
following imports:

import random
import numpy as np
from PIL import Image

import torch
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F

from torch.utils.data import DataLoader, Dataset, random_split, \
WeightedRandomSampler, SubsetRandomSampler
from torchvision.transforms.v2 import Compose, ToImage, Normalize,\
ToPILImage, RandomHorizontalFlip, Resize, ToDtype

import matplotlib.pyplot as plt
plt.style.use('fivethirtyeight')
%matplotlib inline

from data_generation.image_classification import generate_dataset
from stepbystep.v0 import StepByStep

Classifying Images

Enough already with simple data points: Let’s classify images! Although the data is

different, it is still a classification problem, so we will try to predict which class an

image belongs to.

First, let’s generate some images to work with (so we don’t have to use MNIST![41]).

52 | Chapter 4: Classifying Images

Torchvision

Torchvision is a package containing popular datasets, model architectures, and

common image transformations for computer vision.

Datasets

Many of the popular and common datasets are included out of the box, like MNIST,

ImageNet, CIFAR, and many more. All these datasets inherit from the original

Dataset class, so they can be naturally used with a DataLoader in exactly the same

way we’ve been doing so far.

There is one particular dataset we should pay more attention to: ImageFolder. This

is not a dataset itself, but a generic dataset that you can use with your own images,

provided that they are properly organized into sub-folders, with each sub-folder

named after a class and containing the corresponding images.


We’ll get back to it in Chapter 6 when we use Rock Paper Scissors

images to build a dataset using ImageFolder.

Models

PyTorch also includes the most popular model architectures, including their pre-

trained weights, for tackling many tasks like image classification, semantic

segmentation, object detection, instance segmentation, person keypoint detection,

and video classification.

Among the many models, we can find the well-known AlexNet, VGG (in its many

incarnations: VGG11, VGG13, VGG16, and VGG19), ResNet (also in many flavors:

ResNet18, ResNet34, ResNet50, ResNet101, ResNet152), and Inception V3.


In Chapter 7, we will load a pre-trained model and fine-tune it to

our particular task. In other words, we’ll use transfer learning.

Transforms

Torchvision has some common image transformations in its transforms module. It

is important to realize there are two main groups of transformations:

• Transformations for modifying the images

60 | Chapter 4: Classifying Images

• Transformations for converting between formats

While we can use ToPILImage() to convert from a tensor to an actual image, its

original counterpart, ToTensor(), has been deprecated since the introduction of

the second version (V2) of transforms in TorchVision v0.15. The conversion from

image to tensor has been split into two distinct operations:

• ToImage(): it converts a PIL image or Numpy array into a tensor of pixels, that

is, preserving the original pixel values and the integer type (unlike ToTensor()
which converted the values to float type and scaled them as well).

• ToDtype(): it converts the tensor to a different type and, optionally, scales the

values to the [0, 1] range (we can replicate former ToTensor() behavior by

calling ToDtype(torch.float32, scale=True) as suggested in the deprecation

message).

Let’s start by using ToImage() to convert a Numpy array, our example image (#7) in

HWC shape, to a PyTorch tensor:

image_tensor = ToImage()(example_hwc)
image_tensor, image_tensor.shape

Output

(Image([[[0, 255, 0, 0, 0],
 [0, 0, 255, 0, 0],
 [0, 0, 0, 255, 0],
 [0, 0, 0, 0, 255],
 [0, 0, 0, 0, 0]]], dtype=torch.uint8,),
 torch.Size([1, 5, 5]))

Cool, we got the expected CHW shape, and the pixel values are unchanged.

 "Wait a minute, it looks like this is still an image…"

The V2 of transforms also introduced wrappers for tensors representing images,

videos, boxes, etc. In the output above, Image is actually a tensor, it’s not a PIL

image:

Torchvision | 61

isinstance(image_tensor, torch.Tensor)

Output

True

See? It is really a tensor. Now, let’s scale its values:

example_tensor = ToDtype(torch.float32, scale=True)(image_tensor)
example_tensor

Output

Image([[[0., 1., 0., 0., 0.],
 [0., 0., 1., 0., 0.],
 [0., 0., 0., 1., 0.],
 [0., 0., 0., 0., 1.],
 [0., 0., 0., 0., 0.]]],)

That’s exactly the output the deprecated transformation, ToTensor(), would

produce. To make our lives easier, let’s define our own ToTensor() method that

combines the two transformations above and then use it to create a "tensorizer"

