
Chapter 1

Warped Mixture Models

“What, exactly, is a cluster?”
- Bernhard Schölkopf, personal communication

Previous chapters showed how the probabilistic nature of GPs sometimes allows the
automatic determination of the appropriate structure when building models of functions.
One can also take advantage of this property when composing GPs with other models,
automatically trading-off complexity between the GP and the other parts of the model.

This chapter considers a simple example: a Gaussian mixture model warped by a
draw from a GP. This novel model produces clusters (density manifolds) having arbitrary
nonparametric shapes. We call the proposed model the infinite warped mixture model
(iWMM). The probabilistic nature of the iWMM lets us automatically infer the number,
dimension, and shape of a set of nonlinear manifolds, and summarize those manifolds in
a low-dimensional latent space.

The work comprising the bulk of this chapter was done in collaboration with Tomo-
haru Iwata and Zoubin Ghahramani, and appeared in Iwata et al. (2013). The main idea
was born out of a conversation between Tomoharu and myself, and together we wrote
almost all of the code as well as the paper. Tomoharu ran most of the experiments, and
Zoubin Ghahramani provided guidance and many helpful suggestions throughout the
project.

1.1 The Gaussian process latent variable model

The iWMM can be viewed as an extension of the Gaussian process latent variable model
(GP-LVM) (Lawrence, 2004), a probabilistic model of nonlinear manifolds. The GP-LVM
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Warping function: y = f(x)
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Figure 1.1: A draw from a one-dimensional Gaussian process latent variable model.
Bottom: the density of a set of samples from a 1D Gaussian specifying the distribution
p(x) in the latent space. Top left: A function y = f(x) drawn from a GP prior. Grey
lines show points being mapped through f . Right: A nonparametric density p(y) defined
by warping the latent density through the sampled function.

smoothly warps a Gaussian density into a more complicated distribution, using a draw
from a GP. Usually, we say that the Gaussian density is defined in a “latent space”
having Q dimensions, and the warped density is defined in the “observed space” having
D dimensions.

A generative definition of the GP-LVM is:

latent coordinates X = (x1, x2, . . . , xN)T iid∼ N (x|0, IQ) (1.1)

warping functions f = (f1, f2, . . . , fD)T iid∼ GP(0, SE-ARD + WN) (1.2)

observed datapoints Y = (y1, y2, . . . , yN)T = f(X) (1.3)

Under the GP-LVM, the probability of observations Y given the latent coordinates
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Latent space p(x) Observed space p(y)

f(x)→

Figure 1.2: A draw from a two-dimensional Gaussian process latent variable model.
Left: Isocontours and samples from a 2D Gaussian, specifying the distribution p(x) in
the latent space. Right: The observed density p(y) has a nonparametric shape, defined
by warping the latent density through a function drawn from a GP prior.

X, integrating over the mapping functions f is simply a product of GP likelihoods:

p(Y|X, θ) =
D∏

d=1
p(Y:,d|X, θ) =

D∏
d=1

N (Y:,d|0, Kθ) (1.4)

= (2π)− DN
2 |Kθ|−

D
2 exp

(
−1

2tr(YTK−1
θ Y)

)
, (1.5)

where θ are the kernel parameters and Kθ is the Gram matrix kθ(X, X).
Typically, the GP-LVM is used for dimensionality reduction or visualization, and

the latent coordinates are set by maximizing (1.5). In that setting, the Gaussian prior
density on x is essentially a regularizer which keeps the latent coordinates from spreading
arbitrarily far apart. One can also approximately integrate out X, which is the approach
taken in this chapter.

1.2 The infinite warped mixture model

This section defines the infinite warped mixture model (iWMM). Like the GP-LVM,
the iWMM assumes a smooth nonlinear mapping from a latent density to an observed
density. The only difference is that the iWMM assumes that the latent density is an
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Latent space p(x) Observed space p(y)

f(x)→

Figure 1.3: A sample from the iWMM prior. Left: In the latent space, a mixture
distribution is sampled from a Dirichlet process mixture of Gaussians. Right: The
latent mixture is smoothly warped to produce a set of non-Gaussian manifolds in the
observed space.

infinite Gaussian mixture model (iGMM) (Rasmussen, 2000):

p(x) =
∞∑

c=1
λc N (x|µc, R−1

c ) (1.6)

where λc, µc and Rc denote the mixture weight, mean, and precision matrix of the cth

mixture component.
The iWMM can be seen as a generalization of either the GP-LVM or the iGMM: The

iWMM with a single fixed spherical Gaussian density on the latent coordinates p(x)
corresponds to the GP-LVM, while the iWMM with fixed mapping y = x and Q = D

corresponds to the iGMM.
If the clusters being modeled do not happen to have Gaussian shapes, a flexible

model of cluster shapes is required to correctly estimate the number of clusters. For
example, a mixture of Gaussians fit to a single non-Gaussian cluster (such as one that
is curved or heavy-tailed) will report that the data contains many Gaussian clusters.

