Chapter 1
Automatic Model Construction

“It would be very nice to have a formal apparatus that gives us some
‘optimal” way of recognizing unusual phenomena and inventing new classes
of hypotheses that are most likely to contain the true one; but this remains

an art for the creative human mind.”
— E. T. Jaynes (1985)

In section 1.9, we saw that the choice of kernel determines the type of structure that
can be learned by a GP model, and that a wide variety of models could be constructed
by adding and multiplying a few base kernels together. However, we did not answer the
difficult question of which kernel to use for a given problem. Even for experts, choosing
the kernel in GP regression remains something of a black art.

The contribution of this chapter is to show a way to automate the process of building
kernels for GP models. We do this by defining an open-ended space of kernels built by
adding and multiplying together kernels from a fixed set. We then define a procedure
to search over this space to find a kernel which matches the structure in the data.

Searching over such a large, structured model class has two main benefits. First,
this procedure has good predictive accuracy, since it tries out a large number of different
regression models. Second, this procedure can sometimes discover interpretable structure
in datasets. Because GP posteriors can be decomposed (as in ??), the resulting structures
can be examined visually. In section 1.9, we also show how to automatically generate
English-language descriptions of the resulting models.

This chapter is based on work done in collaboration with James Robert Lloyd, Roger
Grosse, Joshua B. Tenenbaum, and Zoubin Ghahramani. It was published in Duvenaud
et al. (2013) and Lloyd et al. (2014). Myself, James Lloyd and Roger Grosse jointly de-

veloped the idea of searching through a grammar-based language of GP models, inspired
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by Grosse et al. (2012), and wrote the first versions of the code together. James Lloyd

ran most of the experiments, and I constructed most of the figures.

1.1 Ingredients of an automatic statistician

Gelman (2013) asks: “How can an artificial intelligence do statistics? ...It needs not
just an inference engine, but also a way to construct new models and a way to check
models. Currently, those steps are performed by humans, but the Al would have to do
it itself”. This section will discuss the different parts we think are required to build an

artificial intelligence that can do statistics.

1. An open-ended language of models. Many learning algorithms consider all
models in a class of fixed size. For example, graphical model learning algorithms
(Eaton and Murphy, 2007; Friedman and Koller, 2003) search over different con-
nectivity graphs for a given set of nodes. Such methods can be powerful, but
human statisticians are sometimes capable of deriving novel model classes when
required. An automatic search through an open-ended class of models can achieve

some of this flexibility, possibly combining existing structures in novel ways.

2. A search through model space. Every procedure which eventually considers
arbitrarily-complex models must start with relatively simple models before moving
on to more complex ones. Thus any search strategy capable of building arbitrarily
complex models is likely to resemble an iterative model-building procedure. Just
as human researchers iteratively refine their models, search procedures can propose

new candidate models based on the results of previous model fits.

3. A model comparison procedure. Search strategies requires an objective to
optimize. In this work, we use approximate marginal likelihood to compare models,
penalizing complexity using the Bayesian Information Criterion as a heuristic.
More generally, an automatic statistician needs to somehow check the models it has

constructed. Gelman and Shalizi (2012) review the literature on model checking.

4. A model description procedure. Part of the value of statistical models comes
from helping humans to understand a dataset or a phenomenon. Furthermore,
a clear description of the statistical structure found in a dataset helps a user to

notice when the dataset has errors, the wrong question was asked, the model-
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building procedure failed to capture known structure, a relevant piece of data or

constraint is missing, or when a novel statistical structure has been found.

In this chapter, we introduce a system containing simple examples of all the above
ingredients. We call this system the automatic Bayesian covariance discovery (ABCD)
system. The next four sections of this chapter describe the mechanisms we use to
incorporate these four ingredients into a limited example of an artificial intelligence

which does statistics.

1.2 A language of regression models

As shown in section 1.9, one can construct a wide variety of kernel structures by adding
and multiplying a small number of base kernels. We can therefore define a language of

GP regression models simply by specifying a language of kernels.

