SOLUTIONS TO AHLFORS' COMPLEX ANALYSIS
By:

DusTIN SMITH






Contents

1 Complex Numbers

1.1 The Algebra of Complex Numbers . . . .. ... ... . ... ... ... ........
1.1.1  Arithmetic Operations . . . . . ... .. .. .. .. .
1.1.2 Square Roots . . . . .. ... L
1.1.3  Justification . . . . . . . L e
1.1.4 Conjugation, Absolute Value . ... ... ... ... ... . ... .. ... .. ...
1.1.5 Inequalities . . . . . .. ...

1.2 The Geometric Representation of Complex Numbers . . . . ... ... ... ... ... ... ...
1.2.1  Geometric Addition and Multiplication . . . . . ... ........ ... ... ... ...
1.2.2 The Binomial Equation . . . ... ... ... ... ... ... ..
1.2.3 AnalyticGeometry . . .. . ... ...
1.2.4 The Spherical Representation . . . . ... ..... ... .. ... ... .. .. ... .. .. ..

Complex Functions

2.1 Introduction to the Concept of Analytical Function . . . .. .. ... . ... ... ... ... . ...
2.1.1  Limitsand Continuity . . .. ... ... ... .. L
2.1.2 Analytic Functions . . .. ... ... ...
2.1.3 Polynomials . .. ... ... ...
2.1.4 Rational Functions . . ... ... ... .. . ...

2.2 Elementary Theory of Power Series. . . . . ... ... ... ... .. . .. ... . ... ... ...
22,1 SEqUENCES . . o vt i e e e e e e e e
222 SErieS . . . . .
2.2.3 Uniform Convergence . . . . ... ... ...t
2.2.4 PowerSeries . . . . . ... e e e
2.2.5 Abel’s Limit Theorem . . . ... ... ... .. . ..

2.3 The Exponential and Trigonometric Functions . . . . ... ... ... ... ... ..........
23.1 TheExponential . . . ... ... ... ..
2.3.2  The Trigonometric Functions . . . ... ........ ... ... . ... . .......
2.3.3 Periodicity . . ... ...
23.4 ThelLlogarithm . . .. ... ... .. .. .. .

Analytic Functions as Mappings

3.1 Elementary Point Set Topology . . . .. .. ... ... ... . ... ... . ... . . .
3.1.1 Setsand Elements . . . . . . . . . L e e
3.1.2 MetricSpaces . . . . ...
3.1.3 Connectedness . . . . . ... e e e e e e
3.1.4 Compactness . . . . . . ...
3.1.5 Continuous Functions . . . ... ... .. .. . .. .. L e
3.1.6 Topological Spaces . . . ... ... .. ... ..

3.2 Conformality . . ... ... ...
3.21  Arcsand Closed Curves . . . . . . ... . e

3.2.2 Analytic Functionsin Regions . . . ... ... ... ... .. .. .. .. o0 L






1 Complex Numbers

1.1 The Algebra of Complex Numbers

1.1.1 Arithmetic Operations

1. Find the values of

5 2+1\2
3 S\ _sn
A+2) & (5231) O+0m+0-0
For the first problem, we have (1+ 2i)® = (=3 +4i)(1 +2i) = —11 —2i. For the second problem, we

should multiple by the conjugate z = —3 — 4i.

5 —3-4 —15-20i -3 4,

3+4i-3-4 25 5 5

For the third problem, we should first multiple by z = 3 + 2i.

2413421 8+i
3-2i3+2i 13

Now we need to just square the result.

1 02 63+ 161
768+ =5

For the last problem, we will need to find the polar form of the complex numbers. Let z; = 1+1
and z; = 1 —i. Then the modulus of z; = v2 = z,. Let ¢7 and ¢, be the angles associated with z;
and z;, respectively. Then ¢; = arctan(1) = 7 and ¢, = arctan(—1) = —*. Then z; = V2e™/4 and

27 = \/Zef'ni/{

Z? “FZEL _ 2n/2 [enﬁi/4 + efnrri/4]

B 2n/2+1 |:en7'ci/4 4 e‘I’LTEi/4:|

2
— /%] cos(%)

2. If z=x+1y (x and y real), find the real and imaginary parts of

A1 =11
! z’ z+1’ 2?2

For z*, we can use the binomial theorem since (a+b)™ =Y " o (})a™b™ . Therefore,

(x+iy)* = <g> (iy)* + (?)x(iy)g + (i)xz(iy)z + <:>x3(iy) + <j>x4 = y* —dxy31i— 6x?y? + 3yl +x*

Then the real and imaginary parts are

u(x,y) =x* +y* —6x?y?
v(x,y) = 43y —4xy3

For second problem, we need to multiple by the conjugate z.

T x—iy x—1iy
x+iyx—iy x2+y2




so the real and imaginary parts are

X
uly) = X2 +y?

-y
v(x,y) = 172

For the third problem, we have zﬂ—ig Then z = x+ 1+ iy.

x—T+iyx+T+iy  x2—1+42xyi
x+1—iyx+T1+iy (x+1)2+y?

Then real and imaginary parts are

x?—1
MY S R T

2xy
Y T

For the last problem, we have
1 x? —y? — 2xyi

22 x4+ 2x%y? +y?

so the real and imaginary parts are

X2 —y2
uloy) = x4+ 2x2y2 +y*
—2xy
viy) = x4 + 2x2y? +y4
3. Show that (%“/g)3 =1and (%i‘/g)6 =1.
Both problems will can be handled easily by converting to polar form. Let z = %“5 Then |z;| = 1.
Let ¢4 be the angle for the positive z; and ¢_ for the negative. Then ¢, = arctan(—v/3) = 27“ and
¢_ = arctan(v/3) = L. We can write z;, = e?'"/3 and z;_ = e*7/3,
Z?_._ _ eZiTr
1
23 oM

Therefore, z? = 1. For the second problem, ¢i; = £5 and i%” for i,j = +,— and the |z;| = 1. When we
raise z to the sixth poewr, the argument becomes +2m and +4.

e:|:217'r — e:|:417't — Z6 —1

1.1.2 Square Roots

1. Compute

i vE v e
For /i, we are looking for x and y such that
Vi=x+ iy
i=x%—y? +2xyi
2 —y?=0 (1.1)

2xy =1 (1.2)



From equation (1.1), we see that x> = y? or £x = +y. Also, note that i is the upper half plane (UHP).
That is, the angle is positive so x =y and 2x?> = 1 from equation (1.1). Therefore, /i = %( 1+1). We

also could have done this problem using the polar form of z. Let z = i. Then z = e'™/? s0 /z = '™/*

which is exactly what we obtained. For v/—i, let z = —i. Then z in polar form is z = e="/2 so
VZ = e V4 = %(1 —1). For VT+1, let z = 1+1i. Then z = v2e'™/* so /z = 2!/4e¥"/8_ Finally, for

13 Jetz = 1=i¥3 Then z = e='™/3 50 y/z = e=/6 = 1 (v/3—1).

2. Find the four values of v/—T.
Let z = /=1 s0 z* = —1. Let z = rei® so r*e*i® = —1 = eim(1+2k],

=

0=_(1+2k)

&~ —

where k =0, 1, 2, 3. Since when k =4, we have k = 0. Then 6 = 7, %T”, %T”, and 74—”.

7 = 617'[/4, e317‘[/4, 65171/4’ 67171/4

3. Compute v/iand v/—i.

Let z = v/i and z = re'®. Then r*e*i® =i = ¢i"/2,

ol —

so z = e™/8_ Now, let z = V/—1i. Then r*e*® = ¢~ 17/2 g0 z = ¢—17/8,

4. Solve the quadratic equation
224+ (a+iB)z+y+1id =0.

The quadratic equation is x = =2£¥0"=ac_For the complex polynomial, we have

P Vo2 — B2 — 4y +i20p —43)
- 2

Let a+bi= /o2 — B2 —4y +i(2ap —43). Then

_ —a—PB+(a+bi)
B 2

1.1.3 Justification

1. Show that the system of all matrices of the special form

(5 2)

combined by matrix addition and matrix multiplication, is isomorphic to the field of complex numbers.
2. Show that the complex number system can be thought of as the field of all polynomials with real

coefficients modulo the irreducible polynomial x* + 1.

1.1.4 Conjugation, Absolute Value

1. Verify by calculation the values of

z2 4+ 1

for z =x +1iy and z = x — iy are conjugate.



For z, we have that z? = x? —y? + 2xyi.

z x+1iy
Z24+1  x2—y2+1+2xyi
x+1iy x2—y?+1—2xyi

x2—y2 4+ 1+ 2xyix2 —y2 +1—2xyi
x(x2 —y? + 1)+ 2xy? +iy(x? —y? +1—-2x?)

