{ "cells": [ { "cell_type": "markdown", "id": "f7aa3757", "metadata": {}, "source": [ "# The Life Cycle Model: Theory vs Data\n", "\n", "[![badge](https://img.shields.io/badge/Launch%20using%20-Econ--ARK-blue)](https://econ-ark.org/materials/lifecyclemodeltheoryvsdata#launch)\n", "\n", "National registry data on income and wealth from Scandinavian countries (esp. Norway) have recently become available (with a lot of security) to some (lucky!) researchers. These data offer a uniquely powerful tool for testing (and improving) our models of consumption and saving behavior over the life cycle.\n", "\n", "This notebook is an example of how to construct a life cycle model with the HARK toolkit that makes predictions that can be compared to the raw data statistics=.\n", "\n", "For example, some papers have tabulated information about the **growth rate** of assets at different ages over the life cycle.\n", "\n", "The default parameters of the HARK life cycle model have not been optmized to match features of the Norwegian data; a first step in a real \"structural\" estimation would be to use Norwegian calibrate the inputs to the model (like the profile of income, and the magnitude of income shocks, over the life cycle), and then to find the values of parameters like the time preference rate that allow the model to fit the data best. (See [SolvingMicroDSOPs](https://www.econ2.jhu.edu/people/ccarroll/SolvingMicroDSOPs) for how this can be done, and search for the corresponding HARK content using [our documentation](https://docs.econ-ark.org/))." ] }, { "cell_type": "code", "execution_count": 1, "id": "40023351", "metadata": {}, "outputs": [], "source": [ "# Initial imports and notebook setup, click arrow to show\n", "\n", "# The consumption-saving micro model\n", "from matplotlib import pyplot as plt\n", "import warnings\n", "import HARK.ConsumptionSaving.ConsIndShockModel as cShksModl\n", "from HARK.utilities import plot_funcs # Some tools\n", "import pandas as pd\n", "\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 2, "id": "77a41e5e", "metadata": {}, "outputs": [], "source": [ "# ---------------------------------------------------------------------------------\n", "# - Define all of the model parameters for SolvingMicroDSOPs and ConsumerExamples -\n", "# ---------------------------------------------------------------------------------\n", "\n", "final_age = 90 # Age at which the problem ends (die with certainty)\n", "retirement_age = 65 # Age at which the consumer retires\n", "initial_age = 25 # Age at which the consumer enters the model\n", "TT = final_age - initial_age # Total number of periods in the model\n", "retirement_t = retirement_age - initial_age - 1\n", "\n", "exp_nest = 3 # Number of times to \"exponentially nest\" when constructing a_grid\n", "aXtraMin = 0.001 # Minimum end-of-period \"assets above minimum\" value\n", "aXtraMax = 20 # Maximum end-of-period \"assets above minimum\" value\n", "aXtraHuge = None # A very large value of assets to add to the grid, not used\n", "aXtraExtra = None # Some other value of assets to add to the grid, not used\n", "aXtraCount = 8 # Number of points in the grid of \"assets above minimum\"\n", "\n", "# Artificial borrowing constraint; imposed minimum level of end-of period assets\n", "BoroCnstArt = 0.0\n", "CubicBool = (\n", " True # Use cubic spline interpolation when True, linear interpolation when False\n", ")\n", "vFuncBool = False # Whether to calculate the value function during solution\n", "\n", "Rfree = TT*[1.03] # Interest factor on assets\n", "PermShkCount = (\n", " 7 # Number of points in discrete approximation to permanent income shocks\n", ")\n", "TranShkCount = (\n", " 7 # Number of points in discrete approximation to transitory income shocks\n", ")\n", "UnempPrb = 0.005 # Probability of unemployment while working\n", "UnempPrbRet = 0.000 # Probability of \"unemployment\" while retired\n", "IncUnemp = 0.0 # Unemployment benefits replacement rate\n", "IncUnempRet = 0.0 # \"Unemployment\" benefits when retired\n", "\n", "# Initial guess of the coefficient of relative risk aversion during estimation (rho)\n", "CRRA_start = 4.0\n", "# Initial guess of the adjustment to the discount factor during estimation (beth)\n", "DiscFacAdj_start = 0.99\n", "DiscFacAdj_bound = [\n", " 0.0001,\n", " 15.0,\n", "] # Bounds for beth; if violated, objective function returns \"penalty value\"\n", "CRRA_bound = [\n", " 0.0001,\n", " 15.0,\n", "] # Bounds for rho; if violated, objective function returns \"penalty value\"\n", "\n", "# Expected growth rates of permanent income over the lifecycle, starting from age 25\n", "PermGroFac = [\n", " 1.025,\n", " 1.025,\n", " 1.025,\n", " 1.025,\n", " 1.025,\n", " 1.025,\n", " 1.025,\n", " 1.025,\n", " 1.025,\n", " 1.025,\n", " 1.025,\n", " 1.025,\n", " 1.025,\n", " 1.025,\n", " 1.025,\n", " 1.025,\n", " 1.025,\n", " 1.025,\n", " 1.025,\n", " 1.025,\n", " 1.025,\n", " 1.025,\n", " 1.025,\n", " 1.025,\n", " 1.025,\n", " 1.01,\n", " 1.01,\n", " 1.01,\n", " 1.01,\n", " 1.01,\n", " 1.01,\n", " 1.01,\n", " 1.01,\n", " 1.01,\n", " 1.01,\n", " 1.01,\n", " 1.01,\n", " 1.01,\n", " 1.01,\n", " 0.7, # <-- This represents retirement\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", "]\n", "\n", "# Age-varying discount factors over the lifecycle, lifted from Cagetti (2003)\n", "DiscFac_timevary = [\n", " 1.064914,\n", " 1.057997,\n", " 1.051422,\n", " 1.045179,\n", " 1.039259,\n", " 1.033653,\n", " 1.028352,\n", " 1.023348,\n", " 1.018632,\n", " 1.014198,\n", " 1.010037,\n", " 1.006143,\n", " 1.002509,\n", " 0.9991282,\n", " 0.9959943,\n", " 0.9931012,\n", " 0.9904431,\n", " 0.9880143,\n", " 0.9858095,\n", " 0.9838233,\n", " 0.9820506,\n", " 0.9804866,\n", " 0.9791264,\n", " 0.9779656,\n", " 0.9769995,\n", " 0.9762239,\n", " 0.9756346,\n", " 0.9752274,\n", " 0.9749984,\n", " 0.9749437,\n", " 0.9750595,\n", " 0.9753422,\n", " 0.9757881,\n", " 0.9763936,\n", " 0.9771553,\n", " 0.9780698,\n", " 0.9791338,\n", " 0.9803439,\n", " 0.981697,\n", " 0.8287214,\n", " 0.9902111,\n", " 0.9902111,\n", " 0.9902111,\n", " 0.9902111,\n", " 0.9902111,\n", " 0.9902111,\n", " 0.9902111,\n", " 0.9902111,\n", " 0.9902111,\n", " 0.9902111,\n", " 0.9902111,\n", " 0.9902111,\n", " 0.9902111,\n", " 0.9902111,\n", " 0.9902111,\n", " 0.9902111,\n", " 0.9902111,\n", " 0.9902111,\n", " 0.9902111,\n", " 0.9902111,\n", " 0.9902111,\n", " 0.9902111,\n", " 0.9902111,\n", " 0.9902111,\n", " 0.9902111,\n", "]\n", "\n", "# Survival probabilities over the lifecycle, starting from age 25\n", "LivPrb = [\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0,\n", " 1.0, # <-- automatic survival to age 65\n", " 0.98438596,\n", " 0.98438596,\n", " 0.98438596,\n", " 0.98438596,\n", " 0.98438596,\n", " 0.97567062,\n", " 0.97567062,\n", " 0.97567062,\n", " 0.97567062,\n", " 0.97567062,\n", " 0.96207901,\n", " 0.96207901,\n", " 0.96207901,\n", " 0.96207901,\n", " 0.96207901,\n", " 0.93721595,\n", " 0.93721595,\n", " 0.93721595,\n", " 0.93721595,\n", " 0.93721595,\n", " 0.63095734,\n", " 0.63095734,\n", " 0.63095734,\n", " 0.63095734,\n", " 0.63095734,\n", "]\n", "\n", "\n", "# Standard deviations of permanent income shocks by age, starting from age 25\n", "PermShkStd = [\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.0,\n", " 0.0,\n", " 0.0, # <-- no permanent income shocks after retirement\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", "]\n", "\n", "# Standard deviations of transitory income shocks by age, starting from age 25\n", "TranShkStd = [\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.1,\n", " 0.0,\n", " 0.0,\n", " 0.0, # <-- no transitory income shocs after retirement\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", " 0.0,\n", "]\n", "\n", "# Age groups for the estimation: calculate average wealth-to-permanent income ratio\n", "# for consumers within each of these age groups, compare actual to simulated data\n", "empirical_cohort_age_groups = [\n", " [26, 27, 28, 29, 30],\n", " [31, 32, 33, 34, 35],\n", " [36, 37, 38, 39, 40],\n", " [41, 42, 43, 44, 45],\n", " [46, 47, 48, 49, 50],\n", " [51, 52, 53, 54, 55],\n", " [56, 57, 58, 59, 60],\n", "]\n", "\n", "initial_wealth_income_ratio_vals = [\n", " 0.17,\n", " 0.5,\n", " 0.83,\n", "] # Three point discrete distribution of initial w\n", "initial_wealth_income_ratio_probs = [\n", " 0.33333,\n", " 0.33333,\n", " 0.33334,\n", "] # Equiprobable discrete distribution of initial w\n", "num_agents = 10000 # Number of agents to simulate\n", "bootstrap_size = 50 # Number of re-estimations to do during bootstrap\n", "seed = 31382 # Just an integer to seed the estimation\n", "\n", "\n", "# Dictionary that can be passed to ConsumerType to instantiate\n", "init_consumer_objects = {\n", " \"CRRA\": CRRA_start,\n", " \"Rfree\": Rfree,\n", " \"PermGroFac\": PermGroFac,\n", " \"BoroCnstArt\": BoroCnstArt,\n", " \"PermShkStd\": PermShkStd,\n", " \"PermShkCount\": PermShkCount,\n", " \"TranShkStd\": TranShkStd,\n", " \"TranShkCount\": TranShkCount,\n", " \"T_cycle\": TT,\n", " \"UnempPrb\": UnempPrb,\n", " \"UnempPrbRet\": UnempPrbRet,\n", " \"T_retire\": retirement_t,\n", " \"T_age\": TT + 1,\n", " \"IncUnemp\": IncUnemp,\n", " \"IncUnempRet\": IncUnempRet,\n", " \"aXtraMin\": aXtraMin,\n", " \"aXtraMax\": aXtraMax,\n", " \"aXtraCount\": aXtraCount,\n", " \"aXtraExtra\": [aXtraExtra, aXtraHuge],\n", " \"aXtraNestFac\": exp_nest,\n", " \"LivPrb\": LivPrb,\n", " \"DiscFac\": DiscFac_timevary,\n", " \"AgentCount\": num_agents,\n", " \"seed\": seed,\n", " \"tax_rte\": 0.0,\n", " \"vFuncBool\": vFuncBool,\n", " \"CubicBool\": CubicBool,\n", "}" ] }, { "cell_type": "code", "execution_count": 3, "id": "288abe3d", "metadata": {}, "outputs": [], "source": [ "# Set up default values for CRRA, DiscFac, and simulation variables in the dictionary\n", "init_consumer_objects[\n", " \"CRRA\"\n", "] = 2.00 # Default coefficient of relative risk aversion (rho)\n", "# Default intertemporal discount factor (beta)\n", "init_consumer_objects[\"DiscFac\"] = 0.97\n", "# Aggregate permanent income growth factor\n", "init_consumer_objects[\"PermGroFacAgg\"] = 1.0\n", "init_consumer_objects[\"kLogInitMean\"] = -10.0 # Mean of log initial assets\n", "# Standard deviation of log initial assets\n", "init_consumer_objects[\"kLogInitStd\"] = 1.0\n", "# Mean of log initial permanent income\n", "init_consumer_objects[\"pLogInitMean\"] = 0.0\n", "init_consumer_objects[\n", " \"pLogInitStd\"\n", "] = 0.0 # Standard deviation of log initial permanent income" ] }, { "cell_type": "code", "execution_count": 4, "id": "1d2fdc5e", "metadata": {}, "outputs": [], "source": [ "# Make an instance of a lifecycle consumer to be used for estimation\n", "LifeCyclePop = cShksModl.IndShockConsumerType(**init_consumer_objects)" ] }, { "cell_type": "code", "execution_count": 5, "id": "57b11730-fabc-43d4-8be8-bf2ca282c744", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "LivPrb 65\n", "PermGroFac 65\n", "Rfree 65\n", "IncShkDstn 65\n", "PermShkDstn 65\n", "TranShkDstn 65\n" ] } ], "source": [ "for name in LifeCyclePop.time_vary:\n", " print(name, len(LifeCyclePop.LivPrb))" ] }, { "cell_type": "code", "execution_count": 6, "id": "fb71801f", "metadata": {}, "outputs": [], "source": [ "# Solve and simulate the model (ignore the \"warning\" message)\n", "LifeCyclePop.solve() # Obtain consumption rules by age\n", "LifeCyclePop.unpack(\"cFunc\") # Expose the consumption rules\n", "\n", "# Which variables do we want to track\n", "LifeCyclePop.track_vars = [\"aNrm\", \"aLvl\", \"pLvl\", \"mNrm\", \"cNrm\", \"TranShk\"]\n", "\n", "LifeCyclePop.T_sim = 120 # Nobody lives to be older than 145 years (=25+120)\n", "# Construct the age-25 distribution of income and assets\n", "LifeCyclePop.initialize_sim()\n", "LifeCyclePop.simulate() # Simulate a population behaving according to this model" ] }, { "cell_type": "code", "execution_count": 7, "id": "4b826f6c", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Consumption as a function of market resources while working:\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAA46lJREFUeJzs/QmQbfld3wl+z77cPW/u29vfq71UkpAQNosEGGgMxrINjhk7YAjc9oSjHbYj3ATexvTMmI7Gbbene8LdY3ebwRMGGxsZYyRASGgDoaWkKtVeb82XmXff79nXid//nHvz3txuVqGlVDrfiKNz8+lVvsz3MvN+7vf3/X3/XBzHMTJlypQpU6ZMmd5C4r/RH0CmTJkyZcqUKdNxZYCSKVOmTJkyZXrLKQOUTJkyZcqUKdNbThmgZMqUKVOmTJnecsoAJVOmTJkyZcr0llMGKJkyZcqUKVOmt5wyQMmUKVOmTJkyveWUAUqmTJkyZcqU6S0nEd8EiqIItVoNhUIBHMd9oz+cTJkyZcqUKdMFRF2w4/EYm5ub4Hn+7QcoBCc7Ozvf6A8jU6ZMmTJlyvQmtL+/j+3t7bcfoJBzMvkEi8XiN/rDyZQpU6ZMmTJdQKPRiBkMk+fxtx2gTMY6BCcZoGTKlClTpkzfXHoz8YwsJJspU6ZMmTJlesspA5RMmTJlypQp01tOGaBkypQpU6ZMmd5yygAlU6ZMmTJlyvSWUwYomTJlypQpU6a3nDJAyZQpU6ZMmTK95ZQBSqZMmTJlypTpLacMUDJlypQpU6ZMbzllgJIpU6ZMmTJlesspA5RMmTJlypQp01tOGaBkypQpU6ZMmd5yygAlU6ZMmTJlyvSW0zfFYYGZMmXKlClTpre+LC/AYd/Gft/Cfs/GncPWm35fGaBkypQpU6ZMmS4kL4hwOLBxkAJIAiIWDvrJr3UMj/0+HhHW0cOat483qwxQMmXKlClTpkxMYRSjPrQZfDAIIfDo0T2BkMbIQRwfAcg212bXd3Gd5LHUxi7fwTrXhYgQIy5GCW9OGaBkypQpU6ZM3yKK4xhtw03cD+Z8zDghfQv1gYMgik8AyPsmACK2scN3sJECCHufALo8j5okoiaK+Kgo4FAsoi5K2IskAK+8qY81A5RMmTJlypTpbSTbCxl4POwdXfvTuw3bD08AyLu5Dn6MHgtt7EjzAEL/2xYEBh81UcCL7F5CXZJQkxXUBQ4uw5Qj6U6MlSFQbAdv+vPIACVTpkyZMmX6JlIUxWiN3TMAxGL/H/kaVYyww7Wxw7Vwk2vjA1wreVtpY4vrQkICDz6AhiigLoo4FEU8lwJILQWQJo/0dybi4hhlA1juAhujCE+NwGBky5CwOuZRHviQ7QRujDDCr7zJzzMDlEyZMmXKlOktJsMN5qBj7t63WVg1B3sKILtcC0+lj3dkurehcwQqCVw0xcQBIQB5gd2LOJwBkGjmzxbCGMsEHd0YN0YRvmMYY3XEY9MQsTziUBx4EILZ/4JwiIMnK3CVCgb5JTjVJbildQzUEnDnb7ypv4MMUDJlypQpU6ZvUBh1Ah40epl1Q7qmBxk+trhOAh1cG+/l2vhz9JgnF6SFJc5I3heAliDgMM2AfJxlQHKJCyIraPAcQu7oz5b8BEBW2zEeG0b4nhRAyAGpDiPkhx64+YkNIo6DoxbhKEtoLi/B0arwyptwcytw5BLsWEMUn6xWs9zkY3wzygAlU6ZMmTJl+hpo5Ph42D1yPmYBhFZ1wzBkORDmgvAtXOPa+O6ZMcwa1wePeC4DcigK+Kwk4j+KMmriKg4lGQ2BRzADIIqX5D9WhjEeH8b4nmGENXJAxiIDkNz4ZC4kECQ46hK7hhtLcPKr8EqbcPQqHKEAJ1JO/Rzj2EfsjxFHbSAaQ5RNCIKJOBoj8Ibwx+03/feXAUqmTJkyZcr0JjdiyOnY65rY61p40LXwkB73LPZ2z3SxhPHUAaHrh7gWC6XuCC1siR3IXMjGKx0GIMI0A/JhiWBkGTUGIsIcgEwCqAQgTw6BDwxDrI44bIxFLA8jaGY4/3FSf4mcY+6HoS6hU16Cm1+BV9xgTojN5eHH4qmfH2ILsddjwMFxY4iSBY4zEIUjBM4Q/jGHxLeOHiu8jrKw/Kb/fjNAyZQpU6ZMmRaNYroWA48HXZM9nsCI57kMOCgDsss18TjXYhBCj8kFyXNOsoYr8Aw+yAV5XRTx+ywTspQEUUUR3gRA4hgFG1geAqsEICPgewchVhiACMwBUdMA6kQRJ8BVysz9oPxHY3kJbnEdbn4NjlKGjRyiU062Ye5HaCCODhFHI+Z8CKIFxGOE/hC+M0AUzrstSQ0bIHASdLGAJe0yitoyyoU1FNQl6EIBSqxB8ARwEYexawL4N2/q7z4DlEyZMmXK9C0tCpxSB0gCHokbQqMYenzQs6GFIwYgl7gmu38318RfJgjhW9hQuhC4GEOeYwByQGMYScTn2TimgJpYYf0gLpcSSByjZGLqgDw1BRAwB6Q6iCB78wHUQFCY+0EA0qkswV2vwC1uMBfElspwoNJuzSnuh404GCGO6gw6CD54noBkDN8dIDjmfkxQhAMHVcihIq4ip5ZQLq6jpC8jJ5ehIgcplMD7pxzll9ILeUJjzoHBO+joozf975IBSqZMmTJletvLdIMUPEzmfkwfdyy0hgbW0J2DkG9L77tiCyXJYs+95HQcsNGLiM+KIv6DRECyxn5tzPNzK7irBCCDGO8YAt8/itjba+SADCKIwVEClR75Uj7JfyhLaKwmIOISgOjLsMUifMgnPp84DhhoxH6buR80dhFFcisMRAG5H0NEIS0QH2nylsjJyIlF6NoqCmp16n5ozP1QE/cjngceNody6OON4cCHSQCieLC1AKbkweRcjCMbY8+E6R7NeVw32SR6M8oAJVOmTJkyvS3k+CELoN7rEHiYuJ9e5IQYo8F0DEP3x7lmOoppYUvuQOBClgOhECoBx0NRxB8yFySPA6nMtmRickHiGEULWB0kDsjNIfAnB5QJCbEx4hMACY8AJOJ4uHJlGkA92Kyw3AeNYBw1CaCGEE5xPxwGHrG3x0CEFwzwvMmcEAqfBu74xOdPAMKBhybmURDXkNNKKOdXUcytICeR+6FDCmTwsys9s/+xTy4K1dPbMAQHlh7AUnyYggsDDsa+hbFrIAhnRkx2eqXiuAiKYkHXXZQrEQQ+2+LJlClTpkzfAgrCiJ0Jc/8YgNB9PGjjMhrMBbnCNfAevokf55K3q+oYBsex8QuNYej6TOqIHIirzB1x+eSJO2cnIdTVVoyNAfAUreEOIqwPOQYlsn8MQJQl2AQbahUPd5IVXLewkUAJr4OK42cVxxEQ0ahlhDioIY6T/AfHk/sxQuBS9mPe/ZhIYu5HKXU/llAurKOgUPYjDzlSIfgCG9GccD/cxP2w4cHgHFiqD0tN3A962yD3wzVhefYJaJn5yCGKHnI5E+VyiGIxQC7nQVFNiCKNcvqIol76ByYyzflx1RtRBiiZMmXKlOkt15RaHznMBZl1Q+g+7LWwHddxmWvgMtfEO/kGPsg12dslxUBTEPBQErE/64JIOg7EIgaCMF3DXU0BhEDkOwf0djqGGQKaMwsgQpr/IABZwsFWFTYDkLXk1/jcKfkPPxm/hB3EPj1xjxMAwRghG7+MAIKUY/mPJPuRR1Fcha4WGXyw7Ae5H1zubPeD/uOAWCLAgDNhCC5sPYSleDB4D0ZsYxxYGDsGoij9c+OT7gfPB9A0C3rOQbkUI1/woGk2ZMkAx/cRx13E8ekjm8m7taGix21gJN3AQCRcrAD4q2/q6yADlEyZMmXK9A3RwPJwt23gbisBkfsdg2VC+t0mNsMaLnENXOEbeIJr4kdSJyQvGywDwgBESjZifk+SsC8WcCBV4HMcpCBOtmB65HwATw9jfB+9PQiwNuRQsGYBRISjTkYwVdSoA0StJhsw2hkAEtH4ZYw4aDIXhAEI5T/iEUIav3jGqQyRbL4UUVUvMeioFNdRVKvs19jmi39K9iNOwqcRIlhwWfbDJPeDsh8iZT8cjEMavZhw/Bl48GZWbpLPFLLsQFUtlMj9KATQcy4UxYAg0OfQQxQNT/13og+BeIpO8OljGUPxGrv6wjZ63Bo6cQWtUEcjkDAK592XyMpGPJkyZcqU6S26pksH1xGI3GubUyBptpoo23tsFHOZb+ARroEfTJ0QWbKwryXjl32qZpeSXpB9dkJuhQ0QKAeyNgDW+jG7P0EuyCDEeh9YmnlODHkxHcEk4NFaW8JDcj5yq8koRpgHkGn3Bxu/JOu35HzwrHxsxPIfUeCcCiC0+VIUitD1LRS0Ksq5VTZ+0Wj8Eirgg1M2X0IgDmN4CDDkDJiCx7IfpuzBElyMyf3wLRiumXxs7IOkitb5dyMIHnTdZK5HqRQhn3cZjEjkfnA0eummnbOnux/0Lk3k0ee3MZJuoi/sos9voIsqWlEezUBBy6cjBtN3E575D46CD1QDoBAAXN/HR/HmlAFKpkyZMmX6qpwdc4/gYwZEHjSHCHr3sRMd4ipXZ9eP8XSvQRYM7BcSF4TckC+IIj7ExjJldMRqch7MEFhn4AHc6Mf4EwQkg5ABiebNjGDUSQZkGf2VJdQpB6KvwNGX4Qr5uY8zjkPEkQEwAHmI2EscEAqhMgBxh4ijk02rPCdAF4ooU/hULaKUW0FRT8OnnA7Jl066H6QAiIKIbblQ1sNUvCT7IU6yH4n74QX+mdkPjgtZ8FRVbZTLEQoFH5ruQJEN8MIAcdxDHB8jlunnm1weJPS5NYzEmxiKV9AXttDFCtpxCc1QR9MXYEVHjs1Z70zyYiyHQCmgf4MIghMhsANYhofB2MPI9pPDB9MrmtnoeaPKACVTpkyZMl1I9Aq+PnSOnBDmhozRa9WQNx7gagofTxGIcHWs8G3UdA4PJInlQV6URPwXScKeVMBQKLNG1LU+sNZNXJB3D2L8ML09CNhZMXw8aUEtMvfDVpdZ/uNBJbkzF0QsAhx/bP2Wuj8IQO4xAGEOCJ+2n7oEJMcOmgEg8yryFD5Vr7CRSzlPq7dVto4rxyrE4PSny9iP4SJAl7kfDizNhyn7LAdixrT5YsI4/iQ9Z8DEkCQX+bzJwKNUCpGj0YtKwVNqb6XRy+DUj3nifkTgMEKZgcdIvI6+sMNGL+14CW3mfkjoTKpo07zKqfIjVAJgKQRyXsz6WGIrgGMFGBkuemOPOWJ9Foc986sEO7KJpwpjPKIPseY38RN4c8oAJVOmTJkynQAROivmdsvA7eYYt5sG7jd7CFq3sREcJG4IX8ef5erY4WoYyx72ygQeIrs+L0l4IIloCRuslGyjD2zUY6z3Y3xgAKz2Y6wPAuTTJ+qQlxlwEIA42jIGK1XUd5aZA0KuSMhLxxwQOvuFnI59xM4QXDwGx48RhUOE3sn1W1q9lcV8sv2S30ZeKqOUp/FLBRpfgBTK4KNTxi8xEPghcz9MfpRkPghAptmPpPcjmG1bPQYA5H6oqgldT9yPPLkfFDyVCZoGafDUO9f9cKCiT8FT+SYGwmX0+E30sIxWXEQzUNH0eXjxgtFLFEOlM3oioOABqh+Bt0P4VgDT9NAfuzDdkGVmD8/52tB5H0/lx3g8N8I1ZYBdoYd1dLAUNJF3GpDMOjgagVEliwmM3NPB6iLi4ulQ662r0WiEUqmE4XCIYrH4jf5wMmXKlOltsy1TG9oMQG63xni9aeCg3gQ6r2EnfIhrXA03OBrPHEIWe3goC9iTJiCS3A8FATmbYxCy3ouxQfCRPqa77k1WcctzLgiBh60RhKzAE/NzK7gJgIxSCEnuSQPqBEDmn7YETmSuB10EIUWlyro/8un2C7kfJ1ZvcbR2Ox2/UPhU9lgOZLL5Mrd2e8p7kCQHimIy5yNZu03dD2FIAYzU/ThbFDwdYAkj8QYGUhI87XOraEdltCIdDV/C8CzoOPpLA+9HWA45lAP6O48huhFCO4Bj+hiOXfRNj8HOeeIQ4bpm4Yn8GDe1Ia6KPWzyXSyHbRS9JlSrBsGmLMuCDwcchsV11ItruMPl8KM/85E39fydOSiZMmXK9C0AIuSI3GkZeL2ZgEizcQCOgcgBbnAHeISr4fuEQ7jyGPcKEu5JEl6XJfwu5UIECbK7gfUesNGJsdGL8c4+8F/1CUgi6G6yDUPAYWsryVVYxuuryWMKo8accNQBEieB0zgcIvZfROzS9giBxwihf3IFd7L9oovLyBWusuBpSV9BXq6w8jExlE7/vMMk+zHmDZg8jV8CGBLBiAuDNl/I/YjCE22p82u3JoOOEmU/8h5UtnZLjk0fcdRFPF8UcvSuUvfDQg59fgdD6QaGwi56/AY6qKIdFdPgKZeYHguDpzGqIYe8DyhuCDghPCuAYXjojlxW10/Dq/OK5cuix0Yvj+kjXJMH2BG6WIs7qPhN5JwGRKMGLvKTf4qTRtRUnpRDs7KFemEZda2AuqSgwQP12EXdH6Nhd2CH9BfZQ2i/+dOMMwclU6ZMmd5Gao9dvNoY4bXGGK/URug2HkDovo6dcB/XuUNc5w9QFRoYKg6DkPuSiPvsLqEXCdjsAZvdBEImrsj6AGwcQ6OWKYBoy7Cmj1dYVwjS82aoK4PBRzRILnocD9MeEAKQ+WfiafW6WGIOSEGuHDkgBCDR6QBCmy+scp0u0U0ARExbT4NTsh9ziiHJNlRyP8pR4n5Q8FShA/MImCj7cf45Mj5ENmqhzg8WPOW30SX3Iy6jFWpo+iIW9pSdCJ7GEJyQuR+W6WMwdjG0ToegWdF+zaN5cj9GuKkOcFnoY4ProMrcjwYUsw7eOTs5Mv1wOB794ibqxVU0cmXUFQ11UUQdARqhhbrbR8ehMrbFWpWr2B0X8Ut/9Tff1PN3BiiZMmXK9E0o2wvZWObV+hivNsao1x4ibr6EDfc+bnH7uM7vQ5ca6MhhAiJy4oo8EAVIBoFIjM1uAiNbKZTQem4gqKcCCD32lPLMKq6BOByw7gw2iglplDEEIjoDZn4sIvFKkv9IRzAEHrQBk08PnxOjk2b+bOspgxDJY7XrDEDS1VsnOPucF57308r1NPuR96DpNiQpyX4ka7dnpUWTIdIIJeZ+jKTrGIiX0OPW0YnJ/cijEchHwdPzFESo+EAlpOwHwUiE2A7Z6GVM7sfYZcHTRVqVXTxdMFjw9Cq5H3wXq1EbZb8J3a5DMBvgTtk+Oi5XKaFZ3kQ9X03cD1lO3I/IQd0boe504IaLz89RBRWXhFXccMu4ZOvYMERUhzGKfRdKZwyu2UXYasHwfbznzu0MUDJlypTp7TieoZN2X6mPmStyv9aAX38ZxdHruMnt4xq3j7xSQ1d2cUeWcFeScE+W0IhELPc5BiJb3XjGGQEDggQ6VmHpa9M7/ZovF2baUGkMQy5I6oaE5CwQgAznXBAePHM/CDwIQHJiGSVtGQWlCo3LQ4xPAgideGvR+IXgA07Sekr5D54OnbMYgISz4xecLB0jt6NQ8BL3I++xt0XmflDr6TkzCjbJUdDDSjJ6Ye7HFns7WbvV0PCFJHh67j9OzMKmKyGPoh9D8SLwTgTf8pn70RtR8HQxNCh8iMcLFgue3kiDpxtcF9WghbxL7kcNHNs+Ol8xL6Jf2kS9MON+CMIx92NxhoS0olRxM1zBFaeAbVPB2phHeeBD71mQ2kNE9Sai8fl/xySD5/GeV17++gDKpz71KfziL/4inn32WdTrdXzoQx/Cj/3Yj535+3/9138d/+Jf/As899xz7FTDxx9/HP/oH/0j/MAP/MCF/8wMUDJlyvStoKHt45X6iF13aj0YtVcgdV/DlegBrnP7KEuHMNUxg5DbBCOihL4nYr0LbLErARC6L405FkydBRBLX2WPqTeEVnOTUQwBSD91QxIYQUyOyHwDKJWQEXjQKi51f7BNGG2FAQmt4R4PoVLzKct/cHYCIQQfcgIk1Hxq+Na57gdtvkzCp4XiZPOFDsxLej/ODmzQn02Np2X0+d2kcp3Wbvn1tPGU3A8Kni5wP+IYHDXShhwqQQzdByQnRMSCpwGGbO3WZVmTBe8I22qS/XiEgqdyH1t8FyvkfnhNaFYdPLkfx3I3p8nTKmiUN1DPU/Yjj7oko8HFqEeU/Rix7IfDsh8XcD+ktdT9yCXuxyhGsZe4H3yri6DZAoLFcCWUSuA2dxBsXIO3tA03v5p83SEHyxPR7o7wV3/xT319QrKmaeLpp5/GT//0T+ODH/zghYDm+7//+/GP//E/Rrlcxr/+1/8aP/IjP4LPfe5zeOaZZ97oH58pU6ZM3/Si14XNkYuXakO8dDhEbf8e4sbzWDbu4Cb/EDekA1ySe3igCLi7KuGTkozfcASs9GTs7FWx3YnxHZ0YP94Bayi1tBQ+2LWGu8ureEFbRSTIiRMyAyG0mhsZA4Dejo4gQeQkFAg+ZIKQjSQLQtsw1ITK5cEfO3E3Qsyq13uwMeYHMEQHBrkg1H4aWTA8i41pjj7p5MC62QPnkvFLmLaemhClEWs9pcPzzv67S9Zuu9wWhuJNdt4LuR8dcj8oeBrS2q2Q4Mt5pWNRjEIQoxpwrPk0cT8oeOqz4Cm5H5YXLsqLQhdCPFkw8XhuiOvTtdsuKuR+OA3I5iE4z1wYPI0FGYPSBtt8qesT94NP3I/AnHE/aA5nnPu+yP24Ea8y92PHVLDK3I8AOXI/WgNEjRai4d3T/1pmj/oTRYhra8DGZXhrl+GVN9kaOHXPWJEKy+YwHniwx9RpD6CTXkz0j+3C9hYD09dkxMNx3EIH5TSRi/ITP/ET+If/8B9e6PdnDkqmTJm+WUX5AjrojmDk1YMuhvsvQWi9iF3/HnaFBxDUGupKOHVEeq6IapfDdhfYaccMRsgdEVCGqW/Ayq3D1JOLYIRGMkk5Gbke/RkQocd0N46VkVWY+5GXKiiIFRTVZfZYhjL3cRNcWPCYA0I5kDFvsxZUApBRbMMITESnPn2kq7fU/aERgAQJgGhWOn6h3o+zV3epdGzIsh+7GEs30BMuMfeDSsdaYe7C7ocYJKOXydqt4IaIrCR4ytwPY/HaLX0uV3UXTxZGuKUOcUXqY4vrYjlqo+Q1oDL3owXujBK1WXn6MprM/aiipqbuBx9Psx8Nu31h92NbXsUtb2nqfiyz7IcHlbIfrR7CRgOxf4FgbaEAYXML4cZVeNWd5ABEOhaAy8HyJZhmjHHfRUBbQwskKgIKSyr0YgxFtdnRAIjHGI8a+Av/7d/+5lgzppMUx+MxlpaWzvw9NAqiaxZQMmXKlOmtLscPWU7kpdoI9/b34Rx8Bbney7ga3UdZ2cOjSg93FQGvr8h42ZOg93hs7+ex04nxrk6MH+1w4ITlFD7WYebWMVxfR/3qOgJBYT/wo7CHmK5oD7H7HCKb3JCjn5EKryfwoZITcpk9pl4QukuQT2zBjDgbh9yA3dkKruRinG7BhMfHDmwVNoKs2MgXTLaCSyMYApCk+TTZfjnLtphUrvewgb5wFUPq/WCbL2vTynXKfvjxYveDMh80fsmz7EcMzg7gTtduHTh+tKDxFMgLAZ4uGmztltyPnbR0bLJ2K9HabWCz7C+7zlAsKBiUt9jmC7kfDUVDTeBQjyn7YaLu9FL3Ywj4dJ39vpbVKq7FK7jmFrFjqlgbC4n70bUgdYaIGy2EvXsA6Dr5zzMVzzP3g9vYhb92BV5lE25uBbZYgh2rMB0BxtCHOXATUKMPr3vmSYPQijLyFRla3ockW+A46qUZI3AHcK0+jF4bvQdt1C1qaDuScwFQessAyj/5J/8EhmHgx3/8x8/8Pb/wC7+An//5n/+6flyZMmXK9EZhhLZnXtjvY//+qwgPn0d5/Bp2+Psoqoe4pNh4TZbw0qqMLw9EbHaA3XYJl1o0nhHB8ysJhOgbMHNr6G9uoHZ9FSHHpS4IXT1E4UuIrc+wx5OtE8qDkBNSUMkNucwe0yiGIETETOtqOoYh+GjznQRCZBcjwcEosuCctq3hx5BlC7mCkQKIdwxA6Cn/9FfU9DxnoIAOtln4lFpP+/wmG7+02PhFQXdyYB6xj3t26dgKy34Amh9DZGu3Iex07bZveOzps3buv1CMmzmblY6R+3FZ6mGT62IlbE1Lx3irA1adel4XGz1V59fQpPFLfinJfogy6nyEekjux3DG/agBFl1nux9byhpueBVccfLYMKSp+6F1x+CbXQSNJmK3eep/P5sI4XUd4tYmwo0r8JcvwS1uwFUrsPk8rECBYcYw+i6DtvnPMT7xCfMih3xFRa4ssJ4XQaRPgGB4BN8ewB53YXQ7qL3YRniBXIqaL6C4vIpidRUybX596Hfxlh/x/Nt/+2/xV/7KX8Fv/MZv4Pu+7/vekIOys7OTjXgyZcr0DRGVYJEz8pWDPg7vvYLw8MuojF7CsnQXUBs4UCK8LsroWxLyXR677RiXWsB2m0PRXYaZ34KRIxDZZJelVkHn1zIAiXpTGInpcXrkPXWDFKQlFKUldmeXXGVvU3Pq7DZMEkS1GYDQNaYwKm9jFFoIj3WOTDIgqmqwq1B0USx6DEYkiVaFj0DotPHLABV0uA0MxMn4ZQPteHLirQQ7WjB+CWN2yBwBCJWPUfaDs5PSMVq7peAp/X0vUlEi98NM3A+5z9Zu19BGxW8hZ9eT0rELrMvGkp64H4UV1PUScz8o+1GLfTQCY8b9WCxyP65yq7jqFLBralgzBFRY9sOGTJsv5H50piGNs8VxEFdWwFP4dP0K3MoWC586Uhk2NFiuiPEogNF3EAWLn8IVXUSuoiBXBGTFSk5mjkcIvcT9sAZdjLttmIPFPSkcxyO/VEVxZQWlyhoqpQ02JqQeGyXWIHgi4nGAsO8gHHsYOyYe+59+6K094vnVX/1V/MzP/Ax+7dd+7Vw4ISmKwq5MmTJl+nrLDyNW/f7CQR8H915mMFIavISKfAeC2kSkgNW8v8ZLWG9y2G3ruEauyKgMT92EwSBkA0ZxE6+uryPiXERhF3HYQRy2EAWvIR71gNhhmy8sjErwoSyjIN1IoERehibkph9TgBBDzsKAs7DHHWDEW2wUwxyRY50jJB4BVNlAUTWgqeSC+MjlbSjyCLzQP9MySPIfZbQZgNxEX7yMLreJVlxFg+U/RPjxOYfO0etdP0I1BHM/cpPSMStg7scwLR2jp9RWep2uGDfzLp4k90Mb4DJVrlP2g0rH3HqS/bDa0/NezhYHr7B+5H6w7IeEBhex7EeN3A+rlbgf8QFg0nW++3E9WMJlJ4etsYzlUep+dAzw7R6CegOxfbr7MTvo4DQN4sYGsHmZuR9eeSM5jVkswAoVmBYw7nuwR17SbFuffU/z/3bUjZcrK2z8ouY8iJKVHIwYDOG7AzhmH0a3jfadNmqOvRgKZAXF5RXmgJSX1lHOr7PmXp3PQ45U8DaHcOgiHLiIGkFyZHH6GQbsOv4OL9AVc9bHgq+DfuVXfoVt/RCk/PAP//DX44/MlClTpgt1jNzvmnhur4eDuy8hOPwy8oMXUJTvIlRbsGSgFsqIAhHbNeBKU8e3d1R8dzwBkeR+eHUDe2KcgkgCI1F4H/GIXnl7kHkNJeaALE0hJLkq4NMKeHJCEgfEQpOjccxDjCQHQ86GGR1/YokhizZUdYw1bYxczmZOCLkgojgAx43OBBBav21jF33xKvrCNXT5LbRRRTMsoB5ICwFE8EKspme+sNZT5n74MNPKdSqQW8QNJTnCU8z9GKbuRw9rk+wHcz8OkwPnyNAZLHI/tk+4H3WQ+2GiZndS96MDuHSd735c4VdxlWU/NKwbIpZm3A/KfgTte0B8cvvleEu9sLIMYWML4foVFj71yP2Qy7AofOqJMMYhjJ4Ln8Knc58jYcx8ZkOUeRY+pfGLrDkQBAMcDIT+EJ7dhzXqYtxp4+Eefc0tDrNqxVICINVVLFU2UNRWkZdLULk8JF8CVd8SfNAV7806WVSbdxJwOFWEWFYgVBRERQGWmpzkzILVvoVG92wM/aoDCuVH7ty5M337/v37rOOEQq+7u7v4uZ/7ORweHuKXf/mXp2Odn/zJn8Q//+f/HO9973vRaCS4pWka28zJlClTpq+X6MC05w4GuH3nDqz7n4PS/TLy4msI1BZ6EtB2ZPCWgN0HwOVmDt8zrCKStjHOb8PIb2O8vIkXN5UZEOkiip5FTFmG2GXZkKK0jJJKo5gnUZSqKMnLUAR92g1CP7gJOvY5CyOuixFvYyjaMCJ7fi0XERTZgqaNsa6NUcjbKBRsqNoYgnB6EJX+6wHK6OAmuvwuBiIByDbaWEEzKqARKPAmAHLa2S8RAUiA5YBD2ScASVZv6cTb8ThZvfXCReHTGNdyHp4sjPEouR+TzRfKfri0+VJjmy+0Lcuuc+Tn19EorSdnvqi5tPcjcT+S7EcLNoFMvA+YdJ3tfmyqifsxyX6sjDiUBqn7QZsv9QYi8wLuh6JA2thg3R/eSrJ66+oUPi3AjlQYNg9j4MIceIip6e0c94OkFSTk0/GLqFoQKHwap+FTswdz0MWw1kL9lfMPHWQfG8+jUF1m7kepuopKcQMFrcpcOhq/iJ6IaOQj7LsIe+7MSnBMg8JT+Y0vyFMA8fN8UqgnOKzNd+SZGBojNr4ZNAew7p8M38zGNb7mGZRPfOITeP/733/i1wlCfumXfgk/9VM/hQcPHrDfR/qe7/kefPKTnzzz919E2ZpxpkyZ3qgox0Bn0rxwr4b+nc+BbzwLOXwR0A5RFwO0hzKknsCyIrtNEVVrA66WgAiDkdwaAhYUbKeOCI1oCEQcaEKBgQcBCI1jSnSXliELKvuzHfgYcCYGvDkdzYxFG6PYYv0hE3FcyPo/yAkhEKFukELRYW8nEHLyFbEHOQEO2oQRb6ErXEaLW0cjKqMeqHDiNIR6msIYvBOw7ZeSH0N1Y3AEIGnten/sIVzwlKBwAZ4omHgil5z5sivSTk4HS36T9X5I1Hp6TgnbRLGoYVjeQo1tvsy4Hyz7Qb0fPXRsOoxv8VPUsrbMatdp82WS/VgahMj3HMidEeJGMykeixZnW4SlJTZ+iVj4dAdOYQ0uW72l8KkEYxxh3HfgmovDorxA4VMF+SUZqu5DZNsvY0TBCL4zgGP02Phl1GnBsy8wflFo/LKK4soqypW1ZPyiLkEXCpBDFbzDTd2PyLjA9ozAQSgpDED4kgw3D1iyC4PafEMrAZDREIPBgD3/XgQ2KJ5Bz9fUe1YqFSGKLn7wB/98VnWfKVOmb03RjzE6rfe5Bx3Ubn8Zwf7nwVtfhqA8RFcy0BnL4LoiLjWAy60ciu42rNwERLZgqFpyMi0DEQKSNusQoVeeRxByBCQSL7MnTnJDGIgwCDEx5C0MeAvOjLvBcRELo2rakEGInjNQKBCEjFgrKsfFp54B08IaWtwWeuJNdPgdtLCKelhE+4yTe5kiApAQywFQYqfeUgA1gGuk+Q9z8ZNWUfDxjuIIT9D4Reljl+9gLWqh7DWgsTNfmhfq/fBzq2iUN9HIL6GWbr4c9X7MuB8LRO7HhraGa9Eycz82TQkrQ47VrpP7IbT6COp1RBeoo+AkicEHv7GFYPVy0nyaW05XbzWYrgCj77Htl/ACQV0Kn7Ltl4oIRbHBSwa4eIzQo/HLANawi1G3hXGHvq4WA41WKDL4oPFLubyOcm4VeYXOK8pDCmXAmBm/XKCbhJN5CGUVYkUBV5Lg6BFMKem2GQcWRo6RuB8pgAQX2NDRdT2FD4KQIgpFIJ9zISsGBGGAMGzBcQ6n12hk4M/86IMMUDJlyvSt445Q8dnLr78O4/YfIup9DpxwG6bcQ9sSEHZlbDWBS60iSu4u7NwuxoVdjHJrcEU/dUPayT1oQ+YFlOUVlNKrLK1MQeQooEqOiIVhCiQEI5QbSUSruTY0bQRNH7F7sWBDz43YD22ClOOn4LaxyiCkw22jK15Hm99GM66iHuRgn+WC0I9rN0LOjZgLQndh4oCMyQFZXL2+LHt4pjDG4/oA1+QedvgOVsMWKx7TzAPw9gU2VkQVVoncjzXU0jNfauzMFx+1dPOlbXcu7H5sy2u45pZwyUqyH9VBhHzfgULZj2Y7CZ9epHisVIK4uQms78JfuQSvuA5Hq6art3JSPNZzYVH4dIGOwqdJ+ZikpOHTkLZfhnBo/NLrMPfjQtsvfLr9Mhm/0PaLRtsvJSh0YjPbfvEZfAQDl7ldCz/fnAShnDggcUli+Q9z5jTnoTmewgc9j1IP2SIVCoU5ACkWI3bIoiLTIYt9+H6DgYftHMJ1a4ii8/8uTTPKACVTpkxvX9Hmx5cetLD3yhfh7v0BfOdZBPIh+p4PpytjucXhcquAJXsXjr6LcX4Xw/wKXMFGHLQQhS22QcPFBnNByvJqAiPSCsq0MSMW4CNkENKnizfYnUY05JJMJAi0jjuegoiuj1EomFDkATjeOwEhBCA0imnxu2gLN9DktlGLqBFVQXzs7Jqj/zACbwdY8hMXRHZDxGYAy0g6QBat4FZFB+8kByQ3CaC2UwCpQzEOwTuLn0xjpcjCpwQgNH6pyQrqAlBLz3ypWW0MvXOay1IpgoINfR1XuMmhczLLfpT7PvSuBbHVY70fF1q9TYvHWPPp2mX41HyaX4EjV2CB3A8R5ijAuOsk4dMFEiXKa5D7IUPLBRClNHzKuj/6sMc9tnpLAVT3WPnYedsvheUVlKrrqOTXUdSq0PkC234RXB7h0Juu3y5kNw4Qikn2gwCEAqiG7MMUHIwp/+GbGI1HDEDoonzo4r9Cnj2XTkYwxWKOHbSo6xY75ZnjenC9GhyHLgKQOuITa+on3isUZQ2aug1V3YKqbiJSdtDlttHBMh4Mgf/m8VsZoGTKlOmbX/Qjaa9r4fk7e+i+9hk4jT+Ah5fhcj2YXQFqW8SVRgHL5g58dRejwg6GuSpcwZmCSBQ0kRPExA2ZgsgqKzKLuJg5IrMgQhf1hqQfATukTteH7NL0IfI5E5o+hijOPwkEEJgT0sAGmtwW2sJ1tLhd1OJltEKNbc2cUJTkPlQnwpIXQ6ceECuEl67h2uc+ucaocCbeUSAAGeAmtZ+mIxgCENU8BH+BU29DrYI25T8KK6hpRdRlGTUav4Tp6i0bvyzORBTkArbVDVwLKrhi57FpSNND56h2Hc02fHI/rMWZFFq9lTY3WfjUn4ZPq7CF5NwXWr1l4xcabyw+oY+FT5PtFxGymmy/IKbtl6T7wxx0pgByofIxGr9Uaf12BeWlDZTztP1C5xTlIIUKuJntF6rUXyiRn4ZPKQfi5zmYipscsBhZGLrJ+GUygrEvklERxRn