Chapter 1
Expressing Structure with Kernels

This chapter shows how to use kernels to build models of functions with many different
kinds of structure: additivity, symmetry, periodicity, interactions between variables,
and changepoints. We also show several ways to encode group invariants into kernels.
Combining a few simple kernels through addition and multiplication will give us a rich,
open-ended language of models.

The properties of kernels discussed in this chapter are mostly known in the literature.
The original contribution of this chapter is to gather them into a coherent whole and
to offer a tutorial showing the implications of different kernel choices, and some of the

structures which can be obtained by combining them.

1.1 Definition

A kernel (also called a covariance function, kernel function, or covariance kernel), is
a positive-definite function of two inputs x,x’. In this chapter, x and x’ are usually
vectors in a Euclidean space, but kernels can also be defined on graphs, images, discrete
or categorical inputs, or even text.

Gaussian process models use a kernel to define the prior covariance between any two

function values:

Cov [f(x), f(x)] = k(x,x') (1.1)

Colloquially, kernels are often said to specify the similarity between two objects. This is
slightly misleading in this context, since what is actually being specified is the similarity

between two values of a function evaluated on each object. The kernel specifies which
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functions are likely under the GP prior, which in turn determines the generalization

properties of the model.

1.2 A few basic kernels

To begin understanding the types of structures expressible by GPs, we will start by
briefly examining the priors on functions encoded by some commonly used kernels: the
squared-exponential (SE), periodic (Per), and linear (Lin) kernels. These kernels are
defined in figure 1.1.

Kernel name: | Squared-exp (SE) Periodic (Per) Linear (Lin)
k(z,2") = | ofexp (— (m;g)Q) oFexp (_z% sin? (W%)) oz —c)(z' =)
Plot of k(z,'): 0
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Figure 1.1: Examples of structures expressible by some basic kernels.

Each covariance function corresponds to a different set of assumptions made about
the function we wish to model. For example, using a squared-exp (SE) kernel implies that
the function we are modeling has infinitely many derivatives. There exist many variants
of “local” kernels similar to the SE kernel, each encoding slightly different assumptions

about the smoothness of the function being modeled.

Kernel parameters FEach kernel has a number of parameters which specify the precise
shape of the covariance function. These are sometimes referred to as hyper-parameters,
since they can be viewed as specifying a distribution over function parameters, instead of

being parameters which specify a function directly. An example would be the lengthscale
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parameter ¢ of the SE kernel, which specifies the width of the kernel and thereby the

smoothness of the functions in the model.

Stationary and Non-stationary The SE and Per kernels are stationary, meaning
that their value only depends on the difference x — 2’. This implies that the probability
of observing a particular dataset remains the same even if we move all the x values by
the same amount. In contrast, the linear kernel (Lin) is non-stationary, meaning that
the corresponding GP model will produce different predictions if the data were moved

while the kernel parameters were kept fixed.

1.3 Combining kernels

What if the kind of structure we need is not expressed by any known kernel? For many
types of structure, it is possible to build a “made to order” kernel with the desired
properties. The next few sections of this chapter will explore ways in which kernels can
be combined to create new ones with different properties. This will allow us to include

as much high-level structure as necessary into our models.

1.3.1 Notation

Below, we will focus on two ways of combining kernels: addition and multiplication. We

will often write these operations in shorthand, without arguments:

ko + ky = ko(x,X') + ky(x, %) (1.2)
ko X ky = kq(x,X') X ky(x, %) (1.3)

All of the basic kernels we considered in section 1.2 are one-dimensional, but kernels
over multi-dimensional inputs can be constructed by adding and multiplying between
kernels on different dimensions. The dimension on which a kernel operates is denoted
by a subscripted integer. For example, SE, represents an SE kernel over the second
dimension of vector x. To remove clutter, we will usually refer to kernels without

specifying their parameters.
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Figure 1.2: Examples of one-dimensional structures expressible by multiplying kernels.
Plots have same meaning as in figure 1.1.