- (2 —y2 +1)2 +dx2y? (x.3)
For z, we have that z? = x? —y? — 2xyi.
z x—1iy
Z2+1  x2—y2+1-2xyi
B x —1iy x2—y?+1+2xyi
Cox2—y2 41 —2xyix2 —y2 +1+2xyi
Cox(? —y? + 1)+ 2xy? —iy(x? —y? +1—2x?) (1.4)
- (2 —y2 +1)2 +dx2y? 4
Therefore, we have that equations (1.3) and (1.4) are conjugates.
2. Find the absolute value (modulus) of
44)(—1 4+ 2i
BB Q2+4M)(1+i) and CFACETHA)
(=1-1)3-1)
When we expand the first problem, we have that
21 =—-23+1)2+4)(14+1) =32+241
SO
lz1] = V322 + 242 = 40.
For the second problem, we have that
o (3+41)(—1+2i) 5 éi
2T T —yBE=-1y 2
SO .
lz2] = \/4+9/4 = 5t
3. Prove that
a—b‘_]
1—abl
if either |a] = 1 or [b] = 1. What exception must be made if |a| = [b| = 1?
Recall that |z|? = zZ.
_ b2
12 _ ’ a _b ‘
1—ab
a—b a—b
1= (=) (=)
a—bysa—b
= (== (=)
ad—ab —ab +bb
(1.5)

~ 1—ab— ab + aabb
If |a| = 1, then |a]?> = ad@ = 1 and similarly for [b|? = 1. Then equation (1.5) becomes

1—ab—ab+bb and 1—ab—ab+aa
1—ab—ab+bb 1—ab—ab+aa

resepctively which is one. If |a| = [b| = 1, then |a? = bl =1 so equation (1.5) can be written as
2—ab—ab
2—ab—ab’

Therefore, we must have that ab + ab # 2.



4. Find the conditions under which the equation az + bz + ¢ = 0 in one complex unknown has exactly one
solution, and compute that solution.

Let z=x+1y. Then az+bz+c = a(x+1iy) +b(x —1iy) +c = 0.

(a+b)x+c=0 (1.6a)
(a=b)y=0 (1.6b)

Lets consider equation (1.6b). We either have that a =b or y = 0. If a = b, then WLOG equation (1.6a)

can be written as
—c

" 2a
and y € R. For fixed a, b, ¢, we have infinitely many solutions when a = b since z = 75 +1iy fory € R.
If y =0, then equation (1.6a) can be written as

Therefore, z = x and we have only one solution.

5. Prove that Lagrange’s identity in the complex form

n
\Zail Z|al|ZZ|b 23 laib; — a;B:l2.
i=1

1<igisn

Let’s consider

n
‘Z (libi
i=1

Then we can write the lefthand side as

2 _ _ n n
== E laib; — a;bil* = E |ail? E byl
im1 im1

1<igi<n

n n n
)Z aib; +Z|alb —a;b;/? Zalbizdjgj+ (aibj — a;bi)(aib; — a;by)
i=1 1<igisn i=1 j=1 1<igisn
n
= Z aibid;b; + Z(Iall |b; |2+|a]|2|b |2) Z(ala]b b; +dja;b b)
i,j=1 igj 1<

2112 2112
n . +Z<(|ai| 1512 + [a;12[bsi/?)
- T 1%
= Z |ai|2|bi|2+zaibiajb]‘ ) _ _ B _
i=j=1 i#£j — Z (aiajbibj aF aia]-bibj)
i<
For i #j, 3 1; aibid@jb; — ¥ ;_;(aiGjbibj + diajbibj) = 0. Thus, we now have
n
D lailPbil®+ ) (lasl?Ibs1? + a2 [bsl?).

i=1 1<

When the indicies of both series on the right hand side coincide,

szm 2 = Z|a1|2|b 2. (17)

That is, both a; and b; index together on the left of side equation (1.7). When a; and b; dont index
together on the left side of equation (1.7),

ngb 2= (lai*b;1* + la;*bsl?)

i)

as was needed to be shown.



1.1.5 Inequalities

1. Prove that

‘ a—>b

a0l <

if la| <1 and |b] < 1.

From the properties of the modulus, we have that

a—b |a — b
‘1—ab’: 11— ab|

la—b|?

~1—ab?
(a—b)(a—b)

T (1—ab)(1—ab)
la|?> +|b]> —ab — ab

~ 1+a?|b? —ab—ab

_ 2—ab—ab
2—ab—ab

=1 (1.9)

(1.8)

From equations (1.8) and (1.9), we have

la—bl?
[1 —abl?
la —b|
|T— ab|

<1

2. Prove Cauchy’s inequality by induction.
Cauchy’s inequality is
[Tl anbn|2 < (‘(1] |2 +-oF |an|2) (|b1 ‘2 +-- 4+ |bn|2)

which can be written more compactly as

n 2 n n

2 2
‘Z abi| <D lail* ) [byf%
i1 i=1 =i

For the base case, 1 = 1, we have

la1b1? = (a1by)(@161) = ajarbyby = |as?[bsg]?

so the base case is true. Now let the equality hold for all k — 1 € Z where k — 1 < n. That is, we assume

that
K—1 , k=l kel
2 2
’Z aibi| <) lail* ) [byl
i1 =1 =1

to be true.

k—1
‘ Z Clibi
i=1

k—1 k—1
2
2 2 2 2
+labil* < ) lail* > [bil* +laxbyl
i=1 i=1

k 2 k—1 k—1
> aibi] < Y lail? Y bif? + (axbi)(@xbi)
i=1 i=1 i=1

k=1 k-1
2 2 21 2
=Y lail* ) [bif* + lax/* byl
i=1 i1

k k
2 2
= lail* ) by
i=1 i=1

Therefore, by the principal of mathematical induction, Cauchy’s inequality is true for all n > 1 for
neZ®".



3. Iflag] <1,Ay >0fori=1,...,nand A\; + A2 +--- + A, = 1, show that
Ajar +Aza2 + -+ Anan| < 1.
Since ) ;" ;Ai =1and A; >0, 0 < A; < 1. By the triangle inequality,

Arar +A2a2 4+ -+ Anan| < Aqllar|+ - -+ anlAq]

n

<Z}\i

4. Show that there are complex numbers z satisfying
lz—al+|z+ a|l = 2|c|

if and only if |a] < [c|. If this condition is fulfilled, what are the smallest and largest values |z|?

By the triangle inequality,
lz—al+|z+al > |[(z—a) — (z+ a)| = 2|q

SO
2cl =|z—al|+|z+q]

> |(z—a)—(z+ a)l
= 2|a]

Thus, |c| > |al. For the second implication, if a = 0, the result follow. Suppose a # 0. Then let z = |c|ﬁ.

2|c| = lal(lcl/lal = 1) + lal(lel/lal + 1)
=|z—a|+[z+al

The smallest and largest values of z can be found below.

2|c| =|z+al+|z—q]
4cl* = (lz+al+ |z — al)2
= 2(|z1* +al?)
4(Iz* +lal?)

<
2 <2 +laf

Ic]

|2 —]al? < Iz

1.2 The Geometric Representation of Complex Numbers

1.2.1 Geometric Addition and Multiplication

1. Find the symmetric points of a with respect to the lines which bisect the angles between the coordinate
axes.

2. Prove that the points a1, az, a3 are vertices of an equilateral triangle if and only if af + a3 + a3 =
ajaz; +azaz + ajasz.

3. Suppose that a and b are two vertices of a square. Find the two other vertices in all possible cases.

4. Find the center and the radius of the circle which circumscribes the triangle with vertices a;, ay, as.
Express the result in symmetric form.



1.2.2 The Binomial Equation

1. Express cos(3¢), cos(4¢), and sin(5¢) in terms of cos(¢) and sin(e).

For these problems, the sum addition identities will be employed; that is,

cos(oc=£ ) = cos(e) cos(B) F sin(w) sin(f)
sin(cc & ) = sin(a«) cos(p) = sin(B) cos(x)

We can write cos(3¢) as cos(2¢ + ¢) so
cos(3¢p) = cos(2¢ + @)
= cos(2@) cos(¢) —sin(2¢) sin( @)

= [cos? (@) —sin? ()] cos(p) — 2sin(¢) cos(p) sin(¢)

= cosg’((p) — 3Sin2((p) cos(@)

For cos(4¢), we have
cos(4@) = cos(2¢) cos(2¢) —sin(2¢) sin(2¢)
= [cos?(¢) — sinz((p)]2 — 4sin? () cos
()

(o)

= cos?(¢) +sin* (@) — 6sin’ () cos

For sin(5¢), we have

sin(5¢@) = sin(4¢) cos(@) + sin(¢) cos(4@)

