
for it. We could do the same for the validation data, using the split we performed at

the beginning of this book, or we could use random_split() instead.

Random Split

PyTorch’s random_split() method is an easy and familiar way of performing a

training-validation split.

So far, we’ve been using x_train_tensor and y_train_tensor, built out of the

original split in Numpy, to build the training dataset. Now, we’re going to be using

the full data from Numpy (x and y) to build a PyTorch Dataset first and only then

split the data using random_split().

Although there was a (funny) reasoning behind my choice of 42 as

a random seed, I’ll be using other numbers as seeds, mostly odd

numbers, just because I like them better :-)

Since v1.13, PyTorch’s random_split() method takes fractions as

arguments for the split (similarly to Scikit-Learn’s

train_test_split()). In the example that follows, it wouldn’t be

necessary to manually compute n_train and n_val anymore. We

could simply use the ratio directly (the fractions need to add up

to one):

ratio = .8
eps = 1e-16
train_data, val_data = random_split(
 dataset,
 [ratio, 1-ratio+eps]
)

You are probably wondering what that eps is doing there, right?

As it turns out, random_split() rounds down the number of

elements in each subset which may lead to somewhat

unexpected results (e.g. 19 data points in the validation set)

because of precision issues (1-ratio equals

0.19999999999999996). Adding eps to the remainder prevents

this from happening (as long as it’s added at the end of the

expression).

144 | Chapter 2: Rethinking the Training Loop

Run - Model Training V4

%run -i model_training/v4.py

After updating all parts, in sequence, our current state of

development is:

• Data Preparation V2

• Model Configuration V2

• Model Training V4

Let’s inspect the model’s state:

Checks model's parameters
print(model.state_dict())

Output

OrderedDict([('0.weight', tensor([[1.9419]], device='cuda:0')),
('0.bias', tensor([1.0244], device='cuda:0'))])

As of version 1.9, PyTorch offers a new context manager:

torch.inference_mode(). It also disables gradient computation

but it goes one step further and disables PyTorch’s internal view

tracking as well thus delivering better performance. In the

examples used in this book, however, the difference is negligible.

150 | Chapter 2: Rethinking the Training Loop

