
Notions and Notations in Type Theory

Eric Demko

January 19, 2021

Abstract

There are a lot of notions in type theory (even excluding dependent type theory
and its descendants), and even more notations. I’m not sure which notions play
well with each other, which can be synthesized, or which are the most ergonomic
notations, so I’m compiling them all. As a side-effect, I’ll also have a compilation of
type-theoretic concepts as a reference guide to the literature, and the LATEX source
will serve as a reference for typesetting.

Most Important Next Steps

1. Nominal types; it might have something to so with [2]§3.4. Alternately, it might
have something to do with “propositional truncation” https://www.youtube.com/
watch?v=bNG53SA4n48.

2. Presenting a Formal System or Programming Language (I hear that elimination,
computation, and identity rules are derivable from formation and introduction [2])
(Ulf Norell’s thesis uses a Γ ` valid judgment, and then just a variable lookup rule
Γ`valid x:A∈Γ

Γ`x:A)

3. Higher Inductive Types

4. Indexed W-types

I’ve chosen to give rules for typing ind f where f is the “body” of the induction
because that’s the form of the actual recursive function we’re interested in. Supplying all
the arguments to the recursive function gives too many premises. Supplying not even the
body function (and any implicit parameters) create too large a type in the conclusion.

Contents

I General and Metatheoretic Notation 4

1 Classes of Formal System 4

1

https://www.youtube.com/watch?v=bNG53SA4n48
https://www.youtube.com/watch?v=bNG53SA4n48

2 Metavariables 4
2.1 Multiple Metavariables . 4
2.2 Metavariable Comprehensions . 4
2.3 Specifying Constraints on Free Variables in the Metavariables 6

3 TODO: Axioms and Proofs 7

4 TODO: Substitution 7

5 Sameness 8
5.1 TODO: Abbreviations . 8

II Type Theory Notation 9

6 TODO: Judgments 9

7 Universes 9
7.1 Cumulative hierarchy . 9
7.2 Type-in-type . 10
7.3 Special universes . 10

8 Fundamental Algebraic Types 10
8.1 Functions . 15
8.2 Dependent Function Types . 17
8.3 Implicit Arguments and Parameters . 18
8.4 Chef’s Choice: Functions . 20
8.5 TODO: Pair types . 21
8.6 TODO: Dependent pair types . 22
8.7 TODO: Tuple types . 22
8.8 TODO: Unit type . 22
8.9 TODO: Record types . 22
8.10 TODO: Choice types . 23
8.11 TODO: n-ary choice types . 23
8.12 TODO: Void type . 23
8.13 TODO: Variant types . 23

9 TODO: Recursion and Induction 23
9.1 TODO: Recursive types . 23
9.2 Inductive Types . 23
9.3 TODO: Coinductive types . 27
9.4 TODO: Mutually Inductive Types . 27

9.4.1 After Peterson and Synek . 27
9.4.2 After Kaposi and Raumer . 28
9.4.3 TODO: Notes on indexed W-types 29

2

9.5 TODO: unsorted inductive type stuff . 30

10 Identity Types 30
10.1 TODO: Higher Inductive Types . 35
10.2 TODO: Heterogeneous Equality . 35
10.3 TODO: Non-trivial Path Spaces . 35

11 TODO: Extensionality 35

12 TODO: Logical Types 37
12.1 TODO: Negation . 37
12.2 TODO: Propositional Truncation . 37

13 TODO: Constraint Types 37

14 TODO: Syntactic Sugar 37

III Case Studies 37

15 TODO: Well-Known Types 37

16 Pure Type Systems 38
16.1 PTSs Subsume the Lambda Cube . 39

17 TODO: Calculus of Inductive Constructions 39

18 TODO: Martin-Löf Type Theory 39

19 TODO: Homotopy Type Theory 39

20 Proofs in the Theory 39

IV Typesetting Tricks 39

V TODO: Unsorted 41

3

Part I

General and Metatheoretic Notation

1 Classes of Formal System

Formal type theories are always formal systems or system for short, so anything can
be described as a “system”. TODO: theory, calculus, machine

TODO: I keep using “type theory” for “dependently-type total functional program-
ming language”

2 Metavariables

Metavariables (metavar for short) are names given to the objects of the theory, and
are therefore meta-theoretic (part of the—usually informal—meta-language). The base
letter chosen for a metavariable generally determines what sort of theoretic things can
appear in its place. Conventions for which letters correspond to which things vary wildly
between theories, since the objects of such theories vary significantly. One thing that
does seem well-agreed-on is that the base letter can be modified with subscripts and/or
primes (i.e. from base letter e to metavariables e, e′, e′′, ei, ei,j , eij , and e′i, among
others).

2.1 Multiple Metavariables

Often, there is a need for a list (or non-empty list, set, or other container) of metavari-
ables.

e very basic, and easy to typeset
ei give an implicit index variable i to each, likely to refer to

individual metavariables later
TODO: I forgot how I’ve typeset harpoons over long expres-
sions, if I ever have

Often, it is understood that there must be at least one metavar, but just as often
there could be zero. By the same token, it could be that some metavariables are identical
(so the theoretic objects must match), but it’s often understood that the metavariables
are distinct. I haven’t seen (or don’t remember) any text tries to answer these questions
with explicit notation; a reasonable reader is meant to figure it out without effort.

2.2 Metavariable Comprehensions

When I give formal descriptions of real languages, I often find myself needing quite
complex sets of related metavariables. Thus, I’ve extended the usual overline notation
to “metavariable comprehensions”. I haven’t seen any discussion in the literature
(please write me if you have seen it!), so I’ll go over it in some detail.

4

Definition 1. If I is an index set and φ is a formula involving metavariables, then we
write φi∈I where i is a meta-meta-variable ranging over I and bound in φ so that each
metavariable in φ may be indexed by I by mentioning i in its name. Where no confusion
will result, the index set may be left implicit, and so can the binder that introduces the
meta-meta-variable.

That’s a lot of garbage, so let’s see some examples—it can’t get any more informal
than that last bit of prose, but hopefully the idea is clearer than the jargon makes it
appear. Let’s say we have n functions gi and matching arguments ai, then

f (gi ai)
i∈Nn

is an expression that calls each function on its corresponding argument, then passes all
those results to another function f . When I see i as a metavariable, I expect it to range
over some naturals or integers, so I expect readers will understand if I write f (gi ai)

i
,

and since there’s only one meta-meta-variable, I’ll likely write just

f (gi ai)

Once metavariable comprehensions become nested (it’s rare, but possible), including the
meta-meta-variable binders is useful:

letxi = fi aijj∈Ni
i
in e′

takes a triangle of arguments aij , applies each row to a (possibly different) function fi,
and binds each result to a different variable xi. It’s contrived to be sure, but just in case
I get carried away with something less contrived, it’s nice to have a notation that uses
fewer ellipses than

letx1 = f1;x2 = f2 a2,1; . . . ;xn = fn a1 a2 . . . an,n−1 in e′

Again, I’ve left notation ambiguous as regards the question of which kind of data
structure is being comprehended over, and simply hope confusion will not result. The
question is even more complex here, because there are so many more ways that metavari-
ables could relate to each other. Most commonly, this shows up in substitutions: is
xi 7→ ei allowed to map the same variable twice (an ordered finite map), or not (just a
simple finite map)? Again, I expect these details won’t be difficult to accidentally fill in
as part of the prose description. Nevertheless, it’d be nice to specify it explicitly so that
computer implementation can become easier.

It can happen that the overline for metavar comprehensions is typeset lower than
is aesthetic. In such cases a \mathstrut can help. There’s probably also some way to
insert a zero-width box with a given height for cases where \mathstrut is too tall, I just
don’t know the command off-hand.

5

2.3 Specifying Constraints on Free Variables in the Metavariables

This seems to be more common in mathematical logic than in type theory. In general,
type theorists are willing to write λx. e x −→ e with a side-condition x /∈ fv(e). This
can get tedious sometimes: we might want to use a metavariable that stands for terms
that don’t have free variables other than those in the implied context around the whole
expression and those explicitly mentioned. For this, I’ve really only seen one notation:

e(x, y, z) the only variables allowed to be free in e are x,y,z, and the
variables of some implicit context

e[x, y, z] again, but from Dyber about inductive sets and families

This notation is ambiguous with some application notations, but it doesn’t usually
matter. We can also think of e having some unnamed slots into which the mentioned
variables are substituted, just as application substitutes values into (possibly named)
slots. Interestingly, I’ve yet to see this notation taken advantage of to write η-conversion
without the side-condition: λx.e() x −→ e, perhaps because it just looks too strange.
It’s a shame, because the notation could be quite useful—perhaps if the list of variables
were superscripted it would be more palatable?

λx. e() x −→ e

The flip side of constraining free variables is introducing bound variables. These
notations have a long lineage, but I’m not sure if they are strictly metavariable-related.
Perhaps the idea is that, since variable binding is a matter of surface syntax, we need
not name the binders in the theory—though it does mean that binding is now meta-
theoretical. Regardless, authors seem to find these notations convenient enough to use
them fairly commonly.

x.e x is fresh (in an assumed context) and bound in e
[x]e equivalent notation from (TODO: cite) DIY Type Theory

This allows us to think of a λ as a unary constructor, ranging over expressions binding
one variable: λ(x.e) or λ([x]e) rather than a binary constructor taking a variable and an
expression separately λx.e. The difference for λ is fortuitous in its typographic subtlety—
usually the parenthesis are dropped and the two become indistinguishable!—but the
notation really shines when introducing more complex binding forms, such as binary
coproduct elimination:

ind+(ξ, x.e′l, x.e
′
r, inl(a)) := e′l(inl(a)) : ξ(inl(a))

When an author wants to be very explicit, they might even write

ind+(ξ, x.e′l(x), x.e′r(x), inl(a)) := e′l(inl(a)) : ξ(inl(a))

to make it clear that the only variables introduced are the ones which are bound (so
x.e(x) is parsed like x.(e(x))).

6

You might notice in the last example that e′l(inl(a)) omits the variable binding,
which is normal, but possibly unintuitive. It seems that the “x.” part is not part of the
metavariable name, but just a prefix restricting the range of the metavariable; whenever
the same name is used elsewhere, the same restriction applies, so it is not usually repeated.

Another oddity from the last example is that the x. prefix is used in multiple places,
but authors do not usually mean that each x need be filled with the same variable. It
seems the variable binding sometimes extends to the meta-theory as well as the theory:
when the same metavar occurs in multiple variable binding prefixes, they need not match.
One clear exception is when translating one syntax to another, where presumably the
real variables should at least be uniformly renamed after translation.

3 TODO: Axioms and Proofs

TODO: Gentzen proofs vs. Fitch proofs. Brouwer’s notation is just Fitch in disguise, but
thankfully he does use nested numbering, which makes it easier to refer to a subproof
(under hypothesis).

4 TODO: Substitution

Substitution uses a multitude of forms, but they’re all just maps:

{x 7→ t} from wiki
[t/x] HoTT; wiki also mentions this in a note
[t/x] HoTT; wiki also mentions this in a note
[ti/xi]

[xi 7→ ti]

[xi := ti] TODO Ulf Norell’s thesis

The substitution might be seen as a total map on the set of variables, or a finite map
from variables (i.e. partial), but the two are isomorphic. TODO: whenever one of these
forms is used, usually the author explicitly admits substitution of a single variable, and
usually takes parallel substitution as derived from single-variable substitution.

Often substitutions will be introduced as mapping only a single variable, then par-
allel substitutions are defined based on them. Presumably, this means that se-
ries substitutions are a thing, though I’ve yet to see terminology for the fact that
[x 7→ a][y 7→ b]t = [x, y 7→ a, [x 7→ a]b]t, but the fact rarely comes up.

Some authors introduce capture-avoiding substitution (a.k.a. hygienic substi-
tution) as a correction of naïve non-hygienic substitution, which is useful for students
to avoid a subtly wrong definition, but in practice only hygienic substitution is used, even
if non-hygienic is sometimes called substitution simpliciter.

Frankly, the variety of notations is a disaster, especially since so many just swap the
order willy-nilly. I refuse to use notations which use a slash: which side is which? I much

7

https://en.wikipedia.org/wiki/Sequent_calculus
https://en.wikipedia.org/wiki/Fitch_notation
https://en.wikipedia.org/wiki/Substitution_(logic)

prefer arrow-like notations, which at least give the direction of the replacement. Given
that := is an old-school notation for mutable assignment, I prefer 7→.

One can also apply a substitution prefix or postfix:

θt TODO where?
t[t′/x] HoTT, wiki in both lambda calculus and logic
t[t′ := x] wiki on lambda calculi, Barendregdt

I like to think of substitutions as functions not only from variable to term, but also
from term to term: the substitution operation merely lifts one function to another. So
I’ll write it prefix with the understanding that it’s dropping parens from θ(t), which is
abuse of names from subst(θ)(t).

