DuinoCube User Manual

ver. 0.1

by Simon Que

April 27, 2014

Table of Contents

Table of Contents
Introduction
Why Arduino?
System Overview
Introduction to Arduino
DuinoCube shields
GFX Shield architecture
Ul Shield architecture
Software architecture
Setup Guide
Getting the Arduino IDE
Installing the DuinoCube library
Hardware setup
Loading a sketch
Programming Guide
Arduino programming model
Setting up the game
Loading the graphics data
Defining strings in Arduino code
Drawing the tile layers and sprites
The main game loop
API Reference
Top-level module
printf()
Core module
System control functions
Data loading functions
Tile layer functions
Sprite functions
File module
Gamepad module
Mem module

https://docs.google.com/document/d/sOe9ov3MuWjcEty-Gg-rBXA/headless/print#heading=h.a0e4fgojtrdd
https://docs.google.com/document/d/sOe9ov3MuWjcEty-Gg-rBXA/headless/print#heading=h.94nrxj3g7z7z
https://docs.google.com/document/d/sOe9ov3MuWjcEty-Gg-rBXA/headless/print#heading=h.otjjv5qktwkf
https://docs.google.com/document/d/sOe9ov3MuWjcEty-Gg-rBXA/headless/print#heading=h.mzzoupc7bmjn
https://docs.google.com/document/d/sOe9ov3MuWjcEty-Gg-rBXA/headless/print#heading=h.qaoo2ttx0cll
https://docs.google.com/document/d/sOe9ov3MuWjcEty-Gg-rBXA/headless/print#heading=h.b0b0965sle1b
https://docs.google.com/document/d/sOe9ov3MuWjcEty-Gg-rBXA/headless/print#heading=h.j6je0ha0qv7
https://docs.google.com/document/d/sOe9ov3MuWjcEty-Gg-rBXA/headless/print#heading=h.ef7nabmlp6ax
https://docs.google.com/document/d/sOe9ov3MuWjcEty-Gg-rBXA/headless/print#heading=h.m6aedcjrh2i
https://docs.google.com/document/d/sOe9ov3MuWjcEty-Gg-rBXA/headless/print#heading=h.xtdv1q1gjnux
https://docs.google.com/document/d/sOe9ov3MuWjcEty-Gg-rBXA/headless/print#heading=h.wodaxmq0mvlj
https://docs.google.com/document/d/sOe9ov3MuWjcEty-Gg-rBXA/headless/print#heading=h.82bh45h8oho
https://docs.google.com/document/d/sOe9ov3MuWjcEty-Gg-rBXA/headless/print#heading=h.43j54cfkp25o
https://docs.google.com/document/d/sOe9ov3MuWjcEty-Gg-rBXA/headless/print#heading=h.3ryo2rem9foa
https://docs.google.com/document/d/sOe9ov3MuWjcEty-Gg-rBXA/headless/print#heading=h.512l2iw0dv8g
https://docs.google.com/document/d/sOe9ov3MuWjcEty-Gg-rBXA/headless/print#heading=h.eb14m7gl2ug3
https://docs.google.com/document/d/sOe9ov3MuWjcEty-Gg-rBXA/headless/print#heading=h.7qyuup6k1y1q
https://docs.google.com/document/d/sOe9ov3MuWjcEty-Gg-rBXA/headless/print#heading=h.f6k61sj3y8bw
https://docs.google.com/document/d/sOe9ov3MuWjcEty-Gg-rBXA/headless/print#heading=h.dapxjls0kp28
https://docs.google.com/document/d/sOe9ov3MuWjcEty-Gg-rBXA/headless/print#heading=h.nua81rjymf8a
https://docs.google.com/document/d/sOe9ov3MuWjcEty-Gg-rBXA/headless/print#heading=h.88sxm73es8u5
https://docs.google.com/document/d/sOe9ov3MuWjcEty-Gg-rBXA/headless/print#heading=h.3afkx5y107x6
https://docs.google.com/document/d/sOe9ov3MuWjcEty-Gg-rBXA/headless/print#heading=h.cfzs4515o9vc
https://docs.google.com/document/d/sOe9ov3MuWjcEty-Gg-rBXA/headless/print#heading=h.siufurnn6fyt
https://docs.google.com/document/d/sOe9ov3MuWjcEty-Gg-rBXA/headless/print#heading=h.qs7znp5r63m2
https://docs.google.com/document/d/sOe9ov3MuWjcEty-Gg-rBXA/headless/print#heading=h.u5v4pk7qse6l
https://docs.google.com/document/d/sOe9ov3MuWjcEty-Gg-rBXA/headless/print#heading=h.kouqr7xr4g7h
https://docs.google.com/document/d/sOe9ov3MuWjcEty-Gg-rBXA/headless/print#heading=h.v58j0sv6puz8
https://docs.google.com/document/d/sOe9ov3MuWjcEty-Gg-rBXA/headless/print#heading=h.mw0i8833yeqn
https://docs.google.com/document/d/sOe9ov3MuWjcEty-Gg-rBXA/headless/print#heading=h.qy63262y9cci
https://docs.google.com/document/d/sOe9ov3MuWjcEty-Gg-rBXA/headless/print#heading=h.qqc6iolh9tlb
https://docs.google.com/document/d/sOe9ov3MuWjcEty-Gg-rBXA/headless/print#heading=h.893tfkt5oqhi

Introduction

This manual is a starter guide for developing games on DuinoCube. It provides an overview of
the system architecture. It also introduces the Arduino boards and editor. However, it does not
delve into the finer details of some system components, such as the FAT file system and the
USB or SPI protocols.

You should have a working knowledge of:

How computer systems work.

Downloading, installing, and copying things on your computer.
Programming in C/C++.

Electronic circuits (helpful but not required).

Why Arduino?
There are a number of reasons for building a game console on the Arduino platform.

First, Arduino is well-established. There a standardized selection of Arduino boards to suit your
needs. You can also find hundreds of different parts and accessories to customize your system.

Arduino also makes microcontroller development simple. There is no need to deal with
programming cables, different architectures, pin and port numbers, etc. Everything is packaged
neatly behind an integrated environment. You need only a USB cable to program an Arduino
board.

Finally, it is very easy to find help for Arduino. Just go online and browse the official Arduino
forum at http://forum.arduino.cc.

http://www.google.com/url?q=http%3A%2F%2Fforum.arduino.cc&sa=D&sntz=1&usg=AFQjCNFrPn7-THyZFxbuACG7xNt7U335Aw

System Overview

DuinoCube is based on the popular Arduino platform. DuinoCube adds various capabilities that
make up the components of a game console: graphics, audio, data loading, and user input.

Introduction to Arduino

Arduino systems can be built using a base Arduino board plus one or more shields. A shield is
an expansion board that attaches to the top of an Arduino. Each shield has a specific function.
There are shields that provide SD card slots, motor control, ethernet modem, and more. Most
importantly, Arduino shields can be designed to stack on top of one another, as shown in the
photo here:

The stacking structure allows all Arduino pins to reach all pins of each shield. As long as the
shields' control pins don't overlap, the Arduino board can access all of the connected shields.

Arduino boards come in various shapes and sizes. DuinoCube is designed to be compatible with
four of them:

Board name Microcontroller Program size | RAM size | Notes
Arduino Uno ATmega328P (AVR) 32 kB 2 kB Most popular
Arduino Esplora | ATmega32U4 (AVR) 32 kB 2.5 kB Built-in
gamepad
Arduino Mega ATmega2560 (AVR) 256 kB 8 kB Best value
Arduino Due AT91SAM3X8E (ARM) | 512 kB 96 kB Most powerful

References:

http://arduino.cc/en/Main/Products

DuinoCube shields

To build a DuinoCube on an Arduino board, you must attach two types of shields on top:
e The DuinoCube GFX Shield, which provides video and audio.
e One of two DuinoCube Ul Shields, depending on your Arduino board. They contain these

features.
o Basic Ul Shield for Uno/Mega/Due: has SD card, USB host, and 32 kB extra
RAM.

o Esplora Ul Shield: has SD card and 32 kB of extra RAM.

