
Binary Coded Decimal

BCD version 2019 Page 1/13

Binary Coded Decimal
The case for a bcd type

REFERENCE MANUAL

Version: 1.2.0
Status: Release

Author: ir. W.E. Huisman

Copyright © 2019, ir. W.E. Huisman

All rights reserved. Published under the MIT software license

Binary Coded Decimal

BCD version 2019 Page 2/13

Contents

INTRODUCTION ... 3

The ODBC case ... 3

PREDECESSORS OF BCD .. 4

COBOL and EBCDIC ... 4

4GL programming languages .. 4

The Borland C++ compiler ... 4

The integer-coded-decimal .. 4

The arbitrary-floating-point ... 4

The best of both worlds .. 4

THE BCD DATATYPE ... 5

Introduction .. 5

Construction and initialization .. 5

Constants ... 5

Assignments... 5

Increments and decrements .. 6

Operators ... 6

Comparisons .. 6

Mathematical functions .. 6

Trigionometric functions ... 7

Conversions ... 7

String display.. 8

File reading and writing .. 8

Information and other methods .. 9

Error handling... 9

Enhancement and refinements .. 9

BCD AND THE ODBC STANDARD .. 11

The main advantage .. 11

SQLComponents ... 11

Open ODBC Querytool .. 11

PERFORMANCE MEASURING .. 12

Binary Coded Decimal

BCD version 2019 Page 3/13

INTRODUCTION

Computers calculate numbers in binary. We forget about this many times as the illusion of a
mathematical machine is quite compelling, It’s far easier to forget about binary rounding errors and
pretend that calculations or precise.

Alas! This doesn’t add up for dull purposes like accounting and bookkeeping. Here a roundoff error of
1 cent can sent an accountant screaming for an explanation and a multi-million dollar investigation.
And it is for accounting reasons that databases have special datatypes like NUMERIC and DECIMAL
that are precise number formats. This in contrast with approximate data types like FLOAT and REAL.

In the C++ language the built-in datatype “double” (IEEE 754) datatype is in radix 2, so it is also an
approximate datatype. Although the Intel x386 processor has something of a ‘bcd’ type of operator to
correct the effect of binary calculations, no C++ compiler today exists with a built-in exact numeric
datatype. (Borland C++ 2.0 being the last one that had that!)

The solution has been to store these numbers in the so-called “BINARY-CODED-DECIMAL” format.
BCD for short. In such an implementation no rounding errors can occur, as extra bits are used to
represent a decimal number instead of a binary number.

This lack of a binary-coded-decimal datatype makes it cumbersome to do accounting and book-
keeping calculations in C++. Also the storing and retrieving of NUMERIC and DECIMAL numbers to
and from databases require lengthy calculations to convert the numbers, requiring precious CPU
cycles.

The ODBC case

The ODBC (Open-DataBase Connectivity) standard has a data structure (SQL_NUMERIC_STRUCT)
to transport the data for NUMERIC and DECIMAL numbers. Data for these datatypes is often binded
and used in ODBC applications as a string. The binary transport of that data in a radix 256 numeric
struct is often too great a challenge for most programmers on a daily business schedule.

The chapter about “BCD and the ODBC Standard” explains how this bcd class solves that problem.

Binary Coded Decimal

BCD version 2019 Page 4/13

PREDECESSORS OF BCD

There have existed (and still exist!) a number of predecessors to this bcd class.

COBOL and EBCDIC
The COBOL (COmmon Business Language) is a long existing language and business standard,
widely used for accounting and bookkeeping purposes. It’s existence in the ’60, ’70 and ’80 of the last
century was mostly in combination with the IBM’s mainframe platforms on EBCDIC character sets,
especially suited for accounting in binary-coded-decimal.

4GL programming languages
Fourth generation languages bonded to a specific database platform (e.g. INFORMIX-4GL) had a
DECIMAL datatype as a built-in feature. Binary coded decimal calculations where the default on this
platform. Which made it typically suited to build accounting software and store the results in a
database.

The Borland C++ compiler
Upto the point where Borland sold there C++ compiler to Embarcadero, it had a built in ‘bcd’ datatype
that could be directly used, just as you would use an ‘int’ or a ‘double’. To my best knowledge this
datatype was dropped in the later versions of this compiler.
Microsoft has never bundled a ‘bcd’ datatype with their implementation of the C++ language. And the
language itself, not even through the process of the ISO standard, has ever featured such a datatype.
So Borland was unique in this respect.

