

0

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

3

3.1

3.2

3.3

3.4

4

4.1

4.2

5

5.1

5.2

6

6.1

6.2

6.3

7

7.1

7.2

7.3

Table	of	Contents
Intro

A	Saga	of	Servlets

A	Quick	Note	on	JARs

Servlet	Intro	and	Flavors

Basic	Servlet	Implementation

Servlet	Handling	of	Requests

Interlude	and	Announcement

Servlet	Handling	Data,	A	Round	House	Kick

Building	a	Front-End	pt.1	Plus	a	Quick	Review

Building	a	Front-End	pt.2:	An	App	with	AngularJS

Series	Review

Supporting

RESTful	API	Consumption	on	the	Server	(Java)

Server	REST	Consumption	with	Authentication

Custom	JSON	with	Java-ized	XAgent

Application	Logic

Unraveling	the	M-V-C	Mysteries

REST	is	Best

More	on	HTTP	and	AJAX	Requests

What	is	a	Single	Page	Application(SPA)?

Related

"Replacing"	an	XAgent

Alternate	Front-End	Development:	Mocking	Your	Domino	Back-end

Java

When	You	Need	a	Comparator

Building	Java	Objects	from	JSON

JavaScript

Consistent	Multi-Value	Formatting	in	SSJS	for	Domino/XPages

Fixing	an	Older	Version	of	Dojo	(1.6.1)

An	Dojo	Implementation	of	the	Calendar	Picker	Script

Other

A	Brief	Introduction	to	Nginx

Self-Hosting	SCM	Server

Domino/XPages	Design	Element	Syntax	Highlighting	on	Redmine

Glossary

Dev|Blog:	The	First	Year

2

Dev|Blog:	The	First	Year	

A	book	format	of	the	first	year	of	my	blog	on	my	shared	trials,	tribulations,	and	triumphs	in	the	world	of	Lotus/IBM	Domino/XPages
and	more.

The	blog	from	which	this	content	was	generated	can	be	found	at	edm00se.io,	this	book	is	available	as	a	pdf,	epub,	mobi,	and	as	a
generated	static	site,	hosted	on	GitHub	Pages,	at	edm00se.github.io/dev-blog-book.

Dev|Blog:	The	First	Year

3Intro

https://travis-ci.org/edm00se/dev-blog-book
https://greenkeeper.io/
https://edm00se.io
https://raw.githubusercontent.com/edm00se/dev-blog-book/built/DevBlog_Year1.pdf
https://raw.githubusercontent.com/edm00se/dev-blog-book/built/DevBlog_Year1.epub
https://raw.githubusercontent.com/edm00se/dev-blog-book/built/DevBlog_Year1.mobi
https://edm00se.github.io/dev-blog-book/

Intro
This	is	a	demo	application	I	created	as	the	result	of	an	interesting	set	of	circumstances	surrounding	my	2015	IBM	ConnectED
session/chalk	talk.	It's	purpose	is	to	provide	a	place	to	illustrate	the	many	topics	related	in	application	layering,	design,	and	development
practices	that	I've	blogged	about.	This	app,	my	App	of	Ice	and	Fire,	so	named	after	George	R.	R.	Martin's	A	Song	of	Ice	and	Fire,
contains	a	couple	different	data	sets	which	are	topically	pulled	from	public	sources	regarding	subjects	from	the	book	series.

Structure

The	application	is	in	two	layers,	which	has	numerous	advantages.

Back-End

The	back-end	to	the	applicaiton	is	a	Domino/XPages	NSF,	which	has	traditional	Notes	documents	with	Forms	and	Views.	These	are
exposed	via	some	Java	HTTPServlets	(specifically	DesignerFacesServlets	which	gives	us	FacesContext,	ergo	authenticated	Notes
Session,	access),	which	interact	with	a	proper	Java	data	model	for	each	resource	type.	The	servlets	provide	a	RESTful	API	with
application/json	content,	using	Google's	GSON	library	to	both	generate	the	JSON	and	reflect	the	received	data	from	the	client	app	(via
POST	and	PUT	requests)	into	their	respective	data	model	instances.

Front-End

The	front-end	to	this	application	is	an	AngularJS	application,	using	ui-router.	The	layout	is	a	fairly	standard	Bootstrap	3	layout	with
Font	Awesome	added.	In	nearly	every	way,	the	front-end	application	has	no	direct	Domino	dependencies,	other	than	the	RESTful	APIs,
which	can	be	easily	mocked	for	front-end	development	purposes	via	freely	available	(and	open	source)	tools,	such	as	json-server;
covered	in	a	blog	post	called	"alternative	front-end	development".

Dev|Blog:	The	First	Year

4A	Saga	of	Servlets

http://www.amazon.com/s/ref=nb_sb_ss_c_0_10?url=search-alias%3Dstripbooks&field-keywords=a+song+of+ice+and+fire&sprefix=a+song+of+ice+and+fire%2Caps%2C188
https://github.com/typicode/json-server
https://edm00se.io/front-end/alternate-front-end-development

Preface
What?
Why?
See	It	In	Action
Caveat

[Edit]	In	the	comments,	Sven	Petri	pointed	out	the	need	to	have	the	JAR	in	the	same	relative	path	in	the	Designer	environment
conducting	any	build	of	the	NSF.	This	is	absolutely	worth	noting,	though	my	excitement	on	this	topic	was	driven	by	the	lack	of	need	to
edit	the	java.policy	file.	Ultimately,	everyone	ought	to	communicate	with	their	customers	and/or	administrators	as	to	the	external
dependencies,	to	avoid	any	build	issues	by	customer	admins	or	non-developers.	Basically,	make	sure	people	know	to	drop	a	copy	of	the
JARs	from	the	server	in	their	local		/jvm/lib/ext/		path.	[/Edit]

Preface

Either	I	just	didn't	know	that	this	was	a	viable	option	or	we've	all	been	living	in	the	dark	for	too	long.	My	suspicion	is	the	former,	but
what	follows	is	a	quick	run	down	of	my	preferred	approach	for	using	the	com.google.gson	library	(or	any	JAR),	server-wide	(without
OSGi	deployment).	TLDR;	drop	it	in	/jvm/lib/ext/	and	restart	your	Domino	server	(don't	forget	to	do	it	with	your	local/dev	environment
as	well).

What?

While	preparing	for	my	impending	blog	series	on	servlets,	I've	been	hammering	out	a	couple	of	details	regarding	external	dependencies
(aka-	JAR	files).	The	short	story	is	that	I	assumed	things	had	to	be	a	certain	way	(including	the	java.policy	edit	for	granting	all
permissions),	but	that	wasn't	the	case.	If	you	want	to	read	the	full	circle	of	comments,	go	check	them	out.

Why?

It	seems	that	setting	up	what	I	regard	as	server	elements,	even	these	add-on	ones,	is	something	I	don't	do	every	day.	Any	developer	can
see	quickly	that	re-importing	the	same	JAR	file	you	use	across	your	application	instances	can	become	quite	tedious,	quickly.	But	it
would	seem	that	there	is	a	better	way	of	doing	things	than	just	importing	your	JAR	to	each	NSF	and	needing	to	add	a	line	on	the	server
(in	/jvm/lib/security/java.policy)	of

grant	{	permission	java.security.AllPermission;	}

To	rule	out	what	I	have	going	in	my	primarily	development	environment	(something	that	doesn't	come	up	for	me	as	a	staff	employee	of
an	IBM	customer,	as	my	environment	doesn't	change,	unless	I	add	a	picture	of	my	kid	to	my	desk),	I	created	a	fresh	install	of
Notes/Domino	Designer.	I	took	a	look	at	the	/jvm/lib/security/java.policy	file	and	noticed	something	that	works	to	our	advantage	as
developers.

So,	without	the	need	to	edit	the	java.policy	file,	this	makes	things	a	much	easier	sell	to	your	admins	(even	though	I	recommend	just
buying	them	their	beverage	of	choice	:beer:),	as	adding	an	industry	accepted	library	to	your	server	stack	has	a	whole	different	tone	than
potentially	scaring	them	with	words	like	"grant"	and	"java.security.AllPermission".	One	still	needs	access	to	the	file	system,	so	it	may
not	do	some	people	a	lot	of	good;	which	is	why,	going	forward	with	this	series,	I'll	be	making	the	effort	to	give	every	GSON	specific
task	I	perform	a	fair	shake	with	the	equivalent	using	the	com.ibm.commons.util.io.json	package.

See	It	In	Action

Here's	my	import	from	my	series	demo	code	imported	into	my	fresh	DDE	install	via	my	Git	repo.	As	expected,	without	any	JAR	to
find,	it's	going	to	fail.

Dev|Blog:	The	First	Year

5A	Quick	Note	on	JARs

Having	shut	down	Designer	and	placing	the	com.google.gson	JAR	into	the	/jvm/lib/ext/	path	and	then	starting	it	back	up	again,	you	can
see	that	it's	now	resolved.	All	without	touching	the	java.policy	file.

Added	Benefit

The	plus	side	to	this	approach	is	that	it's	now	also	available	in	Java	agents.	

Caveat

As	is	inevitable	with	such	things,	there	is	a	caveat	to	the	use	of	the	/jvm/lib/ext/	path	for	JAR	inclusion,	primarily	revolving	around	any
libraries	which	are	already	a	part	of	Domino.

@edm00se	IIRC	ext/lib	is	in	there	since	8.0.	Do	watch	out	if	you	put	versions	of	libraries	shipping	with	domino	in	there,	like
Abdera.

—	Martin	Leyrer	(@leyrer)	February	9,	2015

Ultimately,	I'm	aiming	to	get	into	OSGi	plugins	for	a	first	go	by	including	my	hit	list	of	usual	JAR	files,	so	I	can	import	them	on	a	per-
project	basis.	For	example,	if	I'm	building	out	a	RESTful	end	point	with	GSON,	I'm	also	probably	using	a	couple	Apache	Commons
libraries.	It	makes	sense	to	package	accordingly.	One	day,	I'll	have	all	the	cool	toys.

Dev|Blog:	The	First	Year

6A	Quick	Note	on	JARs

https://twitter.com/edm00se
https://twitter.com/leyrer/status/564821946270240769

Preface
A	Series	on	Servlets
What	Is	A	Servlet?

What	Does	That	Mean	for	Me?
But	I	Heard	XAgents	Are	Bad?

Flavors	of	Servlets
HttpServlet
DesignerFacesServlet
AbstractXSPServlet

Preface

This	post	is	essentially	the	first	two	parts	of	the	several	I've	already	identified	I'll	be	blogging	about.	I	kept	waffling	between	wanting
the	first	three	in	one	post,	which	would	have	been	huge,	and	just	one,	which	would	have	been	short.	Here's	what	I	came	up	with.	You
can	also	keep	track	of	this	and	the	other	parts	of	the	series	on	the	servlet	series	page.

A	Series	on	Servlets

This	is	the	first	post	in	a	short	series	on	servlets	I'll	be	posting	over	the	next	month	or	two.	It's	going	to	take	some	time	to	go	through,
but	I	hope	you'll	stick	with	me	through	to	the	end.	I	was	originally	going	to	speed	through	the	whole	process	and	give	a	lengthy	one-
shot,	one-kill	post	on	the	topic;	but	servlets,	while	simple	in	nature,	can	be	complex	depending	on	your	implementation.	I've	learned	a
couple	things	since	I	started	assembling	and	hopefully	this	will	be	useful	to	some	out	there.

What	Is	A	Servlet?

In	case	you	haven't	run	into	the	term	before,	a	servlet	is,	semantically,	a	portmanteau	of	the	words	server	and	applet.	This	stems	from
the	origins	of	Java	dating	to	the	early	years	of	many	of	the	conventions	that	we	take	for	granted	now,	in	terms	of	web	technology.
Functionally	speaking,	a	servlet	is	a	registered	Class	which	connects	via	URI	to	provide	or	consume	something;	this	can	be	data	(XML,
JSON,	others),	messages	(e.g.-	plain	text),	or	more.

What	Does	That	Mean	for	Me?

Many	XPage	developers	have	found	great	power	in	the	use	of	XAgents.	They	can	be	powerful	and	flexible	to	meet	our	needs.	The
primary	reason	for	this	is	the	ability	to	hijack	the	response	output	writer,	and	return	our	own	data,	in	whatever	(content-type)	format	we
specify.	This	makes	things	seamless	to	the	user;	e.g.-	buildMyContacts.xsp	can	yield	a	myContacts.csv	file,	downloaded	as	an
attachment,	with	the	current/live	data.	Servlets	let	us	do	essentially	the	same	thing;	they	provide	an	end	point	(instead	of
buildMyContacts.xsp	we	may	have	/api/mycontacts),	which	lets	us	return	data	in	the	format	we	want	(setting	the	response	content-type,
accepting	certain	types,	etc.),	in	a	generally	seamless	fashion	(current	data).

But	I	Heard	XAgents	Are	Bad?

One	of	the	minor	themes	at	ConnectED	for	those	of	us	in	the	developer	crowd	was	that	XAgents	bring	along	some	unnecessary	baggage
for	a	simple	data	response;	specifically	the	JSF	life	cycle.	This	isn't	exactly	"bad"	so	much	as	just	a	set	of	unnecessary	executions
performed	when	the	response	could	just	be	built	and	sent	after	requested.	The	JSF	life	cycle	is	there	for	us	to	assist	in	building	out	the
tags	for	an	HTML	page,	provide	the	data	bindings,	and	set	and	handle	the	state	of	the	page	and	its	bound	data	elements.	With	a	servlet,
you	choose	the	response	format,	making	it	focus	only	on	hooking	in	to	your	code	(via	javax.servlet.http.HttpServlet).

Flavors	of	Servlets

So	far	as	I	can	tell,	there	are	essentially	three	ways	of	creating	a	servlet	on	a	Domino	server.	I	should	mention	that	I'm	focusing	on
application	servlets,	with	no	server-level	deployment.	The	flavors	are	boiled	down	to	(vanilla)	HttpServlet,	DesignerFacesServlet,	and
an	abstracted	servlet,	which	uses	a	wrapper	to	handle	some	of	the	frequent	tedium	(why	we	abstract	any	code).	I'll	try	to	identify	why
you	might	use	each,	with	a	brief	description.

Dev|Blog:	The	First	Year

7Servlet	Intro	and	Flavors

http://docs.oracle.com/javaee/5/tutorial/doc/bnafe.html
http://www.wissel.net/blog/d6plinks/shwl-7mgfbn
http://docs.oracle.com/javaee/5/tutorial/doc/bnaqq.html
http://docs.oracle.com/javaee/5/api/javax/servlet/http/HttpServlet.html

Note:	I'm	not	covering	implementation	in	this	post,	that	will	be	covered	in	the	next	post.	Each	of	the	"flavors"	outlined	below	share	two
steps	in	the	implementation,	so	I'm	attempting	to	differentiate	each	now,	before	cramming	them	all	into	an	application	together.

HttpServlet

Probably	the	easiest	to	implement,	to	write	the	servlet,	one	must	write	a	class	which	extends	HttpServlet.	This	class	can	contain	override
methods	for	init	and	destroy	and	exposes	the	methods	(VERBs	such	as	GET,	POST,	PUT,	and	DELETE)	available	via	do*	methods
(doGet,	doPost,	doPut,	and	doDelete).	A	servlet	needs	to	provide	its	response	in	either	a	response	writer	or	output	stream.	Have	a	look,
this	is	a	fully	functioning,	albeit	simple,	servlet.

package	com.hello.servlets;

import	java.io.PrintWriter;

import	javax.servlet.http.HttpServlet;

import	javax.servlet.http.HttpServletRequest;

import	javax.servlet.http.HttpServletResponse;

/**

	*	Example	Servlet,	implemented	as	'vanilla'

	*	HttpServlet.	Many	non-Domino	Java	Servlets

	*	implement	HttpServlet.

	*	

	*	@author	Eric	McCormick,	@edm00se

	*

	*/

public	class	ExampleHttpServlet	extends	HttpServlet	{

				private	static	final	long	serialVersionUID	=	1L;

				@Override

				public	void	init	()	{

				}

				@Override

				public	void	destroy	()	{

				}

				@Override

				protected	void	doGet	(HttpServletRequest	req,	HttpServletResponse	res)	{

								HttpServletRequest	_req	=	req;

								HttpServletResponse	_res	=	res;

								PrintWriter	out	=	null;

								try{

												_res.setContentType("text/plain");

												out	=	_res.getWriter();

												out.println("Servlet	Running");

												out.println("You	executed	a	"+_req.getMethod().toString()+"	request.");

								}catch(Exception	e){

												if(out!=null){

																out.println("Sorry,	an	error	occurred...");

												}

								}finally{

												out.close();

								}

				}

}

Hopefully	this	seems	familiar,	even	if	it's	a	new	format.	As	you	can	see,	I've	only	exposed	GET	as	an	available	method	against	this
servlet.	You	can	provide	the	others	via	the	do*	methods	or,	you	can	specifically	lock	them	down	by	providing	a	response	code	of	405
(method	not	allowed)	with	any	additional	information,	error	or	other	descriptive	message.	It's	worth	note	that	the	only	do*	methods

Dev|Blog:	The	First	Year

8Servlet	Intro	and	Flavors

specifically	available	are	doGet,	doPost,	doPut,	and	doDelete.	To	override	this	and	provide,	say,	PATCH,	as	an	available	method,	you
would	need	to	override	the	behavior	offered	by	the	default	service	method.	This	comes	into	play	in	the	next	approach,	but	we'll	get	there
in	a	second.

An	HttpServlet	is	exactly	what	it	claims,	but	probably	isn't	the	best	option	for	those	who	want	to	make	use	of	much	of	the	application,
session,	or	anything	which	depends	on	FacesContext.

DesignerFacesServlet

So,	in	order	to	do	anything	derived	off	of	FacesContext,	we'll	need	a	better	implementation	of	our	servlet.	Jesse	Gallagher	has	blogged

about	this	very	topic,	big	surprise	there	 .	Some	of	the	benefits	include	access	to	*Scope'd	variables	and	any	managed	beans.

package	com.hello.servlets;

import	java.io.IOException;

import	java.io.PrintStream;

import	java.util.Map;

import	javax.faces.context.FacesContext;

import	javax.servlet.ServletException;

import	javax.servlet.ServletOutputStream;

import	javax.servlet.ServletRequest;

import	javax.servlet.ServletResponse;

import	javax.servlet.http.HttpServletRequest;

import	javax.servlet.http.HttpServletResponse;

import	com.ibm.xsp.webapp.DesignerFacesServlet;

/**

	*	Example	servlet	showing	the	use	of	access	to	FacesContext.

	*	This	was	originally	blogged	about	by	Jesse	Gallagher	and

	*	is	a	near	duplicate	class.

	*	src:	https://frostillic.us/blog/posts/159496067A27FD3585257A70005E7BC1

	*/

public	class	ExampleServlet	extends	DesignerFacesServlet	{

				private	static	final	long	serialVersionUID	=	1L;

				@SuppressWarnings("unchecked")

				@Override

				public	void	service(ServletRequest	servletRequest,	ServletResponse	servletResponse)	throws	ServletException,	IOException	

								//	Set	up	handy	environment	variables

								HttpServletRequest	req	=	(HttpServletRequest)servletRequest;

								HttpServletResponse	res	=	(HttpServletResponse)servletResponse;

								ServletOutputStream	out	=	res.getOutputStream();

								FacesContext	facesContext	=	this.getFacesContext(req,	res);

								try	{

												res.setContentType("text/plain");

												out.println("start");

												//	The	sessionScope	is	available	via	the	ExternalContext.	Resolving	the	variable

												//		would	work	as	well

												Map<Object,	Object>	sessionScope	=	facesContext.getExternalContext().getSessionMap();

												//	...	this	is	showing	how	we	can	get	facesContext	and	*scope	variables	inside	the	servlet

												out.println("done");

								}	catch(Exception	e)	{

												//	hit	an	error,	dump	out	whatever	is	there

												e.printStackTrace(new	PrintStream(out));

								}	finally	{

												out.close();

												//	It	shouldn't	be	null	if	things	are	going	well,	but	a	check	never	hurt

												if(facesContext	!=	null)	{

																//complete	the	response	and	release	the	handle	on	the	FacesContext	instance

																facesContext.responseComplete();

Dev|Blog:	The	First	Year

9Servlet	Intro	and	Flavors

http://frostillic.us/blog/posts/159496067A27FD3585257A70005E7BC1

																facesContext.release();

												}

								}

				}

				/**

					*	@return	FacesContext	currentInstance

					*/

				public	static	FacesContext	getFacesContext()	{

								return	FacesContext.getCurrentInstance();

				}

}

You	can	take	note	that	we're	being	sure	not	just	to	close	the	output	stream,	but	also	the	mark	the	FacesContext	handle	as
responseComplete	and	releasing	it	back	into	the	wild;	do	not	forget	to	do	this;	this	is	implied	for	each	and	every	response	operation
you	provide.

The	largest	thing	to	note	is,	as	mentioned	above,	we're	overriding	the	service	method.	This	means	that,	by	default,	our	accessing	of	the
end	point	happens	to	be	a	GET.	We	need	to	provide	for	the	response	handling	based	on	the	request	method.	It	would	go	something	like
this:

String	reqMethod	=	req.getMethod();

if(reqMethod.equals("GET"))	{

				try	{

								out.println("doing	something	with	my	GET");

								}	catch	(Exception	e)	{

												e.printStackTrace();

												out.println(e.toString());

								}	finally	{

												facesContext.responseComplete();

												facesContext.release();

												out.close();

								}

}	else	if(reqMethod.equals("POST"))	{

				try	{

								out.println("doing	something	with	my	POST");

								}	catch	(Exception	e)	{

												e.printStackTrace();

												out.println(e.toString());

								}	finally	{

												facesContext.responseComplete();

												facesContext.release();

												out.close();

								}

}	//...

The	tedium	of	always	adding	a	try/catch	block	with	finally	blocks	to	close	the	output	and	mark	the	FacesContext	as	responseComplete
and	performing	the	release	is	exactly	the	sort	of	thing	that	we	as	developers	like	to	automate,	by	abstracting.

AbstractXSPServlet

This	is	the	third	flavor;	it	extends	and,	ultimately,	is	a	DesignerFacesServlet,	but	by	using	an	abstracted	Servlet	class,	we	can	automate
each	of	out.close(),	facesContext.responseComplete(),	and	facesContext.release(),	with	each	response,	with	minimal	hassle.	Jesse	came
up	with	this	and	I've	pulled	a	copy	for	my	use	directly	from	his	frostillic.us	framework	for	use	in	my	own	code	base.	I	recommend	you
have	a	read	and	grab	a	copy.	Essentially,	as	Jesse	shows	in	his	part	7	of	his	building	an	app	with	the	frostillic.us	framework,	all	that's
needed	is	to	build	a	class	to	extend	AbstractXSPServlet	and	override	the	doService	method,	which	is	wrapper	with	the	necessary
out.close(),	facesContext.responseComplete(),	and	facesContext.release(),	for	each	response.	This	means	our	servlet	class	only	has	to
contain	what	we	need	it	to.	Also	note	that	I'm	starting	to	define	my	response	code	for	each	of	the	non-GET	methods.

Dev|Blog:	The	First	Year

10Servlet	Intro	and	Flavors

http://github.com/jesse-gallagher/XPages-Scaffolding/blob/master/frostillicus.framework.plugin/src/frostillicus/xsp/servlet/AbstractXSPServlet.java
http://frostillic.us/blog/posts/D815DC7ED059395885257D6B00001006

package	com.hello.servlets;

import	java.util.Enumeration;

import	javax.faces.context.FacesContext;

import	javax.servlet.ServletOutputStream;

import	javax.servlet.http.HttpServletRequest;

import	javax.servlet.http.HttpServletResponse;

import	com.ibm.commons.util.StringUtil;

import	frostillicus.xsp.servlet.AbstractXSPServlet;

/**

	*	Example	Servlet	implementing	AbstractXSPServlet,

	*	from	Jesse	Gallagher.

	*	

	*	@author	Eric	McCormick,	@edm00se

	*

	*/

public	class	ExampleAbstractedServlet	extends	AbstractXSPServlet	{

				/*	(non-Javadoc)

					*	@see	frostillicus.xsp.servlet.AbstractXSPServlet#doService(javax.servlet.http.HttpServletRequest,	javax.servlet.http.HttpServletResponse,	javax.faces.context.FacesContext,	javax.servlet.ServletOutputStream)

					*/

				@Override

				protected	void	doService(HttpServletRequest	req,	HttpServletResponse	res,

												FacesContext	facesContext,	ServletOutputStream	out)

												throws	Exception	{

												res.setContentType("text/plain");

												String	reqMethod	=	req.getMethod();

												if(reqMethod.equals("GET"))	{

																out.println("doing	something	with	GET");

												}	else	if(reqMethod.equals("POST"))	{

																res.setStatus(200);	//	OK

																out.println("doing	something	with	POST");

												}	else	if(reqMethod.equals("PUT"))	{

																res.setStatus(200);	//	OK

																out.println("doing	something	with	PUT");

												}	else	if(reqMethod.equals("DELETE"))	{

																res.setStatus(200);	//	OK

																out.println("doing	something	with	DELETE");

												}	else	if(reqMethod.equals("PATCH"))	{

																res.setStatus(200);	//	OK

																out.println("doing	something	with	PATCH");

												}	else	{

																res.setStatus(405);	//	method	not	allowed

																out.println("what	the	devil	are	you	trying	to	do,	break	the	server?");

												}

				}

}

Summary

Dev|Blog:	The	First	Year

11Servlet	Intro	and	Flavors

The	big	take	away	here	is	a	common	base	of	reference.	Going	forward,	I'll	be	implementing	Jesse's	AbstractXSPServlet,	which	looks
and	acts	differently	than	just	a	DesignerFacesServlet	or	HttpServlet.	I	recommend	you	examine	what	best	fits	your	needs,	but	I	think
you	should	be	happy	with	what	it	provides.

In	the	next	post,	I'll	be	showing	how	to	implement	a	servlet	via	a	ServletFactory	(so	we	can	actually	access	it)	and	start	framing	out
some	method	handling.	As	always,	if	anyone	has	a	better	way	or	alternative	method,	there's	the	comments	section	and	I	welcome
response	blog	posts.

Dev|Blog:	The	First	Year

12Servlet	Intro	and	Flavors

Intro

The	first	post	covered	the	first	two	parts	of	this	series,	the	basics	of	what	a	servlet	is	and	three	"flavors"	of	servlet	classes.	This	post
begins	with	how	to	implement	a	servlet	so	that	they're	actually	accessable	via	an	end	point.

ServletFactory

A	factory	is,	in	OOP,	an	object	for	creating	other	objects.	In	order	for	these	servlets	to	be	"registered"	with	the	application	to	be	end
point	accessible,	they	need	to	be	provided	by	a	ServletFactory;	specifically,	one	that	implements
com.ibm.designer.runtime.domino.adapter.IServletFactory.	This	will	register	an	end	point	via	a	pair	of	Maps	which	match,	via	a	key,	the
package.class	name	to	the	end	point	name.	This	makes	the	servlet	accessible	via	<your	NSF>/xsp/<end-point-name>.

A	Note	on	IServletFactory

In	one	of	the	more	counterintuitive	things	I've	run	into	since	starting	Domino/XPages	development,	the	IServletFactory	package	is	fully
there	on	the	server	and	usable,	but	the	lwpd.domino.adapter.jar	needs	to	be	added	as	an	external	JAR	to	the	build	path	in	Designer.	Sven
Hasselbach	has	done	an	excellent	job	of	showing	how	to	do	this	in	his	blog	post	on	the	subject.	Sven's	blog	is	a	great	read	with	some
very	applicable	posts	on	REST	security,	including	CORS	topics	and	more;	I	highly	recommend	reading	his	blog,	if	you	don't	already.

Marrying	the	ServletFactory	to	the	Application

Marriage,	The	Short,	Short	Version

Video	link

Your	ServletFactory	needs	one	last	step	to	be	registered	as	usable	by	your	application.	Here's	the	short,	short	version.

After	adding	your	"external	JAR"	to	your	build	path,	you	need	to	create	a	file	called	com.ibm.xsp.adapter.servletFactory.	Create	that	file
in	/Code/Java/META-INF/services/;	it's	easiest	if	you	switch	to	Package	Explorer	first.	In	this	file,	place	the	fully	qualified
package.Class	name	of	your	ServletFactory.	Once	your	application	builds,	you're	good	to	go	with	your	keyed	servlet	names	from	your
ServletFactory.

The	Less-Short	Version

Dev|Blog:	The	First	Year

13Basic	Servlet	Implementation

http://en.wikipedia.org/wiki/Factory_(object-oriented_programming)
http://en.wikipedia.org/wiki/Object-oriented_programming
http://hasselba.ch/blog/?page_id=70
http://hasselba.ch/blog/?p=746
http://youtube.com/watch?v=5X4HYA-lB-U

The	file	we'll	created	needs	to	be	in	the	project	bulid	path.	In	Domino	9	(and	late	8.5.3	versions,	anything	in	which	there	came	a
Code/Java	and	Code/JARs	design	section	in	the	Application	perspective),	we	should	focus	on	the	Code/Java	section.	For	older	versions,
the	classic	location	tends	to	be	WebContent/src;	the	bottom	line	is:	it	must	be	a	part	of	your	build	path.	To	create	the	file,	it's	best	to
switch	views	to	Package	Explorer.

You'll	need	to	right-click	on	your	Code/Java	folder	and	select	New,	followed	by	Other.	Select	folder	and	create	one	called	META-
INF/services/	(it'll	nest	the	second	one).

Then	do	the	same,	selecting	file,	and	call	it	com.ibm.xsp.adapter.servletFactory.	In	this	file,	we	put	a	single	line	for	the	class	which	will
do	the	assigning	of	end	points	to	servlet	Classes.

com.eric.test.ServletFactory

Registering	Your	Servlet	Classes

Dev|Blog:	The	First	Year

14Basic	Servlet	Implementation

Now	that	we	finally	have	our	adapter.servletFactory	file	pointing	at	our	ServletFactory	Class,	we	can	start	adding	them	into	the
ServletFactory.	Here's	one	I	prepared	earlier.

package	com.hello.factory;

import	java.util.HashMap;

import	java.util.Iterator;

import	java.util.Map;

import	javax.servlet.Servlet;

import	javax.servlet.ServletException;

import	com.ibm.designer.runtime.domino.adapter.ComponentModule;

import	com.ibm.designer.runtime.domino.adapter.IServletFactory;

import	com.ibm.designer.runtime.domino.adapter.ServletMatch;

/**

	*	The	factory	(a	provider)	implements	IServletFactory	and	creates

	*	two	maps,	for	key	to	package.class	and	key	to	servletname	matching.

	*/

public	class	ServletFactory	implements	IServletFactory	{

				private	static	final	Map<String,	String>	servletClasses	=	new	HashMap<String,	String>();

				private	static	final	Map<String,	String>	servletNames	=	new	HashMap<String,	String>();

				private	ComponentModule	module;

				/**

					*		init	adds	the	classes	and	servlet	names,	mapping	to	the	same	key.

					*/

				public	void	init(ComponentModule	module)	{

								servletClasses.put("exhttpservlet",	"com.hello.servlets.ExampleHttpServlet");

								servletNames.put("exhttpservlet",	"Example	HttpServlet");

								servletClasses.put("exdesignerfacesservlet",	"com.hello.servlets.ExampleDesignerFacesServlet");

								servletNames.put("exdesignerfacesservlet",	"Example	DesignerFaces	Servlet");

								servletClasses.put("exabstractservlet",	"com.hello.servlets.ExampleAbstractedServlet");

								servletNames.put("exabstractservlet",	"Example	AbstractXSP	Servlet");

								this.module	=	module;

				}

				/**

					*	The	ServletMatch	matches	the	path	to	the	correctly	identified	servlet;

					*	by	the	routed	key.

					*/

				public	ServletMatch	getServletMatch(String	contextPath,	String	path)

												throws	ServletException	{

								try	{

												String	servletPath	=	"";

												//	iterate	the	servletNames	map

												Iterator<Map.Entry<String,	String>>	it	=	servletNames.entrySet().iterator();

												while	(it.hasNext())	{

																Map.Entry<String,	String>	pairs	=	it.next();

																if	(path.contains("/"	+	pairs.getKey()))	{

																				String	pathInfo	=	path;

																				return	new	ServletMatch(getWidgetServlet(pairs.getKey()),

																												servletPath,	pathInfo);

																}

												}

								}	catch	(Exception	e)	{

												e.printStackTrace();

								}

								return	null;

				}

				public	Servlet	getWidgetServlet(String	key)	throws	ServletException	{

								return	module.createServlet(servletClasses.get(key),	servletNames

																.get(key),	null);

				}

}

Dev|Blog:	The	First	Year

15Basic	Servlet	Implementation

Aside	from	a	bit	of	voodoo,	this	should	show	how	we	can	map	our	end	point	names	to	the	class	names	and	proper	names,	respectively.
As	you	can	see,	I	mapped	each	of	my	example	servlets	(HttpServlet,	DesignerFacesServlet,	and	AbstractXSPServlet)	from	the	last	post
into	respective	endpoint	names/keys.	The	table	below	shows	the	resulting	mapping	of	the	endpoint	(after	the	server/path/NSF/).

Servlet	Endpoint Servlet	Class Name

/xsp/exhttpservlet com.hello.servlets.ExampleHttpServlet Example	HttpServlet

/xsp/exdesignerfacesservlet com.hello.servlets.ExampleDesignerFacesServlet Example	DesignerFacesServlet

/xsp/exabstractservlet com.hello.servlets.ExampleAbstractedServlet Example	AbstractXSPServlet

Summary

Now	we	have	a	servlet	and	it's	fully	registered	with	the	application	and	accessible	via	an	HTTP	endpoint.	The	next	post	will	get	into
what	we	do	with	these	servlets.

Dev|Blog:	The	First	Year

16Basic	Servlet	Implementation

Previously,	on	#ASagaOfServlets

So	far	in	this	series	I've	covered	some	basics	on	servlets,	implementing	our	methods	along	with	a	showing	of	the	"flavors"	of	servlets,
and	how	to	implement	these	servlets	via	a	ServletFactory.	This	has	been	the	ground	work	for	everything	that	comes	next.

What	to	Do	With	My	Servlet?

A	servlet	can	be	just	about	anything.	It	can	receive	a	payload	of	data	(or	just	handle	a	simple	network	GET	request)	and	process	and
return	almost	anything.	Ultimately,	I	want	to	provide	RESTful	API	interaction	to	the	front-end	side	of	my	application,	by:

abstracting	the	CRUD	operations,	in	order	to
validate	received	data	changes	(not	committing	changes	in	case	of	failure,	throwing	an	error,	with	messages,	to	the	user)
and	provide	a	layer	of	business	logic	for	those	interactions,	enforcing	a	set	of	rules	by	which	all	data	objects	will	adhere	to	(I	have
previously	described	this	as	"loose	schema",	which	is	a	misnomer,	as	the	entire	purpose	of	a	schema	is	to	provide	strict
provisioning	at	the	db	level;	aka-	integrity	constraints)

Receiving	Requests

As	I've	mentioned	above,	I've	referenced	a	pattern	of	/collection/{:id}	for	an	endpoint.	The	basic	premise	is	that	you	provide	the	base
endpoint	of	.../collection	(usually	shown	as	the	plural	version,	so	for	a	collection	of	users,	it	would	be	/users)	which	at	the	base	level
gives	the	full	collection,	but	when	is	followed	by	a	route	parameter	of	an	ID	(for	example,	a	32-character	length	hexadecimal	value,<
like	our	Notes	Document	UNIDs),	it	will	handle	requests	specific	to	that	document.	This	effectively	makes	our	servlet	at	one	endpoint	a
two-part	affair.	Here's	the	approach	I'll	be	using,	with	strictly	application/json	content	type.

Formatting	and	Documentation

Route Methods	Allowed

.../collection GET

.../collection/{:id} GET,	POST,	PUT,	DELETE

One	major	benefit	of	using	a	REST	API	framework	in	Java	is	the	ability	to	automate	your	documentation.	Documentation	is	one	of	the
most	important	aspects	of	REST	APIs	(especially	in	publicly	accessible	ones),	as	if	those	who	will	consume	them	don't	know	how	to
interact	with	them,	they	won't	be	worth	anything.	Usually	documentation	includes	the	endpoints,	allowed	methods,	and	request	and
response	structure.

Route	Matching

We'll	be	handling	multiple	routed	paths	off	a	single	collection	endpoint	(the	collection	and	the		collection/{:id}).	The	approach	I'll
be	implementing	in	the	route	matching	will	make	use	of	regular	expressions.	This	involves	defining	a	pattern	and	testing	that	against	the
requested	path	for	a	match.	This	will	make	use	of	java.util.regex.Pattern	and	java.util.regex.Matcher,	respectively.

Since	we	will	get	a	true	match	with	Matcher.find()	from	a	partial	subset,	it's	important	to	test	in	a	descending	order	from	the	more
complex	endpoint	down	to	the	simplest;	the	raw	collection.	It	probably	ought	to	look	something	like	this:

//	in	a	method	to	parse	route	params

//	Accommodate	two	requests,	one	for	all	resources,	another	for	a	specific	resource

private	Pattern	regExAllPattern	=	Pattern.compile("/collection");

//	a	UNID	is	32-char	hex,	/collection/{:unid}

//	UNID	ref:	http://www-01.ibm.com/support/docview.wss?uid=swg21112556

private	Pattern	regExIdPattern	=	Pattern.compile("/collection/([0-9a-fA-F]{32})");

//	regex	parse	pathInfo

Matcher	matcher;

//	Check	for	ID	case	first,	since	the	All	pattern	would	also	match

Dev|Blog:	The	First	Year

17Servlet	Handling	of	Requests

http://twitter.com/search?q=%23ASagaOfServlets
http://en.wikipedia.org/wiki/Database_schema
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Matcher.html#find()

matcher	=	regExIdPattern.matcher(pathInfo);

if	(matcher.find())	{

				unid	=	Integer.parseInt(matcher.group(1));

				System.out.println("do	something	with	this	document,	the	id	is:	"+unid);

}

matcher	=	regExAllPattern.matcher(pathInfo);

if	(matcher.find())	{

				System.out.println("do	something	with	the	collection");

}

throw	new	ServletException("Invalid	URI");

[EDIT]

It	was	brought	to	my	attention	that	route	matching	is	easier	via	@	annotations,	as	one	might	use	via	an	approach	with	Jersey.	I
absolutely	agree,	but	up	until	now,	for	this	series,	I've	taken	a	framework-free	approach	to	generating	and	implementing	servlets.	I'll	just
say	that	there's	a	very	good	reason	that	such	frameworks	are	out	there,	and	even	implementing	just	the	pieces	for	the	@	annotations
could	be	effort	well	spent.	I	fully	welcome	any	response	piece	on	this	topic,	as	I'm	not	experienced	with	Jersey	(my	preference	to	RegEx
matching	comes	from	my	NodeJS/Express	API	experience).

[/EDIT]

Route	Parameters

Now	that	we've	handled	the	route,	it's	time	to	handle	any	route	parameters.	Route	parameters	can	be	a	little	confusing,	seeing	how	they
look	just	like	another	route,	but	they	can	also	be	useful.	Strictly	speaking,	the		/{:id}		is	a	form	of	route	parameter,	but	they	can	also	be
nested	(sequential?)	to	provide	more	echelons	in	a	hierarchy.	I	previously	built	a	single-purpose	NodeJS/Express	app	that	provided	an
API	to	handles	requests	to	our	IBM	i	for	DB2	access;	the	specifics	of	that	project	were	to	have	a	three-level	deep	hierarchy	of	required
information.	This	is	generally	a	bit	deeper	than	most	people	will	go	with	route	parameters,	but	it	serves	to	illustrate	the	concept.	My
requests	look	like	this:

.../api/{:firstLevelParam}/{:secondLevelParam}/{:thirdLevelParam}

Route	parameters	are	a	way	of	handling	required,	hierarchically	defining	values	in	a	request.	They're	not	the	only	way	and	many	people
don't	like	them,	but	I'm	a	fan	(for	such	hierarchical	requirements).	To	parse	them	out,	we	need	a	handle	on	the	HttpServletRequest's
pathInfo	property.	We	then	split	it	off	the	/	character	to	have	a	collection,	in	this	case	a	List<String>	of	all	the	route	path	elements.
Since	the	first	three	are	related	to	the	structure	of	the	servlet,	we	need	to	start	checking	at	the	4th	(3rd	position).