This table summarizes the shields required to build DuinoCube for each Arduino board type:

Board name Shield #1 Shield #2 Photo of complete system

Arduino Uno GFX Shield Basic Ul Shield

Arduino Mega GFX Shield Basic Ul Shield

http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FMain%2FProducts&sa=D&sntz=1&usg=AFQjCNGpBEuE4p4POysXG9vuRe_hYKAmNQ

Arduino Due

GFX Shield

Basic Ul Shield

Arduino Esplora

GFX Shield

Esplora Ul Shield

The Arduino controls the two shields using the Serial Peripheral Interface (SPI) bus. There is
also an interface between the two shields that allows data to be directly copied between them.
The following diagram shows the components of the two shields and how they fit into the

system:

Arduino

{l

Arduino SPI bus

s MAX3421E

References:

USB Host

USB Port

System Shield

b -

Core Shield L 9.4 L
Ve 4
512KB
Controller
Video FPGA Core TN
RAM I/ chip (AVR)
T I)
VGA port] [Audio jack] [gﬁdmsslg]
Monitor] [Speakers] ME;?dS D

http://en.wikipedia.org/wiki/Serial Peripheral Interface Bus

GFX Shield architecture

USB

-

Uno/Mega/Due
System Shield only

gamepad ’

- -

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSerial_Peripheral_Interface_Bus&sa=D&sntz=1&usg=AFQjCNEG_gJnxx4hKPXvKst2SONNtxpXRA

The GFX Shield contains a field programmable gate array (FPGA). An FPGA is a
programmable logic chip. But instead of a software program, it lets you program a circuit onto it.
The GFX Shield's FPGA contains a custom video and audio system called the Core. As the
name suggests, the Core is central to the operation of DuinoCube.

Here is a list of some of the Core's features:

e VGA graphics output. Lets you display the graphics output on a computer monitor and
some newer TV's. The image resolution is 320x240. More video modes TBD.

e Four color palettes. Each palette contains 256 colors. The output can thus contain up
to 1024 colors. The full range of possible colors is 252,144 (18-bit).

e Four tile layers. Each tile layer is composed of a 32x32 grid of 16x16 tiles. Alternatively,
8x8 tiles can be used. The tile layers can be moved independently of one another.

e 256 sprites. A sprite is a 2D graphics object that stands on its own. Each sprite can be
moved independently of the others. There is also collision detection for the sprites.

e Stereo audio output. The left and right channels can be independently programmed to
generate tones with different frequencies. The audio system is not fully developed yet so
a lot of details are TBD.

Additionally, there is 512 KB video memory (VRAM) that stores image data.
References:

http://en.wikipedia.org/wiki/Field-programmable gate array
http://en.wikipedia.org/wiki/Sprite %28computer graphics%29

Ul Shield architecture

The Ul Shield comes in two flavors, the Basic version (left) and the Esplora version (right).
Here are the features that are common to the two versions:

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FField-programmable_gate_array&sa=D&sntz=1&usg=AFQjCNFM6f-419sOXdF0_mGd3_0Vr9fQug
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSprite_%2528computer_graphics%2529&sa=D&sntz=1&usg=AFQjCNEb5lMcovkN68WnQzm0mB3jgGJcjA

e Controller chip. Another AVR microcontroller (ATmega328P) that handles the various
operations in the system. It acts as a middleman between the main Arduino board and
the other components of the system.

e 32 kB of RAM. This is called shared memory as it can be accessed by both the
controller chip and the Arduino. It is used to pass data between the two processors. It
can also be used as extra memory on the smaller Arduinos.

MicroSD card slot. Load data and games from a microSD card.

Core Interface. Lets the controller chip copy data from the microSD card directly to the
Core. This makes it easy to load large amounts of image, palette, and tilemap data from
files.

e Boot menu. Lets you load a new game onto the Arduino or reprogram the FPGA with an
updated Core image.

Features found on only the Basic Ul Shield:
e USB Host Controller and USB port. Plug in a USB gamepad. The controller chip
handles reading the gamepad over USB.

Features found only on the Esplora Ul Shield:

e Standard Arduino shield adapter. The Arduino Esplora has a pin header interface that
is not physically compatible with standard Arduino shield pin headers like that of the GFX
shield. The Esplora Ul shield solves this problem by mapping the Esplora pins to a
standard Arduino pin interface.

These images show the contrast between an Esplora header interface and a standard header
interface:

Software architecture

As you have seen by now, the hardware architecture is rather complex. Fortunately there is a
DuinoCube software library that hides the complexity behind a simple API. See the software
block diagram below.

Arduino Program (Sketch)

DC.File] DC.Gamepad
module module
DC.Core DC.Mem

module module 3 e

Arduino

DuinoCube
library

RPC Client

[— Yy)
RPC Server
3 s - Controller AVR
() on Ul Shield
SD card USB gamepad
driver driver
\ h) L 3 g /

Core Shared microSD USB Hardware
(FPGA) RAM card gamepad (Both shields)

The software library forms a bridge between an Arduino program and the DuinoCube hardware.
For Core and shared memory access, the library can directly access those hardware
components. But accessing SD card and USB gamepad are more complex and require more
program space.

This is where the controller chip of the Ul shield comes in. It acts as a remote procedure call
(RPC) server and the DuinoCube library is the client. An RPC protocol allows a program running
on one processor (client) to call a function that runs on a different processor (server). Thus there
is no actual driver code for SD card or USB gamepad in the DuinoCube library itself. This frees
up much of the program space on the Arduino.

The diagram above does not show all the interfaces between the components. For example, the
DC.Core module has functions that call into the DC.File module; and the RPC client and server
use shared RAM to pass data back and forth. The block diagram thus shows only the
relationships that are important to the DuinoCube developer.

Setup Guide

Getting the Arduino IDE

Download and install the Arduino development software (IDE). You can find it at:
http://arduino.cc/en/main/software

.

Blink | Arduino 1.0
File Edit ! ch Tools Hv':lp

Elink

i* -
Blink
Turns on an LED on for one second, then off for one second, repe

This example code is in the public domain.
*Sf

void setup() {
S/ initialize the digital pin as an output.
£/ Pin 13 has an LED connected on most Arduino boards:
pinMode (13, OUTPUT);

h

void loop() {
digitalwrite(13, HIGH}; // set the LED on

delay (1003); /4 walt for a second
digitalwrite (13, LOW); /4 set the LED off
delay (1000]; S/ walt for a second

b

The Arduino IDE has a source code editor that supports C++. The editor is great for beginners
but once you get into more advanced programming, you will need a more powerful and flexible
tool. For this reason, | recommend using a separate source editor from the get-go. You will still
have to use the Arduino IDE to compile and upload your code.

Here are some popular source editors:
e Notepad++. My top pick. A lightweight yet powerful GUI-based editor. Officially only for
Windows, but can be run on Linux using the Wine emulator. http://notepad-plus-plus.org/
e Eclipse. One of the most popular GUI-based editors. https://www.eclipse.org/
o There is also an Eclipse Plugin for Arduino:
http://playground.arduino.cc/Code/Eclipse#Eclipse_and_additional_plugins

http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2Fmain%2Fsoftware&sa=D&sntz=1&usg=AFQjCNFBtKbCh1drXkGZdXkm6yeY4zysxw
http://www.google.com/url?q=http%3A%2F%2Fnotepad-plus-plus.org%2F&sa=D&sntz=1&usg=AFQjCNFIZ0FKFBpTCl4RLaroVRpkTqoILw
https://www.google.com/url?q=https%3A%2F%2Fwww.eclipse.org%2F&sa=D&sntz=1&usg=AFQjCNEqecVl0gE0Eqmxaw05Z47ac8eWFw
http://www.google.com/url?q=http%3A%2F%2Fplayground.arduino.cc%2FCode%2FEclipse%23Eclipse_and_additional_plugins&sa=D&sntz=1&usg=AFQjCNGDg5raLq0MEritNOa1EXnnH990oA

e Komodo Edit. A good GUI-based choice for Mac OS X.
http://komodoide.com/komodo-edit/

e emacs. A classic GNU editor that is popular among Linux users.
http://www.gnu.org/software/emacs/

e vim. Another classic editor that relies heavily on keyboard commands. It also has a GUI
mode called gVim. http://www.vim.org/

Once you've installed an external editor, notify the Arduino IDE of your decision. Open the
Preferences menu in the IDE and check the "Use external editor" checkbox:

8 00 Preferences

Sketchbook location:

,I’Users;’squelDocumentslArduin0| Browse
Editor language: r.":'.«r.stem Default e J (requires restart of Arduino)
Editor font size: 10 (requires restart of Arduino)

Show verbose output during: || compilation | upload
E\J’erify code after upload
I EUse external editor I

@Check for updates on startup
EUpdate sketch files to new extension on save (.pde -> .ing)

More preferences can be edited directly in the file
[Users[sque/Library/Arduino/preferences.txt
(edit only when Arduino is not running)

(OK)(Cancel)

By setting this option, the Arduino IDE will reload the code from disk before compiling.
(Otherwise, the IDE will compile the code that it is currently showing, which may not be the most
recent code.)

