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1 Complex Numbers

1.1 The Algebra of Complex Numbers

1.1.1 Arithmetic Operations

1. Find the values of

(1+ 2i)3,
5

−3+ 4i
,

( 2+ i
3− 2i

)2
, (1+ i)n + (1− i)n

For the first problem, we have (1+ 2i)3 = (−3+ 4i)(1+ 2i) = −11− 2i. For the second problem, we
should multiple by the conjugate z̄ = −3− 4i.

5

−3+ 4i

−3− 4i

−3− 4i
=

−15− 20i

25
=

−3

5
−
4

5
i

For the third problem, we should first multiple by z̄ = 3+ 2i.

2+ i

3− 2i

3+ 2i

3+ 2i
=
8+ i

13

Now we need to just square the result.

1

169
(8+ i)2 =

63+ 16i

169

For the last problem, we will need to find the polar form of the complex numbers. Let z1 = 1 + i

and z2 = 1− i. Then the modulus of z1 =
√
2 = z2. Let φ1 and φ2 be the angles associated with z1

and z2, respectively. Then φ1 = arctan(1) = π
4 and φ2 = arctan(−1) = −π

4 . Then z1 =
√
2eπi/4 and

z2 =
√
2e−πi/4.

zn1 + zn2 = 2n/2
[
enπi/4 + e−nπi/4

]
= 2n/2+1

[
enπi/4 + e−nπi/4

2

]
= 2n/2+1 cos

(nπ
4

)
2. If z = x+ iy (x and y real), find the real and imaginary parts of

z4,
1

z
,

z− 1

z+ 1
,

1

z2

For z4, we can use the binomial theorem since (a+ b)n =
∑n
k=0

(
n
k

)
anbn−k. Therefore,

(x+ iy)4 =

(
4

0

)
(iy)4 +

(
4

1

)
x(iy)3 +

(
4

2

)
x2(iy)2 +

(
4

3

)
x3(iy) +

(
4

4

)
x4 = y4 − 4xy3i− 6x2y2 + 4x3yi+ x4

Then the real and imaginary parts are

u(x,y) = x4 + y4 − 6x2y2

v(x,y) = 4x3y− 4xy3

For second problem, we need to multiple by the conjugate z̄.

1

x+ iy

x− iy

x− iy
=
x− iy

x2 + y2
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so the real and imaginary parts are

u(x,y) =
x

x2 + y2

v(x,y) =
−y

x2 + y2

For the third problem, we have x−1+iy
x+1−iy . Then z̄ = x+ 1+ iy.

x− 1+ iy

x+ 1− iy

x+ 1+ iy

x+ 1+ iy
=
x2 − 1+ 2xyi

(x+ 1)2 + y2

Then real and imaginary parts are

u(x,y) =
x2 − 1

(x+ 1)2 + y2

v(x,y) =
2xy

(x+ 1)2 + y2

For the last problem, we have
1

z2
=
x2 − y2 − 2xyi

x4 + 2x2y2 + y4

so the real and imaginary parts are

u(x,y) =
x2 − y2

x4 + 2x2y2 + y4

v(x,y) =
−2xy

x4 + 2x2y2 + y4

3. Show that
(
−1±i

√
3

2

)3
= 1 and

(±1±i√3
2

)6
= 1.

Both problems will can be handled easily by converting to polar form. Let z1 = −1±i
√
3

2 . Then |z1| = 1.
Let φ+ be the angle for the positive z1 and φ− for the negative. Then φ+ = arctan(−

√
3) = 2π

3 and
φ− = arctan(

√
3) = 4π

3 . We can write z1+ = e2iπ/3 and z1− = e4iπ/3.

z31+ = e2iπ

= 1

z31− = e4iπ

= 1

Therefore, z31 = 1. For the second problem, φij = ±π3 and ±2π3 for i, j = +,− and the |z2| = 1. When we
raise z to the sixth poewr, the argument becomes ±2π and ±4π.

e±2iπ = e±4iπ = z6 = 1

1.1.2 Square Roots

1. Compute

√
i,

√
−i,

√
1+ i,

√
1− i

√
3

2

For
√
i, we are looking for x and y such that

√
i = x+ iy

i = x2 − y2 + 2xyi

x2 − y2 = 0 (1.1)

2xy = 1 (1.2)

6



From equation (1.1), we see that x2 = y2 or ±x = ±y. Also, note that i is the upper half plane (UHP).
That is, the angle is positive so x = y and 2x2 = 1 from equation (1.1). Therefore,

√
i = 1√

2
(1+ i). We

also could have done this problem using the polar form of z. Let z = i. Then z = eiπ/2 so
√
z = eiπ/4

which is exactly what we obtained. For
√
−i, let z = −i. Then z in polar form is z = e−iπ/2 so√

z = e−iπ/4 = 1√
2
(1− i). For

√
1+ i, let z = 1+ i. Then z =

√
2eiπ/4 so

√
z = 21/4eiπ/8. Finally, for√

1−i
√
3

2 , let z = 1−i
√
3

2 . Then z = e−iπ/3 so
√
z = e−iπ/6 = 1

2(
√
3− i).

2. Find the four values of 4
√
−1.

Let z = 4
√
−1 so z4 = −1. Let z = reiθ so r4e4iθ = −1 = eiπ(1+2k).

r4 = 1

θ =
π

4
(1+ 2k)

where k = 0, 1, 2, 3. Since when k = 4, we have k = 0. Then θ = π
4 , 3π4 , 5π4 , and 7π

4 .

z = eiπ/4, e3iπ/4, e5iπ/4, e7iπ/4

3. Compute 4
√
i and 4

√
−i.

Let z = 4
√
i and z = reiθ. Then r4e4iθ = i = eiπ/2.

r4 = 1

θ =
π

8

so z = eiπ/8. Now, let z = 4
√
−i. Then r4e4iθ = e−iπ/2 so z = e−iπ/8.

4. Solve the quadratic equation
z2 + (α+ iβ)z+ γ+ iδ = 0.

The quadratic equation is x = −b±
√
b2−ac
2 . For the complex polynomial, we have

z =
−α−βi±

√
α2 −β2 − 4γ+ i(2αβ− 4δ)

2

Let a+ bi =
√
α2 −β2 − 4γ+ i(2αβ− 4δ). Then

z =
−α−β± (a+ bi)

2

1.1.3 Justification

1. Show that the system of all matrices of the special form(
α β

−β α

)
,

combined by matrix addition and matrix multiplication, is isomorphic to the field of complex numbers.

2. Show that the complex number system can be thought of as the field of all polynomials with real
coefficients modulo the irreducible polynomial x2 + 1.

1.1.4 Conjugation, Absolute Value

1. Verify by calculation the values of
z

z2 + 1

for z = x+ iy and z̄ = x− iy are conjugate.
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For z, we have that z2 = x2 − y2 + 2xyi.

z

z2 + 1
=

x+ iy

x2 − y2 + 1+ 2xyi

=
x+ iy

x2 − y2 + 1+ 2xyi

x2 − y2 + 1− 2xyi

x2 − y2 + 1− 2xyi

=
x(x2 − y2 + 1) + 2xy2 + iy(x2 − y2 + 1− 2x2)

(x2 − y2 + 1)2 + 4x2y2
(1.3)

For z̄, we have that z̄2 = x2 − y2 − 2xyi.

z̄

z̄2 + 1
=

x− iy

x2 − y2 + 1− 2xyi

=
x− iy

x2 − y2 + 1− 2xyi

x2 − y2 + 1+ 2xyi

x2 − y2 + 1+ 2xyi

=
x(x2 − y2 + 1) + 2xy2 − iy(x2 − y2 + 1− 2x2)

(x2 − y2 + 1)2 + 4x2y2
(1.4)

Therefore, we have that equations (1.3) and (1.4) are conjugates.

2. Find the absolute value (modulus) of

−2i(3+ i)(2+ 4i)(1+ i) and
(3+ 4i)(−1+ 2i)

(−1− i)(3− i)
.

When we expand the first problem, we have that

z1 = −2i(3+ i)(2+ 4i)(1+ i) = 32+ 24i

so
|z1| =

√
322 + 242 = 40.

For the second problem, we have that

z2 =
(3+ 4i)(−1+ 2i)

(−1− i)(3− i)
= 2−

3

2
i

so
|z2| =

√
4+ 9/4 =

5

2
.

3. Prove that ∣∣∣ a− b
1− āb

∣∣∣ = 1
if either |a| = 1 or |b| = 1. What exception must be made if |a| = |b| = 1?

Recall that |z|2 = zz̄.

12 =
∣∣∣ a− b
1− āb

∣∣∣2
1 =

( a− b
1− āb

)( a− b
1− āb

)
=
( a− b
1− āb

)( ā− b̄
1− ab̄

)
=
aā− ab̄− āb+ bb̄

1− āb− ab̄+ aābb̄
(1.5)

If |a| = 1, then |a|2 = aā = 1 and similarly for |b|2 = 1. Then equation (1.5) becomes

1− ab̄− āb+ bb̄

1− āb− ab̄+ bb̄
and

1− ab̄− āb+ aā

1− āb− ab̄+ aā

resepctively which is one. If |a| = |b| = 1, then |a|2 = |b|2 = 1 so equation (1.5) can be written as

2− ab̄− āb

2− āb− ab̄
.

Therefore, we must have that ab̄+ āb 6= 2.
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4. Find the conditions under which the equation az+ bz̄+ c = 0 in one complex unknown has exactly one
solution, and compute that solution.

Let z = x+ iy. Then az+ bz̄+ c = a(x+ iy) + b(x− iy) + c = 0.

(a+ b)x+ c = 0 (1.6a)

(a− b)y = 0 (1.6b)

Lets consider equation (1.6b). We either have that a = b or y = 0. If a = b, then WLOG equation (1.6a)
can be written as

x =
−c

2a

and y ∈ R. For fixed a,b, c, we have infinitely many solutions when a = b since z = −c
2a + iy for y ∈ R.

If y = 0, then equation (1.6a) can be written as

x =
−c

a+ b
.

Therefore, z = x and we have only one solution.

5. Prove that Lagrange’s identity in the complex form

∣∣∣ n∑
i=1

aibi

∣∣∣2 = n∑
i=1

|ai|
2
n∑
i=1

|bi|
2 −
∑

16i6j6n

|aib̄j − ajb̄i|
2.

