eeeeeeeeeeeeeeeeeeeeeee

PSF Board Member

The Python

Standard Library
by Example

Developer s Library

[| \
I
I |

The Python
Standard Library
by Example

Developer’s Library Series

sooiey . Development - .
Frogramming in Android with the Force.com | [*° ',Phpgek 9
Objective-C 2.0 Wireless Application Platform U?va ?‘p?.r“srmc:g“??o
Acenches nesducion bu GRS Development Buikling Business Applications inthe Cloud Phone 3.0.80K

e

Daveloper's Library

Doveloper's Libeary Developer's Library Daveloper's Library

= I

vv Addison-Wesley

Visit developers-library.com for a complete list of available products

he Developer’s Library Series from Addison-Wesley provides
Tpracticing programmers with unique, high-quality references and
tutorials on the latest programming languages and technologies they
use in their daily work. All books in the Developer’s Library are written by
expert technology practitioners who are exceptionally skilled at organizing
and presenting information in a way that’s useful for other programmers.

Developer’s Library books cover a wide range of topics, from open-
source programming languages and databases, Linux programming,
Microsoft, and Java, to Web development, social networking platforms,
Mac/iPhone programming, and Android programming.

PEARSON

#Addison-Wesley Cisco Press ExaAMCRAM IBM o e 33 PRENTICE g4MG | Safari”

Press. ee NALL STETRS T S e onine

The Python
Standard Library
by Example

Doug Hellmann

vvAddison-Wesley

Upper Saddle River, NJ ® Boston e Indianapolis ® San Francisco
New York e Toronto ® Montreal ® London ® Munich e Paris e Madrid
Capetown e Sydney ® Tokyo ® Singapore ® Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales @pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international @pearsoned.com

Visit us on the Web: informit.com/aw
Library of Congress Cataloging-in-Publication Data
Hellmann, Doug.
The Python standard library by example / Doug Hellmann.
p. cm.
Includes index.
ISBN 978-0-321-76734-9 (pbk. : alk. paper)
1. Python (Computer program language) I. Title.
QA76.73.P98H446 2011

005.13'3—dc22
2011006256

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission
in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.

Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116

Fax: (617) 671-3447

ISBN-13: 978-0-321-76734-9
ISBN-10: 0-321-76734-9

Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
First printing, May 2011

This book is dedicated to my wife, Theresa,
for everything she has done for me.

This page intentionally left blank

CONTENTS AT A GLANCE

Contents ix
Tables xxxi
Foreword xxxiii
Acknowledgments xXxxvii
About the Author XXXiX
INTRODUCTION 1
1 TEXT 3
2 DATA STRUCTURES 69
3 ALGORITHMS 129
4 DATES AND TIMES 173
5 MATHEMATICS 197
6 THE FILE SYSTEM 247
7 DATA PERSISTENCE AND EXCHANGE 333
8 DATA COMPRESSION AND ARCHIVING 421

9 CRYPTOGRAPHY 469

vii

viii

10

11

12

13

14

15

16

17

18

19

Contents at a Glance

PROCESSES AND THREADS

NETWORKING

THE INTERNET

EMAIL

APPLICATION BUILDING BLOCKS
INTERNATIONALIZATION AND LOCALIZATION
DEVELOPER TOOLS

RUNTIME FEATURES

LANGUAGE TOOLS

MODULES AND PACKAGES

Index of Python Modules
Index

481

561

637

727

769

899

919

1045

1169

1235

1259
1261

CONTENTS

Tables xxxi
Foreword xxxiii
Acknowledgments XXxvii
About the Author XXXiX
INTRODUCTION 1
1 TEXT 3
1.1 string—Text Constants and Templates 4
1.1.1 Functions 4

1.1.2 Templates 5

1.1.3 Advanced Templates 7

1.2 textwrap—Formatting Text Paragraphs 9
1.2.1 Example Data 9

1.2.2 Filling Paragraphs 10

1.2.3 Removing Existing Indentation 10

1.2.4 Combining Dedent and Fill 11

1.2.5 Hanging Indents 12

1.3 re—Regular Expressions 13
1.3.1 Finding Patterns in Text 14

1.3.2 Compiling Expressions 14

1.3.3 Multiple Matches 15

1.3.4 Pattern Syntax 16

1.3.5 Constraining the Search 28

1.3.6 Dissecting Matches with Groups 30

X

2

Contents

1.3.7 Search Options

1.3.8 Looking Ahead or Behind

1.3.9 Self-Referencing Expressions
1.3.10 Modifying Strings with Patterns
1.3.11 Splitting with Patterns

1.4 difflib—Compare Sequences
1.4.1 Comparing Bodies of Text
1.42 Junk Data
1.43 Comparing Arbitrary Types
DATA STRUCTURES
2.1 collections—Container Data Types
2.1.1 Counter
2.1.2 defaultdict
2.1.3 Deque
2.1.4 namedtuple
2.1.5 OrderedDict
2.2 array—Sequence of Fixed-Type Data
2.2.1 Initialization
2.2.2 Manipulating Arrays
2.2.3 Arrays and Files
2.24 Alternate Byte Ordering
2.3 heapg—Heap Sort Algorithm
2.3.1 Example Data
2.3.2 Creating a Heap
2.3.3 Accessing Contents of a Heap
2.3.4 Data Extremes from a Heap
24 bisect—Maintain Lists in Sorted Order
2.4.1 Inserting in Sorted Order
2.4.2 Handling Duplicates
2.5 Queue—Thread-Safe FIFO Implementation
2.5.1 Basic FIFO Queue
2.5.2 LIFO Queue
2.5.3 Priority Queue
2.5.4 Building a Threaded Podcast Client
2.6 struct—Binary Data Structures

2.6.1 Functions vs. Struct Class
2.6.2 Packing and Unpacking

37
45
50
56
58
61
62
65
66

69
70
70
74
75
79
82
&4
84
85
85
86
87
88
&9
90
92
93
93
95
96
96
97
98
99
102
102
102

Contents xi

2.6.3 Endianness 103

2.6.4 Buffers 105

2.7 weakref—Impermanent References to Objects 106
2.7.1 References 107

2.7.2 Reference Callbacks 108

2.7.3 Proxies 108

2.7.4 Cyclic References 109

2.7.5 Caching Objects 114

2.8 copy—Duplicate Objects 117
2.8.1 Shallow Copies 118

2.8.2 Deep Copies 118

2.8.3 Customizing Copy Behavior 119

2.8.4 Recursion in Deep Copy 120

2.9 pprint—Pretty-Print Data Structures 123
29.1 Printing 123

2.9.2 Formatting 124

2.9.3 Arbitrary Classes 125

294 Recursion 125

2.9.5 Limiting Nested Output 126

2.9.6 Controlling Output Width 126

3 ALGORITHMS 129
3.1 functools—Tools for Manipulating Functions 129
3.1.1 Decorators 130

3.1.2 Comparison 138

3.2 itertools—Iterator Functions 141
3.2.1 Merging and Splitting Iterators 142

3.2.2 Converting Inputs 145

3.2.3 Producing New Values 146

3.2.4 Filtering 148

3.2.5 Grouping Data 151

33 operator—Functional Interface to Built-in Operators 153
3.3.1 Logical Operations 154

3.3.2 Comparison Operators 154

3.3.3 Arithmetic Operators 155

3.34 Sequence Operators 157

3.3.5 In-Place Operators 158

3.3.6 Attribute and Item “Getters” 159

3.3.7 Combining Operators and Custom Classes 161

Xii

Contents

3.3.8 Type Checking

34 contextlib—Context Manager Utilities
34.1 Context Manager API
3.4.2 From Generator to Context Manager
3.4.3 Nesting Contexts
34.4 Closing Open Handles
DATES AND TIMES
4.1 time—Clock Time
4.1.1 Wall Clock Time
4.1.2 Processor Clock Time
4.1.3 Time Components
4.1.4 Working with Time Zones
4.1.5 Parsing and Formatting Times
4.2 datetime—Date and Time Value Manipulation
4.2.1 Times
422 Dates
423 timedeltas
4.2.4 Date Arithmetic
4.2.5 Comparing Values
42.6 Combining Dates and Times
4277 Formatting and Parsing
4.2.8 Time Zones
4.3 calendar—Work with Dates
4.3.1 Formatting Examples
4.3.2 Calculating Dates
MATHEMATICS
5.1 decimal—Fixed and Floating-Point Math
5.1.1 Decimal
5.1.2 Arithmetic
5.1.3 Special Values
5.1.4 Context
5.2 fractions—Rational Numbers
5.2.1 Creating Fraction Instances
5.2.2 Arithmetic
5.2.3 Approximating Values
53 random—Pseudorandom Number Generators

5.3.1 Generating Random Numbers

162
163
164
167
168
169

173
173
174
174
176
177
179
180
181
182
185
186
187
188
189
190
191
191
194

197
197
198
199
200
201
207
207
210
210
211
211

54

5.3.2 Seeding

5.3.3 Saving State

5.3.4 Random Integers

5.3.5 Picking Random Items

5.3.6 Permutations

5.3.7 Sampling

5.3.8 Multiple Simultaneous Generators
5.3.9 SystemRandom

5.3.10 Nonuniform Distributions
math—Mathematical Functions

5.4.1 Special Constants

5.4.2 Testing for Exceptional Values
5.4.3 Converting to Integers

5.4.4 Alternate Representations
5.4.5 Positive and Negative Signs
5.4.6 Commonly Used Calculations
5.4.7 Exponents and Logarithms
5.4.8 Angles

54.9 Trigonometry

5.4.10 Hyperbolic Functions

5.4.11 Special Functions

6 THE FILE SYSTEM

6.1

6.2

6.3

os.path—Platform-Independent Manipulation of Filenames
6.1.1 Parsing Paths

6.1.2 Building Paths

6.1.3 Normalizing Paths

6.1.4 File Times

6.1.5 Testing Files

6.1.6 Traversing a Directory Tree
glob—Filename Pattern Matching
6.2.1 Example Data

6.2.2 Wildcards

6.2.3 Single Character Wildcard
6.2.4 Character Ranges
linecache—Read Text Files Efficiently
6.3.1 Test Data

6.3.2 Reading Specific Lines

6.3.3 Handling Blank Lines

Contents

xiii

212
213
214
215
216
218
219
221
222
223
223
224
226
227
229
230
234
238
240
243
244

247
248
248
252
253
254
255
256
257
258
258
259
260
261
261
262
263

Xiv

Contents

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.3.4 Error Handling

6.3.5 Reading Python Source Files
tempfile—Temporary File System Objects
6.4.1 Temporary Files

6.4.2 Named Files

6.4.3 Temporary Directories

6.4.4 Predicting Names

6.4.5 Temporary File Location
shutil—High-Level File Operations

6.5.1 Copying Files

6.5.2 Copying File Metadata

6.5.3 Working with Directory Trees
mmap—Memory-Map Files

6.6.1 Reading

6.6.2 Writing

6.6.3 Regular Expressions
codecs—String Encoding and Decoding
6.7.1 Unicode Primer

6.7.2 Working with Files

6.7.3 Byte Order

6.7.4 Error Handling

6.7.5 Standard Input and Output Streams
6.7.6 Encoding Translation

6.7.7 Non-Unicode Encodings

6.7.8 Incremental Encoding

6.7.9 Unicode Data and Network Communication
6.7.10 Defining a Custom Encoding
StringlO—Text Buffers with a File-like API
6.8.1 Examples

fnmatch—UNIX-Style Glob Pattern Matching
6.9.1 Simple Matching

6.9.2 Filtering

6.9.3 Translating Patterns
dircache—Cache Directory Listings

6.10.1 Listing Directory Contents

6.10.2 Annotated Listings
filecmp—Compare Files

6.11.1 Example Data

6.11.2 Comparing Files

263
264
265
265
268
268
269
270
271
271
274
276
279
279
280
283
284
284
287
289
291
295
298
300
301
303
307
314
314
315
315
317
318
319
319
321
322
323
325

6.11.3 Comparing Directories
6.11.4 Using Differences in a Program

7 DATA PERSISTENCE AND EXCHANGE

7.1

7.2

7.3

7.4
7.5

pickle—Object Serialization

7.1.1 Importing

7.1.2 Encoding and Decoding Data in Strings
7.1.3 Working with Streams

7.1.4 Problems Reconstructing Objects
7.1.5 Unpicklable Objects

7.1.6 Circular References
shelve—Persistent Storage of Objects

7.2.1 Creating a New Shelf

7.2.2 Writeback

7.2.3 Specific Shelf Types
anydbm—DBM-Style Databases

7.3.1 Database Types

7.3.2 Creating a New Database

7.3.3 Opening an Existing Database
7.3.4 Error Cases

whichdb—Identify DBM-Style Database Formats
sqlite3—Embedded Relational Database
7.5.1 Creating a Database

7.5.2 Retrieving Data

7.5.3 Query Metadata

7.54 Row Objects

7.5.5 Using Variables with Queries

7.5.6 Bulk Loading

7.5.7 Defining New Column Types

7.5.8 Determining Types for Columns
7.5.9 Transactions

7.5.10 Isolation Levels

7.5.11 In-Memory Databases

7.5.12 Exporting the Contents of a Database
7.5.13 Using Python Functions in SQL
7.5.14 Custom Aggregation

7.5.15 Custom Sorting

7.5.16 Threading and Connection Sharing
7.5.17 Restricting Access to Data

Contents

XV

327
328

333
334
335
335
336
338
340
340
343
343
344
346
347
347
348
349
349
350
351
352
355
357
358
359
362
363
366
368
372
376
376
378
380
381
383
384

Xvi

Contents

7.6

7.7

xml.etree.ElementTree—XML Manipulation API
7.6.1 Parsing an XML Document

7.6.2 Traversing the Parsed Tree

7.6.3 Finding Nodes in a Document

7.6.4 Parsed Node Attributes

7.6.5 Watching Events While Parsing

7.6.6 Creating a Custom Tree Builder

7.6.7 Parsing Strings

7.6.8 Building Documents with Element Nodes
7.6.9 Pretty-Printing XML

7.6.10 Setting Element Properties

7.6.11 Building Trees from Lists of Nodes
7.6.12 Serializing XML to a Stream
csv—Comma-Separated Value Files

7.7.1 Reading

7.7.2 Writing

7.7.3 Dialects

7.74 Using Field Names

DATA COMPRESSION AND ARCHIVING

8.1

8.2

8.3

8.4

zlib—GNU zlib Compression

8.1.1 Working with Data in Memory

8.1.2 Incremental Compression and Decompression
8.1.3 Mixed Content Streams

8.1.4 Checksums

8.1.5 Compressing Network Data

gzip—Read and Write GNU Zip Files

8.2.1 Writing Compressed Files

8.2.2 Reading Compressed Data

8.2.3 Working with Streams

bz2—bzip2 Compression

8.3.1 One-Shot Operations in Memory

8.3.2 Incremental Compression and Decompression
8.3.3 Mixed Content Streams

8.3.4 Writing Compressed Files

8.3.5 Reading Compressed Files

8.3.6 Compressing Network Data

tarfile—Tar Archive Access

8.4.1 Testing Tar Files

387
387
388
390
391
393
396
398
400
401
403
405
408
411
411
412
413
418

421
421
422
423
424
425
426
430
431
433
434
436
436
438
439
440
442
443
448
448

8.5

8.4.2
8.4.3
8.4.4
8.4.5
8.4.6
8.4.7
8.4.8

Reading Metadata from an Archive
Extracting Files from an Archive

Creating New Archives

Using Alternate Archive Member Names
Writing Data from Sources Other than Files
Appending to Archives

Working with Compressed Archives

zipfile—ZIP Archive Access

8.5.1
8.5.2
8.5.3
8.54
8.5.5
8.5.6
8.5.7
8.5.8
8.5.9
8.5.10

Testing ZIP Files

Reading Metadata from an Archive
Extracting Archived Files from an Archive
Creating New Archives

Using Alternate Archive Member Names
Writing Data from Sources Other than Files
Writing with a ZipInfo Instance

Appending to Files

Python ZIP Archives

Limitations

9 CRYPTOGRAPHY
hashlib—Cryptographic Hashing

9.1

9.2

9.1.1
9.1.2
9.13
9.14
9.15

Sample Data

MDS5 Example

SHA-1 Example
Creating a Hash by Name
Incremental Updates

hmac—Cryptographic Message Signing and Verification

9.2.1
9.2.2
9.23
9.2.4

Signing Messages

SHA vs. MD5

Binary Digests

Applications of Message Signatures

10 PROCESSES AND THREADS
subprocess—Spawning Additional Processes

10.1

10.1.1
10.1.2
10.1.3
10.1.4
10.1.5

Running External Commands
Working with Pipes Directly
Connecting Segments of a Pipe
Interacting with Another Command
Signaling between Processes

Contents

xvii

449
450
453
453
454
455
456
457
457
457
459
460
462
462
463
464
466
467

469
469
470
470
470
471
472
473
474
474
475
476

481
481
482
486
489
490
492

xviii

Contents

10.2

10.3

10.4

signal—Asynchronous System Events
10.2.1 Receiving Signals

10.2.2 Retrieving Registered Handlers
10.2.3 Sending Signals

10.2.4 Alarms

10.2.5 Ignoring Signals

10.2.6 Signals and Threads
threading—Manage Concurrent Operations
10.3.1 Thread Objects

10.3.2 Determining the Current Thread
10.3.3 Daemon vs. Non-Daemon Threads
10.3.4 Enumerating All Threads

10.3.5 Subclassing Thread

10.3.6 Timer Threads

10.3.7 Signaling between Threads

10.3.8 Controlling Access to Resources
10.3.9 Synchronizing Threads

10.3.10 Limiting Concurrent Access to Resources
10.3.11 Thread-Specific Data
multiprocessing—Manage Processes like Threads
10.4.1 Multiprocessing Basics

10.4.2 Importable Target Functions

10.4.3 Determining the Current Process
10.4.4 Daemon Processes

10.4.5 Waiting for Processes

10.4.6 Terminating Processes

10.4.7 Process Exit Status

10.4.8 Logging

10.4.9 Subclassing Process

10.4.10 Passing Messages to Processes
10.4.11 Signaling between Processes
10.4.12 Controlling Access to Resources
10.4.13 Synchronizing Operations

10.4.14 Controlling Concurrent Access to Resources
10.4.15 Managing Shared State

10.4.16 Shared Namespaces

10.4.17 Process Pools

10.4.18 Implementing MapReduce

497
498
499
501
501
502
502
505
505
507
509
512
513
515
516
517
523
524
526
529
529
530
531
532
534
536
537
539
540
541
545
546
547
548
550
551
553
555

11 NETWORKING

12

11.1

11.2

11.3

11.4

11.5

socket—Network Communication

11.1.1 Addressing, Protocol Families, and Socket Types

11.1.2 TCP/IP Client and Server

11.1.3 User Datagram Client and Server
11.1.4 UNIX Domain Sockets

11.1.5 Multicast

11.1.6 Sending Binary Data

11.1.7 Nonblocking Communication and Timeouts

select—Wait for I/O Efficiently

11.2.1 Using select()

11.2.2 Nonblocking I/O with Timeouts
11.2.3 Using poll()

11.2.4 Platform-Specific Options
SocketServer—Creating Network Servers
11.3.1 Server Types

11.3.2 Server Objects

11.3.3 Implementing a Server

11.3.4 Request Handlers

11.3.5 Echo Example

11.3.6 Threading and Forking
asyncore—Asynchronous I/O

11.4.1 Servers

11.4.2 Clients

11.4.3 The Event Loop

11.4.4 Working with Other Event Loops
11.4.5 Working with Files
asynchat—Asynchronous Protocol Handler
11.5.1 Message Terminators

11.5.2 Server and Handler

11.5.3 Client

11.5.4 Putting It All Together

THE INTERNET

12.1

urlparse—Split URLs into Components
12.1.1 Parsing

12.1.2 Unparsing

12.1.3 Joining

Contents

Xix

561
561
562
572
580
583
587
591
593
594
595
601
603
608
609
609
609
610
610
610
616
619
619
621
623
625
628
629
629
630
632
634

637
638
638
641
642

XX

Contents

12.2

12.3

12.4

12.5

12.6

12.7

12.8

BaseHTTPServer—Base Classes for Implementing Web Servers

12.2.1 HTTP GET

12.2.2 HTTP POST

12.2.3 Threading and Forking

12.2.4 Handling Errors

12.2.5 Setting Headers

urllib—Network Resource Access

12.3.1 Simple Retrieval with Cache

12.3.2 Encoding Arguments

12.3.3 Paths vs. URLs

urllib2—Network Resource Access

12.4.1 HTTP GET

12.4.2 Encoding Arguments

12.4.3 HTTP POST

12.4.4 Adding Outgoing Headers

12.4.5 Posting Form Data from a Request
12.4.6 Uploading Files

12.4.7 Creating Custom Protocol Handlers
base64—Encode Binary Data with ASCII
12.5.1 Base64 Encoding

12.5.2 Base64 Decoding

12.5.3 URL-Safe Variations

12.5.4 Other Encodings
robotparser—Internet Spider Access Control
12.6.1 robots.txt

12.6.2 Testing Access Permissions

12.6.3 Long-Lived Spiders
Cookie—HTTP Cookies

12.7.1 Creating and Setting a Cookie
12.7.2 Morsels

12.7.3 Encoded Values

12.7.4 Receiving and Parsing Cookie Headers
12.7.5 Alternative Output Formats

12.7.6 Deprecated Classes
uuid—Universally Unique Identifiers

12.8.1 UUID 1—IEEE 802 MAC Address
12.8.2 UUID 3 and 5—Name-Based Values
12.8.3 UUID 4—Random Values

12.8.4 Working with UUID Objects

644
644
646
648
649
650
651
651
653
655
657
657
660
661
661
663
664
667
670
670
671
672
673
674
674
675
676
677
678
678
680
681
682
683
684
684
686
688
689

12.9

12.10

12.11

json—JavaScript Object Notation

12.9.1 Encoding and Decoding Simple Data Types
12.9.2 Human-Consumable vs. Compact Output
12.9.3 Encoding Dictionaries

12.9.4 Working with Custom Types

12.9.5 Encoder and Decoder Classes

12.9.6 Working with Streams and Files

12.9.7 Mixed Data Streams
xmlrpclib—Client Library for XML-RPC
12.10.1 Connecting to a Server

12.10.2 Data Types

12.10.3 Passing Objects

12.10.4 Binary Data

12.10.5 Exception Handling

12.10.6 Combining Calls into One Message
SimpleXMLRPCServer—An XML-RPC Server
12.11.1 A Simple Server

12.11.2 Alternate API Names

12.11.3 Dotted API Names

12.11.4 Arbitrary API Names

12.11.5 Exposing Methods of Objects

12.11.6 Dispatching Calls

12.11.7 Introspection API

13 EMAIL

13.1

13.2

13.3

smtplib—Simple Mail Transfer Protocol Client
13.1.1 Sending an Email Message
13.1.2 Authentication and Encryption
13.1.3 Verifying an Email Address
smtpd—Sample Mail Servers

13.2.1 Mail Server Base Class

13.2.2 Debugging Server

13.2.3 Proxy Server
imaplib—IMAP4 Client Library

13.3.1 Variations

13.3.2 Connecting to a Server

13.3.3 Example Configuration

13.3.4 Listing Mailboxes

13.3.5 Mailbox Status

Contents

xXi

690
690
692
694
695
697
700
701
702
704
706
709
710
712
712
714
714
716
718
719
720
722
724

727
727
728
730
732
734
734
737
737
738
739
739
741
741
744

xxii

14

Contents

13.3.6 Selecting a Mailbox
13.3.7 Searching for Messages
13.3.8 Search Criteria
13.3.9 Fetching Messages
13.3.10 Whole Messages
13.3.11 Uploading Messages
13.3.12 Moving and Copying Messages
13.3.13 Deleting Messages
13.4 mailbox—Manipulate Email Archives
13.4.1 mbox
13.4.2 Maildir
13.4.3 Other Formats

APPLICATION BUILDING BLOCKS
14.1 getopt—Command-Line Option Parsing
14.1.1 Function Arguments
14.1.2 Short-Form Options
14.1.3 Long-Form Options
14.1.4 A Complete Example
14.1.5 Abbreviating Long-Form Options
14.1.6 GNU-Style Option Parsing
14.1.7 Ending Argument Processing
14.2 optparse—Command-Line Option Parser
14.2.1 Creating an OptionParser
14.2.2 Short- and Long-Form Options
14.2.3 Comparing with getopt
14.2.4 Option Values
14.2.5 Option Actions
14.2.6 Help Messages
143 argparse—Command-Line Option and Argument Parsing
14.3.1 Comparing with optparse
14.3.2 Setting Up a Parser
14.3.3 Defining Arguments
14.3.4 Parsing a Command Line
14.3.5 Simple Examples
14.3.6 Automatically Generated Options
14.3.7 Parser Organization
14.3.8 Advanced Argument Processing

745
746
747
749
752
753
755
756
758
759
762
768

769
770
771
771
772
772
775
775
777
777
777
778
779
781
784
790
795
796
796
796
796
797
805
807
815

14.4

14.5

14.6

14.7

14.8

14.9

Contents

readline—The GNU Readline Library

14.4.1 Configuring

14.4.2 Completing Text

14.4.3 Accessing the Completion Buffer
14.4.4 Input History

14.4.5 Hooks

getpass—Secure Password Prompt

14.5.1 Example

14.5.2 Using getpass without a Terminal
cmd—Line-Oriented Command Processors
14.6.1 Processing Commands

14.6.2 Command Arguments

14.6.3 Live Help

14.6.4 Auto-Completion

14.6.5 Overriding Base Class Methods
14.6.6 Configuring Cmd through Attributes
14.6.7 Running Shell Commands

14.6.8 Alternative Inputs

14.6.9 Commands from sys.argv
shlex—Parse Shell-Style Syntaxes

14.7.1 Quoted Strings

14.7.2 Embedded Comments

14.7.3 Split

14.7.4 Including Other Sources of Tokens
14.7.5 Controlling the Parser

14.7.6 Error Handling

14.7.7 POSIX vs. Non-POSIX Parsing
ConfigParser—Work with Configuration Files
14.8.1 Configuration File Format

14.8.2 Reading Configuration Files

14.8.3 Accessing Configuration Settings
14.8.4 Modifying Settings

14.8.5 Saving Configuration Files

14.8.6 Option Search Path

14.8.7 Combining Values with Interpolation
logging—Report Status, Error, and Informational Messages
14.9.1 Logging in Applications vs. Libraries
14.9.2 Logging to a File

14.9.3 Rotating Log Files

xxiii

823
823
824
828
832
834
836
836
837
839
839
840
842
843
845
847
848
849
851
852
852
854
855
855
856
858
859
861
862
862
864
869
871
872
875
878
878
879
879

XXiv

15

16

Contents

14.10

14.11

14.12

14.9.4 Verbosity Levels

14.9.5 Naming Logger Instances
fileinput—Command-Line Filter Framework
14.10.1 Converting M3U Files to RSS
14.10.2 Progress Metadata

14.10.3 In-Place Filtering

atexit—Program Shutdown Callbacks
14.11.1 Examples

14.11.2 When Are atexit Functions Not Called?
14.11.3 Handling Exceptions
sched—Timed Event Scheduler

14.12.1 Running Events with a Delay
14.12.2 Overlapping Events

14.12.3 Event Priorities

14.12.4 Canceling Events

INTERNATIONALIZATION AND LOCALIZATION

15.1

15.2

gettext—Message Catalogs

15.1.1 Translation Workflow Overview
15.1.2 Creating Message Catalogs from Source Code
15.1.3 Finding Message Catalogs at Runtime
15.1.4 Plural Values

15.1.5 Application vs. Module Localization
15.1.6 Switching Translations
locale—Cultural Localization API

15.2.1 Probing the Current Locale

15.2.2 Currency

15.2.3 Formatting Numbers

15.2.4 Parsing Numbers

15.2.5 Dates and Times

DEVELOPER TOOLS

16.1

16.2

pydoc—Online Help for Modules

16.1.1 Plain-Text Help

16.1.2 HTML Help

16.1.3 Interactive Help
doctest—Testing through Documentation
16.2.1 Getting Started

16.2.2 Handling Unpredictable Output

880
882
883
883
886
887
890
890
891
893
894
895
896
897
897

899
899
900
900
903
905
907
908
909
909
915
916
917
917

919
920
920
920
921
921
922
924

16.3

16.4

16.5

16.6

16.7

16.2.3
16.2.4
16.2.5
16.2.6
16.2.7
16.2.8

Tracebacks

Working around Whitespace
Test Locations

External Documentation
Running Tests

Test Context

unittest—Automated Testing Framework

16.3.1
16.3.2
16.3.3
16.3.4
16.3.5
16.3.6
16.3.7
16.3.8
16.3.9

Basic Test Structure
Running Tests

Test Outcomes
Asserting Truth
Testing Equality
Almost Equal?
Testing for Exceptions
Test Fixtures

Test Suites

traceback—Exceptions and Stack Traces

16.4.1
16.4.2
16.4.3

Supporting Functions
Working with Exceptions
Working with the Stack

cgitb—Detailed Traceback Reports

16.5.1
16.5.2
16.5.3
1654
16.5.5
16.5.6

Standard Traceback Dumps
Enabling Detailed Tracebacks
Local Variables in Tracebacks
Exception Properties

HTML Output

Logging Tracebacks

pdb—Interactive Debugger

16.6.1
16.6.2
16.6.3
16.6.4
16.6.5
16.6.6

Starting the Debugger
Controlling the Debugger
Breakpoints

Changing Execution Flow

Customizing the Debugger with Aliases

Saving Configuration Settings

trace—Follow Program Flow

16.7.1
16.7.2
16.7.3
16.7.4

Example Program
Tracing Execution
Code Coverage
Calling Relationships

Contents

XXV

928
930
936
939
942
945
949
949
949
950
952
953
954
955
956
957
958
958
959
963
965
966
966
968
971
972
972
975
976
979
990
1002
1009
1011
1012
1013
1013
1014
1017

XXVi

17

Contents

16.8

16.9

16.10

16.11

16.7.5 Programming Interface

16.7.6 Saving Result Data

16.7.7 Options

profile and pstats—Performance Analysis
16.8.1 Running the Profiler

16.8.2 Running in a Context

16.8.3 pstats: Saving and Working with Statistics
16.8.4 Limiting Report Contents

16.8.5 Caller / Callee Graphs
timeit—Time the Execution of Small Bits of Python Code
16.9.1 Module Contents

16.9.2 Basic Example

16.9.3 Storing Values in a Dictionary
16.9.4 From the Command Line
compileall—Byte-Compile Source Files
16.10.1 Compiling One Directory
16.10.2 Compiling sys.path

16.10.3 From the Command Line
pyclbr—Class Browser

16.11.1 Scanning for Classes

16.11.2 Scanning for Functions

RUNTIME FEATURES

17.1

17.2

site—Site-Wide Configuration

17.1.1 Import Path

17.1.2 User Directories

17.1.3 Path Configuration Files

17.1.4 Customizing Site Configuration
17.1.5 Customizing User Configuration
17.1.6 Disabling the site Module
sys—System-Specific Configuration
17.2.1 Interpreter Settings

17.2.2 Runtime Environment

17.2.3 Memory Management and Limits
17.2.4 Exception Handling

17.2.5 Low-Level Thread Support
17.2.6 Modules and Imports

17.2.7 Tracing a Program as It Runs

1018
1020
1022
1022
1023
1026
1027
1028
1029
1031
1031
1032
1033
1035
1037
1037
1038
1039
1039
1041
1042

1045
1046
1046
1047
1049
1051
1053
1054
1055
1055
1062
1065
1071
1074
1080
1101

18

Contents

17.3 os—Portable Access to Operating System Specific Features
17.3.1 Process Owner
17.3.2 Process Environment
17.3.3 Process Working Directory
17.3.4 Pipes
17.3.5 File Descriptors
17.3.6 File System Permissions
17.3.7 Directories
17.3.8 Symbolic Links
17.3.9 Walking a Directory Tree
17.3.10 Running External Commands
17.3.11 Creating Processes with os.fork()
17.3.12 Waiting for a Child
17.3.13 Spawn
17.3.14 File System Permissions
174 platform—System Version Information
17.4.1 Interpreter
17.4.2 Platform
17.4.3 Operating System and Hardware Info
17.4.4 Executable Architecture
17.5 resource—System Resource Management
17.5.1 Current Usage
17.5.2 Resource Limits
17.6 gc—Garbage Collector
17.6.1 Tracing References
17.6.2 Forcing Garbage Collection
17.6.3 Finding References to Objects that Cannot Be Collected
17.6.4 Collection Thresholds and Generations
17.6.5 Debugging
17.7 sysconfig—Interpreter Compile-Time Configuration
17.7.1 Configuration Variables
17.7.2 Installation Paths
17.7.3 Python Version and Platform
LANGUAGE TOOLS
18.1 warnings—Nonfatal Alerts

18.1.1 Categories and Filtering
18.1.2 Generating Warnings

xxvii

1108
1108
1111
1112
1112
1116
1116
1118
1119
1120
1121
1122
1125
1127
1127
1129
1129
1130
1131
1133
1134
1134
1135
1138
1138
1141
1146
1148
1151
1160
1160
1163
1167

1169
1170
1170
1171

xxviii Contents

18.1.3
18.1.4
18.1.5
18.1.6
18.1.7

Filtering with Patterns
Repeated Warnings

Alternate Message Delivery Functions

Formatting
Stack Level in Warnings

18.2 abc—Abstract Base Classes

18.2.1
18.2.2
18.2.3
18.2.4
18.2.5
18.2.6

Why Use Abstract Base Classes?
How Abstract Base Classes Work
Registering a Concrete Class

Implementation through Subclassing

Concrete Methods in ABCs
Abstract Properties

18.3 dis—Python Bytecode Disassembler

18.3.1
18.3.2
18.3.3
18.3.4
18.3.5
18.3.6

Basic Disassembly
Disassembling Functions
Classes

Using Disassembly to Debug
Performance Analysis of Loops
Compiler Optimizations

18.4 inspect—Inspect Live Objects

18.4.1
18.4.2
18.4.3
18.4.4
18.4.5
18.4.6
18.4.7
18.4.8
18.4.9

Example Module

Module Information

Inspecting Modules

Inspecting Classes
Documentation Strings
Retrieving Source

Method and Function Arguments
Class Hierarchies

Method Resolution Order

18.4.10 The Stack and Frames
18.5 exceptions—Built-in Exception Classes

18.5.1
18.5.2
18.5.3

Base Classes
Raised Exceptions
Warning Categories

19 MODULES AND PACKAGES
19.1 imp—Python’s Import Mechanism

19.1.1
19.1.2

Example Package
Module Types

1172
1174
1175
1176
1177
1178
1178
1178
1179
1179
1181
1182
1186
1187
1187
1189
1190
1192
1198
1200
1200
1201
1203
1204
1206
1207
1209
1210
1212
1213
1216
1216
1217
1233

1235
1235
1236
1236

Contents xxix

19.1.3 Finding Modules 1237

19.14 Loading Modules 1238

19.2 zipimport—Load Python Code from ZIP Archives 1240
19.2.1 Example 1240

19.2.2 Finding a Module 1241

19.2.3 Accessing Code 1242

19.2.4 Source 1243

19.2.5 Packages 1244

19.2.6 Data 1244

19.3 pkgutil—Package Utilities 1247
19.3.1 Package Import Paths 1247

19.3.2 Development Versions of Packages 1249

19.3.3 Managing Paths with PKG Files 1251

19.3.4 Nested Packages 1253

19.3.5 Package Data 1255

Index of Python Modules 1259

Index 1261

This page intentionally left blank

TABLES

1.1
1.2
1.3

2.1

6.1

7.1
7.2
7.3

10.1

13.1

14.1
14.2

16.1

17.1
17.2
17.3
17.4

18.1

Regular Expression Escape Codes
Regular Expression Anchoring Codes
Regular Expression Flag Abbreviations

Byte Order Specifiers for struct
Codec Error Handling Modes

The “project” Table
The “task” Table
CSYV Dialect Parameters

Multiprocessing Exit Codes
Event Flags for poll()

IMAP 4 Mailbox Status Conditions

Flags for Variable Argument Definitions in argparse

Logging Levels
Test Case Outcomes

CPython Command-Line Option Flags
Event Hooks for settrace()

Platform Information Functions

Path Names Used in sysconfig

Warning Filter Actions

24
27
45

104
292

353
353
415

537
604
744

815
881

950

1057
1101
1132
1164

1171

XXXi

This page intentionally left blank

FOREWORD

It’s Thanksgiving Day, 2010. For those outside of the United States, and for many of
those within it, it might just seem like a holiday where people eat a ton of food, watch
some football, and otherwise hang out.

For me, and many others, it’s a time to take a look back and think about the
things that have enriched our lives and give thanks for them. Sure, we should be doing
that every day, but having a single day that’s focused on just saying thanks sometimes
makes us think a bit more broadly and a bit more deeply.

I’m sitting here writing the foreward to this book, something I'm very thankful for
having the opportunity to do—but I'm not just thinking about the content of the book,
or the author, who is a fantastic community member. I'm thinking about the subject
matter itself—Python—and specifically, its standard library.

Every version of Python shipped today contains hundreds of modules spanning
many years, many developers, many subjects, and many tasks. It contains modules for
everything from sending and receiving email, to GUI development, to a built-in HTTP
server. By itself, the standard library is a massive work. Without the people who have
maintained it throughout the years, and the hundreds of people who have submitted
patches, documentation, and feedback, it would not be what it is today.

It’s an astounding accomplishment, and something that has been the critical com-
ponent in the rise of Python’s popularity as a language and ecosystem. Without the
standard library, without the “batteries included” motto of the core team and others,
Python would never have come as far. It has been downloaded by hundreds of thou-
sands of people and companies, and has been installed on millions of servers, desktops,
and other devices.

Without the standard library, Python would still be a fantastic language, built on
solid concepts of teaching, learning, and readability. It might have gotten far enough

xxxiii

xxxiv Foreword

on its own, based on those merits. But the standard library turns it from an interesting
experiment into a powerful and effective tool.

Every day, developers across the world build tools and entire applications based
on nothing but the core language and the standard library. You not only get the ability
to conceptualize what a car is (the language), but you also get enough parts and tools to
put together a basic car yourself. It might not be the perfect car, but it gets you from A
to B, and that’s incredibly empowering and rewarding. Time and time again, I speak to
people who look at me proudly and say, “Look what I built with nothing except what
came with Python!”

It is not, however, a fait accompli. The standard library has its warts. Given its
size and breadth, and its age, it’s no real surprise that some of the modules have varying
levels of quality, API clarity, and coverage. Some of the modules have suffered “feature
creep,” or have failed to keep up with modern advances in the areas they cover. Python
continues to evolve, grow, and improve over time through the help and hard work of
many, many unpaid volunteers.

Some argue, though, that due to the shortcomings and because the standard library
doesn’t necessarily comprise the “best of breed” solutions for the areas its modules
cover (“best of” is a continually moving and adapting target, after all), that it should be
killed or sent out to pasture, despite continual improvement. These people miss the fact
that not only is the standard library a critical piece of what makes Python continually
successful, but also, despite its warts, it is still an excellent resource.

But I’ve intentionally ignored one giant area: documentation. The standard li-
brary’s documentation is good and is constantly improving and evolving. Given the
size and breadth of the standard library, the documentation is amazing for what it is. It’s
awesome that we have hundreds of pages of documentation contributed by hundreds of
developers and users. The documentation is used every single day by hundreds of thou-
sands of people to create things—things as simple as one-off scripts and as complex as
the software that controls giant robotic arms.

The documentation is why we are here, though. All good documentation and code
starts with an idea—a kernel of a concept about what something is, or will be. Outward
from that kernel come the characters (the APIs) and the storyline (the modules). In
the case of code, sometimes it starts with a simple idea: “I want to parse a string and
look for a date.” But when you reach the end—when you’re looking at the few hun-
dred unit tests, functions, and other bits you’ve made—you sit back and realize you’ve
built something much, much more vast than originally intended. The same goes for
documentation, especially the documentation of code.

The examples are the most critical component in the documentation of code, in my
estimation. You can write a narrative about a piece of an API until it spans entire books,
and you can describe the loosely coupled interface with pretty words and thoughtful use

Foreword xxxv

cases. But it all falls flat if a user approaching it for the first time can’t glue those pretty
words, thoughtful use cases, and API signatures together into something that makes
sense and solves their problems.

Examples are the gateway by which people make the critical connections—those
logical jumps from an abstract concept into something concrete. It’s one thing to
“know” the ideas and API; it’s another to see it used. It helps jump the void when
you’re not only trying to learn something, but also trying to improve existing things.

Which brings us back to Python. Doug Hellmann, the author of this book, started
a blog in 2007 called the Python Module of the Week. In the blog, he walked through
various modules of the standard library, taking an example-first approach to showing
how each one worked and why. From the first day I read it, it had a place right next to
the core Python documentation. His writing has become an indispensable resource for
me and many other people in the Python community.

Doug’s writings fill a critical gap in the Python documentation I see today: the
need for examples. Showing how and why something works in a functional, simple
manner is no easy task. And, as we’ve seen, it’s a critical and valuable body of work
that helps people every single day. People send me emails with alarming regularity
saying things like, “Did you see this post by Doug? This is awesome!” or “Why isn’t
this in the core documentation? It helped me understand how things really work!”

When I heard Doug was going to take the time to further flesh out his existing
work, to turn it into a book I could keep on my desk to dog-ear and wear out from near
constant use, I was more than a little excited. Doug is a fantastic technical writer with
a great eye for detail. Having an entire book dedicated to real examples of how over a
hundred modules in the standard library work, written by him, blows my mind.

You see, I’'m thankful for Python. I'm thankful for the standard library—warts and
all. I’'m thankful for the massive, vibrant, yet sometimes dysfunctional community we
have. I’'m thankful for the tireless work of the core development team, past, present
and future. I’m thankful for the resources, the time, and the effort so many community
members—of which Doug Hellmann is an exemplary example—have put into making
this community and ecosystem such an amazing place.

Lastly, I'm thankful for this book. Its author will continue to be well respected and
the book well used in the years to come.

— Jesse Noller
Python Core Developer
PSF Board Member
Principal Engineer, Nasuni Corporation

This page intentionally left blank

ACKNOWLEDGMENTS

This book would not have come into being without the contributions and support of
many people.

I was first introduced to Python around 1997 by Dick Wall, while we were working
together on GIS software at ERDAS. I remember being simultaneously happy that I had
found a new tool language that was so easy to use, and sad that the company did not let
us use it for “real work.” I have used Python extensively at all of my subsequent jobs,
and I have Dick to thank for the many happy hours I have spent working on software
since then.

The Python core development team has created a robust ecosystem of language,
tools, and libraries that continue to grow in popularity and find new application areas.
Without the amazing investment in time and resources they have given us, we would
all still be spending our time reinventing wheel after wheel.

As described in the Introduction, the material in this book started out as a series of
blog posts. Each of those posts has been reviewed and commented on by members of
the Python community, with corrections, suggestions, and questions that led to changes
in the version you find here. Thank you all for reading along week after week, and
contributing your time and attention.

The technical reviewers for the book—Matt Culbreth, Katie Cunningham, Jeff
McNeil, and Keyton Weissinger—spent many hours looking for issues with the ex-
ample code and accompanying explanations. The result is stronger than I could have
produced on my own. I also received advice from Jesse Noller on the multiprocessing
module and Brett Cannon on creating custom importers.

A special thanks goes to the editors and production staff at Pearson for all their
hard work and assistance in helping me realize my vision for this book.

XXXVii

xxxviii Acknowledgments

Finally, I want to thank my wife, Theresa Flynn, who has always given me excel-
lent writing advice and was a constant source of encouragement throughout the entire
process of creating this book. I doubt she knew what she was getting herself into when
she told me, ““You know, at some point, you have to sit down and start writing it.”” It’s
your turn.

ABOUT THE AUTHOR

Doug Hellmann is currently a senior developer with Racemi, Inc., and communica-
tions director of the Python Software Foundation. He has been programming in Python
since version 1.4 and has worked on a variety of UNIX and non-UNIX platforms for
projects in fields such as mapping, medical news publishing, banking, and data cen-
ter automation. After a year as a regular columnist for Python Magazine, he served as
editor-in-chief from 2008-2009. Since 2007, Doug has published the popular Python
Module of the Week series on his blog. He lives in Athens, Georgia.

XXXiX

This page intentionally left blank

INTRODUCTION

Distributed with every copy of Python, the standard library contains hundreds of
modules that provide tools for interacting with the operating system, interpreter, and
Internet. All of them are tested and ready to be used to jump start the development of
your applications. This book presents selected examples demonstrating how to use the
most commonly used features of the modules that give Python its “batteries included”
slogan, taken from the popular Python Module of the Week (PyMOTW) blog series.

This Book’s Target Audience

The audience for this book is an intermediate Python programmer, so although all the
source code is presented with discussion, only a few cases include line-by-line expla-
nations. Every section focuses on the features of the modules, illustrated by the source
code and output from fully independent example programs. Each feature is presented as
concisely as possible, so the reader can focus on the module or function being demon-
strated without being distracted by the supporting code.

An experienced programmer familiar with other languages may be able to learn
Python from this book, but it is not intended to be an introduction to the language. Some
prior experience writing Python programs will be useful when studying the examples.

Several sections, such as the description of network programming with sockets or
hmac encryption, require domain-specific knowledge. The basic information needed to
explain the examples is included here, but the range of topics covered by the modules
in the standard library makes it impossible to cover every topic comprehensively in
a single volume. The discussion of each module is followed by a list of suggested
sources for more information and further reading. These include online resources, RFC
standards documents, and related books.

Although the current transition to Python 3 is well underway, Python 2 is still
likely to be the primary version of Python used in production environments for years

1

2 Introduction

to come because of the large amount of legacy Python 2 source code available and
the slow transition rate to Python 3. All the source code for the examples has been
updated from the original online versions and tested with Python 2.7, the final release
of the 2.x series. Many of the example programs can be readily adapted to work with
Python 3, but others cover modules that have been renamed or deprecated.

How This Book Is Organized

The modules are grouped into chapters to make it easy to find an individual module for
reference and browse by subject for more leisurely exploration. The book supplements
the comprehensive reference guide available on http://docs.python.org, providing fully
functional example programs to demonstrate the features described there.

Downloading the Example Code

The original versions of the articles, errata for the book, and the sample code are avail-
able on the author’s web site (http://www.doughellmann.com/books/byexample).

http://www.doughellmann.com/books/byexample
http://docs.python.org

Chapter 1

TEXT

The st ring class is the most obvious text-processing tool available to Python program-
mers, but plenty of other tools in the standard library are available to make advanced
text manipulation simple.

Older code, written before Python 2.0, uses functions from the st ring module,
instead of methods of st ring objects. There is an equivalent method for each function
from the module, and use of the functions is deprecated for new code.

Programs using Python 2.4 or later may use string.Template as a simple way
to parameterize strings beyond the features of the string or unicode classes. While
not as feature-rich as templates defined by many of the Web frameworks or extension
modules available from the Python Package Index, string. Template is a good mid-
dle ground for user-modifiable templates where dynamic values need to be inserted into
otherwise static text.

The textwrap module includes tools for formatting text taken from paragraphs
by limiting the width of output, adding indentation, and inserting line breaks to wrap
lines consistently.

The standard library includes two modules related to comparing text values beyond
the built-in equality and sort comparison supported by string objects. re provides a
complete regular expression library, implemented in C for speed. Regular expressions
are well-suited to finding substrings within a larger data set, comparing strings against
a pattern more complex than another fixed string, and performing mild parsing.

difflib, on the other hand, computes the actual differences between sequences
of text in terms of the parts added, removed, or changed. The output of the comparison
functions in diff1lib can be used to provide more detailed feedback to users about
where changes occur in two inputs, how a document has changed over time, etc.

4 Text

1.1 string—Text Constants and Templates

Purpose Contains constants and classes for working with text.
Python Version 1.4 and later

The string module dates from the earliest versions of Python. In version 2.0, many
of the functions previously implemented only in the module were moved to methods
of str and unicode objects. Legacy versions of those functions are still available, but
their use is deprecated and they will be dropped in Python 3.0. The st ring module
retains several useful constants and classes for working with string and unicode
objects, and this discussion will concentrate on them.

1.1.1 Functions

The two functions capwords () and maketrans () are not moving from the string
module. capwords () capitalizes all words in a string.

import string
s = ’“The quick brown fox jumped over the lazy dog.’

print s
print string.capwords(s)

The results are the same as calling split (), capitalizing the words in the resulting
list, and then calling join () to combine the results.

$ python string_capwords.py

The quick brown fox jumped over the lazy dog.
The Quick Brown Fox Jumped Over The Lazy Dog.

The maketrans () function creates translation tables that can be used with the
translate () method to change one set of characters to another more efficiently than
with repeated calls to replace ().

import string

leet = string.maketrans(’abegiloprstz’, ’7463611092572")

1.1. string—Text Constants and Templates 5

s = ’‘The quick brown fox jumped over the lazy dog.’

print s
print s.translate(leet)

In this example, some letters are replaced by their 133t number alternatives.

$ python string_maketrans.py

The quick brown fox jumped over the lazy dog.
Th3 qulck 620wn fOx jum93d 0v32 7h3 142y d06.

1.1.2 Templates

String templates were added in Python 2.4 as part of PEP 292 and are intended as an
alternative to the built-in interpolation syntax. With st ring. Template interpolation,
variables are identified by prefixing the name with $ (e.g., Svar) or, if necessary to
set them off from surrounding text, they can also be wrapped with curly braces (e.g.,
${var}).

This example compares a simple template with a similar string interpolation using
the & operator.

import string
values = { ’var’:’foo’ }

t = string.Template ("""
Variable : Svar

Escape HCE

Variable in text: S${varj}iable

mn n)

print ’TEMPLATE:’, t.substitute(values)

s = "nn
Variable : %$(var)s

Escape D %%
Variable in text: $%$(var)siable

mon

print /INTERPOLATION:’, s % values

6 Text

In both cases, the trigger character ($ or %) is escaped by repeating it twice.

$ python string_template.py

TEMPLATE:
Variable : foo
Escape]

Variable in text: fooiable

INTERPOLATION:
Variable : foo
Escape S

Variable in text: fooiable

One key difference between templates and standard string interpolation is that
the argument type is not considered. The values are converted to strings, and the
strings are inserted into the result. No formatting options are available. For exam-
ple, there is no way to control the number of digits used to represent a floating-point
value.

A benefit, though, is that by using the safe_substitute () method, it is possible
to avoid exceptions if not all values the template needs are provided as arguments.

import string

values = { ’var’:’foo’ }
t = string.Template ("Svar is here but Smissing is not provided")
try:

print ’‘substitute() :/, t.substitute (values)

except KeyError, err:
print “ERROR:’, str(err)

print ’‘safe substitute():’, t.safe_substitute (values)
Since there is no value for missing in the values dictionary, a KeyError is raised
by substitute (). Instead of raising the error, safe_substitute () catches it and

leaves the variable expression alone in the text.

$ python string_template_missing.py

1.1. string—Text Constants and Templates 7

substitute () : ERROR: ’'missing’
safe_substitute(): foo is here but $missing is not provided

1.1.3 Advanced Templates

The default syntax for string.Template can be changed by adjusting the regular
expression patterns it uses to find the variable names in the template body. A simple
way to do that is to change the delimiter and idpattern class attributes.

import string

template_text = 777/
Delimiter : %%

Replaced : %with_underscore
Ignored : %notunderscored

rr s

d = { ’with_underscore’:’replaced’,

"notunderscored’:’not replaced’,

}

class MyTemplate (string.Template):
delimiter = ’$%
idpattern = ’[a-z]+_[a-z]+’

t = MyTemplate (template_text)
print ’Modified ID pattern:’
print t.safe_substitute (d)

In this example, the substitution rules are changed so that the delimiter is % instead
of $ and variable names must include an underscore. The pattern $notunderscored
is not replaced by anything because it does not include an underscore character.

$ python string_template_advanced.py

Modified ID pattern:
Delimiter : %
Replaced : replaced
Ignored : %$notunderscored

8 Text

For more complex changes, override the pattern attribute and define an entirely
new regular expression. The pattern provided must contain four named groups for cap-
turing the escaped delimiter, the named variable, a braced version of the variable name,
and any invalid delimiter patterns.

import string

t = string.Template (’Svar”’)
print t.pattern.pattern

The value of t .pattern is a compiled regular expression, but the original string
is available via its pattern attribute.

\$(2:
(?P<escaped>\$) | # two delimiters
(?P<named>[_a-z] [_a-z0-9]*) | # identifier
{ (?P<braced>[_a-z][_a-z0-9]*)} | # braced identifier
(?P<invalid>) # ill-formed delimiter exprs

This example defines a new pattern to create a new type of template using
{{var}} as the variable syntax.

import re
import string

class MyTemplate (string.Template) :
delimiter = 7{{’
pattern = 77’
V(N (2
(?P<escaped>\{\{) |
(?P<named>[_a-z] [_a-z0-9]*)\}\}/
(?P<braced>[_a-z] [_a-z0-9]*)\}\}|
(?P<invalid>)

)

rrs

t = MyTemplate(’’’
(it
{{var}}

///)

1.2. textwrap—Formatting Text Paragraphs 9

print ’“MATCHES:’, t.pattern.findall (t.template)
print /SUBSTITUTED:’, t.safe_substitute(var=’replacement’)

Both the named and braced patterns must be provided separately, even though
they are the same. Running the sample program generates:

$ python string_template_newsyntax.py

MATCHES: [(I{{I, II, II’ II)’ (!I, ’var’, I!, II)]
SUBSTITUTED:
{{

replacement

See Also:

string (http://docs.python.org/lib/module-string.html) Standard library documenta-
tion for this module.

String Methods (http://docs.python.org/lib/string-methods.html#string-methods)
Methods of st r objects that replace the deprecated functions in string.

PEP 292 (www.python.org/dev/peps/pep-0292) A proposal for a simpler string sub-
stitution syntax.

133t (http://en.wikipedia.org/wiki/Leet) “Leetspeak” alternative alphabet.

1.2 textwrap—Formatting Text Paragraphs

Purpose Formatting text by adjusting where line breaks occur in a
paragraph.
Python Version 2.5 and later

The textwrap module can be used to format text for output when pretty-printing is
desired. It offers programmatic functionality similar to the paragraph wrapping or filling
features found in many text editors and word processors.

1.2.1 Example Data

The examples in this section use the module textwrap_example.py, which contains
a string sample_text.

sample_text = 777
The textwrap module can be used to format text for output 1in
situations where pretty-printing is desired. It offers

http://docs.python.org/lib/module-string.html
http://docs.python.org/lib/string-methods.html#string-methods
www.python.org/dev/peps/pep-0292
http://en.wikipedia.org/wiki/Leet

10 Text

programmatic functionality similar to the paragraph wrapping
or filling features found in many text editors.

rrs

1.2.2 Filling Paragraphs

The £i11 () function takes text as input and produces formatted text as output.

import textwrap
from textwrap_example import sample_text

print ’‘No dedent:\n’
print textwrap.fill (sample_text, width=50)

The results are something less than desirable. The text is now left justified, but
the first line retains its indent and the spaces from the front of each subsequent line are
embedded in the paragraph.

$ python textwrap_fill.py
No dedent:

The textwrap module can be used to format
text for output in situations where pretty-—
printing is desired. It offers programmatic
functionality similar to the paragraph wrapping
or filling features found in many text editors.

1.2.3 Removing Existing Indentation

The previous example has embedded tabs and extra spaces mixed into the output, so it
is not formatted very cleanly. Removing the common whitespace prefix from all lines
in the sample text produces better results and allows the use of docstrings or embedded
multiline strings straight from Python code while removing the code formatting itself.
The sample string has an artificial indent level introduced for illustrating this feature.

import textwrap
from textwrap_example import sample_text

dedented_text = textwrap.dedent (sample_text)
print ’Dedented:’
print dedented_text

1.2. textwrap—Formatting Text Paragraphs 11

The results are starting to look better:

$ python textwrap_dedent.py
Dedented:

The textwrap module can be used to format text for output in
situations where pretty-printing is desired. It offers
programmatic functionality similar to the paragraph wrapping
or filling features found in many text editors.

Since “dedent” is the opposite of “indent,” the result is a block of text with the
common initial whitespace from each line removed. If one line is already indented
more than another, some of the whitespace will not be removed.

Input like

_Line one.
oolblne two.
_Line three.

becomes

Line one.
Lline two.
Line three.

1.2.4 Combining Dedent and Fill

Next, the dedented text can be passed through £i11 () with a few different width
values.

import textwrap
from textwrap_example import sample_text

dedented_text = textwrap.dedent (sample_text) .strip()
for width in [45, 70 1:
print ’8%d Columns:\n’ % width
print textwrap.fill (dedented_text, width=width)
print

12 Text

This produces outputs in the specified widths.

$ python textwrap_fill width.py
45 Columns:

The textwrap module can be used to format
text for output in situations where pretty-
printing is desired. It offers programmatic
functionality similar to the paragraph
wrapping or filling features found in many
text editors.

70 Columns:

The textwrap module can be used to format text for output in
situations where pretty-printing is desired. It offers programmatic
functionality similar to the paragraph wrapping or filling features
found in many text editors.

1.2.5 Hanging Indents

Just as the width of the output can be set, the indent of the first line can be controlled
independently of subsequent lines.

import textwrap
from textwrap_example import sample_text

dedented_text = textwrap.dedent (sample_text) .strip()
print textwrap.fill (dedented_text,
initial_indent="",
subsequent_indent=" 7 x 4,
width=50,
)

This makes it possible to produce a hanging indent, where the first line is indented
less than the other lines.

$ python textwrap_hanging_indent.py

The textwrap module can be used to format text for
output in situations where pretty-printing is
desired. It offers programmatic functionality

1.3. re—Regular Expressions 13

similar to the paragraph wrapping or filling
features found in many text editors.

The indent values can include nonwhitespace characters, too. The hanging indent
can be prefixed with » to produce bullet points, etc.

See Also:
textwrap (http://docs.python.org/lib/module-textwrap.html) Standard library doc-
umentation for this module.

1.3 re—Regular Expressions

Purpose Searching within and changing text using formal patterns.
Python Version 1.5 and later

Regular expressions are text-matching patterns described with a formal syntax. The
patterns are interpreted as a set of instructions, which are then executed with a string
as input to produce a matching subset or modified version of the original. The term
“regular expressions” is frequently shortened to “regex” or “regexp” in conversation.
Expressions can include literal text matching, repetition, pattern composition, branch-
ing, and other sophisticated rules. Many parsing problems are easier to solve using a
regular expression than by creating a special-purpose lexer and parser.

Regular expressions are typically used in applications that involve a lot of text
processing. For example, they are commonly used as search patterns in text-editing
programs used by developers, including vi, emacs, and modern IDEs. They are also
an integral part of UNIX command line utilities, such as sed, grep, and awk. Many
programming languages include support for regular expressions in the language syntax
(Perl, Ruby, Awk, and Tcl). Other languages, such as C, C++, and Python, support
regular expressions through extension libraries.

There are multiple open source implementations of regular expressions, each shar-
ing a common core syntax but having different extensions or modifications to their
advanced features. The syntax used in Python’s re module is based on the syntax used
for regular expressions in Perl, with a few Python-specific enhancements.

Note: Although the formal definition of “regular expression” is limited to expres-
sions that describe regular languages, some of the extensions supported by re go
beyond describing regular languages. The term “regular expression” is used here in
a more general sense to mean any expression that can be evaluated by Python’s re
module.

http://docs.python.org/lib/module-textwrap.html

14 Text

1.3.1 Finding Patterns in Text

The most common use for re is to search for patterns in text. The search () function
takes the pattern and text to scan, and returns a Mat ch object when the pattern is found.
If the pattern is not found, search () returns None.

Each Match object holds information about the nature of the match, including the
original input string, the regular expression used, and the location within the original
string where the pattern occurs.

import re

pattern = ’this’
text = ’Does this text match the pattern?’

match = re.search(pattern, text)

= match.start ()
match.end ()

print ‘Found "%s"\nin "$s"\nfrom %d to %d ("%$s")’ % \
(match.re.pattern, match.string, s, e, text[s:el])

The start () and end () methods give the indexes into the string showing where
the text matched by the pattern occurs.

$ python re_simple_match.py

Found "this"
in "Does this text match the pattern?"
from 5 to 9 ("this")

1.3.2 Compiling Expressions

re includes module-level functions for working with regular expressions as text strings,
but it is more efficient to compile the expressions a program uses frequently. The com—
pile () function converts an expression string into a RegexObJject.

import re

Precompile the patterns
regexes = [re.compile (p)

for p in [’‘this’, ’that’]
]

text = ’‘Does this text match the pattern?’

print ‘Text: %r\n’ % text

for regex in regexes:

o

print ’Seeking "$%$s" ->’/ % regex.pattern,

if regex.search (text):
print ’‘match!’
else:
print ’‘no match’

1.3. re—Regular Expressions

15

The module-level functions maintain a cache of compiled expressions. However,
the size of the cache is limited, and using compiled expressions directly avoids the
cache lookup overhead. Another advantage of using compiled expressions is that by
precompiling all expressions when the module is loaded, the compilation work is shifted
to application start time, instead of to a point when the program may be responding to

a user action.

$ python re_simple_compiled.py
Text: ’"Does this text match the pattern?’

Seeking "this" -> match!
Seeking "that" -> no match

1.3.3 Multiple Matches

So far, the example patterns have all used search () to look for single instances of
literal text strings. The findall () function returns all substrings of the input that

match the pattern without overlapping.

import re
text = ’“abbaaabbbbaaaaa’
pattern = “ab’

for match in re.findall (pattern, text):
print ‘Found "%s"’ % match

16 Text

There are two instances of ab in the input string.

$ python re_findall.py

Found "ab"
Found "ab"

finditer () returns an iterator that produces Match instances instead of the
strings returned by findall ().

import re
text = “abbaaabbbbaaaaa’
pattern = 7ab’

for match in re.finditer (pattern, text):
s = match.start ()
e = match.end ()
print ’“Found "$%$s" at %d:%d’ % (text([s:e], s, e)

This example finds the same two occurrences of ab, and the Mat ch instance shows
where they are in the original input.

$ python re_finditer.py

Found "ab" at 0:2
Found "ab" at 5:7

1.3.4 Pattern Syntax

Regular expressions support more powerful patterns than simple literal text strings.
Patterns can repeat, can be anchored to different logical locations within the input, and
can be expressed in compact forms that do not require every literal character to be
present in the pattern. All of these features are used by combining literal text values
with metacharacters that are part of the regular expression pattern syntax implemented
by re.

import re

def test_patterns(text, patterns=[]):

1.3. re—Regular Expressions 17

"""Given source text and a list of patterns, look for
matches for each pattern within the text and print
them to stdout.
wnn
Look for each pattern in the text and print the results
for pattern, desc in patterns:
print ’‘Pattern %r (%s)\n’ % (pattern, desc)
print 7 $%r’ % text
for match in re.finditer (pattern, text):
s = match.start ()
e = match.end()
substr = text[s:e]
n_backslashes = text[:s].count (7\\”)
prefix = 7.’ % (s + n_backslashes)
print 7 $%s8%r’ % (prefix, substr)
print
return

if _ name_ == /__main_’:
test_patterns (’abbaaabbbbaaaaa’,
[(rab’, "’a’ followed by ’b’"),
1)

The following examples will use test_patterns () to explore how variations
in patterns change the way they match the same input text. The output shows the input
text and the substring range from each portion of the input that matches the pattern.

