
Chapter 1

Automatic Model Description

“Not a wasted word. This has been a main point to my literary thinking
all my life.”

– Hunter S. Thompson

The previous chapter showed how to automatically build structured models by search-
ing through a language of kernels. It also showed how to decompose the resulting models
into the different types of structure present, and how to visually illustrate the type of
structure captured by each component. This chapter shows how automatically describe
the resulting model structures using English text.

The main idea is to describe every part of a given product of kernels as an adjective,
or as a short phrase that modifies the description of a kernel. To see how this could
work, recall that the model decomposition plots of section 1.5 showed that most of the
structure in each component was determined by that component’s kernel. Even across
different datasets, the meanings of individual parts of different kernels are consistent in
some ways. For example, Per indicates repeating structure, and SE indicates smooth
change over time.

This chapter also presents a system that generates reports combining automatically
generated text and plots which highlight interpretable features discovered in a data sets.
A complete example of an automatically-generated report can be found in appendix ??.

The work appearing in this chapter was written in collaboration with James Robert
Lloyd, Roger Grosse, Joshua B. Tenenbaum, and Zoubin Ghahramani, and was published
in Lloyd et al. (2014). The procedure translating kernels into adjectives developed out
of discussions between James and myself. James Lloyd wrote the code to automatically
generate reports, and ran all of the experiments. The paper upon which this chapter is
based was written mainly by both James Lloyd and I.
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1.1 Generating descriptions of composite kernels

There are two main features of our language of GP models that allow description to be
performed automatically. First, any kernel expression in the language can be simplified
into a sum of products. As discussed in ??, a sum of kernels corresponds to a sum of
functions, so each resulting product of kernels can be described separately, as part of a
sum. Second, each kernel in a product modifies the resulting model in a consistent way.
Therefore, one can describe a product of kernels by concatenating descriptions of the
effect of each part of the product. One part of the product needs to be described using
a noun, which is modified by the other parts.

For example, one can describe the product of kernels Per×SE by representing Per
by a noun (“a periodic function”) modified by a phrase representing the effect of the SE
kernel (“whose shape varies smoothly over time”). To simplify the system, we restricted
base kernels to the set {C, Lin, WN, SE, Per, and σ}. Recall that the sigmoidal kernel
σ(x, x′) = σ(x)σ(x′) allows changepoints and change-windows.

1.1.1 Simplification rules

In order to be able to use the same phrase to describe the effect of each base kernel
in different circumstances, our system converts each kernel expression into a standard,
simplified form.

First, our system distributes all products of sums into sums of products. Then, it
applies several simplification rules to the kernel expression:

• Products of two or more SE kernels can be equivalently replaced by a single SE
with different parameters.

• Multiplying the white-noise kernel (WN) by any stationary kernel (C, WN, SE, or
Per) gives another WN kernel.

• Multiplying any kernel by the constant kernel (C) only changes the parameters of
the original kernel, and so can be factored out of any product in which it appears.

After applying these rules, any composite kernel expressible by the grammar can be
written as a sum of terms of the form:

K
∏
m

Lin(m) ∏
n

σ(n), (1.1)
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where K is one of {WN, C, SE,
∏

k Per(k)} or {SE×∏
k Per(k)}, and ∏

i k(i) denotes a prod-
uct of kernels, each having different parameters. Superscripts denote different instances
of the same kernel appearing in a product: SE(1) can have different kernel parameters
than SE(2).

1.1.2 Describing each part of a product of kernels

Each kernel in a product modifies the resulting GP model in a consistent way. This
allows one to describe the contribution of each kernel in a product as an adjective, or
more generally as a modifier of a noun.

We now describe how each of the kernels in our grammar modifies a GP model:

• Multiplication by SE removes long range correlations from a model, since SE(x, x′)
decreases monotonically to 0 as |x − x′| increases. This converts any global corre-
lation structure into local correlation only.