Let’s consider ∣∣∣ n∑
i=1

aibi

∣∣∣2 +∑
16i6j6n

|aib̄j − ajb̄i|
2 =

n∑
i=1

|ai|
2
n∑
i=1

|bi|
2.

Then we can write the lefthand side as∣∣∣ n∑
i=1

aibi

∣∣∣2 +∑
16i6j6n

|aib̄j − ajb̄i|
2 =

n∑
i=1

aibi

n∑
j=1

ājb̄j +
∑

16i6j6n

(aib̄j − ajb̄i)(āibj − ājbi)

=

n∑
i,j=1

aibiājb̄j +
∑
i6j

(
|ai|

2|bj|
2 + |aj|

2|bi|
2
)
−
∑
i6j

(
aiājbib̄j + āiajb̄ibj

)

=

n∑
i=j=1

|ai|
2|bi|

2 +

n∑
i 6=j

aibiājb̄j

+
∑
i6j

(
|ai|

2|bj|
2 + |aj|

2|bi|
2
)

−
∑
i6j

(
aiājbib̄j + āiajb̄ibj

)
For i 6= j,

∑n
i 6=j aibiājb̄j −

∑
i<j

(
aiājbib̄j + āiajb̄ibj

)
= 0. Thus, we now have

n∑
i=1

|ai|
2|bi|

2 +
∑
i6j

(
|ai|

2|bj|
2 + |aj|

2|bi|
2
)
.

When the indicies of both series on the right hand side coincide,

n∑
i=1

|ai|
2
n∑
i=1

|bi|
2 =

n∑
i=1

|ai|
2|bi|

2. (1.7)

That is, both ai and bi index together on the left of side equation (1.7). When ai and bi dont index
together on the left side of equation (1.7),

n∑
i=1

|ai|
2
n∑
i=1

|bi|
2 =
∑
i6j

(
|ai|

2|bj|
2 + |aj|

2|bi|
2
)

as was needed to be shown.
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1.1.5 Inequalities

1. Prove that ∣∣∣ a− b
1− āb

∣∣∣ < 1
if |a| < 1 and |b| < 1.

From the properties of the modulus, we have that∣∣∣ a− b
1− āb

∣∣∣ = |a− b|

|1− āb|

=
|a− b|2

|1− āb|2
(1.8)

=
(a− b)(ā− b̄)

(1− āb)(1− ab̄)

=
|a|2 + |b|2 − ab̄− āb

1+ |a|2|b|2 − āb− ab̄

<
2− ab̄− āb

2− āb− ab̄

= 1 (1.9)

From equations (1.8) and (1.9), we have

|a− b|2

|1− āb|2
< 1

|a− b|

|1− āb|
< 1

2. Prove Cauchy’s inequality by induction.

Cauchy’s inequality is

|a1b1 + · · ·+ anbn|2 6
(
|a1|

2 + · · ·+ |an|
2
)(
|b1|

2 + · · ·+ |bn|
2
)

which can be written more compactly as∣∣∣ n∑
i=1

aibi

∣∣∣2 6 n∑
i=1

|ai|
2
n∑
i=1

|bi|
2.

For the base case, i = 1, we have

|a1b1|
2 = (a1b1)(ā1b̄1) = a1ā1b1b̄1 = |a1|

2|b1|
2

so the base case is true. Now let the equality hold for all k− 1 ∈ Z where k− 1 6 n. That is, we assume
that ∣∣∣k−1∑

i=1

aibi

∣∣∣2 6 k−1∑
i=1

|ai|
2
k−1∑
i=1

|bi|
2

to be true. ∣∣∣k−1∑
i=1

aibi

∣∣∣2 + |akbk|
2 6

k−1∑
i=1

|ai|
2
k−1∑
i=1

|bi|
2 + |akbk|

2

∣∣∣ k∑
i=1

aibi

∣∣∣2 6 k−1∑
i=1

|ai|
2
k−1∑
i=1

|bi|
2 + (akbk)(ākb̄k)

=

k−1∑
i=1

|ai|
2
k−1∑
i=1

|bi|
2 + |ak|

2|bk|
2

=

k∑
i=1

|ai|
2
k∑
i=1

|bi|
2

Therefore, by the principal of mathematical induction, Cauchy’s inequality is true for all n > 1 for
n ∈ Z+.
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3. If |ai| < 1, λi > 0 for i = 1, . . . ,n and λ1 + λ2 + · · ·+ λn = 1, show that

|λ1a1 + λ2a2 + · · ·+ λnan| < 1.

Since
∑n
i=1 λi = 1 and λi > 0, 0 6 λi < 1. By the triangle inequality,

|λ1a1 + λ2a2 + · · ·+ λnan| 6 |λ1||a1|+ · · ·+ |an||λn|

<

n∑
i=1

λi

= 1

4. Show that there are complex numbers z satisfying

|z− a|+ |z+ a| = 2|c|

if and only if |a| 6 |c|. If this condition is fulfilled, what are the smallest and largest values |z|?

By the triangle inequality,
|z− a|+ |z+ a| > |(z− a) − (z+ a)| = 2|a|

so

2|c| = |z− a|+ |z+ a|

> |(z− a) − (z+ a)|

= 2|a|

Thus, |c| > |a|. For the second implication, if a = 0, the result follow. Suppose a 6= 0. Then let z = |c| a
|a| .

2|c| = |a|(|c|/|a|− 1) + |a|(|c|/|a|+ 1)

= |z− a|+ |z+ a|

The smallest and largest values of z can be found below.

2|c| = |z+ a|+ |z− a|

4|c|2 =
(
|z+ a|+ |z− a|

)2
= 2(|z|2 + |a|2)

6 4(|z|2 + |a|2)

|c|2 6 |z|2 + |a|2√
|c|2 − |a|2 6 |z|

1.2 The Geometric Representation of Complex Numbers

1.2.1 Geometric Addition and Multiplication

1. Find the symmetric points of a with respect to the lines which bisect the angles between the coordinate
axes.

2. Prove that the points a1,a2,a3 are vertices of an equilateral triangle if and only if a21 + a
2
2 + a

2
3 =

a1a2 + a2a3 + a1a3.

3. Suppose that a and b are two vertices of a square. Find the two other vertices in all possible cases.

4. Find the center and the radius of the circle which circumscribes the triangle with vertices a1,a2,a3.
Express the result in symmetric form.
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1.2.2 The Binomial Equation

1. Express cos(3ϕ), cos(4ϕ), and sin(5ϕ) in terms of cos(ϕ) and sin(ϕ).

For these problems, the sum addition identities will be employed; that is,

cos(α±β) = cos(α) cos(β)∓ sin(α) sin(β)

sin(α±β) = sin(α) cos(β)± sin(β) cos(α)

We can write cos(3ϕ) as cos(2ϕ+ϕ) so

cos(3ϕ) = cos(2ϕ+ϕ)

= cos(2ϕ) cos(ϕ) − sin(2ϕ) sin(ϕ)

=
[
cos2(ϕ) − sin2(ϕ)

]
cos(ϕ) − 2 sin(ϕ) cos(ϕ) sin(ϕ)

= cos3(ϕ) − 3 sin2(ϕ) cos(ϕ)

For cos(4ϕ), we have

cos(4ϕ) = cos(2ϕ) cos(2ϕ) − sin(2ϕ) sin(2ϕ)

=
[
cos2(ϕ) − sin2(ϕ)

]2
− 4 sin2(ϕ) cos2(ϕ)

= cos4(ϕ) + sin4(ϕ) − 6 sin2(ϕ) cos2(ϕ)

For sin(5ϕ), we have

sin(5ϕ) = sin(4ϕ) cos(ϕ) + sin(ϕ) cos(4ϕ)

= 2 sin(2ϕ) cos(2ϕ)
[
cos2(ϕ) − sin2(ϕ)

]
cos(ϕ) + sin5(ϕ) + sin(ϕ) cos4(ϕ) − 6 sin3(ϕ) cos2(ϕ)

= 5 sin(ϕ) cos4(ϕ) − 10 sin3(ϕ) cos2(ϕ) + sin5(ϕ)

2. Simplify 1+ cos(ϕ) + cos(2ϕ) + · · ·+ cos(nϕ) and sin(ϕ) + · · ·+ sin(nϕ).

Instead of considering the two separate series, we will consider the series

1+ cos(ϕ) + i sin(ϕ) + · · ·+ cos(nϕ) + i sin(nϕ) = 1+ eiϕ + e2iϕ + · · ·+ eniϕ

=

n∑
k=0

ekiϕ

Recall that
∑n−1
k=0 r

k = 1−rk

1−r . So

=
1− eiϕ(n+1)

1− eiϕ

=
eiϕ(n+1) − 1

eiϕ − 1
(1.10)

Note that sin(ϕ2 ) =
eiϕ/2−e−iϕ/2

2i so 2ieiϕ/2 sin(ϕ2 ) = e
iϕ − 1. We can now write equation (1.10) as

n∑
k=0

ekiϕ =
eiϕ(n+1)/2 sin

(ϕ(n+1)
2

)
eiϕ/2 sin

(
ϕ
2

)
=

sin
(ϕ(n+1)

2

)
sin
(
ϕ
2

) einϕ/2 (1.11)

By taking the real and imaginary parts of equation (1.11), we get the series for
∑n
k=0 cos(nϕ) and∑n

k=0 sin(nϕ), respectively.

n∑
k=0

cos(nϕ) =
sin
(ϕ(n+1)

2

)
sin
(
ϕ
2

) cos
(nϕ
2

)
n∑
k=0

sin(nϕ) =
sin
(ϕ(n+1)

2

)
sin
(
ϕ
2

) sin
(nϕ
2

)

12



3. Express the fifth and tenth roots of unity in algebraic form.

To find the roots of unity, we are looking to solve zn = 1. Let z = eiθ and 1 = e2ikπ. Then θ = 2kπ
n . For

the fifth roots of unity, n = 5 and k = 0, 1, . . . , 4 so we have

ω0 = e
0 = cos(0) + i sin(0)

= 1

ω1 = e
2π/5 = cos

(2π
5

)
+ i sin

(2π
5

)
ω2 = e

4π/5 = cos
(4π
5

)
+ i sin

(4π
5

)
ω3 = e

6π/5 = cos
(6π
5

)
+ i sin

(6π
5

)
ω4 = e

8π/5 = cos
(8π
5

)
+ i sin

(8π
5

)

Now we can plot the roots of unity on the unit circle.