1.3.2 Combining properties through multiplication

Multiplying two positive-definite kernels together always results in another positive-
definite kernel. But what properties do these new kernels have? Figure 1.2 shows some
kernels obtained by multiplying two basic kernels together.

Working with kernels, rather than the parametric form of the function itself, allows
us to express high-level properties of functions that do not necessarily have a simple

parametric form. Here, we discuss a few examples:

o Polynomial Regression. By multiplying together T' linear kernels, we obtain a
prior on polynomials of degree T'. The first column of figure 1.2 shows a quadratic

kernel.

e Locally Periodic Functions. In univariate data, multiplying a kernel by SE
gives a way of converting global structure to local structure. For example, Per
corresponds to exactly periodic structure, whereas Per x SE corresponds to locally

periodic structure, as shown in the second column of figure 1.2.

e Functions with Growing Amplitude. Multiplying by a linear kernel means
that the marginal standard deviation of the function being modeled grows linearly
away from the location given by kernel parameter ¢. The third and fourth columns

of figure 1.2 show two examples.
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One can multiply any number of kernels together in this way to produce kernels
combining several high-level properties. For example, the kernel SE x Lin x Per specifies
a prior on functions which are locally periodic with linearly growing amplitude. We will

see a real dataset having this kind of structure in section 1.11.

1.3.3 Building multi-dimensional models

A flexible way to model functions having more than one input is to multiply together
kernels defined on each individual input. For example, a product of SE kernels over
different dimensions, each having a different lengthscale parameter, is called the SE-ARD

kernel:

D 1(xd—x’)2 1D(xd—x’)2

Figure 1.3 illustrates the SE-ARD kernel in two dimensions.
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f(zq,x2) drawn from
QP(O, SE; x SEQ)
Figure 1.3: A product of two one-dimensional kernels gives rise to a prior on functions
which depend on both dimensions.
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ARD stands for automatic relevance determination, so named because estimating
the lengthscale parameters ¢, (s, ..., {p, implicitly determines the “relevance” of each
dimension. Input dimensions with relatively large lengthscales imply relatively little
variation along those dimensions in the function being modeled.

SE-ARD kernels are the default kernel in most applications of GPs. This may be
partly because they have relatively few parameters to estimate, and because those pa-
rameters are relatively interpretable. In addition, there is a theoretical reason to use
them: they are universal kernels (Micchelli et al., 2006), capable of learning any contin-

uous function given enough data, under some conditions.
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However, this flexibility means that they can sometimes be relatively slow to learn,
due to the curse of dimensionality (Bellman, 1956). In general, the more structure we
account for, the less data we need - the blessing of abstraction (Goodman et al., 2011)
counters the curse of dimensionality. Below, we will investigate ways to encode more

structure into kernels.

1.4 Modeling sums of functions

An additive function is one which can be expressed as f(x) = f,(x) + fp(x). Additivity
is a useful modeling assumption in a wide variety of contexts, especially if it allows us
to make strong assumptions about the individual components which make up the sum.
Restricting the flexibility of component functions often aids in building interpretable

models, and sometimes enables extrapolation in high dimensions.

Lin + Per SE + Per SE + Lin Ellong) | gp(short)
WlthfL' =1) Wlthl‘ =1)

MWNW

periodic plus trend periodic plus noise linear plus variation slow & fast variation

Figure 1.4: Examples of one-dimensional structures expressible by adding kernels. Rows
have the same meaning as in figure 1.1. SE(°"®) denotes a SE kernel whose lengthscale
is long relative to that of SE(hert)

It is easy to encode additivity into GP models. Suppose functions f,, f, are drawn

independently from GP priors:

fa ~ gP(Nmka> (15)
fo ~ GP(pw, ks) (1.6)
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Then the distribution of the sum of those functions is simply another GP:

Ja+ fo ~ GP(tta + po, ka + Fo). (1.7)

Kernels k, and k;, can be of different types, allowing us to model the data as a sum
of independent functions, each possibly representing a different type of structure. Any

number of components can be summed this way.

