
1 of 24

COVID-19 Group Testing Optimization Strategies

Mengfan (Daisy) Chen, Jeffrey Chu, Ethan Dinh-Luong, Vincent Lee

Section B09

Mentor: Arya Mazumdar

I. ABSTRACT

The COVID-19 pandemic that has persisted for more than two years has been combated

by efficient testing strategies that reliably identifies positive individuals to slow the spread of the

pandemic. Opposed to other pooling strategies within the domain, the methods described in this

paper prioritize true negative samples over overall accuracy. In the Monte Carlo simulations,

both nonadaptive and adaptive testing strategies with random pool sampling resulted in high

accuracy approaching at least 95% with varying pooling sizes and population sizes to decrease

the number of tests given. A split tensor rank 2 method attempts to identify all infected samples

within 961 samples, converging the number of tests to 99 as the prevalence of infection

converges to 1%.

II. INTRODUCTION

COVID-19 rapid tests have been the primary method of identifying positive individuals

to slow the spread of the pandemic, but this process is inefficiently rate-limited by not only the

thousands of tests run each day, but also the resource cost to run these samples individually. Each

rapid test can take up to 6 hours to run in the laboratory[1], which can quickly be delayed based

on the sheer number of daily tests given each day. Instead of running individual tests, a

group-testing schema, proposed by Robert Dorfman during the Second World War, combined

multiple individual samples to form one cohesive pool that is tested once[2]. If a positive test is

returned, one test is wasted and the group would be retested again, but if a negative test is

returned, several tests are conserved as every member in the pool is labeled as negative.

Although this pooling method conserves tests, researchers are determining a way to

efficiently optimize testing strategies in an effort to reduce the number of tests while retaining

high accuracy. Such papers demonstrating algorithms such as Tapestry[3] and 2-Step Adaptive

Pooling [4] demonstrate two prominent pooling strategies: nonadaptive and adaptive pooling

schemes. In a nonadaptive scheme, the entire pooling strategy from start to finish is decided prior

to analyzing the samples, while in an adaptive pooling method, the pooling strategy changes

depending on the results of the prior results.

2 of 24

In addition, a graphing strategy was tested in this report. Because real COVID data is

limited, how credible is the result of this model on simulated data? If the model is tested on

actual data in the future, how different will this result be from the existing data result?

The most significant difference between simulated and real data is that all simulated test

data are independent: there is no connection between them. In other words, their chances of

being pooled and infected are unrelated. Obviously, in reality, this is untrue. Each person has

their own social circle and social network. When a person is infected, they are most likely to

infect someone within their social network. Unlike the simulated data where everyone is

independent of each other, the reality is that when a person is infected, the probability of

infecting a family member should not be the same as a randomly selected person outside their

social network. Therefore, a social network model of COVID-19 was created for more practical

model testing and training in this report. To combine network information with testing methods,

the network was analyzed to prioritize critical nodes and high-risk nodes for contracting

COVID-19.

In our project, we tried the SEIR infectious disease model (Figure 1) at first. This model

divides the population into four categories: Susceptible (S), Exposed (E), Infectious (I), and

Recovered (R) groups [6]. To explore this graphing strategy, we use degree centrality to assess

critical nodes, and a degree centrality testing method is used to find out the positives.

[Figure 1: Disease states of SEIR model]

To advance our project, we employed the extended-SEIR model which divided the

subpopulation Infectious group (I) into pre-symptomatic (Ipre), asymptomatic (Iasym),

symptomatic (Isym), and hospitalized (H) (Figure 1.1). We prefer extended model because this

takes into account the latent period of the virus and different transmission rates in different

symptomatic stages in Covid-19: the symptomatic individual has a different degree of contagion

3 of 24

than asymptomatic individual, and asymptomatic people, who do not have the symptom, will not

go into the hospitalized stage.

In this model, there are eight states of individuals in the spread of the disease: when a

person is exposed to the virus, they change from the susceptible state (S) to the exposed state (E).

When the virus develops in the body (Ipre) for a while (incubation period), they will be infected

and become a patient. However, the COVID-19 patient may develop symptoms (Isym) or not

(Iasym). Symptomatic patients with severity will be hospitalized (H) and will either recover (R)

or die (D). On the other hand, Mild patients will recover after a while.