Another “fun” thing authors do is to specify the free variables of a term like t(x, y, z)
and then show the same term again, but with different expressions in those slots t(a, b, c)
to produce substitutions. Thus, we might write β-reduction as (λx. e(x)) e′ −→ e(e′).
This is especially prevalent in logical texts. For me, it’s a bit noisy, can be ambiguous if
there isn’t a clear defining copy of the metavar, can get confused with simple application,
and—most importantly—you don’t get to treat substitutions as their own, separately-
manipulable mathematical objects.

TODO is there such a thing as inverse substitution, or replacing terms by terms?

5 Sameness

TODO: judgmental equality, propositional equality, definitional equality, congruence
∼=/' or equivalence ≡ under a relation, abbreviations, identity type, isomorphism

“Inductive type in homotopy type theory” by Awodey etal uses “definitional equality”
to describe equality judgments. Porbably HoTT book does too.

5.1 TODO: Abbreviations

TODO I’m just remembering these; I need references

• A :=B

• A :≡B

• A≡B [5]

• A
def
= B

• A =def B [5] attributes this to Burali-Forti

• A
def= B: it’ a complex LATEX expression, but looks way better than not adjusting

the sizes

• A
4
= B

8

https://en.wikipedia.org/wiki/Lambda_calculus
https://en.wikipedia.org/wiki/Substitution_(logic)

• A
4
= B: again, complex but aesthetic

Part II

Type Theory Notation

6 TODO: Judgments

7 Universes

FIXME type theories can forgo universes by adding judgements of the forms A : Type
and A = B : Type. perhaps I can move this section lower down

The terms of a type theory correspond to terms of the untyped lambda calculus,
and are classified by types. However, the types of a dependent type theory must also
be classified, and universes are a very common way to do this. Universes represent a
special—but very useful—case of what Pure Type Systems call sorts.

U0,U1, . . .

U0,U1, . . .

U [5]

I don’t remember seeing it, but I wouldn’t be surprised if someone decided to start from
U1 rather than U0.

TODO: we call rules like x:A`B:U∏
x:AB:U a formation rule for Π-types, but couldn’t we also

see it as an introduction form for universes? Doing so would perhaps make the common
refrain “universes are closed under the type formers Π, Σ, W, etc” more familiar.

TODO: is this really all that universes are about? Martin-Löf[5] describes universes
as allowing the definition of more than just finite types; these new types that are added
are called transfinite types

Very often the level is exceedingly boring, and can be mechanically reconstructed,
so it is omitted. This style is called typical ambiguity, and can lead to valid-looking
formulae which appear to show contradictions Nevertheless, if the levels of the universes
are not reconstructible in an ambiguous term, the formula is invalid to begin with.

U

U

7.1 Cumulative hierarchy

In many type theories, the following judgment holds:

Γ ` A : U`
Γ ` A : U`+1

When this is the case, the theory is said to have a cumulative hierarchy of universes.

9

7.2 Type-in-type

If the judgment

` U : U

holds, then the theory is said to have type in type. Theoretically, this is of little interest
as it leads to the usual paradoxes of set theory, but programming languages unconcerned
with consistency (i.e. Haskell) often allow it. In this case, typical ambiguity is no longer
a ‘sort inference’ problem , since the entire hierarchy collapses in to the universe which
includes itself.

7.3 Special universes

Given the prevalence of polymorphic functions, the most common universe to see in
type theory is U0, which is the universe of small types, or in System Fω just “types”.
Indeed saying “A is a type” is a prose expression for the typing judgment A : U0 when
working primarily with non-dependent types. In the usual lambda cube formulations,
this universe is referred to as the sort of types.

U0 dependent type theory oriented notation
? lambda cube oriented notation
∗ from Indexed Containers (but also really just a typographical

variant of the last)

When working in a higher-kinded calculus (and especially one with kind polymor-
phism), another common universe is U1. Again, in the usual lambda cube formulations,
this universe is referred to as the sort of kinds.

U1 dependent type theory oriented notation
� lambda cube oriented notation

TODO: I’ve also seen Set,Prop mentioned, almost as if they were just U0,U1. How
do they actually work (I think they’re drawn from CIC, but they certainly show up in
Coq). In HoTT, Prop def= (A : U) × (x,y:A → x =A y), which gives some computational
explanation why Coq can erase proofs of propositions: it’s the same reason why elements
of unit type are laid out with zero memory. Or does it? Coq Prop may not be the same
as HoTT Prop.

8 Fundamental Algebraic Types

I’m struggling to find a name for this section, but what I’m really after is a description
of
∏
-types and

∑
-types and their variants. The most important concepts in this section

are closely linked by dualities of various sorts; since I’m of the opinion that whenever a

10

language implements one concept it should also implement the dual concept, once you
let one of these type in, the rest of the camel comes along, so to speak.

Thankfully, there is a very nice categorical perspective which ties all of these types
together, and which relates back to both elementary algebra (the kind you learned in
primary school) and the currying well-known in functional programming. From program-
ming, we see an isomorphism evidenced by currying and uncurrying functions.

(A,B)→ C ' A→ (B → C)

In category theory, we understand tuples as multiplications and functions as exponentials
(note: with base as the target type and exponent as the source type); if we write them as
such, then the above equivalence becomes a familiar law of exponents from elementary
algebra.

CAB = (CB)A

Indeed, many such laws carry over: since AB = BA in elementary algebra, we expect the
type isomorphism (A,B) ' (B,A), which is evidenced by the swap function λ(x, y). (y, x)
(and we already used this identity to write CAB instead of CBA before).

In particular, a Cartesian closed category (CCC) is one which has a terminal
object (corresponding to the unit type §8.8), binary products (corresponding to pair
types §8.5), and exponentials (corresponding to function types §8.1). A bicartesian
closed category (BCCC) is a CCC which also contains the dual concepts: an initial
object (empty type §8.12) and binary coproducts (binary choice type §8.10). If a CCC is
also locally Cartesian closed, then the analogues of dependent function and dependent
pair types are also present. TODO: I’ve gotten this info off of wiki. Also, n-Category
Café seems to have some good links to the major papers and tutorials in the literature.

The thing is, if binary (and nullary) sums and products are categorical duals, then
what is the dual of an exponential? I don’t know of a categorical dual, but we can
also draw on an interpretation of types as logic. The dependent function and pair types
correspond to the notions of universal and existential quantification, and these two are
De Morgan dual (TODO: cite properly). Interestingly, a logical formula which is a finite
disjunction of conjunctions is called a “sum of products”, which corresponds nicely to cat-
egory theory terminology. So, once you add functions to a dependently-typed language,
logical duality suggests you add dependent pairs, which have binary products as a special
case, at which point category theory suggests you add binary sums. Schematically:

A→ B

dependent
types−−−−−−→

∏
x:A

B(x)
logical
dual−−−−→

∑
x:A

B(x)
special
case−−−−→ A×B

categorical
dual−−−−−−→ A+B

Annoyingly, the terms “sum” and “product” are used differently in different contexts,
as summarized in the table below. More annoyingly, there isn’t a way to choose a single
set of terms that is both immune to confusion and also illuminating as to the conceptual
relationships. Note for example how a non-dependent product type becomes a dependent
sum type, but the categorical dual of the non-dependent product is also called a sum

11

https://golem.ph.utexas.edu/category/2006/08/cartesian_closed_categories_an_1.html
https://golem.ph.utexas.edu/category/2006/08/cartesian_closed_categories_an_1.html
https://ncatlab.org/nlab/show/De+Morgan+duality

type; meanwhile the dependent function is also called a dependent product. Since this
section will be discussing these types frequently, in relation to each other, and across
disciplines, we will need some non-confusing terminology; the terms I have chosen are
listed done under “Chef’s Choice”

Haskell type: Either A B (A, B) A -> B
non-dependent type A+B A×B A→ B
dependent type —

∑
x:AB(x)

∏
x:AB(x)

category A+B AB BA

boolean logic A ∨B A ∧B A =⇒ B
quantifier logic — ∃x.B(x) ∀x.B(x)
set theory disjoint union cartesian product total function

— indexed sum? indexed family
English sum, coproduct product, pair function, map, arrow

— sum, pair product, function
Chef’s Choice choice types pair types function types

— dependent pair types dependent function types

The use of “pair”/“function” in conjunction with “dependent” when needed is obvious.
I have not found the term “choice types” used in the literature, but I find it evocative
and—more importantly—not confusable with dependent pair types. Perhaps the reader
could argue that “choice type” doesn’t satisfactorily relay its categorical duality with
pair types, and that is true; I will note that the choice types is not strictly dual to the
dependent pair types, but to non-dependen pair types, which one might think of as “both
types,” though we won’t refer to them that way here.

Another way to overcome the terminological confusion is to simply refer to each
type by its mathematical notation: Π-type and Σ-type are well-used in the literature to
describe dependent function and [air types respectively. However, at least in principle
the names like Π-type are overly concrete; they express a particular axiomatization of an
idea, not unlike Church numerals being too concrete a formulation of the general concept
of natural number. This concreteness historically hasn’t been a problem for the types
we discuss in this section, but when we get to inductive types, we will see that “W-type”
is only one of a number of approaches to formalizing the notion of inductive type. You
might still see me use Π-type and its kin because it’s quicker to type, but that is an
unintentional artifact that made it past proofreading.

Some readers may not be familiar with the fundamental ideas behind dependent func-
tion and pair types. To introduce dependent types, I always pick this example, which
uses only high-school math.

i) Consider the functions which take a real number as input and produce a real
number as output. These are the ordinary functions like f(x) = x−3, f(x) = x2,
or f(x) = ex that we work with in elementary algebra. If f is such a function,
we might use the notation

f : R→ R

12

to express this idea more quickly. This notation used in both standard mathe-
matics as well as type theory.

ii) But consider the functions which, as before, take a real input and produce a real
output, but now we additionally constrain the output so that it is always less
than or equal to whatever the input was. Intuitively, the functions are those
that, when plotted, never go above the line y = x. TODO: draw a plot using
pgfplot. We can see that most of the examples we gave before do not fall into this
class of function. One of them (f(x) = x− 3) follows the rules, as do functions
like f(x) = x, f(x) = max(x, 0) and so on. However, the other two example
functions from (i) do not follow the rules, and so are not included in this class of
function: it’s easy to see that f(x) = ex is always above the line, and f(x) = x2

goes above the line as soon as x > 1.
Can we describe this class of functions more quickly than with prose? Standard
mathematics can identify these functions as a set {f ∈ R → R | ∀x. f(x) ≤ x},
but this approach has its downsides. For one, I personally think set theory
is something of a verbose foundation for mathematics which encourages more
informal (i.e. not amenable to automation) definitions, theorems, and proofs.
The more pressing issue is that there’s no f : . . . notation corresponding to
that used in (i) which would make smooth the transition from simple classes of
functions to constrained classes.

iii) In type theory, proofs are first-class objects and can be applied and manipulated
formally. If we need to know that the output is always less than the input,
the method that first comes to my mind is to attach the required proof to the
output. That is, we want something of the form

f : R→ R× (output ≤ input),

but what should we fill in as input and output? They obviously need to refer
to the input and the output reals, so we somehow need to give names to these
things. Dependent functions allow us to give a name to the input, and makes
that variable available to form the output type. Let’s do that and fill in the
input hole:

f : (x : R)→ R× (output ≤ x).

The output real—as opposed to the output proof—is just the first part of the
pair, but dependent pairs allow us to name this half of the pair and use that
variable in the second half. This is exactly what we need to fill in output :

f : (x : R)→ (y : R)× (y ≤ x).

Putting it all together, we read the above as “f is a function which takes a real
input (x) to an ordered pair consisting of the real “output” (y) along with a proof
that the output is less than or equal to the input (y ≤ x)”. This is very close to
the prose as we wrote in (ii), so it seems like this is a good translation of the
idea.

13

iv) There is another, perhaps more accurate way of formalizing our desired class of
functions from (ii). The idea is to provide first the function, then a proof about
that function. If you’ll allow me the liberty of extending the a : A notation
(which names a value from a set) to also be able to name a proof of a proposition,
then standard mathematics might write

f : R→ R, and
lte : ∀x. f(x) ≤ x,

which in type theory would be written as the specification of a single dependent
pair:

〈f, lte〉 : (f : R→ R)× (∀x. f(x) ≤ x).

Here we have an ordinary function on reals f , but packaged with a proof that for
any input (∀x), its outputs (f(x)) are less than its inputs (f(x) ≤ x). In fact,
although we use the logical notation ∀, in type theory universal quantification
is encoded with a dependent function. In this case: ∀x. f(x) ≤ x ; (x :
type) → f(x) ≤ x. In this case, we know x must be a real number, since
f(x) must be well-typed, so we can fill in type with R to obtain this fully
type-theoretic specification:

〈f, lte〉 : (f : R→ R)× ((x : R)→ f(x) ≤ x).

