<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta name="generator" content="pandoc"> <meta name="author" content="Fill In Your Name" /> <meta name="dcterms.date" content="2022-03-01" /> <title>Causal Inference</title> <meta name="apple-mobile-web-app-capable" content="yes"> <meta name="apple-mobile-web-app-status-bar-style" content="black-translucent"> <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no, minimal-ui"> <link rel="stylesheet" href="causalinference-slides_files/reveal.js-3.3.0.1/css/reveal.css"/> <link rel="stylesheet" href="causalinference-slides_files/reveal.js-3.3.0.1/css/theme/simple.css" id="theme"> <!-- some tweaks to reveal css --> <style type="text/css"> .reveal h1 { font-size: 2.0em; } .reveal h2 { font-size: 1.5em; } .reveal h3 { font-size: 1.25em; } .reveal h4 { font-size: 1em; } .reveal .slides>section, .reveal .slides>section>section { padding: 0px 0px; } .reveal table { border-width: 1px; border-spacing: 2px; border-style: dotted; border-color: gray; border-collapse: collapse; font-size: 0.7em; } .reveal table th { border-width: 1px; padding-left: 10px; padding-right: 25px; font-weight: bold; border-style: dotted; border-color: gray; } .reveal table td { border-width: 1px; padding-left: 10px; padding-right: 25px; border-style: dotted; border-color: gray; } </style> <style type="text/css">code{white-space: pre;}</style> <!-- Printing and PDF exports --> <script id="paper-css" type="application/dynamic-css"> /* Default Print Stylesheet Template by Rob Glazebrook of CSSnewbie.com Last Updated: June 4, 2008 Feel free (nay, compelled) to edit, append, and manipulate this file as you see fit. */ @media print { /* SECTION 1: Set default width, margin, float, and background. This prevents elements from extending beyond the edge of the printed page, and prevents unnecessary background images from printing */ html { background: #fff; width: auto; height: auto; overflow: visible; } body { background: #fff; font-size: 20pt; width: auto; height: auto; border: 0; margin: 0 5%; padding: 0; overflow: visible; float: none !important; } /* SECTION 2: Remove any elements not needed in print. This would include navigation, ads, sidebars, etc. */ .nestedarrow, .controls, .fork-reveal, .share-reveal, .state-background, .reveal .progress, .reveal .backgrounds { display: none !important; } /* SECTION 3: Set body font face, size, and color. Consider using a serif font for readability. */ body, p, td, li, div { font-size: 20pt!important; font-family: Georgia, "Times New Roman", Times, serif !important; color: #000; } /* SECTION 4: Set heading font face, sizes, and color. Differentiate your headings from your body text. Perhaps use a large sans-serif for distinction. */ h1,h2,h3,h4,h5,h6 { color: #000!important; height: auto; line-height: normal; font-family: Georgia, "Times New Roman", Times, serif !important; text-shadow: 0 0 0 #000 !important; text-align: left; letter-spacing: normal; } /* Need to reduce the size of the fonts for printing */ h1 { font-size: 28pt !important; } h2 { font-size: 24pt !important; } h3 { font-size: 22pt !important; } h4 { font-size: 22pt !important; font-variant: small-caps; } h5 { font-size: 21pt !important; } h6 { font-size: 20pt !important; font-style: italic; } /* SECTION 5: Make hyperlinks more usable. Ensure links are underlined, and consider appending the URL to the end of the link for usability. */ a:link, a:visited { color: #000 !important; font-weight: bold; text-decoration: underline; } /* .reveal a:link:after, .reveal a:visited:after { content: " (" attr(href) ") "; color: #222 !important; font-size: 90%; } */ /* SECTION 6: more reveal.js specific additions by @skypanther */ ul, ol, div, p { visibility: visible; position: static; width: auto; height: auto; display: block; overflow: visible; margin: 0; text-align: left !important; } .reveal pre, .reveal table { margin-left: 0; margin-right: 0; } .reveal pre code { padding: 20px; border: 1px solid #ddd; } .reveal blockquote { margin: 20px 0; } .reveal .slides { position: static !important; width: auto !important; height: auto !important; left: 0 !important; top: 0 !important; margin-left: 0 !important; margin-top: 0 !important; padding: 0 !important; zoom: 1 !important; overflow: visible !important; display: block !important; text-align: left !important; -webkit-perspective: none; -moz-perspective: none; -ms-perspective: none; perspective: none; -webkit-perspective-origin: 50% 50%; -moz-perspective-origin: 50% 50%; -ms-perspective-origin: 50% 50%; perspective-origin: 50% 50%; } .reveal .slides section { visibility: visible !important; position: static !important; width: auto !important; height: auto !important; display: block !important; overflow: visible !important; left: 0 !important; top: 0 !important; margin-left: 0 !important; margin-top: 0 !important; padding: 60px 20px !important; z-index: auto !important; opacity: 1 !important; page-break-after: always !important; -webkit-transform-style: flat !important; -moz-transform-style: flat !important; -ms-transform-style: