--

> .../pdb_next.py(13)f()

-> def f(n):

(Pdb) step

> .../pdb_next.py(14)f()

-> for i in range(n):

(Pdb) step

> .../pdb_next.py(15)f()

-> j = calc(i, n)

(Pdb) step

--Call--

> .../pdb_next.py(9)calc()

-> def calc(i, n):

(Pdb) step

> .../pdb_next.py(10)calc()

-> j = i * n

(Pdb) step

> .../pdb_next.py(11)calc()

-> return j

(Pdb) step

--Return--

> .../pdb_next.py(11)calc()->0

-> return j

(Pdb) step

> .../pdb_next.py(16)f()

-> print i, j

(Pdb) step

0 0

ptg

988 Developer Tools

The next command is like step, but does not enter functions called from the state-

ment being executed. In effect, it steps all the way through the function call to the next

statement in the current function in a single operation.

> .../pdb_next.py(14)f()

-> for i in range(n):

(Pdb) step

> .../pdb_next.py(15)f()

-> j = calc(i, n)

(Pdb) next

> .../pdb_next.py(16)f()

-> print i, j

(Pdb)

The until command is like next, except it explicitly continues until execution

reaches a line in the same function with a line number higher than the current value.

That means, for example, that until can be used to step past the end of a loop.

$ python pdb_next.py

> .../pdb_next.py(21)<module>()

-> f(5)

(Pdb) step

--Call--

> .../pdb_next.py(13)f()

-> def f(n):

(Pdb) step

> .../pdb_next.py(14)f()

-> for i in range(n):

(Pdb) step

> .../pdb_next.py(15)f()

-> j = calc(i, n)

(Pdb) next

> .../pdb_next.py(16)f()

-> print i, j

ptg

16.6. pdb—Interactive Debugger 989

(Pdb) until

0 0

1 5

2 10

3 15

4 20

> .../pdb_next.py(17)f()

-> return

(Pdb)

Before the until command was run, the current line was 16, the last line of the

loop. After until ran, execution was on line 17 and the loop had been exhausted.

The return command is another shortcut for bypassing parts of a function. It con-

tinues executing until the function is about to execute a return statement, and then it

pauses, providing time to look at the return value before the function returns.

$ python pdb_next.py

> .../pdb_next.py(21)<module>()

-> f(5)

(Pdb) step

--Call--

> .../pdb_next.py(13)f()

-> def f(n):

(Pdb) step

> .../pdb_next.py(14)f()

-> for i in range(n):

(Pdb) return

0 0

1 5

2 10

3 15

4 20

--Return--

> .../pdb_next.py(17)f()->None

-> return

(Pdb)

ptg

990 Developer Tools

16.6.3 Breakpoints

As programs grow longer, even using next and until will become slow and cumber-

some. Instead of stepping through the program by hand, a better solution is to let it run

normally until it reaches a point where the debugger should interrupt it. set_trace()

can start the debugger, but that only works if there is a single point in the program where

it should pause. It is more convenient to run the program through the debugger, but tell

the debugger where to stop in advance using breakpoints. The debugger monitors the

program, and when it reaches the location described by a breakpoint, the program is

paused before the line is executed.

1 #!/usr/bin/env python

2 # encoding: utf-8

3 #

4 # Copyright (c) 2010 Doug Hellmann. All rights reserved.

5 #

6

7 def calc(i, n):

8 j = i * n

9 print ’j =’, j

10 if j > 0:

11 print ’Positive!’

12 return j

13

14 def f(n):

15 for i in range(n):

16 print ’i =’, i

17 j = calc(i, n)

18 return
19

20 if __name__ == ’__main__’:

21 f(5)

There are several options to the break command used for setting breakpoints,

including the line number, file, and function where processing should pause. To set a

breakpoint on a specific line of the current file, use break lineno.

$ python -m pdb pdb_break.py

> .../pdb_break.py(7)<module>()

-> def calc(i, n):

(Pdb) break 11

ptg

16.6. pdb—Interactive Debugger 991

Breakpoint 1 at .../pdb_break.py:11

(Pdb) continue

i = 0

j = 0

i = 1

j = 5

> .../pdb_break.py(11)calc()

-> print ’Positive!’

(Pdb)

The command continue tells the debugger to keep running the program until the

next breakpoint. In this case, it runs through the first iteration of the for loop in f()

and stops inside calc() during the second iteration.

Breakpoints can also be set to the first line of a function by specifying the function

name instead of a line number. This example shows what happens if a breakpoint is

added for the calc() function.

$ python -m pdb pdb_break.py

> .../pdb_break.py(7)<module>()

-> def calc(i, n):

(Pdb) break calc

Breakpoint 1 at .../pdb_break.py:7

(Pdb) continue

i = 0

> .../pdb_break.py(8)calc()

-> j = i * n

(Pdb) where

.../pdb_break.py(21)<module>()

-> f(5)

.../pdb_break.py(17)f()

-> j = calc(i, n)

> .../pdb_break.py(8)calc()

-> j = i * n

(Pdb)

To specify a breakpoint in another file, prefix the line or function argument with a

filename.

ptg

992 Developer Tools

1 #!/usr/bin/env python

2 # encoding: utf-8

3

4 from pdb_break import f

5

6 f(5)

Here a breakpoint is set for line 11 of pdb_break.py after starting the main

program pdb_break_remote.py.

$ python -m pdb pdb_break_remote.py

> .../pdb_break_remote.py(4)<module>()

-> from pdb_break import f

(Pdb) break pdb_break.py:11

Breakpoint 1 at .../pdb_break.py:11

(Pdb) continue

i = 0

j = 0

i = 1

j = 5

> .../pdb_break.py(11)calc()

-> print ’Positive!’

(Pdb)

The filename can be a full path to the source file or a relative path to a file available

on sys.path.

To list the breakpoints currently set, use break without any arguments. The output

includes the file and line number of each breakpoint, as well as information about how

many times it has been encountered.

$ python -m pdb pdb_break.py

> .../pdb_break.py(7)<module>()

-> def calc(i, n):

(Pdb) break 11

Breakpoint 1 at .../pdb_break.py:11

(Pdb) break

Num Type Disp Enb Where

ptg

16.6. pdb—Interactive Debugger 993

1 breakpoint keep yes at .../pdb_break.py:11

(Pdb) continue

i = 0

j = 0

i = 1

j = 5

> .../pdb/pdb_break.py(11)calc()

-> print ’Positive!’

(Pdb) continue

Positive!

i = 2

j = 10

> .../pdb_break.py(11)calc()

-> print ’Positive!’

(Pdb) break

Num Type Disp Enb Where

1 breakpoint keep yes at .../pdb_break.py:11

breakpoint already hit 2 times

(Pdb)

Managing Breakpoints

As each new breakpoint is added, it is assigned a numerical identifier. These id numbers

are used to enable, disable, and remove the breakpoints interactively. Turning off a

breakpoint with disable tells the debugger not to stop when that line is reached. The

breakpoint is remembered, but ignored.

$ python -m pdb pdb_break.py

> .../pdb_break.py(7)<module>()

-> def calc(i, n):

(Pdb) break calc

Breakpoint 1 at .../pdb_break.py:7

(Pdb) break 11

Breakpoint 2 at .../pdb_break.py:11

(Pdb) break

Num Type Disp Enb Where

ptg

994 Developer Tools

1 breakpoint keep yes at .../pdb_break.py:7

2 breakpoint keep yes at .../pdb_break.py:11

(Pdb) disable 1

(Pdb) break

Num Type Disp Enb Where

1 breakpoint keep no at .../pdb_break.py:7

2 breakpoint keep yes at .../pdb_break.py:11

(Pdb) continue

i = 0

j = 0

i = 1

j = 5

> .../pdb_break.py(11)calc()

-> print ’Positive!’

(Pdb)

The next debugging session sets two breakpoints in the program and then disables

one. The program is run until the remaining breakpoint is encountered, and then the

other breakpoint is turned back on with enable before execution continues.

$ python -m pdb pdb_break.py

> .../pdb_break.py(7)<module>()

-> def calc(i, n):

(Pdb) break calc

Breakpoint 1 at .../pdb_break.py:7

(Pdb) break 16

Breakpoint 2 at .../pdb_break.py:16

(Pdb) disable 1

(Pdb) continue

> .../pdb_break.py(16)f()

-> print ’i =’, i

(Pdb) list

11 print ’Positive!’

12 return j

13

ptg

16.6. pdb—Interactive Debugger 995

14 def f(n):

15 for i in range(n):

16 B-> print ’i =’, i

17 j = calc(i, n)

18 return

19

20 if __name__ == ’__main__’:

21 f(5)

(Pdb) continue

i = 0

j = 0

> .../pdb_break.py(16)f()

-> print ’i =’, i

(Pdb) list

11 print ’Positive!’

12 return j

13

14 def f(n):

15 for i in range(n):

16 B-> print ’i =’, i

17 j = calc(i, n)

18 return

19

20 if __name__ == ’__main__’:

21 f(5)

(Pdb) p i

1

(Pdb) enable 1

(Pdb) continue

i = 1

> .../pdb_break.py(8)calc()

-> j = i * n

(Pdb) list

3 #

4 # Copyright (c) 2010 Doug Hellmann. All rights reserved.

5 #

6

7 B def calc(i, n):

8 -> j = i * n

ptg

996 Developer Tools

9 print ’j =’, j

10 if j > 0:

11 print ’Positive!’

12 return j

13

(Pdb)

The lines prefixed with B in the output from list show where the breakpoints are

set in the program (lines 7 and 16).

Use clear to delete a breakpoint entirely.

$ python -m pdb pdb_break.py

> .../pdb_break.py(7)<module>()

-> def calc(i, n):

(Pdb) break calc

Breakpoint 1 at .../pdb_break.py:7

(Pdb) break 11

Breakpoint 2 at .../pdb_break.py:11

(Pdb) break 16

Breakpoint 3 at .../pdb_break.py:16

(Pdb) break

Num Type Disp Enb Where

1 breakpoint keep yes at .../pdb_break.py:7

2 breakpoint keep yes at .../pdb_break.py:11

3 breakpoint keep yes at .../pdb_break.py:16

(Pdb) clear 2

Deleted breakpoint 2

(Pdb) break

Num Type Disp Enb Where

1 breakpoint keep yes at .../pdb_break.py:7

3 breakpoint keep yes at .../pdb_break.py:16

(Pdb)

The other breakpoints retain their original identifiers and are not renumbered.

ptg

16.6. pdb—Interactive Debugger 997

Temporary Breakpoints

A temporary breakpoint is automatically cleared the first time the program execution

hits it. Using a temporary breakpoint makes it easy to reach a particular spot in the

program flow quickly, just as with a regular breakpoint since it is cleared immediately.

But, it does not interfere with subsequent progress if that part of the program is run

repeatedly.

$ python -m pdb pdb_break.py

> .../pdb_break.py(7)<module>()

-> def calc(i, n):

(Pdb) tbreak 11

Breakpoint 1 at .../pdb_break.py:11

(Pdb) continue

i = 0

j = 0

i = 1

j = 5

Deleted breakpoint 1

> .../pdb_break.py(11)calc()

-> print ’Positive!’

(Pdb) break

(Pdb) continue

Positive!

i = 2

j = 10

Positive!

i = 3

j = 15

Positive!

i = 4

j = 20

Positive!

The program finished and will be restarted

> .../pdb_break.py(7)<module>()

-> def calc(i, n):

(Pdb)

ptg

998 Developer Tools

After the program reaches line 11 the first time, the breakpoint is removed and

execution does not stop again until the program finishes.

Conditional Breakpoints

Rules can be applied to breakpoints so that execution only stops when the conditions are

met. Using conditional breakpoints gives finer control over how the debugger pauses

the program than enabling and disabling breakpoints by hand. Conditional breakpoints

can be set in two ways. The first is to specify the condition when the breakpoint is set

using break.

$ python -m pdb pdb_break.py

> .../pdb_break.py(7)<module>()

-> def calc(i, n):

(Pdb) break 9, j>0

Breakpoint 1 at .../pdb_break.py:9

(Pdb) break

Num Type Disp Enb Where

1 breakpoint keep yes at .../pdb_break.py:9

stop only if j>0

(Pdb) continue

i = 0

j = 0

i = 1

> .../pdb_break.py(9)calc()

-> print ’j =’, j

(Pdb)

The condition argument must be an expression using values visible in the stack

frame where the breakpoint is defined. If the expression evaluates as true, execution

stops at the breakpoint.

A condition can also be applied to an existing breakpoint using the condition
command. The arguments are the breakpoint id and the expression.

$ python -m pdb pdb_break.py

> .../pdb_break.py(7)<module>()

-> def calc(i, n):

ptg

16.6. pdb—Interactive Debugger 999

(Pdb) break 9

Breakpoint 1 at .../pdb_break.py:9

(Pdb) break

Num Type Disp Enb Where

1 breakpoint keep yes at .../pdb_break.py:9

(Pdb) condition 1 j>0

(Pdb) break

Num Type Disp Enb Where

1 breakpoint keep yes at .../pdb_break.py:9

stop only if j>0

(Pdb)

Ignoring Breakpoints

Programs that loop or use a large number of recursive calls to the same function are

often easier to debug by “skipping ahead” in the execution, instead of watching every

call or breakpoint. The ignore command tells the debugger to pass over a breakpoint

without stopping. Each time processing encounters the breakpoint, it decrements the

ignore counter. When the counter is zero, the breakpoint is reactivated.

$ python -m pdb pdb_break.py

> .../pdb_break.py(7)<module>()

-> def calc(i, n):

(Pdb) break 17

Breakpoint 1 at .../pdb_break.py:17

(Pdb) continue

i = 0

> .../pdb_break.py(17)f()

-> j = calc(i, n)

(Pdb) next

j = 0

> .../pdb_break.py(15)f()

-> for i in range(n):

(Pdb) ignore 1 2

Will ignore next 2 crossings of breakpoint 1.

ptg

1000 Developer Tools

(Pdb) break

Num Type Disp Enb Where

1 breakpoint keep yes at .../pdb_break.py:17

ignore next 2 hits

breakpoint already hit 1 time

(Pdb) continue

i = 1

j = 5

Positive!

i = 2

j = 10

Positive!

i = 3

> .../pdb_break.py(17)f()

-> j = calc(i, n)

(Pdb) break

Num Type Disp Enb Where

1 breakpoint keep yes at .../pdb_break.py:17

breakpoint already hit 4 times

Explicitly resetting the ignore count to zero reenables the breakpoint immediately.

$ python -m pdb pdb_break.py

> .../pdb_break.py(7)<module>()

-> def calc(i, n):

(Pdb) break 17

Breakpoint 1 at .../pdb_break.py:17

(Pdb) ignore 1 2

Will ignore next 2 crossings of breakpoint 1.

(Pdb) break

Num Type Disp Enb Where

1 breakpoint keep yes at .../pdb_break.py:17

ignore next 2 hits

(Pdb) ignore 1 0

Will stop next time breakpoint 1 is reached.

(Pdb) break

ptg

16.6. pdb—Interactive Debugger 1001

Num Type Disp Enb Where

1 breakpoint keep yes at .../pdb_break.py:17

Triggering Actions on a Breakpoint

In addition to the purely interactive mode, pdb supports basic scripting. Using com-
mands, a series of interpreter commands, including Python statements, can be executed

when a specific breakpoint is encountered. After running commands with the break-

point number as argument, the debugger prompt changes to (com). Enter commands

one at a time, and finish the list with end to save the script and return to the main

debugger prompt.

$ python -m pdb pdb_break.py

> .../pdb_break.py(7)<module>()

-> def calc(i, n):

(Pdb) break 9

Breakpoint 1 at .../pdb_break.py:9

(Pdb) commands 1

(com) print ’debug i =’, i

(com) print ’debug j =’, j

(com) print ’debug n =’, n

(com) end

(Pdb) continue

i = 0

debug i = 0

debug j = 0

debug n = 5

> .../pdb_break.py(9)calc()

-> print ’j =’, j

(Pdb) continue

j = 0

i = 1

debug i = 1

debug j = 5

debug n = 5

> .../pdb_break.py(9)calc()

-> print ’j =’, j

(Pdb)

ptg

1002 Developer Tools

This feature is especially useful for debugging code that uses a lot of data struc-

tures or variables, since the debugger can be made to print out all the values automati-

cally, instead of doing it manually each time the breakpoint is encountered.

16.6.4 Changing Execution Flow

The jump command alters the flow of the program at runtime, without modifying the

code. It can skip forward to avoid running some code or backward to run it again. This

sample program generates a list of numbers.

1 #!/usr/bin/env python

2 # encoding: utf-8

3 #

4 # Copyright (c) 2010 Doug Hellmann. All rights reserved.

5 #

6

7 def f(n):

8 result = []

9 j = 0

10 for i in range(n):

11 j = i * n + j

12 j += n

13 result.append(j)

14 return result

15

16 if __name__ == ’__main__’:

17 print f(5)

When run without interference the output is a sequence of increasing numbers

divisible by 5.

$ python pdb_jump.py

[5, 15, 30, 50, 75]

Jump Ahead

Jumping ahead moves the point of execution past the current location without evalu-

ating any of the statements in between. By skipping over line 13 in the example, the

value of j is not incremented and all the subsequent values that depend on it are a little

smaller.

ptg

16.6. pdb—Interactive Debugger 1003

$ python -m pdb pdb_jump.py

> .../pdb_jump.py(7)<module>()

-> def f(n):

(Pdb) break 12

Breakpoint 1 at .../pdb_jump.py:12

(Pdb) continue

> .../pdb_jump.py(12)f()

-> j += n

(Pdb) p j

0

(Pdb) step

> .../pdb_jump.py(13)f()

-> result.append(j)

(Pdb) p j

5

(Pdb) continue

> .../pdb_jump.py(12)f()

-> j += n

(Pdb) jump 13

> .../pdb_jump.py(13)f()

-> result.append(j)

(Pdb) p j

10

(Pdb) disable 1

(Pdb) continue

[5, 10, 25, 45, 70]

The program finished and will be restarted

> .../pdb_jump.py(7)<module>()

-> def f(n):

(Pdb)

ptg

1004 Developer Tools

Jump Back

Jumps can also move the program execution to a statement that has already been exe-

cuted, so it can be run again. Here, the value of j is incremented an extra time, so the

numbers in the result sequence are all larger than they would otherwise be.

$ python -m pdb pdb_jump.py

> .../pdb_jump.py(7)<module>()

-> def f(n):

(Pdb) break 13

Breakpoint 1 at .../pdb_jump.py:13

(Pdb) continue

> .../pdb_jump.py(13)f()

-> result.append(j)

(Pdb) p j

5

(Pdb) jump 12

> .../pdb_jump.py(12)f()

-> j += n

(Pdb) continue

> .../pdb_jump.py(13)f()

-> result.append(j)

(Pdb) p j

10

(Pdb) disable 1

(Pdb) continue

[10, 20, 35, 55, 80]

The program finished and will be restarted

> .../pdb_jump.py(7)<module>()

-> def f(n):

(Pdb)

ptg

16.6. pdb—Interactive Debugger 1005

Illegal Jumps

Jumping in and out of certain flow control statements is dangerous or undefined, and

therefore, prevented by the debugger.

1 #!/usr/bin/env python

2 # encoding: utf-8

3 #

4 # Copyright (c) 2010 Doug Hellmann. All rights reserved.

5 #

6

7 def f(n):

8 if n < 0:

9 raise ValueError(’Invalid n: %s’ % n)

10 result = []

11 j = 0

12 for i in range(n):

13 j = i * n + j

14 j += n

15 result.append(j)

16 return result

17

18

19 if __name__ == ’__main__’:

20 try:
21 print f(5)

22 finally:
23 print ’Always printed’

24

25 try:
26 print f(-5)

27 except:
28 print ’There was an error’

29 else:
30 print ’There was no error’

31

32 print ’Last statement’

jump can be used to enter a function, but the arguments are not defined and the

code is unlikely to work.

ptg

1006 Developer Tools

$ python -m pdb pdb_no_jump.py

> .../pdb_no_jump.py(7)<module>()

-> def f(n):

(Pdb) break 21

Breakpoint 1 at .../pdb_no_jump.py:21

(Pdb) jump 8

> .../pdb_no_jump.py(8)<module>()

-> if n < 0:

(Pdb) p n

*** NameError: NameError("name ’n’ is not defined",)

(Pdb) args

(Pdb)

jump will not enter the middle of a block such as a for loop or try:except
statement.

$ python -m pdb pdb_no_jump.py

> .../pdb_no_jump.py(7)<module>()

-> def f(n):

(Pdb) break 21

Breakpoint 1 at .../pdb_no_jump.py:21

(Pdb) continue

> .../pdb_no_jump.py(21)<module>()

-> print f(5)

(Pdb) jump 26

*** Jump failed: can’t jump into the middle of a block

(Pdb)

The code in a finally block must all be executed, so jump will not leave the block.

$ python -m pdb pdb_no_jump.py

> .../pdb_no_jump.py(7)<module>()

ptg

16.6. pdb—Interactive Debugger 1007

-> def f(n):

(Pdb) break 23

Breakpoint 1 at .../pdb_no_jump.py:23

(Pdb) continue

[5, 15, 30, 50, 75]

> .../pdb_no_jump.py(23)<module>()

-> print ’Always printed’

(Pdb) jump 25

*** Jump failed: can’t jump into or out of a ’finally’ block

(Pdb)

And the most basic restriction is that jumping is constrained to the bottom frame

on the call stack. After moving up the stack to examine variables, the execution flow

cannot be changed at that point.

$ python -m pdb pdb_no_jump.py

> .../pdb_no_jump.py(7)<module>()

-> def f(n):

(Pdb) break 11

Breakpoint 1 at .../pdb_no_jump.py:11

(Pdb) continue

> .../pdb_no_jump.py(11)f()

-> j = 0

(Pdb) where

/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/

bdb.py(379)run()

-> exec cmd in globals, locals

<string>(1)<module>()

.../pdb_no_jump.py(21)<module>()

-> print f(5)

> .../pdb_no_jump.py(11)f()

-> j = 0

(Pdb) up

> .../pdb_no_jump.py(21)<module>()

ptg

1008 Developer Tools

-> print f(5)

(Pdb) jump 25

*** You can only jump within the bottom frame

(Pdb)

Restarting a Program

When the debugger reaches the end of the program, it automatically starts it over, but

it can also be restarted explicitly without leaving the debugger and losing the current

breakpoints or other settings.

1 #!/usr/bin/env python

2 # encoding: utf-8

3 #

4 # Copyright (c) 2010 Doug Hellmann. All rights reserved.

5 #

6

7 import sys
8

9 def f():

10 print ’Command-line args:’, sys.argv

11 return
12

13 if __name__ == ’__main__’:

14 f()

Running this program to completion within the debugger prints the name of the

script file, since no other arguments were given on the command line.

$ python -m pdb pdb_run.py

> .../pdb_run.py(7)<module>()

-> import sys

(Pdb) continue

Command-line args: [’pdb_run.py’]

The program finished and will be restarted

> .../pdb_run.py(7)<module>()

-> import sys

(Pdb)

ptg

16.6. pdb—Interactive Debugger 1009

The program can be restarted using run. Arguments passed to run are parsed with

shlex and passed to the program as though they were command-line arguments, so the

program can be restarted with different settings.

(Pdb) run a b c "this is a long value"

Restarting pdb_run.py with arguments:

a b c this is a long value

> .../pdb_run.py(7)<module>()

-> import sys

(Pdb) continue

Command-line args: [’pdb_run.py’, ’a’, ’b’, ’c’, ’this is a long value’]

The program finished and will be restarted

> .../pdb_run.py(7)<module>()

-> import sys

(Pdb)

run can also be used at any other point in processing to restart the program.

$ python -m pdb pdb_run.py

> .../pdb_run.py(7)<module>()

-> import sys

(Pdb) break 10

Breakpoint 1 at .../pdb_run.py:10

(Pdb) continue

> .../pdb_run.py(10)f()

-> print ’Command-line args:’, sys.argv

(Pdb) run one two three

Restarting pdb_run.py with arguments:

one two three

> .../pdb_run.py(7)<module>()

-> import sys

(Pdb)

16.6.5 Customizing the Debugger with Aliases

Avoid typing complex commands repeatedly by using alias to define a shortcut. Alias

expansion is applied to the first word of each command. The body of the alias can

ptg

1010 Developer Tools

consist of any command that is legal to type at the debugger prompt, including other

debugger commands and pure Python expressions. Recursion is allowed in alias defini-

tions, so one alias can even invoke another.

$ python -m pdb pdb_function_arguments.py

> .../pdb_function_arguments.py(7)<module>()

-> import pdb

(Pdb) break 10

Breakpoint 1 at .../pdb_function_arguments.py:10

(Pdb) continue

> .../pdb_function_arguments.py(10)recursive_function()

-> if n > 0:

(Pdb) pp locals().keys()

[’output’, ’n’]

(Pdb) alias pl pp locals().keys()

(Pdb) pl

[’output’, ’n’]

Running alias without any arguments shows the list of defined aliases. A single

argument is assumed to be the name of an alias, and its definition is printed.

(Pdb) alias

pl = pp locals().keys()

(Pdb) alias pl

pl = pp locals().keys()

(Pdb)

Arguments to the alias are referenced using %n, where n is replaced with a number

indicating the position of the argument, starting with 1. To consume all the arguments,

use %*.

$ python -m pdb pdb_function_arguments.py

> .../pdb_function_arguments.py(7)<module>()

-> import pdb

ptg

16.6. pdb—Interactive Debugger 1011

(Pdb) alias ph !help(%1)

(Pdb) ph locals

Help on built-in function locals in module __builtin__:

locals(...)

locals() -> dictionary

Update and return a dictionary containing the current scope’s

local variables.

Clear the definition of an alias with unalias.

(Pdb) unalias ph

(Pdb) ph locals

*** SyntaxError: invalid syntax (<stdin>, line 1)

(Pdb)

16.6.6 Saving Configuration Settings

Debugging a program involves a lot of repetition: running the code, observing the out-

put, adjusting the code or inputs, and running it again. pdb attempts to cut down on the

amount of repetition needed to control the debugging experience, to let you concentrate

on the code instead of the debugger. To help reduce the number of times you issue the

same commands to the debugger, pdb can read a saved configuration from text files

interpreted as it starts.

The file ~/.pdbrc is read first, allowing global personal preferences for all

debugging sessions. Then ./.pdbrc is read from the current working directory to set

local preferences for a particular project.

$ cat ~/.pdbrc

Show python help

alias ph !help(%1)

Overridden alias

alias redefined p ’home definition’

$ cat .pdbrc

ptg

1012 Developer Tools

Breakpoints

break 10

Overridden alias

alias redefined p ’local definition’

$ python -m pdb pdb_function_arguments.py

Breakpoint 1 at .../pdb_function_arguments.py:10

> .../pdb_function_arguments.py(7)<module>()

-> import pdb

(Pdb) alias

ph = !help(%1)

redefined = p ’local definition’

(Pdb) break

Num Type Disp Enb Where

1 breakpoint keep yes at .../pdb_function_arguments.py:10

(Pdb)

Any configuration commands that can be typed at the debugger prompt can be

saved in one of the start-up files, but most commands that control the execution

(continue, jump, etc.) cannot. The exception is run, which means the command-line

arguments for a debugging session can be set in ./.pdbrc so they are consistent across

several runs.

See Also:
pdb (http://docs.python.org/library/pdb.html) The standard library documentation

for this module.

readline (page 823) Interactive prompt-editing library.

cmd (page 839) Build interactive programs.

shlex (page 852) Shell command-line parsing.

16.7 trace—Follow Program Flow

Purpose Monitor which statements and functions are executed as a pro-

gram runs to produce coverage and call-graph information.

Python Version 2.3 and later

The trace module is useful for understanding the way a program runs. It watches the

statements executed, produces coverage reports, and helps investigate the relationships

between functions that call each other.

http://docs.python.org/library/pdb.html

ptg

16.7. trace—Follow Program Flow 1013

16.7.1 Example Program

This program will be used in the examples in the rest of the section. It imports another

module called recurse and then runs a function from it.

from recurse import recurse

def main():

print ’This is the main program.’

recurse(2)

return

if __name__ == ’__main__’:

main()

The recurse() function invokes itself until the level argument reaches 0.

def recurse(level):

print ’recurse(%s)’ % level

if level:

recurse(level-1)

return

def not_called():

print ’This function is never called.’

16.7.2 Tracing Execution

It is easy to use trace directly from the command line. The statements being executed

as the program runs are printed when the --trace option is given.

$ python -m trace --trace trace_example/main.py

--- modulename: threading, funcname: settrace

threading.py(89): _trace_hook = func

--- modulename: trace, funcname: <module>

<string>(1): --- modulename: trace, funcname: <module>

main.py(7): """

main.py(12): from recurse import recurse

--- modulename: recurse, funcname: <module>

recurse.py(7): """

recurse.py(12): def recurse(level):

recurse.py(18): def not_called():

ptg

1014 Developer Tools

main.py(14): def main():

main.py(19): if __name__ == ’__main__’:

main.py(20): main()

--- modulename: trace, funcname: main

main.py(15): print ’This is the main program.’

This is the main program.

main.py(16): recurse(2)

--- modulename: recurse, funcname: recurse

recurse.py(13): print ’recurse(%s)’ % level

recurse(2)

recurse.py(14): if level:

recurse.py(15): recurse(level-1)

--- modulename: recurse, funcname: recurse

recurse.py(13): print ’recurse(%s)’ % level

recurse(1)

recurse.py(14): if level:

recurse.py(15): recurse(level-1)

--- modulename: recurse, funcname: recurse

recurse.py(13): print ’recurse(%s)’ % level

recurse(0)

recurse.py(14): if level:

recurse.py(16): return

recurse.py(16): return

recurse.py(16): return

main.py(17): return

The first part of the output shows the setup operations performed by trace. The

rest of the output shows the entry into each function, including the module where

the function is located, and then the lines of the source file as they are executed. The

recurse() function is entered three times, as expected based on the way it is called

in main().

16.7.3 Code Coverage

Running trace from the command line with the --count option will produce code

coverage report information, detailing which lines are run and which are skipped. Since

a complex program is usually made up of multiple files, a separate coverage report

is produced for each. By default, the coverage report files are written to the same di-

rectory as the module, named after the module but with a .cover extension instead

of .py.

ptg

16.7. trace—Follow Program Flow 1015

$ python -m trace --count trace_example/main.py

This is the main program.

recurse(2)

recurse(1)

recurse(0)

Two output files are produced. Here is trace_example/main.cover.

1: from recurse import recurse

1: def main():

1: print ’This is the main program.’

1: recurse(2)

1: return

1: if __name__ == ’__main__’:

1: main()

And here is trace_example/recurse.cover.

1: def recurse(level):

3: print ’recurse(%s)’ % level

3: if level:

2: recurse(level-1)

3: return

1: def not_called():

print ’This function is never called.’

Note: Although the line def recurse(level): has a count of 1, that does not

mean the function was only run once. It means the function definition was only

executed once.

It is also possible to run the program several times, perhaps with different options,

to save the coverage data and produce a combined report.

$ python -m trace --coverdir coverdir1 --count --file coverdir1/cove\

rage_report.dat trace_example/main.py

ptg

1016 Developer Tools

Skipping counts file ’coverdir1/coverage_report.dat’: [Errno 2] No suc

h file or directory: ’coverdir1/coverage_report.dat’

This is the main program.

recurse(2)

recurse(1)

recurse(0)

$ python -m trace --coverdir coverdir1 --count --file coverdir1/cove\

rage_report.dat trace_example/main.py

This is the main program.

recurse(2)

recurse(1)

recurse(0)

$ python -m trace --coverdir coverdir1 --count --file coverdir1/cove\

rage_report.dat trace_example/main.py

This is the main program.

recurse(2)

recurse(1)

recurse(0)

To produce reports once the coverage information is recorded to the .cover files,

use the --report option.

$ python -m trace --coverdir coverdir1 --report --summary --missing \

--file coverdir1/coverage_report.dat trace_example/main.py

lines cov% module (path)

599 0% threading (/Library/Frameworks/Python.framework/Versi

ons/2.7/lib/python2.7/threading.py)

8 100% trace_example.main (trace_example/main.py)

8 87% trace_example.recurse (trace_example/recurse.py)

Since the program ran three times, the coverage report shows values three times

higher than the first report. The --summary option adds the percent-covered informa-

tion to the output. The recurse module is only 87% covered. Looking at the cover file

for recurse shows that the body of not_called() is indeed never run, indicated by

the >>>>>> prefix.

3: def recurse(level):

9: print ’recurse(%s)’ % level

ptg

16.7. trace—Follow Program Flow 1017

9: if level:

6: recurse(level-1)

9: return

3: def not_called():

>>>>>> print ’This function is never called.’

16.7.4 Calling Relationships

In addition to coverage information, trace will collect and report on the relationships

between functions that call each other.

For a simple list of the functions called, use --listfuncs.

$ python -m trace --listfuncs trace_example/main.py

This is the main program.

recurse(2)

recurse(1)

recurse(0)

functions called:

filename: /Library/Frameworks/Python.framework/Versions/2.7/lib/python

2.7/threading.py, modulename: threading, funcname: settrace

filename: <string>, modulename: <string>, funcname: <module>

filename: trace_example/main.py, modulename: main, funcname: <module>

filename: trace_example/main.py, modulename: main, funcname: main

filename: trace_example/recurse.py, modulename: recurse, funcname: <mo

dule>

filename: trace_example/recurse.py, modulename: recurse, funcname: rec

urse

For more details about who is doing the calling, use --trackcalls.

$ python -m trace --listfuncs --trackcalls trace_example/main.py

This is the main program.

recurse(2)

recurse(1)

recurse(0)

calling relationships:

*** /Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/tr

ace.py ***

ptg

1018 Developer Tools

--> /Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/

threading.py

trace.Trace.run -> threading.settrace

--> <string>

trace.Trace.run -> <string>.<module>

*** <string> ***
--> trace_example/main.py

<string>.<module> -> main.<module>

*** trace_example/main.py ***
main.<module> -> main.main

--> trace_example/recurse.py

main.<module> -> recurse.<module>

main.main -> recurse.recurse

*** trace_example/recurse.py ***
recurse.recurse -> recurse.recurse

16.7.5 Programming Interface

For more control over the trace interface, it can be invoked from within a program

using a Trace object. Trace supports setting up fixtures and other dependencies before

running a single function or executing a Python command to be traced.

import trace
from trace_example.recurse import recurse

tracer = trace.Trace(count=False, trace=True)

tracer.run(’recurse(2)’)

Since the example only traces into the recurse() function, no information from

main.py is included in the output.

$ python trace_run.py

--- modulename: threading, funcname: settrace

threading.py(89): _trace_hook = func

--- modulename: trace_run, funcname: <module>

<string>(1): --- modulename: recurse, funcname: recurse

recurse.py(13): print ’recurse(%s)’ % level

ptg

16.7. trace—Follow Program Flow 1019

recurse(2)

recurse.py(14): if level:

recurse.py(15): recurse(level-1)

--- modulename: recurse, funcname: recurse

recurse.py(13): print ’recurse(%s)’ % level

recurse(1)

recurse.py(14): if level:

recurse.py(15): recurse(level-1)

--- modulename: recurse, funcname: recurse

recurse.py(13): print ’recurse(%s)’ % level

recurse(0)

recurse.py(14): if level:

recurse.py(16): return

recurse.py(16): return

recurse.py(16): return

That same output can be produced with the runfunc() method, too.

import trace
from trace_example.recurse import recurse

tracer = trace.Trace(count=False, trace=True)

tracer.runfunc(recurse, 2)

runfunc() accepts arbitrary positional and keyword arguments, which are passed

to the function when it is called by the tracer.

$ python trace_runfunc.py

--- modulename: recurse, funcname: recurse

recurse.py(13): print ’recurse(%s)’ % level

recurse(2)

recurse.py(14): if level:

recurse.py(15): recurse(level-1)

--- modulename: recurse, funcname: recurse

recurse.py(13): print ’recurse(%s)’ % level

recurse(1)

recurse.py(14): if level:

recurse.py(15): recurse(level-1)

--- modulename: recurse, funcname: recurse

recurse.py(13): print ’recurse(%s)’ % level

ptg

1020 Developer Tools

recurse(0)

recurse.py(14): if level:

recurse.py(16): return

recurse.py(16): return

recurse.py(16): return

16.7.6 Saving Result Data

Counts and coverage information can be recorded as well, just as with the command-

line interface. The data must be saved explicitly, using the CoverageResults instance

from the Trace object.

import trace
from trace_example.recurse import recurse

tracer = trace.Trace(count=True, trace=False)

tracer.runfunc(recurse, 2)

results = tracer.results()

results.write_results(coverdir=’coverdir2’)

This example saves the coverage results to the directory coverdir2.

$ python trace_CoverageResults.py

recurse(2)

recurse(1)

recurse(0)

$ find coverdir2

coverdir2

coverdir2/trace_example.recurse.cover

The output file contains the following.

#!/usr/bin/env python

encoding: utf-8

#

Copyright (c) 2008 Doug Hellmann All rights reserved.

#

"""

ptg

16.7. trace—Follow Program Flow 1021

"""

#__version__ = "Id"

#end_pymotw_header

>>>>>> def recurse(level):

3: print ’recurse(%s)’ % level

3: if level:

2: recurse(level-1)

3: return

>>>>>> def not_called():

>>>>>> print ’This function is never called.’

To save the counts data for generating reports, use the infile and outfile arguments

to Trace.

import trace
from trace_example.recurse import recurse

tracer = trace.Trace(count=True,

trace=False,

outfile=’trace_report.dat’)

tracer.runfunc(recurse, 2)

report_tracer = trace.Trace(count=False,

trace=False,

infile=’trace_report.dat’)

results = tracer.results()

results.write_results(summary=True, coverdir=’/tmp’)

Pass a filename to infile to read previously stored data and a filename to outfile
to write new results after tracing. If infile and outfile are the same, it has the effect of

updating the file with cumulative data.

$ python trace_report.py

recurse(2)

recurse(1)

recurse(0)

lines cov% module (path)

7 57% trace_example.recurse (.../recurse.py)

ptg

1022 Developer Tools

16.7.7 Options

The constructor for Trace takes several optional parameters to control runtime

behavior.

count Boolean. Turns on line-number counting. Defaults to True.

countfuncs Boolean. Turns on the list of functions called during the run. Defaults to

False.

countcallers Boolean. Turns on tracking for callers and callees. Defaults to False.

ignoremods Sequence. List of modules or packages to ignore when tracking coverage.

Defaults to an empty tuple.

ignoredirs Sequence. List of directories containing modules or packages to be ignored.

Defaults to an empty tuple.

infile Name of the file containing cached count values. Defaults to None.

outfile Name of the file to use for storing cached count files. Defaults to None, and data

is not stored.

See Also:
trace (http://docs.python.org/lib/module-trace.html) The standard library docu-

mentation for this module.

Tracing a Program as It Runs (page 1101) The sys module includes facilities for

adding a custom-tracing function to the interpreter at runtime.

coverage.py (http://nedbatchelder.com/code/modules/coverage.html) Ned

Batchelder’s coverage module.

figleaf (http://darcs.idyll.org/ t/projects/figleaf/doc/) Titus Brown’s coverage appli-

cation.

16.8 profile and pstats—Performance Analysis

Purpose Performance analysis of Python programs.

Python Version 1.4 and later

The profile and cProfile modules provide APIs for collecting and analyzing

statistics about how Python source consumes processor resources.

Note: The output reports in this section have been reformatted to fit on the page.

Lines ending with backslash (\) are continued on the next line.

http://docs.python.org/lib/module-trace.html
http://nedbatchelder.com/code/modules/coverage.html
http://darcs.idyll.org/t/projects/figleaf/doc/

ptg

16.8. profile and pstats—Performance Analysis 1023

16.8.1 Running the Profiler

The most basic starting point in the profile module is run(). It takes a string state-

ment as argument and creates a report of the time spent executing different lines of code

while running the statement.

import profile

def fib(n):

from literateprograms.org

http://bit.ly/hlOQ5m

if n == 0:

return 0

elif n == 1:

return 1

else:
return fib(n-1) + fib(n-2)

def fib_seq(n):

seq = []

if n > 0:

seq.extend(fib_seq(n-1))

seq.append(fib(n))

return seq

profile.run(’print fib_seq(20); print’)

This recursive version of a Fibonacci sequence calculator is especially useful

for demonstrating the profile because the performance can be improved significantly.

The standard report format shows a summary and then the details for each function

executed.

$ python profile_fibonacci_raw.py

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,

1597, 2584, 4181, 6765]

57356 function calls (66 primitive calls) in 0.746 CPU seconds

ptg

1024 Developer Tools

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)

21 0.000 0.000 0.000 0.000 :0(append)

20 0.000 0.000 0.000 0.000 :0(extend)

1 0.001 0.001 0.001 0.001 :0(setprofile)

1 0.000 0.000 0.744 0.744 <string>:1(<module>)

1 0.000 0.000 0.746 0.746 profile:0(\

print fib_seq(20);print)

0 0.000 0.000 profile:0(profiler)

57291/21 0.743 0.000 0.743 0.035 profile_fibonacci_raw.py\

:10(fib)

21/1 0.001 0.000 0.744 0.744 profile_fibonacci_raw.py\

:20(fib_seq)

The raw version takes 57,356 separate function calls and 3
4 of a second to run. The

fact that there are only 66 primitive calls says that the vast majority of those 57k calls

were recursive. The details about where time was spent are broken out by function in

the listing showing the number of calls, total time spent in the function, time per call

(tottime/ncalls), cumulative time spent in a function, and the ratio of cumulative

time to primitive calls.

Not surprisingly, most of the time here is spent calling fib() repeatedly. Adding

a memoize decorator reduces the number of recursive calls and has a big impact on the

performance of this function.

import profile

class memoize:
from Avinash Vora’s memoize decorator

http://bit.ly/fGzfR7

def __init__(self, function):

self.function = function

self.memoized = {}

def __call__(self, *args):

try:
return self.memoized[args]

except KeyError:
self.memoized[args] = self.function(*args)

return self.memoized[args]

ptg

16.8. profile and pstats—Performance Analysis 1025

@memoize

def fib(n):

from literateprograms.org

http://bit.ly/hlOQ5m

if n == 0:

return 0

elif n == 1:

return 1

else:
return fib(n-1) + fib(n-2)

def fib_seq(n):

seq = []

if n > 0:

seq.extend(fib_seq(n-1))

seq.append(fib(n))

return seq

if __name__ == ’__main__’:

profile.run(’print fib_seq(20); print’)

By remembering the Fibonacci value at each level, most of the recursion is avoided

and the run drops down to 145 calls that only take 0.003 seconds. The ncalls count

for fib() shows that it never recurses.

$ python profile_fibonacci_memoized.py

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,

2584, 4181, 6765]

145 function calls (87 primitive calls) in 0.003 CPU seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)

21 0.000 0.000 0.000 0.000 :0(append)

20 0.000 0.000 0.000 0.000 :0(extend)

1 0.001 0.001 0.001 0.001 :0(setprofile)

1 0.000 0.000 0.002 0.002 <string>:1(<module>)

1 0.000 0.000 0.003 0.003 profile:0(\

print fib_seq(20); print)

0 0.000 0.000 profile:0(profiler)

59/21 0.001 0.000 0.001 0.000 profile_fibonacci_\

memoized.py:17(__call__)

ptg

1026 Developer Tools

21 0.000 0.000 0.001 0.000 profile_fibonacci_\

memoized.py:24(fib)

21/1 0.001 0.000 0.002 0.002 profile_fibonacci_\

memoized.py:35(fib_seq)

16.8.2 Running in a Context

Sometimes, instead of constructing a complex expression for run(), it is easier to build

a simple expression and pass it parameters through a context, using runctx().

import profile
from profile_fibonacci_memoized import fib, fib_seq

if __name__ == ’__main__’:

profile.runctx(’print fib_seq(n); print’, globals(), {’n’:20})

In this example, the value of n is passed through the local variable context instead

of being embedded directly in the statement passed to runctx().

$ python profile_runctx.py

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,

1597, 2584, 4181, 6765]

145 function calls (87 primitive calls) in 0.003 CPU seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)

21 0.000 0.000 0.000 0.000 :0(append)

20 0.000 0.000 0.000 0.000 :0(extend)

1 0.001 0.001 0.001 0.001 :0(setprofile)

1 0.000 0.000 0.002 0.002 <string>:1(<module>)

1 0.000 0.000 0.003 0.003 profile:0(\

print fib_seq(n); print)

0 0.000 0.000 profile:0(profiler)

59/21 0.001 0.000 0.001 0.000 profile_fibonacci_\

memoized.py:17(__call__)

21 0.000 0.000 0.001 0.000 profile_fibonacci_\

memoized.py:24(fib)

21/1 0.001 0.000 0.002 0.002 profile_fibonacci_\

memoized.py:35(fib_seq)

ptg

16.8. profile and pstats—Performance Analysis 1027

16.8.3 pstats: Saving and Working with Statistics

The standard report created by the profile functions is not very flexible. However,

custom reports can be produced by saving the raw profiling data from run() and

runctx() and processing it separately with the pstats.Stats class.

This example runs several iterations of the same test and combines the results.

import cProfile as profile
import pstats
from profile_fibonacci_memoized import fib, fib_seq

Create 5 set of stats

filenames = []

for i in range(5):

filename = ’profile_stats_%d.stats’ % i

profile.run(’print %d, fib_seq(20)’ % i, filename)

Read all 5 stats files into a single object

stats = pstats.Stats(’profile_stats_0.stats’)

for i in range(1, 5):

stats.add(’profile_stats_%d.stats’ % i)

Clean up filenames for the report

stats.strip_dirs()

Sort the statistics by the cumulative time spent in the function

stats.sort_stats(’cumulative’)

stats.print_stats()

The output report is sorted in descending order of cumulative time spent in the

function, and the directory names are removed from the printed filenames to conserve

horizontal space on the page.

$ python profile_stats.py

0 [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610,

987, 1597, 2584, 4181, 6765]

1 [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610,

987, 1597, 2584, 4181, 6765]

2 [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610,

987, 1597, 2584, 4181, 6765]

ptg

1028 Developer Tools

3 [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610,

987, 1597, 2584, 4181, 6765]

4 [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610,

987, 1597, 2584, 4181, 6765]

Sun Aug 31 11:29:36 2008 profile_stats_0.stats

Sun Aug 31 11:29:36 2008 profile_stats_1.stats

Sun Aug 31 11:29:36 2008 profile_stats_2.stats

Sun Aug 31 11:29:36 2008 profile_stats_3.stats

Sun Aug 31 11:29:36 2008 profile_stats_4.stats

489 function calls (351 primitive calls) in 0.008 CPU seconds

Ordered by: cumulative time

ncalls tottime percall cumtime percall filename:lineno(function)

5 0.000 0.000 0.007 0.001 <string>:1(<module>)

105/5 0.004 0.000 0.007 0.001 profile_fibonacci_\

memoized.py:36(fib_seq)

1 0.000 0.000 0.003 0.003 profile:0(print 0, \

fib_seq(20))

143/105 0.001 0.000 0.002 0.000 profile_fibonacci_\

memoized.py:19(__call__)

1 0.000 0.000 0.001 0.001 profile:0(print 4, \

fib_seq(20))

1 0.000 0.000 0.001 0.001 profile:0(print 1, \

fib_seq(20))

1 0.000 0.000 0.001 0.001 profile:0(print 2, \

fib_seq(20))

1 0.000 0.000 0.001 0.001 profile:0(print 3, \

fib_seq(20))

21 0.000 0.000 0.001 0.000 profile_fibonacci_\

memoized.py:26(fib)

100 0.001 0.000 0.001 0.000 :0(extend)

105 0.001 0.000 0.001 0.000 :0(append)

5 0.001 0.000 0.001 0.000 :0(setprofile)

0 0.000 0.000 profile:0(profiler)

16.8.4 Limiting Report Contents

The output can be restricted by function. This version only shows information about

the performance of fib() and fib_seq() by using a regular expression to match the

desired filename:lineno(function) values.

ptg

16.8. profile and pstats—Performance Analysis 1029

import profile
import pstats
from profile_fibonacci_memoized import fib, fib_seq

Read all 5 stats files into a single object

stats = pstats.Stats(’profile_stats_0.stats’)

for i in range(1, 5):

stats.add(’profile_stats_%d.stats’ % i)

stats.strip_dirs()

stats.sort_stats(’cumulative’)

limit output to lines with "(fib" in them

stats.print_stats(’\(fib’)

The regular expression includes a literal left parenthesis [(] to match against the

function name portion of the location value.

$ python profile_stats_restricted.py

Sun Aug 31 11:29:36 2008 profile_stats_0.stats

Sun Aug 31 11:29:36 2008 profile_stats_1.stats

Sun Aug 31 11:29:36 2008 profile_stats_2.stats

Sun Aug 31 11:29:36 2008 profile_stats_3.stats

Sun Aug 31 11:29:36 2008 profile_stats_4.stats

489 function calls (351 primitive calls) in 0.008 CPU seconds

Ordered by: cumulative time

List reduced from 13 to 2 due to restriction <’\\(fib’>

ncalls tottime percall cumtime percall filename:lineno(function)

105/5 0.004 0.000 0.007 0.001 profile_fibonacci_\

memoized.py:36(fib_seq)

21 0.000 0.000 0.001 0.000 profile_fibonacci_\

memoized.py:26(fib)

16.8.5 Caller / Callee Graphs

Stats also includes methods for printing the callers and callees of functions.

import cProfile as profile
import pstats
from profile_fibonacci_memoized import fib, fib_seq

ptg

1030 Developer Tools

Read all 5 stats files into a single object

stats = pstats.Stats(’profile_stats_0.stats’)

for i in range(1, 5):

stats.add(’profile_stats_%d.stats’ % i)

stats.strip_dirs()

stats.sort_stats(’cumulative’)

print ’INCOMING CALLERS:’

stats.print_callers(’\(fib’)

print ’OUTGOING CALLEES:’

stats.print_callees(’\(fib’)

The arguments to print_callers() and print_callees() work the same

as the restriction arguments to print_stats(). The output shows the caller, callee,

number of calls, and cumulative time.

$ python profile_stats_callers.py

INCOMING CALLERS:

Ordered by: cumulative time

List reduced from 7 to 2 due to restriction <’\\(fib’>

Function was called by...

ncalls tottime cumtime

profile_fibonacci_memoized.py:35(fib_seq) <- 5 0.000 0.001\

<string>:1(<module>)

100/5 0.000 0.001\

profile_fibonacci_memoized.py:35(fib_seq)

profile_fibonacci_memoized.py:24(fib) <- 21 0.000 0.000\

profile_fibonacci_memoized.py:17(__call__)

OUTGOING CALLEES:

Ordered by: cumulative time

List reduced from 7 to 2 due to restriction <’\\(fib’>

Function called...

ncalls tottime cumtime

profile_fibonacci_memoized.py:35(fib_seq) -> 105 0.000 0.000\

profile_fibonacci_memoized.py:17(__call__)

100/5 0.000 0.001\

ptg

16.9. timeit—Time the Execution of Small Bits of Python Code 1031

profile_fibonacci_memoized.py:35(fib_seq)

105 0.000 0.000\

{method ’append’ of ’list’ objects}

100 0.000 0.000\

{method ’extend’ of ’list’ objects}

profile_fibonacci_memoized.py:24(fib) -> 38 0.000 0.000\

profile_fibonacci_memoized.py:17(__call__)

See Also:
profile and cProfile (http://docs.python.org/lib/module-profile.html) The standard

library documentation for this module.

pstats (http://docs.python.org/lib/profile-stats.html) The standard library documen-

tation for pstats.

Gprof2Dot (http://code.google.com/p/jrfonseca/wiki/Gprof2Dot) Visualization

tool for profile output data.

Fibonacci numbers (Python)—LiteratePrograms
(http://en.literateprograms.org/Fibonacci_numbers_(Python)) An imple-

mentation of a Fibonacci sequence generator in Python.

Python Decorators: Syntactic Sugar | avinash.vora
(http://avinashv.net/2008/04/python-decorators-syntactic-sugar/) Another

memoized Fibonacci sequence generator in Python.

16.9 timeit—Time the Execution of Small Bits of Python Code

Purpose Time the execution of small bits of Python code.

Python Version 2.3 and later

The timeit module provides a simple interface for determining the execution

time of small bits of Python code. It uses a platform-specific time function to provide the

most accurate time calculation possible and reduces the impact of start-up or shutdown

costs on the time calculation by executing the code repeatedly.

16.9.1 Module Contents

timeit defines a single public class, Timer. The constructor for Timer takes a state-

ment to be timed and a “setup” statement (used to initialize variables, for example). The

Python statements should be strings and can include embedded newlines.

The timeit() method runs the setup statement one time and then executes the

primary statement repeatedly and returns the amount of time that passes. The argument

to timeit() controls how many times to run the statement; the default is 1,000,000.

http://docs.python.org/lib/module-profile.html
http://docs.python.org/lib/profile-stats.html
http://code.google.com/p/jrfonseca/wiki/Gprof2Dot
http://en.literateprograms.org/Fibonacci_numbers_(Python)
http://avinashv.net/2008/04/python-decorators-syntactic-sugar/

ptg

1032 Developer Tools

16.9.2 Basic Example

To illustrate how the various arguments to Timer are used, here is a simple example

that prints an identifying value when each statement is executed.

import timeit

using setitem

t = timeit.Timer("print ’main statement’", "print ’setup’")

print ’TIMEIT:’

print t.timeit(2)

print ’REPEAT:’

print t.repeat(3, 2)

When run, the output is:

$ python timeit_example.py

TIMEIT:

setup

main statement

main statement

2.86102294922e-06

REPEAT:

setup

main statement

main statement

setup

main statement

main statement

setup

main statement

main statement

[9.5367431640625e-07, 1.9073486328125e-06, 2.1457672119140625e-06]

timeit() runs the setup statement one time and then calls the main statement

count times. It returns a single floating-point value representing the cumulative amount

of time spent running the main statement.

When repeat() is used, it calls timeit() several times (three in this case) and

all the responses are returned in a list.

ptg

16.9. timeit—Time the Execution of Small Bits of Python Code 1033

16.9.3 Storing Values in a Dictionary

This more complex example compares the amount of time it takes to populate a dic-

tionary with a large number of values using various methods. First, a few constants are

needed to configure the Timer. The setup_statement variable initializes a list of

tuples containing strings and integers that the main statements will use to build dictio-

naries, using the strings as keys and storing the integers as the associated values.

import timeit
import sys

A few constants

range_size=1000

count=1000

setup_statement = "l = [(str(x), x) for x in range(1000)]; d = {}"

A utility function, show_results(), is defined to print the results in a useful

format. The timeit() method returns the amount of time it takes to execute the state-

ment repeatedly. The output of show_results() converts that time into the amount

of time it takes per iteration, and then it further reduces the value to the average amount

of time it takes to store one item in the dictionary.

def show_results(result):

"Print results in terms of microseconds per pass and per item."

global count, range_size

per_pass = 1000000 * (result / count)

print ’%.2f usec/pass’ % per_pass,

per_item = per_pass / range_size

print ’%.2f usec/item’ % per_item

print "%d items" % range_size

print "%d iterations" % count

print

To establish a baseline, the first configuration tested uses __setitem__(). All

the other variations avoid overwriting values already in the dictionary, so this simple

version should be the fastest.

The first argument to Timer is a multiline string, with whitespace preserved to

ensure that it parses correctly when run. The second argument is a constant established

to initialize the list of values and the dictionary.

ptg

1034 Developer Tools

Using __setitem__ without checking for existing values first

print ’__setitem__:’,

t = timeit.Timer("""

for s, i in l:

d[s] = i

""",

setup_statement)

show_results(t.timeit(number=count))

The next variation uses setdefault() to ensure that values already in the dic-

tionary are not overwritten.

Using setdefault

print ’setdefault :’,

t = timeit.Timer("""

for s, i in l:

d.setdefault(s, i)

""",

setup_statement)

show_results(t.timeit(number=count))

Another way to avoid overwriting existing values is to use has_key() to check

the contents of the dictionary explicitly.

Using has_key

print ’has_key :’,

t = timeit.Timer("""

for s, i in l:

if not d.has_key(s):

d[s] = i

""",

setup_statement)

show_results(t.timeit(number=count))

This method adds the value only if a KeyError exception is raised when looking

for the existing value.

Using exceptions

print ’KeyError :’,

t = timeit.Timer("""

for s, i in l:

try:

ptg

16.9. timeit—Time the Execution of Small Bits of Python Code 1035

existing = d[s]

except KeyError:

d[s] = i

""",

setup_statement)

show_results(t.timeit(number=count))

And the last method is the relatively new form using “in” to determine if a dictio-

nary has a particular key.

Using "in"

print ’"not in" :’,

t = timeit.Timer("""

for s, i in l:

if s not in d:

d[s] = i

""",

setup_statement)

show_results(t.timeit(number=count))

When run, the script produces this output.

$ python timeit_dictionary.py

1000 items

1000 iterations

__setitem__: 131.44 usec/pass 0.13 usec/item

setdefault : 282.94 usec/pass 0.28 usec/item

has_key : 202.40 usec/pass 0.20 usec/item

KeyError : 142.50 usec/pass 0.14 usec/item

"not in" : 104.60 usec/pass 0.10 usec/item

Those times are for a MacBook Pro running Python 2.7, and they will vary depend-

ing on what other programs are running on the system. Experiment with the range_size
and count variables, since different combinations will produce different results.

16.9.4 From the Command Line

In addition to the programmatic interface, timeit provides a command-line interface

for testing modules without instrumentation.

ptg

1036 Developer Tools

To run the module, use the -m option to the Python interpreter to find the module

and treat it as the main program.

$ python -m timeit

For example, use this command to get help.

$ python -m timeit -h

Tool for measuring execution time of small code snippets.

This module avoids a number of common traps for measuring execution

times. See also Tim Peters’ introduction to the Algorithms chapter in

the Python Cookbook, published by O’Reilly.

...

The statement argument works a little differently on the command line than the

argument to Timer. Instead of one long string, pass each line of the instructions as a

separate command-line argument. To indent lines (such as inside a loop), embed spaces

in the string by enclosing it in quotes.

$ python -m timeit -s "d={}" "for i in range(1000):" " d[str(i)] = i"

1000 loops, best of 3: 559 usec per loop

It is also possible to define a function with more complex code and then call the

function from the command line.

def test_setitem(range_size=1000):

l = [(str(x), x) for x in range(range_size)]

d = {}

for s, i in l:

d[s] = i

To run the test, pass in code that imports the modules and runs the test function.

$ python -m timeit "import timeit_setitem; timeit_setitem.test_

setitem()"

1000 loops, best of 3: 804 usec per loop

ptg

16.10. compileall—Byte-Compile Source Files 1037

See Also:
timeit (http://docs.python.org/lib/module-timeit.html) The standard library docu-

mentation for this module.

profile (page 1022) The profile module is also useful for performance analysis.

16.10 compileall—Byte-Compile Source Files

Purpose Convert source files to byte-compiled version.

Python Version 1.4 and later

The compileall module finds Python source files and compiles them to the byte-

code representation, saving the results in .pyc or .pyo files.

16.10.1 Compiling One Directory

compile_dir() is used to recursively scan a directory and byte-compile the files

within it.

import compileall

compileall.compile_dir(’examples’)

By default, all the subdirectories are scanned to a depth of 10.

$ python compileall_compile_dir.py

Listing examples ...

Compiling examples/a.py ...

Listing examples/subdir ...

Compiling examples/subdir/b.py ...

To filter directories out, use the rx argument to provide a regular expression to

match the names to exclude.

import compileall
import re

compileall.compile_dir(’examples’,

rx=re.compile(r’/subdir’))

This version excludes files in the subdir subdirectory.

http://docs.python.org/lib/module-timeit.html

ptg

1038 Developer Tools

$ python compileall_exclude_dirs.py

Listing examples ...

Compiling examples/a.py ...

Listing examples/subdir ...

The maxlevels argument controls the depth of recursion. For example, to avoid

recursion entirely pass 0.

import compileall
import re

compileall.compile_dir(’examples’,

maxlevels=0,

rx=re.compile(r’/\.svn’))

Only files within the directory passed to compile_dir() are compiled.

$ python compileall_recursion_depth.py

Listing examples ...

Compiling examples/a.py ...

16.10.2 Compiling sys.path

All the Python source files found in sys.path can be compiled with a single call to

compile_path().

import compileall
import sys

sys.path[:] = [’examples’, ’notthere’]

print ’sys.path =’, sys.path

compileall.compile_path()

This example replaces the default contents of sys.path to avoid permission er-

rors while running the script, but it still illustrates the default behavior. Note that the

maxlevels value defaults to 0.

$ python compileall_path.py

sys.path = [’examples’, ’notthere’]

Listing examples ...

ptg

16.11. pyclbr—Class Browser 1039

Compiling examples/a.py ...

Listing notthere ...

Can’t list notthere

16.10.3 From the Command Line

It is also possible to invoke compileall from the command line so it can be integrated

with a build system via a Makefile. Here is an example.

$ python -m compileall -h

option -h not recognized

usage: python compileall.py [-l] [-f] [-q] [-d destdir] [-x

regexp] [-i list] [directory|file ...]

-l: don’t recurse down

-f: force rebuild even if timestamps are up-to-date

-q: quiet operation

-d destdir: purported directory name for error messages

if no directory arguments, -l sys.path is assumed

-x regexp: skip files matching the regular expression regexp

the regexp is searched for in the full path of the file

-i list: expand list with its content (file and directory names)

To re-create the earlier example, skipping the subdir directory, run this command.

