{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Data Engineering of Matched FBref and TransferMarkt Data for Age Profiling Visualisation\n", "##### Notebook to engineer matched data scraped from [TransferMarkt](https://www.transfermarkt.co.uk/) using the [Tyrone Mings web scraper](https://github.com/FCrSTATS/tyrone_mings) by [FCrSTATS](https://twitter.com/FC_rstats) and [StatsBomb](https://statsbomb.com/) data provided by [FBref](https://fbref.com/en/) using a [Python webscraper](https://github.com/parth1902/Scrape-FBref-data) by [parth1902](https://github.com/parth1902).\n", "\n", "\n", "### By [Edd Webster](https://www.twitter.com/eddwebster)\n", "Notebook first written: 13/09/2020
\n", "Notebook last updated: 30/12/2020\n", "\n", "![title](../../img/fbref-logo-banner.png)\n", "\n", "![title](../../img/stats-bomb-logo.png)\n", "\n", "![title](../../img/transfermarkt-logo-banner.png)\n", "\n", "Click [here](#section5) to jump straight to the Exploratory Data Analysis section and skip the [Task Brief](#section2), [Data Sources](#section3), and [Data Engineering](#section4) sections. Or click [here](#section6) to jump straight to the Conclusion." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "___\n", "\n", "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Introduction\n", "This notebook engineers previously scraped data from [TransferMarkt](https://www.transfermarkt.co.uk/) using the [FCrSTATS](https://twitter.com/FC_rstats) [Tyrone Ming](https://github.com/FCrSTATS/tyrone_mings) webscraper and manipulates this landed data as DataFrames using [pandas](http://pandas.pydata.org/) and [matplotlib](https://matplotlib.org/) for visualisation.\n", "\n", "For more information about this notebook and the author, I'm available through all the following channels:\n", "* [eddwebster.com](https://www.eddwebster.com/);\n", "* edd.j.webster@gmail.com;\n", "* [@eddwebster](https://www.twitter.com/eddwebster);\n", "* [linkedin.com/in/eddwebster](https://www.linkedin.com/in/eddwebster/);\n", "* [github/eddwebster](https://github.com/eddwebster/);\n", "* [public.tableau.com/profile/edd.webster](https://public.tableau.com/profile/edd.webster);\n", "* [kaggle.com/eddwebster](https://www.kaggle.com/eddwebster); and\n", "* [hackerrank.com/eddwebster](https://www.hackerrank.com/eddwebster)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![title](../../img/fifa21eddwebsterbanner.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The accompanying GitHub repository for this notebook can be found [here](https://github.com/eddwebster/football_analytics) and a static version of this notebook can be found [here](https://nbviewer.jupyter.org/github/eddwebster/football_analytics/blob/master/notebooks/A%29%20Web%20Scraping/TransferMarkt%20Web%20Scraping%20and%20Parsing.ipynb)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "___\n", "\n", "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Notebook Contents\n", "1. [Notebook Dependencies](#section1)
\n", "2. [Project Brief](#section2)
\n", "3. [Data Sources](#section3)
\n", " 1. [Introduction](#section3.1)
\n", " 2. [Data Dictionary](#section3.2)
\n", " 3. [Creating the DataFrame](#section3.3)
\n", " 4. [Initial Data Handling](#section3.4)
\n", " 5. [Export the Raw DataFrame](#section3.5)
\n", "4. [Data Engineering](#section4)
\n", " 1. [Introduction](#section4.1)
\n", " 2. [Columns of Interest](#section4.2)
\n", " 3. [String Cleaning](#section4.3)
\n", " 4. [Converting Data Types](#section4.4)
\n", " 5. [Export the Engineered DataFrame](#section4.5)
\n", "5. [Exploratory Data Analysis (EDA)](#section5)
\n", " 1. [...](#section5.1)
\n", " 2. [...](#section5.2)
\n", " 3. [...](#section5.3)
\n", "6. [Summary](#section6)
\n", "7. [Next Steps](#section7)
\n", "8. [Bibliography](#section8)
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "___\n", "\n", "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. Notebook Dependencies" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This notebook was written using [Python 3](https://docs.python.org/3.7/) and requires the following libraries:\n", "* [`Jupyter notebooks`](https://jupyter.org/) for this notebook environment with which this project is presented;\n", "* [`NumPy`](http://www.numpy.org/) for multidimensional array computing;\n", "* [`pandas`](http://pandas.pydata.org/) for data analysis and manipulation;\n", "* [`Beautifulsoup`](https://pypi.org/project/beautifulsoup4/) for web scraping; and\n", "* [`matplotlib`](https://matplotlib.org/contents.html?v=20200411155018) for data visualisations;\n", "\n", "All packages used for this notebook except for BeautifulSoup can be obtained by downloading and installing the [Conda](https://anaconda.org/anaconda/conda) distribution, available on all platforms (Windows, Linux and Mac OSX). Step-by-step guides on how to install Anaconda can be found for Windows [here](https://medium.com/@GalarnykMichael/install-python-on-windows-anaconda-c63c7c3d1444) and Mac [here](https://medium.com/@GalarnykMichael/install-python-on-mac-anaconda-ccd9f2014072), as well as in the Anaconda documentation itself [here](https://docs.anaconda.com/anaconda/install/)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Import Libraries and Modules" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Setup Complete\n" ] } ], "source": [ "# Python ≥3.5 (ideally)\n", "import platform\n", "import sys, getopt\n", "assert sys.version_info >= (3, 5)\n", "import csv\n", "\n", "# Import Dependencies\n", "%matplotlib inline\n", "\n", "# Math Operations\n", "import numpy as np\n", "import math\n", "from math import pi\n", "\n", "# Datetime\n", "import datetime\n", "from datetime import date\n", "import time\n", "\n", "# Data Preprocessing\n", "import pandas as pd\n", "import os\n", "import re\n", "import random\n", "from io import BytesIO\n", "from pathlib import Path\n", "\n", "# Reading directories\n", "import glob\n", "import os\n", "from os.path import basename\n", "\n", "# Flatten lists\n", "from functools import reduce\n", "\n", "# Working with JSON\n", "import json\n", "from pandas.io.json import json_normalize\n", "\n", "# Web Scraping\n", "import requests\n", "from bs4 import BeautifulSoup\n", "import re\n", "\n", "# Currency Convert\n", "from forex_python.converter import CurrencyRates\n", "\n", "# APIs\n", "from tyrone_mings import * \n", "\n", "# Fuzzy Matching - Record Linkage\n", "import recordlinkage\n", "import jellyfish\n", "import numexpr as ne\n", "\n", "# Data Visualisation\n", "import matplotlib as mpl\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "plt.style.use('seaborn-whitegrid')\n", "import missingno as msno\n", "\n", "# Progress Bar\n", "from tqdm import tqdm\n", "\n", "# Display in Jupyter\n", "from IPython.display import Image, YouTubeVideo\n", "from IPython.core.display import HTML\n", "\n", "# Ignore Warnings\n", "import warnings\n", "warnings.filterwarnings(action=\"ignore\", message=\"^internal gelsd\")\n", "\n", "print('Setup Complete')" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Python: 3.7.6\n", "NumPy: 1.18.1\n", "pandas: 1.0.1\n", "matplotlib: 3.1.3\n", "Seaborn: 0.10.0\n" ] } ], "source": [ "# Python / module versions used here for reference\n", "print('Python: {}'.format(platform.python_version()))\n", "print('NumPy: {}'.format(np.__version__))\n", "print('pandas: {}'.format(pd.__version__))\n", "print('matplotlib: {}'.format(mpl.__version__))\n", "print('Seaborn: {}'.format(sns.__version__))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Defined Variables" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "# Define today's date\n", "today = datetime.datetime.now().strftime('%d/%m/%Y').replace('/', '')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Defined Filepaths" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "# Set up initial paths to subfolders\n", "base_dir = os.path.join('..', '..', )\n", "data_dir = os.path.join(base_dir, 'data')\n", "data_dir_fbref_tm = os.path.join(base_dir, 'data', 'tm')\n", "data_dir_fbref = os.path.join(base_dir, 'data', 'fbref')\n", "data_dir_fbref_tm = os.path.join(base_dir, 'data', 'fbref-tm')\n", "img_dir = os.path.join(base_dir, 'img')\n", "fig_dir = os.path.join(base_dir, 'img', 'fig')\n", "video_dir = os.path.join(base_dir, 'video')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Notebook Settings" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "pd.set_option('display.max_columns', None)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "\n", "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2. Project Brief\n", "This Jupyter notebook engineered data scraped from [TransferMarkt](https://www.transfermarkt.co.uk/) and FBref using [pandas](http://pandas.pydata.org/) for data manipulation through DataFrames.\n", "\n", "The data of player values produced in this notebook is exported to CSV and used to create Age Profile visualisation in Tableau. See example [here](https://twitter.com/NdyStats/status/1343809317107986438)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "\n", "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3. Data Sources\n", "Before conducting our EDA, the data needs to be imported as a DataFrame in the Data Sources section [Section 3](#section3) and cleaned in the Data Engineering section [Section 4](#section4).\n", "\n", "We'll be using the [pandas](http://pandas.pydata.org/) library to import our data to this workbook as a DataFrame." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 3.2. Data Dictionaries\n", "The [TransferMarkt](https://www.transfermarkt.co.uk/) dataset has six features (columns) with the following definitions and data types:\n", "\n", "| Feature | Data type |\n", "|------|-----|\n", "| `position_number` | object |\n", "| `position_description` | object |\n", "| `name` | object |\n", "| `dob` | object |\n", "| `nationality` | object |\n", "| `value` | object |" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 3.3. Import CSV as pandas DataFrame" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "# Import DataFrame as a CSV file\n", "#df_fbref_tm = pd.read_csv(data_dir_fbref_tm + '/fbref_tm_big5_combined_latest.csv')\n", "df_fbref_tm = pd.read_csv(data_dir + '/export/fbref_tm_big5_combined_latest.csv')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 3.4. Preliminary Data Handling\n", "Let's quality of the dataset by looking first and last rows in pandas using the [head()](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.head.html) and [tail()](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.tail.html) methods." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
tm_idSeasonplayerplayer_nameageage_tmage_when_joiningdobpobcobnationalitynationality_codesecond_citizenshipclubposition_codeposition_fbrefposition_TMposition_groupedoutfielder_goalkeeperheightfootmarket_value_eurosmarket_value_poundsjoinedyears_since_joiningcontract_expiresyears_until_contract_expirycontract_optionon_loan_fromon_loan_from_countryloan_contract_expiryplayer_agentgamesgames_startsminutesgoalsassistspens_madepens_attcards_yellowcards_redgoals_per90assists_per90goals_assists_per90goals_pens_per90goals_assists_pens_per90xgnpxgxaxg_per90xa_per90xg_xa_per90npxg_per90npxg_xa_per90minutes_90sshots_totalshots_on_targetshots_free_kicksshots_on_target_pctshots_total_per90shots_on_target_per90goals_per_shotgoals_per_shot_on_targetnpxg_per_shotxg_netnpxg_netpasses_completedpassespasses_pctpasses_total_distancepasses_progressive_distancepasses_completed_shortpasses_shortpasses_pct_shortpasses_completed_mediumpasses_mediumpasses_pct_mediumpasses_completed_longpasses_longpasses_pct_longxa_netassisted_shotspasses_into_final_thirdpasses_into_penalty_areacrosses_into_penalty_areaprogressive_passespasses_livepasses_deadpasses_free_kicksthrough_ballspasses_pressurepasses_switchescrossescorner_kickscorner_kicks_incorner_kicks_outcorner_kicks_straightpasses_groundpasses_lowpasses_highpasses_left_footpasses_right_footpasses_headthrow_inspasses_other_bodypasses_offsidespasses_oobpasses_interceptedpasses_blockedscasca_per90sca_passes_livesca_passes_deadsca_dribblessca_shotssca_fouledgcagca_per90gca_passes_livegca_passes_deadgca_dribblesgca_shotsgca_fouledgca_og_fortacklestackles_wontackles_def_3rdtackles_mid_3rdtackles_att_3rddribble_tacklesdribbles_vsdribble_tackles_pctdribbled_pastpressurespressure_regainspressure_regain_pctpressures_def_3rdpressures_mid_3rdpressures_att_3rdblocksblocked_shotsblocked_shots_savesblocked_passesinterceptionsclearanceserrorstouchestouches_def_pen_areatouches_def_3rdtouches_mid_3rdtouches_att_3rdtouches_att_pen_areatouches_live_balldribbles_completeddribblesdribbles_completed_pctplayers_dribbled_pastnutmegscarriescarry_distancecarry_progressive_distancepass_targetspasses_receivedpasses_received_pctmiscontrolsdispossessedcards_yellow_redfoulsfouledoffsidespens_wonpens_concededown_goalsball_recoveriesaerials_wonaerials_lostaerials_won_pctgames_gkgames_starts_gkminutes_gkgoals_against_gkgoals_against_per90_gkshots_on_target_againstsavessave_pctwins_gkdraws_gklosses_gkclean_sheetsclean_sheets_pctpens_att_gkpens_allowedpens_savedpens_missed_gkminutes_90s_gkfree_kick_goals_against_gkcorner_kick_goals_against_gkown_goals_against_gkpsxg_gkpsnpxg_per_shot_on_target_againstpsxg_net_gkpsxg_net_per90_gkpasses_completed_launched_gkpasses_launched_gkpasses_pct_launched_gkpasses_gkpasses_throws_gkpct_passes_launched_gkpasses_length_avg_gkgoal_kickspct_goal_kicks_launchedgoal_kick_length_avgcrosses_gkcrosses_stopped_gkcrosses_stopped_pct_gkdef_actions_outside_pen_area_gkdef_actions_outside_pen_area_per90_gkavg_distance_def_actions_gk
0342229.017/18Kylian Mbappékylian mbappé18.022.019.01998-12-20ParisFranceFranceFRANaNParis S-GSTFWattack - Centre-ForwardForwardOutfielder178.0right180000000.0160200000.02018-07-012.02022-06-301.0NaNNaNNaNNaNRelatives27.024.02095.013.09.00.00.02.00.00.560.390.950.560.9514.514.57.80.620.330.960.620.9623.381.032.00.039.53.481.370.160.410.18-1.5-1.5558.0701.079.68087.01794.0324.0373.086.9174.0223.078.035.054.064.81.251.036.033.09.052.0674.027.02.01.0144.012.062.04.00.00.00.0578.038.085.0108.0573.08.011.00.03.09.018.030.099.04.2566.00.014.05.013.014.00.608.00.02.03.01.00.08.04.02.03.03.03.010.030.07.0190.067.035.328.059.0103.06.02.00.04.01.00.00.01014.03.046.0365.0698.0208.0990.065.0118.055.170.05.0854.06615.04067.01089.0840.077.160.061.00.09.037.023.01.00.00.098.01.04.020.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
1342229.017/18Kylian Mbappékylian mbappé18.022.019.01998-12-20ParisFranceFranceFRANaNMonacoSTFW,MFattack - Centre-ForwardForwardOutfielder178.0right180000000.0160200000.02018-07-012.02022-06-301.0NaNNaNNaNNaNRelatives1.01.074.00.00.00.00.00.00.00.000.000.000.000.000.20.20.00.200.000.200.200.200.83.02.00.066.73.652.430.000.000.06-0.2-0.219.031.061.3306.044.09.013.069.29.011.081.81.04.025.00.00.01.00.00.00.031.00.00.00.00.00.05.00.00.00.00.022.05.04.04.026.01.00.00.00.01.04.01.03.03.602.00.00.00.01.01.01.201.00.00.00.00.00.01.01.00.00.01.00.00.00.00.04.01.025.00.03.01.00.00.00.00.01.00.00.043.00.01.017.028.011.043.04.07.057.16.00.044.0342.0256.052.038.073.12.02.00.00.01.02.00.00.00.03.00.00.00.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2342229.018/19Kylian Mbappékylian mbappé19.022.019.01998-12-20ParisFranceFranceFRANaNParis S-GSTFWattack - Centre-ForwardForwardOutfielder178.0right180000000.0160200000.02018-07-012.02022-06-301.0NaNNaNNaNNaNRelatives29.024.02343.033.07.01.02.05.01.01.270.271.541.231.5027.225.75.51.050.211.260.991.2026.0121.065.01.053.74.652.500.260.490.215.86.3637.0823.077.49517.02275.0393.0478.082.2182.0241.075.548.065.073.81.544.047.048.08.076.0783.040.03.012.0176.013.048.06.00.00.00.0658.0100.065.0141.0668.05.05.03.04.011.024.034.0111.04.2670.01.016.010.013.022.00.8512.00.03.03.04.00.07.04.02.02.03.01.09.011.18.0281.058.020.617.0120.0144.06.03.00.03.05.02.00.01183.00.023.0449.0804.0240.01142.073.0132.055.382.04.0969.06769.04291.01449.01022.070.559.049.00.019.044.030.04.00.00.080.02.05.028.6NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
3342229.019/20Kylian Mbappékylian mbappé20.022.019.01998-12-20ParisFranceFranceFRANaNParis S-GSTFWattack - Centre-ForwardForwardOutfielder178.0right180000000.0160200000.02018-07-012.02022-06-301.0NaNNaNNaNNaNRelatives20.017.01513.018.05.00.00.00.00.01.070.301.371.071.3717.117.18.51.020.511.521.021.5216.888.049.00.055.75.232.910.200.370.200.90.9515.0671.076.87497.01831.0327.0396.082.6139.0185.075.135.050.070.0-3.538.023.026.07.048.0636.035.02.04.0120.011.067.014.00.01.00.0516.088.067.0126.0524.02.09.07.02.010.021.028.091.05.4160.02.019.06.04.012.00.719.00.02.00.01.00.04.02.01.01.02.01.09.011.18.0137.040.029.212.048.077.08.03.00.05.01.01.00.0937.02.024.0344.0647.0208.0904.059.0115.051.370.04.0777.05887.04153.01040.0813.078.244.043.00.011.022.018.01.00.00.069.04.04.050.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
4342229.020/21Kylian Mbappékylian mbappé22.022.019.01998-12-20ParisFranceFranceFRANaNParis S-GSTFW,MFattack - Centre-ForwardForwardOutfielder178.0right180000000.0160200000.02018-07-012.02022-06-301.0NaNNaNNaNNaNRelatives13.09.0815.012.04.04.04.01.00.01.330.441.770.881.3311.68.62.21.280.241.530.951.199.138.020.01.052.64.202.210.210.400.230.4-0.6310.0388.079.94139.0695.0193.0230.083.991.0106.085.89.018.050.01.815.012.010.03.019.0366.022.04.02.054.07.023.06.02.00.00.0327.045.016.080.0299.04.04.01.01.03.06.021.043.04.7525.00.08.04.06.012.01.334.00.04.01.03.00.04.01.01.00.03.01.04.025.03.048.015.031.32.011.035.04.00.00.04.00.01.00.0532.00.013.0181.0380.0113.0509.040.078.051.344.05.0400.03282.02336.0579.0455.078.619.020.00.08.016.07.03.00.00.036.03.03.050.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
\n", "
