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Abstract

Due to the rising popularity of music stream-
ing services and organized efforts by indus-
try leaders and researchers for large-scale
data aggregation, the music industry is no
exception to the big data revolution. In this
work, we construct a network from music
artists features, streaming features, and com-
puted similarity measures between the artists
in the network. We investigate various featur-
ization schemes and clustering algorithms in
order to uncover clusters in the data and see
how the clustering results compare between
the clustering algorithms and their ability to
cluster on artists by genre.'

1. Introduction

We examine interaction networks for music artists
whose work appears on streaming services such as Spo-
tify. More specifically, we seek to uncover a clustering
of artists by genre using a graph with artist-specific
features as node attributes and computed features of
similarity between artists as edge attributes.

The data we will use to construct these graphs and
answer these questions comes from the Million Song
Dataset” (MSD), a large-scale dataset of music meta-
data provided by Columbia. It assigns a unique ID
to one millions songs which appear in streaming and
classification datasets provided by industry partners,
allowing the data to be merged and for the derivation
of other features.

We hypothesize that the nodes of the artist network will
gather into densely connected clusters based on genre.

'"The code for this project can be found here:
https://github.com/dyllew/18.065-fp

*http://millionsongdataset.com/

There will therefore be sparse interconnections across
genres using similarity between artists as edge features,
as described in detail in the Datasets section. We ex-
pect artists who are not defined by one single genre in
particular but multiple genres simultaneously to form
the sparse links between genre clusters manifesting the
inter-genre nature of their discography within the artist
graph.

2. Related Work
2.1. Finding Clusters in Networks

In large networks such as social-media or phone net-
works, the number of nodes can be on the order of
millions to billions (Blondel et al., 2008). In our case,
we have constructed a small but dense graph with 97
nodes and (%)) edges consisting of 97 music artists.
In order to find tightly coupled subunits of nodes in
a large network, or clusters, there are some options
for clustering algorithms to apply to the network. One
such method is the Louvain method, which is a superior
algorithm to other graph clustering algorithms in terms
of computational efficiency and it yields comparably
good results to the state-of-the-art graph clustering
methods (Blondel et al., 2008).

A measure used to identify the quality of the clusters
founds in networks is called modularity. Intuitively,
this provides a measure in the range [—3, 1] indicat-
ing how densely connected nodes within a cluster are
compared to the the average edge density on a ran-
domly generated graph with the same nodes and edge
weights. This measure works in both the unweighted
and weighted cases. It is defined as:

1
Q=5 %: [Aij — Pi4]6(ci, )

Here, A; ; is the weight of the edge between nodes ¢


https://github.com/dyllew/18.065-fp
http://millionsongdataset.com/
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and 7, m is the sum of weighted edges in the graph or
m =}, ; Aij, P is the expected edge density in the

null model or P;; = 5.2, k; = Zj A, ; or the sum
of the weights of edges connected to node ¢, ¢; is the
community node i is assigned to §(u, v) is 1 if u = v
and O otherwise. (Blondel et al., 2008)

Intuitively, the Louvain method begins by putting every
node of the network into its own cluster or community.
It then continues to put each node ¢ into the cluster
7, which leads to largest increase in modularity. The
clusters found by the algorithm are then replaced by
supernodes which are connected by weighted edges
whose weight represents the sum of the edge weights
between the nodes in each respective community or
supernode. This process continues iteratively combin-
ing smaller supernodes into larger supernodes until the
modularity cannot be improved. The advantages of
this network clustering method over others is that it
is very efficient (runs in O(nlogn), where n is the
number of nodes in the graph) and provides clusters at
different levels of granularity because of the inherent
hierarchical clustering nature of the algorithm. We
apply the Louvain method to the artist graph and use
accuracy obtained for all artists by predicting genre on
the basis of the plurality genre of each cluster found by
Louvain for evaluating this method against K-means
clustering.