flat !important; transform-style: flat !important; -webkit-transform: none !important; -moz-transform: none !important; -ms-transform: none !important; transform: none !important; -webkit-transition: none !important; -moz-transition: none !important; -ms-transition: none !important; transition: none !important; } .reveal .slides section.stack { padding: 0 !important; } .reveal section:last-of-type { page-break-after: avoid !important; } .reveal section .fragment { opacity: 1 !important; visibility: visible !important; -webkit-transform: none !important; -moz-transform: none !important; -ms-transform: none !important; transform: none !important; } .reveal section img { display: block; margin: 15px 0px; background: rgba(255,255,255,1); border: 1px solid #666; box-shadow: none; } .reveal section small { font-size: 0.8em; } } </script> <script id="pdf-css" type="application/dynamic-css"> /** * This stylesheet is used to print reveal.js * presentations to PDF. * * https://github.com/hakimel/reveal.js#pdf-export */ * { -webkit-print-color-adjust: exact; } body { margin: 0 auto !important; border: 0; padding: 0; float: none !important; overflow: visible; } html { width: 100%; height: 100%; overflow: visible; } /* Remove any elements not needed in print. */ .nestedarrow, .reveal .controls, .reveal .progress, .reveal .playback, .reveal.overview, .fork-reveal, .share-reveal, .state-background { display: none !important; } h1, h2, h3, h4, h5, h6 { text-shadow: 0 0 0 #000 !important; } .reveal pre code { overflow: hidden !important; font-family: Courier, 'Courier New', monospace !important; } ul, ol, div, p { visibility: visible; position: static; width: auto; height: auto; display: block; overflow: visible; margin: auto; } .reveal { width: auto !important; height: auto !important; overflow: hidden !important; } .reveal .slides { position: static; width: 100%; height: auto; left: auto; top: auto; margin: 0 !important; padding: 0 !important; overflow: visible; display: block; -webkit-perspective: none; -moz-perspective: none; -ms-perspective: none; perspective: none; -webkit-perspective-origin: 50% 50%; /* there isn't a none/auto value but 50-50 is the default */ -moz-perspective-origin: 50% 50%; -ms-perspective-origin: 50% 50%; perspective-origin: 50% 50%; } .reveal .slides section { page-break-after: always !important; visibility: visible !important; position: relative !important; display: block !important; position: relative !important; margin: 0 !important; padding: 0 !important; box-sizing: border-box !important; min-height: 1px; opacity: 1 !important; -webkit-transform-style: flat !important; -moz-transform-style: flat !important; -ms-transform-style: flat !important; transform-style: flat !important; -webkit-transform: none !important; -moz-transform: none !important; -ms-transform: none !important; transform: none !important; } .reveal section.stack { margin: 0 !important; padding: 0 !important; page-break-after: avoid !important; height: auto !important; min-height: auto !important; } .reveal img { box-shadow: none; } .reveal .roll { overflow: visible; line-height: 1em; } /* Slide backgrounds are placed inside of their slide when exporting to PDF */ .reveal section .slide-background { display: block !important; position: absolute; top: 0; left: 0; width: 100%; z-index: -1; } /* All elements should be above the slide-background */ .reveal section>* { position: relative; z-index: 1; } /* Display slide speaker notes when 'showNotes' is enabled */ .reveal .speaker-notes-pdf { display: block; width: 100%; max-height: none; left: auto; top: auto; z-index: 100; } /* Display slide numbers when 'slideNumber' is enabled */ .reveal .slide-number-pdf { display: block; position: absolute; font-size: 14px; } </script> <script> var style = document.createElement( 'style' ); style.type = 'text/css'; var style_script_id = window.location.search.match( /print-pdf/gi ) ? 'pdf-css' : 'paper-css'; var style_script = document.getElementById(style_script_id).text; style.innerHTML = style_script; document.getElementsByTagName('head')[0].appendChild(style); </script> <script src="causalinference-slides_files/header-attrs-2.10/header-attrs.js"></script> <link href="causalinference-slides_files/font-awesome-5.1.0/css/all.css" rel="stylesheet" /> <link href="causalinference-slides_files/font-awesome-5.1.0/css/v4-shims.css" rel="stylesheet" /> </head> <body> <div class="reveal"> <div class="slides"> <section> <h1 class="title">Causal Inference</h1> <h2 class="author">Fill In Your Name</h2> <h3 class="date">01 March 2022</h3> </section> <section id="TOC"> <ul> <li><a href="#/why-should-social-scientists-and-policymakers-care-about-causality">Why should social scientists and policymakers care about causality?