
Figure 9.3 - Sequence dataset

The corners show the order in which they were drawn. In the third square, the

drawing started at the top-right corner (corresponding to the blue C corner) and

followed a clockwise direction (corresponding to the CDAB sequence). The source

sequence for that square would include corners C and D (1 and 2), while the target

sequence would include corners A and B (3 and 4), in that order.

In order to output a sequence we need a more complex architecture; we need an…

Encoder-Decoder Architecture

The encoder-decoder is a combination of two models: the encoder and the

decoder.

Encoder


The encoder’s goal is to generate a representation of the source

sequence; that is, to encode it.

 "Wait, we’ve done that already, right?"

Absolutely! That’s what the recurrent layers did: They generated a final hidden

state that was a representation of the input sequence. Now you know why I

insisted so much on this idea and repeated it over and over again in Chapter 8 :-)

Encoder-Decoder Architecture | 155



At evaluation / prediction time we only have the source sequence, and, in our

example, we use its last element as input for the decoder:

inputs = source_seq[:, -1:]
trg_masks = subsequent_mask(1)
out = decself(inputs, target_mask=trg_masks)
out

Output

tensor([[[0.4132, 0.3728]]], grad_fn=<AddBackward0>)

The mask is not actually masking anything in this case, and we get a prediction for

the coordinates of x2 as expected. Previously, this prediction would have been used

as the next input, but things are a bit different now.


The self-attention decoder expects the full sequence as "query,"

so we concatenate the prediction to the previous "query."

inputs = torch.cat([inputs, out[:, -1:, :]], dim=-2)
inputs

Output

tensor([[[-1.0000,  1.0000],
         [ 0.4132,  0.3728]]], grad_fn=<CatBackward>)

Now there are two data points for querying the decoder, so we adjust the mask

accordingly:

Equation 9.19 - Decoder’s (masked) attention scores for the second target

Self-Attention | 221




The mask guarantees that the predicted x2 (in the first step)

won’t change the predicted x2 (in the second step), because

predictions are made based on past data points only.

trg_masks = subsequent_mask(2)
out = decself(inputs, target_mask=trg_masks)
out

Output

tensor([[[0.4137, 0.3728],
         [0.4132, 0.3728]]], grad_fn=<AddBackward0>)

These are the predicted coordinates of both x2 and x3. They are very close to each

other, but that’s just because we’re using an untrained model to illustrate the

mechanics of using target masks for prediction. The last prediction is, once again,

concatenated to the previous "query."

inputs = torch.cat([inputs, out[:, -1:, :]], dim=-2)
inputs

Output

tensor([[[-1.0000,  1.0000],
         [ 0.4132,  0.3728],
         [ 0.4132,  0.3728]]], grad_fn=<CatBackward>)

But, since we’re actually done with the predictions (the desired target sequence has

a length of two), we simply exclude the first data point in the query (the one coming

from the source sequence), and are left with the predicted target sequence:

inputs[:, 1:]

222 | Chapter 9 — Part II: Sequence-to-Sequence



On the right, the encoder uses a norm-first wrapper, and its output (the encoder’s

states) is given by:

Equation 10.6 - Encoder’s output: norm-first

The norm-first wrapper allows the inputs to flow unimpeded (the inputs aren’t

normalized) all the way to the top while adding the results of each "sub-layer" along

the way (the last normalization of norm-first happens outside of the "sub-layers," so

it’s not included in the equation).

 "Which one is best?"

There is no straight answer to this question. It actually reminds me of the

discussions about placing the batch normalization layer before or after the

activation function. Now, once again, there is no "right" and "wrong," and the order

of the different components is not etched in stone.

In PyTorch, the encoder "layer" is implemented as

nn.TransformerEncoderLayer, and its constructor method expects the

following arguments (d_model, nhead, dim_feedforward, and dropout) and an

optional activation function for the feed-forward network, similar to our

own EncoderLayer. Its forward() method has three main arguments:

• src: the source sequence; that’s the query argument in our class



IMPORTANT: PyTorch’s Transformer layers use

sequence-first shapes for their inputs (L, N, F) by default

but, since v1.9, there’s a batch_first argument you can

set.