3g+4a8nmCagKQIWJ0mevBxi/2IVyPNmzO/7vkOAmqupHCB13bCKRt9HhaP19m6+eHXogDx8O+7eHA9dDzj76GI9NA+0e+MwOUTJkyfXOeVfMKjWte+jLGdz4NY/xHCIQHcEwPXoe6RjRsDXYhcZcxLO5imKvAFahbpMncEYQdFCUdZXkNFXkNZWWNwYjISzMgQhCSwAh1iCQ/9CJomgFdHzAIIRjJ5ykrMmCn6U4/PvBTCKGrLVxFi7uEBgVVwzzC0yAkTKrXtRRCNDdCTF0gNIYZnT+GUeDhqdwAT+cHeETp4bLQxnrUQMWtJyMYf/ErZXpib1S2UMtXWfdHTZJR5yLUQgt1b4Cm1UYQBxcav1wW1nDNK+HSXPjUhpQWjwXN5sXCp8vLR+HT9NwXaj61KHzqS9PVW+cCOZlJ+JSd/VIg94LKxwzE5H7Q9ovRw7jfwbjdgkHjlwVPc1Q+lltaSttPV1CpbKBE4xepDJUAxJdY+VhA2ZSBg9hb/Pmy9VuCD4KQspLmP9L129DC0BrP5T88b/HYSVXVGfggJ0SetvxK4hBh1Ibr1GA7BwxCfL+3+O+SV6fOB7kgirIFX95GhwFIFc1Aw4HrY9/xcOAk92Gw2KEqiQJ2VBmrgYNf+Y53ZICSKVOmt76CMMJLhwO89sIXMLj3MYzszyEI63D7gNqSsNteR8W9DDN3CYPCGkwpSmAkbICPBihLJVQYhBCQrLJ2VY+L0OUN9LgxeuxuMDght4Q2ZZJxzHB65XJJToT+v4kM5FHHJmrYQp3bRVO4hjq2UAuLDFJOyCfnI4BCEEKNqE4EmAHMsYvROU+yPCLsiAO8uzTC41of16UOttBC1a8jbx1CtE5fdZ2Vm1tFrbyJwwIdPJfDgSighgD1wELNvVjzqciJWNNXcT1axlWniG1DTk69pfFLz4TQTMYv0XDxKAeSxFZvqfuDzn3xK5twqPtDLMGKNVgOz069JQC5SPhU1kQGH+zsl1wAQTLZ9kvoJ+MXi8YvnRbLf7jmBcYvksxGL9MAamEtzX9Q+6nOxi/R0GPZj/Ci+Y+CBLGsMgeEK8mwtQBm2v9B45fp+m0KIOEFOkpyudwUQMrlEopFHrmcC4UCqOIAQTAfQA2CxW6ZIOShEYBoNILZZADiSDSCoQbgCuqBgn3HTxyQ9DLCxf9GS5KAbVVmEDK5r/ICZDdixXy9kYODvo17h238q//6uzNAyZQp01uzmfUrD7u498Jn0b3/UYycZ8HZbfgdHtVGGRvjy+D5y+gXtzDUZIQxnT/TgBQNUJFLiStCMKKsQhNLLJxKAEIg0mX3MRzOT0BEGyGXG0DPDZDTBwxEFJVm6xPPhNyQFQYhdDW4XTT4q6jFaxjE2skP3gsTCLFClD1ASVtRzbEH2znbgSjCxCNqF8/kh3hE7eGK0MZa1ETZOWQ9IFx4/qtlXymisbSDQzaCKeBAknHIhaiFJg6dLgugLhLr/tDXcT1cZuOX7fTcl1I3Gb9wjQ6CWg3xBV6588ViMn5Z34a/ehluiVayafxSgBko0/CpOXQvlK3IlRL3I0/jF81h4VM6CDFg2y99GOR+MABpI7xAOFbN5VEg+KAA6tIqyvm1ZP02zX9wFpLxy0XzH/xs/kNFXBJgyQEMkfIfDsa0fjs+gg96jlr0VEpHw8wHUAlAOOgUQFUMFkD1/PocgITh4tGYJFVmxi9bUJUtmNI2ulhHK15CzRcSB8RO4INGMNYFAGRZEqfgkUCIxABE8iJEZoBOCiDJZbF71zz5tRS5Fvb/px/PACVTpkxvDSB5Ya+Fu899Cu39j2LsPA9u1EfclrDW3kLVugYrdwn9XAmuYDEYEcMeypKKJWUDS8o6luQN8JKWQsiRK0Ih1ihd26XRzBRG6K6TI5L84KXQJLkh9SmIXEKdv4R6VIWPpLl1qiDJgBCIlGhDxomSUOro7DwIuSAb6OKpXB9P613ckjvYQRPLQQN5+wCid/4r25AX0a7s4CDdgjmUFRzywGFo49Dro2m3ER0/SfiYNFHDtr6Jm+EyrlpJ/oMdPNdNt1/qLbZ+u3D7hc59WVtLt192koPnCmuwFQqf5pLxyzDAuOfAuUC3hkDh0yWVBVBp/MJOvmXbL0ME7pB1f1Dug9wPo0+V/wuegjga5yTjl0KV8h/rKKXrtxpykAIZGIep++GwJ883kv8gAAnzPAzVg8k7LP8xcub7Py4SQBUE4VgAtYBiKYau2ZDlMTi+d5T/SK8oWtwrIsurcyMYmQBE3EKbW0eLum98bup8HKSXfYGMzpp8HEBkrBCAOCECK0B7CiAJfNDVOwVAjquoitiu6NiuaOy+JAf4b37w6QxQMmXK9PUX/Qi53Rzh5Wc/g8N7v4mx8Sz4wRB8S8NG9zKK/lUMC5sYaBKCuAMubKIkCFhS1hIgkdchynl0+DE63Ci582NYnAtJsuccET3XRy43hCAkT0ImdBxiBwfYwSG2cchdwSF3Cb24cDKYaicQIlsBCm4MyQ7hjj2YZ4xjRATY4jp4Z76Pp/Qebkht7MR1VL1D6JQFOWe9kp1eX1jFIY1hchUcqjoOeQ6HsYdDf4i63UYQnf9EKvMytrUN3KQRjJlnGzAJgLhQUwDxqZl7UcBTECARgGxtsfyHt5TkPxylDCvWYdL4pe8xAPGd8OLjlyUFWj6AKNL4xUBIZ7841P1Bq7dJ+NQxxgvfnyBJyfYLC6CuolxaR0lfgS4WodL6rS8iGvoIyP24aP+HIiT5j4rKCshYAFWaKSCzj9Zv6e44i/tYJEk6FkAtolAIoLENmBEQd9jWyyT/4Ti0AbPoCZ1jGzAUPE22YDYhqdsYC9vocKtohSUcetFc/oMAxFvk1gBYV6Q5+NhJAUR0AvhmgNZXCUCSu4bdXIgtroWCXQMGD6fXqH4Xpb/9uQxQMmXK9PVRfWDhueeexcFr/xm93h9C6rUhNcpY61+FhKvoF6ow5Ahh2ECes1CVK6iqmwxGJLmIrmAwCCF3JIER6hAZI5/vIZfvJfdcH7LsngEil3DIXUYvnvl5QD/KqJrdCBiI5NJNmdigc2J8du7OaYHUba6Nx9Uu3pHr4SZBCBpYJgixDsGds2Lp8hIOq7vMBdnXiziQROzHPvb9EQ6dDtwFJ+lSBmRLW8ctv4prdgFbhoyViQNCGzD1NIC6KLsgikn+g9Zv16/Cq27Bya3BkZLyMcPm2PjlovmPyfZLviJB0VwIopmMX/wBPLb90p0CSOBdoFlUzyUAkuY/KkVqP62y9lOqX6flqXDgpf0fDnCB03n5fNr/kQKIq4UwqIAMdgIgM/0fdPcvMiZS1TT7MQmg5pHP+9MNmCSAmvR/JCu4DcQLgsYcJ0BRkg0YlgNRtyAq2xiKtIK7glZYwIEbsbHLZARTc334C56WeQAbKYBMXRBNxjJ4iF7EenEaA2cOPuhx31r891DSpCl0TABkq0wAEmGLb88DSP/B0WPn9Cr+kRuj9N8ngeAMUDJlyvRV18jx8aUXX8aDF34DzfYnIXUPITSLWOnfgBRfRa9Qgi3aEMIWKgKHqrqOZWULOWUFA8lFmx9N3REa6xB85PJ95HMEJOSK9CEIIRyo2GcgsstghO41ckRQPvpg4jgZyZg+ODNAzo6YK+KNfXheeCqEXOKauCk28Y58H49MIMQ/hG43zmxFZefayDr2l3ZwUFjGfhpG3Y9c7Ht9tBYEUXmOx7q6ipvRCq5ZBeyOFawOomQFtzUEV28jaF2gfp0CqJsbELZ24K9dhVchAFlJAqhhsn7LAOQC67eT8jG2fkvtp6oz3X4JPDr5tgej18ao3cK420F8ge2cHBu/JO5HqbqGUrp+qwt5yIHCDp9j7gdtwIzcN9z/wZVlWErACsim/R/GUf8HPT9cJICaz+dnAqg0gtHZCi4dNSCKQwRhk63eThwQ16WwcnTBFdztKYQIyhYGfOKA0ArugRvMBVDrrr8wg0sHAG8q8+4HXVUax7kR3K8ygNB9Jx9hm+sgTwDS3wMGe3NOCOzFG0HQloDKJaC8m16XMBKrKL3rz2WAkilTpq+O6MfCKwdtvPT538Leg/8Mrv0axJaGpf4tqOEV9ApF2AL5GiNUJRVVZRNL6gYCWUNbGKHFj9DmhjAlWt3tIV/oJvdcn23U0Hl1HaziIS5hD5ewj8t4yF1BE2vzq7pmwECENwNodgjJDOEYHqJjP+EpE7LJdXGVq+Nd+Q4eV9q4wjWw5u0j59TPhBB6/VvXSthf2sJBroIDRcMBD+xHNg6cLozg/JBiTsrhhrCJR9wKrhga1oc8lvoB9NYYfKON4LC2MAPCyTKkrS3wm9sI1q7CrWzB1ujwuWISQDWiC7efsvVbyn9MTr9VbfDcOF2/7bP8x2iS/+h1F+Y/eEFEYXkZpRXKfyQB1JJOAEL16zmItH47Ohq/XPT8lyT/oTIXhCuKMFXagKH8Bx1AZ2A4mgeQiwRQ6blhdgRTLGrI5R2oigleOGpAdewD5oJ4rANkwd8nL0+7PyYAwsvb6AubLGzdCHQcusFcBoQAZBHWSRzHQqfHMyDLHM+agWnVujYFDxsHgwREBhcAkLKeAkhZx9YMiOzkgW2+jbxVOwYf6WPrAg3CWmUOPpJrF3FpBz0tj0NviJpRw4FxwO6HxiH2Wnv4nb/0OxmgZMqU6c1raPt49ktfxGsv/AqM2mehNQMUOreg+1fQyxdhixYKnIUVOYdldQe6toIhHbrHDxmQ9PgBtEIHBYKRQheFQodt1TicypyQPVzGPgOSyzjgLsGGdgQihs8uGs+oVgjBDNirxHnFqGDMwOOW2MA7ch3cEpvYjmqoOPsQzsiEOByH/VwZD8tbeJgrYV9WcMCF2PcN1N0uwgVh1E1pBY/7K2wMszNKxzAdC3JzgKjWWHwGDGVANjchbG8j3LgOd2mHOSCsgCxUMSYA6V5sA0ZUhCSASv0fJQ6SnKzfxuE4bT/tMvfjovXrLP+xssYckNLyGsoVaj+l/o8Sy38IzqT9NBm/xBfIqHCykLgfKYDERQGm7MPgHXZi89AeTwOodI3H4wsHUOczIAp03YGiTBpQjzZgbPsAvr/4CZfnNWjp+m2SA9kCJ2+hx06ApmMH1JnsR3Jvev5CE0jhuQQ6yAXRju5VjmeHNVLY+PCrACDbswBSBLa5LnJTADnmgJjthe8baukEfEwAZKRXcBAkAHI4PmTwQRe9XTNrZxb7hXaIV/6vr2SAkilTpouLvvVf3mvgxS98CA/v/2fIh/vQ2pdRMm9irC/BFD0UBRsrUgHL6jZEfQld0UaDH6DJ98DlWymIdFHId1mA1eY1PMBV3Mc13E/vTW7jKKhqBeCMALzhQzACyCYF9vy5J2YZPi5zDVzjanhMbuIJtY2r5Ib4+1DP6H1wOWBf0bFX3sR+voo9RcFDLsJeMEaTClbOkcJJeDRexy3nyAWpUBdI6oKEdAruBUrIpK1tBJvX4K3sws2vw6YK9kiDYXEXHsGIMo/isoYibcAUOYiywQKoUZCs31qDJIA6ajdhjxd3YEiKmnR/TPo/SutH57/EKnj76PRbFkD1F490+JyYHECXuiC0AWPKaQEZNaCaRwVkdJkX6SlJG1DnHRAJuZwNiTZgWAPqJIBKVw2+33/DHSAEIeSAdHnqAFlmHSCz45cEQC5wqB/PMwfkeAiVHBAKY5uGxw6vPB5CpRcBi1RhAHKU/TgCEA5bfPcUB4SyIHuAufjrFEpxDjzYlY5kDH0Jh4ExBx6zTojpn//vyIHDqr6KrfxWchW2sJnbRBllfODmBzJAyZQp0/lygxBfeP55fOXZX4J9/zNQGxqKw8cQ8xsYajwKgotVOYcldQuxXkRHMNHkh+jITWjFJorFNrsKxQ4cQT4bRtwQ/GjiiviQjZDZ/7NP0BocNpK5wR3iSbmOJ5UmrmIfS14N/CnhVPJHKIi6V9rAw0IVD9Uc9vgYDwMTDW9w7sF0FS6PJ4M13LJK2BlKWO1HiQtS7yGuLT6IjtN1SNvbiLauw1+7DKewAUdZgsXl2BkwI6pg71HV/vk/TgUxOf+lUFWgFylekgJISBswSf36BEAuUkAma3oyfllZTRwQAhC1ipxQPOr/6DtpA6rLIPH8TxQQCvJ0/EKbMH4u2YBJAqg26/+YBZCLVLDLsnwsgEqXmJ4BM2IV7LPrtwQhQbDYWRHF0nT7JYGQiQOStKDWfOkEgLQuACC6wGP3WP6DrgoSB8QYf3UAZDYHslMUGIDkrMOT8DF4CBiNhe8bcv4IQOayILuw8iuoUZGfWcPB+Ag8JtdowWr8pFmY4GMzv4nt/Da7T4BkXVoGWm14BwfwDw7h0/3wAN0HD/D0hz6UAUqmTJlOqm84+Nwf/S5eff7fQHhwF1rrOnTvKga6BlnysCLKqGqblJ5ESzTQ4Psw9QPkSy0UUiCRchb2cAV3cBN3cOMIRiaB1bEPfuSxuzgO5lZBqbTsOneI6/whHhHqeEpp4CoOsOSf/IFLTx01UcR9vYi90joeank8FDg8jGzUvSGicyCkGul4yl3FLauInbGM1V6EQsuA2OiySvZz8xY0htnYQLxzlQVR3fI2bG0ZNl+A6UsYj0J2CF24wGHgeQ75qpo4IIUoqWDnRwh9ckB6sEdHIxjvAk/sar6QuB8UQF2hBtTJBkwRSqQARpwAyOCCAMJz09Nvj1ZwY+aWUQB17JsYjOYBxHXdN7EBc1RCdrQBc1TBnpSQLQYwSVqaFpBNnBDIW+hzm2hhCTVPmIOPiwJITuDnwGMaQuUTB2Q0cqcAst+bAAj1oyx+30s5eQofiQOSwkhRwrYwAyAT8Jhc4/rCc3Eg5U6Ax2QkQ6vjtdBGzazPgccERHrO4pBrRalMAYQckK1c6oTkN7GhrUPsjRh4zEEIvX14eOaRB0YY4j13bmeAkilTpkR7jQ4+9we/iv2Xfx3angd98DhCfgW+ymFZ4rCirkHIVdGVXdSFLqz8fRTKTZTKTQYlA6mUwkgCJA9wBWEsJuOZsQdu5IMf+xDGPuJ0LVRCgKtcDY9wD/EYv493KDXc5PZQCU62no45Dg8kCffzFTwoLuO+ouI+Auz5IwRnrfbGMdY8DU96q7hpUh5EwnIvQKFlQqh3EPfOt/x5XYewewnh9k14q1fgFNZhSRWYoQbDiDHqOnAXHPJGWzD5SlJClq/wKYBQBiQZwdijDobtJkat5oVOwNVL5WQDhuVAVlEurqGoLEPn85DpxGMjemMAIqQAkjog7AyYHAFIEkClBtTB8Gj99qIruLqun+gAoR/FtAEjySOEVMHuHgVQkxKyxd0isrwyDyDqNqBspTXsBCDcmwYQckBOjGAEHvwUQJItmP3eG8uAzALInBNSUrAt9Nl6+hF8pHd6e1wDFuSdIOnHQqi708svbqFBPTpmOn4ZH8wBSNtuX+hwx4njMXE/Jk4IjWMU0zuCjmMQ4lPr8CKnUVGY0yhtb0Heovs27EoZOx/8YAYomTJ9q4q+jV/fO8AffvJ/w/Clj0Krr0Azb8BS8yioAtaUApTcGkZKjJrQhVG8h3y5jlKpCa3Ux554GbdxawokQ5QTZ2TogaeLgGTkp0+QMdbQxyP8fgIjwj6elg6wHR1AnOmFoB/FDVHAfQYiVQYj9yURD2IX7cA8G0JsGe9wVnHDLGB7KDIIybfGEGptxLRTe46ESgXYvQZ/6ybcpV3YehJGNT0ZI9aGujgHohdllgPJL4lQWA17AiCBO4A1Tg6gIwixhqf3PsxKK5ZQWl1DiQBkZQ0VckCUJWjpCm48CpL+D9qCoZBsdPENGIIQriQlh9AJDkbkgLjzAEL34AIn9dIK7skSsjABEGkIP6AV3CT7kbggtTdQQjYLIFsAZUCoBTWu4NDDCQBpvwkAmfSArArCSQfkDRaRzY5gdpaOsiA7FRXb4hA6ZUCmAJL2gNDbo0NgQfkeRPV0AKlcQljaRisOcZACyOExF6RpNS/ULjwLHXN5kPwmcp7Axi5HEDIDIIeHiBadOp06jVMIofvW0WO+WoVHf/8dG6OOw+71/Q7+9F95dwYomTJ9K4m+dV+9t4c//MT/G9ZXPgO9eQ18sIUgp2FFFlHWV+DpedTFPgal28iVayiVG5CKY9wXr+JVPMauu7iBwOMTEBn6CZTQuMaPwSFiHSJPcvfxBH8fT4t7eJzbQyE+ygfQD5CmIOC2LOGOVsCdQhV3ZBH3QgvOGUVWuhPjMbOMx60KroxUrHcjFJsGxMMWYJ//yltY30B46RF4a9fglLbgaFWYsQ7DFlgWxF1QdU45kOKyisKyAjXnQZIIlsYIvT5cs4dxt4Vhq8nWcOMFTwgsA0IAkkJIubCJolZNHJBITSrYKf9BADK6IICQ+5FWsHNlCbYawBDcpIL9FACJLtBVcnwFt1QqIF/wobJD6IZzK7gEH45LALIIFHioyvpcAJXyIJA3mQPSisushOyrDSCiE2E4cnFwDEAO+xY6hveGekB25hpRVewoVjqC2Zt3QejxcB9YcIYSeAko7xzLgSQXbcJ0RQEHM+AxvcaHaJiNhSdMK4IyDx7H8iBFTmfnKzHn4/AkhISDxVAtrq6ytfeTELINaX0NYcyxceewbbP7FEa6yd2z5z8H2zPxd/71j2aAkinT21307frS7Tv4w0/8v+C98GVorRuIsQ4lp2FV1iEWVjBQQjT1++CX7qJSqUMoG7grXWMw8hoew4P4MmIzBt93wQ888H0PnBMyGKHQ6uPcAzzJ38dTAkHJHnLx0auqLs/jDoGIrOBOcRl3FAV3Yg9GfNL6lfwYO0MRT1hV3DRy2OrzWOq4UGs9cINzAnn0Knj7MoLdR+EuX4ZT3IAllmGGKuhIFHJBTmuFnZVGLkhVQa4YQVKSMUwUDOA5tAnTTsYw7TaiMFh4Ci5lQAhAiivrWCptJFswaQiVZUAGaQnZRQ7KmwUQckDKEhw1xJgBiImhY0xHL2+kA2T2DJgpgOT95BRcoQfPm6lgtw/gek3E57TkJu9XhKpszgVQyQWJmQOyhmZYnNawv1EAyZ8WQtVkrIsiBDfEcHg0gpmFkPZ4cR6moIjYTp2POQihPIjuomgfz4DMZEH8BQ4CJwClraM13GkeJAGQkaLjwKpPV3FpC2bWBVnYLsyLbNRyKoQUtrEklRG2WieCqBMIYcV/C75ehFIphY8ZAJlAyNYmHZ4Ec+DOuSAEH+OOg2HHhjVcDIGJC0mjUA2C7uP7/k/PZICSKdPbdh347m18+nf/R4QvvAK1dwsxv4JiLoclvQwvV0BDacNeegXFpUPolS4eaLt4EU/hJTyJh9HlxBVhMJJACRcQ1nTxDH8H7+Rv42n+HoMRHUlwk566HkgiXpFlvKZqeCVfxm0B6J0CIuSGXOoKeMpcws2Rjs12iFJ9DLG5IJRHJ+NeehwuOSHFTZYHMXwVo1G0sJSMFzkUqzSGkaBqJgTRQBzRGKbHukDGnSZzQXz3fDeG48lNWUkAZHkdlcoGSrkV5Nkarg7e4ma2YJzFDohII5gjAOEpA6KlDkicdICQAzIBkIs4IDzPz7kfEwDJ5ckBMcHz3aQDhOU/kjXcpIZ9EYDI0wPoZiGEjWCwikZUZC2oU/hIq9g7/sUBhKBj1gVZl0RIboQBjWBmGlD303uTXKYFysnCdPRy/EyYHT1EyT0DQOhtb9FmEAcUN+dHMDMQYmkVHNrNKXQc34YxfGNhu/CavjbnfLAwagoiy+oy0B/MOx+HyfiFvV2vA4tyIJoGeXvryPWYhRAaw+RyzGWcOB4JiBCEOBiRK3KBbTRJFdj3H0EIW4unO3tbQ2FZhSQLCAMfw2YLBy++jqd/MFszzpTpbaWHtSZ+7yO/CPvZ56B2bwJiFRWd6rkrMHUJreJtiMu3UVyqo1Ms4yXuSQYlt4PriAcx+J7LgIQCrWrs4Qnu/hRI3snfwTrXmxaZ3ZYkvKIkMPKqXsTrPNXOzz9xFqwYOx3gCaOMm0MdW+0IpcYYYvdsNyQqr8C/8iTcdYKQLdYNYoQaRmPAHp//g1bNSeyHXb4cQVZoDDNkLohr9WD2kxzIwjbU9CTcxAFZQ7m6jrK+hoJcSZpQXYGdAxP0yAVxFveATByQJcqAKAxAPD3CmFpQqYbdNqYA0u/32c+sRTXsBCCz8FGpVNIRTMRGMBxHHSCTM2AOWAkZdYIsPgdGhqbNtqCmAKLQOTBr0xr2ryaAbEgiZG8CICcdkMbIWXh4sSYRgMwHUBMXRMd2LkLZq4Ojccu0jn0GQM44D2b+g187E0C8/CpqTnfaATI7gqH13ItswlTV6hQ6GIDMwMh6bh285ZyxCUMgUkO8aLtLklgO5CwIEZaW2LbZ6Pj4pZ1AyLhjw1tQuDfZRiuxUWjSy5OASAIj9L1JohzWYL+Gwf0GugcNjM0GxkIXrUKIQ03BPl/CaBDit/76z2aAkinTN7s6gxF+5yP/Cwaf/Rjk5jXI0gaWcjlIhQoGuodB9UXkqw8QLHt4WX6UAcnL4WPwhlICJD2XuSWrcR/v5V/Fu/jX8Qx/G4/zD9mWDSHB67KMFxQZL6gKXtYLuM/HCGdmE2w00wGudyU8PSjicptDpTaGODrd/o44Hv72LXi7T8BevgJLW4UR5TEyOTgL8iBqXkJpWYKW99JSsiSM6pqdNAvSWLiOS2Vk5bV1lNY2UFrZwFJxg3WBaFwBciAlJ+GmABIt2NKZngOzlG7CVBR4eSQ9IOSAuAb7OUTwMXFBFoVQJzXsBB5HDgiFUCPm/vB8D65bS/MfBCL76Um4/gXOgZk4IMkKrqbuIJK30hFM/k0DSIEAhBpQj+VANmUCkDjJgMw0oRKAkCNSH9oLF40UkZ8LoLISsgmMFDgs+U1wwzMcEOvkRtgJ6dVTACS5wuImmnSY48T9MI9aUQlI2lb73D4dUlEuzo1fZmFkI78BJeSZ43HWOm40HJ7/8dN5O2trc5swdDEg2d5mGZGY45MxDIOOWSckuV/kWIRJGPyEC7KisfOaCFLIgRw2mxjcr6O/18Sw3YYZNDGWh2iVgJqqYp8rw3QVFE0bVauLUvgQGg4h+32Ihg2nG+Pv/u93MkDJlOmbUabt4nd/91/j8JP/EUp9F7KwhaV8CXyxhF6xA3v5ReSqNTQrFbzAvwNfjt6J5mh5CiQ0stmO2ngP/yrey7/C7lf5Bvsx+1AUGYy8qCh4Qc/hVUmAN/kBHMeojoBLrRiP9DU81tOx2fSRawzBnfIs44savEtPwt1+BHZlF6ZUxdhXMR7H51rCyem4PFTdhCCNgWiYnAszplKyJsadzsIwan6pijIDkHUsVTZRzq0iJ5bZabicSV0gLkKCkLG3MAfCmlBpC4a5ICr8AgdDcmHAwcg3WA/IbA7E87wLh1Bnr0IhhqpRBmQAz023X6ZjmMVbMNMMSOqCMBDRthFLaQYkymPfDafgMbm6bwBAjveAbMoSVJ8cEG/uELqJA1IfOggXEIhMAEJ5j5kcSAIhSRfIctg6G0AuUkZ2vI59LgeyjW7sTVdw30wQdbIJczyEOgGRPK/BbzROruOmUBK0F6/70rbZaSFUghBxcxOcJLHzeI6PYMj9GHacC5UCsjHMxP1YofsMjFRViLLADoM0+j0M9+sYPmigf9jBaNyBgxZGOQutEo86nU8VlzF2cygaFlasPpb8PejcAQSuC8m0EI9jcKMSdHMdJWcVYrQMS9FhKSJGgYmf/ff/fQYomTJ9s4i+7T777Kfw3H/6Z5DulyBjB+VCBUKxgF65CX/1efCrI9zJX8HzeCdedJ4AHS3Ctx3wPQeXwwaDkeR6lZ1CanEcg5EvqQqeJyDRdIy4IxhZGwBXGzEebcl4vKNi/dCGZLqngoi9fgvOpadgVS4zEBm5MmwrWlDRLkIvJNXkcTyAb3dhDckFqS9cyRVlJd2GWcdSdQuVArkgS1C5PCSPXBCPAQj1gSw6CpaT+GQEkwJIWKQqdg8jqmIPTQxnTsIlJ+QiRWSTNdyJC5IUkWF6Eq7n19PxC7kfkx6Q898vxwlQlI2j8Yu2k54Fs40Ov85CqPtugIdfRQDZUghAYozGXgIdvaOzYKgPpDawESwAEEngpgVk86MYHTslGctxFzwByPEcyIW7QCZlZCdHMCyIKvBHFex/jCDqcfdjEkylsrKw0zm2CTPjhDQawKKxXdo8fHoQdQtCPgffC1nwNHFAjrkgXRv+ojGMwLEzmRL4mB/BEIwoOZG5d65lYdCoY7zXwPBhG/1WH5bbgSv1MCi66BR51BQdh2EFQyePoulgxexj3XuIPLcPTmhDcA1ERoRoJEMbr6JirUHzVxAIFRiaCpsmPpyDvBChwAsoSHmocgWRqqEb2vjz//S/zgAlU6a3uvYbdfzuv/95BF/qQfWuo1SsQijk0K/WEax+Bc5agBe1x/HF6D04GGyB7zjsqho9fAf/Mv4k/wK+U3iBAQlt1DynKgxIvqSqLNAacgmMrAwTGLnR5PFER8P2oQv5WAdEyEuwCltwLj8Fe/UmDG0NI1+Hdc5ERS9w0MsOFDUZx9BqrmNQNXsD5qC3sJSMXJDy6jqqlW2UtBXkhDIUqmQ3gbBLYVRnroX23DbUFELikgRL8TDmk7NgBlYCIJMxzEWq2KmIbH4EQ1sxPDTNYgDi+7QFQ+CxD9tOsiCLi8hm13AJQnaYGyIq2+hzG2hGJRy4IR46HrvICXnouBc6C6Yont6ESgCiB8BwTA7IUQPqpBG1NnDghecDgshz2EzPgJmOXlIQ2SmrWOUGxwBkJgcyPHhzXSAzYxhLUnFIo5evURB1RVsBxsYpmzBHTki8AFrJ4TixijvTCSKUyyxrY/SdKXgcreYmEHKhMUxJRikNnk5CqBMXZDKGiUJqOW5jcEAQ0sLgsItxfwQbPfhqD/1iiE6JR03MoRZVMXTzyI88rFk9bLr7KHIPIYgtxNEYkRHAG4uQhwUsmesoOKuQ4mUYWhGmIsIRAoichQIfoyCIKEoVyHIZsarBEmMMOBNDuQM/fwgpR+dzDcBxHfzlv/TFDFAyZXorynZ9fOS3/gWav/d7UHpXUSpuQSzlMFo5RLD6IkZrIr6iPIXPu9+GXqcEvuVA643x7vg1fCf/AoMS6h5piTw+p6kMSJ5VVexJInv/ihfjei3GzUPgqYaMa4cR1GMw4spFGOXLsC8/A2PpKsZ8hfWGnPXdr5ci5EoWZHmIOOzBMVswunVW0X6e1EIRlfUNVFe3Ua3spBBSmpaSBVQXf4FtGL4gpw6IAr6iwM1RENXFKKYuEAP9QX8KIfTzYZE0TTsxginSWTAaFZGN4AeNuS2YpIrdumAR2dH4he6ysoWRsIlmVMaBFzEHJIEQlzkgNcdfuAw06QGZuCDssaqwA+r0IGYAMtl8mY5iqJJ9YMMLzn/vAs9ho6SezH+k17poQGAAcqwLhN2pC8S9YBfILIBcPgqiamVWx/7VDKLOtqJSEFXwgpPORy3dhDk4QLToBGWeh7i+NpMBmd+EEVdWWFaEjWHap7kgNowLrMPLNIY5Nn6hluLSisbcETaGiWM4poFBvY7xwyZGDzsYtQcwjDE8qQ9fH6BXDtHOiWjIedTCZfSdMnJjF+tmD7vuPsp4AFFsIeKH8G2fQQg3klAerqBir0D31+HJVYw1DbbMwYcFBRYKAoeiqKIgLUGRywgVFaYYYsAZGIgDeDMgktMH7K4o8y8ITDPCn/nRBxmgZMr0VtKLrz6HT/+b/wfE+xWUlKtQygWYqz04G8+hvabiK8rT+IL5LphtBULLwe7wAN/Lfxkf4L/MRje2EOILqsKghK49SWLuyOoAuHVIQBLjyYaMjbpH38jsz6T/ddQljEtX4Ow+hXHlCoaowPH4Ex8ffesrqoNcOakrj6MeXLONcbcGe3R2kE/J5VBZ20R1dRfL5W2U1BXofAGyn0IIzccNf/E6LnNANIhVFWGBx5hcEM6e5kAmDgjdF23CSJI0dUCOxjAa9JwNmc6CCZtpBmSf3WkUE4bnvxJnn6u8diIDoirbMEUqIlvCgRsz6GAAko5i6HA6b8GPVYXnpq7HpJBsV1Owo0goUhHWTBHZrANC7ajOovOAOGCjpGHrtDKysooNxYE4evjV6wI5NoYJcytoOp2vSRB14oqoschWbo9DCNuEOThE2O1e6ARqmVyQ05yQjQ3mktAYhrkfaQfI8ZGMv8Dto3V4NoaZjF+mo5jkrujJGCbwCXRaGB3WMdprw2j0MOoZsHwTodqHlx+hW4rQ1gU05SIawQq6dhna2MeG2cUl5wDVeA+y1EQoDVi41TJFxEMRuYGOFXMVRXcNPFZh6GWMVRmuGCGKBtA4j40Ei1KegYgql+ErKgzBYyDSF0Zwc7UTIKJpZ3//SNI6CoVbKOQfQRRv49bN/3MGKJkyfaPleD5+8z/+j+j+3pdQ8B9BvlyFs+LA2vgS2hsinlXfgS8M3w2vzUNqmvg2+2V8QEigZFuo4dkJkKgqXpOTVb7dFvDYwxiPP4zxWE1A3jiy0F25hFHxMsabj8NYvoURvwQvOAkjdBZwrmhAzQ2BuAvXbGDUPoBnn/1kVKiuYHnzEtaWr2Apv4GCWIEcqIiHIYKOjfhYY+Rx8bqYZEGqGisks/QgKSSLLdYHMuuCLBrDTMrIJgCSQEgR+bwHRaFXw+0kA5Ku4dIoxvMWb3zI8jJUNcl+TDIgBCO+tIVmXMWBF6ejl3QMk4KIvaC7ROCALUU+6YJoCqocD9vw2LiFoGN/ch4Mu1swvUX9JcB68cgBOQ4h66oHebz/NesCiQub6PrDr1oQddb9mFSyF6QCwl4P/v5+6nrQ/QD+flrLTn0gi/pjCoWj7ZfjTsjWFnhNQxRSSDQtJZtdy03fti8whsmV5KkLQqMYGslMSsomYxh6mmUruU0awzRhHNChkSNYhg2KZ4c5ciMMtGkck5PQFMoMQtp2Bdo4YBByxTnAWrQHVWwgknuwYcMwRARjEcpAwOpwCRV7FVqwBlddwUjLs5Cqz9mIoz5yXIAijWXkMgpSFbJcQiDLGAkOG830+TFsvXEKiIzA86djgigsIc9A5BZy+ZvI524il7sOUSx8VZ6/M0DJlOmroFfvvoJP/h8/D/H+EsqFa4hXAXP7eXQ2fDyfewJ/NHgvrKaISrOND/hfwgeE5/Dd/HPoyR4+rWn4jK6ysU1wDEieOOCgp+FUyoyMC7sYla/C2HoKQ20LdqjMfRy0DcNhCL04hqT0Efkd2MMajP7pmwW8IKC8ton19etYrewyN0SL8xAdEVGP2lHP/wEtlBSIy4kT4hVpG8bBiLMxDAwMxkcuyEUaUScH0h0BSBmFYsxeqYkCnap7OOeCJF0g5z+Z0w9KBiDpCu5kFZfaUNtYwUF6GN1RBiSBkGGwABKoZ06RZtyPIwhZlyRElj8HIBRGTUDEQv8CB9KtFBS29TJZxZ32gFQ0bORiKMbkQDoawzz4qnaBxMUtjCL3qx5Enb2W1CXETtoHkkKHd7CfOCEEJZQDWXAuDDuYjrkfx+rY07epMZWNRwx/3v1I+0AuPIbRxJlV3HkXhMYxoiSw30euBbkgg8M6jIdtmPUBxj0TtuPCV8aI8kPYeQOdYoyOrqDFVxiEdKwKFCPEhtHBVecQm+E+dPEQMUGIaGJoC3DHIoShgGpfxoqxioK7Bk5Yg6FXMVYVFlIN4xG4aJDkQ0QFRamKgrzEQMSXRQx5G33OxIA3YKqtIxDJDaATjOhDCMLpX/c8n0c+f/MYiNyALFcXfqllgJIp0zdA9IPtdz78f2DvQx9FOXgE8nIF9s4DtLYbeLF8E58dvQ+jporVRgM/EHweP8h/Ac8IL+M5TcSndY2ByaEoYLMHPH0vxhN7MR474JCzo6k7Mihdw3D5EYxXH8WIq4BOx5mIrebGfej5AUS5i8CpY9w9QOCd/uSRX1rG9tYjWKteRUVdhRYVwBtA0HaAc3IL5ISIyxqEZQ1eicNYdjHmLQx9A71BH71ej12Oc35oVBTFuTFMUkgmsSCqrIwQTHMgFEQ9uFAQleflmfHLzvQuyFvo8ZuoBfJ09DI7hrlIF8iyJE7hYxZEtmQZoheiOQWQJP8xcUKa48VlZHQeDG3AEHgQhLAVXHbXsV2SoFqNI/CYgkh6N5oLP3ZoS3PQMZcDKe3A4jDnfLzZIOpx92M2iEovuoNmMwWQeQeEHtOmzEX6QKZjlx1yQ+i+k+RAlpdZEzCNWWabUOd6QSh4fYExDMuApOAxCaSyHEj1qJRsupLbqGO434R10IfZGcMa23ACH6E+RlQYwCiM0clz6GkqWsIS6t4q2mYVohlj22zjin2A3WAfefEAnNyFKxrohByssQiMRBQHHNYHZeaGKNE6HHUFY70EQ5HhCR7LhAnxCHmeQ1HKoSgto8hApAhXEjHgTQYifd6EIXch5ToJhKQgQo9F8XRI5jiFOSDzIHITirLOXMw3owxQMmX6OsowLfz6//734H/BQTl/A+GmhcGll/Da+jo+af1JNBrL2Goc4If8P8IPCZ/Hrngbn8pp+H1dwxdUFZILPPkgxtP36QKWR8lE3laXMShfx7B6C8PlR2FxhTkYIZtWkrqQ1S5CvwlrcHgqjIiKgp3tx7CxfB0VfQM5FCFaAsKeCwRnfLuLPCQGISrcEjCSHYx4m0HIwBhOIWRRJwit4y4tLbErgZEccjknGcNwnWkTarINc4AgGF5wE+YIPlgQVd3BgN9AIyzgoetPRy8TEGm4/sJjcUqicJQBmYGQHQqihkB36DIAmeQ/JoVktIrrL1h1pjbUSRnZkROSrOXS28WgPwMdD+YhhDZhFjhDkAsJgMyET4+AZBeeqDDg+FoGUcklodKx6Qhmf9YBoVDq4lp2NoZh4JFAh7xzFERlYxhZnh/DHK9m79gLG4mJ6XMlZa4DZDaYSv8fR8EdelFgWawccFirw3zYgdUYwRqYsChYyvmICmOE+R7GeQPdvIC+pqPJL6HhrqFlLSM2OOyYLVy1D3DZP0BZOICotOBKY7T4GGNDRDiWoBGE9CSsGMvIe+uIpFWY+irGWg6WzDM3JIp6ECMDRUFgYxnmiEhVKEoJrsQlEEIZEd7ESOxDzHWnIDIZz8jyWYAvQNevMleEIITuBCKatsPW37+aygAlU6avg+7v38Xv/i//N+RqO1BXl+FcuY37l3x8Vvw2vFB/FMuHTfyo8xn8GeEPUJUf4GM5DR/Tdbwgy7hRI5ckYlByvU7feICtraBXeQSDpZsYVR+Bw+nTPyuOqIipDlXvgAPByD4C72ROQ1FzuLz7NDaWrqOirEL1dMQ9H7EXnQ0iqxq4FRXjvM9AZBAb6JkDdLtddDqdhRBC34vzEEI/7EzI8gCeX4Nt7yV9IOmhdIskSUvsByNzQmYAxKRNGBZEjeYcELrXXO9M1ppI4/k5B2QWRCo0CKNNmJnsx/4MiNj+gtERz7EQauKATDpBjmCkKtjgZvs/JnfmijwEggWrz4J8DDxm75cRqSW07PbU/Zi7XzCIWpAL0yr204KolBOJXJfVr7M1XAKQGQfkQtswkgR5c3PeASEYSR9PxjCTs2FoDfc4iNDhkPGCMQyFTSfwQdXssxXts2OY6Upuo47Rfht2rQenbcAau3D9EIHqIcwPEeS6GBZs9HIiBmoOTW4ZdXcNbWsZniEyCLlm7+Oyd4AV4QCS3EIgD9CRQnRtEe5YgjTisdYD1gcFlGldN1qHra9hrFdhqApcMUQU9RGHXcixhYIooSgtocQckSpkqQRbRhJUTR2RAT+EcAqIUB/P6eLYiHMCIhNXRNevMPfx66EMUDJl+hrq2Wc/gS/+b/8SlehxYCtC68YdPLtyBZ/pvg/8oYsfGvwh/gz/Gayqr+HjORUfz1HzosRg5N23YzxzN0bRBjwpj17lFvqVR9BfeQKOmHwt07dgHHWBqA5Z6SCkJ/nRySf2nFbBle2nsVa5gpK4DNmWEQ+D05tTRQ7Sqg6/KmCYczESbAzCMbpGAiKUDTlLZOXSGKZaraajGNqICaHpBkSxD889gGU/nILIom0YQcgdG8HQJswOXHkbrXgFh76Ah3aygjvJgNAmjLOoMIzj2Notrd/OjWFUGSuiANfwsU+bMDPwMRnDDO1FNfLAWkGdjmGS8UvqiCzpWNcBYXSQAMdpo5iFORAKom6dCh/scX4dQ388Bx7HH/uRf6Eg6uzJuLNBVNqUobFF0O6c7oDsX/B03JXleQeEsiAEIDs7rJadEwR2NgwdQpdkQZI21KkT0r7A2TCTMczUBZmvaFf0dAyTruQOmw0M6w2WBXEaIzi0/WQH8GIgzDkIC314ehujgoe+LmOg5tFAFXVnA22rCsdUsW00cdXex1XvEOvcAVSFwql9DCQP9UiENZYQjwQs94GNnoBlo4o8resqa8wNMbUK6w7xOZONZeiSYaMkaijKy8wRobsiFWGLEQOQxBUhGBmB03snQETTxuAm5YvHJMtrJ0CExjWCcPTC5xuhDFAyZfoa6JO//yHc/je/ibL2KPxrddy+auAT/Lfjzv4u3t/4PD6IT+OW/Bx+vyDiw7kcRo6Id91JoITyJHwsYVC+wVyS/vJjMLSNo3FN2EYcHUCSGvCshyfcEYmTsbPxOLZXHsWSsg7FVgHjjABbXkK8rmBU9DGQLfTCMTpGD61WC6Z51isrQFEULC8vs6tapVxIyBL7otiD69Eo5iEsa491gpx/LkzSB6Jpl6Brl6Bpu8wJ4dmhdBuoBSobw+zZ7tQBocfjBYVhtIu0qUopdChzGzGbkojYCdn5LxPomIRQCUba48XtsEs5eS77MXVCKhq2SjIUlgM5lv+Y3Mf1C54JMwMdsyBS2oHLxdPcx2kuyHjBto3ACdjIbTDgIPDYLmyfCKISbIaGkYZRZx2QFEYODhAvcMw4XZ9mP5LzYAhGthiATLZh6GmERi0EHEcuyJETYlADcHyxUrJJDmTymJWSleTpGGa6ktusY3jQhlPrw2ubsAwPnh8jEIEwbyDI9+BpbQwKAYa6ir5SQAMrqNkb6FhVmCmEXLEPcdU7wDYOkZPrgNyFIdt4yIsYWxKCkYDigMdmj9qYdZTtNfD8Giw9AZGxlocjxWxllyAkCnvQOJ+t7VI+pCRX2V2VSjDFYAZEaDxjIFL7J0CEAqs8f/r3hyiWkM8/cgxEbkCSSngrKgOUTJm+SqJvh4/8p3+Jxm98GYWlqxg+chdf2inj93vfhcrDPn7C/D18j/xJPJf38OG8jrYt49tfjfG+VyJcbwCOUkGn+gS61ceZUxLxUgokTUTBAUSxAd/ZR+gfzYZ5CFjOb+PS5pNYye8iFxTAn/bcxAFcVYFRjTDUbfQ4E11ngFa3zb43zhK5ISsrK6hWaSwjoVAwoSgDBOEhbPsBLOsec0LOOx2XDqZj4xcGH+mlXoIhbqMZ0zZMjD3bw55zBCH1C+RAVmVxun47HcOkORDJi9EYkvMx737Q/SJnwuRk4Vj2Ix3DEIiUNeSDwfwWzHQEs3exRlQ5f8YIJrlHso6W1TrVBSEAof/vjeZACEImLgiFVCkHEvv+USfIKYHUcLDAzREE1vtxwgFJoYTOjSHQOd4JcnwUE5w1VkwlKsI0iMrgY+XIDSEgkeRkDDNZyU2yIA2YB104rRH8vgvHCuGDQ6jECPJD+LkWPK2HQT7GKK+hLxdRj1dQMzfRsaswTBUbZhtXrQRCLsU1FKUaOKUDWzJwIAlo+RJ8tqqbQMhGj8fyeAl6sAaHQcgaTJXaVFX4vJtCCDmefWhciJJUnnFEqtCkEgxhAiJH4xlfHpwCIhRYPf3rjOf1UxyRm2w1/s0GVr8RygAlU6Y/pujb4L/86v+M3m/fg7a5isZje/h46TG8cPgI/lTtD/Hnud+Dm7+H3yjk8Lqv4L2vgUHJjRqHYfEKutUnGJiY+a10ZEMrvg/AgWDkAFFw9Ipe5lWsF6/i8vpTqMqbkC3aETz5MUVlEeOVED3NQicaoWV00Wq3ziwto4Dq2toaVlcrWFrykc+PIUpdeO4+TOseLOv+ueMYnteg65eha5enEAJlF21uC42oiIcOuSATB4RGMS7sBZCgCzwuqTIusRFMMoq5lIIIFZJ1KIg6dT7mA6nugkZUWUhOxZ2MX46DSEVwkhzIqdswVEh2trs034h6DD5YMPUyoC9h6CUn457mglx0DDNxPmZdkEkoVZd09vV0ohNkZhzDzoZZ1MtCh9Od5oAQhKyvs1IyynmYwySMOqR2VBZEpRHMBU/I5YB8RUmr2ZMcyNH5MBo7NHLyxDpdyW02MKo1YR8mLog/8uH5QChKCLQAfr6bQkgfgzyPsa6jR0Vl0Rpq1iY61hIMU8Oy2cc1ax9X3ANcQQ0rYh2i3IInD3Eo8TiACMuQwLFcCJe4IX0FZXcNoUhuyDosfRWGVmUh1SgeMieEygsR9lizL+VDjjsiVGZGLshkNEMbNJYwPgKRKYz0IcvumfBPo5gJgEwCq6q6CY47rdPom0sZoGTK9MfQRz70r9D6zy9DvVTA3ceb+F3h22He0/CTg9/Cu7VP4fcLwMdEDU++zuO7Xohws8ZjULqO9sozaK+8Ax6b5TuIgoeIggdAvI/QO3I08mIFG6Wr2Fl5HBV+BaKdVNTPKtCBwUqAvp7ASNPootvrntodQqOZBESWUK2GKBRGEKU2PO8BTPM2y4ac3Q9Coblt5PQrLMVPYTlOvYIWt4PDsID7tof7tptclocGPVtcYAxzaQY+LmkKuy8LVEjmT6HjKAeS5ELGbnChRtSjbZgUQNLHqxrAUw7k+BbM5G4v2lThgMLGDHQcA5HCBtw4ODGGmXVB3uwYZuKC0MF09KQdWRY7A2auE2QmkBovKrKjThBWSnbKSu7WNjucjuTZwRQ6jlyQowPqouBi1ezT8cvMQXXUmCpIyRMqZVtMKuKjMUyzifFBG25zhKBnwzMjhJyIiJpadQtevoNAb8PVBxjlZIy0HPpKEbVwfQohpqWhbAxxxdrHNYKQuIEt/hCy3EQkD9CQI+yJEnrU3zMUUR5w2OySG8JhZUynXq/D0lYZiBgsH1KEK/hJNiRK8iEIByiI8pEbkmZEyBGhc54mTggDEc6AIVhsJJrL9S/YsMqxMWieVnhzN9g9n7vFfo3nT/5MeLsoA5RMmd6EPvaRf4uDX/sClEsFPP+kgd+x34dLDxr4S+5/Rlh8Gf8xn4dUE/E9L8R4120OZuFmAiXLT7PAKwVbI+8u4vAeQp+OiU++lXJiGRv5q7i08gQq3CoEf35tL0KE0VKIXtlBWxihYXbQ7p3eCZHL5bCxsYb1dQGViglVo9r3fVjWHeaInDWWoYKynH49hZCr4LQraHOXUI+reOBEeGC7uGe7eGAno5hF67jM9dCO4INlQRQZkhei3nfwsGfNXQQiHWNxC+dyXplxPY7OhqHHm0UZktU8BT5SIGE5kPiCfSDHRzAEJDuIBGk6hjnuglx0G4ayHqe6IIXtozFMGCJoNM5YyT18Y50gO8cckJlOkMlK7qSYbAohLBfisLNjzhO1nuYJONJV3KMcyHw1O8n3XIxa5ILUMWw0YB304LUNhEMftP0eSTJCWYSvj+DlmimEmBjnFQzVPPpyCbVwAzWLMiFLsCwVeXOMK+YBrjoHuBI1cImvoyDVEcld9OQADyQRtViCQyOZIc8gZIs2ZXoSSs4qfGXihqzB1FZgqhpCjNOQape5Inw8REHMTwGkJE0ckeIxEDFYw+qIs6Co5owr0mcwounUsHq6cyXLq+n67nyxmSBo+FbTKAOUTJkuri/8wW/jpX/1YaiXS/jCky4+Onwf3r/3RfwI/1v4SqmPTwU63vsCh+98MYbE7aKx9l40V98FT8ohCg4R+XcRB/cQhclsXxMKWNN2sVN9DCvKDiQ/2SiYyBRc9JY9dHQTraCPxqAN/5R+CPoa39hYxvp6iGJxyAK0rnsHhvnqmQfXCUI+eTWWuwFdvwFbuYkav4M9T8dty8Udy8Edy0XtAhByRVNwVVdwRZOTx5qCNVGAMfYZdOx1TQYeUwjpLz6YrqCKR87HTAaEbcaUNWjhCOjfn89/TE/I3QcWjEgg6Weu4rI1XbWIkTc6NYTKOkGMGrzIu9A2zCT/cTyMOhnDsE4Qcj1OW8mtv8FOkNmVXFbVnnSCsJVcKzgWRn1jK7lqXkpzIJOV3CMAoRENL6QuCAu+jthKLsuDHDbg1EYIuhYCM0QQCYglFb4cw8/3GYSEWgeebmOU0zDU8uhJFdTDdRymTohjyVBNG5fNwyScGh3iElfHitQAJ3cwlmw8kCQ8EEUMqR51JLBV3cQNAVbHRchRAiBJSJVAZBmOTNUxiROSjGa6ECIDBak8HclMHRGxyDp+Jh0iiSOSgIgguSmIJMHViStyVrEZff/R916O3BDmiExyIkvnf91+C2mUAUqmTIu19/A2Pv7//GfQNpbwhSc9fLz/XvzIw0/i27SP4KOFCKO6ij/15RiPHFbQXPs2NNbfw16FRcE+Iu81RMFdNsrhwWNZpYzADeyUHoEe5ad/Br3aHgg2OlUbTWWMutXC0Dw5BpBlGds7S9jc8FAqjyGJdTjuHZjmXeaxHBfPU8Nj8kpMyd3AQHoENWzjgU8gkkAIwcjoHGCYhZDLmswA5IoqIx8Co7GHh10Le6n7MYGQRdswkz6Q3XT9lu6X0scEISUpTCvYJ/CRruVOgGTRuTBkfZe2T9mGSUcyuWV4kX9USDZTy/5GxjBUPDYNoKYwMrlPxzCTTpC5EGqaC9nfR2QYb6wTJB2/zHaCkCYruRPomFvJ7ThsTHOxldw0B0JjmAmEVDVW3T5RGNDmTZu1ow6aTRiHbbiNMTtxOqBDp3kFkSzDk0M2ivH0JmKNRjJuCiEFdMUl5oRMIMS1ZYimi12jjqvOPq6EdVzh6tjk66wvxJINPJRFdvhlLRbhpSOZrW7MWpXX+gLK9ioCtq67dgQjahkBZyYAMjOaEeGcyIewsKpYwJCzjjpE0s2ZIWeDE3y2KTPriJx2Eu9cTkS/moDIxBnJ3UpzIt88gdW3PaB86lOfwi/+4i/i2WefRb1ex4c+9CH82I/92Ln/zSc+8Qn87b/9t/HSSy9hZ2cHf//v/3381E/91IX/zAxQMv1xZJhj/Lt/8HeQk9fx+Xe5+PTgnfjg/kdxPf97+LAsYfsVEd/7HAdOfgqHm9+JXvkm4uAAofcaQv82ENtQhRw2tWvYKt7CmnoJQpwWPyFGlx+jXbHRlIeoWR3Y7vwPOfoBtrZWwc5OjEplCFmpwXNfg+08PLO4rFB4HPncoxgpT+CQv4Z7fhGvWh5eMR3cs1z4Z3zb0mtfCqRe11Xc0FVczym4TgfUgUd/4OBB18KDjon76fWga8JacDgd1bITeEwg5FI1eUzXRlGGSNsos9AxCyMXWcfNr5+TA9lExPNs1DJtRE0h5A2PYdLcx3EXZNKKmnSCtI9WcicjmLSUjGrbF+lEJ8hMIHXSCXLqSu6kpv0NruSyWvapC3JyJZfkGAZzQGgUM6g3YB/24HcshHTyNB0sKWsslOopLpxcC77eBLQewpyHsa5hoBbQlaqohZtsHNMmCLFk8KaHTSosIwgJEgjZ4erISc0knCoLbCTzUJAwskVIQx5bXbCAKoHI6kCHjHQck45lDG0VjqKlBWaJEzJxRWQuPAYhiSuiijl2/tPECZmEVglOIo5W52dCq2lgNekTOf3vNik2u3XkjORusfD416vY7O2m0dcTUD7ykY/gD/7gD/Cud70LH/zgBxcCyv379/HEE0/gr/21v4af+Zmfwcc+9jH8zb/5N/Fbv/Vb+IEf+IEL/ZkZoGR6M6InnF/9J38PfF3FS+8x8FHjGfyFg9/GSuFT+Gis4t1f4vHe1ytor/4J1De+A47gI3RfROi9CsQmdLGIHf0WdouPYUlan75fsoJr2hD13AgHThuuP+8yiCKPy5dlbGw6yOc6iEEbNHdODa5SQI5gJNaeRE18FA/jbdx2RLxi2njVdGCc0RWi8RyDkOu6ghs5uqvY5AXEZoBa30rgYwZERs7Zr7rpuWzigiRXbuaxjhJvn+2AkDuy4OA4to7L3I8JgKSPJ9XsksbGMFP3YwIgb2YMcywDMjuGIbFOkAl0HF/JpQPqFnSC8LqeOiAzGzGTcUzaCUKilVx2OB1zQN7ESq7MT4FjupKbuiKzK7mkKKI/qzOFkPFhi5WThT0HoRkh4uVkFCOJcBQDrt5EmGuD03qI9AAjXWcQ0hGrqEczToglgzN9rFhdXKVxjH+IK1wDl7kaKmKTHWbXkJCMZCQR9UhCND4ayRCEbHSBJXMJnjo7lllnzqQnRnNOCK3u0vabyotpSHXeEZEFHWPOTp2QeRAJuRCybB8FVqcwQn0i4ZkvBJIV3tnxzA2I4pEjmumbeMRDrwwXAcrP/uzPMhh58cUXp7/2F//iX2QnnP72b//2hf6cDFAyvVF97pP/Bbf/3WdRe4+D38RT+KG9T2Op8HF83lDwnV/kcL19E4fb70encoO5JAQmcVhHXixjJ/cIdguPoiytsvflIcAh30W9aOAw7mDozlv5msbh6lVgZYXckX247quIIuvU4Fyh8BTc3LvxUHgC98INvGhFeNGwzwyqUlvqDV3Bo3kNj+RUdlUjDsbQxb2WgTttA7ebBu62jYWh1M2SiisrOVyu5nBlObkuL+ewU1Yh2y2gd+/omgWRRdswdHbHdB338vwqLt31pRNjmEkO5A2PYY65H5PHk1KySSfI1AGZBZD9fYTn9MWc2glybCV30glyYiWXHVD3xldyGXSsnL+SS/Jsi63ksixIowHjsAu/bSAYuIhcnkFeJCvwRQ62OmQQQqFUSRsg1AO2nttXi+gIywmE2AQh1QRCrABlc4Cr1gGueIe4yhOENLDB18DLHXTkiAEIjWT2BBGGJaLERjKJG0IQstETIce0JbMGMzeBkXWY6hJCmAxCGIBMgaQPTdAZeJRm8iF0lwUVBuegl4ZUZ3MiIRdBELz5wGoKJKLonbk+fyInkr8FRV4+/98o01dFf5zn76/5btNnP/tZfN/3fd/cr5FzQi7KWXJdl12zn2CmTBdRv9/Bb/zdfwT7Vh6//r7r+PZ7z+Mv5/47POfLuPVhHX/Jfxf2d74Xz61KCN3nEA4/AZkXcDn3KC4Vvg/LyiZ7P2PYeEnYx0F+gEOvg4hODk671RTFxdWrAVZWR5DlhyzISsMeMjsm26C0RZPPPwkz917sE4xEW3jZ5vGVsY1ub+JmzBdoUW37ozkNj+ZU3NJVlKkV0/DxoG3izt4AH2sZ+P+0jHPXc1cKCq5UCTx0XFnO40p6v1RRoFr1FEBeSu7P3U9h5D5Y4OA86ctH4DHnhFwCitvTMcxsAPXgwZdw8EIylqFNmQuPYY5lQObGMNQJ0u0mY5iXyPX4Q7j7+3iYBlLfVCfI7EoudYKI4txKbpdWcps2Ri+1MersT/tB3shK7vFekNmV3OlJuQM6KXcf977UwKjRhHXYR0B/zjgAIpkOnEEoSXDFGLbahZtrIVppQ9aGCPUwgRCliLawika0jUPnPewUXcqEcN0AumHginXAnJDvwIu4wjfYSEaTWhjILvaKiRPygiTho5EIcShgq1tORjJd4Ht6MaqjHHx1Pc2GEIisY7SxhuYlCgoP0nwIOSH7iMPnEY+H0IUCivIKSgQg8jWUpPcyMBF5GRZc9NKNmQN+hD5XYyAScBE4LpzmRAq5AdbpJN485URO76+hQ+407crMAXhJTiQ5AO+bv0/kW1Ffc0BpNBqss2FW9DZBh23b0FJLdFa/8Au/gJ//+Z//Wn9omd5Goieuf/c//AMEJoff/u7LWL3bxU/4/wOe9wU88ztF/Cj+JPa3vwuHfAeB8xlw4wY29Ou4XP7T2NSvgecE9ortWeEuHmp9dP30lbZLL6o9XNq2sbU1gqLeRxDspX8mwfTR3DrM/0k8VN6L16MreMVR8YJhYzCc2MtHP1QFDgxAnizoeLKgYYccCNqUaZl45dURPlM/xP+3bZxZVEYjGXJBrq3mcX01jxvp/cqSioJTA7oEIS8k8PF86ojQeCY851U9fQwEG0tXgcqV9D6TC1HysHwL++N95nqwe+vTOLj3K29qDDPJgsxCyGQMQ50gSe6DHJDX4B18DPWZQOqb6gSZrOTOdIJE5IIMXJb9qBN0PEsOyKvTUKpjLDivh+dQWKJTcrWFK7lHa7lNdA/u4t4X6xg12vAaIwR9DzBj8LQNJGkIZBGOEMDSBvBWWoh3O1C0MYMQNo5Rimjxa2jEl3Bov48dYOfaErhOwMKpO1Yd17wDvAOfxFWuhstcHRWpCUcy8CCfOCEEIp8RJDgWjWQK2GwU2Fjm0V6M7+1yUMOlNBcygZE1PLixhtsiP+OE0P1lRO5nAMc8AhGFQOSR6aF3Eq/AxlGhWY0boc/X2GOPI9iOoarGdDyznIIIdYycde6MomykIEJrvIkrouvXIAjKuf9mmb659JZsh/m5n/s5FqqdiGCGwrWZMp2m1196Fp//X/8DnnuviL3WEv7U3i/hJcdF5RN5/BD/fjzcfR/c4A4C5z+yZtNbxadxrfBBFnyl+fXz/EPcU9voh+mYwY9RKHZx5bKBcqWBOL5H6QX2fwXMvOCg5J5CU/8e3BeewivBOp4zQhx2J09o9JuM6YiGHJGnCjoe0ai5MoI/9HC3aeDVr9TxvzZGZ45mZJHH1eUcg48ERArsfjkfQBncA7q3gc7rwO3Xgc/eAXp3z4cQOiGXgIPgY3qlMFLaQcyL6NgdBh8MQIwH2H/901Mo6Tm9C49hZgFk8ng6hpl0ghB0vEKB1OfRPzhEK82GkEOysBNkfR3y1taxTpDksbiyMgUDz6GVXAdtApB9G8MvHbyhYrLJSu4EOs5aySWx8OtoiEHzEPe/1MCAukHqSTcIHerI+SJ4ucBGMYEosHNZLM2Av90Ep3WhTiGEispKaHFrqMfXUXO+M4UQmUEI5ULWrA4Lp36A+yzLhUy2ZGK5jwOdx4OSyLIhvyWJaAUiigMdWx1tGlB9ohtjZSilvSGTbZl1mKtreG53BRHvpSAyCal+EbHVA2LnGIg8MQciNA6d5ENe58bocw3mkDhc8nUpSfZ0PHNpOp6hnMhZfT7FIwiZWeOVpGzU/62grzmgrK+vo3ks/U5v0yzqNPdk0pRJV6ZM54ls8f/f3/s76G2q+OiTO/jTD34NXHyA3GeL+P7o+/Bw5z1wg5cRGf8W69oOrq/+ADa0a3A4H7