= 2sin(2¢) cos(2¢) [cos? (@) — sin® ()] cos(@) +sin® (@) + sin(¢) cos* (@) — 6sin> (@) cos? (o)
= 5sin(¢p) cos* (@) — 10sin> (@) cos?(¢) + sin’ (@)
2. Simplify 1+ cos(@) + cos(2¢) + - - -+ cos(ne) and sin(¢) + - - - + sin(ne).
Instead of considering the two separate series, we will consider the series
14 cos(@) +isin(@) +--- +cos(ng) +isin(ne) =1+ e'® + ?*® 4 ... 4 eni®
n
_ Z ekicp
k=0
Recall that 3 =) v* = 1==°_ S
1— eicp(n+1)
T et
ipm+1) _q
€ (1.10)

et® —1

ip/2__o—i@/2 0 A o 5 9 .
e e ' 50 2iet®/2 sin(%) = e'®* — 1. We can now write equation (1.10) as

Note that sin(%) = =
i o _ eicp(n+'1)/2 sin(‘p(gﬂ))
= el®/2sin (%)
— SIH(M) ein(p/Z (1 11)
sin(%) ’

By taking the real and imaginary parts of equation (1.11), we get the series for } |, cos(ng) and

Y k_osin(ne), respectively.

n . (@(ntl)
Z cos(ne) = % cos E)
= sin($) 2

n . @(n+1)
> sintno) = S 2 in(79)
= sin(%) 2



3. Express the fifth and tenth roots of unity in algebraic form.

To find the roots of unity, we are looking to solve z™ = 1. Let z = €' and 1 = e?'*™. Then 0 = 2k™. For
the fifth roots of unity, n =5and k=0,1,...,4 so we have

wp = e° = cos(0) + isin(0)

wq = e2™/> = cos(%) +isin(2§)
w, = e*/5 = cos(%) +isin(4§)
w3 = e/ = cos(%t) +isin(65—ﬂ)
Wy = e37/5 = cos(%) —Hsin(sg)

Now we can plot the roots of unity on the unit circle.

Figure 1.1: The fifth roots of unity.

For the tenth roots of unity, n =10and k=0,1,...,9 so we have

wo = e° = cos(0) + isin(0)
=1
wp =e2™/10 = Cos(g) +1sin(§)
2 2
w, = e/10 — cos(g) + isin(?ﬂ)
3 . /3
w3 = e®/10 = cos(%) + ism(%)
4 /4
wy =310 — cos(?n) + ism(%)
ws = e'97/10 — cos(71) + isin(n)
— 1
6 . (6
wg = e'?7/10 — cos(g) + ism(g)
7 7
wy = e 47/10 — cos(?ﬂ) + isin(%)
8 . /8
wg = e'67/10 — cos(g) +ism(§)
9 . /9
wo = ¢!87/10 cos(?n) + ism(%)

Now we can plot the roots of unity on the unit circle.



Figure 1.2: The tenth roots of unity.

4. If wis given by w = cos(22) +isin(2%), prove that
T+t +w? 4. =D =g

for any integer h which is not a multiple of n.

Let w = cos(2Z) +1isin(2Z%) be written in exonential form as w = e?™/™. Then the series can be written

as
n—1 2ihm
Z (eZnih/n)k _ € —1
e2him/n _ 1"
k=0

2ih7t

Since h is an integer, e = 1; therefore, the series zero.

5. What is the value of
1— wh + th — et (_1 )n71 w(nfﬂh?

We can represent this series similarly as

n—1 2rihymk (_1 )neZihﬂ 1 B 1+ (_] )n+1 eZihﬂt
Z (76 ) T _e2him/n _1 1 4+ e2hin/n
k=0
Again, since h is an intger, we have that ™" = 1 which leaves us with
I 4 = _Jo, if n is even
1 4 e2him/n o, if nisodd

1.2.3 Analytic Geometry
1. When does az + bz + ¢ = 0 represent a line?
2. Write the equation of an ellipse, hyperbola, parabola in complex form.
For x,y,h,k,a,b € R such that a,b # 0, we define a real ellipse as

(x=n? | (y=k? _,

a? b2

Letz = % +1i¥ and zo = & +1§. If we expand the equation for an ellipse, we have

a? b2 "ab’_ ab ' ab’ ab



Thus, the equation of an ellipse in the complex plane is
(2—20)(Z—20) = lz—zol* =1 = |z —z| =1

where z and z, are defined above. Additionally, the standard form of an ellipse in the complex plane is
of the form
lz—al+|z—bl=c

where ¢ > [a —b|. Let a and b be the foci of a hyperbola. Then when the magnitude of the difference of
z and the foci is a constant, we will have a hyperbola.

||z—a|—|z—b|| =c

. Prove that the diagonals of a parallelogram bisect each other and that the diagonals of a rhombus are

orthogonal.

Prove analytically that the midpoints of parallel chords to a circle lie on a diameter perpendicular to
the chords.

5. Show that all circles that pass through a and 1/a intersect the circle |z| = 1 at right angles.

1.2.4 The Spherical Representation

1.

Show that z and z’ correspond to diametrically opposite points on the Riemann sphere if and only if
2z! = —1.

. A cube has its vertices on the sphere S and its edges parallel to the coordinate axes. Find the stereo-

graphic projections of the vertices.

. Same problem for a regular tetrahedron in general position.

Let Z,Z’ denote the stereographic projections of z,z’, and let N be the north pole. Show that the
triangles NZZ" and Nzz’ are similar, and use this to derive

2|z—2Z/|

REREE

d(z,z)

. Find the radius of the spherical image of the circle in the plane whose center is a and radius R.

Let z=a+ R and z’ = a—R. Then the distance d(z,z’) = 2R.

2R =d(z,z2")
R=d(z,z')/2
B 2IR|
V(1 + a2 +[R? + 2%{aR}) (1 + |a]? + [R]2 — 2%{aR})

2IR|
V(1 +1a2 +|R?)2 — 49R32{aR}







2 Complex Functions

2.1 Introduction to the Concept of Analytical Function

2.1.1 Limits and Continuity
2.1.2 Analytic Functions
1. If g(w) and f(z) are analytic functions, show that g(f(z)) is also analytic.
Let g(w) = h(x,y) +it(x,y) and f(z) = u(x,y) + iv(x,y) where z = w = x + iy for x,y € R. Then
(gof)(z) =h(ulx,y),v(x,y)) +it(ulx,y),v(x,y)).
Since f and g satisfy the Cauchy-Riemann equations,

v aw_dv

ox Qy dy  0Ox

h_dt  oh_ ot

ox Oy dou  Ox
The partial deivatives of (gof)(z) are

oh ohou Otov ot ot ou ot ov
8% B0 oviox B oLcull ovioy
ahiahau ot ov atiatau ot ov
dy Qudy ovdy  ox dudx @ dvox

In order for g(f(z)) to be analytic, % = g—; and g—L‘ = —g—f(. We can then write

oh at_ahau ohov o0tou 0Otov
&_@_EQJFR&_@@_R@
_ahau otou Ohodv 0tov
= Guan anay | aver  Goa

term 1 term 2

(2.1)

In order for the right hand side of equation (2.1) to be zero, we need both terms to be zero.

ohou 0tou oOhou 0tou
dudx QJudy QJudx dyou
_0hou 0Ohou
T dudx  0udx

Equation (2.2) occurs since g is analytic and satisfies the Cauchy-Riemann equations.

(2.2)

=0
For the second term in equation (2.1), we again use the analyticity of g.

OhOv 0tdv _Ohdv 0Ohov
dvox 0dvdy Ovox Ovox

=0
Therefore, from equation (2.1), we have
oo
x dy
oh_ ot
ox 0y
By similar analysis, we are able to conclude that g—L‘ = —%. Therefore, g(f(z)) satisfies the Cauchy-

Riemann so it is analytic.



2. Verify Cauchy-Riemann’s equations for the function z? and z3.

Let z = x +iy. Then z? = x? —y? + 2xyi and z3 = x3 — 3xy? +i(3x?y —y3). For f(z) = 22, the Cauchy-
Riemann equations are

Uy = 2X vy = 2x
uy = —2y — v, = —2y
Thus, the Cauchy-Riemann equation satisfied for f(z) = z%. For f(z) = z3, the Cauchy-Riemann
equations are
u, = 3x? —3y? vy = 3x? —3y?
uy = —6xy — vy = —6xy

Thus, the Cauchy-Riemann equation satisfied for f(z) = z3.

3. Find the most general harmonic polynomial of the form ax® + bx?y + cxy? + dy3. Determine the
conjugate harmonic function and the corresponding analytic function by integration and by the formal
method.

In order to be harmonic, u(x,y) = ax3 + bx?y + cxy? + dy? has to satisfy V>u =0 so
Uxx +Uyy = (Ba+c)x+(3d+Db)y =0.

Thus, 3a = —c and 3d = —b so
u(x,y) = ax® — 3axy? — 3dx%y + dy>.

To find the harmonic conjugate v(x,y, we need to look at the Cauchy-Riemann equations. By the
Cauchy-Riemann equations,
Uy = 3ax? — 3ay? — 6dxy = Vy.