This makes it clear that what we have is a pair of functions, one of which produces
the values we care about, and the other provides the proofs we need for each
value. It’s easy to see by translating this type back to prose, that this is also a
good translation of the original idea.

v) Indeed, the types demonstrated in (iii) and (iv) are equally good translations of
the idea in (ii), and it even turns out that this equivalence can be formalized. If
we read functions as exponentials (i.e. A→ B is like BA), then their equivalence
is just an instance of familiar algebraic law (y × z)x = yx × zx, taking x as the
input type, y as the output type, and z as the proof type. This metaphor can
be expressed formally in category theory.

vi) Note that so far, I’ve only demonstrated total functions. Although standard
mathematical practice would allow f(x) = ln(x) to be part of the class of func-
tions from (ii), the type-theory translations would not be accurate because ln(x)
is a partial function. In standard mathematical practice arrow often denotes par-
tial functions, but in type theory it is always total. In type theory, we would
say

f : R→ 1 + R, and
lte : (x : R)→ case f(x)of {ι1(u)⇒ 1; ι2(y)⇒ y ≤ x}

to express that if f(x) = y is defined we need y ≤ x, but if it’s undefined we
don’t need to do anything speciala. I’m sure there’s a clever way to write this
more concisely using point-free programming, but I won’t do that to you just
yet.

14

vii) Even this simple example can be the basis for important applications. A similar
type of function (f : N → N) × (∀n. f(n) < n) would allow us to make proofs
by infinite descent (i.e. a proof by contradiction where the false assumption
implies that a known-finite series would have to go on forever). Likewise, only
(relatively) small changes are needed to express the class of linear functions from
complexity theory

(f : R0+ → R0+)× (x0 : R0+)× (ε : R+)× (∀x. x ≥ x0 → ε · f(x) ≤ x),

writing R0+ for non-negative reals R+ for positive reals. What I’ve done is
extended the dependent tuple to include a “base point” (x0 : R0+) and “mul-
tiplicative factor” (ε : R+), then conditioned the proof so that it need only be
demonstrated for inputs above the base point (∀x. x ≥ x0 → . . .), and finally
relaxed the proof’s conclusion so that the output can be scaled by the multiplier
(ε · f(x) ≤ x). I don’t know about you, but it took me not insignificant effort in
school to firmly understand the moving pieces of big-O notation; with this type
specification in front of me, I can clearly see where each part is introduced and
over what scope it stays constant, and why. Presumably, the notorious ε–δ defi-
nition of limits in calculus would also be clearer in type theory than informally;
such an exercise is left to the reader.

awe can just provide the unit value 01 of the unit type 1

TODO: this includes dependent function and pair types, which we can treat as in-
finitary products and sums, so it makes sense to allow for 1) nullary and binary versions,
2) binary sums, and 3) finite sums/products (i.e. records/variants).

8.1 Functions

Function types (or non-dependent function types more pedantically) at least have
a standard notation in mathematics, even if some authors want to mix it up:

A→ B standard notation; associates to the right
BA to emphasize the connection with category theory
B ← A In Ogde de Moor’s “Algebra of Programming”, which is ad-

mittedly convenient for function composition

The standard mathematical notation for defining functions even looks like you’d expect
from an ergonomic type theory:

f : R→ Z

f(x) = bx/2c

The introduction form for function types is just the familiar lambda from the λ-
calculus. Lambdas are also called abstractions after its purpose, or simply the unpre-
tentious function.

15

λx. e Curry-style lambdas omit a type annotation on the variable
λx.e but no space is easier to type manually
λx : σ. e Church-style often uses a colon when types can be complex
λx:σ. e but omitting the spaces can help the reader identify prece-

dence between all the beeps and boops of written type theory
λxσ. e Church-style using superscript annotation makes the type

less commanding, but can also scrunch up detail
Λx. e in non-dependent theories, type abstraction is often done

with a capital lambda; most theories can also infer the kind,
so they leave it implicit

x 7→ e [8] because... I don’t really know

Strictly, whether a system is Church- or Curry-style has more to do with the defini-
tional approach taken for the calculus in question ([7] §9.6). In Curry-style, we define
terms, then a reduction semantics, and only then a type system is given to reject some
terms. In Church-style, typing is given prior to the reduction semantics so that we
need not consider ill-typed terms when given behavior. In practice, Church-style sys-
tems often annotate abstractions with the type(s) of their argument(s), whereas Curry-
style systems do not. Thus, we’ll see Church-style sometimes used as a synonym for
manifestly-typed and Curry-style as a synonym for implicitly-typed; quite frankly,
I think the manifest/implicit terms are more to the point.

The eliminator for abstractions is again familiar: application, which in programming
is called function call.

fe can lead to some confusion if multi-letter variables or
metavariables are allowed

f e disambiguates that issue, but easily missed at a glance
f(e) crushes ambiguity under its heel, but at the cost of line noise
Ap(f, e) because f(e) is notation roughly for substitution in [5]
app(f, e) as above [1]

TODO: I’d have to cite this: A less well-used notation is f ·e. It stems from combinatorial
systems, and is sometimes chosen to emphasize algebraic thinking—application being
“the” binary operator of the system. I think I saw it in “Algebra of Programming”, where
even plain values are considered as functions because something-something-category-
theory.

Multiple parameters can be allowed, often as syntactic sugar for a curried version of
the function:

16

λx, y, z. e

λx : τ, y : τ, z : σ. e combine the annotation for arguments of the same type
λx, y : τ, z : σ. e combine the annotation for arguments of the same type
λx, y:τ, z:σ. e but doesn’t look so good when the colon has no elbow room
λxτ , yτ , zσ. e

λx, yτ , zσ. e combining annotations doesn’t look as good when using su-
perscripts

as can multiple arguments:

f a b c space simply associates to the left
f(a, b, c) when using parens, use standard math notation

It should be noted that a parameter is part of the definition of a function. An
argument is a term that is substituted for a function’s parameter name in the function’s
body as part of reduction. In practice, few people are pedantic enough to correct anyone
except possibly in academic writing.

8.2 Dependent Function Types

The defining feature of dependent type theories—arguably the only type theories worthy
of the name “type theory” simpliciter—is a generalization of non-dependent function type
to the dependent function type, a.k.a. Π-type. Sometimes authors refer to this as
the cartesian product type[3, 5] or dependent product type, which we have seen
can be confusing. There are a multitude of notations for these types:∏

(x:A)B quite common, but I find it not evocative of functions∏
(x∈A)B gambino-hyland 2004, and likely others

(Πx:A)B a variant that doesn’t direct attention away from the argu-
ment type [1]∏

(x:A)

B suitable for display math∏
(A,B) where B is responsible for introducing a variable on its own,

as in [5]∏
x:AB the parens everywhere can be too much line noise

(x : A)→ B stresses the function-ness; used often in actual theorem
provers/programming languages; dropping the parens cer-
tainly would confuse me, but I haven’t seen it either

x:A→ B my own variant which focuses on the types rather than the
bound variable

The introduction and elimination forms for dependent function types are exactly
those of non-dependent function types: function and function call. That is, we can see

17

dependent types simply as being a more sophisticated understanding of what functions
truly are, rather than a brand new thing. In fact, non-dependent function types in
dependent type theory are usually defined as syntactic sugar for when the output type
does not depend on the input term:

A→ B
def=
∏
_:A

B.

When using Π-related notation, curried parameters can be combined:∏
x:A,y:B

C∏
x:A
y:B

C when there are too many types

(x : A)→ (y : B)→ C associates to the right just like non-dependent
functions

x:A→ y:B → C as above
(x : A)(y : b)→ C found in [4]

Non-dependent type theories separate out the type syntax from the term syntax, but
as PTSs (§16) demonstrate, there is no underlying difference. Nevertheless, these theories
are usually reluctant to use the dependent function notation to represent polymorphism,
preferring a different notation

∀α. τ the kind is usually inferable
∀ακ. τ but can be explicitly stated
∀α:κ. τ and kind annotation has the same spelling varia-

tion as type annotation

In dependent type theories with universes, you might treat these as synonyms for depen-
dent function types

∀α. τ def=
∏
α:U

τ , and/or

∀ασ. τ def=
∏
α:σ

τ .

and use them when the idea to be expressed is more like simple polymorphism rather
than true dependent typing.

8.3 Implicit Arguments and Parameters

In several languages, the elaborator infers arguments to certain functions, the types of
which explain that the parameter is implicit.

18

{x : A} → B dependent function type with implicit parameter
in Adga

C x⇒ τ (x) (non-dependent) typeclass argument in Haskell
τ (x,y,z...) implicit type arguments implicitly given from the

free type variables (see next paragraph)

In this way, “obvious” or less-salient arguments can be omitted at the call site of values of
these types. Regardless, it seems that the literature is much more interested in examining
type theory kernels rather than formalizing their user-facing syntax. In the core theory,
values with implicit arguments are no different from (possibly dependent) function types;
this notation is only used to drive the elaborator.

In many strongly-typed functional languages, type variables are separate from type
names, so it’s easy to implicitly quantify over unbound type variables. In Haskell or ML
this doesn’t feel like much of an implicit argument, but once we enter dependent type
theory, such automatic quantification is translated into implicit parameters, and then
filled with true arguments in the core.

Implicit arguments turn out to be incredibly useful, though, since function composi-
tion in a dependent theory would otherwise look like the unwieldy:

◦ :
∏

A,B,C:U
(B → C)→ (A→ B)→ A→ C

◦(N,N,N, succ, succ) = λxN. succ (succ x)

which is just a bit much. When it’s easy (as in this case) to infer the arguments, I much
prefer:

_ ◦_ : {A,B,C : U} → (B → C)→ (A→ B)→ A→ C

succ ◦ succ = λxN. succ (succ x)

I’m tempted to use the universal quantifier to introduce implicit arguments, as in ∀AU . τ def=
{A : U} → τ , but this is inconsistent with the symbol’s usage in System F, so I’m torn,
even though I think ∀A,B,C. (B → C)→ (A→ B)→ A→ C does look quite good.

A word of caution for the excitable: I find that the literature can often elide arguments
that aren’t so easy to figure out, which can hinder readers. The HoTT Book[8] is a clear
offender as far as I’m concerned: not only is the enthusiastic programmer learning about
new classes of types, homotopy theory, and the relation between them, but they also have
to infer a bunch of arguments the purpose of which isn’t quite yet grokked? Sure /rant.
Admittedly, that book is written for several audiences, so I’ll give them a break, even as
I struggle to find the moving parts. Regardless, which arguments to make explicit is a
matter of taste and judgment, and poor choices can deter otherwise receptive audiences.

Indeed, even theorem provers can have trouble elaborating implicit arguments. As
such, languages with implicit parameters almost always have syntax for explicitly giving
otherwise implicit arguments.

19

e @τ Haskell with TypeApplications; a bit line-noisy
sometimes

eτ [8]; doesn’t draw the eye, but it can interfere with
metavar notation

e {τ} Agda (TODO Idris too I think)

These syntaxes also need ways to give only some of the implicit arguments explicitly.

e @_ @τ some theoretical Haskell
e {_} {τ} Agda
e {y = τ} Agda for dependent arguments, which has a clear

advantage over positional systems

Creating a lambda with implicit arguments can also be done, though I’ve only seen
it in Agda, not in the literature.

λ{x}. e Agda

Like using the forall notation for implicit parameters, I’m tempted to riff on the Λx. e
that we see in System F, but I can see how it could be confusing for people coming to
dependent type theory from System F or similar theories.

8.4 Chef’s Choice: Functions

We’ll see a lot of dependent functions from here on, but I’d rather not have the reader
i) learn all the notations just in case, or ii) get too comfortable with only one notation.
And indeed, the different notations emphasize different parts of the function type: is the
variable important?, is the type more important?, should the function-ness be emphasized?,
or the polymorphism?

I will use the following notations and the associated stylesheet provides commands

20

for them:

\deparr{x}{A} B (x : A)→ B
Makes the function-ness salient, and
also because it’s a very common and
standard notation

\vardeparr[\!]{x}{A} B x:A→ B

Makes the parameter name less
salient (it could probably even be
guessed)

\Pitype{x}{A} B
∏
x:AB

Focuses on the parameterization,
but doesn’t prioritize either the vari-
able or its type

\Pitypes{x:A\\y:B\\z:C} T
∏
x:A
y:B
z:C

T Variant for many arguments

\all{x^A} B ∀xA. B

When it’s most like polymorphism:
i.e. getting the variable in scope is
the most important thing. When
the type is obvious, I will even elide
the superscript type annotation

While I’m here, both \Pitype and \Pitypes have a starred variant which uses \mathclap
on its argument, which can be useful in display math.

TODO: am I going to have any notation for implicit arguments? Perhaps ∀ is always
implicit, wrap

∏
arguments in braces, and have a \deparri to use braces in place of

parens. The weirdest might be {x:A} → B or x:{A} → B, but hopefully I can use an
always-implicit-∀ in that case. If I don’t want ∀ to be always implicit, I could have
∀{xA}. B, but I’m not sure I like it; perhaps there’s something I could use for overriding
a default-implicit-∀ to be explicit?