[Figure 1.1: Disease states of extended-SEIR model]

Besides the infectious disease model, the community contact and demographic

connection is also considered in this project. The disease model is a good network for simulating

the spreading processes of the disease, but it fails to address the complex social connections

among different communities. For example, the level of contacts or connections within the

households should be different from that of out-of-household contacts, as household connections

are more intimate than others. Therefore the success rate of disease transmission should not be

the same in these two places. The success rate of transmission at home should be much higher

than that of other social places, like schools and workspaces.

To address this problem, a demographic model is employed in this project (Figure 1.2).

This model not only includes the community-level connections, but also other realistic

demographic properties like age-stratification and household sizes, calibrated with the US

demographic statistics. Moreover, this demographic model also generates separate layers of

4 of 24

network to mimic out-of-household regular contacts in different age groups. For example, there

is a separate contacting network for people whose age is between 10 and 19 which represents

secondary school community contacts. With these demographic information, combined with

infectious disease network information, we create a machine learning pooling strategy. The more

detailed explanation is discussed in the method section.

[Figure 1.2: Households and age group layers of the demographic model]

Another strategy explored in this report is a tensor pooling strategy. Tensors

(mathematical objects relaying arrays to the coordinates in space) are used in this method to

compute the pooling matrix of our samples. An example of this is using a tensor of rank 2 (a

matrix) with a sample size of 64. The tensor will be of size by) where n𝑐𝑒𝑖𝑙𝑖𝑛𝑔(𝑟 𝑛) 𝑐𝑒𝑖𝑙𝑖𝑛𝑔(𝑟 𝑛

is the number of samples and r is the rank of the tensor, thus creating a tensor with dimensions 8

by 8. By placing samples in order inside our tensor, each sample has a unique row and column

combination. Thus, we can consider each row and column as a pool within our pooling matrix.

III. METHODS

Pooling Strategies

To simulate COVID testing, a matrix-based analysis was used as the primary testing

strategy. Given a matrix denoting which samples belong to a pooled test, each row representing a

pooled test would contain either a 0 (the sample is not in the pool) or a 1 (the sample is in the

pool). If at least 1 person in this pool is COVID positive, the output-tested vector would return a

5 of 24

1, indicating the entire pool contains a positive sample. Conversely, a 0 indicated a negative

sample, where all samples in the group were “released” from testing as they are labeled negative

and were not considered positive candidates. In a nonadaptive strategy, this was all done in one

step, where all tests were run at the same time to determine its positive candidates. In an adaptive

strategy, tests were separated in steps, where the pooling strategies in proceeding steps changed

based on the prior result. In our method, an adaptive strategy follows that if a test is negative, all

samples within that row are removed from the tests, while all the remaining positive candidates

are tested once again but under different parameters given by the remaining sample size.

To ensure that samples were equally tested amongst the simulation, disjoint pools were

adapted into both the nonadaptive and adaptive strategies. Rather than randomly pick the

samples at the start of each test, all samples were shuffled, then divided according to pool sizes.

Given a pool size s, sample size n, and starting test number t = n / s, this guarantees that in the

first t tests, every sample is tested only once and that there is no overlap between the first t tests.

After all samples are run equally in the first t tests, the remaining pool (whether nonadaptive or

adaptive pooling) is reshuffled and divided once again for the following t tests.

In both strategies, infection rate and the number of tests were varied to determine an

optimal condition for further analysis, while the number of samples and pooling size were kept

constant. Given a large sample size n and rate of infection r, the optimal pooling size for both

strategies was equal to s = 1/r. With this pooling size, there is a high probability that there is at

least one negative pool, allowing for a large portion of the sample size to be declared negative in

a minimal number of tests.

Although this may seem to optimize our pooling size, in reality complications arise from

these high pooling sizes. Large pools above 32 samples may dilute the samples where positive

COVID samples are not detectable through normal laboratory means[5]. In order for COVID to

be detectable in larger pool sizes, the laboratory would require longer lengths to examine, which

is even less optimal. To reflect this reality, pool sizes were limited to a maximum of 32, as

positive COVID samples were detectable at this size, but were less favorable with larger sizes[5].

To improve identifying negative samples, least squares regression algorithm was run,

where the pooling problem was represented by the form where the prediction𝐴𝑥 − 𝑏| || |
2
2

x-vector that determined positive and negative tests was minimized.