Kernel name: | Rational quadratic (RQ) Cosine (cos) White noise (Lin)

k(x,2") = UJ% 1 + (x2a§2)2 - o7 COS 27T(x x) 036(x — ')

Plot of kernel: M V\/\/\/\/\
x — :1: x — x
7
Functions f(x) m :!:: : ” :!’ !I
sampled from ~\-"\,
GP prior: ’\/\'\

x
Type of structure: multiscale variation sinusoidal uncorrelated noise

Figure 1.1: New base kernels introduced in this chapter, and the types of structure
they encode. Other types of kernels can be constructed by adding and multiplying base
kernels together.

Our language of models is specified by a set of base kernels which capture different
properties of functions, and a set of rules which combine kernels to yield other valid

kernels. In this chapter, we will use such base kernels as white noise (WN), constant
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(C), linear (Lin), squared-exponential (SE), rational-quadratic (RQ), sigmoidal (o) and
periodic (Per). We use a form of Per due to James Lloyd (personal communication)
which has its constant component removed, and cos(x — z’) as a special case. Figure 1.1
shows the new kernels introduced in this chapter. For precise definitions of all kernels,
see appendix 77.

To specify an open-ended language of structured kernels, we consider the set of all
kernels that can be built by adding and multiplying these base kernels together, which

we write in shorthand by:

]{?1 + k’Q = kl(X, X,) + kQ(X,X,) (11)
]{?1 X kQ = k’l(X, X/) X kQ(X,X/) (12)

The space of kernels constructable by adding and multiplying the above set of kernels
contains many existing regression models. Table 1.1 lists some of these, which are

discussed in more detail in section 1.7.

Regression model ‘ Kernel structure ‘ Example of related work
Linear regression C + Lin + WN

Polynomial regression C + [[Lin + WN

Semi-parametric Lin + SE + WN Ruppert et al. (2003)
Multiple kernel learning | >~ SE + WN Gonen and Alpaydm (2011)

Fourier decomposition C + > cos + WN
Trend, cyclical, irregular | > SE + > Per + WN | Lind et al. (2006)

Sparse spectrum GPs Y. cos + WN Lazaro-Gredilla et al. (2010)
Spectral mixture > SExcos + WN Wilson and Adams (2013)
Changepoints e.g. CP(SE,SE) + WN | Garnett et al. (2010)
Time-changing variance | e.g. SE + Linx WN

Interpretable + flexible | >°;SEs + [I;SEq Plate (1999)

Additive GPs e.g. [14(1 + SEq) Section 1.9

Table 1.1: Existing regression models expressible by sums and products of base kernels.
cos(+, ) is a special case of our reparametrized Per(-,-).

1.3 A model search procedure

We explore this open-ended space of regression models using a simple greedy search. At

each stage, we choose the highest scoring kernel, and propose modifying it by applying
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| No structure |

SE + RQ Per + RQ Per x RQ)
SE + Per + RQ SE x (Per + RQ)

Figure 1.2: An example of a search tree over kernel expressions. Figure 1.3 shows the
corresponding model increasing in sophistication as the kernel expression grows.

an operation to one of its parts, that combines or replaces that part with another base

kernel. The basic operations we can perform on any part k£ of a kernel are:

Replacement: k& — k'
Addition: k& — (k+Fk)
Multiplication: k& — (k x k')
where k' is a new base kernel. These operators can generate all possible algebraic
expressions involving addition and multiplication of base kernels. To see this, observe
that if we restricted the addition and multiplication rules to only apply to base kernels,
we would obtain a grammar which generates the set of algebraic expressions.

Figure 1.2 shows an example search tree followed by our algorithm. Figure 1.3 shows
how the resulting model changes as the search is followed. In practice, we also include
extra operators which propose commonly-occurring structures, such as changepoints. A
complete list is contained in appendix ?77.