TODO: specifying explicit arguments. I’m thinking compose{A : τ,C : τ ′}, but when
named arguments are too onerous compose{τ,_,τ ′} (assuming compose : ∀A,B,C. (B →
C) → (A → B) → A → C). The thing is, should I really insist on the braces when
the base function is clearly not a metavariable? Braces for the implicit parameter of the
identity type would just be annoying: let · = · : ∀AU . A→ A→ U , then x = y ; x ={t} y
just looks worse than x =t y. Perhaps it’s simple subscripts composeτ,_,τ ′ when the
implicit args are easy, but @-applications when they’re larger compose @(C :

∏
x:R x ≤

a + x ≤ b). I want to keep the at-sign because parens are likely to be used all over the
place already. I mean, I might use 〈a, b〉 for tuples/records, but I dunno what to do about
sums/variants (which btw might need to have a result type hidden away somewhere as
in Σ{l : ?}{l : 1,r : N}).

8.5 TODO: Pair types

TODO: simple binary product as a prelude to infinite sum

• pr1, pr2

21

• outl,outr

• π1, π2

[5] calls this the disjoin union of a family of sets. I mean, it does make sense: it
looks like an indexed family of sets, which can be thought of as a disjoint union, but
what are we gonna call A+B? It turns out [5] calls them the disjoint union of two sets
(emphasis mine), which is true (A + B

def=
∑

x:2 rec2(A,B,U)), but IMO too concrete.
Regardless, Martin-Löf also mentions more “traditional” notations

∐
x∈ABx

⋃
x∈ABx

8.6 TODO: Dependent pair types

• Σa : A.B

• ΣaA.B

• Σa:AB

• (a : A)×B

• A a×B

• {x ∈ A | B(x)} a more applied notation emphasizing its use as “all A’s where B
holds” ([5] writes it {x ∈ A : B(x)} juscuz)

TODO: I’ve found (e1, x.e2) binding x to e1 in e2 is quite useful for reducing du-
plication, and I conjecture could be used to give a hint to type inference of existential
types.

8.7 TODO: Tuple types

8.8 TODO: Unit type

0,0

1,1, ?

?, (), 01

8.9 TODO: Record types

i.e. label each of the terms in a product
It’s fairly easy for non-dependent products, but dependent products mean the map

from label to expression is ordered. Of course, real languages (Agda, Idris) allow depen-
dent records.

22

8.10 TODO: Choice types

• l, r

• inl, inr

• ι1, ι2

TODO: note that this is also derivable as A + B
def=
∑

x:2 ind2 A B... if you have 2.
However, 2 can’t be defined with W-types without choice types. I’d rather use the theory
to extend itself from within (internal definition) rather than people adding rules from
without (external definition); “Non-Wellfounded Trees in Homotopy Type Theory” by
Ahrens, Capriotti, and Spadotti have some discussion about these terms.

8.11 TODO: n-ary choice types

8.12 TODO: Void type

8.13 TODO: Variant types

i.e. label each of the terms in a coproduct
this was the best name I could come up with; it’s based on https://en.wikipedia.

org/wiki/Tagged_union, but none of the examples wiki lists are quite the same concept
as the other examples or what I mean here

TODO: simple enums are just variants of the form {`i : 1}

9 TODO: Recursion and Induction

9.1 TODO: Recursive types

TODO: µ- and ν-types

9.2 Inductive Types

As I understand it, µ- and ν-types can allow for the definition of some “meaningless”
types like µx. (x → x), which would (TODO: I think) undermine a total functional
language. Nevertheless, without some form of inductive definition, total languages would
be restricted to only finite types (i.e. we wouldn’t even be able to define the natural
numbers!). Inductive types describe well-founded trees, and are how type theory is
able to access (potential) infinity.

W(a:A)B [8]

W
(a:A)

B variant analogous to those for Π-types

(Wa : A)B variant analogous to those for Π-types [1]
W(A,B) [6]

23

https://en.wikipedia.org/wiki/Tagged_union
https://en.wikipedia.org/wiki/Tagged_union

In addition to the sans-serif font, Martin-Löf (TODO: cite) usesW (in prose at least), and
(TODO: cite Wellfounded Trees and Dependent Polynomial Functors) uses W. Values
of W-type are introduced with a single constructor sup, though whether the arguments
are passed in parens or curried matches the surrounding notation.

In strongly-typed general-purpose functional languages like ML or Haskell, the question
of recursively-defined types is not so involved. In the definition of an abstract data
type, we are simply allowed to refer to the type being defined, and even other types
defined later in a module, which allows the same paradoxes as µ− and ν-types. Because
W-types have to be correct by construction (which I like about them anyway!), they
have to carve up familiar concepts in a different way.

Recall that an ADT is defined as the sum of products; each term of the sum is
named with a constructor, and each factor in the associated product—each argu-
ment of the constructor—might refer only to previously-defined types—might be a
non-inductive argument—or it might refer to the type being defined—might be an
inductive argument. In order for the type to make sense, each inductive argument
should only refer to the type under definition in a strictly positive sense (TODO: fact
check).

In a W-type Wx:LA, we have a label type L, and an arity type A which may
depend on the specific label x. The label type L combines the constructors and non-
inductive arguments together; thus, we don’t directly see the constructors. If we were
thinking only in terms of ADTs, we might assume that L is an n-ary sum of products
(where each factor is a non-inductive argument) for n constructors, but W-types are
more general (we’ll return to this later).

The arity type represents the inductive argument, but it does not do so directly;
instead, each non-inductive argument is “named/indexed/pointed to” by an element
of A. If I were being extraordinarily clear for readers coming from ML or Haskell, I
might refer to the arity as the inductive arity. (TODO: cite that nLab uses this
terminology in its introduction on inductive types). The reason for this indirection is
more clear when we consider the introduction form for W-types is sup a f : Wx:LA,
where a : L is the label and f : A a→Wx:LA is a function which, given a name of an
inductive argument (which must be valid for the label) returns the sub-tree placed at
that name.

In fact, I didn’t use “indirection” indiscriminately just now: since W-types have
potentially infinite elements, we cannot just allocate the maximum possible memory
that an inductive value might use—that would require infinite bits. Instead, recursive
values are laid out in memory using pointers; note that when defining recursive types in
C, the compiler forces you to use pointers by complaining that the type under definition
is “opaque” i.e. does not (yet) have a known layout. Here, we see that sup a f can be
laid out in finite space as well because f can just be a function/closure pointer.a In the
simplest case, where there are only finitely many inductive arguments, f can simply be
a function that indexes into an array of the inductive arguments. However, W-types
can be thought to have infinite inductive arguments, as can ADTs; e.g. data T =
Z | L (Nat -> T) which in the language of W-types is Wx:2 casexof {0 ⇒ 0; 1 ⇒
N}. TODO: cpdt-book calls such types (i.e. one of the constructor args is a function
returning the type under definition) reflexive.

Note however that W-types are well more general than ADTs in two ways. First,
they allow an arbitrary type as L rather than just a finite sum of products. Second,

24

the arity A is allowed to vary not just on some finite set type, but also on any part
of the possibly infinite L; i.e. not just on the constructor name, but also on the non-
inductive arguments. More formally, every ADT with n constructors can be translated
to a W-type of the form W(x :

∑
c:Nn

T). letx = pr1 x inA, where Nn is the set of
naturals {i ∈ N | i < n}, and T is the set of non-inductive arguments (in indexed
W-types, we’ll see why I chose T), and x is shadowed in A so that A can only refer to
the constructor name part of the label type.

aOr at least, it can be if a also needs only finite memory. Nevertheless, a is either a member
of a finite type, or a previously-defined inductive type which, by induction, can be laid out in
finite memory

There are other sets of names for label, arity, arguments, and so on based on visual-
izing values of W-type as (finite-depth) trees. Each tree of type Wx:LA is canonically a
node, sup s c. We can think of a node as colored by the label s—yes, the terminology
gets confusing when crossing traditions like this. In graph theory “label” usually refers
to extra information attached to edges, whereas “color” attaches to nodes. Some authors
use the word shape for the node coloring/label type L; this is nicely unambiguous, thus
why we have selected the metavar s above. Each node may also have a set of children,
each one accessible via a named arc. The names of the arcs are drawn from the arity
type A s associated with that node’s shape (we use “name” rather than “label” so as not
to confuse graph-theory and type-theory terms). The fact the arc names are determined
by the shape gives another good reason to use “shape”: it determines not just an internal
color, but also the external interface which is just what sorts of child sets are allowed.
The children themselves are accessible from sup s c using c, which can be thought of
as a child accessor function. If i is the name of an arc, then c i is the target node
of that arc, or in other words, the ith child of sup s c. Since A s is often a finite set,
we can also use the word position for the arc names, or even index (thus the i choice
of metavar above) of the arc. Using “index” can lead to a false sense that the children
form a simple list, whereas complex W-types might be better thought of as having more
complex data structures for nodes’ children. Finally, if we’re coming from a set-theoretic
perspective—thinking of W-type elements as well-founded sets—a child can also be called
a predecessor.

FIXME: in the following, I might want to follow [1] in introducingW as a metavariable
for W-types.

Since this is the place in type theory where (dependent) recursion rears its twisty
head, it’s worth going over the rules for W-types in some detail. I often find it useful to
consider the formation as WS.A, and require A : S → U be an S-indexed family. That
way, I can write N def= W2. ind2(0, 1), so that’s the formalization I’ll go with. Nevertheless,
I think WxS . A

4
= WS. λxS . A is more ergonomic than point-free programming sometimes.

Formation at least is straightforward:

S : U A : S → U
Γ `

WS.A : U (W-form)

And introduction is not bad if you read s as the shape of the introduced node, and c as

25

the child-accessor function (so if i : A s, we can write c i for the ith child).

s : S c : A s→WS.A
Γ `

sup s c : WS.A
(W-intro)

Elimination (the induction principle) is a mess, but it helps to first see the computation
rule. The reduction passes the shape and child-accessor as if sup were a mere tuple 〈s, c〉,
but then it adds on a third argument hyp, which is an accessor function for the inductive
hypotheses. The ith hypothesis hyp i is computed as you would expect: perform the
same induction on the ith child c i. (FIXME: where does the A come from? Of course,
it’s not strictly necessary after type erasure. OTOH, I could use ind as a constant for
all the induction principles, but have it accepts a type as its first argument as a sort of
ad-hoc polymorphism: ind @(WS.A) f (sup s c) → f s c (λiA s. ind @(WS.A) f (c i)).
There might even be some interaction with quantitative type theory)

indW f (sup s c) → f s c hypwherehyp iA s = indW f (c i) (W-comp)

From this, we can infer how indW is typed, but the notation is still quite crunchy. Given
a property ξ on well-founded trees, we can show ξ t for an arbitrary tree t (equivalently
fold over the tree) as long as we can supply a function f of the right form; understanding
the type of f is the intricate part. Let’s start with the result type of f . We see that
sup s c is an arbitrary tree, and that f must produce the desired property ξ for that tree.
The constraints on the first two arguments of f (the dependent ones) are just the axioms
of W-intro so that sup s c is well-formed. However, we also want to give f access to
the induction hypothesis for each child. This, we add a (dependent) hypothesis-accessor
parameter of type (i : A s) → ξ (c i), which takes a child index i : A s to the induction
hypothesis for that child (which has type ξ (c i)).

ξ : (WS.A)→ U f :
∏
s:S

c:A s→WS.A

((i : A s)→ ξ (c i))→ ξ (sup s c)

Γ `
indW f :

∏
t:WS.A

ξ t

(W-elim)

The corresponding recursion principle is an easier starting place to understand (and
probably more-often used in programming). To derive the typing for recW we use a
constant family ξ 7→ λ_WS.A. ζ and simplify:

ζ : U f : (s : S)→ (A s→WS.A)→ (A s→ ζ)→ ζ
Γ `

recW f : (WS.A)→ ζ

Now we can clearly see the three parameters of f , where the dependent typing is mostly
about the node shape s of the tree that f operates on. TODO: identity rule?

TODO how about data Rose a where { Br :: a -> List (Rose a) -> Rose a }?
Obviously, it’d be easier to use ∀a.Wa×N. π2—which encodes a rose made of a length-
tagged vector—but what if I really want to re-use the list type, or if there’s a case where
there isn’t an easy isomorphism back to a length-indexed version of the type?

26

9.3 TODO: Coinductive types

9.4 TODO: Mutually Inductive Types

If you, like me, are a programming language enthusiast, you might see a glaring gap in
what is possible with inductive types so far: how does one define a type for the syntax
of a programming language? For simple languages, like the untyped lambda calculus, we
can use W-types, but once there are multiple non-terminals in the grammar, W-types
offer no clear implementation path. It will turn out that W-types with identity types
(§10) will be sufficient (though it does seem like there are some metatheoretic cobwebs
that might not be suited to your philosophy).

Nevertheless, it is still useful to describe indexed W-types, which describe mu-
tually inductive type families, or mutually inductive types for short. I think
(TODO) these correspond in set theory to indexed families of sets. The Agda stdlib
mentions W-types are also called Petersson-Synek trees, as does a Coq library; pre-
sumably after [6], which is a good introduction for those coming from programming.

Unfortunately, there are few sources in the literature that explicitly give the deduction
rules for indexed W-types. Additionally, there seem to be several ways to formulate these
types (even [6] gives a variant introduction rule).