1.3 Inference

As discussed in ??, one of the main advantages of GP priors is that, given inputs X, out-
puts Y and kernel parameters θ, one can analytically integrate over functions mapping
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X to Y. However, inference becomes more difficult when one introduces uncertainty
about the kernel parameters or the input locations X. This section outlines how to com-
pute approximate posterior distributions over all parameters in the iWMM given only a
set of observations Y. Further details can be found in appendix ??.

We first place conjugate priors on the parameters of the Gaussian mixture compo-
nents, allowing analytic integration over latent cluster shapes, given the assignments of
points to clusters. The only remaining variables to infer are the latent points X, the
cluster assignments z, and the kernel parameters θ. We can obtain samples from their
posterior p(X, z, θ|Y) by iterating two steps:

1. Given a sample of the latent points X, sample the discrete cluster memberships z
using collapsed Gibbs sampling, integrating out the iGMM parameters (??).

2. Given the cluster assignments z, sample the continuous latent coordinates X and
kernel parameters θ using Hamiltonian Monte Carlo (HMC) (MacKay, 2003, chap-
ter 30). The relevant equations are given by ????????.

The complexity of each iteration of HMC is dominated by the O(N3) computation
of K−1. This complexity could be improved by making use of an inducing-point approx-
imation (Quiñonero-Candela and Rasmussen, 2005; Snelson and Ghahramani, 2006).

Posterior predictive density

One disadvantage of the GP-LVM is that its predictive density has no closed form,
and the iWMM inherets this problem. To approximate the predictive density, we first
sample latent points, then sample warpings of those points into the observed space. The
Gaussian noise added to each observation by the WN kernel component means that each
sample adds a Gaussian to the Monte Carlo estimate of the predictive density. Details
can be found in appendix ??. This procedure was used to generate the plots of posterior
density in figures 1.3, 1.4 and 1.6.

1.4 Related work

The literature on manifold learning, clustering and dimensionality reduction is extensive.
This section highlights some of the most relevant related work.
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Extensions of the GP-LVM

The GP-LVM has been used effectively in a wide variety of applications (Lawrence,
2004; Lawrence and Urtasun, 2009; Salzmann et al., 2008). The latent positions X in
the GP-LVM are typically obtained by maximum a posteriori estimation or variational
Bayesian inference (Titsias and Lawrence, 2010), placing a single fixed spherical Gaussian
prior on x.

A regularized extension of the GP-LVM that allows estimation of the dimension of
the latent space was introduced by Geiger et al. (2009), in which the latent variables and
their intrinsic dimensionality were simultaneously optimized. The iWMM can also infer
the intrinsic dimensionality of nonlinear manifolds: the Gaussian covariance parameters
for each latent cluster allow the variance of irrelevant dimensions to become small. The
marginal likelihood of the latent Gaussian mixture will favor using as few dimensions
as possible to describe each cluster. Because each latent cluster has a different set of
parameters, each cluster can have a different effective dimension in the observed space,
as demonstrated in figure 1.4(c).

Nickisch and Rasmussen (2010) considered several modifications of the GP-LVM
which model the latent density using a mixture of Gaussians centered around the latent
points. They approximated the observed density p(y) by a second mixture of Gaussians,
obtained by moment-matching the density obtained by warping each latent Gaussian
into the observed space. Because their model was not generative, training was done
by maximizing a leave-some-out predictive density. This method had poor predictive
performance compared to simple baselines.

Related linear models

The iWMM can also be viewed as a generalization of the mixture of probabilistic prin-
ciple component analyzers (Tipping and Bishop, 1999), or the mixture of factor analyz-
ers (Ghahramani and Beal, 2000), where the linear mapping is replaced by a draw from
a GP, and the number of components is infinite.