2.2. Clustering Music Data

Analysis of music-information graphs is a popular
topic for both class projects and academic research.
The closest example to our own graphical analysis
comes from Stanford graduate students in CS221
(Agrim Gupta, 2017). Using some of the same datasets
as us, this group employed hard and soft clustering al-
gorithms such as k-means and Gaussian mixture mod-
els to classify songs into clusters. Unlike our project,
however, the clusters intentionally spanned multiple
genres and were then used to train a recommender
system. This system had 70% prediction accuracy,
which speaks favorably to the descriptive power of our
data. Additionally, this paper lead us to use mean song
feature vectors from across an artist’s discography, as
described in 3.2.

In academia, music data more often appears as an
application for technical graph theory results. The

papers which focused exclusively on music graphs
extended beyond the scope of our project, such as clus-
tering with constraints on the Fourier Coefficients of a
song (Wei Peng, 2007) and discovering how clusters
of listeners influence each other and evolve over time
(Schlitter & Falkowski, 2009).

3. Datasets
3.1. Data collection

Data for our analysis comes from the Million Song
Dataset (MSD) (Bertin-Mahieux et al., 2011) and Spo-
tify’s Application Programming Interface (API) (Spo-
tify API, 2021). Broadly, our features about user lis-
tening activity come from the MSD while features
describing specific songs come from Spotify.

The MSD is a rich dataset of popular music prepared
by researchers at Columbia. In a sense the MSD is a
meta-dataset because it unifies data provided by several
industry partners. As the name suggests, the million
song dataset contains information about one million
songs; each song is given a unique identifier (MSD
id) which can be used to join the various data sources.
Data shared to the MSD by The Echo Nest, a music
data platform since acquired by Spotify, is integral
to our analysis. The Echo Nest provides 48 million
triples of the form (user id, MSD id, number
plays) collected from an anonymous music stream-
ing platform. Grouping these triples by user id
allows us to recover the listening activity for individual
users over an unspecified period of time. Each MSD
id is also associated with a unique artist id in
the MSD that allows us to determine how frequently
and by whom an artist is streamed.

Although the MSD provides some qualitative features
about individual songs such as genre or release year
and quantitative features such as similarity with other
songs, we chose to integrate Spotify’s much richer API
data. Through this API we associate each song with
a list of genre tags and several scalar variables quanti-
fying a song such as tempo, danceability, and energy.
A full list of our song features is provided below. We
utilized a mapping from songs’ MSD 1id to Spotify
API id provided by AcousticBrainz (AcousticBrainz,
2016).

Working with the full MSD is challenging because of
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the sheer size (300 GB) and logistics of requesting
access. Instead, we chose to analyze a directly down-
loadable subset of the data with only 10,000 songs.
According to the MSD, these 10,000 songs were se-
lected at random from the full sample. Selecting on
MSD 1ids in this subset reduced the number of stream-
ing triples from 48 million to 700,000.

3.2. Music Artist Network

We construct a undirected graph consisting of a artists

which are the nodes in the graph. This graph is a

complete graph in which every artist shares an edge

with the other @ — 1 artists. Thi? yie;lds a complete
a—1

graph consisting of a nodes and GT edges.

Each artist has the following features:

* Artist Node ID

* Artist Name (string)

* Total number of song plays by users (int)
* Number of unique listeners (int)

* Total Plays / Number of Users a.k.a. Play Ratio
(float)

* Track Frequency (Song ID: Total Number of
Plays) (map)

» Top Listeners (User ID: Number of Plays of the
artist by the user) (map)

* Mean Spotify song features (vector of floats)

* Genres (array — ordering has no significance)

The Spotify API provides 11 numeric features
for each song in our dataset. These features are
particularly useful because they assign numeric values
to the qualitative features of a song. Eight of the
features are floats in the range [0, 1] which capture
danceability, energy, speechiness,
acousticness, instrumentalness,
valence, and liveness. speechiness
measures the amount of spoken word in a track,
instrumentalness is higher for tracks without
any lyrics, valence quantifies the happiness in a
song, and 1iveness describes the likelihood a track
was recorded before a live audience. Spotify also gives
information about the t empo of a track, measured in
beats per minute, the time signature in beats

per bar, and the key using the pitch class mapping e.g.
a song in any octave of D maps to 2.