Figure 1.1: The fifth roots of unity.

For the tenth roots of unity, n = 10 and k = 0, 1, . . . , 9 so we have

ω0 = e
0 = cos(0) + i sin(0)

= 1

ω1 = e
2π/10 = cos

(π
5

)
+ i sin

(π
5

)
ω2 = e

4π/10 = cos
(2π
5

)
+ i sin

(2π
5

)
ω3 = e

6π/10 = cos
(3π
5

)
+ i sin

(3π
5

)
ω4 = e

8π/10 = cos
(4π
5

)
+ i sin

(4π
5

)
ω5 = e

10π/10 = cos(π) + i sin(π)

= −1

ω6 = e
12π/10 = cos

(6π
5

)
+ i sin

(6π
5

)
ω7 = e

14π/10 = cos
(7π
5

)
+ i sin

(7π
5

)
ω8 = e

16π/10 = cos
(8π
5

)
+ i sin

(8π
5

)
ω9 = e

18π/10 = cos
(9π
5

)
+ i sin

(9π
5

)
Now we can plot the roots of unity on the unit circle.
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Figure 1.2: The tenth roots of unity.

4. If ω is given by ω = cos
(
2π
n

)
+ i sin

(
2π
n

)
, prove that

1+ωh +ω2h + · · ·+ω(n−1)h = 0

for any integer h which is not a multiple of n.

Let ω = cos
(
2π
n

)
+ i sin

(
2π
n

)
be written in exonential form as ω = e2πi/n. Then the series can be written

as
n−1∑
k=0

(
e2πih/n

)k
=

e2ihπ − 1

e2hiπ/n − 1
.

Since h is an integer, e2ihπ = 1; therefore, the series zero.

5. What is the value of
1−ωh +ω2h − · · ·+ (−1)n−1ω(n−1)h?

We can represent this series similarly as

n−1∑
k=0

(
−e2πih/n

)k
=

(−1)ne2ihπ − 1

−e2hiπ/n − 1
=
1+ (−1)n+1e2ihπ

1+ e2hiπ/n
.

Again, since h is an intger, we have that e2ihπ = 1 which leaves us with

1+ (−1)n+1

1+ e2hiπ/n
=

{
0, if n is even

2
1+e2hiπ/n

, if n is odd

1.2.3 Analytic Geometry

1. When does az+ bz̄+ c = 0 represent a line?

2. Write the equation of an ellipse, hyperbola, parabola in complex form.

For x,y,h,k,a,b ∈ R such that a,b 6= 0, we define a real ellipse as

(x− h)2

a2
+

(y− k)2

b2
= 1.

Let z = x
a + iyb and z0 = h

a + ikb . If we expand the equation for an ellipse, we have

x2

a2
+
y2

b2
+
h2

a2
+
k2

b2
−
2xh

a2
−
2yk

b2
= 1.

Notice that |z|2 = x2

a2
+ y2

b2
and |z0|

2 = h2

a2
+ k2

b2
. Now, let’s write the ellipse as

|z|2 + |z0|
2 −

2xh

a2
−
2yk

b2
+
yh

ab
i−

yh

ab
i+

xk

ab
i−

xk

ab
i = |z|2 + |z0|

2 − z̄z0 − zz̄0 = 1.
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Thus, the equation of an ellipse in the complex plane is

(z− z0)(z̄− z̄0) = |z− z0|
2 = 1⇒ |z− z0| = 1

where z and z0 are defined above. Additionally, the standard form of an ellipse in the complex plane is
of the form

|z− a|+ |z− b| = c

where c > |a− b|. Let a and b be the foci of a hyperbola. Then when the magnitude of the difference of
z and the foci is a constant, we will have a hyperbola.∣∣|z− a|− |z− b|

∣∣ = c
3. Prove that the diagonals of a parallelogram bisect each other and that the diagonals of a rhombus are

orthogonal.

4. Prove analytically that the midpoints of parallel chords to a circle lie on a diameter perpendicular to
the chords.

5. Show that all circles that pass through a and 1/ā intersect the circle |z| = 1 at right angles.

1.2.4 The Spherical Representation

1. Show that z and z ′ correspond to diametrically opposite points on the Riemann sphere if and only if
zz̄ ′ = −1.

2. A cube has its vertices on the sphere S and its edges parallel to the coordinate axes. Find the stereo-
graphic projections of the vertices.

3. Same problem for a regular tetrahedron in general position.

4. Let Z,Z ′ denote the stereographic projections of z, z ′, and let N be the north pole. Show that the
triangles NZZ ′ and Nzz ′ are similar, and use this to derive

d(z, z ′) =
2|z− z ′|√

1+ |z|2
√
1+ |z ′|2

.

5. Find the radius of the spherical image of the circle in the plane whose center is a and radius R.

Let z = a+ R and z ′ = a− R. Then the distance d(z, z ′) = 2R.

2R = d(z, z ′)

R = d(z, z ′)/2

=
2|R|√

(1+ |a|2 + |R|2 + 2<{aR̄})(1+ |a|2 + |R|2 − 2<{aR̄})

=
2|R|√

(1+ |a|2 + |R|2)2 − 4<2{aR̄}
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2 Complex Functions

2.1 Introduction to the Concept of Analytical Function

2.1.1 Limits and Continuity

2.1.2 Analytic Functions

1. If g(w) and f(z) are analytic functions, show that g(f(z)) is also analytic.

Let g(w) = h(x,y) + it(x,y) and f(z) = u(x,y) + iv(x,y) where z = w = x+ iy for x,y ∈ R. Then

(g ◦ f)(z) = h(u(x,y), v(x,y)) + it(u(x,y), v(x,y)).

Since f and g satisfy the Cauchy-Riemann equations,

∂u

∂x
=
∂v

∂y

∂u

∂y
= −

∂v

∂x

∂h

∂x
=
∂t

∂y

∂h

∂u
= −

∂t

∂x

The partial deivatives of (g ◦ f)(z) are

∂h

∂x
=
∂h

∂u

∂u

∂x
+
∂t

∂v

∂v

∂x

∂t

∂y
=
∂t

∂u

∂u

∂y
+
∂t

∂v

∂v

∂y

∂h

∂y
=
∂h

∂u

∂u

∂y
+
∂t

∂v

∂v

∂y

∂t

∂x
=
∂t

∂u

∂u

∂x
+
∂t

∂v

∂v

∂x

In order for g(f(z)) to be analytic, ∂h∂x = ∂t
∂y and ∂h

∂y = − ∂t∂x . We can then write

∂h

∂x
−
∂t

∂y
=
∂h

∂u

∂u

∂x
+
∂h

∂v

∂v

∂x
−
∂t

∂u

∂u

∂y
−
∂t

∂v

∂v

∂y

=
∂h

∂u

∂u

∂x
−
∂t

∂u

∂u

∂y︸ ︷︷ ︸
term 1

+
∂h

∂v

∂v

∂x
−
∂t

∂v

∂v

∂y︸ ︷︷ ︸
term 2

(2.1)

In order for the right hand side of equation (2.1) to be zero, we need both terms to be zero.

∂h

∂u

∂u

∂x
−
∂t

∂u

∂u

∂y
=
∂h

∂u

∂u

∂x
−
∂t

∂y

∂u

∂u

=
∂h

∂u

∂u

∂x
−
∂h

∂u

∂u

∂x
(2.2)

Equation (2.2) occurs since g is analytic and satisfies the Cauchy-Riemann equations.

= 0

For the second term in equation (2.1), we again use the analyticity of g.

∂h

∂v

∂v

∂x
−
∂t

∂v

∂v

∂y
=
∂h

∂v

∂v

∂x
−
∂h

∂v

∂v

∂x

= 0

Therefore, from equation (2.1), we have

∂h

∂x
−
∂t

∂y
= 0

∂h

∂x
=
∂t

∂y

By similar analysis, we are able to conclude that ∂h∂y = − ∂t∂x . Therefore, g(f(z)) satisfies the Cauchy-
Riemann so it is analytic.
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2. Verify Cauchy-Riemann’s equations for the function z2 and z3.

Let z = x+ iy. Then z2 = x2 − y2 + 2xyi and z3 = x3 − 3xy2 + i(3x2y− y3). For f(z) = z2, the Cauchy-
Riemann equations are

ux = 2x vy = 2x

uy = −2y − vx = −2y

Thus, the Cauchy-Riemann equation satisfied for f(z) = z2. For f(z) = z3, the Cauchy-Riemann
equations are

ux = 3x2 − 3y2 vy = 3x2 − 3y2

uy = −6xy − vx = −6xy

Thus, the Cauchy-Riemann equation satisfied for f(z) = z3.

3. Find the most general harmonic polynomial of the form ax3 + bx2y + cxy2 + dy3. Determine the
conjugate harmonic function and the corresponding analytic function by integration and by the formal
method.

In order to be harmonic, u(x,y) = ax3 + bx2y+ cxy2 + dy3 has to satisfy ∇2u = 0 so

uxx + uyy = (3a+ c)x+ (3d+ b)y = 0.

Thus, 3a = −c and 3d = −b so

u(x,y) = ax3 − 3axy2 − 3dx2y+ dy3.

To find the harmonic conjugate v(x,y, we need to look at the Cauchy-Riemann equations. By the
Cauchy-Riemann equations,

ux = 3ax2 − 3ay2 − 6dxy = vy.

Then we can integrate with respect to y to find v(x,y).

v(x,y) =
∫
(3ax2 − 3ay2 − 6dxy)dy = 3ax2y− ay3 − 3dxy2 + g(x)

Using the second Cauchy-Riemann, we have

vx = 6axy− 3dy2 + g ′(x) = −uy = 3dx2 + 6axy− 3dy2

so g ′(x) = 3dx2. Then g(x) = dx3 +C and

v(x,y) = 3ax2y− ay3 − 3dxy2 + dx3 +C.