Non-probabilistic methods

There exist non-probabilistic clustering methods which can find clusters with complex
shapes, such as spectral clustering (Ng et al., 2002) and nonlinear manifold cluster-
ing (Cao and Haralick, 2006; Elhamifar and Vidal, 2011). Spectral clustering finds
clusters by first forming a similarity graph, then finding a low-dimensional latent rep-
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resentation using the graph, and finally clustering the latent coordinates via k-means.
The performance of spectral clustering depends on parameters which are usually set
manually, such as the number of clusters, the number of neighbors, and the variance pa-
rameter used for constructing the similarity graph. The iWMM infers such parameters
automatically, and has no need to construct a similarity graph.

The kernel Gaussian mixture model (Wang et al., 2003) can also find non-Gaussian
shaped clusters. This model estimates a GMM in the implicit infinite-dimensional fea-
ture space defined by the kernel mapping of the observed space. However, the kernel
parameters must be set by cross-validation. In contrast, the iWMM infers the mapping
function such that the latent coordinates will be well-modeled by a mixture of Gaussians.

Nonparametric cluster shapes

To the best of our knowledge, the only other Bayesian clustering method with nonpara-
metric cluster shapes is that of Rodríguez and Walker (2012), who for one-dimensional
data introduce a nonparametric model of unimodal clusters, where each cluster’s density
function strictly decreases away from its mode.

Deep Gaussian processes

An elegant way to construct a GP-LVM having a more structured latent density p(x) is
to use a second GP-LVM to model the prior density of the latent coordinates X. This
latent GP-LVM can have a third GP-LVM modeling its latent density, etc. This model
class was considered by Damianou and Lawrence (2013), who also tested to what extent
each layer’s latent representation grouped together points having the same label. They
found that when modeling MNIST hand-written digits, nearest-neighbour classification
performed best in the 4th layer of a 5-layer-deep nested GP-LVM, suggesting that the
latent density might have been implicitly forming clusters at that layer.

1.5 Experimental results

1.5.1 Synthetic datasets

Figure 1.4 demonstrates the proposed model on four synthetic datasets. None of these
datasets can be appropriately clustered by a Gaussian mixture model (GMM). For
example, consider the 2-curve data shown in figure 1.4(a), where 100 data points lie in
each of two curved lines in a two-dimensional observed space. A GMM having only two
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Observed space

↑ ↑ ↑ ↑

Latent space
(a) 2-curve (b) 3-semi (c) 2-circle (d) Pinwheel

Figure 1.4: Top row: Observed unlabeled data points (black), and cluster densities
inferred by the iWMM (colors). Bottom row: Latent coordinates and Gaussian compo-
nents from a single sample from the posterior. Each circle plotted in the latent space
corresponds to a datapoint in the observed space.

components cannot separate the two curved lines, while a GMM with many components
could separate the two lines only by breaking each line into many clusters. In contrast,
the iWMM separates the two non-Gaussian clusters in the observed space, representing
them using two Gaussian-shaped clusters in the latent space. Figure 1.4(b) shows a
similar dataset having three clusters.

Figure 1.4(c) shows an interesting manifold learning challenge: a dataset consisting
of two concentric circles. The outer circle is modeled in the latent space of the iWMM by
a Gaussian with one effective degree of freedom. This narrow Gaussian is fit to the outer
circle in the observed space by bending its two ends until they cross over. In contrast,
the sampler fails to discover the 1D topology of the inner circle, modeling it with a 2D
manifold instead. This example demonstrates that each cluster in the iWMM can have
a different effective dimension.

Figure 1.4(d) shows a five-armed variant of the pinwheel dataset of Adams and
Ghahramani (2009), generated by warping a mixture of Gaussians into a spiral. This
generative process closely matches the assumptions of the iWMM. Unsurprisingly, the
iWMM is able to recover an analogous latent structure, and its predictive density follows
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the observed data manifolds.

1.5.2 Clustering face images

We also examined the iWMM’s ability to model images without extensive pre-processing.
We constructed a dataset consisting of 50 greyscale 32x32 pixel images of two individuals
from the UMIST faces dataset (Graham and Allinson, 1998). Each of the two series of
images show a different person turning his head to the right.

Figure 1.5: A sample from the 2-dimensional latent space of the iWMM when model-
ing a series of face images. Images are rendered at their latent 2D coordinates. The
iWMM reports that the data consists of two separate manifolds, both approximately
one-dimensional, which both share the same head-turning structure.

Figure 1.5 shows a sample from the posterior over latent coordinates and density,
with each image rendered at its location in the latent space. The observed space has
32 × 32 = 1024 dimensions. The model has recovered three interpretable features of the
dataset: First, that there are two distinct faces. Second, that each set of images lies
approximately along a smooth one-dimensional manifold. Third, that the two manifolds
share roughly the same structure: the front-facing images of both individuals lie close
to one another, as do the side-facing images.
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1.5.3 Density estimation

(a) iWMM (b) GP-LVM

Figure 1.6: Left: Posterior density inferred by the iWMM in the observed space, on the
2-curve data. Right: Posterior density inferred by an iWMM restricted to have only one
cluster, a model equivalent to a fully-Bayesian GP-LVM.