As artists in our dataset do not have an equal number
of streamed songs, we decided to consider the mean
Spotify feature vector across all their tracks. At the cost
of information about how each feature varies within
an artist’s discography, this method ensures that the
features for each artist are of the same dimension. A
Stanford class project which clustered artists from the
MSD with Spotify data reported strong accuracy using
only mean feature vectors, which inspired us to try this
approach (Agrim Gupta, 2017).

To ensure the artists in our graph have a meaningful
set of streaming features such as overlap in listeners,
we only considered artists who have been streamed
over 1000 times by at least 50 unique listeners. This
reduced our dataset to 207 artists. Only 128 of these
artists had Spotify features for all of their tracks, further
reducing the number of nodes in our graph. Through
Spotify we also associated each artist with a list of
genres. These genres tend to be quite specific, such
as “Argentine rock” or “melodic metalcore”, so we
assigned each artist to a broad genre by hand. These
hand classified genres are the “true” clusters we hope
to reveal through analysis of the graph. The 14 genre
tags we assigned included rock, pop, hip hop,
soul, celtic, jazz;however, we only consid-
ered tags with at least 10 artists which were rock,
pop, hip hop, metal, electronic. This
reduced our dataset to the final size: 97 artists in 5
clusters.

The weights on the edges between artists are discussed
in Section 5

4. Feature Analysis

Before running clustering algorithms, we analyzed
the statistical properties of our features and true clus-
ters. Our main goal was to check that our selected
features were rich enough to differentiate between gen-
res. A secondary goal was to discover which methods
of data dimensionality reduction best suited our fea-
tures, as some of our graph algorithms require scalar
edge weights.
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4.1. Spotify Features

In the artist graph, the “true” hand-labeled clusters are
known. Fixing a single Spotify feature such valence,
we generated box and whisker plots to compare our
5 clusters. For each cluster we have a list of artists
and a list of songs performed by those artists. To gain
insight into the effect of associating each artist with a
single mean feature vector instead of a vector for each
song, we ran this box and whisker analysis twice. First
with every song in the genre contributing to the plot
and then with each artist in the genre contributing their
mean vector of song features.

The plots shared below have boxes between the first
and third quartile, a green line at the median, and
whiskers which extend to no more than 1.5 times the
interquartile range (IQR); outliers are shown if neces-
sary.

We observe that the distribution of a single Spotify
feature varies across genres, but there is significant
overlap in the IQR. The attached plot of valence is rep-
resentative of what we observe for most features. There
are some features for which a single genre has a much
larger median value, such as speechiness for hip
hop and instrumentalness for electronic.
These observations make intuitive sense considering,
for example, that electronic music is unlikely to contain
much singing. Using the mean artist features instead
of all songs in a genre somewhat compressed the IQR
and whiskers and did not change the medians in most
genres. This suggests visually that this data reduction
strategy does not sacrifice too much information. Fur-
thermore, these plots revealed nearly every song in
our dataset as a time signature of 4, making that
feature redundant.

We also tested the power of each feature to differentiate
between genres. For each feature, we generated the
5 x b correlation matrix between genres. The Pearson
correlation coefficient requires paired data, which we
did not have because the number of songs and artists
within each genre varies. To estimate the correlation
between the observed features in two genres, we in-
stead sampled with replacement m samples of a single
feature from each genre, where m is the minimum
artists in either genre. Next we calculated the Pearson
correlation between these random samples, repeated
this process 100 times, and averaged the results. We
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Figure 1. Computed with mean song vector for each artist
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Figure 2. Computed with all songs in a genre. Note the wider IQR
and whiskers in some genres

also considered the cross-correlation as a metric with-
out resampling, but this metric appears more suitable
for time-series data.