6 of 24

Centrality Pooling

With the infectious state of each person given by the SEIR disease model, we record the

state of each individual at each time stage to understand the spread of the disease in the

population. At the same time, we also randomly created connections in this social network to

mimic relationships within communities: everyone has several friends, where each friend has

their own friends, and so on. This is demonstrated in Figure 2. Thus, our testing results on this

population will be more realistic and trustworthy, giving us more information about improving

its efficiency in the real-world setting.

Figure 2: 8 people social network with random connections and 2 infectious people (4 and 7)]

When we have a network model, we think about how to use the characteristics of the

network to improve our model. One of the ideas is to use the degree centrality data of the model

to help us create pools. The degree of centrality assigns each node’s importance based on the

number of connections to that node. In other words, if this node had a significant number of

connections, this node had a high degree of centrality (Figure 3) [7].

7 of 24

[Figure 3: high degree centrality node example in network]

The basic idea behind the degree centrality pooling is that we pool people based on their

degree centrality instead of pooling people randomly. The idea is to prioritize those with high

degree centrality because their chance of infection is greater, so the result of their group test is

very likely to be positive, allowing us to find many positives in the first few tests. The remaining

people are, therefore, much likely to be negative.

In conclusion, the higher degree centrality the more testing and smaller sampling sizes

are. For example, we even perform many individual tests for people with top 5% of the degree

centrality as their connections are very high in this network, suggesting their higher chance of

infection.

Machine Learning Pooling

To advance our graphing strategy, we use the extended-SEIR infectious disease network

model and also demographic model to address community level contacts. A simulation of

COVID-19 spread over time within the communities was performed with the demographic

network. We analyze the state of each individual at each time stage to understand the spread of

the disease in the population. Figure 4 is a sample spread of the COVID-19 in the social network

for fifty days with 15 initially infected people in a 1000 population. By simulating this spread in

8 of 24

the network, our testing results on this population are more realistic, providing more information

for testing.

[Figure 4: COVID-19 spread in the social network for fifty days with 15 initially infected people

in 1000 population]

With so much information provided by these networks, we decide to use machine

learning to assist us on testing as it would give our suggestions on whether these people are

positive or negative based on the training. Therefore, we first extract two features from the

disease network: degree centrality and eigenvector centrality. The eigenvector centrality, similar

to degree centrality, assigns nodes’ importance based on the eigenvector of the network

adjacency matrix. In other words, the higher the eigenvector centrality is, the more connections

to other high score nodes. We also use household size and age group from demographic

networks. The last feature we use is infected count which is the number of times an individual

appears in a positive group test. Following figure 5 is our sample training data.

9 of 24

[Figure 5: sample training data for machine learning model]

Our trained machine learning model will return predictive probabilities of positive and

negative for each node. Therefore, by looking at the predictive probabilities, we can estimate

whether this person has a higher chance of being infected. We then sort predictive probabilities,

and as we did in degree centrality pooling, we prioritize people with high predictive probabilities

for positives. Thus, our trained model can help us target potential positive people, reducing the

number of testsings.

Tensor Pooling

When generalizing the tensor method, each tensor of rank r-1 was considered as a pool

within the pooling matrix. This allowed to accurately identify which samples were infected given

their unique id in , especially during low prevalence rates in the population. After the pooling𝑅𝑟

matrix was completed, the samples were pooled together, run through qPCR, and displayed the

output of infected pools. Each sample within an unaffected pool was labeled as negative for the

virus while all other samples were individually tested or through another method.

10 of 24

The number of samples in each pool within our tensor method will be given by

. The number of tests in each tensor run is calculated to be . In(𝑐𝑒𝑖𝑙𝑖𝑛𝑔(𝑟 𝑛))
𝑟−1

𝑟 • 𝑐𝑒𝑖𝑙𝑖𝑛𝑔(𝑟 𝑛)

an example in which we have 64 tests with a tensor rank 2, our total number of samples within

each pool is given by . The number of tests for this tensor run is(𝑐𝑒𝑖𝑙𝑖𝑛𝑔(2 64))
2−1

= 8

. This ensures a consistent number of tests and samples per pool for2 • 𝑐𝑒𝑖𝑙𝑖𝑛𝑔(2 64) = 16

each run of our tensor method.