Tree(A,B,C, d, a) : U from [6]
IWo,r

A,B : I → U from Appendix A of [4]
WIJ S P

J sort-of? TODO cite jcont.pdf version

The difference Peterson-Synek’s presentation [6] and Kaposi-Taumer’s [4], is that
in [6] the shapes depend on the index, whereas in [4] the shape determines the index.
TODO: I think I’m partial to shape depending on index. Consider data T (n :: Nat)
where {Zero :: T n; Fin n -> T n} if index were determined from shape, it’d be
like having a different Zero constructor for each index n. In contrast, when the shape is
determined by index, we can simply have the Zero shape appear at every index.

9.4.1 After Peterson and Synek

TODO: it’s nice to think about inductive types as “dendritic”. In this sense, the types
required for each child can be said to be the dendritic types.

TODO: It seems strange to me that tree(a, b, c) should retain keep the index type
a in the indexed W-type’s canonical form. As far as I’m aware, Haskell does not do
this, and I expect that type would be erased in Agda, Coq, and so on. Instead, I find
their tree′(b, c) constructor closer in intent to real languages, and is the formalism I will
proceed with. This does mean that the induction principle needs to be supplied with the
index type of the start node, but this is perhaps not so strange, since the single principle
encodes a mutually inductive function: we can see supplying the index type as selecting
which of the functions to start from. Perhaps more strangely, [6] require the arity type
to also be supplied to the induction; I’m not sure why this is necessary since it can be

27

https://github.com/agda/agda-stdlib/blob/master/src/Data/W/Indexed.agda
http://www-sop.inria.fr/lemme/Venanzio.Capretta/coq/General_Trees.g.html

derived from the type of the tree argument. Now that I think about it, so can the index
type; what’s actually going on here?

TODO: Actually, including the index type in the WI constructor basically selects
which type is being constructed in the same way as supplying it to the induction principle
specifies which of the mutually-recursive functions to start from.

TODO: S and A as for W-types. I is the index type. The required index of the
children are given by r.

WI
rS.A

I : U S : I → U A :
∏
α:I

S α→ U r :
∏

α:I, s:S α

A α s→ I

Γ `
WI
rS.A : I → U

(WI-form)

s : S α c : (i : A α s)→ (WIIrS.A) (r α s i)
Γ `

sup(s, c) : (WIIrS.A) α
(WI-intro)

(FIXME: where does A, r come from in the result? See the similar discussion for
W-comp. Here, I need α passed explicitly—essentially selecting which of the mutually-
recursive functions to call)

indWI f α (sup s c) → f α s c (λiA α s. indWI f (r α s i) (c i)) (WI-comp)

ξ :
∏
α:I

(WI
rS.L) α→ U f :

∏
α:I,s:S α

c:(i:A α s)→(WI
rS.L) (r α s i)

((i : A α s)→ ξ (r α s i) (c i))→ ξ α (sup s c)

Γ `
indWI f :

∏
t : (WI

rS.L) α

ξ α t

(WI-elim)

9.4.2 After Kaposi and Raumer

Kaposi and Raumer start their Appendix A with “We recall the notion of an indexed
W-type...[4]”, but their reference doesn’t actually present indexed W-types explicitly...
maybe. I found a paper of the same name and authors published a year before which
gives an Adga formalism, but even there, the presentation is very different. I haven’t
been able to determine if Kaposi and Raumer made up their notation. Although “recall”
is perhaps the wrong word when presented with a broken reference, the fraction of the
formalism they do give looks reasonable.

28

9.4.3 TODO: Notes on indexed W-types

Since there are so many metavars involved, let’s break it down per notation:

inductive family IWo,r
A,B I Tree(A,B,C, d, a)

index type I A
label type/shape A x : A ` B(x)
inductive arity type/position x : A ` B(x) x : A, y : B(x) ` C(x, y)
index of a node a : A ` o a a
index required of a child a : A, b : B a ` r a b x : A, y : B(x), z : C(x, y) ` d(x, y, z)

Formation:

I : U A : U B : A→ U o : A→ I r : (a : A)→ B a→ I

IWo,r
A,B I : U

A : U B : A→ U C : (x : A)→ B(x)→ U d : (x : A)→ (y : B(x))→ C(x, y)→ A a : A

Tree(A,B,C, d, a) : U

Introduction:

a : A c : (b : B a)→ IWo,r
A,B(r a b)

sup a c : IWo,r
A,B(o a)

a : A b : B(a) c : (z : C(a, b))→ Tree(A,B,C, d, d(a, b, z))
(§5 variant)

sup(b, c) : Tree(A,B,C, d, a)

The type is
Tree(A,B,C, d, a)

where, thinking like context-free grammars, A is the set of non-terminals, B(x) is the set
of generating rules for x : A, C(x, y) is the set of names for the positions of non-terminals
in rule y : B(x), d(x, y, z) is the non-terminal symbol appearing in position z : C(x, y),
and a the start symbol. [6] A programmer more often works with the type operator
T (a)

def= Tree(A,B,C, d), since langs specify A,B,C, d in a roundabout (but much more
intuitive) syntax. To construct one of these, we write tree(a, b, c) : T (a), where b, c are,
as in W-types, the label and inductive arguments (and a obvs the index of the result
type).

R : ∀xA. T (x)→ U a : A t : T (a) f :
∏

x:A,y:B(x)
z:(i:C(x,y))→T (a′)

h:(i:C(x,y))→R(a′,z(i))

R(x, tree(x, y, z))

Γ `
and a′ 4= d(x, y, i)
T 4

= TreeA,B,C,d

where

indTree(t, f) : R(a, t)

indTree(tree(a, b, c), f) → f(a, b, c, λi. indTree(c(i), f)

29

[6] also gives a variant of tree(a, b, c) which omits a (the index of the inductive family)
from the constructor. It’s probably a more realistic model of mutually recursive types in
that sense, but then the eliminator (induction principle) has to be supplied with more
info about what type of tree is being eliminated.

I just wanna point out that indexed W-typed are more general than CFGs: CFGs are
limited to a finite number of non-terminals and a finite number of rules, but indexed W-
types can take e.g. A = N for infinite non-terminals or B(a) = N to give infinite rules for
non-terminal a. Heck, even the right-hand side of a rule can have infinite non-terminals
if we take C(a, b) = N. Indeed, [6] mentions that indexed W-types could be used to
“represent the context-sensitive parts of a language”.

TODO: Apparently [6] §4 defines indexed W-types from W-types. They give a cita-
tion to a more formal definition and proof, but unfortunately, I can’t find that paper on
the internet (not even a citation!) There are also rumblings of extentionality or homotopy
requiring alterations to the sense of the derivation. On the other hand, deriving W-types
from indexed W-types is so straightforward it’s hardly remarked on (just set the index
set to 1). It’s tempting to take indexed W-types as primary to the theory at that point.

9.5 TODO: unsorted inductive type stuff

TODO: mutual inductive families reduce to W-types; how about inductive-inductive
types? what are inductive-recursive types?

10 Identity Types

Identity types (also called equality types[2]) are a key ingredient for formalizing
mathematics, and thereby also for constructing those objects in dependently-typed pro-
gramming languages.

a =A a
′ [2][8]

I(A, a, a′) [5]
IdA(a, a′) gambino-hyland 2004

If an identity type is inhabited, it is at least inhabited by the reflexive element. In
homotopy type theory, there may be additional distinct inhabitants, but we leave that
for §10.3 (TODO: I think other type theories purposely trivialize the path space).

reflx [8]
r [5]

An element of an identity type is also called an equality proof after the Curry-Howard
Isomorphism.

I find that using the homotopy interpretation of identity types is less verbose.1 An
identity type is called a path space, and its elements are paths. This puts the focus

1Compare “given an element of an identity type” or “given an equality proof” vs. “given a path”, and
then just try not to think about any marginally more interesting statement.

30

squarely on paths, but to even name a path p : x =A y, we must identify the topological
space (or just space) A we are working in as well as two endpoints in that space x, y : A.
This parameterization by space and endpoints is why identity types are manipulated as
type families Id(_,_,_) : (A : U)→ A→ A→ U with three indices.

For most types I program with, the corresponding topological space is what I might
call a “dust”: a set of disconnected single points. When working with types like Z or Q
represented as quotient sets, I visualize the corresponding space as a set of disconnected
spheres (or balls): each distinct representation is a distinct point on a sphere, and if
two representations are equivalent, then they are on the same sphere. I’ve yet to find
a programing purpose for more complex topological spaces (e.g. disconnected donuts).
These visualizations are a bit incorrect however; in the actual spaces corresponding to
types, every identity path is a closed loop. Nevertheless, when considering one point
(or both) as free to move, the metaphor works; it is when we consider paths with both
endpoints fixed (as in paths between paths) that it breaks down, since two paths might
take very different (i.e. not homotopic) routes (i.e. through a different sequence of holes
TODO: winding number counts!?).

Now that we have a handle on how to form, introduce, and visualize identity types,
how do we eliminate them, and what do we get out of it? The induction principle for
identity types (called path induction in the homotopy interpretation) allows us to take
a property that holds for refl and turn it into a property that holds for all paths. In
other words, to prove a fact about all paths, it is sufficient to prove it for the null path
at some unknown point (i.e. for all null paths); induction then allows us to drag around
one end of the null path (stretching the path behind it) while maintaining that property.
Compare in =-elim the types for f and ind= f , where we start with a function of a
point that gives a property ξ of the null path ξ a a refl, and end up with a function of
a general path (and its endpoints) that gives the correspondingly general result ξ x y p.
More tersely, “Thanks to path induction, that a property holds for refl is sufficient for it
to also hold for all paths.”

ξ :
∏
x,y:τ

(x =τ y)→ U f :
∏
a:τ

ξ a a (refl τ a)

Γ `
ind= f :

∏
x,y : τ
p :x=τy

ξ x y p
(=-elim)

FIXME: I should have ξ an an argument, since without it, I think typechecking is unde-
cidable in general. A more ergonomic presentation would make the endpoint parameters
(first two arguments) implicit. Path induction would then look more like other induction
principles, where the result family is indexed by an element of the type we say we are
inducting over. I just think it’s too early now to start hiding details if the student wants
to be confident in eliding arguments later: I want to see just how boring it is to specify
these arguments for a little while before forgetting about them, and then it’ll be easy to
fill them in when I want to check my work later. After all, the intuition here is not as
obvious as for the notion of sets.

31

FIXME: move this, but just for completion, here’s the principle with implict args:

ξ : (x = y)→ U f :
∏
a:τ

ξ{a,a} refl{τ,a}

Γ `
ind={τ} f :

∏
p:x=y

ξ p

Without identity types, the only notion of equality we had was judgmental equality,
which is meta-theoretic. Once a type theory has identity types, we can now manipulate
equality (specifically propositional equality) inside of the theory and prove facts about
equality. The intriguing thing about identity types is that, given only (propositional)
reflexivity, we can derive all the basic facts of (propositional) equality like symmetry
(ex. 1) and transitivity (TODO: make a proof), as well as more advanced facts like
function applicativity (TODO (x = y) → (f x = f y), [8] lemma 2.2.1) as opposed
to generative (i.e. type theory is functional, not imperative), or the indiscernibility of
identicals (TODO [8] lemma 2.3.1, which is the generalization for dependent functions).
(TODO: I think these properties will be indispensible, but can I point at some examples?)