These correlation matrices reiterated the results we
observed through the box plots. Namely, the corre-
lation is not consistently highest along the diagonal,
so any single Spotify feature is not enough informa-
tion to determine genre. However some features are
more highly correlated with a particular genre such
as speechiness and hip hop. However, the cor-
relation’s magnitude is less than 0.1 for all features
and genre pairs which suggests no single feature has
enough information to predict a cluster well.

Finally, we used confusion matrices to test whether
pairs of artists within the same genre have the more
similar feature vectors than pairs across genres. For
a variety of distance metrics described below, we cal-
culated the pairwise distances between every song in
each of our (g) cluster pairs. Considering the pairwise
distances as a vector (without repetition), as opposed
to a matrix, we measured the mean. When graphing
this information in a confusion matrix, we hoped to see
the smallest mean distances along the diagonal; this
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Figure 3. Speechiness is more highly correlated with hip hop

would indicate that the mean distance of song pairs
within a genre is smaller than across genres.

Using the raw Spotify features, which have different
scales, the diagonal mean pattern we hoped for only
appeared using the standardized Euclidean and Maha-
lanobis distances; note that the standardized Euclidean
distance is a special case of Mahalanobis with a diago-
nal covariance matrix. This result suggested we should
standardize our features. We tested two strategies: stan-
dardizing each feature to zero mean and unit variance
and the min-max scaler. For feature x from a set X of
observations across all units, gtondardized =
T—Tmin

and Tpin fmaz = T —— where min and max are

taken across all units.

For each of these two rescalings, we generated confu-
sion matrices for a variety of distances using SciPy’s
cdist function. These distances include the p-
Minkowski distance, vector correlation, cosine dis-
tance, and Chebyshev distance. We consistently found
that using the mean-variance standardization method
produced a smaller intracluster mean than min-max
scaling. This result makes sense as the key distinc-
tion of standardized Euclidean and Mahalanobis dis-
tances is rescaling the variance. We noted the most pro-
nounced diagonal pattern with Euclidean and Cheby-
shev distances and decided to test our clustering meth-
ods with both distance metrics.

Recall that for a pair of vectors v and v in RY,
dChebyshev = MaX; ||[u; — v;||, which takes the Lo-
norm of the vectors’ absolute difference. The Eu-

clidean distance is given by v/(u — v)T (u — v)

The Louvain method requires scalar edge weights be-
tween nodes in our artist graph. This experiment also
helped us determine which scalar distance comparing
vectors in R!! preserves the most information.

4.2. Streaming Features

Recall that from the MSD we also have features de-
scribing how frequently an artist was played and by
whom.

The numeric streaming features include the artist’s to-
tal number of streams, number of unique listeners, and
the ratio of listens coming from well-listened stream-
ers, users with at least 100 total streams. We used the
same analysis methods as the previous section, box
and whiskers plots as well as confusion matrices of
pairwise distance between genres. An artist’s number
of total streams varies across genres with metal and hip
hop artists receiving less than 400 median streams and
rockers above 750. Including the other streaming fea-
tures did not meaningfully reduce the mean intracluster
pairwise distance, measured with both Euclidean and
Chebyshev, so we opted not to include them in our
analysis. This omission was confirmed by the tests
described in the next section.

4.3. Final Features

Combining the useful Spotify and streaming data, each
artist is associated with a feature vector in R'!. These
features and some summary statistics are listed below:

num_listeners tempo danceability energy key N\
count 97.000000 97.000000 97.000000 97.0000600 97.000000
mean 0.004386 0.232879 -0.094211 0.416531 -0.027106
std 1.015022 0.810810 0.8B20343 0.775940 0.768111
min -0.378703 -1.336916 -1.953280 -1.577251 -1.475275
25% -0.319143 —0.448009 -0.743324 -0.056799 -0.530684
s50% -0.253097 0.194609 -0.154697 0.511949 -0.058389
75% -0.037562 0.721488 0.510233 1.027613 0.508365
max 8.485060 2.644465 1.420425 1.543278 1.358496
loudness speechiness acousticness instrumentalness valence
count 97.000000 97.000000 87.000000 97.000000 97.000000
mean 0.570779 -0.005087 -0.454575 -0.186965 -0.261312
std 0.599210 0.687373 0.664587 0.709794  0.740002
min -1.494094 -0.509037 -1.046763 -0.575716 -1.815493
25% 0.254239 —~0.446180 -1.019682 -0.575706 -0.737251
50% 0.632547 -0.246335 -0.633123 -0.573598 -0.303283
75% 1.045076 0.088836 -0.094237 -0.120927 0.378268
max 1.661091 3.945122 1.399469 1.933250 1.628917
liveness
count 97.000000
mean 0.056214
std 0.776874
min —-0.821078
25% -0.484973
50% -0.240156

75% .574288
max 3.383233

o

Three features were omitted from this final collection:
time signature,total plays,
We confirmed that adding any combination of these

play ratio.
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features back into the graph increased the mean
pairwise distance in most of the true clusters, for both
the Euclidean and Chebyshev distances.

5. Network Structure & Node Centrality
Analysis

After constructing the artist graph with L,,-norm as
the edge weights determined in the section above, we
conduct network analysis on the resulting artist graph
to gain a deeper understanding of the structure of the
network as well important nodes in the network.

5.1. Degree Distribution

Our network analysis begins with a coarse overview
of the degree distribution of the network, namely, the
degree distribution of the artists. We observe in Figure
4 that the majority of artists share small edge weights
with most other artists in the graph. This is seen by

the right-skewed nature of the degree distribution plots.

We analyze degree centrality in the following sections
to gain an understanding of important nodes that exist
in this network.

Degree distr bution of Largest Conneczed Companents of the Artist Graph Degree distributicn of Largest Connectad Comporents cf the Artist Graph

2 e

X1 IXIE 4x1E x16 2w 3XIF 4x0 6x10°
Degree k (log scalel Degree log scale)

Figure 4. Degree Distribution of Artist Network

5.2. Degree Centrality

Largest Connected Components of the Artist Graph colored by Degree Centrality

Figure 5. Degree Centrality of Artist Network

Artist Name

Degree Centrality

BoB

B22 6254145820005

Linkin Park

392.67025840846384

Kanye West

386.7494055058293

DAVE MATTHEWS BAND

335.84992272713083

Kat Deluna / Akon

316.18131443012965

Franz Ferdinand

253.8716370264209

A Day To Remember

250.71091954597181

STEVE CAMP

239 4281377&7769726

bel canto

234.73453053821567

The Mars Volta

233.4658430379918

Figure 6. Degree Centrality of Artist Network

From Figures 5 & 6, we see the top 10 most important
nodes by degree centrality within the artist network.
These artists include B.0.B, Linkin Park, and Kanye
West. Now that we have a coarse understanding of
the structure of our network, we move on to applying
clustering methods on the artists.

6. Clustering Results

6.1. Louvain Clustering using L..-norm Edge
Weights

We begin our graph clustering comparisons by using
the Louvain method on the artist graph. We note that a
drawback of this algorithm is that it operates on edge
weights which are represented by a singular measure
rather than leveraging the information contained across
multiple edge attributes or features in computing the
clustering. This is why we investigate K-means as
an alternative clustering algorithm to Louvain on the
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artists data, so that we can make use of the original
features rather than a singular measure computed from
the original features.

Louvain Clusters for Connected Components of the Artist Graph

@ Cluster0
Cluster 1
Cluster 2

Figure 7. Louvain Clusters found on Artist Graph with Optimal
Modularity

After applying Louvain, the algorithm finds an optimal
clustering at 3 clusters, specifically Cluster O (Blue),
Cluster 1 (Pink), and Cluster 2 (Orange). The optimal
modularity found by Louvain at 3 clusters is 0.006,
which is indicates the clustering is marginally better
than what we would expect from a random graph gen-
erated from the same nodes and edges.