• Multiplication by Lin is equivalent to multiplying the function being modeled
by a linear function. If f(x) ∼ GP(0, k), then x×f(x) ∼ GP (0, Lin×k). This
causes the standard deviation of the model to vary linearly, without affecting the
correlation between function values.

• Multiplication by σ is equivalent to multiplying the function being modeled by
a sigmoid, which means that the function goes to zero before or after some point.

• Multiplication by Per removes correlation between all pairs of function values
not close to one period apart, allowing variation within each period, but maintain-
ing correlation between periods.

• Multiplication by any kernel modifies the covariance in the same way as mul-
tiplying by a function drawn from a corresponding GP prior. This follows from
the fact that if f1(x) ∼ GP(0, k1) and f2(x) ∼ GP(0, k2) then

Cov
[
f1(x)f2(x), f1(x′)f2(x′)

]
= k1(x, x′)×k2(x, x′). (1.2)

Put more plainly, a GP whose covariance is a product of kernels has the same
covariance as a product of two functions, each drawn from the corresponding GP
prior. However, the distribution of f1×f2 is not always GP distributed – it can have
third and higher central moments as well. This identity can be used to generate
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a cumbersome “worst-case” description in cases where a more concise description
of the effect of a kernel is not available. For example, it is used in our system to
describe products of more than one periodic kernel.

Table 1.1 gives the corresponding description of the effect of each type of kernel in a
product, written as a post-modifier.

Kernel Postmodifier phrase
SE whose shape changes smoothly
Per modulated by a periodic function
Lin with linearly varying amplitude∏

k Lin(k) with polynomially varying amplitude∏
k σ(k) which applies until / from [changepoint]

Table 1.1: Descriptions of the effect of each kernel, written as a post-modifier.

Table 1.2 gives the corresponding description of each kernel before it has been mul-
tiplied by any other, written as a noun phrase.

Kernel Noun phrase
WN uncorrelated noise
C constant
SE smooth function
Per periodic function
Lin linear function∏

k Lin(k) {quadratic, cubic, quartic, . . . } function

Table 1.2: Noun phrase descriptions of each type of kernel.

1.1.3 Combining descriptions into noun phrases

In order to build a noun phrase describing a product of kernels, our system chooses one
kernel to act as the head noun, which is then modified by appending descriptions of the
other kernels in the product.

As an example, a kernel of the form Per×Lin×σ could be described as a

Per︸︷︷︸
periodic function

× Lin︸︷︷︸
with linearly varying amplitude

× σ︸︷︷︸
which applies until 1700.
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where Per was chosen to be the head noun.
In our system, the head noun is chosen according to the following ordering:

Per, WN, SE, C,
∏
m

Lin(m),
∏
n

σ(n) (1.3)

Combining tables 1.1 and 1.2 with ordering 1.3 provides a general method to produce
descriptions of sums and products of these base kernels.

Extensions and refinements

In practice, the system also incorporates a number of other rules which help to make
the descriptions shorter, easier to parse, or clearer:

• The system adds extra adjectives depending on kernel parameters. For example,
an SE with a relatively short lengthscale might be described as “a rapidly-varying
smooth function” as opposed to just “a smooth function”.

• Descriptions can include kernel parameters. For example, the system might write
that a function is “repeating with a period of 7 days”.

• Descriptions can include extra information about the model not contained in the
kernel. For example, based on the posterior distribution over the function’s slope,
the system might write “a linearly increasing function” as opposed to “a linear
function”.

• Some kernels can be described through pre-modifiers. For example, the system
might write “an approximately periodic function” as opposed to “a periodic func-
tion whose shape changes smoothly”.