Our search operators have rough parallels with strategies used by human researchers

to construct regression models. In particular,

e One can look for structure in the residuals of a model, such as periodicity, and
then extend the model to capture that structure. This corresponds to adding a

new kernel to the existing structure.
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Level 1: Level 2: Level 3:
RQ Per + RQ SE x (Per + RQ)
60 40 : 50 ‘
40 | 30 | 40 }
\
20 /\M\ 20 } 30 \
\
0 \ 10 } 20 }
—20 0 l 10
2000 2005 2010 2000 2005 2010 2000 2005 2010

Figure 1.3: Posterior mean and variance for different depths of kernel search on the
Mauna Loa dataset, described in section 1.6.1. The dashed line marks the end of the
dataset. Left: First, the function is only modeled as a locally smooth function, and the
extrapolation is poor. Middle: A periodic component is added, and the extrapolation
improves. Right: At depth 3, the kernel can capture most of the relevant structure, and
is able to extrapolate reasonably.

e One can start with structure which is assumed to hold globally, such as linear-
ity, but find that it only holds locally. This corresponds to multiplying a kernel

structure by a local kernel such as SE.

« One can incorporate input dimensions incrementally, analogous to algorithms like
boosting, back-fitting, or forward selection. This corresponds to adding or multi-

plying with kernels on dimensions not yet included in the model.

Hyperparameter initialization

Unfortunately, optimizing the marginal likelihood over parameters is not a convex op-
timization problem, and the space can have many local optima. For example, in data
having periodic structure, integer multiples of the true period (harmonics) are often local
optima. We take advantage of our search procedure to provide reasonable initializations:
all parameters which were part of the previous kernel are initialized to their previous
values. Newly introduced parameters are initialized randomly. In the newly proposed
kernel, all parameters are then optimized using conjugate gradients. This procedure
is not guaranteed to find the global optimum, but it implements the commonly used

heuristic of iteratively modeling residuals.
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1.4 A model comparison procedure

Choosing a kernel requires a method for comparing models. We choose marginal likeli-
hood as our criterion, since it balances the fit and complexity of a model (Rasmussen
and Ghahramani, 2001). Conditioned on kernel parameters, the marginal likelihood of a
GP can be computed analytically by ?7. In addition, if one compares GP models by the
maximum likelihood value obtained after optimizing their kernel parameters, then all
else being equal, the model having more free parameters will be chosen. This introduces
a bias in favor of more complex models.

We could avoid overfitting by integrating the marginal likelihood over all free param-
eters, but this integral is difficult to do in general. Instead, we loosely approximate this

integral using the Bayesian information criterion (BIC) (Schwarz, 1978):
1
BIC(M) :logp(D|M)—§|M|logN (1.3)

where p(D|M) is the marginal likelihood of the data evaluated at the optimized kernel
parameters, | M| is the number of kernel parameters, and NN is the number of data points.
BIC simply penalizes the marginal likelihood in proportion to how many parameters the
model has. Because BIC is a function of the number of parameters in a model, we did
not count kernel parameters known to not affect the model. For example, when two
kernels are multiplied, one of their output variance parameters becomes redundant, and
can be ignored.

The assumptions made by BIC are clearly inappropriate for the model class being
considered. For instance, BIC assumes that the data are i.i.d. given the model param-
eters, which is not true except under a white noise kernel. Other more sophisticated
approximations are possible, such as Laplace’s approximation. We chose to try BIC first

because of its simplicity, and it performed reasonably well in our experiments.

1.5 A model description procedure

As discussed in section 1.9, a GP whose kernel is a sum of kernels can be viewed as a
sum of functions drawn from different GPs. We can always express any kernel structure

as a sum of products of kernels by distributing all products of sums. For example,

SEx(RQ + Lin) = SExXRQ + SExLin. (1.4)
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When all kernels in a product apply to the same dimension, we can use the formulas in ?7?
to visualize the marginal posterior distribution of that component. This decomposition
into additive components provides a method of visualizing GP models which disentangles
the different types of structure in the model.

The following section shows examples of such decomposition plots. In section 1.9, we
will extend this model visualization method to include automatically generated English

text explaining types of structure discovered.