" ], "text/plain": [ " tm_id Season player player_name age age_tm \\\n", "0 342229.0 17/18 Kylian Mbappé kylian mbappé 18.0 22.0 \n", "1 342229.0 17/18 Kylian Mbappé kylian mbappé 18.0 22.0 \n", "2 342229.0 18/19 Kylian Mbappé kylian mbappé 19.0 22.0 \n", "3 342229.0 19/20 Kylian Mbappé kylian mbappé 20.0 22.0 \n", "4 342229.0 20/21 Kylian Mbappé kylian mbappé 22.0 22.0 \n", "\n", " age_when_joining dob pob cob nationality nationality_code \\\n", "0 19.0 1998-12-20 Paris France France FRA \n", "1 19.0 1998-12-20 Paris France France FRA \n", "2 19.0 1998-12-20 Paris France France FRA \n", "3 19.0 1998-12-20 Paris France France FRA \n", "4 19.0 1998-12-20 Paris France France FRA \n", "\n", " second_citizenship club position_code position_fbref \\\n", "0 NaN Paris S-G ST FW \n", "1 NaN Monaco ST FW,MF \n", "2 NaN Paris S-G ST FW \n", "3 NaN Paris S-G ST FW \n", "4 NaN Paris S-G ST FW,MF \n", "\n", " position_TM position_grouped outfielder_goalkeeper height \\\n", "0 attack - Centre-Forward Forward Outfielder 178.0 \n", "1 attack - Centre-Forward Forward Outfielder 178.0 \n", "2 attack - Centre-Forward Forward Outfielder 178.0 \n", "3 attack - Centre-Forward Forward Outfielder 178.0 \n", "4 attack - Centre-Forward Forward Outfielder 178.0 \n", "\n", " foot market_value_euros market_value_pounds joined \\\n", "0 right 180000000.0 160200000.0 2018-07-01 \n", "1 right 180000000.0 160200000.0 2018-07-01 \n", "2 right 180000000.0 160200000.0 2018-07-01 \n", "3 right 180000000.0 160200000.0 2018-07-01 \n", "4 right 180000000.0 160200000.0 2018-07-01 \n", "\n", " years_since_joining contract_expires years_until_contract_expiry \\\n", "0 2.0 2022-06-30 1.0 \n", "1 2.0 2022-06-30 1.0 \n", "2 2.0 2022-06-30 1.0 \n", "3 2.0 2022-06-30 1.0 \n", "4 2.0 2022-06-30 1.0 \n", "\n", " contract_option on_loan_from on_loan_from_country loan_contract_expiry \\\n", "0 NaN NaN NaN NaN \n", "1 NaN NaN NaN NaN \n", "2 NaN NaN NaN NaN \n", "3 NaN NaN NaN NaN \n", "4 NaN NaN NaN NaN \n", "\n", " player_agent games games_starts minutes goals assists pens_made \\\n", "0 Relatives 27.0 24.0 2095.0 13.0 9.0 0.0 \n", "1 Relatives 1.0 1.0 74.0 0.0 0.0 0.0 \n", "2 Relatives 29.0 24.0 2343.0 33.0 7.0 1.0 \n", "3 Relatives 20.0 17.0 1513.0 18.0 5.0 0.0 \n", "4 Relatives 13.0 9.0 815.0 12.0 4.0 4.0 \n", "\n", " pens_att cards_yellow cards_red goals_per90 assists_per90 \\\n", "0 0.0 2.0 0.0 0.56 0.39 \n", "1 0.0 0.0 0.0 0.00 0.00 \n", "2 2.0 5.0 1.0 1.27 0.27 \n", "3 0.0 0.0 0.0 1.07 0.30 \n", "4 4.0 1.0 0.0 1.33 0.44 \n", "\n", " goals_assists_per90 goals_pens_per90 goals_assists_pens_per90 xg \\\n", "0 0.95 0.56 0.95 14.5 \n", "1 0.00 0.00 0.00 0.2 \n", "2 1.54 1.23 1.50 27.2 \n", "3 1.37 1.07 1.37 17.1 \n", "4 1.77 0.88 1.33 11.6 \n", "\n", " npxg xa xg_per90 xa_per90 xg_xa_per90 npxg_per90 npxg_xa_per90 \\\n", "0 14.5 7.8 0.62 0.33 0.96 0.62 0.96 \n", "1 0.2 0.0 0.20 0.00 0.20 0.20 0.20 \n", "2 25.7 5.5 1.05 0.21 1.26 0.99 1.20 \n", "3 17.1 8.5 1.02 0.51 1.52 1.02 1.52 \n", "4 8.6 2.2 1.28 0.24 1.53 0.95 1.19 \n", "\n", " minutes_90s shots_total shots_on_target shots_free_kicks \\\n", "0 23.3 81.0 32.0 0.0 \n", "1 0.8 3.0 2.0 0.0 \n", "2 26.0 121.0 65.0 1.0 \n", "3 16.8 88.0 49.0 0.0 \n", "4 9.1 38.0 20.0 1.0 \n", "\n", " shots_on_target_pct shots_total_per90 shots_on_target_per90 \\\n", "0 39.5 3.48 1.37 \n", "1 66.7 3.65 2.43 \n", "2 53.7 4.65 2.50 \n", "3 55.7 5.23 2.91 \n", "4 52.6 4.20 2.21 \n", "\n", " goals_per_shot goals_per_shot_on_target npxg_per_shot xg_net npxg_net \\\n", "0 0.16 0.41 0.18 -1.5 -1.5 \n", "1 0.00 0.00 0.06 -0.2 -0.2 \n", "2 0.26 0.49 0.21 5.8 6.3 \n", "3 0.20 0.37 0.20 0.9 0.9 \n", "4 0.21 0.40 0.23 0.4 -0.6 \n", "\n", " passes_completed passes passes_pct passes_total_distance \\\n", "0 558.0 701.0 79.6 8087.0 \n", "1 19.0 31.0 61.3 306.0 \n", "2 637.0 823.0 77.4 9517.0 \n", "3 515.0 671.0 76.8 7497.0 \n", "4 310.0 388.0 79.9 4139.0 \n", "\n", " passes_progressive_distance passes_completed_short passes_short \\\n", "0 1794.0 324.0 373.0 \n", "1 44.0 9.0 13.0 \n", "2 2275.0 393.0 478.0 \n", "3 1831.0 327.0 396.0 \n", "4 695.0 193.0 230.0 \n", "\n", " passes_pct_short passes_completed_medium passes_medium \\\n", "0 86.9 174.0 223.0 \n", "1 69.2 9.0 11.0 \n", "2 82.2 182.0 241.0 \n", "3 82.6 139.0 185.0 \n", "4 83.9 91.0 106.0 \n", "\n", " passes_pct_medium passes_completed_long passes_long passes_pct_long \\\n", "0 78.0 35.0 54.0 64.8 \n", "1 81.8 1.0 4.0 25.0 \n", "2 75.5 48.0 65.0 73.8 \n", "3 75.1 35.0 50.0 70.0 \n", "4 85.8 9.0 18.0 50.0 \n", "\n", " xa_net assisted_shots passes_into_final_third passes_into_penalty_area \\\n", "0 1.2 51.0 36.0 33.0 \n", "1 0.0 0.0 1.0 0.0 \n", "2 1.5 44.0 47.0 48.0 \n", "3 -3.5 38.0 23.0 26.0 \n", "4 1.8 15.0 12.0 10.0 \n", "\n", " crosses_into_penalty_area progressive_passes passes_live passes_dead \\\n", "0 9.0 52.0 674.0 27.0 \n", "1 0.0 0.0 31.0 0.0 \n", "2 8.0 76.0 783.0 40.0 \n", "3 7.0 48.0 636.0 35.0 \n", "4 3.0 19.0 366.0 22.0 \n", "\n", " passes_free_kicks through_balls passes_pressure passes_switches \\\n", "0 2.0 1.0 144.0 12.0 \n", "1 0.0 0.0 0.0 0.0 \n", "2 3.0 12.0 176.0 13.0 \n", "3 2.0 4.0 120.0 11.0 \n", "4 4.0 2.0 54.0 7.0 \n", "\n", " crosses corner_kicks corner_kicks_in corner_kicks_out \\\n", "0 62.0 4.0 0.0 0.0 \n", "1 5.0 0.0 0.0 0.0 \n", "2 48.0 6.0 0.0 0.0 \n", "3 67.0 14.0 0.0 1.0 \n", "4 23.0 6.0 2.0 0.0 \n", "\n", " corner_kicks_straight passes_ground passes_low passes_high \\\n", "0 0.0 578.0 38.0 85.0 \n", "1 0.0 22.0 5.0 4.0 \n", "2 0.0 658.0 100.0 65.0 \n", "3 0.0 516.0 88.0 67.0 \n", "4 0.0 327.0 45.0 16.0 \n", "\n", " passes_left_foot passes_right_foot passes_head throw_ins \\\n", "0 108.0 573.0 8.0 11.0 \n", "1 4.0 26.0 1.0 0.0 \n", "2 141.0 668.0 5.0 5.0 \n", "3 126.0 524.0 2.0 9.0 \n", "4 80.0 299.0 4.0 4.0 \n", "\n", " passes_other_body passes_offsides passes_oob passes_intercepted \\\n", "0 0.0 3.0 9.0 18.0 \n", "1 0.0 0.0 1.0 4.0 \n", "2 3.0 4.0 11.0 24.0 \n", "3 7.0 2.0 10.0 21.0 \n", "4 1.0 1.0 3.0 6.0 \n", "\n", " passes_blocked sca sca_per90 sca_passes_live sca_passes_dead \\\n", "0 30.0 99.0 4.25 66.0 0.0 \n", "1 1.0 3.0 3.60 2.0 0.0 \n", "2 34.0 111.0 4.26 70.0 1.0 \n", "3 28.0 91.0 5.41 60.0 2.0 \n", "4 21.0 43.0 4.75 25.0 0.0 \n", "\n", " sca_dribbles sca_shots sca_fouled gca gca_per90 gca_passes_live \\\n", "0 14.0 5.0 13.0 14.0 0.60 8.0 \n", "1 0.0 0.0 1.0 1.0 1.20 1.0 \n", "2 16.0 10.0 13.0 22.0 0.85 12.0 \n", "3 19.0 6.0 4.0 12.0 0.71 9.0 \n", "4 8.0 4.0 6.0 12.0 1.33 4.0 \n", "\n", " gca_passes_dead gca_dribbles gca_shots gca_fouled gca_og_for tackles \\\n", "0 0.0 2.0 3.0 1.0 0.0 8.0 \n", "1 0.0 0.0 0.0 0.0 0.0 1.0 \n", "2 0.0 3.0 3.0 4.0 0.0 7.0 \n", "3 0.0 2.0 0.0 1.0 0.0 4.0 \n", "4 0.0 4.0 1.0 3.0 0.0 4.0 \n", "\n", " tackles_won tackles_def_3rd tackles_mid_3rd tackles_att_3rd \\\n", "0 4.0 2.0 3.0 3.0 \n", "1 1.0 0.0 0.0 1.0 \n", "2 4.0 2.0 2.0 3.0 \n", "3 2.0 1.0 1.0 2.0 \n", "4 1.0 1.0 0.0 3.0 \n", "\n", " dribble_tackles dribbles_vs dribble_tackles_pct dribbled_past \\\n", "0 3.0 10.0 30.0 7.0 \n", "1 0.0 0.0 0.0 0.0 \n", "2 1.0 9.0 11.1 8.0 \n", "3 1.0 9.0 11.1 8.0 \n", "4 1.0 4.0 25.0 3.0 \n", "\n", " pressures pressure_regains pressure_regain_pct pressures_def_3rd \\\n", "0 190.0 67.0 35.3 28.0 \n", "1 4.0 1.0 25.0 0.0 \n", "2 281.0 58.0 20.6 17.0 \n", "3 137.0 40.0 29.2 12.0 \n", "4 48.0 15.0 31.3 2.0 \n", "\n", " pressures_mid_3rd pressures_att_3rd blocks blocked_shots \\\n", "0 59.0 103.0 6.0 2.0 \n", "1 3.0 1.0 0.0 0.0 \n", "2 120.0 144.0 6.0 3.0 \n", "3 48.0 77.0 8.0 3.0 \n", "4 11.0 35.0 4.0 0.0 \n", "\n", " blocked_shots_saves blocked_passes interceptions clearances errors \\\n", "0 0.0 4.0 1.0 0.0 0.0 \n", "1 0.0 0.0 1.0 0.0 0.0 \n", "2 0.0 3.0 5.0 2.0 0.0 \n", "3 0.0 5.0 1.0 1.0 0.0 \n", "4 0.0 4.0 0.0 1.0 0.0 \n", "\n", " touches touches_def_pen_area touches_def_3rd touches_mid_3rd \\\n", "0 1014.0 3.0 46.0 365.0 \n", "1 43.0 0.0 1.0 17.0 \n", "2 1183.0 0.0 23.0 449.0 \n", "3 937.0 2.0 24.0 344.0 \n", "4 532.0 0.0 13.0 181.0 \n", "\n", " touches_att_3rd touches_att_pen_area touches_live_ball \\\n", "0 698.0 208.0 990.0 \n", "1 28.0 11.0 43.0 \n", "2 804.0 240.0 1142.0 \n", "3 647.0 208.0 904.0 \n", "4 380.0 113.0 509.0 \n", "\n", " dribbles_completed dribbles dribbles_completed_pct \\\n", "0 65.0 118.0 55.1 \n", "1 4.0 7.0 57.1 \n", "2 73.0 132.0 55.3 \n", "3 59.0 115.0 51.3 \n", "4 40.0 78.0 51.3 \n", "\n", " players_dribbled_past nutmegs carries carry_distance \\\n", "0 70.0 5.0 854.0 6615.0 \n", "1 6.0 0.0 44.0 342.0 \n", "2 82.0 4.0 969.0 6769.0 \n", "3 70.0 4.0 777.0 5887.0 \n", "4 44.0 5.0 400.0 3282.0 \n", "\n", " carry_progressive_distance pass_targets passes_received \\\n", "0 4067.0 1089.0 840.0 \n", "1 256.0 52.0 38.0 \n", "2 4291.0 1449.0 1022.0 \n", "3 4153.0 1040.0 813.0 \n", "4 2336.0 579.0 455.0 \n", "\n", " passes_received_pct miscontrols dispossessed cards_yellow_red fouls \\\n", "0 77.1 60.0 61.0 0.0 9.0 \n", "1 73.1 2.0 2.0 0.0 0.0 \n", "2 70.5 59.0 49.0 0.0 19.0 \n", "3 78.2 44.0 43.0 0.0 11.0 \n", "4 78.6 19.0 20.0 0.0 8.0 \n", "\n", " fouled offsides pens_won pens_conceded own_goals ball_recoveries \\\n", "0 37.0 23.0 1.0 0.0 0.0 98.0 \n", "1 1.0 2.0 0.0 0.0 0.0 3.0 \n", "2 44.0 30.0 4.0 0.0 0.0 80.0 \n", "3 22.0 18.0 1.0 0.0 0.0 69.0 \n", "4 16.0 7.0 3.0 0.0 0.0 36.0 \n", "\n", " aerials_won aerials_lost aerials_won_pct games_gk games_starts_gk \\\n", "0 1.0 4.0 20.0 NaN NaN \n", "1 0.0 0.0 0.0 NaN NaN \n", "2 2.0 5.0 28.6 NaN NaN \n", "3 4.0 4.0 50.0 NaN NaN \n", "4 3.0 3.0 50.0 NaN NaN \n", "\n", " minutes_gk goals_against_gk goals_against_per90_gk \\\n", "0 NaN NaN NaN \n", "1 NaN NaN NaN \n", "2 NaN NaN NaN \n", "3 NaN NaN NaN \n", "4 NaN NaN NaN \n", "\n", " shots_on_target_against saves save_pct wins_gk draws_gk losses_gk \\\n", "0 NaN NaN NaN NaN NaN NaN \n", "1 NaN NaN NaN NaN NaN NaN \n", "2 NaN NaN NaN NaN NaN NaN \n", "3 NaN NaN NaN NaN NaN NaN \n", "4 NaN NaN NaN NaN NaN NaN \n", "\n", " clean_sheets clean_sheets_pct pens_att_gk pens_allowed pens_saved \\\n", "0 NaN NaN NaN NaN NaN \n", "1 NaN NaN NaN NaN NaN \n", "2 NaN NaN NaN NaN NaN \n", "3 NaN NaN NaN NaN NaN \n", "4 NaN NaN NaN NaN NaN \n", "\n", " pens_missed_gk minutes_90s_gk free_kick_goals_against_gk \\\n", "0 NaN NaN NaN \n", "1 NaN NaN NaN \n", "2 NaN NaN NaN \n", "3 NaN NaN NaN \n", "4 NaN NaN NaN \n", "\n", " corner_kick_goals_against_gk own_goals_against_gk psxg_gk \\\n", "0 NaN NaN NaN \n", "1 NaN NaN NaN \n", "2 NaN NaN NaN \n", "3 NaN NaN NaN \n", "4 NaN NaN NaN \n", "\n", " psnpxg_per_shot_on_target_against psxg_net_gk psxg_net_per90_gk \\\n", "0 NaN NaN NaN \n", "1 NaN NaN NaN \n", "2 NaN NaN NaN \n", "3 NaN NaN NaN \n", "4 NaN NaN NaN \n", "\n", " passes_completed_launched_gk passes_launched_gk passes_pct_launched_gk \\\n", "0 NaN NaN NaN \n", "1 NaN NaN NaN \n", "2 NaN NaN NaN \n", "3 NaN NaN NaN \n", "4 NaN NaN NaN \n", "\n", " passes_gk passes_throws_gk pct_passes_launched_gk passes_length_avg_gk \\\n", "0 NaN NaN NaN NaN \n", "1 NaN NaN NaN NaN \n", "2 NaN NaN NaN NaN \n", "3 NaN NaN NaN NaN \n", "4 NaN NaN NaN NaN \n", "\n", " goal_kicks pct_goal_kicks_launched goal_kick_length_avg crosses_gk \\\n", "0 NaN NaN NaN NaN \n", "1 NaN NaN NaN NaN \n", "2 NaN NaN NaN NaN \n", "3 NaN NaN NaN NaN \n", "4 NaN NaN NaN NaN \n", "\n", " crosses_stopped_gk crosses_stopped_pct_gk \\\n", "0 NaN NaN \n", "1 NaN NaN \n", "2 NaN NaN \n", "3 NaN NaN \n", "4 NaN NaN \n", "\n", " def_actions_outside_pen_area_gk def_actions_outside_pen_area_per90_gk \\\n", "0 NaN NaN \n", "1 NaN NaN \n", "2 NaN NaN \n", "3 NaN NaN \n", "4 NaN NaN \n", "\n", " avg_distance_def_actions_gk \n", "0 NaN \n", "1 NaN \n", "2 NaN \n", "3 NaN \n", "4 NaN " ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Display the first 5 rows of the raw DataFrame, df_fbref_tm\n", "df_fbref_tm.head()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
tm_idSeasonplayerplayer_nameageage_tmage_when_joiningdobpobcobnationalitynationality_codesecond_citizenshipclubposition_codeposition_fbrefposition_TMposition_groupedoutfielder_goalkeeperheightfootmarket_value_eurosmarket_value_poundsjoinedyears_since_joiningcontract_expiresyears_until_contract_expirycontract_optionon_loan_fromon_loan_from_countryloan_contract_expiryplayer_agentgamesgames_startsminutesgoalsassistspens_madepens_attcards_yellowcards_redgoals_per90assists_per90goals_assists_per90goals_pens_per90goals_assists_pens_per90xgnpxgxaxg_per90xa_per90xg_xa_per90npxg_per90npxg_xa_per90minutes_90sshots_totalshots_on_targetshots_free_kicksshots_on_target_pctshots_total_per90shots_on_target_per90goals_per_shotgoals_per_shot_on_targetnpxg_per_shotxg_netnpxg_netpasses_completedpassespasses_pctpasses_total_distancepasses_progressive_distancepasses_completed_shortpasses_shortpasses_pct_shortpasses_completed_mediumpasses_mediumpasses_pct_mediumpasses_completed_longpasses_longpasses_pct_longxa_netassisted_shotspasses_into_final_thirdpasses_into_penalty_areacrosses_into_penalty_areaprogressive_passespasses_livepasses_deadpasses_free_kicksthrough_ballspasses_pressurepasses_switchescrossescorner_kickscorner_kicks_incorner_kicks_outcorner_kicks_straightpasses_groundpasses_lowpasses_highpasses_left_footpasses_right_footpasses_headthrow_inspasses_other_bodypasses_offsidespasses_oobpasses_interceptedpasses_blockedscasca_per90sca_passes_livesca_passes_deadsca_dribblessca_shotssca_fouledgcagca_per90gca_passes_livegca_passes_deadgca_dribblesgca_shotsgca_fouledgca_og_fortacklestackles_wontackles_def_3rdtackles_mid_3rdtackles_att_3rddribble_tacklesdribbles_vsdribble_tackles_pctdribbled_pastpressurespressure_regainspressure_regain_pctpressures_def_3rdpressures_mid_3rdpressures_att_3rdblocksblocked_shotsblocked_shots_savesblocked_passesinterceptionsclearanceserrorstouchestouches_def_pen_areatouches_def_3rdtouches_mid_3rdtouches_att_3rdtouches_att_pen_areatouches_live_balldribbles_completeddribblesdribbles_completed_pctplayers_dribbled_pastnutmegscarriescarry_distancecarry_progressive_distancepass_targetspasses_receivedpasses_received_pctmiscontrolsdispossessedcards_yellow_redfoulsfouledoffsidespens_wonpens_concededown_goalsball_recoveriesaerials_wonaerials_lostaerials_won_pctgames_gkgames_starts_gkminutes_gkgoals_against_gkgoals_against_per90_gkshots_on_target_againstsavessave_pctwins_gkdraws_gklosses_gkclean_sheetsclean_sheets_pctpens_att_gkpens_allowedpens_savedpens_missed_gkminutes_90s_gkfree_kick_goals_against_gkcorner_kick_goals_against_gkown_goals_against_gkpsxg_gkpsnpxg_per_shot_on_target_againstpsxg_net_gkpsxg_net_per90_gkpasses_completed_launched_gkpasses_launched_gkpasses_pct_launched_gkpasses_gkpasses_throws_gkpct_passes_launched_gkpasses_length_avg_gkgoal_kickspct_goal_kicks_launchedgoal_kick_length_avgcrosses_gkcrosses_stopped_gkcrosses_stopped_pct_gkdef_actions_outside_pen_area_gkdef_actions_outside_pen_area_per90_gkavg_distance_def_actions_gk
11300NaN18/19Łukasz SkorupskiNaNNaNNaNNaNNaNNaNNaNPolandPOLNaNBolognaNaNGKNaNGoalkeeperNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN38.038.03420.056.01.47173.0121.00.69911.011.016.010.026.34.04.00.00.038.01.05.01.050.40.28-4.6-0.12265.0607.043.7783.0221.048.540.8343.066.251.3406.041.010.19.00.2412.3
11301NaN19/20Łukasz SkorupskiNaNNaNNaNNaNNaNNaNNaNPolandPOLNaNBolognaNaNGKNaNGoalkeeperNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN37.037.03330.064.01.73180.0122.00.67812.010.015.02.05.48.06.01.01.037.02.06.01.057.60.30-5.4-0.15197.0445.044.3855.0216.037.735.3292.042.134.8320.046.014.415.00.4112.9
11302NaN20/21Łukasz SkorupskiNaNNaNNaNNaNNaNNaNNaNPolandPOLNaNBolognaNaNGKNaNGoalkeeperNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN10.010.0900.017.01.7045.030.00.6444.00.06.01.010.01.01.00.00.010.00.03.01.013.30.27-2.7-0.2746.0117.039.3276.048.034.133.371.032.428.378.013.016.75.00.5014.3
11303NaN18/19Łukasz TeodorczykNaNNaNNaNNaNNaNNaNNaNPolandPOLNaNUdineseNaNFW,MFNaNForwardNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN16.02.0400.01.00.00.01.01.00.00.230.000.230.230.231.91.00.00.440.010.450.230.244.412.02.00.016.72.700.450.080.50.08-0.90.054.087.062.1882.0157.032.038.084.215.027.055.66.011.054.50.02.03.01.00.03.083.04.00.01.018.05.05.00.00.00.00.047.014.026.013.050.010.01.05.00.07.01.09.09.02.036.00.01.01.01.02.00.450.00.00.01.01.00.05.03.02.01.02.01.07.014.36.0101.015.014.96.064.031.07.02.00.05.02.05.00.0152.08.016.072.070.029.0148.06.08.075.06.00.093.0503.0156.0187.0110.058.813.015.00.020.08.04.00.00.00.016.011.022.033.3NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
11304NaN19/20Łukasz TeodorczykNaNNaNNaNNaNNaNNaNNaNPolandPOLNaNUdineseNaNFWNaNForwardNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN14.01.0222.00.01.00.00.01.00.00.000.410.410.000.410.40.40.80.180.330.510.180.512.54.02.00.050.01.620.810.000.00.11-0.4-0.455.074.074.3884.0184.028.031.090.319.029.065.53.08.037.50.25.06.01.00.07.070.04.00.01.026.01.01.00.00.00.00.049.010.015.019.039.06.01.00.00.01.00.01.06.02.436.00.00.00.00.02.00.812.00.00.00.00.00.08.05.02.04.02.02.06.033.34.079.018.022.819.028.032.01.00.00.01.00.02.00.0109.01.015.063.043.010.0105.04.07.057.14.00.068.0558.0348.0114.074.064.93.010.00.011.03.03.00.00.00.018.09.011.045.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
\n", "
" ], "text/plain": [ " tm_id Season player player_name age age_tm \\\n", "11300 NaN 18/19 Łukasz Skorupski NaN NaN NaN \n", "11301 NaN 19/20 Łukasz Skorupski NaN NaN NaN \n", "11302 NaN 20/21 Łukasz Skorupski NaN NaN NaN \n", "11303 NaN 18/19 Łukasz Teodorczyk NaN NaN NaN \n", "11304 NaN 19/20 Łukasz Teodorczyk NaN NaN NaN \n", "\n", " age_when_joining dob pob cob nationality nationality_code \\\n", "11300 NaN NaN NaN NaN Poland POL \n", "11301 NaN NaN NaN NaN Poland POL \n", "11302 NaN NaN NaN NaN Poland POL \n", "11303 NaN NaN NaN NaN Poland POL \n", "11304 NaN NaN NaN NaN Poland POL \n", "\n", " second_citizenship club position_code position_fbref position_TM \\\n", "11300 NaN Bologna NaN GK NaN \n", "11301 NaN Bologna NaN GK NaN \n", "11302 NaN Bologna NaN GK NaN \n", "11303 NaN Udinese NaN FW,MF NaN \n", "11304 NaN Udinese NaN FW NaN \n", "\n", " position_grouped outfielder_goalkeeper height foot market_value_euros \\\n", "11300 Goalkeeper NaN NaN NaN NaN \n", "11301 Goalkeeper NaN NaN NaN NaN \n", "11302 Goalkeeper NaN NaN NaN NaN \n", "11303 Forward NaN NaN NaN NaN \n", "11304 Forward NaN NaN NaN NaN \n", "\n", " market_value_pounds joined years_since_joining contract_expires \\\n", "11300 NaN NaN NaN NaN \n", "11301 NaN NaN NaN NaN \n", "11302 NaN NaN NaN NaN \n", "11303 NaN NaN NaN NaN \n", "11304 NaN NaN NaN NaN \n", "\n", " years_until_contract_expiry contract_option on_loan_from \\\n", "11300 NaN NaN NaN \n", "11301 NaN NaN NaN \n", "11302 NaN NaN NaN \n", "11303 NaN NaN NaN \n", "11304 NaN NaN NaN \n", "\n", " on_loan_from_country loan_contract_expiry player_agent games \\\n", "11300 NaN NaN NaN NaN \n", "11301 NaN NaN NaN NaN \n", "11302 NaN NaN NaN NaN \n", "11303 NaN NaN NaN 16.0 \n", "11304 NaN NaN NaN 14.0 \n", "\n", " games_starts minutes goals assists pens_made pens_att \\\n", "11300 NaN NaN NaN NaN NaN NaN \n", "11301 NaN NaN NaN NaN NaN NaN \n", "11302 NaN NaN NaN NaN NaN NaN \n", "11303 2.0 400.0 1.0 0.0 0.0 1.0 \n", "11304 1.0 222.0 0.0 1.0 0.0 0.0 \n", "\n", " cards_yellow cards_red goals_per90 assists_per90 \\\n", "11300 NaN NaN NaN NaN \n", "11301 NaN NaN NaN NaN \n", "11302 NaN NaN NaN NaN \n", "11303 1.0 0.0 0.23 0.00 \n", "11304 1.0 0.0 0.00 0.41 \n", "\n", " goals_assists_per90 goals_pens_per90 goals_assists_pens_per90 xg \\\n", "11300 NaN NaN NaN NaN \n", "11301 NaN NaN NaN NaN \n", "11302 NaN NaN NaN NaN \n", "11303 0.23 0.23 0.23 1.9 \n", "11304 0.41 0.00 0.41 0.4 \n", "\n", " npxg xa xg_per90 xa_per90 xg_xa_per90 npxg_per90 npxg_xa_per90 \\\n", "11300 NaN NaN NaN NaN NaN NaN NaN \n", "11301 NaN NaN NaN NaN NaN NaN NaN \n", "11302 NaN NaN NaN NaN NaN NaN NaN \n", "11303 1.0 0.0 0.44 0.01 0.45 0.23 0.24 \n", "11304 0.4 0.8 0.18 0.33 0.51 0.18 0.51 \n", "\n", " minutes_90s shots_total shots_on_target shots_free_kicks \\\n", "11300 NaN NaN NaN NaN \n", "11301 NaN NaN NaN NaN \n", "11302 NaN NaN NaN NaN \n", "11303 4.4 12.0 2.0 0.0 \n", "11304 2.5 4.0 2.0 0.0 \n", "\n", " shots_on_target_pct shots_total_per90 shots_on_target_per90 \\\n", "11300 NaN NaN NaN \n", "11301 NaN NaN NaN \n", "11302 NaN NaN NaN \n", "11303 16.7 2.70 0.45 \n", "11304 50.0 1.62 0.81 \n", "\n", " goals_per_shot goals_per_shot_on_target npxg_per_shot xg_net \\\n", "11300 NaN NaN NaN NaN \n", "11301 NaN NaN NaN NaN \n", "11302 NaN NaN NaN NaN \n", "11303 0.08 0.5 0.08 -0.9 \n", "11304 0.00 0.0 0.11 -0.4 \n", "\n", " npxg_net passes_completed passes passes_pct passes_total_distance \\\n", "11300 NaN NaN NaN NaN NaN \n", "11301 NaN NaN NaN NaN NaN \n", "11302 NaN NaN NaN NaN NaN \n", "11303 0.0 54.0 87.0 62.1 882.0 \n", "11304 -0.4 55.0 74.0 74.3 884.0 \n", "\n", " passes_progressive_distance passes_completed_short passes_short \\\n", "11300 NaN NaN NaN \n", "11301 NaN NaN NaN \n", "11302 NaN NaN NaN \n", "11303 157.0 32.0 38.0 \n", "11304 184.0 28.0 31.0 \n", "\n", " passes_pct_short passes_completed_medium passes_medium \\\n", "11300 NaN NaN NaN \n", "11301 NaN NaN NaN \n", "11302 NaN NaN NaN \n", "11303 84.2 15.0 27.0 \n", "11304 90.3 19.0 29.0 \n", "\n", " passes_pct_medium passes_completed_long passes_long passes_pct_long \\\n", "11300 NaN NaN NaN NaN \n", "11301 NaN NaN NaN NaN \n", "11302 NaN NaN NaN NaN \n", "11303 55.6 6.0 11.0 54.5 \n", "11304 65.5 3.0 8.0 37.5 \n", "\n", " xa_net assisted_shots passes_into_final_third \\\n", "11300 NaN NaN NaN \n", "11301 NaN NaN NaN \n", "11302 NaN NaN NaN \n", "11303 0.0 2.0 3.0 \n", "11304 0.2 5.0 6.0 \n", "\n", " passes_into_penalty_area crosses_into_penalty_area \\\n", "11300 NaN NaN \n", "11301 NaN NaN \n", "11302 NaN NaN \n", "11303 1.0 0.0 \n", "11304 1.0 0.0 \n", "\n", " progressive_passes passes_live passes_dead passes_free_kicks \\\n", "11300 NaN NaN NaN NaN \n", "11301 NaN NaN NaN NaN \n", "11302 NaN NaN NaN NaN \n", "11303 3.0 83.0 4.0 0.0 \n", "11304 7.0 70.0 4.0 0.0 \n", "\n", " through_balls passes_pressure passes_switches crosses corner_kicks \\\n", "11300 NaN NaN NaN NaN NaN \n", "11301 NaN NaN NaN NaN NaN \n", "11302 NaN NaN NaN NaN NaN \n", "11303 1.0 18.0 5.0 5.0 0.0 \n", "11304 1.0 26.0 1.0 1.0 0.0 \n", "\n", " corner_kicks_in corner_kicks_out corner_kicks_straight \\\n", "11300 NaN NaN NaN \n", "11301 NaN NaN NaN \n", "11302 NaN NaN NaN \n", "11303 0.0 0.0 0.0 \n", "11304 0.0 0.0 0.0 \n", "\n", " passes_ground passes_low passes_high passes_left_foot \\\n", "11300 NaN NaN NaN NaN \n", "11301 NaN NaN NaN NaN \n", "11302 NaN NaN NaN NaN \n", "11303 47.0 14.0 26.0 13.0 \n", "11304 49.0 10.0 15.0 19.0 \n", "\n", " passes_right_foot passes_head throw_ins passes_other_body \\\n", "11300 NaN NaN NaN NaN \n", "11301 NaN NaN NaN NaN \n", "11302 NaN NaN NaN NaN \n", "11303 50.0 10.0 1.0 5.0 \n", "11304 39.0 6.0 1.0 0.0 \n", "\n", " passes_offsides passes_oob passes_intercepted passes_blocked sca \\\n", "11300 NaN NaN NaN NaN NaN \n", "11301 NaN NaN NaN NaN NaN \n", "11302 NaN NaN NaN NaN NaN \n", "11303 0.0 7.0 1.0 9.0 9.0 \n", "11304 0.0 1.0 0.0 1.0 6.0 \n", "\n", " sca_per90 sca_passes_live sca_passes_dead sca_dribbles sca_shots \\\n", "11300 NaN NaN NaN NaN NaN \n", "11301 NaN NaN NaN NaN NaN \n", "11302 NaN NaN NaN NaN NaN \n", "11303 2.03 6.0 0.0 1.0 1.0 \n", "11304 2.43 6.0 0.0 0.0 0.0 \n", "\n", " sca_fouled gca gca_per90 gca_passes_live gca_passes_dead \\\n", "11300 NaN NaN NaN NaN NaN \n", "11301 NaN NaN NaN NaN NaN \n", "11302 NaN NaN NaN NaN NaN \n", "11303 1.0 2.0 0.45 0.0 0.0 \n", "11304 0.0 2.0 0.81 2.0 0.0 \n", "\n", " gca_dribbles gca_shots gca_fouled gca_og_for tackles tackles_won \\\n", "11300 NaN NaN NaN NaN NaN NaN \n", "11301 NaN NaN NaN NaN NaN NaN \n", "11302 NaN NaN NaN NaN NaN NaN \n", "11303 0.0 1.0 1.0 0.0 5.0 3.0 \n", "11304 0.0 0.0 0.0 0.0 8.0 5.0 \n", "\n", " tackles_def_3rd tackles_mid_3rd tackles_att_3rd dribble_tackles \\\n", "11300 NaN NaN NaN NaN \n", "11301 NaN NaN NaN NaN \n", "11302 NaN NaN NaN NaN \n", "11303 2.0 1.0 2.0 1.0 \n", "11304 2.0 4.0 2.0 2.0 \n", "\n", " dribbles_vs dribble_tackles_pct dribbled_past pressures \\\n", "11300 NaN NaN NaN NaN \n", "11301 NaN NaN NaN NaN \n", "11302 NaN NaN NaN NaN \n", "11303 7.0 14.3 6.0 101.0 \n", "11304 6.0 33.3 4.0 79.0 \n", "\n", " pressure_regains pressure_regain_pct pressures_def_3rd \\\n", "11300 NaN NaN NaN \n", "11301 NaN NaN NaN \n", "11302 NaN NaN NaN \n", "11303 15.0 14.9 6.0 \n", "11304 18.0 22.8 19.0 \n", "\n", " pressures_mid_3rd pressures_att_3rd blocks blocked_shots \\\n", "11300 NaN NaN NaN NaN \n", "11301 NaN NaN NaN NaN \n", "11302 NaN NaN NaN NaN \n", "11303 64.0 31.0 7.0 2.0 \n", "11304 28.0 32.0 1.0 0.0 \n", "\n", " blocked_shots_saves blocked_passes interceptions clearances errors \\\n", "11300 NaN NaN NaN NaN NaN \n", "11301 NaN NaN NaN NaN NaN \n", "11302 NaN NaN NaN NaN NaN \n", "11303 0.0 5.0 2.0 5.0 0.0 \n", "11304 0.0 1.0 0.0 2.0 0.0 \n", "\n", " touches touches_def_pen_area touches_def_3rd touches_mid_3rd \\\n", "11300 NaN NaN NaN NaN \n", "11301 NaN NaN NaN NaN \n", "11302 NaN NaN NaN NaN \n", "11303 152.0 8.0 16.0 72.0 \n", "11304 109.0 1.0 15.0 63.0 \n", "\n", " touches_att_3rd touches_att_pen_area touches_live_ball \\\n", "11300 NaN NaN NaN \n", "11301 NaN NaN NaN \n", "11302 NaN NaN NaN \n", "11303 70.0 29.0 148.0 \n", "11304 43.0 10.0 105.0 \n", "\n", " dribbles_completed dribbles dribbles_completed_pct \\\n", "11300 NaN NaN NaN \n", "11301 NaN NaN NaN \n", "11302 NaN NaN NaN \n", "11303 6.0 8.0 75.0 \n", "11304 4.0 7.0 57.1 \n", "\n", " players_dribbled_past nutmegs carries carry_distance \\\n", "11300 NaN NaN NaN NaN \n", "11301 NaN NaN NaN NaN \n", "11302 NaN NaN NaN NaN \n", "11303 6.0 0.0 93.0 503.0 \n", "11304 4.0 0.0 68.0 558.0 \n", "\n", " carry_progressive_distance pass_targets passes_received \\\n", "11300 NaN NaN NaN \n", "11301 NaN NaN NaN \n", "11302 NaN NaN NaN \n", "11303 156.0 187.0 110.0 \n", "11304 348.0 114.0 74.0 \n", "\n", " passes_received_pct miscontrols dispossessed cards_yellow_red \\\n", "11300 NaN NaN NaN NaN \n", "11301 NaN NaN NaN NaN \n", "11302 NaN NaN NaN NaN \n", "11303 58.8 13.0 15.0 0.0 \n", "11304 64.9 3.0 10.0 0.0 \n", "\n", " fouls fouled offsides pens_won pens_conceded own_goals \\\n", "11300 NaN NaN NaN NaN NaN NaN \n", "11301 NaN NaN NaN NaN NaN NaN \n", "11302 NaN NaN NaN NaN NaN NaN \n", "11303 20.0 8.0 4.0 0.0 0.0 0.0 \n", "11304 11.0 3.0 3.0 0.0 0.0 0.0 \n", "\n", " ball_recoveries aerials_won aerials_lost aerials_won_pct games_gk \\\n", "11300 NaN NaN NaN NaN 38.0 \n", "11301 NaN NaN NaN NaN 37.0 \n", "11302 NaN NaN NaN NaN 10.0 \n", "11303 16.0 11.0 22.0 33.3 NaN \n", "11304 18.0 9.0 11.0 45.0 NaN \n", "\n", " games_starts_gk minutes_gk goals_against_gk goals_against_per90_gk \\\n", "11300 38.0 3420.0 56.0 1.47 \n", "11301 37.0 3330.0 64.0 1.73 \n", "11302 10.0 900.0 17.0 1.70 \n", "11303 NaN NaN NaN NaN \n", "11304 NaN NaN NaN NaN \n", "\n", " shots_on_target_against saves save_pct wins_gk draws_gk losses_gk \\\n", "11300 173.0 121.0 0.699 11.0 11.0 16.0 \n", "11301 180.0 122.0 0.678 12.0 10.0 15.0 \n", "11302 45.0 30.0 0.644 4.0 0.0 6.0 \n", "11303 NaN NaN NaN NaN NaN NaN \n", "11304 NaN NaN NaN NaN NaN NaN \n", "\n", " clean_sheets clean_sheets_pct pens_att_gk pens_allowed pens_saved \\\n", "11300 10.0 26.3 4.0 4.0 0.0 \n", "11301 2.0 5.4 8.0 6.0 1.0 \n", "11302 1.0 10.0 1.0 1.0 0.0 \n", "11303 NaN NaN NaN NaN NaN \n", "11304 NaN NaN NaN NaN NaN \n", "\n", " pens_missed_gk minutes_90s_gk free_kick_goals_against_gk \\\n", "11300 0.0 38.0 1.0 \n", "11301 1.0 37.0 2.0 \n", "11302 0.0 10.0 0.0 \n", "11303 NaN NaN NaN \n", "11304 NaN NaN NaN \n", "\n", " corner_kick_goals_against_gk own_goals_against_gk psxg_gk \\\n", "11300 5.0 1.0 50.4 \n", "11301 6.0 1.0 57.6 \n", "11302 3.0 1.0 13.3 \n", "11303 NaN NaN NaN \n", "11304 NaN NaN NaN \n", "\n", " psnpxg_per_shot_on_target_against psxg_net_gk psxg_net_per90_gk \\\n", "11300 0.28 -4.6 -0.12 \n", "11301 0.30 -5.4 -0.15 \n", "11302 0.27 -2.7 -0.27 \n", "11303 NaN NaN NaN \n", "11304 NaN NaN NaN \n", "\n", " passes_completed_launched_gk passes_launched_gk \\\n", "11300 265.0 607.0 \n", "11301 197.0 445.0 \n", "11302 46.0 117.0 \n", "11303 NaN NaN \n", "11304 NaN NaN \n", "\n", " passes_pct_launched_gk passes_gk passes_throws_gk \\\n", "11300 43.7 783.0 221.0 \n", "11301 44.3 855.0 216.0 \n", "11302 39.3 276.0 48.0 \n", "11303 NaN NaN NaN \n", "11304 NaN NaN NaN \n", "\n", " pct_passes_launched_gk passes_length_avg_gk goal_kicks \\\n", "11300 48.5 40.8 343.0 \n", "11301 37.7 35.3 292.0 \n", "11302 34.1 33.3 71.0 \n", "11303 NaN NaN NaN \n", "11304 NaN NaN NaN \n", "\n", " pct_goal_kicks_launched goal_kick_length_avg crosses_gk \\\n", "11300 66.2 51.3 406.0 \n", "11301 42.1 34.8 320.0 \n", "11302 32.4 28.3 78.0 \n", "11303 NaN NaN NaN \n", "11304 NaN NaN NaN \n", "\n", " crosses_stopped_gk crosses_stopped_pct_gk \\\n", "11300 41.0 10.1 \n", "11301 46.0 14.4 \n", "11302 13.0 16.7 \n", "11303 NaN NaN \n", "11304 NaN NaN \n", "\n", " def_actions_outside_pen_area_gk def_actions_outside_pen_area_per90_gk \\\n", "11300 9.0 0.24 \n", "11301 15.0 0.41 \n", "11302 5.0 0.50 \n", "11303 NaN NaN \n", "11304 NaN NaN \n", "\n", " avg_distance_def_actions_gk \n", "11300 12.3 \n", "11301 12.9 \n", "11302 14.3 \n", "11303 NaN \n", "11304 NaN " ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Display the last 5 rows of the raw DataFrame, df_fbref_tm\n", "df_fbref_tm.tail()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
tm_idSeasonplayerplayer_nameageage_tmage_when_joiningdobpobcobnationalitynationality_codesecond_citizenshipclubposition_codeposition_fbrefposition_TMposition_groupedoutfielder_goalkeeperheightfootmarket_value_eurosmarket_value_poundsjoinedyears_since_joiningcontract_expiresyears_until_contract_expirycontract_optionon_loan_fromon_loan_from_countryloan_contract_expiryplayer_agentgamesgames_startsminutesgoalsassistspens_madepens_attcards_yellowcards_redgoals_per90assists_per90goals_assists_per90goals_pens_per90goals_assists_pens_per90xgnpxgxaxg_per90xa_per90xg_xa_per90npxg_per90npxg_xa_per90minutes_90sshots_totalshots_on_targetshots_free_kicksshots_on_target_pctshots_total_per90shots_on_target_per90goals_per_shotgoals_per_shot_on_targetnpxg_per_shotxg_netnpxg_netpasses_completedpassespasses_pctpasses_total_distancepasses_progressive_distancepasses_completed_shortpasses_shortpasses_pct_shortpasses_completed_mediumpasses_mediumpasses_pct_mediumpasses_completed_longpasses_longpasses_pct_longxa_netassisted_shotspasses_into_final_thirdpasses_into_penalty_areacrosses_into_penalty_areaprogressive_passespasses_livepasses_deadpasses_free_kicksthrough_ballspasses_pressurepasses_switchescrossescorner_kickscorner_kicks_incorner_kicks_outcorner_kicks_straightpasses_groundpasses_lowpasses_highpasses_left_footpasses_right_footpasses_headthrow_inspasses_other_bodypasses_offsidespasses_oobpasses_interceptedpasses_blockedscasca_per90sca_passes_livesca_passes_deadsca_dribblessca_shotssca_fouledgcagca_per90gca_passes_livegca_passes_deadgca_dribblesgca_shotsgca_fouledgca_og_fortacklestackles_wontackles_def_3rdtackles_mid_3rdtackles_att_3rddribble_tacklesdribbles_vsdribble_tackles_pctdribbled_pastpressurespressure_regainspressure_regain_pctpressures_def_3rdpressures_mid_3rdpressures_att_3rdblocksblocked_shotsblocked_shots_savesblocked_passesinterceptionsclearanceserrorstouchestouches_def_pen_areatouches_def_3rdtouches_mid_3rdtouches_att_3rdtouches_att_pen_areatouches_live_balldribbles_completeddribblesdribbles_completed_pctplayers_dribbled_pastnutmegscarriescarry_distancecarry_progressive_distancepass_targetspasses_receivedpasses_received_pctmiscontrolsdispossessedcards_yellow_redfoulsfouledoffsidespens_wonpens_concededown_goalsball_recoveriesaerials_wonaerials_lostaerials_won_pctgames_gkgames_starts_gkminutes_gkgoals_against_gkgoals_against_per90_gkshots_on_target_againstsavessave_pctwins_gkdraws_gklosses_gkclean_sheetsclean_sheets_pctpens_att_gkpens_allowedpens_savedpens_missed_gkminutes_90s_gkfree_kick_goals_against_gkcorner_kick_goals_against_gkown_goals_against_gkpsxg_gkpsnpxg_per_shot_on_target_againstpsxg_net_gkpsxg_net_per90_gkpasses_completed_launched_gkpasses_launched_gkpasses_pct_launched_gkpasses_gkpasses_throws_gkpct_passes_launched_gkpasses_length_avg_gkgoal_kickspct_goal_kicks_launchedgoal_kick_length_avgcrosses_gkcrosses_stopped_gkcrosses_stopped_pct_gkdef_actions_outside_pen_area_gkdef_actions_outside_pen_area_per90_gkavg_distance_def_actions_gk
25134425.017/18Raheem Sterlingraheem sterling22.026.020.01994-12-08KingstonJamaicaEnglandENGJamaicaManchester CityLWFWattack - Left WingerForwardOutfielder170.0right110000000.097900000.02015-07-145.02023-06-302.0NaNNaNNaNNaNColossal Sports Management33.029.02587.018.011.01.01.04.02.00.630.381.010.590.9717.216.26.40.600.220.820.560.7928.785.033.00.038.82.961.150.200.520.190.80.8999.01205.082.913467.02885.0618.0703.087.9313.0371.084.429.050.058.04.653.032.060.06.088.01188.017.01.04.0265.011.047.05.01.00.00.01036.067.0102.0171.0994.024.06.07.00.011.026.060.0134.04.6594.01.016.05.018.027.00.9420.00.01.00.06.00.022.017.08.08.06.05.014.035.79.0300.099.033.059.0107.0134.031.01.00.030.014.02.00.01603.011.096.0503.01116.0247.01587.046.090.051.152.01.01307.08057.04812.01650.01312.079.570.064.01.039.058.019.06.01.00.0161.04.08.033.3NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
26134425.018/19Raheem Sterlingraheem sterling23.026.020.01994-12-08KingstonJamaicaEnglandENGJamaicaManchester CityLWFWattack - Left WingerForwardOutfielder170.0right110000000.097900000.02015-07-145.02023-06-302.0NaNNaNNaNNaNColossal Sports Management34.031.02771.017.09.00.00.03.00.00.550.290.840.550.8413.113.19.20.430.300.730.430.7330.876.037.01.048.72.471.200.220.460.173.93.91099.01337.082.215362.03204.0694.0764.090.8356.0434.082.032.078.041.0-0.258.022.052.05.087.01300.037.04.06.0322.019.090.019.00.00.00.01097.0115.0125.0147.01139.027.014.05.03.014.035.047.0130.04.2289.00.022.08.09.027.00.8818.00.04.00.04.01.029.017.08.015.06.09.020.045.011.0475.0135.028.481.0211.0183.036.01.00.035.021.06.00.01765.05.077.0569.01237.0294.01729.086.0142.060.691.07.01583.09550.05948.01848.01453.078.660.0105.00.041.044.013.02.00.00.0161.08.026.023.5NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
27134425.019/20Raheem Sterlingraheem sterling24.026.020.01994-12-08KingstonJamaicaEnglandENGJamaicaManchester CityLWFWattack - Left WingerForwardOutfielder170.0right110000000.097900000.02015-07-145.02023-06-302.0NaNNaNNaNNaNColossal Sports Management33.030.02651.020.01.00.02.05.00.00.680.030.710.680.7117.115.17.00.580.240.820.510.7529.596.036.01.037.53.261.220.210.560.162.94.9983.01217.080.813850.02795.0624.0702.088.9301.0370.081.437.063.058.7-6.047.031.054.06.087.01197.020.01.04.0290.04.063.01.00.00.00.0965.0150.0102.0133.01027.019.013.014.01.013.033.055.0117.03.9782.01.010.012.011.011.00.375.00.00.03.03.00.041.029.08.019.014.010.033.030.323.0412.0132.032.067.0178.0167.025.03.00.022.010.08.00.01636.012.093.0571.01087.0296.01616.059.0128.046.167.03.01328.08795.05850.01688.01343.079.651.071.00.030.040.012.03.00.00.0160.020.035.036.4NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
28134425.020/21Raheem Sterlingraheem sterling26.026.020.01994-12-08KingstonJamaicaEnglandENGJamaicaManchester CityLWFWattack - Left WingerForwardOutfielder170.0right110000000.097900000.02015-07-145.02023-06-302.0NaNNaNNaNNaNColossal Sports Management12.011.0999.04.02.00.00.01.00.00.360.180.540.360.543.63.61.50.330.140.460.330.4611.125.012.01.048.02.251.080.160.330.140.40.4342.0408.083.84461.0935.0217.0242.089.7104.0117.088.96.013.046.20.513.023.07.01.025.0396.012.01.00.085.01.012.02.00.00.00.0353.033.022.046.0341.013.06.02.01.02.010.018.039.03.5126.00.06.02.05.05.00.452.00.01.01.01.00.011.011.01.07.03.02.08.025.06.0134.040.029.916.064.054.09.00.00.09.02.01.00.0551.03.033.0232.0324.090.0538.026.048.054.228.00.0467.03024.01908.0630.0467.074.120.042.00.014.016.06.01.00.00.041.01.09.010.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
\n", "
" ], "text/plain": [ " tm_id Season player player_name age age_tm \\\n", "25 134425.0 17/18 Raheem Sterling raheem sterling 22.0 26.0 \n", "26 134425.0 18/19 Raheem Sterling raheem sterling 23.0 26.0 \n", "27 134425.0 19/20 Raheem Sterling raheem sterling 24.0 26.0 \n", "28 134425.0 20/21 Raheem Sterling raheem sterling 26.0 26.0 \n", "\n", " age_when_joining dob pob cob nationality \\\n", "25 20.0 1994-12-08 Kingston Jamaica England \n", "26 20.0 1994-12-08 Kingston Jamaica England \n", "27 20.0 1994-12-08 Kingston Jamaica England \n", "28 20.0 1994-12-08 Kingston Jamaica England \n", "\n", " nationality_code second_citizenship club position_code \\\n", "25 ENG Jamaica Manchester City LW \n", "26 ENG Jamaica Manchester City LW \n", "27 ENG Jamaica Manchester City LW \n", "28 ENG Jamaica Manchester City LW \n", "\n", " position_fbref position_TM position_grouped \\\n", "25 FW attack - Left Winger Forward \n", "26 FW attack - Left Winger Forward \n", "27 FW attack - Left Winger Forward \n", "28 FW attack - Left Winger Forward \n", "\n", " outfielder_goalkeeper height foot market_value_euros \\\n", "25 Outfielder 170.0 right 110000000.0 \n", "26 Outfielder 170.0 right 110000000.0 \n", "27 Outfielder 170.0 right 110000000.0 \n", "28 Outfielder 170.0 right 110000000.0 \n", "\n", " market_value_pounds joined years_since_joining contract_expires \\\n", "25 97900000.0 2015-07-14 5.0 2023-06-30 \n", "26 97900000.0 2015-07-14 5.0 2023-06-30 \n", "27 97900000.0 2015-07-14 5.0 2023-06-30 \n", "28 97900000.0 2015-07-14 5.0 2023-06-30 \n", "\n", " years_until_contract_expiry contract_option on_loan_from \\\n", "25 2.0 NaN NaN \n", "26 2.0 NaN NaN \n", "27 2.0 NaN NaN \n", "28 2.0 NaN NaN \n", "\n", " on_loan_from_country loan_contract_expiry player_agent \\\n", "25 NaN NaN Colossal Sports Management \n", "26 NaN NaN Colossal Sports Management \n", "27 NaN NaN Colossal Sports Management \n", "28 NaN NaN Colossal Sports Management \n", "\n", " games games_starts minutes goals assists pens_made pens_att \\\n", "25 33.0 29.0 2587.0 18.0 11.0 1.0 1.0 \n", "26 34.0 31.0 2771.0 17.0 9.0 0.0 0.0 \n", "27 33.0 30.0 2651.0 20.0 1.0 0.0 2.0 \n", "28 12.0 11.0 999.0 4.0 2.0 0.0 0.0 \n", "\n", " cards_yellow cards_red goals_per90 assists_per90 goals_assists_per90 \\\n", "25 4.0 2.0 0.63 0.38 1.01 \n", "26 3.0 0.0 0.55 0.29 0.84 \n", "27 5.0 0.0 0.68 0.03 0.71 \n", "28 1.0 0.0 0.36 0.18 0.54 \n", "\n", " goals_pens_per90 goals_assists_pens_per90 xg npxg xa xg_per90 \\\n", "25 0.59 0.97 17.2 16.2 6.4 0.60 \n", "26 0.55 0.84 13.1 13.1 9.2 0.43 \n", "27 0.68 0.71 17.1 15.1 7.0 0.58 \n", "28 0.36 0.54 3.6 3.6 1.5 0.33 \n", "\n", " xa_per90 xg_xa_per90 npxg_per90 npxg_xa_per90 minutes_90s \\\n", "25 0.22 0.82 0.56 0.79 28.7 \n", "26 0.30 0.73 0.43 0.73 30.8 \n", "27 0.24 0.82 0.51 0.75 29.5 \n", "28 0.14 0.46 0.33 0.46 11.1 \n", "\n", " shots_total shots_on_target shots_free_kicks shots_on_target_pct \\\n", "25 85.0 33.0 0.0 38.8 \n", "26 76.0 37.0 1.0 48.7 \n", "27 96.0 36.0 1.0 37.5 \n", "28 25.0 12.0 1.0 48.0 \n", "\n", " shots_total_per90 shots_on_target_per90 goals_per_shot \\\n", "25 2.96 1.15 0.20 \n", "26 2.47 1.20 0.22 \n", "27 3.26 1.22 0.21 \n", "28 2.25 1.08 0.16 \n", "\n", " goals_per_shot_on_target npxg_per_shot xg_net npxg_net \\\n", "25 0.52 0.19 0.8 0.8 \n", "26 0.46 0.17 3.9 3.9 \n", "27 0.56 0.16 2.9 4.9 \n", "28 0.33 0.14 0.4 0.4 \n", "\n", " passes_completed passes passes_pct passes_total_distance \\\n", "25 999.0 1205.0 82.9 13467.0 \n", "26 1099.0 1337.0 82.2 15362.0 \n", "27 983.0 1217.0 80.8 13850.0 \n", "28 342.0 408.0 83.8 4461.0 \n", "\n", " passes_progressive_distance passes_completed_short passes_short \\\n", "25 2885.0 618.0 703.0 \n", "26 3204.0 694.0 764.0 \n", "27 2795.0 624.0 702.0 \n", "28 935.0 217.0 242.0 \n", "\n", " passes_pct_short passes_completed_medium passes_medium \\\n", "25 87.9 313.0 371.0 \n", "26 90.8 356.0 434.0 \n", "27 88.9 301.0 370.0 \n", "28 89.7 104.0 117.0 \n", "\n", " passes_pct_medium passes_completed_long passes_long passes_pct_long \\\n", "25 84.4 29.0 50.0 58.0 \n", "26 82.0 32.0 78.0 41.0 \n", "27 81.4 37.0 63.0 58.7 \n", "28 88.9 6.0 13.0 46.2 \n", "\n", " xa_net assisted_shots passes_into_final_third passes_into_penalty_area \\\n", "25 4.6 53.0 32.0 60.0 \n", "26 -0.2 58.0 22.0 52.0 \n", "27 -6.0 47.0 31.0 54.0 \n", "28 0.5 13.0 23.0 7.0 \n", "\n", " crosses_into_penalty_area progressive_passes passes_live passes_dead \\\n", "25 6.0 88.0 1188.0 17.0 \n", "26 5.0 87.0 1300.0 37.0 \n", "27 6.0 87.0 1197.0 20.0 \n", "28 1.0 25.0 396.0 12.0 \n", "\n", " passes_free_kicks through_balls passes_pressure passes_switches \\\n", "25 1.0 4.0 265.0 11.0 \n", "26 4.0 6.0 322.0 19.0 \n", "27 1.0 4.0 290.0 4.0 \n", "28 1.0 0.0 85.0 1.0 \n", "\n", " crosses corner_kicks corner_kicks_in corner_kicks_out \\\n", "25 47.0 5.0 1.0 0.0 \n", "26 90.0 19.0 0.0 0.0 \n", "27 63.0 1.0 0.0 0.0 \n", "28 12.0 2.0 0.0 0.0 \n", "\n", " corner_kicks_straight passes_ground passes_low passes_high \\\n", "25 0.0 1036.0 67.0 102.0 \n", "26 0.0 1097.0 115.0 125.0 \n", "27 0.0 965.0 150.0 102.0 \n", "28 0.0 353.0 33.0 22.0 \n", "\n", " passes_left_foot passes_right_foot passes_head throw_ins \\\n", "25 171.0 994.0 24.0 6.0 \n", "26 147.0 1139.0 27.0 14.0 \n", "27 133.0 1027.0 19.0 13.0 \n", "28 46.0 341.0 13.0 6.0 \n", "\n", " passes_other_body passes_offsides passes_oob passes_intercepted \\\n", "25 7.0 0.0 11.0 26.0 \n", "26 5.0 3.0 14.0 35.0 \n", "27 14.0 1.0 13.0 33.0 \n", "28 2.0 1.0 2.0 10.0 \n", "\n", " passes_blocked sca sca_per90 sca_passes_live sca_passes_dead \\\n", "25 60.0 134.0 4.65 94.0 1.0 \n", "26 47.0 130.0 4.22 89.0 0.0 \n", "27 55.0 117.0 3.97 82.0 1.0 \n", "28 18.0 39.0 3.51 26.0 0.0 \n", "\n", " sca_dribbles sca_shots sca_fouled gca gca_per90 gca_passes_live \\\n", "25 16.0 5.0 18.0 27.0 0.94 20.0 \n", "26 22.0 8.0 9.0 27.0 0.88 18.0 \n", "27 10.0 12.0 11.0 11.0 0.37 5.0 \n", "28 6.0 2.0 5.0 5.0 0.45 2.0 \n", "\n", " gca_passes_dead gca_dribbles gca_shots gca_fouled gca_og_for tackles \\\n", "25 0.0 1.0 0.0 6.0 0.0 22.0 \n", "26 0.0 4.0 0.0 4.0 1.0 29.0 \n", "27 0.0 0.0 3.0 3.0 0.0 41.0 \n", "28 0.0 1.0 1.0 1.0 0.0 11.0 \n", "\n", " tackles_won tackles_def_3rd tackles_mid_3rd tackles_att_3rd \\\n", "25 17.0 8.0 8.0 6.0 \n", "26 17.0 8.0 15.0 6.0 \n", "27 29.0 8.0 19.0 14.0 \n", "28 11.0 1.0 7.0 3.0 \n", "\n", " dribble_tackles dribbles_vs dribble_tackles_pct dribbled_past \\\n", "25 5.0 14.0 35.7 9.0 \n", "26 9.0 20.0 45.0 11.0 \n", "27 10.0 33.0 30.3 23.0 \n", "28 2.0 8.0 25.0 6.0 \n", "\n", " pressures pressure_regains pressure_regain_pct pressures_def_3rd \\\n", "25 300.0 99.0 33.0 59.0 \n", "26 475.0 135.0 28.4 81.0 \n", "27 412.0 132.0 32.0 67.0 \n", "28 134.0 40.0 29.9 16.0 \n", "\n", " pressures_mid_3rd pressures_att_3rd blocks blocked_shots \\\n", "25 107.0 134.0 31.0 1.0 \n", "26 211.0 183.0 36.0 1.0 \n", "27 178.0 167.0 25.0 3.0 \n", "28 64.0 54.0 9.0 0.0 \n", "\n", " blocked_shots_saves blocked_passes interceptions clearances errors \\\n", "25 0.0 30.0 14.0 2.0 0.0 \n", "26 0.0 35.0 21.0 6.0 0.0 \n", "27 0.0 22.0 10.0 8.0 0.0 \n", "28 0.0 9.0 2.0 1.0 0.0 \n", "\n", " touches touches_def_pen_area touches_def_3rd touches_mid_3rd \\\n", "25 1603.0 11.0 96.0 503.0 \n", "26 1765.0 5.0 77.0 569.0 \n", "27 1636.0 12.0 93.0 571.0 \n", "28 551.0 3.0 33.0 232.0 \n", "\n", " touches_att_3rd touches_att_pen_area touches_live_ball \\\n", "25 1116.0 247.0 1587.0 \n", "26 1237.0 294.0 1729.0 \n", "27 1087.0 296.0 1616.0 \n", "28 324.0 90.0 538.0 \n", "\n", " dribbles_completed dribbles dribbles_completed_pct \\\n", "25 46.0 90.0 51.1 \n", "26 86.0 142.0 60.6 \n", "27 59.0 128.0 46.1 \n", "28 26.0 48.0 54.2 \n", "\n", " players_dribbled_past nutmegs carries carry_distance \\\n", "25 52.0 1.0 1307.0 8057.0 \n", "26 91.0 7.0 1583.0 9550.0 \n", "27 67.0 3.0 1328.0 8795.0 \n", "28 28.0 0.0 467.0 3024.0 \n", "\n", " carry_progressive_distance pass_targets passes_received \\\n", "25 4812.0 1650.0 1312.0 \n", "26 5948.0 1848.0 1453.0 \n", "27 5850.0 1688.0 1343.0 \n", "28 1908.0 630.0 467.0 \n", "\n", " passes_received_pct miscontrols dispossessed cards_yellow_red fouls \\\n", "25 79.5 70.0 64.0 1.0 39.0 \n", "26 78.6 60.0 105.0 0.0 41.0 \n", "27 79.6 51.0 71.0 0.0 30.0 \n", "28 74.1 20.0 42.0 0.0 14.0 \n", "\n", " fouled offsides pens_won pens_conceded own_goals ball_recoveries \\\n", "25 58.0 19.0 6.0 1.0 0.0 161.0 \n", "26 44.0 13.0 2.0 0.0 0.0 161.0 \n", "27 40.0 12.0 3.0 0.0 0.0 160.0 \n", "28 16.0 6.0 1.0 0.0 0.0 41.0 \n", "\n", " aerials_won aerials_lost aerials_won_pct games_gk games_starts_gk \\\n", "25 4.0 8.0 33.3 NaN NaN \n", "26 8.0 26.0 23.5 NaN NaN \n", "27 20.0 35.0 36.4 NaN NaN \n", "28 1.0 9.0 10.0 NaN NaN \n", "\n", " minutes_gk goals_against_gk goals_against_per90_gk \\\n", "25 NaN NaN NaN \n", "26 NaN NaN NaN \n", "27 NaN NaN NaN \n", "28 NaN NaN NaN \n", "\n", " shots_on_target_against saves save_pct wins_gk draws_gk losses_gk \\\n", "25 NaN NaN NaN NaN NaN NaN \n", "26 NaN NaN NaN NaN NaN NaN \n", "27 NaN NaN NaN NaN NaN NaN \n", "28 NaN NaN NaN NaN NaN NaN \n", "\n", " clean_sheets clean_sheets_pct pens_att_gk pens_allowed pens_saved \\\n", "25 NaN NaN NaN NaN NaN \n", "26 NaN NaN NaN NaN NaN \n", "27 NaN NaN NaN NaN NaN \n", "28 NaN NaN NaN NaN NaN \n", "\n", " pens_missed_gk minutes_90s_gk free_kick_goals_against_gk \\\n", "25 NaN NaN NaN \n", "26 NaN NaN NaN \n", "27 NaN NaN NaN \n", "28 NaN NaN NaN \n", "\n", " corner_kick_goals_against_gk own_goals_against_gk psxg_gk \\\n", "25 NaN NaN NaN \n", "26 NaN NaN NaN \n", "27 NaN NaN NaN \n", "28 NaN NaN NaN \n", "\n", " psnpxg_per_shot_on_target_against psxg_net_gk psxg_net_per90_gk \\\n", "25 NaN NaN NaN \n", "26 NaN NaN NaN \n", "27 NaN NaN NaN \n", "28 NaN NaN NaN \n", "\n", " passes_completed_launched_gk passes_launched_gk passes_pct_launched_gk \\\n", "25 NaN NaN NaN \n", "26 NaN NaN NaN \n", "27 NaN NaN NaN \n", "28 NaN NaN NaN \n", "\n", " passes_gk passes_throws_gk pct_passes_launched_gk passes_length_avg_gk \\\n", "25 NaN NaN NaN NaN \n", "26 NaN NaN NaN NaN \n", "27 NaN NaN NaN NaN \n", "28 NaN NaN NaN NaN \n", "\n", " goal_kicks pct_goal_kicks_launched goal_kick_length_avg crosses_gk \\\n", "25 NaN NaN NaN NaN \n", "26 NaN NaN NaN NaN \n", "27 NaN NaN NaN NaN \n", "28 NaN NaN NaN NaN \n", "\n", " crosses_stopped_gk crosses_stopped_pct_gk \\\n", "25 NaN NaN \n", "26 NaN NaN \n", "27 NaN NaN \n", "28 NaN NaN \n", "\n", " def_actions_outside_pen_area_gk def_actions_outside_pen_area_per90_gk \\\n", "25 NaN NaN \n", "26 NaN NaN \n", "27 NaN NaN \n", "28 NaN NaN \n", "\n", " avg_distance_def_actions_gk \n", "25 NaN \n", "26 NaN \n", "27 NaN \n", "28 NaN " ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_fbref_tm[df_fbref_tm['player'] == 'Raheem Sterling']" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(11305, 218)\n" ] } ], "source": [ "# Print the shape of the raw DataFrame, df_fbref_tm\n", "print(df_fbref_tm.shape)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Index(['tm_id', 'Season', 'player', 'player_name', 'age', 'age_tm',\n", " 'age_when_joining', 'dob', 'pob', 'cob',\n", " ...\n", " 'passes_length_avg_gk', 'goal_kicks', 'pct_goal_kicks_launched',\n", " 'goal_kick_length_avg', 'crosses_gk', 'crosses_stopped_gk',\n", " 'crosses_stopped_pct_gk', 'def_actions_outside_pen_area_gk',\n", " 'def_actions_outside_pen_area_per90_gk', 'avg_distance_def_actions_gk'],\n", " dtype='object', length=218)\n" ] } ], "source": [ "# Print the column names of the raw DataFrame, df_fbref_tm\n", "print(df_fbref_tm.columns)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The dataset has thirteen features (columns). Full details of these attributes can be found in the [Data Dictionary](section3.3.1)." ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tm_id float64\n", "Season object\n", "player object\n", "player_name object\n", "age float64\n", " ... \n", "crosses_stopped_gk float64\n", "crosses_stopped_pct_gk float64\n", "def_actions_outside_pen_area_gk float64\n", "def_actions_outside_pen_area_per90_gk float64\n", "avg_distance_def_actions_gk float64\n", "Length: 218, dtype: object" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Data types of the features of the raw DataFrame, df_fbref_tm\n", "df_fbref_tm.dtypes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "All thirteen of the columns have the object data type. Full details of these attributes and their data types can be found in the [Data Dictionary](section3.3.1)." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "RangeIndex: 11305 entries, 0 to 11304\n", "Columns: 218 entries, tm_id to avg_distance_def_actions_gk\n", "dtypes: float64(195), object(23)\n", "memory usage: 18.8+ MB\n" ] } ], "source": [ "# Info for the raw DataFrame, df_fbref_tm\n", "df_fbref_tm.info()" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
tm_idageage_tmage_when_joiningheightmarket_value_eurosmarket_value_poundsyears_since_joiningyears_until_contract_expirygamesgames_startsminutesgoalsassistspens_madepens_attcards_yellowcards_redgoals_per90assists_per90goals_assists_per90goals_pens_per90goals_assists_pens_per90xgnpxgxaxg_per90xa_per90xg_xa_per90npxg_per90npxg_xa_per90minutes_90sshots_totalshots_on_targetshots_free_kicksshots_on_target_pctshots_total_per90shots_on_target_per90goals_per_shotgoals_per_shot_on_targetnpxg_per_shotxg_netnpxg_netpasses_completedpassespasses_pctpasses_total_distancepasses_progressive_distancepasses_completed_shortpasses_shortpasses_pct_shortpasses_completed_mediumpasses_mediumpasses_pct_mediumpasses_completed_longpasses_longpasses_pct_longxa_netassisted_shotspasses_into_final_thirdpasses_into_penalty_areacrosses_into_penalty_areaprogressive_passespasses_livepasses_deadpasses_free_kicksthrough_ballspasses_pressurepasses_switchescrossescorner_kickscorner_kicks_incorner_kicks_outcorner_kicks_straightpasses_groundpasses_lowpasses_highpasses_left_footpasses_right_footpasses_headthrow_inspasses_other_bodypasses_offsidespasses_oobpasses_interceptedpasses_blockedscasca_per90sca_passes_livesca_passes_deadsca_dribblessca_shotssca_fouledgcagca_per90gca_passes_livegca_passes_deadgca_dribblesgca_shotsgca_fouledgca_og_fortacklestackles_wontackles_def_3rdtackles_mid_3rdtackles_att_3rddribble_tacklesdribbles_vsdribble_tackles_pctdribbled_pastpressurespressure_regainspressure_regain_pctpressures_def_3rdpressures_mid_3rdpressures_att_3rdblocksblocked_shotsblocked_shots_savesblocked_passesinterceptionsclearanceserrorstouchestouches_def_pen_areatouches_def_3rdtouches_mid_3rdtouches_att_3rdtouches_att_pen_areatouches_live_balldribbles_completeddribblesdribbles_completed_pctplayers_dribbled_pastnutmegscarriescarry_distancecarry_progressive_distancepass_targetspasses_receivedpasses_received_pctmiscontrolsdispossessedcards_yellow_redfoulsfouledoffsidespens_wonpens_concededown_goalsball_recoveriesaerials_wonaerials_lostaerials_won_pctgames_gkgames_starts_gkminutes_gkgoals_against_gkgoals_against_per90_gkshots_on_target_againstsavessave_pctwins_gkdraws_gklosses_gkclean_sheetsclean_sheets_pctpens_att_gkpens_allowedpens_savedpens_missed_gkminutes_90s_gkfree_kick_goals_against_gkcorner_kick_goals_against_gkown_goals_against_gkpsxg_gkpsnpxg_per_shot_on_target_againstpsxg_net_gkpsxg_net_per90_gkpasses_completed_launched_gkpasses_launched_gkpasses_pct_launched_gkpasses_gkpasses_throws_gkpct_passes_launched_gkpasses_length_avg_gkgoal_kickspct_goal_kicks_launchedgoal_kick_length_avgcrosses_gkcrosses_stopped_gkcrosses_stopped_pct_gkdef_actions_outside_pen_area_gkdef_actions_outside_pen_area_per90_gkavg_distance_def_actions_gk
count8700.0000008700.0000008700.0000008700.0000008699.0000008.700000e+038.700000e+038700.0000008558.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.0000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.0000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.00000010536.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000769.000000
mean198745.17873625.47862127.15402324.646322183.0103461.105018e+079.834664e+062.1329891.61743416.32773312.7511391144.7739181.5533411.0642560.1503420.1920082.3598140.1263290.1151190.0800200.1951350.1056060.1856111.5557901.4089221.0364090.1275240.0839030.2114650.1182040.20219312.71992214.4521644.8141610.60687224.4699131.2127270.3860640.0654850.1784480.072630-0.002544-0.005923445.634871565.97494376.1221158827.2562643038.852506177.093869204.18299284.519514192.297077225.27828481.06284269.074222117.06530056.275740.02775210.51670534.1073469.2057712.54812138.881929511.01376254.96118114.7511391.01366790.1468317.23842114.3295375.6745441.2008351.2353830.329822367.44181976.063117122.470008160.832574334.76585026.65205023.5539107.6225321.98965511.1385739.24050914.30400522.8107441.84721216.3067582.0719441.4332761.1508161.3489942.6014620.1980381.7438310.1704630.1851750.2132690.2088080.02581619.61664812.3163449.8398827.4856682.2910976.48168219.18004928.15737512.698368179.52458249.86579326.87085259.81292781.04157238.67008418.1677113.8662680.08134014.3014439.70055025.4515000.299829699.53416971.681188227.078683338.005695179.13316225.844818646.05334111.73642719.25949153.50787812.7069100.617502453.8415912660.5502091449.656226523.986238445.63392283.90594214.36712213.1437930.05372114.66438914.0648252.3064730.1464500.1775820.046128107.03872416.21829916.20187940.13312516.04291315.8660601426.86996121.9453841.52808865.87126146.2860860.6720595.9310793.9934985.9310794.30819224.6261382.6501952.0585180.4447330.14694415.8537060.5032512.7698310.63329021.0755530.295527-0.185826-0.053810103.299090258.06762040.693238377.94668464.01430446.85838839.819376114.18205564.49245849.987646147.78673611.4486357.3006509.9869960.62102714.262159
std140916.4209584.2785134.2877004.2876616.6939391.653892e+071.471964e+072.4520021.17884611.04295210.778600939.6712193.0919771.8330790.6857320.8097982.6205890.4025140.3595180.3074040.4860380.3503390.4778572.7239572.3677151.5347300.2090210.2872360.3693080.1959320.36070410.44081819.7701177.6243072.12963122.6818371.5800750.7013030.1129350.2561880.0656621.0925301.074838442.020033534.51159312.2738159112.5571053600.506319180.555702203.13892414.462939207.670695232.47012716.37777484.450596144.05465820.815600.92322114.32580141.28222512.8762284.55878244.320504489.76783582.79476622.6828312.05385686.6012321.77319122.41563217.0737344.6720154.8716051.400619373.10477378.087450137.478463266.334692393.88776330.97722555.99496522.7069102.57042911.61928810.06352215.87232328.1811492.36374719.4753465.7009102.8504421.9284142.3810233.8689680.4462402.6532500.6345420.5989810.5540360.5736350.16389220.90558413.44880311.6998088.6781282.9616477.64051420.65010222.28801814.079527179.51116448.73773412.87531865.10272989.40024552.91664018.5360946.0956660.32798514.74940711.42845639.6963260.686008630.774586164.082477283.785218347.334297215.59375737.305597588.54261016.07147426.35986030.96631017.3499371.274202429.3839722597.6648571488.357245478.293718421.76647016.47076018.74205316.5932700.23657014.41939215.7684984.8660790.4661310.4628330.224207102.28292522.51317620.03485225.20309813.16232713.2716611188.29133418.6355430.97938056.83895740.8249740.1566866.2232083.8546125.6756234.46222021.2545582.6489242.1663760.7585460.37913613.2035920.8246232.9479560.94413518.0631060.0862413.4013350.37745697.184822243.20332511.361790327.47974857.84987417.7528188.553590101.28714924.30857313.572026129.25502211.3506055.17247910.5135000.4916112.834688
min2857.00000014.00000016.00000015.000000162.0000000.000000e+000.000000e+000.000000-1.0000001.0000000.0000001.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000-0.280000-0.2800000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000-0.330000-1.0000000.000000-7.700000-6.9000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.00000-6.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000001.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000-15.000000-2.1800000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000
25%79010.00000022.00000024.00000021.000000178.0000001.600000e+061.424000e+060.0000001.0000007.0000003.000000319.7500000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.1000000.1000000.0000000.0100000.0100000.0400000.0100000.0400003.5750001.0000000.0000000.0000000.0000000.2700000.0000000.0000000.0000000.030000-0.400000-0.40000096.000000131.00000070.8000001687.500000460.75000038.00000045.00000081.40000035.00000045.00000075.6000009.00000017.00000046.60000-0.3000001.0000005.0000001.0000000.0000005.000000117.0000006.0000001.0000000.00000020.000002.0000001.0000000.0000000.0000000.0000000.00000079.00000016.00000023.00000019.00000047.0000004.0000000.0000000.0000000.0000002.0000002.0000002.0000003.0000000.5400002.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000003.0000002.0000001.0000001.0000000.0000001.0000003.0000007.7000002.00000034.0000009.00000022.8000008.00000014.0000003.0000003.0000000.0000000.0000002.0000001.0000002.0000000.000000175.0000005.00000031.00000056.00000020.0000003.000000162.0000001.0000002.00000040.0000001.0000000.000000110.000000594.750000301.000000136.000000111.00000075.9000002.0000001.0000000.0000003.0000002.0000000.0000000.0000000.0000000.00000025.0000002.0000003.00000023.8000003.0000003.000000270.0000005.0000001.01000013.0000009.0000000.6320001.0000001.0000001.0000001.00000010.0000000.0000000.0000000.0000000.0000003.0000000.0000000.0000000.0000004.4000000.260000-1.900000-0.20000017.00000040.00000035.10000067.00000011.00000034.90000034.20000022.00000047.80000041.70000027.0000002.0000004.5000002.0000000.32000012.900000
50%175169.00000025.00000027.00000024.000000183.0000005.000000e+064.450000e+061.0000002.00000014.00000010.000000930.0000000.0000000.0000000.0000000.0000002.0000000.0000000.0000000.0000000.0800000.0000000.0800000.5000000.5000000.4000000.0500000.0500000.1200000.0500000.12000010.3000007.0000002.0000000.00000025.0000000.8000000.1800000.0000000.0000000.0600000.0000000.000000310.000000410.00000077.5000005779.5000001690.500000122.000000144.00000086.900000121.000000149.00000083.80000036.50000064.00000057.800000.0000005.00000019.0000004.0000001.00000024.000000366.00000022.0000006.0000000.00000064.000009.0000005.0000000.0000000.0000000.0000000.000000252.00000052.00000075.00000061.000000178.00000016.0000002.0000002.0000001.0000007.0000006.0000009.00000012.0000001.5700009.0000000.0000000.0000000.0000000.0000001.0000000.1000001.0000000.0000000.0000000.0000000.0000000.00000013.0000008.0000005.0000005.0000001.0000004.00000012.00000028.6000008.000000126.00000037.00000027.60000036.00000051.00000017.00000012.5000001.0000000.00000010.0000006.0000009.0000000.000000528.00000020.000000113.000000231.50000094.00000012.000000487.0000006.0000009.00000059.1000006.0000000.000000336.0000001898.500000991.000000397.000000331.00000089.5000007.0000007.0000000.00000011.0000009.0000000.0000000.0000000.0000000.00000077.0000008.00000010.00000043.20000013.00000013.0000001170.00000018.0000001.42000051.00000035.0000000.6920004.0000003.0000004.0000003.00000023.8000002.0000001.0000000.0000000.00000013.0000000.0000002.0000000.00000016.5000000.290000-0.200000-0.03000075.000000188.00000040.000000313.00000048.00000046.70000039.70000089.00000066.90000051.000000115.0000008.0000007.1000006.0000000.55000014.300000