1.4.1 Modeling noise

Additive noise can be modeled as an unknown, quickly-varying function added to the
signal. This structure can be incorporated into a GP model by adding a local kernel such
as an SE with a short lengthscale, as in the fourth column of figure 1.4. The limit of the
SE kernel as its lengthscale goes to zero is a “white noise” (WN) kernel. Function values
drawn from a GP with a WN kernel are independent draws from a Gaussian random

variable.

Given a kernel containing both signal and noise components, we may wish to isolate
only the signal components. Section 1.4.5 shows how to decompose a GP posterior into

each of its additive components.

In practice, there may not be a clear distinction between signal and noise. For
example, 7?7 contains examples of models having long-term, medium-term, and short-
term trends. Which parts we designate as the “signal” sometimes depends on the task
at hand.

1.4.2 Additivity across multiple dimensions

When modeling functions of multiple dimensions, summing kernels can give rise to addi-
tive structure across different dimensions. To be more precise, if the kernels being added
together are each functions of only a subset of input dimensions, then the implied prior

over functions decomposes in the same way. For example,

f(x1,m2) ~ GP(0, ki1, 7)) + ka(22,25)) (1.8)
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Figure 1.5: A sum of two orthogonal one-dimensional kernels. Top row: An additive
kernel is a sum of kernels. Bottom row: A draw from an additive kernel corresponds to
a sum of draws from independent GP priors, each having the corresponding kernel.

is equivalent to the model

filzr) ~ GP(0, ky(z1, 71)) (1.9)
fg(l’z) ~ QP(O, k’g(l’z,l‘;)) (110)
f(ﬂi’l,.QTg) = fl(l'l) + fg(ﬂfg) . (111)

Figure 1.5 illustrates a decomposition of this form. Note that the product of two

kernels does not have an analogous interpretation as the product of two functions.

1.4.3 Extrapolation through additivity

Additive structure sometimes allows us to make predictions far from the training data.
Figure 1.6 compares the extrapolations made by additive versus product-kernel GP mod-
els, conditioned on data from a sum of two axis-aligned sine functions. The training
points were evaluated in a small, L-shaped area. In this example, the additive model is
able to correctly predict the height of the function at an unseen combinations of inputs.

The product-kernel model is more flexible, and so remains uncertain about the function
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GP mean using GP mean using
True function: sum of SE kernels: product of SE kernels:
f(zq,x9) = sin(xq) + sin(z2) ki(xq1,2)) + ko(xe,xh) ki(xq, ) X ko(z2, 2h)

Figure 1.6: Left: A function with additive structure. Center: A GP with an additive
kernel can extrapolate away from the training data. Right: A GP with a product kernel
allows a different function value for every combination of inputs, and so is uncertain
about function values away from the training data. This causes the predictions to revert
to the mean.

away from the data.

These types of additive models have been well-explored in the statistics literature.
For example, generalized additive models (Hastie and Tibshirani, 1990) have seen wide
adoption. In high dimensions, we can also consider sums of functions of multiple input

dimensions. Section 1.11 considers this model class in more detail.

1.4.4 Example: An additive model of concrete strength

To illustrate how additive kernels give rise to interpretable models, we built an addi-
tive model of the strength of concrete as a function of the amount of seven different
ingredients (cement, slag, fly ash, water, plasticizer, coarse aggregate and fine aggre-
gate), and the age of the concrete (Yeh, 1998). Our simple model is a sum of 8 different

one-dimensional functions, each depending on only one of these quantities:

f(x) = fi(cement) + fa(slag) + f5(fly ash) + fy(water)
+ fs(plasticizer) + fg(coarse) + f(fine) + fs(age) + noise (1.12)

where noise ~ N(0,02). Each of the functions fi, fa, ..., fs was modeled using a GP
with an SE kernel. These eight SE kernels plus a white noise kernel were added together

as in equation (1.8) to form a single GP model whose kernel had 9 additive components.
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After learning the kernel parameters by maximizing the marginal likelihood of the

data, one can visualize the predictive distribution of each component of the model.
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Figure 1.7: The predictive distribution of each one-dimensional function in a multi-
dimensional additive model. Blue crosses indicate the original data projected on to each
dimension, red indicates the marginal posterior density of each function, and colored lines

are samples from the marginal posterior distribution of each one-dimensional function.
The vertical axis is the same for all plots.

