{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Maximal extension of the extremal Kerr black hole\n", "\n", "This Jupyter/SageMath notebook is relative to the lectures\n", "[Geometry and physics of black holes](https://luth.obspm.fr/~luthier/gourgoulhon/bh16/).\n", "\n", "The computations make use of tools developed through the [SageManifolds project](https://sagemanifolds.obspm.fr)." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'SageMath version 9.5.beta2, Release Date: 2021-09-26'" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "version()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First we set up the notebook to display mathematical objects using LaTeX rendering:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "%display latex" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To speed up computations, we ask for running them in parallel on 8 threads:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "Parallelism().set(nproc=8)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Spacetime manifold\n", "\n", "We declare the Kerr spacetime as a 4-dimensional Lorentzian manifold $M$:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "4-dimensional Lorentzian manifold M\n" ] } ], "source": [ "M = Manifold(4, 'M', structure='Lorentzian')\n", "print(M)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We then introduce (3+1 version of) the **Kerr coordinates** $(\\tilde{t},r,\\theta,\\tilde{\\varphi})$ as a chart KC on $M$, via the method chart(). The argument of the latter is a string (delimited by r\"...\" because of the backslash symbols) expressing the coordinates names, their ranges (the default is $(-\\infty,+\\infty)$) and their LaTeX symbols:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Chart (M, (tt, r, th, tph))\n" ] }, { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(M,({\\tilde{t}}, r, {\\theta}, {\\tilde{\\varphi}})\\right)\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(M,({\\tilde{t}}, r, {\\theta}, {\\tilde{\\varphi}})\\right)$$" ], "text/plain": [ "Chart (M, (tt, r, th, tph))" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "KC. = M.chart(r\"tt:\\tilde{t} r th:(0,pi):\\theta tph:(0,2*pi):periodic:\\tilde{\\varphi}\") \n", "print(KC); KC" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}{\\tilde{t}} :\\ \\left( -\\infty, +\\infty \\right) ;\\quad r :\\ \\left( -\\infty, +\\infty \\right) ;\\quad {\\theta} :\\ \\left( 0 , \\pi \\right) ;\\quad {\\tilde{\\varphi}} :\\ \\left[ 0 , 2 \\, \\pi \\right] \\mbox{(periodic)}\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}{\\tilde{t}} :\\ \\left( -\\infty, +\\infty \\right) ;\\quad r :\\ \\left( -\\infty, +\\infty \\right) ;\\quad {\\theta} :\\ \\left( 0 , \\pi \\right) ;\\quad {\\tilde{\\varphi}} :\\ \\left[ 0 , 2 \\, \\pi \\right] \\mbox{(periodic)}$$" ], "text/plain": [ "tt: (-oo, +oo); r: (-oo, +oo); th: (0, pi); tph: [0, 2*pi] (periodic)" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "KC.coord_range()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Metric tensor \n", "\n", "The mass parameter $m$ of the extremal Kerr spacetime is declared as a symbolic variable:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "m = var('m', domain='real')\n", "assume(m>0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We get the (yet undefined) spacetime metric:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "g = M.metric()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and initialize it by providing its components in the coordinate frame associated with the Kerr coordinates, which is the current manifold's default frame:" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}g = \\left( \\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} - 1 \\right) \\mathrm{d} {\\tilde{t}}\\otimes \\mathrm{d} {\\tilde{t}} + \\left( \\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} {\\tilde{t}}\\otimes \\mathrm{d} r + \\left( -\\frac{2 \\, m^{2} r \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} {\\tilde{t}}\\otimes \\mathrm{d} {\\tilde{\\varphi}} + \\left( \\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} r\\otimes \\mathrm{d} {\\tilde{t}} + \\left( \\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} + 1 \\right) \\mathrm{d} r\\otimes \\mathrm{d} r -m {\\left(\\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} + 1\\right)} \\sin\\left({\\theta}\\right)^{2} \\mathrm{d} r\\otimes \\mathrm{d} {\\tilde{\\varphi}} + \\left( m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2} \\right) \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\theta} + \\left( -\\frac{2 \\, m^{2} r \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} {\\tilde{\\varphi}}\\otimes \\mathrm{d} {\\tilde{t}} -m {\\left(\\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} + 1\\right)} \\sin\\left({\\theta}\\right)^{2} \\mathrm{d} {\\tilde{\\varphi}}\\otimes \\mathrm{d} r + {\\left(\\frac{2 \\, m^{3} r \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} + m^{2} + r^{2}\\right)} \\sin\\left({\\theta}\\right)^{2} \\mathrm{d} {\\tilde{\\varphi}}\\otimes \\mathrm{d} {\\tilde{\\varphi}}\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}g = \\left( \\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} - 1 \\right) \\mathrm{d} {\\tilde{t}}\\otimes \\mathrm{d} {\\tilde{t}} + \\left( \\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} {\\tilde{t}}\\otimes \\mathrm{d} r + \\left( -\\frac{2 \\, m^{2} r \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} {\\tilde{t}}\\otimes \\mathrm{d} {\\tilde{\\varphi}} + \\left( \\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} r\\otimes \\mathrm{d} {\\tilde{t}} + \\left( \\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} + 1 \\right) \\mathrm{d} r\\otimes \\mathrm{d} r -m {\\left(\\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} + 1\\right)} \\sin\\left({\\theta}\\right)^{2} \\mathrm{d} r\\otimes \\mathrm{d} {\\tilde{\\varphi}} + \\left( m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2} \\right) \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\theta} + \\left( -\\frac{2 \\, m^{2} r \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} {\\tilde{\\varphi}}\\otimes \\mathrm{d} {\\tilde{t}} -m {\\left(\\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} + 1\\right)} \\sin\\left({\\theta}\\right)^{2} \\mathrm{d} {\\tilde{\\varphi}}\\otimes \\mathrm{d} r + {\\left(\\frac{2 \\, m^{3} r \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} + m^{2} + r^{2}\\right)} \\sin\\left({\\theta}\\right)^{2} \\mathrm{d} {\\tilde{\\varphi}}\\otimes \\mathrm{d} {\\tilde{\\varphi}}$$" ], "text/plain": [ "g = (2*m*r/(m^2*cos(th)^2 + r^2) - 1) dtt⊗dtt + 2*m*r/(m^2*cos(th)^2 + r^2) dtt⊗dr - 2*m^2*r*sin(th)^2/(m^2*cos(th)^2 + r^2) dtt⊗dtph + 2*m*r/(m^2*cos(th)^2 + r^2) dr⊗dtt + (2*m*r/(m^2*cos(th)^2 + r^2) + 1) dr⊗dr - m*(2*m*r/(m^2*cos(th)^2 + r^2) + 1)*sin(th)^2 dr⊗dtph + (m^2*cos(th)^2 + r^2) dth⊗dth - 2*m^2*r*sin(th)^2/(m^2*cos(th)^2 + r^2) dtph⊗dtt - m*(2*m*r/(m^2*cos(th)^2 + r^2) + 1)*sin(th)^2 dtph⊗dr + (2*m^3*r*sin(th)^2/(m^2*cos(th)^2 + r^2) + m^2 + r^2)*sin(th)^2 dtph⊗dtph" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rho2 = r^2 + (m*cos(th))^2\n", "g[0,0] = - (1 - 2*m*r/rho2)\n", "g[0,1] = 2*m*r/rho2\n", "g[0,3] = -2*m^2*r*sin(th)^2/rho2\n", "g[1,1] = 1 + 2*m*r/rho2\n", "g[1,3] = -m*(1 + 2*m*r/rho2)*sin(th)^2\n", "g[2,2] = rho2\n", "g[3,3] = (r^2 + m^2 + 2*m^3*r*sin(th)^2/rho2)*sin(th)^2\n", "g.display()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A matrix view of the components with respect to the manifold's default vector frame:" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rrrr}\n", "\\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} - 1 & \\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} & 0 & -\\frac{2 \\, m^{2} r \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\\n", "\\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} & \\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} + 1 & 0 & -m {\\left(\\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} + 1\\right)} \\sin\\left({\\theta}\\right)^{2} \\\\\n", "0 & 0 & m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2} & 0 \\\\\n", "-\\frac{2 \\, m^{2} r \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} & -m {\\left(\\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} + 1\\right)} \\sin\\left({\\theta}\\right)^{2} & 0 & {\\left(\\frac{2 \\, m^{3} r \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} + m^{2} + r^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}\n", "\\end{array}\\right)\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rrrr}\n", "\\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} - 1 & \\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} & 0 & -\\frac{2 \\, m^{2} r \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\\n", "\\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} & \\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} + 1 & 0 & -m {\\left(\\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} + 1\\right)} \\sin\\left({\\theta}\\right)^{2} \\\\\n", "0 & 0 & m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2} & 0 \\\\\n", "-\\frac{2 \\, m^{2} r \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} & -m {\\left(\\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} + 1\\right)} \\sin\\left({\\theta}\\right)^{2} & 0 & {\\left(\\frac{2 \\, m^{3} r \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} + m^{2} + r^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}\n", "\\end{array}\\right)$$" ], "text/plain": [ "[ 2*m*r/(m^2*cos(th)^2 + r^2) - 1 2*m*r/(m^2*cos(th)^2 + r^2) 0 -2*m^2*r*sin(th)^2/(m^2*cos(th)^2 + r^2)]\n", "[ 2*m*r/(m^2*cos(th)^2 + r^2) 2*m*r/(m^2*cos(th)^2 + r^2) + 1 0 -m*(2*m*r/(m^2*cos(th)^2 + r^2) + 1)*sin(th)^2]\n", "[ 0 0 m^2*cos(th)^2 + r^2 0]\n", "[ -2*m^2*r*sin(th)^2/(m^2*cos(th)^2 + r^2) -m*(2*m*r/(m^2*cos(th)^2 + r^2) + 1)*sin(th)^2 0 (2*m^3*r*sin(th)^2/(m^2*cos(th)^2 + r^2) + m^2 + r^2)*sin(th)^2]" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "g[:]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The list of the non-vanishing components:" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\begin{array}{lcl} g_{ \\, {\\tilde{t}} \\, {\\tilde{t}} }^{ \\phantom{\\, {\\tilde{t}}}\\phantom{\\, {\\tilde{t}}} } & = & \\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} - 1 \\\\ g_{ \\, {\\tilde{t}} \\, r }^{ \\phantom{\\, {\\tilde{t}}}\\phantom{\\, r} } & = & \\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\ g_{ \\, {\\tilde{t}} \\, {\\tilde{\\varphi}} }^{ \\phantom{\\, {\\tilde{t}}}\\phantom{\\, {\\tilde{\\varphi}}} } & = & -\\frac{2 \\, m^{2} r \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\ g_{ \\, r \\, {\\tilde{t}} }^{ \\phantom{\\, r}\\phantom{\\, {\\tilde{t}}} } & = & \\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\ g_{ \\, r \\, r }^{ \\phantom{\\, r}\\phantom{\\, r} } & = & \\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} + 1 \\\\ g_{ \\, r \\, {\\tilde{\\varphi}} }^{ \\phantom{\\, r}\\phantom{\\, {\\tilde{\\varphi}}} } & = & -m {\\left(\\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} + 1\\right)} \\sin\\left({\\theta}\\right)^{2} \\\\ g_{ \\, {\\theta} \\, {\\theta} }^{ \\phantom{\\, {\\theta}}\\phantom{\\, {\\theta}} } & = & m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2} \\\\ g_{ \\, {\\tilde{\\varphi}} \\, {\\tilde{t}} }^{ \\phantom{\\, {\\tilde{\\varphi}}}\\phantom{\\, {\\tilde{t}}} } & = & -\\frac{2 \\, m^{2} r \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\ g_{ \\, {\\tilde{\\varphi}} \\, r }^{ \\phantom{\\, {\\tilde{\\varphi}}}\\phantom{\\, r} } & = & -m {\\left(\\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} + 1\\right)} \\sin\\left({\\theta}\\right)^{2} \\\\ g_{ \\, {\\tilde{\\varphi}} \\, {\\tilde{\\varphi}} }^{ \\phantom{\\, {\\tilde{\\varphi}}}\\phantom{\\, {\\tilde{\\varphi}}} } & = & {\\left(\\frac{2 \\, m^{3} r \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} + m^{2} + r^{2}\\right)} \\sin\\left({\\theta}\\right)^{2} \\end{array}\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\begin{array}{lcl} g_{ \\, {\\tilde{t}} \\, {\\tilde{t}} }^{ \\phantom{\\, {\\tilde{t}}}\\phantom{\\, {\\tilde{t}}} } & = & \\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} - 1 \\\\ g_{ \\, {\\tilde{t}} \\, r }^{ \\phantom{\\, {\\tilde{t}}}\\phantom{\\, r} } & = & \\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\ g_{ \\, {\\tilde{t}} \\, {\\tilde{\\varphi}} }^{ \\phantom{\\, {\\tilde{t}}}\\phantom{\\, {\\tilde{\\varphi}}} } & = & -\\frac{2 \\, m^{2} r \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\ g_{ \\, r \\, {\\tilde{t}} }^{ \\phantom{\\, r}\\phantom{\\, {\\tilde{t}}} } & = & \\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\ g_{ \\, r \\, r }^{ \\phantom{\\, r}\\phantom{\\, r} } & = & \\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} + 1 \\\\ g_{ \\, r \\, {\\tilde{\\varphi}} }^{ \\phantom{\\, r}\\phantom{\\, {\\tilde{\\varphi}}} } & = & -m {\\left(\\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} + 1\\right)} \\sin\\left({\\theta}\\right)^{2} \\\\ g_{ \\, {\\theta} \\, {\\theta} }^{ \\phantom{\\, {\\theta}}\\phantom{\\, {\\theta}} } & = & m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2} \\\\ g_{ \\, {\\tilde{\\varphi}} \\, {\\tilde{t}} }^{ \\phantom{\\, {\\tilde{\\varphi}}}\\phantom{\\, {\\tilde{t}}} } & = & -\\frac{2 \\, m^{2} r \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\ g_{ \\, {\\tilde{\\varphi}} \\, r }^{ \\phantom{\\, {\\tilde{\\varphi}}}\\phantom{\\, r} } & = & -m {\\left(\\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} + 1\\right)} \\sin\\left({\\theta}\\right)^{2} \\\\ g_{ \\, {\\tilde{\\varphi}} \\, {\\tilde{\\varphi}} }^{ \\phantom{\\, {\\tilde{\\varphi}}}\\phantom{\\, {\\tilde{\\varphi}}} } & = & {\\left(\\frac{2 \\, m^{3} r \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} + m^{2} + r^{2}\\right)} \\sin\\left({\\theta}\\right)^{2} \\end{array}$$" ], "text/plain": [ "g_tt,tt = 2*m*r/(m^2*cos(th)^2 + r^2) - 1 \n", "g_tt,r = 2*m*r/(m^2*cos(th)^2 + r^2) \n", "g_tt,tph = -2*m^2*r*sin(th)^2/(m^2*cos(th)^2 + r^2) \n", "g_r,tt = 2*m*r/(m^2*cos(th)^2 + r^2) \n", "g_r,r = 2*m*r/(m^2*cos(th)^2 + r^2) + 1 \n", "g_r,tph = -m*(2*m*r/(m^2*cos(th)^2 + r^2) + 1)*sin(th)^2 \n", "g_th,th = m^2*cos(th)^2 + r^2 \n", "g_tph,tt = -2*m^2*r*sin(th)^2/(m^2*cos(th)^2 + r^2) \n", "g_tph,r = -m*(2*m*r/(m^2*cos(th)^2 + r^2) + 1)*sin(th)^2 \n", "g_tph,tph = (2*m^3*r*sin(th)^2/(m^2*cos(th)^2 + r^2) + m^2 + r^2)*sin(th)^2 " ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "g.display_comp()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let us check that we are dealing with a solution of the **vacuum Einstein equation**:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "#g.ricci().display()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Regions $M_{\\rm I}$ and $M_{\\rm III}$" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}{\\tilde{t}} :\\ \\left( -\\infty, +\\infty \\right) ;\\quad r :\\ \\left( m , +\\infty \\right) ;\\quad {\\theta} :\\ \\left( -\\infty, +\\infty \\right) ;\\quad {\\tilde{\\varphi}} :\\ \\left( -\\infty, +\\infty \\right)\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}{\\tilde{t}} :\\ \\left( -\\infty, +\\infty \\right) ;\\quad r :\\ \\left( m , +\\infty \\right) ;\\quad {\\theta} :\\ \\left( -\\infty, +\\infty \\right) ;\\quad {\\tilde{\\varphi}} :\\ \\left( -\\infty, +\\infty \\right)$$" ], "text/plain": [ "tt: (-oo, +oo); r: (m, +oo); th: (-oo, +oo); tph: (-oo, +oo)" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "M_I = M.open_subset('M_I', latex_name=r'M_{\\rm I}', coord_def={KC: r>m})\n", "KC.restrict(M_I).coord_range()" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}{\\tilde{t}} :\\ \\left( -\\infty, +\\infty \\right) ;\\quad r :\\ \\left( -\\infty, m \\right) ;\\quad {\\theta} :\\ \\left( -\\infty, +\\infty \\right) ;\\quad {\\tilde{\\varphi}} :\\ \\left( -\\infty, +\\infty \\right)\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}{\\tilde{t}} :\\ \\left( -\\infty, +\\infty \\right) ;\\quad r :\\ \\left( -\\infty, m \\right) ;\\quad {\\theta} :\\ \\left( -\\infty, +\\infty \\right) ;\\quad {\\tilde{\\varphi}} :\\ \\left( -\\infty, +\\infty \\right)$$" ], "text/plain": [ "tt: (-oo, +oo); r: (-oo, m); th: (-oo, +oo); tph: (-oo, +oo)" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "M_III = M.open_subset('M_III', latex_name=r'M_{\\rm III}', coord_def={KC: r\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(M_{\\rm I},(t, r, {\\theta}, {\\varphi})\\right)\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(M_{\\rm I},(t, r, {\\theta}, {\\varphi})\\right)$$" ], "text/plain": [ "Chart (M_I, (t, r, th, ph))" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "BL. = M_I.chart(r\"t r:(m,+oo) th:(0,pi):\\theta ph:(0,2*pi):periodic:\\varphi\") \n", "print(BL); BL" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}t :\\ \\left( -\\infty, +\\infty \\right) ;\\quad r :\\ \\left( m , +\\infty \\right) ;\\quad {\\theta} :\\ \\left( 0 , \\pi \\right) ;\\quad {\\varphi} :\\ \\left[ 0 , 2 \\, \\pi \\right] \\mbox{(periodic)}\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}t :\\ \\left( -\\infty, +\\infty \\right) ;\\quad r :\\ \\left( m , +\\infty \\right) ;\\quad {\\theta} :\\ \\left( 0 , \\pi \\right) ;\\quad {\\varphi} :\\ \\left[ 0 , 2 \\, \\pi \\right] \\mbox{(periodic)}$$" ], "text/plain": [ "t: (-oo, +oo); r: (m, +oo); th: (0, pi); ph: [0, 2*pi] (periodic)" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "BL.coord_range()" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left\\{\\begin{array}{lcl} t & = & -2 \\, m \\log\\left(\\frac{{\\left| -m + r \\right|}}{m}\\right) - \\frac{2 \\, m^{2}}{m - r} + {\\tilde{t}} \\\\ r & = & r \\\\ {\\theta} & = & {\\theta} \\\\ {\\varphi} & = & {\\tilde{\\varphi}} - \\frac{m}{m - r} \\end{array}\\right.