{
"cells": [
{
"cell_type": "markdown",
"id": "pleasant-causing",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"id": "impaired-table",
"metadata": {},
"source": [
"# Capology Player Web Scraping\n",
"##### Notebook to engineer scraped data\n",
"\n",
"### By [Edd Webster](https://www.twitter.com/eddwebster)\n",
"Notebook first written: 01/08/2021 \n",
"Notebook last updated: 07/08/2021\n",
"\n",
"![title](../../img/logos/capology-logo.jpeg)\n",
"\n",
"Click [here](#section5) to jump straight to the Exploratory Data Analysis section and skip the [Task Brief](#section2), [Data Scraping](#section3), and [Data Unification](#section4) sections. Or click [here](#section5) to jump straight to the Conclusion."
]
},
{
"cell_type": "markdown",
"id": "magnetic-surrey",
"metadata": {},
"source": [
"___\n",
"\n",
"\n",
"\n",
"## Introduction\n",
"This notebook scrapes player statstics data from [Capology](https://www.capology.com/), using [pandas](http://pandas.pydata.org/) for data manipulation through DataFrames, and [Selenium](https://www.selenium.dev/) and [Beautifulsoup](https://pypi.org/project/beautifulsoup4/) for webscraping.\n",
"\n",
"For more information about this notebook and the author, I'm available through all the following channels:\n",
"* [eddwebster.com](https://www.eddwebster.com/);\n",
"* edd.j.webster@gmail.com;\n",
"* [@eddwebster](https://www.twitter.com/eddwebster);\n",
"* [linkedin.com/in/eddwebster](https://www.linkedin.com/in/eddwebster/);\n",
"* [github/eddwebster](https://github.com/eddwebster/);\n",
"* [public.tableau.com/profile/edd.webster](https://public.tableau.com/profile/edd.webster);\n",
"* [kaggle.com/eddwebster](https://www.kaggle.com/eddwebster); and\n",
"* [hackerrank.com/eddwebster](https://www.hackerrank.com/eddwebster).\n",
"\n",
"![title](../../img/fifa21eddwebsterbanner.png)\n",
"\n",
"The accompanying GitHub repository for this notebook can be found [here](https://github.com/eddwebster/football_analytics) and a static version of this notebook can be found [here](https://nbviewer.jupyter.org/github/eddwebster/football_analytics/blob/master/notebooks/3_data_engineering/Capology%20Player%20Salary%20Data%20Engineering.ipynb)."
]
},
{
"cell_type": "markdown",
"id": "serial-panel",
"metadata": {},
"source": [
"___\n",
"\n",
"\n",
"\n",
"## Notebook Contents\n",
"1. [Notebook Dependencies](#section1) \n",
"2. [Project Brief](#section2) \n",
"3. [Data Sources](#section3) \n",
"4. [Data Engineering](#section4) \n",
"5. [Export Data](#section5) \n",
"6. [Summary](#section6) \n",
"7. [Next Steps](#section7) \n",
"8. [Bibliography](#section8) "
]
},
{
"cell_type": "markdown",
"id": "determined-alpha",
"metadata": {},
"source": [
"___\n",
"\n",
"\n",
"\n",
"## 1. Notebook Dependencies\n",
"\n",
"This notebook was written using [Python 3](https://docs.python.org/3.7/) and requires the following libraries:\n",
"* [`Jupyter notebooks`](https://jupyter.org/) for this notebook environment with which this project is presented;\n",
"* [`NumPy`](http://www.numpy.org/) for multidimensional array computing; and\n",
"* [`pandas`](http://pandas.pydata.org/) for data analysis and manipulation.\n",
"\n",
"All packages used for this notebook except for [`Beautifulsoup`](https://pypi.org/project/beautifulsoup4/) and [`Selenium`](https://www.selenium.dev/) can be obtained by downloading and installing the [Conda](https://anaconda.org/anaconda/conda) distribution, available on all platforms (Windows, Linux and Mac OSX). Step-by-step guides on how to install Anaconda can be found for Windows [here](https://medium.com/@GalarnykMichael/install-python-on-windows-anaconda-c63c7c3d1444) and Mac [here](https://medium.com/@GalarnykMichael/install-python-on-mac-anaconda-ccd9f2014072), as well as in the Anaconda documentation itself [here](https://docs.anaconda.com/anaconda/install/)."
]
},
{
"cell_type": "markdown",
"id": "rapid-memorabilia",
"metadata": {},
"source": [
"### Import Libraries and Modules"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "suffering-clerk",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Setup Complete\n"
]
}
],
"source": [
"# Python ≥3.5 (ideally)\n",
"import platform\n",
"import sys, getopt\n",
"assert sys.version_info >= (3, 5)\n",
"import csv\n",
"\n",
"# Import Dependencies\n",
"%matplotlib inline\n",
"\n",
"# Math Operations\n",
"import numpy as np\n",
"from math import pi\n",
"\n",
"# Datetime\n",
"import datetime\n",
"from datetime import date\n",
"import time\n",
"\n",
"# Data Preprocessing\n",
"import pandas as pd\n",
"#import pandas_profiling as pp\n",
"import os\n",
"import re\n",
"import random\n",
"import glob\n",
"from io import BytesIO\n",
"from pathlib import Path\n",
"\n",
"# Reading directories\n",
"import glob\n",
"import os\n",
"\n",
"# Working with JSON\n",
"import json\n",
"from pandas.io.json import json_normalize\n",
"\n",
"# Web Scraping\n",
"from selenium import webdriver\n",
"from bs4 import BeautifulSoup\n",
"import requests\n",
"from bs4 import BeautifulSoup\n",
"import re\n",
"\n",
"# Currency Converter\n",
"from currency_converter import CurrencyConverter\n",
"\n",
"# Data Visualisation\n",
"import matplotlib as mpl\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"plt.style.use('seaborn-whitegrid')\n",
"import missingno as msno\n",
"\n",
"# Progress Bar\n",
"from tqdm import tqdm\n",
"\n",
"# Display in Jupyter\n",
"from IPython.display import Image, Video, YouTubeVideo\n",
"from IPython.core.display import HTML\n",
"\n",
"# Ignore Warnings\n",
"import warnings\n",
"warnings.filterwarnings(action='ignore', message='^internal gelsd')\n",
"\n",
"print('Setup Complete')"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "fifth-ceramic",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Python: 3.7.6\n",
"NumPy: 1.20.3\n",
"pandas: 1.3.2\n"
]
}
],
"source": [
"# Python / module versions used here for reference\n",
"print('Python: {}'.format(platform.python_version()))\n",
"print('NumPy: {}'.format(np.__version__))\n",
"print('pandas: {}'.format(pd.__version__))"
]
},
{
"cell_type": "markdown",
"id": "stuck-concrete",
"metadata": {},
"source": [
"### Defined Variables and Lists"
]
},
{
"cell_type": "markdown",
"id": "professional-turkey",
"metadata": {},
"source": [
"##### Date "
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "junior-algeria",
"metadata": {},
"outputs": [],
"source": [
"# Define today's date\n",
"today = datetime.datetime.now().strftime('%d/%m/%Y').replace('/', '')"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "moved-zambia",
"metadata": {},
"outputs": [],
"source": [
"# Define variables and lists\n",
"\n",
"## Define season\n",
"season = '2020' # '2020' for the 20/21 season\n",
"\n",
"# Create 'Full Season' and 'Short Season' strings\n",
"\n",
"## Full season\n",
"full_season_string = str(int(season)) + '/' + str(int(season) + 1)\n",
"\n",
"## Short season\n",
"short_season_string = str((str(int(season))[-2:]) + (str(int(season) + 1)[-2:]))"
]
},
{
"cell_type": "markdown",
"id": "balanced-sleeve",
"metadata": {},
"source": [
"### Defined Filepaths"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "powerful-nature",
"metadata": {},
"outputs": [],
"source": [
"# Set up initial paths to subfolders\n",
"base_dir = os.path.join('..', '..')\n",
"data_dir = os.path.join(base_dir, 'data')\n",
"data_dir_capology = os.path.join(base_dir, 'data', 'capology')\n",
"img_dir = os.path.join(base_dir, 'img')\n",
"fig_dir = os.path.join(base_dir, 'img', 'fig')"
]
},
{
"cell_type": "markdown",
"id": "vital-fifty",
"metadata": {},
"source": [
"### Create Directory Structure"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "nervous-integration",
"metadata": {},
"outputs": [],
"source": [
"# Make the directory structure\n",
"for folder in ['archive']:\n",
" path = os.path.join(data_dir_capology, 'engineered', folder)\n",
" if not os.path.exists(path):\n",
" os.mkdir(path)"
]
},
{
"cell_type": "markdown",
"id": "understanding-regulation",
"metadata": {},
"source": [
"### Notebook Settings"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "hairy-spelling",
"metadata": {},
"outputs": [],
"source": [
"# Display all columns of displayed pandas DataFrames\n",
"pd.set_option('display.max_columns', None)\n",
"pd.options.mode.chained_assignment = None"
]
},
{
"cell_type": "markdown",
"id": "weighted-mineral",
"metadata": {},
"source": [
"---\n",
"\n",
"\n",
"\n",
"## 2. Project Brief"
]
},
{
"cell_type": "markdown",
"id": "split-computer",
"metadata": {},
"source": [
"### 2.1. About this notebook\n",
"This Jupyter notebook is part of a series of notebooks to scrape, parse, engineer, unify, and then model, culminating in a an Expected Transfer (xTransfer) player performance vs. valuation model. This model aims to determine the under- and over-performing players based on their on-the-pitch output against transfer fee and wages.\n",
"\n",
"This particular notebook is one of several **data engineering** notebooks, that takes player salary data previously from the [Capology](https://www.capology.com/), and manipulates it to a clean form as Dataframes using [pandas](http://pandas.pydata.org/).\n",
"\n",
"This notebook, along with the other notebooks in this project workflow are shown in the following diagram:\n",
"\n",
"![roadmap](../../img/football_analytics_data_roadmap.png)\n",
"\n",
"Links to these notebooks in the [`football_analytics`](https://github.com/eddwebster/football_analytics) GitHub repository can be found at the following:\n",
"* [Webscraping](https://github.com/eddwebster/football_analytics/tree/master/notebooks/1_data_scraping)\n",
" + [FBref Player Stats Webscraping](https://github.com/eddwebster/football_analytics/blob/master/notebooks/1_data_scraping/FBref%20Player%20Stats%20Web%20Scraping.ipynb)\n",
" + [TransferMarket Player Bio and Status Webscraping](https://github.com/eddwebster/football_analytics/blob/master/notebooks/1_data_scraping/TransferMarkt%20Player%20Bio%20and%20Status%20Web%20Scraping.ipynb)\n",
" + [TransferMarkt Player Recorded Transfer Fees Webscraping](https://github.com/eddwebster/football_analytics/blob/master/notebooks/1_data_scraping/TransferMarkt%20Player%20Recorded%20Transfer%20Fees%20Webscraping.ipynb)\n",
" + [Capology Player Salary Webscraping](https://github.com/eddwebster/football_analytics/blob/master/notebooks/1_data_scraping/Capology%20Player%20Salary%20Web%20Scraping.ipynb)\n",
" + [FBref Team Stats Webscraping](https://github.com/eddwebster/football_analytics/blob/master/notebooks/1_data_scraping/FBref%20Team%20Stats%20Web%20Scraping.ipynb)\n",
"* [Data Parsing](https://github.com/eddwebster/football_analytics/tree/master/notebooks/2_data_parsing)\n",
" + [ELO Team Ratings Data Parsing](https://github.com/eddwebster/football_analytics/blob/master/notebooks/2_data_parsing/ELO%20Team%20Ratings%20Data%20Parsing.ipynb)\n",
"* [Data Engineering](https://github.com/eddwebster/football_analytics/tree/master/notebooks/3_data_engineering)\n",
" + [FBref Player Stats Data Engineering](https://github.com/eddwebster/football_analytics/blob/master/notebooks/3_data_engineering/FBref%20Player%20Stats%20Data%20Engineering.ipynb)\n",
" + [TransferMarket Player Bio and Status Data Engineering](https://github.com/eddwebster/football_analytics/blob/master/notebooks/3_data_engineering/TransferMarkt%20Player%20Bio%20and%20Status%20Data%20Engineering.ipynb)\n",
" + [TransferMarkt Player Recorded Transfer Fees Data Engineering](https://github.com/eddwebster/football_analytics/blob/master/notebooks/3_data_engineering/TransferMarkt%20Player%20Recorded%20Transfer%20Fees%20Data%20Engineering.ipynb)\n",
" + [Capology Player Salary Data Engineering](https://github.com/eddwebster/football_analytics/blob/master/notebooks/3_data_engineering/Capology%20Player%20Salary%20Data%20Engineering.ipynb)\n",
" + [FBref Team Stats Data Engineering](https://github.com/eddwebster/football_analytics/blob/master/notebooks/3_data_engineering/FBref%20Team%20Stats%20Data%20Engineering.ipynb)\n",
" + [ELO Team Ratings Data Parsing](https://github.com/eddwebster/football_analytics/blob/master/notebooks/3_data_engineering/ELO%20Team%20Ratings%20Data%20Parsing.ipynb)\n",
" + [TransferMarkt Team Recorded Transfer Fee Data Engineering](https://github.com/eddwebster/football_analytics/blob/master/notebooks/3_data_engineering/TransferMarkt%20Team%20Recorded%20Transfer%20Fee%20Data%20Engineering.ipynb) (aggregated from [TransferMarkt Player Recorded Transfer Fees notebook](https://github.com/eddwebster/football_analytics/blob/master/notebooks/3_data_engineering/TransferMarkt%20Player%20Recorded%20Transfer%20Fees%20Data%20Engineering.ipynb))\n",
" + [Capology Team Salary Data Engineering](https://github.com/eddwebster/football_analytics/blob/master/notebooks/3_data_engineering/Capology%20Team%20Salary%20Data%20Engineering.ipynb) (aggregated from [Capology Player Salary notebook](https://github.com/eddwebster/football_analytics/blob/master/notebooks/3_data_engineering/Capology%20Player%20Salary%20Data%20Engineering.ipynb))\n",
"* [Data Unification](https://github.com/eddwebster/football_analytics/tree/master/notebooks/4_data_unification)\n",
" + [Golden ID for Player Level Datasets](https://github.com/eddwebster/football_analytics/blob/master/notebooks/4_data_unification/Golden%20ID%20for%20Player%20Level%20Datasets.ipynb)\n",
" + [Golden ID for Team Level Datasets](https://github.com/eddwebster/football_analytics/blob/master/notebooks/4_data_unification/Golden%20ID%20for%20Team%20Level%20Datasets.ipynb)\n",
"* [Production Datasets](https://github.com/eddwebster/football_analytics/tree/master/notebooks/5_production_datasets)\n",
" + [Player Performance/Market Value Dataset](https://github.com/eddwebster/football_analytics/tree/master/notebooks/5_production_datasets/Player%20Performance/Market%20Value%20Dataset.ipynb)\n",
" + [Team Performance/Market Value Dataset](https://github.com/eddwebster/football_analytics/tree/master/notebooks/5_production_datasets/Team%20Performance/Market%20Value%20Dataset.ipynb)\n",
"* [Expected Transfer (xTransfer) Modeling](https://github.com/eddwebster/football_analytics/tree/master/notebooks/6_data_analysis_and_projects/expected_transfer_modeling)\n",
" + [Expected Transfer (xTransfer) Modeling](https://github.com/eddwebster/football_analytics/tree/master/notebooks/6_data_analysis_and_projects/expected_transfer_modeling/Expected%20Transfer%20%20Modeling.ipynb)\n",
"\n",
"**Notebook Conventions**: \n",
"* Variables that refer a `DataFrame` object are prefixed with `df_`.\n",
"* Variables that refer to a collection of `DataFrame` objects (e.g., a list, a set or a dict) are prefixed with `dfs_`."
]
},
{
"cell_type": "markdown",
"id": "greatest-explorer",
"metadata": {},
"source": [
"---\n",
"\n",
"\n",
"\n",
"## 3. Data Sources"
]
},
{
"cell_type": "markdown",
"id": "elementary-occasions",
"metadata": {},
"source": [
"### 3.1. Introduction\n",
"..."
]
},
{
"cell_type": "markdown",
"id": "sound-interstate",
"metadata": {},
"source": [
"### 3.2. Data Dictionary\n",
"\n",
"The raw dataset has one hundred and eighty eight features (columns) with the following definitions and data types:\n",
"\n",
"| Variable | Data Type | Description |\n",
"|------|-----|-----|\n",
"| `squad` | object | ... |\n",
"| `players_used` | float64 | ... |\n",
"\n",
" \n",
"\n",
"The features will be cleaned, converted and also additional features will be created in the [Data Engineering](#section4) section (Section 4)."
]
},
{
"cell_type": "markdown",
"id": "formal-morning",
"metadata": {},
"source": [
"### 3.3. Read in CSV as pandas DataFrame\n",
"The following cell reads the the `CSV` file as a pandas `DataFrame`."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "worse-hampshire",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['../../data/capology/raw/capology_all_latest.csv']\n"
]
}
],
"source": [
"# Read data directory\n",
"print(glob.glob(os.path.join(data_dir_capology, 'raw/*.csv')))"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "atmospheric-identifier",
"metadata": {},
"outputs": [],
"source": [
"# Import data as a pandas DataFrame, df_capology_raw\n",
"df_capology_raw = pd.read_csv(data_dir_capology + '/raw/capology_all_latest.csv')"
]
},
{
"cell_type": "markdown",
"id": "external-calvin",
"metadata": {},
"source": [
"### 3.4. Initial Data Handling"
]
},
{
"cell_type": "markdown",
"id": "prompt-combat",
"metadata": {},
"source": [
"#### 3.4.1. Summary Report\n",
"Initial step of the data handling and Exploratory Data Analysis (EDA) is to create a quick summary report of the dataset using [pandas Profiling Report](https://github.com/pandas-profiling/pandas-profiling)."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "entertaining-borough",
"metadata": {},
"outputs": [],
"source": [
"# Summary of the data using pandas Profiling Report\n",
"#pp.ProfileReport(df_capology_raw)"
]
},
{
"cell_type": "markdown",
"id": "indoor-earthquake",
"metadata": {},
"source": [
"#### 3.3.2. Further Inspection\n",
"The following commands go into more bespoke summary of the dataset. Some of the commands include content covered in the [pandas Profiling](https://github.com/pandas-profiling/pandas-profiling) summary above, but using the standard [pandas](https://pandas.pydata.org/) functions and methods that most peoplem will be more familiar with.\n",
"\n",
"First check the quality of the dataset by looking first and last rows in pandas using the [head()](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.head.html) and [tail()](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.tail.html) methods."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "inappropriate-spouse",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Unnamed: 0
\n",
"
Unnamed: 0.1
\n",
"
Player
\n",
"
Weekly GrossBase Salary(IN EUR)
\n",
"
Annual GrossBase Salary(IN EUR)
\n",
"
Adj. GrossBase Salary(2021, IN EUR)
\n",
"
Pos.
\n",
"
Age
\n",
"
Country
\n",
"
Team
\n",
"
League
\n",
"
Season
\n",
"
Status
\n",
"
Expiration
\n",
"
Length
\n",
"
EstimatedGross Total(IN EUR)
\n",
"
Unnamed: 2
\n",
"
Weekly GrossBase Salary(IN GBP)
\n",
"
Annual GrossBase Salary(IN GBP)
\n",
"
Adj. GrossBase Salary(2021, IN GBP)
\n",
"
EstimatedGross Total(IN GBP)
\n",
"
Weekly GrossBase Salary(IN USD)
\n",
"
Annual GrossBase Salary(IN USD)
\n",
"
Adj. GrossBase Salary(2021, IN USD)
\n",
"
RosterStatus
\n",
"
EstimatedGross Total(IN USD)
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
0
\n",
"
0.0
\n",
"
Gonzalo Higuaín
\n",
"
€ 338,327
\n",
"
€ 17,593,000
\n",
"
€ 17,568,773
\n",
"
F
\n",
"
30
\n",
"
Argentina
\n",
"
Ac Milan
\n",
"
Serie A
\n",
"
2018-2019
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
1
\n",
"
1
\n",
"
1.0
\n",
"
Gianluigi Donnarumma
\n",
"
€ 213,673
\n",
"
€ 11,111,000
\n",
"
€ 11,095,699
\n",
"
K
\n",
"
19
\n",
"
Italy
\n",
"
Ac Milan
\n",
"
Serie A
\n",
"
2018-2019
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
2
\n",
"
2
\n",
"
2.0
\n",
"
Lucas Biglia
\n",
"
€ 124,635
\n",
"
€ 6,481,000
\n",
"
€ 6,472,075
\n",
"
M
\n",
"
32
\n",
"
Argentina
\n",
"
Ac Milan
\n",
"
Serie A
\n",
"
2018-2019
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
3
\n",
"
3
\n",
"
3.0
\n",
"
Alessio Romagnoli
\n",
"
€ 124,635
\n",
"
€ 6,481,000
\n",
"
€ 6,472,075
\n",
"
D
\n",
"
23
\n",
"
Italy
\n",
"
Ac Milan
\n",
"
Serie A
\n",
"
2018-2019
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
4
\n",
"
4
\n",
"
4.0
\n",
"
Tiemoué Bakayoko
\n",
"
€ 124,635
\n",
"
€ 6,481,000
\n",
"
€ 6,472,075
\n",
"
M
\n",
"
23
\n",
"
France
\n",
"
Ac Milan
\n",
"
Serie A
\n",
"
2018-2019
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Unnamed: 0 Unnamed: 0.1 Player \\\n",
"0 0 0.0 Gonzalo Higuaín \n",
"1 1 1.0 Gianluigi Donnarumma \n",
"2 2 2.0 Lucas Biglia \n",
"3 3 3.0 Alessio Romagnoli \n",
"4 4 4.0 Tiemoué Bakayoko \n",
"\n",
" Weekly GrossBase Salary(IN EUR) Annual GrossBase Salary(IN EUR) \\\n",
"0 € 338,327 € 17,593,000 \n",
"1 € 213,673 € 11,111,000 \n",
"2 € 124,635 € 6,481,000 \n",
"3 € 124,635 € 6,481,000 \n",
"4 € 124,635 € 6,481,000 \n",
"\n",
" Adj. GrossBase Salary(2021, IN EUR) Pos. Age Country Team League \\\n",
"0 € 17,568,773 F 30 Argentina Ac Milan Serie A \n",
"1 € 11,095,699 K 19 Italy Ac Milan Serie A \n",
"2 € 6,472,075 M 32 Argentina Ac Milan Serie A \n",
"3 € 6,472,075 D 23 Italy Ac Milan Serie A \n",
"4 € 6,472,075 M 23 France Ac Milan Serie A \n",
"\n",
" Season Status Expiration Length EstimatedGross Total(IN EUR) \\\n",
"0 2018-2019 NaN NaN NaN NaN \n",
"1 2018-2019 NaN NaN NaN NaN \n",
"2 2018-2019 NaN NaN NaN NaN \n",
"3 2018-2019 NaN NaN NaN NaN \n",
"4 2018-2019 NaN NaN NaN NaN \n",
"\n",
" Unnamed: 2 Weekly GrossBase Salary(IN GBP) Annual GrossBase Salary(IN GBP) \\\n",
"0 NaN NaN NaN \n",
"1 NaN NaN NaN \n",
"2 NaN NaN NaN \n",
"3 NaN NaN NaN \n",
"4 NaN NaN NaN \n",
"\n",
" Adj. GrossBase Salary(2021, IN GBP) EstimatedGross Total(IN GBP) \\\n",
"0 NaN NaN \n",
"1 NaN NaN \n",
"2 NaN NaN \n",
"3 NaN NaN \n",
"4 NaN NaN \n",
"\n",
" Weekly GrossBase Salary(IN USD) Annual GrossBase Salary(IN USD) \\\n",
"0 NaN NaN \n",
"1 NaN NaN \n",
"2 NaN NaN \n",
"3 NaN NaN \n",
"4 NaN NaN \n",
"\n",
" Adj. GrossBase Salary(2021, IN USD) RosterStatus \\\n",
"0 NaN NaN \n",
"1 NaN NaN \n",
"2 NaN NaN \n",
"3 NaN NaN \n",
"4 NaN NaN \n",
"\n",
" EstimatedGross Total(IN USD) \n",
"0 NaN \n",
"1 NaN \n",
"2 NaN \n",
"3 NaN \n",
"4 NaN "
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Display the first five rows of the raw DataFrame, df_capology_raw\n",
"df_capology_raw.head()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "irish-thirty",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Unnamed: 0
\n",
"
Unnamed: 0.1
\n",
"
Player
\n",
"
Weekly GrossBase Salary(IN EUR)
\n",
"
Annual GrossBase Salary(IN EUR)
\n",
"
Adj. GrossBase Salary(2021, IN EUR)
\n",
"
Pos.
\n",
"
Age
\n",
"
Country
\n",
"
Team
\n",
"
League
\n",
"
Season
\n",
"
Status
\n",
"
Expiration
\n",
"
Length
\n",
"
EstimatedGross Total(IN EUR)
\n",
"
Unnamed: 2
\n",
"
Weekly GrossBase Salary(IN GBP)
\n",
"
Annual GrossBase Salary(IN GBP)
\n",
"
Adj. GrossBase Salary(2021, IN GBP)
\n",
"
EstimatedGross Total(IN GBP)
\n",
"
Weekly GrossBase Salary(IN USD)
\n",
"
Annual GrossBase Salary(IN USD)
\n",
"
Adj. GrossBase Salary(2021, IN USD)
\n",
"
RosterStatus
\n",
"
EstimatedGross Total(IN USD)
\n",
"
\n",
" \n",
" \n",
"
\n",
"
25154
\n",
"
35
\n",
"
35.0
\n",
"
Pedro Martínez
\n",
"
€ 0
\n",
"
€ 0
\n",
"
€ 0
\n",
"
M
\n",
"
21
\n",
"
Spain
\n",
"
Villarreal
\n",
"
La Liga
\n",
"
2017-2018
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
25155
\n",
"
36
\n",
"
36.0
\n",
"
Chuca
\n",
"
€ 0
\n",
"
€ 0
\n",
"
€ 0
\n",
"
M
\n",
"
20
\n",
"
Spain
\n",
"
Villarreal
\n",
"
La Liga
\n",
"
2017-2018
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
25156
\n",
"
37
\n",
"
37.0
\n",
"
Cédric Bakambu
\n",
"
€ 0
\n",
"
€ 0
\n",
"
€ 0
\n",
"
F
\n",
"
26
\n",
"
Democratic Republic of Congo
\n",
"
Villarreal
\n",
"
La Liga
\n",
"
2017-2018
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
25157
\n",
"
38
\n",
"
38.0
\n",
"
Bruno Soriano
\n",
"
€ 0
\n",
"
€ 0
\n",
"
€ 0
\n",
"
M
\n",
"
33
\n",
"
Spain
\n",
"
Villarreal
\n",
"
La Liga
\n",
"
2017-2018
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
25158
\n",
"
39
\n",
"
39.0
\n",
"
Sergio Lozano
\n",
"
€ 0
\n",
"
€ 0
\n",
"
€ 0
\n",
"
M
\n",
"
18
\n",
"
Spain
\n",
"
Villarreal
\n",
"
La Liga
\n",
"
2017-2018
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Unnamed: 0 Unnamed: 0.1 Player \\\n",
"25154 35 35.0 Pedro Martínez \n",
"25155 36 36.0 Chuca \n",
"25156 37 37.0 Cédric Bakambu \n",
"25157 38 38.0 Bruno Soriano \n",
"25158 39 39.0 Sergio Lozano \n",
"\n",
" Weekly GrossBase Salary(IN EUR) Annual GrossBase Salary(IN EUR) \\\n",
"25154 € 0 € 0 \n",
"25155 € 0 € 0 \n",
"25156 € 0 € 0 \n",
"25157 € 0 € 0 \n",
"25158 € 0 € 0 \n",
"\n",
" Adj. GrossBase Salary(2021, IN EUR) Pos. Age \\\n",
"25154 € 0 M 21 \n",
"25155 € 0 M 20 \n",
"25156 € 0 F 26 \n",
"25157 € 0 M 33 \n",
"25158 € 0 M 18 \n",
"\n",
" Country Team League Season Status \\\n",
"25154 Spain Villarreal La Liga 2017-2018 NaN \n",
"25155 Spain Villarreal La Liga 2017-2018 NaN \n",
"25156 Democratic Republic of Congo Villarreal La Liga 2017-2018 NaN \n",
"25157 Spain Villarreal La Liga 2017-2018 NaN \n",
"25158 Spain Villarreal La Liga 2017-2018 NaN \n",
"\n",
" Expiration Length EstimatedGross Total(IN EUR) Unnamed: 2 \\\n",
"25154 NaN NaN NaN NaN \n",
"25155 NaN NaN NaN NaN \n",
"25156 NaN NaN NaN NaN \n",
"25157 NaN NaN NaN NaN \n",
"25158 NaN NaN NaN NaN \n",
"\n",
" Weekly GrossBase Salary(IN GBP) Annual GrossBase Salary(IN GBP) \\\n",
"25154 NaN NaN \n",
"25155 NaN NaN \n",
"25156 NaN NaN \n",
"25157 NaN NaN \n",
"25158 NaN NaN \n",
"\n",
" Adj. GrossBase Salary(2021, IN GBP) EstimatedGross Total(IN GBP) \\\n",
"25154 NaN NaN \n",
"25155 NaN NaN \n",
"25156 NaN NaN \n",
"25157 NaN NaN \n",
"25158 NaN NaN \n",
"\n",
" Weekly GrossBase Salary(IN USD) Annual GrossBase Salary(IN USD) \\\n",
"25154 NaN NaN \n",
"25155 NaN NaN \n",
"25156 NaN NaN \n",
"25157 NaN NaN \n",
"25158 NaN NaN \n",
"\n",
" Adj. GrossBase Salary(2021, IN USD) RosterStatus \\\n",
"25154 NaN NaN \n",
"25155 NaN NaN \n",
"25156 NaN NaN \n",
"25157 NaN NaN \n",
"25158 NaN NaN \n",
"\n",
" EstimatedGross Total(IN USD) \n",
"25154 NaN \n",
"25155 NaN \n",
"25156 NaN \n",
"25157 NaN \n",
"25158 NaN "
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Display the last five rows of the raw DataFrame, df_capology_raw\n",
"df_capology_raw.tail()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "dramatic-discount",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(25159, 26)\n"
]
}
],
"source": [
"# Print the shape of the raw DataFrame, df_capology_raw\n",
"print(df_capology_raw.shape)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "athletic-taylor",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Index(['Unnamed: 0', 'Unnamed: 0.1', 'Player',\n",
" 'Weekly GrossBase Salary(IN EUR)', 'Annual GrossBase Salary(IN EUR)',\n",
" 'Adj. GrossBase Salary(2021, IN EUR)', 'Pos.', 'Age', 'Country', 'Team',\n",
" 'League', 'Season', 'Status', 'Expiration', 'Length',\n",
" 'EstimatedGross Total(IN EUR)', 'Unnamed: 2',\n",
" 'Weekly GrossBase Salary(IN GBP)', 'Annual GrossBase Salary(IN GBP)',\n",
" 'Adj. GrossBase Salary(2021, IN GBP)', 'EstimatedGross Total(IN GBP)',\n",
" 'Weekly GrossBase Salary(IN USD)', 'Annual GrossBase Salary(IN USD)',\n",
" 'Adj. GrossBase Salary(2021, IN USD)', 'RosterStatus',\n",
" 'EstimatedGross Total(IN USD)'],\n",
" dtype='object')\n"
]
}
],
"source": [
"# Print the column names of the raw DataFrame, df_capology_raw\n",
"print(df_capology_raw.columns)"
]
},
{
"cell_type": "markdown",
"id": "opponent-statement",
"metadata": {},
"source": [
"The dataset has ten features (columns). Full details of these attributes can be found in the [Data Dictionary](section3.3.1)."