$ python re_test_patterns.py
Pattern "ab’ (’a’ followed by ’'b’)

" abbaaabbbbaaaaa’
Iabf

Repetition

There are five ways to express repetition in a pattern. A pattern followed by the
metacharacter » is repeated zero or more times. (Allowing a pattern to repeat zero
times means it does not need to appear at all to match.) Replace the » with + and the
pattern must appear at least once. Using ? means the pattern appears zero times or one
time. For a specific number of occurrences, use {m} after the pattern, where m is the

18 Text

number of times the pattern should repeat. And, finally, to allow a variable but limited
number of repetitions, use {m, n} where m is the minimum number of repetitions and n
is the maximum. Leaving out n ({m, }) means the value appears at least m times, with

no maximum.

from re_test_patterns import test_patterns

test_patterns(

"abbaabbba’,

[(Tabx’, ’a
(7ab+’, ’a
(7ab?’, ’a
("ab{3}’, ’a
("ab{2,3}", ’a

1)

followed by
followed by
followed by
followed by
followed by

zero or more b’),
one or more b’),
zero or one b’),
three b’),

two to three b’),

There are more matches for ab* and ab? than ab+.

$ python re_repetition.py

Pattern ’abx’
" abbaabbba’
"abb’

ral
...." abbb’

Pattern ’ab+’

" abbaabbba’
" abb’

...." abbb’
"ab?’

Pattern

" abbaabbba’
Iab!

(a followed by zero or more D)

(a followed by one or more b)

(a followed by zero or one b)

1.3. re—Regular Expressions 19

Pattern "ab{3}’ (a followed by three b)

" abbaabbba’
...." abbb’

Pattern "ab{2,3}’ (a followed by two to three b)

" abbaabbba’
" abb’
...." abbb’

Normally, when processing a repetition instruction, re will consume as much
of the input as possible while matching the pattern. This so-called greedy behavior
may result in fewer individual matches, or the matches may include more of the input
text than intended. Greediness can be turned off by following the repetition instruction
with 2.

from re_test_patterns import test_patterns

test_patterns (

"abbaabbba’,

[(Tabx?7, ’a followed by zero or more b’),
(7ab+?7, ’a followed by one or more b’),
(7ab??’, ’a followed by zero or one b’),
(7ab{3}7?7, ’a followed by three b’),
("ab{2,3}?”, ’a followed by two to three b’),

1)

Disabling greedy consumption of the input for any patterns where zero occurrences
of b are allowed means the matched substring does not include any b characters.

$ python re_repetition_non_greedy.py
Pattern "abx?’ (a followed by zero or more Db)

" abbaabbba’
Ial

20 Text

Pattern 'ab+?’ (a followed by one or more Db)
" abbaabbba’
Iabf
.rab’

Pattern 'ab??’ (a followed by zero or one Db)

" abbaabbba’
Ial

Pattern "ab{3}?’ (a followed by three b)

" abbaabbba’
...." abbb’

Pattern ’"ab{2,3}?’ (a followed by two to three b)
" abbaabbba’

" abb’
.."abb’

Character Sets

A character set is a group of characters, any one of which can match at that point in the
pattern. For example, [ab] would match either a or b.

from re_test_patterns import test_patterns

test_patterns (

"abbaabbba’,
[("[ab]”, ‘either a or b’),
(7alab]+", ’a followed by 1 or more a or b’),

("alab]+?”, ’a followed by 1 or more a or b, not greedy’),
1)

The greedy form of the expression (a [ab]+) consumes the entire string because
the first letter is a and every subsequent character is either a or b.

1.3. re—Regular Expressions 21

$ python re_charset.py
Pattern ' [ab]’ (either a or b)
"abbaabbba’
Ial

b!
..'b!

Pattern "al[abl+’ (a followed by 1 or more a or b)

" abbaabbba’
" abbaabbba’

Pattern ’'al[ab]l+?’ (a followed by 1 or more a or b, not greedy)
" abbaabbba’

" ab’

..."aa’

A character set can also be used to exclude specific characters. The carat () means
to look for characters not in the set following.

from re_test_patterns import test_patterns
test_patterns(
’This is some text —-- with punctuation.’,

[(7 [*=.]+7, ’sequences without -, ., or space’),

1)

This pattern finds all the substrings that do not contain the characters —, ., or a
space.

$ python re_charset_exclude.py

Pattern ’ [*—.]+’ (sequences without -, ., or space)

22 Text

"This is some text —-- with punctuation.’
"This’

As character sets grow larger, typing every character that should (or should not)
match becomes tedious. A more compact format using character ranges can be used to

define a character set to include all contiguous characters between a start point and a
stop point.

from re_test_patterns import test_patterns

test_patterns(
’This is some text —-- with punctuation.’,
[("[a-z]+’, ’sequences of lowercase letters’),
' [A-Z]+", ’sequences of uppercase letters’),

(
(7" [a—zA-Z]+’, ’sequences of lowercase or uppercase letters’),
(

" [A-Z] [a-z]+’, ’one uppercase followed by lowercase’),

1)

Here the range a-z includes the lowercase ASCII letters, and the range A-2z in-

cludes the uppercase ASCII letters. The ranges can also be combined into a single
character set.

$ python re_charset_ranges.py
Pattern ’'[a-z]+’ (sequences of lowercase letters)

"This is some text -- with punctuation.’
."his’

Pattern ' [A-Z]+’ (sequences of uppercase letters)

"This is some text -- with punctuation.’
ITI

1.3. re—Regular Expressions 23

Pattern ' [a-zA-Z]+’ (sequences of lowercase or uppercase letters)

"This is some text -- with punctuation.’
"This’

Pattern ' [A-Z] [a-z]+’ (one uppercase followed by lowercase)
"This is some text -- with punctuation.’

"This’

As a special case of a character set, the metacharacter dot, or period (.), indicates
that the pattern should match any single character in that position.

from re_test_patterns import test_patterns

test_patterns(

"abbaabbba’,
[(7a.’, ’a followed by any one character’),
’b.”’, b followed by any one character’),

a.*b’, ’a followed by anything, ending in b’),
‘a.+?b’”, ’a followed by anything, ending in b’),

Combining a dot with repetition can result in very long matches, unless the non-
greedy form is used.
$ python re_charset_dot.py
Pattern 'a.’ (a followed by any one character)
" abbaabbba’
4 abl

.laa’

Pattern 'b.’” (b followed by any one character)

24 Text

" abbaabbba’
."bb’

Pattern "a.xb’ (a followed by anything, ending in b)

" abbaabbba’
"abbaabbb’

Pattern "a.x?b’ (a followed by anything, ending in b)
" abbaabbba’

’ab’

..."aab’

Escape Codes

An even more compact representation uses escape codes for several predefined charac-
ter sets. The escape codes recognized by re are listed in Table 1.1.

Table 1.1. Regular Expression Escape Codes

Code | Meaning

\d A digit

\D A nondigit

\'s Whitespace (tab, space, newline, etc.)
\S Nonwhitespace

\w Alphanumeric

\W Nonalphanumeric

Note: Escapes are indicated by prefixing the character with a backslash (\). Unfor-
tunately, a backslash must itself be escaped in normal Python strings, and that results
in expressions that are difficult to read. Using raw strings, created by prefixing the
literal value with r, eliminates this problem and maintains readability.

from re_test_patterns import test_patterns

test_patterns(
’A prime #1 examplel’,

1.3. re—Regular Expressions 25

r’\d+’, ’‘sequence of digits’),
r’\D+’, ’sequence of nondigits’),

r’\S+’, ’sequence of nonwhitespace’),

(

(

(r’\s+’, ’sequence of whitespace’),
(

(r’\w+’, ’‘alphanumeric characters’),
(

r’\W+’, ’nonalphanumeric’),

1

These sample expressions combine escape codes with repetition to find sequences
of like characters in the input string.

$ python re_escape_codes.py
Pattern ’\\d+’ (sequence of digits)

'A prime #1 example!’

Pattern ’\\D+’ (sequence of nondigits)
'A prime #1 example!’
"A prime #’
.......... " example!’

Pattern ’\\s+’ (sequence of whitespace)

"A prime #1 example!’

Pattern ’"\\S+’ (sequence of nonwhitespace)

'A prime #1 example!’
IAI

Pattern ’"\\w+’ (alphanumeric characters)

'A prime #1 example!’
IAI

26 Text

........... "example’
Pattern ’'\\W+’ (nonalphanumeric)
"A prime #1 example!’

To match the characters that are part of the regular expression syntax, escape the
characters in the search pattern.

from re_test_patterns import test_patterns
test_patterns(
r’\d+ \D+ \s+’/,

[(r’\\.\+’, ’escape code’),

1)

The pattern in this example escapes the backslash and plus characters, since, as
metacharacters, both have special meaning in a regular expression.

$ python re_escape_escapes.py
Pattern "\\\\.\\+’ (escape code)

"\\d+ \\D+ \\s+’

"A\\d+’

..... "\\D+’

.......... "\\s+’
Anchoring

In addition to describing the content of a pattern to match, the relative location can be
specified in the input text where the pattern should appear by using anchoring instruc-
tions. Table 1.2 lists valid anchoring codes.

1.3. re—Regular Expressions

Table 1.2. Regular Expression Anchoring Codes

Code | Meaning

~ Start of string, or line
$ End of string, or line
\A Start of string
\Z End of string

\b Empty string at the beginning or end of a word
\B Empty string not at the beginning or end of a word

from re_test_patterns import test_patterns

test_patterns(

"This is some text —-- with punctuation.’
[(r’"\w+’", "word at start of string’),
(r’ \A\w+", 'word at start of string’),
(r’ \w+\S=5", "word near end of string, skip punctuation’),
(r’\w+\S+\Z’, ’‘word near end of string, skip punctuation’),
(r’\wxt\w+’, ’‘word containing t’),
(r’ \bt\w+", ‘'t at start of word’),
(r’\w+t\b”’, ’t at end of word’),
(r”\Bt\B’, ’t, not start or end of word’),

1)

27

The patterns in the example for matching words at the beginning and end of the
string are different because the word at the end of the string is followed by punctuation
to terminate the sentence. The pattern \w+$ would not match, since . is not considered

an alphanumeric character.
$ python re_anchoring.py
Pattern ’*\\w+’ (word at start of string)

"This is some text -- with punctuation.’
"This’

Pattern '\\A\\w+’ (word at start of string)

"This is some text -- with punctuation.’
"This’

Pattern "\\w+\\S*$’ (word near end of string,

skip punctuation)

28 Text

"This is some text —-- with punctuation.’
.......................... "punctuation.’

Pattern "\\w+\\Sx\\Z’ (word near end of string, skip punctuation)

"This is some text —-- with punctuation.’
.......................... "punctuation.’

Pattern ’"\\wxt\\wx’ (word containing t)

"This is some text —-- with punctuation.’

Pattern "\\bt\\w+’ (t at start of word)

"This is some text —-—- with punctuation.’

Pattern "\\w+t\\b’ (t at end of word)

"This is some text —-—- with punctuation.’

Pattern ’\\Bt\\B’ (t, not start or end of word)

"This is some text —-- with punctuation.’

1.3.5 Constraining the Search

If it is known in advance that only a subset of the full input should be searched, the reg-
ular expression match can be further constrained by telling re to limit the search range.
For example, if the pattern must appear at the front of the input, then using match ()
instead of search () will anchor the search without having to explicitly include an
anchor in the search pattern.

import re

text = /This is some text —-—- with punctuation.’
pattern = “is’

1.3. re—Regular Expressions 29

print ’Text :7, text
print ’Pattern:’, pattern

m = re.match (pattern, text)
print ’'Match :’/, m
s = re.search (pattern, text)
print ’Search :’, s

Since the literal text is does not appear at the start of the input text, it is not
found using match (). The sequence appears two other times in the text, though, so
search () finds it.

$ python re_match.py

Text : This is some text —-- with punctuation.
Pattern: is

Match : None

Search : <_sre.SRE_Match object at 0x100d2bed0>

The search () method of a compiled regular expression accepts optional start
and end position parameters to limit the search to a substring of the input.

import re

text = ’/This is some text —-—- with punctuation.’
pattern = re.compile (r’\b\wxis\w*\b”’)

print ’Text:’, text
print

pos = 0
while True:
match = pattern.search (text, pos)
if not match:
break
s = match.start ()
e = match.end()
print 7 %2d : %2d = "$%s"’ % \
(s, e—-1, textl[s:e])
Move forward in text for the next search
pos = e

30 Text

This example implements a less efficient form of iterall (). Each time a match
is found, the end position of that match is used for the next search.

$ python re_search_substring.py

Text: This is some text —-- with punctuation.
= "This"
6 = "ig"

1.3.6 Dissecting Matches with Groups

Searching for pattern matches is the basis of the powerful capabilities provided by
regular expressions. Adding groups to a pattern isolates parts of the matching text,
expanding those capabilities to create a parser. Groups are defined by enclosing patterns
in parentheses ((and)).

from re_test_patterns import test_patterns

test_patterns(

"abbaaabbbbaaaaa’,

[(Ta(ab)’, ’a followed by literal ab’),
(7a(axbx*)’, ’a followed by 0-n a and 0O-n b’),
(7a(ab) ", ’a followed by 0-n ab’),
(7a(ab)+’, ’a followed by 1-n ab’),

1)

Any complete regular expression can be converted to a group and nested within a
larger expression. All repetition modifiers can be applied to a group as a whole, requir-
ing the entire group pattern to repeat.

$ python re_groups.py
Pattern 'a(ab)’ (a followed by literal ab)

" abbaaabbbbaaaaa’
.."aab’

Pattern "a(axbx)’ (a followed by 0-n a and 0-n Db)

" abbaaabbbbaaaaa’

1.3. re—Regular Expressions 31

" abb’
... aaabbbb’

Pattern "a(ab)+*’ (a followed by O0-n ab)

" abbaaabbbbaaaaa’

Ial
!al
"aab’
.......... ra’
........... ra’
............ ra’
............. ra’

Pattern "a(ab)+’ (a followed by 1-n ab)

" abbaaabbbbaaaaa’
.... aab’

To access the substrings matched by the individual groups within a pattern, use the
groups () method of the Match object.

import re
text = /This is some text —-—- with punctuation.’

print text
print

patterns = [
(r’~(\w+)’, ’word at start of string’),
(r’ (\w+)\S#S$”, ’word at end, with optional punctuation’),
(r’ (\bt\w+) \W+ (\w+)”, ’word starting with t, another word’),
(r’ (\w+t)\b’, ’‘word ending with t’),
]

for pattern, desc in patterns:
regex = re.compile (pattern)
match = regex.search (text)
print ’‘Pattern %r (%s)\n’ % (pattern, desc)

32 Text

print 7 /, match.groups()
print

Match.groups () returns a sequence of strings in the order of the groups within
the expression that matches the string.

$ python re_groups_match.py

This is some text —-- with punctuation.
Pattern '~ (\\w+)’ (word at start of string)
(" This’,)

Pattern ' (\\w+)\\Sx$’ (word at end, with optional punctuation)
(" punctuation’,)

Pattern ’ (\\bt\\w+) \\W+ (\\w+)’ (word starting with t, another word)
("text’, ’"with’)

Pattern ’ (\\w+t)\\b’ (word ending with t)
("text’,)

Ask for the match of a single group with group () . This is useful when grouping is
being used to find parts of the string, but some parts matched by groups are not needed
in the results.

import re

text = ’‘This is some text —-—- with punctuation.’
print ’‘Input text :/, text

word starting with ’‘t’ then another word
regex = re.compile (r’ (\bt\w+) \W+ (\w+)”)

print ’Pattern :/, regex.pattern

match = regex.search (text)
print ’Entire match :7, match.group (0)

1.3. re—Regular Expressions 33

print ’Word starting with "t":’, match.group (1)
print ’Word after "t" word :7, match.group(2)

Group 0 represents the string matched by the entire expression, and subgroups are
numbered starting with 1 in the order their left parenthesis appears in the expression.

$ python re_groups_individual.py

Input text : This is some text —-- with punctuation.
Pattern 0 (\bt\w+) \W+ (\w+)
Entire match : text -- with

Word starting with "t": text
Word after "t" word : with

Python extends the basic grouping syntax to add named groups. Using names to
refer to groups makes it easier to modify the pattern over time, without having to also
modify the code using the match results. To set the name of a group, use the syntax

(?P<name>pattern).

import re
text = ’‘This is some text —-—- with punctuation.’

print text
print

for pattern in [r’"(?P<first_word>\w+)’,

r’ (?P<last_word>\w+) \S*$’,
r’ (?P<t_word>\bt \w+) \W+ (?P<other_word>\w+)’,
r’ (?P<ends_with_t>\w+t)\b”’,
]:

regex = re.compile (pattern)

match = regex.search (text)

print ’"Matching "%$s"’ % pattern

print 7 /, match.groups()

print 7 /, match.groupdict ()

print

Use groupdict () to retrieve the dictionary that maps group names to substrings
from the match. Named patterns also are included in the ordered sequence returned by

groups ().

34 Text

$ python re_groups_named.py

This is some text —-- with punctuation.

Matching "» (?P<first_word>\w+)"
(" This’,)
{’first_word’: ’'This’}

Matching " (?P<last_word>\w+)\Sx$"
("punctuation’,)

{’last_word’: ’'punctuation’}

Matching " (?P<t_word>\bt\w+) \W+ (?P<other_word>\w+)"
("text’, 'with’)
{’other_word’: ’'with’, ’"t_word’: "text’}

Matching " (?P<ends_with_t>\w+t) \b"
("text’,)

{"ends_with_t’: "text’}

An updated version of test_patterns () that shows the numbered and named
groups matched by a pattern will make the following examples easier to follow.

import re

def test_patterns(text,
"""Given source text and a list of patterns,

patterns=[]):

look for

matches for each pattern within the text and print

them to stdout.

mwn

Look for each pattern in the text and print the results

for pattern, desc in patterns:

print ’‘Pattern %$r (%s)\n’ % (pattern, desc)
print 7 $%r’ % text
for match in re.finditer (pattern, text):

s = match.start ()

e = match.end()

prefix = 7 7 % (s)

print 7 $%s%r%s ’ (prefix, text[s:e],

print match.groups ()
() :
’%s%s’ 5 (7 7 %

if match.groupdict
print (len(text)-s),
print

return

"% (len (text)-e)),

match.groupdict ())

1.3. re—Regular Expressions 35

Since a group is itself a complete regular expression, groups can be nested within
other groups to build even more complicated expressions.

from re_test_patterns_groups import test_patterns

test_patterns(
"abbaabbba’,
[(rra((ax) (bx))’, ’a followed by 0-n a and 0O-n b’),
1)

In this case, the group (ax) matches an empty string, so the return value from
groups () includes that empty string as the matched value.

$ python re_groups_nested.py
Pattern ’"a((ax) (b*x))’ (a followed by 0-n a and 0-n b)

" abbaabbba’
Iabbl (Ibbl, II, Ibbl)
"aabbb’ (" abbb’, "a’, ’"bbb’)

ra’ (II, II, !I)

Groups are also useful for specifying alternative patterns. Use the pipe symbol (|)
to indicate that one pattern or another should match. Consider the placement of the pipe
carefully, though. The first expression in this example matches a sequence of a followed
by a sequence consisting entirely of a single letter, a or b. The second pattern matches
a followed by a sequence that may include either a or b. The patterns are similar, but
the resulting matches are completely different.

from re_test_patterns_groups import test_patterns

test_patterns(
"abbaabbba’,
[(r’a((a+)]| (b+))’, ’"a then seq. of a or seqg. of b’),
(r’a((alb)+)’, ’a then seq. of [ab]’),
1)

When an alternative group is not matched but the entire pattern does match, the
return value of groups () includes a None value at the point in the sequence where the
alternative group should appear.

36 Text

$ python re_groups_alternative.py

Pattern "a((at) | (b+))’ (a then seg. of a or seg. of Db)

"abbaabbba’

"abb’ ("bb’, None, ’"bb’)
"aa’ ("a’, "a’, None)
Pattern 'a((alb)+)’” (a then seq. of [ab])

"abbaabbba’
" abbaabbba’ (" bbaabbba’, ’"a’)

Defining a group containing a subpattern is also useful when the string matching
the subpattern is not part of what should be extracted from the full text. These groups are
called noncapturing. Noncapturing groups can be used to describe repetition patterns or
alternatives, without isolating the matching portion of the string in the value returned.
To create a noncapturing group, use the syntax (?:pattern).

from re_test_patterns_groups import test_patterns
test_patterns(

"abbaabbba’,

[(r’a((a+)]| (b+))’, ’capturing form’),

(r’a((?:a+) | (?:b+))’, ’noncapturing’),

1)

Compare the groups returned for the capturing and noncapturing forms of a pattern
that match the same results.

$ python re_groups_noncapturing.py
Pattern "a((at) | (b+))’ (capturing form)

" abbaabbba’

" abb’ ("bb’, None, ’"bb’)
"aa’ ("a’, "a’, None)
Pattern "a((?:a+) | (?:b+))’ (noncapturing)

" abbaabbba’

" abb’

1.3.7 Search Options

The way the matching engine processes an expression can be changed using op-
tion flags. The flags can be combined using a bitwise OR operation, then passed to
compile (), search (), match (), and other functions that accept a pattern for

searching.

Case-Insensitive Matching

1.3. re—Regular Expressions

37

IGNORECASE causes literal characters and character ranges in the pattern to match both
uppercase and lowercase characters.

import re

text = ‘This is some text

pattern = r’\bT\w+’
with_case = re.compile (pattern)

without_case =

print ’‘Text:\n

print ’Pattern:

re.compile (pattern,

$r’

\n

o

%
%s’

-— with punctuation.’

text

<

°

print ‘Case-sensitive:’

pattern

re.IGNORECASE)

for match in with_case.findall (text) :

print

print ’Case-insensitive:’

%r’ % match

for match in without_case.findall (text) :

print 7 %r’ %

match

Since the pattern includes the literal T, without setting IGNORECASE, the only

match is the word This. When case is ignored, text also matches.

$ python re_flags_ignorecase.py

Text:

"This is some text -- with punctuation.’

Pattern:
\bT\w+
Case-sensitive:
"This’

38 Text

Case—insensitive:
"This’
"text’

Input with Multiple Lines

Two flags affect how searching in multiline input works: MULTILINE and DOTALL. The
MULTILINE flag controls how the pattern-matching code processes anchoring instruc-
tions for text containing newline characters. When multiline mode is turned on, the
anchor rules for ~ and s apply at the beginning and end of each line, in addition to the
entire string.

import re

text = ‘This is some text —-— with punctuation.\nA second line.’
pattern = r’ ("\w+t) [(\w+\S*5)’

single_line = re.compile (pattern)

multiline = re.compile (pattern, re.MULTILINE)

print ‘Text:\n $r’ % text

print ’‘Pattern:\n $%s’ % pattern

print ’Single Line :’

for match in single_line.findall (text):
print 7 $%r’ % (match,)

print ’‘Multiline o7

for match in multiline.findall (text):

o

print 7 $%r’ % (match,)

The pattern in the example matches the first or last word of the input. It matches
line. at the end of the string, even though there is no newline.

$ python re_flags_multiline.py

Text:
"This is some text —-- with punctuation.\nA second line.’
Pattern:
(M\w+) | (\w+\S%$)
Single Line
(" This’, '')
(", ’"line.’)
Multiline
(" This’, ')
("7, ’'punctuation.’)

1.3. re—Regular Expressions 39

(IAI, II)

("', ’line.’”)
DOTALL is the other flag related to multiline text. Normally, the dot character (.)
matches everything in the input text except a newline character. The flag allows dot to

match newlines as well.

import re

text = ‘This is some text —-— with punctuation.\nA second line.’
pattern = r’.+’
no_newlines = re.compile (pattern)

dotall = re.compile(pattern, re.DOTALL)

print ‘Text:\n $%r’ % text

print ‘Pattern:\n $%s’ % pattern

print ’‘No newlines :’

for match in no_newlines.findall (text) :
print / 2%r’ % match

print ’‘Dotall 4

for match in dotall.findall (text):
print 7 $%r’ % match

Without the flag, each line of the input text matches the pattern separately. Adding
the flag causes the entire string to be consumed.

$ python re_flags_dotall.py

Text:
"This is some text —- with punctuation.\nA second line.’
Pattern:
.+
No newlines
"This is some text -- with punctuation.’
"A second line.’
Dotall
"This is some text —- with punctuation.\nA second line.’

Unicode

Under Python 2, str objects use the ASCII character set, and regular expression pro-
cessing assumes that the pattern and input text are both ASCII. The escape codes

40 Text

described earlier are defined in terms of ASCII by default. Those assumptions mean
that the pattern \w+ will match the word “French” but not the word “Frangais,” since
the ¢ is not part of the ASCII character set. To enable Unicode matching in Python 2,
add the unICcODE flag when compiling the pattern or when calling the module-level
functions search () and match ().

import re
import codecs
import sys

Set standard output encoding to UTF-8.
sys.stdout = codecs.getwriter (/UTF-8’) (sys.stdout)

text = u’Francais zloty Osterreich’

pattern = ur’\w+’

ascii_pattern = re.compile (pattern)
unicode_pattern = re.compile (pattern, re.UNICODE)

print ’Text :7, text

print ’Pattern :’, pattern

print 7ASCIT 27, u’, ’.join(ascii_pattern.findall (text))
print ’Unicode :’, u’, ’.join(unicode_pattern.findall (text))

The other escape sequences (\W, \b, \B, \d, \D, \'s, and \S) are also processed
differently for Unicode text. Instead of assuming what members of the character set are
identified by the escape sequence, the regular expression engine consults the Unicode
database to find the properties of each character.

$ python re_flags_unicode.py

Text : Francais zloty Osterreich
Pattern : \w+
ASCII : Fran, ais, z, oty, sterreich

Unicode : Francais, ztoty, Osterreich

Note: Python 3 uses Unicode for all strings by default, so the flag is not necessary.

Verbose Expression Syntax

The compact format of regular expression syntax can become a hindrance as expres-
sions grow more complicated. As the number of groups in an expression increases, it

1.3. re—Regular Expressions 41

will be more work to keep track of why each element is needed and how exactly the
parts of the expression interact. Using named groups helps mitigate these issues, but a
better solution is to use verbose mode expressions, which allow comments and extra
whitespace to be embedded in the pattern.

A pattern to validate email addresses will illustrate how verbose mode makes
working with regular expressions easier. The first version recognizes addresses that
end in one of three top-level domains: . com, .org, and .edu.

import re

address = re.compile(’ [\w\d.+-]+@([\w\d.]+\.)+ (com|org|edu)”’,
re .UNICODE)

candidates = [
u’first.lastl@example.com’,
u’first.last+category@gmail.com’,
u’valid-address@mail.example.com’,
u’not-valid@example.foo’,

]

for candidate in candidates:
match = address.search (candidate)
print ’%-30s $%s’ % (candidate, ’‘Matches’ if match else ’'No match’)

This expression is already complex. There are several character classes, groups,
and repetition expressions.

$ python re_email_compact.py

first.last@example.com Matches
first.last+category@gmail.com Matches
valid-address@mail.example.com Matches
not-valid@example. foo No match

Converting the expression to a more verbose format will make it easier to extend.

import re

address = re.compile (

rrs

[\w\d.+-]+ # username
@

42 Text

([\w\d.]J+\.)+ # domain name prefix
(com|org/edu) # TODO: support more top-level domains

rrs
’

re.UNICODE | re.VERBOSE)

candidates = [
u’first.lastlexample.com’,
u’first.last+category@gmail.com’,
u’valid-address@mail.example.com’,
u’not-valid@example.foo’,

]

for candidate in candidates:
match = address.search (candidate)
print ’%-30s $%s’ % (candidate, ’‘Matches’ if match else ’"No match’)

The expression matches the same inputs, but in this extended format, it is easier
to read. The comments also help identify different parts of the pattern so that it can be
expanded to match more inputs.

$ python re_email_verbose.py

first.last@example.com Matches
first.last+category@gmail.com Matches
valid-address@mail.example.com Matches
not-valid@example. foo No match

This expanded version parses inputs that include a person’s name and email ad-
dress, as might appear in an email header. The name comes first and stands on its own,
and the email address follows surrounded by angle brackets (< and >).

import re

address = re.compile (

rrs

A name is made up of letters, and may include "."
for title abbreviations and middle initials.
((?P<name>

([\w.,]+\s+) *[\w.,]+)

\s*

Email addresses are wrapped in angle

1.3. re—Regular Expressions 43

brackets: < > but only if a name 1is
found, so keep the start bracket in this
group.
<
)? # the entire name is optional

The address itself: username@domain.tld
(?P<email>

[\w\d.+-]+ # username

@

([\w\d.]+\.)+ # domain name prefix

(com|org/edu) # limit the allowed top-level domains

>? # optional closing angle bracket

rrs
’

re.UNICODE | re.VERBOSE)

candidates = [
u’first.last@example.com’,
u’first.last+category@gmail.com’,
u’valid-address@mail.example.com’,
u’not-valid@example.foo”’,
u’First Last <first.last@example.com>’,
u’No Brackets first.last@example.com’,
u’First Last’,
u’First Middle Last <first.last@example.com>’,
u’First M. Last <first.last@example.com>’,
u’<first.last@example.com>’,

]

for candidate in candidates:

print ’Candidate:’, candidate

match = address.search(candidate)

if match:
print / Name :’, match.groupdict () [name’]
print / Email:’, match.groupdict () [’ email’]

else:
print / No match’

As with other programming languages, the ability to insert comments into ver-
bose regular expressions helps with their maintainability. This final version includes

44 Text

implementation notes to future maintainers and whitespace to separate the groups from
each other and highlight their nesting level.

$ python re_email_with_name.py

Candidate: first.last@example.com
Name : None
Email: first.last@example.com
Candidate: first.last+category@gmail.com
Name : None
Email: first.last+category@gmail.com
Candidate: valid-address@mail.example.com
Name : None
Email: valid-address@mail.example.com
Candidate: not-valid@example.foo
No match
Candidate: First Last <first.last@example.com>
Name : First Last
Email: first.last@example.com
Candidate: No Brackets first.last@example.com
Name : None
Email: first.last@example.com
Candidate: First Last
No match
Candidate: First Middle Last <first.last@example.com>
Name : First Middle Last
Email: first.last@example.com
Candidate: First M. Last <first.last@example.com>
Name : First M. Last
Email: first.last@example.com
Candidate: <first.last@example.com>
Name : None
Email: first.last@example.com

Embedding Flags in Patterns

If flags cannot be added when compiling an expression, such as when a pattern is passed
as an argument to a library function that will compile it later, the flags can be embedded
inside the expression string itself. For example, to turn case-insensitive matching on,
add (21) to the beginning of the expression.

1.3. re—Regular Expressions 45

import re

text = ’‘This is some text —-—- with punctuation.’
pattern = r’/ (?i) \bT\w+’
regex = re.compile (pattern)

print ’Text 27, text
print ’Pattern :’, pattern
print ’Matches :7, regex.findall (text)

Because the options control the way the entire expression is evaluated or parsed,
they should always come at the beginning of the expression.

$ python re_flags_embedded.py

Text : This is some text —-- with punctuation.
Pattern : (?21) \bT\w+
Matches : ["This’, "text’]

The abbreviations for all flags are listed in Table 1.3.

Table 1.3. Regular Expression Flag Abbreviations

Flag Abbreviation
IGNORECASE | i
MULTILINE | m
DOTALL s
UNTCODE u
VERBOSE P

Embedded flags can be combined by placing them within the same group. For
example, (?imu) turns on case-insensitive matching for multiline Unicode strings.

1.3.8 Looking Ahead or Behind

In many cases, it is useful to match a part of a pattern only if some other part will
also match. For example, in the email parsing expression, the angle brackets were each
marked as optional. Really, though, the brackets should be paired, and the expression
should only match if both are present or neither is. This modified version of the

46 Text

expression uses a positive look-ahead assertion to match the pair. The look-ahead as-
sertion syntax is (?=pattern).

import re

address = re.compile (
rrr
A name is made up of letters, and may include "."
for title abbreviations and middle initials.
((?P<name>
([\w.,]+\s+)*[\w.,]+
)
\s+
) # name is no longer optional

LOOKAHEAD
Email addresses are wrapped in angle brackets, but only
1f they are both present or neither 1is.
(?= (<.*>8) # remainder wrapped in angle brackets
/

(["<].*[">]8) # remainder #*not+ wrapped in angle brackets

<? # optional opening angle bracket

The address itself: username@domain.tld
(?P<email>

[\w\d.+-]+ # username

@

([\w\d.]+\.)+ # domain name prefix

(com|org/edu) # limit the allowed top-level domains

>? # optional closing angle bracket

rrs
4

re.UNICODE | re.VERBOSE)

candidates = [
u’First Last <first.last@example.com>’,
u’No Brackets first.last@example.com’,
u’Open Bracket <first.last@example.com’,
u’Close Bracket first.last@example.com>’,

]

1.3. re—Regular Expressions 47

for candidate in candidates:
print ’‘Candidate:’, candidate

match = address.search (candidate)
if match:
print 7 Name :’, match.groupdict () [name’]
print / Email:’, match.groupdict () [’ email’]
else:

print / No match’

Several important changes occur in this version of the expression. First, the name
portion is no longer optional. That means stand-alone addresses do not match, but it
also prevents improperly formatted name/address combinations from matching. The
positive look-ahead rule after the “name” group asserts that the remainder of the string
is either wrapped with a pair of angle brackets or there is not a mismatched bracket; the
brackets are either both present or neither is. The look-ahead is expressed as a group,
but the match for a look-ahead group does not consume any of the input text. The rest
of the pattern picks up from the same spot after the look-ahead matches.

$ python re_look_ahead.py

Candidate: First Last <first.last@example.com>
Name : First Last
Email: first.last@example.com

Candidate: No Brackets first.lastlexample.com
Name : No Brackets
Email: first.last@example.com

Candidate: Open Bracket <first.last@example.com
No match

Candidate: Close Bracket first.last@example.com>
No match

A negative look-ahead assertion ((?!pattern)) says that the pattern does not
match the text following the current point. For example, the email recognition pattern
could be modified to ignore noreply mailing addresses automated systems commonly
use.

import re

address = re.compile (

7

A

48 Text

An address: username@domain.tld

Ignore noreply addresses
(?!noreply@. *$S)

[\w\d.+-]+ # username

@

([\w\d.]+\.)+ # domain name prefix

(com|org/|edu) # limit the allowed top-level domains
s

rrs
’

re.UNICODE | re.VERBOSE)

candidates = [
u’first.lastlexample.com’,
u’noreply@example.com’,

]

for candidate in candidates:
print ’‘Candidate:’, candidate
match = address.search(candidate)
if match:
print / Match:’, candidate[match.start () :match.end()]
else:
print 7 No match’

The address starting with noreply does not match the pattern, since the look-
ahead assertion fails.

$ python re_negative_look_ahead.py

Candidate: first.last@example.com
Match: first.last@example.com
Candidate: noreply@example.com
No match

Instead of looking ahead for noreply in the username portion of the email ad-
dress, the pattern can also be written using a negative look-behind assertion after the
username is matched using the syntax (?<!pattern).

import re

address = re.compile (

1.3. re—Regular Expressions 49

rrs

An address: username@domain.tld
[\w\d.+-]+ # username

Ignore noreply addresses
(?<!noreply)

@

([\w\d.]J+\.)+ # domain name prefix

(com|org|edu) # limit the allowed top-level domains
s

rrs
’

re.UNICODE | re.VERBOSE)

candidates = [
u’first.last@example.com’,
u’noreply@example.com’,

]

for candidate in candidates:
print ’Candidate:’, candidate
match = address.search(candidate)
if match:
print ’ Match:’, candidate[match.start () :match.end()]
else:
print / No match’

Looking backward works a little differently than looking ahead, in that the expres-
sion must use a fixed-length pattern. Repetitions are allowed, as long as there is a fixed
number (no wildcards or ranges).

$ python re_negative_look_behind.py

Candidate: first.last@example.com
Match: first.last@example.com
Candidate: noreply@example.com
No match

A positive look-behind assertion can be used to find text following a pattern using
the syntax (?<=pattern). For example, this expression finds Twitter handles.

50 Text

import re

twitter = re.compile(

rrs

A twitter handle: @username
(?<=@)
([\w\d_]+) # username

rrs
’

re.UNICODE | re.VERBOSE)

text = 7’/’/This text includes two Twitter handles.
One for @ThePSF, and one for the author, @doughellmann.

rrs

print text
for match in twitter.findall (text) :
print ’Handle:’, match

The pattern matches sequences of characters that can make up a Twitter handle, as
long as they are preceded by an @.

$ python re_look_behind.py

This text includes two Twitter handles.
One for QThePSF, and one for the author, @doughellmann.

Handle: ThePSF
Handle: doughellmann

1.3.9 Self-Referencing Expressions

Matched values can be used in later parts of an expression. For example, the email
example can be updated to match only addresses composed of the first and last name
of the person by including back-references to those groups. The easiest way to achieve
this is by referring to the previously matched group by id number, using \num.

import re

address = re.compile (

rrvs
r

The regular name

1.3. re—Regular Expressions 51

(\wt) # first name

\s+

(([\w.]+)\s+)? # optional middle name or initial
(\w+) # last name

\s+

<

The address: first_name.last_name@domain.tld
(?P<email>

\1 # first name

\.

\ 4 # last name

@

([\w\d.]+\.)+ # domain name prefix

(com|org/edu) # limit the allowed top-level domains

>

rrs
’

re .UNICODE | re.VERBOSE | re.IGNORECASE)

candidates = [
u’First Last <first.last@example.com>’,
u’Different Name <first.last@example.com>’,
u’First Middle Last <first.last@example.com>’,
u’First M. Last <first.last@example.com>’,

]

for candidate in candidates:

print ’‘Candidate:’, candidate

match = address.search(candidate)

if match:
print / Match name :’, match.group(l), match.group (4)
print / Match email:’, match.group (5)

else:
print / No match’

Although the syntax is simple, creating back-references by numerical id has a
couple of disadvantages. From a practical standpoint, as the expression changes, the
groups must be counted again and every reference may need to be updated. The other
disadvantage is that only 99 references can be made this way, because if the id number

52 Text

is three digits long, it will be interpreted as an octal character value instead of a group
reference. On the other hand, if an expression has more than 99 groups, more serious
maintenance challenges will arise than not being able to refer to some groups in the
expression.

$ python re_refer_to_group.py

Candidate: First Last <first.lastlexample.com>
Match name : First Last
Match email: first.last@example.com

Candidate: Different Name <first.last@example.com>
No match

Candidate: First Middle Last <first.last@example.com>
Match name : First Last
Match email: first.last@example.com

Candidate: First M. Last <first.last@example.com>
Match name : First Last
Match email: first.last@example.com

Python’s expression parser includes an extension that uses (?P=name) to refer to
the value of a named group matched earlier in the expression.

import re

address = re.compile (

rrs

The regular name

(?P<first_name>\w+)

\s+

(([\w.]+)\s+)? # optional middle name or initial
(?P<last_name>\w+)

\s+

The address: first_name.last_name@domain.tld
(?P<email>

(?P=first_name)

\.

(?P=1last_name)

1.3. re—Regular Expressions

@
([\w\d.]J+\.)+ # domain name prefix
(com/|org/edu) # limit the allowed top-level domains

>

rrs
r

re.UNICODE | re.VERBOSE | re.IGNORECASE)

candidates = [
u’First Last <first.last@example.com>’,
u’Different Name <first.last@example.com>’,
u’First Middle Last <first.last@example.com>’,
u’First M. Last <first.last@example.com>’,

]

for candidate in candidates:
print ’‘Candidate:’, candidate

match = address.search (candidate)

if match:
print / Match name :’, match.groupdict () [/first_name’],
print match.groupdict () [“last_name’]
print 7 Match email:’, match.groupdict () [“email’]

else:

print / No match’

53

The address expression is compiled with the IGNORECASE flag on, since proper

names are normally capitalized but email addresses are not.

$ python re_refer_to_named_group.py

Candidate: First Last <first.last@example.com>
Match name : First Last
Match email: first.last@example.com

Candidate: Different Name <first.last@example.com>
No match

Candidate: First Middle Last <first.last@example.com>
Match name : First Last
Match email: first.last@example.com

Candidate: First M. Last <first.last@example.com>
Match name : First Last
Match email: first.last@example.com

54 Text

The other mechanism for using back-references in expressions chooses a different
pattern based on whether a previous group matched. The email pattern can be cor-
rected so that the angle brackets are required if a name is present, but not if the
email address is by itself. The syntax for testing to see if a group has matched is
(? (id) yes—expression|no-expression), where id is the group name or num-
ber, yes-expression is the pattern to use if the group has a value, and no-expression is
the pattern to use otherwise.

import re

address = re.compile (

rrs

A

A name is made up of letters, and may include "."
for title abbreviations and middle initials.
(?P<name>

([\w.]+\s+) x[\w.]+
)?
\s*

Email addresses are wrapped in angle brackets, but
only if a name is found.
(? (name)
remainder wrapped in angle brackets because
there is a name
(?P<brackets> (?=(<.%*>S)))
/
remainder does not include angle brackets without name
(?=(["<].*[">]%))

Only look for a bracket if the look-ahead assertion
found both of them.
(? (brackets)</|\s*)

The address itself: username@domain.tld
(?P<email>

[\w\d.+-]+ # username
@
([\w\d.]J+\.)+ # domain name prefix

(com|org/edu) # limit the allowed top-level domains

1.3. re—Regular Expressions 55

Only look for a bracket if the look-ahead assertion
found both of them.
(? (brackets)>]\sx*)

rrs
’

re.UNICODE | re.VERBOSE)

candidates = [
u’First Last <first.last@example.com>’,
u’No Brackets first.last@example.com’,
u’Open Bracket <first.last@example.com’,
u’Close Bracket first.last@example.com>’,
u’no.brackets@example.com’,

]

for candidate in candidates:
print ’Candidate:’, candidate
match = address.search (candidate)

if match:
print / Match name :’, match.groupdict () [name”’]
print / Match email:’, match.groupdict () [“email’]
else:

print / No match’

This version of the email address parser uses two tests. If the name group matches,
then the look-ahead assertion requires both angle brackets and sets up the brackets
group. If name is not matched, the assertion requires that the rest of the text not have an-
gle brackets around it. Later, if the brackets group is set, the actual pattern-matching
code consumes the brackets in the input using literal patterns; otherwise, it consumes
any blank space.

$ python re_id.py

Candidate: First Last <first.last@example.com>
Match name : First Last
Match email: first.last@example.com

Candidate: No Brackets first.lastlexample.com
No match

Candidate: Open Bracket <first.last@example.com

56 Text

No match
Candidate: Close Bracket first.last@example.com>
No match
Candidate: no.brackets@example.com
Match name : None
Match email: no.brackets@example.com

1.3.10 Modifying Strings with Patterns

In addition to searching through text, re also supports modifying text using regular ex-
pressions as the search mechanism, and the replacements can reference groups matched
in the regex as part of the substitution text. Use sub () to replace all occurrences of a
pattern with another string.

import re

bold = re.compile(r’ \#{2} (.*?2)\+{2})

text = "Make this x*#boldx*. This #*toox*.’

print ’Text:’, text
print ’‘Bold:’, bold.sub (r’/\1’, text)

References to the text matched by the pattern can be inserted using the \ num syntax
used for back-references.

$ python re_sub.py

Text: Make this #**xboldx*x. This *xtoox*.
Bold: Make this bold. This too.

To use named groups in the substitution, use the syntax \g<name>.
import re
bold = re.compile(r’*{2} (?P<bold _text>.*?)\x{2}’, re.UNICODE)
text = ’"Make this xxbold*x. This x*toox*x.’

print ’Text:’, text
print ’Bold:’, bold.sub (r’\g<bold_text>’, text)

1.3. re—Regular Expressions 57

The \g<name> syntax also works with numbered references, and using it elimi-
nates any ambiguity between group numbers and surrounding literal digits.

$ python re_sub_named_groups.py

Text: Make this #*xboldx*. This xxtoox*.
Bold: Make this bold. This too.

Pass a value to count to limit the number of substitutions performed.

import re

bold = re.compile(r’\#{2}(.x?)\x{2}’, re.UNICODE)
text = ‘Make this #*#bold+*#*. This #*+*toox*.’

print ’Text:’, text
print ’Bold:’, bold.sub(r’\1’, text, count=1)

Only the first substitution is made because count is 1.

$ python re_sub_count.py

Text: Make this xxboldxx. This **tooxx.
Bold: Make this bold. This **tooxx.

subn () works just like sub (), except that it returns both the modified string and
the count of substitutions made.

import re
bold = re.compile(r’\#{2}(.x?)\x{2}’, re.UNICODE)
text = ’Make this ##boldx*#*. This *+too#*#*.’

print ’Text:’, text
print ’Bold:’, bold.subn (r’\1’, text)

The search pattern matches twice in the example.

$ python re_subn.py

58 Text

Text: Make this #*xboldx*x. This *xtoox*.
Bold: (’Make this bold. This too.’, 2)

1.3.11 Splitting with Patterns

str.split () is one of the most frequently used methods for breaking apart strings to
parse them. It only supports using literal values as separators, though, and sometimes a
regular expression is necessary if the input is not consistently formatted. For example,
many plain-text markup languages define paragraph separators as two or more newline
(\n) characters. In this case, str.split () cannot be used because of the “or more”
part of the definition.

A strategy for identifying paragraphs using findall () would use a pattern like
(.+2)\n{2,}.

import re

text = ’/’’Paragraph one
on two lines.

Paragraph two.

Paragraph three.’’’
for num, para in enumerate(re.findall(r’ (.+?)\n{2,}’,
text,

flags=re.DOTALL)

print num, repr (para)
print

That pattern fails for paragraphs at the end of the input text, as illustrated by the
fact that “Paragraph three.” is not part of the output.

$ python re_paragraphs_findall.py
0 ’Paragraph one\non two lines.’

1 ’"Paragraph two.’

1.3. re—Regular Expressions 59

Extending the pattern to say that a paragraph ends with two or more newlines or the
end of input fixes the problem, but makes the pattern more complicated. Converting to
re.split () instead of re.findall () handles the boundary condition automatically
and keeps the pattern simpler.

import re

text = ’/’’Paragraph one
on two lines.

Paragraph two.

Paragraph three.’’’

print ’‘With findall:’
for num, para in enumerate(re.findall(r’ (.+?) (\n{2,}/%)"’,
text,
flags=re.DOTALL)) :
print num, repr (para)
print

print

print ‘With split:’

for num, para in enumerate(re.split(r’\n{2,}’, text)):
print num, repr (para)
print

The pattern argument to split () expresses the markup specification more pre-
cisely: Two or more newline characters mark a separator point between paragraphs in
the input string.

$ python re_split.py

With findall:
0 (’Paragraph one\non two lines.’, ’'\n\n’)

1 (’Paragraph two.’, ’‘\n\n\n’)

2 ("Paragraph three.’, ')

60 Text

With split:
0 ’'Paragraph one\non two lines.’

1 ’"Paragraph two.’

2 ’'Paragraph three.’

Enclosing the expression in parentheses to define a group causes split () to work
more like str.partition (), so it returns the separator values as well as the other
parts of the string.

import re

text = ’’’Paragraph one
on two lines.

Paragraph two.

Paragraph three.’’’
print ’'With split:’
for num, para in enumerate (re.split(r’ (\n{2,})’, text)):

print num, repr (para)
print

The output now includes each paragraph, as well as the sequence of newlines
separating them.

$ python re_split_groups.py

With split:
0 ’'Paragraph one\non two lines.’

1 ’\n\n’
2 "Paragraph two.’
3 “A\n\n\n’

4 ’'Paragraph three.’

1.4. diffib—Compare Sequences 61

See Also:

re (http://docs.python.org/library/re.html) The standard library documentation for
this module.

Regular Expression HOWTO (http://docs.python.org/howto/regex.html) Andrew
Kuchling’s introduction to regular expressions for Python developers.

Kodos (http://kodos.sourceforge.net/) An interactive tool for testing regular expres-
sions, created by Phil Schwartz.

Python Regular Expression Testing Tool (http://www.pythonregex.com/) A Web-
based tool for testing regular expressions created by David Naffziger at Brand
Verity.com and inspired by Kodos.

Regular expression (http://en.wikipedia.org/wiki/Regular_expressions) Wikipedia
article that provides a general introduction to regular expression concepts and
techniques.

locale (page 909) Use the 1ocale module to set the language configuration when
working with Unicode text.

unicodedata (docs.python.org/library/unicodedata.html) Programmatic access to
the Unicode character property database.

1.4 difflib—Compare Sequences

Purpose Compare sequences, especially lines of text.
Python Version 2.1 and later

The diff1ib module contains tools for computing and working with differences be-
tween sequences. It is especially useful for comparing text and includes functions that
produce reports using several common difference formats.

The examples in this section will all use this common test data in the
difflib_data.py module:

textl = """Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Integer eu lacus accumsan arcu fermentum euismod. Donec
pulvinar porttitor tellus. Aliquam venenatis. Donec facilisis
pharetra tortor. In nec mauris eget magna consequat
convallis. Nam sed sem vitae odio pellentesque interdum. Sed
consequat viverra nisl. Suspendisse arcu metus, blandit quis,
rhoncus ac, pharetra eget, velit. Mauris urna. Morbi nonummy
molestie orci. Praesent nisi elit, fringilla ac, suscipit non,
tristique vel, mauris. Curabitur vel lorem id nisl porta
adipiscing. Suspendisse eu lectus. In nunc. Duis vulputate
tristique enim. Donec quis lectus a justo imperdiet tempus."""

http://docs.python.org/library/re.html
http://docs.python.org/howto/regex.html
http://kodos.sourceforge.net/
http://www.pythonregex.com/
http://en.wikipedia.org/wiki/Regular_expressions

62 Text

textl_lines = textl.splitlines()

text2 = """Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Integer eu lacus accumsan arcu fermentum euismod. Donec
pulvinar, porttitor tellus. Aliquam venenatis. Donec facilisis
pharetra tortor. In nec mauris eget magna consequat

convallis. Nam cras vitae mi vitae odio pellentesque interdum. Sed
consequat viverra nisl. Suspendisse arcu metus, blandit quis,
rhoncus ac, pharetra eget, velit. Mauris urna. Morbi nonummy
molestie orci. Praesent nisi elit, fringilla ac, suscipit non,
tristique vel, mauris. Curabitur vel lorem id nisl porta
adipiscing. Duis vulputate tristique enim. Donec quis lectus a
justo imperdiet tempus. Suspendisse eu lectus. In nunc."""

text2_lines = text2.splitlines/()

1.4.1 Comparing Bodies of Text

The Differ class works on sequences of text lines and produces human-readable
deltas, or change instructions, including differences within individual lines. The default
output produced by Di f fer is similar to the diff command line tool under UNIX. It in-
cludes the original input values from both lists, including common values, and markup

data to indicate what changes were made.

* Lines prefixed with - indicate that they were in the first sequence, but not the

second.
* Lines prefixed with + were in the second sequence, but not the first.

* If a line has an incremental difference between versions, an extra line prefixed

with 2 is used to highlight the change within the new version.

* If aline has not changed, it is printed with an extra blank space on the left column

so that it is aligned with the other output, which may have differences.

Breaking up the text into a sequence of individual lines before passing it to

compare () produces more readable output than passing it in large strings.

import difflib
from difflib_data import =

d = difflib.Differ ()
diff = d.compare(textl_lines, text2_lines)
print “\n’.join(diff)

1.4. diffib—Compare Sequences 63

The beginning of both text segments in the sample data is the same, so the first
line prints without any extra annotation.

Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Integer eu lacus accumsan arcu fermentum euismod. Donec

The third line of the data changes to include a comma in the modified text. Both
versions of the line print, with the extra information on line five showing the column
where the text is modified, including the fact that the , character is added.

— pulvinar porttitor tellus. Aliquam venenatis. Donec facilisis
+ pulvinar, porttitor tellus. Aliquam venenatis. Donec facilisis
? +

The next few lines of the output show that an extra space is removed.

— pharetra tortor. In nec mauris eget magna consequat
2 —

+ pharetra tortor. In nec mauris eget magna consequat

Next, a more complex change is made, replacing several words in a phrase.

— convallis. Nam sed sem vitae odio pellentesque interdum. Sed
2 -

+ convallis. Nam cras vitae mi vitae odio pellentesque interdum. Sed
? +++ F++++ +

The last sentence in the paragraph is changed significantly, so the difference is
represented by removing the old version and adding the new.

consequat viverra nisl. Suspendisse arcu metus, blandit quis,
rhoncus ac, pharetra eget, velit. Mauris urna. Morbi nonummy
molestie orci. Praesent nisi elit, fringilla ac, suscipit non,
tristique vel, mauris. Curabitur vel lorem id nisl porta

- adipiscing. Suspendisse eu lectus. In nunc. Duis vulputate

- tristique enim. Donec quis lectus a Jjusto imperdiet tempus.

+ adipiscing. Duis wvulputate tristique enim. Donec quis lectus a

+ justo imperdiet tempus. Suspendisse eu lectus. In nunc.

64 Text

The ndiff () function produces essentially the same output. The processing is
specifically tailored for working with text data and eliminating noise in the input.

Other Output Formats

While the Differ class shows all input lines, a unified diff includes only modified
lines and a bit of context. In Python 2.3, the unified_diff () function was added to
produce this sort of output.

import difflib
from difflib_data import =

diff = difflib.unified_diff (textl_lines,
text2_lines,
lineterm="",
)

print ‘\n’.join(list (diff))

The lineterm argument is used to tell unified_diff () to skip appending new-
lines to the control lines it returns because the input lines do not include them. Newlines
are added to all lines when they are printed. The output should look familiar to users of
subversion or other version control tools.

$ python difflib_unified.py

+++
@@ -1,11 +1,11 @@

Lorem ipsum dolor sit amet, consectetuer adipiscing

elit. Integer eu lacus accumsan arcu fermentum euismod. Donec
-pulvinar porttitor tellus. Aliquam venenatis. Donec facilisis
—-pharetra tortor. In nec mauris eget magna consequat
—convallis. Nam sed sem vitae odio pellentesque interdum. Sed
t+pulvinar, porttitor tellus. Aliquam venenatis. Donec facilisis
+pharetra tortor. In nec mauris eget magna consequat
+convallis. Nam cras vitae mi vitae odio pellentesque interdum. Sed
consequat viverra nisl. Suspendisse arcu metus, blandit quis,
rhoncus ac, pharetra eget, velit. Mauris urna. Morbi nonummy
molestie orci. Praesent nisi elit, fringilla ac, suscipit non,
tristique vel, mauris. Curabitur vel lorem id nisl porta
—adipiscing. Suspendisse eu lectus. In nunc. Duis vulputate
—tristique enim. Donec quis lectus a justo imperdiet tempus.

1.4. diffib—Compare Sequences 65

+adipiscing. Duis vulputate tristique enim. Donec quis lectus a
+justo imperdiet tempus. Suspendisse eu lectus. In nunc.

Using context_diff () produces similar readable output.

1.4.2 Junk Data

All functions that produce difference sequences accept arguments to indicate which
lines should be ignored and which characters within a line should be ignored. These
parameters can be used to skip over markup or whitespace changes in two versions of
a file, for example.

This example is adapted from the source for difflib.py.
from difflib import SequenceMatcher

def show_results(s):
i, 3, k = s.find_longest_match(0, 5, 0, 9)
print 7 1 = &d’
print 7 j = $d’
print 7 k = %d’
print 7 A[i:i+k] = %$r’ % A[i:i+k]
% B

o oo oe
~ou. e

print / B[j:j+k] = $r’ [J:]+k]
A = " abcd"”
B = "abcd abcd”
print A = %r’ % A
print ‘B = %r’ $ B

print ’‘\nWithout junk detection:’
show_results (SequenceMatcher (None, A, B))

print ’‘\nTreat spaces as junk:’
show_results (SequenceMatcher (lambda x: x==" ", A, B))

The default for Differ is to not ignore any lines or characters explicitly, but to
rely on the ability of SequenceMatcher to detect noise. The default for ndiff () is

to ignore space and tab characters.

$ python difflib_junk.py

66 Text

A " abcd’
B = ’abcd abcd’

Without junk detection:

i=20
j =4
k =5
Ali:1+4k] = ' abcd’
B[j:J+k] = " abcd’

Treat spaces as junk:

i=1
3 =0
k = 4
A[i:i+k] = "abcd’
B[j:j+k] = ’abcd’

1.4.3 Comparing Arbitrary Types

The sequenceMatcher class compares two sequences of any type, as long as the
values are hashable. It uses an algorithm to identify the longest contiguous matching
blocks from the sequences, eliminating junk values that do not contribute to the real
data.

import difflib
from difflib_data import =

sl =11 2, 3, 5, 6, 4]
s2 = [2, 3, 5, 4, 6, 1]
print ’Initial data:’
print ’sl1 =/, sl

print ’s2 =/, s2

print ’sl == s2:’/, sl==s2

print

matcher = difflib.SequenceMatcher (None, sl, s2)
for tag, 11, i2, jl, j2 in reversed(matcher.get_opcodes()):

if tag == ’‘delete’:
print ‘Remove $s from positions [%d:%d]’ % \
(s1[il:i2], i1, i2)
del s1[il:1i2]

1.4. diffib—Compare Sequences 67

elif tag == ’equal’:
print ’s1[%d:%d] and s2[%d:%d] are the same’ % \
(i1, iz, 31, 32)

elif tag == ’insert’:
print ’Insert $%s from s2[%d:%d] into sl at %d’ % \
(s2[31:321, 31, 32, il)
sl[il:12] = s2[31:32]

elif tag == ’replace’:
print ’‘Replace %s from s1[%d:%d] with %s from s2[%d:%d]’ % (
s1[i1:i2], i1, 12, s2[31:321, 31, 32)
sl[il:12] = s2[31:32]
print © s1 =/, sl
print sl == s2:’, sl==s2
This example compares two lists of integers and uses get_opcodes () to derive
the instructions for converting the original list into the newer version. The modifications
are applied in reverse order so that the list indexes remain accurate after items are added
and removed.

$ python difflib_seq.py

Initial data:

sl = [1, 2, 3, 5, 6, 4]
s2 = [2, 3, 5, 4, 6, 1]
sl == s2: False

Replace [4] from s1[5:6] with [1] from s2[5:6]

sl = [1, 2, 3, 5, 6, 1]

s1[4:5] and s2[4:5] are the same
sl = 1[1, 2, 3, 5, 6, 1]

Insert [4] from s2[3:4] into sl at 4
sl = [1, 2, 3, 5, 4, 6, 1]

sl[1l:4] and s2[0:3] are the same
sl = 1[1, 2, 3, 5, 4, 6, 1]

Remove [1l] from positions [0:1]
sl = [2, 3, 5, 4, 6, 1]

sl == s2: True

68 Text

SequenceMatcher works with custom classes, as well as built-in types, as long
as they are hashable.

See Also:

difflib (http://docs.python.org/library/difflib.html) The standard library documenta-
tion for this module.

Pattern Matching: The Gestalt Approach (http:/www.ddj.com/documents/s=
1103/ddj8807¢/) Discussion of a similar algorithm by John W. Ratcliff and
D. E. Metzener, published in Dr. Dobb’s Journal in July 1988.

http://docs.python.org/library/difflib.html
http://www.ddj.com/documents/s=1103/ddj8807c/
http://www.ddj.com/documents/s=1103/ddj8807c/

Chapter 2

DATA STRUCTURES

Python includes several standard programming data structures, such as 1ist, tuple,
dict, and set, as part of its built-in types. Many applications do not require other
structures, but when they do, the standard library provides powerful and well-tested
versions that are ready to use.

The collections module includes implementations of several data structures
that extend those found in other modules. For example, Deque is a double-ended queue
that allows the addition or removal of items from either end. The defaultdict is a
dictionary that responds with a default value if a key is missing, while OrderedDict
remembers the sequence in which items are added to it. And namedtuple extends the
normal tuple to give each member item an attribute name in addition to a numeric
index.

For large amounts of data, an array may make more efficient use of memory than
a list. Since the array is limited to a single data type, it can use a more compact
memory representation than a general purpose 1ist. At the same time, arrays can
be manipulated using many of the same methods as a 1ist, so it may be possible to
replace 1ists with arrays in an application without a lot of other changes.

Sorting items in a sequence is a fundamental aspect of data manipulation. Python’s
list includes a sort () method, but sometimes it is more efficient to maintain a list
in sorted order without resorting it each time its contents are changed. The functions in
heapg modify the contents of a list while preserving the sort order of the list with low
overhead.

Another option for building sorted lists or arrays is bisect. It uses a binary search
to find the insertion point for new items and is an alternative to repeatedly sorting a list
that changes frequently.

69

70 Data Structures

Although the built-in 1ist can simulate a queue using the insert () and pop ()
methods, it is not thread-safe. For true ordered communication between threads, use the
Queue module. multiprocessing includes a version of a Queue that works between
processes, making it easier to convert a multithreaded program to use processes instead.

struct is useful for decoding data from another application, perhaps coming from
a binary file or stream of data, into Python’s native types for easier manipulation.

This chapter covers two modules related to memory management. For highly
interconnected data structures, such as graphs and trees, use weakref to maintain ref-
erences while still allowing the garbage collector to clean up objects after they are no
longer needed. The functions in copy are used for duplicating data structures and their
contents, including recursive copies with deepcopy ().

Debugging data structures can be time consuming, especially when wading
through printed output of large sequences or dictionaries. Use pprint to create easy-
to-read representations that can be printed to the console or written to a log file for
easier debugging.

And, finally, if the available types do not meet the requirements, subclass one of
the native types and customize it, or build a new container type using one of the abstract
base classes defined in collections as a starting point.

2.1 collections—Container Data Types

Purpose Container data types.
Python Version 2.4 and later

The collections module includes container data types beyond the built-in types
list, dict, and tuple.

2.1.1 Counter

A Counter is a container that tracks how many times equivalent values are added. It
can be used to implement the same algorithms for which other languages commonly
use bag or multiset data structures.

Initializing
Counter supports three forms of initialization. Its constructor can be called with a

sequence of items, a dictionary containing keys and counts, or using keyword arguments
mapping string names to counts.

2.1. collections—Container Data Types 71

import collections
print collections.Counter([’a’, ’b’, ’c’, ’a’, ’b’, ’'b’])

print collections.Counter ({’a’:2, ’b’:3, ’‘c’:1})
print collections.Counter (a=2, b=3, c=1)

The results of all three forms of initialization are the same.

$ python collections_counter_init.py
Counter ({’b’": 3, 'a’": 2, ’'c’: 1})
Counter ({’b’: 3, "a’": 2, 'c’': 1})

Counter ({’'b’: 3, "a’": 2, 'c'": 1})

An empty Counter can be constructed with no arguments and populated via the
update () method.

import collections

c = collections.Counter ()
print ’Initial :’, c

c.update (”abcdaab”’)
print ’Sequence:’, c

c.update ({’a’:1, ’d’:5})
print ’‘Dict 7, c

The count values are increased based on the new data, rather than replaced. In this
example, the count for a goes from 3 to 4.