Installing the DuinoCube library

To run DuinoCube sketches, you will have to download the DuinoCube code from GitHub:
https://github.com/eecsninja/duinocube/. Select the most recent release branch (0.4.0 as of this
writing) and click "Download ZIP."

http://www.google.com/url?q=http%3A%2F%2Fkomodoide.com%2Fkomodo-edit%2F&sa=D&sntz=1&usg=AFQjCNHagH83HlAfyTDfVWsCFOeYGlo_8A
http://www.google.com/url?q=http%3A%2F%2Fwww.gnu.org%2Fsoftware%2Femacs%2F&sa=D&sntz=1&usg=AFQjCNGf6aSgBTDnbc8PYB6g8u9G9FzPQg
http://www.google.com/url?q=http%3A%2F%2Fwww.vim.org%2F&sa=D&sntz=1&usg=AFQjCNHdP8gqnUzPLg19GYpYUylSPdTBCQ
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Feecsninja%2Fduinocube%2F&sa=D&sntz=1&usg=AFQjCNF_9Iou1ly-6enc7B4WjSzGFdfOuw

00 eecsninja/duinocube at release-0.4.0 Co

€) eecsninja/duinocube atrelease... | & |
—~ SE—
(&) & Gitiub, Inc. (U9 hteps: [github.com) secsninja/duinocube/tree release-0.4.0 ¢ | (B Google Q) (&) (] B-]
Libraries and tools for DuinoCube
<> Code
240 8 [1
e — lesues
& ¥ branch: release-0.4.0 ~ | duinocube /[® Pull Requests
Switch branchesftags
'} Wiki
Docu | Find or create a branct
latest commit 7215ae1cld Pulse
Branches Tags
D unocube old unused pin definitions 9 days ago Graphs
o " iode fo DuinoCube library 11 days ago
master Network
25 day:
W ease010 tLED 25 days ago
nelude to tmx2: t tin
U ease020 serth include to tmx2dat 2 months ago Setiings
Bec 10 months ago
release-0.2.1
HTTRS
Bec 10 months ago
Lelease-030 g
B 43 release 9 days ago
+ release-0.4.0
BR 2ghtation update 5 months ago
i
[@ clone in Desktop
README <> Download ZIP
DuinoCube Library
By Simon Que
Contains the Arduino library for DuinoCube, plus all related software code.
https: //github.com/eecsninja/duinocube/tree/ release-0.4.0

Advanced users can also get it by cloning the repository using git:
git clone https://github.com/eecsninja/duinocube.git

Check out the appropriate branch:

sque:duinocube $ git branch -a

* master

sque:duinocube $ git checkout -b release-0.4.0 remotes/origin/release-0.4.0

The DuinoCube library is located in the DuinoCube/ folder of the code repository you just
downloaded. Import the DuinoCube library into the Arduino environment as shown below. Be
sure to select the DuinoCube/ library directory inside the duinocube repository.

sketch_feb22a

Note that the DuinoCube library gets copied to a separate directory by the Arduino IDE. It is

Arduino File Edit [0 Tools Help

Show Sketch Folder 38K

Add Library...

EEPROM
Esplora
Ethernet
Firmata

GSM
LiquidCrystal
Robot_Control
Robot_Motor
sD

Servo
SoftwareSerial
SPI

Stepper

TFT

. WiFi

Wire

Arduino Esplora on /dev/tty.usbmodemfal4l

located under the following paths:

__®& Arduino File Edit Sketch Tools Help

8006

Select a zip file or a folder

the library you'd like to add

DEVICES
| Macintosh HD
PLACES

B3 Deskeop

£} sque

7 Applications

(New Folder)

) osx_sdl_setup.2ip
[Output.txt

» IN& src
| HED swiftblocks
» [F|E3 usB_Host_Shield

Format: ZIP files or folders F

(£ DuinoCube =
(1 Arduino [COPYING
|| |&3 chronocube 5 COPYING.LESSER
] duinocube # DuinoCube
(1 fallingblocks [examples
L gd2-pacman » [firmware
(3] invaders [NEWS
31 libvpx » | [§ README
M osx_sdl_setup & utils

(_Cancel)

e \Windows: C:\Users\<username>\Documents\Arduino\libraries\DuinoCube

e Linux: /home/<username>/Documents/Arduino/libraries/DuinoCube

e Mac OS X: /Users/<username>/Documents/Arduino/libraries/DuinoCube

If you update the DuinoCube library or download a newer version, be sure to delete the

directories indicated above before importing the newer version.

Hardware setup

In addition to the DuinoCube Ul and GFX shields, you will also need the following hardware to get

started:

Compatible Arduino Board (Uno, Mega, Due, or Esplora).

It should come with a USB cable.

VGA cable.

A VGA-to-DVI cable also works if your monitor has a DVI inpu

TBD: RCA cable for composite video

Monitor or TV with supported input: VGA or DVI.

Speakers or headphones.
Optional for DuinoCube operation.

WARNING: Be extremely careful when using
headphones. Make sure the sound is not too loud before

utting them on.

Generic USB gamepad.

Not needed if you have an Esplora.

MicroSD card.

You will also need some kind of microSD card reader for your
computer.

DuinoCube's file system driver only supports short
filenames of the 8.3 format. Filenames that don't conform to
the format will not appear with the correct name.

10-pin IDC ribbon cable. Connects the data bus between the
Ul and GFX shields.

Included with Ul and GFX shield pair.

Follow these steps to assemble DuinoCube.

1. Attach the Ul Shield to the Arduino board. Make sure all the headers line up: the inline
headers on the sides and the 6-pin ISP header in between them.

3. Connect the two shields with the ribbon cable. The inter-shield connector on the GFX
shield is the one that's not near the corner.

4. (Esplora only) Connect the two leftmost TinkerKit connectors on the Esplora board.

5. Connect the GFX Shield's VGA output to the input of the monitor or TV, using the VGA
cable.

7. (not for Esplora) Attach the USB gamepad to the USB port on the Ul Shield.

8. Insert the microSD card into the reader connected to your computer.
a. Format the microSD card using FAT32.
b. Load the contents of the zip file onto the SD card.
i. TODO: Add zip file.
c. Eject the microSD card.

9. Insert microSD card into the microSD slot on the Ul Shield. The GFX shield has been
removed in the photo for visibility.

10. Connect the Arduino to your computer's USB port using the USB cable that came with it.

Do
Se
]

PIa|ys
aqn3o

12. On the monitor or TV, select the VGA input. Make sure the display has picked up a valid

video signal.

Composite

13. Set the switch on the Ul shield labeled "DEV" in the direction indicated by the label. The
"DEV" LED should turn on. This switch enables developer use of the Arduino while the Ul
ected. Otherwise the Ul shield may reset the Arduino on its own.

References:
http://en.wikipedia.org/wiki/8.3 filename

Loading a sketch

Programs written for Arduino are called sketches. Some facts about sketches:
e The main sketch source file has the .ino extension.
e Sketches are written in C++, with a few Arduino-specific rules.
e A sketch file must be placed in a directory with the same name. For example, if you have
Blink.ino, it must be in a directory called Blink.
e When your sketch programs get big, you can break them into separate source files
located in the same directory. These source files have the .cpp extension like normal

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2F8.3_filename&sa=D&sntz=1&usg=AFQjCNH28LQC10MhyZLwbjrbjImMU6Ir4Q

C++ files. They are automatically picked up by the Arduino IDE when you open the main
sketch file.

