dyngen is a multi-modal simulator for spearheading future
single-cell omics analyses

Robrecht Cannoodt 123 Wouter Saelens1:24 Louise Deconinck!+?

*
Yvan Saeys'?

20 May 2021

T These authors contributed equally to this work.

I Data Mining and Modelling for Biomedicine group, VIB Center for Inflammation Research, Ghent,
Belgium

2 Department of Applied Mathematics, Computer Science, and Statistics, Ghent University, Ghent,
Belgium

3 Data Intuitive, Lebbeke, Belgium

4 Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland

* Correspondence: Yvan Saeys <yvan.saeys@ugent.be>

1 Abstract

We present dyngen, a multi-modal simulation engine for studying dynamic cellular processes at single-cell
resolution. dyngen is more flexible than current single-cell simulation engines, and allows better method
development and benchmarking, thereby stimulating development and testing of computational methods.
We demonstrate its potential for spearheading computational methods on three applications: aligning
cell developmental trajectories, cell-specific regulatory network inference and estimation of RNA velocity.

2 Introduction

Single-cell simulation engines are becoming increasingly important for testing and benchmarking com-
putational methods, a pressing need in the widely expanding field of single-cell biology. Complementary
to real biological data, synthetic data provides a valuable alternative where the actual ground truth is
completely known and thus can be compared to, in order to make quantitative evaluations of computa-
tional methods that aim to reconstruct this ground truth [1]. In addition, simulation engines are more
flexible when it comes to stress-testing computational methods, for example by varying the parameters
of the simulation, such as the amount of noise, samples, and cells measured, allowing benchmarking of
methods over a wide range of possible scenarios. In this way, they can even guide the design of real
biological experiments, finding out the best conditions to be used as input for subsequent computational
pipelines.

Another, more experimental use of simulation engines is their important role in spearheading the devel-
opment of computational methods, possibly even before real data is available. In this way, simulation
engines can be used to assess the value of novel experimental protocols or treatments. Simulation engines
are also increasingly important when it comes to finding alternatives to animal models, for example for
drug testing and precision medicine. In such scenarios, cellular simulations can act as digital twins,
offering unlimited experimentation in silico [2].

Simulating realistic data requires that the underlying biology is recapitulated as best as possible, and
in the case of transcriptomics data this typically involves modelling the underlying gene regulatory
networks. Simulators of “bulk” microarray or RNA-sequencing profiles simulate biological processes
(e.g. transcription, translation) by translating a database of known regulatory interactions into a set of

mailto:yvan.saeys@ugent.be

ordinary differential equations (ODE) [3, 4, 5, 6]. These methods have been instrumental in performing
benchmarking studies [7, 8, 9]. However, the advent of single-cell omics introduced several new types of
analyses (e.g. trajectory inference, RNA velocity, cell-specific network inference) which exploit the higher
resolution of single-cell versus bulk omics [10]. In addition, the data characteristics of single-cell omics
are vastly different from bulk omics, typically having much lower library sizes and a higher dropout rate,
but also a high number of profiles [11]. The low library sizes, in particular, are problematic as ODEs are
ill-suited for performing low-molecule simulations [12]. This necessitates the development of single-cell
simulators.

To this end, single-cell omics simulators emulate the technical procedures from single-cell omics protocols.
Simulators such as Splatter [1], powsimR [13], PROSSTT [14] and SymSim [15]) have already been
widely used to compare single-cell methods [16, 17, 18, 19] and perform independent benchmarks [20,
21, 22]. However, by focusing more on simulating the single-cell omics protocol (e.g. RNA capture,
amplification, sequencing) and less on the underlying biology (e.g. transcription, splicing, translation),
their applicability and reusability is limited towards the specific application for which they were designed
(e.g. benchmarking clustering or differential expression methods), and extending these tools to include
additional modalities or experimental conditions is challenging.

We introduce dyngen, a method for simulating cellular dynamics at a single-cell, single-transcript resolu-
tion (Figure 1). This problem is tackled in three fully-configurable main steps. First, biological processes
are mimicked by translating a gene regulatory network into a set of reactions (regulation, transcription,
splicing, translation). Second, individual cells are simulated using Gillespie’s stochastic simulation algo-
rithm [12], which is designed to work well in low-molecule simulations. Finally, real reference datasets
are used to emulate single-cell omics profiling protocols.

Throughout a simulation, dyngen tracks many layers of information, including the abundance of any
molecule in the cell, the progression of the cell along a dynamic process, and the activation strength of
individual regulatory interactions. In addition, dyngen can simulate a large variety of dynamic processes
(e.g. cyclic, branching, disconnected) as well as a broad range of experimental conditions (e.g. batch effects
and time-series, perturbation and single-cell knockdown experiments). For these reasons, dyngen can
cater to a wide range of benchmarking applications, including trajectory inference, trajectory alignment,
and trajectory differential expression (Supplementary Table 1).

3 Results

We demonstrate dyngen’s broad applicability by evaluating three novel types of computational ap-
proaches for which no simulation engines exist yet: cell-specific network inference, trajectory alignment
and RNA velocity (Figure 2). We emphasize that our main aim here is to illustrate the potential of
dyngen for these evaluations, rather than performing large-scale benchmarking, which would require
assessing many more quantitative and qualitative aspects of each method [23].

Use-case “trajectory alignment”. Trajectory alignment methods align trajectories from different samples
and allow studying the differences between the different trajectories. For example, by comparing the
transcriptomic profiles of cells from a diseased patient to a healthy control, it might be possible to detect
transcriptomics differences (differential expression) of particular cells along a developmental process, or
to detect an early stop of the trajectory of the diseased patient. Currently, trajectory alignment is
limited to aligning linear trajectories, though other topologies of a trajectory could be aligned as well.
Dynamic Time Warping (DTW) [24] is a method designed for aligning temporal sequences for speech
recognition but has since been used to compare gene expression kinetics from many different biological
processes [25, 26, 27, 28]. cellAlign [28] uses DTW to perform trajectory alignment, but also includes
interpolation and scaling of the single cell data as a preprocessing step. We evaluate the performance of
DTW and cellAlign by simulating 40 datasets, each containing two linear trajectories generated with the
same gene regulatory network but with slightly different simulation kinetics. We assess the accuracy of
the obtained alignments by comparing the generated alignment path with the worst possible alignment
that could be performed (Supplementary Fig. 1D), named the Area Between Worst And Prediction
(ABWAP) score. Overall, cellAlign performs significantly better than DTW (Supplementary Fig. 1),
which is likely due to the interpolation and scaling steps provided by cellAlign, reducing noise in the
data and improving the comparability of the trajectories. Note that, in this comparison, only linear
trajectory alignment is performed. While dyngen can generate non-linear trajectories (e.g. cyclic or

Output of dyngen ' Applications of dyngen

A Gene pre-mRNA mRNA Protein Gene B

Lo e

/®<\Q
\/@/’\

Y G Trajectory inference
w0
[}
>
k)
<@
>S5
o
@
s
0 500
Simulation time
D H Trajectory alignment
100% —
2 @ = 35)]
g St
z s2 s3 T
© Coe————re >
oo————or®
0% e
0 500
Simulation time
E ' RNA velocity
% Gene A Transcription
= i - =
g 10 Gene A Splicing
€2 10000 .
S z:) 1888@] Gene A Translation
Qc) — %
S 8 Wg Gene A pre-mRNA degradation -v\
= 0 *
% 10 Gene A mRNA degradation }
£ 0
o
5008 J Gene A Protein degradation. w
0 500
Simulation time
F J Cell-specific network inference
Interaction A-B B-C Cc—D D—E E~A
c 1.0 oA B
il
< g!
_ iy
08)) 05 () 2
© S0 S e
=
0.0 P
0 500

Simulation time

Figure 1: Showcase of dyngen functionality. A: Changes in abundance levels are driven strictly
by gene regulatory reactions. B: The input Gene Regulatory Network (GRN) is defined such that it
models a dynamic process of interest. C: The reactions define how abundance levels of molecules change
at any particular time point. D: Firing many reactions can significantly alter the cellular state over
time. E: dyngen keeps track of the likelihood of a reaction firing during small intervals of time, called
the propensity, as well as the actual number of firings. F: Similarly, dyngen can also keep track of the
regulatory activity of every interaction. G: A benchmark of trajectory inference methods has already
been performed using the cell state ground-truth [21]. H: The cell state ground-truth enables evaluating
trajectory alignment methods. I: The reaction propensity ground-truth enables evaluating RNA velocity
methods. J: The cellwise regulatory network ground-truth enables evaluating cell-specific gene regulatory
network inference methods.

branching), both aligning non-linear trajectories and constructing a quantitative accuracy metric for
non-linear trajectory alignment is not trivial and an avenue for future work.

