{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import os\n", "import pandas as pd\n", "import numpy as np\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import OneHotEncoder, LabelEncoder\n", "from sklearn.model_selection import GridSearchCV, cross_validate\n", "from sklearn.compose import ColumnTransformer\n", "from sklearn.preprocessing import FunctionTransformer\n", "from sklearn.pipeline import Pipeline\n", "from sklearn.impute import SimpleImputer\n", "from sklearn.linear_model import LogisticRegression\n", "from sklearn.metrics import roc_auc_score, log_loss, make_scorer, brier_score_loss\n", "from sklearn.preprocessing import StandardScaler\n", "from lightgbm import LGBMClassifier\n", "from joblib import dump, load\n", "from sklearn.calibration import calibration_curve\n", "from sklearn.calibration import CalibratedClassifierCV\n", "from sklearn.inspection import permutation_importance\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "from scipy.stats import spearmanr\n", "from scipy.cluster import hierarchy\n", "# monkey patch for bayesseachcv (https://github.com/scikit-optimize/scikit-optimize/issues/902)\n", "from numpy.ma import MaskedArray\n", "import sklearn.utils.fixes\n", "sklearn.utils.fixes.MaskedArray = MaskedArray\n", "from skopt import BayesSearchCV\n", "from skopt.space import Real, Integer\n", "import warnings\n", "warnings.filterwarnings('ignore')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Random state" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "seed = 42" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Setup metrics (see: http://business-analytic.co.uk/blog/evaluating-expected-goals-models/)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# define Mcfadden's pseduo r-squared\n", "def mcfadden_r2(y, y_pred):\n", " ll = log_loss(y, y_pred)\n", " ll_null = log_loss(y, np.full(len(y), y.mean()))\n", " return 1 - (ll/ll_null)\n", "pseudo_r2_scorer = make_scorer(mcfadden_r2, needs_proba=True, greater_is_better=True)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "scoring = {'roc_aug': 'roc_auc', 'mcfaddens_r2': pseudo_r2_scorer}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Setup folder for storing models" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Load the data" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "df = pd.read_parquet(os.path.join('..', 'data', 'shots.parquet'))\n", "df.drop(['match_id', 'statsbomb_id', 'statsbomb_team_id', 'player_id_statsbomb', 'competition_gender', 'team_name',\n", " 'player_id', 'firstName', 'middleName', 'lastName', 'Name', 'dataset', 'wyscout_id', 'wyscout_team_id', 'team_id',\n", " 'player_id_wyscout'], axis=1, inplace=True)\n", "X = df.drop('goal', axis=1)\n", "y = df.goal" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Split into train, calibration and test datasets" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, random_state=seed, stratify=y)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Shots train 51335 ;Number goals 5443 ;Goals %: 10.6\n", "Shots test 12834 ;Number goals 1361 ;Goals %: 10.6\n" ] } ], "source": [ "print('Shots train', len(y_train), ';Number goals', y_train.sum(),\n", " ';Goals %: ', round(y_train.mean()*100, 1))\n", "print('Shots test', len(y_test), ';Number goals', y_test.sum(),\n", " ';Goals %: ', round(y_test.mean()*100, 1))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Load and split fake data" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "df_fake = pd.read_parquet(os.path.join('..', 'data', 'fake_shots.parquet'))\n", "df_fake.index = ['a'+str(idx) for idx in df_fake.index]\n", "y_fake = df_fake.goal\n", "X_fake = df_fake.drop('goal', axis=1)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Shots fake 1000 ;Goals %: 3.4\n" ] } ], "source": [ "print('Shots fake', len(y_fake), ';Goals %: ', round(y_fake.mean()*100, 1))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Logistic regression" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Subset dataset for logistic regression" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "# drop colum\n", "logistic_drop_cols = ['x', 'y', # logistic regression does not deal well with dependent features\n", " # The model will use the distance/ angle features capture these location features instead\n", " # lots of missings for the below features as they come from StatsBomb data only.\n", " # It's not fair to impute these as they are not missing at random\n", " # while logistic regression does not allow missings so I removed them\n", " 'pass_end_y', 'pass_end_x', # <- note these were in Wyscout, but often were just the shot location\n", " 'eventSec', 'period', 'player_id_goalkeeper',\n", " 'goalkeeper_x', 'goalkeeper_y', 'carry_length', 'shot_one_on_one', 'shot_open_goal',\n", " 'under_pressure', 'area_shot', 'area_goal', 'n_angle', 'smart_pass']\n", "X_train_logistic = X_train.drop(logistic_drop_cols, axis=1).copy()\n", "X_test_logistic = X_test.drop(logistic_drop_cols, axis=1).copy()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Split dataset for logistic regession into passes / other assists" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "def split(X, y):\n", " mask = X.assist_type == 'pass'\n", " X_pass = X[mask].drop('assist_type', axis=1).copy()\n", " y_pass = y[mask]\n", " X_other = X[~mask].dropna(axis=1, how='all').copy()\n", " y_other = y[~mask]\n", " return X_pass, y_pass, X_other, y_other" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "X_train_pass, y_train_pass, X_train_other, y_train_other = split(X_train_logistic, y_train)\n", "X_test_pass, y_test_pass, X_test_other, y_test_other = split(X_test_logistic, y_test)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Pipeline for cleaning pass assists" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "cols = ['shot_type_name', 'body_part_name', 'pass_technique_name', 'pass_height_name']\n", "cats = [['open_play', 'free_kick', 'corner', 'throw_in'],\n", " ['Right Foot', 'Left Foot', 'Other'],\n", " ['other', 'Through Ball', 'Straight', 'Inswinging', 'Outswinging'],\n", " ['Ground/ Low Pass', 'High Pass']]\n", "pass_one_hot = ColumnTransformer([('encoder', OneHotEncoder(drop='first', categories=cats), cols)], remainder='passthrough')\n", "pipe_pass = Pipeline([('one_hot', pass_one_hot),\n", " ('impute', SimpleImputer()),\n", " ('scale', StandardScaler()),\n", " ('lr', LogisticRegression(random_state=seed))])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Column names of transformed pass data" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "original_cols_remain = [col for col in X_train_pass.columns if col not in cols]\n", "new_cols_pass = [item for sublist in cats for i, item in enumerate(sublist) if (i>0)]\n", "new_cols_pass.extend(original_cols_remain)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['free_kick', 'corner', 'throw_in', 'Left Foot', 'Other', 'Through Ball', 'Straight', 'Inswinging', 'Outswinging', 'High Pass', 'counter_attack', 'fast_break', 'strong_foot', 'pass_switch', 'pass_cross', 'pass_cut_back', 'visible_angle', 'middle_angle', 'distance_to_goal', 'distance_visible_angle', 'log_distance_to_goal']\n" ] } ], "source": [ "print(new_cols_pass)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Pipeline for cleaning other assists" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "# setting direct to recovery so does not not encoded twice ( also covered by shot_type_name == 'direct_set_piece')\n", "X_train_other.loc[X_train_other.assist_type == 'direct', 'assist_type'] = 'recovery'\n", "X_test_other.loc[X_test_other.assist_type == 'direct', 'assist_type'] = 'recovery'\n", "\n", "cols = ['shot_type_name', 'body_part_name', 'assist_type']\n", "cats = [['open_play', 'free_kick', 'corner', 'throw_in', 'direct_set_piece'],\n", " ['Right Foot', 'Left Foot', 'Other'],\n", " ['recovery', 'clearance', 'rebound']]\n", "other_one_hot = ColumnTransformer([('encoder', OneHotEncoder(drop='first', categories=cats), cols)], remainder='passthrough')\n", "pipe_other = Pipeline([('one_hot', other_one_hot),\n", " ('impute', SimpleImputer()),\n", " ('scale', StandardScaler()),\n", " ('lr', LogisticRegression(random_state=seed))])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Column names of transformed passes" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "original_cols_remain = [col for col in X_train_other.columns if col not in cols]\n", "new_cols_other = [item for sublist in cats for i, item in enumerate(sublist) if (i>0)]\n", "new_cols_other.extend(original_cols_remain)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['free_kick', 'corner', 'throw_in', 'direct_set_piece', 'Left Foot', 'Other', 'clearance', 'rebound', 'counter_attack', 'fast_break', 'strong_foot', 'visible_angle', 'middle_angle', 'distance_to_goal', 'distance_visible_angle', 'log_distance_to_goal']\n" ] } ], "source": [ "print(new_cols_other)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Search parameters for gridsearchcv" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "param_grid = {'lr__C': np.logspace(-3, 0.1, 100)}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Fit the inner grid search for shots assisted by passes" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "C: 0.04248961816344005\n" ] } ], "source": [ "clf_pass = GridSearchCV(estimator=pipe_pass, param_grid=param_grid, scoring='neg_log_loss', n_jobs=-1)\n", "clf_pass.fit(X_train_pass, y_train_pass)\n", "print('C:', clf_pass.best_estimator_.named_steps.lr.C)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Fit the inner grid search for shots assisted other than passes" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "C: 0.42687726983178853\n" ] } ], "source": [ "clf_other = GridSearchCV(estimator=pipe_other, param_grid=param_grid, scoring='neg_log_loss', n_jobs=-1)\n", "clf_other.fit(X_train_other, y_train_other)\n", "print('C:', clf_other.best_estimator_.named_steps.lr.C)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Outer loops for unbiased estimates of the model accuracy" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ROC AUC for shots assisted by passes: 0.7817401551132565\n", "McFadden's Pseudo R-squared shots assisted by passes: 0.15855492654518005\n" ] } ], "source": [ "nested_score_pass = cross_validate(clf_pass, X=X_train_pass, y=y_train_pass, scoring=scoring, n_jobs=-1)\n", "print('ROC AUC for shots assisted by passes:', nested_score_pass['test_roc_aug'].mean())\n", "print(\"McFadden's Pseudo R-squared shots assisted by passes:\", nested_score_pass['test_mcfaddens_r2'].mean())" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ROC AUC for other model: 0.8033677417704617\n", "McFadden's Pseudo R-squared for other model: 0.19094339212253655\n" ] } ], "source": [ "nested_score_other = cross_validate(clf_other, X=X_train_other, y=y_train_other, scoring=scoring, n_jobs=-1)\n", "print('ROC AUC for other model:', nested_score_other['test_roc_aug'].mean())\n", "print(\"McFadden's Pseudo R-squared for other model:\", nested_score_other['test_mcfaddens_r2'].mean())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# LightGBM model" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Add fake training data. I am not adding this to the test data as want this to be realistic of real data." ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "X_train = pd.concat([X_train, X_fake])\n", "y_train = pd.concat([y_train, y_fake])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Clean data. Categories to numbers. Drop distance and angle measures as just want raw locations for my models." ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "def clean_lightgbm(df):\n", " df = df.copy()\n", " # replace categorical columns\n", " shot_type_cat = {'free_kick': 0, 'corner': 1, 'throw_in': 2, 'direct_set_piece': 3, 'open_play': 4}\n", " body_type_cat = {'Right Foot': 0, 'Left Foot': 1, 'Other': 2}\n", " assist_type_cat = {'pass': 0, 'recovery': 1, 'clearance': 2, 'direct': 3, 'rebound': 4}\n", " pass_height_cat = {'High Pass': 0, 'Ground/ Low Pass': 1}\n", " pass_technique_cat = {'Through Ball': 0, 'Straight': 1, 'Inswinging': 2, 'Outswinging': 3, 'other': 4}\n", " df.shot_type_name.replace(shot_type_cat, inplace=True)\n", " df.body_part_name.replace(body_type_cat, inplace=True)\n", " df.assist_type.replace(assist_type_cat, inplace=True)\n", " df.pass_height_name.replace(pass_height_cat, inplace=True)\n", " df.pass_technique_name.replace(pass_technique_cat, inplace=True)\n", "\n", " # replace boolean type columns (not really as have nans)\n", " for col in ['pass_switch', 'pass_cross', 'pass_cut_back', 'shot_one_on_one',\n", " 'shot_open_goal', 'under_pressure', 'smart_pass']:\n", " df[col] = df[col].astype(np.float32)\n", " # drop some distance/ angle columns\n", " drop_cols = ['visible_angle', 'middle_angle', 'distance_to_goal', 'distance_visible_angle',\n", " 'log_distance_to_goal', 'eventSec', 'period', 'player_id_goalkeeper']\n", " df.drop(drop_cols, axis=1, inplace=True)\n", " return df\n", " \n", "X_train = clean_lightgbm(X_train)\n", "X_test = clean_lightgbm(X_test)" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Index(['shot_type_name', 'x', 'y', 'counter_attack', 'fast_break',\n", " 'strong_foot', 'body_part_name', 'assist_type', 'pass_end_y',\n", " 'pass_end_x', 'pass_switch', 'pass_cross', 'pass_cut_back',\n", " 'pass_height_name', 'pass_technique_name', 'carry_length',\n", " 'shot_one_on_one', 'shot_open_goal', 'under_pressure', 'area_shot',\n", " 'area_goal', 'n_angle', 'goalkeeper_x', 'goalkeeper_y', 'smart_pass'],\n", " dtype='object')\n" ] } ], "source": [ "print(X_train.columns)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Fit the nested 5-fold cross validation using Bayesian optimisation." ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "BayesSearchCV(cv=5,\n", " estimator=CalibratedClassifierCV(base_estimator=LGBMClassifier(random_state=42),\n", " cv=3, method='isotonic'),\n", " n_iter=100, n_jobs=-1,\n", " search_spaces={'base_estimator__max_depth': Integer(low=0, high=500, prior='uniform', transform='identity'),\n", " 'base_estimator__min_child_samples': Integer(low=0, high=200, prior='uniform', transform='identity'),\n", " 'base_estimator__num_leaves': Integer(low=2, high=500, prior='uniform', transform='identity'),\n", " 'base_estimator__reg_alpha': Real(low=0, high=1, prior='uniform', transform='identity'),\n", " 'base_estimator__reg_lambda': Real(low=0, high=1, prior='uniform', transform='identity')})" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#lgbm = LGBMClassifier(random_state=42)\n", "lgbm = CalibratedClassifierCV(LGBMClassifier(random_state=42), method='isotonic', cv=3)\n", "lgbm_param_grid = {'base_estimator__min_child_samples': Integer(0, 200),\n", " 'base_estimator__num_leaves': Integer(2, 500),\n", " 'base_estimator__reg_lambda': Real(0, 1),\n", " 'base_estimator__reg_alpha': Real(0, 1),\n", " 'base_estimator__max_depth': Integer(0, 500)}\n", "# Nested resampling using skopt. see: https://github.com/scikit-optimize/scikit-optimize/issues/725\n", "searchcv = BayesSearchCV(estimator=lgbm,\n", " n_iter=100,\n", " search_spaces=lgbm_param_grid,\n", " cv=5,\n", " n_jobs=-1)\n", "searchcv.fit(X_train, y_train)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Permutation importance" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "# note not using fake data for permutation importance\n", "perm_result = permutation_importance(searchcv.best_estimator_, X_train, y_train, n_repeats=10, random_state=seed)\n", "df_perm_importance = pd.DataFrame({'Feature':X_train.columns,\n", " 'importance': perm_result.importances.mean(axis=1),\n", " 'std_dev': perm_result.importances.std(axis=1)})\n", "df_perm_importance.sort_values('importance', ascending=False, inplace=True)\n", "df_perm_importance.reset_index(drop=True, inplace=True)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Featureimportancestd_dev
0x1.435942e-020.000504
1y1.153148e-020.000537
2goalkeeper_x1.199962e-030.000086
3n_angle9.439190e-040.000156
4shot_type_name8.350053e-040.000145
5goalkeeper_y7.413777e-040.000124
6body_part_name5.254610e-040.000176
7carry_length5.216394e-040.000117
8pass_technique_name4.681380e-040.000101
9shot_open_goal4.337441e-040.000046
10area_shot3.993503e-040.000115
11pass_height_name3.917073e-040.000154
12pass_end_x2.770612e-040.000081
13assist_type2.541320e-040.000090
14strong_foot2.197382e-040.000116
15pass_end_y2.159167e-040.000110
16area_goal1.948983e-040.000166
17pass_cross1.318429e-040.000153
18counter_attack9.362759e-050.000065
19pass_switch5.159071e-050.000059
20fast_break2.101844e-050.000039
21under_pressure1.110223e-170.000052
22smart_pass-5.732302e-060.000028
23shot_one_on_one-1.146460e-050.000018
24pass_cut_back-2.101844e-050.000025
\n", "
" ], "text/plain": [ " Feature importance std_dev\n", "0 x 1.435942e-02 0.000504\n", "1 y 1.153148e-02 0.000537\n", "2 goalkeeper_x 1.199962e-03 0.000086\n", "3 n_angle 9.439190e-04 0.000156\n", "4 shot_type_name 8.350053e-04 0.000145\n", "5 goalkeeper_y 7.413777e-04 0.000124\n", "6 body_part_name 5.254610e-04 0.000176\n", "7 carry_length 5.216394e-04 0.000117\n", "8 pass_technique_name 4.681380e-04 0.000101\n", "9 shot_open_goal 4.337441e-04 0.000046\n", "10 area_shot 3.993503e-04 0.000115\n", "11 pass_height_name 3.917073e-04 0.000154\n", "12 pass_end_x 2.770612e-04 0.000081\n", "13 assist_type 2.541320e-04 0.000090\n", "14 strong_foot 2.197382e-04 0.000116\n", "15 pass_end_y 2.159167e-04 0.000110\n", "16 area_goal 1.948983e-04 0.000166\n", "17 pass_cross 1.318429e-04 0.000153\n", "18 counter_attack 9.362759e-05 0.000065\n", "19 pass_switch 5.159071e-05 0.000059\n", "20 fast_break 2.101844e-05 0.000039\n", "21 under_pressure 1.110223e-17 0.000052\n", "22 smart_pass -5.732302e-06 0.000028\n", "23 shot_one_on_one -1.146460e-05 0.000018\n", "24 pass_cut_back -2.101844e-05 