$ python -m compileall -x ’/subdir’ examples

Listing examples ...

Compiling examples/a.py ...

Listing examples/subdir ...

See Also:
compileall (http://docs.python.org/library/compileall.html) The standard library

documentation for this module.

16.11 pyclbr—Class Browser

Purpose Implements an API suitable for use in a source code editor for

making a class browser.

Python Version 1.4 and later

http://docs.python.org/library/compileall.html

ptg

1040 Developer Tools

pyclbr can scan Python source to find classes and stand-alone functions. The

information about class, method, and function names and line numbers is gathered using

tokenize without importing the code.

The examples in this section use this source file as input.

"""Example source for pyclbr.

"""

class Base(object):
"""This is the base class.

"""

def method1(self):

return

class Sub1(Base):
"""This is the first subclass.

"""

class Sub2(Base):
"""This is the second subclass.

"""

class Mixin:
"""A mixin class.

"""

def method2(self):

return

class MixinUser(Sub2, Mixin):

"""Overrides method1 and method2

"""

def method1(self):

return

def method2(self):

return

def method3(self):

return

ptg

16.11. pyclbr—Class Browser 1041

def my_function():

"""Stand-alone function.

"""

return

16.11.1 Scanning for Classes

There are two public functions exposed by pyclbr. The first, readmodule(), takes

the name of the module as an argument and returns a dictionary mapping class names

to Class objects containing the metadata about the class source.

import pyclbr
import os
from operator import itemgetter

def show_class(name, class_data):

print ’Class:’, name

filename = os.path.basename(class_data.file)

print ’\tFile: {0} [{1}]’.format(filename, class_data.lineno)

show_super_classes(name, class_data)

show_methods(name, class_data)

print
return

def show_methods(class_name, class_data):

for name, lineno in sorted(class_data.methods.items(),

key=itemgetter(1)):

print ’\tMethod: {0} [{1}]’.format(name, lineno)

return

def show_super_classes(name, class_data):

super_class_names = []

for super_class in class_data.super:

if super_class == ’object’:

continue
if isinstance(super_class, basestring):

super_class_names.append(super_class)

else:
super_class_names.append(super_class.name)

if super_class_names:

print ’\tSuper classes:’, super_class_names

return

ptg

1042 Developer Tools

example_data = pyclbr.readmodule(’pyclbr_example’)

for name, class_data in sorted(example_data.items(),

key=lambda x:x[1].lineno):

show_class(name, class_data)

The metadata for the class includes the file and the line number where it is defined,

as well as the names of super classes. The methods of the class are saved as a mapping

between method name and line number. The output shows the classes and the methods

listed in order based on their line number in the source file.

$ python pyclbr_readmodule.py

Class: Base

File: pyclbr_example.py [10]

Method: method1 [14]

Class: Sub1

File: pyclbr_example.py [17]

Super classes: [’Base’]

Class: Sub2

File: pyclbr_example.py [21]

Super classes: [’Base’]

Class: Mixin

File: pyclbr_example.py [25]

Method: method2 [29]

Class: MixinUser

File: pyclbr_example.py [32]

Super classes: [’Sub2’, ’Mixin’]

Method: method1 [36]

Method: method2 [39]

Method: method3 [42]

16.11.2 Scanning for Functions

The other public function in pyclbr is readmodule_ex(). It does everything that

readmodule() does and adds functions to the result set.

ptg

16.11. pyclbr—Class Browser 1043

import pyclbr
import os
from operator import itemgetter

example_data = pyclbr.readmodule_ex(’pyclbr_example’)

for name, data in sorted(example_data.items(), key=lambda x:x[1].

lineno):

if isinstance(data, pyclbr.Function):

print ’Function: {0} [{1}]’.format(name, data.lineno)

Each Function object has properties much like the Class object.

$ python pyclbr_readmodule_ex.py

Function: my_function [45]

See Also:
pyclbr (http://docs.python.org/library/pyclbr.html) The standard library documen-

tation for this module.

inspect (page 1200) The inspect module can discover more metadata about classes

and functions, but it requires importing the code.

tokenize The tokenize module parses Python source code into tokens.

http://docs.python.org/library/pyclbr.html

ptg

This page intentionally left blank

ptg

Chapter 17

RUNTIME FEATURES

This chapter covers the features of the Python standard library that allow a program to

interact with the interpreter or the environment in which it runs.

During start-up, the interpreter loads the site module to configure settings spe-

cific to the current installation. The import path is constructed from a combination of

environment settings, interpreter build parameters, and configuration files.

The sys module is one of the largest in the standard library. It includes functions

for accessing a broad range of interpreter and system settings, including interpreter

build settings and limits; command-line arguments and program exit codes; exception

handling; thread debugging and control; the import mechanism and imported modules;

runtime control flow tracing; and standard input and output streams for the process.

While sys is focused on interpreter settings, os provides access to operating sys-

tem information. It can be used for portable interfaces to system calls that return details

about the running process, such as its owner and environment variables. It also includes

functions for working with the file system and process management.

Python is often used as a cross-platform language for creating portable programs.

Even in a program intended to run anywhere, it is occasionally necessary to know the

operating system or hardware architecture of the current system. The platform mod-

ule provides functions to retrieve runtime settings

The limits for system resources, such as the maximum process stack size or num-

ber of open files, can be probed and changed through the resource module. It also

reports the current consumption rates so a process can be monitored for resource leaks.

The gc module gives access to the internal state of Python’s garbage collection

system. It includes information useful for detecting and breaking object cycles, turning

the collector on and off, and adjusting thresholds that automatically trigger collection

sweeps.

1045

ptg

1046 Runtime Features

The sysconfig module holds the compile-time variables from the build scripts.

It can be used by build and packaging tools to generate paths and other settings

dynamically.

17.1 site—Site-Wide Configuration

The site module handles site-specific configuration, especially the import path.

17.1.1 Import Path

site is automatically imported each time the interpreter starts up. On import, it

extends sys.path with site-specific names constructed by combining the prefix val-

ues sys.prefix and sys.exec_prefix with several suffixes. The prefix values used

are saved in the module-level variable PREFIXES for reference later. Under Windows,

the suffixes are an empty string and lib/site-packages. For UNIX-like plat-

forms, the values are lib/python$version/site-packages (where $version is

replaced by the major and minor version number of the interpreter, such as 2.7) and

lib/site-python.

import sys
import os
import platform
import site

if ’Windows’ in platform.platform():

SUFFIXES = [

’’,

’lib/site-packages’,

]

else:
SUFFIXES = [

’lib/python%s/site-packages’ % sys.version[:3],

’lib/site-python’,

]

print ’Path prefixes:’

for p in site.PREFIXES:

print ’ ’, p

for prefix in sorted(set(site.PREFIXES)):

print
print prefix

ptg

17.1. site—Site-Wide Configuration 1047

for suffix in SUFFIXES:

print
print ’ ’, suffix

path = os.path.join(prefix, suffix).rstrip(os.sep)

print ’ exists :’, os.path.exists(path)

print ’ in path:’, path in sys.path

Each of the paths resulting from the combinations is tested, and those that exist are

added to sys.path. This output shows the framework version of Python installed on

a Mac OS X system.

$ python site_import_path.py

Path prefixes:

/Library/Frameworks/Python.framework/Versions/2.7

/Library/Frameworks/Python.framework/Versions/2.7

/Library/Frameworks/Python.framework/Versions/2.7

lib/python2.7/site-packages

exists : True

in path: True

lib/site-python

exists : False

in path: False

17.1.2 User Directories

In addition to the global site-packages paths, site is responsible for adding the user-

specific locations to the import path. The user-specific paths are all based on the

USER_BASE directory, which is usually located in a part of the file system owned (and

writable) by the current user. Inside the USER_BASE directory is a site-packages

directory, with the path accessible as USER_SITE.

import site

print ’Base:’, site.USER_BASE

print ’Site:’, site.USER_SITE

The USER_SITE path name is created using the same platform-specific suffix val-

ues described earlier.

ptg

1048 Runtime Features

$ python site_user_base.py

Base: /Users/dhellmann/.local

Site: /Users/dhellmann/.local/lib/python2.7/site-packages

The user base directory can be set through the PYTHONUSERBASE environment

variable and has platform-specific defaults (~/Python$version/site-packages

for Windows and ~/.local for non-Windows).

$ PYTHONUSERBASE=/tmp/$USER python site_user_base.py

Base: /tmp/dhellmann

Site: /tmp/dhellmann/lib/python2.7/site-packages

The user directory is disabled under some circumstances that would pose security

issues (for example, if the process is running with a different effective user or group id

than the actual user that started it). An application can check the setting by examining

ENABLE_USER_SITE.

import site

status = {

None:’Disabled for security’,

True:’Enabled’,

False:’Disabled by command-line option’,

}

print ’Flag :’, site.ENABLE_USER_SITE

print ’Meaning:’, status[site.ENABLE_USER_SITE]

The user directory can also be explicitly disabled on the command line with -s.

$ python site_enable_user_site.py

Flag : True

Meaning: Enabled

$ python -s site_enable_user_site.py

Flag : False

Meaning: Disabled by command-line option

ptg

17.1. site—Site-Wide Configuration 1049

17.1.3 Path Configuration Files

As paths are added to the import path, they are also scanned for path configuration files.

A path configuration file is a plain-text file with the extension .pth. Each line in the

file can take one of four forms:

• A full or relative path to another location that should be added to the import path.

• A Python statement to be executed. All such lines must begin with an import

statement.

• Blank lines that are to be ignored.

• A line starting with # that is to be treated as a comment and ignored.

Path configuration files can be used to extend the import path to look in locations

that would not have been added automatically. For example, the Distribute package

adds a path to easy-install.pth when it installs a package in development mode

using python setup.py develop.

The function for extending sys.path is public, and it can be used in example

programs to show how the path configuration files work. Here is the result given a

directory named with_modules containing the file mymodule.py with this print

statement. It shows how the module was imported.

import os
print ’Loaded’, __name__, ’from’, __file__[len(os.getcwd())+1:]

This script shows how addsitedir() extends the import path so the interpreter

can find the desired module.

import site
import os
import sys

script_directory = os.path.dirname(__file__)

module_directory = os.path.join(script_directory, sys.argv[1])

try:
import mymodule

except ImportError, err:

print ’Could not import mymodule:’, err

print
before_len = len(sys.path)

ptg

1050 Runtime Features

site.addsitedir(module_directory)

print ’New paths:’

for p in sys.path[before_len:]:

print p.replace(os.getcwd(), ’.’) # shorten dirname

print
import mymodule

After the directory containing the module is added to sys.path, the script can

import mymodule without issue.

$ python site_addsitedir.py with_modules

Could not import mymodule: No module named mymodule

New paths:

./with_modules

Loaded mymodule from with_modules/mymodule.py

The path changes by addsitedir() go beyond simply appending the argument

to sys.path. If the directory given to addsitedir() includes any files match-

ing the pattern *.pth, they are loaded as path configuration files. For example, if

with_pth/pymotw.pth contains

Add a single subdirectory to the path.

./subdir

and mymodule.py is copied to with_pth/subdir/mymodule.py, then it can be

imported by adding with_pth as a site directory. This is possible even though the

module is not in that directory because both with_pth and with_pth/subdir are

added to the import path.

$ python site_addsitedir.py with_pth

Could not import mymodule: No module named mymodule

New paths:

./with_pth

./with_pth/subdir

Loaded mymodule from with_pth/subdir/mymodule.py

ptg

17.1. site—Site-Wide Configuration 1051

If a site directory contains multiple .pth files, they are processed in alphabetical

order.

$ ls -F multiple_pth

a.pth

b.pth

from_a/

from_b/

$ cat multiple_pth/a.pth

./from_a

$ cat multiple_pth/b.pth

./from_b

In this case, the module is found in multiple_pth/from_a because a.pth is

read before b.pth.

$ python site_addsitedir.py multiple_pth

Could not import mymodule: No module named mymodule

New paths:

./multiple_pth

./multiple_pth/from_a

./multiple_pth/from_b

Loaded mymodule from multiple_pth/from_a/mymodule.py

17.1.4 Customizing Site Configuration

The site module is also responsible for loading site-wide customization defined by

the local site owner in a sitecustomize module. Uses for sitecustomize include

extending the import path and enabling coverage, profiling, or other development tools.

For example, this sitecustomize.py script extends the import path with a

directory based on the current platform. The platform-specific path in /opt/python

is added to the import path, so any packages installed there can be imported. A system

like this is useful for sharing packages containing compiled extension modules between

ptg

1052 Runtime Features

hosts on a network via a shared file system. Only the sitecustomize.py script needs

to be installed on each host. The other packages can be accessed from the file server.

print ’Loading sitecustomize.py’

import site
import platform
import os
import sys

path = os.path.join(’/opt’,

’python’,

sys.version[:3],

platform.platform(),

)

print ’Adding new path’, path

site.addsitedir(path)

A simple script can be used to show that sitecustomize.py is imported before

Python starts running your own code.

import sys

print ’Running main program’

print ’End of path:’, sys.path[-1]

Since sitecustomize is meant for system-wide configuration, it should be

installed somewhere in the default path (usually in the site-packages directory).

This example sets PYTHONPATH explicitly to ensure the module is picked up.

$ PYTHONPATH=with_sitecustomize python with_sitecustomize/site_\

sitecustomize.py

Loading sitecustomize.py

Adding new path /opt/python/2.7/Darwin-10.5.0-i386-64bit

Running main program

End of path: /opt/python/2.7/Darwin-10.5.0-i386-64bit

ptg

17.1. site—Site-Wide Configuration 1053

17.1.5 Customizing User Configuration

Similar to sitecustomize, the usercustomize module can be used to set up user-

specific settings each time the interpreter starts up. usercustomize is loaded after

sitecustomize so site-wide customizations can be overridden.

In environments where a user’s home directory is shared on several servers running

different operating systems or versions, the standard user directory mechanism may

not work for user-specific installations of packages. In these cases, a platform-specific

directory tree can be used instead.

print ’Loading usercustomize.py’

import site
import platform
import os
import sys

path = os.path.expanduser(os.path.join(’~’,

’python’,

sys.version[:3],

platform.platform(),

))

print ’Adding new path’, path

site.addsitedir(path)

Another simple script, similar to the one used for sitecustomize, can be used

to show that usercustomize.py is imported before Python starts running other code.

import sys

print ’Running main program’

print ’End of path:’, sys.path[-1]

Since usercustomize is meant for user-specific configuration for a user, it

should be installed somewhere in the user’s default path, but not on the site-wide path.

The default USER_BASE directory is a good location. This example sets PYTHONPATH

explicitly to ensure the module is picked up.

ptg

1054 Runtime Features

$ PYTHONPATH=with_usercustomize python with_usercustomize/site_\

usercustomize.py

Loading usercustomize.py

Adding new path /Users/dhellmann/python/2.7/Darwin-10.5.0-i386-64bit

Running main program

End of path: /Users/dhellmann/python/2.7/Darwin-10.5.0-i386-64bit

When the user site directory feature is disabled, usercustomize is not imported,

whether it is located in the user site directory or elsewhere.

$ PYTHONPATH=with_usercustomize python -s with_usercustomize/site_\

usercustomize.py

Running main program

End of path: /Library/Frameworks/Python.framework/Versions/2.7/lib/

python2.7/site-packages

17.1.6 Disabling the site Module

To maintain backwards-compatibility with versions of Python from before the auto-

matic import was added, the interpreter accepts an -S option.

$ python -S site_import_path.py

Path prefixes:

sys.prefix : /Library/Frameworks/Python.framework/Versions/2.7

sys.exec_prefix: /Library/Frameworks/Python.framework/Versions/2.7

/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/

site-packages

exists: True

in path: False

/Library/Frameworks/Python.framework/Versions/2.7/lib/site-python

exists: False

in path: False

See Also:
site (http://docs.python.org/library/site.html) The standard library documentation

for this module.

http://docs.python.org/library/site.html

ptg

17.2. sys—System-Specific Configuration 1055

Modules and Imports (page 1080) Description of how the import path defined in sys

(page 1055) works.

Running code at Python startup
(http://nedbatchelder.com/blog/201001/running_code_at_python_startup.
html) Post from Ned Batchelder discussing ways to cause the Python interpreter

to run custom initialization code before starting the main program execution.

Distribute (http://packages.python.org/distribute) Distribute is a Python packaging

library based on setuptools and distutils.

17.2 sys—System-Specific Configuration

Purpose Provides system-specific configuration and operations.

Python Version 1.4 and later

The sys module includes a collection of services for probing or changing the config-

uration of the interpreter at runtime and resources for interacting with the operating

environment outside of the current program.

See Also:
sys (http://docs.python.org/library/sys.html) The standard library documentation

for this module.

17.2.1 Interpreter Settings

sys contains attributes and functions for accessing compile-time or runtime configura-

tion settings for the interpreter.

Build-Time Version Information

The version used to build the C interpreter is available in a few forms. sys.version is

a human-readable string that usually includes the full version number, as well as infor-

mation about the build date, compiler, and platform. sys.hexversion is easier to use

for checking the interpreter version since it is a simple integer. When formatted using

hex(), it is clear that parts of sys.hexversion come from the version information

also visible in the more readable sys.version_info (a five-part tuple representing

just the version number).

More specific information about the source that went into the build can be found

in the sys.subversion tuple, which includes the actual branch and subversion revi-

sion that was checked out and built. The separate C API version used by the current

interpreter is saved in sys.api_version.

http://nedbatchelder.com/blog/201001/running_code_at_python_startup.html
http://packages.python.org/distribute
http://docs.python.org/library/sys.html
http://nedbatchelder.com/blog/201001/running_code_at_python_startup.html

ptg

1056 Runtime Features

import sys

print ’Version info:’

print
print ’sys.version =’, repr(sys.version)

print ’sys.version_info =’, sys.version_info

print ’sys.hexversion =’, hex(sys.hexversion)

print ’sys.subversion =’, sys.subversion

print ’sys.api_version =’, sys.api_version

All the values depend on the actual interpreter used to run the sample program.

$ python2.6 sys_version_values.py

Version info:

sys.version = ’2.6.5 (r265:79359, Mar 24 2010, 01:32:55) \n[GCC 4

.0.1 (Apple Inc. build 5493)]’

sys.version_info = (2, 6, 5, ’final’, 0)

sys.hexversion = 0x20605f0

sys.subversion = (’CPython’, ’tags/r265’, ’79359’)

sys.api_version = 1013

$ python2.7 sys_version_values.py

Version info:

sys.version = ’2.7 (r27:82508, Jul 3 2010, 21:12:11) \n[GCC 4.0.

1 (Apple Inc. build 5493)]’

sys.version_info = sys.version_info(major=2, minor=7, micro=0, release

level=’final’, serial=0)

sys.hexversion = 0x20700f0

sys.subversion = (’CPython’, ’tags/r27’, ’82508’)

sys.api_version = 1013

The operating system platform used to build the interpreter is saved as sys.

platform.

import sys

print ’This interpreter was built for:’, sys.platform

ptg

17.2. sys—System-Specific Configuration 1057

For most UNIX systems, the value comes from combining the output of the

command uname -s with the first part of the version in uname -r. For other oper-

ating systems, there is a hard-coded table of values.

$ python sys_platform.py

This interpreter was built for: darwin

Command-Line Options

The CPython interpreter accepts several command-line options to control its behavior;

these options are listed in Table 17.1.

Table 17.1. CPython Command-Line Option Flags

Option Meaning
-B Do not write .py[co] files on import

-d Debug output from parser

-E Ignore PYTHON* environment variables (such as PYTHONPATH)

-i Inspect interactively after running script

-O Optimize generated bytecode slightly

-OO Remove docstrings in addition to the -O optimizations

-s Do not add user site directory to sys.path

-S Do not run “import site” on initialization

-t Issue warnings about inconsistent tab usage

-tt Issue errors for inconsistent tab usage

-v Verbose

-3 Warn about Python 3.x incompatibilities

Some of these are available for programs to check through sys.flags.

import sys

if sys.flags.debug:

print ’Debuging’

if sys.flags.py3k_warning:

print ’Warning about Python 3.x incompatibilities’

if sys.flags.division_warning:

print ’Warning about division change’

ptg

1058 Runtime Features

if sys.flags.division_new:

print ’New division behavior enabled’

if sys.flags.inspect:

print ’Will enter interactive mode after running’

if sys.flags.optimize:

print ’Optimizing byte-code’

if sys.flags.dont_write_bytecode:

print ’Not writing byte-code files’

if sys.flags.no_site:

print ’Not importing "site"’

if sys.flags.ignore_environment:

print ’Ignoring environment’

if sys.flags.tabcheck:

print ’Checking for mixed tabs and spaces’

if sys.flags.verbose:

print ’Verbose mode’

if sys.flags.unicode:

print ’Unicode’

Experiment with sys_flags.py to learn how the command-line options map to

the flag settings.

$ python -3 -S -E sys_flags.py

Warning about Python 3.x incompatibilities

Warning about division change

Not importing "site"

Ignoring environment

Checking for mixed tabs and spaces

Unicode Defaults

To get the name of the default Unicode encoding the interpreter is using, use

getdefaultencoding(). The value is set during start-up by site, which calls

sys.setdefaultencoding() and then removes it from the namespace in sys to

avoid having it called again.

The internal encoding default and the file system encoding may be different for

some operating systems, so there is a separate way to retrieve the file system set-

ting. getfile systemencoding() returns an OS-specific (not file system-specific)

value.

ptg

17.2. sys—System-Specific Configuration 1059

import sys

print ’Default encoding :’, sys.getdefaultencoding()

print ’File system encoding :’, sys.getfilesystemencoding()

Rather than changing the global default encoding, most Unicode experts rec-

ommend making an application explicitly Unicode-aware. This method provides two

benefits: different Unicode encodings for different data sources can be handled more

cleanly, and the number of assumptions about encodings in the application code is

reduced.

$ python sys_unicode.py

Default encoding : ascii

File system encoding : utf-8

Interactive Prompts

The interactive interpreter uses two separate prompts for indicating the default input

level (ps1) and the “continuation” of a multiline statement (ps2). The values are only

used by the interactive interpreter.

>>> import sys
>>> sys.ps1

’>>> ’

>>> sys.ps2

’... ’

>>>

Either prompt or both prompts can be changed to a different string.

>>> sys.ps1 = ’::: ’

::: sys.ps2 = ’~~~ ’

::: for i in range(3):

~~~ print i

~~~

0

1

2

:::

ptg

1060 Runtime Features

Alternately, any object that can be converted to a string (via __str__) can be used

for the prompt.

import sys

class LineCounter(object):
def __init__(self):

self.count = 0

def __str__(self):

self.count += 1

return ’(%3d)> ’ % self.count

The LineCounter keeps track of how many times it has been used, so the number

in the prompt increases each time.

$ python

Python 2.6.2 (r262:71600, Apr 16 2009, 09:17:39)

[GCC 4.0.1 (Apple Computer, Inc. build 5250)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> from PyMOTW.sys.sys_ps1 import LineCounter

>>> import sys

>>> sys.ps1 = LineCounter()

(1)>

(2)>

(3)>

Display Hook

sys.displayhook is invoked by the interactive interpreter each time the user en-

ters an expression. The result of the expression is passed as the only argument to the

function.

import sys

class ExpressionCounter(object):

def __init__(self):

self.count = 0

self.previous_value = self

ptg

17.2. sys—System-Specific Configuration 1061

def __call__(self, value):

print
print ’ Previous:’, self.previous_value

print ’ New :’, value

print
if value != self.previous_value:

self.count += 1

sys.ps1 = ’(%3d)> ’ % self.count

self.previous_value = value

sys.__displayhook__(value)

print ’installing’

sys.displayhook = ExpressionCounter()

The default value (saved in sys.__displayhook__) prints the result to stdout

and saves it in .__builtin__._ for easy reference later.

$ python

Python 2.6.2 (r262:71600, Apr 16 2009, 09:17:39)

[GCC 4.0.1 (Apple Computer, Inc. build 5250)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import PyMOTW.sys.sys_displayhook

installing

>>> 1+2

Previous: <PyMOTW.sys.sys_displayhook.ExpressionCounter object at

0x9c5f 90>

New : 3

3

(1)> ’abc’

Previous: 3

New : abc

’abc’

(2)> ’abc’

Previous: abc

New : abc

’abc’

(2)> ’abc’ * 3

ptg

1062 Runtime Features

Previous: abc

New : abcabcabc

’abcabcabc’

(3)>

Install Location

The path to the actual interpreter program is available in sys.executable on all

systems for which having a path to the interpreter makes sense. This can be useful for

ensuring that the correct interpreter is being used, and it also gives clues about paths

that might be set based on the interpreter location.

sys.prefix refers to the parent directory of the interpreter installation. It usually

includes bin and lib directories for executables and installed modules, respectively.

import sys

print ’Interpreter executable:’, sys.executable

print ’Installation prefix :’, sys.prefix

This example output was produced on a Mac running a framework build installed

from python.org.

$ python sys_locations.py

Interpreter executable: /Library/Frameworks/Python.framework/

Versions/2.7/Resources/Python.app/Contents/MacOS/Python

Installation prefix : /Library/Frameworks/Python.framework/

Versions/2.7

17.2.2 Runtime Environment

sys provides low-level APIs for interacting with the system outside of an application,

by accepting command-line arguments, accessing user input, and passing messages and

status values to the user.

Command-Line Arguments

The arguments captured by the interpreter are processed there and are not passed to the

program being run. Any remaining options and arguments, including the name of the

script itself, are saved to sys.argv in case the program does need to use them.

ptg

17.2. sys—System-Specific Configuration 1063

import sys

print ’Arguments:’, sys.argv

In the third example, the -u option is understood by the interpreter and is not

passed to the program being run.

$ python sys_argv.py

Arguments: [’sys_argv.py’]

$ python sys_argv.py -v foo blah

Arguments: [’sys_argv.py’, ’-v’, ’foo’, ’blah’]

$ python -u sys_argv.py

Arguments: [’sys_argv.py’]

See Also:
getopt (page 770), optparse (page 777), and argparse (page 795) Modules for

parsing command-line arguments.

Input and Output Steams

Following the UNIX paradigm, Python programs can access three file descriptors by

default.

import sys

print >>sys.stderr, ’STATUS: Reading from stdin’

data = sys.stdin.read()

print >>sys.stderr, ’STATUS: Writing data to stdout’

sys.stdout.write(data)

sys.stdout.flush()

print >>sys.stderr, ’STATUS: Done’

stdin is the standard way to read input, usually from a console but also from

other programs via a pipeline. stdout is the standard way to write output for a user (to

ptg

1064 Runtime Features

the console) or to be sent to the next program in a pipeline. stderr is intended for use

with warning or error messages.

$ cat sys_stdio.py | python sys_stdio.py

STATUS: Reading from stdin

STATUS: Writing data to stdout

#!/usr/bin/env python

encoding: utf-8

#

Copyright (c) 2009 Doug Hellmann All rights reserved.

#

"""

"""

#end_pymotw_header

import sys

print >>sys.stderr, ’STATUS: Reading from stdin’

data = sys.stdin.read()

print >>sys.stderr, ’STATUS: Writing data to stdout’

sys.stdout.write(data)

sys.stdout.flush()

print >>sys.stderr, ’STATUS: Done’

STATUS: Done

See Also:
subprocess (page 481) and pipes Both subprocess and pipes have features for

pipelining programs together.

Returning Status

To return an exit code from a program, pass an integer value to sys.exit().

import sys

exit_code = int(sys.argv[1])

sys.exit(exit_code)

ptg

17.2. sys—System-Specific Configuration 1065

A nonzero value means the program exited with an error.

$ python sys_exit.py 0 ; echo "Exited $?"

Exited 0

$ python sys_exit.py 1 ; echo "Exited $?"

Exited 1

17.2.3 Memory Management and Limits

sys includes several functions for understanding and controlling memory usage.

Reference Counts

Python uses reference counting and garbage collection for automatic memory manage-

ment. An object is automatically marked to be collected when its reference count drops

to zero. To examine the reference count of an existing object, use getrefcount().

import sys

one = []

print ’At start :’, sys.getrefcount(one)

two = one

print ’Second reference :’, sys.getrefcount(one)

del two

print ’After del :’, sys.getrefcount(one)

The count is actually one higher than expected because a temporary reference to

the object is held by getrefcount() itself.

$ python sys_getrefcount.py

At start : 2

Second reference : 3

After del : 2

ptg

1066 Runtime Features

See Also:
gc (page 1138) Control the garbage collector via the functions exposed in gc.

Object Size

Knowing how many references an object has may help find cycles or a memory leak,

but it is not enough to determine what objects are consuming the most memory. That

requires knowledge about how big objects are.

import sys

class OldStyle:
pass

class NewStyle(object):
pass

for obj in [[], (), {}, ’c’, ’string’, 1, 2.3,

OldStyle, OldStyle(), NewStyle, NewStyle(),

]:

print ’%10s : %s’ % (type(obj).__name__, sys.getsizeof(obj))

getsizeof() reports the size of an object in bytes.

$ python sys_getsizeof.py

list : 72

tuple : 56

dict : 280

str : 38

str : 43

int : 24

float : 24

classobj : 104

instance : 72

type : 904

NewStyle : 64

The reported size for a custom class does not include the size of the attribute

values.

ptg

17.2. sys—System-Specific Configuration 1067

import sys

class WithoutAttributes(object):
pass

class WithAttributes(object):
def __init__(self):

self.a = ’a’

self.b = ’b’

return

without_attrs = WithoutAttributes()

print ’WithoutAttributes:’, sys.getsizeof(without_attrs)

with_attrs = WithAttributes()

print ’WithAttributes:’, sys.getsizeof(with_attrs)

This can give a false impression of the amount of memory being consumed.

$ python sys_getsizeof_object.py

WithoutAttributes: 64

WithAttributes: 64

For a more complete estimate of the space used by a class, provide a

__sizeof__() method to compute the value by aggregating the sizes of an object’s

attributes.

import sys

class WithAttributes(object):
def __init__(self):

self.a = ’a’

self.b = ’b’

return
def __sizeof__(self):

return object.__sizeof__(self) + \

sum(sys.getsizeof(v) for v in self.__dict__.values())

my_inst = WithAttributes()

print sys.getsizeof(my_inst)

ptg

1068 Runtime Features

This version adds the base size of the object to the sizes of all the attributes stored

in the internal __dict__.

$ python sys_getsizeof_custom.py

140

Recursion

Allowing infinite recursion in a Python application may introduce a stack overflow in

the interpreter itself, leading to a crash. To eliminate this situation, the interpreter pro-

vides a way to control the maximum recursion depth using setrecursionlimit()

and getrecursionlimit().

import sys

print ’Initial limit:’, sys.getrecursionlimit()

sys.setrecursionlimit(10)

print ’Modified limit:’, sys.getrecursionlimit()

def generate_recursion_error(i):

print ’generate_recursion_error(%s)’ % i

generate_recursion_error(i+1)

try:
generate_recursion_error(1)

except RuntimeError, err:

print ’Caught exception:’, err

Once the recursion limit is reached, the interpreter raises a RuntimeError excep-

tion so the program has an opportunity to handle the situation.

$ python sys_recursionlimit.py

Initial limit: 1000

Modified limit: 10

generate_recursion_error(1)

generate_recursion_error(2)

generate_recursion_error(3)

generate_recursion_error(4)

ptg

17.2. sys—System-Specific Configuration 1069

generate_recursion_error(5)

generate_recursion_error(6)

generate_recursion_error(7)

generate_recursion_error(8)

Caught exception: maximum recursion depth exceeded while getting

the str of an object

Maximum Values

Along with the runtime configurable values, sys includes variables defining the maxi-

mum values for types that vary from system to system.

import sys

print ’maxint :’, sys.maxint

print ’maxsize :’, sys.maxsize

print ’maxunicode:’, sys.maxunicode

maxint is the largest representable regular integer. maxsize is the maximum size

of a list, dictionary, string, or other data structure dictated by the C interpreter’s size

type. maxunicode is the largest integer Unicode point supported by the interpreter as

currently configured.

$ python sys_maximums.py

maxint : 9223372036854775807

maxsize : 9223372036854775807

maxunicode: 65535

Floating-Point Values

The structure float_info contains information about the floating-point type represen-

tation used by the interpreter, based on the underlying system’s float implementation.

import sys

print ’Smallest difference (epsilon):’, sys.float_info.epsilon
print
print ’Digits (dig) :’, sys.float_info.dig
print ’Mantissa digits (mant_dig):’, sys.float_info.mant_dig
print
print ’Maximum (max):’, sys.float_info.max
print ’Minimum (min):’, sys.float_info.min
print

ptg

1070 Runtime Features

print ’Radix of exponents (radix):’, sys.float_info.radix
print
print ’Maximum exponent for radix (max_exp):’, sys.float_info.max_exp
print ’Minimum exponent for radix (min_exp):’, sys.float_info.min_exp
print
print ’Max. exponent power of 10 (max_10_exp):’,\

sys.float_info.max_10_exp
print ’Min. exponent power of 10 (min_10_exp):’,\

sys.float_info.min_10_exp
print
print ’Rounding for addition (rounds):’, sys.float_info.rounds

These values depend on the compiler and the underlying system. These examples

were produced on OS X 10.6.5.

$ python sys_float_info.py

Smallest difference (epsilon): 2.22044604925e-16

Digits (dig) : 15

Mantissa digits (mant_dig): 53

Maximum (max): 1.79769313486e+308

Minimum (min): 2.22507385851e-308

Radix of exponents (radix): 2

Maximum exponent for radix (max_exp): 1024

Minimum exponent for radix (min_exp): -1021

Max. exponent power of 10 (max_10_exp): 308

Min. exponent power of 10 (min_10_exp): -307

Rounding for addition (rounds): 1

See Also:
The float.h C header file for the local compiler contains more details about these

settings.

Byte Ordering

byteorder is set to the native byte order.

import sys

print sys.byteorder

ptg

17.2. sys—System-Specific Configuration 1071

The value is either big for big endian or little for little endian.

$ python sys_byteorder.py

little

See Also:
Endianness (http://en.wikipedia.org/wiki/Byte_order) Description of big and little

endian memory systems.

array (page 84) and struct (page 102) Other modules that depend on the byte

order of data.

float.h The C header file for the local compiler contains more details about these

settings.

17.2.4 Exception Handling

sys includes features for trapping and working with exceptions.

Unhandled Exceptions

Many applications are structured with a main loop that wraps execution in a global

exception handler to trap errors not handled at a lower level. Another way to achieve the

same thing is by setting the sys.excepthook to a function that takes three arguments

(error type, error value, and traceback) and letting it deal with unhandled errors.

import sys

def my_excepthook(type, value, traceback):

print ’Unhandled error:’, type, value

sys.excepthook = my_excepthook

print ’Before exception’

raise RuntimeError(’This is the error message’)

print ’After exception’

Since there is no try:except block around the line where the exception is raised,

the following print statement is not run, even though the except hook is set.

http://en.wikipedia.org/wiki/Byte_order

ptg

1072 Runtime Features

$ python sys_excepthook.py

Before exception

Unhandled error: <type ’exceptions.RuntimeError’> This is the error

message

Current Exception

There are times when an explicit exception handler is preferred, either for code clarity or

to avoid conflicts with libraries that try to install their own excepthook. In these cases,

a common handler function can be created that does not need to have the exception

object passed to it explicitly by calling exc_info() to retrieve the current exception

for a thread.

The return value of exc_info() is a three-member tuple containing the excep-

tion class, an exception instance, and a traceback. Using exc_info() is preferred

over the old form (with exc_type, exc_value, and exc_traceback) because it

is thread-safe.

import sys
import threading
import time

def do_something_with_exception():

exc_type, exc_value = sys.exc_info()[:2]

print ’Handling %s exception with message "%s" in %s’ % \

(exc_type.__name__, exc_value, threading.current_thread().name)

def cause_exception(delay):

time.sleep(delay)

raise RuntimeError(’This is the error message’)

def thread_target(delay):

try:
cause_exception(delay)

except:
do_something_with_exception()

threads = [threading.Thread(target=thread_target, args=(0.3,)),

threading.Thread(target=thread_target, args=(0.1,)),

]

for t in threads:

t.start()

ptg

17.2. sys—System-Specific Configuration 1073

for t in threads:

t.join()

This example avoids introducing a circular reference between the traceback object

and a local variable in the current frame by ignoring that part of the return value from

exc_info(). If the traceback is needed (e.g., so it can be logged), explicitly delete the

local variable (using del) to avoid cycles.

$ python sys_exc_info.py

Handling RuntimeError exception with message "This is the error

message" in Thread-2

Handling RuntimeError exception with message "This is the error

message" in Thread-1

Previous Interactive Exception

In the interactive interpreter, there is only one thread of interaction. Unhandled excep-

tions in that thread are saved to three variables in sys (last_type, last_value, and

last_traceback) to make it easy to retrieve them for debugging. Using the post-

mortem debugger in pdb avoids any need to use the values directly.

$ python

Python 2.7 (r27:82508, Jul 3 2010, 21:12:11)

[GCC 4.0.1 (Apple Inc. build 5493)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> def cause_exception():

... raise RuntimeError(’This is the error message’)

...

>>> cause_exception()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 2, in cause_exception

RuntimeError: This is the error message

>>> import pdb

>>> pdb.pm()

> <stdin>(2)cause_exception()

(Pdb) where

<stdin>(1)<module>()

> <stdin>(2)cause_exception()

(Pdb)

ptg

1074 Runtime Features

See Also:
exceptions (page 1216) Built-in errors.

pdb (page 975) Python debugger.

traceback (page 958) Module for working with tracebacks.

17.2.5 Low-Level Thread Support

sys includes low-level functions for controlling and debugging thread behavior.

Check Interval

Python 2 uses a global lock to prevent separate threads from corrupting the interpreter

state. At a fixed interval, bytecode execution is paused and the interpreter checks if

any signal handlers need to be executed. During the same interval check, the global

interpreter lock (GIL) is also released by the current thread and then reacquired, giving

other threads an opportunity to take over execution by grabbing the lock first.

The default check interval is 100 bytecodes, and the current value can

always be retrieved with sys.getcheckinterval(). Changing the interval with

sys.setcheckinterval() may have an impact on the performance of an applica-

tion, depending on the nature of the operations being performed.

import sys
import threading
from Queue import Queue

import time

def show_thread(q, extraByteCodes):

for i in range(5):

for j in range(extraByteCodes):

pass
q.put(threading.current_thread().name)

return

def run_threads(prefix, interval, extraByteCodes):

print ’%s interval = %s with %s extra operations’ % \

(prefix, interval, extraByteCodes)

sys.setcheckinterval(interval)

q = Queue()

threads = [threading.Thread(target=show_thread,

name=’%s T%s’ % (prefix, i),

args=(q, extraByteCodes)

)

ptg

17.2. sys—System-Specific Configuration 1075

for i in range(3)

]

for t in threads:

t.start()

for t in threads:

t.join()

while not q.empty():

print q.get()

print
return

run_threads(’Default’, interval=10, extraByteCodes=1000)

run_threads(’Custom’, interval=10, extraByteCodes=0)

When the check interval is smaller than the number of bytecodes in a thread, the

interpreter may give another thread control so that it runs for a while. This is illustrated

in the first set of output situation where the check interval is set to 100 (the default) and

1,000 extra loop iterations are performed for each step through the i loop.

On the other hand, when the check interval is greater than the number of bytecodes

being executed by a thread that does not release control for another reason, the thread

will finish its work before the interval comes up. This situation is illustrated by the order

of the name values in the queue in the second example.

$ python sys_checkinterval.py

Default interval = 10 with 1000 extra operations

Default T0

Default T0

Default T0

Default T1

Default T2

Default T2

Default T0

Default T1

Default T2

Default T0

Default T1

Default T2

Default T1

Default T2

Default T1

Custom interval = 10 with 0 extra operations

ptg

1076 Runtime Features

Custom T0

Custom T0

Custom T0

Custom T0

Custom T0

Custom T1

Custom T1

Custom T1

Custom T1

Custom T1

Custom T2

Custom T2

Custom T2

Custom T2

Custom T2

Modifying the check interval is not as clearly useful as it might seem. Many other

factors may control the context-switching behavior of Python’s threads. For example,

if a thread performs I/O, it releases the GIL and may therefore allow another thread to

take over execution.

import sys
import threading
from Queue import Queue

import time

def show_thread(q, extraByteCodes):

for i in range(5):

for j in range(extraByteCodes):

pass
#q.put(threading.current_thread().name)

print threading.current_thread().name

return

def run_threads(prefix, interval, extraByteCodes):

print ’%s interval = %s with %s extra operations’ % \

(prefix, interval, extraByteCodes)

sys.setcheckinterval(interval)

q = Queue()

threads = [threading.Thread(target=show_thread,

name=’%s T%s’ % (prefix, i),

args=(q, extraByteCodes)

ptg

17.2. sys—System-Specific Configuration 1077

)

for i in range(3)

]

for t in threads:

t.start()

for t in threads:

t.join()

while not q.empty():

print q.get()

print
return

run_threads(’Default’, interval=100, extraByteCodes=1000)

run_threads(’Custom’, interval=10, extraByteCodes=0)

This example is modified from the first example to show that the thread prints

directly to sys.stdout instead of appending to a queue. The output is much less

predictable.

$ python sys_checkinterval_io.py

Default interval = 100 with 1000 extra operations

Default T0

Default T1

Default T1Default T2

Default T0Default T2

Default T2

Default T2

Default T1

Default T2

Default T1

Default T1

Default T0

Default T0

Default T0

Custom interval = 10 with 0 extra operations

Custom T0

Custom T0

Custom T0

ptg

1078 Runtime Features

Custom T0

Custom T0

Custom T1

Custom T1

Custom T1

Custom T1

Custom T2

Custom T2

Custom T2

Custom T1Custom T2

Custom T2

See Also:
dis (page 1186) Disassembling Python code with the dis module is one way to count

bytecodes.

Debugging

Identifying deadlocks can be one of the most difficult aspects of working with threads.

sys._current_frames() can help by showing exactly where a thread is stopped.

1 #!/usr/bin/env python

2 # encoding: utf-8

3

4 import sys
5 import threading
6 import time
7

8 io_lock = threading.Lock()

9 blocker = threading.Lock()

10

11 def block(i):

12 t = threading.current_thread()

13 with io_lock:

14 print ’%s with ident %s going to sleep’ % (t.name, t.ident)

15 if i:

16 blocker.acquire() # acquired but never released

17 time.sleep(0.2)

ptg

17.2. sys—System-Specific Configuration 1079

18 with io_lock:

19 print t.name, ’finishing’

20 return
21

22 # Create and start several threads that "block"

23 threads = [threading.Thread(target=block, args=(i,)) for i in range(3)]

24 for t in threads:

25 t.setDaemon(True)

26 t.start()

27

28 # Map the threads from their identifier to the thread object

29 threads_by_ident = dict((t.ident, t) for t in threads)

30

31 # Show where each thread is "blocked"

32 time.sleep(0.01)

33 with io_lock:

34 for ident, frame in sys._current_frames().items():

35 t = threads_by_ident.get(ident)

36 if not t:

37 # Main thread

38 continue
39 print t.name, ’stopped in’, frame.f_code.co_name,

40 print ’at line’, frame.f_lineno, ’of’, frame.f_code.co_filename

The dictionary returned by sys._current_frames() is keyed on the thread

identifier, rather than its name. A little work is needed to map those identifiers back to

the thread object.

Because Thread-1 does not sleep, it finishes before its status is checked. Since it

is no longer active, it does not appear in the output. Thread-2 acquires the lock blocker
and then sleeps for a short period. Meanwhile, Thread-3 tries to acquire blocker but

cannot because Thread-2 already has it.

$ python sys_current_frames.py

Thread-1 with ident 4300619776 going to sleep

Thread-1 finishing

Thread-2 with ident 4301156352 going to sleep

Thread-3 with ident 4302835712 going to sleep

Thread-3 stopped in block at line 16 of sys_current_frames.py

Thread-2 stopped in block at line 17 of sys_current_frames.py

ptg

1080 Runtime Features

See Also:
threading (page 505) The threading module includes classes for creating Python

threads.

Queue (page 96) The Queue module provides a thread-safe implementation of a FIFO

data structure.

Python Threads and the Global Interpreter Lock
(http://jessenoller.com/2009/02/01/python-threads-and-the-global-
interpreter-lock/) Jesse Noller’s article from the December 2007 issue of

Python Magazine.

Inside the Python GIL (www.dabeaz.com/python/GIL.pdf) Presentation by David

Beazley describing thread implementation and performance issues, including

how the check interval and GIL are related.

17.2.6 Modules and Imports

Most Python programs end up as a combination of several modules with a main appli-

cation importing them. Whether using the features of the standard library or organizing

custom code in separate files to make it easier to maintain, understanding and managing

the dependencies for a program is an important aspect of development. sys includes

information about the modules available to an application, either as built-ins or after

being imported. It also defines hooks for overriding the standard import behavior for

special cases.

Imported Modules

sys.modules is a dictionary mapping the names of imported modules to the module

object holding the code.

import sys
import textwrap

names = sorted(sys.modules.keys())

name_text = ’, ’.join(names)

print textwrap.fill(name_text, width=65)

The contents of sys.modules change as new modules are imported.

$ python sys_modules.py

UserDict, __builtin__, __main__, _abcoll, _codecs, _sre,

_warnings, abc, codecs, copy_reg, encodings,

http://jessenoller.com/2009/02/01/python-threads-and-the-global-interpreter-lock/
http://jessenoller.com/2009/02/01/python-threads-and-the-global-interpreter-lock/
www.dabeaz.com/python/GIL.pdf

ptg

17.2. sys—System-Specific Configuration 1081

encodings.__builtin__, encodings.aliases, encodings.codecs,

encodings.encodings, encodings.utf_8, errno, exceptions,

genericpath, linecache, os, os.path, posix, posixpath, re,

signal, site, sre_compile, sre_constants, sre_parse, stat,

string, strop, sys, textwrap, types, warnings, zipimport

Built-in Modules

The Python interpreter can be compiled with some C modules built right in, so they do

not need to be distributed as separate shared libraries. These modules do not appear

in the list of imported modules managed in sys.modules because they were not

technically imported. The only way to find the available built-in modules is through

sys.builtin_module_names.

import sys
import textwrap

name_text = ’, ’.join(sorted(sys.builtin_module_names))

print textwrap.fill(name_text, width=65)

The output of this script will vary, especially if run with a custom-built version of

the interpreter. This output was created using a copy of the interpreter installed from

the standard python.org installer for OS X.

$ python sys_builtins.py

__builtin__, __main__, _ast, _codecs, _sre, _symtable, _warnings,

errno, exceptions, gc, imp, marshal, posix, pwd, signal, sys,

thread, xxsubtype, zipimport

See Also:
Build Instructions (http://svn.python.org/view/python/trunk/README?view=

markup) Instructions for building Python, from the README distributed with

the source.

Import Path

The search path for modules is managed as a Python list saved in sys.path. The

default contents of the path include the directory of the script used to start the applica-

tion and the current working directory.

http://svn.python.org/view/python/trunk/README?view=markup
http://svn.python.org/view/python/trunk/README?view=markup

ptg

1082 Runtime Features

import sys

for d in sys.path:

print d

The first directory in the search path is the home for the sample script itself. That

is followed by a series of platform-specific paths where compiled extension modules

(written in C) might be installed. The global site-packages directory is listed last.

$ python sys_path_show.py

/Users/dhellmann/Documents/PyMOTW/book/PyMOTW/sys

.../lib/python2.7

.../lib/python2.7/plat-darwin

.../lib/python2.7/lib-tk

.../lib/python2.7/plat-mac

.../lib/python2.7/plat-mac/lib-scriptpackages

.../lib/python2.7/site-packages

The import search-path list can be modified before starting the interpreter by set-

ting the shell variable PYTHONPATH to a colon-separated list of directories.

$ PYTHONPATH=/my/private/site-packages:/my/shared/site-packages \

> python sys_path_show.py

/Users/dhellmann/Documents/PyMOTW/book/PyMOTW/sys

/my/private/site-packages

/my/shared/site-packages

.../lib/python2.7

.../lib/python2.7/plat-darwin

.../lib/python2.7/lib-tk

.../lib/python2.7/plat-mac

.../lib/python2.7/plat-mac/lib-scriptpackages

.../lib/python2.7/site-packages

A program can also modify its path by adding elements to sys.path directly.

import sys
import os

base_dir = os.path.dirname(__file__) or ’.’

ptg

17.2. sys—System-Specific Configuration 1083

print ’Base directory:’, base_dir

Insert the package_dir_a directory at the front of the path.

package_dir_a = os.path.join(base_dir, ’package_dir_a’)

sys.path.insert(0, package_dir_a)

Import the example module

import example
print ’Imported example from:’, example.__file__

print ’\t’, example.DATA

Make package_dir_b the first directory in the search path

package_dir_b = os.path.join(base_dir, ’package_dir_b’)

sys.path.insert(0, package_dir_b)

Reload the module to get the other version

reload(example)

print ’Reloaded example from:’, example.__file__

print ’\t’, example.DATA

Reloading an imported module reimports the file and uses the same module

object to hold the results. Changing the path between the initial import and the call

to reload() means a different module may be loaded the second time.

$ python sys_path_modify.py

Base directory: .

Imported example from: ./package_dir_a/example.pyc

This is example A

Reloaded example from: ./package_dir_b/example.pyc

This is example B

Custom Importers

Modifying the search path lets a programmer control how standard Python modules are

found. But, what if a program needs to import code from somewhere other than the

usual .py or .pyc files on the file system? PEP 302 solves this problem by introducing

the idea of import hooks, which can trap an attempt to find a module on the search path

and take alternative measures to load the code from somewhere else or apply prepro-

cessing to it.

Custom importers are implemented in two separate phases. The finder is responsi-

ble for locating a module and providing a loader to manage the actual import. Custom

ptg

1084 Runtime Features

module finders are added by appending a factory to the sys.path_hooks list. On

import, each part of the path is given to a finder until one claims support (by not raising

ImportError). That finder is then responsible for searching data storage represented

by its path entry for named modules.

import sys

class NoisyImportFinder(object):

PATH_TRIGGER = ’NoisyImportFinder_PATH_TRIGGER’

def __init__(self, path_entry):

print ’Checking %s:’ % path_entry,

if path_entry != self.PATH_TRIGGER:

print ’wrong finder’

raise ImportError()
else:

print ’works’

return

def find_module(self, fullname, path=None):

print ’Looking for "%s"’ % fullname

return None

sys.path_hooks.append(NoisyImportFinder)

sys.path.insert(0, NoisyImportFinder.PATH_TRIGGER)

try:
import target_module

except Exception, e:

print ’Import failed:’, e

This example illustrates how the finders are instantiated and queried. The Noisy-

ImportFinder raises ImportError when instantiated with a path entry that does not

match its special trigger value, which is obviously not a real path on the file system.

This test prevents the NoisyImportFinder from breaking imports of real modules.

$ python sys_path_hooks_noisy.py

Checking NoisyImportFinder_PATH_TRIGGER: works

Looking for "target_module"

ptg

17.2. sys—System-Specific Configuration 1085

Checking /Users/dhellmann/Documents/PyMOTW/book/PyMOTW/sys:

wrong finder

Import failed: No module named target_module

Importing from a Shelve

When the finder locates a module, it is responsible for returning a loader capable of

importing that module. This example illustrates a custom importer that saves its module

contents in a database created by shelve.

First, a script is used to populate the shelf with a package containing a submodule

and subpackage.

import sys
import shelve
import os

filename = ’/tmp/pymotw_import_example.shelve’

if os.path.exists(filename):

os.unlink(filename)

db = shelve.open(filename)

try:
db[’data:README’] = """

==============

package README

==============

This is the README for ‘‘package‘‘.

"""

db[’package.__init__’] = """

print ’package imported’

message = ’This message is in package.__init__’

"""

db[’package.module1’] = """

print ’package.module1 imported’

message = ’This message is in package.module1’

"""

db[’package.subpackage.__init__’] = """

print ’package.subpackage imported’

message = ’This message is in package.subpackage.__init__’

"""

db[’package.subpackage.module2’] = """

print ’package.subpackage.module2 imported’

message = ’This message is in package.subpackage.module2’

ptg

1086 Runtime Features

"""

db[’package.with_error’] = """

print ’package.with_error being imported’

raise ValueError(’raising exception to break import’)

"""

print ’Created %s with:’ % filename

for key in sorted(db.keys()):

print ’\t’, key

finally:
db.close()

A real packaging script would read the contents from the file system, but using

hard-coded values is sufficient for a simple example like this one.

$ python sys_shelve_importer_create.py

Created /tmp/pymotw_import_example.shelve with:

data:README

package.__init__

package.module1

package.subpackage.__init__

package.subpackage.module2

package.with_error

The custom importer needs to provide finder and loader classes that know how to

look in a shelf for the source of a module or package.

import contextlib
import imp
import os
import shelve
import sys

def _mk_init_name(fullname):

"""Return the name of the __init__ module

for a given package name.

"""

if fullname.endswith(’.__init__’):

return fullname

return fullname + ’.__init__’

def _get_key_name(fullname, db):

"""Look in an open shelf for fullname or

ptg

17.2. sys—System-Specific Configuration 1087

fullname.__init__, return the name found.

"""

if fullname in db:

return fullname

init_name = _mk_init_name(fullname)

if init_name in db:

return init_name

return None

class ShelveFinder(object):
"""Find modules collected in a shelve archive."""

def __init__(self, path_entry):

if not os.path.isfile(path_entry):

raise ImportError
try:

Test the path_entry to see if it is a valid shelf

with contextlib.closing(shelve.open(path_entry, ’r’)):

pass
except Exception, e:

raise ImportError(str(e))
else:

print ’shelf added to import path:’, path_entry

self.path_entry = path_entry

return

def __str__(self):

return ’<%s for "%s">’ % (self.__class__.__name__,

self.path_entry)

def find_module(self, fullname, path=None):

path = path or self.path_entry

print ’\nlooking for "%s"\n in %s’ % (fullname, path)

with contextlib.closing(shelve.open(self.path_entry, ’r’)

) as db:

key_name = _get_key_name(fullname, db)

if key_name:

print ’ found it as %s’ % key_name

return ShelveLoader(path)

print ’ not found’

return None

class ShelveLoader(object):
"""Load source for modules from shelve databases."""

ptg

1088 Runtime Features

def __init__(self, path_entry):

self.path_entry = path_entry

return

def _get_filename(self, fullname):

Make up a fake filename that starts with the path entry

so pkgutil.get_data() works correctly.

return os.path.join(self.path_entry, fullname)

def get_source(self, fullname):

print ’loading source for "%s" from shelf’ % fullname

try:
with contextlib.closing(shelve.open(self.path_entry, ’r’)

) as db:

key_name = _get_key_name(fullname, db)

if key_name:

return db[key_name]

raise ImportError(’could not find source for %s’ %

fullname)

except Exception, e:

print ’could not load source:’, e

raise ImportError(str(e))

def get_code(self, fullname):

source = self.get_source(fullname)

print ’compiling code for "%s"’ % fullname

return compile(source, self._get_filename(fullname),

’exec’, dont_inherit=True)

def get_data(self, path):

print ’looking for data\n in %s\n for "%s"’ % \

(self.path_entry, path)

if not path.startswith(self.path_entry):

raise IOError
path = path[len(self.path_entry)+1:]

key_name = ’data:’ + path

try:
with contextlib.closing(shelve.open(self.path_entry, ’r’)

) as db:

return db[key_name]

except Exception, e:

Convert all errors to IOError

raise IOError

ptg

17.2. sys—System-Specific Configuration 1089

def is_package(self, fullname):

init_name = _mk_init_name(fullname)

with contextlib.closing(shelve.open(self.path_entry, ’r’)

) as db:

return init_name in db

def load_module(self, fullname):

source = self.get_source(fullname)

if fullname in sys.modules:

print ’reusing existing module from import of "%s"’ % \

fullname

mod = sys.modules[fullname]

else:
print ’creating a new module object for "%s"’ % fullname

mod = sys.modules.setdefault(fullname,

imp.new_module(fullname))

Set a few properties required by PEP 302

mod.__file__ = self._get_filename(fullname)

mod.__name__ = fullname

mod.__path__ = self.path_entry

mod.__loader__ = self

mod.__package__ = ’.’.join(fullname.split(’.’)[:-1])

if self.is_package(fullname):

print ’adding path for package’

Set __path__ for packages

so we can find the submodules.

mod.__path__ = [self.path_entry]

else:
print ’imported as regular module’

print ’execing source...’

exec source in mod.__dict__

print ’done’

return mod

Now ShelveFinder and ShelveLoader can be used to import code from a

shelf. This example shows importing the package just created.

import sys
import sys_shelve_importer

ptg

1090 Runtime Features

def show_module_details(module):

print ’ message :’, module.message

print ’ __name__ :’, module.__name__

print ’ __package__:’, module.__package__

print ’ __file__ :’, module.__file__

print ’ __path__ :’, module.__path__

print ’ __loader__ :’, module.__loader__

filename = ’/tmp/pymotw_import_example.shelve’

sys.path_hooks.append(sys_shelve_importer.ShelveFinder)

sys.path.insert(0, filename)

print ’Import of "package":’

import package

print
print ’Examine package details:’

show_module_details(package)

print
print ’Global settings:’

print ’sys.modules entry:’

print sys.modules[’package’]

The shelf is added to the import path the first time an import occurs after the path

is modified. The finder recognizes the shelf and returns a loader, which is used for all

imports from that shelf. The initial package-level import creates a new module object

and then uses exec to run the source loaded from the shelf. It uses the new module as the

namespace so that names defined in the source are preserved as module-level attributes.

$ python sys_shelve_importer_package.py

Import of "package":

shelf added to import path: /tmp/pymotw_import_example.shelve

looking for "package"

in /tmp/pymotw_import_example.shelve

found it as package.__init__

loading source for "package" from shelf

creating a new module object for "package"

adding path for package

ptg

17.2. sys—System-Specific Configuration 1091

execing source...

package imported

done

Examine package details:

message : This message is in package.__init__

__name__ : package

__package__:

__file__ : /tmp/pymotw_import_example.shelve/package

__path__ : [’/tmp/pymotw_import_example.shelve’]

__loader__ : <sys_shelve_importer.ShelveLoader object at 0x1006d42d0>

Global settings:

sys.modules entry:

<module ’package’ from ’/tmp/pymotw_import_example.shelve/package’>

Custom Package Importing

Loading other modules and subpackages proceeds in the same way.

import sys
import sys_shelve_importer

def show_module_details(module):

print ’ message :’, module.message

print ’ __name__ :’, module.__name__

print ’ __package__:’, module.__package__

print ’ __file__ :’, module.__file__

print ’ __path__ :’, module.__path__

print ’ __loader__ :’, module.__loader__

filename = ’/tmp/pymotw_import_example.shelve’

sys.path_hooks.append(sys_shelve_importer.ShelveFinder)

sys.path.insert(0, filename)

print ’Import of "package.module1":’

import package.module1

print
print ’Examine package.module1 details:’

show_module_details(package.module1)

print

ptg

1092 Runtime Features

print ’Import of "package.subpackage.module2":’

import package.subpackage.module2

print
print ’Examine package.subpackage.module2 details:’

show_module_details(package.subpackage.module2)

The finder receives the entire dotted name of the module to load and returns

a ShelveLoader configured to load modules from the path entry pointing to the

shelf file. The fully qualified module name is passed to the loader’s load_module()

method, which constructs and returns a module instance.

$ python sys_shelve_importer_module.py

Import of "package.module1":

shelf added to import path: /tmp/pymotw_import_example.shelve

looking for "package"

in /tmp/pymotw_import_example.shelve

found it as package.__init__

loading source for "package" from shelf

creating a new module object for "package"

adding path for package

execing source...

package imported

done

looking for "package.module1"

in /tmp/pymotw_import_example.shelve

found it as package.module1

loading source for "package.module1" from shelf

creating a new module object for "package.module1"

imported as regular module

execing source...

package.module1 imported

done

Examine package.module1 details:

message : This message is in package.module1

__name__ : package.module1

__package__: package

__file__ : /tmp/pymotw_import_example.shelve/package.module1

ptg

17.2. sys—System-Specific Configuration 1093

__path__ : /tmp/pymotw_import_example.shelve

__loader__ : <sys_shelve_importer.ShelveLoader object at 0x1006d42d0

>

Import of "package.subpackage.module2":

looking for "package.subpackage"

in /tmp/pymotw_import_example.shelve

found it as package.subpackage.__init__

loading source for "package.subpackage" from shelf

creating a new module object for "package.subpackage"

adding path for package

execing source...

package.subpackage imported

done

looking for "package.subpackage.module2"

in /tmp/pymotw_import_example.shelve

found it as package.subpackage.module2

loading source for "package.subpackage.module2" from shelf

creating a new module object for "package.subpackage.module2"

imported as regular module

execing source...

package.subpackage.module2 imported

done

Examine package.subpackage.module2 details:

message : This message is in package.subpackage.module2

__name__ : package.subpackage.module2

__package__: package.subpackage

__file__ : /tmp/pymotw_import_example.shelve/package.subpackage.mo

dule2

__path__ : /tmp/pymotw_import_example.shelve

__loader__ : <sys_shelve_importer.ShelveLoader object at 0x1006d4390

>

Reloading Modules in a Custom Importer

Reloading a module is handled slightly differently. Instead of creating a new module

object, the existing module is reused.

import sys
import sys_shelve_importer

ptg

1094 Runtime Features

filename = ’/tmp/pymotw_import_example.shelve’

sys.path_hooks.append(sys_shelve_importer.ShelveFinder)

sys.path.insert(0, filename)

print ’First import of "package":’

import package

print
print ’Reloading "package":’

reload(package)

By reusing the same object, existing references to the module are preserved, even

if class or function definitions are modified by the reload.