1.6 Structure discovery in time series

To investigate our method’s ability to discover structure, we ran the kernel search on
several time-series. In the following example, the search was run to depth 10, using SE,
RQ, Lin, Per and WN as base kernels.

1.6.1 Mauna Loa atmospheric CO»

First, our method analyzed records of carbon dioxide levels recorded at the Mauna Loa
observatory (Tans and Keeling, accessed January 2012). Since this dataset was analyzed
in detail by Rasmussen and Williams (2006, chapter 5), we can compare the kernel chosen
by our method to a kernel constructed by human experts.

Figure 1.3 shows the posterior mean and variance on this dataset as the search depth
increases. While the data can be smoothly interpolated by a model with only a single
base kernel, the extrapolations improve dramatically as the increased search depth allows
more structure to be included.

Figure 1.4 shows the final model chosen by our method together with its decompo-
sition into additive components. The final model exhibits plausible extrapolation and
interpretable components: a long-term trend, annual periodicity, and medium-term de-
viations. These components have similar structure to the kernel hand-constructed by
Rasmussen and Williams (2006, chapter 5):

SE +  SExPer + 59/ + SE -+ WN (1.5

long-term trend yearly periodic medium-term irregularities short-term noise

We also plot the residuals modeled by a white noise (WN) component, showing that
there is little obvious structure left in the data. More generally, some components capture

slowly-changing structure while others capture quickly-varying structure, but often there
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Complete model: LinxSE + SEx (Per + RQ) + WN
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Figure 1.4: First row: The full posterior on the Mauna Loa dataset, after a search of
depth 10. Subsequent rows: The automatic decomposition of the time series. The model
is a sum of long-term, yearly periodic, medium-term components, and residual noise,
respectively. The yearly periodic component has been rescaled for clarity.

is no hard distinction between “signal” components and “noise” components.

1.6.2 Airline passenger counts

Figure 1.5 shows the decomposition produced by applying our method to monthly totals
of international airline passengers (Box et al., 1970). We observe similar components to
those in the Mauna Loa dataset: a long term trend, annual periodicity, and medium-
term deviations. In addition, the composite kernel captures the near-linearity of the

long-term trend, and the linearly growing amplitude of the annual oscillations.
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Complete Model: SE xLin 4+ PerxLin XxSE + LinxSE 4+ WN X Lin
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Figure 1.5: First row: The airline dataset and posterior after a search of depth 10.
Subsequent rows: Additive decomposition of posterior into long-term smooth trend,
yearly variation, and short-term deviations. Due to the linear kernel, the marginal
variance grows over time, making this a heteroskedastic model.

The model search can be run without modification on multi-dimensional datasets (as

in section 1.8.4 and ?7?), but the resulting structures are more difficult to visualize.

1.7 Related work

Building kernel functions by hand

Rasmussen and Williams (2006, chapter 5) devoted 4 pages to manually constructing
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a composite kernel to model the Mauna Loa dataset. Other examples of papers whose
main contribution is to manually construct and fit a composite GP kernel are Preotiuc-
Pietro and Cohn (2013), Lloyd (2013), and Klenske et al. (2013). These papers show
that experts are capable of constructing kernels, in one or two dimensions, of similar
complexity to the ones shown in this chapter. However, a more systematic search can
consider possibilities that might otherwise be missed. For example, the kernel structure
SE x Per x Lin, while appropriate for the airline dataset, had never been considered by

the authors before it was chosen by the automatic search.

Nonparametric regression in high dimensions

Nonparametric regression methods such as splines, locally-weighted regression, and GP
regression are capable of learning arbitrary smooth functions from data. Unfortunately,
they suffer from the curse of dimensionality: it is sometimes difficult for these models
to generalize well in more than a few dimensions.

Applying nonparametric methods in high-dimensional spaces can require imposing
additional structure on the model. One such structure is additivity. Generalized additive
models (Hastie and Tibshirani, 1990) assume the regression function is a transformed
sum of functions defined on the individual dimensions: E[f(x)] = ¢ (X1, fa(xa)).
These models have a restricted form, but one which is interpretable and often generalizes
well. Models in our grammar can capture similar structure through sums of base kernels
along different dimensions, although we have not yet tried incorporating a warping
function g(-).