Use-case “RNA velocity”. RNA velocity methods use the relative ratio between pre-mRNA and mature
mRNA reads to predict the rate of increase/decrease of RNA molecule abundance, as this can be used to

A Ground-truth Prediction Evaluation

o m
Sample

Diseased

Healthy
e ﬂ

0.00 0.25 0.50 0.75 1.00
ABWAP score

B
scvelo
stochastic
scvelo
dynamical
00 01 02 03 04 000 025 050 075 1.00
Velocity correlation Velocity arrow cosine
C

LIONESS
Regulatory + Pearson

strength in cell 1

- L0
05
PYSCENIC <|:|:|7 ‘I:I:li
0.0
-05
. 10 SSN* " l*

T

045 055 065 075 000 004 008 0.2
mean AUROC mean AUPR

Figure 2: dyngen provides ground-truth data for a variety of applications (left), which can
be used to quantitatively evaluate methods (right). Box plots denote the Q, to Q, quartile values.
A: Trajectory alignment aligns two trajectories between samples. We evaluate dynamic time warping
(DTW) and cellAlign when aligning two linear trajectories with different kinetic parameters based on
the area differences between the worst possible alignment and the predicted alignment (Area Between
Worst And Prediction, or ABWAP). B: RNA velocity calculates for each cell the direction in which the
expression of each gene is moving. We evaluated scVelo and velocyto by comparing these vectors with the
known velocity vector (velocity correlation) and with the known direction of the cellular trajectory in a
dimensionality reduction (velocity arrow cosine). C: Cell-specific network inference (CSNT) predicts the
regulatory network of every individual cell. We evaluate each cell-specific regulatory network with typical
metrics for network inference: the Area Under the Receiver Operating Characteristics-curve (AUROC)
and Area Under the Precision Recall-curve (AUPR). We evaluate three CSNI methods by computing
the mean AUROC and AUPR across all cells.

predict the directionality of single cell differentiation in trajectories [29, 30]. Already two algorithms are
currently available for estimating the RNA velocity vector from spliced and unspliced counts: velocyto
[30] and scvelo [31]. Yet, to date, no quantitative assessment of their accuracy has been performed, mainly
due to the difficulty in obtaining real ground-truth data to do so. In contrast, the ground-truth RNA
velocity can be easily extracted from a dyngen simulation, as it is possible to store the rate at which
mRNA molecules are being transcribed and degraded at any particular point in time. We executed
velocyto and scvelo (with 2 different parameter settings, stochastic and dynamical) on 42 datasets with
a variety of backbones (including linear, bifurcating, cyclic, disconnected). We evaluated the predictions
using two metrics (Supplementary Fig. 2), one which directly compares the predicted RNA velocity of
each gene with the ground-truth RNA velocity (called the “velocity correlation”), and one which compares
the direction of the ground-truth trajectory embedded in a dimensionality reduction with the average
RNA velocity of cells in that neighbourhood (called the “velocity arrow cosine”). While both velocyto
and scvelo obtained high scores for the velocity arrow cosine metric (overall 25th percentile = 0.606), the
velocity correlation is rather low (overall 75th percentile = 0.156). This means that predicting the RNA

velocity (i.e. transcription rate minus the decay rate) for particular individual genes can be challenging,
but the combined information is very informative in determining the directionality of cell progression in
the trajectory. In terms of velocity correlation, no method performed significantly better than the other,
whereas “scvelo stochastic” performed slightly worse than “scvelo dynamical” and velocyto in terms of
velocity arrow cosine score. Note that, given that some genes are more informative in determining the
overall directionality of cell progression, performing a feature selection before computing the embedded
dimensionality reduction might result in significantly improved velocity arrow cosine scores.

Use-case “Cell-specific network inference” (CSNI). CSNI methods predict not only which transcription
factors regulate which target genes, but also aim to identify how active each interaction is in each of
the cells, since interactions can be turned off and on depending on the cellular state. While a few
pioneering CSNI approaches have already been developed [32, 33, 34], a quantitative assessment of their
performance is until now lacking. This is not surprising, as neither real nor in silico datasets of cell-
specific or even cell-type-specific interactions exist that are large enough so that it can be used as a
ground-truth for evaluating CSNI methods. Extracting the ground-truth dynamic network in dyngen is
straightforward though, given that we can calculate how target gene expression would change without
the regulator being present. We used this ground-truth to compare the performance of three CSNI
methods (Supplementary Fig. 3): LIONESS [33], SSN [34] and SCENIC [32]. For each dataset, we
computed the mean AUROC and AUPR scores of the individual cells. Comparing the mean AUROC
and AUPR showed that pySCENIC significantly outperforms both LIONESS and SSN, and in turn that
LIONESS significantly outperforms SSN. The poor performance of SSN is expected, as its methodology
for predicting a cell-specific is simply computing the difference in Pearson correlation values applied
to the whole dataset and the whole dataset minus one sample. This strategy performs poorly in large
datasets where cell correlations are high, as the removal of one cell will not yield large differences in
correlation values and will result in mostly noise. Overall, pySCENIC almost always performs better
than LIONESS, except for a few datasets where LIONESS does manage to obtain a higher AUROC score.
However, by using a different internal network inference (e.g. GENIE3 [35] or pySCENIC’s GRNBoost2
[36]) could significantly increase the performance obtained by LIONESS.

4 Discussion

dyngen’s single-cell simulations can be used to evaluate common single-cell omics computational methods
such as clustering, batch correction, trajectory inference, and network inference. However, the framework
is flexible enough to be adaptable to a broad range of applications, including methods that integrate clus-
tering, network inference, and trajectory inference. In this respect, dyngen may promote the development
of tools in the single-cell field similarly as other simulators have done in the past [5, 37]. Additionally,
one could anticipate technological developments in single-cell multi-omics. In this way, dyngen allows
designing and evaluating the performance and robustness of new types of computational analyses before
experimental data becomes available, comparing which experimental protocol is the most cost-effective
in producing qualitative and robust results in downstream analysis. One major assumption of dyngen
is that cells are assumed to be well-mixed and independent from each other. Subdividing a cell into
multiple 2D or 3D subvolumes or allowing cells to exchange molecules, respectively, could pave the way
to better study key cellular processes such as cell division, intercellular communication, and migration
[38].

5 Methods

The workflow to generate in silico single-cell data consists of six main steps (Supplementary Fig 4).

5.1 Defining the module network

One of the main processes involved in cellular dynamic processes is gene regulation, where regulatory
cascades and feedback loops lead to progressive changes in expression and decision making. The exact
way a cell chooses a certain path during its differentiation is still an active research field, although certain
models have already emerged and been tested in vivo. One driver of bifurcation is mutual antagonism,
where two genes strongly repress each other [39, 40], forcing one of the two to become inactive [41]. Such
mutual antagonism can be modelled and simulated [42, 43]. Although the two-gene model is simple and
elegant, the reality is frequently more complex, with multiple genes (grouped into modules) repressing
each other [44].