IV. RESULTS

Non Adaptive Pooling

Using the same parameters as Two Step Adaptive Pooling (2-STAP)[4] with a sample

size of 961 sample size, 52 tests, and 5 infected samples, our nonadaptive pooling algorithm had

an average accuracy of 97.02% for a pool size of 192.

[Figure 4: Accuracy of the algorithm with pool size 192 over 1000 simulations]

Although the accuracies were high, a pool of 192 may be too dilute to detect and may not

reflect conditions within the laboratory. Therefore, we limited the pool size to 64, and the results

yielded an accuracy of 92%. While limiting the pool size, we accounted for the dilute samples by

including a False Negative Rate of 0.1 with a pool size of 64[5].

11 of 24

[Figure 5: Accuracy of the algorithm with pool size 64 and False Negative Rate]

Furthermore, running our non-adaptive pooling algorithm with 10 and 15 infected and a
pool size of 64, yielding an average accuracy of 91% and 82%, respectively.

Adaptive Pooling

We ran our first adaptive algorithm (running initial tests, ruling out negative indexes, and

pooling from the remaining indexes) with 70 max tests and 10 infected, while varying population

and the simulation showed similar accuracies to the non-adaptive pooling scheme. The adaptive

algorithm performs better at smaller population sizes, but has relatively similar accuracies with

the nonadaptive strategy as the population size increases.

[Figure 6: Adaptive vs Non Adaptive accuracy with 70 tests, 10 infected across varying

Populations]

Disjoint Pooling
Using similar parameters used in the nonadaptive simulations, the results for 5, 10, and

15 infected samples with a maximum pool size of 64 yielded an average accuracy score of 98%,
95% and 90% respectively.

12 of 24

[Figure 6: Accuracy of disjoint pooling for 10 infected samples]

Limited Adaptive Pooling

With a maximum pool size of 16, population size of 500, and 5 infected samples, we

varied the number of adaptive steps to determine an optimal amount of adaptive steps before

running the remaining tests as a nonadaptive scheme. With varied adaptive steps with a

maximum of 40 tests, the accuracy between the steps did not fluctuate significantly, where each

accuracy was similar within 1%.

Adaptive Cycles Accuracy

2 91.7%

3 90.9%

4 90.7%

Table 1: Accuracies comparing Adaptive Cycle Steps in a Limited Adaptive Model

Inclusion of Least Squares Estimation
Least squares estimation was used to try and detect additional negative tests in an effort

to improve the accuracy of the above pooling models. With the returned estimation x-vector, the
accuracy was analyzed across different decision boundaries.

13 of 24

[Figure 7: Measured Accuracy across Least Estimation Estimation Decision Boundaries]
Summarized in Figure 7, there was little noticeable change when the regression was

implemented.

Degree Centrality Pooling

When the group size is 60, in a population with 1000 people, 20 infected people, the

accuracy is around 80% for 60 tests and the accuracy still increases as group tests increase

(Figure 8).

[Figure 8: Accuracy vs. number of testing when group size is 60]

14 of 24

When the testing number is 65, in a population with 1000 people, 20 infected people, the

accuracy reaches its peak when there are about 100 people in a pool. The accuracy first increases

and then decreases when pool size increases (Figure 8.1).

[Figure 8.1: Accuracy vs group size when number of tests is 65]

Machine Learning Pooling

To solve the imbalance training dataset problem, we use a balanced random forest

classifier to train our model. It performs bagging and bootstrapping to make the dataset more

balanced and the sampling strategy is to sample only minority classes. Moreover, the class

weights are applied, meaning it punishes models more harshly if it predicts positive people

wrong.

The classifier returns probabilities for this node being positive and negative. We think

these probabilities can be used to improve our testing accuracy. In the figure 9, it is clear to see

that the difference of predictive probabilities for positive and negative people are significantly

different.

15 of 24

[Figure 9: ML’s predictive probabilities results.

Top: for positive people; Bottom: for negative people]

However, the trained classifier does not apply to other generated networks as different

randomness is added in every other generated network. The differences of its predictive

probabilities are not significant differences as it did in the last network (Figure 10).