eFBu5KL6ODZHzIxz6WV1q4fHkIXb/L7Gr2Z6TPX5F6Cwe5H8ar3DvwvFvBS6YP35o8uSXjEXqqoozIO4s5PKrI0OgI+Z6DV++O8FytgQ91zFPPj6HnUhrLPLJRwK21YnJfzWGH70Ag6Oj8UQIjX0qBxDhnm4ReQVavzcPH5CpuwYvD6QouA5Heszh4+BtJFmR8ACc8f9RTUkrYye8kK7kz58LQfS23BomdPRSz81+YA/IaQcfn4e3/OvYnK7m12oT0zhRfLJ5sRd3eYbkQcXOTdYIkXwPHsiB/ZGDYplFMkgmhbZlz/xxyQaoqStNV3CSQyt4+tpI7Xcttt9A9uI97zyYn5jqNIYKuAxgRJE4HlBwrKfMkDmMBcHImgpUWC6UShEQanaWUY0VlTW4DjfgWau4mO0WXZUIIQqwARXPE1nS/Pf4Sy4UQhOxyNShSB20lxF4+cUI+L0n4NUFEbIjY6i5j8zDJhnxbN8aPdoGcn5vblKH7/rU1vK6UEcdpiRmVDtIBluGriMcEov4RiKgEIE+nILIMiZcRIJyGVe8wZ6TFoMTkEkuR5/0piGymWZF8ng6iPN39og2ZnE45kZnxDMuJrGVrvN/C+poDyvve9z58+MMfnvu1j370o+zXM2V6s3rujz6OF/7Dx/Dhd2zgkb0X8B7+VxE/V8D3jP80Hm59G1r+i4D1a7iSfwy3Vv4v0KUSDvkePi68iD2hzdaDaXSztnyA3UstqOoD9kN5AiUOv4rDwp/F68K34XlvBS+ZAaJpLCp5NbgsiXhXScdjsoKSFcIbuHj9zhhfPKzjP3RPL1Yr6xIeWS/gkfUiHt0o4JG1Am7pI6j914HWZ4DWK8DdV4D2a0Bgn7+au3wjuap0vwksX2dOCEEIwceD0QPsjfaw1/h97N/+ZQYgDbNxbhaE53hWzT4Jo+4UdubuRTl55UrbLtSAyrIgX7wHf/9TaLKG1CQLcuFOkFkH5JROEJLvJofUkQsyvGNj9EcP5npBwgVlcUpOTDdhZrdiEickX1EZpMzKNsYYNhu49+WkIXVcb8NrGYiGHnibhywVEbM8iAhXFDAWBDjLBoLdFkRtyMYxDEK0HHpyBU1uHfX4cdS9dbSsFXiWNIUQxbBx2anh6fjFqRNC2ZCqUMdIdvCgkjghdyURH5Mk9AIBq70lbLbICYmx2wW+vUvnynDw5UoSTs2lY5nldbywuwZf1BCzk3YnbsgDxP6XEDNHLDwGIpfmQIRaj8llpIMp7zMQeZWFVmmTLVE0XeNdzvWxm+uzoxcUZbSw7n26QcNyIrtv67r3TG9Ob3iLxzAM3LlDoUDgmWeewT/9p/8U73//+7G0tITd3V02njk8PMQv//Ivz60Z//W//tfx0z/90/j4xz+Ov/E3/ka2ZpzpzbsmP/ff4uE1Ba+ZebzD+2UEr/B4ev/b8WD7u2FHL0EMHuBG8RlcL74TgcDjVfEQr4t1mHDYK7tq9QA7Ow3k8gQlySv5CBxq8vvwqvrD+HJ4A1+xhBN1aVRs9t6Cjm2q8R64uF8f44XDITth9zRtlTU8sVXEE5slPLFZxBNlF8v2PXCtV4HWywmMtF8F3NHZI5mlaymI3JwBkusI5TxqZi0BkGMX5UHOg5DJAXUEIQQek4t+bTO3CUmQZppRqRE1AQ9v/yHbhqF70GguDKPSqOW4A3K8EyT5N43Z1gtbx23PrOWm58XYCzZiJvXssyHUI0dEhaLPN/tGYYhxtz3diklGMX34HRMYhVAiDaJSmK7mWkKAsdhP1nP1JJTKIESPMFRz6MpVNLGOBjZQ99fRtFaSnhCLxjEB6wvZspq4GiddIVfTa5ujCvcBKy0jJ+Q+y4ZIeCgIkMcUUE1q3NnKbrq2m3ekuZHMJCNi66sIOWpT7aduSBpWZe4IuYHREYikI5l5EImnK7yUxZpUvQ95i/1/s+OZSVakUBhC0wZnjmeyuvdMX/c1YypdIyA5rp/8yZ/EL/3SL7ECtgcPHrDfN/vf/K2/9bfw8ssvY3t7G//gH/yDrKgt0xvW3t2X8fv/8t/gI7eW8d7aRzDo7ePbn3sSjY0fxIjfgxzcw6Pl9+Bq/il0BRMvifu4L7TYq8ByuY7NrQdYWnoIjkucEgs6XlH+K7wsfQCfd9cwXa5JRR0jT4syqmYEj0Y1hyO8XBvBO6WbhPpCntwq4fGtIp7cyOEptY3S8FWg8RWg/hWgSY7OGdkKeuVILsjqozPXY4jLl9Dzhrg3vMfckIejh1NXhBySIDp7TJKTcrhUvDS9dgu7UwipqtUkCxIEbOuFAchDWstN7wxI9hGNz1/95TQtAY/d3XM7QUiBRy5IejbMtKI9LSrrOqw99TxR4PQIPtS5YOrxLMjcWm6zgUGrgREbxYwQ9l3wFseOJ6A8SCzLcEUeBu/AkHoMQmKdQqmjGQgpoCMRhGyggXXUgw007QRCuCmE+Fiy+rga1HCNr03dEFrXLYot1GXqC0ncELruSyI6EQVUkwbVSYvqVifGep++JvLTkOoUSHLrcNQq4tg9qnRnGzOTexLsPg9ECFxnN2emZ87wJoIUyQk4ZltWC/kh8vkBBNE6e403DaxORjP0OKt7z0TKqu4zve31a7/43+GVfICmYWPL/g1c+vwmYv3H0NHGkPzX8GjpXbhSeBoPxR5eEh+ixZPNbGJt7Q62tvcgiskP7zEK+Ir0Q/iS+L141l2mPOxUeYHHexUVG0YEp2Pj+b3+qe5INSfjmd0Kntkt413rEp4QD5Dvv5zASOMFoPnyGeVlXJILWX0sgZCVRxIQWbqGptfHvcE93B3eZUBCj+k+cOdXkWcl8zJ2i7tzIDK5JhAS2Ta8hw/h7e1NwcN/mHaDXCALwppRd3aTTpBjd4EOqEvzAfRjhFyQCXzM1rMThFhD74+1EaPm5l0Qtpbb7yUAwk7MpVFMB37bRDT0IQcKNLEETtERSAQhMRtLmEqX1bUjDaUm2zExO7yuIy6nELKBRrSOhr0Kl8YxKYTQPWeZuOoezoxjyA1pYIujkYzHwGNSXMZARBQhODwDD+oNYSBCd7ayy8HWlucKzCYwErDDKO3kgLsJgKRlZoiNM0GEVnlpfZc0uzlDEEJQQiBCQdb0bxEK256ZZETo5+sIktQ/Y3tmMp55JBnRzIxnsjXeTGcpA5RMb1vZjoV//3f/IX7vqRW8o/abwO0xrjd/AHurG+C95/Bo6WlcKTyF+1IXzwsPMOItlCt1bG+9hnLlkP2gNZHDF/j344vSn2Z5ktnX6tdFCTdtIO66uHcwxN6x7IjAc3hso8hg5Ns2VXyb+hBr45fAHX4JqD+frPCeNk6h9tS1J4CNp4D1J9njaPkmDt0+g5C7gyMQuT+6D9M/o9sBHDbzm7hcuowrxSuJG1LcxeXiZbYxQ5kRdkYMwcfeHrwHD+A92Ese7+0trGfnJCkZw+xSL8gO5F1yQXbSTMgWa06dKPATF2R0bAQzOS03WOCCTHtBZgKpkzxIfkmBcMwF8V0Hw1ZzOoYhCKFRTNi12VquzhWgyCV6x/AlCRbvMwix1C58vQFO6zMIoXVVyoQMtHzSETKBkHgDDWd1zgmhu2Q42PEauIoGG8UwECEgobNkxEHqgCQQMrk3OQErw9QN6UxAJBnRKP7pYxlLX0XEiay1eNYNmWzP0BELZ4KIsgyRS0Ak2Zw5ckPYXTBhx0dQKIrutOqd3JBiif5euuDS7ZrjkqRK6ohMYOQR5HLXIQhHXw+ZMl1EGaBkelvqhc99Ch/99MfwOu/gUu8/4daXnkGr+l1wo+dwI7eLm+X34J7UxVfEPVjCGGtr97C1/TqbiwcQ8BW8A5+T/xw+H9yEF6dByDjGzUjAzpgOBzTx8sFwbrOG8pI0qnnf1RK+d6mHJ7m7UJtfBg6/nORGTqmrp/NiGITMXEN9Ca8P7+D1/uu43b/N7ncGd2CfEXwVORE7xR1cK13DldIVXCtfw9XSVQYmlBmhhlRyPZgTksLHBEbYSbnnfBvzpRJkGsMQdBCI7BxBiLi2Bo6fPb322Bkx08cO6ww5T2SmUOh02ow6CaWm9+O9IMx1GQ5msiDUDdKC2xwjGngQXRE5qQhZKiFSqCVVYKMYBiFKB77egqD3oan0ZDtGrAUYaDm0hbUphNTjDTS9NViWOs2EMBgxfKw5HVzDUS5kAiJrfAs1iU/cEFmac0Qij0sckHQsw9pUKaRKRhenshbVaX9I+piNZUDts6OjcQw5I2mrKmL3HBBZgcgl7tHs5kyPnBFyRAQTRny0ecVxFFodTl2RctmEnutBEE7POXGczMCDjWgIRnIJkMjy0ap2pkx/HGWAkultp//wi/93fKLCY6v5ceReHWPZ+rNo6j3sSBweX/ouHCoGviTehy8PsLX9CjY2brOqa3pS+jj3w/gD/gMYROmqehzjskN13AEOHw7RGs0/0VK3yAeuF/ED5UM8HrwM9fCPgP3PAZ5x+vbM9ruBrXcCG++Av/oYHoQGA5DZi5pTzxrLEIBcLV9lADIBEcqIUDiVqtjdu/fg3b+X3O/ehfvgPlvZRXj2oX58Lgf50iXIly9BunQJyuXL7G16LFYq099HgVQ6jG7Yshh4DFtJKHVyD9zzDw6UVGHeAUm3YabtqOK8CxL4yVrukA6qYzXtdRiN5LA6jAKoyCEnliDIedYP4op01pGNEWfCUjsItRYkfTh1QjjVPwEh7PLXYVg6gw9+AiFWgJI5xNUozYSwcUwCIVReRj0k01HMDITUBR6VMTcHIJPxTNkEfKlwKoh4bG03YlmQ6UiGlZklZ8wgTrJPlH+hUUxJWklAhB7LRyCSbM7Y6VgmBRHRwjCaddni6dkzBCPlsoF8YQhR7LAG1tOkqlvzOZH8I9A1OgRvfnyWKdNXUxmgZHrbiDYsfvnv/iw+caWExw5+BdeefQaNlWeg4R7eWf0uGJqML4h3YGttbG+/hI2NO4j5GF/Gu/H7wo/huehW8o7iGJVxiEvDEM29EfrmkZWtiDy+82oJf2G9gW/HV1Bqfh44+OLJ3IhcALaeAbbexS5r7TG86g/xcvdlvNJ7Ba/2XmVjmrPCqlRSdqNyAzcrN6cXgQiNZaiozL1HAHIP7r278O7dZ2+Hnc75oVRyQlL4mAAJ3YVqkjkhhWGEcXo67hRC2gmQLFzLTc+ImWZAZvMgKyrLghx3QZx0LZcBCN0bFEgdIEgDqXmxBF0qg5N11g9iCv4UQmy1zTZjKJRKLgiBCK+5bDvmBIQE6xjZeXBWmARTUwhRTQuXgpPjGHqc58fYm0LIEYzQr/kRh3UKps6BSBJWVXwOjlJJV3ZTGEnXd1k+JA5nVnfJDZmACFkpCSAovD6Fj4kbUmYgkna4TAOrSU6E3SULg9hASEcrpJp0itBVKhlsPKMobXDTVd95CUJ+JiOSOCJZuVmmb5QyQMn0ttBw0MMv/c//DA+0FnbufBGrnQ+ir7bxeOESiqVr+Lx8FwOtht3dr7Bxjs2r+Dj+FH6P/1F04qQ3gzd8XOmFMPfHGMw0tBZVEX/xRoQPll7DjdHnIex9+uR6b24FuPQdwKU/AXPrGbwiAC/3XsXLvZfxSvcV3B/eP3V9Ny/lT4DI9fJ1tkkT1GpwXn8d7u078O7eSVyRe/dYnftZopZU5epVyFevQrl2FfIVui4nq7kTCPGjxPlgAJLCR9vGoG0zOCGn5CzxApe4H6sJfLD7is7ckONnxEygcdRpM/iYnJhLZ8W4LQPxwGdruXmpzEKpUDQEoogx77JRTAIhHUR6B6o+SscxIwiajZGWQ4tP1nOnI5loHUO7NHVA2EjGDCBYHjbdztQFmVysQZXroCMmI5nJqu4DtroroS6KyFtHDsg0pNqNscpy0zxsdTmFj40URJLAaiQoKYj004BqZ6binVZtEoigBlVyQxIYIRBZRVlZhYyjsknKiSTru4krMpBt9GID7tzxADSeMaDn+igWRqhUTGh6HzzfWXD2zC0UKCPy/2/vTuDjrsr1gT+z70smk31v06RNd7pR9h03FBVFVEBAUREum/cKLiCyKXgBryAILldFFkVBLmCVRfZCaUv3NUmbPZOZJLPvy/9zzmRtAn+KbSfJPF8/P2cmzSQnScM8fc97zhkKJHp9OadnaMpgQKFpb8f6N/HIWy/CPPACyt+1ImA+Fk71AOYVHottehda9ftQVbUN5RW74VXasAafwEuKjyAiXgQSaVjdMdhdUfT1jb7w2/RKXFLnxaf0G1Hd9y8oxG6sYxkcwOyTkak9Hp1F9diUGMQm92Zscm+SfSOThZFiQzGaCpvkNdcxF42ORrmxmdgzRAaRPXsRk4Fkr7zec8MysdeFqIbMngXdrNnQzqqDbvZsGUaGz4oRv5ohbxxeVwjevgi8vWEMusTy2VA2hLzPb65aoxxpSLUVZ8PH8GV2TNycTDakyhUxogLSLW8DvW65KkbskGpW2WUI0amtMoTEVAoElJGRSkjU6EbG4BmpgohbjT4Mv8E4MYRkSjEYsUMRSY/2hAyFEVvEPxpAhqogs4eW62aUiQlLdcWtqIZEoUCRb7QaMtKk2g9YI0BKqUHYUDx00u5oRUS8TWzxPxpExlZDxG12DxH5PVVox6yWKYJdXwK7rgg6jC6nTiE9rk/Eq8tO1QSSBzRfixN5zWLlzCAKCyOycVWtFtOC73HsgbZoqEdkqFfE3AijUTStcsdtmtoYUGha++fvHsL/xbpQ3fokqnecArdNg6W22QjbrNig2Q1n1VZUVW3HgNqBp/BZvKE4STbBKgIJFHZHEesMIjE0baFVpvG16l583rQJ1X0vQRHoHn8gXtVKpGedgt0l9ViX8uFdEUj6NqE/OnGPkhJjyUgYGb4cSoushsgAIgNJ9kq63ZN/cWo1dHV10M2ZA92cemhnzc5WRaqroRjarl2cFyOmYQZFEOkNZ8OIDCJhuYvq+/WD2MeEDxFI7EPVEKNNO+Ff0dFQUIaQwd7u7G1PN8KuASQ9YaiiKpjUBdkQorHKfpCoKp0NICKIKIOI6t1QGAdGqiAiiGgMYQT1hklDSH/MAUQy43pCRAjRhqOogWukAjI2jBQq/OhVqw5YJTO0UkZ8L+MZlI1My4xOzYi3aVNAUnVAo+pQj0hU75RdvB8kiKgUalg0jpGpmQIRRPTFsl9mmAivQUU0WxURgUQXlitnvMkA0uP+k5qtioheEYcjDJt9eHpm8nONlEq93MxsZPXMUM+IVlv4nn8PiKYyBhSatv5856140RRE47aXYB34FPQGL+Y6V+FtQzsSzu2YPXs9wgYNnsI5eEVxGlIZJZR9UTi6Iwj2Da+IyeCjhX24zPEOmvqfhyo8JixozcjUn46OWcfgLb0Ob3u2YF3vugn7i6iVahlAlhYtxZLiJVhctBiOtAGxXbsQ3bED0e07EN25E7EWcSDf5KFBU14OXUPD6CVCSV3tSBARp+MO9AQx0B3KXiKMuMLvuzpG7A8imlALSoywH3AZrdrJV8X09shpGHn19CDi8iI1GIc2oYVZbYdJY4dGIw6t0yKsTGYDiJiOUYYQ02dXxgxXQUQY0RhCCOn1E0KIuNwJJzLhzPjmVHmbQElqUAaPbEUk26gqbqsUbsSUmQP6QrK37aIaolDAFjqwGpK9LfJnF3UnNGaETENTMkMhRNzGdPah70VypEdkeGoGmX6kk6NBRAHlUBARDatOFBhEECmFASa5vHtYFImhPpEgBrVh2ScymAwgnk5MrIqIPhF7AIWFYZjE9IyqN3sk9iT0unKYLfOGwsg8OU2T3VMku8Mu0UzAgELT0m9/+H1ssvRh/voOJFWrMNdqR7ygCFvMm1Bbvw76wkE8ic/hBcVHkEipoeoKwdweRiyUfWEoVQziO+WbcGbyZRh9Y6ZvDA7EGz+Cd8rn4eWkF6/1vCkPyBvLqDZieelyLC9ZLgPJXEMd0jv3ILply0ggEUt5J6Oy20cDiAwjojoyByqzWf55NJTIBpCeoSAiQklP+H23bDdYNLIaMjaAFJQaZa/I2JUx2aXAfgx2d2GwZ+jq7kakz4v0YAKGjFG+6Jo0BdBqLEho1Qgq40P9INlKSNzghtqQPc5+OIjoDEGEdDr0KccHEHH1JZ1IRxSju6aOWa5rToTl9Mvs4WqIcjSMGBRRdKtVI1Myoytm1HCLDcxSGRR7JzapivummAgiYxtVRV9IWXZaxlSGhNo4JoiM7RHphwKDSCVGe0RE2DCp7SMNq6IiUmAQQcQMpTziEeOW8YpzZ7wiiGjDGEgHEJqwNDwDvT4gV80UF8Wym5tpxX4zk/eKKJW6MXuKZMOIuGXTKuUDPwMKTTcP/OA7aDc0Y947FkQspVjkXIRN5l6oqt5CVe1mvKI6FX/GFxBMmaHqDMHQFkIyKioXGZxu2I1vF7yGhsFXoRjel0Slg7fhdLxSMRevJPrxRvdahMfM+4sKiaiKrCpbhdWlR6MhYkNiyzZENm1CZNNmRHfvnrQyoi4rg37ePOibmqBvyt7KvUMUivFBZCSMhN43iIgmVEe5CY4yEwrEVZoNIwfulCp6QsQUTPYSIaQLwW43Ep4IdCk9LJoCGUT0ahtSOi1CyoQ81E2cneITS3R1HmiMXhhEY6pcIZMNI1G9Gr3K8tEdU4dDSLoYyYhy3IZlwxURdSyBSoV7QnOqCCMiJAYUimzw0I4PIe0aDeIKBQyx0QrI2GpI2SCgSgNpxdhG1dIxQaQUqaFdUUeDyOjUjAIDSCVGKyKCUW0d6RERIURcJoUVysxoEBk+d0ZOz4hVM3rRsBqALx6c0HekUiVk02qRM4YCRxhGgwcKZTcyY/YeGUunKx2phgyHEaOxllURylt+BhSaTn72w+sRTL+Dyu1LoLPpUVI8HxvtG1DX+Dq6bUX4PS5Be6YGqo4QdK0BpONpWBDGxaY3cbHuJdjC4pC/rGDVSvyrZin+nh7E2t71SGZGl/wWGYpwQuUJOKnyRCyNliC9cQtCb72N8DvvINU/sedEBA/D4sXQL1wwFEia5B4i6VQaXlcEnq4A+juD8HQG5W3ofbZvFzujOsrMI2FE3IowotWPntiaTqfgd7sx2N0pQ8hATzd8XT1I9IXl8tzhEGIUq2O0RoTVqWwIkdMxYQTFluRG0ZjqzwYR0Rti9AOGuFyi241y9KIcPahAz9DOqdG4Tp4bM7w6ZqRJNZKEE/4xVZDRq1rhglKRQrd67KF2o/0h/WqVXNbtCEw+LeMY6hMeblQdt3TXXI6woQiZoRdwGURGDrzrB9Li5zRUERmz9FavMo9s7S5CiMNUBhNsUGXGBwGx3bucnlGH4DVke0bE+UbJ9IFhNLvtu6MgjKKiKMwWLzQaF9LpyXfiVSq1Q70iw1M0c2UoETuwEtEoBhSaNu685ftQhF6Go+UklDvs8DttGKx6CcWzduJx1ZfxMk6FsjcC3V4/MpEUijGIqy3P45zM89AksxtVJbRmvDr3ZDxj1OFV9ybExyzVFEt8T646GScblqB8uwthEUjefhvJvr4JW7yLAGJYsgSGpUtkMNGUlSEWTsDTkQ0hnq5sEBFVkfc6zE7sGTI2hIhQUlA2PoikkknZDzLQ2YH+znb0d3XA3+VC2h2DSWmFVeOEWeOAVmdFXKOU0wze4SCi8st9QoxjKiFyhYwxBK/Ghh4ZQIaDSPbypuwj4WNkOmYoiBhSUdQqXKM9IcrukekZmww+Chk8xm5ctn+oGpJQKKBOZg+zO3C1TOWAQjawCrJRdUxfiAwilnJExOFxI2f3HBBEMgOyIpKMiebR0f8kZZfwZisiDmM5Ck3lMCtsUKVHv79jV88MiEZVU1Q2rHoSPoQTE3fuFfuKWK1i5+EE7AVB6HUeZNCJTGbypd86bcnQviJDYcQyD0ZDHZTikEciel8MKDQt3HHL96AeeAW2ntNQV1yGXYUeFM59Hm3OEvwWl8Lrs0Cz0wulP4EaRS+u1j+Ls/AqVEM7cO4rbsCT1fPxt2ArBmKixyBL7Mz60eozcXq4DtYNexF85RXEduwc97lFo6oII8ajV8G0ahX0CxciDZUMIq59fvS1iSsgm1Yno9ap4KwwobDCDGelGYWVFhSWm6A1qMftmioqISKEDHR1oL+jA6GufmQGEzCrCuQSVVERERuWRdSZoSCSPcBNnKSrNg3IU2QN4iTZoduoToNexcQQ0pcpRjqqGF8FCSWy0zKxFIrgRb0MH6OXqIxUKjxyQsSlUskpmdah6RgRSFqHqyFiqiSaPVOmcjiAyDACFHszUA79FyOhNg2tmCnL3prKELZUIKa2jHxPsqtmstu7iyAiQogIIwcGESVUQ7uqiiBSBqe5EhZlATSp7BTPyMdDRlZF+sUSXnNU9or0pwMYiPiQHlNhGX5vnS6M0tIECp3ZXVdVqh6kUj2Tnp80uu272FdktDLCFTREHx4DCk15d976Xaj63oBt4CTMLpmFbaXvorTpTTyuPw+vJU+Eeq8f6o6QrJhcq3sS5yj/BVUmBRFNnq9ZjMdtdmwM7Bv5eOK03k/VfAIfHaiA9fVtCP7rX0gNjoYW8S91EUJMxx4D06qjYViyGMFQBj17vehu8aFvvx8DXSGkJ9nQzFKoHwohQ2Gkwiw3NBMraoY3LhNBxN2+H572NvR3tCHUNQCFPw2rOvsia9YUIK01IKCKywAyHEbEUl2dyZs9zl5cBh90Rj8CWgu6UCmv7qFbcYVTRiiCyfHTMkNLdjXpJKoVfahXdMkqyOwxgcSqCMsdNdpk8FDLMDJaGdEgIr6WTHbrdnHSrgwgQ7dV/QrYgtkX+wNXzAyHkJC5HHHl6MFxY3dWFc2qSqWYkhlAQizfPiA4iJVE4nskqiFOazWsKge0Cd24lTNjm1a9phgGDWE5PeOJehGJT+z/EGfQ2O1RlJYlYLcHoNf1IZ1pRzodmPTvo1brPGB6RvSKzOK270SHGAMKTWk/ve27UHe/CXvgJJSVzUJb7T+B+j7cp7wabpcNmp0+2OJ+XKb+P1ys+Se0mRh8SiX+XLsEj2qT6BtaEiy2iD+x9Fh8PtiEug3dCL3wkjy7ZpjSYoHpuGNhPuFEmI4/DoG4Ad3NXvQ0e9G914vg4MTlngarFiW1VhTXWFA8dGswDzdmZhAc7JchxCPDyH5423uQ9sRgUTnk1INF64RSZ5JBRBxnL5eiKoKIGfqyp8eaRKNqNozojEF4VM4JIUT0iMQSmuyUTDB7kJ28L8JINCX7b8SUjAwfym7UD92vUbigUaTk90pUQbLVkGyzqrjfpVYjrZC/5CgaWi0jAkjlUBCp7FfAEB0NInGtbVxFJGyvRshQgoRCP/L9Gj1rJrtiRqX2ymmaRMQjQ8pYepVJfo8KzRUostbApi2EPmGEQgzqgKpICDEM6iPwWkanZwbDPvkzOJBanUBZWRpFxVG50Zla3YNksg2ZoUrbWAqFGibj7GwYsYyuoNFpnR/ibzIRHSwGFJqy7rrle1B1r0VB+ASYK8oRnPsUtlTMwaOJL0K5MwR1bwifVb2G72kfQ0HGB7dKid9UNuIv6gQiQ70lolpyseFUHLcpjuTfXxxXKRFn0FjPPAOWM86EomEBOpsDaN8xgI4dAwgfsJpG7J5aVGNBWb0dpbNEGLHKHhKxIkdURcTUjKu1GX37W9EvTg3uDsGQMsl/7Vu0hdDqbAir03IZqtiyXASRkLYfenP/SBgRx9lrTQH0qUrQiWp0oQpdqJCBRGxelkqo5Hb8oiqSDSRDlZG4mJbxYY6yE3NkRWQ0kIiVMuKXtEetksFj7LTMPq0WA6rsChWxbHd4E7NKMT3jyaBqQImy/jQ0yeyvufj/mK5gXEUkUlCDoL4ISYxOp4j/LMjTd0UQSWeDiGhYjUdFMBkfBMQOq6JZVfSIFBfUwK4thjFlhjI5fsv84arIgDj4zhaHVyemZ/zwhAcRjU+2V0gGVmsG5eUpOBwh6A1if5sOJBLjl4yP/F1QmbNTMxaxiqYpu8eIaY5c5ktEucGAQlPSfbf9AImud1AUXg1VtQ3pRU/hiYLP4K3+ldBsG8T8eCtu1vwvlin3wCOCSWkN/qRTIDa0EmeRbja+5mpE9astiG3fPvJxVQ4HLEOhxO9sQNv2QRlI3O3jy/niTBkRREQgKZ9jR2mdDRqdSjatDocR174WDLS0IemKwKp0wK4rkVWRuE4jT5EdDiN+9SA0Zk82iBi98lZcPo0VHageumrkbU+mLBtEAiKIZMOIrIaI+8kMHPCjQQaRTjSIa+i+QyGWuQK9KhWatRq0aDTyVgSSFrmpWrbyIJpRZYOqrIRkw0j1oApFA0koh2ZT5B4iese4aRlREQlqnUhhtG9G/vpngiN7iGi02YpIPOJGOjk+4ImNzawaBwqM5Shx1MKhL4UxY4U6NnEJ7fBOqyKIDBoisrrkiXkxGBy/Qd4wpRIoL1ehuFjsK+KDRtOLZGofkskx03YHLOcdDiHy1jwPBkMVFIqJoYiIcocBhaac3/30FvS3v46K0LGI12qQXvo87jd8E50txTC0DuJy9ZO4XP03RBUZ/KrQiYetZkSHpghOSc3BV7YXwfDiOmSiQ/0GGg0sJ58M66c/Da9zPlq3DmDfZjfCByz1FX0j1U0OeZXNtsuQEvb70L1nF7r37IRr124kusKwq4rg0JXBqHMgrFWgXxFEvzKAfoUfcaMLJssAzKYBWRUR+2Ak9MqRACIqI8OhJJrSZwPISBhJQBlIQpFIw47AuADSoOiSFRKnwj8uiIgAMhxIWnQ6hIdmQDSJbBCpcmdQ5cmg2qNAbb8KjsHRCoYIIhF9IUKm8uy0jLUyOzWjdiAF1QFBJDSydFet9QFpjwwiqcTEng6xn4gIIKWFs+EQK2dggzqqgWKS/1qIg/B8phi81pjcV6Q/4YMnOIBYYvJl2BaLFhUVGTgKwzAa+6FUdCEWb0E6PVkVRQmTafYBYYSNq0TTBQMKTSnP/uHX2LnpCVQMHotofRLBpZvwc8V/ILI1jaaBvfhvzQNoUu7H/5lN+FlRKdyiFTaTwdn9tfjcu3po1o9WS8QOrdbPfhaBeSeiZWcY+7d4EAuP7nWi1atQs9CJmvkOVM5zwGTTyRN327dtQdfOHfA1d0HjV6NQVw6bvgQxnRZuZQBupQ/9Ki9gdsFkFmFkUN4azD70qkrRhjq0oXYkkHgzBdnm1EAi2ycyFEiUkRQMiKJR0Ym5ynY0KjpkGGlUdqJI4ZNBxDVZRUSnQ2goiIipGbFniAghIoyIIFI3oIKjPzGyYma4RyQog0g5wo5ahGzVCKoLkDpg749MOiwrIsAAtFpftiIS7kMyPnGFklapR4G+FGXO2SgcWjmjjemgGP0Wj35cscGZLg6fXUzPRDCAANzhQXiDo31AY6lUKpSWGlBSmoDN5odWK/YVaUM0KnbonfifHZXKONS02iSnaiyWJphMDVCpRntgiGh6YUChKWPXO2/hib/cjlmu5UjMi8C1uBX3RS4HNgVwSeJZXKd+FPu1CvywuBhbtdkNvs7scuL8t3XQ7mnPfhClEuZTTgU+/kW0BQux9x3XuH4SsS183ZIizFpShMrGAsTCAXRs34K2LZswsKMNhpARRYYq6A1F8Gpi6FP40af0ImrshtnmgdXigcXigdoUQqeyGvtlGKmTt6JKkhDTM/5ENozIIJKdnlFm0nJH1XmKdsxVdMhAMk/RhhplH5TIIKxQYK9Wgz3y0srbvVo9AkOzDsp0dg8RWRFxA9UeoG5AjSJPQv7ZMLF8Nyh6RMTUTEGtDCMBdSESmfErTERTqJiWAfqh1XnlWTOxsAuJyMSVK0qFSvbSlDvnoMhWLVcb6eJ6KGPjG1ZHxqBKwV+QwKApmp2eiXvh9vcjkZjYiCpYLGaUl6vhLBLLeQegUnUjFmtGIjH59u9abTEs8hya0TBiMNRwioZohvEzoNBU4Bvw4Kf3Xol5rXORnB9CyxI3ft1/Eexbe3GH8pc4XbUOv7Jb8WCBHeIf6KvatPj6WxaYW7O7dSoMBpjP+QLc8z+GXVuyW8cPE1vB1y8vxpzlJSips8Dd1oqWDW+ja8M2aPtVKNJXw2AsxoAmhm7lIPo0LmhsXbBa3TKMGK0D6FGXoRkN8tqH2ejOlCMTAxT+xGgg8cehiKVhRlhWQ+YpRRhpH7rtgEkRlfuIiBUye8aGEZ0eHWoRU7JsoQxqXBnUuIHaPqDeo0axJwHVULOqkFTp5EZmoioSttcgXFiHoK4I0fT4ps7hlTNiakar90KpGEAi1odIwC0D3oEMagsqihpR4qiTDauGpAkqUa7JTF4Vidohe0UGtCH0p/xwhwYw4Bt8z6pIcXEhysqAAkcAen0fMuk2hCN7kEqN/rxGKeTy3WzzatPILVfREOUHPwMK5Vomncb37vwm5m8vQ2pBHJuPiuCxzs+iafc2PKi5C3H9AL5b5JQv6KK586o37ajZnt1uXmE0QnnOxegsOQ57t3iRjGV7UcQhebWLCtG4qhTlcyzo3LkFLevfhndLBwpSRSgwVcOvU6BL1Q+Xpg8aewfsNhdsdheS5jRaFHOGAskctKIesZgGSl8cSm8cCn88G0qSGRRhEAuV+7BAsR8LlPtkhaRKmT0RWeysuleTrYbIS6fDXq0WkTHTM6JPpKYvI685Hg2q+zIwBQ7oEzE4ETRVIGivRbioHkFDCcJp4yTfx+z0jAgiapXY4t2NsL93QsOq/NwKNYrtNagoboTDVCH7RDRhNRB7j19pgxIBZxqDRtG0GoQ7Oog+rweRyMTdVgWLxYKSEgdKS5Ow2rzQqHuQSLYgFNqD9Jjde4cplfqRPUVGwoi5UU7dEFF+8jOgUK7d/JOrUbNFC+UCDdYti+KvrWfhtPbX8T+an+PvVhXuKCyAKg5c8IYWp7wTgyKdRkajQeozX0erdSU6945OS4gzaxacWIH6ZU64WrZj9+uvIbTNhRJNLbSmYvSqA+hQ9yFmb4WjoAv2gh4kzRnsUjRhB+ZjJxagJ12WrYx449lQ4ktAEU2iFANYoNw/FEj2ydtihXekaXWHToudWi126bJVkR7V6BSIVVRFZBAB6twK1Hs0KO6LyZAyTBxuFzSXI2iuRLh0LoK2GgQUNiTTqkmnZ8SqGbVYOZN0IxrsRXyS6Rn5ufWFqCxrQrGtRm6Nr4/roQiIxtdJ3lkJpJxqeMUKGm0YnrQf7uAAPAMepCY5EFEssy4qKkJpqR1FYorGLKZouhCJ7EY43DJhf5ORJb2W+aOXuWloozNu/05EoxhQKKfuu+uHMG50wTSvBG+u8OOJvZ/Exd1/xTWaP+BHxQ48bzJiaXMal7+ggWUwJl9Tw6d8EftKT0Ffd3blhjiiZfZRxZh/QjnSyU7sef01+DZ3oVhZDaW5EO3qQXQb2mAs3A9HQTd0BV7sUs/DVizGTsxHd6o8G0YGYlAOxqHwxaHPxLFI0YqjlHvlUualymbZuCqmaDrUauyUYUSDnToddur18A5lEdEPIqsiYoqmL4OGAR2qXWmYxvTBZPcTscsgEnTMQri4AUF9KYIp0dB5wEZk6TAU6IfOKKZnxMqZXoR9Lll1OpBaqUVFSSPKnPVw6MtgzFigCiiAoXNuDqQwqhApVsjzZ8T272Ipr6iK+PyTN67qdDqUlpaitNQMhyMIg9EDZNoQDO1AJCKaVyfSaBxDQWSB7BWxmOdzSS8RfSAMKJQza59/Bu8++ghKqhbhtWP68MTuT+AHfb/CR/T/wOUlRXCl1fjq8xkcvy37YhyqX4m2ZV9Bryv7104sA553TBkaVlrRsfUNdLzyLpzxcqgtxTKU9JhaYC1qQWFRO3wWIzbjKGzCUdiTakTGm4KyXwSSmKyWFGcGsVK5W4aRo5R7sEDZBjVSco+VzTqdvLbqdTKQjF1BIxpW61wZ1PcqMNejRVlPDOoxhwOmFWrZsBowVyJSNhchew38SgfiqQOrImJzMy+02kFo9YNIp9yIBnoQDU7ez2GzlqCmfL7cZVXswaKN6AD/xGpFdqAKKJ06+AuS6NeF5AZnolfE5elDPD75cl673Y7S0hKUlOhht/ug07mQSLYiENiOWEycRzORTlc2vjJimS8PyxNVFiKiI/n6zXosfWgB7wBeWfN7NBSvwLpVbXhy19m4w/1zzDK/gS8Wl6CkV4m7ngYKvWm5aVj7qVejM+QAXBnZX7LgxHKU1AbR/PL/YdMrcdgsdciYZuHdkt2wFL8Ih7MDWnMpXsVqbMDXMRAugNITlZd6wA1H2oejlTtxjHI7Vmt2yMPxROfHLq0Wm/U6PKKzY7PBiO6haRpxEq+YnlntSo+EkZLeGFTJ0TCSVKURNNchWDgbodImBIzlCKSMyGTGvECLmZWkWBrtgd7kg1rdj2SsD6HBLiTjUXkGzoHKyuagqnieXMprztig8iuRCSUBUUByj57JKygtGmRK9PBZYuhXB+COe+HyuuF2u5H2pd+jcbVYhpHiYiUslkGoNd2IRDbJMJJIDGBgkoxkMNROmKbRihOHiYimAFZQ6EO76UcXo8nTgJ2nNeO37efiHtddSNk240eFBfjE28B5r6aBjBI9TZ9ES/npEK/pYvajcWURnBV9aH/pDdhCxYhYLGjV74eqdCucxfvRaS3D2zga72RWIugzQuWKQNkXhS4Sw0rlTpyk3IxjldvRpGyTgWSrTod1Bh3W6/XYpNdDrpzNZFDoBxq6M2joAha6dKjoHh9GEmpDdorGOQehsiYE9GUIJHSTTNFEodb0Q28cHFrK24PQYO/kUzQaHaorF6LcWS/3FzEmTFB408jEJr6v+DRqpwGpYg0GzWKKJoC+yAB63S7092cbiA9kMBhQVlYmw0hRkQImkwdQtCMY3CbDSDLpn/hpFCqYjPXZxtXhqRrzXKjHnDpMRHQ4cIqHjrg7b/9PVDSb0fXRdtzvORf/0/VT9Dl24BdmOy57No3VuzJyL4/dK6+AL2OTzymdZUHlHDf6XlmPAmUtuo0x9BWth7NsNwIOLV5Xnog30sci7NVD6YrKYFIc78fJqk04RbkJxym3wqCIYqtOi3V6Pd4x6LBJb0BUkZ2qqesF5nVmML9HjYZuwDxml1nRvOq3VCNYMg/B0ib4dSUIyTAyXiYdgc4wKK9Mug8RXydC3pESxzhmiwPVVYtQaq+DTe2ELqpDZiAJjGmaHaFSQFNqQtypxKApAk/Gj77wAHpdvfB6ve+5iiYbRkpRXKyCyeRGKiWmaLbBH9iGZHJin4lSqYXJ1DiuMmI2iZU03OyMiI48TvHQEfXm88+haGccgyf34pe+z+MnXf+Dvc5d+JvCjpseTqHOpUB7zWlonXU20hkFtEYVZi8KILJ1LSLuarjtRvSUPwtzeTdajcvx28zV6PaVQtUdhsoVxpxkCz6mXIePqt7GIv0+eJRKvGk04CaDCW8ai+TSX9HIKgLJGe1pLOlQo6EjBe3Q8uQM4ogYitFTNguhqiXw2+rgS5rGT9OIGZp0GHqTFzr9ANIpF8K+LoR9HsQm6S8tKC5HTeVClFjqYFEUQBPSIN0fA8QK3aFVuhlZzwEUehXUpSZEncCAPruKps/vRk9vL4K7g5N+TwsKCmQYKSkR0zRqGUYSiWb4A/+UgcTVN3GORqHQymW8VutCWRWxWhbCJA/HG7+hGxHRdMSAQgclEY9j3d8eh2NpMX6pOxk/2PEgmou34Y2oFbc/noIxbsbmZZdiwDJb9mqU1MVh8G2GclspXHYlVNV/QrI8gRdUZ2BteDUyLQkou8NojG7Fx5Rv4+Oqt9Gka8MejQYvmoy4zViK7TqtnLIRJ/UevyODpe1KzO3IQBvNBpK0IomApRq91Qvhr1gCr6pofAOr3Ek/AZ2+H3rTIDLJHoS87Qj7BiYNI46SStRULkKJtQYWhQOaoBopTxQQGUHmhDTSsnlE9ItooSk3IeZUoF8TQl9yEL2Dfeju7kakd+L+IqLZtLCwcExlRAODsQ+x2B4E/H+XlZHunoFJnqeB2dwAi2UhrGKKxroQZlODrJgQEc1EnOKhg3LzTV9DQ6oCDyypwafefRlp58tYG7Dguj+nkNTWYNuSbyKqskClTqCiZC8MHjU6nV4oal5Db7kVzyg+iZb+Oqjagyjw9OOTqrU4R/UKFitbsV2rxfMmA14wmdCuUctTe+e3ZbC0NYMV+9VwDGQrFGmFCn5LDXwlC2QgGVQWIZkeXfIq/korFV6YbINQKvsQC3bC7+mctGeksKw6WxkRYQQOqAOqbBiZ5LdChBFthRnJYhU8uhDcSS96+l0yjASDEysjSqVSNq+KMCKuoiKN3Hk1EtkJf2CrrIzE4xO3glcoRAWlYSSIiFtRKVEqJ05JERFNZexBoSPi9/ffAc3WMJ45XY+ydwdR53gU6zwWXPNUGh7nauxpPE+GB6PZhdJEN0JWI/x1z8NdrcWTmXPQ0VUKdZsfJ8Q241zVyzhduR77dQo8bTbJvVJ61Gq5RfzyPRms3gM0tYuVN+nsvinGEgw4F8JbuwoD6lKkxgWSFNQaD4wWD9KJLgQ8rYhHJh6MZ3Y4UVe3BOUFc2BTOKH2izASEQWRCcRKGm2FBakSDQb0IbhTvpEwIv4eTlYZEWGkvLxcXiUlVhgMfQiFtsHv3wy/fwticdckzxO9JXNGpmjErdiNlT0jRDQTsAeFDjv/4CASG/Zjz+kGpLdZ0GR/FK96LLj2r2m015yFtpqPyGmUIuM22BVmtM/ZiUh9Px5Vnof2jjKY9/XjwtRfcbHq77Dre/Gs2YQvmZ3YrdPC4c9g1bsZfHNPRvaSiBN8kyo9BgsaMFi5AgOFTQjLDdCyMqkE1BoXjGY3UvEO+Pr2IZaIIzSml1Wt1aGyrgnVpQvg1JdDHzUi7YohM5ASh/yKs4GHFvUCSrMG2koLMqU6DBrCcKdFGOmUYWRg/8TpFsHpdI6EkdIyJyxmH8KRHfD7X5NhZG9zyyTPUsJkmp0NIiOVkXlQqQyH+KdFRDT9sYJCH8it37kIhdVOPBGfi8sTP8KfQ2b851+A1tlfRE/ZaqRTg6gz7offmUSo6XX83XYa3u5choJWFy5OPYevqNeg1ZDAI1YLXjIaoI8Cx+zM4KRtGczpyv4VjGsscDsXYaDuOPTrqmSDrSD+iioUHpitfUgl2uDra0FarlkepbdYUV+/AtXOebBmCqEcyCA1mO0TGUuhVcowoq4ywWeNoy/lRVd/rwwjYp+R92pgHQ4jZWWlsBfEEYvugj+QrYwEAjuRyUzc/USvr4LVugg262JYrYvlLqw8l4aI8omfUzx0OD3485th7U3i3tlzcH3PrXg0qcS1Tyixe+5X0V+4EMpkK2qtcXQ3vI299WY8NvB56Hd5cXHsWVysfgavW4CHrRY0qzVY2pLBidsyWN6cXRoc0RfCXbQE/TXHYlBdPLIHiVhhozN0Q6PtRrB/D2Kh8ft7mAsKUT97JSoKGmBNFwC9CaTD4ozkA/YZKTJCW21BvEgJtyaA3qAHnV3Z6kgiMT7kCOLv13AYEZfTqUEisWdkmsYf2IJkcuJ5ORpNgQwjVosII4vkpdUWHuofBRHRtMIpHjpsfAP90G7z40+nlOEbu3+FhzXAtX9VYtfcS9HvaIIptQUFpSrsW/wKHjd/Cvu2lOHz/c/iWvVjeKsgiS/bbQjEVThtfQZXv5uGI5CRlZLu0mXoqz0BPk3JyOcSVRijqQPpZAv8nv2I+Uazs1qnQ0Pj0agtWgRbshCZ3jgy/SmgX7SQZFfLKDRKaGusUFebMGCJwpUYRJerFZ0dnfBt8016Lk1FRQUqKyvlbUlJATKZ/fD534Xf/yp6XZvR1t474XmiWVX2jMjKSLZCIqol3A6eiOjQYUCh9/XLH38b/uPLsHTXLjxv6cFlj2rR3PA19DvmoiCzEZl6H95d1IvfDVyO+W9ux5OKu+Gy9+CiAjtSARU+/c80jtuegiqtRl/RYmxuOB4DlnpkoJBTN0j1wmDuQCK8F1F/L+JjCiUVtU1oqF6JInUlVG4gHUgAgTGBRK+CrtYGZbUBbmMY3aE+tHVsQOe6TiSTyUmbWEUYGQ4kJlMEgcBm+Pyvwud7F13du5DJHFCFgRJm05yRMCJuudcIEdHhx4BC7+mhn/8IRfYKvNtrQ531MZz7pAFdNV+Fx9GAYuUmBBfsw/P1NVi343h8u/83OMnwd9zhtKMnXIjPrknj+O0pxLQOtFcfh56qExBXGrIH6iVd0BlaEQ/uRCzsQ2wolChVasydeyxmFy2FOWxF2h0DOsSfJORCG1khqbNBUWeESxdAV8CFtvbt6Hm9B+kDlhAbjUZUVVWNBJKSEgfi8b3w+TbA53sWu/e8O+kSX3EwntW2FDbbEjldI3ZiVatNR+g7TkREwxhQaFKRcBjaHQH8aeUsfNxzF2zP6xEt+AI8hQ0oV+9A74rt+K39E3C85cET6W/jH8UBfF1djHNfzuDUTSmEjeXYMe8j6Cs+SjaDpFNeqDKbgdRexAJuxIfaOPQGMxbOPQVV1rnQDWiRDiaANlElickeEk25GZrZFnhsUXRGXGjdvxNdr3Zlqy9jiLnNmpqakctqVcLv34BB76vweNZj3/4dE6ojYvMz0bhqs4pAIq6j5Gm+nKohIso9BhSa1M9vuAptx1TgrI5HMNCsQW3qI2itWo4y3XZ0HLcJv4h/GWevfwGfNv0RPyi0oWmLCfe8nkZaU41t8z8Kj3OR3J8kHW+GWr0Dcf/oslu93oIlc09HpakBarcCGW8a8IpQkoBCq4KuwY5QpQKd6Mf+rh3Y/+7+CQ2tDocDtbW1I4FEb4jC630HXu/TaGldh1Bo74SvSastkiFEhhHrUtlHwv1GiIhmUEC57777cOedd6K3txeLFy/Gz3/+c6xcufI93/+ee+7B/fffj/b2drl/xDnnnIPbb78dej1fHKaifzz1KCylTpjaPdgd9OATrUdjZ+PpKNPvwM4Td+MP7i/ixo5fwFO0CTfHHfjmI2lUDNrQMutTcJWsQCYTQyq6DkhtRjIekCfUqJRaLJ57KmptC6FxKwHRAOvLQPxPZdNC02iHuzCCfcFu7Nm7Dt5m74Qpm1mzZo1cOl0Ig9618HofwY6d6xCJtE/4OkSviN2+EnbbchlM9PoKVkeIiGZqQHn88cdxzTXX4IEHHsCqVatk+DjzzDOxe/du2YR4oEceeQTXXXcdfvOb3+CYY47Bnj178JWvfEW+UNx1112H6uugQ6j7hXV4cX41mmJ/wsdea8T2eZ9HiWE73j2hFc+1fQQP+r+Lh8tDKNliwa2vK9FV+VG8tep0pJBAMvI6MsktSCej8mNVFDZice2psPitQCQzdLBeBuoiAzDXjC6jDy3uNjTvehHx+OheIiqVSlZIRBiZPXs2Cgp08PnexsDgk9ix8w1EIm0HjFopp2tEICmwr4DNthxarePIfuOIiOiQOeh9UEQoWbFiBe699175WDQnimbEK664QgaRA11++eXYuXMnXnzxxZG3XXvttXj77bfx+uuvf6DPyX1Qjpw7vn8Z9jZWYknnH1H9vBk91d+B1dKCbafuxyt7VuEHiVvwC4sKX3pWgarBWuxs/DJCxkKkohuQiq9HJh2HRqHF/KoTUG87CqrgaMVC5dAjPdeI/fp+7O5sRkdHx7heEpPJhIaGBjQ2NqK2tgLh8FYMDL6JwYE35Nk1Yw/IEVvEWy2LYC9YBbt9Bey2ZVCrLUf8+0VERFNgHxTxL9wNGzbg+uuvH3cg2mmnnYa1a9dO+hxRNXn44Yexbt06OQ3U2tqK5557Dueff/57fp5YLCavsV8gHX779myHxeRAVedmpLYq4Cv5KoyGNmw+qRtbdy3AfypuxP+mDbj2DyoMFn8S65echHRiN5KB/0MmFYBeZcLSuo+hSt0IhehHDWZX3iTnmdBu92JPzxZ0bJTLckaUlJTIQCKCicOhwODgq/D034W1b72BdDpbhRlmNNbD4TgGDsdxKLCvZCAhIprBDiqgeDwepFIp+aIylni8a9euSZ/zxS9+UT7vuOOOk/9aFvtTfOMb38B3v/vd9/w8oj/lpptuOpih0SGw5uf34fW5lahp34Qa/7kYrEhi30lt2LVnNs7V/Bj/6jThqlcd2DX3EvhMdiRDTyGdbMsGk8pPoUrXCEVaASSBTJEWPXVR7PA2Y/+e8dMxouLW1NSEuXMboFS2w+N5CV3dd2P3nh3j3k+rLc4GkoJjUeA4Bnpd6RH+jhAR0YxdxfPyyy/jtttuwy9+8Qs5PdTc3Iwrr7wSN998M37wgx9M+hxRoRF9LmMrKOJFjQ6fX997O3YuKcfCnj9i0YaV6Kqbg/7j1mPr/nqcqrsb7dtM+PTuBdi45HzE0nuQDDwNNRRYUHgiGu0roRSnC6eBQHkGu+192Nm1F7Eto1Ww6upqGUoaGmqRTG6C2/MXbN32ChKJsYfxKWCzLkGh82Q4C0+WB+mxqZWIKD8dVEARK3BE86LLNf7YePG4tHTyf92KECKmc7761a/KxwsXLkQoFMKll16K733ve3KKaLItyMVFR06q1w+HaQ9q3ipAW/XHkTrqXax1N+J09U+helOPZb5TsWX+R5AI/xPpRAsqjY1YUfIRaKFHJp1Bb0kE241d2NfTNnRaMGC327FkyRIsWFCDeHwD3J7fYvOW15BOjwYXMU3jcBwPZ+EpKCw8gefXEBHRwQcUrVaLZcuWyYbXs88+e6RJVjwWzbCTCYfDE0KICDnCNDinMC/cfd1l2FpdgqbNO5GwXAVT/Q48nJ6DT6R/DP0bRhSmPo+9NbMQDzwMgwJYXnoOyg2z5RLhLpsPG/T70efzAL7slvLz5s3D0qX10Om2wu15EJu3vCP+pox8PoO+GkVFp8PpPFUu/+W28URE9G9P8YiplwsvvBDLly+XTa9imbGoiFx00UXyzy+44AJ5zonoIxHOOussuZx46dKlI1M8oqoi3j4cVCh3ejs70F9TgibXnzCn8xMINfXj4bJyfLbvp9C8aYRJcxE67BokAn9GpbEeK4s/Jlfp9Kp92FjQju5AH8SmrxqNBkcdtQANjVEEAv9ER+f35UZtw8R0TVHRGfIymxo5dUNERIc2oJx77rlwu9244YYb5EZtooS/Zs2akcZZsRnb2IrJ97//ffliJG67urpQVFQkw8mtt956sJ+aDoO/3n0H0iVuVK2fjf7qWfjHUUF8Zv/9SL+jg157CXqMfiCyHssKT0W9dSkiiOMt2x7sjnXIg/vUajVWrqxFZWUz3J4bsX//0B72ACyWhSgp+QSKi86AwVCd06+TiIhm+D4oucB9UA6PJ3//ANZEXKjf+BQc0Sux7dR9qO54A9jpQnH863DruqBLt+G44s/ArivGblU33tG3IpYSG6plsHyFDaUlm+DzvzHyMcVuraUln0Jp6dkwmWbn9OsjIqI82QeFZpb9+zpQl16Dmr7PoO/EFug6exFp68bsyEXoNrbBrvDiuPLzAZUWzxu2oj3jBlIZ1M2KYc6c3YhEtsAnt6hRoLDwRFRWno9CxwlQKCY2PhMRER0MBpQ8dc8PrsI+ewzHvFyH2HwN1iOD2v5XMbf3i2iz9qBMncHq4i+iR+XDq7pNCGdisFj8OGpZM9Lp7YhEREOsFuXln0d11UUwGmtz/SUREdEMwoCSh+KxGHqLC9Cw9SlESr6G5xsDaGp7GAt2fRL7HRFUadRYUfQxbFN34h1NM9SqGBbM3Y0Cx1a5aksEk4qK81BTcyk3TyMiosOCASUPPXDDf8Fi3IJCz2fwzic9OKrzSdS/tRr7Syyo1cSxuPBMvKrdiRaVCwWOTjQ1bYRS6ZPPLSr6CObUXweDgRvnERHR4cOAkmd6OtvQXKPHspcKMbAcMHdvQeVbpWgvmYcqtReLnGfiH9rNcGv60DB7PUpKW+TzjMY6zG28BQUFR+f6SyAiojzAgJJnHnnwXlQHXwIKv4KNJhcWb+zEQMEXUKxsxwLnR/GsdiMi5nYcNf9V6A2iA1aB6qqLMWvWNVCp9LkePhER5QkGlDzy6pqn0WXtw4ptZ+DVjw+iYddTMMcvgUbbiiXFn8BzunehLd2GpQ1vQ6lMQqcrw4L598BuX57roRMRUZ5hQMkjr25ah7k7utCzehZqO59Fzd6zELDsxeriT+Afus2w1a5FTe0W+b7ifJz5TXdBq3XkethERJSHGFDyxO/uuRWZ4Dro9Wdgu6IZqzbOQr81jOOLT8dLxu1wNj6P0qF+k5rqr2P27GuhUPAoAiIiyg3uqJUntmcCqN1VgzeWx9CwfQcGrA1YWbgCb5pb4Zz/7FA4UaKx8WbU1/8XwwkREeUUKyh54H9u+DYqB99B39IzMaf1r9BGP4v6AgP2WL1wLHgahYWdcm+ThQvvRZHz1FwPl4iIiBWUfNBZEIRj8BS4tDtQtvs4FBiDCDps0Cz880g4WbzolwwnREQ0ZTCgzHA/vfFa1G3uwMZjE5i1uR8RqxaO4oXwNz0qwwmgwZLFv0Jh4Qm5HioREdEIBpQZbkDbDkXZapS3vABlZiWaipaio+Ex2XOSySiwaNF9cDiOzfUwiYiIxmFAmcF+/MNrMWerBbud+1C870TMKSjG3vq/o7Jmq/xzsTMsp3WIiGgqYkCZoYJ+P9KR3WheXYN57w5AZzegd1YbKua8Kf+8svJbqKz8Qq6HSURENCkGlBnq7p/9EOXuBbD0vAKFciHM1TYUzP8/KBQZWK0fQcOcq3M9RCIiovfEgDIDedy9MLn2YMviEIpbFmFWSSlSS/8IjSYOpXIWjlp6FxQKRa6HSURE9J4YUGagex+6DRrLStRvbkGhoxTeo56CyTyIVMqMo1f9DiqVLtdDJCIiel8MKDPMvj07ULSvC336TTAlViGzqB32khZk0gosWngfDIbyXA+RiIjo/4s7yc4w//uXn0HR2ITadzwomaeBsuEF+fYCxyUoLT0u18MjIiL6QFhBmUGad2xBaUsclvb1sDsrkVz2F6hUKaSTc3HU0u/kenhEREQfGAPKDPL7v9yNliYrCvuPgnrVBhhMXiQSRhxz7K+gUPBHTURE0weneGaIPds3o7zHhky4E0ULZkNfuVm+fVbtj2AyleV6eERERAeF/6yeIR5/7C50lveiyLAYysV/l29LxU5AQ+Oncz00IiKig8YKygywa+tGWOJlqGgOQvexDdDqQ4hFrTj55LtzPTQiIqIPhQFlBvjLH++GOhmAc34djBXZc3Zqqm6AwWDP9dCIiIg+FE7xTHPbN62HwlSGysG50Bz1onxb1L8a8xdyaoeIiKYvVlCmuWceuRsmXxy249NyaicaseDE036W62ERERH9WxhQprHtm9cjWOBEvUIFffXf5NsKLf8Bs7kw10MjIiL6t3CKZxr7v4fvQeUeHwyr10Kc/ef3NGLV8RflelhERET/NlZQpqnW1l0I2/RoqkhBZ+1DMqnBipV38pRiIiKaEVhBmaae+PltqO9QQd+0Vj6OD34ElbXzcz0sIiKiQ4IVlGnI1dONqEkBx7I2qNQJBP1OnH7WLbkeFhER0SHDCso09Ic7bkRjQg9D+V5kMkCh/jIYjeZcD4uIiOiQYUCZZkLBIOK6KKxHb5GPB3rm4pgzzs/1sIiIiA4pBpRp5r6brsZcqxJaW7YxdkHT9VAq+WMkIqKZha9s00gqmYQKIZiWvCsfD3YsR9NRx+V6WERERIccA8o08pPvXYY5tQmo9SFEImaceMatuR4SERHRYcGAMl1kMrBkfDA0bJYPQx0noayqJtejIiIimjoB5b777kNtbS30ej1WrVqFdevWve/7e71efOtb30JZWRl0Oh0aGhrw3HPPfdgx56Uff+dS1C3wQqlKwe8twUfP/VGuh0RERDR19kF5/PHHcc011+CBBx6Q4eSee+7BmWeeid27d6O4uHjC+8fjcZx++unyz5544glUVFSgra0Ndrv9UH0NecGh8sFQ2SzvZ1wfh7XAlushERERHTaKTEbspPHBiVCyYsUK3HvvvfJxOp1GVVUVrrjiClx33XUT3l8EmTvvvBO7du2CRqP5UIP0+/2w2Wzw+XywWq3IN3f+1zfQdNRu6Ivb0e+ahU99+hno9LpcD4uIiOiwvX4f1BSPqIZs2LABp5122ugHUCrl47Vrs1uuH+jpp5/G6tWr5RRPSUkJFixYgNtuuw2pVOqgBprPCvUDMpyk0wrogh9nOCEiohnvoKZ4PB6PDBYiaIwlHosKyWRaW1vx0ksv4Utf+pLsO2lubsZll12GRCKBG2+8cdLnxGIxeY1NYPnqrh/8B+Yt6ZT3PT2N+NxFl+d6SERERNN/FY+YAhL9Jw8++CCWLVuGc889F9/73vfk1M97uf3222VJaPgSU0j5yqnthrbAhVRKBWP4Y1CreXwSERHNfAcVUJxOJ1QqFVwu17i3i8elpaWTPkes3BGrdsTzhs2bNw+9vb1yymgy119/vZyvGr46OjqQjx68+0coXrRf3nd3LMBZX/tmrodEREQ09QKKVquVVZAXX3xxXIVEPBZ9JpM59thj5bSOeL9he/bskcFFfLzJiKXIoplm7JWPjIl3obEMIpHQQuM7nlvaExFR3jjoVzyxxPihhx7C7373O+zcuRPf/OY3EQqFcNFFF8k/v+CCC2QFZJj484GBAVx55ZUymDz77LOySVY0zdJ7e+7Jh1HUtE/e97QtweeuuirXQyIiIjpiDrqhQfSQuN1u3HDDDXKaZsmSJVizZs1I42x7e/u4f+mL/pF//OMfuPrqq7Fo0SK5D4oIK9/5zncO7Vcywww0/xllywKIx/VI9s6HQqHI9ZCIiIim7j4ouZBv+6Ds2PwmOjoug9oYQPfeo/HlSx9mQCEiomnniO2DQkfGhud/IsOJqJ6E99cxnBARUd5hQJli+l2dKJrbJu972hbj0ttuzvWQiIiIjjgGlCnmuYe/Bc1Q9SS4r4bVEyIiyksMKFNIIhFFUeNo9eQbt9+W6yERERHlBAPKFPLIvV8YrZ60snpCRET5iwFlikinEyiZs3+kenL+97+b6yERERHlDAPKFPGHn587VD3RIdJSB7PFkushERER5QwDyhSQyaRRXDvUe9KxCKde/IVcD4mIiCinGFCmgEcf+hq0Fi+SSQ1iLXMwe+7CXA+JiIgopxhQckxs5Gsv3C7vu7vmwVjrzPWQiIiIco4BJcdeWvNT6ArcSKeViO9dgC9+48pcD4mIiCjnGFByLOJ9Wt66exowmAnkejhERERTAgNKDrXs+ScMJd3IZBSI712Ma2+/J9dDIiIimhIYUHJo29u3y1tPXy1csWCuh0NERDRlMKDkiN+/F6byDnk/uncZLv/+rbkeEhER0ZTBgJIjL/zlMigUGQz0V6A/FIeJG7MRERGNUI/epSMlFuuDpSq7rX2kZTlOP+fTuR4SERHRlMIKSg4888evQqlMw+crQsCjwqIVx+d6SERERFMKA8oRlkqFYSlvlvdD+4+CubY410MiIiKachhQjrAX/nYdVNoYIhEzou0FuPDy/8z1kIiIiKYcBpQjfChgRv2avD/YsQgubX+uh0RERDQlMaAcQTu2/AEasx+JhBbJ5jp8/ycP5HpIREREUxIDyhG0b/cv5a2nZy661KyeEBERvRcuMz5C+j0bYHC6kE4rkGqej69ddVmuh0RERDRlsYJyhLz23H/J2353HTwJH0pKy3M9JCIioimLFZQjIBrtgbm8Xd6PtyxF3fz6XA+JiIhoSmMF5Qh4/i9XQKFMw+stgW8wic9ccGmuh0RERDSlMaAcZslkCDrndnk/vH8pYoZkrodEREQ05TGgHGbvvH4HVJo4wmELom12fPuW/8n1kIiIiKY8BpTDvDGbL/C0vO/tWIxuE5cWExERfRBskj2Merr+CY3Jj2RSg3RzHS654vxcD4mIiGhaYAXlMNrw+q3ytr+nAT1aNyprZ+d6SERERNMCKyiHSTi8D8bibmQyQKplEWpml+R6SERERNMGKyiHyQtPXi1vBwcqMBgK4ryvXpHrIREREU0bDCiHaWmx3rlL3o+2LUHEkMr1kIiIiKYVBpTD4J3XfwqVJiGXFsc6TfjOLT/P9ZCIiIimFQaUQyyTycDryy4t9nUuRJd+INdDIiIimnbYJHuI9Xa/BK3Fi1RKjVTLLJx/6RdyPSQiIqJphxWUQ+ydV26Wt/299ehV9WHWnHm5HhIREdG0wwrKIRSJdMJY0invJ1sWo7jKnushERERTUusoBxCLz39bSgUGXgHyzAYDOOib/1XrodERESUPwHlvvvuQ21tLfR6PVatWoV169Z9oOc99thjUCgUOPvsszHTpFIRaOxb5P1I22IEeGoxERHRkQsojz/+OK655hrceOON2LhxIxYvXowzzzwTfX197/u8/fv349vf/jaOP/54zETb330IKk0M0agJsf02fPt7P831kIiIiPInoNx111342te+hosuughNTU144IEHYDQa8Zvf/OY9n5NKpfClL30JN910E2bNmoWZuLS4s+Nhed/buQBdln7o9PpcD4uIiCg/Ako8HseGDRtw2mmnjX4ApVI+Xrt27Xs+70c/+hGKi4txySWXfKDPE4vF4Pf7x11T2eDgRuhs/UinlUg31+OYo0/N9ZCIiIjyJ6B4PB5ZDSkpGX/wnXjc29s76XNef/11/PrXv8ZDDz30gT/P7bffDpvNNnJVVVVhKnv979+Tt/19dXAp+3HaWZ/P9ZCIiIimtcO6iicQCOD888+X4cTpdH7g511//fXw+XwjV0dHB6aqRMILQ3GrvJ/cvwhpA6d2iIiIjug+KCJkqFQquFyucW8Xj0tLSye8f0tLi2yOPeuss0belk6ns59Yrcbu3bsxe/bsCc/T6XTymg7eeunHUGpSCAYLEHQB//Wz/871kIiIiPKrgqLVarFs2TK8+OKL4wKHeLx69eoJ7z937lxs3boVmzZtGrk++clP4uSTT5b3p/rUzQdpjg3G/ynvBzsXotsezvWQiIiI8nMnWbHE+MILL8Ty5cuxcuVK3HPPPQiFQnJVj3DBBRegoqJC9pGIfVIWLFgw7vl2e3Z31QPfPh319vwLWpMPyaQayZYqfPqcU3I9JCIiovwMKOeeey7cbjduuOEG2Ri7ZMkSrFmzZqRxtr29Xa7syQfvvHwLTKXAgKsenVo3Llx9Uq6HRERENCMoMmKeYooTy4zFah7RMGu1WjEVxGIuvPbasVAoM+h57XPwaDO46vqf5HpYREREM+L1Oz9KHYfBv56+XoYTn68IXl+U4YSIiOgQYkD5ENLpJGBcL+9H2hehz85vIxER0aHEV9YPoXXXn6ExhJBI6BDfV4SLv/DVXA+JiIhoRmFA+RB2brlf3g72NGKffQC1DU25HhIREVF+r+LJd+FwG4zFXfJ+srkJFQ5NrodEREQ047CCcpBe+Ou18tY7UA53LICvX/PDXA+JiIhoxmFAOQjpdAw65055P9a2GEELC1BERESHAwPKQdiy7iGotVHEYkaE2o24/BvfyfWQiIiIZiQGlIPQ2fmovPV1NaHD6oejOLt7LhERER1anKP4gILBZhgcvchkFEg216NhVmGuh0RERDRjsYLyAb341/+St96BSvRiEF++9JpcD4mIiGjGYgXlAzbH6ot3y/vxtvmIm7S5HhIREdGMxgrKB7DlrV8NNccaEOw04sorb8r1kIiIiGY0BpQPoKPzMXnr75mLDksE5ilyojIREdFMxSme/49QaD+Mzm5kMkCieQ6OXtqY6yERERHNeKyg/H88/+fszrG+wXL0pvz4+Oe+kushERERzXgMKO8jnU7AUDLUHNu+ACmzPtdDIiIiyguc4nkfm0RzrC6CeFyHQJsZ1/3szlwPiYiIKC+wgvI+utrHNMdaw7keDhERUd5gBeU9hMNdMBR1yfuJljk489STcj0kIiKivMEKyntY8+hVUCgy8HlL0ZsM4riTP5rrIREREeUNBpRJZDIpGEv3yPux9vlQmI25HhIREVFe4RTPJN5981fQGIJIJLQItllx7d1sjiUiIjqSWEGZRGfbUHNsbwO6LNFcD4eIiCjvsIJygEikF8aSDnk/3tyA8z73pVwPiYiIKO+wgnKA5x7+D9kcG/AVoycRRuOiJbkeEhERUd5hQBkjk0nDWLZX3o+2z4fBbs/1kIiIiPISp3jG2Pj6b6A1+pFMahBos+Hyu27N9ZCIiIjyEisokzTH+lxz0GWO5Xo4REREeYsVlCGRiBvG0jZ5P948B1+/9KpcD4mIiChvsYIy5JnfXw6lMo1goBBdsRjKKqtzPSQiIqK8xYAim2MzMJc3y/vR9gUoKq/K9ZCIiIjyGgMKgHWv/gZakxeplBq+/XZc/B/X5XpIREREeY0BBUBv2+Py1ueqR7cxnuvhEBER5b28DyjR6ACMZfvl/UTLHFx19Y9yPSQiIqK8l/cB5elfXwalKoVQsAAdkTjsDkeuh0RERJT38jqgyObYyhZ5P9IxH7PmLcz1kIiIiCjfA8q6l34LnWUAqZQK/n0OfO7Cb+Z6SERERJTvAaWn48/y1u+ehR4dd44lIiKaKvI2oMRiPhgrWuX9eEsDbrj1F7keEhEREf07AeW+++5DbW0t9Ho9Vq1ahXXr1r3n+z700EM4/vjjUVBQIK/TTjvtfd//SHnywW9CpUoiHLKhK5jM9XCIiIjo3wkojz/+OK655hrceOON2LhxIxYvXowzzzwTfX19k77/yy+/jPPOOw//+te/sHbtWlRVVeGMM85AV1cXcsky0hzbhKXHnZLTsRAREdF4ioxYynIQRMVkxYoVuPfee+XjdDotQ8cVV1yB6677/+/AmkqlZCVFPP+CCy74QJ/T7/fDZrPB5/PBarXi37X2hd8irLwF6bQS+//5CXztjrv/7Y9JREREh+71+6AqKPF4HBs2bJDTNCMfQKmUj0V15IMIh8NIJBJwvM9+I7FYTH5RY69DqbfjCXnrd9eiV5M4pB+biIiI/n0HFVA8Ho+sgJSUlIx7u3jc29v7gT7Gd77zHZSXl48LOQe6/fbbZeIavkSF5lCJxwMwVWSnd2KtjfjBrdlKEBEREeXpKp4f//jHeOyxx/Dkk0/KBtv3cv3118ty0PDV0dFxyMbwl/u/AZU6gWjEjO5DW5ghIiKiQ0R9MO/sdDqhUqngcrnGvV08Li0tfd/n/vSnP5UB5YUXXsCiRYve9311Op28DgdL1T55G+5swimfOe+wfA4iIiI6ghUUrVaLZcuW4cUXXxx5m2iSFY9Xr179ns+74447cPPNN2PNmjVYvnw5cmXtC7+Dwe5CJqOAr7UER606NmdjISIiokNUQRHEEuMLL7xQBo2VK1finnvuQSgUwkUXXST/XKzMqaiokH0kwk9+8hPccMMNeOSRR+TeKcO9KmazWV5HUk/bE7DVAX5PDVyavN2jjoiIaOYFlHPPPRdut1uGDhE2lixZIisjw42z7e3tcmXPsPvvv1+u/jnnnHPGfRyxj8oPf/hDHCmJRASmob1PYq0N+N4tdx2xz01ERESHeR+UXDgU+6D88e4vo3TxWsSiJmx/5QT850+4eoeIiGhG7IMynVmr9svbUOc8fP7S/8j1cIiIiCjfA8pba/4XRkePbI71t5agZnZDrodERERE+R5QujuelLeB/ip4DYZcD4eIiIjyPaAkk1EYq5rl/di+Rlx7409yPSQiIiLK94Dy2N1fhUYbRTxmQOeAKtfDISIiog9gxgcUW227vA11zcPF/3lTrodDRERE+R5QXnzyIRgLu+R9f2spHE5nrodERERE+R5QvO7n5G1goAKRgsJcD4eIiIjyPaAkkzGYhppjo/sa8a3/PHK71hIREdG/Z8YGlEfv+ho0ujAScT063YfnZGQiIiI6PGZsQLHVdMjbYNdcfOP7t+V6OERERJTvAeUfT9wPozMbUAKtZTB/yPN7iIiIKDdmZEAJeF6AQpFBcLAMmpr6XA+HiIiI8j2gpNNJmKr3yvuRfY348qVX5XpIRERElO8B5Q93XAKtPoREQocetz7XwyEiIqIPYcYFFHttp7wNdTfg6p/cl+vhEBERUb4HlL/9/h6YitrkfX9Lea6HQ0RERB/SjAooieAbsjk25C1B0eLVuR4OERER5XtASadTMNZkm2Oj+xvxic+dn+shERERUb4HlN//+KvQGQJIJjXo7jPlejhERET0b1DOxObYq358b66HQ0RERPkeUP7w8x/CVLxf3ve3VuZ6OERERPRvmhEBRa/cCaUyjZC/CPM/8vlcD4eIiIjyPaDEolGYavaMNMeuOOakXA+JiIiI8j2gPPbTy6Az+mVzbK/bluvhEBER0SEw7QOKfVb21OJgdwP+49b/yfVwiIiIKN8DygO3XA5j8T5539dakevhEBER0SEyrQOKs7APSmV259iTv3x1rodDRERE+R5QWnftgKlml7wf2deIuoaGXA+JiIiI8j2gvPnkndDqQ0gkdOgPF+d6OERERHQITduAYpmV3Zgt1NmIy37wk1wPh4iIiPI9oNx/4zdgcrbL+579pbkeDhERER1i0zKgFFe4oVAAwYEKfP3m+3M9HCIiIsr3gPLqP5+GqTrbHBtuqc/1cIiIiOgwmHYBpXPTX6HRRhGPGYCChbkeDhERER0G0y6gmGe3yNtQxzycdyn3PiEiIpqJplVA+c1tV8BU0I1MRoG+Nmeuh0NERESHybQKKM4qj7wNempw2a1sjiUiIpqpplVAMZbtlbehlrpcD4WIiIgOo2kVUNSaBGIRM2YdfW6uh0JERERTLaDcd999qK2thV6vx6pVq7Bu3br3ff8///nPmDt3rnz/hQsX4rnnnvuw40W4bR5Wn3L6h34+ERERzcCA8vjjj+Oaa67BjTfeiI0bN2Lx4sU488wz0dfXN+n7v/nmmzjvvPNwySWX4N1338XZZ58tr23bth30YNNpJXq6Cw/6eURERDS9KDKZTOZgniAqJitWrMC9994rH6fTaVRVVeGKK67AddddN+H9zz33XIRCITzzzDMjbzv66KOxZMkSPPDAAx/oc/r9fthsNvzxoVPwxa++eDDDJSIiohwZfv32+XywWq2Hr4ISj8exYcMGnHbaaaMfQKmUj9euXTvpc8Tbx76/ICou7/X+QiwWk1/U2Evw7684mOESERHRNHVQAcXj8SCVSqGkpGTc28Xj3t7eSZ8j3n4w7y/cfvvtMnENX6JCI6z+9JUHM1wiIiKapqbkKp7rr79eloOGr46ODvn2ujlzcj00IiIiOgLUB/POTqcTKpUKLpdr3NvF49LS0kmfI95+MO8v6HQ6eREREVF+OqgKilarxbJly/Dii6ONqqJJVjxevXr1pM8Rbx/7/sLzzz//nu9PREREdFAVFEEsMb7wwguxfPlyrFy5Evfcc49cpXPRRRfJP7/gggtQUVEh+0iEK6+8EieeeCL++7//Gx//+Mfx2GOPYf369XjwwQcP/VdDRERE+RlQxLJht9uNG264QTa6iuXCa9asGWmEbW9vlyt7hh1zzDF45JFH8P3vfx/f/e53MWfOHDz11FNYsGDBof1KiIiIKH/3QZlu66iJiIhohu+DQkRERHQkMKAQERHRlMOAQkRERFMOAwoRERFNOQwoRERENOUwoBAREdGUw4BCREREUw4DChEREU05DChEREQ0/be6z4XhzW7FjnREREQ0PQy/bn+YTeunRUDp7++Xt1VVVbkeChEREX2I13Gx5f2MCygOh2PkIMKD/QLp0KdhERQ7Ojp4LlKO8WcxdfBnMbXw5zF1iDN4qqurR17HZ1xAGT4dWYQT/mWbGsTPgT+LqYE/i6mDP4uphT+Pqfc6flDPOSwjISIiIvo3MKAQERHRlDMtAopOp8ONN94obym3+LOYOvizmDr4s5ha+POYGT8LRebDrP0hIiIiyvcKChEREeUXBhQiIiKachhQiIiIaMphQCEiIqIpZ8oHlPvuuw+1tbXQ6/VYtWoV1q1bl+sh5aVXX30VZ511FsrLy6FQKPDUU0/lekh56/bbb8eKFStgsVhQXFyMs88+G7t37871sPLS/fffj0WLFo1sCLZ69Wr8/e9/z/WwCMCPf/xj+d+qq666KtdDyTs//OEP5fd+7DV37tyZFVAef/xxXHPNNXKJ0saNG7F48WKceeaZ6Ovry/XQ8k4oFJLffxEYKbdeeeUVfOtb38Jbb72F559/HolEAmeccYb8GdGRVVlZKV8IN2zYgPXr1+OUU07Bpz71KWzfvj3XQ8tr77zzDn75y1/K8Ei5MX/+fPT09Ixcr7/++sxaZiwqJuJfivfee698nE6n5fkKV1xxBa677rpcDy9viTT85JNPyn+5U+653W5ZSRHB5YQTTsj1cPKeOHPkzjvvxCWXXJLroeSlYDCIo446Cr/4xS9wyy23YMmSJbjnnntyPay8q6A89dRT2LRp07/1caZsBSUej8t/lZx22mnj9vIXj9euXZvTsRFNtcO4hA9zGBcdOqlUCo899pisZImpHsoNUV38+Mc/Pu61g468vXv3ypaAWbNm4Utf+pI87HfGHBbo8XjkL3xJScm4t4vHu3btytm4iKYSUVUUc+zHHnssFixYkOvh5KWtW7fKQBKNRmE2m2V1sampKdfDyksiIIp2ADHFQ7md/fjf//1fNDY2yumdm266Cccffzy2bdsme+emfUAhog/2r0XxS/9h5nfp0BD/ERalbFHJeuKJJ3DhhRfK6TaGlCOro6MDV155pezLEosqKHc++tGPjtwXfUAisNTU1OBPf/rTQU19TtmA4nQ6oVKp4HK5xr1dPC4tLc3ZuIimissvvxzPPPOMXGElmjUpN7RaLerr6+X9ZcuWyX+9/+xnP5NNmnTkiJYAsYBC9J8ME1V48fsh+hhjsZh8TaEjz263o6GhAc3NzTOjB0X80otf9hdffHFcOVs85vwu5TPR1y7CiZhKeOmll1BXV5frIdEY4r9T4sWQjqxTTz1VTreJatbwtXz5ctn/IO4znOS2cbmlpQVlZWUH9bwpW0ERxBJjUS4Vf8lWrlwpO7FFA9pFF12U66Hl5V+wsel337598pdeNGZWV1fndGz5OK3zyCOP4G9/+5ucz+3t7ZVvt9lsMBgMuR5eXrn++utlOVv8DgQCAflzefnll/GPf/wj10PLO+J34cA+LJPJhMLCQvZnHWHf/va35b5ZYlqnu7tbbhUiAuJ55503cwLKueeeK5dQ3nDDDfI/wmK52Jo1ayY0ztLhJ/Z4OPnkk8eFR0EESNEMRUd2czDhpJNOGvf23/72t/jKV76So1HlJzGlcMEFF8hGQBEQxXy7CCenn356rodGlDOdnZ0yjPT396OoqAjHHXec3LdJ3J8x+6AQERFRfpqyPShERESUvxhQiIiIaMphQCEiIqIphwGFiIiIphwGFCIiIppyGFCIiIhoymFAISIioimHAYWIiIimHAYUIiIimnIYUIiIiGjKYUAhIiKiKYcBhYiIiDDV/D8vHiUguMWWUQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot the consumption functions during working life\n", "\n", "print(\"Consumption as a function of market resources while working:\")\n", "mMin = min([LifeCyclePop.solution[t].mNrmMin for t in range(LifeCyclePop.T_cycle)])\n", "plot_funcs(LifeCyclePop.cFunc[: LifeCyclePop.T_retire], mMin, 5)" ] }, { "cell_type": "code", "execution_count": 8, "id": "696f13fb", "metadata": {}, "outputs": [], "source": [ "# Define the saving rate function\n", "def savRteFunc(SomeType, m, t):\n", " \"\"\"\n", " Parameters:\n", " ----------\n", " SomeType:\n", " Agent type that has been solved and simulated.\n", " m:\n", " normalized market resources of agent\n", " t:\n", " age of agent (from starting in the workforce)\n", "\n", "\n", " Returns:\n", " --------\n", " savRte: float\n", "\n", " \"\"\"\n", " inc = (SomeType.Rfree[0] - 1.0) * (\n", " m - 1.0\n", " ) + 1.0 # Normalized by permanent labor income\n", " cns = SomeType.solution[t].cFunc(m) # Consumption (normalized)\n", " sav = inc - cns # Flow of saving this period\n", " savRte = sav / inc # Saving Rate\n", " return savRte" ] }, { "cell_type": "code", "execution_count": 9, "id": "a5ef117a", "metadata": {}, "outputs": [], "source": [ "# Create a matrix gathering useful data:\n", "# 't_now', 'aNrm_hist', 'cNrm_hist', employment-status in date t and date t-1,\n", "# aLvlGro_hist, Saving rate\n", "\n", "w, h = 1, LifeCyclePop.T_cycle\n", "giant_list = [[0 for x in range(w)] for y in range(h)]\n", "savRte_list = []\n", "\n", "\n", "# Suppress some disturbing but harmless warnings\n", "warnings.filterwarnings(\"ignore\")\n", "\n", "for t in range(1, LifeCyclePop.T_cycle + 1):\n", " # aLvlGro[0] = 0 # set the first growth rate to 0, since there is no data for period 0\n", " aLvlGroNow = np.log(\n", " (LifeCyclePop.history[\"aNrm\"][t] * LifeCyclePop.history[\"pLvl\"][t])\n", " / LifeCyclePop.history[\"aNrm\"][t - 1]\n", " * LifeCyclePop.history[\"pLvl\"][t - 1]\n", " ) # (10000,)\n", "\n", " # Call the saving rate function defined above\n", " savRte = savRteFunc(LifeCyclePop, LifeCyclePop.history[\"mNrm\"][t], t)\n", "\n", " savRte_list.append(savRte) # Add this period's saving rate to the list\n", "\n", " # Create elements of matrix list\n", " matrix_list = [0 for number in range(7)]\n", " matrix_list[0] = t\n", " matrix_list[1] = LifeCyclePop.history[\"aNrm\"][t]\n", " matrix_list[2] = LifeCyclePop.history[\"cNrm\"][t]\n", " matrix_list[3] = LifeCyclePop.history[\"TranShk\"][t]\n", " matrix_list[4] = LifeCyclePop.history[\"TranShk\"][t - 1]\n", " matrix_list[5] = aLvlGroNow\n", " matrix_list[6] = savRte\n", "\n", " giant_list[t - 1] = matrix_list" ] }, { "cell_type": "code", "execution_count": 10, "id": "860dac0c", "metadata": {}, "outputs": [], "source": [ "# Construct the level of assets A from a*p where a is the ratio to permanent income p\n", "# Remember 41 is \"years after entering workforce\" (=age 25); 66 is the year right after retirement\n", "LifeCyclePop.history[\"aLvl\"] = (\n", " LifeCyclePop.history[\"aNrm\"] * LifeCyclePop.history[\"pLvl\"]\n", ")\n", "aGro41 = LifeCyclePop.history[\"aLvl\"][41] / LifeCyclePop.history[\"aLvl\"][40]\n", "aGro41NoU = aGro41[\n", " aGro41[:] > 0.2\n", "] # Throw out extreme outliers; don't want growth rates relative to 0 income!" ] }, { "cell_type": "code", "execution_count": 11, "id": "fbdee4c7", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAGp5JREFUeJzt3Q2QVWUdP/DfIq8KLIEKIiBoBhhhSSokWSG1g4zpQGVFicboaEgC4yhUvmUFU42oBVqOQi8SySgVUpqDI44T+IJDIzqSrwOKYGawgLGgnP+c8//v/r2K8bb7sHvv5zNzvHvPfe45zz5cz/3uc57nnKosy7IAAEikVaodAQDkhA8AICnhAwBISvgAAJISPgCApIQPACAp4QMASEr4AACSah3NzK5du2L9+vXRqVOnqKqqOtjVAQD2Qn7N0i1btkTPnj2jVatWLSt85MGjd+/eB7saAMB+WLduXfTq1atlhY+8x6O+8p07dz7Y1QEA9kJtbW3ReVD/Pd6iwkf9qZY8eAgfANCy7M2QCQNOAYCkhA8AICnhAwBISvgAAJISPgCApIQPACAp4QMASEr4AACSEj4AgKSEDwAgKeEDAEhK+AAAmm/4uPbaa4sbxrx7GTBgQMPr27dvj4kTJ0a3bt2iY8eOMXbs2Ni4cWNT1BsAqJSej49+9KPx2muvNSyPPPJIw2tTpkyJxYsXx8KFC2PZsmWxfv36GDNmTGPXGQBowVrv8xtat44ePXq8b/3mzZvj9ttvj/nz58eIESOKdXPnzo2BAwfGihUrYujQoY1TYwDYg77TluyxzMszRyepC43Q8/Hcc89Fz54949hjj41x48bF2rVri/UrV66MnTt3xsiRIxvK5qdk+vTpE8uXL9/X3QAAZWqfej5OPfXUmDdvXvTv37845XLdddfFpz/96Vi9enVs2LAh2rZtG126dCl5T/fu3YvXPkhdXV2x1Kutrd2f3wMAKMfwMWrUqIafBw8eXISRY445Ju66667o0KHDflVgxowZRYgBACrDAU21zXs5PvKRj8Tzzz9fjAPZsWNHbNq0qaRMPttld2NE6k2fPr0YL1K/rFu37kCqBACUc/jYunVrvPDCC3HUUUfFkCFDok2bNrF06dKG19esWVOMCRk2bNgHbqNdu3bRuXPnkgUAKF/7dNrl8ssvj7POOqs41ZJPo73mmmvikEMOia997WtRXV0dEyZMiKlTp0bXrl2LEDFp0qQieJjpAgDsV/h45ZVXiqDx73//O4444ogYPnx4MY02/zk3a9asaNWqVXFxsXwQaU1NTcyZM2dfdgEAlLmqLMuyaEby2S55L0o+/sMpGAD2h+t8NO/vb/d2AQCSEj4AgKSEDwAgKeEDAEhK+AAAkhI+AICkhA8AICnhAwBISvgAAJISPgCApIQPACAp4QMASEr4AACSEj4AgKSEDwAgKeEDAEhK+AAAkmqddncAcGD6TltysKvAAdLzAQAkJXwAAEkJHwBAUsIHAJCU8AEAJCV8AABJCR8AQFLCBwCQlPABACQlfAAASQkfAEBSwgcAkJTwAQAkJXwAAEkJHwBAUsIHAJCU8AEAJCV8AABJCR8AQFLCBwCQlPABACQlfAAASQkfAEBSwgcAkJTwAQAk1Trt7gCgeeg7bckey7w8c3SSulQaPR8AQFLCBwCQlPABACQlfAAASQkfAEBSwgcAkJTwAQAkJXwAAEkJHwBAUq5wCkCLuuooLZ+eDwAgKeEDAEhK+AAAkhI+AICkhA8AoOWEj5kzZ0ZVVVVMnjy5Yd327dtj4sSJ0a1bt+jYsWOMHTs2Nm7c2Bh1BQAqOXw8/vjj8ctf/jIGDx5csn7KlCmxePHiWLhwYSxbtizWr18fY8aMaYy6AgCVGj62bt0a48aNi9tuuy0+9KEPNazfvHlz3H777XHDDTfEiBEjYsiQITF37tz4+9//HitWrGjMegMAlRQ+8tMqo0ePjpEjR5asX7lyZezcubNk/YABA6JPnz6xfPny3W6rrq4uamtrSxYAoHzt8xVOFyxYEE8++WRx2uW9NmzYEG3bto0uXbqUrO/evXvx2u7MmDEjrrvuun2tBgBQCT0f69ati8suuyzuvPPOaN++faNUYPr06cXpmvol3wcAUL72KXzkp1Vef/31OOmkk6J169bFkg8qvfnmm4uf8x6OHTt2xKZNm0rel8926dGjx2632a5du+jcuXPJAgCUr3067XLGGWfEU089VbLuggsuKMZ1XHnlldG7d+9o06ZNLF26tJhim1uzZk2sXbs2hg0b1rg1BwDKP3x06tQpBg0aVLLusMMOK67pUb9+woQJMXXq1OjatWvRizFp0qQieAwdOrRxaw4AVMaA0z2ZNWtWtGrVquj5yGey1NTUxJw5cxp7NwBAC1WVZVkWzUg+1ba6uroYfGr8B0Bl6TttSTQnL88cfbCr0GLsy/e3e7sAAEkJHwBAUsIHAJCU8AEAJCV8AABJCR8AQFLCBwCQlPABACQlfAAASQkfAEBSwgcAkJTwAQAkJXwAAEkJHwBAUsIHAJCU8AEAJCV8AABJCR8AQFLCBwCQlPABACQlfAAASQkfAEBSwgcAkJTwAQAkJXwAAEkJHwBAUsIHAJCU8AEAJCV8AABJCR8AQFKt0+4OAFqOvtOW7LHMyzNHJ6lLOdHzAQAkJXwAAEkJHwBAUsIHAJCU8AEAJCV8AABJCR8AQFKu8wFAs7lmBpVBzwcAkJTwAQAkJXwAAEkJHwBAUsIHAJCU8AEAJCV8AABJCR8AQFLCBwCQlPABACQlfAAASQkfAEBSwgcAkJTwAQAkJXwAAEkJHwBAUsIHAJCU8AEAJCV8AABJCR8AQPMNH7fccksMHjw4OnfuXCzDhg2Lv/71rw2vb9++PSZOnBjdunWLjh07xtixY2Pjxo1NUW8AoBLCR69evWLmzJmxcuXKeOKJJ2LEiBFx9tlnx9NPP128PmXKlFi8eHEsXLgwli1bFuvXr48xY8Y0Vd0BgBaoKsuy7EA20LVr1/jpT38aX/rSl+KII46I+fPnFz/nnn322Rg4cGAsX748hg4dulfbq62tjerq6ti8eXPRuwJAeeg7bUmUo5dnjj7YVWgW9uX7e7/HfLzzzjuxYMGC2LZtW3H6Je8N2blzZ4wcObKhzIABA6JPnz5F+PggdXV1RYXfvQAA5Wufw8dTTz1VjOdo165dXHzxxbFo0aI44YQTYsOGDdG2bdvo0qVLSfnu3bsXr32QGTNmFEmpfundu/f+/SYAQHmGj/79+8eqVavi0UcfjUsuuSTGjx8fzzzzzH5XYPr06UUXTf2ybt26/d4WAND8td7XN+S9Gx/+8IeLn4cMGRKPP/543HTTTXHuuefGjh07YtOmTSW9H/lslx49enzg9vIelHwBACrDAV/nY9euXcW4jTyItGnTJpYuXdrw2po1a2Lt2rXFmBAAgH3u+chPkYwaNaoYRLply5ZiZstDDz0U999/fzFeY8KECTF16tRiBkw+0nXSpElF8NjbmS4AQPnbp/Dx+uuvx3nnnRevvfZaETbyC47lwePzn/988fqsWbOiVatWxcXF8t6QmpqamDNnTlPVHQCoxOt8NDbX+QAoT67zUd5qU1znAwBgfwgfAEBSwgcAkJTwAQAkJXwAAEkJHwBAUsIHAJCU8AEAJCV8AABJCR8AQFLCBwCQlPABACQlfAAASQkfAEBSwgcAkJTwAQAk1Trt7gAoR32nLTnYVaAF0fMBACQlfAAASQkfAEBSwgcAkJTwAQAkJXwAAEkJHwBAUsIHAJCU8AEAJCV8AABJCR8AQFLCBwCQlPABACQlfAAASQkfAEBSwgcAkJTwAQAkJXwAAEkJHwBAUsIHAJCU8AEAJCV8AABJCR8AQFLCBwCQlPABACQlfAAASQkfAEBSrdPuDgDKS99pS/ZY5uWZo5PUpaXQ8wEAJCV8AABJCR8AQFLCBwCQlPABACQlfAAASQkfAEBSwgcAkJTwAQAkJXwAAEkJHwBAUsIHAJCU8AEAJCV8AADNN3zMmDEjTj755OjUqVMceeSRcc4558SaNWtKymzfvj0mTpwY3bp1i44dO8bYsWNj48aNjV1vAKASwseyZcuKYLFixYp44IEHYufOnfGFL3whtm3b1lBmypQpsXjx4li4cGFRfv369TFmzJimqDsA0AK13pfC9913X8nzefPmFT0gK1eujNNPPz02b94ct99+e8yfPz9GjBhRlJk7d24MHDiwCCxDhw5t3NoDAJU15iMPG7muXbsWj3kIyXtDRo4c2VBmwIAB0adPn1i+fPlut1FXVxe1tbUlCwBQvvY7fOzatSsmT54cp512WgwaNKhYt2HDhmjbtm106dKlpGz37t2L1z5oHEl1dXXD0rt37/2tEgBQzuEjH/uxevXqWLBgwQFVYPr06UUPSv2ybt26A9oeAFBGYz7qXXrppXHvvffGww8/HL169WpY36NHj9ixY0ds2rSppPcjn+2Sv7Y77dq1KxYAoDLsU89HlmVF8Fi0aFE8+OCD0a9fv5LXhwwZEm3atImlS5c2rMun4q5duzaGDRvWeLUGACqj5yM/1ZLPZPnTn/5UXOujfhxHPlajQ4cOxeOECRNi6tSpxSDUzp07x6RJk4rgYaYLQMvUd9qSg10FKjl83HLLLcXjZz/72ZL1+XTa888/v/h51qxZ0apVq+LiYvlMlpqampgzZ05j1hkAqJTwkZ922ZP27dvH7NmziwUA4L3c2wUASEr4AACSEj4AgKSEDwAgKeEDAEhK+AAAkhI+AICkhA8AICnhAwBISvgAAJISPgCApIQPACAp4QMASEr4AACSEj4AgKSEDwAgKeEDAEhK+AAAkhI+AICkhA8AICnhAwBISvgAAJISPgCApIQPACAp4QMASEr4AACSEj4AgKSEDwAgKeEDAEhK+AAAkhI+AICkhA8AICnhAwBISvgAAJISPgCApIQPACAp4QMASEr4AACSEj4AgKRap90dAFSevtOW7LHMyzNHR6XQ8wEAJCV8AABJOe0CUMH25nQANDY9HwBAUsIHAJCU8AEAJCV8AABJCR8AQFLCBwCQlPABACQlfAAASQkfAEBSwgcAkJTwAQAkJXwAAEkJHwBAUsIHAJCU8AEAJCV8AADNO3w8/PDDcdZZZ0XPnj2jqqoq/vjHP5a8nmVZXH311XHUUUdFhw4dYuTIkfHcc881Zp0BgEoKH9u2bYsTTzwxZs+evdvXf/KTn8TNN98ct956azz66KNx2GGHRU1NTWzfvr0x6gsAtHCt9/UNo0aNKpbdyXs9brzxxvj+978fZ599drHuN7/5TXTv3r3oIfnqV7964DUGAFq0Rh3z8dJLL8WGDRuKUy31qqur49RTT43ly5fv9j11dXVRW1tbsgAA5atRw0cePHJ5T8e75c/rX3uvGTNmFAGlfundu3djVgkAaGYO+myX6dOnx+bNmxuWdevWHewqAQAtJXz06NGjeNy4cWPJ+vx5/Wvv1a5du+jcuXPJAgCUr0YNH/369StCxtKlSxvW5WM48lkvw4YNa8xdAQCVMttl69at8fzzz5cMMl21alV07do1+vTpE5MnT44f/vCHcfzxxxdh5KqrriquCXLOOec0dt0BgEoIH0888UR87nOfa3g+derU4nH8+PExb968uOKKK4prgVx00UWxadOmGD58eNx3333Rvn37xq05ANAiVWX5xTmakfw0TT7rJR98avwHQNPqO23Jwa4C/8/LM0dHS7Yv398HfbYLAFBZhA8AICnhAwBISvgAAJISPgCApIQPACAp4QMASEr4AACa9xVOAWgZXECM5krPBwCQlPABACQlfAAASQkfAEBSwgcAkJTwAQAkJXwAAEkJHwBAUsIHAJCU8AEAJCV8AABJubcLALSQe/G8PHN0lAM9HwBAUsIHAJCU8AEAJCV8AABJCR8AQFJmuwCU6cwIaK70fAAASQkfAEBSwgcAkJTwAQAkJXwAAEkJHwBAUsIHAJCU8AEAJCV8AABJCR8AQFLCBwCQlPABACQlfAAASQkfAEBSrdPuDoD/pe+0JQe7CtDk9HwAAEkJHwBAUsIHAJCU8AEAJCV8AABJCR8AQFKm2gIkYhot/F/CBwCUUYB9eeboaO6cdgEAkhI+AICkhA8AICnhAwBIyoBTgEZgJgvsPT0fAEBSwgcAkJTwAQAkZcwHUNGM1YAy6vmYPXt29O3bN9q3bx+nnnpqPPbYY021KwCg0ns+/vCHP8TUqVPj1ltvLYLHjTfeGDU1NbFmzZo48sgjm2KXQIXRYwEt9xLsTdLzccMNN8SFF14YF1xwQZxwwglFCDn00EPjjjvuaIrdAQCV3POxY8eOWLlyZUyfPr1hXatWrWLkyJGxfPny95Wvq6srlnqbN28uHmtraxu7asABGHTN/cn2tfq6mj2W2VX3VpK6QDmqbYLv2PptZlmWPny88cYb8c4770T37t1L1ufPn3322feVnzFjRlx33XXvW9+7d+/GrhrQQlTfeLBrAOWtugn/H9uyZUtUV1c379kueQ9JPj6k3q5du+LNN9+Mbt26RVVVVVSqPEHmAWzdunXRuXPnqHTao5T2KKU9SmmPUtojTXvkPR558OjZs+ceyzZ6+Dj88MPjkEMOiY0bN5asz5/36NHjfeXbtWtXLO/WpUuXxq5Wi5V/MPzP8v9pj1Lao5T2KKU9SmmPpm+PPfV4NNmA07Zt28aQIUNi6dKlJb0Z+fNhw4Y19u4AgBamSU675KdRxo8fH5/85CfjlFNOKababtu2rZj9AgBUtiYJH+eee27861//iquvvjo2bNgQH//4x+O+++573yBUPlh+Kuqaa6553ympSqU9SmmPUtqjlPYopT2aX3tUZXszJwYAoJG4sRwAkJTwAQAkJXwAAEkJHwBAUsJHQrNnz46+fftG+/bti7v9PvbYY/+zfD5FuX///tGhQ4fianRTpkyJ7du3l1ya/uSTT45OnToVdws+55xzijsHV2p7vNvMmTOLK+ROnjw5Krk9Xn311fjGN75RXDE4L/exj30snnjiiajE9shv+3DVVVdFv379ijLHHXdcXH/99Xt1H4qW1h47d+6MH/zgB8XvmJc/8cQTixmHB7LNcm+PSjqe7tzLz0eTHk/z2S40vQULFmRt27bN7rjjjuzpp5/OLrzwwqxLly7Zxo0bd1v+zjvvzNq1a1c8vvTSS9n999+fHXXUUdmUKVMaytTU1GRz587NVq9ena1atSo788wzsz59+mRbt27NKrE96j322GNZ3759s8GDB2eXXXZZ1hI0RXu8+eab2THHHJOdf/752aOPPpq9+OKLRbnnn38+q8T2+NGPfpR169Ytu/fee4syCxcuzDp27JjddNNNWbm1xxVXXJH17NkzW7JkSfbCCy9kc+bMydq3b589+eST+73Ncm+PSjqeXrEX7dHUx1PhI5FTTjklmzhxYsPzd955p/jHnzFjxm7L52VHjBhRsm7q1KnZaaed9oH7eP311/M/4bJly5ZlldoeW7ZsyY4//vjsgQceyD7zmc+0mPDRFO1x5ZVXZsOHD89aoqZoj9GjR2ff+ta3SsqMGTMmGzduXFZu7ZEHr1/84hf/83fd122We3tU0vH0qL1sj6Y8njrtksCOHTti5cqVMXLkyIZ1rVq1Kp4vX758t+/51Kc+VbynvuvsxRdfjL/85S9x5plnfuB+Nm/eXDx27do1KrU9Jk6cGKNHjy7ZdnPXVO3x5z//ubjK8Je//OWiG/kTn/hE3HbbbVGp7ZGXyW/z8M9//rN4/o9//CMeeeSRGDVqVJRbe9TV1RXd6e+Wn2rKf9/93WY5t0elHU/r9rI9mvJ4etDvalsJ3njjjeJ883uv8Jo/f/bZZ3f7nq9//evF+4YPH16ck3777bfj4osvju9+97u7LZ/fPyc/H3faaafFoEGDohLbY8GCBfHkk0/G448/Hi1JU7VH/gV8yy23FLc7yNfn7fKd73ynuP9SfvuDSmuPadOmFXfzHDBgQHHzy3wfP/rRj2LcuHHRnO1Pe9TU1MQNN9wQp59+enFePw9d99xzT7Gd/d1mObdHpR1Pa/aiPZr6eKrno5l66KGH4sc//nHMmTOn+ADkH4wlS5YUA+R2J0+oq1evLj4wldge+a2hL7vssrjzzjvfl+gr9fORH0BPOumkolze63HRRRfFhRdeGLfeemtUYnvcddddxedj/vz5RZlf//rX8bOf/ax4LDc33XRTHH/88UXQysPmpZdeWtxbK/+LuBLta3uU+/H0pj20R5LjaaOdwOED1dXVZYcccki2aNGikvXnnXde9sUvfnG378nP1V9++eUl6377299mHTp0KM7nvVt+rq9Xr17FgMJKbY98W/nHOd9u/ZI/r6qqKn5+++23s0r7fOSD5SZMmFBSJh9Ylp8Lbs6aqj3y/0fee577+uuvz/r375+VW3vU++9//5u98sor2a5du4pBhieccMIBb7Mc26PSjqd7ao8Ux9PKjMGJ5clyyJAhRdfWu/8qzZ8PGzZst+9566233pfK867iXP3UwPwxT6yLFi2KBx98sJhCWKntccYZZ8RTTz0Vq1ataljy8Q55l3r+c33ZSvp85F3G750qmI93OOaYY6I5a6r2+KAy+bbLrT3q5X+1Hn300cVpqLvvvjvOPvvsA95mObZHpR1P99QeSY6nBxxf2OupUPlUwHnz5mXPPPNMdtFFFxVToTZs2FC8/s1vfjObNm1aQ/lrrrkm69SpU/b73/++SOB/+9vfsuOOOy77yle+0lDmkksuyaqrq7OHHnooe+211xqWt956K6vE9nivljTbpSnaI58i17p162KK6XPPPVdMQz300EOz3/3ud1kltsf48eOzo48+umGq7T333JMdfvjhxV985dYeK1asyO6+++5iGuXDDz9czATq169f9p///Gevt1lp7VFJx9MVe9EeTX08FT4S+vnPf150hefzsfOpUfkH4N3/sPnBsd7OnTuza6+9tjiA5vOve/funX37298u+XDk2XF3Sz5XvRLboyWHj6Zqj8WLF2eDBg0qDkwDBgzIfvWrX2WV2h61tbXF5yHfZl7m2GOPzb73ve8V3dbl1h75F+jAgQOLf/f82ib5l8+rr766T9ustPaopOPpQ3v5+WjK42lV/p8D7z8BANg7xnwAAEkJHwBAUsIHAJCU8AEAJCV8AABJCR8AQFLCBwCQlPABACQlfAAASQkfAEBSwgcAkJTwAQBESv8Hg9cI/xgnhDQAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot the (truncated) distribution of growth rates of wealth between age 65 and 66 (=25 + 41)\n", "\n", "n, bins, patches = plt.hist(aGro41NoU, 50, density=True)" ] }, { "cell_type": "markdown", "id": "ad55152c", "metadata": {}, "source": [ "# Saving Rates and Lifetime Income Growth\n", "\n", "We are interested in how income growth over the lifetime of the agent affects their saving rate and asset ratio $a=A/P$.\n" ] }, { "cell_type": "code", "execution_count": 12, "id": "3275d14f", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0, 0.5, 'Normalized Assets')" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk8AAAHHCAYAAACmzLxGAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAellJREFUeJzt3Qd4U9X7B/CXbmahLRRaCmVvKJSNDAWZslGWMkQQRGQ4AH8KTqYiIqiIAwcooCwBUfaQUWjZe5fVljJaaOnO//keTP5pm5akTZv1/TxPIElv7j03d70595z3FNBoNBohIiIiIqM4GTcZEREREQGDJyIiIiITMHgiIiIiMgGDJyIiIiITMHgiIiIiMgGDJyIiIiITMHgiIiIiMgGDJyIiIiITMHgiIiIiMgGDJxsQGBgoQ4YMsXQxiOTy5ctSoEAB+eSTT8RaLF68WJUJZbOE7du3q+Xjfy0crzhuLeHAgQPSvHlzKVy4sCrX4cOHczU/zOO9997L02VotWnTRj2I8gL2Y+yv0dHRuZ4XgycTHDt2TPr06SPly5cXDw8P8ff3l6efflq++OILsVfY0fQfxYoVk9atW8v69etzPM+lS5fK3LlzxVI2bNiQ6WJgi5YtWybNmjVTF7DixYuri9nWrVuz3X7ax4wZM8RadevWTQoVKiT379/PcpqBAweKm5ub3L59O9/K9eWXX6pAzZolJyfLs88+K3fu3JHPPvtMfv75Z3W+yi7o+/333/NsGYacPHlSHX+WCnZzEpgfPHjQ0kWxComJiep698QTT0iJEiXUMejn56eO2V9//VVSU1PFGkybNk1Wr16dp8twydO525E9e/bIk08+KeXKlZPhw4dL6dKl5erVq7Jv3z75/PPPZcyYMXm27DNnzoiTk+XiXASIgwYNEgyDeOXKFfnqq6+ka9eu8tdff0mHDh1yFDwdP35cxo0bJ5YKnhYsWGDTARTK/sEHH6hgHrUcuKDhO71+/XqW209f/fr1xVohMPrzzz9l1apVmcoN8fHxsmbNGunYsaN4e3vLCy+8IP369RN3d/c8D558fHwy1QK3atVKHj58qC4klnbhwgV1jC5atEheeukls8wT6+bi4mK2ZSB4ev/991UNU8bauX/++ccsZSbzu3XrlnTq1ElCQ0PVef+dd94RLy8viYiIkM2bN8uAAQPk/Pnz8u6771pF8IRzY48ePfJsGQyejPTxxx+Lp6enqq7Gr3x9UVFRebrsvL4oPE7VqlXl+eef173u3bu31KxZUwWNOQmeKHcQsCNw+vTTT2X8+PEmbz9rh1+xRYsWVUG2oeAJgVNcXJwKssDZ2Vk9LAU/bFATbQ2056KM56jcyLhuebEMLWsIQMkw/Eg5dOiQ/PHHH9KrV690f5s8ebKqncMP/ewkJCSobWzJygCz0ZBRqlWrpmnTpo1R037//feaJ598UlOyZEmNm5ubpkaNGpovv/wy3TRdunTRVKhQweDnmzZtqgkODta9Ll++vGbw4MG61z/88IMGm2737t2a8ePHa3x8fDSFChXS9OjRQxMVFZVuXqmpqZqpU6dqypQpoylYsKBahxMnTmSaZ1awnNGjR2d6H8usWrVquvdWr16t6dy5s1oW1rtixYqaDz74QJOSkqKbpnXr1mqe+g+URSshIUEzZcoUTaVKldQ8ypYtq3nzzTfV+4+zc+dOTZ8+fTQBAQG6z44bN04THx+vmwbrnHH5jzsMjFkvrfnz56vt6uHhoWnUqJEqE9YZD325Wc++ffuqsmDbpqWlae7fv//Y7Yfv4OHDh5rcunTpkprn7NmzNXPmzNGUK1dOrWurVq00x44dS3cMYLqwsLBM8/j44481Tk5OmmvXrmW5HGwnFxcXTWRkZKa/PfPMM5qiRYvqtqv2eEDZTN3vjT2W8LmM+4x2m27btk29xv/65dffr7Vl+uyzzzQ1a9bUuLu7a0qVKqUZMWKE5s6dO0Z991u2bNE88cQTqnyenp6abt26aU6ePJlumVmV0RBtuVesWJHtcjENvktjlnHq1ClN7969NSVKlFDriPPYmjVrMn3fGR/a7y7jsaIt47JlyzTvvfeexs/PT1OkSBG1jHv37qnjZezYsepcW7hwYc2QIUMMHkM///yzpkGDBmpfRdlwDIWHhz/2O9eW98CBA+m+ZywL+2/37t3Vc+w3r7/+eqZzArb53LlzNbVr11bfB6br0KFDuvklJyer8wnOKzgXYL+ZPHlypvXA+7hu4DvB94p1wXy1390ff/yhWw7W1dCx97jtk5U9e/ao72HkyJEaY237b9v9+uuvmv/9739q2xUoUEBz9+5d9ffly5frtom3t7dm4MCB6c4JKBc+f+TIEd17v//+u3qvZ8+e6ZZVvXp1zXPPPaeeG9q/tMc89mO8PnfunHoPx1GxYsXUfhMXF2f0uqnlmDS1A2vfvr06YetfILKCiyY2Bk6UX3zxhfosNhgurFo//fSTei8kJCTdZy9fvqy7OGlldcKvX7++5qmnnlLLwIHr7Oys24G03nrrLTVt165d1fKHDx+uLtQ4iHMaPOGkhWU1adIk3fu44GD5KPtXX32lefbZZ9Xn33jjDd00//zzjyYoKEgtHyc0PFatWqU70eC7wsUBQc/ChQs1r776qrqI4iT1OGPGjFFBzrRp09Rnhw0bpsqJgEr/JPD000+rcmmXj0d2jFkvQICM91u2bKmZN2+eZsKECRovLy8VIOlfEHK7nvjucOHE/oWTDpZZunRptR9khL/h5I6TFp4jkF+yZIkmt8FTnTp1NIGBgZqZM2dq3n//fbWeuIBFRESo6WJjY1XQgv0yIwQP2G+zg/0Ey8m4Trdv39a4urpqBg0apHvPUPBk7H5v7LGEfRSfx0lau8+gjKYETy+99JLaxijL119/rZk4caLaNjhfJCUlZft9bNq0SX0WP1hmzZqlvnOsCy6C2vXGvv3222+rsrz22mvpymiu4Cm7ZRw/flxdjLB9sV/ge0dQjX1v5cqVapoLFy6oz+HzmI/2u9TuN1kFTzhnNGvWTB1X+Dzm2a9fP82AAQM0nTp10ixYsEDzwgsvqGnx3ej76KOP1PQImHCMar877L/aC7mpwRMu+LVq1dK8+OKL6pyAgATTZfyRjOsA3kcZEUR98skn6hjX36+1ASnOU1gP7Nt4jfOOPuxP+BGPHwQIJHH8+/v7q2Dyl19+UT9kZsyYoR7YDpUrV1bnGi1jtk9WEMxpf2QYa9t/2w7Lw/bDj63p06erIEX7vWLfx3pMmjRJnS/0twmOdZRN/7tCoIwfXjjXaOFHjv71FfsTAkOch7X7F/Zb/eAJx3uvXr3U9sJxifdwzjAFgycj4QSBEyoeOIjxRf/9998GT3r6NR1a+LWBXxZaMTExagNnvLjgxIgd5sqVK48Nntq1a6dqHrTwyxnlQ3ADOCHhhJvxIMSBpx+NZwfTIQi5deuW2kkPHjyo6dixY6YAL6v1fvnll1WQoP8rCr+eMl5YADs5Doxdu3alex8XGizv33//zbashpaPgzXj94lg0JRKV2PWKzExUQUyOBngl6TW4sWLM/06z816opYC02BZOGliG+BXuXabYB76mjdvrk7a+BWHkzx+mRo6yZsaPOFEp/8rcf/+/ep97INa/fv3V7829U/g+DWM6bAPZwe/4HGRwLFm6DvCsZdV8GTKfm/ssQS4WBqqyTEmeMK2xjQZA9eNGzcafD8jXHxQU4ULihZ+kWM/0g8kjQ2Icho8Zfe5tm3bqqBa/1jHd4p9sEqVKrr38LmM35dWVsET9lv9cy32LRzXCEr0YX/R/97xYxTbEbWd+vAjGPtIxveNDZ7wHmqL9OGCrH/HYOvWrbogMyPtvnb48GE1DS7g+vDDDO9jHhlrP7WBAOA40B6P+uc4/CDL+B0bu30MQU0P5qd/PABqs3Ft0D70g1HttsN1T/8ciu2IfRnbVL82fN26dWp61MjrH3P6P2JQU6X98YpaNEDgl7GGCj9KDF3ftMETgt6M64dzqins4MZj/kCj271796r2GEeOHJFZs2ap9j7ocbd27dp00xYsWFD3PCYmRnWLRA+1ixcvqteAXmtofLd8+XLVEFu/B1XTpk1Vw/THGTFihOoJotWyZUvV2wGNOWHLli2SkpIir7zySrrPmdq4/bvvvpOSJUtKqVKlpGHDhmq+b731lkyYMCHL9UZPKaw3yoQGvqdPn37sclasWCE1atSQ6tWrq89qH0899ZT6+7Zt27L9vP7y0SYGn0UPNHy/uFefU8asF+73o+cXOhPoN65Fuxz0SjHXej548ED9j2V9++238sYbb8hzzz2nej+iHdpHH32Ubvp///1Xxo4dq/bbkSNHqsaetWvXlrfffls1BM4pNMTEvq/VuHFjadKkiWqMr4X2Sjdu3Ei3PkuWLFHfJ9rNZQdtmNAIHMecfq8stIPy9fWVtm3bZvnZnOz3jzuWcgvbHG0mcR7R3+bBwcFSpEiRbLf5zZs3VSoANFRHA12tunXrqvnpf+eWgp536OmJfVF7jOCB/RTnyXPnzhnszGAs7Euurq6619jXcFy/+OKL6abD++jIg+0PK1eulLS0NFUu/e8dHX6qVKny2HNKdnA86cM+g3O8FtoGYZ+aOnVqps9q9zXttst4Ln399dfV/xl7NeMYRw9b/fUFnDv0rxna97Xlye32iY2NVf9jX9X39ddfq2uD9oFeeBkNHjw43TkU50q0m8Pxqd+erkuXLuqcqL/O+E537dqlnqPcuPbiWEXHDe37+B/t73Bey822w3ehXU9jMHgyQaNGjdTBePfuXQkJCVGN5LBB0aofPUj0L1jt2rXTdSHHToWLFWiDJ+jbt6860HGB0PZiwcUN7xsjY4ClvUijfKA98VeuXDnddDgBZ7ygZ6d79+6yadMmtVNr82QgcMjY6O/EiRPSs2dPdZFAcIj11jZU1l/vrOAAxjz0D0Y80ODZmIb54eHhugsMDnJ8FkGrscvPijHrldV3jUAqY4+i3Kyn9iSECwn2Oy1sC+w3165dU99DVtBY89VXX5V79+6pfS2ncOHJCOXXD3RwYS9TpowKmAAXMXRnxv6EBuGPo20QjoAJsG44USKoyq6BeE72+8cdS7mFbY59BT9AMm53BMTZbXPt+lSrVi3T3xCE4yKIHwuWhF5WCGbQ0yrj+mmDh9x0rMm4fXAsQkBAQKb3sZ9pj0t87ygX9teM5Tp16lSOy4SLPuaRcZ/R319wPkc3fv2A19C2xbGbcV9FcIdrR8bg3ZTvAbTlye320R6v2h9vWvgRhGsDHgjmDalQoYLR+zOCJ/11RlCDHw8oP3q849qD4FE/qML/LVq0MKkRujmOd/a2ywFcgBBI4YELxtChQ9UvS+yEOGDwqxg7wZw5c9ROjenxCwM5UXBga6G7P/LZoPYJNST4HzsAcqgYI6sLiH5NljmULVtWBYPQuXNnFfXjAozUDdpeF7gYI1BBcIGeYJUqVVInmLCwMJk4cWK69c4KpqlTp4763gzJeILQh1oCXKzxCwvLw/eP4BW/phBQGbN8Q8yxXuZcT5yIsXycWDNuf1yYtSeA7GoutfPHd5WXUD50X0aXdnTzx48K1EQZ2/MPtTLYjgi48OMD/2Pf1gZV5i5rXh5L2ObYPtpAMqOMF2Jboz0OUBOaVQ/cjAGCObbP47YbyoULLtKqGJo2Y01KbsuTU/q1nnn1PeRm++A4BKRDQaCify7Rnk8QgBhKPqlf62QqbU3Wzp07VS1agwYN1HkdwdO8efNUMIe7CugNn9/HO4OnXMJtLEB0DMhPg0RiuJWnfwEzVD2MneCZZ55RgRcupLhlh50Cv1bMQZu4DlG7fvSP6snc/KJ++eWXVSCIPB+okdFmV8Z8UTOHvDdaly5dMvpEgcAE1bIIPo09megnMD179qz8+OOP6bq34xeRscs3xNj10v+uEVRq4fYBamP0f5XlZj0RXAcFBamUGUlJSem6diMwMeZCrK3Kz80FG7/oM8L3n7GWDdsCKRVwXOAChmWakt4CgRJ+LR89elTVQKEGAT9aLLHfm7qt9GGbIxcOLjymXky062OoGzhuG+PHDM4lllSxYkVdjaj2h1ZefI85+d5xQcR+oK3Zzc9l//333+pHSla1T9i2CGxwPKEWUSsyMlL9cDMl+ai5to8huE4hsS6Cf/3gKSf092dtUwUtvKe/zriG4oHaJZy3cH0EnItxqxPXTvxw1j8359c+xtt2RkLwYygq1d6z1lZBaiNa/WlRhfzDDz8YnC9uteCih/YruKAae8vOGLg447YRklrqmz9/fq7mi3ninjyqvZFzJ6v1xsUdNQ4Z4URv6DYa7sejpgg1FRmhfU52tyYMLR/PkYvK0PIBJ6fHMXa9EEQjYSPKrm1vATjZZLxg52Y9AfsIThgIFPXzp2BZaBOhDb6R1C4j3GZGdndccFGzk1PI3qvfRgK3sffv36/a8elD0IgH9m+0AcEtN/02YY+jrWWaMmWKavdjTK1TXu332G+M2WcMwTbHNvvwww8z/Q37S3bzxa1PBMzY3vrToRYASSVRG2xpqFVD0suFCxfqfkjq098XTTn+cgs14ziGkZQz4/kbr/MyQz1uaWEZWHZG2rJot13GERe0tdJoB5Tf28cQBEyo2f/mm2905/yc1trgXInyoL0UKhq08OMK15SM64yACe21cI7RBk84HnArEQEdfoxkPJfl5lg1FmuejITGpmjng5oWVGHiAop7sKgtwq9t3LqD9u3bq9oA3JJDDQ2qFXGRxM5iaKfFwYOdANWpOMgf15DWFGhYi8bC+OWPBsPIyIwADTspLp65ic5xKwwXtJkzZ6rGw7jtiGpbNA587bXX1LwxbIOhAwo7Or43/HJALQKqzvF9IQkbbl2iMR+CVRywuODg1zXex684bU1fRtgm+KWH7xEXddxmw8XaUE2D9kBDOVELom2cbIix64VtjvZg2E/wawoXS9Q4YXgHlEv/u87NegL2KwQjo0ePVrU9+GWGMqGtAGp4tJBFHUEOvltMg/3v+++/V22iML1+rRVq2FBjhlvPxmReRxU/qtRHjRqlToA4+SN4REeCjFD7hO0CpibrRI0BtoH2hG1M8JRX+z32GwRkaJSP9ccxnfGXc1Zw6xfbbfr06SoIxHkCtQCoccCvZwT5+m3YMpo9e7YKTNHeY9iwYSrIxjAZaNuS20z5OE4MdejAPp/dLeSMsL9hn8AtaXScQG0HalDQphPt1bANtBc+HHM4d+BHFJIA43vU3nY2Jxx72F5on4rjEecqnG9Rc4wM9mh8rN03zQ3HE4513F7CdsZ+iFom1KLgb2j6UK9ePfU9IyjRNhFAkIBAGWXVr8XOLWO3T1Z++eUXtQ4oV6dOnVQNFs6N2gzjuLWW8ceTIdjvse1xzcT69u/fX5UDxwCupRkT/yJgwg9DHLfa23jYf3BewLkSQWHG5Ko4VlEmBKH4MYnziLYRvdmY1DfPgf3111+qeyPyvKCLOJKZIY8GcgtlTOS3du1aTd26dVUuEG0uHG3SQP1cNFpIDqbtLm1IVqkK9LvPZtVlGl2+3333XZUHCN1ZkcsGXTzRLdOYhGeG8jxl7PqtXR662CPBJ5aDLuradA4Zy/TgwQOVn6V48eLqb/pdi9GNFd8XuqgilQPy2KD7L3KzIL1DdpAwEN8htg/yuCCfDrqvZuwaj+8E2w25QrT5j7Jj7HoB8tBgfVD2xo0bq8+i/EgloC836wnY57BPIL8SPo+cW+j2njG9BnJaYdsjNxK+b+SXQrLFjP7880+DqQ6yS5L56aefqoSk2pwq+l2F9d28eVN1F8+YVNVYyH2DZeL7NMRQnidj93tTjiWkQECaDeR7008/YWyeJ/jmm2/UdkaZMB90Hcf+dOPGjcd+D5s3b9a0aNFCfRaJ/ZDDSj9JZk5TFWT10KbSMDZVgTaPE1InaPc55CFCUlMkN9S3aNEi1YUd+4X+d5dVqoKMy8pqu2m7oqPbvD4kkESCUXRhxwPncZzXzpw5k+MkmRlpl60P+yGOFSwP1wycc5BeITQ0VDcNUpvguEdyXXxnOKayS5JpzDla/zjNyfbJClILIPVJs2bN1D6IdA+YF+aBdBv6SUIfty8ixQrSO+D8gfNYxiSZWkhuq81RlzF/F97HcZ7R6dOnVQ4rHCv66Umy2j8MnUMepwD+MW84RtYOv3DwiwG/yP73v/9Zujh2Db800c4Htw8M3aazFqgxQoNstBMy93BAaESKW0+oqbTkuFfc74nIXNjmyc4ZyuWjvb+O6k4yH7Q7yvhb5KefflINRq39u8btQwQ2eTGOIm5d4rYkbmHkF+73RJSX2ObJzqFtES5eaFuFtkW7d+9WNQxoc5HbXhOUecBe3K9Hqgm0/0E6AyQYRfI2Y9NPWAp675kbGnki/xm6EaOdRMaeeHmJ+z0R5SUGT3YOPZ3Q8wgZ0ZE9VduYNmMmaso9BAdoYIsGotruyWgsjR4hjjhaPPJioVMFghU0bs5P3O+JKC+xzRMRERGRCdjmiYiIiMgEDJ6IiIiITMA2T7nogo7M4Ei4lp/DDRAREVHOobUSRltAAk1TBhTWx+AphxA4mZJ9l4iIiKzH1atX1cD3OcHgKYdQ46T98jEUCBEREVk/9MBF5Yf2Op4TDJ5ySHurDoETgyciIiLbkpsmN2wwTkRERGQCBk9EREREJmDwRERERGQCBk9EREREJmDwRERERGQCBk9EREREJmDwRERERGRrwdOCBQskMDBQPDw8pEmTJhISEpLltCdOnJDevXur6ZGjYe7cuZmmmT59ujRq1EglwCpVqpT06NFDzpw5k26aNm3aqM/rP0aOHJkn60dERET2w+LB07Jly2TChAkydepUCQsLk3r16kmHDh0kKirK4PTx8fFSsWJFmTFjhpQuXdrgNDt27JDRo0fLvn37ZNOmTZKcnCzt27eXuLi4dNMNHz5cbt68qXvMmjUrT9aRiIiI7EcBDUbIsyDUNKGWaP78+boBd5E2fcyYMTJp0qRsP4vap3HjxqlHdm7duqVqoBBUtWrVSlfzFBQUZLDmytj07p6enhITE8MM40RERDbCHNdvi9Y8JSUlSWhoqLRr1+7/C+TkpF7v3bvXbMvBFwReXl7p3l+yZIn4+PhI7dq1ZfLkyapWKyuJiYnqC9d/EBERkeOx6Nh20dHRkpqaKr6+vunex+vTp0+bZRmoyULNVIsWLVSQpDVgwAApX768+Pn5ydGjR2XixImqXdTKlSsNzgftqN5//32zlImIiIhsl90PDIy2T8ePH5fdu3ene3/EiBG653Xq1JEyZcpI27Zt5cKFC1KpUqVM80HNFNpmZRyVmYiIiMwrIiZB7sQlSU0/62wWY9Hbdrhl5uzsLJGRkenex+usGoOb4tVXX5V169bJtm3bpGzZso9tewXnz583+Hd3d3d1b1T/QUREROb3+Zaz0nneLpm/9ZxYI4sGT25ubhIcHCxbtmxJd5sNr5s1a5bj+aINPAKnVatWydatW6VChQqP/czhw4fV/6iBIiIiIssIvx0vKw5eU8+bVvQWa2Tx23a4FTZ48GBp2LChNG7cWPV+Q0qBoUOHqr8PGjRI/P39VZsjbSPzkydP6p5fv35dBT5FihSRypUr627VLV26VNasWaNyPUVERKj30bq+YMGC6tYc/t65c2fx9vZWbZ7Gjx+veuLVrVvXYt8FERGRo5u39ZykpGmkVdWS0jAwfUcva2HxVAWANAWzZ89WQQ7SB8ybN093Gw0pBZCSYPHixer15cuXDdYktW7dWrZv366eI+GlIT/88IMMGTJErl69Ks8//7xqC4VADW2XevbsKe+8847Rt+OYqoCIiMi8Lt56IO3m7JA0jcjq0S0kKKC4mZdgnuu3VQRPtojBExERkXmN/e2QrDl8Q9pWLyXfDWkkecHm8zwRERERwbnI+7L2yA31fPzTVcWaMXgiIiIii5u7+ZzgXliHWr5S299TrBmDJyIiIrKoUzdjZf2xmzZR6wQMnoiIiMiiPtt0Vv3fpW4ZqV7a+tsRM3giIiIiizl2LUb+ORkpTgVExrerIraAwRMRERFZzGebH9U6dQ/yl8qliootYPBEREREFhEWfle2no4SZ6cC8lpb26h1AgZPREREZNG2Tr3q+0sFn8JiKxg8ERERUb4LuXRHdp2LFhcbq3UCBk9ERESU7+ZsOqP+f7ZhgAR4FRJbwuCJiIiI8tWe89Gy7+IdcXN2kjFPVRZbw+CJiIiI8o1Go5E5/7V16t84QPyKFxRbw+CJiIiI8s3Oc9Fy8MpdcXdxkleetL1aJ2DwRERERPlX6/TPo7ZOzzctL77FPMQWMXgiIiKifLH1dJQcuRYjBV2dZWTrSmKrGDwRERFRvrZ1GtS8vJQs6i62isETERER5bm/T0TIiRuxUtjNWV5uZbu1TsDgiYiIiPJUWppGPtt0Tj0f2qKCeBV2E1vG4ImIiIjy1PpjN+VM5H0p6uEiw1tWFFvH4ImIiIjyTGqaRuZuftTW6aUnKopnIVexdQyeiIiIKM+sPXJdLtyKE8+CrjL0iUCxBwyeiIiIKE+kpKbJ55sftXUa0aqiFPOw/VonYPBEREREeWLloety+Xa8aiA+pLl91DoBgyciIiIyu6SUNJm35VGt08jWFaWwu4vYCwZPREREZHYrQq/KtbsPVTLMF5raT60TMHgiIiIis0pMSZX5W8+r56+0qSQF3ZzFnjB4IiIiIrP6LeSq3IxJkNLFPKR/43Jibxg8ERERkdkkJKfKgm2Pap1GP1VZPFztq9YJGDwRERGR2fyy74pE3U8U/+IFpW/DALFHDJ6IiIjILOKTUuTrHRfU8zFPVRY3F/sMM+xzrYiIiCjf/bjnikQ/SJJyXoWkd3BZsVcMnoiIiCjX7icky8Kdj2qdxratIq7O9hti2O+aERERUb5Z/O9luRefLBV9Ckv3ID+xZ1YRPC1YsEACAwPFw8NDmjRpIiEhIVlOe+LECendu7eavkCBAjJ37txM00yfPl0aNWokRYsWlVKlSkmPHj3kzJkz6aZJSEiQ0aNHi7e3txQpUkTNMzIyMk/Wj4iIyJ7FPEyWRbsuqudj21URFzuudQKLr92yZctkwoQJMnXqVAkLC5N69epJhw4dJCoqyuD08fHxUrFiRZkxY4aULl3a4DQ7duxQgdG+fftk06ZNkpycLO3bt5e4uDjdNOPHj5c///xTVqxYoaa/ceOG9OrVK8/Wk4iIyF59t/uSxCakSJVSReSZuvZd6wQFNBqNxpIFQE0Taonmz5+vXqelpUlAQICMGTNGJk2alO1nUfs0btw49cjOrVu3VA0UgqRWrVpJTEyMlCxZUpYuXSp9+vRR05w+fVpq1Kghe/fulaZNmz623LGxseLp6anmVaxYMZPWmYiIyF7cjUuSlrO2yYPEFPlyYAPpXKeMWDNzXL8tWvOUlJQkoaGh0q5du/8vkJOTeo0gxlzwBYGXl5f6H8tEbZT+cqtXry7lypXLcrmJiYnqC9d/EBERObpvdl1UgVONMsWkYy3Dd4TsjUWDp+joaElNTRVfX9907+N1RESEWZaBmizUTLVo0UJq166t3sO83dzcpHjx4kYvF+2oEKlqH6gdIyIicmTRDxLlxz2X1fPx7aqIk1MBcQQWb/OU19D26fjx4/Lbb7/laj6TJ09WNVjax9WrV81WRiIiIlu0cMcFiU9KlbplPeXpmukrQuyZiyUX7uPjI87Ozpl6ueF1Vo3BTfHqq6/KunXrZOfOnVK27P8n68K8ccvw3r176Wqfsluuu7u7ehAREZFIVGyC/LT3ino+/umqqge8o7BozRNunQUHB8uWLVvS3WbD62bNmuV4vmgDj8Bp1apVsnXrVqlQoUK6v2OZrq6u6ZaLVAbh4eG5Wi4REZGj+HL7BUlMSZP65YpLm6olxZFYtOYJkKZg8ODB0rBhQ2ncuLHK24SUAkOHDlV/HzRokPj7+6s2R4Aao5MnT+qeX79+XQ4fPqxyNVWuXFl3qw496dasWaNyPWnbMaGtUsGCBdX/w4YNU8tGI3K0tkfvPgROxvS0IyIicmQXbj2QpSHh6vnrT1dzqFonqwie+vbtq1IJTJkyRQU5QUFBsnHjRl0jctQGoQeeFvIx1a9fX/f6k08+UY/WrVvL9u3b1XtfffWV+r9NmzbplvXDDz/IkCFD1PPPPvtMzRfJMdGTDrmlvvzyy3xZZyIiIluUlqaRJfuvyPS/TktSSpo0ruAlLSp7i6OxeJ4nW8U8T0RE5Eiu3omXt34/Knsv3lavm1Twkrn9gqSMZ0FxtOu3xWueiIiIyMprm0LCZfqGU6pnXUFXZ5nUqbq80LS8w6QmyIjBExERERl07W68TPzjqPx7/lFtU+NAL5n9bF0p711YHBmDJyIiIkoHLXrQIHza+lMSl5QqHq5OMrFjdRncLNBha5v0MXgiIiIinev3HsqkP47KrnPR6nWjwBIyu089CfRx7NomfQyeiIiISNU2/Xbgqny8/pQaqw61TW92qC5DmgeKM2ub0mHwRERE5OBuoLZp5THZefaWeh1cHrVNdaViySKWLppVYvBERETkwLVNyw9elY/WnZL7iSni7oLapmoytEUF1jZlg8ETERGRA7oZg7ZNx2THf7VNDcoVl9nP1pNKrG16LAZPREREDlbbtCL0mny47qTcT0gRNxcneaN9VRn2REXWNhmJwRMREZGDiIhJkMkrj8q2M49qm4ICissnz9aTyqVY22QKBk9EREQOUNv0R9h1ef/PE7rapglPV5XhLVnblBMMnoiIiOxYZCxqm47J1tNR6nU91Db1qStVfItaumg2i8ETERGRndY2rTp0Xd5be0JiUdvk7CTjnq4iI1pWFBdnJ0sXz6YxeCIiIrJhKalpEnU/UWUGR74m/H/97kM5HXFfQq/cVdPULeup2jZVZW2TWTB4IiIismJxiSkqKLr2X3CkAqS7+D9BBUoRsQmSmqYx+FlX5wIyrl1VebkVa5vMicETERGRhaSlaST6waNaI13N0V08T9DVIsU8TH7sfFycCkiZ4h7iX7yg+BUvqP7Ho2lFb45JlwcYPBEREeUz1BS9u+a4/H7wmiSlpj12+mIeLv8fFJX4/wBJ+3/Jou7sNZePGDwRERHls2kbTsnS/eHqOWKe0sU8VCDkly44Qk1SIfEr7iFFPVwtXWTSw+CJiIgoH/2097J8t/uSev7ps/WkW5CfuLI9kk1h8ERERJRPtpyKVKkDAAPw9g4ua+kiUQ4w1CUiIsoHx6/HyJhfDwk6xvVtGCCvtKlk6SJRDjF4IiIiymPoOffi4gMSn5QqLav4yEc9a0uBAmzgbasYPBEREeWh+wnJKnBCIstqvkVlwcAGbONk47j1iIiI8khyapq8siRMZftGOoHvhzaSYuw5Z/MYPBEREeXR2HLvrj4uu85FS0FXZ/l+cCOVk4lsH4MnIiKySVH3E2T6X6dk59lbYo2+2nFBfjtwVeVx+qJ/falT1tPSRSIzYaoCIiKyOfsv3pZXfz0kt+4nysIdF1XPtQlPV7Wa8dv+PHJDZm08o55PeaamtKvpa+kikRlZx15GRERk5K2wr3dckAHf7leBE9oRwZfbL8jz3+1XtVGWdvDyHXl9xRH1fGiLQBnSooKli0RmxuCJiIhsAgbIHf5TqMz467QaG65nfX/Z8WYbdUussJuz7Lt4R7rM261qpSzlcnScDP/poCSlpMnTNX3lnS41LVYWyjsMnoiIyCYSTD7zxS7ZfCpS3JydZFrPOjLnuXpSyM1FutbzkzWvPiFVfYuo2ijUSqF2Kg3ZKPPR3bgkGbr4gNyNT5a6ZT3l835BHKzXTjF4IiIiq75NhwF0e321R67eeShlSxSUP0Y1lwFNyqVLMlm5VBFZPbqFqo1CrRRqp0b8HCox8cn5Us6E5FQZ8fNBuRQdp3rUfTu4oQrsyD4xeCIiIqsUn5Qiry8/Im+vOqZug7WtXkrWj2mZZa81BCuojUKtFGqnUEv1zPxdqtYqL6GG663fj8qBy3elqIeL/DC0kZQq6pGnyyQHD54WLFgggYGB4uHhIU2aNJGQkJAspz1x4oT07t1bTY9fHHPnzs00zc6dO6Vr167i5+enplm9enWmaYYMGaL+pv/o2LGj2deNiIhy5sKtB9JzwR5Zeei66uo/sWN1WTSooXgWyj7BJM7nqJVC7VSAV0FVW4VaK9ReoRYrL8zZdFbWHrkhLk4F5Ovng6Wqb9E8WQ5ZD4sGT8uWLZMJEybI1KlTJSwsTOrVqycdOnSQqKgog9PHx8dLxYoVZcaMGVK6dGmD08TFxan5ICjLDoKlmzdv6h6//vqrWdaJiIhyZ93RG9Lti91yJvK++BRxl6XDm8qoNpXEyYT2Q6idWvdqS2lXo5SqtULtFWqxUJtlTssPXJX5286r59N71ZEWlX3MOn+yTgU0eRWKGwE1TY0aNZL58+er12lpaRIQECBjxoyRSZMmZftZ1D6NGzdOPbL7BbJq1Srp0aNHppqne/fuGayVMlZsbKx4enpKTEyMFCtWLMfzISKiRxDkTNtwShbvuaxeN6ngpXrSlSrmkatbat/suiiz/z6j2kKhUfmXA4NVG6nc2n0uWob8ECIpaRoZ81Rleb19tVzPk/KeOa7fFqt5SkpKktDQUGnXrt3/F8bJSb3eu3dvni9/+/btUqpUKalWrZqMGjVKbt+2XNdWIiJHd/3eQ3lu4V5d4ISapiUvNclV4ASorRrZ+tG8kBPqbOQD6T5/t0pimRtnIu7LqF9CVeDUPchPJegkx2Gx4Ck6OlpSU1PF1zd91lW8joiIyNNl45bdTz/9JFu2bJGZM2fKjh07pFOnTqo8WUlMTFTRqv6DiIhyb/uZKHlm3i45fPWeFPNwkW8HNVRtnMyZLbxpRW9Z/9oT0rSil8QlpcqYXw/Je2tPqNouU0XFJsiLiw/I/cQUaRzoJbP61E3X84/sn0P2o+zXr5/ueZ06daRu3bpSqVIlVRvVtm1bg5+ZPn26vP/++/lYSiIi+4bbaJ9vOSdfbD0naEBS27+YfDUwWAK8CuXJ8tAD7pdhTVQDb2QkRy0XArYFAxsYPWAv2kwN+/Ggqimr6FNYFr4QLO4uznlSXrJeFqt58vHxEWdnZ4mMjEz3Pl5n1Rg8r6AROspz/vyjRn+GTJ48Wd0f1T6uXr2ar2UkIrIntx8kyuDvQ2TelkeB08Am5eT3kc3zLHDSQm3WWx2ry3eDG4pnQVcVPHWZt0vVfhkT7L326yE5dj1GvAq7qZQEJQq75Wl5yTpZLHhyc3OT4OBgdetMCw3G8bpZs2b5WpZr166pNk9lypTJchp3d3fVsEz/QUREORv7DcOo7D4fLQVdneWzvvXk4551xMM1/2pw2tbwlXVjnlCZwO/FJ6vM4HP+edSoPCsfrjspm09FiZuLkywaFCzlvQvnW3nJulg0VQHSFCxatEh+/PFHOXXqlGq4jVQDQ4cOVX8fNGiQqvHRb2R++PBh9cDz69evq+f6NUYPHjzQTQOXLl1Sz8PDw3V/f/PNN2Xfvn1y+fJlFax1795dKleurNIkEBFR3kDn7m93XZR+3+yTiNgEqViysKx5FVnBy1qkPKjlWjGymbzQtLyq/Zq39bwM+n6/RD9IzDTtD/9e0jVm/+y5IAku72WBEpO1sGiqAkCagtmzZ6tG4kFBQTJv3jyVwgDatGmjUhIsXrxYvUawU6FC5tGpW7durdorAf5/8sknM00zePBgNZ+HDx+q1AWHDh1S6QqQTLN9+/by4YcfZmq8nh2mKiAiMl5sQrK8teKobDzxqEPQM3XLyIzedaWIu3U0vV1z+LpM+uOYPExOFd9i7rJgQANpGPgoQPrnRIS8/EuoCrAmdaqueu+R7TLH9dviwZOtYvBERGSckzdi5ZUloXL5dry4OheQd5+pqWp7rK2H2rnI+zJqSZicj3qgBvSd1LG6NK7gpWrKEFT1b1xOpvWsbXXlJtMweLIgBk9ERNnD5WX5wasyZc0JSUxJUz3a0LMtKKC4WKu4xBSZvPKYGm4FEOwlp2qkVdWS8v3ghmZNn0C2e/22jvpSIiKyK+G34+V/q4/JrnPR6nWbaiVVWyFr751W2N1FPu8XJI0qeMmHf56UpNQ0qV66qCwYUJ+BE+kweCIiIrNJSU2T73Zfks82n5WE5DTVM218u6rycquKJo1NZ0m4LYfbivUDisvG4xEyqFl5KeqR/YDE5FgYPBERkVkcvXZPNbo+efPRCAzNKnrLtF51pIKPbXbpr+3vqR5EGTF4IiKiXLcTQtZudOdHmiQkn/xflxrybHBZNq4mu8TgiYiIcmzbmSh5Z9VxNVwJdKvnJ1O61hSfIu6WLhpRnmHwREREJkMiyQ/+PKnrlYaedB/1rC1PVitl6aIR5TkGT0REZFL6gRWh1+Tj9ack5mGyoA34iy0qyPinq6qeakSOgHs6EREZ5VJ0nLy98pjsvXhbva7lV0xm9KordcqyUTU5FgZPRESUreTUNPlm50X5fMs5SUpJEw/XR+kHhj1RgbmPyCExeCIioiwdCr+rMm6fjrivXres4iMf96gj5bwLWbpoRBbD4ImIiDJ5kJgin/x9Rn7ce1kNiOtV2E3efaaG9AjyZ/oBcngMnoiIKJ3NJyPl3TXH5WZMgnrdq4G/vNOlpgqgiIjBExER/ScqNkHe//OkrD92U70u51VIpvWsI09U8bF00YisCoMnIiIHl5amkWUHr8q0DafkfkKKODsVkOEtK8rYtlWkoJuzpYtHZHUYPBEROXj6gYm/H5WQy3fU63plPWV6r7pS06+YpYtGZLUYPBEROahrd+PluYV75db9RCnk5iyvt68mQ5oHqponIsoagyciIgcUE58sQ344oAKn6qWLyreDG0rZEkw/QGQMBk9ERA4mMSVVXv7loJyPeiCli3nID0MbSRnPgpYuFpHNYGpYIiIHG5tu0h/HZN/FO1LE3YWBE1EOMHgiInIgczadlVWHrouLUwH56vkGUqMMG4YTmYrBExGRg1h2IFy+2HpePZ/Wq460rFLS0kUiskkMnoiIHMCOs7fk7VXH1fPXnqoszzUMsHSRiGwWgyciIjt38kasvPJLqKSmaaRXfX8Z/3RVSxeJyKYxeCIismM3Yx7Ki4sPSFxSqjSv5C0zetflwL5EucTgiYjITsUmJMvQHw5IRGyCVPUtIl89HyxuLjztE+UWjyIiIjuUnJomo5eEyemI+1KyqLt8P6SReBZ0tXSxiOwCgyciIjvM5fT2ymOy61y0GnblhyGNmD2cyIwYPBER2RmkI1gRek2NUbdgQAOp7e9p6SIR2RUGT0REdmRl2DWVCBM+6F5LnqxeytJFIrI7DJ6IiOzEnvPRMvGPo+r5yNaVZGCT8pYuEpFdYvBERJQLF249kCc/2S4Dv90ney/ctlg5zkbel5d/CZXkVI10recnb3WoZrGyENk7F0sXgIjIViWlpMnY3w7Jpeg49fj3/G1pUsFLxrarIs0qeudbPqWo2ASVkuB+Qoo0DvSS2X3qipMTczkRWVXN088//ywtWrQQPz8/uXLlinpv7ty5smbNGpPntWDBAgkMDBQPDw9p0qSJhISEZDntiRMnpHfv3mp6nJSwzIx27twpXbt2VWXDNKtXrzbYE2XKlClSpkwZKViwoLRr107OnTtnctmJyLGhbdHx67FSvJCr9G8cIK7OBWT/pTsyYNF+6fvNPnUbDeebvBSXmCIv/nhArt97KBVLFpZvBgWLh6tzni6TyNGZHDx99dVXMmHCBOncubPcu3dPUlNT1fvFixc3GMxkZ9myZWpeU6dOlbCwMKlXr5506NBBoqKiDE4fHx8vFStWlBkzZkjp0qUNThMXF6fmg6AsK7NmzZJ58+bJ119/Lfv375fChQur5SYkJJhUfiJyXLhFt3DnBfV8Rq+6Mr1XXdnx5pPyQtPy4ubsJCEIor7dL88t3Cv/5lEQlZKaJq8uDVMBnHdhN1k8pLEUL+Rm9uUQUXoFNCYe0TVr1pRp06ZJjx49pGjRonLkyBEV0Bw/flzatGkj0dHRRs8LNU2NGjWS+fPnq9dpaWkSEBAgY8aMkUmTJmX7WdQ+jRs3Tj2ygpqnVatWqbJqYXVRK/X666/LG2+8od6LiYkRX19fWbx4sfTr18+ossfGxoqnp6f6bLFixYxcYyKyBzHxydLx851yMyZB+jUKUEOeZBwS5avtF+S3kKuSlJqm3mtYvoS6nfdEZR+z3M7Duex/q4/L0v3h4uHqJL+NaCZBAcVzPV8iexdrhuu3yTVPly5dkvr162d6393dXdX6GCspKUlCQ0PVLTNdYZyc1Ou9e/dKXkH5IyIi0i0XXyICubxcLhHZUQLK1cdU4BToXUjefaZmpmnKeBaUD7rXlh1vtZHBzcqrIVEOXrkrL3wXIn2+3is7z97KdU3U1zsuqsAJcdi8fvUZOBHlI5ODpwoVKsjhw4czvb9x40apUaOG0fNBDRVu+aHGRx9eI7jJK9p5m7rcxMREFa3qP4jI8awMuy7rj94UF6cC8nm/+lLYPet+Nwii3u9eW3a99aQMaR6ogqjQK3dl0Pch0uurPbIjh0HU2iM3ZObG0+r51GdqSvtahpsxEJGV9LZDG6XRo0er9kE46NHA+9dff5Xp06fLt99+K/YK6/f+++9buhhEZEHht+Nl6toT6vm4dlWknpG1Pb7FPOS9brVkVJtK8vWOC6rG6FD4PRn8fYiqMcLtvDZVSxp1Ow9tqd5YfkQ9H/ZEBRnSokIu14qI8rzm6aWXXpKZM2fKO++8oxpwDxgwQDUi//zzz41uLwQ+Pj7i7OwskZGR6d7H66wag5uDdt6mLnfy5Mnq/qj2cfXq1TwrIxFZHzTOHrfskDxITJFGgSVkVJvKJs8DQdTUrrVUTRQCH7RVOnz1nkoz0OPLPbLtdFS2NVHnox7I8J8OqnZUHWuVlv91Nr62n4gsnKpg4MCBqmv/gwcP1K2ua9euybBhw0yah5ubmwQHB8uWLVt076HBOF43a9ZM8gpuOyJI0l8ubsGh1112y0WbLjQs038QkeNYsO2ChIXfk6LuLjLnuSA1blxOlSrmodpK7XzrSXnpvyDqCIKoxQek+4J/ZevpyExB1K37iTJ0cYjEPEyW+uWKy9x+QczlRGQrwdNTTz2lUhRAoUKFpFSpUroABH8z9RbgokWL5Mcff5RTp07JqFGjVKPzoUOHqr8PGjRI1fjoNzJHeys88Pz69evq+fnz53XTIKDTTqNtII7n4eHh6jWqxdFD76OPPpK1a9fKsWPH1HLQA0+/Vx4RkVZY+F2Zt/VRLrgPe9SWAK9CZplvqaIe8s4zNWXXW0/JiFYVVRB19FqMvLj4oAqiNp98FEQ9TEqVl346KFfvPJTy3oXk20ENmcuJyJZSFaBHHGqbtEGTFnIz+fv7S3JyskkFQJqC2bNnq3kGBQWp/Evo+QZIfYCUBEghAJcvX1Y1Rxm1bt1atm/frp7j/yeffDLTNIMHD9bNB6uM3FLffPONCgSfeOIJ+fLLL6Vq1apGl5upCogcA27Tdf58l4TfiZdu9fxkXv/MvY3NJfpBoizaeVF+2ntFHiY/yqFX27+YeBZ0VdnLSxRylZWvtJAKPoXzrAxE9i7WDNdvo4Ono0cfDTaJAGfr1q3i5eWl+xt6zaG33cKFC1WA4wgYPBE5hjdXHJEVodfEv3hB2TC2pQpk8trtB4nyza6L8vPeKxKf9CiIQk+9X4c3keDy/3/uJSLLXL+N7m2HoAm3vPAwdHsOw5x88cUXOSoEEZE12nDspgqc0AluznP18iVwAu8i7jK5Uw15uVUlWbTromw9FSWvt6/KwInIShhd84Qx7DApsokjPUHJkiXTNf7GbTz0nnMUrHkism/IEt5x7i7VQHv0k5XkzQ7VLV0kIrK1mqfy5cvresQREdmztDSNvL78iAqc6pb1lHHtjG8PSUT2z+QkmVonT55UPdjQ601ft27dzFEuIiKL+Xb3Rdlz4bYUdHWWuX2DxNU5R1ldiMhOmRw8Xbx4UXr27Km6+KP9k/aunzYzLhqPExHZqhM3YmT232fU8ylda0rFkkUsXSQisjIm/5waO3asSheA1ATI83TixAnZuXOnNGzYUJcugIjIFiGf0tjfDktyqkaerukr/RoFWLpIRGQPNU979+5VqQowvApyPuGBPEkY++21116TQ4cO5U1JiYjy2PS/TqkhUEoWdZeZvesaNdYcETkek2uecFuuaNGi6jkCqBs3bugalJ8586iqm4jI1mBcOSSnhE+erSdehd0sXSQispeap9q1a8uRI0fUrTtkAp81a5ZKVYBs3UhjQERka5DZ+83fj6jnQ1sESuuq/5+KhYgo18HTO++8o8afgw8++ECeeeYZadmypXh7e8tvv/1m6uyIiCwKnV7e+v2oRD9Ikmq+RWViR+ZzIiIzB08dOnTQPa9cubKcPn1a7ty5IyVKlGD7ACKyOb/sD5etp6PU8Cef9w/igLtE9FhmSV6Cce4wsO+rr75qjtkREeWL81H35aN1J9Vz1DhVL83RAojIzDVPSEuwbds21cbpueeek+LFi0t0dLR89NFHalBgtnkiIluRlJKm0hIkpqRJyyo+MrR5oKWLRET2VvO0du1aqV+/vkpHMHLkSJXXCYFUjRo11K27VatWqeCKiMgWfLrpjJy4ESslCrnKp8/WEycnNjsgIjMHT6hdGj16tBpQb86cOSrTOAKpDRs2yMaNG6Vjx47GzoqIyKL2XIiWb3ZeVM9n9K4rpYp5WLpIRGRDCmi046s8BkYgDg0NVY3EkevJ3d1dBU3t2rUTR2SOUZmJKP/di0+SjnN3SURsgvRvHCDTe9W1dJGIyMau30bXPN2/f1+3EGdnZylYsCDbOBGRTcFvxf+tOq4Cpwo+heXdZ2paukhEZO8Nxv/++28VrUFaWpps2bJFjh8/nm6abt26mbeERERm8kfYdVl/7Ka4OBWQuX2DpJCbydlaiIiMv22HMeweO7MCBdQtPUfA23ZEtuXK7Tjp/PkuiUtKlTc7VJPRT1a2dJGIyEav30b/7EJNExGRLUpJTZPxyw6rwKlxoJeMbF3J0kUiIhvGOmsieqxL0XEyZ9NZKVuioDQKLCHB5bzEs5CrWLu0NI2ci3ogv+y7ImHh96Sou4vM6VtPnJmWgIhygcETEWUrJj5Zhv4QIpdvx6vXX6lb9KLGgWsYWEIaBXpJw0Av8S9e0NJFlfsJyXL46j0Ju3JPQsPvyqHwu3I/IUX394961payJQpZtIxEZPsYPBFRtre7Xv01TAVOCI5aVPaWg5fvysXoODkdcV89ftkXrqb18/SQRhUeBVKonapaqmieJp5Ec80rt+Ml9MpdCQu/q/4/E3lfMrbiLOjqLEEBxaVbkJ90D/LPs/IQkeNg8EREWZr+12nZdS5aBSCLBjWUmn6PGldGP0hUQdSBy3fk4OU7cvxGrNyISZA1h2+oBxTzcFGBlLZ2qo6/Z64G3U1ITpWj12J0gVLYlbtyOy4p03S4tRhcvoR6NChXQqqXLiouzmYZxpOIyLTedpQee9uRvfs99Jq8seKIev7lwAbSuU6ZLKeNT0qRw+H35MB/ARUCnPik9D1v3ZydpF6Ap65m6nHtpm7GPPwvSHp0C+7E9RhJSdNkmmdt/2LpgiVmCyeivL5+mxw8Xb16VaUkKFu2rHodEhIiS5culZo1a8qIESPEUTB4InuG4Kffwn2SlJomr7WtIhOermry7b5TN++rQOrR466qrcpI226qcQUvVWOEmiVtrRJqsjIqWdRdgsv9FyiVL6ECJ3eXnNdmEZHjibVE8NSyZUsVJL3wwgsSEREh1apVk1q1asm5c+dkzJgxMmXKFHEEDJ7IXkXEJEjX+bvl1v1E6VDLV74aGJzrtkva9knaYErbbio7WGSNMulrlRBg4ccbEZFN5HnSQkbxxo0bq+fLly+X2rVry7///iv//POPjBw50mGCJyJ7hHZFI34+qAIn1ArNeS7ILI2+EfAE+hRWj2cbBqRrN3Xwv4AKNU21/YrpapXqlS0uhd3ZLJOIrI/JZ6bk5GQ1KDBs3rxZNxxL9erV5ebNm+YvIRHlC9QOTfzjqLp1VqKQq3w7uGGeBi8+RdylY+3S6kFEZEtM7oKCW3Rff/217Nq1SzZt2iQdO3ZU79+4cUO8vb3zooxElA8W7ryoesohgeSCgQ0kwIv5kIiIzBI8zZw5UxYuXCht2rSR/v37S7169dT7a9eu1d3OIyLbsu10lMzceFo9f69rTWleycfSRSIislom18kjaIqOjlYNrkqUKKF7H43ICxXiL1UiW3M+6r689ushlVyyf+Ny8nzT8pYuEhGRVctRgwZnZ+d0gRMEBgaaq0xElI9Drwz/KVTuJ6aoAXPf71aLvdmIiMx9265+/frSoEGDTI/g4GBp0aKFDB48WLZt22bSPBcsWKCCLw8PD2nSpInKHZWVEydOSO/evdX0OMnPnTs3R/NEDRo+r/9Ab0EiR4FcTGN+O6QG/cXQK18+30DcXJiJm4jocUw+U6KB+MWLF6Vw4cLy5JNPqkeRIkXkwoUL0qhRI9Xjrl27drJmzRqj5rds2TKZMGGCTJ06VcLCwlQbqg4dOkhUVJTB6ePj46VixYoyY8YMKV26dK7mOXz4cFVe7WPWrFmmfh1ERtt0MlK+231JpQOwBjP+Oi07z95SQ698MyhY9X4jIqI8SJKJgKNcuXLy7rvvpnv/o48+kitXrsiiRYtU0LJ+/Xo5ePDgY+eHWiEEXfPnz1ev09LSJCAgQCXcnDRpUrafRc3SuHHj1MPUeaLmKSgoKMuaq8dhkkwyxepD12XcssPqeTmvQvJxz9rSskpJi5Xnj9Br8vp/Q68sGNBAutTNeugVIiJ7EmuG67fJNU9IjIledhn169dP/Q3w9zNnzjx2XklJSRIaGqpqqnQFcnJSr/fu3Wtq0Uye55IlS8THx0cl+pw8ebKq1cpKYmKi+sL1H0TG2Ho6UjdGXCE3Zwm/Ey8vfBciY387ZHDIkvwYemXyymPq+WtPVWbgRESU18ET2hDt2bMn0/t4D3/T1vRon2cHvfZSU1PF19c33ft4jaFfcsLYeQ4YMEB++eUX1T4LgdPPP/8szz//fJbznT59uopUtQ/UZBE9DjJnj/olTA1o27O+v+x/u60MbRGohh5BTqW2n+6Q30LCJS3DgLd5OfTKyz+HqjHr2tf0lXHtTBuzjoiIctDbDre+0LAatTu4NQYHDhyQb7/9Vt5++231+u+//1a3xKyZ/iDGderUkTJlykjbtm1V261KlSplmh4BFtpRaaHmiQEUZefUzVh5cfEBSUxJk6eql5JZfeqKq7OTTO1aSwVSqP05cSNWJq08JivDrsu0XrWlcqmieVYetLV6+b+hV6r6FpE5fc0z9AoRkaMxOXh65513pEKFCqo9EWprAIMDo60TanMAwdWoUaMeOy/cMkPag8jIyHTv43VWjcHzap5oJwXnz583GDxhSBrtsDREj3PldpwM+j5E7iekSKPAEqpdEQInrbpli8ua0S1k8Z7LMmfTWQm5fEc6fb5LRrWuJK88WVk8XJ3NWh40bZz0x1E5ci1GimPolUGNpAjHjSMiypEc9UseOHCgaj90584d9cBzbeAEBQsWNOq2nZubm0pxsGXLFt17uOWH182aNctJ0XI8z8OHHzXmRQ0UUW5ExSaoNk2o4aleuqh8O7iRFHTLHAy5ODvJSy0ryj/jW0nb6qUkOVUj87aeV0HUnvPRZi3TNzsvyur/hl75ckADKefNhLZERDmV45+eaJiNrv8ITPShJ54pcCsMuaEaNmyohndB77e4uDgZOnSo+vugQYPE399ftTnSLvfkyZO659evX1eBD9IlVK5c2ah54tbc0qVLpXPnzmo8vqNHj8r48eOlVatWUrdu3Zx+JUQq6SRqnNAovLx3IflpWGPxLOia7WfKliikBuHdeDxCpq49ofIuDfh2v/RuUFb+16WGeBV2y/XQKzP+G3plyjM1pXllDr1CRJSvwdO5c+fkxRdfzNRoHLcFkGgSjbVN0bdvX7l165ZMmTJFNehGW6mNGzfqGnyHh4er3nJaGIAYiTq1PvnkE/Vo3bq1bN++3ah5onZq8+bNuqAKbZeQeBO3JIly6mFSqrz44wE5HXFfShV1l1+GNZFSRR9fAws4djrVKSMtqvjIJ3+fkZ/3XZE/wq6pnnpvd64hfYLL5ijz9/moB3pDrwTIoGYceoWIKN/zPCGLuIuLi8qXhFtcGU/o2oGC7R3zPJG+5NQ0Gf7TQdl+5pYU83CR5SObSfXSxXKVTuDtlcdUIAbNKnqr3FAVSxYxeh4xD5Ol54J/5WJ0nGp3teSlpswgTkQOL9YM12+TgydkFkdPu+rVq4sjY/BEWkgzMH75YZV6wMPVSZa81ESCy3uZJSBDRvK5m89KQnKauDk7yegnK8vINhXF3SX7BuWpaRoZuviAyiDu5+kha8c8wQziRERioSSZNWvWVLmUiOjR7er3/zyhAicXpwLy1fPBZgmcAL3zRrauJJvGt5bWVUuq3EyfbT4rnT/fJfsv3s72szP+OqUCJwRziwY3ZOBERGRGJgdPM2fOlLfeeku1L7p9+zazbpND+3zLOflx7xXB3etPn6snT1YrZfZlBHgVksVDG8m8/vVVEHThVpz0/WafTPz9qNyLTzI49MqiXZfU80+erSe1/DzNXiYiIkdm8m07bePtjG2dctpg3Fbxth39uOey6h0HH3SvJYOaBeZLb76Zf5+WpfvD1Wvvwm7y7jM1pXuQnzr+DoXfVYFVUkqajHmqsrzevlqel4mIyNGu3yb3tsNwJkSObs3h67rAaXy7qvkSOIFnIVeZ1rOO9PovQ/m5qAdqwGH0zBvzVBV5dWmYCpyerumrykVERFZQ80SPsObJcW07EyXDfzyoxqsb0jxQpnatmaM0ArmFIGnRrovq1iGea2HolZWvtGAGcSIiS9Y8IYlk7dq11S07PM8Ok0ySPQu9goF+Q1XghFtlSDppicAJkHYAve+61Ckj/1t9TP49f1sNvbJoUEMGTkRElq55QtCEZJOlSpVSz3GxMPQxtnkiex/ot+/CvRKbkCJtqpVUQYr+eHWWhONx78XbElCikGpgTkREFq55unTpkpQsWVL3nMjRhN+OV8OuIHBqWL6EfDUw2GoCJ+0Pl+aVOOwKEVF+MCp4Kl/+/4d0wBAnxgz6S2Qvou4nyPPf7dcN9PvdEMMD/RIRkWMw+aczbt1h0N1NmzZlGhSYyN5giJNB3z0a6LecVyH56cXHD/RLRET2zeTg6ccff5T4+Hjp3r27+Pv7y7hx4+TgwYN5UzoiCw/0+9J/A/2W1A70W4y1rkREjs7k4Klnz56yYsUKiYyMlGnTpsnJkyeladOmUrVqVfnggw/yppRE+Qzjyo1eGiYHLt+Voh4uqsapnDcbYhMRkZnyPCGAGjhwoEpjwN52ZA8D/U5YflhW/zfQL2qcGgaaZ7w6IiJywIGBtRISEmT58uXSo0cPadCggdy5c0fefPPNnM6OyCrgt8QH606qwEkN9DswmIETERGlY3Imvb///luWLl0qq1evFhcXF+nTp4/8888/0qpVK1NnRWR1vth6Xhbvuayeq4F+q5t/oF8iInKw4Altnp555hn56aefpHPnzuLqyp5HZNvik1Jk59lbsuFYhKw9ckO9915XDLbrb+miERGRPQRPaChetGjRvCkNUT65/SBRtpyOkn9ORMiuc9GSqDc23Ni2VWRIiwoWLR8REdlR8KQfOKHdU1JSUrq/s/E0Waurd+Lln5OR8veJCDl4+Y6k6XWVCPAqKB1qlpZOdcpIcPkSliwmERHZW/AUFxcnEydOVI3Fb9++nenvjtLbjmyj8fepm/fln5MR8s+JSDl5Mzbd32v5FZP2NUtL+1q+KnO4pQb4JSIiOw+e3nrrLdm2bZt89dVX8sILL8iCBQvk+vXrsnDhQpkxY0belJLISKlpGlWrhBomBE1X7zzU/c2pgEjjCl4qYHq6pi8H0CUiovwJnv7880/VWLxNmzYydOhQadmypVSuXFmNf7dkyRKV74koPyUkp8ruc9EqWNp8KkruxP3/rWR3FydpWaWkdKjlK21r+IpXYTeLlpWIiBwweEI+p4oVK+raN+E1PPHEEzJq1Cjzl5DIgJj4ZNl2Jkq1X9px9pbEJ/3/7WKMPde2eilpX6u0tKrqI4XcTN7NiYiIsmTyVQWB06VLl6RcuXJSvXp11fapcePGqkaqePHips6OyGgpqWmyIvSarD96U/ZdvC0pei2+/Tw9VLDUvqavNKrgJa7OOc7/SkREZN7gCbfqjhw5Iq1bt5ZJkyZJ165dZf78+ZKcnCxz5swxdXZERvtw3Un5ce8V3euqvkVU+6UOtUpLbf9ibPBNRES2Mbbd5cuXJSwsTLV7qlu3rjgKjm2Xv1Yfui7jlh1Wz8e3qyrdgvykgk9hSxeLiIgc8Pqd68YggYGB6kGUV85E3JfJK4+p52Oeqixj21WxdJGIiMiBGd0wZO/evbJu3bp076HXXYUKFaRUqVIyYsQISUxMzIsykgOLTUiWkb+EysPkVGlZxUfGtatq6SIREZGDMzp4+uCDD+TEiRO618eOHZNhw4ZJu3btVNsnNBifPn16XpWTHBDuKL+54ohcio5TDcI/71dfnJGsiYiIyBaCp8OHD0vbtm11r3/77Tdp0qSJLFq0SCZMmCDz5s1TPe+IzGXhzovy94lIcXN2ki+fD2aOJiIisq3g6e7du+Lr66t7vWPHDunUqZPudaNGjeTq1avmLyE5pL0XbsusjafV8ylda0pQANNgEBGRjQVPCJyQ3wkwGDB62DVt2lT39/v374urq2velJIcSkRMgoz5NUwN3Nurgb8MbFLO0kUiIiIyPXjq3Lmzatu0a9cumTx5shQqVEgNzaJ19OhRqVSpkrGzIzIoKSVNRi8Nk+gHSWqw3o971GH+JiIiss3g6cMPPxQXFxeVHBPtnPBwc/v/Nijff/+9tG/fPkeFwODCSHfg4eGh2lGFhIRkOS0arffu3VtNj4vq3LlzczTPhIQEGT16tHh7e0uRIkXUPCMjI3NUfjKfaRtOSeiVu1LUw0UWvhAsBd2cLV0kIiKinAVPPj4+snPnTtX2CY+ePXum+/uKFStk6tSpYqply5apBuf4LG4F1qtXTzp06CBRUVEGp4+Pj1dDxMyYMUNKly6d43mOHz9e9RBEudF+68aNG9KrVy+Ty0/ms+bwdVm857J6Pue5ICnvzSSYRERkhxnGcwu1QmhsjiFeIC0tTQICAmTMmDHqNmF2ULM0btw49TBlnsgqWrJkSVm6dKn06dNHTXP69GmpUaOGymel35YrK8wwbl5nI+9L9/n/qnxOr7SpJG91rG7pIhERkR2KNcP126Kjp6LheWhoqMoVpSuQk5N6jSAmr+aJv2MsPv1pMMgxBjvOarlIAIovXP9B5nEfiTB/fpQIs0Vlb3m9fTVLF4mIiMg6g6fo6GhJTU1NlwIB8DoiIiLP5on/0V6rePHiRi8XCUARqWofqMkicyXCPCoXo+OkjKeHzGMiTCIisnIWDZ5sCXoYoopP+2BOK/P4dtcl2XgiQlydC8iXAxuIdxF3SxeJiIgobwcGzg00Qnd2ds7Uyw2vs2oMbo554n/c3rt371662qfsluvu7q4eZD77L96WGdpEmM/UlPrlSli6SERERNZd84RbZ8HBwbJlyxbde2jcjdfNmjXLs3ni70joqT/NmTNnJDw8PMfLJdNExibI6KWHJDVNIz3r+8vzTctbukhERETWX/MESCkwePBgadiwoTRu3FjlbYqLi5OhQ4eqvw8aNEj8/f11gw6jxujkyZO659evX1fj7iFXU+XKlY2aJ9osYVBjTOfl5aVa26MnHgInY3raUe4kp6bJ6CVIhJmoEmFO68lEmEREZDssHjz17dtXbt26JVOmTFGNtYOCgmTjxo26Bt+oDUJvOS3kY6pfv77u9SeffKIeSN65fft2o+YJn332mZovkmOiJx3yQH355Zf5uu6OavqG03IQiTDdXeSr55kIk4iIbIvF8zzZKuZ5ypl1R2/Iq0sPqefIIN6hVs7athERETlknidyLOci78tbvx9Vz0e2rsTAiYiIbBKDJ8oXDxJTZOQvoRKflCrNKnrLG+2rWrpIREREOcLgifIc7gxP/P2oXLgVJ6WLecgXA+qLizN3PSIisk28glGe+273JVl/7Ka4OBWQBQMbiA8TYRIRkQ1j8ER5KuTSHZn+16NEmO90qSHB5ZkIk4iIbBuDJ8ozUSoRZphKhNmtnp8Mbh5o6SIRERHlGoMnyrNEmEhJcOt+olT1LSIzejMRJhER2QcGT5QnZv51WkIu35Ei7i7y9fPBUsjN4vlYiYiIzILBE5nd+qM35dvdl9TzT56tKxVLFrF0kYiIiMyGwROZ1fkoJMI8op6/3KqidKxdxtJFIiIiMisGT2Q2CcmpMuqXMIlLSpUmFbzkzQ7VLF0kIiIis2PwRGbz7a6Lci7qgZQs6s5EmEREZLd4dSOzuHHvoSzYdkGXz6lUUQ9LF4mIiChPMHgis5i24ZQ8TE6VRoElVE4nIiIie8XgiXJt38Xbsu7oTXEqIPJet1rM50RERHaNwRPlSkpqmry39oR6PqBJOanl52npIhEREeUpBk+UK7+GhMvpiPviWdBVXn+aveuIiMj+MXiiHLsblySf/HNWPX+jfVUpUdjN0kUiIiLKcwyeKMc+3XRGYh4mS/XSRaV/43KWLg4REVG+YPBEOXLiRows3R+unqOROHM6ERGRo+AVj0ym0Wjk/bUnJU0j8kzdMtK0oreli0RERJRvGDyRydYeuSEhl++Ih6uTvN25hqWLQ0RElK8YPJFJ4hJTZPqG0+r56DaVxa94QUsXiYiIKF8xeCKTfLn9vETEJkiAV0EZ3qqipYtDRESU7xg8kdGu3I6TRTsvqefvdqkpHq7Oli4SERFRvmPwREb7cN0pSUpNk5ZVfOTpmr6WLg4REZFFMHgio2w/EyWbT0WKi1MBmdq1JsevIyIih8XgiR4rKSVNPlh3Uj0f0jxQKpcqaukiERERWQyDJ3qsxXsuycVbceJTxE1ea1fF0sUhIiKyKAZPlK2o2AT5fPM59fytjtWlmIerpYtERERkUQyeKFszN56RuKRUqRdQXPo0KGvp4hAREVkcgyfKUlj4Xfkj7Jp6/n63WuLkxEbiREREDJ7IoLQ0jby39oR6/mxwWQkKKG7pIhEREVkFqwieFixYIIGBgeLh4SFNmjSRkJCQbKdfsWKFVK9eXU1fp04d2bBhQ7q/R0ZGypAhQ8TPz08KFSokHTt2lHPnHrXb0WrTpo3qbq//GDlyZJ6sny36PfSaHL0WI0XdXVRbJyIiIrKS4GnZsmUyYcIEmTp1qoSFhUm9evWkQ4cOEhUVZXD6PXv2SP/+/WXYsGFy6NAh6dGjh3ocP35c/V2j0ajXFy9elDVr1qhpypcvL+3atZO4uLh08xo+fLjcvHlT95g1a1a+rLO1i3mYLDM3Phq/bmy7KlKyqLuli0RERGQ1CmgQbVgQapoaNWok8+fPV6/T0tIkICBAxowZI5MmTco0fd++fVUQtG7dOt17TZs2laCgIPn666/l7NmzUq1aNRVM1apVSzfP0qVLy7Rp0+Sll17S1TzhM3Pnzs1RuWNjY8XT01NiYmKkWLFiYk8++POkfP/vJalUsrD8NbaVuLlYPMYmIiIyC3Ncvy16VUxKSpLQ0FBVK6QrkJOTer13716Dn8H7+tMDaqq00ycmJqr/cUtPf57u7u6ye/fudJ9bsmSJ+Pj4SO3atWXy5MkSHx+fZVkxX3zh+g97dC7yvvy497J6PrVrLQZOREREGVj0yhgdHS2pqani65t+nDS8joiIMPgZvJ/d9GgLVa5cORUM3b17VwVoM2fOlGvXrqlbc1oDBgyQX375RbZt26am/fnnn+X555/PsqzTp09Xkar2gdoxe4NKyPf+PCGpaRppX9NXWlUtaekiERERWR0XsTOurq6ycuVK1SbKy8tLnJ2dVU1Vp06dVHCgNWLECN1zNDovU6aMtG3bVi5cuCCVKlXKNF8EWGibpYWaJ3sLoP4+ESn/nr+tapve6VLT0sUhIiKyShYNnnDLDMENesfpw2u0UTIE7z9u+uDgYDl8+LC6n4map5IlS6q2VQ0bNsyyLPg7nD9/3mDwhNt+eNirhORU+Wj9o/HrXm5VUcp5F7J0kYiIiKySRW/bubm5qUBny5YtuvfQuBuvmzVrZvAzeF9/eti0aZPB6XF7DYET0hQcPHhQunfvnmVZEGwBaqAc0Tc7L8q1uw+ljKeHjGqTOXgkIiIiK7lth1thgwcPVrVCjRs3Vr3f0Jtu6NCh6u+DBg0Sf39/1eYIxo4dK61bt5ZPP/1UunTpIr/99psKjL755pt0eaAQNKHt07Fjx9RnkL6gffv26u+4Nbd06VLp3LmzeHt7y9GjR2X8+PHSqlUrqVu3rjia6/ceypfbz6vnb3euIYXcLL5bEBERWS2LXyWReuDWrVsyZcoU1egb6QM2btyoaxQeHh6uestpNW/eXAU+77zzjrz99ttSpUoVWb16teoxp4WG4QjKcDsPNUkIwN599910NV6bN2/WBWpou9S7d281T0c0bf0pSUhOk8YVvOSZuo5Z80ZERGQzeZ5slb3kedpzIVoGLNovGLZu3ZiWUtPPdteFiIjI7vM8kWWlpKbJ+2sfNRJ/vml5Bk5ERERGYPDkwJbsD5czkfeleCFXmfB0VUsXh4iIyCYweHJQd+KS5NN/zqjnb7SvJsULuVm6SERERDaBwZOD+uSfMxKbkCI1yhST/o3LWbo4RERENoPBkwM6fj1Gfg0JV8/f71ZLnNFanIiIiIzC4MnBqPHr1p4Q9LHsVs9PpScgIiIi4zF4cjBrDt+Qg1fuSkFXZ5ncubqli0NERGRzGDw5kLQ0jWrrBK8+VVnKeBa0dJGIiIhsDoMnB7L7fLQav66oh4sMe6KCpYtDRERkkxg8OZBlB6+q/3sE+YuHq7Oli0NERGSTGDw5iLtxSbLpRKR63rdRgKWLQ0REZLMYPDmIVYeuS1JqmtTyKya1/T0tXRwiIiKbxeDJQdITLP/vlh1rnYiIiHKHwZMDOHotRk5H3Bc3FyfpXs/f0sUhIiKyaQyeHKiheKfapcWzkKuli0NERGTTGDzZufikFFl7+IZ63rchb9kRERHlFoMnO7fhWIQ8SEyRAK+C0rSit6WLQ0REZPMYPNm55Qf+ayjeMECcOAAwERFRrjF4smMXbz2QkMt3BDFTn2DesiMiIjIHBk92bPnBa+r/1lVLSmlPD0sXh4iIyC4weLJTKalp8kfYo+CJuZ2IiIjMh8GTndp25pbcup8o3oXd5KnqvpYuDhERkd1g8GSnlh0IV//3auCvkmMSERGRefCqaoeiYhNUzRPwlh0REZF5MXiyQ7+HXZPUNI0Ely8hlUsVtXRxiIiI7AqDJzscBHjFf73smFGciIjI/Bg82ZmQS3fkUnScFHZzli51y1i6OERERHaHwZOdDgL8TF0/KezuYuniEBER2R0GT3YkNiFZNhy7qZ4/x4biREREeYLBkx1Ze/iGJCSnSeVSRaRBueKWLg4REZFdYvBkR5b/d8uuX6MAKVCAgwATERHlBQZPduLUzVg5ei1GXJ0LSM/6/pYuDhERkd1i8GQnlh14VOvUroaveBdxt3RxiIiI7JZVBE8LFiyQwMBA8fDwkCZNmkhISEi2069YsUKqV6+upq9Tp45s2LAh3d8jIyNlyJAh4ufnJ4UKFZKOHTvKuXPn0k2TkJAgo0ePFm9vbylSpIj07t1bfc4WJaakyurD19VzNhQnIiKy8+Bp2bJlMmHCBJk6daqEhYVJvXr1pEOHDhIVFWVw+j179kj//v1l2LBhcujQIenRo4d6HD9+XJckEq8vXrwoa9asUdOUL19e2rVrJ3Fxcbr5jB8/Xv78808ViO3YsUNu3LghvXr1Elv0z4lIuRefLGU8PaRVlZKWLg4REZFdK6BBtGFBqGlq1KiRzJ8/X71OS0uTgIAAGTNmjEyaNCnT9H379lVB0Lp163TvNW3aVIKCguTrr7+Ws2fPSrVq1VQwVatWLd08S5cuLdOmTZOXXnpJYmJipGTJkrJ06VLp06ePmub06dNSo0YN2bt3r5rf48TGxoqnp6eaV7FixcSSXvhuv+w6Fy1jnqosr7evZtGyEBERWTNzXL8tWvOUlJQkoaGhqlZIVyAnJ/UaQYwheF9/ekBNlXb6xMRE9T9u6enP093dXXbv3q1eY5nJycnp5oPbgOXKlctyuZgvvnD9hzW4eideBU7wHIdjISIiynMWDZ6io6MlNTVVfH19072P1xEREQY/g/ezm14bBE2ePFnu3r2rArSZM2fKtWvX5ObNRwkkMa2bm5sUL17c6OVOnz5dRaraB2rHrMGK0Efj2LWo7C0BXoUsXRwiIiK7Z/E2T+bm6uoqK1euVLfvvLy8VIPxbdu2SadOnVQNVE4hGEMVn/Zx9eqj3m2WlJqmkd//y+3EWiciIqL8YdHBz3x8fMTZ2TlTLze8RhslQ/D+46YPDg6Ww4cPqyAHNU9o34S2VQ0bNtTNA+/fu3cvXe1TdsvFbT88rMnu89FyIyZBPAu6SodahstNREREdlTzhFtnCHS2bNmiew+Nu/G6WbNmBj+D9/Wnh02bNhmcHrfXEDghTcHBgwele/fu6n0sEzVU+vM5c+aMhIeHZ7lca7T8v9xOPYL8xMPV2dLFISIicggWrXkCpCkYPHiwqhVq3LixzJ07V/WmGzp0qPr7oEGDxN/fX7U5grFjx0rr1q3l008/lS5dushvv/2mAqNvvvlGN0+kH0DQhLZPx44dU59B+oL27dvrgiqkOsCycWsPre3Ruw+BkzE97azBnbgk+efko/ZZzO1ERETkQMETUg/cunVLpkyZohprI+XAxo0bdY3CURuk31apefPmKsXAO++8I2+//bZUqVJFVq9eLbVr19ZNg4bhCIxwG65MmTIqAHv33XfTLfezzz5T80VyTPSkQ4+9L7/8UmzFqkPXJTlVI3X8PaWWn6eli0NEROQwLJ7nyVZZMs8TNlmHuTvlbOQD+bBHbXmhafl8XT4REZGtsvk8T5Qzh6/eU4GTu4uTdKvnZ+niEBERORQGTzZo+X/pCTrXKaN62hEREVH+YfBkY+KTUuTPI4+SfTK3ExERUf5j8GRj1h+9KQ8SU6S8dyFpWtHL0sUhIiJyOAyebPSWHWqdChQoYOniEBERORwGTzbkwq0HcuDyXXEqINInuKyli0NEROSQGDzZEG1G8SerlRLfYh6WLg4REZFDYvBkI5JT0+SPsGvqOTOKExERWQ6DJxux9XSURD9IEp8i7vJU9VKWLg4REZHDYvBkY7fsejfwF1dnbjYiIiJL4VXYBkTGJsi2M1Hq+bPM7URERGRRDJ5swO+h1yRNI9IosIRULlXE0sUhIiJyaAyerBwGAdbP7URERESWxeDJyu27eEeu3I6XIu4u0qVuGUsXh4iIyOExeLJy2lqnrvXKSCE3F0sXh4iIyOExeLJiMQ+TZcMxDgJMRERkTRg8WbG1R25IYkqaVPUtIkEBxS1dHCIiImLwZBu5nfo2KsdBgImIiKwEgycrdeJGjBy7HiOuzgWkZ31/SxeHiIiI/sPgycprndrXLC1ehd0sXRwiIiL6D4MnK5SQnCqrD99QzzkIMBERkXVh8GSF/j4RoXra+Xl6yBOVfSxdHCIiItLD4MmKczv1aRggzk5sKE5ERGRNGDxZmat34uXf87cFneueDS5r6eIQERFRBgyerMyK/2qdcLsuwKuQpYtDREREGTB4sjKxCSkqPQEzihMREVmnAhqNRmPpQtii2NhY8fT0lJiYGClWrJhZ5337QaIU8XARdxdns86XiIjI0cWa4frNkWatkHcRd0sXgYiIiLLA23ZEREREJmDwRERERGQCBk9EREREJmDwRERERGRrwdOCBQskMDBQPDw8pEmTJhISEpLt9CtWrJDq1aur6evUqSMbNmxI9/cHDx7Iq6++KmXLlpWCBQtKzZo15euvv043TZs2baRAgQLpHiNHjsyT9SMiIiL7YfHgadmyZTJhwgSZOnWqhIWFSb169aRDhw4SFRVlcPo9e/ZI//79ZdiwYXLo0CHp0aOHehw/flw3Dea3ceNG+eWXX+TUqVMybtw4FUytXbs23byGDx8uN2/e1D1mzZqV5+tLREREts3ieZ5Q09SoUSOZP3++ep2WliYBAQEyZswYmTRpUqbp+/btK3FxcbJu3Trde02bNpWgoCBd7VLt2rXVdO+++65umuDgYOnUqZN89NFHuponfGbu3LlWl+eJiIiI8oY5rt8WrXlKSkqS0NBQadeu3f8XyMlJvd67d6/Bz+B9/ekBNVX60zdv3lzVMl2/fl0QG27btk3Onj0r7du3T/e5JUuWiI+Pjwq2Jk+eLPHx8WZfRyIiIrIvFk2SGR0dLampqeLr65vufbw+ffq0wc9EREQYnB7va33xxRcyYsQI1ebJxcVFBWSLFi2SVq1a6aYZMGCAlC9fXvz8/OTo0aMyceJEOXPmjKxcudLgchMTE9VDP3IlIiIix2OXGcYRPO3bt0/VPiFA2rlzp4wePVoFStpaKwRXWmh0XqZMGWnbtq1cuHBBKlWqlGme06dPl/fffz9f14OIiIisj0Vv2+GWmbOzs0RGRqZ7H69Lly5t8DN4P7vpHz58KG+//bbMmTNHunbtKnXr1lWNxdEG6pNPPsm27RWcP3/e4N9xWw/3R7WPq1evmry+REREZPssGjy5ubmphtxbtmzRvYcG43jdrFkzg5/B+/rTw6ZNm3TTJycnqwdu1elDkIZ5Z+Xw4cPqf9RAGeLu7q4aluk/iIiIyPFY/LYd0goMHjxYGjZsKI0bN1a939CbbujQoervgwYNEn9/f3XbDMaOHSutW7eWTz/9VLp06SK//fabHDx4UL755hv1dwQ1+Pubb76pcjzhtt2OHTvkp59+UrVRgFtzS5culc6dO4u3t7dq8zR+/HjVJgo1VURERERWGzzhdtqtW7dkypQpqtE30gcgR5O2UXh4eHi6WiT0pEPg884776jbc1WqVJHVq1erHnNaCKhwm23gwIFy584dFUB9/PHHuiSYqPHavHmzLlBDaoTevXureRpLm+GBDceJiIhsh/a6nZtMTRbP82Srrl27poIuIiIisj1ou4xe+TnB4CmH0H7qxo0bUrRoUTW0izkjYgRl2KiO0K7KkdaX62q/HGl9ua72y1HWV6PRyP3791UP/Izto23mtp2twhee04jVGI7WKN2R1pfrar8caX25rvbLEdbX09PTtse2IyIiIrIlDJ6IiIiITMDgycogn9TUqVPV/47AkdaX62q/HGl9ua72y9HWNzfYYJyIiIjIBKx5IiIiIjIBgyciIiIiEzB4IiIiIjIBgyciIiIiEzB4soAFCxZIYGCgeHh4SJMmTSQkJCTb6VesWCHVq1dX09epU0c2bNggtgCDOTdq1EhlYS9VqpT06NFDzpw5k+1nFi9erDK26z+w3tbuvffey1RubDN73K6A/Tfj+uIxevRom9+uO3fulK5du6rswygnxs7Uhz42GIuzTJkyavDxdu3ayblz58x+3Ft6XZOTk2XixIlq3yxcuLCaBgO1Y2QFcx8L1rJthwwZkqnsHTt2tLttC4aOXzxmz55tk9s2vzF4ymfLli2TCRMmqO6gYWFhUq9ePenQoYNERUUZnH7Pnj3Sv39/GTZsmBw6dEgFIHgcP35crN2OHTvUxXTfvn2yadMmdTJu3769Gow5O8hse/PmTd3jypUrYgtq1aqVrty7d+/Oclpb3q5w4MCBdOuK7QvPPvuszW9X7J84LnFBNGTWrFkyb948+frrr2X//v0qsMAxnJCQYLbj3hrWNT4+XpX13XffVf+vXLlS/fjp1q2bWY8Fa9q2gGBJv+y//vprtvO0xW0L+uuIx/fff6+Cod69e9vkts13SFVA+adx48aa0aNH616npqZq/Pz8NNOnTzc4/XPPPafp0qVLuveaNGmiefnllzW2JioqCmkxNDt27Mhymh9++EHj6empsTVTp07V1KtXz+jp7Wm7wtixYzWVKlXSpKWl2dV2xf66atUq3WusX+nSpTWzZ8/WvXfv3j2Nu7u75tdffzXbcW8N62pISEiImu7KlStmOxasaX0HDx6s6d69u0nzsZdti/V+6qmnsp3GVrZtfmDNUz5KSkqS0NBQVc2vP0YeXu/du9fgZ/C+/vSAXzVZTW/NYmJi1P9eXl7ZTvfgwQMpX768GqCye/fucuLECbEFuHWDKvKKFSvKwIEDJTw8PMtp7Wm7Yr/+5Zdf5MUXX8x2kGxb3a76Ll26JBEREem2HcbIwq2arLZdTo57az6GsY2LFy9utmPB2mzfvl01M6hWrZqMGjVKbt++neW09rJtIyMjZf369aom/HFseduaE4OnfBQdHS2pqani6+ub7n28xgnZELxvyvTWKi0tTcaNGyctWrSQ2rVrZzkdTlioPl6zZo26IONzzZs3l2vXrok1w8UT7Xo2btwoX331lbrItmzZUo3cbc/bFdCW4t69e6q9iL1t14y028eUbZeT494a4bYk2kDhdnN2g8aaeixYE9yy++mnn2TLli0yc+ZM1fSgU6dOavvZ87b98ccfVdvUXr16ZTudLW9bc3Mx+xyJDEDbJ7Tnedz98WbNmqmHFi6wNWrUkIULF8qHH34o1gonWK26deuqkwxqWZYvX27Urzlb9t1336n1x69Re9uu9AjaKz733HOqsTwumvZ6LPTr10/3HA3lUf5KlSqp2qi2bduKvcIPG9QiPa4Thy1vW3NjzVM+8vHxEWdnZ1VFqg+vS5cubfAzeN+U6a3Rq6++KuvWrZNt27ZJ2bJlTfqsq6ur1K9fX86fPy+2BLc1qlatmmW57WG7Ahp9b968WV566SWH2K7a7WPKtsvJcW+NgRO2NToGZFfrlJNjwZrh1hS2X1Zlt/VtC7t27VIdAUw9hm192+YWg6d85ObmJsHBwapKWAu3L/Ba/1e5PryvPz3gBJbV9NYEv1IROK1atUq2bt0qFSpUMHkeqBI/duyY6hZuS9C+58KFC1mW25a3q74ffvhBtQ/p0qWLQ2xX7MO4KOpvu9jYWNXrLqttl5Pj3toCJ7RzQZDs7e1t9mPBmuG2Mto8ZVV2W962+jXHWAf0zHOkbZtr+dIsnXR+++031TNn8eLFmpMnT2pGjBihKV68uCYiIkL9/YUXXtBMmjRJN/2///6rcXFx0XzyySeaU6dOqd4Orq6ummPHjmms3ahRo1QPq+3bt2tu3rype8THx+umybi+77//vubvv//WXLhwQRMaGqrp16+fxsPDQ3PixAmNNXv99dfVel66dElts3bt2ml8fHxUD0N72676vYrKlSunmThxYqa/2fJ2vX//vubQoUPqgVPknDlz1HNtD7MZM2aoY3bNmjWao0ePql5KFSpU0Dx8+FA3D/Ra+uKLL4w+7q1xXZOSkjTdunXTlC1bVnP48OF0x3BiYmKW6/q4Y8Fa1xd/e+ONNzR79+5VZd+8ebOmQYMGmipVqmgSEhLsattqxcTEaAoVKqT56quvDM7DlrZtfmPwZAHYGXHRcXNzU91c9+3bp/tb69atVXdZfcuXL9dUrVpVTV+rVi3N+vXrNbYAB6yhB7qtZ7W+48aN0303vr6+ms6dO2vCwsI01q5v376aMmXKqHL7+/ur1+fPn7fL7aqFYAjb88yZM5n+Zsvbddu2bQb3W+36IF3Bu+++q9YDF822bdtm+g7Kly+vAmJjj3trXFdcILM6hvG5rNb1cceCta4vftS1b99eU7JkSfVDBus1fPjwTEGQPWxbrYULF2oKFiyo0m0YYkvbNr8VwD+5r78iIiIicgxs80RERERkAgZPRERERCZg8ERERERkAgZPRERERCZg8ERERERkAgZPRERERCZg8ERERERkAgZPRHnovffek6CgIIssa8iQIdKjR488X+7q1aulcuXKaoyvcePGmfx5DLpaoEABuXfvntnmqYUR4DH+FjkeQ/sVkbkweCLKga5du0rHjh2zHGgTJ+2jR4/KG2+8kWkMO3PA/BFg6MurZT3Oyy+/LH369JGrV6/Khx9+aHCawMBAmTt3rsG/NW/eXG7evCmenp4mzdOYZfTt21fOnj0rlmBoG9kTDAb74osvSrly5cTd3V38/f2lbdu2smTJEklJScnXsrRp0yZXQTaRqVxM/gQRybBhw6R3795q4NCyZctmGiy3YcOGUrduXfW6SJEi+VImLCe/lqU/MGhUVJR06NBB/Pz8cjQPDK6qPwK9OeapVbBgQfUg8woJCZF27dpJrVq1ZMGCBVK9enX1/sGDB9Xr2rVrZznQLAYbdnV1zecSE5lZvg8IQ2QHkpOT1dhmH374YabBOIsUKaIbaBPjQtWrVy/d58aMGaMGTPby8tK89dZbmkGDBqnBZfXHhcM0b775pqZEiRJqOfrjS2G8Kf2xqvDa0LIwhpX+fDGQ77Rp0zSBgYFqUN66detqVqxYke163rlzRw3yi4FOMQZWx44dNWfPns1y7Cz9Mc/0oYyfffaZwb9p53P37t1s57lr1y7NE088ocqOwWrxHT148ED3nWX8HGAcRXzXWtrv6LvvvtMEBARoChcurAawTklJ0cycOVN91xjb7KOPPkpXRpRt2LBhahDUokWLap588kk1WG52UIZVq1ap59px4v744w9NmzZt1HeJ73/Pnj3pPrN79261Lvg7vnOMtYZtABicFuuM8mFMvRYtWmhCQkIyfY8bN27UBAUFqe8J5YyMjNRs2LBBU716dVX2/v37a+Li4nK8X2Bsvxo1amiCg4PVZ7OaRn+9MXhuq1atVLmxTfA5DBaN8dEwThq2yV9//aX7fO/evTWjR4/WvR47dqyaDwbRBgxMjAFtN23apPbzjNsey9V+HxjgF2XFd9qsWTPN6dOns91uRMZg8ESUQwhuKlWqpLtQwPfff59uoM2MAQ0uygiaVq5cqS4EI0eO1BQrVixT8IT33nvvPRWo/Pjjj5oCBQpo/vnnH/V3jGCuHWAZI9xrRzR/XPCEZeMCiovrhQsX1OdxMcMo6Vnp1q2bulDu3LlTBQsdOnTQVK5cWZOUlKQuYBgQVxsUoCx4LzfBU1bzxOCjCHQwD3wnGNG9fv36miFDhqh53L59WwVUH3zwgfoMHlkFTwhu+/Tpozlx4oRm7dq16uKN9UJgggsrtiGWrz+4K0aP79q1q+bAgQNq+Rhd3tvbWy3XlOAJ3/+6devUOqIM+F4QUANGvMf2QDCH7/r48eNqwNlbt26pv7/22msaPz8/FQih7Ni+CK61ZdB+j02bNlVBGAZexrbC/oQgDK+xHVHuGTNm5Hi/wHywnF9//VXzONr1RmCG7Xnx4kXNjRs3NHPmzFH7OOaB7xw/IjAYrzYwnzdvnhosWwvBIAJX7Y8SrB+mRxCIYw1BEQbx1W57BMPa76NJkyZqXfCdtWzZUtO8efPHlpvocRg8EeUQgp+MtS04OT///PO61xkDGtRszJ49W/caJ3mMxp4xeEINi75GjRppJk6caPDCnNWy9IMn1Frgl3rGmg7UpqAmwhBcyLAcBCpa0dHRKjhcvny5eo2AJ7saJ1ODp6zmiXKOGDEi3edQE+Xk5KR5+PBhlsswFDzhe4iNjdW9h8AJF3f9WpRq1apppk+frlsOLvT4DvUhcMao9KYET99++63u77iY69emYDugNskQ1LAhWFiyZInuPQSwCKZmzZqV7ntETYsW1gHvISjSevnll9U653S/QC0S5okgSgu1WwhutY8FCxakW++5c+emmwfK/fHHH2fax1955RX1/OjRo+oHA34YoOYNAS5qefv27asL+PSDIBwzqJ3SZ+j7WL9+vXpPu88Q5RTbPBHlENp5oLHz999/rxqsogEtGot/8MEHBqePiYmRyMhIady4se499CYLDg6WtLS0dNNq20tplSlTRrUDyimULT4+Xp5++ul07yclJUn9+vUNfubUqVPi4uIiTZo00b3n7e0t1apVU3/LT0eOHFEN8NEYWQvxCb63S5cuSY0aNYyeFxqWFy1aVPfa19dXbQcnJ6d072m/bywb7bCw7voePnwoFy5cMGk99LcrtilgOdiXDh8+LM8++6zBz2E5aCvUokUL3XtoN4R9KeO20F8G1qNQoUJSsWLFdO+hzVJO9wtD8N2g/IBjAZ/XhzaAWrGxsXLjxo106wJ4je8a0GbKy8tLduzYodrEoSzPPPOMak8FeB/Lyc13jobuRDnF4Ikolw3Hx4wZo07qaCheqVIlad26da7nm7FBLXpuZQywTIGLP6xfv171itKHnlLWDuVHD7zXXnst099MvQga+m6z+76xbFx00fU9I1PTIOgvB8sA7XLM1bA94zIet26m7hdVqlRR/585c0YXYCH4RGoJQMCdUeHChU1aB5SxVatW6jtHORAoIQhKTEyU48ePy549e1Tv0tx+50Q5xVQFRLnw3HPPqRqLpUuXyk8//aS6bmtP0BmhKz5+9R84cED3XmpqqoSFhZm8XFwQ8Flj1axZU12EwsPD1UVO/xEQEGDwM6jNQZfz/fv36967ffu2umhifvmpQYMGcvLkyUxlxwM1E4D/TflOTFl2RESECgoyLtvHx8dsy0FwkFWqCQTlWL9///1X9x5qorAv5WZb5GS/QMCEmrJPPvkkR0FIsWLFVC9K/XUBvNZfF/wIQfCEB4InHGcIqGbPnq2CKP2aq7za9kRZYc0TUS4gNQByCU2ePFndjkBiyuyglmr69Onq4oQL0BdffCF3797NMuDK7tYTLrS4gODiV6JEiWynx20q/FIfP368uuA98cQT6jYiLli4mA0ePNhgDUP37t1l+PDhsnDhQjWPSZMmqRoKvG+q69ev627taJUvX96oz06cOFGaNm0qr776qrz00kuqJgPB1KZNm2T+/Pm672Tnzp3Sr18/9Z2YK7BBl/xmzZqphKOzZs2SqlWrqttOqK3p2bNnultSuYF9qE6dOvLKK6/IyJEjVUCwbds2dSsP6zJq1Ch588031e0s1LahLLjlhtrPnMrJfoF9FbWsuNWH/Q/lRqCNYA7f/61bt1RNVHawHlOnTlVBIRK7Yn7YN/RvyyJgQrnwPaBc2vdQ3kaNGqWrzcK2R5B/+fJldUziOyLKSwyeiHIJF6/vvvtOOnfu/Ni8RAgCUIsxaNAgdYEZMWKEymf0uItNRp9++qlMmDBBFi1apIIZXDQeB8kmS5YsqYK3ixcvqltOqFV5++23s/wMLmpjx45V7U3QjgW//Dds2JCjPD2oqcBD388//5wpT1ZWtTJo5/K///1PWrZsqdo74cKLwFULbc1waw/vo2biUZvt3EOwgHXGsocOHaqCA+SlwneBmkRzQVD2zz//qO2Btky4jYf2Zv3791d/nzFjhgpwXnjhBbl//74K2v7+++/HBs55sV8gkA0NDZVp06bJ6NGj1T6NYAa5nT777DNVA5sd3H5FkPb666+r9keocVq7dq3uliAgkERZ8L1o85cheEINU8b2TgioEOhhPmiLhnZwRHmpAFqN5+kSiChLuBjiVztu/xmbSZuIiCyLNU9E+ejKlSuqdgHtOVA7gltO+JU8YMAASxeNiIiMxAbjRPkIjV4xWC3abKC9yLFjx2Tz5s0mdbUnIiLL4m07IiIiIhOw5omIiIjIBAyeiIiIiEzA4ImIiIjIBAyeiIiIiEzA4ImIiIjIBAyeiIiIiEzA4ImIiIjIBAyeiIiIiEzA4ImIiIhIjPd/23SR2/u7KLsAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHHCAYAAACle7JuAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXJZJREFUeJzt3Qd0FNXbBvA3PSEkgUCAJAQSeu9FughSRBRFUWwgKoioIBbEBlbs8qn8rYDYRQULIooK0iEQei8hJLRASCMhfb7zXJh1Eza97Mzu8ztnITs7u3Onv3Ori6ZpmhARERGZkKu9E0BERERUVgxkiIiIyLQYyBAREZFpMZAhIiIi02IgQ0RERKbFQIaIiIhMi4EMERERmRYDGSIiIjItBjJERERkWgxkiOxk5cqV4uLiIj/88IMYxcyZM1Wa7OWzzz5Tyz969Khl2pVXXqle9rBs2TLp0KGDeHt7q3QlJSWV+bewTvgNrGNlLcNaeHi4jB07tkJ+i6ggHFvVq1cXI2AgUwb/+9//1AWne/fuYgR79uxRNyDri39V+frrr2X27NliZnl5efLBBx+om4mPj4/UqlVLrrrqKtm+fftlNyFbr2+//VaMql27dtKgQQMpaiSSXr16Sd26dSUnJ6fK0vXKK6/ITz/9JEaWkJAgo0aNUsfEnDlz5IsvvhBfX98iA7DNmzdX2jJsWbdunTr3Kyr4qYog+ezZs/ZOiiGkpKTIyy+/LF26dJGAgADx8vKShg0byi233CK//fabGEF6errab3joMjJ3eyfAjL766iv1tLNp0yY5dOiQNGnSxO6BzPPPP6+eWpGuqg5kdu3aJVOmTBGzGjdunNqnd911lzz44IOSlpYmW7dulfj4+MvmHT16tFxzzTX5pvXo0UOM6vbbb5cnn3xSVq9eLX379r3scwRo69evV+vt7u4uzzzzjJq/KgKZm266SUaMGJFv+p133im33nqruqjbW2RkpKSmpsqLL74oAwcOLPfv4SZ14cIF8fDwqLBlIJDBuY+n4xo1auT7bP/+/eLqymdVI8J9Y/DgwRITEyM33HCDuvYgdyM2NlaWLl0q1157rXz++efqfLB3IPP888+rv+2VK1oSDGRKKTo6Wl08Fi1aJBMmTFA3wBkzZtg7WVRGCxculAULFqj9iQtKcTp16iR33HGHmMVtt90m06dPVwGnrUDmm2++Ubk1CHgAwQxe9uLm5qZeRqAHsgUDhLJCbgSKjypzGdaMEAzS5ZDziWvN6dOn5d9//1U5otZwP/nzzz8lNze3yN/BA1dpcu8cGka/ppJ78cUXtZo1a2qZmZnaxIkTtaZNm9qc75tvvtE6deqkVa9eXfPz89PatGmjzZ492/J5VlaWNnPmTK1Jkyaal5eXFhgYqPXq1Uv7888/8/3O3r17tZEjR6plYr7OnTtrP//8s+Xz+fPno8zgsteKFSvU55GRkdqgQYO0WrVqad7e3lp4eLh29913F7ueP/30k3bNNddowcHBmqenp9aoUSPthRde0HJycizz9OvX77LlNmzYsMjfnTdvnta/f38tKChI/W7Lli21//3vf5fNl5ubq82YMUMt38fHR7vyyiu13bt3q98fM2ZMvnkTExO1yZMna/Xr11e/2bhxY+3VV19Vv1Gc7t27a926dbMs8/z58zbni46OVuv3xhtvqHmw/8sL+wi/+e2332rTp0/X6tatq1WrVk0bPny4duzYMct8zz33nObu7q7Fx8df9hv33XefFhAQoF24cKHQ5WA/Yf/jmCsIxyW2lw7bvOBlIT09XXvooYfUb+B4Rvri4uLUfJi/4HcPHjyo9hHS5e/vr40dO1ZLS0uzzGfreNX3qX48Y3tbpx8vaxkZGWq7IO3Y59j3jz/+uJpeEgsXLlTnJ84JrNftt9+u1sl6mYWl0RY93TjfCqMfQ5i3JMvYsGGDNnjwYLUNcQ707dtXW7NmzWXbu+BL33YFzxU9jatXr1b7s3bt2mofjR8/Xh3POI/uvPNOrUaNGuqF7ZmXl5dvHXCOvPPOO1qrVq3U9ahOnTrq++fOnSt2m+vpPXPmTL7t3Lp1a3Vu4xzHeoaEhGivvfbaZd/HMY7fwDUXy65Xr552ww03aIcOHbLMg3Nz6tSplmtBs2bN1DlbcD2QjkmTJqnjANcgHAdXXHGFtmPHDvX5hx9+qI4tLAdptD4eS7p/CvP111+r5eMaVVL6vlu5cqW67+D6iX2kmzNnjtonWGdcMx944AG1P3X/93//p7m6uuab9uabb6rffOSRRyzTcH3HOf7EE09YjteCL/2cx7Hl6+urzpvrr79e/Y1j6tFHH813n6gKDGRKqUWLFto999yj/l61apXasZs2bco3D4IRTB8wYIA6wPB68MEHtZtvvtkyz1NPPaW5uLioG9Enn3yivfXWW9ro0aPzHdy7du1SFxocoDix33//fXWy4HuLFi1S8xw+fFh7+OGH1fLwm1988YV6nTp1Sjt9+rQKgPSTGct5+umn1YlbnBEjRmijRo1S3/vggw9U2rGMxx57LN96dujQQR28+nIXL15c5O927dpV3dhwMXzvvfdUkIXfxbpZw4mE6bhp4jNsJ1ycsCzrizNukO3atVM3I6w/LkB33XWX2kYIboqSnJys5sMFDYEETmAsMyIiQvvuu+/yzauf1Po8+F6XLl20P/74QytvINO2bVu1Dm+//bb25JNPqosq9hkCCEBggPmwvazh5oP9O27cuCKX8/HHH6vv//rrr/mm46KN6QgIigpkcBxgGm5yOJbxvn379oUGMh07dtRuvPFGFaDee++9ahr2pw7HCW4Qffr0sRw369atK3Egg5spjhsEfVOmTNE++ugjdX4h2MMFtTj6MnAs4jjENseNCEG+fqHHsY0bNOZDAG+dxooKZIpaxt9//61uSj169FDXBqQTxwimbdy4Uc2zfft2dc3A9/G5vi31YLywQAbn7JAhQ9S+xD7V90/v3r212267Te23a6+9Vk1fsGBBvnXA/sR2xvmIc23atGnqBoZtaStQLkkgg8AlLCxMna9Y9lVXXaXmW7p0qWU+3BhxPcX0W2+9VV0TZs2apebFQxcgWMF7nJtIJ+bB9QPfwXFiDdOwPbFcXHPxwrW2QYMG6nu45mK7P/PMM2qb4+HLWkn2T2H0fWYdOBdH33dIF7YZrgX6vWLGpe06cOBANR3ngpubW759EhUVddk1AOcKghtcx3Q4fjHfkiVL1HGEaz/eI2DUjy8cd4BjC9cqBKK4BmFePHRjflsPp5WJgUwpbN68We2k5cuXW04c3FwL3jDxHlF6UVEpbgTDhg0rcnk4cXGTs37KxDJ79uyZLyfo+++/z5cLo0NQUdzFtTD6TdTahAkT1M3DOj1Yh+JyYYr7XTzVIMdHhyAMF0sEU9aQg1XwqRU5ZLiQHjhwIN+8uDnhZLbO2ShIP7kRBCE3BCffV199pXJocDH8/fffLfPGxMSomydO1l9++UXlruGihwsBTvryBDKhoaFaSkqKZTqeEjEdT1E6XDCRe2QNwayt/V4QnpYROOACWnAb4fv79+8vNJDZsmWLzRsBgtHCApmCgRUugtjG1rDPbOVwlCSQwcUU2x05C9ZwY8V3165dW+i2wIUduQjIibLOxcI+LBjUlSQ4KU8gU9j3cI7j/MZ5YZ2TgHMHQfbVV19tmYYHjYLbS1dYIFPwd3Fs4Xi///77LdNw7cK1zXq7Y3vj+zhHrC1btszm9JIGMpj2+eef5wvQkduCm6J1Ti7mQ7BfkL4uCGgwz0svvZTv85tuukmtn3XODebDOWG93RAQYzqWbX0+4iHHehuXZv/YgkDfOjdFh8AB20Z/4UGr4L5DsGl9X0Euraenp7o2WedAIxjD/NhugM9wT9IfKJBunJN4QMV1MjU1VU3H9rXOuUE6Cp7nOhxbehBecP1QclCVWBOsFFAfBq07+vfvbynzRg1ztFqxLs9EeTfKL5cvX17ob2Ge3bt3y8GDB21+fu7cOfnnn39UiwZUBkRNf7zQygGVxPC948ePF5levdx9yZIlkp2dXap1RSsKnb78Pn36qMpf+/btK9VvFfa7ycnJ6nf79esnR44cUe/h77//VuXIDzzwQL7vPvTQQ5f93vfff6/SVbNmTcs2wgsVJ7FPVq1aVWhazp8/r/7HNv35559l4sSJqk4Jlo+WSy+99JJlXrT8+eOPP+T++++X4cOHy+TJk1WF4KCgIHn00UelPFDRz8/Pz/IelWCDg4NVpT/reTZu3CiHDx/OdzyGhYWp7VcUbBtUUP7ll1/UcQm4luO4RYuJZs2aFfpdNA2GkuwLHbaRNewfbGO00qgI2OctW7aUFi1a5NvnaGkGK1asKPS7aFWEeilYH+v6KsOGDVO/Z4TWItu2bVPnN45FbDd9/bDvBgwYoI5ptLQrq3vuuSdfE3u0vsTxgOk61FPCsYHz0nq7o3XN1VdfnW+7d+7cWVVULWq7FwXfta535unpKd26dcu37B9//FFq165t87jT1wXnC9L98MMP5/sc5yfW7/fff883HdvSunGE3gp15MiR+c5HfbqenvLuH5wHtpotP/300+p6or/w+wXdd999+eqQ/fXXX5KVlaUaW1hX7MZ8/v7+luMZn/Xs2dNyPdy7d69KOyr2Y9ugwj+gUUCbNm1KVWfL1vluve+qAgOZEsJNERd+BDGo8Ita53jhIEelLdz8dLhI4uYwdOhQqV+/vmoVo98QdC+88IJqMon52rZtK48//rjs2LHD8jl+GwfYs88+m+/gxkuvXGyrVY013OBwUqLWOS4C119/vcyfP18yMzOLXV8EWaiQhgsXTggsV7/Y6AFHWaxdu1YFGaikhpMFv/vUU0/l+13U5IeCrcECAwPVTdkaLijYtgW3kd4CpKhtpAdVERER+ZrS4yKDYAWt0opqkoz03H333ap1SFxcnJRV06ZNL7swY92tm9MjYEblTQQv+rZCgIpKuiXp9wXz4UKLgA1QYR2/r1fyLQz2BS6C2EbWimqph6DPmr7PEhMTpSJgn+P4LLjP9YCsqH2uH1vNmze/7DMEMvrn9qQ/3IwZM+aydfz000/V+Vuec7Dg/sE5DgiKC0633mdIF5Zbp06dy9KFh4LirkeFwTWy4DGMY8Z62Qjgsc+KqoiOfRcSEpIvCAEEvfrnZd0OoKenvPsH6dMfoqzhvoGHX7zwwGxLwfOwsOPZ09NTGjVqlG+dEWBs2bJFtZxDwIKHJTReaN++vXoPa9asUfOVFB4GsN5F7buqwFZLJYTckZMnT6pgxla/IbjBDBo0SP2NEx1RO57g8RSAFwIIPFWjhQygBQlOTtxYUEMdJ8A777wjH374odx7772WiP6xxx5TOTC2FNfsW+9sbcOGDfLrr7+q9CCoeuutt9S0wjozQoCFIAgBDAKuxo0bqwM2KipKpk2bVuanQawvnlhww3j77bfVBQMnHJ6ksO5l+V18B0+ITzzxhM3Pi8ptwEUPbF00sA+Ri4Wbv34hs0W/6CEHDRfkyoKLA5pk4jh77rnn1H7FBbOkLajwXawHWi/hSQ//48kOTZ0rWmGtjorqy6a0+xzBP44hWwreiMxGPw/eeOMN1beRLeXpiKyw/WNruvU+Q7pwXujBdEEFb2hGOV5Ku9zi0lPe/YPrH+4PyFEPDQ3Nd63Sr1cFW7fZytEurd69e6trGnJfELjoAQv+x3vktJ85c6ZUgYxRWhgykCkhnLw4idFpVUFourt48WIVhOgHGm7QeKrHCwc+ou2PPvpI5bDoAYj+RI8XInQEN+h8CIEMomlAnxPF9S9R3BP5FVdcoV7ofAk3MDyFIxjDcmxB50fIdsR6WTfZRU5UaZdtDcEUbr4o4rB+GiqYJY3+NvRcKesnEKSpYKSPIAvbrix9cCCQqVevns0iuhMnTqiLScGnu4L0LNSyXsShYPEiLphYd3RmZw2BMHLV0PcIjseOHTtK69atS7QM5OagyAp9UyAHEcUEKIrB+hcF+wLHL/a9dc4R0lce5ek9GPscnRUiKC7t7+jHFnLR9KIoHabpn9sT1g/wIFHec7+i04WiDDQXLs8NtazLRtEqbsTW/fBYw75D+lAUbn3e6kXhFbVvS7N/CnuowPUX53BhD2BlOZ4bXbpnAIqbcM5apw/FdbgvIWjBC6UAgGv8J598YilVsL7m27OX79Jg0VIJICsON3UcgLgZFHyhMzGcPLhB6zdca8ia129KerFOwXkQwSPA0T9H0IQOiBD8ICeoIETOOr0vgYK9e+KmX/CpRn+CKKp4SY+yrb+LEwM9GheEZZc0m9vW7+K7yK2yhhsUspDR2661999//7LfRB0iPGEgt6kgbI/ieqtFkQ06obKuz4TybuSU4Uanlztbb28dAqB58+apfYts2rJCcIHjR4fcFuxzFE1aw3sUEb722muq/4nS9meDABY3AvR/hPUprlgJ9NzAgvv+vffek/LAcVPW3mixz7HtcfG1da7q9YBsQb0PnFt46LA+B5BrinoDqCtjb6hzgpvlm2++abMIoiTnfmXAdkcROzrvKwjnWWWmAUXkOC9tXQP06wnqgSF9BedBbi9uyAXPp6rYP4Vtx1atWqntiJzx8uRGIVDx9PSUd999N9935s6dq66t1sczHsy6du2q+o46duxYvhwZnDf4DayX9bWsWrVq6n+j9xzNHJkSQICCG811111n83PkduCJHBE2bozI6UBRA26EKG5AOSUu/Agi9PJaHMgIVHBSIGcGlRBxA0NQpEPuD7IDkY2OyluIuPE0jRs36mToXejjdxEk4AaHgxdP31g2cl9wA0JdFxygWAdc/PEkUbB3WmuoFIaiDJQBo+IcLgLoOt3WyYX0f/fddzJ16lR1kuj1S2xB0ZueU4WbKS4CSA9uLNbBGop6UJkWRWDY5kOGDFHripsNbuTWTwl4qsD+QZCJ3k2RHtzIdu7cqbYn6oHgO4VBZ3HoFA8XSqwDil9wk8MNH73P6vDkpBeNIScHv4sgE8v6v//7v8u6q0cuGwK0kox1g/2P/YzvYP9iyAcEtdjn1vAkiqIgXKixv9HLcGmguBDHI4I0PFHfeOONxX4H2xPbBmlC8I1jHUHUgQMHyvXEht/F0zOKh7A9C9ZTKgp6O8U+QyVD5OYhhwA3MDx5YzqCWgQstmAb4jzBtsb2wDbENsc+RMXPRx55RMoDgW3B+nCA47mkEDyjqBk3XuS4Ia0ogkDwhvXF+YvcTX076hVFcWxg/XB+VUZHadheOG9nzZqlikZwPmN5yFFEDh+2IR7sKgNyIxHw4xxF3TXcfHHu4RhCbjdyKrHeqMOIbYHzE3U/UGyP4x2VYfWclPIqzf6xBdsMOfh4SMB5j/MQ64N9ht/A9QyBRkmCatx3pk+frupB4jqJ6yVyZ3Ddx/W44MMOlvPqq6+q6xzuK4DrL+rY4HsFr1e4TuBehWs8ir1wrUJlYLwMpUrbSJkU+iJAe3nrTr0KQnNUDw8P7ezZs9oPP/ygmsOhmSeaxqGZLpounzx50jI/mgiimS+a4aEPC/RP8/LLL1/WFwP6iUG/KGgSiN9HU1308YBlWEMfMWjCjKZ0epNcNC9Gk1ssX++8Ct9FM/LioAkrOojSO6hCsz30mVKwuS+aDKLvCaxHSTrEQ9Nl9Legd86H/nH0ppXWTSHRxPDZZ59V6400oH8IdA6IJoPWzUQBTQfRRBKdC2J7o68ZNFFHh0/F9W2hb2M0EdY7tsKyCvYNhE6s0IcPOqJC03AsA99B8+SC0JcD1gfNUkvS/BqdJyL92D9YPpq0o7m3LUgXvoPjqyzQyRm+j75gbLHVjwyOe/S1g04b0Y8OmsWjyXbBTr1sNa8trEn1vn371PbE+palQzzsVxw76MMCxzb600GTz+effz5fs9XCoJ8gNBPVO6Ms2CFeWZtfF/aKjY0tcfNr3datW1V/PDjmkU6cW9hv6MPEGrogwHUBzWZL0iFewWUVtt/0Ds9s9UuEbY19h84+0UUErg8nTpwoc4d4BWHZBa8laN6MfrDQxBnXQlwb0LQa56/1tQAdvOGahXnQTLqoDvEK6/TS1nmKbi7Ksn8Kk5SUpJou4zjEeYVrF/q1wToV7POpuGPx/fffV/cQrDO6kkCnedad3+l+++039TtDhw7NN13v72nu3LmXfQd9G2F/I322OsQryTWksrngH3sHU0QlgexN5BShWTSeuowKWcd4IsSTY0VDzhRy4Ow9DgueyFFH58svvyxRERURUWVh0RIZEspsC1Yo1EfZNvLgZXguQGVp3OArA4riUHxXkmKhyt4XyGK3NX4TEVFVYiBDhoQyWdQ1QV0e3LjRvwEqqaFcvuAga0aCOiNl7U+jKChzxyjnH3/8sapHVZWDxb3++uuq/wnUP0AlbL1LgfHjx5u+qTMRmR+LlsiQ0GcNKtiiCAM9YaICMCqdolipPH1omBUqoqJSKioIouJ1cc3CKxJadKEyIQIpVNBG03kUa6F4z54jZRMRAQMZIiIiMi32I0NERESmxUCGiIiITMvhC7jRvTq6m0edArN0t0xEROTsNE1THbmi00zr0b2dLpBBEMOWFUREROaEYWSKGpTX4QMZvXUHNgS6jiYiIiLjQ4tVZEQU10rT4QMZvTgJQQwDGSIiInMprloIK/sSERGRaTGQISIiItNiIENERESmxUCGiIiITIuBDBEREZkWAxkiIiIyLQYyREREZFoMZIiIiMi0GMgQERGRaTGQISIiItNiIENERESmxUCGiIiITIuBDBEREZXJsYR0OZ50QeyJgQwRERGVyXv/HJRer/4j7/9zUOyFgQwRERGVSeTRc+r/ViH+Yi8MZIiIiKjU4lMz5GhCuri4iHRuGCj2wkCGiIiISi0yOlH936KevwT4eIi9MJAhIiKiMhcrdQuvKfbEQIaIiIhKbVP0xUCma4T9ipWAgQwRERGVSvKFbNl7KkX93S2cgQwRERGZSFRMomiaSMNa1aSOv7dd08JAhoiIiEpl06X6MV3tnBsDDGSIiIioVCIv1Y/pZuf6McBAhoiIiEosIztXdsQlG6J+DDCQISIiohLbHpskWbl5EuTnperI2BsDGSIiIipD/zGB4oJufe2MgQwRERGV2KajF3v07WrnjvB0DGSIiIioRHJy82SL3mLJABV9gYEMERERlcjek6mSlpUrfl7uaowlI2AgQ0RERKXqP6ZLeE1xc7V//RhgIENERESl6j/GKMVKwECGiIiIiqVpWr4WS0bBQIaIiIiKdeRsmiSkZYmnu6u0rR8gRsFAhoiIiEpcrNQhrIZ4ubuJUTCQISIiomJtijZesRIwkCEiIqKSj3htoIq+wECGiIiIinQy+YLEJV4QtLju1KCGGAkDGSIiIipRsVLrkADx8/YQI2EgQ0REREXSm113NVj9GGAgQ0REREWKjL44UGS3CGMMFGmNgQwREREVKik9S/afTlV/d2GODBEREZnJ5qMXc2MaBflK7epeYjQMZIiIiKjYZtdG6z9Gx0CGiIiIim2xZMSKvsBAhoiIiGxKz8qRXceT1d/dDNYRno6BDBEREdm07ViS5ORpEhzgLfVr+ogRMZAhIiKiooclCA8UFxcXMSIGMkRERFR0R3gGLVYCBjJERER0mezcPImKSTJ0iyVgIENERESX2X0iRS5k50qAj4c0rVNdjIqBDBEREV1mU3SC+r9reE1xxbDXBmXXQGbVqlUyfPhwCQkJUZWIfvrpp3yfa5omzz33nAQHB4uPj48MHDhQDh48aLf0EhEROYtNlvGVjFusZPdAJi0tTdq3by9z5syx+fnrr78u7777rnz44YeyceNG8fX1lcGDB0tGRkaVp5WIiMhZ5OVpsjnG2B3h6dztufChQ4eqly3IjZk9e7Y888wzcv3116tpn3/+udStW1fl3Nx6661VnFoiIiLncOjMeUlKzxYfDzdpExogRmbYOjLR0dFy6tQpVZykCwgIkO7du8v69evtmjYiIiJnGJagY4Ma4uFm2FDB/jkyRUEQA8iBsYb3+me2ZGZmqpcuJSWlElNJRETkwP3HhBu7WAmMHWaVwaxZs1TOjf4KCwuzd5KIiIhMJfJSjozRK/oaOpCpV6+e+v/06dP5puO9/pkt06dPl+TkZMsrNja20tNKRETkKOIS0+VEcoa4u7qooiWjM2wgExERoQKWv//+O18xEVov9ejRo9DveXl5ib+/f74XERERla5+TOvQAKnmadgaKBZ2TeH58+fl0KFD+Sr4btu2TQIDA6VBgwYyZcoUeemll6Rp06YqsHn22WdVnzMjRoywZ7KJiIgcvn5MdxMUK9k9kNm8ebP079/f8n7q1Knq/zFjxshnn30mTzzxhOprZvz48ZKUlCS9e/eWZcuWibe3tx1TTURE5Pg5Ml1NUNEXXDR02OLAUByFSr+oL8NiJiIiosIlnM+Uzi/9pf7e+uzVUtPXU4x+/zZsHRkiIiKqWpFHLw5L0KxudbsGMaXBQIaIiIhM13+MjoEMERER5QtkzNB/jI6BDBEREcn5zBzZdTxZ/c0cGSIiIjKVqJhEydNE6tf0kZAaPmIWDGSIiIhILMVKJsqNAQYyREREJJb+Y0xUPwYYyBARETm5zJxc2RabZLr6McBAhoiIyMntOp4smTl5UsvXUxoH+YqZMJAhIiJycpuiL3aE1yW8pri4uIiZMJAhIiJycpEm7AhPx0CGiIjIieXmaVYjXtcSs2EgQ0RE5MT2n0qV1Iwc8fV0k5bBfmI2DGSIiIicWOSl3JhODWuKu5v5wgLzpZiIiIgqzCaTdoSnYyBDRETkpDRNk0iTdoSnYyBDRETkpI6dS5f41EzxcHORDmE1xIwYyBARETn5sATt6tcQbw83MSMGMkRERE4q0sT9x+gYyBARETl5jkx3k9aPAQYyRERETig+NUOOJqQLRiRA02uzYiBDRETkhCIvja/Uop6/BPh4iFkxkCEiInLi+jHdws2bGwMMZIiIiJy4fkxXE9ePAQYyRERETiYlI1v2nkoxdY++OgYyRERETmZLTKJomkjDWtWkjr+3mBkDGSIiIictVupm8twYYCBDRETkZCIdpH4MMJAhIiJyIhnZubIjLln9zRwZIiIiMpXtsUmSlZsnQX5eqo6M2TGQISIicsr+YwLFBd36mhwDGSIiIiey6ejFHn27mrwjPB0DGSIiIieRm6dJVEyiw1T0BQYyRERETmLvyRQ5n5kjft7uaowlR8BAhoiIyElsvNTsukvDmuLmav76McBAhoiIyElEOlD/MToGMkRERE5A07R8LZYcBQMZIiIiJ3DkbJokpGWJp7urtK0fII6CgQwREZETFSt1CKshXu5u4igYyBARETmBTQ5YrAQMZIiIiJxA5FHHq+gLDGSIiIgc3MnkCxJ77oKgxXXnho7Ro6+OgQwREZGD23SpfkzrkACp7uUujoSBDBERkbMUK4U7VrESMJAhIiJycJHRF8dX6hbhWMVKwECGiIjIgSWlZ8n+06nq7y7MkSEiIiIz2Xz0Ym5MoyBfqV3dSxwNAxkiIiIHFumg/cfoGMgQERE5Q0d4EQxkiIiIyEQuZOXKzrhkh22xBAxkiIiIHNTWY4mSk6dJcIC31K/pI46IgQwREZGDmrsmWv3fo1EtcXFxEUfEQIaIiMgB/bPvtPy9L17cXV3kgf5NxFExkCEiInIwmTm58sKve9Tf43pHSJM61cVRMZAhIiJyMJ+ujpajCekS5OclD13luLkxwECGiIjIwUa6fv+fQ+rvp65pIX7eHuLIGMgQERE5kJd/2ysXsnOlS8OaMqJDqDg6BjJEREQOYv3hBFmy46SggdLM61o7bEslawxkiIiIHEBObp48/+tu9fdt3RpIm9AAcQYMZIiIiBzAlxtiZN+pVKlRzUMeG9RcnIWhA5nc3Fx59tlnJSIiQnx8fKRx48by4osviqZp9k4aERGRYZw9nylvLz+g/kYQU9PXU5yFuxjYa6+9Jh988IEsWLBAWrduLZs3b5a7775bAgIC5OGHH7Z38oiIiAzhjWX7JSUjR1qH+Mvobg3EmRg6kFm3bp1cf/31MmzYMPU+PDxcvvnmG9m0aZO9k0ZERGQI22OTZOGWWPX389e1FjdXx6/ga5qipZ49e8rff/8tBw5czC7bvn27rFmzRoYOHWrvpBEREdldXp4mz/2yW1Dj4saOodLFQUe4Nm2OzJNPPikpKSnSokULcXNzU3VmXn75Zbn99tsL/U5mZqZ66fB9IiIiR/RDVJzKkanu5S5PDm0hzsjQOTILFy6Ur776Sr7++muJiopSdWXefPNN9X9hZs2aperQ6K+wsLAqTTMREVFVSL6QLa8v26f+fnhAE6nj7y3OyEUzcBMgBCHIlZk0aZJl2ksvvSRffvml7Nt3ceeVJEcGv5OcnCz+/v5Vkm4iIqLKhj5j5q89Ko2CfGXZ5L7i6W7ovIlSw/0bGRLF3b8NXbSUnp4urq75dwyKmPLy8gr9jpeXl3oRERE5qv2nUuXz9THq75nDWztcEFMahg5khg8frurENGjQQDW/3rp1q7z99tsybtw4eyeNiIjILlCQMvOX3ZKbp8ng1nWlb7MgcWaGDmTee+891SHeAw88IPHx8RISEiITJkyQ5557zt5JIyIisoulO0/J+iMJ4uXuKs8MayXOztB1ZKqyjI2IiMjo0rNyZOBb/8qJ5AyZPKCpPHJ1M3H2+7fzFqoRERGZzP9WHFZBTP2aPjLxysb2To4hMJAhIiIygZiENPl41RH1N4qUvD3c7J0kQ2AgQ0REZAIvLtkjWbl50qdpbVXJly5iIENERGRwK/bFy19748Xd1UVmDG8tLi7ONZ5SURjIEBERGVhmTq7q/A7G9Y6QJnWq2ztJhsJAhoiIyMDmromWownpEuTnJQ9d1cTeyTEcBjJEREQGdSo5Q97/55D6e/rQFuLn7WHvJBkOAxkiIiKDemXpXknPypXODWvKDR1D7Z0cQ2IgQ0REZEAbjyTIL9tPCOr1Pn8dK/gWhoEMERGRweTk5smMXy5W8L2tWwNpExpg7yQZFgMZIiIig/lq4zHZdypValTzkMcGNbd3cgyNgQwREZGBJJzPlLf+3K/+fnRQc6np62nvJBkaAxkiIiIDefPP/ZKSkSOtgv1VsRIVjYEMERGRQeyIS5JvI2PV3y9c31rcXFnBtzgMZIiIiAwgL0+T537eLZomqql1l/BAeyfJFBjIEBERGcCPUXGyLTZJfD3dVOd3VDIMZIiIiOwsJSNbXlu2T/09eWBTqePvbe8kmQYDGSIiIjv7v78OytnzWdIoyFfG9oywd3JMhYEMERGRHR04nSqfrTuq/p45vLV4uvPWXBrcWkRERHas4Dvzl92Sm6fJoFZ1pW+zIHsnyXQYyBAREdkBgpdpP+6QdYcTxMvdVZ69tpW9k2RK7vZOABERkbPJzs2TqQu3y6/bT6i+Yl6/qZ2EBVazd7JMiYEMERFRFcrMyZWHv9kqf+w+Le6uLvLe6I4ytG2wvZNlWgxkiIiIqkhGdq7c/+UWWbn/jKrU++EdneSqFnXtnSxTYyBDRERUBdIyc+TeBZtl/ZEE8fZwlU/v6iq9m9a2d7JMj4EMERFRFXR4N25+pGyOSVQ9986/u5t0i+AQBBWBgQwREVElSkrPkjHzNsn2uGTx93aXBeO6SccGNe2dLIfBQIaIiKiSnD2fKXd8ulH2nUqVmtU85It7ukub0AB7J8uhMJAhIiKqBKdTMuT2TzfKofjzUru6l3x9X3dpVtfP3slyOOXuEC83N1e2bdsmiYmJFZMiIiIik4tLTJdRH61XQUxwgLcsnHAFgxijBDJTpkyRuXPnWoKYfv36SadOnSQsLExWrlxZGWkkIiIyjZiENLnlow0Sk5AuYYE+snBCD2kUVN3eyXJYpQ5kfvjhB2nfvr36+9dff5Xo6GjZt2+fPPLII/L0009XRhqJiIhM4VB8qtz84Xo5nnRBGtX2VUEMe+w1WCBz9uxZqVevnvp76dKlcvPNN0uzZs1k3LhxsnPnzspIIxERkeHtPZmicmLiUzOleV0/+W5CDwkO8LF3shxeqQOZunXryp49e1Sx0rJly+Tqq69W09PT08XNza0y0khERGRoO+KSZPQnGyQhLUvahPrLN+OvkCA/L3snyymUutXS3XffLaNGjZLg4GBxcXGRgQMHqukbN26UFi1aVEYaiYiIDGtLzDkZOy9SUjNzpGODGvLZ3d0kwMfD3slyGqUOZGbOnClt2rSR2NhYVazk5XUx4kRuzJNPPlkZaSQiIjKkdYfPqmEH0rNypXtEoMwd21Wqe7Fnk6pU6q39+eefyy233GIJYHSjR4+Wb7/9tiLTRkREZFgr98fLhC+2SGZOnvRpWls+vrOL+HiyikVVc9E0TSvNF5DzcvLkSalTp06+6QkJCWoa6s4YSUpKigQEBEhycrL4+/vbOzlEROQA/th9Sh78OkqyczUZ2LKOvH9bJ/H2YBBjj/t3qXNkEPegbkxBcXFxaoFERESO7NftJ2TKd9skN0+TYW2D5Z1bOoine7n7l6UyKnEg07FjRxXA4DVgwABxd//vq8iFQX8yQ4YMKWs6iIiIDO/7zbEy7ccdkqeJ3NgxVF6/qZ24uzGIMUUgM2LECPU/hiMYPHiwVK/+Xy+Fnp6eEh4eLiNHjqycVBIREdnZlxti5Jmfdqm/R3drIC+PaCOurpeXUJBBA5kZM2ao/xGwoLKvt7d3ZaaLiIjIMOauiZYXl+xRf4/tGS4zhreyWc2Cql6p88PGjBkjGRkZ8umnn8r06dPl3LlzanpUVJQcP368MtJIRERkFzm5efL2n/stQczEKxsziDGYUlf23bFjh+oEDxV7jx49Kvfdd58EBgbKokWL5NixY6p5NhERkdkdPZsmUxduk6hjSer91KubyUNXNWEQY/YcGQwOOXbsWDl48GC+4qVrrrlGVq1aVdHpIyIiqlJonfv1xmNyzburVRDj5+Uub49qLw8PaMogxhFyZDZv3iwff/zxZdNDQ0Pl1KlTFZUuIiKiKhefmiFP/rhT/tkXr95f0ShQ3ry5vdSvyRGsHSaQQY++6KSmoAMHDkhQUFBFpYuIiKhKLdt1UqYv2imJ6dmqX5gnBjeXcb0i2DLJ0YqWrrvuOnnhhRckOztbvUc2G+rGTJs2jc2viYjIdFIyslVdmPu/jFJBTKtgf1nyUG+5t08jBjGOGMi89dZbcv78eTUcwYULF6Rfv37SpEkT8fPzk5dffrlyUklERFQJ1h9OkKGzV8uiqOOCmGVS/8by06Re0qyun72TRpVVtITWSsuXL5e1a9fK9u3bVVDTqVMn1ZKJiIjIDDKyc+XNP/bL3LXRghEHGwRWk3duaS+dGwbaO2lUSmUea7xXr17qBUlJF5umERERGd2u48mqKOnA6fPq/ehuYfLMsFbi61XmWyKZqWjptddek++++87yftSoUVKrVi3Vagk5NEREREaEQR7nrDgkN/xvrQpialf3krljusisG9sxiHGmQObDDz+UsLAw9TeKmPD6/fffZejQofL4449XRhqJiIjKJSYhTUZ9tF7e+GO/ZOdqMrh1XfljSh8Z0LKuvZNG5VTqEBR9xeiBzJIlS1SOzKBBg9QYTN27dy9veoiIiCq0c7tvI2PVEAPpWblS3ctdZl7XWkZ2CmXnds6aI1OzZk2JjY1Vfy9btsxSyRcHS25ubsWnkIiIqAzOpGbKvQs2q75hEMR0jwiUZVP6yE2d6zOIceYcmRtvvFFuu+02adq0qSQkJKgiJdi6datqhk1ERGRvy3adkqcW75RzaVni6eYqjw9uLvf0Zud2jqjUgcw777yjipGQK/P6669L9erV1fSTJ0/KAw88UBlpJCIiKnHnds//skd+jIpT71sG+8vsWzpI83rsF8ZRuWgoE3JgGE4Bfd8kJyeLv7+/vZNDRESVZMORBHl04XY5nnRBdW43oV9jmTKwqXi5u9k7aVSJ9+9S15FZsGCB/Pbbb5b3TzzxhNSoUUN69uwpMTExZUkrERFRuTq3e2XpXhn9yQYVxKBzu4UTesi0IS0YxDiBUgcyr7zyivj4+Ki/169fL3PmzFFFTLVr15ZHHnmkMtJIRERk09ZjiXLte2vk41VHVA+96Nxu6eQ+0iWcPfQ6i1IHMqgbo1fq/emnn9RAkePHj5dZs2bJ6tWrKzyBx48flzvuuEN1uocAqm3btrJ58+YKXw4REZkrF2bW0r0y8oN1cij+Yud2n951sXM7NLEm51HqvY3KvWit1KBBA/nzzz9l6tSparq3t7caRLIiJSYmqmEQ+vfvrzrdCwoKkoMHD6om4ERE5Jy2xJyTx3/YIUfOpKn3N3QMlRnDW0mNap72ThqZIZC5+uqr5d5775WOHTvKgQMH5JprrlHTd+/eLQ0bNqzQxGE4BHS+N3/+fMu0iIiICl0GERGZw4WsXHnzz/0y79JAj3X8vOSVG9rKwFbsndeZlbpoCXVievToIWfOnJEff/xRFfnAli1bZPTo0RWauF9++UW6dOkiN998s9SpU0cFT5988kmFLoOIiIxvU/Q5Gfp/q2TumotBDDq1W/5IPwYxVP7m16mpqfLNN9/Ip59+qoKZiuzdF8VVgOIrBDORkZEyefJkNd7TmDFjbH4nMzNTvaybbyFXh82viYjMJz0rR15ftl8WrD+qAph6/t4ya2Rb6d+8jr2TRgZpfl3mQGbVqlUyd+5clSsTEhKievxFxd+uXbtKRfH09FQ5MuvWrbNMe/jhh1VAgxZTtsycOVOef/75y6YzkCEiMpf1hxNk2o875Ni5dPX+1q5h8tSwluLv7WHvpJGBAhn30g4Y+dlnn6kABgvAgJHI/UDrpVatWklFCw4Ovux3W7ZsqYKnwkyfPt1SAdk6R4aIiMwhLTNHXv19n3yx4WLfZCEB3vLqyHbSt1mQvZNGBlTiQGb48OEqF2bYsGEye/ZsGTJkiLi5ualinsqCFkv79+/PNw0VjIuqVOzl5aVeRERkPmsPnVW5MHGJF1vB3ta9gUwf2kL8mAtD5Q1k0PwZxToTJ05UA0ZWBXSwhx6D0Qkfcn82bdokH3/8sXoREZHjSM3Illm/75OvNx5T7+vX9JHXRraTXk1q2ztp5CitltasWaMq9nbu3Fm6d+8u77//vpw9e7ZSE4f6NosXL1aVidu0aSMvvviiyg26/fbbK3W5RERUdVYdOCOD31llCWLu6tFQ/pjSl0EMlUipK/umpaXJd999J/PmzVM5JGil9Pbbb8u4cePEz894o4ty0EgiIuOOVP3ykr3y3eZY9R5jJCEXpkfji916kHNLqexWS4D6K6j4+8UXX0hSUpLqLA99vxgJAxkiIuNZsS9epi/aKadSMsTFRWRMj3B5YkhzqebJ4QWokke/tta8eXM1YGRcXJwq/iEiIipKcnq2PLpwu9z9WaQKYsJrVZPvxveQmde1ZhBD9ukQz+iYI0NEZAx/7TktTy3eKfGpmSoX5p5eEfLooObi4+lm76SRs/QjQ0REVFpJ6Vny/K97ZPHW4+p9oyBfeeOmdtK5YaC9k0YOgIEMERFVmuWXcmHOpGaKq4vIfX0bySMDm4m3B3NhqGIwkCEiokrPhWkc5Ctv3txeOjaoae+kkYNhIENERBVeF2Y6c2GoijCQISKiCsFcGLIHBjJERFShLZKYC0NViYEMERGVq1+Y53/dLYuscmHeuLm9dGIuDFURBjJERFQmf+89rXrnteTC9Gkkj1zNXBiqWgxkiIio9LkwS3bLoijrfmHaS+eGzIWhqsdAhoiISuyffRdzYU6nXOydF7kwU5kLQ3bEQIaIiEqUC/PCkj3yY1Scet+o9sW6MMyFIXtjIENERKXKhbm398UxkpgLQ0bAQIaIiGxKvpAtLy7ZIz9ssc6F4RhJZCwMZIiI6DIr9sXLk4t2MBeGDI+BDBERWTAXhsyGgQwRESkr9sfL9B93yqmUDJULc0+vCHlsMHNhyNgYyBARObn41Ax57ff9lhZJEciFuamddAlnLgwZHwMZIiInlZGdK3PXRMv/VhyStKxclQszDrkwg5qLjydzYcgcGMgQETkZTdNk6c5TMuv3vRKXeEFNax9WQ2YMb8Uxksh0GMgQETmRHXFJqjJv5NFE9b6ev7c8ObSFXNc+RFwxYBKRyTCQISJyAqeSM+T1P/ZZxkfy8XCTCf0ayfi+jaSaJ28FZF48eomIHNiFrFz5ZPUR+WDlYbmQnaum3dgxVB4f0lyCA3zsnTyicmMgQ0TkoPVgftl+Ql79fZ+cTM5Q0zAu0rPXtpIOYTXsnTyiCsNAhojIwUQdS1T1YLYeS1LvQ2v4qHow17YLFhc0TSJyIAxkiIgcxImkC/Lasn3y87YT6n01TzeZ1L+J3NM7gp3akcNiIENEZHJpmTny0b+H5ePVRyQjO0/1B3Nz5/qqP5g6/t72Th5RpWIgQ0RkUnl5mizaelze+GOfGtwRukUEynPXtpI2oQH2Th5RlWAgQ0RkQpFHz6l6MDviktX7sEAfefqaljK4dT3WgyGnwkCGiMhEYs+lq5ZIv+08qd5X93KXh65qImN7hYuXO+vBkPNhIENEZJKBHT9be1Q+XRMtWTl5gk54b+naQKZe3UyC/LzsnTwiu2EgQ0RksP5fjp1Ll90nUmT3ieRL/6fImdSLdWCgV5Na8sywVtIy2N+uaSUyAgYyRER2kpObJ4fOnJfdx1MsgcuekymSmpFz2byo9tIq2F+mDGwmA1vWYT0YoksYyBARVdFQAXtPXQxY9lzKadl3KlUVExXk6eYqzev5SesQf/VqFRIgLYP9OCYSkQ08K4iIKlhSepbsuVQkpBcPHT5zXvK0y+dFZd1WlwKW1iEB6v8mdaqLh5urPZJOZDoMZIiIyiE3T5O9J1Nkw5EE1SR61/EUOZ50wea8tat7WXJZ9KClQWA1cUXNXSIqEwYyRESl7IQORUQbjpyT9YcTZFN0gqTYqNOCfl1aBwdIm9D/ghb2sktU8RjIEBEVE7igLgtyXPDaGH1Oki9kX1Y81DW8plzRqJa0q19DFRUF+HjYLc1EzoSBDBFRgcDlQHyqym3RA5ek9PyBi6+nm3SNCJQejWqp4AW5Le6s00JkFwxkiEicPXA5GH8+X47LubSsfPNgFOmu4YEqaOnRuJa0YeBCZBgMZIjI6TqcOxR/XtZfClxQ18VW4NJFBS4Xg5e2oQFsRURkUAxkiMgpbI9Nkvlro2X1wbOSUCBw8fFA4HKxjsvFei4MXIjMgoEMETl07gtyXP638pAKYHTeHq7SpeHFHBcUFbUNrSGe7gxciMyIgQwROWQA88++eJmz4pBEHUtS09xcXWREh1C5tVuYtK/PwIXIUTCQISKH6pzut50n5X8rDqkm04CA5dauYXJfn0YSFljN3kkkogrGQIaITA/jFS3eGicfrDwsRxPSLU2k7+jRUO7pHSF1/NgRHZGjYiBDRKaVnpUj326KlU9WH5GTyRlqWo1qHjKuV4SM6REuAdXYKR2Ro2MgQ0Smg551v9wQI3PXRFuaTtf191LFR6O7NRBfL17aiJwFz3YiMo2z5zNl3ppo+WJ9jKRmXhzfCIMu3t+vsYzsHCpe7m72TiIRVTEGMkRkeCeSLsjHq47It5HHJCM7T01rVre6TOrfRIa1DWYvu0ROjIEMERnWkTPn5cN/D8uiqOOSk6epae3DasikKxvLwJZ1xdXVxd5JJCI7YyBDRIaz50SKzFl5SJbuPCnaxfhFejaupXJg8L+LCwMYIrqIgQwRGaYPmI1HEuTTNdGqMzvdwJZ15IH+TaRTg5p2TR8RGRMDGSKy68jTm2MS5bcdJ2TprlNyJjVTTUeJ0bXtQmTilY2lZbC/vZNJRAbGQIaIqjx42RqbKEt2nFRFR6dTLgYvEODjIcPaBcv4Po0kvLavXdNJRObAQIaIqmTso62xSfLbpeBF77wO/LzdZVCrenJt+2Dp1bg2x0AiolJhIENElRa87IhLVmMfIYA5nnTB8ll1LwQvdVXuS++mtdn/CxGVGQMZIqrQ4GXX8RRZsvOECl7iEv8LXjD20UAEL22DpW+zIPH2YPBCROXHQIaIyh287DmZogIX5L7EXBq0EXw83GRAyzqq4u6VzRm8EJGTBzKvvvqqTJ8+XSZPniyzZ8+2d3KInDp42X86VZZsvxi8RJ9Ns3zm7eEqA1pcLDbq37yO+HgyeCGiymOaQCYyMlI++ugjadeunb2TQuSUsnLyZOfxZPn3wBnVXPrwmf+CFy93VxW0IHi5qkUdDtpIRFXGFFeb8+fPy+233y6ffPKJvPTSS/ZODpFTSE7PlqhjiRJ59Jzq62V7bJJk5lwc5wjQuujKZkEqeBnQsq6qwEtEVNVMceWZNGmSDBs2TAYOHFhsIJOZmaleupSUlCpIIZH5i4pQMXdzzDnZfDRRvQ7Ep1qGB9DVrOYhXcMDZWjbemqsIz9vD3slmYjIHIHMt99+K1FRUapoqSRmzZolzz//fKWni8jswwHsPZkim4+ek8iYRNlyNFFOpfzXt4suoravdG5YU7qG15Qu4YHSqLYvxzkiIkMxdCATGxurKvYuX75cvL29S/QdVAaeOnVqvhyZsLCwSkwlkfGlZebIttiki7ktMeckKiZR0rJy883j7uoirUMDpGvDi0ELApggPy+7pZmIqCRcNOQpG9RPP/0kN9xwg7i5/dfqITc3Vz0Rurq6qiIk689sQSATEBAgycnJ4u/PMVvIOcSnZKh6LajfsiUmUXafSFG5MNb8vNylE4KWS4FLh7AabGFERIZR0vu3oXNkBgwYIDt37sw37e6775YWLVrItGnTig1iiJzJkTPn5ceoONWfy1Grvlx0oTV88hUTNavrJ24YnZGIyMQMHcj4+flJmzZt8k3z9fWVWrVqXTadyFlbFv2644QKYLYeS7JMRzWWFvX8LUELcl1CavjYNa1ERE4XyBDR5XJy82T1wbPyQ1ScLN9zWvXvAshd6dcsSEZ2qi99mtUWf7YoIiInYLpAZuXKlfZOApFd7D+VqnJeFm89LmdS/+tioEU9P7mpc325rkOI1PErWaV4IiJHYbpAhsiZnEvLkp+3HVcBDAZj1AX6esr1HUJU7kvrEH82iSYip8VAhshgUFS0Yn+8/LglTv2fnXuxtZGHm4vq/h/By5XN66iedYmInB0DGSIDQC8IaCL9w5Y4+WX7CZUTo2sbGiAjO4XKdR1CVU4MERH9h4EMkZ37e/kJRUdbjqvRpHXoiO7GjqEysnN91UyaiIhsYyBDVMUysnPlr72nVdERRpLW+6lDUdGgVnVV8NKnSW1xd2PRERFRcRjIEFVhh3VfbTymio+SL2RbpndqUEMFL9e2C5EAHzaZJiIqDQYyRJUoOzdP/tpzWr7cGCNrDyVYpocEeMsNnULlxk71pXFQdbumkYjIzBjIEFWCk8kX5JtNsfLtpmMSf6nPF7SQvqp5HbnjiobSt1kQhwcgIqoADGSIKkheniZrDp2VLzfEyN/74i2DNNau7im3dA2T0d0aSP2a1eydTCIih8JAhqicEtOy5PstsfL1xmP5BmvsFhGocl+GtK7HPl+IiCoJAxmiMvb7sjU2SeW+LNlx0jLekZ+Xu9zYKVRuv6Ihm00TEVUBBjJEpZCWmSM/bzuhApg9J/8bMgDDBCD35br2IeLrxdOKiKiq8IpLVAIHTqeq4GVR1HE5n5mjpnm5u6om03dc0UA6hNXgeEdERHbAQIaoEJk5ubJs1yn5asMx2XT0nGV6RG1fub17AzXidI1qHDKAiMieGMgQFaj7cuRsmuq0bmFkrCRcGvMITaUHtrzYdLpX49riyqbTRESGwECGnF5qRrasO5wgqw6cUUMGxCVesHxW199Lbu3aQDWdrhfgbdd0EhHR5RjIkFP294KKugha8IqKSZQcfcAjjHnk5ipXNK4lt3ULkwEt64oHxzwiIjIsBjLkFBLOZ6rO6v7df0ZWHTwjZ89fLDLShdeqJv2aBaked69oVIstj4iITIJXa3JIObl5qp8XPXDZeTxZtP8yXaSap5v0bFzLErw0rOVrz+QSEVEZMZAhh3E86cLFei77z8jaw2clNeNiM2ldy2D/S4FLbenSMJC97RIROQAGMmRaGdm5sjH6nCXX5VD8+Xyf16zmIb2bBl0MXprWljr+rKxLRORoGMiQqWTn5snSnSdVx3QbjiRI5qWhAQAtojs2qGkpLmobGsARpomIHBwDGTJNE+lvN8XK/LXRciI5wzI9OMBb+iLXpXmQ6t8loJqHXdNJRERVi4EMGdqJpAsqeEEQk3ppaIDa1T1Vx3TXtA2WpnWqc2gAIiInxkCGDGlnXLJ8svqI/LbzpORe6uOlSZ3qcl+fCLm+Q6h4e7jZO4lERGQADGTIUB3VrdgfrwKYDUf+G9sIzaTv69NI1X3h0ABERGSNgQwZovXR4q3H5dPVR+TwmTQ1zd3VRa5tFyz39mkkbUID7J1EIiIyKAYyZNfedr/YECNfrI+xDM7o5+Uuo7s3kLE9wyWkho+9k0hERAbHQIaq3OEz52Xummj5cUucpfl0aA0fubtXuNzSNUz8vNnyiIiISoaBDFUJTdNkU/Q5+WR1tPy977RluIB29QNU8dE1beqJOwdnJCKiUmIgQ5U+5tHvu06pCrw74pIt0we2rKMq8HaLCGTzaSIiKjMGMlQpzmfmyLebjsn8tUfVGEjg5e4qN3aqL/f0jlBNqYmIiMqLgQxVqJiENPl8fYwsjPyvA7tavp5yZ4+GcucVDaVWdS97J5GIiBwIAxmqkPovqw+elQXrjso/++Mt9V8aBfnKvb0byY2d2IEdERFVDgYyVK7io0VRcfLZuqNy5FL/L4CO68b2Cpd+TdmBHRERVS4GMlRqR8+myYL1R+WHzXGW4qPqXu5yU+f6clePhtIoiPVfiIioajCQoRIPH7Dq4BlVfLRi/xnL9Ea1fWVMz3BVfMT+X4iIqKoxkKEipWZkq47rUIH3yNn/io/6N0fxUYT0aVKbxUdERGQ3DGTIpiNnzqvg5YctcaoujD58wE1dUHwULhG1fe2dRCIiIgYylL/46N+DZ+SztUfl3wP/FR81DtKLj+qrujBERERGwbsSqeIj5LwgByb6UvEROtu9qnkd1fqod5Pa7H2XiIgMiYGMkw/e+Pm6oyqIScvKtRQfjeoaplofNazF4iMiIjI2BjJO2Hkdio3mrT0qq6yKjzBkgCo+6hgqviw+IiIik+Ady0lcyMqVxVuPy7y10XIo/ryahtKiAS3qytie4dKrSS0WHxERkekwkHFwp5Iz5IsNR+XrjcckMT1bTUOF3VFdwlQA06BWNXsnkYiIqMwYyDionXHJMnfNEVmy46Tk5F0c/Cgs0EfG9oyQUV3qs/M6IiJyCAxkHEhunibL95ySeWuOyqaj5yzTu4UHyrjeEXJ1q7rixs7riIjIgTCQcZDm099FxqrBG+MSL6hp7q4uMrx9iIzrFSFt6wfYO4lERESVgoGMicWeS5f5a4/Kws2xlt53a1TzkNu7N1C979b197Z3EomIiCoVAxkTNp+OPJqo6r8s33NaLlV/Uc2nkftyQ8dQ8fF0s3cyiYiIqgQDGZPIysmT33aeUPVfdh5Ptkzv2yxI7ukdIX2bsvddIiJyPgxkDO5cWpZ8vTFGDR8Qn5qppnm5u6pxj8b1Cpemdf3snUQiIiK7YSBjUMcS0uWDfw/Loqg4yczJU9Pq+Hmp3ndHd2sggb6e9k4iERGR3TGQMSAMIfDgV1GSeqkCb5tQf1V8NKxtiHi6u9o7eURERIbBQMZgvtwQIzN+2a36hOncsKZMG9JCuobXZP0XIiIiGxjIGAQCl1eW7pW5a6LV+xs7hcqsG9uKlztbIBERERWGgYwBpGXmyORvt8lfe0+r948NaiaT+jdhLgwREVExGMgYYFDHexZEyu4TKar+y1s3t1c98hIREVHxGMjY0e4TyXLPZ5vlVEqG1PL1lI/v6qLqxRAREVHJMJCxk7/2nJaHv90q6Vm5qlfe+WO7SlhgNXsni4iIyFQM3ZZ31qxZ0rVrV/Hz85M6derIiBEjZP/+/WL2IQZQofe+LzarIKZ3k9ry48SeDGKIiIgcLZD5999/ZdKkSbJhwwZZvny5ZGdny6BBgyQtLU3MKCc3T577ebe8uGSPaJrI6G5hMv/urhLg42HvpBEREZmSi4YsApM4c+aMyplBgNO3b98SfSclJUUCAgIkOTlZ/P39xV5SM7Llwa+3qs7u0Bhp+tAWcl+fRmyZREREVI77t6nqyGBlIDAwsNB5MjMz1ct6Q9hbXGK6qtS7/3SqeHu4yuxbOsqQNvXsnSwiIiLTM3TRkrW8vDyZMmWK9OrVS9q0aVNkvRpEcPorLCxM7GlbbJKMmLNOBTEYK+n7CT0ZxBARETlb0dLEiRPl999/lzVr1kj9+vVLlSODYMYeRUtLd56UR77bpgZ9bFHPT+aN7SohNXyqNA1ERERm5FBFSw8++KAsWbJEVq1aVWQQA15eXuplT4gNP/z3iLy2bJ963795kLx3Wyep7mWKzU1ERGQahr6zIiB46KGHZPHixbJy5UqJiIgQo8vKyZNnf9ol322OVe/H9gyXZ4a1FHc305TiERERmYahAxk0vf7666/l559/Vn3JnDp1Sk1HVpOPj/GKaJLTs2XiV1tk3eEEcXURee7aVjK2l/GDLyIiIrMydB2Zwpomz58/X8aOHWuo5tcxCWly92eRcuRMmvh6usn7t3WS/i3qVNryiIiIHJlD1JExcIyVz+aj52T8F1vkXFqWhAR4y9yxXaVlsP36rCEiInIWhg5kzODnbcfl8e93SFZunrQNDZC5Y7pIHX9veyeLiIjIKTCQKUdu0f/9fVBm/3VQvR/cuq68c0sHqebJTUpERFRVeNctYxDz6PfbZVHUcfV+Qt9GMm1IC3FFDV8iIiKqMmwTXMZKyChGcnN1kVk3tpXp17RkEENERGQHzJEpI/QP06dpkDSpU93eSSEiInJazJEpR64MgxgiIiL7YiBDREREpsVAhoiIiEyLgQwRERGZFgMZIiIiMi0GMkRERGRaDGSIiIjItBjIEBERkWkxkCEiIiLTYiBDREREpsVAhoiIiEyLgQwRERGZFgMZIiIiMi0GMkRERGRa7uLgNE1T/6ekpNg7KURERFRC+n1bv487bSCTmpqq/g8LC7N3UoiIiKgM9/GAgIBCP3fRigt1TC4vL09OnDghfn5+4uLiUqGRIoKj2NhY8ff3F0fnTOvLdXVczrS+XFfH5Szrq2maCmJCQkLE1dXVeXNksPL169evtN/HQeTIB5Izry/X1XE50/pyXR2XM6xvQBE5MTpW9iUiIiLTYiBDREREpsVApoy8vLxkxowZ6n9n4Ezry3V1XM60vlxXx+Vs61sch6/sS0RERI6LOTJERERkWgxkiIiIyLQYyBAREZFpMZAhIiIi02IgU4Q5c+ZIeHi4eHt7S/fu3WXTpk1Fzv/9999LixYt1Pxt27aVpUuXihnMmjVLunbtqno/rlOnjowYMUL2799f5Hc+++wz1VOy9QvrbXQzZ868LN3YZ464XwHHb8H1xWvSpEmm36+rVq2S4cOHq14/kc6ffvop3+dox/Dcc89JcHCw+Pj4yMCBA+XgwYMVft7be12zs7Nl2rRp6tj09fVV89x1112qR/OKPheMsm/Hjh17WdqHDBnicPsWbJ2/eL3xxhum3LeVgYFMIb777juZOnWqauIWFRUl7du3l8GDB0t8fLzN+detWyejR4+We+65R7Zu3aqCAbx27dolRvfvv/+qG9uGDRtk+fLl6sI4aNAgSUtLK/J76FHy5MmTlldMTIyYQevWrfOle82aNYXOa+b9CpGRkfnWFfsXbr75ZtPvVxyfOC9xc7Ll9ddfl3fffVc+/PBD2bhxo7rJ4xzOyMiosPPeCOuanp6u0vrss8+q/xctWqQeRK677roKPReMtG8BgYt12r/55psif9OM+xas1xGvefPmqcBk5MiRpty3lQLNr+ly3bp10yZNmmR5n5ubq4WEhGizZs2yOf+oUaO0YcOG5ZvWvXt3bcKECZrZxMfHo0m+9u+//xY6z/z587WAgADNbGbMmKG1b9++xPM70n6FyZMna40bN9by8vIcar/ieF28eLHlPdavXr162htvvGGZlpSUpHl5eWnffPNNhZ33RlhXWzZt2qTmi4mJqbBzwUjrO2bMGO36668v1e84yr7Fel911VVFzjPDJPu2ojBHxoasrCzZsmWLyoq2HrMJ79evX2/zO5huPT8g2i9sfiNLTk5W/wcGBhY53/nz56Vhw4Zq8LLrr79edu/eLWaA4gVk4zZq1Ehuv/12OXbsWKHzOtJ+xXH95Zdfyrhx44ocQNWs+9VadHS0nDp1Kt++w5gtKE4obN+V5bw38jmMfVyjRo0KOxeMZuXKlaoovHnz5jJx4kRJSEgodF5H2benT5+W3377TeUQF+egifdtaTGQseHs2bOSm5srdevWzTcd73FxtAXTSzO/kUcLnzJlivTq1UvatGlT6Hy4eCCL8+eff1Y3R3yvZ8+eEhcXJ0aGGxnqgSxbtkw++OADdcPr06ePGmHVkfcroOw9KSlJ1S9wtP1akL5/SrPvynLeGxGKzlBnBkWiRQ0oWNpzwUhQrPT555/L33//La+99poqHh86dKjaf468bxcsWKDqMt54441FztfdxPu2LBx+9GsqHdSVQf2P4spTe/TooV463OxatmwpH330kbz44otiVLjY6dq1a6dOeOQ+LFy4sERPOWY2d+5ctf54SnO0/UoXoX7bqFGjVEVn3MAc9Vy49dZbLX+jkjPS37hxY5VLM2DAAHFUeMhA7kpxFfCHmnjflgVzZGyoXbu2uLm5qWw8a3hfr149m9/B9NLMb0QPPvigLFmyRFasWCH169cv1Xc9PDykY8eOcujQITETZL03a9as0HQ7wn4FVNj966+/5N5773WK/arvn9Lsu7Kc90YMYrCvUam7qNyYspwLRobiE+y/wtJu9n0Lq1evVpW4S3sOm33flgQDGRs8PT2lc+fOKttShyx2vLd+WrWG6dbzAy4mhc1vJHh6QxCzePFi+eeffyQiIqLUv4Fs2507d6qmrmaC+iCHDx8uNN1m3q/W5s+fr+oTDBs2zCn2K45h3KCs911KSopqvVTYvivLeW+0IAb1IhCw1qpVq8LPBSND0SfqyBSWdjPvW+scVawDWjg5074tEXvXNjaqb7/9VrVw+Oyzz7Q9e/Zo48eP12rUqKGdOnVKfX7nnXdqTz75pGX+tWvXau7u7tqbb76p7d27V9Ua9/Dw0Hbu3KkZ3cSJE1VLlZUrV2onT560vNLT0y3zFFzf559/Xvvjjz+0w4cPa1u2bNFuvfVWzdvbW9u9e7dmZI8++qhaz+joaLXPBg4cqNWuXVu11HK0/WrdOqNBgwbatGnTLvvMzPs1NTVV27p1q3rhUvb222+rv/WWOq+++qo6Z3/++Wdtx44dqrVHRESEduHCBctvoPXHe++9V+Lz3ojrmpWVpV133XVa/fr1tW3btuU7hzMzMwtd1+LOBaOuLz577LHHtPXr16u0//XXX1qnTp20pk2bahkZGQ61b3XJyclatWrVtA8++MDmb1xlon1bGRjIFAEHBm4Anp6equnehg0bLJ/169dPNQG0tnDhQq1Zs2Zq/tatW2u//fabZgY4eWy90BS3sPWdMmWKZdvUrVtXu+aaa7SoqCjN6G655RYtODhYpTs0NFS9P3TokEPuVx0CE+zP/fv3X/aZmffrihUrbB63+vqgCfazzz6r1gM3sAEDBly2DRo2bKiC05Ke90ZcV9ysCjuH8b3C1rW4c8Go64sHrEGDBmlBQUHqoQLrdd99910WkDjCvtV99NFHmo+Pj+pCwJaGJtq3lcEF/5Qs74aIiIjIWFhHhoiIiEyLgQwRERGZFgMZIiIiMi0GMkRERGRaDGSIiIjItBjIEBERkWkxkCEiIiLTYiBDJCIzZ86UDh062GVZGI16xIgRVTL6dZMmTdSYMxjhvLQwIJ+Li4saQbuiflOHkXoxHgw5H1vHFVFpMJAhhzZ8+HAZMmRIoYOw4QK6Y8cOeeyxxy4bU6ki4Pdxs7dWWcsqzoQJE+Smm26S2NjYQkeyDg8Pl9mzZ9v8DCNhnzx5UgICAkr1myVZxi233CIHDhwQe7C1jxwJBgocN26cNGjQQLy8vCQ0NFSNEP3VV19JTk5OlablyiuvLFfAS2SLu82pRA4CQ9aPHDlSDSpXcERvDKTYpUsXNcw9VK9evUrShOVU1bKsB42Lj4+XwYMHS0hISJl+AwPvWY8UXBG/qfPx8VEvqlibNm2SgQMHSuvWrWXOnDnSokULNX3z5s3qfZs2bQodhBADUWL0cyLDs/cYCUSVKTs7W4218+KLL142UFv16tUtg7BhnJL27dvn+95DDz2kBtMMDAzUnnjiCe2uu+5SAw9aj1OEeR5//HGtZs2aajnW451g/BPrsVPw3tayMKaK9e9ikMdXXnlFCw8PVwM2tmvXTvv++++LXM9z586pASAxCB7GZBkyZIh24MCBQsdysR6DxxrS+M4779j8TP+dxMTEIn9z9erVWu/evVXaMZAhttH58+ct26zg9wDjemFb6/RtNHfuXC0sLEzz9fVVg5vm5ORor732mtrWGGvnpZdeypdGpO2ee+5RA+T5+flp/fv3VwMpFgVpWLx4sfpbH7foxx9/1K688kq1LbH9161bl+87a9asUeuCz7HNMfYP9gFg4EKsM9KHMZ569eqlbdq06bLtuGzZMq1Dhw5qOyGdp0+f1pYuXaq1aNFCpX306NFaWlpamY8LjDXVsmVLrXPnzuq7hc1jvd4YWLFv374q3dgn+B4GEsV4PRi3B/vk999/t3x/5MiR2qRJkyzvJ0+erH4HA6wCBq3EYIfLly9Xx3nBfY/l6tsDgz8irdimPXr00Pbt21fkfiPSMZAhh4dAo3HjxpaLNsybNy/fIGwFgwvcIBHALFq0SF2U77//fs3f3/+yQAbTZs6cqYKGBQsWaC4uLtqff/6pPsdIs/rgmxiJWB95trhABsvGzQw3OoxCje/jxoLRbAuD0Y9x01q1apW6cQ8ePFhr0qSJGhkZNxMMlqjfoAuOilyWQKaw38TAdAg68BvYJhh5t2PHjtrYsWPVbyQkJKjg5oUXXrCM0FxYIINA86abblIjb//yyy/qRor1QpCAmxz2IZZvPfAfRvkdPny4FhkZqZaPUYBr1aqllluaQAbbf8mSJWodkQZsFwS3gJGJsT8QWGFb79q1Sw1GeObMGfX5ww8/rIWEhKigBGnH/kWgq6dB345XXHGFCogwKCf2FY4nBER4j/2IdGME77IeF/gdLOebb77RiqOvN4Ik7M8jR45oJ06cUCMx4xjHb2CbI6DHQI16kPzuu++qgVR1CMwQROoPCFg/zI+ADOcaAhQM8KjvewSm+vbo3r27Whdssz59+mg9e/YsNt1EwECGHB4CkYK5ELhQ3nHHHZb3BYMLPPG/8cYblve44GLU3IKBDHIerHXt2lWbNm2azZtkYcuyDmTwNI8n2II5AMhlwBO6LbipYDkIGnRnz55VgRpG7gYEH0XlxJQ2kCnsN5HO8ePH5/secmhcXV21CxcuFLoMW4EMtkNKSoplGoIY3GitcxeaN2+uzZo1y7Ic3HSxDa0hiMXowaUJZD799FPL57ixWucyYD8gl8UW5Dzhxv3VV19ZpiGYRGDz+uuv59uOyIHQYR0wDQGKbsKECWqdy3pcIHcFv2k9ejlyfRBo6q85c+bkW+/Zs2fn+w2k++WXX77sGH/ggQfU3zt27FDBO4J05Egh2ETuJ0Zb1oMv64AE5wxybazZ2h4YYR7T9GOGqCisI0MOD/UCUFF13rx5qrIhKj+iou8LL7xgc/7k5GQ5ffq0dOvWzTINrXI6d+4seXl5+ebV69fogoODVb2RskLa0tPT5eqrr843PSsrSzp27GjzO3v37hV3d3fp3r27ZVqtWrWkefPm6rOqtH37dlV5GhVJdYgVsN2io6OlZcuWJf4tVAr28/OzvK9bt67aD66urvmm6dsby0a9Hay7tQsXLsjhw4dLtR7W+xX7FLAcHEvbtm2Tm2++2eb3sBzULenVq5dlGuqZ4FgquC+sl4H1qFatmjRq1CjfNNRxKetxYQu2DdIPOBfwfWuoM6ZLSUmREydO5FsXwHtsa0Adm8DAQPn3339VHSqk5dprr1X1bwDTsZzybHNUUiYqCgMZcppKvw899JC6wKKSb+PGjaVfv37l/t2ClSHRAqZgsFMauBHDb7/9plqXWEOLE6ND+tGS6eGHH77ss9LekGxt26K2N5aNGyCa8xZU2qbd1svBMkBfTkVVSi64jOLWrbTHRdOmTdX/+/fvtwQ7CATRXB4Q/Bbk6+tbqnVAGvv27au2OdKBoAUBSWZmpuzatUvWrVunWumVd5sTFYXNr8kpjBo1Sj3Jf/311/L555+r5qj6xbIgNC/G03BkZKRlWm5urkRFRZV6ubg447sl1apVK3VDOHbsmLrhWL/CwsJsfge5HGhGu3HjRsu0hIQEdQPD71WlTp06yZ49ey5LO154Ygf8X5ptUpplnzp1St2gCy67du3aFbYc3KgLaz6PABnrt3btWss05NDgWCrPvijLcYHgBTlIb775ZpkCAn9/f9UazXpdAO+t1wUPBAhk8EIgg/MMwc0bb7yhAhrrHJ3K2vfk3JgjQ04BzZ3RV8n06dNVljk6oSsKcm9mzZqlbhS4Gbz33nuSmJhYaPBTVPEIbnq4mONGVLNmzSLnR1EKnmAfeeQRdfPp3bu3KurCzQM3ljFjxth88r7++uvlvvvuk48++kj9xpNPPqme3DG9tI4fP24pftA1bNiwRN+dNm2aXHHFFfLggw/Kvffeq57wEdgsX75c3n//fcs2WbVqldx6661qm1RUkIFmxj169FCdC77++uvSrFkzVTSCXIwbbrghX7FJeeAYatu2rTzwwANy//33q5vzihUrVHET1mXixIny+OOPqyIX5EIhLSgWQq5gWZXluMCxitxHFEfh+EO6EfQisML2P3PmjMqhKQrWY8aMGSpAQyeO+D0cG9ZFhwhekC5sB6RLn4b0du3aNV8uD/Y9Au6jR4+qcxLbiKi8GMiQ08CNZO7cuXLNNdcU2+8Jbsh4ur/rrrvUxX78+PGqv5TiLvwFvfXWWzJ16lT55JNPVGCBC3hx0LFcUFCQCqSOHDmiikWQ2/DUU08V+h3cYCZPnqzqJ6DeA56Ily5dWqZ+QPAEj5e1L7744rJ+eArLrUC9iKefflr69Omj6sfgJoggUoe6SSh+wnQ8sV+sb1t+uHFjnbHsu+++W92o0e8NtgVy2CoKAqQ///xT7Q/UfUFRE+onjR49Wn3+6quvqmDjzjvvlNTUVBVA/fHHH8UGsZVxXCCo3LJli7zyyisyadIkdUwjsEDfMe+8847KmSwKiggRMD366KOqvgpyYn755RdLsRUgqENasF30/pEQyCDnpWD9GAQ3CLrwO6i7hHpTROXlghq/5f4VIgeHGxOeZlFEVdIebImIqPIxR4bIhpiYGPXUjfJ/5BqgWARPj7fddpu9k0ZERFZY2ZfIBlRYxECGKONH/YKdO3fKX3/9Varmw0REVPlYtERERESmxRwZIiIiMi0GMkRERGRaDGSIiIjItBjIEBERkWkxkCEiIiLTYiBDREREpsVAhoiIiEyLgQwRERGZFgMZIiIiErP6f/lpJgm/WNgXAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAHHCAYAAABjvibXAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAcGpJREFUeJzt3Qd4FMX7B/A3jSRACAmhhR46hN47SLXQREFAEUUQAQVFRSw/UFQEFBVUQKQoSFNpAqIgvffeewslARKSQOr9n+/g5n85Lv2Svb37fp7n4HK3tzu7s+XdmdkZF5PJZBIiIiIishlX282KiIiIiIABFhEREZGNMcAiIiIisjEGWEREREQ2xgCLiIiIyMYYYBERERHZGAMsIiIiIhtjgEVERERkYwywiIiIiGyMAVY2aNmypXppLly4IC4uLjJ79uwcTUffvn2ldOnSObpMIm3fy5s3r9gTHAtIl7OfFyA+Pl7effddKVGihLi6ukqXLl2yNL/Ro0erdcnOZWg2bNigloX/ibID9q8hQ4YYM8DCCQUr4OXlJVevXn3ke5yEgoOD9Uia06tfv77KmylTpog9mDdvnnzzzTc5vtzo6Gh10TD6SfzGjRvy6quvSrFixdTxhiCjX79+Vi+Oli9Mb6/27dun0vjhhx+mOM3p06fVNG+99VaOpevYsWNqeyJ4smczZ86UCRMmyDPPPCM///yzvPnmmylOm9nzcUaWYc0PP/ygS/CZGTiunnrqKb2TYTcOHTokL730kpQpU0adR3CzVbNmTRVwnzt3TuzBtm3b1LF69+7dbFuGu+goJiZGvvjiC5k8ebI4slKlSsn9+/fFw8ND7BkuSLt371Yni19//VVee+01uwiwjhw5IsOGDcvxAOvjjz9W781LHYzk8uXL0qRJE/V+4MCBKsi6du2a7Nq1y+r0CKrNS53c3NzEXtWuXVsqVaok8+fPl08//TTFfQeef/559f/JkydVSUp2B1jYb7DPWJYe//PPP2Iv1q1bp/aHr7/+2ibzQ6D73nvv2XQZCLACAgIeKXVs3ry5Op/mypUrS2mm7DF9+nR17QgICJDevXur4xSlmTiP//LLL+qGGfmn9/kFARaOVexf+fPnd7wACxEtMmPkyJESGBiYLcvAWNYPHjwQb29v0Yu9lwZo5s6dK4UKFZKvvvpK3XXiLpxVjMaFkit3d3cVNBcoUCDN6ZHnOCkaBU7eH330kezYsUMaNmz4yPcIvnByRzAGnp6eoid7Cghu3rxp04sK9jO8snMZGgTJRjifOiMELQiucGO3YsUK8fHxSfY9ri2fffZZum5wc+fOLUanaxus999/XxISElQpVloQAY8ZM0bKli2rTpS48OP3KAWzVlT7999/S926dVVgNW3atKR6+0WLFqmoFXdWyHxcVMLDw9V8UEqCAAN38SjetJz3rFmz5LHHHlPTIA1VqlRJV1WaZVsLLS3WXpYBzV9//SXNmjWTPHnyqPQ++eSTcvTo0UeWsXTpUlWMjxMP/l+yZIlkFO74sT2w/Xx9fZNKAMzdu3dPbSekE9sA26Jt27aqysa8JKxbt25SpEgRlZ7ixYvLc889p7azZUBXp04dlUf+/v5qGpS6aFAKsHLlSrl48aLV7YOSz6pVq6oD0c/PT+W3tTSbi42Nlf/9739quVhHbFds3/Xr1yfLr4IFC6r32Fe0ZaM4OSW3b9+Wt99+W6pVq6b2n3z58snjjz8uBw8efGRarE+nTp3UsrH9UHWC/dVau5KdO3dKhw4dVFqxni1atJCtW7dKWk6cOKH2nXfeeUcFV7jJiIuLS/NmJCIiQv1vK6gOaN++vVpX3ER98sknSfPH/8jPzp07P/I7pBfrjCAxtQALrOX53r17VYmVNk1KbbBQlYFtin0Q+ylKw3CcIy/Mq/m088qWLVtUNTr266CgIHVHrsHx/eyzz6r3rVq1StpvtDy1bIOVWt7hOMQxgeVgv16+fLmkR1RUlAwfPly1e8LxWbFiRfnyyy+Ttrl2LsL+jvOIZRpt0QYrrWUkJiaqUgwcu1i/woULq3y+c+dOsu2N327cuDHp99q2s9YGS6vG1PITx0q5cuXk999/V99jPg0aNFD5jG2ydu3aR9YBzVVefvlllR5sO6QP1ZyZoW0DbPsff/wx6bpVr149dcNjLc+7d++uzjtaGj/44INk0+zfv1+dU3BuwTmmdevW6ubCWvMb7KdvvPGGmh+CXGxfnPtQHdanTx91vsQLVXaWx3t68icl2vkSNSA+FsEVYH64jpuXXml5h2MWpZPIO1zbtSAdTRqQBvy2Ro0aqrrZHG6gnn766WSf4TyMdGB/0CxcuFB9dvz4cbW/4twIqMbU9jHLqn3tuqrtD6tXr5YMMelg1qxZyFHT7t27TS+//LLJy8vLdPXq1aTvW7RoYapatWqy37z44ovqN88884zp+++/N/Xp00f93aVLl2TTlSpVylSuXDmTn5+f6b333jNNnTrVtH79evXC9DVr1jQ1atTINGnSJNMbb7xhcnFxMT333HOmXr16mR5//HE17xdeeEFN+/HHHyebd7169Ux9+/Y1ff3116bJkyeb2rVrp6b77rvvkk2H9OOlOX/+vJoO6w3Xr183zZkzJ9kL8/Pw8FDL0Pzyyy8qfR06dFDfjxs3zlS6dGlT/vz51Tw1f//9t8nV1dUUHBxsmjhxoumDDz4w+fr6qm2I7ZEeO3bsUGncvHmz+hv5UqVKlUemw3bKlSuX6a233jL99NNPKk0dO3Y0zZ07V30fExNjKlOmjCkwMND06aefqmmwHbFeFy5cSJoPvsO69ejRw/TDDz+oaQICAtT63blzR03zzz//qPzC59p2WrJkifruxx9/TNofpk2bZvr2229N/fr1U3mamlu3bpmKFi2q0j9lyhTT+PHjTRUrVlTbfv/+/WqayMhI9R3m37Vr16RlHzx4MMX5Yl8uW7as2ueQnk8++cRUrFgxlQ/m+zbmHRQUZPL29lbTfvPNN6b69eubatSooZaH/VTz77//qm2N/fWrr75S+1316tXVZzt37kx1PbG/YH5//PGH6bHHHlPv3dzc1L5kvu/AqFGj1Pd58+ZV/+fJk8fUu3dvtZ9mFo5XHNfly5dXxxOOkaeeekrN/6OPPkqaDvsqtn1YWFiy3y9atEhNu2nTplSX07hxY1PhwoVN8fHxyT5H/uL3Z8+eTfoMxwLSpbly5YrJ39/fVKBAAbX/ffnll6ZKlSol5YX5dsJvsZ9gWe+//75an9q1a6t9+MiRI2oaLAv7H36LabT9RtuOaZ0XAPPCPoNjD8cWltO8eXO1nMWLF6e6LRITE1VeY9pXXnlF/RbHJpYxbNiwpP0PacJ6Fi9e/JE0WmPtfGxJ24fSswykzd3d3dS/f391fh4xYoTa53COiI2NVdPgOMdvMQ/t9zgfgHYuNz9WkEacc0qUKGF655131P6PbYh9fsGCBaYiRYqYRo8erY437biMiIhI+j3ShuXh9zh2cfx36tRJLQfHXVqwfzz55JOP5G2tWrXU9Qh5iXMNzmVYjraegPNKvnz51H44cuRIdf549913TdWqVUu2X2Ab4dw1ZswY0xdffKHOs56enurcbXltxXkTx7r59QzzbNq0qTqH45yrHY8///xzsnVJT/5YExUVpX7Xpk0bU0a0aNFC5U/BggVNr7/+ulr/pUuXmqKjo02VK1dW54c333xTXbObNWum0ox81OCYw281OJfgGMA10fzaPHjw4KTpsM179uyZlL/aPoZ9F/A5zgPa9sbycN7OnTu3KTQ0NN3rpnuAhZMSMsX8wmh5QB84cEBNj4w39/bbb6vP161bl2xHx2erV69ONq12UCIIMd9JsJGRGQiuzOGiZhmcIMMttW/fXm14c+k5kVqeGLGz4wJ39OhR9dm9e/dUIIWd3BxOBDg5mH+Ogwk7wt27d5M+w8kIy0xvgDVkyBB1ckFazH+vBR0aLBs7akowPX7322+/pTgNAi2c+D777LNknx8+fFjtC+af46RlbR06d+6c5knfGlyIEQSaQ0CHCyeCSvNADOuBC0d6PHjwwJSQkJDsM+Q7ToA4YWsQKGG+OIFo7t+/ry4k5hcN5AOCE+xfWp5o+yBOrG3btk01PdqFHidtnGgXLlxomjBhgtrHEAjiZKjByQP5/+uvv5p+//1309ChQ1U+YPnh4eGmzNBuiHDC1GA9kJ8IELF94eTJk2o6XNDM4eKGYNt83a3BBQS/x02GBvmAiyiOYXOWARbShmPffB/HyRlBl7UAyzLgu3nzpsrf4cOHJ32G/d7y4p+R80Lr1q3VhRX7k/l2QyCJ/EgN9inMDzcv5nATgvU8c+ZMsrSk9/jJaICV2u9wA4fpsK+Zw/na8nP81nx7aVIKsPDZvHnzkj47ceKE+gwXWvMgBPuK5XbHzRnOoZYXT9x845xn7dyfngALx9/t27eTPl+2bJn6/M8//0z6DAG0j4+P6eLFi8nmab7voyABx435DcO1a9fU7/B7y2ur5XkDxwL2gYEDByY7FyLYM9/GGckfSwhazIN5cziucMxrL/NzsJZ3CObM4byEz7Wbd8C1G+uC85gWIGvH3LFjx9Tfy5cvV8clziG4gdfg5hQ3zBqcDy2Pcw0+x/Y2P2a09UPwnl66d9OAYvYXXnhBFaOGhIRYnWbVqlXqf8ungVAUDqhGMociP1RLWIPiUfPG5ig2xvZE0bA5fI7qKlRNaszbcaG6KzQ0VBVHoxrEsvorI1BkivpqFO+i2hHWrFmjinN79uyplqO9ULSKtGlVWthmBw4ckBdffFFVqWhQbafNKy1YRxSf9ujRI6mYX6sKRVGvORQ3o9oKjaWt0dKAKi/Uo1uzePFiVQyNInHzdUOVYvny5ZNV16UE6bhy5YrV4vbUYPtpbWGQBlTtYf1RDWNezZlRKELWGlCj2jssLEwV46Oo33y+KGJG9TSqCDUo+u7fv3+y+SFPUdXaq1cvNS9tG6EKCFUDmzZtUulPSWRkpPof2xTHB7Y1qjDR5vHs2bPJqtWGDh2qqluxLFTtonoAxfBYPhoaZ4X5o87ao8+oqtCqaCpUqKD2Z/P9DHmC6k1U71k++m8J+yyOZ/P1QXUQqnvMqwetQV40atRItQXVoFoupd/heEJ1sgbVL8hfWz0VhfVGw3DkFaritTxH/uN8hvyw9tS1+XkS+zeqhizPkzjHYZvq7bffflPnCJyfzI99VNnjeEnPsZ8S/B7NDDTIG5wnKleurPYxjfZeyzdsmz/++EM6duyo3punC9sd5/bMnhuwf6IqTqPtP9qyb926pY5lXH9KliyZ7Lfavo/zCR6QQDcXuF5qihYtqo5ZVAeiat8cqtXMjx3tOmf+BDH2FZz3zPffrOSPlgZr3bMEBQWp40V7WVZ54/yJZjmW+zPOX7gGanCsY//G+Q3Hufk2xXaEzZs3q6pYrAPeA66laGRvfvympU2bNqpqV1O9enVVPZuR4133AEt7AgUXuZTaYqHNCi5eqFM3h42PAwjfWwZYKbHcibWAAG0WLD/HBcw8cELbF2x0tCfBcrGjaHXFmQ2wcJJHvTUa+uPipsHJVAt0zHdMvHCwoW4atHVHYGIJJ5j0wPxwoKNtyZkzZ9Tr/Pnzqh0JGgqbX8jHjx+vdlRsL0yPumzzHQ7bHoHwTz/9pBpM4wT1/fffJ9s+WDcc7Eiz5bqhflxbt9SMGDFCHchIA+YzePDgdLVNAgQPOFgQ2KB9EpaLICQrQTK2EZ6WQlpwssC6Y75oA2A+X+QXDlrLwMFy39byH4Gz5TbCtkX7wNTSq90M4GJt/uQc2gihMTIao6YGJ24cX9baqqQXlmt+QdACKjBv64CbHuSdti/jJI/2YrjxSgvyD/sY2hyi3RYg2MI6Yt1Tg+VZbnew9pm1cwfg4pmetinpgeMOxwUa7lvm+ahRo9Q0qR0bWB+0c7Ns+4IAQ/teb9ivsd/i5s1yHXHRTM+xnxK0obM8rnAet3ZuBy3fcO7DBRg3+ZZp0i76mU2X5T6jBVvasrVzZ2rdYCB9uFm1dj5H3uLcY952NaPXOfP9Nyv5o+132s2duWXLlqlCA7RJswY3nZYPgWB/xfnU8slfy/0Z7bMwnRZM4X8EUmjPhYIAbGOcX7CdMhJg2eJ41/UpQg1OwniUGju45aO+5tK6m9Wk9sRgSo+GpvS51gAQd/0oOcBTSRMnTlQ7KnYIRNm4sKZWmpASBDG4W0akbfmouTa/OXPmqAudJcsndrJCKz1I6YKEOwUEW9o02ElxQUNghn5uxo0bp0ql0ABTe1IEjYlxUGEa3HGMHTtWNcjESRDrhrzEHbW17Z6eDipxkKERM0r+EKTiDhSlLWjArnWvYA0a1iNtuBtEI0ecSJAGpA95nFmff/65ujDiThQlkigJwYkBDwRkZt/QfoPta17Ckt7tpD2Vi5OPOawrgpL0nCSwj6NUJbuh1AEN/bEf4oYFeYQ76/TeIODcgf0AL5QMYl9o165d0oMKtpLWOSKrtDxHSWNKJfApBX9GgXW0VjKuyUqeZfbcrm137Ee4obEGN2S2TJMtHyTJyHKtfW6elqzkD/ZNXJdwA26pRYsWqV63svqUf9OmTeXff/9V3T+gsTyuAwhaURCCgAs37jhf1qpVK0fzzi4CLK0UCydWXKyt9SOFjEd0rUWvWieKuPPA99ntzz//VKUGKNo0j2wzW6SNHQFPPmAHQCmRZZSuFU1iZ0epWUq0dddKPMwhAEkLqpwQCKEoG08uWUJwhINNC7C0oulBgwapF+5o8BQHHr3VAiztKQ68kK8oLcFju1OnTlWBJNYNOylKu7QSjcwE1ShJRLrxQrUTtifSgdLAlB7jxlNFCOgREJrPWyshSM9yU5ovttGMGTOSfY7907zrA+QX+krC+psvA6UX1vIfRdKp5X9KUKQPllVK2E4o8k/rQob0oZQpIyckSzhmcfdonsenTp1S/5s/DYpgFE/HYj/DDQfuNjPSuSyCKtw9o+QKVQgIHtOqHtTywnK7g7XP0iuj+405rbQP65CZPMf6oMQR1YvmpVh4Qk37Xm/Yr5FGnA/SuqhmZVtmBI4FbC9UxWVmu2eFlufWghLz9OHJOmvnc+Qtrh2WJVM5kT/Wzsd4IlCroi9WrFiW0oL9FTUAOI+YXx+t7c+46cfTvwsWLFD52LhxY/UbBF5agIXPzIOmnNi/7KKKUMtY3EGgS4Xr168n++6JJ55Q/1uedFGSBDg5ZzctY8yjVxSlIlMzAx0/4mKDkiDzOnoN7mBxcUXJiLXH61FsrAU7KOFAtZd5lRGKY3EhTwuWjyALVWwIsCxfeDQdJQIILrHjWlZLIQBEaYnWpQXq4c3brQECLezs2jQIhLA9UdJkeTeAv9HmxPygtVYVZj4NoDQRbWTw+9S6I7CWj2hTtn379mTTaX2wpLeXX8zXcl1Q1WUZ4CBf8Zl5GwRUbaFtlGWAhGMCRerWity1/E8JTnTanahWdQZo54d8RKlpavNC9yP4HF1EZMV3332X9B7bB38jgEBpsDlUB2J/RakitqV5W5q04ELQtWtXVZqMdGOfsdb1gyXkBfId7d00KLFL6e49PbBsyEzv0Mgv5BvOgdbao6aV5zhPIm/NtzmghB0XE/MbIL2gBBxpRCmvJZw3zLcbtmV29rKtwf6G5hk4z1kLdNLa7lmB4AlVWegO4tKlS8m+084nSB9KZHEjbF61jgIG3FQgiMC1IqfzxxqUHOH3uJZHWjlvZaT0B/szYgG0DzZPA9qLojRKKxUDreoPBTQobdSqRPE5Srb27NnzSPVgVo5Vw5VgAfr9QJUYInX0OaFB3xcoukUVIjYGNix6o0ZQgaoe89KV7IIdHBdxNIREnyDYeXBRxEkxpcb5KUF7H/Sfg4MaEbp5Xx3YcbBOOGBwscCFByVEuODgYMRBiN/jDkM7kaJ6C0EmDjRUUeEiofURZW0nN4eLCaqMEN2nVDqA9cQy0R4MVXwIvJAnSCvudtDQHNWCgEa6aMiMtj4oucABgTzVTmKAwAElWShpwgkD64s7SFSZIuAbMGCAqibRAg0cYGjXhYaLWCbyAPmBqlNsB1SD4Q4F2wPbwVr/KxoEjCi9wgUZ02KZKFlDcGa+rXDRxmdYNtYDpSwock6prQTmiz6e0GYD2/Lw4cNq21q2QcK+g3Si4SYalyNAxnRaiZt2V4WAFG2tcFFEPmK+uCNEcIZSU+wfKFVNCdqBoXoRxw1O4NiPsO98++236kRj3m8M7gRRCohAGOlAo1ncCSJwt+yHSrtDTc+JEvNC9S3SgEa2qBLGfoRqQMsSNOQF9kMEpVhnHFcZgRM6jik8XIHSK+3kmRr0AYRScwSbr7/+uvoNtjlKqHEMZeYOF9sM+zpO9LgxQD5oD4ykB9or4jhGXuDBB+w/uJAiEMRDHdb6VdPguMC5EOdRHFc4RlFFjwszqqrNG+xmFIIMaz3moxQ6PaWFGpy7sU/hnIXAFscxAm6UwCPvsX9qJek49nEOxHJR/YRtiG2ZHdD+F8cV9lNsdxz72AfQuB3nuOysKp80aZLKc5znce7DNkX+4VjRgn9sA9w0YzrUHKCqDYE4blrRLtZWMpI/1uDcgvMbjqfy5csn9eSOknMUKOBch+uotWYvlrAtsI5o0oFqP5R6o6ZAK+E2P89j/8A8ETtg2Rqc+9BeV0ubtVJ+HC+4vmI9cQyl59yRbiadu2lI6fFuy8d74+LiVF81eEQd/WKgSwH0GWL+OLO1x2UtH+217D4gpbRojx1rj5Nrj3/iUU/074NHyNG3ycyZMx951DOtx7G1ZVp7WXZJgHTjkVs8Kozl4hF79MW1Z8+eZNOhvyP0GYLHU9H/C/rMwbZMrZuGGzduqMfx0U9KSvB4Mvr+wOOteLQWfcygfxA8Hoy+UfAefapozp07p7o7QDqRXjzy3qpVK9PatWsfmTfSjH5ZMB+80FUBuoDAo/sa9EuCflvQZYX59kFfKXg8GY9BY52xPKQtrW4F8Ojy559/ruaD36GfmhUrVljdVtu2bTPVqVNHPa6bVpcN2A/xuD4e9UYfV02aNDFt3779kX1B20bYRzEd+mXB77AtsAzzx8kBXQg8/fTTSeuJNHbv3l31kZUe8+fPV3mE36IrCnTHYN7/D6D7E+wzyFMcW+i3B33fWE4H2B7osyYt2J7IUzxWjv7isA9h+diGlt1ZaAYNGvTIo/bphUfOse3x+1WrVlmdxrKbBm37om8dbB88sj527FjV3w7mY943VErnFWv5O336dNV1C7oiMe9OIL3dt2CboZ8/bGfkB7qcQDcu6EIjLejeBX0GoU8o/BZdO+BxdMvuLjLaTUNK5yt0K5GRbho06McO+xKOAex36JoC/TSh6wENtj+2Ob7HvLVtl1I3DdaWlVK+4feW3c3gfIjPcG3BtsP2x/ohrWlJqZsGbHtry7Y8l6CfK5xjcZ7DeRN9rpn3Fwf79u1T1wJ0UYDjCedVnKMyez0zP04zkz+pwXHVp08fU8mSJdX5E8vAtRPnOvOuD9LaT5AnL730kuo/DPNBOlLq7ujZZ59V64guacy7dcC2wm/RHY4l9HGF4wtdeZhfx63tHymdQ1Lj8t/MiEhHuCNDQ2+UUmS17UJ2QdselOQhrahStjWsP9qwoVpAz2EyUNqDO2eUaOo9XhoRGRcDLKIchgcczBuQoo0UGpOj7YLWCNweocoCgRXSaOtx9bAN0FAXVa2Zbddoi7xA2z5UCaO6BlUyRESZxQCLKIehjRHa+aC9DtrpoB0Qxl1D+wT0P+VM8BQq2rigbQXG/UKbl5S6pcgOWBbaleHpZLR1Qgka+s5Bw1i03yAicohG7kTOAE+voTE1AiqUWqFBLRqVo6G5s8GTg2gIiwbMaOybk8GV9qQSgjs8QING7Si5QpDF4IqIsoolWERERESO2g8WERERkaNggEVERERkY07XBgvd7qMRKzopy6mhGIiIiChr0KIJ3cVg9BDL4eXskdMFWAiubDVuExEREeWsy5cvq1FF7J3TBVha9/rIIFuN30RERETZKyIiQhWQpDYcmj1xugBLqxZEcMUAi4iIyFhcDNK8x/4rMYmIiIgMhgEWERERkY0xwCIiIiKyMQZYRERERDbGAIuIiIjIxhhgEREREdkYAywiIiIiG2OARURERGRjDLCIiIiIbIwBFhEREZGNMcAiIiIisjEGWEREREQ2xgDLhm7di5HjIRF6J4OIiIh0xgDLRlYfCZGGY/+V95cc1jspREREpDMGWDZSu5SfmEwm2X/prlwMi9I7OURERKQjBlg2UsjHS5qUC1Dvl+6/pndyiIiISEcMsGyoS81i6v9lB66q0iwiIiJyTgywbKh9cBHx8nCVc6FRcuhKuN7JISIiIp0wwLKhvJ7u0rZKEfV+6YGreieHiIiIdMIAy8a61gpU//95METiExL1Tg4RERHpgAGWjTUrX1D88+SS0MgY2Xo2TO/kEBERkQ4YYNmYh5urPFmtqHq/bD+rCYmIiJwRA6xs0KXWw6cJVx+9LtGx8Xonh4iIiHIYA6xsULtkfinpn1uiYxNkzbEbeieHiIiIchgDrGzg4uIiXWo+bOy+lNWERERETocBVjbp/F814abToRIWGaN3coiIiCgHMcDKJmUL5pVqxXwlIdEkKw+H6J0cIiIiykEMsHKgsfsSVhMSERE5FQZY2ahjjaLi6iKy/9JduRgWpXdyiIiIKIcwwMpGhXy8pEm5APV+6f5reieHiIiIcggDrGzWpebDasJlB66KyWTSOzlERESUAxhgZbP2wUXEy8NVzoVGyeGr4Xonh4iIiHIAA6xsltfTXdpWKaLes7E7ERGRc2CAlQO0Tkf/PBgi8QmJeieHiIiIshkDrBzQvEJB8cvtIaGRMbL1bJjeySEiIqJsxgArB3i4ucpT1R+WYi1jNSEREZHDY4CVw52Orj56XaJj4/VODhEREWUjBlg5pHbJ/FLSP7dExybImmM39E4OERERZSMGWDnExcVFOv/X2H3ZAXY6SkRE5MgYYOWgzv91Orrx1C0Ji4zROzlERESUTRhg5aByhfJKtWK+kpBokpWHQ/RODhEREWUTBlg6NXZnp6NERESOiwFWDutYo6i4uojsv3RXLoZF6Z0cIiIiygYMsHJYIR8vaVIuQL1nY3ciIiLHxABLB13+a+y+dP9VMZlMeieHiIiIbIwBlg7aBxcRLw9XORcaJYevhuudHCIiIrIxBlg6yOvpLm2rFFHv2didiIjI8TDA0kmX/zod/fNgiMQnJOqdHCIiIrIhBlg6aV6hoPjl9pDQyBjZejZM7+QQERGRDTHA0omHm6s8Vf2/oXNYTUhERORQGGDpqEuthwHW30evS3RsvN7JISIiIhthgKWj2iX9pIS/t0TFJsiaYzf0Tg4RERHZCAMsHbm4uCT1icVOR4mIiBwHAyyddf4vwNp46paERcbonRwiIiKyAQZYOitXKK9UK+YrCYkmWXk4RO/kEBERkQ0wwLIDnf/rEwtD5xAREZHxMcCyA51qBIqri8i+S3flYliU3skhIiKiLGKAZQcK5fOSJuUC1Hs2diciIjI+XQOssWPHSr169cTHx0cKFSokXbp0kZMnT6b5u2+++UYqVqwo3t7eUqJECXnzzTflwYMHYmTa04SoJjSZTHonh4iIiIwaYG3cuFEGDx4sO3bskDVr1khcXJy0a9dOoqJSriabN2+evPfeezJq1Cg5fvy4zJgxQxYuXCjvv/++GFn74CLi5eEq50Kj5PDVcL2TQ0RERFngLjpavXp1sr9nz56tSrL27t0rzZs3t/qbbdu2SZMmTaRXr17q79KlS0vPnj1l586dYmR5Pd2lbZUi8ufBa7J0/zWpXjy/3kkiIiIiR2iDFR7+sOTG398/xWkaN26sArBdu3apv8+dOyerVq2SJ554wur0MTExEhERkexlr7r89zTh8oPXJD4hUe/kEBERkRFLsMwlJibKsGHDVOlUcHBwitOh5Co0NFSaNm2q2irFx8fLwIEDU6wiRDuvjz/+WIygeYWC4pfbQ0IjY2Tb2TD1NxERERmP3ZRgoS3WkSNHZMGCBalOt2HDBvn888/lhx9+kH379snixYtl5cqVMmbMGKvTjxw5UpWMaa/Lly+LvfJwc5WnqrNPLCIiIqNzMdnBI2tDhgyRZcuWyaZNm6RMmTKpTtusWTNp2LChTJgwIemzuXPnyoABAyQyMlJcXVOPGVFF6Ovrq4KtfPnyib3Ze/G2dJuyXfLkcpPdH7aR3LnsppCRiIhINxF2fv22qxIsxHYIrpYsWSLr1q1LM7iC6OjoR4IoNze3pPkZXe2SflLC31uiYhNkzbEbeieHiIiIjBZgoVoQpU/oegF9YV2/fl297t+/nzRNnz59VDWfpmPHjjJlyhRVlXj+/HnVvcNHH32kPtcCLSNzcXFJ6hOLnY4SEREZk671TwiUoGXLlsk+nzVrlvTt21e9v3TpUrISqw8//FAFIfj/6tWrUrBgQRVcffbZZ+IoOtcsJpPXnZFNp25JWGSMFMjrqXeSiIiIyGhtsHKSUepwO07eojoc/aRzVenTqLTeySEiItJVhEGu33b3FCEl1/m/PrH4NCEREZHxMMCyU51qBIqri8i+S3flYljKQwcRERGR/WGAZacK5fOSJuUC1Hs2diciIjIWBlh23tgdlh646hBdUBARETkLBlh2rH3VwuLl4SrnbkWpBu9ERERkDAyw7JiPl4e0qVxYvV+6n9WERERERsEAy851rfWwmnD5wWsSn5Cod3KIiIgoHRhg2bnmFQqKX24PCY2MkW1nw/RODhEREaUDAyw75+HmKk9VZ59YRERERsIAywC61HoYYP199Lrcj03QOzlERESUBgZYBlC7pJ+U8PeWqNgE+efYdb2TQ0RERGlggGUAGNy66399Yv246ZwkJrJPLCIiInvGAMsgXmxcWnw83eXotQhZwrZYREREdo0BlkEUyOspg1qVU++//Ock22IRERHZMQZYBvJSk9JSLL+3hIQ/kJlbz+udHCIiIkoBAywD8fJwk3c7VFTvf1h/Rm7di9E7SURERGQFAyyD6Vg9UKoX91VPFH6z9pTeySEiIiIrGGAZjKuri7z/RGX1fsHuy3L6xj29k0REREQWGGAZUMOgAtK2SmFJSDTJF3+d0Ds5REREZIEBlkGNfLySuLu6yL8nbsq2M6F6J4eIiIjMMMAyqKCCeaV3g5Lq/WerjrPzUSIiIjvCAMvA3mhdnp2PEhER2SEGWAbGzkeJiIjsEwMsg2Pno0RERPaHAZbBsfNRIiIi+8MAywGw81EiIiL7wgDLAbDzUSIiIvvCAMtBsPNRIiIi+8EAy4G8x85HiYiI7AIDLAdSlp2PEhER2QUGWA6GnY8SERHpjwGWg2Hno0RERPpjgOWA2PkoERGRvhhgOWjno++0Z+ejREREemGA5aA61WDno0RERHphgOWg2PkoERGRfhhgOTB2PkpERKQPBlhO0PmoGzsfJSIiylEMsBwcOx8lIiLKeQywnMBQdj5KRESUoxhgOQF2PkpERJSzGGA5CXY+SkRElHMYYDkJdj5KRESUcxhgORF2PkpERJQzGGA5EXY+SkRElDMYYDkZdj5KRESU/RhgOSF2PkpERJS9GGA5IXY+SkRElL0YYDkpdj5KRESUfRhgOSl2PkpERGRHAdbly5flypUrSX/v2rVLhg0bJj/++KOt00bZjJ2PEhER2UmA1atXL1m/fr16f/36dWnbtq0Ksj744AP55JNPsiONlE3Y+SgREZGdBFhHjhyR+vXrq/eLFi2S4OBg2bZtm/z6668ye/bs7EgjZSN2PkpERGQHAVZcXJx4enqq