(for lack of a better name). We’ll use our example image (#7) in HWC shape once

again:

def ToTensor():
 return Compose([ToImage(), ToDtype(torch.float32, scale=True)])

tensorizer = ToTensor()
example_tensor = tensorizer(example_hwc)
example_tensor

62 | Chapter 4: Classifying Images

Output

Image([[[0., 1., 0., 0., 0.],
 [0., 0., 1., 0., 0.],
 [0., 0., 0., 1., 0.],
 [0., 0., 0., 0., 1.],
 [0., 0., 0., 0., 0.]]],)

There it is, the same image tensor as before. Moreover, we can "see" the same

diagonal line as in the original image. Perhaps you’re wondering what that

Compose() method is doing there, but don’t worry, we’ll get to it very soon.


"So, I convert PIL images and Numpy arrays to PyTorch tensors from

the start and it is all good?"

That’s pretty much it, yes. It wasn’t always like that, though, since earlier versions

of Torchvision implemented the interesting transformations for PIL images only.


"What do you mean by interesting transformations? What do they

do?"

These transformations modify the training images in many different ways:

rotating, shifting, flipping, cropping, blurring, zooming in, adding noise, or erasing

parts of it.

 "Why would I ever want to modify my training images like that?"

That’s what’s called data augmentation. It is a clever technique to expand a

dataset (augment it) without collecting more data. In general, deep learning

models are very data-hungry, requiring a massive number of examples to perform

well. But collecting large datasets is often challenging, and sometimes impossible.



Enter data augmentation: Rotate an image and pretend it is a

brand new image. Flip an image and do the same. Even better, do

it randomly during model training, so the model sees many

different versions of it.

Let’s say we have an image of a dog. If we rotate it, it is still a dog, but from a

different angle. Instead of taking two pictures of the dog, one from each angle, we

Torchvision | 63

take the picture we already have and use data augmentation to simulate many

different angles. Not quite the same as the real deal, but close enough to improve

our model’s performance. Needless to say, data augmentation is not suited for

every task: If you are trying to perform object detection—that is, detecting the

position of an object in a picture—you shouldn’t do anything that changes its

position, like flipping or shifting. Adding noise would still be fine, though.

This is just a brief overview of data augmentation techniques so you understand

the reasoning behind including this kind of transformation in a training set.


There is also "test-time augmentation," which can be used to

improve the performance of a model after it’s deployed. This is

more advanced, though, and beyond the scope of this book.

The bottom line is, these transformations are important. To more easily visualize

the resulting images, we may use ToPILImage() to convert a tensor to a PIL image:

example_img = ToPILImage()(example_tensor)
print(type(example_img))

Output

<class 'PIL.Image.Image'>

Notice that it is a real PIL image, not a Numpy array anymore, so we can use

Matplotlib to visualize it:

plt.imshow(example_img, cmap='gray')
plt.grid(False)

Figure 4.2 - Image #7

64 | Chapter 4: Classifying Images


ToPILImage() can take either a tensor in PyTorch shape (CHW)

or a Numpy array in PIL shape (HWC) as inputs.

Transforms on Images

These transforms include the typical things you’d like to do with an image for the

purpose of data augmentation: Resize(), CenterCrop(), GrayScale(),

RandomHorizontalFlip(), and RandomRotation(), to name a few. Let’s use our

example image above and try some random horizontal flipping. But, just to make

sure we flip it, let’s ditch the randomness and make it flip 100% of the time:

flipper = RandomHorizontalFlip(p=1.0)
flipped_img = flipper(example_img)

OK, the image should be flipped horizontally now. Let’s check it out:

plt.imshow(flipped_img, cmap='gray')
plt.grid(False)

Figure 4.3 - Flipped image #7

Tensor-only Transforms

Some transforms take only tensors (but not PIL images) as inputs, such as

LinearTransformation(), Normalize(), RandomErasing() (although I believe this

one was a better fit for the other group of transforms), and ToDtype(), to name a

few.

