{ "cells": [ { "cell_type": "markdown", "id": "cca11c7c", "metadata": {}, "source": [ "# pillow\n", "+ Install and use `pillow` in a Jupyter notebook.\n", "+ Do not execute this notebook if the library is already installed.\n" ] }, { "cell_type": "markdown", "id": "5ba170b2", "metadata": {}, "source": [ "## check installation" ] }, { "cell_type": "code", "execution_count": 2, "id": "24f2a77b", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Name: Pillow\n", "Version: 9.0.1\n", "Summary: Python Imaging Library (Fork)\n", "Home-page: https://python-pillow.org\n", "Author: Alex Clark (PIL Fork Author)\n", "Author-email: aclark@python-pillow.org\n", "License: HPND\n", "Location: c:\\users\\sparisoma viridi\\appdata\\local\\packages\\pythonsoftwarefoundation.python.3.10_qbz5n2kfra8p0\\localcache\\local-packages\\python310\\site-packages\n", "Requires: \n", "Required-by: matplotlib\n" ] } ], "source": [ "!pip show pillow" ] }, { "cell_type": "markdown", "id": "ee823697", "metadata": {}, "source": [ "## install\n", "Jupyter Notebook and other modules are previously installed using pip (at home)." ] }, { "cell_type": "code", "execution_count": null, "id": "0f586967", "metadata": { "scrolled": true }, "outputs": [], "source": [ "!pip install pillow" ] }, { "cell_type": "markdown", "id": "967b0ca7", "metadata": {}, "source": [ "**Note**: Not tried." ] }, { "cell_type": "markdown", "id": "de87a75f", "metadata": {}, "source": [ "## import\n", "From https://www.geeksforgeeks.org/reading-images-in-python/" ] }, { "cell_type": "code", "execution_count": 4, "id": "01fa8b61", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "File = data/python_180x180.png\n", "Format = PNG\n", "Mode = RGBA\n" ] } ], "source": [ "from PIL import Image\n", "fname = \"data/python_180x180.png\"\n", "img = Image.open(fname)\n", "img.show()\n", "print(\"File =\", fname)\n", "print(\"Format =\", img.format)\n", "print(\"Mode =\", img.mode)" ] }, { "attachments": { "image.png": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAFCCAYAAAA9o+1gAAAfTklEQVR4nO3df2wc9f3n8ddOnB92DZiuL2qt+Lw0xP26SuqE4wK7VaKLJVQo2UoBKf+UBUUibvekokouIk2s5htEF1CVf6pKVkmkCIxUKRK1hM23SJHiHpF2IVfV2Rp9fU3IZX123ftyWTDB3QRwPPdHmMnO/rSTdWY/5PmQEPHu/HjP7Hjn5c/nMzOBeDxuZzIZff755wLw1WDbtiTpww8/lG3bsixLkmRZllasWKHLly+70waceQqWEQhIti3Z9oLsBfvaC5ICgYACgUDB1LZsd5KAM6nsvIUGSqzDXV5e3Xbe9E5dgS9nLnzPKdRZb+EanPXbtl20nYEv5131tTvUZC0ol5vT5/PXN9y+vnZ32uJt8W73tR9KbHveygv3wbXP6sv1lNi35fZb/kYWbpMk2StWqbmpSdbCP3Vp7vOibbBtW6ua71TDlUvKzRfv46VyjpfS7xUeL5J3TaU+4Os77fpy7eu7uGA/e7fP/vLYtd19er2EQJla7RKf2Zf78ss3bNvW6ua79LWGBV3O/VNXvrDLbFt5drmdVEa5OryrLa4hULiTyuxTd180rNLXmppkXc3pk0+v5C3n+jyrm++SdeWSLs8vZjtWqbllja7OXZu+GuezKnj1y9+va0VeXVhQ4IknnrDPnDlTfYl17NNPP/W7BAAAsIyam5tltba2+l0HAABARZs3b5bldxEAAACLQWgBAAD1z7ZlffTRR36XAQAAUJEtyVriQGYAAABfWEu8WgsAAMAXjGkBAAB1LyBCCwAAMEFAspZ6Nz8AAIBbbxWhBQAAmKFhqc9BAAAAtZPJZBY1XSgUWuZKliaTySgajWp8fLzk+5s2bdLw8HAN6/5CDQuEFgAAfFXtxL7YYHMrRaNRDQ8PlwwuTmCJRqM1Xad1w4/0BAAAt63x8XE3uGzatMl9PT+wlGuFuVENNV0aAAC4beQHF6dVZbkCiyQ1iHG4AADgBuUHF0nLFlgkqYHMAgD4KjB1QCsWr0E1bGo5evSoHnjggYrTvPfee/rlL3+pmZmZmq0XgPlaW1u1ceNG3XnnnWpoaND8/LwuXbqk999/XxcvXvS7vLqvD4QRvxQOul2+7iFbDXaNRuIePXpUjY2N+v73v182kLS1tenXv/61nn/+eT399NM1WS8A83V3d6u9vV3ZbFbJZFIXL15Ua2urNmzYoAcffFBTU1NKp9PUB9SZUoNuK11VdDNsu4ZXDz3wwAN69tlnSwaWtrY2/eY3v5EkPfvss3rggQfU1tZWmxUDMFpra6va29t15swZpVIpt9Xi4sWLSqVSOnPmjNrb29Xa2lo39XV3d9dNfYBfyl0lVO6qolqwVMNrnsu1sOzbt087duzQvn373GlmZmZ09OjRmq3bBJlMpui/I0eOVJxndHTUnXbPnj2eZd0K+evPZDI6dOiQp4bC+vfs2aPR0dGi1wq3G3Bs3LhR2WxW09PTJd+fnp5WNpvVxo0bb3Fl15Sqb/369e6//a4PXw2lzg/1/p1ZqTWlcHBurTTcitu0vPTSS57/O7q7u2/B2m/M6OioXnvtNR07dqxmyyzsb81kMtq7d2/Z6YeGhjQ7O6tQKKQ9e/bo4MGDi67HCROVlr9Yhw4d0rFjx7R161YdP35cb731lk6fPi1Jeuihh7R161b351J13H///Z5tP3LkSMV5cHu58847lUwmK05z7tw5RSKRW1SRV73XB/OZOhanWt3j4+M137ZbcvXQzMyMnnnmmaLX16xZcwvWXp+OHDmiEydOVJwmFArpxz/+sSTp2LFjevLJJ7Vnz56aBqmlOH36tMbGxvToo4+6gePVV1/Vyy+/rB07dhRNv3XrVt1///3asmWL5/VaBCl8dTQ0NLhdLvktGI7z588rnU6rocGf20qVq++xxx6ri/qA28my/ZY9/PDD+vnPf64rV67ot7/9rd5+++3lWlXNjY6O6p577tHBgwf1zDPPaMuWLRobG9Obb76pp556SpK0e/duvfzyy7rnnnv08ccfuyfmoaEh/fWvf3Wnk0qn0cKTudOSUmkep9Ul39DQUFEoOHHihB566CFJ11pzdu/erUcffdSt6cKFC9qxY4eOHDniTuds02JaP/KbKg8ePKjR0VEdOnTIU790LZz8+c9/rro81E6lULt161ZJKvsZ+xWI5+fn1draqnQ6XXYwa2trq+bn529xZdeUqu+xxx7TH/7wh7qoD7idWMvx7KGHH35YBw4c0LFjx/T73/9eBw4c0MMPP1zz9SyXHTt26MKFCzp06JAnEGzfvl2hUEgnTpzQ8ePH9dprrykUCml2dtYz1uOpp55SKBRSKBTS2NiYhoaGPMs/dOiQ58TvBBZnHieYZDIZ/eIXv5B07YRTGE4kadeuXe48Fy5c0O7du7V3716dOHFCJ06cUCgU0unTpz01Oa0ie/fudV979dVX3XWVs2fPHm3ZsqXoxPbcc895Qlq+/HFOQ0NDJcfnoDaGhoZ08ODBouNNktu1d/z4cTe8LHbe5Xbp0iVt2LCh4jQbNmzQpUuXblFFXvVeH3A7qflTnp3A8qtf/cptXclmszpw4IAkGdXiUui5556TJCWTSd17773uyfuDDz7wXA316quvuv9+8cUX9bvf/c6znO3bt+u1115zf45EIiW7inbt2qWxsTE34IyNjZWt7ciRI3rnnXfK/hV94cIFjY2NFQWf/PBUbvkHDx50W1F2795d9P7p06d14sQJDQ0N6c033/S8l79fdu3aJUlFA3Vxe3v//ff14IMPat26dSUH465bt07BYFDvvvuuD9WVru/8+fN1Ux9w27BtNQQCtRnVcuXKFf3oRz/ST37yE09gka4HlQMHDigYDNZkfSaZnZ31/NzS0rLoZvj8kDE2NqYXX3yxaJo9e/aotbW14liRHTt2aOvWrcpkMm73kNN1dPr0aR06dEjf/e53S87rDMStZO/evUWhJ5lMlhzLhOXhhMJSTp8+XXFAXKV5l9vFixc1NTWlzZs3q729XefOnfPcB8X5zvBrDFyp+tLpdN3UB9xOGqyAVZMFpdNp7du3Ty+99FLJ1pS3335bwWBQ+/bt03vvvaf77ruv6GReT0qNH1ms7du3u/9++eWX9cEHH7g/F3YNSddO7oXjQQodOXJEmUymZEuKM+4m38zMTFEIcU5c+et3lrd9+3b38xgdHdU777xTtaZCb775pp555hl3Oc7g4dHR0ZIDdQFHOp3W3//+d23cuFGRSMRzx9l3331Xa9as0ebNmyWp7KXRt3N9wG0hEKjdAxOffvppHT16VD/72c+0b9++stO99957evrpp/XGG29U7O7wmzOY9oc//GHJsSSVzM7OusHgwoULnhaQtra2olt+Hzt2rChMhEIhz0BZp3Wk0NjYmO6++27PvLt379Zbb72lp556ym1NOX78uPu+03212K6nxTp48KAnsEnXWnicsSyOCxcu+HYFFOrXxYsX9ac//aniNH4Gg3qvD7gdBGKxJ+2xsb/cshXed999OnDggO666y49+eSTNXkG0aefflqDymrDuXpoqa0UAKpbt26dNm/erDNnztRlMKj3+gCTfe9736v9Jc9tbW16/vnn1d3dXbKPd3Z2VmNjY/rpT3/KQxMBLIkTBDZt2