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "excess-sydney",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Unnamed: 0 int64\n",
"Unnamed: 0.1 float64\n",
"Player object\n",
"Weekly GrossBase Salary(IN EUR) object\n",
"Annual GrossBase Salary(IN EUR) object\n",
"Adj. GrossBase Salary(2021, IN EUR) object\n",
"Pos. object\n",
"Age object\n",
"Country object\n",
"Team object\n",
"League object\n",
"Season object\n",
"Status float64\n",
"Expiration object\n",
"Length object\n",
"EstimatedGross Total(IN EUR) object\n",
"Unnamed: 2 float64\n",
"Weekly GrossBase Salary(IN GBP) object\n",
"Annual GrossBase Salary(IN GBP) object\n",
"Adj. GrossBase Salary(2021, IN GBP) object\n",
"EstimatedGross Total(IN GBP) object\n",
"Weekly GrossBase Salary(IN USD) object\n",
"Annual GrossBase Salary(IN USD) object\n",
"Adj. GrossBase Salary(2021, IN USD) object\n",
"RosterStatus object\n",
"EstimatedGross Total(IN USD) object\n",
"dtype: object"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Data types of the features of the raw DataFrame, df_capology_raw\n",
"df_capology_raw.dtypes"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "average-cruise",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"RangeIndex: 25159 entries, 0 to 25158\n",
"Data columns (total 26 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 Unnamed: 0 25159 non-null int64 \n",
" 1 Unnamed: 0.1 18560 non-null float64\n",
" 2 Player 24661 non-null object \n",
" 3 Weekly GrossBase Salary(IN EUR) 16516 non-null object \n",
" 4 Annual GrossBase Salary(IN EUR) 16516 non-null object \n",
" 5 Adj. GrossBase Salary(2021, IN EUR) 15360 non-null object \n",
" 6 Pos. 25159 non-null object \n",
" 7 Age 25159 non-null object \n",
" 8 Country 22691 non-null object \n",
" 9 Team 25159 non-null object \n",
" 10 League 25159 non-null object \n",
" 11 Season 25159 non-null object \n",
" 12 Status 0 non-null float64\n",
" 13 Expiration 2468 non-null object \n",
" 14 Length 2468 non-null object \n",
" 15 EstimatedGross Total(IN EUR) 1156 non-null object \n",
" 16 Unnamed: 2 0 non-null float64\n",
" 17 Weekly GrossBase Salary(IN GBP) 3996 non-null object \n",
" 18 Annual GrossBase Salary(IN GBP) 3996 non-null object \n",
" 19 Adj. GrossBase Salary(2021, IN GBP) 3450 non-null object \n",
" 20 EstimatedGross Total(IN GBP) 546 non-null object \n",
" 21 Weekly GrossBase Salary(IN USD) 4647 non-null object \n",
" 22 Annual GrossBase Salary(IN USD) 4647 non-null object \n",
" 23 Adj. GrossBase Salary(2021, IN USD) 3881 non-null object \n",
" 24 RosterStatus 766 non-null object \n",
" 25 EstimatedGross Total(IN USD) 766 non-null object \n",
"dtypes: float64(3), int64(1), object(22)\n",
"memory usage: 5.0+ MB\n"
]
}
],
"source": [
"# Info for the raw DataFrame, df_capology_raw\n",
"df_capology_raw.info()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "central-cameroon",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Unnamed: 0
\n",
"
Unnamed: 0.1
\n",
"
Status
\n",
"
Unnamed: 2
\n",
"
\n",
" \n",
" \n",
"
\n",
"
count
\n",
"
25159.000000
\n",
"
18560.000000
\n",
"
0.0
\n",
"
0.0
\n",
"
\n",
"
\n",
"
mean
\n",
"
17.252832
\n",
"
17.614709
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
std
\n",
"
11.422048
\n",
"
11.794968
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
min
\n",
"
0.000000
\n",
"
0.000000
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
25%
\n",
"
8.000000
\n",
"
8.000000
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
50%
\n",
"
16.000000
\n",
"
17.000000
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
75%
\n",
"
25.000000
\n",
"
25.000000
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
max
\n",
"
84.000000
\n",
"
84.000000
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Unnamed: 0 Unnamed: 0.1 Status Unnamed: 2\n",
"count 25159.000000 18560.000000 0.0 0.0\n",
"mean 17.252832 17.614709 NaN NaN\n",
"std 11.422048 11.794968 NaN NaN\n",
"min 0.000000 0.000000 NaN NaN\n",
"25% 8.000000 8.000000 NaN NaN\n",
"50% 16.000000 17.000000 NaN NaN\n",
"75% 25.000000 25.000000 NaN NaN\n",
"max 84.000000 84.000000 NaN NaN"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Description of the raw DataFrame, df_capology_raw, showing some summary statistics for each numerical column in the DataFrame\n",
"df_capology_raw.describe()"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "competitive-pregnancy",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABuMAAAJjCAYAAAAWFGz+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdZ1hU19bA8f/QUbCgiA27omLvmsQaY+wVRbFgNzYENYK9YO+9xN57i7GbxCQmGrE37CJFEEXpMDBz3g8+cyJR027ezAys35cbpz1735l9WGuvffbWKIqiIIQQQgghhBBCCCGEEEIIIYT411kYuwFCCCGEEEIIIYQQQgghhBBCZFZSjBNCCCGEEEIIIYQQQgghhBDi/4kU44QQQgghhBBCCCGEEEIIIYT4fyLFOCGEEEIIIYQQQgghhBBCCCH+n0gxTgghhBBCCCGEEEIIIYQQQoj/J1KME0IIIYQQQgghhBBCCCGEEOL/iRTjhBBCCCGEEEIIIYQQQgghhPh/IsU4IYQQQmQ5iqKgKIqxmyGEEEIIIYQQH6TX643dBCHEB8icgvi7pBgnhBBCiCwhOjqa69evA6DRaNBoNBI8CyGEEEIIIUzG48eP2bt3L5GRkaSlpWFhIVO3QpiK8PBwvvvuO1JTU1EUBY1GY+wmCTOjUWQWSgghhBCZXGJiIgsXLuTXX38lf/78ODs706dPHwoVKoSdnZ2xmyeEEEIIIYTI4tLT0zl58iRbtmwhW7ZsREZG0r9/f8qXL0+ZMmWM3TwhsrTU1FS2bt3KkSNHcHJyQq/XM2DAAEqUKIGLi4uxmyfMhBTjhBBCCJFpvb1aLTk5GUtLS77++muOHz/O5cuXadGiBa1bt6ZWrVpGbqkQQgghhBBCvBEaGsqWLVv46aefsLS0pGfPnnh4eBi7WUII4MKFC+zdu5dffvmFcuXK0blzZ5o2bWrsZgkzIMU4IYQQQmRaaWlpWFtbv/e5bdu2cejQIV6/fs2IESNo0aLFf9w6IYQQQgghRFYXGxtLXFwcNjY2ZM+eHQcHB/W5ixcv8vXXX7N7924GDhzIsGHDsLKyMmJrhRAGx48f59ChQ/z000/4+/vj5eVl7CYJEydXbyGEEEJkSsHBwWzatInnz5+TJ08exo4dS65cudQCnZeXF6VKlWLbtm2MHz8eCwsLPv/8c2M3WwghhBBCCJFFXL9+nRkzZvDkyRNSU1P59NNP6du3L2XLlgWgZs2alCxZkqJFizJ//nysrKwYNmyYkVstRNbw8uVLXr16RUhICC4uLri5uWVY7Pv5559TunRpChYsyLRp07C0tMTT09OILRamTopxQgghhMh0goKCGDJkCIUKFSI1NZVffvmFmzdvsm/fPuzt7dHr9VhYWFC7dm0cHR1JS0tj0aJF5M2blxo1ahi7+UIIIYQQQohMLigoiH79+vHZZ5/RtGlTHj9+zL59+3j16hXTp09Xz6FycnKiW7duaLVaFi9eTOHChWnfvr2RWy9E5nbt2jUCAwN5+vQpsbGxWFpaUrp0aXx9falSpQo5c+YEoGTJkvTv35+0tDRmzZqFs7MzTZo0MXLrhamyMHYDhBBCCCH+TUFBQXh7e9O6dWuWLVvGgQMHGD9+PI8ePeLo0aMAWFhYYNipu3z58vTo0YNs2bJx/PhxtFotsou3EEIIIYQQ4v+LIWfp3LkzU6ZMoW/fvgQGBjJo0CB++uknHj9+DKDmJfb29nTs2JH27duzdetWHj58aMzmC5GpBQUF0atXL8qWLcvUqVM5ceIEw4cPR1EURowYwbZt23jx4oX6+vz58+Pl5UWtWrXYv39/hueEeJsU44QQQgiRaRiS2q5duzJq1Cjy58+PjY0NVatWJWfOnOTIkUN9rUajUZPbevXq0bp1a/bu3UtoaCgajcZYXRBCCCGEEEJkYleuXKFfv3707NkTPz8/decOgN69e2Ntbc3Vq1cBMuQl+fLlo2XLlsTHx3P79m0A9X1CiH+HYU6hU6dOjBo1imbNmlG0aFH69u3LihUr+Oijj1i+fDn79u0jMTFRfZ+bmxstW7YkKChILZbLIl/xe1KME0IIIUSmcOnSJfr370/Xrl0JCAjA1tZWfe758+dYW1tToECBDO/RaDSkpaUBbxLfmjVrsnXrVkACZyGEEEIIIcS/R1EUXrx4QdeuXcmfPz9dunTBzs4OAJ1OB7w5o0qj0ahb4P3exx9/TP369Vm3bh1paWlYWMjUrhD/FsOcgqenJ2PHjlXHoV6vx8rKikKFCjFr1iwaNGjA2rVrefDgAYA6p9C2bVs++eQT1q9fj6IosshXvEOu2EIIIYQwa4qioCgKc+fOJTk5mapVq6LX69FoNFhYWBAcHMyYMWNITEzk559/ZvHixRw6dIhHjx6h0+nUA5gVRaF+/fo8ffoUQAJnIYQQQgghxL9Go9GQN29eBg4cSEhICLt37yYqKgpAzUkCAwMpWrQoXbt2fef9hrvgOnXqRM6cOYmJifnvGi9EJqcoCvPmzSM5OZlq1aqpi3MN580bODg44OfnR86cOZk3bx6KomBtba2OzxYtWpCSkoJWqzVKP4Rpk2KcEEIIIcxaWloaGo2GdevWUbp0aebOncvp06cBuHfvHl27dsXZ2ZlKlSpx4sQJVq5cyZgxY+jQoQNeXl6MHDmS4OBgNBoNHTt25Pnz59y8edPIvRJCCCGEEEJkJoa733x9fRk4cCDr1q1j48aNvH79GoCBAwfy+PFjFi9enOH1BoaCQNmyZUlKSuLnn3/+7xovRCZmuIvt7TmFb7/9Vr379Pe75hQpUoSGDRty7949tShuGJ8NGzbk1atXnD9//j/vhzB9VsZugBBCCCHEP3Xr1i1OnjxJhw4dKFq0KDt37qRTp04sWLCAiIgIli5dSocOHRgyZAhOTk4APHjwgLCwMA4fPsz169dJTEykdOnS6mfWqVOHggULGqtLQgghhBBCiEwkJiaGtLQ0kpKSKF68OAAjRoxAo9GwcuVKbGxsuHnzJo8fP2bFihWUKFECAEtLy3c+S6fTYWlpibe3N1WqVPkvuyFEpmXYFSdbtmzqnMKMGTNQFIXGjRtjZWWlFux0Oh02NjY0btyYrVu3Eh0dTZ48eQBIT0/H0tKSNm3aULZsWWN2SZgojSIHogghhBDCTC1evJiVK1fSv39/OnfujKurK4mJiXTu3JmHDx/y0UcfsWjRIhwdHQHe2bfdECwbgmpLS0uSk5Oxt7c3VpeEEEIIIYQQmcTVq1cJDAwkJiaG58+f07lzZwYNGkS+fPkAWLRoEatWrcLOzo7ly5fz0UcfAe/mLb9nyF2EEP/cs2fPePLkCffu3aNChQq4urqSL18+kpKS6NSpE8nJyQQEBKgFOcOWlenp6axZs4bTp0+zdetWsmXLluFztVotNjY2RuqVMGVyZ5wQQogsw5DQ/H7Pb2G+fHx80Ov1bNq0CZ1OR9euXXF1dWXPnj14enry4MEDfvnlF5o0aZIhWTX8Fqys3oRCer1efV4KcUIIIYQQwtj+rBgjTF9QUBB9+vShXbt2VK5cmZSUFKZPn07BggXp168f8OYOOTs7OxYtWsTPP/9MqVKlcHFx+dPvXgpxxiVzCubvypUrTJw4kcTERKKjo7GysmLmzJk0aNCAbNmysXfvXjp16sTMmTMBaNSokXq249OnT/npp5+oVKnSO4U4QApx4oOkGCeEECLTu3fvHi9fvqRIkSIUKlRIDZolgDZvhtWgvr6+6PV6tmzZAqAW5Hbs2KEGz4qi0KRJkwzbS7xNfgdCCCGEEMKYbt++zZ07d8iVKxcNGzZEr9djbW2dqXIWQxyeFQqNQUFBeHt74+npyYgRI3BwcADg7t27XLhwgd69e6MoClZWVgwaNIikpCTWrFkDQM+ePXFxcTFm88Xv3Llzh9DQUPLnz0+lSpUy5ZxCVhqf165dUwvlrVq1omLFipw5c4ZixYphb29Peno62bJlY8+ePXTs2JGZM2ei0Who3LgxMTExjB07Fq1Wy/jx4wFZPCH+OtmmUgghRKamKAq7d+9mz5492NvbY2VlhYeHB7Vr11b39c4M0tPT1bu8IHMHg29vyfL2f8+fP58tW7bQrVs3unXrRuHChUlMTKRTp06kpqYSEBBAw4YN1dVsQgghhBBCmIoff/yRo0eP8uDBAxRFwc3NjZ49e+Lm5mbspv1rEhIS1KIUZK5Cxttu3ryJp6cn3bp1Y+zYseh0OiwsLNBoNAQGBnLhwgWKFy+OpaUllStXxtvbG4CFCxeyevVqOnfuzIgRI9Qzr4XxHTt2jH379hEXF4eiKDRt2pRWrVplqrPGU1NTsbW1Vf+dWbdCjY2NZejQoRQrVozRo0eTI0eOd14THR2NpaUlTk5OJCQk0KlTJ7RaLYMGDWLfvn3Ex8dz6NAhrK2tM+3/T+L/hxTjhBBCZAlxcXHExcUxY8YMnj17RnJyMpMmTaJu3brGbtr/7OnTpxw4cIBcuXJRu3btTHtQ8L1798idOzfOzs5/WpDr168fnp6e5M2bl6SkJLp06cKTJ09Yt24dtWrVMmY3hBBCCCGE+ENr167lwoUL/Pzzz3zxxRe0bt2aokWLGrtZ/5Po6GgCAgIoXbo0BQoUoFOnTlhbW2NtbZ2pFhLqdDoCAgI4evQo/fv3x8fHR33u5s2b9OjRg8KFC+Pq6sqtW7eIiYmhe/fujBkzBoDp06dz/fp1du7cmWn+P8ks0tLS0Ol0zJkzhzt37nD//n3Gjh1LkyZNyJkzp7Gb9z+JiIhg2bJlFCxYEHd3dxo0aJApC+Xwpq+9e/dmzJgxNG7cWH382bNnbNiwgfPnzxMeHk6xYsUYMGAAzZo1IzExEU9PT+7fv0/58uXZtWsX1tbW7yyKFuLPSDFOCCFEpqTVatFqtRlWXhqcP3+erVu38v333+Pv70+7du3e+zpzERQUREhICHv27MHa2pq4uDiGDx9O+fLlKVCggLGb96+Ii4ujZ8+ePH/+nEOHDv1hQW727Nls3bqVhQsX8umnnwKQmJjIxIkTmTNnjqxaE0IIIYQQJuH58+c8e/aM1NRUypUrh6Ojo/pcSkoKGzZsYPny5TRr1gxvb28qVqxoxNb+b2JiYnj06BE//vgjFy9e5OnTpzRr1ow2bdpQuXJlYzfvXxUdHc3MmTO5efMmLVu2xMfHh4cPH9KxY0datWrF8OHDyZcvH2FhYfj5+REVFcWmTZsoVqwYkLW2CzQnb9/J+eTJEzZt2sTOnTvx9vame/fuFCpUyMgt/OcePnxISEgIhw4d4vnz50RGRtKrVy8+/vhjSpUqlWl+i4qi8ODBAzp27MiCBQv49NNPefbsGVevXmXGjBlER0fj7u5O0aJFCQ8PJywsjOXLl1OlShWSkpKYPn06kydPlkKc+MekGCeEECLTuXXrFqtWreL+/fsULVqUTp06vbM9YXx8PMuXL2fz5s1MmDCBrl27mn2AmZCQwLNnz1i6dCk3b96kePHiDBkyhGrVqhm7af8zRVE4cuQIa9asQavVsmXLFvLly/fBgtygQYMIDw9n3759WFlZZVjVJ9tICCGEEEIIY7t69SpTp04lIiKCuLg4ihQpwqJFiyhbtmyGePXAgQPMnj2b+vXrM2zYMFxdXY3c8v+NoW9r1qzh/PnzXLlyhUmTJtGuXTtjN+1f9fz5cwIDA7l79y61a9fm8OHDdOjQAT8/PxwcHNTc8/Tp0wwdOpRt27ZRvXp19f3mnpuau6ioKO7fv09oaCiOjo58/PHHZM+e/Z0jD9avX8+cOXPo378/AwYMyFBQN0darZa0tDQWLlzI5cuXSUpKYty4cXzyySdm/ZsMCwujcOHCwJti+ahRowgPD6d69eo8fPiQO3fuULhwYVq3bs3QoUOBN+cE+vn54ePjw+eff57h86QQJ/4pKcYJIYTIVIKCghg0aBClS5fG0dGR+/fvY2lpyapVq967oiswMJCdO3eyYcMGatasaTbnFkRFRfHixQsSExPfu+3i3r17OXjwIE+fPmXWrFnUq1fPCK383/3666/cv38fLy8vFEXh5MmTLFq0CL1e/96CnCEoPnToEHPnzmX37t2Zah9/IYQQQghh/oKCgujTpw+tWrXi448/5uHDh+zduxedTsfhw4dxcnLKkJfs2bOHCRMmMGLECAYNGmQ2Ocvjx485f/48oaGh1KhRA3d3d1xcXNTng4OD2b59O3v27GHUqFH07dvXiK3956Kjo4mOjubu3buUKFGC/Pnz4+LiQnR0NNOnT+fs2bMUL16cbdu2YW9vr+YviqKwd+9e1qxZw5o1ayhevLixuyJ4UyifMGECCQkJREdHk56eTsGCBWnRogX9+/cnZ86cGYoxa9asYeHChcyePZs2bdqYzfh8n7fb/sMPP7Bjxw6+++47FixYQIsWLcyyIBcVFYWXlxfly5dnyZIlAJw6dYrdu3dz584dLCws8PDw4NNPP6VcuXLq+xRF4ZNPPqFfv37quY5C/K+khCuEECLTCAoKwtvbm65duzJo0CDy5MnD/fv3ad26NWfOnKFUqVLvBI6DBw8mPDycwMBANmzYYBaHZF+7do2JEycSGhpKcnIyderUYc2aNVhbW6PVarGxsaFTp04ULlyYr776ivHjx7NgwQKqVKli7Kb/LUFBQfTs2ZNu3bqRlpaGtbU1n332GQCLFy+mR48eakHOkAwZEqLw8HBcXFzeexizEEIIIYQQxmLIWbp168aIESPIli0bAEWKFGHcuHFs376doUOHZtim0MPDg6ioKFasWEHTpk0pWbKkkXvx5y5dusSIESOwtLTk+fPnrF+/nqZNm+Lv769u51e2bFn8/PzInTs38+bNw8XFhVatWpnVhP/Vq1eZOXMmz549IyYmhmzZstGpUycGDhyIs7MzEydOZOrUqdy6dYu1a9cybNgwLC0t0ev1REVFsX//fkqWLKluUSmMKygoiL59+9K2bVtatmyJq6sr4eHhLFmyhE2bNnH37l3mzJlD7ty51Rx1wIABhIWFMWvWLGrVqkX+/PmN3Y0/9fDhQ44fP87ly5fJmTMnRYoUwdvbO8PZd/Xr16dw4cI4OjoyevRocubMyUcffWTEVv8ztra2NG3alOPHjzNmzBhmz55N06ZNqVSpElZWViQlJWW449hw39KlS5fImzdvhgKdEP8r8yzTCyGEEL9jSGo9PT0ZOXIkefLkASBbtmwULFiQ3LlzZ3i9IcBycnKic+fOAFy8eBF4sxrMVAUFBdGrVy9KlSrFyJEj6dWrF7/88gsTJ04EwMbGRu1bnTp16NOnD/ny5WPFihVERUUZs+l/i+H77N27N6NHj8ba2hq9Xo9Go+Gzzz5j+PDhWFlZ4eXlRVRUVIYtIh48eMDp06cpX768WZ8FKIQQQgghMpfr16/Ts2dP+vfvz/Dhw8mWLZsauzdp0oS8efPy6tUrADQajVqQA+jWrRs1a9Zk06ZNpKenY8obXRlyllatWrF27VquXr2Kp6cnp06d4tChQ8BvOVeuXLno2bMn7du3Z+LEidy4ccNsCnHXrl2jd+/elC1blmnTpnH16lUmTpxIw4YN1aKGk5MT48aNo3z58hw+fJilS5cC8Pr1a3x8fIiLi2Pp0qVoNBqTzkOzAkMO6uHhwZdffknt2rUpWLAgNWvWZOPGjXTo0IGLFy8SEBBAfHw81tbWGcZnkSJF+OabbwDTnlO4dOkS3t7enDlzBq1Wy71791i7di2dO3fm4MGDxMfHq68tUaIE/fr14+OPP2bmzJk8evTIiC3/+xRFIVeuXAwcOJAOHTrw888/8+WXXwLg4uJCnjx51EJcQkIC8GYr3UePHjF//nxy5sxJjRo1jNZ+kfnInXFCCCHM3p07d+jevTv9+vVj1KhR6HQ6dXuFZ8+ekZiYSJkyZTK85+2Vpo0aNWLPnj3s3r2bZs2ameyWEobkwMvLiyFDhpAjRw7S0tK4ffs2Dx48UPv8dt8++ugjwsLCWLZsGXfv3sXFxcXkV5q+3U8fHx/s7OzUviUmJpI9e3aaNWuGlZUVixcvplOnTsyaNYt8+fIRERHBqlWrAJg0aRIg5y0IIYQQQgjji4mJYerUqdjY2NCiRQscHBzQ6/XodDqsra1JSUkhLS3tncVkhjjWycmJunXrcvToUZM+q8gw0d+tWzeGDRum3vk3efJk7t27x/Hjx+nXrx82Njbqe/LkyYOXlxdPnz7lm2++oWzZslhaWppsXgZvduKYOHEi7du3V8+BA2jevLm6hX5AQAD169enefPmjB8/nsDAQI4cOUJCQgJXr14lMTGRgwcPYm1tLWdQGdnv5xTeLqYZthUdP3486enpHDp0iJ07d9K3b191fJYtW5by5ctz8uRJ+vbta7K/XUOu3blzZ3r37o2rqyvx8fFcvnyZZcuWERgYSGxsLJ06dVJ/02XKlMHT05MFCxbwyy+/UKJECbM5h90wN5IrVy569OgBwO7du/H392fWrFkApKWlMXr0aOzt7alWrRqPHj3iwoULKIrC5s2bsbS0NJv+CtNnmlcGIYQQ4i9QFAWtVsuePXuwsrJSA2ZD4hYcHMzQoUOJjY1l165d9OnThzVr1nD69GlSU1MzBNh+fn6kpKTw7Nkzk1xleuXKFby9venRowc+Pj7kyJFDTdxdXV1xcXHBwsJC7ZNGo0Gn0wHQpUsXKlWqxKJFi9TnTNXly5fx9vame/fu7xTi7ty5g7+/P6GhoWg0Gj799FMmTZpE+fLlGThwIB4eHsydO5ccOXKwe/durKys0Ol0Jt1fIYQQQgiRNTg5OdG2bVuKFSvGhAkTCA0NxcLCAmtrawD8/f3JkSMHPj4+77zXkJ/07dsXnU7Hd99995+2/a+6fPkyvXr1omPHjgQEBKiFOK1WC4Cbmxvp6enExsa+8153d3fq1avHsWPHSE9PN9lihuG7uHHjBoqi0K5dO7VokZaWpk7YDxs2jAMHDjB69GhOnjyJs7Mz48ePx93dnU2bNqHVaqUQZyLS0tLemVOwsLAgPT0dQN1W1NramsmTJ+Pm5sbXX3+tLvo0vGfEiBGkp6dz8+ZNo/Xlj7w9p+Dn56feEebo6EiDBg1YunQp5cuXZ/ny5Zw7dw5A/f+gUaNGVK9enfXr16MoikkXplJTUzP8+/cFOQ8PD86dO8fYsWMBsLa2xtnZmR9++IHJkydz4cIFKlasyJ49e9Txacr9FebFNP+yCSGEEH9Beno6NjY29OzZk06dOnHkyBHmzp0LvNmq0NPTk+LFi+Ph4UFsbCwhISEsWLCAoUOH0rJlS9q2bcu1a9cAyJs3L/Hx8Tx58sTkijd3796la9euNGjQQN3OxhAQ3r59m1OnTlG+fHmSk5N5/fq1+j5LS0s1eB42bBj29vbcv3/fSL34c8HBwXTr1o0WLVrg4+Oj9tPCwoLbt2/j4eGBs7OzencfQI0aNVi9ejWrVq1i3rx5TJ8+nZUrV2JlZSVBsxBCCCGEMCk9evSgS5cuJCYmMmrUKHUb+QEDBvDw4UOWLFmChYWFuqjOwLDQTqPRULx48Qwxvyk5c+YM6enp5M+fX21jWlqaehfcr7/+SsmSJXF2ds7wPkNsP3jwYAoUKMC+ffsyPG5KDLniTz/9BEClSpXU5wyF1f79+3Pz5k2WL1/O559/zvDhw/n2229xdnYmICCAIUOGZJjol0KccVlbW9O7d291TmH+/PkA6uJOQB2X1tbW9O3bl/v373P58mX1OUVRsLOzw97enmfPnhmtLx/y+zmF9x3nkD9/fmbOnEmBAgVYtmwZWq02w/8HI0eOJG/evPzwww+AaY7PO3fu4OPjQ3BwcIbH3y7I9ezZEw8PD86fP6/OH40bN469e/fyzTffsHnzZqZMmaL2Xcan+DfJr0kIIYRZun//PpMmTWLu3LkUK1ZMXSV65MgRXr58yYkTJ9QtQxwdHQGIj4/n4cOHXL16lW+//ZaUlBTc3d2BN2cVdO/enYIFCxqzW++VK1cu7O3tCQsL49KlS9StWxcrKytu3rxJ7969iY+P5/Tp06xdu5acOXNSp04d3NzcaN68ORqNhnz58lG4cGESExP5+eefKV26tLG79F6pqalYWVnx8uVLwsPDKVGihNrP7t2706FDB0aPHp1hSxuDjz/+OMO/9Xq9BM1CCCGEEMKonj9/TmRkJBYWFuqisq5du6LRaNi2bRt+fn7q1vrLli1T4/T3LSgzPObh4UH+/Pn/0378GcMdQqNHjyYhIUEtKrZv3558+fIBbwpUqampTJkyBUDd/QLIcHdR5cqVefr0qfq4qdJoNGi1WtLS0tQiHMDOnTuJjIxk1apVuLm5UaZMGW7evMmGDRuoWbMmzs7ODBs2DEAKcSbE1dVVnVM4dOgQiqIwatSoDFsUGsZgvnz5UBQlQ9Fco9FgY2ND9+7dKVmypLG68UG5c+dW5xQuX77MRx99BLx7pEOhQoXo06cP/v7+HDhwgC5duqj9trGxIXfu3Ny4cYMGDRqY5PhMSkri+++/R6fTMWbMGEqVKqU+93ZBrnv37rx8+ZLTp0/TqFEjatSoQYECBTJ8lqnfASjMk9wZJ4QQwizdvn2b8PBwRo4cybNnz3B1dWXAgAHUr1+f7777jsKFCzNp0iQcHR3Vu8McHByoUqUK3t7ebN68mV27dql3UMGbxLZo0aLG7FYG0dHRREdH4+LiwjfffMOLFy+YPXs2t2/fVgtUn3zyCQsXLqRv37506dKFwoULc/r0aWbNmkWDBg1YuHAher0eBwcHPDw8iIuLe2elramoXLkyGzdu5Pr160yfPp1Xr15x69YtunfvTuvWrQkICMDe3j7De16/fk1ISMg7n2Wq29oIIYQQQoiswbAl3IgRI+jUqRP+/v7q3VSenp706NGDuLg4rly5wtixY3F3d//TO00UReGjjz4yucn+tyflp0yZQocOHVi4cCFHjhwhJSWFL774ggcPHrBs2TKcnJxQFOWdeN3CwgILCwsaNWpESEgIycnJJnnnjaFNrq6uPHv2jF9//TXD8+3bt2ft2rW4ubkBbxZWxsbGUq1aNXWRqIEU4ownNDSUo0ePsmjRIrZt20Z0dDSurq4MGjSIhg0bcvjwYebNmwdk3HFGp9Px6NEjypUrR5EiRd753M8//5wSJUr8p335EMNvNT09nXz58nH06FFevHjBrFmz1GuRoUBloNFoaNSoEbly5SIiIiLDZ9na2tK+fXsiIyPRarUmOT6rV6/O1q1buXr1KjNnzuTBgwcZnjf018nJiaFDh/Ly5Uvu3Lnz3s8yxWKjMH8axRRHjhBCCPEXHDx4kHXr1mFra8vSpUspUKAAoaGhrFmzhrNnz9KmTRtGjRoFkOHA3bdXYb7936YkLCyMLl260KlTJ7p3746zszPh4eF4eHhgZ2fH69evadmyJVOmTMnQ/rS0NCIjI7l165Z6Zp4hyQsKCqJQoULvrPgyNUFBQQwaNIiiRYvy+PFjWrVqxfjx49+5Iy48PJzhw4fz8ccf4+vra6TWCiGEEEIIkVFQUBC9e/emffv2tGnThqioKJYuXconn3zCuHHj1Nft2LGD7du3kz17dubOnYurq6vJ5ifv8/DhQ3788UdCQ0OpW7cuNWvWJGfOnACMHz+e/fv3U6RIEbRaLWvXrv1LRYqYmBg0Gg25c+f+/27+/yQyMpIWLVrQoEEDZsyYgb29/TvfXXp6OkeOHGH16tVMmzaNGjVqvHMnkvjvXb58mTFjxmBnZ8ezZ8+wtramR48e9OvXDxsbGyIiIli5cuU7cwp6vZ6wsDACAgIoWLAgc+bMMenv8n3zHuHh4XTp0oXcuXMzZswYdYeZt3+X6enpNG3alHbt2r1zhuXDhw/JkSPHO1vNmpqgoCC++OILKlasyNixYzPcIfe2Tz/9lE6dOjFo0KD/uIUiqzKPv+5CCCHEWwxbmLRr147evXuTmprKsGHDMtwh16BBg3dWs72937uBqSa6hQsXpmbNmuzatYu9e/fy/PlzChUqxJ49e4A3Wzo2bNhQbb/hUHRLS0tcXV35/PPPGTFiBFZWVqSlpQG8d+sFY/mjtUA1atRg1apVREdHY2VlRefOnd8pxEVERDBq1Cji4+MZOnTo/3dzhRBCCCGE+EuCgoLw9vamS5cujBkzhho1atCyZUs+/fRTfvzxR5KTk4mJiQGga9eu9OjRg4SEBEaPHs3Tp0/V86dMXVBQED179uTgwYOcO3eOoUOHsm7dOvX5wMBAunXrxpMnT2jcuDFOTk5/6XOdnJxMphD3oe9Bp9ORP39+vvjiC44dO8b8+fNJSEjIkFvq9XrCw8PZsWMHpUqVolq1aoDcbWNsN27coG/fvjRo0ID58+cTFBTE4sWLadmypZpzFixYkAEDBtCwYUMOHTqkniH36tUrRo0aRUJCAjNnzsywvaqpCQ4OZtq0aXTu3Jk2bdqwe/du4uLi1DmFV69eMXv27Ax3yBlcvnwZBwcHKlas+M7nvu/MR2P5szmFlStXcuPGDWbOnMm9e/feeU1QUBBWVlYmd6exyNzkzjghhBBm6e1VXvv372fDhg3vvUPuhx9+oG3btvj5+Rm5xX/d23fxjR07lpMnT9K3b186duxIvnz5ePbsGZ06dcLJyQl/f3/q1aunbrdgLsmdVqvFxsbmD1f+Xrp0SV3N5u/vr56hYdieNC4ujkOHDsnB50IIIYQQwiTcvXuXtm3b0qdPH0aMGKHGqdbW1mzevJktW7aQJ08eEhMTadiwIUOHDsXW1padO3eyY8cOUlJS2Lx5My4uLsbuyh8yFBw9PT3p3bs3zs7O7Nq1izlz5vDNN99k2L5v3Lhx7N+/H19fXzWHMRd/lrM8e/aMdevWsW3bNj799FM6dOhAzZo1SUxM5JdffmH37t0kJSWxd+9erKyszOqux8woMTGR0aNHkzt3br788kscHBzUvDstLY3k5GQePXpEgQIFcHFxISoqiuXLl3P27FkaN27MvXv3eP36NQcPHsTa2jpD3m5KLl26xODBg6lcuTIuLi5ERkZSuHBhBg8ejJOTE