First, let’s transform our flipped image to a tensor using the tensorizer() we’ve

already created:

Torchvision | 65

img_tensor = tensorizer(flipped_img)
img_tensor

Output

Image([[[0., 0., 0., 1., 0.],
 [0., 0., 1., 0., 0.],
 [0., 1., 0., 0., 0.],
 [1., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.]]],)

Normalize Transform

Now we can apply one of the most common transformations: Normalize(). In its

documentation, we get a brief description of this transformation:

Normalize a tensor image with mean and standard deviation. Given mean:

(mean[1],...,mean[n]) and std: (std[1],..,std[n]) for n channels, this

transform will normalize each channel of the input torch.*Tensor i.e.,

output[channel] = (input[channel] - mean[channel]) / std[channel]

Does it look familiar? That’s the tensor-based version of the StandardScaler
commonly used to standardize features, operating independently on each image

channel.

 "Why is it called normalize then?"

Unfortunately, there are many names for the procedure that involves subtracting

the mean value first, and then dividing the result by the standard deviation. In my

opinion, it should always be called standardization, as in Scikit-Learn, since

"normalizing" means something else (transforming the features such that every

data point has a unit norm). But, in many cases, and Torchvision is one of those

cases, the standardization procedure is called normalization (coming from normal

distribution, not from the unit norm).

66 | Chapter 4: Classifying Images



Regardless of its name, standardization or normalization, this

transformation modifies the range of values of a given feature or

set of features. Having features in well-behaved ranges greatly

improves the performance of gradient descent. Moreover, as

we’ll see shortly, it is better to have features with symmetrical

ranges of values (from -1 to 1, for example) when training neural

networks.

By definition, pixel values can only be positive, usually in the range [0, 255]. We

see our image tensor has values that are in the [0, 1] range, and that we have only

one channel. We can use the Normalize() transform to have its values mapped to a

symmetrical range.

But, instead of computing mean and standard deviation first, let’s set the mean to

0.5 and set the standard deviation to 0.5 as well.

 "Wait a moment … why?!"

By doing so, we’ll effectively be performing a min-max scaling (like Scikit-Learn’s

MinMaxScaler) such that the resulting range is [-1, 1]. It is easy to see why, if we

compute the resulting values for the extremes of our original range [0, 1].

Normalizer

There we go: The resulting range is [-1, 1]. Actually, we could set it to anything we

want. Had we chosen a standard deviation of 0.25, we would get a [-2, 2] range

instead. If we had chosen a mean value different than the midpoint of the original

range, we would end up with an asymmetrical range as a result.

Now, if we had taken the trouble of actually computing the real mean and

standard deviation of the training data, we would have achieved an actual

standardization; that is, our training data would have zero mean and unit standard

deviation.

For now, let’s stick with the lazy approach and use the Normalize() transformation

Torchvision | 67

as a min-max scaler to the [-1, 1] range:

normalizer = Normalize(mean=(.5,), std=(.5,))
normalized_tensor = normalizer(img_tensor)
normalized_tensor

Output

Image([[[-1., -1., -1., 1., -1.],
 [-1., -1., 1., -1., -1.],
 [-1., 1., -1., -1., -1.],
 [1., -1., -1., -1., -1.],
 [-1., -1., -1., -1., -1.]]],)

Notice that the transformation takes two tuples as arguments, one tuple for the

means, another one for the standard deviations. Each tuple has as many values as

channels in the image. Since we have single-channel images, our tuples have a

single element each.

It is also easy to see that we achieved the desired range of values: The

transformation simply converted zeros into negative ones and preserved the

original ones. Good for illustrating the concept, but surely not exciting.


In Chapter 6, we’ll use Normalize() to standardize real (three-

channel) images.

Composing Transforms

No one expects you to run these transformations one by one; that’s what

Compose() can be used for: composing several transformations into a single, big,

composed transformation. Also, I guess I could have composed a better sentence to

explain it (pun intended).

It is quite simple, actually: Just line up all desired transformations in a list. This

works pretty much the same way as a pipeline in Scikit-Learn. We only need to

make sure the output of a given transformation is an appropriate input for the

next one.

Let’s compose a new transformation using the following list of transformations:

68 | Chapter 4: Classifying Images

• First, let’s flip an image using RandomHorizontalFlip().

• Next, let’s perform some min-max scaling using Normalize().

In code, the sequence above looks like this:

composer = Compose([RandomHorizontalFlip(p=1.0),
 Normalize(mean=(.5,), std=(.5,))])

If we use the composer above to transform the example tensor, we should get the

same normalized tensor as output. Let’s double-check it:

composed_tensor = composer(example_tensor)
(composed_tensor == normalized_tensor).all()

Output

tensor(True)

Great! We can use a single composed transformation from now on!