It is possible to extend additive models by adding more flexible interaction terms
between dimensions. Section 1.9 considers GP models whose kernel implicitly sums over
all possible interactions of input variables. Plate (1999) constructs a special case of this
model class, summing an SE kernel along each dimension (for interpretability) plus a
single SE-ARD kernel over all dimensions (for flexibility). Both types of model can be
expressed in our grammar.

A closely related procedure is smoothing-splines ANOVA (Gu, 2002; Wahba, 1990).
This model is a weighted sum of splines along each input dimension, all pairs of dimen-
sions, and possibly higher-dimensional combinations. Because the number of terms to
consider grows exponentially with the number of dimensions included in each term, in
practice, only one- and two-dimensional terms are usually considered.

Semi-parametric regression (e.g. Ruppert et al., 2003) attempts to combine inter-

pretability with flexibility by building a composite model out of an interpretable, para-
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metric part (such as linear regression) and a “catch-all” nonparametric part (such as a
GP having an SE kernel). This model class can be represented through kernels such as
SE + Lin.

Kernel learning

There is a large body of work attempting to construct rich kernels through a weighted
sum of base kernels, called multiple kernel learning (MKL) (e.g. Bach et al., 2004; Génen
and Alpaydin, 2011). These approaches usually have a convex objective function. How-
ever the component kernels, as well as their parameters, must be specified in advance.
We compare to a Bayesian variant of MKL in section 1.8, expressed as a restriction of

our language of kernels.

Salakhutdinov and Hinton (2008) use a deep neural network with unsupervised pre-
training to learn an embedding ¢g(x) onto which a GP with an SE kernel is placed:
Cov [f(x), f(x')] = k(g(x),g(x’)). This is a flexible approach to kernel learning, but
relies mainly on finding structure in the input density p(x). Instead, we focus on domains

where most of the interesting structure is in f(x).

Sparse spectrum GPs (Lazaro-Gredilla et al., 2010) approximate the spectral density
of a stationary kernel function using sums of Dirac delta functions, which corresponds
to kernels of the form Y cos. Similarly, Wilson and Adams (2013) introduced spectral
mixture kernels, which approximate the spectral density using a mixture of Gaussians,
corresponding to kernels of the form ) SE x cos. Both groups demonstrated, using
Bochner’s theorem (Bochner, 1959), that these kernels can approximate any stationary
covariance function. Our language of kernels includes both of these kernel classes (see
table 1.1).

Changepoints

There is a wide body of work on changepoint modeling. Adams and MacKay (2007)
developed a Bayesian online changepoint detection method which segments time-series
into independent parts. This approach was extended by Saatci et al. (2010) to Gaus-
sian process models. Garnett et al. (2010) developed a family of kernels which modeled
changepoints occurring abruptly at a single point. The changepoint kernel (CP) pre-

sented in this work is a straightforward extension to smooth changepoints.
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Equation learning

Todorovski and Dzeroski (1997), Washio et al. (1999) and Schmidt and Lipson (2009)
learned parametric forms of functions, specifying time series or relations between quan-
tities. In contrast, ABCD learns a parametric form for the covariance function, allowing
it to model functions which do not have a simple parametric form but still have high-
level structure. An examination of the structure discovered by the automatic equation-
learning software Eureqa (Schmidt and Lipson, accessed February 2013) on the airline
and Mauna Loa datasets can be found in Lloyd et al. (2014).

Structure discovery through grammars

Kemp and Tenenbaum (2008) learned the structural form of graphs that modeled human
similarity judgements. Their grammar on graph structures includes planes, trees, and
cylinders. Some of their discrete graph structures have continuous analogues in our
language of models. For example, SE; x SE; and SE; X Pery can be seen as mapping the
data onto a Euclidean surface and a cylinder, respectively. 7?7 examined these structures
in more detail.