</a></li> <li><a href="#/counterfactual-approach-to-causal-inference">Counterfactual Approach to Causal Inference</a> <ul> <li><a href="#/recent-changes-in-social-science-research">Recent changes in social science research</a></li> <li><a href="#/x-causes-y-is-a-claim-about-what-didnt-happen">“X causes Y” is a claim about what didn’t happen</a></li> <li><a href="#/how-to-interpret-x-causes-y-in-this-approach">How to interpret “X causes Y” in this approach</a></li> <li><a href="#/how-to-interpret-x-causes-y-in-this-approach-1">How to interpret “X causes Y” in this approach</a></li> <li><a href="#/exercise-echinacea">Exercise: Echinacea</a></li> </ul></li> <li><a href="#/potential-outcomes">Potential Outcomes</a> <ul> <li><a href="#/potential-outcomes-1">Potential outcomes</a></li> <li><a href="#/definition-of-causal-effect">Definition of causal effect</a></li> <li><a href="#/key-features-of-this-definition-of-causal-effect">Key features of this definition of causal effect</a></li> <li><a href="#/imagine-we-know-both-y_i1-and-y_i0-this-is-never-true">Imagine we know both <span class="math inline">\(Y_i(1)\)</span> and <span class="math inline">\(Y_i(0)\)</span> (this is never true!)</a></li> <li><a href="#/average-causal-effect">Average causal effect</a></li> <li><a href="#/estimands-and-causal-questions">Estimands and causal questions</a></li> <li><a href="#/other-types-of-estimands-you-may-be-interested-in">Other types of estimands you may be interested in</a></li> </ul></li> <li><a href="#/randomization-of-treatment-assignment">Randomization of treatment assignment</a> <ul> <li><a href="#/randomization-of-treatment-assignment-1">Randomization of treatment assignment</a></li> <li><a href="#/random-assignment-vs.-random-sampling">Random assignment vs. random sampling</a></li> <li><a href="#/randomization-is-powerful-1">Randomization is powerful (1)</a></li> <li><a href="#/randomization-is-powerful-2">Randomization is powerful (2)</a></li> <li><a href="#/randomization-is-powerful-3">Randomization is powerful (3)</a></li> <li><a href="#/random-sampling">Random sampling</a></li> <li><a href="#/potential-outcomes-2">Potential outcomes</a></li> <li><a href="#/random-assignment-to-red-1-or-blue-0-condition">Random assignment to red (1) or blue (0) condition</a></li> <li><a href="#/three-key-assumptions">Three key assumptions</a></li> <li><a href="#/key-assumption-sutva-part-1">Key assumption: SUTVA, part 1</a></li> <li><a href="#/key-assumption-sutva-part-2">Key assumption: SUTVA, part 2</a></li> <li><a href="#/key-assumption-excludability">Key assumption: Excludability</a></li> <li><a href="#/randomization-is-powerful-4">Randomization is powerful (4)</a></li> </ul></li> <li><a href="#/randomized-vs.-observational-studies">Randomized vs. observational studies</a> <ul> <li><a href="#/different-types-of-studies">Different types of studies</a></li> <li><a href="#/exercise-learning-about-your-prior-knowledge">Exercise: Learning about your prior knowledge</a></li> <li><a href="#/exercise-observational-studies-vs.-randomized-studies">Exercise: Observational studies vs. Randomized studies</a></li> <li><a href="#/discuss">Discuss</a></li> <li><a href="#/generalizability-and-external-validity">Generalizability and external validity</a></li> <li><a href="#/references">References</a></li> </ul></li> </ul> </section> <section id="why-should-social-scientists-and-policymakers-care-about-causality" class="slide level2"> <h2>Why should social scientists and policymakers care about causality?</h2> <ul> <li>[Discussion with your own examples.]</li> </ul> </section> <section> <section id="counterfactual-approach-to-causal-inference" class="title-slide slide level1"> <h1>Counterfactual Approach to Causal Inference</h1> </section> <section id="recent-changes-in-social-science-research" class="slide level2"> <h2>Recent changes in social science research</h2> <ul> <li><p>Historically, reverse causality and omitted variable bias have been problematic for a lot of social science research aimed at making causal claims.</p></li> <li><p>Recently, the counterfactual approach has been embraced in the social sciences as a framework for causal inference.</p></li> <li><p>This represents a big shift in research:</p> <ul> <li><p>Being more precise about what we mean by causal effects.</p></li> <li><p>Using randomization or designs with as-if randomization.</p></li> <li><p>More partnerships between researchers and practitioners.</p></li> </ul></li> </ul> </section> <section id="x-causes-y-is-a-claim-about-what-didnt-happen" class="slide level2"> <h2>“X causes Y” is a claim about what didn’t happen</h2> <ul> <li><p>In the counterfactual approach: “If X had not occurred, then Y would not have occurred.”</p></li> <li><p>Experiments help us learn about counterfactual and manipulation-based claims about causation.</p></li> <li><p>It’s not wrong to <em>conceptualize</em> “cause” in another way. But it has been productive to work in this counterfactual framework <span class="citation" data-cites="brady2008causation">(<a href="#/ref-brady2008causation" role="doc-biblioref">Brady 2008</a>)</span>.</p></li> </ul> </section> <section id="how-to-interpret-x-causes-y-in-this-approach" class="slide level2"> <h2>How to interpret “X causes Y” in this approach</h2> <ol type="1"> <li><p>“X causes Y” need not imply that W and V do not cause Y: X is a part of the story, not the whole story. (The whole story is not necessary in order to learn about whether X causes Y).