The integer-coded-decimal
In order to do exact numerical calculations my first try was to implement a numeric class that stores
the numbers in integer format. 4 integers before the decimal point and 4 integers after the decimal
point. This implementation implementation – dubbed the integer-coded-decimal – did allow for 16
decimal places before and after the decimal point. Enough to do the bookkeeping of a large multi-

natioanl company or a small country

Although the classical operators like adding and subtracting are easy to implement in this format,
much was left to be desired. As soon as we want to implement more mathematical operators, this
impelementation becomes bothersome, and as we will see later: slow.

The arbitrary-floating-point
After some searching in the mathematical realm, I found the arbitrary-floating-point (AFP) class of
Henrik Vestermark. This library takes the approach of storing the mathematical mantissa and the
fractional part seperatly. The fractional part is stored in a character array, and interpreted in each
mathematical operation. As such it is a implementation of a precise binary-coded-decimal.
The source code of this library is included in the BCD project. But see also the website of “Numerical
Methods at Work” at http://hvks.com as this project has evolved since I took the idea from it.

The down side of this library is (apart from performance problems) that the format is not easily
transcoded to database formats like NUMERIC and DECIMAL.

The best of both worlds
Both methods (integer-coded-decimal and arbitrary-floating-point) have led the the resulting design of
the binary-coded-decimal class here presented. It stores the exponent and the mantissa seperatly.
The mantissa however is stored as a set of integers. In the current configuration 5 integers for 8
decimal positions each is used. Thus allowing for a mantissa of 40 positions. More than enough to
even handle the most demanding database implementation (Oracle with 38 positions).

Integers can hold at least 9 decimal places as a positive 32-bit “int” or “long” can hold up to the
number of 2.147.483.647. This makes it possible to hold 8 decimal places and still have one digit left
to hold any carry or borrow number when iterating over and array of these integers.

http://hvks.com/

Binary Coded Decimal

BCD version 2019 Page 5/13

THE BCD DATATYPE

Introduction
The BCD (Binary-Coded-Decimal) datatype was built with database numeric and decimal datatypes in
mind. A binary-coded-decimal number is an EXACT number with no rounding errors due to the binary
nature of a computer CPU (Central Processing Unit). This makes the bcd datatype especially suited
for financial and bookkeeping purposes.

BCD calculations have been present in computer science for quite some time, and in various forms.
This BCD class was especially designed to co-exist with ODBC database adapters. For more
information see the chapter “BCD and the ODBC Standard”

Construction and initialization
You can construct a bcd from just about every base C++ datatype, while initializing the bcd at the
same time. This goes for chars, integers, longs, 64bit-integers, floats and doubles.

// Made from an integer and a floating point number
bcd num1(2);
bcd num2(4.0);
bcd num3 = num1 + num2; // will become 6

But also for strings and from other bcd number.

// Made from a string and a different bcd number
bcd num4(“7.25”);
bcd num5(num3);
bcd num6 = num4 + num5; // will become 13.5

Here is a complete list of all constructor types:
- The default constructor (initializes the number to zero (‘0.0’))
- Constructed from a char number (-127 to +127)
- Constructed from an unsigned char number (0 upto 255)
- Constructed from a short (-32767 upto 32767)
- Constructed from an unsigned short (0 upto 65535)
- Constructed from an integer (-2147483647 upto 2147483647)
- Constructed from an unsigned integer (0 upto 4294967295)
- Constructed from a 64bits integer (-9223372036854775807 upto 9223372036854775807)
- Constructed from an unsigned 64bits integer (0 upto 18446744073709551615)
- Constructed from another bcd
- Constructed from a string of type CString (MFC)
- Constructed from a string of type “const char *”
- Constructed from a SQL_NUMERIC_STRUCT (as appearing in the ODBC standard)

Constants
There are three defined constants in the bcd datatype. Theses constants are:

- PI The well known circle/radius ratio
- LN2 The natural logarithm of 2
- LN10 The logarithm of 10

They appear as “const bcd” numbers and can be used as such. Here are a few simple examples to
show there use.