String	reqPath	=	req.getPathInfo();

out.println("pathInfo:	"	+	reqPath);

List<String>	routeParm	=	Arrays.asList(reqPath.split("/(.*?)"));

if(routeParm.size()	>	3)	{

				//	/nsf/xsp/servletname	is	the	base,	so	the	fourth	is	the	first	routeParm

				for(int	i=3;	i<routeParm.size();	i++)	{

								out.println("routeParm:	"	+	routeParm.get(i));

				}

}	else	{

				//	didn't	have	any	route	parameters	after	the	base

				out.println("routeParm:	"	+	"none");

}

Query	Parameters

Dev|Blog:	The	First	Year

18Servlet	Handling	of	Requests

Query	parameters	should	be	familiar	to	every	XPages	developer.	In	fact,	it's	so	normal	that	I'll	just	mentioned	that	you	may	wish	to	use
a	VariableResolver	to	populate	your	Map<String,	String>	as	opposed	to	performing	a	split	on	the	queryString	of	the
HttpServletRequest.

[Edit]

Thanks	to	Jesse	Gallagher	for	catching	something	here.	You	can	resolve	param,	but	it	would	be	better	to	use	something	else	as	it
behaves	as	a	Map<String,String>,	not	a	Map<String,String[]>.	If	you're	performing	an	HttpServletRequest.getQueryString(),	you	will
get	a	java.lang.String	back,	with	which	contains	your	results.	You	can	manually	pull	this	apart,	but	you	should	really	use	the
getParameterMap	method)	on	your	HttpServletRequest	(the	method	is	inherited	from	ServletRequest)	as	this	does	return	a
Map<String,String[]>,	ensuring	you	get	keyed	values	for	each	of	multiple	values	per	key.	I've	used	the	method	elsewhere,	I'm	not	sure

what	my	brain	was	thinking	up	above,	but	I	suspect	it	was	a	lack	of	caffeine	 .

Map<String,	String[]>	param	=	(Map<String,	String[]>)	req.getParameterMap();

[/Edit]

RESTful	APIs?

How	is	this	all	REST?	How	is	it	an	API?	APIs,	for	those	living	under	a	rock,	are	an	Application	Programming	Interface;	the
Notes/Domino	API	is	how	we	interact	with,	reference,	and	use	Notes/Domino	entities.	Providing	access	to	invoke	calls	and	operations
over	a	REST	API	means	that	we	have	logic	build	into	our	network	calls	to	our	endpoint.	REST	is	an	approach,	it	has	to	do	with	stateless
data	requests,	uses	the	HTTP	VERBs,	and	is	generally	descriptive	in	format.	There's	not	a	governing	true	specification,	just	some	basic
rules.	If	you	want	to	read	more	on	REST	in	general,	I	recommend	this	scotch.io	post.

Next	Time

Up	next	will	be	a	bit	more	code	heavy,	as	I'll	be	walking	the	life	cycle	of	data	reception	and	response	handling.	It	will	cover	an	endpoint
governing	a	certain	data	type,	provide	a	collection	at	the	collection	level,	establish	a	data	model	that	both	our	responses	will	use	and	the
ingested	data	types	will	instantiate,	and	provide	CRUD	operations	against	a	given	document	(the	data	object	instance).	It	will	be	a	fast-
paced	post,	but	it	should	be	worth	the	read.

Dev|Blog:	The	First	Year

19Servlet	Handling	of	Requests

http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html#getQueryString()

An	Interlude	for	Servlets

My	series	on	servlets	is	in	a	temporary	interlude.	Don't	worry,	I've	been	working	on	it,	the	only	problem	is	the	issue	I	ran	into.	I	was
forced	to	re-evaluate	some	of	the	assumptions	I	had	made	previously	and,	to	be	quite	honest,	I'm	glad	I	ran	into	that	issue	now,	as
opposed	to	much	later.	Suffice	it	to	say,	there	is	much	more	to	come	and	I	am	excited	to	bring	my	next	post,	but	I	won't	publish	it	again
until	it's	ready.

For	those	who	caught	my	blog	post	malfunction	while	I	was	ᚹ	http://t.co/qbroT2qpCK

—	Eric	McCormick	(@edm00se)	February	28,	2015

Issues	with	Java	Security

Over	the	last	week	or	so,	I	started	to	run	into	an	issue	I	had	trouble	quantifying.	Thankfully,	with	the	help	of	some	intelligent	people	on
twitter	(Jesse	for	one,	who	seemed	to	know	what	I	ran	into	almost	immediately)	I	once	again	appreciate	the	fact	that	our	#XPages
developer	community	is	a	strong	one	which	is	almost	always	willing	to	help	someone	through	an	issue.	It's	a	credit	to	this	community
and	one	of	the	reasons	that	this	blog	exists.	When	David	Leedy	suggested	those	with	anything	they	could	share,	ought	to,	it	hit	home	as
I've	benefited	greatly	from	the	work	of	others.

The	Issue

I	shifted	my	development	environment	to	a	new	vm	and,	while	doing	some	actual	code	work	in	preparation	for	the	next	post	in	the
servlet	series,	I	noticed	that	my	servlets	that	depended	DesignerFacesServlet	had	stopped	working.	After	consulting	with	Jesse
Gallagher,	there	seems	to	be	some	issues	with	ClassLoader	outside	of	XPages	design	elements	without	this.

So,	it	seems	that	while	I	can	keep	my	JARs	in	/jvm/lib/ext/,	it	also	seems	that	I	need	to	continue	to	apply	the	lady-of-the-evening
approach	to	my	java.pol(icy)	file	to	get	FacesContext	access	in	my	servlets;	with	the	following:

grant	{

				permission	java.security.AllPermission;

}

My	Fix

For	now,	this	means	I'm	adding	the	grant	...AllPermission	line	back	into	my	java.pol(icy).	I've	tried	to	find	ways	of	keeping	that	from
being	necessary,	but	it	seems	that	if	you	want	FacesContext	access	in	your	servlet,	you	should	either	add	that	back	in,	or	roll	your
servlet	as	an	OSGi	servlet;	an	approach	I've	yet	to	get	into,	though	Jason	Hook	seems	to	have	covered	the	topic	a	bit.	For	those
concerned	about	this	edit,	I	would	recommend	that	the	requirements	of	your	servlet	(should	it	require	FacesContext,	which	is	very
likely)	include	having	security	permissions.	If	the	admin(s)	of	whoever	owns	the	server	can't	think	of	a	better	way,	then	they	should	roll
the	above	line,	otherwise	they	can	manage	that	as-needed.	If	someone	knows	of	a	better	way	around	this,	please	don't	keep	it	to
yourself.

Reminder	note:	as	Mark	Leusink	and	John	Dalsgaard	have	pointed	out,	upgrading	to	9.0.1	FP3	can	will	cause	loss	of	custom	entries	in
your	/jvm/lib/security/java.policy	file;	this	seems	to	have	to	do	with	the	JVM	updates.	An	ideal	is	to	keep	your	changes	in	a
/jvm/lib/security/java.pol	file,	which	gets	interpreted	with	the	same	syntax	as	java.policy,	and	is	less	likely	to	be	overwritten	during	an
upgrade.

An	Announcement

Speaking	of	my	blog,	I	am	migrating	to	a	new	domain	name.	Don't	worry,	all	your	existing	bookmarks	and	feed	links	will	work,	as	it
will	be	the	same	blog	hosted	on	GitHub	Pages.	My	link	references	will	be	updating	and	the	Disqus	comments	migrating.	From	here	on
out,	I	can	save	myself	a	few	characters	here	and	there:

edm00se.io

A	Second	Announcement

Dev|Blog:	The	First	Year

20Interlude	and	Announcement

http://t.co/qbroT2qpCK
https://twitter.com/edm00se/status/571667777800417280
https://pages.github.com/

Recording	has	begun!	I'm	hoping	that	my	efforts	will	be	fruitful	to	people	in	the	years?	months	to	come,	but	I	also	know	that	many
people	learn	better	by	seeing	instead	of	reading.	My	blog	can	get	a	bit	wordy	at	times,	something	I	try	to	keep	at	bay,	but	in	preparation
for	the	end	stages	of	my	servlet	series,	I	have	recorded	the	first	few	pieces	of	the	companion	Notes	in	9	episode	to-be.	It	was	suggested
by	some	previously	and	is	something	I	plan	on	delivering	in	conjunction	with	the	end	of	my	series.

Until	next	time,	:beers:.

Dev|Blog:	The	First	Year

21Interlude	and	Announcement

A	Fast-Paced,	Round-House	Kick	Tour	of	Data	Interactions

As	promised	at	the	end	of	the	last	post	(in	this	series),	this	post	will	walk	through	the	entire	life	cycle	of	data	reception	and	response
handling.	This	is	where	my	ConnectED	demo	app-that-never-was	comes	in,	we're	going	to	build	part	of	it.	We're	going	to	create	an
endpoint	which	governs	the	provision	of	a	collection	of	the	houses	of	note	in	our	fictitious	land	of	Os	(it's	out	west).	I'll	be	providing	the
com.westeros.servlets.HouseServlet	class,	which	is	an	AbstractXSPServlet	(previously	demonstrated),	to	my	ServletFactory.

Note:	I'll	be	sticking	to	the	same,	vanilla	Java	approach	I've	used	previously	in	this	series.	I'll	outright	say	it	though,	it'd	be	great	to	see
how	some	of	the	processes	involved	in	the	setup	can	be	automated	and	made	easier,	be	it	by	@	annotation	or	via	other	frameworks.	I
fully	invite	those	more	experienced	in	these	methods	to	show	us	the	way.

The	Endpoint
Request	Handling
Collection
Document

An	Object	Model	for	(Almost)	Everyone
The	HouseModel

Receiving	Data	from	POST	or	PUT
ServletInputStream
FromJson
Using	the	InputStream	Directly
My	Class's	Interpretation
Provide	Response

Note:	On	PUT	and	DELETE	Methods
Summary

The	Endpoint

The	endpoint	will	accept	(and	return)	only	application/json.	Here's	the	structure	it'll	take.

Route Methods	Allowed

...NSF/xsp/houses GET

POST

--------------------------- -------------------

...NSF/xsp/houses/{:unid} GET

PUT

DELETE

It's	straight	forward	and	follows	with	the	approach	I've	previously	laid	out.	Do	note	that	to	create	a	new	entry,	it	will	be	taking	a	POST
against	the	collection,	whereas	the	individual	entry	will	be	accessed	via	GET	to	send	the	existing	document,	PUT	to	update	partial
information,	and	DELETE	to	do	the	obvious.

Request	Handling

In	order	to	better	process	my	request	data	and	process	for	my	response,	I've	segregated	my	Collection	and	Record	operations	into
separate	classes;	HouseCollection	and	HouseRecord,	respectively.	Here's	the	down	and	dirty	of	my	main	servlet	class:

public	class	HouseServlet	extends	AbstractXSPServlet	{

				@Override

				protected	void	doService(HttpServletRequest	req,	HttpServletResponse	res,

												FacesContext	facesContext,

												ServletOutputStream	out)	throws	Exception	{

Dev|Blog:	The	First	Year

22Servlet	Handling	Data,	A	Round	House	Kick

								//	Accommodate	two	requests,	one	for	all	resources,	another	for	a

								//	specific	resource

								Pattern	regExAllPattern	=	Pattern.compile("/houses");

								Pattern	regExIdPattern	=	Pattern.compile("/houses/([0-9A-Za-z]{32})");

								//	set	content	type,	cache,	and	Access-Control	headers

								res.setContentType("application/json");

								res.setHeader("Cache-Control",	"no-cache");

								res.setHeader("Access-Control-Allow-Origin",	"*");

								res.setHeader("Access-Control-Allow-Headers",	"Origin,	X-Requested-With,	Content-Type,	Accept");

								String	pathInfo	=	req.getPathInfo();

								//	regex	parse	pathInfo

								Matcher	matchRecord	=	regExIdPattern.matcher(pathInfo);

								Matcher	matchCollection	=	regExAllPattern.matcher(pathInfo);

								//	Method	invoking	the	URI

								String	reqMethod	=	req.getMethod();

								/*

									*	Specific	Document,	by	UNID.	Allowed	are	GET,

									*	PUT,	and	DELETE.

									*/

								if	(matchRecord.find())	{

												String	unid	=	matchRecord.group(1);	//	.group(1);

												if	(reqMethod.equals("GET"))	{

																//	GET	the	single	record

																HouseRecord.doGet(unid,	req,	res,	facesContext,	out);

												}	else	if	(reqMethod.equals("PUT"))	{

																//	PUT	to	update,	in	whole	or	part,	a	single	record

																HouseRecord.doPut(unid,	req,	res,	facesContext,	out);

												}	else	if	(reqMethod.equals("DELETE"))	{

																//	DELETE	single	record

																HouseRecord.doDelete(unid,	req,	res,	facesContext,	out);

												}	else	{

																//	unsupported	request	method

																HouseRecord.handleUnexpectedVerb(req,	res,	facesContext,	out);

												}

								}	else	if	(matchCollection.find())	{

												/*

													*	Collection,	allows	only	GET	for	the	View	equivalent	or	POST	for

													*	creating	a	new	Document

													*/

												if	(reqMethod.equals("GET"))	{

																HouseCollection.doGet(req,	res,	facesContext,	out);

												}	else	if	(reqMethod.equals("POST"))	{

																HouseCollection.doPost(req,	res,	facesContext,	out);

												}	else	{

																//	unsupported	request	method

																HouseCollection.handleUnexpectedVerb(req,	res,	facesContext,	out);

												}

								}

				}

}

Dev|Blog:	The	First	Year

23Servlet	Handling	Data,	A	Round	House	Kick

Collection

The	collection	will	iterate	records	and	return	the	JSON	array	of	objects	representing	each	house.	I'm	going	to	wrap	the	array	as	a	data
element,	to	give	some	mild	metadata	I	usually	provide,	including	a	simple	version	of	any	request	parameters	and,	lastly,	an	error	flag
(with	an	error	message,	if	the	boolean	error	property	is	true);	this	is	consistent	with	what	I've	done	before.

Below,	when	I	handle	the	reflection	of	JSON	to	a	Java	Object	(in	conjunction	with	the),	I	will	show	how	to	use	both.	Here's	the
providing	of	a	collection,	pulling	entry	information	from	a	ViewNavigator	into	the	Java	object	that	will	become	the	JSON	string.	I'm
going	to	use	a	HashMap	as	my	base	object,	with	an	ArrayList	which	will	hold	the	individual	data	entries.

While	it's	certainly	a	lot	of	lines,	I	believe	it	to	be	fairly	straight	forward.	In	the	HouseCollection	class,	there	are	defined	three	methods;
doGet,	doPost,	and	handleUnexpectedVerb.	These	are	invoked	by	the	main	HouseServlet	class,	which	calls	the	appropriate	Collection	or
Record	method,	based	on	the	full	request	path	info	and	request	method.	I've	included	both	the	com.google.Gson	and
com.ibm.commons.util.io.json	method,	the	latter	is	just	commented	out.

public	class	HouseCollection	{

				private	static	String	colAllowMethods	=	"GET,	POST";

				public	static	void	doGet(HttpServletRequest	req,	HttpServletResponse	res,

												FacesContext	facesContext,	ServletOutputStream	out)	throws	IOException	{

								try	{

												//	the	HashMap	will	represent	the	main	JSON	object

												HashMap<String,	Object>	myResponse	=	new	HashMap<String,	Object>();

												//	the	ArrayList	will	contain	the	JSON	Array's	data	elements

												//	which	is	another	HashMap

												ArrayList<HashMap<String,String>>	dataAr	=	new	ArrayList<HashMap<String,String>>();

												Database	db	=	Utils.getCurrentDatabase();

												View	vw	=	db.getView("houses");

												ViewNavigator	nav	=	vw.createViewNav();

												ViewEntry	ent	=	nav.getFirstDocument();

												while(ent	!=	null)	{

																Vector<String>	colVals	=	ent.getColumnValues();

																HashMap<String,String>	curOb	=	new	HashMap<String,String>();

																curOb.put("name",	colVals.get(0));

																curOb.put("description",	colVals.get(1));

																curOb.put("words",	colVals.get(2));

																curOb.put("unid",	colVals.get(3));

																dataAr.add(curOb);

																ViewEntry	tmpEnt	=	nav.getNext(ent);

																ent.recycle();

																ent	=	tmpEnt;

												}

												myResponse.put("dataAr",	dataAr);

												myResponse.put("error",	false);

												//	IBM	commons	way	of	toJson

												/*

													*	out.println(JsonGenerator.toJson(JsonJavaFactory.instanceEx,

													*	myResponse));

													*/

												//	GSON	way	of	toJson

												Gson	g	=	new	Gson();

												out.print(g.toJson(myResponse));

												res.setStatus(200);	//	OK

												res.addHeader("Allow",	colAllowMethods);

Dev|Blog:	The	First	Year

24Servlet	Handling	Data,	A	Round	House	Kick

								}	catch	(Exception	e)	{

												res.setStatus(500);	//	something	pooped	out

												res.addHeader("Allow",	colAllowMethods);

												out.print("{error:	true,	errorMessage:	\""+e.toString()+"\"}");

								}

				}

				public	static	void	doPost(HttpServletRequest	req,	HttpServletResponse	res,

								FacesContext	facesContext,	ServletOutputStream	out)	throws	IOException	{

								try	{

												String	unid;

												ServletInputStream	is	=	req.getInputStream();

												//	not	that	I'm	using	it,	but	the	ServletRequestWrapper

												//	can	be	quite	helpful

												//	ServletRequestWrapper	srw	=	new	ServletRequestWrapper(req);

												String	reqStr	=	IOUtils.toString(is);

												//	com.ibm.commons	way

												/*

												JsonJavaFactory	factory	=	JsonJavaFactory.instanceEx;

												JsonJavaObject	tmpNwHouse	=	(JsonJavaObject)	JsonParser.fromJson(factory,	reqStr);

												Iterator<String>	it	=	tmpNwHouse.getJsonProperties();

												HouseModel	nwHouse	=	new	HouseModel();

												nwHouse.setEditMode(true);

												while(it.hasNext())	{

																String	curProp	=	it.next();

																String	curVal	=	tmpNwHouse.getAsString(curProp);

																nwHouse.setValue(curProp,	curVal);

																it.remove();

												}

												*/

												//	GSON	way

												Gson	g	=	new	Gson();

												/*

													*	Direct	reflection	to	the	HouseModel	breaks,	as	it

													*	extends	AbstractSmartDocumentModel	:'-(.

													*	

													*	To	get	around	that	issue,	as	I	know	that	the	House

													*	model	is	really	a	bunch	of	String	key	to	String	value	pairs.

													*	The	AbstractSmartDocumentModel	class	basically	adds	some	helper

													*	methods	to	wrap	a	Map	(representing	the	Notes

													*	Document's	Field	to	Value	nature)	with	things	like	an	edit

													*	property,	load	(by	unid)	method,	and	save	(for	the	obvious).

													*/

												Map<String,Object>	tmpNwHouse	=	(Map)	g.fromJson(reqStr,	HashMap.class);

												HouseModel	nwHouse	=	new	HouseModel();

												nwHouse.setEditMode(true);

												for	(Map.Entry<String,	Object>	pair	:	tmpNwHouse.entrySet())	{

																String	curProp	=	pair.getKey();

																String	curVal	=	(String)	pair.getValue();

																nwHouse.setValue(curProp,	curVal);

												}

												nwHouse.save();

												unid	=	nwHouse.getUnid();

												res.setStatus(201);

												res.addHeader("Allow",	colAllowMethods);

												res.addHeader("Location",	"/xsp/houses/"+unid);

								}catch(Exception	e)	{

												HashMap<String,Object>	errOb	=	new	HashMap<String,Object>();

												errOb.put("error",	true);

												errOb.put("errorMessage",e.toString());

												res.setStatus(500);

												res.addHeader("Allow",	colAllowMethods);

												Gson	g	=	new	Gson();

												out.print(g.toJson(errOb));

								}

				}

Dev|Blog:	The	First	Year

25Servlet	Handling	Data,	A	Round	House	Kick

				public	static	void	handleUnexpectedVerb(HttpServletRequest	req,

												HttpServletResponse	res,	FacesContext	facesContext,

												ServletOutputStream	out)	{

								res.setStatus(405);

								res.addHeader("Allow",	colAllowMethods);

				}

}

You	can	find	how	I'm	able	to	POST	a	new	document	in	the	doPost	method	here,	but	I'll	cover	that	process	in	more	detail	further	down.

Document

Handling	the	individual	records,	the	NotesDocument_s,	gets	more	fun.	I'm	not	just	stepping	through	a	_NotesViewNavigator	and	for	me
personally,	this	is	why	we	should	be	embracing	our	Java	roots	on	Domino/XPages.	Say	I	have	myself	set	up	for	using	a	managed	bean
to	represent	my	documents.	Aside	from	the	Notes/Domino	API	specifics,	we're	dealing	with	an	otherwise	plain	Java	object,	in	memory,
to	represent	our	data	record,	with	which	we	interact.	Using	that	same	bean,	I'm	able	to	interact	with	it	the	same	in	my	servlet	as	I	might
through	the	XPages	UI.	The	biggest	difference	is	that	it's	as	a	POJO	(plain	ol'	Java	object),	as	it's	not	managed,	not	defined	in	my	Faces-
config	and	has	no	"scope";	it'll	be	created/loaded,	modified,	and	saved	as	fast	as	the	servlet	responds.

Here's	my	HouseRecord	class,	explanation	afterwards.

public	class	HouseRecord	{

				private	static	String	recAllowedMethods	=	"GET,	PUT,	DELETE";

				public	static	void	doGet(String	unid,	HttpServletRequest	req,	HttpServletResponse	res,

												FacesContext	facesContext,	ServletOutputStream	out)	throws	IOException	{

								try	{

												//	create	a	House	model	object	in	memory	and	load	its	contents

												HouseModel	myHouse	=	new	HouseModel();

												myHouse.load(unid);

												//return	the	contents	in	JSON	to	the	OutputStream

												//	com.ibm.commons	way

												/*

													*	out.print(JsonGenerator.toJson(JsonJavaFactory.instanceEx,

													*	myHouse));

													*/

												//	GSON	way

												Gson	g	=	new	Gson();

												out.print(g.toJson(myHouse));

												res.setStatus(200);

												res.addHeader("Allow",	recAllowedMethods);

								}	catch(Exception	e)	{

												res.setStatus(500);

												res.addHeader("Allow",	recAllowedMethods);

												Map<String,Object>	errOb	=	new	HashMap<String,Object>();

												errOb.put("error",	true);

												errOb.put("errorMsg",	e.toString());

												Gson	g	=	new	Gson();

												out.print(g.toJson(errOb));

								}

				}

				public	static	void	doPut(String	unid,	HttpServletRequest	req,	HttpServletResponse	res,

												FacesContext	facesContext,	ServletOutputStream	out)	throws	IOException	{

Dev|Blog:	The	First	Year

26Servlet	Handling	Data,	A	Round	House	Kick

								try	{

												//	GET	existing

												HouseModel	exHouse	=	new	HouseModel();

												exHouse.load(unid);

												ServletInputStream	is	=	req.getInputStream();

												String	reqStr	=	IOUtils.toString(is);

												Gson	g	=	new	Gson();

												//	setting	the	keys/values	into	the	tmpNwHouse	Map

												Map<String,Object>	tmpNwHouse	=	(Map)	g.fromJson(reqStr,	HashMap.class);

												//	suppressing	just	this	warning	throws	an	error	on	tmpNwHouse

												tmpNwHouse	=	g.fromJson(reqStr,	tmpNwHouse.getClass());

												HouseModel	nwHouse	=	new	HouseModel();

												nwHouse.setEditMode(true);

												//	compare/update

												for(Map.Entry<String,	Object>	pair	:	tmpNwHouse.entrySet()	{

																String	curProp	=	pair.getKey();

																String	curVal	=	(String)	pair.getValue();

																if(exHouse.getValue(curProp)	!=	curVal)	{

																				exHouse.setValue(curProp,	curVal);

																}

												}

												//	done	setting	new	values	back	into	the	existing	object

												exHouse.save();

												res.setStatus(200);

												res.addHeader("Allow",	recAllowedMethods);

								}	catch(Exception	e)	{

												res.setStatus(500);

												res.addHeader("Allow",	recAllowedMethods);

												Map<String,Object>	errOb	=	new	HashMap<String,Object>();

												errOb.put("error",	true);

												errOb.put("errorMsg",	e.toString());

												Gson	g	=	new	Gson();

												out.print(g.toJson(errOb));

								}

				}

				public	static	void	doDelete(String	unid,	HttpServletRequest	req,	HttpServletResponse	res,

												FacesContext	facesContext,	ServletOutputStream	out)	throws	IOException	{

								Session	s	=	(Session)	facesContext.getApplication().getVariableResolver().resolveVariable(facesContext,	"session"

								Document	houseDoc;

								try	{

												houseDoc	=	s.getCurrentDatabase().getDocumentByUNID(unid);

												houseDoc.remove(true);

												houseDoc.recycle();

												res.setStatus(200);

												res.addHeader("Allow",	recAllowedMethods);

								}	catch	(NotesException	e)	{

												res.setStatus(500);

												Gson	g	=	new	Gson();

												Map<String,Object>	errData	=	new	HashMap<String,Object>();

												errData.put("error",	true);

												errData.put("errorMessage",	e.toString());

												errData.put("stackTrace",	e.getStackTrace());

												out.print(g.toJson(errData));

								}

				}

				public	static	void	handleUnexpectedVerb(HttpServletRequest	req,

																				HttpServletResponse	res,	FacesContext	facesContext,

																				ServletOutputStream	out)	{

								res.setStatus(405);

								res.addHeader("Allow",	recAllowedMethods);

Dev|Blog:	The	First	Year

27Servlet	Handling	Data,	A	Round	House	Kick

				}

}

Obviously	a	delete	operation	is	just	a	delete	and	we've	covered	GET,	but	the	PUT	is	where	I	had	fun	with	things.	The	POST	above
assumes	an	entirely	new	object,	but	with	the	PUT	as	I've	implemented	it,	allowing	for	full	or	partial	replacement,	I	need	to	instantiate
the	existing	record	into	an	object	and	then	pull	and	compare/update	any	values.	Just	as	I'm	iterating	the	HashMap's	values	in	the
Collection	POST,	instead	of	just	filling	the	values,	I'm	comparing	the	values	and	replacing	as	needed,	inside	a	while	loop,	iterating	the
Map.Entry<String,	Object>	(pair)	values,	like	so:

String	curProp	=	pair.getKey();

String	curVal	=	(String)	pair.getValue();

if(exHouse.getValue(curProp)	!=	curVal)	{

				exHouse.setValue(curProp,	curVal);

}

Uniqueness	of	Using	an	Abstracted	Document

This	concept	relies	on	having	an	object	model	class.	The	modeling	of	my	house	object	does	what	a	bean	does,	has	properties	which	hold
values,	and	interacts	via	getter	and	setter	methods.	For	my	app,	I'm	using	an	(older)	implementation	of	the	OpenNTF	Domino	API;
specifically	the	AbstractSmartDocumentModel,	as	found	in	Tim	Tripcony's	How	Ya	Bean	application	and	affiliated	Notesin9	videos.
This	is	to	automate	the	getter/setter	methods	(it	specifically	ditches	get/set	PropertyName	in	favor	of	get/set	Value).	It	also	means	that
my	app	is	a	bit	more	portable	(full	project	coming	to	a	GitHub	repository	near	you,	soon!).

ToJson

I	also	create	the	JSON	with	the	Gson	library,	as	I've	covered	both	the	Gson	and	com.ibm.commons.util.io.json	approaches	before,	when
it	comes	to	creating	a	JSON	string,	so	I	won't	repeat	myself	here.	The	only	thing	of	major	difference	is	to	build	out	your	response	into	a
Java	object,	then	use	a	com.ibm.commons.util.io.json.JsonGenerator's	toJson	method.

An	Object	Model	for	(Almost)	Everyone

An	object	model,	for	my	purposes,	is	a	bean.	It	provides	the	definitions	for	what	data	to	store	and	in	what	format.	It	is	my	preference	to
keep	any	additional	business	logic,	such	as	notifications	(emails,	etc)	or	validation,	in	a	separate	class,	though	this	isn't	necessary.

If	you're	ever	looking	for	help	in	generating	a	POJO	from	JSON,	I	recommend	checking	out	jsonschema2pojo.org.	As	I'm	an	avid	user
of	Gson	and	Apache	Commons,	the	options	I	select	are	JSON	(not	JSONSchema),	Gson,	Use	double	numbers,	Use	Commons-Lang3,
and	Include	toString;	like	this:

Dev|Blog:	The	First	Year

28Servlet	Handling	Data,	A	Round	House	Kick

http://avatar.red-pill.mobi/tim/blog.nsf/
http://bitbucket.org/timtripcony/howyabean
http://www.notesin9.com/2013/12/17/notesin9-132-using-java-in-xpages-part-1/
http://gist.github.com/edm00se/e5626f63ef7573fd2f3e
http://public.dhe.ibm.com/software/dw/lotus/Domino-Designer/JavaDocs/DesignerAPIs/com/ibm/commons/util/io/json/JsonGenerator.html#toJson(com.ibm.commons.util.io.json.JsonFactory,%20java.lang.Object)
http://jsonschema2pojo.org

As	I	mentioned	in	my	caveat	above,	as	my	HouseModel	extends	AbstractSmartDocumentModel,	I	don't	have	the	usual	get/set	Property
methods,	but	rather	getValue/setValue;	since	this	is	the	case,	reflecting	my	received	application/json	content	from	the	HttpRequest
directly	into	my	HouseModel	for	a	new	instance,	meaning	that	I	have	to	do	some	processing	of	that	data	to	fill	a	new	instance	of	a
HouseModel.	Since	I	know	the	data	format	I'll	be	expecting,	I'm	going	to	read	everything	into	a	HashMap<String,	Object>,	then
populate	my	HouseModel	from	that.	I	could	probably	write	my	own	GsonBuilder	to	account	for	this	difference,	but	I'm	not	going	that
far	into	things.

The	HouseModel

To	demonstrate	why	I'm	using	an	abstracted	model	which	doesn't	conform	exactly	to	bean	conventions	(the	getter/setter	methods	being
replace	by	a	universal	getValue/setValue,	for	instance),	have	a	look	at	the	simplicity	of	my	HouseModel	class.

public	class	HouseModel	extends	AbstractSmartDocumentModel	{

				private	static	final	long	serialVersionUID	=	1L;

				private	String	name;

				private	String	description;

				private	String	coatOfArms;

				private	String	words;

				private	String	seat;

				private	String	currentLord;

				private	String	region;

				private	String	title;

				private	String	heir;

				private	String	overlord;

				@Override

				protected	String	getFormName()	{

								return	"house";

				}

				@Override

Dev|Blog:	The	First	Year

29Servlet	Handling	Data,	A	Round	House	Kick

				public	void	load(final	String	unid)	{

								super.load(unid);

				}

				@Override

				protected	boolean	querySave()	{

								return	true;

				}

}

That's	it,	nothng	else.	This	should	be	the	hallmark	of	why	you	should	go	check	out	the	OpenNTF	Domino	API	right	now.	As	I	said
already,	this	keeps	me	from	directly	reflecting	via	Gson	or	IBM	commons	JSON,	but	I	can	live	with	that	for	this	level	of	simplicity.

Receiving	Data	from	POST	or	PUT

ServletInputStream

To	read	in	the	data	contained	within	the	HttpServletRequest's	body,	we	need	to	get	a	handle	on	the	ServletInputStream.	More	of	that
below,	in	the	example.

FromJson

Performing	the	fromJson	(reading	the	JSON	string	into	an	Object)	can	be	done	by	either	com.google.Gson	or
com.ibm.commons.util.io.json.	Both	work	well,	and	I	have	my	preference	to	Gson,	but	something	I	found	out	in	doing	it	both	ways	was
that	I	rather	like	the	com.ibm.commons.util.io.json	approach	for	a	particular	reason.	In	my	class,	visible	in	the	above	Collection	POST
handling	method,	I'm	creating	my	consumed	request	data	first	as	a	HashMap<String,	String>	so	that	I	can	iterate	the	values	and	build
out	my	appropriate	object;	this	works,	but	one	nicety	of	the	IBM	JSON	package	is	that	it	is	easily	created	first	as	a	JsonJavaObject,
which	is	similar	but	provides	some	conveniene	methods	for	property	access.

Using	the	InputStream	Directly

Instead	of	iterating	the	bytes	of	the	content	from	the	InputStream,	we	can	use	another	Apache	Commons	utility,	IOUtils,	to	automate
this	for	us.	Here's	a	reflection	of	a	traditional	bean	(with	the	usual	getter	and	setter	methods)	from	the	InputStream.

//	req	is	the	passed	in	HttpServletRequest

ServletInputStream	is	=	req.getInputStream();

Gson	gson	=	new	Gson();

MyBean	myBean	=	(MyBean)	gson.fromJson(IOUtils.toString(is),	MyBean.class);

My	Class's	Interpretation

As	mentioned	above,	here's	how	I'm	reading	my	values	into	a	HashMap	and	then	filling	my	object	with	the	setValue	methods.

String	reqStr	=	IOUtils.toString(is);

Gson	g	=	new	Gson();

//	create	the	tmp	HashMap

Map<String,Object>	tmpNwHouse	=	new	HashMap<String,Object>();

//	fill	the	values	via	Gson,	self-referencing	the	HashMap	class

tmpNwHouse	=	g.fromJson(reqStr,	tmpNwHouse.getClass());

//	iterate	the	values	and	put	them	into	the	proper	HouseModel	object

HouseModel	nwHouse	=	new	HouseModel();

Iterator<Map.Entry<String,Object>>	it	=	tmpNwHouse.entrySet().iterator();

nwHouse.setEditMode(true);

while	(it.hasNext())	{

				Map.Entry<String,Object>	pair	=	it.next();

				String	curProp	=	pair.getKey();

				String	curVal	=	(String)	pair.getValue();

				nwHouse.setValue(curProp,	curVal);

Dev|Blog:	The	First	Year

30Servlet	Handling	Data,	A	Round	House	Kick

http://commons.apache.org/proper/commons-io/apidocs/org/apache/commons/io/IOUtils.html

				it.remove();

}

//	any	additional	validations,	balances,	notifications,	etc.

nwHouse.save();

//	201	=	"Created",	should	include	"Location"	header

res.setStatus(201);

res.addHeader("Location",	"/xsp/houses/"+nwHouse.getUnid());

Provide	Response

You'll	see	I'm	relying	on	the	response	code	to	communicate	the	success.	This	is	what	jQuery	and	AngularJS	key	off	of	to	determine	the
success/fail	of	the	network	event	for	their	respective	callbacks.	In	my	error	handling,	I	respond	with	a	status	code	of	500,	and
application/json	content	in	the	body,	to	the	effect	of:

{

				error:	true,

				errorMessage:	"whatever	my	Exception.toString()	is"

}

This	once	again	highlights	the	need	to	document	your	API.	It's	okay	to	use	the	status	codes	for	primary	information,	but	definitely	at
least	put	some	error	messages	in	for	a	failing	operation.

Note:	On	PUT	and	DELETE	Methods

I	ran	into	something	with	this,	which	I	wasn't	expecting.	I	had	to	enable	PUT	and	DELETE	methods	in	my	Domino	Designer	while
testing	locally.	It	seems	that	my	PUT	and	DELETE	calls	were	being	hijacked	and	consistently	throwing	405:	method	not	allowed	calls.
This	threw	me	for	a	loop,	as	my	devleopment	and	production	servers	didn't	have	this	issue.	My	suspicion	is	that	they	were	already
enabled,	via	enabling	of	the	Domino	Data	Services,	previously.

To	enable	PUT	and	DELETE	(or	PATCH,	though	I've	avoided	it	for	simplicity's	sake),	you	should	do	so	by	any	of:

enable	in	Internet	Site	(if	your	server	uses	them)
enable	in	Notes.ini	(specifics	below)
work	around	using	X-Http-Method-Override

Using	the	X-Http-Method-Override	seems	silly,	but	is	pretty	easy	to	use.	Here's	a	jQuery.ajax	example	of	a	PUT	request	being	sent	as	a
POST,	taken	from	a	StackOverflow	answer	on	the	subject:

$.ajax({

				beforeSend:	function(xhr)	{

								xhr.setRequestHeader('X-HTTP-Method-Override',	'PUT');

				},

				type:	'POST',

				url:	'/someurl',

				success:	function(data){

								//	do	something...

				}

});

As	for	the	path	I	took	for	my	personal	development	environment,	I	added	the	following	line	to	notes.ini:

HTTPEnableMethods=PUT,DELETE

I	initiallly	didn't	see	it	work,	as	I	added	it	to	the	end	of	my	file.	Once	I	placed	that	directly	under	where	I	define	my	local	web	preview
port	(further	up	the	file),	it	started	to	work	without	issue.	Must	be	the	ghosts	in	the	machine.

Dev|Blog:	The	First	Year

31Servlet	Handling	Data,	A	Round	House	Kick

Video	link

Summary

I've	covered	a	whole	heck	of	a	lot	in	this	post.	We	split	our	servlet	to	handle	collection	operations	(getting	the	collection	and	creating	a
new	entry)	and	the	record	operations	(getting	the	full	content	of	a	single	record,	updating	a	record	in	part	or	in	whole,	and	deleting
records)	and	worked	with	a	consistent	interface	via	a	near-POJO	data	object,	which	acts	the	same	as	the	managed	bean	use	in	my	code
base	(see	the	GH	repo,	link	below).

I	also	know	there	are	people	out	there	thinking,	"but	there's	this	better	way	to	do	this	part!"	Great!	Please	show	us	and/or	me	how.	I	also
welcome	all	constructive	comments	below.

To	see	my	application	code	to	this	point,	by	all	means	check	out	my	GitHub	repository	for	it.	Follow	the	ReadMe.md	instructions	to	get
started.	This	repository	will	update	once	I've	completed	the	next	two	posts.	I	still	want	to	cover	how	to	convert	XAgent	logic	to	a	servlet
and	creating	a	basic	front-end	interface	to	this	servlet	with	AngularJS.	So	please	stay	tuned	to	this	series,	as	there's	more	to	come!

Dev|Blog:	The	First	Year

32Servlet	Handling	Data,	A	Round	House	Kick

http://youtube.com/watch?v=Hw0xVKoWW7o

A	Quick	Review

I	had	some	trepidation	about	this	post;	it	revolves	around	the	fact	that	I'm	"completing"	my	blog	series	with	multiple	giant	topics,	on	top
of	the	one	primary	one	I've	focused	on	for	the	majority	of	this	blog	series.	So,	before	we	get	started,	I'm	going	to	summarize	a	couple
things.	But	first,	a	ToC:

Front-End	Consumption
Why	AngularJS?
Tomorrow

Servlets

I've	referred	to	this	series	as	#ASagaOfServlets.	While	most	Java	servlets	are	intended	for	use	over	HTTP	(at	least	from	a	JEE,	web
container	standpoint),	this	is	not	exclusive;	I've	used	HTTPServlet	as	analagous	to	Servlet	(for	better	or	for	worse).