• src_key_padding_mask: the mask for padded data points; that’s the mask
argument in our class

• src_mask: This mask is used to purposefully hide some of the inputs in

the source sequence—we’re not doing that, so our class doesn’t have a

corresponding argument—a technique that can be used for training

language models (more on that in Chapter 11).

278 | Chapter 10: Transform and Roll Out



In PyTorch, the decoder "layer" is implemented as

nn.TransformerDecoderLayer, and its constructor method expects the

following arguments (d_model, nhead, dim_feedforward, and dropout) and an

optional activation function for the feed-forward network.

Its forward() method, though, has six main arguments. Three of them are

equivalent to those arguments in our own forward() method:

• tgt: the target sequence; that’s the query argument in our class

(required)



IMPORTANT: PyTorch’s Transformer layers use

sequence-first shapes for their inputs (L, N, F) by default

but, since v1.9, there’s a batch_first argument you can

set.

• memory_key_padding_mask: the mask for padded data points in the

source sequence; that’s the source_mask argument in our class

(optional), and the same as the src_key_padding_mask of

nn.TransformerEncoderLayer

• tgt_mask: the mask used to avoid cheating; that’s the target_mask
argument in our class (although quite important, this argument is still

considered optional)

Then, there is the other required argument, which corresponds to the

states argument of the init_keys() method in our own class:

• memory: the encoded states of the source sequence as returned by the

encoder

The remaining two arguments do not exist in our own class:

• memory_mask: This mask is used to purposefully hide some of the

encoded states used by the decoder.

• tgt_key_padding_mask: This mask is used for padded data points in the

target sequence.

Transformer Decoder | 285



• First, and most important, PyTorch implements norm-last "sub-layer"

wrappers by default, normalizing the output of each "sub-layer." You may

switch it to norm-first using the norm_first argument introduced in version

1.10, though.

Figure 10.17 - "Sub-Layer"—norm-last vs norm-first

• It does not implement positional encoding, the final linear layer, or the

projection layer, so we have to handle those ourselves.

Let’s take a look at its constructor and forward() methods. The constructor

expects many arguments because PyTorch’s Transformer actually builds both

encoder and decoder by itself:

• d_model: the number of (projected) features, that is, the dimensionality of the

model (remember, this number will be split among the attention heads, so it

must be a multiple of the number of heads; its default value is 512)

• nhead: the number of attention heads in each attention mechanism (default is

eight, so each attention head gets 64 out of the 512 dimensions)

• num_encoder_layers: the number of "layers" in the encoder (the Transformer

uses six layers by default)

• num_decoder_layers: the number of "layers" in the decoder (the Transformer

uses six layers by default)

• dim_feedforward: the number of units in the hidden layer of the feed-forward

network (default is 2048)

The PyTorch Transformer | 305



• dropout: the probability of dropping out inputs (default is 0.1)

• activation: the activation function to be used in the feed-forward network

(ReLU by default)

• batch_first: It switches from sequence-first (L, N, F) to batch-first (N, L, F)

shapes. This argument was introduced in PyTorch 1.9.

• norm_first: It switches from norm-last to norm-first "sub-layers." This

argument was introduced in PyTorch 1.10.


It is also possible to use a custom encoder or decoder by setting

the corresponding arguments: custom_encoder and

custom_decoder.

The forward() method expects both sequences, source and target, and all sorts of

(optional) masks.

There are masks for padded data points:

• src_key_padding_mask: the mask for padded data points in the source

sequence

• memory_key_padding_mask: It’s also a mask for padded data points in the

source sequence and should be, in most cases, the same as

src_key_padding_mask.

• tgt_key_padding_mask: This mask is used for padded data points in the target

sequence.

And there are masks to purposefully hide some of the inputs:

• src_mask: It hides inputs in the source sequence, this can be used for training

language models (more on that in Chapter 11).

• tgt_mask: That’s the mask used to avoid cheating (although quite important,

this argument is still considered optional).