$ python collections_counter_update.py

Initial : Counter ()
Sequence: Counter({’a’: 3, 'b’": 2, ’'c’: 1, 'd': 1})
Dict : Counter({’d’: 6, "a’": 4, '"b": 2, 'c’': 1})

Accessing Counts

Once a Counter is populated, its values can be retrieved using the dictionary API.

72 Data Structures

import collections
c = collections.Counter (“abcdaab”’)

for letter in ’“abcde’:
print “%s : %d’ % (letter, clletter])

Counter does not raise KeyError for unknown items. If a value has not been
seen in the input (as with e in this example), its count is 0.

$ python collections_counter_get_values.py

® Q0 o 9w
o P N W

The elements () method returns an iterator that produces all items known to the
Counter.

import collections

c = collections.Counter (’extremely”’)
cl[’z’] =0
print c

print list (c.elements())

The order of elements is not guaranteed, and items with counts less than or equal
to zero are not included.

$ python collections_counter_elements.py

Counter ({’e’: 3, 'm: 1, "1": 1, ’'r’": 1, "t’: 1, 'y': 1, '"x': 1,
"z": 0})

Use most_common () to produce a sequence of the n most frequently encountered
input values and their respective counts.

2.1. collections—Container Data Types 73

import collections

c = collections.Counter ()
with open (’/usr/share/dict/words’, ’‘rt’) as f:
for line in f:
c.update (line.rstrip() .lower())

print ’“Most common:’
for letter, count in c.most_common (3) :
print ’%s: $7d’ % (letter, count)

This example counts the letters appearing in all words in the system dictionary
to produce a frequency distribution, and then prints the three most common letters.
Leaving out the argument to most_common () produces a list of all the items, in order
of frequency.

$ python collections_counter_most_common.py

Most common:

e: 234803
i: 200613
a: 198938
Arithmetic

Counter instances support arithmetic and set operations for aggregating results.

import collections

cl collections.Counter([’a’, ’b’, ’c’, ’a’, ’b’, ’b’])

c2 = collections.Counter (’“alphabet”’)

print ’Cl:’, cl
print C2:7, c2

print ‘\nCombined counts:’
print cl + c2

print ’‘\nSubtraction:’
print cl - c2

74 Data Structures

print ’‘\nIntersection (taking positive minimums) :’
print cl & c2

print ’‘\nUnion (taking maximums) :’

print cl | c2

Each time a new Counter is produced through an operation, any items with zero
or negative counts are discarded. The count for a is the same in c1 and c2, so subtrac-

tion leaves it at zero.

$ python collections_counter_arithmetic.py

Cl: Counter({’'b’": 3, 'a’": 2, 'c’: 1})

C2: Counter({’a’": 2, 'b’: 1, 'e’: 1, "h’ 1, "1": 1,

Combined counts:

Counter ({’a’: 4, '"b": 4, 'c¢'": 1, 'e’": 1, "h’: 1, "1":
rtre 1})

Subtraction:

Counter ({’'b’: 2, 'c’": 1})

Intersection (taking positive minimums) :

Counter({’a’": 2, "b’: 1})

Union (taking maximums) :

Counter ({'b’: 3, 'a": 2, 'c¢'": 1, 'e’": 1, '"h’: 1, "1":

rtr 1})

2.1.2 defaultdict

!pl 1, ret 1})
1, 'p': 1,
1, 'p': 1,

The standard dictionary includes the method setdefault () for retrieving a value and
establishing a default if the value does not exist. By contrast, defaultdict lets the
caller specify the default up front when the container is initialized.

import collections

def default_factory():

return ’default value”’
d =
print

collections.defaultdict (default_factory,
rd:’, d

foo=’"bar’)

2.1. collections—Container Data Types 75

print ’“foo =>’, d[’foo’]
print ’‘bar =>’, d[’bar’]

This method works well, as long as it is appropriate for all keys to have the same
default. It can be especially useful if the default is a type used for aggregating or accu-
mulating values, such asa 1ist, set, or even int. The standard library documentation
includes several examples of using defaultdict this way.

$ python collections_defaultdict.py

d: defaultdict (<function default_factory
at 0x100d9%9ba28>, {’'foo’: ’"bar’})

foo => bar

bar => default value

See Also:

defaultdict examples (http://docs.python.org/lib/defaultdict-examples.html)
Examples of using defaultdict from the standard library documentation.

Evolution of Default Dictionaries in Python
(http://jtauber.com/blog/2008/02/27/evolution_of_default_dictionaries_in_
python/) Discussion from James Tauber of how defaultdict relates to other
means of initializing dictionaries.

2.1.3 Deque

A double-ended queue, or deque, supports adding and removing elements from either
end. The more commonly used structures, stacks, and queues are degenerate forms of
deques where the inputs and outputs are restricted to a single end.

import collections

d = collections.deque (’abcdefg’)
print ’Deque:’, d

print “Length:’, len(d)
print “Left end:’, d[0]
print ’‘Right end:”, d[-1]

d.remove (’c”’)
print ’remove(c):’, d

http://docs.python.org/lib/defaultdict-examples.html
http://jtauber.com/blog/2008/02/27/evolution_of_default_dictionaries_in_python/
http://jtauber.com/blog/2008/02/27/evolution_of_default_dictionaries_in_python/

76 Data Structures

Since deques are a type of sequence container, they support some of the same
operations as 11 st, such as examining the contents with __getitem__ (), determining
length, and removing elements from the middle by matching identity.

$ python collections_deque.py

Deque: deque(['a’, 'b’", 'c’, 'd", Te’, "E', 'g’'])
Length: 7

Left end: a

Right end: g

remove (c) : deque([’a’, 'b’, 'd", ’'e", "£', "g'])

Populating

A deque can be populated from either end, termed “left” and “right” in the Python
implementation.

import collections

Add to the right

dl = collections.deque ()
dl.extend (’abcdefg’)
print ’extend 27, dl
dl.append(’h”)

print ’append 27, dl

Add to the left

d2 = collections.deque ()
d2.extendleft (xrange (6))
print ’extendleft:’, d2
d2.appendleft (6)

print ’appendleft:’, d2

The extendleft () function iterates over its input and performs the equivalent
of an appendleft () for each item. The end result is that the deque contains the input
sequence in reverse order.

$ python collections_deque_populating.py

extend : deque(['a’, 'b’, 'c’, 'd’", 'e’', "E', 'g'])
append : deque([’aI’ ’bl, ’c’, ’d’, ’e’, ’f’, ’g” ,h’])

2.1. collections—Container Data Types 77

extendleft: deque([5, 4, 3, 2, 1, 01])
appendleft: deque([6, 5, 4, 3, 2, 1, 0])

Consuming

Similarly, the elements of the deque can be consumed from both ends or either end,
depending on the algorithm being applied.

import collections

print ’‘From the right:’
d = collections.deque (“abcdefg’)
while True:
try:
print d.pop(),
except IndexError:
break
print

print ‘\nFrom the left:’
d = collections.deque (xrange (6))
while True:
try:
print d.popleft (),
except IndexError:
break
print

Use pop () to remove an item from the right end of the deque and popleft () to
take from the left end.

$ python collections_deque_consuming.py

From the right:
gfedcba

From the left:
012345

Since deques are thread-safe, the contents can even be consumed from both ends
at the same time from separate threads.

78 Data Structures

import collections
import threading
import time

candle = collections.deque (xrange (5))

def burn (direction, nextSource):
while True:
try:
next = nextSource()
except IndexError:
break
else:
print ’%8s: $%$s’ % (direction, next)
time.sleep(0.1)
print ’$8s done’ % direction
return

left = threading.Thread(target=burn, args=(’Left’, candle.popleft))
right = threading.Thread(target=burn, args=(’Right’, candle.pop))

left.start ()
right.start ()

left.join()
right.join ()

The threads in this example alternate between each end, removing items until the
deque is empty.

$ python collections_deque_both_ends.py

Left: O
Right: 4
Right: 3

Left: 1
Right: 2

Left done

Right done

Rotating

Another useful capability of the deque is to rotate it in either direction, to skip over
some items.

2.1. collections—Container Data Types 79

import collections

d = collections.deque (xrange (10))
print ’Normal 27, d

d = collections.deque (xrange (10))
d.rotate (2)
print ’Right rotation:’, d

d = collections.deque (xrange (10))
d.rotate (-2)
print ’Left rotation :’/, d

Rotating the deque to the right (using a positive rotation) takes items from the
right end and moves them to the left end. Rotating to the left (with a negative value)
takes items from the left end and moves them to the right end. It may help to visualize
the items in the deque as being engraved along the edge of a dial.

$ python collections_deque_rotate.py

Normal : deque ([0, 1, 2, 3, 4, 5, 6, 7, 8, 91)
Right rotation: deque([8, 9, 0, 1, 2, 3, 4, 5, 6, 7])
Left rotation : deque([2, 3, 4, 5, 6, 7, 8, 9, 0, 11)

See Also:

Deque (http://en.wikipedia.org/wiki/Deque) Wikipedia article that provides a dis-
cussion of the deque data structure.

Deque Recipes (http://docs.python.org/lib/deque-recipes.html) Examples of using
deques in algorithms from the standard library documentation.

2.1.4 namedtuple
The standard tuple uses numerical indexes to access its members.

bob = (’Bob’, 30, ’‘male’)
print ’Representation:’, bob

jane = (’Jane’, 29, ’‘female”’)
print ‘\nField by index:’, jane[0]

print ‘\nFields by index:’
for p in [bob, jane]:

o

print ’%s is a %d year old %s’ % p

http://en.wikipedia.org/wiki/Deque
http://docs.python.org/lib/deque-recipes.html

80 Data Structures

This makes tuples convenient containers for simple uses.

$ python collections_tuple.py
Representation: (’Bob’, 30, ’'male’)
Field by index: Jane

Fields by index:
Bob is a 30 year old male
Jane is a 29 year old female

On the other hand, remembering which index should be used for each value can
lead to errors, especially if the tuple has a lot of fields and is constructed far from
where it is used. A namedtuple assigns names, as well as the numerical index, to each
member.

Defining

namedtuple instances are just as memory efficient as regular tuples because they do
not have per-instance dictionaries. Each kind of namedtuple is represented by its own
class, created by using the namedtuple () factory function. The arguments are the
name of the new class and a string containing the names of the elements.

import collections
Person = collections.namedtuple (’Person’, ’‘name age gender’)
print ’Type of Person:’, type(Person)

bob = Person (name=’Bob’, age=30, gender='male’)
print ’‘\nRepresentation:’, bob

jane = Person(name=’Jane’, age=29, gender=’female’)
print ‘\nField by name:’, Jjane.name

print ‘\nFields by index:’
for p in [bob, jane]:
print “%s is a %d year old %s’ % p

As the example illustrates, it is possible to access the fields of the namedtuple
by name using dotted notation (obj.attr) as well as using the positional indexes of
standard tuples.

2.1. collections—Container Data Types 81

$ python collections_namedtuple_person.py

Type of Person: <type ’'type’>

Representation: Person (name=’Bob’, age=30, gender='male’)
Field by name: Jane

Fields by index:

Bob is a 30 year old male
Jane is a 29 year old female

Invalid Field Names

Field names are invalid if they are repeated or conflict with Python keywords.

import collections

try:

collections.namedtuple (’Person’, ’‘name class age gender’)
except ValueError, err:

print err

try:

collections.namedtuple (“Person’, ’‘name age gender age’)
except ValueError, err:

print err

As the field names are parsed, invalid values cause ValueError exceptions.
$ python collections_namedtuple_bad_fields.py

Type names and field names cannot be a keyword: ’class’
Encountered duplicate field name: ’age’

If a namedtuple is being created based on values outside of the control of the pro-
gram (such as to represent the rows returned by a database query, where the schema is
not known in advance), set the rename option to True so the invalid fields are renamed.

import collections

with_class = collections.namedtuple (
’Person’, ’‘name class age gender’,
rename=True)

82 Data Structures

print with_class._fields

two_ages = collections.namedtuple (
’Person’, ’name age gender age’,
rename=True)

print two_ages._fields

The new names for renamed fields depend on their index in the tuple, so the field
with name class becomes _1 and the duplicate age field is changed to _3.

$ python collections_namedtuple_rename.py

('name’, ’_1’, ’'age’, ’"gender’)
("name’, "age’, ’'gender’, ’'_37)

2.1.5 OrderedDict

An OrderedDict is a dictionary subclass that remembers the order in which its con-
tents are added.

import collections

print ’Regular dictionary:’

d = {}

d[/a/] = /A/
d[’b’] rB’
d[’c’] = ’C’

for k, v in d.items () :
print k, v

print ’‘\nOrderedDict:’

d = collections.OrderedDict ()
d[/a/] = IAI
d[,b,} ’B”
d[/c/] Ic/

for k, v in d.items () :
print k, v

A regular dict does not track the insertion order, and iterating over it produces the
values in order based on how the keys are stored in the hash table. In an Orderedbict,

2.1. collections—Container Data Types 83

by contrast, the order in which the items are inserted is remembered and used when
creating an iterator.

$ python collections_ordereddict_iter.py

Regular dictionary:
a A
c C
b B

OrderedDict:
a A
b B
c C

Equality

A regular dict looks at its contents when testing for equality. An OrderedDict also
considers the order the items were added.

import collections

print ‘dict s,
dl = {}

dl[’a’] = A’

di[’b’] = ’B’

di[’c’] = ’c’

d2 = {}

dZ['C'} = rC’

d2[’b’] = ’B’

d2[’a’] = ‘A’

print dl == d2

print ’OrderedDict:’,

dl = collections.OrderedDict ()
dl[/a/] = /A/
dl[/b/] = /B/
dl[’c'} = rc’

84 Data Structures

d2 = collections.OrderedDict ()

dz[/cl] e ICI
dz[/b/] = /B’
dz[/a/] = ’A’
print dl == d2

In this case, since the two ordered dictionaries are created from values in a different
order, they are considered to be different.

$ python collections_ordereddict_equality.py

dict : True
OrderedDict: False

See Also:
collections (http://docs.python.org/library/collections.html) The standard library
documentation for this module.

2.2 array—Sequence of Fixed-Type Data

Purpose Manage sequences of fixed-type numerical data efficiently.
Python Version 1.4 and later

The array module defines a sequence data structure that looks very much like a 1ist,
except that all members have to be of the same primitive type. Refer to the standard
library documentation for array for a complete list of the types supported.

2.2.1 Initialization

An array is instantiated with an argument describing the type of data to be allowed,
and possibly an initial sequence of data to store in the array.

import array
import binascii

s = ’This is the array.’

J]
Il

array.array(’c’, s)

print ’As string:’, s
print ’As array :’, a
print ’As hex :’, binascii.hexlify(a)

http://docs.python.org/library/collections.html

2.2. array—Sequence of Fixed-Type Data 85

In this example, the array is configured to hold a sequence of bytes and is initial-
ized with a simple string.

$ python array_string.py
As string: This is the array.

As array : array(’'c’, ’"This is the array.’)
As hex : 54686973206973207468652061727261792e

2.2.2 Manipulating Arrays

An array can be extended and otherwise manipulated in the same ways as other Python
sequences.

import array
import pprint

a = array.array(’i’, xrange(3))
print ’Initial :7, a

a.extend (xrange (3))
print ’Extended:’, a

print ’Slice :7, al2:5]

print ’Iterator:’
print list (enumerate(a))

The supported operations include slicing, iterating, and adding elements to the end.

$ python array_sequence.py

Initial : array(’i’, [0, 1, 21])
Extended: array(’i’, [0, 1, 2, 0, 1, 21)
Slice : array("i’, [2, 0, 11)
Iterator:

[, 0), (1, L), (2, 2), (3, 0), (4, 1), (5, 2)]

2.2.3 Arrays and Files

The contents of an array can be written to and read from files using built-in methods
coded efficiently for that purpose.

86 Data Structures

import array
import binascii
import tempfile

a = array.array(’i’, xrange(5))
print 7Al:’, a

Write the array of numbers to a temporary file
output = tempfile.NamedTemporaryFile ()

a.tofile (output.file) # must pass an xactualx* file
output.flush ()

Read the raw data
with open (output.name, ‘rb’) as input:
raw_data = input.read()
print ’‘Raw Contents:’, binascii.hexlify(raw_data)

Read the data into an array
input.seek (0)

a2 = array.array(’i’)
az.fromfile (input, len(a))
print 7A2:’, a2

This example illustrates reading the data raw, directly from the binary file, versus
reading it into a new array and converting the bytes to the appropriate types.

$ python array_file.py

Al: array(’i’, [0, 1, 2, 3, 41)
Raw Contents: 0000000001000000020000000300000004000000
A2: array('i’, [0, 1, 2, 3, 41)

2.2.4 Alternate Byte Ordering

If the data in the array is not in the native byte order, or needs to be swapped before
being sent to a system with a different byte order (or over the network), it is possible to
convert the entire array without iterating over the elements from Python.

import array
import binascii

def to_hex(a):

chars_per_item = a.itemsize » 2 # 2 hex digits

2.3. heapg—Heap Sort Algorithm 87

hex_version = binascii.hexlify (a)
num_chunks = len (hex_version) / chars_per_item
for i in xrange (num_chunks) :

start = ixchars_per_item

end = start + chars_per_item

yield hex_version[start:end]

al = array.array(’i’, xrange(5))
a2 = array.array(’i’, xrange(5))
az.byteswap ()

fmt = 7%10s %10s %10s $10s’

print fmt % (’Al hex’, ’Al’, ’'A2 hex’, ’'A2’)

print fmt & ((’-7 * 10,) * 4)

for values in zip(to_hex(al), al, to_hex(a2), a2):
print fmt % values

The byteswap () method switches the byte order of the items in the array from
within C, so it is much more efficient than looping over the data in Python.

$ python array_byteswap.py

Al hex Al A2 hex A2
00000000 0 00000000 0
01000000 1 00000001 16777216
02000000 2 00000002 33554432
03000000 3 00000003 50331648
04000000 4 00000004 67108864

See Also:

array (http://docs.python.org/library/array.html) The standard library documenta-
tion for this module.

struct (page 102) The st ruct module.

Numerical Python (www.scipy.org) NumPy is a Python library for working with large
data sets efficiently.

2.3 heapg—Heap Sort Algorithm

Purpose The heapg module implements a min-heap sort algorithm suit-
able for use with Python’s lists.
Python Version New in 2.3 with additions in 2.5

http://docs.python.org/library/array.html
www.scipy.org

88 Data Structures

A heap is a tree-like data structure where the child nodes have a sort-order relationship
with the parents. Binary heaps can be represented using a list or an array organized
so that the children of element N are at positions 2*N+1 and 2*N+2 (for zero-based
indexes). This layout makes it possible to rearrange heaps in place, so it is not necessary
to reallocate as much memory when adding or removing items.

A max-heap ensures that the parent is larger than or equal to both of its children.
A min-heap requires that the parent be less than or equal to its children. Python’s heapg
module implements a min-heap.

2.3.1 Example Data

The examples in this section use the data in heapg_heapdata.py.

This data was generated with the random module.

data = [19, 9, 4, 10, 11]

The heap output is printed using heapg_showtree.py.

import math
from cStringIO import StringIO

def show_tree(tree, total_width=36, fill=’ 7):
"""Pretty-print a tree."""
output = StringIO()
last_row = -1
for i, n in enumerate (tree):
if 1i:
row = int (math.floor (math.log(i+l, 2)))
else:
row = 0
if row != last_row:
output.write (’\n’)
columns = 2%*row
col_width = int (math.floor ((total_width = 1.0) / columns))
output.write(str(n).center (col_width, £ill))
last_row = row
print output.getvalue ()
print -/ x total_width
print
return

2.3. heapg—Heap Sort Algorithm 89

2.3.2 Creating a Heap

There are two basic ways to create a heap: heappush () and heapify ().

import heapq
from heapqg showtree import show_tree
from heapq heapdata import data

heap = []
print ‘random :’/, data
print

for n in data:
print ‘add %3d:’ % n
heapg.heappush (heap, n)
show_tree (heap)

Using heappush (), the heap sort order of the elements is maintained as new items
are added from a data source.

$ python heapg heappush.py

random : [19, 9, 4, 10, 11]
add 19:
19
add 9
9
19
add 4
4
19 9
add 10

90 Data Structures

10 9
19
add 11
4
10 9
19 11

If the data is already in memory, it is more efficient to use heapify () to rearrange
the items of the list in place.

import heapgq
from heapqg showtree import show_tree
from heapq heapdata import data

print ’“random :/, data
heapg.heapify (data)

print “heapified :’
show_tree (data)

The result of building a list in heap order one item at a time is the same as building
it unordered and then calling heapify ().

$ python heapqg_heapify.py

random : [19, 9, 4, 10, 11]
heapified
4
9 19
10 11

2.3.3 Accessing Contents of a Heap

Once the heap is organized correctly, use heappop () to remove the element with the
lowest value.

import heapq
from heapqg showtree import show_tree
from heapqg heapdata import data

print ’“random :’/, data
heapg.heapify (data)

print ’heapified :’
show_tree (data)

print

for i in xrange(2):

smallest = heapg.heappop (data)
print ’“pop %3d:” % smallest

show_tree (data)

2.3. heapg—Heap Sort Algorithm 91

In this example, adapted from the stdlib documentation, heapify () and

heappop () are used to sort a list of numbers.

$ python heapqg_heappop.py

random : [19, 9, 4, 10, 11]
heapified
4
9 19
10 11
pop 4:
9
10 19
11
pop 9:
10
11 19

To remove existing elements and replace them with new values in a single opera-

tion, use heapreplace ().

import heapgq

from heapqg showtree import show_tree

from heapq heapdata import data

92 Data Structures

heapg.heapify (data)
print ’‘start:’
show_tree (data)
for n in [0, 13]:
smallest = heapg.heapreplace (data, n)

print ’‘replace %$2d with %$2d:’ % (smallest, n)
show_tree (data)

Replacing elements in place makes it possible to maintain a fixed-size heap, such
as a queue of jobs ordered by priority.

$ python heapqg heapreplace.py

start:

replace 4 with O:

replace 0 with 13:

2.3.4 Data Extremes from a Heap

heapgq also includes two functions to examine an iterable to find a range of the largest
or smallest values it contains.

import heapgq
from heapqg heapdata import data

2.4. bisect—Maintain Lists in Sorted Order 93

print ’all :’/, data

print ’3 largest :’, heapqg.nlargest (3, data)

print ’from sort :’, list (reversed(sorted(data) [-3:]))
print ’3 smallest:’, heapg.nsmallest (3, data)

print ‘from sort :’/, sorted(data) [:3]

Using nlargest () and nsmallest () is only efficient for relatively small values
of n > 1, but can still come in handy in a few cases.

$ python heapqg_extremes.py

all [19, 9, 4, 10, 11]
3 largest [19, 11, 10]

from sort : [19, 11, 10]

3 smallest: [4, 9, 10]

from sort [4, 9, 10]

See Also:

heapq (http://docs.python.org/library/heapq.html) The standard library documen-
tation for this module.

Heap (data structure) (http://en.wikipedia.org/wiki/Heap_(data_structure))
Wikipedia article that provides a general description of heap data structures.

Priority Queue (page 98) A priority queue implementation from Queue (page 96) in
the standard library.

2.4 Dbisect—Maintain Lists in Sorted Order

Purpose Maintains a list in sorted order without having to call sort each
time an item is added to the list.
Python Version 1.4 and later

The bisect module implements an algorithm for inserting elements into a list while
maintaining the list in sorted order. For some cases, this is more efficient than repeatedly
sorting a list or explicitly sorting a large list after it is constructed.

2.4.1 Inserting in Sorted Order

Here is a simple example using insort () to insert items into a list in sorted order.

http://docs.python.org/library/heapq.html
http://en.wikipedia.org/wiki/Heap_(data_structure)

94 Data Structures

import bisect
import random

Use a constant seed to ensure that
the same pseudo—-random numbers

are used each time the loop is run.

random.seed (1)

’New Contents’

7

print Pos

print

Generate random numbers and
insert them into a 1list in sorted

order.

1 =1]

for i in range(l, 15):
r = random.randint (1, 100)
position = bisect.bisect (1, r)
bisect.insort (1, r)
print ’$3d $3d’ % (r, position)

, 1

The first column of the output shows the new random number. The second column
shows the position where the number will be inserted into the list. The remainder of

each line is the current sorted list.

$ python bisect_example.py

New Pos Contents

14 0 [14]

85 1 [14, 85]

77 1 (14, 77, 85]

26 1 (14, 26, 77, 85]

50 2 [14, 26, 50, 77, 85]

45 2 [14, 26, 45, 50, 77, 85]

66 4 [14, 26, 45, 50, 66, 77, 85
79 6 [14, 26, 45, 50, 66, 77, 79
10 0 [i0, 14, 26, 45, 50, 66, 77
3 o [3, 10, 14, 26, 45, 50, 66,
84 9 [3, 10, 14, 26, 45, 50, 66,
44 4 [3, 10, 14, 26, 44, 45, 50,
77 9 [3, 10, 14, 26, 44, 45, 50,
1 o 1, 3, 10, 14, 26, 44, 45,

]
, 85]
, 19, 85]
77, 79, 85]
77, 79, 84, 85]
66, 77, 79, 84, 85]
66, 77, 77, 79, 84, 85]
50, 66, 77, 77, 79, 84, 85]

2.4. bisect—Maintain Lists in Sorted Order 95

This is a simple example, and for the amount of data being manipulated, it might
be faster to simply build the list and then sort it once. But for long lists, significant time
and memory savings can be achieved using an insertion sort algorithm such as this one.

2.4.2 Handling Duplicates

The result set shown previously includes a repeated value, 77. The bisect module pro-
vides two ways to handle repeats. New values can be inserted to the left of existing val-
ues or to the right. The insort () function is actually an alias for insort_right (),
which inserts after the existing value. The corresponding function insort_left ()
inserts before the existing value.

import bisect
import random

Reset the seed
random.seed (1)

print ‘New Pos Contents’
print S —— ——— 7

Use bisect_left and insort_left.
1 =11
for i in range(l, 15):
r = random.randint (1, 100)
position = bisect.bisect_left(l, r)
bisect.insort_left (1, r)
print 7%3d $3d’ % (r, position), 1

When the same data is manipulated using bisect_left () and insort_left (),
the results are the same sorted list, but the insert positions are different for the duplicate
values.

$ python bisect_example2.py

New Pos Contents

14 0 [14]

85 1 [14, 85]

77 1 [14, 77, 85]

26 1 [14, 26, 77, 85]

50 2 [14, 26, 50, 77, 85]

45 2 [14, 26, 45, 50, 77, 85]

96 Data Structures

66 4 [14, 26, 45, 50, 66, 77, 85]
79 6 [14, 26, 45, 50, 66, 77, 79, 85]
10 0 [1i0, 14, 26, 45, 50, 66, 77, 79, 85]

3 o [3, 10, 14, 26, 45, 50, 66, 77, 79, 85]
84 9 [3, 10, 14, 26, 45, 50, 66, 77, 79, 84, 85]
44 4 [3, 10, 14, 26, 44, 45, 50, 66, 77, 79, 84, 85]
77 8 [3, 10, 14, 26, 44, 45, 50, 66, 77, 77, 79, 84, 85]

1 o (i, 3, 10, 14, 26, 44, 45, 50, 66, 77, 77, 79, 84, 85]

In addition to the Python implementation, a faster C implementation is available.
If the C version is present, that implementation automatically overrides the pure Python
implementation when bisect is imported.

See Also:

bisect (http://docs.python.org/library/bisect.html) The standard library documenta-
tion for this module.

Insertion Sort (http://en.wikipedia.org/wiki/Insertion_sort) Wikipedia article that
provides a description of the insertion sort algorithm.

2.5 Queue—Thread-Safe FIFO Implementation

Purpose Provides a thread-safe FIFO implementation.
Python Version At least 1.4

The Queue module provides a first-in, first-out (FIFO) data structure suitable for mul-
tithreaded programming. It can be used to pass messages or other data safely between
producer and consumer threads. Locking is handled for the caller, so many threads can
work with the same Queue instance safely. The size of a Queue (the number of ele-
ments it contains) may be restricted to throttle memory usage or processing.

Note: This discussion assumes you already understand the general nature of a
queue. If you do not, you may want to read some of the references before con-
tinuing.

2.5.1 Basic FIFO Queue

The Queue class implements a basic first-in, first-out container. Elements are added to
one end of the sequence using put (), and removed from the other end using get ().

http://docs.python.org/library/bisect.html
http://en.wikipedia.org/wiki/Insertion_sort

2.5. Queue—Thread-Safe FIFO Implementation 97

import Queue
g = Queue.Queue ()

for i in range(5):
g.put (1)

while not g.empty():

print g.get (),
print

This example uses a single thread to illustrate that elements are removed from the
queue in the same order they are inserted.

$ python Queue_fifo.py
012 34

2.5.2 LIFO Queue

In contrast to the standard FIFO implementation of Queue, the Li foQueue uses last-in,
first-out (LIFO) ordering (normally associated with a stack data structure).

import Queue
g = Queue.LifoQueue ()

for i in range(5):
g.put (i)

while not g.empty():

print g.get (),
print

The item most recently put into the queue is removed by get.

$ python Queue_lifo.py

43210

98 Data Structures

2.5.3 Priority Queue

Sometimes, the processing order of the items in a queue needs to be based on charac-
teristics of those items, rather than just on the order in which they are created or added
to the queue. For example, print jobs from the payroll department may take precedence
over a code listing printed by a developer. PriorityQueue uses the sort order of the
contents of the queue to decide which to retrieve.

import Queue
import threading

class Job (object) :

def _ _init__ (self, priority, description):
self.priority = priority
self.description = description
print ‘New job:’, description
return

def _ cmp__ (self, other):
return cmp (self.priority, other.priority)

g = Queue.PriorityQueue ()

g.put (Job (3, ’Mid-level job’))
g.put (Job (10, ’Low-level job’))
g.put (Job(l, “Important job’))

def process_job(q):
while True:
next_job = g.get ()
print ’‘Processing job:’, next_job.description
g.task_done ()

workers = [threading.Thread(target=process_job, args=(qg,)),
threading.Thread (target=process_job, args=(q,)),
1

for w in workers:
w.setDaemon (True)
w.start ()

g.join()

This example has multiple threads consuming the jobs, which are to be processed
based on the priority of items in the queue at the time get () was called. The order

2.5. Queue—Thread-Safe FIFO Implementation

99

of processing for items added to the queue while the consumer threads are running

depends on thread context switching.

$ python Queue_priority.py

New job: Mid-level job
New job: Low-level job
New job: Important job
Processing job: Important job
Processing job: Mid-level job
Processing job: Low-level job

2.5.4 Building a Threaded Podcast Client

The source code for the podcasting client in this section demonstrates how to use the
Queue class with multiple threads. The program reads one or more RSS feeds, queues
up the enclosures for the five most recent episodes to be downloaded, and processes

several downloads in parallel using threads. It does not have enough error handling for

production use, but the skeleton implementation provides an example of how to use the

Queue module.

First, some operating parameters are established. Normally, these would come
from user inputs (preferences, a database, etc.). The example uses hard-coded values
for the number of threads and a list of URLSs to fetch.

from Queue import Queue

from threading import Thread
import time

import urllib

import urlparse

import feedparser
Set up some global variables

num_fetch_threads = 2
enclosure_gueue = Queue ()

A real app wouldn’t use hard-coded data...

feed_urls = [’http://advocacy.python.org/podcasts/littlebit.rss’,

]

The function downloadEnclosures () will run in the worker thread and process

the downloads using urllib.

100 Data Structures

def downloadEnclosures (i, q):

"""This is the worker thread function.

It processes items in the queue one after

another. These daemon threads go into an

infinite loop, and only exit when

the main thread ends.

nwn

while True:
print ’%s: Looking for the next enclosure’ % i
url = g.get ()

parsed_url = urlparse.urlparse (url)

print ’%s: Downloading:’ % 1, parsed_url.path
response = urllib.urlopen (url)

data = response.read()

Save the downloaded file to the current directory

outfile_name = url.rpartition(’/’) [-1]

with open(outfile_name, ’‘wb’) as outfile:
outfile.write (data)

g.task_done ()

Once the threads’ target function is defined, the worker threads can be started.
When downloadEnclosures () processes the statement url = g.get (), it blocks
and waits until the queue has something to return. That means it is safe to start the

threads before there is anything in the queue.

Set up some threads to fetch the enclosures
for i in range (num_fetch_threads):
worker = Thread(target=downloadEnclosures,
args=(i, enclosure_queue,))
worker.setDaemon (True)
worker.start ()

The next step is to retrieve the feed contents using Mark Pilgrim’s feedparser
module (www.feedparser.org) and enqueue the URLs of the enclosures. As soon as
the first URL is added to the queue, one of the worker threads picks it up and starts
downloading it. The loop will continue to add items until the feed is exhausted, and the

worker threads will take turns dequeuing URLSs to download them.

Download the feed(s) and put the enclosure URLs into
the queue.
for url in feed_urls:

response = feedparser.parse (url, agent=’fetch_podcasts.py’)

www.feedparser.org

2.5. Queue—Thread-Safe FIFO Implementation 101

for entry in response[’entries’] [-5:]:
for enclosure in entry.get (’enclosures’, [1):
parsed_url = urlparse.urlparse(enclosure[’url’])
print ’Queuing:’, parsed_url.path
enclosure_qgqueue.put (enclosure[’url’])

The only thing left to do is wait for the queue to empty out again, using join ().

Now wait for the queue to be empty, indicating that we have
processed all the downloads.

print ’xx+ Main thread waiting’

enclosure_queue. join ()

print ’+%x Done’

Running the sample script produces the following.

$ python fetch_podcasts.py

0: Looking for the next enclosure

1: Looking for the next enclosure

Queuing: /podcasts/littlebit/2010-04-18.mp3
Queuing: /podcasts/littlebit/2010-05-22.mp3
Queuing: /podcasts/littlebit/2010-06-06.mp3
Queuing: /podcasts/littlebit/2010-07-26.mp3
Queuing: /podcasts/littlebit/2010-11-25.mp3

**%x Main thread waiting

0: Downloading: /podcasts/littlebit/2010-04-18.mp3
0: Looking for the next enclosure

0: Downloading: /podcasts/littlebit/2010-05-22.mp3
0: Looking for the next enclosure

0: Downloading: /podcasts/littlebit/2010-06-06.mp3
0: Looking for the next enclosure

0: Downloading: /podcasts/littlebit/2010-07-26.mp3
0: Looking for the next enclosure

0: Downloading: /podcasts/littlebit/2010-11-25.mp3
0: Looking for the next enclosure

*x% Done

The actual output will depend on the contents of the RSS feed used.

See Also:
Queue (http://docs.python.org/lib/module-Queue.html) Standard library documen-
tation for this module.

http://docs.python.org/lib/module-Queue.html

102 Data Structures

Deque (page 75) from collections (page 70) The collections module includes
a deque (double-ended queue) class.

Queue data structures (http://en.wikipedia.org/wiki/Queue_(data_structure))
Wikipedia article explaining queues.

FIFO (http://en.wikipedia.org/wiki/FIFO) Wikipedia article explaining first-in,
first-out data structures.

2.6 struct—Binary Data Structures

Purpose Convert between strings and binary data.
Python Version 1.4 and later

The struct module includes functions for converting between strings of bytes and
native Python data types, such as numbers and strings.

2.6.1 Functions vs. Struct Class

There is a set of module-level functions for working with structured values, and there
is also the Struct class. Format specifiers are converted from their string format to a
compiled representation, similar to the way regular expressions are handled. The con-
version takes some resources, so it is typically more efficient to do it once when creating
a Struct instance and call methods on the instance, instead of using the module-level
functions. The following examples all use the St ruct class.

2.6.2 Packing and Unpacking

Structs support packing data into strings and unpacking data from strings using for-
mat specifiers made up of characters representing the data type and optional count and
endianness indicators. Refer to the standard library documentation for a complete list
of the supported format specifiers.

In this example, the specifier calls for an integer or long value, a two-character
string, and a floating-point number. The spaces in the format specifier are included to
separate the type indicators and are ignored when the format is compiled.

import struct
import binascii

values = (1, ’“ab’, 2.7)
s = struct.Struct(’I 2s f’)
packed_data = s.pack (*values)

http://en.wikipedia.org/wiki/Queue_(data_structure)
http://en.wikipedia.org/wiki/FIFO

2.6. struct—Binary Data Structures 103

print ’Original values:’, values

print ’Format string :’, s.format
print ‘Uses :’, s.size, ’bytes’
print ’Packed Value :’, binascii.hexlify (packed_data)

The example converts the packed value to a sequence of hex bytes for printing
with binascii.hex1lify (), since some characters are nulls.

$ python struct_pack.py

Original values: (1, "ab’, 2.7)

Format string : I 2s £

Uses : 12 bytes

Packed Value : 0100000061620000cdcc2c40

Use unpack () to extract data from its packed representation.

import struct
import binascii

packed_data = binascii.unhexlify (70100000061620000cdcc2c40”)

s = struct.Struct(’I 2s f’)
unpacked_data = s.unpack (packed_data)
print ’Unpacked Values:’, unpacked_data

Passing the packed value to unpack () gives basically the same values back (note
the discrepancy in the floating-point value).

$ python struct_unpack.py

Unpacked Values: (1, "ab’, 2.700000047683716)

2.6.3 Endianness

By default, values are encoded using the native C library notion of endianness. It is
easy to override that choice by providing an explicit endianness directive in the format
string.

import struct
import binascii

104 Data Structures

values = (1, ’ab’, 2.7)
print ’Original values:’, values
endianness = [

(”@”, ’native, native’),
(=", ’native, standard’),
(/<’, ’little-endian’),

(7>, ’big-endian’),
(7!

’

717, ’"network’),

]

for code, name in endianness:
s = struct.Struct(code + 7 I 2s f’)

packed_data = s.pack(xvalues)

print

print ’Format string :’, s.format, ’‘for’, name

print ’Uses :’, s.size, ’bytes’

print ’Packed Value :7, binascii.hexlify (packed_data)

print ’‘Unpacked Value :’, s.unpack (packed_data)
Table 2.1 lists the byte order specifiers used by Struct.

Table 2.1. Byte Order Specifiers for st ruct

Code | Meaning

@ Native order

= Native standard
< Little-endian

> Big-endian

! Network order

$ python struct_endianness.py

Original values: (1, "ab’, 2.7)

Format string : @ I 2s f for native, native
Uses : 12 bytes
Packed Value : 0100000061620000cdcc2c40

Unpacked Value : (1, 'ab’, 2.700000047683716)

Format string : = I 2s f for native, standard
Uses : 10 bytes
Packed Value : 010000006162cdcc2c40

Unpacked Value

Format string
Uses

Packed Value
Unpacked Value

Format string
Uses

Packed Value
Unpacked Value

Format string
Uses

Packed Value
Unpacked Value

2.6.4 Buffers

2.6. struct—Binary Data Structures

(1, "ab’, 2.700000047683716)

< I 2s f for little-endian
10 bytes
010000006162cdcc2c40

(1, "ab’, 2.700000047683716)

> I 2s £ for big-endian

10 bytes
000000016162402ccccd

(1, "ab’, 2.700000047683716)

' T 2s £ for network

10 bytes
000000016162402ccccd

(1, "ab’, 2.700000047683716)

105

Working with binary packed data is typically reserved for performance-sensitive sit-
uations or when passing data into and out of extension modules. These cases can be
optimized by avoiding the overhead of allocating a new buffer for each packed struc-
ture. The pack_into () and unpack_from () methods support writing to preallocated

buffers directly.

import struct

import binascii

s = struct.Struct(’I 2s f’)
values = (1, ’ab’, 2.7)

print ‘Original:’, values

print

print ’‘ctypes string buffer’

import ctypes

b = ctypes.create_string buffer(s.size)

print ’Before
s.pack_into (b,
print ’After

, binascii.hexlify (b.raw)
*values)
, binascii.hexlify (b.raw)

print ’Unpacked:’, s.unpack_from(b, 0)

106 Data Structures

print
print ‘array’

import array

a = array.array(’c’, ’\0’ % s.size)
print ’Before :’, binascii.hexlify(a)
s.pack_into(a, 0, =xvalues)

print ’After :’, binascii.hexlify (a)
print ’Unpacked:’, s.unpack_from(a, O0)

The size attribute of the st ruct tells us how big the buffer needs to be.
$ python struct_buffers.py
Original: (1, ’ab’, 2.7)
ctypes string buffer
Before : 000000000000000000000000

After : 0100000061620000cdcc2c40
Unpacked: (1, "ab’, 2.700000047683716)

array
Before : 000000000000000000000000
After : 0100000061620000cdcc2c40

Unpacked: (1, ’"ab’, 2.700000047683716)

See Also:

struct (http://docs.python.org/library/struct.html) The standard library documenta-
tion for this module.

array (page 84) The array module, for working with sequences of fixed-type
values.

binascii (http://docs.python.org/library/binascii.html) The binascii module,
for producing ASCII representations of binary data.

Endianness (http://en.wikipedia.org/wiki/Endianness) Wikipedia article that pro-
vides an explanation of byte order and endianness in encoding.

2.7 weakref—Impermanent References to Objects

Purpose Refer to an “expensive” object, but allow its memory to be
reclaimed by the garbage collector if there are no other nonweak ref-
erences.

Python Version 2.1 and later

http://docs.python.org/library/struct.html
http://docs.python.org/library/binascii.html
http://en.wikipedia.org/wiki/Endianness

2.7. weakref—Impermanent References to Objects 107

The weakref module supports weak references to objects. A normal reference incre-
ments the reference count on the object and prevents it from being garbage collected.
This is not always desirable, either when a circular reference might be present or when
building a cache of objects that should be deleted when memory is needed. A weak
reference is a handle to an object that does not keep it from being cleaned up automati-
cally.

2.7.1 References

Weak references to objects are managed through the ref class. To retrieve the original
object, call the reference object.

import weakref

class ExpensiveObject (object) :
def _ del_ (self):
print ’ (Deleting %s)’ % self

obj = ExpensiveObiject ()
r = weakref.ref (obj)

print “obj:’, obj
print ‘ref:’, r
print ‘r():’, r()

print ’‘deleting obj’
del obj
print ‘r():’, r()

In this case, since obj is deleted before the second call to the reference, the ref
returns None.

$ python weakref_ref.py

obj: <_main__ .ExpensiveObject object at 0x100da5750>

ref: <weakref at 0x100d99b50; to ’'ExpensiveObject’ at 0x100da5750>
r(): <_main__ .ExpensiveObject object at 0x100da5750>

deleting obj

(Deleting <__main__ .ExpensiveObject object at 0x100da5750>)

r(): None

108 Data Structures

2.7.2 Reference Callbacks

The ref constructor accepts an optional callback function to invoke when the refer-
enced object is deleted.

import weakref

class ExpensiveObject (object) :
def _ del_ (self):
print ’ (Deleting $%s)’ % self

def callback (reference) :
"""Invoked when referenced object is deleted"""
print ‘callback(’, reference, 7)’

obj = ExpensiveObiject ()
r = weakref.ref (obj, callback)

print ‘obj:’, obj
print ‘ref:’, r
print ‘r():’, r()

print ’‘deleting obj’
del obj
print ‘r():’, r()

The callback receives the reference object as an argument after the reference is
“dead” and no longer refers to the original object. One use for this feature is to remove
the weak reference object from a cache.

$ python weakref_ref_callback.py

obj: <_main__ .ExpensiveObject object at 0x100dal950>

ref: <weakref at 0x100d99ba8; to ’"ExpensiveObject’ at 0x100dal950>
r(): <_main__ .ExpensiveObject object at 0x100dal950>

deleting obj

callback (<weakref at 0x100d99ba8; dead>)

(Deleting <__main__ .ExpensiveObject object at 0x100dal950>)

r () : None

2.7.3 Proxies

It is sometimes more convenient to use a proxy, rather than a weak reference. Proxies
can be used as though they were the original object and do not need to be called before

2.7. weakref—Impermanent References to Objects 109

the object is accessible. That means they can be passed to a library that does not know
it is receiving a reference instead of the real object.

import weakref

class ExpensiveObject (object) :
def _ init_ (self, name):
self.name = name
def _ del_ (self):
print ’ (Deleting $%s)’ % self

obj = ExpensiveObject (’My Object’)
r = weakref.ref (obj)
p = weakref.proxy (obj)

print ‘via obj:’, obj.name
print ‘via ref:’, r().name
print ’via proxy:’, p.name
del obj

print ‘via proxy:’, p.name

If the proxy is accessed after the referent object is removed, a ReferenceError
exception is raised.

$ python weakref_proxy.py

via obj: My Object
via ref: My Object
via proxy: My Object
(Deleting <__main__ .ExpensiveObject object at 0x100da27d0>)
via proxy:
Traceback (most recent call last):

File "weakref_ proxy.py", line 26, in <module>

print ’'via proxy:’, p.name

ReferenceError: weakly-referenced object no longer exists

2.7.4 Cyclic References

One use for weak references is to allow cyclic references without preventing garbage
collection. This example illustrates the difference between using regular objects and
proxies when a graph includes a cycle.

The Graph class in weakref_graph.py accepts any object given to it as the
“next” node in the sequence. For the sake of brevity, this implementation supports

110 Data Structures

a single outgoing reference from each node, which is of limited use generally, but
makes it easy to create cycles for these examples. The function demo () is a utility
function to exercise the Graph class by creating a cycle and then removing various
references.

import gc
from pprint import pprint
import weakref

class Graph (object) :
def _ init_ (self, name):
self.name = name
self.other = None
def set_next (self, other):
print ’$%s.set_next (%r)’ % (self.name, other)
self.other = other
def all nodes(self):
"Generate the nodes in the graph sequence.”
yield self
n = self.other
while n and n.name != self.name:
yield n
n = n.other
if n is self:
yield n
return
def = str_ (self):
return ’->’/.join(n.name for n in self.all nodes())
def _ _repr__ (self):
return ’<$%$s at 0x%$x name=%$s>’ % (self.__class__._ _name__,
id(self), self.name)
def = del_ (self):
print ’ (Deleting %s)’ % self.name
self.set_next (None)

def collect_and_show_garbage () :
"Show what garbage is present."
print ’Collecting...’
n = gc.collect ()
print ’‘Unreachable objects:’, n
print ’‘Garbage:’,
pprint (gc.garbage)

2.7. weakref—Impermanent References to Objects 111

def demo (graph_factory) :
print ’Set up graph:’
one = graph_factory(’one”’)
two = graph_factory(’two’)
three = graph_factory(’three’)
one.set_next (two)
two.set_next (three)
three.set_next (one)

print

print ’‘Graph:’

print str (one)
collect_and_show_garbage ()

print

three = None

two = None

print ’After 2 references removed:’
print str (one)
collect_and_show_garbage ()

print

print ‘Removing last reference:’
one = None
collect_and_show_garbage ()

This example uses the gc module to help debug the leak. The DEBUG_LEAK flag
causes gc to print information about objects that cannot be seen, other than through the
reference the garbage collector has to them.

import gc
from pprint import pprint
import weakref

from weakref_ graph import Graph, demo, collect_and_show_garbage
gc.set_debug (gc.DEBUG_LEAK)
print ’Setting up the cycle’

print
demo (Graph)

112 Data Structures

print
print ’Breaking the cycle and cleaning up garbage’
print
gc.garbage[0] .set_next (None)
while gc.garbage:
del gc.garbage[0]
print
collect_and_show_garbage ()

Even after deleting the local references to the Graph instances in demo (), the
graphs all show up in the garbage list and cannot be collected. Several dictionaries are
also found in the garbage list. They are the __dict__ values from the Graph instances
and contain the attributes for those objects. The graphs can be forcibly deleted, since the
program knows what they are. Enabling unbuffered I/O by passing the —u option to the
interpreter ensures that the output from the print statements in this example program
(written to standard output) and the debug output from gc (written to standard error)
are interleaved correctly.

$ python -u weakref_cycle.py
Setting up the cycle

Set up graph:

one.set_next (<Graph at 0x100db7590 name=two>)
two.set_next (<Graph at 0x100db75d0 name=three>)
three.set_next (<Graph at 0x100db7550 name=one>)

Graph:
one->two->three->one
Collecting...
Unreachable objects: 0
Garbage: []

After 2 references removed:
one->two->three->one
Collecting...

Unreachable objects: 0
Garbage: []

Removing last reference:
Collecting...

gc: uncollectable <Graph 0x100db7550>
gc: uncollectable <Graph 0x100db7590>

2.7. weakref—Impermanent References to Objects 113

gc: uncollectable <Graph 0x100db75d0>

gc: uncollectable <dict 0x100c63c30>

gc: uncollectable <dict 0x100c5el50>

gc: uncollectable <dict 0x100c63810>

Unreachable objects: 6

Garbage: [<Graph at 0x100db7550 name=one>,
<Graph at 0x100db7590 name=two>,
<Graph at 0x100db75d0 name=three>,
{’name’: ’'one’, ’'other’: <Graph at 0x100db7590 name=two>},
{’name’: "two’, ’'other’: <Graph at 0x100db75d0 name=three>},
{’name’ : ’"three’, ’'other’: <Graph at 0x100db7550 name=one>}]

Breaking the cycle and cleaning up garbage

one.set_next (None)
(Deleting two)
two.set_next (None)
(Deleting three)
three.set_next (None)
(Deleting one)
one.set_next (None)

Collecting...
Unreachable objects: 0
Garbage: []

The next step is to create a more intelligent WeakGraph class that knows how to
avoid creating cycles with regular references by using weak references when a cycle is
detected.

import gc
from pprint import pprint
import weakref

from weakref graph import Graph, demo

class WeakGraph (Graph) :
def set_next (self, other):
if other is not None:
See i1f we should replace the reference
to other with a weakref.
if self in other.all_nodes () :
other = weakref.proxy (other)

114 Data Structures

super (WeakGraph, self).set_next (other)
return

demo (WeakGraph)

Since the WeakGraph instances use proxies to refer to objects that have already
been seen, as demo () removes all local references to the objects, the cycle is broken
and the garbage collector can delete the objects.

$ python weakref_weakgraph.py

Set up graph:

one.set_next (<WeakGraph at 0x100db4790 name=two>)

two.set_next (<WeakGraph at 0x100db47d0 name=three>)

three.set_next (<weakproxy at 0x100dac6d8 to WeakGraph at 0x100db4750>
)

Graph:

one->two—>three
Collecting...
Unreachable objects: 0
Garbage: []

After 2 references removed:
one—->two—->three
Collecting...

Unreachable objects: 0
Garbage: []

Removing last reference:
(Deleting one)
one.set_next (None)
(Deleting two)
two.set_next (None)
(Deleting three)
three.set_next (None)
Collecting...
Unreachable objects: 0
Garbage: []

2.7.5 Caching Objects

The ref and proxy classes are considered “low level.” While they are useful for
maintaining weak references to individual objects and allowing cycles to be garbage

2.7. weakref—Impermanent References to Objects 115

collected, the WeakKeyDictionary and WeakValueDictionary provide a more
appropriate API for creating a cache of several objects.

The WweakValueDictionary uses weak references to the values it holds, allow-
ing them to be garbage collected when other code is not actually using them. Using
explicit calls to the garbage collector illustrates the difference between memory han-
dling with a regular dictionary and WeakvValueDictionary.

import gc
from pprint import pprint
import weakref

gc.set_debug (gc.DEBUG_LEAK)

class ExpensiveObject (object) :
def _ init_ (self, name):
self.name = name
def _ _repr__ (self):
return ’'ExpensiveObject (%$s)’ % self.name
def _ del_ (self):

print (Deleting $%s)’ % self

def demo (cache_factory) :
hold objects so any weak references
are not removed immediately
all refs = {}
create the cache using the factory
print ’CACHE TYPE:’, cache_factory
cache = cache_factory()
for name in [’‘one’, ’‘two’, ’‘three’]:
o = ExpensiveObject (name)
cache[name] = o
all_refs[name] = o
del o # decref

print 7 all refs =/,
pprint (all_refs)
print ‘\n Before, cache contains:’, cache.keys ()
for name, value in cache.items() :
print / %$s = %$s’ % (name, value)
del value # decref

Remove all references to the objects except the cache
print ‘\n Cleanup:’

116 Data Structures

del all_refs
gc.collect ()

print ‘\n After, cache contains:’, cache.keys ()
for name, value in cache.items{():
print ’ %s = %s’ % (name, value)
print / demo returning’
return

demo (dict)
print

demo (weakref.WeakValueDictionary)

Any loop variables that refer to the values being cached must be cleared explicitly
so the reference count of the object is decremented. Otherwise, the garbage collec-
tor would not remove the objects, and they would remain in the cache. Similarly, the
all_refs variable is used to hold references to prevent them from being garbage collected
prematurely.

$ python weakref_valuedict.py

CACHE TYPE: <type ’dict’>

all _refs ={’one’: ExpensiveObiject (one),
"three’: ExpensiveObject (three),

"two’ : ExpensiveObiject (two) }

Before, cache contains: [’three’, "two’, ’'one’]

three = ExpensiveObject (three)
two = ExpensiveObject (two)
one = ExpensiveObject (one)

Cleanup:

After, cache contains: [’three’, ’"two’, ’one’]
three = ExpensiveObiject (three)
two = ExpensiveObject (two)
one = ExpensiveObject (one)
demo returning
(Deleting ExpensiveObject (three))
(Deleting ExpensiveObject (two))
(Deleting ExpensiveObject (one))

2.8. copy—Duplicate Objects

CACHE TYPE: weakref.WeakValueDictionary
all _refs ={’'one’: ExpensiveObiject (one),
"three’: ExpensiveObiject (three),

"two’ : ExpensiveObject (two) }

Before, cache contains: [’three’, "two’, ’'one’]
three = ExpensiveObject (three)
two = ExpensiveObject (two)

one = ExpensiveObject (one)

Cleanup:
(Deleting ExpensiveObject (three))
(Deleting ExpensiveObiject (two))
(Deleting ExpensiveObject (one))

After, cache contains: []
demo returning

117

The WeakKeyDictionary works similarly, but it uses weak references for the

keys instead of the values in the dictionary.

Warning: The library documentation for weakre £ contains this warning:

Caution: Because a WeakValueDictionary is built on top of a Python dictionary,
it must not change size when iterating over it. This can be difficult to ensure for
aWeakValueDictionary because actions performed by the program during iter-

ation may cause items in the dictionary to vanish “by magic” (as a side effect of
garbage collection).

See Also:

weakref (http://docs.python.org/lib/module-weakref.html) Standard library docu-

mentation for this module.
gc (page 1138) The gc module is the interface to the interpreter’s garbage collector.

2.8 copy—Duplicate Objects

Purpose Provides functions for duplicating objects using shallow or deep
copy semantics.
Python Version 1.4 and later

http://docs.python.org/lib/module-weakref.html

118 Data Structures

The copy module includes two functions, copy () and deepcopy (), for duplicating
existing objects.

2.8.1 Shallow Copies

The shallow copy created by copy () is a new container populated with references to
the contents of the original object. When making a shallow copy of a 1ist object, a
new list is constructed and the elements of the original object are appended to it.

import copy

class MyClass:

def _ init_ (self, name):
self.name = name
def _ cmp__ (self, other):

return cmp (self.name, other.name)

a = MyClass(’7a’)

my_list = [a]

dup = copy.copy (my_list)

print my_list:’, my_list

print ’ dup:’, dup

print ’ dup is my_list:’, (dup is my_list)

print ’ dup == my_1list:’, (dup == my_list)

print ‘dup/[0] is my_list[0]:’, (dup[O0] is my_list[0])
print ’dup([0] == my_list[0]:’, (dup[0] == my_list[0])

For a shallow copy, the MyC1ass instance is not duplicated, so the reference in the
dup list is to the same object that is inmy_1ist.

$ python copy_shallow.py

my_list: [<__main__ .MyClass instance at 0x100dadc68>]
dup: [<_main__ .MyClass instance at 0x100dadc68>]
dup is my_list: False
dup == my_list: True
dup[0] is my_list[0]: True
dup[0] == my_list[0]: True
2.8.2 Deep Copies

The deep copy created by deepcopy () is a new container populated with copies of
the contents of the original object. To make a deep copy of a 1ist, a new list

2.8. copy—Duplicate Objects 119

is constructed, the elements of the original list are copied, and then those copies are
appended to the new list.

Replacing the call to copy () with deepcopy () makes the difference in the output
apparent.

dup = copy.deepcopy (my_list)

The first element of the list is no longer the same object reference, but when the
two objects are compared, they still evaluate as being equal.

$ python copy_deep.py

my_list: [<_main__ .MyClass instance at 0x100dadc68>]
dup: [<_main__ .MyClass instance at 0x100dadc20>]
dup is my_list: False
dup == my_list: True
dup[0] is my_list[0]: False
dup[0] == my_list[0]: True

2.8.3 Customizing Copy Behavior

It is possible to control how copies are made using the _ copy__ () and
__deepcopy___ () special methods.

* _ copy__ () is called without any arguments and should return a shallow copy
of the object.

* _ deepcopy__ () is called with a memo dictionary and should return a deep
copy of the object. Any member attributes that need to be deep-copied should
be passed to copy . deepcopy (), along with the memo dictionary, to control for
recursion. (The memo dictionary is explained in more detail later.)

This example illustrates how the methods are called.

import copy

class MyClass:
def _ init_ (self, name):
self.name = name
def _ cmp__ (self, other):
return cmp (self.name, other.name)

120 Data Structures

def _ _copy__ (self):
print '__copy__ ()’
return MyClass (self.name)
def _ deepcopy__ (self, memo):

print ’__ deepcopy__ (%s)’ % str (memo)
return MyClass (copy.deepcopy (self.name, memo))

a = MyClass(’a’)

sc = copy.copy(a)
dc

copy .deepcopy (a)

The memo dictionary is used to keep track of the values that have been copied
already, to avoid infinite recursion.

$ python copy_hooks.py

__copy__()
__deepcopy___({})

2.8.4 Recursion in Deep Copy

To avoid problems with duplicating recursive data structures, deepcopy () uses a dic-
tionary to track objects that have already been copied. This dictionary is passed to the
__deepcopy___ () method so it can be examined there as well.

This example shows how an interconnected data structure, such as a directed
graph, can assist with protecting against recursion by implementing a __deepcopy
__ () method.
import copy
import pprint

class Graph:

def init (self, name, connections):
self.name = name
self.connections = connections

def add_connection(self, other):
self.connections.append (other)

def _ _repr__ (self):

o

return ’Graph (name=%s, 1id=%s)’ % (self.name, id(self))

2.8. copy—Duplicate Objects 121

def _ deepcopy__ (self, memo) :
print ‘\nCalling __deepcopy__ for %$r’ % self
if self in memo:
existing = memo.get (self)
print / Already copied to %r’ % existing
return existing
print / Memo dictionary:’
pprint.pprint (memo, indent=4, width=40)
dup = Graph (copy.deepcopy (self.name, memo), [])
print / Copying to new object %s’ % dup
memo [self] = dup
for ¢ in self.connections:
dup.add_connection (copy.deepcopy (c, memo))

return dup

root = Graph(’root”’, [1])
a = Graph(’a’, [root])

b = Graph(’b’, [a, root])
root .add_connection (a)
root .add_connection (b)

dup = copy.deepcopy (root)

The Graph class includes a few basic directed-graph methods. An instance can
be initialized with a name and a list of existing nodes to which it is connected. The
add_connection () method is used to set up bidirectional connections. It is also used
by the deepcopy operator.

The __deepcopy___ () method prints messages to show how it is called and man-
ages the memo dictionary contents, as needed. Instead of copying the connection list
wholesale, it creates a new list and appends copies of the individual connections to it.
That ensures that the memo dictionary is updated as each new node is duplicated and
avoids recursion issues or extra copies of nodes. As before, it returns the copied object
when it is done.

There are several cycles in the graph shown in Figure 2.1, but handling the re-
cursion with the memo dictionary prevents the traversal from causing a stack overflow
error. When the root node is copied, the output is as follows.

$ python copy_recursion.py

Calling __deepcopy___ for Graph (name=root, 1d=4309347072)
Memo dictionary:

{ }

122 Data Structures

Figure 2.1. Deepcopy for an object graph with cycles

Copying to new object Graph (name=root, id=4309347360)

Calling __deepcopy_ _ for Graph (name=a, id=4309347144)
Memo dictionary:
{ Graph (name=root, 1d=4309347072): Graph (name=root, id=4309347360),
4307936896: ['root’],
4309253504: "root’}
Copying to new object Graph (name=a, 1d=4309347504)

Calling __deepcopy__ for Graph (name=root, 1d=4309347072)
Already copied to Graph (name=root, 1id=4309347360)

Calling __deepcopy___ for Graph (name=b, id=4309347216)
Memo dictionary:

{ Graph (name=root, 1d=4309347072): Graph (name=root, id=4309347360),
Graph (name=a, 1d=4309347144): Graph (name=a, 1d=4309347504),
4307936896: ["root’,

rar,
Graph (name=root, 1d=4309347072),
Graph (name=a, 1d=4309347144)],
4308678136: ’a’,
4309253504: ’'root’,
4309347072: Graph (name=root, 1d=4309347360),
4309347144: Graph(name=a, 1d=4309347504)}
Copying to new object Graph (name=b, id=4309347864)

The second time the root node is encountered, while the a node is being copied,
__deepcopy__ () detects the recursion and reuses the existing value from the memo
dictionary instead of creating a new object.

See Also:

2.9. pprint—Pretty-Print Data Structures

123

copy (http://docs.python.org/library/copy.html) The standard library documenta-

tion for this module.

2.9 pprint—Pretty-Print Data Structures

Purpose Pretty-print data structures.
Python Version 1.4 and later

pprint contains a “pretty printer” for producing aesthetically pleasing views of data
structures. The formatter produces representations of data structures that can be parsed
correctly by the interpreter and are also easy for a human to read. The output is kept on
a single line, if possible, and indented when split across multiple lines.

The examples in this section all depend on pprint_data.py, which contains the

following.
data = [(1, { 7a’:7A’,
(2, { /e/:/E/,
Ii/: /I/,

I

2.9.1 Printing

'h7
,f,:,F,,
/j/:

IB/,

/J/,

rcr’c’,
/g/:/G/,
Tk’ TK7

. ’

rd’’D’

Ih,:,H,,
717

,L,,

1)y

The simplest way to use the module is through the pprint () function.

from pprint import pprint

from pprint_data import data

"PRINT:’
print data

print

print
/PPRINT:”
pprint (data)

print

pprint () formats an object and writes it to the data stream passed as argument

(or sys.stdout by default).

$ python pprint_pprint.py

http://docs.python.org/library/copy.html

124 Data Structures

PRINT:
[(l, {IaI: IAI’ It Icl’ B ,B’, rdr . IDI})
’G’, rfr . IFI, rir . ’I’, 'hY . IHI, Ik’ . IKI, I4

, (2, {’e': 'E", 'g':
jl: IJI, Ill: ILI})J

PPRINT:
[(1, {"a’: 'A", 'b’: 'B", 'c’: 'C', 'd’": 'D"}),
(2,
{Te’: 'E’",
rfr: 'EY,
"g': G,
"h’: 'H',
rir. 17,
rre 1 gr,
"k': 'K’,
"1 7L)]

2.9.2 Formatting

To format a data structure without writing it directly to a stream (i.e., for logging), use
pformat () to build a string representation.

import logging
from pprint import pformat
from pprint_data import data

logging.basicConfig(level=logging.DEBUG,
format=’% (levelname)-8s % (message)s’,
)

logging.debug (’Logging pformatted data’)

formatted = pformat (data)

for line in formatted.splitlines():
logging.debug(line.rstrip())

The formatted string can then be printed or logged independently.