Notice that we have not used the original example, a Numpy array already in

PyTorch shape (CHW), as input. To understand why, let’s briefly compare it to the

example_tensor we used as the actual input (a PyTorch tensor, also in CHW shape):

print(example)
print(example_tensor)

Torchvision | 69

Output

[[[0 255 0 0 0]
 [0 0 255 0 0]
 [0 0 0 255 0]
 [0 0 0 0 255]
 [0 0 0 0 0]]]
Image([[[0., 1., 0., 0., 0.],
 [0., 0., 1., 0., 0.],
 [0., 0., 0., 1., 0.],
 [0., 0., 0., 0., 1.],
 [0., 0., 0., 0., 0.]]],)

As you can see, the only differences between them are the scale (255 vs one) and

the type (integer and float).

We can convert the former into the latter using a one-liner:

example_tensor = torch.as_tensor(example / 255).float()

Moreover, we can use this line of code to convert our whole Numpy dataset into

tensors so they become an appropriate input to our composed transformation.

Data Preparation

The first step of data preparation is to convert our features and labels from Numpy

arrays to PyTorch tensors:

Builds tensors from numpy arrays BEFORE split
x_tensor = torch.as_tensor(images / 255).float()
y_tensor = torch.as_tensor(labels.reshape(-1, 1)).float()

The only difference is that we scaled the images to get them into the expected [0.0,

1.0] range.

Dataset Transforms

Next, we use both tensors to build a Dataset, but not a simple TensorDataset. We’ll

build our own custom dataset that is capable of handling transformations. Its code

70 | Chapter 4: Classifying Images

is actually quite simple:

Transformed Dataset

 1 class TransformedTensorDataset(Dataset):
 2 def __init__(self, x, y, transform=None):
 3 self.x = x
 4 self.y = y
 5 self.transform = transform
 6
 7 def __getitem__(self, index):
 8 x = self.x[index]
 9
10 if self.transform:
11 x = self.transform(x)
12
13 return x, self.y[index]
14
15 def __len__(self):
16 return len(self.x)

It takes three arguments: a tensor for features (x), another tensor for labels (y),

and an optional transformation. These arguments are then stored as attributes of

the class. Of course, if no transformation is given, it will behave similarly to a regular

TensorDataset.

The main difference is in the __getitem__() method: Instead of simply returning

the elements corresponding to a given index in both tensors, it transforms the

features, if a transformation is defined.

 "Do I have to create a custom dataset to perform transformations?"

Not necessarily, no. The ImageFolder dataset, which you’ll likely use for handling

real images, handles transformations out of the box. The mechanism is essentially

the same: If a transformation is defined, the dataset applies it to the images. The

purpose of using a custom dataset here is to illustrate this mechanism.

So, let’s redefine our composed transformations (so it actually flips the image

randomly instead of every time) and create our dataset:

Data Preparation | 71

composer = Compose([RandomHorizontalFlip(p=0.5),
 Normalize(mean=(.5,), std=(.5,))])

dataset = TransformedTensorDataset(x_tensor, y_tensor, composer)

Cool! But we still have to split the dataset as usual. But we’ll do it a bit differently

this time.

SubsetRandomSampler

Typically, when creating a data loader for the training set, we set its argument

shuffle to True (since shuffling data points, in most cases, improves the

performance of gradient descent). This is a very convenient way of shuffling the

data that is implemented using a RandomSampler under the hood. Every time a new

mini-batch is requested, it samples some indices randomly, and the data points

corresponding to those indices are returned.

Even when there is no shuffling involved, as in the data loader used for the

validation set, a SequentialSampler is used. In this case, whenever a new mini-

batch is requested, this sampler simply returns a sequence of indices, in order, and

the data points corresponding to those indices are returned.

In a nutshell, a sampler can be used to return sequences of indices to be used for

data loading. In the two examples above, each sampler would take a Dataset as an

argument. But not all samplers are like that.

The SubsetRandomSampler samples indices from a list, given as argument, without

replacement. As in the other samplers, these indices are used to load data from a

dataset. If an index is not on the list, the corresponding data point will never be

used.

So, if we have two disjoint lists of indices (that is, no intersection between them,

and they cover all elements if added together), we can create two samplers to

effectively split a dataset. Let’s put this into code to make it more clear.