Then we can integrate with respect to y to find v(x,y).
v(x,y) = J(3ax2 —3ay? — 6dxy)dy = 3ax?y — ay>® — 3dxy? + g(x)

Using the second Cauchy-Riemann, we have
vx = 6axy —3dy? + g’(x) = —uy = 3dx* + 6axy — 3dy?
50 g’(x) = 3dx?. Then g(x) = dx® + C and

v(x,y) = 3ax2y — ay3 — 3dxy2 +dx® +C.

4. Show that an analytic function cannot have a constant absolute value without reducing to a constant.

Let f = u(x,y) +1iv(x,y). Then the modulus of f is |f| = vu? +v2. If the modulus of f is constant, then
u? +v? = ¢ for some constant c. If ¢ = 0, then f = 0 which is constant. Suppose c # 0. By taking the
derivative with respect to x and y, we have

0= 2 w212
ox
= 2uu, + 2vvy
= UlUy + VVy
0= i( 2 1%
dy

= Uly + VVy
Since f is analytic, f satisfies the Cauchy-Riemann. That is, ux = vy and uy = —vx.

Uy — vy =0 (2.3a)



Uy +vu, =0 (2.3b)

Let’s write equations (2.3a) and (2.3b) in matrix form. Then we have

> (B

Suppose the matrix is not invertible. Then u? +v? = 0. Since u?,v? € R, u?,v? > 0. Therefore, u =v =0
so f(z) = 0. Now, suppose that the matrix is invertible. Then we have

-k

. Prove rigorously that the functions f(z) and f(z) are simultaneously analytic.

so f'(z) = 0 and f(z) = c for some constant c.

Let g(z) = f(z) and suppose f is analytic. Then g’(z) is

Foy g(z+ Az) —g(z)
9 (Z) - Alz—>0 Az
~ lim f(z+ Az) —f(2)
Az—0 Az
— lim [“”AZ)“Z)}
Az—0 Az

Since conjugation is continuous, we can move the limit inside the conjugation.

~ lim f(z+ Ai)— f(2)
Az—0 Az
= f'(2)

Thus, g is differentiable with derivative f’(z). Suppose f(z) is analytic and let g(z) = f(z). Then by the
same argument, f is differentiable with derivative g’(z). Therefore, f(z) and f(z) are simultaneously
analytic.

We could also use the Cauchy-Riemann equations. Let f(z) = u(x,y) +iv(x,y) where z = x + iy so

z = x—1y. Then f(Z) = «(x,y) — i (x,y) where x(x,y) = u(x,—y) and B(x,y) = v(x,—y). In order for

both to be analytic, they both need to satisfy the Cauchy-Riemann equations. That is, 1, = vy, uy = —vy,
ox = By and oy = —P.

ux(x,y) = vy (x,y)

uy (x,y) = —vx(x,y)

ox (%, Y) = ux(x, —y)

xy (%, y) = —uy (x, —y)

—Bx(x,y) = vx(x,—y)
By (x,y) = vy (x, —y)

Suppose that f(z) satisfies the Cauchy-Riemann equations. Then oy = u,(x, —y) = vy(x, —y) = B, and
oy = —Uy(x, —y) = vx(x, —y) = —Px. Therefore,

Ux(x,—y) = Wy (x, —y)

Uy (X/ —U) = —Vx (XI —U)

which means f(z) satisfies the Cauchy-Riemann equations. Now, recall that |z| = |z|. Since f(Z) satisfies
the Cauchy-Riemann equations, for an € > 0 there exists a & > 0 such that when 0 < [Az] < §,

If(Z2) — Zol = If(z) — zol < €. Thus, lima, ;0 f(z) = zo so f(z) is analytic if f(Z) is analytic.



6. Prove that the functions u(z) and u(z) are simultaneously harmonic.

Since u is the real part of f(z), u(z) = u(x,y) where z = x +iy. Suppose u(z) is harmonic. Then u(z)
satisfies Laplace equation.
V2U(2) = Uy +uyy =0

— 2 _ 2 _
Now, u(z) = u(x, —y) where %u(z) = Uy, and aa—yzu(z) = Uyy SO

V2U(Z) = Uxx + Uyy = 0.
Since u(z) is harmonic, uyx + 1y = 0 so it follows that u(z) is harmonic as well.

7. Show that a harmonic function satisfies the formal differential equation

%u _
020z
Let u be a harmonic. Then VZu = 0.
1,0 .0
afz = 2 (a = l@) (2'4a)
0 1,0 .0
=l *1@) @A)

From equation (2.4a), we have
1,0 0

. 1 .
E(& +1@)u— i(ux—t—luy).

Then we have

0%u 1(a )

. 1 .
3205 — 1 \3x —1@) (ux +iuy) = 2 [Ux + Uyy + 1(Uyx — Uxy)]

Since u is a solution to the Laplace equation, u has continuous first and second derivatives. That is,
u € C? at a minimum. By Schwarz’s theorem, u,y = uyx so
0%u
- = (.
0z0Z

Schwarz’s theorem states that if f is a function of two variables such that f., and fy, both exist and are
continuous at some point (xo,yo), then fyy = fyx.

2.1.3 Polynomials

2.1.4 Rational Functions

1. Use the method of the text to develop

z* 1
—-— and
23 —1 z(z+1)2(z+2)3
in partial fractions.
Let R(z) = 2324] = z+ #*5. The poles of R(z) occur when z> = 1. Then the distinct poles are

z=1,e%"7/3,eM7/3 Let H(z) = %5, z— Bi+1/w, and B; € {1,e217/3,e417/3}),

H(1+1/w) = %v_ 3(3w2 J:V3w+1)
H(e21/3 11 /w) = Se;v”“ — 36217#3(362171/31;\; +3e7/3 + 1)
H(e*™3 +1/w) = 364?71/3 ~ 3etin/3(3e4in/ 3V:§ By )
H(Bs +1/w) = o~ — Q(w)

334



Then G;(w) = 3?5’ where w — 1/(z— Bi). Now, R(z) = G(z) + Gi[1/(z— Bi)] so we finally have that

i

24 z 3 1
R = = —_—_— e — .
(2) z3 —1 Z+z3—1 Z+;3Bi(l—ﬁi)

The second problem’s numerator already is of a degree less than the denominator so we can proceed

at once. Let R(z) = m The poles of R(z) are B; € {0,—1,—2} and z — Bi + 1/w.

w
/w+1)2(1/w+2)3
6

R(1/w) =
. w
T wr1Z2w1)3

w
= §+Q(W)
6

w
(T—w)(w+1)3
=2w—w? 4+ Q(w)
6

R(1/w—1) =

w
(1=2w)(w—1)2
17w 5m?2 w3

=~ 2 7 T

R(1/w—2) =

Therefore, we can write

R(z) = 1 _l_’_ 2 B 1 B 17 B 5 B 1
Z_7,(7.—1—1)2(7,4-2)3_87. z+1 (z+1)2 8(z+2) 4(z+2)?2 2(z+2)3

2. Use the formula in the preceding exercise to prove that there exists a unique polynomial P of degree
< n with given values cy at the points oy (Lagrange’s interpolation polynomial).

3. What is the general form of a rational function which has absolute value 1 on the circle z| = 1? In
particular, how are the zeros and poles related to each other?

4. If a rational function is real on |z| = 1, how are the zeros and poles situated?

5. If R(z) is a rational function of order n, how large and how small can the order of R’(z) be?

Let R(z) = P(z)/Q(z) where P(z) has degree n and Q(z) has degree m. Let k be the degree of R(z). Then
k = max{n, m}.

Then we have four cases

(a) Both P(z) and Q(z) are nonconstant.

Then P’(z) and Q’(z) have degrees n — 1 and m — 1, respectively. Since we are looking only for the

highest degree terms, we have

n—1 Zm m—1

—z"z
sz

z

R'(z) =
Therefore, the degree of R’(z) is k' = max{n +m —1,2m}.
(b) Suppose P(z) is nonconstant and Q(z) is a nonzero constant function.

7=l — 7 (f
Rlz) ="
(2) 202
The degree of R’(z) is k' =n —1.
(c) Suppose P(z) is a nonzero constant function and Q(z) is a nonconstant.

0.zm — Zm—]
R/(Z) = z2m

The degree of R’(z) is k/ = 2m.
(d) Suppose both P(z) and Q(z) are nonzero constant functions.

In this case, R’(z) = 0 so P(z) = a and Q(z) =b. Then the degree of R’(z) is k' = 0.