Let's try loading a DuinoCube example sketch: core_usb_demo. It tests out both the graphics
and the USB gamepad input. Open the sketch from the menus: File > Examples > DuinoCube
> core_usb_demo.

Once you have the sketch open in the IDE, you will have to tell the IDE what Arduino board you
have connected. Under the Tools menu, select the board name and the serial port.
e On Windows, it will show up as a COM port. Look under your list of devices (Start Menu
> Devices and Printers) to see which COM port it's on.
e On Linux and Mac OS X, it is called /dev/tty.usbmodemXXXXXX, where "XXXXXX" is
some assigned letter/number combination. For older Arduino models, the name might be
slightly different.

See these screenshots for an example:

X Arduino File Edit SketchHeIp

800 core_usb.d Auto Format ®T
Archive Sketch E b
Fix Encoding & Reload
Serial Monitor 4 #M [~}

M Arduino File Edit Sketch Help
800 core usb.d Auto Format ®T
Archive Sketch

Fix Encoding & Reload
Serial Monitor T 8M

core_usb_demo core_usb_demo

// This file iz part of Duinobube. Board R /¢ Copyright (C) 2013 Sinon Que Board >
// Duinofube is fres softwars: you con ret Serial Port » Arduino Duemilanove w/ ATmega328 /¢ This file is part of DuinoCube. fdev/tty.Bluetooth-Incoming-Port

5 15 e o pers ot e EN'-' Leooar Arduine Diecimila or Duemilanove w/ ATr /dev/cu.Bluetooth-Incoming-Port

/¢ the Free Sof tw i, either v Programmer » N /¢ DuinoCube is fre Programmer »

// (at your om.mr\) m’\y mtar verston. Bura Bootloader Arduine Nano w/ ATmega328 7716 e the tarms nf the snu Lesser Es Burﬁ Bootloader /dev/tty.Bluetooth-Modem
| Arduino Nano w/ ATmega168 ¢ the Free Saf /dev/cu.Bluetooth-Madem

7 vt e g e tope cEITIEESEFUTS i o (at your Upt\un) uny [

7/ but HITHOUT ANY WARRKNTY; without even the inplicd warranty of Arduino Megal2360jorMegalADK o SRR e

¢¢ NERCMATABILITY or FITMESS FIR 4 | PAPTI‘:ULAR e e e Arduine Mega (ATmegal280) 7/ Dutmouee 19 sistrinuted in the poge that 1t w\H e usem /dev/cu.usbmodemfal4l

#4 GMJ Lesser General Pub Arduino Leonardo 77 but WITHOUT MY WARRANTY; without

/¢ MERTHANTABILITY o © Fimieds P 4 mm:uua FORROEE. Sam the
/¢ BN Lesser Genaral Publis License for nore et La,

" N
1Y held b tecetied sy of the G Leceer heneeal Publio Licenss Arduino Esplora
Bl ¢/ clorp with DuinoCube. 1f not, see shttp://wiw.gnu.org/|icenses/s. Arduing Micro

Arduino Mini w/ ATmega328
Arduino Mini w/ ATmegal68
#include <ninafuhe b Arduino Ethernet

Arduine Fio

Arduino BT w/ ATmega328
Arduing BT w/ ATmegal68
LilyPad Arduino USB

LilyPad Arduino w/ ATmega328
LilyPad Arduino w/ ATmegal68
Arduina Uno on /dev/t Arduine Pro or Pro Mini (5V, 16 MHz) w/ / Arduino Uno on /dev/tty.usbmodemfa141

"
AT smum have, recewen a ooy ot me ENU Lesser General Public Licsrse
/7 along with DuincCube. Tf not, see Pz A .gru.org/Licerses >

// Test buinofube tile layers, sprites, ond USB input.

¢ Teat Duinobibe file Lo anrites.and ISR oot

If you're having trouble finding the right serial port, disconnect your Arduino from the computer
and see which port(s) disappear. Then reconnect your Arduino and select one of the ports that
reappear.

Now you're ready to upload the program. Select File > Upload. The keyboard shortcut is Ctri+U
or Command+U, depending on your operating system. The sketch will take about 10-20
seconds to compile and upload to the Arduino. When the upload is complete, the IDE will display
the message "Done uploading."

Edit Sketch Tools Help ! File Edit Sketch Tools Help
New EN 5 core_usb_demo | Arduino 1.0.5

Open... #0
Sketchbook >

core_usb_dem Examples > core_usb_demo
¢ topyrioht ¢y Close BW #¢ This file iz part of DuinoCube.
i Save ®5 m o m
A/ This file is Save As 38S /¢ DuinoCube iz free softwore: you con redistribute it and/or modify
I /4 it under the terms of the GNU Lesser General Public License oz published by

/7 DuinoCube is ff UDIUEd U modi fy

#/ 1t under the t Upload Using Programmer 38U ¢ as published by
// the Free Softy lge, or

/¢ the Free Softwore Foundotion, either wersion 3 of the License, or
/¢ (ot your option) any later wersion.
I

A7 (ot your optic Page Setup D8P /¢ DuinoCube iz distributed in the hope that it will be uzeful,
I Pri 3p A4 but WITHOUT ANV WARRANTY; without even the implied warranty of
A DuinoCube is ¢ rint /¢ MERCHAMTABILITY or FITMESS FOR 4 PARTICULAR PURPDSE. Ses the

A7 but WITHOUT ANV ERRENTY WGt eve T theinp T eawar ranty of
/¢ MERCHANTABILITY or FITMESS FOR A PARTICULAR PURPOSE. See the
A7 GNU Lesszer Genergl Public License for more detoils.

A4 GNU Lesser General Public License for more details.

I

/4 You should have received o copy of the GNU Lesser General Public License
/44 along with DuinoCube. If not, see <hittp:/fwww.onu.org/licenses/=.

/¢ You should have received a copy of the GNU Lesser Generol Public License

A/ along with DuinoCube. If not, see <http://wew.gnu.orgdlicenses . | /¢ Test DuinoCube tile layers, sprites, and USB input.

&4 Test, DuinoCube file lovers. sarites. asd LS inaot. #innlude fninnCuhe. e

7,608 bytes (of a 32,256 byte meimum)

Binary sketch size:

Arduino Uno on [dev/tty.usbmodemfal4l Arduino Uno on fdev/tty.usbmode mfa141

Now your sketch is running on the Arduino! Use the gamepad's joystick or D-pad to move the
sprite around the world. The camera will move to follow your sprite. Here's a screenshot of the
demo in action:

a3
=i
aa

Programming Guide

Now that you have a loaded a sketch and seen it running on DuinoCube, it's time to dig into the
code. This section will explain how to write a simple game-like demo. It uses core_usb_demo as
an example.

Arduino programming model

The Arduino compiler replaces the traditional main () function with a pair of functions setup ()
and loop (). setup () runs once and then loop () is called repeatedly. This is because in a
simple system like an Arduino, there is no operating system. The program never exits because it
has nowhere to go. Hence, it ends up executing 1oop () repeatedly.

This shows the Arduino program structure and the equivalent C/C++ program:

void setup() { void setup() {
} }
void loop() { void loop() {
} }

int main() {
setup();
while (true) {
loop();
}

return 0;

}

However, this model is designed for relatively simple code. For games, it needs to be slightly
more complex, as we will see later.

Furthermore, your code will have to use #include to pick out dependent libraries. In the main
.ino file of your sketch, the #include directive has two purposes:
e Includes the header file of that library (same as in regular C++).
e Tells the compiler to build and link that library. In regular C++, you would have to set the
linker options manually.

Setting up the game

Every sketch for DuinoCube needs to #include the DuinoCube and SPI libraries:

#include <DuinoCube.h>
#include <SPI.h>

The SPI library is required by the DuinoCube library to access all the hardware using the SPI
interface.

Below is the setup() function of core_usb_demo:

void setup() {
Serial.begin(115200);

DC.begin();

load();
draw();

}
Here's a breakdown of each part of the setup code.

Serial.begin(115200);
Enable the Arduino serial console to transmit and receive at a baud rate of 115200. This
used for logging debug messages to the console in the Arduino IDE. A sketch can run fin

without it. But you will find it very useful to be able to print debug messages.