</p></li> <li><p>“X causes Y” requires a <strong>context</strong>: matches cause flame but require oxygen; small classrooms improve test scores but require experienced teachers and funding <span class="citation" data-cites="cartwright2012evidence">(<a href="#/ref-cartwright2012evidence" role="doc-biblioref">Cartwright and Hardie 2012</a>)</span>.</p></li> <li><p>“X causes Y” can mean “With X, the probability of Y is higher than would be without X.” or “Without X there is no Y.” Either is compatible with the counterfactual idea.</p></li> </ol> </section> <section id="how-to-interpret-x-causes-y-in-this-approach-1" class="slide level2"> <h2>How to interpret “X causes Y” in this approach</h2> <ol start="4" type="1"> <li><p>It is not necessary to know the mechanism to establish that X causes Y. The mechanism can be complex, and it can involve probability: X causes Y sometimes because of A and sometimes because of B.</p></li> <li><p>Counterfactual causation does not require “a spatiotemporally continuous sequence of causal intermediates”</p> <ul> <li>Ex: Person A plans event Y. Person B’s action would stop Y (say, a random bump from a stranger). Person C doesn’t know about Person A or action Y but stops B (maybe thinks B is going to trip). So, Person A does action Y. And Person C causes action Y (without Person C’s action, Y would not have occurred) <span class="citation" data-cites="holland:1986">(<a href="#/ref-holland:1986" role="doc-biblioref">Holland 1986</a>)</span>.</li> </ul></li> <li><p>Correlation is not causation.</p></li> </ol> </section> <section id="exercise-echinacea" class="slide level2"> <h2>Exercise: Echinacea</h2> <ul> <li><p>Your friend says taking echinacea (a traditional remedy) reduces the duration of colds.</p></li> <li><p>If we take a counterfactual approach, what does this statement implicitly claim about the counterfactual? What other counterfactuals might be possible and why?</p></li> </ul> </section></section> <section> <section id="potential-outcomes" class="title-slide slide level1"> <h1>Potential Outcomes</h1> </section> <section id="potential-outcomes-1" class="slide level2"> <h2>Potential outcomes</h2> <ul> <li><p>For each unit we assume that there are two <strong>post-treatment</strong> outcomes: <span class="math inline">\(Y_i(1)\)</span> and <span class="math inline">\(Y_i(0)\)</span>.</p></li> <li><p><span class="math inline">\(Y_i(1)\)</span> is the outcome that <strong>would</strong> obtain <em>if</em> the unit received the treatment (<span class="math inline">\(T_i=1\)</span>).</p></li> <li><p><span class="math inline">\(Y_i(0)\)</span> is the outcome that <strong>would</strong> obtain <em>if</em> the unit received the control (<span class="math inline">\(T_i=0\)</span>).</p></li> </ul> </section> <section id="definition-of-causal-effect" class="slide level2"> <h2>Definition of causal effect</h2> <ul> <li><p>The <strong>causal effect</strong> of treatment (relative to control) is: <span class="math inline">\(\tau_i = Y_i(1) - Y_i(0)\)</span></p></li> <li><p>Note that we’ve moved to using <span class="math inline">\(T\)</span> to indicate our treatment (what we want to learn the effect of). <span class="math inline">\(X\)</span> will be used for background variables.</p></li> </ul> </section> <section id="key-features-of-this-definition-of-causal-effect" class="slide level2"> <h2>Key features of this definition of causal effect</h2> <ol type="1"> <li><p>You have to define the control condition to define a causal effect.</p> <ul> <li>Say <span class="math inline">\(T=1\)</span> means a community meeting to discuss public health. Is <span class="math inline">\(T=0\)</span> no meeting at all? Is <span class="math inline">\(T=0\)</span> a community meeting on a different subject? Is <span class="math inline">\(T=0\)</span> a flyer on public health?</li> <li>The phrase ``causal effect of <span class="math inline">\(T\)</span> on <span class="math inline">\(Y\)</span>’’ doesn’t make sense without knowing what is means to not have <span class="math inline">\(T\)</span>.</li> </ul></li> <li><p>Each individual unit <span class="math inline">\(i\)</span> has its own causal effect <span class="math inline">\(\tau_i\)</span>.</p></li> <li><p>But we can’t measure the individual-level causal effect, because we can’t observe both <span class="math inline">\(Y_i(1)\)</span> and <span class="math inline">\(Y_i(0)\)</span> at the same time. This is known as the <strong>fundamental problem of causal inference</strong>. What we observe is <span class="math inline">\(Y_i\)</span>:</p></li> </ol> <p><span class="math inline">\(Y_i = T_iY_i(1) + (1-T_i)Y_i(0)\)</span></p> </section> <section id="imagine-we-know-both-y_i1-and-y_i0-this-is-never-true" class="slide level2"> <h2>Imagine we know both <span class="math inline">\(Y_i(1)\)</span> and <span class="math inline">\(Y_i(0)\)</span> (this is never true!)