16 of 24

[Figure 10: ML’s predictive probabilities results for new network

Top: for positive people; Bottom: for negative people]

To overcome this problem, we decided to use a portion of the data to train the network to

ensure the classifier applies to the testing dataset. However, it forms a dilemma: in order to do

that we need to perform a large number of individual tests to get positive status for training at the

beginning. We also need to do many group testing beforehand to get enough infected count

features. These together cost a lot of testing. But if we do not do that, our classifier won’t be

trained well and will perform poorly for the rest of the population.

Our conclusion is that we do not have enough real world data. If we do, it solves both

problems listed above: we do not have to perform many testings beforehand as trained data is

already provided; the trained classifier definitely would apply to new testing data as they all

come from real world networks.

Tensor Pooling

We test the difference between tensor rank 2 and tensor rank 3 when calculating the

number of tests needed to detect all infected samples. Methods for tensor rank 2 are given by the

above followed by individual testing to detect all infected samples. Methods for tensor rank 3

will be followed by tensor rank 2 testing and then followed by individual testing to detect all

infected samples. We test each method by increasing the size of our sample, placing a 2%

prevalence rate i our population, and running our methods using these parameters. Each method

was run 100 times for each sample size and then averaged to find our mean number of tests.

17 of 24

[Figure 10: Number of tests needed to detect all infected samples with increasing sample size

and 2% prevalence rate]

Results show that both tensor rank 2 and tensor rank 3 methods increase in the number of tests

needed to detect all infected samples as the sample size increases. This phenomenon is theorized

to occur because of the increased number of infected samples as the sample size increases.

However, both tensor rank 2 and tensor rank 3 methods perform very similarly in terms of the

number of tests needed.

[Figure 11: Difference in tensor rank 3 testing vs. tensor rank 2 testing in the number of tests

needed to detect all infected samples with increasing sample size and 2% prevalence rate]

Because the number of tests for each method was determined to be around the same, we

concluded that using the tensor rank 2 method was a more feasible choice. This was because of

18 of 24

statements above with complications arising from these high pooling sizes. The number of

samples within each pool increases by as n increases. Thus, for the following tests(𝑐𝑒𝑖𝑙𝑖𝑛𝑔(3 𝑛))
2

(𝑐𝑒𝑖𝑙𝑖𝑛𝑔(2 𝑛))

we consider using the tensor rank 2 methods.

We then consider testing our tensor method as the number of infected samples increases.

We set the sample size to be 40, 60, and 961 respectively, mimicking Tapestry Numbers.

[Figure 12: Number of tests needed to detect all infected samples with sample size of 40 and 60

increasing infected number of samples]

Based on our results, it shows that as the number of infected samples increases, so does

the number of tests. However, as the prevalence of the virus in our population increases to

exceedingly high rates (around 25% of the samples as infected), the tensor method fails to do

better than individual testing. This can also be concluded with our results with a sample size of

60. However, a sample size of 40 and 3 infected samples only uses around 20 samples in order to

detect all samples, competing with Tapestry numbers. Additionally, a sample size of 60 and 4

infected samples only uses around 25 samples, indicating the consistency in competitiveness

with Tapestry.

19 of 24

[Figure 13: Number of tests needed to detect all infected samples with sample size of 961 and

increasing infected number of samples]

With an increased sample size of 961, our tensor rank 2 method needs significantly lower

amounts of tests than individual testing in order to detect all infected samples within the

population for prevalence rates less than 2%. With 9 infected samples, our tensor rank 2 method

needs around 125 tests in order to find all infected samples, competing with Tapestry numbers.

Our last test for the tensor method considers splitting the sample into two groups. The

first stage will involve running the tensor rank 2 algorithm on both groups separately and the

second stage will involve running independent tests on the remaining samples that have not been

correctly identified.

[Figure 14: Number of tests needed to detect all infected samples with 10% prevalence rate using

tensor rank 2 and tensor rank 2 splitting method with increasing sample size]

20 of 24

[Figure 15: Difference in tensor rank 2 testing vs. tensor rank 2 split testing in the number of

tests needed to detect all infected samples with increasing sample size and 10% prevalence rate]

Based on the simulations, at all sample sizes with 10% prevalence, splitting the sample

size into two groups will require fewer tests in order to accurately identify all the samples. One

explanation for this is that decreasing the number of infected samples within a group will also

decrease the amount of pools that are infected. For each sample that is infected after the first

within a given group, at least one additional pool will also be considered “infected” within it. As

many as r pools can be labelled as infected with the addition of a new infected sample within a

given group (in the given case as much as 2 pools). Thus, splitting the sample into two different

groups can decrease the number of pools that will be considered infected. This split method also

has an effect at lower prevalence rates. With 961 samples and 1% prevalence rate, the split

method requires around 99 tests in order to find all infected samples compared to the 125 tests

needed in an ordinary rank 2 tensor method without splitting.