Diosan et al. (2007) and Bing et al. (2010) learned composite kernels for support
vector machines and relevance vector machines, respectively, using genetic search algo-
rithms to optimize cross-validation error. Similarly, Kronberger and Kommenda (2013)
searched over composite kernels for GPs using genetic programming, optimizing the un-
penalized marginal likelihood. These methods explore similar languages of kernels to
the one explored in this chapter. It is not clear whether the complex genetic searches
used by these methods offer advantages over the straightforward but naive greedy search
used in this chapter. Our search criterion has the advantages of being both differentiable
with respect to kernel parameters, and of trading off model fit and complexity automat-
ically. These related works also did not explore the automatic model decomposition,
summarization and description made possible by the use of GP models.

Grosse et al. (2012) performed a greedy search over a compositional model class for
unsupervised learning, using a grammar of matrix decomposition models, and a greedy
search procedure based on held-out predictive likelihood. This model class contains
many existing unsupervised models as special cases, and was able to discover diverse
forms of structure, such as co-clustering or sparse latent feature models, automatically
from data. Our framework takes a similar approach, but in a supervised setting.

Similarly, Steinruecken (2014) showed to automatically perform inference in arbitrary



14 Automatic Model Construction

compositions of discrete sequence models. More generally, Dechter et al. (2013) and
Liang et al. (2010) constructed grammars over programs, and automatically searched

the resulting spaces.

1.8 Experiments

1.8.1 Interpretability versus accuracy

BIC trades off model fit and complexity by penalizing the number of parameters in a
kernel expression. This can result in ABCD favoring kernel expressions with nested
products of sums, producing descriptions involving many additive components after
expanding out all terms. While these models typically have good predictive performance,
their large number of components can make them less interpretable. We experimented
with not allowing parentheses during the search, discouraging nested expressions. This
was done by distributing all products immediately after each search operator was applied.
We call this procedure ABCD-interpretability, in contrast to the unrestricted version of

the search, ABCD-accuracy.

1.8.2 Predictive accuracy on time series

We evaluated the performance of the algorithms listed below on 13 real time-series from
various domains from the time series data library (Hyndman, accessed July 2013). The
pre-processed datasets used in our experiments are available at

http://github.com/jamesrobertlloyd/gpss-research/tree/master/data/tsdlr

Algorithms

We compare ABCD to equation learning using Eureqa (Schmidt and Lipson, accessed
February 2013), as well as six other regression algorithms: linear regression, GP regres-
sion with a single SE kernel (squared exponential), a Bayesian variant of multiple kernel
learning (MKL) (e.g. Bach et al., 2004; Génen and Alpaydin, 2011), changepoint model-
ing (e.g. Fox and Dunson, 2013; Garnett et al., 2010; Saatci et al., 2010), spectral mixture
kernels (Wilson and Adams, 2013) (spectral kernels), and trend-cyclical-irregular models
(e.g. Lind et al., 2006).

We set Eureqa’s search objective to the default mean-absolute-error. All algorithms

besides Eureqa can be expressed as restrictions of our modeling language (see table 1.1),
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so we performed inference using the same search and objective function, with appropriate
restrictions to the language.

We restricted our experiments to regression algorithms for comparability; we did not
include models which regress on previous values of times series, such as auto-regressive or
moving-average models (e.g. Box et al., 1970). Constructing a language of autoregressive

time-series models would be an interesting area for future research.

Extrapolation experiments

To test extrapolation, we trained all algorithms on the first 90% of the data, predicted
the remaining 10% and then computed the root mean squared error (RMSE). The
RMSEs were then standardised by dividing by the smallest RMSE for each data set, so

the best performance on each data set has a value of 1.
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Figure 1.6: Box plot (showing median and quartiles) of standardised extrapolation RMSE
(best performance = 1) on 13 time-series. Methods are ordered by median.

Figure 1.6 shows the standardised RMSEs across algorithms. ABCD-accuracy usually
outperformed ABCD-interpretability. Both algorithms had lower quartiles than all other
methods.