RESTful	API

A	REST	API	is	an	architectural	style	of	API.	There	is	no	concrete	definition	of	what	required	for	an	API	to	be	RESTful,	but	it's	best	if	it
follows	a	couple	conventions	(previously	covered);	this	generally	boils	down	to:

a	resource	based	interface,	following	HATEOAS
be	stateless	(no	server	session	required,	the	URI	request	gives	all	the	server	needs	to	know)
be	cachable	or	not	(depending	on	what	sort	of	data	you're	providing)
work	entirely	independent	of	any	particular	client	format	(while	adhering	to	certain	things	like	authentication	and	formatted
requests)

There	are	more	that	a	RESTful	API	can	do	or	rules	that	can	be	applied,	but	that's	the	high	level	stuff.	As	you	can	see,	this	is	part	of	the
core	of	the	segregation	of	data	and	primary	business	logic	from	the	client-layer	side	of	the	application.

"Stack"	Development

Part	of	my	crusade	in	the	realm	of	segregating	application	development	concerns	into	the	front-end	and	back-end	revolves	around	the
concept	of	these	"ends"	to	the	application.	Both	play	an	important	role,	but	work	best	together.	By	building	your	back-end	to	adhere	to
certain	conventions,	you	can	create	your	front-end	with	any	front-end	technology.	This	is	why	I'm	such	a	huge	fan.	At	my	company,	we
have	a	large	number	of	in-house	systems,	many	of	which	talk	to	each	other.	By	segregating	the	primary	business	logic	(governing	how
we	store	the	data,	events	that	trigger	from	the	server,	and	steps	in	workflow)	as	being	a	part	of	how	the	server	components	work,	then
any	client	playing	by	the	rules	can	be	a	valid	interface;	whether	that's	an	automated	agent	which	checks	for	non-interface	updates,	or	the
front-end	which	contains	all	the	user	interaction	at	the	UI	level.	The	business	logic	become	much	more	maintainable	and	documentable
in	the	process.

Where	XPages	fits	in	as	a	component	in	all	of	this	can	be	a	little	tricky.	Obviously,	XPages	design	elements	encompass	the	application
layer,	but	deciding	how	that	maps	to	a	front-end	as	opposed	to	a	back-end	is	a	bit	trickier	(and	one	I've	complained	about	debated
before).	I	don't	mean	to	beat	up	on	XPages,	as	it	offers	us	quite	a	lot	of	tools	and	components	that	help	assemble	a	working	app,	rapidly;
I	can	and	will	beat	up	on	poorly	implemented	XPages	application	code.

XPages:	Full-Stack	Development?

Obviously,	certain	beginner	XPages	development	approaches	(those	conducive	to	SSJS	spaghetti	code™)	can	be	quite	the	antithesis	of
what	the	segregated	stack	approach	gives	us.	This	makes	our	XPages	design	elements,	containing	not	just	the	markup	and	layout	of
elements	(fields,	labels,	etc.),	but	also	logic,		if(status.equals("certainStep")){	doSomethingUnique();	}	,	and	actions	(since	these
X	conditions	are	true,	send	an	email	to	these	12	people).	Combine	this	with	the	unique,	NoSQL	database	handling	via	the
NotesDominoAPI,	it's	my	belief	that	XPages	development	is	by	default	a	full-stack	application	stack;	for	better	or	for	worse.

Aside	(talking	crazy	for	a	moment)

Some	of	these	concepts	are	central	to	what	I've	seen	previewed	of	the	XPages	(XSP)	application	runtime	and	Domino	Data	Service	on
Bluemix.	That	the	data	container	being	forced	to	be	separate	from	the	application	layer	isn't	just	a	good	idea	with	Bluemix	(which
enforces	the	segregation	of	concerns	as	does	almost	any	other	application	stack,	considering	that	nearly	all	out	there	aren't	configured

Dev|Blog:	The	First	Year

33Building	a	Front-End	pt.1	Plus	a	Quick	Review

http://twitter.com/search?q=%23ASagaOfServlets
https://www.google.com/?gws_rd=ssl#q=site:edm00se.io+spaghetti+code
https://en.wikipedia.org/wiki/NoSQL
http://heidloff.net/nh/home.nsf/article.xsp?id=26.01.2015175730NHEMVZ.htm
http://ryanjbaxter.com/2014/09/22/using-your-domino-data-in-apps-deployed-to-bluemix/

like	an	NSF),	but	means	that	the	XPages	runtime	can	hook	into	any	database;	something	it's	already	capable	of,	but	often	not	done.	In

fact,	segregating	the	data	NSF	from	the	application	NSF	isn't	a	new	concept	either,	but	hey,	it's	my	paragraph	 .	I'm	also	fairly

certain	that	the	segregation	of	the	XSP	runtime	from	the	other,	traditional	NSF	components	may	be	the	gateway	for	us	to	get	an	updated
JVM,	but	maybe	I'm	just	greedy.

Ultimately,	the	point	I'm	trying	to	make,	is	that	we	have	a	lot	of	options	and	decisions	we	can	make	with	Domino/XPages,	but	with	any
ambiguity,	there	are	potential	pitfalls.	One	way	this	is	changing,	IMO,	is	the	bringing	of	the	XSP(XPages)	runtime	to	Bluemix.	In	case
you	missed	it,	I've	posted	a	couple	early	thoughts	on	Bluemix,	and	I'm	both	impressed	and	excited	for	what	it	can	and	will	bring	to	the
table	for	my	company	and	I.

Front-End	Consumption

Having	shaped	our	back-end	earlier	in	this	series	to	adhere	to	a	primarily	RESTful	API	format,	we	can	now	consume	that	API	by	some
front-end.	In	the	Notes	in	9	173:	Getting	Started	With	(HTTP)Servlets	video,	I	demonstrated	this	principle	via	the	Postman	REST	client
(a	Chrome	extension).	There	are	others	out	there	and	you	could	even	test	from	your	command	line	via	cURL,	if	you're	so	inclined.	What
this	demonstrates	is	that	virtually	any	front-end	can	consume	the	API,	it	just	comes	down	to	how	you	expose/provision	that	API	and
what	you	point	to	it.

It	also	shows	the	method	of	data	transfer.	In	order	for	a	front-end	to	work	with	my	RESTful	API,	it	will	need	to:

provide/receive	all	data	in	application/json
stick	to	the	available	resources	(houses)
create	a	new	entry,	one-at-a-time,	against	the	collection	endpoint	(/houses)
read,	update,	delete	against	the	(UN)ID	keyed	URI	(/houses/[0-9a-zA-Z]{32})
collection	data	is	accessible	via	/houses

JavaScript	Consumption

Front-end	development	in	this	day	and	age	focuses	on	JavaScript	usage.	Most	people	use	a	framework	of	some	flavor,	to	automate	the
things	they'd	rather	not	spend	too	much	time	on.	Some	of	these	things	include	standardizing	how	you	interact	with	an	HTTP	RESTful
API	endpoint,	or	automate	the	updating	of	data	between	bound	components.	The	fact	of	the	matter	is,	there	are	plenty	of	frameworks
out	there,	many	which	can	help	you	in	your	quest.

JavaScript	Frameworks

Choosing	a	JavaScript	framework	can	be	a	little	daunting,	if	you're	doing	so	for	the	first	time.	There's	a	long	history	of	many	web
applications	making	use	of	jQuery	or	Dojo,	both	of	which	are	libraries(/frameworks)	that	automate	quite	a	bit,	they're	not	of	the
MVC/MV*	flavor	I'm	looking	for.	The	fact	remains,	one	can	make	a	fully-formed	application	out	of	either,	I	just	won't	focus	on	them.

[Aside]	There	are	jQuery	UI	(and	mobile)	and	Dojox	MVC,	but	I'm	moving	on	for	simplicity's	sake.	[/Aside]

MVC/MV*	Architecture

There	are	a	lot	of	acronyms	in	framework	architecture	that	get	thrown	around.	Here	are	a	couple	to	get	you	started:

MVC	-	Model-View-Controller
MVVM	-	Model-View-ViewModel
MVW	/	MV*	-	Model-View-Whatever

This	list	is	far	from	all-inclusive,	and	is	a	bit	of	a	side-topic	to	what	I	want	to	focus	on	here.	Just	remember	how	a	model,	view,	and
controller	represent	different	pieces	of	the	application	pie,	and	all	will	be	good.

If	you	want	to	read	up	more	on	the	theory	of	why	you	would	want	an	MVC/*	framework,	I	recommend	checking	out	this	answer	on
Quora	on	the	subject.	It's	a	good	read	which	espouses	the	need	for	the	a	framework	but	as	they	point	out,	no	one	solution	(e.g.-
Backbone	in	their	example)	is	an	end-all,	be-all.

FWIW

AngularJS	(as	you	can	probably	have	guessed	is	the	front-end	framework	I'm	using)	considers	itself	to	be	an	MV*/MVW	framework

Dev|Blog:	The	First	Year

34Building	a	Front-End	pt.1	Plus	a	Quick	Review

https://www.youtube.com/watch?v=stJ3Yc1BOnU&t=32m47s
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
http://www.codingpedia.org/ama/how-to-test-a-rest-api-from-command-line-with-curl/
http://jqueryui.com/
http://jquerymobile.com/
http://dojotoolkit.org/reference-guide/1.10/dojox/mvc.html
http://www.quora.com/When-does-it-make-sense-to-use-an-MVC-framework-for-JavaScript

HTML	enhanced	for	web	apps!

and	has	ditched	the	MV-something	classification	almost	entirely.

No	matter	your	descision	on	frameworks,	the	bottom	line	is	that	you	should	use	one	that	plays	to	your	strengths,	and	you	should	play	to
the	strengths	of	the	framework	you	choose.

Why	AngularJS?

AngularJS	set	out	to	conquer	some	considerable	hurdles	when	it	began.	The	HTML5	spec	was	in	its	infancy	and	the	front-end
frameworks	out	there	were	achieving	a	few	good	things,	but	the	Angular	team	wanted	more.

Here	are	the	reasons	I	gave	for	AngularJS	(with	some	definite	overlap	with	other	frameworks)	from	my	Chalk	Talk	Soup	rebel	slide
deck:

bi-directional	data	binding	(all	data	models	by	default	auto-update	their	other	references	on	data	change,	within	the	scope)
templates	(via	ng-include	or	ng-route;	also	ui-router,	3rd	party)
OoB	directives,	services,	filters,	and	more
dependency	injection
unit	testing	(AngularJS	was	developed	with	e2e	testing	in	mind,	and	docs	examples	include	protractor	scripts)

Here	are	a	couple	examples	I	had	prepared	for	that	slide	deck:

Bi-directional	data	binding:

Dynamic	templates:

Dev|Blog:	The	First	Year

35Building	a	Front-End	pt.1	Plus	a	Quick	Review

Filters	(out	of	the	box!):

To	add	some	fuel	to	the	fire,	here	is	a	link	to	the	Google	Trends	for	Angular,	Backbone,	and	Ember.	As	an	side,	check	out	other
combinations	of	search	terms,	it	can	be	interesting	to	play	with;	it	only	yields	results	as	scraped	from	Google	search,	so	it's	no	absolute
indicator,	but	interesting	as	it	is.

For	another	good	comparison	between	Angular,	Backbone,	and	Ember,	this	articles	does	a	decent	job	of	breaking	down	"the	good	parts"
and	the	"pain	points".	The	article	is	hosted	on	airpair.com,	a	micro-consulting	site	geared	for	developer-to-developer	support,	be	it
mentoring,	code	review,	and	more.

It's	a	sign	of	one	of	the	other	advantages	of	this	form	of	segregated,	"stack"	design;	outside	help	that's	not	such	a	closed	ecosystem	as
the	one	we	work	in.	This	may	not	be	a	huge	deal	for	those	who	aren't	customers,	but	for	those	who	seek	to	at	least	stay	afloat,	it's	a

decent	leap	towards	being	able	to	outsource	without	a	huge	amount	of	 .

Scary	Change	is	Scary

Recently	you	may	have	seen	David	Leedy	blog	a	link	and	ask	for	perspective	on	a	particular	post	denouncing	AngularJS	and	all	its	sins.
All	I	can	say	is,	read	the	comments	along	with	the	post.	I	personally	found	the	post	to	be	inconsisent	with	my	experiences	but,	more
importantly,	ignoring	certain	facts	and	updates	(which	the	AngularJS	team	does	provide	on	a	constant	basis)	for	the	sake	of	their
argument.	Make	up	your	own	mind,	but	be	informed.

A	Note	on	Version	2

Dev|Blog:	The	First	Year

36Building	a	Front-End	pt.1	Plus	a	Quick	Review

AngularJS	version	2.0	takes	advantage	of	ECMAScript	6	and	follows	a	format	considerably	more	like	web	components.	This	means
that	it	will	fit	in	well	with	the	final	release	of	the	HTML5	spec.	It's	also	on	the	early	side	and	as	the	AngularJS	2.0	site	points	out,

Angular	2	is	currently	in	Developer	Preview.	We	recommend	using	Angular	1.X	for	production	applications.

For	now,	I'm	rocking	the	1.x	line,	specifically	staying	in	1.3.x	for	my	current	app.	A	lot	of	people	are	trying	to	make	a	big	deal	out	of
Google's	choice	to	break	2.x	from	1.x,	but	the	fact	of	the	matter	is	that	1.x	isn't	going	anywhere	just	yet	and	will	have	a	stable	branch	for
quite	some	time	to	come.	I	first	started	dabbling	on	AngularJS	0.9.8,	and	started	grasping	much	more	of	it	after	1.0	hit.	If	I	was	so
inclined,	there	is	a	stable	1.0.8	release	available	right	on	angularjs.org	including	documentation	at	that	level,	and	1.0.8	was	released	Aug
22nd,	2013.

So,	all	those	naysayers,	I	say	pick	a	framework.	I'm	going	with	AngularJS	and	it's	been	pretty	pimp	so	far.

Tomorrow

Come	back	tomorrow	for	the	conclusion	of	this	epic	journey.

Dev|Blog:	The	First	Year

37Building	a	Front-End	pt.1	Plus	a	Quick	Review

http://www.bennadel.com/blog/2439-my-experience-with-angularjs-the-super-heroic-javascript-mvw-framework.htm

Video	link

Dev|Blog:	The	First	Year

38Building	a	Front-End	pt.1	Plus	a	Quick	Review

http://youtube.com/watch?v=1P3P2L0Q25Y

Ever	Onward

For	as	much	theory	and	verbiage	as	yesterday's	post	was,	today's	will	be	primarily	code-driven;	something	I	hope	you're	ready	for.	I'll
run	through	this	all	and	hopefully	I	can	illustrate	succinctly	as	we	go.

HTML	Templating
AngularJS	App
Bring	It	Home

HTML	Templating

HTML	templating	is	useful	because	it	frames	out	the	structure	of	a	page,	in	its	components	parts,	and,	possibly	the	most	useful	attribute,
it	can	be	cached	by	the	browser.	This	is	highly	useful	for	a	lot	of	traffic	and	saves	on	the	overhead	of	transporting	markup	with	your
data	in	every	update	of	data.	It's	one	of	the	topics	Marky	Roden	talked	about	during	his	5	Questions	with	Marky	Roden	video	for
SocialBizUG.org.

The	initial	page	for	the	Houses	of	AnAppOfIceAndFire	(index.html)	is	laid	out	like	almost	anyone	would	expect	an	index.html	file	that
implements	Bootstrap.	I've	snipped	out	everything	but	the	<body>	tag	contents	for	space.

<!--	...head	contents...	-->

<!--	defining	where	to	inject	our	app	definition,	using	the	body	tag	-->

<body	ng-app="houseApp">

				<div	class="navbar	navbar-default	navbar-fixed-top"	role="navigation">

								<!--	...navbar	contents...	-->

				</div>

				<!--	the	magic!	-->

				<div	ui-view></div>

				

				<script	type="text/javascript"	src="js/houseApp.js"></script>

</body>

<!--	...	-->

The	"magic	happens"	part	is	where	my	application	code	structures	in	the	HTML	partials,	which	I	route	in,	based	on	my	config.	We'll	get
there	in	a	minute,	for	now,	have	a	look	at	the	two	partial	HTML	files	I'm	using,	one	for	the	collection	list	and	one	for	the	individual
house.	You	may	notice	that	I'm	also	nesting	my	House	Record	inside	the	House	Collection	partial,	this	is	one	of	the	nifty	features	I	like
about	ui-router.

House	Collection

<div	id="uiContainer"	class="container">

				<div	class="row">

								<div	class="col-md-4">

												<div	class="panel	panel-default">

																<div	class="panel-heading">

																				<h3	class="panel-title">Houses	of	the	Seven	Kingdoms	of	Westeros</h3>

																</div>

																<ul	class="list-group	list-group-striped">

																				<li	class="list-group-item"

																								ng-repeat="house	in	housesOfWesteros	|	startFrom	:	curPage*pageQty	|	limitTo:pageQty">

																								<a	ng-href="#/houses/{{	house.unid	}}"	title="{{	house.unid	}}">{{house.name}}

																								<a	href="#"

																												class="btn	btn-danger	pull-right"

																												ng-really-message="Are	you	sure	you	want	to	delete	this	house	from	Westeros?"

																												ng-really-click="removeHouse(house.unid)"><i	class="fa	fa-lg	fa-trash-o"></i>

																								
{{house.words}}

																				

																

																<div	class="panel-footer	col-xs-12">

Dev|Blog:	The	First	Year

39Building	a	Front-End	pt.2:	An	App	with	AngularJS

http://www.youtube.com/watch?v=k5bDvZg4Gbg

																				<nav>

																								<ul	class="pager">

																												<li	class="previous"	ng-class="{'disabled':	curPage	==	0}">

																																<a	ng-click="curPage	=	curPage	-	1"	href="">←	Previous

																												

																												

																												<li	class="next"	ng-class="{'disabled':	curPage	>=	housesOfWesteros.length/pageQty-1}">

																																<a	ng-click="curPage	=	curPage	+	1"	href="">Next	→</

																												

																								

																				</nav>

																</div>

												</div>

								</div>

								<!--	single	house	content	-->

								<div	ui-view	class="col-md-6	col-md-offset-2"></div>

				</div>

</div>

House	Record	For	obvious	reasons,	much	more	like	a	form.

<div	class="panel	panel-default">

				<div	class="panel-heading">

								<h3	class="panel-title">House	Details</h3>

				</div>

				<div	class="panel-body">

								<form	name="houseForm">

												<div	class="form-group">

																<label

																				for="houseName">

																				Name</label>

																<input

																				type="text"

																				class="form-control"

																				id="houseName"

																				name="name"

																				ng-model="myHouse.name"

																				ng-disabled="!editForm"	/>

												</div>

												<div	class="form-group">

																<label

																				for="houseDescription">

																				Description</label>

																<textarea

																				class="form-control"

																				id="houseDescription"

																				name="description"

																				ng-model="myHouse.description"

																				rows="3"

																				ng-disabled="!editForm"	/>

												</div>

												<div	class="form-group">

																<label

																				for="coatOfArms">

																				Coat	of	Arms</label>

																<input

																				type="text"

																				class="form-control"

																				id="coatOfArms"

																				name="coatOfArms"

																				ng-model="myHouse.coatOfArms"

																				ng-disabled="!editForm"	/>

												</div>

												<div	class="form-group">

																<label

																				for="houseWords">

																				Words</label>

Dev|Blog:	The	First	Year

40Building	a	Front-End	pt.2:	An	App	with	AngularJS

																<input

																				type="text"

																				class="form-control"

																				id="houseWords"

																				name="words"

																				ng-model="myHouse.words"

																				ng-disabled="!editForm"	/>

												</div>

												<div	class="form-group">

																<label

																				for="houseSeat">

																				Seat</label>

																<input

																				type="text"

																				class="form-control"

																				id="houseSeat"

																				name="seat"

																				ng-model="myHouse.seat"

																				ng-disabled="!editForm"	/>

												</div>

												<div	class="form-group">

																<label

																				for="houseCurrentLord">

																				Current	Lord</label>

																<input

																				type="text"

																				class="form-control"

																				id="houseCurrentLord"

																				name="currentLord"

																				ng-model="myHouse.currentLord"

																				ng-disabled="!editForm"	/>

												</div>

												<div	class="form-group">

																<label

																				for="houseRegion">

																				Region</label>

																<input

																				type="text"

																				class="form-control"

																				id="houseRegion"

																				name="region"

																				ng-model="myHouse.region"

																				ng-disabled="!editForm"	/>

												</div>

												<div	class="form-group">

																<label

																				for="houseTitle">

																				Title</label>

																<input

																				type="text"

																				class="form-control"

																				id="houseTitle"

																				name="title"

																				ng-model="myHouse.title"

																				ng-disabled="!editForm"	/>

												</div>

												<div	class="form-group">

																<label

																				for="houseHeir">

																				Heir</label>

																<input

																				type="text"

																				class="form-control"

																				id="houseHeir"

																				name="heir"

																				ng-model="myHouse.heir"

																				ng-disabled="!editForm"	/>

												</div>

												<div	class="form-group">

																<label

																				for="houseOverlord">

																				Overlord</label>

Dev|Blog:	The	First	Year

41Building	a	Front-End	pt.2:	An	App	with	AngularJS

																<input

																				type="text"

																				class="form-control"

																				id="houseOverlord"

																				name="overlord"

																				ng-model="myHouse.overlord"

																				ng-disabled="!editForm"	/>

												</div>

												<div	class="btn-list	pull-right">

																<button

																				class="btn-default	btn"

																				type="button"	id="buttonCancelGotHouse"

																				ng-really-message="Are	you	sure?"

																				ng-really-click="clearCancelForm()">

																				<i	class="fa	fa-lg	fa-pencil"></i>	Cancel</button>

																<button

																				class="btn-success	btn"

																				type="button"	id="buttonSaveGotHouse"

																				ng-show="editForm"

																				ng-click="saveHouseForm()">

																				<i	class="fa	fa-lg	fa-save"></i>	Save</button>

																<button

																				class="btn-primary	btn"

																				type="button"	id="buttonEditGotHouse"

																				ng-disabled="!canEditForm"

																				ng-show="!editForm"

																				ng-click="setFormEditable()">

																				<i	class="fa	fa-lg	fa-pencil"></i>	Edit</button>

												</div>

								</form>

				</div>

				<!--	<div	class="panel-footer	col-xs-12"></div>	-->

</div>

AngularJS	App

0	-	Structure

My	app	will	consist	of	a	few	parts.	I've	broken	them	apart	here	into	sections,	for	ease	of	reading.	I've	also	taken	the	approach	for	my
app.js	of	chain-loading	each	section	off	the	main	module	definition,	decreasing	the	number	of	handles	for	the	same	object.

1	-	Config

I'll	first	need	to	configure	any	routing	rules	for	my	HTML	partials	and	resolving	URL	route	parameters	as	their	respective	variables;	this
will	happen	in	the	config;	the	definition	is	for	an	Angular	"module".	Any	3rd	party	assets	get	plugged	in	here,	as	part	of	the	dependency
injection,	such	as	ui-router.

//	a	self-invoking,	anonymouse	function	to	keep	application	code	variables	scoped	anonymously

(function(){

				//defines	the	AngularJS	app	as	a	module

				angular.module('houseApp',	['ui.router'])	//'ngAnimate'

				//ui-router	config

				.config(

								function($stateProvider,	$urlRouterProvider){

												$urlRouterProvider.otherwise('/houses');

												$stateProvider

																.state('houses',	{

																				url:	'/houses',

																				templateUrl:	'partials/houseList.html',

																				controller:	'HouseListCtrl'

																})

																.state('houses.item',	{

Dev|Blog:	The	First	Year

42Building	a	Front-End	pt.2:	An	App	with	AngularJS

																				url:	'/:item',

																				templateUrl:	'partials/house.html',

																				controller:	'OneHouseCtrl'

																});

				})

				//	...	services/factories,	controllers,	filters,	directives

})();

2	-	Services/Factories

Any	services	or	factories	(or	providers)	get	defined	here.

//...config...

/*

	*				Factories

	*/

//defines	the	$HTTP	factory,	one	of	the	3	service	types

.factory('houseCollectionFactory',	['$http',	function($http)	{

				return	$http({

								method	:	'GET',

								url	:	'houses'

				});

}])

.factory('houseFactory',	['$http',	function($http){

				return	function(id){

								return	$http({

												method	:	'GET',

												url	:	'houses/'+id

								});

				}

}])

//...controllers,filters,directives...

3	-	Controllers

Controllers	are	a	binding	of	functional	behavior	to	sections	of	the	HTML.	I	have	two	controllers,	each	with	different	scopes.	Mine	are
for	my	navigation	handling	and	the	primary	application	regarding	houses.

//...config,factories...

/*

	*				Controllers

	*/

//navigation	controller

.controller('NavCtrl',	function($scope,	$location){

				$scope.isActive	=	function(route)	{

								return	route	===	$location.path();

				}

})

//provies	the	controller	to	the	app,	which	handles	the	interaction	of	data	(model)	with	the	view	(a	la	MVC)

.controller('HouseListCtrl',	function($scope,	$state,	$http,	$filter,	houseCollectionFactory)	{

				//defines	filter/search/etc.	vars

				$scope.pageQty	=	5;	//detectPhone()	?	10	:	30;

				$scope.curPage	=	0;

				//calculates	the	number	of	results

				$scope.numberOfPages	=	function()	{

								return	Math.ceil($scope.housesOfWesteros.length	/	$scope.pageQty)	||	0;

Dev|Blog:	The	First	Year

43Building	a	Front-End	pt.2:	An	App	with	AngularJS

				}

				//defines	a	boolean	var

				$scope.showSearch	=	false;

				$scope.housesOfWesteros	=	[];

				//the	factory	is	returning	the	promise	of	the	$http,	so	handle	success/error	here

				houseCollectionFactory

								.success(function(data,	status,	headers,	config)	{

												$scope.housesOfWesteros	=	data;

												//$scope.predicate	=	"JobNum";

												//$scope.reverse	=	false;

								}).error(function(data,	status,	headers,	config)	{

												$scope.housesOfWesteros	=	null;

												console.log("data:	"	+	data);

												console.log("status:	"	+	status);

												console.log("headers:	"	+	headers);

												console.log("config:	"	+	JSON.parse(config));

								})

									.then(function(){

												//angular.element('div.screenMask').css('visibility','hidden');

								});

				$scope.removeHouse	=	function(unid){

								$http({

												method	:	'DELETE',

												url	:	'houses/'+unid

								})

								.success(function(data,	status,	headers,	config){

												console.log("successfully	deleted	house	with	id:	"+unid);

								})

								.error(function(data,	status,	headers,	config){

												//might	as	well	say	something

												console.log("poop");

								})

								.then(function(){

												$state.go('houses',{reload:	true});

								});

				};

})

.controller('OneHouseCtrl',	function($scope,	$state,	$stateParams,	$http,	houseFactory){

				//	check	for	empty	ID

				var	tmpItm	=	$stateParams.item;

				console.log("unid:	"+tmpItm);

				var	re	=	/^[0-9A-Za-z]{32}$/;

				//var	re	=	/\d/;

				if(tmpItm	==	null	||	tmpItm	==	undefined	||	(!tmpItm	||	!tmpItm.trim())	||	!re.test(tmpItm)){

								$state.go('houses');

				}

				$scope.editForm	=	false;

				$scope.canEditForm	=	false;

				$scope.myHouse	=	{};

				var	fieldNames	=	[];

				houseFactory($stateParams.item)

								.success(function(data,	status,	headers,	config)	{

												$scope.myHouse	=	data;

												$scope.canEditForm	=	true;

												angular.forEach($scope.myHouse,function(value,key){

																if(key!="unid"){

																				fieldNames.push(key);

																}

												});

								})

								.error(function(data,	status,	headers,	config)	{

												console.log("status:	"+status);

												console.log("data:	"+data);

												console.log("headers:	"+headers);

												console.log("config:	"+JSON.parse(config));

								});

Dev|Blog:	The	First	Year

44Building	a	Front-End	pt.2:	An	App	with	AngularJS

				$scope.setFormEditable	=	function()	{

								if($scope.canEditForm	==	true){

												$scope.editForm	=	true;

								}

				}

				$scope.clearCancelForm	=	function()	{

								$state.go('houses');

				}

				$scope.saveHouseForm	=	function(){

								var	tmpOb	=	{	"unid":	$scope.myHouse.unid	};

								//console.log("checking	field	names:	"+fieldNames.toString());

								angular.forEach(fieldNames,	function(fldNm){

												if($scope.houseForm[fldNm].$dirty	===	true){

																var	tmpVal	=	$scope.myHouse[fldNm];

																//console.log("updated	field:	"+fldNm+"	with	value:	"+tmpVal);

																tmpOb[fldNm]	=	tmpVal;

												}

								});

								$http({

												method	:	'PUT',

												url	:	'houses/'+$scope.myHouse.unid,

												data:	JSON.stringify(tmpOb)

								})

												.success(function(data,	status,	headers,	config){

																console.log("successfully	updated	house	with	unid:	"+$scope.myHouse.unid);

												})

												.error(function(data,	status,	headers,	config){

																//might	as	well	say	something

																console.log("poop");

												})

												.then(function(){

																$state.go('houses',{reload:	true});

												});

								//console.log("Simulated	PUT	complete	with	object	to	send:	"+JSON.stringify(tmpOb));

				}

})

//...filters,directives...

4	-	Filters

Everyone	tends	to	like	directives	in	AngularJS	(I	do	too),	but	one	of	my	favorite	aspects	of	AngularJS	is	the	out-of-the-box	Filters	that
we	get	for	free.	This	is	an	entire	subject	on	its	own	IMO,	but	for	now,	you	can	see	my	"startFrom"	custom	filter;	part	of	my	custom
paging	mechanism	for	the	House	Collection.

//...config,factories,controllers...

/*

	*				Filters

	*/

//	we	already	use	the	limitTo	filter	built-in	to	AngularJS,

//	this	is	a	custom	filter	for	startFrom

.filter('startFrom',	function()	{

				return	function(input,	start)	{

								start	=	+start;	//parse	to	int

								return	input.slice(start);

				}

})

//...directives...

5	-	Directives

Dev|Blog:	The	First	Year

45Building	a	Front-End	pt.2:	An	App	with	AngularJS

Directives	are	the	higher	level	"do	something"	definitions.	Most	of	the	AngularJS	attributes	or	tags	you	write	into	HTML	are	directives.
As	with	Filters,	you	can	write	your	own	Directives	all	you	like,	but	some	of	the	most	useful	ones	come	OoB.

//...config,factories,controllers,filters

/*

	*				Directives

	*/

//This	directive	allows	us	to	pass	a	function	in	on	an	enter	key	to	do	what	we	want.

.directive('ngEnter',	function	()	{

				return	function	(scope,	element,	attrs)	{

								element.bind("keydown	keypress",	function	(event)	{

												if(event.which	===	13)	{

																scope.$apply(function	(){

																				scope.$eval(attrs.ngEnter);

																});

																event.preventDefault();

												}

								});

				};

})

/**

	*	A	generic	confirmation	for	risky	actions.

	*	Usage:	Add	attributes:	ng-really-message="Are	you	sure"?	ng-really-click="takeAction()"	function

	*/

.directive('ngReallyClick',	[function()	{

				return	{

								restrict:	'A',

								link:	function(scope,	element,	attrs)	{

												element.bind('click',	function()	{

																var	message	=	attrs.ngReallyMessage;

																if	(message	&&	confirm(message))	{

																				scope.$apply(attrs.ngReallyClick);

																}

												});

								}

				}

}]);

//...nothing,	just	close	the	parenthesis	to	make	the	JS	object	complete	then	invoke	with	another	set	of	paren

Bring	It	Home

That's	basically	it.	I	find	that	once	you	isolate	what	elements	of	work	you	have,	the	pieces	don't	have	to	be	ugly	or	scary.	In	fact,	the
craziest	part	of	my	whole	app	was	defining	my	clear/cancel	and	save	functions	in	my	House	Record	Controller,	and	that	was	fairly	easy.

You	can	clone	my	Git	repository	and	play	around	with	it	yourself,	if	you	like.	I	recommend	following	the	build	instructions	in	the

ReadMe	included	there.	Until	next	time,	 .

StarStar
	 ForkFork

Dev|Blog:	The	First	Year

46Building	a	Front-End	pt.2:	An	App	with	AngularJS

The	Road	Ahead

This	past	week	saw	the	completion	of	a	series	born	of	a	couple	discussions	at	IBM	ConnectED	at	the	end	of	January,	combined	with	my
musings	on	application	structure	and	realizations	from	having	been	working	on	a	couple	large	XPages	applications	since	my	first
adoption	of	the	platform	over	three	and	a	half	years	ago.

The	Series

My	series	is	imperfect	and	doesn't	cover	ideal	ways	of	rolling	an	HttpServlet,	but	it	does	show	the	concept	and	the	ability	to	do	so
within	an	NSF	with	minimal	external	server	configuration.	I'm	excited	for	Toby	Samples	to	follow	up	to	his	first	post	on	getting	JAX-
RS	up	and	running	on	Domino,	as	it	accomplishes	considerably	more	in	the	realm	of	automation	of	endpoint	definition,	documentation,
and	some	of	the	hurdles	involved	with	my	ridiculously	vanilla,	NSF	only	based	approach.

This	isn't	a	bad	thing.	When	I	started	my	series,	only	a	couple	proof	of	concept	examples	were	out	there	on	using	a	straight
javax.servlet.http.HttpServlet,	or	geared	towards	OSGi	plugins.	These	are	great	topics,	but	I	wanted	something	self-contained	and	more
approachable	to	those	who	aren't	as	versed	in	OSGi	plugin	deployment.	OSGi	plugins	have	great	power,	I'm	just	not	as	experienced

with	them	yet	and	nowhere	near	comfortable	blogging	about	it..	yet.	Tomorrow	is	always	a	new	day	 .

Adventure	Is	Out	There!

I	forced	myself	to	blog	about	the	subject	and	hold	as	few	assumptions	as	possible.	When	it	came	to	my	preference	to	GSON,	I	also
included	a	version	using	the	IBM	commons	library.	This	sets	up	a	considerable	amount	more	of	what	I	would	like	to	build	on.	I	also
wanted	to	get	the	conversation	away	from	"how	do	I	start",	to	something	more	constructive,	like	"what's	the	best	way	to	do	this?"	I	think
I've	accomplished	establishing	a	small	base	of	reference	from	which	we	can	all	build	off	of.	That's	what	I	set	out	to	do.

But	Eric,	You	Didn't	Cover	...XYZ!

My	AngularJS	(side	of	my)	app	effectively	became	a	shotgun	of	a	delivery.	I	was	tired	of	talking	about	theory,	but	lots	of	people	have

covered	AngularJS	principles,	foundations,	and	more;	so	I	hit	on	the	key	points	and	just	figured	you	were	along	for	the	ride	 .
Several	of	those	people	are	in	the	XPages	development	community	and	there	are	many	outside	who	develop	AngularJS	with	for	their
RESTful	API.	That's	the	beauty	of	this	approach,	you	can	use	all	kinds	of	universal	resources	to	learn,	as	it's	industry-norm	and	not
specific	to	our	application	platform.

So	no,	I	didn't	cover	everything	explicitly,	but	to	read	up	on	how	and	why	my	AngularJS	code	is	how	it	is,	just	check	out	some
AngularJS	fundamentals	in	60-ish	minutes	and	then	on	using	ui-router.	Seriously,	if	you	can	walk	yourself	through	an	AngularJS	app
and	ui-router	principles,	you're	good	to	go.	I	do	much	too	far	out	of	the	"reading	level"	of	most	AngularJS	examples	and	it	was	a	good
demonstration	of	standardization	of	application	structure	in	the	front-end.

Let's	Take	a	Walk

You	never	know	what	you'll	find	when	you	step	out	of	your	usual	norms.	Without	stressing	ourselves	out	of	our	comfort	zones,	we	don't
always	find	what	we're	capable	of.	I'm	still	a	developer	learning	many	things,	I'm	just	lucky	to	count	myself	in	the	company	of	those
who	have	a	similar	thirst	for	knowledge	and	willingness	to	share	their	triumphs	and	tribulations.

Dev|Blog:	The	First	Year

47Series	Review

http://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServlet.html
http://www.youtube.com/watch?v=i9MHigUZKEM
http://egghead.io/lessons/angularjs-introduction-ui-router
http://github.com/angular-ui/ui-router

Video	link

Dev|Blog:	The	First	Year

48Series	Review

http://youtube.com/watch?v=dE-vX9eU7hw

Supporting
Here	are	some	of	my	blog	posts	which	directly	support	the	concepts	used	throughout	the	series	on	HTTP	Servlets.

Dev|Blog:	The	First	Year

49Supporting

REST	Consumption

RESTful	APIs	have	seen	prolific	growth	in	the	last	few	years.	Not	only	has	it	made	for	faster	transactions	between	servers	and	clients,
it's	also	become	a	great	standard	for	server-to-server	transmission	of	data.	While	many	may	argue	in	favor	of	SOAP	or	XML-RPC,	I'm
not	going	to	debate	those	merits	for	or	against.	If	you	are	most	comfortable	with	XML,	go	for	SOAP	as	1)	it	uses	XML	and	2)	is
supported	(to	the	1.1	standard)	natively	in	Domino	as	native	Web	Service	Providers/Consumers	elements.	For	even	more	on	SOAP	in
Domino,	I	recommend	checking	out	calling	web	services	from	XPages,	the	missing	part	by	Fredrik	Norling;	the	link	to	his	Notes	in	9
video	on	the	topic	is	on	the	article	page.

What	Makes	REST	Good

RESTful	APIs	make	use	of	JSON	as	their	data	medium;	either	via	application/json	or	JSONP.	As	a	general	rule,	I	find	JSON	syntax	to
be	more	readable	by	nature,	as		key:	value		pairs,	comma	separated	as	opposed	to	the	encapsulated	method	with	XML,	such	as
	<key>value</key>	.	Additionally,	JSON	compacts	a	(little)	bit	better	than	XML.	This	makes	it	well	suited	in	the	modern	age	with
mobile	devices	lurking	around	every	corner.	For	a	more	thorough	examination	of	REST	vs	SOAP,	please	check	out	this	StackOverflow
answer	or	this	article.	Basically,	SOAP	(and	XML-RPC,	its	quintessential	predecessor)	has	been	around	for	a	while	and	is	used	by	many
major	organizations	and	still	performs	well,	so	it's	far	from	dead.	I	just	believe	the	same	benefits	of	REST	can	apply	to	server
consumption.

Using	REST	in	Java

For	the	places	I	make	use	of	server-to-server	REST,	it's	usually	to	stitch	together	some	custom	joining	of	data	between	multiple	Domino
files.	This	is	not	ideal	as	it	makes	for	additional	computations	when	they	(arguably)	should	exist	together	already.	I	do	regard	myself	as
a	"realist"	though,	so	sometimes	I	have	to	acquiesce	to	the	will	of	my	admins	and	deal	with	the	cards	as	they	are	dealt.	My	example	use
cases	all	sound	just	plain	weird	out	of	context	of	our	existing	systems,	so	I'm	going	to	let	you	all	imagine	a	use	case	of	your	own.
Ultimately,	from	the	consumer	I	wish	for	my	call	against	a	parameterized	RESTful	endpoint	to	produce	the	JsonObject	(I'm	using
Google's	GSON	library)	of	the	data	I'm	looking	for.	An	alternate	method,	to	keep	the	data	independent	of	needing	to	invoke	a	Google
GSON	class	would	be	to	return	the	string-ified	version	then,	if	you're	using	SSJS,	perform	the	toJson	or	JSON.parse	on	the	string.

My	Sample	Java	Consumer

package	com.eric.restful;

import	java.net.URL;

import	java.net.URLConnection;

import	java.io.BufferedReader;

import	com.google.gson.*;

import	java.io.InputStream;

import	java.io.InputStreamReader;

import	java.io.IOException;

import	java.net.MalformedURLException;

import	org.apache.commons.validator.routines.*;

/**

	*	Class	with	a	single,	public,	static	method	to	provide	a		REST	consumer

	*	which	returns	data	as	a	JsonObject.

	*	

	*	@author	Eric	McCormick,	@edm00se

	*	

	*/

public	class	CustRestConsumer	{

				/**

					*	Method	for	receiving	HTTP	JSON	GET	request	against	a	RESTful	URL	data	source.