First, we need to generate two shuffled lists of indices, one corresponding to the

points in the training set, the other to the points in the validation set. We have

done this already using Numpy. Let’s make it a bit more interesting and useful this

time by assembling Helper Function #4, aptly named index_splitter(), to split

the indices:

72 | Chapter 4: Classifying Images

Helper Function #4

 1 def index_splitter(n, splits, seed=13):
 2 idx = torch.arange(n)
 3 # Makes the split argument a tensor
 4 splits_tensor = torch.as_tensor(splits)
 5 total = splits_tensor.sum().float()
 6 # If the total does not add up to one
 7 # divide every number by the total
 8 if not total.isclose(torch.ones(1)[0]):
 9 splits_tensor = splits_tensor / total
10 # Uses PyTorch random_split to split the indices
11 torch.manual_seed(seed)
12 return random_split(idx, splits_tensor)

The function above takes three arguments:

• n: The number of data points to generate indices for.

• splits: A list of values representing the relative weights of the split sizes.

• seed: A random seed to ensure reproducibility.

It always bugged me a little that PyTorch’s random_split() needed a list with the

exact number of data points in each split. Then, since version 1.13, it started

accepting proportions, as long as they add up to one. I still wish I could give it any

kind of proportions, like [80, 20] or even [4, 1], and then it would figure out how

many points go into each split on its own. That’s the main reason

index_splitter() exists: We can give it relative weights, even if they do not add up

to one, and it figures the number of points out.

Sure, it still calls random_split() to split a tensor containing a list of indices (which

can also be used to split Dataset objects). The resulting splits are Subset objects:

train_idx, val_idx = index_splitter(len(x_tensor), [80, 20])
train_idx

Output

<torch.utils.data.dataset.Subset at 0x7fc6e7944290>

Data Preparation | 73

Helper Function #4

 1 def index_splitter(n, splits, seed=13):
 2 idx = torch.arange(n)
 3 # Makes the split argument a tensor
 4 splits_tensor = torch.as_tensor(splits)
 5 total = splits_tensor.sum().float()
 6 # If the total does not add up to one
 7 # divide every number by the total
 8 if not total.isclose(torch.ones(1)[0]):
 9 splits_tensor = splits_tensor / total
10 # Uses PyTorch random_split to split the indices
11 torch.manual_seed(seed)
12 return random_split(idx, splits_tensor)

Helper Function #5

 1 def make_balanced_sampler(y):
 2 # Computes weights for compensating imbalanced classes
 3 classes, counts = y.unique(return_counts=True)
 4 weights = 1.0 / counts.float()
 5 sample_weights = weights[y.squeeze().long()]
 6 # Builds sampler with compute weights
 7 generator = torch.Generator()
 8 sampler = WeightedRandomSampler(
 9 weights=sample_weights,
10 num_samples=len(sample_weights),
11 generator=generator,
12 replacement=True
13)
14 return sampler

114 | Chapter 4: Classifying Images

following imports:

import random
import numpy as np
from PIL import Image

import torch
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F

from torch.utils.data import DataLoader, Dataset
from torchvision.transforms.v2 import Compose, Normalize

from data_generation.image_classification import generate_dataset
from helpers import index_splitter, make_balanced_sampler
from stepbystep.v1 import StepByStep

Convolutions

In Chapter 4, we talked about pixels as features. We considered each pixel as an

individual, independent feature, thus losing information while flattening the

image. We also talked about weights as pixels and how we could interpret the

weights used by a neuron as an image, or, more specifically, a filter.

Now, it is time to take that one step further and learn about convolutions. A

convolution is "a mathematical operation on two functions (f and g) that produces a

third function (f * g) expressing how the shape of one is modified by the other."[52] In

image processing, a convolution matrix is also called a kernel or filter. Typical

image processing operations—like blurring, sharpening, edge detection, and more, are

accomplished by performing a convolution between a kernel and an image.

Filter / Kernel

Simply put, one defines a filter (or kernel, but we’re sticking with "filter" here) and

applies this filter to an image (that is, convolving an image). Usually, the filters are

small square matrices. The convolution itself is performed by applying the filter on

the image repeatedly. Let’s try a concrete example to make it more clear.

134 | Chapter 5: Convolutions


Since the softmax is computed using odds ratios instead of log

odds ratios (logits), we need to exponentiate the logits!