◦ The Transformer has a method named

generate_square_subsequent_mask() that generates the appropriate mask

given the size (length) of the sequence.

• memory_mask: It hides encoded states used by the decoder.

Also, notice that there is no memory argument anymore: The encoded states are

306 | Chapter 10: Transform and Roll Out



handled internally by the Transformer and fed directly to the decoder part.

In our own code, we’ll be replacing the two former methods, encode() and

decode(), with a single one, encode_decode(), that calls the Transformer itself and

runs its output through the last linear layer to transform it into coordinates. The

Transformer must be configured to use batch-first shapes to make it work.

def encode_decode(self, source, target,
                  source_mask=None, target_mask=None):
    # Projections
    src = self.preprocess(source)
    tgt = self.preprocess(target)

    out = self.transf(src, tgt,
                      src_key_padding_mask=source_mask,
                      tgt_mask=target_mask)

    # Linear
    out = self.linear(out) # N, L, F
    return out

By the way, we’re keeping the masks to a minimum for the sake of simplicity: Only

src_key_padding_mask and tgt_mask are used.

Moreover, we’re implementing a preprocess() method that takes an input

sequence and

• projects the original features into the model dimensionality;

• adds positional encoding and

• (layer) normalizes the result (remember that PyTorch’s norm-last default does

not normalize the inputs, so we have to do it ourselves).

The PyTorch Transformer | 307



The full code looks like this:

Transformer

 1 class TransformerModel(nn.Module):
 2     def __init__(self, transformer,
 3                  input_len, target_len, n_features):
 4         super().__init__()
 5         self.transf = transformer
 6         self.input_len = input_len
 7         self.target_len = target_len
 8         self.trg_masks = \
 9             self.transf.generate_square_subsequent_mask(
10                 self.target_len
11             )
12         self.n_features = n_features
13         self.proj = nn.Linear(n_features, self.transf.d_model) ①
14         self.linear = nn.Linear(self.transf.d_model,           ②
15                                 n_features)
16 
17         max_len = max(self.input_len, self.target_len)
18         self.pe = PositionalEncoding(max_len,
19                                      self.transf.d_model)      ③
20         self.norm = nn.LayerNorm(self.transf.d_model)          ③
21 
22     def preprocess(self, seq):
23         seq_proj = self.proj(seq)                              ①
24         seq_enc = self.pe(seq_proj)                            ③
25         return self.norm(seq_enc)                              ③
26 
27     def encode_decode(self, source, target,
28                       source_mask=None, target_mask=None):
29         # Projections
30         src = self.preprocess(source)                          ③
31         tgt = self.preprocess(target)                          ③
32 
33         out = self.transf(src, tgt,
34                           src_key_padding_mask=source_mask,
35                           tgt_mask=target_mask)
36 
37         # Linear
38         out = self.linear(out) # N, L, F                       ②

308 | Chapter 10: Transform and Roll Out



39         return out
40 
41     def predict(self, source_seq, source_mask=None):
42         inputs = source_seq[:, -1:]
43         for i in range(self.target_len):
44             out = self.encode_decode(
45                 source_seq, inputs,
46                 source_mask=source_mask,
47                 target_mask=self.trg_masks[:i+1, :i+1]
48             )
49             out = torch.cat([inputs, out[:, -1:, :]], dim=-2)
50             inputs = out.detach()
51         outputs = out[:, 1:, :]
52         return outputs
53 
54     def forward(self, X, source_mask=None):
55         self.trg_masks = self.trg_masks.type_as(X)
56         source_seq = X[:, :self.input_len, :]
57 
58         if self.training:
59             shifted_target_seq = X[:, self.input_len-1:-1, :]
60             outputs = self.encode_decode(
61                 source_seq, shifted_target_seq,
62                 source_mask=source_mask,
63                 target_mask=self.trg_masks
64             )
65         else:
66             outputs = self.predict(source_seq, source_mask)
67 
68         return outputs

① Projecting features to model dimensionality

② Final linear transformation from model to feature space

③ Adding positional encoding and normalizing inputs

Its constructor takes an instance of the nn.Transformer class followed by the

typical sequence lengths and the number of features (so it can map the predicted

sequence back to our feature space; that is, to coordinates). Both predict() and

forward() methods are roughly the same, but they call the encode_decode()
method now.