Figure 1.6(a) shows the posterior density in the observed space inferred by the iWMM
on the 2-curve data, computed using 1000 samples from the Markov chain. The iWMM
correctly recovered the seperation of the density into two unconnected manifolds.

This result can be compared to the density manifold recovered by the fully-Bayesian
GP-LVM, equivalent to a special case of the iWMM having only a single cluster. Fig-
ure 1.6(b) shows that the GP-LVM places significant density connecting the two end of
the clusters, since it must reproduce the observed density manifold by warping a single
Gaussian.

1.5.4 Mixing

An interesting side-effect of learning the number of latent clusters is that this added
flexibility can help the sampler to escape local minima. Figure 1.7 shows samples of
the latent coordinates and clusters of the iWMM over a single run of a Markov chain
modeling the 2-curve data. Figure 1.7(a) shows the latent coordinates initialized at
the observed coordinates, starting with one latent component. After 500 iterations, each
curved line was modeled by two components. After 1800 iterations, the left curved line
was modeled by a single component. After 3000 iterations, the right curved line was
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(a) Initialization (b) Iteration 500 (c) Iteration 1800 (d) Iteration 3000
Figure 1.7: Latent coordinates and densities of the iWMM, plotted throughout one run
of a Markov chain.

also modeled by a single component, and the dataset was appropriately clustered. This
configuration was relatively stable, and a similar state was found at the 5000th iteration.

1.5.5 Visualization

Next, we briefly investigate the utility of the iWMM for low-dimensional visualization
of data. Figure 1.8(a) shows the latent coordinates obtained by averaging over 1000

(a) iWMM (b) iWMM (C = 1)
Figure 1.8: Latent coordinates of the 2-curve data, estimated by two different methods.

samples from the posterior of the iWMM. The estimated latent coordinates are clearly
separated, forming two straight lines. This result is an example of the iWMM recovering
the original topology of the data before it was warped to produce observations.

For comparison, figure 1.8(b) shows the latent coordinates estimated by the fully-
Bayesian GP-LVM, in which case the latent coordinates lie in two sections of a single
straight line.
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1.5.6 Clustering performance

We more formally evaluated the density estimation and clustering performance of the
proposed model using four real datasets: iris, glass, wine and vowel, obtained from the
LIBSVM multi-class datasets (Chang and Lin, 2011), in addition to the four synthetic
datasets shown above: 2-curve, 3-semi, 2-circle and pinwheel (Adams and Ghahramani,
2009). The statistics of these datasets are summarized in table 1.1.

Table 1.1: Statistics of the datasets used for evaluation.
2-curve 3-semi 2-circle Pinwheel Iris Glass Wine Vowel

dataset size: N 100 300 100 250 150 214 178 528
dimension: D 2 2 2 2 4 9 13 10

num. clusters: C 2 3 2 5 3 7 3 11

For each experiment, we show the results of ten-fold cross-validation. Results in bold
are not significantly different from the best performing method in each column according
to a paired t-test.

Table 1.2: Average Rand index for evaluating clustering performance.
2-curve 3-semi 2-circle Pinwheel Iris Glass Wine Vowel

iGMM 0.52 0.79 0.83 0.81 0.78 0.60 0.72 0.76
iWMM(Q=2) 0.86 0.99 0.89 0.94 0.81 0.65 0.65 0.50
iWMM(Q=D) 0.86 0.99 0.89 0.94 0.77 0.62 0.77 0.76

Table 1.2 compares the clustering performance of the iWMM with the iGMM, quan-
tified by the Rand index (Rand, 1971), which measures the correspondence between
inferred cluster labels and true cluster labels. Since the manifold on which the observed
data lies can be at most D-dimensional, we set the latent dimension Q equal to the
observed dimension D. We also included the Q = 2 case in an attempt to characterize
how much modeling power is lost by forcing the latent representation to be visualizable.

These experiments were designed to measure the extent to which nonparametric
cluster shapes help to estimate meaningful clusters. To eliminate any differences due to
different inference procedures, we used identical code for the iGMM and iWMM, the only
difference being that the warping function was set to the identity y = x. Both variants
of the iWMM usually outperformed the iGMM on this measure.
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1.5.7 Density estimation

Next, we compared the iWMM in terms of predictive density against kernel density
estimation (KDE), the iGMM, and the fully-Bayesian GP-LVM. For KDE, the kernel
width was estimated by maximizing the leave-one-out density. Table 1.3 lists average
test log likelihoods.