Figure 1.7 shows the marginal posterior distribution of each of the eight one-dimensional
functions in the model. The parameters controlling the variance of two of the functions,
fe(coarse) and fr(fine) were set to zero, meaning that the marginal likelihood preferred
a parsimonious model which did not depend on these inputs. This is an example of the
automatic sparsity that arises by maximizing marginal likelihood in GP models, and is
another example of automatic relevance determination (ARD) (Neal, 1995).

The ability to learn kernel parameters in this way is much more difficult when using
non-probabilistic methods such as Support Vector Machines (Cortes and Vapnik, 1995),

for which cross-validation is often the best method to select kernel parameters.
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1.4.5 Posterior variance of additive components

Here we derive the posterior variance and covariance of all of the additive components

of a GP. These formulas allow one to make plots such as figure 1.7.

First, we write down the joint prior distribution over two functions drawn indepen-
dently from GP priors, and their sum. We distinguish between f(X) (the function values
at training locations [x1, X, ..., Xy]" := X) and f(X*) (the function values at some set
of query locations [x},x3, ..., xy]T = X*).

Formally, if f; and f; are a priori independent, and f; ~ GP(u1, k1) and fo ~ GP(pe, ko),
then

[ F1(X) " K. Ki 0 0 K K; ‘
J1(X) 74 Ki" K* 0 0 Kj K7
f2(X) Y 2 0 0 K, K K K3
f2(X) pso |0 0 KT Ky Kj K3*
F1(X) + fo(X) mte| |Ki KT Ky Kb Ki+K, Ki+K;
| f1(X) + fo(XF) pitps | | K7TOKP OK:T Ky KiK' K+ K3
(1.13)

where we represent the Gram matrices, whose ¢, jth entry is given by k(x;,x;) by

K = ki (X, X*) (1.15)
K™ = k;(X*, X*) (1.16)

The formula for Gaussian conditionals 7?7 can be used to give the conditional distri-
bution of a GP-distributed function conditioned on its sum with another GP-distributed

function:

J1(X%)

J1X) + £o(X) ~ N (a4 K70+ Ko) 7 [£1(X) + £o(X) = par — ],

K — K (K, + Kg)lK;) (1.17)

These formulas express the model’s posterior uncertainty about the different components
of the signal, integrating over the possible configurations of the other components. To
extend these formulas to a sum of more than two functions, the term K; +Kj can simply

be replaced by >, K; everywhere.
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Figure 1.8: Posterior correlations between the heights of the one-dimensional functions
in equation (1.12), whose sum models concrete strength. Red indicates high correla-
tion, teal indicates no correlation, and blue indicates negative correlation. Plots on the
diagonal show posterior correlations between different values of the same function. Cor-
relations are evaluated over the same input ranges as in figure 1.7. Correlations with
fe(coarse) and fr(fine) are not shown, because their estimated variance was zero.

Posterior covariance of additive components

One can also compute the posterior covariance between the height of any two functions,

conditioned on their sum:

Cov | £1(X*), £2(X)

F(X)] = —K} (K + Ky) K3 (1.18)

If this quantity is negative, it means that there is ambiguity about which of the two
functions is high or low at that location. For example, figure 1.8 shows the posterior

correlation between all non-zero components of the concrete model. This figure shows
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that most of the correlation occurs within components, but there is also negative corre-

lation between the height of f(cement) and fa(slag).

1.5 Changepoints

An example of how combining kernels can give rise to more structured priors is given by
changepoint kernels, which can express a change between different types of structure.
Changepoints kernels can be defined through addition and multiplication with sigmoidal

functions such as o(x) = Yitexp(—a):
CP(ky1, ko) (x,2') = o(x)ky(z, 2" )o(2") + (1 — o(2))ka(x, 2") (1 — o(2)) (1.19)
which can be written in shorthand as
CP(ky, ko) = ki X0 + kox& (1.20)

where o = o(z)o(2') and & = (1 — o(z))(1 — o(2')).
This compound kernel expresses a change from one kernel to another. The parameters
of the sigmoid determine where, and how rapidly, this change occurs. Figure 1.9 shows

some examples.