$ python pprint_pformat.py

DEBUG Logging pformatted data

DEBUG ((1, {ra’": 'a", 'b’: 'B", 'c’: 'C', 'd": 'D"}),
DEBUG (2,

DEBUG {re’: "E",

DEBUG rEry TR,

2.9. pprint—Pretty-Print Data Structures 125

DEBUG g’ 'G’,
DEBUG 'h’: 'H',
DEBUG rir. or1v,
DEBUG rgr. 1 Jr,
DEBUG 'k’ 'K',
DEBUG "17: 'L })]

2.9.3 Arbitrary Classes

The PrettyPrinter class used by pprint () can also work with custom classes, if
they define a __repr__ () method.

from pprint import pprint

class node (object) :

def _ init_ (self, name, contents=[]):
self.name = name
self.contents = contents|[:]

def _ repr_ (self):
return (‘node(’ + repr(self.name) + 7, 7 +
repr (self.contents) + 7))’

)

trees = [node(’node-1"),
node (“node-2’, [node(’node-2-1")1]),
node (“node-3’, [node(’node-3-17)1),

]
pprint (trees)

The representations of the nested objects are combined by the PrettyPrinter
to return the full string representation.

$ python pprint_arbitrary_object.py

[node (' node-1", [1),
node (' node-2’, [node (’'node-2-1', [1)1),
node (' node-3’, [node('node-3-1", [1)])]

2.9.4 Recursion

Recursive data structures are represented with a reference to the original source of the
data, with the form <Recursion on typename with id=number>.

126 Data Structures

from pprint import pprint

local_data = [7a’, ’"b’, 1, 2]
local_data.append(local_data)

print ’id(local_data) =>’, id(local_data)
pprint (local_data)

In this example, the list 1ocal_data is added to itself, creating a recursive
reference.

$ python pprint_recursion.py

id(local_data) => 4309215280
["a’", "b’, 1, 2, <Recursion on list with 1d=4309215280>]

2.9.5 Limiting Nested Output

For very deep data structures, it may not be desirable for the output to include all details.
The data may not format properly, the formatted text might be too large to manage, or
some of the data may be extraneous.

from pprint import pprint
from pprint_data import data

pprint (data, depth=1)

Use the depth argument to control how far down into the nested data structure the
pretty printer recurses. Levels not included in the output are represented by an ellipsis.

$ python pprint_depth.py
[Co)y (aea)]

2.9.6 Controlling Output Width

The default output width for the formatted text is 80 columns. To adjust that width, use
the width argument to pprint ().

from pprint import pprint

2.9. pprint—Pretty-Print Data Structures 127

from pprint_data import data

for width in [80, 5]:
print ’WIDTH =’, width
pprint (data, width=width)
print

When the width is too low to accommodate the formatted data structure, the lines
are not truncated or wrapped if that would introduce invalid syntax.

$ python pprint_width.py

WIDTH = 80
[(l, {IaI: IAI’ B ,B,, rars ’C,, rdr . ’D’}),

(2,
{re’: 'E’,
rEr . IF!,
Igl. [aeld
. ’
"h': 'H',
rifr. 117,
rjr: rJr,
k' 'K’
lll: ILI})]
WIDTH = 5
[(1,
{(ra’: ’'n’,
lbl: IBI,

Il ICI’
rdr . IDI}),

(2,

{IeV: IEV,
lf!: ’FV,
IgI: IGI’
Ihl: IHI’
Iil: III,
Ij!: IJI,
Vk!: VKV,
lll: ILI})]

See Also:

pprint (http://docs.python.org/lib/module-pprint.html) Standard library documen-
tation for this module.

http://docs.python.org/lib/module-pprint.html

This page intentionally left blank

Chapter 3

ALGORITHMS

Python includes several modules for implementing algorithms elegantly and concisely
using whatever style is most appropriate for the task. It supports purely procedural,
object-oriented, and functional styles. All three styles are frequently mixed within dif-
ferent parts of the same program.

functools includes functions for creating function decorators, enabling aspect-
oriented programming and code reuse beyond what a traditional object-oriented
approach supports. It also provides a class decorator for implementing all rich com-
parison APIs using a shortcut and partial objects for creating references to functions
with their arguments included.

The itertools module includes functions for creating and working with iterators
and generators used in functional programming. The operator module eliminates the
need for many trivial lambda functions when using a functional programming style by
providing function-based interfaces to built-in operations, such as arithmetic or item
lookup.

contextlib makes resource management easier, more reliable, and more con-
cise for all programming styles. Combining context managers and the with statement
reduces the number of try:finally blocks and indentation levels needed, while ensuring
that files, sockets, database transactions, and other resources are closed and released at
the right time.

3.1 functools—Tools for Manipulating Functions

Purpose Functions that operate on other functions.
Python Version 2.5 and later

The functools module provides tools for adapting or extending functions and other

callable objects, without completely rewriting them.
129

130 Algorithms

3.1.1 Decorators

The primary tool supplied by the functools module is the class partial, which
can be used to “wrap” a callable object with default arguments. The resulting object is
itself callable and can be treated as though it is the original function. It takes all the
same arguments as the original, and it can be invoked with extra positional or named
arguments as well. A partial can be used instead of a lambda to provide default
arguments to a function, while leaving some arguments unspecified.

Partial Objects

This example shows two simple partial objects for the function myfunc (). The
output of show_details () includes the func, args, and keywords attributes of the
partial object.

import functools

def myfunc(a, b=2):
"""Docstring for myfunc()."""
print ’ called myfunc with:’, (a, b)
return

def show_details (name, f, is_partial=False):

"""Show details of a callable object."""
print “%s:’ % name
print 7 object:’, £
if not is_partial:

print 7 _ name :’, f._ _name_
if is_partial:

print 7 func:’, f.func

print ’ args:’, f.args

print / keywords:’, f.keywords
return

show_details (/myfunc’, myfunc)
myfunc(’a’, 3)
print

Set a different default value for ’b’, but require
the caller to provide ’a’.

pl = functools.partial (myfunc, b=4)

show_details (’partial with named default’, pl, True)

3.1. functools—Tools for Manipulating Functions 131

pl (’passing a’)
pl(’override b’, b=5)
print

Set default values for both ’a’ and ’b’.

p2 = functools.partial (myfunc, ’‘default a’, b=99)
show_details (’partial with defaults’, p2, True)
p2 ()

p2 (b="override b”’)

print

print ’Insufficient arguments:’
pl0)

At the end of the example, the first partial created is invoked without passing a
value for a, causing an exception.

$ python functools_partial.py

myfunc:
object: <function myfunc at 0x100d9bf50>
__name__: myfunc
called myfunc with: (’a’, 3)

partial with named default:
object: <functools.partial object at 0x100d4993c0>
func: <function myfunc at 0x100d9bf50>

args: ()

keywords: {'b’: 4}

called myfunc with: (’passing a’, 4)
called myfunc with: (’override b’, 5)

partial with defaults:
object: <functools.partial object at 0x100d499418>
func: <function myfunc at 0x100d9b£f50>
args: (’'default a’,)
keywords: {’b’: 99}
called myfunc with: (’default a’, 99)
called myfunc with: (’default a’, ’'override b’)

Insufficient arguments:
Traceback (most recent call last):

132 Algorithms

File "functools_partial.py", line 51, in <module>

p1 ()
TypeError: myfunc () takes at least 1 argument (1 given)

Acquiring Function Properties

The partial object does not have _ name__ or __doc__ attributes by default,
and without those attributes, decorated functions are more difficult to debug. Using
update_wrapper () copies or adds attributes from the original function to the
partial object.

import functools

def nmyfunc(a, b=2):
"""Docstring for myfunc()."""
print / called myfunc with:’, (a, b)
return

def show_details (name, f):
"""Show details of a callable object."""
print “%s:’ % name
print 7 object:’, £
print / _ name_ :’/,
try:
print f._ name_
except AttributeError:

print ’ (no __name_)’
print / _ doc_ 7, repr(f.__doc_)
print
return

show_details (/myfunc’, myfunc)

pl = functools.partial (myfunc, b=4)
show_details (’raw wrapper’, pl)

print ’Updating wrapper:’

print /7 assign:’, functools.WRAPPER_ASSIGNMENTS
print ’ update:’, functools.WRAPPER UPDATES
print

functools.update_wrapper (pl, myfunc)
show_details (“updated wrapper’, pl)

3.1. functools—Tools for Manipulating Functions 133

The attributes added to the wrapper are defined in WRAPPER_ASSIGNMENTS, while
WRAPPER_UPDATES lists values to be modified.

$ python functools_update_wrapper.py

myfunc:
object: <function myfunc at 0x100da2050>
__name__: myfunc
__doc__ 'Docstring for myfunc() .’

raw wrapper:
object: <functools.partial object at 0x100d4993c0>

__name__: (no __name__)
__doc__ ’'partial (func, =xargs, =x*keywords) - new function with parti
al application\n of the given arguments and keywords.\n’

Updating wrapper:
assign: (/_module__ ', ’'__name__ ', ' doc__ ")

update: (/__dict__ ’,)

updated wrapper:
object: <functools.partial object at 0x100d4993c0>
__name__: myfunc
__doc___ ’'Docstring for myfunc() .’

Other Callables

Partials work with any callable object, not just with stand-alone functions.

import functools

class MyClass (object):
"""Demonstration class for functools"""

def methodl (self, a, b=2):
"""Docstring for methodl ()."""
print ’ called methodl with:’, (self, a, b)
return

def method2 (self, ¢, d=5):
"""Docstring for method2"""
print ’ called method2 with:’, (self, c, d)
return

134 Algorithms

wrapped_method2 = functools.partial (method2, ’wrapped c’)
functools.update_wrapper (wrapped_method2, method2)

def _ call_ (self, e, f=6):
"""Docstring for MyClass.__call__ """
print 7 called object with:’, (self, e, f)
return

def show_details (name, f):
"""Show details of a callable object."""
print ’%s:’ % name
print 7 object:’, £
print / _ name_ :’,
try:
print f._ name_
except AttributeError:
print ’ (no __name_)’
print © _ _doc__’, repr(f.__doc__)
return

o = MyClass|()

show_details (“methodl straight’, o.methodl)
o.methodl (“no default for a’, b=3)
print

pl = functools.partial (o.methodl, b=4)
functools.update_wrapper (pl, o.methodl)
show_details (’methodl wrapper’, pl)
pl(’a goes here’)

print

show_details ("method2’, o.method2)
o.method2 (“no default for c’, d=6)
print

show_details (’wrapped method2’, o.wrapped_method2)
o.wrapped_method2 (’no default for c’, d=6)
print

show_details (’instance’, o)
o(’no default for e’)
print

3.1. functools—Tools for Manipulating Functions

p2 = functools.partial (o, £=7)
show_details (’instance wrapper’, p2)
p2(’e goes here’)

This example creates partials from an instance and methods of an instance.

$ python functools_method.py

methodl straight:

object: <bound method MyClass.methodl of <__main__ .MyClass object
at 0x100da3550>>

_ _name__: methodl

__doc__ 'Docstring for methodl ().’

called methodl with: (<__main__ .MyClass object at 0x100da3550>, 'n
o default for a’, 3)

methodl wrapper:
object: <functools.partial object at 0x100d499470>
__name__: methodl
__doc___ ’'Docstring for methodl () .’
called methodl with: (<__main__ .MyClass object at 0x100da3550>, ’'a
goes here’, 4)

method2:

object: <bound method MyClass.method2 of <__main__.MyClass object
at 0x100da3550>>

_ _name__: method2

__doc__ '"Docstring for method2’

called method2 with: (<__main__ .MyClass object at 0x100da3550>, ’n
o default for c’, 6)

wrapped method2:
object: <functools.partial object at 0x100d993c0>
__name__: method2
__doc__ ’'Docstring for method2’
called method2 with: (’wrapped c’, ’'no default for c’, 6)

instance:
object: <__main__ .MyClass object at 0x100da3550>
__name__: (no __name__)
doc___ ’'Demonstration class for functools’

called object with: (<_main__.MyClass object at 0x100da3550>, ’'no

135

136 Algorithms

default for e’, 6)
instance wrapper:
object: <functools.partial object at 0x100d994c8>

__name__: (no __name__)
__doc__ ’'partial (func, =xargs, =xxkeywords) - new function with part
ial application\n of the given arguments and keywords.\n’

called object with: (<_main__ .MyClass object at 0x100da3550>, ’'e
goes here’, 7)

Acquiring Function Properties for Decorators

Updating the properties of a wrapped callable is especially useful when used in a dec-
orator, since the transformed function ends up with properties of the original “bare”
function.

import functools

def show_details (name, f):
"""Show details of a callable object."""
print ’“%s:’ % name
print 7 object:’, £
print / _ _name__ :/,
try:
print f._ name_
except AttributeError:
print ’ (no __name_)’
print © _ _doc__’, repr(f.__doc__)
print
return

def simple_decorator (f):

@functools.wraps (f)

def decorated (a=’decorated defaults’, b=1):
print ’ decorated:’, (a, b)
print 7 7/,
f(a, b=b)
return

return decorated

def nmyfunc(a, b=2):
"myfunc () is not complicated"
print / myfunc:’, (a,Db)
return

3.1. functools—Tools for Manipulating Functions 137

The raw function

show_details (myfunc’, myfunc)
myfunc (“unwrapped, default b’)
myfunc (’unwrapped, passing b’, 3)
print

Wrap explicitly

wrapped_myfunc = simple_decorator (myfunc)
show_details (’wrapped _myfunc’, wrapped_myfunc)
wrapped_myfunc ()

wrapped_myfunc(’args to wrapped’, 4)

print

Wrap with decorator syntax
@simple_decorator
def decorated_myfunc(a, b):
myfunc(a, b)
return

show_details (’decorated _myfunc’, decorated_myfunc)

decorated_myfunc ()
decorated_myfunc(’args to decorated’, 4)

functools provides a decorator, wraps (), that applies update_wrapper () to
the decorated function.

$ python functools_wraps.py

myfunc:
object: <function myfunc at 0x100da3488>
__name__: myfunc
__doc___ 'myfunc() is not complicated’
myfunc: (’unwrapped, default b’, 2)
myfunc: (’unwrapped, passing b’, 3)

wrapped_myfunc:
object: <function myfunc at 0x100da3500>
__name__: myfunc
__doc__ 'myfunc() is not complicated’

decorated: (’decorated defaults’, 1)
myfunc: (’decorated defaults’, 1)

138 Algorithms

decorated: (’args to wrapped’, 4)
myfunc: (’args to wrapped’, 4)

decorated_myfunc:
object: <function decorated_myfunc at 0x100da35f0>
__name__: decorated_myfunc
__doc__ None

decorated: (’decorated defaults’, 1)
myfunc: (’decorated defaults’, 1)
decorated: ("args to decorated’, 4)
myfunc: (’args to decorated’, 4)

3.1.2 Comparison

Under Python 2, classes can define a __cmp__ () method that returns -1, 0, or 1 based
on whether the object is less than, equal to, or greater than the item being compared.
Python 2.1 introduces the rich comparison methods API (_1t__ (), __le__ (),
eq(),_ne_ (),__gt__(,and __ge__()), which perform a single compari-
son operation and return a Boolean value. Python 3 deprecated __cmp___ () in favor of
these new methods, so functools provides tools to make it easier to write Python 2
classes that comply with the new comparison requirements in Python 3.

Rich Comparison

The rich comparison API is designed to allow classes with complex comparisons to
implement each test in the most efficient way possible. However, for classes where
comparison is relatively simple, there is no point in manually creating each of the rich
comparison methods. The total_ordering () class decorator takes a class that pro-
vides some of the methods and adds the rest of them.

import functools
import inspect
from pprint import pprint

@functools.total_ordering
class MyObject (object) :
def _ init_ (self, wval):
self.val = val
def _ eq_ (self, other):
print / testing __eq (%s, %s)’ % (self.val, other.val)
return self.val == other.val

3.1. functools—Tools for Manipulating Functions 139

def _ gt__ (self, other):
print ’ testing __gt__ (%s, %s)’ % (self.val, other.val)
return self.val > other.val

print ‘Methods:\n’
pprint (inspect.getmembers (MyObject, inspect.ismethod))

a
b

MyObject (1)
MyObject (2)

print ’‘\nComparisons:’

for expr in [a < b’, ’a <=Db’, ’a == Db’, 'a > b’, ’a > b’]:
print ‘\n%-6s:’ % expr
result = eval (expr)

o)

print ’/ result of $%s: %s’ % (expr, result)
The class must provide implementation of __eq__ () and one other rich compar-

ison method. The decorator adds implementations of the rest of the methods that work
by using the comparisons provided.

$ python functools_total_ordering.py
Methods:

' _eq__', <unbound method MyObject.__eq >),
4 ge__ ', <unbound method MyObiject.__ge__ >),
4 gt__’, <unbound method MyObiject.__gt__>),
/__init__’, <unbound method MyObject.__init__>),

' __le__ ', <unbound method MyObject.__le_ >),
' 1t__ ', <unbound method MyObject.__1t_ >)]

Comparisons:

a <b
testing __gt_ (2, 1)
result of a < b: True

a <= b:
testing __gt__ (1, 2)
result of a <= b: True

a == b:
testing __eq (1, 2)
result of a == b: False

140 Algorithms

a >= b:
testing __gt__ (2, 1)
result of a >= b: False

a>>b
testing __gt_ (1, 2)

result of a > b: False

Collation Order

Since old-style comparison functions are deprecated in Python 3, the cmp argument to
functions like sort () is also no longer supported. Python 2 programs that use com-
parison functions can use cmp_to_key () to convert them to a function that returns a
collation key, which is used to determine the position in the final sequence.

import functools

class MyObject (object) :
def _ init_ (self, wval):
self.val = val
def = str_ (self):
return ’'MyObject (%$s)’ % self.val

def compare_obj(a, b):
"m"rnold-style comparison function.

mwn

o)

print ’‘comparing %s and %s’ % (a, b)
return cmp(a.val, b.val)

Make a key function using cmp_to_key ()
get_key = functools.cmp_to_key (compare_obj)

def get_key_wrapper (o) :
"""wrapper function for get_key to allow for print statements.
o
new_key = get_key (0)
print ’‘key wrapper (%$s) -> %s’ % (o, new_key)
return new_key
objs = [MyObiject (x) for x in xrange(5, 0, -1)]

for o in sorted(obijs, key=get_key_wrapper) :
print o

3.2. itertools—Iterator Functions 141

Normally, cmp_to_key () would be used directly, but in this example, an extra
wrapper function is introduced to print out more information as the key function is
being called.

The output shows that sorted () starts by calling get_key_wrapper () for each
item in the sequence to produce a key. The keys returned by cmp_to_key () are
instances of a class defined in functools that implements the rich comparison API
using the old-style comparison function passed in. After all keys are created, the se-
quence is sorted by comparing the keys.

$ python functools_cmp_to_key.py
key_wrapper (MyObject -> <functools.
MyObject

(5) object at 0x100da2a50>
(4)
MyObject (3)
(2)
(1)

object at 0x100da2a90>
object at 0x100da2ad0>
object at 0x100da2bl0>
object at 0x100da2b50>

key_wrapper -> <functools.

()

()
key_wrapper () —> <functools.
()

key_wrapper (MyObject -> <functools.

= xR xR R

) —> <functools.
and MyObiject (5)
and MyObject (4)
and MyObiject (3)
and MyObiject (2)

key_wrapper (MyObject
comparing MyObiject (4
comparing MyObject

(3
comparing MyObject (2
comparing MyObiject (1
MyObject (1)

MyObject (2
MyObject
MyObject

(
(
(
MyObject (

)
3)
4)
5)

See Also:

functools (http://docs.python.org/library/functools.html) The standard library doc-
umentation for this module.

Rich comparison methods (http://docs.python.org/reference/datamodel.html#
object.__It_) Description of the rich comparison methods from the Python
Reference Guide.

inspect (page 1200) Introspection API for live objects.

3.2 itertools—Iterator Functions

Purpose The itertools module includes a set of functions for working with
sequence data sets.
Python Version 2.3 and later

http://docs.python.org/library/functools.html
http://docs.python.org/reference/datamodel.html#object.__lt__
http://docs.python.org/reference/datamodel.html#object.__lt__

142 Algorithms

The functions provided by itertools are inspired by similar features of functional
programming languages such as Clojure and Haskell. They are intended to be fast and
use memory efficiently, and also to be hooked together to express more complicated
iteration-based algorithms.

Iterator-based code offers better memory consumption characteristics than code
that uses lists. Since data is not produced from the iterator until it is needed, all data
does not need to be stored in memory at the same time. This “lazy” processing model
uses less memory, which can reduce swapping and other side effects of large data sets,
improving performance.

3.2.1 Merging and Splitting lterators

The chain () function takes several iterators as arguments and returns a single iterator
that produces the contents of all of them as though they came from a single iterator.

from itertools import =

for i in chain([1, 2, 3], [’a’, ’b’, ’c’]):
print i,
print

chain () makes it easy to process several sequences without constructing one
large list.

$ python itertools_chain.py

123 abc

izip () returns an iterator that combines the elements of several iterators into
tuples.

from itertools import =«

for i in izip(I[1, 2, 31, [’a’, 'b’, ’c’]):
print i

It works like the built-in function zip (), except that it returns an iterator instead
of a list.

3.2. itertools—Iterator Functions 143

$ python itertools_izip.py

(1, "a")
(2, "b")
(3, "c")

The islice () function returns an iterator that returns selected items from the
input iterator, by index.

from itertools import =«

print ’Stop at 5:7

for i in islice(count (), 5):
print i,

print ‘\n’

print ’Start at 5, Stop at 10:’

for i in islice(count (), 5, 10):
print i,

print ’‘\n’

print ’By tens to 100:’

for i in islice(count(), 0, 100, 10):
print i,

print ‘\n’

islice () takes the same arguments as the slice operator for lists: start, stop, and
step. The start and step arguments are optional.

$ python itertools_islice.py

Stop at 5:
012 34

Start at 5, Stop at 10:
56 789

By tens to 100:
0 10 20 30 40 50 60 70 80 90

144 Algorithms

The tee () function returns several independent iterators (defaults to 2) based on
a single original input.

from itertools import =«

r = islice(count (), 5)
il, 12 = tee(r)

print 7i1:’, list(il)
print 7i2:’/, list(i2)

tee () has semantics similar to the UNIX tee utility, which repeats the values it
reads from its input and writes them to a named file and standard output. The iterators
returned by tee () can be used to feed the same set of data into multiple algorithms to
be processed in parallel.

$ python itertools_tee.py

il: [0, 1, 2, 3, 4]
i2: [0, 1, 2, 3, 4]

The new iterators created by tee () share their input, so the original iterator should
not be used once the new ones are created.

from itertools import =«

r = islice(count (), 5)
il, 12 = tee(r)

print ’r:’,
for i in r:
print i,
if i > 1:
break
print

print 7il:’, list(il)
print 7i2:’, list(i2)

If values are consumed from the original input, the new iterators will not produce
those values:

3.2. itertools—Iterator Functions 145

$ python itertools_tee_error.py

r: 012
il: [3, 4]
iz2: [3, 4]

3.2.2 Converting Inputs

The imap () function returns an iterator that calls a function on the values in the input
iterators and returns the results. It works like the built-in map (), except that it stops
when any input iterator is exhausted (instead of inserting None values to completely
consume all inputs).

from itertools import =«

print “Doubles:’
for i in imap(lambda x:2xx, xrange(5)):
print i

print ’'Multiples:’
for i in imap(lambda x,y: (X, y, x*y), xXrange(5), xrange(5,10)):
print 7%d x %d = &%d’ $ 1
In the first example, the lambda function multiplies the input values by 2. In the
second example, the lambda function multiplies two arguments, taken from separate
iterators, and returns a tuple with the original arguments and the computed value.

$ python itertools_imap.py

Doubles:

0

2

4

6

8
Multiples:
0 x5=0
1 6 =26
2 %« 7 =14
3 x 8 = 24
4 « 9 = 36

146 Algorithms

The starmap () function is similar to imap (), but instead of constructing a
tuple from multiple iterators, it splits up the items in a single iterator as arguments
to the mapping function using the » syntax.

from itertools import =«
values = [(0, 5), (1, 6), (2, 7), (3, 8), (4, 9)]

for i in starmap(lambda x,y: (x, y, x*y), values):
print 7%d x %d = %d’ $ i

Where the mapping function to imap () is called £ (11, i2), the mapping func-
tion passed to starmap () is called £ (x1).

$ python itertools_starmap.py

0 x5=0
1 6 =26
2 « 7 =14
3 x 8 = 24
4 « 9 = 36

3.2.3 Producing New Values

The count () function returns an iterator that produces consecutive integers, indefi-
nitely. The first number can be passed as an argument (the default is zero). There is no
upper bound argument [see the built-in xrange () for more control over the result set].

from itertools import =«

for i in izip(count(1l), [’a’, ’b’, ’c’]):
print i

This example stops because the list argument is consumed.

$ python itertools_count.py

3.2. itertools—Iterator Functions 147

The cycle () function returns an iterator that indefinitely repeats the contents of
the arguments it is given. Since it has to remember the entire contents of the input
iterator, it may consume quite a bit of memory if the iterator is long.

from itertools import =«

for i, item in izip(xrange(7), cycle([’a’, ’'b’, ’‘c’])):
print (i, item)

A counter variable is used to break out of the loop after a few cycles in this
example.

$ python itertools_cycle.py

~

(0,
(1,
(2,
(3,
(4,
(5,
(6,

~
~

~

O Q O ® Q 0O o

~

~

~

~

~

~

~

The repeat () function returns an iterator that produces the same value each time
it is accessed.

from itertools import =

for i in repeat (’over-and-over’, 5):
print i

The iterator returned by repeat () keeps returning data forever, unless the
optional times argument is provided to limit it.

$ python itertools_repeat.py

over—and-over
over—and-over
over—and-over
over—and-over
over—and-over

148 Algorithms

It is useful to combine repeat () with izip () or imap () when invariant values
need to be included with the values from the other iterators.

from itertools import =«

for i, s in izip(count (), repeat (’over—-and-over’, 5)):
print i, s

A counter value is combined with the constant returned by repeat () in this
example.

$ python itertools_repeat_izip.py

over—and-over
over—and-over
over—and-over
over—and-over

Sw N RO

over—-and-over
This example uses imap () to multiply the numbers in the range O through 4 by 2.

from itertools import =«

for i in imap(lambda x,vy: (X, y, x*y), repeat(2), xrange(5)):
print 7%d x %d = %d’ $ i

The repeat () iterator does not need to be explicitly limited, since imap () stops
processing when any of its inputs ends, and the xrange () returns only five elements.

$ python itertools_repeat_imap.py

NN N
*

S W N R o
Il

@ o N O

3.2.4 Filtering

The dropwhile () function returns an iterator that produces elements of the input
iterator after a condition becomes false for the first time.

3.2. itertools—Iterator Functions 149

from itertools import =«

def should_drop (x):
print ’Testing:’, x
return (x<1)

for i in dropwhile (should_drop, [-1, 0, 1, 2, -2 1):
print ’‘Yielding:’, i

dropwhile () does not filter every item of the input; after the condition is false
the first time, all remaining items in the input are returned.

$ python itertools_dropwhile.py

Testing: -1
Testing: 0
Testing:
Yielding: 1
Yielding: 2
Yielding: -2

The opposite of dropwhile () is takewhile (). It returns an iterator that returns
items from the input iterator, as long as the test function returns true.

from itertools import =«

def should_take (x):
print ’Testing:’, x
return (x<2)

for i in takewhile (should_take, [-1, 0, 1, 2, =2]1):
print ‘Yielding:’, 1

As soon as should_take () returns False, takewhile () stops processing the
input.

$ python itertools_takewhile.py
Testing: -1

Yielding: -1
Testing: 0

150 Algorithms

Yielding: O

Testing: 1
Yielding: 1
Testing: 2

ifilter () returns an iterator that works like the built-in filter () does for
lists, including only items for which the test function returns true.

from itertools import =«

def check_item(x) :
print ’‘Testing:’, x
return (x<1)

for i in ifilter(check_item, [-1, O, 1, 2, -2]):
print ’‘Yielding:’, i

ifilter () is different from dropwhile () in that every item is tested before it
is returned.

$ python itertools_ifilter.py

Testing: -1
Yielding: -1
Testing: O
Yielding: O
Testing: 1
Testing: 2
Testing: -2
Yielding: -2

ifilterfalse () returns an iterator that includes only items where the test func-
tion returns false.

from itertools import =«

def check_item(x) :
print ’‘Testing:’, x
return (x<1)

for i in ifilterfalse(check_item, [-1, 0, 1, 2, -2 1):

print ’Yielding:’, 1

3.2. itertools—Iterator Functions 151

The test expression in check_item () is the same, so the results in this example
with ifilterfalse () are the opposite of the results from the previous example.

$ python itertools_ifilterfalse.py

Testing: -1
Testing: O
Testing: 1
Yielding: 1
Testing: 2
Yielding: 2
Testing: -2

3.2.5 Grouping Data
The groupby () function returns an iterator that produces sets of values organized by

a common key. This example illustrates grouping related values based on an attribute.

from itertools import =
import operator
import pprint

class Point:
def _ _init__ (self, x, y):

self.x = x
self.y =y
def _ repr (self):

return ’ (%s, %s)’ % (self.x, self.y)
def _ cmp__ (self, other):
return cmp((self.x, self.y), (other.x, other.y))

Create a dataset of Point instances

data = list (imap (Point,
cycle(islice(count (), 3)),
islice(count (), 7),
)

)

print ’Data:’

pprint.pprint (data, width=69)

print

Try to group the unsorted data based on X values
print ’‘Grouped, unsorted:’

152 Algorithms

for k, g in groupby(data, operator.attrgetter(’/x”’)):
print k, list(g)
print

Sort the data

data.sort ()

print ’“Sorted:’
pprint.pprint (data, width=69)
print

Group the sorted data based on X values

print ’Grouped, sorted:’

for k, g in groupby(data, operator.attrgetter(’x”’)):
print k, list(g)

print

The input sequence needs to be sorted on the key value in order for the groupings
to work out as expected.

$ python itertools_groupby_seq.py

Data:

[(0, 0),
1, 1),
2),

~

9)1]

~

Grouped, unsorted:

0 [(0, 0)]
10, 1]
2 [(2, 2)]
0 [(0, 3)]
1 [(1, 4]
2 (2, 51
0 [(0, 6)]
10, 71

3.3. operator—Functional Interface to Built-in Operators 153

~

~

~

~

DN PO O
~ ~
o U d D PO o WO

~

Grouped, sorted:

o [, 0), (0, 3), (0, 6),
1 0(, 1), (1, 4), (1, 7]
2 [z, 2y, (2, 5, (2, 8)]

See Also:

itertools (http://docs.python.org/library/itertools.html) The standard library docu-
mentation for this module.

The Standard ML Basis Library (www.standardml.org/Basis/) The library for
SML.

Definition of Haskell and the Standard Libraries (www.haskell.org/definition/)
Standard library specification for the functional language Haskell.

Clojure (http://clojure.org/) Clojure is a dynamic functional language that runs on the
Java Virtual Machine.

tee (http://unixhelp.ed.ac.uk/CGI/man-cgi?tee) UNIX command line tool for split-
ting one input into multiple identical output streams.

3.3 operator—Functional Interface to Built-in Operators

Purpose Functional interface to built-in operators.
Python Version 1.4 and later

Programming with iterators occasionally requires creating small functions for simple
expressions. Sometimes, these can be implemented as lambda functions, but for some
operations, new functions are not needed at all. The operator module defines func-
tions that correspond to built-in operations for arithmetic and comparison.

www.standardml.org/Basis/
http://docs.python.org/library/itertools.html
www.haskell.org/definition/
http://clojure.org/
http://unixhelp.ed.ac.uk/CGI/man-cgi?tee

154 Algorithms

3.3.1 Logical Operations

There are functions for determining the Boolean equivalent for a value, negating it to
create the opposite Boolean value, and comparing objects to see if they are identical.

from operator import x

a = -1
b =5

print ‘a =/, a
print b =/, b

print

print ’not_ (a) :’7, not_(a)
print ’“truth(a) :’, truth(a)
print ’is_(a, b) :/, is_(a,b)

print ’is_not(a, b):’, is_not(a,b)

not_ () includes the trailing underscore because not is a Python keyword.
truth () applies the same logic used when testing an expression in an if statement.
is_ () implements the same check used by the is keyword, and is_not () does the

same test and returns the opposite answer.

$ python operator_boolean.py

a = -1
b =25
not_ (a) : False
truth (a) : True
is_(a, b) : False

is_not (a, b): True

3.3.2 Comparison Operators

All rich comparison operators are supported.

from operator import =«

3.3. operator—Functional Interface to Built-in Operators 155

print ‘a =/, a
print ‘b =/, b
for func in (lt, le, eq, ne, ge, gt):
print ’%s(a, b):” % func.__name__, func(a, b)

The functions are equivalent to the expression syntax using <, <=, ==, >=, and >.

$ python operator_comparisons.py

a=1

b=25.0

lt (a, b): True
le(a, b): True
eqg(a, b): False
ne(a, b): True
ge(a, b): False
gt (a, b): False

3.3.3 Arithmetic Operators

The arithmetic operators for manipulating numerical values are also supported.

from operator import =«

print ’‘a =/,
print ‘b =/,
print ‘c =/,

QO Q0 O w

print ’d =/,

print ‘\nPositive/Negative:’
print ’abs(a):’, abs(a
print ‘neg(a):’, neg
print ‘neg(b):’, neg
print ’pos(a):’, pos
print ’pos (b):’, pos

156 Algorithms

print ‘\nArithmetic:’

print “add(a, b) :’, add(a, b)
print ’div(a, b) :/, div(a, b)
print ’div(d, c) :7, div(d, c)
print ’floordiv(a, b):’, floordiv(a, b)
print ’floordiv(d, c):’, floordiv(d, c)
print ‘mod(a, b) :’, mod(a, b)
print ‘mul (a, b) :/, mul(a, b)
print ’“pow(c, d) :’, pow(c, d)
print ’“sub (b, a) :7, sub(b, a)
print ’truediv(a, b) :’, truediv(a, b)
print ’‘truediv(d, c) :’/, truediv(d, c)
print ’‘\nBitwise:’

print ’and_ (c, d) :/, and_(c, d)

print ’“invert (c) :/, invert (c)

print ’Ishift(c, d):’, lshift(c, d)
print ‘or_(c, d) 7, or_(c, d)

print ’rshift(d, c):’, rshift(d, c)
print ’“xor(c, d) :/, xor(c, d)

There are two separate division operators: floordiv () (integer division as
implemented in Python before version 3.0) and truediv () (floating-point division).

$ python operator_math.py
a = -1

b =25.0

c =2

d =6

Positive/Negative:
abs(a): 1

1

-5.0

-1

5.0

Arithmetic:

add (a,
div (a,
div(d,

floordiv(a, Db):

b) : 4.0
b) : -0.2
c) : 3

floordiv(d, c):

mod (a,

b) : 4.0

mul (a, b) : =5.0
pow (c, d) : 64
sub (b, a) : 6.0
truediv(a, b) : -0.2
truediv(d, c) : 3.0

Bitwise:

and_ (c, d) : 2
invert (c) : -3
lshift(c, d): 128
or_(c, d) HE)
rshift(d, c): 1
xor (c, d) : 4

3.3.4 Sequence Operators

3.3. operator—Functional Interface to Built-in Operators

157

The operators for working with sequences can be divided into four groups: build-
ing up sequences, searching for items, accessing contents, and removing items from

sequences.

from operator import x

a [1, 2, 3]
b e [/a/, /b/, /c/]

print 7a =/, a
print ‘b =/, b

print ‘\nConstructive:’

print concat (a, b):’, concat(a, b

print ’ repeat(a, 3):’, repeat(a, 3

print ’‘\nSearching:’

print ’ contains(a, 1) :7/,
print ’ contains (b, "d"):’,
print 7 countOf(a, 1) 2,
print ’ countOf(b, "d") :/,
print ’/ indexOf(a, 5) 7,

print ’‘\nAccess Items:’
print 7 getitem(b, 1)
print ’ getslice(a, 1, 3)
print ’ setitem(b, 1, "d")
print 7, after b =/, b

)
)

contains(a, 1)

contains (b, "d")
countOf (a, 1)
countOf (b, "d")
indexOf (a, 1)

./
./

4

’

’

4

getitem (b,
getslice(a,
setitem (b,

1)
1,
1,

3)
"dq ") ,

158 Algorithms

print ’ setslice(a, 1, 3, [4, 5]):’, setslice(a, 1, 3, [4, 51),
print ’, after a =", a

print ’‘\nDestructive:’

print ’ delitem(b, 1) :/, delitem(b, 1), 7, after b =/, b
print ’ delslice(a, 1, 3):’, delslice(a, 1, 3), ’/, after a =’, a

Some of these operations, such as setitem() and delitem (), modify the

sequence in place and do not return a value.

$ python operator_sequences.py

[

["a’,

3]
’b’,

ICI]

Constructive:
b) :
3):

concat (a,
repeat (a,

Searching:

contains (a, 1) True

"d"): False
1) 1
"dll) : O

5) : 0

contains (b,
countOf (a,
countOf (b,
indexOf (a,

Access Items:
getitem(b, 1)
getslice(a, 1,
setitem(b, 1,

1,

3)
"d")
3,

(2, 3]
None , after Db

setslice(a, [4, 5]): None , after a

Destructive:
delitem (b,
delslice(a,

1)
1,

after b =
after a

None ,

|
~
o
~
~

3): None ,

Il
—

3.3.5 In-Place Operators

In addition to the standard operators, many types of objects support “in-place” modifi-
cation through special operators such as +=. There are equivalent functions for in-place

modifications, too.

3.3. operator—Functional Interface to Built-in Operators 159

from operator import x

a = -1

b =5.0

c=11, 2, 3]

d= [/aI, /b/, /c/]

print ‘a =/, a
print b =/, b
print ‘¢ =/, c
print ’d =/, d
print

a = iadd(a, b)

print ’‘a = iadd(a, b) =>’, a
print
c = iconcat (c, d)

print ’‘c = iconcat(c, d) =>’, c

These examples demonstrate only a few of the functions. Refer to the standard
library documentation for complete details.

$ python operator_inplace.py
a = -1

b =5.0

c =11, 2, 3]

d: [’aI’ Ib!, ICI]

a = iadd(a, b) => 4.0

c = iconcat(c, d) => [1, 2, 3, "a’, 'b", 'c’]

3.3.6 Attribute and Item “Getters”

One of the most unusual features of the operator module is the concept of getters.
These are callable objects constructed at runtime to retrieve attributes of objects or
contents from sequences. Getters are especially useful when working with iterators or
generator sequences, where they are intended to incur less overhead than a lambda or
Python function.

160 Algorithms

from operator import x

class MyObj (object) :
"""example class for attrgetter"""
def _ _init__ (self, argqg):
self).__init__ ()
arg

super (MyObij,

self.arg =
def _ repr_ (self):

return "MyObj(%$s)’ % self.arg
1 = [MyObj (i)
print

for i in xrange (5)]
’objects 7,01
Extract the

‘arg’ value from each object

g = attrgetter(’arg’)

vals = [g(i) for i in 1]

print ’“arg values:’, vals

Sort using arg

l.reverse ()

print ’‘reversed :/, 1

print ’sorted :7, sorted(l, key=qg)

Attribute getters work like 1ambda x, n='attrname’ :

$ python operator_attrgetter.py

objects [MyObj(0), MyObj(l), MyObj(2), MyObij(3),
arg values: [0, 1, 2, 3, 4]

reversed [MyObj(4), MyObj(3), MyObj(2), MyObj(l),
sorted [MyObj (0), MyOb3j(l), MyObj(2), MyObj(3),

Item getters work like 1ambda x, y=5: x[y]:

from operator import =«

1 = [dict(val=-1 * i)
print
g =
vals =

for i in xrange (4)]
’Dictionaries:’, 1

itemgetter (’val’)

[g(i) for 1 in 1]
vals

sorted (1,

print values:’,

print ’ sorted:’, key=qg)

getattr (x,

MyOb3J (4)]

MyOb3j (0)]
MyObj (4)]

n):

3.3. operator—Functional Interface to Built-in Operators 161

print

1 =1 (i, ix-2) for i in xrange (4)]
print ’Tuples 7,01

g = itemgetter (1)

vals = [g(i) for i in 1]

print ’ values:’, vals

print ’ sorted:”, sorted(l, key=qg)

Item getters work with mappings as well as sequences.

$ python operator_itemgetter.py

Dictionaries: [{’val’: 0}, {'val’: -1}, {’val’: -2}, {'val’: -3}]
values: [0, -1, -2, -3]
sorted: [{’val’: -3}, {’val’: -2}, {’val’: -1}, {’val’: 0}]

Tuples : [(Or O)I (11 _2)1 (21 _4)1 (31 _6)]
values: [0, -2, -4, -6]
sorted: [(3, -6), (2, -4), (1, -2), (0, 0)]

3.3.7 Combining Operators and Custom Classes

The functions in the operator module work via the standard Python interfaces for
their operations, so they work with user-defined classes as well as the built-in types.

from operator import x

class MyObj(object) :
"""Example for operator overloading"""
def _ init_ (self, wval):
super (MyObj, self).__init__ ()
self.val = val
return
def _ str__ (self):
return 'MyObj(%$s)’ % self.val
def _ 1t_ (self, other):
"""compare for less—than"""
print ’‘Testing %s < %s’ % (self, other)
return self.val < other.val
def _ add_ (self, other):
"""add values"""

162 Algorithms

print ’‘Adding %s + %s’ % (self, other)
return MyOb7j(self.val + other.val)
MyOb3j (1)
MyObJj (2)

a
b

print ‘Comparison:’
print lt(a, b)

print ’‘\nArithmetic:’
print add(a, b)

Refer to the Python reference guide for a complete list of the special methods each
operator uses.

$ python operator_classes.py

Comparison:
Testing MyObj(1l) < MyObij(2)
True

Arithmetic:
Adding MyObj (1) + MyObj(2)
MyObj (3)

3.3.8 Type Checking

The operator module also includes functions for testing API compliance for mapping,
number, and sequence types.

from operator import =«

class NoType (object) :
"""Supports none of the type APIs"""

class MultiType (object) :
""rSupports multiple type APIs"""
def _ len_ (self):
return 0
def _ getitem__ (self, name):
return ’"mapping’
def int_ (self):

return 0

3.4. contextlib—Context Manager Utilities 163

o = NoType ()
t = MultiType ()

for func in (isMappingType, isNumberType, isSequenceType) :
print “%s(o):’ % func._ _name__, func (o)
print “%s(t):” % func.__name_ , func(t)

The tests are not perfect, since the interfaces are not strictly defined, but they do
provide some idea of what is supported.

$ python operator_typechecking.py

isMappingType (o) : False
isMappingType (t): True
isNumberType (0) : False
isNumberType (t): True
isSequenceType (0) : False
isSequenceType (t): True

See Also:

operator (http://docs.python.org/lib/module-operator.html) Standard library docu-
mentation for this module.

functools (page 129) Functional programming tools, including the total_
ordering () decorator for adding rich comparison methods to a class.

itertools (page 141) Iterator operations.

abce (page 1178) The abc module includes abstract base classes that define the APIs
for collection types.

3.4 contextlib—Context Manager Utilities

Purpose Utilities for creating and working with context managers.
Python Version 2.5 and later

The contextlib module contains utilities for working with context managers and the
with statement.

Note: Context managers are tied to the with statement. Since with is officially
part of Python 2.6, import it from __future__ before using contextlib in
Python 2.5.

http://docs.python.org/lib/module-operator.html

164 Algorithms

3.4.1 Context Manager API

A context manager is responsible for a resource within a code block, possibly creating it
when the block is entered and then cleaning it up after the block is exited. For example,
files support the context manager API to make it easy to ensure they are closed after all
reading or writing is done.

with open (’/tmp/pymotw.txt’, ’‘wt’) as f:
f.write(’contents go here’)
file is automatically closed

A context manager is enabled by the with statement, and the API involves two

methods. The __enter_ () method is run when execution flow enters the code block
inside the with. It returns an object to be used within the context. When execution flow
leaves the with block, the __exit__ () method of the context manager is called to

clean up any resources being used.

class Context (object) :

def = init__ (self):
print /__init ()’

def _ enter_ (self):
print ’__enter_ ()’
return self

def _ exit_ (self, exc_type, exc_val, exc_tb):
print /__exit_ ()’

with Context ():
print ’‘Doing work in the context’

Combining a context manager and the with statement is a more compact way of
writing a try:finally block, since the context manager’s __exit__ () method is always
called, even if an exception is raised.

$ python contextlib_api.py

init ()
__enter__ ()
Doing work in the context
exit ()

3.4. contextlib—Context Manager Utilities 165

The __enter__ () method can return any object to be associated with a name
specified in the as clause of the with statement. In this example, the Context returns
an object that uses the open context.

class WithinContext (object) :
def _ init_ (self, context):
print ‘WithinContext.__init__ (%s)’ % context
def do_something(self):
print ‘WithinContext.do_something()”’
def del__ (self):

print ‘WithinContext.__del_ 7

class Context (object) :
def _ init_ (self):

print ’‘Context.__init__ ()’
def _ enter_ (self):
print ’‘Context.__enter_ ()’
return WithinContext (self)
def _ _exit__ (self, exc_type, exc_val, exc_tb):
print ‘Context.__exit__ ()’

with Context () as c:
c.do_something ()

The value associated with the variable c is the object returned by __enter__ (),
which is not necessarily the Context instance created in the with statement.

$ python contextlib_api_other_object.py

Context.__init__ ()

Context.__enter__ ()

WithinContext.__init__ (<__main__ .Context object at 0x100d98al0>)
WithinContext.do_something()

Context.__exit__ ()

WithinContext._del_

The __exit__ () method receives arguments containing details of any exception
raised in the with block.

166 Algorithms

class Context (object) :

def _ init_ (self, handle_error):
print /__init__ (%$s)’ % handle_error
self.handle_error = handle_error

def _ enter_ (self):
print ’_ _enter_ ()’
return self

def _ _exit_ (self, exc_type, exc_val, exc_tb):
print /__exit_ ()’
print / exc _type =/, exc_type
print / exc val =/, exc_val
print 7 exc_tb =/, exc_tb
return self.handle_error

with Context (True) :
raise RuntimeError (’error message handled’)

print

with Context (False) :
raise RuntimeError (’error message propagated’)

If the context manager can handle the exception, __exit__ () should return a
true value to indicate that the exception does not need to be propagated. Returning false
causes the exception to be reraised after __exit__ () returns.

$ python contextlib_api_error.py

__init_ (True)
__enter__ ()
exit ()
exc_type = <type ’exceptions.RuntimeError’>
exc_val = error message handled
exc_tb = <traceback object at 0x100da52d8>
__init_ (False)
__enter__ ()
exit ()
exc_type = <type ’exceptions.RuntimeError’>
exc_val = error message propagated
exc_tb = <traceback object at 0x100da5368>

3.4. contextlib—Context Manager Utilities 167

Traceback (most recent call last):
File "contextlib_api_error.py", line 33, in <module>
raise RuntimeError ('error message propagated’)
RuntimeError: error message propagated

3.4.2 From Generator to Context Manager

Creating context managers the traditional way, by writing a class with __enter__ ()
and _ _exit__ () methods, is not difficult. But sometimes, writing everything out
fully is extra overhead for a trivial bit of context. In those sorts of situations, use the
contextmanager () decorator to convert a generator function into a context manager.

import contextlib

@contextlib.contextmanager
def make_context () :
print ’/ entering’
try:
yield {}
except RuntimeError, err:
print / ERROR:’, err
finally:
print ’/ exiting’

print “Normal:’
with make_context () as value:
print ’/ inside with statement:’, value

print ‘\nHandled error:’
with make_context () as value:
raise RuntimeError (’showing example of handling an error’)

print ‘\nUnhandled error:’
with make_context () as value:
raise ValueError (’this exception is not handled’)

The generator should initialize the context, yield exactly one time, and then clean
up the context. The value yielded, if any, is bound to the variable in the as clause of the
with statement. Exceptions from within the with block are reraised inside the generator,
so they can be handled there.

168 Algorithms

$ python contextlib_contextmanager.py

Normal:
entering
inside with statement: {}
exiting

Handled error:
entering
ERROR: showing example of handling an error

exiting

Unhandled error:
entering
exiting
Traceback (most recent call last):
File "contextlib_contextmanager.py", line 34, in <module>
raise ValueError ('this exception is not handled’)
ValueError: this exception is not handled

3.4.3 Nesting Contexts

At times, it is necessary to manage multiple contexts simultaneously (such as when
copying data between input and output file handles, for example). It is possible to nest
with statements one inside another, but if the outer contexts do not need their own
separate block, this adds to the indention level without giving any real benefit. Using
nested () nests the contexts using a single with statement.

import contextlib

@contextlib.contextmanager
def make_context (name) :
print ’entering:’, name
yield name
print ’‘exiting :’, name
with contextlib.nested (make_context (7A7),
make_context (“B’)) as (A, B):
print ’‘inside with statement:’, A, B

Program execution leaves the contexts in the reverse order in which they are
entered.

3.4. contextlib—Context Manager Utilities 169

$ python contextlib_nested.py

entering: A
entering: B
inside with statement: A B
exiting : B
exiting : A

In Python 2.7 and later, nested () is deprecated because the with statement sup-
ports nesting directly.

import contextlib

@contextlib.contextmanager
def make_context (name) :
print ’‘entering:’, name
yield name
print ’‘exiting :’, name

with make_context (A’) as A, make_context (/B’) as B:
print ’inside with statement:’, A, B

Each context manager and optional as clause are separated by a comma (,). The
effect is similar to using nested (), but avoids some of the edge-cases around error
handling that nested () could not implement correctly.

$ python contextlib_nested_with.py

entering: A
entering: B
inside with statement: A B
exiting : B
exiting : A

3.4.4 Closing Open Handles

The £ile class supports the context manager API directly, but some other objects that
represent open handles do not. The example given in the standard library documentation
for contextlib is the object returned from urllib.urlopen (). There are other
legacy classes that use a c1lose () method but do not support the context manager API.
To ensure that a handle is closed, use closing () to create a context manager for it.

170 Algorithms

import contextlib

class Door (object) :
def _ init (self):
print 7 __ init_ ()’
def close(self):
print 7 close()”’

print ’"Normal Example:’
with contextlib.closing(Door()) as door:
print / inside with statement’

print ’‘\nError handling example:’
try:
with contextlib.closing (Door()) as door:
print / raising from inside with statement’
raise RuntimeError (’error message’)
except Exception, err:
print ’ Had an error:’, err

The handle is closed whether there is an error in the with block or not.

$ python contextlib_closing.py

Normal Example:
_init__ ()
inside with statement
close ()

Error handling example:
dinit ()
raising from inside with statement
close ()
Had an error: error message

See Also:

contextlib (http://docs.python.org/library/contextlib.html) The standard library
documentation for this module.

PEP 343 (http://www.python.org/dev/peps/pep-0343) The with statement.

http://docs.python.org/library/contextlib.html
http://www.python.org/dev/peps/pep-0343

3.4. contextlib—Context Manager Utilities 171

Context Manager Types (http://docs.python.org/library/stdtypes.html#type
contextmanager) Description of the context manager API from the standard
library documentation.

With Statement Context Managers

(http://docs.python.org/reference/datamodel.html#context-managers) Description
of the context manager API from the Python Reference Guide.

http://docs.python.org/library/stdtypes.html#typecontextmanager
http://docs.python.org/library/stdtypes.html#typecontextmanager
http://docs.python.org/reference/datamodel.html#context-managers

This page intentionally left blank

Chapter 4

DATES AND TIMES

Python does not include native types for dates and times as it does for int, float,
and str, but there are three modules for manipulating date and time values in several
representations.

4.1

e The time module exposes the time-related functions from the underlying C

library. It includes functions for retrieving the clock time and the processor run-
time, as well as basic parsing and string-formatting tools.

The datetime module provides a higher-level interface for date, time, and com-
bined values. The classes in datet ime support arithmetic, comparison, and time
zone configuration.

The calendar module creates formatted representations of weeks, months, and
years. It can also be used to compute recurring events, the day of the week for a
given date, and other calendar-based values.

time—Clock Time

Purpose Functions for manipulating clock time.
Python Version 1.4 and later

The t ime module exposes C library functions for manipulating dates and times. Since
it is tied to the underlying C implementation, some details (such as the start of the
epoch and the maximum date value supported) are platform specific. Refer to the library
documentation for complete details.

173

174 Dates and Times

4.1.1 Wall Clock Time

One of the core functions of the t ime module is t ime (), which returns the number of
seconds since the start of the epoch as a floating-point value.

import time
print ‘The time is:’, time.time ()

Although the value is always a float, actual precision is platform dependent.

$ python time_time.py

The time is: 1291499267.33

The float representation is useful when storing or comparing dates, but it is not
as useful for producing human-readable representations. For logging or printing time,
ctime () can be more useful.

import time

print ’The time 1is :7, time.ctime ()
later = time.time() + 15
print 715 secs from now :’, time.ctime (later)

The second print statement in this example shows how to use ctime () to format
a time value other than the current time.

$ python time_ctime.py

The time is : Sat Dec 4 16:47:47 2010
15 secs from now : Sat Dec 4 16:48:02 2010

4.1.2 Processor Clock Time

While time () returns a wall clock time, clock () returns processor clock time. The
values returned from clock () should be used for performance testing, benchmarking,
etc., since they reflect the actual time the program uses and can be more precise than
the values from time ().

4.1. time—Clock Time 175

import hashlib
import time

Data to use to calculate md5 checksums

data = open(__file_ , ’'rt’).read()

for i in range(5):
h = hashlib.shal ()
print time.ctime(), ’“: $0.3f $%$0.3f’ % (time.time (), time.clock())
for i in range (300000) :
h.update (data)
cksum = h.digest ()

In this example, the formatted ctime () is printed along with the floating-point
values from time () and clock () for each iteration through the loop.

Note: If you want to run the example on your system, you may have to add more
cycles to the inner loop or work with a larger amount of data to actually see a
difference in the times.

$ python time_clock.py

Sat Dec 4 16:47:47 2010 : 1291499267.446 0.028
Sat Dec 4 16:47:48 2010 : 1291499268.844 1.413
Sat Dec 4 16:47:50 2010 : 1291499270.247 2.794
Sat Dec 4 16:47:51 2010 : 1291499271.658 4.171
Sat Dec 4 16:47:53 2010 : 1291499273.128 5.549

Typically, the processor clock does not tick if a program is not doing anything.

import time

for i in range(6, 1, -1):
print ’%s %0.2f %0.2f’ % (time.ctime(),
time.time (),
time.clock())
print ’Sleeping’, i
time.sleep (i)

176 Dates and Times

In this example, the loop does very little work by going to sleep after each iteration.
The time () value increases even while the application is asleep, but the clock ()
value does not.

$ python time_clock_sleep.py

Sat Dec 4 16:47:54 2010 1291499274.65 0.03
Sleeping 6
Sat Dec 4 16:48:00 2010 1291499280.65 0.03
Sleeping 5
Sat Dec 4 16:48:05 2010 1291499285.65 0.03
Sleeping 4
Sat Dec 4 16:48:09 2010 1291499289.66 0.03
Sleeping 3
Sat Dec 4 16:48:12 2010 1291499292.66 0.03
Sleeping 2

Calling sleep () yields control from the current thread and asks it to wait for the
system to wake it back up. If a program has only one thread, this effectively blocks the
app and it does no work.

4.1.3 Time Components

Storing times as elapsed seconds is useful in some situations, but there are times when
a program needs to have access to the individual fields of a date (year, month, etc.). The
time module defines st ruct_t ime for holding date and time values with components
broken out so they are easy to access. Several functions work with struct_time val-
ues instead of floats.

import time

def show_struct (s):

print / tm year :’/, s.tm_year
print ’ tm_mon :/, s.tm_mon
print ’ tm _mday :’, s.tm_mday
print 7 tm _hour :’, s.tm_hour
print / tm min :’/, s.tm_min
print / tm _sec :’, s.tm_sec
print ’ tm _wday :’, s.tm_wday
print / tm yday :’, s.tm_yday
print / tm isdst:’, s.tm_isdst

4.1. time—Clock Time 177

print ‘gmtime:’

show_struct (time.gmtime ())

print ‘\nlocaltime:’

show_struct (time.localtime ())

print ‘\nmktime:’, time.mktime (time.localtime())

The gmtime () function returns the current time in UTC. localtime () returns
the current time with the current time zone applied. mktime () takes a struct_time
instance and converts it to the floating-point representation.

$ python time_struct.py

gmtime:

tm_year
tm_mon
tm_mday
tm_hour
tm_min
tm_sec
tm_wday
tm_yday
tm_isdst:

localtime:

tm_year
tm_mon
tm_mday
tm_hour
tm_min
tm_sec
tm_wday
tm_yday
tm_isdst:

2010
12

21
48
14

338

2010
12

4

16
48
14

5
338
0

mktime: 1291499294.0

4.1.4 Working with Time Zones

The functions for determining the current time depend on having the time zone set,
either by the program or by using a default time zone set for the system. Changing the
time zone does not change the actual time, just the way it is represented.

178 Dates and Times

To change the time zone, set the environment variable Tz, and then call tzset ().
The time zone can be specified with a lot of detail, right down to the start and stop
times for daylight savings time. It is usually easier to use the time zone name and let
the underlying libraries derive the other information, though.

This example program changes the time zone to a few different values and shows
how the changes affect other settings in the time module.

import time
import os

def show_zone_info():

print 7 TZ :/, os.environ.get (’TZ’, ’ (not set)’)

print / tzname:’, time.tzname

print 7 Zone : %d (%d)’ % (time.timezone,
(time.timezone / 3600))

print 7 DST :7, time.daylight

print / Time :’, time.ctime()

print

print ’Default :’
show_zone_info ()

ZONES = [/GMT’,
’Europe/Amsterdam’,

]

for zone in ZONES:
os.environ[’TZ’] = zone
time.tzset ()
print zone, ’7:’
show_zone_info ()

The default time zone on the system used to prepare the examples is US/Eastern.
The other zones in the example change the tzname, daylight flag, and timezone offset

value.

$ python time_timezone.py

Default
TZ : (not set)
tzname: ('EST’, 'EDT')

Zone : 18000 (5)

DST : 1

Time : Sat Dec 4 16:48
GMT

TZ : GMT

tzname: (’'GMT’, ’'GMT')

Zone : 0 (0)

DST : 0

Time : Sat Dec 4 21:48
Europe/Amsterdam

TZ : Europe/Amsterdam

tzname: ('CET’, ’'CEST’)

Zone : =3600 (-1)

DST : 1

Time : Sat Dec 4 22:48

:14 2010

:14 2010

:15 2010

4.1.5 Parsing and Formatting Times

4.1. time—Clock Time

179

The two functions st rptime () and strftime () convert between st ruct_time and
string representations of time values. A long list of formatting instructions is available
to support input and output in different styles. The complete list is documented in the
library documentation for the t ime module.

This example converts the current time from a string to a st ruct_time instance

and back to a string.

import time

def show_struct (s):

print ’ tm_year :’,
print / tm mon :/,
print / tm _mday :’,
print 7 tm _hour :/,
print / tm min :/,
print ’ tm _sec :7/,
print ’ tm _wday :7,
print / tm _yday :’,
print / tm _isdst:’,
now = time.ctime ()

print ‘Now:’, now

n nu nu n n n »nu un n

.tm_year
.tm_mon
.tm_mday
.tm_hour
.tm_min
.tm_sec
.tm_wday

.tm_yday
.tm_isdst

180 Dates and Times

parsed = time.strptime (now)
print ‘\nParsed:’
show_struct (parsed)

print ’‘\nFormatted:’, time.strftime("%a %b %d %H:%M:%S %Y", parsed)

The output string is not exactly like the input, since the day of the month is prefixed
with a zero.

$ python time_strptime.py

Now: Sat Dec 4 16:48:14 2010

Parsed:
tm_year : 2010
tm_mon : 12

tm_mday : 4

tm_hour : 16
tm_min : 48
tm_sec : 14
tm_wday : 5

tm_yday : 338
tm_isdst: -1

Formatted: Sat Dec 04 16:48:14 2010

See Also:

time (http://docs.python.org/lib/module-time.html) Standard library documentation
for this module.

datetime (page 180) The datetime module includes other classes for doing calcu-
lations with dates and times.

calendar (page 191) Work with higher-level date functions to produce calendars or
calculate recurring events.

4.2 datetime—Date and Time Value Manipulation

Purpose The datetime module includes functions and classes for doing
date and time parsing, formatting, and arithmetic.
Python Version 2.3 and later

datetime contains functions and classes for working with dates and times, separately
and together.

http://docs.python.org/lib/module-time.html

4.2. datetime—Date and Time Value Manipulation 181

4.2.1 Times

Time values are represented with the time class. A time instance has attributes
for hour, minute, second, and microsecond and can also include time zone
information.

import datetime

t = datetime.time (1, 2, 3)

print t

print ’hour :’, t.hour

print “minute 7, t.minute
print ’second :/, t.second
print ’‘microsecond:’, t.microsecond
print ‘tzinfo :/, t.tzinfo

The arguments to initialize a time instance are optional, but the default of 0 is
unlikely to be correct.

$ python datetime_time.py

01:02:03

hour 1
minute 2
second : 3
microsecond: 0
tzinfo : None

A time instance only holds values of time, and not a date associated with the time.

import datetime
print ’Farliest :’/, datetime.time.min
print ’‘Latest :’, datetime.time.max
print ’Resolution:’, datetime.time.resolution
The min and max class attributes reflect the valid range of times in a single day.
$ python datetime_time_minmax.py
Earliest : 00:00:00

Latest : 23:59:59.999999
Resolution: 0:00:00.000001

The resolution for t ime is limited to whole microseconds.

182 Dates and Times

import datetime

for m in [1, O, 0.1, 0.6]:
try:
print 7%02.1f :’ % m, datetime.time (0, 0, 0, microsecond=m)
except TypeError, err:
print 'ERROR:’, err

The way floating-point values are treated depends on the version of Python. Ver-
sion 2.7 raises a TypeError, while earlier versions produce a DeprecationWarning
and convert the floating-point number to an integer.

$ python2.7 datetime_time_resolution.py

00:00:00.000001
00:00:00
ERROR: integer argument expected, got float

o O O
o B O O

ERROR: integer argument expected, got float
$ python2.6 datetime_time_resolution.py

1.0 : 00:00:00.000001

0.0 : 00:00:00

datetime_time_resolution.py:16: DeprecationWarning: integer argument
expected, got float

print %02.1f :’ % m, datetime.time (0, 0, 0, microsecond=m)

0.1 : 00:00:00

0.6 : 00:00:00

4.2.2 Dates

Calendar date values are represented with the date class. Instances have attributes for
year, month, and day. It is easy to create a date representing the current date using
the today () class method.

import datetime

today = datetime.date.today ()

print today

print ‘ctime :’, today.ctime()

tt = today.timetuple ()

print “tuple : tm_year =/, tt.tm_year

print ’ tm_mon

print ’ tm_mday
print tm_hour
print tm min

print ’ tm_sec

print ’ tm_wday
print ’ tm_yday
print / tm_isdst
print ‘ordinal:’, today.
print ’‘Year :’, today.
print “Mon :/, today.
print ’Day 7, today.