Equation 5.5 - Logit and odds ratio

The softmax formula itself is quite simple:

Equation 5.6 - Softmax function

In the equation above, C stands for the number of classes and i corresponds to the

index of a particular class. In our example, we have three classes, so our model

needs to output three logits (z0, z1, z2). Applying softmax to these logits, we would

get the following:

Equation 5.7 - Softmax for a three-class classification problem

Simple, right? Let’s see it in code now. Assuming our model produces this tensor

containing three logits:

logits = torch.tensor([1.3863, 0.0000, -0.6931])

We exponentiate the logits to get the corresponding odds ratios:

odds_ratios = torch.exp(logits)
odds_ratios

A Multiclass Classification Problem | 165

Imports

For the sake of organization, all libraries needed throughout the code used in any

given chapter are imported at its very beginning. For this chapter, we’ll need the

following imports:

import numpy as np
from PIL import Image
from copy import deepcopy

import torch
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F

from torch.utils.data import DataLoader, TensorDataset, random_split
from torchvision.transforms.v2 import Compose, ToImage, Normalize, \
ToPILImage, Resize, ToDtype
from torchvision.datasets import ImageFolder
from torch.optim.lr_scheduler import StepLR, ReduceLROnPlateau, \
MultiStepLR, CyclicLR, LambdaLR

from stepbystep.v2 import StepByStep
from data_generation.rps import download_rps

Rock, Paper, Scissors…



…Lizard, Spock! The "extended" version of the game was

displayed in the "The Lizard-Spock Expansion" episode of The Big

Bang Theory series, and was developed by Sam Kass and Karen

Bryla. To learn more about the extended version, visit Sam Kass'

page[59] about the game.

Trivia aside, I guess you’re probably a bit bored with the image dataset we’ve been

using so far, right? Well, at least, it wasn’t MNIST! But it is time to use a different

dataset: Rock Paper Scissors (unfortunately, no lizard or Spock).

206 | Chapter 6: Rock, Paper, Scissors

Rock Paper Scissors Dataset



This dataset was created by Laurence Moroney (lmoroney @

gmail.com / laurencemoroney.com) and can be found on his site:

Rock Paper Scissors Dataset (https://bit.ly/3F6qp88).

The dataset is licensed as Creative Commons (CC BY 2.0). No

changes were made to the dataset.

The dataset contains 2,892 images of diverse hands in the typical rock, paper, and

scissors poses against a white background. This is a synthetic dataset as well since

the images were generated using CGI techniques. Each image is 300x300 pixels in

size and has four channels (RGBA).



RGBA stands for Red-Green-Blue-Alpha, which is the traditional

RGB color model together with an alpha channel indicating how

opaque each pixel is. Don’t mind the alpha channel, it will be

removed later.

The training set (2,520 images) can be downloaded at

https://storage.googleapis.com/download.tensorflow.org/data/rps.zip and the test set

(372 images) can be downloaded at https://storage.googleapis.com/

download.tensorflow.org/data/rps-test-set.zip. In the notebook, the datasets will be

downloaded and extracted to rps and rps-test-set folders, respectively.

Here are some examples of its images, one for each pose.

Figure 6.1 - Rock, paper, scissors

There are three classes once again, so we can use what we learned in Chapter 5.

Rock, Paper, Scissors… | 207

https://bit.ly/3F6qp88
https://storage.googleapis.com/download.tensorflow.org/data/rps.zip
https://storage.googleapis.com/download.tensorflow.org/data/rps-test-set.zip
https://storage.googleapis.com/download.tensorflow.org/data/rps-test-set.zip

Data Preparation

The data preparation step will be a bit more demanding this time since we’ll be

standardizing the images (for real this time—no min-max scaling anymore!).

Besides, we can use the ImageFolder dataset now.

ImageFolder

This is not a dataset itself, but a generic dataset that you can use with your own

images provided that they are properly organized into sub-folders, with each sub-

folder named after a class and containing the corresponding images.

The Rock Paper Scissors dataset is organized like that: Inside the rps folder of the

training set, there are three sub-folders named after the three classes (rock, paper,

and scissors).

rps/paper/paper01-000.png
rps/paper/paper01-001.png

rps/rock/rock01-000.png
rps/rock/rock01-001.png

rps/scissors/scissors01-000.png
rps/scissors/scissors01-001.png

The dataset is also perfectly balanced, with each sub-folder containing 840 images

of its particular class.

The ImageFolder dataset requires only the root folder, which is the rps folder in

our case. But it can take another four optional arguments:

• transform: You know that one already; it tells the dataset which

transformations should be applied to each image, like the data augmentation

transformations we’ve seen in previous chapters.