</h2> <table> <thead> <tr class="header"> <th style="text-align: right;"><span class="math inline">\(i\)</span></th> <th style="text-align: center;"><span class="math inline">\(Y_i(1)\)</span></th> <th style="text-align: center;"><span class="math inline">\(Y_i(0)\)</span></th> <th style="text-align: center;"><span class="math inline">\(\tau_i\)</span></th> </tr> </thead> <tbody> <tr class="odd"> <td style="text-align: right;">Andrei</td> <td style="text-align: center;">1</td> <td style="text-align: center;">1</td> <td style="text-align: center;">0</td> </tr> <tr class="even"> <td style="text-align: right;">Bamidele</td> <td style="text-align: center;">1</td> <td style="text-align: center;">0</td> <td style="text-align: center;">1</td> </tr> <tr class="odd"> <td style="text-align: right;">Claire</td> <td style="text-align: center;">0</td> <td style="text-align: center;">0</td> <td style="text-align: center;">0</td> </tr> <tr class="even"> <td style="text-align: right;">Deepal</td> <td style="text-align: center;">0</td> <td style="text-align: center;">1</td> <td style="text-align: center;">-1</td> </tr> </tbody> </table> <ul> <li><p>We have the treatment effect for each individual.</p></li> <li><p>Note the heterogeneity in the individual-level treatment effects.</p></li> <li><p>But we only have at most one potential outcome for each individual, which means we don’t know these treatment effects.</p></li> </ul> </section> <section id="average-causal-effect" class="slide level2"> <h2>Average causal effect</h2> <ul> <li>While we can’t measure the individual causal effect, <span class="math inline">\(\tau_i = Y_i(1)-Y_i(0)\)</span>, we can randomly assign subjects to treatment and control conditions to estimate the <strong>average causal effect</strong>, <span class="math inline">\(\bar{\tau}_i\)</span>:</li> </ul> <p><span class="math inline">\(\overline{\tau_i} = \frac{1}{N} \sum_{i=1}^N ( Y_i(1)-Y_i(0) ) = \overline{Y_i(1)-Y_i(0)}\)</span></p> <ul> <li><p>The average causal effect is also known as the average treatment effect (ATE).</p></li> <li><p>Further explanation on how after we discuss randomization of treatment assignment in the next section.</p></li> </ul> </section> <section id="estimands-and-causal-questions" class="slide level2"> <h2>Estimands and causal questions</h2> <ul> <li><p>Before we discuss randomization and how that allows us to estimate the ATE, note that the ATE is a type of estimand.</p></li> <li><p>An estimand is a quantity you want to learn about (from your data). It’s the target of your research that <em>you</em> set.</p></li> <li><p>Being precise about your research question means being precise about your estimand. For causal questions, this means specifying:</p> <ul> <li>The outcome</li> <li>The treatment and control conditions</li> <li>The study population</li> </ul></li> </ul> </section> <section id="other-types-of-estimands-you-may-be-interested-in" class="slide level2"> <h2>Other types of estimands you may be interested in</h2> <ul> <li><p>The ATE for a particular subgroup, aka conditional average treatment effect (CATE)</p></li> <li><p>Differences in CATEs: differences in the average treatment effect for one group as compared with another group.</p></li> <li><p>The ATE for just the treated units, aka ATT (average treatment effect on the treated)</p></li> <li><p>The local ATE (LATE). “Local” = those whose treatment status would be changed by an encouragement in an encouragement design (aka CACE, complier average causal effect) or those in the neighborhood of a discontinuity for a regression discontinuity design.</p></li> <li><p>Estimands are discussed in detail in <a href="estimation.html">Estimands and Estimators Module</a>.</p></li> </ul> </section></section> <section> <section id="randomization-of-treatment-assignment" class="title-slide slide level1"> <h1>Randomization of treatment assignment</h1> </section> <section id="randomization-of-treatment-assignment-1" class="slide level2"> <h2>Randomization of treatment assignment</h2> <ul> <li><p>Randomization means that every observation has a known probability of assignment to experimental conditions <em>between</em> 0 and 1.</p> <ul> <li>No unit in the experimental sample is assigned to treatment with certainty (probability = 1) or to control with certainty (probability = 0).</li> </ul></li> <li><p>Units can vary in their probability of treatment assignment.</p> <ul> <li><p>For example, the probability might vary by group: women might have a 25% probability of being assigned to treatment while men have a different probability.</p></li> <li><p>It can even vary across individuals, though that would complicate your analysis.</p></li> </ul></li> </ul> </section> <section id="random-assignment-vs.-random-sampling" class="slide level2"> <h2>Random assignment vs. random sampling</h2> <ul> <li><p>Randomization (of treatment): assigning subjects with known probability to experimental conditions.</p> <ul> <li><p>This random assignment of treatment can be combined with any kind of sample (random sample, convenience sample, etc.).