TODO: Let’s say we have a point x : A and a function f : A → B. If we now get
another point y : A, and a proof that x =A y, then it stands to reason that f(x) =B f(y).
This is what [8] calls action on paths (among other things), but which I like to think
of as “functions are pure”. We can prove this easily by path induction:

ap : ∀
A,B:U

(f : A→ B)→
∏
{x,y:A}
p:x=Ay

f x =B f y

apA,B f
def=

let ξ : ∀x, y. (x =A y)→ U
ξ

def= �
in ind=,ξ (� : ∀a. ξ a a refla)

def=
let ξ : ∀x, y. (x =A y)→ U

ξ x y _ def= f x =B f y

in ind=,ξ (� : ∀a. ξ a a refla)

def=
let ξ : ∀x, y. (x =A y)→ U

ξ x y _ def= f x =B f y

in ind=,ξ (λaA.� : f a =B f a)

def=
let ξ : ∀x, y. (x =A y)→ U

ξ x y _ def= f x =B f y

in ind=,ξ (λaA. reflf a)

Now presumably even if we use a dependent function F : x:A → B x, we should still
have F x = F y whenever x =A y. However, what type τ should we infer for the
equality F x =τ F y? Since F x and F y may be non-equal (when x, y are non-equal,

32

we can make no valid inference and our desired result F x = F y is illegal stated in
this way. To use this, we will need some scaffolding which HoTT calls path transport,
but which they also note is a restatement of Leibniz’ Indiscernibility of Identicals.
Logically, if we know that x = y, and we know F (x) holds for x, then it only makes sense
that we should also know that F (y) holds. In type theory, this intuition is a function
x = y → F x→ F y.

xport : ∀
A,B:U
x,y:A

∏
F : (a:A)→B a

(x =A y)→ F x→ F y

xportA,B,x,y F px=Ay def=

let ξ : ∀a, a′. (a =A a
′)→ U

ξ
def= �

I :
∏
{x,y:A}
p:x=y

ξ x y p

I
def= ind=,ξ (� : ∀a. ξ a a refla)

in I x y p

def=

let ξ : ∀a, a′. (a =A a
′)→ U

ξ a a′ _ def= F a→ F a′

I :
∏
{x,y:A}
p:x=y

ξ x y p

I
def= ind=,ξ (� : ∀a. ξ a a refla)

in I x y p

def=

let ξ : ∀a, a′. (a =A a
′)→ U

ξ a a′ _ def= F a→ F a′

I :
∏
{x,y:A}
p:x=y

F x→ F y

I
def= ind=,ξ (λaA.� : F a→ F a)

in I x y p

def=

let ξ : ∀a, a′. (a =A a
′)→ U

ξ a a′ _ def= F a→ F a′

I :
∏
{x,y:A}
p:x=y

F x→ F y

I
def= ind=,ξ (λaA. idF a)

in I x y p

def=

let ξ : ∀a, a′. (a =A a
′)→ U

ξ a a′ _ def= F a→ F a′

in ind=,ξ (λaA. idF a) x y p

HoTT also defines p∗ for when F can be inferred: p∗
def= λ{F}. xport F p. I believe

(TODO) this is Indiscernibility of Identicals, but it does not yet state that dependent
functions are pure. Here we can construct an arrow type, but what we want for dependent
function purity is an equality type. We are now equipped to restate and prove the purity

33

of dependent functions: instead of trying to relate F x = F y directly, we instead need
to rewrite one of the x or y in F x = F y, and to do this we will need to transport our
given x = y path. Where HoTT rewrote x, I will rewrite y as an exercise. What we get
is apd the dependent version of action on paths.

apd : ∀
A:U

F :A→U

(f : x:A→ F x)→
∏
{x,y:A}
p:x=Ay

(
f x =(F x) p∗ (f y)

)

: ∀
A:U

F :A→U

(f : x:A→ F x)→
∏
{x,y:A}
p:x=Ay

(
f x =(F x) xport F p (f y)

)

apdA,F f
def=

let ξ : ∀a, a′. (a =A a
′)→ U

ξ
def= �

in ind=,ξ (� : ∀a. ξ a a refla)

def=
let ξ : ∀a, a′. (a =A a

′)→ U
ξ a a′ p

def= f a =F a (� : F a′ → F a) (f a′)

in ind=,ξ (� : ∀a. ξ a a refla)

def=
let ξ : ∀a, a′. (a =A a

′)→ U
ξ a a′ p

def= f a =F a (xport F (� : a′ =A a)) (f a′)

in ind=,ξ (� : ∀a. ξ a a refla)

def=
let ξ : ∀a, a′. (a =A a

′)→ U
ξ a a′ p

def= f a =F a (xport F p−1) (f a′)

in ind=,ξ (� : ∀a. ξ a a refla)

def=

let ξ : ∀a, a′. (a =A a
′)→ U

ξ a a′ p
def= f a =F a (p−1)∗ (f a′)

in ind=,ξ (� : ∀a. f a =F a (refl−1
a)∗ (f a))

(refl−1
a)∗ (f a)

def= (ind=(λaA. idF a) refl−1
a) (f a)

def= (ind=(λaA. idF a) refla) (f a)
def= idF a (f a)
def= f a

apdA,F f
def=

let ξ : ∀a, a′. (a =A a
′)→ U

ξ a a′ p
def= f a =F a p

−1
∗ (f a′)

in ind=,ξ (� : ∀a. f a =F a f a)

def=
let ξ : ∀a, a′. (a =A a

′)→ U
ξ a a′ p

def= f a =F a p
−1
∗ (f a′)

in ind=,ξ (λaA. reflF a)

34

We can also see that ap is a special case of apd: apA,B f
def= apdA,constB f because we can

compute xport (const B)
def= idx=By. At least I think that reasoning is solid; HoTT throws

a lot of symbols at it.
I think the thing that freaks me out about path induction is that it’s so hard to

imagine a reasonable inductive body that doesn’t work. I mean, if your ξ actually
uses its arguments to construct a path, how can passing x, x, refl fail? I suppose you
can’t do silly things such as: assuming z is some fixed point, I wouldn’t (in general) be
able to construct something of type (λx, y, px=y. x = z) x x refl. On the other hand,
there are some silly things we can do, like not depend on the path in the result, e.g.
ξ 7→ λx, y, p. x+ 1 :

∏
x,y:N; p:x=y N. I just don’t know what that gives us that’s useful.

10.1 TODO: Higher Inductive Types

TODO: higher inductive types (and quitient inductive types, higher inductive-inductive
types, and so on). Kaposi’s slides has a good list of these variants

TODO: is there a way to define graphs out of trees by identifying the results of
following paths through the tree, and then also identifying elements by change of root?

10.2 TODO: Heterogeneous Equality

TODO: Idris uses this, but where is it in theory? The Idris docs gave an example of
where it is needed, but IIRC it’s not needed if one uses the full inductive principle rather
than just the recursion principle.

10.3 TODO: Non-trivial Path Spaces

TODO: Until I can find some use for, say, S1 in programming, I think the types of
homotopy theory are outside the scope of this work.

11 TODO: Extensionality

This seems to be a philosophically-motivated feature, with correspondingly philosophical
boundaries. The hope is that we can formulate mathematics in such a way so that “it is
not what we are, but what we do, that defines us [mathematical objects].” (TODO: cite
that audience member from one of the Altenkirch talks). As far as computer science is
concerned, extensionality corresponds to our ability to hide the details of implementation
(representation) behind an abstract interface.

The thing that gets me I think is that even though HoTT introduces new ways
to obtain equality proofs (univalence axiom prime among them), it nevertheless only
requires the reflexivity case path induction. With that, what even is the computational
meaning of path induction?

what is the axiomatic difference between extensional and intentional type theory.
what consequences does either choice have?

35

https://www.youtube.com/watch?v=bNG53SA4n48 puts more fuel on the fire of “why
are intensional/extensional used in so many different ways?”

Extensional vs. Intentional has a few meanings: function extensionality vs. univa-
lence vs. Axiom K/K-rule/uniquenes of identity proofs (UIP). I think function extension-
ality is just the η-conversion rule (and likewise η for pairs would be pairing extensionality
and so forth). The key feature of an intensional type theory is that judgmental equality
only holds between terms that have syntactically identical normal forms. An extensional
type theory includes a (bidirectional?) reflection rule such as Γ ` x=Ay

x≡y:A so that any
proof of equality can be replaced by reflexivity (thereby it cannot capture extentionality
of types https://www.youtube.com/watch?v=hD222LRaP8M... visible confusion). The
theory HoTT presents is (based on?) an intensional one, which you can apparently see
from the definition of its identity type; see the notes from [8] ch 2. The notes state the
very terminological-confusion-revealing idea that univalence, which is an extensionality
property only admissible in intentional type theories, is more extensional than adding
extensionality to type theory!?

Univalence is extensionality of the universe(s) similar to function extensionality.
I tend to include η-conversion in my calculi; it just makes sense that deconstructing a

constructor (eliminating an introduction) does nothing. Apparently though, extension-
ality makes type-checking undecidable somehow.

Altenkirch in https://www.youtube.com/watch?v=hD222LRaP8M defines:

Definition 2. The Principle of Extensionality Given two objects a, b : A, we can either

• prove them equal, or

• find a property which distinguishes them without using propositional equality.

One must be careful with this principle that the distinguishing should come before cre-
ating notions of propositional equality in any of its forms, including encodings. Okay,
Altenkirch walks it back a bit and says it’s an approximation only, since the attendees
are poking so many holes in it. The point he’s really trying to get as is that objects
should be black boxes: you are not allowed in type theory to disassemble the code of
a function. That is, two mathematical objects are the same when they have the same
behavior, not only when they have the same description.

Set theory is intensional because all you have to do is talk about the elements: given
two encodings of naturals in ZF, one can distinguish them by asking ∅ ∈ 2 for example.
Intentionally-defined objects are those where their identity is consumed by their concrete
description. Since infinite objects often have differing but equally-good descriptions,
extensionality is particularly important there. Functions are one sort of infinite object
and have received a lot of attention. In type theory, another kind of infinite object is
types; extensionality for types is the univalence axiom: an answer to “When are two
types equal?”.

36

https://www.youtube.com/watch?v=bNG53SA4n48
https://www.youtube.com/watch?v=hD222LRaP8M
https://www.youtube.com/watch?v=hD222LRaP8M

12 TODO: Logical Types

Although we can understand types as propositions, we have yet to show an exact corre-
spondence with the way logic handles propositions.

12.1 TODO: Negation

12.2 TODO: Propositional Truncation

13 TODO: Constraint Types

TODO: typeclasses, row-polymorphism, algebraic effects

14 TODO: Syntactic Sugar

TODO nice let syntax
letxτii = ei in e′

4
= (λxτii . e

′) ei

let
f : τ → σ

f x = e

in e′

TODO pattern matching

Part III

Case Studies
This part examines some well-recognized type theories. This was created as a place to
experiment with my personal selections for notation, but it also serves as a “travel guide”
for major ideas and presentations in the literature.

TODO: CIC as a foundation for Coq. In fact, the “cpdt book" (use google) has
pointers for interesting properties.

15 TODO: Well-Known Types

TODO: bool, nat, Fin n, list, length-indexes list aka vector, binary tree, rose tree, stream
and proper stream, syntax/binding trees,

37

16 Pure Type Systems

Definition 3. A Pure Type System (PTS) is a deductive system parameterized by a
triple (S,A,R) of sorts, axioms A ⊆ S2, and rules R ⊆ S3.

i) Allowing X to stand for some countably infinite set of variables, the syntax of a
PTS is given by:

x, y, z ∈ X
s ∈ S

e, f, τ, σ, t ::= s
| x
| λx:τ . e
| f e
| (x : τ)→ τ ′

ii) Its reduction relation is the smallest relation containing

(λx:τ . e) t −→ [x 7→ t]e

and (if an extensional PTS)
λx:τ . e() x −→ e

The reflexive, transitive, symmetric, compatible closure of the reduction relation is
the congruence relation

t ∼= t′

iii) Then typing derivations are the smallest natural deduction system generated by
(s1, s2) ∈ A

Γ ` s1 : s2
(Sort)

A : s
Γ ` x /∈ dom(Γ)

x : A ` x : A
(Var)

A : s t : τ
Γ ` x /∈ dom(Γ)

x : A ` t : τ
(Weaken)

x : τ ` e : σ (x : τ)→ σ : s
Γ `

λxτ . e : (x : τ)→ σ
(Abs-Intro)

f : (x : τ)→ σ t : τ
Γ `

f t : σ
(Abs-Elim)

τ : s1 x : τ1 ` σ : s2
Γ ` (s1, s2, s3) ∈ R

(x : τ)→ σ : s3
(Prod)

e : τ τ ′ : s
Γ ` τ ∼= τ ′

e : τ ′
(Conv)

I’m tempted to write Var and Weaken as a single rule Γ ` x : Γ(x) However, this
would allow ill-formed types to appear in the context. Perhaps this is ultimately not an
issue, but I don’t have a proof. The second premise of the conversion rule might also be
dropped, assuming that congruence is sound.

38

16.1 PTSs Subsume the Lambda Cube

The systems of the Lambda Cube can be presented as pure type systems where the sorts
are types and kinds (S = {?,�}, resp.) and A = {(? : �)}. Each of the systems has at
least (?, ?, ?) ∈ R, and each feature of the cube adds an additional rule: i) polymorphism
is (�, ?, ?), ii) type operators is (�,�,�), and iii) dependent types is (?,�,�).

A good presentation of this is given in [3]. In §3, Barendregt presents PTSs under the
name generalized type systems; I have not seen this name used elsewhere. Be wary
of Barendregt replacing s3 by s2 in the typing inference for dependent function spaces
when discussing the lambda cube; it’s good enough for the lambda cube, but not PTSs
in general.

17 TODO: Calculus of Inductive Constructions

18 TODO: Martin-Löf Type Theory

19 TODO: Homotopy Type Theory

20 Proofs in the Theory

Example 1. As an example of using path induction, let’s prove that whenever we have a
proof of x = y, we can also prove y = x. In the theory, the proof is

sym=
def= λAU . ind= (λAU , xA. refl A x) :∀

A:U ;x,y:A

(x =A y)→ (y =A x)

Since this term is little more than a use of ind=, we can informally abbreviate such a
proof to “by induction”. To check that our proof is correct, all we have to do is show that
this term has the type we asserted by giving a typing derivation. The typing derivation is
given in fig. 1. To reduce repetition in the derivation, we’ve made use of a couple helper
definitions:

Sym=
def= λAU , xA, yA, px=Ay. y =A x

s
def= λAU , xA. refl A x

which we instantiate for the =-elim rule’s ξ, f respectively. Indeed, a slightly less terse
informal proof can be “by induction using s at Sym=”.