0.000025" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_perm_importance" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABAEAAAIICAYAAAAfXPfqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde5hdZX33//eHhBIhEDIYfbQ/adSqHAIGmaDIQVAePLeiWERUQB4iSsFD8VBRiRUsVCsqHkIQBYVixXPxAFYFBAUygZBwUn5FfGxrNcgIohIVvs8few3uTGYmM8lk9szs9+u61jVr3es+fNeav9Z33eveqSokSZIkSdL0t0WnA5AkSZIkSRPDJIAkSZIkSV3CJIAkSZIkSV3CJIAkSZIkSV3CJIAkSZIkSV3CJIAkSZIkSV1iZqcD0MR7+MMfXvPnz+90GJIkSZKkzWDFihV3VdW8oc6ZBOhC8+fPp6+vr9NhSJIkSZI2gyQ/Ge6cnwNIkiRJktQlTAJIkiRJktQlTAJIkiRJkjZZT08PSca0sWTOmNsMbD09PZ2+5CnJJIAkSZIkaZP19/dTVWPagDG3Gdj6+/s7fMVTk0kASZIkSZK6hEkASZIkSZomknQ6hK4wle+zSYBpIMmiJKuSzEqyTZKbkyzodFySJEmSpMllZqcD0KarquVJvgqcCjwMuKCqbmqvk2QxsBhgxx13nPggJUmSJE2IqfyWeqy66VrHi0mA6eMfgOXA/cCJg09W1TJgGUBvb29NbGiSJEmSJsrAgnsTrRMP5N10rePFzwGmjx5gNrAtMKvDsUiSJEmSJiGTANPHMuCdwIXAGR2ORZIkSZI0Cfk5wDSQ5FXAH6vqX5LMAL6f5JlV9Z1OxyZJkiRp4nRqeny3mcr32ZkA00BVfbqqXtzsP1BVTzUBIEmSJGmiJRnTtjFtBra5c+d2+GqnJmcCSJIkSZI22ca+Ha8l4xuHRuZMAEmSJEmSuoRJAEmSJEmSuoRJAEmSJEmSuoRJAEmSJEmSuoRJAEmSJEmSuoRJAEmSJEmSuoRJAEmSJEmSuoRJAEmSJEmSuoRJAEmSJKkL9fT0kGSjN5bM2aT2A1tPT0+nb4XUVUwCSJIkSV2ov7+fqtroDdik9gNbf39/h++E1F1MAkiSJEnjLEmnQ+h6/g+koZkEkCRJkiSpS5gEmAaSvCfJ69uOT0tyYidjkiRJkiRNPjM7HYDGxbnAF4EPJdkCeBmwV3uFJIuBxQA77rjjhAcoSZLUbZyOPnreK2nimASYBqrqziS/TLIH8Ejghqr65aA6y4BlAL29vdWBMCVJkrrKwOJ5k9VkevDeHPdqMl2fNJmYBJg+PgEcBfwv4JOdDUWSJEmSNBm5JsD08SXgOcAi4NIOxyJJktTVJvssgG7g/0AamjMBpomq+n2S7wK/qqoHOh2PJEmSJGnycSbANNEsCPg0WosESpIkSRuUZKO3TW0/sM2dO7fDd0HqLs4EmAaS7AJcAnypqm7vdDySJEma/MZjunwt2fQ4JE0skwDTQFXdAjyu03FIkiRJkiY3PweQJEmSJKlLmASQJEmSJKlLmASQJEmSJKlLmASQJEmSJKlLmASQJEmSJKlLmASQJEmSJKlLmASQJEmSJKlLmASQppCenh5YMockJGkdS5IkSdIomQSQJomLLrqIBQsWMGPGDBYsWMBFF120Xp3+/n4Aqoqqeuh4wAknnMCsWbNIwqxZszjhhBMmJHZJkiRJU4NJgGEkWZLkpGb/8iS9nY5J09dFF13EySefzFlnncX999/PWWedxcknn7xOIiDJkG0Hyk844QSWLl3Ke9/7Xn7zm9/w3ve+l6VLl5oIkCRJkvQQkwBTRJKZnY5Bm89pp53Gueeey4EHHsiWW27JgQceyLnnnstpp5026j7OOecczjjjDN70pjex9dZb86Y3vYkzzjiDc845ZzNGLkmSJGkqmZZJgCTvTHJbkm8luSjJSUkWJrkmyaokX0oyt6l7bJLlSW5M8oUkW4/Q7xZJzk9yapIZSd7XtF2V5DVt9d7cVv7upmx+E9P5TfnnB8ZKsmeSK5KsSHJpkkc15ZcneW+SK4DXDxPTV5K8qtl/TZILh6m3OElfkr41a9Zs5J3V5nLrrbey7777rlO27777cuutt466j7Vr13LcccetU3bcccexdu3acYlRkiRJ0tQ37ZIAzbT9lwB7AC8GBqbxfxp4a1XtDqwGTmnKv1hVi6rqycCtwDHDdD0TuBD4UVW9o6l3T1UtAhYBxyZ5bJKDgScAewELgT2T7N/08SRgWRPDvcDrkmwJnAUcWlV7Ap8E2l//bl9Vz6iqfx4mrsXAu5LsB/wdMOTc76paVlW9VdU7b968YbpSp+y8885cddVV65RdddVV7LzzzqPuY6uttmLp0qXrlC1dupStttpqXGKUJEmSNPVNxynm+wJfqarfAST5N2AbWg/TVzR1zgcubvYXJDkV2B6YDVw6TL9nA5+rqoEH9IOB3ZMc2hzPofXwf3Cz3dCUz27K/y/w06q6uim/ADgR+CawAPhW8233DOBnbeP+60gXW1U/T/Iu4LvAIVV190j1NTmdfPLJHHPMMZx77rnsu+++XHXVVRxzzDFj+hzg2GOP5a1vfSvQmgGwdOlS3vrWt643O0CSJElS95qOSYChV08b3nnAi6rqxiRHAQcMU+/7wIFJ/rmq7m/GOaGq1kkaJHk28I9Vdfag8vlADeqzmn5urqq9hxn3N6O4ht2AXwKPHkVdTUKHH3440Frc79Zbb2XnnXfmtNNOe6h8NM466ywA3v72t/N3f/d3bLXVVhx33HEPlUuSJEnStPscALgKeGGSWUlmA8+n9SDd30yZB3glMDArYFvgZ820/CNG6Pdc4OvAxc0ifZcCr23akeSJSbZpyl/djE2SP0/yiKaPHZMMPOwf3sT6Q2DeQHmSLZPsOtqLTbIX8Fxanz+clOSxo22ryeXwww/npptu4oEHHuCmm25aLwFQNTiHtH75wK8LVNVDvzIgSZIkSQOm3UyAqlqe5KvAjcBPgD7gHuBIYGmzGN8dwNFNk3cC1zZ1V9NKCgzX9weSzAE+QythMB+4Pq15/GtozSi4LMnOwA+a6f33Aa8AHqC15sCRSc4Gbgc+XlW/bz4p+HDT90zgg8DNG7rWJFsB5wBHV9V/J/k74JNJnlnDPTFqWhj4WcC5c+d2OBJJkiRJU0mm47NiktlVdV/zwH8lsLiqru9wTPOBS6pqQSfjAOjt7a2+vr5OhyFJkiRJ2gySrKiq3qHOTbuZAI1lSXYBZgHndzoBIEmSJEnSZDAtkwBV9fJOxzBYVd1J61cANkqSk4GXDiq+uO3XCiRJkiRJGtG0TAJMR83Dvg/8kiRJkqSNNh1/HUCSJEmSJA3BJIAkSZIkSV3CJIAkSZIkSV3CJIAkSZIkSV3CJIAkSZIkSV3CJIA0wXp6ekjy0MaSOescD956eno6HbIkSZKkacIkgDTB+vv7qaqHNmCd48Fbf39/hyOWJEmSNF2YBJAkSZIkqUuYBJiiklyepLfTcYjWlP5pMIYkSZKk6c8kgCRJkiRJXcIkwCZKMj/JrUnOSXJzksuSPGyYuscmWZ7kxiRfSLJ1U35ekg8n+X6SO5Ic2pRvkeRjTb+XJPn6wLlB/R6c5AdJrk9ycZLZQ9RZnKQvSd+aNWvG+zZ0vZEW9hu8SZIkSVKnmAQYH08APlpVuwK/Al4yTL0vVtWiqnoycCtwTNu5RwH7Ai8ATm/KXgzMB3YD/g+w9+AOkzwceAdwUFU9BegD3jS4XlUtq6requqdN2/e2K9QIxppYb/BmyRJkiR1ysxOBzBN/LiqVjb7K2g9uA9lQZJTge2B2cClbee+XFUPArckeWRTti9wcVP+P0m+O0SfTwN2Aa5u3jL/GfCDTbkYSZIkSdL0ZBJgfKxt238AGPJzAOA84EVVdWOSo4ADhukjg/6OJMC3qurwUUWqcTcRb/edQSBJkiRpPPg5wMTaFvhZki2BI0ZR/yrgJc3aAI9k3aTBgGuAfZL8JUCSrZM8cbwCliRJkiRNHyYBJtY7gWuBbwG3jaL+F4D/BG4Czm7a3tNeoarWAEcBFyVZRSspsNP4hazNYfBCgSMtJDh37twORytJkiRpuojTjCe3JLOr6r4kOwDXAftU1f9sSp+9vb3V19c3PgFKkiRJkiaVJCuqqneoc64JMPldkmR7Wgv+vWdTEwCSJEmSpO5lEmAzSPJRYJ9BxR+qqk+Nta+qOmBcgpIkSZIkdT2TAJtBVR3f6RgkSZIkSRrMhQElSZIkSeoSJgEkSZIkSeoSJgEkSZIkSeoSJgEkSZIkSeoSJgEkSZIkSeoSJgGkcdbT00OSdTaWzFmvLAk9PT2dDleSJElSFzEJII2z/v5+qmqdDVivrKro7+/vcLSSJEmSusmUSQIkuTPJw8dQ/4AkT99AnRcl2WXTo1O3SjItxpAkSZLUHaZMEmAjHACMmAQAXgSYBJAkSZIkdYVJmQRIsk2SryW5MclNSQ5rTp2Q5Pokq5Ps1NTtSfLlJKuSXJNk9yTzgeOANyZZmWS/IcZ4OvBXwPuaOo9Pcn3b+SckWdHs35nkjCTXNdtfNuXzknwhyfJm22eEa1qS5JNJLk9yR5IT2859OcmKJDcnWdxWfl8z7ook/55kr7b2f9XUmZHkfc34q5K8ZqNvvCRJkiRpWpuUSQDgOcB/V9WTq2oB8M2m/K6qegrwceCkpuzdwA1VtTvwduDTVXUnsBQ4s6oWVtX3Bg9QVd8Hvgq8uanzH8A9SRY2VY4Gzmtrcm9V7QV8BPhgU/ahZoxFwEuAT2zgunYCng3sBZySZMum/NVVtSfQC5yYZIemfBvg8ubcr4FTgf8NHAL8Q1PnGOCeJoZFwLFJHjt44CSLk/Ql6VuzZs0GwtRYrLcI4Ca239T+JEmSJGk4kzUJsBo4qHkLvl9V3dOUf7H5uwKY3+zvC3wGoKq+A+yQZM5GjvsJ4OgkM4DDgH9pO3dR29+9m/2DgI8kWUkrobBdkm1H6P9rVbW2qu4CfgE8sik/McmNwDXAY4AnNOW/508JkNXAFVX1h2Z/flN+MPCqJoZrgR3a2j+kqpZVVW9V9c6bN28Dt0FjMdQigJvSflP7kyRJkqThzOx0AEOpqh8l2RN4HvCPSS5rTq1t/j7An2If6lXpxj45fQE4BfgOsKKqfjlMnwP7WwB7V9XvRtn/2rb9B4CZSQ6glUzYu6p+m+RyYFZT5w/1p6fABwfaV9WDSdqv/4SqunSUMUiSJEmSutSknAmQ5NHAb6vqAuD9wFNGqH4lcETT7gBanwzcS2v6/Ehv5Rlcp6ruBy6l9bnBpwbVPazt7w+a/cuAv22LeyFjNwfobxIAOwFPG2P7S4HXDnxakOSJSbbZiDi0ESbiTb2zASRJkiSNl0mZBAB2A65rprifTOtb+OEsAXqTrAJOB45syv8NOGS4hQEbnwXenOSGJI9vyi6k9ab/skF1t0pyLfB64I1N2YkDYye5hdZihGP1TVozAlYB76H1ScBYfAK4Bbg+yU3A2UzSGR6SJEmSpM6KbxnXleQkYE5VvbOt7E6gt/mWf8rr7e2tvr6+TocxbQ21mF+dsh15973rlc+dO5e77757IsKSJEmS1CWSrKiq3qHO+ca4TZIvAY8HntnpWDR1DZdYqyUTG4ckSZIkDdYVSYAkJwMvHVR8cVWd1l5QVYcM1b6q5o9hrKNpfTLQ7uqqOn60fUiSJEmStDn4OUAX8nMASZIkSZq+RvocYLIuDChJkiRJksaZSQBJkiRJkrqESQBJkiRJkrqESQBJkiRJkrqESQBJkiRJkrqESQBpE/X09JBkyI0lc0hCT09Pp8OUJEmSJJMA0qbq7++nqobcAKqK/v7+DkcpSZIkSSYBJEmSJEnqGiYBhpFkSZKTmv3Lk/R2OiZ1TpIp0ackSZIkjcQkwBSRZGanY5AkSZIkTW3TMgmQ5J1JbkvyrSQXJTkpycIk1yRZleRLSeY2dY9NsjzJjUm+kGTrEfrdIsn5SU5NMiPJ+5q2q5K8pq3em9vK392UzW9iOr8p//zAWEn2THJFkhVJLk3yqKb88iTvTXIF8Poh4tk2yY+TbNkcb5fkzoHjQXUXJ+lL0rdmzZpNvMPdadjF/zayvSRJkiRNtGmXBGim7b8E2AN4MTAwjf/TwFurandgNXBKU/7FqlpUVU8GbgWOGabrmcCFwI+q6h1NvXuqahGwCDg2yWOTHAw8AdgLWAjsmWT/po8nAcuaGO4FXtc8sJ8FHFpVewKfBE5rG3f7qnpGVf3z4ICq6tfA5cDzm6KXAV+oqj8MUXdZVfVWVe+8efOGuUSNZKTF/zamvSRJkiRNtOk4xXxf4CtV9TuAJP8GbEPrYfqKps75wMXN/oIkpwLbA7OBS4fp92zgc1U18IB+MLB7kkOb4zm0Hv4PbrYbmvLZTfn/BX5aVVc35RcAJwLfBBYA32reDs8AftY27r9u4Ho/AbwF+DJwNHDsBupLkiRJkrrUdEwCjHWe9XnAi6rqxiRHAQcMU+/7wIFJ/rmq7m/GOaGq1kkaJHk28I9Vdfag8vnA4Ne/1fRzc1XtPcy4vxkp+Kq6uvnU4BnAjKq6aaT6kiRJkqTuNe0+BwCuAl6YZFaS2bSmyv8G6E+yX1PnlcDArIBtgZ810/KPGKHfc4GvAxc3i/RdCry27Xv8JybZpil/dTM2Sf48ySOaPnZMMvCwf3gT6w+BeQPlSbZMsusYr/nTwEXAp8bYTqO0Oabv+0mAJEmSpIk27WYCVNXyJF8FbgR+AvQB9wBHAkubxfjuoDV1HuCdwLVN3dW0kgLD9f2BJHOAz9BKGMwHrk9rHv8aWjMKLkuyM/CDZnr/fcArgAdorTlwZJKzgduBj1fV75tPCj7c9D0T+CBw8xgu+0LgVFqJAHXAcAv91SnbkYS5c+dOcESSJEmStL5Mx7eRSWZX1X3NA/+VwOKqur7DMc0HLqmqBZuh70OBv66qV46mfm9vb/X19Y13GJIkSZKkSSDJiqrqHerctJsJ0FiWZBdgFnB+pxMAm1OSs4DnAs/rdCySJEmSpMltWiYBqurlnY5hsKq6k9avAGyUJCcDLx1UfHFVnbApcUmSJEmSuse0TAJMR81PE562wYqSJEmSJA1jOv46gCRJkiRJGoJJAEmSJEmSuoRJAEmSJEmSuoRJAEmSJEmSuoRJAEmSJEmSuoRJAGmQnp4ekgy5sWTOemU9PT2dDlmSJEmSRsUkgDRIf38/VTXkBqxX1t/f3+GIJUmSJGl0Jl0SIMn8JDdtZNsDklwy3jGNYtztk7xuosfVyJJ0OgRg8sQhSZIkSZMuCTDVJJkBbA+YBJAkSZIkTWqTNQkwM8n5SVYl+XySrZM8K8kNSVYn+WSSrQCSPCfJbUmuAl7clG2R5PYk89qO//8kDx9qsCTnJVma5HtJfpTkBU35/Kbs+mZ7elN+QJLvJvkXYDVwOvD4JCuTvG+YMQ5IcnlzPbcluTDNK+Ik70qyPMlNSZa1lV+e5MwkVya5NcmiJF9sru3Utr5fkeS6Zvyzm8SEJEmSJEnrmKxJgCcBy6pqd+Be4E3AecBhVbUbMBN4bZJZwDnAC4H9gP8FUFUPAhcARzT9HQTcWFV3jTDmfOAZwPOBpU3fvwD+d1U9BTgM+HBb/b2Ak6tqF+BtwH9U1cKqevMIY+wBvAHYBXgcsE9T/pGqWlRVC4CHAS9oa/P7qtofWAp8BTgeWAAclWSHJDs3se1TVQuBB9qu+yFJFifpS9K3Zs2aEUKcXoZb4G+kbbzHkSRJkqTJYrImAX5aVVc3+xcAzwJ+XFU/asrOB/YHdmrKb6/Wqm0XtPXxSeBVzf6rgU9tYMzPVdWDVXU7cEfT95bAOUlWAxfTengfcF1V/XiM13VdVf1nk6RYSSvxAHBgkmubcZ4J7NrW5qvN39XAzVX1s6pa28T4GFr3Zk9geZKVzfHjBg9cVcuqqreqeufNmzfGsKeu4Rb4G2kb73EkSZIkabKY2ekAhjGWJ6ch61bVT5P8PMkzgacyxNvxDfRTwBuBnwNPppUwub/t/G/GEOOAtW37D9D67GEW8DGgt4l5CTBriDYPDmr/IK3/X4Dzq+rvNyIeSZIkSVIXmawzAXZMsnezfzjw78D8JH/ZlL0SuAK4DXhskse31W33CVqzAz5XVQ9sYMyXNmsHPJ7Wm/QfAnOAnzVv7l8JDPet/a+BbUd3aesZeOC/K8ls4NAxtv82cGiSRwAk6UnyFxsZy7QyWd7CT5Y4JEmSJGmyJgFuBY5MsgroAc4EjgYubqbMPwgsrar7gcXA15qFAX8yqJ+vArPZ8KcA0HrovwL4BnBc0/fHmjiuAZ7IMG//q+qXwNXNwn5DLgw4nKr6Fa11DVYDXwaWj7H9LcA7gMua+/Ut4FFj6UOSJEmS1B0ynd9SJukFzqyq/TZQ7zzgkqr6/IQE1mG9vb3V19fX6TAmrZEW86tTtiPvvnedsrlz53L33Xdv7rAkSZIkaVSSrKiq3qHOTdY1ATZZkrcBr2XDawFI69hQYqyWTEwckiRJkjTepm0SoKpOB05vL0tyMvDSQVUvrqqjxmvcJLsBnxlUvLaqnjpeY0iSJEmStDGmbRJgKFV1GnDaZh5jNbBwc44hSZIkSdLGmKwLA0qSJEmSpHFmEkCSJEmSpC5hEkCSJEmSpC5hEkCSJEmSpC5hEkCSJEmSpC5hEkBq09PTQ5KHNpbMWed48NbT09PpkCVJkiRp1EwCSG36+/upqoc2YJ3jwVt/f3+HI5YkSZKk0TMJIEmSJElSlzAJsJkkOSrJRzZTv49uO74zycPHexxtnCSdDkGSJEmShmUSYBhJZo503EFHAY/eUCVJkiRJkgabLA+2m1WSVwEnAQWsAj4HvAP4M+CXwBFV9fMkS2g9YM8H7kryo0HHjwFOqKqVTb9XA6+tqlUbGH8esBTYsSl6Q1Vd3Yy3I/C45u8Hq+rDTZt3AkcAPwXuAlYAdwK9wIVJfgfs3fR3QpIXAlsCL62q24aIYTGwGGDHHXccfFqbwLf/kiRJkqaKaT8TIMmuwMnAM6vqycDrgauAp1XVHsBngbe0NdkT+OuqevkQx5+g9SaeJE8EttpQAqDxIeDMqloEvKTpZ8BOwLOBvYBTkmyZpLeptwfwYloP/lTV54E+WkmLhVX1u6aPu6rqKcDHaSU71lNVy6qqt6p6582bN4qQNVqDFxKUJEmSpMmqG2YCPBP4fFXdBVBVdyfZDfjXJI+iNRvgx231v9r2cD34+GLgnUneDLwaOG+UMRwE7NL2xni7JNs2+1+rqrXA2iS/AB4J7At8ZWDcJP+2gf6/2PxdQStpIEmSJEnSerohCRBanwG0Owv4QFV9NckBwJK2c78ZVPeh46r6bZJvAX8N/A3NG/pR2ALYe1ByYWAa+dq2ogdo/U/GOr98oI+B9pIkSZIkrWfafw4AfBv4myQ7ACTpAeYA/9WcP3KM/X0C+DCwvKruHmWby4C/HThIsnAD9a8CXphkVpLZwPPbzv0a2HboZuo0PwmQJEmSNJlN+yRAVd0MnAZckeRG4AO03vxfnOR7tBbdG0t/K4B7gU+NodmJQG+SVUluAY7bwBjLga8CN9Ka6t8H3NOcPg9YmmRlkoeNJXaNTpKHtsHHg7e5c+d2OFpJkiRJGr345nJskjwauBzYqaoe3IzjzK6q+5JsDVwJLK6q68ej797e3urr6xuPriRJkiRJk0ySFVU15Ofr034mwHhqfmrwWuDkzZkAaCxLshK4HvjCeCUAJEmSJEndy0XkxqCqPg18ur0sydG0fnaw3dVVdfwmjvXyDdeSJEmSJGn0TAJsoqr6FGNbH0CSJEmSpI7wcwBJkiRJkrqESQBJkiRJkrqESQBJkiRJkrqESQBJkiRJkrqESQBJkiRJkrqESQCpTU9PD0ke2lgyZ53jJPT09HQ6TEmSJEnaKCYBpDb9/f1U1UMbsM5xVdHf39/hKCVJkiRp40yqJECS+UlevgntL0/SO8Y2X0+y/caOqakpyaToQ5IkSZIm0qRKAgDzgY1OAmyMqnpeVf1qIseUJEmSJKkTNpgEaN7O35bk/CSrknw+ydZJ3pVkeZKbkixL81o0yYlJbmnqfrYpe0aSlc12Q5JthxnudGC/pt4bk8xI8r5mnFVJXtMW11uSrE5yY5LT2/p4aZLrkvwoyX5N3aOSfDHJN5PcnuSf2vq5M8nDm/2Tk/wwyb8nuSjJSU35QzMMkjw8yZ3N/rDxDXEfD2j6+XxzPy9su2fD3cvLk5yZ5MoktyZZ1FzH7UlObev7Fc01r0xydpIZG/q/SpIkSZK6z2hnAjwJWFZVuwP3Aq8DPlJVi6pqAfAw4AVN3bcBezR1j2vKTgKOr6qFwH7A74YZ523A96pqYVWdCRwD3FNVi4BFwLFJHpvkucCLgKdW1ZOBf2rrY2ZV7QW8ATilrXwhcBiwG3BYkse0D5xkT+BlwB7Ai5vxNmTI+Eaov0cT1y7A44B9mvLh7iXA76tqf2Ap8BXgeGABcFSSHZLs3FzXPs39fQA4YvDASRYn6UvSt2bNmlFc2vQ3eMG/sUzv91MASZIkSVPRaJMAP62qq5v9C4B9gQOTXJtkNfBMYNfm/CrgwiSvAP7YlF0NfCDJicD2VfVHRudg4FVJVgLXAjsATwAOAj5VVb8FqKq729p8sfm7gtbnBQO+XVX3VNX9wC3AXwwaaz/gS1X126q6F/jqJsQ3nOuq6j+r6kFgZVt8w91L2uJYDdxcVT+rqrXAHcBjgGcBewLLmzieRSvBsI6qWlZVvVXVO2/evFFc2vQ3eMG/gYUAR9tWkiRJkqaamaOsN/iJp4CPAb1V9dMkS4BZzbnnA/sDfwW8M8muVXV6kq8BzwOuSXJQVd02inEDnFBVl65TmDxniJgGrG3+PsC617e2bX/wufbrGsof+VPCZFZb+ZDxjWC9GJLMYvh72d7mwUHtH6R1DQHOr6q/H2UMkiRJkqQuNdqZADsm2bvZPxy4qtm/K8ls4FCAJFsAj6mq7wJvAbYHZid5fFWtrqozgD5gp2HG+TXQvl7ApcBrk73vmuUAACAASURBVGzZ9P/EJNsAlwGvTrJ1Uz4eP9x+JXBIkoc1axa8sO3cnbTetkNzrRuIbywGHvjXuZdj8G3g0CSPaGLoSTJ4loMGGY83+c4GkCRJkjTVjHYmwK3AkUnOBm4HPg7MpTVF/U5geVNvBnBBkjm03lCfWVW/SvKeJAfSevt9C/CNYcZZBfwxyY3AecCHaE2Zv75ZLG8N8KKq+maShUBfkt8DXwfePuqrHkJVXZ/kX2lN0/8J8L220+8HPpfklcB32so/MVR8Yxz3V0nOYf17Odr2tyR5B3BZk4T5A611A34yln4kSZIkSdNfNvQ2M8l84JJm0bqu0UzLv6+q3t/pWMZbb29v9fX1dTqMSWnwgn91ynbk3feuUzZ37lzuvvtuJEmSJGkySrKiqnqHOjfamQBSVxgqKVZLJj4OSZIkSdocNpgEqKo7af0k3bhJshvwmUHFa6vqqeM5zqao2rhHv6lwbZIkSZKk7tSRmQBVtRpY2ImxN7fpfG2SJEmSpKlttL8OIEmSJEmSpjiTAJIkSZIkdQmTAJIkSZIkdQmTAJIkSZIkdQmTAJIkSZIkdQmTAJIkSZIkdQmTAFKbnp4eksCSOfT09HQ6HEmSJEkaVyYBpDb9/f1U1UP7kiRJkjSdTNkkQJI7kzx8DPUPSPL0zRlTpzXXeEmn45iKkmzSeUmSJEmaCqZsEmAjHABM6ySAJEmSJEkjmRJJgCTbJPlakhuT3JTksObUCUmuT7I6yU5N3Z4kX06yKsk1SXZPMh84DnhjkpVJ9htmnL9I8u2m7beT7NiUn5dkaZLvJflRkhc05TOSvC/J8qbNa5ryA5JcnuTzSW5LcmFGeJWc5HlNvauSfHjgbf5Q19KU75Xk+0luaP4+aRT3cHGSviR9a9asGeWd7y5D/YuSOAtAkiRJ0rQxJZIAwHOA/66qJ1fVAuCbTfldVfUU4OPASU3Zu4Ebqmp34O3Ap6vqTmApcGZVLayq7w0zzkea+rsDFwIfbjs3H3gG8HxgaZJZwDHAPVW1CFgEHJvksU39PYA3ALsAjwP2GWrApp+zgedW1b7AvLbT611LU34bsH9V7QG8C3jvMNfzkKpaVlW9VdU7b968DVXvSgNrAQwuG6pckiRJkqaiqZIEWA0clOSMJPtV1T1N+RebvytoPaQD7At8BqCqvgPskGTOKMfZG/iXZv8zTV8DPldVD1bV7cAdwE7AwcCrkqwErgV2AJ7Q1L+uqv6zqh4EVrbFN9hOwB1V9ePm+KK2c8Ndyxzg4iQ3AWcCu47y+iRJkiRJXWxmpwMYjar6UZI9gecB/5jksubU2ubvA/zpWoaau72xr3JrmP2B4wAnVNWl7SeSHNAW2+D4Bhtprvlw1/Ie4LtVdUjzqcPlI/QhSZIkSRIwRWYCJHk08NuqugB4P/CUEapfCRzRtDuA1icD9wK/BrbdwFDfB17W7B8BXNV27qVJtkjyeFrT+38IXAq8NsmWzXhPTLLNWK6N1tT+xzUP8wCHtZ0b7lrmAP/V1DlqjONpCBua8u8nAZIkSZKmgymRBAB2A65rpt2fDJw6Qt0lQG+SVcDpwJFN+b8Bh4y0MCBwInB00/aVwOvbzv0QuAL4BnBcVd0PfAK4Bbi+mZp/NmOcXVFVvwNeB3wzyVXAz4GBzx2Gu5Z/ojUj4mpgxljG04YNLAQ4d+7cDkciSZIkSeMrvuHcsCTnAZdU1ec3U/+zq+q+5hcEPgrcXlVnbo6xAHp7e6uvr29zdS9JkiRJ6qAkK6qqd6hzU2UmwHR3bDPL4WZaU/3P7nA8kiRJkqRpaEosDDjekpwMvHRQ8cVVddpQ9avqqHEa90vAYwcVv7V567/Z3vxLkiRJkgRdmgRoHvaHfODfzOMeMtFjSpIkSZI0wM8BJEmSJEnqEiYBJEmSJEnqEiYBJEmSJEnqEiYBJEmSJEnqEiYBJEmSJEnqEiYB1LV6enpIss7GkjnrlfX09HQ6VEmSJEkaFyYB1LX6+/upqnU2YL2y/v7+DkcqSZIkSePDJIAkSZIkSV3CJMAkleS8JIeOof78JC/fnDFNZUkmZV+SJEmSNJFMAmyCJDM6HUOb+YBJAEmSJEnSsEwCjCDJl5OsSHJzksVN2X1J/iHJtcDeSV6R5LokK5OcPZAYSPLxJH1N23dvYJzTk9ySZFWS97ed2j/J95PcMTArIC3vS3JTktVJDmvqng7s18TxxiHGWNzE07dmzZrxuD1TznqLAG5kW0mSJEmaqkwCjOzVVbUn0AucmGQHYBvgpqp6KvBL4DBgn6paCDwAHNG0PbmqeoHdgWck2X2oAZL0AIcAu1bV7sCpbacfBewLvIDWQz7Ai4GFwJOBg4D3JXkU8Dbge1W1sKrOHDxOVS2rqt6q6p03b97G3o8pbahFADemrSRJkiRNVTM7HcAkd2KSQ5r9xwBPoPWg/4Wm7FnAnsDy5g3xw4BfNOf+ppk9MJPWw/wuwKohxrgXuB/4RJKvAZe0nftyVT0I3JLkkU3ZvsBFVfUA8PMkVwCLmn4kSZIkSRqWSYBhJDmA1pv2vavqt0kuB2YB9zcP4AABzq+qvx/U9rHAScCiqupPcl7Tdj1V9ccke9FKKLwM+Fvgmc3pte3dDvqrMRjPN/jOBpAkSZI0Vfk5wPDmAP1NAmAn4GlD1Pk2cGiSR0Bran+SvwC2A34D3NO8wX/ucIMkmQ3MqaqvA2+gNdV/JFcChyWZkWQesD9wHfBrYNsxXaEkSZIkqas4E2B43wSOS7IK+CFwzeAKVXVLkncAlyXZAvgDcHxVXZPkBuBm4A7g6hHG2Rb4SpJZtN7yr7eo3yBfAvYGbgQKeEtV/U+SXwJ/THIjcN5Q6wJofYMX+qtTtluvbO7cuRMZkiRJkiRtNnFqc/fp7e2tvr6+TochSZIkSdoMkqxoFqpfj58DSJIkSZLUJfwcYAIl+RLw2EHFb62qSzsRjyRJkiSpu5gEmEBVdciGa0mSJEmStHn4OYAkSZIkSV3CJIAkSZIkSV3CJIAkSZIkSV3CJIAkSZIkSV3CJIAkSZIkSV3CJIC6Sk9PD0mG3VgyZ8jynp6eTocuSZIkSZvMJIC6Sn9/P1U17AYMWd7f39/hyCVJkiRp003LJECSA5JcMsY2/5DkoA3UWZLkpCHKt0/yurHGqYmRZEr1K0mSJEmby7RMAmyMqnpXVf37RjbfHjAJIEmSJEma1CYsCZBkfpLbkpyfZFWSzyfZOsm7kixPclOSZWleryY5McktTd3PNmXPSLKy2W5Isu0IQ85uxrgtyYVt/e6Z5IokK5JcmuRRTfl5SQ5t9p/XtLsqyYcHzSrYJcnlSe5IcmJTdjrw+Cau9w1z/Qc07YaKabh7cHmSM5NcmeTWJIuSfDHJ7UlObev7FUmua8Y/O8mMjfkfSZIkSZKmt4meCfAkYFlV7Q7cS+vt+UeqalFVLQAeBrygqfs2YI+m7nFN2UnA8VW1ENgP+N0IY+0BvAHYBXgcsE+SLYGzgEOrak/gk8Bp7Y2SzALOBp5bVfsC8wb1uxPwbGAv4JSmz7cB/1FVC6vqzWOJqSkf7h4A/L6q9geWAl8BjgcWAEcl2SHJzsBhwD7NfXkAOGLwwEkWJ+lL0rdmzZoRQpyeHlr4bxz6GI++JEmSJKkTJjoJ8NOqurrZvwDYFzgwybVJVgPPBHZtzq8CLkzyCuCPTdnVwAeaN/DbV9UfGd51VfWfVfUgsBKYTysJsQD4VpKVwDuA/29Qu52AO6rqx83xRYPOf62q1lbVXcAvgEeO9uKHiQmGvwcAX23+rgZurqqfVdVa4A7gMcCzgD2B5c01PYtWgmEdVbWsqnqrqnfevMF5jemvfeG/Te1jPPqSJEmSpE6YOcHjDX5yKuBjQG9V/TTJEmBWc+75wP7AXwHvTLJrVZ2e5GvA84BrkhxUVbcNM9batv0HaF1raD1I7z1CjBt6xTtUv6O1Xttm5sFw96C9zYOD2j/In67p/Kr6+zHEIUmSJEnqQhM9E2DHJAMP4IcDVzX7dyWZDQx8k78F8Jiq+i7wFloL781O8viqWl1VZwB9tN7aj8UPgXkDMSTZMsmug+rcBjwuyfzm+LBR9PtrYKT1CUYy8MC/zj0Yg28DhyZ5BECSniR/sZGxTEub6629swEkSZIkTTUTPRPgVuDIJGcDtwMfB+bSmup+J7C8qTcDuCDJHFpvus+sql8leU+SA2m9Rb8F+MZYBq+q3zeL/3246Xsm8EHg5rY6v2t+7u+bSe4CrhtFv79McnWSm4BvbGBdgMFtf5XkHNa/B6Ntf0uSdwCXNcmTP9BaN+AnY+lHkiRJkjT9ZaLeZjZv1i9pFr+b1JLMrqr7mlX6PwrcXlVndjqu8dLb21t9fX2dDqMjNrSgX52yHXn3veuVz507l7vvvntzhSVJkiRJ4ybJiqrqHercRM8EmCqOTXIk8GfADbR+LUDTwGiSXrVk88chSZIkSZ0wYUmAqrqT1sr84ybJbsBnBhWvraqnbkq/zVv/jXrzv7likiRJkiRpU03pmQBVtRpY2Ok42k3GmCRJkiRJgon/dQBJkiRJktQhJgEkSZIkSeoSJgEkSZIkSeoSJgEkSZIkSeoSJgEkSZIkSeoSJgHUFXp6ekjy0MaSOesc9/T0dDpESZIkSdrsTAKoK/T391NVD23AOsf9/f0djlCSJEmSNj+TAJIkSZIkdQmTAFNAkvlJbup0HFNRks1SV5IkSZKmIpMAkiRJkiR1ia5NAjRv129Lcn6SVUk+n2TrJO9KsjzJTUmWpXk9nOTEJLc0dT/blD0jycpmuyHJtiOM9+am31VJ3t0Ww61Jzklyc5LLkjysObdnkhuT/AA4fgPX8qYkn2z2d2ti33pQncVJ+pL0rVmzZpPu3VTjG35JkiRJaunaJEDjScCyqtoduBd4HfCRqlpUVQuAhwEvaOq+DdijqXtcU3YScHxVLQT2A3431CBJDgaeAOwFLAT2TLJ/c/oJwEeralfgV8BLmvJPASdW1d6juI4PAn+Z5JCm3Wuq6rftFapqWVX1VlXvvHnzRtHl9DGwEKAkSZIkdbtuTwL8tKqubvYvAPYFDkxybZLVwDOBXZvzq4ALk7wC+GNTdjXwgSQnAttX1R8Z2sHNdgNwPbATrYd/gB9X1cpmfwUwP8mcpr8rmvLPjHQRVfUgcFRT74q2a5IkSZIk6SHdngQY/Iq4gI8Bh1bVbsA5wKzm3POBjwJ7AiuSzKyq04H/Q2vGwDVJdhpmnAD/WFULm+0vq+rc5tzatnoPADOb+mN9ff0E4D7g0WNsJ0mSJEnqEt2eBNgxycB0+8OBq5r9u5LMBg4FSLIF8Jiq+i7wFmB7YHaSx1fV6qo6A+ij9YZ/KJcCr276JMmfJ3nEcEFV1a+Ae5Ls2xQdMdJFNDMHPgTsD+yQ5NARr7qLjOVTAD8bkCRJkjTdzex0AB12K3BkkrOB24GPA3OB1cCdwPKm3gzgguZhO8CZVfWrJO9JciCtN/i3AN8YapCquizJzsAPmkXq7gNe0bQbztHAJ5P8llYSYSRnAh+rqh8lOQb4bpIrq+oXG2jXVdoXCKxTtlvneO7cuZ0ISZIkSZImVLr17WeS+cAlzQKAXaW3t7f6+vo6HYYkSZIkaTNIsqKqeoc61+2fA0iSJEmS1DW69nOAqroTGNdZAEl2Y/2V/NdW1VPHqf9nA2cMKv5xVR0yHv1LkiRJkqa3rk0CbA5VtRpYuBn7v5QNrw8gSZIkSdKQ/BxAkiRJkqQuYRJAkiRJkqQuYRJAkiRJkqQuYRJAkiRJkqQuYRJAkiRJkqQuYRJA015PTw9J1tlYMock9PT0dDo8SZIkSZowJgE07fX391NV62wAVUV/f3+Ho5MkSZKkiWMSYBMk+askbxvh/MIkz9tAHwckefr4R9edkkxoO0mSJEmaSkwCbIKq+mpVnT5ClYXAiEkA4ADAJIAkSZIkabPr+iRAki8nWZHk5iSLk8xIcl6Sm5KsTvLGpt6JSW5JsirJZ5uyo5J8pNl/adPmxiRXJvkz4B+Aw5KsTHLYEGPPB44D3tjU2S/Jj5Ns2ZzfLsmdSbZMcnmSDyb5fjPOXk2dbZJ8MsnyJDck+euJuG+SJEmSpKlnZqcDmAReXVV3J3kYsBxYAfx5VS0ASLJ9U+9twGOram1bWbt3Ac+uqv9Ksn1V/T7Ju4DeqvrboQauqjuTLAXuq6r3N+NdDjwf+DLwMuALVfWHZrr6NlX19CT7A58EFgAnA9+pqlc3cV2X5N+r6jftYyVZDCwG2HHHHTfuTk0RY53a76cAkiRJkrpF188EAE5MciNwDfAY4M+AxyU5K8lzgHubequAC5O8AvjjEP1cDZyX5FhgxibE8wng6Gb/aOBTbecuAqiqK4Htmof+g4G3JVkJXA7MAtZ7yq+qZVXVW1W98+bN24TwJr+hFgHcUH1JkiRJ6gZdnQRIcgBwELB3VT0ZuAHYCngyrQfq42k9lEPr7fxHgT2BFUnWmUVRVccB76CVSFiZZIeNiamqrgbmJ3kGMKOqbmo/Pbg6EOAlVbWw2Xasqls3ZmxJkiRJ0vTW1UkAYA7QX1W/TbIT8DTg4cAWVfUF4J3AU5JsATymqr4LvAXYHpjd3tH/a+/eoyyrynvvf3/SRkCg6dLWGKO2EpVws4USRAEBGcYLCXKCGl9UxAsHJUGSF5XEHGx1qCC+evQVxUa54+UVL0GNgCEg0silGpru5nI0UXI0erSRAlQuEXzeP/YsLKqrqqu7q2rXrv39jLHHXnuuueZ81p6je+z1rLlmJdmhqq6pqhOB2+kkA34FbLuBGMarcw6du/5njil/VetrH+CuqroLuBj4m7Q57UmePeWzn4c29a6+swEkSZIk9YN+TwJcBCxIshp4H51HAp4IXN6m158F/D2d6f3nJVlDZ7bAR6vqzjFtndIWElwLXAHcCFwG7DTRwoDN14FDRxYGbGXnA4to0/9HGU5yFXAa8MZW9j7gkcDq1vf7NvpbkCRJkiT1hXgHdO5JchhwSFW9dlTZ5cDxVTW0ue0PDg7W0NBmN9Mzxlv4r969HXnP3SxatIg77rijC1FJkiRJ0sxIsrKqBsfb518HmGOS/L/AS4CXdjuW+WKiRFctm904JEmSJKnbTALMkiRHAm8bU7yiqo4ZXVBVfzPe8VW1/wyFJkmSJEnqEyYBZklVncn6C/1JkiRJkjRr+n1hQEmSJEmS+oZJAEmSJEmS+oRJAEmSJEmS+oRJAEmSJEmS+oRJAEmSJEmS+oRJAM1bAwMDJCEJLFv40PbIa2BgoNshSpIkSdKsMgmgeWt4eJiqoqoAHtoeeQ0PD3c5QkmSJEmaXSYBJEmSJEnqEyYBxkhyXJKtu9j/55OsTvK3m3Ds65P80UzENZclmZNtSZIkSdJcYxJgfccB4yYBkmwxkx0n+UPgeVW1W1V9dBOaeD3Qd0kASZIkSdLU9HUSIMmjk3wzyY1J1iZ5N52L6MuSXNbq/DrJe5NcA+yd5O9a3bVJjmt1liS5JcnpSW5KckmSrdq+57Q7+99LckqStZOEdAnwuCSrkuybZGmSq9vxX02yqLW5XnmSw4BB4Px2/FZjzvWoJENJhtatWzft32W3jV30b6p39DflGEmSJEnqVX2dBABeDPy0qp5VVbsA/xP4KXBAVR3Q6jwaWFtVewH3AkcCewHPBd6c5Nmt3tOBU6tqZ+BO4C9b+ZnA0VW1N/DgBuL5C+Dfq2ppVX0XOAd4Z1XtBqwB3t3qrVdeVRcAQ8Dh7fh7RzdcVcurarCqBhcvXrxx31IPGLvo38higBt7nCRJkiTNZ/2eBFgDHJTk5CT7VtVd49R5EPhy294H+GpV/aaqfg18Bdi37ftRVa1q2yuBJUm2B7atqqta+eemGliShcD2VfWdVnQ2sN9E5VNtV5IkSZLUvxZ0O4BuqqrvJ9kDeCnwwSSXjFPtvqoauYM/2Xzx+0dtPwhstYH6kiRJkiTNqr6eCdBW0r+nqs4DPgzsDvwK2HaCQ64AXp5k6ySPBg4FvjtR+1U1DPwqyXNb0V9NNbY2K2E4ychMg9cC35movG1PFvu8NZ3T+H0kQJIkSdJ81tczAYBdgVOS/A74LfAWYG/gW0l+NmpdAACq6vokZwHXtqLPVNUNSZZM0scbgdOT/Aa4HBjvkYOJHAGc1v5k4Q/prEcwWflZrfxeYO+x6wL0o5HF/urd26238N+iRYu6EZIkSZIkdU288zmzkmzT1g8gyQnAE6rqbd2MaXBwsIaGhroZgiRJkiRphiRZWVWD4+3r95kAs+FlSf6eznf9H8DruxuOJEmSJKlfmQSYYVX1ReCLo8uS/Blw8piqP6qqQ2ctMEmSJElS3zEJ0AVVdTFwcbfjkCRJkiT1l77+6wCSJEmSJPUTkwCSJEmSJPUJkwCSJEmSJPUJkwCSJEmSJPUJkwCSJEmSJPUJkwCalwYGBkjysBfLFj7s88DAQLfDlCRJkqRZZRJA89Lw8DBV9bAX8LDPw8PDXY5SkiRJkmaXSYAekGRJkrXdjmMuSjKn2pEkSZKkucwkgCRJkiRJfaJvkwDt7vqtSc5OsjrJBUm2TnJikuuSrE2yPO0WcZJjk9zc6n6hlb0gyar2uiHJtpP09/bW7uok7xkVwy1JTk9yU5JLkmzV9u2R5MYk3wOO2cC5fDfJ0lGfVyTZbRq+JkmSJEnSPNK3SYDmmcDyqtoNuBt4K/CJqnpOVe0CbAUc3OqeADy71T26lR0PHFNVS4F9gXvH6yTJi4CnA3sCS4E9kuzXdj8dOLWqdgbuBP6ylZ8JHFtVe0/hPD4DvL719QzgUVW1ekwMRyUZSjK0bt26KTTZO8YuALgxU/s3tr4kSZIk9bJ+TwL8uKpWtO3zgH2AA5Jck2QNcCCwc9u/Gjg/yWuAB1rZCuAjSY4Ftq+qBxjfi9rrBuB6YEc6F/8AP6qqVW17JbAkycLW3nda+bkbOI8vAQcneSTwBuCssRWqanlVDVbV4OLFizfQXG8ZuwDgyCKAG3OsJEmSJPWDfk8CjL36K+CTwGFVtStwOrBl2/cy4FRgD2BlkgVVdRLwJjozBq5OsuME/QT4YFUtba8/qarPtn33j6r3ILCg1Z/ylWlV3QN8GzgEeCXwuakeK0mSJEnqH/2eBHhykpHp9q8GrmzbtyfZBjgMIMkjgCdV1WXAO4DtgW2S7FBVa6rqZGCIzh3+8VwMvKG1SZInJnncREFV1Z3AXUn2aUWHT+FcPgN8HLiuqu6YQv15Ybru4jsbQJIkSVI/WNDtALrsFuCIJJ8GfgB8ClgErAFuA65r9bYAzmvT9AN8tKruTPK+JAfQuYN/M/Ct8TqpqkuS/Cnwvfb8+a+B17TjJnIkcEaSe+gkESZVVSuT3E1nLQFJkiRJktaTfr0DmmQJ8I22AGDPS/JHwOXAjlX1u8nqDg4O1tDQ0KzE1S3jLfZX796OvOfuhz4vWrSIO+7om0kTkiRJkvpEkpVVNTjevn6fCTAvJHkd8H7g7zaUAOgXEyW3atnsxiFJkiRJc0nfJgGq6jZgWmcBJNmV9Vfyv7+q9pqm9v8MOHlM8Y+q6lDgnOnoQ5IkSZI0f/VtEmAmVNUaYOkMtn8xU1gfQJIkSZKk8fT7XweQJEmSJKlvmASQJEmSJKlPmASQJEmSJKlPmASQJEmSJKlPmASQJEmSJKlPmASQJEmSJKlPmATQvDEwMECScV8sWzhu+cDAQLfDliRJkqRZYxJA88bw8DBVNe4LGLd8eHi4y1FLkiRJ0uwxCTCPJNk/yTe6HcdMSTKv+pEkSZKk2WYSYDMk2aLbMUiSJEmSNFUmASaR5GtJVia5KclRrezXSd6b5Bpg7ySvSXJtklVJPj2SGEjyqSRD7dj3bKCflya5NcmVST4+cjc/yUCLYXWSq5Ps1sr3THJVkhva+zOncC5HtXiG1q1bt9nfTbdM9Mz/5ty9n652JEmSJGmuMwkwuTdU1R7AIHBskscAjwbWVtVewC+BVwHPr6qlwIPA4e3Yd1XVILAb8IKRC/ixkmwJfBp4SVXtAywetfs9wA1VtRvwD8A5rfxWYL+qejZwIvCBDZ1IVS2vqsGqGly8ePGGqs9ZEz3zP/Lc/3S0KUmSJEnz1YJuBzDHHZvk0Lb9JODpdC70v9zKXgjsAVzX7iBvBfyi7Xtlmz2wAHgCsBOwepw+dgR+WFU/ap8/DxzVtvcB/hKgqv41yWOSLAS2A85O8nSggEdOw7lKkiRJkuY5kwATSLI/cBCwd1Xdk+RyYEvgvqp6cKQacHZV/f2YY58KHA88p6qGk5zVjh23q8nCGKesgPcBl1XVoUmWAJdP4ZQkSZIkSX3OxwEmthAYbgmAHYHnjlPnUuCwJI+Dh57hfwqdO/W/Ae5K8njgJZP0cyvwtHYxD53HC0ZcQXu8oCUlbq+qu1ts/9nqvH6jz6xHzdZUfR8JkCRJkjRfmQSY2EXAgiSr6dx5v3pshaq6GfhH4JJW79vAE6rqRuAG4CbgDGDFRJ1U1b3AW4GLklwJ/By4q+1eBgy2tk8CjmjlHwI+mGQF4F8oGGWyRQPHK1+0aFGXI5YkSZKk2RPvenZfkm2q6tfpXK2eCvygqj46U/0NDg7W0NDQTDUvSZIkSeqiJCvbQvXrcSbA3PDmJKvozBxYSOevBUiSJEmSNK1cGHAWJfkq8NQxxe9sd/1n7M6/JEmSJElgEmBWVdWhG64lSZIkSdLM8HEASZIkSZL6hEkASZIkSZL6hEkASZIkSZL6hEkASZIkSZL6hEkASZIkSZL6hEkA9byBgQGSPOzFsoXrlY28BgYGuh2yJEmSJHWFSQD1vOHhYarqYS9gvbKR1/DwcJcjliRJkqTuMAkwByVZ0O0YJEmSJEnzj0kAIMmSJLcmOTvJ6iQXJNk6yYlJrkuyNsnyJGn1j01yc6v7hVb2giSr2uuGJNtOVCHsRwAAIABJREFU0t87kqxJcmOSk1rZ5Uk+kOQ7wNuSvLC1sybJGUke1eqdNKrvD7eyV7QYb0xyxYx/YbOgfdXztj9JkiRJ6gbvOP/eM4E3VtWKJGcAbwU+UVXvBUhyLnAw8HXgBOCpVXV/ku3b8ccDx7TjtwHuG6+TJC8BXg7sVVX3JBn9gPr2VfWCJFsCPwBeWFXfT3IO8Jb2fiiwY1XVqL5PBP6sqv5zVJkkSZIkSQ/jTIDf+3FVrWjb5wH7AAckuSbJGuBAYOe2fzVwfpLXAA+0shXAR5IcS+di/gHGdxBwZlXdA1BVd4za98X2/kzgR1X1/fb5bGA/4G46yYXPJPlvwD2j+j4ryZuBLcbrNMlRSYaSDK1bt26DX8ZcMNHCfustAjgNbUuSJElSPzAJ8Hs1zudPAodV1a7A6cCWbd/LgFOBPYCVSRZU1UnAm4CtgKuT7DhBPxmnrxG/GVVn/QA7iYU9gS/TmU1wUSs/GvhH4EnAqiSPGefY5VU1WFWDixcvnqD7uWWihf3GWwRwc9uWJEmSpH5gEuD3npxk77b9auDKtn17m95/GECSRwBPqqrLgHcA2wPbJNmhqtZU1cnAEDBREuAS4A1Jtm7tjff36m4FliT5k/b5tcB3WhwLq+qfgeOApa2NHarqmqo6EbidTjJAkiRJkqSHcU2A37sFOCLJp+k8j/8pYBGwBrgNuK7V2wI4L8lCOnfsP1pVdyZ5X5IDgAeBm4FvjddJVV2UZCkwlOS/gH8G/mFMnfuSHAl8qf2lgOuA04AB4J/amgEB/rYdckqSp7eyS4EbN/vb6LLZvjvvbABJkiRJ/SBe/HT+OgDwjarapcuhzIrBwcEaGhrqdhjTJsn6F/HLFsKyu6ZeX5IkSZLmiSQrq2pwvH0+DqB5YbyF/iZaSHDRokVdjlaSJEmSusPHAYCqug2Y1lkASXYFzh1TfH9V7TWd/Wjiqfy1bHbjkCRJkqS5ziTADKmqNbSF+yRJkiRJmgt8HECSJEmSpD5hEkCSJEmSpD5hEkCSJEmSpD5hEkCSJEmSpD5hEkCSJEmSpD5hEkCSJEmSpD5hEkCSJEmSpD5hEkA9b2BgAJYtJMlDr4GBgW6HJUmSJElzzoJuByBtruHhYWA7quqhsiTdC0iSJEmS5ihnAoyR5LgkW89wHy9PstOoz69P8keb2Nb+Sb4xfdHNXyYGJEmSJPU7kwDrOw7YqCRAki02so+XAzuN+vx6YJOSAJIkSZIkTVVPJgGSvC7J6iQ3Jjk3yVOSXNrKLk3y5FbvrCSHjTru1+19/ySXJ7kgya1Jzk/HsXQuxi9Lclmr+6Ik30tyfZIvJdmmld+W5MQkVwKvmCDONye5rsX55SRbJ3ke8BfAKUlWJXknMAic3z5v1dq9LsnaJMvTbmEn+ZMk/9Lauz7JDmP6e06SG5I8bZq/ckmSJEnSPNBzSYAkOwPvAg6sqmcBbwM+AZxTVbsB5wMfn0JTz6Zz138n4GnA86vq48BPgQOq6oAkjwX+ETioqnYHhoC/G9XGfVW1T1V9YYI+vlJVz2lx3gK8saquAi4E3l5VS6vq5Nbu4e3zvcAn2nG7AFsBB7f2zgdObe09D/jZqO/lecBpwCFV9cNxvrejkgwlGVq3bt0Uvp7eN3qhQB8FkCRJkqQeTAIABwIXVNXtAFV1B7A38Lm2/1xgnym0c21V/aSqfgesApaMU+e5dJIEK5KsAo4AnjJq/xc30McuSb6bZA1wOLDzFOICOCDJNe24A4Gdk2wLPLGqvgpQVfdV1T2t/p8Cy4E/r6r/PV6DVbW8qgaranDx4sVTDKO3VdXDXpIkSZLU73rxrwME2NAV3cj+B2iJjjal/g9G1bl/1PaDjP9dBPh2Vb16gn5+s4E4zgJeXlU3Jnk9sP8G6pNkS+CTwGBV/TjJMmDLFstEftbqPJvOTAZJkiRJktbTizMBLgVemeQxAEkGgKuAv2r7DweubNu3AXu07UOAR06h/V8B27btq4HnJ/mT1tfWSZ6xEbFuC/wsySNbXOP1Mfbzlu399rb+wGEAVXU38JMkL2+xPGrUXzG4E3gZ8IEk+29EfH3F2QCSJEmS+l3PJQGq6ibg/cB3ktwIfAQ4FjgyyWrgtXTWCQA4HXhBkmuBvdjwnXvoTKv/VpLLqmodnZX7P9/avhrYcSPC/R/ANcC3gVtHlX8BeHtbxG8HOjMGTmuPHNzf4l4DfA24btRxrwWObbFcBfzhyI6q+jnw58CpSfbaiBjnjdHP/y9atKjb4UiSJEnSnBPvjvafwcHBGhoa6nYYkiRJkqQZkGRlVQ2Ot6/nZgJIkiRJkqRN04sLA845SU4Fnj+m+GNVdWY34pEkSZIkaTwmAaZBVR3T7RgkSZIkSdoQHweQJEmSJKlPmASQJEmSJKlPmASQJEmSJKlPmASQJEmSJKlPmASQJEmSJKlPmARQzxoYGCAJSWDZQpIwMDDQ7bAkSZIkac4yCaCeNTw8TFVRVQBUFcPDw12OSpIkSZLmLpMAkiRJkiT1CZMAc0ySzyTZqW3/wxTqn5XksJmPbG5IMq31JEmSJKmfmASYY6rqTVV1c/u4wSSAJEmSJElT1VdJgCRLktya5Owkq5NckGTrJCcmuS7J2iTL024jJzk2yc2t7hda2QuSrGqvG5JsO0FfT0hyRau3Nsm+SV6Z5CNt/9uS/LBt75DkyrZ9eZLBJCcBW7Xjz2/7XtdiuTHJuaO62y/JVUl+ONGsgCRHJRlKMrRu3brp+kq74qHFACfZL0mSJElaX18lAZpnAsurajfgbuCtwCeq6jlVtQuwFXBwq3sC8OxW9+hWdjxwTFUtBfYF7p2gn/8LuLjVexawCriiHUN7/2WSJwL7AN8dfXBVnQDcW1VLq+rwJDsD7wIOrKpnAW8bVf0JrY2DgZPGC6aqllfVYFUNLl68eANf0dw2ejHAifZLkiRJktbXj0mAH1fVirZ9Hp2L5wOSXJNkDXAgsHPbvxo4P8lrgAda2QrgI0mOBbavqgcY33XAkUmWAbtW1a+q6v8A27TZA08CPgfsRych8N0J2hlxIHBBVd0OUFV3jNr3tar6XXuM4PFT+A4kSZIkSX2oH5MAY28TF/BJ4LCq2hU4Hdiy7XsZcCqwB7AyyYKqOgl4E50ZA1cn2XHcTqquoHOB/5/AuUle13Z9DzgS+F90Lvz3Bfamk1yYTMaJfcT9Y+pJkiRJkrSefkwCPDnJ3m371cCVbfv2JNsAhwEkeQTwpKq6DHgHsD2du/g7VNWaqjoZGALGTQIkeQrwi6o6HfgssHvbdQWdRwquAG4ADgDur6q7xmnmt0ke2bYvBV6Z5DGt/YFNO/3eNtWp/j4SIEmSJEnrW9DtALrgFuCIJJ8GfgB8ClgErAFuozONH2AL4LwkC+ncXf9oVd2Z5H1JDgAeBG4GvjVBP/sDb0/yW+DXwMhMgO/SeRTgiqp6MMmPgVsnaGM5sDrJ9W1dgPcD30nyIJ0Ewus35QuYT0YWAax3b0cSFi1a1OWIJEmSJGnuSj/dMU2yBPhGWwCwbw0ODtbQ0FC3w5AkSZIkzYAkK6tqcLx9/fg4gCRJkiRJfamvHgeoqtuAaZ0FkGRX4NwxxfdX1V7T2Y8kSZIkSZurr5IAM6Gq1gBLux2HJEmSJEkb4uMAkiRJkiT1CZMAkiRJkiT1CZMAkiRJkiT1CZMAkiRJkiT1CZMAkiRJkiT1CZMA6kkDAwMkgWULGRgY6HY4kiRJktQTTAKoJw0PD1NVD21LkiRJkjbMJMAYSY5NckuS8zfimO2TvHUDdfZP8o3Nj3Dctm9L8tiZaLsXJel2CJIkSZI0J5kEWN9bgZdW1eEbccz27bjNlmSL6WhHkiRJkqSxTAKMkuQ04GnAhUnemeSqJDe092e2OjsnuTbJqiSrkzwdOAnYoZWdMkkX2yX5apKbk5yW5BGtzV8neW+Sa4C9k7xmVB+fHkkMJPlUkqEkNyV5zzjxb5XkoiRvnu7vRpIkSZLU+0wCjFJVRwM/BQ4APgXsV1XPBk4EPtCqHQ18rKqWAoPAT4ATgH+vqqVV9fZJutgT+L+BXYEdgP/Wyh8NrK2qvYBfAq8Cnt/6eBAYmZXwrqoaBHYDXpBkt1FtbwN8HfhcVZ0+tuMkR7UEwtC6deum/qX0iCQPvSRJkiRJ41vQ7QDmsIXA2e1OfwGPbOXfA96V5I+Br1TVDzbiwvPaqvohQJLPA/sAF9C50P9yq/NCYA/gutbuVsAv2r5XJjmKzrg9AdgJWN32/RPwoaoady2DqloOLAcYHBysqQbcK0YWCQTXBJAkSZKkiTgTYGLvAy6rql2APwe2BKiqzwF/AdwLXJzkwI1oc+zF98jn+6rqwbYd4Ow2q2BpVT2zqpYleSpwPPDCqtoN+OZITM0K4CXxCliSJEmSNAGTABNbCPxn2379SGGSpwE/rKqPAxfSmZr/K2DbKbS5Z5KntrUAXgVcOU6dS4HDkjyu9TeQ5CnAdsBvgLuSPB54yZjjTqTzKMEnp3Z689foWQGSJEmSpN8zCTCxDwEfTLICGL1i/6uAtUlWATsC51TVL4EVSdZuYGHA79FZRHAt8CPgq2MrVNXNwD8ClyRZDXwbeEJV3QjcANwEnEHnzv9YxwFbJvnQxp2qJEmSJKkfxLum/WdwcLCGhoa6HcZmGXnqod69HQMf34I77rijyxFJkiRJ0tyQZGVbVH49LgyonjQ6eXXHsu7FIUmSJEm9xCTANEuyK3DumOL725//kyRJkiSpa0wCTLOqWgMs7XYckiRJkiSN5cKAkiRJkiT1CZMAkiRJkiT1CZMAkiRJkiT1CZMAkiRJkiT1CZMAkiRJkiT1CZMA6jkDAwMkgWULScLAwEC3Q5IkSZKknmASQD1neHiYqgKgqhgeHu5yRJIkSZLUG0wCSJIkSZLUJ/omCZDk8iSD3Y5Dmy7JtNSRJEmSpH7VN0mAjZVki804dsF0xjJX+pIkSZIk9baeSQIkWZJk7ajPxydZ1u7wn5zk2iTfT7Jv279Vki8kWZ3ki8BWo459UZLvJbk+yZeSbNPKb0tyYpIrgVdMEMflSf5nkquSrE2yZytflmR5kkuAc5IsTvLlJNe11/NbvRckWdVeNyTZNskTklzRytaOOodfj+r3sCRnte2zknwkyWXAyUl2SHJRkpVJvptkx3HiPirJUJKhdevWbeZodM9Ed/qTOAtAkiRJkjZgvtxFXlBVeyZ5KfBu4CDgLcA9VbVbkt2A6wGSPBb4R+CgqvpNkncCfwe8t7V1X1Xts4H+Hl1Vz0uyH3AGsEsr3wPYp6ruTfI54KNVdWWSJwMXA38KHA8cU1UrWvLhPuAo4OKqen+bgbD1FM75Ge0cHkxyKXB0Vf0gyV7AJ4EDR1euquXAcoDBwcGaQvtzUlWNe7E/slCgiQBJkiRJmth8SQJ8pb2vBJa07f2AjwNU1eokq1v5c4GdgBXtgvEPgO+NauuLU+jv863dK5Jsl2T7Vn5hVd3btg8Cdhp1Ubpdkm2BFcBHkpwPfKWqfpLkOuCMJI8EvlZVq6YQw5daAmAb4HnAl0b19agpHC9JkiRJ6jO9lAR4gIc/vrDlqO372/uDPPycxrvjHeDbVfXqCfr5zRRiGdvuyOfRxz4C2HtUUmDESUm+CbwUuDrJQS2ZsB/wMuDcJKdU1Tlj+tlyTDsjfT0CuLOqlk4hbkmSJElSH+uZNQGAnwOPS/KYJI8CDt5A/SuAwwGS7ALs1sqvBp6f5E/avq2TPGMjY3lVO3Yf4K6qumucOpcAfz3yIcnS9r5DVa2pqpOBIWDHJE8BflFVpwOfBXYfOeckf5rkEcCh4wVSVXcDP0ryitZ+kjxrI8+nJ4xM+d/cOpIkSZLUr3omCVBVv6Xz3P41wDeAWzdwyKeAbdpjAO8Arm3trANeD3y+7bsaWG8hvQ0YTnIVcBrwxgnqHAsMtoUJbwaObuXHtcX/bgTuBb4F7A+sSnID8JfAx1rdE9q5/ivws0niORx4Y2vzJuCQjTyfnjPy6EMSFi1a1OVoJEmSJKk3xDunGyfJ5cDxVTXU7Vg21eDgYA0N9Wz4kiRJkqRJJFlZVYPj7euZmQCSJEmSJGnz9NLCgLMqyanA88cUf6yq9u9COJIkSZIkbTaTABOoqmO6HYMkSZIkSdPJxwEkSZIkSeoTJgEkSZIkSeoTJgEkSZIkSeoTJgEkSZIkSeoTJgEkSZIkSeoTJgHUcwYGBkgCyxYyMDDQ7XAkSZIkqWeYBJhBSf6h2zHMR8PDw1TVQ9uSJEmSpKkxCTAD0vEIwCTANEsypTJJkiRJ0vr6NgmQ5NFJvpnkxiRrk7wqyW1JPpDke0mGkuye5OIk/57k6HbcNkkuTXJ9kjVJDmnlS5LckuSTwPXAZ4GtkqxKcv4EMSxJcmuSs5OsTnJBkq3bvhOTXNdiW552pZvk2CQ3t/pfaGUvaP2sSnJDkm1n4SuUJEmSJPWYvk0CAC8GflpVz6qqXYCLWvmPq2pv4LvAWcBhwHOB97b99wGHVtXuwAHA/zNygQ48Ezinqp5dVUcC91bV0qo6fJI4ngksr6rdgLuBt7byT1TVc1psWwEHt/ITgGe3+ke3suOBY6pqKbAvcO+mfCGSJEmSpPmtn5MAa4CDkpycZN+ququVXzhq/zVV9auqWgfcl2R7IMAHkqwG/gV4IvD4dsx/VNXVGxnHj6tqRds+D9inbR+Q5Joka4ADgZ1b+Wrg/CSvAR5oZSuAjyQ5Fti+qkbKH5LkqDa7YWjdunUbGaIkSZIkaT7o2yRAVX0f2IPOxf4Hk5zYdt3f3n83anvk8wLgcGAxsEe78/5zYMtW5zebEsrYz0m2BD4JHFZVuwKnj+rjZcCpLfaVSRZU1UnAm+jMGLg6yY7jnO/yqhqsqsHFixdvQpiSJEmSpF7Xt0mAJH8E3FNV5wEfBnaf4qELgV9U1W+THAA8ZZK6v03yyA209+Qke7ftVwNX8vsL/tuTbEPnkQTaYoNPqqrLgHcA2wPbJNmhqtZU1cnAELBeEkCSJEmSpAXdDqCLdgVOSfI74LfAW4ALpnDc+cDXkwwBq4BbJ6m7HFid5PpJ1gW4BTgiyaeBHwCfqqp7kpxOZ5bCbcB1re4WwHlJFtJ5LOGjVXVnkve1hMSDwM3At6ZwHj2pqtb7awAjfy5QkiRJkjS5eAHVPUmWAN9oi//NmsHBwRoaGprNLqdVks6F/7KF5D13mwSQJEmSpFGSrKyqwfH29e3jAOptI7MBFi1a1OVIJEmSJKl39PPjALMmyWOAS8fZ9cLZngUwH4y+83/Hsu7FIUmSJEm9xiTALKiqXwJLux2HJEmSJKm/+TiAJEmSJEl9wiSAJEmSJEl9wiSAJEmSJEl9wiSAJEmSJEl9wiSAJEmSJEl9wiSAJEmSJEl9wiSAJEmSJEl9wiSAetOyhQwMDHQ7CkmSJEnqKSYB1LOGh4e7HYIkSZIk9ZQ5mwRIcluSx25E/f2TPG8mY9LckGTcbUmSJEnS5OZsEmAT7A+YBJAkSZIkaQJzIgmQ5NFJvpnkxiRrk7yq7fqbJNcnWZNkx1Z3IMnXkqxOcnWS3ZIsAY4G/jbJqiT7TtDPU5Jc2o69NMmTW/lZST6e5KokP0xy2Khj3p7kunbMezZwHn/X4l+b5LhWtiTJLUlOT3JTkkuSbDVJG0vbea1O8tUki1r55UlOTnJtku+PnGOSLZKcMirG/z5Bu0clGUoytG7duslOQ5IkSZI0T82JJADwYuCnVfWsqtoFuKiV315VuwOfAo5vZe8Bbqiq3YB/AM6pqtuA04CPVtXSqvruBP18otXfDTgf+PiofU8A9gEOBk4CSPIi4OnAnsBSYI8k+43XcJI9gCOBvYDnAm9O8uy2++nAqVW1M3An8JeTfBfnAO9sMa4B3j1q34Kq2hM4blT5G4G7quo5wHNav08d22hVLa+qwaoaXLx48STdS5IkSZLmq7mSBFgDHNTudO9bVXe18q+095XAkra9D3AuQFX9K/CYJAun2M/ewOfa9rmtrRFfq6rfVdXNwONb2Yva6wbgemBHOhf049kH+GpV/aaqft1iH5mR8KOqWjXOuTxMO4/tq+o7rehsYHTSYbzv40XA65KsAq4BHjNJjJIkSZKkPrag2wEAVNX32530lwIfTHJJ23V/e3+Q38c63kpwtaldj9q+f9R2Rr1/sKo+PYW2JluhbnTbDwITPg6wARN9H39TVRdvYpuSJEmSpD4xJ2YCJPkj4J6qOg/4MLD7JNWvAA5vx+1P55GBu4FfAdtuoKurgL9q24cDV26g/sXAG5Js0/p7YpLHTRLXy5NsneTRwKHARI8ljKvNgBgetabBa4HvTHLISIxvSfLIFuMzWv/zVlWNuy1JkiRJmtycmAkA7AqckuR3wG+BtwAXTFB3GXBmktXAPcARrfzrwAVJDqFzZ3y8C/BjgTOSvB1YR+cZ/glV1SVJ/hT4XvtTdL8GXgP8Ypy61yc5C7i2FX2mqm5oixZujCOA05JsDfxwQzECn6HzaMD16QS5Dnj5RvbZkxYtWtTtECRJkiSpp8Q7qf1ncHCwhoaGuh2GJEmSJGkGJFlZVYPj7ZsTjwNIkiRJkqSZN1ceB5hWSd4FvGJM8Zeq6v3T0PZjgEvH2fXCqvrlRrRzKvD8McUfq6ozNyc+SZIkSZIm4uMAfcjHASRJkiRp/vJxAEmSJEmSZBJAkiRJkqR+YRJAkiRJkqQ+YRJAkiRJkqQ+YRJAkiRJkqQ+YRJAPWdgYACWLey8S5IkSZKmzCSAes7w8PDD3iVJkiRJU2MSQJIkSZKkPmESYIYkWZrkpRuosyzJ8dPQ11lJDtvcdnpBkkk/S5IkSZImZhJg5iwFJk0CSJIkSZI0m3o6CZBkSZJbk5ydZHWSC5JsneTEJNclWZtkedrt4iTHJrm51f1CK3tBklXtdUOSbSfp7x1J1iS5MclJrezyJINt+7FJbkvyB8B7gVe1dl81yWk8K8m/JvlBkje3drZJcmmS61t/h4yK4XUt/huTnDtOjO9rMwMeMab8qCRDSYbWrVs35e9YkiRJkjR/LOh2ANPgmcAbq2pFkjOAtwKfqKr3ArQL5YOBrwMnAE+tqvuTbN+OPx44ph2/DXDfeJ0keQnwcmCvqronyYRL01fVfyU5ERisqr/eQPy7Ac8FHg3ckOSbwC+AQ6vq7iSPBa5OciGwE/Au4PlVdfvYGJJ8CFgIHFlVNSam5cBygMHBwYftkyRJkiT1h56eCdD8uKpWtO3zgH2AA5Jck2QNcCCwc9u/Gjg/yWuAB1rZCuAjSY4Ftq+qBxjfQcCZVXUPQFXdMU3x/1NV3VtVtwOXAXsCAT6QZDXwL8ATgce3c7mg1R0bw/9o8f/3sQkASZIkSZJgfiQBxl7wFvBJ4LCq2hU4Hdiy7XsZcCqwB7AyyYKqOgl4E7AVnTvuO07QT8bpCzrJhJHvcctx9m9K/IcDi4E9qmop8PPW9kQxAFwH7DHZDIX5YGx+w3yHJEmSJE3dfEgCPDnJ3m371cCVbfv2Nr3/MID2jPyTquoy4B3A9sA2SXaoqjVVdTIwBEyUBLgEeEOSrVt7Ixfbt9FJKjDSV/MrYML1BUY5JMmWSR4D7E/nYn4h8Iuq+m2SA4CntLqXAq9sdRlzwX8RcBLwzcnWNZAkSZIk9a/5kAS4BTiiTZ0fAD5F5+7/GuBrdC6qAbYAzmuPCNwAfLSq7gSOawsI3gjcC3xrvE6q6iLgQmAoySo6awkAfBh4S5KrgMeOOuQyYKcpLAx4LfBN4GrgfVX1U+B8YDDJEJ1ZAbe2GG4C3g98p8X7kTExfqmd+4VJtpqkz3lh0aJF3Q5BkiRJknpKenk6dZIlwDeqapcuh9JTBgcHa2hoqNthSJIkSZJmQJKVVTU43r75MBNAkiRJkiRNQU//icCqug2Y1lkASXYFzh1TfH9V7bUZbR4JvG1M8YqqOmZT25QkSZIkaWP1dBJgJlTVGmDpNLd5JnDmdLYpSZIkSdLG6uk1AbRpkqwD/qPbcUyDxwK3dzsIbZDjNPc5Rr3BcZr7HKPe4DjNfY5Rb3Cc5ranVNXi8XaYBFDPSjI00WIXmjscp7nPMeoNjtPc5xj1Bsdp7nOMeoPj1LtcGFCSJEmSpD5hEkCSJEmSpD5hEkC9bHm3A9CUOE5zn2PUGxynuc8x6g2O09znGPUGx6lHuSaAJEmSJEl9wpkAkiRJkiT1CZMAmhOSvDjJ/0ryb0lOGGd/kny87V+dZPcNHZtkIMm3k/ygvS+arfOZr2ZonE5Jcmur/9Uk28/W+cxHMzFGo/Yfn6SSPHamz2O+m6lxSvI3bd9NST40G+cyX83Q/3dLk1ydZFWSoSR7ztb5zFebOU5nJPlFkrVjjvH3wzSaoTHyt8M0m4lxGrXf3w9zTVX58tXVF7AF8O/A04A/AG4EdhpT56XAt4AAzwWu2dCxwIeAE9r2CcDJ3T7XXn7N4Di9CFjQtk92nObeGLX9TwIuBv4DeGy3z7WXXzP4b+kA4F+AR7XPj+v2ufbqawbH6BLgJaOOv7zb59rLr80Zp7ZvP2B3YO2YY/z9MPfHyN8OPTBObZ+/H+bgy5kAmgv2BP6tqn5YVf8FfAE4ZEydQ4BzquNqYPskT9jAsYcAZ7fts4GXz/SJzHMzMk5VdUlVPdCOvxr449k4mXlqpv4tAXwUeAfgQjKbb6bG6S3ASVV1P0BV/WI2TmaemqkxKmC7tr0Q+OlMn8g8tznjRFVdAdwxTrv+fpg+MzJG/naYdjP1bwn8/TAnmQTQXPBE4MejPv+klU2lzmTHPr6qfgbQ3h83jTH3o5kap9HeQCfLrE0zI2OU5C+A/6yqG6c74D41U/+WngHsm+SaJN9J8pxpjbq/zNQYHQeckuTHwIeBv5/GmPvR5ozTZPz9MH1maoxG87fD5puRcfL3w9y1oNsBSHRc5oZXAAACXklEQVSmFY01Nls4UZ2pHKvpMaPjlORdwAPA+ZsUnWAGxijJ1sC76Ey91PSYqX9LC4BFdKZpPgf4/5I8rar8P3HjzdQYvQX426r6cpJXAp8FDtrkKLU546TZMaNj5G+HaTPt4+Tvh7nNmQCaC35C53mhEX/M+lMkJ6oz2bE/H5mm1N6dGrt5ZmqcSHIEcDBwuBcsm2UmxmgH4KnAjUlua+XXJ/nDaY28v8zUv6WfAF9pUzWvBX4HuAjTppmpMToC+Erb/hKdKbjadJszTpPx98P0makx8rfD9JqJcfL3wxxmEkBzwXXA05M8NckfAH8FXDimzoXA69rKpM8F7mpT9CY79kI6P7ho7/800ycyz83IOCV5MfBO4C+q6p7ZOpl5atrHqKrWVNXjqmpJVS2h8yNg96r6P7N2VvPPTP2f9zXgQIAkz6CzuNPtM38689JMjdFPgRe07QOBH8z0icxzmzNOk/H3w/SZkTHyt8O0m/Zx8vfD3ObjAOq6qnogyV/TWTl0C+CMqropydFt/2nAP9NZlfTfgHuAIyc7tjV9Ep3psG8E/jfwilk8rXlnBsfpE8CjgG8nAbi6qo6evTObP2ZwjDSNZnCczgDOSOdPNP0XcIR3xzbNDI7Rm4GPJVkA3AccNYunNe9szjgBJPk8sD/w2CQ/Ad5dVZ/F3w/TZgbHyN8O02gGx0lzVPx9IEmSJElSf/BxAEmSJEmS+oRJAEmSJEmS+oRJAEmSJEmS+oRJAEmSJEmS+oRJAEmSJEmS+oRJAEmSJEmS+oRJAEmSJEmS+oRJAEmSJEmS+sT/D/AWCaBALs45AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(figsize=(16, 9))\n", "sorted_idx = perm_result.importances_mean.argsort()\n", "bar_plot = ax.boxplot(perm_result.importances[sorted_idx].T, vert=False, labels=X_train.columns[sorted_idx])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Test" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Calculate calibration curve on test data" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [], "source": [ "y_pred_lgbm_calibrated = searchcv.best_estimator_.predict_proba(X_test)[:, 1]\n", "fraction_of_positives_lgbm, mean_predicted_value_lgbm = calibration_curve(y_test, y_pred_lgbm_calibrated, n_bins=10)\n", "# logistic regression\n", "y_pred_lr_pass = clf_pass.predict_proba(X_test_pass)[:, 1]\n", "y_pred_lr_other = clf_other.predict_proba(X_test_other)[:, 1]\n", "y_pred_lr = np.concatenate([y_pred_lr_pass, y_pred_lr_other])\n", "y_true_test = np.concatenate([y_test_pass, y_test_other])\n", "fraction_of_positives_lr, mean_predicted_value_lr = calibration_curve(y_true_test, y_pred_lr, n_bins=10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Plot calibration curve on test data" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtgAAARACAYAAADUNiQRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd1hUR/s38C+7dOwgUgQUscUSo6BGjFixi6ixR5SosT0aC5ZEBCQW7LHFFrDFAjYEFaWpQBSwYKeo9F6kw8LCvH/4sr+su/TFpdyf65or7pw5M/fZFXMzO2eODAAGQgghhBBCiERwpB0AIYQQQgghjQkl2IQQQgghhEgQJdiEEEIIIYRIECXYhBBCCCGESBAl2IQQQgghhEgQJdiEEEIIIYRIECXYhBBSS76+vmBMeMdTExMTMMZgY2NTadv6xsLCAowxWFhYSDsUQghpkCjBJoQ0el27dsXBgwfx6tUrZGZmgsfjIT4+Hu7u7rC0tISCgoK0Q/yqykv+CSGESIastAMghJC6ZG1tDRsbG3C5XDx69AhnzpxBbm4u2rVrh6FDh+Lvv//G0qVLYWRkJNFxg4KC0K1bN6SlpUm036/h+vXrePz4MRITE6UdCiGENEiUYBNCGq1NmzZh69atiImJwY8//oigoCCRNuPHj8fatWslPnZBQQHCwsIk3u/XkJ2djezsbGmHQQghDRqjQoUKlcZW9PT0GI/HYzwej/Xo0aPCtvLy8kKvLSws2JUrV9iHDx9Yfn4+y8rKYv7+/mzOnDliz/f19WXs88JqQTExMWGMMWZjYyO2rby8PLO3t2cfP35khYWF7P3792zLli1MTk5OpH/GGPP19WXt2rVjJ0+eZHFxcYzP5zMLCwsGgHXu3Jnt2LGDBQcHs5SUFFZYWMiioqLY8ePHmba2tlBfTk5OrDwmJiaC62eMCfr/b+nbty+7cuUKS05OFoxz5MgRpqGhIdK2bCw9PT22ePFi9vLlS1ZQUMCSkpLY8ePHWYsWLar1mXI4HPbLL78wf39/lpmZyfLz81lERAQ7efIkMzAwEDvul31U9rnIyckxa2trFhoaygoLC5mTkxPbuHEjY4yx//3vf2Lj0tTUZHw+nwUFBQnVc7lctnTpUvbo0SOWlZXF8vLy2LNnz9jy5cuZjIyM1H9GqFChUneFZrAJIY3SggULIC8vj4sXL+LNmzcVti0qKhJ6/ddff+Ht27d4+PAhEhMToaqqinHjxuH8+fPo2rUrtmzZUuv4nJ2dYWRkhCtXrqC4uBhmZmaws7ODoaEhJk2aJNK+TZs2ePz4MXJzc3Ht2jWUlpYiOTkZADBlyhQsWbIEvr6++Pfff1FUVIQePXpg4cKFmDhxIgwNDZGQkAAAuHHjBgBg/vz5uH//Pu7fvy8YIyoqqsKYx48fj6tXr0JGRgZXrlxBdHQ0+vXrh2XLlsHMzAzGxsaIjo4WOW/Xrl0YPXo03NzccO/ePQwbNgyLFy+GgYEBRowYUaX3S05ODrdu3cKoUaMQExODCxcuIDs7Gx06dIC5uTn8/f3x/v37KvVVkatXr8LIyAh37tzBjRs3kJKSgkuXLuGPP/6AhYUFDh06JHLO3LlzweVycebMGUGdrKws3NzcMGbMGISGhuLChQsoLCzEsGHDcPjwYQwYMADz5s2rdbyEkPpL6lk+FSpUqEi6eHl5McYY+/nnn6t9rr6+vkidnJwc8/LyYkVFRUxLS0voWE1msMPCwlirVq0E9QoKCuzff/9ljDE2d+5coXPKnDlzhnG5XJHYtLS0RGbhAbBRo0YxPp/Pjh49WqXYyoq4GWwVFRWWmprK+Hw+Gzx4sFD79evXM8YYu3v3rlB92UxydHQ009HREdRzuVz24MEDxhhjRkZGVfpMtm3bxhhjzNXVVeRa5eXlmZqamsi4NZnBfvHiBVNVVRU5z8PDgzHGxH4b8vr1a8bj8VibNm0EdTY2Nowxxg4ePMg4HI6gnsPhsFOnTjHGGJs0aZLUf06oUKFSN4V2ESGENEqampoAgLi4uGqf+/HjR5G64uJiHDlyBHJyclWeda2Ivb09MjMzBa95PB42bdoEALC0tBRpz+PxsG7dOpSUlIgcS0hIEJmFBwBPT0+8efMGo0ePrnW8ZmZmUFNTw+XLl+Hv7y90bO/evYiMjISpqSl0dHREzt26dStiY2MFr0tKSuDk5AQA6N+/f6VjczgcLFu2DPn5+ViyZInItRYVFUnsZlJra2ukp6eL1JfNTn+5dWG/fv3Qo0cPuLu7IyMjAwAgIyODFStWIDExEatXr0ZpaamgfWlpKdauXYvS0lLMmTNHIjETQuofWiJCCGmUZGRkAKBGe07r6Ohgw4YNGDFiBHR1daGsrCx0XFtbu9bxPXjwQKTOz88PxcXF+O6770SORUVFITU1tdz+5syZg/nz5+Pbb79F69atISv7f/+883i8Wsfbt29fAICPj4/IsZKSEjx8+BAdO3bEd999J5RMA8CTJ09Ezilr07p160rH7tatG1q1avVVdjYRdyMs8HlnlczMTMydOxcbN24UJM1lCffp06cFbbt06QI1NTWEh4dj8+bNYvsrKChA9+7dJRs8IaTeoASbENIoJSQkoHv37mjfvn21zuvYsSOCgoLQunVr+Pn54d69e8jKykJJSQk6dOiA+fPnS2Tf7LL10/9VWlqK9PR0qKurixxLSkoqt699+/Zh9erVSEhIwN27dxEfH4+CggIAn9dad+jQodbxtmzZEgDKTXDL6lu1aiVy7L8z9WX4fD4AgMvlVjp2WZ/x8fFVC7YWynufCwsL4ezsjMWLF8PU1BQeHh6QlZXFrFmzkJKSgjt37gjaqqqqAvicaNva2pY7VrNmzSQaOyGk/qAEmxDSKPn7+2PEiBEYMWIEHB0dq3zemjVroKamhvnz5wvdtAYAM2fOxPz58yUSX7t27URmejkcDlRVVcVukVfeTHzbtm2xcuVKvHr1CoMGDUJubq7Q8VmzZkkk3qysLACAhoaG2ONlS3LK2klSWYJe1W8OymaX/zuLX0bcLwBVdebMGSxevBgWFhbw8PDAhAkToKamhgMHDgh+YQD+7z24du0apk6dWuPxCCENF63BJoQ0Sk5OTigqKsLUqVMr/SpeXl5e8GcDAwMAn3eT+JKJiYnE4hPX1w8//AA5OTk8f/68yv3o6+uDy+Xi3r17Ism1trY29PX1Rc4pW8ddldnjMmUxDR06VOQYl8vF4MGDAQDPnj2rcp9VFRoaik+fPqF3796CRL4inz59AgCx68ENDQ1rHMe///6L8PBwmJmZoUWLFoLlIV/+IlYW78CBA8Um+YSQxo8SbEJIoxQdHQ1bW1soKCjg1q1b6Nevn9h2o0ePFvp6v2yrui8TSVNTUyxcuFBi8VlbWwvNpiooKGDHjh0AILgBsCrK4h08eDA4nP/7J11FRQUnT56EnJycyDllN/Hp6upWeZwbN24gPT0ds2bNwoABA4SO/frrr+jUqRM8PT1FZuUlobS0FEePHoWysjKOHTsm9AsR8HkLPzU1NcHrsnXUixYtEmrXs2dPrFq1qlaxnDlzBkpKSli2bBnGjRuHFy9eICQkRKhNSUkJDh06BC0tLRw8eBCKiooi/WhoaNAabEIaMfrVmhDSaO3YsQOysrKwsbHBkydPEBAQgCdPnggelT5kyBB06dIFwcHBgnOOHj2KBQsWwMXFBVevXkV8fDx69uyJMWPGwNnZGTNnzpRIbO/evcObN2+E9sE2MDCAu7s7zp07V+V+kpOTcfHiRcyaNQshISG4d+8eWrZsiVGjRqGwsBDPnz8XuWkyLCwMcXFxmDlzJoqKihATEwPGGM6dO4eYmBix4+Tl5cHS0hIuLi548OABXFxcEBMTg379+mH06NFITEzEL7/8Uqv3pCJ2dnYYMGAAJk2ahPDwcLi7uyMnJwc6OjowNTWFlZWVYCbZ1dUV4eHhmD17Ntq3b4/AwEDo6urCzMwMrq6umDFjRo3jOHv2LLZu3Qo7OzvIy8uLzF6Xsbe3x7fffoulS5di4sSJ8PHxQXx8PNTV1dG5c2cYGxvj999/x7t372ocCyGkfpP6XoFUqFChUpelW7du7ODBg+zVq1csKyuL8Xg8lpCQwG7fvs0sLS1F9lX+/vvvmbe3N8vIyGDZ2dnMz8+PmZmZVbqH8n/rqvskxw8fPrAtW7aI3c+asc9Pcizv+pSUlNgff/zBIiIiWEFBAYuJiWGHDx9mbdq0ERsbAGZoaMi8vLxYZmYmKykpqfKTHA0NDdm1a9dYSkoK4/F4LDo6mh09epRpamqKtK3JftQVFS6Xy5YvX84CAwNZTk4Oy83NZeHh4ez48eOsU6dOQm3bt2/PLl26xNLT01l+fj4LCgpi5ubm1foMyyuenp6MMcaKioqYurp6hW3nzp3LvLy8WHp6OuPxeCwuLo75+fmxTZs2sfbt20v9Z4MKFSp1U2T+/x8IIYQQQgghEkBrsAkhhBBCCJEgSrAJIYQQQgiRIEqwCSGEEEIIkSBKsAkhhBBCCJEgSrAJIYQQQgiRIEqwCSGEEEIIkSBKsAkhhBBCCJEgSrAJIYQQQgiRIEqwCSGEEEIIkSBZaQdQn6WkpCA6OlraYRBCCCGEkHpET08P6urq5R6nBLsC0dHRMDIyknYYhBBCCCGkHgkODq7wOC0RIYQQQgghRIIowSaEEEIIIUSCKMEmhBBCCCFEgijBJoQQQgghRIIowSaEEEIIIUSCaBeRWhowYACmT58ONTU1yMjISDscQhokxhjS0tLg7OyMwMBAaYdDCCGE1Aol2LUwYMAAzJ07F3/++SciIyNRUlIi7ZAIaZC4XC46duyIVatWAQAl2YQQQho0WiJSC9OnT8eff/6J9+/fU3JNSC2UlJTg/fv3+PPPPzF9+nRph0MIIYTUCiXYtaCmpobIyEhph0FIoxEZGQk1NTVph0EIIYTUCiXYtSAjI0Mz14RIUElJCd3LQAghpMGjBJsQQgghhBAJogSbEEIIIYQQCaIEmwAAzM3N4e3tjU+fPqGwsBBhYWGwt7eHqqpqtfqJjIzE7t27Ba+dnJwQHBwseG1hYQHGGFRUVCQW+5c6d+4MGxsbtGzZUmJ9uri4wNfXt8I2X17rl2p67TY2NkhNTa20nZWVFUxMTKrcb8eOHXH8+HFERkaisLAQmZmZ8Pf3x8KFC6GoqCg0PmNMUPLy8vDy5UssWrRIqD89PT1Bm0GDBomMt3nzZjDG6L4FQgghjR4l2AR79uyBi4sLPn78iJ9++gmmpqbYv38/Jk6ciJMnT9aqb3t7e8yfP18ygVZRly5dYGtri1atWn3VcStz69YtDBw4EPn5+XXS//r16zF06NAqtTU2NkZISAgMDQ2xbds2mJqaYvbs2Xj8+DH27t2L3377Tah9ZmYmBg4ciIEDB2LixInw9vbGiRMnMGvWLJG+c3JyxNbPmDEDOTk5Nbo2QgghpCGhfbCbuAkTJmDt2rWwtLSEk5OToP7hw4c4ceIETE1Na9X/x48faxsiAEBWVhalpaUoLS2VSH/SkJaWhrS0NGmHAUVFRVy+fBmPHz/G+PHjwefzBcdu376NPXv2wMjISOgcPp8vtDe1j48PBg0ahMmTJ+PixYtCbd3c3DBt2jSsWrVK8Hn17NkT3bt3h7OzM77//vs6vDpCCCFE+mgGu54wHj4VR/4JwaV7qTjyTwiMh0/9KuOuXr0aT58+FUquy5SWlsLDw0PweseOHXj58iVycnIQGxuL8+fPo127dhX2X96yie7du+Phw4fIz89HWFgYJk+eLHTc19cXLi4uWLRoEd6/f4/CwkJoaWmha9euuHjxImJiYpCXl4fXr19j1apVgp0nTExM4O7uDgCIiooSWZKgo6ODixcvIj09HXl5efDw8ECXLl2Exm7fvj1u3bqF/Px8REZG4ueff67kXawacUtEdHR0cPv2beTn5+Pjx4+wsLAodzlKnz598OjRI+Tl5eHZs2cYPHiw4FjZ9na2traCZRrlLReZPn06tLW1sXr1aqHkukxSUhLc3NwqvZ6cnBzIycmJ1Lu6uqJ58+YYNmyYoG7mzJnw9/dHfHx8pf0SQgghDR0l2PWA8fCp+GXNAbRtpwMOh4O27XTwy5oDdZ5ky8rKYtCgQUJJdEXU1dWxfft2jB8/Hr/++iv09fXh4+MDDqf6f40uX74MV1dXTJkyBa9evYKLiwt69+4t1MbY2BhLly7Fhg0bMHHiRGRlZUFbWxthYWFYtmwZxo0bh5MnT8LOzg4bNmwAADx79gxr164F8Hld+cCBA2Fubg4AaN26Nfz9/dG1a1csWbIE06dPh4qKCry8vITWHLu6uqJnz574+eefsWbNGqxatarOZl1v3ryJ7t27w9LSEmvWrMHKlSsxYMAAkXbKyso4c+YMjh8/jqlTp4LH4+H69etQUlISXGtmZiZOnTolWMrx7NkzsWMOGTIEcXFxePv2bbVi5XK54HK5aN68OebMmQMTExNcv35dpF1eXh7c3d2FlonMnDlTZKabEEIIaaxoiYiEWSzdhg4GPat1TufuhpCXVxSqU1RUxtJ1BzFy/Lwq9xP1/jXO/PV7ldurqqpCUVERMTExVWr/35lcDoeDR48eIT4+HsbGxvDz86vyuABw6tQp7N27FwBw9+5dvH37Fps2bRJKylq1aoXvvvsOycnJgjofHx/4+PgIXvv7+0NZWRmLFi3Czp07kZOTg7CwMADA8+fPER0dLWi7evVqqKiooE+fPvj06RMAICAgAFFRUbC0tMTRo0cxduxY9O3bFwMGDEBQUBAA4OnTp/jw4QMiIiKqdY2VGTduHPr06YP+/fsLZvmDgoIQFRWFDx8+CLVVVlbGr7/+KpjZTkxMREhICIYMGYK7d+8iJCQEfD4fcXFxlT5mXEtLC7GxsSL1XC5X8GfGmNByHDU1NZHZ7j///BPnzp0TO8alS5fw999/Y+nSpejTpw90dXVx5coVbNy4scLYCCGEkMaAZrDrATk5hWrVSxpjrErtxowZg4CAAGRmZqKkpETwdf+XSyyq4r8zn4wxuLq6on///kJtnj59KpRcA4CCggJsbW0REREBHo8HPp+P7du3Q19fXyhBFGfkyJHw9PREdna2YDY2JycHT58+haGhIQCgf//+SEpKEiTXABATE4OnT59W+xorY2RkhMTERKElNAkJCWLHKioqwv379wWvy2af27dvX+1xZWRkRD5zVVVV8Pl8QfkySc/MzIShoSEMDQ1hbGyMlStXwsLCAlu2bBE7xu3bt8HlcjF69GjMnDkT3t7eSE9Pr3ashBBCSENEM9gSVp0Z5DJH/glB23Y6IvVpKXGwW2smibDESk9PR2FhIXR1dStta2hoiJs3b+L69evYuXMnUlJSwBhDYGCg0PKKqkpJSRF5rampKVT3ZXINAA4ODli4cCHs7Ozw7NkzZGZmwszMDNbW1lBUVEReXl65Y6qpqeH777/HzJkzRY55eXkBADQ0NERiK4uvefPmVbq2qtLQ0BC7/V5qaqrIWNnZ2UJJcXFxMQDU6L2Pj4/HN998I1RXlkADn7fl+/Kz4PP5Qon/v//+Czk5OWzfvh2HDh0SfCNQpqioCDdu3MDs2bPxww8/YPPmzdWOkxBCCGmoGswMdqdOnXDs2DHBV+GV7UlcpkWLFnB0dERGRgYyMzNx/vx5tGnTpo6jrZ4Lf9ujsFB467bCwnxc+Nu+Tsfl8/kICAjA6NGjK21rbm6O1NRUzJgxA25ubggMDERSUlKNx1ZXVxd5nZiYKFQnbmb9xx9/xKFDh7B79254e3vj6dOnYm/UEycjIwOurq6Cmdj/luXLlwP4fIPfl7GJi1cSkpKS0LZtW5F6cXWS9PDhQ+jq6qJbt26CupKSEjx9+hRPnz6t8kzz27dvoaCggE6dOok9funSJUyfPh1qampi12oTQgghjVWDSbB79OiBcePGITw8HOHh4VU+7/Llyxg6dCgWLlyI+fPnw8jICDdu3KjDSKsvwOcqju/7FanJsSgtLUVqciyO7/sVAT5X63zsAwcOwMjICPPmia71lpGRESTfSkpKglnTMnPmzKnxuGU3HpaNY2ZmJrQsozxKSkrg8XiC1xwOR2RGuqioCIDo7K63tzd69OiBN2/eCJLJslL2dyo4OBgaGhpCy1V0dHTQt2/f6l9kJYKDg6GpqSm0JZ6Wlhb69etXo/6KioqqNKPt7OyM+Ph47N+/H7KyNf8Sq2fPz/caiFvPDQCenp64evUqdu3ahezs7BqPQwghhDQ0DWaJiJubG27evAng81P11NTUKj1n4MCBGDNmDIYMGSK4CS8+Ph5BQUEYMWIEvL296zTm6gjwufpVEuovubu7Y+/evfj7779hbGwMV1dX5Obmolu3bliyZAmioqJw9+5deHp6YvXq1di/fz/c3NwwaNAgzJ07t8bjLly4EEVFRXj9+jUWLVoEAwMDsQ8n+ZKnpyeWL1+O9+/fIyMjA8uXL4eCgvBa9bKbHH/55RdcunQJ+fn5eP36Nfbt24e5c+fCx8cHhw4dQnx8PNq1awcTExP4+/vj0qVLuH37NkJCQuDi4oINGzagsLAQW7duFbtsRJzWrVtj6lTR3V9u374tti4kJATOzs7YtGkTCgoKYGNjg+Tk5Brt9x0aGorx48fDw8MDubm5CAsLQ25urki7wsJCzJw5E7du3cLjx49x7NgxhIWFQVFREb169cKIESNEbrKUlZUV7G4iLy+Pfv36YfPmzbhx44bYpTzA51nxGTNmVPs6CCGEkMaANbTi4uLCfH19K21nZ2fHEhMTReo/fPjA9uzZU+n5wcHBFR4/e/as1N8LSZUpU6YwHx8flpmZyXg8HgsLC2O7d+9m7dq1E7SxsrJiMTExLDc3l3l6ejIDAwPGGGPLly8XtImMjGS7d+8WvHZychJ6Hy0sLBhjjBkZGTF/f39WUFDAIiIi2JQpU4Ti8fX1ZS4uLiJxqqurs2vXrrGsrCyWlJTEHBwc2MKFCxljjKmoqAjarVmzhkVFRbHi4mIWGRkpqNfU1GSOjo4sKSmJFRYWssjISHbu3Dn2zTffCNro6OiwO3fusPz8fBYVFcUWL15cpb9zTk5OrDx6enqCa/9vnLq6uuzOnTusoKCARUVFsUWLFrG7d++y69evC9rY2Niw1NRUkfG+fO/79u3LHj16xHJzcxljjJmYmFQYr76+Pjtx4gSLiopiPB6PZWZmsoCAALZ27VqhGG1sbISuhcfjsfDwcLZz507WrFkzQTs9PT3GGGPjx48vd8zdu3cLfR6N/eeKChUqTatMmKTJ7vsNZWEfxrL7fkPZhEmaTSom4+FT2ZF/Qtile6nsyD8hzHj4VKlff12VynJESDvAmpSqJtiXL18W287d3Z25u7vX+s2jRICKpEuLFi1YWloas7W1lXos0ir0c0WFCpWGWCZM0mQv3piyiMhxgvLijalUk+yvGZPx8KnsrHssc/ZKF5Sz7rGNNsmuLEdsMEtEaqJ169bIzMwUqf/06RP09fWlEBEhwn755ReUlpYiIiICbdu2xZo1a6CgoABHR0dph0YIIaQa1ll1