In Tables 8 & 9 & 10, we list the top 10 artists ranked
by degree centrality within each cluster respectively.
These nodes provide a representative pool of artists
representing the clustering uncovered by the Louvain
method. We observe that the nodes which had high-
est degree centrality for the network overall, namely,
B.o.B, Linkin Park, and Kanye West, are the most
central nodes in the three clusters found by Louvain:
B.o.B (Cluster 2), Linkin Park (Cluster 1), and Kanye
West (Cluster 0)

Cluster 0
Majority Genre: rock

Kanye West 151.79055872467228
DAVE MATTHEWS BAND T30.03528530755143
Franz Ferdinand 99.1587347304627
STEVE CAMP 94.13131280297675
ME3 |
bel canto B BU469159699930
Wodeselekfor ]
Toby Love featuring Rakim & Ken-1 B7 91903697637495
Forcupine Tree BT 2979327492675
The Knifte 85 50733504319613

Figure 8. Cluster O Top 10 Artists by Degree Centrality

Cluster 1
Majority Genre: metal

Artist Name Degree Centrality
Linkin Park 102.73408650392939
A Day To Remember 71.21662402272528
Alexisonfire 63.4891012305696
Ensiferum 61.94810848600571
Grizzly Bear Bl 2041006840543
BT B0 THUEII6RI6E |
Evanescence B0.47365 174613708
AT Time Low 501105 1437339729
Paramore ST.06743779833628
D& [a Soul TMF Doom 55 173569695 045505

Figure 9. Cluster 1 Top 10 Artists by Degree Centrality

Cluster 2
Majority Genre: rock

Artist Name Degree Centrality
B.0.B 276.408637923

Kat Deluna / Akon 111.20991273465552
The Mars Volta 83.58386275399933
A Skylit Drive B1.75244981545002
Tha Alkaholiks 7. 1440368925 7605
Hof Chip T 3433126865 7671

The Strokes 73 4631369459803
imi Hendrix 7335741893467 20
Temple OF The Dog T2 Te3 767144235817
Belle & Sebastian 72 53488ER5 799784

Figure 10. Cluster 2 Top 10 Artists by Degree Centrality
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Super Nodes Found from Louvain Method on the Artist Graph

2170

ETEEST

5593

—

Figure 11. Louvain Cluster Super Nodes

Cluster ID 1 Cluster ID 2
00 20
0o 10
10 20
0.0 0.0
20 20
10 10

Edge Weight
2655 8279808899247
2017 0165804325613
1833.1292027372217
1489.0264276117232

1234.082776200229
728 6785008893654

Figure 12. Louvain Cluster Super Nodes Table

In Figure 11, we see all of the artist nodes condensed
into 3 supernodes based on their respective Louvain
clusters. Ideally, when the clusters found by Louvain
are largely dissimilar, the super nodes share small edge
weights between each other and have self-loops with
large edge weight. However, in the case of the artist
graph with L,,-norm, we observe that the weight of
the self-loops on the supernodes are all smaller than
the weights on the edges between the supernodes. This
is indicative of clustering that is marginally better than
random, and hence why we see a small modularity
measure on the resultant clusters found by Louvain.

Finally, for each cluster, we assign it a plurality genre
label, i.e. the genre that is most present in the cluster

based on the artists placed in that cluster by Louvain.

The plurality genre label for each cluster are as follows:

¢ Cluster 0: rock
¢ Cluster 1: metal

¢ Cluster 2: rock

Thus the majority of artists are classified as being in the
rock genre. We then predict all artists within a cluster

Classification Confusion Matrix
Accuracy:-0.35

0.8

electronic

0.7
hip hop 0.6
05
metal 04

0.3

Actual Genre

0.z

01

0.0

gectronic  hip hop metal Fop ok

Predicted Genre

Figure 13. Confusion Matrix of Louvain Cluster Plurality Genre
Prediction

as being a part of the plurality genre for that cluster.
The results of this cluster plurality prediction on the
artists are depicted in the confusion matrix in Figure
13. This results in a classification accuracy for artist
genre of 35%. This is the same as the baseline model
of predicting all artists as being in the rock genre, the
plurality genre in the entire dataset, 35%. We now
compare the Louvain clustering results to K-means
clustering on the whole feature set, not just a singular
measure as was done for the Louvain method.