4.2. datetime—Date and Time Value Manipulation

=/, tt.tm_mon
=/, tt.tm_mday
=7, tt.tm_hour
=/, tt.tm_min
=7, tt.tm_sec
=/, tt.tm_wday
=/, tt.tm_yday
=/, tt.tm_isdst

toordinal ()

year

month

day

This example prints the current date in several formats.

$ python datetime_date.py

27 00:00:00 2010

2010-11-27

ctime Sat Nov

tuple tm_year = 2010
tm_mon =11
tm_mday = 27
tm_hour = 0
tm_min =0
tm_sec =0
tm_wday = 5
tm_yday = 331
tm_isdst = -1

ordinal: 734103

Year 2010

Mon 11

Day 27

183

There are also class methods for creating instances from POSIX timestamps or
integers representing date values from the Gregorian calendar, where January 1 of the
year 1 is 1 and each subsequent day increments the value by 1.

import datetime

import time

o = 733114

print ‘o

184 Dates and Times

print ’fromordinal (o) :/, datetime.date.fromordinal (o)
t = time.time ()
print ‘'t 7, 0t

print ’fromtimestamp (t):’, datetime.date.fromtimestamp (t)

This example illustrates the different value types used by fromordinal () and

fromtimestamp ().

$ python datetime_date_fromordinal.py

o : 733114
fromordinal (o) : 2008-03-13
t : 1290874810.14

fromtimestamp (t): 2010-11-27

As with t ime, the range of date values supported can be determined using the min
and max attributes.

import datetime
print ’Farliest :’/, datetime.date.min

print ’Latest :/, datetime.date.max
print ’Resolution:’, datetime.date.resolution

The resolution for dates is whole days.

$ python datetime_date_minmax.py
Earliest : 0001-01-01

Latest ¢ 9999-12-31
Resolution: 1 day, 0:00:00

Another way to create new date instances uses the replace () method of an
existing date.

import datetime

dl = datetime.date (2008, 3, 29)
print ’dl:’, dl.ctime()

4.2. datetime—Date and Time Value Manipulation 185

d2 = dl.replace(year=2009)
print ’d2:’, d2.ctime()

This example changes the year, leaving the day and month unmodified.

$ python datetime_date_replace.py

dl: Sat Mar 29 00:00:00 2008
d2: Sun Mar 29 00:00:00 2009

4.2.3 timedeltas

Future and past dates can be calculated using basic arithmetic on two datetime
objects, or by combining a datetime with a timedelta. Subtracting dates produces
a timedelta, and a timedelta can be added or subtracted from a date to produce
another date. The internal values for a timedelta are stored in days, seconds, and
microseconds.

import datetime

print "microseconds:", datetime.timedelta (microseconds=1)
print "milliseconds:", datetime.timedelta (milliseconds=1)

(

(
print "seconds :", datetime.timedelta (seconds=1)
print "minutes :", datetime.timedelta (minutes=1)
print "hours :", datetime.timedelta (hours=1)
print "days :", datetime.timedelta (days=1)
print "weeks : ", datetime.timedelta (weeks=1)

Intermediate level values passed to the constructor are converted into days, sec-
onds, and microseconds.

$ python datetime_timedelta.py

microseconds: 0:00:00.000001
milliseconds: 0:00:00.001000
seconds 0:00:01
minutes : 0:01:00
hours : 1:00:00
days 1 day, 0:00:00
weeks 7 days, 0:00:00

186 Dates and Times

The full duration of a timedelta can be retrieved as a number of seconds using
total_seconds ().

import datetime

for delta in [datetime.timedelta (microseconds=1),
datetime.timedelta (milliseconds=1),
datetime.timedelta (seconds=1),
datetime.timedelta (minutes=1),
datetime.timedelta (hours=1),
datetime.timedelta (days=1),
datetime.timedelta (weeks=1),
1:
print ’%15s = $%s seconds’ % (delta, delta.total_seconds())

The return value is a floating-point number, to accommodate subsecond durations.

$ python datetime_timedelta_total_seconds.py

0:00:00.000001 = 1le-06 seconds
0:00:00.001000 = 0.001 seconds
0:00:01 = 1.0 seconds
0:01:00 = 60.0 seconds
1:00:00 = 3600.0 seconds
0:00:00 = 86400.0 seconds
0:00:00 = 604800.0 seconds

4.2.4 Date Arithmetic
Date math uses the standard arithmetic operators.
import datetime

today = datetime.date.today ()
print ’Today :’, today

one_day = datetime.timedelta (days=1)
print ’One day :’, one_day

yesterday = today - one_day
print ’Yesterday:’, yesterday

4.2. datetime—Date and Time Value Manipulation 187

tomorrow = today + one_day
print ’Tomorrow :’, tomorrow

print
print ’tomorrow - yesterday:’, tomorrow - yesterday
print ’yesterday - tomorrow:’, yesterday - tomorrow

This example with date objects illustrates using timedelta objects to compute
new dates, and subtracting date instances to produce timedeltas (including a negative
delta value).

$ python datetime_date_math.py

Today : 2010-11-27
One day : 1 day, 0:00:00
Yesterday: 2010-11-26
Tomorrow : 2010-11-28

tomorrow - yesterday: 2 days, 0:00:00
yesterday - tomorrow: -2 days, 0:00:00

4.2.5 Comparing Values

Both date and time values can be compared using the standard comparison operators to
determine which is earlier or later.

import datetime
import time

print ‘Times:’

tl = datetime.time (12, 55, 0)
print 7 tl1:7, tl

t2 = datetime.time (13, 5, 0)
print 7 t2:/, t2

print 7 t1 < t2:7, tl < t2

print

print ’‘Dates:’

dl = datetime.date.today ()

print 7 di:’/, dl

d2 = datetime.date.today() + datetime.timedelta(days=1)

188 Dates and Times

print 7 d2:/, d2
print 7 dl > d2:7, dl > d2

All comparison operators are supported.

$ python datetime_comparing.py

Times:
tl: 12:55:00
t2: 13:05:00
tl < t2: True

Dates:
dl: 2010-11-27
d2: 2010-11-28
dl > d2: False

4.2.6 Combining Dates and Times

Use the datetime class to hold values consisting of both date and time components.
As with date, there are several convenient class methods to create dat et ime instances
from other common values.

import datetime

print ’Now :/, datetime.datetime.now ()
print ‘Today :’/, datetime.datetime.today ()
print ’UTC Now:’, datetime.datetime.utcnow ()

print

FIELDS = [’year’, ’month’, ’‘day’,
"hour’, ’‘minute’, ’second’, ’‘microsecond’,
]

d = datetime.datetime.now ()

for attr in FIELDS:
print ’%15s: $%$s’ % (attr, getattr(d, attr))

As might be expected, the datetime instance has all attributes of both a date
and a t ime object.

4.2. datetime—Date and Time Value Manipulation 189

$ python datetime_datetime.py

2010-11-27 11:20:10.479880
Today : 2010-11-27 11:20:10.481494
UTCNow: 2010-11-27 16:20:10.481521

year: 2010
month: 11

day: 27

hour: 11

minute: 20
second: 10
microsecond: 481752

Just as with date, datetime provides convenient class methods for creating new
instances. It also includes fromordinal () and fromtimestamp ().

import datetime

t = datetime.time (1, 2, 3)
print ‘'t :/, t

d = datetime.date.today ()
print ’d :’/, d

dt = datetime.datetime.combine (d, t)
print ’dt:’, dt

combine () creates datetime instances from one date and one time instance.
$ python datetime_datetime_combine.py

t : 01:02:03
d : 2010-11-27
dt: 2010-11-27 01:02:03

4.2.7 Formatting and Parsing

The default string representation of a datetime object uses the ISO-8601 for-
mat (YYYY-MM-DDTHH:MM: SS.mmmmmm). Alternate formats can be generated using
strftime ().

190 Dates and Times

import datetime
format = "%a %b %d $H:8M:%S BY"

today = datetime.datetime.today ()
print “ISO :’7, today

s = today.strftime (format)
print ’strftime:’, s

d = datetime.datetime.strptime (s, format)
print ’strptime:’, d.strftime (format)

Usedatetime.strptime () toconvertformatted strings to datet ime instances.
$ python datetime_datetime_strptime.py

IS0 : 2010-11-27 11:20:10.571582
strftime: Sat Nov 27 11:20:10 2010
strptime: Sat Nov 27 11:20:10 2010

4.2.8 Time Zones

Within datetime, time zones are represented by subclasses of tzinfo. Since tzinfo
is an abstract base class, applications need to define a subclass and provide appropriate
implementations for a few methods to make it useful. Unfortunately, datetime does
not include any actual ready-to-use implementations, although the documentation does
provide a few sample implementations. Refer to the standard library documentation
page for examples using fixed offsets, as well as a DST-aware class and more details
about creating custom time zone classes. pytz is also a good source for time zone
implementation details.

See Also:

datetime (http://docs.python.org/lib/module-datetime.html) The standard library
documentation for this module.

calendar (page 191) The calendar module.

time (page 173) The t ime module.

dateutil (http://l1abix.org/python-dateutil) dateutil from Labix extends the
datetime module with additional features.

WikiPedia: Proleptic Gregorian calendar
(http://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar) A description
of the Gregorian calendar system.

http://docs.python.org/lib/module-datetime.html
http://labix.org/python-dateutil
http://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar

4.3. calendar—Work with Dates 191

pytz (http://pytz.sourceforge.net/) World Time Zone database.

ISO 8601 (http://www.iso.org/iso/support/faqs/faqs_widely_used_standards/
widely_used_standards_other/date_and_time_format.htm) The stan-
dard for numeric representation of dates and time.

4.3 calendar—Work with Dates

Purpose The calendar module implements classes for working with
dates to manage year-, month-, and week-oriented values.
Python Version 1.4, with updates in 2.5

The calendar module defines the Calendar class, which encapsulates calculations
for values such as the dates of the weeks in a given month or year. In addition, the
TextCalendar and HTMLCalendar classes can produce preformatted output.

4.3.1 Formatting Examples

The prmonth () method is a simple function that produces the formatted text output
for a month.

import calendar

c = calendar.TextCalendar (calendar.SUNDAY)
c.prmonth (2011, 7)

The example configures TextCalendar to start weeks on Sunday, following the
American convention. The default is to use the European convention of starting a week
on Monday.

Here is what the output looks like.

$ python calendar_textcalendar.py

July 2011

Su Mo Tu We Th Fr Sa

1 2

3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30
31

http://pytz.sourceforge.net/
http://www.iso.org/iso/support/faqs/faqs_widely_used_standards/widely_used_standards_other/date_and_time_format.htm
http://www.iso.org/iso/support/faqs/faqs_widely_used_standards/widely_used_standards_other/date_and_time_format.htm

192 Dates and Times

A similar HTML table can be produced with HTMLCalendar and
formatmonth (). The rendered output looks roughly the same as the plain-text
version, but is wrapped with HTML tags. Each table cell has a class attribute
corresponding to the day of the week so the HTML can be styled through CSS.

To produce output in a format other than one of the available defaults, use
calendar to calculate the dates and organize the values into week and month
ranges, and then iterate over the result. The weekheader (), monthcalendar (), and
yeardays2calendar () methods of Calendar are especially useful for that.

Calling yeardays2calendar () produces a sequence of “month row” lists. Each
list includes the months as another list of weeks. The weeks are lists of tuples made up
of day number (1-31) and weekday number (0-6). Days that fall outside of the month
have a day number of 0.

import calendar
import pprint

cal = calendar.Calendar (calendar.SUNDAY)

cal_data = cal.yeardays2calendar (2011, 3)
print ’lIen(cal_data) :’, len(cal_data)

top_months = cal_datal[0]
print ’len (top_months) :7, len(top_months)

first_month = top_months[0]
print ’len(first_month) :/, len(first_month)

print ’first_month:’
pprint.pprint (first_month)

Calling yeardays2calendar (2011, 3) returns data for 2011, organized with
three months per row.

$ python calendar_yeardays2calendar.py

len (cal_data) !
len (top_months) : 3
len (first_month) : 6

first_month:
(¢, e, (o, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 51,
[(2, 6), (3, 0), (4, 1), (5, 2), (6, 3), (7, 4), (8, 51,

4.3. calendar—Work with Dates

(¢, 6, (o, 0), (11, 1), (12, 2), (13, 3), (14, 4), (15, 5
[(l6, 6), (17, 0), (18, 1), (19, 2), (20, 3), (21, 4), (22,
[(23, 6), (24, 0), (25, 1), (26, 2), (27, 3), (28, 4), (29,
[(o, 6), (31, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5)1]
This is equivalent to the data used by formatyear ().
import calendar
cal = calendar.TextCalendar (calendar.SUNDAY)
print cal.formatyear (2011, 2, 1, 1, 3)
For the same arguments, formatyear () produces this output.
$ python calendar_formatyear.py
2011
January February March
Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr
1 1 2 3 4 5 1 2 3 4
2 3 4 5 6 7 8 6 7 8 9 10 11 12 6 7 8 9 10 11
9 10 11 12 13 14 15 13 14 15 16 17 18 19 13 14 15 16 17 18
16 17 18 19 20 21 22 20 21 22 23 24 25 26 20 21 22 23 24 25
23 24 25 26 27 28 29 27 28 27 28 29 30 31
30 31
April May June
Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr
1 2 1 2 3 4 5 6 7 1 2 3
3 4 5 6 7 8 9 8 9 10 11 12 13 14 5 6 7 8 910
10 11 12 13 14 15 16 15 16 17 18 19 20 21 12 13 14 15 16 17
17 18 19 20 21 22 23 22 23 24 25 26 27 28 19 20 21 22 23 24
24 25 26 27 28 29 30 29 30 31 26 27 28 29 30
July August September
Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr
1 2 1 2 3 4 5 6 1 2
3 4 5 6 7 8 9 7 8 910 11 12 13 4 5 6 7 8 9
10 11 12 13 14 15 16 14 15 16 17 18 19 20 11 12 13 14 15 16
17 18 19 20 21 22 23 21 22 23 24 25 26 27 18 19 20 21 22 23
24 25 26 27 28 29 30 28 29 30 31 25 26 27 28 29 30

31

)JI
5)]
]

Sa

12
19
26

Sa

11
18
25

Sa

10
17
24

4

193

194 Dates and Times

October November December
Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa
1 1 2 3 4 5 1 2 3

2 3 4 5 6 7 8 6 7 8 9 10 11 12 4 5 6 7 8 910
9 10 11 12 13 14 15 13 14 15 16 17 18 19 11 12 13 14 15 16 17
16 17 18 19 20 21 22 20 21 22 23 24 25 26 18 19 20 21 22 23 24
23 24 25 26 27 28 29 27 28 29 30 25 26 27 28 29 30 31
30 31

The day_name, day_abbr, month_name, and month_abbr module attributes
are useful for producing custom-formatted output (e.g., to include links in the HTML
output). They are automatically configured correctly for the current locale.

4.3.2 Calculating Dates

Although the calendar module focuses mostly on printing full calendars in various
formats, it also provides functions useful for working with dates in other ways, such as
calculating dates for a recurring event. For example, the Python Atlanta Users Group
meets on the second Thursday of every month. To calculate the meeting dates for a year,
use the return value of monthcalendar ().

import calendar
import pprint

pprint.pprint (calendar.monthcalendar (2011, 7))

Some days have a 0 value. Those are days of the week that overlap with the given
month, but that are part of another month.

$ python calendar_monthcalendar.py

0, 0, 0, 0, 1, 2, 31,

4, 5, 6, 7, 8, 9, 107,

11, 12, 13, 14, 15, 16, 171,
19, 20, 21, 22, 23, 241,
26, 27, 28, 29, 30, 317]]

The first day of the week defaults to Monday. It is possible to change that setting
by calling setfirstweekday (), but since the calendar module includes constants
for indexing into the date ranges returned by monthcalendar (), it is more convenient
to skip that step in this case.

4.3. calendar—Work with Dates 195

To calculate the group meeting dates for 2011, assuming the second Thursday of

every month, the 0 values indicate whether the Thursday of the first week is included
in the month (or if the month starts, for example, on a Friday).

import calendar

Show every month

for

month in range (1, 13):

Compute the dates for each week that overlaps the month
c = calendar.monthcalendar (2011, month)

first_week = c[0]

second_week = c[1]

third_week = c[2]

If there is a Thursday in the first week, the second Thursday
is in the second week. Otherwise, the second Thursday must
be in the third week.
if first_week[calendar.THURSDAY]:
meeting_date = second_week[calendar.THURSDAY]
else:
meeting_date = third_week[calendar.THURSDAY]

o

print 78%3s: %2s’ % (calendar.month_abbr[month], meeting_date)

So, the meeting schedule for this year is

$ python calendar_secondthursday.py

Jan:
Feb:
Mar:
Apr:
May:
Jun:
Jul:
Aug:
Sep:
Oct:
Nov:
Dec:

13
10
10
14
12

9
14
11

8
13
10

8

196 Dates and Times

See Also:

calendar (http://docs.python.org/library/calendar.html) The standard library docu-
mentation for this module.

time (page 173) Lower-level time functions.

datetime (page 180) Manipulate date values, including timestamps and time zones.

http://docs.python.org/library/calendar.html

Chapter 5

MATHEMATICS

As a general-purpose programming language, Python is frequently used to solve math-
ematical problems. It includes built-in types for managing integers and floating-point
numbers, which are suitable for the basic math that might appear in an average applica-
tion. The standard library includes modules for more advanced needs.

Python’s built-in floating-point numbers use the underlying double representa-
tion. They are sufficiently precise for most programs with mathematical requirements,
but when more accurate representations of noninteger values are needed, the decimal
and fractions modules will be useful. Arithmetic with decimal and fractional values
retains precision, but it is not as fast as the native float.

The random module includes a uniform distribution pseudorandom number gen-
erator, as well as functions for simulating many common nonuniform distributions.

The math module contains fast implementations of advanced mathematical
functions, such as logarithms and trigonometric functions. The full complement of
IEEE functions usually found in the native platform C libraries is available through
the module.

5.1 decimal—Fixed and Floating-Point Math

Purpose Decimal arithmetic using fixed and floating-point numbers.
Python Version 2.4 and later

The decimal module implements fixed and floating-point arithmetic using the model
familiar to most people, rather than the IEEE floating-point version implemented by
most computer hardware and familiar to programmers. A Decimal instance can rep-
resent any number exactly, round it up or down, and apply a limit to the number of
significant digits.

197

198 Mathematics

5.1.1 Decimal

Decimal values are represented as instances of the Decimal class. The constructor
takes as argument one integer or string. Floating-point numbers can be converted to a
string before being used to create a Decimal, letting the caller explicitly deal with the
number of digits for values that cannot be expressed exactly using hardware floating-
point representations. Alternately, the class method from_float () converts to the
exact decimal representation.

import decimal

fmt = 7{0:<25} {(1:<25}"
print fmt.format (’Input’, ’Output’)
print fmt.format (-7 * 25, -/ % 25)

Integer
print fmt.format (5, decimal.Decimal (5))

String
print fmt.format (”’3.14’, decimal.Decimal(’3.147))

Float
f =20.1
print fmt.format (repr(f), decimal.Decimal (str(f)))
print fmt.format (7%.23g” % £,
str (decimal.Decimal.from_float (f)) [:25])

The floating-point value of 0.1 is not represented as an exact value in binary, so
the representation as a float is different from the Decimal value. It is truncated to

25 characters in this output.

$ python decimal_create.py

Input Output

5 5

3.14 3.14

0.1 0.1
0.10000000000000000555112 0.10000000000000000555111

Decimals can also be created from tuples containing a sign flag (0 for positive, 1
for negative), a tuple of digits, and an integer exponent.

5.1. decimal—Fixed and Floating-Point Math 199

import decimal

Tuple

t = (1, (1, 1), -2)

print ’Input :/, t

print ’“Decimal:’, decimal.Decimal (t)

The tuple-based representation is less convenient to create, but it does offer a
portable way of exporting decimal values without losing precision. The tuple form
can be transmitted through the network or stored in a database that does not support
accurate decimal values, and then turned back into a Decimal instance later.

$ python decimal_tuple.py

Input : (1, (1, 1), -2)
Decimal: -0.11

5.1.2 Arithmetic

Decimal overloads the simple arithmetic operators so instances can be manipulated in
much the same way as the built-in numeric types.

import decimal

a = decimal.Decimal (’5.17)
b = decimal.Decimal (73.147)
c =4

d = 3.14

print ’a =/, repr(a)
print ‘b =/, repr (b)
print ‘c =/, repr(c)
print ’d =/, repr(d)
print

print ‘a + b =/, a + Db
print ‘a - b =/, a - Db
print a » b =/, a b
print ’a b =7, a b
print

print ‘a + ¢ =/, a + ¢

print 'a - ¢ =/, a - ¢

200 Mathematics

print ‘a x ¢ =/,
print ‘a / ¢ =', a / ¢
print

print ‘a + d =/,
try:
print a + d
except TypeError, e:
print e

Decimal operators also accept integer arguments, but floating-point values must
be converted to Decimal instances.

$ python decimal_operators.py

= Decimal(’5.1")
Decimal (' 3.14")
=4

= 3.14

0O 0 O o
I

= 8.24

= 1.96

= 16.014

= 1.624203821656050955414012739

[V]
|

o o o O
|

= 9.1
1.1
= 20.4
= 1.275

[V VR
|

Q Q0 o Q
I

a + d = unsupported operand type(s) for +: ’'Decimal’ and ’float’

Beyond basic arithmetic, Decimal includes the methods to find the base 10 and
natural logarithms. The return values from 10g10 () and 1n () are Decimal instances,
so they can be used directly in formulas with other values.

5.1.3 Special Values

In addition to the expected numerical values, Decimal can represent several special
values, including positive and negative values for infinity, “not a number,” and zero.

import decimal

for value in [’"Infinity’, ’NaN’, 707]:

5.1. decimal—Fixed and Floating-Point Math 201

print decimal.Decimal (value), decimal.Decimal(’-" + value)
print

Math with infinity
print ’Infinity + 1:’, (decimal.Decimal(’/Infinity’) + 1)
print ’-Infinity + 1:’, (decimal.Decimal(’/-Infinity’) + 1)

Print comparing NaN
print decimal.Decimal (NaN’) == decimal.Decimal (’Infinity”’)
print decimal.Decimal (NaN’) != decimal.Decimal (1)

Adding to infinite values returns another infinite value. Comparing for equality
with NaN always returns false, and comparing for inequality always returns true. Com-
paring for sort order against NaN is undefined and results in an error.

$ python decimal_special.py

Infinity -Infinity
NaN —-NaN
0 -0

Infinity + 1: Infinity
—Infinity + 1: -Infinity
False

True

5.1.4 Context

So far, the examples all have used the default behaviors of the decimal module.
It is possible to override settings such as the precision maintained, how rounding is
performed, error handling, etc., by using a context. Contexts can be applied for all
Decimal instances in a thread or locally within a small code region.

Current Context

To retrieve the current global context, use getcontext ().

import decimal
import pprint

context = decimal.getcontext ()

print ’Emax =/, context.Emax
print “Emin =/, context.Emin

202 Mathematics

print ’‘capitals =’, context.capitals
print ’‘prec =/, context.prec
print ’rounding =’, context.rounding
print ’flags =’

pprint.pprint (context.flags)

print ’‘traps =’

pprint.pprint (context.traps)

This example script shows the public properties of a Context.

$ python decimal_getcontext.py

Emax = 999999999

Emin = -999999999
capitals = 1

prec = 28

rounding = ROUND_HALF_EVEN

flags =
{<class ’'decimal.Clamped’>: O,
<class ’'decimal.InvalidOperation’>: O,
<class ’'decimal.DivisionByZero’>: 0,
<class ’'decimal.Inexact’>: 0,
<class ’'decimal.Rounded’>: O,
<class ’'decimal.Subnormal’>: 0,
<class ’"decimal.Overflow’>: 0,
<class ’'decimal.Underflow’>: 0}
traps =
{<class ’'decimal.Clamped’>: O,
<class ’'decimal.InvalidOperation’>: 1,
<class ’'decimal.DivisionByZero’>: 1,
<class ’'decimal.Inexact’>: O,
<class ’'decimal.Rounded’>: 0,
<class ’'decimal.Subnormal’>: O,
<class ’'decimal.Overflow’>: 1,
<class ’'decimal.Underflow’>: 0}

Precision

The prec attribute of the context controls the precision maintained for new values
created as a result of arithmetic. Literal values are maintained as described.

import decimal

d = decimal.Decimal (70.123456")
for i in range(4):

5.1. decimal—Fixed and Floating-Point Math 203

decimal.getcontext () .prec = i
print i, 7:/, 4, d x 1

To change the precision, assign a new value directly to the attribute.

$ python decimal_precision.py

0 : 0.123456 0

1 : 0.123456 0.1

2 : 0.123456 0.12
3 : 0.123456 0.123
Rounding

There are several options for rounding to keep values within the desired precision.

ROUND_CEILING Always round upward toward infinity.

ROUND_DOWN Always round toward zero.

ROUND_FLOOR Always round down toward negative infinity.

ROUND_HALF_DOWN Round away from zero if the last significant digit is greater than
or equal to 5; otherwise, round toward zero.

ROUND_HALF_EVEN Like ROUND_HALF_DOWN, except that if the value is 5, then the
preceding digit is examined. Even values cause the result to be rounded down,
and odd digits cause the result to be rounded up.

ROUND_HALF_UP Like ROUND_HALF_DOWN, except if the last significant digit is 5, the
value is rounded away from zero.

ROUND_UP Round away from zero.

ROUND_05UP Round away from zero if the last digit is 0 or 5; otherwise, round toward
Zero.

import decimal
context = decimal.getcontext ()

ROUNDING_MODES = [
"ROUND_CEILING’,
"ROUND_DOWN ",
"ROUND_FLOOR”,
"ROUND_HALF_DOWN"’,
’ROUND_HALF _EVEN',
’ROUND_HALF UP’,
’ROUND_UP’,
"ROUND_O05UP”,

1
header_fmt = 7{:10} 7 + 7 7.join([’{:"8}"] * 6)

204 Mathematics

print header_fmt.format (/7 7,
’1/8 (1)’, ’-1/8 (1)’,
’1/8 (2)7, '-1/8 (2)7,
’1/8 (3)7, '-1/8 (3)7,
)
for rounding_mode in ROUNDING_MODES:
print 7{0:10}’.format (rounding_mode.partition(’_") [-11]),
for precision in [1, 2, 3]:
context.prec = precision
context.rounding = getattr (decimal, rounding_mode)
value = decimal.Decimal(l) / decimal.Decimal (8)
print 7 {0:78}’.format (value),
value = decimal.Decimal (-1) / decimal.Decimal (8)
print 7 {0:78}’.format (value),
print

This program shows the effect of rounding the same value to different levels of
precision using the different algorithms.

$ python decimal_rounding.py

1/8 (1) -1/8 (1) 1/8 (2) -1/8 (2) 1/8 (3) -1/8 (3)
CEILING 0.2 -0.1 0.13 -0.12 0.125 -0.125
DOWN 0.1 -0.1 0.12 -0.12 0.125 -0.125
FLOOR 0.1 -0.2 0.12 -0.13 0.125 -0.125
HALF_DOWN 0.1 -0.1 0.12 -0.12 0.125 -0.125
HALF_EVEN 0.1 -0.1 0.12 -0.12 0.125 -0.125
HALF_UP 0.1 -0.1 0.13 -0.13 0.125 -0.125
Up 0.2 -0.2 0.13 -0.13 0.125 -0.125
05UP 0.1 -0.1 0.12 -0.12 0.125 -0.125

Local Context

Using Python 2.5 or later, the context can be applied to a block of code using the with
statement.

import decimal

with decimal.localcontext () as c:
c.prec = 2
print ’‘Local precision:’, c.prec
print ’3.14 / 3 =’, (decimal.Decimal(’3.14’) / 3)

5.1. decimal—Fixed and Floating-Point Math 205

print
print ’Default precision:’, decimal.getcontext ().prec
print 73.14 / 3 =’, (decimal.Decimal(’3.147) / 3)

The Context supports the context manager API used by with, so the settings only
apply within the block.

$ python decimal_context_manager.py

Local precision: 2
3.14 / 3 =1.0

Default precision: 28
3.14 / 3 = 1.046666666666666666666666667

Per-Instance Context

Contexts also can be used to construct Decimal instances, which then inherit from the
context the precision and rounding arguments to the conversion.

import decimal

Set up a context with limited precision
c = decimal.getcontext () .copy ()
c.prec = 3

Create our constant
pl = c.create_decimal (73.1415")

The constant value is rounded off
print ’PI :7, pi

The result of using the constant uses the global context
print ’'RESULT:’, decimal.Decimal(’2.01’) * pi

This lets an application select the precision of constant values separately from the
precision of user data, for example.

$ python decimal_instance_context.py

PI : 3.14
RESULT: 6.3114

206 Mathematics

Threads

The “global” context is actually thread-local, so each thread can potentially be config-
ured using different values.

import decimal
import threading
from Queue import PriorityQueue

class Multiplier (threading.Thread) :
def _ _init__ (self, a, b, prec, q):
self.a = a
self.b = b
self.prec = prec
self.qg = g
threading.Thread.__init__ (self)
def run(self):
c = decimal.getcontext () .copy ()
c.prec = self.prec
decimal.setcontext (c)
self.g.put ((self.prec, a * b))
return

a decimal .Decimal (73.147)

b decimal.Decimal (71.2347)

A PriorityQueue will return values sorted by precision, no matter
#

q

what order the threads finish.
= PriorityQueue ()
threads = [Multiplier(a, b, i, g) for i in range(l, 6)]
for t in threads:
t.start ()

for t in threads:
t.Jjoin ()

for i in range(5):
prec, value = g.get ()
print prec, ‘\t’, value

This example creates a new context using the specified value, and then installs it
within each thread.

5.2. fractions—Rational Numbers 207

$ python decimal_thread_context.py

1 4

2 3.9

3 3.87

4 3.875
5 3.8748
See Also:

decimal (http://docs.python.org/library/decimal.html) The standard library docu-
mentation for this module.

Floating Point (http://en.wikipedia.org/wiki/Floating_point) Wikipedia article on
floating-point representations and arithmetic.

Floating Point Arithmetic: Issues and Limitations
(http://docs.python.org/tutorial/floatingpoint.html) Article from the Python
tutorial describing floating-point math representation issues.

5.2 fractions—Rational Numbers
Purpose Implements a class for working with rational numbers.

Python Version 2.6 and later

The Fraction class implements numerical operations for rational numbers based on
the API defined by Rational in the numbers module.

5.2.1 Creating Fraction Instances

As with the decimal module, new values can be created in several ways. One easy
way is to create them from separate numerator and denominator values, as follows.

import fractions
for n, d in [(1, 2), (2, 4), (3, 6) 1:

f = fractions.Fraction(n, d)
print ’%s/%$s = %s’ % (n, d, f)

http://docs.python.org/library/decimal.html
http://en.wikipedia.org/wiki/Floating_point
http://docs.python.org/tutorial/.oatingpoint.html

208 Mathematics

The lowest common denominator is maintained as new values are computed.

$ python fractions_create_integers.py

1/2 = 1/2
2/4 = 1/2
3/6 = 1/2

Another way to create a Fraction is to use a string representation of <numera-

tor> / <denominator>

import fractions
for s in [71/27, 72/4’, '3/67 1:

f = fractions.Fraction(s)

o)

print ’%s = %s’ % (s, f)
The string is parsed to find the numerator and denominator values.

$ python fractions_create_strings.py

1/2 = 1/2
2/4 = 1/2
3/6 = 1/2

Strings can also use the more usual decimal or floating-point notation of a series
of digits separated by a period.

import fractions
for s in [Y0.57, 71.57, 2.0’]:
f = fractions.Fraction (s)

print ’%s = %s’ % (s, f)

The numerator and denominator values represented by the floating-point value are
computed automatically.

$ python fractions_create_strings_floats.py

0.5 =1/2
1.5 = 3/2
2.0 =2

5.2. fractions—Rational Numbers 209

There are also class methods for creating Fraction instances directly from other
representations of rational values, such as float or Decimal.

import fractions

for v in [0.1, 0.5, 1.5, 2.0 1:
print ’%s = %s’ % (v, fractions.Fraction.from_ float (v))

Floating-point values that cannot be expressed exactly may yield unexpected
results.

$ python fractions_from_float.py

3602879701896397/36028797018963968
1/2

3/2

2

N P O O
o U1 U =
Il

Using decimal representations of the values gives the expected results.

import decimal
import fractions

for v in [decimal.Decimal (’0.17),
decimal.Decimal (70.57),
decimal.Decimal (“1.57),
decimal.Decimal (72.07),
]:
print ’%s = $s’ % (v, fractions.Fraction.from_decimal (v))

The internal implementation of the decimal does not suffer from the precision
errors of the standard floating-point representation.

$ python fractions_from_decimal.py

= 1/10
= 1/2
= 3/2
=2

N R O O
o o Uk
|

210 Mathematics

5.2.2 Arithmetic

Once the fractions are instantiated, they can be used in mathematical expressions.

import fractions

f1l
£2

fractions.Fraction (1, 2)

fractions.Fraction (3, 4)

print ’%s + %s = %s’
print ’%s - $s = $%s’

(f1, f£2, f1 + £2)
(£1, f2, £f1 - £2)
(£1, f£2, £f1 % £2)
(f1, f2, f1 / £2)

print ’%s + $s = %s’
print ’%s / %s = $%s’

o° o° o° oo

All standard operators are supported.

$ python fractions_arithmetic.py

1/2 + 3/4 = 5/4
1/2 - 3/4 = -1/4
1/2 = 3/4 = 3/8
1/2 / 3/4 = 2/3

5.2.3 Approximating Values

A useful feature of Fraction is the ability to convert a floating-point number to an
approximate rational value.

import fractions
import math

print ’PI =/, math.pi

f_pi = fractions.Fraction(str (math.pi))
print ’‘No limit =/, f_pi

for i in [1, 6, 11, 60, 70, 90, 100]:

limited = f_pi.limit_denominator (i)
print 7{0:8} = {1}’.format (i, limited)

The value of the fraction can be controlled by limiting the denominator size.

5.3. random—Pseudorandom Number Generators 211

$ python fractions_limit_denominator.py

= 3.14159265359
No limit = 314159265359/100000000000

1 =3

6 = 19/6
11 = 22/7
60 = 179/57
70 = 201/64
90 = 267/85

100 = 311/99

See Also:

fractions (http://docs.python.org/library/fractions.html) The standard library doc
umentation for this module.

decimal (page 197) The decimal module provides an API for fixed and floating-
point math.

numbers (http://docs.python.org/library/numbers.html) Numeric abstract base
classes.

5.3 random—Pseudorandom Number Generators

Purpose Implements several types of pseudorandom number generators.
Python Version 1.4 and later

The random module provides a fast pseudorandom number generator based on the
Mersenne Twister algorithm. Originally developed to produce inputs for Monte Carlo
simulations, Mersenne Twister generates numbers with nearly uniform distribution and
a large period, making it suited for a wide range of applications.

5.3.1 Generating Random Numbers
The random () function returns the next random floating-point value from the
generated sequence. All return values fall within the range 0 <= n < 1.0.

import random

for i in xrange (5):
print 7%$04.3f’ % random.random(),
print

http://docs.python.org/library/fractions.html
http://docs.python.org/library/numbers.html

212 Mathematics

Running the program repeatedly produces different sequences of numbers.
$ python random_random.py
0.809 0.485 0.521 0.800 0.247
$ python random_random.py
0.614 0.551 0.705 0.479 0.659
To generate numbers in a specific numerical range, use uniform () instead.

import random

for i in xrange (5):
print ’%$04.3f’ % random.uniform(l, 100),
print

Pass minimum and maximum values, and uniform () adjusts the return values
from random () using the formulamin + (max - min) * random().

$ python random_uniform.py

78.558 96.734 74.521 52.386 98.499

5.3.2 Seeding

random () produces different values each time it is called and has a very large period
before it repeats any numbers. This is useful for producing unique values or variations,
but there are times when having the same data set available to be processed in different
ways is useful. One technique is to use a program to generate random values and save
them to be processed by a separate step. That may not be practical for large amounts of
data, though, so random includes the seed () function for initializing the pseudoran-
dom generator so that it produces an expected set of values.

import random
random.seed (1)
for i in xrange (5):

print ’%04.3f’ % random.random(),
print

5.3. random—Pseudorandom Number Generators 213

The seed value controls the first value produced by the formula used to produce
pseudorandom numbers, and since the formula is deterministic, it also sets the full se-
quence produced after the seed is changed. The argument to seed () can be any hash-
able object. The default is to use a platform-specific source of randomness, if one is
available. Otherwise, the current time is used.

$ python random_seed.py
0.134 0.847 0.764 0.255 0.495
$ python random_seed.py

0.134 0.847 0.764 0.255 0.495

5.3.3 Saving State

The internal state of the pseudorandom algorithm used by random() can be saved
and used to control the numbers produced in subsequent runs. Restoring the previous
state before continuing reduces the likelihood of repeating values or sequences of val-
ues from the earlier input. The getstate () function returns data that can be used to
reinitialize the random number generator later with setstate ().

import random
import os
import cPickle as pickle

if os.path.exists (’state.dat’):
Restore the previously saved state
print ’‘Found state.dat, initializing random module’
with open(’state.dat’, ’‘rb’) as f:
state = pickle.load(f)
random.setstate (state)
else:
Use a well-known start state
print ’No state.dat, seeding’
random.seed (1)

Produce random values
for i in xrange (3):

print 7%$04.3f’ % random.random(),
print

214 Mathematics

Save state for next time
with open(’state.dat’, ’‘wb’) as f:
pickle.dump (random.getstate (), f)

Produce more random values
print ‘\nAfter saving state:’
for i in xrange (3):
print ’%$04.3f’ % random.random(),
print

The data returned by getstate () is an implementation detail, so this example
saves the data to a file with pickle, but otherwise treats it as a black box. If the file
exists when the program starts, it loads the old state and continues. Each run produces
a few numbers before and after saving the state to show that restoring the state causes

the generator to produce the same values again.

$ python random_state.py

No state.dat, seeding
0.134 0.847 0.764

After saving state:
0.255 0.495 0.449

$ python random_state.py

Found state.dat, initializing random module

0.255 0.495 0.449

After saving state:
0.652 0.789 0.094

5.3.4 Random Integers

random () generates floating-point numbers. It is possible to convert the results to in-
tegers, but using randint () to generate integers directly is more convenient.

import random

print 7 [1, 100]:7,

5.3. random—Pseudorandom Number Generators 215

for i in xrange (3):
print random.randint (1, 100),

print ‘\n[-5, 5]:7,
for i in xrange (3):

print random.randint (-5, 5),
print

The arguments to randint () are the ends of the inclusive range for the values.
The numbers can be positive or negative, but the first value should be less than the
second.

$ python random_randint.py

[1, 100]: 91 77 &7
[-5, 5]: -5 -3 3

randrange () is a more general form of selecting values from a range.

import random

for i in xrange (3):
print random.randrange (0, 101, 5),
print

randrange () supports a step argument, in addition to start and stop values, so it
is fully equivalent to selecting a random value from range (start, stop, step).
It is more efficient, because the range is not actually constructed.

$ python random_randrange.py

50 10 60

5.3.5 Picking Random Items

One common use for random number generators is to select a random item from a
sequence of enumerated values, even if those values are not numbers. random includes
the choice () function for making a random selection from a sequence. This example
simulates flipping a coin 10,000 times to count how many times it comes up heads and
how many times it comes up tails.

216 Mathematics

import random
import itertools

outcomes = { ’“heads’:0,
‘tails’:0,
}

sides = outcomes.keys ()

for i in range (10000) :
outcomes|[random.choice(sides)] +=1

print ’Heads:’, outcomes|[’heads’]
print ‘Tails:’, outcomes[’tails’]

Only two outcomes are allowed, so rather than use numbers and convert them,
the words “heads” and “tails” are used with choice (). The results are tabulated in a
dictionary using the outcome names as keys.

$ python random_choice.py

Heads: 5038
Tails: 4962

5.3.6 Permutations

A simulation of a card game needs to mix up the deck of cards and then deal the cards
to the players, without using the same card more than once. Using choice () could
result in the same card being dealt twice, so instead, the deck can be mixed up with
shuffle () and then individual cards removed as they are dealt.

import random
import itertools

FACE_CARDS = (’J’, ’Q’, ’K’, ’A’)
SUIlTsS = (’H’, ’'D’, ’C’, ’S’)

def new_deck () :
return list (itertools.product (
itertools.chain(xrange (2, 11), FACE_CARDS),
SUITS,
))

5.3. random—Pseudorandom Number Generators 217

def show_deck (deck) :

p_deck = deck][:]

while p_deck:
row = p_deck[:13]
p_deck = p_deck[13:]
for j in row:

print ’%2s%s’ % 7,

print

Make a new deck, with the cards in order
deck = new_deck ()

print “Initial deck:’

show_deck (deck)

Shuffle the deck to randomize the order
random.shuffle (deck)

print ‘\nShuffled deck:’

show_deck (deck)

Deal 4 hands of 5 cards each
hands = [[1, [1, [1, [1]

for i in xrange (5):
for h in hands:
h.append(deck.pop())

Show the hands
print ‘\nHands:’
for n, h in enumerate (hands) :
print 7%d:’ % (n+l),
for ¢ in h:
print ’%2s%s’ % c,
print

Show the remaining deck
print ’‘\nRemaining deck:’
show_deck (deck)

The cards are represented as tuples with the face value and a letter indicating the
suit. The dealt “hands” are created by adding one card at a time to each of four lists and
then removing it from the deck so it cannot be dealt again.

218 Mathematics

$ python random_shuffle.py

Initial deck:

2H 2D 2C 2Ss 3H 3D 3C 3S 4H 4D 4C 4S ©5H
5D 5C 58 6H 6D 6C 6S 7H 7D 7C 7S 8H 8D
8C 8S 9H 9D 9C 9S 10H 10D 10C 10S JH JD JC
JS QH OD QC QS KH KD KC KS AH AD AC AS

Shuffled deck:
3C KH QH 6H JD AC 7S 5D 3S 10s 7H QC 2C
5C 7C 4H 6S 9D 10H 4D 2H 3D 7D 5S 10D 9H
25 9C KC 5HH 6C 8s 3H 10C JS 2D AH KD AD
4C QS 8D 8C JC 8H 4Ss JH QD 9SS AS KS 6D

Hands:

1: 6D QD JC 4C 2D
KS JH 8C AD JS
AS 4s 8D KD 10C
95 8H QS AH 3H

DSw N

Remaining deck:
3C KH QH 6H Jb AC 7S 5D 35S 10s 7H QC 2C
5¢ 7C 4H 6S 9D 10H 4D 2H 3D 7D 5S 10D 9H
25 9C KC 5H 6C 38sS

5.3.7 Sampling

Many simulations need random samples from a population of input values. The
sample () function generates samples without repeating values and without modify-
ing the input sequence. This example prints a random sample of words from the system
dictionary.

import random
with open (’/usr/share/dict/words’, ’‘rt’) as f:
words = f.readlines()

words = [w.rstrip() for w in words]

for w in random.sample (words, 5):
print w

The algorithm for producing the result set takes into account the sizes of the input
and the sample requested to produce the result as efficiently as possible.

5.3. random—Pseudorandom Number Generators 219

$ python random_sample.py

pleasureman
consequency
docibility
youdendrift
Ituraean

$ python random_sample.py

jigamaree
readingdom
sporidium
pansylike
foraminiferan

5.3.8 Multiple Simultaneous Generators

In addition to module-level functions, random includes a Random class to manage the
internal state for several random number generators. All of the functions described ear-
lier are available as methods of the Random instances, and each instance can be initial-
ized and used separately, without interfering with the values returned by other instances.

import random
import time

print ’‘Default initializiation:\n’

rl = random.Random ()
r2 = random.Random ()

for i in xrange (3):
print ’%04.3f $%04.3f’ % (rl.random(), r2.random())

print ’‘\nSame seed:\n’
seed = time.time ()
rl = random.Random (seed)

r2 = random.Random (seed)

for i in xrange (3):
print 7%04.3f %04.3f’ % (rl.random(), r2.random())

220 Mathematics

On a system with good native random-value seeding, the instances start out in
unique states. However, if there is no good platform random-value generator, the
instances are likely to have been seeded with the current time, and therefore, produce
the same values.

$ python random_random_class.py
Default initializiation:

0.370 0.303

0.437 0.142

0.323 0.088

Same seed:

0.684 0.684

0.060 0.060
0.977 0.977

To ensure that the generators produce values from different parts of the random
period, use jumpahead () to shift one of them away from its initial state.

import random
import time

rl = random.Random ()

r2 = random.Random ()

Force r2 to a different part of the random period than rl.
r2.setstate(rl.getstate())
r2.jumpahead (1024)

for i in xrange (3):
print 7%04.3f %04.3f’ % (rl.random(), r2.random())

The argument to jumpahead () should be a nonnegative integer based the number
of values needed from each generator. The internal state of the generator is scrambled
based on the input value, but not simply by incrementing it by the number of steps
given.

$ python random_jumpahead.py

5.3. random—Pseudorandom Number Generators 221

0.858 0.093
0.510 0.707
0.444 0.556

5.3.9 SystemRandom

Some operating systems provide a random number generator that has access to more
sources of entropy that can be introduced into the generator. random exposes this fea-
ture through the SystemRandom class, which has the same API as Random but uses
os.urandom () to generate the values that form the basis of all other algorithms.

import random
import time

print ’‘Default initializiation:\n’

rl = random.SystemRandom ()

r2 = random.SystemRandom ()

for i in xrange (3):
print 7%04.3f %04.3f’ % (rl.random(), r2.random())

print ’‘\nSame seed:\n’

seed = time.time ()
rl = random.SystemRandom (seed)
r2 = random.SystemRandom (seed)

for i in xrange(3):
print 7%04.3f $%04.3f’ % (rl.random(), r2.randomf())

Sequences produced by SystemRandom are not reproducible because the random-
ness is coming from the system, rather than from the software state (in fact, seed ()
and setstate () have no effect at all).

$ python random_system_random.py
Default initializiation:
0.551 0.873

0.643 0.975
0.106 0.268

222 Mathematics

Same seed:

0.211 0.985
0.101 0.852
0.887 0.344

5.3.10 Nonuniform Distributions

While the uniform distribution of the values produced by random () is useful for a lot
of purposes, other distributions more accurately model specific situations. The random
module includes functions to produce values in those distributions, too. They are listed
here, but not covered in detail because their uses tend to be specialized and require more
complex examples.

Normal

The normal distribution is commonly used for nonuniform continuous values, such as
grades, heights, weights, etc. The curve produced by the distribution has a distinctive
shape that has lead to it being nicknamed a “bell curve.” random includes two functions
for generating values with a normal distribution, normalvariate () and the slightly
faster gauss (). (The normal distribution is also called the Gaussian distribution.)

The related function, lognormvariate (), produces pseudorandom values where
the logarithm of the values is distributed normally. Log-normal distributions are useful
for values that are the product of several random variables that do not interact.

Approximation

The triangular distribution is used as an approximate distribution for small sample
sizes. The “curve” of a triangular distribution has low points at known minimum and
maximum values, and a high point at the mode, which is estimated based on a “most
likely” outcome (reflected by the mode argument to triangular ()).

Exponential

expovariate () produces an exponential distribution useful for simulating arrival or
interval time values for use in homogeneous Poisson processes, such as the rate of
radioactive decay or requests coming into a Web server.

The Pareto, or power law, distribution matches many observable phenomena and
was popularized by The Long Tail, by Chris Anderson. The paretovariate () func-
tion is useful for simulating allocation of resources to individuals (wealth to people,
demand for musicians, attention to blogs, etc.).

5.4. math—Mathematical Functions 223

Angular

The von Mises, or circular normal, distribution (produced by vonmisesvariate ())
is used for computing probabilities of cyclic values, such as angles, calendar days, and
times.

Sizes

betavariate () generates values with the Beta distribution, which is commonly used
in Bayesian statistics and applications such as task duration modeling.

The Gamma distribution produced by gammavariate () is used for modeling the
sizes of things, such as waiting times, rainfall, and computational errors.

The Weibull distribution computed by weibullvariate () is used in failure
analysis, industrial engineering, and weather forecasting. It describes the distribution
of sizes of particles or other discrete objects.

See Also:

random (http://docs.python.org/library/random.html) The standard library docu-
mentation for this module.

Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom
number generator Article by M. Matsumoto and T. Nishimura from ACM
Transactions on Modeling and Computer Simulation, Vol. 8, No. 1, January
pp- 3-30 1998.

Mersenne Twister (http://en.wikipedia.org/wiki/Mersenne_twister) Wikipedia
article about the pseudorandom generator algorithm used by Python.

Uniform distribution [http://en.wikipedia.org/wiki/Uniform_distribution_
(continuous)] Wikipedia article about continuous uniform distributions in
statistics.

5.4 math—Mathematical Functions

Purpose Provides functions for specialized mathematical operations.
Python Version 1.4 and later

The math module implements many of the IEEE functions that would normally be
found in the native platform C libraries for complex mathematical operations using
floating-point values, including logarithms and trigonometric operations.

5.4.1 Special Constants

Many math operations depend on special constants. math includes values for 7 (pi)
and e.

http://docs.python.org/library/random.html
http://en.wikipedia.org/wiki/Mersenne_twister
http://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
http://en.wikipedia.org/wiki/Uniform_distribution_(continuous)

224 Mathematics

import math

print ‘mw: %.30f’
print ’e: $%$.30f7

Both values are limited in precision only by the platform’s floating-point C library.

$ python math_constants.py

m: 3.141592653589793115997963468544
e: 2.718281828459045090795598298428

5.4.2 Testing for Exceptional Values

Floating-point calculations can result in two types of exceptional values. The first of
these, INF (infinity), appears when the double used to hold a floating-point value over-
flows from a value with a large absolute value.

import math

print 7 {:"3} {:6} {:6} {:6}7.format ("e’, ’'x’, ’'x**2’, ’isinf’)
print 7 {:-"3} {:-"6} {:=-"6} A{:="6}’.format(”’, 7’7, 7', ')

for e in range (0, 201, 20):
x = 10.0 x*x e
Yy = X*X
print ’{:3d} {ls:6} {!s:6} {!s:6}7.format (e, x, vy,
math.isinf (y),
)

When the exponent in this example grows large enough, the square of x no longer
fits inside a double, and the value is recorded as infinite.

$ python math_isinf.py

0 1.0 1.0 False
20 1le+20 le+40 False
40 le+40 1e+80 False
60 1le+60 le+120 False
80 1le+80 le+l60 False

5.4. math—Mathematical Functions 225

100 1e+100 1e+200 False
120 1e+120 1le+240 False
140 1e+140 1e+280 False

160 1le+l60 inf True
180 1e+180 inf True
200 1e+200 inf True

Not all floating-point overflows result in INF values, however. Calculating an ex-
ponent with floating-point values, in particular, raises OverflowError instead of pre-
serving the INF result.

x = 10.0 % 200

print ’‘x =/, x
print “xxx =7, X*X
try:

print ‘xxx2 =7, xXx*2
except OverflowError, err:
print err

This discrepancy is caused by an implementation difference in the library used by
C Python.

$ python math_overflow.py

le+200

x*x = inf

X

x*x*%2 = (34, "Result too large’)

Division operations using infinite values are undefined. The result of dividing a
number by infinity is NaN (not a number).

import math

(10.0 x% 200) = (10.0 %% 200)
y = x/x

X

print 'x =/, x

print ’isnan(x) =’, math.isnan (x)
print 'y = x / x =/, x/x

print 'y == nan =’, y == float (’nan”’)
print ’isnan(y) =’, math.isnan (y)

226 Mathematics

NaN does not compare as equal to any value, even itself, so to check for NaN, use
isnan().

$ python math_isnan.py

x = inf

isnan (x) = False
y = x / x = nan
y == nan = False

isnan(y) = True

5.4.3 Converting to Integers

The math module includes three functions for converting floating-point values to
whole numbers. Each takes a different approach and will be useful in different
circumstances.

The simplestis t runc (), which truncates the digits following the decimal, leaving
only the significant digits making up the whole-number portion of the value. f1oor ()
converts its input to the largest preceding integer, and ceil () (ceiling) produces the
largest integer following sequentially after the input value.

import math

HEADINGS = (’i’, ’int’, ’trunk’, ’floor’, ’ceil’)
print 7{:"5} {:7"5} {(:7"5} {(:"5} {:75}’.format (+HEADINGS)
print 7 {:-"5} {:=-"5} {:=7"5} {:=7"5} {:=-"5}’.format (

7 4 rs 7 s rs
4 ’ 4 ’ ’

)
fmt = 7 /.join([’/{:5.1f}’] % 5)

TEST_VALUES = [-1.5,
-0.8,

5.4. math—Mathematical Functions 227

for i in TEST_VALUES:
print fmt.format (i,
int (i),
math.trunc (i),
math.floor (i),

math.ceil (1))
trunc () is equivalent to converting to int directly.

$ python math_integers.py

i int trunk floor ceil
-1.5 -1.0 -1.0 -2.0 -1.0
-0.8 0.0 0.0 -1.0 -0.0
-0.5 0.0 0.0 -1.0 -0.0
-0.2 0.0 0.0 -1.0 -0.0

0.0 0.0 0.0 0.0 0.0

0.2 0.0 0.0 0.0 1.0

0.5 0.0 0.0 0.0 1.0

0.8 0.0 0.0 0.0 1.0

1.0 1.0 1.0 1.0 1.0

5.4.4 Alternate Representations

modf () takes a single floating-point number and returns a tuple containing the frac-
tional and whole-number parts of the input value.

import math

for i in range (6):
print ‘{}/2 = {}’.format (i, math.modf (i/2.0))

Both numbers in the return value are floats.

$ python math_modf.py

0/2 = (0.0, 0.0)
1/2 = (0.5, 0.0)
2/2 = (0.0, 1.0)
3/2 = (0.5, 1.0)
4/2 = (0.0, 2.0)
5/2 = (0.5, 2.0)

~

228 Mathematics

frexp () returns the mantissa and exponent of a floating-point number, and can
be used to create a more portable representation of the value.
import math

print 7 {:"7} {:77} {:77}7 . format ('x’, 'm’, ’e’)
print 7 {:-"7} {:="7} A{:="7}7 . format (""", 77, ’7)

for x in [0.1, 0.5, 4.0]:
m, e = math.frexp(x)
print 7 {:7.2f} {:7.2f} {:7d}’.format (x, m, e)

frexp () uses the formula x = m » 2%xe, and returns the values m and e.

$ python math_frexp.py

x m e
0.10 0.80 -3
0.50 0.50 0
4.00 0.50

ldexp () is the inverse of frexp ().

import math

print 7 {:"7} {:77} A{:77}’.format ('m’”, ’e’, ’'x7)
print 7 {:-"7} {:="7} {:="7}" . format ("7, 77/, 77)

for m, e in [(0.8, -3),
(0.5, 0),
0.5, 3),

x = math.ldexp(m, e)
print 7 {:7.2f} {:7d} {:7.2f}’.format (m, e, Xx)

Using the same formula as frexp (), 1dexp () takes the mantissa and exponent values
as arguments and returns a floating-point number.

5.4. math—Mathematical Functions 229

$ python math_ldexp.py

m e X
0.80 -3 0.10
0.50 0 0.50
0.50 3 4.00

5.4.5 Positive and Negative Signs

The absolute value of a number is its value without a sign. Use fabs () to calculate the
absolute value of a floating-point number.

import math
print math. fabs

(-1
print math.fabs (-0.
print math. fabs (

(

print math. fabs
In practical terms, the absolute value of a f1oat is represented as a positive value.

$ python math_fabs.py

= O O
= O O

To determine the sign of a value, either to give a set of values the same sign or to
compare two values, use copysign () to set the sign of a known good value.

import math

HEADINGS = (’f’, ’s’, ’< 07, ’> 07, ’= 07)
print 7{:"5} (:*5} {:75} {:75} {:75}’.format (+HEADINGS)
print ’{:-"5} {:-"5} {:-"5} {:-"5} {:-"5}’/. format (

rs rs rs rs rs
’ ’ ’ ’

230 Mathematics

float (/-inf’),
float (’inft’),
float ("-nan’),
float (“nan’),
1:
s = int (math.copysign(l, £f))
print 7 {:5.1f} {:5d} {!s:5} {1s:5} {!s:5}7.format (
f, s, £ <0, £ >0, £==0,
)

An extra function like copysign () is needed because comparing NaN and —NaN
directly with other values does not work.

$ python math_copysign.py

£ s <0 > 0 =0
-1.0 -1 True False False
0.0 1 False False True
1.0 1 False True False
—-inf -1 True False False
inf 1 False True False
nan -1 False False False
nan 1 False False False

5.4.6 Commonly Used Calculations

Representing precise values in binary floating-point memory is challenging. Some val-
ues cannot be represented exactly, and the more often a value is manipulated through
repeated calculations, the more likely a representation error will be introduced. math
includes a function for computing the sum of a series of floating-point numbers using
an efficient algorithm that minimizes such errors.

import math
values = [0.1] * 10
print ’Input values:’, values

print “sum() : {:.20f}’.format (sum(values))

5.4. math—Mathematical Functions 231

for i in values:
s += 1
print “for-loop {:.20f}7.format (s)
print ’math. fsum() {:.20f}’.format (math.fsum(values))

Given a sequence of ten values, each equal to 0. 1, the expected value for the sum
of the sequence is 1.0. Since 0.1 cannot be represented exactly as a floating-point
value, however, errors are introduced into the sum unless it is calculated with £fsum ().

$ python math_fsum.py

Input values: (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]

sum ()
for-loop
math.fsum ()

0.99999999999999988898
0.99999999999999988898
1.00000000000000000000

factorial () is commonly used to calculate the number of permutations and
combinations of a series of objects. The factorial of a positive integer n, expressed n!,
is defined recursively as (n-1) ! =n and stops with 0!==1.

import math

for 1 in [O, 1.0, 2.0, 3.0, 4.0, 5.0, 6.1]:
try:
print 7 {:2.0f}

except ValueError,

{:6.0f}’.format (i,

err:

math.factorial (i))

print ’‘Error computing factorial (%$s):’ % 1, err

factorial () only works with whole numbers, but it does accept float argu-
ments as long as they can be converted to an integer without losing value.

$ python math_factorial.py

0 1
1 1
2 2
3 6
4 24
5 120

Error computing factorial(6.1l): factorial() only accepts integral

values

232 Mathematics

gamma () is like factorial (), except that it works with real numbers and the
value is shifted down by one (gamma is equal to (n - 1) !).

import math

for i in [O, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6]:
try:
print /{:2.1f} {:6.2f}’.format (i, math.gamma (i))
except ValueError, err:

o

print ’‘Error computing gamma (%s):’ % i, err

Since zero causes the start value to be negative, it is not allowed.

$ python math_gamma.py

Error computing gamma (0): math domain error
1.1 0.95
2.2 1.10
3.3 2.68
4.4 10.14
5.5 52.34
6.6 344.70

lgamma () returns the natural logarithm of the absolute value of gamma for the
input value.

import math

for i in [O, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6]:
try:
print {:2.1f} {:.20f} {:.20f}’.format (
i,
math.lgamma (i),
math.log (math.gamma (1)),
)

except ValueError, err:

)

print ’'Error computing lgamma (%s):’ % i, err

Using 1gamma () retains more precision than calculating the logarithm separately
using the results of gamma () .

5.4. math—Mathematical Functions 233

$ python math_lgamma.py

Error computing lgamma (0): math domain error

1.1 -0.04987244125984036103 -0.04987244125983997245
2.2 0.09694746679063825923 0.09694746679063866168
3.3 0.98709857789473387513 0.98709857789473409717
4.4 2.31610349142485727469 2.31610349142485727469
5.5 3.95781396761871651080 3.95781396761871606671
6.6 5.84268005527463252236 5.84268005527463252236

The modulo operator (%) computes the remainder of a division expression (e.g., 5
2 = 1). The operator built into the language works well with integers, but, as with so
many other floating-point operations, intermediate calculations cause representational
issues that result in a loss of data. fmod () provides a more accurate implementation
for floating-point values.

o\

import math

print 7 {:"4} {(:74} {(:75} {:"5}’.format(’x’, ‘y’, ’%’, ’‘fmod’)

print '——- ——— ————— ————— ’,
for x, y in [(5, 2),

(51 72)/

(_51 2)/

1:
print 7 {:4.1f} {:4.1f} {:5.2f} {:5.2f}7.format (
Xy
Y
X % Y,
math.fmod (x, v),
)

A potentially more frequent source of confusion is the fact that the algorithm used
by fmod () for computing modulo is also different from that used by %, so the sign of
the result is different.

$ python math_fmod.py

5.0 2.0 1.00 1.00
5.0 -2.0 -1.00 1.00
-5.0 2.0 1.00 -1.00

234 Mathematics

5.4.7 Exponents and Logarithms

Exponential growth curves appear in economics, physics, and other sciences. Python
has a built-in exponentiation operator (“+~""), but pow () can be useful when a callable
function is needed as an argument to another function.

import math

for x, y in [
Typical uses
(2, 3),
(2.1, 3.2),

Always 1
(1.0, 5),
(2.0, 0),

Not—a—-number
(2, float(’nan’)),

Roots

(9.0, 0.5),

(27.0, 1.0/3),

1:

print 7 {:5.1f} *x {(:5.3f} = {:6.3f}’.format (x, y, math.pow(x, Vy))

Raising 1 to any power always returns 1.0, as does raising any value to a power
of 0.0. Most operations on the not-a-number value nan return nan. If the exponent is
less than 1, pow () computes a root.

$ python math_pow.py

2.0 %% 3.000 = 8.000
2.1 %% 3.200 = 10.742
1.0 »» 5.000 = 1.000
2.0 %% 0.000 = 1.000
2.0 %% nan = nan
9.0 »x 0.500 = 3.000
27.0 x%x 0.333 = 3.000

Since square roots (exponent of %) are used so frequently, there is a separate func-
tion for computing them.

5.4. math—Mathematical Functions 235

import math

print math.sqrt (9.0)
print math.sqgrt (3)
try:
print math.sqgrt (-1)
except ValueError, err:
print ’‘Cannot compute sqrt(-1):’, err

Computing the square roots of negative numbers requires complex numbers, which
are not handled by math. Any attempt to calculate a square root of a negative value
results in a ValueError.

$ python math_sqgrt.py

3.0
1.73205080757
Cannot compute sgrt (-1): math domain error

The logarithm function finds y where x = b » y. By default, 1og () computes
the natural logarithm (the base is e). If a second argument is provided, that value is used
as the base.

import math

print math.log(8)
print math.log (8, 2)
print math.log (0.5, 2)

Logarithms where x is less than one yield negative results.

$ python math_log.py

2.07944154168
3.0
-1.0

There are two variations of log (). Given floating-point representation and
rounding errors, the computed value produced by log(x, b) has limited accuracy,
especially for some bases. 1ogl10 () computes log(x, 10), using a more accurate
algorithm than log ().