The PyTorch Transformer | 309



Model Configuration & Training

Let’s train PyTorch’s Transformer! We start by creating an instance of it to use as

an argument of our TransformerModel class, followed by the same initialization

scheme as before, and the typical training procedure:

Model Configuration

 1 torch.manual_seed(42)
 2 transformer = nn.Transformer(d_model=6,
 3                              nhead=3,
 4                              num_encoder_layers=1,
 5                              num_decoder_layers=1,
 6                              dim_feedforward=20,
 7                              dropout=0.1,
 8                              batch_first=True)
 9 model_transformer = TransformerModel(transformer, input_len=2,
10                                      target_len=2, n_features=2)
11 loss = nn.MSELoss()
12 optimizer = torch.optim.Adam(model_transformer.parameters(),
13                              lr=0.01)

Weight Initialization

1 for p in model_transformer.parameters():
2     if p.dim() > 1:
3         nn.init.xavier_uniform_(p)

Model Training

1 sbs_seq_transformer = StepByStep(
2     model_transformer, loss, optimizer
3 )
4 sbs_seq_transformer.set_loaders(train_loader, test_loader)
5 sbs_seq_transformer.train(50)

fig = sbs_seq_transformer.plot_losses()

310 | Chapter 10: Transform and Roll Out



Vision Transformer

 1 class ViT(nn.Module):
 2     def __init__(self, encoder, img_size,
 3                  in_channels, patch_size, n_outputs):
 4         super().__init__()
 5         self.d_model = encoder.d_model
 6         self.n_outputs = n_outputs
 7         self.encoder = encoder
 8         self.mlp = nn.Linear(encoder.d_model, n_outputs)
 9 
10         self.embed = PatchEmbed(img_size, patch_size,
11                                 in_channels, encoder.d_model)
12         self.cls_token = nn.Parameter(
13             torch.zeros(1, 1, encoder.d_model)
14         )
15 
16     def preprocess(self, X):
17         # Patch embeddings
18         # N, C, H, W -> N, L, D
19         src = self.embed(X)
20         # Special classifier token
21         # 1, 1, D -> N, 1, D
22         cls_tokens = self.cls_token.expand(X.size(0), -1, -1)
23         # Concatenates CLS tokens -> N, 1 + L, D
24         src = torch.cat((cls_tokens, src), dim=1)
25         return src
26 
27     def encode(self, source):
28         # Encoder generates "hidden states"
29         states = self.encoder(source)
30         # Gets state from first token: CLS
31         cls_state = states[:, 0]  # N, 1, D
32         return cls_state
33 
34     def forward(self, X):
35         src = self.preprocess(X)
36         # Featurizer
37         cls_state = self.encode(src)
38         # Classifier
39         out = self.mlp(cls_state) # N, 1, outputs
40         return out

326 | Chapter 10: Transform and Roll Out



Additional Setup

This is a special chapter when it comes to its setup: We won’t be using only PyTorch

but rather a handful of other packages as well, including the de facto standard for

NLP tasks—HuggingFace.

Before proceeding, make sure you have all of them installed by running the

commands below:

!pip install gensim==4.3.3
!pip install flair==0.13.1
!pip install torchvision==0.18.1
# HuggingFace
!pip install transformers==4.42.4
!pip install datasets==2.18.0


Some packages, like flair, may have strict dependencies and

eventually require the downgrading of some other packages in

your environment, even PyTorch itself.



Even though the packages above are pinned to specific versions,

you may use newer ones if you want. Regardless of which

versions you’re using, though, reproducibility is not guaranteed

and you should expect small differences in the produced outputs.