2.2 Elementary Theory of Power Series

2.2.1 Sequences
2.2.2 Series
2.2.3 Uniform Convergence
1. Prove that a convergent sequence is bounded.

Let {a,} be a convergent sequence and lim,_,» an = a. Let € = 1. Then there exists an n > N such that
lan —al < 1.

lan| = lan —a+d
By the triangle inequality, we have

an —al+|a

NI\

lan| —lal < lan —al

Therefore, we have that

lan| —lal <lan —al <1
lan] < 1+ |q]
For all n > N, |an| < 1+/al so let A = max{1+lal,lai|,...,lan|}. Thus, lan| < A for some finite A and
hence {a,} is bounded by A.
2. Iflimn o zn = A, prove that

.1
lim —(z1+2z2+---+2zn) = A.

n—oo N

Given € > 0 there exists some n > N such that

Ne
zZn — Al < —.
|zn — Al 3
Now, since lim;,_,, zn = A converges, it is Cauchy. Therefore, there exists n, m > N such that

Ne
2

|Zm —zn| < —

Repeating this we have that [z + - +zn —nA|or [1/n(z1 + -+ 2zn_1) — A+ (zn — A)/nl. For a fixed N,
we can find n such that

lel A|<&

We now have that

1/n(zy + -+ 2zn1) — A+ (zn — A)/n| < ‘1/nZ A)|+1/nlzn - Al (2.5)
n—1

<1/m ) lzi—Al+1/nlzn — Al

i=1
Ne Ne
< 1/n7+1/n7

<e€
Equation (2.5) can be written as [1/n(z1 +---+zn) — Al < e so

lim 1/n(z; +---42zn) =A.
n—o00



3. Show that the sum of an absolutely convergent series does not change if the terms are rearranged.

Let > an be an absolutely convergent series and } b, be its rearrangement. Since } a, converges
absolutely, for € > 0, there exists a n > N such that [s;, — A| < e¢/2 where s, is the nth partial sum. Let
tn be the nth partial sum of }_ b,,. Then for some n > N

lth —Al=[tn —sn+sn—Al
< [tn —snl+sn — Al

< |t s|+€
n mn 2

Since }_ an, is absolutely convergent, > . . lax| converges to zero. Let the remainder be r;,. Then for

some N >n,ny, |rn — 0| < /2. Let M = max{k1,k2,...,kn}. Then for some n > M, we have
N [e'e) .
|tn_5n|:’Zan’ gz‘an|< Z |an|:Tn<§
n k=n-+1

Thus, [tn —sn| < € and a rearrangement of an absolutely convergent series does not changes its sum.

4. Discuss completely the convergence and uniform convergence of the sequence {nz"}_;.

Consider when |z] < 1. Then z™ = # where [w| > 1. By the ratio test, we have

mn
hm,w‘ Vi MHT ]
—00

n nwn+1 - W nsoo N m

In order for convergence, the ratio test has to be less than one.

1
— =7

i

which is less than one by our assumption so {nz"} converges absolutely in the disc less than one. Now,
let’s consider |z| > 1. By the ratio test, we get limn_,o|an+1/an| = Izl > 1 by our assumption. When the
limit is one, we can draw no conclusion about convergence, but when the limit is greater than one, the
sequence diverges. For |z| < 1, € >0, and n > N, nz™ — 0| < e for uniform convergence. Take z = 9/10,
n =100, and € = 0.001. Then
nz™ =nlz|™ < e
€
2™ < =
n
0.000026 < 0.00001
Thus, the sequence is not uniformly convergent in the disc with radius less than one. Let’s consider the
closed disc |z| < R where R € (0,1). Now nz"| is bounded above by a convergent geometric series, say

> ™ where |r] < 1. Then [nz"| < ar™ for |z| < R and a a real constant. Let M,;, = ar™ where M,, is the
M in the Weierstrass M-test. Thus, {nz"} is uniformly convergent in a closed disc less than one.

5. Discuss the uniform convergence of the series

o0

X
2
= n(1+nx?)

for real values of x.

By the AM-GM inequality, (x +y)/2 > ,/xy, we have

1+nx? > 2xvn

1 1 .
OF o= > 7z Let fn(x) = 75z Then

X 1
Ifn ()] < )2xn3/2‘ - ‘2n3/2‘ = Mn



For a fixed x, } |[fn(x)] < Mn < o0 so } [fn(x]| is absolutely convergent. Thus, } fn(x) is pointwise
convergent to f(x). Let e > 0 be given and s, = }__; fx(x) be nth partial sum. Let n > N such that

o0 n o0 o0
x)=sul= | R =Y f|=| X fbo|< Y I
k=1 k=1 k=n+1 k=n-+1
Since ) My converges to some limit, for n sufficiently large, > ., ; My < e. Select N such that this is
true. Then -
[f(x) —snl < Z Ifi (x Z My < e
k=n-+1 k:n+1

Therefore, } fn(x) where f(x) = is uniformly convergent by the Weierstrass M-test.

X
n(T+nx?)

6. fU=uj+uy+---,V =v;+v,+--- are convergent series, prove that UV = wjv; + (ujv2 + upva) +
(wvz +uyvy +uzvy) +-- - provided that at least one of the series is absolutely convergent. (It is easy
if both series are absolutely convergent. Try to rearrange the proof so economically that the absolute
convergence of the second series is not needed.)

2.2.4 Power Series

1. Expand (1 —z)~™, m a positive integer, in powers of z.

The Binomial theorem states that ( =Y o (})x*. In our case, we have
“ —Z)im = Z <_]In> (—Z)k (26)
k=0
where () = (=1)*(™*¥1). Then equation (2.6) can be written as
e (mAk—1\ mm+1) ,
(1—2) :kZ_O< " )z =1+mz+TZ GRoce o

2. Expand 223 in powers of z — 1. What is the radius of convergence?
p Z+1 p g

Let’s just consider 17 for the moment.
1 1 1/2 1 & z4+1\n
—= —= = — —1 n
z+1 z—1+42 1—1—% 2Z( ) ( 2 )
From the full expressing, we obtain

2243 2243 & z+1\n
z+1 2 Z(_”n( 2 )

n=

The radius of convergence can be found by 1/R =limsup,, _, = V/lan|. Therefore, the radius of conver-
gence is

R=1/limsup { ‘(—1)“—

n
n—o0 2

3. Find the radius of convergence of the following power series:

n z" n n2_n n!
TP T SEIND S LS 2

where |q| < 1.

For ) nPz™, we can use the inverse of argument of the ratio test to determine the radius of convergence;
that is,

. nP nP
R = lim

— = lim ——— =1
n—00 (n+1)P‘ n%(n—l—])v



For 3 Z;, we can use the fact that the sum is e* which is entire or the method used previously. Since
e” is entire, the radius of convergence is R = co.
n!(n+1)

. 1)! .
R = lim 1) = lim ——— =00
n—o0 n! n—o0 n'

For 5 n!z™, we use the modified ratio test again.
g

. n!
R= (n+])!‘_

For q“zz“, we will use the root test.

R =1/limsup V/|q™™ = 1/limsup|q|™

n—oo n—o0

for |q/ <1, R = 0o, and for |[q| > 1, R =0. For }_z™, we will use the root test.

R =1/limsup W = 1/1imsup|z|(“—”!

n—00 n—00

When |z| < 1, R = 0o, and when |z]| > 1, R = 0.
4. If Y anz™ has a radius of convergence R, what is the radius of convergence of 3 a,z?™? of 3~ aZz™?

Since ) anz™ has a radius of convergence R,

. a
R = lim 1L ‘
N—00l An 41

For 5 a,z?™ =225 a,z", we have

. a
2 lim | 2| = 22R
n—00l An 41
so the radius of convergence is VR. For 3~ aZz™, we have
. an |2
lim |—" ) =3

n—ooln4+1
5. If f(z) = 5 anz", whatis  n?a,z"?
Let’s write out the first few terms of
Z n3anz™ = a1z +8a2% +27a3z% + 64aszt + - -

Let’s consider the first three derivatives of f(z).

f'(z) = Znanz“ !
A2 = Znanz“
=ajz+2a22 +3a3z> +--- (2.7)

'(z) =) n(n—1)anz" 2
22" (z) = Z nn—1)anz"
=2a,2% + 6032 +12a4z% + - -- (2.8)
"(z) = Zn(n— Nn—2)anz"3
21" (z) = Zn(n— Nn—2)apz"
= 6a3z> + 24a4z* + 60asz® + - - - (2.9)
If we add equations (2.7) to (2.9), we have
2f'(2) + 228" (2) + 221" (2) = a1z + 4a2? + 15a323 + - -+ £ Z ndanz"
However, consider 3z2f"(z) = 6a,z2 + 18a3z® + 36a4z* + - - -. Then

2f'(z) + 3221"(2) + 231" (2) = a12+ 8422 + 27a32> + 64asz* - - = Z n3anz™.



6. If ) anz™ and ) bnz, have radii of convergence Ry and R;, show that the radii of convergence of
> anbnz™ is at least Ry R;.