236 Mathematics

import math

print 7 {:2} (:712} {:7"10} {:720} {:8}’.format(
’i’, ’x’, ’accurate’, ’inaccurate’, ’‘mismatch’,
)

print 7 {:-"2} {:="12} {:="10} {:=720} {:="8}’.format (
//’ I/, /I, //’ 77

)

’

for i in range (0, 10):
x = math.pow (10, 1)
accurate = math.loglO (x)
inaccurate = math.log(x, 10)
match = 77 if int (inaccurate) == 1 else ’x’/
print 7 {:2d} {(:12.1f} {:10.8f} {:20.18f} {(:75}’.format (
i, x, accurate, inaccurate, match,

)
The lines in the output with trailing » highlight the inaccurate values.

$ python math_loglO.py

i X accurate inaccurate mismatch
0 1.0 0.00000000 0.000000000000000000
1 10.0 1.00000000 1.000000000000000000
2 100.0 2.00000000 2.000000000000000000
3 1000.0 3.00000000 2.999999999999999556 *
4 10000.0 4.00000000 4.000000000000000000
5 100000.0 5.00000000 5.000000000000000000
6 1000000.0 6.00000000 5.999999999999999112 *
7 10000000.0 7.00000000 7.000000000000000000
8 100000000.0 8.00000000 8.000000000000000000
9 1000000000.0 9.00000000 8.999999999999998224 *

loglp () calculates the Newton-Mercator series (the natural logarithm of 1+x).

import math

x = 0.0000000000000000000000001
print ’‘x HUPIED 4
print 1 + x 27, 1+x

5.4. math—Mathematical Functions 237

print ’log(l+x):”, math.log(l+x)
print “loglp(x):”, math.loglp (x)

loglp () is more accurate for values of x very close to zero because it uses an
algorithm that compensates for round-off errors from the initial addition.

$ python math_loglp.py

b4 : le-25
1 + x : 1.0
log(l+x): 0.0
loglp(x): le-25

exp () computes the exponential function (ex x x).

import math

fmt = 7%.20f7

print fmt % (math.e *x 2)
print fmt % math.pow(math.e, 2)
print fmt % math.exp(2)

As with other special-case functions, it uses an algorithm that produces more ac-
curate results than the general-purpose equivalent math.pow (math.e, x).

$ python math_exp.py
7.38905609893064951876

7.38905609893064951876
7.38905609893065040694

expml () is the inverse of 1oglp () and calculates ex*x — 1.

import math

x = 0.0000000000000000000000001

238 Mathematics

print x
print math.exp(x)- 1
print math.expml (x)

Small values of x lose precision when the subtraction is performed separately, like
with loglp ().

$ python math_expml.py

le-25
0.0
le-25

5.4.8 Angles

Although degrees are more commonly used in everyday discussions of angles, radians
are the standard unit of angular measure in science and math. A radian is the angle
created by two lines intersecting at the center of a circle, with their ends on the circum-
ference of the circle spaced one radius apart.

The circumference is calculated as 27 r, so there is a relationship between radians
and 7, a value that shows up frequently in trigonometric calculations. That relationship
leads to radians being used in trigonometry and calculus, because they result in more
compact formulas.

To convert from degrees to radians, use radians ().

import math

print 7 {:"7} {:77} {:"7}7.format ("Degrees’, ’Radians’, ’Expected’)
print 7 {:-"7} A{:="7} A{:="7}/.format(’’, 77, 77)

for deg, expected in [(O, 0),

(30, math.pi/6),
(45, math.pi/4),

(60, math.pi/3),

(90, math.pi/2),

(180, math.pi),

(270, 3/2.0 * math.pi),
(360, 2 % math.pi),

5.4. math—Mathematical Functions 239

print ’{:7d} {:7.2f} {:7.2f}’.format (degqg,
math.radians (deg),
expected,

)
The formula for the conversion is rad = deg * w© / 180.

$ python math_radians.py

Degrees Radians Expected

0 0.00 0.00
30 0.52 0.52
45 0.79 0.79
60 1.05 1.05
90 1.57 1.57

180 3.14 3.14
270 4.71 4.71
360 6.28 6.28

To convert from radians to degrees, use degrees ().

import math

print 7 {:"8} {:78} {:78}7.format ("Radians’, ’Degrees’, ’Expected’)
print 7 {:-"8} {:-7"8} {:-"8}’.format(’’, 77/, ')

for rad, expected in [(O, 0),
(math.pi/6, 30),
(math.pi/4, 45y,
(math.pi/3, 60),
(math.pi/2, 90),
(math.pi, 180),
(3 * math.pi / 2, 270),
(2 * math.pi, 360),

1:
print 7 {:8.2f} {:8.2fF} {:8.2f}’.format (rad,
math.degrees (rad),
expected,

)

The formula is deg = rad = 180 / .

240 Mathematics

$ python math_degrees.py

Radians Degrees Expected
0.00 0.00 0.00
0.52 30.00 30.00
0.79 45.00 45.00
1.05 60.00 60.00
1.57 90.00 90.00
3.14 180.00 180.00
4.71 270.00 270.00
6.28 360.00 360.00

5.4.9 Trigonometry

Trigonometric functions relate angles in a triangle to the lengths of its sides. They
show up in formulas with periodic properties such as harmonics or circular motion,
or when dealing with angles. All trigonometric functions in the standard library take
angles expressed as radians.

Given an angle in a right triangle, the sine is the ratio of the length of the
side opposite the angle to the hypotenuse (sin A = opposite/hypotenuse). The
cosine is the ratio of the length of the adjacent side to the hypotenuse (cos A = ad-
jacent/hypotenuse). And the fangent is the ratio of the opposite side to the adjacent
side (tan A = opposite/adjacent).

import math

print ’‘Degrees Radians Sine Cosine Tangent’
print "——--—- ———-—— - o= o ’

fmt = 7 /.join([’%7.2f’] x 5)

for deg in range (0, 361, 30):
rad = math.radians (deqg)
if deg in (90, 270):
t = float(’inf’)
else:
t = math.tan (rad)

)

print fmt % (deg, rad, math.sin(rad), math.cos(rad), t)

The tangent can also be defined as the ratio of the sine of the angle to its cosine,
and since the cosine is 0 for 7/2 and 37/2 radians, the tangent is infinite.

5.4. math—Mathematical Functions 241

$ python math_trig.py

Degrees Radians Sine Cosine Tangent
0.00 0.00 0.00 1.00 0.00
30.00 0.52 0.50 0.87 0.58
60.00 1.05 0.87 0.50 1.73
90.00 1.57 1.00 0.00 inf
120.00 2.09 0.87 -0.50 -1.73
150.00 2.62 0.50 -0.87 -0.58
180.00 3.14 0.00 -1.00 -0.00
210.00 3.67 -0.50 -0.87 0.58
240.00 4.19 -0.87 -0.50 1.73
270.00 4.71 -1.00 -0.00 inf
300.00 5.24 -0.87 0.50 -1.73
330.00 5.76 -0.50 0.87 -0.58
360.00 6.28 -0.00 1.00 -0.00

Given a point (x, y), the length of the hypotenuse for the triangle between the
points [(0, 0), (x, 0), (x, ¥)] is (x*x*2 + yxx2) %% 1/2, and can be computed with
hypot ().

import math

print 7 {:"7} {:77} {:710}7.format (’X’, ’Y’, ’Hypotenuse’)
print 7 {:-"7} {:="7} {:="10}’.format ("7, 77, 77)
for x, y in [simple points
1),
i, -1),
math.sqgrt (2), math.sqgrt (2)),
3, 4), # 3-4-5 triangle

on the circle
math.sqrt (2) /2, math.sqrt(2)/2), # pi/4 rads
0.5, math.sqrt (3)/2), # pi/3 rads

1:

h = math.hypot (x, V)
print 7 {:7.2f} {:7.2f} {:7.2f}’.format (x, y, h)

1

#
(
(=
(
(
#
(
(

Points on the circle always have hypotenuse == 1.

242 Mathematics

$ python math_hypot.py

Y Hypotenuse
1.00 1.00 1.41
-1.00 -1.00 1.41
1.41 1.41 2.00
3.00 4.00 5.00
0.71 0.71 1.00
0.50 0.87 1.00

The same function can be used to find the distance between two points.
import math

print 7{:78} {(:78} {(:7"8} {(:78} {:78}’.format (
’X1i’, ’'y1’, ’X2’, ’y2’, ’Distance’,
)
print 7 {:-"8} {:-7"8} {:-7"8} {:=-"8} {:-"8}’.format (

rs 4 rs rs /4
14 ’ ’ 14

)

’

((5, 5), (6, 6)),
((=6, -6), (=5, -5)
((0, 0), (3, 4)), #
((=1, -1), (2, 3)),
1:

for (x1, yl), (x2, y2) in [
)
3-4-5 triangle
3-4-5 triangle
x = x1 - x2
y =yl - y2
h = math.hypot (x, V)
print 7 {:8.2f} {:8.2f} {(:8.2f} {:8.2f} (:8.2f}’.format (

x1l, yl, x2, y2, h,

)

Use the difference in the x and y values to move one endpoint to the origin, and then
pass the results to hypot ().

$ python math_distance_2_points.py

5.4. math—Mathematical Functions 243

X1 Y1 X2 Y2 Distance
5.00 5.00 6.00 6.00 1.41
-6.00 -6.00 -5.00 -5.00 1.41
0.00 0.00 3.00 4.00 5.00
-1.00 -1.00 2.00 3.00 5.00

math also defines inverse trigonometric functions.

import math

for r in [0, 0.5, 1 1:

print ’arcsine(%.1f) = %5.2f’ % (r, math.asin(r))
print ’arccosine(%.1f) = %5.2f7 % (r, math.acos(r))
print ’arctangent (%$.1f) = %5.2f’ % (r, math.atan(r))

print

1.57 is roughly equal to 7/2, or 90 degrees, the angle at which the sine is 1 and the
cosine is 0.

$ python math_inverse_trig.py

arcsine (0.0) = 0.00
arccosine (0.0) = 1.57
arctangent (0.0) = 0.00
arcsine (0.5) = 0.52
arccosine (0.5) = 1.05
arctangent (0.5) = 0.46
arcsine (1.0) = 1.57
arccosine (1.0) = 0.00
arctangent (1.0) = 0.79

5.4.10 Hyperbolic Functions

Hyperbolic functions appear in linear differential equations and are used when work-
ing with electromagnetic fields, fluid dynamics, special relativity, and other advanced
physics and mathematics.

244 Mathematics

import math

print 7 {:76} {:76} {:76} {:76}7.format (
’X’, ’sinh’, ’‘cosh’, ’‘tanh’,
)
print 7 {:-"6} {:="6} {:=76} {:="6}’.format (", 77, 77/, ')

fmt = 7 /.Join([’{:6.4f}7"] = 4)
for i in range (0, 11, 2):

x = 1/10.0
print fmt.format (x, math.sinh(x), math.cosh(x), math.tanh(x))

Whereas the cosine and sine functions enscribe a circle, the hyperbolic cosine and
hyperbolic sine form half of a hyperbola.

$ python math_hyperbolic.py

X sinh cosh tanh
0.0000 0.0000 1.0000 0.0000
0.2000 0.2013 1.0201 0.1974
0.4000 0.4108 1.0811 0.3799
0.6000 0.6367 1.1855 0.5370
0.8000 0.8881 1.3374 0.6640
1.0000 1.1752 1.5431 0.761l6

Inverse hyperbolic functions acosh (), asinh(), and atanh() are also
available.

5.4.11 Special Functions
The Gauss Error function is used in statistics.
import math

print 7 {:"5} {:7}7.format ("x’, ’erf(x)’)
print 7 {:-"5} {:="7} . format (77, ’7)

for x in [-3, -2, -1, -0.5, -0.25, 0O, 0.25, 0.5, 1, 2, 3 1:
print 7 {:5.2f} {:7.4f}7 .format (x, math.erf (x))

For the error function, erf (-x) == —erf (x).

5.4. math—Mathematical Functions 245

$ python math_erf.py

0.25 0.2763
0.50 0.5205
1.00 0.8427
2.00 0.9953
3.00 1.0000

The complimentary error functionis 1 - erf (x).
import math

print 7 {:"5} {:7}7 . format (’x’, ’erfc(x)’)
print 7 {:-"5} {:="7}’ .format (77, ’7)

for x in [-3, -2, -1, -0.5, -0.25, 0, 0.25, 0.5, 1, 2, 3 1]:
print 7 {:5.2f} {:7.4f}’ .format (x, math.erfc(x))

The implementation of erfc () avoids precision errors for small values of x when
subtracting from 1.

$ python math_erfc.py

o
o
o
el el olole Rl i N o V]
o
o
o
o

246 Mathematics

See Also:

math (http://docs.python.org/library/math.html) The standard library documenta-
tion for this module.

IEEE floating-point arithmetic in Python
(http://www.johndcook.com/blog/2009/07/21/ieee-arithmetic-python/) Blog
post by John Cook about how special values arise and are dealt with when doing
math in Python.

SciPy (http://scipy.org/) Open source libraries for scientific and mathematical calcu-
lations in Python.

http://docs.python.org/library/math.html
http://www.johndcook.com/blog/2009/07/21/ieee-arithmetic-python/
http://scipy.org/

Chapter 6

THE FILE SYSTEM

Python’s standard library includes a large range of tools for working with files on the
file system, building and parsing filenames, and examining file contents.

The first step in working with files is to determine the name of the file on which
to work. Python represents filenames as simple strings, but provides tools for building
them from standard, platform-independent components in os.path. List the contents
of a directory with 1istdir () from os, or use glob to build a list of filenames from
a pattern.

The filename pattern matching used by glob is also exposed directly through
fnmatch, so it can be used in other contexts.

dircache provides an efficient way to scan and process the contents of a directory
on the file system, and it is useful when processing files in situations where the names
are not known in advance.

After the name of the file is identified, other characteristics, such as permissions
or the file size, can be checked using os.stat () and the constants in stat.

When an application needs random access to files, 1inecache makes it easy to
read lines by their line number. The contents of the file are maintained in a cache, so be
careful of memory consumption.

tempfile is useful for cases that need to create scratch files to hold data tempora-
rily, or before moving it to a permanent location. It provides classes to create temporary
files and directories safely and securely. Names are guaranteed to be unique and include
random components so they are not easily guessable.

Frequently, programs need to work on files as a whole, without regard to their
content. The shutil module includes high-level file operations, such as copying files
and directories, and setting permissions.

The filecmp module compares files and directories by looking at the bytes they
contain, but without any special knowledge about their format.

247

248 The File System

The built-in £ile class can be used to read and write files visible on local file
systems. A program’s performance can suffer when it accesses large files through the
read () and write () interfaces, though, since they both involve copying the data
multiple times as it is moved from the disk to memory the application can see. Using
mmap tells the operating system to use its virtual memory subsystem to map a file’s
contents directly into memory accessible by a program, avoiding a copy step between
the operating system and the internal buffer for the £ile object.

Text data using characters not available in ASCII is usually saved in a Unicode
data format. Since the standard f£ile handle assumes each byte of a text file represents
one character, reading Unicode text with multibyte encodings requires extra processing.
The codecs module handles the encoding and decoding automatically, so that in many
cases, a non-ASCII file can be used without any other changes.

For testing code that depends on reading or writing data from files, StringIO
provides an in-memory stream object that behaves like a file, but that does not reside
on disk.

6.1 os.path—Platform-Independent Manipulation of Filenames

Purpose Parse, build, test, and otherwise work on filenames and paths.
Python Version 1.4 and later

Writing code to work with files on multiple platforms is easy using the functions inclu-
ded in the os.path module. Even programs not intended to be ported between plat-
forms should use os.path for reliable filename parsing.

6.1.1 Parsing Paths

The first set of functions in os . path can be used to parse strings representing filenames
into their component parts. It is important to realize that these functions do not depend
on the paths actually existing; they operate solely on the strings.

Path parsing depends on a few variables defined in os:

* os.sep—The separator between portions of the path (e.g., “/” or “\”).
* os.extsep—The separator between a filename and the file “extension” (e.g.,

(3 . ”).
* os.pardir—The path component that means traverse the directory tree up one
level (e.g., “..”).

* os.curdir—The path component that refers to the current directory (e.g., ““.”).

6.1. os.path—Platform-Independent Manipulation of Filenames 249

The split () function breaks the path into two separate parts and returns a tuple
with the results. The second element of the tuple is the last component of the path,
and the first element is everything that comes before it.

import os.path

for path in [’/one/two/three’,
’/one/two/three/’,
///,
/./’

,,J'

print ’%15s : %s’ % (path, os.path.split (path))

When the input argument ends in os.sep, the “last element” of the path is an
empty string.

$ python ospath_split.py

/one/two/three " /one/two’, "three’)
/one/two/three/ " /one/two/three’, ')

II, I.I)
’

(
(
[/)
N
(

rr

II)

The basename () function returns a value equivalent to the second part of the
split () value.

import os.path

for path in [’/one/two/three’,
’/one/two/three/’,
///,
/./,

II].

print ’%15s : %s’ % (path, os.path.basename (path))

The full path is stripped down to the last element, whether that refers to a file
or directory. If the path ends in the directory separator (os.sep), the base portion is
considered to be empty.

250 The File System

$ python ospath_basename.py

/one/two/three : three
/one/two/three/
/

The dirname () function returns the first part of the split path:
import os.path

for path in [’/one/two/three’,
’/one/two/three/’,
///’
/'/,

//].

print 7%15s : %$s’ % (path, os.path.dirname (path))
Combining the results of basename () with dirname () gives the original path.

$ python ospath_dirname.py

/one/two/three : /one/two
/one/two/three/ : /one/two/three
/o /

splitext () workslike split (), butdivides the path on the extension separator,
rather than the directory separator.

import os.path

for path in [’filename.txt’,
’filename’,
’/path/to/filename.txt’,
//I,
r
‘my-archive.tar.gz’,
"no-extension.’,
1:

print 7%21s :’ % path, os.path.splitext (path)

6.1. os.path—Platform-Independent Manipulation of Filenames 251

Only the last occurrence of os.extsep is used when looking for the extension,
so if a filename has multiple extensions, the results of splitting it leaves part of the
extension on the prefix.

$ python ospath_splitext.py

filename.txt : (’'filename’, ' .txt’)
filename : (’/filename’, '7)
/path/to/filename.txt : (’/path/to/filename’, ' .txt’)
VR VAP
s,)
my—-archive.tar.gz : ('my-archive.tar’, ’.gz’)
no—-extension. : ('no-extension’, ’.’)

commonprefix () takes a list of paths as an argument and returns a single string
that represents a common prefix present in all paths. The value may represent a path
that does not actually exist, and the path separator is not included in the consideration,
so the prefix might not stop on a separator boundary.

import os.path

paths = [’/one/two/three/four’,
’ /one/two/threefold’,
’/one/two/three/’,
]
for path in paths:
print ’PATH:’, path

print
print ’PREFIX:’, os.path.commonprefix (paths)

In this example, the common prefix string is /one/two/three, even though one
path does not include a directory named three.

$ python ospath_commonprefix.py
PATH: /one/two/three/four
PATH: /one/two/threefold

PATH: /one/two/three/

PREFIX: /one/two/three

252 The File System

6.1.2 Building Paths

Besides taking existing paths apart, it is frequently necessary to build paths from other
strings. To combine several path components into a single value, use join ().

import os.path

for parts in [(’one’, ’‘two’, ’three’),
(*/’, ’one’, ’two’, ’three’),
(’/one’, ’/two’, ’/three’),
]:

print parts, ’:7, os.path.join (*xparts)

If any argument to join begins with os . sep, all previous arguments are discarded
and the new one becomes the beginning of the return value.

$ python ospath_join.py

("one’, ’'two’, ’'three’) : one/two/three
(*/", 'one’, "two’, ’'three’) : /one/two/three
(" /one’, ' /two’, ’'/three’) : /three

It is also possible to work with paths that include “variable” components that can
be expanded automatically. For example, expanduser () converts the tilde (~) char-
acter to the name of a user’s home directory.

import os.path

for user in [’’, ’‘dhellmann’, ’postgresqgl’]:
lookup = 7~’ + user
print ’%12s : %s’ % (lookup, os.path.expanduser (lookup))

If the user’s home directory cannot be found, the string is returned unchanged, as
with ~postgresqgl in this example.

$ python ospath_expanduser.py

~ : /Users/dhellmann
~dhellmann : /Users/dhellmann
~postgresqgl : ~postgresqgl

6.1. os.path—Platform-Independent Manipulation of Filenames 253

expandvars () is more general, and expands any shell environment variables
present in the path.

import os.path
import os

os.environ[’MYVAR’] = ’VALUE”’

print os.path.expandvars (’//path/to/SMYVAR’)

No validation is performed to ensure that the variable value results in the name of
a file that already exists.

$ python ospath_expandvars.py

/path/to/VALUE

6.1.3 Normalizing Paths

Paths assembled from separate strings using join () or with embedded variables might
end up with extra separators or relative path components. Use normpath () to clean
them up.

import os.path

for path in [’‘one//two//three’,
’one/./two/./three’,
‘one/../alt/two/three’,
1:
print 7820s : %s’ % (path, os.path.normpath (path))

Path segments made up of os.curdir and os.pardir are evaluated and col-
lapsed.

$ python ospath_normpath.py

one//two//three : one/two/three
one/./two/./three : one/two/three
one/../alt/two/three : alt/two/three

254 The File System

To convert a relative path to an absolute filename, use abspath ().

import os
import os.path

os.chdir (//tmp”)

for path in [7.7,

’ 7
’

’./one/two/three’,
’../one/two/three’,
1:
print 7%17s : "%s"’ % (path, os.path.abspath (path))

The result is a complete path, starting at the top of the file system tree.

$ python ospath_abspath.py

"/private/tmp"
.. : "/private"
./one/two/three : "/private/tmp/one/two/three"
../one/two/three : "/private/one/two/three"

6.1.4 File Times

Besides working with paths, os.path includes functions for retrieving file properties,
similar to the ones returned by os.stat ().

import os.path
import time

print ‘File :7, __file_

print ’Access time :’/, time.ctime (os.path.getatime(___file_))
print ’"Modified time:’, time.ctime (os.path.getmtime(___file_))
print ’Change time :’/, time.ctime (os.path.getctime(__file_))
print ’Size :’, os.path.getsize(__file_)

os.path.getatime () returns the access time, os.path.getmtime () ret-
urns the modification time, and os.path.getctime () returns the creation time.
os.path.getsize () returns the amount of data in the file, represented in bytes.

6.1. os.path—Platform-Independent Manipulation of Filenames 255

$ python ospath_properties.py

: ospath_properties.py
Access time : Sat Nov 27 12:19:50 2010

Modified time: Sun Nov 14 09:40:36 2010
Change time : Tue Nov 16 08:07:32 2010
Size : 495

6.1.5 Testing Files

When a program encounters a path name, it often needs to know whether the path refers
to a file, a directory, or a symlink and whether it exists. os . path includes functions for
testing all these conditions.

import os.path

FILENAMES = [_ file ,
os.path.dirname(___file_),
///I

’./broken_1link”’,
]

for file in FILENAMES:

print ‘File 7, file

print ’Absolute :7, os.path.isabs(file)
print ’Is File? :7, os.path.isfile(file)
print ’Is Dir? :’, os.path.isdir(file)
print ’Is Link? :7, os.path.islink (file)
print ’Mountpoint? :’, os.path.ismount (file)
print ‘Exists? :7, os.path.exists (file)
print ’Link Exists?:’, os.path.lexists(file)
print

All test functions return Boolean values.

$ 1In —-s /does/not/exist broken_link
$ python ospath_tests.py

File : ospath_tests.py
Absolute : False

Is File? : True

Is Dir? : False

Is Link? : False

256 The File System

Mountpoint? : False
Exists? : True
Link Exists?: True

File :

Absolute : False
Is File? : False
Is Dir? : False
Is Link? : False
Mountpoint? : False
Exists? : False

Link Exists?: False

File :/

Absolute : True
Is File? : False
Is Dir? : True
Is Link? : False
Mountpoint? : True
Exists? : True

Link Exists?: True

File : ./broken_link
Absolute : False
Is File? : False
Is Dir? : False
Is Link? : True
Mountpoint? : False
Exists? : False

Link Exists?: True

6.1.6 Traversing a Directory Tree

os.path.walk () traverses all directories in a tree and calls a provided function, pass-
ing to it as arguments the directory name and the names of the contents of that directory.

import os
import os.path
import pprint

def visit (arg, dirname, names):
print dirname, arg
for name in names:

6.2. glob—Filename Pattern Matching 257

subname = os.path.join(dirname, name)
if os.path.isdir (subname) :
print / $%s/’ % name
else:
print 7 $%s’ % name
print

if not os.path.exists (’example’) :
os.mkdir (“example’)

if not os.path.exists (’example/one’) :
os.mkdir (’example/one’)

with open (’example/one/file.txt’, ’‘wt’) as f:
f.write (’/contents’)

with open (’example/two.txt’, ’‘wt’) as f:
f.write(’contents’)

os.path.walk (“example’, visit, ’ (User data)’)
This example produces a recursive directory listing, ignoring . svn directories.
$ python ospath_walk.py

example (User data)
one/
two.txt

example/one (User data)
file.txt

See Also:

os.path (http://docs.python.org/lib/module-os.path.html) Standard library docu-
mentation for this module.

os (page 1108) The os module is a parent of os.path.

time (page 173) The time module includes functions to convert between the rep-
resentation used by the time property functions in os.path and easy-to-read
strings.

6.2 glob—Filename Pattern Matching

Purpose Use UNIX shell rules to find filenames matching a pattern.
Python Version 1.4 and later

http://docs.python.org/lib/module-os.path.html

258 The File System

Even though the g1ob API is small, the module packs a lot of power. It is useful in any
situation where a program needs to look for a list of files on the file system with names
matching a pattern. To create a list of filenames that all have a certain extension, prefix,
or any common string in the middle, use glob instead of writing custom code to scan
the directory contents.

The pattern rules for glob are not the same as the regular expressions used by
the re module. Instead, they follow standard UNIX path expansion rules. There are
only a few special characters used to implement two different wildcards and character
ranges. The patterns rules are applied to segments of the filename (stopping at the path
separator, /). Paths in the pattern can be relative or absolute. Shell variable names and
tilde (~) are not expanded.

6.2.1 Example Data

The examples in this section assume the following test files are present in the current
working directory.

$ python glob_maketestdata.py

dir

dir/file.txt
dir/filel.txt
dir/file2.txt
dir/filea.txt
dir/fileb.txt
dir/subdir
dir/subdir/subfile.txt

If these files do not exist, use glob_maketestdata.py in the sample code to
create them before running the following examples.

6.2.2 Wildcards

An asterisk (x) matches zero or more characters in a segment of a name. For example,
dir/=.

import glob
for name in glob.glob (/dir/*"):
print name

6.2. glob—Filename Pattern Matching 259

The pattern matches every path name (file or directory) in the directory “dir,”
without recursing further into subdirectories.

$ python glob_asterisk.py

dir/file.txt
dir/filel.txt
dir/file2.txt
dir/filea.txt
dir/fileb.txt
dir/subdir

To list files in a subdirectory, the subdirectory must be included in the pattern.
import glob

print ’‘Named explicitly:’
for name in glob.glob (’/dir/subdir/#*"):
print “\t’, name

print ’Named with wildcard:’
for name in glob.glob (’/dir/*/+"):
print ‘\t’, name

The first case shown earlier lists the subdirectory name explicitly, while the second
case depends on a wildcard to find the directory.

$ python glob_subdir.py

Named explicitly:
dir/subdir/subfile.txt

Named with wildcard:
dir/subdir/subfile.txt

The results, in this case, are the same. If there was another subdirectory, the wild-
card would match both subdirectories and include the filenames from both.

6.2.3 Single Character Wildcard

A question mark (?) is another wildcard character. It matches any single character in
that position in the name.

260 The File System

import glob

for name in glob.glob(’/dir/file?.txt”’):
print name

The previous example matches all filenames that begin with £ile, have one more
character of any type, and then end with . txt.

$ python glob_gquestion.py

dir/filel.txt
dir/file2.txt
dir/filea.txt
dir/fileb.txt

6.2.4 Character Ranges

Use a character range ([a-z]) instead of a question mark to match one of several
characters. This example finds all files with a digit in the name before the extension.

import glob
for name in glob.glob (/dir/*[0-9].%*"):
print name

The character range [0-9] matches any single digit. The range is ordered based
on the character code for each letter/digit, and the dash indicates an unbroken range of
sequential characters. The same range value could be written as [0123456789].

$ python glob_charrange.py

dir/filel.txt
dir/file2.txt

See Also:

glob (http://docs.python.org/library/glob.html) The standard library documentation
for this module.

Pattern Matching Notation
(http://www.opengroup.org/onlinepubs/000095399/utilities/xcu_chap02.
html#tag 02_13) An explanation of globbing from The Open Group’s Shell
Command Language specification.

fnmatch (page 315) Filename-matching implementation.

http://docs.python.org/library/glob.html
http://www.opengroup.org/onlinepubs/000095399/utilities/xcu_chap02.html#tag_02_13
http://www.opengroup.org/onlinepubs/000095399/utilities/xcu_chap02.html#tag_02_13

6.3. linecache—Read Text Files Efficiently 261

6.3 linecache—Read Text Files Efficiently

Purpose Retrieve lines of text from files or imported Python modules,
holding a cache of the results to make reading many lines from the
same file more efficient.

Python Version 1.4 and later

The 1inecache module is used within other parts of the Python standard library when
dealing with Python source files. The implementation of the cache holds the contents
of files, parsed into separate lines, in memory. The API returns the requested line(s)
by indexing into a 1ist, and saves time over repeatedly reading the file and pars-
ing lines to find the one desired. This method is especially useful when looking for
multiple lines from the same file, such as when producing a traceback for an error
report.

6.3.1 Test Data

This text produced by a Lorem Ipsum generator is used as sample input.

import os
import tempfile

lorem = ’’’Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Vivamus eget elit. In posuere mi non
risus. Mauris id quam posuere lectus sollicitudin

varius. Praesent at mi. Nunc eu velit. Sed augue massa,
fermentum id, nonummy a, nonummy sit amet, ligula. Curabitur
eros pede, egestas at, ultricies ac, apellentesque eu,
tellus.

Sed sed odio sed mi luctus mollis. Integer et nulla ac augue
convallis accumsan. Ut felis. Donec lectus sapien, elementum
nec, condimentum ac, interdum non, tellus. Aenean viverra,
mauris vehicula semper porttitor, ipsum odio consectetuer
lorem, ac imperdiet eros odio a sapien. Nulla mauris tellus,
aliquam non, egestas a, nonummy et, erat. Vivamus sagittis
porttitor eros.’’’

def make_tempfile():
fd, temp_file_name = tempfile.mkstemp ()
os.close (fd)
f = open(temp_file_name, ’‘wt’)

262 The File System

try:

f.write(lorem)
finally:

f.close()
return temp_file_name

def cleanup(filename) :
os.unlink (filename)

6.3.2 Reading Specific Lines

The line numbers of files read by the 1inecache module start with 1, but normally
lists start indexing the array from 0.

import linecache
from linecache_data import x

filename = make_tempfile()

Pick out the same line from source and cache.
(Notice that linecache counts from 1)

print ’SOURCE:’

print ’%r’ % lorem.split (“\n”) [4]

print

print /CACHE:’

)

print ’%r’ % linecache.getline(filename, 5)

cleanup (filename)
Each line returned includes a trailing newline.

$ python linecache_getline.py

SOURCE :
"fermentum id, nonummy a, nonummy sit amet, ligula. Curabitur’

CACHE:
’fermentum id, nonummy a, nonummy sit amet, ligula. Curabitur\n’

6.3. linecache—Read Text Files Efficiently 263

6.3.3 Handling Blank Lines

The return value always includes the newline at the end of the line, so if the line is
empty, the return value is just the newline.

import linecache
from linecache_data import =«

filename = make_tempfile()

Blank lines include the newline
print ’BLANK : %$r’ % linecache.getline(filename, 8)

cleanup (filename)
Line eight of the input file contains no text.

$ python linecache_empty_line.py

BLANK : ’\n’

6.3.4 Error Handling

If the requested line number falls out of the range of valid lines in the file, get1ine ()
returns an empty string.

import linecache
from linecache_data import =

filename = make_tempfile ()

The cache always returns a string, and uses

an empty string to indicate a line which does

not exist.

not_there = linecache.getline (filename, 500)

print ‘NOT THERE: %r includes %d characters’ % \
(not_there, len(not_there))

cleanup (filename)

264 The File System

The input file only has 12 lines, so requesting line 500 is like trying to read past
the end of the file.

$ python linecache_out_of_range.py

NOT THERE: ’’ includes 0 characters
Reading from a file that does not exist is handled in the same way.

import linecache

Errors are even hidden if linecache cannot find the file
no_such_file = linecache.getline(’this_file does_not_exist.txt’, 1)
print ’'NO FILE: %r’ % no_such_file

The module never raises an exception when the caller tries to read data.

$ python linecache_missing_file.py

NO FILE: "’

6.3.5 Reading Python Source Files

Since 1inecache is used so heavily when producing tracebacks, one of its key features
is the ability to find Python source modules in the import path by specifying the base
name of the module.

import linecache
import os

Look for the linecache module, using

the built in sys.path search.

module_line = linecache.getline(’linecache.py’, 3)
print ’"MODULE:’

print repr (module_line)

Look at the linecache module source directly.
file_src = linecache._ file_
if file_src.endswith(’.pyc’):
file _src = file_src[:-1]
print ‘\nFILE:’

6.4. tempfile—Temporary File System Objects 265

with open(file_src, ’r’) as f:
file_line = f.readlines() [2]
print repr(file_line)

The cache population code in linecache searches sys.path for the named
module if it cannot find a file with that name in the current directory. This example
looks for 1inecache.py. Since there is no copy in the current directory, the file from
the standard library is found instead.

$ python linecache_path_search.py

MODULE :
"This is intended to read lines from modules imported —-- hence if a
filename\n’

FILE:
"This is intended to read lines from modules imported —-- hence if a
filename\n’

See Also:

linecache (http://docs.python.org/library/linecache.html) The standard library doc-
umentation for this module.

http://www.ipsum.com/ Lorem Ipsum generator.

6.4 tempfile—Temporary File System Objects

Purpose Create temporary file system objects.
Python Version 1.4 and later

Creating temporary files with unique names securely, so they cannot be guessed
by someone wanting to break the application or steal the data, is challenging.
The tempfile module provides several functions for creating temporary file sys-
tem resources securely. TemporaryFile () opens and returns an unnamed file,
NamedTemporaryFile () opens and returns a named file, and mkdtemp () creates
a temporary directory and returns its name.

6.4.1 Temporary Files

Applications that need temporary files to store data, without needing to share those files
with other programs, should use the TemporaryFile () function to create the files.

http://docs.python.org/library/linecache.html
http://www.ipsum.com/

266 The File System

The function creates a file, and on platforms where it is possible, unlinks it immediately.
This makes it impossible for another program to find or open the file, since there is
no reference to it in the file system table. The file created by TemporaryFile () is
removed automatically when it is closed, whether by calling close () or by using the
context manager API and with statement.

import os
import tempfile

print ‘Building a filename with PID:’
filename = ’/tmp/quess_my _name.%s.txt’ % os.getpid()
temp = open(filename, ’‘w+b’)
try:
print ‘temp:’
print 7 /, temp
print ’‘temp.name:’
print / 7, temp.name
finally:
temp.close ()
Clean up the temporary file yourself
os.remove (filename)

print
print ’TemporaryFile:’
temp = tempfile.TemporaryFile ()
try:
print “temp:’
print 7 7, temp
print ’‘temp.name:’
print 7 /, temp.name
finally:
Automatically cleans up the file
temp.close ()

This example illustrates the difference in creating a temporary file using a common
pattern for making up a name, versus using the TemporaryFile () function. The file
returned by TemporaryFile () has no name.

$ python tempfile_TemporaryFile.py

Building a filename with PID:
temp:

6.4. tempfile—Temporary File System Objects 267

<open file ' /tmp/guess_my_name.1074.txt’, mode 'w+b’ at
0x100d881e0>
temp.name:
/tmp/guess_my_name.1074.txt

TemporaryFile:
temp:
<open file ’<fdopen>’, mode ’'w+b’ at 0x100d488780>

temp.name:
<fdopen>

By default, the file handle is created with mode ’ w+b’ so it behaves consistently
on all platforms, and the caller can write to it and read from it.

import os
import tempfile

with tempfile.TemporaryFile() as temp:
temp.write (’Some data’)

temp.seek (0)

print temp.read()

After writing, the file handle must be “rewound” using seek () in order to read
the data back from it.

$ python tempfile_TemporaryFile_binary.py

Some data
To open the file in text mode, set mode to ’ w+t’ when the file is created.

import tempfile

with tempfile.TemporaryFile (mode=’w+t’) as f:
f.writelines ([’first\n’, ’second\n’])
f.seek (0)

for line in f:
print line.rstrip()

268 The File System

The file handle treats the data as text.

$ python tempfile_TemporaryFile_text.py

first
second

6.4.2 Named Files

There are situations where having a named temporary file is important. For applica-
tions spanning multiple processes, or even hosts, naming the file is the simplest way
to pass it between parts of the application. The NamedTemporaryFile () function
creates a file without unlinking it, so the file retains its name (accessed with the name
attribute).

import os
import tempfile

with tempfile.NamedTemporaryFile() as temp:
print ‘temp:’
print 7 7, temp
print ’‘temp.name:’
print 7 /, temp.name

print ’Exists after close:’, os.path.exists (temp.name)
The file is removed after the handle is closed.

$ python tempfile_NamedTemporaryFile.py

temp:
<open file ’<fdopen>’, mode 'wt+b’ at 0x100d881le0>
temp.name:
/var/folders/9R/9R1t+tRO2Raxzk+F71Q50U+++Uw/~Tmp—/tmp926BkT
Exists after close: False

6.4.3 Temporary Directories

When several temporary files are needed, it may be more convenient to create a single
temporary directory with mkdtemp () and open all the files in that directory.

6.4. tempfile—Temporary File System Objects 269

import os
import tempfile

directory_name = tempfile.mkdtemp ()
print directory_name

Clean up the directory
os.removedirs (directory_name)

Since the directory is not “opened” per se, it must be removed explicitly when it is
no longer needed.

$ python tempfile_mkdtemp.py

/var/folders/9R/9R1t+tR0O2Raxzk+F71Q50U+++Uw/-Tmp—/tmpA7DKtP

6.4.4 Predicting Names

While less secure than strictly anonymous temporary files, including a predictable por-
tion in the name makes it possible to find the file and examine it for debugging pur-
poses. All functions described so far take three arguments to control the filenames to
some degree. Names are generated using the following formula.

dir + prefix + random + suffix

All values except random can be passed as arguments to TemporaryFile (),
NamedTemporaryFile (), and mkdtemp () . For example:

import tempfile

with tempfile.NamedTemporaryFile (
suffix=’_suffix’, prefix='prefix_’, dir=’/tmp’,
) as temp:
print ‘temp:’
print 7 7, temp
print ’‘temp.name:’
print / 7, temp.name

The prefix and suffix arguments are combined with a random string of characters
to build the filename, and the dir argument is taken as is and used as the location of the
new file.

270 The File System

$ python tempfile_NamedTemporaryFile_args.py

temp:

<open file ’<fdopen>’, mode ’'w+b’ at 0x100d881le0>
temp.name:

/tmp/prefix_kjvHYS_suffix

6.4.5 Temporary File Location

If an explicit destination is not given using the dir argument, the path used for the
temporary files will vary based on the current platform and settings. The tempfile
module includes two functions for querying the settings being used at runtime.

import tempfile

print ‘gettempdir():’, tempfile.gettempdir ()
print ’gettempprefix():’, tempfile.gettempprefix()

gettempdir () returns the default directory that will hold all temporary files and
gettempprefix () returns the string prefix for new file and directory names.

$ python tempfile_settings.py

gettempdir () : /var/folders/9R/9R1t+tRO2Raxzk+F71Q50U+++Uw/~Tmp—
gettempprefix () : tmp

The value returned by gettempdir () is set based on a straightforward algorithm
of looking through five locations for the first place the current process can create a file.
This is the search list.

The environment variable TMPDIR

The environment variable TEMP

The environment variable TMP

A fallback, based on the platform. (RiscOS uses Wimp$ScrapDir. Windows
uses the first available of C:\TEMP, C:\TMP, \TEMP, or \TMP. Other platforms
use /tmp, /var/tmp, or /usr/tmp.)

5. If no other directory can be found, the current working directory is used.

Eall o

import tempfile

tempfile.tempdir = ’/I/changed/this/path’
print ‘gettempdir():’, tempfile.gettempdir ()

6.5. shutil—High-Level File Operations 271

Programs that need to use a global location for all temporary files without using
any of these environment variables should set tempfile.tempdir directly by assign-
ing a value to the variable.

$ python tempfile_tempdir.py

gettempdir () : /I/changed/this/path

See Also:
tempfile (http://docs.python.org/lib/module-tempfile.html) Standard library docu-
mentation for this module.

6.5 shutil—High-Level File Operations

Purpose High-level file operations.
Python Version 1.4 and later

The shutil module includes high-level file operations such as copying and setting
permissions.

6.5.1 Copying Files

copyfile () copies the contents of the source to the destination and raises IOError
if it does not have permission to write to the destination file.

from shutil import =«
from glob import glob

print ’BEFORE:’, glob (’/shutil_copyfile.x*’)
copyfile(/shutil_copyfile.py’, ’shutil_copyfile.py.copy”’)
print ’AFTER:’, glob(’shutil_copyfile.x*’)

Because the function opens the input file for reading, regardless of its type, spe-
cial files (such as UNIX device nodes) cannot be copied as new special files with
copyfile().

$ python shutil_copyfile.py

BEFORE: [’shutil_copyfile.py’]
AFTER: [’shutil_copyfile.py’, ’shutil_copyfile.py.copy’]

http://docs.python.org/lib/module-tempfile.html

272 The File System

The implementation of copyfile() uses the lower-level function copy-
fileobj (). While the arguments to copyfile () are filenames, the arguments to
copyfileobi () are open file handles. The optional third argument is a buffer length
to use for reading in blocks.

from shutil import =«

import os

from StringIO import StringIO
import sys

class VerboseStringIO (StringlIO) :
def read(self, n=-1):
next = StringIO.read(self, n)
print ‘read(%d) bytes’ % n
return next

lorem_ipsum = ’’’Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Vestibulum aliquam mollis dolor. Donec vulputate nunc ut diam.
Ut rutrum mi vel sem. Vestibulum ante ipsum.’’’

print ’Default:”’

input = VerboseStringIO (lorem_ipsum)
output = StringIO()

copyfileobj (input, output)

print

print ’All at once:’

input = VerboseStringIO (lorem_ipsum)
output = StringIO()

copyfileobj (input, output, -1)

print

print ’Blocks of 256:7

input = VerboseStringIO(lorem_ipsum)
output = StringIO()

copyfileobj (input, output, 256)

The default behavior is to read using large blocks. Use -1 to read all the input at
one time, or use another positive integer to set a specific block size. This example uses
several different block sizes to show the effect.

6.5. shutil—High-Level File Operations 273

$ python shutil_copyfileobj.py

Default:
read (16384) bytes
read(16384) bytes

All at once:
read(-1) bytes
read(-1) bytes

Blocks of 256:
read(256) bytes
read(256) bytes

The copy () function interprets the output name like the UNIX command line tool
cp. If the named destination refers to a directory instead of a file, a new file is created
in the directory using the base name of the source.

from shutil import =«
import os

os.mkdir (“example’)

print ’BEFORE:’, os.listdir (’example’)
copy (’shutil_copy.py’, ’‘example’)
print 7AFTER:’, os.listdir (’example’)

The permissions of the file are copied along with the contents.

$ python shutil_copy.py

BEFORE: []
AFTER: [’shutil_copy.py’]

copy?2 () works like copy (), but includes the access and modification times in
the metadata copied to the new file.

from shutil import =«
import os
import time

274 The File System

def show_file_info(filename) :
stat_info = os.stat (filename)
print ’\tMode :/, stat_info.st_mode
print ’‘\tCreated :’, time.ctime (stat_info.st_ctime)
print ’‘\tAccessed:’, time.ctime (stat_info.st_atime)
print ‘\tModified:’, time.ctime (stat_info.st_mtime)

os.mkdir (“example’)

print /SOURCE:’

show_file_info (’shutil_copyZ.py”’)

copy2 (’shutil_copy2.py’, ’‘example’)

print ’DEST:’

show_file_info (’example/shutil_copy2.py”’)

The new file has all the same characteristics as the old version.

$ python shutil_copy2.py

SOURCE :
Mode : 33188
Created : Sat Dec 4 10:41:32 2010
Accessed: Sat Dec 4 17:41:01 2010
Modified: Sun Nov 14 09:40:36 2010
DEST:

Mode : 33188

Created : Sat Dec 4 17:41:01 2010
Accessed: Sat Dec 4 17:41:01 2010
Modified: Sun Nov 14 09:40:36 2010

6.5.2 Copying File Metadata

By default when a new file is created under UNIX, it receives permissions based on
the umask of the current user. To copy the permissions from one file to another, use
copymode ().

from shutil import =«
from commands import =
import os

with open(’file_to_change.txt’, ’‘wt’) as f:
f.write (’content”’)
os.chmod (’file_to_change.txt’, 0444)

print ’BEFORE:’
print getstatus (’file_to_change.txt”’)

6.5. shutil—High-Level File Operations 275

copymode (/shutil_copymode.py’, ’file_to_change.txt’)
print ’AFTER :’
print getstatus (’file_to_change.txt”’)

First, create a file to be modified.

#!/bin/sh

Set up file needed by shutil_copymode.py

touch file_to_change.txt

chmod ugo+w file_to_change.txt

Then, run the example script to change the permissions.

$ python shutil_copymode.py

BEFORE:
—r——r——-r—-
AFTER
—rw-r—-r—-—

1 dhellmann

1 dhellmann

dhellmann 7 Dec 4 17:41 file_to_change.txt

dhellmann 7 Dec 4 17:41 file_to_change.txt

To copy other metadata about the file use copystat ().

from shutil import =«

import os

import time

def show_file_info(filename) :

stat_info = os.stat (filename)

print ’\tMode :’/, stat_info.st_mode

print ’‘\tCreated :’/, time.ctime (stat_info.st_ctime)
print ’‘\tAccessed:’, time.ctime (stat_info.st_atime)
print ’‘\tModified:’, time.ctime (stat_info.st_mtime)

with open(’/file to_change.txt’, ’wt’) as f:

f.write (’content’)
os.chmod(’file_to_change.txt’, 0444)

print ’BEFORE:’
show_file_info(’file_to_change.txt’)

copystat (/shutil_copystat.py’, ’file_to_change.txt’)

276 The File System

print “AFTER:’
show_file_info(’file_to_change.txt’)

Only the permissions and dates associated with the file are duplicated with
copystat ().

$ python shutil_copystat.py

BEFORE:
Mode : 33060
Created : Sat Dec 4 17:41:01 2010
Accessed: Sat Dec 4 17:41:01 2010
Modified: Sat Dec 4 17:41:01 2010
AFTER:

Mode : 33188

Created : Sat Dec 4 17:41:01 2010
Accessed: Sat Dec 4 17:41:01 2010
Modified: Sun Nov 14 09:45:12 2010

6.5.3 Working with Directory Trees

shutil includes three functions for working with directory trees. To copy a direc-
tory from one place to another, use copytree (). It recurses through the source direc-
tory tree, copying files to the destination. The destination directory must not exist in
advance.

Note: The documentation for copytree () says it should be considered a sample
implementation, rather than a tool. Consider starting with the current implemen-
tation and making it more robust, or adding features like a progress meter, before
using it.

from shutil import =«
from commands import =«

print ’BEFORE:’

print getoutput (’ls -rlast /tmp/example’)
copytree (’../shutil’, ’/tmp/example’)
print ‘\nAFTER:’

print getoutput (’ls -rlast /tmp/example’)

6.5. shutil—High-Level File Operations 277

The symlinks argument controls whether symbolic links are copied as links or as
files. The default is to copy the contents to new files. If the option is true, new symlinks
are created within the destination tree.

$ python shutil_copytree.py

BEFORE :
ls: /tmp/example: No such file or directory

AFTER:
total 136
8 —rwxr-xr-x 1 dhellmann wheel 109 Oct 28 07:33 shutil_copymode.sh
8 —-rw-r—--r—-— 1 dhellmann wheel 1313 Nov 14 09:39 shutil_rmtree.py
8 —-rw-r—-r—-— 1 dhellmann wheel 1300 Nov 14 09:39 shutil_copyfile.py
8 —rw-r—-r—-— 1 dhellmann wheel 1276 Nov 14 09:39 shutil_copy.py
8 —rw-r—-—-r—-— 1 dhellmann wheel 1140 Nov 14 09:39 __init__ .py
8 —rw-r—-r—-— 1 dhellmann wheel 1595 Nov 14 09:40 shutil_copy2.py
8 —rw-r-——-r—-— 1 dhellmann wheel 1729 Nov 14 09:45 shutil_copystat.py
8 —-rw-r——-r—-— 1 dhellmann wheel 7 Nov 14 09:45 file_to_change.txt
8 —rw-r—--r—-— 1 dhellmann wheel 1324 Nov 14 09:45 shutil_move.py
8 —-rw-r—-r—-— 1 dhellmann wheel 419 Nov 27 12:49 shutil_copymode.py
8 —rw-r—--r—-— 1 dhellmann wheel 1331 Dec 1 21:51 shutil_copytree.py
8 —-rw-r—-r—-— 1 dhellmann wheel 816 Dec 4 17:39 shutil_copyfileobj.py
8 —rw-r—-r—-— 1 dhellmann wheel 8 Dec 4 17:39 example.out
24 -rw-r—--r—-— 1 dhellmann wheel 9767 Dec 4 17:40 index.rst
8 —rw-r—-r—-— 1 dhellmann wheel 1300 Dec 4 17:41 shutil_copyfile.py.copy
0 drwxr-xr-x 3 dhellmann wheel 102 Dec 4 17:41 example
0 drwxrwxrwt 18 root wheel 612 Dec 4 17:41
0 drwxr-xr-x 18 dhellmann wheel 612 Dec 4 17:41

To remove a directory and its contents, use rmtree ().

from shutil import =«
from commands import =

print ’BEFORE:’

print getoutput (’ls -rlast /tmp/example’)
rmtree (//tmp/example’)

print “AFTER:’

print getoutput (’ls -rlast /tmp/example’)

Errors are raised as exceptions by default, but can be ignored if the second argu-
ment is true. A special error-handler function can be provided in the third argument.

$ python shutil_rmtree.py
BEFORE :

total 136
8 —rwxr-xr-x 1 dhellmann wheel 109 Oct 28 07:33 shutil_copymode.sh

278 The File System

8 —-rw-r——-r—-— 1 dhellmann wheel 1313 Nov 14 09:39 shutil_rmtree.py
8 —-rw-r—--r—-— 1 dhellmann wheel 1300 Nov 14 09:39 shutil_copyfile.py
8 —rw-r—--r—-— 1 dhellmann wheel 1276 Nov 14 09:39 shutil_copy.py
8 —-rw-r—-—-r—-— 1 dhellmann wheel 1140 Nov 14 09:39 __init__ .py
8 —rw-r—-r—-— 1 dhellmann wheel 1595 Nov 14 09:40 shutil_copy2.py
8 —-rw-r—-r—-— 1 dhellmann wheel 1729 Nov 14 09:45 shutil_copystat.py
8 —-rw-r——r—-— 1 dhellmann wheel 7 Nov 14 09:45 file_to_change.txt
8 —rw-r-——-r—-— 1 dhellmann wheel 1324 Nov 14 09:45 shutil_move.py
8 —-rw-r—-r—-— 1 dhellmann wheel 419 Nov 27 12:49 shutil_copymode.py
8 —rw-r—--r—-— 1 dhellmann wheel 1331 Dec 1 21:51 shutil_copytree.py
8 —rw-r—-r—-— 1 dhellmann wheel 816 Dec 4 17:39 shutil_copyfileobj.py
8 —rw-r—--r—-— 1 dhellmann wheel 8 Dec 4 17:39 example.out
24 —-rw-r——-r—-— 1 dhellmann wheel 9767 Dec 4 17:40 index.rst
8 —rw-r——-r—-— 1 dhellmann wheel 1300 Dec 4 17:41 shutil_copyfile.py.copy
0 drwxr-xr-x 3 dhellmann wheel 102 Dec 4 17:41 example
0 drwxrwxrwt 18 root wheel 612 Dec 4 17:41
0 drwxr-xr-x 18 dhellmann wheel 612 Dec 4 17:41
AFTER:

ls: /tmp/example: No such file or directory
To move a file or directory from one place to another, use move ().

from shutil import =«
from glob import glob

with open(’example.txt’, ’wt’) as f:
f.write (’contents’)

print ’BEFORE: 7, glob (’examplex’)
move (“example.txt’, ’example.out”’)
print ’AFTER : ’, glob(’examplex*’)

The semantics are similar to those of the UNIX command mv. If the source and
destination are within the same file system, the source is renamed. Otherwise, the source
is copied to the destination and then the source is removed.

$ python shutil_move.py

BEFORE : ["example.txt’]
AFTER : ["example.out’]
See Also:

shutil (http://docs.python.org/lib/module-shutil.html) Standard library documenta-
tion for this module.

http://docs.python.org/lib/module-shutil.html

6.6. mmap—Memory-Map Files 279

6.6 mmap—Memory-Map Files

Purpose Memory-map files instead of reading the contents directly.
Python Version 2.1 and later

Memory-mapping a file uses the operating system virtual memory system to access
the data on the file system directly, instead of using normal I/O functions. Memory-
mapping typically improves I/O performance because it does not involve a separate
system call for each access and it does not require copying data between buffers—the
memory is accessed directly by both the kernel and the user application.

Memory-mapped files can be treated as mutable strings or file-like objects, de-
pending on the need. A mapped file supports the expected file API methods, such as
close (), flush (), read (), readline (), seek (), tell (), and write (). It also
supports the string API, with features such as slicing and methods like £ind ().

All the examples use the text file lorem.txt, containing a bit of Lorem Ipsum.
For reference, the text of the file follows.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Donec
egestas, enim et consectetuer ullamcorper, lectus ligula rutrum leo,
a elementum elit tortor eu quam. Duis tincidunt nisi ut ante. Nulla
facilisi. Sed tristique eros eu libero. Pellentesque vel

arcu. Vivamus purus orci, iaculis ac, suscipit sit amet, pulvinar eu,
lacus. Praesent placerat tortor sed nisl. Nunc blandit diam egestas
dui. Pellentesque habitant morbi tristique senectus et netus et
malesuada fames ac turpis egestas. Aliquam viverra fringilla

leo. Nulla feugiat augue eleifend nulla. Vivamus mauris. Vivamus sed
mauris in nibh placerat egestas. Suspendisse potenti. Mauris

massa. Ut eget velit auctor tortor blandit sollicitudin. Suspendisse
imperdiet justo.

Note: There are differences in the arguments and behaviors for mmap () between
UNIX and Windows. These differences are not fully discussed here. For more
details, refer to the standard library documentation.

6.6.1 Reading

Use the mmap () function to create a memory-mapped file. The first argument is a file
descriptor, either from the fileno () method of a £ile object or from os.open ().
The caller is responsible for opening the file before invoking mmap () and closing it
after it is no longer needed.

280 The File System

The second argument to mmap () is a size in bytes for the portion of the file to map.
If the value is 0, the entire file is mapped. If the size is larger than the current size of
the file, the file is extended.

Note: Windows does not support creating a zero-length mapping.

An optional keyword argument, access, is supported by both platforms. Use
ACCESS_READ for read-only access, ACCESS_WRITE for write-through (assignments
to memory go directly to the file), or ACCESS_COPY for copy-on-write (assignments to
memory are not written to the file).

import mmap
import contextlib

with open(’/lorem.txt’, ’'r’) as f:
with contextlib.closing (mmap.mmap (f.fileno(), O,
access=mmap.ACCESS_READ)
) as m:
print ’‘First 10 bytes via read :’, m.read(10)
print ’First 10 bytes via slice:’, m[:10]
print ’2Znd 10 bytes via read :’, m.read(1l0)

The file pointer tracks the last byte accessed through a slice operation. In this
example, the pointer moves ahead 10 bytes after the first read. It is then reset to the
beginning of the file by the slice operation and moved ahead 10 bytes again by the
slice. After the slice operation, calling read () again gives bytes 11-20 in the file.

$ python mmap_read.py

First 10 bytes via read : Lorem ipsu
First 10 bytes via slice: Lorem ipsu
2nd 10 bytes via read : m dolor si

6.6.2 Writing

To set up the memory-mapped file to receive updates, start by opening it for appending
with mode " r+’ (not ' w’) before mapping it. Then use any of the API methods that
change the data (write (), assignment to a slice, etc.).

6.6. mmap—Memory-Map Files 281

The next example uses the default access mode of ACCESS_WRITE and assigns to
a slice to modify part of a line in place.

import mmap
import shutil
import contextlib

Copy the example file
shutil.copyfile(’lorem.txt’, ’lorem _copy.txt’)

word = ’‘consectetuer’

reversed = word[::-1]

print ’Looking for :7, word
print ’Replacing with :’/, reversed

with open(’lorem copy.txt’, ’‘r+’) as f:
with contextlib.closing (mmap.mmap (f.fileno(), 0)) as m:
print ’‘Before:’
print m.readline () .rstrip()
m.seek (0) # rewind

loc = m.find(word)
m[loc:loc+tlen (word)] = reversed
m.flush ()

m.seek (0) # rewind
print ’After :’
print m.readline () .rstrip()

f.seek (0) # rewind

print ’File :’
print f.readline () .rstrip()

The word “consectetuer” is replaced in the middle of the first line in memory
and in the file.

$ python mmap_write_slice.py

Looking for : consectetuer
Replacing with : reutetcesnoc

282 The File System

Before:

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Donec
After

Lorem ipsum dolor sit amet, reutetcesnoc adipiscing elit. Donec
File

Lorem ipsum dolor sit amet, reutetcesnoc adipiscing elit. Donec

Copy Mode

Using the access setting ACCESS_COPY does not write changes to the file on disk.

import mmap
import shutil
import contextlib

Copy the example file
shutil.copyfile(’lorem.txt’, ’lorem copy.txt”’)

word = ’consectetuer’
reversed = word[::-1]

with open(’lorem copy.txt’, ’r+’) as f:
with contextlib.closing (mmap.mmap (f.fileno(), O,
access=mmap.ACCESS_COPY)
) as m:
print ’‘Memory Before:’

print m.readline () .rstrip()
print ’‘File Before :’
print f.readline() .rstrip/()
print

m.seek (0) # rewind
loc = m.find(word)
m[loc:loc+len(word)] = reversed

m.seek (0) # rewind
print ’‘Memory After :’

print m.readline () .rstrip()
f.seek (0)
print ’File After s’

print f.readline () .rstrip()

6.6. mmap—Memory-Map Files 283

It is necessary to rewind the file handle in this example separately from the mmap
handle, because the internal state of the two objects is maintained separately.

$ python mmap_write_copy.py

Memory Before:

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Donec
File Before

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Donec

Memory After

Lorem ipsum dolor sit amet, reutetcesnoc adipiscing elit. Donec
File After

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Donec

6.6.3 Regular Expressions

Since a memory-mapped file can act like a string, it can be used with other modules that
operate on strings, such as regular expressions. This example finds all sentences with
“nulla” in them.

import mmap
import re
import contextlib

pattern = re.compile(r’ (\.\W+)?([".]?nulla[".]*?\.)",
re.DOTALL | re.IGNORECASE | re.MULTILINE)

with open(’/lorem.txt’, ’‘r’) as f:
with contextlib.closing (mmap.mmap (f.fileno(), O,
access=mmap.ACCESS_READ)
) as m:
for match in pattern.findall (m):
print match[l].replace(’\n’, 7 /)

Because the pattern includes two groups, the return value from findall () is a
sequence of tuples. The print statement pulls out the matching sentence and replaces
newlines with spaces so each result prints on a single line.

284 The File System

$ python mmap_regex.py

Nulla facilisi.
Nulla feugiat augue eleifend nulla.

See Also:

mmap (http://docs.python.org/lib/module-mmap.html) Standard library documen-
tation for this module.

os (page 1108) The os module.

contextlib (page 163) Use the closing () function to create a context manager for
a memory-mapped file.

re (page 13) Regular expressions.

6.7 codecs—String Encoding and Decoding

Purpose Encoders and decoders for converting text between different
representations.
Python Version 2.1 and later

The codecs module provides stream interfaces and file interfaces for transcoding data.
It is most commonly used to work with Unicode text, but other encodings are also
available for other purposes.

6.7.1 Unicode Primer

CPython 2.x supports two types of strings for working with text data. Old-style str
instances use a single 8-bit byte to represent each character of the string using its ASCII
code. In contrast, unicode strings are managed internally as a sequence of Unicode
code points. The code-point values are saved as a sequence of two or four bytes each,
depending on the options given when Python is compiled. Both unicode and str are
derived from a common base class and support a similar APIL.

When unicode strings are output, they are encoded using one of several standard
schemes so that the sequence of bytes can be reconstructed as the same text string
later. The bytes of the encoded value are not necessarily the same as the code-point
values, and the encoding defines a way to translate between the two value sets. Reading
Unicode data also requires knowing the encoding so that the incoming bytes can be
converted to the internal representation used by the unicode class.

The most common encodings for Western languages are UTF-8 and UTF-16,
which use sequences of one- and two-byte values, respectively, to represent each code

http://docs.python.org/lib/module-mmap.html

6.7. codecs—String Encoding and Decoding 285

point. Other encodings can be more efficient for storing languages where most of the
characters are represented by code points that do not fit into two bytes.

See Also:

For more introductory information about Unicode, refer to the list of references at the
end of this section. The Python Unicode HOWTO is especially helpful.

Encodings

The best way to understand encodings is to look at the different series of bytes produced
by encoding the same string in different ways. The following examples use this function
to format the byte string to make it easier to read.

import binascii

def to_hex(t, nbytes):
"""Format text t as a sequence of nbyte long values
separated by spaces.

mmrn
chars_per_item = nbytes x 2
hex_version = binascii.hexlify (t)
return ’ ‘. join(
hex_version[start:start + chars_per_item]

for start in xrange (0, len(hex_version), chars_per_item)

)

if _ name_ == ’_ _main__’:
print to_hex (’abcdef’, 1)
print to_hex(’abcdef’, 2)

The function uses binascii to get a hexadecimal representation of the input

byte string and then insert a space between every nbytes bytes before returning the
value.

$ python codecs_to_hex.py

61 62 63 64 65 66
6162 6364 6566

The first encoding example begins by printing the text ' pi: =’ using the raw
representation of the unicode class. The 7 character is replaced with the expression

286 The File System

for its Unicode code point, \u03c0. The next two lines encode the string as UTF-8 and
UTF-16, respectively, and show the hexadecimal values resulting from the encoding.

from codecs_to_hex import to_hex
text = u’pi: W’
print ’Raw :’, repr(text)

print ’UTF-8 :’, to_hex(text.encode(’utf-87), 1)
print ’UTF-16:’, to_hex(text.encode(’utf-16"), 2)

The result of encoding a unicode string is a str object.