75%289260.75000028.00000030.00000027.000000188.0000001.300000e+071.157000e+073.0000002.00000026.00000021.0000001843.2500002.0000001.0000000.0000000.0000004.0000000.0000000.1400000.1100000.2800000.1300000.2600001.8000001.7000001.4000000.1700000.1200000.3000000.1600000.29000020.50000019.0000006.0000000.00000038.1000001.8000000.5700000.1100000.3300000.1000000.2000000.200000667.250000865.25000083.70000013223.2500004386.750000259.250000301.00000091.300000282.000000334.00000090.80000097.000000164.00000069.200000.20000015.00000049.00000013.0000003.00000059.000000766.00000062.00000019.0000001.000000139.0000024.00000018.0000002.0000000.0000000.0000000.000000539.000000112.000000175.000000161.000000498.25000039.00000011.0000005.0000003.00000016.00000014.00000021.00000032.0000002.60000023.0000001.0000002.0000002.0000002.0000004.0000000.2900002.0000000.0000000.0000000.0000000.0000000.00000030.00000019.00000015.00000011.0000003.00000010.00000028.00000042.30000018.000000269.25000077.00000032.40000093.000000116.00000053.00000028.0000005.0000000.00000022.00000015.00000031.0000000.0000001083.00000063.000000315.250000513.000000264.00000033.000000977.25000016.00000026.00000073.30000017.0000001.000000680.0000003939.0000002110.000000788.000000667.00000096.50000020.00000019.0000000.00000022.00000020.0000002.0000000.0000000.0000000.000000161.00000021.00000023.00000057.80000029.00000029.0000002610.00000036.0000001.770000116.00000081.0000000.7500009.0000006.00000010.0000007.00000033.3000004.0000003.0000001.0000000.00000029.0000001.0000004.0000001.00000035.8000000.3300001.3000000.140000169.000000417.00000045.800000657.000000101.00000057.50000044.600000198.00000084.80000060.500000258.00000019.0000009.50000015.0000000.88000015.700000
max807128.00000042.00000042.00000041.000000202.0000001.800000e+081.602000e+0817.0000007.00000038.00000038.0000003420.00000036.00000021.00000014.00000015.00000017.0000005.00000022.50000018.00000022.50000022.50000022.50000029.70000025.70000018.4000005.25000025.40000025.4000005.25000025.40000038.000000196.00000092.00000047.000000100.00000036.00000030.0000001.0000001.0000000.88000012.70000012.5000002864.0000003229.000000100.00000065376.00000027017.0000001638.0000001745.000000100.0000001548.0000001625.000000100.000000607.0000001142.000000100.000008.300000131.000000442.000000141.00000049.000000321.0000003153.000000718.000000232.00000048.000000527.00000227.000000223.000000190.00000085.00000078.00000025.0000002505.000000625.0000001120.0000002519.0000002900.000000237.000000477.000000234.00000034.00000098.00000090.000000122.000000238.00000090.000000168.00000068.00000039.00000027.00000032.00000043.00000018.00000027.0000009.00000011.0000006.0000007.0000002.000000160.000000109.00000098.00000067.00000028.00000056.000000141.000000100.00000098.0000001056.000000303.000000100.000000525.000000604.000000579.000000125.00000060.0000004.00000098.00000089.000000329.0000007.0000003520.0000001441.0000001683.0000002395.0000001746.000000322.0000003393.000000184.000000274.000000100.000000197.00000014.0000002617.00000017993.00000011141.0000003096.0000002833.000000100.000000138.000000172.0000002.00000098.000000167.00000056.0000006.0000005.0000004.000000597.000000266.000000290.000000100.00000038.00000038.0000003420.00000076.00000015.000000231.000000167.0000001.00000032.00000018.00000025.00000022.000000100.00000015.00000013.0000004.0000002.00000038.0000005.00000015.0000005.00000081.2000000.79000012.9000001.720000412.0000001103.000000100.0000001362.000000234.000000100.000000103.000000451.000000100.00000079.300000569.00000053.00000050.00000059.0000004.00000027.500000
\n", "
" ], "text/plain": [ " tm_id age age_tm age_when_joining height \\\n", "count 8700.000000 8700.000000 8700.000000 8700.000000 8699.000000 \n", "mean 198745.178736 25.478621 27.154023 24.646322 183.010346 \n", "std 140916.420958 4.278513 4.287700 4.287661 6.693939 \n", "min 2857.000000 14.000000 16.000000 15.000000 162.000000 \n", "25% 79010.000000 22.000000 24.000000 21.000000 178.000000 \n", "50% 175169.000000 25.000000 27.000000 24.000000 183.000000 \n", "75% 289260.750000 28.000000 30.000000 27.000000 188.000000 \n", "max 807128.000000 42.000000 42.000000 41.000000 202.000000 \n", "\n", " market_value_euros market_value_pounds years_since_joining \\\n", "count 8.700000e+03 8.700000e+03 8700.000000 \n", "mean 1.105018e+07 9.834664e+06 2.132989 \n", "std 1.653892e+07 1.471964e+07 2.452002 \n", "min 0.000000e+00 0.000000e+00 0.000000 \n", "25% 1.600000e+06 1.424000e+06 0.000000 \n", "50% 5.000000e+06 4.450000e+06 1.000000 \n", "75% 1.300000e+07 1.157000e+07 3.000000 \n", "max 1.800000e+08 1.602000e+08 17.000000 \n", "\n", " years_until_contract_expiry games games_starts minutes \\\n", "count 8558.000000 10536.000000 10536.000000 10536.000000 \n", "mean 1.617434 16.327733 12.751139 1144.773918 \n", "std 1.178846 11.042952 10.778600 939.671219 \n", "min -1.000000 1.000000 0.000000 1.000000 \n", "25% 1.000000 7.000000 3.000000 319.750000 \n", "50% 2.000000 14.000000 10.000000 930.000000 \n", "75% 2.000000 26.000000 21.000000 1843.250000 \n", "max 7.000000 38.000000 38.000000 3420.000000 \n", "\n", " goals assists pens_made pens_att cards_yellow \\\n", "count 10536.000000 10536.000000 10536.000000 10536.000000 10536.000000 \n", "mean 1.553341 1.064256 0.150342 0.192008 2.359814 \n", "std 3.091977 1.833079 0.685732 0.809798 2.620589 \n", "min 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "25% 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "50% 0.000000 0.000000 0.000000 0.000000 2.000000 \n", "75% 2.000000 1.000000 0.000000 0.000000 4.000000 \n", "max 36.000000 21.000000 14.000000 15.000000 17.000000 \n", "\n", " cards_red goals_per90 assists_per90 goals_assists_per90 \\\n", "count 10536.000000 10536.000000 10536.000000 10536.000000 \n", "mean 0.126329 0.115119 0.080020 0.195135 \n", "std 0.402514 0.359518 0.307404 0.486038 \n", "min 0.000000 0.000000 0.000000 0.000000 \n", "25% 0.000000 0.000000 0.000000 0.000000 \n", "50% 0.000000 0.000000 0.000000 0.080000 \n", "75% 0.000000 0.140000 0.110000 0.280000 \n", "max 5.000000 22.500000 18.000000 22.500000 \n", "\n", " goals_pens_per90 goals_assists_pens_per90 xg npxg \\\n", "count 10536.000000 10536.000000 10536.000000 10536.000000 \n", "mean 0.105606 0.185611 1.555790 1.408922 \n", "std 0.350339 0.477857 2.723957 2.367715 \n", "min -0.280000 -0.280000 0.000000 0.000000 \n", "25% 0.000000 0.000000 0.100000 0.100000 \n", "50% 0.000000 0.080000 0.500000 0.500000 \n", "75% 0.130000 0.260000 1.800000 1.700000 \n", "max 22.500000 22.500000 29.700000 25.700000 \n", "\n", " xa xg_per90 xa_per90 xg_xa_per90 npxg_per90 \\\n", "count 10536.000000 10536.000000 10536.000000 10536.000000 10536.000000 \n", "mean 1.036409 0.127524 0.083903 0.211465 0.118204 \n", "std 1.534730 0.209021 0.287236 0.369308 0.195932 \n", "min 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "25% 0.000000 0.010000 0.010000 0.040000 0.010000 \n", "50% 0.400000 0.050000 0.050000 0.120000 0.050000 \n", "75% 1.400000 0.170000 0.120000 0.300000 0.160000 \n", "max 18.400000 5.250000 25.400000 25.400000 5.250000 \n", "\n", " npxg_xa_per90 minutes_90s shots_total shots_on_target \\\n", "count 10536.000000 10536.000000 10536.000000 10536.000000 \n", "mean 0.202193 12.719922 14.452164 4.814161 \n", "std 0.360704 10.440818 19.770117 7.624307 \n", "min 0.000000 0.000000 0.000000 0.000000 \n", "25% 0.040000 3.575000 1.000000 0.000000 \n", "50% 0.120000 10.300000 7.000000 2.000000 \n", "75% 0.290000 20.500000 19.000000 6.000000 \n", "max 25.400000 38.000000 196.000000 92.000000 \n", "\n", " shots_free_kicks shots_on_target_pct shots_total_per90 \\\n", "count 10536.000000 10536.000000 10536.000000 \n", "mean 0.606872 24.469913 1.212727 \n", "std 2.129631 22.681837 1.580075 \n", "min 0.000000 0.000000 0.000000 \n", "25% 0.000000 0.000000 0.270000 \n", "50% 0.000000 25.000000 0.800000 \n", "75% 0.000000 38.100000 1.800000 \n", "max 47.000000 100.000000 36.000000 \n", "\n", " shots_on_target_per90 goals_per_shot goals_per_shot_on_target \\\n", "count 10536.000000 10536.000000 10536.000000 \n", "mean 0.386064 0.065485 0.178448 \n", "std 0.701303 0.112935 0.256188 \n", "min 0.000000 -0.330000 -1.000000 \n", "25% 0.000000 0.000000 0.000000 \n", "50% 0.180000 0.000000 0.000000 \n", "75% 0.570000 0.110000 0.330000 \n", "max 30.000000 1.000000 1.000000 \n", "\n", " npxg_per_shot xg_net npxg_net passes_completed \\\n", "count 10536.000000 10536.000000 10536.000000 10536.000000 \n", "mean 0.072630 -0.002544 -0.005923 445.634871 \n", "std 0.065662 1.092530 1.074838 442.020033 \n", "min 0.000000 -7.700000 -6.900000 0.000000 \n", "25% 0.030000 -0.400000 -0.400000 96.000000 \n", "50% 0.060000 0.000000 0.000000 310.000000 \n", "75% 0.100000 0.200000 0.200000 667.250000 \n", "max 0.880000 12.700000 12.500000 2864.000000 \n", "\n", " passes passes_pct passes_total_distance \\\n", "count 10536.000000 10536.000000 10536.000000 \n", "mean 565.974943 76.122115 8827.256264 \n", "std 534.511593 12.273815 9112.557105 \n", "min 0.000000 0.000000 0.000000 \n", "25% 131.000000 70.800000 1687.500000 \n", "50% 410.000000 77.500000 5779.500000 \n", "75% 865.250000 83.700000 13223.250000 \n", "max 3229.000000 100.000000 65376.000000 \n", "\n", " passes_progressive_distance passes_completed_short passes_short \\\n", "count 10536.000000 10536.000000 10536.000000 \n", "mean 3038.852506 177.093869 204.182992 \n", "std 3600.506319 180.555702 203.138924 \n", "min 0.000000 0.000000 0.000000 \n", "25% 460.750000 38.000000 45.000000 \n", "50% 1690.500000 122.000000 144.000000 \n", "75% 4386.750000 259.250000 301.000000 \n", "max 27017.000000 1638.000000 1745.000000 \n", "\n", " passes_pct_short passes_completed_medium passes_medium \\\n", "count 10536.000000 10536.000000 10536.000000 \n", "mean 84.519514 192.297077 225.278284 \n", "std 14.462939 207.670695 232.470127 \n", "min 0.000000 0.000000 0.000000 \n", "25% 81.400000 35.000000 45.000000 \n", "50% 86.900000 121.000000 149.000000 \n", "75% 91.300000 282.000000 334.000000 \n", "max 100.000000 1548.000000 1625.000000 \n", "\n", " passes_pct_medium passes_completed_long passes_long \\\n", "count 10536.000000 10536.000000 10536.000000 \n", "mean 81.062842 69.074222 117.065300 \n", "std 16.377774 84.450596 144.054658 \n", "min 0.000000 0.000000 0.000000 \n", "25% 75.600000 9.000000 17.000000 \n", "50% 83.800000 36.500000 64.000000 \n", "75% 90.800000 97.000000 164.000000 \n", "max 100.000000 607.000000 1142.000000 \n", "\n", " passes_pct_long xa_net assisted_shots passes_into_final_third \\\n", "count 10536.00000 10536.000000 10536.000000 10536.000000 \n", "mean 56.27574 0.027752 10.516705 34.107346 \n", "std 20.81560 0.923221 14.325801 41.282225 \n", "min 0.00000 -6.000000 0.000000 0.000000 \n", "25% 46.60000 -0.300000 1.000000 5.000000 \n", "50% 57.80000 0.000000 5.000000 19.000000 \n", "75% 69.20000 0.200000 15.000000 49.000000 \n", "max 100.00000 8.300000 131.000000 442.000000 \n", "\n", " passes_into_penalty_area crosses_into_penalty_area \\\n", "count 10536.000000 10536.000000 \n", "mean 9.205771 2.548121 \n", "std 12.876228 4.558782 \n", "min 0.000000 0.000000 \n", "25% 1.000000 0.000000 \n", "50% 4.000000 1.000000 \n", "75% 13.000000 3.000000 \n", "max 141.000000 49.000000 \n", "\n", " progressive_passes passes_live passes_dead passes_free_kicks \\\n", "count 10536.000000 10536.000000 10536.000000 10536.000000 \n", "mean 38.881929 511.013762 54.961181 14.751139 \n", "std 44.320504 489.767835 82.794766 22.682831 \n", "min 0.000000 0.000000 0.000000 0.000000 \n", "25% 5.000000 117.000000 6.000000 1.000000 \n", "50% 24.000000 366.000000 22.000000 6.000000 \n", "75% 59.000000 766.000000 62.000000 19.000000 \n", "max 321.000000 3153.000000 718.000000 232.000000 \n", "\n", " through_balls passes_pressure passes_switches crosses \\\n", "count 10536.000000 10536.00000 10536.000000 10536.000000 \n", "mean 1.013667 90.14683 17.238421 14.329537 \n", "std 2.053856 86.60123 21.773191 22.415632 \n", "min 0.000000 0.00000 0.000000 0.000000 \n", "25% 0.000000 20.00000 2.000000 1.000000 \n", "50% 0.000000 64.00000 9.000000 5.000000 \n", "75% 1.000000 139.00000 24.000000 18.000000 \n", "max 48.000000 527.00000 227.000000 223.000000 \n", "\n", " corner_kicks corner_kicks_in corner_kicks_out corner_kicks_straight \\\n", "count 10536.000000 10536.000000 10536.000000 10536.000000 \n", "mean 5.674544 1.200835 1.235383 0.329822 \n", "std 17.073734 4.672015 4.871605 1.400619 \n", "min 0.000000 0.000000 0.000000 0.000000 \n", "25% 0.000000 0.000000 0.000000 0.000000 \n", "50% 0.000000 0.000000 0.000000 0.000000 \n", "75% 2.000000 0.000000 0.000000 0.000000 \n", "max 190.000000 85.000000 78.000000 25.000000 \n", "\n", " passes_ground passes_low passes_high passes_left_foot \\\n", "count 10536.000000 10536.000000 10536.000000 10536.000000 \n", "mean 367.441819 76.063117 122.470008 160.832574 \n", "std 373.104773 78.087450 137.478463 266.334692 \n", "min 0.000000 0.000000 0.000000 0.000000 \n", "25% 79.000000 16.000000 23.000000 19.000000 \n", "50% 252.000000 52.000000 75.000000 61.000000 \n", "75% 539.000000 112.000000 175.000000 161.000000 \n", "max 2505.000000 625.000000 1120.000000 2519.000000 \n", "\n", " passes_right_foot passes_head throw_ins passes_other_body \\\n", "count 10536.000000 10536.000000 10536.000000 10536.000000 \n", "mean 334.765850 26.652050 23.553910 7.622532 \n", "std 393.887763 30.977225 55.994965 22.706910 \n", "min 0.000000 0.000000 0.000000 0.000000 \n", "25% 47.000000 4.000000 0.000000 0.000000 \n", "50% 178.000000 16.000000 2.000000 2.000000 \n", "75% 498.250000 39.000000 11.000000 5.000000 \n", "max 2900.000000 237.000000 477.000000 234.000000 \n", "\n", " passes_offsides passes_oob passes_intercepted passes_blocked \\\n", "count 10536.000000 10536.000000 10536.000000 10536.000000 \n", "mean 1.989655 11.138573 9.240509 14.304005 \n", "std 2.570429 11.619288 10.063522 15.872323 \n", "min 0.000000 0.000000 0.000000 0.000000 \n", "25% 0.000000 2.000000 2.000000 2.000000 \n", "50% 1.000000 7.000000 6.000000 9.000000 \n", "75% 3.000000 16.000000 14.000000 21.000000 \n", "max 34.000000 98.000000 90.000000 122.000000 \n", "\n", " sca sca_per90 sca_passes_live sca_passes_dead \\\n", "count 10536.000000 10536.000000 10536.000000 10536.000000 \n", "mean 22.810744 1.847212 16.306758 2.071944 \n", "std 28.181149 2.363747 19.475346 5.700910 \n", "min 0.000000 0.000000 0.000000 0.000000 \n", "25% 3.000000 0.540000 2.000000 0.000000 \n", "50% 12.000000 1.570000 9.000000 0.000000 \n", "75% 32.000000 2.600000 23.000000 1.000000 \n", "max 238.000000 90.000000 168.000000 68.000000 \n", "\n", " sca_dribbles sca_shots sca_fouled gca gca_per90 \\\n", "count 10536.000000 10536.000000 10536.000000 10536.000000 10536.000000 \n", "mean 1.433276 1.150816 1.348994 2.601462 0.198038 \n", "std 2.850442 1.928414 2.381023 3.868968 0.446240 \n", "min 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "25% 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "50% 0.000000 0.000000 0.000000 1.000000 0.100000 \n", "75% 2.000000 2.000000 2.000000 4.000000 0.290000 \n", "max 39.000000 27.000000 32.000000 43.000000 18.000000 \n", "\n", " gca_passes_live gca_passes_dead gca_dribbles gca_shots \\\n", "count 10536.000000 10536.000000 10536.000000 10536.000000 \n", "mean 1.743831 0.170463 0.185175 0.213269 \n", "std 2.653250 0.634542 0.598981 0.554036 \n", "min 0.000000 0.000000 0.000000 0.000000 \n", "25% 0.000000 0.000000 0.000000 0.000000 \n", "50% 1.000000 0.000000 0.000000 0.000000 \n", "75% 2.000000 0.000000 0.000000 0.000000 \n", "max 27.000000 9.000000 11.000000 6.000000 \n", "\n", " gca_fouled gca_og_for tackles tackles_won \\\n", "count 10536.000000 10536.000000 10536.000000 10536.000000 \n", "mean 0.208808 0.025816 19.616648 12.316344 \n", "std 0.573635 0.163892 20.905584 13.448803 \n", "min 0.000000 0.000000 0.000000 0.000000 \n", "25% 0.000000 0.000000 3.000000 2.000000 \n", "50% 0.000000 0.000000 13.000000 8.000000 \n", "75% 0.000000 0.000000 30.000000 19.000000 \n", "max 7.000000 2.000000 160.000000 109.000000 \n", "\n", " tackles_def_3rd tackles_mid_3rd tackles_att_3rd dribble_tackles \\\n", "count 10536.000000 10536.000000 10536.000000 10536.000000 \n", "mean 9.839882 7.485668 2.291097 6.481682 \n", "std 11.699808 8.678128 2.961647 7.640514 \n", "min 0.000000 0.000000 0.000000 0.000000 \n", "25% 1.000000 1.000000 0.000000 1.000000 \n", "50% 5.000000 5.000000 1.000000 4.000000 \n", "75% 15.000000 11.000000 3.000000 10.000000 \n", "max 98.000000 67.000000 28.000000 56.000000 \n", "\n", " dribbles_vs dribble_tackles_pct dribbled_past pressures \\\n", "count 10536.000000 10536.000000 10536.000000 10536.000000 \n", "mean 19.180049 28.157375 12.698368 179.524582 \n", "std 20.650102 22.288018 14.079527 179.511164 \n", "min 0.000000 0.000000 0.000000 0.000000 \n", "25% 3.000000 7.700000 2.000000 34.000000 \n", "50% 12.000000 28.600000 8.000000 126.000000 \n", "75% 28.000000 42.300000 18.000000 269.250000 \n", "max 141.000000 100.000000 98.000000 1056.000000 \n", "\n", " pressure_regains pressure_regain_pct pressures_def_3rd \\\n", "count 10536.000000 10536.000000 10536.000000 \n", "mean 49.865793 26.870852 59.812927 \n", "std 48.737734 12.875318 65.102729 \n", "min 0.000000 0.000000 0.000000 \n", "25% 9.000000 22.800000 8.000000 \n", "50% 37.000000 27.600000 36.000000 \n", "75% 77.000000 32.400000 93.000000 \n", "max 303.000000 100.000000 525.000000 \n", "\n", " pressures_mid_3rd pressures_att_3rd blocks blocked_shots \\\n", "count 10536.000000 10536.000000 10536.000000 10536.000000 \n", "mean 81.041572 38.670084 18.167711 3.866268 \n", "std 89.400245 52.916640 18.536094 6.095666 \n", "min 0.000000 0.000000 0.000000 0.000000 \n", "25% 14.000000 3.000000 3.000000 0.000000 \n", "50% 51.000000 17.000000 12.500000 1.000000 \n", "75% 116.000000 53.000000 28.000000 5.000000 \n", "max 604.000000 579.000000 125.000000 60.000000 \n", "\n", " blocked_shots_saves blocked_passes interceptions clearances \\\n", "count 10536.000000 10536.000000 10536.000000 10536.000000 \n", "mean 0.081340 14.301443 9.700550 25.451500 \n", "std 0.327985 14.749407 11.428456 39.696326 \n", "min 0.000000 0.000000 0.000000 0.000000 \n", "25% 0.000000 2.000000 1.000000 2.000000 \n", "50% 0.000000 10.000000 6.000000 9.000000 \n", "75% 0.000000 22.000000 15.000000 31.000000 \n", "max 4.000000 98.000000 89.000000 329.000000 \n", "\n", " errors touches touches_def_pen_area touches_def_3rd \\\n", "count 10536.000000 10536.000000 10536.000000 10536.000000 \n", "mean 0.299829 699.534169 71.681188 227.078683 \n", "std 0.686008 630.774586 164.082477 283.785218 \n", "min 0.000000 0.000000 0.000000 0.000000 \n", "25% 0.000000 175.000000 5.000000 31.000000 \n", "50% 0.000000 528.000000 20.000000 113.000000 \n", "75% 0.000000 1083.000000 63.000000 315.250000 \n", "max 7.000000 3520.000000 1441.000000 1683.000000 \n", "\n", " touches_mid_3rd touches_att_3rd touches_att_pen_area \\\n", "count 10536.000000 10536.000000 10536.000000 \n", "mean 338.005695 179.133162 25.844818 \n", "std 347.334297 215.593757 37.305597 \n", "min 0.000000 0.000000 0.000000 \n", "25% 56.000000 20.000000 