Part IV

Typesetting Tricks
FIXME := is too long, try something like :=

39

FIXME: This derivation has shown me where I can eliminate arguments from primitives
like ind. I think all the rules need a thorough proof to see where I can abbreviate axioms.
(At least abbreviate in theory; if type checking is going to be decidable, I might need
more annotations.)

1 A : U

2 x : A

3 y : A

4 p : x =A y

5 y =A x =-form, 1, 2, 3

6 λxA, yA, px=Ay. y =A x :
∏
x,y :A

(x =A y)→ U Π-intro

7 Sym= A :
∏
x,y :A

(x =A y)→ U definition

8 x : A

9 refl A x : x =A x =-intro, 1, 8

10 refl A x : (λxA, yA, px=Ay. y =A x) x x (refl A x) multiple β−1

11 refl A x : (Sym= A) x x (refl A x) definition and β−1

12 λxA. refl A x :
∏
x:A Sym= A x x (refl A x) Π-intro

13 s A :
∏
x:A Sym= A x x (refl A x) definition and β−1

14 ind= (s A) :
∏
x,y :A
p :x=Ay

Sym= A x y p

=-elim, 7, 13

15 λAU . ind= (s A) :
∏

A :U ;x,y :A
p :x=Ay

Sym= A x y p

Π-intro

16 sym= :∀
A:U ;x,y:A

(x =A y)→ (y =A x) definition and β

Figure 1: Typing derivation for Path Symmetry

40

• There can be too much space between an equals sign and its subscript, especially
if the letterform has a forward slant at the front. Use \! to squeeze them back
together.

x =_{\!A} y x =A y
x =_{\!B} y x =B y

c.f. x =_\tau y x =τ y
\fun{p^{x =_{\!A} y}}e λpx=Ay. e

c.f. \fun{p^{x =_A y}}e λpx=Ay. e

• A script-size colon can be squeezed by its neighbors. Use \scrcolon to force the
space.

A:\U A : U

\prod_{A\scrcolon\U}x=y
∏
A :U

x = y

c.f. \prod_{A:\U}x=y
∏
A:U

x = y

• Commas in script size can end up with wonky spacing; FIXME: I don’t know what
to do about it realistically.

\Pitype{x,y}{A} B
∏
x,y:AB

\Pitype{x\mkern -1.4mu ,\mkern 1.4mu y}{A} B
∏
x,y:AB

• Subscripts in display mode can get very long. Use \mathclap to collapse the space
before and after, but additional spacing might be needed to avoid neighbors.

\prod_{x:\tau,y:\sigma}x=y
∏

x:τ,y:σ

x = y

\prod_{\mathclap{x:\tau,y:\sigma}}x=y
∏

x:τ,y:σ

x = y

\prod_{\tau:\U}\;\;
\prod_{\mathclap{x:\tau,y:\sigma}}x=y

∏
τ :U

∏
x:τ,y:σ

x = y

• Subscripts underneath can get jammed against the bottom of a big operator.
\substack alleviates this.

\prod_{a \in s}
∏
a∈s

\prod_{\substack{a \in s}}
∏
a∈s

Part V

TODO: Unsorted
Higher-order function: a function which takes one or more functions as arguments.
Higher-order types: allows for the definition of (non-nullary) type operators a.k.a. type

41

constructors. Higher-kinded: type variables are allowed to range over type operators as
well as simple types. Higher-rank: quantifiers are allowed to appear to the left of function
arrows.

In axioms for typing judgments, threading the context around is often boring and
obscures the substance. Instead, let’s put the shared part on the right when possible:

f : A→ B a : A
Γ `

f a : B
(Abs-Intro)

and extend it in each premise/conclusion as needed:

x : A ` e : B
Γ `

λx. e : B
(Abs-Elim)

Though to be honest, we might not even need to write the context most of the time, at
least once we get used to the notation. There are some rules that do need it, though:

e : A T : τ
Γ ` when x /∈ dom(Γ)

x : T ` e : A
(Weaken)

And I haven’t examined if there’d be any confusion between omitting a context vs.
specifically having no context. TODO: formally, when we have a rule of the form Γ `
∆1`J1 ...

∆`J , this stands for Γ,∆1`J1 ...
Γ,∆`J .

Contexts have some interesting notations. How do you write empty context? ε, ε, �, ∅,∅,
or with no ink at all? How to you append to contexts? A comma, ∪, +? How do you
catenate contexts? A comma, mere adjacency, ∪? Contexts in general are ordered finite
maps, but outside of dependent types, order is often irrelevant. How do you check the
domain of a context? x ∈ Γ or x ∈ dom(Γ)? How to you lookup a binding from a
context? x : A ∈ Γ or Γ(x) = A? When Γ(x) = A, can you write Γ(x) as a synonym for
A?

TODO: define abstract syntaxes by a BNF-like notation
TODO System U, UU−, and Girard’s paradox with proof http://www.cs.cmu.edu/

~kw/scans/hurkens95tlca.pdf
TODO: typing judgments; most everyone uses a : A, but I’ve seen a ∈ A[2]
TODO: normal forms can also be called canonical elements[5]
TODO: Telescopes from §2.5 of Dyber Inductive Sets and Families
TODO: It suddenly seems to me that the Y-combinator just smashes stuff with a

hammer to get recursion. If you know what sort of thing you’ll be recursing (or performing
induction) over, the the various indσ principles from dependent type theory illustrate so
much more delicate structure hiding behind Y.

TODO: I want to come back to ornaments at some point, as they seem pretty cool
TODO: missing arguments f(_, x), f(−, x)), f(·, x)
TODO: Is there anything for, say, defining binary operations on an abstract type?

Like, let’s take two implementations of Z: one representing ints as a − b; the other as
zero, the decrement of a non-positive, or the increment of a non-negative. Then, we
define the integers proper as an existential type, and show we can pack the two integer
representations appropriately. What eliminators should the existential expose? How can

42

http://www.cs.cmu.edu/~kw/scans/hurkens95tlca.pdf
http://www.cs.cmu.edu/~kw/scans/hurkens95tlca.pdf

we add more eliminators after the fact? We’ll want multiple eliminators because some
operations may be more efficient with one eliminator than another (i.e. addition is faster
on a− b representation, but determining sign is faster on an inc/dec representation). Is
there a way to decide whether to press on with an inefficient representation rather than
just use an isomorphism? I’ve stated this for integers, but complex numbers are a classic
case as well.

TODO: Lean allows parameter types to be listed as if they were arguments, rather
than sloughing all the parameter types to the lhs of some arrows.

comp {a b c : Type} (b -> c) (a -> b) :: a -> c
comp f g x = g (f x)

This is very handy, and kinda related to transforming between indfx : τ conclusions and
indf : (x : σ)→ τ conclusions.

TODO motive and methods for induction principles: what are they? DIY Type
Theory talks about major and minor premises.

TODO: Strong normalization is handy because we don’t have to worry about evalu-
ation strategy: “given an arbitrary term, any reduction sequence ends in a normal form”.
Weak normalization still rules out non-terminating programs, but not necessarily non-
terminating evaluators: “given an arbitrary term, there is at least one reduction sequence
that ends in a normal form”. In between there should be some additional notions: “given
an arbitrary term, there is a reduction sequence that results in a normal form which
is accessible given a local reduction strategy”. By reduction strategy I mean that the
syntactic form of a term uniquely identifies which rewrite rule is used, and by local I
mean that there are a finite number of syntactic patterns (possibly involving determinis-
tic side-conditions) that are searched for. I’m pretty sure “reduction strategy” is actually
something related in the literature.

TODO: notation for named holes, since they’re useful in proof assistants
TODO: it seems like dependent pairing should be associative, but I doubt the notation

supports it. Consider
a : A× (b : B(a)× C(a, b)) versus

(a : A× b : B(a))× C)

What if I could develop rules to make such notation sensible?
TODO: Is there a way to implicitly carry if-then-else evidence through to the branches?

arrIndex :: (arr : Array n a) -> (n : USize) -> {inBounds :: n < arr.length} -> IO a
arrIndex = ...
main = do

xs <- arrayFromList [1,2,3,4,5]
n <- readUSize -- i.e. from the command line
if (n < xs.length)

then print (arrIndex xs n) -- the term ‘n < xs.length‘ should not only give a ‘Bool‘, but also a proof of the type ‘n < xs.length‘
else putStrLn "Out of bounds" -- the proof term from the then-branch os not available here

43

I already was thinking in terms of class Truthy t where toPred :: a -> Bool, but
what about a proofy typeclass

class Proofy t where
type Proves t :: Prop
toBool :: t -> Bool
toProof :: (x :: t) -> (toBool x = True) -> Proves t

where I would want the proof to always be erased before runtime.
TODO: “Type Theory base on Dependent Inductive and Coinductive Types” by Ba-

sold and Geuvers claims to derive Martin-Löf type theory with only the rules for W- and
M-types.

TODO: Speaking of normal forms, note that normal forms are not necessarily values
(though closed normal forms are, I think). It reminds me of atoms used in A-normal-form,
which can be values or single variables.

TODO: Type theories have primitive types and type constructors. Primitive types
may (and usually) add information: 0 and 1 do not add information, since entropy is
zero i.e. ln(numberofinhabitants), but as soon as we get to 2 a.k.a. booleans/bits, we
start to add information. The entropy of universes is interesting because their entropy
depends on the range of primitive types otherwise defined. Π-, Σ-, +-, W-, M-, and
=-types are all constructors: they only move around existing information.

TODO: there are some really subtle fundamental choices about type theories that
significantly ipact its relations to category theory and computability and constructive
mathematics. Predicativity has at least a couple different meanings. Propositional equal-
ity vs. judgemental equality rules. These can impact decidability of type checking and
the more subtle idea of determining a mathematical object uniquely.

TODO: Each type in type theory comes with formation, introduction, elimination,
computation, and equality rules. The axiom

t : τ t ∼= t′

t : τ ′

is convenient for proofs because it allows the proof-checker to expand definitions for us
automatically (e.g. 0+x ∼= x by expanding the definition of +, so the proof of 0+x = x is
simply refl). However, congruence rules have no directionality, which means a naïve type
checker might get lost stubling around various equivalent types trying to find a match.
However, if we specify congruences from a (confluent) reduction relation instead, the
typechecker only really has one path to go down, and if the relation is strongly normalizing
then we can see that proof checking will terminate. (TODO: honestly, I’m not sure if
termination is all it’s cracked up to be. a proof might require a determination a solution
to a busy-beaver problem, which is usually indistinguishable from non-termination for
practical purposes. If we were only going to load and run a certified program, then we
would still need the typechecker to verify the certification proof within a timeout, at
which point it seems we may as well allow non-termination) I’m not entirely sure about

44

equality rules, but I think they specify η-conversion reductions, but if so, then there is an
obvious direction of simplification and adding them to the theory should not compromise
strong normalization.

TODO: The entries in gray are only rarely attested, and then usually occur alongside
non-standard relation symbols. The entries in red I have not seen attested—probably
because there’s no real need for them—but nevertheless seem reasonable to me.

Transitivity no yes
Reflexivity no yes no yes

Symmetry Congruence

no no −→ −→? −→+ −→∗, −�, ↓
yes =⇒⇒, −�

yes no ←→ ≡, =
yes ∼=,'

(I’ve also seen compatibility for congruence, but wiki prefers congruence except in the
discussion about Felliesen’s contribution to small-step semantics.) I saw (the ugly) =
>> in “Abstract Types have Existential Types” (except there, they use ⇒ for one-step
reduction), which I’ve tried to pretty up as =⇒⇒. Barendregt takes compatibility as
a prerequisite and uses � for reflexive-transitive(-congruent by assumption) closure,
but this doesn’t generalize to the plain transitive closure which is sometimes used in
understanding evaluation (e.g. propositions like “either t is in normal form, stuck, or
there exists a t′ such that t ←→ t′”) . Texts seem to expand relations with closures
along the hierarchy transitive > reflexive > symmetric > compatible, unless compatibility
is either assumed or ignored.2 I saw ' in Ulf Norell’s thesis.

TODO: While I’m at it, here are some relation symbols

Reflexivity no yes
Transitivity no yes no yes

Symmetry Totality
no — R
yes — ≈ =,≡,∼=,'

anti no ∈ ≺,⊂ �,⊆
yes < ≤,6

antiop no 3 �,⊃ �,⊇
yes > ≥,>

Other stuff: <
TODO: When working with HM inference variants, we treat types as being more or

less specific/polymorphic than other types. I like the example from “Seven Sketches in
Compositionality” where since a tiger is a type of mammal, we say “tiger ≤ mammal”. In
this vein, I’d like it if these theories first showed that types form a partial order, and use
the version which can be read as “is a subtype” rather than “is less polymorphic”. After

2I can’t believe I’ve actually ended up using linguistics here, but I really shouldn’t be surprised.

45

all, a subtype (e.g. an instance of a polymorphic type) contains “fewer” elements than
its supertype.