// Numbers made up with the help of constants
bcd ratio = 2 * PI();
bcd quart = bcd::PI() / bcd(2);

Assignments
Other bcd’s, integers, doubles and strings can be assigned to a bcd number. That is: you can use the
standard ‘=’ assignment operator or the operators that are combined with the standard mathematical
operations ‘+=’, ‘-=’, ‘*=’, ‘/=’ and ‘%=’. Assignment operators made of a combination with bitwise
operators like ‘|=’ or ‘&=’ have no logical counterpart in the bcd class, as a bitwise operation has no
logical meaning for a binary coded decimal number.

Binary Coded Decimal

BCD version 2019 Page 6/13

// Calculation with assignments
bcd a = SomeFunc();
a += 2;
a *= b; // a = b + (2 * SomeFunc)

Increments and decrements
Both prefix and postfix increments and decrements can be used with a bcd just as with any integer
number.

// Calculation with prefix and postfix in- and decrements
bcd a = ++b;
bcd c = a--;

Operators
The standard mathematical operators ‘+’ (addition), ‘-‘ (subtraction), ‘*’ (multiplication), ‘/’ (division) and
‘%’ (modulo) are implemented for the bcd class.
As this class is designed to do bookkeeping, it is the ‘bread-and-butter’ of this class. More than eighty
percent of all calculations are done in these operators in real-world applications.

Here is a typical example:

// Finding an average price from a std::vector of objects
// Where GetPrice() and GetVAT() both return a bcd value
bcd total;
for(auto& obj : objectlist)
{
 total += obj.GetPrice() + obj.GetVAT();
}
bcd average = total / bcd(objectlist.count());
if(average > bcd(400.0))
{
 ReportAverageToHigh(average);
}

Comparisons
All typical comparison operators like equal (==), not-equal (!=), smaller (<), smaller-than-or-equal-to
(<=), greater (>) and greater-than-or-equal-to (>=) are implemented for the bcd class.
For an example, see the previous paragraph where we report an average that is too high.

Mathematical functions
The C library contains a number of mathematical functions that are solely implemented in the ‘double’
basic datatype. An example of these is e.g. “pow” for the taking of a power. These functions are
implemented as statical functions with bcd’s as parameters. Static mathematical functions include:
Apart from the static functions, they are also implemented as methods of the bcd class. So “pow” has
a symeterical method ‘Power’.

Math function Static function Method of bcd

Integer floor of a number bcd floor(bcd); bcd Floor() const;

Ceiling of a number bcd ceil(bcd); bcd Ceiling() const;

Absolute value of a number bcd fabs(bcd); bcd AbsoluteValue() const;

Square root of a number bcd sqrt(bcd); bcd SquareRoot() const;

10logarithm of a number bcd log10(bcd); bcd Log10() const

Natural logarithm of a number bcd log(bcd); bcd Log() const;

Exponent ‘e’ to this number bcd exp(bcd); bcd Exp() const;

Power of a number bcd pow(bcd,bcd); bcd Power(const bcd& p_power) const

Getting the fractional part bcd frexp(bcd,int*) bcd GetMantisse() const;

Integer times 2 to the power bcd ldexp(bcd,int); Use: ‘integer * bcd(2).Power(bcd)’

Fraction part and integer part bcd modf(bcd,int *); bcd Fraction() const;

Modulo bcd fmod(bcd,bcd); The ‘%’ operator
bcd Mod(bcd) const;

Binary Coded Decimal

BCD version 2019 Page 7/13

Here are two examples that do exactly the same:

// Calculate the side of a square
bcd surface = GetSquareSurfaceArea();
bcd side = surface.SquareRoot();

// Calculate the side of a square
bcd surface = GetSquareSurfaceArea();
bcd side = sqrt(surface);

NOTE: Overloading the mathematical functions make is meant to make it easier to port existing code
with doubles to be converted into bcd’s.

Trigionometric functions
The standard C trigionometric functions are overloaded for the bcd class as is the case with the
standard mathematical functions. Just as with the standard trigionometric functions the number is an
angle measured in radians. The following functions exist:

Trigionometric function Static function Method of bcd

Sine of an angle bcd sin(bcd); bcd Sine() const;

Cosine of an angle bcd cos(bcd); bcd Cosine() const;

Tangent of an angle bcd tan(bcd); bcd Tangent() const;

Getting an angle from a sine ratio bcd asin(bcd); bcd ArcSine() const;

Getting an angle from a cosine ratio bcd acos(bcd); bcd ArcCosine() const;

Getting an angle from a tangent ratio bcd atan(bcd); bcd ArcTangent() const;