hbKycFqlrCyLPfv6YLP1N+WcVbdatZYHlysjEtM6q65wv5lYzlk1M/tnaygqKgvVKSoqY/bP1nW2BLZVsxaYZjIWp25drpP+a6NRJ9gAxO5EIW4f4DKLFi3C4sWLAaBK67wJqQ0ej4cNGzZAV1cXjDEEBQVh5MiRVX74DyGEkPpBU0tJbD2HA3jcqfmuW7Uxe674bXjLi7U2VNtqV6u+ttRatsFlm0PQ19LFg5BARMRH1ck4NdWoE+xPnz6J3fKsVatWYme2AeDkyZM4efIkAAg9AISQunD69GmcPn1a2mEQQgippcSEAmi3VxapT4gvgO2WN1KICBg6rK3YmBITCiQ+VmFBHpRVRJ8XkZ4aL/GxAGD30k3ooNEeP21bU++Sa6ABbdNXE6GhoUJ7/Zbp1q0bQkNDpRARIYQQQhqjPbvDUFoq/O14fj4fe3aHSSmizzHl5ws/K6IuYhoxfh6UVZqDzxfezrcun+mx6cQu/Gi7HP6v6udkaKNOsO/cuQNNTU0YGxsL6vr164dOnTrhzp07UoyMEEIIIY3Jx/d54HBkkPmpCKWlDPFx+fh90yuJr3WuDvebifh90yvEx+XXWUzffGuMn/+3C8+DvHB094o6faZHFx19bFu4DhwOB0kZqXgW/lpifUtag1kioqSkhHHjxgEAtLW10aJFC8F+w7dv30ZBQQEiIiLw4MEDLFy4EADw+PFjeHh44OzZs1i3bh1KS0vh4OAAPz+/erUHNiGEEEIatslTtFHEK8HIYQ+QlVVc+QlfifvNxDpL8tU19bDW5jSS4iNxYNtCFOTlwN/7Sp2M1Vu/Gy5uOYgifjGO3jiH+DTxz2CoLxpMgq2uro4rV4Q/tLLXHTp0QHR0NGRlZcHlcoXazJw5E/v374ejoyM4HA7c3d2xcuXKrxY3IYQQQho3LlcGE8204OuTWq+S67qkpNwcG+wvQAYycLCejYK8nDoby6hbb5z//QCy8rLxo83yep9cAw0owY6OjoaMjEyFbTp27ChSl5WVBUtLS1haWtZVaIQQQghpwgb/oAY1NQVcvx4n7VC+ChkOByt/Ow4tHQP8sWEakhMi62ysH3ob4fTGPUhIT8EM2+VISK/ak5WlrVGvwSaEEEIIqWuTzbWRkVGEh/dTpR3KVzH7Z2v0Gzgajoc34k2IX52OVVjEw5uoCJhv/qXBJNcAJdhNno2NDVJTv84/CE5OTtXa+nDUqFFYtWpVrftpinx9feHi4iLtMAghpNFr1lwWI03b4ZZ7AoqLxT9jozExMZ0Fsxkrcdf1b3i6OdXZOAbaegCA4NCXmPTbQqRlZdTZWHWhwSwRIQ2fvb09lJSqvrm9qakppk2bhj///LNW/TRFy5YtQ3Fx01gHSAgh0jRmrAYUFbm4ca1u9nuuT7r26I/Fv+7Fy2cPcProb3U2zpyRZnD4ZSMW79mE24H362ycukQJNvlqPn78WK/6+ZKCggJ4PF6d9A0AHA4HXC73qyS+7969q/MxCCGEfF4e8uFDLkXiXCQAACAASURBVF6+yJJ2KHVKTb091tqeQVpKHPbbW6KkhF/5STWwaMJMbLVcA++nAfB5/qhOxvgaaIkIqdSwYcPw+PFjFBQUICkpCUeOHIGKiopQm169eiEgIAAFBQV4/fo1xo4di+DgYDg5/d/XR18u7WjZsiVOnjyJ+Ph4FBQUIDo6GidOnADweenKunXr0KFDBzDGwBgT9CVuiYiuri4uXLiA1NRU5OXl4cWLF5g1a1a512RhYQHGGIyMjODr64v8/HxYWVkBAHr06AF3d3dkZ2cjOzsbzs7OaNeuXY2v18zMDK9fv0ZhYSEGDBgAAJg0aRKCg4NRUFCAxMREODg4QFb2/37f1dbWxuXLl5GcnIz8/Hy8f/8eW7duFRz/5ptvcOfOHaSnpyM3Nxdv377FsmXLBMfFLRGp7HM0MTEBYwwmJiZwdnZGTk4OPnz4gKVLl5b7PhJCSFOmra2EAQNV4Xq9cc9eKyiqYP3W85CTU4CD9Rzk5Yh/GnZtrf7RElst18D9kTcWOFihsKjuJr3qGs1g1xMTJmlinVVXaGopITGhAHt2h0l1c/oy3bt3h4eHBzw9PTF16lTo6Ohg586d0NfXx9ixYwF83qP87t27SEpKwqxZs6CoqIj9+/ejdevWeP26/E3g9+3bh0GDBmH16tVISkqCjo4OhgwZAgA4deoUOnfujOHDh8Pc3BwAyl0r3rZtWzx69Aj5+flYt24dYmNj0bNnT+jo6FR6fRcvXsRff/0FOzs7ZGZmolOnTggICMCTJ0/w008/gcvlwt7eHm5ubujfv3+1r7dDhw7YtWsXtm7diuTkZERGRuLHH3/ExYsXcfz4cfz222/o1KkTduzYAQ6HI0jyz549CyUlJSxevBiZmZnQ19cXeirpzZs3ERoairlz54LH46Fr165o0aJFuddZlc+xzMmTJ3HmzBmcOHECs2bNwtGjR/HkyRNa904IIV8wM9cCALjeaLwJtoyMDFZsOArdjt9gx+aZSIiNqJNx+nbpifWzlsDZ9xbWHPkDJaUldTLO18SoiC/BwcEVHj979qxExpkwSZO9eGPKIiLHCcqLN6ZswiTNOr9GGxsblpqaWu7xixcvsvDwcMbhcAR1P/74I2OMsYEDBzIAbNmyZYzH4zEtLS1BGyMjI8YYY05OToI6Jycnoff01atXbMWKFeWOvXv3bhYZGSlS/2U/27dvZ7m5uUxDQ6PK121hYcEYY2zlypUin2loaCiTk5MT1BkYGDA+n8/GjRtX7etljLFvv/1WaIyoqCjm6OgoVLdgwQKWn5/P2rRpwwCwnJwcNmHCBLGxq6qqMsYY69mzZ7nX5+vry1xcXKr1OZqYmDDGGLOzsxO0kZWVZSkpKWzHjh11/nfxv5/B1xqLChUqVGpT7noPYecuDJB6HHVZZszfxJy90tm4Kb/U+Vg/9DZiMjIyUr/mqpTKckSawZaw3627o/s35c8kitPnu1ZQUBB+QI6ysix27uqNmbN0q9zPu7fZ2GYv2bW3/fv3x5UrV1BaWiqou3r1KoqLizF48GA8fvwYRkZGePr0KRISEgRtgoODkZSUVGHfISEhsLKyQklJCby8vBARUbPfiocPHw4PD49KxxPn1q1bQq9HjhyJM2fOoLS0VPDQosjISERFRcHQ0BC3b9+u1vXGxcXhxYsXgtddunSBnp4enJ2dhR6K5OPjAyUlJfTs2RMPHz5ESEgIduzYAVVVVfj4+CA2NlbQNiMjAzExMTh27BgOHjwIX1/fSneCqcrnWObevXuCP/P5fERERKB9+/YV9k8IIU3Nt31aQl+/GU4eq5v7guoD42FTMHXuOnjfPofb145LvH8uh4vti6xw9cEdBIW+gN/LxvNNKa3Brgfk5cV/DOXVf02amppIThZ+YlJpaSnS09PRpk0bAICGhobYBK+ypG/FihW4ceMGtmzZgvDwcISHh2PGjBnVjlFVVRWJiTVbTvPltampqWHjxo3g8/lCpVOnToIlJ9W5XnH9A8CdO3eE+o+KigIAwRgzZszAkydPsH//fsTExOD58+cYPnw4AIAxBlNTUyQlJcHR0RFJSUl4+PAh+vTpU+51VuVzLJOZKby2rqioCIqKiuX2TQghTdHkKe1RWFgCjzvVn9xpCDp17YulVofw9uW/OHXQSuL9y8vK4fjabZg3egr6du0p8f6ljWawJawmM8j3/YZCu72ySH1CfAHmzgqURFg1lpiYCHV1daE6DocDVVVVZGR83pMyKSkJXbt2FTm3bdu2FfadlZWFVatWYdWqVejVqxfWr1+Pf/75By9fvqzWLhjp6enQ1NSscvv/YowJvc7IyMD169dx6tQpkbZpaWkAqne94voHgEWLFuH58+ci7SMjIwEACQkJWLBgAWRkZNC/f3/Y2tri5s2b0NXVRUZGBsLCwjBt2jTIysrihx9+gIODA27duoX27duLjAlU7XMkhBBSNXJyMhg/QRNe95KRm1s3u2lIU2tVTVjZnUNmejL22s1HCV+yu18pySvg1HoHDO87CNZ/78WpW5cl2n99IP0pUoI9u8OQny/8A5qfz8ee3WFSiuj/BAYGwtzcHBzO//1VmTJlCuTk5ODv7w/g8/IIQ0NDaGlpCdoYGRlBQ0OjyuO8evUKVlZW4HK5gpv5qjpz6u3tjdGjR4skkDXh7e2Nnj174unTpyIlOjoaQO2uNywsDHFxcejQoYPYMb5MdhljCAwMhJ2dHVRUVKCnpyd0nM/nw9fXF/v27YOWlhZatWoldtyqfI6EEEKqxmSoOlq3lsf1Rrj3tbyCEqy2noOScjM4bJmDnKx0ifavpKCIf6z/xNA+A7HmyB+NMrkGaAa7XijbLURau4jIy8tj6tSpIvUPHjzAH3/8gefPn+PGjRv466+/0L59ezg4OMDDw0OwbtfJyQmbN2+Gu7s77OzsoKSkBDs7O6SkpAit+f2Sn58frl+/jtevX4MxhkWLFiE3NxdBQUEAgNDQUGhoaMDCwgKvX79GWlqaIMn9r/3792PevHnw8/PDtm3bEBsbi+7du0NFRQW7d++u1ntha2uLoKAg3Lp1C46OjkhLS4O2tjZGjRqF06dP48GDBzW+XuBzwrx27VqcO3cOLVq0wJ07d1BUVAR9fX1MnjwZ06ZNg5ycHO7evYuzZ88iPDwcCgoKWLt2LRITE/Hu3Tv06tULe/bsweXLl/Hx40e0bt0aGzZsQEhICD59+iR23Kp8joQQQqpmsrk2UlN5CPBPk3YoErd03UHod/4Wu21+Qmyk5J+pwCsuQnxqEpbf3YIb/vcqP6EBk/qdmPW1fK1dRKRZbGxsWHlMTEwYADZ8+HD2+PFjVlBQwJKTk9mRI0eYioqKUD+9e/dmAQEBrLCwkIWGhjIzMzMWFhbG9u/fL2jz5e4fu3btYi9fvmTZ2dns06dPzMfHhw0ePFhwXEFBgTk6OrLk5GShHTq+7AcA09XVZZcuXWIZGRksLy+PhYSEsBkzZpR73WW7iHx5HQBY165dmYuLC0tPT2f5+fksIiKCHTt2jGlra9fqev9bxowZwx4+fMhyc3NZVlYWe/78ObO3t2dcLpfJy8uzEydOsNDQUJaXl8dSU1OZm5ubYNeQtm3bsrNnz7IPHz6wgoIClpiYyC5cuMB0dHQE/X+5i0hVPseyXUR69OghdJ64vuqyNIafKypUqDTe0rKlHHsTNoZt+r271GORdJk6Zy1z9kpnZjNWSrxvtZZtmEabtlK/RkmVynJESDvA+lyaQoJdV6VDhw6sqKiIzZ8/X+qx0PU2rEI/V1SoUKnPZfYcXRYROY51795c6rFIsgz4YSJz9kpnyzcclXjfWqrqzO+QC/PYdabBbMNXWaFt+shXsXHjRiQkJCA6Ohq6urrYtGkTUlNTcfXqVWmHViea2vUSQgj5zMxcG6Gh2Xj3LkfaoUhMB4NeWL7+CMLfBuPEvtWS7VujPZxtD6OlSgvMPWIv9kb8xogSbCIRjDHY2NhAS0sLPB4Pfn5+WLduHXJyGs8/QP/V1K6XEEIIoNdBGX37tYbDDsmvTZaWlq3VsX7reeTmZGK3zTwUF0vu8eRddPThbHsYclxZTLNZilcfpb95w9dCCTaRCAcHBzg4OEg7jK+mqV0vIYSQzzc3lpQw3LyRUHnjBkBOTgFWdmfRrHlrbFk9HlmfUiTav73lGjDGYG69BOGxjfeBPOJQgk0IIYQQUgkZmc/LQ/4NSENKiuRmeaVp8ep96PKNEfbazUfU+1cS73/5gS1QUVRCdHLj286wMrQPNiGEEEJIJfoZtoaOjjJuXG8cyeKk6f+DielMXD69A4F+bhLr94feRjjyqz1kuVykZWU0yeQaoASbEEIIIaRSZubayMvjw/NusrRDqbV+A0dj9sItCPC9hqvn90is39FGQ3Du9/3opquP5krNJNZvQ0QJNiGEEEJIBRQUOBg3XhN3PZJQUFAi7XBqRadDN6z87QQiI17irz0rJdbv5MGmOLV+J95EhmPqlqX4lJslsb4bIkqwCSGEEEIqMHykOlq0kMONBv5o9OYtVbHB/gIK8nOxa8tcFPEKJNLvj0PH48ivWxH4NgTTbVcgMzdbIv02ZHSTIyGEEEJIBSabayMxoQCBj9OlHUqNcWXlsHaLE1qptoPN6on4lJ4osb7DYz/i5r9eWH3YHoVFjeMG0NqiGWxCCCGEkHK0UZXHEJO2uOmagNJSaUdTcwtX7sI33xrjrz0r8SHsmUT6HPjNdwCAFx/eYem+zZRc/wcl2E2cjY0NGGOCEh8fjytXrkBfX19iY1hbWyMuLg4lJSVwcnKSWL+LFi2CmZmZSH1kZCR2794tsXFqw8bGBqmpqYLXJiYmYIyhR48egjrGGJYvX16ncVhZWcHExERi/Y0fPx6MMejp6UmsT0IIqY8mTtSCrCynQe8eMtZ8MUaMm4dr/+xDgI9knjj8+08rcP2P4xj+3fcS6a+xoQSbIDMzEwMHDsTAgQOxbt069OnTB97e3lBWVq513/369cPWrVtx+PBhGBsbw97eXgIRf7Z48WJMnjxZYv19Dc+ePcPAgQPx4cOHrzru+vXrMXTo0K86JiGENAZm5tp49TIL7yNypR1KjXxrOAwWS/5AkP8tXD69vdb9ycjIYPsiK6wwn4fTHlfgG/JYAlE2PrQGm4DP5yMwMBAAEBgYiJiYGPj7+2PcuHG4cuVKjfpUVFREYWEhunXrBgA4cuQIPUYcQE5OjuC9ri0FBQXwePR1HCGE1BWDzs3Qq3dL/GH3Vtqh1IiWTmf8uvlvxES9w6GdS8EYq1V/XA4X+5ZvxvRh43H4+llsO3dYQpE2PjSDTUQ8ffoUANChQwcAnxM5BwcHxMTEoLCwECEhIRg7dqzQOZGRkdizZw82b96M2NhYZGdnw8nJCefPnwcAZGdngzEmWKbQunVrHDt2DElJSSgoKEBAQAD69+8v1CeHw8HGjRsRFhaGwsJCxMbGCpaY+Pr6wtDQEPPnzxcsb7GwsBC5lnHjxqGkpERwLWU6dOiAkpISTJw4sdz3oaLxy/q+d+8ekpOTkZWVhUePHmHUqFEVvrfilogAgLy8PA4cOID09HR8+vQJBw8ehJycnOC4hYUFGGMwMjKCr68v8vPzYWVlBQDYsWMHXr58iZycHMTGxuL8+fNo166d4NzIyEioqanB1tZW8F6VfQ4yMjLYsGEDIiIiUFhYiLCwMMybN08kbhsbGyQnJyM7OxtnzpxBixYtKrxOQghpDCaba4PPL4WbW8N7NLpK81bYYP8P+MVF2GU9B7zCvFr3OfCb7zB92Hg4XDhGyXUlaAabiChLRpOSkgAAV65cQf/+/WFjY4MPHz5g+vTpuHnzJgwNDfHixQvBebNnz8abN2+wbNkyyMrK4sWLF4iNjYW1tTWGDRuGgoICvH37FvLy8vDy8kKrVq1gZWWFlJQULF26FF5eXujcuTOSkz9v4n/8+HHMmzcPu3btwoMHD9CmTRtMmzYNALBs2TJcvXoVHz9+FCw7EbfswsPDAwkJCbCwsICdnZ2gfv78+UhNTcXt27fLfR8qGh8AOnbsCDc3N+zZswelpaUYO3Ys7ty5gyFDhuDff/+t1nu+du1aPH78GHPmzEGPHj2wbds2FBYWYv369ULtLl68iL/++gt2dnbIzMwEAKirq2P79u1ISEhA27ZtsXbtWvj4+KBXr14oLS2Fubk5fH19ceXKFZw6dQoA8Pbt59mYQ4cOwcLCAlu3bsWzZ88watQoODo6Ij09Hbdu3QIArFy5Elu2bMH27dvh5+eHKVOmYNeuXdW6PkIIaWg4HGCSmRYePkhFRnqRtMOpFi5XFqutHdG2nQ7s1pkhLSVOIv0GvH6C4atn4130e4n019gxKuJLcHBwhcfPnj0rtv7q1r9EisWYqQwAU5JXEHt8+rDxDABr07yl2OOTjEcyAExLVV3s8VGGg2t0jTY2Niw1NZVxuVzG5XJZ586dmY+PD8vKymIaGhps+PDhjDHGhgwZInTegwcPmLOzs+B1ZGQkS0hIYAoKCkLtLCwsGGOMqaioCOosLS0Zj8djBgYGgjoul8vev3/Pdu3axQCwrl27MsYY+9///lfh5+Pk5CRSHxkZyXbv3i14bW9vzz5+/Fhhmy9LVcb/b5GRkWFcLpd5eHiwv//+W+T9LXttYmLCGGOsR48egjrGGHv37h2TkZER1P32228sLy+PtW7dWuh9XLlyZYVxcDgcpqWlxRhj7IcffhDUp6amMhsbG6G2nTp1YiUlJWzevHlC9WfOnGFBQUGC/uLj49nRo0eF2ty7d48xxpienp7Ef+7K+7miQoUKla9Zvh+kyiIix7Gx4zWkHkt1y4IVO5mzVzozMZ1V675UFJXZBes/2eBeRlK/rvpUKssRaYkIgZqaGvh8Pvh8PsLDw6Gvr48ZM2YgKSkJI0eORGJiIgICAsDlcgXF29sbhoaGQv14e3tXaU3wyJEj8fTpU0RGRgr6A4AHDx4I+hw2bBgA4PTp07W+PkdHR+jp6Qlu8hs2bBg6dOhQ4Y4mVRlfW1sbp0+fRlxcnOD9Gz16NLp06VLtGF1dXYXWxl27dg3Kysro2bOnULuyWeX/GjNmDAICApCZmYmSkhLEx3++072yOEaMGIHS0lJcv35d5LPt06cPOBwOdHR0oKWlBVdXV6Fzr127Vu1rJISQhmSyuTays4vh45Ui7VCqZdSE+Rg7eRHcnA/jwb2LteqrVbMWcLY9jB96G0G1RSsJRdg00BKROjB1y9JyjxUU8So8npGTVeHxhPSUCo/XRGZmJkaOHAnGGJKSkpCQ8H9rzdTU1KCpqQk+ny9y3pd1ZUs7KqOmpobvv/9ebJ/v33/+2klVVRW5ubkSuTEyMjIS9+/fx4IFCwT/DQwMFCyTEKey8WVkZHDz5k00b94cW7Zswfv375GXl4etW7dCXV292jGmpKSIfa2pqSlU/+V7bGhoiJs3b+L69evYuXMnUlJSwBhDYGAgFBUVKxxTTU0NsrKyyM4W/8QtTU1NaGhoVBgfIYQ0RkpKXIweqwF3twTweA1n8+sefX6A5f8c8CzwHs6fsqv8hAqotWyDSzaHYKCth4W7NuJu8EMJRdk0UIJNwOfzBTc2fikjIwNxcXFV2g6vqncnZ2RkIDg4GEuXiv6iUDYDnp6ejmbNmqF58+YSSbJPnTqFkydPYtOmTZgyZQrWrl1bYfvKxjcwMEDfvn0xZswY3L17V1CvpKRUo/i+TMrLXicmCj9p68v32NzcHKmpqZgxY4agTldXt0pjZmRkoLi4GMbGxigV8/SElJQUyMrKVhgfIYQ0RqNGt4OKimyDejR6O62OWLvFCQmx7/HntsVgtXgqTutmLXH9j+PQUlXHvO1r8PBFkAQjbRoowSYV8vb2xtq1a5Gbm4uwsDCJ9WlqaoqYmBihh7D8l4+PDwBg3rx5OHLkiNg2RUVFlc7Slrl27RqOHDmCS5cugcPh4NKlSxW2r2z8skT6v0tidHV1YWxsjJcvX1Yppv8yMzPDpk2bBAn0lClTkJ+fj9evX1d4npKSEoqLi4Xq5syZI9JO3Hvl4+MDLpeLli1bwsvLS2z/sbGxSExMhJmZmdAvElOmTKnSdRFCSEM02VwbsTH5ePrkk7RDqRIllebYYP8PGBh2Wc9BQX7tJqYy87Lx4EUgXP3vITi0+v9PI5Rgk0p4enri7t278PT0hIODA968eYMWLVqgT58+UFRUxG+//VbtPs+ePYslS5bg/v372LNnDz5+/AhVVVX0798fSUlJOHDgAMLDw3H8+HHs3bsX6urqePjwIVq1aoVp06Zh1qxZAIDQ0FCMHj0apqamSE9PR2RkJDIyMsSOyePx8M8//2DFihW4cOECsrKyKoyxsvFDQ0MRGxuLvXv3wtraGs2bN4ednZ1g/XN1NW/eHC4uLjh58iR69OiBLVu24PDhw/j0qeJ/3D09PbF69Wrs378fbm5uGDRoEObOnSvSLjQ0FOPHj4eHh4fgl6Xw8HAcO3YMly5dwq5du/DkyRMoKiqiR48e6NKlCxYtWoTS0lLs2rULe/bsQVpaGvz8/DB16lR07969RtdJCCH1Xbt2ChhkrIa/jrxHLbeN/ipkOBys+u0kNLT1sW3DNCQnRtW4ry7tO6KgiIfYlARsPrVHYjE2VVK/E7O+lpruItKQype7XIgr8vLyzNbWlkVERDAej8cSExPZnTt32Lhx4wRtytuVQ9wuIgBYixYt2IEDB1hMTAzj8XgsNjaWXb16lQ0aNEjQhsPhsE2bNrEPHz4I2jg6OgqOd+zYkXl6erLMzEzGGGMWFhYVxjJixAjGGGMjRoyo0ntT2fiGhoYsMDCQ5efns/DwcGZhYcGcnJyE/t5UdReR1atXs0OHDrGMjAyWmZnJDh8+zOTl5St9HwEwKysrFhMTw3Jzc5mnpyczMDBgjDG2fPlyQZu+ffuyR48esdzcXMYYYyYmJoJjq1atYq9fv2aFhYUsJSWF3b9/n/30009CY2zdupWlpKSw7Oxsdv78eTZr1izaRYQKFSqNsixc3JFFRI5jeh2UpR5LVcpPi+2Ys1c6Gzneolb99NLvyt6cvsdu/HFC6tfUEEplOSKkHWB9Lk0hwW5KxcHBgUVFRQlth0el/hX6uaJChYo0i/udH9jlK99LPY6qlKGjZzNnr3S2YPmOWvVj2LUXCzvnw4KO3WAdNNpL/boaQqFt+kiT16VLF0yePBlLly7FoUOHav2oWEIIIY1T9+7N0bVbc7her/83N3btOQCLf92Ll0/v48xfm2vczw+9jXDZ5jBSMtMx+ffFiEqSzENpmjpag00avePHj2PAgAG4efMmDh48KO1wCCGE1FOTp7RHUVEpbrknVt5Yitq208E6mzNISY7BfntLlJaW1LivtdMXISopDjPs/oe0LPH3MZHqowSbNHplD40hhBBCysPlymCimRZ8vVOQlVVc+QlSoqCogvX2/0BWTh4Om+cgL7fim/Yrs2CnFRgYMnPFPxOB1AwtESGEEEJIk2c8WA1t2yrgRj1eHiIjI4OVm45BR68b9ttbIjHufY36mT3SDOd/3w95WTl8ys2i5LoOUIJdC4wxwWO+CSG1x+VyaY08IUQqJptr49OnIjy4X3+fVDtzwe8wMh6HM39txsun92vUx6IJM7F32e+QkZEBl0NpYF2hd7YW0tLS0LFjR2mHQUij0bFjR6SlpUk7DEJIE9OsmSxGjW6HW+6JKC6un7/kDx4+DeazV8PT/TTu3DhRoz5+nWaJrZZrcOuRDxbstEJBEa/yk0iNUIJdC87Ozli1ahUMDAxoJpuQWuByuTAwMMCqVavg7Ows7XAIIU3MmLEaUFTk4sa1+rmDhkG3fliy7k+8eeEPx8Mba9THqqkLsGH2Erjcv41f9v6OIn79XWfeGNBNjrUQGBgIAFi6dCnU1NQgIyMj5YgIaZgYY0hLS8P58+cFP1eEEPK1mJlr4+PHXLwIqd0Ng3WhjZoWrOzO4lN6EvbZLUBJDRPje0/80Fy5GbadP0xL8b4SqW/WXV9LFZ7SQ4UKFSpUqFBpwEVLW5FFRI5jy1Z0knosXxZ5BSW286g3O3MzmrXX61rt87kcLhv//XCpX0djLPSgGUIIIYSQcphN1gYAuF5PkHIkopavP4wOBr3x57ZFiIsOq9a5crKy+GvNHzhltRP9u31bRxGS8tASEUIIIYQ0WWbm2gh8nI74+AJphyJk2k9W+N5kMs6dsMGzwHvVOldRXgGnrHZiRD9j2DjuR1DoizqKkpSHEmxCCCGENEm9v22JTp2a4dSJj9IORcjAIZMw3WIj7t+9CDfnw9U6V0VRGWd/24uB33yHdUe34R8v1zqKklSEEmxCCCGENEmTp2ijsLAEHneSpB2KQEeD3li+/gjC3gThxIE11T6/f/fe6Ne1F5Yf2IIb/tWb+SaSQwk2IYQQQpocOTkZjJ+gBa97ycjN4Us7HABAqzbtYLX1PHKyM7DHZh74xUVVPpfL4aKktAS+zx/j+2VTkJhefx+Y0xTQTY6EEEIIaXKGDG2LNm3k682j0eXkFLDO7iyaNW8FB+s5yMpMrfK5Wqrq8Nx7DiP6GQMAJdf1AM1gE0IIIaTJmWyujbQ0Hvz96sfTY39ZcwBduhtij60Foj+8rvJ5eu204WJ3BC1VWiAnL7cOIyTVQTPYhBBCCGlSWraUw/Dh6nBzTUBJCZN2ODCbuQpDRk3HRcdtCPJ3r/J5Xdp3xI1tJ6CiqIwfbZbRbiH1CM1gE0IIIaRJGTdeE/IKXNy4Jv3lIYaDxmKW5WYE+FzF9Qv7qnyelqo6rv9xHMUlfJhbL0F4bP3aCaWpowSbEEIIIU2KmbkWwkJz8PZttlTj0O34DVZuOoaPES9wdM/Kap2bkJ4CpzsuuPLgDqKS4uooQlJTtESEEEIIIU2Grp4y+hm2gesN6c5eYVlhhQAAIABJREFUN2+pivX2/yA/Lwe7t8xFcVFhlc4z7mkIfU1dAMCeyycpua6nKMEmhBBCSJMx2VwbpaUMN6WYYHNl5bDO9gxatW6L3TY/4VN61fbhHmU4GP9YH4Dtgl/rOEJSW5RgE0IIIaTJmGyujX8D0pCczJNaDItW7UH3Xt/j6O7/4UPY8yqdY2Y8Cn+v34U3keFYedC2bgMktUYJNiGEEEKahH6GraGjqyzVva/HT12C4WPn4sq53fj3/vUqnTNrxCQcXW2PJ2EvMd12BTJzpbt2nFSOEmxCCCGENAmTp2gjL48Pz7vJUhm/j9EI/LR4KwL93OBy1qFK53A4HMwYNgH3Qx5jjv0q5BXm13GURBJoFxFCCCGENHry8hyMG6+Je3eTkJ9f8tXH19btgl83n0JM5FscdlgGxirff1teVg5F/GLM3bYaRcVFKOIXf4VIiSTQDDYhhBBCGr3hI9XRooWcVPa+btaiNTbY/4OiokI4bJkDXhVmoX//aQUu2RyCorwCcgvyKLluYCjBJoQQQkijN9lcG0mJBXj8KP2rjsvlymL1ZkeottXGHpt5SE+pOMGXkZHB9kVWWGE+D+GxkeAVF32lSIkkUYJNCCGEkEatjao8hpi0xU3XBJSWft2x5y/bjl59h+D4/tUIfxtcYVsuh4v9y62xYOyPOHL9HDaecKjSUhJS/9AabEIIIYQ0ahMmakJOjvPVdw8xnWSJ0WY/w/XSQTz0vFxp+62WqzFj+ATsungM+10cv0KEpK5Qgk0IIYSQRs1ssjZev8pCRHjuVxuz53dDsGD5Djx95IELjvZVOsfpjgvC4yJxxuNqHUdH6hotESGEEEJIo2Vg0Ay9v20F1684e62hrY811o6Ij4nAwR1LwCpYl6KiqIz5Y6YBAN7HR1Ny3UjQDDYhhBBCGi0zc23w+aVwc0v4KuMpq7TABvsLKGWl2LVlDgryc8pt21KlOf6xPoBvO3VHcOgLvImK+CoxkrpHCTYhhBBCGiUZGcBsshb8HqQhPa3ud+PgcLj4dfMptNPqAPv1U5CSGF1uW7WWbXDJ5hAMtPWwcNdGSq4bGUqwCSGEENIoDRioCk0tJezcHlpnYxgPn4rZP1tDta02CgvyoKzSHMf3/Yp3L/8t9xwtVXVctj0CLVV1zNu+Bg9fBNVZfEQ6KMEmhBBCSKM02VwbOdnF8Paqm0ejGw+fil/WHICiojIAQFmlOfj8YhRW8iCZbrqd0KZFK8zauhJBoS/qJDYiXXSTI/l/7N13VJTX1gbwZ4YZuvTebKioGCsqmsTYYhexRxMTexeVYkVE7A0VuyYaY+zBGruxi4o9dlRERESq9P5+f3hDPgIIDDMM5fmttdfV9z1lD2td3Z6cOYeIiKjC0dBQQacuZjhx4j3S0hRz+PWg4Z45xfU/JBIpBg33zD8nNXUAwF93A9BiTC8W1xUYC2wiIiKqcDp+awptbQkO+b9V2ByGxpZFfm5fvTYC1vujk8PXAIDElCSF5UXKxwKbiIiIKhwnZ0uEhibjVmCswuaIj4vK93l0ZO4jAZvVaYAD8zYgIzMDz0JfKSwfKjtYYBMREVGFYmKihtZfGuHIoTAo6qbxug0coamtg+z/nHGdmpqMXT//e7HMlw0csGeOH6I+xqLXrFF4/V5xK+pUdrDAJiIiogqlh5MFVFREOHRQMWdf29m3xIyFe/AhPAQ/r3FHZEQosrOzERkRik0rJ+PqX58ui6lpYYPfZq3Emw/v4Dx7NMKiFPNlSyp7eIoIERERVShOzpa4eycWr4Plv8+5Tv3mmLFwL6Ijw+Ht1gsfYz/gzLHt+bZ9+e4N5u/wg/+lU4hN/Cj3XKjs4go2ERERVRh2daugbl0dHFLA1ei16jbDzEX7ERv9Ht5uTvgY+yHfdn3bdEFt6xoAgJ+P72NxXQmxwCYiIqIKo1dvS6SnZ+P4sXC5jlurbjPMWnwAcTER8HbrhbiY/Ld7DO/aH34u3hjf6we5zk/lC7eIEBERUYWgoiJCj54WuPDXB8TFZcht3Jp1mmDW4v2Ij4uEt1svxEbnX7y79BmK6YPH4vj183DfsFBu81P5wwKbiIiIKoRWrQ1hYqIu1+0hNWo3wuwlBxD/MRrebk6Iicr/i5Mzvx+Pib1/xIELxzF5rQ+ysrPklgOVPyywiYiIqELo5WyJ2Nh0XLwQKZfxqtt+gdlL/kBSQhy83ZwQHZl/cS2VSNDIth52nPLH9M1LICjqbEAqN1hgExERUbmnrS1Bx05m8D/wFunpJb8avZptA3gu9UdyUvyn4vpD3lVxFbEKNNTUkZiShB8WTEFaRnqJ56WKgV9yJCIionKvU2czaGio4JB/ybeHVK1RH55L/ZGSkghvNydERoTmaSOVSLBh6nzsnrMGEhUVFteUCwtsIiIiKvecnC0QHJyEe/fiSjSOTfV68Fx2EGmpKZ+K6/dv8rRRV1XDL9OWoker9jh27Rwys7jfmnJjgU1ERETlmoWlOhxbGeFwCb/caF3NDnOWHURGehq8XXviQ3hInjZa6prYOcsX7Rq3gvuGhdh0dFeJ5qSKiXuwiYiIqFzr6WQJACUqsK2q1sGcZYeQmZkBbzcnRIS/zrfdivGz0KJeI0xY7YWDl0/JPB9VbCywiYiIqFzr5WyJmzei8fZtikz9LW3qYM7yQ8jKyoK3qxPeh70qsO2inetx4MIJnL19RdZ0qRLgFhEiIiIqtxp8oYuattoyn31tYV0LXssPQsjOxjz3XggPe5mnjbmhCab2HwEACIkIY3FNhWKBTUREROVWr96WSEvLwonj74vd19zKFl7LDwEA5rk7411oUJ42VU0tcWj+ZozpOQjVzKxKnC9VDiywiYiIqFySSkXo3t0cZ05HIDEhs1h9zS1rwmv5YYjFKvB2c0bYm+d52tS2qo5DCzZDW1ML/bzG4/X7t/JKnSo47sEmIiKicumrNsYwMFQr9pcbTS2qw2vFYUgkEni7OSHszbM8bRrUqIPdnmuQlZ2N3p6j8exNwfuyif6LK9hERERULvVytkRUVBquXI4qch9T82rwWn4YEqkqvN17IfT103zbGeroIy4pAb1mj2JxTcXGApuIiIjKHR0dCdq3N8GxI++QmSkUqY+JeVV4rTgMNXUN+Lg7IzT4SZ42xnqGAIAL967jG5cBCA7Pe4sjUWFYYBMREVG507WbOVTVVHCwiFejG5taw2v5Yaira2GeuzNCXj3K06Zjsy9xY8NBdHL4GgB4QyPJjAU2ERERlTtOzpZ4/iwBjx/FF9rWyMQKXiuOQEOzCnw8eiPk5cM8bXq27oCfPZbi6ZuXuPHkniJSpkqEBTYRERGVKzY2mmjmYFCkLzcamljCa8VhaGrpwMejN4JfPMjTZmC7Hlg/2Qe3nj1A/7kTEJdYeNFO9DkssImIiKhccXK2RHa2gCOH3322naGxBbyWH4Z2FX0smN4XwUH387T5ooYdfCd44tKDmxjs44LElCRFpU2VSLkpsOvWrYuzZ88iKSkJYWFh8Pb2hlhcePpNmzbFqVOnEBUVhejoaJw5cwbNmzcvhYyJiIhIEXo5WyDgWjTev08tsI2+oTm8lh+Gjq4hFkzvh5fP7ubb7sGrpxi7cjZ+WuSGlPQ0RaVMlUy5KLD19PRw9uxZCIIAJycnzJs3D66urvD29v5sPysrK5w9exYSiQRDhgzBDz/8AIlEgtOnT8PGxqaUsiciIiJ5adJUHzZVtT57Nbq+oRm8VhyCjp4xFkzvhxdPb+dpM7X/CNhXrw0AOHTlNNIzMxSWM1VOQlmP6dOnCzExMUKVKlVynrm7uwtJSUm5nv03Ro8eLWRmZgq6uro5z/T09ITMzExhzJgxhc4bGBio9M/OYDAYDAbj3/BZYC/cf/StoKmpku97PQNTYdW2G8KvR0KE2vUc8rwXiUTCghFuQrj/TWHWDxOU/nkY5TMKqxHLxQp2ly5dcOrUKSQkJOQ827NnDzQ1NdGmTZsC+0mlUmRmZiIxMTHnWWJiIjIzMyESiRSaMxEREcmXqqoYXbqZ49TJ90hOznuEnq6+CbyWH4aBkRkWzuyP548Dc71XEatg5fjZGNa1PzYc3okFv60trdSpkikXBbadnR2ePs1901JoaCiSkpJgZ2dXYL8//vgDycnJWLFiBYyNjWFsbAxfX1/ExsZi//79ik6biIiI5KhdexPo6kpx+GDeLzfq6hnDa/khGBqbY+GMAXj28Eau91KJBBumzsfAdj2wdPcmzPt1TWmlTZWQRNkJFIW+vj7i4uLyPI+NjYW+vn6B/cLDw9G2bVscO3YMLi4uAIB3796hU6dOiIoq+rWqREREpHxOzpZ4/z4VAddy/x2uo2eEOcsPwcjECotmDcTTh9fz7a+hpoa521dh05FdpZEuVWLlosAGAEEQ8jwTiUT5Pv+HmZkZDhw4gNu3b2PEiBEAgPHjx+PPP/9Eq1atEBqa9/rTkSNHYtSoUQAAIyMjOWVPREREJWFgoIo23xhj+y/ByM7+93kVXUPMWXYQJmY2WDzrOzx5cC1XP011DahLVRGT8BFDFrp+tm4gkpdysUUkNjYWenp6eZ7r6urmu7L9D3d3d0gkEvTt2xenTp3CqVOn0KdPH2RlZcHNzS3fPlu2bIGDgwMcHBy4yk1ERFRGdOthDqlUnOtq9Co6Bpiz7CDMLKpjiedgPLp/JVcfXa0q2Ou1Fr/N8i10UY5InspFgf306dM8e62trKygra2dZ2/2/2dnZ4dHjx4hMzMz51lGRgYePXqEmjVrKixfIiIiki8nZ0s8evgRQc8/HVygraMPz6X+MLesgSWeg/Hw7qVc7Q119XFg3gY0qFEHfv6/srimUlUuCuwTJ06gU6dO0NbWznk2YMAAJCcn4+LFiwX2CwkJgb29PaRSac4zVVVV2Nvb4/Xr14pMmYiIiOSkZk0tNGyol3P2tVYVPXgu9YeFTS0snfM9/r6TuxYwNzTBQZ+NqGlhgx8XuuLkzYJrBSJFUfpZgoWFnp6e8O7dO+H06dNC+/bthZEjRwoJCQmCj49PrnZBQUHC1q1bc37fpEkTIT09XTh27JjQtWtXoVu3bsLx48eF9PR04YsvvijxGYcMBoPBYDAUH1PdagtPgjoLRkaqgpa2rrB4/Tnh9+PvhIYO7fJtv9tzjfB8519Ci7qNlJ47o2JGEWpE5SdZlKhbt65w7tw5ITk5WXj37p0wb948QSwW52oTHBwsbNu2Ldezdu3aCRcvXhSio6OF6Oho4cKFC0KbNm3k9cNjMBgMBoOhwBCJIFy80lbY8nMzQVNLR1i07lNx3bh5hwL7WBmbCV/UsFN67oyKGxWmwC6jPzwGg8FgMBgKjBYtDYSg4K6Cc98awsK1Z4RdJ8KFJi2+zdPOvnptwWe4qyASiZSeM6PiR4W4yZGIiIgqJ+feVkhIyETztn6oVtMeK+YNxZ0bp3O1aVanAQ7M24AuzdvAWM9ASZkS/YsFNhEREZVJ6upidO5qhg8xX6Bqzabw9RmO2wEnc7X5soED9nqtRfTHWDjNGokPsdFKypboXyywiYiIqEzq2r0qtLQkyBD3wKr5IxB47Xiu9x2afonfZq1ESEQYes0ejbCoCCVlSpQbC2wiIiIqc9TUteDi1glpGYZYMHsZbl45lqdNUmoy7gY9Qh/PsYiM48o1lR0ssImIiKhMUVPXhPeKrTA3CcXJE7G4fil3cV3LshoAIODRHfT2HIPYxI9KyJKoYCywiYiIqMxQU9fEtPm70NwhHSKRgHWrz+d6P7xrf1xYvQftmrRSUoZEhZMoOwEiIiIiAFBV08A0n12o16AVhJShuHc3FsGvknLeT+rzE2YMHocTNy7gyoNAJWZK9HlcwSYiIiKlk6qqw8Pnd9Rr2BpHdo2BjY2AQwff5byfOXgcZgwehz8unsCo5TOQnpmhxGyJPo8FNhERESmVVFUdHvN2wr7RV9iwbCKsLR8jPT0bx499KrAd6zXGxD4/Yccpf0xcMxeZWVlKzpjo87hFhIiIiJRGKlWDu/cONGjSBhtXuODKX3uxcH5bXDj/AbGxn1apAx7fRT+v8bjyN7eFUPnAFWwiIiJSColUFa5zf0Ujh/bYtHIyLpzaBcfWhjAxUcexwxFYOX42mtS2BwAW11SusMAmIiKiUieRqsLVazuatOiITSsn4/zJ3wEAvZwtEReTjcFNXfFd+55oWLOukjMlKj5uESEiIqJSpSKRYqrnL2jashM2+07FueO/AQC0tFTwbUcbpN/pi7aN6sB9w0LsPHNIydkSFR8LbCIiIlK41u36YNBwTxgaWyIjPRVq6prYusYdZ//8NaeNU/fqMAj7CdC0wMQ1XvC/dEp5CROVAAtsIiIiUqjW7fpg9NRVUFfXBPDpMpmMjHQk/ecGxs49jJCQHoWpy/xw4sYFJWRKJB/cg01EREQKNWi4Z05x/Q+pVBWDhnsCAMwMjNHAzhItHPWx7vQyFtdU7nEFm4iIiBTK0NiywOc2phbY57UOYvUkiEW7cPhQWClnRyR/XMEmIiIihYqLicj3eXrUWxyavxlVtLSRbH4cgYExCA1NKeXsiOSPBTYREREpjEgsRmpKEgRByPVckvwRzYWPUBGrYNoON1jaxeHQQa5eU8XAApuIiIgUpnvfcbCwtsWpwz8jMiIU2dnZiIx4A70395CYGI9es0eh8ZcZSEvLwok/w5WdLpFccA82ERERKYRV1ToY+NNM3Lh8DL+snYZf1k7LeWeibwhViRTvYyPQvUc7nD0TgYSETCVmSyQ/XMEmIiIiuVNRkWC8x3qkJCdgy2pXAED7pq2x1sUbKmIVfIiNxtvI9/i6jTEMDNVw+OA7JWdMJD8ssImIiEjueg10Qc06jbBltRvi46LQo1UHbJu2DDUtq0JLXSOnnZOzJaKj0nD5UqQSsyWSLxbYREREJFfVbBugzw/uuPLXAdy4fBQD2nXHhik+uP3sb/TzGo/45EQAgI6OBO07mODokXfIzBQKGZWo/GCBTURERHIjkapivMc6JHyMxs9+0/DDt85YNWEOLj8IxCCfSUhMScpp26WbOdTUVHh6CFU4LLCJiIhIbvp+746qNepj48rJSEqIw+PXL/DHxRP4cZErUtLTcrV1crZE0PMEPHoYr6RsiRSDp4gQERGRXNjaNUWvgS44f/J3qCdEAQBuP/8bt5//naetjY0mHBwMsGzJ09JOk0jhuIJNREREJSZVVcd4j3WIiX4Hm8R38J+/Ca3tmxXYvmcvC2RnCzhymKeHUMXDApuIiIhKbODQmbC0toXms6v46dve2Hjkd1x9eKvA9r2cLRFwLRrvw1NLMUui0sECm4iIiErEzr4luvceA72X19GpoQOW790C7+2rC2zfuIkeqlbTwmF+uZEqKO7BJiIiIpmpqWthnMdaiKJC0MDEBHO3r8KmI7s+28e5txWSkzNx+tT7UsqSqHSxwCYiIiKZfT/SCyZmVTFnag8gPhJP37z8bHtVVTG6djfH6VMRSErKKqUsiUoXC2wiIiKSiWOrznDr0AV7zu/F04fXi9SnbTsT6OpKuT2EKjTuwSYiIqJiszSzwi9TfVAlMxm3Lh4qcj8nZwtERKTi2tUoBWZHpFwssImIiKhYzAyMcWL5TlQRAx7b/fDntbNF6qevL8U3bU1w5FAYsrMVnCSRErHAJiIioiIz1jPEieW/QV9TC+uvXcauozuL3LdbDwtIpWIcOsizr6liY4FNRERERZaaLSClignOxKVi6erpxerby9kSjx99xPNnCQrKjqhsYIFNREREhapfrRYsDE3w0/iFeF3FAt4LxiIzI73I/WvU0ELDRnpcvaZKgaeIEBER0Wc1rd0Av3uuQnBUJBIadMTe7YsQ8vJhscZw6m2JrCwBRw/z9BCq+LiCTURERAVqbd8Me738EJsYjxjrhnj57B4O7V5VrDFEIsCplyUuX4pEVFTRV72JyisW2ERERJSv9k1bY+dsX4RGhuNEVBKgqYt1S8chKyuzWOM4NDeApaUGz76mSoMFNhEREeUhEong2n8Enr55iSWn/4S9Yxfs3b4Ib0OeFXss596WSEzIwNkzEQrIlKjs4R5sIiIiykUkEkEQBPywYAo0dQzg7XcGzx7dxNED64o9lrq6GJ27mOHE8fdITeXh11Q5cAWbiIiIcgzt0g/bpi+DVCJBdHwcBo9dAKlUFeuWjocgw+0wHTqaQruKFIe4PYQqERbYREREBACY2PtHLBzpjuzsbIggQtvOg9GkxbfYtdUH78NeyTSmk7MlwsJSEHgzRs7ZEpVdLLCJiIgI0weNxczvx+OPiycwctkM6BiY4sexC/Dw3mWcPLxFpjGNjFTx1dfGOHwwDIIg54SJyjDuwSYiIqrkPL4bDZe+Q/HbaX9M27QEADDWzQ8ikQgblk2EIGN13MPJEioqIm4PoUqHBTYREVEld/LGRYggwpLdGwEAnXoOR4MmX2PTysmIjAiVedxezha4fy8Owa+S5JUqUbnALSJERESVkFQiQXfH9gCAB6+e5hTXphbVMXikF+7ePItzx3+Tefw6dlVQr74uV6+pUmKBTUREVMmoSVWx1X0JtrgvQkPbujnPRWIxxrn7ISsrE5tWTinRHL2cLZGRkY0/j74rabpE5Q4LbCIiokpEU10Dv83yRYemreGxcRHuv3iS865b7zGo28ARv6ydjpgo2Qrj7j3NceHKNxg+sjoyM7PR+isjeaVOVG5wDzYREVEloaOpjZ2zV6FxrXqYtGYu/rh0MuedpU1tDBw2C4FXj+Py2X0yjd+9pzkWLGoATc1P5YWGhgQLFjUAABw7El7yD0BUTnAFm4iIqJJwrN8EDWrUwajlM3MV12KxCsZ7rENqShI2+06VeXw39zo5xfU/NDUlcHOvI/OYROURV7CJiIgqOBWxCrKys3Aq8BIcx/XG+5jIXO+dBrrA1q4JVs4bio9xkQWMUjhzC41iPSeqqLiCTUREVIFZm1jgL9/f0aZhCwDIU1xXrVEf/X5wx9Xz/rh+6UiJ5op4n5rv8/B3KSUal6i8YYFNRERUQdlaVsWhBZtgrGeIuKT4PO9VJFKM91iHxIRY/OznUaK5xGLgY3xGnktpkpMzsXzZsxKNTVTesMAmIiKqgOpXq4WD8zdBIpagt+eYXKeF/KPv926oZtsAm3ynIjE+tkTzTZhUC3Z2Oti7JxRhb5ORnS0g7G0yZs34m19wpEqHe7CJiIgqGBtTCxyYtwFJKcnoP3cCXoW/ydOmZp3G6PXdZFw4tRu3A07mM0rRffW1EcZPtMWBfaHwnPmwRGMRVQQssImIiCqY0A/h2HZiP3adPYy3ke/zvJdK1TDeYx3iYj5g+/qZJZrL3EIdy30b4dmzBHh7PSrRWEQVBbeIEBERVRDfNGoJG1MLCIKApbs35VtcA8CAoTNgVbUONiyfiOR89mYXlVQqwpq1jaEqFWHiuDtITc2WeSyiioQFNhERUQXQ3bE9fp2xAp5DJn62XZ36zdG973icOboND25fKNGc02fWRaPG+pju8TdCXieXaCyiioQFNhERUTnXv203bJw6H3eDHmHquvkFtlNT18R4j3WIigjFb5vnlmjOrt3MMeSnavhlazBOncx/pZyosuIebCIionLsp859sWiUBy7eu46hSzyQkpb/WdQAMGjEHJhZ1oDX1B5ITUmUec4aNbSwYHED3L4Vg2VLnso8DlFFxRVsIiKickqiooK+33TByRsXMWSh62eL6/qNvkKXXiPx5x8b8eTBNZnn1NBQgd/6JkhLzYLLhLvIzBQK70RUyXAFm4iIqBxSlUiRnpmB7+ZNQkpaKjKzsgpsq6FZBePc/fDu7Qvs/qXgLSRFMW+BPWxraWPokJuIiEgr0VhEFRVXsImIiMoRkUgEn+Gu2DFrJVQlUiQkJ322uAaAIWPmwdDIAuuWjEd6muzXlg/8zhq9nC2xZlUQrl2NlnkcooqOBTYREVE5IRaLsWLcLIzoNgBPQ14iPTOj0D6NHNqjfdchOLJ/LYKe3JJ57vr2OvD0qoeLFz5g/doXMo9DVBlwiwgREVE5IJVI4OfiDafWHbFi7xYs37ul0D5a2roY47oab4KfYN+vi2WeW0dHAr/1TRAVlQ63KfchcNs10WexwCYiIioHFo+aDqfWHeH962psPPx7kfoMHb8YOnpGWOI5GJkZ6TLNKxIBy1Y2hKmpOgYNCEBcXOGr5kSVHQtsIiKicmDzsV24/fxv7Dp7uEjtHVp3w9cd+2P/jiUIDrov87wjR9dAu/am8PZ6hPv3Pso8DlFlwj3YREREZZSOpjZ+7NwHAPDszasiF9dVdA0xavIKvAq6D//fV8o8f/MWBpjqVgfHjr7Dzh0hMo9DVNlwBZuIiKgMMtTRw+45fqhjXQPX/r6NoLDXRe47YtIyaGrpYJ57L2RlZco0v7GxGlb5Ncbr4CTMnvG3TGMQVVYssImIiMoYMwNj7PXyg7WJBX5a7Fqs4rrVN85wbOOE37fOQ+hr2W5ZVFERYZVfI2hpqWDI4BtISvr8MYBElBsLbCIiojLE2sQC++auhaGOHgb5uOD647tF7qtnYIoRk5bh+eNAHN23VuYcprjWRvMWhnCdfA8vgmS/Up2osmKBTUREVIbUq2oLbQ1N9Js7HvdfPClW39FTVkJVTR3rlk5AdrZsq87tOphg9Nia2LUzBEcOv5NpDKLKjgU2ERFRGaCproHk1BScCryEK2NvISk1uVj923z7HZo6dsb29TMR/la2i2CsrTWwbEVD/P3gIxb4FK+4J6J/8RQRIiIiJWtS2x43NhxEu8aOAFDs4trQ2AJDxy/Eo/tXcOLgZplyUFUVw299E2RnC5g0/g7S07NlGoeIWGATEREpVSv7ptjntRYJyUl4/jZYpjHGuK6BWCzGhuWTIMh4zaKnVz3Ut9eFh+sDvH2bItMYRPQJC2wiIiKgMojXAAAgAElEQVQladekFXbO8kVoZDh6zR6Ft5Hviz1Gx+4/oWGztvhtkxc+hMt2VnWv3pYYOMgGG9a9wPm/Psg0BhH9iwU2ERGREtStaott05Yh6G0w+niOwYfY6GKPYWJeFT+M9sb9W+dx5th2mfKoXacK5s23x/WAaKz2DZJpDCLKjV9yJCIiUoInIS/gs2MN9p4/hoTkpGL3F4lEGOfmh+zsbGxcMUmmHLS1JVi7oQni4zMwZdJdZGXJtr2EiHLjCjYREVEpGtTBCTUtbAAAW//cK1NxDQBdnEehXsPW2LZuJqIjZTtOb8HiBrC21sCUSXcRFZUu0xhElBcLbCIiolIy3nkIVoybhVE9BpVoHHMrWwwa7olb107g4undMo0x5Keq6NrNHCuWPUPgzdgS5UNEuXGLCBERUSmYPmgsXPoOhf+lk5i1dZnM44jFKhg/bR3S0lKwyXeqTGM0aqyH6TPr4szp99i6WbaTS4ioYCywiYiIFEgkEmHe0CkY0X0gdp4+iGmblyA7W/Yzpnv0n4DadZth1fwR+Bhb/BM/DAxUsWZtY7wPT8U0twcy50FEBWOBTUREpECqEinsq9fBpiO7MHf7qhKNZV29Lgb8OB0BFw/h2oWDxe4vFgPLfRvCwFAV/XsHICEhs0T5EFH+WGATEREpgERFBWpSNSSlJmPgvIlIyyjZlwhVVCQY77EOiYlx2LraXaYxxk2wxVdfG2Pm9Ad4/Di+RPkQUcEU+iVHOzs7tGjRIuf36urqWLBgAQ4ePIgJEyYocmoiIiKlUZOq4mePpdg5yxcqYpUSF9cA0HvwVNSo1RBbfF2REB9T7P5ffmWEiS614H/gLfbvfVvifIioYAotsNevX48ePXrk/H758uVwcXGBuro6lixZAjc3N0VOT0REVOo01TXw2yxffOvwFQ5eOY2s7KwSj1m9VkP0HuyKi2f2IvDa8WL3NzNXx4pVjfD8eQK8PB+WOB8iKpygqPjw4YPQrVs3AYAgkUiEuLg4YcSIEQIAwcXFRXj8+LHC5pZHBAYGKj0HBoPBYJSf0NHUFo4s3Cq83R8g9Pumq1zGlEhVheVbrggb9zwUtLR1i91fKhUJ+/5wFO4+6ChUq66l9J8Rg1ERorAaUaF7sLW0tBAf/2mPV8uWLaGlpQV/f38AwJ07d1C1alVFTk9ERFSq1rjMRcOadTF6xUz8ef28XMbs/+N02FSviwUz+iEp8WOx+3tMt0PjJvqYOO4OXgfLdqkNERWPQreIvHr1Ci1btgQAODs74+7du4iJ+bRvzMjICAkJCYqcnoiIqFT5/LoGPy5ylVtxXatuM/TsNwFn//wV9wP/Knb/zl3N8NOw6tj2czBOnngvl5yIqGgUtnw+bNgwIS0tTbh586aQkZEhfP/99znvVq9eLZw+fVrpS/yfC24RYTAYDEZhYW1iIUzpN1zu46qqaQirtt8Q1u68K6hraBe7f/UaWsLdv78V9h5wFKRSkdJ/TgxGRQqlbhH55ZdfEBQUBAcHB0yfPh1//fXvv75jYmKwalXJzgMlIiJSJlvLqtg7dy00VNWx7/wxhEVFyG3s74bNhoWVLbxdnZCaklisvhoaKli7vgnS07LgMvEuMjIEueVFREWj9H8FlNXgCjaDwWAwCop61WoJf287Kdz/+YRgZ1NTvmM3bC3sOxstDB2/SKb+S1d8ITx72UX48isjpf+cGIyKGEpdwQYAY2NjuLq6olmzZrC2toazszMeP36MSZMm4ebNm7h+/bqiUyAiIpKrJrXt8fvsVUhKSUb/uRPwKvxNicds3a4PBg33hJGxJbKzsxEbHYFdP/sUe5z+A63h3NsKq32f48rlqBLnRUTFp9AvOTo4OODFixfo06cPXr9+jZo1a0JNTQ0AYG5uDldXV0VOT0REpBAGVfTwITYKvWaPkltxPXrqKhibWkMkFkNFIoFWFV00a9WlWOPUq6+DOXPr4dLFSKzze1HivIhINgotsH19ffHXX3+hdu3aGD16NEQiUc67mzdvonnz5oqcnoiISK5M9A0BAGdvX0G7KYPxNlI+J3MMGu4JdXXNXM9UVdUxaLhnkcfQ0ZFg7fomiIlOh9uUexAEuaRGRDJQ6BaRJk2awMnJCYIgQPjP/9Ojo6NhYmKiyOmJiIjkpptjO/hNmovhSz1w/u51mW5oFInFMDGrCiub2rCwqfXpf61rwcjEKt/2hsaWRRtXBCxd0RBm5uoY1P86YmMzip0bEcmPQgvsjx8/wtjYON93NWrUQESE/L5tTUREpCj9vukG3/Gzcfv537j17O9C26uqacDC2haW1rVgaVP7f1EL5pY1IVVVy2kXG/0eYaFBSE1Jgoamdp5xoiPDipTfiFE10L6DKXy8H+HevbiifzAiUgiFFtiHDx+Gt7c3AgICEBISAgAQBAGGhoZwc3PLudWxKOrWrQs/Pz84OjoiLi4OW7duhbe3N7Kzswvt6+zsjBkzZsDe3h7JyckIDAxEnz59kJycLPNnIyKiyuHHzn2weNQ0XLx/A0MXuyMlLTXnXRVdwzyr0ZY2tWFiZpPTJjsrCxHhrxH25jnu3jiLsNAghL15jnehQTk3M/6zB/v/bxNJTU0u0pccm7cwwFS32vjz2Dvs2B4ivw9ORDJTaIE9ffp0nDt3Do8fP8bt27cBABs3boStrS2Cg4MxZ86cIo2jp6eHs2fP4vHjx3ByckLNmjWxYsUKiMVieHp+fn/a8OHDsXbtWixduhTu7u7Q19dHu3btIJEo/AAVIiIq55rVaYDFo6bh/INArDr9J9r3GAZLm09FtIV1LejoGua0TUtNRlhoEJ49uoHzJ3bi7f+K6PCwV8jMSP/sPFf/+gPAp73YhsaWiI4Mw66ffXKeF8TYWA2+axohJCQZs6YXvrJORKVDhE/n9SmMVCrFDz/8gPbt28PIyAgxMTE4d+4cduzYgfT0z/+B84/p06fDw8MDVatWzble3d3dHXPnzoWZmVmBV64bGhoiODgYU6dOxdatW4ude2BgIBwcHIrdj4iIyh+pqjosrGrmWY1ubG6OOA0DCP/7ov7H2EiEvXmesxIdFhqEsJDniI4My/N9I0VSURHh153N8UVDPfTpdRVBz4t3GQ0Rya6wGlHhy7gZGRn45Zdf8Msvv8g8RpcuXXDq1KlchfSePXuwdOlStGnTBseOHcu3X//+/QEAv/76q8xzExFRxaKto//v3mjrWrCs+qmYNjGrCrFYDAgCbFKj8fRjPJ6GvMCO2xdyVqPDQoOQGB+r7I8AAJg8tTZatDSE29R7LK6JyhiFFtgXLlzAnj17cODAAURFyX7YvZ2dXa5r1gEgNDQUSUlJsLOzK7DAbtGiBZ49e4bhw4dj1qxZMDU1xZ07dzBlyhQEBATInA8REZVtIpEIhsaWsKxaO/cXDa1rQVf/3y/fp6en4l3oC7x8dheXzuxF+NsXGNK8Nb5q8TX2H92CFXu3KPFTFKxdexOMGVcTe3a9weGD75SdDhH9h0IL7MjISCxfvhxr1qzBhQsXsHv3bhw8eBBxccX7hrO+vn6+fWJjY6Gvr19gPzMzM9SpUwezZ8+Gh4cHoqOj4eHhgZMnT6JWrVr48OFDnj4jR47EqFGjAABGRkbFypOIiEqXRKoKc8saeVajLaxsoa6hldMuIT4GYW+e41bACYS9+XdrR2REKIT/fVleoqICPxdv9GzxNVbu21pmi2srKw0sXdEQD//+CB/vx8pOh4jyodACu1+/ftDU1ETPnj3Rv39/rFu3Dhs2bMCZM2ewd+9eHDp0CImJRfvPWvntaxOJRJ/d7yYWi1GlShX069cPp06dAgBcu3YNISEhmDBhQr5fstyyZQu2bPn0h2pgYGCRciMiopL756rw/L7kp6mlk+u4u39WpU3Nq0GsopIzxof3bxD25jmePLj2aVvHmyC8ffMcCR+jPzu3mlQVm9wWopPD1/DZ4Yf1h35T6GeVlaqqGH7rmwAAJo67g/T0wk/SIqLSp/A92MnJydizZw/27NkDbW1tODs7o3///tiyZQs2btwIbe28537+V2xsLPT09PI819XV/exqeExMDIBPW1X+kZCQgNu3b6NevXrF/zBERKQQ/z2mztjUGhM81qH3oKmooqMPPQPTnLYZ6WkID3uJ1y8f4up5/5wvG4a/fYm0VNmPX1WTqGL65iX49eTnT+5Qptlz6sG+gS5Gj7yFt29TlJ0OERWgVM+qS0xMxMuXLxEcHIz4+Pgib8F4+vQp7Ozscj2zsrKCtrY2nj59WmC/J0+eIDs7O9cV7cCnle+inJ9NRESlI7+rwlUkUphZVMeVvw7kWo2OfP8G2TLcopgfHU1tiMVixCXGY9B8l1I9BaS4nJwt8N1gG2za8BJ/nc27xZGIyg5xaUzi4OCA5cuXIyQkBJcuXUKbNm2wevVq1KpVq0j9T5w4gU6dOuVa7R4wYACSk5Nx8eLFAvsdO3YMYrEYbdu2zXmmo6ODpk2b4v79+7J/ICIikiujAq4EV5FIsWH5JBzdtxa3r59CxLtguRXXhjp6ODBvPbZPXw4g/62IZUWt2tqYN98eN29Ew3fFc2WnQ0SFUGiBvWjRIrx8+RIBAQHo1q0btm3bBnt7ezRs2BALFy7Eq1evijTOxo0bkZaWBn9/f7Rv3x4jR47E3LlzsXLlylxH9wUFBeU67/r27ds4dOgQfv75ZwwZMgRdu3bFkSNHkJGRgXXr1sn98xIRkWzS0vLf7lDUq8KLy1TfCP4+G2FrWQ2r/5D9GNnSoKWlAr/1TZCUlIXJE+8hK6vs/kOAiD5R6BaR/v37Y9++fdizZ0+JVozj4uLQvn17rF27FkePHkVcXBx8fX0xd+7cXO0kEglU/t+XXQDg+++/x7Jly7By5Upoamri6tWraNeuXbFPMiEiIsVo3a4P1DW0kJmZAYlEmvO8qFeFF5eVsTn2e6+Dka4+Bvu4IODxXbnPIU8LFjdAtWpaGDL4BiIj05SdDhEVkcDIPwIDA5WeA4PBYFTkMDa1FrYfDhbmrToufNW+n7Du93vCntORwrrf7wmt2/VRyJz+PhuFx7+eERrZ1lP65y8sfvixqhAU3FUYNbqG0nNhMBj/RmE1otxXsDU0NJCSkpLz68L805aIiCoXsVgFE2dsBCCC3+IxiHz/BpfP7Vf4vC5+86CtoYknIS8UPldJNGqkh+kz6+Lc2Qhs2Vy0LZVEVDbIvcBOSEiAo6MjAgMDkZiYWOiXRiSSUj3IhIiIygjn7ybDzr4l/BZ9Kq4VqXGt+nD+6lt4bVuF0A9l/+ZDfX0pVq9tjIiIVHi43kcZ/v4lEeVD7tXtsGHD8PLly5xfl+VvZRMRkXLUqtsMfYd44PK5/QpftXas3wQ7Zq5A1MdYrD6wDdHxZfs7OGIxsNy3EYyMVNG/bwDi4zOVnRIRyUDp+1jKanAPNoPBYMg/1DW0hTU7bglrd94VNLSqKHSudk1aCa92XxIurNojmOobKf2zFyUmTLQVgoK7CgO+s1Z6LgwGI/8orEZU6DF9L1++xBdffJHvu/r16+esdBMRUeUxbMJimJjawG/xGKQkJRTeQUbdWrbFtmnLEPQ2GL09RyMiNkphc8lL6y+NMHFyLRz0f4u9u0OVnQ4RyUihBXa1atWgpqaW7ztNTU1YWVkpcnoiIipjHL/phW86fQf/XSvx7OENhc4Vn5yIG0/uoa/XOMQkfFToXPJgZqaOlasa4kVQIrxmP1J2OkRUAnLfg12lShXo6enl/N7MzAzW1ta52qirq2PgwIEIC1PMBQJERFT2GJpYYtTklXj+5Bb+2LlcYfPUtqqO52+DcflBIC4/CFTYPPIklYqwem1jqKqpYMK4O0hJkc9tlUSkPHLdkzJnzhwhKytLyMzM/GxkZWUJkydPVvoems8F92AzGAyGfEIkFgtzVxwRfj0SIpiaV1PYPON6/SCEHbgufNnAQemfuTgxc3ZdISi4q9Clm5nSc2EwGIVHqZ+DvWvXLty6dQsikQhHjhyBm5sbnj17lqtNeno6nj17htBQ7i8jIqoMnAZMQr2GrbFuyXhEhL9WyBwe343GlH7D4X/pFK4/vqOQOeSle09zuLnXgbmFBuJi02FgqIZftwXjxJ/vlZ0aEcmB3AvsFy9e4MWLT4f3t23bFnfu3EFiYqK8pyEionKiZp3G6P/jdFw974+LZ/YoZI55w6ZgZPfv8PuZQ/DYtBjZ2dkKmUceuvc0x4JFDaCp+emvYANDNWRnCXj4d9nfJ05ERaPQLzleunSJxTURUSWmpq6FSTM2IS4mAltXuylkjm8atcTI7t9h89HdcNuwsEwX1wDg5l4np7j+h1hFhMlTayspIyKSN7mvYEdERKBTp064d+8ePnz4UOhFM6ampvJOgYiIyoih4xfC1KI6vN2ckJSomBXaC/euo++ccbj68JZCxpcHkQioY1cFLR0NYWGpkW8bc4v8nxNR+SP3AnvdunWIiIjI+TVvciQiqpxafNUD7bp8D//fV+LJg2tyHVtNqooV42Zh89HdePDqaZksrqtV14KjoyFatjJEy5YGMDD8dGxtRkY2pFJRnvbh71JKO0UiUhC5F9jz5s3L+bW3t7e8hycionLAwMgCo6f44sXTO9i/Y4lcx9ZU18C2acvwdcPmuPboDh68eirX8WVlbqGeU1A7OhrCzPzTinT4uxRcOB+JgIBoXA+IRjMH/Vx7sAEgOTkTy5c9K2hoIipn5F5gF6ZOnTqws7PDzZs3ER4eXtrTExGRgonEYkyYth4SqRRrFo1GVlam3MbW0dTGb7N90bSWPSatmYv9F47LbeziMjBURcuWhnBsZYiWjoaoVl0LABATnfapmL72AteuReNNSHKufseOfPq7759TRMLfpWD5smc5z4mo/FNogb1x40YIgoCxY8cCAPr374/ff/8dYrEYiYmJ6Ny5MwICAhSZAhERlbIefcfDvvFX2LB8It6HvZLbuHraOtg3dy3qWNfE6BUz8ef183IbuyiqVJHAoYUBHB0N4djKCHXsqgAAEuIzcONGDHbuCEFAQDSCniegsN2Rx46Es6AmqsAUWmB37twZM2bMyPm9j48Pdu3aBQ8PD/j5+cHHxwcdOnRQZApERFSKqtdqiIHDZuH6pSM4f3KXXMdOSk1GcPhbLP59A/66q/jFGXV1MZo2M/i0Qt3KEPb2ulBRESElJQu3b8XgyOEwXA+IxqOH8cjK4veNiOhfCi2wTUxMci6TsbW1ha2tLXr37o2IiAhs3rwZe/fuVeT0RERUitTUNeEyczM+xkZik+8UuY1rZWyOlPRURH+MxegVM+U27n9JpSI0bKSHlo6ftn00aqwPVVUxMjKyce9eHNavfYGAa1G4f+8j0tPL9lGARKRcCi2wY2Jico7h69ChA96/f49Hjx4BAEQiEVRUVBQ5PRERlaIhY3xgZlkDPu7OSEqIk8uYNS1ssM97HV6GvUH/uePlMuY/xGKgXn3dnD3UzRz0oakpQXa2gEcP47H9l2AEBETjzq1YJCdnyXVuIqrYFFpgnzhxAvPmzYOpqSk8PDywb9++nHf29vZ4/fq1IqcnIqJS4tC6Gzp2/wmH9qzGo/tX5DJm3aq22OvlBwDw2uYrlzFta2nDsdWnFeoWLQ2hoyMFADx/loAD+94i4Fo0bt6IRny8/L6YSUSVj0ILbFdXV/j6+mLMmDG4dOkSvLy8ct45Ozvj5MmTipyeiIhKgb6hGca4rsKr5/ewd/siuYzZuFZ97PJcjaTUFAyYOx4v372RaRwbG82cY/NatjKEkdGns6jfhCThxPFwXL/26ei8qKh0ueRNRAQouMCOj4/H8OHD83339ddfK3JqIiIqBSKRCOOnrYdUqobVC0cjKzNDLuMuHOmO2ISP6D93At5GFv20DVNTNbRw/FRQO7Y2guX/bk2MiEjF1StRCLj6qaAOC+OlLkSkOKVyDra5uTkcHR1hYGCAmJgYBAQE8AxsIqIKoFufsfiiSRtsWjkZ4W9fyG3c4Us8kJWdjYjYqM+209OTosU/Z1G3MkTNmtoAgNjYdNy4Ho3NG1/i+rVovHqVJLfciIgKo9ACWywWw8/PDyNHjsz1hcasrCxs3rwZEydO5FXqRETlVNWa9hg03BM3Lh/DueO/lXi8bo7tMMy5Iwxbnoa5pXq+F7BoaanAoblBzrYPu7o6EItFSEzMxK2bMdi3JxTXr0XjyZP4Qs+iJiJSFIUW2N7e3hg2bBhmzpyJvXv3IiIiAqamphgwYADmzZuH6OjoXPuyiYiofFBV04DLzC2I/xiNTb6TSzxev2+6YdWE2cjUfIt0ixuAOB2WVppYuLgBatX6dKFLS0dDfNFQFxKJGGlpWbhzOxarVj5HwLVoPPz7IzIzWVETUdkgAqCwP5FCQkKwZs0arFixIs87V1dXTJo0CVWrVlXU9CUWGBgIBwcHZadBRFTmDJ+0DJ16DoOPR2/8fediicb6sXMfLB41DUnSIAh19wEqefdxZ2Zm48H9j7geEI2Aa9G4eycWaWk8i5qIlKOwGlHhF808ePAg33cPHjyAiYmJIqcnIiIFaOrYGZ16DsPRfWtLXFyP7D4Q84ZNxcmbF9Fq+CWIVfKeNy0IAhwan0ViIo/OI6LyQazIwZ8/f46BAwfm+27gwIF49uyZIqcnIiI50zMwxVjX1Qh+8QC7ty0o8Xh/v3qG3eeOYOSy6Qh/n5Bvm3dhKSyuiahcUegK9vz587Fnzx7Y2NjgwIEDiIiIgImJCfr164e2bdsWWHwTEVHZIxKJMM5jLdTUNbFm4WhkZsh+drRj/SYIeHQH1x/fxfXHdwEAgYGxsLTSzNUuOTkTy5dxMYaIyh9BkdGxY0fh2rVrQmpqqpCVlSWkpqYKV69eFTp06KDQeeURgYGBSs+BwWAwykp07T1a2Hc2WujY/SeZxxCLxcLysTOFcP+bQrM6DXKed+lmJgQFdxX2+TsKFy5/Izx72UW4cPkboXtPc6V/bgaDwfhvFKFGLJ1ERCKRYGxsLIhEIqX/UOT4w2MwGIxKETbV6wm/H38neMzbKfMYEhUVYf0UHyHc/6bg8d3onOcOzfWFR087Cbv2tRRUVcVK/6wMBoNRWBRWI5bKRTMAIAhCThARUfkhVVWHy6wtSEyIxYYVLjKNoSZVxUbXBejcvA18dvhh/aFP52bXrKmFDZubITQ0BWNH3kZ6Ok8GIaLyT6FfcgSALl264OrVq0hNTcX79++RmpqKq1evomvXroqemoiI5OD7UXNhXc0O65dNQMLHaJnGaNvYEd82+wrTNy/JKa6NjdWwdbsD0tOzMfynQHz8KJ9r1omIygKFLZ+PGjVKyMzMFE6dOiWMHj1acHZ2FkaPHi2cOnVKyMzMFEaNGqX0Jf7PBbeIMBiMyh6Nm3cQ9p2NFn4cO7/EY9WxqZHzay0tFeHQ0dbCvYffCvXtdZT+ORkMBqM4odQ92K9fvxbWr1+f77sNGzYIISEhSv8BlfCHx2AwGBU2dPWMhc37nwhLN10UpFK1Yvc3qKIr+PtsFJrWbpDruUQiErZuayY8CeosfN3GWOmfk8FgMIobhdWICt0iYmhoCH9//3zf/fHHHzAwMFDk9EREVAJj3f2gqVkFaxaOQkZGWrH6mugbwt9nExrZ1oOulnaud/Pm26PNNyaYM/shLl2MlGfKRERlgkIL7PPnz6NNmzb5vmvTpg0uXbqkyOmJiEhGnXuNRJMWHfHb5rl4G1K8c6itjM1xaP5mWBqbYvD8yfjrbkDOuwkTbdFvgDXWrgnC/r1v5Z02EVGZoNBTRNasWYOtW7fC0NAQhw4dwocPH2BiYgJnZ2d06dIFI0aMQN26dXPaP3nyRJHpEBFREVhXs8P3o+bizo3TOHV4a7H6mhua4NCCzdBS10D/uRNwN+hRzrvefSzhMrU2/A+8xWrfIHmnTURUpihsf0pWVlauyMzMzPP7f55lZmYqfT/Nf4N7sBkMRmULqVRNWLb5krB5/xNBR8+o2P1VxCrCktHThXrVauV6/uVXRsLj552FbTscBImk/NyHwGAwGPmFUs/Bbtu2rSKHJyIiORs0Yg6q1qiPhTP6Iz4uqsj9Gtasi/cxkYiIjcK0TYtzvatbtwr81jfBi6BETBx3F5/WU4iIKi6FFtjcY01EVH40dGiHbn3G4MTBzbgXeK7I/RzrNcaOWStx7eEd/LjINdc7cwt1bNnmgPiPGRg5LBCJiZnyTpuIqMwptZsciYio7NLRM8J497V4E/wYO7d4F7lfu8aO2OqxBKEf3sFj46LcY+pI8PM2B2hoqGBA3wBERBTvJBIiovJK4Tc5EhFR2TfWdTU0tXWxeuEoZKSnFqlPt5ZtsW36crwIe43enmMQEfvvlhJVVTHWb2qKqlU1MXbUbbwISlRU6kREZQ5XsImIKrmOPYaiqWNnbFs3A6HBRTvNSUWsApe+w3D/5RN8P38y4pP/LaBFImDJsi/QoqUhpky6i5s3YhSVOhFRmcQCm4ioErO0qYMfx/jg7s2zOHFwc5H6iEQiZGVnYZCPC5LTUpCcmpLrvfu0Ouje0wJLFz/FsaPhikibiKhMk/sWkZcvX+KLL74AAHh6esLc3FzeUxARkRxIpKpwmbkJqSlJWL9sYpH6jHX6HlvdF0NFrIKojzF5iuvvh1TFyNE1sfO3EGzZ9EoRaRMRlXlyL7AtLS2hqakJAPDy8oKVlZW8pyAiIjn4bthsVLNtgPXLJuJj7IdC27sPHIU5P05CemYGRKK87zt0NIWnVz2cOf0ePnMf5W1ARFRJyH2LyMuXLzFhwgQYGhpCJBKhVatWMDIyKrD9iRMn5J0CEREVokGTb9Cj33icOvwz7tw4XWj7uT9Nxuieg/D72cPw2LgI2dnZud43aqwH3zWN8OB+HKa63MN/XhMRVTpyvdmmZ8+eQmxsbL43N+Z3s6O855dn8CZHBoNREauHWkIAACAASURBVKOKjoGwcc8jYeXP1wRVNY1C28/5cZIQ7n9TmDdsSr7vq1bTFG7c7iCc+auNYGCgqvTPx2AwGIqOUr/J8ciRIzAwMICFhQXevHmD3r174+7du/KehoiIZDTGdTWq6Ohj0awBSE9LKbT90WvnkJCcCN/9v+R5Z2Coip+3OQCCgOFDAxETk66IlImIyhWFnCIiCALCwsIwdOhQXL58GTExPKKJiKgsaN9tCBxad8WvG2Yj5OXDAtupSVXRsdlXOBZwDneDHuFuUN491erqYmze2gwmpur4YdB1vAlJVmTqRETlhkKP6duxYwcAwNzcHI6OjjAwMEBMTAwCAgIQHs6jm4iISpOFdS38NHYB7t86j+P+Gwtsp6Gmjm3Tl6FNwxZoN2UQnoS8yNNGLAZ81zSGfQNdjB97G/fvfVRk6kRE5Y7C9qeIRCJh3bp1Qnp6eq691+np6cLatWsFkUik9D00nwvuwWYwGBUlVCRSYfGGv4StfzwX9A3NCmxXRVNLOLxgs/B2f4DQv223AtvNnVdfCAruKgz+oarSPxuDwWCUdhShRlTc5D4+PkJKSorg5uYmWFtbC6qqqoK1tbXg5uYmJCcnC97e3kr/AZXwh8dgMBjlIgaP8BL2nY0WmrXqUmAbgyq6wqllvwohe68K3RzbFdhu1OgaQlBwV8F9Wh2lfy4Gg8FQRii1wA4JCRFcXV3zfefq6iqEhIQo/QdUwh8eg8FglPmo3+grYc/pSGGky/LPtuvu2F54tfuS0K5JqwLb9OhpIQQFdxV8VzcSRCLlfzYGg8FQRpT6KSL/n4mJCR48eJDvuwcPHsDExESR0xMRVXraOvqYMG09wt++xI5Nc/JtoyJWQVZ2Fo4FnEPg0/uIiI3Kt12LlgZYvOwL3LgejWnuDyAIisyciKj8kvtNjv/f8+fPMXDgwHzfDRw4EM+ePVPk9EREld7oKb7Q1TPCmoWjkJaa95SPGuY2uLhmLxzrNwGAAovrWrW1sX5TU4S8TsLYUbeRns6bZIiICqLQFez58+djz549sLGxwYEDBxAREQETExP069cPbdu2LbD4JiKikmvbeTBafNUDv232QvCLvP81sW5VW+yZ4wexWISPSQkFjmNqqoaftzkgJSULw4cGIiEhU5FpExFVCArdo9KxY0fh2rVrQmpqqpCVlSWkpqYKV69eFTp06KD0/TOFBfdgMxiM8hrmljWFHUffCJ5LD+Z7YlMj23rC41/PCLc2HxVqWtgUOI62tkQ4cvxL4e7f3wp161ZR+udiMBiMshBK3YMNAGfOnMGZM2cgEolgZGSEqKgoCNy4R0SkMCoSKSbO3ITMjHSsXTIuz5+5tpZVsd97HaI+xqKf13i8jcz/XgKpVIS1G5rA1lYbo4bfwpMnBa9yExHRvxReYP9DEARERkaW1nRERJVW/yHTYFunMZbP/RGx0XmL55fv3mDrsb3YfvJAgXuuAWD+ogZo/aURprndx5XLBbcjIqLcFPolRyIiKl31GraG00AXnDu+AzevHMv1rmOzL2FlbAZBELBk98bPFtcuU2qhdx8rrFr5HP5/hCk6bSKiCoUFNhFRBaGlrYsJ0zbg/btX2L5+dq53/b7pim3TlmHad2MKHaf/QGtMmFQLe/e8wTq/vNekExHR55XaFhEiIlKsUVNWQs/ABJ4uXZCWmpTzfEinPlgyehouPwjEtM1LPjtGm2+M4e1THxfOf8Bcz0eKTpmIqELiCjYRUQXQ5tvv4NimF/ZuX4SXz+7mPB/r9D2WjJ6GU4GX8MOCKUhOTSlwjPr2Oli9tjGePkmAy4S7yMzkF9KJiGTBApuIqJwztaiOYRMW49H9Kziyzy/nuapEil5fdsShK6cxYuk0pGWkFziGlZUGtvzigJiYdIwcFojk5KzSSJ2IqEJS6BYRiUQCFxcX9O7d+//Yu++oqs60C+D73ksHKdIEFbuAvWGJid2osXex915RUBREioUoYkERLNhr7EYlisYYK/au2BUElSa9vt8ffsOEERUNl0PZv7WetSan3X0zM86ek/ecizJlykBDQ+OTY0xNTZUZgYioSFMoVDDZ0Q8ZGenwWTQOIvPjLyyqqagiNT0NvV0mID45EZmZn//lRX19VazbaANVVRkG9gvG+/efL+JERPR1Si3Y3t7eGDNmDI4cOYLTp08jNZV/aBMR5aVeg+xRxbo+lroNQ+S7MMjlcniOngkzQxMMXTQDHxLjv3i+mpocvv71UaaMJoYOuoynTxO+eDwREX2dUgt27969MWvWLCxdulSZH0NEVCxZ1WiM7rbTcPr4dlz86xBUFAosn+SCHs3aw3vPeqRnfHmZh0wGLPGujQY2JTFpwjVcCY7Op+REREWbUgu2TCbDrVu3lPkRRETFkpa2LiY5rsHb8BcIWOUIdVU1rLGbj/aNmsNjiw9W7d/81WvMmm2NDr+YYYHHfRw/Gp4PqYmIigelPuS4du1a2NraKvMjiIiKpVFTlqCkkRlWLByL5KR4LJ3gjPaNmsPR/9dcleuhw8pj+MgK2LjhGQLWP1N+YCKiYkSpd7AjIiIwYMAAnDp1CidOnEBMTEy2/UIIrFmzRpkRiIiKnJ/a9EHTVj2xY8N8PH5wFQDge3ALTl8/j9/OHPvq+e07lIKjkzUCj4Vj4fz7yo5LRFQsCWVNRkbGFyf940tWC+wEBwdLnoHD4XD+OSZm5cTGg8+Fq/cRYahnIAa36/lN59dvYCDuPGgndu5pLNTV5ZJ/Hw6HwymM87WOqNQ72AqFQpmXJyIqVuRyBSbNWgMhMrFztSP2uvrCwtQcZ25cxIuI0K+eX6GiNnz96yM0NAljR11FSsrnX91HRETfjz+VTkRUSPQcOB2W1Rti23I7rJ86Dyb6hhg4f1quyrWRkRrWb7RBRobAyKHBiIlJy4fERETFk9ILtp6eHsaMGYMff/wRJUuWRFRUFM6ePQt/f3/ExsYq++OJiIqEqtVs0HPADNw+ewDOnXtBW0MTfVwn4tqjO189V0tLAf/1NjA0VMOAfpfw6tXnfy6diIj+PaW+RaRixYq4ffs23NzcoK2tjZcvX0JbWxtubm64desWKlasqMyPJyIqEjS1S2Cyox/evX2Fe3/th6pCBb3mjstVuVYoZFi+si6qVdfFlInXcec2b2wQEeUHpS0AP3jwoLh165YwNzfPtt3c3FzcvHlTHDhwQPJF6l8aPuTI4XAKwkyc6St2H38jqlg3EACEtoZWrs91X1BDhDz7RfS1LSv59+BwOJyiMl/riEq9g92iRQvMnTsXYWFh2baHhYXB1dUVLVu2VObHExEVek1b9UTnlp1RN/oxSqnKAAAJyYm5OnfchEroZ2uB1T6PsWvHK2XGJCKif1DqGmwhxGffJCKXyyGEUObHExEVSk1b9UT/Ec4wMikN/bREVEsIxbN3bxDy+nmur9GtR2nYzbDE/n2v4e31SHlhiYjoE0q9g3369Gm4u7vDwsIi23YLCwu4ubkhKChImR9PRFToNG3VE2PslsHYtCyM0hNRIzkCSXJVLDx+COFR73J3jR+NsGBRTZz7+z3mzLqt5MRERPS/lFqwp06dCnV1dYSEhODChQs4cOAAzp8/j5CQEKipqcHOzk6ZH09EVOj0H+EMDQ0t6GQkwzopAvEKddzWKYNOA2bk6nwr6xLwWV0XT57EY+L4a0hL4z8pJCLKb0ot2C9evICVlRUmT56Mu3fvQlVVFffu3cPEiRNhbW2NFy9eKPPjiYgKHSOT0gCAeLk6nqob4raWOTJkChgal/7quaXMNLB2gw3i49MxatgVxMelKzsuERHlQOnvwU5LS4Ofnx/8/PyU/VFERIWWTCZDx57jYJb6ATGq2kiWqyJMXT9rf+S7L/+YTIkSKlgfYANtLQX69bmI8PBkZUcmIqLP4C85EhFJrIRuSYx38EH3OjYolxKJl2nJeKFTKmt/cnIitq93/+z5ampyrFpTD+UraGPE0GA8ehiXH7GJiOgz8rxgR0REoF27drhx4wbevn371TeFmJqa5nUEIqJCw6pGY0yZ4496WiqwSI3G9pOHcODhA/Qb7gRD49KIfBeK7evdce7U3hzPl8mABZ410eQHI0yfegMXL0Tm8zcgIqL/lecFe9WqVYiIiMj613wVHxHRp2QyGbr1m4o+Q2aibMxLWGQA647sxNwAbwghcDbot1xdx26GJbp2K40lvz7EoYNhXz+BiIiUToaPvzhDOQgODoaNjY3UMYioiNHTN8bEWb6o3aAlLv65F610VHH25iV47ljzTdfpP8ACrh41sH3rC7g431VSWiIi+l+56YhK+xnJoKAgYWlpmeO+KlWqiKCgIMl/6vJLw59K53A4eT016jYT/rvviW1HXokOnYcJAEJdVe2br9OqjYl48LiD8FtXXygUMsm/F4fD4RSnkfyn0nV1dXPcp6uri2bNminz44mICgy5XIE+Q2bByXMvkuJioHX7DwytVx8ymQwpaanfdK1atfWwbEVd3LkTi6mTbiAjQygpNRERfQ+lv0UkpzXYqqqqaNWqFcLDw5X98UREkjMwNMOU2X6oVrspzp/YiZZ66qhfpTrsVnt883MqFhZa8F/XAO/eJmP0iCtISspQUmoiIvpeeV6w586di7lz5wL4WK4vXrz42WMXL16c1x9PRFSg1G3YBhMcVkFNXQMbl9lhcrNWqFa+CsYudcKRC0G5ukanLmaYYW8JM3NNZGYIJKdkol+fi4iK/LY730RElD/yvGAfPXoU79+/h0wmw4oVK+Dl5YXnz59nOyY1NRUPHjzA33//ndcfT0RUICgUKug3fA669p2M50/uwNt9BLyHT4alRUUM87RH0NVzubpOpy5mmL+wJrS0Pv5xLZfLoJIhUKOmLp4/S1DmVyAiou+U5wX7ypUruHLlCgAgLi4OR44cQVRUVF5/DBFRgWVkUgZTndahajUb/HE4AJt8nZCWmoy5ActgpGeA83eu5vpaM+wts8r1f2hoKDDD3hJHDr3J6+hERJQHlPqQ440bN9CoUaMc93Xo0AE1a9ZU5scTEeU7mx9+wa9+Z1CmnCW83YcjaPdyjO9sCwB49OrpN5VrmQwwL62Z4z4z85y3ExGR9JRasL29vT9bsG1sbODt7a3MjyciyjcqqmoYOn4B7N22ICLsOWaObYnoZ3dwwMMfIzv1hYmB4Tddr1p1Xez6rQlkMlmO+9+EJeVFbCIiUgKlFux69erh3Lmc1xleuHABdevWVebHExHlC1PzCvBYfgy/9BiD3/f6wnlqB5TS1sQ+9zVIz0xHd6cxeBudu58w19NTxTy36th/qCnKWmhh+9YXSExMz3ZMYmI6lix+qIyvQkREeUCpr+lTKBTQ1tbOcZ+2tjbU1NSU+fFERErXpEU3jJm2DJkZ6fB0HoCrF46jcbW62DzbC1EfYtF73gS8evv1nzCXyYCevcvA3sESevpq2LLpOZZ7hyAuLh3BwVFZbxF5E5aEJYsfcv01EVEBp7RfuQkKChJHjx7Ncd/Ro0fF6dOnJf8lni8Nf8mRw+F8blTVNMSoqV5i98lI4b78mDA0KZ21r0OjFuKU93ZRqqRxrq5VvYau2LOviQh59ovYvruxsLIuIfn343A4HM7nJxcdUXkf/tNPP4mUlBRx8eJFMW7cONG9e3cxfvx4cfHiRZGUlCR+/PHHXF/L2tpanDx5UiQkJIjQ0FDh6uoq5HJ5rs+XyWTiypUrQgghOnbsmFd/8zgcTjEc87JVxGL/v8Tuk5HCdoSzUChUBABhamCUdYxCrvjqdfT0VIWre3Xx8EkHcf5ya9G1u7nk343D4XA4Xx9JCzYA0bx5c3H+/HmRnp4uMjIyRFpamvj777+/qVzr6+uL0NBQceLECdGmTRsxZswYER8fL9zd3XN9jVGjRok3b96wYHM4nH81zdr2FZsPvxTrfnsoatu0ytres1l78WznWdG0RoOvXkMmg+jTr6y4dLWNuB/SXsxxthY6JVQk/24cDofDyd1IXrD/M5qamsLc3Fxoamp+87mzZs0SUVFRokSJ//5jU3t7e5GQkJBt2+dGX19fvH37VgwfPpwFm8PhfNeoa2iJ8fY+YvfJSOHidVAYGJbK2jf45x4i9LeLYve8VUJL48t/xtWoqSd+2//Dx+UguxoLSysuB+FwOJzCNgWmYP+bOXPmjNixY0e2bWXLlhVCCNGpU6evnr9y5Uqxf/9+Ua5cORZsDofzzVO2grVYuv6C2PnHO9F7sIOQ/WN52riuA8WbfZfF5tlLhbqq2mevoa+vKtw8aoiHTzqIc5daiS5duRyEw+FwCut8rSMq9S0iAFCuXDkMHDgQVatWhYaGxif7+/bt+9VrWFlZ4dSpU9m2vXr1CgkJCbCyssKRI0c+e27NmjUxbNgw1K5d+9vDE1Gx1/qXQRg2YSES4mPh7tADd2+czdr3Y00bzB0yGQfPncCk5S5IS0//5Hy5HOjdtyym21uiRAkVbNzwHCuXhyA+/tNjiYioaFBqwa5Xrx7OnDmDV69eoWrVqrh16xb09PRQvnx5vH79Go8fP87VdQwMDBATE/PJ9ujoaBgYGHzx3JUrV2LVqlV48uQJypUr99XPGjVqFEaPHg0AMDIyylU+Iip6NLVKYPRULzRt1RM3r5yGz6JxiI15l+2Yv28HY9xSJxw6fxKZmZmfXKNmLT3Mc6uOWrX1cflSJFxd7uHRw7j8+gpERCQhpd0+DwoKEhs3bhRyuVxkZGSIunXrCgCiSZMm4vnz56Jdu3a5uk5qaqqYPHnyJ9tfv34tPDw8Pnte3759xZs3b7LWaXOJCIfDyc1UqFxLrNgULHYERoiu/aYImUyWtU8ulwvnwZNEldLlP3u+gYGqcF/w3+UgnbtwOQiHw+EUpZF0iUidOnXg6emZdWfnP0tELly4AFdXVyxatAiBgYFfvU50dDT09fU/2a6np5fjnW0AUFFRweLFi+Hp6Qm5XA49PT3o6uoC+PgjNzo6OoiPj//er0ZERVT7bqMwaLQrYmPeY970Lnh451LWPhWFAssnuaBHs/aI/BCDkNDn2c6Vy4E+fcvC7v+XgwRseAaf5Y+5HISIqBhSWrt///69aNGihQAg3rx5I/r165e1r02bNiI+Pj5X1zlz5ozYvn17tm1lypT54kOOenp64ktCQkL+9f874XA4RWe0dfTEdJdNYvfJSDHTfZvQ0TXItl9NRVUEzFws3uy7LCZ2H/zJ+bVq64l9B5uKkGe/iK07GokqVXUk/04cDofDUc5