6.2. Clustering using K-Means

K-means is a classical hard clustering approach, which
means that each artist is deterministically assigned
to one of k groups. k is a hyperparameter for the
method, but because we created 5 true genre tags, we
hypothesized strong results with a k near 5.

As described in class, k-means is an iterative approach.
k centroids are randomly initialized and artists are
clustered to the centroid nearest them, with respect to
the Euclidean distance. An algorithm such as Lloyd’s
repeatedly updates the centroids, aiming to reduce the
sum of intracluster variances. Due to a fundamental
connection with the Expectation-Maximizing (EM)
algorithm, k-means will decrease that objective with
each update but potentially get stuck at a local optima.
Formally the objective k-means attempts to minimize
is: argming Zle Y vec; (@ — wi)T (z — p;) where
C is the feasible set of all possible centroids.

Unlike the Louvain method, k-means considers fea-
tures in their original dimension. For this reason and
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the ability to select the number of clusters, we hypothe-
sized and observed more predictive accuracy from this
approach. After the k-means algorithm, implemented
with SKLearn converged to a set of centroids, we la-
beled each cluster with a genre by taking a plurality-
vote. Our outcome of interest is classification accuracy,
or the fraction of artists placed in the correct cluster.

To help tune the hyperparameter k, we consider a vi-
sual aid: the “elbow plot.” This graphs two outcomes
as the number of clusters increases: classification ac-
curacy and sum of intracluster squared errors, an alge-
braic manipulation of the objective.

E B0 065
g

5

@ o500 0.60
(=]

%400 055
5 300 050 5
E ¥
I E
E 200 045
100 0.40
: 0.35

o 5 10 15 20 25

# of Clusters

Figure 14. Elbow plot for k-means. The vertical dashed line occurs
atk = 6.

From this plot we decided on k£ = 6 as the optimal hy-
perparameter; this is remarkably close to the true value
of k = 5. The classification accuracy improves by over
10% from k& = 5 to 6, and quadrupling the number of
clusters to 24 is required to gain an additional 10%.
The curve of within cluster sum of squared distance
decreases monotonically, which makes intuitive sense
because adding more clusters allows the most spread
out ones to be split. Moreover, k = 6 occurs after the
curve’s portion of steepest descent, a selection heuristic
which gives the “elbow plot” its name.

As a form of validation, we regenerated this plot with
each covariate removed, one at a time. The classifica-
tion accuracy at kK = 6 lowered with every removed
feature, suggesting each contributes meaningful infor-
mation. The limitation of this strategy is that it neglects
any higher order interactions.

As 16 indicates the k-means approach achieves 54%
classification accuracy. The accuracy is highest along

k-means Classification Confusion Matrix
Accuracy:0.54

08

eectronic
0.7
hip hop 0.6
0.5
metal 04
0.3

Fop
0.2
rock 0.1
0.0

pop rock

Actual Genre

gectronic hiphop  metal
Predicted Genre

Figure 15. Confusion Matrix of k-means Majority Genre Classifi-
cation for k=6. Note that each row sums to 1.

the confusion matrix’s diagonal except for rock, which
demonstrates the most likely clustering from this al-
gorithm is a correct one. The algorithm has particular
success at classifying metal bands, with over 80% ac-
curacy.

To gain insight into the clusters k-means revealed,
we provide a table on the last page which contains
the 5 artists closest to each centroid. The clus-
ters are labeled with metal, rock, hip hop
(x2), pop, electronic, representing each of
the true genres. However, the artists closest to each
centroid do not match the predicted genre very well.
For instance The Chieftains, a traditional Irish band,
are the second closest band to the metal centroid while
rock band blink-182 is listed under hip hop. This is
surprising because cluster labels are assigned by plural-
ity, so many of the distant artists in each cluster must
have to the same true genre. Unfortunately, R!! is im-
possible to visualize and plotting on the plane through
t-SNE did not give any intuition as to why this might
happen.