5aWlkRERODh4YGTk1OGO+RCQ0MZM2YM9vb2fPXVVyb9e/0rcwpBQUEMHjwYNzc3RowYQfXq1QF49OgRAQEB2NjYsHHjRpP8HkXmJLNWQgghTF5wcDAxMTHUrFlTPRzbwsJCDbo6dOgAwIYNG/jyyy+ZP38+rq6uDBw4EAsLC9auXUuBAgXo2rWrMbvxh94upL19SPSMGTMA1FWmHTt2pECBAuzevZvOnTsza9Ys/P39+eijj8ymEHf//n0WL17M6NGjKVq06AeD5+rVq7NixQq++OILZs2axdixY7G3t2fkyJHEx8dLIU4IIYQQQpgMnU7H1atXgTfnGhvusrG2tub27dvMnz+fypUrU6RIEWJiYvjqq6+IiYlh+vTpeHp6kpKSwq1bt8ibN68Re/HnDGfh9ezZk8GDB+Pg4ABA7dq1KViwIDExMbx+/ZqcOXNStGhRpk+fjl6vZ9GiRcCbfCZPnjxG7MFf81dylgIFCtC3b19cXV3Voo2joyNJSUkUL16c4sWLM3v2bPWccslZjO/Ro0f06NFD3U4V3hwRsXr1an755RciIyNxdHTEx8cHT09PBg4ciEajYceOHZQpU0YtxJnq93n//n2GDRtGmzZtGDhwoHo9iY6OVu9oUxSFggULsmvXLjp37szs2bPRaDQUK1aM0aNHk5iYyObNm7GwsDDZguNfnVOoUaMGGzZsYMCAAQQEBFChQgVsbGy4d+8eGo2GrVu3Zph/EeL/m9wZJ4QQwqTpdDq6d+/OvXv3WLp0KbVq1coQ9L4ddO3atYstW7ZQp04dRo0ahZ2dHaGhoRw/fpw+ffqYRXD1dlD/vjvkBgwYoK4ojYiIoHPnzuTNm5fhw4fTuHFjYzb9L9uyZQtr1qyhYsWKBAQE/OnZGEFBQQwZMoTSpUsTFxeHTqcz+SRICCGEEEJkPa9eveLo0aPMnDmT1q1bM3PmTIKDg/H09KRNmzb4+PiQJ08eoqOj+eqrr9i8eTOrV6+mQYMGwG8L9Ex1YvjJkyd4eHhQrFgxdu7ciaWlpXp3ys8//0yfPn1wdnYmOjqaAgUK4OHhweDBgwGYMGECe/bsYdasWbRr1864HfkL/m7O8uLFC37++WdevnyJo6MjVatWpUSJEib9fWY1oaGhtG3blvHjx9OhQweePn3KhQsXmDdvHrGxsVSpUoVq1arx9OlTzpw5w9atW6levbo6p9C7d2+TL6yuWrWKCxcuMHPmTPLnz6/+Zl+/fk1ERAQXLlzA2dmZUqVKUbZsWUJDQ+natSuOjo7o9XqsrKzMItf+q+PTcE2Niopi9erV3Llzh5w5c1KuXDmGDBli8t+nyHykGCeEEMJkpaSkYGdnx4sXLxg6dChRUVFMmzaNOnXqvLcgp9PpmDp1KufOnePQoUNkz549w+eZahIUHBxMYGAga9euxc7O7oMFuYCAAE6ePIm/vz9t27bFxsaGZ8+e0ahRI9q0acOcOXOM2Y2/ZfPmzezatYvChQszfvz4v1SQ6969O0WLFuXIkSMmnxwIIYQQQois6dWrVxw5coRZs2bxySef8Ouvv9K6dWu+/PJLsmXLpu5m8dNPP9GvXz8WLFhAixYt1Peb8tbzoaGhfPnll8THx9OpUye8vb0BuH79Or169aJx48Y0b94ca2trFi1axJMnT5g+fbravzVr1tCnTx+zieH/as7yR3mMbE1pXE+fPsXW1lbd+nXChAkcOnSIunXr8vTpU548eYKbmxutWrWiX79+6vu8vLyoUKEC/v7+GcajKeegiqLQv39/rKysWLVqlfr4nTt3mDFjBtevXyc1NRWNRkOePHlYuHAhNWvWJCIigs8++4xChQrxzTffmE2B6q+OT8Ocil6vR6/XY2lpqX6npjpHJDIvKcYJIYQwSZcuXeLYsWMMHDgQZ2dnXr58yaBBg3jx4sV7C3KGYPH+/fu0bt2aPXv2UKFCBZNNZOG3RPvgwYNMmTKFsmXLsnHjRmxtbT9YkBs+fDhBQUEcOXJEPW/h5cuX5MqVy2SDyLcnFN7uy8aNG9mzZ89fLsjdv3+fEiVKYGlpaRbJgRBCCCGEyNyePXvG48ePuXv3LtmyZaNFixY4OjqqW6qvXr0aa2trTp48iZWVFYYpOI1Gw9mzZ5k+fTozZsygRo0aRu7JhxlieUOc/uTJEwIDAwkLC6Nfv35UqlSJLl260LJlS/z9/dVtK2/fvk3Hjh3x9vZm9OjRGWJ8U4zl/42cxZQLqVlRQkICzZo1o3Tp0syaNYv8+fPz9OlTtm7dyokTJ8iRIwdt2rShadOmFCtWTH1fcnIynp6eNGzYEF9fX+N14B+YN28e3377LQsXLkSr1fL999+zfv16kpOT+eyzz/D29iY0NJTdu3fj7OzMzJkzsbe3JyYmhpw5c5psrv1vzSkIYWzyyxRCCGFygoKC8PLywtbWlly5cgGQJ08eVq1aRd68eZkwYQLnz58nLS0NQN1OQafT8euvv1KqVCkKFSpk8onQq1evAGjevDmTJk3i2bNn9OjRg9TUVHU1Gvx2hhzAlClTsLCw4PDhw8CbRDZPnjwZXmNqDJMOiqJgaWmpfm/e3t506tSJsLAwAgMDCQ0NVc8CfJ/SpUur/TS15EAIIYQQQmQtV65cYcCAAUyZMoVly5Yxb948Ro0aRUxMDI6OjrRs2ZKBAwfy/PlzJk2aBLwpwmk0Gp49e8bKlSspUKAA1apVM3JP/pghpzLsRFKsWDECAgIoXLgwK1eupH379rRt25apU6eSLVs29X3ly5enSJEiJCYmvjMxboqx/L+Rs5h6/pnVODg4MHXqVIKDg5kyZQrPnz+nSJEijB07lq+//prt27fTv3//DIU4RVF4/PgxNjY2lC5d2niN/4uCg4NZsGCB+u+KFSui0+nw9PTE09OT5cuXU7NmTWbPns2SJUuoVq0abdu2pU6dOgQHBwNv5lOcnJxMOtf+t+YUhDA20xtdQgghsrSgoCC8vb3x9vZm2LBhWFtbA28CRENBbtCgQUyYMIEJEyZQp04dsmXLhk6n4+nTp3z99de4ubmRO3duI/fkj50/f55+/fqxa9cu3N3dadGiBXq9niVLltCjRw+2bNmS4Q45w8ovvV6PoihqQvt2oGyKd8bdunWL/fv3U7duXVxcXKhYsWKG53v37o2FhQXbt28nMDCQcePGUaRIkT9czWaK/RRCCCGEEFnHtWvX6NOnDx06dKB169ZUrFiRp0+f8urVK3X3Cnt7e7p06YJer1e3k58+fTpRUVH4+PiQmJjIli1b1IljU7yT48GDB3zzzTcEBQVhYWFBzZo16datGyVLlmTChAkEBgaSmJhIoUKF1PYb+vLgwQP0ej1lypQxci/+3P9HziJMQ5MmTbCysmLkyJFMnjyZCRMmUKBAAXLkyAG8Ke7ExMSQJ08e0tLSePToEdOmTcPKyormzZsbufV/LC0tja+//ppNmzah0+kYPXo0zZo1w9bWllu3bhEbG0u1atVo3LgxNjY26nusra3RarUUKVIEe3v7DJ9pirm2jE+Rmcg2lUIIIUyGoRDn5eWFr68vdnZ2agBlOBgc3txRNnjwYJ48eUK3bt345JNPePz4MXv27CEpKYm9e/diZWVlssFXUFAQ/fr1o127dvj7+2Nra4tGo0Gr1XLkyBGWLFlCvnz51IKcIWDW6/VcuHCBGTNm4OfnR6NGjYzdlT+UmprK4MGDOXfuHAB2dnY4OztTvHhxGjRogIuLC7Vq1SJHjhxs27aNI0eO4OjoyMSJEylcuLDJfn9CCCGEECLrev78OcOHD6ds2bKMHDkSBwcHNBqNGrMDBAYGYmdnx8CBA7G1tWXnzp3MmTOHzz77jKioKF6/fs3BgwdN+hzkS5cu4ePjQ/HixXF2diY+Ph47Ozt69+6t3s33+PFjpk+fTlhYGJ6enuoZcqGhoYwePZq0tDR2795tkhP8BpKzZD7v2y707NmzjBw5ktq1azNx4kT1DLlJkyZx+fJlOnbsyO3bt3nw4AEWFhbs2LEDa2trkz9TLDw8nK1bt3Lo0CFat25NQECA+tyHfpshISGMHj2a6tWrM2bMmP+yuX+bjE+R2UgxTgghhEm4fPkyPXv2pEePHgwdOpTs2bOrgdP169cZMWIEu3btwtnZWX3PyJEjuXHjBk+fPqVMmTIUL16c+fPnm/SBw+8rOL6dLKSmpnLkyBGWLVtGzpw52bhxo7pV56NHjxg7diy2trasX7/epJMCeBP8BwcHs2LFCk6fPs3AgQOJjo7m0aNH3Lp1i7S0NHLlykWxYsWoUKECFy9eJDIykurVqxMQEICrq6uxuyCEEEII8T8zxHpynlTmcOnSJcaOHcvkyZOpW7cukPEMtIEDB3L27FmsrKwYMmQI3bp1w97ent27dxMYGEiJEiU4dOiQSRfibt++Td++fWnVqhW9e/emYMGCADx9+pQiRYpk+O+HDx8yc+ZMwsLC6Nq1Ky1atMDHx4fY2Fi14GjKBY2smLNk1mvR69ev1dz5fUUYQ0Gubt26BAYGkjNnTtauXcvZs2e5fv065cqVo3r16vj6+pr0nMLvRUZGsmHDBr7++mvatm2bocCmKAoXL16kXLlyODo68ssvv7B48WJSU1PZs2ePyfcvK47PrCCzXoP+CinGCSGEMLqHDx/i4eFBhQoV2Lx5M/Db9gm3bt2iV69eNGjQgOnTp2NnZ5chmQsNDSU6Opr8+fNToEABNBqNyQbNhkJct27d8PPzy3DnX1hYGGlpaRQvXhytVsuZM2dYtGgR8fHxeHh48OLFC+7fv49Op2Pnzp0mndTevHmTFy9e0LBhQ3Q6HQ8ePGDixIkkJCQwb948ypUrR2hoKFFRUfz444/cuXOHiIgIQkJC1L3f+/Xrx6hRo4zcEyGEEEKIf+7OnTu8fv0aJycn3Nzc1Mdlpb55W716NV999RUXLlx4Jxbv0aMHERERbN26lXXr1rF161b8/PwYMGAAMTExXLp0icaNG2NpaWmyOUtSUhITJkwAYOzYseTJkwfI+LsdMGAAP/zwA9u2baN69eo8fPiQWbNmERoayqtXr8iTJ4/JFxyzSs4SHBzMjRs3sLa2pmnTplhbW6s7zmQmDx8+JCAggM6dO9OpUyfgwwW5ESNG8PnnnzNz5kzgTWHgxYsXGRb+mmqu/SGRkZGsX7+eI0eO0K5dO7788ksA1qxZw4IFCyhWrBharRZLS0sKFCjAunXrZE5B/Gdu375NaGgojo6O1KtXTx2bWTEekmKcEEIIo7t+/Tpjx47FxsYGb29v2rRpA8CNGzfo0aMHbdq0YezYsdjZ2anv+dAfbVP9Y37p0iX69u1Lly5dGDlyJDY2Nmpbb968yYABA/D19aVDhw7qwclPnjxh3bp13LhxAycnJypWrMiIESNMepWeVqslICCAb775hpUrV9KoUSP0ej0PHz7kyy+/JDY2liVLllChQoUM73vx4oVacLx37x4+Pj4m2T8hhBBCiL9q9+7dHD16lNjYWHLlykWjRo1o06aNeueGME9fffUVq1ev5vvvv8fBwUGN6YOCgli8eDGjR4+mUqVKAPTq1YtXr16xceNG9Sw5MO2J/tevX9OuXTv1HG/I2N6BAwdy69YtXFxcCA0NZfny5dSsWZNHjx4xZswYbG1t2bhxo+QsJuKHH34gKCiIH374AUdHR7Jnz87QoUMpVapUhvza3F29epXx48dja2tLr1691DmF980PHDx4EH9/f2bOnEn79u2BjHfqmOpdO6GhoWg0GgoXLvze5w13yH3zzTd4eHjg4+MDwMaNGwkJCcHS0pLKlSvTokULk14QkJXGZ1Zx9OhRvv32W+7evUvOnDkpW7YsvXv3plChQsZu2n9OinFCCCFMwpUrV5g9ezbJycn4+fnh6upKx44dadWqFWPHjn3nYOHo6GhCQkKoUaOGkVr81yUkJNC0aVP0ej3bt2+nZMmS6nO3bt2ie/fuNG/enIkTJ76zbSVAbGwsOXPmVP9tysk7wP3791mxYgWnTp1i8eLFNGnSBEVRePDgAf7+/rx+/ZolS5bg7u6u9vV9SZKpJgdCCCGEEH9VSkoKSUlJzJkzh/v37xMVFcWkSZOoW7cuDg4Oxm6e+AcuXrxIjx49mDhxIt26dVMfT05ORqfTqd9rfHw8nTp1ok6dOkyZMsVYzf3bLl68SO/evdm7dy9ly5bNEJMPHz6ca9eusXr1agCmTZvGo0eP2LVrF0WKFCEqKgpnZ2csLCxMPpbPajlLWloaR44c4eTJk/z000907dqV9u3bU65cOWM37V/z9pxC3759P1iQi4+Pp3///lStWtXkz0wziIuLo3HjxtSoUYPx48d/sCD37Nkz1qxZw7lz5/jiiy/UYuPvyZyC+P/2vqJ2SkoKa9eu5cKFC9y8eRMfHx8+++wzdSvkrMD0bh0QQgiRJVWtWpUvv/wSe3t7Zs6cSZs2bejQoQMTJkzA1tY2w2sjIiIYNmwY69atM1Jr/x4HBwcmTpyIVqtlxYoVhISEAG+2LvLy8qJ169ZMmDBBXZloCFi0Wi1AhkKcoigmHTQDlC5dmqFDh9K4cWN8fHw4c+YMGo2GUqVKMWvWLHLlysXw4cO5deuW2tf33c0oQbMQQgghzE1ycjIxMTHodDoURcHOzg4nJyemT5/OzJkzqV27Nr6+vmzcuJHnz58bu7niHyhYsCBFixZl165dXL58WX3czs5OLcQpisKFCxewsbGhfv366mPmIH/+/FhaWvLDDz8Av8Xk8fHx5M+fn9WrV1O2bFnKli3L559/zqtXr4iOjgbAxcVF3XrM1GP5zJyzREZGEhQUxOnTp4mPjwfA2tqa9u3bs3LlSoYPH87x48dZuHAhFy9eNHJr/z1vzymsW7eOw4cPA6i/SQNHR0e0Wi2pqanGaurfliNHDiZPnsyFCxdYuHAhoaGh731dgQIF6NGjBw4ODnz33Xcf/DyZUxD/3953d6mdnR2DBw9mxYoVdOnShXnz5rFy5Uru379vhBYahxTjhBBCmIxq1aoxZswYcuXKRY4cOShXrhw2NjZYWFioyWtERAR+fn7qSihz0bx5c2bPns2JEydYs2YN3333HV27dqVNmzb4+/u/c+dfREQEO3bsICIiIsPjprhdxvuULFkSHx+fPwyeR4wYwa1bt4zdVCGEEEKIf8XNmzfx9fXFw8ODvn37snfvXtLT04E3E59lypRh/vz59O3bl2XLlnHgwAGSkpKM3GrxdxUqVIiRI0dy9+5dVq5cSVBQEPBbnJ6WlsaTJ09Yu3YtBQoUoFGjRhmeN3XZs2fHxcWFH3/8kZcvXwJvComOjo6MGTOGsmXLAm/urLlw4QIfffQR1atXz/AZpnhswPtkxpzlypUr9O/fn8GDBzN06FA6dOjAL7/8AqBej/r378+oUaMIDw9n3bp13L1715hN/ldVq1ZNLcitX7+eQ4cOAb/9JhVF4dKlS2i1WsqXL2/Mpv5trVq1UucUFi1a9N6CnF6vp0SJEnh4eHDu3DliYmLMZiHA72XG8ZlVREREcOrUKVavXs2ePXt4/Pixev0x/D3x9/dn1KhRnDx5kq1btxIVFWXkVv83zOOvoxBCiEzDcLfXh1StWhV/f3+KFCnCli1b1NVsGo2G0NBQ/Pz8iIuL4+uvv1YPBDcXn332GfPnz+fw4cN88cUXNG3alHHjxpEtW7YMAXJERARDhw5l165d5M+f34gt/t/8leDZy8uLR48eGbupQgghhBD/k6CgIHr16kVCQgKVKlUiJCSE+fPnc/XqVSDjXVG+vr706dOHpUuXcv78eYAMd20I4/tQzmL4Hj/77DMmTZrEjz/+yOTJk9m4cSPh4eE8efKEbdu2ERAQQGpqKitWrHjnrhxTpigKTk5ODBkyhEuXLrFt2zaADGdpGdy6dYunT59Su3Zto7T135KZchbDdahq1arMmDFDPZd99OjRREVFqef4AbRp04Z+/fpx7do1Dh48SFpamtkUbf5sTsFQkMuePTtr165Vf8darZYHDx4wd+5ccuTI8cEtHE3ZZ599xoIFC95bkDNs05iWlkZISAhubm44OTmZzUKA98lM4zOrMCwImD17NmvWrGHChAl0796dSZMmkZycjKWlpTqGvb29GTBgALt37+bUqVNAFoiHFCGEEOI/cv/+faVVq1bK48eP//S1ly5dUrp06aK0adNGOXz4sPLq1SulS5cuSosWLRStVqsoiqKkpaX9P7f4n9PpdB987rvvvlMqV66sDB8+XHn69GmG58LDw5UuXboorVq1Uvv5R59lDh48eKAMGzZMcXd3V06fPq0oiqLo9Xrl9u3bSkBAgJKenm7kFgohhBBC/HMXL15U3N3dlcDAQOXly5eKoijKixcvFDc3N2XJkiUZXvt2XDdixAilUaNGSmxs7H/aXvHH/k7OcurUKaV9+/aKm5ubUqVKFcXNzU3p2LGjMn78eDVXMcecJTIyUhk7dqzi5uamLFq0SImMjFSfS09PV+7cuaN06dJF6dKlS6aJ5c09ZzFch2bMmKEkJCSoj3///fdKlSpVlGnTpqmP6fV69b9XrlypVKpUSbl79+47z5mivzM+r127pgwZMkSpUaOG0qtXL8Xb21tp37690qlTJzXXNuXv9Y/mAU6cOKG4u7srvr6+ysOHD9XH09PTlQcPHigeHh4ZvnNzZ+7jM6u4ePGiUrFiRWXChAnKpUuXlOfPnyt37txRBgwYoFSsWFHp2LGjen1KTU1V3zdt2jSlevXqGf7WZFYaRTGTZQ9CCCHM3vXr1/Hx8SFbtmysWrUKV1fXP3z95cuXmTt3LgkJCbx69YocOXJw6NAh9Y44U9z/OzQ0FEdHR3LlyvXeA4QNTp48iZ+fH82aNWPEiBG4uroSGRmJj48P8fHxJt/Pv+vhw4csXryY7777jiVLltCoUaMMB/qa+gHSQgghhBDvExQUhLe3N56enowaNQo7Ozv0ej2vX7+ma9eueHl50bNnz/fGhdeuXWPKlCl07NgRLy+vDLGRMJ6/m7O8fPmSmJgYQkJCsLa2pmLFiuTOnRuNRmOyMe5fyVkePHjAhg0b2L9/P5UqVaJatWpUqFCBs2fPEhISgqWlJZs2bcLa2tpk+/l3mWvOcu3aNbp27cqgQYPo06ePenYhvDnrz8PDg2rVqjFjxgz18be/9/79+2Ntbc2iRYuwsbH5z9v/d/zd8RkWFsbly5c5dOgQ+fLlo3Tp0vTq1QtLS0uTzbX/6pzC6dOn8fX1pU6dOnh5eVGzZk0uX77MypUrSU5OZs+ePVhZWWWavy3mOj6zirfjIV9fX7Jnz64+l5SUxOrVq1m3bh0VKlRg48aN2NnZqWMwKioKX19fKlWqxJgxYwDz2dr575JinBBCiP+MXq/n5s2bjB8/ntTUVNauXfunwfOVK1cYM2YMefLkYfPmzSZdoIqKiqJfv34UKlRI3TLhrxbkunXrxty5c4mLi8t0hTiDhw8fsmTJEk6cOMHWrVupUaOGsZskhBBCCPGPBQcH065dOwYOHIiPj486KWhhYaFu07Ry5Upq1qz53vfrdDrGjh3LixcvWLdu3X/cevEh/yRneR9TnQD/OzlLTEwMly5d4quvviIiIoK0tDQqVKhAnTp16NOnj0kXNP4pc8tZYmNj8fHx4fz585w4cYKiRYui0+lQFAUrKytiY2Np3bo1LVu2VCe5f2///v3s2bOHjRs3Ymtr+x/34O/5t8anqRZu/u6cwqVLlxg9ejRarZbXr19TpEgRChQowKpVqzJVodzA3MZnVvH7eAh+O6fR8PtNSUlh2bJlbNq0iZ49ezJy5MgMr1m2bBkXLlxQt5XNrKQYJ4QQ4v/N2wmo4Q+woijcuHFDDZ6/+uorihQp8oef8/DhQ4oVK2byyZ6iKMydO5ezZ8/i5ubG+PHjcXJy+sPg+dSpU3z55ZckJydTtmxZ9uzZkykLcQb37t3jm2++YdiwYZmyf0IIIYTI/BRFIS0tjTVr1rBs2TK6devGxIkT1efv3LmDt7c3sbGxNG/enIiICGrUqEHZsmWpV68eefLkUV8bGRnJwIEDmTdvHqVKlTLJ4k1m92/lLObin+QsCQkJWFpaEhcXh4uLi/p4ZpvoNzC3nOXIkSOsXbuWxMREtmzZkuHc8X79+hEWFsbhw4exsbF5b5E4LS2NNm3a8MUXX9CmTZv/uvl/6N8Yn4apb41GY7JFcoO/Mz4Nj0VFRfHo0SPCw8MpUaIEVapUwcLCQuYUxH8iPT2dVatWvRMPvf37M/xWk5KS6Nu3LzExMezatStDsTkxMZGOHTsyadIk6tata8wu/b+SYpwQQoj/nF6v58aNG0yYMOFvJbemnOy9nRgsW7aMI0eO4O7u/peS2+PHj7N7925Wr15t0oW4mJgYbGxsMmx78r8w1X4KIYQQQvwRQ0waGhrKgQMHWLt2LZ06dWLixIncv38fDw8PKlSogLu7O1FRUTx+/JgHDx6g0+nIkSMHjo6OTJkyhXr16pGSkkKfPn3w8fHJ1JNP5uif5iym7J/kLO8rhpiyrJqznDhxgqVLl5KSksKePXvInTs3AwYM4P79+6xZs4bSpUu/9/szXM8CAwNxc3PDw8PDSD34e2R8vvGh4qKpjtWsOj4zo7d/e8+ePWPPnj2sXbuWzp07M378eCDjHJ7hv3/++Wf69evHypUradCgQYbnhgwZQrt27WjatKlxOvUfkGKcEEKI/xfXrl1j0aJF1K1blxIlSuDm5pZh+wi9Xs/t27cJCAggOTmZ9evXm23wbAhC0tLSsLa2/kcFOQNTDCb1ej2xsbF0796dbt260aZNGxwdHY3dLCGEEEKI/9y9e/fw8fFh27ZtODk5ERERwa5du1i/fj2NGzfmxx9/pE2bNowaNUqdbNTpdNy5c4dHjx5x9OhR0tLSWL16tRrz7dmzh+rVq1OiRAljdi1Lkpzln+Uspigr5SyRkZE8efIES0tLnJ2dKVasGIqicOrUKRYvXkxaWhouLi5ERkaycOFCKlSo8Kef+dNPP1GoUCGKFy/+H/Tgr5HxKeNTmD7Db/fZs2fs3LmTDRs24OHhwYQJE4B3F9Vfv36dzp07s3LlSho1apThs44fP07p0qUpWbLkf9qH/5IU44QQQvyrDH9WfHx8OHnyJBYWFuj1evLmzUv27NmpUqUKdevWpWjRopQrV47r16+zaNEiYmNj/9IBzKbkxYsXWFlZkStXrnee0+v1LFmyhGPHjmWK4BmgadOmpKWlMWTIEJo3b/6vrWYTQgghhDAXP/74I2PGjMHR0ZGdO3eSO3dutSC3d+9eHBwcOHHiBIA6qfo2nU6HhYVFhklX8d+TnOUNyVnMz5UrVwgICECr1fLixQtKlizJ8OHD1Unt06dP89VXX3Ht2jXWrFlD/fr1ze77lPH5hoxPYapCQkK4ePEiDx8+xM7ODm9vb3LmzMnz58/Ztm3bOwU5w6JzRVE4dOgQGzduZMGCBVlyEZIU44QQQvyrDH9kExMT+fLLLzl37hwNGzakfPnyPH78mGvXrvHo0SMAXF1dyZs3L3nz5uXUqVNUrVqVGTNmmNRqvA958OABnp6e5MmTh5o1a1K4cGEqV66Mm5sb2bJlw87ODkVRWLNmDfv376dcuXJMnDjRLINnQ3vbtm3LvXv3sLOzY8yYMbRu3Zrs2bP/6fuEEEIIITILvV7PTz/9xPTp00lLS2Pfvn3kzp2bsLAw9u7dy4YNG+jUqdN7V4S/vaWTqZ9blNlJziI5y+/fZw6CgoLo3bs3HTp0oGPHjkRFRbFx40YKFizI9OnT1TPhjh07xsqVK0lJSVHPkDPFHVg+RManjM/fv0+YjsuXLzNq1Chy587N8+fPSUtLo3PnzgwdOhQbGxuio6PZunXrOwU5vV5PeHg4/v7+5MuXjwULFmTJOMg8rsJCCCHMwo0bN/jll19o27YtLi4uzJkzh8GDB/P48WOqV6/OjBkz0Gg03L17l8jISM6cOcPTp0/59ddfsbe358qVK6xZs4aZM2cauyt/KikpiXz58vHo0SMSExNJSkpSJ1WKFStGtWrVqFq1Kq1ateL58+dcvHiRGTNmMH78eHLlymVWEzAajYaYmBhiY2OZO3cuV65cUb/LVq1avTd4DgsL4+TJkzRr1oxChQoZodVCCCGEEP8uRVGwsLDg448/ZuzYscyYMYOOHTuyb98+ChcuTOfOnVEUhQ0bNgAwYcIELC0t1YLc27GfucSBmZHkLJKzGJhTzhIUFIS3tzfdunVj+PDh6h1Fd+/e5euvv0an0/Hy5Uvy5MlDixYtsLW1Zf78+fTs2ZPNmzeTP39+syhsyPiU8WlgTuMzq7h58yb9+/enffv2dOvWjeLFi3P79m0cHBywsbEBwNnZmW7dugGwfv16NBoN48ePJyYmBj8/P1JTU9m0aRMajcYsrkn/NinGCSGE+J8ZgsADBw6wfft2FEWhXbt2uLi4sHz5coYOHcr69evR6/V07twZNzc33Nzc1MNaQ0JCiI+P5+LFi/To0cPIvfljSUlJZMuWjXLlyjFz5kwCAwOJi4tj/vz5JCcnc/PmTYKDgzl+/Dhbt27FwcEBOzs7Xrx4QXh4OAkJCcybN89stmMwfLexsbFER0eTJ08eJkyYQFJSEtOnTwd4J3hWFIULFy6wYsUK0tLSGDhwoLGaL4QQQgjxrzDERIaC3CeffPJOQa5gwYJ4enoCqBNN48ePz3BWijAeyVkkZzHXnCU4OJju3bvTtWtX/Pz8sLOzQ6vVYmNjQ/78+UlKSsLT05NXr17RrFkzevfuTZMmTVAUhSVLltC8eXNOnz5Nnjx5jN2VD5LxKePTXMdnVpGUlMTatWv57LPPGDJkCDly5ECj0eDu7o5WqyUmJobbt29TqlQp8ufPT58+fQDYuHEjiYmJhIWFkZSUxMGDB7GysnrnLLksQxFCCCH+R1FRUep/T5kyRXFzc1NWrFihPh4fH694e3srjRs3VjZs2KCkpqYqiqIoaWlp7/28Dz1ubA8fPlTq1aunXLx4UVEURdFqtcrVq1eVxo0bK126dFFCQkLU1758+VJ59OiRsmnTJmXOnDlKixYtlKpVqyodO3ZUdDqdsbrwl8TFxSmxsbHKy5cvMzy+YsUK9btLT09X/P39lYoVKyo7d+5UEhISMrw2Pj5eefHihdKxY0flzJkz/1nbhRBCCCH+LXfu3FGOHDmipKSkKIqiKHq9PsP/6nQ65fvvv1eaNWumtGjRQnn9+rWiKIoSGRmpLFq0SHFzc1M2bNhglLaLd0nOIjmLueYsJ06cUNzc3JSRI0cqsbGx6ndz8+ZNpVKlSkqfPn2UadOmKQEBAUq5cuUUX19fRVHeXKsOHz6sjBo1SklPTzdmF/6UjE8Zn+Y6PrOKpKQkpXnz5srq1aszPB4SEqL4+/srjRo1Utzc3JR69eopK1euVLRarRIdHa3GQy1btlS0Wq2iKKY7Pv8LUowTQgjxP4mPj1dGjRqVIWicOHHiXw6eTT2IfFtwcLDSvn17pXbt2sqVK1cURXkTQF69elX59NNPlTZt2iiPHj1673uTkpKU169fq/011X5fu3ZN6dq1q9KoUSOlatWqSmBgoHL9+vX3vlan030weDb07+eff1ZevXr1XzRdCCGEEOJfYSi2de3aVSlfvrzy9ddfq7Hr+wpyp06dUpo3b674+Pior4uMjFR27dqVpSecTInkLJKzmHPOkpKSohw5ckSpXLmy4ufnpyiKoty6dUupXLmyMn78eLXgkZCQoKxYsUJxc3NTTp8+/c7nmGpBTsanjE9zHp9ZRWhoqFK/fn1l/fr1iqIoypMnT5QdO3YotWrVUtzc3BRPT09l6dKlip+fn+Lm5qb88MMPiqIoSlhYmLJr1y71+pPV4yIpxgkhhPifvHz5UmnTpo1y/vz5DI+/HTxHRkYqivJb8NykSRNl06ZNavBs6sLCwpTnz58riqIoN27cUHr06KFUr179neC5adOmSrt27TIEz29P1BiYahJ069YtpXbt2sr48eOVnTt3KitXrlQqVaqkjBkzRomNjVX78jadTqcEBAQoVapUUTZs2KAkJydneN6w8kkIIYQQwly8PRno6emp1KlTRzl06NAHC3KpqanKggULlCZNmmS4u8Mgq088mQLJWSRnMfecJTU1VTl06JBSsWJFpU+fPkrVqlWVCRMmKMnJyRn6fPHiRcXNzU3ZvXu3EVv798j4lPFp7uMzs3r06JFy584d9d+BgYFK+fLllZ49eypNmzZV3NzclA4dOryzC4C3t7cyevTodz7PVH+3/6WsdUKeEEKIf52TkxMNGzbk1KlTpKamkpaWBsCUKVPo0qULixcvZv/+/URFReHg4MDSpUspWrQoCxYs4PTp00Zu/R9TFAW9Xs/kyZP55ptvAKhQoQJjxoyhfPny9OvXj6tXr2JpaUmFChWYO3cuiYmJ+Pn58eTJEwD1QOW3D6U1xX2x9Xo927dvp2LFinz55Zd06dKFQYMGMXz4cL7++muePXv23sOhLSwsCAwMpF69enz77bfY2tpmeN7a2vq/6oIQQgghxP/s0qVLTJw4kdDQUAB27NhB4cKFmTlzJsePH0er1apnx2k0GnQ6HTY2NrRt25awsDCePn36zmdaWVn9190QvyM5i+Qs5pSzhIeHc+bMGZYvX87atWt58eIFNjY2tGrVihkzZnD37l0cHBwYMmQIdnZ26jUJID09nSJFilC4cGEj9+Kvk/Ep49OcxmdWkZycjJeXFxMnTuT27dsA+Pr60qdPHyIjI3FwcGDMmDEsXrwYb29v4M3vPSUlhdTUVJycnN75TFP83f7XpBgnhBDif1a4cGG+++47Xr9+jbW1NVqtFng3eH7+/DkODg4sXrwYDw8PmjVrZuSW/zGNRoOFhQWff/45T548URMcd3f3Pwyek5KSGDlyJA8fPjRyD/46RVF49OgR+fLlw9HREZ1Oh16vp2HDhiiKwo0bNz74XgsLC5YtW8bGjRszJIJCCCGEEOYkKCgILy8v8ufPT/78+UlPTwdgz549GQpyqampaDQa9Ho9lpaWpKenExQURKlSpXB1dTVyL8SHSM4iOYs55CxXrlyhf//+LFiwgO3bt/PVV18xevRooqOjsbCwoGnTpgQEBBAbG8vcuXOJjY0F3vwOIiIiWLRoES4uLtSuXdvIPfl7ZHzK+DSH8ZmV2Nvbs2TJEkJCQpg7dy7BwcFky5aNkSNHsn//frZu3Urv3r0pXLgwer0eePN7DwkJIS0tjVKlSgHId/k7UowTQgjxj+h0OvW/PTw8cHBwYNq0aQDY2Ni8EzwvXbqU/fv3qytoxo0bh6WlZYbPMVVOTk6cOHGCqKgo9TF3d3f8/f0/GDw/fvyYtWvXGrHVf4+lpSUuLi5cv36d1NRULC0tsbCwoGjRotja2hITE/Pe9xkCK0OSodfr37vaTQghhBDClAUFBeHt7Y23tzfDhg3D2toaKyurdwpys2bN4vDhwyQkJGBhYYFOpyM0NJT9+/dTqlQp8uXLZ+SeiLdJziI5C5hPznL9+nX69u1L3bp1mT17Nt9//z0nT55k2LBhODs7A6DVamnZsiVTp07l1KlTTJs2jfj4eCIiIvDz8yM+Pp7169er1ydTJuNTxieYz/jMavR6PTVq1GD16tVcu3aN2bNnc+vWLQCyZ89OtmzZUBSF2NhY9Xpz584dJk+ejKWlJe3btweQ7/J3pBgnhBDiH7G0tCQ5OZl9+/YB0L17d+7fv68Gi+8LnhctWsQvv/zyzueYKkNQ2KhRI0qXLs3ixYtJTU1Vny9fvvx7V7O5u7uze/duAgMDjdX0f6Rly5ZUqlRJ3Q5Dp9ORmpqKhYUFNjY2GV5r2Drk94HV21tnCCGEEEKYA0MhzsvLixEjRmBnZ6eu8k5LS1Njwj179lCyZEmWL1/OvHnzuHLlCrt372bcuHGkpKQwb9489Y45YRokZ5GcBcwjZ3n58iWzZ8+mVatWjBgxggoVKmBtbY2joyPVqlUDYNKkSUyfPp2oqCjatm3L1KlTOX36NAEBAfj4+BAfH8/BgwextrYmPT3dpH+3IOMTZHyCeYzPrMDwWzXEMBYWFiiKQpUqVVi/fj3Xrl1j3rx5BAcHq++ZMmUKrVu3ZtmyZfj6+hIQEIBOp2PLli1mUyj/r8mvWwghxD+2YcMGVq9eTUJCAk2aNKFUqVIcOnSIvXv3AhmD50mTJjF69Ghat25tzCb/ZTqdDo1Go66G/vjjj7l16xaXL1/O8DrD9hLu7u4MHDiQixcvYmlpSalSpUw6+Hjw4AGbNm1iyZIlHD9+HJ1Ox6effoqfnx9ubm7Am6BYq9WSmpqaYZ/2Z8+esXTp0gxBmBBCCCGEObp06RLe3t50796d4cOHq4U4CwsLrl+/Tvv27QkNDVVjwi1bttCwYUOCgoLo2rUrO3bsoECBAuzdu1e9k04mEk2L5CySs5iDyMhIoqKi+PTTT3F0dATIcD0ZNGgQu3bt4uzZs6xfv14tyAUGBnL69Ol3CnHmclaljE8Zn8I0vHr1CkC9OxFQtwx9uyBnuGsToHLlypQvX56tW7fy6tUrGjZsyPbt281mQYAxSIQohBDiH6tRowaRkZH88MMPODk5ERAQgL29PRs3bmTVqlXAm+DZsOKpb9++Gbb7MWWGVXpTp04lISGBHj16kJaWxsKFCwkLC8vwWkPw7OLiovb77c8xNVevXqVr167s2rWLo0eP4uvry4ABAzh9+jR58uQBfkv8DOegGJK58PBwhgwZwtmzZyldurQxuyGEEEII8T95+vQpgwcPpkKFCvj7+5M9e3bS0tKwsLDg1q1b9O7dG3d3d1xcXDLEsJMnT2bbtm3s3buXDRs2MG/ePPV5c5kAz0okZ3lDchbTFhQURHR0NB999JH6mKE/3bt35+HDh5w8eZIOHTqwb98+Nm7cSEpKCp999hkbN27km2++MbtCHMj4NJDxKYzp6dOndO3ala1btwIfLsitW7eOy5cvs2TJEgDat2/PqlWrOHr0KFu2bGHEiBFYWVmh0+nM6jr0X5JinBBCiL/k7WDX8Ee5Vq1atGvXjjVr1hAZGUnhwoVZvHgxJUuWZN++ffTt25fIyEh1JZfhfaYYTL5PREQEu3fv5vjx4+rhteHh4UyaNImQkJAMry1fvjyLFy9mzZo1RmrtXxMfH8/cuXNp3rw5mzZt4siRI2zbto1nz56xZMkStmzZArxJ/PR6PYmJicCbw3ujo6Px8/NDq9Wyd+9eLC0tZRsmIYQQQpit+Ph4ypYtS3R0NLt37wbA2tqaGzdu4OXlRcuWLZk+fTq2trbAm/jIsI1Tzpw5cXd3J0+ePOrWlDLxZHySs0jOYq45i42NDYqiEB0dDfz