TODO: pattern matching as syntactic sugar. Consider a complex pattern match like

case eof {Left Zero⇒ e1

;Left (Succ x)⇒ e2

;Right x⇒ e3

}

which is perfectly common in wild languages, but annoying to formalize in type theory
because it introduces a new syntactic form (patterns). However, it can be translated into
a type theory with only single-constructor matching (which TODO we have seen is just
syntactic sugar for induction). In the simplest translation (i.e. without using delimited
continuations) however, we will have to be very careful about variable binding. To begin,
we express each arc as a function of the variables bound in the source code; the variables
bound in the translation’s arcs will have to be chosen fresh not only with respect to the
context and that arc’s expression, but also between all the arcs. We will use x̂i,j for
variables:

case eof {Left Zero⇒ e1

;Left (Succ x̂2,1)⇒ (λx. e
(x)
2) x̂2,1

;Right x̂3,1 ⇒ (λx. e
(x)
3) x̂3,1

}

We can see now why it is useful to be able to annotate metavariables with their allowed
free variables: we can be sure just by looking at the syntactic scheme that none of the
x̂i,j appear in any of the ei, even though the syntax would bind them there. To save
ink, we will define each f̂i

def= λx. e
(x)
i for the appropriate choice of xes. Our next step

is to push down any patterns we find nested directly under the top-level discriminator,
arranging the various f̂i appropriately. We will need even more fresh variables here to
bind the intermediately-matched values; I will use ŷi.

case eof {Left ŷ1 ⇒ case ŷ1 of {Zero⇒ f̂1

; Succ x̂2,1 ⇒ f̂2 x̂2,1

}
;Right x̂3,1 ⇒ f̂3 x̂3,1

}

In this case, each deconstructor was enumerated explicitly, but when some are left implicit
by wildcard patterns, we may find some sets of arcs duplicated.

case eof {Left Zero⇒ e1

;x⇒ e2

}

;

46

case eof {Left ŷ1 ⇒ case ŷ1 of
{Zero⇒ f̂1

; case eof {x̂2,1 ⇒ f̂2 x̂2,1}
}

; x̂2,1 ⇒ f̂2 x̂2,1

}
Of course, we could eliminate the duplication with a simple let- or where-binding.

TODO: Ulf Norell’s thesis is a good source for some very introductory material and
its citations: especially telescopes and a history of dependently-typed programming lan-
guages

TODO: universe level reconstruction strikes me as being the same idea behind MLF

what can get principle types even in the presence of subtyping.
TODO: my opinion is that the syntactic approach to type theory is perfectly fine,

and in the case of designing a practical programming language, it is to be preferred
because programmers interact with their code on the level of reading the source code—
i.e. syntactically

TODO: I’d like to introduce mutually-recursive judgments using something like a call
graph

TODO https://www.youtube.com/watch?v=Ft8R3-kPDdk
TODO: in set theory, the elements come first, and then the sets. In type theory,

the elements and the sets always come together and are inseparable. https://www.
youtube.com/watch?v=beuLVB-fNJg. Thus, type theory ficuses on structural properties
rather than on properties of representations: mathematical objects are given by what we
can do with it rather than how it is defined. “It’s not what we are underneath but what
we do that defines us.”

TODO https://www.youtube.com/watch?v=beuLVB-fNJg: Let’s say we have

isIso(fA→B)
def=(g : B → A)×
gf :(∀x. (g ◦ f)(x) =A x)×
fg:(∀y. (f ◦ g)(y) =B y)×
(coh : ∀x. (fg ◦ f)(x) =f(x)=Bf(x) (f ◦ gf)(x))

(I’m not sure about the type inference I’ve done in that last clause. I think that the f in
f ◦ gf has to be a version lifted over identity types.) The last clause is coherence (which
I’ve seen somewhere), and is expresses that when we want to say that f(g(f(x)) = f(x),
there are two ways of doing that:

use f ◦ g = id︷︸︸︷
f(g(f︸︷︷︸

use g ◦ f = id

(x))) = f(x)

but we could also have formulated coherence from the other side, that g(f(g(y))) = g(y).
Together, these two coherence properties are an adjunction in category theory. Just one

47

https://www.youtube.com/watch?v=Ft8R3-kPDdk
https://www.youtube.com/watch?v=beuLVB-fNJg
https://www.youtube.com/watch?v=beuLVB-fNJg
https://www.youtube.com/watch?v=beuLVB-fNJg

gives a half-adjunction, but since the type theory operates in a sufficiently rich category,
we can get one from the other. If you state both however, you need to add more, even
higher-level coherence properties. Without coherence, you only have isomorphism of sets;
for type isomorphism in general, you must include coherence because not all equality
paths are identical. Apparently you need coherence exactly when you add univalence
A = B

def= A ' B, and I think the point is to rule out isomorphisms like flipping
booleans?

Cubical Type Theory is the “proper” implementation of HoTT: it gives a computa-
tional character to the univalence axiom (we don’t like axioms b/c they do not have
reduction behavior), and Cubical Agda is what Altenkirch likes as a real-world imple-
mentation.

Quotient inductive types formalize HITs that correspond to HoTT sets.
TODO: I want to prove that (f ◦ g = id) ⇐⇒ (∀x. (f ◦ g)(x) = x). The forward

direction is simple, but I wonder about the backward direction.
TODO:

¬¬(A+ ¬A) ≡ (¬(A+ ¬A))→ 0

≡ (¬(A+ (A→ 0)))→ 0

≡ ((A+ (A→ 0))→ 0)→ 0

≡ ∀AU . ((A+ (A→ 0))→ 0)→ 0

λAU . λp(A+(A→0))→0. ??? : ∀AU . ((A+ (A→ 0))→ 0)→ 0

Okay, it’s obvious that I need to take some notes on working with negations. We let
¬A def= A→ 0.

First, I’d like to define double negation introduction:

dblneg : ∀AU . A→ ¬A→ 0

: ∀AU . A→ ¬¬A
dblnegA(a)

def= λn¬A. n a

You might notice that this is just a specialized flipped apply. Then we can even prove
¬A ⇔ ¬¬¬A. The forward direction with λAU .dblneg¬A. The backward direction
requires a bit more creative use of double negation intro:

λA, x¬¬¬A. (� : ¬A) : ∀AU .¬¬¬A→ ¬A
λA, x¬¬¬A. λaA. (� : 0) : ∀AU .¬¬¬A→ (A→ 0)

λA, x¬¬¬A. λaA. x (� : ¬¬A) :
λA, x¬¬¬A. λaA. x (dblneg a) : ∀AU .¬¬¬A→ ¬A

At this point we’re done, but there is a “simplification” we can perform
λA, x¬¬¬A. λaA. x (dblneg a) ≡ λA, x¬¬¬A. λaA. (x ◦ dblneg) a

≡ λA, x¬¬¬A. x ◦ dblneg

48

Next, let’s get one of DeMorgan’s laws:

DM.distribNotOr : ∀AU , BU .¬(A+B)→ ¬A× ¬B
DM.distribNotOrA,B

def= λx¬(A+B). (� : ¬A× ¬B)
def= λx¬(A+B). 〈λaA. (� : 0), λbB. (� : 0)〉
def= λx¬(A+B). 〈λaA. x (L a), λbB. x (R b)〉

Now I have the tools to do what I was challenged by that Altenkirch talk to do:

λA.� : ∀AU .¬¬(A+ ¬A)

λA. λx¬(A+¬A). (� : 0) : ∀AU .¬(A+ ¬A)→ 0

λA. λx¬(A+¬A).
caseDM.distribNotOr xof
{〈a¬A, n¬¬A〉 ⇒ (� : 0)} :

λA. λx¬(A+¬A).
caseDM.distribNotOr xof
{〈a¬A, n¬¬A〉 ⇒ n a} :

Alternately, I could have (ab)used dblneg and uncurry to write

λA. λx¬(A+¬A). (uncurry dblneg) (DM.distribNotOr x)

λA. (uncurry dblneg) ◦DM.distribNotOr

I want to come back to HoTT Thm 3.2.2 and make the argument more formal. To start,
I think what it is saying is ¬∀AU .¬¬A→ A, and it does that by proving that rec2 12 02
is a type isomorphism (easy), and then it uses some homotopy fanciness to show that it
also isn’t an isomorphism, and from the two together we can derive 0.

TODO: I am most interested in the computation aspects. For example, it is impor-
tant that that typechecking be deterministic, because that means that the typechecker
terminates. Principle types matters because then there is no ambiguity in memory lay-
out. Confluence matters because then the order of optimization steps does not change
the answer. Eta-conversion matters because it eliminates a nilpotent stack frame. So,
what computational thing does Univalence get me?, or higher inductive(-inductive) types?,
extensionality?

TODO: In set theory, we work with two kinds of mathematical objects: sets and
propositions. Types are a generalization of both sets and propositions; therefore, there
is only one kind if mathematical object involved unless and until we restrict ourselves to
special cases of types. In set theory, elements exist “prior” to sets, and sets simply collect
those elements. In type theory, the elements and types are generated together, and an
element of one type cannot be an element of another (though by abuse of notation it
may appear so; e.g. a : A and a : {x : A | P (x)} for some mere proposition P0.

TODO: When HoTT mentions “it is sufficient to assume «inputs»are «thing»”, they
mean that the things are complete patterns matching the inputs.

49

References

[1] S. Awodey, N. Gambino, and K. Sojakova. “Inductive Types in Homotopy Type
Theory”. In: 2012 27th Annual IEEE Symposium on Logic in Computer Science.
2012, pp. 95–104. doi: 10.1109/LICS.2012.21.

[2] Roland Backhouse et al. “Do-it-yourself type theory”. In: Formal Aspects of Com-
puting 1 (Mar. 1989), pp. 19–84. doi: 10.1007/BF01887198.

[3] Henk Barendregt. “Introduction to generalized type systems”. In: Journal of Func-
tional Programming 1.2 (1991), pp. 125–154. doi: 10.1017/S0956796800020025.

[4] Ambrus Kaposi and András Kovács. “Signatures and Induction Principles for Higher
Inductive-Inductive Types”. In: Log. Methods Comput. Sci. 16.1 (2020). doi: 10.
23638/LMCS- 16(1:10)2020. url: https://doi.org/10.23638/LMCS- 16(1:
10)2020.

[5] Per Martin-Löf. Intuitionistic type theory. Notes by Giovanni Sambin. Vol. 1. Studies
in Proof Theory. Bibliopolis, 1984, pp. iv+91. isbn: 88-7088-105-9.

[6] Kent Petersson and Dan Synek. “A Set Constructor for Inductive Sets in Martin-
Löf’s Type Theory”. In: Category Theory and Computer Science. Berlin, Heidelberg:
Springer-Verlag, 1989, pp. 128–140. isbn: 354051662X.

[7] Benjamin C. Pierce. Types and Programming Languages. 1st. The MIT Press, 2002.
isbn: 0262162091.

[8] The Univalent Foundations Program. Homotopy Type Theory: Univalent Founda-
tions of Mathematics. Institute for Advanced Study: https://homotopytypetheory.
org/book, 2013.

50

https://doi.org/10.1109/LICS.2012.21
https://doi.org/10.1007/BF01887198
https://doi.org/10.1017/S0956796800020025
https://doi.org/10.23638/LMCS-16(1:10)2020
https://doi.org/10.23638/LMCS-16(1:10)2020
https://doi.org/10.23638/LMCS-16(1:10)2020
https://doi.org/10.23638/LMCS-16(1:10)2020
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book

	I General and Metatheoretic Notation
	Classes of Formal System
	Metavariables
	Multiple Metavariables
	Metavariable Comprehensions
	Specifying Constraints on Free Variables in the Metavariables

	TODO: Axioms and Proofs
	TODO: Substitution
	Sameness
	TODO: Abbreviations

	II Type Theory Notation
	TODO: Judgments
	Universes
	Cumulative hierarchy
	Type-in-type
	Special universes

	Fundamental Algebraic Types
	Functions
	Dependent Function Types
	Implicit Arguments and Parameters
	Chef's Choice: Functions
	TODO: Pair types
	TODO: Dependent pair types
	TODO: Tuple types
	TODO: Unit type
	TODO: Record types
	TODO: Choice types
	TODO: n-ary choice types
	TODO: Void type
	TODO: Variant types

	TODO: Recursion and Induction
	TODO: Recursive types
	Inductive Types
	TODO: Coinductive types
	TODO: Mutually Inductive Types
	After Peterson and Synek
	After Kaposi and Raumer
	TODO: Notes on indexed W-types

	TODO: unsorted inductive type stuff

	Identity Types
	TODO: Higher Inductive Types
	TODO: Heterogeneous Equality
	TODO: Non-trivial Path Spaces

	TODO: Extensionality
	TODO: Logical Types
	TODO: Negation
	TODO: Propositional Truncation

	TODO: Constraint Types
	TODO: Syntactic Sugar

	III Case Studies
	TODO: Well-Known Types
	Pure Type Systems
	PTSs Subsume the Lambda Cube

	TODO: Calculus of Inductive Constructions
	TODO: Martin-Löf Type Theory
	TODO: Homotopy Type Theory
	Proofs in the Theory

	IV Typesetting Tricks
	V TODO: Unsorted