Ordering additive components

The reports generated by our system attempt to present the most interesting or im-
portant features of a dataset first. As a heuristic, the system orders components by
always adding next the component which most reduces the 10-fold cross-validated mean
absolute error.
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1.1.4 Worked example

This section shows an example of our procedure describing a compound kernel containing
every type of base kernel in our set:

SE×(WN×Lin + CP(C, Per)). (1.4)

The kernel is first converted into a sum of products, and the changepoint is converted
into sigmoidal kernels (recall the definition of changepoint kernels in ??):

SE×WN×Lin + SE×C×σ + SE×Per×σ̄ (1.5)

which is then simplified using the rules in section 1.1.1 to

WN×Lin + SE×σ + SE×Per×σ̄. (1.6)

To describe the first component, (WN × Lin), the head noun description for WN,
“uncorrelated noise”, is concatenated with a modifier for Lin, “with linearly increasing
standard deviation”.

The second component, (SE×σ), is described as “A smooth function with a length-
scale of [lengthscale] [units]”, corresponding to the SE, “which applies until [change-
point]”.

Finally, the third component, (SE × Per × σ̄), is described as “An approximately
periodic function with a period of [period] [units] which applies from [changepoint]”.

1.2 Example descriptions

In this section, we demonstrate the ability of our procedure, ABCD, to write intelligible
descriptions of the structure present in two time series. The examples presented here
describe models produced by the automatic search method presented in section 1.5.

1.2.1 Summarizing 400 years of solar activity

First, we show excerpts from the report automatically generated on annual solar irradi-
ation data from 1610 to 2011. This dataset is shown in figure 1.1.

This time series has two pertinent features: First, a roughly 11-year cycle of solar
activity. Second, a period lasting from 1645 to 1715 having almost no variance. This flat
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1 Executive summary

The raw data and full model posterior with extrapolations are shown in figure 1.
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Figure 1: Raw data (left) and model posterior with extrapolation (right)

The structure search algorithm has identified eight additive components in the data. The first 4
additive components explain 92.3% of the variation in the data as shown by the coefficient of de-
termination (R2) values in table 1. The first 6 additive components explain 99.7% of the variation
in the data. After the first 5 components the cross validated mean absolute error (MAE) does not
decrease by more than 0.1%. This suggests that subsequent terms are modelling very short term
trends, uncorrelated noise or are artefacts of the model or search procedure. Short summaries of the
additive components are as follows:

• A constant.

• A constant. This function applies from 1643 until 1716.

• A smooth function. This function applies until 1643 and from 1716 onwards.

• An approximately periodic function with a period of 10.8 years. This function applies until
1643 and from 1716 onwards.

• A rapidly varying smooth function. This function applies until 1643 and from 1716 on-
wards.

• Uncorrelated noise with standard deviation increasing linearly away from 1837. This func-
tion applies until 1643 and from 1716 onwards.

• Uncorrelated noise with standard deviation increasing linearly away from 1952. This func-
tion applies until 1643 and from 1716 onwards.

• Uncorrelated noise. This function applies from 1643 until 1716.

# R2 (%) ∆R2 (%) Residual R2 (%) Cross validated MAE Reduction in MAE (%)
- - - - 1360.65 -
1 0.0 0.0 0.0 0.33 100.0
2 37.4 37.4 37.4 0.23 32.0
3 72.8 35.4 56.6 0.18 21.1
4 92.3 19.4 71.5 0.15 16.8
5 98.1 5.9 75.9 0.15 0.4
6 99.7 1.6 85.6 0.15 0.0
7 100.0 0.3 99.8 0.15 0.0
8 100.0 0.0 100.0 0.15 0.0

Table 1: Summary statistics for cumulative additive fits to the data. The residual coefficient of
determination (R2) values are computed using the residuals from the previous fit as the target values;
this measures how much of the residual variance is explained by each new component. The mean
absolute error (MAE) is calculated using 10 fold cross validation with a contiguous block design;
this measures the ability of the model to interpolate and extrapolate over moderate distances. The
model is fit using the full data and the MAE values are calculated using this model; this double use of
data means that the MAE values cannot be used reliably as an estimate of out-of-sample predictive
performance.