$ python codecs_encodings.py

Raw : u’pi: \u03c0’
UTF-8 : 70 69 3a 20 cf 80
UTF-16: fffe 7000 6900 3a00 2000 c003

Given a sequence of encoded bytes as a st r instance, the decode () method trans-
lates them to code points and returns the sequence as a unicode instance.

from codecs_to_hex import to_hex

text = u’pi: w’
encoded = text.encode (’utf-87)
decoded = encoded.decode (’utf-87)

print ’Original :’, repr(text)

print ’Encoded :’, to_hex(encoded, 1), type (encoded)
print ’Decoded :’, repr(decoded), type (decoded)

The choice of encoding used does not change the output type.

$ python codecs_decode.py

Original : u’pi: \u03c0’
Encoded : 70 69 3a 20 cf 80 <type ’'str’>
Decoded : u’pi: \u03c0’ <type ’'unicode’>

6.7. codecs—String Encoding and Decoding 287

Note: The default encoding is set during the interpreter start-up process, when site
is loaded. Refer to the Unicode Defaults section from the discussion of sys for a
description of the default encoding settings.

6.7.2 Working with Files

Encoding and decoding strings is especially important when dealing with I/O opera-
tions. Whether writing to a file, a socket, or another stream, the data must use the proper
encoding. In general, all text data needs to be decoded from its byte representation as it
is read and encoded from the internal values to a specific representation as it is written.
A program can explicitly encode and decode data, but depending on the encoding used,
it can be nontrivial to determine whether enough bytes have been read in order to fully
decode the data. codecs provides classes that manage the data encoding and decoding,
so applications do not have to do that work.

The simplest interface provided by codecs is a replacement for the built-in
open () function. The new version works just like the built-in function, but adds two
new arguments to specify the encoding and desired error-handling technique.

from codecs_to_hex import to_hex

import codecs
import sys

encoding = sys.argv[l]
filename = encoding + ’/.txt’

print ‘Writing to’, filename
with codecs.open(filename, mode=’wt’, encoding=encoding) as f:
f.write(u’pi: \u03c0’)

Determine the byte grouping to use for to_hex()
nbytes = { ‘utf-87:1,

‘utf-167:2,

rutf-327:4,

}.get (encoding, 1)

Show the raw bytes in the file

print ’File contents:’

with open(filename, mode=’rt’) as f:
print to_hex (f.read(), nbytes)

288 The File System

This example starts with a unicode string with the code point for 7 and saves the
text to a file using an encoding specified on the command line.

$ python codecs_open_write.py utf-8

Writing to utf-8.txt
File contents:
70 69 3a 20 cf 80

$ python codecs_open_write.py utf-16

Writing to utf-16.txt
File contents:
fffe 7000 6900 3a00 2000 c003

$ python codecs_open_write.py utf-32

Writing to utf-32.txt
File contents:
fffe0000 70000000 69000000 3a000000 20000000 c0030000

Reading the data with open () is straightforward, with one catch: the encoding
must be known in advance, in order to set up the decoder correctly. Some data formats,
such as XML, specify the encoding as part of the file, but usually it is up to the appli-
cation to manage. codecs simply takes the encoding as an argument and assumes it is
correct.

import codecs
import sys

encoding = sys.argv([l]
filename = encoding + ’.txt’

print ’"Reading from’, filename
with codecs.open(filename, mode=’rt’, encoding=encoding) as f:

print repr (f.read())

This example reads the files created by the previous program and prints the repre-
sentation of the resulting unicode object to the console.

$ python codecs_open_read.py utf-8

Reading from utf-8.txt
u’pi: \u03c0’

6.7. codecs—String Encoding and Decoding 289

$ python codecs_open_read.py utf-16

Reading from utf-16.txt
u’pi: \u03c0’

$ python codecs_open_read.py utf-32

Reading from utf-32.txt
u’pi: \u03c0’

6.7.3 Byte Order

Multibyte encodings, such as UTF-16 and UTF-32, pose a problem when transferring
data between different computer systems, either by copying a file directly or using net-
work communication. Different systems use different ordering of the high- and low-
order bytes. This characteristic of the data, known as its endianness, depends on factors
such as the hardware architecture and choices made by the operating system and appli-
cation developer. There is not always a way to know in advance what byte order to use
for a given set of data, so the multibyte encodings include a byte-order marker (BOM)
as the first few bytes of encoded output. For example, UTF-16 is defined in such a
way that OxFFFE and OxFEFF are not valid characters and can be used to indicate the
byte-order. codecs defines constants for the byte-order markers used by UTF-16 and
UTF-32.

import codecs
from codecs_to_hex import to_hex

for name in [/BOM’, ’BOM_BE’, ’'BOM _LE’,
’BOM_UTF8’,
"BOM _UTF16’, ’'BOM UTFl16_BE’, ’'BOM UTF16_LE’,
’BOM_UTF32’, ’BOM _UTF32_BE’, ’BOM _UTF32_LE’,
1:

print 7{:12} : {}’.format (name, to_hex(getattr (codecs, name), 2))

BOM, BOM_UTF16, and BOM_UTF32 are automatically set to the appropriate
big-endian or little-endian values, depending on the current system’s native byte
order.

$ python codecs_bom.py

BOM . fffe

290 The File System

BOM_BE : feff
BOM_LE . fffe
BOM_UTF8 : efbb bf
BOM_UTF16 : fffe

BOM_UTF1l6_BE : feff
BOM_UTFl6_LE : fffe
BOM_UTF32 : fffe 0000
BOM_UTF32_BE : 0000 feff
BOM_UTF32_LE : fffe 0000

Byte ordering is detected and handled automatically by the decoders in codecs,
but an explicit ordering can be specified when encoding.

import codecs
from codecs_to_hex import to_hex

Pick the nonnative version of UTF-16 encoding
if codecs.BOM_UTF1l6 == codecs.BOM_UTFl6_BE:

bom = codecs.BOM_UTF16_LE

encoding = ‘utf_16_1le’
else:

bom = codecs.BOM_UTF16_BE

encoding = ‘utf_16_be’

print ’Native order :’, to_hex(codecs.BOM_UTF1l6, 2)
print ’Selected order:’, to_hex(bom, 2)

Encode the text.
encoded_text = u’/pi: \u03c0’.encode (encoding)
print 7 {:14}: {}’.format (encoding, to_hex(encoded_text, 2))

with open (’nonnative-encoded.txt’, mode=’wb’) as f:

Write the selected byte-order marker. It is not included
in the encoded text because the byte order was given
explicitly when selecting the encoding.

.write (bom)

Write the byte string for the encoded text.

oS Fh % S S

.write (encoded_text)

codecs_bom_create_file.py figures out the native byte ordering and then
uses the alternate form explicitly so the next example can demonstrate auto-detection
while reading.

6.7. codecs—String Encoding and Decoding 291

$ python codecs_bom_create_file.py

Native order : fffe
Selected order: feff
utf_16_be : 0070 0069 003a 0020 03cO

codecs_bom_detection.py does not specify a byte order when opening the
file, so the decoder uses the BOM value in the first two bytes of the file to determine it.

import codecs
from codecs_to_hex import to_hex

Look at the raw data
with open (’nonnative-encoded.txt’, mode=’'rb’) as f:
raw_bytes = f.read()

print ‘Raw 27, to_hex(raw_bytes, 2)

Reopen the file and let codecs detect the BOM
with codecs.open (’nonnative-encoded.txt’,
mode=’"rt’,
encoding=’"utf-167,
) as f:
decoded_text = f.read()

print ’Decoded:’, repr (decoded_text)

Since the first two bytes of the file are used for byte-order detection, they are not
included in the data returned by read ().

$ python codecs_bom_detection.py

Raw : feff 0070 0069 003a 0020 03cO
Decoded: u’pi: \u03c0’

6.7.4 Error Handling

The previous sections pointed out the need to know the encoding being used when
reading and writing Unicode files. Setting the encoding correctly is important for two
reasons. If the encoding is configured incorrectly while reading from a file, the data

292 The File System

will be interpreted incorrectly and may be corrupted or simply fail to decode. Not all
Unicode characters can be represented in all encodings, so if the wrong encoding is
used while writing, then an error will be generated and data may be lost.

codecs uses the same five error-handling options that are provided by the
encode () method of unicode and the decode () method of str, listed in
Table 6.1.

Table 6.1. Codec Error-Handling Modes

Error Mode Description

strict Raises an exception if the data cannot be converted

replace Substitutes a special marker character for data that cannot
be encoded

ignore Skips the data

xmlcharrefreplace | XML character (encoding only)

backslashreplace | Escape sequence (encoding only)

Encoding Errors

The most common error condition is receiving a UnicodeEncodeError when writ-
ing Unicode data to an ASCII output stream, such as a regular file or sys.stdout.
This sample program can be used to experiment with the different error-handling
modes.

import codecs
import sys

error_handling = sys.argv[1l]
text = u’pi: \u03c0’

try:
Save the data, encoded as ASCII, using the error
handling mode specified on the command line.
with codecs.open(’encode_error.txt’, ’‘w’,
encoding="ascii’,
errors=error_handling) as f:
f.write (text)

except UnicodeEncodeError, err:
print ’ERROR:’, err

6.7. codecs—String Encoding and Decoding 293

else:
If there was no error writing to the file,
show what it contains.
with open(’encode_error.txt’, ’‘rb’) as f:
print ’‘File contents:’, repr(f.read())

While st rict mode is safest for ensuring an application explicitly sets the correct
encoding for all I/O operations, it can lead to program crashes when an exception is
raised.

$ python codecs_encode_error.py strict

ERROR: ’ascii’ codec can’t encode character u’\u03c0’ in position 4:
ordinal not in range (128)

Some of the other error modes are more flexible. For example, replace ensures
that no error is raised, at the expense of possibly losing data that cannot be converted
to the requested encoding. The Unicode character for pi (7) still cannot be encoded
in ASCII, but instead of raising an exception, the character is replaced with ? in the
output.

$ python codecs_encode_error.py replace

File contents: ’"pi: 2?2’/

To skip over problem data entirely, use ignore. Any data that cannot be encoded
will be discarded.

$ python codecs_encode_error.py ignore

File contents: ’"pi: '/

There are two lossless error-handling options, both of which replace the charac-
ter with an alternate representation defined by a standard separate from the encoding.
xmlcharrefreplace uses an XML character reference as a substitute (the list of
character references is specified in the W3C document, XML Entity Definitions for
Characters).

$ python codecs_encode_error.py xmlcharrefreplace

File contents: ’'pi: π’

294 The File System

The other lossless error-handling scheme is backslashreplace, which produces
an output format like the value returned when repr () of a unicode object is printed.
Unicode characters are replaced with \u followed by the hexadecimal value of the code
point.

$ python codecs_encode_error.py backslashreplace

File contents: ’‘pi: \\u03cO’

Decoding Errors

It is also possible to see errors when decoding data, especially if the wrong encoding
is used.

import codecs
import sys

from codecs_to_hex import to_hex
error_handling = sys.argv[l]

text = u’pi: \u03c0’
print ’Original 7, repr(text)

Save the data with one encoding
with codecs.open(’decode_error.txt’, ’w’, encoding=’utf-16’) as f:
f.write (text)

Dump the bytes from the file
with open(’decode_error.txt’”, ’‘rb’) as f:
print ’‘File contents:’, to_hex(f.read(), 1)

Try to read the data with the wrong encoding
with codecs.open(’decode _error.txt’, ’'r’,
encoding=’utf-87,
errors=error_handling) as f:
try:
data = f.read()
except UnicodeDecodeError, err:
print “ERROR:’, err
else:
print ’Read :’, repr(data)

6.7. codecs—String Encoding and Decoding 295

As with encoding, strict error-handling mode raises an exception if the byte
stream cannot be properly decoded. In this case, a UnicodeDecodeError results from
trying to convert part of the UTF-16 BOM to a character using the UTF-8 decoder.

$ python codecs_decode_error.py strict

Original : u'pi: \u03c0’

File contents: ff fe 70 00 69 00 3a 00 20 00 cO 03

ERROR: ’"utf8’ codec can’t decode byte 0xff in position 0: invalid
start byte

Switching to ignore causes the decoder to skip over the invalid bytes. The result
is still not quite what is expected, though, since it includes embedded null bytes.

$ python codecs_decode_error.py ignore

Original : u'pi: \u03c0’
File contents: ff fe 70 00 69 00 3a 00 20 00 cO 03
Read : u' p\x001\x00:\x00 \x00\x03’

In replace mode, invalid bytes are replaced with \uFFFD, the official Unicode
replacement character, which looks like a diamond with a black background containing
a white question mark.

$ python codecs_decode_error.py replace

Original : u’pi: \u03c0’
File contents: ff fe 70 00 69 00 3a 00 20 00 cO 03
Read : uw' \ufffd\ufffdp\x00i\x00:\x00 \x00\ufffd\x03’

6.7.5 Standard Input and Output Streams

The most common cause of UnicodeEncodeError exceptions is code that tries to
print unicode data to the console or a UNIX pipeline when sys. stdout is not con-
figured with an encoding.

import codecs
import sys

text = u’pi: w’

296 The File System

Printing to stdout may cause an encoding error
print ’Default encoding:’, sys.stdout.encoding
print ’TTY:’, sys.stdout.isatty()

print text

Problems with the default encoding of the standard I/O channels can be difficult to
debug. This is because the program frequently works as expected when the output goes
to the console, but it causes an encoding error when it is used as part of a pipeline and
the output includes Unicode characters outside of the ASCII range. This difference in
behavior is caused by Python’s initialization code, which sets the default encoding for
each standard I/O channel only if the channel is connected to a terminal (isatty ()
returns True). If there is no terminal, Python assumes the program will configure the
encoding explicitly and leaves the I/O channel alone.

$ python codecs_stdout.py

Default encoding: utf-8
TTY: True
pi: w

$ python codecs_stdout.py | cat -

Default encoding: None
TTY: False
Traceback (most recent call last):
File "codecs_stdout.py", line 18, in <module>
print text
UnicodeEncodeError: ’"ascii’ codec can’t encode character
u’\u03c0’ in position 4: ordinal not in range (128)

To explicitly set the encoding on the standard output channel, use getwriter ()
to get a stream encoder class for a specific encoding. Instantiate the class, passing
sys.stdout as the only argument.

import codecs
import sys

text = u’pi: @’

Wrap sys.stdout with a writer that knows how to handle encoding
Unicode data.

6.7. codecs—String Encoding and Decoding 297

wrapped_stdout = codecs.getwriter (’UTF-8’) (sys.stdout)
wrapped_stdout.write (u’Via write: 7’ + text + “\n’)

Replace sys.stdout with a writer
sys.stdout = wrapped_stdout

print u’Via print:’, text

Writing to the wrapped version of sys.stdout passes the Unicode text through
an encoder before sending the encoded bytes to stdout. Replacing sys.stdout
means that any code used by an application that prints to standard output will be able
to take advantage of the encoding writer.

$ python codecs_stdout_wrapped.py

Via write: pi: =«
Via print: pi: =«

The next problem to solve is how to know which encoding should be used. The
proper encoding varies based on location, language, and user or system configuration,
so hard-coding a fixed value is not a good idea. It would also be annoying for a user
to need to pass explicit arguments to every program by setting the input and output
encodings. Fortunately, there is a global way to get a reasonable default encoding using
locale.

import codecs
import locale
import sys

text = u’pi: w’

Configure locale from the user’s environment settings.
locale.setlocale(locale.LC_ALL, /)

Wrap stdout with an encoding-aware writer.

lang, encoding = locale.getdefaultlocale()

print ’Locale encoding :’, encoding

sys.stdout = codecs.getwriter (encoding) (sys.stdout)

print ’‘With wrapped stdout:”’”, text

298 The File System

The function locale.getdefaultlocale () returns the language and preferred
encoding based on the system and user configuration settings in a form that can be used
with getwriter ().

$ python codecs_stdout_locale.py

Locale encoding : UTF8
With wrapped stdout: pi: 7

The encoding also needs to be set up when working with sys.stdin. Use
getreader () to get a reader capable of decoding the input bytes.

import codecs
import locale
import sys

Configure locale from the user’s environment settings.
locale.setlocale(locale.LC_ALL, ’77)

Wrap stdin with an encoding-aware reader.
lang, encoding = locale.getdefaultlocale()
sys.stdin = codecs.getreader (encoding) (sys.stdin)

print ‘From stdin:’
print repr(sys.stdin.read())

Reading from the wrapped handle returns unicode objects instead of str
instances.

$ python codecs_stdout_locale.py | python codecs_stdin.py

From stdin:
u’Locale encoding : UTF8\nWith wrapped stdout: pi: \u03c0\n’

6.7.6 Encoding Translation

Although most applications will work with unicode data internally, decoding or en-
coding it as part of an I/O operation, there are times when changing a file’s encoding
without holding on to that intermediate data format is useful. EncodedFile () takes
an open file handle using one encoding and wraps it with a class that translates the data
to another encoding as the I/O occurs.

6.7. codecs—String Encoding and Decoding

from codecs_to_hex import to_hex

import codecs
from cStringIO import StringIO

Raw version of the original data.
data = u’pi: \u03c0’

Manually encode it as UTF-8.
utf8 = data.encode (’utf-87)
print ’Start as UTF-8 :/, to_hex(utfg, 1)

Set up an output buffer, then wrap it as an EncodedFile.

output = StringIO ()

encoded_file = codecs.EncodedFile (output, data_encoding=’utf-87,
file_encoding=’utf-16")

encoded_file.write (utf8)

Fetch the buffer contents as a UTF-16 encoded byte string
utflé = output.getvalue()
print ’Encoded to UTF-16:’, to_hex(utfl6, 2)

Set up another buffer with the UTF-16 data for reading,

and wrap it with another EncodedFile.

buffer = StringIO(utfl6)

encoded_file = codecs.EncodedFile (buffer, data_encoding=’utf-87,
file_encoding=’utf-16")

Read the UTF-8 encoded version of the data.
recoded = encoded_file.read()
print ’Back to UTF-8 :/, to_hex(recoded, 1)

299

This example shows reading from and writing to separate handles returned by
EncodedFile (). No matter whether the handle is used for reading or writing, the
file_encoding always refers to the encoding in use by the open file handle passed as the
first argument, and the data_encoding value refers to the encoding in use by the data

passing through the read () and write () calls.

$ python codecs_encodedfile.py

Start as UTF-8 : 70 69 3a 20 cf 80

300 The File System

Encoded to UTF-16: fffe 7000 6900 3a00 2000 c003
Back to UTF-8 : 70 69 3a 20 cf 80

6.7.7 Non-Unicode Encodings

Although most of the earlier examples use Unicode encodings, codecs can be used for
many other data translations. For example, Python includes codecs for working with
base-64, bzip2, ROT-13, ZIP, and other data formats.

import codecs
from cStringIO import StringIO

buffer = StringIO()
stream = codecs.getwriter (’rot_13") (buffer)

text = ’abcdefghijklmnopgrstuvwxyz’

stream.write (text)
stream.flush ()

print ’Original:’, text
print ‘ROT-13 :’, buffer.getvalue ()

Any transformation that can be expressed as a function taking a single input argu-
ment and returning a byte or Unicode string can be registered as a codec.

$ python codecs_rotl3.py

Original: abcdefghijklmnopgrstuvwxyz
ROT-13 : nopgrstuvwxyzabcdefghijklm

Using codecs to wrap a data stream provides a simpler interface than working
directly with z1ib.

import codecs
from cStringIO import StringIO

from codecs_to_hex import to_hex

buffer = StringIO()
stream = codecs.getwriter (’zlib’) (buffer)

6.7. codecs—String Encoding and Decoding 301

text = ’‘abcdefghijklmnopgrstuvwxyz\n’ = 50

stream.write (text)
stream.flush ()

print ’Original length :’, len(text)
compressed_data = buffer.getvalue ()
print ’ZIP compressed :’, len(compressed_data)

buffer = StringIO(compressed_data)
stream = codecs.getreader(’zlib’) (buffer)

first_line = stream.readline()
print ’"Read first line :’, repr(first_line)

uncompressed_data = first_line + stream.read()
print ’Uncompressed :7, len(uncompressed_data)
print ’Same 7, text == uncompressed_data

Not all compression or encoding systems support reading a portion of the data
through the stream interface using readline () or read () because they need to find
the end of a compressed segment to expand it. If a program cannot hold the entire un-
compressed data set in memory, use the incremental access features of the compression
library, instead of codecs.

$ python codecs_zlib.py

Original length : 1350

ZIP compressed : 48

Read first line : ’abcdefghijklmnopgrstuvwxyz\n’
Uncompressed : 1350

Same : True

6.7.8 Incremental Encoding

Some of the encodings provided, especially bz2 and z1ib, may dramatically change
the length of the data stream as they work on it. For large data sets, these encod-
ings operate better incrementally, working on one small chunk of data at a time. The
IncrementalEncoder and IncrementalDecoder APl is designed for this purpose.

import codecs
import sys

302 The File System

from codecs_to_hex import to_hex

text = ‘abcdefghijklmnopgrstuvwxyz\n’
repetitions = 50

print ’Text length :’, len(text)
print ’Repetitions :’, repetitions
print ’Expected len:’, len(text) % repetitions

Encode the text several times to build up a large amount of data
encoder = codecs.getincrementalencoder (’bz2’) ()
encoded = []

print
print ’Encoding:’,
for i in range (repetitions):
en_c = encoder.encode (text, final = (i==repetitions-1))
if en_c:
print ‘\nEncoded : {} bytes’.format (len(en_c))
encoded. append (en_c)
else:
sys.stdout.write(’.”)

bytes = ’’.join (encoded)

print

print ’Total encoded length:’, len(bytes)
print

Decode the byte string one byte at a time
decoder = codecs.getincrementaldecoder (’bz2”) ()
decoded [1

print ’Decoding:’,
for i, b in enumerate (bytes):
final= (i+1) == len (text)
c = decoder.decode (b, final)
if c:
print ’\nDecoded : {} characters’.format (len(c))
print ’Decoding:’,
decoded.append (c)
else:
sys.stdout.write(’.”)
print

6.7. codecs—String Encoding and Decoding 303

restored = u’’.join (decoded)

print
print ’Total uncompressed length:’, len(restored)

Each time data is passed to the encoder or the decoder, its internal state is up-
dated. When the state is consistent (as defined by the codec), data is returned and the
state resets. Until that point, calls to encode () or decode () will not return any data.
When the last bit of data is passed in, the argument final should be set to True so the
codec knows to flush any remaining buffered data.

$ python codecs_incremental_bz2.py
Text length : 27

Repetitions : 50

Expected len: 1350

Encoded : 99 bytes

Total encoded length: 99

Total uncompressed length: 1350

6.7.9 Unicode Data and Network Communication

Like the standard input and output file descriptors, network sockets are also byte
streams, and so Unicode data must be encoded into bytes before it is written to a socket.
This server echos data it receives back to the sender.

import sys
import SocketServer

class Echo (SocketServer.BaseRequestHandler) :

304 The File System

def handle (self):
Get some bytes and echo them back to the client.
data = self.request.recv(1024)
self.request.send(data)
return

if _ name_ == /__ _main__’:
import codecs
import socket
import threading

address = (’localhost’, 0) # let the kernel assign a port
server = SocketServer.TCPServer (address, Echo)
ip, port = server.server_address # what port was assigned?

t

= threading.Thread(target=server.serve_forever)
t.setDaemon (True) # don’t hang on exit
t.start ()

Connect to the server
s = socket.socket (socket.AF_INET, socket.SOCK_STREAM)
s.connect ((ip, port))

Send the data

WRONG: Not encoded first!
text = u’pi: w’

len_sent = s.send(text)

Receive a response
response = s.recv(len_sent)
print repr (response)

Clean up
s.close ()
server.socket.close ()

The data could be encoded explicitly before each call to send (), but missing one
call to send () would result in an encoding error.

$ python codecs_socket_fail.py
Traceback (most recent call last):
File "codecs_socket_fail.py", line 43, in <module>

6.7. codecs—String Encoding and Decoding 305

len_sent = s.send(text)
UnicodeEncodeError: 'ascii’ codec can’t encode character
u’\u03c0’ in position 4: ordinal not in range(128)

Using makefile () to get a file-like handle for the socket, and then wrapping that
handle with a stream-based reader or writer, means Unicode strings will be encoded on
the way into and out of the socket.

import sys
import SocketServer

class Echo (SocketServer.BaseRequestHandler) :

def handle (self):
Get some bytes and echo them back to the client. There is
no need to decode them, since they are not used.
data = self.request.recv(1024)
self.request.send(data)
return

class PassThrough (object) :

def _ init_ (self, other):
self.other = other

def write(self, data):
print ‘Writing :’, repr(data)
return self.other.write (data)

def read(self, size=-1):
print ’‘Reading :/,
data = self.other.read(size)
print repr (data)
return data

def flush(self):
return self.other.flush()

def close(self):
return self.other.close ()

306 The File System

if _ name_ == ’/_ _main_ ’:
import codecs
import socket

import threading

address = (’localhost’, 0) # let the kernel assign a port
server = SocketServer.TCPServer (address, Echo)
ip, port = server.server_address # what port was assigned?

o

= threading.Thread (target=server.serve_forever)

o

.setDaemon (True) # don’t hang on exit
t.start ()

Connect to the server
s = socket.socket (socket.AF_INET, socket.SOCK_STREAM)
s.connect ((ip, port))

Wrap the socket with a reader and writer.

read_file = s.makefile(’r”’)

incoming = codecs.getreader (‘utf-8’) (PassThrough (read_file))
write_file = s.makefile(’w’)

outgoing = codecs.getwriter (‘utf-8’) (PassThrough (write_file))

Send the data

text = u’pi: @’

print ’Sending :’, repr (text)
outgoing.write (text)
outgoing.flush()

Receive a response

response = incoming.read()

print ’‘Received:’, repr (response)
Clean up

s.close ()

server.socket.close ()

This example uses PassThrough to show that the data is encoded before being
sent and the response is decoded after it is received in the client.

$ python codecs_socket.py

Sending : u’pi: \u03c0’

6.7. codecs—String Encoding and Decoding 307

Writing : "pi: \xcf\x80’
Reading : ’'pi: \xcf\x80'
Received: u’pi: \u03c0’

6.7.10 Defining a Custom Encoding

Since Python comes with a large number of standard codecs already, it is unlikely that
an application will need to define a custom encoder or decoder. When it is necessary,
though, there are several base classes in codecs to make the process easier.

The first step is to understand the nature of the transformation described by the
encoding. These examples will use an “invertcaps” encoding, which converts uppercase
letters to lowercase and lowercase letters to uppercase. Here is a simple definition of an
encoding function that performs this transformation on an input string:

import string

def invertcaps (text):
""MReturn new string with the case of all letters switched.

mmn

return ’’.join(c.upper() if c in string.ascii_lowercase
else c.lower () if c in string.ascii_uppercase
else c
for ¢ in text

)

’

if name == main

7.

print invertcaps (’ABC.def’)
print invertcaps (’abc.DEF’)

In this case, the encoder and decoder are the same function (as with ROT-13).

$ python codecs_invertcaps.py

abc.DEF
ABC.def

Although it is easy to understand, this implementation is not efficient, especially
for very large text strings. Fortunately, codecs includes helper functions for creating
codecs based on character maps, like invertcaps. A character map encoding is made up
of two dictionaries. The encoding map converts character values from the input string to
byte values in the output, and the decoding map goes the other way. Create the decoding

308 The File System

map first, and then use make_encoding_map () to convert it to an encoding map. The
C functions charmap_encode () and charmap_decode () use the maps to convert
their input data efficiently.

import codecs
import string

Map every character to itself
decoding_map = codecs.make_identity_dict (range (256))

Make a list of pairs of ordinal values for the lower and uppercase
letters
pairs = zip([ord(c) for c in string.ascii_lowercase],

[ord(c) for c in string.ascii_uppercase])

Modify the mapping to convert upper to lower and lower to upper.
decoding_map.update(dict ((upper, lower)

for (lower, upper)

in pairs

)

)

decoding_map.update(dict((lower, upper)

for (lower, upper)

in pairs

)

Create a separate encoding map.
encoding_map = codecs.make_encoding_map (decoding_map)

if _ name_ == ‘/_ _main_’:
print codecs.charmap_encode (’abc.DEF’, ’strict’, encoding_map)
print codecs.charmap_decode (’abc.DEF’, ’strict’, decoding_map)
print encoding_map == decoding_map

Although the encoding and decoding maps for invertcaps are the same, that may
not always be the case. make_encoding_map () detects situations where more than
one input character is encoded to the same output byte and replaces the encoding value
with None to mark the encoding as undefined.

$ python codecs_invertcaps_charmap.py

("ABC.def’, 7)

6.7. codecs—String Encoding and Decoding 309

(u’ABC.def’, 7)
True

The character map encoder and decoder support all standard error-handling
methods described earlier, so no extra work is needed to comply with that part of the
APIL.

import codecs
from codecs_invertcaps_charmap import encoding_map

text = u’pi: w’

for error in [’ignore’, ’replace’, ’strict’]:
try:
encoded = codecs.charmap_encode (text, error, encoding_map)
except UnicodeEncodeError, err:
encoded = str (err)
print 7 {:7}: {}’.format (error, encoded)

Because the Unicode code point for 7 is not in the encoding map, the strict error-
handling mode raises an exception.

$ python codecs_invertcaps_error.py

ignore : ('PI: ', 5)
replace: ('PI: ?', 5)
strict : ’charmap’ codec can’t encode character u’\u03c0’ in position

4: character maps to <undefined>

After the encoding and decoding maps are defined, a few additional classes need to
be set up, and the encoding should be registered. register () adds a search function
to the registry so that when a user wants to use the encoding, codecs can locate it. The
search function must take a single string argument with the name of the encoding and
return a CodecInfo object if it knows the encoding, or None if it does not.

import codecs
import encodings

def searchl (encoding) :
print ’searchl: Searching for:’, encoding
return None

310 The File System

def search2 (encoding) :
print ’‘search2: Searching for:’, encoding
return None

codecs.register (searchl)
codecs.register (search2)

utf8 = codecs.lookup(’utf-87)
print ’UTF-8:7, utfs8

try:

unknown = codecs.lookup (’no-such—-encoding’)
except LookupError, err:

print ’ERROR:’, err

Multiple search functions can be registered, and each will be called in turn until
one returns a CodecInfo or the listis exhausted. The internal search function registered
by codecs knows how to load the standard codecs, such as UTF-8 from encodings,
so those names will never be passed to custom search functions.

$ python codecs_register.py

UTF-8: <codecs.CodecInfo object for encoding utf-8 at 0x100d0£530>
searchl: Searching for: no-such-encoding
search2: Searching for: no-such-encoding
ERROR: unknown encoding: no-such-encoding

The CodecInfo instance returned by the search function tells codecs how to
encode and decode using all the different mechanisms supported: stateless, incremen-
tal, and stream. codecs includes base classes to help with setting up a character map
encoding. This example puts all the pieces together to register a search function that
returns a CodecInfo instance configured for the invertcaps codec.

import codecs

from codecs_invertcaps_charmap import encoding_map, decoding_map
Stateless encoder/decoder

class InvertCapsCodec (codecs.Codec) :

def encode(self, input, errors=’strict’):
return codecs.charmap_encode (input, errors, encoding_map)

6.7. codecs—String Encoding and Decoding

def decode(self, input, errors=’strict’):

return codecs.charmap_decode (input, errors, decoding_map)

Incremental forms

class InvertCapsIncrementalEncoder (codecs.IncrementalEncoder) :
def encode(self, input, final=False):
data, nbytes = codecs.charmap_encode (input,
self.errors,

encoding_map)
return data

class InvertCapsIncrementalDecoder (codecs.IncrementalDecoder) :
def decode(self, input, final=False):
data, nbytes = codecs.charmap_decode (input,
self.errors,

decoding_map)
return data

Stream reader and writer

class InvertCapsStreamReader (InvertCapsCodec, codecs.StreamReader):

pass

class InvertCapsStreamWriter (InvertCapsCodec, codecs.StreamWriter):

pass
Register the codec search function

def find_invertcaps (encoding) :
"""Return the codec for ’invertcaps’.
nwnn
if encoding == ’invertcaps’:
return codecs.CodecInfo (
name=’1invertcaps’,
encode=InvertCapsCodec () .encode,
decode=InvertCapsCodec () .decode,
incrementalencoder=InvertCapsIncrementalEncoder,
incrementaldecoder=InvertCapsIncrementalDecoder,
streamreader=InvertCapsStreamReader,
streamwriter=InvertCapsStreamWriter,
)

return None

311

312 The File System

codecs.register (find_invertcaps)

if _ name_ == /_ _main__’:

Stateless encoder/decoder

encoder = codecs.getencoder (’invertcaps’)

text = ’“abc.DEF”’

encoded_text, consumed = encoder (text)

print ’“Encoded "{}" to "{}", consuming {} characters’.format (
text, encoded_text, consumed)

Stream writer

import sys

writer = codecs.getwriter (’/invertcaps’) (sys.stdout)
print ’StreamWriter for stdout: 7/,

writer.write (“abc.DEF’)

print

Incremental decoder
decoder_factory = codecs.getincrementaldecoder (’invertcaps”’)
decoder = decoder_factory ()
decoded_text_parts = []
for ¢ in encoded_text:
decoded_text_parts.append (decoder.decode (c, final=False))
decoded_text_parts.append(decoder.decode (’’, final=True))
decoded_text = ’’.join(decoded_text_parts)
print ’IncrementalDecoder converted "{}" to "{}"’.format (
encoded_text, decoded_text)

The stateless encoder/decoder base class is Codec. Override encode () and
decode () with the new implementation (in this case, calling charmap_encode ()
and charmap_decode (), respectively). Each method must return a tuple contain-
ing the transformed data and the number of the input bytes or characters consumed.
Conveniently, charmap_encode () and charmap_decode () already return that
information.

IncrementalEncoder and IncrementalDecoder serve as base classes for
the incremental interfaces. The encode () and decode () methods of the incre-
mental classes are defined in such a way that they only return the actual trans-
formed data. Any information about buffering is maintained as internal state. The
invertcaps encoding does not need to buffer data (it uses a one-to-one mapping).
For encodings that produce a different amount of output depending on the data be-
ing processed, such as compression algorithms, BufferedIncrementalEncoder

6.7. codecs—String Encoding and Decoding 313

and BufferedIncrementalDecoder are more appropriate base classes, since they
manage the unprocessed portion of the input.

StreamReader and StreamWriter need encode () and decode () methods,
too, and since they are expected to return the same value as the version from Codec,
multiple inheritance can be used for the implementation.

$ python codecs_invertcaps_register.py

Encoded "abc.DEF" to "ABC.def", consuming 7 characters
StreamWriter for stdout: ABC.def
IncrementalDecoder converted "ABC.def" to "abc.DEF"

See Also:

codecs (http://docs.python.org/library/codecs.html) The standard library documen-
tation for this module.

locale (page 909) Accessing and managing the localization-based configuration set-
tings and behaviors.

io (http://docs.python.org/library/io.html) The io module includes file and stream
wrappers that handle encoding and decoding, too.

SocketServer (page 609) For a more detailed example of an echo server, see the
SocketServer module.

encodings Package in the standard library containing the encoder/decoder implemen-
tations provided by Python.

PEP 100 (www.python.org/dev/peps/pep-0100) Python Unicode Integration PEP.

Unicode HOWTO (http://docs.python.org/howto/unicode) The official guide for
using Unicode with Python 2.x.

Python Unicode Objects (http://effbot.org/zone/unicode-objects.htm) Fredrik
Lundh’s article about using non-ASCII character sets in Python 2.0.

How to Use UTF-8 with Python (http://evanjones.ca/python-utf8.html) Evan
Jones’ quick guide to working with Unicode, including XML data and the Byte-
Order Marker.

On the Goodness of Unicode (www.tbray.org/ongoing/When/200x/2003/04/06/
Unicode) Introduction to internationalization and Unicode by Tim Bray.

On Character Strings (www.tbray.org/ongoing/When/200x/2003/04/13/Strings) A
look at the history of string processing in programming languages, by Tim Bray.

Characters vs. Bytes (www.tbray.org/ongoing/When/200x/2003/04/26/UTF) Part
one of Tim Bray’s “essay on modern character string processing for computer
programmers.” This installment covers in-memory representation of text in
formats other than ASCII bytes.

www.python.org/dev/peps/pep-0100
http://effbot.org/zone/unicode-objects.htm
http://evanjones.ca/python-utf8.html
http://docs.python.org/library/codecs.html
http://docs.python.org/library/io.html
www.tbray.org/ongoing/When/200x/2003/04/06/Unicode
www.tbray.org/ongoing/When/200x/2003/04/06/Unicode
www.tbray.org/ongoing/When/200x/2003/04/13/Strings
www.tbray.org/ongoing/When/200x/2003/04/26/UTF
http://docs.python.org/howto/unicode

314 The File System

Endianness (http://en.wikipedia.org/wiki/Endianness) Explanation of endianness
in Wikipedia.

W3C XML Entity Definitions for Characters (www.w3.org/TR/xml-entity-names/)
Specification for XML representations of character references that cannot be
represented in an encoding.

6.8 StringlO—Text Buffers with a File-like API

Purpose Work with text buffers using a file-like API.
Python Version 1.4 and later

StringIO provides a convenient means of working with text in memory using the
file API (read (), write (), etc.). There are two separate implementations. The
cStringIO version is written in C for speed, while StringI0 is written in Python
for portability. Using cStringIO to build large strings can offer performance savings
over some other string concatenation techniques.

6.8.1 Examples

Here are a few standard examples of using St ringI0 buffers:

Find the best implementation available on this platform
try:

from cStringIO import StringIO
except:

from StringIO import StringIO

Writing to a buffer

output = StringIO()

output.write(’This goes into the buffer. ’)
print >>output, ’And so does this.’

Retrieve the value written
print output.getvalue ()

output.close() # discard buffer memory

Initialize a read buffer
input = StringIO(’Inital value for read buffer’)

http://en.wikipedia.org/wiki/Endianness
www.w3.org/TR/xml-entity-names/

6.9. fnmatch—UNIX-Style Glob Pattern Matching 315

Read from the buffer
print input.read()

This example uses read (), but the readline () and readlines () methods
are also available. The sStringI0 class also provides a seek () method for jumping
around in a buffer while reading, which can be useful for rewinding if a look-ahead
parsing algorithm is being used.

$ python stringio_examples.py
This goes into the buffer. And so does this.

Inital value for read buffer

See Also:

StringlO (http://docs.python.org/lib/module-StringlO.html) Standard library doc-
umentation for this module.

The StringlO module ::: www.effbot.org (http://effbot.org/librarybook/stringio
.htm) eftbot’s examples with StringlO.

Efficient String Concatenation in Python (www.skymind.com/% 7Eocrow/python_
string/) Examines various methods of combining strings and their relative
merits.

6.9 fnmatch—UNIX-Style Glob Pattern Matching

Purpose Handle UNIX-style filename comparisons.
Python Version 1.4 and later.

The fnmatch module is used to compare filenames against glob-style patterns such as
used by UNIX shells.

6.9.1 Simple Matching

fnmatch () compares a single filename against a pattern and returns a Boolean, indi-
cating whether or not they match. The comparison is case sensitive when the operating
system uses a case-sensitive file system.

import fnmatch
import os

www.effbot.org
http://effbot.org/librarybook/stringio.htm
http://effbot.org/librarybook/stringio.htm
www.skymind.com/%7Eocrow/python_string/
www.skymind.com/%7Eocrow/python_string/
http://docs.python.org/lib/module-StringIO.html

316 The File System

pattern = /fnmatch_x.py’
print ’Pattern :’, pattern
print

files = os.listdir(’.”)
for name in files:

print ’‘Filename: %-25s %$s’ $ \
(name, fnmatch.fnmatch (name, pattern))

In this example, the pattern matches all files starting with / fnmatch_’ and ending
in’.py’.

$ python fnmatch_fnmatch.py

Pattern : fnmatch_x.py

Filename: __init__ .py False
Filename: fnmatch_filter.py True
Filename: fnmatch_fnmatch.py True
Filename: fnmatch_fnmatchcase.py True
Filename: fnmatch_translate.py True
Filename: index.rst False

To force a case-sensitive comparison, regardless of the file system and operating
system settings, use fnmatchcase ().

import fnmatch
import os

pattern = FNMATCH_x.PY’
print ’Pattern :’, pattern
print

files = os.listdir(’.”)
for name in files:

print ‘Filename: $%$-25s %s’ % \
(name, fnmatch.fnmatchcase (name, pattern))

Since the OS X system used to test this program uses a case-sensitive file system,
no files match the modified pattern.

6.9. fnmatch—UNIX-Style Glob Pattern Matching 317

$ python fnmatch_fnmatchcase.py

Pattern : FNMATCH_*.PY

Filename: __init__ .py False
Filename: fnmatch_filter.py False
Filename: fnmatch_fnmatch.py False
Filename: fnmatch_fnmatchcase.py False
Filename: fnmatch_translate.py False
Filename: index.rst False

6.9.2 Filtering

To test a sequence of filenames, use filter (), which returns a list of the names that
match the pattern argument.

import fnmatch
import os
import pprint

pattern = /fnmatch_x.py’
print ’Pattern :’, pattern

files = os.listdir(’.”)
print
print ‘Files e

pprint.pprint (files)
print

print ’"Matches :’
pprint.pprint (fnmatch.filter (files, pattern))

In this example, filter () returns the list of names of the example source files
associated with this section.

$ python fnmatch_filter.py
Pattern : fnmatch_x.py

Files

’

[/ _init___.py’,

318 The File System

" fnmatch_filter.py’,

" fnmatch_fnmatch.py’,

" fnmatch_fnmatchcase.py’,
" fnmatch_translate.py’,
"index.rst’]

Matches

[/ fnmatch_filter.py’,

" fnmatch_fnmatch.py’,

" fnmatch_fnmatchcase.py’,
" fnmatch_translate.py’]

6.9.3 Translating Patterns

Internally, fnmatch converts the glob pattern to a regular expression and uses the re
module to compare the name and pattern. The t ranslate () function is the public API
for converting glob patterns to regular expressions.

import fnmatch

pattern = /fnmatch x*.py’
print ’Pattern :’, pattern
print ’Regex :/, fnmatch.translate (pattern)

Some of the characters are escaped to make a valid expression.

$ python fnmatch_translate.py

Pattern : fnmatch_x.py
Regex : fnmatch_.*\.py\Z (?ms)

See Also:

fnmatch (http://docs.python.org/library/fnmatch.html) The standard library docu-
mentation for this module.

glob (page 257) The glob module combines fnmatch matching with
os.listdir () to produce lists of files and directories matching patterns.

re (page 13) Regular expression pattern matching.

http://docs.python.org/library/fnmatch.html

6.10. dircache—Cache Directory Listings 319

6.10 dircache—Cache Directory Listings

Purpose Cache directory listings, updating when the modification time of
a directory changes.
Python Version 1.4 and later

The dircache module reads directory listings from the file system and holds them in
memory.

6.10.1 Listing Directory Contents

The main function in the dircache APl is 1istdir (), which is a wrapper around
os.listdir (). Each time it is called with a given path, dircache.listdir ()
returns the same 11 st object, unless the modification date of the directory changes.

import dircache

path = 7.7
first = dircache.listdir (path)
second = dircache.listdir (path)

print ’“Contents :’
for name in first:
print 7 /, name

print
print ’Identical:”’”, first is second
print ’Equal :/, first == second

It is important to recognize that the exact same 1ist is returned each time, so it
should not be modified in place.

$ python dircache_listdir.py

Contents
__init___.py
dircache_annotate.py
dircache_listdir.py

320 The File System

dircache_listdir_file_added.py
dircache_reset.py
index.rst

Identical: True
Equal : True

If the contents of the directory changes, it is rescanned.

import dircache
import os

path = 7/tmp”’
file_to_create = os.path.join(path, ’pymotw_tmp.txt”’)

Look at the directory contents
first = dircache.listdir (path)

Create the new file
open (file_to_create, ’‘wt’).close()

Rescan the directory
second = dircache.listdir (path)

Remove the file we created
os.unlink (file_to_create)

print ’Identical :’, first is second

print “Equal :7, first == second
print ’Difference:’, list (set(second) - set (first))

In this case, the new file causes a new 1ist to be constructed.
$ python dircache_listdir_file_added.py
Identical : False

Equal : False
Difference: [’pymotw_tmp.txt’]

It is also possible to reset the entire cache, discarding its contents so that each path
will be rechecked.

import dircache

path =
first =

//tmp/
dircache.listdir (path)
dircache.reset ()

second = dircache.listdir (path)

print ’Identical :’, first is second

print ’Equal :7, first == second

print ’Difference:’, list (set (second)

6.10. dircache—Cache Directory Listings

— set (first))

After resetting, a new 1ist instance is returned.

$ python dircache_reset.py

Identical False
Equal True
Difference: []

6.10.2 Annotated Listings

321

Another interesting function provided by the dircache module is annotate (), which
modifies a 1ist (), such as is returned by listdir (), by adding a ’ /* to the end of

the names that represent directories.

import dircache
from pprint import pprint
import os

path = 7../..7

contents = dircache.listdir (path)
annotated = contents][:]
dircache.annotate (path, annotated)
fmt = 7%$25s\t%25s”’

print fmt % (/ORIGINAL’, ’ANNOTATED’)
print fmt & ((/-7 x 25,)%2)

322 The File System

for o, a in zip(contents,
print fmt % (o, a)

Unfortunately for Windows users, although annotate () uses os.path. join ()

annotated) :

to construct names to test, it always appends a ’ /', not os . sep.

$ python dircache_annotate.py

ORIGINAL

.hg

.hgignore
.hgtags
LICENSE.txt
MANIFEST.in
PyMOTW
PyMOTW.egg—info
README. txt

bin

dist

module

motw

output
pavement.py
paver-minilib.zip
setup.py
sitemap_gen_config.xml
sphinx
structure
trace.txt

utils

See Also:

dircache (http://docs.python.org/library/dircache.html) The standard library docu-
mentation for this module.

ANNOTATED

.hg/

.hgignore
.hgtags

LICENSE. txt
MANIFEST.in
PyMOTW/
PyMOTW.egg—info/
README. txt

bin/

dist/

module

motw

output/
pavement.py
paver-minilib.zip
setup.py
sitemap_gen_config.xml
sphinx/
structure/
trace.txt

utils/

6.11 filecmp—Compare Files

Purpose Compare files and directories on the file system.

Python Version 2.1 and later

http://docs.python.org/library/dircache.html

6.11. filecmp—Compare Files 323

The £i1lecmp module includes functions and a class for comparing files and directories
on the file system.

6.11.1 Example Data

The examples in this discussion use a set of test files created by filecmp_
mkexamples.py.

import os

def mkfile(filename, body=None) :
with open(filename, ’“w’) as f:
f.write (body or filename)
return

def make_example_dir (top) :
if not os.path.exists (top) :
os.mkdir (top)
curdir = os.getcwd()
os.chdir (top)

os.mkdir (/dirl’)
os.mkdir (/dir2”)

mkfile(’dirl/file only_in dirl’)
mkfile(’dir2/file only_in dir2’)

os.mkdir(’dirl/dir_only in dirl’)
os.mkdir (’dir2/dir_only in dir2’)

os.mkdir (’/dirl/common_dir”’)
os.mkdir (/dir2/common_dir”)

mkfile(’/dirl/common_file’, ’this file is the same’)
mkfile(’dir2/common_file’, ’‘this file is the same’)

mkfile (’/dirl/not_the same’)
mkfile (’/dir2/not_the same’)

mkfile(’/dirl/file in dirl’, ’This is a file in dirl’)
os.mkdir(/dir2/file in dirl”)

os.chdir (curdir)
return

324 The File System

if name == ’__main__':

os.chdir (os.path.dirname(__file_) or os.getcwd())
make_example_dir (’example’)

make_example_dir (‘example/dirl/common_dir”’)
make_example_dir (’example/dir2/common_dir’)

Running filecmp_mkexamples.py produces a tree of files under the directory
example:

$ find example

example

example/dirl

example/dirl/common_dir
example/dirl/common_dir/dirl
example/dirl/common_dir/dirl/common_dir
example/dirl/common_dir/dirl/common_file
example/dirl/common_dir/dirl/dir_only_in_dirl
example/dirl/common_dir/dirl/file_in_dirl
example/dirl/common_dir/dirl/file_only_in_dirl
example/dirl/common_dir/dirl/not_the_same
example/dirl/common_dir/dir2
example/dirl/common_dir/dir2/common_dir
example/dirl/common_dir/dir2/common_file
example/dirl/common_dir/dir2/dir_only_in_dir2
example/dirl/common_dir/dir2/file_in_dirl
example/dirl/common_dir/dir2/file_only_in_dir2
example/dirl/common_dir/dir2/not_the_same
example/dirl/common_file
example/dirl/dir_only_in_dirl
example/dirl/file_in_dirl
example/dirl/file_only_in_dirl
example/dirl/not_the_same

example/dir2

example/dir2/common_dir
example/dir2/common_dir/dirl
example/dir2/common_dir/dirl/common_dir
example/dir2/common_dir/dirl/common_file
example/dir2/common_dir/dirl/dir_only_in_dirl
example/dir2/common_dir/dirl/file_in_dirl
example/dir2/common_dir/dirl/file_only_in_dirl
example/dir2/common_dir/dirl/not_the_same

6.11. filecmp—Compare Files

example/dir2/common_dir/dir2
example/dir2/common_dir/dir2/common_dir
example/dir2/common_dir/dir2/common_file
example/dir2/common_dir/dir2/dir_only_in_dir?2
example/dir2/common_dir/dir2/file_in_dirl
example/dir2/common_dir/dir2/file_only_in_dir2
example/dir2/common_dir/dir2/not_the_same
example/dir2/common_file
example/dir2/dir_only_in_dir2
example/dir2/file_in_dirl
example/dir2/file_only_in_dir2
example/dir2/not_the_same

325

The same directory structure is repeated one time under the “common_dir” direc-

tories to give interesting recursive comparison options.

6.11.2 Comparing Files

cmp () compares two files on the file system.

import filecmp

print ’‘common_file:’,

print filecmp.cmp (’example/dirl/common_file’,
‘example/dir2/common_file’),

print filecmp.cmp (’example/dirl/common_file’,
’example/dir2/common_file’,
shallow=False)

print ’not_the_same:’,

print filecmp.cmp (’example/dirl/not_the_same’,
‘example/dir2/not_the_same’),

print filecmp.cmp (’example/dirl/not_the_same’,
‘example/dir2/not_the_same’,
shallow=False)

print ’identical:’,

print filecmp.cmp (’example/dirl/file _only in dirl’,
‘example/dirl/file _only_ in_dirl’),

print filecmp.cmp (’example/dirl/file_only in dirl’,
‘example/dirl/file_only in_dirl’,
shallow=False)

326 The File System

The shallow argument tells cmp () whether to look at the contents of the file,
in addition to its metadata. The default is to perform a shallow comparison using the
information available from os.stat () without looking at content. Files of the same
size created at the same time are reported as the same, if their contents are not compared.

$ python filecmp_cmp.py

common_file: True True
not_the_same: True False
identical: True True

To compare a set of files in two directories without recursing, use cmpfiles ().
The arguments are the names of the directories and a list of files to be checked in the two
locations. The list of common files passed in should contain only filenames (directories
always result in a mismatch), and the files must be present in both locations. The next
example shows a simple way to build the common list. The comparison also takes the
shallow flag, just as with cmp () .

import filecmp
import os

Determine the items that exist in both directories

dl_contents = set (os.listdir (’example/dirl’))
d2_contents = set (os.listdir (’example/dir2’))
common = list (dl_contents & d2_contents)
common_files = [f

for f in common
if os.path.isfile(os.path.join (’example/dirl’, f))
]

print ‘Common files:’, common_files

Compare the directories

match, mismatch, errors = filecmp.cmpfiles (’example/dirl’,
‘example/dir2’,
common_files)

print “Match :’, match

print ’Mismatch:’, mismatch

print ’Errors :’, errors

cmpfiles () returns three lists of filenames containing files that match, files that
do not match, and files that could not be compared (due to permission problems or for
any other reason).

6.11. filecmp—Compare Files 327

$ python filecmp_cmpfiles.py

Common files: [’'not_the_same’, ’"file_in_dirl’, ’'common_file’]
Match : ["not_the_same’, ’common_file’]

Mismatch: [’file_in_dirl’]

Errors |

6.11.3 Comparing Directories

The functions described earlier are suitable for relatively simple comparisons. For
recursive comparison of large directory trees or for more complete analysis, the di rcmp
class is more useful. In its simplest use case, report () prints a report comparing two
directories.

import filecmp
filecmp.dircmp (’example/dirl’, ’example/dir2’) .report ()

The output is a plain-text report showing the results of just the contents of the
directories given, without recursing. In this case, the file “not_the_same” is thought
to be the same because the contents are not being compared. There is no way to have
dircmp compare the contents of files like cmp () does.

$ python filecmp_dircmp_report.py

diff example/dirl example/dir2

Only in example/dirl : [’dir_only_in_dirl’, "file_only_in_dirl’]
Only in example/dir2 : ['dir_only_in_dir2’, ’'file_only_in_dir2’]
Identical files : [’common_file’, ’'not_the_same’]

Common subdirectories : [’/common_dir’]
Common funny cases : ['file_in_dirl’]

For more detail, and a recursive comparison, use report_full_closure():
import filecmp
filecmp.dircmp (’example/dirl’, ’example/dir2’) .report_full_closure ()
The output includes comparisons of all parallel subdirectories.
$ python filecmp_dircmp_report_full_closure.py

diff example/dirl example/dir2

328 The File System

Only in example/dirl : [’dir_only_in_dirl’, ’file_only_in_dirl’]
Only in example/dir2 : ['dir_only_in_dir2’, ’file_only_in_dir2’]
Identical files : [’common_file’, ’'not_the_same’]

Common subdirectories : [’/common_dir’]

Common funny cases : ['file_in_dirl’]

diff example/dirl/common_dir example/dir2/common_dir
Common subdirectories : [’dirl’, ’'dir2’]

diff example/dirl/common_dir/dir2 example/dir2/common_dir/dir2

Identical files : [’common_file’, ’"file_only_in_dir2’, ’'not_the_same’
1

Common subdirectories : [’common_dir’, ’'dir_only_in_dir2’, 'file_in_d
irl’]

diff example/dirl/common_dir/dir2/common_dir example/dir2/common_dir/
dir2/common_dir

diff example/dirl/common_dir/dir2/dir_only_in_dir2 example/dir2/commo
n_dir/dir2/dir_only_in_dir2

diff example/dirl/common_dir/dir2/file_in_dirl example/dir2/common_di
r/dir2/file_in_dirl

diff example/dirl/common_dir/dirl example/dir2/common_dir/dirl
Identical files : [’common_file’, ’"file_in_dirl’, ’file_only_in_dirl’
, 'not_the_same’]

Common subdirectories : [’‘common_dir’, 'dir_only_in_dirl’]

diff example/dirl/common_dir/dirl/common_dir example/dir2/common_dir/
dirl/common_dir

diff example/dirl/common_dir/dirl/dir_only_in_dirl example/dir2/commo
n_dir/dirl/dir_only_in_dirl

6.11.4 Using Differences in a Program

Besides producing printed reports, dircmp calculates lists of files that can be used in
programs directly. Each of the following attributes is calculated only when requested,
so creating a dircmp instance does not incur overhead for unused data.

import filecmp
import pprint

6.11. filecmp—Compare Files

dc = filecmp.dircmp (’example/dirl’, ’‘example/dir2’)
print “Left:’
pprint.pprint (dc.left_list)

print ‘\nRight:’
pprint.pprint (dc.right_1list)

329

The files and subdirectories contained in the directories being compared are listed

inleft_list and right_list.

$ python filecmp_dircmp_list.py

Left:

[/ common_dir’,
"common_file’,
"dir_only_in_dirl’,
"file_in_dirl’,
"file_only_in_dirl’,
"not_the_same’]

Right:

[/ common_dir’,
common_file’,
"dir_only_in_dir2’,
"file_in_dirl’,
"file_only_in_dir2’,
"not_the_same’]

The inputs can be filtered by passing a list of names to ignore to the constructor.

By default, the names RCS, CVS, and tags are ignored.

import filecmp
import pprint

dc = filecmp.dircmp (’example/dirl’, ’‘example/dir2’,
ignore=[’common_file’])

print ’Left:’
pprint.pprint (dc.left_list)

print ’‘\nRight:’
pprint.pprint (dc.right_list)

330 The File System

In this case, the “common_file” is left out of the list of files to be compared.

$ python filecmp_dircmp_list_filter.py

Left:

[/ common_dir’,
"dir_only_in_dirl’,
ffile_in_dirl’,
"file_only_in_dirl’,
"not_the_same’]

Right:

[/ common_dir’,
"dir_only_in_dir2’,
"file_in_dirl’,
"file_only_in_dir2’,
"not_the_same’]

The names of files common to both input directories are saved in common, and the
files unique to each directory are listed in left_only and right_only.

import filecmp
import pprint

dc = filecmp.dircmp (‘example/dirl’, ’‘example/dir2’)

print ’“Common:’
pprint.pprint (dc.common)

print ‘\nLeft:’
pprint.pprint (dc.left_only)

print ’‘\nRight:’
pprint.pprint (dc.right_only)

The “left” directory is the first argument to dircmp ()

the second.

$ python filecmp_dircmp_membership.py

Common :

["not_the_same’, 'common_file’, ’"file_in_dirl’,

, and the “right” directory is

' common_dir’]

6.11. filecmp—Compare Files 331

Left:
["dir_only_in_dirl’, "file_only_in_dirl’]

Right:
["dir_only_in_dir2’, "file_only_in_dir2’]

The common members can be further broken down into files, directories, and
“funny” items (anything that has a different type in the two directories or where there
is an error from os . stat ()).

import filecmp
import pprint

dc = filecmp.dircmp (‘example/dirl’, ’‘example/dir2’)
print /Common:’

pprint.pprint (dc.common)

print ‘\nDirectories:’
pprint.pprint (dc.common_dirs)

print ‘\nFiles:’
pprint.pprint (dc.common_files)

print ‘\nFunny:’
pprint.pprint (dc.common_funny)

In the example data, the item named “file_in_dirl” is a file in one directory
and a subdirectory in the other, so it shows up in the funny list.

$ python filecmp_dircmp_common.py

Common :
["not_the_same’, ’'common_file’, ’"file_in_dirl’, ’common_dir’]

Directories:
[/ common_dir’]

Files:
["not_the_same’, 'common_file’]

Funny:
["file_in_dirl’]

332 The File System

The differences between files are broken down similarly.

import filecmp

dc = filecmp.dircmp (‘example/dirl’, ’‘example/dir2’)
print ’Same :/, dc.same_files
print ’Different :’, dc.diff_files
print ’Funny :7, dc.funny_files

The file not_the_same is only being compared via os . stat (), and the contents
are not examined, so it is included in the same_files list.

$ python filecmp_dircmp_diff.py

Same : ["not_the_same’, ’common_file’]
Different : []
Funny |

Finally, the subdirectories are also saved to allow easy recursive comparison.

import filecmp

dc = filecmp.dircmp (’example/dirl’, ’‘example/dir2’)
print ’Subdirectories:’
print dc.subdirs

The attribute subdirs is a dictionary mapping the directory name to new dircmp
objects.

$ python filecmp_dircmp_subdirs.py

Subdirectories:
{’common_dir’: <filecmp.dircmp instance at 0x85da0>}

See Also:

filecmp (http://docs.python.org/library/filecmp.html) The standard library docu-
mentation for this module.

Directories (page 1118) Listing the contents of a directory using os (page 1108).

difflib (page 61) Computing the differences between two sequences.

http://docs.python.org/library/filecmp.html

Chapter 7

DATA PERSISTENCE AND
EXCHANGE

There are two aspects to preserving data for long-term use: converting the data back
and forth between the object in-memory and the storage format, and working with the
storage of the converted data. The standard library includes a variety of modules that
handle both aspects in different situations.

Two modules convert objects into a format that can be transmitted or stored (a pro-
cess known as serializing). It is most common to use pickle for persistence, since it is
integrated with some of the other standard library modules that actually store the seria-
lized data, such as shelve. json is more frequently used for Web-based applications,
however, since it integrates better with existing Web service storage tools.

Once the in-memory object is converted to a format that can be saved, the next
step is to decide how to store the data. A simple flat-file with serialized objects written
one after the other works for data that does not need to be indexed in any way. Python
includes a collection of modules for storing key-value pairs in a simple database using
one of the DBM format variants when an indexed lookup is needed.

The most straightforward way to take advantage of the DBM format is shelve.
Open the shelve file, and access it through a dictionary-like API. Objects saved to the
database are automatically pickled and saved without any extra work by the caller.

One drawback of shelve, though, is that when using the default interface, there
is no way to predict which DBM format will be used, since it selects one based on
the libraries available on the system where the database is created. The format does
not matter if an application will not need to share the database files between hosts
with different libraries; but if portability is a requirement, use one of the classes in the
module to ensure a specific format is selected.

333

334 Data Persistence and Exchange

For Web applications that work with data in JSON already, using json and
anydbm provides another persistence mechanism. Using anydbm directly is a little
more work than shelve because the DBM database keys and values must be strings,
and the objects will not be re-created automatically when the value is accessed in the
database.

The sglite3 in-process relational database is available with most Python distri-
butions for storing data in more complex arrangements than key-value pairs. It stores
its database in memory or in a local file, and all access is from within the same process
so there is no network communication lag. The compact nature of sgqlite3 makes it
especially well suited for embedding in desktop applications or development versions
of Web apps.

There are also modules for parsing more formally defined formats, useful for
exchanging data between Python programs and applications written in other languages.
xml.etree.ElementTree can parse XML documents and provides several operating
modes for different applications. Besides the parsing tools, Element Tree includes an
interface for creating well-formed XML documents from objects in memory. The csv
module can read and write tabular data in formats produced by spreadsheets or database
applications, making it useful for bulk loading data or converting the data from one for-
mat to another.

7.1 pickle—Object Serialization

Purpose Object serialization.
Python Version 1.4 and later for pickle, 1.5 and later for cPickle

The pickle module implements an algorithm for turning an arbitrary Python object
into a series of bytes. This process is also called serializing the object. The byte stream
representing the object can then be transmitted or stored, and later reconstructed to
create a new object with the same characteristics.

The cPickle module implements the same algorithm, in C instead of Python. It
is many times faster than the Python implementation, so it is generally used instead of
the pure-Python implementation.

Warning: The documentation for pickle makes clear that it offers no security
guarantees. In fact, unpickling data can execute arbitrary code. Be careful using
pickle for inter-process communication or data storage, and do not trust data that
cannot be verified as secure. See Applications of Message Signatures in the hmac
section for an example of a secure way to verify the source of a pickled data source.

7.1. pickle—Object Serialization 335

7.1.1 Importing

Because cPickle is faster than pickle, it is common to first try to import cPickle,
giving it an alias of “pickle,” and then fall back on the native Python implementation in
pickle if the import fails. This means the program will use the faster implementation,
if it is available, and the portable implementation otherwise.

try:

import cPickle as pickle
except:

import pickle

The API for the C and Python versions is the same, and data can be exchanged
between programs using either version of the library.