Imports

For the sake of organization, all libraries needed throughout the code used in any

given chapter are imported at its very beginning. For this chapter, we’ll need the

following imports:

import os
import json
import errno
import requests
import numpy as np
from copy import deepcopy
from operator import itemgetter

348 | Chapter 11: Down the Yellow Brick Rabbit Hole



Figure 11.1 - Left: "Alice and the Baby Pig" illustration by John Tenniel, from Alice’s Adventures in

Wonderland (1865). Right: "Dorothy meets the Cowardly Lion" illustration by W. W. Denslow,

from The Wonderful Wizard of Oz (1900).

The direct links to both texts are alice28-1476.txt[66] (https://tinyurl.com/yfcjzy68,

we’re naming it ALICE_URL) and wizoz10-1740.txt[67] (https://tinyurl.com/3rtywhz6,

we’re naming it WIZARD_URL). You can download both of them to a local folder using

the helper function download_text() (included in data_generation.nlp):

Data Loading

1 localfolder = 'texts'
2 download_text(ALICE_URL, localfolder)
3 download_text(WIZARD_URL, localfolder)

If you open these files in a text editor, you’ll see that there is a lot of information at

the beginning (and some at the end) that has been added to the original text of the

books for legal reasons. We need to remove these additions to the original texts:

Downloading Books

1 fname1 = os.path.join(localfolder, 'alice28-1476.txt')
2 with open(fname1, 'r') as f:
3     alice = ''.join(f.readlines()[104:3704])
4 fname2 = os.path.join(localfolder, 'wizoz10-1740.txt')
5 with open(fname2, 'r') as f:
6     wizard = ''.join(f.readlines()[310:5100])

Building a Dataset | 351

https://tinyurl.com/yfcjzy68
https://tinyurl.com/3rtywhz6


Global Vectors (GloVe)

The Global Vectors model was proposed by Pennington, J. et al. in their 2014 paper

"GloVe: Global Vectors for Word Representation."[87] It combines the skip-gram

model with co-occurrence statistics at the global level (hence the name). We’re

not diving into its inner workings here, but if you’re interested in knowing more

about it, check its official website: https://nlp.stanford.edu/projects/glove/.

The pre-trained GloVe embeddings come in many sizes and shapes: Dimensions

vary between 25 and 300, and vocabularies vary between 400,000 and 2,200,000

words. Let’s use Gensim’s downloader to retrieve the smallest one: glove-wiki-
gigaword-50. It was trained on Wikipedia 2014 and Gigawords 5, it contains

400,000 words in its vocabulary, and its embeddings have 50 dimensions.

Downloading Pre-trained Word Embeddings

1 from gensim import downloader
2 glove = downloader.load('glove-wiki-gigaword-50')
3 len(glove.key_to_index)

Output

400000

Let’s check the embeddings for "alice" (the vocabulary is uncased):

glove['alice']

Output

array([ 0.16386,  0.57795, -0.59197, -0.32446,  0.29762,  0.85151,
       -0.76695, -0.20733,  0.21491, -0.51587, -0.17517,  0.94459,
        0.12705, -0.33031,  0.75951,  0.44449,  0.16553, -0.19235,
        0.06553, -0.12394,  0.61446,  0.89784,  0.17413,  0.41149,
        1.191  , -0.39461, -0.459  ,  0.02216, -0.50843, -0.44464,
        0.68721, -0.7167 ,  0.20835, -0.23437,  0.02604, -0.47993,
        0.31873, -0.29135,  0.50273, -0.55144, -0.06669,  0.43873,
       -0.24293, -1.0247 ,  0.02937,  0.06849,  0.25451, -1.9663 ,
        0.26673,  0.88486], dtype=float32)

Word Embeddings | 395

https://nlp.stanford.edu/projects/glove/


Only 82 out of 50,802 words in the text corpora cannot be matched to the

vocabulary of the word embeddings. That’s an impressive 99.84% coverage!