Figure 1.1: Solar irradiance data (Lean et al., 1995).

region is known as to the Maunder minimum, a period in which sunspots were extremely
rare (Lean et al., 1995). The Maunder minimum is an example of the type of structure
that can be captured by change-windows.

1 Executive summary

The raw data and full model posterior with extrapolations are shown in figure 1.
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Figure 1: Raw data (left) and model posterior with extrapolation (right)

The structure search algorithm has identified eight additive components in the data. The first 4
additive components explain 92.3% of the variation in the data as shown by the coefficient of de-
termination (R2) values in table 1. The first 6 additive components explain 99.7% of the variation
in the data. After the first 5 components the cross validated mean absolute error (MAE) does not
decrease by more than 0.1%. This suggests that subsequent terms are modelling very short term
trends, uncorrelated noise or are artefacts of the model or search procedure. Short summaries of the
additive components are as follows:

• A constant.

• A constant. This function applies from 1643 until 1716.

• A smooth function. This function applies until 1643 and from 1716 onwards.

• An approximately periodic function with a period of 10.8 years. This function applies until
1643 and from 1716 onwards.

• A rapidly varying smooth function. This function applies until 1643 and from 1716 on-
wards.

• Uncorrelated noise with standard deviation increasing linearly away from 1837. This func-
tion applies until 1643 and from 1716 onwards.

• Uncorrelated noise with standard deviation increasing linearly away from 1952. This func-
tion applies until 1643 and from 1716 onwards.

• Uncorrelated noise. This function applies from 1643 until 1716.

# R2 (%) ∆R2 (%) Residual R2 (%) Cross validated MAE Reduction in MAE (%)
- - - - 1360.65 -
1 0.0 0.0 0.0 0.33 100.0
2 37.4 37.4 37.4 0.23 32.0
3 72.8 35.4 56.6 0.18 21.1
4 92.3 19.4 71.5 0.15 16.8
5 98.1 5.9 75.9 0.15 0.4
6 99.7 1.6 85.6 0.15 0.0
7 100.0 0.3 99.8 0.15 0.0
8 100.0 0.0 100.0 0.15 0.0

Table 1: Summary statistics for cumulative additive fits to the data. The residual coefficient of
determination (R2) values are computed using the residuals from the previous fit as the target values;
this measures how much of the residual variance is explained by each new component. The mean
absolute error (MAE) is calculated using 10 fold cross validation with a contiguous block design;
this measures the ability of the model to interpolate and extrapolate over moderate distances. The
model is fit using the full data and the MAE values are calculated using this model; this double use of
data means that the MAE values cannot be used reliably as an estimate of out-of-sample predictive
performance.

Figure 1.2: Automatically generated descriptions of the first four components discovered
by ABCD on the solar irradiance data set. The dataset has been decomposed into diverse
structures having concise descriptions.

The first section of each report generated by ABCD is a summary of the structure
found in the dataset. Figure 1.2 shows natural-language summaries of the top four
components discovered by ABCD on the solar dataset. From these summaries, we can
see that the system has identified the Maunder minimum (second component) and the 11-
year solar cycle (fourth component). These components are visualized and described in
figures 1.3 and 1.5, respectively. The third component, visualized in figure 1.4, captures
the smooth variation over time of the overall level of solar activity.

The complete report generated on this dataset can be found in appendix ??. Each
report also contains samples from the model posterior.
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2.2 Component 2 : A constant. This function applies from 1643 until 1716

This component is constant. This component applies from 1643 until 1716.

This component explains 37.4% of the residual variance; this increases the total variance explained
from 0.0% to 37.4%. The addition of this component reduces the cross validated MAE by 31.97%
from 0.33 to 0.23.
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Figure 4: Pointwise posterior of component 2 (left) and the posterior of the cumulative sum of
components with data (right)

Residuals after component 2
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Figure 5: Pointwise posterior of residuals after adding component 2

2.2 Component 2 : A constant. This function applies from 1643 until 1716

This component is constant. This component applies from 1643 until 1716.