SE Per SE Per SE SE Per Per

Dl e

Figure 1.9: Draws from different priors on using changepoint kernels, constructed by
adding and multiplying together base kernels with sigmoidal functions.

We can also build a model of functions whose structure changes only within some
interval — a change-window — by replacing o(z) with a product of two sigmoids, one

increasing and one decreasing.
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1.5.1 Multiplication by a known function

More generally, we can model an unknown function that’s been multiplied by any fixed,

known function a(z), by multiplying the kernel by a(x)a(x’). Formally,

f(x) =ax)g(x), g~GP(0,k(x,x)) <= [f~GP(0,ax)k(x,x)a(x’)).
(1.21)

1.6 Feature representation of kernels

By Mercer’s theorem (Mercer, 1909), any positive-definite kernel can be represented as

the inner product between a fixed set of features, evaluated at x and at x':

k(x,x') = h(x)Th(x') (1.22)

For example, the squared-exponential kernel (SE) on the real line has a representation
in terms of infinitely many radial-basis functions of the form h;(z) o exp(— gz (z — ¢;)?).
More generally, any stationary kernel can be represented by a set of sines and cosines - a
Fourier representation (Bochner, 1959). In general, any particular feature representation

of a kernel is not necessarily unique (Minh et al., 2006).

In some cases, the input to a kernel, x, can even be the implicit infinite-dimensional
feature mapping of another kernel. Composing feature maps in this way leads to deep

kernels, which are explored in ?77.

1.6.1 Relation to linear regression

Surprisingly, GP regression is equivalent to Bayesian linear regression on the implicit

features h(x) which give rise to the kernel:
fx)=whx), w~NOI) <<= f~GP(0h(x) hx)) (1.23)

The link between Gaussian processes, linear regression, and neural networks is explored

further in ?77?.
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1.6.2 Feature-space view of combining kernels

We can also view kernel addition and multiplication as a combination of the features of

the original kernels. For example, given two kernels

their addition has the form:
! AN T / T N __ a(x) ! a(x’)
ko(x,x") + ky(x,x") = a(x) a(x’) + b(x) 'b(x') = ) ) (1.26)

meaning that the features of k, + k; are the concatenation of the features of each kernel.

We can examine kernel multiplication in a similar way:

ka(x, %) x ky(x, %) = [a(x)Ta(x')] x [b(x)"b(x)] (1.27)

=2 [0 ()b, (%) [a; (x')b; (x| (1.29)

In words, the features of k, x k; are made of up all pairs of the original two sets of
features. For example, the features of the product of two one-dimensional SE kernels

(SE; X SE3) cover the plane with two-dimensional radial-basis functions of the form:

1 (ZL‘l — Ci)z 1 (ZL‘Q — Cj)2

hes (1, W G) S B 1.
(1 xg)ocexp< AT )exp( T ) (1.30)

1.7 Expressing symmetries and invariances

When modeling functions, encoding known symmetries can improve predictive accuracy.
This section looks at different ways to encode symmetries into a prior on functions. Many
types of symmetry can be enforced through operations on the kernel.

We will demonstrate the properties of the resulting models by sampling functions
from their priors. By using these functions to define smooth mappings from R? — R3,
we will show how to build a nonparametric prior on an open-ended family of topological

manifolds, such as cylinders, toruses, and Mobius strips.
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1.7.1 Three recipes for invariant priors

Consider the scenario where we have a finite set of transformations of the input space

{91, g2, ...} to which we wish our function to remain invariant:
) = flgx)) VxeX, Vged (131)

As an example, imagine we wish to build a model of functions invariant to swapping
their inputs: f(x1,22) = f(x2,21), V21,25. Being invariant to a set of operations is
equivalent to being invariant to all compositions of those operations, the set of which
forms a group. (Armstrong et al., 1988, chapter 21). In our example, the elements of the

group Ggywap containing all operations the functions are invariant to has two elements:

gi([x1,29]) = [22,21]  (swap) (1.32)
g2([z1, x2]) = |21, 9] (identity) (1.33)