• target_transform: So far, our targets have always been integers, so this

argument wouldn’t make sense; it starts making sense if your target is also an

image (for instance, in a segmentation task).

• loader: A function that loads an image from a given path, in case you’re using

weird or atypical formats that cannot be handled by PIL.

208 | Chapter 6: Rock, Paper, Scissors

• is_valid_file: A function that checks if a file is corrupted or not.

Let’s create a dataset then:

Temporary Dataset

1 temp_transform = Compose([Resize(28), ToImage(),
2 ToDtype(torch.float32, scale=True)])
3 temp_dataset = ImageFolder(root='rps', transform=temp_transform)

We’re using only the transform optional argument here, and keeping

transformations to a minimum. First, images are resized to 28x28 pixels (and

automatically transformed to the RGB color model by the PIL loader, thus losing

the alpha channel), and then are converted to PyTorch tensors. Smaller images will

make our models faster to train, and more "CPU-friendly." Let’s take the first image

of the dataset and check its shape and corresponding label:

temp_dataset[0][0].shape, temp_dataset[0][1]

Output

(torch.Size([3, 28, 28]), 0)

Perfect!

 "Wait, where is the standardization you promised?"

Standardization

To standardize data points, we need to learn their mean and standard deviation

first. What’s the mean pixel value of our rock paper scissors images? And standard

deviation? To compute these, we need to load the data. The good thing is, we have

a (temporary) dataset with the resized images already! We’re only missing a data

loader.

Temporary DataLoader

1 temp_loader = DataLoader(temp_dataset, batch_size=16)

Data Preparation | 209

The Real Datasets

It’s time to build our real datasets using the Normalize() transform with the

statistics we learned from the (temporary) training set. The data preparation step

looks like this:

Data Preparation

 1 composer = Compose([Resize(28),
 2 ToImage(),
 3 ToDtype(torch.float32, scale=True),
 4 normalizer])
 5
 6 train_data = ImageFolder(root='rps', transform=composer)
 7 val_data = ImageFolder(root='rps-test-set', transform=composer)
 8
 9 # Builds a loader of each set
10 train_loader = DataLoader(
11 train_data, batch_size=16, shuffle=True
12)
13 val_loader = DataLoader(val_data, batch_size=16)

Even though the second part of the dataset was named rps-test-set by its author,

we’ll be using it as our validation dataset. Since each dataset, both training and

validation, corresponds to a different folder, there is no need to split anything.

Next, we use both datasets to create the corresponding data loaders, remembering

to shuffle the training set.

Let’s take a peek at some images from the real training set.

Figure 6.2 - Training set (normalized)

Data Preparation | 213

Data Preparation

 1 # Loads temporary dataset to build normalizer
 2 temp_transform = Compose([Resize(28), ToImage(),
 3 ToDtype(torch.float32, scale=True)])
 4 temp_dataset = ImageFolder(root='rps', transform=temp_transform)
 5 temp_loader = DataLoader(temp_dataset, batch_size=16)
 6 normalizer = StepByStep.make_normalizer(temp_loader)
 7
 8 # Builds transformation, datasets, and data loaders
 9 composer = Compose([Resize(28), ToImage(),
10 ToDtype(torch.float32, scale=True),
11 normalizer])
12 train_data = ImageFolder(root='rps', transform=composer)
13 val_data = ImageFolder(root='rps-test-set', transform=composer)
14 # Builds a loader of each set
15 train_loader = DataLoader(
16 train_data, batch_size=16, shuffle=True
17)
18 val_loader = DataLoader(val_data, batch_size=16)

In the model configuration part, we can use SGD with Nesterov’s momentum and a

higher dropout probability to increase regularization:

Model Configuration

1 torch.manual_seed(13)
2 model_cnn3 = CNN2(n_feature=5, p=0.5)
3 multi_loss_fn = nn.CrossEntropyLoss(reduction='mean')
4 optimizer_cnn3 = optim.SGD(
5 model_cnn3.parameters(), lr=1e-3, momentum=0.9, nesterov=True
6)

Before the actual training, we can run an LR Range Test:

Learning Rate Range Test

1 sbs_cnn3 = StepByStep(model_cnn3, multi_loss_fn, optimizer_cnn3)
2 tracking, fig = sbs_cnn3.lr_range_test(
3 train_loader, end_lr=2e-1, num_iter=100
4)

282 | Chapter 6: Rock, Paper, Scissors