DC.begin();

Initialize the DuinoCube library. Call this before calling any other DuinoCube library functions. It
resets the hardware in the system to start afresh. It also sets up the printf() function to send
prints over the serial console.

load();

Calls a local helper function to load all the palettes, tilemaps, and images used in the demo.

draw();

Draw all the on-screen layers and objects for the first time.

Loading the graphics data

The following code specifies the files on the SD card from which to load image, palette, and
tilemap data. Nothing fancy here, just arrays of flename strings.

const char* kImageFiles[] = {
"data/tileset.raw",
"data/clouds.raw",

"data/sprite32.raw"”,

¥

const char* kPaletteFiles[] = {
"data/tileset.pal”,
"data/clouds.pal”,
"data/sprites.pal”,

¥

const char* kTilemapFiles[] = {

"data/deserto.lay",
"data/desertl.lay",
"data/desert2.lay",
"data/clouds.lay",

1

Here is the data loading function. It goes through each type of data: palette, tilemap, and image
data, in that order.

static void load() {
for (int i = @; i < ARRAY_SIZE(kPaletteFiles); ++i) {
const char* filename = kPaletteFiles[i];
if (!DC.Core.loadPalette(filename, i)) {
printf("Error loading palette from file %s.\n", filename);
continue;

}

*palettes[i] = i;

for (int i = ©; i < ARRAY_SIZE(kTilemapFiles); ++i) {
const char* filename = kTilemapFiles[i];
if (!DC.Core.loadTilemap(filename, i)) {
printf("Error loading tilemap from file %s.\n", filename);
continue;

uint32_t vram_offset = 0;
for (int i = ©; i < ARRAY_SIZE(kImageFiles); ++i) {
const char* filename = kImageFiles[i];
uint32_t size_read = DC.Core.loadImageData(filename, vram_offset);
if (size_read == 0) {
printf("Could not open file %s.\n", filename);
continue;
}
*vram_offsets[i] = vram_offset;

vram_offset += size_read;

For each type of data, there is a library function to load it from a file into the Core:
e DC.Core.loadPalette()
e DC.Core.loadTilemap()
e DC.Core.loadlmageData()

See the API reference for more details.

One thing you might have noticed is the error handling. If there was an error reading a file, the
library loading function will return false (or zero bytes in the case of loadlmageData()). This way,
you can inspect the serial console for any error messages.

Also note the ARRAY_SIZE() macro, which returns the number of elements in a static array. It is
defined in the DuinoCube library to make programming easier.

When loading image data, you also have to keep track of the image data addresses yourself. For
example, suppose you want to load a 1 KB file (0x400 bytes) to the location 0x1000 in VRAM,
and then load a second file into VRAM after it. You will have to store the return value of
loadlmageData(), which is 0x400, and add it to 0x1000 to get the next VRAM address to pass to
loadlmageData() when you call it on the second file.

Finally, note this code, which is used to assign a variable to each chunk of palette and image
data:

static uintl6_t landscape_offset, clouds_offset, sprites_offset;
static uintl6_t* vram_offsets[] = {

&landscape_offset,

&clouds_offset,

&sprites_offset,

1

static uint8 t landscape_pal, clouds_pal, sprites_pal;
static uint8 t* palettes[] = { &landscape_pal, &clouds pal, &sprites pal };

This code allow the image data addresses and palette indexes to be assigned to variables with
names. Named variables are easier to keep track of than numbered elements in an array.

Defining strings in Arduino code

In the previous section, you saw some code that contained text string definitions. For more
efficient string definitions, you need to use a special directive called PROGMEM.

When you define a string in Arduino code, the string text is stored in program memory (flash), of
which the Arduinos have at least 32 kB. However, at startup time, the strings are copied from
program memory into data memory (RAM) as static variables. It is these static variables that get
referenced when the code attempts to print a string. Thus a string definition also requires
program memory.

On the Uno and Esplora, there is only 2 kB and 2.5 kB of RAM, respectively. Loading strings into
RAM at startup time is an inefficient use of a limited resource. For smaller programs, it's not a
problem. But when you have dozens of strings, each with 20-50 characters, the space
requirements can quickly add up.

One common solution is to store the strings in program memory without loading it into RAM at
startup. Do this by adding the PROGMEM directive after a string definition.

#include <stdio.h>
#include <string.h>

#include <avr/pgmspace.h> // Required for PROGMEM.
static const char kFilename[] PROGMEM = "input.dat";
static const char kErrorString[] PROGMEM =

"Could not open file: %s\n";

To use a PROGMEM string, copy it to a local buffer when your program needs to use it locally. Use
strncpy P () to perform the copy.

char buf[256];

// Copy the string from program memory to local RAM. Limit
// the copy size to the size of the buffer.
strncpy P (buf, kFileName, sizeof (buf));

bool success = !DC.Core.loadPalette (buf, MAIN PALETTE INDEX));

To print a PROGMEM string to the console, use printf P():

// Continuation of above code example.

if (!success) {
// This should print: "Could not open file: input.dat"
// buf still contains the filename string.
printf P(kErrorString, buf);

When defining an array of strings, define the individual strings as variables first.
static const char kPaletteFileO[] PROGMEM = "tileset.pal"

static const char kPaletteFilel[] PROGMEM
static const char kPaletteFile2[] PROGMEM

"clouds.pal"

"sprites.pal"

static const char* kPaletteFiles[] =
{ kPaletteFile(O, kPaletteFilel, kPaletteFile2 };

for (int 1 = 0; i1 < ARRAY SIZE (kPaletteFiles); ++i) {
char buf[256];
strncpy P (buf, kPaletteFiles[i], sizeof (buf));
DC.Core.loadPalette (buf, 1i);

Here the individual strings are stored in only program memory, but the array of their pointers is
loaded into normal RAM. We could also add the PROGMEM directive to kPaletteFiles. Butit
would require extra code to read the array from program memory. All that work just to save six
bytes of RAM in the static space (each address value is two bytes). It isn't worth the trouble. In
contrast, the strings are 11-12 bytes each, including the null terminator. Adding the PROGMEM

directive saves 35 bytes of RAM.

Just remember: code space is cheaper than RAM.

Drawing the tile layers and sprites

With all the data loaded, it's time to enable the drawing. The draw () function draws both the tile

layers and sprites. In our program, there are four layers and one sprite.

Before turning on the rendering of these objects, the camera needs to be reset and the sprite
rendering depth needs to be set.

In the DuinoCube rendering space, there are two types of coordinates:

e World coordinates: The coordinates of the virtual world that is being rendered. These
are the coordinates relative to the grid of the virtual world. The locations of tile layers and
sprites are specified in world coordinates. Objects that are stationary should have
unchanging world coordinates.

e Screen coordinates: The location of the objects on the screen. The camera indicates
where the top-left corner of the screen is in world coordinate space.

During initialization in our program, the camera is set to (0, 0):

DC.Core.moveCamera (0, 0);

The rendering order of the sprites and layers needs to be specified. The tile layers are rendered
in order of their indexes. The DC.Core.setSpriteDepth () function inserts all the sprites
after a particular layer, so that the sprites are rendered immediately on top of it and below the
next layer.

In our program, the sprites are above all layers except for the clouds:

DC.Core.setSpriteDepth (CLOUD LAYER - 1);

Every tile layer or sprite is either enabled or disabled. They are disabled by default.
e enabled: The layer or sprite is drawn by the Core's renderer.
e disabled: The layer or sprite is not drawn by the Core's renderer.

To draw a layer or sprite, it first needs to be configured by setting its properties and location.
Then, call DC.Core.enableTileLayer() or DC.Core.enableSprite() to set it from disabled to

enabled.