lSXoaDe6wNMZtu2AqGurXbzipzftdwUWloAAPhqm195twIdXVvtOwgtAACgjs03tMiyFxb8rgMAAKCKgKwHu4uf9QEAAFBPAoGArH/87ZzfdQAAAFQWkCzLqs3N5QAAAJZL1922rG9+u9PvOgAAACrraJOVPHPW7zIAAAAqatEqWTW6iz8AAMCySY1NyqrVAxMBAACWkxXessHvGgAAACoKfyfIbfwBAED9u7rq64xpAQAAZrBs2X7XAAAAUBWjcAEAgBEILQAAwAhc8gwAAIzQoABX3wAAgPpHMwsAAKh/ti3rO1t4YCIAAKh/1id/Pe93DQAAAJUFArI23P8vfpcBAABQlfX+mXN+1wAAAFCRbduy2loW/K4DAACgKmt1+71+1wAAAFCV9Zexs37XAAAAUJUVCPCcZwAAUP8ILQAAwAiEFgAAYARu4w8AAOpeQIQWAABgCCvUtcHvGgAAACoKd7XK0oVJv+sAAACoyP7sM1n/+5+233UAAABU9I9/fCrLtgktAACgvmUuS5ZEaAEAAPXPunYREQAAQB2zueQZAAAYwops6fC7BgAAgKqsd8+c87sGAACAiuyVNt1DAADAAF8wpgUAABjC4uIhAABgAlpaAACAESx7gZvLAQCA+meFt/CUZwAAUP+sv0+c9bsGAACAigKBgKzmO5r9rgMAAKCilQ0Nsr757U6/6wAAAKjKSo3RPQQAAOpdgEueAQCAGSwFuLscAACof1aES54BAIABrNQYT3kGAAD1z+J+uAAAwASWRGwBAAD1zwrwmGcAAFDnbNlc8gwAAOrfwsICoQUAANQ/y7JkhbdwG38AAFDfApKsf/yN2/gDAID6R/cQAACoe11fl6w2nvIMAADq3JqONllJnvIMAADq3Bqb7iEAAGCA7MJVQgsAAKh/QWuFrAiXPAMAgDo3G5BWzDe0/OvlT7N+1wIAAFDWxYvcxh8AABiB0AIAAAxBaAEAAEYgtAAAAAMECC0AAMAMhBYAAGAEQgsAADACoQUAABjBsm3b7xoAAAAqC0jW/7t40e8yAAAAKvr8s8/oHgIAAGYgtAAAACMQWgAAQN2zJVkBv6sAAABYBCu8pdPvGgAAACoKSLJSZ875XQcAAEBVjGkBAABGILQAAAAjEFoAAEDdsyVZ4jb+AACgzgVESwsAADCALckKfb3V7zoAAAAquq9ttaxvfsPvMgAAACr7y8xnsmb/I+t3HQAAAFUxpgUAANS9yLfuILQAAID6d2X1ah6YCAAA6t/HmYuyJj7yuwwAAIDKMpcly9YKv+sAAACoijEtAADACJZ01e8aAAAAqrJa7rrL7xoAAACqsj755BO/awAAAKjKWut3BQAAAFWEt4QYiAsAAOpfaiwjq7Gtw+86AAAAqrLa1nB3OQAAUP+si1l6iAAAQP2zPpmd9bsGAACAqmhmAQAARrC+tWWD3zUAAABUZaXGPvC7BgAAgKosBfwuAQAAoDqLzAIAAExg2X5XAAAAsAhcPQQAAIxAaAEAAEawItvv97sGAACAqiz7wl/9rgEAAKAqa+pSg981AAAAVGX9389W+F0DAABAVVb7Pd/wuwYAAICqGtb8xzm/awBwC0SjUYXD4ZLv7d+/v+r8iUTC/XcqldLw8LC73M7OTh0+fLg2hS5BPB5Xe3u757VXXnlFmUxGktTX16dgMOh5zZFIJDQyMqJkMum+FolEtHPnTs90U1NTGhgYWKYtALAUDatX3SXpI7/rAG57sVhMzc3Ny3aCHB4edoOGIx6Pa25uruq8iUTCE1QSiYSy2aznhF9NJBJRT0+PXnjhhaUVXkV+qIhGo+rt7fWElFwup8cff7xqqHICUGGA6+vrq2m9AG6cFfjGf/K7BgA+CIVCCgaDGhwcrDhdNBpVNpv1BJ6JiQl1d3cvd4lLNjw8rGw2q02bNrmvpdNpBYNBRaPRsvNFo1EFg8GSLU5+tCABKK1hbOycGIoL+MvpxpCut2qMj4+rt7dXIyMjbpfFxMSETp06pd7eXknXWhGclotQKOS2MjjvSyrZNSJJjzzyiNLptOc1ZxmOiYkJzc7OFs07OzurtWvXFr1eqgsql8tpcnJSXV1d7vY5rSOxWMx9Pb/WwuXkt/IsVUtLi1KplMLhcNlldHZ2Fu0LAPWnQQEemQj47fDhw0XdQ6FQSJIUDoe1f/9+d7xFR0eH2yLQ39+vWCzmaS154okn3PdjsZh6e3uLWhBCoZDa29s9XVHO8vPHecRiMY2PjyscDisajbon/e7ubl2+fLloOwq7oBKJhF5//XVlMpmi7qFIJKKuri63tvyWkHXr1rmvO3UtJrTEYjEFg8GiaYeHh7Vu3TrF4/GS3W/BYFDj4+NVlw/AX9zGH6hzTvdEMplULpfztAhMTk6qubnZM/3rr7/u/ntwcFC5XE6RSMQzzbZt2zQ1NeV5rbu7WxMTE55xKoODg8pkMhoZGVE4HFYikVAikVhUq0RfX59SqVTJVh5JmpmZkXQ9nA0PD7vT5gcLpx5nukLt7e1uXfmBrtDAwIDa29uL9kUp0WjUXWb+AGQA/mqgnQX4aikXEvJ1dHTo5MmTnteampo0PT1dcvpkMukJM7FYTLlcruzyY7GYJFVsHXHCkNMdld8FVNhNJUltbW0lt20pV/ekUin19PQUDSDO5XLatGmTu3ynxahUHQD8w+1wga+4pqYmt1VDktvSUOrKn5aWlkUtc+3atTp79mzJ9wq7fSrJD0POFUmStHPnTs9YnFq1dgwPD6uzs7ModE1OTqqzs7Mm6wCwfCzbtv2uAcCXmpqabnoZ8Xjc8+9sNutpoVi/fr0bDvKdPXtWXV1dnm4Yp8Wk1PLLtaL09PRoZGSk5Hv52xeJRDxdNblcTsFgUMFgULlczq258KqfRCKxqC6ect544w11dXV5ahkcHFRjY6P6+/tveLkAlh8tLUCdGBwcdMdQOFcP3Yjp6Wm3ZSL/6iJHuVYSJ4Tkd4c44aO/v989yWez2bKXAcfjcTU1NWnnzp2em7Tt379fyWTSHRczNTWldDrtmW5qasqtobOz092GwrE3NyuTyWhiYsJz1ZIkvfDCC4rH40WtOqlUqqbrB3DjAus2bLZXfP6x33UAuEnO+IvFdMsAgGm+WHEnVw8BAAAzWGJICwAAMEBg3b3d9ooviu94CQAAUC/oHgIAAMYgtAAAAAPYssSgFgAAYAAG4gIAgPrXIFn/ZeO3/C4DAACgov/ada+sb7a1+V0HDBeJRJb0bJhQKFTTJ+dGIpGbvv16PB53b1nvPOHXuZ19X19f0a3ka6W/v/+mbklfqK+vT4lEQvF4XH19ferr65NU+31+O4pGo+7+RHXL+XuD29M329q4jT9qLxKJqKenp+j28aZwnvBba8u9X6LRqBobG7kjLoCvLK4eAr4iWlpadPnyZb/LAIBlQ0sLaioWi7kPonMejDcwMFB1vng8rvb2dvfnkZERJZNJ9+doNKpwOOz+PDExocHBwYrLcpaR3y2ymHoqPcPHeS//oYH5DxMst/xq+yW/xldeecXzVOb898ptd/7+cx642NLSoubm5rLbmz9PqQcrStf2e3d3t/ues/35n09/f79OnjypZDLp2ReFy1zMQxdjsZiam5slya3tlVde0bZt29z9V7gPyh0bTq35+7PwtfzPRZLnM49EIp6HPi7mwYn5n1Xh9jufSzgcLrn9Tkvc5OSkurq63O0o3L787UkkEhoZGSl6OKWj8Peq0rzOMZm/DYW/A5WOxfx11fohl4CD0IKaGhwcXHI3iPNkYOcL0jlZzMzMKJPJuF/a+V+giURC0Wi0qBsnFospGAy60/b19Xm+XJ1xKzeqt7dXqVTKXW9fX5+y2ay7rf39/SXrqrRfdu7c6dYbj8f1+OOPewJRfv2JREKRSMQT6CRpYGBAsVhMa9eudeettK2F+ykejysejxcFnOHhYYXDYYVCIWUyGW3atEmStH79eiWTSXc8jvPvdDrt2TexWEyDg4OKx+Oe/VSptvb2dqVSKQ0MDCgej6u3t1cTExPav3+/e2w49VQ7NqamprRt2zb3RL1t2zZNTU2583Z1dbnzxmIx9fX16fDhwwqFQtq5c6cnnCUSCWWz2bJ1O6HE2X5nXFF+OOns7KzYfeeEuvzfhXA47IaNaDSqJ554wnMM9fT0eI73ws8xf/vyj638eZ0wl0gkyi6r0rFYeDwVBi2gVugegq9CoZDa29v1xhtvuK8lk0n3ZCNJ3d3dRX/lplIpdXZ2el6LxWLq6OjwfKHncjn3L3dJZVtnFqPwpBSJRBQMBj0niHQ6rXXr1i1pufnblk6n1djYKEnuIMb8micmJrR+/fob3gZHV1eXTp486f78xz/+UcFgsOS0U1NTbljp7OxUKpXS2rVrJV0LL86JPJlMesLahx9+6O77ubk594RcuE2l1ucsJ51Oe6ZPJpPK5XJq+/ICgmrHRjqdVkdHh/teR0eHu8zCeQcHB9198Mgjj2hqasoTDiu1tMRiMWWzWc/2DwwMKBgMugO6qy0jvw5HOBzWxMSEG7qc5ecvM/9zPHv2rGc/5x+b58+fd48tx+uvvy5JymQyymazmpiYKLmsasdi4fE0PDxcMeABN4qWFtSF/O4Q6dpJLj9sFH4BZrNZzxdwU1OTurq6NDIy4pluYGDAvaKmXBfIYjhN+qUG6BZelbPUL+vC6fNPOk1NTUXLr1XT+86dOz3dCuVMT0+7IaCxsVHDw8NuTWvXrvWciAu7I5xtc1pbnPlqOVi40rGRTCbV09PjuUIrP4iEw+GiFgEnEMzNzS2pjlwuV/K1trY29/iemZlZ8jK6urqKjoFKy8z/vahli0e1Y7HatgG1QGhBXXCa+x3Nzc2ek0ZhK0AwGPQMOs3lcjp58qSnW8mR311S2Fy/WM5f74VN7zcThBaj3NiPWigcO1PO+Pi4wuGwotGoGxCmpqbcliYnBPT19SmXy3m6I5wWGen6X/3RaFT9/f0122/Vjo3JyUm3RWByctIzbeHYqUpaWloqvp8fNvNfu9mTeX7r3lI4LY+F3a43aqnHYmGrDlALdA9hWZT6Ai/FaZZ+/PHH3dcikYja29t16tQpSddONIV/LYbDYZ09e9bzWjKZVCqVUm9vr/vXcv7YidnZ2Zv6Ij18+LCCwaDi8bi7vsJ1VLPY/SJda2IPBoPLcq+Lqakpzz6vxPmMuru73a6V6elp9fT0eP7Sbmxs1PT0tPtzfrdM/j7KZrNL2g+VLObYOHXqlDo6OtTR0eEeU868PT09JZebTqfV1dXlHkehUMgzYLfQqVOnij4rZxzPYoJhOWfPnr3hlpLm5mZPK1R3d/cN11HtWCw8nmKxmOczdsZMATeLlhbUXDKZVDgcXvTVQ4cPH3a7cBz5rQCDg4OKxWKe98v99Tk8PKyWlhZ38ObatWuLlnszXnjhBSUSCXfAYv7PjnJ/vS91vzj19vb2lr165Ebld5s5Kl2R9eGHH6qrq8vdLqf1xQkxktyWLqfWqakp98TV3NxctI9qYTHHRiaT0eXLl5XL5Tz7rbDLyql5YGBAyWRS69evV29vr6RrLWqlxlHlr6Pws6pFK5lzPOfXuNjlOlcCOfPebLdipWNxYGBA/f397romJiYY04JlEfhJ/L/bf/y3t/yuAwAAoKxHfvAo3UMAAMAMhBYAAGAEQgsAADACoQUAABiB0AIAAIxAaAEAAEYgtAAAACMQWgAAgBEILQAAwAiEFgAAYARCCwAAMAKhBQAAGIHQAgAAjEBoAQAARiC0AAAAIxBaAACAEQgtAADACIQWAABgBEILAAAwAqEFAAAYgdACAACMQGgBAABGILQAAAAjEFoAAIARCC0AAMAIhBYAAGAEQgsAADACoQUAABiB0AIAAIxAaAEAAEYgtAAAACNYa1av8rsGAACAitasXkVLCwAAMAOhBQAAGIHQAgAAjEBoAQAAde+L+XlCCwAAMAOhBQAAGIHQAgAAjEBoAQAARiC0AAAAIxBaAACAEQgtAADACIQWAABgBEILAAAwgrWwsOB3DQAAAFVZH38863cNAAAAVVlfzM/7XQMAAEBVjGkBAABGILQAAAAjEFoAAIARrJUrG/yuAQAAoCrr7pYWv2sAAACoyrIseogAAED9I7EAAAAjEFoAAIARCC0AAMAIhBYAAGAEQgsAADACoQUAABiB0AIAAIxAaAEAAEYgtAAAACMQWgAAQN1b2dBAaAEAAGYgtAAAACMQWgAAgBGsubk5v2sAAACoaG5uTtbKlSv9rgMAAKCilStXylq9erXfdQAAAFS0evVqxrQAAAAzEFoAAIARCC0AAMAIhBYAAGAEQgsAADACoQUAABiB0AIAAIxAaAEAAEYgtAAAACMQWgAAgBEILQAAwAiEFgAAUPfOf/Q5oQUAANS/v/05TWgBAAD17xv6hNACAADqX6OkFR/984t/vfpZzu9aAAAAyrpj1WpZP+gJ+10HAABARTNqlKVAg991AAAAVBTs/C5jWgAAQP17IHQHoQUAAJjBkj3vdw0AAABVWf/2P/6n3zUAAABUZf3gv3H1EAAAqH+MaQEAAEYgtAAAACMQWgAAgBEILQAAwAiEFgAAYARCCwAAMAKhBQAAGIHQAgAAjEBoAQAARiC0AAAAIxBaAACAEQgtAADACIQWAABgBEILAAAwAqEFAAAYwVpYWPC7BgAAgIoWFhZoaQEAAGYgtAAAACMQWgAAgBGsQCDgdw0AAAAVBQIBWloAAIAZCC0AAMAIhBYAAGAEQgsAADACoQUAABiBq4cAAEDd4+ohAABgDEILAAAwAqEFAAAYgdACAACMQGgBAABGILQAAAAjEFoAAIARCC0AAMAIhBYAAGAEQgsAADACoQUAABiB0AIAAIxAaAEAAEYgtAAAACMQWgAAgBEILQAAwAiEFgAAYARCCwAAMAKhBQAAGIHQAgAAjNAgSbt27ar5gufm5tTc3Fz2/YWFBc3Pz2vFihVasWJF1eX9+/86q6bGNQp1/OeK02Um/49yV67oO9/urLrMq1ev6urVq2poaJBlkd8AAKhn/x97BtXqGuMizQAAAABJRU5ErkJggg==" } }, "cell_type": "markdown", "id": "eed4b948", "metadata": {}, "source": [ "It can not show image in a notebook\n", "\n", "![image.png](attachment:image.png)\n", "\n", "but the package can be accessed." ] }, { "cell_type": "code", "execution_count": null, "id": "9aaced1c", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "authors": [ { "name": "Sparisoma Viridi" } ], "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.9" }, "title": "pillow" }, "nbformat": 4, "nbformat_minor": 5 }