To start a dyngen simulation, the user needs to define a module network. The module network describes
how sets of genes regulate each other and is what mainly determines which dynamic processes occur
within the simulated cells.

A module network consists of modules connected together by regulatory interactions, which can be either
up- or down-regulating. A module may have basal expression, which means genes in this module will be
transcribed without the presence of transcription factor molecules. A module marked as “active during
the burn phase” means that this module will be allowed to generate expression of its genes during an
initial warm-up phase. At the end of the dyngen process, cells will not be sampled from the burn phase
simulations. Interactions between modules have a strength (which is a positive integer) and an effect
(41 for upregulating, -1 for downregulating).

Several examples of module networks are given in Supplementary Fig. 5. A simple chain of modules
(where one module upregulates the next) results in a linear process. By having the last module repress
the first module, the process becomes cyclic. Two modules repressing each other is the basis of a
bifurcating process, though several chains of modules have to be attached in order to achieve progression
before and after the bifurcation process. Finally, a converging process has a bifurcation occurring during
the burn phase, after which any differences in module regulation is removed.

Note that these examples represent the bare minimum in terms of the number of modules used. Using
longer chains of modules is typically desired. In addition, the fate decisions made in this example of a
bifurcation is reversible, meaning cells can be reprogrammed to go down a different differentiation path.
If this effect is undesirable, more safeguards need to be put in place to prevent reprogramming from
occurring.

5.2 Generating the gene regulatory network
The GRN is generated based on the given module network in four main steps (Supplementary Fig. 6).

Step 1, sampling the transcription factors (TF). The TFs are the main drivers of the molecular changes
in the simulation. The user provides a backbone and the number of TFs to generate. Each TF is assigned
to a module such that each module has at least x parameters (default x = 1). A TF inherits the ‘burn’
and ‘basal expression’ from the module it belongs to.

Step 2, generating the TF interactions. Let each TF be regulated according to the interactions in
the backbone. These interactions inherit the effect, strength, and independence parameters from the
interactions in the backbone. A TF can only be regulated by other TFs or itself.

Step 3, sampling the target subnetwork. A user-defined number of target genes are added to the GRN.
Target genes are regulated by a TF or another target gene, but are always downstream of at least one
TF. To sample the interactions between target genes, one of the many FANTOMS5 [45] GRNs is sampled.
The currently existing TFs are mapped to regulators in the FANTOM5 GRN. The targets are drawn
from the FANTOMS5 GRN weighted by their page rank value, to create an induced GRN. For each target,
at most x regulators are sampled from the induced FANTOMS5 GRN (default = 5). The interactions
connecting a target gene and its regulators are added to the GRN.

Step 4, sampling the housekeeping subnetwork. Housekeeping genes are completely separate from any
TFs or target genes. A user-defined set of housekeeping genes is also sampled from the FANTOMS5 GRN.

The interactions of the FANTOMS5 GRN are first subsampled such that the maximum in-degree of each
gene is x (default z = 5). A random gene is sampled and a breadth-first-search is performed to sample
the desired number of housekeeping genes.

5.3 Convert gene regulatory network to a set of reactions

Simulating a cell’s GRN makes use of a stochastic framework which tracks the abundance levels of
molecules over time in a discrete quantity. For every gene GG, the abundance levels of three molecules are
tracked, namely of corresponding pre-mRNAs, mature mRNAs and proteins, which are represented by
the terms x, y, and zg respectively. The GRN defines how a reaction affects the abundance levels of
molecules and how likely it will occur. Gibson and Bruck [46] provide a good introduction to modelling
gene regulation with stochastic frameworks, on which many of the concepts below are based.

For every gene in the GRN a set of reactions are defined, namely transcription, splicing, translation, and
degradation. Each reaction consists of a propensity function — a formula f(.) to calculate the probability
f(.) x dt of it occurring during a time interval d¢ — and the effect — how it will affect the current state if
triggered.

The effects of each reaction mimic the respective biological processes (Supplementary Table 2, middle).
Transcription of gene G results in the creation of a single pre-mRNA molecule x. Splicing turns one
pre-mRNA x4 into a mature mRNA xg. Translation uses a mature mRNA y. to produce a protein
zg. PremRNA, mRNA and protein degradation results in the removal of a x4, v, and z; molecule,
respectively.

The propensity of all reactions except transcription are all linear functions (Supplementary Table 2, right)
of the abundance level of some molecule multiplied by a per-gene constant (Supplementary Table 3). The
propensity of transcription of a gene GG depends on the abundance levels of its TFs. The per-gene and
per-interaction constants are based on the median reported production-rates and half-lives of molecules
measured of 5000 mammalian genes [47], except that the transcription rate has been amplified by a factor
of 10.

The propensity of the transcription of a gene G is inspired by thermodynamic models of gene regulation
[48], in which the promoter of G can be bound or unbound by a set of N transcription factors H,.
Let f(zy,%q,...,2y) denote the propensity function of G, in function of the abundance levels of the
transcription factors. The following subsections explain and define the propensity function when N = 1,
N = 2, and finally for an arbitrary V.

5.3.1 Propensity of transcription when N =1

In the simplest case when N = 1, the promoter can be in one of two states. In state S, the promoter is
not bound by any transcription factors, and in state S; the promoter is bound by H,. Each state S; is
linked with a relative activation «;, a number between 0 and 1 representing the activity of the promoter
at this particular state. The propensity function is thus equal to the expected value of the activity of
the promoter multiplied by the pre-mRNA production rate of G.

2N _1

(Y1, Y2, yn) = XpI - aj'P(Sj> (1)
§=0

For N = 1, P(S;) is equal to the Hill equation, where k, represents the concentration of H, at half-
occupation and n; represents the Hill coefficient. Typically, n, is between [1,10]

Y
P(S) = @)
1 1
_ (y1/ky)™
L+ (yy /hey)™

The Hill equation can be simplified by letting v; = (Z—)n

V1
141

P(Sl) -

Since P(S,) =1 — P(S;), the activation function is formulated and simplified as follows.

fy) = xpr- (ag - P(Sy) + oy - P(5})) (5)
1
xpr~(a0-l+yl+oz1'1i1yl) (6)
Qo+ -1

= Xpr -
P 1+

5.3.2 Propensity of transcription when N = 2

When N = 2, there are four states S;. The relative activations «; can be defined such that H; and H, are
independent (additive) or synergistic (multiplicative). In order to define the propensity of transcription

f(.), the Hill equation P(S;) is extended for two transcription factors.

Let w; be the numerator of P(S;), defined as the product of all transcription factors bound in that state:

wy =1 9)
wy =V (10)
Wy = Vy (11)
W3 = Vq Vg (12)

The denominator of P(S;) is then equal to the sum of all w;. The probability of state .S is thus defined
as:

w .
J
P(S)) = (13)
Zj:o w;
w -
= ’ (14)
1+v, v+ -1y
Wi
S E— (15)

i<N
Hi;l (Vv', + 1)

Substituting P(S;) and w; into f(.) results in the following equation:

2N _1
f(y1,9,) = xpr - Z aj'P(Sj) (16)
j=0
2N _1
Z__ W
Hi:l (Vi+1)
(07N e DU 2 o6 DA 2 6 AR 2 2N
= Xpr - 18
Xp e RSy (%)
(19)

5.3.3 Propensity of transcription for an arbitrary N

For an arbitrary N, there are 2V states S;. The relative activations a; can be defined such that H,
and H, are independent (additive) or synergistic (multiplicative). In order to define the propensity of
transcription f(.), the Hill equation P(S;) is extended for N transcription factors.