Let € > 0 be given. Then there exists n > N such that
lan!"™ <1/Ry+€,  onl”™<1/Ra+e
since limsup,_,_ |an|"/™ =1/R; so |an|"/™ < 1/R; + € and similarly for b,. Multiplying we obtain
lanba|!/™ < R]]Rz +e(1/Ry +1/Rz) + €2

Then

< — RiRy <R
R = RiR, 172

7. If limy, ,o0lanl/lany1] =R, prove that ) a,z™ has a radius of convergence of R.

Let € > 0 be given. Suppose |z| < R. Pick e such that |z| < R— e. Then for some n > N

a a
2o <R <
An+1 an+1
a
R—e< ‘ = ’ (2.10)
an+1
For n > N, we can write

‘GN‘i‘aNaN+1"'an71 7‘ AN AN+1  Gn—1 (2.11)
an AN+1aN+2 - Qn aN+1 ON4-2 an

For n > N, we have that from equation (2.10), R—e < a?\;]L . Thus, we can equation (2.11) as

(R—em N < | 2N
an

lan|
(R—e)n—N

%, n—N
lanz" < lanz™] (2 2-)
R—e

lan| <

Since € was chosen such that |z| < R — ¢, we that R‘f'

o <1 and
lanz™ < lanz"|

where |anzN| < oo since it is a convergent geometric series. Therefore, Y anz™ converges absolutely
with a radius of convergence of R.

8. For what values of z is

§<] —Zkz)n

convergent?

In order for series to converge limsup_ _,  V/lan| < 1. Then

VA
li L Nn=|——=|<1
im sup lz/(z+1)| z+1‘

or |z < (1+2z)(14+2z) =1+ 2R{z} + |z|* so the series converges when
g

0 < 1+2%(z}



9. Same question for

y =
2n "
n:01+z

Consider the following two equations:

1=11+22"— 2"
< 1+ 227+ 22"
1— 122" < 142%™
27 = 1—1+2""
< +22+1

AN
22" —1 < [1+2°M

From equations (2.12) and (2.13), the triangle inequality, we have that

[1—122M] < T+2°7).

There exists an m > 1 such that

n
E 2.
m

By the root test,

72" . /m
limsup { |2|n = limsup =— <1
n—oo |Z ‘ n—oo |Z‘ |Z|

(2.12)

(2.13)

When |z| > 1, the convergence of the ratio test |17| < 1leads to |z| > 1. If |z] < 1, then 1/|z| > 1 where we
can write 1/|z| = |z;]. Since the choice dummy variables is arbitrary, |z| < 1. In other words, the series

will converge when |z| > 1 or |z| < 1. Suppose |z| = 1. Then by the limit test,

. 1 1
R O R

therefore, the series diverges.

2.2.5 Abel’s Limit Theorem
2.3 The Exponential and Trigonometric Functions

2.3.1 The Exponential
2.3.2 The Trigonometric Functions

1. Find the values of sin(i), cos(i), and tan(1 +1i).

=iz

For sin(i), we can use the identity sin(z) = eu% Then

—1 1 1 =1

e

sin(i)= & 4 — isinh(1).

2i 2
Similarly, for cos(i), we have

e l+el  el4e!

cos(i) = 3 5 = cosh(1).
For tan(1+ 1), we can use the identity tan(z) = —i%. Then
ei-1 _el—i
tan(1+1) = —i = —itanh(i—1).

ei*] + e]*i



2. The hyperbolic cosine and sine are defined as cosh(z) = % and sinh(z) = ezfzefz. Express them
through cos(iz) and sin(iz). Derive the addition formulas, and formulas for cosh(2z) and sinh(2z).

For the first part, we have

YT
= cosh(z)
. . —Z eZ
sin(iz) = 7
ef—e *
= isinh(z)

For cosh, we have that the addition formula is

cosh(a+b) = cosli(a+b)]
ed+b 4 o—(a+b)
2
zea+b _._Zef(a+b)
- 4
_ (ea+b + ea—b + eb—a + e—(a+b) + e0.+b . ea—b . eb—a + e—(a+b))/4
TN e Y -
2 2 2 2
= cosh(a) cosh(b) + sinh(a) sinh(b)

For sinh, we have that the addition formula is

sinh(a +b) = —isin[i(a + b)]
e—(at+b) _ ca+b
-2
Jedtb _ ypo—(a+b)

4
_ (ea+b + ed—b _ob—a__ ef(aer) + edtb _ oa-b + eb—a _ ef(a+b))/4

el —e %elpe b edpeagh_ b
2 2 2 2
= sinh(a) cosh(b) + cosh(a) sinh(b)

For the double angle formulas, recall that cos(2z) = cos?(z) —sin’(z) = 2cos?(z) — 1 = 1 —2sin’(z) and
sin(2z) = 2sin(z) cos(z). Therefore, we have
cosh(2z) = cos(2iz)

= cos?(iz) — sin?(iz)
Z, .-z 2 Z_ -z 2
= e
= coshz(z) + sinh? (z)
cosh(2z) = 2 cos?(iz) — 1
— 2cosh?(z) — 1
cosh(2z) = 1 —2sin?(iz)
= 1—2sinh?(z)

sinh(2z) = —isin(2iz)

= —2isin(iz) cos(iz)

Z_pTZeZ e 2
2 2

= 2sinh(z) cosh(z)

_5°




3. Use the addition formulas to separate cos(x + iy) and sin(x + iy) in real and imaginary parts.

cos(x + iy) = cos(x) cos(iy) — sin(x) sin(iy)
= cos(x) cosh(y) —isin(x) sinh(y)
sin(x + iy) = sin(x) cos(iy) + sin(iy) cos(x)

(x)
= sin(x) cosh(y) + isinh(y) cos(x)

4. Show that

lcos(z)|? = sinh?(y) + cos?(x) = cosh?(y) — sin?(x) = (cosh(2y) + cos(2x))/2

and
sin(z)|* = sinhz(y) +sin?(x) = Coshz(y) — cos?(x) = (cosh(2y) — cos(2x))/2.

For the identities, recall that cosh?(z) — sinh?(z) = 1 and cos?(z) +sin?(z) = 1. Then for the first identity,
we have

cos(z)]* = 0s(z)

cosh(y) —isin(x) sinh(y)] [cos(x) cosh(y) + isin(x) sinh(y)]

(1+sinh?(y)) + sin®(x) sinh? (y)
+sinh?(y)
cosh? (y)+ sin?(x)(cosh? (y)—1)
= cosh?(y) —sin?(x)
cos(z)|* =
= (cosh(2y) + cos(2x))/2
lsin(z)|* = sin(z) sin(2)
= [sin(x) cosh(y) + isinh(y) cos(x)] [sin(x) cosh(y) — i sinh(y) cos(x)]
x) cosh?(y) + sinh? (y) cos?(x)

C
)
x) cosh? (y) + sin? (x) sinh? (y)
)
)+
)

2

(x

= sin?(
= sin“(

(

n?(x +smh2( )

)
x)(1 + sinh? (y ))+sinhz(y)cosz(x)
)
|sin(z)|2=s1n (x) coshz( )+(coshz( ) —1) cos?(x)

= cosh? (y) — cos?(x)

lsin(z)|* =

= (cosh(2y) — cos(2x))/2

2.3.3 Periodicity
2.3.4 The Logarithm

1. For real y, show that every remainder in the series for cos(y) and sin(y) has the same sign as the leading
term (this generalizes the inequalities used in the periodicity proof).

The series for both cosine and sine are




We can write Taylor’s formula as f(y) = Tn.(y) + Rn(y) where

-

n
£ (0) 1 (v
(W) = Y v g | =0 a,
2 !

Now, we can write cosine and sine of y as

= (2k)! 0
n—1
. -1 Ky, 2k+1 1 v .
sin(y) = ((21)<—1:1)' + o Jo (y—t)"sin™(t)dt
k=0

For cosine and sine, let n = 2m and n = 2m — 1, respectively. Then

cos(y) = Z (™ + ] Jy (y—t)>™cos?™ 1 (t)dt

I |
= (2k)! 2m)! Jo
JRy2kt | Y 2m—1 i 2m—1
sin(y Z 2k+1 + (2m—1)!JO (y—t) sin (t)dt

. Prove, for instance, that 3 < 7 < 2/3.

. Find the value of e* for z = —in/2,3int/4,2im/3.

e—iﬂf/z — i

et = (—V2+1v2)/2
e?/3 = (—1+iv3)/2

. For that values of z is e* equal to 2, —1,1,—1/2,—1 —1,1 4 2{?

For all problems, k € Z.

e” =2 er=—1
z =log(2) z = log(—1)
e =1 = log|i| +i(arg(—1) + 2km)
z = log|i| +i(arg(i) + 2km) = im(1 + 2km)
im . =i
eF=—1-1 :—log(Z)—%[U—i—élk)
z =log|—1—1i|+i(arg(—1—1) + 2kmn) e =1+2
= log(ﬁ) — 3}% + 2kim 7 = log(\@) + i(arctan(2) + 2km)
= 105’; ) = ?)}Tﬂ + 2kim = log;(S) +i(arctan(2) + 2k)

. Find the real and imaginary parts of exp(e®).