Tangent from 2 points bcd atan2(bcd,bcd); bcd ArcTangent2Points(bcd) const;

Here are two examples that do exactly the same:

// Calculate the height of a given wave
bcd waveHeight = GetSignal().Sine();

// Calculate the height of a given wave
bcd waveHeight = sin(GetSignal());

Conversions
It is possible to convert a bcd to ‘something-else’. This other ‘something’ is a base datatype from the
C++ language. Most methods are named something like “AsXXXX”, where XXXX denotes the type we
want. The following methods exist:

Conversion method The result

AsDouble() const; Returns the number as a ‘double’, or throws an error if
the bcd number is ‘out-of-bounds’ for a double

AsShort() const; Returns a ‘short’ integer or throws an error if the bcd
number is ‘out-of-bounds’ for a short

AsUShort() const; Returns an ‘unsigned-short’ integer or throws an error if
the bcd number is ‘out-of-bounds’ for an unsigned short

AsLong() const; Returns a ‘long’ integer or throws an error if the bcd
number is ‘out-of-bounds’ for a long

AsULong() const; Returns a ‘unsigned-long’ integer or throws an error if the
bcd number is ‘out-of-bounds’ for an unsigned long

AsInt64() const; Returns a 64 bit integer or throws an error if the bcd
number is ‘out-of-bounds’ for a 64 bit integer

AsUInt64() const; Returns an unsigned 64 bit integer or throws an error if
the bcd number is ‘out-of-bounds’ for a 64 bit integer

AsString(int, bool) const; Returns a string. Parameters control the formatting of the
string (bookkeeping format and +/- printing)

Binary Coded Decimal

BCD version 2019 Page 8/13

AsDisplayString(int) const; Returns a string. Uses the current locale to print a
‘displayable’ string with correct delimiters. The parameter
controls the number of decimal places

AsNumeric(SQL_NUMERIC_STRUCT*)
const;

Returns the bcd number in a ODBC numeric structure.
For use with ODBC drivers and compatible programs.

Here is an example of a calculation returing an engineering number string in 10 exponential format.

// Return a calculation in a IEEE number string
CString GetCalculation()
{
 bcd number1 = SomeFunction();
 bcd number2 = AnotherFunction();
 bcd number3 = number1.Power(number2);

 // Something like “5.6773E-03”
 return number3.AsString(Engineering,false);
}

String display
Numbers can be displayed as strings. How they are displayed depends on the application we are
using the number in. This can be quite different for a scientific or engineering application in contrast to
a bookkeeping application. The differences are loosly defined as:

1) In bookkeeping applications, we tend to display numbers with one decimal marker and as
much thousand parts markers as needed. We display decimal places upto a defined amount
and round of the rest of the decimal places;

2) In engineering applications, we tend to print the exact number just with one decimal marker. If
the number gets to great (or to small) we shift to exponential display in powers of ten.

3) In both cases we always print a negative number with a negative sign (-), but we can choose
to print the positive sign (+) as well;

4) The decimal and thousand markers are defined by the current system local of the machine
and thus the language the desktop is currently using.

Here are a few examples of both ways of displaying a number:

The number Bookkeeping Engineering

12.3456 12.34 12.3456

123456.789123 +123,456.79 123456.789123

123456789.12345 123,456,789.12 1.2345678012345E+08

-0.00012345 -0.00 -1.2345E-04

-1234567890123456 -1.123.567.890.123.456,00
(in Dutch, German, French)

-1.234567890123456E+15

File reading and writing
Applications might need to write information to a binary file. So there are two methods for integration
with binary files. The first (WriteToFile(FILE*)) writes the bcd number to a file. The second
(ReadFromFile(FILE*)) reads the bcd number back from that file. All primary factual information of the
bcd number is stored.
Any disturbance in the force (oh sorry: the file) will lead to an error, meaning the whole number gets
stored or read back, or an error occurs. See the implementation for more details about the storing
format of the bcd.

Storage and retrieval of the bcd number in the file is also network independent and litte-big-endian
independent, meaning you can store and retrieve the number in a portable way.

Binary Coded Decimal

BCD version 2019 Page 9/13

Information and other methods
A number of methods exist that have not yet been discussed. The give information of some property of
the bcd number or do a basic operation. Here is the remainder list:

Method Documentation

bool IsNull() const; Only returns ‘true’ if the bcd number is exactly 0.0 (zero)

int GetSign() const; Retrieves a -1, 0 or 1 as the sign of the number

int GetLength() const; Retrieves to total of decimal places before and after the
decimal point in a total

int GetPrecision() const Retrieves the decimal places BEHIND the decimal point

Int GetMaxSize() const; Constant denotes the maximum of decimal places. 40 in the
current implementation!

bool GetFitsInLong() const; True if the bcd number will fit into a long without throwing
an error exception

bool GetFitsInInt64() const; True if the bcd number will fit into a 64 bits integer without
throwing an error exception

bool GetHasDecimals() const; True if there are decimal places behind the decimal marker

int GetExponent() const; Returns the current exponent of the number

bcd GetsMantissa() const; Only retrieves the mantissa part of the bcd of a number

void Zero() Set the bcd number back to 0.0 (zero)

void Round(int precision); Round of the bcd number on this number of decimal places

void Truncate(int precision); Trunacte the bcd number on this number of decimal places

void Negate(); Negate the sign of a number

Error handling
Error handling is done by throwing a StdException. This exception is integrated with the MS-Windows
C++ Safe Exception Handling in such a way that critical errors like null-pointer references and division-
by-zero errors do **NOT** get an different exception handling – stopping the application e.g. – but are
integrated in the exception throwing.

Here is a list of all errors in the bcd class. There descriptions are meant to be self-explanatory:

StdException

BCD: Cannot get a square root from a negative number

BCD: Cannot calculate a natural logarithm of a number <= 0

BCD: Cannot get a 10-logarithm of a number <= 0

BCD: Cannot calculate a tangent from a angle of 1/2 pi or 3/2 pi

BCD: Cannot calculate an arcsine from a number > 1 or < -1

BCD: Overflow in conversion to short number.

BCD: Underflow in conversion to short number.

BCD: Cannot convert a negative number to an unsigned short number.

BCD: Overflow in conversion to unsigned short number.

BCD: Overflow in conversion to integer number.

BCD: Underflow in conversion to integer number.

BCD: Cannot convert a negative number to an unsigned long.

BCD: Overflow in conversion to unsigned long integer.

BCD: Overflow in conversion to 64 bits integer number.

BCD: Cannot convert a negative number to an unsigned 64 bits integer

BCD: Overflow in conversion to 64 bits unsigned integer number.

BCD: Overflow in converting bcd to SQL NUMERIC/DECIMAL

BCD: Conversion from string. Bad format in decimal number

BCD: Division by zero.

Enhancement and refinements
The bcd class can easily be enhanced. You can simply expand the number of digits in the mantissa by
using a greater number on integers in the mantissa array. See the constants “bcdDigits” and
“bcdLength” at the beginning of the class interface definition.
Extra methods and / or data, operators, stream interfaces like std::iostream can easily be added to this
class.

Binary Coded Decimal

BCD version 2019 Page 10/13

The bcd project comes with a unit test module dll. Goal of the unit test is of course to test the correct
workings of the other functionality while you expand the class.
Just open the test explorer in Visual Studio (from the menu “Test” / “Run all tests”) and check that all
unit test are ‘in-the-green’.

Binary Coded Decimal

BCD version 2019 Page 11/13

BCD AND THE ODBC STANDARD

Now with the mathematical calculations firmly in place, we can turn to the usage of the bcd number in
combination with the ODBC drivers. Binary data flows to and from the ODBC driver of a database in
the form of the SQL_NUMERIC_STRUCT. This struct supports both the NUMERIC and DECIMAL
datatypes of a modern ISO:9075 compliant SQL database.

Binding directly to a DECIMAL or NUMERIC column in a database query will result in the retrieval of a
SQL_NUMERIC_STRUCT in memory. Changing and using that struct in an update or insert statement
will use the contents of that struct and transport it to our database record.

But what happens when we get that data. Peeking at the source code of some open-source database
implementations like the MySql, MariaDB, Firebird or PostgreSQL reveals that most odbc drivers just
convert a string to a SQL_NUMERIC_STRUCT. At the moment that this dataclass was written those
conversions where quite complicated, long and error prone. In the last years the situation has
improved, but…

1) These conversion only convert the standard number format with a decimal point. No
exponential numbers can be converted;

2) A lot of confusion still exists in the usage of NUMERIC and DECIMAL. Looking up answers on
the stackoverflow platform, even experienced programmers opt-in to let the database convert
the data to a string and plucking that string data out of the query.