$ python sys_shelve_importer_reload.py

First import of "package":

shelf added to import path: /tmp/pymotw_import_example.shelve

looking for "package"

in /tmp/pymotw_import_example.shelve

found it as package.__init__

loading source for "package" from shelf

creating a new module object for "package"

adding path for package

execing source...

package imported

done

Reloading "package":

looking for "package"

in /tmp/pymotw_import_example.shelve

found it as package.__init__

loading source for "package" from shelf

reusing existing module from import of "package"

adding path for package

execing source...

package imported

done

Handling Import Errors

When a module cannot be located by any finder, ImportError is raised by the main

import code.

ptg

17.2. sys—System-Specific Configuration 1095

import sys
import sys_shelve_importer

filename = ’/tmp/pymotw_import_example.shelve’

sys.path_hooks.append(sys_shelve_importer.ShelveFinder)

sys.path.insert(0, filename)

try:
import package.module3

except ImportError, e:

print ’Failed to import:’, e

Other errors during the import are propagated.

$ python sys_shelve_importer_missing.py

shelf added to import path: /tmp/pymotw_import_example.shelve

looking for "package"

in /tmp/pymotw_import_example.shelve

found it as package.__init__

loading source for "package" from shelf

creating a new module object for "package"

adding path for package

execing source...

package imported

done

looking for "package.module3"

in /tmp/pymotw_import_example.shelve

not found

Failed to import: No module named module3

Package Data

In addition to defining the API for loading executable Python code, PEP 302 defines an

optional API for retrieving package data intended for distributing data files, documenta-

tion, and other noncode resources used by a package. By implementing get_data(),

a loader can allow calling applications to support retrieval of data associated with the

package, without considering how the package is actually installed (especially without

assuming that the package is stored as files on a file system).

import sys
import sys_shelve_importer

ptg

1096 Runtime Features

import os
import pkgutil

filename = ’/tmp/pymotw_import_example.shelve’

sys.path_hooks.append(sys_shelve_importer.ShelveFinder)

sys.path.insert(0, filename)

import package

readme_path = os.path.join(package.__path__[0], ’README’)

readme = pkgutil.get_data(’package’, ’README’)

Equivalent to:

readme = package.__loader__.get_data(readme_path)

print readme

foo_path = os.path.join(package.__path__[0], ’foo’)

try:
foo = pkgutil.get_data(’package’, ’foo’)

Equivalent to:

foo = package.__loader__.get_data(foo_path)

except IOError as err:

print ’ERROR: Could not load "foo"’, err

else:
print foo

get_data() takes a path based on the module or package that owns the data. It

returns the contents of the resource “file” as a string or raises IOError if the resource

does not exist.

$ python sys_shelve_importer_get_data.py

shelf added to import path: /tmp/pymotw_import_example.shelve

looking for "package"

in /tmp/pymotw_import_example.shelve

found it as package.__init__

loading source for "package" from shelf

creating a new module object for "package"

adding path for package

execing source...

package imported

done

ptg

17.2. sys—System-Specific Configuration 1097

looking for data

in /tmp/pymotw_import_example.shelve

for "/tmp/pymotw_import_example.shelve/README"

==============

package README

==============

This is the README for ‘‘package‘‘.

looking for data

in /tmp/pymotw_import_example.shelve

for "/tmp/pymotw_import_example.shelve/foo"

ERROR: Could not load "foo"

See Also:
pkgutil (page 1247) Includes get_data() for retrieving data from a package.

Importer Cache

Searching through all the hooks each time a module is imported can become expensive.

To save time, sys.path_importer_cache is maintained as a mapping between a

path entry and the loader that can use the value to find modules.

import sys

print ’PATH:’

for name in sys.path:

if name.startswith(sys.prefix):

name = ’...’ + name[len(sys.prefix):]

print ’ ’, name

print
print ’IMPORTERS:’

for name, cache_value in sys.path_importer_cache.items():

name = name.replace(sys.prefix, ’...’)

print ’ %s: %r’ % (name, cache_value)

A cache value of None means to use the default file system loader. Directories

on the path that do not exist are associated with an imp.NullImporter instance,

since they cannot be used to import modules. In the example output, several zipim-

port.zipimporter instances are used to manage EGG files found on the path.

ptg

1098 Runtime Features

$ python sys_path_importer_cache.py

PATH:

/Users/dhellmann/Documents/PyMOTW/book/PyMOTW/sys

.../lib/python2.7/site-packages/distribute-0.6.10-py2.7.egg

.../lib/python2.7/site-packages/pip-0.7.2-py2.7.egg

.../lib/python27.zip

.../lib/python2.7

.../lib/python2.7/plat-darwin

.../lib/python2.7/plat-mac

.../lib/python2.7/plat-mac/lib-scriptpackages

.../lib/python2.7/lib-tk

.../lib/python2.7/lib-old

.../lib/python2.7/lib-dynload

.../lib/python2.7/site-packages

IMPORTERS:

sys_path_importer_cache.py: <imp.NullImporter object at 0x100d02080>

.../lib/python27.zip: <imp.NullImporter object at 0x100d02030>

.../lib/python2.7/lib-dynload: None

.../lib/python2.7/encodings: None

.../lib/python2.7: None

.../lib/python2.7/lib-old: None

.../lib/python2.7/site-packages: None

.../lib/python2.7/plat-darwin: None

.../lib/python2.7/: None

.../lib/python2.7/plat-mac/lib-scriptpackages: None

.../lib/python2.7/plat-mac: None

.../lib/python2.7/site-packages/pip-0.7.2-py2.7.egg: None

.../lib/python2.7/lib-tk: None

.../lib/python2.7/site-packages/distribute-0.6.10-py2.7.egg: None

Meta-Path

The sys.meta_path further extends the sources of potential imports by allowing a

finder to be searched before the regular sys.path is scanned. The API for a finder on

the meta-path is the same as for a regular path. The difference is that the metafinder is

not limited to a single entry in sys.path—it can search anywhere at all.

import sys
import sys_shelve_importer
import imp

ptg

17.2. sys—System-Specific Configuration 1099

class NoisyMetaImportFinder(object):

def __init__(self, prefix):

print ’Creating NoisyMetaImportFinder for %s’ % prefix

self.prefix = prefix

return

def find_module(self, fullname, path=None):

print ’looking for "%s" with path "%s"’ % (fullname, path)

name_parts = fullname.split(’.’)

if name_parts and name_parts[0] == self.prefix:

print ’ ... found prefix, returning loader’

return NoisyMetaImportLoader(path)

else:
print ’ ... not the right prefix, cannot load’

return None

class NoisyMetaImportLoader(object):

def __init__(self, path_entry):

self.path_entry = path_entry

return

def load_module(self, fullname):

print ’loading %s’ % fullname

if fullname in sys.modules:

mod = sys.modules[fullname]

else:
mod = sys.modules.setdefault(fullname,

imp.new_module(fullname))

Set a few properties required by PEP 302

mod.__file__ = fullname

mod.__name__ = fullname

always looks like a package

mod.__path__ = [’path-entry-goes-here’]

mod.__loader__ = self

mod.__package__ = ’.’.join(fullname.split(’.’)[:-1])

return mod

ptg

1100 Runtime Features

Install the meta-path finder

sys.meta_path.append(NoisyMetaImportFinder(’foo’))

Import some modules that are "found" by the meta-path finder

print
import foo

print
import foo.bar

Import a module that is not found

print
try:

import bar
except ImportError, e:

pass

Each finder on the meta-path is interrogated before sys.path is searched, so there

is always an opportunity to have a central importer load modules without explicitly

modifying sys.path. Once the module is “found,” the loader API works in the same

way as for regular loaders (although this example is truncated for simplicity).

$ python sys_meta_path.py

Creating NoisyMetaImportFinder for foo

looking for "foo" with path "None"

... found prefix, returning loader

loading foo

looking for "foo.bar" with path "[’path-entry-goes-here’]"

... found prefix, returning loader

loading foo.bar

looking for "bar" with path "None"

... not the right prefix, cannot load

See Also:
imp (page 1235) The imp module provides tools used by importers.

ptg

17.2. sys—System-Specific Configuration 1101

importlib Base classes and other tools for creating custom importers.

The Quick Guide to Python Eggs (http://peak.telecommunity.com/DevCenter/
PythonEggs) PEAK documentation for working with EGGs.

Python 3 stdlib module “importlib” (http://docs.python.org/py3k/library/
importlib.html) Python 3.x includes abstract base classes that make it easier to

create custom importers.

PEP 302 (www.python.org/dev/peps/pep-0302) Import hooks.

zipimport (page 1410) Implements importing Python modules from inside ZIP

archives.

Import this, that, and the other thing: custom importers
(http://us.pycon.org/2010/conference/talks/?filter=core) Brett Cannon’s Py-

Con 2010 presentation.

17.2.7 Tracing a Program as It Runs

There are two ways to inject code to watch a program run: tracing and profiling. They

are similar, but they are intended for different purposes and so have different con-

straints. The easiest, but least efficient, way to monitor a program is through a trace
hook, which can be used to write a debugger, monitor code coverage, or achieve many

other purposes.

The trace hook is modified by passing a callback function to sys.settrace().

The callback will receive three arguments: the stack frame from the code being run, a

string naming the type of notification, and an event-specific argument value. Table 17.2

lists the seven event types for different levels of information that occur as a program is

being executed.

Table 17.2. Event Hooks for settrace()

Event When it occurs Argument value
call Before a function is executed None

line Before a line is executed None

return Before a function returns The value being returned

exception After an exception occurs The (exception, value, traceback)

tuple

c_call Before a C function is called The C function object

c_return After a C function returns None

c_exception After a C function throws an error None

http://peak.telecommunity.com/DevCenter/PythonEggs
http://peak.telecommunity.com/DevCenter/PythonEggs
http://docs.python.org/py3k/library/importlib.html
http://docs.python.org/py3k/library/importlib.html
http://us.pycon.org/2010/conference/talks/?filter=core
www.python.org/dev/peps/pep-0302

ptg

1102 Runtime Features

Tracing Function Calls

A call event is generated before every function call. The frame passed to the callback

can be used to find out which function is being called and from where.

1 #!/usr/bin/env python

2 # encoding: utf-8

3

4 import sys
5

6 def trace_calls(frame, event, arg):

7 if event != ’call’:

8 return
9 co = frame.f_code

10 func_name = co.co_name

11 if func_name == ’write’:

12 # Ignore write() calls from print statements

13 return
14 func_line_no = frame.f_lineno

15 func_filename = co.co_filename

16 caller = frame.f_back

17 caller_line_no = caller.f_lineno

18 caller_filename = caller.f_code.co_filename

19 print ’Call to %s\n on line %s of %s\n from line %s of %s\n’ % \

20 (func_name, func_line_no, func_filename,

21 caller_line_no, caller_filename)

22 return
23

24 def b():

25 print ’in b()\n’
26

27 def a():

28 print ’in a()\n’
29 b()

30

31 sys.settrace(trace_calls)

32 a()

This example ignores calls to write(), as used by print to write to sys.stdout.

$ python sys_settrace_call.py

Call to a

ptg

17.2. sys—System-Specific Configuration 1103

on line 27 of sys_settrace_call.py

from line 32 of sys_settrace_call.py

in a()

Call to b

on line 24 of sys_settrace_call.py

from line 29 of sys_settrace_call.py

in b()

Tracing Inside Functions

The trace hook can return a new hook to be used inside the new scope (the local trace

function). It is possible, for instance, to control tracing to only run line-by-line within

certain modules or functions.

1 #!/usr/bin/env python

2 # encoding: utf-8

3

4 import sys
5

6 def trace_lines(frame, event, arg):

7 if event != ’line’:

8 return
9 co = frame.f_code

10 func_name = co.co_name

11 line_no = frame.f_lineno

12 filename = co.co_filename

13 print ’ %s line %s’ % (func_name, line_no)

14

15 def trace_calls(frame, event, arg):

16 if event != ’call’:

17 return
18 co = frame.f_code

19 func_name = co.co_name

20 if func_name == ’write’:

21 # Ignore write() calls from print statements

22 return
23 line_no = frame.f_lineno

24 filename = co.co_filename

ptg

1104 Runtime Features

25 print ’Call to %s on line %s of %s’ % \

26 (func_name, line_no, filename)

27 if func_name in TRACE_INTO:

28 # Trace into this function

29 return trace_lines

30 return
31

32 def c(input):

33 print ’input =’, input

34 print ’Leaving c()’

35

36 def b(arg):

37 val = arg * 5

38 c(val)

39 print ’Leaving b()’

40

41 def a():

42 b(2)

43 print ’Leaving a()’

44

45 TRACE_INTO = [’b’]

46

47 sys.settrace(trace_calls)

48 a()

In this example, the global list of functions is kept in the variable TRACE_INTO,

so when trace_calls() runs, it can return trace_lines() to enable tracing inside

of b().

$ python sys_settrace_line.py

Call to a on line 41 of sys_settrace_line.py

Call to b on line 36 of sys_settrace_line.py

b line 37

b line 38

Call to c on line 32 of sys_settrace_line.py

input = 10

Leaving c()

b line 39

Leaving b()

Leaving a()

ptg

17.2. sys—System-Specific Configuration 1105

Watching the Stack

Another useful way to use the hooks is to keep up with which functions are being called

and what their return values are. To monitor return values, watch for the return event.

1 #!/usr/bin/env python

2 # encoding: utf-8

3

4 import sys
5

6 def trace_calls_and_returns(frame, event, arg):

7 co = frame.f_code

8 func_name = co.co_name

9 if func_name == ’write’:

10 # Ignore write() calls from print statements

11 return
12 line_no = frame.f_lineno

13 filename = co.co_filename

14 if event == ’call’:

15 print ’Call to %s on line %s of %s’ % (func_name,

16 line_no,

17 filename)

18 return trace_calls_and_returns

19 elif event == ’return’:

20 print ’%s => %s’ % (func_name, arg)

21 return
22

23 def b():

24 print ’in b()’

25 return ’response_from_b ’

26

27 def a():

28 print ’in a()’

29 val = b()

30 return val * 2

31

32 sys.settrace(trace_calls_and_returns)

33 a()

The local trace function is used for watching return events, which means

trace_calls_and_returns() needs to return a reference to itself when a function

is called, so the return value can be monitored.

ptg

1106 Runtime Features

$ python sys_settrace_return.py

Call to a on line 27 of sys_settrace_return.py

in a()

Call to b on line 23 of sys_settrace_return.py

in b()

b => response_from_b

a => response_from_b response_from_b

Exception Propagation

Exceptions can be monitored by looking for the exception event in a local trace

function. When an exception occurs, the trace hook is called with a tuple containing the

type of exception, the exception object, and a traceback object.

1 #!/usr/bin/env python

2 # encoding: utf-8

3

4 import sys
5

6 def trace_exceptions(frame, event, arg):

7 if event != ’exception’:

8 return
9 co = frame.f_code

10 func_name = co.co_name

11 line_no = frame.f_lineno

12 filename = co.co_filename

13 exc_type, exc_value, exc_traceback = arg

14 print ’Tracing exception:\n%s "%s"\non line %s of %s\n’ % \

15 (exc_type.__name__, exc_value, line_no, func_name)

16

17 def trace_calls(frame, event, arg):

18 if event != ’call’:

19 return
20 co = frame.f_code

21 func_name = co.co_name

22 if func_name in TRACE_INTO:

23 return trace_exceptions

24

25 def c():

26 raise RuntimeError(’generating exception in c()’)

27

28 def b():

ptg

17.2. sys—System-Specific Configuration 1107

29 c()

30 print ’Leaving b()’

31

32 def a():

33 b()

34 print ’Leaving a()’

35

36 TRACE_INTO = [’a’, ’b’, ’c’]

37

38 sys.settrace(trace_calls)

39 try:
40 a()

41 except Exception, e:

42 print ’Exception handler:’, e

Take care to limit where the local function is applied because some of the inter-

nals of formatting error messages generate, and ignore, their own exceptions. Every

exception is seen by the trace hook, whether the caller catches and ignores it or not.

$ python sys_settrace_exception.py

Tracing exception:

RuntimeError "generating exception in c()"

on line 26 of c

Tracing exception:

RuntimeError "generating exception in c()"

on line 29 of b

Tracing exception:

RuntimeError "generating exception in c()"

on line 33 of a

Exception handler: generating exception in c()

See Also:
profile (page 1022) The profile module documentation shows how to use a

ready-made profiler.

trace (page 1012) The trace module implements several code analysis features.

Types and Members (http://docs.python.org/library/inspect.html#types-
and-members) The descriptions of frame and code objects and their attributes.

http://docs.python.org/library/inspect.html#types-and-members
http://docs.python.org/library/inspect.html#types-and-members

ptg

1108 Runtime Features

Tracing python code (www.dalkescientific.com/writings/diary/archive/
2005/04/20/tracing_python_code.html) Another settrace() tutorial.

Wicked hack: Python bytecode tracing (http://nedbatchelder.com/blog/200804/
wicked_hack_python_bytecode_tracing.html) Ned Batchelder’s experiments

with tracing with more granularity than source line level.

17.3 os—Portable Access to Operating System Specific
Features

Purpose Portable access to operating system specific features.

Python Version 1.4 and later

The os module provides a wrapper for platform-specific modules such as posix, nt,

and mac. The API for functions available on all platforms should be the same, so using

the os module offers some measure of portability. Not all functions are available on

every platform, however. Many of the process management functions described in this

summary are not available for Windows.

The Python documentation for the os module is subtitled “Miscellaneous operat-

ing system interfaces.” The module consists mostly of functions for creating and man-

aging running processes or file system content (files and directories), with a few other

bits of functionality thrown in besides.

17.3.1 Process Owner

The first set of functions provided by os is used for determining and changing the

process owner ids. These are most frequently used by authors of daemons or special

system programs that need to change permission level rather than run as root. This

section does not try to explain all the intricate details of UNIX security, process owners,

etc. See the references list at the end of this section for more details.

The following example shows the real and effective user and group information

for a process, and then changes the effective values. This is similar to what a daemon

would need to do when it starts as root during a system boot, to lower the privilege level

and run as a different user.

Note: Before running the example, change the TEST_GID and TEST_UID values

to match a real user.

www.dalkescientific.com/writings/diary/archive/2005/04/20/tracing_python_code.html
www.dalkescientific.com/writings/diary/archive/2005/04/20/tracing_python_code.html
http://nedbatchelder.com/blog/200804/wicked_hack_python_bytecode_tracing.html
http://nedbatchelder.com/blog/200804/wicked_hack_python_bytecode_tracing.html

ptg

17.3. os—Portable Access to Operating System Specific Features 1109

import os

TEST_GID=501

TEST_UID=527

def show_user_info():

print ’User (actual/effective) : %d / %d’ % \

(os.getuid(), os.geteuid())

print ’Group (actual/effective) : %d / %d’ % \

(os.getgid(), os.getegid())

print ’Actual Groups :’, os.getgroups()

return

print ’BEFORE CHANGE:’

show_user_info()

print

try:
os.setegid(TEST_GID)

except OSError:
print ’ERROR: Could not change effective group. Rerun as root.’

else:
print ’CHANGED GROUP:’

show_user_info()

print

try:
os.seteuid(TEST_UID)

except OSError:
print ’ERROR: Could not change effective user. Rerun as root.’

else:
print ’CHANGE USER:’

show_user_info()

print

When run as user with id of 527 and group 501 on OS X, this output is produced.

$ python os_process_user_example.py

BEFORE CHANGE:

User (actual/effective) : 527 / 527

Group (actual/effective) : 501 / 501

ptg

1110 Runtime Features

Actual Groups : [501, 102, 204, 100, 98, 80, 61, 12, 500, 101]

CHANGED GROUP:

User (actual/effective) : 527 / 527

Group (actual/effective) : 501 / 501

Actual Groups : [501, 102, 204, 100, 98, 80, 61, 12, 500, 101]

CHANGE USER:

User (actual/effective) : 527 / 527

Group (actual/effective) : 501 / 501

Actual Groups : [501, 102, 204, 100, 98, 80, 61, 12, 500, 101]

The values do not change because when it is not running as root, a process cannot

change its effective owner value. Any attempt to set the effective user id or group id

to anything other than that of the current user causes an OSError. Running the same

script using sudo so that it starts out with root privileges is a different story.

$ sudo python os_process_user_example.py

BEFORE CHANGE:

User (actual/effective) : 0 / 0

Group (actual/effective) : 0 / 0

Actual Groups : [0, 204, 100, 98, 80, 61, 29, 20, 12, 9, 8,

5, 4, 3, 2, 1]

CHANGED GROUP:

User (actual/effective) : 0 / 0

Group (actual/effective) : 0 / 501

Actual Groups : [501, 204, 100, 98, 80, 61, 29, 20, 12, 9,

8, 5, 4, 3, 2, 1]

CHANGE USER:

User (actual/effective) : 0 / 527

Group (actual/effective) : 0 / 501

Actual Groups : [501, 204, 100, 98, 80, 61, 29, 20, 12, 9,

8, 5, 4, 3, 2, 1]

In this case, since it starts as root, the script can change the effective user and

group for the process. Once the effective UID is changed, the process is limited to the

permissions of that user. Because nonroot users cannot change their effective group, the

program needs to change the group before changing the user.

ptg

17.3. os—Portable Access to Operating System Specific Features 1111

17.3.2 Process Environment

Another feature of the operating system exposed to a program though the os module is

the environment. Variables set in the environment are visible as strings that can be read

through os.environ or getenv(). Environment variables are commonly used for

configuration values, such as search paths, file locations, and debug flags. This example

shows how to retrieve an environment variable and pass a value through to a child

process.

import os

print ’Initial value:’, os.environ.get(’TESTVAR’, None)

print ’Child process:’

os.system(’echo $TESTVAR’)

os.environ[’TESTVAR’] = ’THIS VALUE WAS CHANGED’

print
print ’Changed value:’, os.environ[’TESTVAR’]

print ’Child process:’

os.system(’echo $TESTVAR’)

del os.environ[’TESTVAR’]

print
print ’Removed value:’, os.environ.get(’TESTVAR’, None)

print ’Child process:’

os.system(’echo $TESTVAR’)

The os.environ object follows the standard Python mapping API for retrieving

and setting values. Changes to os.environ are exported for child processes.

$ python -u os_environ_example.py

Initial value: None

Child process:

Changed value: THIS VALUE WAS CHANGED

Child process:

THIS VALUE WAS CHANGED

ptg

1112 Runtime Features

Removed value: None

Child process:

17.3.3 Process Working Directory

Operating systems with hierarchical file systems have a concept of the current working
directory—the directory on the file system the process uses as the starting location when

files are accessed with relative paths. The current working directory can be retrieved

with getcwd() and changed with chdir().

import os

print ’Starting:’, os.getcwd()

print ’Moving up one:’, os.pardir

os.chdir(os.pardir)

print ’After move:’, os.getcwd()

os.curdir and os.pardir are used to refer to the current and parent directories

in a portable manner.

$ python os_cwd_example.py

Starting: /Users/dhellmann/Documents/PyMOTW/book/PyMOTW/os

Moving up one: ..

After move: /Users/dhellmann/Documents/PyMOTW/book/PyMOTW

17.3.4 Pipes

The osmodule provides several functions for managing the I/O of child processes using

pipes. The functions all work essentially the same way, but return different file handles

depending on the type of input or output desired. For the most part, these functions are

made obsolete by the subprocess module (added in Python 2.4), but it is likely that

legacy code uses them.

The most commonly used pipe function is popen(). It creates a new process

running the command given and attaches a single stream to the input or output of that

process, depending on the mode argument.

Note: Although the popen() functions work on Windows, some of these examples

assume a UNIX-like shell.

ptg

17.3. os—Portable Access to Operating System Specific Features 1113

import os

print ’popen, read:’

stdout = os.popen(’echo "to stdout"’, ’r’)

try:
stdout_value = stdout.read()

finally:
stdout.close()

print ’\tstdout:’, repr(stdout_value)

print ’\npopen, write:’

stdin = os.popen(’cat -’, ’w’)

try:
stdin.write(’\tstdin: to stdin\n’)

finally:
stdin.close()

The descriptions of the streams also assume UNIX-like terminology.

• stdin—The “standard input” stream for a process (file descriptor 0) is readable

by the process. This is usually where terminal input goes.

• stdout—The “standard output” stream for a process (file descriptor 1) is writable

by the process and is used for displaying regular output to the user.

• stderr—The “standard error” stream for a process (file descriptor 2) is writable

by the process and is used for conveying error messages.

$ python -u os_popen.py

popen, read:

stdout: ’to stdout\n’

popen, write:

stdin: to stdin

The caller can only read from or write to the streams associated with the child

process, which limits their usefulness. The other file descriptors for the child process are

inherited from the parent, so the output of the cat - command in the second example

appears on the console because its standard output file descriptor is the same as the one

used by the parent script.

The other popen() variants provide additional streams, so it is possible to work

with stdin, stdout, and stderr, as needed. For example, popen2() returns a write-only

ptg

1114 Runtime Features

stream attached to stdin of the child process and a read-only stream attached to its

stdout.

import os

print ’popen2:’

stdin, stdout = os.popen2(’cat -’)

try:
stdin.write(’through stdin to stdout’)

finally:
stdin.close()

try:
stdout_value = stdout.read()

finally:
stdout.close()

print ’\tpass through:’, repr(stdout_value)

This simplistic example illustrates bidirectional communication. The value written

to stdin is read by cat (because of the ’-’ argument) and then written back to stdout.

A more complicated process could pass other types of messages back and forth through

the pipe—even serialized objects.

$ python -u os_popen2.py

popen2:

pass through: ’through stdin to stdout’

In most cases, it is desirable to have access to both stdout and stderr. The stdout

stream is used for message passing, and the stderr stream is used for errors. Reading

them separately reduces the complexity for parsing any error messages. The popen3()

function returns three open streams tied to stdin, stdout, and stderr of the new process.

import os

print ’popen3:’

stdin, stdout, stderr = os.popen3(’cat -; echo ";to stderr" 1>&2’)

try:
stdin.write(’through stdin to stdout’)

finally:
stdin.close()

try:
stdout_value = stdout.read()

finally:
stdout.close()

ptg

17.3. os—Portable Access to Operating System Specific Features 1115

print ’\tpass through:’, repr(stdout_value)

try:
stderr_value = stderr.read()

finally:
stderr.close()

print ’\tstderr:’, repr(stderr_value)

The program has to read from and close both stdout and stderr separately. There are

some issues related to flow control and sequencing when dealing with I/O for multiple

processes. The I/O is buffered, and if the caller expects to be able to read all the data

from a stream, then the child process must close that stream to indicate the end of file.

For more information on these issues, refer to the Flow Control Issues section of the

Python library documentation.

$ python -u os_popen3.py

popen3:

pass through: ’through stdin to stdout’

stderr: ’;to stderr\n’

And finally, popen4() returns two streams: stdin and a merged stdout/stderr. This

is useful when the results of the command need to be logged but not parsed directly.

import os

print ’popen4:’

stdin, stdout_and_stderr = os.popen4(’cat -; echo ";to stderr" 1>&2’)

try:
stdin.write(’through stdin to stdout’)

finally:
stdin.close()

try:
stdout_value = stdout_and_stderr.read()

finally:
stdout_and_stderr.close()

print ’\tcombined output:’, repr(stdout_value)

All the messages written to both stdout and stderr are read together.

$ python -u os_popen4.py

popen4:

combined output: ’through stdin to stdout;to stderr\n’

ptg

1116 Runtime Features

Besides accepting a single-string command to be given to the shell for parsing,

popen2(), popen3(), and popen4() also accept a sequence of strings containing

the command followed by its arguments.

import os

print ’popen2, cmd as sequence:’

stdin, stdout = os.popen2([’cat’, ’-’])

try:
stdin.write(’through stdin to stdout’)

finally:
stdin.close()

try:
stdout_value = stdout.read()

finally:
stdout.close()

print ’\tpass through:’, repr(stdout_value)

When arguments are passed as a list instead of as a single string, they are not

processed by a shell before the command is run.

$ python -u os_popen2_seq.py

popen2, cmd as sequence:

pass through: ’through stdin to stdout’

17.3.5 File Descriptors

os includes the standard set of functions for working with low-level file descriptors
(integers representing open files owned by the current process). This is a lower-level

API than is provided by file objects. These functions are not covered here because it is

generally easier to work directly with file objects. Refer to the library documentation

for details.

17.3.6 File System Permissions

Detailed information about a file can be accessed using stat() or lstat() (for check-

ing the status of something that might be a symbolic link).

import os
import sys
import time

ptg

17.3. os—Portable Access to Operating System Specific Features 1117

if len(sys.argv) == 1:

filename = __file__

else:
filename = sys.argv[1]

stat_info = os.stat(filename)

print ’os.stat(%s):’ % filename

print ’\tSize:’, stat_info.st_size

print ’\tPermissions:’, oct(stat_info.st_mode)

print ’\tOwner:’, stat_info.st_uid

print ’\tDevice:’, stat_info.st_dev

print ’\tLast modified:’, time.ctime(stat_info.st_mtime)

The output will vary depending on how the example code was installed. Try pass-

ing different filenames on the command line to os_stat.py.

$ python os_stat.py

os.stat(os_stat.py):

Size: 1516

Permissions: 0100644

Owner: 527

Device: 234881026

Last modified: Sun Nov 14 09:40:36 2010

On UNIX-like systems, file permissions can be changed using chmod(), passing

the mode as an integer. Mode values can be constructed using constants defined in the

stat module. This example toggles the user’s execute permission bit.

import os
import stat

filename = ’os_stat_chmod_example.txt’

if os.path.exists(filename):

os.unlink(filename)

with open(filename, ’wt’) as f:

f.write(’contents’)

Determine what permissions are already set using stat

existing_permissions = stat.S_IMODE(os.stat(filename).st_mode)

if not os.access(filename, os.X_OK):

ptg

1118 Runtime Features

print ’Adding execute permission’

new_permissions = existing_permissions | stat.S_IXUSR

else:
print ’Removing execute permission’

use xor to remove the user execute permission

new_permissions = existing_permissions ^ stat.S_IXUSR

os.chmod(filename, new_permissions)

The script assumes it has the permissions necessary to modify the mode of the file

when run.

$ python os_stat_chmod.py

Adding execute permission

17.3.7 Directories

There are several functions for working with directories on the file system, including

creating contents, listing contents, and removing them.

import os

dir_name = ’os_directories_example’

print ’Creating’, dir_name

os.makedirs(dir_name)

file_name = os.path.join(dir_name, ’example.txt’)

print ’Creating’, file_name

with open(file_name, ’wt’) as f:

f.write(’example file’)

print ’Listing’, dir_name

print os.listdir(dir_name)

print ’Cleaning up’

os.unlink(file_name)

os.rmdir(dir_name)

There are two sets of functions for creating and deleting directories. When creating

a new directory with mkdir(), all the parent directories must already exist. When

ptg

17.3. os—Portable Access to Operating System Specific Features 1119

removing a directory with rmdir(), only the leaf directory (the last part of the path)

is actually removed. In contrast, makedirs() and removedirs() operate on all the

nodes in the path. makedirs() will create any parts of the path that do not exist, and

removedirs() will remove all the parent directories, as long as they are empty.

$ python os_directories.py

Creating os_directories_example

Creating os_directories_example/example.txt

Listing os_directories_example

[’example.txt’]

Cleaning up

17.3.8 Symbolic Links

For platforms and file systems that support them, there are functions for working with

symlinks.

import os

link_name = ’/tmp/’ + os.path.basename(__file__)

print ’Creating link %s -> %s’ % (link_name, __file__)

os.symlink(__file__, link_name)

stat_info = os.lstat(link_name)

print ’Permissions:’, oct(stat_info.st_mode)

print ’Points to:’, os.readlink(link_name)

Cleanup

os.unlink(link_name)

Use symlink() to create a symbolic link and readlink() for reading it to deter-

mine the original file pointed to by the link. The lstat() function is like stat(), but

it operates on symbolic links.

$ python os_symlinks.py

Creating link /tmp/os_symlinks.py -> os_symlinks.py

Permissions: 0120755

Points to: os_symlinks.py

ptg

1120 Runtime Features

17.3.9 Walking a Directory Tree

The function walk() traverses a directory recursively and, for each directory, generates

a tuple containing the directory path, any immediate subdirectories of that path, and a

list of the names of any files in that directory.

import os, sys

If we are not given a path to list, use /tmp

if len(sys.argv) == 1:

root = ’/tmp’

else:
root = sys.argv[1]

for dir_name, sub_dirs, files in os.walk(root):

print dir_name

Make the subdirectory names stand out with /

sub_dirs = [’%s/’ % n for n in sub_dirs]

Mix the directory contents together

contents = sub_dirs + files

contents.sort()

Show the contents

for c in contents:

print ’\t%s’ % c

print

This example shows a recursive directory listing.

$ python os_walk.py ../zipimport

../zipimport

__init__.py

__init__.pyc

example_package/

index.rst

zipimport_example.zip

zipimport_find_module.py

zipimport_find_module.pyc

zipimport_get_code.py

zipimport_get_code.pyc

zipimport_get_data.py

zipimport_get_data.pyc

zipimport_get_data_nozip.py

zipimport_get_data_nozip.pyc

ptg

17.3. os—Portable Access to Operating System Specific Features 1121

zipimport_get_data_zip.py

zipimport_get_data_zip.pyc

zipimport_get_source.py

zipimport_get_source.pyc

zipimport_is_package.py

zipimport_is_package.pyc

zipimport_load_module.py

zipimport_load_module.pyc

zipimport_make_example.py

zipimport_make_example.pyc

../zipimport/example_package

README.txt

__init__.py

__init__.pyc

17.3.10 Running External Commands

Warning: Many of these functions for working with processes have limited porta-

bility. For a more consistent way to work with processes in a platform-independent

manner, see the subprocess module instead.

The most basic way to run a separate command, without interacting with it at all, is

system(). It takes a single-string argument, which is the command line to be executed

by a subprocess running a shell.

import os

Simple command

os.system(’pwd’)

The return value of system() is the exit value of the shell running the program

packed into a 16-bit number, with the high byte the exit status and the low byte the

signal number that caused the process to die, or zero.

$ python -u os_system_example.py

/Users/dhellmann/Documents/PyMOTW/book/PyMOTW/os

Since the command is passed directly to the shell for processing, it can include

shell syntax such as globbing or environment variables.

ptg

1122 Runtime Features

import os

Command with shell expansion

os.system(’echo $TMPDIR’)

The environment variable $TMPDIR in this string is expanded when the shell runs

the command line.

$ python -u os_system_shell.py

/var/folders/9R/9R1t+tR02Raxzk+F71Q50U+++Uw/-Tmp-/

Unless the command is explicitly run in the background, the call to system()

blocks until it is complete. Standard input, output, and error channels from the child

process are tied to the appropriate streams owned by the caller by default, but can be

redirected using shell syntax.

import os
import time

print ’Calling...’

os.system(’date; (sleep 3; date) &’)

print ’Sleeping...’

time.sleep(5)

This is getting into shell trickery, though, and there are better ways to accomplish

the same thing.

$ python -u os_system_background.py

Calling...

Sat Dec 4 14:47:07 EST 2010

Sleeping...

Sat Dec 4 14:47:10 EST 2010

17.3.11 Creating Processes with os.fork()

The POSIX functions fork() and exec() (available under Mac OS X, Linux, and

other UNIX variants) are exposed via the os module. Entire books have been written

ptg

17.3. os—Portable Access to Operating System Specific Features 1123

about reliably using these functions, so check the library or a bookstore for more details

than this introduction presents.

To create a new process as a clone of the current process, use fork().

import os

pid = os.fork()

if pid:

print ’Child process id:’, pid

else:
print ’I am the child’

The output will vary based on the state of the system each time the example is run,

but it will look something like this.

$ python -u os_fork_example.py

I am the child

Child process id: 14133

After the fork, two processes are running the same code. For a program to tell

which one it is in, it needs to check the return value of fork(). If the value is 0, the

current process is the child. If it is not 0, the program is running in the parent process

and the return value is the process id of the child process.

The parent can send signals to the child process using kill() and the signal

module. First, define a signal handler to be invoked when the signal is received.

import os
import signal
import time

def signal_usr1(signum, frame):

"Callback invoked when a signal is received"

pid = os.getpid()

print ’Received USR1 in process %s’ % pid

Then invoke fork(), and in the parent, pause a short amount of time before send-

ing a USR1 signal using kill(). The short pause gives the child process time to set up

the signal handler.

ptg

1124 Runtime Features

print ’Forking...’

child_pid = os.fork()

if child_pid:

print ’PARENT: Pausing before sending signal...’

time.sleep(1)

print ’PARENT: Signaling %s’ % child_pid

os.kill(child_pid, signal.SIGUSR1)

In the child, set up the signal handler and go to sleep for a while to give the parent

time to send the signal.

else:

print ’CHILD: Setting up signal handler’

signal.signal(signal.SIGUSR1, signal_usr1)

print ’CHILD: Pausing to wait for signal’

time.sleep(5)

A real application would not need (or want) to call sleep().

$ python os_kill_example.py

Forking...

PARENT: Pausing before sending signal...

PARENT: Signaling 14136

Forking...

CHILD: Setting up signal handler

CHILD: Pausing to wait for signal

Received USR1 in process 14136

A simple way to handle separate behavior in the child process is to check the

return value of fork() and branch. More complex behavior may call for more code

separation than a simple branch. In other cases, an existing program may need to be

wrapped. For both of these situations, the exec*() series of functions can be used to

run another program.

import os

child_pid = os.fork()

if child_pid:

os.waitpid(child_pid, 0)

else:
os.execlp(’pwd’, ’pwd’, ’-P’)

ptg

17.3. os—Portable Access to Operating System Specific Features 1125

When a program is run by exec(), the code from that program replaces the code

from the existing process.

$ python os_exec_example.py

/Users/dhellmann/Documents/PyMOTW/book/PyMOTW/os

There are many variations of exec(), depending on the form in which the argu-

ments are available, whether the path and environment of the parent process should

be copied to the child, etc. For all variations, the first argument is a path or file-

name, and the remaining arguments control how that program runs. They are either

passed as command-line arguments, or they override the process “environment” (see

os.environ and os.getenv). Refer to the library documentation for complete

details.

17.3.12 Waiting for a Child

Many computationally intensive programs use multiple processes to work around the

threading limitations of Python and the global interpreter lock. When starting several

processes to run separate tasks, the master will need to wait for one or more of them

to finish before starting new ones, to avoid overloading the server. There are a few

different ways to do that using wait() and related functions.

When it does not matter which child process might exit first, use wait(). It returns

as soon as any child process exits.

import os
import sys
import time

for i in range(2):

print ’PARENT %s: Forking %s’ % (os.getpid(), i)

worker_pid = os.fork()

if not worker_pid:

print ’WORKER %s: Starting’ % i

time.sleep(2 + i)

print ’WORKER %s: Finishing’ % i

sys.exit(i)

for i in range(2):

print ’PARENT: Waiting for %s’ % i

done = os.wait()

print ’PARENT: Child done:’, done

ptg

1126 Runtime Features

The return value from wait() is a tuple containing the process id and exit status

combined into a 16-bit value. The low byte is the number of the signal that killed the

process, and the high byte is the status code returned by the process when it exited.

$ python os_wait_example.py

PARENT 14154: Forking 0

PARENT 14154: Forking 1

WORKER 0: Starting

PARENT: Waiting for 0

WORKER 1: Starting

WORKER 0: Finishing

PARENT: Child done: (14155, 0)

PARENT: Waiting for 1

WORKER 1: Finishing

PARENT: Child done: (14156, 256)

To wait for a specific process, use waitpid().

import os
import sys
import time

workers = []

for i in range(2):

print ’PARENT %d: Forking %s’ % (os.getpid(), i)

worker_pid = os.fork()

if not worker_pid:

print ’WORKER %s: Starting’ % i

time.sleep(2 + i)

print ’WORKER %s: Finishing’ % i

sys.exit(i)

workers.append(worker_pid)

for pid in workers:

print ’PARENT: Waiting for %s’ % pid

done = os.waitpid(pid, 0)

print ’PARENT: Child done:’, done

Pass the process id of the target process. waitpid() blocks until that process

exits.

$ python os_waitpid_example.py

PARENT 14162: Forking 0

ptg

17.3. os—Portable Access to Operating System Specific Features 1127

PARENT 14162: Forking 1

PARENT: Waiting for 14163

WORKER 0: Starting

WORKER 1: Starting

WORKER 0: Finishing

PARENT: Child done: (14163, 0)

PARENT: Waiting for 14164

WORKER 1: Finishing

PARENT: Child done: (14164, 256)

wait3() and wait4() work in a similar manner, but return more detailed infor-

mation about the child process with the pid, exit status, and resource usage.

17.3.13 Spawn

As a convenience, the spawn() family of functions handles the fork() and exec()

in one statement.

import os

os.spawnlp(os.P_WAIT, ’pwd’, ’pwd’, ’-P’)

The first argument is a mode indicating whether or not to wait for the process to

finish before returning. This example waits. Use P_NOWAIT to let the other process

start, but then resume in the current process.

$ python os_spawn_example.py

/Users/dhellmann/Documents/PyMOTW/book/PyMOTW/os

17.3.14 File System Permissions

The function access() can be used to test the access rights a process has for a file.

import os

print ’Testing:’, __file__

print ’Exists:’, os.access(__file__, os.F_OK)

print ’Readable:’, os.access(__file__, os.R_OK)

print ’Writable:’, os.access(__file__, os.W_OK)

print ’Executable:’, os.access(__file__, os.X_OK)

ptg

1128 Runtime Features

The results will vary depending on how the example code is installed, but the

output will be similar to the following.

$ python os_access.py

Testing: os_access.py

Exists: True

Readable: True

Writable: True

Executable: False

The library documentation for access() includes two special warnings. First,

there is not much sense in calling access() to test whether a file can be opened before

actually calling open() on it. There is a small, but real, window of time between the

two calls during which the permissions on the file could change. The other warning

applies mostly to networked file systems that extend the POSIX permission semantics.

Some file system types may respond to the POSIX call that a process has permission

to access a file, and then report a failure when the attempt is made using open() for

some reason not tested via the POSIX call. All in all, it is better to call open() with

the required mode and catch the IOError raised if a problem occurs.

See Also:
os (http://docs.python.org/lib/module-os.html) The standard library documentation

for this module.

Flow Control Issues (http://docs.python.org/library/popen2.html#popen2-flow-
control) The standard library documentation of popen2() and how to prevent

deadlocks.

signal (page 497) The section on the signal module goes over signal handling

techniques in more detail.

subprocess (page 481) The subprocess module supersedes os.popen().

multiprocessing (page 529) The multiprocessing module makes working

with extra processes easier.

Working with Directory Trees (page 276) The shutil (page 271) module also in-

cludes functions for working with directory trees.

tempfile (page 265) The tempfile module for working with temporary files.

UNIX Manual Page Introduction (www.scit.wlv.ac.uk/cgi-bin/mansec?2+intro)
Includes definitions of real and effective ids, etc.

Speaking UNIX, Part 8 (www.ibm.com/developerworks/aix/library/
auspeakingunix8/index.html) Learn how UNIX multitasks.

www.scit.wlv.ac.uk/cgi-bin/mansec?2+intro
www.ibm.com/developerworks/aix/library/auspeakingunix8/index.html
www.ibm.com/developerworks/aix/library/auspeakingunix8/index.html
http://docs.python.org/lib/module-os.html
http://docs.python.org/library/popen2.html#popen2-flow-control
http://docs.python.org/library/popen2.html#popen2-flow-control

ptg

17.4. platform—System Version Information 1129

UNIX Concepts (www.linuxhq.com/guides/LUG/node67.html) For more discus-

sion of stdin, stdout, and stderr.

Delve into UNIX Process Creation (www.ibm.com/developerworks/aix/library/
auunixprocess.html) Explains the life cycle of a UNIX process.

Advanced Programming in the UNIX(R) Environment By W. Richard Stevens and

Stephen A. Rago. Published by Addison-Wesley Professional, 2005. ISBN-10:

0201433079. Covers working with multiple processes, such as handling signals,

closing duplicated file descriptors, etc.

17.4 platform—System Version Information

Purpose Probe the underlying platform’s hardware, operating system, and

interpreter version information.

Python Version 2.3 and later

Although Python is often used as a cross-platform language, it is occasionally necessary

to know what sort of system a program is running on. Build tools need that information,

but an application might also know that some of the libraries or external commands it

uses have different interfaces on different operating systems. For example, a tool to

manage the network configuration of an operating system can define a portable repre-

sentation of network interfaces, aliases, IP addresses, etc. But when the time comes to

edit the configuration files, it must know more about the host so it can use the correct

operating system configuration commands and files. The platform module includes

the tools for learning about the interpreter, operating system, and hardware platform

where a program is running.

Note: The example output in this section was generated on three systems: a Mac-

Book Pro3,1 running OS X 10.6.5; a VMware Fusion VM running CentOS 5.5; and

a Dell PC running Microsoft Windows 2008. Python was installed on the OS X

and Windows systems using the precompiled installer from python.org. The Linux

system is running an interpreter built from source locally.

17.4.1 Interpreter

There are four functions for getting information about the current Python inter-

preter. python_version() and python_version_tuple() return different

forms of the interpreter version with major, minor, and patch-level components.

www.linuxhq.com/guides/LUG/node67.html
www.ibm.com/developerworks/aix/library/auunixprocess.html
www.ibm.com/developerworks/aix/library/auunixprocess.html

ptg

1130 Runtime Features

python_compiler() reports on the compiler used to build the interpreter. And

python_build() gives a version string for the interpreter build.

import platform

print ’Version :’, platform.python_version()

print ’Version tuple:’, platform.python_version_tuple()

print ’Compiler :’, platform.python_compiler()

print ’Build :’, platform.python_build()

OS X:

$ python platform_python.py

Version : 2.7.0

Version tuple: (’2’, ’7’, ’0’)

Compiler : GCC 4.0.1 (Apple Inc. build 5493)

Build : (’r27:82508’, ’Jul 3 2010 21:12:11’)

Linux:

$ python platform_python.py

Version : 2.7.0

Version tuple: (’2’, ’7’, ’0’)

Compiler : GCC 4.1.2 20080704 (Red Hat 4.1.2-46)

Build : (’r27’, ’Aug 20 2010 11:37:51’)

Windows:

C:> python.exe platform_python.py

Version : 2.7.0

Version tuple: [’2’, ’7’, ’0’]

Compiler : MSC v.1500 64 bit (AMD64)

Build : (’r27:82525’, ’Jul 4 2010 07:43:08’)

17.4.2 Platform

The platform() function returns a string containing a general-purpose platform iden-

tifier. The function accepts two optional Boolean arguments. If aliased is True, the

ptg

17.4. platform—System Version Information 1131

names in the return value are converted from a formal name to their more common

form. When terse is true, a minimal value with some parts dropped is returned instead

of the full string.

import platform

print ’Normal :’, platform.platform()

print ’Aliased:’, platform.platform(aliased=True)

print ’Terse :’, platform.platform(terse=True)

OS X:

$ python platform_platform.py

Normal : Darwin-10.5.0-i386-64bit

Aliased: Darwin-10.5.0-i386-64bit

Terse : Darwin-10.5.0

Linux:

$ python platform_platform.py

Normal : Linux-2.6.18-194.3.1.el5-i686-with-redhat-5.5-Final

Aliased: Linux-2.6.18-194.3.1.el5-i686-with-redhat-5.5-Final

Terse : Linux-2.6.18-194.3.1.el5-i686-with-glibc2.3

Windows:

C:> python.exe platform_platform.py

Normal : Windows-2008ServerR2-6.1.7600

Aliased: Windows-2008ServerR2-6.1.7600

Terse : Windows-2008ServerR2

17.4.3 Operating System and Hardware Info

More detailed information about the operating system and the hardware the interpreter

is running under can be retrieved as well. uname() returns a tuple containing the sys-

tem, node, release, version, machine, and processor values. Individual values can be

accessed through functions of the same names, listed in Table 17.3.

ptg

1132 Runtime Features

Table 17.3. Platform Information Functions

Function Return Value
system() Operating system name

node() Host name of the server, not fully qualified

release() Operating system release number

version() More detailed system version

machine() A hardware-type identifier, such as ’i386’

processor() A real identifier for the processor (the same value as

machine() in many cases)

import platform

print ’uname:’, platform.uname()

print
print ’system :’, platform.system()

print ’node :’, platform.node()

print ’release :’, platform.release()

print ’version :’, platform.version()

print ’machine :’, platform.machine()

print ’processor:’, platform.processor()

OS X:

$ python platform_os_info.py

uname: (’Darwin’, ’farnsworth.local’, ’10.5.0’, ’Darwin Kernel

Version 10.5.0: Fri Nov 5 23:20:39 PDT 2010;

root:xnu-1504.9.17~1/RELEASE_I386’, ’i386’, ’i386’)

system : Darwin

node : farnsworth.local

release : 10.5.0

version : Darwin Kernel Version 10.5.0: Fri Nov 5 23:20:39 PDT

2010; root:xnu-1504.9.17~1/RELEASE_I386

machine : i386

processor: i386

Linux:

$ python platform_os_info.py

ptg

17.4. platform—System Version Information 1133

uname: (’Linux’, ’hermes.hellfly.net’, ’2.6.18-194.3.1.el5’,

’#1 SMP Thu May 13 13:09:10 EDT 2010’, ’i686’, ’i686’)

system : Linux

node : hermes.hellfly.net

release : 2.6.18-194.3.1.el5

version : #1 SMP Thu May 13 13:09:10 EDT 2010

machine : i686

processor: i686

Windows:

C:> python.exe platform_os_info.py

uname: (’Windows’, ’dhellmann’, ’2008ServerR2’, ’6.1.7600’,

’AMD64’, ’Intel64 Family 6 Model 15 Stepping 11, GenuineIntel’)

system : Windows

node : dhellmann

release : 2008ServerR2

version : 6.1.7600

machine : AMD64

processor: Intel64 Family 6 Model 15 Stepping 11, GenuineIntel

17.4.4 Executable Architecture

Individual program architecture information can be probed using the architec-

ture() function. The first argument is the path to an executable program (defaulting to

sys.executable, the Python interpreter). The return value is a tuple containing the

bit architecture and the linkage format used.

import platform

print ’interpreter:’, platform.architecture()

print ’/bin/ls :’, platform.architecture(’/bin/ls’)

OS X:

$ python platform_architecture.py

interpreter: (’64bit’, ’’)

/bin/ls : (’64bit’, ’’)

ptg

1134 Runtime Features

Linux:

$ python platform_architecture.py

interpreter: (’32bit’, ’ELF’)

/bin/ls : (’32bit’, ’ELF’)

Windows:

C:> python.exe platform_architecture.py

interpreter : (’64bit’, ’WindowsPE’)

iexplore.exe : (’64bit’, ’’)

See Also:
platform (http://docs.python.org/lib/module-platform.html) The standard library

documentation for this module.

17.5 resource—System Resource Management

Purpose Manage the system resource limits for a UNIX program.

Python Version 1.5.2 and later

The functions in resource probe the current system resources consumed by a process

and place limits on them to control how much load a program can impose on a system.

17.5.1 Current Usage

Use getrusage() to probe the resources used by the current process and/or its chil-

dren. The return value is a data structure containing several resource metrics based on

the current state of the system.

Note: Not all the resource values gathered are displayed here. Refer to the standard

library documentation for resource for a more complete list.

import resource
import time

usage = resource.getrusage(resource.RUSAGE_SELF)

for name, desc in [

http://docs.python.org/lib/module-platform.html

ptg

17.5. resource—System Resource Management 1135

(’ru_utime’, ’User time’),

(’ru_stime’, ’System time’),

(’ru_maxrss’, ’Max. Resident Set Size’),

(’ru_ixrss’, ’Shared Memory Size’),

(’ru_idrss’, ’Unshared Memory Size’),

(’ru_isrss’, ’Stack Size’),

(’ru_inblock’, ’Block inputs’),

(’ru_oublock’, ’Block outputs’),

]:

print ’%-25s (%-10s) = %s’ % (desc, name, getattr(usage, name))

Because the test program is extremely simple, it does not use very many resources.

$ python resource_getrusage.py

User time (ru_utime) = 0.013974

System time (ru_stime) = 0.013182

Max. Resident Set Size (ru_maxrss) = 5378048

Shared Memory Size (ru_ixrss) = 0

Unshared Memory Size (ru_idrss) = 0

Stack Size (ru_isrss) = 0

Block inputs (ru_inblock) = 0

Block outputs (ru_oublock) = 1

17.5.2 Resource Limits

Separate from the current actual usage, it is possible to check the limits imposed on the

application and then change them.

import resource

print ’Resource limits (soft/hard):’

for name, desc in [

(’RLIMIT_CORE’, ’core file size’),

(’RLIMIT_CPU’, ’CPU time’),

(’RLIMIT_FSIZE’, ’file size’),

(’RLIMIT_DATA’, ’heap size’),

(’RLIMIT_STACK’, ’stack size’),

(’RLIMIT_RSS’, ’resident set size’),

(’RLIMIT_NPROC’, ’number of processes’),

(’RLIMIT_NOFILE’, ’number of open files’),

(’RLIMIT_MEMLOCK’, ’lockable memory address’),

]:

ptg

1136 Runtime Features

limit_num = getattr(resource, name)

soft, hard = resource.getrlimit(limit_num)

print ’%-23s %s / %s’ % (desc, soft, hard)

The return value for each limit is a tuple containing the soft limit imposed by the

current configuration and the hard limit imposed by the operating system.

$ python resource_getrlimit.py

Resource limits (soft/hard):

core file size 0 / 9223372036854775807

CPU time 9223372036854775807 / 9223372036854775807

file size 9223372036854775807 / 9223372036854775807

heap size 9223372036854775807 / 9223372036854775807

stack size 8388608 / 67104768

resident set size 9223372036854775807 / 9223372036854775807

number of processes 266 / 532

number of open files 7168 / 9223372036854775807

lockable memory address 9223372036854775807 / 9223372036854775807

The limits can be changed with setrlimit().

import resource
import os

soft, hard = resource.getrlimit(resource.RLIMIT_NOFILE)

print ’Soft limit starts as :’, soft

resource.setrlimit(resource.RLIMIT_NOFILE, (4, hard))

soft, hard = resource.getrlimit(resource.RLIMIT_NOFILE)

print ’Soft limit changed to :’, soft

random = open(’/dev/random’, ’r’)

print ’random has fd =’, random.fileno()

try:
null = open(’/dev/null’, ’w’)

except IOError, err:

print err

else:
print ’null has fd =’, null.fileno()

ptg

17.5. resource—System Resource Management 1137

This example uses RLIMIT_NOFILE to control the number of open files allowed,

changing it to a smaller soft limit than the default.

$ python resource_setrlimit_nofile.py

Soft limit starts as : 7168

Soft limit changed to : 4

random has fd = 3

[Errno 24] Too many open files: ’/dev/null’

It can also be useful to limit the amount of CPU time a process should consume,

to avoid using too much. When the process runs past the allotted amount of time, it is

sent a SIGXCPU signal.

import resource
import sys
import signal
import time

Set up a signal handler to notify us

when we run out of time.

def time_expired(n, stack):

print ’EXPIRED :’, time.ctime()

raise SystemExit(’(time ran out)’)

signal.signal(signal.SIGXCPU, time_expired)

Adjust the CPU time limit

soft, hard = resource.getrlimit(resource.RLIMIT_CPU)

print ’Soft limit starts as :’, soft

resource.setrlimit(resource.RLIMIT_CPU, (1, hard))

soft, hard = resource.getrlimit(resource.RLIMIT_CPU)

print ’Soft limit changed to :’, soft

print

Consume some CPU time in a pointless exercise

print ’Starting:’, time.ctime()

for i in range(200000):

for i in range(200000):

v = i * i

ptg

1138 Runtime Features

We should never make it this far

print ’Exiting :’, time.ctime()

Normally, the signal handler should flush all open files and close them, but in this

case, it just prints a message and exits.

$ python resource_setrlimit_cpu.py

Soft limit starts as : 9223372036854775807

Soft limit changed to : 1

Starting: Sat Dec 4 15:02:57 2010

EXPIRED : Sat Dec 4 15:02:58 2010

(time ran out)

See Also:
resource (http://docs.python.org/library/resource.html) The standard library docu-

mentation for this module.

signal (page 497) Provides details on registering signal handlers.

17.6 gc—Garbage Collector

Purpose Manages memory used by Python objects.

Python Version 2.1 and later

gc exposes the underlying memory-management mechanism of Python, the automatic

garbage collector. The module includes functions to control how the collector operates

and to examine the objects known to the system, either pending collection or stuck in

reference cycles and unable to be freed.

17.6.1 Tracing References

With gc, the incoming and outgoing references between objects can be used to find

cycles in complex data structures. If a data structure is known to have a cycle, cus-

tom code can be used to examine its properties. If the cycle is in unknown code, the

get_referents() and get_referrers() functions can be used to build generic

debugging tools.

For example, get_referents() shows the objects referred to by the input

arguments.

http://docs.python.org/library/resource.html

ptg

17.6. gc—Garbage Collector 1139

import gc
import pprint

class Graph(object):
def __init__(self, name):

self.name = name

self.next = None

def set_next(self, next):

print ’Linking nodes %s.next = %s’ % (self, next)

self.next = next

def __repr__(self):

return ’%s(%s)’ % (self.__class__.__name__, self.name)

Construct a graph cycle

one = Graph(’one’)

two = Graph(’two’)

three = Graph(’three’)

one.set_next(two)

two.set_next(three)

three.set_next(one)

print
print ’three refers to:’

for r in gc.get_referents(three):

pprint.pprint(r)

In this case, the Graph instance three holds references to its instance dictionary

(in the __dict__ attribute) and its class.

$ python gc_get_referents.py

Linking nodes Graph(one).next = Graph(two)

Linking nodes Graph(two).next = Graph(three)

Linking nodes Graph(three).next = Graph(one)

three refers to:

{’name’: ’three’, ’next’: Graph(one)}

<class ’__main__.Graph’>

The next example uses a Queue to perform a breadth-first traversal of all the object

references looking for cycles. The items inserted into the queue are tuples containing

ptg

1140 Runtime Features

the reference chain so far and the next object to examine. It starts with three and looks

at everything it refers to. Skipping classes avoids looking at methods, modules, etc.

import gc
import pprint
import Queue

class Graph(object):
def __init__(self, name):

self.name = name

self.next = None

def set_next(self, next):

print ’Linking nodes %s.next = %s’ % (self, next)

self.next = next

def __repr__(self):

return ’%s(%s)’ % (self.__class__.__name__, self.name)

Construct a graph cycle

one = Graph(’one’)

two = Graph(’two’)

three = Graph(’three’)

one.set_next(two)

two.set_next(three)

three.set_next(one)

print

seen = set()

to_process = Queue.Queue()

Start with an empty object chain and Graph three.

to_process.put(([], three))

Look for cycles, building the object chain for each object found

in the queue so the full cycle can be printed at the end.

while not to_process.empty():

chain, next = to_process.get()

chain = chain[:]

chain.append(next)

print ’Examining:’, repr(next)

seen.add(id(next))

for r in gc.get_referents(next):

if isinstance(r, basestring) or isinstance(r, type):

ptg

17.6. gc—Garbage Collector 1141

Ignore strings and classes

pass
elif id(r) in seen:

print
print ’Found a cycle to %s:’ % r

for i, link in enumerate(chain):

print ’ %d: ’ % i,

pprint.pprint(link)

else:
to_process.put((chain, r))

The cycle in the nodes is easily found by watching for objects that have already

been processed. To avoid holding references to those objects, their id() values are

cached in a set. The dictionary objects found in the cycle are the __dict__ values for

the Graph instances and hold their instance attributes.

$ python gc_get_referents_cycles.py

Linking nodes Graph(one).next = Graph(two)

Linking nodes Graph(two).next = Graph(three)

Linking nodes Graph(three).next = Graph(one)

Examining: Graph(three)

Examining: {’name’: ’three’, ’next’: Graph(one)}

Examining: Graph(one)

Examining: {’name’: ’one’, ’next’: Graph(two)}

Examining: Graph(two)

Examining: {’name’: ’two’, ’next’: Graph(three)}

Found a cycle to Graph(three):

0: Graph(three)

1: {’name’: ’three’, ’next’: Graph(one)}

2: Graph(one)

3: {’name’: ’one’, ’next’: Graph(two)}

4: Graph(two)

5: {’name’: ’two’, ’next’: Graph(three)}

17.6.2 Forcing Garbage Collection

Although the garbage collector runs automatically as the interpreter executes a program,

it can be triggered to run at a specific time when there are a lot of objects to free or there

ptg

1142 Runtime Features

is not much work happening and the collector will not hurt application performance.