4. Show that an analytic function cannot have a constant absolute value without reducing to a constant.

Let f = u(x,y) + iv(x,y). Then the modulus of f is |f| =
√
u2 + v2. If the modulus of f is constant, then

u2 + v2 = c for some constant c. If c = 0, then f = 0 which is constant. Suppose c 6= 0. By taking the
derivative with respect to x and y, we have

0 =
∂

∂x
(u2 + v2)

= 2uux + 2vvx

= uux + vvx

0 =
∂

∂y
(u2 + v2)

= uuy + vvy

Since f is analytic, f satisfies the Cauchy-Riemann. That is, ux = vy and uy = −vx.

uux − vuy = 0 (2.3a)
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uuy + vux = 0 (2.3b)

Let’s write equations (2.3a) and (2.3b) in matrix form. Then we have[
u −v

v u

][
∂u
∂x
∂u
∂x

]
=

[
0

0

]

Suppose the matrix is not invertible. Then u2 + v2 = 0. Since u2, v2 ∈ R, u2, v2 > 0. Therefore, u = v = 0

so f(z) = 0. Now, suppose that the matrix is invertible. Then we have[
∂u
∂x
∂u
∂x

]
=

[
0

0

]

so f ′(z) = 0 and f(z) = c for some constant c.

5. Prove rigorously that the functions f(z) and f(z̄) are simultaneously analytic.

Let g(z) = f(z̄) and suppose f is analytic. Then g ′(z) is

g ′(z) = lim
∆z→0

g(z+∆z) − g(z)

∆z

= lim
∆z→0

f(z̄+∆z) − f(z̄)

∆z

= lim
∆z→0

[
f(z̄+∆z) − f(z̄)

∆z

]
Since conjugation is continuous, we can move the limit inside the conjugation.

= lim
∆z→0

f(z̄+∆z) − f(z̄)

∆z

= f ′(z̄)

Thus, g is differentiable with derivative f ′(z̄). Suppose f(z̄) is analytic and let g(z̄) = f(z). Then by the
same argument, f is differentiable with derivative g ′(z̄). Therefore, f(z) and f(z̄) are simultaneously
analytic.

We could also use the Cauchy-Riemann equations. Let f(z) = u(x,y) + iv(x,y) where z = x+ iy so
z̄ = x− iy. Then f(z̄) = α(x,y) − iβ(x,y) where α(x,y) = u(x,−y) and β(x,y) = v(x,−y). In order for
both to be analytic, they both need to satisfy the Cauchy-Riemann equations. That is, ux = vy, uy = −vx,
αx = βy and αy = −βx.

ux(x,y) = vy(x,y)

uy(x,y) = −vx(x,y)

αx(x,y) = ux(x,−y)

αy(x,y) = −uy(x,−y)

−βx(x,y) = vx(x,−y)

βy(x,y) = vy(x,−y)

Suppose that f(z̄) satisfies the Cauchy-Riemann equations. Then αx = ux(x,−y) = vy(x,−y) = βy and
αy = −uy(x,−y) = vx(x,−y) = −βx. Therefore,

ux(x,−y) = vy(x,−y)

uy(x,−y) = −vx(x,−y)

which means f(z̄) satisfies the Cauchy-Riemann equations. Now, recall that |z| = |z̄|. Since f(z̄) satisfies
the Cauchy-Riemann equations, for an ε > 0 there exists a δ > 0 such that when 0 < |∆z| < δ,
|f(z̄) − z̄0| = |f(z) − z0| < ε. Thus, lim∆z→0 f(z) = z0 so f(z) is analytic if f(z̄) is analytic.
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6. Prove that the functions u(z) and u(z̄) are simultaneously harmonic.

Since u is the real part of f(z), u(z) = u(x,y) where z = x+ iy. Suppose u(z) is harmonic. Then u(z)
satisfies Laplace equation.

∇2u(z) = uxx + uyy = 0

Now, u(z̄) = u(x,−y) where ∂2

∂x2
u(z̄) = uxx and ∂2

∂y2
u(z̄) = uyy so

∇2u(z̄) = uxx + uyy = 0.

Since u(z) is harmonic, uxx + uyy = 0 so it follows that u(z̄) is harmonic as well.

7. Show that a harmonic function satisfies the formal differential equation

∂2u

∂z∂z̄
= 0.

Let u be a harmonic. Then ∇2u = 0.

∂

∂z̄
=
1

2

( ∂
∂x

+ i
∂

∂y

)
(2.4a)

∂

∂z
=
1

2

( ∂
∂x

− i
∂

∂y

)
(2.4b)

From equation (2.4a), we have
1

2

( ∂
∂x

+ i
∂

∂y

)
u =

1

2
(ux + iuy).

Then we have
∂2u

∂z∂z̄
=
1

4

( ∂
∂x

− i
∂

∂y

)
(ux + iuy) =

1

4

[
uxx + uyy + i(uyx − uxy)

]
Since u is a solution to the Laplace equation, u has continuous first and second derivatives. That is,
u ∈ C2 at a minimum. By Schwarz’s theorem, uxy = uyx so

∂2u

∂z∂z̄
= 0.

Schwarz’s theorem states that if f is a function of two variables such that fxy and fyx both exist and are
continuous at some point (x0,y0), then fxy = fyx.

2.1.3 Polynomials

2.1.4 Rational Functions

1. Use the method of the text to develop

z4

z3 − 1
and

1

z(z+ 1)2(z+ 2)3

in partial fractions.

Let R(z) = z4

z3−1
= z + z

z3−1
. The poles of R(z) occur when z3 = 1. Then the distinct poles are

z = 1, e2iπ/3, e4iπ/3. Let H(z) = z
z3−1

, z 7→ βi + 1/w, and βi ∈ {1, e2iπ/3, e4iπ/3}.

H(1+ 1/w) =
w

3
−

w

3(3w2 + 3w+ 1)

H(e2iπ/3 + 1/w) =
w

3e2iπ/3
−

w

3e2iπ/3(3e2iπ/3w2 + 3e4iπ/3w+ 1)

H(e4iπ/3 + 1/w) =
w

3e4iπ/3
−

w

3e4iπ/3(3e4iπ/3w2 + 3e2iπ/3w+ 1)

H(βi + 1/w) =
w

3βi
−Q(w)
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Then Gi(w) = w
3βi

where w 7→ 1/(z−βi). Now, R(z) = G(z) +Gi[1/(z−βi)] so we finally have that

R(z) =
z4

z3 − 1
= z+

z

z3 − 1
= z+

3∑
i=1

1

3βi(z−βi)
.

The second problem’s numerator already is of a degree less than the denominator so we can proceed
at once. Let R(z) = 1

z(z+1)2(z+2)3
. The poles of R(z) are βi ∈ {0,−1,−2} and z 7→ βi + 1/w.

R(1/w) =
w

(1/w+ 1)2(1/w+ 2)3

=
w6

(w+ 1)2(2w+ 1)3

=
w

8
+Q(w)

R(1/w− 1) =
w6

(1−w)(w+ 1)3

= 2w−w2 +Q(w)

R(1/w− 2) =
w6

(1− 2w)(w− 1)2

= −
17w

8
−
5w2

4
−
w3

2
+Q(w)

Therefore, we can write

R(z) =
1

z(z+ 1)2(z+ 2)3
=
1

8z
+

2

z+ 1
−

1

(z+ 1)2
−

17

8(z+ 2)
−

5

4(z+ 2)2
−

1

2(z+ 2)3

2. Use the formula in the preceding exercise to prove that there exists a unique polynomial P of degree
< n with given values ck at the points αk (Lagrange’s interpolation polynomial).

3. What is the general form of a rational function which has absolute value 1 on the circle |z| = 1? In
particular, how are the zeros and poles related to each other?

4. If a rational function is real on |z| = 1, how are the zeros and poles situated?

5. If R(z) is a rational function of order n, how large and how small can the order of R ′(z) be?

Let R(z) = P(z)/Q(z) where P(z) has degree n and Q(z) has degree m. Let k be the degree of R(z). Then
k = max{n,m}.

R ′(z) =
P ′(z)Q(z) − P(z)Q ′(z)

Q(z)2

Then we have four cases

(a) Both P(z) and Q(z) are nonconstant.

Then P ′(z) and Q ′(z) have degrees n− 1 and m− 1, respectively. Since we are looking only for the
highest degree terms, we have

R ′(z) =
zn−1zm − znzm−1

z2m

Therefore, the degree of R ′(z) is k ′ = max{n+m− 1, 2m}.

(b) Suppose P(z) is nonconstant and Q(z) is a nonzero constant function.

R ′(z) =
zn−1 − zn · 0

z0·2

The degree of R ′(z) is k ′ = n− 1.

(c) Suppose P(z) is a nonzero constant function and Q(z) is a nonconstant.

R ′(z) =
0 · zm − zm−1

z2m

The degree of R ′(z) is k ′ = 2m.

(d) Suppose both P(z) and Q(z) are nonzero constant functions.

In this case, R ′(z) = 0 so P(z) = a and Q(z) = b. Then the degree of R ′(z) is k ′ = 0.
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2.2 Elementary Theory of Power Series

2.2.1 Sequences

2.2.2 Series

2.2.3 Uniform Convergence

1. Prove that a convergent sequence is bounded.

Let {an} be a convergent sequence and limn→∞ an = a. Let ε = 1. Then there exists an n > N such that
|an − a| < 1.

|an| = |an − a+ a|

By the triangle inequality, we have

6 |an − a|+ |a|

|an|− |a| 6 |an − a|

Therefore, we have that

|an|− |a| 6 |an − a| < 1

|an| < 1+ |a|

For all n > N, |an| < 1+ |a| so let A = max
{
1+ |a|, |a1|, . . . , |aN|

}
. Thus, |an| < A for some finite A and

hence {an} is bounded by A.

2. If limn→∞ zn = A, prove that

lim
n→∞ 1n(z1 + z2 + · · ·+ zn) = A.

Given ε > 0 there exists some n > N such that

|zn −A| <
Nε

2
.

Now, since limn→∞ zn = A converges, it is Cauchy. Therefore, there exists n,m > N such that

|zm − zn| <
Nε

2
.