How can we construct a prior on functions which respect these symmetries? Gins-
bourger et al. (2012) and Ginsbourger et al. (2013) showed that the only way to construct
a GP prior on functions which respect a set of invariances is to construct a kernel which

respects the same invariances with respect to each of its two inputs:
k(x,x') = k(g(x),9(x)), vx,x' €X, Vg, €qG (1.34)

Formally, given a finite group G whose elements are operations to which we wish our
function to remain invariant, and f ~ GP(0, k(x,x’)), then every f is invariant under
G (up to a modification) if and only if k(-,-) is argument-wise invariant under G. See
Ginsbourger et al. (2013) for details.

It might not always be clear how to construct a kernel respecting such argument-wise

invariances. Fortunately, there are a few simple ways to do this for any finite group:

1. Sum over the orbit. The orbit of x with respect to a group G is {g(z) : g € G},
the set obtained by applying each element of G' to z. Ginsbourger et al. (2012)
and Kondor (2008) suggest enforcing invariances through a double sum over the

orbits of x and x’ with respect to G:

Faum(x,x) = 30 > k(g(x),4'(x)) (1.35)

g9,€G g'€G
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Figure 1.10: Functions drawn from three distinct GP priors, each expressing symmetry
about the line x1 = x5 using a different type of construction. All three methods introduce
a different type of nonstationarity.

For the group Gsyap, this operation results in the kernel:

kswitan (X, %) = D >0 k(9(x),9'(X)) (1.36)

QGGswap gleGswap
/ / / /
= k(x1, X, ¥, x5) + k(x1, T2, 4, 27)

+ k(z2, x1, 27, %) + k(z2, 21, 25, 27) (1.37)

For stationary kernels, some pairs of elements in this sum will be identical, and
can be ignored. Figure 1.10(left) shows a draw from a GP prior with a product of
SE kernels symmetrized in this way. This construction has the property that the

marginal variance is doubled near x; = x5, which may or may not be desirable.

2. Project onto a fundamental domain. Ginsbourger et al. (2013) also explored
the possibility of projecting each datapoint into a fundamental domain of the

group, using a mapping Ag:
kproj (%, X') = k(Ac(x), Ac(x')) (1.38)

For example, a fundamental domain of the group Ggwap is all {x1, 29 1 21 < 22},
a set which can be mapped to using Aq,,.,(71,22) = [min(xhxg),max(xl,xg)}.
Constructing a kernel using this method introduces a non-differentiable “seam”

along x; = x9, as shown in figure 1.10(center).
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3. Multiply over the orbit. Ryan P. Adams (personal communication) suggested

a construction enforcing invariances through a double product over the orbits:

Foum (%, %) = [T I k(9(x),9'(x")) (1.39)

geG g'eG

This method can sometimes produce GP priors with zero variance in some regions,

as in figure 1.10(right).

There are often many possible ways to achieve a given symmetry, but we must be careful
to do so without compromising other qualities of the model we are constructing. For
example, simply setting k(x,x’) = 0 gives rise to a GP prior which obeys all possible

symmetries, but this is presumably not a model we wish to use.

1.7.2 Example: Periodicity

Periodicity in a one-dimensional function corresponds to the invariance

f(x)=f(z+71) (1.40)

where 7 is the period.
The most popular method for building a periodic kernel is due to MacKay (1998),
who used the projection method in combination with an SE kernel. A fundamental

domain of the symmetry group is a circle, so the kernel
Per(z,2’) = SE (sin(z), sin(x")) x SE (cos(x), cos(z")) (1.41)

achieves the invariance in equation (1.40). Simple algebra reduces this kernel to the

form given in figure 1.1.