V. DISCUSSION

Non Adaptive Pooling

Both the non adaptive pooling schemes seem to underperform against the 2-STAP

numbers, which makes sense because the 2STAP algorithm is an adaptive pooling scheme.

Compared to Tapestry numbers, we slightly underperform, but that is a result of us limiting the

21 of 24

max pool size to make our simulation more realistic. Still, we only see an average of 1-3%

decrease in accuracy, even though we limited the pool size to be 64 in our algorithm..

Our non adaptive methods were able to reach accuracies greater than 93% when run with

Tapestry numbers. This is very promising as we were able to decrease the amount of tests from

961(if you were running individual COVID-19 RT-qPCR), to no more than 90 tests. Also, our

methods being non adaptive makes it realistic, as we do not need to ask patients to stay until

initial test results are back. The biggest shortcomings we see in our non adaptive pooling

algorithms is that it does not accurately model real life situations. For example, people being

infected should not be randomly picked from a uniform distribution, but rather, in real life people

are infected via networks. Also, COVID-19 RT-qPCR tests spit out percentages rather than

binary outputs of positive or negative.

Going forward, our objective is to not necessarily improve the accuracy by making pool

sizes bigger, but it is to better model real life, by keeping pool sizes at a maximum of 64, while

not sacrificing on accuracy. We plan to model real life issues better by implementing two things

next quarter. Instead of outputting a binary output, we plan to output a percentage chance of

infection, as this is what COVID-19 RT-qPCR tests actually output. Second, we plan to change

our pooling algorithm into something that implements networks, which is described more in

detail in the degree centrality pooling section. Ideally we want our final proposal to be something

that is non-adaptive as this is most realistic for a real life trial.

Adaptive Pooling

Our first initial adaptive pooling algorithm did not do much better than the non-adaptive

pooling algorithm, so we quickly moved on and implemented a recursive pooling algorithm. The

recursive pooling algorithm, reached similar accuracies compared with the 2 STAP algorithm

mentioned above. It reached accuracies of .99 consistently.

However, we do understand that our recursive adaptive pooling did not use realistic pool

sizes, since at this point in our project, we did not yet introduce the idea of a max pool size of 64.

Because of this, it is hard to conclude that we would see similar results if we actually tried our

recursive algorithm in real life. We understand that saliva could be diluted so much in a large

pool, that makes it nearly impossible to identify the COVID-19 virus even if it is present.

Therefore, we are hopeful, but cautious. Our hope is to move from adaptive to non adaptive

22 of 24

pooling as holding people in a testing site, and making them wait until initial tests are run is not

ideal for anybody. Also adding the restriction of pool size and noise.

Limited Adaptive Pooling

Our limited adaptive pooling results compete with 2-STAP measures, but do use quite a

large amount of adaptive cycles. This might cause problems with wait time when it is actually

implemented in real life. If wait time is not an issue, the results of our limited adaptive pooling is

actually quite promising, as we lower tests, while reaching pretty good accuracies. Looking at

our results however, we are only convinced in our results if we run at least 6 adaptive cycles.

Going forward, we want to shift more of our focus on pooling via networks, as this models the

world more accurately.

Degree Centrality Pooling

The result of degree centrality pooling is not very promising. In my opinion, the ideal

accuracy for 60 tests in a population of 1000 with around 30 infected people should be at least

85% accuracy, compared to the result of the random pooling algorithm we tried first. I think one

of the limitations is the SEIR model is an oversimplified model which cannot fully represent the

realistic status of the Covid-19 in real world. Also, with this simple model, we can only access a

limited amount of data. For example, we can only access network information like centrality, but

cannot gain connective or demographic information. To advance this testing model, we employ a

more sophisticated disease model which is used in machine learning testing strategy in our

project.