Repeating this we have that |z1 + · · ·+ zn −nA| or |1/n(z1 + · · ·+ zn−1) −A+ (zn −A)/n|. For a fixed N,
we can find n such that

n−1∑
i=1

|zi −A| <
Nε

2

We now have that

|1/n(z1 + · · ·+ zn−1) −A+ (zn −A)/n| 6
∣∣∣1/nn−1∑

i=1

(zi −A)
∣∣∣+ 1/n|zn −A| (2.5)

6 1/n
n−1∑
i=1

|zi −A|+ 1/n|zn −A|

< 1/n
Nε

2
+ 1/n

Nε

2

< ε

Equation (2.5) can be written as |1/n(z1 + · · ·+ zn) −A| < ε so

lim
n→∞ 1/n(z1 + · · ·+ zn) = A.
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3. Show that the sum of an absolutely convergent series does not change if the terms are rearranged.

Let
∑
an be an absolutely convergent series and

∑
bn be its rearrangement. Since

∑
an converges

absolutely, for ε > 0, there exists a n > N such that |sn −A| < ε/2 where sn is the nth partial sum. Let
tn be the nth partial sum of

∑
bn. Then for some n > N

|tn −A| = |tn − sn + sn −A|

6 |tn − sn|+ |sn −A|

< |tn − sn|+
ε

2

Since
∑
an is absolutely convergent,

∑∞
k=n+1|ak| converges to zero. Let the remainder be rn. Then for

some N > n,n1, |rn − 0| < ε/2. Let M = max{k1,k2, . . . ,kN}. Then for some n > M, we have

|tn − sn| =
∣∣∣ N∑
n

an

∣∣∣ 6∑|an| 6
∞∑

k=n+1

|an| = rn <
ε

2

Thus, |tn − sn| < ε and a rearrangement of an absolutely convergent series does not changes its sum.

4. Discuss completely the convergence and uniform convergence of the sequence {nzn}∞n=1.

Consider when |z| < 1. Then zn = 1
wn where |w| > 1. By the ratio test, we have

lim
n→∞

∣∣∣(n+ 1)wn

nwn+1

∣∣∣ = 1

|w|
lim
n→∞ n+ 1

n
=

1

|w|

In order for convergence, the ratio test has to be less than one.

1

|w|
= |z|

which is less than one by our assumption so {nzn} converges absolutely in the disc less than one. Now,
let’s consider |z| > 1. By the ratio test, we get limn→∞|an+1/an| = |z| > 1 by our assumption. When the
limit is one, we can draw no conclusion about convergence, but when the limit is greater than one, the
sequence diverges. For |z| < 1, ε > 0, and n > N, |nzn − 0| < ε for uniform convergence. Take z = 9/10,
n = 100, and ε = 0.001. Then

|nzn| = n|z|n < ε

|z|n <
ε

n

0.000026 6< 0.00001

Thus, the sequence is not uniformly convergent in the disc with radius less than one. Let’s consider the
closed disc |z| 6 R where R ∈ (0, 1). Now |nzn| is bounded above by a convergent geometric series, say∑
rn where |r| < 1. Then |nzn| < arn for |z| 6 R and a a real constant. Let Mn = arn where Mn is the

M in the Weierstrass M-test. Thus, {nzn} is uniformly convergent in a closed disc less than one.

5. Discuss the uniform convergence of the series

∞∑
n=1

x

n(1+nx2)

for real values of x.

By the AM-GM inequality, (x+ y)/2 > √xy, we have

1+nx2 > 2|x|
√
n

or 1
2|x|
√
n
> 1
1+nx2

. Let fn(x) = x
n(1+nx2)

. Then

|fn(x)| 6
∣∣∣ x

2xn3/2

∣∣∣ = ∣∣∣ 1

2n3/2

∣∣∣ =Mn
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For a fixed x,
∑

|fn(x)| 6 Mn < ∞ so
∑

|fn(x)| is absolutely convergent. Thus,
∑
fn(x) is pointwise

convergent to f(x). Let ε > 0 be given and sn =
∑n
k=1 fk(x) be nth partial sum. Let n > N such that

|f(x) − sn| =
∣∣∣ ∞∑
k=1

fk(x) −

n∑
k=1

fk(x)
∣∣∣ = ∣∣∣ ∞∑

k=n+1

fk(x)
∣∣∣ 6 ∞∑

k=n+1

|fk(x)|

Since
∑
Mk converges to some limit, for n sufficiently large,

∑∞
k=n+1Mk < ε. Select N such that this is

true. Then

|f(x) − sn| 6
∞∑

k=n+1

|fk(x)| 6
∞∑

k=n+1

Mk < ε

Therefore,
∑
fn(x) where fn(x) = x

n(1+nx2)
is uniformly convergent by the Weierstrass M-test.

6. If U = u1 + u2 + · · · , V = v1 + v2 + · · · are convergent series, prove that UV = u1v1 + (u1v2 + u2v2) +

(u1v3 + u2v2 + u3v1) + · · · provided that at least one of the series is absolutely convergent. (It is easy
if both series are absolutely convergent. Try to rearrange the proof so economically that the absolute
convergence of the second series is not needed.)

2.2.4 Power Series

1. Expand (1− z)−m, m a positive integer, in powers of z.

The Binomial theorem states that (1+ x)n =
∑∞
k=0

(
n
k

)
xk. In our case, we have

(1− z)−m =

∞∑
k=0

(
−m

k

)
(−z)k (2.6)

where
(
−m
k

)
= (−1)k

(
m+k−1
k

)
. Then equation (2.6) can be written as

(1− z)−m =

∞∑
k=0

(
m+ k− 1

k

)
zk = 1+mz+

m(m+ 1)

2!
z2 + · · · .

2. Expand 2z+3
z+1 in powers of z− 1. What is the radius of convergence?

Let’s just consider 1
z+1 for the moment.

1

z+ 1
=

1

z− 1+ 2
=

1/2

1+ z+1
2

=
1

2

∞∑
n=0

(−1)n
(z+ 1

2

)n
From the full expressing, we obtain

2z+ 3

z+ 1
=
2z+ 3

2

∞∑
n=0

(−1)n
(z+ 1

2

)n
.

The radius of convergence can be found by 1/R = lim supn→∞ n
√
|an|. Therefore, the radius of conver-

gence is

R = 1/ lim sup
n→∞

n

√∣∣∣(−1)n 1
2n

∣∣∣ = |2| = 2

3. Find the radius of convergence of the following power series:

∑
npzn,

∑ zn

n!
,
∑

n!zn,
∑

qn
2

zn,
∑

zn!

where |q| < 1.

For
∑
npzn, we can use the inverse of argument of the ratio test to determine the radius of convergence;

that is,

R = lim
n→∞

∣∣∣ np

(n+ 1)p

∣∣∣ = lim
n→∞ np

(n+ 1)p
= 1
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For
∑

zn

n! , we can use the fact that the sum is ez which is entire or the method used previously. Since
ez is entire, the radius of convergence is R =∞.

R = lim
n→∞

∣∣∣(n+ 1)!
n!

∣∣∣ = lim
n→∞ n!(n+ 1)

n!
=∞

For
∑
n!zn, we use the modified ratio test again.

R = lim
n→∞

∣∣∣ n!
(n+ 1)!

∣∣∣ = 0
For
∑
qn

2
zn, we will use the root test.

R = 1/ lim sup
n→∞ n

√
|qn|n = 1/ lim sup

n→∞ |q|n

for |q| < 1, R =∞, and for |q| > 1, R = 0. For
∑
zn!, we will use the root test.

R = 1/ lim sup
n→∞

n

√
|z(n−1)!|n = 1/ lim sup

n→∞ |z|(n−1)!

When |z| < 1, R =∞, and when |z| > 1, R = 0.

4. If
∑
anz

n has a radius of convergence R, what is the radius of convergence of
∑
anz

2n? of
∑
a2nz

n?

Since
∑
anz

n has a radius of convergence R,

R = lim
n→∞

∣∣∣ an
an+1

∣∣∣.
For
∑
anz

2n = z2
∑
anz

n, we have
|z|2 lim

n→∞
∣∣∣ an
an+1

∣∣∣ = |z|2R

so the radius of convergence is
√
R. For

∑
a2nz

n, we have

lim
n→∞

∣∣∣ an
an+1

∣∣∣2 = R2.

5. If f(z) =
∑
anz

n, what is
∑
n3anz

n?

Let’s write out the first few terms of∑
n3anz

n = a1z+ 8a2z
2 + 27a3z

3 + 64a4z
4 + · · ·

Let’s consider the first three derivatives of f(z).

f ′(z) =
∑

nanz
n−1

zf ′(z) =
∑

nanz
n

= a1z+ 2a2z
2 + 3a3z

3 + · · · (2.7)

f ′′(z) =
∑

n(n− 1)anz
n−2

z2f ′′(z) =
∑

n(n− 1)anz
n

= 2a2z
2 + 6a3z

3 + 12a4z
4 + · · · (2.8)

f ′′′(z) =
∑

n(n− 1)(n− 2)anz
n−3

z3f ′′′(z) =
∑

n(n− 1)(n− 2)anz
n

= 6a3z
3 + 24a4z

4 + 60a5z
5 + · · · (2.9)

If we add equations (2.7) to (2.9), we have

zf ′(z) + z2f ′′(z) + z3f ′′′(z) = a1z+ 4a2z
2 + 15a3z

3 + · · · 6=
∑

n3anz
n

However, consider 3z2f ′′(z) = 6a2z2 + 18a3z3 + 36a4z4 + · · ·. Then

zf ′(z) + 3z2f ′′(z) + z3f ′′′(z) = a1z+ 8a2z
2 + 27a3z

3 + 64a4z
4 · · · =

∑
n3anz

n.
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6. If
∑
anz

n and
∑
bnzn have radii of convergence R1 and R2, show that the radii of convergence of∑

anbnz
n is at least R1R2.

Let ε > 0 be given. Then there exists n > N such that

|an|
1/n < 1/R1 + ε, |bn|

1/n < 1/R2 + ε

since lim supn→∞|an|1/n = 1/R1 so |an|
1/n < 1/R1 + ε and similarly for bn. Multiplying we obtain

|anbn|
1/n <

1

R1R2
+ ε(1/R1 + 1/R2) + ε

2

Then
1

R
6

1

R1R2
⇒ R1R2 6 R

7. If limn→∞|an|/|an+1| = R, prove that
∑
anz

n has a radius of convergence of R.