The helper function below can be used to compute the vocabulary coverage given

a Gensim’s Dictionary and pre-trained embeddings:

Method for Vocabulary Coverage

 1 def vocab_coverage(gensim_dict, pretrained_wv,
 2                    special_tokens=('[PAD]', '[UNK]')):
 3     vocab = list(gensim_dict.token2id.keys())
 4     unknown_words = sorted(
 5         list(set(vocab).difference(
 6              set(pretrained_wv.key_to_index)))
 7     )
 8     unknown_ids = [gensim_dict.token2id[w]
 9                    for w in unknown_words
10                    if w not in special_tokens]
11     unknown_count = np.sum([gensim_dict.cfs[idx]
12                             for idx in unknown_ids])
13     cov = 1 - unknown_count / gensim_dict.num_pos
14     return cov

vocab_coverage(dictionary, glove)

Output

0.9983858903192788

400 | Chapter 11: Down the Yellow Brick Rabbit Hole



Tokenizer

Once we’re happy with the vocabulary coverage of our pre-trained embeddings,

we can save the vocabulary of the embeddings to disk as a plain-text file, so we

can use it with the HF’s tokenizer:

Method to Save a Vocabulary from Pre-trained Embeddings

 1 def make_vocab_from_wv(wv, folder=None, special_tokens=None):
 2     if folder is not None:
 3         if not os.path.exists(folder):
 4             os.mkdir(folder)
 5 
 6     words = wv.index_to_key
 7     if special_tokens is not None:
 8         to_add = []
 9         for special_token in special_tokens:
10             if special_token not in words:
11                 to_add.append(special_token)
12         words = to_add + words
13 
14     with open(os.path.join(folder, 'vocab.txt'), 'w') as f:
15         for word in words:
16             f.write(f'{word}\n')

Saving GloVe’s Vocabulary to a File

1 make_vocab_from_wv(glove,
2                    'glove_vocab/',
3                    special_tokens=['[PAD]', '[UNK]'])

We’ll be using the BertTokenizer class once again to create a tokenizer based on

GloVe’s vocabulary:

Creating a Tokenizer using GloVe

1 glove_tokenizer = BertTokenizer('glove_vocab/vocab.txt')


One more time: The (pre-trained) tokenizer you’ll use for real

with a (pre-trained) BERT model does not need a vocabulary.

Word Embeddings | 401



Now we can use its encode() method to get the indices for the tokens in a

sentence:

glove_tokenizer.encode('alice followed the white rabbit',
                        add_special_tokens=False)

Output

[7101, 930, 2, 300, 12427]

These are the indices we’ll use to retrieve the corresponding word embeddings.

There is one small detail we need to take care of first, though…

Special Tokens' Embeddings

Our vocabulary has 400,002 tokens now, but the original pre-trained word

embeddings has only 400,000 entries:

len(glove_tokenizer.vocab), len(glove.vectors)

Output

(400002, 400000)

The difference is due to the two special tokens, [PAD] and [UNK], that were

prepended to the vocabulary when we saved it to disk. Therefore, we need to

prepend their corresponding embeddings too.

 "How would I know the embeddings for these tokens?"

402 | Chapter 11: Down the Yellow Brick Rabbit Hole



That’s actually easy; these embeddings are just 50-dimensional vectors of zeros,

and we concatenate them to the GloVe’s pre-trained embeddings, making sure that

the special embeddings come first:

Adding Embeddings for the Special Tokens

1 special_embeddings = np.zeros((2, glove.vector_size))
2 extended_embeddings = np.concatenate(
3     [special_embeddings, glove.vectors], axis=0
4 )
5 extended_embeddings.shape

Output

(400002, 50)

Now, if we encode "alice" to get its corresponding index, and use that index to

retrieve the corresponding values from our extended embeddings, they should

match the original GloVe embeddings:

alice_idx = glove_tokenizer.encode(
    'alice', add_special_tokens=False
)
np.all(extended_embeddings[alice_idx] == glove['alice'])

Output

True

OK, it looks like we’re set! Let’s put these embeddings to good use and finally train

a model in PyTorch!

Word Embeddings | 403



I want to introduce you to…

ELMo

Born in 2018, ELMo is able to understand that words may have different meanings

in different contexts. If you feed it a sentence, it will give you back embeddings for

each of the words while taking the full context into account.

Embeddings from Language Models (ELMo, for short) was introduced by Peters, M.

et al. in their paper "Deep contextualized word representations"[88] (2018). The

model is a two-layer bidirectional LSTM encoder using 4,096 dimensions in its cell

states and was trained on a really large corpus containing 5.5 billion words.