Trigger collection using collect().

import gc
import pprint

class Graph(object):
def __init__(self, name):

self.name = name

self.next = None

def set_next(self, next):

print ’Linking nodes %s.next = %s’ % (self, next)

self.next = next

def __repr__(self):

return ’%s(%s)’ % (self.__class__.__name__, self.name)

Construct a graph cycle

one = Graph(’one’)

two = Graph(’two’)

three = Graph(’three’)

one.set_next(two)

two.set_next(three)

three.set_next(one)

print

Remove references to the graph nodes in this module’s namespace

one = two = three = None

Show the effect of garbage collection

for i in range(2):

print ’Collecting %d ...’ % i

n = gc.collect()

print ’Unreachable objects:’, n

print ’Remaining Garbage:’,

pprint.pprint(gc.garbage)

print

In this example, the cycle is cleared as soon as collection runs the first time, since

nothing refers to the Graph nodes except themselves. collect() returns the number

of “unreachable” objects it found. In this case, the value is 6 because there are three

objects with their instance attribute dictionaries.

ptg

17.6. gc—Garbage Collector 1143

$ python gc_collect.py

Linking nodes Graph(one).next = Graph(two)

Linking nodes Graph(two).next = Graph(three)

Linking nodes Graph(three).next = Graph(one)

Collecting 0 ...

Unreachable objects: 6

Remaining Garbage:[]

Collecting 1 ...

Unreachable objects: 0

Remaining Garbage:[]

If Graph has a __del__() method, however, the garbage collector cannot break

the cycle.

import gc
import pprint

class Graph(object):
def __init__(self, name):

self.name = name

self.next = None

def set_next(self, next):

print ’%s.next = %s’ % (self, next)

self.next = next

def __repr__(self):

return ’%s(%s)’ % (self.__class__.__name__, self.name)

def __del__(self):

print ’%s.__del__()’ % self

Construct a graph cycle

one = Graph(’one’)

two = Graph(’two’)

three = Graph(’three’)

one.set_next(two)

two.set_next(three)

three.set_next(one)

Remove references to the graph nodes in this module’s namespace

one = two = three = None

ptg

1144 Runtime Features

Show the effect of garbage collection

print ’Collecting...’

n = gc.collect()

print ’Unreachable objects:’, n

print ’Remaining Garbage:’,

pprint.pprint(gc.garbage)

Because more than one object in the cycle has a finalizer method, the order in

which the objects need to be finalized and then garbage collected cannot be determined.

The garbage collector plays it safe and keeps the objects.

$ python gc_collect_with_del.py

Graph(one).next = Graph(two)

Graph(two).next = Graph(three)

Graph(three).next = Graph(one)

Collecting...

Unreachable objects: 6

Remaining Garbage:[Graph(one), Graph(two), Graph(three)]

When the cycle is broken, the Graph instances can be collected.

import gc
import pprint

class Graph(object):
def __init__(self, name):

self.name = name

self.next = None

def set_next(self, next):

print ’Linking nodes %s.next = %s’ % (self, next)

self.next = next

def __repr__(self):

return ’%s(%s)’ % (self.__class__.__name__, self.name)

def __del__(self):

print ’%s.__del__()’ % self

Construct a graph cycle

one = Graph(’one’)

two = Graph(’two’)

three = Graph(’three’)

one.set_next(two)

ptg

17.6. gc—Garbage Collector 1145

two.set_next(three)

three.set_next(one)

Remove references to the graph nodes in this module’s namespace

one = two = three = None

Collecting now keeps the objects as uncollectable

print
print ’Collecting...’

n = gc.collect()

print ’Unreachable objects:’, n

print ’Remaining Garbage:’,

pprint.pprint(gc.garbage)

Break the cycle

print
print ’Breaking the cycle’

gc.garbage[0].set_next(None)

print ’Removing references in gc.garbage’

del gc.garbage[:]

Now the objects are removed

print
print ’Collecting...’

n = gc.collect()

print ’Unreachable objects:’, n

print ’Remaining Garbage:’,

pprint.pprint(gc.garbage)

Because gc.garbage holds a reference to the objects from the previous garbage

collection run, it needs to be cleared out after the cycle is broken to reduce the reference

counts so they can be finalized and freed.

$ python gc_collect_break_cycle.py

Linking nodes Graph(one).next = Graph(two)

Linking nodes Graph(two).next = Graph(three)

Linking nodes Graph(three).next = Graph(one)

Collecting...

Unreachable objects: 6

Remaining Garbage:[Graph(one), Graph(two), Graph(three)]

ptg

1146 Runtime Features

Breaking the cycle

Linking nodes Graph(one).next = None

Removing references in gc.garbage

Graph(two).__del__()

Graph(three).__del__()

Graph(one).__del__()

Collecting...

Unreachable objects: 0

Remaining Garbage:[]

17.6.3 Finding References to Objects that Cannot Be Collected

Looking for the object holding a reference to something in the garbage list is a little

trickier than seeing what an object references. Because the code asking about the ref-

erence needs to hold a reference itself, some of the referrers need to be ignored. This

example creates a graph cycle and then works through the Graph instances and removes

the reference in the “parent” node.

import gc
import pprint
import Queue

class Graph(object):
def __init__(self, name):

self.name = name

self.next = None

def set_next(self, next):

print ’Linking nodes %s.next = %s’ % (self, next)

self.next = next

def __repr__(self):

return ’%s(%s)’ % (self.__class__.__name__, self.name)

def __del__(self):

print ’%s.__del__()’ % self

Construct two graph cycles

one = Graph(’one’)

two = Graph(’two’)

three = Graph(’three’)

one.set_next(two)

two.set_next(three)

three.set_next(one)

ptg

17.6. gc—Garbage Collector 1147

Remove references to the graph nodes in this module’s namespace

one = two = three = None

Collecting now keeps the objects as uncollectable

print
print ’Collecting...’

n = gc.collect()

print ’Unreachable objects:’, n

print ’Remaining Garbage:’,

pprint.pprint(gc.garbage)

REFERRERS_TO_IGNORE = [locals(), globals(), gc.garbage]

def find_referring_graphs(obj):

print ’Looking for references to %s’ % repr(obj)

referrers = (r for r in gc.get_referrers(obj)

if r not in REFERRERS_TO_IGNORE)

for ref in referrers:

if isinstance(ref, Graph):

A graph node

yield ref

elif isinstance(ref, dict):

An instance or other namespace dictionary

for parent in find_referring_graphs(ref):

yield parent

Look for objects that refer to the objects that remain in

gc.garbage.

print
print ’Clearing referrers:’

for obj in gc.garbage:

for ref in find_referring_graphs(obj):

ref.set_next(None)

del ref # remove local reference so the node can be deleted

del obj # remove local reference so the node can be deleted

Clear references held by gc.garbage

print
print ’Clearing gc.garbage:’

del gc.garbage[:]

Everything should have been freed this time

print

ptg

1148 Runtime Features

print ’Collecting...’

n = gc.collect()

print ’Unreachable objects:’, n

print ’Remaining Garbage:’,

pprint.pprint(gc.garbage)

This sort of logic is overkill if the cycles are understood, but for an unexplained

cycle in data, using get_referrers() can expose the unexpected relationship.

$ python gc_get_referrers.py

Linking nodes Graph(one).next = Graph(two)

Linking nodes Graph(two).next = Graph(three)

Linking nodes Graph(three).next = Graph(one)

Collecting...

Unreachable objects: 6

Remaining Garbage:[Graph(one), Graph(two), Graph(three)]

Clearing referrers:

Looking for references to Graph(one)

Looking for references to {’name’: ’three’, ’next’: Graph(one)}

Linking nodes Graph(three).next = None

Looking for references to Graph(two)

Looking for references to {’name’: ’one’, ’next’: Graph(two)}

Linking nodes Graph(one).next = None

Looking for references to Graph(three)

Looking for references to {’name’: ’two’, ’next’: Graph(three)}

Linking nodes Graph(two).next = None

Clearing gc.garbage:

Graph(three).__del__()

Graph(two).__del__()

Graph(one).__del__()

Collecting...

Unreachable objects: 0

Remaining Garbage:[]

17.6.4 Collection Thresholds and Generations

The garbage collector maintains three lists of objects it sees as it runs, one for each

“generation” the collector tracks. As objects are examined in each generation, they are

ptg

17.6. gc—Garbage Collector 1149

either collected or they age into subsequent generations until they finally reach the stage

where they are kept permanently.

The collector routines can be tuned to occur at different frequencies based on the

difference between the number of object allocations and deallocations between runs.

When the number of allocations, minus the number of deallocations, is greater than the

threshold for the generation, the garbage collector is run. The current thresholds can be

examined with get_threshold().

import gc

print gc.get_threshold()

The return value is a tuple with the threshold for each generation.

$ python gc_get_threshold.py

(700, 10, 10)

The thresholds can be changed with set_threshold(). This example program

reads the threshold for generation 0 from the command line, adjusts the gc settings, and

then allocates a series of objects.

import gc
import pprint
import sys

try:
threshold = int(sys.argv[1])

except (IndexError, ValueError, TypeError):
print ’Missing or invalid threshold, using default’

threshold = 5

class MyObj(object):
def __init__(self, name):

self.name = name

print ’Created’, self.name

gc.set_debug(gc.DEBUG_STATS)

gc.set_threshold(threshold, 1, 1)

print ’Thresholds:’, gc.get_threshold()

ptg

1150 Runtime Features

print ’Clear the collector by forcing a run’

gc.collect()

print

print ’Creating objects’

objs = []

for i in range(10):

objs.append(MyObj(i))

Different threshold values introduce the garbage collection sweeps at different

times, shown here because debugging is enabled.

$ python -u gc_threshold.py 5

Thresholds: (5, 1, 1)

Clear the collector by forcing a run

gc: collecting generation 2...

gc: objects in each generation: 218 2683 0

gc: done, 0.0008s elapsed.

Creating objects

gc: collecting generation 0...

gc: objects in each generation: 7 0 2819

gc: done, 0.0000s elapsed.

Created 0

Created 1

Created 2

Created 3

Created 4

gc: collecting generation 0...

gc: objects in each generation: 6 4 2819

gc: done, 0.0000s elapsed.

Created 5

Created 6

Created 7

Created 8

Created 9

gc: collecting generation 2...

gc: objects in each generation: 5 6 2817

gc: done, 0.0007s elapsed.

A smaller threshold causes the sweeps to run more frequently.

$ python -u gc_threshold.py 2

ptg

17.6. gc—Garbage Collector 1151

Thresholds: (2, 1, 1)

Clear the collector by forcing a run

gc: collecting generation 2...

gc: objects in each generation: 218 2683 0

gc: done, 0.0008s elapsed.

Creating objects

gc: collecting generation 0...

gc: objects in each generation: 3 0 2819

gc: done, 0.0000s elapsed.

gc: collecting generation 0...

gc: objects in each generation: 4 3 2819

gc: done, 0.0000s elapsed.

Created 0

Created 1

gc: collecting generation 1...

gc: objects in each generation: 3 4 2819

gc: done, 0.0000s elapsed.

Created 2

Created 3

Created 4

gc: collecting generation 0...

gc: objects in each generation: 5 0 2824

gc: done, 0.0000s elapsed.

Created 5

Created 6

Created 7

gc: collecting generation 0...

gc: objects in each generation: 5 3 2824

gc: done, 0.0000s elapsed.

Created 8

Created 9

gc: collecting generation 2...

gc: objects in each generation: 2 6 2820

gc: done, 0.0008s elapsed.

17.6.5 Debugging

Debugging memory leaks can be challenging. gc includes several options to expose the

inner workings to make the job easier. The options are bit-flags meant to be combined

and passed to set_debug() to configure the garbage collector while the program is

running. Debugging information is printed to sys.stderr.

ptg

1152 Runtime Features

The DEBUG_STATS flag turns on statistics reporting. This causes the garbage

collector to report the number of objects tracked for each generation and the amount

of time it took to perform the sweep.

import gc

gc.set_debug(gc.DEBUG_STATS)

gc.collect()

This example output shows two separate runs of the collector. It runs once when it

is invoked explicitly and a second time when the interpreter exits.

$ python gc_debug_stats.py

gc: collecting generation 2...

gc: objects in each generation: 83 2683 0

gc: done, 0.0010s elapsed.

gc: collecting generation 2...

gc: objects in each generation: 0 0 2747

gc: done, 0.0008s elapsed.

Enabling DEBUG_COLLECTABLE and DEBUG_UNCOLLECTABLE causes the collec-

tor to report on whether each object it examines can or cannot be collected. These flags

need to be combined with DEBUG_OBJECTS so gc will print information about the

objects being held.

import gc

flags = (gc.DEBUG_COLLECTABLE |

gc.DEBUG_UNCOLLECTABLE |

gc.DEBUG_OBJECTS

)

gc.set_debug(flags)

class Graph(object):
def __init__(self, name):

self.name = name

self.next = None

print ’Creating %s 0x%x (%s)’ % \

ptg

17.6. gc—Garbage Collector 1153

(self.__class__.__name__, id(self), name)

def set_next(self, next):

print ’Linking nodes %s.next = %s’ % (self, next)

self.next = next

def __repr__(self):

return ’%s(%s)’ % (self.__class__.__name__, self.name)

class CleanupGraph(Graph):
def __del__(self):

print ’%s.__del__()’ % self

Construct a graph cycle

one = Graph(’one’)

two = Graph(’two’)

one.set_next(two)

two.set_next(one)

Construct another node that stands on its own

three = CleanupGraph(’three’)

Construct a graph cycle with a finalizer

four = CleanupGraph(’four’)

five = CleanupGraph(’five’)

four.set_next(five)

five.set_next(four)

Remove references to the graph nodes in this module’s namespace

one = two = three = four = five = None

print

Force a sweep

print ’Collecting’

gc.collect()

print ’Done’

The two classes Graph and CleanupGraph are constructed so it is possible to

create structures that can be collected automatically and structures where cycles need

to be explicitly broken by the user.

The output shows that the Graph instances one and two create a cycle, but can

still be collected because they do not have a finalizer and their only incoming references

are from other objects that can be collected. Although CleanupGraph has a finalizer,

ptg

1154 Runtime Features

three is reclaimed as soon as its reference count goes to zero. In contrast, four and

five create a cycle and cannot be freed.

$ python -u gc_debug_collectable_objects.py

Creating Graph 0x100d99ad0 (one)

Creating Graph 0x100d99b10 (two)

Linking nodes Graph(one).next = Graph(two)

Linking nodes Graph(two).next = Graph(one)

Creating CleanupGraph 0x100d99b50 (three)

Creating CleanupGraph 0x100d99b90 (four)

Creating CleanupGraph 0x100d99bd0 (five)

Linking nodes CleanupGraph(four).next = CleanupGraph(five)

Linking nodes CleanupGraph(five).next = CleanupGraph(four)

CleanupGraph(three).__del__()

Collecting

gc: collectable <Graph 0x100d99ad0>

gc: collectable <Graph 0x100d99b10>

gc: collectable <dict 0x100c5b8e0>

gc: collectable <dict 0x100c5cb70>

gc: uncollectable <CleanupGraph 0x100d99b90>

gc: uncollectable <CleanupGraph 0x100d99bd0>

gc: uncollectable <dict 0x100c5cc90>

gc: uncollectable <dict 0x100c5cff0>

Done

The flag DEBUG_INSTANCES works much the same way for instances of old-style

classes (not derived from object).

import gc

flags = (gc.DEBUG_COLLECTABLE |

gc.DEBUG_UNCOLLECTABLE |

gc.DEBUG_INSTANCES

)

gc.set_debug(flags)

class Graph:
def __init__(self, name):

self.name = name

self.next = None

ptg

17.6. gc—Garbage Collector 1155

print ’Creating %s 0x%x (%s)’ % \

(self.__class__.__name__, id(self), name)

def set_next(self, next):

print ’Linking nodes %s.next = %s’ % (self, next)

self.next = next

def __repr__(self):

return ’%s(%s)’ % (self.__class__.__name__, self.name)

class CleanupGraph(Graph):
def __del__(self):

print ’%s.__del__()’ % self

Construct a graph cycle

one = Graph(’one’)

two = Graph(’two’)

one.set_next(two)

two.set_next(one)

Construct another node that stands on its own

three = CleanupGraph(’three’)

Construct a graph cycle with a finalizer

four = CleanupGraph(’four’)

five = CleanupGraph(’five’)

four.set_next(five)

five.set_next(four)

Remove references to the graph nodes in this module’s namespace

one = two = three = four = five = None

print

Force a sweep

print ’Collecting’

gc.collect()

print ’Done’

In this case, however, the dict objects holding the instance attributes are not

included in the output.

$ python -u gc_debug_collectable_instances.py

Creating Graph 0x100da23f8 (one)

ptg

1156 Runtime Features

Creating Graph 0x100da2440 (two)

Linking nodes Graph(one).next = Graph(two)

Linking nodes Graph(two).next = Graph(one)

Creating CleanupGraph 0x100da24d0 (three)

Creating CleanupGraph 0x100da2518 (four)

Creating CleanupGraph 0x100da2560 (five)

Linking nodes CleanupGraph(four).next = CleanupGraph(five)

Linking nodes CleanupGraph(five).next = CleanupGraph(four)

CleanupGraph(three).__del__()

Collecting

gc: collectable <Graph instance at 0x100da23f8>

gc: collectable <Graph instance at 0x100da2440>

gc: uncollectable <CleanupGraph instance at 0x100da2518>

gc: uncollectable <CleanupGraph instance at 0x100da2560>

Done

If seeing the objects that cannot be collected is not enough information to under-

stand where data is being retained, enable DEBUG_SAVEALL to cause gc to preserve all

objects it finds without any references in the garbage list.

import gc

flags = (gc.DEBUG_COLLECTABLE |

gc.DEBUG_UNCOLLECTABLE |

gc.DEBUG_OBJECTS |

gc.DEBUG_SAVEALL

)

gc.set_debug(flags)

class Graph(object):
def __init__(self, name):

self.name = name

self.next = None

def set_next(self, next):

self.next = next

def __repr__(self):

return ’%s(%s)’ % (self.__class__.__name__, self.name)

ptg

17.6. gc—Garbage Collector 1157

class CleanupGraph(Graph):
def __del__(self):

print ’%s.__del__()’ % self

Construct a graph cycle

one = Graph(’one’)

two = Graph(’two’)

one.set_next(two)

two.set_next(one)

Construct another node that stands on its own

three = CleanupGraph(’three’)

Construct a graph cycle with a finalizer

four = CleanupGraph(’four’)

five = CleanupGraph(’five’)

four.set_next(five)

five.set_next(four)

Remove references to the graph nodes in this module’s namespace

one = two = three = four = five = None

Force a sweep

print ’Collecting’

gc.collect()

print ’Done’

Report on what was left

for o in gc.garbage:

if isinstance(o, Graph):

print ’Retained: %s 0x%x’ % (o, id(o))

This allows the objects to be examined after garbage collection, which is helpful if,

for example, the constructor cannot be changed to print the object id when each object

is created.

$ python -u gc_debug_saveall.py

CleanupGraph(three).__del__()

Collecting

gc: collectable <Graph 0x100d99b10>

gc: collectable <Graph 0x100d99b50>

ptg

1158 Runtime Features

gc: collectable <dict 0x100c5c740>

gc: collectable <dict 0x100c5cb60>

gc: uncollectable <CleanupGraph 0x100d99bd0>

gc: uncollectable <CleanupGraph 0x100d99c10>

gc: uncollectable <dict 0x100c5cc80>

gc: uncollectable <dict 0x100c5cfe0>

Done

Retained: Graph(one) 0x100d99b10

Retained: Graph(two) 0x100d99b50

Retained: CleanupGraph(four) 0x100d99bd0

Retained: CleanupGraph(five) 0x100d99c10

For simplicity, DEBUG_LEAK is defined as a combination of all the other options.

import gc

flags = gc.DEBUG_LEAK

gc.set_debug(flags)

class Graph(object):
def __init__(self, name):

self.name = name

self.next = None

def set_next(self, next):

self.next = next

def __repr__(self):

return ’%s(%s)’ % (self.__class__.__name__, self.name)

class CleanupGraph(Graph):
def __del__(self):

print ’%s.__del__()’ % self

Construct a graph cycle

one = Graph(’one’)

two = Graph(’two’)

one.set_next(two)

two.set_next(one)

Construct another node that stands on its own

three = CleanupGraph(’three’)

Construct a graph cycle with a finalizer

four = CleanupGraph(’four’)

ptg

17.6. gc—Garbage Collector 1159

five = CleanupGraph(’five’)

four.set_next(five)

five.set_next(four)

Remove references to the graph nodes in this module’s namespace

one = two = three = four = five = None

Force a sweep

print ’Collecting’

gc.collect()

print ’Done’

Report on what was left

for o in gc.garbage:

if isinstance(o, Graph):

print ’Retained: %s 0x%x’ % (o, id(o))

Keep in mind that because DEBUG_SAVEALL is enabled by DEBUG_LEAK, even

the unreferenced objects that would normally have been collected and deleted are

retained.

$ python -u gc_debug_leak.py

CleanupGraph(three).__del__()

Collecting

gc: collectable <Graph 0x100d99b10>

gc: collectable <Graph 0x100d99b50>

gc: collectable <dict 0x100c5b8d0>

gc: collectable <dict 0x100c5cad0>

gc: uncollectable <CleanupGraph 0x100d99bd0>

gc: uncollectable <CleanupGraph 0x100d99c10>

gc: uncollectable <dict 0x100c5cbf0>

gc: uncollectable <dict 0x100c5cf50>

Done

Retained: Graph(one) 0x100d99b10

Retained: Graph(two) 0x100d99b50

Retained: CleanupGraph(four) 0x100d99bd0

Retained: CleanupGraph(five) 0x100d99c10

See Also:
gc (http://docs.python.org/library/gc.html) The standard library documentation for

this module.

http://docs.python.org/library/gc.html

ptg

1160 Runtime Features

weakref (page 106) The weakref module provides a way to create references to

objects without increasing their reference count so they can still be garbage

collected.

Supporting Cyclic Garbage Collection (http://docs.python.org/c-api/
gcsupport.html) Background material from Python’s C API documentation.

How does Python manage memory? (http://effbot.org/pyfaq/how-does-python-
manage-memory.htm) An article on Python memory management by Fredrik

Lundh.

17.7 sysconfig—Interpreter Compile-Time Configuration

Purpose Access the configuration settings used to build Python.

Python Version 2.7 and later

In Python 2.7, sysconfig has been extracted from distutils to become a stand-

alone module. It includes functions for determining the settings used to compile and

install the current interpreter.

17.7.1 Configuration Variables

Access to the build-time configuration settings is provided through two functions.

get_config_vars() returns a dictionary mapping the configuration variable names

to values.

import sysconfig

config_values = sysconfig.get_config_vars()

print ’Found %d configuration settings’ % len(config_values.keys())

print

print ’Some highlights:’

print
print ’ Installation prefixes:’

print ’ prefix={prefix}’.format(**config_values)

print ’ exec_prefix={exec_prefix}’.format(**config_values)

print
print ’ Version info:’

print ’ py_version={py_version}’.format(**config_values)

http://docs.python.org/c-api/gcsupport.html
http://docs.python.org/c-api/gcsupport.html
http://effbot.org/pyfaq/how-does-python-manage-memory.htm
http://effbot.org/pyfaq/how-does-python-manage-memory.htm

ptg

17.7. sysconfig—Interpreter Compile-Time Configuration 1161

print ’ py_version_short={py_version_short}’.format(**config_values)

print ’ py_version_nodot={py_version_nodot}’.format(**config_values)

print
print ’ Base directories:’

print ’ base={base}’.format(**config_values)

print ’ platbase={platbase}’.format(**config_values)

print ’ userbase={userbase}’.format(**config_values)

print ’ srcdir={srcdir}’.format(**config_values)

print
print ’ Compiler and linker flags:’

print ’ LDFLAGS={LDFLAGS}’.format(**config_values)

print ’ BASECFLAGS={BASECFLAGS}’.format(**config_values)

print ’ Py_ENABLE_SHARED={Py_ENABLE_SHARED}’.format(**config_values)

The level of detail available through the sysconfig API depends on the platform

where a program is running. On POSIX systems, such as Linux and OS X, the Make-

file used to build the interpreter and config.h header file generated for the build are

parsed and all the variables found within are available. On non-POSIX systems, such as

Windows, the settings are limited to a few paths, filename extensions, and version details.

$ python sysconfig_get_config_vars.py

Found 511 configuration settings

Some highlights:

Installation prefixes:

prefix=/Library/Frameworks/Python.framework/Versions/2.7

exec_prefix=/Library/Frameworks/Python.framework/Versions/2.7

Version info:

py_version=2.7

py_version_short=2.7

py_version_nodot=27

Base directories:

base=/Users/dhellmann/.virtualenvs/pymotw

platbase=/Users/dhellmann/.virtualenvs/pymotw

userbase=/Users/dhellmann/Library/Python/2.7

srcdir=/Users/sysadmin/X/r27

ptg

1162 Runtime Features

Compiler and linker flags:

LDFLAGS=-arch i386 -arch ppc -arch x86_64 -isysroot / -g

BASECFLAGS=-fno-strict-aliasing -fno-common -dynamic

Py_ENABLE_SHARED=0

Passing variable names to get_config_vars() changes the return value to a

list created by appending all the values for those variables together.

import sysconfig

bases = sysconfig.get_config_vars(’base’, ’platbase’, ’userbase’)

print ’Base directories:’

for b in bases:

print ’ ’, b

This example builds a list of all the installation base directories where modules

can be found on the current system.

$ python sysconfig_get_config_vars_by_name.py

Base directories:

/Users/dhellmann/.virtualenvs/pymotw

/Users/dhellmann/.virtualenvs/pymotw

/Users/dhellmann/Library/Python/2.7

When only a single configuration value is needed, use get_config_var() to

retrieve it.

import sysconfig

print ’User base directory:’, sysconfig.get_config_var(’userbase’)

print ’Unknown variable :’, sysconfig.get_config_var(’NoSuchVariable’)

If the variable is not found, get_config_var() returns None instead of raising

an exception.

ptg

17.7. sysconfig—Interpreter Compile-Time Configuration 1163

$ python sysconfig_get_config_var.py

User base directory: /Users/dhellmann/Library/Python/2.7

Unknown variable : None

17.7.2 Installation Paths

sysconfig is primarily meant to be used by installation and packaging tools. As a

result, while it provides access to general configuration settings, such as the interpreter

version, it is focused on the information needed to locate parts of the Python distribution

currently installed on a system. The locations used for installing a package depend on

the scheme used.

A scheme is a set of platform-specific default directories organized based on the

platform’s packaging standards and guidelines. There are different schemes for in-

stalling into a site-wide location or a private directory owned by the user. The full

set of schemes can be accessed with get_scheme_names().

import sysconfig

for name in sysconfig.get_scheme_names():

print name

There is no concept of a “current scheme” per se. The default scheme depends on

the platform, and the actual scheme used depends on options given to the installation

program. If the current system is running a POSIX-compliant operating system, the

default is posix_prefix. Otherwise, the default is the operating system name, as

defined by os.name.

$ python sysconfig_get_scheme_names.py

nt

nt_user

os2

os2_home

osx_framework_user

posix_home

posix_prefix

posix_user

Each scheme defines a set of paths used for installing packages. For a list of the

path names, use get_path_names().

ptg

1164 Runtime Features

import sysconfig

for name in sysconfig.get_path_names():

print name

Some of the paths may be the same for a given scheme, but installers should not

make any assumptions about what the actual paths are. Each name has a particular

semantic meaning, so the correct name should be used to find the path for a given file

during installation. Refer to Table 17.4 for a complete list of the path names and their

meaning.

Table 17.4. Path Names Used in sysconfig

Name Description
stdlib Standard Python library files, not platform-specific

platstdlib Standard Python library files, platform-specific

platlib Site-specific, platform-specific files

purelib Site-specific, nonplatform-specific files

include Header files, not platform-specific

platinclude Header files, platform-specific

scripts Executable script files

data Data files

$ python sysconfig_get_path_names.py

stdlib

platstdlib

purelib

platlib

include

scripts

data

Use get_paths() to retrieve the actual directories associated with a scheme.

import sysconfig
import pprint
import os
for scheme in [’posix_prefix’, ’posix_user’]:

ptg

17.7. sysconfig—Interpreter Compile-Time Configuration 1165

print scheme

print ’=’ * len(scheme)

paths = sysconfig.get_paths(scheme=scheme)

prefix = os.path.commonprefix(paths.values())

print ’prefix = %s\n’ % prefix

for name, path in sorted(paths.items()):

print ’%s\n .%s’ % (name, path[len(prefix):])

print

This example shows the difference between the system-wide paths used for

posix_prefix under a framework build on Mac OS X and the user-specific values

for posix_user.

$ python sysconfig_get_paths.py

posix_prefix

============

prefix = /Library/Frameworks/Python.framework/Versions/2.7

data

.

include

./include/python2.7

platinclude

./include/python2.7

platlib

./lib/python2.7/site-packages

platstdlib

./lib/python2.7

purelib

./lib/python2.7/site-packages

scripts

./bin

stdlib

./lib/python2.7

posix_user

==========

prefix = /Users/dhellmann/Library/Python/2.7

data

.

ptg

1166 Runtime Features

include

./include/python2.7

platlib

./lib/python2.7/site-packages

platstdlib

./lib/python2.7

purelib

./lib/python2.7/site-packages

scripts

./bin

stdlib

./lib/python2.7

For an individual path, call get_path().

import sysconfig
import pprint

for scheme in [’posix_prefix’, ’posix_user’]:

print scheme

print ’=’ * len(scheme)

print ’purelib =’, sysconfig.get_path(name=’purelib’,

scheme=scheme)

print

Using get_path() is equivalent to saving the value of get_paths() and look-

ing up the individual key in the dictionary. If several paths are needed, get_paths()

is more efficient because it does not recompute all the paths each time.

$ python sysconfig_get_path.py

posix_prefix

============

purelib = /Library/Frameworks/Python.framework/Versions/2.7/site-\

packages

posix_user

==========

purelib = /Users/dhellmann/Library/Python/2.7/lib/python2.7/site-\

packages

ptg

17.7. sysconfig—Interpreter Compile-Time Configuration 1167

17.7.3 Python Version and Platform

While sys includes some basic platform identification (see Build-Time Version Infor-
mation), it is not specific enough to be used for installing binary packages because

sys.platform does not always include information about hardware architecture, in-

struction size, or other values that affect the compatibility of binary libraries. For a more

precise platform specifier, use get_platform().

import sysconfig

print sysconfig.get_platform()

Although this sample output was prepared on an OS X 10.6 system, the interpreter

is compiled for 10.5 compatibility, so that is the version number included in the platform

string.

$ python sysconfig_get_platform.py

macosx-10.5-fat3

As a convenience, the interpreter version from sys.version_info is also avail-

able through get_python_version() in sysconfig.

import sysconfig
import sys

print ’sysconfig.get_python_version():’, sysconfig.get_python_version()

print ’\nsys.version_info:’
print ’ major :’, sys.version_info.major

print ’ minor :’, sys.version_info.minor

print ’ micro :’, sys.version_info.micro

print ’ releaselevel:’, sys.version_info.releaselevel

print ’ serial :’, sys.version_info.serial

get_python_version() returns a string suitable for use when building a

version-specific path.

$ python sysconfig_get_python_version.py

sysconfig.get_python_version(): 2.7

ptg

1168 Runtime Features

sys.version_info:

major : 2

minor : 7

micro : 0

releaselevel: final

serial : 0

See Also:
sysconfig (http://docs.python.org/library/sysconfig.html) The standard library doc-

umentation for this module.

distutils sysconfig used to be part of the distutils package.

distutils2 (http://hg.python.org/distutils2/) Updates to distutils, managed by

Tarek Ziadé.

site (page 1046) The site module describes the paths searched when importing in

more detail.

os (page 1108) Includes os.name, the name of the current operating system.

sys (page 1055) Includes other build-time information, such as the platform.

http://docs.python.org/library/sysconfig.html
http://hg.python.org/distutils2/

ptg

Chapter 18

LANGUAGE TOOLS

In addition to the developer tools covered in an earlier chapter, Python also includes

modules that provide access to its internal features. This chapter covers some tools for

working in Python, regardless of the application area.

The warnings module is used to report nonfatal conditions or recoverable errors.

A common example of a warning is the DeprecationWarning generated when a

feature of the standard library has been superseded by a new class, interface, or module.

Use warnings to report conditions that may need user attention, but are not fatal.

Defining a set of classes that conform to a common API can be a challenge when

the API is defined by someone else or uses a lot of methods. A common way to work

around this problem is to derive all the new classes from a common base class. How-

ever, it is not always obvious which methods should be overridden and which can fall

back on the default behavior. Abstract base classes from the abc module formalize an

API by explicitly marking the methods a class must provide in a way that prevents the

class from being instantiated if it is not completely implemented. For example, many of

Python’s container types have abstract base classes defined in abc or collections.

The dis module can be used to disassemble the byte-code version of a program to

understand the steps the interpreter takes to run it. Looking at disassembled code can be

useful when debugging performance or concurrency issues, since it exposes the atomic

operations executed by the interpreter for each statement in a program.

The inspect module provides introspection support for all objects in the current

process. That includes imported modules, class and function definitions, and the “live”

objects instantiated from them. Introspection can be used to generate documentation for

source code, adapt behavior at runtime dynamically, or examine the execution environ-

ment for a program.

1169

ptg

1170 Language Tools

The exceptions module defines common exceptions used throughout the stan-

dard library and third-party modules. Becoming familiar with the class hierarchy for

exceptions will make it easier to understand error messages and create robust code that

handles exceptions properly.

18.1 warnings—Nonfatal Alerts

Purpose Deliver nonfatal alerts to the user about issues encountered when

running a program.

Python Version 2.1 and later

The warnings module was introduced by PEP 230 as a way to warn programmers

about changes in language or library features in anticipation of backwards-incompatible

changes coming with Python 3.0. It can also be used to report recoverable configuration

errors or feature degradation from missing libraries. It is better to deliver user-facing

messages via the logging module, though, because warnings sent to the console may

be lost.

Since warnings are not fatal, a program may encounter the same warn-able situa-

tion many times in the course of running. The warnings module suppresses repeated

messages from the same source to cut down on the annoyance of seeing the same warn-

ing over and over. The output can be controlled on a case-by-case basis, using the

command-line options to the interpreter or by calling functions found in warnings.

18.1.1 Categories and Filtering

Warnings are categorized using subclasses of the built-in exception class Warning.

Several standard values are described in the online documentation for the exceptions

module, and custom warnings can be added by subclassing from Warning.

Warnings are processed based on filter settings. A filter consists of five parts: the

action, message, category, module, and line number. The message portion of the filter

is a regular expression that is used to match the warning text. The category is a name

of an exception class. The module contains a regular expression to be matched against

the module name generating the warning. And the line number can be used to change

the handling on specific occurrences of a warning.

When a warning is generated, it is compared against all the registered filters. The

first filter that matches controls the action taken for the warning. If no filter matches,

the default action is taken. The actions understood by the filtering mechanism are listed

in Table 18.1.

ptg

18.1. warnings—Nonfatal Alerts 1171

Table 18.1. Warning Filter Actions

Action Meaning
error Turn the warning into an exception.

ignore Discard the warning.

always Always emit a warning.

default Print the warning the first time it is generated from each location.

module Print the warning the first time it is generated from each module.

once Print the warning the first time it is generated.

18.1.2 Generating Warnings

The simplest way to emit a warning is to call warn() with the message as an argument.

import warnings

print ’Before the warning’

warnings.warn(’This is a warning message’)

print ’After the warning’

Then, when the program runs, the message is printed.

$ python -u warnings_warn.py

Before the warning

warnings_warn.py:13: UserWarning: This is a warning message

warnings.warn(’This is a warning message’)

After the warning

Even though the warning is printed, the default behavior is to continue past that

point and run the rest of the program. That behavior can be changed with a filter.

import warnings

warnings.simplefilter(’error’, UserWarning)

print ’Before the warning’

warnings.warn(’This is a warning message’)

print ’After the warning’

ptg

1172 Language Tools

In this example, the simplefilter() function adds an entry to the internal filter

list to tell the warnings module to raise an exception when a UserWarning warning

is issued.

$ python -u warnings_warn_raise.py

Before the warning

Traceback (most recent call last):

File "warnings_warn_raise.py", line 15, in <module>

warnings.warn(’This is a warning message’)

UserWarning: This is a warning message

The filter behavior can also be controlled from the command line by using the -

W option to the interpreter. Specify the filter properties as a string with the five parts

(action, message, category, module, and line number) separated by colons (:). For

example, if warnings_warn.py is run with a filter set to raise an error on User-

Warning, an exception is produced.

$ python -u -W "error::UserWarning::0" warnings_warn.py

Before the warning

Traceback (most recent call last):

File "warnings_warn.py", line 13, in <module>

warnings.warn(’This is a warning message’)

UserWarning: This is a warning message

Since the fields for message and module were left blank, they were interpreted as

matching anything.

18.1.3 Filtering with Patterns

To filter on more complex rules programmatically, use filterwarnings(). For

example, to filter based on the content of the message text, give a regular expression

pattern as the message argument.

import warnings

warnings.filterwarnings(’ignore’, ’.*do not.*’,)

warnings.warn(’Show this message’)

warnings.warn(’Do not show this message’)

ptg

18.1. warnings—Nonfatal Alerts 1173

The pattern contains “do not”, but the actual message uses “Do not”. The pat-

tern matches because the regular expression is always compiled to look for case-

insensitive matches.

$ python warnings_filterwarnings_message.py

warnings_filterwarnings_message.py:14: UserWarning: Show this message

warnings.warn(’Show this message’)

The example program warnings_filtering.py generates two warnings.

import warnings

warnings.warn(’Show this message’)

warnings.warn(’Do not show this message’)

One of the warnings can be ignored using the filter argument on the command line.

$ python -W "ignore:do not:UserWarning::0" warnings_filtering.py

warnings_filtering.py:12: UserWarning: Show this message

warnings.warn(’Show this message’)

The same pattern-matching rules apply to the name of the source module con-

taining the call generating the warning. Suppress all messages from the warnings_

filtering module by passing the module name as the pattern to the module
argument.

import warnings

warnings.filterwarnings(’ignore’,

’.*’,

UserWarning,
’warnings_filtering’,

)

import warnings_filtering

Since the filter is in place, no warnings are emitted when warnings_filtering

is imported.

$ python warnings_filterwarnings_module.py

ptg

1174 Language Tools

To suppress only the message on line 13 of warnings_filtering, include the

line number as the last argument to filterwarnings(). Use the actual line number

from the source file to limit the filter, or use 0 to have the filter apply to all occurrences

of the message.

import warnings

warnings.filterwarnings(’ignore’,

’.*’,

UserWarning,
’warnings_filtering’,

13)

import warnings_filtering

The pattern matches any message, so the important arguments are the module

name and line number.

$ python warnings_filterwarnings_lineno.py

/Users/dhellmann/Documents/PyMOTW/book/PyMOTW/warnings/warnings_filter

ing.py:12: UserWarning: Show this message

warnings.warn(’Show this message’)

18.1.4 Repeated Warnings

By default, most types of warnings are only printed the first time they occur in a given

location, with “location” defined by the combination of module and line number where

the warning is generated.

import warnings

def function_with_warning():

warnings.warn(’This is a warning!’)

function_with_warning()

function_with_warning()

function_with_warning()

ptg

18.1. warnings—Nonfatal Alerts 1175

This example calls the same function several times, but only produces a single

warning.

$ python warnings_repeated.py

warnings_repeated.py:13: UserWarning: This is a warning!

warnings.warn(’This is a warning!’)

The "once" action can be used to suppress instances of the same message from

different locations.

import warnings

warnings.simplefilter(’once’, UserWarning)

warnings.warn(’This is a warning!’)

warnings.warn(’This is a warning!’)

warnings.warn(’This is a warning!’)

The message text for all warnings is saved, and only unique messages are printed.

$ python warnings_once.py

warnings_once.py:14: UserWarning: This is a warning!

warnings.warn(’This is a warning!’)

Similarly, "module" will suppress repeated messages from the same module, no

matter what line number.

18.1.5 Alternate Message Delivery Functions

Normally, warnings are printed to sys.stderr. Change that behavior by replacing the

showwarning() function inside the warnings module. For example, to send warn-

ings to a log file instead of standard error, replace showwarning() with a function that

logs the warning.

import warnings
import logging

ptg

1176 Language Tools

logging.basicConfig(level=logging.INFO)

def send_warnings_to_log(message,category,filename,lineno,file=None):

logging.warning(

’%s:%s: %s:%s’ %

(filename, lineno, category.__name__, message))

return

old_showwarning = warnings.showwarning

warnings.showwarning = send_warnings_to_log

warnings.warn(’message’)

The warnings are emitted with the rest of the log messages when warn() is called.

$ python warnings_showwarning.py

WARNING:root:warnings_showwarning.py:24: UserWarning:message

18.1.6 Formatting

If warnings should go to standard error, but they need to be reformatted, replace for-

matwarning().

import warnings

def warning_on_one_line(message, category, filename, lineno,

file=None, line=None):

return ’-> %s:%s: %s:%s’ % \

(filename, lineno, category.__name__, message)

warnings.warn(’Warning message, before’)

warnings.formatwarning = warning_on_one_line

warnings.warn(’Warning message, after’)

The format function must return a single string containing the representation of

the warning to be displayed to the user.

$ python -u warnings_formatwarning.py

warnings_formatwarning.py:17: UserWarning: Warning message, before

warnings.warn(’Warning message, before’)

-> warnings_formatwarning.py:19: UserWarning:Warning message, after

ptg

18.1. warnings—Nonfatal Alerts 1177

18.1.7 Stack Level in Warnings

By default, the warning message includes the source line that generated it, when avail-

able. It is not always useful to see the line of code with the actual warning message,

though. Instead, warn() can be told how far up the stack it has to go to find the

line that called the function containing the warning. That way, users of a deprecated

function can see where the function is called, instead of the implementation of the

function.

1 #!/usr/bin/env python

2 # encoding: utf-8

3

4 import warnings
5

6 def old_function():

7 warnings.warn(

8 ’old_function() is deprecated, use new_function() instead’,

9 stacklevel=2)

10

11 def caller_of_old_function():

12 old_function()

13

14 caller_of_old_function()

In this example, warn() needs to go up the stack two levels, one for itself and one

for old_function().

$ python warnings_warn_stacklevel.py

warnings_warn_stacklevel.py:12: UserWarning: old_function() is

deprecated, use new_function() instead

old_function()

See Also:
warnings (http://docs.python.org/lib/module-warnings.html) The standard library

documentation for this module.

PEP 230 (www.python.org/dev/peps/pep-0230) Warning Framework.

exceptions (page 1216) Base classes for exceptions and warnings.

logging (page 878) An alternative mechanism for delivering warnings is to write to

the log.

http://docs.python.org/lib/module-warnings.html
www.python.org/dev/peps/pep-0230

ptg

1178 Language Tools

18.2 abc—Abstract Base Classes

Purpose Define and use abstract base classes for interface verification.

Python Version 2.6 and later

18.2.1 Why Use Abstract Base Classes?

Abstract base classes are a form of interface checking more strict than individual

hasattr() checks for particular methods. By defining an abstract base class, a com-

mon API can be established for a set of subclasses. This capability is especially useful

in situations where someone less familiar with the source for an application is going

to provide plug-in extensions, but they can also help when working on a large team or

with a large code base where keeping track of all the classes at the same time is difficult

or not possible.

18.2.2 How Abstract Base Classes Work

abc works by marking methods of the base class as abstract and then registering con-

crete classes as implementations of the abstract base. If an application or library requires

a particular API, issubclass() or isinstance() can be used to check an object

against the abstract class.

To start, define an abstract base class to represent the API of a set of plug-ins for

saving and loading data. Set the __metaclass__ for the new base class to ABCMeta,

and use the abstractmethod() decorator to establish the public API for the class.

The following examples use abc_base.py, which contains a base class for a set of

application plug-ins.

import abc

class PluginBase(object):
__metaclass__ = abc.ABCMeta

@abc.abstractmethod

def load(self, input):

"""Retrieve data from the input source

and return an object.

"""

@abc.abstractmethod

def save(self, output, data):

"""Save the data object to the output."""

ptg

18.2. abc—Abstract Base Classes 1179

18.2.3 Registering a Concrete Class

There are two ways to indicate that a concrete class implements an abstract API: either

explicitly register the class or create a new subclass directly from the abstract base. Use

the register() class method to add a concrete class explicitly when the class provides

the required API, but it is not part of the inheritance tree of the abstract base class.

import abc
from abc_base import PluginBase

class LocalBaseClass(object):
pass

class RegisteredImplementation(LocalBaseClass):

def load(self, input):

return input.read()

def save(self, output, data):

return output.write(data)

PluginBase.register(RegisteredImplementation)

if __name__ == ’__main__’:

print ’Subclass:’, issubclass(RegisteredImplementation,

PluginBase)

print ’Instance:’, isinstance(RegisteredImplementation(),

PluginBase)

In this example, the RegisteredImplementation is derived from Local-

BaseClass, but it is registered as implementing the PluginBase API. That means

issubclass() and isinstance() treat it as though it is derived from PluginBase.

$ python abc_register.py

Subclass: True

Instance: True

18.2.4 Implementation through Subclassing

Subclassing directly from the base avoids the need to register the class explicitly.

ptg

1180 Language Tools

import abc
from abc_base import PluginBase

class SubclassImplementation(PluginBase):

def load(self, input):

return input.read()

def save(self, output, data):

return output.write(data)

if __name__ == ’__main__’:

print ’Subclass:’, issubclass(SubclassImplementation, PluginBase)

print ’Instance:’, isinstance(SubclassImplementation(), PluginBase)

In this case, normal Python class management features are used to recognize

PluginImplementation as implementing the abstract PluginBase.

$ python abc_subclass.py

Subclass: True

Instance: True

A side effect of using direct subclassing is that it is possible to find all the imple-

mentations of a plug-in by asking the base class for the list of known classes derived

from it (this is not an abc feature, all classes can do this).

import abc
from abc_base import PluginBase

import abc_subclass
import abc_register

for sc in PluginBase.__subclasses__():

print sc.__name__

Even though abc_register() is imported, RegisteredImplementation is

not among the list of subclasses because it is not actually derived from the base.

$ python abc_find_subclasses.py

SubclassImplementation

Incomplete Implementations

Another benefit of subclassing directly from the abstract base class is that the subclass

cannot be instantiated unless it fully implements the abstract portion of the API.

ptg

18.2. abc—Abstract Base Classes 1181

import abc
from abc_base import PluginBase

class IncompleteImplementation(PluginBase):

def save(self, output, data):

return output.write(data)

PluginBase.register(IncompleteImplementation)

if __name__ == ’__main__’:

print ’Subclass:’, issubclass(IncompleteImplementation,

PluginBase)

print ’Instance:’, isinstance(IncompleteImplementation(),

PluginBase)

This keeps incomplete implementations from triggering unexpected errors at run-

time.

$ python abc_incomplete.py

Subclass: True

Instance:

Traceback (most recent call last):

File "abc_incomplete.py", line 23, in <module>

print ’Instance:’, isinstance(IncompleteImplementation(),

TypeError: Can’t instantiate abstract class

IncompleteImplementation with abstract methods load

18.2.5 Concrete Methods in ABCs

Although a concrete class must provide implementations of all abstract methods, the

abstract base class can also provide implementations that can be invoked via super().

This allows common logic to be reused by placing it in the base class, but forces sub-

classes to provide an overriding method with (potentially) custom logic.

import abc
from cStringIO import StringIO

class ABCWithConcreteImplementation(object):
__metaclass__ = abc.ABCMeta

@abc.abstractmethod

def retrieve_values(self, input):

print ’base class reading data’

return input.read()

ptg

1182 Language Tools

class ConcreteOverride(ABCWithConcreteImplementation):

def retrieve_values(self, input):

base_data = super(ConcreteOverride,

self).retrieve_values(input)

print ’subclass sorting data’

response = sorted(base_data.splitlines())

return response

input = StringIO("""line one

line two

line three

""")

reader = ConcreteOverride()

print reader.retrieve_values(input)

print

Since ABCWithConcreteImplementation() is an abstract base class, it is not

possible to instantiate it to use it directly. Subclasses must provide an override for

retrieve_values(), and in this case, the concrete class massages the data before

returning it at all.

$ python abc_concrete_method.py

base class reading data

subclass sorting data

[’line one’, ’line three’, ’line two’]

18.2.6 Abstract Properties

If an API specification includes attributes in addition to methods, it can require the

attributes in concrete classes by defining them with @abstractproperty.

import abc

class Base(object):
__metaclass__ = abc.ABCMeta

@abc.abstractproperty

def value(self):

return ’Should never get here’

ptg

18.2. abc—Abstract Base Classes 1183

@abc.abstractproperty

def constant(self):

return ’Should never get here’

class Implementation(Base):
@property

def value(self):

return ’concrete property’

constant = ’set by a class attribute’

try:
b = Base()

print ’Base.value:’, b.value

except Exception, err:

print ’ERROR:’, str(err)

i = Implementation()

print ’Implementation.value :’, i.value

print ’Implementation.constant:’, i.constant

The Base class in the example cannot be instantiated because it has only an

abstract version of the property getter methods for value and constant. The value

property is given a concrete getter in Implementation, and constant is defined

using a class attribute.

$ python abc_abstractproperty.py

ERROR: Can’t instantiate abstract class Base with abstract

methods constant, value

Implementation.value : concrete property

Implementation.constant: set by a class attribute

Abstract read-write properties can also be defined.

import abc

class Base(object):
__metaclass__ = abc.ABCMeta

def value_getter(self):

return ’Should never see this’

ptg

1184 Language Tools

def value_setter(self, newvalue):

return

value = abc.abstractproperty(value_getter, value_setter)

class PartialImplementation(Base):
@abc.abstractproperty

def value(self):

return ’Read-only’

class Implementation(Base):

_value = ’Default value’

def value_getter(self):

return self._value

def value_setter(self, newvalue):

self._value = newvalue

value = property(value_getter, value_setter)

try:
b = Base()

print ’Base.value:’, b.value

except Exception, err:

print ’ERROR:’, str(err)

try:
p = PartialImplementation()

print ’PartialImplementation.value:’, p.value

except Exception, err:

print ’ERROR:’, str(err)

i = Implementation()

print ’Implementation.value:’, i.value

i.value = ’New value’

print ’Changed value:’, i.value

The concrete property must be defined the same way as the abstract property. Try-

ing to override a read-write property in PartialImplementation with one that is

read-only does not work.

ptg

18.2. abc—Abstract Base Classes 1185

$ python abc_abstractproperty_rw.py

ERROR: Can’t instantiate abstract class Base with abstract

methods value

ERROR: Can’t instantiate abstract class PartialImplementation

with abstract methods value

Implementation.value: Default value

Changed value: New value

To use the decorator syntax with read-write abstract properties, the methods to get

and set the value must be named the same.

import abc

class Base(object):
__metaclass__ = abc.ABCMeta

@abc.abstractproperty

def value(self):

return ’Should never see this’

@value.setter

def value(self, newvalue):

return

class Implementation(Base):

_value = ’Default value’

@property

def value(self):

return self._value

@value.setter

def value(self, newvalue):

self._value = newvalue

i = Implementation()

print ’Implementation.value:’, i.value

i.value = ’New value’

print ’Changed value:’, i.value

ptg

1186 Language Tools

Both methods in the Base and Implementation classes are named value(),

although they have different signatures.

$ python abc_abstractproperty_rw_deco.py

Implementation.value: Default value

Changed value: New value

See Also:
abc (http://docs.python.org/library/abc.html) The standard library documentation

for this module.

PEP 3119 (www.python.org/dev/peps/pep-3119) Introducing abstract base classes.

collections (page 70) The collections module includes abstract base classes for

several collection types.

PEP 3141 (www.python.org/dev/peps/pep-3141) A type hierarchy for numbers.

Strategy pattern (http://en.wikipedia.org/wiki/Strategy_pattern) Description and

examples of the strategy pattern, a common plug-in implementation pattern.

Plugins and monkeypatching (http://us.pycon.org/2009/conference/schedule/
event/47/) PyCon 2009 presentation by Dr. André Roberge.

18.3 dis—Python Bytecode Disassembler

Purpose Convert code objects to a human-readable representation of the

bytecodes for analysis.

Python Version 1.4 and later

The dis module includes functions for working with Python bytecode by “disassem-

bling” it into a more human-readable form. Reviewing the bytecodes being executed

by the interpreter is a good way to hand-tune tight loops and perform other kinds of

optimizations. It is also useful for finding race conditions in multithreaded applica-

tions, since it can be used to estimate the point in the code where thread control may

switch.

Warning: The use of bytecodes is a version-specific implementation detail of the

CPython interpreter. Refer to Include/opcode.h in the source code for the ver-

sion of the interpreter you are using to find the canonical list of bytecodes.

http://docs.python.org/library/abc.html
www.python.org/dev/peps/pep-3119
www.python.org/dev/peps/pep-3141
http://en.wikipedia.org/wiki/Strategy_pattern
http://us.pycon.org/2009/conference/schedule/event/47/
http://us.pycon.org/2009/conference/schedule/event/47/

ptg

18.3. dis—Python Bytecode Disassembler 1187

18.3.1 Basic Disassembly

The function dis() prints the disassembled representation of a Python code source

(module, class, method, function, or code object). A module such as dis_simple.py

can be disassembled by running dis from the command line.

1 #!/usr/bin/env python

2 # encoding: utf-8

3

4 my_dict = { ’a’:1 }

The output is organized into columns with the original source line number, the

instruction “address” within the code object, the opcode name, and any arguments

passed to the opcode.

$ python -m dis dis_simple.py

4 0 BUILD_MAP 1

3 LOAD_CONST 0 (1)

6 LOAD_CONST 1 (’a’)

9 STORE_MAP

10 STORE_NAME 0 (my_dict)

13 LOAD_CONST 2 (None)

16 RETURN_VALUE

In this case, the source translates to five different operations to create and populate

the dictionary, and then save the results to a local variable. Since the Python inter-

preter is stack-based, the first steps are to put the constants onto the stack in the correct

order with LOAD_CONST and then use STORE_MAP to pop off the new key and value to

be added to the dictionary. The resulting object is bound to the name “my_dict” with

STORE_NAME.

18.3.2 Disassembling Functions

Unfortunately, disassembling an entire module does not recurse into functions automat-

ically.

1 #!/usr/bin/env python

2 # encoding: utf-8

ptg

1188 Language Tools

3

4 def f(*args):

5 nargs = len(args)

6 print nargs, args

7

8 if __name__ == ’__main__’:

9 import dis
10 dis.dis(f)

The results of disassembling dis_function.py show the operations for load-

ing the function’s code object onto the stack and then turning it into a function

(LOAD_CONST, MAKE_FUNCTION), but not the body of the function.

$ python -m dis dis_function.py

4 0 LOAD_CONST 0 (<code object f at 0x1

00479030, file "dis_function.py", line 4>)

3 MAKE_FUNCTION 0

6 STORE_NAME 0 (f)

8 9 LOAD_NAME 1 (__name__)

12 LOAD_CONST 1 (’__main__’)

15 COMPARE_OP 2 (==)

18 POP_JUMP_IF_FALSE 49

9 21 LOAD_CONST 2 (-1)

24 LOAD_CONST 3 (None)

27 IMPORT_NAME 2 (dis)

30 STORE_NAME 2 (dis)

10 33 LOAD_NAME 2 (dis)

36 LOAD_ATTR 2 (dis)

39 LOAD_NAME 0 (f)

42 CALL_FUNCTION 1

45 POP_TOP

46 JUMP_FORWARD 0 (to 49)

>> 49 LOAD_CONST 3 (None)

52 RETURN_VALUE

To see inside the function, it must be passed to dis().

ptg

18.3. dis—Python Bytecode Disassembler 1189

$ python dis_function.py

5 0 LOAD_GLOBAL 0 (len)

3 LOAD_FAST 0 (args)

6 CALL_FUNCTION 1

9 STORE_FAST 1 (nargs)

6 12 LOAD_FAST 1 (nargs)

15 PRINT_ITEM

16 LOAD_FAST 0 (args)

19 PRINT_ITEM

20 PRINT_NEWLINE

21 LOAD_CONST 0 (None)

24 RETURN_VALUE

18.3.3 Classes

Classes can be passed to dis(), in which case all the methods are disassembled in turn.

1 #!/usr/bin/env python

2 # encoding: utf-8

3

4 import dis
5

6 class MyObject(object):
7 """Example for dis."""

8

9 CLASS_ATTRIBUTE = ’some value’

10

11 def __str__(self):

12 return ’MyObject(%s)’ % self.name

13

14 def __init__(self, name):

15 self.name = name

16

17 dis.dis(MyObject)

The methods are listed in alphabetical order, not the order they appear in the file.

$ python dis_class.py

Disassembly of __init__:

15 0 LOAD_FAST 1 (name)

3 LOAD_FAST 0 (self)

ptg

1190 Language Tools

6 STORE_ATTR 0 (name)

9 LOAD_CONST 0 (None)

12 RETURN_VALUE

Disassembly of __str__:

12 0 LOAD_CONST 1 (’MyObject(%s)’)

3 LOAD_FAST 0 (self)

6 LOAD_ATTR 0 (name)

9 BINARY_MODULO

10 RETURN_VALUE

18.3.4 Using Disassembly to Debug

Sometimes when debugging an exception, it can be useful to see which bytecode caused

a problem. There are a couple of ways to disassemble the code around an error. The first

is by using dis() in the interactive interpreter to report about the last exception. If no

argument is passed to dis(), then it looks for an exception and shows the disassembly

of the top of the stack that caused it.

$ python

Python 2.6.2 (r262:71600, Apr 16 2009, 09:17:39)

[GCC 4.0.1 (Apple Computer, Inc. build 5250)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import dis

>>> j = 4

>>> i = i + 4

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name ’i’ is not defined

>>> dis.distb()

1 --> 0 LOAD_NAME 0 (i)

3 LOAD_CONST 0 (4)

6 BINARY_ADD

7 STORE_NAME 0 (i)

10 LOAD_CONST 1 (None)

13 RETURN_VALUE

>>>

The --> after the line number indicates the opcode that caused the error. There is

no i variable defined, so the value associated with the name cannot be loaded onto the

stack.

ptg

18.3. dis—Python Bytecode Disassembler 1191

A program can also print the information about an active traceback by passing it

to distb() directly. In this example, there is a DivideByZero exception; but since

the formula has two divisions, it is not clear which part is zero.

1 #!/usr/bin/env python

2 # encoding: utf-8

3

4 i = 1

5 j = 0

6 k = 3

7

8 # ... many lines removed ...

9

10 try:
11 result = k * (i / j) + (i / k)

12 except:
13 import dis
14 import sys
15 exc_type, exc_value, exc_tb = sys.exc_info()

16 dis.distb(exc_tb)

The bad value is easy to spot when it is loaded onto the stack in the disassembled

version. The bad operation is highlighted with the -->, and the previous line pushes the

value for j onto the stack.

$ python dis_traceback.py

4 0 LOAD_CONST 0 (1)

3 STORE_NAME 0 (i)

5 6 LOAD_CONST 1 (0)

9 STORE_NAME 1 (j)

6 12 LOAD_CONST 2 (3)

15 STORE_NAME 2 (k)

10 18 SETUP_EXCEPT 26 (to 47)

11 21 LOAD_NAME 2 (k)

24 LOAD_NAME 0 (i)

27 LOAD_NAME 1 (j)

--> 30 BINARY_DIVIDE

ptg

1192 Language Tools

31 BINARY_MULTIPLY

32 LOAD_NAME 0 (i)

35 LOAD_NAME 2 (k)

38 BINARY_DIVIDE

39 BINARY_ADD

40 STORE_NAME 3 (result)

...trimmed...

18.3.5 Performance Analysis of Loops

Besides debugging errors, dis can also help identify performance issues. Examining

the disassembled code is especially useful with tight loops where the number of Python

instructions is low, but they translate to an inefficient set of bytecodes. The helpfulness

of the disassembly can be seen by examining a few different implementations of a class,

Dictionary, that reads a list of words and groups them by their first letter.

import dis
import sys
import timeit

module_name = sys.argv[1]

module = __import__(module_name)

Dictionary = module.Dictionary

dis.dis(Dictionary.load_data)

print
t = timeit.Timer(

’d = Dictionary(words)’,

"""from %(module_name)s import Dictionary

words = [l.strip() for l in open(’/usr/share/dict/words’, ’rt’)]

""" % locals()

)

iterations = 10

print ’TIME: %0.4f’ % (t.timeit(iterations)/iterations)

The test driver application dis_test_loop.py can be used to run each incarna-

tion of the Dictionary class.

A straightforward, but slow, implementation of Dictionary starts out like this.

1 #!/usr/bin/env python

2 # encoding: utf-8

3

ptg

18.3. dis—Python Bytecode Disassembler 1193

4 class Dictionary(object):
5

6 def __init__(self, words):

7 self.by_letter = {}

8 self.load_data(words)

9

10 def load_data(self, words):

11 for word in words:

12 try:
13 self.by_letter[word[0]].append(word)

14 except KeyError:
15 self.by_letter[word[0]] = [word]

Running the test program with this version shows the disassembled program and

the amount of time it takes to run.