Here is the code to draw each of the tile layers:

for (int layer = 0; layer < ARRAY_SIZE(kTilemapFiles); ++layer) {
uint8 t palette = (layer == CLOUD_LAYER) ? clouds_pal : landscape_pal;
uintle_t offset = (layer == CLOUD_LAYER) ? clouds_offset : landscape_offset;

DC.Core.setTileLayerProperty(layer, TILE_PROP_FLAGS,
(TILE_FLAGS_ENABLE_EMPTY |
TILE_FLAGS_ENABLE_TRANSP |
TILE_FLAGS_ENABLE_FLIP));

DC.Core.setTilelLayerProperty(layer, TILE_PROP_PALETTE, palette);
DC.Core.setTileLayerProperty(layer, TILE_PROP_EMPTY_VALUE, EMPTY_TILE);
DC.Core.setTilelLayerProperty(layer, TILE_PROP_TRANSP_VALUE, COLOR_KEY);
DC.Core.setTileLayerProperty(layer, TILE_PROP_DATA_OFFSET, offset);
DC.Core.moveTileLayer(layer, 0, 0);

DC.Core.enableTileLayer(layer);

The code sets the properties of each tile layer before enabling it for rendering. These properties
are necessary to render the layers properly. They include:

e Which color palette to use for.

e The value of an empty tile in the tilemap.

e The transparent pixel value in the tile image data.

e The offset in VRAM at which tile image data is stored.

See the API reference for a complete list of tile layer properties that can be set.

Similarly, here is code for rendering the player's sprite for the first time:

DC.Core.setSpriteProperty(PLAYER_SPRITE, SPRITE_PROP_WIDTH, SPRITE_SIZE 32);
DC.Core.setSpriteProperty(PLAYER_SPRITE, SPRITE_PROP_HEIGHT, SPRITE_SIZE_32);

DC.Core.setSpriteProperty(PLAYER_SPRITE, SPRITE_PROP_DATA_OFFSET,

sprites_offset);

DC.Core.setSpriteProperty(PLAYER_SPRITE, SPRITE_PROP_TRANSP_VALUE, COLOR_KEY);

DC.Core.moveSprite(PLAYER_SPRITE, 0, 0);

DC.Core.setSpriteProperty(PLAYER_SPRITE, SPRITE_PROP_PALETTE, sprites_pal);

DC.Core.setSpriteProperty(PLAYER_SPRITE, SPRITE_PROP_FLAGS,

SPRITE_FLAGS_ENABLE_TRANSP);

DC.Core.enableSprite(PLAYER_SPRITE);

Once again, the code specifies various rendering properties before enabling the sprite for
rendering. These properties are similar to the tile layer properties. But there are some properties
of sprites that don't exist for tile layers:

e Size: Each dimension can be 8, 16, 32, or 64 pixels.

e Orientation: Flip the sprite horizontally, vertically, diagonally, or a combination of these.

See the API reference for more details on sprite parameters.

The tile layer and sprite code described here does not need to be called every cycle. It only
needs to be called again except to update the rendered object. For example, to change its
location or to change the VRAM data offset to point at a new set of images.

The main game loop

The main body of a game program is the main loop. This is a loop that runs continuously until
some exit condition is reached. Even if the game is waiting for the user to select a menu option,
the game loop is running and polling for the user input. It does not block on waiting for user input
because it still needs to update certain aspects of the game like background music and
animation.

In the Arduino programming model, the loop() function itself is usually insufficient to serve as the
game loop. Variables like the player's location and the current score need to sit outside the main
loop. In the Arduino model, they will have to be declared as global variables. And it is poor
programming practice to have many global variables that are used in a local scope.

An alternative is to have an inner loop within the loop() function. This code lets you have a large
number of game loop variables defined outside the game loop itself but still as local variables:

void loop () {
// Define some game loop variables here.
bool done = false;
while (!done) {
// Actual game loop goes here.

}

That said, here are the loop variables in core_usb_demo:

// Initialize the player sprite location and image address.
intl6 t player x = 0;
intlé_t player y = 0;

uintl6e t player offset = sprites offset;

// Current camera location.
intlé_t scroll x = 0;
intl6e t scroll y = 0;

// Keep a copy of the previous gamepad state to detect button
// press and release events.

GamepadState prev gamepad;

prev_gamepad.buttons = 0;

prev_gamepad.x = 0;

prev_gamepad.y = 0;

// Keep track of changes in orientation.
uintl6e t old flip flags = SPRITE FLIP NONE;

// Player movement speed based on gamepad input.
int8 t dx = 0;
int8 t dy = 0;

// Adjustable sprite rendering depth relative to tile layers.
uint8 t sprite z = CLOUD LAYER - 1;

// Counter for moving the clouds.
uintl6 t movement count = 0;

These variables will be described in more details as we look at their usage in the main loop.

Here is the main loop, with large sections removed for brevity:

bool done = false;

while (!done) {
// Wait for visible, non-vblanked region to do computations.
DC.Core.waitForEvent (CORE EVENT VBLANK END) ;

// Perform game logic. (not shown here)

// Wait for Vblank.
DC.Core.WaitForEvent(CORE_EVENT_VBLANK_BEGIN);

// Update rendering parameters. (not shown here)

First there is a done flag. This flag is initialized to false. The game loop ends when it is set to
true. This could be when the player exits the game to go to the start menu, for example.

Inside the loop, the code is divided into two sections.

The first section performs the game logic: read user input and update the objects and counters
in the game. The game logic takes place during the visible period of the monitor's refresh
cycle, when it receives the image data that is being displayed.

The second section updates the rendering to reflect the changes made in the first part of the
code: scroll the camera, move the sprite, update sprite image and orientation, etc. This takes
place during the vertical blanking period of the monitor's refresh cycle, when it transitions to
the next frame. By updating the rendering settings during the vertical blanking period, you can
avoid tearing effects.

References:
http://www.brainbell.com/tutors/A+/Hardware/Basic_Monitor Operation.htm
http://en.wikipedia.org/wiki/Screen tearing

Reading user input

During the visible period, the main loop reads the current state of the gamepad:

GamepadState gamepad = DC.Gamepad.readGamepad();

The gamepad has four thumb buttons on the right side. core_usb_demo uses these to change
the orientation of the player's sprite. Here, only one orientation is shown. The others are not
shown for brevity:

uint16_t new_flip_flags = old_flip_flags;
if ((gamepad.buttons & (1 << GAMEPAD_BUTTON_1)) &&
I(prev_gamepad.buttons & (1 << GAMEPAD_BUTTON_1))){
new_flip_flags = SPRITE_FLIP_NONE;

}

gamepad.buttons is a bit field that contains the state of the gamepad buttons. A 1 bit means the
button is pressed. The above code sets an orientation if it detects that button #1 is pressed. Note
that it only sets the orientation when the button state goes from unpressed to pressed. This way,
holding down the button won't cause the code to interpret it as a series of repeating presses.

The next part uses the L1 and R1 buttons to change the image of the sprite. The different
images are arranged in memory consecutively. The code below shows how to interpret the
gamepad input to cycle through the images.

http://www.google.com/url?q=http%3A%2F%2Fwww.brainbell.com%2Ftutors%2FA%2B%2FHardware%2FBasic_Monitor_Operation.htm&sa=D&sntz=1&usg=AFQjCNHgZSmunIu6otIMoxBumO6M9LXPJQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FScreen_tearing&sa=D&sntz=1&usg=AFQjCNFBKtEvJcPHeMbyBWFE-s4DGtzO2A

int sprite_image_index =
(player_offset - sprites_offset) / SPRITE_SIZE;
if ((gamepad.buttons & (1 << GAMEPAD_BUTTON_L1)) &&
l(prev_gamepad.buttons & (1 << GAMEPAD_BUTTON_L1))){
--sprite_image_index;
}
if ((gamepad.buttons & (1 << GAMEPAD_BUTTON_R1)) &&
l(prev_gamepad.buttons & (1 << GAMEPAD_BUTTON_R1))) {
++sprite_image_index;
}
/I Adjust for valid image index values.
sprite_image_index =
(sprite_image_index + NUM_SPRITE_IMAGES) % NUM_SPRITE_IMAGES;
player_offset = sprites_offset + sprite_image_index * SPRITE_SIZE;

The L2 and R2 buttons of the gamepad control the rendering depth of the sprite. By pressing L2
and R2, the player can move the sprite higher or lower in the stack of tile layers:

// L2 and R2 buttons to change sprite Z-level.
if ((gamepad.buttons & (1 << GAMEPAD_BUTTON_R?2)) &&
I(prev_gamepad.buttons & (1 << GAMEPAD_BUTTON_R?2)) &&
sprite_z < NUM_TILE_LAYERS - 1) {
++sprite_z;

} else if ((gamepad.buttons & (1 << GAMEPAD_BUTTON_L2)) &&
I(prev_gamepad.buttons & (1 << GAMEPAD_BUTTON_L2)) &&
sprite_z > 0) {

--sprite_z;

}

The directional pad or joystick moves the sprite. The directional pad state is stored as two
signed integers: gamepad. x and gamepad.y, where 0 means no direction pressed or neutral
position. The code shown here is for the X-axis. The Y-axis has similar code.

if (gamepad.x < 0) {
/I Use acceleration.
if (porev_gamepad.x != gamepad.x)

dx = -1;

else if (dx > -MAX_MOVEMENT_SPEED)
--dx;

player_x += dx;

}

else if (gamepad.x > 0) {
/I Use acceleration.
if (porev_gamepad.x != gamepad.x)

dx=1;

else if (dx < MAX_MOVEMENT_SPEED)
++dx;

player_x += dx;

}

The code is a little more complex than just increasing or decreasing the player's location. It
applies acceleration so that the player sprite moves faster the longer you hold down a direction,
up to a maximum speed. This looks a lot smoother than just having one speed.