					*	

					*	@param	myUrlStr	the	URL	of	the	REST	endpoint

					*	@return	JsonObject	containing	the	data	from	the	REST	response.

					*	@throws	IOException

					*	@throws	MalformedURLException

					*	@throws	ParseException	

					*/

Dev|Blog:	The	First	Year

50RESTful	API	Consumption	on	the	Server	(Java)

http://en.wikipedia.org/wiki/Representational_state_transfer
http://www.dinochiesa.net/?p=259
http://www.xpagedeveloper.com/2014/calling-web-services-from-xpages
http://twitter.com/XPageDeveloper
http://stackoverflow.com/questions/3285704/should-a-netflix-or-twitter-style-web-service-use-rest-or-soap/3285790#3285790
http://spf13.com/post/soap-vs-rest

				public	static	JsonObject	GetMyRestData(String	myUrlStr)	throws	IOException,	MalformedURLException	{

								JsonObject	myRestData	=	new	JsonObject();

								try{

												UrlValidator	defaultValidator	=	new	UrlValidator();

												if(defaultValidator.isValid(myUrlStr)){

																URL	myUrl	=	new	URL(myUrlStr);

																URLConnection	urlCon	=	myUrl.openConnection();

																urlCon.setConnectTimeout(5000);

																InputStream	is	=	urlCon.getInputStream();

																InputStreamReader	isR	=	new	InputStreamReader(is);

																BufferedReader	reader	=	new	BufferedReader(isR);

																StringBuffer	buffer	=	new	StringBuffer();

																String	line	=	"";

																while((line	=	reader.readLine())	!=	null){

																				buffer.append(line);

																}

																reader.close();

																JsonParser	parser	=	new	JsonParser();

																myRestData	=	(JsonObject)	parser.parse(buffer.toString());

																return	myRestData;

												}else{

																myRestData.addProperty("error",	"URL	failed	validation	by	Apache	Commmons	URL	Validator");

																return	myRestData;

												}

								}catch(MalformedURLException	e){

												e.printStackTrace();

												myRestData.addProperty("error",	e.toString());

												return	myRestData;

								}catch(IOException	e){

												e.printStackTrace();

												myRestData.addProperty("error",	e.toString());

												return	myRestData;

								}

				}

}

You'll	notice	I've	an	extra	feature	to	my	CustRestConsumer	class.	On	being	invoked,	it	validates	the	string	according	to	the	Apache
Commons	URLValidator.	If	it	fails	this,	my	class	returns	a	JsonObject	with	property	error	set	to	true	and	the	exception	message.	If	it's
successful,	it	just	establishes	the	URLConnection,	receives	the	InputStream	and	via	the	StringBuffer	puts	the	response	out	into	my
myRestData	JsonObject	via	the	JsonParser.	Please	feel	free	to	use	and/or	modify	as	you	need	and,	as	usual,	if	someone	has	a	better	way
of	doing	it,	I'd	love	to	see	it.

To	See	It	In	Action

If	you're	looking	to	play	with	this	without	generating	your	own	use	case,	try	out	the	following	XPage.	In	the	beforePageLoad	phase	of
the	JSF	lifecycle,	it	imports	the	Java	package,	creates	a	string	which	is	the	URL	representation	of	Google's	feed	reader	service	(which
formats	RSS,	Atom,	etc.	into	a	standardized	format)	with	the	source	of	NPR's	News	RSS	feed,	and	then	puts	the	processed	data	into	a
viewScope	variable.	To	display	the	entries,	all	I	needed	was	to	access	the	contents	from	a	Data	View,	Data	Table,	or	Repeat	control	and
reference	the	object's	properties	by	key.	In	my	opinion,	a	greatly	simple	way	of	accessing	the	data	in	an	XPage'd	fashion,	which	reads	a
lot	like	two-way	binding	in	client-side	JavaScript	frameworks.

xml	version="1.0"	encoding="UTF-8"?>

<xp:view

				xmlns:xp="http://www.ibm.com/xsp/core">

				<xp:this.beforePageLoad></xp:this.beforePageLoad>

				<xp:dataTable

								id="dataTable1"

								rows="30"

								var="rowData"

								indexVar="rowCount">

								<xp:this.value></xp:this.value>

								<xp:column

Dev|Blog:	The	First	Year

51RESTful	API	Consumption	on	the	Server	(Java)

http://commons.apache.org/proper/commons-validator/apidocs/org/apache/commons/validator/UrlValidator.html

												id="column1">

												<xp:this.facets>

																<xp:panel

																				xp:key="header"

																				tagName="h1">

																				<xp:link

																								escape="true"

																								id="link1">

																								<xp:this.text></xp:this.text>

																								<xp:this.value></xp:this.value>

																				</xp:link>

																</xp:panel>

												</xp:this.facets>

								</xp:column>

								<xp:column

												id="column2">

												<xp:panel

																tagName="h3">

																<xp:link

																				escape="true"

																				id="link2"

																				text="#{javascript:rowData.title}"

																				value="#{javascript:rowData.link}">

																</xp:link>

												</xp:panel>

												<xp:br></xp:br>

												<xp:text

																escape="false"

																id="computedField2"

																value="#{javascript:rowData.content}">

												</xp:text>

												<xp:br></xp:br>

								</xp:column>

								<xp:column

												id="column3">

												<xp:text

																escape="true"

																id="computedField3"

																value="#{javascript:rowData.publishedDate}">

												</xp:text>

								</xp:column>

				</xp:dataTable>

</xp:view>

[update:	the	fromJson	call	was	added	to	this	gist	since	original	posting]

JAR	Resources

I've	used	two	Java	ARchive	resources	(JARs))	in	my	example	CustRestConsumer	class.	A	JAR	can	be	opened	easily,	as	it's	essentially	a
zipped	folder	with	a	given	structure.	One	of	the	best	aspects	of	Java	development	is	the	ability	to	use	and	provide	these	self-contained
archives	with	resources,	making	Java	a	fairly	modular	language,	allowing	you	to	build	your	own	constructs	on	common	building	blocks.
Essentially,	why	reinvent	the	wheel	when	you	can	use	someone	else's	wheel	class?

Dev|Blog:	The	First	Year

52RESTful	API	Consumption	on	the	Server	(Java)

http://en.wikipedia.org/wiki/JAR_(file_format

Per	request,	here's	a	breakdown	of	where	you	can	get	the	two	libraries	I	used;	the	Apache	Commons	Validator	library,	for	the
URLValidator,	and	the	Google	GSON	library,	for	the	ease	of	building	and	returning	a	JSON	Object.	To	bring	these	files	into	an	NSF,

merely	import	them	as	Code	>	JAR	elements	in	Designer,	as	such:	

Dev|Blog:	The	First	Year

53RESTful	API	Consumption	on	the	Server	(Java)

http://twitter.com/XPageDeveloper/status/501728122828374017
http://commons.apache.org/proper/commons-validator/
https://code.google.com/p/google-gson/

For	Starters

This	post	relies	on	the	previous	one,	which	covers	the	use	of	a	Java	class	to	consume	RESTful	data.	By	implementing	this,	we	were	able
to	pull	data	and	assign	it,	in	the	example	via	a	viewScope	variable,	into	an	xp:dataTable	element.	This	post	is	basic,	but	shows	how
powerful	this	can	be.	Some	implied	aspects	are:

1.	 URL	building	to	contain
the	appropriate	endpoint
URL	query	parameters

2.	 authentication	via
same	domain
trusted	domain	(or	public)
or	authentication	via	basic	auth	or	otherwise

3.	 that	you	can	properly	handle	the	retrieved	data

Handling	the	Data

Consistent	formatting	is	key,	which	is	why	this	may	be	an	argument	in	favor	of	SOAP;	the	WSDL	provides	action	and	format	definition
before	you	even	execute	the	GET(/etc).	It	also	highlights	the	importance	of	having	your	RESTful	API	properly	documented.	A	case	in
point	is	the	Notes	View	from	Domino	Data/Access	Services.	If	you	want	to	repeat	the	response	of	a	categorized	set	of	data	from	a	View,
did	you	remember	to	account	for	the	@category:	true	entry?	Remember,	DAS	will	basically	just	expose	the	NotesViewEntry	contents,
and	category	entries	are	valid	and	expected.

Also,	especially	in	XPages,	it	helps	to	format/reformat	your	data.	Since	an	xp:repeat	control	doesn't	inherently	know	how	to	iterate	a
com.google.gson.JsonObject,	we	need	to	account	for	that.	My	post	on	the	basics	had	to	have	its	gist	updated	in	the	sample	XPage	to
reformat	the	JsonObject	into	a	format	that	the	Domino	flavor	of	SSJS	could	understand.	I	used	the	fromJson	method,	which	is	handy
and	a	part	of	XPages	out	of	the	box,	but	as	as	noted	by	Tommy	Valand	and	others,	needs	a	quick	fix	before	you	use	it.	For	some	time,
I've	been	using	using	Douglas	Crockford's	JSON2	library	as	an	SSJS	library,	which	achieves	the	same	thing.	So	pick	your	poison	and
stick	with	it	for	consistency's	sake.

Authentication

My	example	below	uses	basic	HTTP	authentication.	This	was	the	easiest	to	roll	and	really	just	comes	into	play	if	you're	interacting	with
another	server,	outside	of	a	trusted	domain	(or	when	your	admins	don't	want	to	do	much	with	existing	network	topology).	You'll	notice
that	I'm	once	again	using	an	Apache	Commons	library	for	the	Base64	encoding;	isn't	open	source	great?	To	get	it,	you'll	need	the
Apache	Commons	Codec	jar;	I'm	using	version	1.9.

URL	Computation

As	you've	probably	caught	on	by	now,	a	similar	private	method	could/should	be	used	for	computing	the	URL	which	your	REST
consumer	will	interact	with.

My	Sample	Java	Consumer	with	Basic	HTTP	Authentication

package	com.eric.restful;

import	java.net.URL;

import	java.net.URLConnection;

import	java.io.BufferedReader;

import	org.apache.commons.codec.binary.Base64;

import	com.google.gson.*;

import	java.io.InputStream;

import	java.io.InputStreamReader;

import	java.io.IOException;

import	java.net.MalformedURLException;

/**

Dev|Blog:	The	First	Year

54Server	REST	Consumption	with	Authentication

http://en.wikipedia.org/wiki/Basic_access_authentication
http://dontpanic82.blogspot.com/2010/09/xpages-ssjs-code-snippet-that-lets-you.html
http://dontpanic82.blogspot.com/2010/10/xpages-bug-in-fromjson-with-fix.html
http://github.com/douglascrockford/JSON-js/blob/master/json2.js
http://commons.apache.org/proper/commons-codec/

	*	Class	with	a	single,	public,	static	method	to	provide	a		REST	consumer

	*	which	returns	data	as	a	JsonObject,	with	authentication.

	*	

	*	@author	Eric	McCormick,	@edm00se

	*	

	*/

public	class		MyDataConsumer	{

				/**

					*	Modified	copy	of	co.3edesign.eric.restful	CustRestConsumer	GetMyData

					*	method.	This	one	requires	provides	basic	authentication	with	Base64

					*	encoding.

					*	

					*	@param	myUrlStr	URL	of	the	REST	endpoint

					*	@return	JsonObject	of	the	REST	data

					*/

				public	JsonObject	GetMyAuthenticatedRestData(String	myUrlStr)	{

								JsonObject	myRestData	=	new	JsonObject();

								try{

												URL	myUrl	=	new	URL(myUrlStr);

												URLConnection	urlCon	=	myUrl.openConnection();

												urlCon.setRequestProperty("Method",	"GET");

												urlCon.setRequestProperty("Accept",	"application/json");

												urlCon.setConnectTimeout(5000);

												//set	the	basic	auth	of	the	hashed	value	of	the	user	to	connect

												urlCon.addRequestProperty("Authorization",	GetMyCredentials());

												InputStream	is	=	urlCon.getInputStream();

												InputStreamReader	isR	=	new	InputStreamReader(is);

												BufferedReader	reader	=	new	BufferedReader(isR);

												StringBuffer	buffer	=	new	StringBuffer();

												String	line	=	"";

												while((line	=	reader.readLine())	!=	null){

																buffer.append(line);

												}

												reader.close();

												JsonParser	parser	=	new	JsonParser();

												myRestData	=	(JsonObject)	parser.parse(buffer.toString());

												return	myRestData;

								}catch(MalformedURLException	e){

												e.printStackTrace();

												myRestData.addProperty("error",	e.toString());

												return	myRestData;

								}catch(IOException	e){

												e.printStackTrace();

												myRestData.addProperty("error",	e.toString());

												return	myRestData;

								}

				}

				/**

					*	Uses	the	Apache	Commons	codec	binary	Base64	package	for	encoding	

					*	of	credentials,	so	none	transmit	'in	the	open'.

					*	

					*	@return	String	of	credentials	for	use	with	authenticated	REST	source

					*/

				private	String	GetMyCredentials	()	{

								String	rawUser	=	"SomeUsername";

								String	rawPass	=	"SomePassword12345";

								String	rawCred	=	rawUser+":"+rawPass;

								String	myCred	=	Base64.encodeBase64String(rawCred.getBytes());

								return	"Basic	"+myCred;

				}

				/**

					*	@param	some	parameters	from	which	you	build	your	URL	source

					*	@return	String	of	the	properly	built	URL	of	the	source	REST	data

					*/

				private	String	BuildMyURL(String	param)	{

								//the	string	this	returns	is	

								String	base	=	"https://";

Dev|Blog:	The	First	Year

55Server	REST	Consumption	with	Authentication

								String	srv	=	"my.company.com";

								//String	port	=	":443";

								String	pth	=	"/api/data/collections/name/ViewName";

								return	base+srv+pth+"?"+param;

				}

}

Dev|Blog:	The	First	Year

56Server	REST	Consumption	with	Authentication

TL;DR

Impatient	and	want	to	see	the	code?	Jump	down	to	my	Java	class.

[Update]	I	really	don't	recommend	people	use	Domino	Access	Service	(DAS),	as	originally	outlined	below,	unless	you're	willing	to
accept	the	caveats	of	needing	to	abstract	your	NSF	with	DAS	enabled	to	be	entirely	behind	any	external	firewall;	aka-	not	externally
visible.	This	technique	can	be	well	used,	provided	you're	not	exposing	your	application	to	the	public	Internet,	but	still	carries	an	element
of	risk	in	exposing	full	CRUD	operations	for	the	database	component	without	any	further	requirements.	It's	handy	and	quick,	but	needs
to	be	understood	to	be	used	properly.	For	the	minimal	effort	it	takes	to	roll	an	HTTP	Servlet,	xe:restService	control,	xe:jsonRpc	control,
or	XAgent	to	do	the	same,	it's	really	not	worth	opening	your	production	environment	to	that	potential	security	issue.	[/Update]

What	and	Why?

Generating	custom	JSON	data	is,	unless	you're	on	a	verison	of	Domino	server	previous	to	8.5.3	UP1,	virtually	unnecessary.	Everything
you	see	below	can	be	fully	replicated	via	the	Domino	Data/Access	Services.	The	reason	for	that	is	the	fact	that	I	made	use	of	a	simple
NotesView	iteration	pattern	to	generate	and	return	the	application/json	data.	The	missing	piece,	the	whole	reason	why,	is	on	your
application	requirements.	When	you	need	JSON	formatted	data	in	a	custom	format	due	to	formatting	preferences	or	application	logic
needs,	and	it	can't	just	be	in	a	View,	that's	when	this	comes	into	play.	So	if	you	start	doing	what	I've	done,	ask	yourself	first,	can	it	be
just	in	a	View?

If	that's	the	case,	make	sure	you've	turned	on	Domino	Data	Services	for	your	NSF	and	the	View	you	need.	If	your	use	case	is	more
specific,	that's	what	follows.

Custom	JSON	Data	Generation

My	approach	here	is	super	simple,	at	least	as	far	as	the	XPages	part	goes.	The	only	thing	I'm	using	the	XPage	for	is	as	an	end	point,	in
XAgent	fashion.	Seriously,	it's	just	a	hook	into	the	Java	method,	have	a	look:

xml	version="1.0"	encoding="UTF-8"?>

<xp:view

				xmlns:xp="http://www.ibm.com/xsp/core"

				rendered="false"

				viewState="nostate">

				<xp:this.afterRenderResponse>

								

				</xp:this.afterRenderResponse>

Dev|Blog:	The	First	Year

57Custom	JSON	with	Java-ized	XAgent

http://www.wissel.net/blog/d6plinks/shwl-7mgfbn

				XAgent.	This	will	not	render	as	a	page,	but	as	application/json	data.

</xp:view>

Just	invoke	the	fully	qualified	package.Class.Method()	in	the	afterRenderResponse	and	you're	ready	to	go.

XAgent-ize	Your	Java	Method

Note:	I'm	assuming	you	know	what	they	are,	what	they	do,	and	how	to	implement	them.

Recommended:	separate	the	JSON	data	build	into	a	method	separate	from	the	handler	for	the	XAgent,	which	does	the	grunt	work	of	the
FacesContext	ineraction.	I	recommend	this	as	you	can	then	just	pass	the	data	without	using	an	XAgent,	for	consumption	via	server-side
(e.g.-	extending	into	another	class	for	bean	or	POJO	use),	as	opposed	to	the	client-side	application	logic	I'm	assuming.	No	matter	how
you	slice	it,	you	should	know	how	you	want	to	provide	and	consume	your	data.

As	is	the	usual,	we	establish	our	handles	on	the	FacesContext	and	give	ourselves	access	to	the	ResponseWriter;	the	same	as	any
XAgent.	This	is	how	we'll	be	outputting	data.	In	the	ExternalContext	response,	we	set	the	header	information;	e.g.-	application/json	as
the	content-type,	no-cache	so	as	to	keep	the	data	from	becoming	stale,	and	set	the	character	encoding.

As	my	try/catch	block	begins,	you'll	note	(if	you're	following	along	at	home	and	building	your	Class	off	of	mine)	that	there's	an	unused
variable	warning	for	the	paramters.	I	left	this	in	there	so	that	no	one	else	need	repeat	my	efforts	at	discerning	a	good	way	of	getting	the
URL	query	parameters;	it	took	a	little	trial	and	error	for	me,	as	I	hadn't	seen	it	done	at	the	time.

The	Good	Stuff

I	have	one	single	external	library/JAR	dependency,	my	good	friend	com.google.gson.	I'm	only	using	JsonObject	and	JsonArray	in	this
example,	as	you	can	see	from	my	imports.	For	the	full	example	Java	method,	scroll	down	to	the	bottom.

So,	here's	the	application	logic	portion.	For	my	example,	I	iterate	a	View,	grabbing	two	fields	out	of	my	semi-improved	fake	names,	full
name	and	title.	The	semi-improved	fake	names	is	a	collection	of	basic	info	of	Game	of	Thrones	characters	from	the	first	two	books;
technically	making	them	Song	of	Ice	and	Fire	characters	(for	you	fellow	Georege	R.R.	Martin	fans).	The	original	Fake	Names	Database
is	handy	for	prototyping	against	consistently	formatted	sample	data	and	is	available	from	xpagescheatsheet.com.

Creating	a	JsonObject	with	with	the	Google	GSON	library	can	be	done	a	couple	ways,	in	this	example,	you'll	note	I've	opted	to
instantiate	the	object	right	away	and	populate	the	error:	true/false	and	errorMessage:	message	properties	at	the	end	of	the	try	or	catch
blocks,	so	as	to	always	return	a	valid	application/json	object.	As	I'm	iterating	a	number	of	objects	with	the	same	format	of	properties,	I
shove	them	into	a	JsonArray,	which	gets	added	under	the	property	of	data.	This	move	makes	it	easy	to	segregate	your	client-side	error-
handling	and/or	valid	response	elements,	all	based	on	computed	visibility	of	your	data	response	of	error==true/false.

The	result	gives	us	exactly	what	we're	looking	for.

Pro	Tip:	Chrome	DevTools

Dev|Blog:	The	First	Year

58Custom	JSON	with	Java-ized	XAgent

http://openntf.org/XSnippets.nsf/snippet.xsp?id=xagent
http://code.google.com/p/google-gson/
http://xpagescheatsheet.com/cheatsheet.nsf/home.xsp

With	the	right	tools,	things	get	easier.	Chrome's	DevTools	give	a	nice	Preview	tab	to	individual	network	requests.	When	it	comes	to	json
data,	it	lets	us	drill	down	nicely	or	switch	over	and	view	the	raw	response.	Like	this:	

New	to	Chrome	DevTools?	Check	out	this	free	primer	course	from	codeschool.com.

A	Brief	AngularJS	Plug

In	client-side	JavaScript,	you	can	programmatically	determine	whether	to	take	one	path	or	another,	but	with	AngularJS,	this	gets	much
easier	with	ng-show	and	ng-hide.	For	those	used	to	computing	the	visibility	property	in	XPages,	similar	to

<xp:div	rendered="#{javascript:myVariable==true}">

,	this	is	_mildly_	analagous;	as	such:

<div	ng-show="myData.error	==	false">

Handling	the	Data

[Update:]	As	pointed	out	by	Paul	T.	Calhoun,	a	package	available,	if	you're	not	looking	to	add	the	Google	GSON	jar,	or	any	external
library,	you	can	implement	com.ibm.commons.util.io.json.	The	largest	difference	I	saw	was	the	syntax.	I'm	sure	someone	more	learned
could	tell	me	about	the	mechanics	of	the	two	packages.	To	view	my	Class	with	the	IBM	com.ibm.commons.util.io.json	library
implementation,	check	out	this	gist	here.

Here's	my	method,	complete	with	slightly	rambling,	but	hopefully	insightful	to	a	newbie,	comments.

package	com.eric.test;

import	javax.faces.context.ExternalContext;

import	javax.faces.context.FacesContext;

import	javax.faces.context.ResponseWriter;

import	javax.servlet.http.HttpServletResponse;

import	java.io.IOException;

import	java.util.Map;

import	lotus.domino.*;

import	com.ibm.xsp.model.domino.DominoUtils;

import	com.google.gson.JsonArray;

import	com.google.gson.JsonObject;

/**

	*	Data	provider	Class	with	a	single,	public,	static	method

	*	to	provide	an	XAgent	micro-service,	returning	formatted

	*	data	as	application/json.

	*	

	*	@author	Eric	McCormick,	@edm00se

	*	

	*/

public	class	DataProvider	{

				/**

					*	This	method	performs	some	sample	actions	against

					*	a	Domino	View's	Documents,	reads	them	into	a

					*	JsonArray,	attaches	it	to	the	JsonObject	response

					*	and	returns	it	as	a	data	response	via	FacesContext.

Dev|Blog:	The	First	Year

59Custom	JSON	with	Java-ized	XAgent

http://discover-devtools.codeschool.com/
http://angularjs.org/
http://docs.angularjs.org/api/ng/directive/ngShow
http://docs.angularjs.org/api/ng/directive/ngHide
http://twitter.com/ptcalhoun/status/503993722556940288
http://public.dhe.ibm.com/software/dw/lotus/Domino-Designer/JavaDocs/DesignerAPIs/com/ibm/commons/util/io/json/package-summary.html
http://gist.github.com/edm00se/e5626f63ef7573fd2f3e

					*	This	should	be	invoked	as	part	of	an	XAgent.

					*	

					*	@return	JsonObject	sample	response

					*	@throws	IOException	

					*/

				public	static	void	GetMyDataAsJson()	throws	IOException{

								//initialize	the	main	JsonObject	for	the	response

								JsonObject	myData	=	new	JsonObject();

								/*

									*	Here	we're	establishing	our	external	context	handle,

																	*	where	we	get	our	response	writer	from.

									*/

								FacesContext	ctx	=	FacesContext.getCurrentInstance();

								ExternalContext	exCon	=	ctx.getExternalContext();

								/*

									*	Using	a	response	writer	is	one	way	of	directly	dumping	into	the	response.

									*	Instead,	I'm	returning	the	JsonObject.

									*/

								ResponseWriter	writer	=	ctx.getResponseWriter();

								HttpServletResponse	response	=	(HttpServletResponse)	exCon.getResponse();

								//set	my	content	type,	use	a	robust	character	encoding,	and	don't	cache	my	response

								response.setContentType("application/json");

								response.setHeader("Cache-Control",	"no-cache");

								response.setCharacterEncoding("utf-8");

								try	{

												/*

													*	This	is	how	we	can	get	a	handle	on	and	use	any	URL	parameters

													*	instead	of	the	Domino	SSJS	param	handle.	Note	that	I	check

													*	for	the	existence	of	the	the	parameter	of	myKey	before	assigning

													*	it,	via	ternary	operator.

													*/

												Map<String,Object>	exConP	=	exCon.getRequestParameterMap();

												String	myParam	=	(exConP.containsKey("myKey"))	?	exConP.get("myKey").toString()	:	null;

												/*

													*	Using	the	Domino	Session	class,	we	can	get	a	handle	on	our	current

													*	session	and	interact	with	anything	via	the	Java	NotesDomino	API.

													*/

												Session	s	=	DominoUtils.getCurrentSession();

												Database	db	=	s.getCurrentDatabase();

												View	vw	=	db.getView("GoTCharFlat");

												/*

													*	perform	any	necessary	business	logic	with	the	data

													*/

												//creating	an	array	of	objects

												JsonArray	dataAr	=	new	JsonArray();

												/*

													*	This	is	an	example	only	as	there	are	easier	ways	to	

													*	get	a	JSON	response	of	a	View;	e.g.-	Domino	Data/Access	Services.

													*/

												Document	first	=	vw.getFirstDocument();

												//simple	View	iteration	of	documents	and	adding	of	a	given	value

												while(first!=null){

																//creates	current	object

																JsonObject	curOb	=	new	JsonObject();

																String	name	=	first.getItemValueString("CharFullName_FL");

																String	title	=	first.getItemValueString("Title");

																curOb.addProperty("name",	name);

																curOb.addProperty("title",	title);

																//adds	current	object	into	JsonArray

																dataAr.add(curOb);

																//no	OpenNTF	Domino	API	implemented,	ham	fist	away!

																Document	tmpDoc	=	vw.getNextDocument(first);

																first.recycle();

																first	=	tmpDoc;

												}

Dev|Blog:	The	First	Year

60Custom	JSON	with	Java-ized	XAgent

												//wrap	it	up	and	add	the	JsonArray	of	JsonObjects	to	the	main	object

												myData.add("data",	dataAr);

												/*

													*	Business	logic	done,	setting	error	to	false	last,	so

													*	if	anything	errors	out,	we'll	catch	it.

													*/

												myData.addProperty("error",	false);

								}catch(Exception	e){

												/*

													*	On	error,	sets	a	boolean	error	value	of	true

													*	and	adds	the	message	into	the	errorMessage

													*	property.

													*/

												myData.addProperty("error",	true);

												myData.addProperty("errorMessage",	e.toString());

												System.out.println("Error	with	data	provision	method:");

												System.out.println(e.toString());

								}

								/*

									*	This	will	always	return	a	fully	formed	JsonObject	response.

									*	Meaning	that	if	there's	an	error,	we	hear	about	it	and	can

									*	handle	that	on	the	client	side	for	display	while	developing,

									*	or	logging	when	in	production.

									*	

									*	Note:	since	we're	hijacking	the	FacesContext	response,	we're

									*	returning	a	string	(not	data	object)	into	the	ResponseWriter.

									*	This	is	why	the	method	is	void.	Don't	worry,	it's	application/json.

									*/

								writer.write(myData.toString());

				}

}

Dev|Blog:	The	First	Year

61Custom	JSON	with	Java-ized	XAgent

Application	Logic

All	applications	require	a	certain	logic.	Even	the	most	simple	application,	which	is	ultimately	access	to	a	data	store,	must	have	some
definition	of	how	it	performs	when	certain	events	happen	(what	to	do	on	a	save	event,	what	to	validate	and	how).	So,	ultimately,	the
relevant	question	is	to	the	effect	of	"where	does	my	application	reside?"	Developing	Domino/XPages	applications,	it	manifests
primarily	in	how	you	handle	your	server	logic,	interface	logic,	and	the	display	layer	of	XPages	and	Custom	Controls.	I	know	it's	an
intuitive	concept,	but	they	don't	all	have	to	be	mixed	into	one	blended	mess.

The	Spaghetti	Code™	Situation

If	you're	suffering	the	effects	of	having	to	support	applications	which	implement	less-than-awesome	"code	patterns",	then	you'll	be	well
aware	of	the	fact	that	the	applications	logic,	if	handled	poorly,	gets	strewn	about	through	all	the	various	and	potential	bindings	for	your
controls.	Should	it	be	defined	in-line	with	every	control	what	specific	(non-default)	formatting	of	date	you	want	across	multiple	input
fields	and	multiple	design	elements,	you	can	mistakenly	(more	easily)	wind	up	with	several	permutations,	should	you	have	to	enter	the

patterns	at	different	times.	Note:	hopefully	you'll	at	least	put	the	pattern	into	a	config	object	for	consistent	referencing	 .

So,	your	application	logic	is	already	residing,	in	part,	in	the	client-side;	assuming	that	you	do	any	client-side	executions.	If	your
application	is	truly	a	collection	of	web	forms	with	the	only	events	being	navigation,	open,	and	save	events,	then	you	probably	don't	need
this	approach.	If	you	do	anything	more	while	the	browser	has	a	page	loaded,	then	you'll	want	to	adopt	a	more	unified	approach,	at	least
for	larger	applications.

Controller	Classes	Are	On	The	Server...	Already!

I	know	that's	a	rather	obvious	statement,	but	if	you're	sticking	to	a	development	pattern	that	at	least	includes	Controller	classes,	then
you've	got	your	work	flow	actions	and	validation	requirements	are	all	available	to	you	on	the	server.	Say	you	want	to	provide	your	DB's
CRUD	operations	with	server-side	actions	and	validation	(to	keep	from	cramming	malformed	data	into	your	DB)	via	a	RESTful	servlet,
you'll	want	these	all	in	place.

This	sort	of	implementation	also	lends	itself	to,	not	just	validation,	but	'scrubbing'	of	all	input	data.	For	example,	say	you	want	to	use	a
"Rich	Text	Editor"-like	component,	such	as	textAngular	(in	contrast	to	implementing	workarounds	for	the	xp:inputRichText	control;
keeps	markup	but	limits	to	text-only),	you	can	ensure	that	all	input	text	is	properly	escaped,	immediately	prior	to	your	save	operations.
Major	actions,	such	as	sending	notification	emails,	applying	advanced	permissions	(Readers/Authors),	and	other,	more	intensive,
operations	should	all	occur	on	the	server.	This	decreases	the	work	load	on	your	client/browser	and	keeps	it	nice	and	tidy.

Client-Side	Logic

For	a	given	page	at	a	given	state	of	work	flow,	you	likely	only	need	a	smaller	set	of	logic.	The	goal	is	to	provide	consistent	and	well
formatted	data	back	to	the	server.	So	long	as	your	client-side	controllers	(a	la	AngularJS	controller	modules)	know	how	to	act	at	that
point	in	the	larger	work	flow,	you've	achieved	your	objective	in	enforcing	well	formatted	data.	It's	this	subset	of	information	that	makes
for	the	"extra	work"	that	some	developers	complain	about,	but	I	will	always	hold	to	the	fact	that	it	may	require	a	different	set	of	work,
and	that	your	focus	as	a	developer	only	changes	for	the	implementation.	It's	my	belief	that	done	properly,	it's	the	same	amount	of
"work".

Full	Stack	Approach

So	if	the	work's	the	same,	what	should	we	do	differently?	As	a	reader	of	my	existing	posts,	you're	likely	aware	that	I'm	a	big	fan	of	M-
V-C	development	patterns.	I'm	not	only	a	big	fan	of	M-V-C	when	it	comes	to	the	multiple	aspects	of	an	application,	but	also	across	the
layers	a	web	application	operates	on.	The	JavaScript	that's	used	with	the	interface	layer,	that	runs	in	the	user's	browser,	should	really	just
be	concerned	with	how	that	user	interfaces	with	the	page	they're	given	and	be	independent	of	the	server-side	logic	which	governs	things
like	notifications.	This	forced	segregation	helps	with	the	partialRefresh	hell	which	is	too	easy	for	a	fresh	XPages	developer	to	(overly)
rely	on.

Structure	is	Sanity

Dev|Blog:	The	First	Year

62Application	Logic

http://github.com/fraywing/textAngular/
http://docs.angularjs.org/api/ng/directive/ngController
http://xomino.com/2014/03/04/why-using-xpages-partial-refresh-is-sometimes-easy-for-developers-and-bad-for-users/"

Cross-system	integration	is	increasingly	a	component	of	my	work	at	my	day	job	and	keeps	bringing	me	back	to	the	fact	that	more
organized	code,	segregated	to	the	layers	of	application	architecture,	according	to	an	M-V-C	approach,	is	the	way	to	go.	My	goal	is	to
have	our	applications	semi-independent	of	our	database	storage	and	db	operations.	This	is	primarily	because	I'm	no	longer	the	lone	web
developer	in	my	day	job,	but	one	who's	working	with	a	developer	who	has	a	drastically	different	experience	and	existing	skill	set.	I'm
currently	bringing	him	up	to	speed	on	what	Domino	and	XPages	are,	but	as	a	beginner	to	the	XPages	platform	(a	la	myself	three	years
ago),	it's	easy	to	blur	the	lines	between	database	and	application	layer.	This	is	not	a	major	sin,	but	in	an	environment	of	interconnected
systems,	it's	at	least	worth	persuing.

Put	Your	Code	Where	Your	Mouth	Is

Some	of	my	in-progress	efforts	will	help	to	quantify	this	identification	of	an	allotment	of	development	work,	for	comparison	between
beginner	("traditional"?)	XPages	development	with	SSJS	libraries	to	contain	relevant	control	and	validation	mechanisms	and	otherwise
"vanilla"	xp:	control	elements,	Java	bean	backed	XPages	with	controller	classes,	and	a	client	(AngularJS)	app	with	RESTful	servlet
implementation	(utilizing	those	controller	classes).	I	want	to	show	off	a	more	complete	spectrum,	highlighting	the	benefits	of	the	theory
I've	talked	about	I	hope	I'm	done	talking	about,	so	I	can	just	show	you.	While	this	is	all	relatively	not	complex,	with	the	example	I	have
in	mind,	it	is	taking	some	time,	which	I	seem	to	have	increasingly	less	of.	In	the	end,	I'll	get	there,	so	while	my	blog	may	be	quiet	until	I
have	something	to	share,	rest	assured	that	it	is	on	its	way.

For	more	on	application	structuring,	I	recommend	the	recording	of	Jesse's	MWLUG	2014	session	on	the	subject;	he	also	writes	on	his
blog	about	the	intricacies	of	how	to	use	his	Frostillic.us	framework.	This	is	also	(I	hope)	the	last	time	I	need	to	cite	Jesse's	efforts	and
can	begin	to	cite	my	own	efforts	as	I	progress	in	my	examples.

Dev|Blog:	The	First	Year

63Application	Logic

http://www.google.com/search?q=site%3Aedm00se.io%2F%20spaghetti%20code&rct=j
http://www.youtube.com/watch?v=KJvydKVsqXk
http://frostillic.us/blog/posts/D815DC7ED059395885257D6B00001006

Intro

I'm	sorry	for	the	long	post,	but	I	can	assure	you	that	this	is	the	shortest	version	of	this	post	I	drafted	(over	multiple	days).	M-V-C	is	a	big
topic,	and	I	hope	I've	parsed	out	the	reasoning	in	favor	of	its	adoption.

Drink	the	Kool-Aid®

At	MWLUG,	Jesse	Gallagher	showed	off	what	I	believe	to	be	the	gold	standard	form	of	XPages	development;	recording	on	YouTube.
Jesse	showed	off	his	Frostillic.us	framework	(an	evolved	version	of	his	XPages	Scaffolding),	which	addresses	much	of	what	I	talk
about.	Jesse	is	most	of	the	way	through	a	blog	series	on	how	to	use	said	framework,	which	is	definitely	worth	the	read.	I'm	not	trying	to
man-crush	on	Jesse,	but	the	next	conference	I	see	him	at,	I	will	do	my	best	to	buy	him	a	beer.

A	Brief	History

XPages	is	an	IBM	proprietary	abstraction	layer	for	Java	Server	Faces.	Java	Server	Faces	has	evolved	over	the	years	since	its	creation	in
2004,	but	when	IBM	began	adopting	the	XFaces	(eventually	renamed	to	XPages)	platform,	it	initially	began	about	2005;	according	to
Wikipedia.org.	While	some	of	the	later	features	of	the	2.x	line	have	been	back-ported,	we're	definitely	dealing	with	a	unique	platform.

JSF	as	the	Foundation

When	JSF	first	started,	it	set	out	to	accomplish	a	couple	very	specific	things:

create	a	way	of	handling	application	and	UI	logic,	with	managed	state
provide	JSP	custom	tag	library,	for	expressing	design	within	a	JSP	page	(which	evolved	into	Facelets	with	JSF	2.x)

So,	JSF,	which	is	geared	to	Java	Enterprise	Edition	developers,	is	meant	to	abstract	the	handling	of	managed	states	and	design	elements
to	speed	up	application	interface	development.	This	is,	ultimately,	what	XPages	does;	this	shouldn't	be	surprising,	as	it's	an	abstraction
layer),	not	a	replacement.

AJAX	and	XHRs	in	XPages

<Voice	of	David	Attenborough>	When	"Web	2.0"	was	still	just	a	catch	phrase	(prior	to	around	1999)	the	web	cried	out	in	anguish.
Then,	a	champion	appeared,	AJAX)	(Asynchronous	JavaScript	+	XML).	AJAX	introduced	us	to	the	XMLHttpRequest	(XHR)	and
brought	in	the	ability	for	a	programmatic,	asynchronous	loading	of	content,	based	on	the	user's	interaction.	The	web	rejoiced	and	new
development	patterns	were	introduced.

XPages	makes	use	of	XHRs	with	every	partialRefresh	event,	usually	in	the	form	of	a	POST.	AJAX/XHRs	are	great,	with	state-ful
scenarios,	as	you're	getting	"just	a	piece"	of	the	whole.

Here's	an	example,	taken	from	the	always	excellent	OpenNTF.org	site.	Inside	a	project	page,	there	are	the	tabs	for	the	content	pane.
Selecting	a	tab	fires	a	dojo	XHR	POST	to	the	server,	which	then	loads	the	content	for	the	element	to	be	changed,	and	the	client-side
XSP	object	loads	it	into	the	DOM	(at	the	ID	specified).	XPages	does	this	with	HTML	generated	from	the	server	session	Domino	has
established	for	the	user's	interaction.	You	can	view	these	interactions	from	most	web	browsers,	just	open	up	the	developer	tools	for	your
browser	(shown	is	Chrome's	DevTools)	and	look	for	network	events.

Dev|Blog:	The	First	Year

64Unraveling	the	M-V-C	Mysteries

https://twitter.com/Gidgerby
https://www.youtube.com/watch?v=KJvydKVsqXk
https://github.com/jesse-gallagher/XPages-Scaffolding
https://frostillic.us/f.nsf/posts/building-an-app-with-the-frostillic.us-framework--part-1
http://en.wikipedia.org/wiki/XPages#History
http://www.oracle.com/technetwork/java/javaee/overview-140548.html
http://en.wikipedia.org/wiki/Abstraction_(computer_science
http://en.wikipedia.org/wiki/Web_2.0
http://en.wikipedia.org/wiki/Ajax_(programming
http://dojotoolkit.org/reference-guide/1.6/dojo/xhrPost.html

Dev|Blog:	The	First	Year

65Unraveling	the	M-V-C	Mysteries

Why	XHRs?