$ python dis_test_loop.py dis_slow_loop

11 0 SETUP_LOOP 84 (to 87)

3 LOAD_FAST 1 (words)

6 GET_ITER

>> 7 FOR_ITER 76 (to 86)

10 STORE_FAST 2 (word)

12 13 SETUP_EXCEPT 28 (to 44)

13 16 LOAD_FAST 0 (self)

19 LOAD_ATTR 0 (by_letter)

22 LOAD_FAST 2 (word)

25 LOAD_CONST 1 (0)

28 BINARY_SUBSCR

29 BINARY_SUBSCR

30 LOAD_ATTR 1 (append)

33 LOAD_FAST 2 (word)

36 CALL_FUNCTION 1

39 POP_TOP

40 POP_BLOCK

41 JUMP_ABSOLUTE 7

14 >> 44 DUP_TOP

45 LOAD_GLOBAL 2 (KeyError)

48 COMPARE_OP 10 (exception match)

51 JUMP_IF_FALSE 27 (to 81)

ptg

1194 Language Tools

54 POP_TOP

55 POP_TOP

56 POP_TOP

57 POP_TOP

15 58 LOAD_FAST 2 (word)

61 BUILD_LIST 1

64 LOAD_FAST 0 (self)

67 LOAD_ATTR 0 (by_letter)

70 LOAD_FAST 2 (word)

73 LOAD_CONST 1 (0)

76 BINARY_SUBSCR

77 STORE_SUBSCR

78 JUMP_ABSOLUTE 7

>> 81 POP_TOP

82 END_FINALLY

83 JUMP_ABSOLUTE 7

>> 86 POP_BLOCK

>> 87 LOAD_CONST 0 (None)

90 RETURN_VALUE

TIME: 0.1074

The previous output shows dis_slow_loop.py taking 0.1074 seconds to load

the 234,936 words in the copy of /usr/share/dict/words on OS X. That is not

too bad, but the accompanying disassembly shows that the loop is doing more work

than it needs to do. As it enters the loop in opcode 13, it sets up an exception context

(SETUP_EXCEPT). Then it takes six opcodes to find self.by_letter[word[0]]

before appending word to the list. If there is an exception because word[0] is not in

the dictionary yet, the exception handler does all the same work to determine word[0]

(three opcodes) and sets self.by_letter[word[0]] to a new list containing the

word.

One technique to eliminate the exception setup is to prepopulate the dictionary

self.by_letter with one list for each letter of the alphabet. That means the list for

the new word should always be found, and the value can be saved after the lookup.

1 #!/usr/bin/env python

2 # encoding: utf-8

3

4 import string
5

ptg

18.3. dis—Python Bytecode Disassembler 1195

6 class Dictionary(object):
7

8 def __init__(self, words):

9 self.by_letter = dict((letter, [])

10 for letter in string.letters)

11 self.load_data(words)

12

13 def load_data(self, words):

14 for word in words:

15 self.by_letter[word[0]].append(word)

The change cuts the number of opcodes in half, but only shaves the time down to

0.0984 seconds. Obviously, the exception handling had some overhead, but not a huge

amount.

$ python dis_test_loop.py dis_faster_loop

14 0 SETUP_LOOP 38 (to 41)

3 LOAD_FAST 1 (words)

6 GET_ITER

>> 7 FOR_ITER 30 (to 40)

10 STORE_FAST 2 (word)

15 13 LOAD_FAST 0 (self)

16 LOAD_ATTR 0 (by_letter)

19 LOAD_FAST 2 (word)

22 LOAD_CONST 1 (0)

25 BINARY_SUBSCR

26 BINARY_SUBSCR

27 LOAD_ATTR 1 (append)

30 LOAD_FAST 2 (word)

33 CALL_FUNCTION 1

36 POP_TOP

37 JUMP_ABSOLUTE 7

>> 40 POP_BLOCK

>> 41 LOAD_CONST 0 (None)

44 RETURN_VALUE

TIME: 0.0984

The performance can be improved further by moving the lookup for

self.by_letter outside of the loop (the value does not change, after all).

ptg

1196 Language Tools

1 #!/usr/bin/env python

2 # encoding: utf-8

3

4 import collections
5

6 class Dictionary(object):
7

8 def __init__(self, words):

9 self.by_letter = collections.defaultdict(list)

10 self.load_data(words)

11

12 def load_data(self, words):

13 by_letter = self.by_letter

14 for word in words:

15 by_letter[word[0]].append(word)

Opcodes 0-6 now find the value of self.by_letter and save it as a local

variable by_letter. Using a local variable only takes a single opcode, instead of

two (statement 22 uses LOAD_FAST to place the dictionary onto the stack). After this

change, the runtime is down to 0.0842 seconds.

$ python dis_test_loop.py dis_fastest_loop

13 0 LOAD_FAST 0 (self)

3 LOAD_ATTR 0 (by_letter)

6 STORE_FAST 2 (by_letter)

14 9 SETUP_LOOP 35 (to 47)

12 LOAD_FAST 1 (words)

15 GET_ITER

>> 16 FOR_ITER 27 (to 46)

19 STORE_FAST 3 (word)

15 22 LOAD_FAST 2 (by_letter)

25 LOAD_FAST 3 (word)

28 LOAD_CONST 1 (0)

31 BINARY_SUBSCR

32 BINARY_SUBSCR

33 LOAD_ATTR 1 (append)

36 LOAD_FAST 3 (word)

39 CALL_FUNCTION 1

42 POP_TOP

ptg

18.3. dis—Python Bytecode Disassembler 1197

43 JUMP_ABSOLUTE 16

>> 46 POP_BLOCK

>> 47 LOAD_CONST 0 (None)

50 RETURN_VALUE

TIME: 0.0842

A further optimization, suggested by Brandon Rhodes, is to eliminate the Python

version of the for loop entirely. If itertools.groupby() is used to arrange the

input, the iteration is moved to C. This method is safe because the inputs are known to

be sorted. If that was not the case, the program would need to sort them first.

1 #!/usr/bin/env python

2 # encoding: utf-8

3

4 import operator
5 import itertools
6

7 class Dictionary(object):
8

9 def __init__(self, words):

10 self.by_letter = {}

11 self.load_data(words)

12

13 def load_data(self, words):

14 # Arrange by letter

15 grouped = itertools.groupby(words, key=operator.itemgetter(0))

16 # Save arranged sets of words

17 self.by_letter = dict((group[0][0], group) for group in grouped)

The itertools version takes only 0.0543 seconds to run, just over half of the

original time.

$ python dis_test_loop.py dis_eliminate_loop

15 0 LOAD_GLOBAL 0 (itertools)

3 LOAD_ATTR 1 (groupby)

6 LOAD_FAST 1 (words)

9 LOAD_CONST 1 (’key’)

12 LOAD_GLOBAL 2 (operator)

15 LOAD_ATTR 3 (itemgetter)

18 LOAD_CONST 2 (0)

ptg

1198 Language Tools

21 CALL_FUNCTION 1

24 CALL_FUNCTION 257

27 STORE_FAST 2 (grouped)

17 30 LOAD_GLOBAL 4 (dict)

33 LOAD_CONST 3 (<code object

<genexpr> at 0x7e7b8, file "dis_eliminate_loop.py", line 17>)

36 MAKE_FUNCTION 0

39 LOAD_FAST 2 (grouped)

42 GET_ITER

43 CALL_FUNCTION 1

46 CALL_FUNCTION 1

49 LOAD_FAST 0 (self)

52 STORE_ATTR 5 (by_letter)

55 LOAD_CONST 0 (None)

58 RETURN_VALUE

TIME: 0.0543

18.3.6 Compiler Optimizations

Disassembling compiled source also exposes some of the optimizations made by

the compiler. For example, literal expressions are folded during compilation, when

possible.

1 #!/usr/bin/env python

2 # encoding: utf-8

3

4 # Folded

5 i = 1 + 2

6 f = 3.4 * 5.6

7 s = ’Hello,’ + ’ World!’

8

9 # Not folded

10 I = i * 3 * 4

11 F = f / 2 / 3

12 S = s + ’\n’ + ’Fantastic!’

None of the values in the expressions on lines 5–7 can change the way the opera-

tion is performed, so the result of the expressions can be computed at compilation time

and collapsed into single LOAD_CONST instructions. That is not true about lines 10–12.

ptg

18.3. dis—Python Bytecode Disassembler 1199

Because a variable is involved in those expressions, and the variable might refer to an

object that overloads the operator involved, the evaluation has to be delayed to runtime.

$ python -m dis dis_constant_folding.py

5 0 LOAD_CONST 11 (3)

3 STORE_NAME 0 (i)

6 6 LOAD_CONST 12 (19.04)

9 STORE_NAME 1 (f)

7 12 LOAD_CONST 13 (’Hello, World!’)

15 STORE_NAME 2 (s)

10 18 LOAD_NAME 0 (i)

21 LOAD_CONST 6 (3)

24 BINARY_MULTIPLY

25 LOAD_CONST 7 (4)

28 BINARY_MULTIPLY

29 STORE_NAME 3 (I)

11 32 LOAD_NAME 1 (f)

35 LOAD_CONST 1 (2)

38 BINARY_DIVIDE

39 LOAD_CONST 6 (3)

42 BINARY_DIVIDE

43 STORE_NAME 4 (F)

12 46 LOAD_NAME 2 (s)

49 LOAD_CONST 8 (’\n’)

52 BINARY_ADD

53 LOAD_CONST 9 (’Fantastic!’)

56 BINARY_ADD

57 STORE_NAME 5 (S)

60 LOAD_CONST 10 (None)

63 RETURN_VALUE

See Also:
dis (http://docs.python.org/library/dis.html) The standard library documentation for

this module, including the list of bytecode instructions (http://docs.python.org/

library/dis.html#python-bytecode-instructions).

http://docs.python.org/library/dis.html
http://docs.python.org/library/dis.html#python-bytecode-instructions
http://docs.python.org/library/dis.html#python-bytecode-instructions

ptg

1200 Language Tools

Include/opcode.h The source code for the CPython interpreter defines the byte

codes in opcode.h.

Python Essential Reference, 4th Edition, David M. Beazley
(www.informit.com/store/product.aspx?isbn=0672329786)

Python disassembly (http://thomas.apestaart.org/log/?p=927) A short discussion

of the difference between storing values in a dictionary between Python 2.5

and 2.6.

Why is looping over range() in Python faster than using a while loop?
(http://stackoverflow.com/questions/869229/why-is-looping-over-range-in-
python-faster-than-using-a-while-loop) A discussion on StackOverflow.com

comparing two looping examples via their disassembled bytecodes.

Decorator for binding constants at compile time (http://code.activestate.com/
recipes/277940/) Python Cookbook recipe by Raymond Hettinger and Skip

Montanaro with a function decorator that rewrites the bytecodes for a function to

insert global constants to avoid runtime name lookups.

18.4 inspect—Inspect Live Objects

Purpose The inspect module provides functions for introspecting on live

objects and their source code.

Python Version 2.1 and later

The inspect module provides functions for learning about live objects, including

modules, classes, instances, functions, and methods. The functions in this module can

be used to retrieve the original source code for a function, look at the arguments to a

method on the stack, and extract the sort of information useful for producing library

documentation for source code.

18.4.1 Example Module

The rest of the examples for this section use this example file, example.py.

#!/usr/bin/env python

This comment appears first

and spans 2 lines.

This comment does not show up in the output of getcomments().

"""Sample file to serve as the basis for inspect examples.

"""

www.informit.com/store/product.aspx?isbn=0672329786
http://thomas.apestaart.org/log/?p=927
http://stackover.ow.com/questions/869229/why-is-looping-over-range-in-python-faster-than-using-a-while-loop
http://stackover.ow.com/questions/869229/why-is-looping-over-range-in-python-faster-than-using-a-while-loop
http://code.activestate.com/recipes/277940/
http://code.activestate.com/recipes/277940/

ptg

18.4. inspect—Inspect Live Objects 1201

def module_level_function(arg1, arg2=’default’, *args, **kwargs):

"""This function is declared in the module."""

local_variable = arg1

class A(object):
"""The A class."""

def __init__(self, name):

self.name = name

def get_name(self):

"Returns the name of the instance."

return self.name

instance_of_a = A(’sample_instance’)

class B(A):
"""This is the B class.

It is derived from A.

"""

This method is not part of A.

def do_something(self):

"""Does some work"""

def get_name(self):

"Overrides version from A"

return ’B(’ + self.name + ’)’

18.4.2 Module Information

The first kind of introspection probes live objects to learn about them. For example,

it is possible to discover the classes and functions in a module, the methods of a

class, etc.

To determine how the interpreter will treat and load a file as a module, use

getmoduleinfo(). Pass a filename as the only argument, and the return value is a

tuple including the module base name, the suffix of the file, the mode that will be

used for reading the file, and the module type as defined in the imp module. It is impor-

tant to note that the function looks only at the file’s name and does not actually check

if the file exists or try to read the file.

import imp
import inspect
import sys

ptg

1202 Language Tools

if len(sys.argv) >= 2:

filename = sys.argv[1]

else:
filename = ’example.py’

try:
(name, suffix, mode, mtype) = inspect.getmoduleinfo(filename)

except TypeError:
print ’Could not determine module type of %s’ % filename

else:
mtype_name = { imp.PY_SOURCE:’source’,

imp.PY_COMPILED:’compiled’,

}.get(mtype, mtype)

mode_description = { ’rb’:’(read-binary)’,

’U’:’(universal newline)’,

}.get(mode, ’’)

print ’NAME :’, name

print ’SUFFIX :’, suffix

print ’MODE :’, mode, mode_description

print ’MTYPE :’, mtype_name

Here are a few sample runs.

$ python inspect_getmoduleinfo.py example.py

NAME : example

SUFFIX : .py

MODE : U (universal newline)

MTYPE : source

$ python inspect_getmoduleinfo.py readme.txt

Could not determine module type of readme.txt

$ python inspect_getmoduleinfo.py notthere.pyc

NAME : notthere

SUFFIX : .pyc

ptg

18.4. inspect—Inspect Live Objects 1203

MODE : rb (read-binary)

MTYPE : compiled

18.4.3 Inspecting Modules

It is possible to probe live objects to determine their components using getmembers().

The arguments are an object to scan (a module, class, or instance) and an optional pre-

dicate function that is used to filter the objects returned. The return value is a list of

tuples with two values: the name of the member, and the type of the member. The

inspect module includes several such predicate functions with names like ismod-

ule(), isclass(), etc.

The types of members that might be returned depend on the type of object scanned.

Modules can contain classes and functions; classes can contain methods and attributes;

and so on.

import inspect

import example

for name, data in inspect.getmembers(example):

if name.startswith(’__’):

continue
print ’%s : %r’ % (name, data)

This sample prints the members of the example module. Modules have several

private attributes that are used as part of the import implementation, as well as a set

of __builtins__. All these are ignored in the output for this example because they

are not actually part of the module and the list is long.

$ python inspect_getmembers_module.py

A : <class ’example.A’>

B : <class ’example.B’>

instance_of_a : <example.A object at 0x1004ddd10>

module_level_function : <function module_level_function at

0x1004cd050>

The predicate argument can be used to filter the types of objects returned.

ptg

1204 Language Tools

import inspect

import example

for name, data in inspect.getmembers(example, inspect.isclass):

print ’%s :’ % name, repr(data)

Only classes are included in the output now.

$ python inspect_getmembers_module_class.py

A : <class ’example.A’>

B : <class ’example.B’>

18.4.4 Inspecting Classes

Classes are scanned using getmembers() in the same way as modules, though the

types of members are different.

import inspect
from pprint import pprint

import example

pprint(inspect.getmembers(example.A), width=65)

Because no filtering is applied, the output shows the attributes, methods, slots, and

other members of the class.

$ python inspect_getmembers_class.py

[(’__class__’, <type ’type’>),

(’__delattr__’,

<slot wrapper ’__delattr__’ of ’object’ objects>),

(’__dict__’, <dictproxy object at 0x1004d0da8>),

(’__doc__’, ’The A class.’),

(’__format__’, <method ’__format__’ of ’object’ objects>),

(’__getattribute__’,

<slot wrapper ’__getattribute__’ of ’object’ objects>),

(’__hash__’, <slot wrapper ’__hash__’ of ’object’ objects>),

(’__init__’, <unbound method A.__init__>),

(’__module__’, ’example’),

ptg

18.4. inspect—Inspect Live Objects 1205

(’__new__’,

<built-in method __new__ of type object at 0x100187800>),

(’__reduce__’, <method ’__reduce__’ of ’object’ objects>),

(’__reduce_ex__’,

<method ’__reduce_ex__’ of ’object’ objects>),

(’__repr__’, <slot wrapper ’__repr__’ of ’object’ objects>),

(’__setattr__’,

<slot wrapper ’__setattr__’ of ’object’ objects>),

(’__sizeof__’, <method ’__sizeof__’ of ’object’ objects>),

(’__str__’, <slot wrapper ’__str__’ of ’object’ objects>),

(’__subclasshook__’,

<built-in method __subclasshook__ of type object at 0x100385a10>),

(’__weakref__’, <attribute ’__weakref__’ of ’A’ objects>),

(’get_name’, <unbound method A.get_name>)]

To find the methods of a class, use the ismethod() predicate.

import inspect
from pprint import pprint

import example

pprint(inspect.getmembers(example.A, inspect.ismethod))

Only unbound methods are returned now.

$ python inspect_getmembers_class_methods.py

[(’__init__’, <unbound method A.__init__>),

(’get_name’, <unbound method A.get_name>)]

The output for B includes the override for get_name(), as well as the new method,

and the inherited __init__() method implemented in A.

import inspect
from pprint import pprint

import example

pprint(inspect.getmembers(example.B, inspect.ismethod))

Methods inherited from A, such as __init__(), are identified as being methods

of B.

ptg

1206 Language Tools

$ python inspect_getmembers_class_methods_b.py

[(’__init__’, <unbound method B.__init__>),

(’do_something’, <unbound method B.do_something>),

(’get_name’, <unbound method B.get_name>)]

18.4.5 Documentation Strings

The docstring for an object can be retrieved with getdoc(). The return value is the

__doc__ attribute with tabs expanded to spaces and with indentation made uniform.

import inspect
import example

print ’B.__doc__:’

print example.B.__doc__

print
print ’getdoc(B):’

print inspect.getdoc(example.B)

The second line of the docstring is indented when it is retrieved through the attri-

bute directly, but it is moved to the left margin by getdoc().

$ python inspect_getdoc.py

B.__doc__:

This is the B class.

It is derived from A.

getdoc(B):

This is the B class.

It is derived from A.

In addition to the actual docstring, it is possible to retrieve the comments from

the source file where an object is implemented, if the source is available. The get-

comments() function looks at the source of the object and finds comments on lines

preceding the implementation.

import inspect
import example

print inspect.getcomments(example.B.do_something)

ptg

18.4. inspect—Inspect Live Objects 1207

The lines returned include the comment prefix with any whitespace prefix strip-

ped off.

$ python inspect_getcomments_method.py

This method is not part of A.

When a module is passed to getcomments(), the return value is always the first

comment in the module.

import inspect
import example

print inspect.getcomments(example)

Contiguous lines from the example file are included as a single comment, but as

soon as a blank line appears, the comment is stopped.

$ python inspect_getcomments_module.py

This comment appears first

and spans 2 lines.

18.4.6 Retrieving Source

If the .py file is available for a module, the original source code for the class or method

can be retrieved using getsource() and getsourcelines().

import inspect
import example

print inspect.getsource(example.A)

When a class is passed in, all the methods for the class are included in the output.

$ python inspect_getsource_class.py

class A(object):

"""The A class."""

def __init__(self, name):

self.name = name

ptg

1208 Language Tools

def get_name(self):

"Returns the name of the instance."

return self.name

To retrieve the source for a single method, pass the method reference to get-

source().

import inspect
import example

print inspect.getsource(example.A.get_name)

The original indent level is retained in this case.

$ python inspect_getsource_method.py

def get_name(self):

"Returns the name of the instance."

return self.name

Use getsourcelines() instead of getsource() to retrieve the lines of source

split into individual strings.

import inspect
import pprint
import example

pprint.pprint(inspect.getsourcelines(example.A.get_name))

The return value from getsourcelines() is a tuple containing a list of strings

(the lines from the source file) and a starting line number in the file where the source

appears.

$ python inspect_getsourcelines_method.py

([’ def get_name(self):\n’,

’ "Returns the name of the instance."\n’,

’ return self.name\n’],

20)

If the source file is not available, getsource() and getsourcelines() raise

an IOError.

ptg

18.4. inspect—Inspect Live Objects 1209

18.4.7 Method and Function Arguments

In addition to the documentation for a function or method, it is possible to ask for a

complete specification of the arguments the callable takes, including default values.

The getargspec() function returns a tuple containing the list of positional argument

names, the name of any variable positional arguments (e.g., *args), the name of any

variable named arguments (e.g., **kwds), and default values for the arguments. If there

are default values, they match up with the end of the positional argument list.

import inspect
import example

arg_spec = inspect.getargspec(example.module_level_function)

print ’NAMES :’, arg_spec[0]

print ’* :’, arg_spec[1]

print ’** :’, arg_spec[2]

print ’defaults:’, arg_spec[3]

args_with_defaults = arg_spec[0][-len(arg_spec[3]):]

print ’args & defaults:’, zip(args_with_defaults, arg_spec[3])

In this example, the first argument to the function, arg1, does not have a default

value. The single default, therefore, is matched up with arg2.

$ python inspect_getargspec_function.py

NAMES : [’arg1’, ’arg2’]

* : args

** : kwargs

defaults: (’default’,)

args & defaults: [(’arg2’, ’default’)]

The argspec for a function can be used by decorators or other functions to validate

inputs, provide different defaults, etc. Writing a suitably generic and reusable validation

decorator has one special challenge, though, because it can be complicated to match up

incoming arguments with their names for functions that accept a combination of named

and positional arguments. getcallargs() provides the necessary logic to handle the

mapping. It returns a dictionary populated with its arguments associated with the names

of the arguments of a specified function.

import inspect
import example
import pprint

ptg

1210 Language Tools

for args, kwds in [

((’a’,), {’unknown_name’:’value’}),

((’a’,), {’arg2’:’value’}),

((’a’, ’b’, ’c’, ’d’), {}),

((), {’arg1’:’a’}),

]:

print args, kwds

callargs = inspect.getcallargs(example.module_level_function,

*args, **kwds)

pprint.pprint(callargs, width=74)

example.module_level_function(**callargs)

print

The keys of the dictionary are the argument names of the function, so the func-

tion can be called using the ** syntax to expand the dictionary onto the stack as the

arguments.

$ python inspect_getcallargs.py

(’a’,) {’unknown_name’: ’value’}

{’arg1’: ’a’,

’arg2’: ’default’,

’args’: (),

’kwargs’: {’unknown_name’: ’value’}}

(’a’,) {’arg2’: ’value’}

{’arg1’: ’a’, ’arg2’: ’value’, ’args’: (), ’kwargs’: {}}

(’a’, ’b’, ’c’, ’d’) {}

{’arg1’: ’a’, ’arg2’: ’b’, ’args’: (’c’, ’d’), ’kwargs’: {}}

() {’arg1’: ’a’}

{’arg1’: ’a’, ’arg2’: ’default’, ’args’: (), ’kwargs’: {}}

18.4.8 Class Hierarchies

inspect includes two methods for working directly with class hierarchies. The first,

getclasstree(), creates a tree-like data structure based on the classes it is given and

their base classes. Each element in the list returned is either a tuple with a class and its

base classes or another list containing tuples for subclasses.

import inspect
import example

ptg

18.4. inspect—Inspect Live Objects 1211

class C(example.B):
pass

class D(C, example.A):

pass

def print_class_tree(tree, indent=-1):

if isinstance(tree, list):

for node in tree:

print_class_tree(node, indent+1)

else:
print ’ ’ * indent, tree[0].__name__

return

if __name__ == ’__main__’:

print ’A, B, C, D:’

print_class_tree(inspect.getclasstree([example.A, example.B, C, D]))

The output from this example is the “tree” of inheritance for the A, B, C, and D

classes. D appears twice, since it inherits from both C and A.

$ python inspect_getclasstree.py

A, B, C, D:

object

A

D

B

C

D

If getclasstree() is called with unique set to a true value, the output is

different.

import inspect
import example
from inspect_getclasstree import *

print_class_tree(inspect.getclasstree([example.A, example.B, C, D],

unique=True,

))

This time, D only appears in the output once.

ptg

1212 Language Tools

$ python inspect_getclasstree_unique.py

object

A

B

C

D

18.4.9 Method Resolution Order

The other function for working with class hierarchies is getmro(), which returns a

tuple of classes in the order they should be scanned when resolving an attribute that

might be inherited from a base class using the Method Resolution Order (MRO). Each

class in the sequence appears only once.

import inspect
import example

class C(object):
pass

class C_First(C, example.B):

pass

class B_First(example.B, C):

pass

print ’B_First:’

for c in inspect.getmro(B_First):

print ’\t’, c.__name__

print
print ’C_First:’

for c in inspect.getmro(C_First):

print ’\t’, c.__name__

This output demonstrates the “depth-first” nature of the MRO search. For

B_First, A also comes before C in the search order, because B is derived from A.

$ python inspect_getmro.py

B_First:

B_First

ptg

18.4. inspect—Inspect Live Objects 1213

B

A

C

object

C_First:

C_First

C

B

A

object

18.4.10 The Stack and Frames

In addition to introspection of code objects, inspect includes functions for inspecting

the runtime environment while a program is being executed. Most of these functions

work with the call stack and operate on “call frames.” Each frame record in the stack is

a six-element tuple containing the frame object, the filename where the code exists, the

line number in that file for the current line being run, the function name being called,

a list of lines of context from the source file, and the index into that list of the current

line. Typically, such information is used to build tracebacks when exceptions are raised.

It can also be useful for logging or when debugging programs, since the stack frames

can be interrogated to discover the argument values passed into the functions.

currentframe() returns the frame at the top of the stack (for the current func-

tion). getargvalues() returns a tuple with argument names, the names of the vari-

able arguments, and a dictionary with local values from the frame. Combining them

shows the arguments to functions and local variables at different points in the call

stack.

import inspect

def recurse(limit):

local_variable = ’.’ * limit

print limit, inspect.getargvalues(inspect.currentframe())

if limit <= 0:

return
recurse(limit - 1)

return

if __name__ == ’__main__’:

recurse(2)

ptg

1214 Language Tools

The value for local_variable is included in the frame’s local variables, even

though it is not an argument to the function.

$ python inspect_getargvalues.py

2 ArgInfo(args=[’limit’], varargs=None, keywords=None,

locals={’local_variable’: ’..’, ’limit’: 2})

1 ArgInfo(args=[’limit’], varargs=None, keywords=None,

locals={’local_variable’: ’.’, ’limit’: 1})

0 ArgInfo(args=[’limit’], varargs=None, keywords=None,

locals={’local_variable’: ’’, ’limit’: 0})

Using stack(), it is also possible to access all the stack frames from the current

frame to the first caller. This example is similar to the one shown earlier, except it waits

until reaching the end of the recursion to print the stack information.

import inspect

def show_stack():

for level in inspect.stack():

frame, filename, line_num, func, src_code, src_index = level

print ’%s[%d]\n -> %s’ % (filename,

line_num,

src_code[src_index].strip(),

)

print inspect.getargvalues(frame)

print

def recurse(limit):

local_variable = ’.’ * limit

if limit <= 0:

show_stack()

return
recurse(limit - 1)

return

if __name__ == ’__main__’:

recurse(2)

The last part of the output represents the main program, outside of the recurse()

function.

ptg

18.4. inspect—Inspect Live Objects 1215

$ python inspect_stack.py

inspect_stack.py[9]

-> for level in inspect.stack():

ArgInfo(args=[], varargs=None, keywords=None,

locals={’src_index’: 0, ’line_num’: 9, ’frame’: <frame object at

0x100360750>, ’level’: (<frame object at 0x100360750>,

’inspect_stack.py’, 9, ’show_stack’, [’ for level in

inspect.stack():\n’], 0), ’src_code’: [’ for level in

inspect.stack():\n’], ’filename’: ’inspect_stack.py’, ’func’:

’show_stack’})

inspect_stack.py[21]

-> show_stack()

ArgInfo(args=[’limit’], varargs=None, keywords=None,

locals={’local_variable’: ’’, ’limit’: 0})

inspect_stack.py[23]

-> recurse(limit - 1)

ArgInfo(args=[’limit’], varargs=None, keywords=None,

locals={’local_variable’: ’.’, ’limit’: 1})

inspect_stack.py[23]

-> recurse(limit - 1)

ArgInfo(args=[’limit’], varargs=None, keywords=None,

locals={’local_variable’: ’..’, ’limit’: 2})

inspect_stack.py[27]

-> recurse(2)

ArgInfo(args=[], varargs=None, keywords=None,

locals={’__builtins__’: <module ’__builtin__’ (built-in)>,

’__file__’: ’inspect_stack.py’, ’inspect’: <module ’inspect’ from

’/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/

inspect.pyc’>, ’recurse’: <function recurse at 0x1004cd050>,

’__package__’: None, ’__name__’: ’__main__’, ’show_stack’:

<function show_stack at 0x1004def50>, ’__doc__’: ’Inspecting the

call stack.\n’})

There are other functions for building lists of frames in different contexts,

such as when an exception is being processed. See the documentation for trace(),

getouterframes(), and getinnerframes() for more details.

ptg

1216 Language Tools

See Also:
inspect (http://docs.python.org/library/inspect.html) The standard library docu-

mentation for this module.

Python 2.3 Method Resolution Order (www.python.org/download/releases/2.3/
mro/) Documentation for the C3 Method Resolution order used by Python 2.3

and later.

pyclbr (page 1039) The pyclbr module provides access to some of the same infor-

mation as inspect by parsing the module without importing it.

18.5 exceptions—Built-in Exception Classes

Purpose The exceptions module defines the built-in errors used through-

out the standard library and by the interpreter.

Python Version 1.5 and later

In the past, Python has supported simple string messages as exceptions as well as

classes. Since version 1.5, all the standard library modules use classes for exceptions.

Starting with Python 2.5, string exceptions result in a DeprecationWarning. Support

for string exceptions will be removed in the future.

18.5.1 Base Classes

The exception classes are defined in a hierarchy, described in the standard library docu-

mentation. In addition to the obvious organizational benefits, exception inheritance is

useful because related exceptions can be caught by catching their base class. In most

cases, these base classes are not intended to be raised directly.

BaseException

Base class for all exceptions. Implements logic for creating a string representation of

the exception using str() from the arguments passed to the constructor.

Exception

Base class for exceptions that do not result in quitting the running application. All user-

defined exceptions should use Exception as a base class.

StandardError

Base class for built-in exceptions used in the standard library.

http://docs.python.org/library/inspect.html
www.python.org/download/releases/2.3/mro/
www.python.org/download/releases/2.3/mro/

ptg

18.5. exceptions—Built-in Exception Classes 1217

ArithmeticError

Base class for math-related errors.

LookupError

Base class for errors raised when something cannot be found.

EnvironmentError

Base class for errors that come from outside of Python (the operating system, file sys-

tem, etc.).

18.5.2 Raised Exceptions

AssertionError

An AssertionError is raised by a failed assert statement.

assert False, ’The assertion failed’

Assertions are commonly in libraries to enforce constraints with incoming argu-

ments.

$ python exceptions_AssertionError_assert.py

Traceback (most recent call last):

File "exceptions_AssertionError_assert.py", line 12, in <module>

assert False, ’The assertion failed’

AssertionError: The assertion failed

AssertionError is also used in automated tests created with the unittest

module, via methods like failIf().

import unittest

class AssertionExample(unittest.TestCase):

def test(self):

self.failUnless(False)

unittest.main()

ptg

1218 Language Tools

Programs that run automated test suites watch for AssertionError exceptions

as a special indication that a test has failed.

$ python exceptions_AssertionError_unittest.py

F

==

FAIL: test (__main__.AssertionExample)

--

Traceback (most recent call last):

File "exceptions_AssertionError_unittest.py", line 17, in test

self.failUnless(False)

AssertionError: False is not True

--

Ran 1 test in 0.000s

FAILED (failures=1)

AttributeError

When an attribute reference or assignment fails, AttributeError is raised.

class NoAttributes(object):
pass

o = NoAttributes()

print o.attribute

This example demonstrates what happens when trying to reference an attribute

that does not exist.

$ python exceptions_AttributeError.py

Traceback (most recent call last):

File "exceptions_AttributeError.py", line 16, in <module>

print o.attribute

AttributeError: ’NoAttributes’ object has no attribute ’attribute’

Most Python classes accept arbitrary attributes. Classes can define a fixed set of

attributes using __slots__ to save memory and improve performance.

ptg

18.5. exceptions—Built-in Exception Classes 1219

class MyClass(object):
__slots__ = (’attribute’,)

o = MyClass()

o.attribute = ’known attribute’

o.not_a_slot = ’new attribute’

Setting an unknown attribute on a class that defines __slots__ causes an

AttributeError.

$ python exceptions_AttributeError_slot.py

Traceback (most recent call last):

File "exceptions_AttributeError_slot.py", line 15, in <module>

o.not_a_slot = ’new attribute’

AttributeError: ’MyClass’ object has no attribute ’not_a_slot’

An AttributeError is also raised when a program tries to modify a read-only

attribute.

class MyClass(object):

@property

def attribute(self):

return ’This is the attribute value’

o = MyClass()

print o.attribute

o.attribute = ’New value’

Read-only attributes can be created by using the @property decorator without

providing a setter function.

$ python exceptions_AttributeError_assignment.py

This is the attribute value

Traceback (most recent call last):

File "exceptions_AttributeError_assignment.py", line 20, in

<module>

o.attribute = ’New value’

AttributeError: can’t set attribute

ptg

1220 Language Tools

EOFError

An EOFError is raised when a built-in function like input() or raw_input() does

not read any data before encountering the end of the input stream.

while True:

data = raw_input(’prompt:’)

print ’READ:’, data

Instead of raising an exception, the file method read() returns an empty string at

the end of the file.

$ echo hello | python exceptions_EOFError.py

prompt:READ: hello

prompt:Traceback (most recent call last):

File "exceptions_EOFError.py", line 13, in <module>

data = raw_input(’prompt:’)

EOFError: EOF when reading a line

FloatingPointError

This error is raised by floating-point operations that result in errors, when floating-

point exception control (fpectl) is turned on. Enabling fpectl requires an interpreter

compiled with the --with-fpectl flag. However, using fpectl is discouraged in the

standard library documentation.

import math
import fpectl

print ’Control off:’, math.exp(1000)

fpectl.turnon_sigfpe()

print ’Control on:’, math.exp(1000)

GeneratorExit

A GeneratorExit is raised inside a generator when its close() method is called.

def my_generator():

try:
for i in range(5):

print ’Yielding’, i

yield i

ptg

18.5. exceptions—Built-in Exception Classes 1221

except GeneratorExit:
print ’Exiting early’

g = my_generator()

print g.next()

g.close()

Generators should catch GeneratorExit and use it as a signal to clean up when

they are terminated early.

$ python exceptions_GeneratorExit.py

Yielding 0

0

Exiting early

IOError

This error is raised when input or output fails, for example, if a disk fills up or an input

file does not exist.

try:
f = open(’/does/not/exist’, ’r’)

except IOError as err:

print ’Formatted :’, str(err)

print ’Filename :’, err.filename

print ’Errno :’, err.errno

print ’String error:’, err.strerror

The filename attribute holds the name of the file for which the error occurred.

The errno attribute is the system error number, defined by the platform’s C library.

A string error message corresponding to errno is saved in strerror.

$ python exceptions_IOError.py

Formatted : [Errno 2] No such file or directory: ’/does/not/exist’

Filename : /does/not/exist

Errno : 2

String error: No such file or directory

ImportError

This exception is raised when a module, or a member of a module, cannot be imported.

There are a few conditions where an ImportError is raised.

ptg

1222 Language Tools

import module_does_not_exist

If a module does not exist, the import system raises ImportError.

$ python exceptions_ImportError_nomodule.py

Traceback (most recent call last):

File "exceptions_ImportError_nomodule.py", line 12, in <module>

import module_does_not_exist

ImportError: No module named module_does_not_exist

If from X import Y is used and Y cannot be found inside the module X, an

ImportError is raised.

from exceptions import MadeUpName

The error message only includes the missing name, not the module or package

from which it was being loaded.

$ python exceptions_ImportError_missingname.py

Traceback (most recent call last):

File "exceptions_ImportError_missingname.py", line 12, in

<module>

from exceptions import MadeUpName

ImportError: cannot import name MadeUpName

IndexError

An IndexError is raised when a sequence reference is out of range.

my_seq = [0, 1, 2]

print my_seq[3]

References beyond either end of a list cause an error.

$ python exceptions_IndexError.py

Traceback (most recent call last):

File "exceptions_IndexError.py", line 13, in <module>

ptg

18.5. exceptions—Built-in Exception Classes 1223

print my_seq[3]

IndexError: list index out of range

KeyError

Similarly, a KeyError is raised when a value is not found as a key of a dictionary.

d = { ’a’:1, ’b’:2 }

print d[’c’]

The text of the error message is the key being sought.

$ python exceptions_KeyError.py

Traceback (most recent call last):

File "exceptions_KeyError.py", line 13, in <module>

print d[’c’]

KeyError: ’c’

KeyboardInterrupt

A KeyboardInterrupt occurs whenever the user presses Ctrl-C (or Delete) to

stop a running program. Unlike most of the other exceptions, KeyboardInterrupt

inherits directly from BaseException to avoid being caught by global exception han-

dlers that catch Exception.

try:
print ’Press Return or Ctrl-C:’,

ignored = raw_input()

except Exception, err:

print ’Caught exception:’, err

except KeyboardInterrupt, err:

print ’Caught KeyboardInterrupt’

else:
print ’No exception’

Pressing Ctrl-C at the prompt causes a KeyboardInterrupt exception.

$ python exceptions_KeyboardInterrupt.py

Press Return or Ctrl-C: ^CCaught KeyboardInterrupt

ptg

1224 Language Tools

MemoryError

If a program runs out of memory and it is possible to recover (by deleting some objects,

for example), a MemoryError is raised.

import itertools

Try to create a MemoryError by allocating a lot of memory

l = []

for i in range(3):

try:
for j in itertools.count(1):

print i, j

l.append(’*’ * (2**30))

except MemoryError:
print ’(error, discarding existing list)’

l = []

When a program starts running out of memory, behavior after the error can be

unpredictable. The ability to even construct an error message is questionable, since that

also requires new memory allocations to create the string buffer.

$ python exceptions_MemoryError.py

python(49670) malloc: *** mmap(size=1073745920) failed

(error code=12)

*** error: can’t allocate region

*** set a breakpoint in malloc_error_break to debug

python(49670) malloc: *** mmap(size=1073745920) failed

(error code=12)

*** error: can’t allocate region

*** set a breakpoint in malloc_error_break to debug

python(49670) malloc: *** mmap(size=1073745920) failed

(error code=12)

*** error: can’t allocate region

*** set a breakpoint in malloc_error_break to debug

0 1

0 2

0 3

(error, discarding existing list)

1 1

1 2

1 3

ptg

18.5. exceptions—Built-in Exception Classes 1225

(error, discarding existing list)

2 1

2 2

2 3

(error, discarding existing list)

NameError

NameError exceptions are raised when code refers to a name that does not exist in the

current scope. An example is an unqualified variable name.

def func():

print unknown_name

func()

The error message says “global name” because the name lookup starts from the

local scope and goes up to the global scope before failing.

$ python exceptions_NameError.py

Traceback (most recent call last):

File "exceptions_NameError.py", line 15, in <module>

func()

File "exceptions_NameError.py", line 13, in func

print unknown_name

NameError: global name ’unknown_name’ is not defined

NotImplementedError

User-defined base classes can raise NotImplementedError to indicate that a method

or behavior needs to be defined by a subclass, simulating an interface.

class BaseClass(object):
"""Defines the interface"""

def __init__(self):

super(BaseClass, self).__init__()

def do_something(self):

"""The interface, not implemented"""

raise NotImplementedError(
self.__class__.__name__ + ’.do_something’

)

ptg

1226 Language Tools

class SubClass(BaseClass):
"""Implementes the interface"""

def do_something(self):

"""really does something"""

print self.__class__.__name__ + ’ doing something!’

SubClass().do_something()

BaseClass().do_something()

Another way to enforce an interface is to use the abc module to create an abstract
base class.

$ python exceptions_NotImplementedError.py

SubClass doing something!

Traceback (most recent call last):

File "exceptions_NotImplementedError.py", line 29, in <module>

BaseClass().do_something()

File "exceptions_NotImplementedError.py", line 19, in do_something

self.__class__.__name__ + ’.do_something’

NotImplementedError: BaseClass.do_something

OSError

OSError is raised when an error comes back from an operating-system-level function.

It serves as the primary error class used in the os module and is also used by subpro-

cess and other modules that provide an interface to the operating system.

import os

for i in range(10):

try:
print i, os.ttyname(i)

except OSError as err:

print
print ’ Formatted :’, str(err)

print ’ Errno :’, err.errno

print ’ String error:’, err.strerror

break

The errno and strerror attributes are filled in with system-specific values, as

for IOError. The filename attribute is set to None.

ptg

18.5. exceptions—Built-in Exception Classes 1227

$ python exceptions_OSError.py

0 /dev/ttyp0

1

Formatted : [Errno 25] Inappropriate ioctl for device

Errno : 25

String error: Inappropriate ioctl for device

OverflowError

When an arithmetic operation exceeds the limits of the variable type, an Overflow-

Error is raised. Long integers allocate more memory as values grow, so they end up

raising MemoryError. Regular integers are converted to long values, as needed.

import sys

print ’Regular integer: (maxint=%s)’ % sys.maxint

try:
i = sys.maxint * 3

print ’No overflow for ’, type(i), ’i =’, i

except OverflowError, err:

print ’Overflowed at ’, i, err

print
print ’Long integer:’

for i in range(0, 100, 10):

print ’%2d’ % i, 2L ** i

print
print ’Floating point values:’

try:
f = 2.0**i

for i in range(100):

print i, f

f = f ** 2

except OverflowError, err:

print ’Overflowed after ’, f, err

If a multiplied integer no longer fits in a regular integer size, it is converted

to a long integer object. The exponential formula using floating-point values in the

example overflows when the value can no longer be represented by a double-precision

float.

ptg

1228 Language Tools

$ python exceptions_OverflowError.py

Regular integer: (maxint=9223372036854775807)

No overflow for <type ’long’> i = 27670116110564327421

Long integer:

0 1

10 1024

20 1048576

30 1073741824

40 1099511627776

50 1125899906842624

60 1152921504606846976

70 1180591620717411303424

80 1208925819614629174706176

90 1237940039285380274899124224

Floating-point values:

0 1.23794003929e+27

1 1.53249554087e+54

2 2.34854258277e+108

3 5.5156522631e+216

Overflowed after 5.5156522631e+216 (34, ’Result too large’)

ReferenceError

When a weakref proxy is used to access an object that has already been garbage col-

lected, a ReferenceError occurs.

import gc
import weakref

class ExpensiveObject(object):
def __init__(self, name):

self.name = name

def __del__(self):

print ’(Deleting %s)’ % self

obj = ExpensiveObject(’obj’)

p = weakref.proxy(obj)

print ’BEFORE:’, p.name

obj = None

print ’AFTER:’, p.name

ptg

18.5. exceptions—Built-in Exception Classes 1229

This example causes the original object, obj, to be deleted by removing the only

strong reference to the value.

$ python exceptions_ReferenceError.py

BEFORE: obj

(Deleting <__main__.ExpensiveObject object at 0x1004667d0>)

AFTER:

Traceback (most recent call last):

File "exceptions_ReferenceError.py", line 26, in <module>

print ’AFTER:’, p.name

ReferenceError: weakly-referenced object no longer exists

RuntimeError

A RuntimeError exception is used when no other more specific exception applies.

The interpreter does not raise this exception itself very often, but some user code

does.

StopIteration

When an iterator is done, its next() method raises StopIteration. This exception

is not considered an error.

l=[0,1,2]

i=iter(l)

print i

print i.next()

print i.next()

print i.next()

print i.next()

A normal for loop catches the StopIteration exception and breaks out of the

loop.

$ python exceptions_StopIteration.py

<listiterator object at 0x100459850>

0

1

2

ptg

1230 Language Tools

Traceback (most recent call last):

File "exceptions_StopIteration.py", line 19, in <module>

print i.next()

StopIteration

SyntaxError

A SyntaxError occurs any time the parser finds source code it does not understand.

This can be while importing a module, invoking exec, or calling eval().

try:
print eval(’five times three’)

except SyntaxError, err:

print ’Syntax error %s (%s-%s): %s’ % \

(err.filename, err.lineno, err.offset, err.text)

print err

Attributes of the exception can be used to find exactly what part of the input text

caused the exception.

$ python exceptions_SyntaxError.py

Syntax error <string> (1-10): five times three

invalid syntax (<string>, line 1)

SystemError

When an error occurs in the interpreter itself and there is some chance of continuing to

run successfully, it raises a SystemError. System errors usually indicate a bug in the

interpreter and should be reported to the maintainers.

SystemExit

When sys.exit() is called, it raises SystemExit instead of exiting immediately.

This allows cleanup code in try:finally blocks to run and special environments (like

debuggers and test frameworks) to catch the exception and avoid exiting.

TypeError

A TypeError is caused by combining the wrong type of objects or calling a function

with the wrong type of object.

result = 5 + ’string’

ptg

18.5. exceptions—Built-in Exception Classes 1231

TypeError and ValueError exceptions are often confused. A ValueError

usually means that a value is of the correct type, but out of a valid range. TypeError

means that the wrong type of object is being used (i.e., an integer instead of a

string).

$ python exceptions_TypeError.py

Traceback (most recent call last):

File "exceptions_TypeError.py", line 12, in <module>

result = 5 + ’string’

TypeError: unsupported operand type(s) for +: ’int’ and ’str’

UnboundLocalError

An UnboundLocalError is a type of NameError specific to local variable

names.

def throws_global_name_error():

print unknown_global_name

def throws_unbound_local():

local_val = local_val + 1

print local_val

try:
throws_global_name_error()

except NameError, err:

print ’Global name error:’, err

try:
throws_unbound_local()

except UnboundLocalError, err:

print ’Local name error:’, err

The difference between the global NameError and the UnboundLocal is the

way the name is used. Because the name “local_val” appears on the left side of an

expression, it is interpreted as a local variable name.

$ python exceptions_UnboundLocalError.py

Global name error: global name ’unknown_global_name’ is not

defined

ptg

1232 Language Tools

Local name error: local variable ’local_val’ referenced before

assignment

UnicodeError

UnicodeError is a subclass of ValueError and is raised when a Unicode prob-

lem occurs. There are separate subclasses for UnicodeEncodeError, UnicodeDe-

codeError, and UnicodeTranslateError.

ValueError

A ValueError is used when a function receives a value that has the correct type, but

an invalid value.

print chr(1024)

The ValueError exception is a general-purpose error, used in a lot of third-party

libraries to signal an invalid argument to a function.

$ python exceptions_ValueError.py

Traceback (most recent call last):

File "exceptions_ValueError.py", line 12, in <module>

print chr(1024)

ValueError: chr() arg not in range(256)

ZeroDivisionError

When zero is used in the denominator of a division operation, a ZeroDivisionError

is raised.

print ’Division:’,

try:
print 1 / 0

except ZeroDivisionError as err:

print err

print ’Modulo :’,

try:
print 1 % 0

except ZeroDivisionError as err:

print err

ptg

18.5. exceptions—Built-in Exception Classes 1233

The modulo operator also raises ZeroDivisionError when the denominator is

zero.

$ python exceptions_ZeroDivisionError.py

Division: integer division or modulo by zero

Modulo : integer division or modulo by zero

18.5.3 Warning Categories

There are also several exceptions defined for use with the warnings module.

Warning The base class for all warnings.

UserWarning Base class for warnings coming from user code.

DeprecationWarning Used for features no longer being maintained.

PendingDeprecationWarning Used for features that are soon going to be depre-

cated.

SyntaxWarning Used for questionable syntax.

RuntimeWarning Used for events that happen at runtime that might cause problems.

FutureWarning Warning about changes to the language or library that are coming at

a later time.

ImportWarning Warning about problems importing a module.

UnicodeWarning Warning about problems with Unicode text.

See Also:
exceptions (http://docs.python.org/library/exceptions.html) The standard library

documentation for this module.

warnings (page 1170) Nonerror warning messages.

__slots__ Python Language Reference documentation for using __slots__ to reduce

memory consumption.

abc (page 1178) Abstract base classes.

math (page 223) The math module has special functions for performing floating-point

calculations safely.

weakref (page 106) The weakref module allows a program to hold references to

objects without preventing garbage collection.

http://docs.python.org/library/exceptions.html

ptg

This page intentionally left blank

ptg

Chapter 19

MODULES AND PACKAGES

Python’s primary extension mechanism uses source code saved to modules and

incorporated into a program through the import statement. The features that most de-

velopers think of as “Python” are actually implemented as the collection of modules

called the standard library, the subject of this book. Although the import feature is built

into the interpreter itself, there are several modules in the library related to the import

process.

The imp module exposes the underlying implementation of the import mechanism

used by the interpreter. It can be used to import modules dynamically at runtime, in-

stead of using the import statement to load them during start-up. Dynamically loading

modules is useful when the name of a module that needs to be imported is not known

in advance, such as for plug-ins or extensions to an application.

zipimport provides a custom importer for modules and packages saved to ZIP

archives. It is used to load Python EGG files, for example, and can also be used as a

convenient way to package and distribute an application.

Python packages can include supporting resource files such as templates, default

configuration files, images, and other data, along with source code. The interface for

accessing resource files in a portable way is implemented in the pkgutil module. It

also includes support for modifying the import path for a package, so that the contents

can be installed into multiple directories but appear as part of the same package.

19.1 imp—Python’s Import Mechanism

Purpose The imp module exposes the implementation of Python’s import

statement.

Python Version 2.2.1 and later

1235

ptg

1236 Modules and Packages

The imp module includes functions that expose part of the underlying implementation

of Python’s import mechanism for loading code in packages and modules. It is one

access point to importing modules dynamically and is useful in some cases where the

name of the module that needs to be imported is unknown when the code is written

(e.g., for plug-ins or extensions to an application).

19.1.1 Example Package

The examples in this section use a package called example with __init__.py.

print ’Importing example package’

They also use a module called submodule containing the following:

print ’Importing submodule’

Watch for the text from the print statements in the sample output when the package

or module is imported.

19.1.2 Module Types

Python supports several styles of modules. Each requires its own handling when open-

ing the module and adding it to the namespace, and support for the formats varies by

platform. For example, under Microsoft Windows, shared libraries are loaded from files

with extensions .dll or .pyd, instead of .so. The extensions for C modules may also

change when using a debug build of the interpreter instead of a normal release build,

since they can be compiled with debug information included as well. If a C extension

library or other module is not loading as expected, use get_suffixes() to print a list

of the supported types for the current platform and the parameters for loading them.

import imp

module_types = { imp.PY_SOURCE: ’source’,

imp.PY_COMPILED: ’compiled’,

imp.C_EXTENSION: ’extension’,

imp.PY_RESOURCE: ’resource’,

imp.PKG_DIRECTORY: ’package’,

}

def main():

fmt = ’%10s %10s %10s’

ptg

19.1. imp—Python’s Import Mechanism 1237

print fmt % (’Extension’, ’Mode’, ’Type’)

print ’-’ * 32

for extension, mode, module_type in imp.get_suffixes():

print fmt % (extension, mode, module_types[module_type])

if __name__ == ’__main__’:

main()

The return value is a sequence of tuples containing the file extension, the mode to

use for opening the file containing the module, and a type code from a constant defined

in the module. This table is incomplete, because some of the importable module or

package types do not correspond to single files.

$ python imp_get_suffixes.py

Extension Mode Type

.so rb extension

module.so rb extension

.py U source

.pyc rb compiled

19.1.3 Finding Modules

The first step to loading a module is finding it. find_module() scans the import search

path looking for a package or module with the given name. It returns an open file handle

(if appropriate for the type), the filename where the module was found, and a “descrip-

tion” (a tuple such as those returned by get_suffixes()).

import imp
from imp_get_suffixes import module_types

import os

Get the full name of the directory containing this module

base_dir = os.path.dirname(__file__) or os.getcwd()

print ’Package:’

f, pkg_fname, description = imp.find_module(’example’)

print module_types[description[2]], pkg_fname.replace(base_dir, ’.’)

print

print ’Submodule:’

ptg

1238 Modules and Packages

f, mod_fname, description = imp.find_module(’submodule’, [pkg_fname])

print module_types[description[2]], mod_fname.replace(base_dir, ’.’)

if f: f.close()

find_module() does not process dotted names (example.submodule), so the

caller has to take care to pass the correct path for any nested modules. That means

that when importing the nested module from the package, give a path that points to the

package directory for find_module() to locate a module within the package.

$ python imp_find_module.py

Package:

package ./example

Submodule:

source ./example/submodule.py

If find_module() cannot locate the module, it raises an ImportError.

import imp

try:
imp.find_module(’no_such_module’)

except ImportError, err:

print ’ImportError:’, err

The error message includes the name of the missing module.

$ python imp_find_module_error.py

ImportError: No module named no_such_module

19.1.4 Loading Modules

After the module is found, use load_module() to actually import it. load_module()

takes the full dotted-path module name and the values returned by find_module()

(the open file handle, filename, and description tuple).

import imp

f, filename, description = imp.find_module(’example’)

try:

ptg

19.1. imp—Python’s Import Mechanism 1239

example_package = imp.load_module(’example’, f,

filename, description)

print ’Package:’, example_package

finally:
if f:

f.close()

f, filename, description = imp.find_module(

’submodule’, example_package.__path__)

try:
submodule = imp.load_module(’example.submodule’, f,

filename, description)

print ’Submodule:’, submodule

finally:
if f:

f.close()

load_module() creates a new module object with the name given, loads the code

for it, and adds it to sys.modules.

$ python imp_load_module.py

Importing example package

Package: <module ’example’ from ’/Users/dhellmann/Documents/

PyMOTW/book/PyMOTW/imp/example/__init__.pyc’>

Importing submodule

Submodule: <module ’example.submodule’ from ’/Users/dhellmann/

Documents/PyMOTW/book/PyMOTW/imp/example/submodule.pyc’>

If load_module() is called for a module that has already been imported, the

effect is like calling reload() on the existing module object.

import imp
import sys

for i in range(2):

print i,

try:
m = sys.modules[’example’]

except KeyError:
print ’(not in sys.modules)’,

else:
print ’(have in sys.modules)’,

ptg

1240 Modules and Packages

f, filename, description = imp.find_module(’example’)

example_package = imp.load_module(’example’, f, filename,

description)

Instead of a creating a new module, the contents of the existing module are

replaced.

$ python imp_load_module_reload.py

0 (not in sys.modules) Importing example package

1 (have in sys.modules) Importing example package

See Also:
imp (http://docs.python.org/library/imp.html) The standard library documentation

for this module.

Modules and Imports (page 1080) Import hooks, the module search path, and other

related machinery in the sys (page 1055) module.

inspect (page 1200) Load information from a module programmatically.

PEP 302 (www.python.org/dev/peps/pep-0302) New import hooks.

PEP 369 (www.python.org/dev/peps/pep-0369) Post import hooks.

19.2 zipimport—Load Python Code from ZIP Archives

Purpose Import Python modules saved as members of ZIP archives.

Python Version 2.3 and later

The zipimport module implements the zipimporter class, which can be used to

find and load Python modules inside ZIP archives. The zipimporter supports the

“import hooks” API specified in PEP 302; this is how Python Eggs work.

It is not usually necessary to use the zipimport module directly, since it is possi-

ble to import directly from a ZIP archive as long as that archive appears in sys.path.

However, it is instructive to study how the importer API can be used to learn the fea-

tures available, and understand how module importing works. Knowing how the ZIP

importer works will also help debug issues that may come up when distributing appli-

cations packaged as ZIP archives created with zipfile.PyZipFile.

19.2.1 Example

These examples reuse some of the code from the discussion of zipfile to create an

example ZIP archive containing a few Python modules.

http://docs.python.org/library/imp.html
www.python.org/dev/peps/pep-0302
www.python.org/dev/peps/pep-0369

ptg

19.2. zipimport—Load Python Code from ZIP Archives 1241

import sys
import zipfile

if __name__ == ’__main__’:

zf = zipfile.PyZipFile(’zipimport_example.zip’, mode=’w’)

try:
zf.writepy(’.’)

zf.write(’zipimport_get_source.py’)

zf.write(’example_package/README.txt’)

finally:
zf.close()

for name in zf.namelist():

print name

Run zipimport_make_example.py before any of the rest of the examples to

create a ZIP archive containing all the modules in the example directory, along with

some test data needed for the examples in this section.

$ python zipimport_make_example.py

__init__.pyc

example_package/__init__.pyc

zipimport_find_module.pyc

zipimport_get_code.pyc

zipimport_get_data.pyc

zipimport_get_data_nozip.pyc

zipimport_get_data_zip.pyc

zipimport_get_source.pyc

zipimport_is_package.pyc

zipimport_load_module.pyc

zipimport_make_example.pyc

zipimport_get_source.py

example_package/README.txt

19.2.2 Finding a Module

Given the full name of a module, find_module() will try to locate that module inside

the ZIP archive.

import zipimport

importer = zipimport.zipimporter(’zipimport_example.zip’)

for module_name in [’zipimport_find_module’, ’not_there’]:

print module_name, ’:’, importer.find_module(module_name)

ptg

1242 Modules and Packages

If the module is found, the zipimporter instance is returned. Otherwise, None

is returned.

$ python zipimport_find_module.py

zipimport_find_module : <zipimporter object "zipimport_example.zip">

not_there : None

19.2.3 Accessing Code

The get_code() method loads the code object for a module from the archive.

import zipimport

importer = zipimport.zipimporter(’zipimport_example.zip’)

code = importer.get_code(’zipimport_get_code’)

print code

The code object is not the same as a module object, but it is used to create one.

$ python zipimport_get_code.py

<code object <module> at 0x1002cb130, file

"./zipimport_get_code.py", line 7>

To load the code as a usable module, use load_module() instead.

import zipimport

importer = zipimport.zipimporter(’zipimport_example.zip’)

module = importer.load_module(’zipimport_get_code’)

print ’Name :’, module.__name__

print ’Loader :’, module.__loader__

print ’Code :’, module.code

The result is a module object configured as though the code had been loaded from

a regular import.

$ python zipimport_load_module.py

<code object <module> at 0x100431d30, file

ptg

19.2. zipimport—Load Python Code from ZIP Archives 1243

"./zipimport_get_code.py", line 7>

Name : zipimport_get_code

Loader : <zipimporter object "zipimport_example.zip">

Code : <code object <module> at 0x100431d30, file

"./zipimport_get_code.py", line 7>

19.2.4 Source

As with the inspect module, it is possible to retrieve the source code for a module

from the ZIP archive, if the archive includes the source. In the case of the example,

only zipimport_get_source.py is added to zipimport_example.zip (the rest

of the modules are just added as the .pyc files).

import zipimport

importer = zipimport.zipimporter(’zipimport_example.zip’)

for module_name in [’zipimport_get_code’, ’zipimport_get_source’]:

source = importer.get_source(module_name)

print ’=’ * 80

print module_name

print ’=’ * 80

print source

print

If the source for a module is not available, get_source() returns None.

$ python zipimport_get_source.py

===

zipimport_get_code

===

None

===

zipimport_get_source

===

#!/usr/bin/env python

#

Copyright 2007 Doug Hellmann.

#

"""Retrieving the source code for a module within a zip archive.

ptg

1244 Modules and Packages

"""

#end_pymotw_header

import zipimport

importer = zipimport.zipimporter(’zipimport_example.zip’)

for module_name in [’zipimport_get_code’, ’zipimport_get_source’]

source = importer.get_source(module_name)

print ’=’ * 80

print module_name

print ’=’ * 80

print source

print

19.2.5 Packages

To determine if a name refers to a package instead of a regular module, use

is_package().

import zipimport

importer = zipimport.zipimporter(’zipimport_example.zip’)

for name in [’zipimport_is_package’, ’example_package’]:

print name, importer.is_package(name)

In this case, zipimport_is_package came from a module and the

example_package is a package.

$ python zipimport_is_package.py

zipimport_is_package False

example_package True

19.2.6 Data

There are times when source modules or packages need to be distributed with noncode

data. Images, configuration files, default data, and test fixtures are just a few examples.

Frequently, the module __path__ or __file__ attributes are used to find these data

files relative to where the code is installed.

For example, with a “normal” module, the file system path can be constructed from

the __file__ attribute of the imported package as follows.

ptg

19.2. zipimport—Load Python Code from ZIP Archives 1245

import os
import example_package

Find the directory containing the imported

package and build the data filename from it.

pkg_dir = os.path.dirname(example_package.__file__)

data_filename = os.path.join(pkg_dir, ’README.txt’)

Find the prefix of pkg_dir that represents

the portion of the path that does not need

to be displayed.

dir_prefix = os.path.abspath(os.path.dirname(__file__) or os.getcwd())

if data_filename.startswith(dir_prefix):

display_filename = data_filename[len(dir_prefix)+1:]

else:
display_filename = data_filename

Read the file and show its contents.

print display_filename, ’:’

print open(data_filename, ’r’).read()

The output will depend on where the sample code is located on the file system.

$ python zipimport_get_data_nozip.py

example_package/README.txt :

This file represents sample data which could be embedded in the ZIP

archive. You could include a configuration file, images, or any other

sort of noncode data.

If the example_package is imported from the ZIP archive instead of the file

system, using __file__ does not work.

import sys
sys.path.insert(0, ’zipimport_example.zip’)

import os
import example_package
print example_package.__file__

data_filename = os.path.join(os.path.dirname(example_package.__file__),

’README.txt’)

ptg

1246 Modules and Packages

print data_filename, ’:’

print open(data_filename, ’rt’).read()

The __file__ of the package refers to the ZIP archive, and not a directory, so

building up the path to the README.txt file gives the wrong value.