3.000000 \n", "50% 231.500000 94.000000 12.000000 \n", "75% 513.000000 264.000000 33.000000 \n", "max 2395.000000 1746.000000 322.000000 \n", "\n", " touches_live_ball dribbles_completed dribbles \\\n", "count 10536.000000 10536.000000 10536.000000 \n", "mean 646.053341 11.736427 19.259491 \n", "std 588.542610 16.071474 26.359860 \n", "min 0.000000 0.000000 0.000000 \n", "25% 162.000000 1.000000 2.000000 \n", "50% 487.000000 6.000000 9.000000 \n", "75% 977.250000 16.000000 26.000000 \n", "max 3393.000000 184.000000 274.000000 \n", "\n", " dribbles_completed_pct players_dribbled_past nutmegs \\\n", "count 10536.000000 10536.000000 10536.000000 \n", "mean 53.507878 12.706910 0.617502 \n", "std 30.966310 17.349937 1.274202 \n", "min 0.000000 0.000000 0.000000 \n", "25% 40.000000 1.000000 0.000000 \n", "50% 59.100000 6.000000 0.000000 \n", "75% 73.300000 17.000000 1.000000 \n", "max 100.000000 197.000000 14.000000 \n", "\n", " carries carry_distance carry_progressive_distance pass_targets \\\n", "count 10536.000000 10536.000000 10536.000000 10536.000000 \n", "mean 453.841591 2660.550209 1449.656226 523.986238 \n", "std 429.383972 2597.664857 1488.357245 478.293718 \n", "min 0.000000 0.000000 0.000000 0.000000 \n", "25% 110.000000 594.750000 301.000000 136.000000 \n", "50% 336.000000 1898.500000 991.000000 397.000000 \n", "75% 680.000000 3939.000000 2110.000000 788.000000 \n", "max 2617.000000 17993.000000 11141.000000 3096.000000 \n", "\n", " passes_received passes_received_pct miscontrols dispossessed \\\n", "count 10536.000000 10536.000000 10536.000000 10536.000000 \n", "mean 445.633922 83.905942 14.367122 13.143793 \n", "std 421.766470 16.470760 18.742053 16.593270 \n", "min 0.000000 0.000000 0.000000 0.000000 \n", "25% 111.000000 75.900000 2.000000 1.000000 \n", "50% 331.000000 89.500000 7.000000 7.000000 \n", "75% 667.000000 96.500000 20.000000 19.000000 \n", "max 2833.000000 100.000000 138.000000 172.000000 \n", "\n", " cards_yellow_red fouls fouled offsides \\\n", "count 10536.000000 10536.000000 10536.000000 10536.000000 \n", "mean 0.053721 14.664389 14.064825 2.306473 \n", "std 0.236570 14.419392 15.768498 4.866079 \n", "min 0.000000 0.000000 0.000000 0.000000 \n", "25% 0.000000 3.000000 2.000000 0.000000 \n", "50% 0.000000 11.000000 9.000000 0.000000 \n", "75% 0.000000 22.000000 20.000000 2.000000 \n", "max 2.000000 98.000000 167.000000 56.000000 \n", "\n", " pens_won pens_conceded own_goals ball_recoveries \\\n", "count 10536.000000 10536.000000 10536.000000 10536.000000 \n", "mean 0.146450 0.177582 0.046128 107.038724 \n", "std 0.466131 0.462833 0.224207 102.282925 \n", "min 0.000000 0.000000 0.000000 0.000000 \n", "25% 0.000000 0.000000 0.000000 25.000000 \n", "50% 0.000000 0.000000 0.000000 77.000000 \n", "75% 0.000000 0.000000 0.000000 161.000000 \n", "max 6.000000 5.000000 4.000000 597.000000 \n", "\n", " aerials_won aerials_lost aerials_won_pct games_gk \\\n", "count 10536.000000 10536.000000 10536.000000 769.000000 \n", "mean 16.218299 16.201879 40.133125 16.042913 \n", "std 22.513176 20.034852 25.203098 13.162327 \n", "min 0.000000 0.000000 0.000000 1.000000 \n", "25% 2.000000 3.000000 23.800000 3.000000 \n", "50% 8.000000 10.000000 43.200000 13.000000 \n", "75% 21.000000 23.000000 57.800000 29.000000 \n", "max 266.000000 290.000000 100.000000 38.000000 \n", "\n", " games_starts_gk minutes_gk goals_against_gk goals_against_per90_gk \\\n", "count 769.000000 769.000000 769.000000 769.000000 \n", "mean 15.866060 1426.869961 21.945384 1.528088 \n", "std 13.271661 1188.291334 18.635543 0.979380 \n", "min 0.000000 0.000000 0.000000 0.000000 \n", "25% 3.000000 270.000000 5.000000 1.010000 \n", "50% 13.000000 1170.000000 18.000000 1.420000 \n", "75% 29.000000 2610.000000 36.000000 1.770000 \n", "max 38.000000 3420.000000 76.000000 15.000000 \n", "\n", " shots_on_target_against saves save_pct wins_gk \\\n", "count 769.000000 769.000000 769.000000 769.000000 \n", "mean 65.871261 46.286086 0.672059 5.931079 \n", "std 56.838957 40.824974 0.156686 6.223208 \n", "min 0.000000 0.000000 0.000000 0.000000 \n", "25% 13.000000 9.000000 0.632000 1.000000 \n", "50% 51.000000 35.000000 0.692000 4.000000 \n", "75% 116.000000 81.000000 0.750000 9.000000 \n", "max 231.000000 167.000000 1.000000 32.000000 \n", "\n", " draws_gk losses_gk clean_sheets clean_sheets_pct pens_att_gk \\\n", "count 769.000000 769.000000 769.000000 769.000000 769.000000 \n", "mean 3.993498 5.931079 4.308192 24.626138 2.650195 \n", "std 3.854612 5.675623 4.462220 21.254558 2.648924 \n", "min 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "25% 1.000000 1.000000 1.000000 10.000000 0.000000 \n", "50% 3.000000 4.000000 3.000000 23.800000 2.000000 \n", "75% 6.000000 10.000000 7.000000 33.300000 4.000000 \n", "max 18.000000 25.000000 22.000000 100.000000 15.000000 \n", "\n", " pens_allowed pens_saved pens_missed_gk minutes_90s_gk \\\n", "count 769.000000 769.000000 769.000000 769.000000 \n", "mean 2.058518 0.444733 0.146944 15.853706 \n", "std 2.166376 0.758546 0.379136 13.203592 \n", "min 0.000000 0.000000 0.000000 0.000000 \n", "25% 0.000000 0.000000 0.000000 3.000000 \n", "50% 1.000000 0.000000 0.000000 13.000000 \n", "75% 3.000000 1.000000 0.000000 29.000000 \n", "max 13.000000 4.000000 2.000000 38.000000 \n", "\n", " free_kick_goals_against_gk corner_kick_goals_against_gk \\\n", "count 769.000000 769.000000 \n", "mean 0.503251 2.769831 \n", "std 0.824623 2.947956 \n", "min 0.000000 0.000000 \n", "25% 0.000000 0.000000 \n", "50% 0.000000 2.000000 \n", "75% 1.000000 4.000000 \n", "max 5.000000 15.000000 \n", "\n", " own_goals_against_gk psxg_gk psnpxg_per_shot_on_target_against \\\n", "count 769.000000 769.000000 769.000000 \n", "mean 0.633290 21.075553 0.295527 \n", "std 0.944135 18.063106 0.086241 \n", "min 0.000000 0.000000 0.000000 \n", "25% 0.000000 4.400000 0.260000 \n", "50% 0.000000 16.500000 0.290000 \n", "75% 1.000000 35.800000 0.330000 \n", "max 5.000000 81.200000 0.790000 \n", "\n", " psxg_net_gk psxg_net_per90_gk passes_completed_launched_gk \\\n", "count 769.000000 769.000000 769.000000 \n", "mean -0.185826 -0.053810 103.299090 \n", "std 3.401335 0.377456 97.184822 \n", "min -15.000000 -2.180000 0.000000 \n", "25% -1.900000 -0.200000 17.000000 \n", "50% -0.200000 -0.030000 75.000000 \n", "75% 1.300000 0.140000 169.000000 \n", "max 12.900000 1.720000 412.000000 \n", "\n", " passes_launched_gk passes_pct_launched_gk passes_gk \\\n", "count 769.000000 769.000000 769.000000 \n", "mean 258.067620 40.693238 377.946684 \n", "std 243.203325 11.361790 327.479748 \n", "min 0.000000 0.000000 0.000000 \n", "25% 40.000000 35.100000 67.000000 \n", "50% 188.000000 40.000000 313.000000 \n", "75% 417.000000 45.800000 657.000000 \n", "max 1103.000000 100.000000 1362.000000 \n", "\n", " passes_throws_gk pct_passes_launched_gk passes_length_avg_gk \\\n", "count 769.000000 769.000000 769.000000 \n", "mean 64.014304 46.858388 39.819376 \n", "std 57.849874 17.752818 8.553590 \n", "min 0.000000 0.000000 0.000000 \n", "25% 11.000000 34.900000 34.200000 \n", "50% 48.000000 46.700000 39.700000 \n", "75% 101.000000 57.500000 44.600000 \n", "max 234.000000 100.000000 103.000000 \n", "\n", " goal_kicks pct_goal_kicks_launched goal_kick_length_avg crosses_gk \\\n", "count 769.000000 769.000000 769.000000 769.000000 \n", "mean 114.182055 64.492458 49.987646 147.786736 \n", "std 101.287149 24.308573 13.572026 129.255022 \n", "min 0.000000 0.000000 0.000000 0.000000 \n", "25% 22.000000 47.800000 41.700000 27.000000 \n", "50% 89.000000 66.900000 51.000000 115.000000 \n", "75% 198.000000 84.800000 60.500000 258.000000 \n", "max 451.000000 100.000000 79.300000 569.000000 \n", "\n", " crosses_stopped_gk crosses_stopped_pct_gk \\\n", "count 769.000000 769.000000 \n", "mean 11.448635 7.300650 \n", "std 11.350605 5.172479 \n", "min 0.000000 0.000000 \n", "25% 2.000000 4.500000 \n", "50% 8.000000 7.100000 \n", "75% 19.000000 9.500000 \n", "max 53.000000 50.000000 \n", "\n", " def_actions_outside_pen_area_gk def_actions_outside_pen_area_per90_gk \\\n", "count 769.000000 769.000000 \n", "mean 9.986996 0.621027 \n", "std 10.513500 0.491611 \n", "min 0.000000 0.000000 \n", "25% 2.000000 0.320000 \n", "50% 6.000000 0.550000 \n", "75% 15.000000 0.880000 \n", "max 59.000000 4.000000 \n", "\n", " avg_distance_def_actions_gk \n", "count 769.000000 \n", "mean 14.262159 \n", "std 2.834688 \n", "min 0.000000 \n", "25% 12.900000 \n", "50% 14.300000 \n", "75% 15.700000 \n", "max 27.500000 " ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Description of the raw DataFrame, df_fbref_tm, showing some summary statistics for each numberical column in the DataFrame\n", "df_fbref_tm.describe()" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABuoAAAGdCAYAAAD0cSXAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeZRdVZ024H2TEAUCigJGZIEyE1u9gAOIQgUIKuBiCIoRkEFkYQuxPlCZhwg00CCUyGzTiEhEZRCE4ACkhCANDc1tZFIg0FGGMAcISCTc7w+tkKRu3aq6dW7tfXY9z1osU+c9dfZLym4r9cvep1Kv1+sBAAAAAAAAGFajYhcAAAAAAACAkcigDgAAAAAAACIwqAMAAAAAAIAIDOoAAAAAAAAgAoM6AAAAAAAAiMCgDgAAAAAAACIYEYO6uXPnhk022ST86Ec/il0FAAAAAAAAQggjYFA3f/78cNBBB4VXXnkldhUAAAAAAABYJOtB3eOPPx723HPP8L//+7+xqwAAAAAAAMASsh3U/ehHPwqf//znw4MPPhg23XTT2HUAAAAAAABgCdkO6n784x+H973vfeEnP/lJ2HHHHWPXAQAAAAAAgCWMiV2gXaZNmxY++clPhtGjR4fHHnssdh0AAAAAAABYQraDuk9/+tOxKwAAAAAAAECfsh3UDVZHR0fD611dXSGEEDo7O2UD/Jxqtdrreo9arRa9f1myGD2afe1alfrXPJUeOWSp9Mg9S6VH7lkqPXLPUumRe5ZKj9yzVHrkkKXSI/cslR65Z6n0yD1LpUdOWTt+PgBA8Z577rlw4YUXxq6RpEqlEur1eq/r119//aJfT5o0KRxxxBHDWauhSr1R08xceeWV4fDDDw+HH3542HvvvRveY1BX3DfABnVp/0FjuL/ZbvY1940/AAAApKfRn+VT+XlJ7lkqPXLIUumRe9bq83p0d3f3mdG/L3zhC+HZZ5+NXaPUbrrpplCpVKJ2GBV1dQAAAAAAAAZtzBiHJg7VI488EruCoy8pXn+75qBHCjssU/nbRzlkqfTIPUulR+5ZKj1yz1LpkXuWSo/cs1R65JCl0iP3LJUeuWep9Mg9S6VHTlm1Wu1zl0uz3S+y4rJUeuSQpdIj96zV5zE0Tz31VOwKpbfOOuvErmBQR/GafTNXq9WGtwwAAAAAAGRo+vTp4fTTTx/QvfV6fdE72/p6I9pA71k6X/reer2+6B1xfT1vIPc0WnOg9zR6R13Px3PmzGn4jFgM6gAAAAAAAErmve99bzj11FNj1yidiRMnxq6wBIM6CufoSwAAAAAAaK/rr78+/Pu//3vsGqW12mqrxa4QQjCoow0cfQkAAAAAAO316quvxq5Qah0dHbErhBBGyKBul112CbvsskvsGiOGHXUAAAAAANBekydPDmeddVbsGqU1ffr08JnPfCasscYaUXuMiEEdw8uOOgAAAAAAaL9//dd/DT/+8Y+jrV+pVEK9Xu8z67H0PYtnS9/TKCvKyy+/vMTH48aNa9taA2VQByNMsx2P1Wq18PUMbgEAAAAA2uMLX/hC+MIXvhC7Rmm8+eabYeuttw4hhDBmzJjwrne9K3IjgzoYcZoNztrBUagAAAAAAKTgnnvuWfTrdu7cG4xRsQsAAAAAAABAuy3+Prq///3vYeLEieGCCy6I2MiOOtrADioAAAAAACA1jY66fN/73hehyVsM6iicd5IBAAAAAACpu/HGG8OoUXEPn3T0JQAAAAAAANn7n//5nyU+nj17dqQmb7GjjsI5+hIAAAAAAEjNWmuttcTH66yzTqQmb7GjDgAAAAAAgOy9853vjF2hFzvqKJx31AEAAAAAAKm57bbbYlfoxaCOwjn6EgAAAAAASM2aa6656NerrrpqxCZvMaijcHbUAQAAAAAAqbnnnnsW/frpp58OTz31VBg/fnzERt5RBwAAAAAAwAgwceLEJT5++umnIzV5ix11FM7RlwAAAAAA0F71ej387W9/G/IzGv3nUO9pdN9g7mm23kDuGWjvcePG9bo23AzqKJyjLwEAAAAAoL3OOOOM8Ktf/Sp2jVJbffXVY1cwqAPe0t9uyFYzAAAAAACK9fLLL8euUHpXXnll+NKXvhS1g0EdhXP0ZXk12w0ZQmgps4sSAAAAAKB4m222WdOf2dK/888/P9x///3hu9/9brQOBnUAAAAAAAAls+2224Ztt902do1SqdfrYauttlri2i233BKpzT8Y1FE476gDAAAAAABSU6lUGl6///77w4QJE4a5zT8Y1AEAAAAAAJTMVVddFc4888zYNbLw+uuvR1vboI7CeUcdi7PDEgAAAACgeGPHjo1dofTWWmutcNhhh4V11103WgeDOqCtDG4BAAAAAIq3/fbbh+233z52jVKZNWtWOProoxd9fP7554fRo0dHbGRQBwAAAAAAUDrz5s0Ll112WdN76vV6CKHxu9l6sh6L37N0lotbbrlliY8nTZoUJk2aFI444ohIjQzqgDZz9CUAAAAAQPG+973v9Ro8MXjrrbde1PUN6iicwUzamh1FWa1Wh3U9AAAAAABa853vfMegrgAPPPBA1PUN6mCEaTZIBQAAAACgHMaNGxe7Qha+8Y1vRF3foA4AAAAAAKCELr300nDvvfcO+TnN3mU31M9v9i68oX5+X+/S6+ueG2+8Mfz3f//3EvdOnjw5HHjggWHy5MkNn9VuBnUUzlGH5dXf167VDAAAAACA4q222mphtdVWi12jNLbddtuw1VZb9bq+6aabRmjzDwZ1MML09466ZsditpJ5LyEAAAAAAClotGNv6623Du973/sitPkHgzoK12zYY2gTn3fUAQAAAAAwEr3yyiu9rt14441hn332iTasM6ijcI6+BAAAAAAAUnPHHXc0vP7QQw8Z1JEPO+oAAAAAAIDUrLDCCr2ubbrppqGjo2P4y/zTqGgrAwAAAAAAwDC5++67e1075phjIjR5ix11wCL9HVvaagYAAAAAQLEWLlwYHn300dg12qZery/xn0v/upV71lhjjV7rXHHFFWGPPfYopnQLDOqARZodWxpCaClz3CkAAAAAQPG22Wab2BWy8OSTT0Zd39GXAAAAAAAAjEjz5s2Lur4ddQAAAAAAACXz05/+NJx55plLXFv62MdGBnLPQC3+rEql0vDZrdzTas+ez+l5RqPn3HXXXUt8fNxxxw16nSIZ1FG4/t5zxsjS7DhNx2ICAAAAALRm/PjxYa+99gq33nrrEtf7ekdbX0OypQ11kFfUGoPtPZDPf+yxx3rd98c//jFUq9UlhnvDyaCOwhnMsDiDWwAAAACA9jjggANiVyi9gw8+OEydOjXsvPPOUdav1Ivc41hiHR0dDa/3DBOaDRpGWpZKj9yzdq1VrVZ7XW+nZoO64e4CAAAA9K/Rn+VT+XlJ7lkqPXLIUumRe9bq83r0teGDgdtnn30a7hJj4DbbbLNw1FFHheWWWy7K+nbUUTg76lhcf/99KOs3EzK/l7GyVHrknqXSI/cslR65Z6n0yD1LpUcOWSo9cs9S6ZF7lkqP3LNUeuSUNfuzfLMfqsuKy1LpkUOWSo/cs1afx9DNmzcvdoXSu+2226IN6UIwqAPazNGXAAAAAADtMX78+PDCCy/ErlFqX/7yl6Oub1BH4QxmWJwdlgAAAAAAxTvvvPPCAw88ELtGaS2//PLh2muvjV3DoA5oL4NbAAAAAIBivfnmm+GVV16JXaPU5s+fHx566KGw7rrrRu0xKurqAAAAAAAADMqMGTPCddddF7tG6b33ve+NXcGgDgAAAAAAoEy23Xbb2BWy8PDDD8eu4OhLiuedZAAAAAAA0D5jx44NZ599dvh//+//xa7SUKVSCfV6veV7KpVKr2tL39vsnkZZT75gwYJFHx9++OHh2muvDaNHj27atZ0M6gAAAAAAAEpmwoQJ4Te/+U3sGqVyww03hBNPPHHRx+ecc07UIV0IBnUAAAAAAAAkYPFdcz2/Xnon3UDuaZTV6/Ww8cYbL3HPBz7wgQJaD41BHYWr1Wqhs7Oz1/Wurq4IbQAAAAAAID/HH398uOmmm2LXKK0JEybErhBCMKijDbyjDgAAAAAA2uv222+PXaHU7r///vDEE0+E1VZbLWoPgzoAAAAAAICSueqqq8K99967xLVGR0AubSD3DNTiz6pUKg2fX9Q9RfS89tprw6xZsxZdf8c73lHYGq0yqKNwjr5kcXZYAgAAAAAUb5lllgkbbbRR7Bql8stf/nKJj5dbbrlITd5iUAe0lcEtAAAAAEDxfv3rX4dTTjkldo1S22qrrcLOO+8cpk6dGq2DQR2Fs4MKAAAAAADa65VXXoldIQsf//jHo65vUAcAAAAAAFAyu+66a9h1111j1yidiRMnhhBC2HHHHRueBjfcRsUuAAAAAAAAAO3217/+ddGvZ8yYEebOnRsWLlwYsZFBHQAAAAAAACPA/PnzF/3673//e/jSl74UDjnkkIiNQqjU6/V61AaJ6OjoaHi9q6srhBAabn8cqVl/n1OtVntd71Gr1aL3L0vWrrWafX3aodnXfLi7AAAAAP1r9Gf5VH5eknuWSo8cslR65J61+rwe3d3dfWb0b9asWeHoo4+OXSMLM2fOjLa2d9RRuP6GccSV0uAshcFtKt/U5JCl0iP3LJUeuWep9Mg9S6VH7lkqPXLPUumRQ5ZKj9yzVHrknqXSI/cslR45ZdVqtc8fnjf7obqsuCyVHjlkqfTIPWv1eQzNww8/HLtCFtZaa62o6xvUUbhm38zVarXhLUMvzb4+AAAAAACUw7PPPhu7QumNGTMmbL755mH+/Plh+eWXj9LBO+oAAAAAAABK5vOf/3xYccUVw4orrhhWWGGF2HVK6Y033giXXHJJuOaaa6J1sKOOwjn6EgAAAAAA2mv99dcPV1999aKPZ82aFS677LJQr9dDCCFUKpU+P7fnnh6L37t0Nph7Ymr27xRCCK+//np45JFHGn7uRz7ykbb16o9BHYVz9CUAAAAAAAyv9dZbL+y6666xawy7SqXS7+CwZ2j3xBNPhAsuuKBX/txzz7Wl20AY1MEI09+Ox3ZkAAAAAAC012677Ra7QmnNnTs32toGdTDC2PEIAAAAAJCfU045JcyYMWNQn9PKMZk9Gn1OGY7NvPnmm3tda/bv324GdcAizYZ4IYSWMsM/AAAAAIBiLViwIFx00UXhgQceWOJ6K0OwxT+nZ2C19HOWvqfROkNZu69BXl/vnevrnlYGgp/97GfD5z73uUG0LpZBHYXr72hFAAAAAACgdb/97W/DZZddFrtGFr7zne9E3VE3KtrKAAAAAAAADNr2228f9txzz9g1Sm+FFVYIb775ZtQOdtQBAAAAAACUSKVSCfvuu29Ye+21w5VXXjmgz1n8mMm+joUczD1DNZDnFHVPjwcffHCJj19++eWwzTbbhGnTpoUttthiwM8pkkEdhWv2njPvKwMAAAAAgGIcd9xxsStkYcUVV4y2tkEdAAAAAABACV111VXhscce6zMfyLvXirqn2ecuvlNvKPcMRb1eD08++WQ48cQTe2XVanVIzx6KSr2oPYol19HR0fB6V1dXCCGEzs5O2QA/p9l/oWu1WvT+Zcli9GjH/zNq9jWP+f/8AAAAgMYa/Vk+lZ+X5J6l0iOHLJUeuWetPq9HXyezMTALFiwIe+21V3jqqadiVym1bbfdNhx++OHR1rejjsL1N4wjrmZHkw63FAa3qXxTk0OWSo/cs1R65J6l0iP3LJUeuWep9Mg9S6VHDlkqPXLPUumRe5ZKj9yzVHrklDX72UGznynIistS6ZFDlkqP3LNWn8fQfOYzn4ldIQsf/vCHo65vUEfhvKMOAAAAAADaa8UVVwwvvfRS7Bqlt8Yaa0Rd36AORpgYu9gAAAAAACjWwQcfHI477rjYNUpv6tSpYebMmdHW9466f/KOuuKOlPCOurSP7hju98J5Rx0AAACUi3fUxctS6ZFDlkqP3LNWn9fDsZhDc+utt4ajjjoqdo3SW2ONNcLFF18cbX076iicd9SxuP6OQi3rNxMyv5exslR65J6l0iP3LJUeuWep9Mg9S6VHDlkqPXLPUumRe5ZKj9yzVHrklHlHXfwslR45ZKn0yD3zjro4/vznP8eukIU5c+ZEXd+gDmgrg1sAAAAAgOK98cYbsStkYdq0aVHXN6iDEcZRlAAAAAAA5feRj3wkTJ8+PXaNUrvkkkvC6quvHrWDQR2F6++oQ+Jq9vUBAAAAAKAcHn744dgVSm/PPfcMM2fOjNrBoI7COeowbTHeCwcAAAAAQLEuuuii2BWyMHHixHD++eeH9dZbL8r6BnUwwvS3o67ozC5KAAAAAIDieUddcV588cVoaxvUUThHXwIAAAAAQHutvPLK4dlnn41do9Q22mijsN9++4UJEyZE62BQR+EcfZk2R18CAAAAAJTfe97zHoO6Ibr77rvDcccdF/7t3/4trLPOOlE6GNRRODvq0ubrAwAAAABQfi+99FLsCll45plnwuzZsw3qyIcddeXl/XUAAAAAAOXwl7/8JXaFLNxwww1h9OjR0dYfFW1lYESo1Wqho6Oj1z+GdAAAAAAArTvqqKNiVyi1/fffP8ycOTPqkC4EgzoAAAAAAIDSefLJJ2NXKLULLrgg3HnnnbFrOPqS4nkHGgAAAAAAtNfqq68eu0Lpffvb3w6/+93vwpgx8cZlBnUAAAAAAAAl09HREbbccstQr9dDCGHRf/ZodH0o9/R1f5H3NMqKvmePPfZY4r5JkyaFU045JXz84x/v9YzhYFAHAAAAAABQMt/61rfCXXfdFbtGFt75zndGW9s76gAAAAAAAErk+eefN6Qr0NixY6OtbUcdjDC1Wi10dnb2ut7V1RWq1WqERgAAAAAADNTjjz/e6/hGhubuu+8O73//+6OsbVAHI0y1Wg3d3d2xawAAAAAA0IL3vOc9Yeeddw633XZbeOqpp2LXKZVKpdLrfXYzZswIyy67bKRGBnUw4jTbURdCaEsGAAAAAEAxxowZE6ZOnRqmTp0au0opTZw4cYmPb7vttrDVVltFamNQByNOfzvqis5qtdrAigEAAAAAMGD1ej288MILUdZd+tdL71JrlA3nPY3ua/R5IYTw8MMPG9QBAAAAAAAwcDGHSznZf//9o65vUEfh+jtaEQAAAAAAIAXnnXdeOOCAA6KtPyraygAAAAAAAAzaSy+9FNZaa63YNbKw4YYbRl3fjjoAAAAAAIASuf3228Ps2bNj1yi9mTNnxq5gRx0AAAAAAECZTJo0KXz4wx+OXaP0Jk6cGH7xi19E7WBHHYWrVquhu7u7YVar1Ya3DAAAAAAAZGjq1Knh2GOPbXpPvV4PIYRQqVT6zHo0u2ewn790Nth7+soGc09fnnjiiSU+HjMm7qjMoI7C1Wq10NnZ2et6V1dXhDYAAAAAAJCf5ZdfPqy55poDvn8gg63FB3ODub9VMTotPqj7j//4j7D22mv3+8x2MqgDAAAAAAAomfPPPz/84Q9/iF2j1Pbbb79w6qmnho9+9KPROhjUAQAAAAAAlMzhhx8ett56617XGx1T2eieZsdatvLMoa43HJ0effTRcN555y1x7Xe/+51BHXnxjrq09Xc0aTsyAAAAAACK9fzzz4cZM2b0ut7KAKvRsZKNnrP0fX3dE0Lz99sNtFMR9yxu7ty5va69+93vHtQzimZQByNMs0FqCKHwzHAWAAAAAKB4U6ZMiV0hCz/96U/D/vvvH219gzpgkXbttgMAAAAAoFjTpk0Lxx57bOwapXfppZdGXd+gDlikHbvt7KgDAAAAACjeFltsEWbOnBluueWWcMwxx8SuU1q77757OOqooxq+7284GNQBAAAAAACUzPTp08MPf/jD2DWy8MEPfjDa2qOirQwAAAAAAEBLxo8fH7tC6U2ePDlcfvnlUX8v7aijcP2954yRpdlxmo7FBAAAAABozd133x27QuntvvvuYaWVVoraoVKv1+tRGySio6Oj4fWe4VKzwdNIy/r7nGq12ut6j/6GeLL2r9Xs69MOzb7mw90FAAAA6F+jP8un8vOS3LNUeuSQpdIj96zV5/Xo6y/4MzBnnHFGuOaaa2LXKL2ZM2dGXd+OOiCaFAa3qXxTk0OWSo/cs1R65J6l0iP3LJUeuWep9Mg9S6VHDlkqPXLPUumRe5ZKj9yzVHrklDU7HafZD9VlxWWp9MghS6VH7lmrz2NoDOny4B11AAAAAAAAJRP7yMZczJo1K+r6dtRBSTX7220hpPM3VbyjDgAAAACgeJdddlm47bbbel2vVCr9fu5g7+l5i9pAPq+v5yz+Jraln1PUPc1cdNFF4aGHHup1/Y9//GP41Kc+NeDnFM2gjsL1d5whxUjh2MgiMgAAAAAABm/s2LFhyy23jF2jNC699NKG13/+85+HSZMmhXXWWWeYG/2DQR2MMEPZiddKZtccAAAAAEDxfvnLX4bvf//7sWtk4bnnnjOoIx+OOgQAAAAAgPbqa4cYg/Pxj388fOITn4i2vkEdAAAAAABAyTz77LOxK5TeiSeeGKrVatQOo6KuDgAAAAAAwKCtuuqqsSuU3pFHHhl+9atfRe1gRx3QVo5CBQAAAAAo3qWXXhruvffeXtcrlUrTz2uUVyqVUK/XB/yM/p7b86ylnzOQ5w5l7f7W/b//+79w8sknL5Gdd955Yd111w0bb7zxoNctgkEd0Fa1Wi10dnb2ut7V1RWhDQAAAABAHmbNmhWmTZsWu0YW3v72t0db26COwhnMDI9mO9VCCE13sfX19Yl9Fi8AAAAAAANz//33x66QhTPPPDNMmDAh2voGdRTOUYfDo7+BqGEpAAAAAEC+5s6dG7tCFq655prwoQ99KNr6BnUwwvS3Ew8AAAAAgPRtv/324eabb45do/QmTZoUdX2DOgrn6EsAAAAAAGivW2+9NXaF0psxY0YYO3Zs1A4GdQAAAAAAACXT2dkZvvGNbwz4/nq9vsR/Lv3rwd7T1/19ZcN5T1+9Tz755HDfffcturbddtuFEEI48sgjwzbbbNPrucPBoA5oK+8sBAAAAAAo3sKFC8P9998fu0ZDlUql4UBtoPdUKpVe15a+t9k9jZ5dr9fDq6++2nC9vq4PB4M6oK0chQoAAAAAULyTTz453HjjjbFrZGHChAnR1jaoo3B2UKWt2eCsWq1GaAQAAAAAwGDtvffe4Zlnnoldo1TuueeehtfXWWedYW7yFoM6AAAAAACAklluueXC+9///hBC4/e2La2oewby+c2OtRzIPe3oFEII733ve8NvfvObXvfMmTMnrLHGGkNap1UGdTDCNNvxCAAAAABAOXz/+98PN998c+waWXj00UcN6gAAAAAAABiYQw89NGy88ca9rlcqlUKev/iOt4E8s9k9RXYayD199b799tvD73//+yWunXfeeWH99dcvpF8rDOoAAAAAAABKZrnllgs77rhj7BqlsvSQbqONNoo6pAvBoI42qNVqobOzs9f1rq6uCG0YjP6+dq1mAAAAAAC0z6xZs8LRRx8du0bp3H333eGKK64IkydPjtbBoA5YpL/317WS1Wq1oZUCAAAAAKCp2bNnx65QWi+//HLU9Q3qKFyzYY+hDQAAAAAAFOsrX/lK+MpXvhK7RvJuu+22cMQRRyxx7eKLLw577713nELBoI42cPQlAAAAAACQmhtvvLHXtd122y1Ck7cY1FE4O+oAAAAAAKC9br/99nDYYYfFrlF6s2bNCgcccEC09UdFWxkAAAAAAICW/PGPf4xdIQvjxo2Lur4ddQAAAAAAACWz3377hf322y92jdKZOHHiol+/5z3vCccdd1y8MsGOOgAAAAAAAEaguXPnhs7OzqgdKvV6vR61QSI6OjoaXu/q6gohhIZfqJGa9fc51Wq11/UetVotev+yZO1aq9nXpx2afc2HuwsAAADQv0Z/lk/l5yW5Z6n0yCFLpUfuWavP69Hd3d1nRv+6u7vDtGnTYtfIwsyZM6Ot7ehLIJoUBrepfFOTQ5ZKj9yzVHrknqXSI/cslR65Z6n0yD1LpUcOWSo9cs9S6ZF7lkqP3LNUeuSUVavVPn943uyH6rLislR65JCl0iP3rNXnMTR//etfY1egAAZ1FK6/4QsAAAAAADA0e+yxR9hjjz1CCCEsWLAg3H777UvkAzlQschDFxd/VqVSafjsVu5ptWfP5/Q8o+faCSecMOhntZNBHZRUs7/dFoK/qQIAAAAAMFKMHTs2fPrTn45do1A9g7bFh3RLD+wGe8+vf/3rtnQdCoM6CtdsgFSr1Ya3TMZaPTbSe+EAAAAAAPJxxx13hEMPPTR2jdJaZZVVoq5fqRe5r7HEOjo6Gl5P7YzwFLKhDIJSeCdZWbJ2njM/nJp9zQ0NAQAAID2N/iyfys9Lcs9S6ZFDlkqP3LNWn9fDqWBDc9NNN4Xjjz8+do3S22ijjcLpp58ebX076mCEiTEsTamLb9ral6XSI/cslR65Z6n0yD1LpUfuWSo9cs9S6ZFDlkqP3LNUeuSepdIj9yyVHjllzU5LavU1HLLBZan0yCFLpUfumVf0xDF37tzYFbLwL//yL1HXN6iDEWYo77ZrJXPcKQAAAABA8aZMmRKmTJkSu0ZpzJs3L+y00069ro8ePTpCm7cY1FG4/nZJAQAAAAAAQ3fhhReGn/zkJ7FrlNrrr78edX2DOgrXbMeW3VUAAAAAAFAMQ7qh+8AHPhB1fYM6CmdHHQAAAAAAtNdRRx0Vu0LpnXvuuWGDDTaI2mFU1NUBAAAAAAAYtAcffDB2hdL7+te/Hl577bWoHeyoAwAAAAAAKJnp06eHO+64I3aNhiqVSqjX6y3fU6lUel1b+t5m9zTKeiy9E3HatGnh5JNPbtq1nSr1/n6nRoiOjo6G13uOa2x2lONIy/r7nGq12ut6j/6OxZS1f61mX592aPY1H+4uAAAAQP8a/Vk+lZ+X5J6l0iOHLJUeuWetPq9Hd3d3nxn9mzFjRjj11FNj1yi9Sy65JKy++urR1rejDkaYGMPSlLr4pq19WSo9cs9S6ZF7lkqP3LNUeuSepdIj9yyVHjlkqfTIPUulRwB0mJQAACAASURBVO5ZKj1yz1LpkVNWrVb7/OF5sx+qy4rLUumRQ5ZKj9yzVp/H0MyfPz92hSzsueeeYebMmdHWN6ijcP0NX4ir2TfbIRT/P9K1Wm1gxQAAAAAAGLBzzjkndoVsLFiwIIwdOzbK2o6+/CdHXxb3N9UcfZn23wh09CUAAADQjKMv42Wp9MghS6VH7lmrz+tht93QTJw4MXaFbHz0ox+NdoyoHXVANCkMblP5piaHLJUeuWep9Mg9S6VH7lkqPXLPUumRe5ZKjxyyVHrknqXSI/cslR65Z6n0yClz9GX8LJUeOWSp9Mg9c/RlHPvuu2/4z//8z9g1sjB58uRoaxvUAQAAAAAAlMxmm20WZsyYEer1epg7d27sOqVTrVbDoYceGsaPHx+1x6ioqwMAAAAAADBoV1xxRXjqqacM6VpUq9XClClTYtewow54S6tHUTZ711yz4zJqtVprRQEAAAAARrgddtgh/PrXv45do9R23XXX2BUM6ihef8Me0tVsqBZCa+dJ++8DAAAAAEDxzjnnnNgVSu/yyy8P++yzT1huueWidXD0JQAAAAAAQMmsscYasStk4aSTToq6vh11MMK0erzlUDIAAAAAAIr17W9/O+y11169rlcqlUW/rtfrva4Vec9A9Xxes+csfU+zTs3u6c/kyZOX+HjWrFnh1ltvDZtvvvmgnlMUgzoYYYZyvGUrmffQAQAAAAAUb9SoUWH8+PGxa2Rh+eWXj7a2QR2FazYIMrQBAAAAAIChe+KJJ8Lpp5/e63pRO+EG+pxKpdLvDreB3NOqgTyr554XX3yxV3bxxRdHPUbUoA5oK4NbAAAAAIDiXXjhheGuu+6KXaO0dtppp3DggQeG0aNHR+0xKurqQPZqtVro6Ojo9Y8hHQAAAABA6w477LDYFUrtl7/8ZXj00Udj17CjDgAAAAAAoGyWWWaZ8MMf/jD84Q9/WOL64kdMDsbSx1s2ek6j4yuXvm8g9wy20+LPa7Zef8/5y1/+Em655ZZF17/2ta+F3XbbLRxwwAEt9SuCQR2Fq9VqobOzs9f1rq6uCG2IzdGXAAAAAADFmzdvXp8/ey2DRkO3xbOl1ev1hkPAgbxLr+fjN954o9dzf/aznxnUkReDGRZncAsAAAAAULypU6eGOXPmxK5RehMmTIi6vkEdhTOYAQAAAACA9nryySdjV8jCl7/85ajrj4q6OgAAAAAAAIO2xRZbxK6QhRtuuCHq+nbUUThHXwIAAAAAQHstXLgwdoUsdHd3h1122SV86EMfirK+QR0AAAAAAEDJfPvb3w6f/OQnm95Tr9cb/melUln062b3L3198c/r656+Pm50vV6v99tp6fsG+/ylnXvuub2u/eAHPwgXXHBBw+e1W6Xe17/JCNPR0dHwes971Zq9c22kZan0yD1r11rVarXX9XZq9s7C4e4CAAAA9K/Rn+VT+XlJ7lkqPXLIUumRe9bq83r0dTIb/fv9738fjjvuuNg1sjBu3LhwzTXXhEqlEmV9O+oonKMvGahmQ7wQ0v5mQub3MlaWSo/cs1R65J6l0iP3LJUeuWep9MghS6VH7lkqPXLPUumRe5ZKj5yyZj/bafZDdVlxWSo9cshS6ZF71urzaN2ECRPCaqutFp544onYVUrtrLPOCmuuuWa0IV0IBnUAAAAAAAClssoqq4RLL700do1SmT9/fthhhx2WuHbggQeGAw88MOy4445hzJg4I7NRUVYFAAAAAACAYfLGG280vH7WWWeFK6+8cpjbvMWOOgrX33GGAAAAAAAAw+kd73hH+PrXvx7OPffcXlm9Xo/Q6B8M6gAAAAAAAErmz3/+czjssMOWuDbQgdNA7lv6nkql0vJAq+fzFn8X3NLPGsg9A+3ayPz58xte/+pXvxp22WWXAa3TDgZ1AAAAAAAAJTN9+vTwwgsvxK5RerNmzQrbbbddeNe73hVlfe+oAwAAAAAAKJk333wzdoUs/OlPfwp33HFHtPUN6gAAAAAAAEpmmWWWiV0hG5/97GejrW1QBwAAAAAAUCJz5swJN910U+waWfjZz34WdX3vqKNw1Wo1dHd3N8xqtdrwlmFQarVa6Ozs7HW9q6srhBBazgAAAAAAKM7cuXNjV8jG9OnTG/58e7gY1FG4/oY9pKvZkDWE0FJmOAsAAAAAUKyPfexjYebMmWHixImxq5Te1VdfHfbYY4+w8sorR1nf0ZcAAAAAAACMWOeee260te2oo3C5H33Z179fDv9uAAAAAAAw0nzsYx+LtrZBHQySoz0BAAAAAIjttddei10hGyuttFK0tQ3qAAAAAAAASuaUU06JXaH0urq6woc//OFQqVSidTCoAxbpb7dgqxkAAAAAAMU66KCDwrhx41r63MUHU/V6vde1xT/uyRvd03Otv3taNZBnDeaeu+++Ozz22GOLrnd2doatttoqHH300S13HCqDOmCRZu8XDCG0lHl3HwAAAABA8Z544olw3XXXxa5Reg8++GDU9Q3qYIRp1645O+oAAAAAAIbPTTfdFLtCFmK+ny4EgzoYcdqxa65ZZkcdAAAAAEDxvvnNb4ZvfvOb4YUXXghHHHFEmDt3bsP7Fj+Wsq9f9/U5A7mn2X31er3pM/pba+lr/d3TrEdf+X333de0X7sZ1AEAAAAAAJTIa6+9FhYsWBDuu+++cPzxx4e//e1vsSuV1mmnnRZ1fYM6AAAAAACAknjyySfDl7/85dg1srD//vuHTTbZJGqHUVFXBwAAAAAAYMDe/e53h6233jqsuOKKsauU3gUXXBDuueeeqB3sqAMAAAAAACiJsWPHhqOOOio88MAD4eCDD275OZVKpZB7BnNfUc9qdE+lUun1Drql73vppZd6fd5ZZ50VLrjggkG2LI5BHbBIrVYLnZ2dva53dXWFEELLGQAAAAAAxbruuuu8m64A48ePj7q+QR2F62/YQ7qq1Wro7u7uM28lq9VqQysFAAAAAEAv1113XewKWTj66KOjrm9QR+GaDXsMbdJmRx0AAAAAACPJMsssE3V9gzoKZ0ddedlRBwAAAABQDueff3448sgjw8KFC8MLL7wQu05pPfjgg2GDDTaItv6oaCsDAAAAAADQkrXXXjucdNJJYYsttohdpdQuu+yyqOvbUQcAAAAAAFAyp5xySvjd734Xu0bpHXXUUVHXN6gD2so7CwEAAAAAijdlypTwyCOPxK7RUKVSCfV6veV7KpVKr2tL39vsnkZZCKHh79cJJ5wQjjvuuKZd28mgjsIZzLA47ywEAAAAACjeu971rrDppps2vafZ4Gowg6+lDWQQl5rXX3+94aDuwQcfjNDmLQZ1AAAAAAAAJbPTTjvFrpCFI488Mur6BnVAW9lhCQAAAABQvF133TVcfvnlsWuU2qc+9anwoQ99KGoHgzqgrRx9CQAAAABQvKeffjp2hdL71re+FbtCGBW7AAAAAAAAAIPT6J1ylI9BHQAAAAAAQMm89NJLsSuU3k477RS23nrr8Oqrr0br4OhLCueoQwAAAAAAaK+5c+fGrpCFN998M/z2t78NO+20U5T1DeooXLVaDd3d3Q2zWq02vGUAAAAAACBDJ5xwQth3331j1yi9jTbaKOy4447R1q/U6/V6tNUT0tHR0fB6zy6wZjvERlrW3+dUq9Ve13v0t9tO1v61Uvr6NOsCAAAAxNHo5wOp/Lwk9yyVHjlkqfTIPWv1eT362vDBwM2fPz/MmjUrnHzyybGrlNYnPvGJqL9/dtRROEdfllez3ZAhNP8fTrsoAQAAAACGz1lnnRWuuOKK2DVKb+HChVHXN6ijcI6+ZKBS2GGZyt8+yiFLpUfuWSo9cs9S6ZF7lkqP3LNUeuSepdIjhyyVHrlnqfTIPUulR+5ZKj1yypr9bKfov+Ara5yl0iOHLJUeuWetPo/W1Wo1Q7qCNPrfw+E0KurqAAAAAAAADMqKK64Yu0I2Yu+oM6gDAAAAAAAokbXWWiusttpqsWtkYa+99oq6vkEdAAAAAABAyTzxxBOxK2Rht912i7q+QR0AAAAAAEDJ7L///rErZOFnP/tZ1PUN6gAAAAAAAEpmypQpsStk4cwzz4y6vkEdAAAAAABACf3qV78Ka665ZuwapfbYY49FXX9M1NWBYVer1UJnZ2ev611dXaFarRa+XrVaDd3d3X12AQAAAABg8BYsWBDuuuuusM8++0RZv16vh0qlEur1ep+/Hur9/f26lftPO+20JT5+5ZVXBvhv3B4GdcAizYZ4IYS2ZAAAAAAADN5nPvOZ2BWysHDhwqjrG9TBCNNsh1sIYVgzO+oAAAAAAFpz6KGHhlNOOSV2jdIbNSruW+IM6oC26m+XHgAAAAAAg/f444/HrpCFDTfcMOr6cceEAAAAAAAADNqECRNiV8jC1VdfHXV9gzoAAAAAAICSGTduXOwKWViwYEHU9R19CSzS3zGVrWYAAAAAABRnzpw5YerUqbFrZKHRz7aHk0EdsEi1Wg3d3d195q1ktVptaKUAAAAAAFjCxRdfHLtCNlZdddWo6zv6EgAAAAAAoER22WWX2BVK7/TTTw8zZ86MXcOgDgAAAAAAoExiv1ctB9/97nfDFVdc0We+YMGCsMMOO4Q//OEPIYQQfvCDH4T111+/1z8bbLBBCCGEPffcs2H+la98pWkPR18CAAAAAACUyEYbbRQ22WSTcNddd8WuUlovvvhiOOuss8LkyZN7Za+//no45JBDwkMPPbTo2r777hu+9KUvLfr4b3/7W9hjjz3CdtttF0L4xyDv73//+6L84YcfDvvtt1/Ye++9m/awow4AAAAAAKBkDOmKccYZZyzx8cMPPxy++MUvhjlz5ixxffnllw+rrLLKon+mT58ell9++XDwwQeHEEJ45zvfuShbeeWVw/e+972w0047ha222qrp+nbUUbharRY6Ozt7Xe/q6orQhtiq1Wro7u5umNVqteEtAwAAAAAAi1m4cGH48Y9/HNZdd92w2WabhTvvvDNsvvnm4aCDDgrVarXh5zz++OPhkksuCWeffXZYZplleuXXXXddmD17djjvvPP6Xd+gjsIZzLA4g1sAAAAAgOI888wz4Ytf/GLsGtmYMWNGCCGEt7/97WHGjBlLHG/ZlwsvvDBsuOGGYcstt2yYn3/++WHKlClh5ZVX7vdZBnUUzmAmbf19fdqRAQAAAABQjHHjxoUNNtggPPjgg7GrZKFer4cQQnjttdcGdP+rr74arr766nD88cc3zO+8884we/bs8MMf/nBAzzOogxGm2Y7HEELhmV2UAAAAAADFWXbZZcO5554bnn766bDbbrvFrjPi3HLLLaFer4dtttmmYX799deHTTfdNIwfP35AzzOoo3COvgQAAAAAgPZaddVVw9e//vXwox/9aInrPTvEhmrp51QqlV7XirpnsH0qlUrDZze7Z+HChYNes5Gbb745dHR0hLFjx/aZf/WrXx3w8yr1or5iJdfR0dHwejuPAyxr1t/n9PVyxRDiHLtY1qxdazX7+rRDs6/5cHcBAAAA+tfoz/Kp/Lwk9yyVHjlkqfTIPWv1eT2aneBF/84555zwi1/8InaN0hs1alSo1+vhbW97W7j++uuXyNZff/1w0UUXhU9+8pOLru2www5h9913D1OmTOn1rOeffz5sttlmYcaMGWHttdce0Pp21AHRpDC4TeWbmhyyVHrknqXSI/cslR65Z6n0yD1LpUfuWSo9cshS6ZF7lkqP3LNUeuSepdIjp6zZaUnD+TqNkZyl0iOHLJUeuWetPo+hMaQrxne/+90we/bssM466/R77xtvvBEeffTRsO666zbMH3roobDMMsuED3zgAwNe36COwvU3fAEAAAAAAIbm7LPPDt/4xjdi1yi9zTffPGy++eYDuvfFF18Mb7zxRnjHO97RMH/uuefCuHHjwqhRowa8vkEdhfOOOgAAAAAAaJ+XX37ZkK4AH/zgB8PChQvD6NGjG+Z/+tOflvh45ZVX7nVtcdttt13YbrvtBtXBoI7C2VGXNu+MAwAAAAAot2OPPTZ2hSzcd999YZtttgkzZ86M1sGgDkaYZjseAQAAAABI3wknnBC233772DWysOWWW0Zd36AOAAAAAACgRJZbbrnYFbIQcyddj0q9Xq/HLpGCjo6Ohtd7jmtsdpTjSMtS6ZF71q61hvt4S0dtAgAAQLk0+rN8Kj8vyT1LpUcOWSo9cs9afV4PJ38NzbRp0/weDlFnZ2fYcccdo3awow6Ipr/3Gab8zYTM72WsLJUeuWep9Mg9S6VH7lkqPXLPUumRQ5ZKj9yzVHrknqXSI/cslR45Zc1em9HsB8Ky4rJUeuSQpdIj96zV5zE0xx57bHj++efDPffcE7tKaXV1dYXPfe5zYezYsdE6GNRRuGbfzNVqteEtAwAAAAAAmbn22mvD9773vdg1sjBt2rRw4oknRlvfoI7C9bdLCgAAAAAAaN28efNiV8jGfvvtF3V9gzpgkXYcRWmHJQAAAABAsVZYYYXYFbLxk5/8JBx99NHR1jeoo3AGM+XV7GsXQmtnTdthCQAAAABQrO222y6cccYZsWtkYfz48VHXN6ijcAYzAAAAAADQPmPGGO8Upbu7O3zta1+Ltr6vJIWzow4AAAAAANprww03DA888EDsGqW3wQYbRF2/Uq/X61EbJKKjo6Ph9aG8myvXbCDvJOtLO96BlmvWrrWafX3aodnXfLi7AAAAAP1r9Gf5VH5eknuWSo8cslR65J61+rwezV61Q//OPvvscPnll8euUXqTJk0KRxxxRLT17agDoklhcJvKNzU5ZKn0yD1LpUfuWSo9cs9S6ZF7lkqP3LNUeuSQpdIj9yyVHrlnqfTIPUulR05Zs9OSin63vaxxlkqPHLJUeuSetfo8hsaQrhjvf//7o65vR90/2VFX3DfAdtSl/QcNO+oAAACAZuyoi5el0iOHLJUeuWetPq+HId7QTJw4MXaFLLz97W8P119/fbT17agDoklhcJvKNzU5ZKn0yD1LpUfuWSo9cs9S6ZF7lkqP3LNUeuSQpdIj9yyVHrlnqfTIPUulR06ZHXXxs1R65JCl0iP3zI46ymzdddeNur4ddf9kR11x3wDbUZf2HzTsqAMAAACasaMuXpZKjxyyVHrknrX6vB6GeK1buHBh2GabbWLXyMInPvGJcPLJJ0dbf1S0lQEAAAAAABi0q666KnaFbNx+++1R13f0JRBNCjssU/nbRzlkqfTIPUulR+5ZKj1yz1LpkXuWSo/cs1R65JCl0iP3LJUeuWep9Mg9S6VHTpmjL+NnqfTIIUulR+6Zoy+H39ixY2NXyMZHP/rRqOvbUQcAAAAAAFASL7/8cvj+978fu0Y2Tj311KjrG9QBAAAAAACUxBtvvBHefPPN2DUoiEEdAAAAAABASay00kph5syZsWtQkEq9Xq/HLpGCjo6OhtdTOyM8hWwg55j3JYV3kpUla+c588Op2dd8uLsAAAAA/Wv0Z/lUfl6Se5ZKjxyyVHrknrX6vB7eXzc0EydOjF2h9A4//PCw7bbbRu0wJurqZKm/YRwjS7MXUAMAAAAAQCwnnXSSQR35aTaYqdVqw1uG6FLfRZlKjxyyVHrknqXSI/cslR65Z6n0yD1LpUfuWSo9cshS6ZF7lkqP3LNUeuSepdIjp6zZz3aa/WVcWXFZKj1yyFLpkXvW6vMgBQsXLgyjR4+Otr531AEAAAAAAJTII488ErtCNo488sio69tRB7SVHZYAAAAAAMX605/+FLtCNv785z9HXd+gDkaYZkdRVqvVYV0PAAAAAIDBmzdvXuwK2TjttNOirm9QByNMfzvc2nHmPQAAAAAAxVl//fVjV8jGnDlzwlprrRVtfYM6GKS+Bl05HOPYbIgXQmsvhc3h9wUAAAAAICVve9vbYlfIxj333BM6OjqirW9QR+FyP+owlX+/oQzVAAAAAAAor9mzZ8eukI05c+ZEXd+gjsL1d7QixWj1mMp2vIcOAAAAAIDhs8Yaa8SukI277ror6voGdTDCNBvwGeIBAAAAAKRvueWWi10hGzfccEPU9Q3qKFwqR0PSWH87HlvZpddfBgAAAABAMebNmxf233//2DWycckll4S999472voGdRTO0ZflNZT33vmaAwAAAABQNiuvvHLU9Sv1er0etUEiOjo6Gl4f6k6iHLOhvAOtXTu2cszatdZwH2/pqE0AAAAol0Z/lk/l5yW5Z6n0yCFLpUfuWavP69FsYwDN7b///uGhhx6KXSMLP//5z8Mqq6wSbX2DugFodbhU9iFEz06o4RrUpfR5DI8UBrepfFOTQ5ZKj9yzVHrknqXSI/cslR65Z6n0yD1LpUcOWSo9cs9S6ZF7lkqP3LNUeuSU+ZkJQPrmzZsXdtppp9g1srDJJpuE0047Ldr6jr4EAAAAAACI4N577w0HHXRQ7Bql1fN7V6lUFv1nz68Xv75w4cLw29/+NvzlL38J8+fPX5R/7GMfC8ccc8wwNu7NoA4AAAAAACACQ7qh2WWXXQZ8784779zGJq0bFbsAAAAAAADASLTDDjvErkBkdtQBAAAAAABEcMghh4RDDjkkdo3SOeyww8K8efNi1yiEQR0AAAAAAEAEl112WTj//PNj1yAiR18CAAAAAABEYEiHQR0AAAAAAABEYFAHAAAAAAAAEVTq9Xo9donU1Wq10NnZ2et6V1dXCCH0mVWr1bZ3a6darRZC6P3vN5R/72a/lyl9HgAAAMBI1ejnKf39PEhWTJZKjxyyVHrknrX6vB7d3d19ZiPFxIkTY1cotZkzZ8auMGQGdQNgUGdQR3u0+n9bRWapfFOTQ5ZKj9yzVHrknqXSI/cslR65Z6n0yD1LpUcOWSo9cs9S6ZF7lkqP3LNUeuSU+ZkJwPDZeeedw4svvhi7RmnlMKhz9CUAAAAAAEAExx57bOwKLatUKkv8ur9/Ro0aVcg/o0ePDiGEsOyyy8b6Vy/UmNgFAAAAAAAARqJqtZrFrrDhdthhh4V58+bFrlEIgzoAAAAAAIAIrrvuunDaaafFrkFEjr4EAAAAAACIwJAOgzoAAAAAAIAINthgg9gViMygDgAAAAAAIIKNN944dgUiM6gDAAAAAACI4PLLL49dgcgM6gAAAAAAACI4+uijY1cgMoM6AAAAAACACGbMmBG7ApGNiV0AAAAAAABgJDriiCN6Devq9Xq/n9fonp5rlUplwM8Z6LPbdc9ANHrORRddFFZfffVCnh+bQR0AAAAAAEAEo0ePDiuttFKv6z3DthB6D+BauWfxYdfS97RqoM8ZyH2D7bTyyiuHt73tbYP6nFQZ1AEAAAAAAERwzDHHhDvvvDN2jVJ65plnYlcohHfUAQAAAAAARDBv3rzYFYjMoA4AAAAAACCCarUauwKRGdQBAAAAAABE8PDDD8euQGQGdQAAAAAAABFsuOGGsSsQmUEdAAAAAABABHbUYVAHAAAAAAAQwR133BG7ApEZ1AEAAAAAAESw5pprxq5AZAZ1AAAAAAAAEay77rqxKxCZQR0AAAAAAEAE66yzTuwKRGZQBwAAAAAAEMGyyy4buwKRGdQBAAAAAABEcN9998WuQGRjYhcAAAAAAAAYiXbcccfwX//1X03vqdfrIYQQKpVKn9nSFr+3r3tSt3Tvxf+dXn755bDiiisOd6W2MKgDAAAAAACIYL311gsnnXRS7BrDolKp9Dk0XPx6z68b3dtz7bzzzivtAHJpBnUAAAAAAAAR7L777uHpp5+OXYOIvKMOAAAAAAAgAkM6DOoAAAAAAAAgAoM6AAAAAACACLbccsvYFYjMoA4AAAAAACCCzTffPHYFIhsTuwAAAAAAAMBINGnSpDBp0qTYNUrnsMMOC/PmzYtdoxAGdQAAAAD/v737j/Wqrv8A/rwBeg35UcFkYpArx8xIlOQizRiWI6+xnA2rJYpKNTcYP3SaOmrDfszphK25FTYi0ekq3OiiYab3FrOrTONGtekkmlQGohgpWvdi9/tH43693Xvhcn9wDofHY2Pjnuf7nPs8d7vb3Xntc94AAAX47ne/m4ceeqjoGhSopr29vb3oEmXX0tKSJUuWdDm+atWqJOkxmzJlyqB3G0wtLS1Jut5ff+77UD/LMp0HAAAAcLzq7nnK4Z4HyQYmK0uPKmRl6VH1rK/XO6ipqanH7Hgxd+7cvPLKK0XXOGY1NjYWXaHfDOp6waDOoI7B0dffrYHMyvJHTRWysvSoelaWHlXPytKj6llZelQ9K0uPqmdl6VGFrCw9qp6VpUfVs7L0qHpWlh5VyjwzATh6Zs2aVXSFY1oVBnVefQkAAAAAANBPt956a3bu3Jl169Zl3rx52bJlS5c1dXV1uffeezu+3rhxYx5//PGjWfOY8b+fM6upqen4//33359Ro0Yd7UqDwqAOAAAAAACgH5qbm/PTn/4006ZNS/Lfvefa2to68u3bt2fBggWZP39+p/N+9rOfZfXq1UezamW8/PLLRVcYEAZ1AAAAAAAAffTmm29m+fLlOffcczuOjR49uuP/7e3tue6663LppZfmwgsv7HTuyJEjj1pPysmgDgAAAAAAoI9WrlyZadOmZezYsfntb3/bJX/44YezY8eOfO973+t0vLm5OS+88ELGjh2bk046qdOrHQ/nf18L2Zs1NTU1vTqvL9fp7fc6eOzgvfalT5K89NJLqa2t7dO5ZWNQBwAAAAAA0Adbt27Npk2bsnHjxqxZs6bbNd///vfzxS9+MWPGjOl0/Lbbbstbb711NGpW0r/+9a+iKwyIdxVdAAAAAAAA4FjT2tqaW2+9NbfccktGjRrV7ZpnnnkmO3bsyLx587pkhnQkBnUAAAAAAABH7O67787EiRNz8cUX97jm5z//eaZPn55x48YdxWYcS7z6EgAAAAAA4Ag1NDRkz549Oeecc5IkbW1tefvtt3POOedk69atvB7YugAAC39JREFUSZJf//rXufbaa4usSckZ1AEAAAAAAByhdevW5cCBAx1fr127Nn/4wx9y5513Jkn27t2bnTt35rzzzuv2/Nra2srss0bfGdQBAAAAAAAcofHjx3f6euTIkamtrc3EiROTJC+88EKGDRuW008/vdvzv/71r2f79u350Ic+lGnTpmXIkCGD3rkqvva1r2Xfvn1F1xgQBnUAAAAAAAAD7NVXX83JJ5+cd73rXd3m559/fs4///yj3IqyMagDAAAAAADop6VLl3b6ur6+PvX19Yc85/Of/3xefvnlwaxFyXU/xgUAAAAAAGBQjRgxougKFMwn6gAAAAAAAArwgx/8oOgKxyR71AEAAAAAANAvra2taWlpOeLz2tvbezxWU1Nz2DUH13W3pq/ff7DWdOfPf/5zRo4c2adzy8agDgAAAAAAoABf+tKX8sorrxRd45hUlb397FEHAAAAAABQAEM6DOoAAAAAAAAK8OlPf7roChTMqy8BAAAAAAAKcOONN+b666/vdGww93b73/MOt4/d0b5Ob6+9YsWKvPnmm4e9/rHAoA4AAAAAAKAAv//977N06dJOxwZzUEf5GNQBAAAAAAAUYPHixUVXoGD2qAMAAAAAAIACGNQBAAAAAABAAQzqAAAAAAAAoAAGdQAAAAAAAFCAmvb29vaiS5RdS0tLlixZ0uX4qlWrkqTHbMqUKYPebTC1tLQk6Xp//bnvQ/0sy3QeAAAAwPGqu+cph3seJBuYrCw9qpCVpUfVs75e76CmpqYes+PFrFmziq5wTGtsbCy6Qr8Z1PWCQZ1BHYOjr79bA5mV5Y+aKmRl6VH1rCw9qp6VpUfVs7L0qHpWlh5Vz8rSowpZWXpUPStLj6pnZelR9awsPaqUeWYCcPQY1PVPFQZ1Xn0JAAAAAAAABTCoAwAAAAAAKMCCBQuKrkDBDOoAAAAAAAAK0NbWVnQFCmZQBwAAAAAAUIAf/ehHRVegYDXt7e3tRZcou5aWluNy492WlpYkR75J86Hu+1A/yzKdBwAAAHC86u55yuGeB8kGJitLjypkZelR9ayv1zuoqampx+x4MWvWrKIrHNMaGxuLrtBvBnW9YFBnUMfg6Ovv1kBmZfmjpgpZWXpUPStLj6pnZelR9awsPaqelaVH1bOy9KhCVpYeVc/K0qPqWVl6VD0rS48qZZ6ZABw9y5Yty9atW4uuccyqwqDOqy8BAAAAAAAKYEiHQR0AAAAAAAAUwKAOAAAAAACgANOnTy+6AgUzqAMAAAAAACjAaaedVnQFCnbEg7rdu3dn6tSpWbt27SHX7d+/PzNnzsztt9/ebd7W1pYf/vCHmTNnTs4+++zMnDkzt912W1577bVu1z/77LO58sor87GPfSx1dXVZvHhx/vKXv3RZ99Zbb+XMM8/MpEmTuv334osvHuktAwAAAAAADLhzzz236AoUrKa9vb29t4v379+fq6++Or/73e9y8803Z/78+d2uO3DgQBYuXJjGxsZcc801uemmm7qsWbp0aR555JFMnjw55513Xnbu3JnHH388p512Wn7yk5/kPe95T8fa5ubmfPnLX87o0aNzySWX5J///GcaGhoyYsSIrF+/PqeeemrH2m3btmXu3Ln5xCc+kY9+9KNdvu+8efMyevTo3t5ykqSlpSVLlizpcnzVqlVJ0mM2ZcqUI/o+ZdPS0pKk6/31574P9bMs03kAAAAAx6vunqcc7nmQbGCysvSoQlaWHlXP+nq9g5qamnrMjhfz58/3AaN+aGxsLLpCvw3t7cK//e1vWbRoUf74xz8ect3evXuzbNmyNDc397jmV7/6VR555JHU19fnrrvuSk1NTZLk/vvvz4oVK7JmzZpcf/31SZL//Oc/+cY3vpHhw4dn/fr1OeWUU5Ik9fX1WbBgQe64446sXLmy49rPP/98kuSKK67IzJkze3t7QAH6OgQfyKwsf9RUIStLj6pnZelR9awsPaqelaVH1bOy9Kh6VpYeVcjK0qPqWVl6VD0rS4+qZ2XpUaVsypQpPT48P9RDddnAZWXpUYWsLD2qnvX1esSQjt69+nLt2rWZM2dOnnvuuUNubLhhw4bU19enubk5H//4x3tct3379owZMyZf+cpXOoZ0SXLJJZck+f9PciXJ5s2b8+KLL2bu3LkdQ7okueCCCzJ9+vQ89thj2bdvX8fxg4O6SZMm9ebWAAAAAAAAoBC9GtTde++9GT9+fO6777589rOf7XHdgw8+mHe/+91ZvXp1FixY0OO6a6+9Nk8++WTOPPPMTsd37NiRJHnf+97XceyZZ55JktTV1XW5Tl1dXdra2rJ169aOY88//3xGjRqVcePG9ebWAAAAAAAAoBC92qNu8+bNmTFjRoYMGZKHHnooN998c7d71DU3N2fq1Kk54YQT8pvf/CZXX311j3vUvdMbb7yRp59+Ot/61reyZ8+e3HfffTn77LOTJIsXL86mTZvyi1/8IhMnTux03oYNG3LjjTd26lJXV5dTTjklM2fOzKZNm7Jr165MmDAhX/jCF3LFFVd0+gRfb9mj7sheKVGmvebsUQcAAABwZOxRV1xWlh5VyMrSo+pZX693kNdiJrNmzSq6wjGtCnvU9WpQ906HGtS9U28HdZs3b+749N3QoUOzatWqXHTRRR35VVddlaeeeirNzc1573vf2+ncJ554Itddd10WLlyYRYsWZdeuXR370k2YMCEXXnhh9u/fn6ampuzZsyef+9zn8u1vf/tIbhcAAAAAAAAGxdCiC5x44om56qqr8vrrr+fRRx/N0qVL881vfjOXXnppkuTAgQNJkhNOOKHLuQeP/fvf/06SvPrqqznjjDNyxhln5Pbbb+/I9+3bl/nz52f9+vWZPXt2xzAPAAAAAAAAitKrPeoG07Rp03LLLbfkO9/5TjZs2JDhw4dn+fLl2b17d5KktrY2SdLW1tbl3NbW1iTJSSedlCQ566yzsnHjxqxcubLTYG/UqFG54YYbkiQbN24c1PsBAAAAAACA3ih8UPdO73//+zNv3ry0trbmySefTJKMHDkyyX/3sftfr7/+epJkxIgRh732hz/84STJX//614GqCwAAAAAAAH1WyKBu27Ztefjhh7vNTj311CTJa6+9liT5wAc+kKT7AdvBY6effnqS5O9//3uefvrpjnPf6eDrMU888cT+lQcAAAAAAIABUMig7o477siyZcvypz/9qUv23HPPJUkmTJiQJJk6dWqSZMuWLV3WbtmyJUOGDMnkyZOTJA888ECuvPLKNDQ0dFn77LPPJkk+8pGPDMxNAAAAAAAAQD8UMqi7+OKLkyR33nln3n777Y7j27Zty4MPPpixY8fmggsuSJLU1dVl3LhxeeCBB/LSSy91rN28eXOeeuqpzJ49O6NHj06SzJ49O0myZs2a7N27t2Pt7t27s3LlygwbNiyXX375oN8fAAAAAAAAHM7QIr7p5ZdfnkcffTRPPPFELrvsssyYMSO7du3KY489lmHDhuWuu+5KbW1tkmTYsGFZvnx5Fi1alMsuuyxz5szJG2+8kYaGhowZMyY33HBDx3XPOuusXHPNNVmzZk0+85nPZPbs2Wltbc0vf/nL/OMf/8iKFSs6PqkHAAAAAAAARSpkUDd06NDcc889Wb16dRoaGrJu3bqcfPLJueiii7Jw4cJ88IMf7LT+U5/6VO65557cfffd+fGPf5zhw4fnk5/8ZJYtW5bx48d3WnvTTTdl0qRJWbduXdavX5+hQ4dm8uTJ+epXv5oZM2YczdsEAAAAAACAHtW0t7e3F10CAAAAAAAAjjeF7FEHAAAAAAAAxzuDOgAAAAAAACiAQR0AAAAAAAAUwKAOAAAAAAAACmBQBwAAAAAAAAUwqAMAAAAAAIACGNQBAAAAAABAAQzqAAAAAAAAoAAGdQAAAAAAAFCA/wPki89xRJLuUQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot visualisation of the missing values for each feature of the raw DataFrame, df_fbref_tm\n", "msno.matrix(df_fbref_tm, figsize = (30, 7))" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tm_id 2605\n", "player_name 2605\n", "age 2605\n", "age_tm 2605\n", "age_when_joining 2605\n", " ... \n", "crosses_stopped_gk 10536\n", "crosses_stopped_pct_gk 10536\n", "def_actions_outside_pen_area_gk 10536\n", "def_actions_outside_pen_area_per90_gk 10536\n", "avg_distance_def_actions_gk 10536\n", "Length: 213, dtype: int64" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Counts of missing values\n", "tm_bio_null_value_stats = df_fbref_tm.isnull().sum(axis=0)\n", "tm_bio_null_value_stats[tm_bio_null_value_stats != 0]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The visualisation shows us very quickly that there a few missing values in most of the columns, but the dataset is ready for us." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 4. Data Engineering\n", "Before we answer the questions in the brief through [Exploratory Data Analysis (EDA)](#section5), we'll first need to clean and wrangle the datasets to a form that meet our needs." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 4.2. Select Columns of Interest" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [], "source": [ "# Select columns of interest\n", "cols = ['player',\n", " 'Season',\n", " 'age',\n", " 'age_tm',\n", " 'age_when_joining',\n", " 'dob',\n", " 'cob',\n", " 'nationality',\n", " 'club',\n", " 'position_code',\n", " 'position_fbref',\n", " 'position_TM',\n", " 'position_grouped',\n", " 'outfielder_goalkeeper',\n", " 'market_value_euros',\n", " 'market_value_pounds',\n", " 'joined',\n", " 'years_since_joining',\n", " 'contract_expires',\n", " 'years_until_contract_expiry',\n", " 'contract_option',\n", " 'on_loan_from',\n", " 'on_loan_from_country',\n", " 'loan_contract_expiry',\n", " 'games',\n", " 'games_starts',\n", " 'minutes',\n", " 'goals',\n", " 'assists']\n", "\n", "df_fbref_tm_select = df_fbref_tm[cols]" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
playerSeasonageage_tmage_when_joiningdobcobnationalityclubposition_codeposition_fbrefposition_TMposition_groupedoutfielder_goalkeepermarket_value_eurosmarket_value_poundsjoinedyears_since_joiningcontract_expiresyears_until_contract_expirycontract_optionon_loan_fromon_loan_from_countryloan_contract_expirygamesgames_startsminutesgoalsassists
0Kylian Mbappé17/1818.022.019.01998-12-20FranceFranceParis S-GSTFWattack - Centre-ForwardForwardOutfielder180000000.0160200000.02018-07-012.02022-06-301.0NaNNaNNaNNaN27.024.02095.013.09.0
1Kylian Mbappé17/1818.022.019.01998-12-20FranceFranceMonacoSTFW,MFattack - Centre-ForwardForwardOutfielder180000000.0160200000.02018-07-012.02022-06-301.0NaNNaNNaNNaN1.01.074.00.00.0
2Kylian Mbappé18/1919.022.019.01998-12-20FranceFranceParis S-GSTFWattack - Centre-ForwardForwardOutfielder180000000.0160200000.02018-07-012.02022-06-301.0NaNNaNNaNNaN29.024.02343.033.07.0
3Kylian Mbappé19/2020.022.019.01998-12-20FranceFranceParis S-GSTFWattack - Centre-ForwardForwardOutfielder180000000.0160200000.02018-07-012.02022-06-301.0NaNNaNNaNNaN20.017.01513.018.05.0
4Kylian Mbappé20/2122.022.019.01998-12-20FranceFranceParis S-GSTFW,MFattack - Centre-ForwardForwardOutfielder180000000.0160200000.02018-07-012.02022-06-301.0NaNNaNNaNNaN13.09.0815.012.04.0
\n", "