This component explains 37.4% of the residual variance; this increases the total variance explained
from 0.0% to 37.4%. The addition of this component reduces the cross validated MAE by 31.97%
from 0.33 to 0.23.

Posterior of component 2

1650 1700 1750 1800 1850 1900 1950 2000
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0
Sum of components up to component 2

1650 1700 1750 1800 1850 1900 1950 2000
1360

1360.5

1361

1361.5

1362

Figure 4: Pointwise posterior of component 2 (left) and the posterior of the cumulative sum of
components with data (right)

Residuals after component 2
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Figure 5: Pointwise posterior of residuals after adding component 2

Figure 1.3: Extract from an automatically-generated report describing the model com-
ponent corresponding to the Maunder minimum.2.3 Component 3 : A smooth function. This function applies until 1643 and from 1716

onwards

This component is a smooth function with a typical lengthscale of 23.1 years. This component
applies until 1643 and from 1716 onwards.

This component explains 56.6% of the residual variance; this increases the total variance explained
from 37.4% to 72.8%. The addition of this component reduces the cross validated MAE by 21.08%
from 0.23 to 0.18.
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Figure 6: Pointwise posterior of component 3 (left) and the posterior of the cumulative sum of
components with data (right)

Residuals after component 3
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Figure 7: Pointwise posterior of residuals after adding component 3

2.3 Component 3 : A smooth function. This function applies until 1643 and from 1716
onwards

This component is a smooth function with a typical lengthscale of 23.1 years. This component
applies until 1643 and from 1716 onwards.

This component explains 56.6% of the residual variance; this increases the total variance explained
from 37.4% to 72.8%. The addition of this component reduces the cross validated MAE by 21.08%
from 0.23 to 0.18.
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Figure 6: Pointwise posterior of component 3 (left) and the posterior of the cumulative sum of
components with data (right)

Residuals after component 3
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Figure 7: Pointwise posterior of residuals after adding component 3

Figure 1.4: Characterizing the medium-term smoothness of solar activity levels. By
allowing other components to explain the periodicity, noise, and the Maunder minimum,
ABCD can isolate the part of the signal best explained by a slowly-varying trend.2.4 Component 4 : An approximately periodic function with a period of 10.8 years. This

function applies until 1643 and from 1716 onwards

This component is approximately periodic with a period of 10.8 years. Across periods the shape of
this function varies smoothly with a typical lengthscale of 36.9 years. The shape of this function
within each period is very smooth and resembles a sinusoid. This component applies until 1643 and
from 1716 onwards.

This component explains 71.5% of the residual variance; this increases the total variance explained
from 72.8% to 92.3%. The addition of this component reduces the cross validated MAE by 16.82%
from 0.18 to 0.15.
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Figure 8: Pointwise posterior of component 4 (left) and the posterior of the cumulative sum of
components with data (right)
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Figure 9: Pointwise posterior of residuals after adding component 4

2.4 Component 4 : An approximately periodic function with a period of 10.8 years. This
function applies until 1643 and from 1716 onwards

This component is approximately periodic with a period of 10.8 years. Across periods the shape of
this function varies smoothly with a typical lengthscale of 36.9 years. The shape of this function
within each period is very smooth and resembles a sinusoid. This component applies until 1643 and
from 1716 onwards.

This component explains 71.5% of the residual variance; this increases the total variance explained
from 72.8% to 92.3%. The addition of this component reduces the cross validated MAE by 16.82%
from 0.18 to 0.15.