92vXrpVOnTqp95UqVZKQkBDbp5BytPPRI1fD9U4SERGR8wVYVatWlalTp8rmzZtlzZo10qFDB/X5tWvXpECBAtmRRsqBzkcfDy6iOh8d8MseuXnvgd5JIiIicq4Aa9y4cTJt2jRp2bKl9OzZU2rUqKE+X758eVLVIRnPF92qS1BAHrkW/kBenbNXHsTxqUIiIqLMcjGZTBnuZTIhIUEiIiLEz88v6bMLFy5Injx5pGDBgmLPkG5fX18JDw+XfPny6Z0cu3LuVqR0+X6rRDyIl661isnE7jXExcVF72QRERGJ0a7fGS7Beuyxx+TevXvJgivw9/eXHj162DJtlMOCCuaVH3rXUcPooPPRKRvP6p0kIiIiQ8pwgLVhwwaJjY195PMHDx6odllkbE3LB8jojlXU+wl/n5R/jl7XO0lERESG457eCQ8dOpT0/tixY6oPLPMqw9WrV0uxYsVsn0LKcS80Ki2nbkTKnB0XZdjCA/L7wMZSJdD+i2OJiIgMF2DVrFlTtcfBC9WElry9vWXy5Mm2Th/p5H8dq8i50EjZeiZM+v+yR5YObiIFfR52z0FEREQ2auR+8eJFwaRBQUGq53bzxuy5cuWSQoUKiZubm9g7ozWS01N4dJx0+WGrnA+Nkjql/GRe/wbi6W7/eUxERI4nwmDX70w9RWhkRssgvZ29FSld/3uysFvt4vLls9X5ZCEREeW4CINdvzPcyB3mzJkjTZo0kcDAQFWyBV9//bUsW7bM1ukjnZUtmFe+711bPVn4x74r8uOmc3oniYiIyPECrClTpshbb70lTzzxhNy9e1c1cAd02/DNN99kRxpJZ83KF5T/PfXwycIvVp+Qtcdu6J0kIiIixwqw0JB9+vTp8sEHHyRrc1W3bl05fPiwrdNHdqJPo1LSu0FJQYXy0AX75cT1CL2TRERE5DgB1vnz56VWrVqPfI4BoKOiojI0r7Fjx0q9evXEx8dHNZLv0qWLnDx5Ms3foeRs8ODBUrRoUbXcChUqyKpVqzK0bMoYtLsa3amqNAoqIFGxCfLKz3skLDJG72QRERE5RoBVpkwZOXDgwCOfox+sypUrZ2heGzduVIHSjh071MDRcXFx0q5du1QDNXRy2rZtWzU0z++//64CMpSosQ+u7Ofh5io/9K4tpQrklit37svAuXslJp5jFhIREWW6HywN2l8hKELP7XgAEV02zJ8/X5VG/fTTTxmaF4Iyc7Nnz1YlWXv37pXmzZtb/c3MmTPl9u3bsm3bNvHw8FCflS5dOqOrQZnklyeXzHixrnT9fpvsvnBHPlxyRMY/wycLiYiIstxNw6+//iqjR4+Ws2cfjlWHpwk//vhj6devn2TFmTNnpHz58qotV3BwsNVp0Lge4x7mzp1bPbWI/rh69eolI0aMsNoPV0xMjHqZP+ZZokQJwzzmaa82nLwpL8/eLYkmkQ+eqCz9mwfpnSQiInJgEc7UD1Z0dLRERkaqUqesSkxMlE6dOqn2VVu2bElxukqVKqnqwd69e8ugQYNUUIb/33jjDRk1atQj0yMQRPBnySgZZM9mbjkvn6w4Jii8mvliPWlVKev7ARERkVMGWPfv31dVgyhBAvSDtWTJEqlSpYpqP5VZr732mvz1118quCpevHiK06FBO6on0dheK7GaOHGiTJgwQUJCQh6ZniVY2Qf7wftLDsv8XZclr6e7LB7UWCoU9tE7WURE5IAiDBZgZbiRe+fOneWXX35R71HaVL9+ffnqq6/U5+gjKzOGDBkiK1askPXr16caXAGeHESQZV4diMb1GHwaDeAt4SlDZIT5i2wD7a4+7hQsDcr4S2RMvPT7ebfcjno0D4iIiJxNhgOsffv2SbNmzdR7PMVXpEgRVYqFoGvSpEkZLgFBcIUSsHXr1qknFNOCHuRRLYgqRc2pU6dU4IUxESln5XJ3lanP15GS/rnl8u2HTxbGxv9/3hARETkj18y0u0K/VfDPP//I008/La6urtKwYcOkYXPSC08jzp07V+bNm6fmiVIovFANqenTp4+MHDkyWVUiniIcOnSoCqxWrlwpn3/+uZoX6ftkIaoJd52/Lf9bdkQFz0RERM4qwwFWuXLlZOnSpXL58mX5+++/k9pd3bx5M8PVb6hSRF1qy5YtVQmU9lq4cGHSNJcuXUrWtgrtp7Dc3bt3S/Xq1VXjdgRb7733XkZXhWyofGEfmdyzlri6iCzYfVlmbr2gd5KIiIiM08gd1YLoFgFjELZu3VqVYgH6wdq0aZNqqG7PjNZIzmh+2nxOPl15XAVaM/rWk1YV+WQhERE53/U7U900oBoPpUo1atRQ1YOADkexwuhGwZ4ZLYOMBrvTiD8OyaI9V8TH012WDG4s5QrxyUIiInKu63eGqwgBDdsxHiGCK6wwqgzRhsregyvKmScLP+1STeqX9pd76snCPXKHTxYSEZGTyXCA1b17d/nuu+/UezRGr1u3rvoM7aH++OOP7EgjGfDJwinP15bift5yMSxaXvt1r8Ql8MlCIiJyHhkOsNDOSuumAd0roEoI/WGhi4ZPP/00O9JIBlQgr6fMeLGe5MnlJjvO3ZZRy4/yyUIiInIaGQ6wUPeJsQC1wZq7deumenV/8skn5fTp09mRRjKoikV8ZFLPWmoonXk7L8nUjedYkkVERE4hwwEWuknYvn27REVFqQBL66bhzp074uXllR1pJANrXbmwjHz8Ydu8catPSKOx/8rHfx6VI1fDWaJFREQOyz2jPxg2bJgaaDlv3rxSqlQp1YeVVnVYrVq17EgjGVz/ZkESl2CSWVvPS2hkrMzaekG9KhTOK0/XLi5dahaTIr4MzomIyHFkqpuGvXv3qg5A27ZtqwItQI/qfn5+0rhxY7FnRnvM05GgenDz6Vvyx76rsubYjaQhdVCF2LRcgDxdu5i0r1pEcufKcNxPREQOLsJg1+9MBVjWHD9+XGbMmCFffvml2DOjZZCjCr8fJ6sOh8jifVdk94U7SZ+jUXyH4KLSrXYxaRhUQFzRYykRETm9CGcKsNAOa8GCBSqw2rFjh1SpUkWOHDki9sxoGeQMLoZFyZL9V2Xxvqty6XZ00ueBvl7StXYx6VqruJQr9LCklIiInFOEwa7fmQqwtm7dqoKqRYsWqb6w3nzzTXnllVcM0dGo0TLImWBX3HvxjqpCXHHomtx7EJ/0XY3ivqq9VscageKfJ5eu6SQiopwX4agBFgZznj17tsycOVOtXM+ePdWYhI0aNZKDBw+q0isjMFoGOasHcQny7/Gbqgpxw6lbkpD4cDd1d3WRVpUKqSpE/O/p7qZ3UomIKAdEOGqA5e3tLc8884w8//zzqnG7Ngahh4cHAyzKVqGRMfLnwWuqCvHw1fCkz329PaRjjaKqZKtWifxqmB4iInJMEQa7fqf7cS10ybBlyxYpWbKkem+E6kByDAF5PeWlJmXU69SNe/LHviuydP9VuRERI3N3XFKvMgF5ZHi7CvJU9UC9k0tERJT+jkZPnDghc+fOlZCQEKlXr57UqVNHvv76a/UdSw4op1Qo7CMjH68s295rLXP61ZeutYqJt4ebnA+Nktfn75cl+6/onUQiIqLMNXKPjIyU+fPny6xZs9TTgy1atFDtsbp06SIFCxYUe2a0IkZKW2RMvHy+6rgajge9Onz7XC3VGJ6IiBxHhLP1g6X1fzVnzhy5ffu2xMXFiT0zWgZR+iQmmuT9JYdlwe7L4ubqIt/3qqX60yIiIscQYbDrd4bHIrRUuXJl1bno1atXZeHChbZJFVEGoUPSz7tWk261i6snDofM2y9rj93QO1lEROSkshxgadzd3eXpp5+21eyIMhVkjX+munSuGSjxiSYZ9Os+WX/ypt7JIiIiJ2SzAIvIHqB68Ktna8gT1YpIbEKivDpnr2w5Hap3soiIyMkwwCKH4+7mqhq6t61SWA0o/covu2X72TC9k0VERE6EARY5JA83V/muVy15rFIheRCXKP1+3i27L9zWO1lEROQkGGCRw8IwOj/0ri3NygdIdGyCvDRrt+y7dEfvZBERkRNIVzcNGWm8vnjxYrFnRnvMk2wzruHLs3fLtrNh4uPlLr++0kCqF88v9iI8Ok7ComIkqGBevZNCRGS3Igx2/U5XCRZWSHthpf7991/Zs2dP0vd79+5Vn+F7Invj5eEmP71YV+qX9pd7D+LlhRm75Oi1/x/TUC9xCYny0+Zz0nTcOnnsq42y/OA1vZNERER6dTQ6YsQI1aHo1KlTxc3NTX2WkJAggwYNUsHXhAkTxJ4ZLQIm2/b43mfGTtl36a745faQBQMaScUiPrqkZfPpW/Lxn8fkzM3IpM+8PFzl94GNJbgYb1SIiIx+/c5wgIWhcDDoc8WKFZN9fvLkSWncuLGEhdn301pGyyCyrYgHcfL8Tzvl0JVwCcibSxYMaCjlCuVckHUpLFo+XXlM/vmvE1T/PLnknfYV5Z+j12X9yVtS1NdLlg9pKgV9PHMsTURERhBhsOt3hhu5x8fHq4GfLeGzxMREW6WLKFvk8/KQOS83kCpF80loZKz0nL5Tzt36/1Kk7BIdGy9f/n1S2ny9UQVX6K/rpSalZf3bLaVn/ZLybc9aElQwj4SEP5DX5u5V3UsQEZFxuWf0By+99JL069dPzp49K/Xr11ef7dy5U7744gv1HZG9883tIXNfaSC9pu+QE9fvSa/pO2Xhqw2lVIE8Nl8WCoj/PBQiY1cdV8ETNClXQEZ1rCoVCvskC/ym96krXb7fKnsu3pFRy4+ooX9cXFxsniYiIrLDKkKUUmHswW+//VZCQkLUZ0WLFpWhQ4fK8OHDk9pl2SujFTFS9gmNjJHnftyh2kEVy++tgqzifrltNv9j1yJk9PKjsuu//reK+3nLh09WkfZVC6cYOGFoHzzxiKNyTOeq8kKj0jZLDxGRkUUY7Pqd4QDLcmXBCCtq1Ayi7HUz4oEKss6FRkkJf29Z9GojKerrnaV53omKla/WnJR5Oy9Joulh4/VBLcvJgOZB6onGtEzdeFa++OuEuLu6yJx+DaRR2QJZSg8RkSOIMNj1O1MdjaId1tq1a2X+/PlJd+LXrl2TyMjsb8tCZEuF8nnJvP6oHswtl2/fV9WFNyIeVuVlVHxCovyy/YK0/HKDzN3xMLh6qnpR+Xd4S3mjdfl0BVfwavOgpAGrB8/bJ5dvR2cqPUREZKASrIsXL0qHDh3k0qVLEhMTI6dOnZKgoCBVRYi/0X2DPTNaBEw54+rd+9Jj2na5cue+lC2YR3XhkJEn+TDW4cd/HlVtuqBSER8Z3amqNAwqkOnOUZ+dul0OXw1X81o8qLHkzpXhJpNERA4jwtFLsBBI1a1bV+7cuSPe3v9fldK1a1fV2SiREaEN1vz+DVU3CWdvRUnvn3ZIWGRMugIzlDL1/K/BvK+3h2o7teL1ppkOrgClXT/2qSMBeT3VfN/+7aBqME9ERMaQ4QBr8+bN8uGHH0quXLmSfV66dGm5evWqLdNGlKNK+OdWQVYhH085dSNSnp+xS+5Gx6ZYwjTp39PS+qsNsvJQiLi6iLzQsJRseLulapju7pb1YT7RFmzq87XFw81FVh2+Lt+tO5PleRIRUc7I8FUATxGi53ZLV65cER8ffXrFJrKV0gF5VJsslBwdD4lQw+qE349L+h6lSKuPXJc2EzfKxDWn5EFcotQv4y8rXm8mY7oEi1+e5DceWVW3tL982iVYvf9qzSnVISkRETlggNWuXTv55ptvkv5GI3c0bh81apQ88cQTtk4fUY4rVyivzOvfQPWyjjZQL87cJfcexMnpG/dUwDVw7l7VVgvViZN71pKFAxpKlcDsaw/Qo15JebFRKfX+zYUH5NSNh+28iIjIgRq5o6Sqffv26k7+9OnTqj0W/g8ICJBNmzZJoUKFxJ4ZrZEc6Qf9WPX6aYfcjY5TTxkiqEpINEkud1cZ2DxIBrYsm2MNzzEwdJ8Zu2T7uTCVlmWDm0j+3LYtLSMismcRztAPFrppWLhwoRw8eFCVXtWuXVt69+6drNG7vTJaBpG+jlwNVz2+RzyIV3+jk1B0For2WjntdlSsdPpuiwr0mpYLkNkv1bNJWy8iIiOIcKaORo3IaBlE9hFk/bztgnSqGSjNyhfUNS0nrkfI0z9sk+jYBHm5SRn5X8cquqaHiCinRBjs+p3h218MhdOqVSu5ffvh8B+aGzdu2P0wOUSZEVzMVyY8W0P34AoqFcknE7vXUO9nbj0vv+25rHeSiIjIFgEWCrzQoSjaXh09evSR74goe3UILipDW5dX7z9YckT2Xbqjd5KIiCirARaeGvzjjz+kY8eO0qhRI1m2bFmy74go+yHAQnuw2IREGThnb6aH9yEiIjsqwUJV4Lfffitffvml9OjRQz799FOWXhHlIFdXF/mqe02pWNhHbt6LkQFz9qrOT4mIyD5k6RGkAQMGyF9//aX6xerTp4/tUkVEacrr6S7T+9SV/Lk95ODlu/L+4sO80SEiMmqAVapUqWSN2dHgfceOHXL5MhvbEuW0kgVyy/e9aoubq4ss3n9VZmw5r3eSiIgoMwHW+fPnpUCB5IPYlitXTvbv3y/nzp2zZdqIKB2alAuQD5+srN5/vuq4bDp1K8c6P91z4bb8uOmsrDh0TULTMTg2EZGzYD9YRA4Ah/GIPw7Joj1XJJ+Xuywb0lTKBOSx+TLO3oqULadDZcuZUNlx7rZExjzsgFVToXBeaRRUQBr+97L12IxE5LwiDHb9TleA5e/vL6dOnVLD4fj5+aX6tKBl/1j2xmgZRJReMfEJ0vPHHbLv0l01nuKSQY3Fx8sjS/O8dS9Gtp0Nlc2nQ2XrmVAJCU/+tKJfbg81IPXl29Fy4vqjYyRWKuIjjcoWUEFXgzIFxDd31tJDRM4rwmDX73QNpPb111+Lj4+Pem8+0DMR2Q9PdzeZ+nwd6fTdVjlzM1INDP3jC3XVE4fpdT82QXaeD1PBFIIqy6AJ4zDWL+2vqiWblQ+QKkXzJc0fQ/nsOh8m28+GqTETT92IVL/Ha9bWC4L7sqqB+VSwhaCrXmn/LAeARET2ilWERA4GTxQ+O227xMYnypBW5eTt9hVTnBaDV2MoIFT5oepv78U7qm8tcwiKMPZh0/IBKijy8kjfiA1ok7Xj3P8HXOduRSX7HnFZtWK+0vC/Ei7MO49nzgyeTUTGY7Trd7oCLKxUetn7Shstg4gyY8n+K/LmwoPq/Xe9aslT1QOTvrsUFi2bz9xSpVTbzobJ3ei4ZL8N9PVSwVTT8gWlSdkCUiCvp03ShM5QEXBpQdeFsOhk37u7ukj14r7/VSkGSJ1SfuKdi8NvEZEDB1iurq5p9tKO2WCahAT77uzQaBlElFl4ovDHTefEy8NVPnyyihwLiVClVJduJw9sfDzdVSkSqvxQUoXG8TkxKsO1u/eTgq0d58Pk8u37yb73cHORmiXyS/PyBaVfszKSOxdLt4icWYQjBlgbN25M9wxbtGgh9sxoGUSUWaj+e3n2btlo0W0DSopql/RT7ahQUlWjuK+4u2Wpz2GbQEN5FXChlOtsmFwza1D/eHAR+aF3bQ7HReTEIgx2/WYbLCIHFh4dJ/1/2SN378dK47IPG6Y3CCqgeoG3ZzgtoaQNfXp9suKYxCWYZEznqvJCo9J6J42IdBLhLAFWdHS0XLp0SWJjY5N9Xr16dbFnRssgImeH3unHrDgmudxcZfGgxhJczFfvJBGRDiIMdv3O8G3srVu35KWXXlJjEFpj722wiMhYXm5SWrXTWnv8hgyZt09WvNHM7kvgiIgy3PBi2LBhcvfuXdm5c6d4e3vL6tWr5eeff5by5cvL8uXLsyeVROS00O7qy2erS7H83urJQw5qTUQOGWCtW7dOJk6cKHXrogNDVzX48/PPPy/jx4+XsWPHZk8qicip5c+dSyb1rKUGtV5+8Jos3M3B5YnIwQKsqKgoKVSokHqPYXNQZQjVqlWTffv22T6FREQiql+sd/7rNHXU8qNy0srQPEREhg2wKlasKCdPnlTva9SoIdOmTZOrV6/K1KlTpWjRotmRRiIiZUCzIGlZsaDExCfK4Hn7JDo2+WDTRESGDbCGDh0qISEh6v2oUaNUY/eSJUvKpEmT5PPPP8+ONBIRKRj38Ktna0jhfJ5qvMX/LTuqd5KIiLKnHyx013DixAkVZAUEBIi9M9pjnkT0qJ3nwqTn9B2SaBIVcHWrU1zvJBFRNosw2PU7y903586dW2rXrm2I4IqIHAM6S32zTQX1/sOlR1RpFhGRPclwZzIo8Pr9999l/fr1cvPmTUlMTEz2/eLFi22ZPiIiqwa1KqfGMNx6Jkz1j7V0cBPx8uDg0ERk4H6wXnjhBTl//rzkzZtXFdeZv4iIcgK6bPi6R00JyOspJ67fk4//PKZ3koiIMt8Gy9/fX+bOnStPPPGEZBX6zUKJF9pwodPSxo0by7hx49STiumxYMEC6dmzp3Tu3FmWLl3qkHW4RJS6LadD5YWZOwVnMvSV1alGoN5JIqJsYLTrd4ZLsLByQUFBNln4xo0bZfDgwbJjxw5Zs2aNxMXFSbt27VRfW2m5cOGCvP3229KsWTObpIWIjKlp+QAZ0qqceo9e3i+Epn3+ICKyuxIsDIuD4XFmzpypSp1sCZ2WohNTBF7NmzdPcTqMd4jvX375Zdm8ebMauoclWETOKz4hUXr9tFN2nb8twcXyyR+vNRZPd7bHInIkEY5egtW9e3e5c+eOCoTQezueIDR/ZQU2mlYNmZpPPvlELb9fv35pzjMmJkZlivmLiByLu5urTHqulvjl9pAjVyNk7KoTeieJiJxchp8ifPHFF2Xv3r1q/MHChQurgVhtAU8jogF9kyZNJDg4OMXptmzZIjNmzJADBw6ku53Xxx9/bJM0EpH9KuLrJRN71JSXZu2W2dsuSMMgf+kQzNEliMggAdbKlSvl77//lqZNm9o0IWiLdeTIERVApeTevXvqCcbp06enu9+tkSNHyltvvZX0N0qwSpQoYZM0E5F9aVWxkLzaIkimbTwn7/x+SKoG+koJ/9x6J4uInFCGAywEJ7au+xwyZIisWLFCNm3aJMWLp9wj89mzZ1Xj9o4dOyZ9pvXD5e7ursZILFu2bLLfeHp6qhcROYe321VUbbH2X7orQ+bvl99ebSS53LPcp3KmhITfl7ye7uLj5aHL8olIPxk+63z11Vfy7rvvqkAnq9C+HsHVkiVLZN26dVKmTJlUp69UqZIcPnxYVQ9qr06dOkmrVq3Ue5ZMEZGHm6tM7llLfL095ODluzLh75xvj3X0WrgMnLNXGo1dJx2+2awCLSJyLhl+itDPz0+NPxgfH6+GyfHwSH5ndvv27XTPa9CgQTJv3jxZtmxZsr6v8JSA9oRinz59pFixYqotlTV9+/blU4RE9Ih/jl6XAXP2qvczXqwrrSsXzvZlHrpyVyb9e0bWHr+R7PNKRXxk0cBGko8lWUSZZrTrd4arCL/55hubLXzKlCnq/5YtWyb7fNasWSpwgkuXLomrqz7F+0RkXO2qFpGXmpSWWVsvyPDfDsqqN5pJYH7bdi2j2Xvxjkxed1o2nLyl/nZ1EelYI1C61S6ulo2e5lGiNful+rpVVxKRHZdgoSPQV199VT766KM0q/PsldEiYCLKvNj4RHlm6jY5dCVc6pbykwUDGqouHWxl57kwmbzujGw5E5o0fE/nmoEyuFU5KVswr/rsyNVw6TFtu0TFJqjvvu5eU1wRgRGRQ1+/M3SmQXXgH3/8kX2pISKyIZQWoT2Wj6e77Ll4R75eeyrL88Q96bYzoSpo6vHjDhVcubu6SI+6JWTd8BYysXvNpOAKgov5ypTn66hplh24JuN0aBNGRDkvw7dyXbp0SXd7JyIivZUqkEe+6FZdvf9hw1nZdOphNV5mAquNp27JM1O3q17jd56/LR5uLtK7QUnZ8E5LGfdMdbUsa5pXKJiUBnQh8fO2rD8kREQO1garfPnyqif1rVu3Sp06dSRPnuQnlDfeeMOW6SMiyrInqxeV7edKytwdl+TNhQfkr6HNpFA+r3QHVutO3JRJ/56Wg1fCk0rGetUvqfrcKuqbvnZdz9QpLiF378tXa07J6D+PSuF8XtIhuEiW1ouIHOgpwtTaXqFX93Pnzok9M1odLhHZxoO4BOn6wzY5HhIhjYIKyNxXGqg2UylJTDTJP8duqMbrR689HGLLy8NVejcoJa82D0p3gGYOp9v3lxyR+bsuiae7q8zr30DqlEp9aDAiMub1O8MBltEZLYOIyHbO3YqUpyZvkejYBBnWprwMa1PhkWkSEk3y15EQ+W7dGfX0H+TO5SYvNCol/ZsFSUBezywPTP3qnL3y74mbkj+3hxqY2rzNFhE5xvU7SwGW9lNbjUeYE4yWQURkW0v3X5VhCw8ITlu/vtJAGpcNSAqsVhy6pp4KPHMzUn2GXtj7Ni4tLzctI/55ctksDdGx8dJz+k7VEWpxP29ZPKixFPLJeIkYkTOJMNj1O1PPK//yyy9SrVo11RkoXtWrV5c5c+bYPnVERDbWpVYx6V63uOD+cNiCA3Ij4oH8vveKtJm4UYYuOKCCq3xe7qqEa+uIx+Tt9hVtGlxB7lzuqvPTUgVyy5U79+Xl2bslMibepssgIoOVYE2cOFH1g4Uhbpo0aaI+wwDN33//vXz66afy5ptvij0zWgRMRLZ3PzZBOn23RU7fjJRcbq4Sm/BwTFNU2b3StIz0aVw6R3pdvxAaJd2mbJOwqFhpUaGg/PRiXTXUDxEZ//qdqUbuH3/8sRrCxtzPP/8so0ePlvPnz4s9M1oGEVH2OHXjngqyHsQlSoE8uaR/8yB5vmEpVS2Ykw5cvivP/bhdpePZOsVl/DPVDdXsgiinRDh6gOXl5SVHjhyRcuXKJfv89OnTqtrwwYMHYs+MlkFElL3Bzekb91Q3Dqi208u/x29I/1/2SKJJ5I3W5eWtto82vidydhEGu35nuCwagdWiRYse+XzhwoWqjywiIqOoWSK/PFu3hK7BFWAg6k+7VFPv0d/Wgl2XdE0PEWVdhs8qqB7s0aOHbNq0KakNFjod/ffff60GXkRElLZeDUpKSPh99RTjB0uPqI5IW1UqpHeyiCinSrC6desmO3fulICAADVkDl54v2vXLunatWtm00FE5PRQNditdnHVZcSgX/epbhyIyJjY0SgRkR2JS0hU3TZsPh2qGt+jj6yUxjgkciYRBrt+83lgIiI7gm4apjxfR6oG5lPdN7w4c5eERcbonSwiyq4Ay9XVVdzc3FJ9ubvr21CUiMgRoKuIWX3rSbH83nIhLFr6/bxH9d1FRA5YRbhs2bIUv9u+fbtMmjRJEhMT2U0DEZGNnLl5T7pN2S7h9+OkTeXCMvX52uLOjkjJSUUY7PqdpTZYJ0+elPfee0/+/PNP6d27t3zyySdSqlQpsWdGyyAicm57LtyWXj/tlNj4RHm+YUkZ0zmYHZGSU4ow2PU7U7dC165dk/79+6uORePj4+XAgQOqJ3d7D66IiIymbml/mfRcTTU49dwdl+SHDWf1ThIR2TrAQtQ4YsQI1dno0aNHVd9XKL0KDg7OyGyIiCgDOgQXlVFPVVHvJ/x9Uhbvu6J3kojIVgHW+PHjJSgoSFasWCHz58+Xbdu2SbNmzdL7cyIiyoK+TcrIgOZB6v27vx+Szadv6Z0kIrJFGyw8Rejt7S1t2rRRTwymZPHixWLPjFaHS0SkSUw0ydCFB+TPg9fUk4YLX20oVQN99U4WUY6IMNj1O939KvTp04cNK4mIdOTq6iJfPltdQu/FyPZzYfLSrN3y28BG7IiUyA6xJ3ciIoNBtw3dp26XkzfuSe5cbjKsTXl5qUkZ1UkpkaOKMNj1m0cjEZHB+Hp7yM8v15d6pf0kOjZBPl91QjpO3qK6dCAi+8AAi4jIgIr4esnCAY1k/DPVxS+3h5y4fk+embpd3v39oNyOitU7eUROjwEWEZGB22R1r1tC1g1vKc/VK6E+W7TnirT+aoMs3H1JNYonIn2wDRYRkYPYe/G2fLDkiCrNgjql/OSzrsFSqQjPdWR8EQa7frMEi4jIQdQp5S8rXm8qHz5ZWTV+33vxjjw5aYt8tvKYRMXE6508IqfCAIuIyIFgMOhXmgXJv8NbyOPBRSQh0STTN5+XNhM3yuojIeJklRZEumGARUTkgIr6esuU5+vIrJfqSQl/bwkJfyAD5+6Tl2fvlsu3o/VOHpHDY4BFROTAWlUsJGvebCGvP1ZOPNxcZP3JW6o06/v1ZyQ2PlHv5BE5LAZYREQOzsvDTYa3qyirhzWXxmULSEx8oho0+vFvN8m2s6F6J4/IITHAIiJyEmUL5pVfX2kg3z5XUwLyesrZW1HSa/pOGbZgv9y6F6N38ogcCgMsIiIngjFlO9csphrB92lUSjDE7NID1+SxrzbInB0XVaN4Iso69oNFROTEDl25q/rOOnw1XP1do7ivfNa1mgQX89U7aUSGvn6zBIuIyIlVL55flg5uIp90rio+nu5y8Eq4dPpui4xeflQiHsTpnTwiw2KARUTk5NxcXaRPo9Ly79stpHPNQEEt4extF6T1VxtlzbEbeiePyJAYYBERkVLIx0u+fa6WaggfFJBHNXzv/8seeee3g3LPQKVZoZExMn71CQaHpCu2wSIiokc8iEuQr9eekh83nRNcJYrl95YJz1aXxmUDxF7hcvbb3ivy2crjEn4/TjXgn9yzljxVPVDvpJETXr8ZYBERUYp2X7gtwxcdlEv/9f7et3FpGdGhknjnchN7cu5WpLy/5LDsOHdb/e2fJ5fcjopVnatO71NXWlYspHcSycmu36wiJCKiFNUr7S9/DW0mvRuUVH+jbdaTkzfLgct3xR6gN/rv1p2WDt9uVsGVl4erjHy8kmwf+Zg8Vb2oxCWYZODcvSpQJMpJLMEiIqJ02XDypoz445DciIhRDeMHtSwrrz9WXnK563OvvvfibRm5+LCcuhGp/m5eoaB81iVYSvjnTgq+BszZIxtO3hIfL3dZMKChVA1k9xNGFWGw6zcDLCIiSrfw6Dj53/IjsuzANfV31cB8MrF7TalYxCfH0oDuI9CI/dedl1T7sAJ5csn/OlaRTjUCVUeq5u7HJsiLM3fJrgu31XS/DWwkQQXz5lhayXmv3wywiIgow1YdDpEPlhyWO9FxksvNVYa3qyCvNAtSJVvZafWREPnfsqNy87+hfZ6tU1zef6Ky+OXJlWpA1vPHHXL0WoQE+nrJ7681lsD83tmaTrI9o12/GWAREVGm3Lz3QEb+cVj+PXFT/V2vtJ98+WwNKVUgj82XFRJ+XwVWWtcLpQvkls+7VpPG5QLS3XVD96nb5VxolAQVzCOLXm2kxmMk44gw2PWbARYREWWta4Q9V+STFcckMiZecudyUyVKaBRvWV2XGRgbce6OizLh75Nq/u6uLjKwRVkZ8lg58fLI2JOMV+/el2enbJNr4Q9U1eb8AQ0ln5dHltNIOSPCYNdvBlhERJRll29Hyzu/H0zqJqFFhYIyrlt1KeLrlel5nrgeIe/9cTjpicXaJfPL2KerZ6m9F7pzeHbqdgmLipX6pf3l55fr212XE+QY128GWEREZBOJiSbVjcO41SckJj5R8nm5y5guwVYbn6fVyemkf0+rTk7jE01qjMR3H68kveuXFFcbtPE6cjVctcm6FxMvrSoWlGkv1NXtSUhy3Os3AywiIrKpMzcjZfiiA2rgaHiiWhH5tEs11flnWraeCVUdhl4Me9ixaYeqRWR0p6pZKgmzBv1ivTBjpzyIS5SONQLlmx41s72BPjnX9ZsBFhER2Vx8QqL8sOGsKolCKRQalI/rVk1aVy5sdXr0uv7pymOyeN9V9XeRfF7yceeq0r5qkWxL4/qTN6X/z3tU+no1KKn60LJFuzHKHka7fjPAIiKibIPquDcXHpDTNx92Btq9bnH56Kkq4vNf43JcgpYeuCpjVhxXQRbimz4NS8nb7SsmTZOd/jx4Td5YsF/1p/Vay7JqGCCyTxEGu34zwCIiomyFNlUT15yS6Zv/f+BodOcQmN9LPlx6RDafDlXTVSzsI2O7VZPaJf1yNH3zd11SPcLDe49XUk8pkv2JMNj1mwEWERHliF3nb8vw3w7I5dv31d9oWI7hbDzdXWVom/LSv1mQeLjp09h86saz8sVfJ9R79K+FKkOyLxEGu37zsQkiIsoR9ctg4Ojm0rP+w+AFwVWTcgXk72HNZVDLcroFV4BSK1QRwgdLD6uqQ6KscM/Sr4mIiDIgr6e7jH26mnStVUwi7sdJ68qF7KZh+bvtK6o0YYxDtBvL6+UurSoW0jtZZFAswSIiIl1Ks9pUKWw3wRUgLZ90DlbdNuDJwtfm7lXVmkSZwQCLiIjoP+gLa2L3GqoDUvSR1W/2bvUkJFFGMcAiIiIyg7ZgP/Suo4bSQW/vL87cJWdvPexmgii9GGARERFZwPiEP/WtK8HF8qlxC1/4aacaLJoovRhgERERWZHPy0N+fqm+BBXMI9fCH6ggKzQyRu9kkUEwwCIiIkpBgbyeMrdfA9U56rnQKFVdGPEgTu9kkQEwwCIiIkpFYH5vmdOvvgTkzSVHr0Wohu/3YxP0ThbZOQZYREREaQgqmFd+frm++Hi5y+4Ld+S1X/dKSPh9SUx0qsFQKAM4VA4REVE67blwW56fsVN14QC53FylmJ+3FFev3FLC31tKqP9zq88K5MllV319GVmEwa7fDLCIiIgyYMvpUBn951E5HxolCWmUYOXO5aYCLfOgKykQ88+tGtKTY16/dQ2wxo4dK4sXL5YTJ06It7e3NG7cWMaNGycVK1ZM8TfTp0+XX375RY4cOaL+rlOnjnz++edSv359h8wgIiKyT/EJiRIS/kCu3Lkvl+9Ey5Xb0XL5zn25cidaDWh9494DSesK6+vtYRaAPQy68L584bwqECPjXr91DbA6dOggzz33nNSrV0/i4+Pl/fffV4HTsWPHJE+ePFZ/07t3b2nSpIkKxry8vFRAtmTJEjl69KgUK1bM4TKIiIiMKSY+Qa6q4Ov/gy4tEENQhv61UvNCw1LyboeK4sNSLkNev+2qivDWrVtSqFAh2bhxozRv3jxdv0lISBA/Pz/57rvvpE+fPg6XQURE5JiiYuIfln6pgOth6RfeX7odLSeu31PTBPp6yWddq0mrShx0OsJg1293sSPYaODv75/u30RHR0tcXFyKv4mJiVEv8wwiIiLSWx5Pd6lYxEe9LG07EyrvLT6sgq2XZu+WLjUD5X8dq4p/nly6pJUM3E1DYmKiDBs2TFX/BQcHp/t3I0aMkMDAQGnTpk2K7bwQ8WqvEiVK2DDVREREtte4XID8Pay59G9WRlxdRJYeuCZtJm6U5QeviR1VPJERqghfe+01+euvv2TLli1SvHjxdP3miy++kPHjx8uGDRukevXq6S7BQpBllCJGIiJybgcv35URfxxKqjZsU7mQjOkSLEV9vcWZRBisitAuAqwhQ4bIsmXLZNOmTVKmTJl0/ebLL7+UTz/9VNauXSt169Z12AwiIiKKjU+UqRvPyuR1pyUuwSQ+nu4y8onK8ly9EuKKIi4nEGGw67euVYSI7RBc4SnAdevWpTu4QqnVmDFjZPXq1RkKroiIiIwol7urvNG6vKx8o5nUKplf7sXEy/tLDkvP6TtUf1xkf3QNsAYPHixz586VefPmiY+Pj1y/fl297t+/nzQNngwcOXJk0t/oluGjjz6SmTNnSunSpZN+ExkZqdNaEBER5YwKhX3k94GNZVTHKuLt4SY7z9+WDt9skmkbz6p+uch+6FpFmNLwAbNmzZK+ffuq9y1btlSB1OzZs9XfeH/x4sVHfjNq1CgZPXq0wxUxEhERWYMuHVCKtfl0qPq7WjFfGdetulQJdMxrW4TBrt920QYrJxktg4iIiFKCS/jve6/ImBXHJOJBvLi7ushrLcvKkMfKiae7mziSCINdv+2mmwYiIiLKeE3Qs3VLyNrhLeTx4CISn2iSyevOyBPfblYDU5N+GGAREREZXCEfL5nyfB2Z+nxtKejjKWdvRcmz07bL6OVHVY/xlPMYYBERETmIDsFFZe2bLaR73eJqoOnZ2y5Iu683ycZTt/ROmtNhgEVERORAfHN7yPhnasjcfg2kuJ+3XL17X16cuUveWnRA7qQxwDTZDgMsIiIiB9S0fID882ZzeblJGcFD+4v3XZW2X2+UlYdCONxODmCARURE5KBy53KX/3WsIn+81ljKF8oroZGxMnjePnlz4QEGWdmMARYREZGDq13ST1a80VSGti6vunLA4NF/Hbmud7IcGgMsIiIiJ4B+sd5sW0EGtyqn/h6/+oTEsff3bMMAi4iIyIn0bx4kAXlzyYWwaJm/65LeyXFYDLCIiIicSF5Pd1VVCN+uPS2R7CcrWzDAIiIicjLP1S8pZQLySFhUrPy46ZzeyXFIDLCIiIicjIebq7zTvqJ6/9Pmc3Lz3gO9k+RwGGARERE5IYxdWLNEfomOTVBVhWRbDLCIiIicdKDokY9XUu8X7L4sZ29F6p0kh8IAi4iIyEk1CCogrSsVkoREk0xYfVLv5DgUBlhERERObMTjlcTVRWT10euy9+IdvZPjMBhgERERObEKhX3kmTrF1fsv/jrOIXRshAEWERGRk0MP757urrL7wh1Ze/ym3slxCAywiIiInFxRX295uWkZ9X7c6hMSzyF0sowBFhEREcnAFmUlf24POXMzUn7fe0Xv5BgeAywiIiISX28Pef2xh0PofL32lNyPTdA7SYbGAIuIiIiU5xuWlOJ+3nIjIkZmbj2vd3IMjQEWERERKZ7ubklD6EzZcFbCImP0TpJhMcAiIiKiJB2rB0pwsXwSGRMvk9ed0Ts5hsUAi4iIiJK4urrIex0qq/e/7rwol8Ki9U6SITHAIiIiomSalg+QZuUDJC7BJBP+4RA6mcEAi4iIiB7x3uOVxMVF5M+D1+TQlbt6J8dwGGARERHRI6oG+kqXmsXU+y/+OsEhdDKIARYRERFZ9VbbCpLLzVW2nQ2Tjadu6Z0cQ2GARURERFaV8M8tfRqVSirFSkhkKVZ6McAiIiKiFA1uVU58vNzlxPV7snT/Vb2TYxgMsIiIiChFfnlyyaCW5dT7iWtOyYM4DqGTHgywiIiIKFUvNSktRX295Ord+/LL9gt6J8cQGGARERFRqrw83OTNthXU++/Xn5Xw6Di9k2T3GGARERFRmrrVLi4VC/tI+P04+WEDh9BJCwMsIiIiSpObq4uMePzhQNCztl1Q1YWUMgZYRERElC6tKhaSBmX8JTY+USb+c0rv5Ng1BlhERESULi4uLjLyiYcDQS/ef0WOh0TonSS7xQCLiIiI0q1mifzyZLWigpFzxq0+oXdy7BYDLCIiIsqQd9pXFHdXF9lw8pZsOxOqd3LsEgMsIiIiypDSAXmkV4OS6v3Yv05IIofQeQQDLCIiIsqwN1qXlzy53OTw1XBZcThE7+TYHQZYRERElGEBeT1lQPOy6v2Xf59UTxbS/2OARURERJnySrMyKtC6dDtaft15Ue/k2BUGWERERJQpeTzd5c225dX7yevOyL0HHEJHwwCLiIiIMq1H3RISVDCP3I6KlWkbz+mdHLvBAIuIiIgyzd3NVd5tX0m9/2nLObkR8UDvJNkFBlhERESUJe2rFpY6pfzkQVyifLOWQ+gAAywiIiLK+hA6jz8sxVq4+7KcuXlPnB0DLCIiIsqyuqX9pW2VwoI+R8etPinOjgEWERER2cSIDhXFzdVFjVMYE58gzsxd7wQQERGRYyhXyEfWDW8hpQrkEWfHEiwiIiKyGQZXDzHAIiIiIrIxBlhERERENsYAi4iIiMjGGGARERER2RgDLCIiIiIbY4BFREREZGMMsIiIiIhsjAEWERERkY0xwCIiIiKyMQZYRERERDbGAIuIiIjIxhhgEREREdkYAywiIiIiG3MXJ2MymdT/EREReieFiIiI0km7bmvXcXvndAHWvXv31P8lSpTQOylERESUieu4r6+v2DsXk1FCQRtJTEyUa9euiY+Pj7i4uNg8ukbgdvnyZcmXL584Mq6r43Km9eW6Oi5nWl9nWVeTyaSCq8DAQHF1tf8WTk5XgoVMKV68eLYuAzu4I+/k5riujsuZ1pfr6ricaX2dYV19DVBypbH/EJCIiIjIYBhgEREREdkYAywb8vT0lFGjRqn/HR3X1XE50/pyXR2XM62vM62rkThdI3ciIiKi7MYSLCIiIiIbY4BFREREZGMMsIiIiIhsjAEWERERkY0xwMqg77//XkqXLi1eXl7SoEED2bVrV6rT//bbb1KpUiU1fbVq1WTVqlVi78aOHSv16tVTvd0XKlRIunTpIidPnkz1N7Nnz1Y945u/sM5GMHr06EfSjjxztHwF7LuW64rX4MGDDZ+vmzZtko4dO6penpHOpUuXJvsez/P873//k6JFi4q3t7e0adNGTp8+bfNj3h7WNy4uTkaMGKH2zTx58qhp+vTpo0axsPWxYA9527dv30fS3aFDB0PmbVrrau34xWvChAmGy1dHxwArAxYuXChvvfWWehx23759UqNGDWnfvr3cvHnT6vTbtm2Tnj17Sr9+/WT//v0qUMHryJEjYs82btyoLrg7duyQNWvWqJN1u3btJCoqKtXfoQfhkJCQpNfFixfFKKpWrZos7Vu2bElxWqPmK+zevTvZeiJ/4dlnnzV8vmL/xDGJi6Y148ePl0mTJsnUqVNl586dKvDA8fvgwQObHfP2sr7R0dEqvR999JH6f/HixeomqVOnTjY9FuwlbwEBlXm658+fn+o87TVv01pX83XEa+bMmSpg6tatm+Hy1eGhmwZKn/r165sGDx6c9HdCQoIpMDDQNHbsWKvTd+/e3fTkk08m+6xBgwamV1991WQkN2/eRFcepo0bN6Y4zaxZs0y+vr4mIxo1apSpRo0a6Z7eUfIVhg4daipbtqwpMTHRofIV++uSJUuS/sb6FSlSxDRhwoSkz+7evWvy9PQ0zZ8/32bHvL2srzW7du1S0128eNFmx4K9rOuLL75o6ty5c4bmY4S8TU++Yr0fe+yxVKcxQr46IpZgpVNsbKzs3btXVSuYj2uIv7dv3271N/jcfHrAHVJK09ur8PBw9b+/v3+q00VGRkqpUqXUoKOdO3eWo0ePilGgqghF8kFBQdK7d2+5dOlSitM6Sr5in547d668/PLLqQ58buR81Zw/f16uX7+eLN8wphmqhVLKt8wc8/Z+HCOf8+fPb7NjwZ5s2LBBNWmoWLGivPbaaxIWFpbitI6Stzdu3JCVK1eq0vS0GDVfjYwBVjqFhoZKQkKCFC5cONnn+BsnbmvweUamt0eJiYkybNgwadKkiQQHB6c4HU5qKKpetmyZumjjd40bN5YrV66IvcNFFm2NVq9eLVOmTFEX42bNmqlR2x01XwFtO+7evavarzhivprT8iYj+ZaZY95eoRoUbbJQtZ3aYMAZPRbsBaoHf/nlF/n3339l3LhxqpnD448/rvLPkfP2559/Vm1ln3766VSnM2q+Gp273gkg+4a2WGhblFZ9faNGjdRLg4tw5cqVZdq0aTJmzBixZzgRa6pXr65ORiixWbRoUbruDI1qxowZat1xV+uI+UoPoQ1l9+7dVSN/XFwd8Vh47rnnkt6jYT/SXrZsWVWq1bp1a3FUuPlBaVRaD54YNV+NjiVY6RQQECBubm6qSNYc/i5SpIjV3+DzjExvb4YMGSIrVqyQ9evXS/HixTP0Ww8PD6lVq5acOXNGjAZVKBUqVEgx7UbPV0BD9bVr18orr7ziFPmq5U1G8i0zx7y9BlfIbzzQkFrpVWaOBXuFajDkX0rpdoS83bx5s3pwIaPHsJHz1WgYYKVTrly5pE6dOqoIWoPqEvxtfodvDp+bTw84yaU0vb3AnS6CqyVLlsi6deukTJkyGZ4Hit8PHz6sHok3GrQ5Onv2bIppN2q+mps1a5Zqr/Lkk086Rb5iH8aF0zzfIiIi1NOEKeVbZo55ewyu0PYGwXSBAgVsfizYK1Rhow1WSuk2et5qJdBYBzxx6Cz5ajh6t7I3kgULFqinjmbPnm06duyYacCAAab8+fObrl+/rr5/4YUXTO+9917S9Fu3bjW5u7ubvvzyS9Px48fVkxweHh6mw4cPm+zZa6+9pp4c27BhgykkJCTpFR0dnTSN5bp+/PHHpr///tt09uxZ0969e03PPfecycvLy3T06FGTvRs+fLha1/Pnz6s8a9OmjSkgIEA9PelI+Wr+tFTJkiVNI0aMeOQ7I+frvXv3TPv371cvnNomTpyo3mtPzX3xxRfqeF22bJnp0KFD6umrMmXKmO7fv580DzyNNXny5HQf8/a6vrGxsaZOnTqZihcvbjpw4ECy4zgmJibF9U3rWLDHdcV3b7/9tmn79u0q3WvXrjXVrl3bVL58edODBw8Ml7dp7ccQHh5uyp07t2nKlClW52GUfHV0DLAyCDstLk65cuVSj/nu2LEj6bsWLVqox4XNLVq0yFShQgU1fdWqVU0rV6402Tsc1NZeeGQ/pXUdNmxY0nYpXLiw6YknnjDt27fPZAQ9evQwFS1aVKW9WLFi6u8zZ844XL5qEDAhP0+ePPnId0bO1/Xr11vdb7X1QVcNH330kVoPXFhbt279yDYoVaqUCpjTe8zb6/riQprScYzfpbS+aR0L9riuuPFr166dqWDBgupGB+vUv3//RwIlo+RtWvsxTJs2zeTt7a26GrHGKPnq6Fzwj96laERERESOhG2wiIiIiGyMARYRERGRjTHAIiIiIrIxBlhERERENsYAi4iIiMjGGGARERER2RgDLCIiIiIbY4BFlILRo0dLzZo1dVlW3759pUuXLtm+3KVLl0q5cuXUuGzDhg3L8O8xmK6Li4vcvXvXZvPUzJ49W42ZRs7H2n5FZDQMsMjpdOzYUTp06JDiAKo4sR86dEjefvvtR8YctAXMH0GIuexaVlpeffVVeeaZZ+Ty5csyZswYq9OULl1avvnmG6vfNW7cWEJCQsTX1zdD80zPMnr06CGnTp0SPVjLI0eCQX5ffvllKVmypHh6ekqxYsWkdevW8uuvv0p8fHyOpqVly5ZZCsSJ7JW73gkgymn9+vWTbt26qQFhixcv/sggyHXr1pXq1aurv/PmzZsjacJycmpZ5gO+3rx5U9q3by+BgYGZmgcGzcUgyracp8bb21u9yLZ27dolbdq0kapVq8r3338vlSpVUp/v2bNH/R0cHJziAMIYQNrDwyOHU0xkUHqP1UOU0+Li4tR4dGPGjHlkkNW8efMmDaCKsbxq1KiR7Hevv/66Ggjb39/f9O6775r69OmjBg02H8sP07zzzjsmPz8/tRzzMcEwRpj5+GL429qyMO6Y+XwxQPPnn39uKl26tBpsuXr16qbffvst1fW8ffu2GrwZA9hi3LIOHTqYTp06leJ4Z+Zj1JlDGr/++mur32nzuXPnTqrz3Lx5s6lp06Yq7RiAGNsoMjIyaZtZ/g4w9iW2tUbbRjNmzDCVKFHClCdPHjUweXx8vGncuHFqW2M8uk8//TRZGpG2fv36qcFtfXx8TK1atVIDIKcGaViyZIl6r43r98cff5hatmyptiW2/7Zt25L9ZsuWLWpd8D22OcbHQx4ABh3GOiN9GAexSZMmpl27dj2yHVevXm2qWbOm2k5I540bN0yrVq0yVapUSaW9Z8+epqioqEzvFxiPsXLlyqY6deqo36Y0jfl6Y1Dk5s2bq3QjT/A7DAKOMe0wth3y5K+//kr6fbdu3UyDBw9O+nvo0KFqPhgYHTDYNAYqXrNmjdrPLfMey9W2BwZuRlqxTRs1amQ6ceJEqvlGZE8YYJFTQgBUtmzZpIsJzJw5M9kAqpZBDy7cCKwWL16sLhYDBw405cuX75EAC5+NHj1aBTM///yzycXFxfTPP/+o7zF6vTZwdkhISNJo9mkFWFg2LrK4AJ89e1b9Hhe8DRs2pLiOnTp1UhfTTZs2qYCiffv2pnLlypliY2PVRQ4DHWuBA9KCz7ISYKU0Twwqi2AI88A22bp1q6lWrVqmvn37qnmEhYWpoOuTTz5Rv8ErpQALAfAzzzxjOnr0qGn58uXqAo/1QvCCiy/yEMs3H7S3TZs2po4dO5p2796tlj98+HBTgQIF1HIzEmBh+69YsUKtI9KA7YKgG/bv36/yAwEftvWRI0fUQMK3bt1S37/xxhumwMBAFSwh7chfBOBaGrTt2LBhQxWoYUBt5BX2JwRq+Bv5iHR/8cUXmd4vMB8sZ/78+aa0aOuN4A35ee7cOdO1a9dMEydOVPs45oFtjhsNDLKsBe+TJk1SA6BrEDAiuNVuXLB+mB6BIo41BE4YnFnLewTM2vZo0KCBWhdss2bNmpkaN26cZrqJ7AUDLHJKCJAsS21wAn/++eeT/rYMelBCMmHChKS/cSEoWbLkIwEWSmrM1atXzzRixAirF++UlmUeYKH0A3f8liUmKJVBiYY1uNhhOQhmNKGhoSqAXLRokfobQVFqJVcZDbBSmifSOWDAgGS/Q4mWq6ur6f79+ykuw1qAhe0QERGR9BmCKwQA5qUxFStWNI0dOzZpOQgGsA3NIbieNm1ahgKsn376Kel7XPDNS2WQDyiVsgYldQgofv3116TPEOQi4Bo/fnyy7YgSGw3WAZ8hcNK8+uqrap0zu1+gNArzRKClQSkZAmDt9f333ydb72+++SbZPJDuzz777JF9fNCgQer9oUOH1E0Fbh5QgocgGKXFPXr0SAoKzQMlHDMo5TJnbXusXLlSfabtM0T2jm2wyCmh3QkaaM+cOVM1skWjXzRw/+STT6xOHx4eLjdu3JD69esnfYan5OrUqSOJiYnJptXab2mKFi2q2iVlFtIWHR0tbdu2TfZ5bGys1KpVy+pvjh8/Lu7u7tKgQYOkzwoUKCAVK1ZU3+WkgwcPqocG0IBagxgG2+38+fNSuXLldM8LjeF9fHyS/i5cuLDKB1dX12Sfadsby0a7MKy7ufv378vZs2cztB7m+Yo8BSwH+9KBAwfk2Weftfo7LAdtl5o0aZL0GdoxYV+yzAvzZWA9cufOLUFBQck+QxuqzO4X1mDbIP2AYwG/N4c2iZqIiAi5du1asnUB/I1tDWjD5e/vLxs3blRt9JCWp556SrXvAnyO5WRlm6NxPpG9Y4BFTt3Y/fXXX1cnfjRuL1u2rLRo0SLL87VsBIwn0iyDsIxAgAArV65UT3uZwxNg9g7px5OFb7zxxiPfZfRCaW3bpra9sWxcmPHYv6WMdgFhvhwsA7Tl2KoxvuUy0lq3jO4X5cuXV/+fPHkyKQhDgIpuNQBBuaU8efJkaB2QxubNm6ttjnQgmEKgFBMTI0eOHJFt27app2azus2J7B27aSCn1b17d1XyMW/ePPnll1/UY+vaSdwSuiFA6cHu3buTPktISJB9+/ZleLm4aOC36VWlShV1obp06ZK6EJq/SpQoYfU3KBXC4/Y7d+5M+iwsLExdWDG/nFS7dm05duzYI2nHCyUcgP8zsk0ysuzr16+rwMFy2QEBATZbDgKIlLrZQOCO9du6dWvSZyjRwr6UlbzIzH6BoAolbl9++WWmApV8+fKpp0PN1wXwt/m64EYFARZeCLBwnCHomjBhggq0zEvAsivvifTGEixyWugWAX0tjRw5UlV9oHPP1KC0a+zYseoChovU5MmT5c6dOykGZalVc+FijIsMLpB+fn6pTo8qMdzxv/nmm+qi2LRpU1VliYsaLngvvvii1ZKKzp07S//+/WXatGlqHu+9954q6cDnGXX16tWkaiRNqVKl0vXbESNGSMOGDWXIkCHyyiuvqBIRBFxr1qyR7777LmmbbNq0SZ577jm1TWwV/KA7gkaNGqlOW8ePHy8VKlRQVVwo9enatWuy6q+swD5UrVo1GTRokAwcOFAFDevXr1fVhliX1157Td555x1VdYZSO6QF1XsoRc2szOwX2FdRWotqRex/SDeCcQR82P63bt1SJVqpwXqMGjVKBY7oHBfzw75hXgWMoArpwnZAurTPkN569eolKxVD3uNG4MKFC+qYxDYicgQMsMip4QI3Y8YMeeKJJ9LstwmBAkpD+vTpoy5CAwYMUP09pXVBsvTVV1/JW2+9JdOnT1cBDy4saUGHnQULFlQB3rlz51T1Fkpn3n///RR/gwvf0KFDVfsXtKtBCcKqVasy1Y8RSjzwMjdnzpxH+hFLqXQH7W4++OADadasmWp/hYszglsN2r6hGhGfo4TjYTvzrENAgXXGsl966SUVQKDfLmwLlEjaCgK3f/75R+UH2lahyhDt33r27Km+/+KLL1QQ9MILL8i9e/dUYPf333+nGVxnx36BYHfv3r3y+eefy+DBg9U+jYAHfV99/fXXqiQ3NajqRSA3fPhw1R4KJVfLly9Pqn4EBJtIC7aL1r8bAiyUVFm2v0LQhWAQ80HbOLTLI3IELmjprnciiIwIF0zc/aOqMb09lhMRkXNgCRZROl28eFGVUqB9CUpZUL2Fu+1evXrpnTQiIrIzbOROlE5oqIsBiNGGBO1XDh8+LGvXrs1QNwNEROQcWEVIREREZGMswSIiIiKyMQZYRERERDbGAIuIiIjIxhhgEREREdkYAywiIiIiG2OARURERGRjDLCIiIiIbIwBFhEREZGNMcAiIiIiEtv6P6VAjWHOW3VyAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "cumulative_income_first_half = np.sum(\n", " LifeCyclePop.history[\"pLvl\"][0:20, :] * LifeCyclePop.history[\"TranShk\"][0:20, :], 0\n", ")\n", "cumulative_income_second_half = np.sum(\n", " LifeCyclePop.history[\"pLvl\"][20:40, :] * LifeCyclePop.history[\"TranShk\"][20:40, :],\n", " 0,\n", ")\n", "lifetime_growth = cumulative_income_second_half / cumulative_income_first_half\n", "\n", "t = 39\n", "vigntiles = pd.qcut(lifetime_growth, 20, labels=False)\n", "savRte = savRteFunc(LifeCyclePop, LifeCyclePop.history[\"mNrm\"][t], t)\n", "savRtgueseByVigtile = np.zeros(20)\n", "assetsByVigtile = np.zeros(20)\n", "assetsNrmByVigtile = np.zeros(20)\n", "savRteByVigtile = np.zeros(20)\n", "for i in range(20):\n", " savRteByVigtile[i] = np.mean(savRte[vigntiles == i])\n", " assetsByVigtile[i] = np.mean(LifeCyclePop.history[\"aLvl\"][t][vigntiles == i])\n", " assetsNrmByVigtile[i] = np.mean(LifeCyclePop.history[\"aNrm\"][t][vigntiles == i])\n", "plt.plot(np.array(range(20)), savRteByVigtile)\n", "plt.title(\"Saving Rate at age 65, by Vigntile of Lifetime Income Growth\")\n", "plt.xlabel(\"Vigntile of Lifetime Income Growth\")\n", "plt.ylabel(\"Savings Rate\")\n", "\n", "plt.figure()\n", "plt.plot(np.array(range(20)), assetsByVigtile)\n", "plt.title(\"Assets at age 65, by Vigntile of Lifetime Income Growth\")\n", "plt.xlabel(\"Vigntile of Lifetime Income Growth\")\n", "plt.ylabel(\"Assets\")\n", "\n", "plt.figure()\n", "plt.plot(np.array(range(20)), assetsNrmByVigtile)\n", "plt.title(\"Normalized Assets at age 65, by Vigntile of Lifetime Income Growth\")\n", "plt.xlabel(\"Vigntile of Lifetime Income Growth\")\n", "plt.ylabel(\"Normalized Assets\")" ] } ], "metadata": { "jupytext": { "cell_metadata_filter": "ExecuteTime,collapsed,code_folding,-autoscroll", "cell_metadata_json": true, "formats": "ipynb,py:percent", "notebook_metadata_filter": "all,-widgets,-varInspector" }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.9" }, "latex_envs": { "LaTeX_envs_menu_present": true, "autoclose": false, "autocomplete": false, "bibliofile": "biblio.bib", "cite_by": "apalike", "current_citInitial": 1, "eqLabelWithNumbers": true, "eqNumInitial": 1, "hotkeys": { "equation": "Ctrl-E", "itemize": "Ctrl-I" }, "labels_anchors": false, "latex_user_defs": false, "report_style_numbering": false, "user_envs_cfg": false }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": true, "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 5 }