$ python zipimport_get_data_zip.py

zipimport_example.zip/example_package/__init__.pyc

zipimport_example.zip/example_package/README.txt :

Traceback (most recent call last):

File "zipimport_get_data_zip.py", line 40, in <module>

print open(data_filename, ’rt’).read()

IOError: [Errno 20] Not a directory:

’zipimport_example.zip/example_package/README.txt’

A more reliable way to retrieve the file is to use the get_data() method.

The zipimporter instance that loaded the module can be accessed through the

__loader__ attribute of the imported module.

import sys
sys.path.insert(0, ’zipimport_example.zip’)

import os
import example_package
print example_package.__file__

print example_package.__loader__.get_data(’example_package/README.txt’)

pkgutil.get_data() uses this interface to access data from within a package.

$ python zipimport_get_data.py

zipimport_example.zip/example_package/__init__.pyc

This file represents sample data which could be embedded in the ZIP

archive. You could include a configuration file, images, or any other

sort of noncode data.

The __loader__ is not set for modules not imported via zipimport.

See Also:
zipimport (http://docs.python.org/lib/module-zipimport.html) The standard lib-

rary documentation for this module.

http://docs.python.org/lib/module-zipimport.html

ptg

19.3. pkgutil—Package Utilities 1247

imp (page 1235) Other import-related functions.

PEP 302 (www.python.org/dev/peps/pep-0302) New Import Hooks.

pkgutil (page 1247) Provides a more generic interface to get_data().

19.3 pkgutil—Package Utilities

Purpose Add to the module search path for a specific package and work

with resources included in a package.

Python Version 2.3 and later

The pkgutilmodule includes functions for changing the import rules for Python pack-

ages and for loading noncode resources from files distributed within a package.

19.3.1 Package Import Paths

The extend_path() function is used to modify the search path and change the way

submodules are imported from within a package so that several different directories

can be combined as though they are one. This can be used to override installed versions

of packages with development versions or to combine platform-specific and shared

modules into a single-package namespace.

The most common way to call extend_path() is by adding these two lines to

the __init__.py inside the package.

import pkgutil
__path__ = pkgutil.extend_path(__path__, __name__)

extend_path() scans sys.path for directories that include a subdirectory

named for the package given as the second argument. The list of directories is com-

bined with the path value passed as the first argument and returned as a single list,

suitable for use as the package import path.

An example package called demopkg includes these files.

$ find demopkg1 -name ’*.py’

demopkg1/__init__.py

demopkg1/shared.py

The __init__.py file in demopkg1 contains print statements to show the search

path before and after it is modified, to highlight the difference.

www.python.org/dev/peps/pep-0302

ptg

1248 Modules and Packages

import pkgutil
import pprint

print ’demopkg1.__path__ before:’

pprint.pprint(__path__)

print

__path__ = pkgutil.extend_path(__path__, __name__)

print ’demopkg1.__path__ after:’

pprint.pprint(__path__)

print

The extension directory, with add-on features for demopkg, contains three more

source files.

$ find extension -name ’*.py’

extension/__init__.py

extension/demopkg1/__init__.py

extension/demopkg1/not_shared.py

This simple test program imports the demopkg1 package.

import demopkg1
print ’demopkg1 :’, demopkg1.__file__

try:
import demopkg1.shared

except Exception, err:

print ’demopkg1.shared : Not found (%s)’ % err

else:
print ’demopkg1.shared :’, demopkg1.shared.__file__

try:
import demopkg1.not_shared

except Exception, err:

print ’demopkg1.not_shared: Not found (%s)’ % err

else:
print ’demopkg1.not_shared:’, demopkg1.not_shared.__file__

When this test program is run directly from the command line, the not_shared

module is not found.

ptg

19.3. pkgutil—Package Utilities 1249

Note: The full file system paths in these examples have been shortened to empha-

size the parts that change.

$ python pkgutil_extend_path.py

demopkg1.__path__ before:

[’.../PyMOTW/pkgutil/demopkg1’]

demopkg1.__path__ after:

[’.../PyMOTW/pkgutil/demopkg1’]

demopkg1 : .../PyMOTW/pkgutil/demopkg1/__init__.py

demopkg1.shared : .../PyMOTW/pkgutil/demopkg1/shared.py

demopkg1.not_shared: Not found (No module named not_shared)

However, if the extension directory is added to the PYTHONPATH and the pro-

gram is run again, different results are produced.

$ export PYTHONPATH=extension

$ python pkgutil_extend_path.py

demopkg1.__path__ before:

[’.../PyMOTW/pkgutil/demopkg1’]

demopkg1.__path__ after:

[’.../PyMOTW/pkgutil/demopkg1’,

’.../PyMOTW/pkgutil/extension/demopkg1’]

demopkg1 : .../PyMOTW/pkgutil/demopkg1/__init__.pyc

demopkg1.shared : .../PyMOTW/pkgutil/demopkg1/shared.pyc

demopkg1.not_shared: .../PyMOTW/pkgutil/extension/demopkg1/not_

shared.py

The version of demopkg1 inside the extension directory has been added to the

search path, so the not_shared module is found there.

Extending the path in this manner is useful for combining platform-specific ver-

sions of packages with common packages, especially if the platform-specific versions

include C extension modules.

19.3.2 Development Versions of Packages

While developing enhancements to a project, it is common to need to test changes to

an installed package. Replacing the installed copy with a development version may be

ptg

1250 Modules and Packages

a bad idea, since it is not necessarily correct and other tools on the system are likely to

depend on the installed package.

A completely separate copy of the package could be configured in a development

environment using virtualenv, but for small modifications, the overhead of setting up

a virtual environment with all the dependencies may be excessive.

Another option is to use pkgutil to modify the module search path for modules

that belong to the package under development. In this case, however, the path must be

reversed so the development version overrides the installed version.

Given a package demopkg2 such as

$ find demopkg2 -name ’*.py’

demopkg2/__init__.py

demopkg2/overloaded.py

with the function under development located in demopkg2/overloaded.py, the

installed version contains

def func():

print ’This is the installed version of func().’

and demopkg2/__init__.py contains

import pkgutil

__path__ = pkgutil.extend_path(__path__, __name__)

__path__.reverse()

reverse() is used to ensure that any directories added to the search path by

pkgutil are scanned for imports before the default location.

This program imports demopkg2.overloaded and calls func().

import demopkg2
print ’demopkg2 :’, demopkg2.__file__

import demopkg2.overloaded
print ’demopkg2.overloaded:’, demopkg2.overloaded.__file__

ptg

19.3. pkgutil—Package Utilities 1251

print
demopkg2.overloaded.func()

Running it without any special path treatment produces output from the installed

version of func().

$ python pkgutil_devel.py

demopkg2 : .../PyMOTW/pkgutil/demopkg2/__init__.py

demopkg2.overloaded: .../PyMOTW/pkgutil/demopkg2/overloaded.py

A development directory containing

$ find develop -name ’*.py’

develop/demopkg2/__init__.py

develop/demopkg2/overloaded.py

and a modified version of overloaded

def func():

print ’This is the development version of func().’

will be loaded when the test program is run with the develop directory in the search

path.

$ export PYTHONPATH=develop

$ python pkgutil_devel.py

demopkg2 :.../PyMOTW/pkgutil/demopkg2/__init__.pyc

demopkg2.overloaded:.../PyMOTW/pkgutil/develop/demopkg2/overloaded.pyc

19.3.3 Managing Paths with PKG Files

The first example illustrated how to extend the search path using extra directories in-

cluded in the PYTHONPATH. It is also possible to add to the search path using *.pkg

files containing directory names. PKG files are similar to the PTH files used by the

ptg

1252 Modules and Packages

site module. They can contain directory names, one per line, to be added to the search

path for the package.

Another way to structure the platform-specific portions of the application from the

first example is to use a separate directory for each operating system and include a .pkg

file to extend the search path.

This example uses the same demopkg1 files and also includes the following files.

$ find os_* -type f

os_one/demopkg1/__init__.py

os_one/demopkg1/not_shared.py

os_one/demopkg1.pkg

os_two/demopkg1/__init__.py

os_two/demopkg1/not_shared.py

os_two/demopkg1.pkg

The PKG files are named demopkg1.pkg to match the package being extended.

They both contain the following.

demopkg

This demo program shows the version of the module being imported.

import demopkg1
print ’demopkg1:’, demopkg1.__file__

import demopkg1.shared
print ’demopkg1.shared:’, demopkg1.shared.__file__

import demopkg1.not_shared
print ’demopkg1.not_shared:’, demopkg1.not_shared.__file__

A simple wrapper script can be used to switch between the two packages.

#!/bin/sh

export PYTHONPATH=os_${1}

echo "PYTHONPATH=$PYTHONPATH"

echo

python pkgutil_os_specific.py

ptg

19.3. pkgutil—Package Utilities 1253

And when run with "one" or "two" as the arguments, the path is adjusted.

$./with_os.sh one

PYTHONPATH=os_one

demopkg1.__path__ before:

[’.../PyMOTW/pkgutil/demopkg1’]

demopkg1.__path__ after:

[’.../PyMOTW/pkgutil/demopkg1’,

’.../PyMOTW/pkgutil/os_one/demopkg1’,

’demopkg’]

demopkg1 : .../PyMOTW/pkgutil/demopkg1/__init__.pyc

demopkg1.shared : .../PyMOTW/pkgutil/demopkg1/shared.pyc

demopkg1.not_shared: .../PyMOTW/pkgutil/os_one/demopkg1/not_shared.pyc

$./with_os.sh two

PYTHONPATH=os_two

demopkg1.__path__ before:

[’.../PyMOTW/pkgutil/demopkg1’]

demopkg1.__path__ after:

[’.../PyMOTW/pkgutil/demopkg1’,

’.../PyMOTW/pkgutil/os_two/demopkg1’,

’demopkg’]

demopkg1 : .../PyMOTW/pkgutil/demopkg1/__init__.pyc

demopkg1.shared : .../PyMOTW/pkgutil/demopkg1/shared.pyc

demopkg1.not_shared: .../PyMOTW/pkgutil/os_two/demopkg1/not_shared.pyc

PKG files can appear anywhere in the normal search path, so a single PKG

file in the current working directory could also be used to include a development

tree.

19.3.4 Nested Packages

For nested packages, it is only necessary to modify the path of the top-level package.

For example, with the following directory structure

ptg

1254 Modules and Packages

$ find nested -name ’*.py’

nested/__init__.py

nested/second/__init__.py

nested/second/deep.py

nested/shallow.py

where nested/__init__.py contains

import pkgutil

__path__ = pkgutil.extend_path(__path__, __name__)

__path__.reverse()

and a development tree like

$ find develop/nested -name ’*.py’

develop/nested/__init__.py

develop/nested/second/__init__.py

develop/nested/second/deep.py

develop/nested/shallow.py

both the shallow and deep modules contain a simple function to print out a

message indicating whether or not they come from the installed or development

version.

This test program exercises the new packages.

import nested

import nested.shallow
print ’nested.shallow:’, nested.shallow.__file__

nested.shallow.func()

print
import nested.second.deep
print ’nested.second.deep:’, nested.second.deep.__file__

nested.second.deep.func()

When pkgutil_nested.py is run without any path manipulation, the installed

version of both modules is used.

ptg

19.3. pkgutil—Package Utilities 1255

$ python pkgutil_nested.py

nested.shallow: .../PyMOTW/pkgutil/nested/shallow.pyc

This func() comes from the installed version of nested.shallow

nested.second.deep: .../PyMOTW/pkgutil/nested/second/deep.pyc

This func() comes from the installed version of nested.second.deep

When the develop directory is added to the path, the development version of both

functions override the installed versions.

$ export PYTHONPATH=develop

$ python pkgutil_nested.py

nested.shallow: .../PyMOTW/pkgutil/develop/nested/shallow.pyc

This func() comes from the development version of nested.shallow

nested.second.deep: .../PyMOTW/pkgutil/develop/nested/second/deep.pyc

This func() comes from the development version of nested.second.deep

19.3.5 Package Data

In addition to code, Python packages can contain data files, such as templates, default

configuration files, images, and other supporting files used by the code in the package.

The get_data() function gives access to the data in the files in a format-agnostic way,

so it does not matter if the package is distributed as an EGG, as part of a frozen binary,

or as regular files on the file system.

With a package pkgwithdata containing a templates directory,

$ find pkgwithdata -type f

pkgwithdata/__init__.py

pkgwithdata/templates/base.html

the file pkgwithdata/templates/base.html contains a simple HTML template.

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

<html> <head>

<title>PyMOTW Template</title>

ptg

1256 Modules and Packages

</head>

<body>

<h1>Example Template</h1>

<p>This is a sample data file.</p>

</body>

</html>

This program uses get_data() to retrieve the template contents and print them

out.

import pkgutil

template = pkgutil.get_data(’pkgwithdata’, ’templates/base.html’)

print template.encode(’utf-8’)

The arguments to get_data() are the dotted name of the package and a filename

relative to the top of the package. The return value is a byte sequence, so it is encoded

as UTF-8 before being printed.

$ python pkgutil_get_data.py

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

<html> <head>

<title>PyMOTW Template</title>

</head>

<body>

<h1>Example Template</h1>

<p>This is a sample data file.</p>

</body>

</html>

get_data() is distribution format-agnostic because it uses the import hooks de-

fined in PEP 302 to access the package contents. Any loader that provides the hooks

can be used, including the ZIP archive importer in zipfile.

import pkgutil
import zipfile

ptg

19.3. pkgutil—Package Utilities 1257

import sys
Create a ZIP file with code from the current directory

and the template using a name that does not appear on the

local filesystem.

with zipfile.PyZipFile(’pkgwithdatainzip.zip’, mode=’w’) as zf:

zf.writepy(’.’)

zf.write(’pkgwithdata/templates/base.html’,

’pkgwithdata/templates/fromzip.html’,

)

Add the ZIP file to the import path.

sys.path.insert(0, ’pkgwithdatainzip.zip’)

Import pkgwithdata to show that it comes from the ZIP archive.

import pkgwithdata
print ’Loading pkgwithdata from’, pkgwithdata.__file__

Print the template body

print ’\nTemplate:’
data = pkgutil.get_data(’pkgwithdata’, ’templates/fromzip.html’)

print data.encode(’utf-8’)

This example uses PyZipFile.writepy() to create a ZIP archive containing

a copy of the pkgwithdata package, including a renamed version of the template

file. It then adds the ZIP archive to the import path before using pkgutil to load the

template and print it. Refer to the discussion of zipfile for more details about using

writepy().

$ python pkgutil_get_data_zip.py

Loading pkgwithdata from pkgwithdatainzip.zip/pkgwithdata/__init__.pyc

Template:

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

<html> <head>

<title>PyMOTW Template</title>

</head>

<body>

<h1>Example Template</h1>

<p>This is a sample data file.</p>

ptg

1258 Modules and Packages

</body>

</html>

See Also:
pkgutil (http://docs.python.org/lib/module-pkgutil.html) The standard library

documentation for this module.

virtualenv (http://pypi.python.org/pypi/virtualenv) Ian Bicking’s virtual environ-

ment script.

distutils Packaging tools from the Python standard library.

Distribute (http://packages.python.org/distribute/) Next-generation packaging

tools.

PEP 302 (www.python.org/dev/peps/pep-0302) New Import Hooks.

zipfile (page 457) Create importable ZIP archives.

zipimport (page 1240) Importer for packages in ZIP archives.

http://docs.python.org/lib/module-pkgutil.html
http://pypi.python.org/pypi/virtualenv
http://packages.python.org/distribute/
www.python.org/dev/peps/pep-0302

ptg

INDEX OF PYTHON
MODULES

A
abc, 1178

anydbm, 346

argparse, 795

array, 84

asynchat, 629

asyncore, 619

atexit, 890

B
base64, 670

BaseHTTPServer, 644

bisect, 93

bz2, 436

C
calendar, 191

cgitb, 965

cmd, 839

codecs, 284

collections, 70

compileall, 1037

ConfigParser, 861

contextlib, 163

Cookie, 677

copy, 117

cPickle, 334, 335

cProfile, 1022

cStringIO, 314

csv, 411

D
datetime, 180

decimal, 197

difflib, 61

dircache, 319

dis, 1186

doctest, 921

E
exceptions, 1216

F
filecmp, 322

fileinput, 883

fnmatch, 315

fractions, 207

functools, 129

G
gc, 1138

getopt, 770

getpass, 836

gettext, 899

glob, 257

gzip, 430

H
hashlib, 469

heapq, 87

hmac, 473

I
imaplib, 738

imp, 1235

inspect, 1200

itertools, 141

J
json, 690

L
linecache, 261

locale, 909

logging, 539

M
mailbox, 758

math, 223

mmap, 279

multiprocessing, 529

1259

ptg

1260 Index of Python Modules

O
operator, 153

optparse, 777

os, 1108

os.path, 248

P
pdb, 975

pickle, 333

pkgutil, 1247

platform, 1129

pprint, 123

profile, 1022

pstats, 1022

pyclbr, 1039

pydoc, 919

Q
Queue, 96

R
random, 211

re, 13

readline, 823

resource, 1134

robotparser, 674

S
sched, 894

select, 594

shelve, 343

shlex, 852

shutil, 271

signal, 497

SimpleXMLRPCServer, 714

site, 1046

sitecustomize, 1051

smtpd, 734

smtplib, 727

socket, 561

SocketServer, 609

sqlite3, 351

string, 4

StringIO, 314

struct, 102

subprocess, 481

sys, 1055

sysconfig, 1160

T
tarfile, 448

tempfile, 265

textwrap, 9

threading, 505

time, 173

timeit, 1031

trace, 1012

traceback, 958

U
unittest, 949

urllib, 651

urllib2, 657

urlparse, 638

usercustomize, 1053

uuid, 684

W
warnings, 1170

weakref, 106

whichdb, 350

X
xml.etree.ElementTree, 387

xmlrpclib, 702

Z
zipfile, 457

zipimport, 1240

zlib, 421

ptg

INDEX

SYMBOLS
?!-pattern, regular expressions,

47–48

. (dot), character sets in pattern

syntax, 23–24

: (colon), 360–362, 862

\ (backlash), escape codes for

predefined character sets, 22

| (pipe symbol), 35, 413–418

= (equals sign), config files, 862

?:(question mark/colon),

noncapturing groups, 36–37

! (exclamation point), shell

commands, 848–849

$ (dollar sign),

string.Template, 5–7

()(parentheses), dissecting matches

with groups, 30–36

* (asterisk)

bullet points, 13

filename pattern matching in

glob, 258–259

repetition in pattern syntax, 17

?-pattern, regular expressions,

46–50

? (question mark)

positional parameters with queries

in sqlite3, 360

repetition in pattern syntax, 17–20

searching text with multiline

input, 39

shell commands in cmd, 848–849

single character wildcard in

glob, 259–260

[] (square brackets), config file

sections, 862

^ (carat), 21, 39

{} (curly braces),

string.Template, 5–7

{m}, repetition in pattern syntax,

17–18

{n}, repetition in pattern syntax, 18

A
Abbreviations, option flags, 45

abc module

abstract properties, 1182–1186

concrete methods, 1181–1182

defined, 1169

how abstract base classes work,

1178

implementation through

subclassing, 1179–1181

purpose of, 1178

reasons to use abstract base

classes, 1178

reference guide, 1186

registering concrete class, 1179

ABCMeta class, 1178

abc_register() function, 1179

abspath() function,

os.path, 254

Abstract base classes. See abc
module

Abstract properties, abc,

1182–1186

abstractmethod(), abstract

base classes, 1178

@abstractproperty,abc
module, 1182–1186

accept(), socket, 572–573

Access

network communications. See
socket module

network resources. See urllib
module; urllib2 module

Access control

for concurrent use of resources in

threading, 524–526

Internet spiders, 674–677

restricting for data in sqlite3,

384–386

shared resources in

multiprocessing,

546–550

shared resources in threading,

517–523

access() function, os, 1127–1128

ACCESS_COPY argument, mmap,

280, 282–283

ACCESS_READ argument,

mmap, 280

ACCESS_WRITE argument, mmap,

280–281

acquire()method,

multiprocessing, 548

acquire()method, threading,

518–519, 522–524

Action class, 819–820

Actions

argparse, 799–802, 819–820

1261

ptg

1262 Index

Actions (continued)

readline hooks triggering,

834–835

triggering on breakpoints,

1001–1002

warning filter, 1170–1171

Actions, optparse
Boolean flags, 785–786

callbacks, 788–790

constants, 785

defined, 784

repeating options, 786–788

Adapters, 364

add() method

Maildir mailbox, 763

mbox mailbox, 759–760

new archives in tarfile, 453

add_argument(), argparse
argument types, 817–819

defining arguments, 796

defining custom actions, 819–820

exception handling, 809

add_argument_group(),
argparse, 811

add_data(), urllib2,

663–664

addfile(), tarfile, 453–455

add_header(), urllib2, 662

add_help argument, argparse,

805–807

add_mutually_
exclusive_group(),
argparse, 812–813

add_option() method,

optparse
help text, 790–791

one at a time, 778

type conversion, 783

Address

families, sockets, 562

verifying email in SMTP, 732–733

add_section(),
ConfigParser, 869–871

addsitedir() function, site,

1049–1050

adler32() function, zlib, 425

AF_INET address family,

sockets, 562

AF_INET6 address family,

sockets, 562

AF_UNIX address family,

sockets, 562

Aggregation functions, sqlite3,

380–381

Alarms, signal, 501–504

Alerts, nonfatal. See warnings
module

Algorithms

context manager utilities. See
contextlib module

functional interface to built-in

operators. See operator
module

iterator functions. See
itertools module

manipulating functions. See
functools module

overview of, 129

Aliased argument, platform,

1130–1131

Aliases, customizing pdb debugger,

1009–1011

all_done(), atexit, 890

Alternate API names,

SimpleXMLRPCServer,

716–717

Alternate byte ordering, array,

86–87

Alternate representations, math,

227–229

Anchoring

in pattern syntax, re, 24–26

searching text using multiline

input, 39

Angles, math, 238–240

Angular distribution, random, 223

annotate() function,

dircache, 321–322

anydbm module

creating new database, 348–349

creating new shelf for data

storage, 344

database types, 347–348

defined, 334, 346

error cases, 349–350

opening existing database,

348–349

purpose of, 347

reference guide, 350

APIs

context manager, 164–167

establishing with alternate names,

716–717

establishing with arbitrary

names, 719

establishing with dotted names,

718–719

Introspection, 724–725

testing compliance with, 162–163

append action

argparse, 799–802

optparse, 786

append() method, IMAP4

messages, 753–755

append_const action,

argparse, 799–802

Appending to archives

tarfile, 455

zipfile, 464–465

Application building blocks

command-line filters. See
fileinput module

command-line option and

argument parsing. See
argparse module

command-line option parsers. See
getopt module; optparse
module

configuration files. See
ConfigParser module

GNU readline library. See
readline module

line-oriented command

processors. See cmd module

overview of, 769–770

parsing shell-style syntaxes. See
shlex module

program shutdown callbacks with

atexit, 890–894

reporting with logging module,

878–883

secure password prompt with

getpass, 836–839

timed event scheduler with

sched, 890–894

Applications

localization with gettext,

907–908

optparse help settings,

793–795

Approximation distribution,

random, 222

Arbitrary API names,

SimpleXMLRPCServer, 719

ptg

Index 1263

architecture() function,

platform, 1133–1134

Archives, email

listing mailbox subfolders,

IMAP4, 743

manipulating. See mailbox
module

Archiving, data

overview of, 421

tarfile. See tarfile module

zipfile. See zipfile module

argparse module

argument actions, 799–802

argument groups, 810–812

automatically generated options,

805–807

comparing with optparse, 796,

798

conflicting options, 808–810

defined, 769

defining arguments, 796

mutually exclusive options,

812–813

nesting parsers, 813–814

option prefixes, 802–803

parsing command line, 796–797

purpose of, 795

reference guide, 822–823

setting up parser, 796

sharing parser rules, 807–808

simple examples, 797–799

sources of arguments, 804–805

variable argument lists, 815–817

argparse module, advanced

argument processing

argument types, 817–819

defining custom actions, 820–822

file arguments, 819–820

variable argument lists, 815–817

Argument groups, argparse,

810–812

ArgumentParser class,

argparse
argument types, 817–819

defined, 796

option prefixes, 803

simple examples, 797

Arguments

command, 840–842

command-line option parsing. See
argparse module

configuring callbacks for

multiple. See optparse
module

fetching messages in IMAP4,

749–752

getopt() function, 771

method and function, 1209–1210

network resource access with

urllib, 653–655

network resource access with

urllib2, 660–661

passing object to threads as, 506

passing to custom thread

type, 514

passing to multiprocessing
Process, 530

platform()function,

1130–1131

select() function, 595–596

server address lookups with

getaddrinfo(), 569–570

Arithmetic

Counter support for, 73–74

Decimal class, 199–200

operators, 155–157, 183–184

using fractions in, 210

ArithmeticError class, 1217

array module

alternate byte ordering, 86–87

defined, 69

and files, 85–86

initialization, 84–85

manipulating arrays, 85

purpose of, 84

reference guide, 87

Arrays, plural values with

gettext, 905–907

ASCII characters

enabling Unicode matching,

39–40

encoding and decoding data in

strings, 335–336

encoding binary data. See
base64 module

assert*() methods,

unittest, 952

assertFalse() method,

unittest, 953

asserting truth, unittest, 952–953

AssertionError exception,

1217–1218

assertTrue() method,

unittest, 953

asterisk. See * (asterisk)

async_chat class, 629–630

asynchat module

client, 632–634

message terminators, 629–630

purpose of, 629

putting it all together, 634–636

reference guide, 636

server and handler, 630–632

Asynchronous I/O, networking.

See asyncore module

Asynchronous protocol handler.

See asynchat module

Asynchronous system events.

See signal module

asyncore module

asynchat vs., 630–632

clients, 621–623

event loop, 623–625

purpose of, 619

reference guide, 629

servers, 619–621

SMTPServer using, 735

working with files, 628–629

working with other event loops,

625–627

atexit module

defined, 770

examples, 890–891

handling exceptions, 893–894

purpose of, 890

reference guide, 894

when callbacks are not invoked,

891–893

atof() function, locale, 917

atoi() function, locale, 917

attrib property, nodes, 392

Attribute getters, operator,

159–160

AttributeError exception,

1218–1219

Attributes

configuring cmd through,

847–848

parsed node, ElementTree,

391–393

Authentication

argparse group for, 811

failure, IMAP server, 740–741

SMTP, 730–732

ptg

1264 Index

Authorizer function, sqlite3, 384

Auto-completion, cmd, 843–844

Autocommit mode, sqlite3,

375–376

Automated framework testing. See
unittest module

Automatically generated options,

argparse, 805–807

avg() function, sqlite3,

380–381

B
B64decode(), 671–672

Babyl format, mailbox, 768

Back-references, re, 50–56

backslash (\), predefined character

sets, 22

backslashreplace mode, codec

error handling, 292, 294

Backup files, fileinput, 889

Base classes, exceptions, 1216

Base16 encoding, 673–674

Base32 encoding, 673

Base64 decoding, 671–672

Base64 encoding, 670–671

base64 module

Base64 decoding, 671–672

Base64 encoding, 670–671

defined, 637

other encodings, 673–674

purpose of, 670

reference guide, 674

URL-safe variations, 672–673

BaseException class, 1216

BaseHTTPServer module

defined, 637

handling errors, 649–650

HTTP GET, 644–646

HTTP POST, 646–647

purpose of, 644

reference guide, 651

setting headers, 650–651

threading and forking, 648–649

basename() function, path

parsing, 249–250

BaseServer class,

SocketServer, 609–610

basicConfig() function,

logging, 879

betavariate() function,

random, 223

Bidirectional communication with

process, 487–489

Binary data

preparing for transmission,

591–593

structures, 102–106

XML-RPC server, 710–712

Binary digests, hmac, 475–476

Binary heaps, heapq, 88

Binary read mode, gzip, 433–434

bind(), TCP/IP socket, 572

bisect() method, heapq, 89–90

bisect module

defined, 69

handling duplicates, 95–96

inserting in sorted order, 93–95

purpose of, 93

reference guide, 96

Blank lines

with doctest, 930–932

with linecache, 263

Bodies of text, comparing, 62–65

BOM (byte-order marker), codecs,

289–291

Boolean

argparse options, 797

logical operations with

operator, 154

optparse options, 785–786

break command, breakpoints in pdb,

990, 992–993, 998

break lineno, pdb, 990–991

Breakpoints, pdb
conditional, 998–999

ignoring, 999–1001

managing, 993–996

restarting program without losing

current, 1008–1009

setting, 990–993

temporary, 997–998

triggering actions on, 1001–1002

Browser, class, 1039–1043

BufferAwareCompleter class,

readline, 828–831

BufferedIncrementalDecoder,
codecs, 313

BufferedIncrementalEncoder,
codecs, 312

Buffers, struct, 105–106

Build-time version information,

settings in sys, 1055–1057

Building paths, os.path, 252–253

Building threaded podcast client,

Queue, 99–101

Building trees, ElementTree,

405–408

Built-in exception classes. See
exceptions module

Built-in modules, sys, 1080–1091

Built-in operators. See operator
module

__builtins__namespace,

application localization with

gettext, 908–909

__builtins__namespace,

gettext, 908–909

Bulk loading, sqlite3, 362–363

Byte-compiling source files,

compileall, 1037–1039

byte-order marker (BOM), codecs,

289–291

Byte ordering

alternate arrays, 86–87

encoding strings in codecs,

289–291

memory management with sys,

1070–1071

specifiers for struct, 103

Bytecodes

counting with dis, 1078

finding for your version of

interpreter, 1186

modifying check intervals with

sys, 1074–1078

Python disassembler for. See dis
module

byteswap() method, array, 87

bz2 module

compressing networked data,

443–448

incremental compression and

decompression, 438–439

mixed content streams, 439–440

one-shot operations in memory,

436–438

purpose of, 436

reading compressed files,

442–443

reference guide, 448

writing compressed files, 440–442

BZ2Compressor, 438–439,

444–445

BZ2Decompressor

ptg

Index 1265

compressing network data in

bz2, 445–447

incremental decompression,

438–439

mixed content streams, 424–425

BZ2File, 440–442

BZ2RequestHandler, 443–447

Bzip2 compression. See bz2
module

C
Cache

avoiding lookup overhead in, 15

caching objects in weakref,

114–117

directory listings, 319–322

importer, 1097–1098

retrieving network resources with

urllib, 651–653

Calculations, math, 230–233

Calendar class, 182–185, 191

calendar module

calculating dates, 194–195

defined, 173

formatting examples, 191–194

purpose of, 191

reference guide, 196

Call events, sys, 1102–1103

call() function, subprocess,

482–486

Callbacks

for options with optparse,

788–790

program shutdown with atexit,

890–894

reference, 108

CalledProcessError
exception, subprocess,

483–484, 486

Callee graphs, pstats, 1029–1031

Caller graphs, pstats, 1029–1031

canceling events, sched, 897–898

can_fetch(), Internet spider

access control, 675–676

Canonical name value, server

addresses, 570

capwords() function,

string, 4–5

carat (^), 21, 39

Case-insensitive matching

embedding flags in patterns,

44–45

searching text, 37–38

Case-sensitive matching, glob

pattern matching, 315–317

cat command, os, 1112–1115

Catalogs, message. See gettext
module

Categories, warning, 1170–1171

ceil() function, math, 226–227

cgi module, HTTP POST requests,

646–647

cgitb module, 965–975

defined, 919

enabling detailed tracebacks,

966–968

exception properties, 971–972

HTML output, 972

local variables in tracebacks,

968–971

logging tracebacks, 972–975

purpose of, 965–966

reference guide, 975

standard traceback dumps, 966

chain() function, itertools,

142–143

Character maps, codecs, 307–309

Character sets

pattern syntax, 20–24

using escape codes for predefined,

22–24

Characters, glob module, 258–260

charmap_decode(),
codecs, 308

charmap_encode(),
codecs, 308

chdir() function, os, 1112

Check intervals, sys, 1074–1078

check_call() function,

subprocess, 483–484

check_output() function,

subprocess, 484–486

Checksums, computing in zlib, 425

Child processes

managing I/O of, 1112–1116

waiting for, 1125–1127

chmod()function, file permissions

in UNIX, 1117–1118

choice() function, random,

215–216

choice type, optparse, 784

choices parameter, argparse, 818

Circular normal distribution,

random, 223

Circular references, pickle,

340–343

Class browser, pyclbr, 1039–1043

Class hierarchies, inspect
method resolution order,

1212–1213

working with, 1210–1212

Classes

abstract base. See abc module

built-in exception. See
exceptions module

disassembling methods,

1189–1190

inspecting with inspect,

1204–1206

scanning with pyclbr,

1041–1042

CleanUpGraph class, 1153–1159

clear command, breakpoints in

pdb, 996

clear() method, signaling

between threads, 516

Client

implementing with asynchat,

632–634

implementing with asyncore,

621–623

library for XML-RPC. See
xmlrpclibmodule

TCP/IP, 573–575

UDP, 581–583

clock() function, processor clock

time, 174–176

Clock time. See time module

close() function

creating custom tree builder, 398

deleting email messages, 758

echo server in TCP/IP

sockets, 573

process pools in

multiprocessing, 554

removing temporary files, 266

closing() function, open handles

in contextlib, 169–170

Cmd class, 839–840

cmd module

alternative inputs, 849–851

auto-completion, 843–844

command arguments, 840–842

commands from sys.argv,

851–852

ptg

1266 Index

cmd module (continued)

configuring through attributes,

847–848

defined, 769

live help, 842–843

overriding base class methods,

845–846

processing commands, 839–840

purpose of, 839

reference guide, 852

running shell commands,

848–849

cmdloop(), overriding base class

methods, 846

cmp() function, filecmp,

325–326

cmpfiles() function, 326–327

cmp_to_key()function, collation

order, 140–141

Code coverage report, trace,

1013–1017

CodecInfo object, 309–310

codecs module

byte order, 289–291

defined, 248

defining custom encoding,

307–313

encoding translation, 298–300

encodings, 285–287

error handling, 291–295

incremental encoding, 301–303

non-Unicode encodings, 300–301

opening Unicode configuration

files, 863–864

purpose of, 284

reference guide, 313–314

standard input and output streams,

295–298

Unicode data and network

communication, 303–307

Unicode primer, 284–285

working with files, 287–289

Collations

customizing in sqlite3,

381–383

functools comparison

functions, 140–141

collect() function, forcing

garbage collection, 1141–1146

collections module

Counter, 70–74

defaultdict, 74–75

defined, 69–70

deque, 75–79

namedtuple, 79–82

OrderedDict, 82–84

reference guide, 84

colon (:), 360–362, 862

Columns, sqlite3
defining new, 363–366

determining types for, 366–368

restricting access to data, 384–386

combine() function, datetime,

188–189

Comma-separated value files. See
csv module

Command handler, cmd, 839–840

Command-line

filter framework. See
fileinput module

interface, with timeit,

1035–1036

interpreter options, with sys,

1057–1058

invoking compileall from,

1039

processors. See cmd module

runtime arguments with sys,

1062–1063

starting pdb debugger from, 976

using trace directly from,

1012–1013

Command-line option parsing

and arguments. See argparse
module

Command-line option parsing

getopt. See getopt module

optparse. See optparse
module

Commands

interacting with another, 490–492

running external, with os,

1121–1122

running external, with

subprocess, 482–486

triggering actions on breakpoints,

1001–1002

comment() function, hierarchy of

Element nodes, 400–401

commenters property,

shlex, 854

Comments

embedded, with shlex, 854

inserting into regular expressions,

43–44

commit(), database changes,

368–370

commonprefix() function, path

parsing, 251

communicate() method

interacting with another

command, 490–492

working with pipes, 486–489

Communication

accessing network. See socket
module

configuring nonblocking socket,

593–594

using pickle for inter-process,

334, 338

Compact output, JSON, 692–694

compare()function, text, 62–64

Comparison

creating UUID objects to handle,

689–690

files and directories. See
filecmp module

UNIX-style filenames, 315–317

values in datetime, 187–188

Comparison, functools
collation order, 140–141

overview of, 138

reference guide, 141

rich comparison, 138–140

Comparison operators

date and time values, 185

with operator, 154–155

compile() function, expressions,

14–15

compileall module, 920,

1037–1039

compile_dir(),
compileall, 1037–1038

compile_path(),
compileall, 1038–1039

Compiler optimizations, dis,

1198–1199

complete()
accessing completion buffer, 830

text with readline, 826–827

complete_prefix, command

auto-completion, 843–844

Complex numbers, 235

compress() method, bz2
compressing network data, 443

ptg

Index 1267

incremental compression, 439

one-shot operations in memory,

436–438

compress() method, zlib
compressing network data,

426–427

incremental compression and

decompression, 424

Compress object, zlib, 423–424

Compression, data

archives in tarfile, 456

bzip2 format. See bz2 module

GNU zip library. See zlib
module

gzip module, 430–436

overview of, 421

ZIP archives. See zipfile
module

Compresslevel argument

writing compressed files in

BZ2File, 440–442

writing compressed files in

gzip, 431

compress_type argument,

zipfile, 463

Concrete classes, abc
abstract properties, 1182–1186

how abstract base classes

work, 1178

methods in abstract base classes,

1181–1182

registering, 1179

Concurrent operations. See
threading module

condition command, pdb, 998–999

Condition object

synchronizing processes, 547–548

synchronizing threads, 523–524

Conditional breakpoints, 998–999

ConfigParser module

accessing configuration settings,

864–869

combining values with

interpolation, 875–878

configuration file format, 862

defined, 770

modifying settings, 869–871

option search path, 872–875

purpose of, 861–862

reading configuration files,

862–864

reference guide, 878

saving configuration files,

871–872

Configuration files

configuring readline library,

823–824

saving in pdb debugger,

1011–1012

working with. See
ConfigParser module

Configuration variables,

sysconfig, 1160–1161

conflict_handler, argparse,

807–808

connect()function

creating embedded relational

database, 352

sending email message with

smtplib, 728

socket setup for TCP/IP echo

client, 573–574

Connections

easy TCP/IP client, 575–577

to IMAP server, 739–740

monitoring multiple, with

select()function, 596–597

segments of pipe with

subprocess, 489–490

to server with xmlrpclib,

704–706

sharing with sqlite3, 383–384

constant property, abc, 1183

Constants

option actions in optparse, 785

text, 4–9

Consuming, deque, 77–78

Container data types

Counter, 70–74

defaultdict, 74–75

deque, 75–79

namedtuple, 79–82

OrderedDict, 82–84

Context manager

locks, 522–523

utilities. See contextlib
module

Context, running profiler in, 1026

context_diff()function,

difflib output, 65

contextlib module

closing open handles, 169–170

context manager API, 164–167

defined, 129

from generator to context

manager, 167–168

nesting contexts, 168–169

purpose of, 163

reference guide, 170–171

contextmanager() decorator,

167–168

Contexts

decimal module, 201–205

nesting, 168–169

reference guide, 207

continue command, pdb
breakpoints, 991

Controlling parser, shlex, 856–858

Conversion

argument types in argparse,

817–819

optparse option values, 783

Converter, 364

Cookie module

alternative output formats,

682–683

creating and setting cookies, 678

defined, 637

deprecated classes, 683

encoded values, 680–681

morsels, 678–680

purpose of, 677–678

receiving and parsing cookie

headers, 681–682

reference guide, 683

copy() function

creating shallow copies with

copy, 118

files, with shutil, 273

IMAP4 messages, 755–756

__copy__() method, 118–119,

819–820

copy module

customizing copy behavior,

119–120

deep copies, 118–119

defined, 70

purpose of, 117–118

recursion in deep copy, 120–123

reference guide, 123

shallow copies, 118

copy2() function, shutil,

273–274

copyfile() function, shutil,

271–272

ptg

1268 Index

copyfileobj() function,

shutil, 272

Copying

directories, 276–277

duplicating objects using copy.

See copy module

files, 271–275

copymode() function, shutil,

274–276

copysign() function, math,

229–230

copystat() function, shutil,

275–276

copytree() function, shutil,

276–277

Cosine, math
hyperbolic functions, 243–244

trigonometric functions, 240–243

count action, optparse, 787–788

count() function

customizing aggregation in

sqlite3, 380–381

new iterator values with

itertools, 146–147

Counter container

accessing counts, 71–73

container data type, 70

initializing, 70–71

supporting arithmetic, 73–74

Counts, accessing with Counter,

71–73

count_words(), MapReduce,

558

Coverage report information,

trace, 1013–1017

CoverageResults, Trace
object, 1020–1021

cPickle, importing, 335

cProfile module, 1022

CPUs, setting process limits, 1137

crc32() function, checksums in

zlib, 425

create(), messages in

IMAP4, 756

create_aggregate(),
sqlite3, 381

create_connection(), TCP/IP

clients, 575–577

createfunction() method,

sqlite3, 379–380

CRITICAL level, logging, 881

Cryptography

creating UUID name-based

values, 686–688

generating hashes and message

digests. See hashlib module

message signing and verification.

See hmac module

cStringIO buffers, 314–315

CSV (comma-separated value) files.

See csv module

csv module

bulk loading in sqlite3,

362–363

defined, 334

dialects, 413–418

purpose of, 411

reading, 411–412

reference guide, 420

retrieving account mailboxes in

imaplib, 742

using field names, 418–420

writing, 412–413

ctime() function, wall clock

time, 174

Cultural localization API.

See locale module

curly braces { },

string.Template, 5–7

Currency setting, locale, 915–916

Current date, 182

Current process,

multiprocessing, 531–532

Current thread, threading,

507–508

Current usage, resource,

1134–1135

Current working directory, os, 1112

currentframe() function,

inspect, 1213

Cursor, 355, 357–358

Custom importer, sys, 1083–1085,

1093–1094

Customizing

actions, with argparse,

819–820

aggregation, with sqlite3,

380–381

classes, with operator,

161–162

copy behavior, with copy,

119–120

encoding, with codecs, 307–313

package importing, with sys,

1091–1093

site configuration, with site,

1051–1052

sorting, with sqlite3, 381–383

user configuration, with site,

1053–1054

cycle() function,

itertools, 147

Cyclic references, weakref,

109–114

D
Daemon processes,

multiprocessing, 532–534

Daemon threads, threading,

509–511, 512–513

Data archiving

overview of, 421

tar archive access. See tarfile
module

ZIP archive access. See
zipfile module

Data argument, SMTPServer
class, 734

Data communication, Unicode,

303–307

Data compression

bzip2 compression. See bz2
module

GNU zlib compression. See zlib
module

overview of, 421

read and write GNU zip files. See
gzip module

ZIP archives. See zipfile
module

Data(), creating custom XML tree

builder, 398

Data decompression

archives in tarfile, 456

bzip2 format. See bz2 module

GNU zip library. See zlib
module

gzip module, 430–436

overview of, 421

ZIP archives, See zipfile
module

data definition language (DDL)

statements, 353–355

Data extremes, from heap, 92–93

Data files

ptg

Index 1269

retrieving for packages with

pkgutil, 1255–1258

retrieving with zipimport,

1244–1246

Data persistence and exchange

anydbm module, 347–350

comma-separated value files. See
csv module

embedded relational database. See
sqlite3 module

object serialization. See pickle
module

overview of, 333–334

shelve module, 343–346

whichdb module, 350–351

XML manipulation API. See
ElementTree

Data structures

array module, 84–87

bisect module, 93–96

collections module. See
collections module

copy module, 117–123

heapq module, 87–93

overview of, 69–70

pprint module, 123–127

Queue module, 96–102

struct module, 102–106

weakref module. See
weakref module

Data types

encoding and decoding in

JSON, 690

XML-RPC server, 706–709

Database types, anydbm, 347–348

Databases

identifying DBM-style formats,

350–351

implementing embedded

relational. See sqlite3
module

providing interface for

DBM-style. See anydbm
module

Data_encoding value,

translation, 299

Date arithmetic, datetime,

186–187

Date class, calendar, 182–185

Date columns, sqlite3 converters

for, 364

Date values

comparing time and, 184–185

datetime module, 182–185

Dates and times

calendar module dates,

191–196

clock time. See time module

locale module, 917–918

manipulating values. See
datetime module

overview of, 173

Datetime class, 188–189

datetime module

combining dates and times,

188–189

comparing values, 187–188

converters for date/timestamp

columns in sqlite3, 364

date arithmetic, 186–187

dates, 182–185

defined, 173

formatting and parsing, 189–190

purpose of, 180

reference guide, 190–191

time zones, 190

timedelta, 185–186

times, 181–182

day attribute, date class,

182–183

DBfilenameShelf class,

343–344

dbhash module, 347, 348–349

dbm module

accessing DBM-style databases,

347–348

creating new database, 348–349

creating new shelf, 344

DBM-style databases. See also
anydbm module, 350–351

DDL (data definition language)

statements, 353–355

DEBUG level, logging,

881–882

DEBUG_COLLECTABLE flag, gc,

1152, 1154

Debugging

memory leaks with gc,

1151–1159

threads via thread names,

507–508

threads with sys, 1078–1080

using cgitb. See cgitb
module

using dis, 1190–1192

using interactive debugger. See
pdb module

using predicted names in

temporary files, 269–270

DebuggingServer, SMTP,

735

DEBUG_INSTANCES flag, gc,

1154–1155

DEBUG_LEAK flag, gc, 1158–1159

DEBUG_OBJECTS flag, gc, 1152

DEBUG_SAVEALL flag, gc, 1156,

1159

DEBUG_STATS flag, gc, 1152

DEBUG_UNCOLLECTABLE flag, gc,

1152, 1154

decimal module

arithmetic, 199–200

contexts, 201–207

Decimal class, 198–199

defined, 197

fractions, 207–211

math module, 223–245

purpose of, 197

random module, 211–223

special values, 200–201

decode() method, custom

encoding, 312–313

decoded() method,

encodings, 286

Decoding

Base64, 671–672

data in strings with pickle,

335–336

error handling with codecs,

294–295

files with codecs, 287–289

JSON, 690, 697–700

Decoding maps, 307–309

decompress() method

compressing network data in

bz2, 443

compressing network data in

zlib, 426–427

Decompress object, zlib,

423–425

Decompression, data

archives in tarfile, 456

bzip2 format. See bz2 module

ptg

1270 Index

Decompression, data (continued)

GNU zip library. See zlib
module

gzip module, 430–436

overview of, 421

ZIP archives. See zipfile
module

Decompression, zlib
compressing network data,

426–430

incremental, 423–424

in mixed content streams,

424–425

working with data in memory,

422–423

decompressobj(), zlib,

424–425

Decorators, functools
acquiring function properties,

132–133, 136–138

other callables, 133–136

partial objects, 130–132

reference guide, 141

dedented_text,
textwrap, 11–13

Deep copies, copy
creating, 118–119

customizing copy behavior, 119

recursion, 120–123

__deepcopy__() method, copy,

118–123

deepcopy()method, 118–119

default() method, cmd, 840,

846

DEFAULT section,

ConfigParser, 872, 876

Defaultdict, container data type,

74–75

DEFERRED isolation level,

sqlite3, 373–374

Degrees

converting from radians to,

239–240

converting to radians from,

238–239

Delay function, Scheduler, 894–896

Deleting

email messages, 756–758

messages from Maildir mailbox,

764–765

messages from mbox mailbox,

761–762

Delimiter class attribute,

string.Template, 7–9

delitem() function, sequence

operators, 158

Denominator values, creating

fraction instances, 207–208

DeprecationWarning, 182,

1233

deque
consuming, 77–78

container data type, 75–76

populating, 76–77

rotation, 78–79

detect_types flag, sqlite3,

363–366

Developer tools

byte-compiling source files,

1037–1039

creating class browser,

1039–1043

detailed traceback reports. See
cgitb module

exceptions and stack traces. See
traceback module

interactive debugger. See pdb
module

online help for modules, 920–921

overview of, 919–920

performance analysis with

profile, 1022–1026

performance analysis with

pstats, 1027–1031

testing with automated

framework. See unittest
module

testing with documentation. See
doctest module

timing execution of bits of code.

See timeit module

tracing program flow. See trace
module

Dialect parameters, csv, 415–417

Dialects, csv
automatically detecting, 417–418

dialect parameters, 415–417

overview of, 413–414

Dictionaries

JSON format for encoding, 694

storing values using timeit,

1033–1035

DictReader class, csv, 418–420

DictWriter class, csv, 418–420

Diff-based reporting options,

doctest, 933–935

Differ class, 62, 65

difflib module

comparing arbitrary types, 66–68

comparing bodies of text, 62–65

comparing sequences, 61–62

junk data, 65–66

reference guide, 68

digest() method

binary digests in hmac, 475–476

calculating MD5 hash in

hashlib, 470

dircache module

annotated listings, 321–322

defined, 247

listing directory contents,

319–321

purpose of, 319

reference guide, 322

dircmp class, filecmp, 326,

328–332

Directories

cache listings, 319–322

comparing, 327–332

compiling one only, 1037–1038

creating temporary, 268–269

functions in os, 1118–1119

installing message catalogs

in, 902

site module user, 1047–1048

Directory trees

copying directories, 276–277

moving directory, 278

removing directory and its

contents, 277–278

traversing in os, 1120–1121

traversing in os.path, 256–257

dirname() function, path

parsing, 250

dis() function, 1187

dis module

basic disassembly, 1187

classes, 1189–1190

compiler optimizations,

1198–1199

counting bytecodes with, 1078

defined, 1169

disassembling functions,

1187–1189

performance analysis of loops,

1192–1198

ptg

Index 1271

purpose of, 1186

reference guide, 1199–1200

using disassembly to debug,

1190–1192

disable command, breakpoints in

pdb, 993–994

Disabling, site, 1054

__dispatch() method,

MyService, 723

Dispatcher class, asyncore,

619–621

Dispatching, overriding in

SimpleXMLRPCServer,

722–723

displayhook, sys, 1060–1062

Dissecting matches with groups, re,

30–36

distb() function, 1191

disutils, sysconfig extracted

from, 1160

Division operators, 156–157

DNS name, creating UUID from, 687

DocFileSuite class, 945

doc_header attribute, cmd,

847–848

doctest module

defined, 919

external documentation, 939–942

getting started, 922–924

handling unpredictable output,

924–928

purpose of, 921–922

reference guide, 948–949

running tests, 942–945

test context, 945–948

test locations, 936–939

tracebacks, 928–930

using unittest vs., 922

working around whitespace,

930–935

DocTestSuite class, 945

Documentation

retrieving strings with inspect,

1206–1207

testing through. See doctest
module

Documents, XML

building with Element nodes,

400–401

finding nodes in, 390–391

parsing, 387

watching events while parsing,

393–396

do_EOF(), cmd, 839–840

do_GET() method, HTTP GET,

644–646

dollar sign ($),

string.Template, 5–7

Domain, installing message catalogs

in directories, 902

Domain sockets, UNIX, 583–587

do_POST() method, HTTP POST,

646–647

do_shell(), cmd, 848–849

dot (.), character sets in pattern

syntax, 23–24

DOTALL regular expression flag,

39, 45

Dotted API names,

SimpleXMLRPCServer,

718–719, 721

Double-ended queue (deque),

collections, 75–79

double_space()function,

doctest, 930

down (d) command, pdb, 980

downloadEnclosures()
function, Queue class, 99–102

dropwhile() function,

itertools, 148–149, 150

dump() function, json, 700–701

dumpdbm module, 348–349

dumps() function

encoding data structure with

pickle, 335–336

JSON format, 692–694

Duplicating objects. See copy
module

E
Echo client

implementing with asynchat,

632–636

implementing with asyncore,

621–625

TCP/IP, 573–574

UDP, 581–583

Echo server

implementing with asynchat,

630–632, 634–636

implementing with asyncore,

619–625

SocketServer example,

610–615

TCP/IP socket, 572–573

UDP, 581–583

EchoHandler class, 620–621,

630–632

EchoRequestHandler,
SocketServer, 611–612

ehlo(), SMTP encryption,

730–732

element() function,

ElementTree, 400–401

elements() method,

Counter, 72

ElementTree
building documents with element

nodes, 400–401

building trees from lists of nodes,

405–408

creating custom tree builder,

396–398

defined, 334

finding nodes in document,

390–391

parsed note attributes, 391–393

parsing strings, 398–400

parsing XML document, 387–388

pretty-printing XML, 401–403

purpose of, 387

reference guide, 410–411

serializing XML to stream,

408–410

setting element properties,

403–405

traversing parsed tree, 388–390

watching events while parsing,

393–396

ELLIPSIS option, unpredictable

output in doctest, 925

Email

IMAP4 client library. See
imaplib module

manipulating archives. See
mailbox module

sample mail servers, smptd
module, 734–738

SMTP client. See smtplib
module

Embedded comments, shlex, 854

Embedded flags in patterns,

searching text, 44–45

ptg

1272 Index

Embedded relational database. See
sqlite3 module

empdir() function, tempfile,

270–271

emptyline(), cmd, 846

enable command, breakpoints in

pdb, 994–996

enable() function, cgitb, 969,

972–973

encode() method

custom encoding, 312–313

JSONEncoder class, 698

encodedFile() function,

translations, 298–299

Encoding

binary data with ASCII. See
base64 module

Cookie headers, 680–681

data in strings with pickle,

335–336

files for upload with urllib2,

664–667

JSON, classes for, 697–700

JSON, custom types, 695–697

JSON, dictionaries, 694

JSON, simple data types, 690

JSON, working with streams and

files, 700–701

network resource access with

urllib, 653–655

network resource access with

urllib2, 660–661

Encoding, codecs
byte ordering, 289–291

defining custom, 307

error handling, 291–294

incremental, 301–303

non-Unicode, 300–301

standard I/O streams, 295–298

translation, 298–300

understanding, 285–287

Unicode data and network

communication, 303–307

working with files, 287–289

Encoding maps, 307–309

Encryption, SMTP class, 732–733

end events, watching while parsing,

393–396

end() method

creating custom tree builder, 398

finding patterns in text, 14

end-ns events, watching while

parsing, 394–396

Endianness

byte ordering in codecs,

289–291

reference guide, 314

struct module, 103–105

__enter__() method,

contextlib, 164–165

enter() method, sched, 895,

897–898

enterabs() method, sched,

897–898

enumerate(), threads, 512–513

Enumerations, optparse, 784

Environment variables, os,

1111–1112

EnvironmentError class,

exceptions, 1217

EOFError exception, 1220

epoll() function, select, 608

Equality

OrderedDict, 83–84

testing with unittest, 953–955

equals sign (=), config files, 862

erf() function, math, 244–245

erfc() function, math, 245

Error cases, anydbm, 349–350

error conflict_handler,

argparse, 808–810

Error handling. See also Exception

handling.