These	XMLHttpRequests	occur	a	lot,	especially	in	partialRefresh	(refreshMode="partial")	heavy	applications.	This	increases	the
reliance	on	the	managed	state	aspect	of	your	XPage'd	application	and	your	user's	in-memory	session	(on	the	server).	This	makes	XPages
quite	state-ful,	IMO.	It's	also	easy,	especially	in	complex,	partialRefresh	heavy	applications,	to	overdo	what	your	partialRefresh
requires.	Many	in	the	community	talk	about	the	performance	hit	of	partialRefresh	es	that	don't	use	partial	execution
(execMode="partial",	which	only	evaluates	what	resides	inside	the	execId,	for	the	server's	computation).	To	help	automatically	remove
some	of	this	bloat,	Sven	Hasselbach	shared	a	client-side	JavaScript	snippet	which	assists	in	the	reduction	of	the	traffic.	To	me,	this	is
great	(good	developers	are	lazy,	right?),	but	still	doesn't	quite	get	us	to	the	fundamental	issues	that	many	novices	make	in	XPages
development.

Stop	Using	Your	XPage	for	Application	Logic

Yes,	you	read	that	correctly.	Ideally,	your	XPage'd	content	should	be	strictly	presentation	layer	code.	The	more	we	jam	into	our	XPage,
be	it	execution	blocks	or	SSJS	libraries,	the	more	must	be	computed.	When	we	run	a	build	on	an	application,	it	builds	out	your	design

elements	to	a	more	XSP	engine	friendly	format,	but	leaving	that	code	block	in	the	design	element	makes	for	spaghetti	code™,	which	is
far	less	maintainable	in	very	large	applications.	Being	accustomed	to	supporting	large	scale	applications,	I'm	used	to	performing	more
searching	of	design	elements	to	find	what	to	fix,	than	implementing	an	actual	fix,	and	that's	just	silly.	Domino	SSJS	libraries	are	worse
as,	when	they	become	large,	suffer	the	effect	of	being	run-time	executed	code.	Think	of	a	very	large	string	being	parsed	on-demand.
There	is	plenty	of	discussion	and	approaches	on	the	subject,	but	ultimately,	in	large	applications,	it	works,	but	it's	inefficient.

M-V-C	is	the	Way

So,	be	it	an	XPages	"client"	/	purely	presentation	layer	approach	or	a(n	arguably)	more	modern	approach,	we	need	to	separate	our
application	logic	from	our	presentation	layer.	The	bottom	line	is	to	write	applications	which	are	not	state-ful,	except	in	the	presentation
layer.	In	other	words,	"I	stand	with	Jesse".

What	to	Focus	On

(Controller)	controller	classes,	which	handle	how	our	application	works	(work	flow,	sending	notifications,	etc.)
(Model)	model	classes,	which	handle	how	we	interact	with	our	data	store	(Domino	document,	etc.)
(View)	rendering	classes,	which	handle	how	to	present	to	the	page	(a	dirty	approach	would	merge	this	with	the	model	classes)

The	biggest	development	shift	for	many,	I	believe,	is	to	adopt	the	controller	classes	as	being	separate	from	the	rest	of	their	application
logic;	to	get	it	into	a	one-stop	shopping	for	app	logic.	For	more	on	why	M-V-C	in	particular	is	best,	I'll	leave	that	to	those	who	have
already	done	the	work.	Jesse	Gallagher	has	gone	through	his	series	on	XPages	MVC	Experiments	and	Gary	Glickman	has	a	great	series
on	"Rethinking	the	Approach	to	XPage	Development".

The	XPages	Approach

Managed	Java	Beans,	with	Expression	Language	(EL)	bindings.	Seriously,	just	have	managed	beans	for	your	respective	M-V-C	classes
and	you	invoke	your	entire	application	by	EL.	For	more	demonstration	of	this,	see	the	video	on	YouTube	of	Jesse's	"Building	an
Structured	App	with	XPages	Scaffolding";	have	I	plugged	that	enough	yet?

You	will	also	notice	that	this	sounds	easy	and	the	truth	is,	it	is	much	easier	when	you	don't	have	to	search	through	your	code,	worry
about	where	to	put	validation	(in	the	control	tag?	on	submit	of	the	form?),	or	how	you	can	interface	your	application	to	external
sources/applications.

The	Modern	Web	Approach

Mark	Roden	has	been	tackling	the	subject	of	Angular.js	in	XPages.	What	this	really	shows	is	the	flexibility	of	segregated	application
logic	on	the	server,	accessed	via	a	super-heroic	(client-side)	JavaScript	framework,	which	is	RESTful	(REpresentational	State	Transfer,
without	state	defined,	except	in	the	network	request	via	end	point)	by	nature.	This	approach	has	great	appeal	as	it	performs	great	on
mobile	devices	and	desktop	browsers	alike.	I	think	Mark's	session	at	MWLUG	should	have	been	named	"Write	Once,	Run	Everywhere"
(as	opposed	to	"...	Anywhere"),	as	it	demonstrated	the	flexibility	of	this	M-V-C	approach	with	the	server.

Dev|Blog:	The	First	Year

66Unraveling	the	M-V-C	Mysteries

http://hasselba.ch/blog/?p=1383
http://www.linkedin.com/groups/What-are-top-XPages-performance-3707727.S.230901244#commentID_130809429
http://www.linkedin.com/groups/What-are-top-XPages-performance-3707727.S.230901244#commentID_130816718
http://xomino.com/2014/09/02/mwlug-2014-slide-deck-write-once-run-anywhere-angular-js-in-xpages/
http://www.linkedin.com/groups/What-are-top-XPages-performance-3707727.S.230901244#commentID_130816718
http://frostillic.us/f.nsf/posts/xpages-mvc--experiment-ii--part-1
http://www.pipalia.co.uk/notes-development/rethinking-xpages-part-one/
http://www.youtube.com/watch?v=KJvydKVsqXk
http://twitter.com/markyroden
http://xomino.com/category/angular-in-xpages/
http://angularjs.org

The	reason	I	regard	this	as	the	"modern	web"	approach	is	that	most	not-IBM	specific	development	that	make	great	use	of	M-V-C
practices	are	using	client-side	frameworks	to	do	the	serious	grunt	work	with	validation	on	the	server	via	RESTful	API.	If	it	makes	you
feel	better,	you	can	consider	this	an	"alternate"	approach,	but	this	maps	to	what	the	majority	of	the	modern	(and	awesome!)	web
development	world	is	doing.

In	Summary

I	hope	you	see	how	this	all	maps	in	the	progression	of	the	types	of	XPages	development.	If	nothing	else,	I	hope	this	post	may	give	you	a
good	number	of	ideas	with	which	to	try	and,	hopefully,	improve	how	you	build	your	applications	to	make	things	easier	on	yourself,	as	a
developer.	As	always,	best	of	luck,	and	please,	discuss!

Dev|Blog:	The	First	Year

67Unraveling	the	M-V-C	Mysteries

http://heidloff.net/home.nsf/dx/08172011032738AMNHEART.htm

EDIT]

Regarding	XHRs

XMLHTTPRequests	encompass	nearly	every	partial	refresh	under	the	sun.	I	loosely	describe	AJAX	calls	(and	XPages'	dojo.xhrPost
calls)	to	encompass	"fat	XHRs",	or	XHRs	which	include	markup	in	their	response.	This	is	a	terrible	way	of	doing	business,	as	we	as
developers	ought	to	ligthen	the	load	a	bit	in	the	age	of	mobile	devices	and	cellular	connections.	I	touched	on	this	when	I	originally
wrote	the	post,	but	thought	that	it	could	use	some	clarification	up	front.	So,	transport	data	for	partials,	not	markup.

[/EDIT]

REST	is	Best

Recently	I	became	a	father.	It's	pretty	awesome.	I've	got	a	daughter	who	gives	me	some	pretty	good	smiles	and	other	funny	faces,	so	I've
always	got	some	good	motivation	to	go	home	at	the	end	of	the	day.	This	also	means	I've	gone	through	some	birthing	classes	in	recent
history.	So	consider	this	post's	title	to	be	a	play	on	words,	regarding	the	interpretation	of	infant	feeding.	You	know,	the	old	adage	of
"REST>	is	best"	(unless	contraindicated	by	medical	or	other	conditions).

Why	is	AJAX	Not	Good	Enough?

My	last	post,	How	to	Bore	Your	Audience,	spent	a	bit	of	time	on	the	"big	picture",	for	the	structure	of	modern	and	awesome	XPage
applications.	It	also	outlined	my	general	distaste	for	overly	large	AJAX	calls	(specifically	dojo	xhrPost)	when	a	simpler	method	(at	least
an	xhrGet)	would	suffice.	AJAX	can	return	JSON	data,	though	it	is,	by	default,	Asynchronous	JS	and	XML.	So	what	AJAX	really	is,	if
we're	data	format	agnostic,	is	really	just	a	programmatic	network	call	to	return	a	data	payload	of	something.

XPages	does	this	by	that	dojo	xhrPost	call	to	call	out	where	(the	partialRefresh	id)	to	inject/replace	the	newly	returned	data.	This
happens	to	be	(usually)	HTML,	a	Dojo	data	store	(in	the	event	of	an	xp:restService	control,	depending	on	your	properties),	and	more
(like	if	you	refresh	an	xp:scriptBlock).	This	works,	but	when	you	keep	your	application	logic	on	the	server	(and	I	suggest	you	do),	that
means	you're	often	sending	increasing	amounts	of	information	back	and	forth,	in	a	partial(Refresh)	capacity.

REST	is	Lean

Having	recently	read	Paul	Akers'	book,	2	Second	Lean,	and	having	seen	him	speak	in-person,	I	can	honestly	say	that	when	I	look	at	a
process,	I	think	"I	see	waste"	and	I	want	to	eliminate	it.	This	is	a	part	of	what	we	do	as	developers,	and	I'm	sure	is	intuitive	to	you,	but
we	must	always	strive	for	the	path	of	least	resistance	in	our	applications.	It	makes	for	better	application	structure	and	better	user
experiences.

Without	the	need	for	an	in-memory	session	on	the	server,	we	no	longer	require	a	session	"state"#Programstate).	To	get	the	data	we	need,
we	have	to	formulate	what	to	request	in	the	client,	using	the	browser's	JavaScript,	and	then	execute	the	call	and	handle	its	receipt.
Many	of	the	modern	JavaScript	frameworks	out	there,	like	my	beloved	AngularJS,	automate	this	process.	To	do	so,	they	use	a
combination	of	http	event	handlers	($http	in	Angular)	and	callback	functions.	In	the	XPages	world,	think	of	the	CSJS	event	functions	for
_onComplete	and	onError	(etc.)	which	we	use	in	xp:eventHandler	tags.

Let's	compare	a	simple	thing	in	XPages.	Using	the	stock	xp:viewPanel,	xp:pager,	with	the	partialRefresh	option,	this	is	a	fairly	normal
way	for	an	XPage	developer	to	put	a	View	into	an	XPage.	This	is	also	my	hallmark	argument	against	this	variety	of	implementation,	for
such	a	simple	task.	Here's	what	happens	when	I	hit	"Next"	in	the	pager:

Dev|Blog:	The	First	Year

68REST	is	Best

http://2secondlean.com/
http://en.wikipedia.org/wiki/State_(computer_science
https://angularjs.org
https://docs.angularjs.org/api/ng/service/$http

When	we	execute	these	AJAX	calls,	it	takes	time	and	processing	effort	(both	for	the	server	and	the	client/browser).	Here's	what	I	mean:

The	above	doesn't	show	a	whole	lot	of	time	elapsing,	only	about	38ms.	It	also	shows	a	hover	state	being	fetched;	I	didn't	even	plan	on
that	(and	is	an	argument	against	Dojo,	IMO;	I	mean,	lazy	loading	images	for	button	styles?!?).	I	can	also	tell	you	that	that	server	is
having	a	good	day	and	isn't	refreshing	anything	more	than	the	xp:viewPanel	for	this	page	(so	less	intense	computations).	The
application	above	has	been	re-developed,	as	a	case	study	(with	which	I've	been	able	to	sell	to	my	management	and	direct	my
development	efforts	accordingly),	into	a	Bootstrap	3	with	AngularJS	application.	Here's	what	happens	when	I	perform	the	same	paging
task	in	the	Angular	version	of	this	app.	Apologies	for	the	reduction	in	quality	with	the	gif	and	redaction	of	company-specific
information.

Dev|Blog:	The	First	Year

69REST	is	Best

No	network	requests	during	paging,	it's	that	cool.	What's	happening?	It's	behaving	as	a	modern	web	application;	a	single	page	app,	in
fact,	but	I'll	get	to	some	of	those	specifics	in	a	moment.	Here's	the	same	page	again,	with	live	full-text	searching,	across	all	fields	(keys,
as	in	JSON	key:	value	pair,	you	can	also	filter	by	key)	in	the	data	array.

So	why	is	REST	lean?	REST	means	a	less	cluttered	network	request,	performed	less	frequently.	This	also	comes	down	to	your
implementation	of	it,	which	is	why	I'm	showing	off	Angular,	which	plays	to	a	RESTful	API's	strengths.	The	idea	is	to	invoke	just	what
you	need	from	the	server,	at	the	state	of	what	you're	looking	for,	HATEOAS	style.	You	still	have	to	load	a	page	with	a	JavaScript	library
to	know	what	to	invoke,	but	you	should	reduce	as	much	as	possible	afterwards.

Dev|Blog:	The	First	Year

70REST	is	Best

http://en.wikipedia.org/wiki/HATEOAS

SPAs	and	Application	Structure

You	knew	I	was	going	to	bring	up	application	structure,	didn't	you?	The	dichotomy	of	the	server-side	application	logic	and	the	client-
side	application	logic	must	be	apparent	now.	It's	precisely	why,	when	Mark	Roden	gave	his	Write	Once,	Run	Anywhere:	Angular.js	in
XPages	session	at	MWLUG,	he	admitted	(begrudgingly,	I	might	add)	that	to	properly	build	a	larger	application,	a	developer	would	want
to	enforce	application	and	work	flow	validation	on	the	server;	aka-	"everybody	needs	a	Toby".	This	would	be	done	by	writing	a	custom
servlet	or	REST	implementation,	which	would	validate	before	directly	committing	into	a	Domino	document.	If	your	application	is
simple	and	your	field	data	is	strictly	textual	and	you	trust	your	users	to	not	put	bogus	data	into	their	network	POST	or	PUT	operations,
DDS	is	great.

Domino	Data	Services

This	is	the	biggest	downside	of	the	Domino	Data	Service	in	my	opinion.	The	Domino	Data	Service	gives	us	the	ability	to	perform	the
CRUD	operations	against	Domino	Documents	and	Views,	but	there's	no	computeWithForm,	which	would	give	us	as	least	a	way	of
invoking	an	agent	on	save.	But,	it's	better	than	nothing.	So,	would	a	developer	benefit	from	structuring	their	application	with	data
models	and	controller	classes?	Absolutely!	In	fact,	you	might	think	there	was	a	reason	I	wrote	that	long	winded	post	last	before	this	one
;-).

Summarizing

As	you	can	see,	M-V-C	is	a	thing.	It's	great	idea	for	your	server-side	application	logic	and	there	are	a	great	many	awesome	M-V-C
client-side	frameworks	(like	Angular)	that	can	help	you	expedite	your	front-end	logic.	So	please,	let's	build	better	apps.	REST	can	get
us	there	with	lighter	weight	network	requests	and	in-browser	processing	of	data	and	application	logic.	We	can	reduce	our	network	calls,
sizes	of	data	transferred,	and	made	our	performance	response	time	nearly	negligible	(limited	only	to	the	time	it	takes	the	client-side	JS
code	to	perform	the	rebuild	of	the	HTML	and	the	initial	page	load).

No	silly	Keanu,	it	just	might	keep	us	sane.

Dev|Blog:	The	First	Year

71REST	is	Best

https://twitter.com/markyroden
http://xomino.com/2014/09/02/mwlug-2014-slide-deck-write-once-run-anywhere-angular-js-in-xpages/
http://twitter.com/tsamples

Intro

This	is	a	quick	post,	covering	something	I	overheard	while	at	MWLUG	and	comes	back	to	some	application	architectural	principles

which	I	have	a	bit	of	a	passion	for.	Read	on	at	your	own	peril	

[Update]	I	added	a	bit	from	a	tweet	by	Tony	McGuckin	about	the	XPages	runtime's	components.	[/Update]

Back	to	the	Grind	After	MWLUG

There's	an	intersting	slump	I	experience	after	getting	back	from	a	conference.	Not	only	do	I	get	to	clear	out	of	the	mountain	of	things
that	seem	to	crop	up	only	while	I'm	out	of	the	office,	but	it	seems	that	I'm	able	to	come	away	from	such	a	gathering	with	other
developers	with	lots	of	great	ideas	for	both	my	growth	as	a	developer	but	also	for	what	I'm	able	to	accomplish	for	my	company	and	its
users	that	it's	a	nearly	unbearable	amount	to	be	able	to	extract	from	my	own	head,	but	I	try.	For	this	last	week	though,	I	just	worked	the
tasks	at	hand.

A	Funny	Thing

While	at	MWLUG,	I	overheard	someone	make	a	reference	to	people	"not	liking	POST"	as	an	HTTP	request.	I'm	fairly	certain	it	may
have	been	said	in	jest	as	a	blog	post	I	wrote	previously	talked	about	"classical"	AJAX-y	requests	containing	markup	(specifically
analagous	to	an	XPages	partial	refresh	event,	which	fires	a	dojo.xhrPost	that	returns	the	HTML	content	of	the	selected	refreshId	and	re-
injects	the	content	to	the	page).	So	here's	a	reminder	to	all,	XPages	gives	us:

an	application	runtime	(JSF)
a	striped	database	(though	for	performance	it's	best	to	separate	it)
with	a	greatly	convenient	security	model	(that	makes	it	very	easy	to	map	roles	and	groups	across	applications)
and	a	bunch	of	OoB	(out	of	the	box)	controls	that	aid	in	RAD	and	have	some	excellent	hooks	to	automate	a	large	number	of
functions	(ExtLib	Relational	controls,	for	instance)

[Update]	As	Tony	McGuckin	pointed	out	on	Twitter,	there's	more	to	the	XPages	runtime	than	just	the	JSF	runtime	components.	Since
it's	a	larger	list	than	my	couple	of	bullet	points,	I'll	let	the	tweet	and	screen	shot	from	the	liked	XPages	Masterclass	video	do	the	talking.

The	Tweet

@flinden68	Congrats	Frank!	+1	#XPages	includes	features	not	even	in	JSF2.2	-	some	info	at	1min	22secs	in
https://t.co/Yzzvf2BhYx	#GoodPoint

—	Tony	McGuckin	(@tonymcguckin)	September	1,	2015

The	Screen	Shot

Dev|Blog:	The	First	Year

72More	on	HTTP	and	AJAX	Requests

https://twitter.com/flinden68
https://twitter.com/hashtag/XPages?src=hash
https://t.co/Yzzvf2BhYx
https://twitter.com/hashtag/GoodPoint?src=hash
https://twitter.com/tonymcguckin/status/638678645595336704

[/Update]

My	Beef	With	Transporting	Markup

My	list	above	of	what	XPages	provides	us	lists	the	controls	that	we	most	often	associate	as	being	"XPages"	(specifically	the	design
elements	of	XPages	and	Custom	Controls,	along	with	the	xp	and	xe	controls)	at	the	end.	My	approach	is	opinionated	in	the	absolute
segregation	of	front-end	and	back-end,	but	it	uses	the	application	runtime	provided	by	XPages	(and	its	JSF	implementation)	to	provide	a
great	experience	with	excellent	results.	The	OoB	elements	give	us	one	way	of	doing	things,	so	since	it	bugs	me,	I'm	going	a	different
way,	without	issue.

Transporting	markup	in	our	post-page	load	XHRs	is	inefficient;	regardless	of	whether	we	call	them	AJAX	calls,	partial	refreshes,	or
whatever.	That's	my	bottom	line.	I	don't	think	POST	as	an	HTTP	method	is	inferior	(they're	just	HTTP	methods),	but	to	add	to	a
request's	body	content,	just	so	we	can	get	a	small	data	update	in	the	screen,	when	we	could	otherwise	have	our	data	providing	the	same
response	just	in	how	we	build	our	URI	from	a	simple	GET,	the	logic	seems	clear	to	me.

What	to	Do	About	It

As	my	demo	application	has	been	showing,	I've	been	going	the	direction	of	a	front-end	heavy	app	(AngularJS	app	in	the	UI)	with	HTTP
servlet	RESTful	API	driven	data	access.	This	doesn't	necesssarily	need	an	XPages	design	element	(root	XPage	and	Custom	Control)
since	it	can/is	served	from	the	WebContent	directory.	For	any	still	wondering,	yes	I	do	continue	development	on	and	maintain
applications	that	aren't	entirely	"my	way"	when	it	comes	to	what	are	already	in	use.	I've	refactored	core	code	when	able	(I've	seen	some
scary	SSJS	libraries	and	vanquished	as	many	beasts	as	I've	been	able	to)	because	I	firmly	believe	in	keeping	core	business	logic	separate
from	UI	logic.

That	being	said,	my	advice	to	any	in	a	"normal"	XPages	context	is	embrace	the	JSON-RPC	control	and	Java	beans	(managed	or
POJO).	If	your	business	logic	is	driven	inside	a	controller	class,	it	can	just	as	easily	be	invoked	from	a	bean	or	from	a	servlet	(or	from
SSJS	inside	a	JSON-RPC's	method	script).	If	Java	isn't	your	thing	(if	you're	still	learning,	and	you	should	embrace	your	JEE	stack),	the

Dev|Blog:	The	First	Year

73More	on	HTTP	and	AJAX	Requests

JSON-RPC	control	lets	you	accomplish	most	of	the	same	task	of	exposing	server-side	operations	and	logic,	with	minimal	overhead,	to
the	client-side	(browser)	for	CSJS	access;	it's	a	win-win	either	way.

In	Case	You	Missed	It...

My	last	post,	recapping	my	session	at	MWLUG,	managed	to	get	missed	in	my	first	tweet	of	the	link.	I	updated	the	previous	post
(announcing	my	session	at	MWLUG)	with	a	link	at	the	top,	but	some	may	have	missed	it.	Please	check	it	out,	there's	a	link	to	my	slide
deck,	GitHub	repository	with	my	configs,	screen	shots	of	my	configs	in	use,	and	(you	guessed	it)	my	slide	deck	in	PDF	and	PPTX
formats.

Dev|Blog:	The	First	Year

74More	on	HTTP	and	AJAX	Requests

Single	Page	Applications

In	my	previous	posts,	you'll	have	noticed	that	I've	referenced	Single	Page	Applications	(SPAs)	and	how	they	relate	to	assisting	in
building	better	web	applications.	Here	I'm	going	to	try	and	break	down	what	an	SPA	is	and	isn't	and	show	what	we	can	learn	to	apply	to
any	web	application	for	better	development	practices.	Ultimately,	each	application	is	unique	and	requires	its	own	implementation,	my
intention	is	to	help	show	off	some	of	what	makes	an	SPA	great	to	give	others	ideas	in	their	web	applications,	regardless	of
implementation.	This	post	is	meant	to	be	more	of	a	reference,	with	other	topics	talked	about	"coming	to	a	blog	near	you"	soon.

What	They	Are

Excerpts	from	the	Wikipedia	page	on	Single-page	applications.

"...a	web	application	or	site	which	fits	in	a	single	web	page	with	the	goal	of	providing	a	more	fluid	user	experience..."
"...either	all	necessary	code	-	HTML,	JavaScript,	and	CSS	-	is	retrieved	with	a	single	page	load,	or	the	appropriate	resources	are
dynamically	loaded	and	added	to	the	page	as	necessary,	usually	in	response	to	user	actions"
"...often	involves	dynamic	communication	with	the	web	server	behind	the	scenes"

So,	what	I	believe	a	single-page	structured	application	does	well	is	containing	the	initial	application	logic,	and	its	methods	for	other
partial	elements	(html	templates,	json	data,	etc)	without	requiring	additional	full-page	loads	(from	the	browser's	perspective).	This
eliminates	some	of	the	overhead	for	always	loading	certain	images	and	stylesheets	while	keeping	the	focus	of	what	network	traffic
exists,	after	the	initial	page	load,	being	only	what's	necessary	(the	data	or	html	partials).

What	They	Are	Not

the	only	way	to	build	modern	web	applications
an	argument	against	having	multi-page	web	applications	(let's	face	it,	you	can't	cram	it	all	in	every	time)
perfect	for	every	application
necessarily	new	(some	of	the	mechanics	are,	but	straight	up	web	pages	with	JS	manipulations	have	existed	ever	since	JavaScript
was	implemented);	making	SPAs	more	of	a	design	strategy
an	application	strategy	that	requires	"less	work"	(it	just	shifts	where	your	attention	goes)

A	Brief	Anatomy

As	you	probably	know	by	now,	I'm	a	big	fan	of	AngularJS.	It	makes	a	lot	of	the	client-side	application	development	easier	than	you
might	think.	The	example	file	is	the	app/index.html	file	from	the	angular-seed	project	on	GitHub.

<!DOCTYPE	html>

<!--[if	lt	IE	7]>						<html	lang="en"	ng-app="myApp"	class="no-js	lt-ie9	lt-ie8	lt-ie7">	<![endif]-->

<!--[if	IE	7]>									<html	lang="en"	ng-app="myApp"	class="no-js	lt-ie9	lt-ie8">	<![endif]-->

<!--[if	IE	8]>									<html	lang="en"	ng-app="myApp"	class="no-js	lt-ie9">	<![endif]-->

<!--[if	gt	IE	8]><!-->	<html	lang="en"	ng-app="myApp"	class="no-js">	<!--<![endif]-->

<head>

		<meta	charset="utf-8">

		<meta	http-equiv="X-UA-Compatible"	content="IE=edge">

		<title>My	AngularJS	App</title>

		<meta	name="description"	content="">

		<meta	name="viewport"	content="width=device-width,	initial-scale=1">

		<link	rel="stylesheet"	href="bower_components/html5-boilerplate/dist/css/normalize.css">

		<link	rel="stylesheet"	href="bower_components/html5-boilerplate/dist/css/main.css">

		<link	rel="stylesheet"	href="app.css">

		<script	src="bower_components/html5-boilerplate/dist/js/vendor/modernizr-2.8.3.min.js"></script>

</head>

<body>

		<ul	class="menu">

				view1

Dev|Blog:	The	First	Year

75What	is	a	Single	Page	Application(SPA)?

http://en.wikipedia.org/wiki/Single-page_application
https://angularjs.org
https://github.com/angular/angular-seed

view	rawindex.html

				view2

		

		<!--[if	lt	IE	7]>

						<p	class="browsehappy">You	are	using	an	outdated	browser.	Please	upgrade	your	browser	to	improve	your	experience.</p>

		<![endif]-->

		<div	ng-view></div>

		<div>Angular	seed	app:	v</div>

		<!--	In	production	use:

		<script	src="//ajax.googleapis.com/ajax/libs/angularjs/x.x.x/angular.min.js"></script>

		-->

		<script	src="bower_components/angular/angular.js"></script>

		<script	src="bower_components/angular-route/angular-route.js"></script>

		<script	src="app.js"></script>

		<script	src="view1/view1.js"></script>

		<script	src="view2/view2.js"></script>

		<script	src="components/version/version.js"></script>

		<script	src="components/version/version-directive.js"></script>

		<script	src="components/version/interpolate-filter.js"></script>

</body>

</html>

This	Gist	brought	to	you	by	gist-it.

The	general	progression	is:

load	the	file	with	the	usual	fixes	up	front	(old	IE	conditionals,	IE=edge)	and	other	meta	tags	(viewport)
load	the	structural	elements,	such	as	framework	CSS,	app	CSS,	and	Modernizr
load	the	body	(structural	elements)
you'll	note	this	one	has	a	div	with	the	ng-view	directive	(in	the	example	file,	as	an	attribute	of	the	content	div),	that's	how	Angular
does	its	partial	html	injenction	(e.g.-	content	goes	here)
end	it	all	by	then	loading	the	JS	framework	library,	then
your	application	script
and	your	partial	html	files	(though	those	can	be	injected,	with	the	controllers,	via	$routeProvider)
any	universal	custom	filters,	directives,	etc

This	lets	the	page	start	all	its	loading	all	the	needed	elements	before	the	client	starts	modifying	its	contents.	Not	everyone	does	it	this
way,	but	it	can	help	quite	a	bit	when	your	client-side	app	performs	a	lot	of	initialization	work.

When	a	client-side	framework	like	Angular	detects	changes	(like	in	the	partial	html	content	being	triggered),	it	then	grabs	the	necessary
controlling	code	and	logic	and	begins	to	modify	the	DOM	to	suit	its	needs.	That's	what	that	ng-view	directive	does.

The	Biggest	Pieces

How	a	page	loads	in	the	web	browser	is	the	ultimate	destination	and,	by	proxy,	make	or	break	end	point	for	any	web	application.	The
user's	experience	is	truest	and	only	real	common	denominator	for	how	a	user	interacts	with	the	server.	The	server	can	perform
amazingly	and	do	great	things,	but	if	the	application	is	consumed	in	a	browser	that	is	old	or	outdated	(looking	at	you,	old	versions	of	IE
and	the	users	that	run	them),	or	the	loading	of	that	page	is	just	ridiculously	network	call	heavy	(when	it	could	be	avoided),	then	the	user
suffers,	which	means	the	application	suffers.

Dev|Blog:	The	First	Year

76What	is	a	Single	Page	Application(SPA)?

https://github.com/angular/angular-seed/blob/master/app/index.html
http://gist-it.sudarmuthu.com
https://github.com/angular/angular-seed/raw/master/app/index.html
https://github.com/angular/angular-seed/blob/master/app/index.html
http://docs.angularjs.org/api/ngRoute/provider/$routeProvider

A	lot	of	front-end	developers	spend	quite	a	bit	of	time	on	the	below	topics.	Basically,	if	you	open	up	and	make	use	of	the	Page	Speed
Insights	extension	for	Chrome	or	app.telemetry	for	Firefox,	you	can	find	a	number	of	good	statistics	and	recommendations	for	how	to
speed	up	your	web	app	and	"milk	it	for	what	it's	worth".	When	I	first	saw	this	done,	it	felt	like	someone	was	attempting	to	divine	the
aether	of	the	Internet,	but	there's	a	lot	to	be	said	for	end	user	performance.

IBM	has	thankfully	thought	of	some	of	these	concepts	and	the	XSP	properties	let	us	set	a	few	things	to	help	with	UX,	including	runtime
optimized	JS	and	CSS,	compressing	resources	files	(CSS	and	Dojo),	and	other	tasty	tidbits	that	I'm	sure	other	people	know	more	about
than	I.	In	fact,	one	of	the	easiest	ways	to	improve	a	partial	refresh	in	XPages	is	to	better	manage	how	much	you	refresh	to	make	for	a
better	partialRefresh	experience.

Resource	Aggregation

This	is	definitely	one	where	IBM	has	tried	to	give	us	something	that	the	front-end	world	has	been	big	on,	of	late.	combination	of	(as
much/many)	static	resources	as	possible,	along	with	gzipping	for	even	lighter	footprint	while	in	transmission,	gives	the	browser	a	bit	of
a	faster	load.	With	gzip'd	content,	it	still	takes	a	decompression	on	the	browser's	part	once	that's	done,	but	hey,	I've	been	focusing	on
network	requests/responses.	In	XSP	Properties,	just	set	xsp.resources.aggregate	to	true	in	Domino	8.5.3	and	up.

Cache	Control

Something	I	haven't	figured	out	how	to	do	yet	in	Domino	is	to	regulate	the	content	cache	for	certain	resources.	I'm	interested	in
particular	in	things	like	CSS	and	images.	As	I	try	to	make	life	easier	on	myself,	I	tend	to	host	most	of	the	elements	I'm	interested	in
caching	(ideally	for	about	30	days)	reside	in	my	..\Domino\data\domino\html\	path,	for	what	I	don't	use	from	a	CDN	(and	CDN	fall-
back	copies).	I	also	don't	know	how	this	interacts	with	the	resource	aggregation	property	(xsp.resources.aggregate	see	above).	I'm	also
uncertain	about	how	the	use	of	the	xsp.expires.global	property	compares	against	server	hosted	resources	(..\Domino\data\domino\html).

Lazy	Loading

I've	previously	talked	about	how	I	have	a	dislike	for	(at	least	1.6's	and/or	older	versions	of)	Dojo's	lazy	loading	of	button	styles.	Aside:	I
also	think	that	not	using	dijit.form.Button	would	take	care	of	that,	but	that's	not	my	call,	sadly.	I	also	mentioned	how	some	of	this	has
improved	with	Dojo's	AMD	over	time	and	multiple	releases.	The	fact	of	the	matter	is:	I	want	to	control	what	and	how	much	is
transported	over	the	network	connection	at	any	given	request;	and	I'm	not	alone.

This	is	such	a	big	topic	to	me,	because	I	spend	a	lot	of	my	time	and	development	effort	building,	extending,	and	maintaining	a	(very)
large	application	for	my	company.	This	application,	which	has	turned	into	more	of	a	platform,	spans	every	individual	location	of	ours
across	the	country.	This	application	calls	home	to	our	corporate	servers	making	line	quality	a	bit	of	a	topic	as	well.	Server	locations,

The	Way	Forward

So	how	can	we	make	better	applications?	My	theory	is	that	we	need	every	single	tool	in	the	tool	box.	Traditional	XPages	development
doesn't	go	away,	not	in	the	least.	In	fact,	I	look	at	Angular	and	other	client-side	frameworks	as	a	tool	to	expand	on	what	we	already	do.

The	XPages	Way

There	is	no	one,	true	gold	standard	"XPages	way"	of	creating	an	application.	It's	one	of	the	strengths	and	weaknesses	of	XPages,
simultaneously.	First,	the	weaknesses.	XPages	lets	us	dump	code	virtually	everywhere,	which	is	great,	except	for	the	potential	of

spaghetti	code™.	But	as	a	developer	advances	in	both	ability	and	development	practices,	the	path	eventually	seems	to	lead	to	a
combination	of	managed	beans	and	plugins.	These	make	for	some	great,	business	grade	applications	that	have	strength	in	utility	and
capability.

Leading	us	to	XPages'	strengths,	the	ability	to	adapt	and	adopt	newer	(yes,	it's	debatable)	ways	of	development	with	our	platform.

Want	More	AngularJS?

I	recommend	checking	out	Dan	Wahlin's	AngularJS	Fundamentals	in	60-ish	Minutes.	It's	a	good	overview	and	he	can	probably	sell	you
on	the	concepts	a	bit	better	than	myself.

Want	More	on	SPAs?

Dev|Blog:	The	First	Year

77What	is	a	Single	Page	Application(SPA)?

http://per.lausten.dk/blog/2012/02/xpages-2-very-easy-performance-optimization-tricks.html
http://hasselba.ch/blog/?p=1389
http://en.wikipedia.org/wiki/Content_delivery_network
http://www.youtube.com/watch?v=i9MHigUZKEM

The	hall	mark	for	comparison	of	front-end	JavaScript	frameworks	has	tended	of	late	towards	TodoMVC.	This	is	geared	towards
assisting	a	person	to	select	a	(client-side)	MV*	framework.	It	also	shows	the	same,	simple	but	illustrative	application	in	use	on
numerous	frameworks.	It's	also	an	SPA.

I	hope	you	(are	starting	to?)	see	how	a	more	robust	front-end	application	logic	can	compliment	your	applications.	No	one	development
style	or	individual	tool	can	"do	it	all",	but	why	not	have	another	tool	that	can	help	you	do	your	job?	It	never	hurts	to	expand	the	skill	set.
Even	if	it's	not	the	best	tool	for	you	right	now,	it's	worth	getting	a	little	familiar	with	some	client-side	frameworks,	even	if	it	just	gives
you	new	or	different,	hopefully	better,	ideas	in	your	application	development.

Dev|Blog:	The	First	Year

78What	is	a	Single	Page	Application(SPA)?

Related
Blog	posts	related	to	the	series	on	HTTP	Servlets,	though	not	directly	supporting	and	can	stand	on	their	own	merit.

Dev|Blog:	The	First	Year

79Related

For	Starters

¡Feliz	Cinco	de	Mayo!

	 	 	 	

It's	been	a	little	longer	to	get	to	this	installment	of	my	Saga	of	Servlets	series,	but	I	guess	that	happens	when	things	like	the	day	job	pick
up	with	trouble	shooting	server	issues	and	family	life	all	seem	to	get	in	the	way.

Intro

This	isn't	the	most	"developer	sexy"	topic,	but	I	hope	is	worthwhile	(and	something	I	promised	would	be	in	this	series).

The	intention	of	this	post	to	tackle	the	concept	of	what	an	XAgent	is	(I'll	be	brief)	and	why	our	use	of	them	can	be	substituted	(in	most
cases)	with	an	HttpServlet.	There's	a	caveat	to	this,	covered	below,	and	for	all	intents	and	purposes,	I'll	be	using	HttpServlet
interchangably	with	DesignerFacesServlet;	the	implementation	of	which	I	use	being	Jesse	Gallagher's	AbstractXSPServlet.

Note

My	intentions	throughout	this	series	have	included	to	avoid	any	specific	frameworks	for	building	out	an	HttpServlet	and/or	RESTful
API,	hence	the	pure	Java	implementation,	NSF-level	implementation	(making	it	easily	accessible	before	getting	into	OSGi
HttpServlets),	and	not	being	so	keen	on	GSON	as	to	put	off	people	who	can	accomplish	the	same	thing	in	the	IBM	commons	library.
That	being	said,	the	intention	of	this	post	is	to	bring	us	back	to	some	common	ground	with	other	Java	EE	developers	in	how	we	perform
some	tasks;	so	if	you're	interested	in	such	things	(as	I	am!),	please	read	Jesse	Gallagher's	post	on	using	JAX-RS	or	Toby	Samples'	blog,
as	he's	kicking	off	a	series	on	using	JAX-RS	with	Domino	in	an	OSGi	plugin.

XAgents

Ultimately,	the	purpose	is	to	provide	a	data	response	after	performing	some	computation,	over	HTTP	(effectively	the	same	steps	in	an
HttpServlet);	whether	that's	a	binary	file	like	a	PDF	or	web-consuable	data	response.	XAgents	provide	an	XPages	developer	an	easy	way
of	creating	an	endpoint,	the	XPage	name,	with	which	we	can	easily	hook	into	the	data	response	by	setting	it	non-rendered	and
overriding	the	HttpServletResponse	(and	unless	it's	a	response	we	don't	need	to	persist	state	with,	setting	the	xp:view	attribute	viewState
to	"nostate").

XAgents	are	relatively	easy	to	create,	especially	for	a	less	experienced	XPages	developer.	My	experiences	in	life	have	taught	me	that
"easier"	doesn't	always	translate	to	"better",	but	an	XAgent	is	handy,	conveninent,	and	easy	to	get	started	with.

How	Much	Overhead	is	in	an	XAgent?

I	wish	I	had	the	time	to	invest	in	some	benchmark	comparisons.	This	may	be	something	I	revisit,	as	it	will	probably	bug	me	until	I	have
some	actual	data.	In	any	case,	the	main	idea	here	is	that	the	full	JSF	lifecycle	is	invoked,	causing	a	more-than-needed	increase	in	server
processing.	An	HttpServlet	will	take	a	request,	process	as	needed	for	a	valid	response	(stateless,	if	you	go	the	RESTful	route),	and	kick
out	a	data	response.	An	XAgent	can	do	the	same,	but	al	the	moving	parts	of	JSF	are	still	invoked.

In	lieu	of	some	recorded	tests	to	back	this	up,	I'm	going	to	link	you	to	a	blog	post	by	Karsten	Lehmann	talking	about	XAgent
bottlenecks	and	an	excerpt	here	that	should	sum	things	up	nicely.

The	consequence	is	that	you	should	think	twice	about	your	XPages	application	architecture,	if	you	have	many	concurrent	HTTP
requests	or	if	some	of	them	take	a	lot	of	time	to	be	processed.	An	XAgent	may	be	the	easiest	solution	to	deploy,	but	may	not
produce	the	best	user	experience	in	all	cases.