\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left\\{\\begin{array}{lcl} t & = & -2 \\, m \\log\\left(\\frac{{\\left| -m + r \\right|}}{m}\\right) - \\frac{2 \\, m^{2}}{m - r} + {\\tilde{t}} \\\\ r & = & r \\\\ {\\theta} & = & {\\theta} \\\\ {\\varphi} & = & {\\tilde{\\varphi}} - \\frac{m}{m - r} \\end{array}\\right.$$" ], "text/plain": [ "t = -2*m*log(abs(-m + r)/m) - 2*m^2/(m - r) + tt\n", "r = r\n", "th = th\n", "ph = tph - m/(m - r)" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "KC_to_BL = KC.restrict(M_I).transition_map(BL, [tt + 2*m^2/(r-m) - 2*m*ln(abs(r-m)/m),\n", " r, th, tph + m/(r-m)])\n", "KC_to_BL.display()" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left\\{\\begin{array}{lcl} {\\tilde{t}} & = & -\\frac{2 \\, m^{2} \\log\\left(m\\right) - 2 \\, m r \\log\\left(m\\right) - 2 \\, m^{2} - {\\left(m - r\\right)} t - 2 \\, {\\left(m^{2} - m r\\right)} \\log\\left(-m + r\\right)}{m - r} \\\\ r & = & r \\\\ {\\theta} & = & {\\theta} \\\\ {\\tilde{\\varphi}} & = & \\frac{m {\\varphi} - {\\varphi} r + m}{m - r} \\end{array}\\right.\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left\\{\\begin{array}{lcl} {\\tilde{t}} & = & -\\frac{2 \\, m^{2} \\log\\left(m\\right) - 2 \\, m r \\log\\left(m\\right) - 2 \\, m^{2} - {\\left(m - r\\right)} t - 2 \\, {\\left(m^{2} - m r\\right)} \\log\\left(-m + r\\right)}{m - r} \\\\ r & = & r \\\\ {\\theta} & = & {\\theta} \\\\ {\\tilde{\\varphi}} & = & \\frac{m {\\varphi} - {\\varphi} r + m}{m - r} \\end{array}\\right.$$" ], "text/plain": [ "tt = -(2*m^2*log(m) - 2*m*r*log(m) - 2*m^2 - (m - r)*t - 2*(m^2 - m*r)*log(-m + r))/(m - r)\n", "r = r\n", "th = th\n", "tph = (m*ph - ph*r + m)/(m - r)" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "KC_to_BL.inverse().display()" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}g = \\left( -\\frac{m^{2} \\cos\\left({\\theta}\\right)^{2} - 2 \\, m r + r^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} t\\otimes \\mathrm{d} t + \\left( -\\frac{2 \\, m^{2} r \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} t\\otimes \\mathrm{d} {\\varphi} + \\left( \\frac{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}}{m^{2} - 2 \\, m r + r^{2}} \\right) \\mathrm{d} r\\otimes \\mathrm{d} r + \\left( m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2} \\right) \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\theta} + \\left( -\\frac{2 \\, m^{2} r \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} {\\varphi}\\otimes \\mathrm{d} t + \\left( \\frac{2 \\, m^{3} r \\sin\\left({\\theta}\\right)^{4} + {\\left(m^{2} r^{2} + r^{4} + {\\left(m^{4} + m^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} {\\varphi}\\otimes \\mathrm{d} {\\varphi}\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}g = \\left( -\\frac{m^{2} \\cos\\left({\\theta}\\right)^{2} - 2 \\, m r + r^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} t\\otimes \\mathrm{d} t + \\left( -\\frac{2 \\, m^{2} r \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} t\\otimes \\mathrm{d} {\\varphi} + \\left( \\frac{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}}{m^{2} - 2 \\, m r + r^{2}} \\right) \\mathrm{d} r\\otimes \\mathrm{d} r + \\left( m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2} \\right) \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\theta} + \\left( -\\frac{2 \\, m^{2} r \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} {\\varphi}\\otimes \\mathrm{d} t + \\left( \\frac{2 \\, m^{3} r \\sin\\left({\\theta}\\right)^{4} + {\\left(m^{2} r^{2} + r^{4} + {\\left(m^{4} + m^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} {\\varphi}\\otimes \\mathrm{d} {\\varphi}$$" ], "text/plain": [ "g = -(m^2*cos(th)^2 - 2*m*r + r^2)/(m^2*cos(th)^2 + r^2) dt⊗dt - 2*m^2*r*sin(th)^2/(m^2*cos(th)^2 + r^2) dt⊗dph + (m^2*cos(th)^2 + r^2)/(m^2 - 2*m*r + r^2) dr⊗dr + (m^2*cos(th)^2 + r^2) dth⊗dth - 2*m^2*r*sin(th)^2/(m^2*cos(th)^2 + r^2) dph⊗dt + (2*m^3*r*sin(th)^4 + (m^2*r^2 + r^4 + (m^4 + m^2*r^2)*cos(th)^2)*sin(th)^2)/(m^2*cos(th)^2 + r^2) dph⊗dph" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "g.display(BL)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ingoing principal null geodesics" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}k = \\frac{\\partial}{\\partial {\\tilde{t}} }-\\frac{\\partial}{\\partial r }\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}k = \\frac{\\partial}{\\partial {\\tilde{t}} }-\\frac{\\partial}{\\partial r }$$" ], "text/plain": [ "k = ∂/∂tt - ∂/∂r" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "k = M.vector_field(1, -1, 0, 0, name='k')\n", "k.display()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let us check that $k$ is a null vector:" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}0\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}0$$" ], "text/plain": [ "0" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "g(k, k).expr()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Check that $k$ is a geodesic vector field, i.e. obeys $\\nabla_k k = 0$:" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "nabla = g.connection()" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}0\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}0$$" ], "text/plain": [ "0" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "nabla(k).contract(k).display()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Expression of $k$ with respect to the Boyer-Lindquist frame:" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}k = \\left( \\frac{m^{2} + r^{2}}{m^{2} - 2 \\, m r + r^{2}} \\right) \\frac{\\partial}{\\partial t } -\\frac{\\partial}{\\partial r } + \\left( \\frac{m}{m^{2} - 2 \\, m r + r^{2}} \\right) \\frac{\\partial}{\\partial {\\varphi} }\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}k = \\left( \\frac{m^{2} + r^{2}}{m^{2} - 2 \\, m r + r^{2}} \\right) \\frac{\\partial}{\\partial t } -\\frac{\\partial}{\\partial r } + \\left( \\frac{m}{m^{2} - 2 \\, m r + r^{2}} \\right) \\frac{\\partial}{\\partial {\\varphi} }$$" ], "text/plain": [ "k = (m^2 + r^2)/(m^2 - 2*m*r + r^2) ∂/∂t - ∂/∂r + m/(m^2 - 2*m*r + r^2) ∂/∂ph" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "k.display(BL)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Outgoing principal null geodesics" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\ell = \\frac{{\\left(m + r\\right)}^{2}}{2 \\, {\\left(m^{2} + r^{2}\\right)}} \\frac{\\partial}{\\partial {\\tilde{t}} } + \\frac{{\\left(m - r\\right)}^{2}}{2 \\, {\\left(m^{2} + r^{2}\\right)}} \\frac{\\partial}{\\partial r } + \\left( \\frac{m}{m^{2} + r^{2}} \\right) \\frac{\\partial}{\\partial {\\tilde{\\varphi}} }\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\ell = \\frac{{\\left(m + r\\right)}^{2}}{2 \\, {\\left(m^{2} + r^{2}\\right)}} \\frac{\\partial}{\\partial {\\tilde{t}} } + \\frac{{\\left(m - r\\right)}^{2}}{2 \\, {\\left(m^{2} + r^{2}\\right)}} \\frac{\\partial}{\\partial r } + \\left( \\frac{m}{m^{2} + r^{2}} \\right) \\frac{\\partial}{\\partial {\\tilde{\\varphi}} }$$" ], "text/plain": [ "el = 1/2*(m + r)^2/(m^2 + r^2) ∂/∂tt + 1/2*(m - r)^2/(m^2 + r^2) ∂/∂r + m/(m^2 + r^2) ∂/∂tph" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "el = M.vector_field((r + m)^2/(2*(r^2 + m^2)),\n", " (r - m)^2/(2*(r^2 + m^2)),\n", " 0,\n", " m/(r^2 + m^2),\n", " name='el', latex_name=r'\\ell')\n", "el.display()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let us check that $\\ell$ is a null vector:" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}0\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}0$$" ], "text/plain": [ "0" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "g(el, el).expr()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Expression of $\\ell$ with respect to the Boyer-Lindquist frame:" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\ell = \\frac{1}{2} \\frac{\\partial}{\\partial t } + \\frac{{\\left(m - r\\right)}^{2}}{2 \\, {\\left(m^{2} + r^{2}\\right)}} \\frac{\\partial}{\\partial r } + \\frac{m}{2 \\, {\\left(m^{2} + r^{2}\\right)}} \\frac{\\partial}{\\partial {\\varphi} }\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\ell = \\frac{1}{2} \\frac{\\partial}{\\partial t } + \\frac{{\\left(m - r\\right)}^{2}}{2 \\, {\\left(m^{2} + r^{2}\\right)}} \\frac{\\partial}{\\partial r } + \\frac{m}{2 \\, {\\left(m^{2} + r^{2}\\right)}} \\frac{\\partial}{\\partial {\\varphi} }$$" ], "text/plain": [ "el = 1/2 ∂/∂t + 1/2*(m - r)^2/(m^2 + r^2) ∂/∂r + 1/2*m/(m^2 + r^2) ∂/∂ph" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "el.display(BL)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Computation of $\\nabla_\\ell \\ell$:" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left( -\\frac{m^{5} + 2 \\, m^{4} r - 2 \\, m^{2} r^{3} - m r^{4}}{2 \\, {\\left(m^{6} + 3 \\, m^{4} r^{2} + 3 \\, m^{2} r^{4} + r^{6}\\right)}} \\right) \\frac{\\partial}{\\partial {\\tilde{t}} } + \\left( -\\frac{m^{5} - 2 \\, m^{4} r + 2 \\, m^{2} r^{3} - m r^{4}}{2 \\, {\\left(m^{6} + 3 \\, m^{4} r^{2} + 3 \\, m^{2} r^{4} + r^{6}\\right)}} \\right) \\frac{\\partial}{\\partial r } + \\left( -\\frac{m^{4} - m^{2} r^{2}}{m^{6} + 3 \\, m^{4} r^{2} + 3 \\, m^{2} r^{4} + r^{6}} \\right) \\frac{\\partial}{\\partial {\\tilde{\\varphi}} }\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left( -\\frac{m^{5} + 2 \\, m^{4} r - 2 \\, m^{2} r^{3} - m r^{4}}{2 \\, {\\left(m^{6} + 3 \\, m^{4} r^{2} + 3 \\, m^{2} r^{4} + r^{6}\\right)}} \\right) \\frac{\\partial}{\\partial {\\tilde{t}} } + \\left( -\\frac{m^{5} - 2 \\, m^{4} r + 2 \\, m^{2} r^{3} - m r^{4}}{2 \\, {\\left(m^{6} + 3 \\, m^{4} r^{2} + 3 \\, m^{2} r^{4} + r^{6}\\right)}} \\right) \\frac{\\partial}{\\partial r } + \\left( -\\frac{m^{4} - m^{2} r^{2}}{m^{6} + 3 \\, m^{4} r^{2} + 3 \\, m^{2} r^{4} + r^{6}} \\right) \\frac{\\partial}{\\partial {\\tilde{\\varphi}} }$$" ], "text/plain": [ "-1/2*(m^5 + 2*m^4*r - 2*m^2*r^3 - m*r^4)/(m^6 + 3*m^4*r^2 + 3*m^2*r^4 + r^6) ∂/∂tt - 1/2*(m^5 - 2*m^4*r + 2*m^2*r^3 - m*r^4)/(m^6 + 3*m^4*r^2 + 3*m^2*r^4 + r^6) ∂/∂r - (m^4 - m^2*r^2)/(m^6 + 3*m^4*r^2 + 3*m^2*r^4 + r^6) ∂/∂tph" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "acc = nabla(el).contract(el)\n", "acc.display()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We check that $\\nabla_\\ell \\ell = \\kappa \\ell$:" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}-\\frac{m^{3} - m r^{2}}{m^{4} + 2 \\, m^{2} r^{2} + r^{4}}\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}-\\frac{m^{3} - m r^{2}}{m^{4} + 2 \\, m^{2} r^{2} + r^{4}}$$" ], "text/plain": [ "-(m^3 - m*r^2)/(m^4 + 2*m^2*r^2 + r^4)" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "kappa = acc[0] / el[0]\n", "kappa" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}-\\frac{{\\left(m + r\\right)} {\\left(m - r\\right)} m}{{\\left(m^{2} + r^{2}\\right)}^{2}}\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}-\\frac{{\\left(m + r\\right)} {\\left(m - r\\right)} m}{{\\left(m^{2} + r^{2}\\right)}^{2}}$$" ], "text/plain": [ "-(m + r)*(m - r)*m/(m^2 + r^2)^2" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "kappa.factor()" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\mathrm{True}\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\mathrm{True}$$" ], "text/plain": [ "True" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "acc == kappa*el" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Outgoing Kerr coordinates on $M_{\\rm I}$" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}{\\tilde{\\tilde{t}}} :\\ \\left( -\\infty, +\\infty \\right) ;\\quad r :\\ \\left( m , +\\infty \\right) ;\\quad {\\theta} :\\ \\left( 0 , \\pi \\right) ;\\quad {\\tilde{\\tilde{\\varphi}}} :\\ \\left[ 0 , 2 \\, \\pi \\right] \\mbox{(periodic)}\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}{\\tilde{\\tilde{t}}} :\\ \\left( -\\infty, +\\infty \\right) ;\\quad r :\\ \\left( m , +\\infty \\right) ;\\quad {\\theta} :\\ \\left( 0 , \\pi \\right) ;\\quad {\\tilde{\\tilde{\\varphi}}} :\\ \\left[ 0 , 2 \\, \\pi \\right] \\mbox{(periodic)}$$" ], "text/plain": [ "to: (-oo, +oo); r: (m, +oo); th: (0, pi); oph: [0, 2*pi] (periodic)" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "OKC. = M_I.chart(r\"to:\\tilde{\\tilde{t}} r:(m,+oo) th:(0,pi):\\theta oph:(0,2*pi):periodic:\\tilde{\\tilde{\\varphi}}\") \n", "OKC.coord_range()" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left\\{\\begin{array}{lcl} {\\tilde{\\tilde{t}}} & = & -2 \\, m \\log\\left(\\frac{{\\left| -m + r \\right|}}{m}\\right) - \\frac{2 \\, m^{2}}{m - r} + t \\\\ r & = & r \\\\ {\\theta} & = & {\\theta} \\\\ {\\tilde{\\tilde{\\varphi}}} & = & {\\varphi} - \\frac{m}{m - r} \\end{array}\\right.\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left\\{\\begin{array}{lcl} {\\tilde{\\tilde{t}}} & = & -2 \\, m \\log\\left(\\frac{{\\left| -m + r \\right|}}{m}\\right) - \\frac{2 \\, m^{2}}{m - r} + t \\\\ r & = & r \\\\ {\\theta} & = & {\\theta} \\\\ {\\tilde{\\tilde{\\varphi}}} & = & {\\varphi} - \\frac{m}{m - r} \\end{array}\\right.