Machine Learning Pooling

With advanced and more complex social network models, we have access to more

information like household sizes, age-stratification and out-of-household contacts. These

improve our testing method in various ways, for example, we are able to try to find patterns in

the population to target high risk people, saving us plenty of tests. However, as we explore this

strategy, we find out we cannot further advance due to the lack of real world data. With real

world data, we can confidently train the mode which definitely applies to new testing

populations as they both come from real world networks; moreover, with the real world data, we

23 of 24

no longer need to do multiple individual and group tests beforehand. However, we do think

machine learning strategy is a promising strategy as the trained model can give us predictive

probabilities whether this person is positive or negative, providing a lot of information during the

tests. Combining these tests, the testing method can specifically pool and test high risk people,

saving resources and time. Our team reckon if we have real world data, the machine learning

method or even neural network testing method should be considered to carry out.

Tensor Pooling

Our tensor rank 2 pooling method competes with Tapestry numbers and has a possibility

of further improvement based on more research. The simplicity in the pooling method allows us

to produce results in sometimes less than 2 adaptive steps. Additionally, we find that the pool

size within our tensor method works well for decreasing the dilution of positive samples within

pools. It is not until we have 4097 samples within a tensor rank 2 method that the pool sizes will

exceed 64. However, our method also lacks flexibility as the prevalence rates increase and relies

more and more on individual testing as the number of infected samples within our sample

increases. One theory may explain this inflexibility. As the number of infected samples increases,

more rows and columns of our tensor become labeled as infected (the rows and columns indicate

pools and the results of those pools are infected if only 1 sample in the pool is infected). Because

the creation of the pooling matrix requires each sample to have a unique row and column id,

adding one more infected sample to our sample will always flip at least one of the pools from not

infected to infected. Thus, splitting the sample into two different groups before running the first

stage will help drastically improve the performance of the algorithm, especially as the number of

infected samples increases within a sample.

Future work with this method can be achieved through more research in encoding and

decoding algorithms. The similarity between this method and many encoding and decoding

algorithms gives us a starting point on what additional tweaks are needed to improve this

method. Additionally, this method can be combined with viral pools in order to accurately detect

infected samples even before individual testing is performed. Pushing this tensor method to

detect samples before individual testing can lead us towards finding a non-adaptive tensor

method that detects infected samples with high accuracy, ensuring faster detection of the

SARS-CoV-2 virus and quicker results for patients.

24 of 24

VI. REFERENCES

[1] Appleby, J. “What Takes So Long? A Behind-The-Scenes Look At The Steps Involved In

COVID-19 Testing.” Kaiser Health News, 30 March 2020,

https://khn.org/news/what-takes-so-long-a-behind-the-scenes-look-at-the-steps-involved-in-c

ovid-19-testing/

[a] Dorfman, R. “The detection of defective members of large populations,” The

Annals of Mathematical Statistics, vol. 14, no. 4, pp. 436–440, 1943.

[2] Ghosh, S. “Tapestry: A Single-Round Smart Pooling Technique for COVID-19 Testing.”

medRxiv, 2020, https://www.medrxiv.org/content/10.1101/2020.04.23.20077727v2.

[3] Heidarzadeh, A., and K. Narayanan. “Two-Stage Adaptive Pooling with RT-qPCR for

COVID-19 Screening.” 2020,

https://www.medrxiv.org/content/10.1101/2020.07.05.20146936v1.full.

[4] Yelin, I. et al. “Evaluation of COVID-19 RT-qPCR Test in Multi sample Pools.” Clinical

infectious diseases : an official publication of the Infectious Diseases Society of America vol.

71,16 (2020): 2073-2078. doi:10.1093/cid/ciaa531

[5] Ryansmcgee. “SEIRS Model Description · Ryansmcgee/Seirsplus Wiki.” GitHub,

https://github.com/ryansmcgee/seirsplus/wiki/SEIRS-Model-Description.

[6] Weingart, S. “Networks Demystified 2: Degree – the scottbot irregular.” The Scottbot

Irregular, 17 December 2011, https://scottbot.net/networks-demystified-2-degree/.

https://khn.org/news/what-takes-so-long-a-behind-the-scenes-look-at-the-steps-involved-in-covid-19-testing/
https://khn.org/news/what-takes-so-long-a-behind-the-scenes-look-at-the-steps-involved-in-covid-19-testing/
https://www.medrxiv.org/content/10.1101/2020.07.05.20146936v1.full