[Insert	Data	to	Back	Up	Reasoning	Here]

When	to	Keep	Using	an	XAgent

Dev|Blog:	The	First	Year

80"Replacing"	an	XAgent

localhost:4000/servlet-series

The	caveat	to	using	an	HttpServlet	is	the	need	for	reliable	sessionAsSigner	access.	While	I	believe	this	is	feasible	at	a	conceptual	level
(especially	inside	an	NSF),	it	would	be	lacking	in	the	context	of	an	OSGi	plugin,	as	there	would	be	no	actual	design	element.	I've	tried
to	read	up	on	and	ask	around	on	this	subject,	but	the	most	I've	found	is	an	old	question	on	OpenNTF	and	some	confusing	talk	from
Jesse	Gallagher	about	ClassLoaders	and	the	underlying	Domino	C	API.	Talking	with	Jesse	about	these	things	make	it	sound	like	a	really

good	idea	for	me	to	take	his	word	on	it	 .

[Update]	I've	had	some	good	success	resolving	sessionAsSigner	via	ExtLibUtil.getCurrentSessionAsSigner(),	which	makes	my	above
comment	a	bit	less	pressing.	[/Update]

When	you	do	have	to	use	an	XAgent,	I	recommend	having	a	single	line	of	invocation	in	your	before/after	...RenderResponse.	This
should	invoke	the	fully	qualified	package.class.Method	with	a	parameter	being	passed	as	a	handle	to	sessionAsSigner.	This	keeps	things
clean	and	simple,	and	your	class	will	be	easily	maintained	in	a	consistent	fashion	to	any	HttpServlet	you	create.	For	example:

<xp:this.afterRenderResponse>

				

</xp:this.afterRenderResponse>

Why	Should	I	Care?

While	we	may	be	using	a	uniquely	abstracted	variant	of	an	HttpServlet,	by	building	our	logic	as	an	HttpServlet	as	opposed	to	an
equivalent	XAgent	(especially	in	Domino/XPage's	SSJS),	we	create	our	data	service	in	an	industry	normal	fashion.	If	this	on	top	of	the
performance	increase	doesn't	sell	it	for	you,	I'm	not	sure	what	will.

Summary

If	we	want	to	be	more	of	a	Java	EE	developer,	which	is	the	industry	equivalent	norm	for	an	XPages	developer	(by	my	interpretation),
then	we	should	ebmrace	the	more	industry	norm	practices.	In	this	case,	it	also	means	we	drop	some	of	the	unnecessary	JSF	"baggage"
from	the	process	of	merely	handling	a	data	response.

The	final	part	of	this	series	will	cover	some	of	the	client-side	application	in	using	the	the	HttpServlet	we	set	up	in	the	Round	House
Kick	Tour	of	data	handling.	It	may	come	soon,	if	I	can	keep	my	spawning	of	non-series	post	ideas	in	check.

Dev|Blog:	The	First	Year

81"Replacing"	an	XAgent

[Update]	This	topic	is	so	awesome	I	turned	it	into	a	video	for	Notes	in	9,	check	it	out.	[/Update]

Intro
A	Segregated	Approach	for	the	Front-End
A	Sample	Data	Set	of	JSON
Json-Server
Examples
One	Last	Thing

Intro

It's	no	secret	I'm	a	strong	advocate	for	segregated	application	design	practices.	In	my	quest	to	"make	everything	work	the	way	I	want	it",
I've	chosen	a	front-end	framework	that	my	ui-level	application	is	written	in,	structured	my	primary	application	layer	into	RESTful	Java
HTTPServlets	(DesignerFacesServlets,	specifically),	and	life	is	generally	good.	My	endeavors	in	this	area	are	for	a	few,	specific
reasons,	namely:

keep	my	development	efforts	focused	(e.g.-	identifying	whether	a	problem	is	front-end	or	back-end	can	greatly	speed	up	trouble
shooting)
focus	on	data	as	a	service	(which	makes	it	easily	consumed	by	other	systems)
make	more	easily	documented	applications
make	more	easily	tested	applications
make	applications	more	easily	outsourced

That	last	one	is	probably	foreign	to	a	lot	of	people,	but	as	one	of	two	web	developers	on	my	company's	organic	staff	(and	the	only
Domino/XPages	developer),	this	means	I	want	to	unify	efforts	across	our	application	platforms	and	also	make	things	easier	to	plug	a
contract	developer	into.	It	speeds	up	their	efforts,	makes	it	easier	to	plug	into	source	control	(for	not	just	tracking,	but	also	support
purposes),	and	overall	will	aid	my	sanity.

A	Segregated	Approach	for	the	Front-End

I've	spent	a	considerable	amount	of	time	covering	the	back-end	approach	that	I'm	migrating	to;	just	look	at	all	but	the	last	two-part	piece
in	my	series	on	Java	HTTPServlets	with	XPages.	But	what	if	we	hire	out	some	work	to	be	done	on	the	front-end;	wouldn't	it	be	nice	for
that	developer	to	work	on	only	on	that	front-end,	without	any	need	for	other	setup?	I	think	it	would	and	this	ought	to	outline	how	this
can	be	achieved	fairly	quickly.

A	Sample	Data	Set	of	JSON

Since	I'm	interacting	with	my	data	via	a	RESTful	HTTPServlet,	this	makes	things	rather	easy	for	me	to	create	one	of	the	required	parts.
I	need	to	have	a	sample	set	of	data,	which	I	can	interact	with	to	confirm/deny	my	interactions	are	well	formed	and	test	with	some	form
of	data.	In	this	case,	I'm	assuming	this	is	for	making	changes	to	an	existing	application,	but	if	it's	a	new	one,	someone	would	want	to	sit
down	and	define	a	sample	set	of	data;	this	is	normal	operation	for	myself	and,	I	expect,	most	developers.	For	my	use	case,	I	copied	the
network	response	from	my	.../xsp/<collectionName>		GET		call	into	a		db.json		(I'm	using		housesDB.json	,	except	for	my	GIFs
below,	which	are	another	source,	but	follow	the	same	structure)	file.	This	will	need	one	minor	change,	and	that's	to	wrap	the	data	array
into	a	slightly	different	format,	so	that		json-server		can	read	it	correctly	(I	stripped	out	my	usual	request	block	with	any	params	and
the	error	true/false,	for	simplicity).

After	your	minor	transforms,	I	reocmmend	sanity	checking	your	data	with	a	tool	like	jsonlint.com.	You'll	note	my	collection	is	a
member	of	an	xsp	object	(to	route	similar	to	my	production	path).	Here's	one	I	prepared	earlier:

{

		"houses":	[

				{

						"region":	"Vale	of	Arryn",

						"unid":	"F3C2CE924605412888257E0000128173",

						"seat":	"The	Eyrie	(summer),	Gates	of	the	Moon	(winter)",

						"heir":	"Harrold	Hardyng",

						"title":	"King	of	Mountain	and	Vale	(formerly),	Warden	of	the	East	Lord	of	the	Eyrie	Defender	of	the	Vale",

						"overlord":	"House	Baratheon",

Dev|Blog:	The	First	Year

82Alternate	Front-End	Development:	Mocking	Your	Domino	Back-end

						"words":	"As	High	as	Honor",

						"name":	"Arryn",

						"description":	"House	Arryn	of	the	Eyrie	is	one	of	the	Great	Houses	of	Westeros,	and	is	the	principal	noble	house	in	the	Vale	of	Arryn.	Their	main	seat	is	the	Eyrie,	which	is	considered	impregnable,	but	they	have	many	other	holdings,	including	their	winter	castle	at	the	Gates	of	the	Moon,	which	was	once	their	main	seat.	Both	of	these	fortifications	sit	astride	the	Giant's	Lance,	the	tallest	mountain	in	the	Vale,	the	Gates	of	the	Moon	at	its	foot,	the	Eyrie	at	its	top."

						"coatOfArms":	"Azure,	upon	a	bezant	argent	a	falcon	volant	of	the	field",

						"currentLord":	"Robert	Arryn"

				},

				{

						"region":	"Stormlands",

						"unid":	"EF827514E00D43CA88257E000016915D",

						"seat":	"Storm's	End	King's	Landing	(House	Baratheon	of	King's	Landing)	Dragonstone	(House	Baratheon	of	Dragonstone)"

						"heir":	"Princess	Myrcella,	Princess	Shireen	(disputed)",

						"title":	"Lord	of	Storm's	End,	Lord	Paramount	of	the	Stormlands",

						"overlord":	"Baratheons	of	King's	Landing",

						"words":	"Ours	Is	The	Fury",

						"name":	"Baratheon",

						"description":	"House	Baratheon	of	Storm's	End	is	one	of	the	Great	Houses	of	Westeros,	and	is	the	principal	house	in	the	stormlands,	which	they	rule	as	Lords	Paramount	of	the	Stormlands.	Their	seat,	Storm's	End,	is	an	ancient	castle	raised	by	the	Storm	Kings	from	the	now-extinct	House	Durrandon.	The	Baratheon	sigil	is	a	crowned	black	stag	on	a	field	of	gold.	Members	of	the	family	tend	to	be	tall	and	powerfully	built,	with	black	hair	and	blue	eyes,	as	well	as	strong,	square	jawlines.	They	are	known	for	their	

						"coatOfArms":	"A	crowned	stag	sable",

						"currentLord":	"King	Tommen	I,	King	Stannis	I	(disputed)"

				},

				{

						"region":	"The	Reach",

						"unid":	"09887656D18F175188257E00001561B0",

						"seat":	"Highgarden",

						"heir":	"Extinct",

						"title":	"King	of	the	Reach",

						"overlord":	"none",

						"words":	"-Extinct-",

						"name":	"Gardener",

						"description":	"House	Gardener	of	Highgarden	is	the	extinct	house	of	the	old	and	famed	Kings	of	the	The	Reach.	Their	seat	was	Highgarden,	and	the	Gardener	kings	sat	upon	a	living	throne	called	the	Oakenseat	that	grew	from	an	oak	that	the	mythical	Garth	Greenhand	himself	was	reputedly	said	to	have	planted.	The	Kings	of	House	Gardener	wore	crowns	of	vines	and	flowers	when	at	peace,	and	crowns	of	bronze	thorns	(later	iron)	when	they	rode	to	war.	Their	blazon	was	a	green	hand	over	a	white	field."

						"coatOfArms":	"Argent,	a	hand	couped	vert",

						"currentLord":	"Extinct"

				},

				{

						"region":	"Iron	Islands",

						"unid":	"19A73BBCEAB0BC3188257E000016658F",

						"seat":	"Pyke",

						"heir":	"Theon	Greyjoy",

						"title":	"King	of	Salt	and	Rock,	Son	of	the	Sea	Wind,	Lord	Reaper	of	Pyke",

						"overlord":	"None,	sovereign	(disputed	by	House	Baratheon	of	King's	Landing	and	House	Baratheon	of	Dragonstone)",

						"words":	"We	Do	Not	Sow",

						"name":	"Greyjoy",

						"description":	"House	Greyjoy	of	Pyke	is	one	of	the	Great	Houses	of	Westeros.	It	rules	over	the	Iron	Islands,	a	harsh	and	bleak	collection	of	forbidding	islands	off	the	west	coast	of	Westeros,	from	the	Seastone	Chair	in	the	castle	of	Pyke	on	the	island	of	the	same	name.	The	head	of	the	family	is	traditionally	known	as	the	Lord	Reaper	of	Pyke.	Their	sigil	is	a	golden	kraken	on	a	black	field,	and	their	house	motto	is	\"We	Do	Not	Sow.\"	Members	of	the	family	tend	to	be	attractive	and	well-built,	with	black	hair."

						"coatOfArms":	"Sable,	a	kraken	Or",

						"currentLord":	"Sable,	a	kraken	Or"

				},

				{

						"region":	"The	Reach",

						"unid":	"D3B19F250F6AEE6988257E000015FAA0",

						"seat":	"The	Hightower,	Oldtown",

						"heir":	"Ser	Baelor	Hightower",

						"title":	"Voice	of	Oldtown	Lord	of	the	Port	Lord	of	the	Hightower	Defender	of	the	Citadel	Beacon	of	the	South	King	of	the	High	TowerVoice	of	Oldtown	Lord	of	the	Port	Lord	of	the	Hightower	Defender	of	the	Citadel	Beacon	of	the	South	King	of	the	High	Tower"

						"overlord":	"House	Tyrell",

						"words":	"We	Light	the	Way",

						"name":	"Hightower",

						"description":	"House	Hightower	of	the	Hightower	is	one	of	the	most	important	and	powerful	vassals	of	House	Tyrell	(and	before	them	of	House	Gardener).	Their	seat	is	the	Hightower	in	the	city	of	Oldtown	within	the	Reach.	The	sigil	of	House	Hightower	is	a	stone	white	watchtower,	with	a	fire	on	the	top.	Their	words	are	\"We	Light	the	Way\".	They	possess	a	Valyrian	steel	sword	called	Vigilance."

						"coatOfArms":	"Cendrée,	a	tower	argent	with	a	beacon	on	fire	gules",

						"currentLord":	"Leyton	Hightower"

				},

				{

						"region":	"Iron	Islands,	Riverlands",

						"unid":	"4DE933E58F65D21388257E00001641A6",

						"seat":	"Orkmont,	Hoare	Castle,	Fairmarket,	Harrenhal",

						"heir":	"Extinct",

						"title":	"King	of	the	Iron	Islands,	King	of	the	Isles	and	the	Rivers",

						"overlord":	"none",

						"words":	"-Extinct-",

						"name":	"Hoare",

						"description":	"House	Hoare	of	Orkmont	is	an	extinct	house	of	the	Iron	Islands.	Known	as	the	black	line,	or	the	black	blood,		the	Hoares	became	the	Kings	of	the	Iron	Islands	after	the	Andal	settlers	on	the	islands	ended	the	rule	of	House	Greyiron.	While	they	originally	came	from	Orkmont,	they	also	built	Hoare	Castle	on	Great	Wyk.	The	Hoares	eventually	moved	to	Fairmarket	and	Harrenhal	in	the	riverlands	where	they	ruled	as	Kings	of	the	Isles	and	the	Rivers."

						"coatOfArms":	"Per	saltire:	two	heavy	silver	chains	crossing	between	(clockwise)	a	gold	longship	on	black,	a	dark	green	pine	on	white,	a	cluster	of	red	grapes	on	gold,	and	a	black	raven	flying	in	a	blue	sky"

						"currentLord":	"Extinct"

				},

				{

Dev|Blog:	The	First	Year

83Alternate	Front-End	Development:	Mocking	Your	Domino	Back-end

						"region":	"Westerlands",

						"unid":	"EABEB1601EF7469F88257E000014F3A2",

						"seat":	"Casterly	Rock",

						"heir":	"Tommen	Baratheon",

						"title":	"King	of	the	Rock	(formerly),		Lord	of	Casterly	Rock	Shield	of	Lannisport	Warden	of	the	West",

						"overlord":	"House	Baratheon",

						"words":	"Hear	Me	Roar!",

						"name":	"Lannister",

						"description":	"House	Lannister	of	Casterly	Rock	is	one	of	the	Great	Houses	of	Seven	Kingdoms,	and	the	principal	house	of	the	westerlands.	Their	seat	is	Casterly	Rock,	though	another	branch	exists	that	is	based	in	nearby	Lannisport.	Their	sigil	is	a	golden	lion	on	a	field	of	crimson.	Their	official	motto	is	\"Hear	Me	Roar!\"	However,	their	unofficial	motto,	equally	well	known,	is	\"A	Lannister	always	pays	his	debts.\"	The	Warden	of	the	West	is	traditionally	a	Lannister."

						"coatOfArms":	"Gules,	a	lion	or",

						"currentLord":	"Queen	Regent	Cersei	Lannister"

				},

				{

						"region":	"Dorne",

						"unid":	"A84FDD689561713588257E000016B577",

						"seat":	"Old	Palace	within	Sunspear",

						"heir":	"Lord	of	the	Sandship	Lord	of	Sunspear	Prince	of	Dorne",

						"title":	"Lord	of	the	Sandship,	Lord	of	Sunspear,	Prince	of	Dorne",

						"overlord":	"House	Baratheon	of	King's	Landing",

						"words":	"Unbowed,	Unbent,	Unbroken",

						"name":	"Martell",

						"description":	"House	Nymeros	Martell	of	Sunspear	is	one	of	the	Great	Houses	of	Westeros	and	is	the	ruling	house	of	Dorne.	'Nymeros'	indicates	\"of	the	line	of	Nymeria,\"	but	generally	it	is	simply	called	House	Martell.	The	seat	of	the	Prince	of	Dorne	is	Sunspear	in	southeastern	Dorne."

						"coatOfArms":	"Tenny,	a	sun	in	splendour	gules	transfixed	by	a	spear	bendwise	Or",

						"currentLord":	"Old	Palace	within	Sunspear"

				},

				{

						"region":	"The	North",

						"unid":	"896AA1D0286E4FE088257E0000123C29",

						"seat":	"Winterfell",

						"heir":	"Rickon	Stark",

						"title":	"King	in	the	North,	Lord	of	Winterfell,	Warden	of	the	North,	King	of	the	Trident",

						"overlord":	"None	(formerly	House	Baratheon)",

						"words":	"Winter	is	Coming",

						"name":	"Stark",

						"description":	"House	Stark	of	Winterfell	is	one	of	the	Great	Houses	of	Westeros	and	the	principal	noble	house	of	the	North;	many	lesser	houses	are	sworn	to	them.	In	days	of	old	they	ruled	as	Kings	of	Winter;	since	the	Targaryen	Conquest	they	have	been	Wardens	of	the	North.	Their	seat,	Winterfell,	is	an	ancient	castle	renowned	for	its	strength."

						"coatOfArms":	"A	running	grey	direwolf,	on	an	ice-white	field",

						"currentLord":	"Brandon	Stark"

				},

				{

						"region":	"Crownlands,	Valyria",

						"unid":	"0103FD4EB458904B88257E00000FE3E6",

						"seat":	"Red	Keep,	Dragonstone,	Summerhall",

						"heir":	"",

						"title":	"King	of	the	Andals,	the	Rhoynar	and	the	First	Men	Lord	of	the	Seven	Kingdoms",

						"overlord":	"None",

						"words":	"Fire	and	Blood",

						"name":	"Targaryen",

						"description":	"House	Targaryen	is	a	noble	family	of	Valyrian	descent	that	escaped	the	Doom.	They	lived	for	centuries	on	the	island	of	Dragonstone	until	Aegon	the	Conqueror	and	his	sisters	rode	their	dragons	in	the	conquest	of	the	Seven	Kingdoms.\r\nHouse	Targaryen	ruled	as	the	Kings	on	the	Iron	Throne	and	the	Great	House	of	the	crownlands	for	nearly	300	years,	until	their	ouster	in	Robert's	Rebellion.	Their	seats	were	the	Red	Keep	in	the	capital	city	of	King's	Landing,	the	island	castle	of	Dragonstone,	and	the	summer	residence	of	Summerhall."

						"coatOfArms":	"Sable,	a	dragon	thrice-headed",

						"currentLord":	"Queen	Daenerys	Targaryen"

				},

				{

						"region":	"The	Reach",

						"unid":	"57FFA05DC92F9CCF88257E000015CF43",

						"seat":	"Highgarden",

						"heir":	"Willas	Tyrell",

						"title":	"Lord	of	Highgarden	Defender	of	the	Marches	High	Marshal	of	the	Reach	Warden	of	the	South	Lord	Paramount	of	the	Mander	High	Steward	of	Higharden	(pre-Conquest)"

						"overlord":	"House	Baratheon",

						"words":	"Growing	Strong",

						"name":	"Tyrell",

						"description":	"House	Tyrell	of	Highgarden	is	one	of	the	Great	Houses	of	the	Seven	Kingdoms,	being	liege	lords	of	the	Reach.	A	large,	wealthy	house,	its	wealth	is	only	surpassed	among	the	Great	Houses	by	House	Lannister,	and	the	Tyrells	can	field	the	greatest	armies.	Additionally,	if	they	call	the	fleets	of	their	bannermen	the	Redwynes,	the	lords	of	the	Shield	Islands,	and	the	coastal	lords,	they	can	command	a	navy	that	equals	if	not	surpasses	the	royal	fleet."

						"coatOfArms":	"Vert,	a	rose	Or",

						"currentLord":	"Mace	Tyrell"

				}

]

}

Dev|Blog:	The	First	Year

84Alternate	Front-End	Development:	Mocking	Your	Domino	Back-end

A	Note	on	Domino	Data	Service

As	the	@unid	property	won't	register	as	a	valid	json	object	property,	you	may	need	to	transform	that	to	unid.	My	HTTPServlet	was

already	using	unid,	so	it	works	out	quite	nicely	 .

Json-Server

So,	you	may	be	wondering	what		json-server		is.	Json-server	describes	iteself	as:

...a	full	fake	REST	API	with	zero	coding	in	less	than	30	seconds	(seriously)

I	would	call	it	an	application/json	mock	back-end	service.	No	matter	how	you	slice	it,	it	will	take	the	contents	of	my		db.json		file	and
provide	an	endpoint	for	it	to	have	the	various	CRUD	operations	performed	against	it.	It	respects	well-formed	CRUD	operations,	in
application/json	format,	with		GET	,		POST	,		PUT	,		PATCH	,	and		DELETE		operations.

To	install	it,	you	will	need	to	have	Node.js	(and	npm!)	installed	on	your	machine.	I	recommend	installing	this	globally,	so	you	won't
need	to	maintain	a	copy	of	it	in	some	project	folder.	To	do	so,	from	your	command	line,	run:

	npm	install	-g	json-server	

This	will	install	the	current	version	of		json-server	.	What	makes	this	all	so	exciting	to	me	is	that	after	issue	(feature	request)	103	was
completed,	the		id		property	is	now	configurable.	So,	assuming	a	relative	path	to	the		db.json		file,	running	the	following	gives	you	a
functional	back-end	mock	with	the	file	above:

	json-server	--id	unid	--watch	db.json	

We're	invoking	the		json-server		command	(that's	right,	npm	installed	it	into	our	PATH,	making	it	available	as	a	global	command),
we're	configuring	the		id		to	key	off	of	the		unid		property,	we'll	be	watching	the	file	for	changes,	and	it's	pointing	at	the		db.json	
file.	By	default,	it	will	load	on	port	3000,	but	that's	configurable	as	well.	See	the		json-server		read	me	on	GitHub,	or	run	it	with	no
params	or	with	-h	for	a	listing	of	what's	available	(port	is	set	by	--port	or	-p).

Examples

Here	come	a	few	examples,	in	all	the	glory	an	animated	GIF	of	a	REST	API	client	can	give.

Getting	Started

You'll	see	that	the	default	page	at	the	port		json-server		is	serving	on,	that	there	are	a	couple	things,	such	as	a	hyperlink	to	the
collections,	overall	"db",	and	link	back	to	the	readme	on	GitHub.	In	the	console,	we	can	see	that	we	can	even	take	a	"snap	shot"	of	the
"db";	this	will	save	the	data	at	that	point	in	time	to	a	separate	.json	file.

Dev|Blog:	The	First	Year

85Alternate	Front-End	Development:	Mocking	Your	Domino	Back-end

https://github.com/typicode/json-server
https://nodejs.org/
https://github.com/typicode/json-server/issues/103

GET	Collection

I'm	using	the	Advanced	REST	API	Client	for	Chrome,	as	I'm	used	to	it.	You	may	wish	to	check	out	Postman,	another	Chrome	app,	or
you	can	load	from	your	JS	console	or,	as	I'll	show	later,	actual	web	content.

GET	Record

Dev|Blog:	The	First	Year

86Alternate	Front-End	Development:	Mocking	Your	Domino	Back-end

https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo?hl=en-US
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en

PUT	Record

ad	nauseum

One	Last	Thing

The	part	that	makes	this	all	so	awesome,	is	how	extensible	this	all	is.	For	example,	if	I	were	to	create	a	folder	called	"public"	in	the
same	path	I'm	running		json-server		from	(with	my		db.json),		json-server		will	pick	up	on	that	and	display	that	set	of	contents
instead	of	the	default	helper	page.	How	is	this	useful?	Well,	check	out	this	nifty	example	from	my	"App	of	Ice	and	Fire".	You'll	notice
that	the	type	of	dataset	is	changing	slightly	(to	be	the	same	from	that	app),	but	otherwise	it's	the	same.

Create	Public	Folder

I'm	going	to	demonstrate	this	last	bit	with	my	'App	of	Ice	and	Fire'	app.	I'm	setting	the	new	db		.json		file	in	the	root	of	the	project
folder	and	am	symlink-ing	a	public	folder	to	that	app's	NSF/WebContent/	path	(where	my	static	files	reside).	To	do	this	on	a	*nix
machine,	change	directory	to	the	project	folder	and	type		ln	-s	public	NSF/WebContent/		and	for	a	Windows	command	prompt,

Dev|Blog:	The	First	Year

87Alternate	Front-End	Development:	Mocking	Your	Domino	Back-end

https://edm00se.github.io/AnAppOfIceAndFire

	mklink	/d	public	NSF\WebContent		(if	using	the	default	Windows	command	prompt,	you	may	need	to	"run	as	administrator"	to	get	it
to	work).	I	added	a	symlink	to	my	repository,	which	GitHub	ought	to	respect,	but	I	don't	want	to	duplicate	the	contents	so	it's	in	the

	.gitignore		file;	just	know	that	when	using	a	Git	repository,	all	symbolic	links	should	be	relative.

With	that	in	place,	the	only	thing	standing	between	myself	and	a	working,	non-Domino	server,	local	copy	of	my	static	assets	is	to	map
the	following	into	a		routes.json		file	and	add	the	parameter	when	I	call		json-server	,	like	so:

	{	"/xsp/houses":	"/houses",	"/xpp/houses/:id":	"/houses/:id"	}	

This	will	make	my	NSF-relative	calls	to	/xsp/houses	resolve	to	the	houses	that		json-server		is	providing.	Check	it	out.	Our	final
command	to	start	things	up	is:

	json-server	--id	unid	--watch	housesDB.json	--routes	routes.json	

Summary

I	hope	you	can	see	the	benefit	of	being	able	to	work	on	your	front-end	independent	of	the	server.	With	a	little	tweaking	(I	have	some
code	in	development	that	I	would	remove	for	production,	checking	to	verify	the	formatting	of	my	response	in	my		houseApp.js		to
forcibly	wrap	my	collection	and	document	respectively),	I'm	now	able	to	focus	on	all	the	ui-level	application	without	needing	to	even
touch	my	development	server.	To	cross	apply,	I	only	have	to	paste	into	my	WebContent	path,	without	worrying	if	I'll	break	anything	on
the	server.	All	in	all,	it's	another	good	tool	for	the	toolbox.

You	can	find	these	updates	in	my	App	of	Ice	and	Fire	repository	on	GitHub.	Please	feel	free	to	check	it	out	and	play	with	it.	Until	next
time.

Dev|Blog:	The	First	Year

88Alternate	Front-End	Development:	Mocking	Your	Domino	Back-end

https://github.com/edm00se/AnAppOfIceAndFire

Dev|Blog:	The	First	Year

89Alternate	Front-End	Development:	Mocking	Your	Domino	Back-end

Java
Posts	which	are	generally	based	on	the	topic	of	Java	development.

Dev|Blog:	The	First	Year

90Java

Introduction

Many	of	the	XPages	Managed	Bean	demonstrations	point	to	your	ability	to	populate	an	xp:comboBox	with	a	custom	defined	List	of
Select	Items.	One	thing	that	seems	to	happen	to	me	is	that	I	wind	up	having	to	re-sort	such	lists	to	work	off	of	their	Label,	as	opposed	to
their	value;	so	as	to	look	sorted,	at	least	to	human	eyes.

A	Brief	ComboBox	Anatomy	Lesson

An	xp:comboBox	lets	us	build	out	a	list	(preferably	somewhat	short)	of	values	with	their	labels,	which	are	selected	from	a	"drop	down"
like	interface.	More	specifically,	from	MDN,

The	HTML	select	(<select>)	element	represents	a	control	that	presents	a	menu	of	options.	The	options	within	the	menu	are
represented	by	<option>	elements,	which	can	be	grouped	by	<optgroup>	elements.	Options	can	be	pre-selected	for	the	user.

<select>

				<option	value="1">One</option>

				<option	value="2">Two</option>

				<option	value="3">Three</option>

</select>

But	you're	here	for	the	code.	Here's	an	incredibly	simple	select	tag	implemented	with	three	options.	If	you	switch	to	the	HTML	pane,
you'll	see	that	the	value	(which	is	what	can	be	data	bound	for	value	in	the	xp:comboBox	control)	is	1,	2,	or	3	while	the	labels	are	their
English	equivalent	of	One,	Two,	or	Three.	In	classic	Notes,	we	would	achieve	this	by	the	usual	list	(line	separated)	by	passing	in	sets	of
Label	|	Value,	separated	by	the	pipe	character.	You	can	still	do	this	in	XPages,	but	if	you're	defining	the	source	for	one	in	a	bean,	you'll
want	to	build	out	your	List.	My	sample	class	below	shows	this,	but	the	meat	and	potatoes	here	is	the	Comparator.

A	Comparator

Enter	java.util.Comparator.	It's	a	member	of	the	Collections	Framework,	making	it	ideal	for	sorting	Collections	(which	a	List	is).	So,	to
begin,	we'll	define	a	class	(you	can	nest	it	in	another	class,	as	I	have,	a	stand-alone	class,	or	a	member	of	another,	utility	class).	This
class	contains	a	single,	public	compare	method,	which	returns	an	int.	It	returns	an	int,	as	that's	what's	returned	by	the
compareToIgnoreCase	method	of	java.lang.String).	All	the	compare	method	is	doing	is	comparing	whether	the	first	string	is	before	or
after	the	second	string.

Code

Here's	my	super	simple	sample	bean,	with	the	selectOptionsList	being	read-only	(no	setter	method)	as	it's	just	the	selectedOption	being
what	the	value	to	be	stored	is.

package	com.eric.test;

import	java.io.Serializable;

import	java.util.ArrayList;

import	java.util.Collections;

import	java.util.Comparator;

import	javax.faces.model.SelectItem;

public	class	SampleComparatorUse	implements	Serializable	{

				private	static	final	long	serialVersionUID	=	1L;

				private	String	selectedOption;

				private	List<SelectItem>	selectOptionsList;

				public	SampleComparatorUse()	{}

				/**

					*	Custom	Comparator,	for	use	with	sorting	(ascending)	a	List<SelectItem>.

					*/

Dev|Blog:	The	First	Year

91When	You	Need	a	Comparator

				private	static	class	LabelAscComparator	implements	Comparator<SelectItem>	{

								//uses	a	one-off	cmoparison	which	returns	comparison	boolean,	as	int

								public	int	compare(SelectItem	s1,	SelectItem	s2)	{

												//you	can	also	do	a	case	sensitive	via	s1.getLabel().compareTo(s2.getLabel())

												return	s1.getLabel().compareToIgnoreCase(s2.getLabel());

								}

				}

				/**

					*	Getter	for	Combo	Box	options,	sorted	alphabetically	ascending

					*	by	the	label.	Read-only,	as	it's	a	computed	value,	so	no	setter.

					*/

				public	List<SelectItem>	getSelectOptionsList()	{

								if(this.selectOptionsList	==	null)	{

												List<SelectItem>	options	=	new	ArrayList<SelectItem>();

												//normally	I	compute	this	by	pulling	in	values	from	another	source,	iterated

												//these	are	statically	added	for	demonstrative	purposes

												options.add(new	SelectItem("value3",	"label3"));

												options.add(new	SelectItem("value1",	"label1"));

												options.add(new	SelectItem("value2",	"label2"));

												//auto-magic	sorting!	otherwise	the	order	would	be	label3,	label1,	label2

												//results,	based	on	the	label,	in	label1,	label2,	label3

												Collections.sort(options,	new	LabelAscComparator());

												selectOptionsList	=	options;

								}

								return	selectOptionsList;

				}

				/**

					*	@param	selectedOption	String	value	being	set	via	the	EL	binding;

					*	this	is	the	data	field	for	what	has	been	selected,	standard	setter.

					*/

				public	void	setSelectedOption(String	selectedOption)	{

								this.selectedOption	=	selectedOption;

				}

				/**

					*	Standard	getter	for	the	selectedOption	property	of	the	bean.

					*/

				public	String	getSelectedOption()	{

								return	this.selectedOption;

				}

}

The	XPage	control	implementation	is	a	standard	xp:comboBox	implemented	with	the	value	and	select	items	(options)	bound	via	EL.
The	value	which	the	user	selects	is	bound	to	the	bean's	property	of	selectedOption	while	the	list	of	SelectItems	(options	list,	with	both
value	and	labels	populated)	is	the	selectOptionsList	property.

				xmlns:xp="http://www.ibm.com/xsp/core">

				

								

												

								

				

Lastly,	the	faces-config.xml	to	demonstrate	the	management	of	the	bean	into	scope.

xml	version="1.0"	encoding="UTF-8"?>

Dev|Blog:	The	First	Year

92When	You	Need	a	Comparator

<faces-config>

		<managed-bean>

				<managed-bean-name>myBean</managed-bean-name>

				<managed-bean-class>com.eric.test.SampleComparatorUse</managed-bean-class>

				<managed-bean-scope>session</managed-bean-scope>

		</managed-bean>

		

		<!--AUTOGEN-END-BUILDER:	End	of	automatically	generated	section-->

</faces-config>

Dev|Blog:	The	First	Year

93When	You	Need	a	Comparator

Intro

JSON,	as	previously	mentioned,	is	a	data	format	which	has	been	exploding	in	web	development	since	it	was	first	introduced	in	the	early
2000s.	And	whether	or	not	you	as	a	developer	prefer	XML	(it's	okay,	they're	just	formats),	there	are	some	good	reasons	to	use	JSON
data.	Ultimately,	I	don't	really	care	about	the	"XML	vs	JSON"	debate,	because	some	services	use	XML	and	some	use	JSON,	neither	are
going	away	anytime	soon,	and	XML	is	more	flexible	than	most	people	give	it	credit	for.

Note:	I	am	more	of	a	JSON	fan,	but	that	should	be	immaterial	to	relevance.	The	biggest	argument	I	see	in	favor	of	JSON	as	opposed	to
XML	is	file	size.

JSON

To	date,	when	I've	shown	examples	on	this	blog	of	how	to	build	JSON,	I've	generally	used	Google's	GSON	library.	I've	also	only	shown
it	in	a	fashion	(for	simplicity's	sake)	that	I	refer	to	as	the	"old"	way	(below),	because	it	maps	easily	to	converting	to	using	the	IBM
Commons	JSON	library	(more	below).	I	try	to	add	Gson	to	the	server	when	possible,	but	often	will	end	up	importing	the	JAR	to	an
NSF,	should	I	not	have	administrator	blessing.	Gson	is	supported	from	Java	1.5	through	1.8,	according	to	their	pom	file.

This	is	in	contrast	to	the	provided	com.ibm.commons.util.io.json	package,	which	is	included	and	makes	it	a	convenient	option	for
many/most.

Be	forewarned!	To	use	com.google.gson,	you	will	need	to	grant	permission	for	it	in	your	java.pol(icy)	file;	you	can	run	into	trouble	if
you	don't.	This	is	probably	the	second	best	argument	against	using	com.google.Gson,	but	I'm	still	a	fan.

"Old"	Way

Part	of	the	reason	com.ibm.commons.util.io.json	is	popular	(aside	that	it	comes	with	the	server,	a	big	plus)	is	that	it	maps	well	to	how	we
think.	Streaming	in	elements	into	an	object	tends	to	make	sense	to	us,	but	there's	another	way.	Here's	what	I'll	refer	to	as	the	"old"	way
(it	works,	it's	valid,	but	not	ideal	as	I'll	show).

//...

private	void	buildJsonData()	{

				JsonJavaObject	myData	=	new	JsonJavaObject();

				myData.putJsonProperty("hello",	"world");

				JsonJavaArray	dataAr	=	new	JsonJavaArray();

								for(int	i=0;	i<5;	i++)	{

																JsonJavaObject	subObject	=	new	JsonJavaObject();

																subObject.putJsonProperty("_id",i+1);

																subObject.putJsonProperty("someOtherKey",	"someOtherValue");

												}

				myData.putArray("data",	dataAr);

				myData.putJsonProperty("error",	false);

}

//...

This	will	generate	a	resulting	JSON	string	with	an	object,	represented	as	such:

{

				"hello":	"world",

				"dataAr":	[

																{	"_id":	1,	"someOtherKey":	"someOtherValue"	},

																{	"_id":	2,	"someOtherKey":	"someOtherValue"	},

																{	"_id":	3,	"someOtherKey":	"someOtherValue"	},

																{	"_id":	4,	"someOtherKey":	"someOtherValue"	},

																{	"_id":	5,	"someOtherKey":	"someOtherValue"	}

],

				"error":	false

}

Dev|Blog:	The	First	Year

94Building	Java	Objects	from	JSON

http://en.wikipedia.org/wiki/JSON#History
http://blog.mongolab.com/2011/03/why-is-json-so-popular-developers-want-out-of-the-syntax-business/
https://stackoverflow.com/questions/2673367/how-does-json-compare-to-xml-in-terms-of-file-size-and-serialisation-deserialisa/2677498#2677498
http://bit.ly/1CtEpDS
http://search.maven.org/#artifactdetails%7Ccom.google.code.gson%7Cgson%7C2.3.1%7Cjar
http://public.dhe.ibm.com/software/dw/lotus/Domino-Designer/JavaDocs/DesignerAPIs/com/ibm/commons/util/io/json/package-summary.html
https://stackoverflow.com/questions/15949887/lotus-domino-java-security-issue-using-google-gson

It	may	not	be	very	exciting,	but	it	sure	gets	the	job	done.	Here's	what	I'm	excited	about.

"New"	Way

I	first	saw	a	technique	in	which	a	person	used	a	Gson	instance	to	generate,	on	the	fly,	application/json	by	merely	calling	the	the
Gson.toJson	method).	I	thought	this	was	cool,	but	it	made	good	sense.	The	Java	object	already	existed	and	inherited	from	a	proper	class,
which	can	loosely	map	to	the	JavaScript	prototypal	elements	(string,	boolean,	array,	object,	integer,	etc.).	Gson	is	not	unique	in	this,	as
the	IBM	Commons	JSON	library	can	achieve	the	same	thing,	using	a	JsonGenerator).	That's	the	easy	side	of	things,	the	tricky	part	is
going	backwards,	consuming	JSON	into	a	Java	Object	(or	just	creating	it	from	existing	Java	objects	without	being	so	linear	in	re-
iterating	properties	just	to	change	the	format	they're	stored	in).

IBM	Commons	JSON

Using	JsonParser,	you	can	use	fromJson),	which	returns	a	java.lang.Object.	In	other	words,	you	need	to	do	your	tests	and	transforms	to
get	a	handle	on	its	structure.	This	works,	but	takes	more	effort	(I	would	be	glad	for	someone	to	show	me	how	to	map	the	IBM
Commons	library	to	the	approach	I'll	show	next).

Google	Gson

The	Gson	approach	is	to	take	in	a	class	definition	(or	type)	as	the	second	parameter	in	their	fromJson)	method,	immediately	mapping
your	object	to	a	well	structured	object	that	you	can	invoke	for	its	properties.	Here's	a	quick	demonstration.

...