1.7.3 Example: Symmetry about zero

Another example of an easily-enforceable symmetry is symmetry about zero:

f(@) = f(=2). (1.42)
This symmetry can be enforced using the sum over orbits method, by the transform

kreﬁect(xa xl) = k(l', lj) + k(l', —LIZ'/) + k(—l', .T/) + k'(—ilj', _xl>' (143)
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1.7.4 Example: Translation invariance in images

Many models of images are invariant to spatial translations (LeCun and Bengio, 1995).
Similarly, many models of sounds are also invariant to translation through time.

Note that this sort of translation invariance is completely distinct from the station-
arity of kernels such as SE or Per. A stationary kernel implies that the prior is invariant
to translations of the entire training and test set. In contrast, here we use translation
invariance to refer to situations where the signal has been discretized, and each pixel
(or the audio equivalent) corresponds to a different input dimension. We are interested
in creating priors on functions that are invariant to swapping pixels in a manner that

corresponds to shifting the signal in some direction:

f(ﬁ ):f( ﬁ) (1.44)

For example, in a one-dimensional image or audio signal, translation of an input vector

by 7 pixels can be defined as

. . T
Shlft(X, 2) - [xmod(i—‘rl,D)u Tmod(i+2,D)s - + - s Lmod(i+D,D) (]-45)

As above, translation invariance in one dimension can be achieved by a double sum over

the orbit, given an initial translation-sensitive kernel between signals k:
D D
Kinvariant (X, X) = Z Z k(shift(x, 1), shift(x, 7)) . (1.46)

The extension to two dimensions, shift(x,1,j), is straightforward, but notationally
cumbersome. Kondor (2008) built a more elaborate kernel between images that was

approximately invariant to both translation and rotation, using the projection method.

1.8 Generating topological manifolds

In this section we give a geometric illustration of the symmetries encoded by different
compositions of kernels. The work presented in this section is based on a collaboration
with David Reshef, Roger Grosse, Joshua B. Tenenbaum, and Zoubin Ghahramani. The
derivation of the Mébius kernel was my original contribution.

Priors on functions obeying invariants can be used to create a prior on topological
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Euclidean (SE; x SE,) Cylinder (SE; x Pery) Toroid (Per; X Persy)

Figure 1.11: Generating 2D manifolds with different topologies. By enforcing that the
functions mapping from R? to R3 obey certain symmetries, the surfaces created have
corresponding topologies, ignoring self-intersections.

manifolds by using such functions to warp a simply-connected surface into a higher-
dimensional space. For example, one can build a prior on 2-dimensional manifolds
embedded in 3-dimensional space through a prior on mappings from R? to R3. Such
mappings can be constructed using three independent functions [f(x), fa(x), f3(x)],
each mapping from R? to R. Different GP priors on these functions will implicitly give
rise to different priors on warped surfaces. Symmetries in [fi, fo, f3] can connect different

parts of the manifolds, giving rise to non-trivial topologies on the sampled surfaces.

Figure 1.11 shows 2D meshes warped into 3D by functions drawn from GP priors
with various kernels, giving rise to a different topologies. Higher-dimensional analogues
of these shapes can be constructed by increasing the latent dimension and including
corresponding terms in the kernel. For example, an N-dimensional latent space using
kernel Per; x Pery X ... X Pery will give rise to a prior on manifolds having the topology

of N-dimensional toruses, ignoring self-intersections.

This construction is similar in spirit to the GP latent variable model (GP-LVM) of
Lawrence (2005), which learns a latent embedding of the data into a low-dimensional

space, using a GP prior on the mapping from the latent space to the observed space.
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Draw from GP with kernel:
Per(xq, ) X Per(xq, 74) Mébius strip drawn from Sudanese Mobius strip
+Per(xy, xh) x Per(xy, 7)) R? — R?® GP prior generated parametrically

usq

T

Figure 1.12: Generating Mobius strips. Left: A function drawn from a GP prior obeying
the symmetries given by equations (1.47) to (1.49). Center: Simply-connected surfaces
mapped from R? to R? by functions obeying those symmetries have a topology corre-
sponding to a Mobius strip. Surfaces generated this way do not have the familiar shape
of a flat surface connected to itself with a half-twist. Instead, they tend to look like
Sudanese Mobius strips (Lerner and Asimov, 1984), whose edge has a circular shape.
Right: A Sudanese projection of a Mdbius strip. Image adapted from Wikimedia Com-
mons (2005).