2O7x79y4ajYb58+dTpEgRRo8eTbVq1fj++++Ji4vDxsaGOnXqqHdQmfJ1SManjE9zHZ+ZXXx8PPnz52fjxo1qPPS+glzVqlWZP38+x44dY8+ePer7c+XKpf63oihmMz6NQYpxQggh/pSiKFhZWZGcnMzdu3czPFe/fn2Sk5PV7QUKFCjA5MmTGTJkCC9fvqRbt25MmTKFn376SQ02zeEAV51OR8mSJenWrRsHDx7k2bNnlC5dmrlz53L37l18fX05e/YsKSkp6nuKFy9u0ttIwJsJpujoaEqVKoWzszNWVlZUq1aNpUuXkjdvXnbu3Mn27duBN8GXYUuQkJAQRowYQXx8PAcOHFBXXco2TEIIIYQwV+7u7owePRo3NzdWrFjBsWPHCA0NpUePHrRu3ZqAgADs7OwyvOf58+f8+uuvQMaYVmIi45OcRXIWc85ZKlWqhFar5dixY8Bv15TSpUuzevVqKlWqBEBSUhLh4eFUq1aNfPnyZfgMU54Al/Ep49Ocx2dmZ4iHypQpw4oVKz5YkNPr9TRo0IBPPvmEy5cvo9frURQlw3doDmPTmOTXLoQQ4g+lp6er+3wvWrSItm3b4u/vz9GjRwH49NNPKV68OMuXL1ffkzt3btq1a8fBgwcZOnQozs7OzJ8/n5UrVxITE2Osrvyh3we7hmCiTp06PHnyRN0Tu169emzdupW0tDTmzJnDuHHjCAsLU7fNANNNgvR6PUlJSaSkpKgBcXp6upokTJo0ibx587J3715++OEHAIoUKUK5cuVYvnw5cXFxHDp0yCy3PxFCCCGEeJvhDrcKFSrwxRdfUL58eWbMmEHTpk3x8PBgwoQJ6h1xBhEREQwdOpQFCxao7xemQXIWyVnMPWdxcXGhevXqbNmyhXPnzqmPazQasmXLBry5bv36669YWFio21maw7VIxqeMT3Mfn5nZ++KhDxXkDNuOxsfHY2FhgYWFhRTf/iaNYg5XbSGEEEahKAoajYaEhAQGDhxIjx49SE5OZteuXdy9e5fatWvTtWtXHBwcmDt3Ll5eXrRu3Vr9Y/72H+XXr19jY2OjJhKmRK/XY2FhQXJyMkuWLKF+/frUrVtXfX7QoEE8f/6cXbt2qYcOp6amsnnzZs6dO0dwcDANGzakdOnStGjRggIFChirK3/JnDlz2LVrF2vXrqVq1aooioJer8fS0pKHDx8yYMAAKlSowMKFC1EUBV9fXyIiIti5c6echyKEEEKITOnGjRusWrWKoKAghg8fjpeXF/BbPBwREYGfnx/x8fEcPHhQjQmF8UnO8obkLOafs5w6dQpfX1/c3d0ZOnQon3zyifpcWloaT58+ZezYsTg4OPDVV1+ZxR1FMj7fkPFp/uMzq7hx4wYrV67k9u3bfPHFF3Tp0kV9Tq/Xc/36dSZOnEiXLl3UWEn8dVKME0II8V6GYFKv17Ns2TLOnTvHqFGjqFmzJuHh4dy/f59FixaRnp6OVqvF1taWjz76CH9/f2M3/W/R6XRYWlqSkpLCjBkzuHDhAiEhIbRv356PP/6Yli1b8vPPP7NgwQK++OILmjRpglarxcbGRv2M77//nhcvXnD69GmmTp36znYhxvT48WNu3rxJaGgoFStWpFq1asTExODn54etrS3jx4+nbNmyGYLnn3/+mf79+7N27Vrq1q2LVqvFysoKCwsLCZqFEEIIYZaSk5Oxt7f/w9e8PQE1ePBgOnfuDEBoaCijR4/OUIiTmMg0SM4iOYs55Swfug4ZClYA+/btU+8u6tatG/Xr18fa2pozZ87w7bffotVq1YKO4XdhqmR8yvg0p/GZVfzVeGjNmjVcuXKFvn370rt3b1JSUggJCWHy5MkAbN261aSvP6ZKinFCCCE+SKvV4u3tjV6vp2XLlvTo0SPD88nJyZw/f55jx45x+PBhADZs2JBhBZgpe3v1Wrdu3ahVqxbt27fn7t27rFu3jlevXuHu7o6npyfz58+nWrVqTJkyRX2vRqPJsFLv7STKFFy5coVhw4aRO3duwsLCcHBwoGrVqsydO5dvv/2WZcuWUbBgQfz8/ChXrpwaFEdERNC+fXsmTpxIy5Yt1c8z/P8lhBBCCGFOHj58yPDhw5kyZQo1atT4w9e+XZAbMmQILVq0oG/fvlKIM2GSs0jOYg45y59dh97+Xs6cOcOOHTs4d+4c1tbWaLVaKlasiLu7O+PHjzerO4tkfMr4NIfxmVX8nXgoODiYrVu3cuDAAapUqUJ6ejppaWnY2NiwZcsWs1gQYIrk1y+EEOKD4uLiyJEjB1evXuX+/fskJSWpz+l0Ouzt7WnUqBFz5szhq6++4qOPPuLbb78FUPeUNlWGQ2a1Wi2bN2/G3t6eXr16UaZMGdq2bcvq1auZMmUKUVFRrFq1ipSUFHbt2qXu32/qe2OHh4czduxYWrduzYoVK7hy5Qpdu3blwoUL7N27l+bNm9OtWzciIyOZMmUKQUFBajL3+vVr7O3t3zknRYJmIYQQQpgjW1tb0tPTGT9+PFevXv3D11asWJEvvvgCd3d3VqxYQePGjYmLi5NCnAmTnEVylreZas7yZ9chjUajbs3YpEkTFi1axMmTJ1mzZg0bN25k/fr1TJo0CSsrK3Q6ndlch2R8yvh8m6mOz6zi78RDZcuWxdfXlxUrVpAnTx7c3Nxo374927ZtU+MhKcT9fXJnnBBCCNX7VrVERUUxZ84cTp06xbRp02jbtm2G599e2bRx40bWrl3L0aNHyZEjx3/W7n8qPT2dWbNmcerUKUqVKsW6desybK1gcPjwYW7evMnmzZvp3bs3Y8aMMfkVXT/99BMTJ05k8eLFVKxYEXiTLLRp04Z8+fKxbt06AA4dOsTevXu5ceMGHh4epKenc+3aNSwtLdm5c6cEV0IIIYTIFMLCwvDx8SEuLo65c+dSpUqVP3z9zZs3mTlzJpaWlqxbt04KcSZEchbJWcw1Z/k716EP3SFlandO/Z6MTxmf5jo+s4q/Gw+9j9wR98+Z7ogXQgjxnzKsaklJSWHfvn0cOnSIhw8f4uLiwrhx42jQoAGTJ0/m9OnTGd73dvCYM2dO0tPTiYiI+K+b/49YWVlRrFgxcubMyfnz57l161aGbSJ0Oh0Abdq0YezYsUyZMoWtW7fy5MkTkw6aAaKjo4mNjcXFxQV4czi0RqOhatWqREVF8fr1awDatm3LxIkTGTx4MD/++CN37tyhVKlSbN++HUtLS/X/AyGEEEIIc2RYf1y4cGEWLVpEjhw5GD169J+uCK9QoQJTp05l48aNUogzIZKzSM5ijjnLP7kOfajgZsqFOBmfMj7NcXxmFf80HjIUl9/+DCnE/XOmPeqFEEL8JwzbXCQkJNClSxfmzJnDmDFjGDlyJEePHsXJyYmpU6dSr149Ro8e/U7wDBAZGcn27dvRaDQ4OzsboRd/zhAEKopCamoqAN27d2fQoEEUKlQIX19fgoOD1UOmDQGGIfBo164dBQsW5OLFi8bpwJ+4c+cO3333HQA1atTAysqKY8eOAaiHQ2fPnp3ExMQMwVPp0qUZMGAAe/fuZefOncyZM0e2HRBCCCFEpmCYENXr9bi6urJo0SIcHR3/cALKMNlUsmRJNS6UQpzxSc4iOYu55iz/5DpkbmR8yvg01/GZVfzT65BGo1ELx6a8GMBcSDFOCCGysLdXtaSkpNCjRw9y587N8uXL2b9/Py9evGDdunUcOXKE3LlzExgYyMcff4y/vz9HjhzJ8Fn58+dn+PDhbN26lTx58hijO3/IEAQmJSUxffp0fH19mTdvHmlpabRo0YLhw4eTLVs2xo4dmyF4ht9W6l28eJHQ0FDi4uKM2ZUPunv3Lt9//z0ABQoUYP78+ZQpUybDawzbmry9S/XLly+JjY3FwcEhw+tk0kkIIYQQ5ub69et0796dWbNmcezYMa5fvw78NoHk6urK0qVLyZUrF35+fly9epXfn97x+8kmU797IbOTnEVyFjCvnOXfuA6ZCxmfMj7BvMZnVpGVrkPmRCJKIYTIgqKjo0lMTESj0ajB4alTp9DpdEyaNInq1aurB7SGh4ezevVqjh49Su7cuZk2bRply5Zl37596ucZ/mB/8sknlCxZ0ih9+iOG1cwJCQm0b9+e7777jhcvXrB582ZGjhxJXFwcrVq1om/fvuj1+gzBs6FvcXFxRERE4OzsTKNGjYzco/fLnj07165dU1cl1q5dm7p16wJvEgeA+Pj4DAcpR0REMHjwYObPn5/hs2TFkxBCCCHMiaIo6HQ6du/eTVBQEBs3bsTX15eBAwfSsGFDBg4cyLZt2/jxxx/JmTMns2bNwsXFhfHjx3P16lU1JhamQ3IWyVnMLWfJStchGZ8yPs1tfGYVWek6ZI6kGCeEEFnM06dP8fLyYs2aNSQkJKgrtB4/fkxqairFihVDo9GwYcMGrK2tmTNnDnFxcSxZsoSvv/6aXLly8dVXX6mH9YLpB1kWFhakpaUxbNgw8ufPz+bNm9m4cSPdu3fn5MmTTJw4kfj4eFq3bk3fvn0BGDhwICEhIWrfcuTIQYsWLTh48CAlSpQwZnc+qGHDhmTLlo1t27ahKArW1tbqc4atIeLj47G1tcXa2pqIiAj8/PyIj49nwoQJxmq2EEIIIcT/zHDHgp+fH+3btydfvnzqdmhNmjTh1atXzJ49m/79+/PZZ58xZswYChQowIMHD5g/fz5BQUGyItyESM4iOYs55ixZ5Tok41PGpzmOz6wiq1yHzJUU44QQIotxdXXF1dWVr7/+mi1btpCQkABA+fLlsbGxQaPRsHv3bjZv3kyPHj2oX78+PXr04MmTJ0ybNo1Vq1Zhb2+fYcsFU3Pv3j2Cg4MzPPb06VNevXql7uWekJDAq1evaNSoEWfPnsXf35+4uDhat25Njx49qFu3LoULF87wGQ4ODuTOnfu/7Mpf9vZhvD/++KP6799vi2FtbU1aWhqPHz9m5MiRxMfHc+jQIXU/dyGEEEIIcxMcHMyCBQsIDQ3FycmJ0aNHU716dV68eMGzZ8+YMGECe/bs4cCBA+zYsYOOHTvi5OTE1atXsbKyIigoiH379pn8ZHBWIjmL5CzmlrNkpeuQjE8Zn+Y2PrOKrHQdMluKEEKILCM9PV1RFEXR6/XKsGHDlPr16yvLly9X4uLiFEVRlAcPHijp6elKy5YtlWXLlimKoiipqanKlClTlO7duyu7d+9WP8NUpaSkKJ07d1Zq166t3LlzR338+vXriru7u3Lq1ClFURRl4cKFStOmTZUbN24ou3fvVtzc3BR/f3/ll19+yfB5pt5fnU6nKIqiaLVaRVEU5e7du4q7u7uydOnSDK8xvG7ChAlKvXr1lGbNmimff/65+r60tLT/uOVCCCGEEP8bvV6vKIqizJo1Sylfvrwyc+ZMJSwsTFEURXn58qXi5+enNGrUSJk/f/57Y53o6Gjl7t27yt69eyUWMiGSs0jOYk45S1a7Dsn4lPFpTuMzq8hq1yFzJnfGCSFEFmJpaUl6ejoajYbFixdTqVIldu7cybZt20hMTKRkyZLExMTw+vVrcuXKBUB4eDjBwcE0atQIDw8PLC0t0el0xu3IH7C1tWXy5MkULlyY4cOHc+fOHeDN4cNeXl64ubnxww8/sGrVKsaNG0eFChUoXrw4AAcOHGD79u0ZPs+wFYOpsrCwQKvV0rlzZ7799lvKlClD//79Wb9+PXv27FFfY1jN1rBhQ16+fEn27Nk5fPiwunpNDlYWQgghhLl5/vw5AGPGjKFnz54cOnSIjRs3Eh4ejpOTE+PGjaNq1aocO3aMJUuWqPGQVqsFwMnJiTJlytCxY0esrKxkRb+JkJxFchZzylmy2nVIxqeMT3Man1lFVrsOmTMpxgkhRBZhCHYNAZJGo2HJkiVUrFiR7du3s3nzZuLj48mdOzdly5Zl5cqVBAQEMHz4cFJSUujZsyfwZusCUw8my5Urx/Tp08mePTs+Pj7cuXOHvHnz8sUXX+Dq6sqxY8do0KABDRo0QK/XExUVRePGjTlz5gwLFy40dvP/toSEBOzt7dWtJFq1akWDBg1YtmwZO3fuBH773osUKUKfPn3YtWuXBM1CCCGEMFspKSmMHTuW69evA28moNq0acORI0femYCqVKkSx44dY/Hixej1emxsbNDpdOqWWwYSExmf5CySs4D55CxZ7Tok41PGJ5jP+Mwqstp1yNxJMU4IIbIAwwGuycnJbN26lc2bN/PDDz+g0WhYtmwZFStWVFezKYrC4MGDqV27Ng8fPsTd3Z3du3djZWWFTqcz6b2jlbcOmS1TpgyzZs3C3t5eXc1mWJmXmppKbGws9+7dIzQ0lF27dqHRaChUqJDJr9J7HycnJz755BNOnDhBdHQ0JUuWpFevXtSsWZOZM2eyePFiEhIS0Ov1lCpVCj8/P6ysrEhLS5MgSwghhBBmKz09ncTERPXfAQEBfzoBtWTJEnQ6nclPBGdFkrNIzmKOOUtWuQ7J+JTxaY7jM6vIKtehzECjvH2VEUIIkekY/rgmJCTQtWtXXrx4QXp6Onq9Hn9/fzw8PFAUhaFDh3Lt2jV69uyJt7c3NjY2JCUlYW9vj0ajMfnVTob26XQ60tPTsbW1BeD+/fuMHDmS1NRUFi1aRLly5di3bx/jxo0jX758KIqCs7OzmhwoimLSyYHh+1QUBb1enyFwatWqFe7u7syePRuAJ0+ecOTIEdauXUuVKlVo0KAB3bt3x9ra2ljNF0IIIYT41yxdupT79+8zY8YMsmXLpq7snjlzJocPH6ZVq1Z4e3tTqFAhYmJimDFjBmfOnGHMmDF4enoaufXibZKzSM5irjlLVrgOyfiU8Wmu4zOryArXocxCinFCCJEFpKam0q1bN7Jly8a4ceNITk5mxowZ3Lx5k6lTp6rB87Bhw7h58yatWrXiiy++IHv27AAmH0wagubExERmzpxJSEgIFSpUoEWLFlSsWJEHDx7g5+dHUlISy5Yto2zZspw4cYLHjx9jbW1Nr1691KDblFcFGdqXnJzMyJEjqVmzJp9++imurq4ArF27lqNHjzJ//nx1z3qAx48fs3LlSp48eUJcXByVKlWiRYsWNGzY0Eg9EUIIIYT4+5KSksiWLZsaE508eZJFixaxdOlSSpYsiVarxcbGBnj/BNTLly/Zvn07gwcPNumYL6uSnEVyFnPIWbLqdUjGp4xPcxifWUVWvQ5lBlKME0KITMzwh/n48eOsWbOGBQsWUKxYMcLDwwkMDCQsLIzHjx8zceJEOnfujKIo9OzZE0dHR5YvX27SwbKBXq/HwsKChIQEOnbsiF6vx9XVlUuXLlGtWjWGDBlCjRo13hs8v83Ug2ZDP5OTk9m3bx+7du0iOTmZxMREBg4cSKNGjXBycqJ58+Z06dKFYcOGAb/1y7CtyJkzZ0hKSqJChQqUKFHCyL0SQgghhPhrHj9+jJeXF4sWLaJWrVrq4x06dCB37tysW7cO4J0JqK+//prWrVvj5eVFkSJF1PeZeuyXlUjOIjmLueQsWfE6JONTxqe5jM+sIitehzITOTNOCCEyEb1ej1arJT09HUD9g/r69WueP3+u/nvr1q28evUKHx8fqlatysSJEzl06BAajYYtW7awbNkyNBoN5rBew8LCgrS0NEaNGoWrqyvr169n/fr19OvXj6tXr7Jq1SqCgoIoVaoUCxYswNHRka5duxISEpLhc0w5+DAcqJuSkkKHDh24du0aBw4cYMaMGbRr144VK1YwZMgQdu7cSc+ePTl8+DAPHjwAULefsLKyQqPR8Omnn9KmTRsJmoUQQghhVlJTUylUqBDDhg3j8uXL6uNDhw7l3r17zJ8/HwAbGxu0Wi3w5syUtm3bsmnTJr777jvgt/OATDn2y+wkZ5GcxVxzlqxwHZLxKePTXMdnVpEVrkOZmelu1CuEEOJvCQ4O5uDBg1y+fJls2bLx0Ucf0b9/fwDy5s1LqVKlKFiwIIcOHWLjxo1s2LCBOnXqEBYWxsWLFxkzZgyhoaEMHToUCwsLddWUOYiLi+PZs2f079+fwoUL8/z5c16+fEmVKlW4ceMGixcvxtfXl2rVqjFr1izWrVtH4cKFjd3sv8zS0pKUlBTOnj1LgQIF6N69O1ZWVtSqVYtatWrRvHlzzp07x/r169HpdKSlpXHz5k1KlSolq5yEEEIIkSmULVuWadOmMXv2bPr378+aNWuoXr06VapUoXHjxpw8eZKcOXPSr18/dQLKxsaGMWPGULBgQbp16wZgFndpZGaSs0jOYs45S2a/Dsn4lPFpzuMzq8js16HMTrapFEKITODSpUsMGTKE8uXLkzt3bqKjoylTpgx9+/alQIECADx69IgSJUrQoUMHatWqhb+/P+np6SxZsoRHjx7RrVs3atWqZdIHKsfGxpKSkkJ0dDTFixdX958PDg6mXbt2rF+/nnr16rFkyRIOHDjAnj17uHHjBl988QX16tWjSZMmeHl5qZ9nTkHlyJEj+eabb8ibNy/79u3DxcXlnQOwExMT1ZVOL1++5NChQzg6Ohqx1UIIIYQQ/7u3zxq6ffs2c+fO5dq1a6xZs4YaNWrw9OlTZs6cycOHD2nSpAljxowBeGci2Jxiv8xIchbJWcB8c5bMfh2S8SnjE8x3fGYVmf06lBWYx/IEIYQQH3T//n2GDRtGq1atmDlzJvPnz2f58uUMHTpUDZoBSpQowevXr3n9+jW5cuVCq9USHR3N5cuXKVy4MPXq1cPKykrdjsLUXL9+neHDh9OlSxc6derEwIEDCQ4OBt6sDBo4cCC5cuXil19+YcWKFYwfP15dvWdlZUVERAQ//fRThm0yTDn4+P1amfnz51O/fn1evHjBvn37SExMxMrKCr1eD7wJprJnz86AAQMIDAwkV65cfP/99+/9LCGEEEIIc6HT6TJsdVa+fHnGjBlDxYoVGTBgAEFBQRQpUoSxY8fyySefcPjwYXr06MGdO3dISkoCfouFZBW48UjOIjkLmG/OktmvQzI+ZXyC+Y7PrCKzX4eyCrkzTgghzJRhRcyiRYu4ffs206dPx9nZWV3xEh8fz5MnT7h27RrW1tZ8/vnn5MyZkxEjRnDu3Dlq1KjBo0ePyJ49O7t378bKyirDKhtTcvnyZfr27UuLFi2oUaMGLi4u/PTTT3Ts2JGSJUsCb1ZwZc+enVmzZvHgwQPWrl1LWloa586dY926dQwePJg6deqowYsp9tPAsDotPT0drVZLSkoKTk5OAHTt2pV79+4xYcIEmjdvjq2trdofw3ev1+tp2bIlH330EePHjzdyb4QQQggh/hlDTJSamsrZs2cBqFu3Lo6Ojjx48ICpU6dy8+ZNdUV4TEwMN2/eZNGiRSQlJVGoUCF69epFzpw5qVy5spF7kzVJziI5i7nnLJn5OiTjU8anuY/PrCIzX4eyGtO9b1gIIcQfMgR+wcHBODg44OzsDLw5fPju3bsEBgZy5coVdVXatm3bWLRoERMnTmT+/PlER0dTu3ZtJk6ciJWVlcneph4REcG4cePo2LEjw4YNI2fOnADUq1cvw+sM20sY9jYPCQkhOTmZtWvXkiNHDjVoNvV96w1BVmJiIgEBATx58oT8+fPToUMHPv/8c3bs2EHnzp2ZNWsWQIbg2cLCAkVRuHTpEmlpacTHx5Oeno6lpaVJJwpCCCGEEL+n0+mwsrIiISGBHj16EB4eTlxcHFWqVMHX11eNY6dOncqAAQPUCaj69etTv359vv32W27cuMG6deuwsbFh9uzZ5M6dW2Ki/5jkLJKzgPnmLJn9OiTjU8YnmO/4zCoy+3Uoq5FinBBCmLns2bNz7949Xr58yePHjzl//jzr168nKSmJ5s2b4+npSUpKCtOnT2fRokUsWbKE6dOnq4e4Au/sE25Knj59io2NDR06dMiwV3l0dDSnT5/mxx9/BKB48eKMHj2aZs2a8dNPP9GyZUvy5s1Lnjx52LBhg7p6zZSDZkVR1CCrY8eOZMuWjTJlyvD48WNmz56NXq+nRYsW7N69m86dOzN79mw0Gg3NmjXDzs4OeJNQvXjxggIFCtC/f3+T/V6FEEIIIf6IpaUlycnJdOvWjdy5c+Pr60v27Nnp378/y5YtQ1EU6tSpw8SJEwkMDGTw4MEsWbKEOnXqANC4cWMaN25MSkoKFhYWatwrjENyFslZzDFnySrXIRmfMj7NcXxmFVnlOpRVyDaVQghhpgyrsa5fv46Pjw/Pnz9Ho9GQnp5O/fr1adGiBe3atVNfv23bNnbv3s2mTZvIlSuX+ripb6+wbds25s6dy+XLl9WtMm7cuMG0adN4/PgxefLkwdbWltevX9OwYUMWLFhAUFAQ9+7dQ1EUPD09sbS0NOnkAH47QDc9PZ3Ro0cTFxfHlClTKFy4MBs3bmT16tXY29szYsQI2rRpA4CnpydXr17lq6++4pNPPsnweQkJCTg4OBijK0IIIYQQ/9jbd1bs2bOHHTt2sHDhQooWLUpYWBiTJk3iwoULlClThoCAAGrWrMmDBw/w9fXF2dmZ9evXG7kH4m2Ss0jOYo45S1a5Dsn4lPFpjuMzq8gq16GsxnSvIEIIIf6QYTVWuXLlWL16Nfv378fS0hJ3d3caNmxItmzZgN8C45CQEPLmzZshaAbTP7jV3d0dJycnxo0bR/Xq1Tl37hzffvstdnZ2eHl5MWLECJKSkjh27Bg7duwgMjKSGjVqUKNGDfUzDLf1m5rg4GBOnjzJ8OHDsbS0RFEUtFotISEhtGnThsKFC/P69WtCQkJwd3cnOTmZ+fPnY2trS7Nmzdi5cycTJ07MsL2G4fuWoFkIIYQQ5iIiIoKTJ0/i7e2NpaWlOgH18OFDdDodRYsWBWDLli1kz56dlStXMmrUKBYsWMDQoUP56KOPWLt2LXnz5jVyT8TvSc4iOYu55CxZ8Tok41PGp7mMz6wiK16HshrTu4oIIYT4W6ytrSlTpgz+/v7v3aNdo9Hw+PFjrl+/Tq1atYzUyn+ubNmy1K9fnzNnznDgwAEAOnfuTLNmzfjoo48AcHR05OOPP2bWrFmEhYWRP3/+DJ9hivvWp6WlsWvXLg4cOIBer2fEiBFoNBqeP3/Oy5cv1cRn27ZtnDp1ik2bNvH69Wu8vLyYPHkyt2/fxtfXl6lTpwK/bQti6omQEEIIIcTvxcTEsH37dlJTU+nfvz8nTpygRYsWVKhQgfPnzwNvYqJt27axZs0a6tWrR4cOHdiwYQPjxo1j4MCBdO3aFcBkzyzK6iRnkZwFTDtnycrXIRmfMj7BtMdnVpGVr0NZhRTjhBAiEzGshDp16hSfffYZSUlJ3Lx5kwULFpCamsrw4cMB099GwkCv12NnZ0dAQADt2rUjPj6eHDlyULly5Qyv0+l03Lt3jwoVKqgrhUydtbU1ffr0Qa/Xs3//fvR6PX5+fhQrVgwvLy/Kli3L9evXWbZsGUuWLKFkyZKkpKTg7OxMoUKFCAoKynBwtCmu0hNCCCGE+CucnZ2pVasWW7duZenSpXzyySc0b96c2rVrU7ZsWVJSUli/fj1+fn7Uq1eP9PR0Xr9+Td26dalduzadO3dWP0smnkyf5CySs5giuQ69IeNTxqcwHrkOZX4yyoQQIpNZs2YNy5cvp2jRoqSnpwOQN29etmzZgpWVlVmtjrGwsECv12Nra0uVKlUyPJeWloa1tTXp6emEh4ezZcsWChYsaDa34yuKgqurKwMGDECn03Hw4EF0Oh2jR49mwIABAGzcuJFy5crx6aefkp6ezpUrV8ibNy9+fn7qikRzSYKEEEIIIT7ExcWF3r17c/z4cSwsLChQoAAajQZnZ2ecnZ15/vw5ycnJ6tZoT58+5fHjx7Rr1w5PT09AVoCbG8lZJGcxNXId+o2MTxmfwjjkOpT5STFOCCHMwNurld72vqCpbdu2ODo6cvHiRXLlyoW7uzvt27c3iwOH3+f3/VYUhcWLF1OmTBkqVqzIzz//zP79+0lOTmbLli1oNJoP/v9lKgzfm6IoFCpUiIEDBwJw+PBhLC0t8fPzAyAxMZF79+5x48YNkpOTWbFiBfny5VP3rpegWQghhBDmzhC3hYeH06xZM1JSUjh16hQODg5qTJSamoqrqytbt27l1q1bXLlyBQsLCzp16gS8iYlk4sn4JGf5jeQs5pWzZIXrkIzP38j4NK/xmVVkheuQAI2iKIqxGyGEEOLDDMGuVqvlzp07pKam4uDgQPny5d957R8FjJlldUxISAhdunQhISGB9PR0XF1dKVeuHAsWLMDKysrkkwND+wzbCdjZ2eHg4EB4eDgrV67k7NmztGvXjpEjR/L8+XMGDRrE7du3cXJyomDBguzYsQNra2uTTw6EEEIIIf7Ih2LT8PBwVq1axXfffUeHDh3UCajDhw9z+PBhnj9/TvHixZk/f77Z3aGRmUnOkpHkLOaRs2SV65CMz4xkfJrH+Mwqssp1SLwhxTghhDBhhuAoISEBb29v4uLiiIyMxMrKilatWtGrVy9Kliz5zvvMbXXTHwUN7wsQExISuHz5MsnJyZQsWZISJUpgYWFh8kGzoZ8JCQmMGjWKJ0+eoNVqmTRpEg0aNCAiIoIVK1Zw9uxZOnTogK+vL8nJyZw+fZrs2bPToEEDs12NKIQQQghhYNgaLCkpiU2bNhESEkJ6ejrt2rXj448/5sWLFyxevJjvvvuOjh074uvrC0BYWBjOzs7Y2Nig0WgkJjIRkrNIzmKOOUtWuQ7J+JTxaY7jM6vIKtch8RspxgkhhInTarX06tULKysrhg0bhp2dHTExMQwaNIgWLVowfvx4nJycjN3Mf8wQNCQlJbFv3z5CQ0MpVKgQJUuW5OOPPwYyBtYfCrJNfVWXIZlJTEykQ4cOZM+enWrVqvH48WOuXbvGzJkzadq0Kc+ePWPFihV8//33avD8NlntJIQQQghzFBwczIsXL9T4LjExkc6dO2NlZYWVlRWKonD79m08PT0ZPny4uo3Yt99+S+XKlUlISKB58+bqmSimHvtlNZKzSM7yNlPNWbLqdUjGp4zPt5nq+Mwqsup1SLwhJVMhhDBxT548ISYmBn9/f2rUqIGFhQXHjx8HoH79+oSFheHo6Ii1tbWRW/r3KYqClZUViYmJdOrUCb1eT7Zs2Th+/Di2trbUr1+fCRMmZAgUPxQ0mnrwYdh3PjAwEBcXF+bOnYuLiwvffPMN169fZ+zYsaSnp9O8eXMGDx6MRqNh9erVuLi40K1bN/VzJGgWQgghhLm5ePEiffv2ZcyYMdSrVw+AmTNn4ujoyOzZsylQoAA2NjasXbtW3W5p/PjxDBo0CFtbW86fP4+1tbV6JgqYfuyX1UjOIjmLqecsWfk6JONTxqepj8+sIitfh8QbUowTQggTl5iYSEhICHZ2dlhYWPDNN98wcuRI/Pz8qFu3LkOHDqVHjx60adPG2E392wzB5LRp08idOzfTpk2jZMmSaLVaBg4cyLZt2+jQoQPu7u6A+W2V8XvJyck8evSIZs2a4eLiQlxcHBcvXqRhw4bExsYyduxYrKysaNq0KUOGDMHV1ZUuXboYu9lCCCGEEP9YUFAQffr0oXPnznTs2BELCwu0Wi0PHz6kVq1aFC1aVH1tv3790Ov1LFiwgCZNmlC3bl38/PxIS0vD0dFRtmIyYZKzSM5iyrL6dUjGp4xPYXxZ/Tok3pDSqRBCmBC9Xv/OY/b29uTMmZOHDx+yf/9+NWgeMGAAOp2OsLAwoqOjjdDaf4eFhQWPHj2ifPnyFC9eHICzZ8/y66+/Mm3aNKKiojh9+jSA2QTNz58/5+LFixw7doygoCD1ccPO0FFRUQBs27aNEydO4OXlxaRJk7CxsWHq1KnMnj0bW1tb+vfvj6WlJTqdzij9EEIIIYT4X1y/fp0+ffrQpUsXJkyYgI2NDfBmMvHVq1ckJSWprzXEO/3796dMmTLs3bsXRVGwsbEhR44c6oSrTDwZn+QskrOYU86S1a5DMj5lfJrT+Mwqstp1SHyYfGtCCGEiDKtatFotwcHBRERE8Pnnn1O2bFmaN2/O9OnTURQFX19fBgwYAMDr169xcHCgYMGCRm79P5Oenk5iYiIvXrwge/bsWFhYcPDgQfz9/fHx8aFdu3aMHj0ajUZD/fr11YDFlF29epWpU6cSGxurBsirVq3i448/Jnv27HTt2pWyZcsSHBzMsmXLmD9/PlWqVCE2NpZs2bJhZ2fHzZs3yZEjh/qZso2EEEIIIcyNYQW4VqtFp9Opsa5Op8PR0ZHChQvz008/8eTJE4oVK6bGO1qtFisrK7Jnz45Go8kQB8lWTMYnOYvkLOaUs2S165CMTxmf5jQ+/4+984xrIvv6+I9qARWxrb2thmYXFAERF8UCKiAgAoqoYAMVGyrYC65dsPfe26pr79ixYQXFAggonYQWkpznBU9mE3X3r1skQ+73FZlM5nMuM+fM+d1yrrqgbnGI8dewwTgGg8FQAaRSKbS1tSESieDn54dPnz4hPT0dSUlJGDJkCMaPH4+CggIcP34c+vr6iImJQU5ODlatWgVDQ0N07969tJvwTXy+UbC2tjaqVKmCLl26YM+ePahUqRKWLVuGsWPHYsSIEdDQ0OASFr4kzUOGDIGjoyP69OmDihUr4v3796hevTqAkll4ffr0gaamJg4ePIg6derAxsYGAPDq1StUq1YNy5cvR/369QGwjXgZDAaDwWDwk3v37sHPz48rwxQVFYUFCxYgJCSEy+mmTZsGb29vzJ8/H9OmTeNWMyQlJaG4uBiNGjUCwP+SYmUJplmYZuGTZlG3OMT8k/knn/xTXVC3OMT437DBOAaDwVABtLS0UFRUBF9fXxgYGGDcuHHQ19dHkyZNoKWlhSpVqmDChAmoVKkSVq1ahcLCQtStWxc1atTApk2buLIDqjzbST77Jz8/Hzt27EB6ejqaN28ONzc39O3bF/fv38eSJUswaNAgjBw5EkSE9+/fIzExEV27di1t8/8nmZmZCA8Ph5OTE4KDg2FgYAAAXG16oKSURK1atQCUiIj09HScPn0atWvXxvr166Gnp4e6desCKEm0WNLMYDAYDAaDb8THx2PIkCFwd3fHjBkzIBKJoKmpiatXrwIAt59No0aNsHDhQkydOhUjRoyApaUlKlasiBs3bkBbWxuDBg0CwJ+SYuoA0yxMs/BFs6hjHGL+yfyTL/6pLqhjHGL8bzRIXmyWwWAwGKXKnTt3MHPmTCxbtgwmJiYoKCjA1atXceTIEWhqaqJbt25wdXXFy5cvIRKJoK+vj+bNm0NTU1PlN26Vz+ARiURwd3eHrq4u8vPz0bNnTwwZMgQGBgY4fvw4tm3bhrS0NPj7++PTp0+4e/cuxGIxDh06pNLtA4CXL19i9OjRmDNnDqysrLg2p6amYv/+/bh79y7i4+NhY2MDd3d3tGrVCh4eHnjz5g3Kly+Pxo0bY+fOndDR0WGz1xgMBoPBYPCWe/fuISEhAb1790a5cuWgoaEBoVCIFStW4Pr167C2tsbUqVOho6PDdZQuWLAAiYmJqFSpEpo2bYq5c+dyJZxUuWNYHWGahWkWPmgWdY1DzD+Zf/LBP9UFdY1DjL+GDcYxGAyGinDhwgWEhIRgzZo1SE5OxunTp3H16lUYGxujsLAQaWlpOHDgAJo0aaL0O74kWRKJBGPGjIFIJMKSJUugr68PfX19ZGdno6ioCNWqVcOrV6+we/duXL16FXXr1kXTpk0xe/ZsXiQft2/fRnBwMCIiItCuXTtkZGTg4cOHmD17NtLS0tCgQQM0aNAAT58+RYMGDbBz507IZDJER0dDW1sbFhYW0NLSUnkRxGAwGAwGg/G/UCylJM/hRCIRli9fjuvXr8PKygrTpk2Djo4Od05+fj40NTWhp6cHACwnUlGYZmGahS+aRR3jEPNP5p988U91QR3jEOOvYYNxDAaDUQp8LQmUSqXo06cP4uPjoaOjg+rVq2PSpEmws7NDhQoV0KpVK8yYMQOurq6lZPU/Iz09Hf7+/ggICICDgwOSkpJw+vRpbNy4EYWFhahduzZ27NiBWrVqITMzE4aGhtxv+ZB8pKWlwcnJCU2aNIGpqSni4+Nx584d1KpVC3369MG4ceMAAO/evYOTkxMWL16MHj16KF1D1cUBg8FgMBgMxt9B3tGr2AFlbW3NlWj6PAdi+6KoBkyzMM1SljRLWYtDzD+Zf5Yl/1QXylocYnw/qh2FGAwGowwiTwILCgpw8OBByGQyNG7cGLa2tjh06BD27duHpk2bonHjxqhfvz5kMhmePn2KGjVqoEaNGqVt/jfzedJQqVIlFBcXY8+ePXj16hXOnj2LV69eoW/fvmjevDkOHjyI8PBwLF++HJUrV1a6jqonzTKZDDVq1MDq1asxceJEvHjxApqamvDz84ODgwPMzMwAlLSlTp06qFatGvLz87+4DkuaGQwGg8FglEU0NTUhk8mgr6+P8ePHAwCioqIQHh6OKVOmcDPC5bCOp9KHaRamWcqaZilLcYj5J/PPsuaf6kJZikOMv4dqRyIGg8EoY0ilUmhra0MkEsHT0xPp6emQSCSQSqWYMmUKPDw8MGTIEAAl9aWzs7Px6dMnbNu2DYaGhrCysirlFnwbcnEglUohkUhQrlw5lCtXDsOHD8fq1auxbds2tGjRAlOnTkWnTp0glUoRHR2N8uXLA4BSosyH5ENTUxNEhHbt2uHo0aPIz8+HRCJBgwYNuHPkQuLhw4eoVKmS0ncMBoPBYDAYZZ3PO6A0NDRw5MgR1K1bl8t/GaoB0yxMs5RVzVIW4hDzT+afZdU/1YWyEIcYfx82GMdgMBg/EC0tLRQVFWHw4MEwMDDA4sWLUVRUhPnz52PmzJnQ1NSEm5sbMjIyEBoaivfv36N27dpo3LgxtmzZAi0tLZUvOyBPmvPy8rBgwQK8f/8epqam6NevH/r06QNra2vk5eWhbt26XF36jx8/IiUlBT///HMpW//30dDQgEwmg4GBAQwMDL76/du3b7F8+XLUqFEDbdu2/fFGMhgMBoPBYPzLKK5c+F/llBQ7oIKCglCvXj34+Pj8KFMZ3wjTLEyz8E2zqFMcYv7J/JNv/qkuqFMcYvx92J5xDAaD8YOQ14Y+e/Ys1q9fj6VLl6Jx48b48OED5s+fj8TERLx9+xYzZ86Em5sbCgoKcP/+fVSpUgWmpqbQ1NRU+TrnivWvXV1dQUSoX78+7t+/j1atWmHEiBGwtLQEAJw+fRonT56EQCDAlStXIJPJcOjQIZVu3/cSGBiI+vXro02bNoiNjcXly5chk8lw4MAB6Ojo8GajbAaDwWAwGIyvobhyAQBycnKU9uj5Mz7PgVS9Y1idYJqFaRa+aRZ1ikPMP5l/8s0/1QV1ikOMf0bZiU4MBoOhYojFYkilUlSoUAEAuBdsTk4OPn78yL1gd+3ahczMTIwdOxY7d+5EWFgYtLW14ezsDGtra+56MplM5ZNKTU1NFBcXY+LEiahfvz5mzpyJ+vXrY/Xq1di0aRM2b94MALC0tERmZibev3+PjIwMNGvWDPPnz//qhrWqiHyWk0wmg4aGxldnPKWmpsLQ0BAHDx7E9u3b0aRJE7Rs2RKzZ8+Gtra2yosgBoPBYDAYjL9CXiotLy8PM2bMwNu3b1G1alVMmzYNTZs2/cvfft5xqOq5X1mGaRamWfisWcp6HGL+yfyTz/6pLpT1OMT4d2Eey2AwGP8BT58+xY4dO/D69Ws0a9YMNjY2cHR0BAAYGhqiWbNmqFOnDn777Tds27YNW7duRceOHZGSkoI7d+5g6tSpSE5OxujRo7lr8mW2k1AoRGpqKvz8/FCvXj18+vQJ6enpaNOmDZ48eYLVq1dDX18fXl5eGDBgAIRCIVeCQdWTya8l9YpJs2Ipgp9++gnTp0+Hv78/0tLSULt2bdSsWRMaGhpcssZgMBgMBoPBV7S0tJCXl4f+/fujevXqaN26NWrXrg09Pb3SNo3xjTDNwjQL3zVLWY5DzD+Zf/LdP9WFshyHGP8+zGsZDAbjXyY6OhoBAQEwNzeHmZkZoqOj8fz5c9SvXx+tWrWCvb09mjZtCm1tbezYsQODBg1Cx44dIZFIkJ6ejl9++QXe3t4wNzcv7ab8Jenp6SgoKEBOTg7MzMyUjr98+RJVq1aFhoYG9u3bhytXruDgwYN49uwZAgICsHTpUtja2mLIkCFc0kxEKp1MypPmvLw8rFy5EklJSSgoKEDfvn3RoUMH1K5d+4vZbDo6Oqhbty7q1q3LHZPJZGy2E4PBYDAYjDLBxo0bUaFCBSxduhQ1a9YEAMTFxeH27dvQ09PDL7/8wpvOX3WDaRamWeTwXbOUxTjE/JP5pxy++6e6UBbjEOO/QXUjFIPBYPCQ6Oho+Pr6wtPTEyNHjoShoSESEhLg5uaGV69eoVWrVgCAxo0bIzs7G1lZWahcuTLEYjEyMjLw4MEDmJiYcDXQVXVW18OHDzF79mxkZ2cjNTUVvXr1wqRJk1C7dm00b94cI0aMgKGhIW7duoU1a9YgMjIS1atXR5MmTaCtrY2PHz/i3r178PX15ZLNv9rcVhXQ0tJCfn4+XFxcUKVKFdSqVQtVqlRBWFgYLCwsMGLEiC/EztfaxBIwBoPBYDAYZQEiQkpKCurWrYuaNWsiOjoap06dwt69e1G+fHkUFhZi+PDhmDBhQmmbyvgMplmYZlGEz5qlLMYh5p/MPxXhs3+qC2UxDjH+O1QvGjMYDAZPefjwIXx9feHr64uRI0dCT08PUqkUDRo0QMuWLfH8+XNs2LABFStWhLu7OwwMDNCyZUts2bIFT548wdu3b6Gnp4dJkyYBUN1ZXdHR0RgyZAhcXV1hYWEBAJg+fTp++uknTJ48GQDg7++PihUrYtGiRbCysoK9vT2Ki4vx5s0btGnTBqNGjULHjh2hoaGhVIZB1Vm/fj10dXWxdOlS1K5dG9ra2pg+fTpOnjwJmUwGkUgEfX390jaTwWAwGAwG419HJpMpdQBqaGjAxMQECxcuhKenJ96+fYv8/HyMHz8elpaWuH37NtauXQsvLy/89NNPpWg5QxGmWZhm4bNmKetxiPkn808++6e6UNbjEOO/RfUiMoPBYPCQ3NxcLFq0CDKZDEOGDIGenh6Ki4uho6ODhw8f4vr162jUqBEyMjIgFApx4sQJrFq1CjNnzsTSpUvx6dMndOzYkdtoWVU3HJbP0hswYADGjRvHJYnPnz/H48ePIRaLoa2tjYoVKwIAiouL8fTpU7x58wZisRgbNmxA5cqVuaT58yRG1Xn//j3q1KmD+vXrAwBOnjyJo0ePIiQkBLm5uTh+/Di8vLxK2UoGg8FgMBiMfxf5ygqxWIxnz55BKBSiTZs2cHV1RX5+Pq5evQoXFxc4ODhwqzZiYmLQqFEj1qmoQjDNwjQLnzVLWY9DzD+Zf/LZP9WFsh6HGP89GkREpW0Eg8Fg8J2ioiJcvHgRS5YsQY0aNbBx40ZUrlwZT548waBBg9CjRw8MHz4c+vr6uHz5MhYsWIDu3btj8eLFAACxWAxdXV0AqltG4tmzZ/Dw8IC7uztmzJgBqVQKTU1NaGhoYNmyZTh58iR+/vlnSKVStGnTBmPGjMG9e/cQGhqKDx8+oHr16qhevTr27t0LHR0dXs1ekzNp0iTExsbit99+w7lz5xAUFITx48cjICAAGzZswLZt23Dy5EkYGhqWtqkMBoPBYDAY/wryDl2RSIRhw4bhw4cPICKMGDECAwcOhKamJpfLys998+YNpk+fDkNDQ0RGRvIu5yurMM3CNAtfNYs6xCHmn8w/+eqf6oI6xCHGf4/qRWYGo4xTXFyM/Px8VKlSpbRNYfyLlCtXDvb29tDV1cWcOXMwevRojB07FsOHD4ejoyOmTp3Kzezq27cvbty4gTt37iA1NRU//fQTlzSrahkJIsKRI0egoaEBLS0tFBYWonz58gCAp0+fYteuXWjUqBGqVq2Kp0+fYs2aNcjKykJYWBgWLlyIuLg4EBHc3d2hpaWlsuJAjjxxIiJIJBLo6OgAAFq3bo1bt25hypQp+O233zBx4kT4+vqCiJCdnY06deqgUqVKpWw9g8FgMBgMxr+HlpYWioqK4OPjg6pVq2Lx4sUQi8Vo3749NDU1IZFIoKuri1u3bmHUqFFo1KgR8vPzoa+vjxUrVvBy5UJZhWkWpln4qlnUIQ4x/2T+yVf/VBfUIQ4x/ntUN2oxGGUQqVSKuXPnQldXF2PGjIGBgUFpm8T4F5AvMNbV1YWNjQ1mzJiB+fPnw9vbG87Ozpg7dy4UFyGXL18ehoaGqFOnzhfPgKrOktHQ0MCECRNQXFyMy5cvg4gQGhqKN2/ewNvbG46Ojhg/fjyqVauGnJwcBAcH4/jx4/Dx8UHbtm3Rtm1b7lpSqZQXSXNeXh5WrFiB2NhYtG7dGmPGjMGAAQNw5swZHD9+HD179sTQoUOhoaGBxMRE3Lt3D82aNeOSbAaDwWAwGIyywoMHDyCRSDBt2jT8/PPPKCoqwrVr13DixAnk5uZi2LBhqFevHgIDA5GUlIR69eph0KBB0NbWVvkOU3WBaRamWfiuWcpyHGL+yfyT7/6pLpTlOMT4MbAylQzGD2bo0KF4/vw53N3dMXjwYLb0nOcoznYiImhqakIqleLy5ctYtmwZKlasiO3bt0NPT48rofDhwwcEBgaiRYsWmD17dmk34ZuQt7OgoADz5s3DvXv30KJFC1y4cAH9+/fH+PHjoa+vz83yiY6Ohre3NzZu3AgbG5vSNv+bkd+jvLw8uLq6onz58mjYsCH09fUxevRo1KlTB8XFxfD398erV6/w888/o2rVqoiLi4O2tjYOHz4MbW1tXpbLYDAYDAaDwfgz5KW0Tp8+jRcvXuC3337DlStX8PPPP4OI8OnTJxw+fBgNGjRQ+p2q7lmkbjDNwjRLWdAsZTUOMf9k/lkW/FNdKKtxiPHjYMOxDMYPQr7xbpUqVZCVlYUTJ04AAHx9fVG1atVSto7xd1Cc7RQZGYm4uDh06NABAwcOhK2tLQBg9uzZ8PPzw5YtW6Cnp4fExERMmjQJxcXFCAsLAwCVT7JkMhm0tLQgk8lQoUIFTJ8+HfPnz8eZM2fQoEEDjB49Gvr6+koiIiUlBXXq1EHNmjVL2/zvQl42YP78+ahRowZWrlzJDZgnJCTg2rVrqFmzJrZu3Yo9e/bg3r17ICJ0794do0ePZrOdGAwGg8Fg8J6vlVDq3LkzTExM0LNnT2hra6NatWpYunQpOnXqhIKCAvTr1w8PHjz4ovOJdTyVPkyzMM3CR82iLnGI+SfzTz76p7qgLnGI8WNhns1g/CDky8w/fvyI4cOHIycnB4cPHwbABuT4CBFxSbOLiwv09PRQrVo1JCYmcjWhO3fujNmzZyMsLAxDhw7F/PnzMWPGDAiFQhw7dowXSZbcvuLiYgiFQmRlZaFp06YIDQ2FlpYWbty4gXXr1iE4OBjly5eHTCZDamoq9u7di6ZNm6JZs2al3YTvRlNTEzk5OWjcuDEMDQ3x/PlznDp1Crt27YJUKkWVKlUwZswYDBw4EAMHDlT6raqXy2AwGAwGg8H4K+S5n1gsxpMnT5CVlYVKlSqhQ4cO2LhxI86fP48aNWqgWbNmaNCgAYgISUlJ0NfXR/Xq1UvbfMZnMM3CNAsfNYu6xCHmn8w/+eif6oK6xCHGj4eVqWQwfiCFhYVwcXHBkCFD4ObmhpCQEERFRcHV1ZUNyPEQqVSK0NBQfPjwAb/++it++uknAEBSUhLS0tKgra2NFi1a4OrVq5g9ezaSk5Px888/4+jRo9DR0VH5pFk+K00kEmHs2LFISkpCdnY2VqxYAUtLS668xK1bt/DLL79g4sSJKCgogL+/P/Ly8nDs2DHo6Oio/Aa1n88iLCgoQGhoKBISElC9enW8fv0aqampGDx4MNq1a4e9e/eiqKgI69ev5zacZjAYDAaDweA78pxNJBJh8ODByM3NRWJiInR1ddG2bVvMnj0bDRs2BADcvHkTtWrVQlJSEjZt2gSxWIw9e/awmd8qCNMsTLPwSbOoWxxi/sn8k0/+qS6oWxxi/FjYYByD8QMpKCjAunXr4O3tjRo1agAApk6diuvXr7MBOZ4yZMgQNGvWDNOmTcOLFy9w5swZbN++HTKZDOXKlcOUKVPQv39/nDp1Crdu3cKsWbN4MXtNTkFBAdzd3VG9enV06dIFBgYG6NixI2rVqgUAKCoqwoIFCxAVFQVLS0u8fPkSBQUFXNKs6u2U2yeRSJCdnY3y5ctDX18fL1++xKJFi5CZmYmmTZvC29ub2zA6IiICN27cwNatW1GhQoVSbgGDwWAwGAzGv4dYLMbQoUOhoaGBUaNGoXr16oiJicHatWtRoUIFrFmzBrq6uvD398fLly9Rt25d1K1bF5s3b4aOjg7bE0VFYZqFaRY+oW5xiPkn80+G6qFucYjx42CDcQzGD0I+U0Zxib68dCUbkOMHn8/GEovFCA0NRXx8POrWrYuXL1/iw4cPGDx4MIyMjHDmzBkUFRVhw4YNkEgkKFeuHACofDKpyO7du7F3715s2bKFq9V+7949XLlyBXp6eujZsyfq1q2L+fPnY//+/TAxMcH+/ft5kTQrztKbMGEC3r17h6KiIoSFheGXX36BSCRChQoVuARKKpUiKSkJwcHBMDIywvz580u5BQwGg8FgMBj/DnKt8vTpU0yaNAlhYWHo1KkTgJIcKC4uDoGBgWjcuDE2btyI3NxcPHr0CAYGBjAzM4OmpqbK537qAtMsTLPwVbOoQxxi/sn8k6/+qS6oQxxilC7syWAwfhDyJevygKw4U2LhwoWYOnUqjh8/joKCAowaNQoGBgalaC3jcxQHUZOTk6GtrY26devC1dUVmzdvxuvXr2FiYoIFCxagffv2AICnT5/i+fPnICIuaQbAq5dybm4udHV1AQBRUVE4fvw4Tpw4gerVqyM9PR3R0dHYsmULpkyZgvr168PX15cXs/QU6/O7urpy9fjfvXuHSZMmYeHChbC3t4eWlhZ+++03HDx4EOXKlUNWVhakUilmz57NXUeVN8pmMBgMBoPB+CvkOZt8j5r09HQkJiZCX18fQEnHsZaWFpo3b46AgADMmzcPd+7cQYcOHdC5c2fuOjKZTCVzP1UvbfZvwzQL0yx81CxlPQ7JYf7J/JOP/gngT1d58cH2b0Vd4hCj9GFPB6NUUBdR9L/aqaWlpTQgFxQUhGvXrmHEiBE/0ErG/0L+MpbXOX///j1kMhnCw8PRoUMH/Pzzz9DT01Oq9f3mzRs8fPgQxsbGvHkRfy3BMjExwcqVK+Hp6YmsrCxoa2sjLCwMvXv3xrNnzzB06FDExMSgZcuWGDZsGAB+zNLT0NCATCbDvHnzUKtWLSxevBi1atXC77//jsePH2P69OmQyWTo2bMnGjVqxK1Wbd68OYKDg3khDhgMBoPBYDD+CiLictyhQ4di3LhxqFOnDogIT548QcuWLQH80QHVokULFBUVQSQSfXEtVdN2ilVJ5J3AZR2mWZhm4aNmKctxSBHmn8w/+eifgPI9jYqKQk5ODurWrYvWrVuXmYE4dYlDDNVAtT2eUSYoKCjA0aNHkZKSgkaNGqF9+/bcRpdlib/bTsUBuVWrVuHjx48wNDT8ARYzvhUtLS0UFBRgwIABqFKlCsaMGYP8/Hzu/larVg0AcOrUKRw8eBD6+vpITk6GTCbDjBkzAKj+jCF5ElhYWIioqCgkJCSgd+/esLW1RWRkJM6cOQNTU1NYWVmhefPmICJIJBI0btwYlSpVUrqWqieTcgoLC/HmzRvY29ujVq1aEAqFuHv3LmxtbSEUCjFt2jQAQM+ePbFq1Sql38rFFIPBYDAYDAYfkU8alEgk2L59O7S1tVGxYkU0b94czs7OWLhwIZo0aQJLS0vuN+np6WjUqBGqV69eipb/b/Lz87FixQq8ffsWIpEIPj4+sLW1hZ6eXmmb9p/CNAvTLHzTLGU5Dn0O80/mn3zzT+CPwScAmDBhAh4/fozU1FR4eHigdu3a3L5/qv5s/hXqFIcYqoFqez2D9+Tl5cHNzQ1EhMLCQpQvXx4LFy5EWFgYHBwclGb98Jl/2k7FATn5y4yhWhw+fBg6OjqIjIzkZjTdunULmzdvhpaWFlxdXVG3bl1UrlwZhYWFsLCwwMSJE3kx20m+jF4kEsHb2xu5ubkQCoVIS0vDmDFjYG9vj19++QUaGhpIS0tDRkYGPn36hPXr16NmzZoqP7ielJSE2NhYEBHq168PgUAAoKTdGhoa+PTpEwBg165dOHPmDNatW4datWrB2dkZ8+fPx+PHj+Hl5YX69esD+KMcBYPBYDAYDAZf+LyjTFNTE2KxGCNGjEBGRgb69euHVq1aAQDc3d2RnJyM4cOHY8qUKTAxMYFIJMLq1atRo0YNtGjRorSa8T/Jy8vjOrurV68OXV1dBAcHIzg4GP7+/rzuMPwWmGZhmkWVNYu6xKE/g/kn809V9s+vIV/lNXv2bDx48ADz58+HoaEhDA0Nuf3/gD9WCfJhVZi6xyFG6aO6kZxRJoiMjES5cuWwdOlSNG7cGLGxsdizZw9CQkKQmJgIb2/vMrE32r/RTj68iNWdnJwcFBUV4caNGzhy5AhOnTrFzYS5c+cOtm3bhhUrViglIHyY7SRPPvz9/VG9enWEh4ejQoUKqF+/PoqLi1FYWAgNDQ0kJiaiX79+qFKlCsqXL48aNWpg06ZN0NTUVNnE68GDB5g8eTKICNnZ2ShfvjxmzZqFbt26QU9PDwMGDICRkRFevnyJ1atXY8mSJWjdujVyc3NRsWJFVKhQAc+ePUPdunW5a5blDhwGg8FgMBhlF5lMhsLCQlSsWBEAkJKSggoVKiAuLg6pqanceS1btsSECROwf/9+LFq0CABQs2ZN1K1bF1u2bFHZ3I+IsHLlSpQrVw4LFy5EvXr1oKGhgYULFyIyMhJdu3bFzz//XNpm/ucwzcI0C6C6mqWsx6H/BfNP5p+A6vrn1/j48SOeP3+OcePGoVOnTpBIJHj06BEmTZqEgoIC1KhRA6tXr4ampiZvJryoexxilC6qHc0ZvCc5ORmNGzdGkyZNAAACgQBhYWGoVasWIiIiAADDhg3j/Qq5v9POgoICfPr0CQ0aNODFy0qdUHyZypOJn376CTo6Oujfvz8KCgqgo6ODmTNnolu3brhx4wbmzZuHpKQkmJiYcNfhy2wnoGSmV05ODkaPHg0jIyNkZmbiyJEj2LNnD4qLi9GlSxd4e3tj9erVePv2LQwNDdG7d29oaWmp7Cy96OhoDBkyBK6urlx9+p07d2LHjh3o0KEDKleujD59+kBTUxOHDx9G7dq1YW1tDQB49eoVDA0NsXz5cm72GkuyGAwGg8Fg8JG4uDicPHkSt2/fhoaGBtq0aYPAwEA0bNgQQUFBKFeuHHbv3o1WrVqhV69eAABTU1PMmTMHHh4eyMjIQOXKldGyZUuulJMq5n5SqRTx8fFo1qwZl78BgJ2dHXbv3o2XL1+WqcE4plmYZuGTZlGXOCSH+SfzTz75pyKf7/unr6+P7Oxs3L9/H7Vq1cLBgwdx6tQpNGvWDPXq1cP9+/excOFCTJ06VeX7NtUtDjFUE/bEMP5TDAwMEBMTA7FYDF1dXWhoaEBHRwejR48GAKxevRr16tVDv379ePFS+jO+t51EhHXr1uHChQs4ePAgNxuDUfrIX6bFxcXIzMzEx48fYWRkBHt7e8hkMty9exd16tSBra0tmjZtCgCoXbs2qlatCplMpnQtVU9E5KKAiCAUCpGYmIiUlBTs2LED58+fx71792BhYYEqVapg48aNaNOmDbp27QpbW1vuGqo6S+/Bgwfw9fWFt7c3xowZA319fQDA69evsWPHDmhqauLTp09caQWJRIL09HScPn0atWvXxoYNG6Cnp8fNXiMi3sYnBoPBYDAY6sv9+/cRGBgIIyMj1KtXD1WqVMHDhw8RExMDS0tLCAQCjB07FgUFBZgyZQr09fXRuXNnEBGAkk4oReSlyFQRbW1tlC9fHsnJyUqdiW3atEGFChWQlJQEgN9728hhmoVpFj5pFnWKQwDzT+af/PLPz5G/Ow8ePAhTU1OYmJigV69e2L9/Pw4cOICffvoJQUFB8PPzg0wmQ1BQELKyskrZ6v+NusUhhgpDDMZ/yOHDh8nGxoYOHDhARUVFREQkk8mIiKi4uJhmz55NrVu3plevXpWmmf+Y722nRCKhK1eu8L7dZQ2JREJEREKhkHx8fMjOzo4EAgHZ29vT4sWLuXtLRJSYmEhv3ryhZ8+ekYeHBw0aNIikUmlpmf5dyNv5OZMnTyaBQEAtW7aknj170sWLF7k229vbU0RExI8082/z4sULEggENGXKFCooKCAi4tpx8uRJatu2LXXv3p1at25NU6ZMoWfPnlFRURG5uLhQixYtyMLCgjw8PEgsFhMR8ea+MhgMBoPBYCjy4sUL6tChA82fP59SUlK44/n5+dzft2/fJqlUSomJiRQQEEBmZmZ05coVIuJnDrR+/XoaPnw4vXz5kohKNFlWVha1bduWNm3aVMrW/TswzcI0C580i7rFIeafzD/55J9/xr1790ggENDEiRPpw4cPlJ+fTzdv3qTz58/T+/fvufOEQiH5+vrS3LlzSSqVcv2gqoa6xSGGasOGcBn/KS4uLjh16hQiIyNRp04ddOzYkZtloaWlBS8vL0RHR+Pq1au8Lhnyve3U0tJSmgnEUA20tLRQVFSEoUOHomLFiggMDETjxo2xY8cOnDp1CvHx8VixYgXevXuHwMBApKWl4aeffkKlSpVUvs65HPksvcLCQpw5cwbp6enQ1taGs7MzFi1ahL59+6Jy5cqoWbMmatasCalUitevXwMA6tSpU8rWfxsikQgAkJWVhQ8fPqBx48bQ1dXF06dPMX36dHTs2BEmJiaQSqXYvHkzUlJSsGnTJuzZswfR0dHQ0tKCubm5SpfLYDAYDAaDwfgrxGIxdu7cCQsLC24PHwAoKipChQoVAABBQUG4c+cOxo8fDw8PD4SFhWHevHkYO3YsFi9ejG7dupVmE/4W/v7+aNu2LQQCAYA/VpV8nqPn5eUhOjoaxsbG3KoGvsA0C9MsfNEs6hiHmH8y/+SLf/4V7du3x9y5c7FgwQIQEUaNGgVLS0sAQHx8PHbv3o169erh999/x/PnzxEWFqayz6w6xiGGaqNB9P/rLRmMfxl5aZCioiJ4eHigoKAAs2bNQvv27aGjo8Od16dPH5iammLhwoWlaO3fR13aqS5cuXIF8+fPx9KlS2FmZgZNTU3k5eVh9+7dOHDgAHr37o3x48fj7NmzyMnJQYUKFdCrVy9eJFn0/yUkRCIRPD09IRaLIRQKUVBQAAMDA4wdOxYODg6oUKECzp49C6Bkg+kTJ04gLy8PBw8e5E29+lu3bmH06NFo3749Fi1ahOTkZHh5ecHJyQkTJ05ElSpVAJSUXggLC8Ovv/6KPn36KF3j81rpDAaDwWAwGHxBJBLB1dUVrq6u8Pf3B6A8IDVy5Eg8efIENWvWRH5+Pnx8fDBw4EAkJCRg2rRp0NTUxM6dO0uzCd/N5x3Y8s+ZmZmws7PDhAkTMGjQIIhEIsybNw8XL17E6dOnuY45PsE0C9MsclRZs6hjHAKYfzL//ANV9k85fzX4e/DgQcybNw8ODg7w8/ODkZERFixYgIMHD6Jy5cqoWrUqwsPDYWRk9IOt/nbUNQ4xVBfVjfAM3qOlpQWZTIZy5cphw4YNGD58OKZOnYrx48fDwcEB5cuXR1pamlINZT6iLu0sq8iTXfnLOCkpCdnZ2VzSXFxcDD09PXh5eeHp06c4ffo0xowZAwcHB6XrqGqdc0U0NDQgkUgwYcIEGBgYIDQ0FNWqVUNhYSFCQkKwaNEiaGpqomvXrjhx4gQuXLiABg0aoEmTJtiyZQu0tLR4kUwCgKWlJVavXo1Ro0Zh5MiRiIuLQ58+fRAaGqp0n1q0aAFtbW2kpaV9cQ0+tJPBYDAYDAbja6SlpSE1NRUNGjQAoNzxNGLECDx8+BDHjh1DhQoVMGbMGGzZsgUtW7ZEixYtsGjRIt6sXlDk885E+efc3FxIpVJUqlQJMpkMixYtwrlz57B9+3beDMQxzcI0Cx81i7rEIeafzD/55p/ye0AK+9jNnDkTHTp0QK9evbjz3NzcAACzZs2CVCrF5MmTMWHCBAwYMAD5+fmoU6cODA0NS6UN34q6xCEGf1DNNaQM3vH5JrNy5AGuZs2a2LNnDxo0aIBly5YhICAAs2fPRkhICOLj45WCvSqjLu1UF+QbropEIsyaNQsvX75E/fr1kZeXh+vXrwMAdHR0uOTZx8cHCQkJiI2NxeeLilU1yQKgZGt2djaSk5Ph6uoKgUCA6tWro169eti1axcaN26M1atXQyaTITIyEseOHcO2bduwZs0a6OjoQCKRqHQ7P/dPefKckJAAHR0deHp6QldXF5qamtz/JD8/H7Vr10aTJk1Kw2QGg8FgMBiMfx2ZTAYdHR1IpVIkJCQofScWi2Fvb4/t27ejZs2aMDAwwPDhw/HhwwcUFhYCAOrVq8eVSlNVvtc2iUQCoVCIxYsX47fffsOuXbvQokWL/8i6fxemWZhm4aNmUYc4BDD/ZP7JP/+UyWSYP38+jh07xpVy/vTpE5KSkhAaGopLly4pne/m5oaQkBBua55Xr16hSZMmMDMzU/mBOHWJQwx+wQbjGP8IIlKaSfHhw4evnieTyaCnp4cdO3bAz88PVatWxePHj6Gnp4ddu3ap/EtLXdqpTkilUmhqakIsFmPSpElITExExYoVUadOHTRr1gw7d+7EkydPAJQkzzKZDO/evUODBg1Qq1YtLmlRdSQSCTQ0NCAWiyESiZCTk4N3794pnVNcXAwAWLBgAT5+/IgjR44AAAQCAerUqcMlH6o8S08ikXD3Mzo6Grdv30ZaWho6deqE5cuXo7i4GCtWrEB8fDyAkhl9Hz58wK+//ooaNWqgc+fOpdwCBoPBYDAYjL/P06dPsXbtWgAlEwXr1asHGxsb7N27F+/eveM6DnV1deHq6gojIyNoaWmhsLAQp06dQuvWrWFubq50TVXc/+VbdZki8o7iX3/9Ffv27cPu3bthYmLyX5v6r8A0yx8wzaL6mkVd4pAc5p9/wPxT9f1TjqamJipVqoTQ0FBcuHABv/76K2JiYjBnzhxYW1tj4sSJuHjxIoA/BiednZ1RvXp1nDt3Dr/99huKiopKswl/ibrFIQb/YE8T429RVFQEqVSqlDyMHj0aa9as+WpQ1tTUhFQqBQAMHjwYK1aswJ49e7B06VI0b978h9n9vahLO9UR+T5/27dvR1paGgYOHIgGDRqgWbNmGDx4MF68eIEVK1bgypUrEIvFiImJwZEjR9CkSRPelLMhIm6W3oABA3DmzBlUrVoVBgYGuHXrFrcpsXxvw/Lly6N8+fLc7xWfe1VOPuTlPEQiEQYNGoTg4GBMmDCBu3cdOnRAZGQk7t69i19//RVv3rxBcnIyJkyYAKFQiO3bt3PlMhgMBoPBYDD4RnFxMU6dOoWVK1dizZo13HFra2tkZGQgMjISKSkp0NDQgEwmU1rhEB8fj9evX8Pa2ro0TP9mvleXKaKvr4/atWtDIpHg4MGDMDMz+6/N/ddgmoVpFr5oFnWIQ5/D/JP5J1/883N69+4NBwcHjB07Fjt27ED79u1Rt25dTJ06FVZWVpg0aRIuXLjA3bOUlBS0atUK48ePh4+PD8qVK1fKLfg66hiHGPxDdackMFQWqVSKoUOHorCwEPv27YO2tjaKiopgZ2cHY2PjPw3Kny9FV3xBqyLq0k515uLFi9i+fTvS09O5JBIAXFxcoKmpie3bt2PEiBGoWLEi9PX1UatWLURERHAvblVOJuUbK0ulUhw8eBC6urpo0KABDA0NERAQgAULFkAgEMDNzQ2VKlUCAGRkZMDAwAA1a9YsZeu/D7kI8vb2RpUqVbB06VIIhUJ07NgRurq6KC4uRqdOnRAREYGxY8di9uzZyM7OhkQiwbFjx7hyGao8S4/BYDAYDAbjz9DR0YGHhwckEgk3ODV+/Hh4eXkhJiYGx48fBxFh9OjRXKWO4uJixMbGYt68edDW1sbIkSMB/JFDqhJ/V5cBf+wN8+uvv0IikaB+/fo/0PJ/B6ZZmGbhg2Yp63Hoz2D+yfyTD/75Oc2bN0f58uW5e3zt2jX06dMHtWvXxrRp07Bw4UJMnjwZkydPRq1atXDp0iV8+PABffr0QcWKFUvb/D9FXeMQg19o0OdFihmM/4FYLMbx48exbNkymJqaYt26ddDW1ubNJqzfirq0Ux14+/YtoqKicPfuXRgaGkIgEGDgwIEAgNOnT2PRokXQ0NBAeHg4OnTowP0uPj4eSUlJeP/+PerVqwdbW1toaWmpZJIlTxQUEwaxWAxPT0+IRCLY29tj0qRJAICCggJERERg69at6N27N9fmffv2QUtLC3v37uXdM37t2jUsWbIEq1evRv369SGRSHD58mUcP34cubm58PPzQ5cuXXDz5k34+fmhYcOGOHnyJO+SZgaDwWAw/i2+1gnIOh74iTyXef/+PQ4ePIhNmzYhODgY/v7+AICQkBCcPXsWFSpUgKOjIwwMDPD8+XOkpKRAV1cXO3bs4PZUUcUcUF10GdMsTLPwWbOU9TjE/JP5J5/9E/gj75OvCLt06RJkMhlOnz6NixcvYu7cuejXrx8AIDU1FcuXL8fx48dRqVIllCtXDhs2bFD5Es9lPQ4xygZsMI7xt5BIJDhz5gwWLVoEY2NjrF69Gjo6OmVOwKtLO8sy9+/fx8SJE1G1alVUrFgRIpEINWrUQGBgIFq2bAkAOHnyJCIiIlCrVi2MHz8ebdq0+dPrqepLWV6eJzMzE7Vr1+aOL126FBs3bkTbtm0RHh6OBg0aAChJqg8dOoT169cjOzsbderUQYMGDRAZGcnL5OPChQsYM2YMjh8/jvfv3+PIkSO4cuUKmjRpAi0tLbx//x779++HsbExXr58iWbNmqmsCGIwGAwG479G/v4Ti8VITEwEADRt2hQAG5DjG/LONZFIhPDwcCQmJuLOnTsAgFGjRiEoKAgAcOTIEdy5cwd3796FhoYGzMzM0L59e3h5efEiJyrruoxpFqZZ+KxZynocYv7J/JPP/gkoP3Nv3ryBtrY2dx+fP3+O9evX49KlS0oDckDJsy8Wi9GkSRPUqlWrNEz/Zsp6HGKUHdhgHOO7UAxKJ0+exK1bt3D48GE4ODhg6dKl0NbW/kIQ8VEgqUs7yzrPnj2Dn58fnJyc4OXlhcaNGyM3NxdZWVlo2LAhACArKwtVq1bFsWPHsGHDBlSvXv1/Js+qxvPnz7Fjxw48fPgQmZmZaNu2LUaOHInWrVsDADZs2IBly5ZhyJAhGD58OAwNDbnffvz4EXl5edDR0UG9evWgoaGh8snH15L67OxsjBo1Cg8ePIC2tjaqV6+OiRMnwsbGBp8+fcLgwYMRGhqKXr16/eV1GAwGg8Eo6yh2VgwbNgzv37+HpqYmunTpgvnz5wNgeS3fEIvFcHd3R6VKldCvXz9UqlQJJ06cwLVr1zB48GAEBwdz5+bm5oKIUKVKFe6YKudE6qDLmGZpDYBpFr5rlrIah5h/tgbA/JPP/qloY2hoKK5fv47c3FxYW1sjIiICQMlzvmHDBly+fBnz5s1Dnz59cOfOHZiYmHAlSPlAWY1DjLKF6kZGhkoif5kGBQUhLi4OTZs2hYmJCc6dO4eAgACsX79eSRDl5eXh+PHjMDc3R7NmzUrZ+m9HXdpZlhEKhYiMjIStrS3GjBkDAwMDAICenh4qV64MABgxYgSSk5OxZs0a9OvXDxoaGtiwYQNWrVqFESNGKJWXUFUePHiAESNGoGPHjujRowcaN26M8+fPIz8/nzvH398feXl5WL9+PfT09ODl5YWqVasCwBezm2QymUonzfKkvqCgADt37kRaWhpMTU3Rr18/zJ07F/fv34eBgQGMjY25PUE+fPiA8uXLQ09PT+laLMliMBgMhrohH4grLi5GUFAQdHR0EBQUhPj4eBw8eBBCoRCrVq36okwVQ7WJiYlBbm4upk+fDnNzcwBAq1atcOzYMaxZswa6uroYM2YMgJJc+PMcSJVzorKuy5hmYZqlrGiWshiHmH8y/ywL/im3cezYsXj48CE8PDxARFi7di1Gjx6NVatWwdTUFP7+/tDS0sLkyZMRGRmJcuXKYfv27aVs/fdRFuMQo+yhutGRobKcO3cO9+/fx5IlS9ChQwcUFxfj2rVrmDNnDvz9/bFhwwZoa2tDJpMhJiYGS5YswfHjx0vb7O9GXdpZVsnOzsbLly8RGBjIJc2Ks1xGjhyJBw8eQFdXF+PGjcPy5cvRt29fEBEWLlyI8+fPq3zi/OrVK4wbNw7Ozs4ICAjgZqf16tULurq6AICDBw/CxcUF48ePBwBERkYCALy9vbn/iyKqvoG0trY2RCIR3N3doaOjA5FIhIoVKyIrKwtNmzblSmzduXMHWVlZyM3Nxdq1a1GzZk1YW1uXcgsYDAaDwShdNDU1IRaLcfHiRRARJkyYgNatW6OgoACNGzfGr7/+isDAQERERLABOR4hk8nw6dMnyGQy7litWrXQr18/xMXFITIyEvr6+vD19eVlR1NZ1mVMszDNUlY0S1mMQ8w/mX+WFf88fvw4Xr9+jRUrVqBt27Z48+YNbt26hYsXL3ITW+QDcsbGxoiJicHo0aOVVkDygbIYhxhlEGIwvpOtW7eSlZUViUQi7phEIqGoqChq27YtjRo1isRiMRER5eXlUUZGRmmZ+o9Ql3aWVc6dO0etWrWiN2/eEFHJvZMzevRosrKyoufPn9Pjx4+pS5cu5OnpSQUFBUREdPXqVaXzVQ2ZTEYymYwWL15Mw4YNow8fPnDfFRYWcn8HBgaSQCCgSZMmce1ZtmwZmZqaUnh4OAmFwh9u+z+luLiY/P39ycvLi5KTkyknJ4eIiHJzcykxMZHEYjGlpaWRh4cHCQQC6t69O3l7e3O+qsr3lcFgMBiM/xqZTEbTpk0jBwcHsrOzo+LiYu47oVBIu3btopYtW1JgYKDSbxiqg1Qq/eLY06dPqV27drRy5UqlXJCI6Pz58yQQCEggENC+fft+lJn/KmVZlzHNwjQLHzWLusQh5p/MP/nmn2KxmKKioig/P5+I/rB16dKl5OLiQkVFRUREtGvXLvL29qaIiAhq3bo1jRw5kmsfESnlh6qKusQhRtlDdacrMFQOqVQKAKhWrRqkUilevnzJfaelpQULCwv06tULFy9exNChQyGVSlGxYkXezaRQl3aWdapXr47CwkLu/slnvbx9+xaGhobYtGkTjI2N0bJlS7i5uSEmJgbv3r0DAHTu3BlaWlrcs6BqaGhoQENDA1FRUWjQoAHq1KkDoGSWV7ly5QCUzNJ7+PAh+vfvj4cPH2LixImQyWQYP348Bg4ciEePHn1RYoEPZGZmIi0tDb6+vqhduzaEQiE2bdoEe3t7ODk5oV+/ftDU1MTatWuxfv16LFy4ENu3b4eOjg4kEgmb/cRgMBgMtYT+f5twDQ0N9OvXDzVq1EBycjL27dvHnaOvr4++fftiypQpiIqKgo+PD/cbhmogkUi4MqMfP35EXFwcZDIZTE1NMXjwYGzYsAHnzp1DYWEh95v8/HxYWlpi8eLF6N+/fyla//2ogy5jmoVpFr5pFnWKQ8w/mX/yzT9v376NtWvX4v79+wCAp0+fAigpyVi+fHno6OggOjoaixcvRq9evTBmzBjY2dnh0qVLcHV1xc2bNwGofrlGdYpDjLIHK1PJ+FM+37hS/reJiQmkUin27t2LOnXqoHbt2gAAHR0d1K5dG0ZGRsjKykJqairq1q1bKrZ/D+rSTnXDwMAA1apVw9mzZ9GhQwdOlDdu3BjTpk1D+fLlAZS8xO/evQsbGxsYGRkpXUOVExCRSIS0tDTUqFEDgPJG9fJyGQcPHoShoSHWr1+PXbt24ciRI+jfvz+mTZvGnU88Kz9VqVIlFBQUYO/evXj16hV+//13vHr1Ck5OTmjWrBkOHDiAxYsXY+HChbC1teV+p+p16xkMBoPB+C+Q57mK73pzc3OEhYVh1qxZ2Lt3LypUqABXV1cAJQNyffr0QUFBAa5du8btMccofaRSKVdaa8yYMUhISEBOTg6qV68Of39/9OrVC5mZmZg6dSpevnyJdu3aQUNDAzt37kTDhg3h6OgIDQ0Nbq8cVUQddRnTLEyz8EmzqEMcUoT5J/NPPvknALRu3RrJycmYOXMmqlSpArFYjJMnT8LOzg6NGjWCTCbDrFmz0KdPH3h6egIoyf3atm0LbW1t7v2qyvdT3eIQo+zBnjrGV1EUQtu2bUNSUhJSU1PRs2dP2NvbY/HixQgICEC5cuXg6ekJMzMzfPz4EbGxsTA3N8eECRO4xESVUZd2qiONGzdG3759sWPHDnTu3BmOjo5czXMdHR3uvEePHiEjIwMDBgwoLVO/G3n9a319fTx79gyAcuI8dOhQjB07FvXr14eGhga6d++OjRs3Ql9fn7sGH5LmzztkAKBChQoICAhAZGQkHj16hBYtWmDq1Kno1KkTJBIJHjx48NU2sY5EBoPBYKgb8vdofn4+1q1bh4SEBAiFQjg7O8Pe3h4LFizA9OnTsXXrVgBQGpAbOHAg/Pz8oKGhwQbkVAQtLS0UFRVh0KBBqFSpEoKCglCnTh0cO3YMoaGh8PT0xOjRo1GtWjXs27cP27dvR926dVG9enUsXLiQy/1UteNJXXUZ0yxMsyii6rG2rMehz2H+yfxTEVX3T6BkoPHSpUswMzNDZmYmRo8eDYlEgubNm6N58+bIyspCfn4+t5dheno6kpOT0aVLFwwfPlyl76UcdYtDjLIHe/IYX0X+sgoMDERMTAwaNmwIIsLs2bNx8OBBBAcHY9myZZgyZQpu3boFPT096OrqIiEhAXv37uWNEFKXdqob8k4jX19fvHz5EgsXLoRMJkOXLl1QvXp1aGlpQSaTIT4+HkuWLEHlypV5lThrampCX18fvXv3xrp16/Dw4UO0adOGW6rfvn177tyioiL8/vvvMDY2hpWVldJ1VDnRUuxA3LNnD968eYMqVaqgVatW6NevHzp37gyRSIQ6depwSVRaWhpSUlLQvHnzUraeoc7I4w/rvGYwGKWNlpYW8vLy4O7uDl1dXVSuXBkymQyTJk1Cjx49EBISgnnz5iE0NBTbtm2DhoYGXFxcAJR0VAElHXMslpUO8lxIsaPz8ePHyM7OxrRp09C2bVtoamoiPz8fR44cgZWVFYRCIcaMGYM+ffogLy8P2traaNq0KTQ1NVV+Brg66jKmWZhmUXXULQ4pwvyT+ScfEIvFeP/+PRISEtCkSRNUqlQJGRkZqFixIipWrIg9e/agUaNG6NKlC7eaLCsrCzdu3IBYLEZ0dDRev36N0NBQlb2X6hyHGGUT9vQx/pQjR47g0aNHiIyMRNOmTaGvr481a9Zg1apVePbsGTw9PdG0aVPcunULsbGxaNiwIRwcHNC4cePSNv27UJd2qhPyTqOaNWsiODgYy5cvx6xZs2BjY4POnTujZs2auHXrFp48eQIiws6dO7l67qpcRuJz7Ozs8Ntvv2HChAlYv349mjVrBplMppSkJCYm4u7du2jfvj0qVapUyhZ/G0TEdSC6ublBKpWicuXKyMnJwdatW+Hi4oIFCxbA0NAQv//+O86cOYPmzZvj0qVL0NDQQFBQUGk3gaHGaGpqQiwWY/z48QgICEDLli1L2yQGg6EmFBcXK83UJyIsXrwYenp6WLp0KX766Sfo6Ohg+/bt2LhxI5YsWYL58+cjNDQUCxcuxNKlS2FoaIguXbpw11DVjpmyTkZGBo4fP46+ffuiWrVq3PH3798jJSUFxsbG0NTUxLFjxzB16lSMGzcOtWrVwvTp0/Hrr7+iQYMGStfjQ2ktQP10GdMsTLOoMuoah+Qw/2T+qeqIRCKMHz8eCQkJeP/+PbS1tTFr1iz0798fd+/eRV5eHlxdXbFgwQIQEWxtbVG/fn1MnToVs2bNwuXLl1GpUiWsW7cOjRo1Ku3mfBV1j0OMsgl7Ahl/SnJyMgwMDNCkSRPo6+sjMTERO3fuhJubGwQCAbZt2wZfX18IBILSNvUfoS7tLKt8Pkvm89UoZmZmWLx4MXbu3ImzZ89i0aJF0NDQQIsWLdCpUyeMHj0a2traKj875mtJfYsWLTBkyBBERkZi2LBhWLp0KVq1agUdHR0UFBTg6dOnWLZsGYgIU6ZMAQCVLyMBgLuP4eHhqF69OmbNmoUmTZogLS0NZ86cwZIlS6CpqYl58+YhIyMDr1+/xsePH/Hzzz9jwYIF0NbW5p0IYpQtXr58icePH+P169do2bIlex4ZKgsf3gmMbyM6OhqnT5/GuHHjuI4ymUyGd+/eoVWrVqhfvz6ICAAwePBgEBHCw8PRtWtX9OzZE2PHjsXJkydhY2NTms1g/D9v3rzBsWPHoKmpie7du+PGjRucNtHX18etW7cgFosREhLCTf5ISUnBgwcPEBMTg3r16ildjy+rG8uyLmOahWkWvmkWdYpDzD+Zf/LNP+UDbT/99BPGjRsHMzMzREVF4aeffgJQso+hnp4eDh06BFdXV648Y5cuXeDu7g47Ozvk5uZy+yKqKuoUhxjqg+q+JRg/lK+9TEUiETIzM1GpUiV8/PgRrq6u6NSpE2bPno2TJ09i9erV6Nq16xczDVQZdWmnOiGvFz1mzBjMnDnzi5ctABgaGmLs2LHw8vKCWCxGQUEBGjZsyCXK8g1gVY24uDhcunQJI0aM4MpgyJMH+d9eXl4AgJ07d2LQoEFo27YtGjRogNevX0MikaBKlSrYsWOHyieTwJfi4MWLFzA3N0eTJk0AADVq1ICLiwukUinCw8PRpUsX+Pj4wM3NDWKxGJUrVwYAlRdBjLJPy5Yt0aVLF0RGRqJXr168LJ3FKPsoxlyZTAapVAodHR1WYpWnvHnzBkSkNGNdKpUiOzsbmZmZAKC0Wb2vry/OnDmDw4cPo0ePHmjXrh3atWvH/U6V8wV1oG3btmjcuDE2b96MlStXomHDhnBzc0PNmjVRt25dzJs3D+np6QgODoa/vz9kMhni4uJQq1atr+bCqoi66TKmWZhm4ZtmUYc4JIf5J/NPPvmnVCrFzJkzUbNmTcyfP597Xj09PblzCgsLoaGhAX19fRw+fJgbkEtMTERsbCxsbW3Rs2fP0mrCN6NOcYihPjClzYBUKuWEUHFxMXfc2toaGhoamDlzJpycnGBjY4PZs2dzNXYrVqyIcuXKlZbZ3426tFMdiYuLQ2xsLG7fvg3gj82I5cg/V6tWDXXq1EHTpk25xEpevkDVkEgkWL9+PbZt24Y1a9YAALcP1ed/e3l5ISIiAhMnToSmpibi4+NhZGQEPz8/bNq0CTo6OpBIJCrZTjnypLmgoACvXr2CRCJBUlISqlSpAqCkFjoA6OnpoVevXqhTpw7u378PAChfvjyXNLONeBk/GqlUqvRZceVJxYoVsX///tIwi/E3+fx+llVkMhn3TliyZAlGjRqFMWPG4Pnz52wgjqe4u7tjxowZyM/Px7p165CcnAxdXV0YGxvj3r173DtTW1sbRASxWAxtbW1UrVr1iwERVc4X1AG5fy5YsAA5OTkAAEtLS+Tm5uKnn37CnDlzIBQKUb16dTRo0ABisRgPHjzA+vXr0ahRI5iZmZVyC/436qrLmGZhmoUvmkUd4tDnMP9k/skX/ywsLERiYiJ69OiBOnXqKH23Y8cOBAUFoV+/fhg3bhwuXrzIDchVqFABGzZswJkzZ1S2LKUi6hiHGOqBBsl7jRhqieKsmDVr1iA2Nhampqbo3bs3atSogUmTJuHs2bMwNTXFzp07UbFiReTm5mL27NlITk7Gxo0boa+vX8qt+N+oSzvVmdGjR+PTp084ePAgAH6UTvhffPz4EeHh4Xj27Bn69OmDMWPGAMBXZ7PJISIQkdIxvsxeKywsRJ8+fdCyZUssXrwYISEhuHr1Ko4ePYratWtDLBZDV1cXAODi4gIzMzPMmTOnlK1nqDOKz+706dPh5eWFhg0bolq1aigoKMCUKVOQlZWFnTt3AigbcaksI58BW1hYiGvXriE9PR1169aFkZERatWqBaBs3EPF98bYsWNx//59NGvWDMnJyfj06RNWr16NTp06lbKVjG8hJSUFJ06cwLBhw6CpqQmpVIqoqCgEBATA09MTkydPhlAohIuLC+rXr48JEyagffv2AIB3794hKCgIDg4OGD16dJl4tssC8vtARHjx4gU2b94MkUiEFy9ewN3dHQMHDoShoSFiYmIwffp0CIVC5OTkoEaNGjA0NMTOnTuho6Oj0rmfuusypllKYJpFdVGHOPRnMP8sgfmnapOSkoKePXti+vTpcHNzg1AoRGJiIhYuXIh79+6hatWqaNiwIXJzc5GZmYmVK1eiQ4cOKCoqwsOHD9G4cWNO26gq6hyHGGUfNhjHAACEhITg/PnzaNCgAV68eAErKytMmzYNtWvXRnBwMOLi4iAQCNCoUSPExsbiyZMn2LVrF+/q9atLO8syxcXF0NHR+eL4mzdvMGjQIIwYMQLe3t6lYNm/izwhTktLw9y5c/Hy5cs/TZ4VkYd0eeKi6uJBbqNYLMbBgwdx5coVzJw5E3Xr1sWtW7cwZ84cVKlSBcuXL+dmfcXFxSEwMBDe3t7w8fEp5RYw1BXFmZdnz57F5s2bkZqaChMTE3h7e6Nbt25ITEyEq6srxo8fr1Q2hKF6yGORSCSCp6cn8vLyIBaLkZGRAUtLS/To0QPu7u6lbeY/RvG98OTJE6xYsQJjx46FkZERPnz4gMWLF+PWrVuIjIyElZVVKVvL+F98+PAB/fv3h729PaZNm4ZNmzbBy8sLFy9exMyZM+Hq6oqpU6fi3bt38Pf3h4aGBtq0aQNDQ0NER0dDS0sLhw8fVunZ3+qEfEKAVCqFVCrlOguBkoHzBw8ewMPDg+uASklJQUpKCl6/fo0GDRrA3NwcWlpaKl1aS5GyrsuYZmGahY+aRV3iEPNP5p989E+gpK2FhYWYMGEC4uPj0atXL7x//x43b96EWCyGnZ0dJkyYgDp16uDZs2cICwuDq6srV4qUD6hLHGKoL2wwTk1RnB0gEokwevRo+Pv7w8rKCvfv38fIkSNhYmKCsLAw1K1bF/v27cP169eRl5eHxo0bY9iwYWjatGkpt+J/oy7t/Bw+JEzfw5MnTxATE8MlEHl5eVixYgUcHBxgZmaG8uXLQygUIiwsDBKJBKtWrYKGhgZv/wefbxz98eNHzJ8//5uTZ75RXFyM8PBwHDlyBKampti8eTNXgmjfvn3Ytm0bsrKy4OXlBZFIhPv374OIcODAAZZcMUoFxZmXvXr1QsuWLbFixQrs3bsXUVFRuHjxIjp37gwrKyt8/PgRWVlZmDJlCqpUqcLbuKQOSCQSjB49Gvn5+Zg+fTqaNGmC1NRUDBw4EBUrVsT69evRuHHj0jbzX2HLli04d+4ccnJysGfPHlStWhUA8P79eyxatIgNyPGEgoICnDp1CnPmzAERwcrKCsuXL0eFChWwf/9+zJo1C+7u7ggJCYFIJMKKFSvw4sUL6OnpoXHjxpgxYwYv938pi8g7jPLy8jBv3jwkJCRAIBCgR48esLCwAAAEBQXh4cOHGDhwIDw9PWFgYPDFdVT5f6UOuoxpFqZZ+KxZynocYv7J/JPP/gko72N38eJFbN68GS9evEBxcTG6dOkCd3d3tG3bVmn1uJOTE8zNzTFjxozSMvu7KOtxiMEAABBD7ZBIJNzfly9fpjNnzpCnpydlZmZyx2/evEnt27enwYMH04sXL7jjxcXFJJVKf6i9fxd1aSdRib1Eym0uK4jFYgoPDyeBQEA7duwgIqKLFy+SmZkZ2djYkLe3N0VHRxMR0ZMnT0ggENDFixdL0+R/hPxeFhcXU1ZWFmVkZBARUWpqKgUGBlK3bt0oIiKCO59PzykRkVAopA8fPtCLFy/o7du3RFTShgMHDpC7uztZWFhQfHy80m9u3rxJISEh1LFjR3JxcaEpU6aU6Weeoboo+ltBQQHduHGDRo0a9cX74/r16zRq1Cjq3r07CQQC6tixIz18+JCIiGQy2Y82m/GNCIVC6tGjB23fvp2LMVevXiWBQEDHjx+nmzdv0suXL0vZyn+OVCqlJUuWUK9evcjCwoJycnKI6I9n8/379zRq1CgyNzeny5cvl6Kl3486+ld6ejqZm5uTQCCgwMBApe/27dtHRkZGFBoaSvn5+UREVFRURAUFBdw58mdd1SgqKiKiP+JuQUEBHTp0iE6dOkVPnjzhzisL91zeRqFQSN27d6eePXuSn58fde7cmQYMGEA3btzgzg0KCiJra2saO3YsdevWjcuNVR110GVMszDNwmfNUtbjEPNP5p989k8i5Xxn7ty5FBMTQ+np6fT69Wt6/PjxF+dKpVKKj48nDw8POnny5I82929R1uMQgyGHDcapGYoBPDAwkNq1a0cCgYAEAgGdOHFC6dybN2+Subk5DR8+nG7evPmjTf1HqEs7iZRfWOPHj6dr166VskX/PsnJyVzyvGvXLiIqSZi2bdtGgwYNopYtW9KoUaPo3LlzNH/+fBo5ciRlZWWVrtF/A3kSKBKJaMSIEdS7d29ycHCg69evE9GfJ898SB6JiB4/fkx+fn5ka2tLZmZm1Lp1azpw4AARlTzHp0+fpq5du5KdnR2lpaV98fuMjAwloaCqHYiMssf79+8pMTGR+yyVSikoKIgEAgE5Ojpy8UYmk3Hvn6ysLHr16hVNnjyZLC0tafDgwSQUCkvDfMaf8HnsfPv2LQkEAk6wHj9+nAQCAa1evZry8vLI1dWV1q9fXxqm/iO+9o4oLi6mHTt2kLm5OQ0aNEipQ5yo5Jn38fGhzp07c4M4qo5iO/nWqfS9KOa5b968obVr19K6deuoRYsWNGnSJKVz9+3bR8bGxjRr1iz68OHDn15HlXj8+DHNnDmTXr9+TUREeXl51KNHD7K0tCSBQEDOzs50+PBh7nxVbcf3IBaLacSIETR06FBKSEggIqJly5aRhYUFeXp6crkgEVFISAi5ubnRgAEDSCwWl5bJ34w66TKmWZhmIeKvZinLcYiI+SfzzxL46J+K9u7atYvatm1Lp06d+iLfVczZMzIyKCwsjOzt7SkpKemH2fpPKetxiMEgIuLHWlzGv4Li8vPjx4/j7du3CA8PR0FBAVasWIFdu3ZBT08PdnZ2AABLS0usWrUKvr6+KF++PNq0aYPy5cuXZhO+CXVpJ/DH0uvi4mLMmDEDaWlpaNiwYWmb9a9CRKhduzZ8fX0hFosxd+5cFBYWYujQoRg0aBAGDx6Mw4cP48qVK5g4cSK0tLRgaGiItLQ0GBgY8KbsAhFBS0sLeXl5cHFxgb6+Ptq2bYt3795hxIgRWL16NWxtbTF9+nTMnz8fJ06cgKamJkaNGsWL5fcPHjzAsGHDYG9vjz59+qBWrVp49+4dV1JAU1MTPXr0gLa2NhYvXgwfHx/s3LkT1atX52r6GxgYcPeSiHhTToLBf65cuYJNmzbh2LFj3EbRgwYNQnZ2Np49e4anT5+iU6dO0NTU5PZYMDAwgIGBARYtWoQjR45g8+bNyMjIUCobwihd5KVG3717h+bNm6NRo0YwNzfHsWPHkJGRgYULF2L8+PHcXltFRUVITU0tbbO/C8USLbdv30ZWVhY0NTVhbm4OHx8faGpqYvPmzZg0aRKWLFnCxeQGDRpg/vz50NHRQYUKFUqxBd+GYjs3btyIJ0+eoHr16hgyZAjq169fytb9uyjuo5Gfn4+GDRtixIgREIlEqFy5MhYsWAAiwuLFiwEAHh4e0NTURFhYGOrVq4ehQ4dy11LV0lsvX77Evn37IJVKMWTIEGzfvh21a9fGokWLkJWVhU2bNmHz5s2QSqVwc3PjzZ42f4VQKMSHDx/g5+eH+vXrIyMjA1lZWRAIBPj06RMiIiKgra2Njh07YuHChfj48SNq1qwJDQ0Nld4TRZ10GdMsTLPwXbOU1TgEMP9k/slv/5Tbu3DhQmRnZ2PUqFHo1auX0jlr166FUCiEjY0N3r17h5s3b+LOnTvYvn076tatWxpm/y3KchxiMDhKZwyQUZocP36cxo0bR3PnzuVmv9y8eZN69+5NAwcOpEuXLimdf/fu3S+WePMBdWlnYWEhRUZGkouLCx07dqy0zflXkd+3wsJCSk9Pp4yMDJo3bx4JBALaunWr0rlCoZCePn1Ko0ePpvbt21NAQEApWPzPkEgkNHnyZPL19aWUlBQiIjp06BC1bduWzMzM6Pz580RUMptt7Nix1Lp1azp06FBpmvxNvHv3jrp3705z587lyqERKc/w2rp1K927d4+IiM6fP0/du3enHj16cLPZyvoqB4Zq8+DBA3J2diYrKysyNzenyMhIEolE9OTJE3J0dKTu3bvTq1evvvid4kzL9u3b83JVVVnHz8+P7Ozs6MGDB0REtHPnTjI3NycjIyNavHgxEZXEn9evX9Mvv/zCzaTmA4qrUYKDg8na2pratGnDrejcv38/EZXMsO3atSsNHTqUlzPAFRkzZgxZW1vTqFGjaPjw4V+UFeX7u0QeU0QiEY0ZM4YcHR2pX79+XHkioVBIu3fvphYtWlBISAgREWVmZlJqairdvHlT5Wd/K85q3rNnDwkEApo5cyYNGzZMaQVVTEwMDRs2jHr27MnNhifi7wo5mUxGz58/p5YtW9KVK1eIiGjlypVkZ2dHiYmJdPr0aRIIBNS/f/8vYhBfnumyrsuYZmGahe+apSzHIeafzD/57p9EJSvd3N3dSSAQ0IQJE5RKjkulUpo7dy6ZmpqSQCAga2tr8vPz+6o+VWXKchxiMBRhg3FqxosXL8je3p5atWpFYWFhSt8pCiJ54OMr6tJOIqJ79+7RL7/8QgKBgCIjI7njfO2QkCcVcvuLioqod+/eXGdLSkoKlzxv27aN+508yRYKhXT06FFydnamuLi4H2z9P0MoFJKLiwtt2bKFiIhycnJo5syZFBQURH5+fmRqaso9s58+faLly5erdDkJ+T3cs2cPubm5Kd0PxQ634cOHk0AgIG9vb3r+/DkRlSTPPXv2JHNzc8rOzv6xhjMYX+Hs2bMkEAjIzMyMbt26RUQlHeNPnjyhnj17kqOj41cFj1QqpXPnzlHHjh3ZYJwK8vr1a7KzsyNnZ2d69uwZEREtXbqULCwsaNSoUXTlyhXau3cvubu7k4uLi0rH3D9j0aJFZG9vT9evX6fExER6+vQpDRo0iH755RfavXs3EZV0XvTo0YM8PDx4G3N37NhB9vb2FBMTwx0TCoX06NEjrmOGiL/5kdxukUhE3bt3pz59+tDUqVPJ1dWVbGxs6M6dO0RU0uY9e/ZQixYtaMCAAeTi4kLh4eHcdVR1QC41NZW2bdtGqamp3LGjR49y5Qw/3+/kyZMnNGzYMOrVq5fSgBwf+LM4Eh4eTi9evKDbt2+TQCCgCxcuEFHJvoCtW7cmJycn8vHx4d0zXFZ1GdMsTLMQ8VezlPU4xPyT+ScRf/2T6OuDS+/fv6eRI0dSmzZt6MyZM198HxsbS/fv36fExERebI9Q1uMQg/FnsMG4Ms7XAvj169epX79+1K5dOzp16pTSdzdv3qQ+ffqQo6Mjr/YeU5d2En29rbdu3SInJyeysLBQmjnMt5dTfHw82djYKG1AW1hYSBYWFnT27FnuWGpq6leTZ3kHU0ZGBrVu3Zr27dv344z/G3zeIZaRkUEuLi60cuVKIiJavXo1WVpa0uPHjyk2NpZMTU2pTZs2tGzZMiosLOR+p8rJMxGRv78/eXt7c58Vn0s/Pz/q2bMnHT9+nNq0aUNubm704sULkslkdPToUQoODlb59jHKNvLnb+fOnTRo0CBydHQka2trbi+jzwfk5McV2bVrF1laWqrsLP+v+Rjf3h/fwucxV/753bt3ZGNjQ3369OHE+9atW8nHx4eMjIzIycmJRo0axQl+PsWk4uJi8vHxoWXLlim1PzExkQICAqhnz54UGxtLEomEIiIiyNnZmZKTk0vR4m/n82c0PDycBg4cSERESUlJdODAAbKxseHenXPmzCkNM/9VJBIJBQcHk4+PDzdodejQIWrZsiV17tyZmyggEono2LFj5OnpSX5+fio7AKdIQkICWVlZ0YwZMygpKYkWLFhARETHjh0jgUBA/v7+X8TQp0+fUkBAAFlYWNDFixdLw+zvRh4/8vLyKDw8nJYsWUIHDx5UOmfp0qU0aNAgIirpQL506RK5u7vTzZs3uedelWO0OugyplmYZuGzZinrcYj5J/NPPvsnkfK9yMjIoLdv35JIJCKikgHUQYMGUYcOHej27dulZeI/pqzHIQbjr2CDcWUYxQD+/PlzevDgASeObty4Qc7OzuTi4sItU5dz7do18vDw4M0mn+rSTqI/Eq2ioiJKTEykJ0+ecLO+Hjx4QP369SNnZ2eltvLp5fTkyRNycnIiKysrboVCVlYWWVhYfHH/kpOTueR5+/bt3HGZTEbXrl2jTp068WIVSl5eHm3evJn7vGvXLnr+/Dk9e/aMTExMOMGQl5dHdnZ21K9fP/Lw8ODNMvyioiLy8/OjkSNHcp/lbN26lTp16sStYnj27BkZGRnR0qVLiUj52eVT8swoG3z+zBUXF1N+fj5dvnyZnJ2dvzog5+joSB06dKDExMQvrpeRkfFD7P5eFNt57do1Onv2LCf2yiJ5eXlKZU0+H5Dr27cvPX36lPs+Pj6ecnJyuHjEh0ENRT59+kStWrXiZkdLpVLunr9+/ZpatWpFa9euJaKSZ4EvZSoV3w+5ublERLRp0ybq1q0bTZgwgZydnUkgEFBgYCAdPXqU5s6dSz169OA2gucTiu97oVBIzs7OXInR7OxsCgsLo4kTJ5KHhwd16tRJqWNGLBbz5tmVSCR06tQpatGiBbVu3Zr8/Py4MlT79u0jgUBA06ZNo3fv3in97uHDhxQeHs6rPCE/P5969uxJtra21KFDB+rcuTMtXLiQ+37u3LnUrl07SktLo5iYGPL29qbRo0dz91KVc0B10WVMszDNwnfNUpbjEPNP5p989k/FezJt2jTq27cvmZiYkIuLCzdRKTU1lQYPHkwdO3bkJmLxkbIchxiMv4INxpVRFF8yISEh1LFjR2rRogW5uLhQZmYmERFdvXqVXFxcviqI8vPzf6i9fxd1aSeRcskEb29vsrOzozZt2lCXLl1o165dJBKJ6NGjR+Ts7Mz7ATlPT0+ysLDgZrN17tyZDh48qJR0EZUkIXPnziWBQMDNspXJZLR27Vrq2rUrvXnz5ofb/70cP36cBAIBzZ8/X+n4gQMHyMHBgSsvcPv2berbt6/Sqhu+JB9hYWFkYWHBlYaQP4/x8fFcHXsiorS0NDI1NaUdO3aUip0MhhzFmXorV66k8PBwOnr0KPe9fEDOysqK3r59y50bHR1NISEhSu8mvvjp2LFjyczMjAQCAf3yyy907949Xr07/grFduzevZsEAgGtWLGCOyYfpHj16hV17NiRBg4cSPfu3fvi3qn6vfxaB4NUKiVvb2/y8fHhVrwptsPJyYmmTZv2w2z8twkJCaFFixZRfn4+JSUlUXBwMHXv3p38/PyUZteeOnWKbG1t6cOHD6Vo7fcjv6cFBQX05MkTSktLo169enHPb2RkJFlZWdHjx48pLi6OWrVqRT169KB169bRx48fueuo+rMrRygUUsuWLUkgEND48eOV9oSR++7XBuTkqHInm6JtUVFRFBAQQElJSfT69WtatGgRWVpa0ty5c4mI6PHjx9S5c2cyMjIiKysrcnZ25lbmqvK9VCddRsQ0ixymWfiDOsQhOcw/S2D+yV+mTp1Ktra2tGvXLjp58iRFRESQQCCggIAAKigooKSkJPLx8SFra2u6fv16aZv7zahTHGIw/gw2GFfGGTduHHXu3Jl27NhBu3btIgsLC3J2dqb09HQi+kMQubu7f1EyhE+oSzsLCwvJ2dmZBg0aRKdOnaIHDx5wM7lCQ0OJqKRkpYuLC7m5uSmVrFR1FDtLHz9+TJ6entShQwd6/fo1ubi4UPfu3cnDw4NWrFhBp06dIqFQSBKJhJKTk2nHjh1KM76Li4u5e6/q5Obm0vbt28nU1FQped6wYQO1aNGCzpw5Q1FRUTRo0CDy8/Pjkg4+dZKfOHGCTE1NaenSpX/a0SKRSGjr1q1/WuaPwfhRKO7L1K1bN7K1tSUbGxsSCATcbEQioitXrpCLiwtZWVnRsWPHaO7cuUpCSJU7hYmUBYx8P4Vz587RlStXyNfXl6ysrJRKgPAVeTvFYjGJRCISiUScmF22bBl3nlzYrVy5kgQCATk7O9OLFy9Kxea/w+fC9siRI5z9mzdvplatWlFkZKTSflwpKSnk5OTErZrjI3PmzCGBQEARERFUXFxMBQUF3Eo5ORkZGRQSEsKL/fAU/U3+7Obl5ZGDgwPNmzePhEIh7d69m2JjY+nx48dkZGRE586dIyKijx8/UseOHalz587k4+PDm04K+bMrkUgoISGBdu7cSZs3byYzMzOaOnWq0mpN+YBcaGgor3IFeY5aWFhIsbGxtGLFCvL39+c6hFNSUig8PJwsLS1p0aJFRET05s0b2rlzJx06dIj7H6n66kY5ZV2XMc3CNAsfNYu6xCHmn8w/+eifRMr3Ij4+nnr27EnHjh3jfPTp06fc/ZVPSkpNTSVnZ2fq3r07Lya0qEscYjD+F2wwrgxz7tw5cnR0pOjoaCIq2T9j6NChZGxsTL1796a0tDQiKqnhb29vTz4+PrwsTaUu7SQiun//PtnZ2dHt27e5BOrq1askEAjo7NmzXMJx48YNsrOz481s9691GMXExFD//v2pVatW1K5dO+rbty+FhISQpaUlmZiYUNu2baljx45Ks2qLi4tVuvNJnjx8bqNQKKStW7eSiYkJlzzLB14FAgFZWFiQu7s7b2cByWQyGjhwILVt25Z2795NeXl5RPRHeQmpVEpv3ryh/v3705QpU3glChhlC7lvSSQS2rt3L/n5+VFycjK9e/eONm/eTKamptxMPaKS+DtgwAASCATk6Oio8gNwchTtzM3NpVOnTtG8efO4Y6mpqTRo0CDeD8jJ21lUVEQjR46kpUuXklAo5FY8fj4gR0S0fPlymjp16hcrHFUZxXfCuHHjyM7OjszMzGjy5MlcedSpU6eSqakpBQcH0+3bt+ny5cs0ZcoUsrS05E3pxj9bcbp8+XJuQE7e3tjYWBo5ciQNGzaMAgICyNzcnBeDq/KOFHn7ioqK6NixY+Tt7U2PHj0ioj86ILZt20a9evXizr116xZ5eHhQamoqb/bRUGznoEGD6MCBA1yOfvjwYTIzM6OQkBBuVRXRHyUr161bVyo2/12EQiH16dOH2rRpQ61atSIvLy+l71NTUyk8PJw6duzIdUApwpd4VNZ1GdMsTLPwWbOU9TjE/JP5J9/8s6ioSKn6ipzY2Fhq2bIlV170zZs3ZGFhQcHBwZSQkECBgYF07NgxIirZB5pPlR/KehxiML4FNhhXhtmyZQvZ29tzJV727t1Lnp6etHnzZrKxsVGaoXj//n3edMZ8Tllu5+czPo4ePUoCgYCb2S3/vGbNGnrx4gW5u7tzm9s/fvyYFy8qxX3wkpOTKSYmhuuMiouLo+HDh5NAIOD2+ElJSaG4uDhavXo1zZo1i3ezYgoLCykgIIB+//13pePy5NnY2Fhp9c358+fp5s2bvJ0FJLc7IyODHB0dqU2bNhQeHs49w2KxmC5cuEADBgygfv36ce3jmzhglB2Kiopo0aJF5OHhoSQAcnNzOYGrOCCXnp5Ojx49UlrdocooCtOwsDByd3cngUBA/v7+3B6kRMoDcrdu3eKFoFVEHksKCgooOjqaLCwsyN7entavX08ikeiLAbmPHz9SbGwseXp6KoliVb+fisydO5fs7Ozo2rVrlJiYSKmpqUr2b926lX755RcSCARkZWVFvXr14sUAFZHyO0Hema/4Ply2bBkJBAJavXo15ebm0tu3b2nixIk0ePBgCgkJ4cXs6OfPn5O1tTWlpqaSVColmUxG7u7uZGRkRN7e3tx58k60devWUceOHen333+n6Oho8vHxIV9fX+5/pervUcX8782bN2RkZEROTk504sQJrmPt0KFDZGZmRqGhoZSRkcHd+1u3bvEiH1K0MTg4mHx9fenw4cM0e/ZsMjU1palTpyqdn5qaSr/++isJBALaunXrD7b230EddBnTLEyz8EmzqEscYv5ZAvNPfvnnx48fydbWlmbNmkVEJXlPSkoKvX37ltq0aUNHjhyh9PR0Mjc3p7Fjx1JhYSFlZmaSlZXVFxMKVRl1iUMMxrfCBuPKCF8ra7Nv3z7y8PCggoICevToEbVo0YJ27txJRMSVNrSwsOBVeRB1aacieXl5FBERQUQlM2TMzc3p5MmTdPLkSaWZwR8/fiRjY+MvZtaockei/B4KhULy9PSkbt26kUAgoD59+nCd4HFxceTt7U0WFhbcpryfw6dk8uHDh+Tk5EQODg508eJFpe+ys7MpPDz8i/2M5Kjyvfwr5Pc5MzOTfHx8qEWLFmRmZsaV+OvTpw+NGDGCu498bSeDvyg+c9HR0eTm5katW7fmYq/83SMXuJ+XgPnadVQRRfvmzJlDnTp1omnTppGbmxu1aNGCjhw5olTi5OPHj+Tn50empqZ09+7d0jD5b6FYarR79+7k4+NDPXr0IAcHBzI1NaX169eTUCik/Px8WrVqFRkbG1ObNm2oQ4cO1LdvX169U+SkpaWRq6sr7du3j4hKOiXu3r1LPj4+1K9fPwoMDKS8vDwSCoV07949evXqFbeKTFUpLCz8YrAwIiKCTExMuL0aFZ/pJUuWkJGREUVGRlJhYSF3/PO9YVSVqKgo2rRpExH98Qw/fvyYOnXqRCYmJnT69Gml81NTU8nOzo5atWrFzXbnS+eTYkx1cHCgwYMHU5cuXcjS0pI6duz4xYCcqakpeXp6Us+ePSksLIy7jir66tu3b+n9+/fc5/z8fNq6dSuFhobS1atXiagk39u0aRMZGxvT9OnTlX6fnJxMu3btUvn3CZF66TKmWZhm4ZNmUac4RMT8k/knv/xTkaKiIq68qI2NDfXu3ZsrKS8fqDIzM6Np06Zxq8gTEhLI0dGR9u7dS0SqWwVB3eIQg/E9sMG4MoBicCouLubEa2pqKrfc3tXVlUJCQrjzFi9eTD4+PjRx4kRezBYmUp92fs758+fJ2NiYbt++TUKhkNzc3MjKyopMTU25gTipVEpRUVHUuXNnun//filb/H0UFRWRq6sreXt70++//04PHz6kpUuXkkAgoPHjxxNRyWxxDw8PsrS05Mo08YWvJQ/Xrl0jHx8fsre3/yJ5joqKIhMTExIIBLR58+YfZeZ/jmJd+qioKIqIiKB58+bRmjVrKDo6mvueTyKoLKPqHbn/BQUFBVwH/+3bt8nDw4Nat26tVLaGqETob9++nQQCAW3fvr0ULP3nvH79moKCgujixYtcKZ5hw4aRhYUFnThxQmlALjU1lUaMGMGLzesVkclkFBISQi4uLpSQkMDtCTJp0iSytLTkVsgREffe2b59OxeD+BaLhEIhubi40LRp0+jChQs0btw4EggE1LdvXwoICKBffvmFwsPDeSVor127Ro6Ojtx7/+3btxQVFUXOzs5kZ2f31QG5gIAA6tSpE61YsYI+ffpERKrbSfFnFBYW0uDBg7l2v3jxgtq2bUt9+/ale/fuKZ2blpZG58+fp4sXL/JutrtUKqWgoCByc3Oj169fU0ZGBr1//56GDh1K7dq1UxqQO3PmDHl6etKIESO4lYGqhkwmo6SkJOrUqZPSns2//fYbl9cp7iuamZlJGzduJGNjY27f589RZX9VR13GNAvTLKquWdQtDinC/JP5p6r7559RWFhIPXv2JIFAQKNGjeKOP3nyhEaPHk0mJiZ06tQpys/Pp9evX9PUqVPJ2tqakpKSStHqP0ed4xCD8a2wwTieo9hhGh4eTkOHDqXBgwcrifX8/HxycHDgZiVmZWXRiBEjKDw8/Ifb+3dRl3Z+jYSEBHJ2dqZff/2ViIhevnxJlpaWZGVlRcePHyeRSER3794lT09P8vHx4V0n+t27d8nOzo7u3bvHvWT3799PpqamtHfvXnr58iURlXRGOTg40LBhw0rT3O9CcYPaqKgoruY3EdHNmzfJ29ub7O3tlTr7L126RNOmTaNHjx7xJon81o7O/5VE8e3ZLasolnmJi4ujqKgoyszM5Oryl0VkMhkFBgaShYUFF3Pu3LnD+ejnAle+zxpffFSRtWvXkkAgIEtLS6XJGzKZjIYOHUrm5uZfDMjxUQDJZDLy8fH5qqibNGkSN6FFXi5NMY6penu/tndacXExLVq0iLp06UICgYDs7OxozZo1VFRURDKZjPz8/CgoKKi0TP5bPHnyhNzc3KhXr17k6OhIEydO5Fb2OTs7U+fOnbkBOTkTJkwgKysrsre3V9pnjE88ePCAunbtStbW1vT06VMiInr69Cm1bt2aPDw8vhiQU0TVn11F8vPzqX///l8tszR06FBuhZw8FhUWFnJ+qsqx9/Lly0RU8g5NT0+noqIi2rVrF7Vp04aCg4OVzs3MzKRNmzaRmZkZBQYGloK1fw911WVMszDNIkfVNYs6xKHPYf7J/FOOqvsnkXJbk5OTafbs2bRgwQIyNTVV0i53797lJtjZ2dlR9+7dyc7Ojp4/f14aZn8X6hiHGIxvhQ3G8RjFl8y4cePI2tqa/P39ydHRkUxNTenChQtEVCJ+rK2taejQobR161aaNGkSWVtbc3uLqTrq0k6iP+9c2LlzJ5mZmdGrV6+IqKTMgrOzM3Xp0oXMzMyoe/fuNGDAAG62MJ86Y06fPk2tWrWid+/eERHRsWPHSCAQ0IYNG+jFixc0ZMgQTty/fv2aV20jKlmt4OTkRO3btyeBQEAuLi4UGxtLRCXJs4+PD9nY2NCePXvo4sWLNGDAAG72HpHqdjhFR0dztc3VhT979vi26uKvUCzz4ubmxnXsW1tb07Rp0zg/LYvExsaSk5MT9ezZkyuNpyhwPx+Qk6OqPirna8/nyJEjSSAQ0NKlS0koFCqdO3ToULK0tKTDhw8r7SHHR9zd3Wn48OHcZ/nKDZlMRg4ODtSlSxfavHmz0v9A1VGMQ3v37qWFCxfSoUOHSCaTkVgspmvXrtGVK1eUfDU3N5eGDx9Oc+bMIYlEwquYdf36dTI3NydTU1PasWMHEZX8D742ICcSiWjChAl0//59ys3NLUWrv4+vdRpFRUWRq6srWVpafveAHF8oKiqinj17Kq2ckuexCQkJZGlpSb1796YzZ84olRpVxec3IyNDSW+IxWIaOHAgBQUFUUpKCkkkEq7EsWKZTaIS/bJy5UoaOHAgLzoQ1UmXfQ7TLEyzqDLqFIe+BvNP5p98QfHZy8/P5ya8CoVC2rZtG5mamiqVbCwqKqLr16/Tzp076ffff6fk5OQfbvO3ou5xiMH4VthgHE9RFKIxMTE0fPhwevjwIUkkEkpISKDx48eTmZkZN2smKiqKLCwsyNramnr37v3FHhyqirq0U5G8vDw6ceKEUkmwjIwMcnd3p8WLF3P7oKSnp1NMTAwdPXqUoqOjeVGe6GsdKI8fPyZjY2O6evUq3bx5U2kfvDdv3vBuHzyiP+yTyWQ0adIk8vX1pWvXrtH58+epV69e1KtXL+7ZvH37No0YMYIEAgF17NiR3NzcuM4oVexwIippn7wkxOfHyyqKbbt8+TIdPnyY7ty5U4oW/XcUFRWRp6cnDR48mK5cuUJpaWm0ZcsWateuHbm5uXGl/fjM53FSfn/j4+Opd+/eXwzI+fj4UPfu3b/YJF3VUXxui4qKlO7dkCFDqHXr1nTgwAGlVY8ymYw8PDyoa9euvBmkUoy5inFz69atZGNjQ0eOHOGOyWQyEgqF5OjoSJ06daI2bdrQlStXiEj1Z9Iq2hcYGEht2rQha2trEggEFBISwu0xQVTS0bRnzx46e/YsTZkyhczNzXlVFk5+T0+cOEG9e/cmJycn6tGjB926dYv7Xj4gZ2lpSZMnT6YhQ4ZQu3bteDVpQHEl8rt37+jBgwfcd9HR0Vz7FAfk2rVrR927d+dVjvu1/EAikdDcuXOpe/fudPPmTaXvMjIyyM7OjszNzcnGxoZ7dlUxLyoqKqLFixfT3Llzqbi4mMRiMRUXF9PKlSvJ0tKSwsLCKCUlhaRSKW3dupVMTEy+6IASCoVc21Q5DqmTLmOahWkWPqFOcYiI+SfzT/6i2Lbw8HAaOHAg9ejRgx4+fEhEJXuofe6jRUVFvNBk6haHGIx/AhuM4zmbN28mNzc36tatG2VkZHDHk5KSKDg4WEkQZWRkUHJyMmVlZZWStX8fdWknEVFERAQJBAJycnKiNWvWcO2NiIggOzu7v3wRq3LiIu9wkkqlVFRURGKxmEsQx4wZQ2ZmZiQQCGjXrl3cb+7cuUPdunXjOt/4REFBAW3bto2CgoKUSka8fv36i87+rKwsevz4MUVFRal8nfOMjAySyWTcLPW8vDxau3Yt970qP4N/F0UBM378eOratSu1aNGCwsLClGamKSaMfP4/xMXFka2tLV24cIF7Dk+dOkXGxsZ07NgxevToEeXk5JSylf+cvLw8WrNmDfdZfv++5qO3bt0iR0dHXpX5U3wGly1bRj4+PhQUFESnTp3ijnt7e1O7du2+OiD34cOHH2rv30X+jObl5dGyZctowoQJdOzYMcrJyaHU1FTq378/OTs706FDh7jfvHv3jnx8fOjly5fk5eVFgwYNKi3z/xazZs2irl270t27dyk3N5fLG2bOnEkJCQncOfJOcGdnZ950gn8eOwsLC0kkEtG5c+dowIAB1KNHD27gRiKR0NOnT2ny5Mnk4OBAgwcP5spQ8QmhUEgeHh7cwKqTkxNt2LCBZDIZPXr06IsBuYcPH5Kvry9v3jNyO/Py8mj9+vU0f/58bjJLfHw8WVpakre3N0VFRXG/iYuLI29vb4qOjqbevXt/Uc5I1Th69CgJBAIKCwujX375hTZt2kRERCtXriQLCwsKDQ1V6oAyNTWlGTNmfHEdVe0w/ZyyrsuYZimBaRZ+oS5xiPlnCcw/+c3YsWOpc+fO9Ouvv9L8+fO5wTiiktVy8sGqESNG0MSJE2natGlUUFCg8v6pLnGIwfinsME4nrNq1SpycnKitm3bcjOi5YFLLohat25Nv/32W2ma+Y8py+38WqJx9epVmjt3LpmZmZGTkxMtX76cMjMzqUePHrRkyZJSsPKfIW+jUCikCRMmkKenJ7m4uFBoaCilpqbSixcvyNvbmywsLOjMmTOUnZ1N9+7dowEDBvB2mfrevXvJysqKzMzMuA40eTKsuPrm+fPnXyQbqpp8JiUlUdu2bZXKuu3du5frBJajqvb/U+bOnUt2dnZ08+ZNevv2LbfXlFQqVRI8eXl5tGTJEqVBD1Xmc/+6du0aGRkZcatz5Un1mjVrKD4+nry8vLiVRHxmz549Xzy78v9FbGwsde3alVxdXbma/E+fPuXNs60YU8aMGUOdOnWiYcOGkZOTE3Xu3JkOHz7Mfe/j40Nt27algwcP8m7Vo2JZVQcHB7K2tqZu3bpx91UoFFJ8fDwNHDiQbGxsyNfXl6ZOnUo9e/YkR0dHIiJauHAheXl5lWYzvov09HQaMGAAdw+FQiEtXbqUPDw8yNjYmKZMmUJZWVlUXFxMb968oRcvXih1lqsyiv516NAh2rJlCx07dow7dvbsWRowYAA5ODh80aEmEol4VVZVng/IS8N6e3vT77//Tvfu3SN/f3/q0qULTZ8+nWQyGUVHR1P//v3JyspKqbOGiD/vW5FIRA4ODmRlZUXm5uZkZGTE7RX35MkTsrW1JQcHB5owYQItWbKEHB0dydXVlSQSCY0fP55GjhxZyi3432zZsoWMjY3J1taWYmJiuOOrVq0iCwsLmj59OiUnJ5NUKqXt27eTQCCg9evXl6LFfx910GVMszDNwkfKehxi/sn8syxw8uRJ6tq1Kz179ow79vHjR9q3bx8dPXqUK/O4Z88e6tmzJ9nZ2fFqsllZj0MMxr8BG4zjEX/2MtqzZw9ZWVmRh4eHUokiIqIPHz5QQEAAderUiTedbOrSTqI/EqmCggI6d+4cHTp0SKkzKSEhgWbNmkXdu3cnS0tLcnR0JE9PT0pLSystk78b+f3Mz8+nnj17Uv/+/WnZsmUUFhZG/fv3p5YtW9KLFy/oxo0bNHbsWDIyMiILCwuys7OjgQMH8mYfvM+T+8TERIqIiKCWLVvSxIkTvzgvPj6enJycqEOHDkolSVWdCRMmUOvWrWnXrl1UXFxMGRkZFBERQa1atVIqM6B4v/jkk39Geno6eXp60oEDB4iopAzDrVu3yNPTk/r27UuDBg3iZvY9f/6cbG1tKS4urjRN/ibkz2NRURElJSURUUlbzc3NafXq1XThwgUSCATcTMX8/Hxq1aoVbd26tbRM/tt8LlBTU1M5H1V8duVxedmyZSQQCMjKykqp7J2qxyJFIiIiqHv37hQdHU1EJSscraysyMbGhnuWiUpKVgoEAjp69CjvZiIWFRWRt7c3+fn5ceI1JCSETE1Nafbs2SQSiSgtLY327NlDAwcOJD8/P5o5cybXzmHDhlFISAhv9lKLj48ngUDAdXLLBf3Vq1fp0KFDJBAIaO7cuXT79u1StvT7UHyHBgUFkbm5ObVv355at26tNGP23Llz5OnpST169KCjR4/Spk2b6Nq1a6Vh8j8mLy+Pjh49SpMnT+b22SIiysnJoUWLFpGdnR0Xa69fv06//PIL+fv7ExE/Svcoxsr9+/fT4MGD6c2bN5SZmcmt5ly6dCkRlaxWXbx4MTk6OpK7uztNnDiR+72vry/NnTv3izK0qoLcppkzZ1KnTp1IIBDQnDlzKCUlhTtH3gGlOCP81KlTKrtiQRF10mVMszDNwqfnVZGyHoeImH8y/+Svf37OiRMnqFu3bpSSkkLv37+ndevWUdu2bally5bUunVr8vX1pU+fPhFRycBzZmZmKVv8bahDHGIw/i3YYBxPUHwJ7d27lyIiIpT2QNm1axc5ODiQt7f3F4IoOTn5i2Oqirq0k0h5Zle/fv2oXbt2JBAIyMHBgZ4/f67USZ6ZmUkrV64kZ2dnEggEtG/fvtI0/X/y4sULWrlypdKxrVu3kpOTk9KGrvLOmEuXLnEv4Pv379OpU6fozp07Kl9eQY7cPrFYTElJSZSbm0tEJaUiVq1a9cUGtfJ2xcXFKXU4qTryBCssLIxMTU1p9+7dVFRURNnZ2bRq1aovBjUkEgllZGSQm5vbFzX6+UZBQQH16dOHgoOD6erVqxQUFEQCgYD69u1LY8eOJRsbG24VAxHxoq674j6TAQEBFBISwvnnrFmzyNzcnAQCAW3evJmISp7bBw8ekJ2dHV2+fLm0zP5bKJa0kclknJgTiUS0atUqMjMz+6Jm/Zo1ayg8PJxmz57NGx/9nICAAFqwYAERlbxLNmzYQF5eXuTl5UXW1tZKfjly5Eil+MwXXr16RU5OTnTz5k2SSqWUnJxMM2bMIA8PD65MimJukJeXR/Hx8fT69WuaMmUKWVhYqOxeaoodMvLYkpeXR6GhoXTt2jVKSkoiMzMzioiIIKKSPVEEAgEJBAIaPHgwL8vJhoaGkp2dHd24cYNev35NISEhX8yUPn/+PHl6epKpqSkZGRnx6rlVjCU7duzg7tfVq1eJiLhJHTk5OeTn50f9+/fnzn/8+DHvYlFhYSEFBQVRYGDgF3mhPAdctmyZ0kS07OxsSk5OppSUFAoJCSELCwuVvMef3wuRSERSqZR2795NAoGAZs+erVTud9WqVWRpaUmBgYHcynoi1c5x1UGXMc3CNAsRfzVLWY9DzD+ZfxLx1z+JlHN5+d+///472djY0MCBA8nOzo5MTU1p2rRp9PTpU9q/fz+1bduWm0jJB8p6HGIw/gu0wVB5iAhaWloAgDFjxuDWrVuoUKEC0tPTcefOHcyYMQNeXl4AgB07dmDixIlYsmQJatWqBQCoXbt2qdn+PahLO+VoaWmhoKAAAwcORNWqVbFixQpoa2tj0qRJmDp1KhYsWAATExPo6upCV1cXQUFBcHZ2xr59+3Dw4EHY2dmhZs2apd2MLyguLsbmzZtx+/ZtdOvWDcbGxgCAlJQUSCQS7n79/vvviIyMxPTp06Gjo4MZM2ZgypQpaNu2rdL1pFIptLVVN1QREbS1tSESiTBy5Eh8+PABhYWFGDt2LJydnTF48GAAwKZNmwAAc+bMgaamJqRSKZo1a4bFixcDKGmn/PlXRSQSCbS1tVFUVARXV1dERUVh9erVAIABAwZg0KBBAJTbqaWlhfT0dJiamqJ3796lZvv38rV7oa2tjd69e2PHjh04deoU6tSpg3HjxsHPzw8AMH78eAiFQmhoaAAA9PT0frjd34O8jQUFBXjw4AHi4uJQWFiIChUqIDAwEMOGDcO7d+/w+vVr5OfnIzMzEzExMdi4cSNq1qwJGxub0m7CNyOPIXl5eZgzZw7ev3+PlJQU2NrawsXFBYGBgQCADRs2AABCQkKQkJCA69evo1evXvD29uauo8o+qohMJkN+fj4+fvyIxo0bAwBu3LiBrVu3YubMmWjQoAEGDhyIhQsX4t27dxg3bhzWrFlTylb/PVJTUxEXF4fatWtDU1MT+/btw71797Br1y4cPHgQK1euhK6uLqysrGBnZ4c3b95g/vz5SExMhKGhIbZv346mTZuWdjO+QPF5y83NRU5ODurXr4+KFSsiODgYVatWxfLlyyEQCDBmzBgAwMePH9GhQwf4+PjAyMgIlStXLs0m/CUymQwaGhrQ0NCATCaDpqYmXr16hSdPnmDGjBno1KkTxGIxKlSoABMTExw6dAgymQxz5syBvb09GjVqhLS0NNSvXx/16tUr7eZ8dCP+LAAAUBlJREFUE/I8Nz8/HwkJCXB0dIRIJMLatWtx+/ZtdO7cGbq6uhCLxahcuTKGDh0KPz8/vHr1Cs2aNUPLli0B8CsWvXnzBikpKYiJiYGJiQmAkjxRR0eHe24jIyOhpaUFd3d3/PTTT4iLi8PSpUuRmpqKihUrYvv27WjSpElpNuML5DlRQUEB9u/fj9TUVLRv3x62trYYOHAggJI8CAACAgJQq1YtBAYGQkNDAw8fPkTVqlW5a6lqjqsOuoxpFqZZAP5qlrIeh5h/Mv8E+OufgPK9KCoqQnZ2NmrVqoWePXvi06dPuHr1Kjp06AA7Ozt0794dAFC+fHkYGBhAKpWWpunfTFmPQwzGfwV72lUcxQAeHR2Nd+/eYevWrahSpQoeP36M0NBQSCQSzJ49mxNEe/fuxYgRI7B+/XqVHKz5GurQzuzsbBgYGCgdO336NCpWrIjZs2ejUaNGiI2NhZGRER49eoTx48dj2bJlMDU1BVCSoNWvXx9WVlY4fvw4MjIyVLLdOjo68Pf3x5UrV3D48GGEhoYCKOl4k0gk0NPTw++//47g4GCMHz8ePj4+2LdvHy5duoRhw4ahSpUqStdT5WRS/twWFxfDy8sLenp6cHFxQVxcHObMmYOcnBz4+vpyyfPmzZuhqamJWbNmfdEuVW4nAE4c9O/fH9WrV0fVqlWRn5+PhQsXQiaTwcvL66vJc/PmzTF9+nRoa2tzyZoqoxiLrl69ipSUFJQvXx7Gxsbw9/dHx44dkZWVhZ9//hl169YFAIhEIhQVFaFatWqQSqXQ1NTkBuVUFS0tLeTl5cHZ2Rk1atRAnTp1oKGhgT179kAqlSI4OBhz5szBxo0bsWvXLi7O1q9fH9u2bYOWlpbKiz058kHHAQMGoEKFCmjZsiXMzMxw+fJlREVFYcaMGZwoWLduHY4dO4aKFSvip59+woABA5Suo4pQSZUDaGpqcsc0NTWhr6+Pvn37wsDAALm5uQgJCYGbmxscHBwAAA0aNEBhYSEOHjwIT09PrlNDlZEP2ijSvn17ODk5QUNDAxcuXMD69euxbt06GBoaomXLlpDJZDh58iTy8vJgZ2eHRo0aYerUqQCAevXqwdDQsDSa8pfIZDLueZsxYwYePXqEd+/eoUmTJrC3t+dibVFREfLz85GYmAgDAwOunZaWlio9IUAqleLIkSNo3Lgx2rdvz93T4uJifPjwARKJBEBJjnTv3j34+vri5cuX2LlzJ/T09DBx4kT8/PPP+Pnnn0uzGd+NhoYGpFIpRo0ahSpVqmDlypXo168fCgsLsX79etStWxdeXl7Q1dUFUDLQ3KhRI1SvXl3pOqoai4AvfVQgEGDKlClYvnw5tm3bhi5dusDIyIh7f4wZMwaamppYtWoVateuDTc3NzRt2hT+/v4oX748fv75Z5XKdeXxVp4TDRgwAFpaWsjKykK5cuXQtm1bGBoaYuDAgSAizJ8/H1KpFF26dMH9+/cRFBQEHR0dpUFoVUQddBnANAvTLPzULOoSh5h/Mv/ko3/KUczlFyxYgAcPHiA+Ph4///wzXF1d4enpyd3P4uJiCIVCFBYWYtOmTdDW1uYmU6oq6hKHGIz/jB+8Eo/xDRQUFCjtT0NEFBkZSYGBgRQYGMiVsCEq2f+lRYsWNGHCBK7s1qZNm8jV1ZXb/0dVUZd2EpXs/da+fXulPXqIiBYvXkx2dnbckvXw8HAaNGgQXbp0iRwcHKhv3770+PFjpZJ3V69eJTMzMzp16tQPbcO3IJPJuOXl+/fvJ4FAQOfPnyciotjYWDI1NSVvb28yNjamjRs3cu3eu3cvOTg48KKczecUFhZSfHw8jR8/XqlO+4IFC7jNaIuKiignJ4crobFx48ZStPjvM3v2bOrTpw+9f/+eCgsLKScnh+bNm0fGxsa0c+dOkkqlXBmNFi1afLWMhiqjuBfN2LFjqVOnTmRpaUmmpqZkYWFBK1as4L6PjY2ljRs30rlz52jSpElkbm6usqXu/oyFCxeSo6MjJSYmcvsorF+/ntq3b08zZsygzMxMkkql9PHjR7py5QrFxsbypsyLHPkeQ2vXrqV+/fpRYmIi993Nmzdp+PDh1K1bN3r8+DEVFxfTkydPKCIignbs2MG1UVVLvnzNpx49ekRRUVF069YtpeNXrlwhOzs7br/R2NhYcnFxoePHj/OipCqRcume1NRUevHiBZcP5OXlERFRYGAgTZ48mYhK7tvRo0cpICCArly5orL38a8ICQmhLl260NatW+nKlSsUFhZG1tbW5OXlRcXFxbR//37q2LEj9e7dm1xdXalDhw682OA9Ly+PK5eakJBA4eHh9OzZM3r79i15enpSXFwcvX37llq2bElr1qwhopJSVfKSjr6+vko5It8ICAiggQMHcp/T0tK4PSqXL19Ot2/fpitXrpCbmxsNGzZMJfdJ+xqf++jz58+5+/TixQtydnYmKysrbj9VRZ88dOiQSr9XPo+TYrGYhg8fTj4+PpSQkMDFIKFQSJ8+feJi065du0ggEFCbNm2oR48eXJtV8Z6qky4jYpqFaRb+aRZ1iENymH8y/+Sbf/4ZkydPpq5du9KyZcto3759NHDgQG57i9zcXEpPTycnJyfq0aMHubu7k6WlJb148aK0zf5T1CkOMRj/JWwwTsWQyWQ0YsQI6ty5M8XGxhJRyaatI0aMIAsLCwoKCuLOkwcuuSCaMmUKFxyzs7NLpwHfiLq0U45QKKTx48dT69at6ejRo1wSceLECQoICCCZTEb79u0jY2Njunv3LhGVJCkCgYBatGjB7c/w6dMnrjNOsVO5tElOTqaEhAQi+uOFmpqaSmPGjKGhQ4dSYmIiSSQSioyMJEtLS24PFHnS6erqSoGBgbx5GcvtlEqlNGnSJBIIBEod3XIWLlyolDxnZWXRgQMHVLrDSRHF+yGTycjf35+Cg4O/OG/+/PlcvXexWEyZmZkUERFB5ubmSgNYfCEiIoK6d+9ON27coLy8PHr16hXNnTuXjI2NKTw8nIiIli1bRhYWFtS5c2dycXFR6aRZzuf+NWbMGAoICPjiu/Xr15NAIKBZs2Z9dSNwVRZBIpGIMjIy6NmzZ5SZmcl1Hk6ePJl8fX2JSNn+GzdukJ2dHc2ZM+er11PVARyhUEhhYWH09OlT7lhwcDB169aNTE1NqUOHDuTq6kr37t2j4uJiOnXqFAkEAnr48CG9fv2aZs2aRb169eJNZ4XiHqteXl7UvXt3EggE5OzsTEuXLuXOGzFiBHl4eFBWVha9e/eOPD09lTa7V9X7+TXevn1L9vb2dPToUe45jouLIyMjI1q6dCnX4b17926aPn06TZ8+nVcTAp4/f06WlpbUsWNHsrKyolevXhFRSbuJiObMmUMeHh7c+WfOnCFnZ2e6ceMGl2+oMikpKUr7YCiydetWsre3p+zsbC72fvr0iZYtW0ampqYkEAho7NixNHz4cO7eq3LcJfprH12+fDkRlXSgurq6Kt3vz/MhVcyP7t27R8HBwUp5d0pKCjk6OtKFCxe4z1u2bCFLS0vq0KEDOTg4cPf/0aNHdPToUe5/pIr3Up10GdMsTLPwUbOoQxwiYv7J/JOf/vlnyPdav3TpEud7RUVFtGDBArK3t6e1a9cSEdGGDRtowYIFtGLFii8mxagS6hKHGIwfARuMU0GePXtGPXv2JGdnZ2726JMnT2js2LEkEAjoxIkTX/zm999/J4FAQGFhYbxJPtShnampqXT37l26c+cOPX78mBYvXkwmJibcxrNZWVkUGxtL+fn51LVrV9q0aRP321mzZlFoaCitW7dOKdF68eIFJScn/+im/CmvXr2iNm3aUPfu3enixYtKth4/fpxsbW259iYkJFBERASZmZmRs7Mzubm5kaOjI/Xr149bmaOqL+XU1FSlmUBSqZQkEgldvnyZhg4dSu3ataNnz54RkXJnUnh4OJmamtKyZcu4Nn5+jirxtXbKCQwMpD59+nCf5e3Jz88nJycnsra25mboffr0ifz8/MjHx0dlV96IxWKKi4ujV69e0cePH7njfn5+NHPmTKX79fHjR1qyZAmZm5vTjRs3qLCwkBISEiguLo6ysrJKwfpv46/u56RJk6hXr17cZ8X2ent7U7t27Sg8PFzpf6PKxMTE0MiRI8nOzo5atGhBDg4OdOXKFSIimjBhAjk4OHDnKvpfWFgY2draUn5+Pi/eK0KhkGxsbGjQoEGUk5NDRCWzZjt37kxXrlyhmJgYevXqFXXr1o26du1Kr169ooyMDPLy8iKBQEC2trbUoUMHXgwgK1JYWEjOzs7k7e1NJ0+epLt371J4eDgJBAJO0G/YsIFsbGzIxsaGunXrRs7Ozty9VtV7W1RURPfu3aMjR47Q1atXuXjy5MkTMjU15TZwj4uL4zrF4+Pj/6+9Ow+vojz7B34nAQRFqy2i1uKuIKAGF1wQFbCIC6JUxa3uihsSF9woVlSsO3Gt21uX1tetWrXua6yvu9JoQQHFDRAVQQUEAiTP7w9+OSWCAupwkpzP57q4TjJn4b4zZ+bMnO/MM2nAgAF1zoCsr5+dtRbss6KiIlVXV6d99tknF9h89/144oknpiOOOCLNnDkzffPNN2nIkCHp8MMPr7efJwt65ZVXUrdu3dJLL72UUpp/kMBxxx2X/vznP6eKior0zDPPpI4dO9YJ01Oav76++uqr0yabbJIuu+yy3PSGchbgDy2jZ5xxRkoppbfeeiv17ds3de3atUGsg15//fXUtm3bNGzYsDqfkdOmTUt9+vRJxx13XLr22mtTnz59cuuiK664IvXs2TOdc845Cx0AUJ8PCCiE/TL7LPZZGuI+S6Gshyyfls+GuHymNP/M8nvuuScNHz48Pfnkk7lt+SeeeCKVlpamqVOnppT+uz1XVVWV+vfvn3beeecGs41XKOshWFbq90C7Bap9+/ZRXl4eAwYMiFNPPTWuuOKK6NixYxx77LExd+7cOOuss6K4uDh222233HN23XXXaNKkSay33nr1/lpFtRp7n//+97/jnHPOiS+++CKmTZsWa665Zpx00klx1FFHxeDBgyOlFHvvvXesvPLK8dVXX0VKKVq0aBEREePHj4///Oc/scsuu8TRRx8dEf+94H27du3y2dZC3n333UgpRUTE8ccfH3vuuWf07Nkzdt5559hzzz3jjTfeiIsuuih23nnnaNOmTRx22GHRvXv3uPfee6NZs2axxhprxMEHH1yvx/8eM2ZM9OnTJ3baaado06ZNnHTSSbHccstFs2bNokuXLtG8efMYNmxYDBgwIG6//fZYc801c72cccYZMW3atHj99dfr9NZQ+mzRokVuDO8ddtghysvL44YbbogjjzwymjZtGhHzr4PTsmXLmDp1ajz33HNxxBFHxIorrhhffPFFNG3atF6OAT5jxow47bTT4r333ovJkyfHOuusE4MGDYquXbvGyJEjY7PNNoumTZvmlrvWrVvH7373u3jwwQfjxRdfjO222y7atGmT7zZ+0JLMz5dffjmuv/76OOqoo6Jp06aRUoq5c+dGcXFxtGrVKm655ZZYe+21Y//996/X47lXVlbG0UcfHd27d4/DDz881l577Xj11Vdz183abrvt6vTapEmTqKmpiaKioigpKYk2bdrk1r/12bfffht9+vSJtm3bxnnnnRcrrbRSfPvtt/HOO+/EPvvsE9ttt100bdo0xo8fH1OnTo2999475s6dG3Pnzo3rrrsuHn300WjSpElsvfXW9f79+10jRoyIr7/+OgYPHhylpaVRUlIS48aNi5KSkujcuXN8/PHHcdRRR8Uqq6wSH3zwQbRo0SKOO+64ev3ZMmPGjDjhhBPiiy++iEmTJsXs2bNj0KBBceihh0br1q2jadOmMXbs2Fh//fXjoIMOiu222y4uueSSKCkpiRdffDE23HDD2GabbSIi6u2yGbHoPocNGxb77bdf7L///nHZZZfFsGHDYvDgwbltnC222CIuvvjiOPHEE2PGjBnx0UcfxV//+tdo2bJlnrv5YW+88UYcddRRsc8++0SnTp0iIuKBBx6ITz75JCorK2Pq1Knxm9/8JubOnRs33HBDdO3aNdZYY43YcsstY9VVV439998/d1/Lli2jf//+uWvI1Xc/tIx26tQp3n///dh0001j6NChMXDgwCgvL4/rr78+32V/rzfeeCMOO+ywOOyww6KsrCy3zVO7vb7HHnvEfffdF6+++mq0b98+brrppujatWtUV1fHv//974hY+No99flaPo19vyzCPot9loa3z1JI6yHLp+WzoS2fEfO3cQ899NCYNGlSfPPNN1FdXR39+vWLIUOGxPLLLx9VVVXxn//8J3bYYYdo1qxZzJkzJ5o1axZlZWWx1157xRtvvBHbbrttFBUVRUqpXn6WFtJ6CJaZfKWA1LWoI3fGjBmTevbsmfbcc8/ccC7vvPNOOvHEE+vtNcMWp1D6fP3111PHjh3T4MGD01NPPZVuvvnmtPPOO6ctttgiPf/88+ncc89NHTp0SA8++GBKKaUpU6ak7t27p759+6Yzzzwzd4RXfT3SaUFff/11OuSQQ9KAAQPSSy+9lPr27Zt22WWXdNppp6UZM2akqVOnpkMOOSSdeuqpP3jkT30+Oubpp59Obdu2TUcffXTaZ5990pZbbpmGDh2aG1I0pfnDEPTq1St17949d+r+gvOv9ojh+nzk8Pf1+frrr6eU5h+tNmDAgNStW7d07bXX5p734Ycfpv333z+NHDky19/06dPTGWeckd5555289PJDpk+fnnr06JEOPPDAdOutt6bLL7887bjjjqm0tDSNHTs2nX322alHjx5p0qRJKaW6Z4z169cvnXjiifkqfaksbn7OmjUrnXTSSalbt27pmmuuyT3v448/Tv369UsjR45MgwcPrvdH7X366adpzz33TEOHDv3esxS//vrr1L9//9SjR4909dVX56Z/9NFHae+9965zLYL6asaMGWnPPfdMnTt3zg3ll9L83nbYYYd0ySWXpJTm97TVVlulgQMHpqlTp6bTTz+9QfS3OA8//HAqLS3NDV/04IMP5q6XMWrUqHTYYYelt99+e6Hn1dfPlhkzZqRevXql3//+9+mFF15In3zySXrxxRfT888/n2pqatLMmTPTmWeembp06ZI6dOiQTjvttDR79uw0b968NG7cuNSzZ89FnqlS3yyqz3/961+5s1ZTmn+21DbbbJMOOOCA3NHgVVVV6eabb04HH3xwOuWUU3Jn6tRnr7/+eurQoUO68MIL06xZsxa6/5NPPknvvvtuuuWWW1K/fv1SaWlpKi0tTR07dkydO3dOXbp0SU8//XT64osv0vDhw1Pbtm3rjJhQ3y1uGT3iiCPSiBEjUkrzt/3r67KZ0qLnZe0+TO0ZyVVVVenDDz9MH330UZ3PyPHjx6c+ffqkK6+8ctkXvpQKZb+sln2W+eyzNIx9lkJZD9WyfM5n+WwYy2dK82vr3r17Ovjgg9Mrr7ySRo0albue30svvZQ++eST1L179zRgwIA6Q8nX1NSkp556KnXp0qVeD0uZUuGth2BZEcbl2YIfrIvaIRo9enTq2bNn6tOnT27n9u23304nnnhi6tSpU+5U/fquUPpM6b8fWBdccEGdL2MeeeSRVFpamq655po0ZcqUNGjQoNSxY8dcbyNHjkz77rtv2m+//dLAgQNzf7P6vEFZW+Po0aNTu3bt0pNPPpmmT5+e7rjjjtS1a9e06667pttvvz1dc8016eSTT04vvPBCSml+Tw1hQ3JBp512WjriiCPShAkT0qWXXpp69+6dNt5443Taaaelhx9+OKWU0ssvv5z23Xff1K1bt9z1fBacf/V1uIwFfV+fp5xySnruuefSt99+m4499ti08847p+7du6cjjjgi9ezZM+2xxx65Xmtv62OYPH369NStW7f0+9//Pn3xxRe56Y899ljq1KlTOv/889M//vGP1K1bt1RWVlbnmlqfffZZ6tu3b53gqr5b3Pys3Rnq1atX6tGjRzrmmGNS9+7d0+67755qamrSjTfemPbee+96+d6tXXdUVFSkPfbYI1VWVubuW3C5qw1Tp0yZkvbbb7/Us2fP1L1799x1jfbcc896P5Rh7c7eJptsknr06JGGDx+eu0D2tGnT0v77758GDBiQXn/99bTVVlulsrKyNH369DRv3rx0+OGHpyOPPDLPHfx0b775Ztp4443TK6+8kl566aXUtm3bdP3116eU5g9t1K5du9y6uL6rrq5OQ4YMSQceeOD3Xv9s+vTp6aWXXkoHHnhg2mmnndLf/va3lNL8Xs8555y0ww475D5n6qsl6bN2Hfvuu++mHXfcMR1wwAFp9OjRafr06WnKlCkppfr5WfJdtdt+w4YNW+jLivfffz/Nnj0799h58+alM844Ix1yyCFp1qxZafTo0enaa69N5557bq7Xzz77LF1zzTW5MKQhWJJl9LsBcn3cxh0xYkTq0KFDuuSSS3JDYtXOy7feeittsskmCw2x+fTTT6fTTz893XDDDel3v/td6tOnT71+3xbSflkt+yz2WRrSPkshrIcWZPm0fDak5TOl/36ncMghh9T5vuCNN95IHTt2TI899lhKKaV77703tW3bNp122mm5MHL8+PFp8ODBaa+99spt69ZHhbYegmWpKKX/fy44y9ycOXOirKws2rZtGwMHDoyIWOQwYGPGjIkTTzwxWrVqFXfeeWdERIwcOTIuv/zyeO+99+Lxxx+PFVZYoV6e0hxROH1GRLz99ttxwAEHxFFHHRXHHntstGjRos7p5j179oytttoqhg0bFlOnTo1LL700/vnPf8b5558fe++9d8ycOTOaNGkSTZs2jaKiono5xMLYsWNj0qRJseOOO+ampZSivLw8Xn755bjoootivfXWixkzZsSQIUPiyy+/jNmzZ8eXX34ZPXv2jLPOOiuP1f94d9xxR/zlL3+JK664IjbbbLN477334oMPPoiTTz45ampqYtttt40dd9wxfvWrX8Xdd98dY8eOjUcffTRatWqV79KXyuL63HnnnWOTTTaJ5ZdfPqZOnRpffPFFtG7dOk444YRo0qRJVFdX19thB7799tvYa6+9Yt11143zzz8/VltttTrL57777hurrrpqXHfddXHllVfGww8/HCuuuGKcdNJJ8dVXX8Wrr74aFRUVcdddd8U666yT32aW0OLmZ48ePWLTTTeNFVdcMT7//PP47LPPYvXVV4+TTz45IiIGDBgQKaW4/PLLo1mzZvVy/XvJJZfEk08+GU888cT3vve++OKLuPDCCyOllBues6SkJNZaa63o379/vR7SZsaMGbH77rvHRhttFEOHDo0rr7wy3nzzzdh9993j6KOPjpYtW8ajjz4ap556aqSUYtddd42LL744mjVrFl999VWcdNJJ0aFDhzjzzDPr7fAnERETJkyIqqqqWH/99Re6L6UUM2fOjDPOOCNeeOGFqKqqiiFDhsRBBx0UEREvv/xy/PGPf4xhw4bFVltttaxLX2qzZ8+OI444Inbaaac45phjctNramri5ptvjldffTVee+216NKlS9TU1MSKK64Y//d//xfNmjWLFi1a5IYd3XjjjfPYxeItrs/XXnstXn311ejQoUP07t07tt5669xwRa1atYoZM2bE3XffHcsvv3y9fd9GLHrbr3Y795133om+ffvGoEGD4sgjj8wtgw8++GBccMEFcf/99y80ZGzt52h9+zwthGX0k08+iX322Sd+85vfxN133x1NmzbNDSk1atSoOPTQQ6N79+4xdOjQ3DZ+dXV1XHPNNfHUU09Fs2bNYr311ouLL7643m4TFdJ+mX0W+ywNcZ+lENZDEZZPy2fDXD4jFv2dQu1+5MiRI+P444+Pq6++OjbbbLOIiLjrrrti+PDhUV1dHaussko0bdo0pkyZErfddlu9uwRNrUJZD0G+1L9BdwvI119/HV999VU8+eSTcdNNN0XE/Gt+1NTU1Hlc27Zt409/+lO89957MWzYsIiI6NixY5xxxhnx97//PVq2bFmvd4QKpc/Zs2fH4MGDY/nll49tt902d/2huXPnRkTElClTYtq0abHyyitHRMQvf/nLGDRoUPTu3TuGDh0ad911V7Ro0SL3hXdKqd59MVxVVRXnnHNO9O/fP8rLy2P8+PERMX987+233z5mz54dzz77bEREtGzZMoYPHx6HHnpobL755jFp0qS47bbb4umnn85nCz/aAQccEE2aNMm9hzfccMPcBkW/fv1i6tSpMXz48Lj44otjypQpsdZaa8Uqq6ySz5J/lMX1+fHHH8f1118ft9xySzRt2jSOOeaYGDhwYC7MqK8bWSmlOO2002L8+PHRr1+/WG211SIiYt68eZFSipqampg7d25uHTNw4MA48sgjo0WLFnHsscfmvny69dZbG0wQF7H4+Tl+/Pi4/vrr4+abb44VVlghDjvssOjVq1e88cYbcfrpp8err74aAwcOjOWWW67ern9rv7SutahjjFq3bh2TJk2KKVOmxO9+97u47LLL4uKLL66zw1ff1rcR83v54x//GOuvv36cd9558etf/zouvPDC6NSpUzzyyCNx0003xYwZM2K33XaLQYMGRUlJSbRs2TLefvvteOWVV+JPf/pTjB07Nvr16xcRUW/n4bfffhsHHXRQlJeXx7hx4xa6v6ioKFZYYYXo169fdOzYMVZeeeX4zW9+E9OnT48RI0bEVVddFa1bt44tttgiD9UvvTlz5sSUKVNixowZETG//8rKyjjwwAPjiiuuiDFjxsSOO+4YU6dOjc8//zzatWsXf/7zn+Pggw+OQYMGxR133FHvg7iIxfc5evTo6NatWy6c+/jjj+Mvf/lL/PrXv47lllsuLrvssnr/Zf+itv2qq6ujuLg4Ro0aFQcddFD069cvDjjggIj47zK4xhprxMyZM2PSpEkLvWbtOro+fZ4WyjLarFmzaNeuXVRVVcWtt96am/b222/HQQcdFLvttlucd955uW38oqKiaNKkSQwYMCDuv//+uOmmm+Kyyy6r19tEhbJfZp/FPktD3WcphPWQ5dPy2VCXz0V9p1C7H1lVVRUXXnhhVFVVxbRp0+Kxxx6LiRMnxv777x//+7//G6ecckpst912sc8++8Q999xTb4O4iMJYD0FeLcOz8FiECRMmpGOPPTb17Nkz3Xjjjbnp3z31fN68eWnw4MHp8MMPX+R1KOq7Qulz1KhRqXfv3un3v/99evPNN+vcd/TRR6devXotdJr2lClT0nHHHZcOPvjgZVnqjzZp0qR07bXXpo4dO6YDDzww3Xnnnbn7rrvuurTJJpsscjiqBx98MJ188skN8jT12iES7rvvvtSlS5c0atSo9I9//CO1bds2XXXVVbmxse+6667c2OgNYZjR71rSPu+55570+9//Pu23334Nqr+RI0emPfbYIx1yyCG569bUuvLKK9Nmm21WZzz3lOb/Td5999302Wefpa+//npZlvuTLc38PPjgg9N+++2X3nnnnXT88cenbbfdNvXr12+hoSfqk9rhaB555JHUoUOHdPfddy90X0r/Haby5ptvTl26dEmfffZZgxjepdZnn32WuxZebd1z585NgwYNSt27d68zZOWdd96ZOnfunLbeeuvUrVu3tOeee9brebigV199NXXp0iWdfvrpCy2HC87P5557Lp1wwgmpbdu2adttt03dunVLBxxwQG4+N4R5W1VVlU4++eTUo0ePdOaZZ6Zjjz02derUKXXu3DmdffbZ6fPPP08ppfT555+nvffeO11++eV5rvjHWdI+J0+enPbee+906aWX5p5X+55uCBbc9qsdgmjkyJFps802S0OGDEkzZ85c6DnffPNN2m677RrUsMeFsoxOnDgx9e/fP/Xs2TPdcccd6d13302lpaVp8ODBi5yXkyZNSo8//nidafV9uLRC2S+zz2KfpaHusxTCesjyaflsqMvngt8p1G73VVVVpT322CO1bds2devWLXXu3Dm1bds2bbLJJqlnz57p+uuvT//7v/9br6/D/l2FsB6CfDFMZT0wceLEOP/88+PDDz+MffbZJ44++uiIWHjIkD/84Q8xduzYuOOOO6Jp06b5KvdHK5Q+R48eHaeeemr88pe/jDPPPDM6dOgQ/fv3j7Fjx8YNN9wQG2200UKnaU+bNi1atmy50BAx9dmoUaPioosuii+++CLWWWeduOSSS2KFFVaIE088MTesXcuWLRc5LFp9HQ5ucT744IM4+uijY5VVVonRo0fH0UcfHUcddVS0aNEiN+/mzJmTG2a0oZ6OvyR9zp07N5o0aRJFRUWLHN6ovlpw+TzllFOiU6dOcc0118T1118fl19+eeyyyy5RU1MTRUVF9fqI76WxpPOzdn07bty4aNKkSayyyiqx0kor5bP0JfL555/HPvvsE2ussUYMGTIkNtlkk4iIhdY9Z599dkyYMCFuv/32fJX6s6hdr8ybNy/OPvvsePPNN6N3795x1FFHRcuWLWP8+PHx1VdfRbNmzWK11VZrUEfTjhgxIo4//vjYcccd45hjjqkzHN6C8/Prr7+OUaNGxdSpU6NVq1bRuXPn3N+koXy2fPTRR3HeeefFe++9F1VVVdG1a9c44IADon379rH88svn5vNRRx0VK664YgwfPjzfJf8ohdJn7WfL6quvHrvuumsMGzYsevfuHWeeeWYsv/zydR47adKk+J//+Z+YNGlSXHnllQ3mPRtROMto7T7L2LFjc58x5557bqSU6mzvfPrpp3HyySdH8+bN49Zbb21Q2w2Fsl8WYZ/FPkvD3GcphPVQhOXT8tkwl8/a7b7VVlst+vfvHxdeeGE0b948zj333PjVr34V3377bYwaNSpef/31ePPNN+P999+PiIiKiopYffXV81z9kiuU9RAsc/lIAFnYhAkTckcd3HDDDQvdP378+HTooYemCy64oN4fUfpDCqXPd999N+22227psMMOS/369Uvdu3dP77zzzmKf19B6njx5crrvvvtSr169Uvfu3dM999yTbrjhhtS/f//05JNPppQaXk+L89e//jW1bds2nX/++XWmf/eon4Z+FNCS9tkQ52/t8nnEEUeks846K3Xs2DE98sgj+S4rU0s6PxuqZ555JnXs2DEdc8wxC531WF1dncaOHZv69OmTLrvssjxV+PNa8ILmtWfIXXHFFbmLazdkb775Ztp6660XOvtmwbMC//nPf6abbrqpztlTDemI2lpff/11+vzzz7/3LKNPPvkkHXDAAen222/PR3k/m0Lp891330277rprat++ferfv39u+oLr2YkTJ6a999479evXL/eebWjv3UJZRidMmJCOO+64tPXWW6drr702N722z4kTJ6Z+/fqlXr165c76a2ifqYWyX5aSfZYF2WdpOAphPZSS5XNBls+Go/Y7hdLS0rTbbrst8myxlFKaNm1aeueddxZ5pmdDUCjrIViWGsZhBwVgzTXXjCFDhsT6668f9913X50jgz///PO4/vrr4/33348DDzywwRwtsiiF0me7du3i8ssvj08//TTefffdOPHEE3PXd0k/cDJqQ+u5VatW0bdv3/jHP/4RnTt3jgcffDBGjBgRI0eOjKeeeioiGl5Pi7PllltGu3btYvbs2TFnzpzc9O8e/dPQjwZa0j4b4vytXT4nTpwYDzzwQPTv3z922223fJeVqSWdnw1Vt27d4pxzzokXX3wxzjnnnPif//mf+Prrr+PTTz+NZ555Jv74xz9GSUlJDBw4MCJ+eD3cENReJ69JkyZx4YUXxhZbbBGPP/54XHXVVTFz5sx8l/eTbL755nHdddfF888/HzfeeGPu+lTFxcUxZ86cePbZZ2PYsGFx7733RvPmzXPPa4hHDP/iF7+I1q1b584uqr3GbFFRUUyePDluvPHG+PTTT2OnnXbKY5U/XaH02a5duxg+fHi0adMmZsyYESNGjIiI/65nP/300zjllFOiqqoq/vrXv0ZJSUnU1NQ0uPduoSyja665ZvzhD3+I0tLSePDBB+PGG2+MiPl9jh8/Pk455ZSYNm1aPPTQQ9G0adOYN29eg/tMLZT9sgj7LPZZGub8LYT1UITl0/LZMOdvu3bt4oorrojWrVvHiiuuGKNHj46I+fuZ6f9fkz5i/nUPN95442jTpk0+y/3RCmU9BMuSYSrrmUmTJsXVV18d//rXv2KNNdaI1VdfPb7++uv46KOP4sYbb8wFOg1dofQ5ZsyYOPnkk2PVVVeNsrKy6NSpU0QsPHxaQ7ZgL48//niMHDkybrnllqiuro6LL744+vTpk+cKf37nnntuPP744/Hggw/Gaqut1qCGVFgajb3PMWPGRFlZWay66qpx8sknN8rlc0GNfX5GRLzyyitxwQUXxIQJE2K55ZaLOXPmxGqrrRZrr712XHvttdGkSZMGO9TLoiw4ZOVJJ50Un376afzlL3+JX/7yl/ku7SerHQ5vhx12iBNPPDHWWmutePzxx+PCCy+MVq1axd133x1NmzZtNO/ja665JsaNGxc77LBDTJ48Od58882orKyMW2+9tdFsE0UURp+1Qxf96le/irKysth8881j4sSJccopp8T06dPjwQcfzH1Z0RCH16pVKMvogsM57rvvvtG7d+84+eST45tvvokHHnigUczLQtkvs8/SOLf9Ihp/n4WwHrJ8Nr73ba3G3ueC230DBw6MLbbYIiIa33cKhbAegmVFGFcPffXVV/Haa6/FQw89FHPnzo327dtH3759Y6211sp3aT+rQumz9sO5VatWMXDgwNh8883zXdLPbsENjTlz5sQzzzwTDz30UFx99dWN6sO4ts/JkyfHXnvtFdtss01cfvnl+S7rZ1cofUbU3XheMJBrTAppfkZETJ06NcaNGxeVlZXRvHnz2GijjWKrrbaK4uLiRrmDsGAgN2XKlFhttdXyXdLPpvbL/q5du0bHjh3jtttui5VWWin+/ve/R5MmTRrN/Kyuro777rsvLr/88pgzZ06sssoq0bFjxxg4cGCda3I1dIXSZ0Tdbb+DDz44br/99pg6dWqj+7KiUJbRiRMnxgUXXBAffPBBTJ06NVZdddVGE6rWKpT9MvssjUuh9BlRGOshy2fjUih9RhTGdwoRhbEegmWhIMK4zz//PHbbbbcYMGBAHHbYYfkuhwI0evToGDRoUEREXHbZZdG2bds8V7TsNMYP5aqqqjjmmGOiWbNmceONNzaqI54WVCh9jh49Ok4//fQoKSmJoUOHxqabbprvkjJRKPPz+zS2ozAX1JjO9vuuESNGxHHHHRfffPNNtG/fPne2TWP8bJk8eXJMmTIlVllllVhppZWiRYsW+S4pE4XSZ+2233vvvRcbbrhh3H///Y3yvVsoy+jEiRNj0KBBUVJSErfcckujChuZrzHOz0LZ9iuUPgt5PdQY+yyU922h9Fko3ykU8noIfi6NPoz79ttv4/DDD4+33norzjrrrAYTxi14VFBjO715QYXSZ0TEf/7zn7jtttvi4osvbrRfmhaSSZMmRevWraOkpKRRv3cLpc+RI0fG+eefH1dccUWsueaa+S4nM4UyPxtzb4XojTfeiCuvvNIOHw3OqFGj4qabborLLrusUb93C2UZrQ2RG+uZ1oW0X1ZICmXbr1D6bOzroUJTKO/bQumzUL5TsB6Cn6ZRh3ETJ06MAQMGxKhRoyIiGlQYR+PWmM9iKDSFMi8Loc85c+ZEs2bN8l3GMlEI85PGpXbH3Q4fDVVjf+8W0jLamM+0pvEqlG2/QunTeqhxKZT3bSH0WUjfKVgPwY/TaJeaW2+9NXr37h2jR4+ObbbZJt/lQB2NfQOkkBTKvCyEPgtlozmiMOYnjUtRUVGklBr9l/w0Xo39vVtIy6gvnmiICmXbr1D6tB5qXArlfVsIfRbSdwrWQ/DjNNol5/bbb48111wz/va3v0WfPn3yXQ4AAD9BYx3SBhoLyygAAMD3a7SHLg4dOjS22267KCkpiY8++ijf5QAAAAAAAFCAGm0Y17Vr13yXAAAAAAAAQIFrtGHc0tppp53yXULmysvLIyKirKwsr3VkTZ+NS6H0GVE4veqzcdFn46LPxqW8vDxKS0vzXQYAAACN2KBBg2LWrFlxzTXX5LuUeq3RXjMOAAAAAAAA8k0YBwAAAAAAABkRxgEAAAAAAEBGhHEAAAAAAACQEWEcAAAAAAAAZEQYBwAAAAAAABkRxgEAAAAAAEBGmuS7gGWhb9++0bdv33yXAQAAAAAAQIFxZhwAAAAAAABkRBgHAAAAAAAAGRHGAQAAAAAAQEaEcQAAAAAAAJARYRwAAAAAAABkRBgHAAAAAAAAGRHGAQAAAAAAQEaEcQAAAAAAAJARYRwAAAAAAABkRBgHAAAAAAAAGRHGAQAAAAAAQEaEcQAAAAAAAJARYRwAAAAAAABkRBgHAAAAAAAAGRHGAQAAAAAAQEaEcQAAAAAAAJARYRwAAAAAAABkpEm+C2DZKi0tjYqKinyXkbnKysp8lwBLrbS0NCKi0S+jls/Gx2cLkG+VlZVRVlaW7zIyVV5eHhGhz0aivLw8t+0HAAA0fs6MAwAAAAAAgIwI4wAAAAAAACAjwjgAAAAAAADIiDAOAAAAAAAAMiKMAwAAAAAAgIwI4wAAAAAAACAjwjgAAAAAAADIiDAOAAAAAAAAMtIk3wUAAAAAAACwbKWU4ssvv4x58+ZFTU1NpJSipqYmIqLO7wvefnfa9OnTo0kTUdPi+AsB1BOVlZUREVFWVpbXOrJWXl6e7xL4mVVWVnrfAnlVWloaFRUV+S5jmdAnAADwc/nnP/8Zw4cP/8mvs+WWW/4M1TRuwjgAAAAAAIAC89VXX0VExKBBg6KkpCSKi4ujqKiozm1ELHL6grfrrrtuPttoEIRxAAAAAAAABapXr1654I1s+OsCAAAAAABARoRxAAAAAAAAkBFhHAAAAAAAAGREGAcAAAAAAAAZEcYBAAAAAABARoRxAAAAAAAAkJEm+S4AAAAAAACA/HjxxRejuLg4iouLo6ioqM5tRCxy+oK3v/nNb2KFFVbIcxf1mzCuwFRWVkZZWVm+y8hUeXl5vksAAAAAAIB6bcUVV4yIiHPOOecnvc7WW28dF1100c9RUqMljAMAAAAAACgwe+21V3Tq1CnmzZsXNTU1kVKKmpqaiIg6vy94+91pf/nLX2LGjBl57qT+E8YBAAAAAAAUmOLi4lh33XV/0mvcf//9MWvWrJ+posarON8FAAAAAAAAQGMljAMAAAAAAICMCOMAAAAAAAAgI8I4AAAAAAAAyIgwDgAAAAAAADIijAMAAAAAAICMCOMAAAAAAAAgI8I4AAAAAAAAyIgwDgAAAAAAADIijAMAAAAAAICMCOMAAAAAAAAgI8I4AAAAAAAAyIgwDgAAAAAAADIijAMAAAAAAICMCOMAAAAAAAAgI8I4AAAAAAAAyIgwDgAAAAAAADIijAMAAAAAAICMCOMAAAAAAAAgI8I4AAAAAAAAyIgwDgAAAAAAADIijAMAAAAAAICMNMl3AQAAAAAAACxbn3/+eTz66KMxb968SClFTU1NpJRy/2p//+7tgj9/8MEHscYaa+S7lXpPGFdgSktLo6KiIt9lZK6ysjLfJQAAAAAAQL315JNPxu233x4lJSVRXFwcxcXFUVRUlLtd8Ofi4vkDLX73Mc2aNYvNN988z53Uf8I4AAAAAACAAlNTUxMR80O52rCNbPjrAgAAAAAAQEaEcQAAAAAAAJARYRwAAAAAAABkRBgHAAAAAAAAGRHGAQAAAAAAQEaEcQAAAAAAAJARYRwAAAAAAABkRBgHAAAAAAAAGRHGAQAAAAAAQEaEcQAAAAAAAJARYRwAAAAAAABkRBgHAAAAAAAAGRHGAQAAAAAAQEaEcQAAAAAAAJARYRwAAAAAAABkRBgHAAAAAAAAGRHGAQAAAAAAQEaEcQAAAAAAAJARYRwAAAAAAABkRBgHAAAAAAAAGRHGAQAAAAAAQEaa5LsAlq3KysooKyvLdxmZKi8vj9LS0qioqMh3KZmrrKzMdwn8jEpLSyMiGv171/u28bHOBfKtULZxI0KfjUTtPgsAANQHxx57bBQVFUVxcXHuNiLq/F5UVLTQY2qn7bDDDtGrV688d1G/CeMAAAAAAAAKzHbbbRfjxo2L6urqqKmpiZRS7nbBnxe8jYg6v48fPz6mTZsmjFsMYRwAAAAAAECB2XDDDeO88877Sa8xaNCgmDVr1s9UUePlmnEAAAAAAACQEWEcAAAAAAAAZEQYBwAAAAAAABkRxgEAAAAAAEBGmuS7AAAAAAAAAJatlFJMmDAh5s2bFymlqKmpiZRS7l/t79+9XfDnb775Jpo1a5bvVuo9YVyBKS0tjYqKinyXkbnKysooKyvLdxmZKi8vz3cJ/MwqKysjIrx3aXCsc4F8K5Rt3IjQJwAA8LN54IEH4qqrrvrJr7PVVlv9DNU0bsI4AAAAAACAAjNt2rSIiBgyZEiUlJREcXFxFBUV5W4X/Lm4eP5Vzxb1mLXXXjufbTQIwjgAAAAAAIACtdNOO+XCNrLhrwsAAAAAAAAZEcYBAAAAAABARoRxAAAAAAAAkBFhHAAAAAAAAGREGAcAAAAAAAAZEcYBAAAAAABARoRxAAAAAAAAkBFhHAAAAAAAAGREGAcAAAAAAAAZEcYBAAAAAABARoRxAAAAAAAAkBFhHAAAAAAAAGREGAcAAAAAAAAZEcYBAAAAAABARoRxAAAAAAAAkBFhHAAAAAAAAGREGAcAAAAAAAAZEcYBAAAAAABARoRxAAAAAAAAkBFhHAAAAAAAAGREGAcAAAAAAAAZEcYBAAAAAABARoRxAAAAAAAAkBFhHAAAAAAAAGSkSb4LYNmqrKyMsrKyfJeRqfLy8nyXsMyUlpZGRUVFvstYJgqlz4jG32tlZWW+SwAAYBkppH1QfTYO5eXlUVpamu8yAGCZKCkpiYiI3/72t1FUVBTFxcUL3UbEIqcvePvb3/42jjzyyHy2Uu8J4wAAAAAAAApMz549o7q6OubNmxc1NTUREVFTUxMppYVuvzut9rGvvfZa/Pvf/85nGw2CMA4AAAAAAKDAtG7dOg499NCf9BqDBg2KWbNm/UwVNV6uGQcAAAAAAAAZEcYBAAAAAABARoRxAAAAAAAAkBFhHAAAAAAAAGREGAcAAAAAAAAZEcYBAAAAAABARoRxAAAAAAAAkBFhHAAAAAAAAGREGAcAAAAAAAAZEcYBAAAAAABARoRxAAAAAAAAkBFhHAAAAAAAAGREGAcAAAAAAAAZEcYBAAAAAABARoRxAAAAAAAAkBFhHAAAAAAAAGREGAcAAAAAAAAZaZLvAli2SktLo6KiIt9lZK6ysjLfJQAUDJ8tQL5VVlZGWVlZvsvIVHl5eUREQfRZWlqa7zKA71FI232FsL6NCOtcAFhGnBkHAAAAAAAAGRHGAQAAAAAAQEaEcQAAAAAAAJARYRwAAAAAAABkRBgHAAAAAAAAGRHGAQAAAAAAQEaEcQAAAAAAAJCRJvkuAAAAAAAAgGXrs88+i4cffjjmzZsXKaWoqamJlFLuX+3v371d8Odx48bFr3/963y3Uu8J4wCAn6SysjLKysryXUamysvL810C8ANKS0ujoqIi32UsE4XSJ1A/Fcp2XyF9rgBQ2J566qm44447omnTplFSUhJFRUVRXFxc57b233en194uv/zysdVWW+W7lXpPGAcAAAAAAFBgampqIiLi8ccfj+JiVzXLkr8uAAAAAAAAZEQYBwAAAAAA8DOYM2dO7LHHHvHSSy/Vmf7xxx/HpptuGvPmzctTZeSTMA4AAAAAAOAnqqqqilNOOSXee++9OtMnTZoU/fv3j6qqqjxVRr4J4wAAAAAAAH6C999/P/bbb7/45JNP6kx/+umno2/fvtGsWbM8VUZ9IIwDAAAAAAD4Cd54443o0qVL3H333XWmv/DCC3HyySfH4MGD81TZolVXV8f48eMjIuLll1+O6urqPFfUuDXJdwEAAAAAAAAN2f7777/I6UOHDo2IiFdffXVZlvODqqur4/TTT4+33347IiKGDRsWG2+8cVxyySVRUlKS5+oaJ2EcAAAAAABAgXjttdfi3XffjXnz5kVExKxZs+Ktt96KU089NVq3bh1FRUVRXFwcRUVFuX+1v3/3tqioKLbeeuvYYost8txV/SaMKzCVlZVRVlaW7zIyVV5enu8SAAAAAACgXnrvvfdi9uzZdaZVV1fHBx98EF988UWklCKlFDU1NYu8XfDn2bNnx7vvviuMWwxhHAAAAAAAQIHYcMMNo3nz5jFr1qzctObNm8dZZ50V22677VK91qBBg+q8DotWnO8CAAAAAAAAWDY6d+4cG2+8cTRv3jyKioqiefPm0b59++jcuXO+S2u0nBkHAAAAAABQIEpKSuKSSy6J1157Ld5///3YYIMNonPnzlFSUpLv0hotYRwAAAAAAEABKSkpiW233Xaph6XkxxHGAQAAAAAA/EzGjBmz0LStt956kdMpDK4ZBwAAAAAAABkRxgEAAAAAAEBGhHEAAAAAAACQEWEcAAAAAAAAZEQYBwAAAAAAABkRxgEAAAAAAEBGhHEAAAAAAACQEWEcAAAAAAAAZEQYBwAAAAAAABkRxgEAAAAAAEBGhHEAAAAAAACQEWEcAAAAAAAAZEQYBwAAAAAAABkRxgEAAAAAAEBGhHEAAAAAAACQEWEcAAAAAAAAZEQYBwAAAAAAABlpku8CgB+vsrIyysrK8l1GpsrLyyMiGn2fEYXTa22fAAA0fqWlpVFRUZHvMpYJfQIA8H2cGQcAAAAAAAAZEcYBAAAAAABARoRxAAAAAAAAkBFhHAAAAAAAAGREGAcAAAAAAAAZEcYBAAAAAABARoRxAAAAAAAAkBFhHAAAAAAAAGREGAcAAAAAAAAZEcYBAAAAAABARoRxAAAAAAAAkBFhHAAAAAAAAGREGAcAAAAAAAAZEcYBAAAAAABARoRxAAAAAAAAkBFhHAAAAAAAAGREGAcAAAAAAAAZEcYBAAAAAABARoRxAAAAAAAAkBFhHAAAAAAAAGREGAcAAAAAAAAZEcYBAAAAAABARoRxAAAAAAAAkBFhHAAAAAAAAGREGAcAAAAAAAAZEcYBAAAAAABARoRxAAAAAAAAkBFhHAAAAAAAAGREGAcAAAAAAAAZEcYBAAAAAABARoRxAAAAAAAAkBFhHAAAAAAAAGREGAcAAAAAAAAZEcYBAAAAAABARoRxAAAAAAAAkBFhHAAAAAAAAGREGAcAAAAAAAAZEcYBAAAAAABARoRxAAAAAAAAkBFhHAAAAAAAAGREGAcAAAAAAAAZaZLvAoAfr7S0NCoqKvJdxjJRKH1GNP5eKysr810CAAAAEbHTTjvlu4RMlZeXR0REWVlZXuvIWqH1WVpamtc6AH4MZ8YBAAAAAABARoRxAAAAAAAAkBFhHAAAAAAAAGREGAcAAAAAAAAZEcYBAAAAAABARoRxAAAAAAAAkBFhHAAAAAAAAGREGAcAAAAAAAAZEcYBAAAAAABARoRxAAAAAAAAkBFhHAAAAAAAAGREGAcAAAAAAAAZEcYBAAAAAABARoRxAAAAAAAAkBFhHAAAAAAAAGREGAcAAAAAAAAZEcYBAAAAAABARoRxAAAAAAAAkBFhHAAAAAAAAGREGAcAAAAAAAAZEcYBAAAAAABARoRxAAAAAAAAkBFhHAAAAAAAAGREGAcAAAAAAAAZEcYBAAAAAABARoRxAAAAAAAAkBFhHAAAAAAAAGSkSb4LAAAAAAAAoGGaMmVK3H///VFUVBTFxcVRVFRU5+fv3n73/pKSkujUqVOssMIK+W4lM8K4AlNaWhoVFRX5LiNzlZWV+S4BoGD4bAHyrbKyMsrKyvJdRqbKy8sjIgqiz9LS0nyXAQANUiHsl0VE7LTTTvkuIVOFst1Xq1Det41Z69at44033oirr776J73OIYccEocffvjPVFX9I4wDAAAAAABgqZ122mnRv3//SClFSilqampytxFR5/dFPSalFMcdd1xUVVXluZNsCeMAAAAAAABYakVFRbHSSiv9pNcoLi7+maqpvxp/hwAAAAAAAJAnwjgAAAAAAADIiDAOAAAAAAAAMiKMAwAAAAAAgAXMmTMn9thjj3jppZdy05577rno3bt3bLrpptGnT594/vnnl+i1hHEAAAAAAADw/1VVVcUpp5wS7733Xm7a+++/HyeddFL069cvHnnkkdhzzz3jhBNOiPHjxy/29YRxAAAAAAAAEPNDt/322y8++eSTOtMnTZoUBx98cBx88MHRpk2bOPLII2P55ZePysrKxb6mMA4AAAAAAIBlrrq6Oqqrq2PUqFHx8ssvR3V1db5LijfeeCO6dOkSd999d53pXbt2jTPOOCMiIubOnRv33ntvzJkzJ0pLSxf7mk2yKBQAAAAAAAC+T3V1dZx++ukxd+7cGDlyZJx//vmx8cYbxyWXXBIlJSV5q2v//ff/wfvHjRsXvXv3jurq6jj11FOjTZs2i31NYRwAAAAAAABL7YknnoinnnoqampqIqW0yNuIWOT0b7/9Nr788svca82aNSveeeedeO2112LbbbfNV0uLteqqq8bf//73GDFiRFx00UWx9tprxy677PKDzxHGFZjKysooKyvLdxmZKi8vz3cJAAXFZwuQb6WlpVFRUZHvMpaJQukTAFh6O+20U75LyFTtflmhbA8VSp80fE8//XS88847seGGG0ZRUVEUFxcv8va70yIixo8fH5MnT67zelVVVfH+++/X6zBupZVWivbt20f79u1j7Nix8be//U0YBwAAAAAAQDbWW2+9uPLKK5f6eS+//HKcf/75MWvWrNy05ZZbLjbYYIOfs7yfzejRo2PmzJmx+eab56ZtsMEGMWLEiMU+tzjLwgAAAAAAAOC7OnfuHBtvvHE0b948ioqKonnz5tG+ffvo3LlzvktbpMceeyzOPffcOtNGjRoV66233mKf68w4AAAAAAAAlqmSkpK45JJL4rXXXov3338/Nthgg+jcuXOUlJTku7RF2meffeK2226L4cOHx9577x3/+te/4pFHHom77757sc8VxgEAAAAAALDMlZSUxLbbbluvrxFXq02bNnHzzTfHn/70p7jllluiTZs2cdVVV0WHDh0W+1xhHAAAAAAAAHzHmDFj6vy+5ZZbxn333bfUr+OacQAAAAAAAJARYRwAAAAAAABkRBgHAAAAAAAAGRHGAQAAAAAAQEaEcQAAAAAAAJARYRwAAAAAAABkRBgHAAAAAAAAGRHGAQAAAAAAQEaEcQAAAAAAAJARYRwAAAAAAABkRBgHAAAAAAAAGRHGAQAAAAAAQEaEcQAAAAAAAJARYRwAAAAAAABkRBgHAAAAAAAAGRHGAQAAAAAAQEaEcQAAAAAAAJARYRwAAAAAAABkRBgHAAAAAAAAGRHGAQAAAAAAQEaEcQAAAAAAAJARYRwAAAAAAABkRBgHAAAAAAAAGWmS7wKAH6+ysjLKysryXUamysvLIyIafZ8RhdNrbZ8AAADkV0VFRb5LWCb0CUC+OTMOAAAAAAAAMiKMAwAAAAAAgIwI4wAAAAAAACAjwjgAAAAAAADIiDAOAAAAAAAAMiKMAwAAAAAAgIwI4wAAAAAAACAjwjgAAAAAAADIiDAOAAAAAAAAMiKMAwAAAAAAgIwI4wAAAAAAACAjwjgAAAAAAADIiDAOAAAAAAAAMiKMAwAAAAAAgIwI4wAAAAAAACAjwjgAAAAAAADIiDAOAAAAAAAAMiKMAwAAAAAAgIwI4wAAAAAAACAjwjgAAAAAAADIiDAOAAAAAAAAMiKMAwAAAAAAgIwI4wAAAAAAACAjwjgAAAAAAADIiDAOAAAAAAAAMiKMAwAAAAAAgIwI4wAAAAAAACAjwjgAAAAAAADIiDAOAAAAAAAAMiKMAwAAAAAAgIwI4wAAAAAAACAjwjgAAAAAAADIiDAOAAAAAAAAMiKMAwAAAAAAgIwI4wAAAAAAACAjwjgAAAAAAADIiDAOAAAAAAAAMiKMAwAAAAAAgIwI4wAAAAAAACAjwjgAAAAAAADIiDAOAAAAAAAAMiKMAwAAAAAAgIwI4wAAAAAAACAjwjgAAAAAAADIiDAOAAAAAAAAMiKMAwAAAAAAgIwI4wAAAAAAACAjwjgAAAAAAADIiDAOAAAAAAAAMiKMAwAAAAAAgIwI4wAAAAAAACAjwjgAAAAAAADIiDAOAAAAAAAAMiKMAwAAAAAAgIwI4wAAAAAAACAjwjgAAAAAAADIiDAOAAAAAAAAMiKMAwAAAAAAgIwI4wAAAAAAACAjwjgAAAAAAADIiDAOAAAAAAAAMiKMAwAAAAAAgIwI4wAAAAAAACAjwjgAAAAAAADIiDAOAAAAAAAAMiKMAwAAAAAAgIwI4wAAAAAAACAjwjgAAAAAAADIiDAOAAAAAAAAMiKMAwAAAAAAgIw0WdIHTp48Oa6++up4/vnnY8qUKfGLX/witt122xg4cGC0adMm97h77703/vCHPyzyNTbbbLO45557FnlfTU1N7LffftG6deu47rrrFrr/448/jp49e35vfW+//XYst9xyud+ffPLJuPnmm2PMmDGx4oorxtZbbx0nnHBCrLfeekvaMgAAAAAAAPwkSxTGTZ48Ofbdd9+YNGlSdOnSJXbbbbf48MMP4+GHH44XXngh7r777lhnnXUiImLMmDEREXH00UfXCcciIlZfffXv/T8uuOCC+M9//hM9evRY5P21r7vbbrstMlArKSnJ/XzzzTfHpZdeGiussELstttu0bRp03jiiSfi+eefj5tuuik6deq0JG0DAAAAAADAT7JEYdzVV18dkyZNijPPPDMOP/zw3PSHHnooBg0aFBdddFFcf/31ETE/NFt55ZXjtNNOW6ICZs+eHUOGDImHHnroBx9XG8b1798/2rVr972P+/jjj+OKK66IX/ziF3H33XfHuuuuGxERxx57bPTt2zfOPPPM+Oc//xnNmjVbovoAAAAAAADgx1qia8Y9/fTT8ctf/jIOPfTQOtP33HPPWGutteL//u//oqamJiIixo4dGxtttNES/ecvvfRS7L777vHQQw/F9ttv/4OPHTNmTDRt2jTWX3/9H3zcE088EdXV1XHUUUflgriIiF//+tdx2GGHxUcffRTPP//8EtUHAAAAAAAAP8Viz4yrrq6O/v37R5MmTaK4eOHsrlmzZjF37tyYO3dufPXVV/H1119H27Ztl+g/f+ihh+Lbb7+NYcOGxTbbbPO9Q1RGzA/j1l133WjatOkPvuaECRMiYv716b6rtq4333wzfvvb3y5RjQAAAAAAAPBjLTaMKykpWeiMuFrjxo2LDz74INZaa61YbrnlckNJzp07N0444YQYMWJEzJ49OzbffPMYOHBgbLrppnWev88++8Qf/vCHaNmyZS5EW5SZM2fG+PHjY+utt46hQ4fG888/H19++WWsv/76cfjhh8eee+6Ze2zt8JNz5sxZ6HWmT58eERGffvrp4toGAAAAAACAn2yJrhm3KDU1NXH++edHTU1N7LfffhHx3+u63XXXXbH99ttH37594+OPP45nn302Xn311fjzn/8cXbt2zb3GlltuuUT/19ixYyOlFK+88kp89dVXscsuu8RXX30Vzz77bAwaNCg++uijOOmkkyIiomPHjhER8dRTT9X5vyIinn322Yj4byi3oIqKiqX7AzRghdKrPhuXQukzonB61Wfjos/GRZ8AAADAkrj00kvzXUKD8KPCuJRSnHPOOfHyyy9Hx44dc2fO1dTUxJprrhllZWV1zlZ77bXX4rDDDouzzjornnnmmVhuueWW6v+bPn16rLvuutGlS5cYPHhwbrjMzz//PA444IC47rrromfPntGuXbvo1atXXHnllXHvvfdG69ato1+/fhERceedd+auFZdS+jFtAwAAAAAAwFJZ+CJwizFv3rw4++yz49577402bdrEddddlxsa8thjj41nn322ThAXEdG5c+fo3bt3TJ48OV577bWlLrJr167x+OOPx5AhQ+pct2611VaLE044IVJK8cgjj0RERPPmzePPf/5zrL766nH11VfH9ttvH9tvv33ceeedcckll+QeAwAAAAAAAFlbqjPjZs2aFQMHDoznn38+1llnnbjllltitdVWW6Lntm/fPh544IEfvDbcj9GhQ4eIiDqv265du3j00Ufj2WefjQkTJsTqq68ePXr0iEmTJkVERKtWrX7WGgAAAAAAAGBRljiM++abb+Loo4+Ot956K9q3bx8333xz/OpXv6rzmFGjRsXMmTNjq622Wuj5VVVVERFLPURlRMQnn3wSEydOjNLS0mjRokWd+2bPnr3I123RokXsvvvudaaNHDkyIiI22GCDpa4BAAAAAAAAltYSDVNZVVUV/fv3j7feeis6d+4cf/3rXxcK4iIiTjjhhDjkkENi6tSpC9335ptvRkREx44dl7rIa665Jg477LB44YUXFvu6b7/9dnTp0iVuvfXWhR775JNPRkTE9ttvv9Q1AAAAAAAAwNJaojDuiiuuiH//+9/RqVOnuOmmm6Jly5aLfFyvXr2ipqYmhg8fHiml3PTHHnssKioqYquttoqNNtpoqYvs1atXRERce+21MXPmzNz0Dz74IG688cb4xS9+EXvssUdERGy00Ubx7bffxr333htz5szJPfaBBx6I5557Lrp16+bMOAAAAAAAAJaJorRgarYIkydPjm7dusXcuXPjd7/7XayxxhqLfNwxxxwTVVVVsf/++8e4ceNis802iy222CI+/PDDqKioiFatWsWdd94Zbdq0WeTzJ0yYED169IgePXrEddddt9D9p556ajz88MOx5pprRvfu3WPatGnx1FNPxZw5c+Lqq6+O7t275x57++23x7Bhw2LDDTeMrl27xqeffhpPPvlkrLHGGnHHHXd8bw8AAAAAAADwc1psGPf000/HCSecsNgXev3112OllVaKadOmxTXXXBNPPfVUTJ48OVZeeeXYaaed4qSTTorWrVt/7/MXF8bV1NTE3/72t7j33nvjww8/jBYtWsTmm28eJ5xwQmy66aYLPf7BBx+MW2+9NT766KNYZZVVYscdd4zjjz8+Vl111cX2AgAAAAAAAD+HxYZxAAAAAAAAwI+zRNeMAwAAAAAAAJaeMA4AAAAAAAAyIowDAAAAAACAjAjjAAAAAAAAICPCOAAAAAAAAMiIMA4AAAAAAAAyIowDAAAAAACAjAjjAAAAAAAAICPCOAAAAAAAAMjI/wMzibx0BkJ5/AAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Plot visualisation of the missing values for each feature of the raw DataFrame, df_capology_raw\n",
"msno.matrix(df_capology_raw, figsize = (30, 7))"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "breathing-tablet",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Unnamed: 0.1 6599\n",
"Player 498\n",
"Weekly GrossBase Salary(IN EUR) 8643\n",
"Annual GrossBase Salary(IN EUR) 8643\n",
"Adj. GrossBase Salary(2021, IN EUR) 9799\n",
"Country 2468\n",
"Status 25159\n",
"Expiration 22691\n",
"Length 22691\n",
"EstimatedGross Total(IN EUR) 24003\n",
"Unnamed: 2 25159\n",
"Weekly GrossBase Salary(IN GBP) 21163\n",
"Annual GrossBase Salary(IN GBP) 21163\n",
"Adj. GrossBase Salary(2021, IN GBP) 21709\n",
"EstimatedGross Total(IN GBP) 24613\n",
"Weekly GrossBase Salary(IN USD) 20512\n",
"Annual GrossBase Salary(IN USD) 20512\n",
"Adj. GrossBase Salary(2021, IN USD) 21278\n",
"RosterStatus 24393\n",
"EstimatedGross Total(IN USD) 24393\n",
"dtype: int64"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Counts of missing values\n",
"null_value_stats = df_capology_raw.isnull().sum(axis=0)\n",
"null_value_stats[null_value_stats != 0]"
]
},
{
"cell_type": "markdown",
"id": "covered-sperm",
"metadata": {},
"source": [
"The visualisation shows us very quickly that there are missing values in a number of the columns, such as the financial columns such as Estimated Gross Total. This is because depending on the country, the financial values are only scraped in one country. This need to be coalesced.\n",
"\n",
"This concludes the data handling section, the next thing to do is engineer the raw dataset to be ready for further analysis."
]
},
{
"cell_type": "markdown",
"id": "intimate-sleep",
"metadata": {},
"source": [
"---\n",
"\n",
"## 4. Data Engineering\n",
"Before any Data Analysis, we first need to clean and wrangle the datasets to a form that meet our needs."
]
},
{
"cell_type": "markdown",
"id": "smoking-feelings",
"metadata": {},
"source": [
"Still to add:\n",
"- Original value columns"
]
},
{
"cell_type": "markdown",
"id": "thick-block",
"metadata": {},
"source": [
"### 4.1. Assign Raw DataFrame to Engineered DataFrame\n",
"From this point, all changes made to the dataset applied to the new engineered DataFrame, `df_capology`."
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "union-northwest",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"