The above code also detects the first time the user has pressed the gamepad in that direction.
That's when it resets the acceleration value to 1 or -1.

After all this, the gamepad state needs to be saved so it can become compared to the next
cycle's gamepad state:

prev_gamepad = gamepad;

And we don't want the sprite to move off the screen. There's some code to adjust the camera
scrolling so that it moves with the sprite when the sprite is on the edge of the screen:

if (player_x < scroll_x)
scroll_x = player_x;

else if (player_x >= scroll_x + SCREEN_WIDTH - SPRITE_WIDTH)
scroll_x = player_x + SPRITE_WIDTH - SCREEN_WIDTH;

if (player_y < scroll_y)
scroll_y = player_y;

else if (player_y >= scroll_y + SCREEN_HEIGHT - SPRITE_HEIGHT)
scroll_y = player_y + SPRITE_HEIGHT - SCREEN_HEIGHT;

The cloud layer needs to be moved in its own direction. The following code updates the cloud
layer offset. It uses the movement counter divided by 8 and 16 along the two axes:

/I Update the cloud movement.

uint16_t clouds_x = (movement_count/ 8);

uint16_t clouds_y = -(movement_count / 16);

movement_count += MOVEMENT_STEP; // Has the value of 8.

Each frame cycle, the clouds move one pixel to the right. Every other frame, the clouds move
one pixel up, due to dividing MOVEMENT_STEP by 16.

That was a lot of game logic. In a real game, there is a lot more to keep track of. You will be
better off writing your helper functions to handle the various parts, so that your main loop code
doesn't become too long and unmaintainable.

Here is the last part of the main loop, the update code that runs during the vertical blanking
period. It just updates the rendering settings using all of the parameters that were updated during
the visible period.

// Scroll the camera.
DC.Core.moveCamera (scroll x, scroll y);

// Scroll the cloud layer independently.
DC.Core.moveTileLayer (CLOUD LAYER, clouds x, clouds y);

// Update the sprite.
if (new flip flags != old flip flags) {
DC.Core.setSpriteProperty (PLAYER SPRITE, SPRITE PROP ORIENTATION,
new flip flags);
old flip flags = new flip flags;
}
DC.Core.setSpriteProperty (PLAYER SPRITE, SPRITE PROP DATA OFFSET,
player offset);
DC.Core.moveSprite (PLAYER SPRITE, player x, player y);
DC.Core.setSpriteDepth (sprite z);

API Reference

The DuinoCube library is divided into several modules:
DC.Core: Graphics and audio core functions.
DC.File: File system (SD card) functions.

DC . Gamepad: Gamepad input functions.

DC . Mem: Shared memory functions.

To use it, include the DuinoCube library at the start of your code as follows:

#include <DuinoCube.h>

Top-level module

void begin() ;
Initializes DuinoCube. Run this as part of your setup () routine.
Example:

void setup() {
DC.begin () ;

printf()

The library sets up printf () to write logging over the Serial interface. Just use printf () as
you normally would.

Core module

System control functions
void moveCamera (intl6é_t x, intlé _t y);
Sets the view camera to a pixel offset (x, y) relative to world coordinates.

Example:
DC.Core.moveCamera (SCREEN WIDTH / 2, SCREEN_HEIGHT / 2);

void waitForEvent (uintlé_t event);
Loops until one of the events indicated by event has occurred.
Supported events:
e CORE EVENT VBLANK BEGIN: The start of the vertical blanking period.
e CORE EVENT VBLANK END: The end of the vertical blanking period.
e CORE EVENT HBLANK BEGIN: The start of the horizontal blanking period.
e CORE_EVENT HBLANK END: The end of the horizontal blanking period.
These events can be combined using the bitwise OR operator.
Example:
void loop () {
DC.Core.waitForEvent (CORE EVENT VBLANK END) ;

// Do game logic while previous frame is drawn.

DC.Core.waitForEvent(CORE_EVENT_VBLANK_BEGIN);
// Update rendering objects when blanked.

Data loading functions

bool loadPalette(const char* filename, uint8 t palette_index);
Loads palette data from file to a palette indicated by palette index.
Returns true if successful. Returns false if file could not be opened or read.
Example:
#define BG PALETTE 0
if (!DC.Core.loadPalette("angels.pal", BG PALETTE)) ({
printf ("Could not load palette!\n");
bool loadTilemap (const char* filename, uint8 t tilemap index);

Loads tilemap data from file to a tilemap indicated by tilemap index.

Returns true if successful. Returns false if file could not be opened or read.

The tilemap is 32x32 tiles and each tile is 2 bytes, unless in text mode. The total
expected size is 32 * 32 * 2 = 2 kB per tilemap.

Example:
#define MAZE TILE LAYER 1

if (!DC.Core.loadTilemap ("maze.map", MAZE TILE LAYER)) {
printf ("Could not load tilemap!\n");

uint32_t loadImageData(const char* filename, uint32_t vram offset);
Loads image data from file to a video RAM offset given by vram offset.
Returns the number of bytes read, or 0 if there was an error.
Example:
uint32 t vram offset = 0x1200;
uint32 t size read =
DC.Core.loadImageData ("sprites.raw", vram offset));
if (size read == 0) {

printf ("Could not load image data!\n"):
}

vram offset += size read;

Tile layer functions

void enableTileLayer (uint8 t layer index);
Enables a tile layer given by tile index.
Example:
#define TEXT LAYER INDEX 3
DC.Core.enableTileLayer(TEXT_LAYER_INDEX);
void disableTileLayer (uint8_ t layer index);

Turns off the tile layer given by tile index.

Example:
DC.Core.disa’ bleTilelayer (cloud layer index);

void moveTileLayer (uint8 t layer index, intl6é_t x, intlé_t y);

Sets the tile layer given by tile index to the location (x, y). When the location is (0,
0), the top left corner of the tilemap lines up with the top left corner of the world.

Example:
DC.Core.moveTileLayer (layer index, layer x, layer y);

void setTileLayerProperty(uint8_ t layer index, uintl6_t property,
uintlé_t value);

Sets a property of the the tile layer given by tile index to a particular value.

Property types:
The flags can be a combination of these:

e TILE PROP_FLAGS: Bit flags that can be a bitwise OR combination of these:
o TILE FLAGS ENABLE TEXT: For text-based tiling (8x8, 8-bit)
o TILE FLAGS ENABLE TRANSP: Use one color as the transparent color.
o TILE FLAGS ENABLE FLIP: Allow the upper bits of each tile value to be
interpreted as selecting a tile orientation.

e TILE PROP PALETTE: The index of the palette to use for rendering the layer.
e TILE PROP DATA OFFSET: The beginning of the tile image data in VRAM.
e TILE PROP TRANSP VALUE: The value to use for transparent pixels, if enabled.
e TILE PROP_EMPTY VALUE: The value of a tile slot that is empty.
Example:

DC.Core.setTileLayerProperty (current layer,

TILE FLAGS,

TILE ENABLE TEXT |

TILE ENABLE TRANSP);
DC.Core.setTileLayerProperty (current layer,

TILE DATA OFFSET,

vram offset);
DC.Core.setTilelLayerProperty (current layer,

TILE TRANSP VALUE,

transparent pixel value);

Sprite functions

void setSpriteDepth(uint8_ t depth);

Sets the rendering depth of all sprites to depth. The depth value can range from 0 to 3.
They are defined relative to the tile layers. e.qg. if depth is set to 2, then the sprites are
rendered immediately after tile layer #2 has been rendered.