</p></li> <li><p>But the size and other characteristics of your sample will affect your power and your ability to extrapolate from your finding to other populations.</p></li> </ul></li> <li><p>Random sampling (from population): selecting subjects into your sample from a population with known probability.</p></li> </ul> </section> <section id="randomization-is-powerful-1" class="slide level2"> <h2>Randomization is powerful (1)</h2> <ul> <li><p>We want the ATE, <span class="math inline">\(\overline{\tau_i}= \overline{Y_i(1)-Y_i(0)}\)</span>.</p></li> <li><p>We will make use of the fact that the average of differences equals the difference of averages:</p></li> </ul> <p>ATE <span class="math inline">\(= \overline{Y_i(1)-Y_i(0)} = \overline{Y_i(1)}-\overline{Y_i(0)}\)</span></p> </section> <section id="randomization-is-powerful-2" class="slide level2"> <h2>Randomization is powerful (2)</h2> <ul> <li><p>Let’s <em>randomly assign</em> some of our units to the treatment condition. For these treated units, we measure the outcome <span class="math inline">\(Y_i|T_i=1\)</span>, which is the same as <span class="math inline">\(Y_i(1)\)</span> for these units.</p></li> <li><p>Because these units were randomly assigned to treatment, these <span class="math inline">\(Y_i=Y_i(1)\)</span> for the treated units represent the <span class="math inline">\(Y_i(1)\)</span> for all our units.</p></li> <li><p>In expectation (or on average across repeated experiments (written <span class="math inline">\(E_R[]\)</span>)):</p></li> </ul> <p><span class="math inline">\(E_R[\overline{Y_i}|T_i=1]=\overline{Y_i(1)}\)</span>.</p> <ul> <li><p><span class="math inline">\(\overline{Y}|T_i=1\)</span> is an unbiased estimator of the population mean of potential outcomes under treatment.</p></li> <li><p>The same logic applies for units randomly assigned to control:</p></li> </ul> <p><span class="math inline">\(E_R[\overline{Y_i}|T_i=0]=\overline{Y_i(0)}\)</span>.</p> </section> <section id="randomization-is-powerful-3" class="slide level2"> <h2>Randomization is powerful (3)</h2> <!-- - The same logic applies when we measure $Y_i$ for the control units ($Y_i|T_i=0$). So $\overline{Y_i}|T_i=0$, which we can calculate, gives us an unbiased estimate of $\overline{Y_i(0)}$. --> <ul> <li>So we can write down an estimator for the ATE:</li> </ul> <p><span class="math inline">\(\hat{\overline{\tau_i}} = ( \overline{Y_i(1)} | T_i = 1 ) - ( \overline{Y_i(0)} | T_i = 0 )\)</span></p> <ul> <li>In expectation, or on average across repeated experiments, <span class="math inline">\(\hat{\overline{\tau_i}}\)</span> equals the ATE:</li> </ul> <p><span class="math inline">\(E_R[Y_i| T_i = 1 ] - E_R[Y_i | T_i = 0] = \overline{Y_i(1)} - \overline{Y_i(0)}\)</span>.</p> <ul> <li>So we can just take the difference of these unbiased estimators of <span class="math inline">\(\overline{Y_i(1)}\)</span> and <span class="math inline">\(\overline{Y_i(0)}\)</span> to get an unbiased estimate of the ATE.</li> </ul> </section> <section id="random-sampling" class="slide level2"> <h2>Random sampling</h2> <div class="figure"> <img src="../Images/randomsampling.png" alt="Random sample of households" width="70%" /> <p class="caption"> Random sample of households </p> </div> </section> <section id="potential-outcomes-2" class="slide level2"> <h2>Potential outcomes</h2> <p>Each household <span class="math inline">\(i\)</span> has <span style="color: red;"><span class="math inline">\(Y_i(1)\)</span></span> and <span style="color: blue;"><span class="math inline">\(Y_i(0)\)</span></span>.</p> <p><img src="../Images/randomsampling_redblue_plain.png" width="80%" /></p> </section> <section id="random-assignment-to-red-1-or-blue-0-condition" class="slide level2"> <h2>Random assignment to red (1) or blue (0) condition</h2> <div class="figure"> <img src="../Images/randomassignment.png" alt="Random assignment of this random sample of households" width="70%" /> <p class="caption"> Random assignment of this random sample of households </p> </div> </section> <section id="three-key-assumptions" class="slide level2"> <h2>Three key assumptions</h2> <p>To make causal claims with an experiment (or to judge whether we believe a study’s claims), we need three core assumptions:</p> <ul> <li><p>Random assignment of subjects to treatment, which implies that receiving the treatment is statistically independent of subjects’ potential outcomes.</p></li> <li><p>Stable unit treatment value assumption (SUTVA).</p></li> <li><p>Excludability, which means that a subject’s potential outcomes respond only to the defined treatment, not other extraneous factors that may be correlated with treatment.</p></li> </ul> </section> <section id="key-assumption-sutva-part-1" class="slide level2"> <h2>Key assumption: SUTVA, part 1</h2> <ol type="1"> <li><p>No interference – A subject’s potential outcome reflects only whether that subject receives the treatment himself/herself. It is not affected by how treatments happen to be allocated to other subjects.