Let z=x+1iy. Then

+isin(y)]

exp(ie*sin(y))

[cos(e* sin(y)) + isin(e* sin(y))]
cos(e* sin(y))
))

sin(e* sin(y

where u(x,y) is the real and v(x,y) is the imaginary part of exp(e*).



6. Determine all values of 21,1, (—1)%.

For all problems, k € Z.

7=
= exp|ilog(2)]
= cos(log(2)) + isin(log(2))
7=
= exp|ilog(i)]
= exp[—n(1 +4k)/2]
2= (=2
_ 4
— (ihy*
= exp[—2n(1 + 4k)]
7. Determine the real and imaginary parts of z=.
Letz=x+1iy and k € Z.
zF = (x +iy) T
= exp|[(x + iy) log(x + iy)]

[cos (x(arctan(y/x) + 2km) +y/2 log(x2 4F yz))+

_ ex/Zlog(xanyz)fy (arctan(y/x)+2k7t)

isin(x(arctan(y/x) + 2km) +y/2 log(x* + yz))}
Thus, the real part is
u(x,y) = ex/2log(x*+y?)—y (arctan(y /x)+2km) g (x(arctan(y/x) + 2kn) +y/2log(x* +y?))
and the imaginary part is

v(x,y) = ex/210g(x* +y?)—y (arctan(y/x)+2km) sin(x(arctan(y/x) + 2kn) +y/2log(x* +y?))

8. Express arctan(w) in terms of the logarithm.

Let arctan(w) = z. Then w = tan(z). Recall that tan(z) = —i%. Now, let e2t2 = x. Then we have the
following
. ixz —1
x2 +1
which leads to )
eZiz _ 1—w
i+w’

By taking the log, we can recover z.
2iz =log(i—w) —log(i+w)
=log(i) +log(1 +iw) —log(i) —log(1 —iw)
= % [log(1 —iw) —log(1 +iw)]
arctan(w) =z
— % [log(1 —iw) —log(1 +iw)]

9. Show how to define the "angles" in a triangle, bearing in mind that they should lie between 0 and 7.
With this definition, prove that the sum of the angles is .



10. Show that the roots of the binomial equation z™ = a are the vertices of a regular polygon (equal sides
and angles).
Let z =re'®. Then

T,nelen _ anwtk'

Therefore, r = a'/™ and 6 = 2ink/n. Since r is just the radius, the roots will be located on a circle of
radius r at exp(2irtk/n) for k € [0,n — 1]. Since each root are angle multiplies about the origin, they will
be n equally spaced points. n equally spaced points will form the vertices of a regular n-gon.



3 Analytic Functions as Mappings

3.1 Elementary Point Set Topology

3.1.1 Sets and Elements
3.1.2 Metric Spaces

1. If S is a metric space with distance function d(x,y), show that S with the distance function 5(x,y) =
d(x,y)/[1+ d(x,y)] is also a metric space. The latter space is bounded in the sense that all distances lie
under a fixed bound.

Since d(x,y) is a metric on S, d(x,y) satisfies

d(x,y) > 0, and zero only when x =y (3.1a)
d(x,y) = d(y,x) (3.1b)
d(x,z) < d(x,y) +d(y, 2) (3.10)

By equation (3.1a), for x =y, d(x,y) =0 s0 (x,y) =0/1 =0, and when x # y, d(x,y) > 0so 5(x,y) >0
since a positive number divided by a positive number is positive. We have that 5(x,y) > 0 and equal
zero if and only if x = y. By equation (3.1b), we have

_dxy)
__dly,x)
1+d(y,x)
=8(y,x)
For the triangle inequality, we have
d(x, z) P d(x,y) d(y,z)

1+d(x,z) ~ 1+dlxy)  1+d(y,z2)

Let’s multiple through by the product of all three denominators. After simplifying, we obtain
d(x,z) < d(x,y) +d(y,2z) + 2d(x,y)d(y, z) + d(x,y)d(y, z)d(x, 2)

We have already shown that d(x,y) > 0 and zero if and only if x =y. If x =y = z, the triangle inequality
is vacuously true. When x # y # z, the triangle inequality follows since each distance is positive and
equation (3.1c¢); that is,

d(x,z) < d8(x,y) +8(y,z).

2. Suppose that there are given two distance functions d(x,y) and d;(x,y) on the same space S. They are
said to be equivalent if they determine the same open sets. Show that d and d; are equivalent if to
every e > 0 there exists a > 0 such that d(x,y) < & implies d;(x,y) < €, and vice versa. Verify that this
condition is fulfilled in exercise 1.

Let €,8 > 0 be given. We can write §(x,y) = ]ffix(’xl-",ij) =1-— m. We need to find a & such that
whenever d(x,y) < d, d(x,y) < €.




Let 6 = +=;. For e < 1,if d(x,y) < 8 = 15, then

T—e"

1 1
S y) =1 ———— < 1— _
(e y) Trdxy) T+ ¢

Ife>1,05(xy)= % < 1 < e. For the reverse implication, we need to find a 5 such that d(x,y) < e.

Let 8 = ;. For any € >0, if (x,y) <d= T, then

dxy) _ _e
T+d(x,y) 1+e
d(x,y)(1+¢€) < e+ ed(x,y)
d(x,y) < e

as was needed to be shown. Therefore, d(x,y) and 6(x,y) are equivalent metrics on S.
3. Show by strict application of the definition that the closure of |z —zo| < 8 is |z — zo| < 6.
4. If X is the set of complex numbers whose real and imaginary parts are rational, what is Int X, X, 0X?

5. It is sometimes typographically simpler to write X’ for ~ X. With this notation, how is X'~ related to

X? Show that X~'—'="=" = Xx~"-".
6. A set is said to be discrete if all its points are isolated. Show that a discrete set in R or C is countable.

Let S be a discrete set in R or C. If z € S, then for some €; > 0, for i € Z, N¢, (z;) is the i-th neighborhood
of z;. Since S is discrete, there exists an e for each i such that the only point in N, (z;) is z;. Let €; be
this e. Consider the following function

0, 1=0
1, i=1
21, i>0
2(-1)+1, i<O

We have put i in a one-to-one correspondence with Z*. Therefore, S is countable.

7. Show that the accumulation points of any set form a closed set.

Let E be a set. Then E’ is the set of accumulation (limit) points. If z; is a limit point, z; € E’. Now, z;
are limit points of E as well. Then {z;} — z where z € E. Therefore, z € E’ so E’ is closed.

3.1.3 Connectedness

1. If X C S, show that the relatively open (closed) subsets of X are precisely those sets that can be expressed
as the intersection of X with an open (closed) subsets of S.

Let {U«} be the open sets of S such that |J, Uy =S. Then X = XN{J, Usx = U, (XN Uy). Let {An} =
{XNUy}. Then A, is relatively open in X since A,, belongs to the topology of X; that is, for each n,
An CXand X =, An.

2. Show that the union of two regions is a region if and only if they have a common point.

For the first implication, =, suppose on the contrary that the union of two regions is a region and they
have no point in common. Let A and B be these two nonempty regions. Since they share no point in
common, ANB = BNA = @. Therefore, A and B are separated so they cannot be a region. We have
reached a contradiction so if the union of two regions is a region, then they have a point in common.
For the finally implication, suppose they have a point in common and the union of two regions is not
a region. Since the union of two regions is not a region, the regions are separated. Let A and B be
two nonempty separated regions. Since A and B are separated, ANB = BN A = &; therefore, A and
B cannot have a point in common. We have reached contradiction so if they have a point in common,
then the union of two regions is are a region.



3. Prove that the closure of a connected set is connected.

Let T be a topological space such that E,E C T. Let E be a connected set and suppose E is separated;
that is, E = A UB where A, B are relatively open in E, nonempty, and disjoint sets. Then there exists
open sets U,V in T such that A =UNEand B=VNE. Now, A C U, B CV,and U,V # @. Therefore,
UNE# @ #VNEsoUNE and VNE are nonempty, disjoint sets. Then E = U UV so E is separated. We
have, thus, reached a contradiction and the closure of connected set is also connected.

4. Let A be the set of points (x,y) € R? with x =0, Jy| < 1, and let B be the set with x > 0, y = sin(1/x). Is
A UB connected?

This is known as the topologist’s sine curve.

1
. /
0.2 0.4 0.6

—0.5

0.8 1

—1

Figure 3.1: Topologist’s sine curve plotted on the domain x € (0, 1].