Let w; be the numerator of P(S;), defined as the product of all transcription factors bound in that state:

i<N
w;=[[(Gmodi)=17v,:1 (20)
i=1

The denominator of P(S;) is then equal to the sum of all w;. The probability of state .S is thus defined
as:

Substituting P(S;) into f(.) yields:

2N—1
f(y1,Yss -, Yn) = XPI - Z a; - P(S;) (23)
=0
2N
ijo ;- Wy

= Xpr - <N, .
Hizl (Vi +1)

5.3.4 Propensity of transcription for a large N

For large values of N, computing f(.) is practically infeasible as it requires performing 2 summations.
In order to greatly simplify f(.), a; could be defined as 0 when one of the regulators inhibits transcription
and 1 otherwise.

o =

J

{O if 3¢ : j mod i = 1 and H, represses G (25)

1 otherwise

Substituting equation 25 into equation 24 and defining R = {1,2,..., N} and R™ = {i|H, activates G}
yields the simplified propensity function:

HieR+ (Vi + 1)

JYoy eee s = Xpr -
(Y1, Y2, Yn) = XD 0 7 1)

5.3.5 Independence, synergism and basal expression

The definition of a; as in equation 25 presents two main limitations. Firstly, since ay = 1, it is impossible
to tweak the propensity of transcription when no transcription factors are bound. Secondly, it is not
possible to tweak the independence and synergism of multiple regulators.

Let ba € [0, 1] denote the basal expression strength G (i.e. how much will G be expressed when no tran-
scription factors are bound), and sy € [0, 1] denote the synergism of regulators H; of G, the transcription
propensity becomes:

ba — Sleﬂ + HieR* (Vi + SY)
HieR(Vi + 1)

f(yl,y27"'7yN) = Xpr-

5.4 Simulate single cells

dyngen uses Gillespie’s stochastic simulation algorithm (SSA) [12] to simulate dynamic processes. An
SSA simulation is an iterative process where at each iteration one reaction is triggered.

Each reaction consists of its propensity — a formula to calculate the probability of the reaction occurring
during an infinitesimal time interval —and the effect — how it will affect the current state if triggered. Each

time a reaction is triggered, the simulation time is incremented by 7 = > I}TOP In (%), with r € U(0,1)
5 PTOP;

and prop; the propensity value of the jth reaction for the current state of the simulation.

GillespieSSA2 is an optimised library for performing SSA simulations. The propensity functions are
compiled to C++ and SSA approximations can be used which allow triggering many reactions simultane-
ously at each iteration. The framework also allows storing the abundance levels of molecules only after
a specific interval has passed since the previous census. By setting the census interval to 0, the whole
simulation’s trajectory is retained but many of these time points will contain very similar information.
In addition to the abundance levels, also the propensity values and the number of firings of each of the
reactions at each of the time steps can be retained.

5.5 Simulate experiment

From the SSA simulation we obtain the abundance levels of all the molecules at every state. We need
to replicate technical effects introduced by experimental protocols in order to obtain data that is similar
to real data. For this, the cells are sampled from the simulations and molecules are sampled for each of
the cells. Gene capture rates and library sizes are empirically derived from real datasets to match real
technical variation.

5.5.1 Sample cells

In this step, N cells are sampled from the simulations. Two approaches are implemented: sampling
from an unsynchronised population of single cells (snapshot) or sampling at multiple time points in a
synchronised population (time series).

Snapshot The backbone consists of several states linked together by transition edges with length L,, to

which the different states in the different simulations have been mapped (Supplementary Fig. 7A). From

each transition, N; = N/ ZL - cells are sampled uniformly, rounded such that) N, = N.

Time series Assuming that the final time of the simulation is T, the interval [0, T'] is divided into k equal
intervals of width w separated by k—1 gaps of width g. N; = N /k cells are sampled uniformly from each
interval (Supplementary Fig. 7B), rounded such that > N, = N. By default, ¥ = 8 and g = 0.75. For
usual dyngen simulations, 10 < T' < 20. For larger values of T, k and g should be increased accordingly.

5.5.2 Sample molecules

Molecules are sampled from the simulation to replicate how molecules are experimentally sampled. A
real dataset is downloaded from a repository of single-cell RNA-seq datasets [49]. For each in silico cell
1, draw its library size ls; from the distribution of transcript counts per cell in the real dataset. The
capture rate cr; of each in silico molecule type j is drawn from N (1,0.05). Finally, for each cell 7, draw
ls; molecules from the multinomial distribution with probabilities cr; x ab, ; with ab, ; the molecule

J
abundance level of molecule j in cell .

5.5.3 Comparison between a dyngen and a reference dataset

Comparison between a dyngen dataset and the reference dataset it used in terms of characteristic single-
cell omics features showed that dyngen produces datasets with highly similar data characteristics (Sup-
plementary Note 1). Supplementary Note 1 was generated using countsimQC [50]. .

5.6 Simulating batch effects

Simulating batch effects can be performed in multiple ways. One such way is to perform the first two
steps of the creation of a dyngen model (defining the module network and generating the GRN). For
each desired batch, create a separate model for which random kinetics are generated and perform all

10

subsequent dyngen steps (convert to reactions, simulate gold standard, simulate single cells, simulate
experiment). Since each separate model has different underlying kinetics, the combined output will
resemble having batch effects.

5.7 Determining the ground-truth trajectory

To construct the ground-truth trajectory, the user needs to provide the ground-truth state network
alongside the initial module network (Supplementary Fig. 8). Each edge in the state network specifies
which modules are allowed to change in expression in transitioning from one state to another. For each
edge, a simulation is run using the end state of an upstream branch as the initial expression vector, and
only allowing the modules as predefined by the attribute to change.

As an example, consider the cyclic trajectory shown in Supplementary Fig. 8. State SO begins with an
expression vector of all zero values. To simulate the transition from SO to S1, regulation of the genes in
modules A, B and C are turned on. After a predefined period of time, the end state of this transition is
considered the expression vector of state S1. To simulate the transition from S1 to S2, regulation of the
genes in modules D and E are turned on, while the regulation of genes in module C is turned off. During
this simulation, the expression of genes in modules A, B, D, and E is thus allowed to change. The end
state of the simulation is considered the expression vector of state S2.

For each of the branches in the state network, an expression matrix and the corresponding progression
time along that branch are retained. To map a simulated cell to the ground-truth, the correlation between
its expression values and the expression matrix of the ground-truth trajectory is calculated, and the cell
is mapped to the position in the ground-truth trajectory that has the highest correlation.

5.8 Determining the cell-specific ground-truth regulatory network

Calculating the regulatory effect of a regulator R on a target T (Supplementary Fig. 4F) requires deter-
mining the contribution of R in the propensity function of the transcription of T' with respect to other
regulators. This information is useful, amongst others, for benchmarking cell-specific network inference
methods.

The regulatory effect of R on T at a particular state .S is defined as the change in the propensity of
transcription when R is set to zero, scaled by the inverse of the pre-mRNA production rate of T'. More
formally:

__ proptransg(S)—proptrans . (S[z<0]) 28
- Xpre ()

regeffect ,
Determining the regulatory effect for all interactions and cells in the dataset yields the complete cell-
specific ground-truth GRN. The regulatory effect lies between [—1,1], where -1 represents complete
inhibition of T" by R, 1 represents maximal activation of T' by R, and 0 represents inactivity of the
regulatory interaction between R and T

5.9 Comparison of cell-specific network inference methods

42 datasets were generated using the 14 different predefined backbones and three different seeds. For
every cell in the dataset, the transcriptomics profile and the corresponding cell-specific ground-truth
regulatory network was determined.

We selected three cell-specific NI methods: SCENIC [32], LIONESS [51, 33|, and SSN [34].