Table 1.3: Average test log-likelihoods for evaluating density estimation performance.
2-curve 3-semi 2-circle Pinwheel Iris Glass Wine Vowel

KDE −2.47 −0.38 −1.92 −1.47 −1.87 1.26 −2.73 6.06
iGMM −3.28 −2.26 −2.21 −2.12 −1.91 3.00 −1.87 −0.67
GP-LVM(Q=2) −1.02 −0.36 −0.78 −0.78 −1.91 5.70 −1.95 6.04
GP-LVM(Q=D) −1.02 −0.36 −0.78 −0.78 −1.86 5.59 −2.89 −0.29
iWMM(Q=2) −0.90 −0.18 −1.02 −0.79 −1.88 5.76 −1.96 5.91
iWMM(Q=D) −0.90 −0.18 −1.02 −0.79 −1.71 5.70 −3.14 −0.35

The iWMM usually achieved higher test likelihoods than the KDE and the iGMM.
The GP-LVM performed competitively with the iWMM, although it never significantly
outperformed the corresponding iWMM having the same latent dimension.

The sometimes large differences between performance in the D = 2 case and the
D = Q case of these two methods may be attributed to the fact that when the observed
dimension is high, many samples are required from the latent distribution in order to
produce accurate estimates of the posterior predictive density at the test locations. This
difficulty might be resolved by using a warping with back-constraints (Lawrence, 2006),
which would allow a more direct evaluation of the density at a given point in the observed
space.

Source code

Code to reproduce all the above figures and experiments is available at
http://www.github.com/duvenaud/warped-mixtures.

1.6 Conclusions

This chapter introduced a simple generative model of non-Gaussian density manifolds
which can infer nonparametric cluster shapes, low-dimensional representations of varying
dimension per cluster, and density estimates which smoothly follow the contours of each

http://www.github.com/duvenaud/warped-mixtures
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cluster. We also introduced a sampler for this model which integrates out both the
cluster parameters and the warping function exactly at each step.

Non-probabilistic methods such as spectral clustering can also produce nonparamet-
ric cluster shapes, but usually lack principled methods other than cross-validation for
setting kernel parameters, the number of clusters, and the implicit dimension of the
learned manifolds. This chapter showed that using a fully generative model allows these
model choices to be determined automatically.

1.7 Future work

More sophisticated latent density models

The Dirichlet process mixture of Gaussians in the latent space of the iWMM could eas-
ily be replaced by a more sophisticated density model, such as a hierarchical Dirichlet
process (Teh et al., 2006), or a Dirichlet diffusion tree (Neal, 2003). Another straight-
forward extension would be to make inference more scalable by using sparse Gaussian
processes (Quiñonero-Candela and Rasmussen, 2005; Snelson and Ghahramani, 2006)
or more advanced Hamiltonian Monte Carlo methods (Zhang and Sutton, 2011).

A finite cluster count model

Miller and Harrison (2013) note that the Dirichlet process assumes infinitely many clus-
ters, and that estimates of the number of clusters in a dataset based on Bayesian in-
ference are inconsistent under this model. They propose a consistent alternative which
still allows efficient Gibbs sampling, called the mixture of finite mixtures. Replacing
the Dirichlet process with a mixture of finite mixtures could improve the consistency
properties of the iWMM.

Semi-supervised learning

A straightforward extension of the iWMM would be a semi-supervised version of the
model. The iWMM could allow label propagation along regions of high density in the
latent space, even if the individual points in those regions are stretched far apart along
low-dimensional manifolds in the observed space. Another natural extension would be
to allow a separate warping for each cluster, producing a mixture of warped Gaussians,
rather than a warped mixture of Gaussians.
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Learning the topology of data manifolds

Some datasets naturally live on manifolds which are not simply-connected. For example,
motion capture data or video of a person walking in a circle can be said to live on a
torus, with one coordinate specifying the phase of the person’s walking cycle, and another
specifying how far around the circle they are.

As shown in ??, using structured kernels to specify the warping of a latent space gives
rise to interesting topologies on the observed density manifold. If a suitable method for
computing the marginal likelihood of a GP-LVM is available, an automatic search similar
to that described in section 1.7 may be able to automatically discover the topology of
the data manifold.
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