7.1.2 Encoding and Decoding Data in Strings

This first example uses dumps () to encode a data structure as a string, and then prints
the string to the console. It uses a data structure made up of entirely built-in types.
Instances of any class can be pickled, as will be illustrated in a later example.

try:

import cPickle as pickle
except:

import pickle
import pprint

data = [{ 7a’:74A’, ’'b’:2, 'c’:3.0 }]
print ’DATA:’,
pprint.pprint (data)

data_string = pickle.dumps (data)
print ’PICKLE: %$r’ % data_string

By default, the pickle will contain only ASCII characters. A more efficient binary
pickle format is also available, but all the examples here use the ASCII output because
it is easier to understand in print.

$ python pickle_string.py

DATA: [{'a’: "A", "b': 2, 'c’': 3.0}]
PICKLE: " (lpl\n(dp2\nS’a’\nS’A’\nsS’c’\nF3\nsS’b’\nI2\nsa."

336 Data Persistence and Exchange

After the data is serialized, it can be written to a file, a socket, or a pipe, etc. Later,
the file can be read and the data unpickled to construct a new object with the same
values.

try:

import cPickle as pickle
except:

import pickle
import pprint

datal = [{ ’7a’:’A’, ’b’:2, 7c’:3.0 }]
print ’BEFORE: /,
pprint.pprint (datal)

datal_string = pickle.dumps (datal)

data2 = pickle.loads (datal_string)
print ’AFTER : 7/,
pprint.pprint (data2)

print ’SAME? :’, (datal is data2)
print “EQUAL?:’, (datal == data2)

The newly constructed object is equal to, but not the same object as, the original.

$ python pickle_unpickle.py

BEFORE: [{’a’: 'A’, ’'b’: 2, 'c’: 3.0}]
AFTER : [{’a’: 'A', "b': 2, 'c'": 3.0}]
SAME? : False

EQUAL?: True

7.1.3 Working with Streams

In addition to dumps () and loads (), pickle provides convenience functions for
working with file-like streams. It is possible to write multiple objects to a stream and
then read them from the stream without knowing in advance how many objects are
written or how big they are.

try:

import cPickle as pickle
except:

import pickle

7.1. pickle—Object Serialization

import pprint
from StringIO import StringIO

class SimpleObject (object) :

def _ init_ (self, name):
self.name = name
self.name_backwards = name[::-1]
return

data = []

data.append(SimpleObiject (“pickle’))
data.append(SimpleObject (cPickle’))
data.append(SimpleObject (“last”’))

Simulate a file with StringIO
out_s = StringIO()

Write to the stream

for o in data:
print “WRITING : %s (%s)’ % (o.name, o.name_backwards)
pickle.dump (o, out_s)
out_s.flush ()

Set up a read-able stream
in_s = StringIO (out_s.getvalue())

Read the data
while True:
try:
o = pickle.load(in_s)
except EOFError:
break
else:
print ’‘READ : %s (%$s)’ % (o.name, o.name_backwards)

337

The example simulates streams using two StringIO buffers. The first receives
the pickled objects, and its value is fed to a second from which 1oad () reads. A simple

database format could use pickles to store objects, too (see shelve).

$ python pickle_stream.py

WRITING : pickle (elkcip)
WRITING : cPickle (elkciPc)

338 Data Persistence and Exchange

WRITING : last (tsal)

READ : pickle (elkcip)
READ : cPickle (elkciPc)
READ : last (tsal)

Besides storing data, pickles are handy for inter-process communication. For
example, os.fork () and os.pipe () can be used to establish worker processes that
read job instructions from one pipe and write the results to another pipe. The core
code for managing the worker pool and sending jobs in and receiving responses can be
reused, since the job and response objects do not have to be based on a particular class.
When using pipes or sockets, do not forget to flush after dumping each object, to push
the data through the connection to the other end. See the multiprocessing module
for a reusable worker pool manager.

7.1.4 Problems Reconstructing Objects

When working with custom classes, the class being pickled must appear in the name-
space of the process reading the pickle. Only the data for the instance is pickled, not the
class definition. The class name is used to find the constructor to create the new object
when unpickling. This example writes instances of a class to a file.

try:

import cPickle as pickle
except:

import pickle
import sys

class SimpleObject (object):
def _ init_ (self, name):
self.name = name
1 = list (name)
l.reverse ()

self.name_backwards = 7’.join(1l)
return
if name_ == ’/_ _main__’:

data = []

data.append (SimpleObject (’pickle”’))
data.append (SimpleObject (/cPickle’))
data.append(SimpleObject (“last”’))

filename = sys.argv[l]

7.1. pickle—Object Serialization 339

with open(filename, ’“wb’) as out_s:
Write to the stream
for o in data:
print 'WRITING: %s (%s)’ % (o.name, o.name_backwards)
pickle.dump (o, out_s)

When run, the script creates a file based on the name given as argument on the
command line.

$ python pickle_dump_to_file_1.py test.dat

WRITING: pickle (elkcip)
WRITING: cPickle (elkciPc)
WRITING: last (tsal)

A simplistic attempt to load the resulting pickled objects fails.

try:

import cPickle as pickle
except:

import pickle
import pprint
from StringIO import StringIO
import sys

filename = sys.argv([l]

with open(filename, “rb’) as in_s:
Read the data
while True:
try:
o = pickle.load(in_s)
except EOFError:
break
else:
print ’'READ: %s (%s)’ % (o.name, o.name_backwards)

This version fails because there is no SimpleObject class available.

$ python pickle_load_from_file_1.py test.dat

340 Data Persistence and Exchange

Traceback (most recent call last):
File "pickle_load_from_file_l.py", line 25, in <module>
o = pickle.load(in_s)
AttributeError: 'module’ object has no attribute ’SimpleObject’

The corrected version, which imports SimpleObject from the original script,
succeeds. Adding this import statement to the end of the import list allows the script to
find the class and construct the object.

from pickle_dump_to_file_1 import SimpleObject
Running the modified script now produces the desired results.

$ python pickle_load_from file_2.py test.dat

READ: pickle (elkcip)
READ: cPickle (elkciPc)
READ: last (tsal)

7.1.5 Unpicklable Objects

Not all objects can be pickled. Sockets, file handles, database connections, and other
objects with run-time state that depends on the operating system or another process
may not be able to be saved in a meaningful way. Objects that have nonpicklable
attributes can define _ getstate_ () and __ setstate_ () to return a sub-
set of the state of the instance to be pickled. New-style classes can also define
__getnewargs__ (), which should return arguments to be passed to the class mem-
ory allocator (C.__new__ ()). Use of these features is covered in more detail in the
standard library documentation.

7.1.6 Circular References

The pickle protocol automatically handles circular references between objects, so com-
plex data structures do not need any special handling. Consider the directed graph in
Figure 7.1. It includes several cycles, yet the correct structure can be pickled and then
reloaded.

import pickle

class Node (object) :
"""A Simple digraph mmn

def

7.1. pickle—Object Serialization

D
&
D

Figure 7.1. Pickling a data structure with cycles

def _ init_ (self, name):
self.name = name
self.connections = []

def add_edge(self, node):
"Create an edge between this node and the other."
self.connections.append (node)

def @ iter_ (self):

return iter (self.connections)

preorder_traversal (root, seen=None, parent=None) :
"""Generator function to yield the edges in a graph.
wnn
if seen is None:
seen = set ()
yield (parent, root)
if root in seen:
return
seen.add (root)
for node in root:
for parent, subnode in preorder_traversal (node, seen,
yield (parent, subnode)

root) :

341

342 Data Persistence and Exchange

def show_edges (root) :
"Print all the edges in the graph."
for parent, child in preorder_traversal (root) :
if not parent:
continue
print ’%5s -> %2s (%s)’ % \
(parent.name, child.name, id(child))

Set up the nodes.
root = Node (’root”’)
a = Node(’a’)
b = Node(’b”)
c = Node(’c’)

Add edges between them.
root.add_edge (a)
root.add_edge (b)
a.add_edge (b)
b.add_edge (a)
b.add_edge (c)
a.add_edge (a)

print “ORIGINAL GRAPH:’
show_edges (root)

Pickle and unpickle the graph to create
a new set of nodes.

dumped = pickle.dumps (root)

reloaded = pickle.loads (dumped)

print ‘\nRELOADED GRAPH:’
show_edges (reloaded)

The reloaded nodes are not the same object, but the relationship between the nodes
is maintained and only one copy of the object with multiple references is reloaded. Both
of these statements can be verified by examining the id () values for the nodes before
and after being passed through pickle.

$ python pickle_cycle.py

ORIGINAL GRAPH:
root -> a (4309376848)
a —> b (4309376912)

7.2. shelve—Persistent Storage of Objects 343

b -> a (4309376848)
b -> ¢ (4309376976)
a —> a (4309376848)
root -> b (4309376912)

RELOADED GRAPH:

root -> a (4309418128)

a —> b (4309418192)

b -> a (4309418128)

b -> ¢ (4309418256)

a —> a (4309418128)

root —-> b (4309418192)
See Also:

pickle (http://docs.python.org/lib/module-pickle.html) Standard library documenta-
tion for this module.

Pickle: An interesting stack language
(http://peadrop.com/blog/2007/06/18/pickle-an-interesting-stack-language/)
A blog post by Alexandre Vassalotti.

Why Python Pickle is Insecure (http://nadiana.com/python-pickle-insecure)
A short example by Nadia Alramli demonstrating a security exploit using pickle.

shelve (page 343) The shelve module uses pickle to store data in a DBM
database.

7.2 shelve—Persistent Storage of Objects

Purpose The shelve module implements persistent storage for arbitrary
Python objects that can be pickled, using a dictionary-like API.

The shelve module can be used as a simple persistent storage option for Python ob-
jects when a relational database is not required. The shelf is accessed by keys, just as
with a dictionary. The values are pickled and written to a database created and managed
by anydbm.

7.2.1 Creating a New Shelf

The simplest way to use shelve is via the DbfilenameShelf class. It uses anydbm
to store the data. The class can be used directly or by calling shelve.open ().

import shelve
from contextlib import closing

http://docs.python.org/lib/module-pickle.html
http://peadrop.com/blog/2007/06/18/pickle-an-interesting-stack-language/
http://nadiana.com/python-pickle-insecure

344 Data Persistence and Exchange

with closing(shelve.open(’test_shelf.db’)) as s:
s[’keyl”] = { ’7int’: 10, ’float’:9.5, ’string’:’Sample data’ }

To access the data again, open the shelf and use it like a dictionary.

import shelve
from contextlib import closing

with closing(shelve.open(’test_shelf.db’)) as s:
existing = s[’keyl’]

print existing
This is what running both sample scripts produces.

$ python shelve_create.py
$ python shelve_existing.py

{"int’: 10, "float’: 9.5, ’string’: ’'Sample data’}

The dbm module does not support multiple applications writing to the same
database at the same time, but it does support concurrent read-only clients. If a client
will not be modifying the shelf, tell shelve to open the database in read-only mode by
passing flag='r’.

import shelve
from contextlib import closing

with closing(shelve.open(’test_shelf.db’, flag=’r’)) as s:
existing = s[’keyl’]

print existing
If the program tries to modify the database while it is opened in read-only mode,

an access error exception is generated. The exception type depends on the database
module selected by anydbm when the database was created.

7.2.2 Writeback

Shelves do not track modifications to volatile objects, by default. That means if the
contents of an item stored in the shelf are changed, the shelf must be updated explicitly
by storing the entire item again.

7.2. shelve—Persistent Storage of Objects 345

import shelve
from contextlib import closing

with closing(shelve.open(’test_shelf.db’)) as s:
print s[’keyl’]
s[’keyl’][’new_value’] = ’‘this was not here before’

with closing(shelve.open(’test_shelf.db’, writeback=True)) as s:
print s[’keyl’]

In this example, the dictionary at " key1’ is not stored again, so when the shelf is
reopened, the changes will not have been preserved.

$ python shelve_create.py
$ python shelve_withoutwriteback.py

{"int’: 10, ’"float’: 9.5, ’string’: ’Sample data’}
{"int’: 10, "float’: 9.5, ’'string’: ’'Sample data’}

To automatically catch changes to volatile objects stored in the shelf, open it with
writeback enabled. The writeback flag causes the shelf to remember all objects retrieved
from the database using an in-memory cache. Each cache object is also written back to
the database when the shelf is closed.

import shelve
import pprint
from contextlib import closing

with closing(shelve.open(’test_shelf.db’, writeback=True)) as s:
print ’Initial data:’
pprint.pprint (s[’keyl’])

s[’keyl’] [’new_value’] = ’‘this was not here before’
print ’‘\nModified:’
pprint.pprint (s[’keyl’])

with closing(shelve.open(’test_shelf.db’, writeback=True)) as s:
print ’‘\nPreserved:’
pprint.pprint (s[’keyl’])

Although it reduces the chance of programmer error and can make object persis-
tence more transparent, using writeback mode may not be desirable in every situation.
The cache consumes extra memory while the shelf is open, and pausing to write every

346 Data Persistence and Exchange

cached object back to the database when it is closed slows down the application. All
cached objects are written back to the database because there is no way to tell if they
have been modified. If the application reads data more than it writes, writeback will
impact performance unnecessarily.

$ python shelve_create.py
$ python shelve_writeback.py

Initial data:
{"float’: 9.5, ’'int’: 10, ’string’: ’Sample data’}

Modified:

{"float’: 9.5,
"int’: 10,
"new_value’: 'this was not here before’,
"string’: ’Sample data’}

Preserved:

{"float’: 9.5,
int’: 10,
"new_value’: 'this was not here before’,
"string’: ’Sample data’}

7.2.3 Specific Shelf Types

The earlier examples all used the default shelf implementation. Using shelve.open ()
instead of one of the shelf implementations directly is a common usage pattern,
especially if it does not matter what type of database is used to store the data. There
are times, however, when the database format is important. In those situations, use
DbfilenameShelf or BsdDbShelf directly, or even subclass Shelf for a custom
solution.

See Also:

shelve (http://docs.python.org/lib/module-shelve.html) Standard library documen-
tation for this module.

feedcache (www.doughellmann.com/projects/feedcache/) The feedcache module
uses shelve as a default storage option.

shove (http://pypi.python.org/pypi/shove/) Shove implements a similar API with
more back-end formats.

anydbm (page 347) The anydbm module finds an available DBM library to create a
new database.

http://docs.python.org/lib/module-shelve.html
www.doughellmann.com/projects/feedcache/
http://pypi.python.org/pypi/shove/

7.3. anydbm—DBM-Style Databases 347

7.3 anydbm—DBM-Style Databases

Purpose anydbm provides a generic dictionary-like interface to DBM-
style, string-keyed databases.
Python Version 1.4 and later

anydbmn is a front-end for DBM-style databases that use simple string values as keys
to access records containing strings. It uses whichdb to identify databases, and then
opens them with the appropriate module. It is used as a back-end for shelve, which
stores objects in a DBM database using pickle.

7.3.1 Database Types

Python comes with several modules for accessing DBM-style databases. The imple-
mentation selected depends on the libraries available on the current system and the
options used when Python was compiled.

dbhash

The dbhash module is the primary back-end for anydbm. It uses the bsddb library to
manage database files. The semantics for using dbhash databases are the same as those
defined by the anydbm APL

gdbm

gdbm is an updated version of the dbm library from the GNU project. It works the same
as the other DBM implementations described here, with a few changes to the flags
supported by open ().

Besides the standard " r’, "w’, " c’, and ' n’ flags, gdbm.open () supports:

e 7 £’ to open the database in fast mode. In fast mode, writes to the database are
not synchronized.

* ’s’ to open the database in synchronized mode. Changes to the database are
written to the file as they are made, rather than being delayed until the database
is closed or synced explicitly.

* ’u’ to open the database unlocked.

dbm

The dbm module provides an interface to one of several C implementations of the dbm
format, depending on how the module was configured during compilation. The module

348 Data Persistence and Exchange

attribute 1ibrary identifies the name of the library configure was able to find when
the extension module was compiled.

dumbdbm

The dumbdbm module is a portable fallback implementation of the DBM API when
no other implementations are available. No external dependencies are required to use
dumbdbm, but it is slower than most other implementations.

7.3.2 Creating a New Database

The storage format for new databases is selected by looking for each of these modules
in order:

* dbhash

* gdbm

¢ dbm

¢ dumbdbm

The open () function takes flags to control how the database file is managed.
To create a new database when necessary, use ’ c’. Using ' n’ always creates a new
database, overwriting an existing file.

import anydbm

db = anydbm.open (’/tmp/example.db’, ’n’)

db[’key’] = ’‘value”’
db[’today’] = ’Sunday’
db[”author’] = ’Doug’
db.close ()

In this example, the file is always reinitialized.
$ python anydbm_new.py
whichdb reports the type of database that was created.

import whichdb

print whichdb.whichdb (//tmp/example.db’)

7.3. anydbm—DBM-Style Databases 349

Output from the example program will vary, depending on which modules are
installed on the system.

$ python anydbm_whichdb.py

dbhash

7.3.3 Opening an Existing Database

To open an existing database, use flags of either ’ r’ (for read-only) or ' w’ (for read-
write). Existing databases are automatically given to whichdb to identify, so as long as
a file can be identified, the appropriate module is used to open it.

import anydbm

db = anydbm.open (’/tmp/example.db’, ’r’)
try:

print ’‘keys():’, db.keys()

for k, v in db.iteritems () :

print ’‘iterating:’, k, v

print “db["author"] =’, db[’author’]
finally:

db.close ()

Once open, db is a dictionary-like object, with support for the usual methods.

$ python anydbm_existing.py
keys () : ["author’, ’"key’, ’"today’]
iterating: author Doug

iterating: key value

iterating: today Sunday
db["author"] = Doug

7.3.4 Error Cases

The keys of the database need to be strings.

import anydbm

db = anydbm.open (’/tmp/example.db’, "w’)

350 Data Persistence and Exchange

try:

db[1] = ’one’
except TypeError, err:

print ’%s: $%s’ % (err.__class__.__name__, err)
finally:

db.close ()

Passing another type results in a TypeError.

$ python anydbm_intkeys.py

TypeError: Integer keys only allowed for Recno and Queue DB’s
Values must be strings or None.

import anydbm

db = anydbm.open (’/tmp/example.db’, ‘w’)

try:

db[’one’”] =1
except TypeError, err:

print “%s: %$s’ % (err.__class__.__name__, err)
finally:

db.close ()

A similar TypeError is raised if a value is not a string.

$ python anydbm_intvalue.py

TypeError: Data values must be of type string or None.

See Also:

anydbm (http://docs.python.org/library/anydbm.html) The standard library docu-
mentation for this module.

shelve (page 343) Examples for the shelve module, which uses anydbm to store
data.

7.4 whichdb—Identify DBM-Style Database Formats

Purpose Examine existing DBM-style database file to determine what
library should be used to open it.
Python Version 1.4 and later

http://docs.python.org/library/anydbm.html

7.5. sqlite3—Embedded Relational Database 351

The whichdb module contains one function, whichdb (), that can be used to examine
an existing database file to determine which of the DBM libraries should be used to
open it. It returns the string name of the module to use to open the file, or None if there
is a problem opening the file. If it can open the file but cannot determine the library to
use, it returns an empty string.

import anydbm
import whichdb

db = anydbm.open (’/tmp/example.db’, ’n’)
db[’key’] = ’‘value’
db.close ()

print whichdb.whichdb (//tmp/example.db’)

The results from running the sample program will vary, depending on the modules
available on the system.

$ python whichdb_whichdb.py
dbhash

See Also:

whichdb (http://docs.python.org/lib/module-whichdb.html) Standard library docu-
mentation for this module.

anydbm (page 347) The anydbm module uses the best available DBM implementation
when creating new databases.

shelve (page 343) The shelve module provides a mapping-style APl for DBM
databases.

7.5 sqlite3—Embedded Relational Database

Purpose Implements an embedded relational database with SQL support.
Python Version 2.5 and later

The sglite3 module provides a DB-API 2.0 compliant interface to SQLite, an
in-process relational database. SQLite is designed to be embedded in applications,
instead of using a separate database server program, such as MySQL, PostgreSQL,
or Oracle. It is fast, rigorously tested, and flexible, making it suitable for prototyping
and production deployment for some applications.

http://docs.python.org/lib/module-whichdb.html

352 Data Persistence and Exchange

7.5.1 Creating a Database

An SQLite database is stored as a single file on the file system. The library manages
access to the file, including locking it to prevent corruption when multiple writers
use it. The database is created the first time the file is accessed, but the application
is responsible for managing the table definitions, or schema, within the database.

This example looks for the database file before opening it with connect () so it
knows when to create the schema for new databases.

import os
import sqlite3

db_filename = ’‘todo.db’
db_is_new = not os.path.exists (db_filename)
conn = sqglite3.connect (db_filename)
if db_is_new:
print ’Need to create schema’
else:

print ’Database exists, assume schema does, too.’

conn.close ()
Running the script twice shows that it creates the empty file if it does not exist.

$ 1ls *.db

ls: x.db: No such file or directory
$ python sglite3_createdb.py

Need to create schema

$ 1s x.db

todo.db

$ python sglite3_createdb.py

Database exists, assume schema does, too.

7.5. sqlite8—Embedded Relational Database 353

Table 7.1. The "project" Table

Column Type | Description

name text | Project name

description | text | Long project description
deadline date | Due date for the entire project

Table 7.2. The "task" Table

Column Type Description

id number | Unique task identifier

priority integer | Numerical priority; lower is more important

details text Full task details

status text Task status (one of new, pending, done, or canceled).
deadline date Due date for this task

completed_on | date When the task was completed

project text The name of the project for this task

After creating the new database file, the next step is to create the schema to define
the tables within the database. The remaining examples in this section all use the same
database schema with tables for managing tasks. The details of the database schema are
presented in Table 7.1 and Table 7.2.

These are the data definition language (DDL) statements to create the tables.

—-— Schema for to-do application examples.

—— Projects are high-level activities made up of tasks
create table project (

name text primary key,

description text,

deadline date
)i

—— Tasks are steps that can be taken to complete a project
create table task (

id integer primary key autoincrement not null,
priority integer default 1,
details text,

status text,

354 Data Persistence and Exchange

deadline date,
completed_on date,
project text not null references project (name)

The executescript () method of the Connection can be used to run the DDL
instructions to create the schema.

import os
import sqglite3

db_filename = ’‘todo.db’
schema_filename = ’“todo_schema.sqgl’

db_is_new = not os.path.exists (db_filename)

with sglite3.connect (db_filename) as conn:
if db_is_new:
print ‘Creating schema’
with open (schema_filename, ’‘rt’) as f:
schema = f.read()
conn.executescript (schema)

print ’Inserting initial data’

conn.executescript ("""
insert into project (name, description, deadline)
values (’pymotw’, ’Python Module of the Week’, ’2010-11-01");

insert into task (details, status, deadline, project)
values (’write about select’, ’done’, 72010-10-037,
‘pymotw”’) ;

insert into task (details, status, deadline, project)
values (’write about random’, ’'waiting’, ’72010-10-10",
"pymotw’) ;

insert into task (details, status, deadline, project)
values (’write about sqglite3’, ’active’, 72010-10-17",
‘pymotw”’) ;
"
else:

print ’Database exists, assume schema does, too.’

7.5. sqlite8—Embedded Relational Database 355

After the tables are created, a few insert statements create a sample project and
related tasks. The sqlite3 command line program can be used to examine the contents
of the database.

$ python sglite3_create_schema.py

Creating schema
Inserting initial data

$ sglite3 todo.db ’select * from task’

1]1l|write about select|done|2010-10-03] |pymotw
211l|write about random|waiting|2010-10-10]| |pymotw
3l1l|write about sqglite3|active|2010-10-17| |pymotw

7.5.2 Retrieving Data

To retrieve the values saved in the task table from within a Python program, cre-
ate a cursor from a database connection. A cursor produces a consistent view of the
data and is the primary means of interacting with a transactional database system like
SQLite.

import sqlite3
db_filename = ’‘todo.db’

with sglite3.connect (db_filename) as conn:
cursor = conn.cursor ()

cursor.execute ("""
select 1id, priority, details, status, deadline from task
where project = ’‘pymotw’

mn ")

for row in cursor.fetchall():
task_id, priority, details, status, deadline = row
print ’%2d {%d} %$-20s [%$-8s] (%s)’ % \
(task_id, priority, details, status, deadline)

Querying is a two-step process. First, run the query with the cursor’s execute ()
method to tell the database engine what data to collect. Then, use fetchall () to

356 Data Persistence and Exchange

retrieve the results. The return value is a sequence of tuples containing the values for
the columns included in the select clause of the query.

$ python sglite3_select_tasks.py

1 {1} write about select [done] (2010-10-03)
2 {1} write about random [waiting] (2010-10-10)
3 {1} write about sglite3 [active] (2010-10-17)

The results can be retrieved one at a time with fet chone () or in fixed-size batches
with fetchmany ().

import sqlite3
db_filename = ’‘todo.db’

with sglite3.connect (db_filename) as conn:
cursor = conn.cursor ()

cursor.execute ("""
select name, description, deadline from project
where name = ’‘pymotw’

mn ")

name, description, deadline = cursor.fetchone ()

print ’‘Project details for %s (%s) due %s’ % \
(description, name, deadline)

cursor.execute ("""
select id, priority, details, status, deadline from task
where project = ’pymotw’ order by deadline

mn ")

print ‘\nNext 5 tasks:’
for row in cursor.fetchmany (5) :
task_id, priority, details, status, deadline = row
print ’%2d {%d} %$-25s [%$-8s] (%s)’ % \
(task_id, priority, details, status, deadline)

The value passed to fetchmany () is the maximum number of items to return.
If fewer items are available, the sequence returned will be smaller than the maximum
value.

7.5. sqlite8—Embedded Relational Database 357

$ python sglite3_select_variations.py
Project details for Python Module of the Week (pymotw) due 2010-11-01

Next 5 tasks:

1 {1} write about select [done] (2010-10-03)
2 {1} write about random [waiting] (2010-10-10)
3 {1} write about sglite3 [active] (2010-10-17)

7.5.3 Query Metadata

The DB-API 2.0 specification says that after execute () has been called, the cursor
should set its description attribute to hold information about the data that will be
returned by the fetch methods. The API specifications say that the description value
is a sequence of tuples containing the column name, type, display size, internal size,
precision, scale, and a flag that says whether null values are accepted.

import sqlite3
db_filename = ’‘todo.db’

with sglite3.connect (db_filename) as conn:
cursor = conn.cursor ()

cursor.execute ("""

select * from task where project = ‘pymotw’

mn ")

print ’‘Task table has these columns:’
for colinfo in cursor.description:
print colinfo

Because sglite3 does not enforce type or size constraints on data inserted into a
database, only the column name value is filled in.

$ python sglite3_cursor_description.py

Task table has these columns:

("id’, None, None, None, None, None, None)
("priority’, None, None, None, None, None, None)
("details’, None, None, None, None, None, None)
("status’, None, None, None, None, None, None)

358 Data Persistence and Exchange

("deadline’, None, None, None, None, None, None)
(" completed_on’, None, None, None, None, None, None)
("project’, None, None, None, None, None, None)

7.5.4 Row Objects

By default, the values returned by the fetch methods as “rows” from the database are
tuples. The caller is responsible for knowing the order of the columns in the query
and extracting individual values from the tuple. When the number of values in a query
grows, or the code working with the data is spread out in a library, it is usually easier to
work with an object and access values using their column names. That way, the number
and order of the tuple contents can change over time as the query is edited, and code
depending on the query results is less likely to break.

Connection objects have a row_factory property that allows the calling code
to control the type of object created to represent each row in the query result set.
sglite3 also includes a Row class intended to be used as a row factory. Column values
can be accessed through Row instances by using the column index or name.

import sqglite3
db_filename = ’‘todo.db’

with sglite3.connect (db_filename) as conn:
Change the row factory to use Row
conn.row_factory = sglite3.Row

cursor = conn.cursor ()

cursor.execute ("""
select name, description, deadline from project
where name = ’‘pymotw’

mn ")

name, description, deadline = cursor.fetchone ()
print ’Project details for %s (%s) due %s’ % (
description, name, deadline)

cursor.execute ("""
select id, priority, status, deadline, details from task
where project = ’‘pymotw’ order by deadline

mn ")

7.5. sqlite8—Embedded Relational Database 359

print ‘\nNext 5 tasks:’
for row in cursor.fetchmany (5):
print ’%2d {(%d} %-25s [%$-8s] (%s)’ % (
row[’1id’], row[’priority’], row[’details’],
row[’status’], row[’deadline’],

)

This version of the sglite3_select_variations.py example has been
rewritten using Row instances instead of tuples. The row from the project table is still
printed by accessing the column values through position, but the print statement for
tasks uses keyword lookup instead, so it does not matter that the order of the columns
in the query has been changed.

$ python sglite3_row_factory.py
Project details for Python Module of the Week (pymotw) due 2010-11-01

Next 5 tasks:

1 {1} write about select [done 1 (2010-10-03)
2 {1} write about random [waiting] (2010-10-10)
3 {1} write about sglite3 l[active] (2010-10-17)

7.5.5 Using Variables with Queries

Using queries defined as literal strings embedded in a program is inflexible. For
example, when another project is added to the database, the query to show the top five
tasks should be updated to work with either project. One way to add more flexibility
is to build an SQL statement with the desired query by combining values in Python.
However, building a query string in this way is dangerous and should be avoided. Fail-
ing to correctly escape special characters in the variable parts of the query can result in
SQL parsing errors, or worse, a class of security vulnerabilities known as SQL-injection
attacks, which allow intruders to execute arbitrary SQL statements in the database.

The proper way to use dynamic values with queries is through host variables
passed to execute () along with the SQL instruction. A placeholder value in the SQL
statement is replaced with the value of the host variable when the statement is executed.
Using host variables instead of inserting arbitrary values into the SQL statement before
it is parsed avoids injection attacks because there is no chance that the untrusted values
will affect how the SQL statement is parsed. SQLite supports two forms for queries
with placeholders, positional and named.

360 Data Persistence and Exchange

Positional Parameters

A question mark (?) denotes a positional argument, passed to execute () as a member
of a tuple.

import sqlite3
import sys

db_filename = ’‘todo.db’
project_name = sys.argv[l]

with sglite3.connect (db_filename) as conn:

cursor = conn.cursor ()
query = """select id, priority, details, status, deadline from task
where project = ?

mon

cursor.execute (query, (project_name,))

for row in cursor.fetchall():
task_id, priority, details, status, deadline = row
print ’%2d {%d} %$-20s [%-8s] (%s)’ % (
task_id, priority, details, status, deadline)

The command line argument is passed safely to the query as a positional argument,
and there is no chance for bad data to corrupt the database.

$ python sglite3_argument_positional.py pymotw

1 {1} write about select [done] (2010-10-03)
2 {1} write about random [waiting] (2010-10-10)
3 {1} write about sglite3 [active 1 (2010-10-17)

Named Parameters

Use named parameters for more complex queries with a lot of parameters, or where
some parameters are repeated multiple times within the query. Named parameters are
prefixed with a colon (e.g., :param_name).

import sqlite3
import sys

7.5. sqlite3—Embedded Relational Database 361

db_filename = ’‘todo.db’
project_name = sys.argv([l]

with sglite3.connect (db_filename) as conn:

cursor = conn.cursor ()
query = """select id, priority, details, status, deadline from task
where project = :project_name

order by deadline, priority

mmn

cursor.execute (query, {’project_name’:project_name})

for row in cursor.fetchall () :
task_id, priority, details, status, deadline = row
print ’%2d {%d} %$-25s [%$-8s] (%s)’ % (\
task_id, priority, details, status, deadline)

Neither positional nor named parameters need to be quoted or escaped, since they
are given special treatment by the query parser.

$ python sglite3_argument_named.py pymotw

1 {1} write about select [done 1 (2010-10-03)
2 {1} write about random [waiting] (2010-10-10)
3 {1} write about sglite3 l[active] (2010-10-17)

Query parameters can be used with select, insert, and update statements. They
can appear in any part of the query where a literal value is legal.

import sqglite3
import sys

db_filename = ’‘todo.db’
id = int (sys.argv[1l])
status = sys.argv[2]

with sglite3.connect (db_filename) as conn:
cursor = conn.cursor ()
query = "update task set status = :status where id = :id"
cursor.execute (query, {’/status’:status, ’id’:id})

362 Data Persistence and Exchange

This update statement uses two named parameters. The id value is used to find
the right row to modify, and the status value is written to the table.

$ python sglite3_argument_update.py 2 done
$ python sglite3_argument_named.py pymotw

1 {1} write about select [done 1 (2010-10-03)
2 {1} write about random [done 1 (2010-10-10)
3 {1} write about sqglite3 l[active] (2010-10-17)

7.5.6 Bulk Loading

To apply the same SQL instruction to a large set of data, use executemany (). This
is useful for loading data, since it avoids looping over the inputs in Python and lets
the underlying library apply loop optimizations. This example program reads a list of
tasks from a comma-separated value file using the csv module and loads them into the
database.

import csv
import sqlite3
import sys

db_filename = ’‘todo.db’
data_filename = sys.argv([l]

SQL — nmmn
insert into task (details, priority, status, deadline, project)
values (:details, :priority, ’‘active’, :deadline, :project)

mmrn

with open(data_filename, ’rt’) as csv_file:
csv_reader = csv.DictReader (csv_file)

with sglite3.connect (db_filename) as conn:

cursor = conn.cursor ()
cursor.executemany (SQL, csv_reader)

The sample data file tasks.csv contains:

deadline, project,priority,details
2010-10-02,pymotw,2, "finish reviewing markup"

7.5. sqlite8—Embedded Relational Database 363

2010-10-03, pymotw, 2, "revise chapter intros"
2010-10-03, pymotw, 1, "subtitle"

Running the program produces:

$ python sglite3_load_csv.py tasks.csv
$ python sglite3_argument_named.py pymotw

4 {2} finish reviewing markup l[active] (2010-10-02)
1 {1} write about select [done] (2010-10-03)
6 {1} subtitle [active] (2010-10-03)
5 {2} revise chapter intros [active] (2010-10-03)
2 {1} write about random [done 1 (2010-10-10)
3 {1} write about sqglite3 [active] (2010-10-17)

7.5.7 Defining New Column Types

SQLite has native support for integer, floating point, and text columns. Data of these
types is converted automatically by sqlite3 from Python’s representation to a value
that can be stored in the database, and back again, as needed. Integer values are loaded
from the database into int or long variables, depending on the size of the value. Text
is saved and retrieved as unicode, unless the text_factory for the Connection
has been changed.

Although SQLite only supports a few data types internally, sqlite3 includes
facilities for defining custom types to allow a Python application to store any type of
data in a column. Conversion for types beyond those supported by default is enabled in
the database connection using the detect_types flag. Use PARSE_DECLTYPES if the
column was declared using the desired type when the table was defined.

import sqlite3
import sys

db_filename = ’‘todo.db’
sql = "select id, details, deadline from task"

def show_deadline (conn) :
conn.row_factory = sglite3.Row
cursor = conn.cursor ()
cursor.execute (sql)
row = cursor.fetchone ()

364 Data Persistence and Exchange

for col in [7id’, ’details’, ’deadline’]:
print /© $%-8s $-30r %s’ % (col, row[col], type(row[col]l))
return

print ’Without type detection:’
with sglite3.connect (db_filename) as conn:
show_deadline (conn)

print ‘\nWith type detection:’
with sglite3.connect (db_filename,
detect_types=sqglite3.PARSE_DECLTYPES,
) as conn:
show_deadline (conn)

sglite3 provides converters for date and timestamp columns, using the
classes date and datetime from the datetime module to represent the values in
Python. Both date-related converters are enabled automatically when type detection is
turned on.

$ python sglite3_date_types.py

Without type detection:

id 1 <type ’int’>
details u’write about select’ <type ’unicode’>
deadline u’2010-10-03’ <type ’unicode’>

With type detection:

id 1 <type ’int’>
details u’write about select’ <type ’'unicode’>
deadline datetime.date (2010, 10, 3) <type ’datetime.date’>

Two functions need to be registered to define a new type. The adapter takes the
Python object as input and returns a byte string that can be stored in the database.
The converter receives the string from the database and returns a Python object. Use
register_adapter () to define an adapter function, and register_converter ()
for a converter function.

import sqlite3
try:

import cPickle as pickle
except:

import pickle

7.5. sqlite8—Embedded Relational Database

db_filename = ’‘todo.db’

def adapter_func (obj):
"""Convert from in-memory to storage representation.
mmmn
print ’adapter_func(%$s)\n’ % obj
return pickle.dumps (ob7j)

def converter_ func (data) :
"""Convert from storage to in-memory representation.
print ‘converter_func (%r)\n’ % data
return pickle.loads (data)

class MyObj (object) :
def _ _init__ (self, argqg):
self.arg = arg
def _ str__ (self):
return 'MyObj(%r)’ % self.arg

Register the functions for manipulating the type.
sglite3.register_adapter (MyObj, adapter_func)
sglite3.register_converter ("MyObj", converter_func)

Create some objects to save. Use a list of tuples so
the sequence can be passed directly to executemany ().
to_save = [(MyObj(’this is a value to save’),),

(MyObj (42),),

]

with sglite3.connect (db_filename,
detect_types=sglite3.PARSE_DECLTYPES) as conn:
Create a table with column of type "MyObj"
conn.execute ("""
create table if not exists obj (
id integer primary key autoincrement not null,
data MyObj
)

mn ")

cursor = conn.cursor ()

Insert the objects into the database
cursor.executemany ("insert into obj (data) values (?)", to_save)

365

366

Data Persistence and Exchange

Query the database for the objects just saved
cursor.execute ("select id, data from obj")
for obj_id, obj in cursor.fetchall():
print ’Retrieved’, obj_id, obj, type (obj)
print

This example uses pickle to save an object to a string that can be stored in

the database, a useful technique for storing arbitrary objects, but one that does not
allow querying based on object attributes. A real object-relational mapper, such as
SQLAIchemy, that stores attribute values in separate columns will be more useful for
large amounts of data.

$ python sglite3_custom_type.py

adapter_func (MyObj (’this is a value to save’))

adapter_func (MyObj (42))

converter_func ("ccopy_reg\n_reconstructor\npl\n(c_ main_ \nMyObj\np2
\nc__builtin__ \nobject\np3\nNtRp4\n (dp5\nS’arg’ \np6\nS’this is a val
ue to save’\np7\nsb.")

converter_func ("ccopy_reg\n_reconstructor\npl\n(c__main__ \nMyObj\np2
\nc__builtin__ \nobject\np3\nNtRp4\n (dp5\nS’arg’ \np6\nI42\nsb.")

Retrieved 1 MyObj(’this is a value to save’) <class ’'__main__ .MyObj’
>

Retrieved 2 MyObj(42) <class '_ _main__ .MyObj’>

7.5.8 Determining Types for Columns

There are two sources for type information about the values returned by a query. The
original table declaration can be used to identify the type of a real column, as shown
earlier. A type specifier can also be included in the select clause of the query itself using
the form as "name [type]".

import sqlite3

try:

import cPickle as pickle

except:

import pickle

7.5. sqlite8—Embedded Relational Database

db_filename = ’‘todo.db’

def adapter_func (obj):
"""Convert from in-memory to storage representation.
mmmn
print ’adapter_func(%$s)\n’ % obj
return pickle.dumps (ob7j)

def converter_ func (data) :
"""Convert from storage to in-memory representation.
print ‘converter_func (%r)\n’ % data
return pickle.loads (data)

class MyObj (object) :
def _ _init__ (self, argqg):
self.arg = arg
def _ str__ (self):
return 'MyObj(%r)’ % self.arg

Register the functions for manipulating the type.
sglite3.register_adapter (MyObj, adapter_func)
sglite3.register_converter ("MyObj", converter_func)

Create some objects to save. Use a list of tuples so we can pass
this sequence directly to executemany ().
to_save = [(MyObj(’this is a value to save’),),

(MyObj (42),),

]

with sglite3.connect (db_filename,
detect_types=sglite3.PARSE_COLNAMES) as conn:
Create a table with column of type "text"
conn.execute ("""
create table if not exists obj2 (

id integer primary key autoincrement not null,
data text

)

mmn ")

cursor = conn.cursor ()

Insert the objects into the database

367

cursor.executemany ("insert into obj2 (data) values (?)", to_save)

368 Data Persistence and Exchange

Query the database for the objects just saved,
using a type specifier to convert the text
to objects.
cursor.execute (’select id, data as "pickle [MyObj]" from obij2’)
for obj_id, obj in cursor.fetchall():
print ’‘Retrieved’, obj_id, obj, type(obj)
print

Use the detect_types flag PARSE_COLNAMES when the type is part of the query
instead of the original table definition.

$ python sglite3_custom_type_column.py
adapter_func (MyObj(’this is a value to save’))
adapter_func (MyObj (42))

converter_func ("ccopy_reg\n_reconstructor\npl\n(c__main__\nMyObj\np2
\nc__builtin__\nobject\np3\nNtRp4\n (dp5\nS’arg’ \np6\nS’this is a val
ue to save’\np7\nsb.")

converter_func ("ccopy_reg\n_reconstructor\npl\n(c_ main__ \nMyObj\np2
\nc__builtin__\nobject\np3\nNtRp4\n (dp5\nS’arg’ \np6\nI42\nsb.")

Retrieved 1 MyObj(’this is a value to save’) <class ’'__main__ .MyObj’
>

Retrieved 2 MyObj(42) <class ’'__main__ .MyObj’>

7.5.9 Transactions

One of the key features of relational databases is the use of transactions to maintain
a consistent internal state. With transactions enabled, several changes can be made
through one connection without effecting any other users until the results are committed
and flushed to the actual database.

Preserving Changes

Changes to the database, either through insert or update statements, need to be saved
by explicitly calling commit (). This requirement gives an application an opportu-
nity to make several related changes together, so they are stored atfomically instead of

7.5. sqlite8—Embedded Relational Database 369

incrementally, and avoids a situation where partial updates are seen by different clients
connecting to the database simultaneously.

The effect of calling commit () can be seen with a program that uses several
connections to the database. A new row is inserted with the first connection, and then
two attempts are made to read it back using separate connections.

import sqlite3
db_filename = ’‘todo.db’

def show_projects (conn):
cursor = conn.cursor ()
cursor.execute (’select name, description from project’)
for name, desc in cursor.fetchall():
print 7 7, name
return

with sglite3.connect (db_filename) as connl:

print ’Before changes:’
show_projects (connl)

Insert in one cursor

cursorl = connl.cursor ()

cursorl.execute ("""

insert into project (name, description, deadline)

values (’virtualenvwrapper’, ’Virtualenv Extensions’,
72011-01-01")

mn ")

print ‘\nAfter changes in connl:’
show_projects (connl)

Select from another connection, without committing first
print ’‘\nBefore commit:’
with sglite3.connect (db_filename) as conn2:

show_projects (conn2)

Commit then select from another connection
connl.commit ()

print ‘\nAfter commit:’

with sglite3.connect (db_filename) as conn3:

show_projects (conn3)

370 Data Persistence and Exchange

When show_projects () is called before conn1 has been committed, the results
depend on which connection is used. Since the change was made through conn1, it sees
the altered data. However, conn2 does not. After committing, the new connection
conn3 sees the inserted row.

$ python sglite3_transaction_commit.py

Before changes:
pymotw

After changes in connl:
pymotw
virtualenvwrapper

Before commit:
pymotw

After commit:
pymotw
virtualenvwrapper

Discarding Changes

Uncommitted changes can also be discarded entirely using rollback (). The
commit () and rollback () methods are usually called from different parts of the
same try:except block, with errors triggering a rollback.

import sqglite3
db_filename = ’‘todo.db’

def show_projects (conn) :
cursor = conn.cursor ()
cursor.execute (’select name, description from project’)
for name, desc in cursor.fetchall():
print 7 /7, name
return

with sglite3.connect (db_filename) as conn:

print ’Before changes:’
show_projects (conn)

7.5. sqlite8—Embedded Relational Database

try:
Insert
cursor = conn.cursor ()
cursor.execute ("""delete from project

where name = ’‘virtualenvwrapper’

mn ")

Show the settings
print ’‘\nAfter delete:’
show_projects (conn)

Pretend the processing caused an error
raise RuntimeError (’simulated error’)

except Exception, err:
Discard the changes
print “ERROR:’, err
conn.rollback ()

else:
Save the changes
conn.commit ()

Show the results
print ‘\nAfter rollback:’
show_projects (conn)

After calling rol1lback (), the changes to the database are no longer present.

$ python sglite3_transaction_rollback.py

Before changes:
pymotw
virtualenvwrapper

After delete:
pymotw
ERROR: simulated error

After rollback:
pymotw
virtualenvwrapper

371

372 Data Persistence and Exchange

7.5.10 Isolation Levels

sglite3 supports three locking modes, called isolation levels, that control the tech-
nique used to prevent incompatible changes between connections. The isolation level
is set by passing a string as the isolation_level argument when a connection is opened,

so different connections can use different values.

This program demonstrates the effect of different isolation levels on the order of
events in threads using separate connections to the same database. Four threads are
created. Two threads write changes to the database by updating existing rows. The

other two threads attempt to read all the rows from the task table.

import logging
import sqglite3
import sys
import threading
import time

logging.basicConfig(
level=logging.DEBUG,
format=’$% (asctime)s (% (threadName)-10s) $% (message)s’,

)

db_filename = ’‘todo.db’
isolation_level = sys.argv([l]

def writer():
my_name = threading.currentThread () .name
with sglite3.connect (db_filename,
isolation_level=isolation_level) as conn:

cursor = conn.cursor ()
cursor.execute (‘update task set priority = priority + 17)
logging.debug(/waiting to synchronize’)
ready.wait () # synchronize threads
logging.debug (" PAUSING”)
time.sleep(l)
conn.commit ()
logging.debug (/ CHANGES COMMITTED”)

return

def reader ():
my_name = threading.currentThread() .name
with sglite3.connect (db_filename,
isolation_level=isolation_level) as conn:

7.5. sqlite8—Embedded Relational Database 373

cursor = conn.cursor ()
logging.debug(’waiting to synchronize’)
ready.wait () # synchronize threads
logging.debug (’wait over’)
cursor.execute (’select x from task’)
logging.debug (/ SELECT EXECUTED”)
results = cursor.fetchall ()
logging.debug (’results fetched’)
return

’

if name == main

7.

ready = threading.Event ()

threads = [

threading.Thread (name="Reader 1’, target=reader),

threading.Thread (name=’Reader 2’, target=reader),

threading.Thread (name='Writer 1/, target=writer

’

)
)
)
threading.Thread (name="Writer 2/, target=writer),
]

[t.start () for t in threads |

time.sleep (1)
logging.debug (’setting ready’)
ready.set ()

[t.join() for t in threads]

The threads are synchronized using an Event from the threading module. The
writer () function connects and makes changes to the database, but does not commit
before the event fires. The reader () function connects, and then waits to query the
database until after the synchronization event occurs.

Deferred
The default isolation level is DEFERRED. Using deferred mode locks the database, but

only once a change is begun. All the previous examples use deferred mode.

$ python sglite3_isolation_levels.py DEFERRED

2010-12-04 09:06:51,793 (Reader 1) waiting to synchronize
2010-12-04 09:06:51,794 (Reader 2) waiting to synchronize
2010-12-04 09:06:51,795 (Writer 1) waiting to synchronize

374 Data Persistence and Exchange

2010-12-04 09:06:52,796 (MainThread) setting ready
2010-12-04 09:06:52,797 (Writer 1 PAUSING

2010-12-04 09:06:52,797 (Reader
2010-12-04 09:06:52,798 (Reader
2010-12-04 09:06:52,798 (Reader
2010-12-04 09:06:52,799 (Reader
2010-12-04 09:06:52,800 (Reader
2010-12-04 09:06:52,800 (Reader
2010-12-04 09:06:53,799 (Writer
2010-12-04 09:06:53,829 (Writer
2010-12-04 09:06:53,829 (Writer
2010-12-04 09:06:54,832 (Writer

)

) walt over

) SELECT EXECUTED
) results fetched
) wait over

) SELECT EXECUTED
) results fetched

) CHANGES COMMITTED

) waiting to synchronize
) PAUSING

) CHANGES COMMITTED

NN R NN R R

Immediate

Immediate mode locks the database as soon as a change starts and prevents other cursors
from making changes until the transaction is committed. It is suitable for a database with
complicated writes, but more readers than writers, since the readers are not blocked
while the transaction is ongoing.

$ python sqglite3_isolation_levels.py IMMEDIATE

2010-12-04 09:06:54,914 (Reader 1

2010-12-04 09:06:54,915 (Reader 2

2010-12-04 09:06:54,916 (Writer 1

2010-12-04 09:06:55,917 (MainThread
2010-12-04 09:06:55,918 (Reader 1

2010-12-04 09:06:55,919 (Reader
2010-12-04 09:06:55,919 (Writer
2010-12-04 09:06:55,919 (Reader
2010-12-04 09:06:55,919 (Reader
2010-12-04 09:06:55,920 (Reader
2010-12-04 09:06:55,920 (Reader
2010-12-04 09:06:56,922 (Writer
2010-12-04 09:06:56, 951 (Writer
2010-12-04 09:06:56, 951 (Writer
2010-12-04 09:06:57,953 (Writer

waiting to synchronize
waiting to synchronize
waiting to synchronize
setting ready

wait over

wait over

PAUSING

SELECT EXECUTED
results fetched

SELECT EXECUTED
results fetched
CHANGES COMMITTED
waiting to synchronize
PAUSING

CHANGES COMMITTED

— — — e e e = e = = = — —

NN NN R R RPN

Exclusive

Exclusive mode locks the database to all readers and writers. Its use should be limited
in situations where database performance is important, since each exclusive connection
blocks all other users.

7.5. sqlite8—Embedded Relational Database 375

$ python sglite3_isolation_levels.py EXCLUSIVE

2010-12-04 09:06:58,042 (Reader 1

2010-12-04 09:06:58,043 (Reader 2

2010-12-04 09:06:58,044 (Writer 1

2010-12-04 09:06:59,045 (MainThread
2010-12-04 09:06:59,045 (Writer 1

2010-12-04 09:06:59,046 (Reader
2010-12-04 09:06:59,045 (Reader
2010-12-04 09:07:00,048 (Writer
2010-12-04 09:07:00,076 (Reader
2010-12-04 09:07:00,076 (Reader
2010-12-04 09:07:00,079 (Reader
2010-12-04 09:07:00,079 (Reader
2010-12-04 09:07:00,090 (Writer
2010-12-04 09:07:00,090 (Writer
2010-12-04 09:07:01,093 (Writer

waiting to synchronize
waiting to synchronize
waiting to synchronize
setting ready

PAUSING

wait over

wait over

CHANGES COMMITTED
SELECT EXECUTED
results fetched

SELECT EXECUTED
results fetched
waiting to synchronize
PAUSING

CHANGES COMMITTED

DN DNDDN R R R RN

Because the first writer has started making changes, the readers and second writer
block until it commits. The sleep () call introduces an artificial delay in the writer
thread to highlight the fact that the other connections are blocking.

Autocommit

The isolation_level parameter for the connection can also be set to None to enable
autocommit mode. With autocommit enabled, each execute () call is committed
immediately when the statement finishes. Autocommit mode is suited for short transac-
tions, such as those that insert a small amount of data into a single table. The database
is locked for as little time as possible, so there is less chance of contention between
threads.

In sglite3_autocommit.py, the explicit call to commit () has been
removed and the isolation level is set to None, but otherwise, it is the same as
sglite3_isolation_levels.py. The output is different, however, since both
writer threads finish their work before either reader starts querying.

$ python sglite3_autocommit.py

2010-12-04 09:07:01,176 (Reader
2010-12-04 09:07:01,177 (Reader
2010-12-04 09:07:01,181 (Writer
2010-12-04 09:07:01,184 (Writer 2

2010-12-04 09:07:02,180 (MainThread

waiting to synchronize
waiting to synchronize

N S

)
)
) waiting to synchronize
) waiting to synchronize
)

setting ready

376 Data Persistence and Exchange

2010-12-04 09:07:02,181 (Writer 1) PAUSING
2010-12-04 09:07:02,181 (Reader 1) wait over
2010-12-04 09:07:02,182 (Reader 1) SELECT EXECUTED
2010-12-04 09:07:02,182 (Reader 1) results fetched
2010-12-04 09:07:02,183 (Reader 2) wait over
2010-12-04 09:07:02,183 (Reader 2) SELECT EXECUTED
2010-12-04 09:07:02,184 (Reader 2) results fetched
2010-12-04 09:07:02,184 (Writer 2) PAUSING

7.5.11 In-Memory Databases

SQLite supports managing an entire database in RAM, instead of relying on a disk
file. In-memory databases are useful for automated testing, when the database does not
need to be preserved between test runs, or when experimenting with a schema or other
database features. To open an in-memory database, use the string ’ :memory:’ instead
of a filename when creating the Connection. Each ' :memory:’ connection creates
a separate database instance, so changes made by a cursor in one do not effect other
connections.

7.5.12 Exporting the Contents of a Database

The contents of an in-memory database can be saved using the iterdump () method
of the Connection. The iterator returned by iterdump () produces a series of strings
that together build SQL instructions to recreate the state of the database.

import sqglite3
schema_filename = ’‘todo_schema.sql”’

with sglite3.connect (/:memory:’) as conn:
conn.row_factory = sglite3.Row

print ’‘Creating schema’

with open(schema_filename, ’‘rt’) as f:
schema = f.read()

conn.executescript (schema)

print ’Inserting initial data’
conn.execute ("""
insert into project (name, description, deadline)
values (’pymotw’, ’Python Module of the Week’, ’2010-11-01")

nn ")

7.5. sqlite8—Embedded Relational Database 377

data = [
("write about select’, ’done’, ’2010-10-03’, ’‘pymotw’),
("write about random’, ’waiting’, ’2010-10-10’, ’pymotw’),
("write about sqglite3’, ’active’, ’2010-10-17’, ’pymotw’),
]

conn.executemany ("""
insert into task (details, status, deadline, project)
values (?, 2, 2?2, ?)

""", data)

print ‘Dumping:”’
for text in conn.iterdump () :
print text

iterdump () can also be used with databases saved to files, but it is most useful
for preserving a database that would not otherwise be saved. This output has been edited
to fit on the page while remaining syntactically correct.

$ python sglite3_iterdump.py

Creating schema
Inserting initial data
Dumping:
BEGIN TRANSACTION;
CREATE TABLE project (
name text primary key,
description text,
deadline date
)i
INSERT INTO "project" VALUES ('pymotw’,’Python Module of the
Week’,’2010-11-01");
CREATE TABLE task (

id integer primary key autoincrement not null,
priority integer default 1,

details text,

status text,

deadline date,

completed_on date,

project text not null references project (name)
)i
INSERT INTO "task" VALUES(1l,1,’write about
select’,’done’,’"2010-10-03" ,NULL, ' pymotw’) ;
INSERT INTO "task" VALUES (2,1,’write about

378 Data Persistence and Exchange

random’,"waiting’,”2010-10-10" ,NULL, ' pymotw’) ;
INSERT INTO "task" VALUES (3,1,’write about
sqlite3’,’active’,’2010-10-17",NULL, 'pymotw’) ;
DELETE FROM sqglite_sequence;

INSERT INTO "sglite_sequence" VALUES (’task’,3);
COMMIT;

7.5.13 Using Python Functions in SQL

SQL syntax supports calling functions during queries, either in the column list or where
clause of the select statement. This feature makes it possible to process data before
returning it from the query and can be used to convert between different formats, per-
form calculations that would be clumsy in pure SQL, and reuse application code.

import sqlite3
db_filename = ’‘todo.db’

def encrypt(s):
print ‘Encrypting %r’ % s
return s.encode(’rot-13")

def decrypt(s):
print ’‘Decrypting %r’ % s
return s.encode(’rot-13")

with sglite3.connect (dbo_filename) as conn:

conn.create_function(’encrypt’, 1, encrypt)
conn.create_function(’decrypt’, 1, decrypt)
cursor = conn.cursor ()

Raw values
print ’‘Original values:’
query = "select id, details from task"
cursor.execute (query)
for row in cursor.fetchall () :
print row

print ’‘\nEncrypting...’
query = "update task set details = encrypt (details)"
cursor.execute (query)

7.5. sqlite8—Embedded Relational Database 379

print ’‘\nRaw encrypted values:’
query = "select 1id, details from task"
cursor.execute (query)
for row in cursor.fetchall () :
print row

print ’‘\nDecrypting in gquery...’
query = "select id, decrypt (details) from task"
cursor.execute (query)
for row in cursor.fetchall():
print row

Functions are exposed using the create_function() method of the

Connection. The parameters are the name of the function (as it should be used from
within SQL), the number of arguments the function takes, and the Python function to
expose.

$ python sglite3_create_function.py

Original wvalues:

(1,
(2,
(3,
(4,
(5,
(6,

u’write about select’)
u’write about random’)
u’write about sglite3’)

u’ finish reviewing markup’)
u’ revise chapter intros’)
u’ subtitle’)

Encrypting...

Encrypting u’write about select’

Encrypting u’write about random’

Encrypting u’write about sglite3’

Encrypting u’ finish reviewing markup’

Encrypting u’revise chapter intros’

Encrypting u’subtitle’

Raw
(1,
(2,
(3,
(4,
(5,
(6,

encrypted values:

u’ jevgr nobhg fryrpg’)

u’ jevgr nobhg enagbz’)

u’ jevgr nobhg fdyvgr3’)

u’ svavfu erivrjvat znexhc’)
u’erivfr puncgre vagebf’)
u’ fhogvgyr’)

Decrypting in query...

380 Data Persistence and Exchange

Decrypting u’ jevgr nobhg fryrpg’
Decrypting u’ jevgr nobhg enagbz’
Decrypting u’ jevgr nobhg fdyvgr3’
Decrypting u’svavfu erivrjvat znexhc’
Decrypting u’erivfr puncgre vagebf’
Decrypting u’ fhogvgyr’

(1, u’"write about select’)

(2, u’write about random’)

(3, u’write about sqglite3’)

(4, u’finish reviewing markup’)

(5, u’revise chapter intros’)

(6, u’subtitle’)

7.5.14 Custom Aggregation

An aggregation function collects many pieces of individual data and summarizes it in
some way. Examples of built-in aggregation functions are avg () (average), min (),
max (), and count ().

The API for aggregators used by sgqlite3 is defined in terms of a class with two
methods. The step () method is called once for each data value as the query is pro-
cessed. The finalize () method is called one time at the end of the query and should
return the aggregate value. This example implements an aggregator for the arithmetic
mode. It returns the value that appears most frequently in the input.

import sqglite3
import collections

db_filename = ’‘todo.db’

class Mode (object) :

def _ init__ (self):
self.counter = collections.Counter ()

def step(self, value):
print ’step (%r)’ % value
self.counter[value] += 1

def finalize (self):
result, count = self.counter.most_common (1) [0]
print ’finalize() -> %r (%d times)’ % (result, count)
return result

with sglite3.connect (db_filename) as conn:

7.5. sqlite8—Embedded Relational Database 381

conn.create_aggregate (‘mode’, 1, Mode)

cursor = conn.cursor ()
cursor.execute ("""
select mode (deadline) from task where project = ’‘pymotw’

mn ")

row = cursor.fetchone()
print ’‘mode (deadline) is:’, row[0]

The aggregator class is registered with the create_aggregate () method of the
Connection. The parameters are the name of the function (as it should be used from

within SQL), the number of arguments the step () method takes, and the class to use.

$ python sglite3_create_aggregate.py

step(u’2010-10-03"
step(u’2010-10-10"
u

step(u’2010-10-02"

step(u’2010-10-03"

step (u’2010-10-03")

finalize () —-> u’2010-10-03" (3 times)
mode (deadline) is: 2010-10-03

()
()
step(u’2010-10-17")
()
()

7.5.15 Custom Sorting

A collation is a comparison function used in the order by section of an SQL query.
Custom collations can be used to compare data types that could not otherwise be sorted
by SQLite internally. For example, a custom collation would be needed to sort the
pickled objects saved in sqlite3_custom_type.py.

import sqglite3
try:

import cPickle as pickle
except:

import pickle

db_filename = ’‘todo.db’

def adapter_func (obj):
return pickle.dumps (ob7j)

382 Data Persistence and Exchange

def converter_func(data) :
return pickle.loads (data)

class MyObj (object) :
def _ _init__ (self, argqg):
self.arg = arg
def _ str_ (self):
return 'MyObj(%r)’ % self.arg
def _ cmp_ (self, other):
return cmp(self.arg, other.arg)

Register the functions for manipulating the type.
sglite3.register_adapter (MyObj, adapter_func)
sglite3.register_converter ("MyObj", converter_func)

def collation_func(a, b):
a_obj = converter_func(a)
b_obj = converter_func (b)
print ’“collation_func(%$s, %s)’ % (a_obj, b_obj)
return cmp(a_obj, b_obj)

with sglite3.connect (db_filename,
detect_types=sqlite3.PARSE_DECLTYPES,
) as conn:
Define the collation
conn.create_collation(’unpickle’, collation_func)

Clear the table and insert new values

conn.execute (‘delete from obj’)

conn.executemany (’insert into obj (data) values (?)7,
[(MyObj(x),) for x in xrange (5, 0, -1)1,
)

Query the database for the objects just saved
print ’‘Querying:’
cursor = conn.cursor ()
cursor.execute ("""
select 1id, data from obj order by data collate unpickle
)
for obj_id, obj in cursor.fetchall():
print obj_id, obj

7.5. sqlite8—Embedded Relational Database 383

The arguments to the collation function are byte strings, so they must be unpickled
and converted to MyOb 7 instances before the comparison can be performed.

$ python sglite3_create_collation.py

Querying:
collation_func (MyObj(5), MyObj(4))
collation_func (MyObij (4), MyObj(3))
collation_func (MyObij(4), MyObj(2))
collation_func (MyObj(3), MyObj(2))
collation_func (MyObj(3), MyObj(l))
collation_func (MyObj(2), MyObj(l))
7 MyObj (1)
6 MyObj(2)
5 MyObj(3)
4 MyObij(4)
3 MyObij(5)

7.5.16 Threading and Connection Sharing

For historical reasons having to do with old versions of SQLite, Connection objects
cannot be shared between threads. Each thread must create its own connection to the
database.

import sqlite3
import sys
import threading
import time

db_filename = ’‘todo.db’
isolation_level = None # autocommit mode

def reader (conn) :

my_name = threading.currentThread () .name

print ’‘Starting thread’

try:
cursor = conn.cursor ()
cursor.execute (’select x from task’)
results = cursor.fetchall ()
print ’‘results fetched’

384 Data Persistence and Exchange

except Exception, err:
print 'ERROR:’, err
return

7.

if name == /_ _main

with sglite3.connect (db_filename,
isolation_level=isolation_level,
) as conn:
t = threading.Thread(name=’Reader 17,
target=reader,
args=(conn,),
)
t.start ()
t.join ()

Attempts to share a connection between threads result in an exception.

$ python sglite3_threading.py

Starting thread

ERROR: SQLite objects created in a thread can only be used in that
same thread.The object was created in thread id 4299299872 and
this is thread id 4311166976

7.5.17 Restricting Access to Data

Although SQLite does not have user access controls found in other, larger, relational
databases, it does have a mechanism for limiting access to columns. Each connection
can install an authorizer function to grant or deny access to columns at runtime based
on any desired criteria. The authorizer function is invoked during the parsing of SQL
statements and is passed five arguments. The first is an action code indicating the type of
operation being performed (reading, writing, deleting, etc.). The rest of the a