Let ε > 0 be given. Suppose |z| < R. Pick ε such that |z| < R− ε. Then for some n > N∣∣∣∣∣∣∣ anan+1

∣∣∣− R∣∣∣∣ 6 R− ∣∣∣ anan+1

∣∣∣ < ε
R− ε <

∣∣∣ an
an+1

∣∣∣ (2.10)

For n > N, we can write ∣∣∣aN
an

∣∣∣ = ∣∣∣aNaN+1 · · ·an−1
aN+1aN+2 · · ·an

=
∣∣∣ aN
aN+1

aN+1

aN+2
· · · an−1

an

∣∣∣ (2.11)

For n > N, we have that from equation (2.10), R− ε < aN
aN+1

. Thus, we can equation (2.11) as

(R− ε)n−N <
∣∣∣aN
an

∣∣∣
|an| <

|aN|

(R− ε)n−N

|anz
n| < |aNz

N|
( |z|

R− ε

)n−N
Since ε was chosen such that |z| < R− ε, we that |z|

R−ε < 1 and

|anz
n| < |aNz

N|

where |aNz
N| < ∞ since it is a convergent geometric series. Therefore,

∑
anz

n converges absolutely
with a radius of convergence of R.

8. For what values of z is ∞∑
n=0

( z

1+ z

)n
convergent?

In order for series to converge lim supn→∞ n
√
|an| < 1. Then

lim sup
n→∞ n

√
|z/(z+ 1)|n =

∣∣∣ z

z+ 1

∣∣∣ < 1
or |z|2 < (1+ z)(1+ z̄) = 1+ 2<{z}+ |z|2 so the series converges when

0 < 1+ 2<{z}.
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9. Same question for ∞∑
n=0

zn

1+ z2n
.

Consider the following two equations:

|1| = |1+ z2n − z2n|

6 |1+ z2n|+ |z2n|

1− |z2n| 6 |1+ z2n| (2.12)

|z2n| = |1− 1+ z2n|

6 |1+ z2n|+ 1

|z2n|− 1 6 |1+ z2n| (2.13)

From equations (2.12) and (2.13), the triangle inequality, we have that∣∣1− |z2n|
∣∣ 6 |1+ z2n|.

There exists an m > 1 such that
|z2n|

m
6
∣∣1− |z2n|

∣∣.
By the root test,

lim sup
n→∞ n

√
m|z|n

|z2|n
= lim sup

n→∞
n
√
m

|z|
=
1

|z|
< 1

When |z| > 1, the convergence of the ratio test 1
|z| < 1 leads to |z| > 1. If |z| < 1, then 1/|z| > 1 where we

can write 1/|z| = |z1|. Since the choice dummy variables is arbitrary, |z| < 1. In other words, the series
will converge when |z| > 1 or |z| < 1. Suppose |z| = 1. Then by the limit test,

lim
n→∞ 1

1n + 1−n
=
1

2
6= 0;

therefore, the series diverges.

2.2.5 Abel’s Limit Theorem

2.3 The Exponential and Trigonometric Functions

2.3.1 The Exponential

2.3.2 The Trigonometric Functions

1. Find the values of sin(i), cos(i), and tan(1+ i).

For sin(i), we can use the identity sin(z) = eiz−e−iz

2i . Then

sin(i) =
e−1 − e1

2i
= i

e1 − e−1

2
= i sinh(1).

Similarly, for cos(i), we have

cos(i) =
e−1 + e1

2
=
e1 + e−1

2
= cosh(1).

For tan(1+ i), we can use the identity tan(z) = −ie
iz−e−iz

eiz+e−iz
. Then

tan(1+ i) = −i
ei−1 − e1−i

ei−1 + e1−i
= −i tanh(i− 1).
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2. The hyperbolic cosine and sine are defined as cosh(z) = ez+e−z

2 and sinh(z) = ez−e−z

2 . Express them
through cos(iz) and sin(iz). Derive the addition formulas, and formulas for cosh(2z) and sinh(2z).

For the first part, we have

cos(iz) =
e−z + ez

2

= cosh(z)

sin(iz) =
e−z − ez

2i

= i
ez − e−z

2

= i sinh(z)

For cosh, we have that the addition formula is

cosh(a+ b) = cos[i(a+ b)]

=
ea+b + e−(a+b)

2

=
2ea+b + 2e−(a+b)

4

=
(
ea+b + ea−b + eb−a + e−(a+b) + ea+b − ea−b − eb−a + e−(a+b)

)
/4

=
ea + e−a

2

eb + e−b

2
+
ea − e−a

2

eb − e−b

2

= cosh(a) cosh(b) + sinh(a) sinh(b)

For sinh, we have that the addition formula is

sinh(a+ b) = −i sin[i(a+ b)]

=
e−(a+b) − ea+b

−2

=
2ea+b − 2e−(a+b)

4

=
(
ea+b + ea−b − eb−a − e−(a+b) + ea+b − ea−b + eb−a − e−(a+b)

)
/4

=
ea − e−a

2

eb + e−b

2
+
ea + e−a

2

eb − e−b

2

= sinh(a) cosh(b) + cosh(a) sinh(b)

For the double angle formulas, recall that cos(2z) = cos2(z) − sin2(z) = 2 cos2(z) − 1 = 1− 2 sin2(z) and
sin(2z) = 2 sin(z) cos(z). Therefore, we have

cosh(2z) = cos(2iz)

= cos2(iz) − sin2(iz)

=
(ez + e−z

2

)2
+
(ez − e−z

2

)2
= cosh2(z) + sinh2(z)

cosh(2z) = 2 cos2(iz) − 1

= 2 cosh2(z) − 1

cosh(2z) = 1− 2 sin2(iz)

= 1− 2 sinh2(z)

sinh(2z) = −i sin(2iz)

= −2i sin(iz) cos(iz)

= 2
ez − e−z

2

ez + e−z

2

= 2 sinh(z) cosh(z)
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3. Use the addition formulas to separate cos(x+ iy) and sin(x+ iy) in real and imaginary parts.

cos(x+ iy) = cos(x) cos(iy) − sin(x) sin(iy)

= cos(x) cosh(y) − i sin(x) sinh(y)

sin(x+ iy) = sin(x) cos(iy) + sin(iy) cos(x)

= sin(x) cosh(y) + i sinh(y) cos(x)

4. Show that

|cos(z)|2 = sinh2(y) + cos2(x) = cosh2(y) − sin2(x) = (cosh(2y) + cos(2x))/2

and
|sin(z)|2 = sinh2(y) + sin2(x) = cosh2(y) − cos2(x) = (cosh(2y) − cos(2x))/2.

For the identities, recall that cosh2(z) − sinh2(z) = 1 and cos2(z) + sin2(z) = 1. Then for the first identity,
we have

|cos(z)|2 = cos(z) cos(z̄)

=
[
cos(x) cosh(y) − i sin(x) sinh(y)

][
cos(x) cosh(y) + i sin(x) sinh(y)

]
= cos2(x) cosh2(y) + sin2(x) sinh2(y)

= cos2(x)(1+ sinh2(y)) + sin2(x) sinh2(y)

= cos2(x) + sinh2(y)

|cos(z)|2 = cos2(x) cosh2(y) + sin2(x)(cosh2(y) − 1)

= cosh2(y) − sin2(x)

|cos(z)|2 =

= (cosh(2y) + cos(2x))/2

|sin(z)|2 = sin(z) sin(z̄)

=
[
sin(x) cosh(y) + i sinh(y) cos(x)

][
sin(x) cosh(y) − i sinh(y) cos(x)

]
= sin2(x) cosh2(y) + sinh2(y) cos2(x)

= sin2(x)(1+ sinh2(y)) + sinh2(y) cos2(x)

= sin2(x) + sinh2(y)

|sin(z)|2 = sin2(x) cosh2(y) + (cosh2(y) − 1) cos2(x)

= cosh2(y) − cos2(x)

|sin(z)|2 =

= (cosh(2y) − cos(2x))/2

2.3.3 Periodicity

2.3.4 The Logarithm

1. For real y, show that every remainder in the series for cos(y) and sin(y) has the same sign as the leading
term (this generalizes the inequalities used in the periodicity proof).

The series for both cosine and sine are

cos(y) =
∞∑
k=0

(−1)k
y2k

(2k)!

= 1−
y2

2!
+
y4

4!
− · · ·

sin(y) =
∞∑
k=0

(−1)k
y2k+1

(2k+ 1)!

= y−
y3

3!
+
y6

6!
− · · ·
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We can write Taylor’s formula as f(y) = Tn(y) + Rn(y) where

f(y) =

n∑
k=0

f(k)(0)

k!
yk +

1

k!

∫y
0

(y− t)kf(k+1)(t)dt.

Now, we can write cosine and sine of y as

cos(y) =
n∑
k=0

(−1)ky2k

(2k)!
+
1

n!

∫y
0

(y− t)n cosn+1(t)dt

sin(y) =
n−1∑
k=0

(−1)ky2k+1

(2k+ 1)!
+
1

n!

∫y
0

(y− t)n sinn(t)dt

For cosine and sine, let n = 2m and n = 2m− 1, respectively. Then

cos(y) =
m∑
k=0

(−1)ky2k

(2k)!
+

1

(2m)!

∫y
0

(y− t)2m cos2m+1(t)dt

sin(y) =
m−1∑
k=0

(−1)ky2k+1

(2k+ 1)!
+

1

(2m− 1)!