Let S = AUB. We claim that the closure of B in R? is B = S. Let x € S. If x € B, then take a constant
sequence {x,x,...}. If x € A, then x = (0,y) for |y| < 1 or said another way y = sin(0) for 6 € [—, 7.
We can write y = sin(0) as y = sin(0 + 2knt) for k € Z*. Let xix = 1/(0 + 2knt) > 0. Then y = sin(1/xy).
Now {xx} — 0 when k — oco. Then (xy,sin(1/xx)) = (xn,y) — (0,y) € B since ly| < 1. Therefore, S C B.
Let {(xn,yn)} € S such that {(xn,yn)} — (x,y) € R?. Then lim, o Xn = x and lim,,_,oc yn = y. From
the definition of the sets, x > 0 and |[y| < 1 s0 |y| = limn,lyn| < 1. If x = 0, then (0,y) € S since
lyl < 1. Suppose x > 0. Then there exist m > N such that x,, > 0 for all m > N so (xn,yn) € B. Let
Yn = sin(1/xy) since (xn,yn) € B. Notice that for z € (0, ), sin(1/z is continuous. Since {x} — x and
Yn = sin(1/x,), we have

y = lim y, = lim sin(1/x,) = sin(1/x).
n—oo n—oo

Thus, (x,y) € BC SsoB =S. Since ANB =ANS =A # g, S is connected. However, S is not path
connected. That is, being connected doesn’t imply path connectedness.

Suppose S is path connected and there exists an f: [0, 1] — S such that f(0) € B and f(1) € A. Since A
is path connected, suppose f(1) = (0,1). Let e = 1/2 > 0. By continuity, for 6 > 0, |f(t) — (0,1)| < 1/2
whenever 1 —6§ <t < 1. Since f is continuous, the image of f([1 —§,1]) is connected. Let f(1—§) = (x,y).
Consider the composite of f: [1 —§,1] — RR? and its projection on the x-axis. Since both maps are
continuous as well as their composite, the image of the composite map is a connected subset of R'
which contains zero and x. Now zero is the x-coordinate of f(1) and x the x-coordinate of f(1 —§). Since
R! is convex, connected sets are intervals. Then the set of x-coordinates for f(1—3) is xo € [0,x]. For
xo € (0,x], there exists t € [1 — 5, 1] such that f(t) = (xo,sin(1/x¢)). If xo = 1/(2k7t —7t/2) for k > 1, then
0 <x0 <x. Now 1/x¢ = m(4k —1)/2 which is a 2t multiple of —m/2 for all k. Therefore, sin(1/xq) = —1
S0 (xo,sin(1/xg)) = (1/(2kmt —7t/2),—1) for some t € [1 — 3, 1] which lies within a distance of ¢ = 1/2 of
(0,1). However, the distance between (1/(2km—m/2),—1) and (0, 1) for large k is greater than 1 which is
a contradiction. Thus, S cannot be path connected.

5. Let E be the set of points (x,y) € R? such that 0 < x < 1 and either y = 0 or y = 1/n for some positive
integer n. What are the components of E? Are they all closed? Are they relatively open? Verify that E
is not locally connected.



6. Prove that the components of a closed set are closed (use exercise 3).

7. A set is said to be discrete if all its points are isolated. Show that a discrete set in a separable metric
space is countable.

3.1.4 Compactness

1. Given an alternate proof of the fact that every bounded sequence of complex numbers has a convergent
subsequence (for instance by use of the limes inferior).

2. Show that the Heine-Borel property can also be expressed in the following manner: Every collection of
closed sets with an empty intersection contains a finite subcollection with an empty intersection.

The statement above is equivalent to: A collection J of closed subsets of a topological space (X,T)
has the finite intersection property if N\Fy # @ for all finite subcollections ¥, C F. Show that (X, 7),
a topological space, is compacy if and only if every family of closed sets ¥ C P(X) having the finite
intersection property satisfies NF # &.

Let F ={F4: « € A} be a collection of closed sets in X. Now
Fu=2 < [JFe=X
X X

Therefore, the set (J, F§ is an open cover of X since F is closed. If the intersection of the set {F, }
is empty for a finite n, then (J, F5,  is a finite subcover of X. Then every open cover of X has a
finite subcover if and only if every collection of closed sets with an empty intersection has a finite
subcollection with an empty intersection. Thus, X is compact if and only if every collection of closed
sets with the finite intersection property has a nonempty intersection.

3. Use compactness to prove that a closed bounded set of real numbers has a maximum.

Since we are dealing with a set of real numbers, we are speaking of compact metric spaces. A subset
E of a metric space X is compact if and only if every sequence in E has convergent subsequence in E
(sequentially compact).

First, we will show = by contradiction. Let {x,} be a sequence in E. Suppose {x,} doesn’t have a
convergent subsequence in E. Then for x € E, there exists e > 0 such that x,, € N¢(x) for only finitely
many n. Then N¢(x) would be an open cover of E which has no finite subcover. Therefore, E couldn’t be
compact contradicting the premise. Thus, if E is compact metric space, then E is sequentially compact.
In order to prove <, we need to prove that a sequentially compact set contains a countable dense
subset.

Lemma 3.1.4.1 : A sequentially compact set contains a countable dense subset (separable space).

Let A be an infinite sequentially compact set. Since A is sequential compact, A is bounded; otherwise, we
would have nonconvergent subsequences in A. Let {yn} be a dense sequence in A. Choose yi1,y2,...,Un
of {yn}. Let 6., = SUPyca ming<n d(y,yn) > 0. Let yn 41 be such that d(yn41,yx) > 8/2fork=1,...,n.
Since {yn} has a convergent subsequence, for all € > 0 there exist m,n € Z* such that d(ym,yn) < €.
Then

d(Yy,Yyn-1) <0n-1/2<d(ym,yn) <€ < dn1 < 2e

Thus, all y € A is in 2e of yx for k < n. Since e > 0 and arbitrary, {y»} is dense in A because every
nonempty open set contains at least one element of the sequence.

Now for <. Let F4 be an open cover E and let {y,} be a dense sequence. Let r € Q and let G be the
family of neighborhoods, N.(yr ), that are contained in F. Since Q is countable, G is countable. Let
x € Eand x € F. Then N¢(x) C Fy for e > 0. Since {yn} is dense in E, by lemma 3.1.4.1, d(y,yn) < €/2 for
some 1. For all r € Q, d(yn,y) <t < €—d(yn,y). Then x € N;(yn) C Ne(x) C G. Since x € N1 (yn) € G
and G is countable, we can find a finite subcover of G. Replace each G by Fy where G C F, for some
o. Then this set of F is a finite subcover. Thus, if E is a sequentially compact metric space, then E is
compact.



4. If Ey D E; D -+ is a decreasing sequence of nonempty compact sets, then the intersection (7° E,, is not

empty (Cantor’s lemma). Show by example that this need not be true if the sets are merely closed.

Consider the topological space R'. Let E,, = {n € Z>°: [n,c0)}. Then Ey, D Ey 41 D -+ -. Since (—oo,n) is
open in R', [n, ) = (—oo,n)¢ is closed. The infinite intersection of E., is

ﬂ Eqn = ﬂ M, 0) = a.
n=1 n=1

Thus, the statement isn’t true if we consider only closed sets.

. Let S be the set of all sequences x = {x} of real numbers such that only a finite number of the x,, are

# 0. Define d(x,y) = max|x, —ynl|. Is the space complete? Show that the d-neighborhoods are not
totally bounded.

3.1.5 Continuous Functions

1.

Construct a topological mapping of the open disk |z| < 1 onto the whole plane.

Let X ={z € C: |z| < 1}. Then we need to find a function, f, such that f: X — C. Consider the function
tan(z). Then z € (—nt/2,1/2) — f(z) € (—o0, ). Let f(z) = tan(znt/2). Then z € (—1,1) — f(z) € (—o0, 00).

Prove that a subset of the real line which is topologically equivalent to an open interval is an open
interval. (Consider the effect of removing a point.)

. Prove that every continuous one-to-one mapping of a compact space is topological. (Show that closed

sets are mapped on closed sets.)

Let X and Y be compact sets in a complete metric space. Prove that there exists x € X and a y € Y such
that d(x,y) is a minimum.

. Which of the following functions are uniformly continuous on the whole real line:

sin(x), x sin(x), x sin(x?), v/[x| sin(x)?

3.1.6 Topological Spaces

3.2 Conformality

3.2.1 Arcs and Closed Curves

3.2.2 Analytic Functions in Regions

1.

Give the precise definition of a single-valued branch of v/1+z+ +/1 —z in a suitable region, and prove
it is analytic.

Let f(z); = v/1+z then z = —1. Define z+ 1 =r- ¢'?. If we encircle z = —1, we have that

T. ei(6+27'[)/2 _ r.eie/zem _ _T__eiS/Z _ —f(Z)

That is, f(z), would be multi-valued. We can define the branch cut such that Q, = C/(—o0,—1].
Similarly, we have that Q_ = C/[1,00). Finally, f(z) = v1+2z+ +/1—z is single-valued for Q =
C/[(—o00,—1]U[1,00)] is open and connected.

First, let’s consider w = /1 +z. Let z1,z; € Q then w7 = uy +1ivy wy = uy +1ivy, where uy,uy; > —1.
2 2
lz1 —z2| = | w7 —1— (w3 — 1)
2 2
= w7 — w3l

=Jw1 — wylw + wy|
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