		/*

			*	the	main	data	object,	we've	read	the	API	docs	and	know	what	to	expect	;-)

			*	assuming	that	the	previously	output	JSON	data	is	what	we're	pulling	off	of

			*/

		class	SomeNiftyDataObject	{

				private	String	hello;

				private	List<SomeNiftySubObject>	dataAr	=	new	ArrayList<SomeNiftySubObject>();

				private	boolean	error;

						/*

							*	the	sub-object,	in	the	dataAr

							*	since	we	need	to	define	the	sub-object's

							*	structure	as	well

							*/

						class	SomeNiftySubObject	{

								private	String	_id;

								private	String	someOtherKey;

								/*

									*	Getter	/	Setter	pairs

									*/

								public	String	get_id()	{	return	_id;	}

								public	String	getSomeOtherKey()	{	return	someOtherKey;	}

								public	void	set_id(String	id)	{	this._id	=	id;	}

								public	void	setSomeOtherKey(String	someOtherKey)	{	this.someOtherKey	=	someOtherKey;	}

						}

				/*

					*	Getter	/	Setter	pairs

					*/

					public	String	getHello()	{	return	hello;	}

					public	List<SomeNiftySubObject>	getDataAr()	{	return	dataAr;	}

					public	boolean	getError()	{	return	error;	}

					public	void	setHello(String	hello)	{	this.hello	=	hello;	}

					public	void	setDataAr(List<SomeNiftySubObject>	dataAr)	{	this.dataAr	=	dataAr;	}

					public	void	setError(boolean	error)	{	this.error	=	error;	}

		}

Dev|Blog:	The	First	Year

95Building	Java	Objects	from	JSON

https://google-gson.googlecode.com/svn/trunk/gson/docs/javadocs/com/google/gson/Gson.html#toJson(java.lang.Object
http://public.dhe.ibm.com/software/dw/lotus/Domino-Designer/JavaDocs/DesignerAPIs/com/ibm/commons/util/io/json/JsonGenerator.html#toJson(com.ibm.commons.util.io.json.JsonFactory, java.lang.Object
http://public.dhe.ibm.com/software/dw/lotus/Domino-Designer/JavaDocs/DesignerAPIs/com/ibm/commons/util/io/json/JsonParser.html
http://public.dhe.ibm.com/software/dw/lotus/Domino-Designer/JavaDocs/DesignerAPIs/com/ibm/commons/util/io/json/JsonParser.html#fromJson(com.ibm.commons.util.io.json.JsonFactory, java.lang.String
https://google-gson.googlecode.com/svn/trunk/gson/docs/javadocs/com/google/gson/Gson.html#fromJson(com.google.gson.JsonElement, java.lang.Class

...

		/*

			*	we're	building	data,	from	a	received	set	of	JSON,	into	

			*	a	Java	object,	so	we	can	do	normal	Java	things	with	it

			*/

		private	void	buildMyNewJsonData	()	{

				//	assuming	that	the	JSON	of	the	data	is	set	in	a	string	called	rawData

				Gson	g	=	new	Gson();

				SomeNiftyDataObject	nwData	=	g.fromJson(rawData,	SomeNiftyDataObject.class);

				//SomeNiftyDataObject	is	now	instantiated	with	the	data	set	according	to	our	class	above!

		}

...

Why	The	"New"	Way?

It's	obviously	more	verbose	up	front,	but	done	the	"old"	way,	I	didn't	show	all	the	type	checks	and	conversions	I	would	have	to	do	to
keep	things	working	as	expected.	The	"new"	way	defines	the	data	format	and	ensures	consistently	well-formed	objects;	they	are	POJO
instances	after	all	(beans,	except	for	the	implementing	java.util.Serializable	bit,	as	we	are	using	getter/setter	methods).

You've	defined	the	format	and	instantiated	data	object,	meaning	that	now	all	you	need	to	do	is	use	the	standard	EL	get/set	to	interact
with	the	data.	That's	it,	you're	done!

Dev|Blog:	The	First	Year

96Building	Java	Objects	from	JSON

JavaScript
Posts	which	are	generally	based	on	the	topic	of	JavaScript	development.

Dev|Blog:	The	First	Year

97JavaScript

Consistent	Multi-Value	Formatting

The	Notes/Domino	API	is,	to	be	polite,	nuanced.	It	produces	interesting	results	when	a	sane	person	might	expect	a	more	reasoned
approach.	For	example,	one	of	the	staples	of	Notes/Domino	API	is	the	ability	to	have	multi-value	fields.	Approaching	Domino/XPages
as	a	novice	a	couple	years	ago,	I	found	it	odd	that	performing	a	(NotesDocument)getItemValue	on	a	field	with	multiple	values	checked
in	the	field	properties	of	the	Form,	from	which	the	given	document	was	computed	(making	it	effectively	a	programmatic	schema),
would	still	yield	a	java.lang.String	(or	its	respective	object	type)	when	a	single	value.	When	the	field	has	multiple	values,	it	returns	a
java.util.Vector	containing	the	respective	objects	for	its	values.	To	account	for	this	sort	of	situation,	a	developer	then	needs	to	account
for	the	different	types	of	returned	values.	This	makes	an	otherwise	simple	call	a	bit	tedious.

Unbeknownst	to	me,	Mark	Leusink	must	have	felt	the	same,	as	he	posted	a	helper	function	to	convert	any	value	to	an	Array	in	his
$U.toArray	XSnippet	from	December	2,	2011.	Since	I	didn't	find	XSnippets	(somehow,	I'm	not	certain	how),	I	created	my	own	version
working	directly	with	java.util.Vector	s.	I	believe	there	is	still	merit	to	this,	as	when	it	performs	the	typeof,	if	it's	already	a
java.util.Vector,	it	does	no	conversion,	as	opposed	to	invoking	an	additional	toArray()	call.	My	version	also	makes	use	of	a	switch
block,	which	means	that	it	handles	unexpected	results,	in	my	opinion,	somewhat	gracefully.	Have	a	look.

var	util	=	{

				/**

					*	@author	Eric	McCormick

					*	src:	http://edm00se.github.io/DevBlog/xpages/consistent-multivalue-formatting/

					*	@param	java.util.Object	to	examine

					*	@return	java.util.Vector	of	values	from	originating	Object

					**/

				asVec:	function(obj){

								switch(typeof	obj){

												case	"java.util.Vector":	//it's	already	a	Vector,	just	return	it

																return	obj;

																break;

												case	"java.util.ArrayList":	//it's	an	ArrayList,	return	it	as	a	Vector

												case	"Array":	//it's	an	Array	prototype,	return	it	as	a	Vector

																var	x:java.util.Vector	=	new	java.util.Vector();

																var	s	=	obj.size()||obj.length;

																for(var	i=0;	i<s;	i++){

																				x.add(obj[i]);

																}

																return	x;

																break;

												case	"java.lang.String":

												default:	//it's	most	likely	a	String,	return	it	as	a	Vector

																var	x:java.util.Vector	=	new	java.util.Vector();

																x.add(obj);

																return	x;

																break;

								}

				}

};

The	first	case	executes	and,	knowing	that	it's	in	the	end	format,	merely	returns	it	immediately.	The	second	and	third	case	are	handled	the
same,	regardless	of	the	differences	between	a	java.util.ArrayList	and	Array,	their	values	are	still	accessible	via	bracket	notation,	making
the	operations	performed,	with	the	exception	of	.size()	versus	.length	call,	the	same.

Lastly,	the	java.lang.String,	or	unexpected	results,	are	wrapped	into	a	java.util.Vector	and	returned.	The	bottom	line	is,	no	matter	what
happens,	you	get	back	exactly	what	you	expect.

To	me,	this	embodies	what	we	strive	for	as	developers;	the	need	to	write	functional	code	which,	as	with	the	Unix	philosophy,	does	"one
thing	and	does	it	well".	The	building	blocks	of	our	applications	need	to	be	sound,	consistent,	and	perform	well	under	pressure.	This
builds	out	a	temporary	variable	only	if	necessary	and	provides	the	functionality	I	had	expected	in	the	first	place.	It's	easily	built	into	a
helper	function	library,	which	is	exactly	how	I	use	it.	Your	mileage	may	vary,	but	I'm	a	fan.	If	anyone	has	a	better	way	of	doing	things,	I
wouldn't	mind	hearing	it.

Dev|Blog:	The	First	Year

98Consistent	Multi-Value	Formatting	in	SSJS	for	Domino/XPages

http://openntf.org/XSnippets.nsf/snippet.xsp?id=convert-any-value-to-an-array
http://techcrunch.com/2009/08/21/do-one-thing-and-do-it-well-40-years-of-unix/

Dev|Blog:	The	First	Year

99Consistent	Multi-Value	Formatting	in	SSJS	for	Domino/XPages

CLARIFICATION

This	all	stems	form	an	issue	with	Dojo	less	than	1.6.2	in	Chrome	29	and	any	browser	that	used	the	same	child	node	reference.	This	post
specifically	covers	how	to	fix	this	(as	it	occurs	with	Domino	8.5.3)	and	get	one	of	the	most	popular	web	standards	compliant	browsers
back	in	the	game	with	Domino	and	the	ExtLib/UP1	controls.

Fixing	Dojo	1.6.1	in	Domino	8.5.3

I	ran	into	a	situation	recently	that	required	a	bit	of	determination	to	fix.	The	BLUF:	my	implementation	of	the	Dojo	Enhanced	DataGrid
was	breaking	when	applying	the	dojox.grid.enhanced.plugins.Filter	due	to	an	issue	with	the	Dojo	queries	of	elements	rooted	at	the
specified	element.	For	example:

	dojo.query('>	*',	dojo.byId('container'))	

Thankfully,	that	doesn't	keep	a	good	developer	down.

Domino	9,	8.5.3	UP1,	and	my	Woes

IBM	Domino	9	brings	a	great	many	changes	to	the	Domino	server	and	has	been	fairly	well	received.	Stuck,	for	now,	with	8.5.3,	I	was	at
least	able	to	get	Upgrade	Pack	1	applied,	giving	me	the	basic	level	of	the	majority	of	the	same	new	controls.

That	being	said,	I	still	had	the	controls	I	wanted	to	play	with,	so	I	still	tried	the	"play	at	home"	version	of	Brad	Balassaitis'	excellent
series	on	Dojo	Grids	in	XPages.	When	I	hit	Part	14:	Enhanced	Filtering	with	No	Coding,	I	found	that	the	Filtering	plugin	would	cause
my	control	to	break	in	a	rather	unexpected	fashion.

Dojo	1.6.1

Domino	8.5.3	has	Dojo	1.6.1.	The	culprit	in	question,	as	I	found	out	from	attempting	to	use	Chrome	with	the	Enhanced	Grid,	the	issue
was	with	the	child	selector	call.	

After	finding	what	the	issue	was,	followed	by	some	intense	Google	searching,	I	had	found	the	fix	for	this	in	Dojo	1.6.2.	The	fix	was
small	enough,	I	thought,	"why	can't	I	implement	this?"	So	I	did.

Doing	Something	About	It

1.	Extract	the	Source	Dojo	from	the	JAR

Starting	about	Domino	8.5.3,	the	Dojo	library	inclusion	migrated	from	the	usual	source	path	in	\data\domino\js\dojo-1.x.x	folder
structure	on	the	file	system	to	a	JAR	deployment.	The	1.6.1	source	can	be	found	in
\osgi\shared\eclipse\plugins\com.ibm.xsp.dojo_8.5.3.20131121-1400.jar.	To	begin,	we	need	to	extract	the	1.6.1	source	files	out	of	the
JAR,	I	recommend	using	7zip,	though	any	method	of	un-zipping	the	JAR	will	suffice.	The	folder	structure	is	in	the	resources\dojo-
version	directory.	Extract	that	to	the	older	format	js	directory	in	the	Domino\data	path	and	you	now	have	a	working	version	of	the	1.6.1
Dojo	library.	I	recommend	giving	your	extract	Dojo	library	a	better	name	than	my	very	boring	1.6.1.source;	like	.modified	;-)

Dev|Blog:	The	First	Year

100Fixing	an	Older	Version	of	Dojo	(1.6.1)

http://xcellerant.net/2013/05/01/dojo-data-grid-part-14-enhanced-filtering-with-no-coding/comment-page-1/#comment-2498
http://dojotoolkit.org/reference-guide/1.6/dojo/query.html#queries-rooted-at-a-given-element
http://xcellerant.net/2013/05/01/dojo-data-grid-part-14-enhanced-filtering-with-no-coding/comment-page-1/#comment-6210
http://twitter.com/Balassaitis
http://xcellerant.net/dojo-grids-in-xpages/
http://xcellerant.net/dojo-data-grid-part-14-enhanced-filtering-with-no-coding
http://github.com/dojo/dojo/commit/fc262d0d589c490cdd671791f1546a4665ed69c6#commitcomment-3954783

2.	Apply	the	Fix

Per	the	relevant	commit	in	Dojo	1.6.2,	which	addressed	this	issue,	we	need	to	make	our	change	to	the	dojo.js	file	in	two	locations.	I
recommend	making	a	backup	copy	of:

dojo.js
dojo.js.gz
dojo.js.uncompressed.js

You	can	see	there	are	actually	three	files,	one	minified,	one	minified	and	gzip'd,	and	one	un-minified.	Per	the	description	in	the	commit
message,	we	need	to	find	the	root[childNodesName]	references	and	replace	them	with	root.children	||	root.childNodes,	found	in	two
locations.	They	specified	two	line	numbers,	but	mine	turned	out	to	be	lines	8644	and	8925.	I'm	chalking	up	the	variance	to	our	1.6.1
version	coming	to	us	via	IBM	(I'm	guessing	comments).	Since	the	lines	we	change	are	those	directly	dealing	with	our	issue,	the	child
dependency	handling,	I	know	we're	good.	Save	your	file	over	the	dojo.js.uncompressed.js	file.

3.	Apply	Again

Now	that	the	original,	un-compressed	version	has	its	updates,	it's	time	for	those	minified	and	minified	and	gzip'd	versions.	If	you're
using	an	editor	like	Notepad++,	you	can	use	a	plugin	such	as	JSTool	to	perform	the	JSMin	operation.	

Save	that	file	over	the	dojo.js	file.	Now	for	the	gzip'd	version.	With	7zip,	you	can	perform	a	right-click	on	the	dojo.js	file	and	select	7zip
>	Add	to	Archive.	For	the	settings,	select	the	correct	archive	format,	ensuring	the	.gz	extension	gets	applied	and	overwrite	the	existing
dojo.js.gz	file.	

Dev|Blog:	The	First	Year

101Fixing	an	Older	Version	of	Dojo	(1.6.1)

http://github.com/dojo/dojo/commit/fc262d0d589c490cdd671791f1546a4665ed69c6#commitcomment-3954783
http://notepad-plus-plus.org/

4.	Restart	and	Use

Now	you	only	need	to	restart	the	Domino	server	and	you	can	start	using	it.	Just	restarting	the	http	task	doesn't	quite	do	it,	as	Domino
needs	to	fully	re-register	all	its	known	libraries	(not	just	re-initialize	the	handling	of	http	connections).	If	you	don't,	but	you	set	the
library	in	the	Xsp	Properties,	you	will	not	be	able	to	load	your	new	version,	as	the	selected	library	will	return	a	runtime	error,	as	the
server	hasn't	registered	it	yet.	

Dev|Blog:	The	First	Year

102Fixing	an	Older	Version	of	Dojo	(1.6.1)

To	use	it	in	an	NSF,	open	the	Xsp	Properties	file	and	specify	your	modified	name	in	the	Dojo	version	field.	If	you	prefer	the	source,	it's
applied	by	xsp.client.script.dojo.version=1.6.1.modified	(or	.source,	whichever	you	call	it).	Note	to	leave	off	the	dojo-	prefix.	

Rejoice

You	are	now	able	to	use	the	Dojo	Enhanced	DataGrid	with	the	dojox.grid.enhanced.plugins.Filter!	

Dev|Blog:	The	First	Year

103Fixing	an	Older	Version	of	Dojo	(1.6.1)

The	Original

The	stock	XPages	date	picker	control	leaves	more	room	for	user	error	than	I	prefer.	Mark	Roden	originally	came	up	with	this	excellent
script	in	jQuery.	I	love	jQuery,	but	it's	not	the	(client-side)	JS	library	I	always	have	available	to	me	in	my	XPages	work,	and	I'm	not
about	to	load	yet	another	library	after	Dojo	in	an	existing,	Dojo-centric	application	for	a	comparatively	trivial,	one-off	function.	Since
the	function	can	be	written	in	vanilla	JS,	or	any	decent	JS	library,	I	decided	to	re-write	it	into	Dojo.

The	Dojo	Version

I	have	this	in	production	on	a	few	applications,	and	both	I	and	the	users	love	it.	So	once	again,	I'm	glad	to	be	privy	to	the	fruits	of	a
great	community	of	fellow	XPage	developers.	They've	made	my	life	easier	on	so	many	occasions	and	I'm	hoping	I	can	give	back	in	a
small	way.	Now,	since	I'm	using	Dojo,	apparently	this	can	be	achieved	in	more-or-less	the	same	way	with	the	dijit.form.DateTextBox
Dojo	module	(just	set	the	field's	DojoType	after	specifying	the	resource),	as	highlighted	in	the	comments	on	Mark	Roden's	blog	post.
While	this	is	certainly	functional,	it	does	achieve	the	picker	launch	on	entering	the	field,	it	isn't	consistent	with	the	native	XPages	date
picker	control,	which	is	already	all	over	every	single	XPage'd	application	in	my	company.	So,	for	consistency	and	UX	as	decided	by
others	in	my	organization,	I	rolled	this	Dojo	version	of	Mark	Roden's	script.

Here's	the	code:

/*

	*	Dojo	version	of	the	improved	behavior	of	the	XPages	calendar	picker.

	*	Adapted	from	the	jQuery	version,	originally	by	Marky	Roden.

	*	credit:	http://xomino.com/2012/03/14/improving-user-interaction-with-xpages-date-picker/

	*	Adapted	by	Eric	McCormick,	@edm00se,	http://about.me/EricMcCormick

	*/

dojo.addOnLoad(function(){

				//id	has	_Container	and	is	class	of	xspInputFieldDateTimePicker

				var	myAr	=	dojo.query("[id$=_Container].xspInputFieldDateTimePicker");

				//iterate	over	each	element	to	apply	affect

				myAr.forEach(function(node,	index,	arr){

								//current	root	node,	based	on	id$=_Container

								var	curNode	=	node;

								//span	for	the	button	to	fire	the	picker

								var	myBtn	=	dojo.query('>	span	>	span	>	span.dijitButtonContents',curNode)[0];

								//actual	<input>	element	into	which	is	focused/typed

								var	myInputFld	=	dojo.query('>	div	>	div.dijitInputField	>	input.dijitInputInner',curNode)[0];

								//connect	the	focus	event	to	the	picker	click	event

								dojo.connect(myInputFld,"onfocus",function(){myBtn.click()});

								//provide	an	onkeypress	preventDefault

								dojo.connect(myInputFld,"onkeypress",function(evt){evt.preventDefault()});

				});

});

Breaking	It	Down

We	bootstrap	the	function	via	the	dojo	addOnLoad	call	and	start	by	creating	an	array	of	the	fields	with	an	ID	attribute	containing
'_Container'	and	the	class	xspInputFieldDateTimePicker.	We	then	iterate	over	these	DOM	nodes,	getting	a	handle	on	their	button,	and
connecting	the	click()	event	call	for	that	button	to	the	respective	field	during	the	onfocus	and/or	onkeypress	events.	I'm	sure	a	more
advanced	user	could	improve	the	performance	of	my	version	of	the	function,	and	I	welcome	them	to	post	a	forked	version;	after	all,	why
use	GitHub/Gist	if	you	don't	want	your	code	improved	via	the	aid	of	others?

Note,	for	this	to	work	in	Dojo	1.8,	the	dojo.connect	and	dojo.query	calls	I	establish,	which	work	perfectly	fine	in	1.6,	must	be	converted
to	dojo.on	and	query	calls,	respectively.	For	more,	I	do	recommend	reading	the	Usage	section	of	the	Dojo	1.8	docs.

Dev|Blog:	The	First	Year

104An	Dojo	Implementation	of	the	Calendar	Picker	Script

http://xomino.com/2012/03/14/improving-user-interaction-with-xpages-date-picker/
http://dojotoolkit.org/reference-guide/1.6/dijit/form/DateTextBox.html
http://xomino.com/2012/03/14/improving-user-interaction-with-xpages-date-picker/#comment-312
http://en.wikipedia.org/wiki/Bootstrap
http://dojotoolkit.org/reference-guide/1.6/dojo/addOnLoad.html
http://dojotoolkit.org/reference-guide/1.8/dojo/query.html#usage
http://dojotoolkit.org/reference-guide/1.8/dojo/on.html#usage

Other
Development-adjacent	and	related	topics.

Dev|Blog:	The	First	Year

105Other

Intro

This	is	a	brief	intro	to	nginx,	the	reverse	proxying	web	server	I've	fallen	in	love	with	every	time	I've	used	it.	I'm	by	far	not	the	first
person	to	blog	on	the	subject,	but	this	may	be	a	good	starting	point	for	some	people.

While	setting	myself	up	for	editing	the	AngularJS	version	of	my	app	for	my	Java	servlet	series,	I	set	up	my	git	repo	to	be	accessible
both	inside	and	outside	of	my	DDE	vm,	fired	up	local	web	preview,	and	realized	that	my	connection	to	said	local	web	preview	was
denying	my	connections,	as	I	was	accessing	it	from	another	IP.	On	top	of	all	this,	unless	I'm	hosting	my	HTML,	JS,	or	CSS	files	(my
static	content)	from	within	the	design	elements	of	Pages,	Scripts,	or	Style	Sheets,	I	wasn't	going	to	get	any	gzip	response	benefits,
regardless	of	the	XSP	Properties	setting.

Wanted	to	use	local	web	preview	w/	#XPages	outside	my	vm,	access	denied.	Now,	my	#nginx	reverse	proxy	has	solved	that
problem	in	~5	minutes.

—	Eric	McCormick	(@edm00se)	March	22,	2015

Nginx:	the	'What'	and	'Why'

Nginx	(pronoucned	"engine	X")	is	an	open	source	HTTP	reverse	proxy	web	server.	It	also	does	normal	file	serving,	etc.,	but	its	primary
goal	is	to	be	a	reverse	proxy.	This	has	many	benefits	and	comes	up	very	commonly	as	being	a	front-end	server	for	Node.js	applications;
so	serve	the	static	content,	offload	cached	response	handling	to	something	other	than	a	Node.js	REST	API	(e.g.-	if	the	content	doesn't
change,	don't	re-build	it),	and	other	front-end	things	like	minification	or	gzipping	responses	or	more	complex	tasks	like	load	balancing.
These	all	have	very	obvious	advantages,	I'll	just	fill	you	in	on	the	few	I've	used	for	this	situation.

Aside:	I've	used	Nginx	as	a	front-end	server	for	a	couple	Node.js	apps	at	work	and	have	impressed	my	admins	with	the	ability	to	make
their	lives	easier	with	their	managing	of	a	web	server's	SSL	certificates	and	other	admin-y	thngs,	all	independent	of	the	application
server,	it's	been	a	hit.	In	fact,	if	we	weren't	running	all	our	Domino	server	traffic	through	a	Citrix	NetScaler,	we	would	be	running	an
Nginx	reverse	proxy	in	front	of	every	Domino	server	serving	web	content,	after	this	past	year's	POODLE	scare.

Setup	and	Config

In	order	to	access	a	server	hosted	within	a	vm	(guest),	for	development	purposes	from	the	host	OS,	which	is	restricted	to	same	origin	/
localhost	only	requests,	I	set	up	a	siple	nginx	reverse	proxy	to	forward	my	requests.

Steps

1.	 To	install	in	a	Windows	VM,	download	and	install	nginx	from	the	current,	stable	release;	I	installed	to	C:\nginx\
2.	 Edit	the	<install	path>/conf/nginx.conf	file	with	the	marked	changes	in	the	file	of	the	same	name	in	this	gist.
3.	 Start	the	nginx	executable,	located	in	your	install	path.	There	are	service	wrappers	for	Windows,	or	you	can	just	kill	the	process	to

stop	the	nginx	instance.

Commands	for	Windows

More	information	on	the	implementation	of	nginx	in	Windows	can	be	found	on	the	corresponding	docs	page.	Here's	the	basic
breakdown	of	commands,	form	within	the	nginx	install	directory:

Command

start	nginx starts	the	process

nginx	-s	stop fast	shutdown

nginx	-s	quit graceful	shutdown

nginx	-s	reload config	change,	graceful	shutdown	of	existing	worker	proc,	starts	new

nginx	-s	reopen re-open	log	files

Dev|Blog:	The	First	Year

106A	Brief	Introduction	to	Nginx

https://twitter.com/hashtag/XPages?src=hash
https://twitter.com/hashtag/nginx?src=hash
https://twitter.com/edm00se/status/579458988883988480
http://nginx.org/

Description

The	config	file	contains	a	server	block,	inside	which	is	a	location	/	block.	Inside	that	location	block,	we	need	to	replace	the	root	and
index	assignment	with	a	proxy_pass	http://127.0.0.1:8080;	line	and	a	proxy_http_version	1.1;	line.

Sample	Nginx.conf

...

server	{

								listen							80;

								server_name		localhost;

								#	adds	gzip	options

								gzip	on;

				gzip_types						text/css	text/plain	text/xml	application/xml	application/javascript	application/x-javascript	text/javascript	application/json	text/x-json;

				gzip_proxied				no-store	no-cache	private	expired	auth;

				#gzip_min_length	1000;

				gzip_disable					"MSIE	[1-6]\.";

								...

				location	/	{

								#	Backend	server	to	forward	requests	to/from

								proxy_pass										http://127.0.0.1:8080;

								proxy_http_version		1.1;

								#	adds	gzip

								gzip_static	on;

				}

				...

...

My	Speed	Claim

I	tweeted	a	pretty	strong	sounding	result.	In	fact,	I	believe	that	my	DDE	local	web	preview	being	freshly	restarted	was	part	of	the
ridiculously	long	response	for	my	data	set,	but	there	was	still	a	significant	improvement	of	around	400-500ms	(down	from	just	over	a
full	second	to	just	over	half	of	one);	which	shows	the	improvements	gained	from	gziping	the	static	elements.

Enabling	gzip,	minification,	and	caching	for	static	assets	in	#nginx	and	watching	my	load	time	drop	from	2.5s	to	550ms	makes
me	a	happy	guy.

—	Eric	McCormick	(@edm00se)	March	22,	2015

Summary

You	don't	always	need	a	reverse	proxying	server	in	front	of	your	application	server,	but	what	it	can	add	to	your	immediately	accessible
capabilities,	and	the	segregation	between	admin-y	tedium	and	application	development,	is	pretty	awesome.

Dev|Blog:	The	First	Year

107A	Brief	Introduction	to	Nginx

http://127.0.0.1:8080
https://twitter.com/hashtag/nginx?src=hash
https://twitter.com/edm00se/status/579719285012094976

Intro

Source	Control	has	become	a	rallying	point	of	sorts	for	me	in	the	last	few	years.	It	has	saved	my	bacon	on	a	few	occassions	and	source
control	in	general	(and	git,	specifically)	is	near	and	dear	to	me.	I'm	always	on	the	quest	for	the	best	application	development	workflow,
which	can	sometimes	be	difficult	to	achieve,	depending	on	varying	development	team	sizes.

I've	gone	through	a	couple	rounds	of	preferences	when	it	comes	to	self-hosted	source	control	servers	in	the	past	couple	years.	I'm	going
to	break	down	what	I	like	about	externally	hosted	solutions	and	then	get	into	the	benefits	and	trade-offs	of	a	few	of	the	(freely	available)
self-hosted	solutions.

Externally	Hosted

There	are	two	major	players	in	the	(free)	externally	hosted	realm.	There	are	more,	but	the	two	big	ones	of	late	are	GitHub	and
Bitbucket.

GitHub

I	was	going	to	start	with	a	succinct	description	of	what	GitHub	is,	straight	from	their	page.	Oddly	enough,	there	isn't	an	easy	one	I	could
find.	They	talk	a	fair	amount	about	enterprise	solutions	and	some	sales	lingo	about	enabling	teams,	so	instead	I'll	drop	in	the	lead
paragraph	from	the	Wikipedia	page	on	GitHub:

"GitHub	is	a	web-based	Git	repository	hosting	service,	which	offers	all	of	the	distributed	revision	control	and	source	code
management	(SCM)	functionality	of	Git	as	well	as	adding	its	own	features.	Unlike	Git,	which	is	strictly	a	command-line	tool,
GitHub	provides	a	web-based	graphical	interface	and	desktop	as	well	as	mobile	integration.	It	also	provides	access	control	and
several	collaboration	features	such	as	wikis,	task	management,	and	bug	tracking	and	feature	requests	for	every	project."

So,	now	that	we've	established	that	GitHub	is	a	git	repository	server,	which	provides	additional	features	(issue	tracking,	wikis,	forking,
etc.),	let's	get	into	some	of	the	differentiating	specifics:

only	hosts	git	repositories

any	private	repos	/	enterprise	hosting	costs	
generally	the	de	facto	solution	for	the	Open	Source	community
free	static	site	(or	generated	via	Jekyll)	via	GitHub	Pages	(any	gh-pages	branch	for	a	GitHub	repo	will	have	a	space	at	.github.io/),
like	this	one	(which	uses	a	custom	domain	now)

I	like	GitHub,	but	it's	not	perfect.	There	are	plenty	of	upsides	due	to	its	popularity	though,	like	Travis	CI,	which	gives	CI	testing	for	free
to	all	GitHub	repositories,	or	Gitter	which	gives	"discussions"	to	GitHub	teams	and	repositories,	across	Pull	Requests	and	Issues.

Bitbucket

As	with	GitHub,	Bitbucket	(from	Atlassian)	offers	repository	hosting	(for	both	Git	and	Mercurial)	along	with	some	extras.	Here's	their
description:

"Bitbucket	is	a	web-based	hosting	service	for	projects	that	use	either	the	Mercurial	(since	launch)	or	Git	(since	October	2011)
revision	control	systems."

hosts	both	Git	and	Mercurial	repositories
free	accounts	get	an	unlimited	number	of	public	or	private	repositories
private	repositories	with	a	free	account	can	have	up	to	5	collaborators
additional	enterprise	hosted	options	with	different	products	for	different	aspects	of	code	management	(issue	tracking	with	Jira,

Stash	for	self-hosted	Bitbucket	server,	Bamboo	for	CI,	and	more);	also	costing	
strong	articles	and	guides	(Atlassian	blog)

Atlassian	is	also	the	creator	of	SourceTree,	a	free	Mercurial	and	Git	client	for	Mac	and	Windows	platforms.	SourceTree	bakes	in	the
Git/Hg-Flow	processes,	making	it	easier	to	implement	feature	branching	workflows	(or	others).

Dev|Blog:	The	First	Year

108Self-Hosting	SCM	Server

Winner?

What	are	you	looking	for?	I	could	claim	one	as	superior	to	the	other,	and	my	inclination	is	that	Bitbucket	it	technically	superior,	but	I
believe	we're	better	off	for	having	both.	They	bring	us	a	lot	of	goodies	in	an	attempt	to	gain	our	business	with	increasingly	better	tools.
This	is	a	good	thing.

Self-Hosting

Why	self	host?	I	could	a	few	specific	reasons,	but	ultimately,	I've	found	that	self-hosting	is	really	only	going	to	depend	on	imposed
business	requirements.	Depending	on	the	size	of	your	"shop",	this	can	be	a	rabbit	hole,	as	you'll	see	from	my	experiences	with	Redmine.

Redmine

Redmine	was	one	of	the	early	kids	on	the	block,	is	written	with	Ruby	on	Rails,	and	supports	Git,	Mercurial,	SVN,	CVS,	and	others.	It
works	and	supports	quite	possibly	the	highest	number	of	protocols,	but	can	be	a	bit	cumbersome,	especially	compared	to	how	easy	some
of	the	others	are	to	operate.	I	set	up	a	Redmine	instance	at	my	day	job	and	it's	been	sufficient,	though	doesn't	always	sport	things	we've
grown	to	expect,	like	a	link	to	clone	(HTTPS	or	SSH)	at	the	top.

GitLab	CE

In	all	honesty,	GitLab	very	nearly	replicates	all	the	beauty	and	ease	of	use	you	would	come	to	expect	from	GitHub	or	Bitbucket	and	is
freely	available.	It's	slick.	If	I	hadn't	run	into	trouble,	I	would	still	be	using	it.	It's	worth	a	look	and	I	highly	recommend	extensive
backups	before	upgrading	versions.	Its	biggest	potential	downside	for	some	is	that	it's	Git-only.

I	fell	in	love	with	GitLab's	Community	Edition...	after	I	got	it	set	up	the	first	time,	which	was	before	the	omnibus	package	would	install
correctly	on	my	home	Ubuntu	box.	Eventually,	I	switched	to	the	omnibus	package,	but	that	eventually	failed	hard	for	me	on	an	upgrade
(via	the	recommended	steps)	and	I	lost	my	db.	I	had	enough	hassling	at	that	point,	as	you	can	probably	tell	from	the	issue	I	had	open	for
a	while.

Gogs

When	I	went	looking	for	alternates,	I	found	Gogs,	which	says	it's	a	"self-hosted	Git	service	written	in	Go".	That's	Go	as	in	GoLang,	not
that	that	really	matters	much.	Gogs	runs	rather	light	and	can	run	on	a	Raspberry	Pi.

I've	been	using	it	for	a	while,	and	even	submitted	a	PR.	I	thought	it	odd	that	I	was	directed	to	a	different	repo	for	the	PR,	but	it	seems	to
be	a	bit	of	a	community	effort.

Summary

All	in	all,	if	you're	looking	to	go	your	own	way,	most	of	the	self-hosted	options	focus	on	Git	with	no	real	regard	for	other	protocols.	If
Mercurial	is	a	must,	I	recommend	using	a	free	account	with	Bitbucket	and	if	your	needs	change,	roll	with	the	punches.	As	for	those	of
us	who	have	bought	into	Git,	I	thoroughly	enjoy	the	simplicity	of	Gogs,	but	will	admit	to	being	up	for	a	rematch	revisit	to	GitLab,	after
we've	both	had	our	time	to	see	other	people	solutions.

Recommended

Fredrik	Norling's	blog	post	on	how	to	Setup	a	Free	Git	Server	with	Domino	Credentials	in	a	Few	Minutes,	which	uses	GitBlit
Notes	in	9	#131:	Use	SourceTree	for	Better	XPages	Source	Control
Notes	in	9	#140:	SourceTree	Deep	Dive

[Edit]	You	should	also	check	out	Show	103:	The	Show	&	Tell	on	Source	Control	-	An	End	to	End	Solution	presentation	from	IBM
Connect	2014	by	Paul	Withers	and	Declan	Lynch.	It's	worth	a	read	as	these	two	go	into	some	excellent	detail	on	both	the	hosting
solutions,	SourceTree,	DORA,	and	some	specifics	in	using	them	all	together.	[/Edit]

Dev|Blog:	The	First	Year

109Self-Hosting	SCM	Server

Syntax	Highlighting	in	Redmine	Project	Repository

Redmine	is	a	greate	way	to	track	projects	and	their	code	repositories	in	a	"one	stop	shopping"	locale.	The	only	issue	is	that,	while
Redmine	makes	use	of	its	syntax	highlighter	of	choice	(CodeRay,	by	default),	it	doesn't	know	about	the	custom	file	extensions	used	by
Domino	Designer.	This	can	be	easily	remedied	with	a	few	quick	edits.

Updating	Redmine	CodeRay	to	Syntax	Highlight	(most)	Domino/XPages	Design	Elements

Get	into	the	correct	file	that	pertains	to	file	extensions	and	syntax	highlighting	definitions.

go	to	your	Redmine	directory	(ex-	/var/www/redmine)
enter	your	vendor	library	path	for	CodeRay	(ex-	vendor/bundle/ruby/1.9.1/gems/coderay-1.0.9/)
edit	the	file_type.rb	file	(which	defines	the	language	syntax	associtiations,	ex-	lib/coderay/helpers/file_type.rb)	with	your	preferred
editor

Now	that	you're	there,	we	need	to	associate	the	design	elements	accordingly.	Scroll	down	to	the	section	defining	the	array	of
TypeFromExt	(or	search,	in	nano	CTRL+W,	for	something	like	xml),	and	add	in	the	following:

'fa'	=>	:xml,
'form'	=>	:xml,
'frameset'	=>	:xml,
'jss'	=>	:java_script,
'page'	=>	:xml,
'properties'	=>	:xml,
'view'	=>	:xml,
'xsp'	=>	:xml,

The	Notes	(classic)	design	elements,	especially	Form	and	View,	are	best	viewed	in	source	control	if	you	have	un-checked	the	'Use
Binary	DXL	for	source	control	opersations'	in	Domino	Designer	(Domino	Designer	>	Source	Control)	and	will	read	like	a	semi-decent
XML	structure.	If	you're	just	concerned	about	the	XPage'd	elements,	the	'xsp'	file	extension	and	'jss'	are	the	only	necessary	definitions.

Dev|Blog:	The	First	Year

110Domino/XPages	Design	Element	Syntax	Highlighting	on	Redmine

Glossary

AJAX

AJAX	(short	for	Asynchronous	JavaScript	and	XML)	is	a	set	of	web	development	techniques	utilizing	many	web	technologies	used	on
the	client-side	to	create	asynchronous	Web	applications.	With	Ajax,	web	applications	can	send	data	to	and	retrieve	from	a	server
asynchronously	(in	the	background)	without	interfering	with	the	display	and	behavior	of	the	existing	page.	By	decoupling	the	data
interchange	layer	from	the	presentation	layer,	Ajax	allows	for	web	pages,	and	by	extension	web	applications,	to	change	content
dynamically	without	the	need	to	reload	the	entire	page.	Data	can	be	retrieved	using	the	XMLHttpRequest	object.	Despite	the	name,	the
use	of	XML	is	not	required	(JSON	is	often	used	in	the	AJAJ	variant),	and	the	requests	do	not	need	to	be	asynchronous.

3.1.	Unraveling	the	M-V-C	Mysteries 	 3.2.	REST	is	Best 	 1.6.	Servlet	Handling	Data,	A	Round	House	Kick
3.3.	More	on	HTTP	and	AJAX	Requests

Angular

AngularJS	(commonly	referred	to	as	"Angular"	or	"Angular.js")	is	an	open-source	web	application	framework	mainly	maintained	by
Google	and	by	a	community	of	individual	developers	and	corporations	to	address	many	of	the	challenges	encountered	in	developing
single-page	applications.	It	aims	to	simplify	both	the	development	and	the	testing	of	such	applications	by	providing	a	framework	for
client-side	model–view–controller	(MVC)	and	model–view–viewmodel	(MVVM)	architectures,	along	with	components	commonly
used	in	rich	Internet	applications.

3.2.	REST	is	Best 	 3.4.	What	is	a	Single	Page	Application(SPA)? 	 1.7.	Building	a	Front-End	pt.1	Plus	a	Quick	Review
1.8.	Building	a	Front-End	pt.2:	An	App	with	AngularJS

AngularJS
AngularJS	(commonly	referred	to	as	"Angular"	or	"Angular.js")	is	an	open-source	web	application	framework	mainly	maintained	by
Google	and	by	a	community	of	individual	developers	and	corporations	to	address	many	of	the	challenges	encountered	in	developing
single-page	applications.	It	aims	to	simplify	both	the	development	and	the	testing	of	such	applications	by	providing	a	framework	for
client-side	model–view–controller	(MVC)	and	model–view–viewmodel	(MVVM)	architectures,	along	with	components	commonly
used	in	rich	Internet	applications.

2.3.	Custom	JSON	with	Java-ized	XAgent 	 3.2.	REST	is	Best 	 3.4.	What	is	a	Single	Page	Application(SPA)?
3.	Application	Logic 	 1.6.	Servlet	Handling	Data,	A	Round	House	Kick 	 7.1.	A	Brief	Introduction	to	Nginx
1.7.	Building	a	Front-End	pt.1	Plus	a	Quick	Review 	 1.8.	Building	a	Front-End	pt.2:	An	App	with	AngularJS
1.9.	Series	Review 	 3.3.	More	on	HTTP	and	AJAX	Requests 	 1.	A	Saga	of	Servlets

API
In	computer	programming,	an	application	programming	interface	(API)	is	a	set	of	routines,	protocols,	and	tools	for	building	software
applications.	An	API	expresses	a	software	component	in	terms	of	its	operations,	inputs,	outputs,	and	underlying	types.	An	API	defines
functionalities	that	are	independent	of	their	respective	implementations,	which	allows	definitions	and	implementations	to	vary	without
compromising	the	interface.	A	good	API	makes	it	easier	to	develop	a	program	by	providing	all	the	building	blocks.	The	programmers
then	put	the	blocks	together.