∫y
0

(y− t)2m−1 sin2m−1(t)dt

2. Prove, for instance, that 3 < π < 2
√
3.

3. Find the value of ez for z = −iπ/2, 3iπ/4, 2iπ/3.

e−iπ/2 = −i

e3iπ/4 = (−
√
2+ i

√
2)/2

e2iπ/3 = (−1+ i
√
3)/2

4. For that values of z is ez equal to 2,−1, i,−i/2,−1− i, 1+ 2i?

For all problems, k ∈ Z.

ez = 2 ez = − 1

z = log(2) z = log(−1)

ez = i = log|i|+ i(arg(−1) + 2kπ)

z = log|i|+ i(arg(i) + 2kπ) = iπ(1+ 2kπ)

=
iπ

2
(1+ 4k) ez =

−i

2

ez = −1− i = − log(2) −
iπ

2
(1+ 4k)

z = log|−1− i|+ i(arg(−1− i) + 2kπ) ez = 1+ 2i

= log(
√
2) −

3iπ

4
+ 2kiπ z = log(

√
5) + i(arctan(2) + 2kπ)

=
log(2)
2

−
3iπ

4
+ 2kiπ =

log(5)
2

+ i(arctan(2) + 2kπ)

5. Find the real and imaginary parts of exp(ez).

Let z = x+ iy. Then

exp(ez) = exp
[
ex(cos(y) + i sin(y)

]
= exp(ex cos(y)) exp(iex sin(y))

= exp(ex cos(y))
[
cos(ex sin(y)) + i sin(ex sin(y))

]
u(x,y) = exp(ex cos(y)) cos(ex sin(y))

v(x,y) = exp(ex cos(y)) sin(ex sin(y))

where u(x,y) is the real and v(x,y) is the imaginary part of exp(ez).
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6. Determine all values of 2i, ii, (−1)2i.

For all problems, k ∈ Z.

z = 2i

= exp
[
i log(2)

]
= cos(log(2)) + i sin(log(2))

z = ii

= exp
[
i log(i)

]
= exp[−π(1+ 4k)/2]

z = (−1)2i

= i4i

= (ii)4

= exp[−2π(1+ 4k)]

7. Determine the real and imaginary parts of zz.

Let z = x+ iy and k ∈ Z.

zz = (x+ iy)x+iy

= exp
[
(x+ iy) log(x+ iy)

]
= ex/2 log(x2+y2)−y(arctan(y/x)+2kπ)

[
cos
(
x(arctan(y/x) + 2kπ) + y/2 log(x2 + y2)

)
+

i sin
(
x(arctan(y/x) + 2kπ) + y/2 log(x2 + y2)

)]
Thus, the real part is

u(x,y) = ex/2 log(x2+y2)−y(arctan(y/x)+2kπ) cos
(
x(arctan(y/x) + 2kπ) + y/2 log(x2 + y2)

)
and the imaginary part is

v(x,y) = ex/2 log(x2+y2)−y(arctan(y/x)+2kπ) sin
(
x(arctan(y/x) + 2kπ) + y/2 log(x2 + y2)

)
8. Express arctan(w) in terms of the logarithm.

Let arctan(w) = z. Then w = tan(z). Recall that tan(z) = −ie
iz−e−iz

eiz+e−iz
. Now, let e2iz = x. Then we have the

following

w = −i
x2 − 1

x2 + 1

which leads to
e2iz =

i−w

i+w
.

By taking the log, we can recover z.

2iz = log(i−w) − log(i+w)

= log(i) + log(1+ iw) − log(i) − log(1− iw)

z =
i

2

[
log(1− iw) − log(1+ iw)

]
arctan(w) = z

=
i

2

[
log(1− iw) − log(1+ iw)

]
9. Show how to define the "angles" in a triangle, bearing in mind that they should lie between 0 and π.

With this definition, prove that the sum of the angles is π.
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10. Show that the roots of the binomial equation zn = a are the vertices of a regular polygon (equal sides
and angles).

Let z = reiθ. Then
rneiθn = ae2iπk.

Therefore, r = a1/n and θ = 2iπk/n. Since r is just the radius, the roots will be located on a circle of
radius r at exp(2iπk/n) for k ∈ [0,n− 1]. Since each root are angle multiplies about the origin, they will
be n equally spaced points. n equally spaced points will form the vertices of a regular n-gon.
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3 Analytic Functions as Mappings

3.1 Elementary Point Set Topology

3.1.1 Sets and Elements

3.1.2 Metric Spaces

1. If S is a metric space with distance function d(x,y), show that S with the distance function δ(x,y) =

d(x,y)/[1+ d(x,y)] is also a metric space. The latter space is bounded in the sense that all distances lie
under a fixed bound.

Since d(x,y) is a metric on S, d(x,y) satisfies

d(x,y) > 0, and zero only when x = y (3.1a)

d(x,y) = d(y, x) (3.1b)

d(x, z) 6 d(x,y) + d(y, z) (3.1c)

By equation (3.1a), for x = y, d(x,y) = 0 so δ(x,y) = 0/1 = 0, and when x 6= y, d(x,y) > 0 so δ(x,y) > 0
since a positive number divided by a positive number is positive. We have that δ(x,y) > 0 and equal
zero if and only if x = y. By equation (3.1b), we have

δ(x,y) =
d(x,y)

1+ d(x,y)

=
d(y, x)

1+ d(y, x)
= δ(y, x)

For the triangle inequality, we have

d(x, z)
1+ d(x, z)

6
d(x,y)

1+ d(x,y)
+

d(y, z)
1+ d(y, z)

Let’s multiple through by the product of all three denominators. After simplifying, we obtain

d(x, z) 6 d(x,y) + d(y, z) + 2d(x,y)d(y, z) + d(x,y)d(y, z)d(x, z)

We have already shown that d(x,y) > 0 and zero if and only if x = y. If x = y = z, the triangle inequality
is vacuously true. When x 6= y 6= z, the triangle inequality follows since each distance is positive and
equation (3.1c); that is,

δ(x, z) 6 δ(x,y) + δ(y, z).

2. Suppose that there are given two distance functions d(x,y) and d1(x,y) on the same space S. They are
said to be equivalent if they determine the same open sets. Show that d and d1 are equivalent if to
every ε > 0 there exists a δ > 0 such that d(x,y) < δ implies d1(x,y) < ε, and vice versa. Verify that this
condition is fulfilled in exercise 1.

Let ε, δ > 0 be given. We can write δ(x,y) =
d(x,y)
1+d(x,y) = 1− 1

1+d(x,y) . We need to find a δ such that
whenever d(x,y) < δ, δ(x,y) < ε.

1−
1

1+ d(x,y)
< ε

d(x,y) <
ε

1− ε

33



Let δ = ε
1−ε . For ε < 1, if d(x,y) < δ = ε

1−ε , then

δ(x,y) = 1−
1

1+ d(x,y)
< 1−

1

1+ ε
1−ε

= ε.

If ε > 1, δ(x,y) = d(x,y)
1+d(x,y) < 1 < ε. For the reverse implication, we need to find a δ such that d(x,y) < ε.

Let δ = ε
1+ε . For any ε > 0, if δ(x,y) < δ = ε

1+ε , then

d(x,y)
1+ d(x,y)

<
ε

1+ ε

d(x,y)(1+ ε) < ε+ εd(x,y)

d(x,y) < ε

as was needed to be shown. Therefore, d(x,y) and δ(x,y) are equivalent metrics on S.

3. Show by strict application of the definition that the closure of |z− z0| < δ is |z− z0| 6 δ.

4. If X is the set of complex numbers whose real and imaginary parts are rational, what is IntX, X̄,∂X?

5. It is sometimes typographically simpler to write X ′ for ∼ X. With this notation, how is X ′− ′ related to
X? Show that X− ′− ′− ′− ′ = X− ′− ′ .

6. A set is said to be discrete if all its points are isolated. Show that a discrete set in R or C is countable.

Let S be a discrete set in R or C. If z ∈ S, then for some εi > 0, for i ∈ Z, Nεi(zi) is the i-th neighborhood
of zi. Since S is discrete, there exists an ε for each i such that the only point in Nεi(zi) is zi. Let εi be
this ε. Consider the following function

f(i) =


0, i = 0

1, i = 1

2i, i > 0

2(−i) + 1, i < 0

We have put i in a one-to-one correspondence with Z+. Therefore, S is countable.

7. Show that the accumulation points of any set form a closed set.

Let E be a set. Then E ′ is the set of accumulation (limit) points. If zi is a limit point, zi ∈ E ′. Now, zi
are limit points of E as well. Then {zi}→ z where z ∈ Ē. Therefore, z ∈ E ′ so E ′ is closed.

3.1.3 Connectedness

1. If X ⊂ S, show that the relatively open (closed) subsets of X are precisely those sets that can be expressed
as the intersection of X with an open (closed) subsets of S.

Let {Uα} be the open sets of S such that
⋃
αUα = S. Then X = X ∩

⋃
αUα =

⋃
α(X ∩Uα). Let {An} =

{X ∩Uα}. Then An is relatively open in X since An belongs to the topology of X; that is, for each n,
An ⊂ X and X =

⋃
nAn.

2. Show that the union of two regions is a region if and only if they have a common point.

For the first implication, ⇒, suppose on the contrary that the union of two regions is a region and they
have no point in common. Let A and B be these two nonempty regions. Since they share no point in
common, A ∩ B̄ = B ∩ Ā = ∅. Therefore, A and B are separated so they cannot be a region. We have
reached a contradiction so if the union of two regions is a region, then they have a point in common.
For the finally implication, suppose they have a point in common and the union of two regions is not
a region. Since the union of two regions is not a region, the regions are separated. Let A and B be
two nonempty separated regions. Since A and B are separated, A ∩ B̄ = B ∩ Ā = ∅; therefore, A and
B cannot have a point in common. We have reached contradiction so if they have a point in common,
then the union of two regions is are a region.

34



3. Prove that the closure of a connected set is connected.

Let T be a topological space such that E, Ē ⊂ T . Let E be a connected set and suppose Ē is separated;
that is, Ē = A ∪ B where A,B are relatively open in Ē, nonempty, and disjoint sets. Then there exists
open sets U,V in T such that A = U ∩ Ē and B = V ∩ Ē. Now, A ⊂ U, B ⊂ V , and U,V 6= ∅. Therefore,
U∩ E 6= ∅ 6= V ∩ E so U∩ E and V ∩ E are nonempty, disjoint sets. Then E = U∪ V so E is separated. We
have, thus, reached a contradiction and the closure of connected set is also connected.

4. Let A be the set of points (x,y) ∈ R2 with x = 0, |y| 6 1, and let B be the set with x > 0, y = sin(1/x). Is
A∪B connected?

This is known as the topologist’s sine curve.

0.2 0.4 0.6 0.8 1

−1

−0.5

0.5

1

Figure 3.1: Topologist’s sine curve plotted on the domain x ∈ (0, 1].