LIONESS [33] runs a NI method multiple times to construct cell-specific GRNs. LIONESS first infers
a GRN with all of the samples. A second GRN is inferred with all samples except one particular
profile. The cell-specific GRN for that particular profile is defined as the difference between the two
GRN matrices. This process is repeated for all profiles, resulting in a cell-specific GRN. By default,
LIONESS uses PANDA [52] to infer GRNs, but since dyngen does not produce motif data and motif
data is required by PANDA, PANDA is inapplicable in this context. Instead, we used the lionessR [53]
implementation of LIONESS, which uses by default the Pearson correlation as a NI method. We marked
results from this implementation as “LIONESS + Pearson”.

11

SSN [34] follows, in essence, the exact same methodology as LIONESS except that it specifically only
uses the Pearson correlation. It is worth noting that the LIONESS preprint was released before the
publication of SSN. Since no implementation was provided by the authors, we implemented SSN in R
using basic R and tidyverse functions [54] and marked results from this implementation as "SSN*”".

SCENIC [32] consists of four main steps. First, classical network inference is performed with stochastic
gradient boosting machines using arboreto [36]. Second, the top 10 regulators of every target gene
are selected. Interactions are grouped together in ‘modules’; each module contains one regulator and
all of its targets. Next, the modules are filtered using motif analysis. Finally, for each module and
each cell, an activity score is calculated using AUCell. As a post-processing of this output, all modules
and the corresponding activity scores are combined back into a cell-specific GRN consisting of (cell,
regulator, target, score) pairs. For this analysis, the Python implementation of SCENIC was used,
namely pySCENIC [55]. Since dyngen does not generate motif data, step 3 in this analysis is skipped.

The Area Under the Receiver Operating Characteristic-curve (AUROC) and Area Under the Precision-
Recall curve (AUPR) metrics are common metrics for evaluating a predicted GRN with a ground-truth
GRN [56]. To compare a predicted cell-specific GRN with the ground-truth cell-specific GRN, the top
10’000 interactions per cell is retained, and the mean AUROC and AUPR scores are calculated across
all cells.

We compared the mean AUROC and AUPR scores obtained by the three CSNI methods across all
datasets by performing pairwise non-parametric paired two-sided Durbin-Conover tests [57] using
pairwiseComparisons [58]. Test statistics and p-values for the all pairwise combinations are reported
in the Source Data file. Reported p-values are adjusted for multiple testing using Holm correction [59].

5.10 Comparison of RNA velocity methods

Three datasets were generated for each of the 14 different predefined backbones, resulting in a collection
of 42 datasets. Throughout each of the simulation, the propensity of the transcription and mRNA decay
is collected, as the RNA velocity of a gene at any point in the simulation is the difference between the
transcription propensity and the mRNA decay propensity.

We applied two RNA velocity methods: velocyto [30], as implemented in the velocyto.py package, and
scvelo method [31], as implemented in the scvelo package. For scvelo, we chose two parameter settings
for “mode”, namely “stochastic” and “dynamical”. For both methods, we used the same normalized data
as provided by dyngen, with no extra cell or feature filtering, but otherwise matched the parameters to
their respective tutorial vignettes as well as possible.

We compared each RNA velocity prediction to the ground-truth using two metrics: the velocity corre-
lation and the velocity arrow cosine. For the velocity correlation, we extracted a ground truth RNA
velocity by subtracting for each mRNA molecule the propensity of its production by the propensity of
its degradation. If the expression of an mRNA will increase in the future, this value is positive, while it
is negative if it is going to decrease. For each gene, we determined its velocity correlation by calculating
the Spearman rank correlation between the ground truth velocity with the observed velocity. For the
velocity arrow cosine, we determined a set of 100 trajectory waypoints uniformly spread on the trajectory.
For each waypoint, we weighted each cell based on a Gaussian kernel on its geodesic distance from the
waypoint. These weights were used to calculate a weighted average velocity vector of each waypoint.
We then calculated for each waypoint the cosine similarity between this velocity vector and the known
direction of the trajectory.

We compared the velocity correlation and velocity arrow cosine scores obtained by velocyto and scvelo
across all datasets by performing pairwise non-parametric paired two-sided Durbin-Conover tests [57]
using pairwiseComparisons [58]. Test statistics and p-values for the all pairwise combinations are re-
ported in the Source Data file. Reported p-values are adjusted for multiple testing using Holm correction
[59].

5.11 Comparison of trajectory alignment

Four custom linear backbones of varying sizes were constructed. For each of these backbones, 10 datasets
were generated with 10 different seeds, resulting in a total of 40 datasets. Every dataset is generated
in three main steps. First, the GRN is generated based on the given backbone. Next, generating the

12

kinetics, gold standard, and cells is performed twice, resulting in two sub-datasets. Finally, the two
sub-datasets are combined and cells are sampled from the combined dataset. Since the two sub-datasets
were simulated with different kinetic parameters, the combined dataset will contain two trajectories.

On each combined dataset we applied two trajectory alignment methods, Dynamic Time Warping (DTW)
[24] and cellAlign [28]. DTW is designed to align temporal sequences by dilating or contracting the
sequences to best match each other. cellAlign uses DTW to perform this alignment, but first interpolates
and rescales the input data in order to better cope with single-cell omics data.

To evaluate a trajectory alignment method on a combined dataset we computed the geodesic distances
of each cell from the start of the trajectory, also called the pseudotime. For each dataset, the pseudotime
values are rescaled between 0 and 1 to allow for easier comparison. A trajectory alignment produces a
sequence of index pairs [(iy, jo), (¢1,71); s (in, G)], Where iy and j, are equal to 0 (the first position in
both pseudotime series), iy and jy are equal to the respective last positions in the pair of pseudotime
series, and [ig,4y,...,%x5] and [jg,Jq,-..,Jn] are in ascending order and can contain duplicates values.
The ABWAP metric is defined as follows, where pt; and pt, are the unit pseudotime vectors. See
Supplementary Fig. 1D for a visual interpretation of this metric.

ABWAP =1 — area_under__curve(pt, [ig..i 5| + Dtalig--Tn]s abs(pty[ig--in] — Ptalio--dn])) (29)

We compared the ABWAP scores obtained by DTW and cellAlign across all datasets by performing pair-
wise non-parametric paired two-sided Durbin-Conover tests [57] using pairwiseComparisons [58]. Test
statistics and p-values for the all pairwise combinations are reported in the Source Data file. Reported
p-values are adjusted for multiple testing using Holm correction [59].

5.12 Comparison of scalability and runtime

Simulating a bifurcating cycle dataset with 10’000 genes and 10’000 required in total 1147 seconds
(Supplementary Note 2). Fixing the number of genes and varying the number of cells showed that the
execution time of dyngen scales linearly w.r.t. the number of cells (Supplementary Note 2). Fixing the
number of cells and varying the number of genes also showed that the execution time of dyngen scales
linearly w.r.t. the number of genes (Supplementary Note 2). These timings were measured using 30 (out
of 32) threads using a AMD Ryzen 9 5950X clocked at 3.4GHz.

6 Data Availability

Source data for box plots in Figure 2 and Supplementary Figures 1, 2 and 3 are provided with
this paper. All code and data required to reproduce the analysis are available on GitHub at
github.com/dynverse/dyngen_ manuscript. The datasets generated for the different use cases are
available on Zenodo with record number 4637926 (doi: 10.5281/zenodo.4637926).

7 Code Availability

Results in this manuscript were generated with R 4.0.3 and dyngen 1.0.0. dyngen is available as an open-
source software package at cran.r-project.org/package=dyngen and also on Zenodo with record number
4751443 (doi: 10.5281/zenodo.4751443). The analyses performed in this manuscript are available on
GitHub at github.com/dynverse/dyngen_ manuscript.