7. Discussion

We compared two clustering methods, Louvain & k-
means, using a featurization of artist features shown
to be best at highlighting similarity between artists
in the same genre and dissimilarity between artists in
different genres.
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Applying the Louvain method and evaluating the clus-
tering on the basis of genre resulted in an accuracy
score which was the same as the baseline model of
selecting all artists to be in the rock genre, the plurality
genre label of the entire dataset. One of the clusters
found by Louvain had plurality label metal and thus
predicted all of the artist within that cluster as metal,
but most of the rock artists were correctly placed inside
the rock clusters, so these predictions contribute most
to the accuracy score found by this method along with
the correctly predicted metal artists. Thus, Louvain
with L..-norm edge weights does not cluster the artists
on the any better than the random graph generated from
the same nodes and edges and does not find clusters
which appear to have any relation to genres.

The k-means algorithm performed reasonably well on
our dataset. At the optimal £ = 6, removing each
covariate lowered classification accuracy, which sug-
gests the method utilized the rich feature vectors well.
Unfortunately, the difficulty of interpreting results in
R limits the power of this method in practice. We
remain puzzled as to why the artists closest to each
centroid often do not match the genre associated with
that cluster.

Given our time, memory, and compute constraints, we
were limited to a significantly smaller dataset than we
would have ideally liked to have used. With a much
larger dataset, consisting of more artists data, stream-
ing data, etc. our featurization using these data would
be richer, yielding features with better differentiation
capabilities between the artists. For instance, the song
features for an artist usually took the mean over 5 or
fewer songs instead of the tens which make up an av-
erage discography. Having more complete streaming
data would have potentially allowed us to use user
preferences to determine clusters. We would expect
the clustering to have higher between cluster variance
(dissimilar artists between clusters) and lower within
group variance (similar within clusters).

8. Future Work

The easiest extension of our project would be to repeat
the process on the full 300GB MSD database. As men-
tioned in 7, we believe the lack of detailed streaming
features and handful of songs per artist weakened the
power of our analysis. The streaming data provided by

the MSD is particularly sparse and lacks useful infor-
mation about when streams occurred and in relation to
what other songs.

Another interesting use of the MSD would be to ex-
plore the connections amongst users of a streaming
service, the listeners. We had initially planned to look
at this and formulated the question: Are there cliques
of users that emerge from the graph of user listening
preferences?

Similar to 3.2, we would construct an undirected graph

consisting of u nodes representing users. Each user

shares an edge with the other © — 1 users. This yields
(u=1)

a complete graph with u nodes and UT edges.

We observed that many users in the subset streamed
music only a handful of times, making the data an
unreliable measure of their listening tastes. To improve
the quality of our dataset, we would only consider users
who streamed to at least 100 songs (repeated listens
included). Selecting the songs played by these “high-
frequency” streamers gives a final subset of data. This
includes 321 unique users, 304 unique artists, and 395
unique songs. Of the unique songs 63 are listened to
by at least 4 distinct users and 44 are listened to by
at least 5, demonstrating an overlap in listening tastes.
Although this potential user dataset has the sparsity
issues of our artist one, the positive results of k-means
suggest it is worth investigating.

9. Conclusion

In this project, we endeavored to classify artists by the
genre. For a collection of 97 artists spanning 5 broad
genres, we built features about song characteristics
from Spotify and streaming from the MSD. Two clus-
tering methods were employed, the Louvain method
applied to a graphical representation of this data and
k-means. The Louvain method had limited success,
having the same classification accuracy achieved by
plurality-vote, 35%, but k-means was more successful
and achieved 56% accuracy. Furthermore, that ap-
proach had its best characteristics with 6 clusters, very
close to the 5 true ones.
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Figure 16. The 5 artists closest to each centroid of our k-means
clustering
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