</p> <ul> <li><p>A classic violation is the case of vaccines and their spillover effects.</p></li> <li><p>Say I am in the control condition (no vaccine). If whether I get sick (<span class="math inline">\(Y_i(0)\)</span>) depends on other people’s treatment status (whether they take the vaccine), it’s like I have two different <span class="math inline">\(Y_i(0)\)</span>!</p></li> <li><p>SUTVA (= stable unit treatment value assumption)</p></li> </ul></li> </ol> </section> <section id="key-assumption-sutva-part-2" class="slide level2"> <h2>Key assumption: SUTVA, part 2</h2> <ol start="2" type="1"> <li><p>No hidden variations of the treatment</p> <ul> <li><p>Say treatment is taking a vaccine, but there are two kinds of vaccines and they have different ingredients.</p></li> <li><p>An example of a violation is when whether I get sick when I take the vaccine (<span class="math inline">\(Y_i(1)\)</span>) depends on which vaccine I got. We would have two different <span class="math inline">\(Y_i(1)\)</span>!</p></li> </ul></li> </ol> </section> <section id="key-assumption-excludability" class="slide level2"> <h2>Key assumption: Excludability</h2> <ul> <li><p>Treatment assignment has no effect on outcomes except through its effect on whether treatment was received.</p> <ul> <li><p>Important to define the treatment precisely.</p></li> <li><p>Important to also maintain symmetry between treatment and control groups (e.g., through blinding, having the same data collection procedures for all study subjects, etc.), so that treatment assignment only affects the treatment received, not other things like interactions with researchers that you don’t want to define as part of the treatment.</p></li> </ul></li> </ul> </section> <section id="randomization-is-powerful-4" class="slide level2"> <h2>Randomization is powerful (4)</h2> <ul> <li><p>If the intervention is randomized, then who receives or doesn’t receive the intervention is not related to the characteristics of the potential recipients.</p></li> <li><p>Randomization makes those who were randomly selected to not receive the intervention to be good stand-ins for the counterfactuals for those who were randomly selected to receive the treatment, and vice versa.</p></li> <li><p>We have to worry about this if the intervention were not randomized (= an observational study).</p></li> </ul> </section></section> <section> <section id="randomized-vs.-observational-studies" class="title-slide slide level1"> <h1>Randomized vs. observational studies</h1> </section> <section id="different-types-of-studies" class="slide level2"> <h2>Different types of studies</h2> <ul> <li><p>Randomized studies</p> <ul> <li>Randomize treatment, then go measure outcomes</li> </ul></li> <li><p>Observational studies</p> <ul> <li>Treatment is not randomly assigned. It is observed, but not manipulated.</li> </ul></li> </ul> </section> <section id="exercise-learning-about-your-prior-knowledge" class="slide level2"> <h2>Exercise: Learning about your prior knowledge</h2> <p><strong>Discuss in small groups:</strong> Help me design the next project to answer one of these questions (or one of your own causal questions). Just sketch the key features of two designs — one observational and the other randomized.</p> <p><strong>Example research questions:</strong></p> <ul> <li><p>Do Community-Driven Reconstruction projects increase trust and cooperation in Liberia? <a href="https://egap.org/resource/brief-40-development-assistance-and-collective-action-capacity/">see EGAP Policy Brief 40</a></p></li> <li><p>Can community monitoring increase clinic utilization and decrease child mortality in Uganda? <a href="https://egap.org/resource/does-bottom-up-accountability-work-evidence-from-uganda/">see EGAP Policy Brief 58</a></p></li> </ul> </section> <section id="exercise-observational-studies-vs.-randomized-studies" class="slide level2"> <h2>Exercise: Observational studies vs. Randomized studies</h2> <p><strong>Tasks:</strong></p> <ol type="1"> <li><p>Sketch an ideal observational study design (no randomization, no researcher control but infinite resources for data collection). What questions would critical readers ask when you claim that your results reflect a causal relationship?</p></li> <li><p>Sketch an ideal experimental study design (including randomization). What questions would critical readers ask when you claim that your results reflect a causal relationship?</p></li> </ol> </section> <section id="discuss" class="slide level2"> <h2>Discuss</h2> <ul> <li><p>What were key components and strengths and weaknesses of the randomized studies?</p></li> <li><p>What were key components and strengths and weaknesses of the observational studies?</p></li> </ul> </section> <section id="generalizability-and-external-validity" class="slide level2"> <h2>Generalizability and external validity</h2> <ul> <li><p>Randomization brings high internal validity to a study – confidence that we have learned the causal effect of a treatment on an outcome.