Moreover, ELMo’s representations are character-based, so it can easily handle

unknown (out-of-vocabulary) words.



You can find more details about its implementation, as well as its

pre-trained weights, at AllenNLP’s ELMo[89] site. You can also

check the "ELMo"[90] section of Lilian Weng’s great post,

"Generalized Language Models."[91]

 "Cool, are we loading a pre-trained model then?"

Well, we could, but ELMo embeddings can be conveniently retrieved using yet

another library: flair.[92] flair is an NLP framework built on top of PyTorch that

offers a text embedding library that provides word embeddings and document

embeddings for popular Muppets, oops, models like ELMo and BERT, as well as

classical word embeddings like GloVe.



Unfortunately, as of December 16, 2022, AllenNLP’s repository

is archived. It doesn’t make sense to use AllenNLP for retrieving

ELMo embeddings anymore because it would require pinning

flair and PyTorch itself to older versions. The code in this

section was originally written in 2020, and it will be kept in this

revision because of the historical value of ELMo.

416 | Chapter 11: Down the Yellow Brick Rabbit Hole




For a complete list of available tasks, please check HuggingFace’s

pipeline [112] documentation.

Let’s run the first sentence of our training set through the sentiment analysis

pipeline:

sentence = train_dataset[0]['sentence']
print(sentence)
print(sentiment(sentence))

Output

And, so far as they knew, they were quite right.
[{'label': 'POSITIVE', 'score': 0.9998356699943542}]

Positive, indeed!

If you’re curious about which model is being used under the hood, you can check

the SUPPORTED_TASKS dictionary. For sentiment analysis, it uses the distilbert-
base-uncased-finetuned-sst-2-english model:

from transformers.pipelines import SUPPORTED_TASKS
SUPPORTED_TASKS['text-classification']

Output

{'impl': transformers.pipelines.text_classification
.TextClassificationPipeline, ...
 'pt': (transformers.models.auto.modeling_auto
.AutoModelForSequenceClassification,),
 'default': {'model': {'pt': ('distilbert/distilbert-base-uncased-
finetuned-sst-2-english',
    'af0f99b'), ...},
 'type': 'text'}

 "What about text generation?"

470 | Chapter 11: Down the Yellow Brick Rabbit Hole



SUPPORTED_TASKS['text-generation']

Output

{'impl': transformers.pipelines.text_generation
.TextGenerationPipeline,
 'pt': (transformers.models.auto.modeling_auto
.AutoModelForCausalLM,),
 'default': {'model': {'pt': ('openai-community/gpt2', '6c0e608'),
...}},
 'type': 'text'}

That’s the famous GPT-2 model, which we’ll discuss briefly in the next, and last,

section of this chapter.

GPT-2

The Generative Pretrained Transformer 2, introduced by Radford, A. et al. in their

paper "Language Models are Unsupervised Multitask Learners"[113] (2018), made

headlines with its impressive ability to generate text of high quality in a variety of

contexts. Just like BERT, it is a language model; that is, it is trained to fill in the

blanks in sentences. But, while BERT was trained to fill in the blanks in the middle

of sentences (thus correcting corrupted inputs), GPT-2 was trained to fill in blanks

at the end of sentences, effectively predicting the next word in a given sentence.

Predicting the next element in a sequence is exactly what a Transformer decoder

does, so it should be no surprise that GPT-2 is actually a Transformer decoder.

It was trained on more than 40 GB of Internet text spread over 8 million web pages.

Its largest version has 48 "layers" (the original Transformer had only six), twelve

attention heads, and 1,600 hidden dimensions, totaling 1.5 billion parameters,

and it was released in November 2019.[114]

 "Don’t train this at home!"

On the other end of the scale, the smallest version has only twelve "layers," twelve

attention heads, and 768 hidden dimensions, totaling 117 million parameters (the

smallest GPT-2 is still a bit larger than the original BERT!). This is the version

automatically loaded in the TextGenerationPipeline.

GPT-2 | 471