" ], "text/plain": [ " player Season age age_tm age_when_joining dob cob \\\n", "0 Kylian Mbappé 17/18 18.0 22.0 19.0 1998-12-20 France \n", "1 Kylian Mbappé 17/18 18.0 22.0 19.0 1998-12-20 France \n", "2 Kylian Mbappé 18/19 19.0 22.0 19.0 1998-12-20 France \n", "3 Kylian Mbappé 19/20 20.0 22.0 19.0 1998-12-20 France \n", "4 Kylian Mbappé 20/21 22.0 22.0 19.0 1998-12-20 France \n", "\n", " nationality club position_code position_fbref \\\n", "0 France Paris S-G ST FW \n", "1 France Monaco ST FW,MF \n", "2 France Paris S-G ST FW \n", "3 France Paris S-G ST FW \n", "4 France Paris S-G ST FW,MF \n", "\n", " position_TM position_grouped outfielder_goalkeeper \\\n", "0 attack - Centre-Forward Forward Outfielder \n", "1 attack - Centre-Forward Forward Outfielder \n", "2 attack - Centre-Forward Forward Outfielder \n", "3 attack - Centre-Forward Forward Outfielder \n", "4 attack - Centre-Forward Forward Outfielder \n", "\n", " market_value_euros market_value_pounds joined years_since_joining \\\n", "0 180000000.0 160200000.0 2018-07-01 2.0 \n", "1 180000000.0 160200000.0 2018-07-01 2.0 \n", "2 180000000.0 160200000.0 2018-07-01 2.0 \n", "3 180000000.0 160200000.0 2018-07-01 2.0 \n", "4 180000000.0 160200000.0 2018-07-01 2.0 \n", "\n", " contract_expires years_until_contract_expiry contract_option on_loan_from \\\n", "0 2022-06-30 1.0 NaN NaN \n", "1 2022-06-30 1.0 NaN NaN \n", "2 2022-06-30 1.0 NaN NaN \n", "3 2022-06-30 1.0 NaN NaN \n", "4 2022-06-30 1.0 NaN NaN \n", "\n", " on_loan_from_country loan_contract_expiry games games_starts minutes \\\n", "0 NaN NaN 27.0 24.0 2095.0 \n", "1 NaN NaN 1.0 1.0 74.0 \n", "2 NaN NaN 29.0 24.0 2343.0 \n", "3 NaN NaN 20.0 17.0 1513.0 \n", "4 NaN NaN 13.0 9.0 815.0 \n", "\n", " goals assists \n", "0 13.0 9.0 \n", "1 0.0 0.0 \n", "2 33.0 7.0 \n", "3 18.0 5.0 \n", "4 12.0 4.0 " ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_fbref_tm_select.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 4.3. Pivot Dates" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [], "source": [ "df_fbref_tm_melt = df_fbref_tm_select.melt(id_vars=['player',\n", " 'Season',\n", " 'age',\n", " 'dob',\n", " 'cob',\n", " 'nationality',\n", " 'club',\n", " 'position_code',\n", " 'position_fbref',\n", " 'position_TM',\n", " 'position_grouped',\n", " 'outfielder_goalkeeper',\n", " 'market_value_euros',\n", " 'market_value_pounds',\n", " 'joined',\n", " 'years_since_joining',\n", " 'contract_expires',\n", " 'years_until_contract_expiry',\n", " 'contract_option',\n", " 'on_loan_from',\n", " 'on_loan_from_country',\n", " 'loan_contract_expiry',\n", " 'games',\n", " 'games_starts',\n", " 'minutes',\n", " 'goals',\n", " 'assists'],\n", " var_name='age_type', \n", " value_name='age')\n", "\n", "df_fbref_tm_melt = df_fbref_tm_melt.sort_values(['market_value_pounds', 'player', 'Season', 'club'], ascending=[False, True, True, True])" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
playerSeasonagedobcobnationalityclubposition_codeposition_fbrefposition_TMposition_groupedoutfielder_goalkeepermarket_value_eurosmarket_value_poundsjoinedyears_since_joiningcontract_expiresyears_until_contract_expirycontract_optionon_loan_fromon_loan_from_countryloan_contract_expirygamesgames_startsminutesgoalsassistsage_typeage
1Kylian Mbappé17/1822.01998-12-20FranceFranceMonacoSTFW,MFattack - Centre-ForwardForwardOutfielder180000000.0160200000.02018-07-012.02022-06-301.0NaNNaNNaNNaN1.01.074.00.00.0age_tm22.0
11306Kylian Mbappé17/1819.01998-12-20FranceFranceMonacoSTFW,MFattack - Centre-ForwardForwardOutfielder180000000.0160200000.02018-07-012.02022-06-301.0NaNNaNNaNNaN1.01.074.00.00.0age_when_joining19.0
0Kylian Mbappé17/1822.01998-12-20FranceFranceParis S-GSTFWattack - Centre-ForwardForwardOutfielder180000000.0160200000.02018-07-012.02022-06-301.0NaNNaNNaNNaN27.024.02095.013.09.0age_tm22.0
11305Kylian Mbappé17/1819.01998-12-20FranceFranceParis S-GSTFWattack - Centre-ForwardForwardOutfielder180000000.0160200000.02018-07-012.02022-06-301.0NaNNaNNaNNaN27.024.02095.013.09.0age_when_joining19.0
2Kylian Mbappé18/1922.01998-12-20FranceFranceParis S-GSTFWattack - Centre-ForwardForwardOutfielder180000000.0160200000.02018-07-012.02022-06-301.0NaNNaNNaNNaN29.024.02343.033.07.0age_tm22.0
11307Kylian Mbappé18/1919.01998-12-20FranceFranceParis S-GSTFWattack - Centre-ForwardForwardOutfielder180000000.0160200000.02018-07-012.02022-06-301.0NaNNaNNaNNaN29.024.02343.033.07.0age_when_joining19.0
3Kylian Mbappé19/2022.01998-12-20FranceFranceParis S-GSTFWattack - Centre-ForwardForwardOutfielder180000000.0160200000.02018-07-012.02022-06-301.0NaNNaNNaNNaN20.017.01513.018.05.0age_tm22.0
11308Kylian Mbappé19/2019.01998-12-20FranceFranceParis S-GSTFWattack - Centre-ForwardForwardOutfielder180000000.0160200000.02018-07-012.02022-06-301.0NaNNaNNaNNaN20.017.01513.018.05.0age_when_joining19.0
4Kylian Mbappé20/2122.01998-12-20FranceFranceParis S-GSTFW,MFattack - Centre-ForwardForwardOutfielder180000000.0160200000.02018-07-012.02022-06-301.0NaNNaNNaNNaN13.09.0815.012.04.0age_tm22.0
11309Kylian Mbappé20/2119.01998-12-20FranceFranceParis S-GSTFW,MFattack - Centre-ForwardForwardOutfielder180000000.0160200000.02018-07-012.02022-06-301.0NaNNaNNaNNaN13.09.0815.012.04.0age_when_joining19.0
5Neymar17/1828.01992-02-05BrazilBrazilParis S-GLWFW,MFattack - Left WingerForwardOutfielder128000000.0113920000.02017-08-033.02022-06-301.0NaNNaNNaNNaN20.020.01797.019.013.0age_tm28.0
11310Neymar17/1825.01992-02-05BrazilBrazilParis S-GLWFW,MFattack - Left WingerForwardOutfielder128000000.0113920000.02017-08-033.02022-06-301.0NaNNaNNaNNaN20.020.01797.019.013.0age_when_joining25.0
6Neymar18/1928.01992-02-05BrazilBrazilParis S-GLWMF,FWattack - Left WingerMidfielderOutfielder128000000.0113920000.02017-08-033.02022-06-301.0NaNNaNNaNNaN17.016.01439.015.07.0age_tm28.0
11311Neymar18/1925.01992-02-05BrazilBrazilParis S-GLWMF,FWattack - Left WingerMidfielderOutfielder128000000.0113920000.02017-08-033.02022-06-301.0NaNNaNNaNNaN17.016.01439.015.07.0age_when_joining25.0
7Neymar19/2028.01992-02-05BrazilBrazilParis S-GLWMF,FWattack - Left WingerMidfielderOutfielder128000000.0113920000.02017-08-033.02022-06-301.0NaNNaNNaNNaN15.015.01318.013.06.0age_tm28.0
\n", "
" ], "text/plain": [ " player Season age dob cob nationality club \\\n", "1 Kylian Mbappé 17/18 22.0 1998-12-20 France France Monaco \n", "11306 Kylian Mbappé 17/18 19.0 1998-12-20 France France Monaco \n", "0 Kylian Mbappé 17/18 22.0 1998-12-20 France France Paris S-G \n", "11305 Kylian Mbappé 17/18 19.0 1998-12-20 France France Paris S-G \n", "2 Kylian Mbappé 18/19 22.0 1998-12-20 France France Paris S-G \n", "11307 Kylian Mbappé 18/19 19.0 1998-12-20 France France Paris S-G \n", "3 Kylian Mbappé 19/20 22.0 1998-12-20 France France Paris S-G \n", "11308 Kylian Mbappé 19/20 19.0 1998-12-20 France France Paris S-G \n", "4 Kylian Mbappé 20/21 22.0 1998-12-20 France France Paris S-G \n", "11309 Kylian Mbappé 20/21 19.0 1998-12-20 France France Paris S-G \n", "5 Neymar 17/18 28.0 1992-02-05 Brazil Brazil Paris S-G \n", "11310 Neymar 17/18 25.0 1992-02-05 Brazil Brazil Paris S-G \n", "6 Neymar 18/19 28.0 1992-02-05 Brazil Brazil Paris S-G \n", "11311 Neymar 18/19 25.0 1992-02-05 Brazil Brazil Paris S-G \n", "7 Neymar 19/20 28.0 1992-02-05 Brazil Brazil Paris S-G \n", "\n", " position_code position_fbref position_TM position_grouped \\\n", "1 ST FW,MF attack - Centre-Forward Forward \n", "11306 ST FW,MF attack - Centre-Forward Forward \n", "0 ST FW attack - Centre-Forward Forward \n", "11305 ST FW attack - Centre-Forward Forward \n", "2 ST FW attack - Centre-Forward Forward \n", "11307 ST FW attack - Centre-Forward Forward \n", "3 ST FW attack - Centre-Forward Forward \n", "11308 ST FW attack - Centre-Forward Forward \n", "4 ST FW,MF attack - Centre-Forward Forward \n", "11309 ST FW,MF attack - Centre-Forward Forward \n", "5 LW FW,MF attack - Left Winger Forward \n", "11310 LW FW,MF attack - Left Winger Forward \n", "6 LW MF,FW attack - Left Winger Midfielder \n", "11311 LW MF,FW attack - Left Winger Midfielder \n", "7 LW MF,FW attack - Left Winger Midfielder \n", "\n", " outfielder_goalkeeper market_value_euros market_value_pounds \\\n", "1 Outfielder 180000000.0 160200000.0 \n", "11306 Outfielder 180000000.0 160200000.0 \n", "0 Outfielder 180000000.0 160200000.0 \n", "11305 Outfielder 180000000.0 160200000.0 \n", "2 Outfielder 180000000.0 160200000.0 \n", "11307 Outfielder 180000000.0 160200000.0 \n", "3 Outfielder 180000000.0 160200000.0 \n", "11308 Outfielder 180000000.0 160200000.0 \n", "4 Outfielder 180000000.0 160200000.0 \n", "11309 Outfielder 180000000.0 160200000.0 \n", "5 Outfielder 128000000.0 113920000.0 \n", "11310 Outfielder 128000000.0 113920000.0 \n", "6 Outfielder 128000000.0 113920000.0 \n", "11311 Outfielder 128000000.0 113920000.0 \n", "7 Outfielder 128000000.0 113920000.0 \n", "\n", " joined years_since_joining contract_expires \\\n", "1 2018-07-01 2.0 2022-06-30 \n", "11306 2018-07-01 2.0 2022-06-30 \n", "0 2018-07-01 2.0 2022-06-30 \n", "11305 2018-07-01 2.0 2022-06-30 \n", "2 2018-07-01 2.0 2022-06-30 \n", "11307 2018-07-01 2.0 2022-06-30 \n", "3 2018-07-01 2.0 2022-06-30 \n", "11308 2018-07-01 2.0 2022-06-30 \n", "4 2018-07-01 2.0 2022-06-30 \n", "11309 2018-07-01 2.0 2022-06-30 \n", "5 2017-08-03 3.0 2022-06-30 \n", "11310 2017-08-03 3.0 2022-06-30 \n", "6 2017-08-03 3.0 2022-06-30 \n", "11311 2017-08-03 3.0 2022-06-30 \n", "7 2017-08-03 3.0 2022-06-30 \n", "\n", " years_until_contract_expiry contract_option on_loan_from \\\n", "1 1.0 NaN NaN \n", "11306 1.0 NaN NaN \n", "0 1.0 NaN NaN \n", "11305 1.0 NaN NaN \n", "2 1.0 NaN NaN \n", "11307 1.0 NaN NaN \n", "3 1.0 NaN NaN \n", "11308 1.0 NaN NaN \n", "4 1.0 NaN NaN \n", "11309 1.0 NaN NaN \n", "5 1.0 NaN NaN \n", "11310 1.0 NaN NaN \n", "6 1.0 NaN NaN \n", "11311 1.0 NaN NaN \n", "7 1.0 NaN NaN \n", "\n", " on_loan_from_country loan_contract_expiry games games_starts minutes \\\n", "1 NaN NaN 1.0 1.0 74.0 \n", "11306 NaN NaN 1.0 1.0 74.0 \n", "0 NaN NaN 27.0 24.0 2095.0 \n", "11305 NaN NaN 27.0 24.0 2095.0 \n", "2 NaN NaN 29.0 24.0 2343.0 \n", "11307 NaN NaN 29.0 24.0 2343.0 \n", "3 NaN NaN 20.0 17.0 1513.0 \n", "11308 NaN NaN 20.0 17.0 1513.0 \n", "4 NaN NaN 13.0 9.0 815.0 \n", "11309 NaN NaN 13.0 9.0 815.0 \n", "5 NaN NaN 20.0 20.0 1797.0 \n", "11310 NaN NaN 20.0 20.0 1797.0 \n", "6 NaN NaN 17.0 16.0 1439.0 \n", "11311 NaN NaN 17.0 16.0 1439.0 \n", "7 NaN NaN 15.0 15.0 1318.0 \n", "\n", " goals assists age_type age \n", "1 0.0 0.0 age_tm 22.0 \n", "11306 0.0 0.0 age_when_joining 19.0 \n", "0 13.0 9.0 age_tm 22.0 \n", "11305 13.0 9.0 age_when_joining 19.0 \n", "2 33.0 7.0 age_tm 22.0 \n", "11307 33.0 7.0 age_when_joining 19.0 \n", "3 18.0 5.0 age_tm 22.0 \n", "11308 18.0 5.0 age_when_joining 19.0 \n", "4 12.0 4.0 age_tm 22.0 \n", "11309 12.0 4.0 age_when_joining 19.0 \n", "5 19.0 13.0 age_tm 28.0 \n", "11310 19.0 13.0 age_when_joining 25.0 \n", "6 15.0 7.0 age_tm 28.0 \n", "11311 15.0 7.0 age_when_joining 25.0 \n", "7 13.0 6.0 age_tm 28.0 " ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_fbref_tm_melt.head(15)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 4.4. Exporting the Engineered DataFrames" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [], "source": [ "# Export DataFrame as a CSV file\n", "\n", "## Export a copy to the 'archive' subfolder of the TM folder, including the date\n", "df_fbref_tm_melt.to_csv(data_dir_fbref_tm + f'/archive/fbref_tm_big5_age_profile_last_updated_{today}.csv', index=None, header=True)\n", "\n", "## Export another copy to the TM folder called 'latest' (can be overwritten)\n", "df_fbref_tm_melt.to_csv(data_dir_fbref_tm + '/fbref_tm_big5_age_profile_latest.csv', index=None, header=True)\n", "\n", "## Export a copy to the Export folder (can be overwritten)\n", "df_fbref_tm_melt.to_csv(data_dir + '/export/fbref_tm_big5_age_profile_latest.csv', index=None, header=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we have created three pandas DataFrames and wrangled the data to meet our needs, we'll next conduct and [Exploratory Data Analysis ](#section5)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 5. Exploratory Data Analysis\n", "..." ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
playerSeasonagedobcobnationalityclubposition_codeposition_fbrefposition_TMposition_groupedoutfielder_goalkeepermarket_value_eurosmarket_value_poundsjoinedyears_since_joiningcontract_expiresyears_until_contract_expirycontract_optionon_loan_fromon_loan_from_countryloan_contract_expirygamesgames_startsminutesgoalsassistsage_typeage
25Raheem Sterling17/1826.01994-12-08JamaicaEnglandManchester CityLWFWattack - Left WingerForwardOutfielder110000000.097900000.02015-07-145.02023-06-302.0NaNNaNNaNNaN33.029.02587.018.011.0age_tm26.0
11330Raheem Sterling17/1820.01994-12-08JamaicaEnglandManchester CityLWFWattack - Left WingerForwardOutfielder110000000.097900000.02015-07-145.02023-06-302.0NaNNaNNaNNaN33.029.02587.018.011.0age_when_joining20.0
26Raheem Sterling18/1926.01994-12-08JamaicaEnglandManchester CityLWFWattack - Left WingerForwardOutfielder110000000.097900000.02015-07-145.02023-06-302.0NaNNaNNaNNaN34.031.02771.017.09.0age_tm26.0
11331Raheem Sterling18/1920.01994-12-08JamaicaEnglandManchester CityLWFWattack - Left WingerForwardOutfielder110000000.097900000.02015-07-145.02023-06-302.0NaNNaNNaNNaN34.031.02771.017.09.0age_when_joining20.0
27Raheem Sterling19/2026.01994-12-08JamaicaEnglandManchester CityLWFWattack - Left WingerForwardOutfielder110000000.097900000.02015-07-145.02023-06-302.0NaNNaNNaNNaN33.030.02651.020.01.0age_tm26.0
11332Raheem Sterling19/2020.01994-12-08JamaicaEnglandManchester CityLWFWattack - Left WingerForwardOutfielder110000000.097900000.02015-07-145.02023-06-302.0NaNNaNNaNNaN33.030.02651.020.01.0age_when_joining20.0
28Raheem Sterling20/2126.01994-12-08JamaicaEnglandManchester CityLWFWattack - Left WingerForwardOutfielder110000000.097900000.02015-07-145.02023-06-302.0NaNNaNNaNNaN12.011.0999.04.02.0age_tm26.0
11333Raheem Sterling20/2120.01994-12-08JamaicaEnglandManchester CityLWFWattack - Left WingerForwardOutfielder110000000.097900000.02015-07-145.02023-06-302.0NaNNaNNaNNaN12.011.0999.04.02.0age_when_joining20.0
\n", "
" ], "text/plain": [ " player Season age dob cob nationality \\\n", "25 Raheem Sterling 17/18 26.0 1994-12-08 Jamaica England \n", "11330 Raheem Sterling 17/18 20.0 1994-12-08 Jamaica England \n", "26 Raheem Sterling 18/19 26.0 1994-12-08 Jamaica England \n", "11331 Raheem Sterling 18/19 20.0 1994-12-08 Jamaica England \n", "27 Raheem Sterling 19/20 26.0 1994-12-08 Jamaica England \n", "11332 Raheem Sterling 19/20 20.0 1994-12-08 Jamaica England \n", "28 Raheem Sterling 20/21 26.0 1994-12-08 Jamaica England \n", "11333 Raheem Sterling 20/21 20.0 1994-12-08 Jamaica England \n", "\n", " club position_code position_fbref position_TM \\\n", "25 Manchester City LW FW attack - Left Winger \n", "11330 Manchester City LW FW attack - Left Winger \n", "26 Manchester City LW FW attack - Left Winger \n", "11331 Manchester City LW FW attack - Left Winger \n", "27 Manchester City LW FW attack - Left Winger \n", "11332 Manchester City LW FW attack - Left Winger \n", "28 Manchester City LW FW attack - Left Winger \n", "11333 Manchester City LW FW attack - Left Winger \n", "\n", " position_grouped outfielder_goalkeeper market_value_euros \\\n", "25 Forward Outfielder 110000000.0 \n", "11330 Forward Outfielder 110000000.0 \n", "26 Forward Outfielder 110000000.0 \n", "11331 Forward Outfielder 110000000.0 \n", "27 Forward Outfielder 110000000.0 \n", "11332 Forward Outfielder 110000000.0 \n", "28 Forward Outfielder 110000000.0 \n", "11333 Forward Outfielder 110000000.0 \n", "\n", " market_value_pounds joined years_since_joining contract_expires \\\n", "25 97900000.0 2015-07-14 5.0 2023-06-30 \n", "11330 97900000.0 2015-07-14 5.0 2023-06-30 \n", "26 97900000.0 2015-07-14 5.0 2023-06-30 \n", "11331 97900000.0 2015-07-14 5.0 2023-06-30 \n", "27 97900000.0 2015-07-14 5.0 2023-06-30 \n", "11332 97900000.0 2015-07-14 5.0 2023-06-30 \n", "28 97900000.0 2015-07-14 5.0 2023-06-30 \n", "11333 97900000.0 2015-07-14 5.0 2023-06-30 \n", "\n", " years_until_contract_expiry contract_option on_loan_from \\\n", "25 2.0 NaN NaN \n", "11330 2.0 NaN NaN \n", "26 2.0 NaN NaN \n", "11331 2.0 NaN NaN \n", "27 2.0 NaN NaN \n", "11332 2.0 NaN NaN \n", "28 2.0 NaN NaN \n", "11333 2.0 NaN NaN \n", "\n", " on_loan_from_country loan_contract_expiry games games_starts minutes \\\n", "25 NaN NaN 33.0 29.0 2587.0 \n", "11330 NaN NaN 33.0 29.0 2587.0 \n", "26 NaN NaN 34.0 31.0 2771.0 \n", "11331 NaN NaN 34.0 31.0 2771.0 \n", "27 NaN NaN 33.0 30.0 2651.0 \n", "11332 NaN NaN 33.0 30.0 2651.0 \n", "28 NaN NaN 12.0 11.0 999.0 \n", "11333 NaN NaN 12.0 11.0 999.0 \n", "\n", " goals assists age_type age \n", "25 18.0 11.0 age_tm 26.0 \n", "11330 18.0 11.0 age_when_joining 20.0 \n", "26 17.0 9.0 age_tm 26.0 \n", "11331 17.0 9.0 age_when_joining 20.0 \n", "27 20.0 1.0 age_tm 26.0 \n", "11332 20.0 1.0 age_when_joining 20.0 \n", "28 4.0 2.0 age_tm 26.0 \n", "11333 4.0 2.0 age_when_joining 20.0 " ] }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_fbref_tm_melt[df_fbref_tm_melt['player'] == 'Raheem Sterling']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 6. Summary\n", "This notebook scrapes data for player valuations using [Beautifulsoup](https://pypi.org/project/beautifulsoup4/) from [TransferMarkt](https://www.transfermarkt.co.uk/) using [pandas](http://pandas.pydata.org/) for data maniuplation through DataFrames and [Beautifulsoup](https://pypi.org/project/beautifulsoup4/) for webscraping." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 7. Next Steps\n", "..." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 8. References\n", "\n", "#### Data and Web Scraping\n", "* https://twitter.com/NdyStats/status/1343809317107986438\n", "* [tyrone_mings GitHub repository](https://github.com/FCrSTATS/tyrone_mings) by [FCrSTATS](https://github.com/FCrSTATS)\n", "* [Python Package Index (PyPI) tyrone-mings library](https://pypi.org/project/tyrone-mings/)\n", "* [Beyond crowd judgments: Data-driven estimation of market value in association football](https://www.sciencedirect.com/science/article/pii/S0377221717304332) by Oliver Müllera, Alexander Simons, and Markus Weinmann.\n", "* [06/04/2020: BBC - Premier League squads 'drop £1.6bn in value'](https://www.bbc.co.uk/sport/football/52221463)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "\n", "***Visit my website [EddWebster.com](https://www.eddwebster.com) or my [GitHub Repository](https://github.com/eddwebster) for more projects. If you'd like to get in contact, my Twitter handle is [@eddwebster](http://www.twitter.com/eddwebster) and my email is: edd.j.webster@gmail.com.***" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[Back to the top](#top)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" }, "varInspector": { "cols": { "lenName": 16, "lenType": 16, "lenVar": 40 }, "kernels_config": { "python": { "delete_cmd_postfix": "", "delete_cmd_prefix": "del ", "library": "var_list.py", "varRefreshCmd": "print(var_dic_list())" }, "r": { "delete_cmd_postfix": ") ", "delete_cmd_prefix": "rm(", "library": "var_list.r", "varRefreshCmd": "cat(var_dic_list()) " } }, "oldHeight": 642, "position": { "height": "664px", "left": "1119px", "right": "20px", "top": "-7px", "width": "489px" }, "types_to_exclude": [ "module", "function", "builtin_function_or_method", "instance", "_Feature" ], "varInspector_section_display": "block", "window_display": false } }, "nbformat": 4, "nbformat_minor": 2 }