The BCD class has been designed to easily convert to and from the SQL_NUMERIC_STRUCT. With
the following two methods:

- bcd::SetValueNumeric(SQL_NUMERIC_STRUCT*);
- bcd::AsNumeric(SQL_NUMERIC_STRUCT*);

Data is directly converted to and from the ODBC bind area and to the database. These conversions
are a simple iteration over the mantissa and copy of the mantissa and sign bit.

The main advantage

The key factor here is that we can directly use our NUMERIC and DECIMAL numbers without having
them to convert first to a string and back to a format where we can begin calculations in them. Round-
about the other direction: we can directly calculate and store the result in the database without having
to convert everything to strings and order the database to convert it back to exactly the same data
again!

SQLComponents
The main application of the bcd class lies within the SQLComponents library. This is a library around
the ODBC driver. You can find this library at: https://github.com/edwig/SQLComponents.
In this library, all datarows are bound to a SQLRecord object. The columns of each record in turn are
bound to the SQLVariant class.

The SQLVariant class acts as a sorts of variable placeholder for all datatypes that can be obtained
from a database row. And of course: one of the datatypes is the bcd class.

The SQLComponents database makes it easier to program with any given ODBC driver. It has been
tested with Oracle, MS-SQLServer, MySQL, PostgreSQL, MS-Access and IBM-Informix.

Open ODBC Querytool
Apart from a number of business applications, the one and only killer-app that’s using the
SQLComponents and bcd class is the Open ODBC-Querytool. You can find this querytool through
github on: https://github.com/edwig/ODBCQueryTool and on sourceforge under the following link:
https://sourceforge.net/projects/odbcquerytool/. From this last link it has seen more than 50.000
downloads in the last years.

https://github.com/edwig/SQLComponents
https://github.com/edwig/ODBCQueryTool
https://sourceforge.net/projects/odbcquerytool/

Binary Coded Decimal

BCD version 2019 Page 12/13

PERFORMANCE MEASURING

In order to be able to measure the performance of my implementions, I designed a test program that
does any number of calculations a configurable number of times ‘n’. When setting ‘n’ to for instance a
1000 times, the length of the calculations will be great enough to be able to measure it with a high
performance counter like “QueryPerformanceCounter” of the MS-Windows kernel.

The test program compares the result of each operation with the result of the MS-Windows desktop
calculator “calc.exe” and shows the performance results of four implementations:

1) C++ built-in “double”
2) Arbitrary-floating-point
3) Integer-coded-decimal
4) Binary-coded-decimal

A typical output of the test program looks like:

Testing the function [log10] for a total of [1000] iterations:

Input: 98765432109876543210.123456789012345678901234567890

Type Time Value
------ ---------- --
calc 0.000000 +19.994604968162151965673558368195
double 0.000005 +19.994604968162150
afp 0.982142 +19.99460496816215196567355836819543212297
icd 0.191501 +19.9946049681621519656735583681954349795885
bcd 0.050899 +19.9946049681621519656735583681954321229

In this example we see the results for the “log10” function (logarithm in base 10). As we can see, the

result is correct upto at least 32 decimal places for each implementation (apart from ‘double’)

A thousand iterations take 0,05 seconds in the bcd implementation: 50 microseconds each. Quite a bit
longer than the 50 nanoseconds for a double calculation. But at a far greater precision!

The BCD solution in the example program runs this test by default.

This is a screenshot of the beginning of the testrun:

https://docs.microsoft.com/en-us/windows/win32/api/profileapi/nf-profileapi-queryperformancecounter

Binary Coded Decimal

BCD version 2019 Page 13/13

And here is a sample of the output at the end of the testrun:

	INTRODUCTION
	The ODBC case

	PREDECESSORS OF BCD
	COBOL and EBCDIC
	4GL programming languages
	The Borland C++ compiler
	The integer-coded-decimal
	The arbitrary-floating-point
	The best of both worlds

	THE BCD DATATYPE
	Introduction
	Construction and initialization
	Constants
	Assignments
	Increments and decrements
	Operators
	Comparisons
	Mathematical functions
	Trigionometric functions
	Conversions
	String display
	File reading and writing
	Information and other methods
	Error handling
	Enhancement and refinements

	BCD AND THE ODBC STANDARD
	The main advantage
	SQLComponents
	Open ODBC Querytool

	PERFORMANCE MEASURING