Posterior of component 4

1650 1700 1750 1800 1850 1900 1950 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Sum of components up to component 4

1650 1700 1750 1800 1850 1900 1950 2000
1360

1360.5

1361

1361.5

1362

Figure 8: Pointwise posterior of component 4 (left) and the posterior of the cumulative sum of
components with data (right)

Residuals after component 4
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Figure 9: Pointwise posterior of residuals after adding component 4

Figure 1.5: This part of the report isolates and describes the approximately 11-year
sunspot cycle, also noting its disappearance during the Maunder minimum.
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1.2.2 Describing changing noise levels

Next, we present excerpts of the description generated by our procedure on a model of
international airline passenger counts over time, shown in ??. High-level descriptions of
the four components discovered are shown in figure 1.6.

1 Executive summary

The raw data and full model posterior with extrapolations are shown in figure 1.
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Figure 1: Raw data (left) and model posterior with extrapolation (right)

The structure search algorithm has identified four additive components in the data. The first 2
additive components explain 98.5% of the variation in the data as shown by the coefficient of de-
termination (R2) values in table 1. The first 3 additive components explain 99.8% of the variation
in the data. After the first 3 components the cross validated mean absolute error (MAE) does not
decrease by more than 0.1%. This suggests that subsequent terms are modelling very short term
trends, uncorrelated noise or are artefacts of the model or search procedure. Short summaries of the
additive components are as follows:

• A linearly increasing function.
• An approximately periodic function with a period of 1.0 years and with linearly increasing

amplitude.
• A smooth function.
• Uncorrelated noise with linearly increasing standard deviation.

# R2 (%) ∆R2 (%) Residual R2 (%) Cross validated MAE Reduction in MAE (%)
- - - - 280.30 -
1 85.4 85.4 85.4 34.03 87.9
2 98.5 13.2 89.9 12.44 63.4
3 99.8 1.3 85.1 9.10 26.8
4 100.0 0.2 100.0 9.10 0.0

Table 1: Summary statistics for cumulative additive fits to the data. The residual coefficient of
determination (R2) values are computed using the residuals from the previous fit as the target values;
this measures how much of the residual variance is explained by each new component. The mean
absolute error (MAE) is calculated using 10 fold cross validation with a contiguous block design;
this measures the ability of the model to interpolate and extrapolate over moderate distances. The
model is fit using the full data and the MAE values are calculated using this model; this double use of
data means that the MAE values cannot be used reliably as an estimate of out-of-sample predictive
performance.

Model checking statistics are summarised in table 2 in section 4. These statistics have not revealed
any inconsistencies between the model and observed data.

The rest of the document is structured as follows. In section 2 the forms of the additive components
are described and their posterior distributions are displayed. In section 3 the modelling assumptions
of each component are discussed with reference to how this affects the extrapolations made by the
model. Section 4 discusses model checking statistics, with plots showing the form of any detected
discrepancies between the model and observed data.

Figure 1.6: Short descriptions of the four components of a model describing the airline
dataset.

2.2 Component 2 : An approximately periodic function with a period of 1.0 years and with
linearly increasing amplitude

This component is approximately periodic with a period of 1.0 years and varying amplitude. Across
periods the shape of this function varies very smoothly. The amplitude of the function increases
linearly. The shape of this function within each period has a typical lengthscale of 6.0 weeks.

This component explains 89.9% of the residual variance; this increases the total variance explained
from 85.4% to 98.5%. The addition of this component reduces the cross validated MAE by 63.45%
from 34.03 to 12.44.
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Figure 4: Pointwise posterior of component 2 (left) and the posterior of the cumulative sum of
components with data (right)

Residuals after component 2
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linearly increasing amplitude

This component is approximately periodic with a period of 1.0 years and varying amplitude. Across
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Figure 4: Pointwise posterior of component 2 (left) and the posterior of the cumulative sum of
components with data (right)

Residuals after component 2
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Figure 1.7: Describing non-stationary periodicity in the airline data.

The second component, shown in figure 1.7, is accurately described as approximately
(SE) periodic (Per) with linearly growing amplitude (Lin).

The description of the fourth component, shown in figure 1.8, expresses the fact that
the scale of the unstructured noise in the model grows linearly with time.