The version numbers of downstream dependencies of dyngen and dyngen_ manuscript used in this study
are: anndata 0.7.5.1, assertthat 0.2.1, babelwhale 1.0.1, bit 4.0.4, bit64 4.0.5, carrier 0.1.0, cellAlign
0.1.0, codetools 0.2-18, colorspace 2.0-0, compiler 4.0.4, crayon 1.4.1.9000, data.table 1.13.4, DBI 1.1.1,
debugme 1.1.0, desc 1.2.0, digest 0.6.27, dplyr 1.0.5, dtw 1.22-3, dynparam 1.0.1, dynutils 1.0.6, dynwrap
1.2.2, ellipsis 0.3.1, fansi 0.4.2, farver 2.1.0, future 1.20.1, future.apply 1.7.0, generics 0.1.0, ggforce 0.3.2,
geplot2 3.3.3, ggraph 2.0.4, ggrepel 0.9.0, GillespieSSA2 0.2.7, globals 0.14.0, glue 1.4.2, graphlayouts
0.7.1, grid 4.0.4, gridExtra 2.3, gtable 0.3.0, gtools 3.8.2, hdf5r 1.3.3, hms 1.0.0, igraph 1.2.6, irlba 2.3.3,
jsonlite 1.7.2, lattice 0.20-41, lifecycle 1.0.0, lisi 1.0, listenv 0.8.0, Imds 0.1.0, magrittr 2.0.1, MASS
7.3-53, Matrix 1.3-2, matrixStats 0.57.0, munsell 0.5.0, parallel 4.0.4, parallelly 1.21.0, patchwork 1.1.1,
pbapply 1.4-3, pheatmap 1.0.12, pillar 1.5.1, pkgconfig 2.0.3, plyr 1.8.6, polyclip 1.10-0, pracma 2.2.9,

13

https://github.com/dynverse/dyngen_manuscript
https://doi.org/10.5281/zenodo.4637926
https://cran.r-project.org/package=dyngen
https://doi.org/10.5281/zenodo.4751443
https://github.com/dynverse/dyngen_manuscript

processx 3.4.5, proxy 0.4-24, proxyC 0.1.5, ps 1.6.0, purrr 0.3.4, R6 2.5.0, RANN 2.6.1, rappdirs 0.3.3,
RColorBrewer 1.1-2, Rcpp 1.0.6, RcppParallel 5.0.2, RecppXPtrUtils 0.1.1, readr 1.4.0, remotes 2.2.0,
reshape2 1.4.4, reticulate 1.18-9007, rlang 0.4.10, rprojroot 2.0.2, scales 1.1.1, sctransform 0.3.2, scvelo
0.1.0.9000, stringi 1.5.3, stringr 1.4.0, tibble 3.0.5, tidygraph 1.2.0, tidyr 1.1.2, tidyselect 1.1.0, tools
4.0.4, tweenr 1.0.1, utf8 1.1.4, vetrs 0.3.6, viridis 0.5.1, viridisLite 0.3.0, yaml 2.2.1.

8 Acknowledgements

This project has been made possible in part by grant number 2020-218899 from the Chan Zuckerberg Ini-
tiative DAF, an advised fund of Silicon Valley Community Foundation. This research received funding
from the Flemish Government under the “Onderzoeksprogramma Artificiéle Intelligentie (AI) Vlaan-
deren” program.

9 Author contributions

W.S. and R.C. designed the study.

R.C., W.S.; and L.D. performed the experiments and analysed the data.
R.C. and W.S. implemented the dyngen software package.

R.C., W.S., L.D., and Y.S. wrote the manuscript.

Y.S. supervised the project.

10 Competing interests

The authors declare no competing interests.

References

Luke Zappia, Belinda Phipson, and Alicia Oshlack. “Splatter: Simulation of Single-Cell RNA Se-
quencing Data”. In: Genome Biology 18 (Sept. 2017), p. 174. 1sSN: 1474-760X. po1: 10.1186/s13059-
017-1305-0.

Bergthor Bjornsson et al. “Digital Twins to Personalize Medicine”. In: Genome Medicine 12.1 (Dec.
2019), p. 4. 18SN: 1756-994X. poI: 10.1186/513073-019-0701-3.

Sushmita Roy, Margaret Werner-Washburne, and Terran Lane. “A System for Generating Tran-
scription Regulatory Networks with Combinatorial Control of Transcription” In: Bioinformatics
24.10 (May 2008), pp. 1318-1320. 1ssN: 1367-4803. por: 10.1093/bioinformatics/btn126.

Hendrik Hache et al. “GeNGe: Systematic Generation of Gene Regulatory Networks”. In: Bioin-
formatics 25.9 (May 2009), pp. 1205-1207. 1SsN: 1367-4803. DOI: 10.1093 /bioinformatics/btpl15.
Thomas Schaffter, Daniel Marbach, and Dario Floreano. “GeneNetWeaver: In Silico Benchmark
Generation and Performance Profiling of Network Inference Methods.” In: Bioinformatics 27.16
(Aug. 2011), pp. 2263-2270. 1SSN: 1367-4811. DOI: 10.1093 /bicinformatics/btr373.

Tim Van den Bulcke et al. “SynTReN: A Generator of Synthetic Gene Expression Data for Design
and Analysis of Structure Learning Algorithms”. en. In: BMC' Bioinformatics 7.1 (Jan. 2006), p. 43.
ISSN: 1471-2105. por: 10.1186/1471-2105-7-43.

Robert J Prill et al. “Towards a Rigorous Assessment of Systems Biology Models: The DREAM3
Challenges”. In: PLoS ONE 5.2 (Jan. 2010), €9202. 1SsN: 1932-6203. po1: 10.1371/journal.pone.
0009202.

Daniel Marbach et al. “Revealing Strengths and Weaknesses of Methods for Gene Network Infer-
ence”. In: Proceedings of the National Academy of Sciences 107.14 (Apr. 2010), pp. 6286—6291. 1SSN:
1091-6490. po1: 10.1073/pnas.0913357107.

Daniel Marbach et al. “Wisdom of Crowds for Robust Gene Network Inference”. In: Nature methods
9.8 (July 2012), pp. 796-804. 1sSN: 1548-7091. po1: 10.1038 /nmeth.2016.

Malte D Luecken and Fabian J Theis. “Current Best Practices in Single-Cell RNA-Seq Analysis: A
Tutorial”. In: Molecular Systems Biology 15.6 (June 2019), e8746. 1SSN: 1744-4292. por: 10.15252/
msb.20188746.

14

https://doi.org/10.1186/s13059-017-1305-0
https://doi.org/10.1186/s13059-017-1305-0
https://doi.org/10.1186/s13073-019-0701-3
https://doi.org/10.1093/bioinformatics/btn126
https://doi.org/10.1093/bioinformatics/btp115
https://doi.org/10.1093/bioinformatics/btr373
https://doi.org/10.1186/1471-2105-7-43
https://doi.org/10.1371/journal.pone.0009202
https://doi.org/10.1371/journal.pone.0009202
https://doi.org/10.1073/pnas.0913357107
https://doi.org/10.1038/nmeth.2016
https://doi.org/10.15252/msb.20188746
https://doi.org/10.15252/msb.20188746

[15]

[16]

[17]

[18]

[29]

[30]

Catalina A. Vallejos et al. “Normalizing Single-Cell RNA Sequencing Data: Challenges and Oppor-
tunities”. en. In: Nature Methods 14.6 (June 2017), pp. 565-571. 1SsN: 1548-7105. por: 10.1038/
nmeth.4292.

Daniel T. Gillespie. “Exact Stochastic Simulation of Coupled Chemical Reactions”. In: The Journal
of Physical Chemistry 81.25 (Dec. 1977), pp. 2340-2361. 1ssN: 0022-3654. Dor: 10.1021/j100540a008.
Beate Vieth et al. “powsimR: Power Analysis for Bulk and Single Cell RNA-Seq Experiments”. en.
In: Bioinformatics 33.21 (Nov. 2017), pp. 3486-3488. 1sSN: 1367-4803. DOI: 10.1093 /bioinformatics/
btx435.