</p></li> <li><p>But the finding from a particular study in one particular place and at one particular time may not hold in other settings (i.e., external validity).</p></li> <li><p>This is a general concern, not just a concern for randomized studies.</p></li> <li><p><a href="https://egap.org/our-work/the-metaketa-initiative/">EGAP’s Metaketa Initiative</a> works to accumulate knowledge by pre-planning a meta-analysis of multiple studies that have high internal validity due to randomization.</p></li> </ul> </section> <section id="references" class="slide level2"> <h2>References</h2> <p><a href="https://egap.org/resource/brief-40-development-assistance-and-collective-action-capacity/">EGAP Policy Brief 40: Development Assistance and Collective Action Capacity</a></p> <p><a href="https://egap.org/resource/does-bottom-up-accountability-work-evidence-from-uganda/">EGAP Policy Brief 58: Does Bottom-Up Accountability Work?</a></p> <div id="refs" class="references csl-bib-body hanging-indent" role="doc-bibliography"> <div id="ref-brady2008causation" class="csl-entry" role="doc-biblioentry"> Brady, Henry E. 2008. <span>“Causation and Explanation in Social Science.”</span> In <em>The Oxford Handbook of Political Science</em>. <a href="https://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199286546.001.0001/oxfordhb-9780199286546-e-10">https://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199286546.001.0001/oxfordhb-9780199286546-e-10</a>. </div> <div id="ref-cartwright2012evidence" class="csl-entry" role="doc-biblioentry"> Cartwright, Nancy, and Jeremy Hardie. 2012. <em><span class="nocase">Evidence-based policy: a practical guide to doing it better</span></em>. Oxford University Press. </div> <div id="ref-holland:1986" class="csl-entry" role="doc-biblioentry"> Holland, Paul W. 1986. <span>“Statistics and Causal Inference.”</span> <em>Journal of the American Statistical Association</em> 81: 945–60. </div> </div> </section></section> </div> </div> <script src="causalinference-slides_files/reveal.js-3.3.0.1/lib/js/head.min.js"></script> <script src="causalinference-slides_files/reveal.js-3.3.0.1/js/reveal.js"></script> <script> // Full list of configuration options available at: // https://github.com/hakimel/reveal.js#configuration Reveal.initialize({ // Display controls in the bottom right corner controls: true, // Display a presentation progress bar progress: true, // Display the page number of the current slide slideNumber: true, // Push each slide change to the browser history history: true, // Enable keyboard shortcuts for navigation keyboard: true, // Enable the slide overview mode overview: true, // Vertical centering of slides center: false, // Enables touch navigation on devices with touch input touch: true, // Turns fragments on and off globally fragments: true, // Flags if we should show a help overlay when the questionmark // key is pressed help: true, // Number of milliseconds between automatically proceeding to the // next slide, disabled when set to 0, this value can be overwritten // by using a data-autoslide attribute on your slides autoSlide: 0, // Stop auto-sliding after user input autoSlideStoppable: true, // Opens links in an iframe preview overlay previewLinks: true, // Transition style transition: 'fade', // none/fade/slide/convex/concave/zoom // Transition speed transitionSpeed: 'default', // default/fast/slow // Transition style for full page slide backgrounds backgroundTransition: 'default', // none/fade/slide/convex/concave/zoom // Number of slides away from the current that are visible viewDistance: 3, chalkboard: { toggleNotesButton: false, theme: 'whiteboard', }, keyboard: { 67: function() { RevealChalkboard.toggleNotesCanvas() }, // toggle notes canvas when 'c' is pressed 66: function() { RevealChalkboard.toggleChalkboard() }, // toggle chalkboard when 'b' is pressed 46: function() { RevealChalkboard.clear() }, // clear chalkboard when 'DEL' is pressed 8: function() { RevealChalkboard.reset() }, // reset chalkboard data on current slide when 'BACKSPACE' is pressed 68: function() { RevealChalkboard.download() }, // downlad recorded chalkboard drawing when 'd' is pressed }, // Optional reveal.js plugins dependencies: [ { src: 'causalinference-slides_files/reveal.js-3.3.0.1/plugin/notes/notes.js', async: true }, { src: 'causalinference-slides_files/reveal.js-3.3.0.1/plugin/search/search.js', async: true }, { src: 'causalinference-slides_files/reveal.js-3.3.0.1/plugin/chalkboard/chalkboard.js', async: true }, ] }); </script> <!-- dynamically load mathjax for compatibility with self-contained --> <script> (function () { var script = document.createElement("script"); script.type = "text/javascript"; script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"; document.getElementsByTagName("head")[0].appendChild(script); })(); </script> <script> (function() { if (window.jQuery) { Reveal.addEventListener( 'slidechanged', function(event) { window.jQuery(event.previousSlide).trigger('hidden'); window.jQuery(event.currentSlide).trigger('shown'); }); } })(); </script> </body> </html>