Overall, the model construction methods having richer languages of models per-
formed better: ABCD outperformed trend-cyclical-irregular, which outperformed Bayesian
MKL, which outperformed squared-exponential. Despite searching over a rich model
class, Eureqa performed relatively poorly. This may be because few datasets are parsi-
moniously explained by a parametric equation, or because of the limited regularization

ability of this procedure.
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Not shown on the plot are large outliers for spectral kernels, Eureqa, squared expo-

nential and linear regression with normalized RMSEs of 11, 493, 22 and 29 respectively.

1.8.3 Multi-dimensional prediction

ABCD can be applied to multidimensional regression problems without modification.
An experimental comparison with other methods can be found in ??, where it has the

best performance on every dataset.

1.8.4 Structure recovery on synthetic data

The structure found in the examples above may seem reasonable, but we may wonder to
what extent ABCD is consistent — that is, does it recover all the structure in any given
dataset? It is difficult to tell from predictive accuracy alone if the search procedure is
finding the correct structure, especially in multiple dimensions. To address this question,
we tested our method’s ability to recover known structure on a set of synthetic datasets.

For several composite kernel expressions, we constructed synthetic data by first sam-
pling 300 locations uniformly at random, then sampling function values at those loca-
tions from a GP prior. We then added i.i.d. Gaussian noise to the functions at various

signal-to-noise ratios (SNR).

Table 1.2: Kernels chosen by ABCD on synthetic data generated using known kernel
structures. D denotes the dimension of the function being modeled. SNR indicates the
signal-to-noise ratio. Dashes (—) indicate no structure was found. Each kernel implicitly
has a WN kernel added to it.

True kernel D SNR = 10 SNR=1 SNR =0.1

SE + RQ 1 SE SE x Per SE

Lin X Per 1 Lin x Per Lin x Per SE

SE; + RQs 2 SE; + SE» Lin; 4+ SEo Ling

SE; + SEo xPer; + SEj3 3 SE; + SEs xPer; + SEj3 SEs X Per; + SEg3 —

SE1 XSE» 4 SE{ X SE» Liny X SE» Ling

SE1 xSEo 4+ SEg xSEj 4 SE1 xXSE9 + SE9 X SEg SE1 + SE9 X SEg SEq

(SE; + SE»)x (SE3 + SE4) 4 (SE1 + SEg2)x ... (SE1 + SEg2)x ...
(SE3 x Ling x Lin; + SE4) SE3 x SE4

Table 1.2 shows the results. For the highest signal-to-noise ratio, ABCD usually
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recoveres the correct structure. The reported additional linear structure in the last row
can be explained the fact that functions sampled from SE kernels with long length-scales
occasionally have near-linear trends. As the noise increases, our method generally backs

off to simpler structures rather than reporting spurious structure.

Source code

All GP parameter optimization was performed by automated calls to the GPML tool-
box (Rasmussen and Nickisch, 2010). Source code to perform all experiments is available

at http://www.github.com/jamesrobertlloyd/gp-structure-search.

1.9 Conclusion

This chapter presented a system which constructs a model from an open-ended language,
and automatically generates plots decomposing the different types of structure present
in the model.

This was done by introducing a space of kernels defined by sums and products of a
small number of base kernels. The set of models in this space includes many standard
regression models. We proposed a search procedure for this space of kernels, and argued
that this search process parallels the process of model-building by statisticians.

We found that the learned structures enable relatively accurate extrapolation in
time-series datasets. The learned kernels can yield decompositions of a signal into di-
verse and interpretable components, enabling model-checking by humans. We hope that
this procedure has the potential to make powerful statistical model-building techniques
accessible to non-experts.

Some discussion of the limitations of this approach to model-building can be found
in 77, and discussion of this approach relative to other model-building approaches can
be found in ??7. The next chapter will show how the model components found by ABCD

can be automatically described using English-language text.


http://www.github.com/jamesrobertlloyd/gp-structure-search
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