1.8.1 Mobius strips

A space having the topology of a Mébius strip can be constructed by enforcing invariance

to the following operations (Reid and Szendré6i, 2005, chapter 7):

Gp, ([71, 22]) = [x1 + T, 2] (periodic in ) (1.47)
Gy ([T1, 22]) = [21, T2 + 7] (periodic in x5) (1.48)
9s([z1, x2]) = [wa, 21] (symmetric about x; = z3) (1.49)

Section 1.7 already showed how to build GP priors invariant to each of these types of
transformations. We’ll call a kernel which enforces these symmetries a Mdbius kernel.

An example of such a kernel is:
k(xy, x9, 2, 25) = Per(xy, x)) x Per(xa, 25) + Per(w1, 25) X Per(xq, x}) (1.50)

Moving along the diagonal x; = x5 of a function drawn from the corresponding GP prior

is equivalent to moving along the edge of a notional Mobius strip which has had that
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function mapped on to its surface. Figure 1.12(left) shows an example of a function
drawn from such a prior. Figure 1.12(center) shows an example of a 2D mesh mapped
to 3D by functions drawn from such a prior. This surface doesn’t resemble the typical
representation of a Mobius strip, but instead resembles an embedding known as the

Sudanese Mobius strip (Lerner and Asimov, 1984), shown in figure 1.12(right).

1.9 Kernels on categorical variables

Categorical variables are variables which can take values only from a discrete, unordered
set, such as {blue,green,red}. A simple way to construct a kernel over categorical
variables is to represent that variable by a set of binary variables, using a one-of-k
encoding. For example, if x can take one of four values, = € {A,B,C,D}, then a one-of-k
encoding of z will correspond to four binary inputs, and one-of-k(C) = [0, 0, 1,0]. Given
a one-of-k encoding, we can place any multi-dimensional kernel on that space, such as
the SE-ARD:

Ecategorical (2, ') = SE-ARD (one-of-k(z), one-of-k(z")) (1.51)

Short lengthscales on any particular dimension of the SE-ARD kernel indicate that the
function value corresponding to that category is uncorrelated with the others. More

flexible parameterizations are also possible (Pinheiro and Bates, 1996).

1.10 Multiple outputs

Any GP prior can easily be extended to the model multiple outputs: f;(x), f2(x), ..., fr(x).
This can be done by building a model of a single-output function which has had an ex-
tra input added that denotes the index of the output: f;(x) = f(x,i). This can be
done by extending the original kernel k(x,x’) to have an extra discrete input dimension:
k(x,i,x',i).

A simple and flexible construction of such a kernel multiplies the original kernel

k(x,x’) with a categorical kernel on the output index (Bonilla et al., 2007):

k(x,1,x',4") = kye(x,x") x k;(,7") (1.52)



1.11 Building a kernel in practice 23

1.11 Building a kernel in practice

This chapter outlined ways to choose the parametric form of a kernel in order to express
different sorts of structure. Once the parametric form has been chosen, one still needs to
choose, or integrate over, the kernel parameters. If the kernel relatively few parameters,
these parameters can be estimated by maximum marginal likelihood, using gradient-
based optimizers. The kernel parameters estimated in sections 1.4.3 and 1.4.4 were
optimized using the GPML toolbox (Rasmussen and Nickisch, 2010), available at
http://www.gaussianprocess.org/gpml/code.

A systematic search over kernel parameters is necessary when appropriate parameters
are not known. Similarly, sometimes appropriate kernel structure is hard to guess.
The next chapter will show how to perform an automatic search not just over kernel

parameters, but also over an open-ended space of kernel expressions.

Source code

Source code to produce all figures and examples in this chapter is available at

http://www.github.com/duvenaud/phd-thesis.


http://www.gaussianprocess.org/gpml/code
http://www.github.com/duvenaud/phd-thesis
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