Nikolaos Papadopoulos, Parra R. Gonzalo, and Johannes Séding. “PROSSTT: Probabilistic Simu-
lation of Single-Cell RNA-Seq Data for Complex Differentiation Processes”. eng. In: Bioinformatics
(Ozford, England) 35.18 (Sept. 2019), pp. 3517-3519. 1sSN: 1367-4811. por: 10.1093/bioinformatics/
btz078.

Xiuwei Zhang, Chenling Xu, and Nir Yosef. “Simulating Multiple Faceted Variability in Single Cell
RNA Sequencing”. en. In: Nature Communications 10.1 (June 2019), pp. 1-16. 1SsN: 2041-1723.
DOI: 10.1038/s41467-019-10500-w.

Kelly Street et al. “Slingshot: Cell Lineage and Pseudotime Inference for Single-Cell Transcrip-
tomics”. In: BMC Genomics 19.1 (June 2018), p. 477. 1SSN: 1471-2164. por: 10.1186/s12864-018-
4772-0.

R. Gonzalo Parra et al. “Reconstructing Complex Lineage Trees from scRNA-Seq Data Using
MERLoT”. eng. In: Nucleic Acids Research 47.17 (Sept. 2019), pp. 8961-8974. 1sSN: 1362-4962.
DOIL: 10.1093/nar/gkz706.

Edroaldo Lummertz da Rocha et al. “Reconstruction of Complex Single-Cell Trajectories Using
CellRouter”. In: Nature Communications 9.1 (Mar. 2018), p. 892. 1sSN: 2041-1723. po1: 10.1038/
s41467-018-03214-y.

Yingxin Lin et al. “scClassify: Sample Size Estimation and Multiscale Classification of Cells Using
Single and Multiple Reference”. In: Molecular Systems Biology 16.6 (June 2020), €9389. 1SSN: 1744~
4292. po1: 10.15252/msb.20199389.

Angelo Duo, Mark D. Robinson, and Charlotte Soneson. “A Systematic Performance Evaluation
of Clustering Methods for Single-Cell RNA-Seq Data”. eng. In: F1000Research 7 (2018), p. 1141.
ISSN: 2046-1402. por: 10.12688/f1000research.15666.2.

Wouter Saelens et al. “A Comparison of Single-Cell Trajectory Inference Methods”. In: Nature
Biotechnology 37.May (2019). 1sSN: 15461696. por: 10.1038/s41587-019-0071-9.

Charlotte Soneson and Mark D. Robinson. “Bias, Robustness and Scalability in Single-Cell Differ-
ential Expression Analysis”. eng. In: Nature Methods 15.4 (Apr. 2018), pp. 255-261. 1SSN: 1548-7105.
DOL: 10.1038 /nmeth.4612.

Lukas M. Weber et al. “Essential Guidelines for Computational Method Benchmarking”. In:
Genome Biology 20.1 (June 2019), p. 125. 1ssN: 1474-760X. por: 10.1186/s13059-019-1738-8.

Toni Giorgino. “Computing and Visualizing Dynamic Time Warping Alignments in R: The Dtw
Package”. In: Journal of Statistical Software 7 (Sept. 2009). DOI: 10.18637/jss.v031.i07.

Davide Cacchiarelli et al. “Aligning Single-Cell Developmental and Reprogramming Trajectories
Identifies Molecular Determinants of Myogenic Reprogramming Outcome”. English. In: Cell Sys-
tems 7.3 (Sept. 2018), 258-268.e3. 1sSN: 2405-4712. DOIL: 10.1016/j.cels.2018.07.006.

Sabina Kanton et al. “Organoid Single-Cell Genomic Atlas Uncovers Human-Specific Features
of Brain Development”. en. In: Nature 574.7778 (Oct. 2019), pp. 418-422. 1SSN: 1476-4687. DOIL:
10.1038/s41586-019-1654-9.

José L. McFaline-Figueroa et al. “A Pooled Single-Cell Genetic Screen Identifies Regulatory Check-
points in the Continuum of the Epithelial-to-Mesenchymal Transition”. en. In: Nature Genetics 51.9
(Sept. 2019), pp. 1389-1398. 1sSN: 1546-1718. DOIL: 10.1038/s41588-019-0489-5.

Ayelet Alpert et al. “Alignment of Single-Cell Trajectories to Compare Cellular Expression Dynam-
ics”. en. In: Nature Methods 15.4 (Apr. 2018), pp. 267-270. 1sSN: 1548-7105. pOI: 10.1038 /nmeth.
4628.

Amit Zeisel et al. “Coupled Pre-mRNA and mRNA Dynamics Unveil Operational Strategies Under-
lying Transcriptional Responses to Stimuli”. In: Molecular Systems Biology 7.1 (Jan. 2011), p. 529.
ISSN: 1744-4292. por: 10.1038/msb.2011.62.

Gioele La Manno et al. “RNA Velocity of Single Cells”. In: Nature 560.7719 (Aug. 2018), pp. 494—
498. 1SSN: 1476-4687. DOTL: 10.1038/341586-018-0414-6.

15

https://doi.org/10.1038/nmeth.4292
https://doi.org/10.1038/nmeth.4292
https://doi.org/10.1021/j100540a008
https://doi.org/10.1093/bioinformatics/btx435
https://doi.org/10.1093/bioinformatics/btx435
https://doi.org/10.1093/bioinformatics/btz078
https://doi.org/10.1093/bioinformatics/btz078
https://doi.org/10.1038/s41467-019-10500-w
https://doi.org/10.1186/s12864-018-4772-0
https://doi.org/10.1186/s12864-018-4772-0
https://doi.org/10.1093/nar/gkz706
https://doi.org/10.1038/s41467-018-03214-y
https://doi.org/10.1038/s41467-018-03214-y
https://doi.org/10.15252/msb.20199389
https://doi.org/10.12688/f1000research.15666.2
https://doi.org/10.1038/s41587-019-0071-9
https://doi.org/10.1038/nmeth.4612
https://doi.org/10.1186/s13059-019-1738-8
https://doi.org/10.18637/jss.v031.i07
https://doi.org/10.1016/j.cels.2018.07.006
https://doi.org/10.1038/s41586-019-1654-9
https://doi.org/10.1038/s41588-019-0489-5
https://doi.org/10.1038/nmeth.4628
https://doi.org/10.1038/nmeth.4628
https://doi.org/10.1038/msb.2011.62
https://doi.org/10.1038/s41586-018-0414-6

Volker Bergen et al. “Generalizing RNA Velocity to Transient Cell States through Dynamical
Modeling”. In: Nature Biotechnology 38.12 (Dec. 2020), pp. 1408-1414. 1SsN: 1546-1696. Do1: 10.
1038/s41587-020-0591-3.

Sara Aibar et al. “SCENIC: Single-Cell Regulatory Network Inference and Clustering”. In: Nature
Methods (Oct. 2017). 1sSN: 1548-7091. por: 10.1038 /nmeth.4463.

Marieke Lydia Kuijjer et al. “Estimating Sample-Specific Regulatory Networks”. In: iScience 14
(Mar. 2019), pp. 226-240. 1SSN: 2589-0042. DOT: 10.1016/j.is¢i.2019.03.021.

Xiaoping Liu et al. “Personalized Characterization of Diseases Using Sample-Specific Networks”.
In: Nucleic Acids Research 44.22 (2016), e164-e164. 1sSN: 0305-1048. DOI: 10.1093 /nar/gkw772.
Van Anh Huynh-Thu et al. “Inferring Regulatory Networks from Expression Data Using Tree-
Based Methods”™ In: PLoS ONE 5.9 (Jan. 2010), e12776. 1sSN: 1932-6203. DOI: 10.1371/journal.
pone.0012776.