BaseHTTPServer, 649–650

codecs, 291–295

imports, 1094–1095

linecache, 263–264

logging, 878–883

shlex, 858–859

subprocess, 483–486

tracebacks. See traceback
module

ERROR level, logging, 881–882

Escape codes, 22–24, 39–40

Event loop, asyncore, 623–627

Events

asynchronous system. See
signal module

flags for poll(), 604

hooks for settrace(), 1101

POLLERR, 607

signaling between processes,

545–546

signaling between threads,

516–517

watching while parsing, 393–396,

894–898

excel dialect, CSV, 414

excel-tabs dialect, CSV, 414

excepthook, sys, 1072

Exception class, 1216

Exception classes, built-in. See
exceptions module

Exception handling. See also Error

handling.

argparse, 808–810

atexit, 893–894

cgitb. See cgitb module

readline ignoring, 827

sys, 1071–1074

traceback, 959–962

tracing program as it runs,

1106–1107

type conversion in

argparse, 818

XML-RPC server, 712

Exceptional sockets, select()
function, 598

Exceptional values, math, 224–226

Exceptions

debugging using dis, 1190–1192

testing for, unittest, 955–956

exceptions module

base classes, 1216–1217

defined, 1169

purpose of, 1216

raised exceptions. See Raised

exceptions

reference guide, 1233

warning categories, 1233

Exchange, data. See data persistence

and exchange

exc_info(), sys, 1072–1073

exclamation point (!), shell

commands, 848–849

EXCLUSIVE isolation level,

sqlite3, 374–375

exec() function, os, 1124–1125,

1127

Executable architecture, platform,

1133–1134

execute() method, sqlite3,

355, 359–360

executemany() method,

sqlite3, 362–363

ptg

Index 1273

executescript() method,

sqlite3, 354

Execution

changing flow in pdb, 1002–1009

timing for small bits of code. See
timeit module

using trace directly from

command line, 1012–1013

Execution stack, pdb, 979–984

Exit code, sys, 1064–1065

__exit__() method,

contextlib, 164–167

exp() function, math, 237

expandcars() function,

os.path, 253

expanduser() function,

os.path, 252

expml() function, math, 237–238

Exponential distribution,

random, 222

Exponents, math, 234–238

Exporting database contents,

sqlite3, 376–378

Exposed methods,

SimpleXMLRPCServer,

720–723

expovariate() function,

random, 222

EXPUNGE command, emptying

email trash, 757–758

extend() method,

ElementTree, 405–408

extend_path() function,

pkgutil, 1247–1249

External commands

running with os, 1121–1122

running with subprocess,

482–486

External documentation, doctest,

939–942

extract() method, tarfile,

451–452

extractall() method,

tarfile, 451–452

extractfile() method,

tarfile, 450–452

Extracting archived files from

archive

tarfile, 450–452

zipfile, 459–460

extract_stack() function,

traceback, 964–965

extract_tb() function,

traceback, 962

F
fabs() function, math, 229–230

factorial() function, math,

231–232

fail*() methods,

unittest, 952

failAlmostEqual() method,

unittest, 954–955

failIf() method,

unittest, 953

failUnless() method,

unittest, 953

failUnlessAlmostEqual()
method, unittest, 954–955

Failure, debugging after, 978–979

Fault objects, XML-RPC

exception handling, 711–714

feedcache module, 346

feedparser module, 100–101

fetch() method, IMAP4, 749–752

fetchall() method, sqlite3,

355–356

fetchmany() method, sqlite3,

356–357

fetchone() method,

sqlite3, 356

Fibonacci sequence calculator,

1023–1026

Field names

csv, 418–420

invalid namedtuple, 81–82

FieldStorage class, cgi
module, 654

FIFO (first-in, first-out). See also
Queue module, 96–97

File arguments, argparse,

819–820

__file__ attribute, data files,

1244–1246

File descriptors

mmap, 279–280

os, 1116

file-dispatcher class,

asyncore, 628–629

File format, ConfigParser, 862

File system

comparing files. See filecmp
module

dircache module, 319–322

filename manipulation. See
os.path module

fnmatch module, 315–318

glob module, 257–260

high-level file operations. See
shutil module

linecache module, 261–265

mmap module, 279–284

overview of, 247–248

permissions with os, 1116–1118,

1127–1128

string encoding and decoding. See
codecs module

StringIO module, 314–315

temporary file system objects. See
tempfile module

working with directories,

1118–1119

file_wrapper class, 628–629

filecmp module

comparing directories, 327–328

comparing files, 325–327

defined, 247–248

example data, 323–325

purpose of, 322–323

reference guide, 332

using differences in program,

328–332

fileinput module

converting M3U files to RSS,

883–886

defined, 770

in-place filtering, 887–889

progress metadata, 886–887

purpose of, 883

reference guide, 889

filelineno() function,

fileinput, 886–887

filemode argument, rotating log

files, 879

filename() function,

fileinput, 886–887

Filenames

alternate archive member names

in tarfile, 453–454

alternate archive member names

in zipfile, 462–463

pattern matching with glob,

257–260

platform-independent

manipulation of. See
os.path module

ptg

1274 Index

Filenames (continued)

predicting in temporary files,

269–270

specifying breakpoints in another

file, 991–992

UNIX-style comparisons,

315–317

fileno() method, mmap, 279–280

FileReader, asyncore,

628–629

Files. See also file system

arrays and, 85–86

comparing, 325–327

logging to, 879

reading asynchronously in

asyncore, 628–629

running tests in doctest by,

944–945

working with codecs, 287–289

working with json, 700–701

file_to_words() function,

MapReduce, 558

FileType, argparse, 819–820

fill() function, textwrap,

10–12

filter() function, UNIX-style

filename comparisons, 317–318

Filters

directory, 1037

with itertools, 148–151

processing text files as. See
fileinput module

warning, 1170–1174

filterwarnings() function,

1172–1174

finalize() method,

sqlite3, 380

find() function, gettext,

903–904

findall() function

finding nodes in document,

ElementTree, 390–391

multiple pattern matches in text,

15–16

splitting strings with patterns,

58–60

Finder phase, custom importer,

1083–1085

finditer() function, re, 15–17

find_module() method

with imp, 1237–1238

inside ZIP archive, 1241–1242

finish() method,

SocketServer, 610

finish_request() method,

SocketServer, 610

First-in, first-out (FIFO). See also
Queue module, 96–97

Fixed numbers. See decimal
module

Fixed-type numerical data, sequence,

84–87

Fixtures, unittest test, 956–957

Flags

options with ConfigParser,

868–869

variable argument definitions in

argparse, 815–817

Flags, regular expression

abbreviations for, 45

case-insensitive matching, 37–38

embedding in patterns, 44–45

multiline input, 38–39

Unicode, 39–40

verbose expression syntax, 40–44

Float class, fractions, 209

float_info, memory

management in sys, 1069–1070

Floating point columns, SQL support

for, 363–366

Floating-point numbers. See also
decimal module

absolute value of, 229–230

alternate representations, 227–229

common calculations, 230–233

converting to rational value with

fractions, 210–211

generating random integers,

214–215

Floating-point values

commonly used math
calculations, 230–233

converting to integers in math,

226–227

Floating-point values

creating fraction instances from,

208–209

generating random numbers,

211–212

memory management with sys,

1069–1070

testing for exceptional, 224–226

time class, 182

FloatingPointError
exception, 1220

floor() function, math, 226–227

floordiv() operator, 156

flush() method

incremental

compression/decompression in

zlib, 424

incremental decompression in

bz2, 439

fmod() function, math, 232–233

fnmatch module

defined, 247

filtering, 317–318

purpose of, 315

reference guide, 318

simple matching, 315–317

translating patterns, 318

fnmatchcase() function,

316–317

Folders, Maildir mailbox, 766–768

forcing garbage collection, gc,

1141–1146

fork() function, os, 1122–1125,

1127

Forking, adding to HTTPServer,

648–649

ForkingMixIn, 617–618, 649

format() function, locale,

916–917

format_exception() function,

traceback, 958, 961–962

formatmonth() method,

calendar, 192

format_stack() function,

traceback, 958, 964

Formatting

calendars, 191–194

dates and times with datetime,

189–190

dates and times with locale,

917–918

DBM-style database with

whichdb, 350–351

email messages. See mailbox
module

JSON, 692–694

numbers with locale, 916–917

printing with pprint, 123–127

stack trace in traceback, 958

time zones with time, 178

warnings, 1176

ptg

Index 1275

formatwarning() function,

warning, 1176

formatyear() method,

calendar, 192–194

fractions module

approximating values, 210–211

arithmetic, 210

creating fraction instances,

207–210

defined, 197

purpose of, 207

reference guide, 211

Frames, inspecting runtime

environment, 1213–1216

frexp() function, math, 228–229

From headers, smtplib, 728

from_float() method,

Decimal class, 198

fromordinal() function,

datetime, 184, 189

fromtimestamp() function,

datetime, 183–184, 189

fsum() function, math, 231

Functions

arguments for, 1209–1210

disassembling, 1187–1189

mathematical. See math module

scanning using pyclbr,

1042–1043

setting breakpoints, 991

string, 4–5

Struct class vs., 102

tools for manipulating. See
functools module

traceback module, 958–959

using Python in SQL, 378–380

functools module

acquiring function properties,

132–133

acquiring function properties for

decorators, 136–138

comparison, 138–141

decorators. See decorators,

functools
defined, 129

other callables, 133–136

partial objects, 130–132

partial objects, 130–132

purpose of, 129

reference guide, 141

FutureWarning, 1233

G
gamma() function, math, 232

gammavariate() function,

random, 223

Garbage collector. See also gc
module, 1065–1066

Gauss Error function, statistics,

244–245

gauss() function, random, 222

gc module, 1138–1160

collection thresholds and

generations, 1148–1151

debugging memory leaks,

1151–1159

defined, 1138–1160

forcing garbage collection,

1141–1146

purpose of, 1138

reference guide, 1159–1160

references to objects that cannot

be collected, 1146–1148

tracing references, 1138–1141

gdbm module, 347–349

Generations, gc collection,

1148–1151

Generator function, contextlib,

167–168

GeneratorExit exception, 1221

get() method

basic FIFO queue, 97

ConfigParser, 865–867,

875–878

LifoQueue, 97

PriorityQueue, 98–99

GET requests

BaseHTTPServer, 644–646

client, 657–660

getaddrinfo() function,

socket, 568–570, 576

getargspec() function,

inspect, 1209–1210

getargvalues() function,

inspect, 1213

getattime() function,

os.path, 254

getboolean() method,

ConfigParser, 867–868

getcallargs() function,

inspect, 1209–1210

getclasstree() function,

inspect, 1210–1212

get_code() method,

zipimport, 1242–1243

getcomments() function,

inspect, 1206–1207

get_config_vars() function,

sysconfig, 1160–1163

getcontext(), decimal
module, 201–202

getctime() function,

os.path, 254

get_current_history_
length(), readline,

832–834

getcwd() function, os, 1112

get_data() function, pkgutil,

1255–1258

get_data() method

pkgutil, 1097

sys, 1095–1097

zipimport, 1246

getdefaultencoding()
function, sys, 1058–1059

getdefaultlocale() function,

codecs, 298

getdoc() function, inspect,

1206

getfloat() method,

ConfigParser, 867–868

getfqdn()function, socket, 565

get_history_item(),
readline, 832–834

gethostbyaddr()function,

socket, 565

gethostbyname() function,

socket, 563–564

gethostname() function,

socket, 563, 577–580

getinfo() method, zipfile,

458–459

getint() method,

ConfigParser, 867

getline() function,

linecache, 263–264

get_logger(),
multiprocessing, 539–540

getmember(), tarfile,

449–450

getmembers() function,

inspect, 1201–1203,

1204–1206

getmembers(), tarfile,

449–450

ptg

1276 Index

getmoduleinfo() function,

inspect, 1201–1203

getmro() function, inspect,

1212–1213

getmtime() function,

os.path, 254

getnames(), tarfile, 449

getnode() function, uuid,

684–686

get_opcodes(), difflib, 67

getopt() function, getopt, 771

getopt module, 770–777

abbreviating long-form

options, 775

complete example of, 772–775

defined, 769

ending argument processing, 777

function arguments, 771

GNU-style option parsing,

775–777

long-form options, 772

optparse replacing, 777,

779–781

purpose of, 770–771

reference guide, 777

short-form options, 771–772

getpass module

defined, 769

example of, 836–837

purpose of, 836

reference guide, 838

using without terminal, 837–838

get_path(), sysconfig, 1166

get_path_names() function,

sysconfig, 1163–1164

get_paths() function,

sysconfig, 1164–1166

get_platform() function,

sysconfig, 1167

getprotobyname(),
socket, 567

get_python_version()
function, sysconfig,

1167–1168

getreader() function,

codecs, 298

getrecursionlimit()
function, sys, 1067–1068

getrefcount() function, sys,

1065

get_referents() function, gc,

1138–1139

get_referrers() function, gc,

1147–1148

getreusage() function,

resource, 1134–1135

get_scheme_names() function,

sysconfig, 1163–1166

getservbyname(),
socket, 566

getsignal(), signal,

499–501

getsize() function,

os.path, 254

getsockname() method,

socket, 580

getsource() function,

inspect, 1207–1208

get_source() method,

zipimport, 1243–1244

getsourcelines() function,

inspect, 1207–1208

getstate() function, random,

213–214

get_suffixes() function, imp,

1236–1237

gettempdir() function,

tempfile, 270–271

Getters, operator, 159–161

gettext module

application vs. module

localization, 907–908

creating message catalogs from

source code, 900–903

defined, 899

finding message catalogs at

runtime, 903–904

plural values, 905–907

purpose of, 899–900

reference guide, 908–909

setting up and using

translations, 900

switching translations, 908

get_threshold() function, gc,

1149–1151

geturl() method,

urlparse, 641

getwriter() function,

codecs, 296

GIL (Global Interpreter Lock)

controlling threads with sys,

1074–1078

debugging threads with sys,

1078–1080

glob module

character ranges, 260

combining fnmatch
matching, 318

defined, 247

example data, 258

purpose of, 257–258

reference guide, 260

single character wildcard,

259–260

wildcards, 258–259

Global locks, controlling threads

with sys, 1074–1078, 1080

Global values, doctest test

context, 945–948

gmtime() function, time, 177

GNU

compression. See gzip module;

zlib module

option parsing with getopt,

775–777

readline library. See readline
module

gnu_getopt() function,

775–777

go() method, cgitb, 979–981

Graph class. See gc module

Greedy behavior, repetition in pattern

syntax, 19–21

Gregorian calendar system, 183–184,

190

groupby() function,

itertools, 151–153

groupdict() function, re, 33

Groups

argparse argument, 810–812

character, formatting numbers

with locale, 916

data, in itertools, 151–153

dissecting matches with, 30–36

optparse, 791–793

groups() method, Match object,

31–36

gzip module

purpose of, 430

reading compressed data,

433–434

reference guide, 436

working with streams, 434–436

writing compressed files,

431–433

GzipFile, 431–433, 434–436

ptg

Index 1277

H
handle() method,

SocketServer, 610

handle_close() method,

asyncore, 621, 623–625

handle_connect() hook,

asyncore, 621

Handler, implementing with

asynchat, 632–634

handle_read() method,

asyncore, 623, 628–629

handle_request(),
SocketServer, 609

Handles, closing open, 169–170

handle_write() method,

asyncore, 623

Hanging indents, textwrap, 12–13

Hard limits, resource, 1136

has_extn(), SMTP
encryption, 730

hashlib module

creating hash by name, 471–472

incremental updates, 472–473

MD5 example, 470

purpose of, 469

reference guide, 473

sample data, 470

SHA1 example, 470–471

has_key() function, timeit,

1034–1035

has_option(),
ConfigParser, 866–867

has_section(),
ConfigParser, 865–866

Headers

adding to outgoing request in

urllib2, 661–662

creating and setting Cookie, 678

encoding Cookie, 680–681

receiving and parsing Cookie,

681–682

setting in BaseHTTPServer,

650–651

“Heads,” picking random items, 216

Heap sort algorithm. See heapq
module

heapify() method, heapq,

90–92

heappop() method, heapq,

90–91

heapq module

accessing contents of heap, 90–92

creating heap, 89–90

data extremes from heap, 92–93

defined, 69

example data, 88

purpose of, 87–88

reference guide, 92–93

heapreplace() method, heapq,

91–92

Heaps, defined, 88

Help command, cmd, 840, 842–843

Help for modules, pydoc, 920–921

help() function, pydoc, 921

Help messages, argparse,

805–807

Help messages, optparse
application settings, 793–795

organizing options, 791–793

overview of, 790–791

hexdigest() method

calculating MD5 hash,

hashlib, 470–471

digest() method vs., 475–476

HMAC message signatures, 474

SHA vs. MD5, 474–475

HistoryCompleter class,

readline, 832–834

hmac module

binary digests, 475–476

message signature applications,

476–479

purpose of, 473

reference guide, 479

SHA vs. MD5, 474–475

signing messages, 474

Hooks, triggering actions in

readline, 834–835

Hostname

parsing URLs, 639

socket functions to look up,

563–565

Hosts

multicast receiver running on

different, 590–591

using dynamic values with

queries, 359–362

hour attribute, time class, 181

HTML help for modules, pydoc,

920–921

HTML output, cgitb, 972

HTMLCalendar, formatting, 192

HTTP

BaseHTTPServer. See
BaseHTTPServer module

cookies. See Cookie module

HTTP GET, 644, 657–660

HTTP POST, 646–647, 661

Human-consumable results, JSON,

692–694

Hyperbolic functions, math,

243–244

hypot() function, math, 242–243

Hypotenuse, math, 240–243

I
I/O operations

asynchronous network. See
asyncore module

codecs, 287–289, 295–298

waiting for I/O efficiently. See
select module

id() values, pickle, 342–343

idpattern class attribute,

string.Template, 7–9

ifilter() function,

itertools, 150

ifilterfalse() function,

itertools, 150–151

ignore command, breakpoints in

pdb, 999–1001

ignore mode, codec error

handling, 292–293, 295

IGNORECASE regular expression

flag

abbreviation, 45

creating back-references in re, 53

searching text, 37–38

Ignoring breakpoints, 999–1001

Ignoring signals, 502

Illegal jumps, execution flow in pdb,

1005–1008

imap() function, itertools,

145–146, 148

IMAP (Internet Message Access

Protocol). See also imaplib
module, 738–739

IMAP4_SSL. See imaplib module

IMAP4_stream, 739

imaplib module

connecting to server, 739–741

defined, 727

deleting messages, 756–758

example configuration, 741

fetching messages, 749–752

ptg

1278 Index

imaplib module (continued)

listing mailboxes, 741–744

mailbox status, 744–745

moving and copying messages,

755–756

purpose of, 738–739

reference guide, 758

search criteria, 747–749

searching for messages, 746–747

selecting mailbox, 745–746

uploading messages, 753–755

variations, 739

whole messages, 752–753

IMMEDIATE isolation level,

sqlite3, 374

imp module

defined, 1235

example package, 1236

finding modules, 1237–1238

loading modules, 1238–1240

module types, 1236–1237

purpose of, 1235–1236

reference guide, 1240

Impermanent references to objects.

See weakref module

Import errors, 1094–1095

Import hooks, 1083

Import mechanism, Python. See imp
module

Import path, site

adding user-specific locations to,

1047–1048

configuring, 1046–1047

path configuration files,

1049–1051

Import path, sys, 1081–1083

Imported modules, sys, 1080–1081

Importer cache, sys, 1097–1098

ImportError exception

overview of, 1221–1222

raised by find_module(),

1238

sys, 1094–1095

Imports. See also Modules and

imports

from shelve, 1085–1091

target functions in

multiprocessing,

530–531

ImportWarning, 1233

In-memory approach to compression

and decompression, 422–423,

436–438

In-memory databases, sqlite3,

376–378

in-place filtering, fileinput,

887–889

In-place operators, 158–159

INADDR_ANY, socket
choosing address for listening,

TCP/IP, 579

receiving multicast messages, 590

IncompleteImplementation,
abc, 1180–1181

Incremental compression and

decompression

bz2 module, 438–439

zlib module, 423–424

Incremental encoding, codecs,

301–303

Incremental updates, hashlib,

472–473

IncrementalDecoder,
codecs, 301–303, 312

IncrementalEncoder,
codecs, 301–303, 312

Indent, JSON format, 692–693

Indentation, paragraph

combining dedent and fill, 11–12

hanging, 12–13

removing from paragraph, 10–11

IndexError exception,

1222–1223

inet_aton(), IP address in

socket, 570–571

inet_ntoa(), IP address in

socket, 570–571

inet_ntop(), IP address in

socket, 571

inet_pton(), IP address in

socket, 571

INF (infinity) value, testing in

math, 224–225

infile arguments, saving result data in

trace, 1021

INFO level, logging, 881–882

info() method, urllib2, 658

infolist() method,

zipfile, 458

__init__() method

asyncore, 621

inspect, 1205–1206

threading, 527–528

Initialization

array, 84–85

Counter, 70–71

Input

alternative cmd, 849–851

converting iterators, 145–146

searching text using multiline,

38–39

standard streams with codecs,

295–298

streams with sys, 1063–1064

input() function,

fileinput, 884

Input history, readline, 832–834

input_loop() function,

readline, 826

insert statements, sqlite3, 355

Inserting, bisect, 93–95

insert_text(),
readline, 835

insort() method, bisect,

93–95

insort_left() method,

bisect, 95–96

insort_right() method,

bisect, 95–96

inspect module

class hierarchies, 1210–1212

defined, 1169

documentation strings,

1206–1207

example module, 1200–1201

inspecting classes, 1204–1206

inspecting modules, 1203–1204

method and function arguments,

1209–1210

method resolution order,

1212–1213

module information, 1201–1203

purpose of, 1200

reference guide, 1217

retrieving source, 1207–1208

stack and frames, 1213–1216

Inspecting live objects. See
inspect module

Installation paths, sysconfig,

1163–1166

install()function, application

localization with gettext, 908

ptg

Index 1279

Integers

converting floating-point values

to, 226–227

generating random, 214–215

identifying signals by, 498

SQL support for columns,

363–366

Interacting with another command,

subprocess, 490–492

Interactive debugger. See pdb
module

Interactive help for modules,

pydoc, 921

Interactive interpreter, starting pdb
debugger, 977

Interactive prompts, interpreter

settings in sys, 1059–1060

Interface

checking with abstract base

classes. See abc module

programming with trace,

1018–1020

Internationalization and localization

cultural localization API. See
locale module

message catalogs. See gettext
module

overview of, 899

reference guide, 920

Internet

controlling spiders, 674–677

encoding binary data, 670–674

HTTP cookies. See Cookie
module

implementing Web servers. See
BaseHTTPServer module

JavaScript Object Notation.

See json module

network resource access. See
urllib module; urllib2
module

overview of, 637–638

splitting URLs into components.

See urlparse module

universally unique identifiers.

See uuid module

XML-RPC client library. See
xmlrpclib module

XML-RPC server. See
SimpleXMLRPCServer
module

Internet Message Access Protocol

(IMAP). See also imaplib
module, 738–739

Interpolation

ConfigParser, 875–878

templates vs. standard string, 5–6

InterpolationDepthError,
ConfigParser, 877

Interpreter

compile-time configuration. See
sysconfig module

getting information about current,

1129–1130

starting pdb debugger within, 977

Interpreter settings, sys
build-time version information,

1055–1057

command-line option, 1057–1058

displayhook, 1060–1062

install location, 1062

interactive prompts, 1059–1060

Unicode defaults, 1058–1059

intro attribute, configuring cmd,

847–848

Introspection API,

SimpleXMLRPCServer
module, 724–726

Inverse hyperbolic functions,

math, 244

Inverse trigonometric functions,

math, 243

Invertcaps, codec, 307–312

IOError exception

argparse, 818

overview of, 1221

retrieving package data with sys,

1096

IP addresses, socket
AF_INET sockets for IPv4, 562

AF_INET6 sockets for IPv6, 562

choosing for listening, 577–580

finding service information,

566–568

looking up hosts on network,

563–565

for multicast, 588, 590–591

representations, 570–571

IP_MULTICAST_TTL, TTL,

588–589

IPPROTO_ prefix, socket, 568

IS-8601 format, datetime objects,

189–190

is_()function, operator, 154

isinstance(), abc, 1178,

1179

islice() function,

itertools, 144

ismethod() predicate, inspect,

1205

isnan() function, checking for

NaN, 226

is_not()function,

operator, 154

Isolation levels, sqlite3, 372–376

is_package() method,

zipimport, 1244

isSet() method,

threading, 517

is_set(), multiprocessing,

545–546

issubclass(), abc, 1178,

1179

is_tarfile() function, testing

tar files, 448–449

is_zipfile() function, testing

ZIP files, 457

Item getters, operator, 159–161

items(), ConfigParser, 865

items(), mailbox, 765

iter() function, ElementTree,

388–390

Iterator functions. See itertools
module

iterdump() method,

Connection, 376–378

iteritems(), mailbox, 765

iterparse() function,

ElementTree, 394–396

itertools module

converting inputs, 145–146

defined, 129

filtering, 148–151

grouping data, 151–153

merging and splitting iterators,

142–145

performance analysis of loops,

1197–1198

producing new values, 146–148

purpose of, 141–142

reference guide, 153

izip() function, itertools,

143–144, 148

ptg

1280 Index

J
JavaScript Object Notation. See

json module

join() method

in multiprocessing,

534–537, 542–543, 554

in os.path, 252–253

in threading, 510–511

json module

defined, 638

encoder and decoder classes,

697–700

encoding and decoding simple

data types, 690–691

encoding dictionaries, 694

human-consumable vs. compact

output, 692–694

mixed data streams, 701–702

purpose of, 690

reference guide, 702

working with custom types,

695–697

working with streams and files,

700–701

JSONDecoder class, JSON,

699–700, 701–702

JSONEncoder class, 698–699

js_output() method, Cookie,

682–683

jump command, pdb
changing execution flow, 1002

illegal jumps, 1005–1008

jump ahead, 1002–1003

jump back, 1004

jumpahead() function, random,

220–221

Junk data, difflib, 65–66

K
kevent() function, select, 608

KeyboardInterrupt exception,

502, 1223

KeyError exception, 1034–1035,

1223

kill() function, os. fork(),

1123

kqueue() function, select, 608

L
Lambda, using partial instead

of, 130

Language, installing message

catalogs in directories by, 902

Language tools

abstract base classes. See abc
module

built-in exception classes. See
exceptions module

cultural localization API.

See locale module

inspecting live objects. See
inspect module

message translation and catalogs.

See gettext module

nonfatal alerts with warnings
module, 1170–1177

overview of, 1169–1170

Python bytecode disassembler.

See dis module

last-in, first-out (LIFO) queue, 97

ldexp() function, math, 228–229

lgamma() function, math,

232–233

Libraries, logging, 878

LIFO (last-in, first-out) queue, 97

LifoQueue, 97

Limits, resource, 1135–1138

Line number, warning filters, 1170,

1174

Line-oriented command processors.

See cmd module

linecache module

defined, 247

error handling, 263–264

handling blank lines, 263

purpose of, 261

reading Python source files,

264–265

reading specific lines, 262

reference guide, 265

test data, 261–262

lineno() function, fileinput,

886–887

Lines, reading. See linecache
module

Lineterm argument, difflib, 64

list (l) command, pdb, 980

list() method, imaplib,

741–743

list_contents() service,

SimpleXMLRPCServer,

715, 717

list_dialects(), csv, 414

listdir() function, dircache,

319–321

listen(), TCP/IP socket, 572–573

_listMethods(), Introspection

API, 724

list_public_methods(),
Introspection API in

SimpleXMLRPCServer, 725

Lists

building trees from node,

405–408

maintaining in sorted order with

bisect, 93–96

retrieving registered CSV

dialects, 414

variable argument definitions in

argparse, 815–817

Live help, cmd, 842–843

Live objects. See inspect module

load() function

receiving and parsing Cookie
headers, 682

streams and files in json,

700–701

Loader phase, custom importer,

1083–1085

Loading

bulk, in sqlite3, 362–363

import mechanism for modules.

See imp module

metadata from archive in

tarfile, 449–450

Python code from ZIP archives.

See zipimport module

load_module() method

custom package importing, 1092

with imp, 1238–1240

with zipimport, 1242–1243

loads() function, pickle, 336

Local context, decimal,

204–205

local() function, threading,

526–528

Local variables in tracebacks,

cgitb, 968–971

Locale directory, 902–904

locale module, 909–918

currency, 915–916

date and time formatting,

917–918

defined, 899

formatting numbers, 916–917

ptg

Index 1281

parsing numbers, 917

probing current locale, 909–915

purpose of, 909

reference guide, 918

localeconv() function,

locale, 911–915

Localization

cultural localization API. See
locale module

message translation and catalogs.

See gettext module

localtime() function,

time, 177

local_variable value,

inspect, 1214

Location

for interpreter installation in sys,

1062

standard I/O streams, 297–298

temporary file, 270–271

test, with doctest, 936–939

Lock object

access control with

multiprocessing,

546–547

access control with threading,

517–520

as context managers, 522–523

re-entrant locks, 521–522

synchronizing processes with

multiprocessing,

547–548

synchronizing threads with

threading, 523–524

lock_holder(), threading,

519–521

Locking modes, sqlite3. See
isolation levels, sqlite3

log() function, logarithms in

math, 235–236

Log levels, logging, 880–882

Logarithms, math, 234–238

logging module, 878–883

debugging threads via thread

names in, 508

defined, 770

logging in applications vs.

libraries, 878

logging to file, 879

naming logger instances, 882–883

purpose of, 878

reference guide, 883

rotating log files, 879–880

verbosity levels, 880–882

Logging, multiprocessing,

539–540

Logging tracebacks, cgitb,

972–975

Logical operations, operator, 154

loglp() function, logarithms in

math, 236–237

log_to_stderr() function,

multiprocessing, 539–540

Long-form options

argparse, 797–798

getopt, 772–775

optparse, 778–779

Long-lived spiders, robots.txt
file, 676–677

The Long Tail (Anderson), 222

long_event(), sched, 896

Look-ahead assertion, regular

expressions

negative, 47–48

positive, 46–47

in self-referencing expressions,

54–55

Look-behind assertion, regular

expressions

negative, 48–49

positive, 46–47

LookupError class,

exceptions, 1217

Loops, performance analysis of,

1192–1198

Lossless compression

algorithms, 421

Low-level thread support, sys,

1074–1080

ls -1 command, subprocess,

484–485

lstat() function, os, 1116–1119

M
{m}, repetition in pattern syntax,

17–18

m3utorss program, 883–886

MAC addresses, uuid, 684–686

mailbox module

Maildir format, 762–768

mbox format, 759–762

other formats, 768

purpose of, 758–759

reference guide, 768

Mailboxes, IMAP4

listing archive subfolders,

743–744

retrieving account, 741–743

search criteria, 747–748

searching for messages, 746–747

selecting, 745–746

status conditions, 744–745

Maildir format, mailbox, 762–764

Mailfrom argument,

SMTPServer, 734

makedirs() function, os, 1119

make_encoding_map(),
codecs, 308

makefile() function, codecs,

307–313

maketrans() function,

string, 4–5

Manager , multiprocessing,

550–553

Manipulation, array, 85

map() function, vs. imap(),
itertools, 145

MapReduce, multiprocessing,

555–559

match() function, re, 26–30

Match object

compiling expressions, 14–15

dissecting matches with groups,

31

finding multiple matches, 15–16

finding patterns in text, 14

pattern syntax, 17

match.groups(), re, 32

math module

alternate representations, 227–229

angles, 238–240

common calculations, 230–233

converting to integers, 226–227

defined, 197

exponents and logarithms,

234–238

hyperbolic functions, 243–244

positive and negative signs,

229–230

purpose of, 223

reference guide, 244–245

special constants, 223–224

special functions, 244–245

testing for exceptional values,

224–226

trigonometry, 240–243

ptg

1282 Index

Mathematics

fixed and floating-point numbers.

See decimal module

mathematical functions. See
math module

overview of, 197

pseudorandom number

generators. See random
module

rational numbers in fractions
module, 207–211

max attribute

date class, 184

time class, 181

max() function, sqlite3,

380–381

Max-heaps, heapq, 88

maxBytes, rotating log files, 880

Maximum values, sys, 1069

maxint, sys, 1069

MAX_INTERPOLATION_DEPTH,

substitution errors, 877

maxtasksperchild parameter,

process pools, 554

maxunicode, sys, 1069

mbox format, mailbox 762

mbox format, mailbox module,

759–762

MD5 hashes

calculating in hashlib, 470

UUID 3 and 5 name-based values

using, 686–688

vs. SHA for hmac, 474–475

Memory management. See gc
module

Memory management and limits,

sys
byte ordering, 1070–1071

floating-point values, 1069–1070

maximum values, 1069

object size, 1066–1068

recursion, 1068–1069

reference counts, 1065–1066

Memory-map files. See mmap
module

MemoryError exception,

1224–1225

Merging iterators, itertools,

142–144

Mersenne Twister algorithm,

random based on, 211

Message catalogs,

internationalization. See
gettext module

Message signatures, hmac, 474,

476–479

Message terminators, asynchat,

629–630

message_ids argument, IMAP4,

749–752

message_parts argument,

IMAP4, 749–752

Messages

combining calls in XML-RPC

into single, 712–714

passing to processes with

multiprocessing,

541–545

reporting informational, with

logging, 878–883

sending SMTP, 728–730

setting log levels, 880–882

warning filter, 1170

Messages, IMAP4 email

deleting, 756–758

fetching, 749–752

moving and copying, 755–756

retrieving whole, 752–753

search criteria, 747–748

searching mailbox for, 746–747

uploading, 753–755

Meta path, sys, 1098–1101

Metacharacters, pattern syntax

anchoring instructions, 24–26

character sets, 20–24

escape codes for predefined

character sets, 22–24

expressing repetition, 17–20

overview of, 16–17

__metaclass__, abstract base

classes, 1178

Metadata

accessing current line in

fileinput, 886–887

copying file, 274–275

reading from archive in

tarfile, 449–450

reading from archive in

zipfile, 457–459

metavar argument, help in

optparse, 791

Method Resolution Order (MRO),

for class hierarchies, 1212–1213

_methodHelp(), Introspection

API, 724–725

Methods

arguments for, 1209–1210

concrete, in abstract base classes,

1181–1182

configuration settings, 864–869

disassembling class, 1189–1190

overriding base class in cmd,

845–846

microsecond attribute

date class, 182–183

time class, 181–182

MIME content, uploading files in

urllib2, 664–667

min attribute

date class, 184

time class, 181

min() function, customizing in

sqlite3, 380–381

Min-heaps, heapq, 88

minute attribute, time, 181

misc_header attribute, cmd,

847–848

Mixed content streams

bz2, 439–440

zlib, 424–425

mkdir() function, creating

directories in os, 1118–1119

mkdtemp() function, tempfile,

267–270

mktime() function, time, 177

mmap module

defined, 248

purpose of, 279

reading, 279–280

reference guide, 284

regular expressions, 283–284

writing, 280–283

MMDF format, mailbox, 768

modf() function, math, 227–229

Modules

gathering information with

inspect, 1201–1203

import mechanism for loading

code in. See imp module

inspecting with inspect,

1203–1204

localization, with gettext,

908

online help for, 920–921

ptg

Index 1283

running tests in doctest by,

942–943

warning filters, 1170, 1173–1174

Modules and imports

built-in modules, 1081

custom importers, 1083–1085

custom package importing,

1091–1093

handling import errors,

1094–1095

import path, 1081–1083

imported modules, 1080–1081

importer cache, 1097–1098

importing from shelve,

1085–1091

meta path, 1098–1101

package data, 1095–1097

reloading modules in custom

importer, 1093–1094

Modules and packages

loading Python code from ZIP

archives. See zipimport
module

overview of, 1235

package utilities. See pkgutil
module

Python’s import mechanism. See
imp module

reference guide, 1258

month attribute, date class,

182–183

monthcalendar() method,

Calendar, 192, 194–195

Morsel object, Cookie, 678–680,

681–683

most_common() method,

Counter, 72–73

move() function

moving directory with shutil,

278

moving messages in imaplib,

755–756

MP3 files, converting to RSS feed,

883–886

MRO (Method Resolution Order),

for class hierarchies, 1212–1213

MultiCall class, xmlrpclib
module, 712–714

Multicast groups, defined, 588

Multicast messages

example output, 590–591

overview of, 587–588

receiving, 589–590

sending, 588–589

UDP used for, 562

Multiline input, text search, 38–39

MULTILINE regular expression flag,

38–39, 45

MultiPartForm class,

urllib2, 666

Multiple simultaneous generators,

random, 219–221

multiprocessing module

basics, 529–530

controlling access to resources,

546–547

controlling concurrent access to

resources, 548–550

daemon processes, 532–534

determining current process,

531–532

importable target functions,

530–531

logging, 539–540

managing shared state, 550–551

MapReduce implementation,

555–559

passing messages to processes,

541–544

process exit status, 537–538

process pools, 553–555

purpose of, 529

reference guide, 559

shared namespaces, 551–553

signaling between processes,

545–546

subclassing Process, 540–541

synchronizing operations,

547–548

terminating processes, 536–537

waiting for processes, 534–536

Mutually exclusive options,

argparse, 812–813

my_function(), doctest, 922

MyThreadWithArgs, subclassing

Thread, 514

N
{n}, repetition in pattern syntax, 18

Name-based values, UUID 3 and 5,

686–688

Named groups

creating back-references in re,

52–53

modifying strings with patterns,

56

syntax for, 33–34

verbose mode expressions vs., 41

Named parameters, queries in

sqlite3, 360–362

NamedTemporaryFile()
function, tempfile, 268–270

namedtuple
container data type, 79–80

defining, 80–81

invalid field names, 81–82

parsing URLs, 638–639

NameError exception, 1225

namelist() method, reading

metadata in zipfile, 458

Namespace

creating shared,

multiprocessing,

551–553

creating UUID name-based

values, 686–688

incorporating into APIs, 716–719,

720–721

as return value from

parse_args(), 797

Naming

current process in

multiprocessing,

530–531

current thread in threading,

507–508

hashes, 471–472

logger instances, 882–883

SimpleXMLRPCServer
alternate API, 716–717

SimpleXMLRPCServer
arbitrary API, 719

SimpleXMLRPCServer dotted

API, 718–719

NaN (Not a Number), testing in

math, 225–226

Nargs option, optparse, 789–790

ndiff()function, difflib,

64–66

Negative look-ahead assertion,

regular expressions, 47–48

Negative look-behind assertion,

regular expressions, 48–49

Negative signs, math, 229–230

Nested data structure, pprint, 126

ptg

1284 Index

nested() function,

contextlib, 168–169

nested packages, pkgutil,

1253–1255

Nesting contexts, contextlib,

168–169

Nesting parsers, argparse,

813–814

Network communication, Unicode,

303–307

Networking

accessing network

communication. See socket
module

asynchronous I/O. See
asyncore module

Networking

asynchronous protocol handler.

See asynchat module

compressing data in bz2,

443–447

compressing data in zlib,

426–430

creating network servers. See
SocketServer module

overview of, 561

resource access. See urllib
module; urllib2 module

waiting for I/O efficiently. See
select module

new() function, hmac, 471–472,

474–475

Newton-Mercator series, math,

236–237

next command, pdb, 988

ngettext()function, application

localization in gettext, 908

nlargest() method, heapq, 93

Nodes, ElementTree
building documents with

Element, 400–401

building trees from lists of,

405–408

finding document, 390–391

parsed attributes, 391–393

pretty-printing XML, 400–401

setting Element properties,

403–405

Non-daemon vs. daemon threads,

threading, 509–511

Non-POSIX systems

level of detail available through

sysconfig on, 1161–1162

vs. POSIX parsing with shlex,

869–871

Non-Unicode encodings, codecs,

300–301

Nonblocking communication and

timeouts, socket, 593–594

Nonblocking I/O with timeouts,

select, 601–603

Noncapturing groups, re, 36–37

None value

alternative groups not matched,

35–36

connecting to XML-RPC server,

705–706

custom encoding, 308–310

no default value for optparse,

782–783

not finding patterns in text, 14

retrieving registered signal

handlers, 499–501

Nonfatal alerts, 1170–1177

Nonuniform distributions, random,

222–223

Normal distribution, random, 222

NORMALIZE_WHITESPACE,
doctest, 934–935

Normalizing paths, os.path,

253–254

normalvariate() function,

random, 222

normpath() function,

os.path, 253

Not a Number (NaN), math,

225–226

not_called(), atexit, 892

not_()function, logical operations

in operator, 154

NotImplementedError
exception, 735, 1225–1226

%notunderscored pattern,

string.Template, 7–9

nsmallest() method, heapq, 93

Numbers

formatting with locale module,

916–917

managing breakpoints in pdb
with, 993–996

parsing with locale module,

916–917

Numerator values, fractions,

207–208

Numerical id, back-references in re,

50–56

Numerical values, arithmetic

operators for, 155–157

NumPy, heapq, 87

O
Object_hook argument, JSON,

696–697

Objects

creating UUID, 689–690

impermanent references to. See
weakref module

incorporating namespacing into

APIs, 720–721

memory management by finding

size of, 1066–1068

passing, XML-RPC server,

709–710

persistent storage of. See
shelve module

SocketServer server, 609

Objects, pickle
circular references between,

340–343

reconstruction problems, 338–340

serialization of. See pickle
module

unpicklable, 340

One-shot operations in memory,

bz2, 436–438

onecmd()
overriding base class methods in

cmd, 846

sys.argv, 851–852

open() function

encoding and decoding files with

codecs, 287–289

shelve, 343–344, 346

writing compressed files in gzip,

431–433

Open handles, closing in

contextlib, 169–170

open() method, urllib2, 667

open_connection(), connecting

to IMAP server, 740

Opening existing database, anydbm,

348–349

OpenSSL, hashlib backed by, 469

Operating system

ptg

Index 1285

configuration. See sys module

getting information with

platform, 1131–1133

portable access to features. See
os module

resource management with

resource, 1134–1138

used to build interpreter in sys,

1056–1057

version implementation with

platform, 1129–1134

operator module

arithmetic operators, 155–157

attribute and item “getters,”

159–161

combining operators and custom

classes, 161–162

comparison operators, 154–155

defined, 129

logical operations, 154

in-place operators, 158–159

purpose of, 153

reference guide, 163

sequence operators, 157–158

type checking, 162–163

Option actions, optparse,

784–790

Option flags, regular expression

case-insensitive matching, 37–38

embedding flags in patterns,

42–43

input with multiple lines, 38–39

Unicode, 39–40

verbose expression syntax, 40–42

Option groups, optparse, 791–793

Option values, optparse, 781–784

Optional arguments,

argparse, 810

Optional parameters, trace, 1022

OptionParser, optparse
creating, 777–778

help messages, 790–791, 793–795

setting option values, 781–784

Options, ConfigParser
accessing configuration

settings, 865

defined, 862

as flags, 868–869

testing if values are present,

865–867

Options, ConfigParser file

removing, 870

search process, 872–875

option_string value, argparse, 820

Optparse, 793–795

optparse module

argparse vs., 795–796, 798

creating OptionParser,

777–778

defined, 769

help messages, 790–795

option actions, 784–790

option values, 781–784

purpose of, 777

reference guide, 795

replacing getopt with, 779–781

short- and long-form options,

778–779

OR operation, re, 37

OrderedDict, collections,

82–84

os module

creating processes with

os.fork(), 1122–1125

defined, 1045

directories, 1118–1119

file descriptors, 1116

file system permissions,

1116–1118, 1127–1128

pipes, 1112–1116

process environment, 1111–1112

process owner, 1108–1110

process working directory, 1112

purpose of, 1108

reference guide, 1128–1129

running external commands,

1121–1122

spawn()family of functions,

1127

symbolic links, 1119

waiting for child process,

1125–1127

walking directory tree, 1120–1121

os.environ object, 1111–1112

OSError exception, 1110,

1226–1227

os.exit(), atexit, 892

os.fork(), creating processes

with, 1122–1125

os.kill() function, signal
receiving signals, 499

sending signals, 501

os.open() method, mmap,

279–280

os.path module

building paths, 252–253

defined, 247

file times, 254–255

normalizing paths, 253–254

parsing paths, 248–251

purpose of, 248

reference guide, 257

testing files, 255–256

traversing directory tree, 256–257

os.stat() function, os.path,

254–255

Outcomes, unittest test, 950–952

Outfile arguments, trace, 1021

Outline nodes, finding in document

with ElementTree, 390–391

Output

capturing errors, 488

capturing when running external

command, 484–485

combining regular and error,

488–489

HTML format in cgitb, 972

JSON compact, 692–694

limiting report contents in

pstats, 1028–1029

standard streams with codecs,

295–298

streams with sys, 1063–1064

unpredictable, in doctest,

924–928

OverflowError exception, 225,

1227–1228

overlapping events, sched,

896–897

P
Packages

import mechanism for loading

code. See imp module

retrieving data with sys,

1095–1097

utilities for. See pkgutil
module

Packing data into strings, struct,

102–103

pack_into() method, struct,

105–106

Paragraphs, formatting with

textwrap. See textwrap
module

Parameters, query, 360–362

ptg

1286 Index

Pareto (power law), 222

paretovariate() function,

random, 222

parse() function,

ElementTree, 387

parse_and_bind() function,

readline, 823–824

parse_args()
parsing command line with

argparse, 796–797

parsing command line with

optparse, 778

setting optparse values as

default, 781–782

PARSE_DECLTYPES, sqlite3,

363–366

ParseFlags(), imaplib, 752

parseline(), cmd, 846

Parsing

command-line options. See
Command-line option parsing

Cookie headers, 681–682

dates and times, 189–190

numbers with locale, 917

paths with os.path, 247–251

shell-style syntaxes. See shlex
module

times, 178

unparsing URLs with

urlparse, 641–642

URLs with urlparse, 638–640

Parsing, ElementTree
creating custom tree builder,

396–398

parsed note attributes, 391–393

strings, 398–400

traversing parsed tree, 388–390

watching events while, 393–396

XML documents, 387–388

partial objects, functools
acquiring function properties,

132–133

defined, 130

other callables, 133–136

overview of, 130–132

partition(), MapReduce, 558

Passwords

opening Unicode configuration

files, 863–864

parsing URLs, 639

secure prompt with getpass,

836–839

__path__ attribute, data files,

1244–1246

pathname2url()function,

urllib, 655–657

Paths

building from other strings in

os.path, 252–253

configuration files in site,

1049–1051

installation using sysconfig,

1163–1166

joining URLs with urlparse,

642–643

managing with PKG files,

1251–1253

normalizing in os.path,

253–254

parsing in os.path, 247–251

retrieving network resources with

URLs vs., 655–657

pattern attribute,

string.Template, 8

Pattern matching

filenames, with glob, 257–260,

315–317

listing mailbox folders in

imaplib, 743–744

searching and changing text. See
re module

warning filters with, 1172–1174

Pattern syntax, re
anchoring, 24–26

character sets, 20–24

escape codes, 22–24

overview of, 16–17

repetition, 17–20

pdb module

breakpoints, 990–1002

changing execution flow,

1002–1009

customizing debugger with

aliases, 1009–1011

defined, 920

examining variables on stack,

981–984

handing previous interactive

exception, 1073

navigating execution stack,

979–981

purpose of, 975

saving configuration settings,

1011–1012

starting debugger, 976–979

stepping through program,

984–990

Peer argument, SMTPServer, 734

PendingDeprecationWarning,

1233

Performance analysis

of loops with dis, 1192–1198

with profile, 1022–1026

with pstats, 1027–1031

Permissions

copying file, 273

copying file metadata, 274–276

file system functions, 1116–1117

UNIX Domain Sockets, 586

Permutations, random, 216–218

Persistence. See Data persistence and

exchange

Persistent storage of objects. See
shelve module

pformat() function, pprint,

124–125

Picking random items, random,

215–216

pickle module

binary objects sending objects

using, 711

circular references, 340–343

defined, 333

encoding and decoding data in

strings, 335–336

importing, 335

insecurity of, 334

json module vs., 690, 692

problems reconstructing objects,

338–340

purpose of, 334

reference guide, 343

unpicklable objects, 340

working with streams, 336–338

pipe symbol (|), 35, 413–418

Pipes

connecting segments of, 489–490

managing child processes in os,

1112–1116

working directly with, 486–489

PKG files, managing paths with,

1251–1253

pkgutil module

defined, 1235

development versions of

packages, 1249–1251

ptg

Index 1287

managing paths with PKG files,

1251–1253

nested packages, 1253–1255

package data, 1255–1258

package import paths, 1247–1249

purpose of, 1247

reference guide, 1258

Placeholders, queries in sqlite3,

359–362

Plain-text help for modules,

pydoc, 920

platform() function,

1130–1131

platform module

defined, 1045

executable architecture,

1133–1134

interpreter, 1129–1130

operating system and hardware

info, 1131–1133

platform() function,

1130–1131

purpose of, 1129

reference guide, 1134

Platform-specific options,

select, 608

Platform specifier, sysconfig,

1167

Plural values, gettext, 905–907

pm() function, cgitb, 978–979

Podcasting client, threaded, 99–102

PodcastListToCSV,
TreeBuilder, 398

poll() function, select, 595,

603–608

POLLERR flag, select, 607

POLLHUP flag, select, 606

Pool class, multiprocessing
MapReduce implementation,

555–559

process pools, 553–555

Popen class, subprocess module

connecting segments of pipe,

489–490

defined, 482

interacting with another

command, 490–492

signaling between processes,

492–498

working directly with pipes,

486–489

popen() function, pipes,

1112–1116

Populating, deque, 76–77

Ports

getting service information with

socket, 566–568

parsing URLs in urlparse, 639

SocketServer echo

example, 615

Positional arguments,

argparse, 810

Positional parameters, queries in

sqlite3, 360

Positive look-ahead assertion,

regular expressions, 46–47

Positive look-behind assertion,

regular expressions, 49–50

Positive signs, math, 229–230

POSIX systems

access() function warnings,

1128

detail available through

sysconfig, 1161–1162

installation paths with

sysconfig, 1163–1166

vs. non-POSIX parsing with

shlex, 869–871

Post-mortem debugging, 978–979

POST requests

BaseHTTPServer, 646–647

client, 661

SimpleXMLRPCServer,

715–716

postcmd(), cmd, 846

postloop(), cmd, 846

post_mortem() function,

cgitb, 978–979

pow() function, math, 234

pprint() function, 123–125

pprint module

arbitrary classes, 125

controlling output width, 126–127

formatting, 124–125

limiting nested input, 126

printing, 123–124

purpose of, 123

recursion, 125–126

reference guide, 127

Pre-instance context, decimal,

205–206

prec attribute, decimal contexts,

202–203

Precision, decimal module

contexts

local context, 204–205

overview of, 202–203

pre-instance context, 205–206

rounding to, 203–204

threads, 206–207

precmd(), cmd, 846

Predicate functions, inspect,

1203–1204

Predicting names, tempfile,

269–270

Prefix_chars parameter,

argparse, 803

Prefixes, argparse option,

802–803

Preinput hook, readline, 834–835

preloop(), cmd, 846

Pretty-print data structures. See also
pprint module, 123–127

pretty-print (pp) command, pdb, 983

Pretty-printing XML,

ElementTree, 401–403

print (p) command, pdb, 983–984

print_callees(), pstats,

1030–1031

print_callers(), pstats,

1030–1031

print_event(), sched, 895

print_exc() function,

traceback, 959–960

print_exception() function,

traceback, 960–961

print_stack() function,

traceback, 963–964

Priorities, event, 897

PriorityQueue, 98–99

prmonth() method,

calendar, 191

Probing current locale, locale,

909–915

Process environment, os, 1111–1112

Process exit status,

multiprocessing, 537–538

Process groups, subprocess,

494–496

Process owners, changing with os,

1108–1110

Process pools,

multiprocessing, 553–555

Process working directory, retrieving

with os, 1112

ptg

1288 Index

Processes

creating with os.fork(),

1122–1125

platform independent. See
subprocess module

running external commands with

os, 1121–1122

waiting for child, 1125–1127

Processes and threads

asynchronous system events. See
signal module

managing concurrent operations.

See threading module

managing processes like threads.

See multiprocessing
module

overview of, 481

spawning additional processes.

See subprocess module

process_message()
method, SMTPServer class,

734–735

Processor clock time, time,

174–176

process_request() method,

SocketServer, 610

profile module

defined, 920

running in context, 1026

running profiler, 1023–1026

Program shutdown callbacks,

atexit, 890–894

Programs

following flow of. See trace
module

restarting in pdb, 1008–1009

starting pdb debugger within,

977–978

stepping through execution in

pdb, 984–990

tracing as they run, 1101–1107

Prompts

cmd command, 840

configuring prompt attribute in

cmd, 847–848

interactive interpreter in sys,

1059–1060

Properties

abstract, in abc, 1182–1186

acquiring function, in

functools, 136–138

functools, 132–133

retrieving file, in os.path,

254–255

setting Element, 403–405

showing exceptions, in cgitb,

971–972

socket, 562

Protocol handlers

asynchronous. See asynchat
module

creating custom, with urllib2,

667–670

Proxies, weakref, 108–109

Proxy server, smtpd, 737–738

pstats module

caller and callee graphs,

1029–1031

limiting report contents,

1028–1029

reference guide, 1031

saving and working with

statistics, 1027–1028

Psuedorandom number generators.

See random module

.pth extension, path configuration

files, 1049–1051

public() method,

MyService, 723

PureProxy class, 737–738

put() method

basic FIFO queue, 97

LifoQueue, 97

.pyc file, Python ZIP archives,

466–467

pyclbr module

defined, 920

purpose of, 1039–1041

reference guide, 1043

scanning for classes, 1041–1042

scanning for functions,

1042–1043

pydoc module, 919–921

pygettext, 900–901

Python

bytecode disassembler. See dis
module

import mechanism. See imp
module

loading code from ZIP archives.

See zipimport module

reading source files, 264–265

version and platform,

sysconfig, 1167–1168

ZIP archives, 466–467

python_build() function,

1133–1134

python_compiler() function,

1133–1134

PYTHONUSERBASE environment

variable, 1048

python_version() function,

1133–1134

python_version_tuple()
function, 1133–1134

PyUnit. See unittest module

PyZipFile class, Python ZIP

archives, 466–467

Q
Queries, sqlite3

metadata, 357–358

retrieving data, 355–357

using variables with, 359–362

question mark. See ? (question mark)

question mark, colon (?:),

noncapturing groups, 36–37

Queue module

basic FIFO queue, 96–97

building threaded podcast client,

99–101

communicating between

processes with

multiprocessing,

541–545

defined, 70

LifoQueue, 97

PriorityQueue, 98–99

purpose of, 96

reference guide, 101–102

thread-safe FIFO implementation,

96–102

tracing references with gc,

1139–1141

QUOTE_ALL option, csv, 413

Quoted strings, shlex, 852–854

quote()function, urllib, 655

QUOTE_MINIMAL option, csv, 413

QUOTE_NONE option, csv, 413

QUOTE_NONNUMERIC option,

csv, 413

quote_plus()function,

urllib, 655

Quoting behavior, csv, 413

ptg

Index 1289

R
Radians, math, 238–243

Raised exceptions

AssertionError, 1217–1218

AttributeError, 1218–1219

EOFError, 1220

FloatingPointError, 1220

GeneratorExit, 1220–1221

ImportError, 1221–1222

IndexError, 1222–1223

IOError, 1221

KeyboardInterrupt, 1223

KeyError, 1223

MemoryError, 1224–1225

NameError, 1225

NotImplementedError,

1225–1226

OSError, 1226–1227

OverflowError, 1227–1228

ReferenceError, 1228–1229

RuntimeError, 1229–1230

SyntaxError, 1230

SystemError, 1230

SystemExit, 1230

TypeError, 1230–1231

UnboundLocalError,

1231–1232

UnicodeError, 1232

ValueError, 1232

ZeroDivisionError, 1232

raises_exception(),
XML-RPC, 713–714

RAM (random access memory),

in-memory databases, 376

randint() function, random

integers, 214–215

random access memory (RAM),

in-memory databases, 376

Random class, 219–221

random() function

generating random numbers,

211–212

random integers, 214–215

saving state, 213–214

seeding, 212–213

Random integers, random, 214–215

random module

defined, 197

generating random numbers,

211–212

generating random values in

UUID 4, 688–689

multiple simultaneous generators,

219–221

nonuniform distributions,

222–223

permutations, 216–218

picking random items, 215–216

purpose of, 211

random integers, 214–215

reference guide, 223

sampling, 218–219

saving state, 213–214

seeding, 212–213

SystemRandom class, 221–222

Random numbers

generating with random,

211–212

UUID 4 values, 688–689

randrange() function,

random, 215

Rational numbers

approximating values, 210–211

arithmetic, 210

creating fraction instances,

207–210

Fraction class, 207

raw_decode() method, JSON,

701–702

raw_input() function,

readline, 827

rcpttos argument, SMTPServer
class, 734

Re-entrant locks, threading,

521–522

re module

compiling expressions, 14–15

constraining search, 26–30

dissecting matches with groups,

30–36

finding patterns in text with, 14

looking ahead or behind, 45–50

modifying strings with patterns,

56–58

multiple matches, 15–16

overview of, 13

reference guide, 60

retrieving account mailboxes in

imaplib, 742

self-referencing expressions,

50–56

splitting with patterns, 58–60

re module, pattern syntax

anchoring, 24–26

character sets, 20–24

escape codes, 22–24

overview of, 16–17

repetition, 17–20

re module, search options

case-insensitive matching, 37–38

embedding flags in patterns,

42–43

input with multiple lines, 38–39

Unicode, 39–40

verbose expression syntax, 40–42

read() method

configuration files in

ConfigParser, 863–864

custom protocol handlers with

urllib2, 667

extracting archived files in

zipfile, 450–452

StringIO buffers, 314–315

using HTTP GET in

urllib2, 658

readable() function,

asyncore, 621–623

Readable results, JSON vs.

pickle, 692

Readable sockets, poll()
function, 605

Readable sockets, select()
function, 596–597

reader() function

isolation levels in sqlite3, 373

reading data from CSV file,

411–412

read_history_file(),
readline, 832–834

Reading

compressed data in gzip,

433–434

compressed files in bz2, 442–443

configuration files in

ConfigParser, 862–864

data from CSV file, 411–412

Maildir mailbox, 764

mbox mailbox, 760–761

metadata from archive in

tarfile, 449–450

metadata from archive in

zipfile, 457–459

text files efficiently. See
linecache module

using mmap to create

memory-mapped file, 279–280

ptg

1290 Index

read_init_file() function,

readline, 824

readline module

accessing completion buffer,

828–831

completing text, 824–827

configuring, 823–824

as default mode for Cmd()to

interact with user, 849–851

defined, 769

hooks for triggering actions,

834–835

purpose of, 823

reference guide, 835–836

tracking input history,

832–834

readlines() method, 315,

658

readlink() function, symbolic

links with os, 1119

readmodule() function,

pyclbr, 1041–1042

readmodule_ex() function,

pyclbr, 1042–1043

Receiver, multicast, 589–590

receive_signal(),
signal, 499

Reconstructing objects, problems in

pickle, 338–340

recurse() function

inspect, 1214–1215

programming trace interface,

1018–1020

recurse module, trace
calling relationships, 1017–1018

code coverage report information,

1013–1017

example program, 1012

programming interface,

1018–1020

tracing execution, 1012–1013

Recursion

in alias definitions in pdb,

1010–1011

controlling memory in sys,

1068–1069

in deep copy, 120–123

pprint, 125–126

recv()
echo client, TCP/IP socket,

573–574

echo server, TCP/IP socket, 573

nonblocking communication and

timeouts vs., 594

using poll(), 605–606

redisplay(), readline, 835

ref class, weakref, 107–108

Reference counting, memory

management in sys, 1065–1066

ReferenceError exception, 109,

1228–1229

References

finding for objects that cannot be

collected, 1146–1148

impermanent, to objects. See
weakref module

tracing with gc, 1138–1141

RegexObject, compiling

expressions, 14–15

register()
alternate API names in

SimpleXMLRPCServer,

716–717

atexit, 890–891

encoding, 309

registering concrete class in abc,

1179

register_adapter() function,

sqlite3, 364–365

register_converter()
function, sqlite3, 364–365

Registered handlers, signal,

499–501

register_introspection_
functions(),
SimpleXMLRPCServer,

724–726

Regular expressions

syntax for. See re module

translating glob patterns to, 318

understanding, 13

using memory-mapped files with,

283–284

Relational database, embedded. See
sqlite3 module

Relationships, trace
collecting/reporting on,

1017–1018

release() method

multiprocessing, 548

threading, 523–524

reload() function, imported

modules in sys, 1083,

1239–1240

Reloading

imported modules, 1083

modules in custom importer,

1093–1094

remove(), messages from Maildir

mailbox, 764–765

removedirs() function, os, 1119

remove_option,
ConfigParser, 871–872

remove_section,
ConfigParser, 870–871

repeat() function, itertools,

147–148

repeat(), timeit, 1032

repeated warnings, 1174–1175

repeater.py script, 491–492

Repeating options, optparse,

786–788

Repetition, pattern syntax, 17–20,

23–24

replace() method,

datetime, 184

replace mode

codec error handling, 292

decoding errors, 295

encoding errors, 293

report() function,

filecmp, 327

REPORT_CDIFF, doctest,

933–934

report_full_closure()
function, filecmp, 327–328

reporthook(), urllib, 652

REPORT_NDIFF, doctest, 933

Reports

calling relationships, 1017–1018

code coverage with trace,

1013–1017

detailed traceback. See cgitb
module

performance analysis with

profile, 1023–1026

performance analysis with

pstats, 1027–1031

traceback. See traceback
module

REPORT_UDIFF, doctest,

933–934

__repr__() method,

pprint, 125

Request handler, SocketServer,

610–615

ptg

Index 1291

Request object, urllib2,

662–664

resolve conflict_handler,

argparse, 808–810

resource limits, resource,

1135–1138

Resource management. See
resource module

resource module, 1134–1138

current usage, 1134–1135

defined, 1045

purpose of, 1134

reference guide, 1138

resource limits, 1135–1138

Restricting access to data,

sqlite3, 384–386

Result data, saving in trace,

1020–1021

Retrieving data, sqlite3, 355–357

return command, pdb, 989

return events, tracing program in

sys, 1105–1106

reverse(), pkgutil, 1250

Rich comparison, functools,

138–140

RLock object, threading, 522

rmdir() function, removing

directories in os, 1119

rmtree() function, shutil,

277–278

RobotFileParser.can_
fetch(), 675–676

robotparser module

defined, 637

long-lived spiders, 676–677

purpose of, 674

reference guide, 677

robots.txt file, 674–675

testing access permissions,

675–676

robots.txt file, 662, 674–677

rollback(), changes to database

in sqlite3, 370–371

RotatingFileHandler,
logging, 879–880

Rotation

deque, 78–79

log file, 879–880

Rounding, decimal contexts,

202–206

Row objects, sqlite3, 358–359

row_factory property,

Connection objects, 358–359

RSS feed, converting M3U files to,

883–886

ruler attribute, configuring cmd,

847–848

Rules, breakpoint, 998–999

run()
canceling events, sched,

897–898

overlapping events, sched, 896

running profiler in profile,

1023–1026

subclassing Process by

overriding, 541

subclassing Thread by

overriding, 513

run command, program in pdb, 1009

runctx(), profile, 1026

runfunc() method, trace, 1019

Running external commands, os,

1121–1122

Runtime

changing execution flow in pdb,

1002–1009

environment, sys, 1062–1065

finding message catalogs at,

903–904

garbage collector. See gc module

inspecting stacks and frames at,

1213–1216

interpreter compile-time

configuration. See
sysconfig module

overview of, 1045–1046

portable access to OS features.