The complete report generated on this dataset can be found in the supplementary
material of Lloyd et al. (2014). Other example reports describing a wide variety of
time-series can be found at http://mlg.eng.cam.ac.uk/lloyd/abcdoutput/

http://mlg.eng.cam.ac.uk/lloyd/abcdoutput/
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2.4 Component 4 : Uncorrelated noise with linearly increasing standard deviation

This component models uncorrelated noise. The standard deviation of the noise increases linearly.

This component explains 100.0% of the residual variance; this increases the total variance explained
from 99.8% to 100.0%. The addition of this component reduces the cross validated MAE by 0.00%
from 9.10 to 9.10. This component explains residual variance but does not improve MAE which
suggests that this component describes very short term patterns, uncorrelated noise or is an artefact
of the model or search procedure.
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Figure 8: Pointwise posterior of component 4 (left) and the posterior of the cumulative sum of
components with data (right)

2.4 Component 4 : Uncorrelated noise with linearly increasing standard deviation

This component models uncorrelated noise. The standard deviation of the noise increases linearly.

This component explains 100.0% of the residual variance; this increases the total variance explained
from 99.8% to 100.0%. The addition of this component reduces the cross validated MAE by 0.00%
from 9.10 to 9.10. This component explains residual variance but does not improve MAE which
suggests that this component describes very short term patterns, uncorrelated noise or is an artefact
of the model or search procedure.
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Figure 8: Pointwise posterior of component 4 (left) and the posterior of the cumulative sum of
components with data (right)

Figure 1.8: Describing time-changing variance in the airline dataset.

1.3 Related work

To the best of our knowledge, our procedure is the first example of automatic textual
description of a nonparametric statistical model. However, systems with natural lan-
guage output have been developed for automatic video description (Barbu et al., 2012)
and automated theorem proving (Ganesalingam and Gowers, 2013).

Although not a description procedure, Durrande et al. (2013) developed an analytic
method for decomposing GP posteriors into entirely periodic and entirely non-periodic
parts, even when using non-periodic kernels.

1.4 Limitations of this approach

During development, we noted several difficulties with this overall approach:

• Some kernels are hard to describe. For instance, we did not include the RQ
kernel in the text-generation procedure. This was done for several reasons. First,
the RQ kernel can be equivalently expressed as a scale mixture of SE kernels,
making it redundant in principle. Second, it was difficult to think of a clear and
concise description for effect of the hyperparameter that controls the heaviness
of the tails of the RQ kernel. Third, a product of two RQ kernels does not give
another RQ kernel, which raises the question of how to concisely describe products
of RQ kernels.

• Reliance on additivity. Much of the modularity of the description procedure is
due to the additive decomposition. However, additivity is lost under any nonlinear
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transformation of the output. Such warpings can be learned (Snelson et al., 2004),
but descriptions of transformations of the data may not be as clear to the end user.

• Difficulty of expressing uncertainty. A natural extension to the model search
procedure would be to report a posterior distribution on structures and kernel
parameters, rather than point estimates. Describing uncertainty about the hyper-
parameters of a particular structure may be feasible, but describing even a few
most-probable structures might result in excessively long reports.

Source code

Source code to perform all experiments is available at
http://www.github.com/jamesrobertlloyd/gpss-research.

1.5 Conclusions

This chapter presented a system which automatically generates detailed reports describ-
ing statistical structure captured by a GP model. The properties of GPs and the kernels
being used allow a modular description, avoiding an exponential blowup in the number
of special cases that need to be considered.

Combining this procedure with the model search of section 1.5 gives a system com-
bining all the elements of an automatic statistician listed in ??: an open-ended language
of models, a method to search through model space, a model comparison procedure, and
a model description procedure. Each particular element used in the system presented
here is merely a proof-of-concept. However, even this simple prototype demonstrated
the ability to discover and describe a variety of patterns in time series.

http://www.github.com/jamesrobertlloyd/gpss-research
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