Iegf73r17qFSpEv78809cuHAB06ZNw5UrV5CamgoHBwc8efIkV9c5duwY7O3ts9117tu3LxITE3HmzJkcz4mPj0eLFi2ybStVqhR27twJR0fHTx6aJKLiq4p1A0yZsxYlDUthk+8c/L53Tbb9mmrq2DBzMVrUbYzZaxcj4NierH0GBqqY7mCJ3n3K4t27FEybfB1HDvNnzImIijultfuBAwcKJycnAUBYWVmJly9fivT0dJGeni5iY2NF27Ztc3UdfX19ERYWJv744w/RunVrMWrUKBEXF/fJD82EhISIdevWffY6XIPN4XD+OTKZTHTuPUFsPx4ufLZcE5Us6+V4nIaautjl4iP6tPzvnx1yOYRtfwsRfL2NuPeovZg520ro6PDHYjgcDqc4TIF6D7a2trZo06aN6Ny5szA2Nv6mc62trUVQUJBITEwUYWFhws3N7ZOfSn/27JkICAj47DVYsDkczn+mhG5JMWv+DrH7ZKSwmxsgtLR1PznGQEdPlNDSFgCyPehYp46+2H/o43KQzdsaisqVuRyEw+FwitNIVrDV1dVFYGCgaN68ueR/E5T4N4/D4RTCsa7ZRPjuuC22HQ0TP3cZnuMxJgaG4vSyHWKXi0/WtpIl1cSCRTVFyLNfxNkLrUTHTmaSfxcOh8Ph5P9ItgY7JSUFNjY2UCgUyvoIIqJvIpPL0d12GvoMnonwN88we5ItXjy588lxZYxLYfe8VTDRN4TTOi/I5UC//hawm2EJLS0F1vo9waqVj5GQkCHBtyAiooJOqQ85Hjp0CN26deMDhUQkOT0DE0xyXINa9ZrjbNAerF02A8lJn76qs6KZBXbP84GOljb6uk5ChvYr7D3QFDVq6uH8ufdwn3cPjx/zFZ9ERPR5Si3YgYGBWLx4MczMzHD06FFERERACJHtmGPHjikzAhERatZrjkmzfKGpVQK+Sybh9PHtnz125ZR5UFdTw3CvSeg1QoFefX5A+JskTJl4HUd/59tBiIjo62T4uFZEKTIyvvyPT4UQUFFRasf/V4KDg2FjYyN1DCL6TnK5Ar0HO6B7fzuEvnwEb/fheP3i4RfPqWReFl26lcWA0drQ0lIgYP0zrFr5GImJXA5CREQffa0jKrXdVqhQQZmXJyL6rJJG5pg82w/Vav2AU8e2ImCVI1KSE3M8tpF1HbRr2AyHb2/GPDcLVKuuh3N/v4f7vLt48iQhn5MTEVFhl+cFOzAwEJMmTcKjR4/w8uVLAEDLli1x6dIlJCbm/D9uRER5qW7DNpgwczXU1NSxcuFYnA3a89ljW9RpjA0zf0WKLBqDnF4j/F00Jk24huNHw/MxMRERFSV5XrDbtGkDPT29rL+Wy+U4ceIEbGxscP369bz+OCKiLAqFCmxHOKFLn0l4/vg2vN1H4E3o538xtmOTFlgzfQGExlskV9gMv7V3sdqHy0GIiOjfyZcF0DKZLD8+hoiKMWPTspjitA5VrRsg8OB6bF7jjLS0lM8eP21wD9h3s0emdhjOvF2BuZOv4OlTLgchIqJ/r+A+YUhElEs2TTti3IwVkMvl8HIdiktnD3/2WEMjNTjMtELvtmWR+Poxpvs44+Dh5/kXloiIijylFOz/fRXf57YREf0bKqpqGDTaFR26j8bjh9exzGME3r55keOxCoUMAwZZYPr4H6GiF4lV645jtY8PkpK4HISIiPKWUgp2YGAg0tPTs20LCgr6ZBsAmJqaKiMCERVRTVv1RP8RzjAyKY309HSoqqrhyG+rsW2dGzLS03I8p34DA7i4Vkdtgy5QfdUM4x2n4kDQl1/XR0RE9L3yvGC7urrm9SWJiAB8LNdj7JZBQ0MLAKCqqoa01BQ8eXQjx3JtZKQGB0crdO9eBqkPW0EtvBl2nDqEQ6cv53d0IiIqRvK8YLu5ueX1JYmIAAD9Rzhnlev/UFVTR/8Rzjh3am/WNoVChoGDymHKtCpQV1Pg8fFmqFOqGdb9vgtzNyzlkjUiIlIqPuRIRIWGkUnpHLcbGv93ewMbA7i4VYeVlS7+OvMOZ/YawHNYK6zYG4CF23zzKyoRERVjLNhEVCiUtrCEEEBOb/2MfBcKY2N1ODhaoVv30ggNTcL4MVdx4o8IAMDjZ5E4f+dqPicmIqLiigWbiAo8XX0jOM7fgcSEDyhldAPlTA9AVSUSaemGeB7eGfdfbMMfQc2gpibHap/HCFj7CgtHzkHoo0249zyE5ZqIiPKVXOoARERfoqqmAQe3rdAzMMa54wNhYbweaqqRkMkANdVIVC69Ef1t03D1ajR+aX8W63xDsdFhOTo3aQ1ri0pSxyciomKIBZuICiyZTIbx9itRtZoNVi4ah0ED1aGunv0YuRyIjEzByGFX8OG9KvbMW416VWtgnLcz9v51XJrgRERUrLFgE1GB1XvwTDRt2QNb/efh8t9HYGaumeNxBgZqMNTVx153X1haVMRwTwccPn8yn9MSERF9xIJNRAVSs7Z90WuQPYKObsGh3SsBAO/epuR47JuwJMQlJuBJ2AsMmm+Hk1f/zs+oRERE2fAhRyIqcKxrNsFYu2W4fe0vrFthDwCoVk0XWloKCCEg+8erRFJidOG74jFS09MwarGjVJGJiIiy8A42ERUopUpXxAzXzYh48wJL3YYiIz0NDWwMsHVHI8TFpWPh/PsIfZ2IzEyBd89LQOXeMHSuOk7q2ERERFlYsImowNAuoY9Z83dACIFFc/ohIT4WzVsYI2BzQ7x9l4K+vS8gYP1ztPjpT/T5+Tn0Xo5EYmIaXDculzo6ERFRFhZsIioQFCqqmDFvE4xNymKxyyBEvHmOjp3M4OtfH49D4tG/z0WEv0kGADSyroM9rqsQlxCPbk6jERL6XNLsRERE/8SCTUQFwphp3qhe+0f4LpmMh3cuwba/BZYur4Pr16IxaMAlREWlAvj46r4Fo+wREfUe3Z3H4GVEmMTJiYiIsuNDjkQkuW62U9GinS12b1qEv0/9hjHjKmGGgyVOB73FpAnXkJKSmXWsEAJDFk5HUmoKImOjJUxNRESUM97BJiJJNW7WBf1HOONs0B78tmUxHGZZYoaDJQ4dCMX4sVezynXPZu3hNd4JMpkMr9+Fs1wTEVGBxYJNRJKpbFUfE2euxoM7F+G/dAo8FtbAqDGVsHXLC8ywu4n0dAEAGPRzd6yYPA8WpubQUFWTODUREdGXcYkIEUnC2LQsHNy3IioyHMs8huBXr2r4paMZVvs8hrfXo6zjxnTpj3lDp+LElb8xeokjklNz/rEZIiKigoIFm4jynaZ2Ccz02AFVVXUsmt0VS7wq4Kdmxlg4/z42rHuWddykHkMwe+AEHDp3EhOXz0VaerqEqYmIiHKHBZuI8pVcrsA05w0wL1sZyz36YMGCkqhT1wCODrfw257X2Y699uguNgfug+PaX5GZmfmZKxIRERUsLNhElK+GT/JEnQatsH3tJMyZnYlKlfQxZeJ1BB4PB/DxNXxNqtfD+TtXce7OFZy7c0XixERERN+GDzkSUb75pccY/Nx5GM4cW4wJY0JRrpwWRo+4klWuFXIFVk6eh71uvqhV0UritERERN+Hd7CJKF/Ub9wOg8d64NGtrbDtdRkammoYMvAyblyPAQCoqahizfT56NCoBRZsXYVbTx9InJiIiOj7sGATkdKVr1wTU+b4I/ptIH5u3czErgAAIABJREFUcRhpaUD/vhfx6GEcAEBTTR0bZi5Gi7qNMWfdEmw4ulvixERERN+PBZuIlMrA0Awz3bdDVXYVTepsQVRUOoYOuoyXLxKzjmlr8xN+qmWDaT7u2HnqsIRpiYiI/j0WbCJSGnUNbcz02IbSpZ6hkvlavHieiGGDLyMiIvu7rA+dO4kHL57g0etnn7kSERFR4cGHHIlIKWRyOSbP9kO92rGoWtYX9+/Hon/fi1nl2ljfEAcXrEXtytYAwHJNRERFBu9gE5FSDBw1Dx3aK1DWeC3On4vE+DFXkZCQAQAoY1wKu1x8YGpgBB0NbYmTEhER5S0WbCLKc207DcGo0eYwK7kFfwSGY9rkG0hN/fhDMRXMymLPvFXQ0dJGX9dJuProtsRpiYiI8hYLNhHlqdoNWsDFrS5MDfZh/75QODrcQkaGAACUNTHHAQ9/KORy9Jo7DneePZI4LRERUd5jwSaiPGNR0RKr/FrB1OAPbN0SCjeXmxDiv/vfREYgMPgM1h7eiZDQ55LlJCIiUiYWbCLKE8YmJti+uxNMS16Ev384Fi+8mbWvftWaeBERivexUXBYs0jClERERMrHt4gQ0b+mZ6CNfUe6w9TwPlavjsXihdey9jWv3Qh7XFdh/sgZEiYkIiLKPyzYRPSvGBio4cjxbjA1CoXvGsB78bmsfe0bNsem2V54HPoCs9ctljAlERFR/mHBJqLvZmKijsPHO8HEKB4bNhtjqefRrH09mrXDWvuFuP30IXq7jEdkbLSESYmIiPIPCzYRfRcLCy0cONIGRkbAngO1sGheQNY+VRUVTO4xDBfv3UA/10mITYiTMCkREVH+4kOORPTNqlqWwJbtTaGrp4Xjp9rCxWF81j6ZTIa09HT0njcBcYnxSE5N+cKViIiIih7ewSaib1Knjj527P4B2joGOBs8CHOm2SMjIx0AYNdnJHztPCCXy/EuJpLlmoiIiiUWbCLKtaY/GmHz9kZQqBrh+sPJcLabjIT4WADA3CGTYd9vNJJSkiGDTOKkRERE0uESESLKlZ/bmcJ7RV0kJBnhecQceDgOQcSb55DJZFg0eiYGt+uB9Ud3w3m9F8Q/f12GiIiomGHBJqKv6tW7DDwW1kTEOwO8T1qA5Z7T8PDuZQDAglH2GNyuB1bu3YgF21ZLnJSIiEh6LNhE9EXDRlTAbCdrPHykhWSVxdgR4I1zp/Zm7d//VyBevX2D1Qe2SJiSiIio4OAabCL6rKl2VTDbyRqXg2VIUvjgzz8OYe/WJdBUU0fHJq0AAJcf3GS5JiIi+gcWbCL6hEwGzHWthgmTqiAwMAlCZw3u3b6CNUunQEdTG9udV8DPbj4qmVtIHZWIiKjA4RIRIspGRUUGz8W10KVbaWzb+g7mVpsQ9T4CS1wGo4S6JrY5L0ONCpYYv8wZT8JeSh2XiIiowGHBJqIs6upyrFhVF61am2L5smcoX8MfKirqWDSnKzTkMuxy9UUFs7IY7umAk1f/ljouERFRgcQlIkQEANDRUcH6jTZo0dIE8+beg66ZG8zLVoGX61CEvQpBs1o2sDAxx6D5dizXREREX8A72ESEkiXVsH6jDSytSmD61BswqzgddRq0gu+SyXh4+zwAYO9fx3H2djDeRkdKnJaIiKhg4x1somKulJkGtu9qjMpVdDB+zFUIta5o23kYDuxcjrB7F/DXit2wsaoFACzXREREucA72ETFWPkK2ti4pSF0S6hg+JDLyFQ0wtgx7rj41yHc/XMP9rn7ISU1BbHxcVJHJSIiKjRYsImKKWvrEtiwuSFkAAb2v4SklPJw9fbH00c3cPGAL/bMW4XouA/oPW88XkaESR2XiIio0OASEaJiqH4DA2zb2RipKZmw7XsRb8K1MdNjO+I+RGH/mtnY6rgEEVHv0c1pNMs1ERHRN+IdbKJipllzY/j41sObN0kYOugyoqIUcPXeBg1NHThP7YDQFw/hd2g71h3dhcjYaKnjEhERFTq8g01UjPzS0Qxr1tbH0yfxsO1zEeHhqZg82w/lK9ZA8J6lSIt9j8zMTHjuWMNyTURE9J1YsImKib62ZeG9og5uXI/BwP6XEBWZioGj5sHmhw54emIzZnfrjxl9R0kdk4iIqNBjwSYqBkaPqQiPBTXx15/vMHzIZcTHpaNtp6Ho3HsCPlw5hmE/NMPp6xfgtN5L6qhERESFHtdgExVx9jMtMXpsJRw5FAaHGTeRliZQu0FLDJ+4CCqPL6Nj1ao4fD4IE5Y5Iy09Xeq4REREhR4LNlERJZcDrh410M/WAtu3voCry11kZgJly1thmvMGhD1/gLpJMdh16gKmr56PjMwMqSMTEREVCSzYREWQqqoMi5fWRsdO5vBd9RhLlzwCAOjpG2Omx3akJiVggXN/pCV8QFxSAoQQEicmIiIqOliwiYoYDQ05fHzroXkLE3guvI91/s8AAKpqGnBw34om2ip4cuc8oiPDkZmZKXFaIiKioocFm6iQ69TFDDPsLWFmronw8GQkJ2WgXHltzJ51C3t2vQYAyGQyTJm1Gp0tSsM4IxGbbpxnuSYiIlISFmyiQqxTFzPMX1gTWlof/6tsbq4JIQQ2BTzPKtcAMGCEE4bVt0HJjEQ4rVuC9Ud3SxWZiIioyONr+ogKsRn2llnl+j9kMhna/mya9dfN2/bDzC79oJ+eiGk+7izXRERESsY72ESFmJm55he3W9f6AWPsvHH60RUE7VmJg3//kZ/xiIiIiiUWbKJCLDw8GeY5lOw3YUmoYVUP3vP8cTvsOZxmD0BiwgcJEhIRERU/LNhEhZSmpgLJyRkQQkAmk2VtT0xMx7YNSdjnvgaaIhF2SyawXBMREeUjrsEmKoRUVWVYubouypXTxqaA5wh9nYjMTIHQ14nw8YyBfYdl0FDIMNl/CW7fvyZ1XCIiomKFd7CJChm5HPjVqzaatzDJehXffPf7AABLi4o4/OtmaKiqYvaO9dgfyAcaiYiI8hsLNlEh4+JaHZ06m8Nz4f2sV/E1bdUT/Uc4o5qBHtRSorD57n1s3e0rcVIiIqLiiUtEiAqRaTOqov/AcvDzfZL1C41NW/XE+GlLYWxaFu/UdHFFxwIWdZqjaaueEqclIiIqnliwiQqJ4SMrYPyEyti54yWW/Powa/vUUXPwU/o76KYnAQAyZXJoaGih/whnqaISEREVayzYRIVAz15l4DjHGkd/fwMXpztZ29vZNMMP6ulIkakgSa6a7RxD49L5HZOIiIjAgk1U4LX92RTzF9XE2b/ewd7uJjIzP27v/lM7rHPwRLxcDbe1zZEmz/5IReS7UAnSEhEREQs2UQHW5AdDLFtRB7duxmDC2GtITf3Yrm2sasFniiuiZaq4JHSQmJqa7bzk5ERsX+8uRWQiIqJijwWbqICqVVsPvv718exZIkYNv4KkpIysfSFvI3AzVY5rcn042XWBr9cUvIt4hczMTLyLeAW/pVNx7tReCdMTEREVX3xNH1EBVLmyDtYF2CAqMhXDBl9GbGwaAGB0J1v8eecqRs1eh/clTDHfoSdePruHl8/usVATEREVECzYRAVM6dKaCNhsg7S0TAwddBnv3qUAAOYOmYxxXQfi5ockRJpUxiInW4TcvyJxWiIiIvpfLNhEBYihkRo2bmkITS0VDOh3ES9fJkImk2HhKAcMad8Tt2PiEW1eDcvcR+D2tTNSxyUiIqIcsGATFRAlSqhgw0YbmJbSwJCBl/DwQRwUcgWWTXRGrxa/4PLbSKRUsoHvrxMQfO53qeMSERHRZ/AhR6ICQENDDr/1DVC5SgmMH3sV16/FfNyupo7KZcrj9MvXSKncEBtWOeKvE7skTktERERfwoJNJDEVFRlW+NRD/foGsLe7ib//eg9NNXVoqqkjITkRe1+GQ6VGc+wMWIDjB9ZKHZeIiIi+gktEiCQkkwGei2uhZWsTOM++jaO/v4GOpjY2z/ZCYnISDr2OwM/dRuHwbh/s2+YldVwiIiLKBd7BJpKQ87xq6NKtNJb8+hA7d7yCvo4uds/zQQPLWniclIZeg+wRdHQLtvi7SB2ViIiIcokFm0gik6dWwaDB5bHO/yn8fJ/ASK8k9rr5wrpcZSwPOoZqv4zAhTMH4L/MTuqoRERE9A1YsIkkMGRoeUyaUgV7dr2C58IHAIC1MxaifKkyWHjkN9j0nIzrl09ixcKxEJmZEqclIiKib8E12ET5rFuP0nByqYbAY+FwnnMna/vsdYtRp+5P6DxmAR7evQQv16HISE+TMCkRERF9D97BJspHrdqYYKFnTZz7+z3spt5A5dIVMKnHEACAKGGEX0a64eXz+1jkZIvUlCSJ0xIREdH34B1sonzSsFFJrPCpi7t3PmDC2KuwKlMVO1xWIjUtFX8/CcEUt214F/Ea82f1RlJCnNRxiYiI6DsVmjvY1tbWOHnyJBISEhAaGgpXV1fI5V+O36BBA2zYsAEhISFISEjAgwcPMHfuXKirq+dTaqKPqtfQhd/a+nj5IhEjhwWjetka2OO6GglJCRjjswATnAMQHxcDj5k9ERcbKXVcIiIi+hcKxR1sfX19nDx5Evfu3UPXrl1RqVIleHl5QS6Xw9nZ+bPn9e3bF5UqVYKnpydCQkJQq1YtuLu7o1atWujVq1c+fgMqzipW1MaGjTaIiU3DsMGXUatcXWyctQSh78IxbtV8TJi3FZmZGfCY2RNR78OkjktERER5QBT0mTVrloiKihIlSpTI2mZvby8SEhKybfvfMTIy+mTbqFGjhBBCWFhYfPVzg4ODJf/unMI9ZuYa4q9zLcWF4NaiXHktAUB0adpG/LFks6hgUUUs33hZbNj/RFhUqCZ5Vg6Hw+FwOLmbr3XEQrFEpEOHDggMDERc3H/Xpe7cuRNaWlpo3rz5Z897//79J9uuX78OADAxMcn7oET/UNJQDRu3NIS2jgqGD76MlA/aAIBD506il9sUjHdaDwNDUyyc3Rcvn92TOC0RERHllUJRsK2srPDgwYNs2169eoWEhARYWVl907V++OEHZGRk4OHDh3kZkSgbHR0VrA+wgZmZJkaPuIJ6pVvhwup9aGRdB+oa2rB33w7zMpWx2GUwQu5fkTouERER5aFCsQbbwMAAMTExn2yPjo6GgYFBrq9jamqKOXPmYMuWLdnuhv/TqFGjMHr0aACAkZHR9wWmYk1dXY41a+vD0qoExo2+inql2sFtuB2Crp7D3RePYe+6GVWs6sPLbRhuXzsjdVwiIiLKY4XiDjYACCE+2SaTyXLcnhNVVVXs3r0b8fHxmDZt2mePW7t2LWxsbGBjY5PjEhOiL1FRkWG5T13YNCwJh+k3Uc+4M9yG2+HIhSCMWDwLY+xXoVb9FvBdMhnB536XOi4REREpQaG4gx0dHQ19ff1Ptuvp6eV4ZzsnmzdvRvXq1dG0adNcn0P0LWQyYIFnTbRuYwoXpztICqsIhzljsevUEczwXYDRdsvQ6KdOCPBxxJkTO6WOS0REREpSKAr2gwcPPllrXaZMGejo6HyyNjsn3t7e6Nq1K9q2bcu116Q0c5yt0b1HGXh7PcT2bS8BvMQYr9k4fD4IQ8cvQIt2ttgVsADHDvhLHZWIiIiUqFAsETl27BjatWsHHR2drG19+/ZFYmIizpz58hrWWbNmYdKkSRg4cCDOnTun7KhUTE2cVBlDhlVAwLoXME3ogopmFgD+/40hgxzQoftoHN6zCnu3eUmclIiIiJStUBTsNWvWICUlBfv27UPr1q0xatQozJs3D0uXLs32sGJISAjWrVuX9de2trZYuHAhNm/ejNDQUDRq1Chr+AAj5ZWBg8thil1VHPgtHBXTBmF0Z1u0qNsYANCx5zj0HuyAoKNbsMVvrsRJiYiIKL9I/rLu3Iy1tbUICgoSiYmJIiwsTLi5uQm5XJ7tmGfPnomAgICsvw4ICBCfM2TIkH/9EnEOp0tXcxHy7Bfh59dIbHdeJt7suyxGduwrAIiW7QeI3ScjxTTn9UL2P/9Z5XA4HA6HU3gnFx1R+pAFdViwOV+alq1MxP2Q9mLbtp/Efo81IvS3i8K2dRcBQDRu1kXsDHwrHBfsEgoVVcmzcjgcDofDybspEr/kSFTQ2DQ0wIpVdXHv7gdMmXQNmZkC472dsSPoEGrbtMJkRz88vHcZXq5DkZGeJnVcIiIiykeF4i0iRAVJtWq68FvbABEvFZg87i7eRyWgl8t4CCFgWaMRZrhswsvn97HIyRapKUlSxyUiIqJ8xjvYRN+gfAVtbNhkg6QYbWg/HY5Fw10AAEIIVKhcC47zd+L921AscOyDpIScfy2UiIiIijYWbKJcKlVKAxu3NIRKmiE0Q4ajpE5JrNi7EQBgXrYK5izag4T4WHjM7IEPMfwVUCIiouKKS0SIcsHAQBUbtzSEobo5ZPcGQqaiQC+Xcbj99CGMTMrAyXMvMjMz4O7QA5HvwqSOS0RERBLiHWyir9DWVmBdgA1Kl9ZC3NXOSEvLRHfnsbj99CH09I3h/Os+aGhqw2NmL4SHPpU6LhEREUmMd7CJvkBNTQ5f//qoVl0XE8Zew6sHD5CWkY7n4a+hraOHOZ6/wcCwFNwdeuDls3tSxyUiIqICgAWb6DMUChm8V9TBjzUa4q8dOjgVdDxrn7qGNmbN34nSZatgkVN/hNy/ImFSIiIiKki4RIQoBzIZMH9hTXRo1Byqj2xRVqcmtDW0AAAqqmqwd92MKlb1sWz+KNy+9qe0YYmIiKhAYcEmysGs2dbo27o91J/2wa0nD9Fz7jgkJCdCLldgyuy1qFW/BXyXTEbwud+ljkpEREQFDJeIEP2PcRMqYXT3HlB/3hnn71zDkIUzkJCcCJlMhrHTl6PRT50Q4OOIMyd2Sh2ViIiICiAWbKJ/6D/AAnYzLHHx+CukvDiLsUudkJyaAgAYOn4BWrSzxa6ABTh2wF/ipERERFRQsWAT/b+Onczg6tgSQSfvYOKkY0hPF1n7eg+eiQ7dR+PwnlXYu81LwpRERERU0HENNhGAZs2N4eNgD62HY7HBOyVbue7Ycxx6D3ZA0NEt2OI3V8KUREREVBiwYFOxV79+SWx0mQuN9z9ix6mDCL5/N2tfy/YDMGScBy6cOQD/ZXYSpiQiIqLCgktEqFirVl0PuxcuhGZMXaw/vg1O/suz9jVu1gVjpnnj+uWTWLFwLERmpoRJiYiIqLBgwaZiy6KcFnasGg6tqLpYdXgdPAL+++BibZtWmOzoh4f3LsPLdSgy0tMkTEpERESFCQs2FUumpurYuKUhkjVvYYLHJew7eT5rn2WNRpjhsgkvn9/HIidbpKYkSZiUiIiIChsWbCp2zEvpIcjPC+laf8J22GHcuR2bta9C5VpwnL8T79+GYoFjHyQlxEmYlIiIiAojPuRIxYqZsQH+XL0WehnVsX5FbLZybV62CuYs2oOE+Fh4zOyBDzHvJUxKREREhRULNhUb5sZGOLN6PXRkZeB9bD6WbT6ctc/IpAycPPciMzMD7g49EPkuTMKkREREVJhxiQgVC6VKGuLPVRugo1oSK/5wx+K1x7L26ekbw+nXvdDQ1Ibr9C4ID30qYVIiIiIq7FiwqViYOrMcNA2j4ff7KixaHZi1XVtHD3MW7UFJQzN4zOyJF0/vfuEqRERERF/Hgk1FWuXS5WA7tCR69imFJSs8sNw7JGufuoYWZs3fidIWVbHIqT8e3QuWMCkREREVFSzYVCR16mKGOVNbwSJuJDJ1XuLEXz7ZyrWKqhpmzNuMKlb1sdR9OG5f+1O6sERERFSk8CFHKnI6dTHDr84dUe7DGECRhpTSf6B+AwN06mIGAJDLFZgy2x+1G7SEr9cUXP77iMSJiYiIqChhwaYiZ+6UjtAPHQqhGo+kKhsg1KOhpaWCGfaWkMlkGGO3DI1+6oyAVY4488cOqeMSERFREcMlIlSkKOQKmCd3R6ZaNJIrb4ZQTcjaZ2auiSHj5qNl+/7YtXEhju33/8KViIiIiL4PCzYVKSNGl0Nype0QimRAJftPnMd+UMMvPcbgyG+rsXfrEokSEhERUVHHgk1Fgm3rLhjcswkqtz+LK1eeoFp1XWiq/Pc/3qmpMsSmjMCpY1uxeY2zhEmJiIioqOMabCr0RnXqh6UTnFCjqgV27wpD/34XMdvxNt6/l0EIICXNEGHRY3Dpsjr8vKdJHZeIiIiKON7BpkJtWu/hcLAdi3T9e1hzagnme9wBAETH/4CQiGV4FauVdWy5ion4oUV3nDu1V6q4REREVAzwDjYVWjP7j4GD7ViklbyBJYcWZpVrAOg/whkaGlrZjlfX0EL/EVweQkRERMrFO9hUKKmpydHw5wSkGl+Ex5ZlWOv/NGufQqECI5MyOZ5naFw6vyISERFRMcWCTYWKQq5As7p1MWSqHLV+jIKj0xJs3/Yya38JPUNMnxsAmUyW4/mR70LzKyoREREVU1wiQoWGqooK1s1cgG2zffBDXSvMsLuRrVyXq1QDi1YHobJVPRw/sA7JyYnZzk9OTsT29e75HZuIiIiKGd7BpkJBU00dm+Ysxk81GyOh1DFMnB6IPwIjsvY3adEN42esRNyHaDhP7YhnITfx8N5l9B/hDEPj0oh8F4rt6935gCMREREpHQs2FXjaGlrYMc8bDarWRlypAxgxyx9n/3oPAJDJ5eg3dDa695+GB3cuwmveUMTGvAMAnDu1l4WaiIiI8h0LNhV4Azr8jAZVayG21G8YMm0DLl+KAgBoapfAZEc/1G/cDieObMQGn1nISE+TOC0REREVdyzYVKBVqKiNQfaxiFCswJDRR3HrZiwAwKxMZTi4bYWpeXmsXTYdJ45slDYoERER0f9jwaYCydzQBFvmLoZ+gxNIVX2DfoOO4OGDOABAHZvWmDJnLTLS0+Bu3x33b1+QOC0RERHRf7FgU4FTzrQ0Di70hbGBPkJTVdF/0EU8e5oAAOjadzJsRzjjxdM7WDx3EN6/fS1xWiIiIqLsWLCpQKlapgL2z18NfT0NPNNeg74D9yM0NAlq6poYN305mrbqiXOn98F3yWSkpiRJHZeIiIjoEyzYVGBUNLPAYU9/6OjI8VBtFfoNOIy3b1NgaFIa9q5bUL5STWxb54aDO5dLHZWIiIjos1iwqcCwqpsJNfMQ3PwQiAH9jyI6Og1WNRpjustGqKqpw9O5P65fOiF1TCIiIqIvYsEmyTWuVheVaifB2b0CLl3fjJHDryA+Lh1tOw3FsImL8PbNC3g6D8Cb14+ljkpERET0VSzYJKm2DX7EhpmeEEb3cOrCWowbfRWpaXKMmrIEbTsPw7VLf2DFgjFITPggdVQiIiKiXGHBJsl0bdoWq6a5AjrhCHy8GeMnXIGmliFmLQiAdc0m2L9jGXYGzIfIzJQ6KhEREVGusWCTJGxbd4HX+NnILPES+x94YZrdZZQtXxP2bltQQrcklnmMxPk/90sdk4iIiOibsWBTvlNXVYPziJHI0H2CbdeWYrbjVTRp3gPjZqzAh9hIzJ3aEc8e35I6JhEREdF3YcGmfKVQyODsVhVqDbbCf+t9eHjcRf/hLujabzLu3TqPpW7D8CHmvdQxiYiIiL4bCzblG+chE9GhTVUYNw2Ej891+PtFYJbHDtRt2AaBhzZg4+rZyEhPkzomERER0b/Cgk1KJ5PJsGi0PQa364U0o2B4eD7AkaNyLFh1AialysHf2w4nf98kdUwiIiKiPMGCTUqlkCuwbLITejXriFSTc3Bc440HIVZY4OOH1NRkuM7oiod3Lkkdk4iIiCjPyKUOQEXb8ikfy3Wy6SlMXboESRk94eC+DeGhT+E4vjXLNRERERU5vINNSmNgoAqr5s+QYHIUUxcFoHItV/zQojvOBu2B39JpSE1JkjoiERERUZ5jwaY8p62hha7Nf8JAu0SYWkTAzvEKmv2yCRYVq2OLvwsO7/aROiIRERGR0rBgU57S0y6BPW4rUKOCFd4bL4Ob+xt0GbgfChVVLJzTFzeDT0kdkYiIiEipWLApzxjplcS++atQybwcokx3wCdAFd0H70Z46DMsnjsQb0KfSB2RiIiISOn4kCPlCXNDE/z+61pUKl0W74w3Y+cZI7Tpuhw3g4MwZ/LPLNdERERUbPAONuWJ/p1aoIyJMd6UDMDZh61Qq2F77N3mhd0bF0IIIXU8IiIionzDgk3/iopCgbr1dTFgRgyeRS9DyPspMDStAG/34bhw5qDU8YiIiIjyHQs2fbeaFS2xxflXqNU6hHcfwhGe5IqExHQsdvkFL57ckToeERERkSRYsOm72FjVwk6X5VDXScOrRBki03xw9/ZNeLuPQFxspNTxiIiIiCTDgk3f7KdaNtgyxwsq2vF4bfg7wpLm4si+7djs64SMjHSp4xERERFJigWbvkntStbY7rwMMu0ohBn9iedRM+C/fDZOHdsqdTQiIiKiAoEFm75Jw9apyDS/gLeasbj1ZDB+demDR/eCpY5FREREVGCwYFOudG3aFtZNojFiggki4hIQ9PePWDy3A6Leh0kdjYiIiKhAYcGmrxrZsS/cR0xHqvElvPmQgG07dLFmaVekpSZLHY2IiIiowGHBpi+a2msYZvYfh3S9+3illYFF7s9x5Lc1UsciIiIiKrBYsOmznAZPwIRuQ5BmcBMh6gmYNvoAbl39U+pYRERERAUaCzblyEBXB8O6/YI0o2BcT07E6AGrERH2TOpYRERERAUeCzZlo5AroKurid0HuyPTfD1OXa2OscO8kZwUL3U0IiIiokKBBZuyqKqoIGD2EjRqUgqizBbsPVQajnYeEEJIHY2IiIio0GDBJgCAhpo6dnv4wqZyDSQb/IGlq2RYudRf6lhEREREhQ4LNkFbQwu/e29GVdOySCzzO2YtPYI9O69KHYuIiIioUGLBLubkcgUCV+9GRX0jJJQ9gDGOO3Dq5HOpYxEREREVWizYxdB0x64YMlgbGuoxSEvAyBxaAAAgAElEQVTXg2riCcSlqqD/uI24eiVS6nhEREREhZpc6gCUv6Y7dsWokTJoyTOhGlkPaqqxgG4I9v71iOWaiIiIKA+wYBczQwZrQyVNG5ohw6Ae+jNkaTqQyYBOHUtIHY2IiIioSOASkWJGS6hCM2QwZEKBpCqbIFQ/vt9aQz1G4mRERERERQMLdjFSs6IlNEOGAbIMJFUJQKbmu6x9ySn6EiYjIiIiKjpYsIuR6uWrIi4xFfLaOyD7R7nOyFTDps0JEiYjIiIiKjq4BrsY0NHUBgDsPHUYdYd2gd+WKCQl60MIIClZH2vXCXgtPChxSiIiIqKiQ3BynuDgYMkz/Ntp2+BHcW/TCVG/ak3Js3A4HA6Hw+EUhflaR+Qd7CKsS9M2WO/wK56Hv8aTsBdSxyEiIiIqFliwi6h+rTrDd5oHrjy8hT7zJiIm/oPUkYiIiIiKBRbsIujHmjbwnuiMMzcvYYD7FMQn8QFGIiIiovzCt4gUQefvXoXTuiXY8sd+pKanSR2HiIiIqFjhHewiZHy3QTA3NEFmZibWH93Nck1EREQkARbsIkAmk2H+yBlwHjwJfVt1ljoOERERUbHGJSKFnEKuwJLxsz8+1HhwK7z3rJc6EhEREVGxxoJdiKmqqGDVVHd0/qE1ft3hx3JNREREVACwYBdiGmrqKF+qNOZtXAa/Q9uljkNEREREYMEulLQ0NJGRkYG4xAR0mjWCDzMSERERFSB8yLGQ0dMugV0uPvC18wAAlmsiIiKiAoYFuxAx1DPAb26+qFnRErtP/y51HCIiIiLKAZeIFBJmhibY5bISZYzNMGTBdJy5eUnqSERERESUAxbsQmK9gydKlTSGrdtkXLp/Q+o4RERERPQZhWaJiLW1NU6ePImEhASEhobC1dUVcvnX4+vq6mLDhg2IiopCTEwMtm7dipIlS+ZD4rw1y88TvV0msFwTERERFXCF4g62vr4+Tp48iXv37qFr166oVKkSvLy8IJfL4ezs/MVzd+3aBUtLS4wcORKZmZnw9PTEgQMH0KxZs3xK//1qVKiKZrUbYfWBLbj19IHUcYiIiIgol0RBn1mzZomoqChRokSJrG329vYiISEh27b/ncaNGwshhPjpp5+yttnY2AghhGjduvVXPzc4OFiy79zAsqZ4sCVIBPsdFLpaOpL/e8DhcDgcDofD+Thf64iFYolIhw4dEBgYiLi4uKxtO3fuhJaWFpo3b/7F88LDw3H27NmsbcHBwXj69Ck6dOig1Mz/xo81bbDLxQeRsdHoNmc0PiTGSx2JiIiIiHKpUBRsKysrPHiQfYnEq1evkJCQACsrq286DwDu37//xfOk1LbBj9gyZyleRISim9MYhL6PkDoSEREREX2DQlGwDQwMEBMT88n26OhoGBgY5Pl5Uvo/9u48rKqq/Rv4l0EBUcDAecCpHHvyUXHCIucpw3lI01J51Mwpw6E0cJ4yNTUJTdQyFUw0UZwAcVacKjQQZZRBZDgyg8D9/uGP83o4h9GDoH4/13VfcdZee+219wK72ay9tkmVqrgbGoRhi6fhsSK+vLtDRERERCX0SjzkCAAiolamo6OjsfxF9rOzs8P//vc/AICFhUUpevpi/jh3Au4XTiE3N/elH5uIiIiIXtwrcQc7MTERZmZmauWmpqYa71AXtZ+ZmVmB+23fvh1WVlawsrJCXFxc6Tv9AphcExEREb26XokEOyAgQG3OdP369VG1alWNc6wL2w8oeG42EREREdGLeiUSbE9PT/Tt2xdVq1ZVlo0aNQppaWnw9fUtdL86derA2tpaWda+fXs0bdoUnp6eZdpnIiIiInpzlftagkWFmZmZREVFyalTp6Rnz55iZ2cnycnJsmzZMpV6QUFBsmPHDpUyT09PefDggQwZMkRsbW0lICBAzp07p5U1DhkMBoPBYDAYb14UI0cs/04WJ1q2bCleXl6SlpYmUVFRsnTpUtHV1VWpExISIi4uLiplpqamsnPnTklMTJQnT57I3r17xdzcXFsXj8FgMBgMBoPxhkVROaLO/31BGvj5+cHKyqq8u0FEREREFUhROeIrMQebiIiIiOhVwQSbiIiIiEiLmGATEREREWkRE2wiIiIiIi1igk1EREREpEVMsImIiIiItIgJNhERERGRFjHBJiIiIiLSIibYRERERERaxASbiIiIiEiLmGATEREREWkRE2wiIiIiIi1igk1EREREpEVMsImIiIiItIgJNhERERGRFjHBJiIiIiLSIibYRERERERaxASbiIiIiEiLmGATEREREWkRE2wiIiIiIi1igk1EREREpEU6AKS8O1FRxcbGIiws7KUf18LCAnFxcS/9uFS2OK6vJ47r64nj+nriuL6eymNcLS0tUbNmzULrCKNihZ+fX7n3gcFxZXBc3+TguL6ewXF9PaMijiuniBARERERaRETbCIiIiIiLdID4FjenSB1N2/eLO8uUBnguL6eOK6vJ47r64nj+nqqaOPKhxyJiIiIiLSIU0SIiIiIiLSICfZL1LJlS5w5cwapqamIjIzEkiVLoKtb9BCYmJhg586dSEhIgEKhwG+//Ya33nrrJfSYiqM049qhQwfs3LkTQUFBSE1NRUBAAL777jsYGBi8pF5TUUr785pHR0cH169fh4hg4MCBZdhTKokXGdchQ4bg2rVrSEtLQ1xcHDw9PVGlSpUy7jEVR2nHtX379jh58iTi4uIQHx+P06dPo2PHji+hx1QcTZs2hZOTE27fvo3s7Gz4+PgUa7+KkjeV+1Imb0KYmZlJZGSknD59Wnr16iVTpkyRlJQUWbZsWZH7enp6SnBwsAwdOlQGDx4sgYGBcu7cuXI/J0bpx3XdunXi6+srkydPFhsbG5kxY4YoFAo5ePBguZ8T48V+XvPCzs5OoqOjRURk4MCB5X5OjBcb10mTJkl6erosWbJEbGxsZPDgwfLjjz+KiYlJuZ/Xmx6lHdf69etLYmKieHl5yYABA2TAgAHi4+MjCoVCGjZsWO7nxYB8/PHHEh4eLq6urnL37l3x8fEp1n4VJG8q/wv4JsSCBQskISFBqlWrpiyzt7eX1NRUlbL80blzZxERef/995VlVlZWIiLSs2fPcj+vNz1KO64WFhZqZXZ2diIi/Ie9AkRpxzUvzMzMJDY2ViZOnMgEuwJFacfV3NxckpKSZPLkyeV+DgztjeuUKVMkOztbTE1NlWVmZmaSnZ0tU6dOLffzYkB0dHSUX7u5uRUrwa4oeROniLwk/fv3x8mTJ5GcnKws279/P6pUqQIbG5tC94uJicH58+eVZX5+fggODkb//v3LtM9UtNKOq6Y3Tt26dQsAinwzFJW90o5rnmXLluHixYvw8vIqy25SCZV2XEeOHAkA2L17d5n3kUqutONaqVIlZGdnIyUlRVmWkpKC7Oxs6OjolGmfqXhEpMT7VJS8iQn2S9KiRQsEBASolEVERCA1NRUtWrQo0X4A8O+//xa6H70cpR1XTbp27YqcnBwEBgZqs4tUCi8yru+++y4+//xzfP3112XZRSqF0o5rp06dEBgYiEmTJiEiIgJZWVm4cuUKunTpUtZdpmIo7bj+8ccfSEtLw/r161GjRg3UqFEDGzZsQGJiItzc3Mq621RGKkrexAT7JalevToUCoVaeWJiIqpXr671/ejl0Nb41KpVC99++y1+/fVXlbswVD5eZFw3b96MrVu34sGDB2XVPSql0o5r7dq10bx5cyxatAjz58/HoEGDkJqaihMnTvAvThVAacc1Ojoa3bt3x7BhwxAbG4vY2FgMHToUffv21fhXRno1VJS8iQn2S6TpTx06OjpF/gmktPvRy/Gi41OpUiW4uroiJSUFc+bM0Xb3qJRKM66jRo1C8+bNsXz58rLsGr2A0oyrrq4uqlWrhkmTJuH333/HyZMnMXjwYOTk5ODLL78sy+5SMZVmXGvXro2DBw/ixo0b6NevH/r164cbN27g2LFjaNCgQVl2l8pYRcib9F/akd5wiYmJMDMzUys3NTXV+JvW8/vVqFFDrdzMzKzQ/ejlKO24Pm/Pnj1o3bo1rK2tOaYVRGnGVV9fH+vWrcOaNWugq6sLU1NTmJiYAACMjY1RtWpVlbme9PKV9uc1ISEBAHD27FllWXJyMm7cuIFWrVppvZ9UMqUdV3t7e+jr62P48OHIzs4GAHh7eyMoKAhff/01Zs2aVWZ9prJTUfIm3sF+SQICAtTm/tSvXx9Vq1bVOFeosP2AgucY0ctV2nHNs2HDBtja2sLW1pZzryuQ0oyrsbExGjRogA0bNkChUEChUODvv/8GABw4cED5ECuVn9L+vP7777/Izc1Ve/BNR0cHubm5ZdJXKr7SjmuLFi1w584dZXINAE+fPsWdO3fQtGnTMusvla2KkjcxwX5JPD090bdvX1StWlVZNmrUKKSlpcHX17fQ/erUqQNra2tlWfv27dG0aVN4enqWaZ+paKUdVwBYsGABZsyYgXHjxuHixYtl3VUqgdKMa0pKCj788EOVGD16NABg4cKFGDt27EvpOxWstD+vHh4e0NXVRffu3ZVlJiYmaN++Pf76668y7TMVrbTjGhYWhjZt2qBSpUrKssqVK6NNmzYIDQ0tyy5TGapIeVO5r3P4JoSZmZlERUXJqVOnpGfPnmJnZyfJyclqC+EHBQXJjh07VMo8PT3lwYMHMmTIELG1tZWAgAC+aKaCRGnHdcyYMSIisnPnTunUqZNKaFojm/FqjGv+sLS05DrYFSheZFzd3d0lKipKxo8fLwMGDJCzZ89KbGysmJmZlft5velR2nFt166dZGVliYeHhwwYMEAGDhwox48fl6ysLPnPf/5T7ufFgBgZGcmwYcNk2LBhcunSJfH391d+NjIy0jiuQIXJm8r/Ar4p0bJlS/Hy8pK0tDSJioqSpUuXiq6urkqdkJAQcXFxUSkzNTWVnTt3SmJiojx58kT27t0r5ubm5X4+jNKPq4uLixRkwoQJ5X5OjNL/vD4fTLArXpR2XI2NjeWnn36SuLg4SUtLk9OnT0ubNm3K/XwYLzauPXr0EF9fX4mPj5f4+Hg5e/as2NjYlPv5MJ5F3r+hmlhaWhY4rhUhb9L5vy+IiIiIiEgLOAebiIiIiEiLmGATEREREWkRE2wiIiIiIi1igk1EREREpEVMsImIiIiItIgJNhERERGRFjHBJqI3goODA0QE9+7d07g9KCgIIgIHB4eX3LOKad26dQgJCVF+njBhAkQExsbGxW7D3t4eNjY2WuvTwIEDISKwtLTUWpsFsbGxgYigdevWZX4sInr9MMEmojdGeno6GjdujPbt26uUd+jQAZaWlkhPTy+nnlV8x44dQ+fOnZGWllbsfebNm4cPP/yw7DpFRFRBMcEmojdGamoqvL29MXr0aJXy0aNHw9vbG6mpqeXUM+0zNDTUantxcXG4evUqRPhuMiKiojDBJqI3yv79+zFy5EiVspEjR2L//v0a61tbW+Ps2bNITU1FXFwcnJ2dUbVqVeX22rVr45dffsGDBw+QlpaGwMBALFu2DJUqVVLWsbS0hIhgxIgRcHJygkKhQEREBBwdHaGjo1Nof318fODm5gY7OzuEhIQgLS0NHh4eqFu3rlr7n3zyCXbv3o3ExEQcPXoUAFC9enU4OTkhJiYG6enpuHjxIjp27KhyDFNTU+zduxcpKSmIiorCN998o9YPTVNEDA0NsWbNGoSGhiIjIwPBwcFYuXIlACAkJAQWFhZwdHSEiEBElNNFdHR0MH/+fAQFBSEjIwOBgYEYP3682jEdHBzw6NEjJCUlYffu3TAxMSn0WjVq1Agigv79+6uU6+rqIjo6GkuXLgUANG/eHPv27UN4eDhSU1Ph7++PWbNmFToWedd44MCBKuUuLi7w8/NTKWvdujU8PDyQlJSEpKQkuLq6olatWoX2nYheP+X+rnkGg8Eo63BwcJDHjx+LqampZGRkSLdu3QSAvP/++5Keni6mpqby+PFjcXBwUO7TtWtXycjIkP3790v//v1l3Lhx8vDhQ3Fzc1PWadOmjaxbt05sbW3lgw8+kMmTJ8vDhw/FyclJWcfS0lJEREJCQuT777+XXr16yapVq0REZMSIEYX228fHRx4+fCh///23DBkyRMaMGSPh4eFy7do1tfajoqJky5Yt0qtXL+nevbtUrlxZbty4IQ8ePJBPP/1U+vbtK4cPH5akpCSpVauWcv9Dhw5JQkKCTJ48WT766CM5e/asRERESEhIiLLOhAkTRETE2NhYWXby5ElJSkoSe3t76dGjh3z66afi7OwsAKRt27aSmJgo27dvl06dOkmnTp2kWrVqAkC2bNkiycnJYm9vLz179pTVq1dLdna2DBw4UNn2zJkzJScnR5YtWyZ9+vQRJycniYiIEBERS0vLAq/XlStXZNeuXSpl3bt3FxGR1q1bCwDp0aOHODo6ykcffSQ2NjYya9YsUSgUsmDBAuU+NjY2KvvkXePn+whAXFxcxM/PT/m5adOmolAo5MyZM2JraytDhw6VO3fuqIwXg8F4I6LcO8BgMBhlHnkJNgA5fPiwbNmyRQDI1q1bxd3dXQCoJdjnzp0Tb29vlXbyJ2v5Q09PT8aMGSPp6elSqVIlAf5/crZ7926Vurdu3ZJ9+/YV2m8fHx/JysqShg0bKsu6du0qIiJ9+/ZVaf/QoUMq+06cOFEyMzOlWbNmKv27f/++rF27VgBIq1atRERk5MiRyjrGxsYSHx9faILdp08fEREZNGhQgX3Pfz2BZwloTk6OjB8/XqV89+7dyiRUV1dXIiMj5aefflKpc+rUqSIT7NmzZ4tCoZDKlSsry5ycnMTf37/AffT09GThwoXy4MEDZVlpE+w9e/ZIQECAcuwBSLNmzSQ7O1sGDBhQ7j8HDAbj5QSniBDRG2f//v0YPnw4KleujOHDh2ucHmJkZIQuXbrA1dUVenp6yrhw4QKysrJUHpScNWsW7ty5g7S0NGRnZ+P333+HoaEhGjZsqNLmqVOnVD7fvXsX9evXL7K/N2/eRHh4uPLzpUuX8OjRI7WpHseOHVP53KtXL9y4cQMhISHK/gOAr68vOnToAACwsrICAPz555/K/VJTU3H69OlC+9SjRw/Ex8crp6IUV8+ePZGbmwt3d3eV6+rl5YW2bdtCV1cXDRo0QN26dXHkyBGVfQ8dOlRk+66urqhWrRr69esHANDT08PQoUNVxtjAwACOjo4ICgpCZmYmsrOzsXLlSjRp0kR5jUqrV69ecHd3R25urvLcQkJCEBoaqrzmRPT6Y4JNRG+cP//8E1WrVsWKFStgbGysMUmsXr069PX1sW3bNmRnZysjKysLlStXRoMGDQAAs2fPxvr16+Hu7g5bW1tYWVnhiy++AKD+oKFCoVD5nJWVVayHEWNjYzWW1alTR6Xs0aNHKp8tLCzQpUsXlf5nZ2dj4sSJyv7Xrl0bSUlJyMjIKPKYzzM3N0d0dHSRfc/PwsIC+vr6SEpKUunT7t27UalSJdSpUwe1a9fW2Iei+gQAUVFRuHDhAkaNGgXgWUJfo0YNlQR7zZo1+Prrr+Hs7IwBAwagQ4cOWLZsGYAXfzjUwsICCxYsULvmTZs2VV5zInr96Zd3B4iIXra8BwXnzJkDNzc3jUvPKRQK5ObmwtHREcePH1fbHhUVBQAYMWIE3NzcsGjRIuW2Vq1aabW/NWvW1FiWP8HNv8JHQkIC/Pz8MG3aNLX9MzMzAQAxMTEwMTGBoaGhSpKt6ZjPi4+PV0vwiyMhIQFPnz6FtbU1cnNz1bbHxsZCX19fYx+K6lOeAwcOYPXq1TA0NMSoUaNw8+ZN3L9/X7l9xIgR2Lx5M9atW6csy//wYn5516Zy5coq5W+99ZbK54SEBLi7u2PHjh1qbcTFxRWr/0T06mOCTURvpG3btsHAwABOTk4at6elpeHKlSto3ry58u6mJkZGRspkNc/YsWO12td27dqhQYMGiIiIAAB07doVtWrVwrVr1wrdz8vLC3369EF4eDgeP36ssU7eChgff/wxXF1dAQDGxsbo3bs3kpKSCm17/vz5GDhwoNrUlDya7tB7e3tDT08PpqamOHPmjMb9IiIiEB0dDVtbW5w8eVJZPnTo0IJP9jlubm7YtGkThgwZgiFDhmDVqlUq2/OPma6urtrSjfnFxsYiKysLLVu2hLu7O4Bn16lLly4ICwtT1vPy8kKbNm1w48aNYvWViF5PTLCJ6I3k6+sLX1/fQuvMmzcPXl5eyM3NxcGDB5GcnIyGDRti4MCB+PbbbxEUFITTp09j5syZuHr1Kh48eICxY8eiWbNmWu1rbGwsPDw84OjoqFwa78aNGyrJpyZ79uzB1KlTcfbsWXz//fcIDg6Gubk5OnbsiJiYGGzcuBF3797FkSNHsG3bNpiYmCA6Ohr29vZFvlDm9OnTOHHiBH7//XcsXboUN2/eRJ06dfDBBx9g6tSpAICAgAAMHDgQJ06cQEpKCgIDA3Hv3j04OTlh//79WLt2La5fvw5DQ0O0bt0a77zzDuzs7JCbm4u1a9fi+++/R1xcHM6fP49hw4ahZcuWxbpejx8/Vp5z9erVlb84PN/36dOn4/79+0hISMD06dNhYGBQaJsigiNHjmDOnDkICwuDQqHA3Llz1V5O5OjoiGvXruHYsWPYuXMn4uLiUK9ePfTu3Ru7du0q8nuOiF4f5f6kJYPBYJR1PL+KSEGhadWLjh07iqenpzx58kRSUlLkzp07sn79ejExMRHg2YobO3fulPj4eImPj5ft27fLwIEDS7UChabw8fERNzc3mTJlioSFhUlaWpocP35c6tevr6xTUPsAxMTERDZu3Cjh4eGSmZkpERER8scff0jXrl2VdczMzGTfvn2SkpIiMTExsnjxYlm3bl2Ry/QZGhrKunXrJCIiQjIyMiQ4OFiWL1+u3N6uXTu5fPmypKSkiIiIjY2NctusWbPE399fMjIyJDY2Vs6ePSuffvqpSt+XLl0qsbGxkpSUJL/99puMGTOmyFVE8mLSpEkiInLp0iW1bTVr1pRDhw7JkydPJCYmRtasWSOTJ09WOb/8q4jk7Xf48GF58uSJhIaGip2dncYxbN68ubi5uUl8fLykpaVJUFCQODk5Sb169cr954DBYLyc0Pm/L4iIqALy8fFBXFwcRowYUd5dISKiYuIqIkREREREWsQEm4iIiIhIizhFhIiIiIhIi3gHm4iIiIhIi5hgExERERFpERNsIiIiIiItYoJNRERERKRFTLCJiIiIiLSICTYRERERkRYxwSYiIiIi0iIm2EREREREWsQEm4iIiIhIi5hgExERERFpERNsIiIiIiItYoJNRERERKRFTLCJiIiIiLSICTYRERERkRYxwSYiIiIi0iIm2EREREREWsQEm4heCh8fH4hIuR3fxcUFIgJLS0tlmaWlJUQELi4u5dYvoPyvjbY0a9YMhw4dQnR0NEQEiYmJ5d2lFxYSEoKQkBCVsgkTJkBEMGHChDI7rojAx8enzNonorKlX94dIKJXR/4kMDMzE0lJSYiIiMDNmzfxxx9/4NSpU8jNzdX6sfOSnMaNG2u97bLm4uKCzz77DI0aNUJYWFh5d6dM6Orq4vDhw2jWrBl+/fVXPHz4EBkZGeXdrQrrVf5+JqKiMcEmohJzdHQEAOjp6cHMzAytW7fGp59+ismTJ8PPzw9jx45FUFCQyj7jx49HlSpVyqG3zyxcuBCrV69GZGRkufWhIOV9bbShcePGaN26NZydnTFlypTy7k6Zcnd3x5UrVxAdHV1mx2jRogXS0tLKrH0iKltMsImoxJYsWaJWVrNmTWzevBkjR47EmTNn0KFDBzx+/Fi5PSIi4mV2UU1MTAxiYmLKtQ8FKe9row1169YFAERFRZVzT8peUlISkpKSyvQYgYGBZdo+EZU9YTAYjOJEnoK26+joiLe3t4iIbNiwQWWbj4+Pxn3Hjx8vFy9elNjYWElPT5fw8HA5ceKEjBw5UgCIjY2NFMTFxUWlbz4+PlKrVi3Zvn27PHz4ULKzs2XChAkCQFxcXERExNLSUrmPpaWlsp3mzZuLu7u7xMfHS0pKipw/f1569+6t1l8HBwcREbGxsVHb9nx7+a9ZfiEhIUVeGx0dHZkyZYpcu3ZNkpOTJSUlRa5duyZTp04VHR0djePj4+Mj5ubm8vPPP0tUVJRkZGSIv7+/fPbZZyUe73bt2snBgwfl0aNHkpGRIaGhobJ161apXbu2xu+L/BwcHAptvzTXf8KECSIiMmHCBOnbt6/4+PiIQqFQuX56enoybdo0uXz5sjx58kRSU1Pl5s2bMn36dI3XDYBMnz5d/P39JT09XR4+fCibN28WExMTCQkJURmr/H3I3069evVk06ZNcu/ePUlPT5f4+Hi5evWqLFq0qFTfz/nbNzExkZUrV0pAQICkp6dLQkKCnDhxQnr27KlWN+9YDg4O8t5774mHh4ckJiZKamqqnD17Vrp06aK2T9WqVWXRokXyzz//yJMnTyQpKUnu378v+/fvl3bt2pX7v0EMxqsSvINNRFojIli+fDm6d++OMWPGYM6cOYXWX7FiBb755hsEBwfD1dUVT548QZ06dWBlZYURI0bA1dUVoaGhcHR0xOzZswEAGzduVO5/+/ZtlfbeeustXLlyBSkpKTh06BByc3Px6NGjIvvduHFjXL58Gf7+/vj5559Rp04djBo1Cp6envjkk0/g6upaiqvxjKOjIwYPHoy2bdti48aNUCgUAKD8b2F+/fVXjB07FuHh4dixYwdEBEOGDMG2bdvQrVs3jBs3Tm0fMzMzXLx4EVlZWTh48CAMDQ0xfPhwuLi4IDc3F3v27ClWvwcOHIg//vgDOjo6OHjwIMLCwtC+fXt88cUXsLW1hbW1tXI+uaOjIxo1aoTPPvsMZ8+exdmzZwFA+d+ilOb6D5IfDNYAACAASURBVB8+HP369YOnpyecnJzQqFEjAIC+vj6OHj2Kfv36ISAgAL///jsyMjLQvXt3bNmyBZ06dcL48eNV2tq4cSNmzZqFqKgoODs74+nTp7C1tUWnTp1QuXJlZGVlFes82rdvj5MnT8Lc3By+vr44dOgQqlSpglatWsHR0RHLly8v0fdzfqamprh48SJat26Na9euYePGjbCwsMDIkSNx6tQpTJs2Dc7Ozmr7dejQAfPmzcPly5exY8cONGzYEMOGDYOXlxfatm2Le/fuKeueOHEC1tbWuHTpEnbs2IHs7Gw0aNAAH374Ic6fP4+bN28W61oQUQXI8hkMxqsReQqrU7lyZcnKyhIRkUaNGinLNd2ljYuLk4iICDEyMlJrx9zcXOWzpjuJmvq2e/du0dPTU9te2B1sEZG1a9eq1G/fvr1kZWVJQkKCVKtWTVle0jvYBR37+dB0bUaPHi0iIjdu3BBjY2NleZUqVcTPz09ERMaMGaPxGmzfvl10dXWV5S1btpSnT5/KnTt3ijXOxsbG8vjxY8nOzpZu3bqpbJs3b56IiJw8eVKl/Pm7pcX9firN9c+7e5yTkyN9+/ZVazNvfH788UeVa6Crqys7duwQEZGPP/5YWd6lSxcREQkKCpLq1asryw0MDOTSpUsiIsW6g12pUiUJDg7WOC4ApH79+iX+fs5/B9vJyUlERJycnFTKmzVrJgqFQjIyMlS+x56/W57/bvv//vc/ERHZunWrsqxNmzYiInLo0CG1/ujo6IiZmVmxx5bBYJR/BxgMxisSxUmwAUh0dLSIiFhZWSnLCkqwg4ODpXLlykW2WZyEJCMjQ2rUqKFxe2EJdmJiolStWrXAfcaPH68se1kJ9qlTp0RENE6T6NGjh4iIeHl5qV2DlJQUlYQ0L86ePSsiovE888cnn3wiIiJ79+5V26anp6dMJBs0aKAsf5EEuyTXPy+5LSgJfPz4sURFRWn8JcvU1FRycnLkwIEDyjJnZ2cREY1TaPLOqTgJ9tChQ0VE5PDhw8U695Im2Pr6+pKSkiJJSUkqvwjkxdKlS0VEZPHixWr9P3/+vFp9fX19ycrKEj8/P2VZXoKtadwZDEbJgutgE5HW6ejoAECRazvv3bsXjRs3xp07d7By5Ur07dsXJiYmpT5uaGioyoOVxXXz5k2kpKSoledNcfjvf/9b6j6VVrt27ZCTk6NxmoWvry+ys7M19isoKAjJyclq5XkPUpqZmRXr2ADg7e2tti0nJwfnzp0DoL3rUprrf+3aNbWyd955BxYWFkhOTsaiRYvg4OCgErNnz0Z6ejpatmyp3CfvXH19fdXaO3/+PJ4+fVqsc+jcuTMAwNPTs1j1S6pFixYwNjbGX3/9pXF98byx0nStrl+/rlaWnZ2NR48eoXr16sqyu3fv4tatW/jkk09w4cIF2Nvbo0uXLqhUqZIWz4TozcA52ESkVQYGBnjrrbcAoMhkd86cOXjw4AEmTpyIhQsXYuHChXj69CmOHz+OuXPn4sGDByU6dmlXCSlonnZee6ampqVq90WYmpoiISFBY4KXk5ODuLg41KxZU21bQXO7s7OzATxbWrE4xwZQ4DJ0eeXFSdaLozTXX9NYm5ubA3iWaOctJalJ1apVlV/nta2pD7m5uYiPjy+448/JuxZltQzki4xJYd8Tz38/5ObmokePHvjuu+8wfPhwrF27FsCzVVN2796NhQsXIjU19YXOg+hNwTvYRKRV3bp1Q6VKlRATE1PkS1Vyc3Px448/om3btqhZsyaGDh0Kd3d32Nra4sSJE6hcuXKJjl3UHfOC1KpVS2N57dq1AQBPnjxR6TPw7GG6/LSVcOYd86233tJ4HD09PVhYWJTZUnF555t3/vnVqVNHpd6LKsn1z6NprPPqHTp0CDo6OgVGkyZN1PbR1AddXV1l0l6UvCS2Xr16xapfUi9rTBQKBb766is0bNgQzZo1w6RJkxAQEIAZM2Zg27ZtL9Q20ZuECTYRaY2Ojg6+/fZbAMDvv/9eon0fP34Md3d3jBo1Cl5eXmjWrBnatGmj3J6Tk1Osu6+l0a5dO5W7mnk+/PBDAMCtW7eUZXl/nm/QoIFa/Q4dOmhsPycnB0Dx7h7nuXXrFvT09PDBBx+obfvggw+gr69fZis65J1v3vk/T09PD926dQMArR2/JNe/MAEBAUhMTETnzp01/mKiSd452NjYqG17//33iz094sqVKwCA/v37F6t+Sb+fAwMDkZqairZt22r8Ra579+4AtDcmAPDgwQPs3LkTNjY2SE5Ohq2trdbaJnrdMcEmIq2oUaMG9u/fj+7duyMsLAwrV64stH7lypXRo0cPtXJ9fX3lFJPn32QXHx+PGjVqwNDQULsdx7M7z999951KWfv27TF27FgoFAq4u7sry/Pm/n7++ecqCVL9+vXV2ni+7wDQsGHDYvdp586dAIBVq1bByMhIWW5kZITVq1cDAH755Zdit1cShw8fRnx8PMaMGYNOnTqpbJs9ezaaNm2K06dPa+0FOSW5/oXJycnB5s2bUbduXfz4448av1dq166tMgd7165dAIBvv/1WZT6ygYEBVq1aVexzOHr0KEJCQmBra4vRo0erbc97EU+ekn4/P336FHv37kW1atWwdOlSlW1NmjTBzJkzkZWVhV9//bXYfc6vUaNGaNWqlVp59erVYWBggPT09FK3TfSm4RxsIioxBwcHAM/+hJ73qvRu3brBwMAAV69exdixY4ucu2pkZAQvLy+EhITg6tWrCAsLg6GhIXr37o1WrVrhyJEjCAgIUNb38vJCx44dceLECZw7dw6ZmZn466+/4OHh8cLn4+vri8mTJ6NTp064ePGich1mXV1dTJkyReWhwWvXrsHX1xc2Nja4du0avL29UatWLQwaNAgnT57UmER7eXlh3rx52L59Ow4ePIiUlBQoFAps3bq1wD7t27cPtra2GDVqFO7cuYPDhw9DRDB48GA0adIEBw4cKPFfCYorNTUVEydOhJubG3x9feHm5obw8HC0b98effv2RXR0tFZfh16S61+UZcuW4b333sO0adMwaNAgeHt7IzIyEjVr1sTbb78Na2trfPvtt/j3338BAJcuXcKPP/6ImTNnwt/fHwcPHlSug52YmFjsN1M+ffoUI0aMwKlTp7Bv3z5MmTIFV65cgaGhIVq2bImePXuq3A0vzffzggUL8P7772PGjBmwsrKCj4+Pch3satWq4csvv0RoaGixr1V+7733Hg4fPozr16/D398fUVFRqFGjBmxtbVG5cmWsWbOm1G0TvYnKfSkTBoPxakR+GRkZ8vjxY7l+/bo4OztL3759C3xTXv6l6PT19cXe3l6OHz8uYWFhkp6eLrGxsXL58mWZMmWKVKpUSWX/KlWqyE8//SQRERHy9OlTteXw8i9rlj+KepNjixYt5PDhw5KQkCCpqaly4cIF6dOnj8a2TE1NxdnZWfmGw3/++Ufs7OwKXKYPgMyZM0fu3r0rGRkZaku/FfYmx2nTpomfn5+kpqZKamqqXL9+Xb744otC3+RY3PMvKjp06CCHDh2S2NhYyczMlLCwMPnpp5+kTp06anVfZJm+klz/wt6i+HyMGzdOzpw5I/Hx8ZKZmSkPHz6U8+fPy8KFC9XWpAaevckxb3wiIyNly5YtpXqTY4MGDWTr1q0SHBwsmZmZEhcXJ1euXJFvvvlGK9/Ppqamsnr1arl3755kZGRIYmKinDp1SuNyjkWNSf5zq1evnqxYsUIuXLgg0dHRkpGRIREREXL8+HHp16+f1v4dYTDehND5vy+IiIheKktLS4SGhmLXrl34/PPPy7s7RERawznYRERERERaxASbiIiIiEiLmGATEREREWkR52ATEREREWkR72ATEREREWkRE2wiIiIiIi1igk1EREREpEVMsImIiIiItIivSi9EbGwswsLCyrsbRERERFSBWFpaombNmgVuZ4JdiLCwMFhZWZV3N4iIiIioAvHz8yt0O6eIEBERERFpERNsIiIiIiItYoJNRERERKRFTLCJiIiIiLSICTYRERERkRYxwSYiIiIi0iIu00dERPQa6NSpE0aOHAkLCwvo6OiUd3eIXkkigri4OLi6uuLq1aulbocJNhER0SuuU6dOGDduHDZt2oSQkBDk5OSUd5eIXkl6enpo3LgxZs2aBQClTrI5RYSIiOgVN3LkSGzatAn3799nck30AnJycnD//n1s2rQJI0eOLHU7TLCJiIhecRYWFggJCSnvbhC9NkJCQmBhYVHq/ZlgExERveJ0dHR455pIi3Jycl7oWQYm2EREREREWsQEm4iIiMqdg4MDHj9+/FKO5eLiAj8/v2LX7927t/Khtxdp503k4+MDNze38u7GS8dVRF4DPQeOL3Zdr2N7yrAnRERUkViOHVsuxw3bu7dcjltcy5Ytg5GRUbHr9+nTB8OHD8emTZteqJ030RdffIGnT5+WdzdeOibYRERE9EYJDg6uUO3kZ2BggMzMzDJpGwB0dXWhp6f3UhLff//9t8yPURFxiggRERG9Erp3744rV64gPT0dMTEx2Lp1K4yNjVXqvPvuu7h48SLS09Ph7++P/v37w8/PDy4uLso6+ad2mJqaYvv27YiMjER6ejrCwsLg7OwM4NnUla+//hqNGjWCiEBElG1pmiLSsGFD/P7773j8+DFSU1Px119/YcyYMQWe04QJEyAisLKygo+PD9LS0mBvbw8AaN26NTw8PJCUlISkpCS4urqiVq1apT5fW1tb+Pv7IyMjA506dQIAfPzxx/Dz80N6ejqio6OxZs0a6Ov///uv9erVw4EDB/Do0SOkpaXh/v37WLp0qXJ7q1at4Onpifj4eKSkpODu3bv44osvlNs1TREpahxtbGwgIrCxsYGrqyuSk5Px4MEDTJs2rcDrWNHwDjYRERFVeC1btsSJEydw+vRpDBs2DA0aNMDq1avRpEkT9O/fHwBgZGSEkydPIiYmBmPGjIGhoSE2bNiA6tWrw9/fv8C2f/jhB3Tt2hVz5sxBTEwMGjRogA8++AAAsGPHDrz99tvo0aMHhgwZAgAFzhWvUaMGLl++jLS0NHz99deIiIhAmzZt0KBBgyLPb9++fdi2bRuWLFkChUKBpk2b4uLFi7h+/To+/fRT6OnpYdmyZTh69Cg6duxY4vNt1KgR1q5di6VLl+LRo0cICQnBiBEjsG/fPvz888/45ptv0LRpU6xatQq6urrKJH/Pnj0wMjLC//73PygUCjRp0gQtWrRQtvvnn38iICAA48aNQ2ZmJpo3bw4TE5MCz7M445hn+/bt2L17N5ydnTFmzBj89NNPuH79+isx750JNhEREVV43333HcLCwvDxxx8jNzcXAJCQkABXV1d07twZV65cweeffw5zc3N06NABUVFRAIAHDx7g2rVrhbbdsWNHbN26Fa6ursqyvf83jzwyMhLR0dHIzMws8q1+c+bMgampKdq3b4+YmBgAgLe3d7HO78cff8SPP/6o/Lxnzx7ExMSgf//+yqkcf//9NwICAjBgwAAcP368ROdrYWGBXr164a+//lKWrVu3Dnv27MH06dMBAKdPn0ZmZia2bt2KVatWISEhAR07dsSYMWPg4eEBAPD19VXub25ujqZNm2Lw4MHKhL6o8y3OOObZt28fVqxYAQA4e/YsBg0ahKFDh74SCTaniBAREVGF17FjR7i7uyuTMgD4448/8PTpU3Tr1g0AYGVlhRs3biiTTQDw8/NTJrsFuX37Nuzt7TFt2jS8/fbbpe5jjx49cOLEiSKPp8mxY8dUPvfq1Ut5vnp6etDT00NISAhCQ0PRoUMHACU734cPH6ok1++88w4sLS3h6uqqbF9PTw/e3t4wMjJCmzZtADy7NqtWrcKECRPU7sQnJCQgPDwcTk5OGDlyJGrUqFHkeRZnHPOcOnVK+XV2djaCgoJQv379Io9RETDBJiIiogqvTp06ePTokUpZbm4u4uPj8dZbbwEAateurXH6RlHL/3355Zc4fPgwvvvuO9y7dw/37t3DqFGjStxHc3NzREdHl3g/AGrnZmFhgQULFiA7O1slmjZtqkx0S3K+mtoHAE9PT5X2Q0NDAUB5jFGjRuH69evYsGEDwsPDcevWLfTo0QMAICLo06cPYmJisHPnTsTExODcuXNo27ZtgedZnHHMo1AoVD5nZWXB0NCwwLYrEk4RISIiogovOjoaNWvWVCnT1dWFubk5EhISAAAxMTFo3ry52r5F3Vl98uQJZs2ahVmzZuHdd9/FvHnzsHfvXvz9998lWgUjPj4ederUKXb954mIyueEhAS4u7tjx44danXj4uIAlOx8NbUPAHZ2drh165Za/ZCQEABAVFQUPv/8c+jo6KBjx45wdHTEn3/+iYYNGyIhIQGBgYEYPnw49PX18f7772PNmjU4duwY6tevr3ZMoHjj+DrgHWwiIiKq8K5evYohQ4ZAV/f/py5Dhw5FpUqVcOHCBQDPpkd06NABdevWVdaxsrJC7dq1i32cf/75B/b29tDT01M+zFfcO6deXl7o27evWgJZGl5eXmjTpg1u3LihFmFhYQBe7HwDAwPx8OFDNGrUSOMx8ie7IoKrV69iyZIlMDY2hqWlpcr27Oxs+Pj44IcffkDdunVhZmam8bjFGcfXAe9gExERUYVQuXJlDBs2TK3c19cXy5cvx61bt3D48GFs27YN9evXx5o1a3DixAnlg3EuLi5YtGgRPDw8sGTJEhgZGWHJkiWIjY1VmfOb3/nz5+Hu7g5/f3+ICOzs7JCSkqJ8WDAgIAC1a9fGhAkT4O/vj7i4OGWS+7wNGzZg/PjxOH/+PFasWIGIiAi0bNkSxsbGWLduXYmuhaOjI65du4Zjx45h586diIuLQ7169dC7d2/s2rULvr6+pT5f4FnCPHfuXPz6668wMTGBp6cnsrKy0KRJEwwePBjDhw9HpUqVcPLkSezZswf37t2DgYEB5s6di+joaPz7779499138f333+PAgQMIDg5G9erVMX/+fNy+fRuJiYkaj1uccXwdMMEmIiKiCsHExAQHDx5UK//www/h6+uL/v37Y+XKlTh06BCSkpKwb98+zJs3T1kvPT0d/fr1w7Zt23DgwAGEhoZi3rx5WLt2LZKSkgo87uXLl/HZZ5+hUaNGyMnJwa1bt9C/f39ERkYCAFxdXdG9e3esXbsWNWvWxK5du/D555+rtRMXFwdra2usXbsWGzduhIGBAYKCgrBq1aoSX4ugoCB07twZy5cvh7OzM4yMjBAZGQkvLy/cv3//hc43j6urK5KSkvDNN99g4sSJyMnJQXBwMDw8PJCVlYWcnBz8888/mDVrFho0aIC0tDRcuXIFffr0QUZGBmJiYvDo0SN8++23qFu3LhQKBXx8fDB//vwCj3n37t0ix/F1oANAfYIMAXj2pxcrK6vy7kaR+Kp0IqI32549ezB+fPH/X/AmadSoEe7du4f//e9/2LVrV3l3p8y9aedblgr7uSoqR+QdbCIiInptLFiwAFFRUQgLC0PDhg2xcOFCPH78GH/88Ud5d61MvGnn+6pggk1ERESvDRGBg4MD6tati8zMTJw/fx5ff/01kpOTy7trZeJNO99XBRNsIiIiem2sWbMGa9asKe9uvDRv2vm+KrhMHxERERGRFjHBJiIiIiLSopeaYA8bNgwXL15EXFwc0tPTERAQgG+//RaVKlVS1gkJCYGIqISm1462bNkSZ86cQWpqKiIjI7FkyRKVRcvzLFy4EOHh4UhLS4Ovry/ee++9Mj1HIiIiInqzvdQ52Obm5vDx8cG6deugUCiUr9ysXbs2ZsyYoay3d+9ebN68Wfk5KytLpR0zMzOcOXMGd+/eha2tLZo2bYr169dDV1cXixcvVtZbsGABFi9eDHt7ewQEBOCrr77CmTNn0KZNGzx69KjsT5iIiIiI3jgvNcF2dnZW+Xz27FmYmJhg+vTpKgl2dHQ0rl69WmA7U6dOhZGREYYOHYrk5GScOXMGJiYmcHR0xNq1a5GcnAwDAwMsWLAAq1atwtatWwE8W0g+NDQUX375pUoiTkRERESkLeU+Bzs+Ph6VK1cu0T79+/fHyZMnVZag2b9/P6pUqQIbGxsAQNeuXWFqagpXV1dlnbS0NBw9ehT9+/fXTueJiIiIiPIplwRbV1cXRkZGsLa2xsyZM7Ft2zaV7RMnTkRmZiYUCgXc3NzQsGFDle0tWrRAQECASllERARSU1PRokULZZ3s7GwEBQWp1Pv333+VdYiIiIiItK1cEuzU1FSkpaXhwoUL8PX1hb29vXLbkSNHMH36dPTs2RP29vbo0qULzp8/DxMTE2Wd6tWrQ6FQqLWbmJiI6tWrK+ukpKQgNzdXrY6xsbHKg5XPs7Ozg5+fH/z8/GBhYaGN0yUiIqJiGjJkCLy8vJCYmIiMjAwEBgZi2bJlMDc3L1E7ISEhWLdunfKzi4sL/Pz8lJ8nTJgAEYGxsbHW+p7f22+/DQcHB5iammqtTTc3N/j4+BRaJ/+55lfac3dwcMDjx4+LrGdvb6+cUVAcjRs3xs8//4yQkBBkZGRAoVDgwoULmDx5MgwNDVWO//wiGKmpqfj7779hZ2en0p6lpaWyTteuXdWOt2jRIogIQkJCit3HkiqXF8107doVVapUQceOHfHdd99hy5YtmD59OgBg9uzZynoXLlzApUuXcPv2bXz++efYtGmTcpuIqLWro6OjUl5QnYK2AcD27duxfft2ACj0m5OIiKii6zlwfLkc1+vYnlLt9/3332P27NlwcXHBhg0bkJSUhFatWmHq1Klo3bo1hg4dWuo+LVu2DEZGRqXevzTeeecdODo6YteuXXjy5MlLPXZhjh07hs6dOyMtLa1M2p83bx62bNkCX1/fIutaW1vj+PHjuH//PlasWIF79+6hatWq6NGjB9avX4+GDRviu+++U9ZXKBTo168fAMDY2BiDBg2Cs7MzUlJSsG/fPpW2k5OTMWbMGFy6dEmlfNSoUWX+pstySbBv3boFAMol+/bs2YP169cjODhYre6dO3cQGBiIdu3aKcsSExNhZmamVtfU1FR5ZzsxMRHVqlWDrq6uyl1sMzMzpKamIjs7W9unRURERKX00UcfYe7cuZg4cSJcXFyU5efOnYOzszP69OnzQu1ryjFKQ19fH7m5uWp/IX+VxMXFIS4urry7AUNDQxw4cABXrlzBwIEDVXKz48eP4/vvv4eVlZXKPtnZ2SoLYXh7e6Nr164YPHiwWoJ99OhRDB8+HLNmzVKOV5s2bdCyZUu4urqiS5cuZXZu5f6Q482bNwE8+/NAYZ6/4xwQEKA2j7p+/fqoWrWqcm52QEAA9PX10axZM5V6muZvExERUfmaM2cObty4oZJc58nNzcWJEyeUn1etWoW///4bycnJiIiIwG+//YZatWoV2n5B0yZatmyJc+fOIS0tDYGBgRg8eLDKdh8fH7i5ucHOzg73799HRkYG6tati+bNm2Pfvn0IDw9Hamoq/P39MWvWLOVfym1sbODh4QEACA0NVZuS0KBBA+zbtw/x8fFITU3FiRMn8M4776gcu379+jh27BjS0tIQEhKCSZMmFXEVi0fTFJEGDRrg+PHjSEtLQ3BwMCZMmFDgdJS2bdvi8uXLSE1Nxc2bN9GtWzfltpCQEFhYWMDR0VE5TaOg6SIjR45EvXr1MGfOHI03PmNiYnD06NEizyc5OVnj1N8jR46gWrVq6N69u7Js9OjRuHDhAiIjI4ts90WUe4JtbW0NAAXOg2ndujWaN2+OGzduKMs8PT3Rt29fVK1aVVk2atQo5ctkAODSpUt48uQJRowYoaxjZGSEQYMGwdPTsyxOhYiIiEpBX18fXbt2VUmiC1OzZk2sXLkSAwcOxOzZs9GkSRN4e3trfOFcUQ4cOIAjR45g6NCh+Oeff+Dm5ob//Oc/KnWsra0xbdo0zJ8/H4MGDcKTJ09Qr149BAYG4osvvsCAAQOwfft2LFmyBPPnzwfw7Abi3LlzATybV965c2cMGTIEwLPnxC5cuIDmzZtj6tSpGDlyJIyNjXHmzBmVOcdHjhxBmzZtMGnSJHz11VeYNWtWmd11/fPPP9GyZUtMnDgRX331FWbOnIlOnTqp1atSpQp2796Nn3/+GcOGDUNmZibc3d2V02+GDBkChUKBHTt2oHPnzujcubPyZmp+H3zwAR4+fIi7d++WqK96enrQ09NDtWrVMHbsWNjY2MDd3V2tXmpqKjw8PDBmzBhl2ejRo9XudJeFlzpFxNPTE2fOnMGdO3eQk5MDa2trzJ07F/v370dwcDAGDBiAcePGwcPDA1FRUWjRogUWLVqE8PBw7Nq1S9mOk5MTZs6ciUOHDmHNmjVo0qQJHB0d8cMPPyjn1GRmZmL16tVYvHgxEhMTlS+a0dXVVXmJDREREZUvc3NzGBoaIjw8vFj1n7+Tq6uri8uXLyMyMhLW1tY4f/58iY69Y8cOrF+/HgBw8uRJ3L17FwsXLlRJyszMzPDf//5X5SV13t7e8Pb2Vn6+cOECqlSpAjs7O6xevRrJyckIDAwE8GxqbFhYmLLunDlzYGxsjLZt2yIxMRHAs2mzoaGhmDhxIn766Sf0798f7dq1Q6dOnXDt2jUAwI0bN/DgwQO1FdJe1IABA9C2bVt07NhReZf/2rVrCA0NxYMHD1TqVqlSBbNnz1be2Y6Ojsbt27fxwQcf4OTJk7h9+zays7Px8OHDQt9pAgB169ZFRESEWrmenp7yaxFRmY5jYWGhdrd706ZN+PXXXzUeY//+/fjll18wbdo0tG3bFg0bNsTBgwexYMGCQvv2ol5qgu3n54fPPvsMjRo1QnZ2NoKDg7Fw4UI4OTkBeLbUXs2aNbFx40aYmZkhPj4eJ06cwDfffKMyGV2hUKBnz57YsmULjh49CoVCgQ0bixl5lgAAIABJREFUNsDR0VHleKtXr4auri4WLlwIc3NzXL9+Hb1790ZsbOzLPG0iIiIqhoIWIMivX79+WLx4MVq3bq2yQsc777xT4gT7+TufIoIjR46o/PUbeJbY5n8DtIGBARYuXIixY8eiYcOGKu/00NPTQ05OToHH7NWrF06fPo2kpCRlMpmcnIwbN26gQ4cOAICOHTsiJiZGmVwDQHh4uMpf9LXFysoK0dHRKlNooqKiNB4rKysLZ8+eVX7Ou/tcv379Eh83/+IUwLNftp6fH379+nWVedgKhQK9evUC8GwM2rdvj6VLlyIhIQFLly5VO8bx48ehp6eHvn37onv37vDy8kJ8fHyJ+1pSLzXB/u6771SeBM3vn3/+UV60ovz777/o2bNnkfVWrlyJlStXFruPRERE9HLFx8cjIyND7b0XmnTo0AF//vkn3N3dsXr1asTGxkJEcPXqVZXpFcWV/6ZbbGws6tSpo1KWP7kGgDVr1mDy5MlYsmQJbt68CYVCAVtbWyxevBiGhoZITU0t8JgWFhbo0qULRo8erbbtzJkzAIDatWtrvCEYGxuLatWqFevciqt27doal997/Pix2rGSkpJUkuKnT58CQKmufWRkJFq1aqVSplAolL9kODg4qI1Fdna2SuJ/6dIlVKpUCStXrsTmzZuVfxHIk5WVhcOHD+OTTz7B+++/j0WLFpW4n6VRLquIEBEREeXJzs7GxYsX0bdvXyxevLjQukOGDMHjx48xatQoZVlxEvOC1KxZEwkJCSqfo6OjVepourM+YsQIbN68WWWt7YEDBxbrmAkJCThy5AiWLVumti3vL/YxMTGoWbOmxv6mp6cX6zjFFRMTgxo1aqiV16hRAxkZGVo91vPOnTuHSZMmqSxAkZOTo0yg4+Pj1RJsTe7evQsDAwM0bdoU169fV9u+f/9+eHh44OnTpxrnapeFcn/IkYiIiGjjxo2wsrLC+PHqa3fr6Oigb9++AJ4tWJB31zTP2LFjS33cvAcP845ja2urMi2jIEZGRsjMzFR+1tXVVbsjnZWVBUD97q6Xlxdat26NO3fu4MaNGypx7949AM+m1dauXRsdO3ZU7tegQQOVZYu1xc/PD3Xq1FGZilG3bl20b9++VO1lZWUV6462q6srIiMjsWHDBujrl/6eb5s2bQBA43xuADh9+jT++OMPrF27FklJSaU+TknwDjYRERGVOw8PD6xfvx6//PILrK2tceTIEaSkpKBFixaYOnUqQkNDcfLkSZw+fRpz5szBhg0bcPToUXTt2hXjxo0r9XEnT56MrKws+Pv7w87ODs2aNVN5wLEgp0+fxvTp03H//n0kJCRg+vTpMDAwUKmT95DjlClTsH//fqSlpcHf3x8//PADxo0bB29vb2zevBmRkZGoVasWbGxscOHCBezfvx/Hjx/H7du34ebmhvnz5yMjIwNLly4t9nNk1atXx7Bhw9TKjx8/rrHs9u3bcHV1xcKFC5Geng4HBwc8evSoVOt9BwQEYODAgThx4gRSUlIQGBiIlJQUtXoZGRkYPXo0jh07hitXrsDJyQmBgYEwNDTEu+++i549e6o9ZKmvr69c3aRy5cpo3749Fi1ahMOHD2ucygM8uyv+/F88XgYm2ERERK+p0r5Rsbx8/fXXuHTpEr788kv8/vvvMDIyQmhoKP788098//33AJ6tSDZv3jzMmDEDdnZ2uHz5Mj766KNSr6wxevRobNiwAcuXL8fDhw8xatQo3L59u8j9ZsyYAScnJ2zduhXp6enYvXs33N3dlW+DBp49lDh37lzMnDkTM2bMwMOHD9G4cWPEx8ejc+fOWLFiBTZs2AAzMzNER0fjwoUL+Pvvv5X7f/zxx3B2dsbOnTsRGxuLlStXonfv3rCwsCiyf02bNsXBgwfVyhs1aqSxvq2tLX7++We4uLjg0aNHWLFiBYYPH16qtz3a29tj69atOHbsGIyNjfHhhx8W+FbHCxcu4L///S8WLFiARYsWoU6dOkhPT8edO3ewadMm5UIYeczMzHDlyhUAz+6Uh4WFwcnJCcuXLy9xP8uSDoDiPbL7BvLz81N7g1BFVJJX4b5q/9gSEVHR9uzZo3FqBVFpmZiYIDg4GFu2bFFbpe1NUdjPVVE5Iu9gExEREb3hpkyZgtzcXAQFBaFGjRr46quvYGBggJ07d5Z3115JTLCJiIiI3nCZmZmYP38+GjZsCBHBtWvX0KtXr2K//IdUMcEmIiIiesPt2rVL5a3Z9GK4TB8RERERkRYxwSYiInrFiYjyldtE9OL09PQ0vmCouJhgExERveLi4uLQuHHj8u4G0WujcePGiIuLK/X+TLCJiIheca6urpg1axaaNWvGO9lEL0BPTw/NmjXDrFmz4OrqWup2+JAjERHRK+7q1asAgGnTpsHCwgI6Ojrl3COiV5OIIC4uDr/99pvy56o0mGATERG9Bq5evfpCCQERaQ+niBARERERaRETbCIiIiIiLWKCTURERESkRUywiYj+X3v3Hh9Vde///50JFwMhmZCI2oJBQjU54LFHBTS0X6pIMcnBUBBjDyoVjcVTpDbKo4kSScSWi1y0gAcLhWJLy61YGjQCwyW1oBAQ6ykwSAuSAJFwmYFkEi4D6/eHh/1zSEgmYecGr+fjsR6PzNqfWbM2S/DNZs3eAADYiIANAAAA2IiADQAAANiIgA0AAADYiIANAAAA2IiADQAAANiIgA0AAADYiIANAAAA2KhRA/bQoUO1adMmHTt2TJWVlXK73Xr55ZfVunXrgLqsrCwVFRWpoqJCBQUFuuOOO6qMlZCQIJfLJZ/Pp0OHDik3N1cOR9XTCWYsAAAAwC6NGrCjo6O1YcMGPf3000pKStL8+fP18ssva/r06VZNZmamsrOzNXnyZA0aNEjl5eVyuVy64YYbrBqn0ymXyyVjjFJTU/Xqq6/qhRdeUG5ubsDnBTMWAAAAYDfTlO21114zHo/HSDJt27Y1Xq/XZGdnW8fbtWtnSktLzYQJE6y+zMxMc+LECdOhQwerb+zYscbn81l9wY5VUyssLGzSX5tgW/+UJ4JuTT1XGo1Go9FotJbeasuITb4H+/jx42rTpo0kKTExUZGRkVq6dKl1vKKiQnl5eUpKSrL6kpKStHr1apWVlVl9ixcvVrt27dSvX786jQUAAADYqUkCtsPhUFhYmPr27asxY8bof/7nfyRJ8fHx8vv92rt3b0D97t27FR8fb72Oj4+X2+0OqCkuLpbP57Pqgh0LAAAAsFOrpvhQn8+n6667TpK0cOFCjR07VpIUFRWl8vJyXbhwIaDe4/Goffv2at26tc6dO6eoqCh5vd4q43o8HkVFRdVpLAAAAMBOTXIFOzExUd/5zneUkZGh1NRUzZo1yzpmjKlSHxISUuXY5eqCqbncMUlKT09XYWGhCgsLFRMTE+QZAQAAAF9pkivYO3bskCTrln3vvPOOpk2bJo/How4dOsjhcARceXY6nfL5fPL7/ZK+ugrtdDqrjBsZGWld2Q52rEvNnTtXc+fOlSQVFhbac8IAAAC4ZjT5lxw/+eQTSdItt9wit9utVq1aqXv37gE1l+65drvdVfZRd+7cWeHh4VZdsGMBAAAAdmrygN23b19J0v79+7V582adPHlSw4YNs46HhYVp0KBBys/Pt/ry8/M1cOBAhYeHW31paWnWw2QkBT0WAAAAYKdG3SKSn58vl8ulnTt36vz58+rbt69eeOEFLV68WPv27ZMkTZo0SdnZ2fJ4PHK73crIyJDD4dDMmTOtcebMmaMxY8ZoxYoVmjx5srp166acnBxNnz7dunXfmTNnghoLAAAAsFOjBuzCwkL96Ec/UteuXeX3+7Vv3z5lZWVpzpw5Vs2kSZPkcDiUlZWl6Ohobdu2TQMGDFBpaalV4/V61b9/f82aNUt5eXnyer2aMWOGcnJyAj4vmLEAAAAAO4XoqyfOoBqFhYXq1atXU0+jVv1Tngi6dt177zTgTAAAAK5+tWXEJt+DDQAAAFxNCNgAAACAjQjYAAAAgI0I2AAAAICNCNgAAACAjQjYAAAAgI0I2AAAAICNCNgAAACAjQjYAAAAgI0I2AAAAICNCNgAAACAjQjYAAAAgI0I2AAAAICNCNgAAACAjQjYAAAAgI0I2AAAAICNCNgAAACAjQjYAAAAgI0I2AAAAICNCNgAAACAjQjYAAAAgI0I2AAAAICNCNgAAACAjQjYAAAAgI0I2AAAAICNCNgAAACAjRo1YD/88MNauXKlDh48qLKyMm3btk2PPvpoQM3+/ftljAloJSUlVcZKSEiQy+WSz+fToUOHlJubK4ej6ulkZWWpqKhIFRUVKigo0B133NFg5wcAAAC0aswPy8jI0P79+/Wzn/1Mx44dU3Jysv74xz8qJiZGs2bNsuoWLVqkmTNnWq/Pnj0bMI7T6ZTL5dKuXbuUmpqquLg4TZs2TQ6HQ9nZ2VZdZmamsrOzNXbsWLndbmVkZMjlcqlnz546cuRIw58wAAAArjmNGrAHDRqk48ePW683bNigb3zjG8rIyAgI2CUlJdqyZctlxxk1apTCwsI0ZMgQlZWVyeVyKSIiQjk5OZoyZYrKysrUtm1bZWZmauLEiZo9e7Yk6aOPPtIXX3yh0aNHBwRxAAAAwC6NukXk6+H6oh07dqhTp051GicpKUmrV69WWVmZ1bd48WK1a9dO/fr1kyQlJiYqMjJSS5cutWoqKiqUl5enpKSkep4BAAAAULMm/5JjYmKidu3aFdA3cuRInTlzRl6vV8uWLdPNN98ccDw+Pl5utzugr7i4WD6fT/Hx8VaN3+/X3r17A+p2795t1QAAAAB2a9QtIpe6//77lZqaqpEjR1p9K1eu1Mcff6yDBw8qISFB48eP14cffqjbb79dp06dkiRFRUXJ6/VWGc/j8SgqKsqqKS8v14ULF6rUtG/fXq1bt9a5c+ca8OwAAABwLWqygB0bG6s//OEPWrlypRYuXGj1P//889bPf/vb37R582Z9+umnevLJJ/Xmm29ax4wxVcYMCQkJ6L9czeWOSVJ6erqeeeYZSVJMTEwdzwoAAADXuibZIhIVFaX8/HwVFRXpscceq7F2586