See os module

site-wide configuration. See
site module

system resource management

with resource, 1134–1138

system-specific configuration. See
sys module

system version implementation

with platform, 1129–1134

RuntimeError exception,

1229–1230

RuntimeWarning, 1233

S
-S option, disabling site, 1054

SafeConfigParser

accessing configuration settings,

864–869

combining values with

interpolation, 875–878

modifying configuration settings,

869–871

option search path, 872–875

safe_substitute() method,

string.Template, 6–7

sample() function, random,

218–219

Saving

configuration files, 871–872

result data in trace,

1020–1021

state in random, 213–214

sched module

canceling events, 897–898

defined, 770

event priorities, 897

overlapping events, 896–897

purpose of, 894–895

reference guide, 898

running events with delay,

895–896

timed event scheduler, 894–898

Schema

creating embedded relational

database, 353

defined, 352

Schemes, sysconfig, 1163

Search criteria, IMAP4 mailbox,

747–748

Search function, adding to registry

for encoding, 309–310

search() function, IMAP4,

746–747, 749–752

search() function, re
compiling expressions, 14–15

constraining, 26–30

finding patterns in text, 14

multiple matches, 15–16

Search path

custom importers in sys,

1083–1085

for modules in sys,

1081–1084

for options in ConfigParser,

872–875

second attribute

date class, 182–183

time class, 181

ptg

1292 Index

Sections, ConfigParser
accessing configuration

settings, 865

defined, 862

option search path, 872–875

removing, 870

testing whether values are

present, 865–867

Security

HMAC authentication for,

476–479

insecurity of pickle, 334

SimpleXMLRPCServer
implications, 715

seed() function, random,

212–213

seek() method

reading compressed data in

gzip, 434

reading compressed files in

bz2, 443

StringIO buffers, 315

temporary files, 267

select() function, select,

594–601

select module

nonblocking I/O with timeouts,

601–603

platform-specific options, 608

purpose of, 594–595

reference guide, 608–609

using poll() function, 603–608

using select() function,

595–601

Self-referencing expressions, re,

50–56

Semaphore
multiprocessing, 548–550

threading, 525–526

send() function

nonblocking communication and

timeouts vs., 593–594

Unicode data and network

communication, 304–305

sendall()function, TCP/IP

socket, 573–574

send_error() method,

BaseHTTPServer, 649–650

send_header() method,

BaseHTTPServer, 650–651

Sending signals, 501

sendmail(), with smtplib,

728–730

Sequence operators, operator
module, 157–158

SequenceMatcher, 65–68

Sequences

comparing lines of text. See
difflib module

of fixed-type numerical data,

84–87

operators for, 157–158

SerialCookie class, deprecated

in Cookie, 683

Serializing

defined, 333

objects. See pickle module

XML to stream in

ElementTree, 408–410

serve_forever(),
SocketServer, 609

ServerProxy
connecting to XML-RPC server,

704–706

SimpleXMLRPCServer, 715–716

Servers

classes implementing SMTP,

734–738

classes implementing Web. See
BaseHTTPServer module

connecting to IMAP, 739–740

connecting to XML-RPC,

709–710

creating network. See
SocketServer module

implementing with asynchat,

630–632

implementing XML-PRC. See
SimpleXMLRPCServer
module

SocketServer, 609–610

TCP/IP, 572–575

UDP, 581–583

using asyncore in, 619–621

Services, socket 566–570

Set-Cookie header, Cookie
module

alternative output formats,

682–683

overview of, 678

receiving and parsing Cookie
headers, 681–682

set() method

modifying configuration settings,

869–871

setting Element properties,

403–405

signaling between threads, 516

setblocking() method,

select, 594

setDaemon() method, daemon

threads, 509

set_debug() function, gc,

1151–1159

setdefault() function,

timeit, 1034

setdefaultencoding()
function, sys, 1058

set_defaults(), optparse,

781–782

setfirstweekday() method,

calendar, 194

setitem() function, sequence

operators, 158

setlocale() function, locale,

909–911

setrecursionlimit()
function, sys, 1067–1068

setrlimit() function,

resource, 1136

setsid()function, signal, 495

setsockopt, TTL multicast

messages, 588, 590

setstate() function, random,

213–214

set_terminator(),
asynchat, 629–630

set_threshold() function, gc,

1149–1151

set_trace() function, pdb,

977–978, 983–984

settrace() function, sys,

1101–1102

setUp() method

SocketServer, 610

setup() method

unittest, 956–957

setup_statement, timeit,

1033–1035

SHA-1

calculating in hashlib,

470–471

creating UUID name-based

values, 686–688

vs. MD5 in hmac, 474–475

ptg

Index 1293

Shallow argument, cmp(), 326

Shallow argument,

cmpfiles(), 326

Shallow copies, 118–119

Shared-argument definitions,

argparse, 807–808

Shell commands, running in cmd,

848–849

Shell-style syntaxes, parsing. See
shlex module

shelve module

creating new shelf, 343–344

defined, 333–334

importing module from,

1085–1091

purpose of, 343

reference guide, 346

specific shelf types, 346

writeback, 344–346

ShelveFinder, 1089

ShelveLoader, 1087, 1089,

1091–1093

shlex module

controlling parser, 856–858

defined, 770

embedded comments, 854

error handling, 858–859

including other sources of tokens,

855–856

POSIX vs. non-POSIX parsing,

869–871

purpose of, 852

quoted strings, 852–854

reference guide, 861

split, 855

Short-form options

argparse, 797

getopt, 771–775

optparse, 778–779

shouldtake() function,

itertools, 149

shove module, 346

show_projects(), sqlite3,

368–370

show_results() function,

timeit, 1033–1035

show_type(), binary data in

xmlrpclib, 710

showwarning() function,

1175–1176

shuffle() function, random,

216–218

Shutdown callbacks, program,

890–894

shutil module

copying file metadata, 274–276

copying files, 271–274

defined, 247

purpose of, 271

reference guide, 278

working with directory trees,

276–278

SIG_DFL value, 499–501

SIG_IGN value, 499–501, 502

SIGINT, 502

Signal handlers

ignoring signals, 502

receiving signals, 498–499

retrieving registered, 499–501

signals and threads, 502

signal module

alarms, 501–502

creating processes with

os.fork(), 1123

ignoring signals, 502

purpose of, 497–498

receiving signals, 498–499

reference guide, 502–505

retrieving registered handlers,

499–501

sending signals, 501

signals and threads, 502–505

when callbacks are not

invoked, 891

Signaling between processes

multiprocessing, 545–546

subprocess, 492–497

Signaling between threads,

threading, 516–517

signal.pause(), 502

Signals and threads, signal,

502–505

Signing messages, hmac, 474,

476–479

SIGUSRI, 502

SIGXCPU signal, 1137

simple mail transport protocol

(SMTP). See smptd module;

smtplib module

SimpleCompleter class,

readline, 824–827

SimpleCookie class

alternative output formats,

682–683

creating and setting, 678–679

deprecated classes vs., 683

encoding header, 681

receiving and parsing header, 682

SimpleXMLRPCServer module

alternate API names, 716–717

arbitrary API names, 719

defined, 638

dispatching calls, 722–723

dotted API names, 718–719

exposing methods of objects,

720–721

introspection API, 724–726

purpose of, 714

reference guide, 726

simple server, 714–716

Sine, math
hyperbolic functions, 243–244

trigonometric functions, 240–243

Single character wildcard, glob,

259–260

site module

customizing site configuration,

1051–1052

customizing user configuration,

1053–1054

defined, 1045

disabling, 1054

import path configuration,

1046–1047

path configuration files,

1049–1051

reference guide, 1054–1055

user directories, 1047–1048

Site-wide configuration. See site
module

sitecustomize module,

1051–1052

__sizeof__() method, sys,

1067–1068

Sizes distribution, random, 223

sleep() call

EXCLUSIVE isolation level in

sqlite3, 375

interrupted when receiving

signals, 499

signals and threads, 504–505

SmartCookie class, deprecated in

Cookie, 683

smptd module

debugging server, 737

mail server base class, 734–737

ptg

1294 Index

smptd module (continued)

proxy server, 737–738

purpose of, 734

reference guide, 738

SMTP (simple mail transport

protocol). See smptd module;

smtplib module

smtplib module

authentication and encryption,

730–732

defined, 727

purpose of, 727

reference guide, 733–734

sending email message, 728–730

verifying email address, 732–733

SMTPServer class, 734–736

sniff() method, detecting dialects

in csv, 417–418

Sniffer class, detecting dialects in

csv, 417–418

SOCK_DGRAM socket type, 562

socket class, socket
module, 561

socket module

finding service information,

566–568

IP address representations,

570–571

looking up hosts on network,

563–565

looking up server addresses,

568–570

multicast messages, 587–591

nonblocking communication and

timeouts, 593–594

overview of, 562–563

purpose of, 561

reference guide, 572, 591, 594

sending binary data, 591–593

TCP/IP. See TCP/IP sockets

TCP/IP client and server, 572–580

UDP client and server, 580–583

UNIX domain sockets, 583–587

Socket types, 562

socket.error, 563–565

socketpair() function, UNIX

Domain Sockets, 586–587

SocketServer module

adding threading or forking in

HTTPServer using, 648–649

BaseHTTPServer using

classes from, 644

echo example, 610–615

implementing server, 610

purpose of, 609

reference guide, 618–619

request handlers, 610

server objects, 609

server types, 609

threading and forking, 616–618

SOCK_STREAM socket type for, 562

Soft limits, resource, 1136–1137

Sorting

creating UUID objects to handle,

689–690

customizing functions in

sqlite3, 381–383

JSON format, 692–694

maintaining lists in sorted order,

93–96

Source code

byte-compiling with

compileall, 1037–1039

creating message catalogs from,

900–903

retrieving for module from ZIP

archive, 1243–1244

retrieving with inspect,

1207–1208

source property, shlex, 855–856

sourcehook() method,

shlex, 856

spawn()functions, os, 1127

Special constants, math, 223–224

Special functions, math, 244–245

Special values, decimal, 200–201

Specific shelf types, shelve, 346

Spiders, controlling Internet,

674–677

split() function

existing string with shlex, 855

path parsing in os.path, 249

splitting strings with patterns in

re, 58–60

splittext() function, path

parsing in os.path, 250–251

Splitting iterators, itertools,

144–145

Splitting with patterns, re, 58–60

SQL-injection attacks, 359

SQLite, 351

sqlite3 module

bulk loading, 362–363

creating database, 352–355

custom aggregation, 380–381

custom sorting, 381–383

defined, 334

defining new column types,

363–366

determining types for columns,

366–368

exporting database contents,

376–378

isolation levels, 372–376

in-memory databases, 376

purpose of, 351

query metadata, 357–358

querying, 355–357

reference guide, 387

restricting access to data, 384–386

retrieving data, 355–357

row objects, 358–359

threading and connection sharing,

383–384

transactions, 368–371

using Python functions in SQL,

378–380

using variables with queries,

359–362

SQLITE_DENY operations, 386

SQLITE_IGNORE operations,

385–386

SQLITE_READ operations, 384–385

square brackets [], config file, 862

Square roots, computing in math,

234–325

stack() function, inspect,

1214–1215

Stack, inspecting runtime

environment, 1213–1216

Stack levels in warnings, 1176–1177

Stack trace

traceback working with,

963–965

tracing program as it runs,

1105–1106

StandardError class,

exceptions, 1216

starmap() function,

itertools, 146

start events, ElementTree
parsing, 393–396

“start” input value, readline,

826–827

start() method

ptg

Index 1295

custom tree builder in

ElementTree, 398

finding patterns in text with

re, 14

multiprocessing, 529–530

threading, 505–506

start-ns events, ElementTree,

394–396

start-up hook, readline, 834–835

STARTTLS extension, SMTP
encryption, 731–732

stat() function, file system

permissions in os, 1116–1118

Statement argument, timeit, 1035

Statistics, saving and working with,

1027–1028

Status

code for process exits in

multiprocessing,

537–538

reporting with logging module,

878–883

returning exit code from program

in sys, 1064–1065

stderr attribute, Popen
interacting with another

command, 491

managing child processes in os
using pipes, 1112–1116

working directly with pipes, 488

stderr attribute, runtime

environment in sys, 1064

stdin attribute, Popen
interacting with another

command, 491–492

managing child processes in os
using pipes, 1112–1116

working directly with pipes,

486–489

stdin attribute, runtime

environment in sys, 1063–1064

stdout attribute, Popen
capturing output, 485–486

connecting segments of pipe,

489–490

interacting with another

command, 491–492

managing child processes in os
using pipes, 1112–1116

working directly with pipes,

486–489

stdout attribute, runtime

environment in sys, 1063–1064

step command, pdb, 984–990

step() method, sqlite3,

380–381

stepping through execution of

program, pdb, 984–990

“stop” input value, readline,

826–827

Storage

insecurity of pickle for, 334

of persistent objects. See shelve
module

store action

argparse, 799–802

optparse, 784

store_const action

argparse, 799–802

optparse, 785

store_false action, argparse,

799–802

store_true action, argparse,

799–802

StreamReader, custom encoding,

311, 313

Streams

managing child processes in os,

1112–1115

mixed content with bz2, 439–440

mixed content with zlib,

424–425

pickle functions for, 336–338

runtime environment with sys,

1063–1064

working with gzip, 434–436

working with json, 700–701

StreamWriter, custom encoding,

311, 313

strftime() function, time,

179–180

strict mode, codec error

handling, 292–293, 295

string module

advanced templates, 7–9

functions, 4–5

overview of, 4

reference guide, 9

templates, 5–7

StringIO buffers

applications of HMAC message

signatures, 476–477

defined, 248

streams in GzipFile, 434–436

streams in pickle, 336

text buffers, 314–315

writing data from other sources in

tarfile, 455

Strings

argparse treating all argument

values as, 817–819

converting between binary data

and, 102–106

encoding and decoding. See
codecs module

encoding and decoding with

pickle, 335–336

modifying with patterns, 56–58

parsing in ElementTree,

398–400

string.Template, 5–9

strptime() function,

datetime, 179–180, 190

struct module

buffers, 105–106

data structures, 102–106

endianness, 103–105

functions vs. Struct class, 102

packing and unpacking, 102–103

purpose of, 102

reference guide, 106

sending binary data, 591–593

struct_time() function, time,

176–177, 179–180

sub(), modifying strings with

patterns, 56–58

Subclassing

from abstract base class,

1179–1181

processes with

multiprocessing,

540–541

reasons to use abstract base

classes, 1178

threads with threading,

513–515

subdirs attribute, filecmp, 332

SubElement() function,

ElementTree, 400–401

Subfolders, Maildir mailbox,

766–768

Subpatterns, groups containing, 36

subprocess module

connecting segments of pipe,

489–490

ptg

1296 Index

subprocess module (continued)

interacting with another

command, 490–492

purpose of, 481–482

reference guide, 397

running external command,

482–486

signaling between processes,

492–497

working with pipes directly,

486–489

Substitution errors,

ConfigParser, 877

Suites, test

doctest, 943

unittest, 957

unittest integration in

doctest, 945

super()function, abc,

1181–1182

Switches, argparse prefixes,

802–803

Switching translations,

gettext, 908

Symbolic links, os, 1119

symlink() function, os, 1119

Symlinks

copying directories, 277

functions in os, 1119

Synchronizing

processes with

multiprocessing,

547–548

threads with threading,

523–524

SyntaxError exception, 1230

SyntaxWarning, 1233

sys module

defined, 1045

exception handling, 1071–1074

hook for program shutdown, 890

interpreter settings, 1055–1062

low-level thread support,

1074–1080

memory management. See
Memory management and

limits, sys
purpose of, 1055

reference guide, 1107–1108

runtime environment, 1062–1065

tracing program as it runs,

1101–1107

sys module, modules and imports

built-in modules, 1080–1091

custom importers, 1083–1085

custom package importing,

1091–1093

handling import errors,

1094–1095

import path, 1081–1083

imported modules, 1080–1081

importer cache, 1097–1098

importing from shelve,

1085–1091

meta path, 1098–1101

package data, 1095–1097

reference guide, 1101

reloading modules in custom

importer, 1093–1094

sys.api_version, 1055–1056

sys.argv, 851–852, 1062–1063

sysconfig module

configuration variables,

1160–1161

defined, 1046

installation paths, 1163–1166

purpose of, 1160

Python version and platform,

1167–1168

reference guide, 1168

sys._current_frames(),

1078–1080

sys.excepthook, 1071–1072

sys.exc_info() function,

traceback, 959–961

sys.exit(), 892–893, 1064–1065

sys.flags, interpreter

command-line options,

1057–1058

sys.getcheckinterval(), 1074

sys.hexversion, 1055–1056

sys.modules, 1080

sys.path
compiling, 1038–1039

configuring import path with

site, 1046–1047

defined, 1080

importer cache, 1097–1098

meta path, 1098–1099

path configuration files,

1049–1051

sys.platform, 1056–1057

sys.setcheckinterval(),

1074

sys.stderr, 837, 959, 1175

sys.stdout, 837, 959

sys.subversion tuple,

1055–1056

System. See Operating system

system() function, external

commands with os, 1121–1122

SystemError exception, 1230

SystemExit exception, 1230

SystemRandom class, random
module, 221–222

sys.version, 1055–1056

sys.version_info, 1055–1056

T
Tab completion. See readline

module

Tables, embedded relational

database, 353–355

“Tails,” picking random items, 216

takewhile() function, filtering

iterators, 149–150

Tangent, math, 240–243

Tar archive access. See tarfile
module

tarfile module

appending to archives, 455

creating new archives, 453

extracting files from archive,

450–452

purpose of, 448

reading metadata from archive,

449–450

reference guide, 456–457

testing tar files, 448–449

using alternate archive member

names, 453–454

working with compressed

archives, 456

writing data from sources other

than files, 454–455

Target functions, importing in

multiprocessing, 530–531

TarInfo objects

creating new archives in

tarfile, 453

reading metadata in tarfile,

449

using alternate archive member

names, 453–454

writing data from sources other

than files, 454–455

ptg

Index 1297

TCP/IP sockets

choosing address for listening,

577–580

client and server together,

574–575

easy client connections, 575–577

echo client, 573–574

echo server, 572–573

UNIX Domain Sockets vs.,

583–586

using poll(), 603–608

using select(), 598–601

TCP (transmission control protocol),

SOCK_STREAM socket for, 562

TCPServer class,

SocketServer, 609–610

tearDown(), unittest,

956–957

tee() function, itertools,

144–145

tempfile module

defined, 247

named files, 268

predicting names, 269–270

purpose of, 265

reference guide, 271

temporary directories, 268–269

temporary file location, 270–271

temporary files, 265–268

Templates, string, 5–9

Temporary breakpoints, 997–998

Temporary file system objects. See
tempfile module

TemporaryFile() function

named temporary files, 268

predicting names, 269–270

temporary files, 265–268

Terminal, using getpass()
without, 837–838

Terminating processes,

multiprocessing, 536–537

Terminators, asynchat, 632–634

Terse argument, platform()
function, 1130–1131

Test context, doctest, 945–948

Test data, linecache, 261–262

__test__, doctest, 937–938

test() method, unittest, 949

TestCase. See unittest module

testFail() method, unittest,

951–952

testfile() function, doctest,

944–945, 948

Testing

with automated framework. See
unittest module

in-memory databases for

automated, 376

os.path files, 255–256

tar files, 448–449

through documentation. See
doctest module

ZIP files, 457

testmod() function, doctest,

942–943, 948

test_patterns, pattern syntax

anchoring, 24–26

character sets, 20–24

dissecting matches with groups,

30, 34–37

expressing repetition, 18–20

overview of, 16–17

using escape codes, 22–24

Text

command-line completion. See
readline module

comparing sequences. See
difflib module

constants and templates with

string, 4–9

encoding and decoding. See
codecs module

encoding binary data with ASCII.

See base64 module

formatting paragraphs with

textwrap, 9–13

overview of, 3

parsing shell-style syntaxes. See
shlex module

processing files as filters. See
fileinput module

reading efficiently. See
linecache module

regular expressions. See re
module

SQL support for columns,

363–366

StringIO buffers for, 314–315

TextCalendar format, 191

textwrap module

combining dedent and fill, 11–12

filling paragraphs, 10

hanging indents, 12–13

overview of, 9–10

reference guide, 13

removing existing indentation,

10–11

Thread-safe FIFO implementation,

Queue, 96–102

Threading

adding to HTTPServer,

648–649

and connection sharing,

sqlite3, 383–384

threading module

controlling access to resources,

517–523

daemon vs. non-daemon threads,

509–511

determining current thread,

507–508

enumerating all threads, 512–513

importable target functions in

multiprocessing,

530–531

isolation levels in sqlite3, 373

limiting concurrent access to

resources, 524–526

multiprocessing basics,

529–530

multiprocessing features

for, 529

purpose of, 505

reference guide, 528

signaling between threads,

516–517

subclassing thread, 513–515

synchronizing threads, 523–524

Thread objects, 505–506

thread-specific data, 526–528

Timer threads, 515–516

ThreadingMixIn, 616–618, 649

Threads

controlling and debugging with

sys, 1074–1080

controlling with sys, 1074–1078

debugging with sys, 1078–1080

decimal module contexts,

206–207

defined, 505

isolation levels in sqlite3,

372–376

managing processes like. See
multiprocessing module

signals and, 502–505

ptg

1298 Index

Threads (continued)

threading module. See
threading module

using Queue class with multiple,

99–102

Thresholds, gc collection,

1148–1151

Time class, datetime, 181–182

time() function, 174–176

time module

defined, 173

parsing and formatting times,

179–180

processor clock time, 174–176

purpose of, 173

reference guide, 180

time components, 176–177

wall clock time, 174

working with time zones,

177–179

time-to-live (TTL) value, multicast

messages, 588

Time values, 181–182, 184–185

Time zones, 177–179, 190

Timed event scheduler, sched,

894–898

timedelta, datetime,

185–186

timeit module

basic example, 1032

command-line interface,

1035–1036

contents of, 1032

defined, 920

purpose of, 1031–1032

reference guide, 1037

storing values in dictionary,

1033–1035

Timeouts

configuring for sockets, 594

nonblocking I/O with, 601–603

using poll(), 604

Timer class. See timeit module

Timer threads, threading,

515–516

Times and dates

calendar module, 191–196

datetime. See datetime
module overview of, 173

time. See time module

Timestamps

manipulating date values,

183–184

sqlite3 converters for

columns, 364

Timing execution of small bits of

code. See timeit module

TLS (transport layer security)

encryption, SMTP, 730–732

To headers, smtplib, 728

today() class method, current

date, 182

Tokens, shlex, 855–859

toprettyxml() method,

pretty-printing XML, 401–403

tostring(), serializing XML to

stream, 408

total_ordering(),
functools comparison,

138–140

total_seconds()function,

timedelta, 184

Trace hooks

exception propagation,

1106–1107

monitoring programs, 1101

tracing function calls, 1102–1103

tracing inside functions,

1103–1104

watching stack, 1105–1106

trace module

calling relationships, 1017–1018

code coverage report information,

1013–1017

defined, 919

example program, 1012

options, 1022

programming interface,

1018–1020

purpose of, 1012

reference guide, 1022

saving result data, 1020–1021

tracing execution, 1012–1013

traceback module

defined, 919

for more detailed traceback

reports. See cgitb module

purpose of, 958

reference guide, 965

supporting functions, 958–959

working with exceptions,

959–962

working with stack, 963–965

Tracebacks

defined, 928, 958

detailed reports on. See cgitb
module

recognizing with doctest,

928–930

as test outcome in unittest,

951–952

trace_calls() function, sys,

1102–1104

trace_calls_and_returns()
function, sys, 1105

trace_lines() function, sys,

1103–1104

Tracing

program flow. See trace module

references with gc, 1138–1141

Tracing program as it runs, sys
exception propagation,

1106–1107

function calls, 1102–1103

inside functions, 1103–1104

overview of, 1101

watching stack, 1105–1106

Transactions, sqlite3, 368–371

translate() function

creating translation tables, 4–5

UNIX-style filename

comparisons, 318

Translations

creating tables with

maketrans(), 4–5

encoding, 298–300

message. See gettext module

Transmission control protocol

(TCP), SOCK_STREAM socket

for, 562

transport layer security (TLS)

encryption, SMTP, 730–732

Trash folder model, email, 756–757

Traversing parsed tree,

ElementTree, 388–390

Triangles, math, 240–243

triangular() function,

random, 222

Trigonometry

inverse functions, 243

math functions, 240–243

math functions for angles,

238–240

truediv() operator, 156–157

trunc() function, math, 226–227

ptg

Index 1299

Truth, unittest, 952–953

truth()function, logical

operations, 154

try:except block, sqlite3
transactions, 370–371

TTL (time-to-live) value, multicast

messages, 588

tty, using getpass() without

terminal, 837–838

Tuple, creating Decimals from,

198–199

Type checking, operator module,

162–163

Type conversion, optparse, 783

Type parameter,

add_argument(), 815–817

TypeError exception

argparse, 818

overview of, 1230–1231

time class, 182

TZ environment variable, time zones,

178

tzinfo class, datetime, 190

tzset() function, time zones,

178

U
UDP (user datagram protocol)

echo client, 581–582

echo server, 581

overview of, 580–581

sending multicast messages with,

588–591

SOCK_DGRAM socket type for,

562

UDPServer class,

SocketServer, 609–610

UDS (UNIX Domain Sockets)

AF_UNIX sockets for, 562

communication between

parent/child processes,

586–587

overview of, 583–586

permissions, 586

ugettext program, 901

unalias command, pdb, 1011

uname() function, platform,

1131–1133

UnboundLocalError exception,

1231–1232

undoc_header attribute, cmd,

847–848

ungettext()function, gettext,

905–906, 908

Unicode

codec error handling, 291–295

configuration data in

ConfigParser, 863–864

data and network communication,

303–307

encoding translation, 298–300

interpreter settings in sys,

1058–1059

non-Unicode encodings, 300–301

overview of, 284–285

reference guide, 313

searching text using strings,

39–40

standard I/O streams, 295–298

turning on case-insensitive

matching, 45

understanding encodings,

285–287

working with files, 287–289

UNICODE regular expression flag,

39–40, 45–50

UnicodeDecodeError, 294–295

UnicodeEncodeError,

292–293, 295–298, 309

UnicodeError exception, 1232

UnicodeWarning, 1233

unified_diff()function,

difflib, 64

uniform() function, random,

212

Uniform Resource Name (URN)

values. See uuid module

unittest module

almost equal, 954–955

asserting truth, 952–953

basic test structure, 949

defined, 919

integration in doctest, 945

purpose of, 949

reference guide, 958

running tests, 949–950

test fixtures, 956–957

test outcomes, 950–952

test suites, 957

testing equality, 953–954

testing for exceptions, 955–956

Universally unique identifiers

(UUID). See also uuid module,

684

UNIX

changing file permissions,

1117–1118

domain sockets, 583–587

filename comparisons, 315–317

filename pattern matching,

257–260

mmap() in Windows vs., 279

programming with signal

handlers, 498

UNIX Domain Sockets. See UDS

(UNIX Domain Sockets)

UnixDatagramServer class,

SocketServer, 609, 610

UnixStreamServer class,

SocketServer, 609, 610

unpack_from()method,

struct, 105–106

unpack()method, struct, 103

unparsing URLs, urlparse,

641–642

Unpicklable objects, pickle, 340

Unpredictable output, doctest,

924–928

unregister(), using poll(),
606

until command, pdb, 988–989

Unused data_ attribute, mixed

content streams, 424–425, 440

up (u) command, pdb, 980

update() method

populating empty Counter, 71

updates in hashlib, 472–473

update_wrapper(),
functools, 132–133,

137–138

Uploading files, urllib2, 664–667

Uploading messages, IMAP4,

753–755

url2pathname()function,

urllib, 655–657

urlcleanup() method, urllib,

652

urldefrag() function,

urlparse, 640

urlencode(), urllib,

654–655

urljoin() function, constructing

absolute URLs, 642–643

urllib module

defined, 637

encoding arguments, 653–655

ptg

1300 Index

urllib module (continued)

paths vs. URLs, 655–657

purpose of, 651

reference guide, 657

simple retrieval with cache,

651–653

using Queue class with multiple

threads, 99–102

urllib2 module

adding outgoing headers,

661–662

creating custom protocol

handlers, 667–670

defined, 637

encoding arguments, 660–661

HTTP GET, 657–660

HTTP POST, 661

posting form data from request,

663–664

purpose of, 657

reference guide, 670

uploading files, 664–667

urlopen() method, urllib2,

657–659, 661

urlparse() function, 638–640,

641

urlparse module

defined, 637

joining, 642–643

parsing, 638–640

purpose of, 638

reference guide, 643

unparsing, 641–642

urlretrieve() method,

urllib, 651–653

URLs

encoding variations safe for,

672–673

manipulating strings. See
urlparse module

network resource access. See
urllib module; urllib2
module

urlsplit() function,

urlparse, 639–640, 641

urlunparse() function,

urlparse, 641–642

URN (Uniform Resource Name)

values. See uuid module

use_alarm(), signals and threads,

504–505

User datagram protocol. See UDP

(user datagram protocol)

USER_BASE directory, site,

1047–1048

usercustomize module,

1053–1054

Username, urlparse, 639

Users, site
customizing configuration,

1053–1054

directories, 1047–1048

USER_SITE path name, site,

1047–1048

UserWarning, 1171–1172, 1233

USR signal, subprocess, 493–498

UTF-8

defined, 284

reference guide, 313

working with files, 287–289

UTF-16

byte ordering, 289–291

defined, 284

working with files, 287–289

UTF-32, 287–291

uuid module

defined, 637–638

purpose of, 684

version 1 values, 684–686

version 4 values, 688–689

versions 3 and 5 values, 686–688

working with UUID objects,

689–690

UUID (universally unique

identifiers). See also uuid
module, 684

uuid1() function, uuid, 684–686

uuid4() function, generating

random values, 688–689

V
value property, abc, 1182–1186

ValueError exception

argparse, 818

from computing square root of

negative value, 235

overview of, 1232

Values. See also Floating-point

values

configuration settings,

ConfigParser, 865–867

creating fraction instances,

207–210

custom action, with argparse,

820

date and time. See datetime
module

event priority, 897

with interpolation,

ConfigParser, 875–878

optparse options, 781–784

plural, with gettext, 905–907

producing new iterator, 146

special, with Decimal, 200–201

storing in dictionary with

timeit, 1033–1035

variable argument lists, argparse,

815–817

Variables

dynamic values with queries

through, 359–362

on execution stack with pdb,

981–984

Verbose expression syntax, searching

text, 40–44

Verbose option, connecting to

XML-RPC server, 704

VERBOSE regular expression flag,

42–50

Verbosity levels, logging,

880–882

Verification, email address, 731–732

verify_request() method,

SocketServer, 610

Version

package, 1249–1251

specifying Python, 1167–1168

version, argparse, 799–802,

806–807

virtualenv, 1250

Von Mises distribution, random,

223

vonmisesvariate() function,

random, 223

W
wait() function

multiprocessing, 545–546

threading, 516–517

waiting for child processes in os,

1125–1127

waiting for I/O. See select
module

waitpid() function, os, 1126

walk() function

ptg

Index 1301

directory tree with os 1120–1121

traversing directory tree with

os.path, 256–257

Walking directory Tree, os,

1120–1121

Wall clock time, time, 174

warn() function

alternate message delivery for

warnings, 1175–1176

generating warnings, 1171–1172

stack levels in warnings, 1177

Warning class, 1233

WARNING level, logging,

881–882

warnings module, 1170–1177

alternate message delivery

functions, 1175–1176

categories and filtering,

1170–1171

defined, 1169

exceptions defined for use with,

1233

filtering with patterns, 1172–1174

formatting, 1176

generating warnings, 1171–1172

nonfatal alerts with, 1170–1177

purpose of, 1170

reference guide, 1177

repeated warnings, 1174–1175

stack levels in warnings,

1176–1177

Weak references to objects. See
weakref module

WeakGraph class, weakref,

113–114

WeakKeyDictionary,
weakref, 115–117

weakref module

caching objects, 114–117

cyclic references, 109–114

data structures, 106–117

defined, 70

proxies, 108–109

purpose of, 106–107

reference callbacks, 108

reference guide, 117

references, 107

WeakValueDictionary,
weakref, 115–117

weekheader() method,

Calendar class, 192

weibullvariate() function,

random, 223

where (w) command, pdb, 979–981,

982

whichdb module, 350–351

whitespace

defined, 930

doctest working with, 930–935

Width argument, pprint(),
126–127

Wildcards, glob, 258–260

Windows

mmap() in UNIX vs., 279

non support for zero-length

mapping, 280

with statement

applying local context to block of

code with, 204–205

with statement

closing open handles in

contextlib, 170

context managers tied to, 163

locks as context manager in

threading, 522–523

nesting contexts, 168–169

removing temporary files, 266

writable () function,

asyncore, 621–623

Writable sockets

poll() function, 606–607

select() function, 597–598

write() method

creating new archives, 460–462

saving configuration files,

871–872

serializing XML to stream in

ElementTree, 408–410

StringIO buffers, 314–315

Writeback mode, shelve, 344–346

write_history_file(),
readline, 832–834

writelines() method

compressed files in BZ2File,

441–442

compressed files in gzip, 432

writepy() method, Python ZIP

archives, 466–467

writer() function

csv, 412–413

isolation levels in sqlite3, 373

writerow() function, csv,

412–413

writestr() method

writing data from sources other

than files in zipfile, 463

writing with ZipInfo instance,

463–464

Writing

compressed files in bz2, 440–442

compressed files in gzip,

431–433

CSV files, 412–413

data from sources other than

tarfile, 454–455

data from sources other than

zipfile, 462–463

memory-mapped file updates,

280–283

with ZipInfo instance, 463–464

X
xgettext program, 900–901

XML manipulation API. See
ElementTree

XML-RPC protocol

client library. See xmlrpclib
module

defined, 702

implementing server. See
SimpleXMLRPCServer
module

XML-to-CSV converter, 395–398

xmlcharrefreplace mode,

codec error handling, 292–293

xml.dom.minidom pretty printer

XML, 401–403

xml.etree.ElementTree. See
ElementTree

XMLID(), ElementTree,

399–400

xmlrpclib module

binary data, 710–712

combining calls into one message,

712–714

connecting to server, 704–706

data types, 706–709

defined, 638

exception handling, 712

passing objects, 709–710

purpose of, 702–703

reference guide, 714

XMLTreeBuilder,
ElementTree, 396–398

ptg

1302 Index

Y
year attribute, date class, 182–183

yeardays2calendar() method,

Calendar, 192–193

Z
Zero-length mapping, Windows

non-support for, 280

ZeroDivisionError exception,

1232–1233

ZIP archives

accessing. See zipfile module

loading Python code from. See
zipimport module

retrieving package data,

1256–1258

zipfile module

appending to files, 464–465

creating new archives, 460–462

extracting archived files from

archive, 459–460

limitations, 467

purpose of, 457

Python ZIP archives, 466–467

reading metadata from archive,

457–459

reference guide, 467

retrieving package data,

1256–1258

testing ZIP files, 457

using alternate archive member

names, 462

writing data from sources other

than files, 462–463

writing with ZipInfo instance,

463–464

zipimport module

accessing code, 1242–1243

data, 1244–1246

defined, 1235

example, 1240–1241

finding module, 1241–1242

packages, 1244

purpose of, 1240

Python ZIP archives, 466–467

reference guide, 1244–1247

retrieving source code,

1243–1244

zipimporter class, 1240

ZipInfo instance, zipfile,
463–464

zlib module

checksums, 425

compressing networked data,

426–430

compressing new archives in

zipfile using, 461–462

incremental compression and

decompression, 423–424

mixed content streams, 424–425

purpose of, 421

reference guide, 430

working with data in memory,

422–423

ZlibRequestHandler, 426–430

	Contents
	Tables
	Foreword
	Acknowledgments
	About the Author
	INTRODUCTION
	1 TEXT
	1.1 String—Text Constants and Templates
	1.1.1 Functions
	1.1.2 Templates
	1.1.3 Advanced Templates

	1.2 Textwrap—Formatting Text Paragraphs
	1.2.1 Example Data
	1.2.2 Filling Paragraphs
	1.2.3 Removing Existing Indentation
	1.2.4 Combining Dedent and Fill
	1.2.5 Hanging Indents

	1.3 Re—Regular Expressions
	1.3.1 Finding Patterns in Text
	1.3.2 Compiling Expressions
	1.3.3 Multiple Matches
	1.3.4 Pattern Syntax
	1.3.5 Constraining the Search
	1.3.6 Dissecting Matches with Groups
	1.3.7 Search Options
	1.3.8 Looking Ahead or Behind
	1.3.9 Self-Referencing Expressions
	1.3.10 Modifying Strings with Patterns
	1.3.11 Splitting with Patterns

	1.4 Difflib—Compare Sequences
	1.4.1 Comparing Bodies of Text
	1.4.2 Junk Data
	1.4.3 Comparing Arbitrary Types

	2 DATA STRUCTURES
	2.1 Collections—Container Data Types
	2.1.1 Counter
	2.1.2 Defaultdict
	2.1.3 Deque
	2.1.4 Namedtuple
	2.1.5 OrderedDict

	2.2 Array—Sequence of Fixed-Type Data
	2.2.1 Initialization
	2.2.2 Manipulating Arrays
	2.2.3 Arrays and Files
	2.2.4 Alternate Byte Ordering

	2.3 Heapq—Heap Sort Algorithm
	2.3.1 Example Data
	2.3.2 Creating a Heap
	2.3.3 Accessing Contents of a Heap
	2.3.4 Data Extremes from a Heap

	2.4 Bisect—Maintain Lists in Sorted Order
	2.4.1 Inserting in Sorted Order
	2.4.2 Handling Duplicates

	2.5 Queue—Thread-Safe FIFO Implementation
	2.5.1 Basic FIFO Queue
	2.5.2 LIFO Queue
	2.5.3 Priority Queue
	2.5.4 Building a Threaded Podcast Client

	2.6 Struct—Binary Data Structures
	2.6.1 Functions vs. Struct Class
	2.6.2 Packing and Unpacking
	2.6.3 Endianness
	2.6.4 Buffers

	2.7 Weakref—Impermanent References to Objects
	2.7.1 References
	2.7.2 Reference Callbacks
	2.7.3 Proxies
	2.7.4 Cyclic References
	2.7.5 Caching Objects

	2.8 Copy—Duplicate Objects
	2.8.1 Shallow Copies
	2.8.2 Deep Copies
	2.8.3 Customizing Copy Behavior
	2.8.4 Recursion in Deep Copy

	2.9 Pprint—Pretty-Print Data Structures
	2.9.1 Printing
	2.9.2 Formatting
	2.9.3 Arbitrary Classes
	2.9.4 Recursion
	2.9.5 Limiting Nested Output
	2.9.6 Controlling Output Width

	3 ALGORITHMS
	3.1 Functools—Tools for Manipulating Functions
	3.1.1 Decorators
	3.1.2 Comparison

	3.2 Itertools—Iterator Functions
	3.2.1 Merging and Splitting Iterators
	3.2.2 Converting Inputs
	3.2.3 Producing New Values
	3.2.4 Filtering
	3.2.5 Grouping Data

	3.3 Operator—Functional Interface to Built-in Operators
	3.3.1 Logical Operations
	3.3.2 Comparison Operators
	3.3.3 Arithmetic Operators
	3.3.4 Sequence Operators
	3.3.5 In-Place Operators
	3.3.6 Attribute and Item “Getters”
	3.3.7 Combining Operators and Custom Classes
	3.3.8 Type Checking

	3.4 Contextlib—Context Manager Utilities
	3.4.1 Context Manager API
	3.4.2 From Generator to Context Manager
	3.4.3 Nesting Contexts
	3.4.4 Closing Open Handles

	4 DATES AND TIMES
	4.1 Time—Clock Time
	4.1.1 Wall Clock Time
	4.1.2 Processor Clock Time
	4.1.3 Time Components
	4.1.4 Working with Time Zones
	4.1.5 Parsing and Formatting Times

	4.2 Datetime—Date and Time Value Manipulation
	4.2.1 Times
	4.2.2 Dates
	4.2.3 Timedeltas
	4.2.4 Date Arithmetic
	4.2.5 Comparing Values
	4.2.6 Combining Dates and Times
	4.2.7 Formatting and Parsing
	4.2.8 Time Zones

	4.3 Calendar—Work with Dates
	4.3.1 Formatting Examples
	4.3.2 Calculating Dates

	5 MATHEMATICS
	5.1 Decimal—Fixed and Floating-Point Math
	5.1.1 Decimal
	5.1.2 Arithmetic
	5.1.3 Special Values
	5.1.4 Context

	5.2 Fractions—Rational Numbers
	5.2.1 Creating Fraction Instances
	5.2.2 Arithmetic
	5.2.3 Approximating Values

	5.3 Random—Pseudorandom Number Generators
	5.3.1 Generating Random Numbers
	5.3.2 Seeding
	5.3.3 Saving State
	5.3.4 Random Integers
	5.3.5 Picking Random Items
	5.3.6 Permutations
	5.3.7 Sampling
	5.3.8 Multiple Simultaneous Generators
	5.3.9 SystemRandom
	5.3.10 Nonuniform Distributions

	5.4 Math—Mathematical Functions
	5.4.1 Special Constants
	5.4.2 Testing for Exceptional Values
	5.4.3 Converting to Integers
	5.4.4 Alternate Representations
	5.4.5 Positive and Negative Signs
	5.4.6 Commonly Used Calculations
	5.4.7 Exponents and Logarithms
	5.4.8 Angles
	5.4.9 Trigonometry
	5.4.10 Hyperbolic Functions
	5.4.11 Special Functions

	6 THE FILE SYSTEM
	6.1 Os.path—Platform-Independent Manipulation of Filenames
	6.1.1 Parsing Paths
	6.1.2 Building Paths
	6.1.3 Normalizing Paths
	6.1.4 File Times
	6.1.5 Testing Files
	6.1.6 Traversing a Directory Tree

	6.2 Glob—Filename Pattern Matching
	6.2.1 Example Data
	6.2.2 Wildcards
	6.2.3 Single Character Wildcard
	6.2.4 Character Ranges

	6.3 Linecache—Read Text Files Efficiently
	6.3.1 Test Data
	6.3.2 Reading Specific Lines
	6.3.3 Handling Blank Lines
	6.3.4 Error Handling
	6.3.5 Reading Python Source Files

	6.4 Tempfile—Temporary File System Objects
	6.4.1 Temporary Files
	6.4.2 Named Files
	6.4.3 Temporary Directories
	6.4.4 Predicting Names
	6.4.5 Temporary File Location

	6.5 Shutil—High-Level File Operations
	6.5.1 Copying Files
	6.5.2 Copying File Metadata
	6.5.3 Working with Directory Trees

	6.6 Mmap—Memory-Map Files
	6.6.1 Reading
	6.6.2 Writing
	6.6.3 Regular Expressions

	6.7 Codecs—String Encoding and Decoding
	6.7.1 Unicode Primer
	6.7.2 Working with Files
	6.7.3 Byte Order
	6.7.4 Error Handling
	6.7.5 Standard Input and Output Streams
	6.7.6 Encoding Translation
	6.7.7 Non-Unicode Encodings
	6.7.8 Incremental Encoding
	6.7.9 Unicode Data and Network Communication
	6.7.10 Defining a Custom Encoding

	6.8 StringIO—Text Buffers with a File-like API
	6.8.1 Examples

	6.9 Fnmatch—UNIX-Style Glob Pattern Matching
	6.9.1 Simple Matching
	6.9.2 Filtering
	6.9.3 Translating Patterns

	6.10 Dircache—Cache Directory Listings
	6.10.1 Listing Directory Contents
	6.10.2 Annotated Listings

	6.11 FIlecmp—Compare Files
	6.11.1 Example Data
	6.11.2 Comparing Files
	6.11.3 Comparing Directories
	6.11.4 Using Differences in a Program

	7 DATA PERSISTENCE AND EXCHANGE
	7.1 Pickle—Object Serialization
	7.1.1 Importing
	7.1.2 Encoding and Decoding Data in Strings
	7.1.3 Working with Streams
	7.1.4 Problems Reconstructing Objects
	7.1.5 Unpicklable Objects
	7.1.6 Circular References

	7.2 Shelve—Persistent Storage of Objects
	7.2.1 Creating a New Shelf
	7.2.2 Writeback
	7.2.3 Specific Shelf Types

	7.3 Anydbm—DBM-Style Databases
	7.3.1 Database Types
	7.3.2 Creating a New Database
	7.3.3 Opening an Existing Database
	7.3.4 Error Cases

	7.4 Whichdb—Identify DBM-Style Database Formats
	7.5 Sqlite3—Embedded Relational Database
	7.5.1 Creating a Database
	7.5.2 Retrieving Data
	7.5.3 Query Metadata
	7.5.4 Row Objects
	7.5.5 Using Variables with Queries
	7.5.6 Bulk Loading
	7.5.7 Defining New Column Types
	7.5.8 Determining Types for Columns
	7.5.9 Transactions
	7.5.10 Isolation Levels
	7.5.11 In-Memory Databases
	7.5.12 Exporting the Contents of a Database
	7.5.13 Using Python Functions in SQL
	7.5.14 Custom Aggregation
	7.5.15 Custom Sorting
	7.5.16 Threading and Connection Sharing
	7.5.17 Restricting Access to Data

	7.6 Xml.etree.ElementTree—XML Manipulation API
	7.6.1 Parsing an XML Document
	7.6.2 Traversing the Parsed Tree
	7.6.3 Finding Nodes in a Document
	7.6.4 Parsed Node Attributes
	7.6.5 Watching Events While Parsing
	7.6.6 Creating a Custom Tree Builder
	7.6.7 Parsing Strings
	7.6.8 Building Documents with Element Nodes
	7.6.9 Pretty-Printing XML
	7.6.10 Setting Element Properties
	7.6.11 Building Trees from Lists of Nodes
	7.6.12 Serializing XML to a Stream

	7.7 Csv—Comma-Separated Value Files
	7.7.1 Reading
	7.7.2 Writing
	7.7.3 Dialects
	7.7.4 Using Field Names

	8 DATA COMPRESSION AND ARCHIVING
	8.1 Zlib—GNU zlib Compression
	8.1.1 Working with Data in Memory
	8.1.2 Incremental Compression and Decompression
	8.1.3 Mixed Content Streams
	8.1.4 Checksums
	8.1.5 Compressing Network Data

	8.2 Ggzip—Read and Write GNU Zip Files
	8.2.1 Writing Compressed Files
	8.2.2 Reading Compressed Data
	8.2.3 Working with Streams

	8.3 Bz2—bzip2 Compression
	8.3.1 One-Shot Operations in Memory
	8.3.2 Incremental Compression and Decompression
	8.3.3 Mixed Content Streams
	8.3.4 Writing Compressed Files
	8.3.5 Reading Compressed Files
	8.3.6 Compressing Network Data

	8.4 Tarfile—Tar Archive Access
	8.4.1 Testing Tar Files
	8.4.2 Reading Metadata from an Archive
	8.4.3 Extracting Files from an Archive
	8.4.4 Creating New Archives
	8.4.5 Using Alternate Archive Member Names
	8.4.6 Writing Data from Sources Other than Files
	8.4.7 Appending to Archives
	8.4.8 Working with Compressed Archives

	8.5 Zipfile—ZIP Archive Access
	8.5.1 Testing ZIP Files
	8.5.2 Reading Metadata from an Archive
	8.5.3 Extracting Archived Files from an Archive
	8.5.4 Creating New Archives
	8.5.5 Using Alternate Archive Member Names
	8.5.6 Writing Data from Sources Other than Files
	8.5.7 Writing with a ZipInfo Instance
	8.5.8 Appending to Files
	8.5.9 Python ZIP Archives
	8.5.10 Limitations

	9 CRYPTOGRAPHY
	9.1 Hashlib—Cryptographic Hashing
	9.1.1 Sample Data
	9.1.2 MD5 Example
	9.1.3 SHA-1 Example
	9.1.4 Creating a Hash by Name
	9.1.5 Incremental Updates

	9.2 Hmac—Cryptographic Message Signing and Verification
	9.2.1 Signing Messages
	9.2.2 SHA vs. MD5
	9.2.3 Binary Digests
	9.2.4 Applications of Message Signatures

	10 PROCESSES AND THREADS
	10.1 Subprocess—Spawning Additional Processes
	10.1.1 Running External Commands
	10.1.2 Working with Pipes Directly
	10.1.3 Connecting Segments of a Pipe
	10.1.4 Interacting with Another Command
	10.1.5 Signaling between Processes

	10.2 Signal—Asynchronous System Events
	10.2.1 Receiving Signals
	10.2.2 Retrieving Registered Handlers
	10.2.3 Sending Signals
	10.2.4 Alarms
	10.2.5 Ignoring Signals
	10.2.6 Signals and Threads

	10.3 Threading—Manage Concurrent Operations
	10.3.1 Thread Objects
	10.3.2 Determining the Current Thread
	10.3.3 Daemon vs. Non-Daemon Threads
	10.3.4 Enumerating All Threads
	10.3.5 Subclassing Thread
	10.3.6 Timer Threads
	10.3.7 Signaling between Threads
	10.3.8 Controlling Access to Resources
	10.3.9 Synchronizing Threads
	10.3.10 Limiting Concurrent Access to Resources
	10.3.11 Thread-Specific Data

	10.4 Multiprocessing—Manage Processes like Threads
	10.4.1 Multiprocessing Basics
	10.4.2 Importable Target Functions
	10.4.3 Determining the Current Process
	10.4.4 Daemon Processes
	10.4.5 Waiting for Processes
	10.4.6 Terminating Processes
	10.4.7 Process Exit Status
	10.4.8 Logging
	10.4.9 Subclassing Process
	10.4.10 Passing Messages to Processes
	10.4.11 Signaling between Processes
	10.4.12 Controlling Access to Resources
	10.4.13 Synchronizing Operations
	10.4.14 Controlling Concurrent Access to Resources
	10.4.15 Managing Shared State
	10.4.16 Shared Namespaces
	10.4.17 Process Pools
	10.4.18 Implementing MapReduce

	11 NETWORKING
	11.1 Socket—Network Communication
	11.1.1 Addressing, Protocol Families, and Socket Types
	11.1.2 TCP/IP Client and Server
	11.1.3 User Datagram Client and Server
	11.1.4 UNIX Domain Sockets
	11.1.5 Multicast
	11.1.6 Sending Binary Data
	11.1.7 Nonblocking Communication and Timeouts

	11.2 Select—Wait for I/O Efficiently
	11.2.1 Using select()
	11.2.2 Nonblocking I/O with Timeouts
	11.2.3 Using poll()
	11.2.4 Platform-Specific Options

	11.3 SocketServer—Creating Network Servers
	11.3.1 Server Types
	11.3.2 Server Objects
	11.3.3 Implementing a Server
	11.3.4 Request Handlers
	11.3.5 Echo Example
	11.3.6 Threading and Forking

	11.4 Asyncore—Asynchronous I/O
	11.4.1 Servers
	11.4.2 Clients
	11.4.3 The Event Loop
	11.4.4 Working with Other Event Loops
	11.4.5 Working with Files

	11.5 Asynchat—Asynchronous Protocol Handler
	11.5.1 Message Terminators
	11.5.2 Server and Handler
	11.5.3 Client
	11.5.4 Putting It All Together

	12 THE INTERNET
	12.1 Urlparse—Split URLs into Components
	12.1.1 Parsing
	12.1.2 Unparsing
	12.1.3 Joining

	12.2 BaseHTTPServer—Base Classes for Implementing Web Servers
	12.2.1 HTTP GET
	12.2.2 HTTP POST
	12.2.3 Threading and Forking
	12.2.4 Handling Errors
	12.2.5 Setting Headers

	12.3 Urllib—Network Resource Access
	12.3.1 Simple Retrieval with Cache
	12.3.2 Encoding Arguments
	12.3.3 Paths vs. URLs

	12.4 Urllib2—Network Resource Access
	12.4.1 HTTP GET
	12.4.2 Encoding Arguments
	12.4.3 HTTP POST
	12.4.4 Adding Outgoing Headers
	12.4.5 Posting Form Data from a Request
	12.4.6 Uploading Files
	12.4.7 Creating Custom Protocol Handlers

	12.5 Base64—Encode Binary Data with ASCII
	12.5.1 Base64 Encoding
	12.5.2 Base64 Decoding
	12.5.3 URL-Safe Variations
	12.5.4 Other Encodings

	12.6 Robotparser—Internet Spider Access Control
	12.6.1 Robots.txt
	12.6.2 Testing Access Permissions
	12.6.3 Long-Lived Spiders

	12.7 Cookie—HTTP Cookies
	12.7.1 Creating and Setting a Cookie
	12.7.2 Morsels
	12.7.3 Encoded Values
	12.7.4 Receiving and Parsing Cookie Headers
	12.7.5 Alternative Output Formats
	12.7.6 Deprecated Classes

	12.8 Uuid—Universally Unique Identifiers
	12.8.1 UUID 1—IEEE 802 MAC Address
	12.8.2 UUID 3 and 5—Name-Based Values
	12.8.3 UUID 4—Random Values
	12.8.4 Working with UUID Objects

	12.9 Json—JavaScript Object Notation
	12.9.1 Encoding and Decoding Simple Data Types
	12.9.2 Human-Consumable vs. Compact Output
	12.9.3 Encoding Dictionaries
	12.9.4 Working with Custom Types
	12.9.5 Encoder and Decoder Classes
	12.9.6 Working with Streams and Files
	12.9.7 Mixed Data Streams

	12.10 Xmlrpclib—Client Library for XML-RPC
	12.10.1 Connecting to a Server
	12.10.2 Data Types
	12.10.3 Passing Objects
	12.10.4 Binary Data
	12.10.5 Exception Handling
	12.10.6 Combining Calls into One Message

	12.11 SimpleXMLRPCServer—An XML-RPC Server
	12.11.1 A Simple Server
	12.11.2 Alternate API Names
	12.11.3 Dotted API Names
	12.11.4 Arbitrary API Names
	12.11.5 Exposing Methods of Objects
	12.11.6 Dispatching Calls
	12.11.7 Introspection API

	13 EMAIL
	13.1 Smtplib—Simple Mail Transfer Protocol Client
	13.1.1 Sending an Email Message
	13.1.2 Authentication and Encryption
	13.1.3 Verifying an Email Address

	13.2 Smtpd—Sample Mail Servers
	13.2.1 Mail Server Base Class
	13.2.2 Debugging Server
	13.2.3 Proxy Server

	13.3 Imaplib—IMAP4 Client Library
	13.3.1 Variations
	13.3.2 Connecting to a Server
	13.3.3 Example Configuration
	13.3.4 Listing Mailboxes
	13.3.5 Mailbox Status
	13.3.6 Selecting a Mailbox
	13.3.7 Searching for Messages
	13.3.8 Search Criteria
	13.3.9 Fetching Messages
	13.3.10 Whole Messages
	13.3.11 Uploading Messages
	13.3.12 Moving and Copying Messages
	13.3.13 Deleting Messages

	13.4 Mailbox—Manipulate Email Archives
	13.4.1 Mbox
	13.4.2 Maildir
	13.4.3 Other Formats

	14 APPLICATION BUILDING BLOCKS
	14.1 Getopt—Command-Line Option Parsing
	14.1.1 Function Arguments
	14.1.2 Short-Form Options
	14.1.3 Long-Form Options
	14.1.4 A Complete Example
	14.1.5 Abbreviating Long-Form Options
	14.1.6 GNU-Style Option Parsing
	14.1.7 Ending Argument Processing

	14.2 Optparse—Command-Line Option Parser
	14.2.1 Creating an OptionParser
	14.2.2 Short- and Long-Form Options
	14.2.3 Comparing with getopt
	14.2.4 Option Values
	14.2.5 Option Actions
	14.2.6 Help Messages

	14.3 Argparse—Command-Line Option and Argument Parsing
	14.3.1 Comparing with optparse
	14.3.2 Setting Up a Parser
	14.3.3 Defining Arguments
	14.3.4 Parsing a Command Line
	14.3.5 Simple Examples
	14.3.6 Automatically Generated Options
	14.3.7 Parser Organization
	14.3.8 Advanced Argument Processing

	14.4 Readline—The GNU Readline Library
	14.4.1 Configuring
	14.4.2 Completing Text
	14.4.3 Accessing the Completion Buffer
	14.4.4 Input History
	14.4.5 Hooks

	14.5 Getpass—Secure Password Prompt
	14.5.1 Example
	14.5.2 Using getpass without a Terminal

	14.6 Cmd—Line-Oriented Command Processors
	14.6.1 Processing Commands
	14.6.2 Command Arguments
	14.6.3 Live Help
	14.6.4 Auto-Completion
	14.6.5 Overriding Base Class Methods
	14.6.6 Configuring Cmd through Attributes
	14.6.7 Running Shell Commands
	14.6.8 Alternative Inputs
	14.6.9 Commands from sys.argv

	14.7 Shlex—Parse Shell-Style Syntaxes
	14.7.1 Quoted Strings
	14.7.2 Embedded Comments
	14.7.3 Split
	14.7.4 Including Other Sources of Tokens
	14.7.5 Controlling the Parser
	14.7.6 Error Handling
	14.7.7 POSIX vs. Non-POSIX Parsing

	14.8 ConfigParser—Work with Configuration Files
	14.8.1 Configuration File Format
	14.8.2 Reading Configuration Files
	14.8.3 Accessing Configuration Settings
	14.8.4 Modifying Settings
	14.8.5 Saving Configuration Files
	14.8.6 Option Search Path
	14.8.7 Combining Values with Interpolation

	14.9 Logging—Report Status, Error, and Informational Messages
	14.9.1 Logging in Applications vs. Libraries
	14.9.2 Logging to a File
	14.9.3 Rotating Log Files
	14.9.4 Verbosity Levels
	14.9.5 Naming Logger Instances

	14.10 Fileinput—Command-Line Filter Framework
	14.10.1 Converting M3U Files to RSS
	14.10.2 Progress Metadata
	14.10.3 In-Place Filtering

	14.11 Atexit—Program Shutdown Callbacks
	14.11.1 Examples
	14.11.2 When Are atexit Functions Not Called?
	14.11.3 Handling Exceptions

	14.12 Sched—Timed Event Scheduler
	14.12.1 Running Events with a Delay
	14.12.2 Overlapping Events
	14.12.3 Event Priorities
	14.12.4 Canceling Events

	15 INTERNATIONALIZATION AND LOCALIZATION
	15.1 Gettext—Message Catalogs
	15.1.1 Translation Workflow Overview
	15.1.2 Creating Message Catalogs from Source Code
	15.1.3 Finding Message Catalogs at Runtime
	15.1.4 Plural Values
	15.1.5 Application vs. Module Localization
	15.1.6 Switching Translations

	15.2 Locale—Cultural Localization API
	15.2.1 Probing the Current Locale
	15.2.2 Currency
	15.2.3 Formatting Numbers
	15.2.4 Parsing Numbers
	15.2.5 Dates and Times

	16 DEVELOPER TOOLS
	16.1 Pydoc—Online Help for Modules
	16.1.1 Plain-Text Help
	16.1.2 HTML Help
	16.1.3 Interactive Help

	16.2 Doctest—Testing through Documentation
	16.2.1 Getting Started
	16.2.2 Handling Unpredictable Output
	16.2.3 Tracebacks
	16.2.4 Working around Whitespace
	16.2.5 Test Locations
	16.2.6 External Documentation
	16.2.7 Running Tests
	16.2.8 Test Context

	16.3 Unittest—Automated Testing Framework
	16.3.1 Basic Test Structure
	16.3.2 Running Tests
	16.3.3 Test Outcomes
	16.3.4 Asserting Truth
	16.3.5 Testing Equality
	16.3.6 Almost Equal?
	16.3.7 Testing for Exceptions
	16.3.8 Test Fixtures
	16.3.9 Test Suites

	16.4 Traceback—Exceptions and Stack Traces
	16.4.1 Supporting Functions
	16.4.2 Working with Exceptions
	16.4.3 Working with the Stack

	16.5 Cgitb—Detailed Traceback Reports
	16.5.1 Standard Traceback Dumps
	16.5.2 Enabling Detailed Tracebacks
	16.5.3 Local Variables in Tracebacks
	16.5.4 Exception Properties
	16.5.5 HTML Output
	16.5.6 Logging Tracebacks

	16.6 Pdb—Interactive Debugger
	16.6.1 Starting the Debugger
	16.6.2 Controlling the Debugger
	16.6.3 Breakpoints
	16.6.4 Changing Execution Flow
	16.6.5 Customizing the Debugger with Aliases
	16.6.6 Saving Configuration Settings

	16.7 Trace—Follow Program Flow
	16.7.1 Example Program
	16.7.2 Tracing Execution
	16.7.3 Code Coverage
	16.7.4 Calling Relationships
	16.7.5 Programming Interface
	16.7.6 Saving Result Data
	16.7.7 Options

	16.8 Profile and pstats—Performance Analysis
	16.8.1 Running the Profiler
	16.8.2 Running in a Context
	16.8.3 Pstats: Saving and Working with Statistics
	16.8.4 Limiting Report Contents
	16.8.5 Caller / Callee Graphs

	16.9 Timeit—Time the Execution of Small Bits of Python Code
	16.9.1 Module Contents
	16.9.2 Basic Example
	16.9.3 Storing Values in a Dictionary
	16.9.4 From the Command Line

	16.10 Compileall—Byte-Compile Source Files
	16.10.1 Compiling One Directory
	16.10.2 Compiling sys.path
	16.10.3 From the Command Line

	16.11 Pyclbr—Class Browser
	16.11.1 Scanning for Classes
	16.11.2 Scanning for Functions

	17 RUNTIME FEATURES
	17.1 Site—Site-Wide Configuration
	17.1.1 Import Path
	17.1.2 User Directories
	17.1.3 Path Configuration Files
	17.1.4 Customizing Site Configuration
	17.1.5 Customizing User Configuration
	17.1.6 Disabling the site Module

	17.2 Sys—System-Specific Configuration
	17.2.1 Interpreter Settings
	17.2.2 Runtime Environment
	17.2.3 Memory Management and Limits
	17.2.4 Exception Handling
	17.2.5 Low-Level Thread Support
	17.2.6 Modules and Imports
	17.2.7 Tracing a Program as It Runs

	17.3 Os—Portable Access to Operating System Specific Features
	17.3.1 Process Owner
	17.3.2 Process Environment
	17.3.3 Process Working Directory
	17.3.4 Pipes
	17.3.5 File Descriptors
	17.3.6 File System Permissions
	17.3.7 Directories
	17.3.8 Symbolic Links
	17.3.9 Walking a Directory Tree
	17.3.10 Running External Commands
	17.3.11 Creating Processes with os.fork()
	17.3.12 Waiting for a Child
	17.3.13 Spawn
	17.3.14 File System Permissions

	17.4 Platform—System Version Information
	17.4.1 Interpreter
	17.4.2 Platform
	17.4.3 Operating System and Hardware Info
	17.4.4 Executable Architecture

	17.5 Resource—System Resource Management
	17.5.1 Current Usage
	17.5.2 Resource Limits

	17.6 Gc—Garbage Collector
	17.6.1 Tracing References
	17.6.2 Forcing Garbage Collection
	17.6.3 Finding References to Objects that Cannot Be Collected
	17.6.4 Collection Thresholds and Generations
	17.6.5 Debugging

	17.7 Sysconfig—Interpreter Compile-Time Configuration
	17.7.1 Configuration Variables
	17.7.2 Installation Paths
	17.7.3 Python Version and Platform

	18 LANGUAGE TOOLS
	18.1 Warnings—Nonfatal Alerts
	18.1.1 Categories and Filtering
	18.1.2 Generating Warnings
	18.1.3 Filtering with Patterns
	18.1.4 Repeated Warnings
	18.1.5 Alternate Message Delivery Functions
	18.1.6 Formatting
	18.1.7 Stack Level in Warnings

	18.2 Abc—Abstract Base Classes
	18.2.1 Why Use Abstract Base Classes?
	18.2.2 How Abstract Base Classes Work
	18.2.3 Registering a Concrete Class
	18.2.4 Implementation through Subclassing
	18.2.5 Concrete Methods in ABCs
	18.2.6 Abstract Properties

	18.3 Dis—Python Bytecode Disassembler
	18.3.1 Basic Disassembly
	18.3.2 Disassembling Functions
	18.3.3 Classes
	18.3.4 Using Disassembly to Debug
	18.3.5 Performance Analysis of Loops
	18.3.6 Compiler Optimizations

	18.4 Inspect—Inspect Live Objects
	18.4.1 Example Module
	18.4.2 Module Information
	18.4.3 Inspecting Modules
	18.4.4 Inspecting Classes
	18.4.5 Documentation Strings
	18.4.6 Retrieving Source
	18.4.7 Method and Function Arguments
	18.4.8 Class Hierarchies
	18.4.9 Method Resolution Order
	18.4.10 The Stack and Frames

	18.5 Exceptions—Built-in Exception Classes
	18.5.1 Base Classes
	18.5.2 Raised Exceptions
	18.5.3 Warning Categories

	19 MODULES AND PACKAGES
	19.1 Imp—Python’s Import Mechanism
	19.1.1 Example Package
	19.1.2 Module Types
	19.1.3 Finding Modules
	19.1.4 Loading Modules

	19.2 Zipimport—Load Python Code from ZIP Archives
	19.2.1 Example
	19.2.2 Finding a Module
	19.2.3 Accessing Code
	19.2.4 Source
	19.2.5 Packages
	19.2.6 Data

	19.3 Pkgutil—Package Utilities
	19.3.1 Package Import Paths
	19.3.2 Development Versions of Packages
	19.3.3 Managing Paths with PKG Files
	19.3.4 Nested Packages
	19.3.5 Package Data

	Index of Python Modules
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	W
	X
	Z

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