Let S = A ∪ B. We claim that the closure of B in R2 is B̄ = S. Let x ∈ S. If x ∈ B, then take a constant
sequence {x, x, . . .}. If x ∈ A, then x = (0,y) for |y| 6 1 or said another way y = sin(θ) for θ ∈ [−π,π].
We can write y = sin(θ) as y = sin(θ+ 2kπ) for k ∈ Z+. Let xk = 1/(θ+ 2kπ) > 0. Then y = sin(1/xk).
Now {xk} → 0 when k → ∞. Then (xk, sin(1/xk)) = (xn,y) → (0,y) ∈ B̄ since |y| 6 1. Therefore, S ⊂ B̄.
Let {(xn,yn)} ∈ S such that {(xn,yn)} → (x,y) ∈ R2. Then limn→∞ xn = x and limn→∞ yn = y. From
the definition of the sets, x > 0 and |y| 6 1 so |y| = limn→∞|yn| 6 1. If x = 0, then (0,y) ∈ S since
|y| 6 1. Suppose x > 0. Then there exist m > N such that xm > 0 for all m > N so (xn,yn) ∈ B. Let
yn = sin(1/xn) since (xn,yn) ∈ B. Notice that for z ∈ (0,∞), sin(1/z is continuous. Since {xn} → x and
yn = sin(1/xn), we have

y = lim
n→∞yn = lim

n→∞ sin(1/xn) = sin(1/x).

Thus, (x,y) ∈ B̄ ⊂ S so B̄ = S. Since A ∩ B̄ = A ∩ S = A 6= ∅, S is connected. However, S is not path
connected. That is, being connected doesn’t imply path connectedness.

Suppose S is path connected and there exists an f : [0, 1] → S such that f(0) ∈ B and f(1) ∈ A. Since A
is path connected, suppose f(1) = (0, 1). Let ε = 1/2 > 0. By continuity, for δ > 0, |f(t) − (0, 1)| < 1/2
whenever 1− δ 6 t 6 1. Since f is continuous, the image of f([1− δ, 1]) is connected. Let f(1− δ) = (x,y).
Consider the composite of f : [1 − δ, 1] → R2 and its projection on the x-axis. Since both maps are
continuous as well as their composite, the image of the composite map is a connected subset of R1

which contains zero and x. Now zero is the x-coordinate of f(1) and x the x-coordinate of f(1− δ). Since
R1 is convex, connected sets are intervals. Then the set of x-coordinates for f(1− δ) is x0 ∈ [0, x]. For
x0 ∈ (0, x], there exists t ∈ [1− δ, 1] such that f(t) = (x0, sin(1/x0)). If x0 = 1/(2kπ− π/2) for k� 1, then
0 < x0 < x. Now 1/x0 = π(4k− 1)/2 which is a 2π multiple of −π/2 for all k. Therefore, sin(1/x0) = −1

so (x0, sin(1/x0)) = (1/(2kπ− π/2),−1) for some t ∈ [1− δ, 1] which lies within a distance of ε = 1/2 of
(0, 1). However, the distance between (1/(2kπ− π/2),−1) and (0, 1) for large k is greater than 1 which is
a contradiction. Thus, S cannot be path connected.

5. Let E be the set of points (x,y) ∈ R2 such that 0 6 x 6 1 and either y = 0 or y = 1/n for some positive
integer n. What are the components of E? Are they all closed? Are they relatively open? Verify that E
is not locally connected.
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6. Prove that the components of a closed set are closed (use exercise 3).

7. A set is said to be discrete if all its points are isolated. Show that a discrete set in a separable metric
space is countable.

3.1.4 Compactness

1. Given an alternate proof of the fact that every bounded sequence of complex numbers has a convergent
subsequence (for instance by use of the limes inferior).

2. Show that the Heine-Borel property can also be expressed in the following manner: Every collection of
closed sets with an empty intersection contains a finite subcollection with an empty intersection.

The statement above is equivalent to: A collection F of closed subsets of a topological space (X,T)
has the finite intersection property if ∩Fα 6= ∅ for all finite subcollections Fα ⊂ F. Show that (X,T),
a topological space, is compacy if and only if every family of closed sets F ⊂ P(X) having the finite
intersection property satisfies ∩F 6= ∅.

Let F = {Fα : α ∈ A} be a collection of closed sets in X. Now⋂
α

Fα = ∅ ⇐⇒
⋃
α

Fcα = X.

Therefore, the set
⋃
α F
c
α is an open cover of X since Fα is closed. If the intersection of the set {Fαn }

is empty for a finite n, then
⋃
α F
c
αn

is a finite subcover of X. Then every open cover of X has a
finite subcover if and only if every collection of closed sets with an empty intersection has a finite
subcollection with an empty intersection. Thus, X is compact if and only if every collection of closed
sets with the finite intersection property has a nonempty intersection.

3. Use compactness to prove that a closed bounded set of real numbers has a maximum.

Since we are dealing with a set of real numbers, we are speaking of compact metric spaces. A subset
E of a metric space X is compact if and only if every sequence in E has convergent subsequence in E
(sequentially compact).

First, we will show ⇒ by contradiction. Let {xn} be a sequence in E. Suppose {xn} doesn’t have a
convergent subsequence in E. Then for x ∈ E, there exists ε > 0 such that xn ∈ Nε(x) for only finitely
many n. Then Nε(x) would be an open cover of E which has no finite subcover. Therefore, E couldn’t be
compact contradicting the premise. Thus, if E is compact metric space, then E is sequentially compact.
In order to prove ⇐, we need to prove that a sequentially compact set contains a countable dense
subset.

Lemma 3.1.4.1 : A sequentially compact set contains a countable dense subset (separable space).

Let A be an infinite sequentially compact set. Since A is sequential compact, A is bounded; otherwise, we
would have nonconvergent subsequences in A. Let {yn} be a dense sequence in A. Choose y1,y2, . . . ,yn
of {yn}. Let δn = supy∈Amink6n d(y,yn) > 0. Let yn+1 be such that d(yn+1,yk) > δ/2 for k = 1, . . . ,n.
Since {yn} has a convergent subsequence, for all ε > 0 there exist m,n ∈ Z+ such that d(ym,yn) < ε.
Then

d(y,yn−1) < δn−1/2 < d(ym,yn) < ε ⇐⇒ δn−1 < 2ε

Thus, all y ∈ A is in 2ε of yk for k < n. Since ε > 0 and arbitrary, {yn} is dense in A because every
nonempty open set contains at least one element of the sequence.

Now for ⇐. Let Fα be an open cover E and let {yn} be a dense sequence. Let r ∈ Q and let G be the
family of neighborhoods, Nr(yn), that are contained in Fα. Since Q is countable, G is countable. Let
x ∈ E and x ∈ Fα. Then Nε(x) ⊂ Fα for ε > 0. Since {yn} is dense in E, by lemma 3.1.4.1, d(y,yn) < ε/2 for
some n. For all r ∈ Q, d(yn,y) < r < ε− d(yn,y). Then x ∈ Nr(yn) ⊂ Nε(x) ⊂ G. Since x ∈ Nr(yn) ∈ G
and G is countable, we can find a finite subcover of G. Replace each G by Fα where G ⊂ Fα for some
α. Then this set of Fα is a finite subcover. Thus, if E is a sequentially compact metric space, then E is
compact.
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4. If E1 ⊃ E2 ⊃ · · · is a decreasing sequence of nonempty compact sets, then the intersection
⋂∞
1 En is not

empty (Cantor’s lemma). Show by example that this need not be true if the sets are merely closed.

Consider the topological space R1. Let En = {n ∈ Z>0 : [n,∞)}. Then En ⊃ En+1 ⊃ · · ·. Since (−∞,n) is
open in R1, [n,∞) = (−∞,n)c is closed. The infinite intersection of En is

∞⋂
n=1

En =

∞⋂
n=1

[n,∞) = ∅.

Thus, the statement isn’t true if we consider only closed sets.

5. Let S be the set of all sequences x = {xn} of real numbers such that only a finite number of the xn are
6= 0. Define d(x,y) = max|xn − yn|. Is the space complete? Show that the δ-neighborhoods are not
totally bounded.

3.1.5 Continuous Functions

1. Construct a topological mapping of the open disk |z| < 1 onto the whole plane.

Let X = {z ∈ C : |z| < 1}. Then we need to find a function, f, such that f : X → C. Consider the function
tan(z). Then z ∈ (−π/2,π/2) 7→ f(z) ∈ (−∞,∞). Let f(z) = tan(zπ/2). Then z ∈ (−1, 1) 7→ f(z) ∈ (−∞,∞).

2. Prove that a subset of the real line which is topologically equivalent to an open interval is an open
interval. (Consider the effect of removing a point.)

3. Prove that every continuous one-to-one mapping of a compact space is topological. (Show that closed
sets are mapped on closed sets.)

4. Let X and Y be compact sets in a complete metric space. Prove that there exists x ∈ X and a y ∈ Y such
that d(x,y) is a minimum.

5. Which of the following functions are uniformly continuous on the whole real line:

sin(x), x sin(x), x sin(x2),
√

|x| sin(x)?

3.1.6 Topological Spaces

3.2 Conformality

3.2.1 Arcs and Closed Curves

3.2.2 Analytic Functions in Regions

1. Give the precise definition of a single-valued branch of
√
1+ z+

√
1− z in a suitable region, and prove

it is analytic.

Let f(z)+ =
√
1+ z then z = −1. Define z+ 1 = r · eiθ. If we encircle z = −1, we have that

r · ei(θ+2π)/2 = r · eiθ/2eiπ = − r · eiθ/2 = −f(z)

That is, f(z)+ would be multi-valued. We can define the branch cut such that Ω+ = C/(−∞,−1].
Similarly, we have that Ω− = C/[1,∞). Finally, f(z) =

√
1+ z +

√
1− z is single-valued for Ω =

C/
[
(−∞,−1]∪ [1,∞)

]
is open and connected.

First, let’s consider ω =
√
1+ z. Let z1, z2 ∈ Ω then ω1 = u1 + iv1 ω2 = u2 + iv2 where u1,u2 > −1.

|z1 − z2| = | ω21 − 1− (ω22 − 1)|

= |ω21 −ω
2
2|

= |ω1 −ω2||ω1 +ω2|
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