2.2.	Server	REST	Consumption	with	Authentication 	 2.3.	Custom	JSON	with	Java-ized	XAgent
5.2.	Building	Java	Objects	from	JSON 	 1.2.	Servlet	Intro	and	Flavors 	 1.4.	Servlet	Handling	of	Requests

Dev|Blog:	The	First	Year

111Glossary

1.6.	Servlet	Handling	Data,	A	Round	House	Kick 	 7.1.	A	Brief	Introduction	to	Nginx
6.1.	Consistent	Multi-Value	Formatting	in	SSJS	for	Domino/XPages 	 4.1.	"Replacing"	an	XAgent
1.7.	Building	a	Front-End	pt.1	Plus	a	Quick	Review 	 4.2.	Alternate	Front-End	Development:	Mocking	Your	Domino	Back-end

Application	Programming	Interface

In	computer	programming,	an	application	programming	interface	(API)	is	a	set	of	routines,	protocols,	and	tools	for	building	software
applications.	An	API	expresses	a	software	component	in	terms	of	its	operations,	inputs,	outputs,	and	underlying	types.	An	API	defines
functionalities	that	are	independent	of	their	respective	implementations,	which	allows	definitions	and	implementations	to	vary	without
compromising	the	interface.	A	good	API	makes	it	easier	to	develop	a	program	by	providing	all	the	building	blocks.	The	programmers
then	put	the	blocks	together.

1.4.	Servlet	Handling	of	Requests

Bitbucket

Bitbucket	is	a	web-based	hosting	service	for	projects	that	use	either	the	Mercurial	(since	launch)	or	Git	(since	October	2011)	revision
control	systems.	Bitbucket	offers	both	commercial	plans	and	free	accounts.	It	offers	free	accounts	with	an	unlimited	number	of	private
repositories	(which	can	have	up	to	five	users	in	the	case	of	free	accounts)	as	of	September	2010,	but	by	inviting	three	users	to	join
Bitbucket,	three	more	users	can	be	added,	for	eight	users	in	total.	Bitbucket	is	written	in	Python	using	the	Django	web	framework.	It	is
similar	to	GitHub,	which	primarily	uses	Git.	In	a	2008	blog	post,	Bruce	Eckel	compared	Bitbucket	favorably	to	Launchpad,	which	uses
Bazaar.

7.2.	Self-Hosting	SCM	Server

CORS

Cross-origin	resource	sharing	(CORS)	is	a	mechanism	that	allows	restricted	resources	(e.g.	fonts)	on	a	web	page	to	be	requested	from
another	domain	outside	the	domain	from	which	the	resource	originated.	A	web	page	may	freely	embed	images,	stylesheets,	scripts,
iframes,	videos	and	some	plugin	content	(such	as	Adobe	Flash)	from	any	other	domain.	However	embedded	web	fonts	and	AJAX
(XMLHttpRequest)	requests	have	traditionally	been	limited	to	accessing	the	same	domain	as	the	parent	web	page	(as	per	the	same-
origin	security	policy).	"Cross-domain"	AJAX	requests	are	forbidden	by	default	because	of	their	ability	to	perform	advanced	requests
(POST,	PUT,	DELETE	and	other	types	of	HTTP	requests,	along	with	specifying	custom	HTTP	headers)	that	introduce	many	cross-site
scripting	security	issues.

1.3.	Basic	Servlet	Implementation

CSJS
Client-Side	JavaScript	specifically	refers	to	JavaScript	code	which	executes	in	the	client	(aka-	the	web	browser)	as	opposed	to	Server-
Side	JavaScript.

3.2.	REST	is	Best 	 3.3.	More	on	HTTP	and	AJAX	Requests

Dojo
Dojo	Toolkit	(stylized	as	dōjō	toolkit)	is	an	open	source	modular	JavaScript	library	(or	more	specifically	JavaScript	toolkit)	designed	to
ease	the	rapid	development	of	cross-platform,	JavaScript/Ajax-based	applications	and	web	sites.

Dev|Blog:	The	First	Year

112Glossary

6.3.	An	Dojo	Implementation	of	the	Calendar	Picker	Script 	 6.2.	Fixing	an	Older	Version	of	Dojo	(1.6.1) 	 3.2.	REST	is	Best
3.4.	What	is	a	Single	Page	Application(SPA)? 	 1.7.	Building	a	Front-End	pt.1	Plus	a	Quick	Review
3.3.	More	on	HTTP	and	AJAX	Requests

Domino

IBM	Domino	(formerly	Lotus	Domino)	is	the	server	of	a	collaborative	client-server	software	platform	sold	by	IBM.

0.	Intro 	 7.3.	Domino/XPages	Design	Element	Syntax	Highlighting	on	Redmine
2.1.	RESTful	API	Consumption	on	the	Server	(Java) 	 2.2.	Server	REST	Consumption	with	Authentication
2.3.	Custom	JSON	with	Java-ized	XAgent 	 6.2.	Fixing	an	Older	Version	of	Dojo	(1.6.1) 	 3.1.	Unraveling	the	M-V-C	Mysteries
3.2.	REST	is	Best 	 3.4.	What	is	a	Single	Page	Application(SPA)? 	 3.	Application	Logic 	 5.1.	When	You	Need	a	Comparator
1.1.	A	Quick	Note	on	JARs 	 1.2.	Servlet	Intro	and	Flavors 	 1.3.	Basic	Servlet	Implementation
1.4.	Servlet	Handling	of	Requests 	 1.6.	Servlet	Handling	Data,	A	Round	House	Kick 	 7.1.	A	Brief	Introduction	to	Nginx
6.1.	Consistent	Multi-Value	Formatting	in	SSJS	for	Domino/XPages 	 4.1.	"Replacing"	an	XAgent
1.7.	Building	a	Front-End	pt.1	Plus	a	Quick	Review 	 1.9.	Series	Review
4.2.	Alternate	Front-End	Development:	Mocking	Your	Domino	Back-end 	 1.	A	Saga	of	Servlets

EL

Expression	Language	(EL)	provides	an	important	mechanism	for	enabling	the	presentation	layer	(web	pages)	to	communicate	with	the
application	logic	(managed	beans).	The	EL	is	used	by	both	JavaServer	Faces	technology	and	JavaServer	Pages	(JSP)	technology.	The
EL	represents	a	union	of	the	expression	languages	offered	by	JavaServer	Faces	technology	and	JSP	technology.

3.1.	Unraveling	the	M-V-C	Mysteries 	 5.1.	When	You	Need	a	Comparator 	 5.2.	Building	Java	Objects	from	JSON

Endpoint

Endpoint,	the	entry	point	to	a	service,	a	process,	or	a	queue	or	topic	destination	in	service-oriented	architecture

2.1.	RESTful	API	Consumption	on	the	Server	(Java) 	 2.2.	Server	REST	Consumption	with	Authentication
1.3.	Basic	Servlet	Implementation 	 1.4.	Servlet	Handling	of	Requests 	 1.6.	Servlet	Handling	Data,	A	Round	House	Kick
4.1.	"Replacing"	an	XAgent 	 1.7.	Building	a	Front-End	pt.1	Plus	a	Quick	Review 	 1.9.	Series	Review
4.2.	Alternate	Front-End	Development:	Mocking	Your	Domino	Back-end

Expression	Language
Expression	Language	(EL)	provides	an	important	mechanism	for	enabling	the	presentation	layer	(web	pages)	to	communicate	with	the
application	logic	(managed	beans).	The	EL	is	used	by	both	JavaServer	Faces	technology	and	JavaServer	Pages	(JSP)	technology.	The
EL	represents	a	union	of	the	expression	languages	offered	by	JavaServer	Faces	technology	and	JSP	technology.

3.1.	Unraveling	the	M-V-C	Mysteries

Git
Git	is	a	widely	used	version	control	system	for	software	development.	It	is	a	distributed	revision	control	system	with	an	emphasis	on
speed,[6]	data	integrity,	and	support	for	distributed,	non-linear	workflows.	Git	was	initially	designed	and	developed	by	Linus	Torvalds
for	Linux	kernel	development	in	2005.

Dev|Blog:	The	First	Year

113Glossary

1.1.	A	Quick	Note	on	JARs 	 7.1.	A	Brief	Introduction	to	Nginx 	 1.8.	Building	a	Front-End	pt.2:	An	App	with	AngularJS
7.2.	Self-Hosting	SCM	Server 	 4.2.	Alternate	Front-End	Development:	Mocking	Your	Domino	Back-end

GitHub

GitHub	is	a	Web-based	Git	repository	hosting	service.	It	offers	all	of	the	distributed	revision	control	and	source	code	management
(SCM)	functionality	of	Git	as	well	as	adding	its	own	features.	Unlike	Git,	which	is	strictly	a	command-line	tool,	GitHub	provides	a
Web-based	graphical	interface	and	desktop	as	well	as	mobile	integration.	It	also	provides	access	control	and	several	collaboration
features	such	as	bug	tracking,	feature	requests,	task	management,	and	wikis	for	every	project.

0.	Intro 	 6.3.	An	Dojo	Implementation	of	the	Calendar	Picker	Script 	 1.6.	Servlet	Handling	Data,	A	Round	House	Kick
6.1.	Consistent	Multi-Value	Formatting	in	SSJS	for	Domino/XPages 	 7.2.	Self-Hosting	SCM	Server
4.2.	Alternate	Front-End	Development:	Mocking	Your	Domino	Back-end

GSON

Gson	(also	known	as	Google	Gson)	is	an	open	source	Java	library	to	serialize	and	deserialize	Java	objects	to	(and	from)	JSON.

2.1.	RESTful	API	Consumption	on	the	Server	(Java) 	 2.2.	Server	REST	Consumption	with	Authentication
2.3.	Custom	JSON	with	Java-ized	XAgent 	 5.2.	Building	Java	Objects	from	JSON 	 1.1.	A	Quick	Note	on	JARs
1.6.	Servlet	Handling	Data,	A	Round	House	Kick 	 4.1.	"Replacing"	an	XAgent 	 1.9.	Series	Review 	 1.	A	Saga	of	Servlets

HATEOAS

HATEOAS,	an	abbreviation	for	Hypermedia	as	the	Engine	of	Application	State,	is	a	constraint	of	the	REST	application	architecture	that
distinguishes	it	from	most	other	network	application	architectures.	The	principle	is	that	a	client	interacts	with	a	network	application
entirely	through	hypermedia	provided	dynamically	by	application	servers.	A	REST	client	needs	no	prior	knowledge	about	how	to
interact	with	any	particular	application	or	server	beyond	a	generic	understanding	of	hypermedia.	By	contrast,	in	some	service-oriented
architectures	(SOA),	clients	and	servers	interact	through	a	fixed	interface	shared	through	documentation	or	an	interface	description
language	(IDL).

1.7.	Building	a	Front-End	pt.1	Plus	a	Quick	Review

Hg
Mercurial	is	a	cross-platform,	distributed	revision	control	tool	for	software	developers.	It	is	mainly	implemented	using	the	Python
programming	language,	but	includes	a	binary	diff	implementation	written	in	C.	It	is	supported	on	MS	Windows	and	Unix-like	systems,
such	as	FreeBSD,	Mac	OS	X	and	Linux.	Mercurial	is	primarily	a	command	line	program	but	graphical	user	interface	extensions	are
available.	All	of	Mercurial's	operations	are	invoked	as	arguments	to	its	driver	program	hg,	a	reference	to	the	chemical	symbol	of	the
element	mercury.

7.2.	Self-Hosting	SCM	Server

IBM
International	Business	Machines	Corporation	(commonly	referred	to	as	IBM)	is	an	American	multinational	technology	and	consulting
corporation,	with	headquarters	in	Armonk,	New	York.	IBM	manufactures	and	markets	computer	hardware,	middleware	and	software,
and	offers	infrastructure,	hosting	and	consulting	services	in	areas	ranging	from	mainframe	computers	to	nanotechnology.

Dev|Blog:	The	First	Year

114Glossary

0.	Intro 	 2.1.	RESTful	API	Consumption	on	the	Server	(Java) 	 2.3.	Custom	JSON	with	Java-ized	XAgent
6.2.	Fixing	an	Older	Version	of	Dojo	(1.6.1) 	 3.1.	Unraveling	the	M-V-C	Mysteries
3.4.	What	is	a	Single	Page	Application(SPA)? 	 5.1.	When	You	Need	a	Comparator 	 5.2.	Building	Java	Objects	from	JSON
1.1.	A	Quick	Note	on	JARs 	 1.3.	Basic	Servlet	Implementation 	 1.4.	Servlet	Handling	of	Requests
1.6.	Servlet	Handling	Data,	A	Round	House	Kick 	 4.1.	"Replacing"	an	XAgent 	 1.9.	Series	Review
7.2.	Self-Hosting	SCM	Server 	 1.	A	Saga	of	Servlets

Java

Java	is	a	general-purpose	computer	programming	language	that	is	concurrent,	class-based,	object-oriented,	and	specifically	designed	to
have	as	few	implementation	dependencies	as	possible.	It	is	intended	to	let	application	developers	"write	once,	run	anywhere"	(WORA),
meaning	that	compiled	Java	code	can	run	on	all	platforms	that	support	Java	without	the	need	for	recompilation.	Java	applications	are
typically	compiled	to	bytecode	that	can	run	on	any	Java	virtual	machine	(JVM)	regardless	of	computer	architecture.	As	of	2015,	Java	is
one	of	the	most	popular	programming	languages	in	use,	particularly	for	client-server	web	applications,	with	a	reported	9	million
developers.

2.1.	RESTful	API	Consumption	on	the	Server	(Java) 	 2.2.	Server	REST	Consumption	with	Authentication
2.3.	Custom	JSON	with	Java-ized	XAgent 	 3.1.	Unraveling	the	M-V-C	Mysteries 	 3.	Application	Logic
5.2.	Building	Java	Objects	from	JSON 	 1.1.	A	Quick	Note	on	JARs 	 1.2.	Servlet	Intro	and	Flavors
1.3.	Basic	Servlet	Implementation 	 1.4.	Servlet	Handling	of	Requests 	 1.5.	Interlude	and	Announcement
1.6.	Servlet	Handling	Data,	A	Round	House	Kick 	 6.1.	Consistent	Multi-Value	Formatting	in	SSJS	for	Domino/XPages
4.1.	"Replacing"	an	XAgent 	 1.7.	Building	a	Front-End	pt.1	Plus	a	Quick	Review
4.2.	Alternate	Front-End	Development:	Mocking	Your	Domino	Back-end 	 3.3.	More	on	HTTP	and	AJAX	Requests 	 5.	Java
1.	A	Saga	of	Servlets

Java	Server	Faces

JavaServer	Faces	(JSF)	is	a	Java	specification	for	building	component-based	user	interfaces	for	web	applications.	It	was	formalized	as	a
standard	through	the	Java	Community	Process	and	is	part	of	the	Java	Platform,	Enterprise	Edition.

3.1.	Unraveling	the	M-V-C	Mysteries

Java	Server	Pages

JavaServer	Pages	(JSP)	is	a	technology	that	helps	software	developers	create	dynamically	generated	web	pages	based	on	HTML,	XML,
or	other	document	types.	Released	in	1999	by	Sun	Microsystems,	JSP	is	similar	to	PHP	and	ASP,	but	it	uses	the	Java	programming
language.

Java	Virtual	Machine

A	Java	virtual	machine	(JVM)	is	an	abstract	computing	machine	that	enables	a	computer	to	run	a	Java	program.

JavaScript
JavaScript	is	a	high-level,	dynamic,	untyped,	and	interpreted	programming	language.	It	has	been	standardized	in	the	ECMAScript
language	specification.	Alongside	HTML	and	CSS,	it	is	one	of	the	three	essential	technologies	of	World	Wide	Web	content	production;
the	majority	of	websites	employ	it	and	it	is	supported	by	all	modern	web	browsers	without	plug-ins.	JavaScript	is	prototype-based	with

Dev|Blog:	The	First	Year

115Glossary

first-class	functions,	making	it	a	multi-paradigm	language,	supporting	object-oriented,	imperative,	and	functional	programming	styles.	It
has	an	API	for	working	with	text,	arrays,	dates	and	regular	expressions,	but	does	not	include	any	I/O,	such	as	networking,	storage	or
graphics	facilities,	relying	for	these	upon	the	host	environment	in	which	it	is	embedded.

2.1.	RESTful	API	Consumption	on	the	Server	(Java) 	 2.3.	Custom	JSON	with	Java-ized	XAgent
3.1.	Unraveling	the	M-V-C	Mysteries 	 3.2.	REST	is	Best 	 3.4.	What	is	a	Single	Page	Application(SPA)?
3.	Application	Logic 	 5.2.	Building	Java	Objects	from	JSON 	 4.1.	"Replacing"	an	XAgent
1.7.	Building	a	Front-End	pt.1	Plus	a	Quick	Review 	 1.8.	Building	a	Front-End	pt.2:	An	App	with	AngularJS 	 6.	JavaScript

JavaServer	Faces
JavaServer	Faces	(JSF)	is	a	Java	specification	for	building	component-based	user	interfaces	for	web	applications.	It	was	formalized	as	a
standard	through	the	Java	Community	Process	and	is	part	of	the	Java	Platform,	Enterprise	Edition.

JavaServer	Pages

JavaServer	Pages	(JSP)	is	a	technology	that	helps	software	developers	create	dynamically	generated	web	pages	based	on	HTML,	XML,
or	other	document	types.	Released	in	1999	by	Sun	Microsystems,	JSP	is	similar	to	PHP	and	ASP,	but	it	uses	the	Java	programming
language.

Jenkins	CI
Jenkins	is	an	open	source	continuous	integration	tool	written	in	Java.	The	project	was	forked	from	Hudson	after	a	dispute	with	Oracle.

jQuery

jQuery	is	a	cross-platform	JavaScript	library	designed	to	simplify	the	client-side	scripting	of	HTML.	jQuery	is	the	most	popular
JavaScript	library	in	use	today,	with	installation	on	65%	of	the	top	10	million	highest-trafficked	sites	on	the	Web.	jQuery	is	free,	open-
source	software	licensed	under	the	MIT	License.

6.3.	An	Dojo	Implementation	of	the	Calendar	Picker	Script 	 1.6.	Servlet	Handling	Data,	A	Round	House	Kick
1.7.	Building	a	Front-End	pt.1	Plus	a	Quick	Review

JSF
JavaServer	Faces	(JSF)	is	a	Java	specification	for	building	component-based	user	interfaces	for	web	applications.	It	was	formalized	as	a
standard	through	the	Java	Community	Process	and	is	part	of	the	Java	Platform,	Enterprise	Edition.

2.1.	RESTful	API	Consumption	on	the	Server	(Java) 	 3.1.	Unraveling	the	M-V-C	Mysteries 	 1.2.	Servlet	Intro	and	Flavors
4.1.	"Replacing"	an	XAgent 	 3.3.	More	on	HTTP	and	AJAX	Requests

JSON
JSON	(JavaScript	Object	Notation)	is	an	open	standard	format	that	uses	human-readable	text	to	transmit	data	objects	consisting	of
attribute–value	pairs.	It	is	the	primary	data	format	used	for	asynchronous	browser/server	communication,	largely	replacing	XML	(used
by	AJAX).

Dev|Blog:	The	First	Year

116Glossary

2.1.	RESTful	API	Consumption	on	the	Server	(Java) 	 2.2.	Server	REST	Consumption	with	Authentication
2.3.	Custom	JSON	with	Java-ized	XAgent 	 3.2.	REST	is	Best 	 3.4.	What	is	a	Single	Page	Application(SPA)?
5.2.	Building	Java	Objects	from	JSON 	 1.1.	A	Quick	Note	on	JARs 	 1.2.	Servlet	Intro	and	Flavors
1.4.	Servlet	Handling	of	Requests 	 1.6.	Servlet	Handling	Data,	A	Round	House	Kick
1.7.	Building	a	Front-End	pt.1	Plus	a	Quick	Review 	 1.8.	Building	a	Front-End	pt.2:	An	App	with	AngularJS
4.2.	Alternate	Front-End	Development:	Mocking	Your	Domino	Back-end 	 1.	A	Saga	of	Servlets

JSON-RPC

JSON-RPC	is	a	remote	procedure	call	protocol	encoded	in	JSON.	It	is	a	very	simple	protocol	(and	very	similar	to	XML-RPC),	defining
only	a	handful	of	data	types	and	commands.	JSON-RPC	allows	for	notifications	(data	sent	to	the	server	that	does	not	require	a	response)
and	for	multiple	calls	to	be	sent	to	the	server	which	may	be	answered	out	of	order.

3.3.	More	on	HTTP	and	AJAX	Requests

JSONP

JSONP	(or	JSON	with	Padding)	is	a	technique	used	by	web	developers	to	overcome	the	cross-domain	restrictions	imposed	by	browsers
to	allow	data	to	be	retrieved	from	systems	other	than	the	one	the	page	was	served	by.

2.1.	RESTful	API	Consumption	on	the	Server	(Java)

JSP

JavaServer	Pages	(JSP)	is	a	technology	that	helps	software	developers	create	dynamically	generated	web	pages	based	on	HTML,	XML,
or	other	document	types.	Released	in	1999	by	Sun	Microsystems,	JSP	is	similar	to	PHP	and	ASP,	but	it	uses	the	Java	programming
language.

3.1.	Unraveling	the	M-V-C	Mysteries

JVM
A	Java	virtual	machine	(JVM)	is	an	abstract	computing	machine	that	enables	a	computer	to	run	a	Java	program.

1.1.	A	Quick	Note	on	JARs 	 1.5.	Interlude	and	Announcement 	 1.7.	Building	a	Front-End	pt.1	Plus	a	Quick	Review

Mercurial
Mercurial	is	a	cross-platform,	distributed	revision	control	tool	for	software	developers.	It	is	mainly	implemented	using	the	Python
programming	language,	but	includes	a	binary	diff	implementation	written	in	C.	It	is	supported	on	MS	Windows	and	Unix-like	systems,
such	as	FreeBSD,	Mac	OS	X	and	Linux.	Mercurial	is	primarily	a	command	line	program	but	graphical	user	interface	extensions	are
available.	All	of	Mercurial's	operations	are	invoked	as	arguments	to	its	driver	program	hg,	a	reference	to	the	chemical	symbol	of	the
element	mercury.

7.2.	Self-Hosting	SCM	Server 	 4.2.	Alternate	Front-End	Development:	Mocking	Your	Domino	Back-end

Node

Dev|Blog:	The	First	Year

117Glossary

Node.js	is	an	open-source,	cross-platform	runtime	environment	for	developing	server-side	web	applications.	Node.js	applications	are
written	in	JavaScript	and	can	be	run	within	the	Node.js	runtime	on	OS	X,	Microsoft	Windows,	Linux,	FreeBSD,	NonStop,	IBM	AIX,
IBM	System	z	and	IBM	i.	Its	work	is	hosted	and	supported	by	the	Node.js	Foundation,	a	collaborative	project	at	Linux	Foundation.

6.3.	An	Dojo	Implementation	of	the	Calendar	Picker	Script 	 6.2.	Fixing	an	Older	Version	of	Dojo	(1.6.1)
7.1.	A	Brief	Introduction	to	Nginx

NodeJS
Node.js	is	an	open-source,	cross-platform	runtime	environment	for	developing	server-side	web	applications.	Node.js	applications	are
written	in	JavaScript	and	can	be	run	within	the	Node.js	runtime	on	OS	X,	Microsoft	Windows,	Linux,	FreeBSD,	NonStop,	IBM	AIX,
IBM	System	z	and	IBM	i.	Its	work	is	hosted	and	supported	by	the	Node.js	Foundation,	a	collaborative	project	at	Linux	Foundation.

1.4.	Servlet	Handling	of	Requests

Notes
IBM	Notes	(formerly	Lotus	Notes)	is	a	client	of	a	collaborative	client-server	software	platform	sold	by	IBM.

7.3.	Domino/XPages	Design	Element	Syntax	Highlighting	on	Redmine 	 2.1.	RESTful	API	Consumption	on	the	Server	(Java)
2.2.	Server	REST	Consumption	with	Authentication 	 5.1.	When	You	Need	a	Comparator 	 1.1.	A	Quick	Note	on	JARs
1.4.	Servlet	Handling	of	Requests 	 1.5.	Interlude	and	Announcement 	 1.6.	Servlet	Handling	Data,	A	Round	House	Kick
6.1.	Consistent	Multi-Value	Formatting	in	SSJS	for	Domino/XPages 	 7.2.	Self-Hosting	SCM	Server 	 1.	A	Saga	of	Servlets

Remote	Procedure	Call

In	computer	science,	a	remote	procedure	call	(RPC)	is	client/server	system	in	which	a	computer	program	causes	a	subroutine	or
procedure	to	execute	in	another	address	space	(commonly	on	another	computer	on	a	shared	network)	without	the	programmer	explicitly
coding	the	details	for	this	remote	interaction.	That	is,	the	programmer	writes	essentially	the	same	code	whether	the	subroutine	is	local	to
the	executing	program,	or	remote.	When	the	software	in	question	uses	object-oriented	principles,	RPC	might	be	called	remote
invocation	or	remote	method	invocation	(RMI).	Many	different	(often	incompatible)	technologies	have	been	used	to	implement	the
concept.

REST
In	computing,	Representational	State	Transfer	(REST)	is	the	software	architectural	style	of	the	World	Wide	Web.	REST	gives	a
coordinated	set	of	constraints	to	the	design	of	components	in	a	distributed	hypermedia	system	that	can	lead	to	a	higher-performing	and
more	maintainable	architecture.	To	the	extent	that	systems	conform	to	the	constraints	of	REST	they	can	be	called	RESTful.	RESTful
systems	typically,	but	not	always,	communicate	over	HTTP	with	the	same	HTTP	verbs	(GET,	POST,	PUT,	DELETE,	etc.)	which	web
browsers	use	to	retrieve	web	pages	and	to	send	data	to	remote	servers.	REST	interfaces	with	external	systems	using	resources	identified
by	URI,	for	example	/people/tom,	which	can	be	operated	upon	using	standard	verbs,	such	as	DELETE	/people/tom.

2.1.	RESTful	API	Consumption	on	the	Server	(Java) 	 2.2.	Server	REST	Consumption	with	Authentication
3.1.	Unraveling	the	M-V-C	Mysteries 	 3.2.	REST	is	Best 	 3.	Application	Logic 	 1.3.	Basic	Servlet	Implementation
1.4.	Servlet	Handling	of	Requests 	 7.1.	A	Brief	Introduction	to	Nginx 	 1.7.	Building	a	Front-End	pt.1	Plus	a	Quick	Review
4.2.	Alternate	Front-End	Development:	Mocking	Your	Domino	Back-end

RESTful	API

Dev|Blog:	The	First	Year

118Glossary

An	API	which	provides	access	via	RESTful	principles,	as	in	HATEOAS.

2.2.	Server	REST	Consumption	with	Authentication 	 3.1.	Unraveling	the	M-V-C	Mysteries 	 3.2.	REST	is	Best
1.4.	Servlet	Handling	of	Requests 	 4.1.	"Replacing"	an	XAgent 	 1.7.	Building	a	Front-End	pt.1	Plus	a	Quick	Review
1.9.	Series	Review 	 3.3.	More	on	HTTP	and	AJAX	Requests 	 1.	A	Saga	of	Servlets

RPC
In	computer	science,	a	remote	procedure	call	(RPC)	is	client/server	system	in	which	a	computer	program	causes	a	subroutine	or
procedure	to	execute	in	another	address	space	(commonly	on	another	computer	on	a	shared	network)	without	the	programmer	explicitly
coding	the	details	for	this	remote	interaction.	That	is,	the	programmer	writes	essentially	the	same	code	whether	the	subroutine	is	local	to
the	executing	program,	or	remote.	When	the	software	in	question	uses	object-oriented	principles,	RPC	might	be	called	remote
invocation	or	remote	method	invocation	(RMI).	Many	different	(often	incompatible)	technologies	have	been	used	to	implement	the
concept.

SCM

A	component	of	software	configuration	management,	version	control,	also	known	as	revision	control	or	source	control,	is	the
management	of	changes	to	documents,	computer	programs,	large	web	sites,	and	other	collections	of	information.	Changes	are	usually
identified	by	a	number	or	letter	code,	termed	the	"revision	number,"	"revision	level,"	or	simply	"revision."	For	example,	an	initial	set	of
files	is	"revision	1."	When	the	first	change	is	made,	the	resulting	set	is	"revision	2,"	and	so	on.	Each	revision	is	associated	with	a
timestamp	and	the	person	making	the	change.	Revisions	can	be	compared,	restored,	and	with	some	types	of	files,	merged.

7.2.	Self-Hosting	SCM	Server

Server-Side	JavaScript

Server-Side	JavaScript	(SSJS)	is	an	implementation	of	JavaScript	which	executes	on	the	server	and	has	access	to	certain	server-side
APIs.	XPages	includes	an	SSJS	as	a	scriptable	language,	parse	inside	`#{javascript:		}`	or	`${javascript:		}`	blocks	and	in	SSJS
script	libraries,	making	its	implementation	quite	convenient	as	it	plugs	in	equivalently	to	Expression	Language	(with	an

interpretation	prefix).		

		

		

		

Service	Orientated	Architecture

A	service-oriented	architecture	(SOA)	is	an	architectural	pattern	in	computer	software	design	in	which	application

components	provide	services	to	other	components	via	a	communications	protocol,	typically	over	a	network.	The	principles

of	service-orientation	are	independent	of	any	vendor,	product	or	technology.	A	service	is	a	self-contained	unit	of

functionality,	such	as	retrieving	an	online	bank	statement.	By	that	definition,	a	service	is	a	discretely	invokable

operation.	However,	in	the	Web	Services	Definition	Language	(WSDL),	a	service	is	an	interface	definition	that	may	list

several	discrete	services/operations.	And	elsewhere,	the	term	service	is	used	for	a	component	that	is	encapsulated	behind

an	interface.	This	widespread	ambiguity	is	reflected	in	what	follows.

SOA

A	service-oriented	architecture	(SOA)	is	an	architectural	pattern	in	computer	software	design	in	which	application

components	provide	services	to	other	components	via	a	communications	protocol,	typically	over	a	network.	The	principles

of	service-orientation	are	independent	of	any	vendor,	product	or	technology.	A	service	is	a	self-contained	unit	of

functionality,	such	as	retrieving	an	online	bank	statement.	By	that	definition,	a	service	is	a	discretely	invokable

Dev|Blog:	The	First	Year

119Glossary

operation.	However,	in	the	Web	Services	Definition	Language	(WSDL),	a	service	is	an	interface	definition	that	may	list

several	discrete	services/operations.	And	elsewhere,	the	term	service	is	used	for	a	component	that	is	encapsulated	behind

an	interface.	This	widespread	ambiguity	is	reflected	in	what	follows.

SOAP

SOAP,	originally	an	acronym	for	Simple	Object	Access	Protocol,	is	a	protocol	specification	for	exchanging	structured

information	in	the	implementation	of	web	services	in	computer	networks.	It	uses	XML	Information	Set	for	its	message

format,	and	relies	on	other	application	layer	protocols,	most	notably	Hypertext	Transfer	Protocol	(HTTP)	or	Simple	Mail

Transfer	Protocol	(SMTP),	for	message	negotiation	and	transmission.

2.1.	RESTful	API	Consumption	on	the	Server	(Java) 	 2.2.	Server	REST	Consumption	with	Authentication

Source	Control

A	component	of	software	configuration	management,	version	control,	also	known	as	revision	control	or	source	control,	is

the	management	of	changes	to	documents,	computer	programs,	large	web	sites,	and	other	collections	of	information.	Changes

are	usually	identified	by	a	number	or	letter	code,	termed	the	"revision	number,"	"revision	level,"	or	simply	"revision."

For	example,	an	initial	set	of	files	is	"revision	1."	When	the	first	change	is	made,	the	resulting	set	is	"revision	2,"

and	so	on.	Each	revision	is	associated	with	a	timestamp	and	the	person	making	the	change.	Revisions	can	be	compared,

restored,	and	with	some	types	of	files,	merged.

7.3.	Domino/XPages	Design	Element	Syntax	Highlighting	on	Redmine 	 7.2.	Self-Hosting	SCM	Server

4.2.	Alternate	Front-End	Development:	Mocking	Your	Domino	Back-end

Source	Control	Management

A	component	of	software	configuration	management,	version	control,	also	known	as	revision	control	or	source	control,	is

the	management	of	changes	to	documents,	computer	programs,	large	web	sites,	and	other	collections	of	information.	Changes

are	usually	identified	by	a	number	or	letter	code,	termed	the	"revision	number,"	"revision	level,"	or	simply	"revision."

For	example,	an	initial	set	of	files	is	"revision	1."	When	the	first	change	is	made,	the	resulting	set	is	"revision	2,"

and	so	on.	Each	revision	is	associated	with	a	timestamp	and	the	person	making	the	change.	Revisions	can	be	compared,

restored,	and	with	some	types	of	files,	merged.

SSJS

Server-Side	JavaScript	(SSJS)	is	an	implementation	of	JavaScript	which	executes	on	the	server	and	has	access	to	certain

server-side	APIs.	XPages	includes	an	SSJS	as	a	scriptable	language,	parse	inside	`#{javascript:		}`	or	`${javascript:		}`

blocks	and	in	SSJS	script	libraries,	making	its	implementation	quite	convenient	as	it	plugs	in	equivalently	to	Expression	Language	(with

an	interpretation	prefix).		

		

2.1.	RESTful	API	Consumption	on	the	Server	(Java) 	 2.2.	Server	REST	Consumption	with	Authentication

2.3.	Custom	JSON	with	Java-ized	XAgent 	 3.1.	Unraveling	the	M-V-C	Mysteries 	 3.	Application	Logic 	 4.1.	"Replacing"	an	XAgent

1.7.	Building	a	Front-End	pt.1	Plus	a	Quick	Review 	 3.3.	More	on	HTTP	and	AJAX	Requests

		

		

WSDL

The	Web	Services	Description	Language	(WSDL)	is	an	XML-based	interface	definition	language	that	is	used	for	describing	the	functionality

offered	by	a	web	service.	The	acronym	is	also	used	for	any	specific	WSDL	description	of	a	web	service	(also	referred	to	as	a	WSDL	file),

which	provides	a	machine-readable	description	of	how	the	service	can	be	called,	what	parameters	it	expects,	and	what	data	structures	it

returns.	It	thus	serves	a	purpose	that	corresponds	roughly	to	that	of	a	method	signature	in	a	programming	language.

2.2.	Server	REST	Consumption	with	Authentication

XHR

XMLHttpRequest	(XHR)	is	an	API	available	to	web	browser	scripting	languages	such	as	JavaScript.	It	is	used	to	send	HTTP	or	HTTPS

requests	to	a	web	server	and	load	the	server	response	data	back	into	the	script.	Development	versions	of	all	major	browsers	support	URI

schemes	beyond	http	and	https,	in	particular,	blob	URLs	are	supported.

3.1.	Unraveling	the	M-V-C	Mysteries 	 1.6.	Servlet	Handling	Data,	A	Round	House	Kick

Dev|Blog:	The	First	Year

120Glossary

XML

Extensible	Markup	Language	(XML)	is	a	markup	language	that	defines	a	set	of	rules	for	encoding	documents	in	a	format	which	is	both

human-readable	and	machine-readable.	It	is	defined	by	the	W3C's	XML	1.0	Specification	and	by	several	other	related	specifications,	all

of	which	are	free	open	standards.

7.3.	Domino/XPages	Design	Element	Syntax	Highlighting	on	Redmine 	 2.1.	RESTful	API	Consumption	on	the	Server	(Java)

2.3.	Custom	JSON	with	Java-ized	XAgent 	 3.1.	Unraveling	the	M-V-C	Mysteries 	 3.2.	REST	is	Best

5.1.	When	You	Need	a	Comparator 	 5.2.	Building	Java	Objects	from	JSON 	 1.2.	Servlet	Intro	and	Flavors

XML-RPC

XML-RPC	is	a	remote	procedure	call	(RPC)	protocol	which	uses	XML	to	encode	its	calls	and	HTTP	as	a	transport	mechanism.	"XML-RPC"	also

refers	generically	to	the	use	of	XML	for	remote	procedure	call,	independently	of	the	specific	protocol.	This	article	is	about	the

protocol	named	"XML-RPC".

2.1.	RESTful	API	Consumption	on	the	Server	(Java)

XMLHttpRequest

XMLHttpRequest	(XHR)	is	an	API	available	to	web	browser	scripting	languages	such	as	JavaScript.	It	is	used	to	send	HTTP	or	HTTPS

requests	to	a	web	server	and	load	the	server	response	data	back	into	the	script.	Development	versions	of	all	major	browsers	support	URI

schemes	beyond	http	and	https,	in	particular,	blob	URLs	are	supported.

3.1.	Unraveling	the	M-V-C	Mysteries

XPages

XPages	is	a	rapid	web	and	mobile	application	development	technology.	It	allows	data	from	IBM	Notes	and	Relational	Databases	to	be

displayed	to	browser	clients	on	all	platforms.	The	programming	model	is	based	on	web	development	languages	and	standards	including

JavaScript,	Ajax,	Java,	the	Dojo	Toolkit,	Server-side	JavaScript	and	JavaServer	Faces.	XPages	uses	IBM	Domino,	IBM's	rapid	application

development	platform,	including	functionality	such	as	the	document-oriented	database.

0.	Intro 	 7.3.	Domino/XPages	Design	Element	Syntax	Highlighting	on	Redmine

6.3.	An	Dojo	Implementation	of	the	Calendar	Picker	Script 	 2.2.	Server	REST	Consumption	with	Authentication

2.3.	Custom	JSON	with	Java-ized	XAgent 	 3.1.	Unraveling	the	M-V-C	Mysteries 	 3.2.	REST	is	Best

3.4.	What	is	a	Single	Page	Application(SPA)? 	 3.	Application	Logic 	 5.1.	When	You	Need	a	Comparator

1.3.	Basic	Servlet	Implementation 	 1.4.	Servlet	Handling	of	Requests 	 1.5.	Interlude	and	Announcement

1.6.	Servlet	Handling	Data,	A	Round	House	Kick 	 6.1.	Consistent	Multi-Value	Formatting	in	SSJS	for	Domino/XPages

4.1.	"Replacing"	an	XAgent 	 1.7.	Building	a	Front-End	pt.1	Plus	a	Quick	Review 	 1.9.	Series	Review

4.2.	Alternate	Front-End	Development:	Mocking	Your	Domino	Back-end 	 3.3.	More	on	HTTP	and	AJAX	Requests 	 1.	A	Saga	of	Servlets

				

Dev|Blog:	The	First	Year

121Glossary

	Intro
	A Saga of Servlets
	A Quick Note on JARs
	Servlet Intro and Flavors
	Basic Servlet Implementation
	Servlet Handling of Requests
	Interlude and Announcement
	Servlet Handling Data, A Round House Kick
	Building a Front-End pt.1 Plus a Quick Review
	Building a Front-End pt.2: An App with AngularJS
	Series Review

	Supporting
	RESTful API Consumption on the Server (Java)
	Server REST Consumption with Authentication
	Custom JSON with Java-ized XAgent

	Application Logic
	Unraveling the M-V-C Mysteries
	REST is Best
	More on HTTP and AJAX Requests
	What is a Single Page Application(SPA)?

	Related
	"Replacing" an XAgent
	Alternate Front-End Development: Mocking Your Domino Back-end

	Java
	When You Need a Comparator
	Building Java Objects from JSON

	JavaScript
	Consistent Multi-Value Formatting in SSJS for Domino/XPages
	Fixing an Older Version of Dojo (1.6.1)
	An Dojo Implementation of the Calendar Picker Script

	Other
	A Brief Introduction to Nginx
	Self-Hosting SCM Server
	Domino/XPages Design Element Syntax Highlighting on Redmine

	Glossary