Thomas Moerman et al. “GRNBoost2 and Arboreto: Efficient and Scalable Inference of Gene
Regulatory Networks”. In: Bioinformatics 35.12 (June 2019), pp. 2159-2161. 1sSN: 1367-4803. DOI:
10.1093/bioinformatics/bty916.

Adam D. Ewing et al. “Combining Tumor Genome Simulation with Crowdsourcing to Benchmark
Somatic Single-Nucleotide-Variant Detection”. en. In: Nature Methods 12.7 (July 2015), pp. 623—
630. 1SSN: 1548-7105. pOI: 10.1038 /nmeth.3407.

Stephen Smith and Ramon Grima. “Spatial Stochastic Intracellular Kinetics: A Review of Mod-
elling Approaches”. In: Bulletin of Mathematical Biology 81.8 (Aug. 2019), pp. 2960-3009. 1SSN:
1522-9602. por: 10.1007/s11538-018-0443-1.

N. Rekhtman et al. “Direct Interaction of Hematopoietic Transcription Factors PU.1 and GATA-
1: Functional Antagonism in Erythroid Cells”. eng. In: Genes & Development 13.11 (June 1999),
pp. 1398-1411. 1sSN: 0890-9369. pot1: 10.1101/gad.13.11.1398.

Heping Xu et al. “Regulation of Bifurcating B Cell Trajectories by Mutual Antagonism between
Transcription Factors IRF4 and IRF8”. In: Nat. Immunol. 16.12 (Dec. 2015), pp. 1274-1281.
Thomas Graf and Tariq Enver. “Forcing Cells to Change Lineages”. In: Nature 462.7273 (Dec.
2009), p. 587. 1sSN: 1476-4687. DOI: 10.1038 /nature08533.

Jin Wang et al. “Quantifying the Waddington Landscape and Biological Paths for Development and
Differentiation”. In: Proceedings of the National Academy of Sciences 108.20 (May 2011), pp. 8257
8262. 1sSN: 0027-8424, 1091-6490. Do1: 10.1073/pnas.1017017108.

James E Ferrell. “Bistability, Bifurcations, and Waddington’s Epigenetic Landscape”. In: Current
Biology 22.11 (June 2012), R458-R466. 1sSN: 0960-9822. por1: 10.1016/j.cub.2012.03.045.

Nir Yosef et al. “Dynamic Regulatory Network Controlling {TH17 Cell Differentiation”. In: Nature
496.7446 (2013), pp. 461-468.

Marina Lizio et al. “Gateways to the FANTOMS5 Promoter Level Mammalian Expression Atlas”.
In: Genome Biology 16.1 (Jan. 2015), p. 22. 1SSN: 1465-6906. por: 10.1186/s13059-014-0560-6.
Michael A. Gibson and Jehoshua Bruck. “A Probabilistic Model of a Prokaryotic Gene and Its
Regulation”. In: Computational Methods in Molecular Biology: From Genotype to Phenotype, MIT
press, Cambridge (2000).

Bjorn Schwanhéusser et al. “Global Quantification of Mammalian Gene Expression Control”. In:
Nature 473.7347 (May 2011), pp. 337-342. 1SsN: 1476-4687. DOI: 10.1038 /nature10098.

Maria J. Schilstra and Chrystopher L. Nehaniv. “Bio-Logic: Gene Expression and the Laws of
Combinatorial Logic”. In: Artificial Life 14.1 (Jan. 2008), pp. 121-133. 1SsN: 1064-5462. po1: 10.
1162/artl.2008.14.1.121.

Robrecht Cannoodt et al. “Single-Cell -Omics Datasets Containing a Trajectory”. In: Zenodo (Oct.
2018). por: 10.5281/zenodo.1211532.

Charlotte Soneson and Mark D. Robinson. “Towards Unified Quality Verification of Synthetic
Count Data with countsimQC”. en. In: Bioinformatics 34.4 (Feb. 2018), pp. 691-692. 1SSN: 1367-
4803. por: 10.1093/bioinformatics/btx631.

Marieke Lydia Kuijjer et al. “Estimating Sample-Specific Regulatory Networks”. In: (2015), pp. 1-
19.

Kimberly Glass et al. “Passing Messages between Biological Networks to Refine Predicted Interac-
tions”. In: PLOS ONE 8.5 (May 2013), €64832. poOI: 10.1371/journal.pone.0064832.

Marieke L. Kuijjer et al. “lionessR: Single Sample Network Inference in R”. In: BMC Cancer 19.1
(Oct. 2019), p. 1003. 1SSN: 1471-2407. por: 10.1186/s12885-019-6235-7.

Hadley Wickham et al. “Welcome to the Tidyverse”. en. In: (Nov. 2019). por: 10.21105/joss.01686.

16

https://doi.org/10.1038/s41587-020-0591-3
https://doi.org/10.1038/s41587-020-0591-3
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.1016/j.isci.2019.03.021
https://doi.org/10.1093/nar/gkw772
https://doi.org/10.1371/journal.pone.0012776
https://doi.org/10.1371/journal.pone.0012776
https://doi.org/10.1093/bioinformatics/bty916
https://doi.org/10.1038/nmeth.3407
https://doi.org/10.1007/s11538-018-0443-1
https://doi.org/10.1101/gad.13.11.1398
https://doi.org/10.1038/nature08533
https://doi.org/10.1073/pnas.1017017108
https://doi.org/10.1016/j.cub.2012.03.045
https://doi.org/10.1186/s13059-014-0560-6
https://doi.org/10.1038/nature10098
https://doi.org/10.1162/artl.2008.14.1.121
https://doi.org/10.1162/artl.2008.14.1.121
https://doi.org/10.5281/zenodo.1211532
https://doi.org/10.1093/bioinformatics/btx631
https://doi.org/10.1371/journal.pone.0064832
https://doi.org/10.1186/s12885-019-6235-7
https://doi.org/10.21105/joss.01686

Bram Van de Sande et al. “A Scalable SCENIC Workflow for Single-Cell Gene Regulatory Network
Analysis”. In: Nature Protocols 15.7 (July 2020), pp. 2247-2276. 1sSN: 1750-2799. po1: 10.1038/
$41596-020-0336-2.

Daniel Marbach et al. “Generating Realistic In Silico Gene Networks for Performance Assessment
of Reverse Engineering Methods”. In: Journal of Computational Biology 16.2 (Feb. 2009), pp. 229
239. 18SN: 1557-8666. DOIL: 10.1089/cmb.2008.09TT.

William Jay Conover and Ronald L Iman. On Multiple-Comparisons Procedures. Tech. rep. Tech-
nical report, Los Alamos Scientific Laboratory, 1979.

Indrajeet Patil. pairwiseComparisons: Multiple Pairwise Comparison Tests. Manual. 2019.

Sture Holm. “A Simple Sequentially Rejective Multiple Test Procedure”. In: Scandinavian journal
of statistics (1979), pp. 65—-70.

17

https://doi.org/10.1038/s41596-020-0336-2
https://doi.org/10.1038/s41596-020-0336-2
https://doi.org/10.1089/cmb.2008.09TT

	Abstract
	Introduction
	Results
	Discussion
	Methods
	Defining the module network
	Generating the gene regulatory network
	Convert gene regulatory network to a set of reactions
	Propensity of transcription when N=1
	Propensity of transcription when N=2
	Propensity of transcription for an arbitrary N
	Propensity of transcription for a large N
	Independence, synergism and basal expression

	Simulate single cells
	Simulate experiment
	Sample cells
	Sample molecules
	Comparison between a dyngen and a reference dataset

	Simulating batch effects
	Determining the ground-truth trajectory
	Determining the cell-specific ground-truth regulatory network
	Comparison of cell-specific network inference methods
	Comparison of RNA velocity methods
	Comparison of trajectory alignment
	Comparison of scalability and runtime

	Data Availability
	Code Availability
	Acknowledgements
	Author contributions
	Competing interests