Example:
#define WORLD MAP LAYER INDEX 0
#define CLOUD LAYER INDEX 1

#define TEXT LAYER INDEX

// Set sprites to be above the world map but below the
// clouds and text.
DC.Core.setSpriteDepth(WORLD_MAP_LAYER_INDEX);

void enableSprite(uint8_t sprite_index);
Enables a sprite given by sprite index.
Example:
for (int index = GHOSTS INDEX BEGIN;
index < GHOSTS INDEX BEGIN + NUM GHOSTS;
++index) {
DC.Core.enableSprite (index) ;
void disableSprite (uint8_ t sprite_index);
Turns off the sprite object given by sprite index.
Example:
for (int index = GHOSTS_ INDEX BEGIN;
index < GHOSTS INDEX BEGIN + NUM GHOSTS;
++index) {
DC.Core.disableSprite (index) ;
void moveSprite (uint8 t sprite_index, intlé_t x, intlé_t y);

Sets the sprite indicated by sprite index to the location (x, y).

When the location is (0, 0), the top left corner of the sprite object lines up with the top left
corner of the world.

Example:
DC.Core.moveSprite (enemy.sprite index, enemy.X, enemy.y);

void setSpriteProperty(uint8 t sprite_index, uintlé_t property,
uintlé_t value);

Sets a property of the the sprite object given by sprite index to a particular value.

Property types:
e SPRITE PROP_FLAGS, which can be a combination of these:
o SPRITE ENABLE TRANSP: Use one color as the transparent color.
e SPRITE PROP_ORIENTATION: Setthe orientation of the sprite. The orientation
can be a bitwise OR combination of the following:
o SPRITE FLIP HORIZ: Flip along X axis.
o SPRITE FLIP VERT: Flipalong Y axis.
o SPRITE FLIP DIAG: Flip along diagonal X=Y line.
e SPRITE PROP WIDTH, SPRITE PROP HEIGHT: The dimensions of the sprite.
o SPRITE SIZE_8:dimension is 8 pixels.
0 SPRITE SIZE 16:dimension is 16 pixels.
o SPRITE SIZE_ 32:dimension is 32 pixels.
0 SPRITE SIZE 64:dimension is 64 pixels.
e SPRITE PROP_PALETTE: Set the index of the palette to use for drawing this
sprite.
e SPRITE PROP DATA OFFSET: The beginning of the sprite object image data in
VRAM.
e SPRITE PROP TRANSP VALUE: The value to use for transparent pixels, if
enabled.

Example:
DC.Core.setSpriteProperty(player sprite,
SPRITE DATA OFFSET,
vram offset);
DC.Core.setSpriteProperty(player sprite,
SPRITE ORIENTATION,
FLIP X | FLIP_Y | FLIP DIAG);

File module

These functions allow access to the files on the SD card. All filenames must follow the old
FAT16 format of filenames being limited to 8 characters plus 3 characters for the extension.
However, the SD card can be formatted as FAT16 or FAT32.

uintlé_t open(const char* filename, uint8 t mode);
Opens a file and returns the handle, or 0 if the file could not be opened.

Modes:
e FILE READ: Open an existing file for reading. The file will not be created.

More file access modes will be added in the future, including write capability.

Example:
uintl6 t file handle = DC.File.open ("input.txt",
FILE READ);
if (!file handle) {
return false;

}
printf ("File is %1d bytes\n", DC.File.size(file handle));
char buf[128];
uint32 t size read = DC.File.read(file handle, buf,
sizeof (buf));
printf ("%1d bytes read.\n", size read);
DC.File.close(file handle);
uint32_t size(uintlé_t handle);
Returns the size of an open file.
Example: See example for open ().
uint32_t read(uintlé_t handle, void* dest, uint32_t size);
Attempts to read data from file into a buffer. Returns the number of bytes read.
Args:
e handle: Open file handle.
e dest: Read data into this memory location.
e size: Maximum number of bytes to read.
Example: See example for open ().

uint32_t write(uintl6_t handle, const void* src, uint32_t size);

Attempts to write data from buffer into file. Returns the number of bytes written.

Args:
e handle: Open file handle.
e src: Read data from this memory location.
e size: Maximum number of bytes to write.
Not yet implemented.
void close (uintl6_t handle) ;

Closes an open file indicated by handle.

Example: See example for open ().

Gamepad module

For accessing a USB gamepad or the Esplora gamepad interface. The same code works on
both system configurations.

GamepadState readInput();

Reads and returns the current state of the gamepad. The return value is a structure with
the format:

struct GamepadState {

uintlé t buttons; // Button states, one bit set for each
// button pressed.
intlée t x, y; // Position of Jjoystick or D-pad.
bi
Example:

GamepadState input = DC.Gamepad.readInput ()

int direction = NONE;
if (input.x < 0)
direction = LEFT;
if (input.x > 0)
RIGHT;
0)
direction = UP;
0)
DOWN ;

direction

A

if (input.y

A

if (input.y

direction

Mem module

These functions are used to access the 32 kB of external shared RAM on the Ul Shield. The
memory is accessed over the SPI interface. It cannot be simply read from and written to like
normal internal memory. Instead, you must copy buffers of data between the external and
internal memories.

Additionally, the Ul shield controller chip has a heap system for external shared memory. It
reserves the first 512 bytes for passing remote procedure call arguments.

The remaining 31.5 kB is available for general use as dynamically allocated memory.
void stat(uintlé_t* free size, uintl6é_t* largest size);
Returns the total free heap memory and size of the largest block of heap memory.

Args:
e free size:Pass in the address of an integer variable. The function will store
the total free heap memory in bytes in the variable.
e largest size: Pass in the address of an integer variable. The function will
store the largest block of free heap memory in bytes in the variable.

Example:
uintlé t free size = 0;
uintlé t largest size = 0;
DC.Mem.stat (&free size, &largest size);

printf ("Total bytes free: %d, largest free block: %d\n",
free size, largest size);

uintlé_t alloc(uintl6_t size);

Attempts to allocate external memory of size bytes. Memory is allocated blocks of 256
bytes, so the size is rounded up to the next multiple of 256 bytes.

If there is available memory, the function returns the starting address of the allocated
space. If there is not enough room to allocate the requested size, the function returns 0.

Example:
// Should allocate 1024 bytes if available.
uintl6é t addr = DC.Mem.alloc(1000);

if (laddr) {

printf ("Unable to allocate memory.\n");
} else {

// Do something with the memory.

DC.Mem. free (addr) ;

void free(uintlé_t addr);

Frees a shared memory block that was previously allocated by alloc (). If the address
does not point to the beginning of an allocated block, the function does nothing.

Example:
See the example for alloc ().

void read(uintlé_t src_addr, void* dest, uintl6_t size);
Copies a block of data from shared memory to internal memory.

Args:
e src_ addr: The address of the source data in external shared memory.
e dest: A pointer to the destination in internal memory.
e size: The number of bytes to copy. Does not check the for the end of shared
memory.

Example:
struct Rect {
int x, y;
int width, height;
bi
Rect rect;
// src_addr was previously allocated using DC.Mem.alloc () .
DC.Mem.read(src_addr, &rect, sizeof (rect));

void write (uintl6é_t dest addr, const void* src, uintlé_t size);
Copies a block of data from internal memory to shared memory.
Args:

e dest addr: The address of destination in external shared memory.
e src: A pointer to the source data in internal memory.

e size: The number of bytes to copy. Does not check for the end of shared
memory..

Example:
struct Rect {
int x, y;
int width, height;
i
Rect rect;
rect.x = 30;
rect.y = 12;
rect.width = 100;
rect.height = 200;
// dest addr was previously allocated using DC.Mem.alloc ()
DC.Mem.write(dest addr , &rect, sizeof(rect));