d2rNnj+68806rz+PxyOl0VqmNjIy0rmx7PB516NChyq37nE6nfD6f/H5/tZ83d+5c9erVS7169dKxY8fqemoAAAC4xjV6wA4LC9OqVavUpk0bpaSkqKKiIqj3ff2Ks9vtrrKPunPnzgoPD7f2ZrvdbrVq1Urdu3cPqKtu/zYAAABgl0YN2KGhoVq2bJm+9a1vKSkpSUePHq31PT169NBtt92m7du3W335+fkaOHCgwsPDrb60tDTrYTKStHnzZp08eVLDhg2zasLCwjRo0CDl5+fbeFYAAADA/69R92C/9dZbSklJ0ZgxY9SxY0f16dPHOrZjxw498MADeuyxx7Rq1SodPnxY8fHxGjdunIqKivTb3/7Wqp0zZ47GjBmjFStWaPLkyerWrZtycnI0ffp069Z9Z86c0aRJk5SdnS2Px2M9aMbhcAQ8xAYAAACwU6MG7O9///uSpF/96ldVjnXt2lXFxcXq1KmT3njjDTmdTh0/flwffPCBXnrppYB7Xnu9XvXv31+zZs1SXl6evF6vZsyYoZycnIAxJ02aJIfDoaysLEVHR2vbtm0aMGCASktLG/Q8AQAAcO0KkVT97TSgwsJC9erVq6mnUav+KU8EXbvuvXcacCYAAABXv9oyYpPeBxtXLnb4cEXf2qf2QknHt17+8fMAAACwR5M/yREAAAC4mhCwAQAAABsRsAEAAAAbEbABAAAAGxGwAQAAABsRsAEAAAAbEbABAAAAGxGwAQAAABsRsAEAAAAbEbABAAAAGxGwAQAAABsFHbAff/xxdezYsdpjUVFRevzxx22bFAAAANBSBR2wFyxYoLi4uGqP3XLLLVqwYIFtkwIAAABaqqADdkhIyGWPRUdH69SpU7ZMCAAAAGjJWtV08KGHHlJqaqr1Ojs7W0ePHg2oue666/Td735XhYWFDTNDAAAAoAWpMWB36tRJt99+u/U6Li5ON954Y0DN2bNntWbNGr322msNM0MAAACgBakxYM+bN0/z5s2TJK1fv17PPvus9uzZ0ygTAwAAAFqiGgP2191///0NOQ8AAADgqhB0wJakm266Sf/5n/+pzp0767rrrgs4ZoxRZmamrZMDAAAAWpqgA/bgwYP1xz/+UaGhoSotLdXZs2cDjhOwAQAAgDoE7F/+8pdas2aNfvSjH8nj8TTknAAAAIAWK+iA3aVLFz333HOEawAAAKAGQT9oZvPmzbrtttsaci4AAABAixf0FeyMjAwtWrRI5eXlWrt2rbxeb5WayspKWycHAAAAtDRBB+zPPvtMkrRgwQIZY6ofrFWdbkoCAAAAXHWCTsQjR468bLAO1sMPP6zHH39cd911lyIjI7Vnzx5NnTpVixcvDqjLysrSs88+q5iYGBUWFmrMmDH6+9//HlCTkJCgmTNn6t5775XX69W8efOUm5urCxcu1HksAAAAwC5BB+yFCxde8YdlZGRo//79+tnPfqZjx44pOTlZf/zjHxUTE6NZs2ZJkjIzM5Wdna2xY8fK7XYrIyNDLpdLPXv21JEjRyRJTqdTLpdLu3btUmpqquLi4jRt2jQ5HA5lZ2dbnxfMWAAAAICdGnVPx6BBg3T8+HHr9YYNG/SNb3xDGRkZmjVrltq2bavMzExNnDhRs2fPliR99NFH+uKLLzR69GgrPI8aNUphYWEaMmSIysrK5HK5FBERoZycHE2ZMkVlZWVBjwUAAADYKei7iJSWlurIkSM1ttp8PVxftGPHDnXq1EmSlJiYqMjISC1dutQ6XlFRoby8PCUlJVl9SUlJWr16tcrKyqy+xYsXq127durXr1+dxgIAAADsFPQV7NmzZ1fZg92xY0fdf//9ioiI0G9+85t6TSAxMVG7du2SJMXHx8vv92vv3r0BNbt371ZaWpr1Oj4+XuvXrw+oKS4uls/nU3x8vFatWhX0WAAAAICdgg7Yubm5lz22dOlS+f3+On/4/fffr9TUVI0cOVKSFBUVpfLy8ipfVPR4PGrfvr1at26tc+fOKSoqqtrbBHo8HkVFRdVpLAAAAMBOQW8Rqcm8efM0evToOr0nNjZWf/jDH7Ry5cqAL1BWd6eSkJCQKscuVxdMzeWOSVJ6eroKCwtVWFiomJiYIM8GAAAA+IotAbtbt25q06ZN0PVRUVHKz89XUVGRHnvsMavf4/GoQ4cOcjgCp+V0OuXz+ayr5B6PR06ns8q4kZGR1pXtYMe61Ny5c9WrVy/16tVLx44dC/qcAAAAAKkOW0SeffbZKn1t2rRRQkKChg8frmXLlgU1TlhYmFatWqU2bdooJSVFFRUV1jG3261WrVqpe/fu+vzzz63++Ph4ud3ugLr4+PiAcTt37qzw8HCrLtixAAAAADsFHbAv3qf6686cOaODBw/qrbfeqnGP9kWhoaFatmyZvvWtb6lv3746evRowPHNmzfr5MmTGjZsmH7xi19I+iqQDxo0SL/+9a+tuvz8fI0dO1bh4eEqLy+XJKWlpamiokIFBQV1GgsAAACwU9ABOzQ09Io/7K233lJKSorGjBmjjh07qk+fPtaxHTt26MyZM5o0aZKys7Pl8Xish8M4HA7NnDnTqp0zZ47GjBmjFStWaPLkyerWrZtycnI0ffp069Z9wY4FAAAA2KlRHzTz/e9/X5L0q1/9qsqxrl276sCBA5o0aZIcDoeysrIUHR2tbdu2acCAASotLbVqvV6v+vfvr1mzZikvL09er1czZsxQTk5OwJjBjAUAAADYKURS9bfTqMYtt9yisWPH6jvf+Y46duyoEydO6MMPP9TUqVO1f//+Bpxm0ygsLFSvXr2aeho1ih0+XH1uTQyq9vjWLVr33jsNPCMAAICrW20ZMegr2Hfeeac2bNig06dPa9WqVTpy5IhuuOEGDR06VMOHD9d9992nHTt22DJpAAAAoKUKOmBPnTpVO3bsUFJSkiorK63+sLAwvf/++5o6dar69+/fIJMEAAAAWoqg74Pdu3dvTZkyJSBcS1JlZaWmTp0a8IVFAAAA4FoVdMCurKxUdHR0tcc6duyo06dP2zYpAAAAoKUKOmC/9957mjRpkvr27RvQ37dvX02cOFF5eXm2Tw4AAABoaYLeg52RkaGVK1eqoKBAR48e1ZEjR9SpUyfdcMMN2rRpk1544YWGnCdsEN27j2Kd54OqPbBoUQPPBgAA4OoUdMA+ceKEvvvd72rgwIHq1auXbrrpJpWUlGjLli1au3ZtQ84RAAAAaDFq3CLSsWNHLV++3HpAjCStXr1ar732mn7yk5/otddeU0hIiJYvX67rr7++wScLAAAANHc1Buznn39e3bp105o1ay5bs2bNGt1yyy1sEQEAAABUS8B+5JFHNGfOnFoHefvtt5WammrbpAAAAICWqsaAHRsbq127dtU6yO7du9W1a1e75gQAAAC0WDUG7MrKSkVERNQ6SHh4eJUH0AAAAADXohoD9ieffKKHHnqo1kFSU1P1ySef2DYpAAAAoKWqMWDPnj1bTz31lJ544onL1jz++ON68sknNWvWLNsnBwAAALQ0Nd4H+91339Wbb76pBQsWaPTo0frggw9UVFQkY4xuvvlmDRw4UHfffbdmzJihP//5z401ZwAAAKDZqvVBMy+++KI2btyo559/Xi+++KLatm0rSTpz5ow2bdqk1NRUvffeew0+UQAAAKAlCOpJjqtWrdKqVasUGhqq6OhoSdLx48d1/nxwj90GAAAArhVBPypdks6fP6/S0tKGmgsAAADQ4tX4JUcAAAAAdUPABgAAAGxEwAYAAABsRMAGAAAAbETABgAAAGxEwAYAAABsRMAGAAAAbETABgAAAGzU6AE7Li5Oc+bM0aeffiq/368NGzZUqdm/f7+MMQGtpKSkSl1CQoJcLpd8Pp8OHTqk3NxcORxVTykrK0tFRUWqqKhQQUGB7rjjjgY5NwAAAKBOT3K0Q48ePZScnKyPP/5Ybdq0uWzdokWLNHPmTOv12bNnA447nU65XC7t2rVLqampiouL07Rp0+RwOJSdnW3VZWZmKjs7W2PHjpXb7VZGRoZcLpd69uypI0eO2H+CAAAAuKY1esDOy8vTX/7yF0nSsmXLFBMTU21dSUmJtmzZctlxRo0apbCwMA0ZMkRlZWVyuVyKiIhQTk6OpkyZorKyMrVt21aZmZmaOHGiZs+eLUn66KOP9MUXX2j06NEBQRwAAACwQ6MHbGOMLeMkJSVp9erVKisrs/oWL16sKVOmqF+/flq1apUSExMVGRmppUuXWjUVFRXKy8tTUlLSNRmw+9yaGFRd95RQSdK6995pyOkAAABcdZrtlxxHjhypM2fOyOv1atmyZbr55psDjsfHx8vtdgf0FRcXy+fzKT4+3qrx+/3au3dvQN3u3butGgAAAMBOjX4FOxgrV67Uxx9/rIMHDyohIUHjx4/Xhx9+qNtvv12nTp2SJEVFRcnr9VZ5r8fjUVRUlFVTXl6uCxcuVKlp3769WrdurXPnzgUcS09P1zPPPCNJl92+AgAAAFxOswzYzz//vPXz3/72N23evFmffvqpnnzySb355pvWseq2m4SEhAT0X67mcsfmzp2ruXPnSpIKCwvrfxIAAAC4JjXbLSJft3PnTu3Zs0d33nmn1efxeOR0OqvURkZGWle2PR6POnToUOXWfU6nUz6fT36/v2EnDgAAgGtOiwjYF339irPb7a6yj7pz584KDw+39ma73W61atVK3bt3D6irbv82AAAAYIcWEbB79Oih2267Tdu3b7f68vPzNXDgQIWHh1t9aWlp1sNkJGnz5s06efKkhg0bZtWEhYVp0KBBys/Pb7wTAAAAwDWj0fdgh4WFKTk5WZL0zW9+UxERERo6dKgk6f3339d9992nxx57TKtWrdLhw4cVHx+vcePGqaioSL/97W+tcebMmaMxY8ZoxYoVmjx5srp166acnBxNnz7dunXfmTNnNGnSJGVnZ8vj8VgPmnE4HAEPsQEAAADs0ugBu1OnTlq+fHlA38XXXbt2VXFxsTp16qQ33nhDTqdTx48f1wcffKCXXnop4J7XXq9X/fv316xZs5SXlyev16sZM2YoJycnYOxJkybJ4XAoKytL0dHR2rZtmwYMGKDS0tIGP1cAAABcexo9YB84cMC6i8flPPDAA0GNtXv3bvXv37/Wul/+8pf65S9/GdSYAAAAwJVoEXuwAQAAgJaCgA0AAADYiIANAAAA2IiADQAAANioWT4qHU0vuncfSVKs83yttQcWLWro6QAAALQYXMEGAAAAbETABgAAAGxEwAYAAABsRMAGAAAAbETABgAAAGzEXUSaodjhw5t6CgAAAKgnrmADAAAANiJgAwAAADYiYAMAAAA2ImADAAAANiJgAwAAADYiYAMAAAA24jZ9qFGfWxNrremeEmr9vO69dxpyOgAAAM0eV7ABAAAAGxGwAQAAABsRsAEAAAAbEbABAAAAGxGwAQAAABsRsAEAAAAbEbABAAAAG3EfbFyx6N59rJ9jnedrrD2waFFDTwcAAKBJNfoV7Li4OM2ZM0effvqp/H6/NmzYUG1dVlaWioqKVFFRoYKCAt1xxx1VahISEuRyueTz+XTo0CHl5ubK4ah6SsGMBQAAANih0QN2jx49lJycrM8//1yff/55tTWZmZnKzs7W5MmTNWjQIJWXl8vlcumGG26wapxOp1wul4wxSk1N1auvvqoXXnhBubm5dR4LAAAAsEujB+y8vDzdfPPNeuSRR7Rz584qx9u2bavMzExNnDhRs2fP1rp16zRs2DAZYzR69GirbtSoUQoLC9OQIUPkcrn09ttvKzc3VxkZGerQoUOdxgIAAADs0ugB2xhT4/EiZFBDAAAb4klEQVTExERFRkZq6dKlVl9FRYXy8vKUlJRk9SUlJWn16tUqKyuz+hYvXqx27dqpX79+dRoLAAAAsEuzu4tIfHy8/H6/9u7dG9C/e/duxcfHB9S53e6AmuLiYvl8Pqsu2LEAAAAAuzS7gB0VFaXy8nJduHAhoN/j8ah9+/Zq3bq1Vef1equ83+PxKCoqqk5jfV16eroKCwtVWFiomJgYu04LAAAA14hmeZu+6raRhISEVDl2ubpgai53bO7cuZo7d64kqbCwsI4zR59bE2s83j0lNOD1uvfeacjpAAAANLpmdwXb4/GoQ4cOVW6353Q65fP55Pf7rTqn01nl/ZGRkdaV7WDHAgAAAOzS7AK22+1Wq1at1L1794D+S/dcu93uKvuoO3furPDwcKsu2LEAAAAAuzS7gL1582adPHlSw4YNs/rCwsI0aNAg5efnW335+fkaOHCgwsPDrb60tDTrYTJ1GQsAAACwS6PvwQ4LC1NycrIk6Zvf/KYiIiI0dOhQSdL777+vyspKTZo0SdnZ2fJ4PHK73crIyJDD4dDMmTOtcebMmaMxY8ZoxYoVmjx5srp166acnBxNnz7dunXfmTNnghoLAAAAsEujB+xOnTpp+fLlAX0XX3ft2lUHDhzQpEmT5HA4lJWVpejoaG3btk0DBgxQaWmp9R6v16v+/ftr1qxZysvLk9fr1YwZM5STkxMwdjBjAQAAAHYJkVTzk1+uYYWFherVq1ejf27s8OF1qq/tzh3NyfGtWwJecxcRAADQ0tSWEZvdHmwAAACgJSNgAwAAADYiYAMAAAA2apZPcrzWtaQ91QAAAAjEFWwAAADARgRsAAAAwEYEbAAAAMBGBGwAAADARgRsAAAAwEYEbAAAAMBG3KYPjSq6d5+A17HO85etPbBoUUNPBwAAwHZcwQYAAABsRMAGAAAAbETABgAAAGxEwAYAAABsRMAGAAAAbMRdRNBsxQ4fHnQtdxwBAADNBVewAQAAABsRsAEAAAAbEbABAAAAG7EHG02qz62JtozTPSW0St+6996xZWwAAIC64Ao2AAAAYCMCNgAAAGAjAjYAAABgIwI2AAAAYKNmGbBHjBghY0yV9uMf/zigLisrS0VFRaqoqFBBQYHuuOOOKmMlJCTI5XLJ5/Pp0KFDys3NlcPRLE8bAAAAV4FmfReR++67T5WVldbrffv2WT9nZmYqOztbY8eOldvtVkZGhlwul3r27KkjR45IkpxOp1wul3bt2qXU1FTFxcVp2rRpcjgcys7ObvTzAQAAwNWvWQfswsJC+Xy+Kv1t27ZVZmamJk6cqNmzZ0uSPvroI33xxRcaPXq0FZ5HjRqlsLAwDRkyRGVlZXK5XIqIiFBOTo6mTJmisrKyRj0fAAAAXP2adcC+nMTEREVGRmrp0qVWX0VFhfLy8pSUlGQF7KSkJK1evTogSC9evFhTpkxRv379tGrVqkafOxpGdO8+VfpineerrT2waFFDTwcAAFzDmvVm5H/96186d+6c3G63nnnmGas/Pj5efr9fe/fuDajfvXu34uPjA+rcbndATXFxsXw+X0AdAAAAYJdmeQW7pKRE48aN09atWxUaGqof/vCHevvtt9WuXTu98cYbioqKUnl5uS5cuBDwPo/Ho/bt26t169Y6d+6coqKi5PV6q4zv8XgUFRXVWKcDAACAa0izDNhr1qzRmjVrrNcffPCB2rZtq3HjxunNN9+UJBljqrwvJCSkyrHL1VXXL0np6enW1fKYmJj6nwQAAACuSc16i8jXLV++XNHR0eratas8Ho86dOhQ5XZ7TqdTPp9Pfr9f0ldXqp1OZ5WxIiMjq72yLUlz585Vr1691KtXLx07dsz+EwEAAMBVrcUE7IuMMXK73WrVqpW6d+8ecOzSPddut7vKXuvOnTsrPDy8yt5sAAAAwA4tJmAPHTpUR48e1YEDB7R582adPHlSw4YNs46HhYVp0KBBys/Pt/ry8/M1cOBAhYeHW31paWnWg2kAAAAAuzXLPdjLly/X1q1b9dlnnyk0NFRpaWl69NFH9dxzz8kYozNnzmjSpEnKzs6Wx+OxHjTjcDg0c+ZMa5w5c+ZozJgxWrFihSZPnqxu3bopJydH06dP5x7YAAAAaBDNMmDv2bNHI0eOVJcuXRQSEqJdu3bp8ccf1+9//3urZtKkSXI4HMrKylJ0dLS2bdumAQMGqLS01Krxer3q37+/Zs2apby8PHm9Xs2YMUM5OTlNcFYAAAC4FoRIqv52GlBhYaF69erV6J/7SO7sRv/Mq9GWzzdX28+DZgAAwJWoLSM2yyvYgB363JpYbX/3lNBq+9e9905DTgcAAFwjCNi45lT3WHWp+kerc7UbAADUVYu5iwgAAADQEhCwAQAAABsRsAEAAAAbsQcb+D/VfSnycl+IlPhSJAAAqB4BG6jB5b4QKUmPXHLs+NYtNY5FIAcA4NrAFhEAAADARgRsAAAAwEZsEQFsUtN2EilwS0lt20kktpQAANBScQUbAAAAsBEBGwAAALARW0SAZqp/yhNB17KdBACA5oOADTSB2vZrf10w+7UBAEDzwRYRAAAAwEYEbAAAAMBGBGwAAADARuzBBpq5YPZrX/rY9tps+XyzDixaVN8p2Y4vdAIAriZcwQYAAABsxBVs4BrU59ZEdU8JDbqeq8YAAASPK9gAAACAjbiCDaBFqct+bYmr7wCAxkfABq5RdXnYTX2+RBmM5vRFSwAA7ELABmC7PrcmBlVXl33gAAC0FOzBBgAAAGzEFWwATaYu21SOb91Sr3Fr295Sl3Grwx5vAMClromAnZCQoJkzZ+ree++V1+vVvHnzlJubqwsXLjT11AAEqS5hvCHHvdJAzkN1AODqd9UHbKfTKZfLpV27dik1NVVxcXGaNm2aHA6HsrOzm3p6AAAAuMpc9QF71KhRCgsL05AhQ1RWViaXy6WIiAjl5ORoypQpKisra+opAmhBLr3iXdc7rNRFQ9295XK4qwsA2OOqD9hJSUlavXp1QJBevHixpkyZon79+mnVqlVNODsAaDqX3u2lT27Nd3/5eoBvqDAeO3x40LX8hQBAc3XVB+z4+HitX78+oK+4uFg+n0/x8fEEbABXjWBvj2jH+LWF8cZQl9s8/tN5vk5jB/treXFPfjD75evyl4e6uPQvGnV9GFNd8d0AoHZXfcCOioqS1+ut0u/xeBQVFdUEMwIA2KEuX1CNbuA5NORWodq2/lwa3KNvbbi5SA17rs1RsF9s5i8e9rkanth71QdsSTLGVOkLCQmptj89PV3PPPOMJOm2225TYWFhg8/vUjExMTp27Fijfy4aD2t8bWCdrw0Nvs7JvRtubNTu/379a13nnOcaaUKowqZf+7r8Xo6Nja21xlzN7ciRI+aVV16p0l9WVmZefPHFJp9fda2wsLDJ50BjjWmsM411prHO11Kzc42v+ic5ut1uxcfHB/R17txZ4eHhcrvdTTQrAAAAXK2u+oCdn5+vgQMHKjw83OpLS0tTRUWFCgoKmnBmAAAAuBqFSspp6kk0pH/84x8aNWqU7rvvPh0+fFgPPPCAJk6cqBkzZuiDDz5o6uld1ieffNLUU0ADY42vDazztYF1vjawzlc/u9Y4RF/tFbmqJSQkaNasWQGPSs/JyeFR6QAAALDdNRGwAQAAgMZy1e/Bbk4SEhLkcrnk8/l06NAh5ebmyuGofQkiIiI0f/58nThxQl6vV7///e/VsWPHRpgx6qM+63z33Xdr/vz52rt3r3w+n9xut1555RW1bdu2kWaNuqjv7+WLQkJCtG3bNhljlJKS0oAzxZW4knX+wQ9+oK1bt6qiokLHjh1Tfn6+2rVr18AzRn3Ud53vuusurV69WseOHdPx48e1du1a9e7NLRWbo7i4OM2ZM0effvqp/H6/NmzYENT7rjR/NfltUa6F5nQ6zaFDh8zatWvNAw88YH784x+b8vJyM2HChFrfm5+fb/bt22eGDBliBg8ebPbs2WP++te/Nvk50exb59dff90UFBSYp59+2vTr188899xzxuv1muXLlzf5OdHsWeOvt/T0dFNSUmKMMSYlJaXJz4lm7zo/9dRTprKy0uTm5pp+/fqZwYMHm1/96lcmIiKiyc+LZs86d+7c2Xg8HrNu3TqTnJxskpOTzYYNG4zX6zU333xzk58XLbA99NBDpqioyCxdutTs2rXLbNiwIaj3XWH+avoTvxZaZmamOXHihOnQoYPVN3bsWOPz+QL6Lm333HOPMcaY7373u1Zfr169jDHG9O/fv8nPi2bPOsfExFTpS09PN8YY/rBuZq2+a3yxOZ1OU1paakaOHEnAbsatvuscHR1tTp06ZZ5++ukmPwdaw63zj3/8Y+P3+01kZKTV53Q6jd/vN6NGjWry86IFtpCQEOvnZcuWBRWwrzR/sUWkkSQlJWn16tUqKyuz+hYvXqx27dqpX79+Nb7vyy+/1Icffmj1FRYWat++fUpKSmrQOaPu6rvO1T05aseOHZKkTp062T9R1Ft91/iiCRMmaNOmTVq3bl1DThNXqL7r/Mgjj0iSFi5c2OBzxJWr7zq3bt1afr9f5eXlVl95ebn8fr9CQkIadM6ou+qe3F2bK81fBOxGEh8fX+XBNsXFxfL5fFUehFPb+yRp9+7dNb4PTaO+61ydxMREnT9/Xnv27LFzirhCV7LGt99+u5588km9+OKLDTlF2KC+69ynTx/t2bNHTz31lIqLi3X27Fl9/PHHuvfeext6yqiH+q7zn/70J1VUVGjatGm6/vrrdf3112vGjBnyeDxatmxZQ08bjeBK8xcBu5FERUXJ6/VW6fd4PIqKirL9fWgadq3XDTfcoJdfflm/+93vAq6soOldyRrPnDlTs2fP1r/+9a+Gmh5sUt91vvHGG3Xbbbdp3Lhx+vnPf65BgwbJ5/Ppgw8+4F+jmqH6rnNJSYnuu+8+DR06VKWlpSotLdWQIUM0cODAav9FEi3Plf7/nIDdiKr7J4qQkJBa/+mivu9D07jS9WrdurWWLl2q8vJy/exnP7N7erBBfdY4LS1Nt912m1577bWGnBpsVJ91djgc6tChg5566in94Q9/0OrVqzV48GCdP39eo0ePbsjpop7qs8433nijli9fru3bt+vBBx/Ugw8+qO3bt+u9995Tly5dGnK6aERX8v/zVg0xIVTl8XjkdDqr9EdGRlb7N6Svv+/666+v0u90Omt8H5pGfdf569555x316NFDffv2ZY2bofqscatWrfT6669r8uTJcjgcioyMVEREhCSpffv2Cg8PD9jLiaZX39/LJ06ckCRt3LjR6isrK9P27dv1b//2b7bPE1emvus8duxYtWrVSg8//LD8fr8kaf369dq7d69efPFF/fSnP22wOaNxXGn+4gp2I3G73VX27HTu3Fnh4eHV7vGp6X3S5fcGoWnVd50vmjFjhlJTU5Wamsre62aqPmvcvn17denSRTNmzJDX65XX69Vnn30mSVqyZIn1hVY0H/X9vbx7925duHChyhfdQkJCeHpwM1TfdY6Pj9fOnTutcC1J586d086dOxUXF9dg80XjudL8RcBuJPn5+Ro4cKDCw8OtvrS0NFVUVKigoKDG9910003q27ev1XfXXXcpLi5O+fn5DTpn1F1911mSMjMz9dxzz+mxxx7Tpk2bGnqqqKf6rHF5ebm+973vBbRHH31UkpSVlaXhw4c3ytwRvPr+Xl61apUcDofuu+8+qy8iIkJ33XWX/v73vzfonFF39V3nAwcOqGfPnmrdurXV16ZNG/Xs2VNffPFFQ04ZjcSO/NXk9ye8FprT6TSHDx82a9asMf379zfp6emmrKysys3s9+7da+bNmxfQl5+fb/71r3+ZH/zgByY1NdW43W4eNNNMW33X+Yc//KExxpj58+ebPn36BLTq7pFNa3lrfGmLjY3lPtjNuF3JOr/77rvm8OHD5oknnjDJyclm48aNprS01DidziY/L5o963znnXeas2fPmlWrVpnk5GSTkpJi3n//fXP27Fnz7//+701+XrTAFhYWZoYOHWqGDh1qNm/ebP7xj39Yr8PCwqpdY+mK81fTn/i10hISEsy6detMRUWFOXz4sHn11VeNw+EIqNm/f79ZsGBBQF9kZKSZP3++8Xg85uTJk2bRokUmOjq6yc+HZt86L1iwwFzOiBEjmvycaFe+xpc2Anbzb/Vd5/bt25u33nrLHDt2zFRUVJi1a9eanj17Nvn50Oxd5/vvv98UFBSY48ePm+PHj5uNGzeafv36Nfn50Kq2i3/eVic2Nvaya3wl+Svk/34AAAAAYAP2YAMAAAA2ImADAAAANiJgAwAAADYiYAMAAAA2ImADAAAANiJgAwAAADYiYAPAFRo/fryMMVY7dOiQli9frm7dujXYZ6akpMgYo9jYWElSbGysjDFKSUkJeoxhw4ZpxIgRts2pffv2MsbYOmZNjDH6yU9+0iifBQB10aqpJwAAVwOv16sHH3xQktStWzdNmDBB69atU48ePVRRUdHgn19SUqJ77rlHbrc76Pc88sgjiomJ0cKFCxtwZgBw7SFgA4AN/H6/tmzZIknasmWLioqK9Le//U3Jyclavnx5lfrrrrtOp0+ftu3zz549a30+AKBpsUUEABrA9u3bJUldu3aVJO3fv19Tp07VuHHjVFxcrFOnTkmSQkJC9POf/1x79+7V6dOntWfPHj3xxBNVxhs/fryOHDmiU6dOaeHChYqIiAg4frktIk8//bQ+++wzVVZW6ssvv9SyZcsUERGhBQsW6OGHH9b3vvc9a2vL+PHjrfc99NBDKiwsVGVlpUpKSjR58mS1ahV4TWbIkCHas2ePKioqVFBQoPj4+Fp/Xfbt26fJkydX6V+2bJn++te/SpLatWunmTNnyu12y+fzad++fZo1a5Y6dOhQ49j79+/X66+/HtA3YsQIGWPUvn17qy8qKkpz5szRl19+qcrKSm3atEm9e/eude4AECwCNgA0gIvB+ssvv7T6/uu//kv9+vXTf//3fystLU2SNHPmTI0bN06//vWvlZKSonfffVfz588PCMpjxozRK6+8ol//+td6+OGHVVlZqSlTptQ6h5dffllvv/22CgoKNHjwYD377LM6efKkwsPDNWHCBK1fv16ffPKJ7rnnHt1zzz2aN2+epK/2Zq9YsUJbt27VQw89pNzcXD3zzDOaOHGiNfZ//Md/aMmSJfr73/+uIUOG6C9/+YuWLl1a65yWLl2qRx55JKCvffv2Sk5O1pIlSyR9FbBDQ0P18ssvKykpSdnZ2br//vu1bNmyWsevTZs2beRyuTRgwACNHTtWgwcP1tGjR+VyuXTDDTdc8fgAcJGh0Wg0Wv3b+PHjzdGjR01oaKgJDQ013/rWt8z69evNyZMnzY033mgkmf3795vDhw+btm3bWu+Li4sz58+fN0888UTAeAsXLjRbt241kozD4TCHDh0yb731VkDNmjVrjDHGxMbGGkkmNjbWGGNMSkqKkWQiIyONz+cz06ZNu+y8ly1bZjZs2FCl/4svvjDz588P6HvyySdNRUWF6dixo5FklixZYnbu3BlQ89JLLxljjBkxYsRlP/Pb3/62McaYPn36WH2PPvqo8fv9plOnTtW+JzQ01CQmJhpjjOnSpYvVb4wxP/nJT6zX+/fvN6+//nrAe0eMGGGMMaZ9+/ZGkhk5cqQ5c+aM6d69e8D4//znP82UKVOa/L8lGo12dTSuYAOADWJiYuT3++X3+/X555+rW7duSktLC7iCvW7dOp05c8Z63b9/f124cEHvvvuuQkNDrbZu3Tp9+9vflsPhUJcuXfSNb3xDK1euDPi8FStW1Dife++9V+3atdOCBQvqdB633nqrYmNjtXTp0oA5rV+/XmFhYerZs6ckqXfv3vrLX/5SpzlJ0qeffqo9e/ZYV/AlKS0tTRs3blRpaanV99hjj+mTTz5RWVmZ/H6/Nm3aZM3vSjzwwAPavn279u/fb52bJBUUFOjuu+++orEB4CK+5AgANvB6vXrggQdkjNGXX36pw4cPV6k5cuRIwOuYmBi1atXK2o99qZtuukk33nijJAWEz+peXyo6OlrSV3cXqYuYmBhJUn5+frXHu3TpIkm68cYb6zyni5YsWaKRI0cqIyNDHTp00IMPPqjnnnvOOj548GD97ne/01tvvaWXXnpJJ06c0E033aQ///nPuu666+p0PpeKiYnRvffeK7/fX+XYP//5zysaGwAuImADgA38fr/1xcbLMcYEvD5x4oTOnTunvn376sKFC1XqS0tLrS8WdurUKeDYpa8vdfz4cUlfhfSLPwfjxIkTkqT09HTt2LGjyvH9+/dL+mpveV3ndNHixYv1yiuv6Dvf+Y5uueUWhYaGBlz9HjZsmD7++OOAe1z/v//3/2od9/Tp02rTpk1AX8eOHQNenzhxQoWFhXr22WervP/r/7oAAFeCgA0ATWT9+vUKDQ1VZGSkXC5XtTXFxcUqKSlRamqqVq9ebfUPGTKkxrE/+ugjVVRUaMSIERo7dmy1NWfPnq1yRXjPnj06ePCgunbtan3psTqFhYV66KGHlJWVFfScLtq9e7f+93//V2lpabrlllu0du1aK9hLUlhYWJWwO3z48FrHPXjwoBISEgL6BgwYEPB63bp1+v73v6+ioiIdPXo0qPkCQF0RsAGgiXz++eeaM2eOFi9erClTpmjbtm267rrr1KNHD916661KT0/XhQsXNGXKFE2dOlXHjh3Thx9+qKFDh1YJkpc6efKkJkyYoF/84hdq06aN3n//fbVt21YpKSnKzc3V4cOH5Xa7lZqaqtTUVB08eFCHDx9WSUmJXnjhBf3ud79TRESE8vPzdfbsWXXr1k2DBw+27mIyefJkbdmyRUuXLtVvfvMb9ezZU0899VTQ575kyRL99Kc/VWRkpNLT0wOOrV271toesmXLFiUnJ6t///61jvnuu+9q5syZysrKUmFhoYYMGaIePXoE1LzzzjsaNWqUNm7cqKlTp2rfvn2Kjo5W79699eWXX+qNN94I+hwAoCZN/k1LGo1Ga8nt4l1Eaqqp7g4XF9tPf/pT849//MOcPn3alJaWmo0bN5rHH388oObVV181paWl5tSpU+b3v/+9+eEPf1jjXUQutmeeecbs3LnTnD592pSUlJglS5aYDh06GEkmOjrarFixwhw/ftwYY8z48eOt9z344IPmr3/9qykvLzcnT540O3bsMBMmTDChoaFWzcMPP2z27t1rKisrzYcffmjuvvvuWu8icrHFxcUZY4yprKw0ERERAcccDod5/fXXzZEjR8zJkyfN8uXLTe/evauc36V3EWnVqpWZNm2aKSkpMSdOnDBvvPGGSU9PD7iLiCQTERFh3njjDVNUVGTOnDljiouLzZ/+9CeTmJjY5P8t0Wi0q6OF/N8PAAAAAGzAbfoAAAAAGxGwAQAAABsRsAEAAAAbEbABAAAAGxGwAQAAABsRsAEAAAAbEbABAAAAGxGwAQAAABsRsAEAAAAb/X+UvsMYAy6y8gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.style.use('dark_background')\n", "fig = plt.figure(constrained_layout=True, figsize=(10, 15))\n", "gs = fig.add_gridspec(ncols=1, nrows=2, height_ratios=(2/3, 1/3))\n", "ax1 = fig.add_subplot(gs[0])\n", "ax1.plot(mean_predicted_value_lgbm, fraction_of_positives_lgbm, \"-o\", color='#aabced', label='Calibrated Light GBM')\n", "ax1.plot(mean_predicted_value_lr, fraction_of_positives_lr, \"-o\", color='#dbdf4a', label='Logistic regression')\n", "ax1.plot([0, 1], [0, 1], \"--\", color='#e7aeca', label=\"Perfectly calibrated\")\n", "ax1.set_xlabel('Mean predicted value', fontsize=15)\n", "ax1.set_ylabel('Fraction of positives', fontsize=15)\n", "ax1.set_title('Calibration curve', fontsize=20, pad=10)\n", "ax1.legend(fontsize=15)\n", "ax1.tick_params(labelsize=15)\n", "ax2 = fig.add_subplot(gs[1])\n", "sns.distplot(y_pred_lr, color='#4fe4e4', label='Logistic regression', kde=False, ax=ax2)\n", "sns.distplot(y_pred_lgbm_calibrated, color='#aabced', label='Calibrated Light GBM', kde=False, ax=ax2)\n", "ax2.set_xlabel('Predicted value', fontsize=15)\n", "ax2.set_ylabel('Count', fontsize=15)\n", "ax2.tick_params(labelsize=15)\n", "ax2.legend(fontsize=15)\n", "ax2.set_title('Distribution of predictions', fontsize=20, pad=10);\n", "fig.savefig(os.path.join('..', 'figures', '22_calibration_curve.png'), bbox_inches = 'tight', pad_inches = 0.2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "From scikit-learn docs: \"The smaller the Brier score, the better, hence the naming with “loss”. Across all items in a set N predictions, the Brier score measures the mean squared difference between (1) the predicted probability assigned to the possible outcomes for item i, and (2) the actual outcome.\"" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Brier score, Light GBM: 0.08044014131802528\n", "ROC AUC, Light GBM: 0.7851386121829785\n", "Pseudo R-squared, Light GBM: 0.16991224608139832\n" ] } ], "source": [ "print('Brier score, Light GBM:', brier_score_loss(y_test, y_pred_lgbm_calibrated, pos_label=y_test.max()))\n", "print('ROC AUC, Light GBM:', roc_auc_score(y_test, y_pred_lgbm_calibrated))\n", "print('Pseudo R-squared, Light GBM:', mcfadden_r2(y_test, y_pred_lgbm_calibrated))" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Brier score, logistic regression: 0.08150355125036453\n", "ROC AUC, logistic regression: 0.786687948249966\n", "Pseudo R-squared, logistic regression: 0.16477712349951212\n" ] } ], "source": [ "print('Brier score, logistic regression:',brier_score_loss(y_true_test, y_pred_lr, pos_label=y_true_test.max()))\n", "print('ROC AUC, logistic regression:', roc_auc_score(y_true_test, y_pred_lr))\n", "print('Pseudo R-squared, logistic regression:', mcfadden_r2(y_true_test, y_pred_lr))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Save models" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['..\\\\models\\\\lgbm_model.joblib']" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dump(searchcv.best_estimator_, os.path.join('..', 'models', 'lgbm_model.joblib'))" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['..\\\\models\\\\lr_pass.joblib']" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dump(clf_pass.best_estimator_, os.path.join('..', 'models', 'lr_pass.joblib'))" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['..\\\\models\\\\lr_other.joblib']" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dump(clf_other.best_estimator_, os.path.join('..', 'models', 'lr_other.joblib'))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Save data" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [], "source": [ "# reload shot dataset for ids\n", "df = pd.read_parquet(os.path.join('..', 'data', 'shots.parquet'))\n", "df = df[['match_id', 'wyscout_id', 'statsbomb_id']].copy()" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [], "source": [ "X_train_other['goal'] = y_train_other\n", "X_train_other['split'] = 'train'\n", "X_test_other['goal'] = y_test_other\n", "X_test_other['split'] = 'test'\n", "df_other = pd.concat([X_train_other, X_test_other])\n", "df_other = df_other.merge(df, left_index=True, right_index=True, validate='1:1', how='left')\n", "df_other.reset_index(drop=True, inplace=True)\n", "df_other.to_parquet(os.path.join('..', 'data', 'modelling', 'lr_other.parquet'))" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [], "source": [ "X_train_pass['goal'] = y_train_pass\n", "X_train_pass['split'] = 'train'\n", "X_test_pass['goal'] = y_test_pass\n", "X_test_pass['split'] = 'test'\n", "df_pass = pd.concat([X_train_pass, X_test_pass])\n", "df_pass = df_pass.merge(df, left_index=True, right_index=True, validate='1:1', how='left')\n", "df_pass.reset_index(drop=True, inplace=True)\n", "df_pass.to_parquet(os.path.join('..', 'data', 'modelling', 'lr_pass.parquet'))" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [], "source": [ "X_train['goal'] = y_train\n", "X_train['split'] = 'train'\n", "X_test['goal'] = y_test\n", "X_test['split'] = 'test'\n", "df_lgbm = pd.concat([X_train, X_test])\n", "# exlcude fake shots\n", "df_lgbm = df_lgbm[df_lgbm.index.isin(df.index)].copy()\n", "df_lgbm = df_lgbm.merge(df, how='left', left_index=True, right_index=True, validate='1:1')\n", "df_lgbm.to_parquet(os.path.join('..', 'data', 'modelling', 'lgbm.parquet'))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.7" } }, "nbformat": 4, "nbformat_minor": 4 }