$$" ], "text/plain": [ "to = -2*m*log(abs(-m + r)/m) - 2*m^2/(m - r) + t\n", "r = r\n", "th = th\n", "oph = ph - m/(m - r)" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "BL_to_OKC = BL.transition_map(OKC, [t + 2*m^2/(r-m) - 2*m*ln(abs(r-m)/m),\n", " r, th, ph + m/(r-m)])\n", "BL_to_OKC.display()" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left\\{\\begin{array}{lcl} t & = & -\\frac{2 \\, m^{2} \\log\\left(m\\right) - 2 \\, m r \\log\\left(m\\right) - 2 \\, m^{2} - {\\left(m - r\\right)} {\\tilde{\\tilde{t}}} - 2 \\, {\\left(m^{2} - m r\\right)} \\log\\left(-m + r\\right)}{m - r} \\\\ r & = & r \\\\ {\\theta} & = & {\\theta} \\\\ {\\varphi} & = & \\frac{m {\\tilde{\\tilde{\\varphi}}} - {\\tilde{\\tilde{\\varphi}}} r + m}{m - r} \\end{array}\\right.\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left\\{\\begin{array}{lcl} t & = & -\\frac{2 \\, m^{2} \\log\\left(m\\right) - 2 \\, m r \\log\\left(m\\right) - 2 \\, m^{2} - {\\left(m - r\\right)} {\\tilde{\\tilde{t}}} - 2 \\, {\\left(m^{2} - m r\\right)} \\log\\left(-m + r\\right)}{m - r} \\\\ r & = & r \\\\ {\\theta} & = & {\\theta} \\\\ {\\varphi} & = & \\frac{m {\\tilde{\\tilde{\\varphi}}} - {\\tilde{\\tilde{\\varphi}}} r + m}{m - r} \\end{array}\\right.$$" ], "text/plain": [ "t = -(2*m^2*log(m) - 2*m*r*log(m) - 2*m^2 - (m - r)*to - 2*(m^2 - m*r)*log(-m + r))/(m - r)\n", "r = r\n", "th = th\n", "ph = (m*oph - oph*r + m)/(m - r)" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "BL_to_OKC.inverse().display()" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left\\{\\begin{array}{lcl} {\\tilde{\\tilde{t}}} & = & \\frac{4 \\, m^{2} \\log\\left(m\\right) - 4 \\, m r \\log\\left(m\\right) - 4 \\, m^{2} + {\\left(m - r\\right)} {\\tilde{t}} - 4 \\, {\\left(m^{2} - m r\\right)} \\log\\left(-m + r\\right)}{m - r} \\\\ r & = & r \\\\ {\\theta} & = & {\\theta} \\\\ {\\tilde{\\tilde{\\varphi}}} & = & \\frac{{\\left(m - r\\right)} {\\tilde{\\varphi}} - 2 \\, m}{m - r} \\end{array}\\right.\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left\\{\\begin{array}{lcl} {\\tilde{\\tilde{t}}} & = & \\frac{4 \\, m^{2} \\log\\left(m\\right) - 4 \\, m r \\log\\left(m\\right) - 4 \\, m^{2} + {\\left(m - r\\right)} {\\tilde{t}} - 4 \\, {\\left(m^{2} - m r\\right)} \\log\\left(-m + r\\right)}{m - r} \\\\ r & = & r \\\\ {\\theta} & = & {\\theta} \\\\ {\\tilde{\\tilde{\\varphi}}} & = & \\frac{{\\left(m - r\\right)} {\\tilde{\\varphi}} - 2 \\, m}{m - r} \\end{array}\\right.$$" ], "text/plain": [ "to = (4*m^2*log(m) - 4*m*r*log(m) - 4*m^2 + (m - r)*tt - 4*(m^2 - m*r)*log(-m + r))/(m - r)\n", "r = r\n", "th = th\n", "oph = ((m - r)*tph - 2*m)/(m - r)" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "KC_to_OKC = BL_to_OKC * KC_to_BL.restrict(M_I)\n", "KC_to_OKC.display()" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left\\{\\begin{array}{lcl} {\\tilde{t}} & = & -\\frac{4 \\, m^{2} \\log\\left(m\\right) - 4 \\, m r \\log\\left(m\\right) - 4 \\, m^{2} - {\\left(m - r\\right)} {\\tilde{\\tilde{t}}} - 4 \\, {\\left(m^{2} - m r\\right)} \\log\\left(-m + r\\right)}{m - r} \\\\ r & = & r \\\\ {\\theta} & = & {\\theta} \\\\ {\\tilde{\\varphi}} & = & \\frac{m {\\tilde{\\tilde{\\varphi}}} - {\\tilde{\\tilde{\\varphi}}} r + 2 \\, m}{m - r} \\end{array}\\right.\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left\\{\\begin{array}{lcl} {\\tilde{t}} & = & -\\frac{4 \\, m^{2} \\log\\left(m\\right) - 4 \\, m r \\log\\left(m\\right) - 4 \\, m^{2} - {\\left(m - r\\right)} {\\tilde{\\tilde{t}}} - 4 \\, {\\left(m^{2} - m r\\right)} \\log\\left(-m + r\\right)}{m - r} \\\\ r & = & r \\\\ {\\theta} & = & {\\theta} \\\\ {\\tilde{\\varphi}} & = & \\frac{m {\\tilde{\\tilde{\\varphi}}} - {\\tilde{\\tilde{\\varphi}}} r + 2 \\, m}{m - r} \\end{array}\\right.$$" ], "text/plain": [ "tt = -(4*m^2*log(m) - 4*m*r*log(m) - 4*m^2 - (m - r)*to - 4*(m^2 - m*r)*log(-m + r))/(m - r)\n", "r = r\n", "th = th\n", "tph = (m*oph - oph*r + 2*m)/(m - r)" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "KC_to_OKC.inverse().display()" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": [ "M_I.set_default_chart(OKC)\n", "M_I.set_default_frame(OKC.frame())" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}g = \\left( -\\frac{m^{2} \\cos\\left({\\theta}\\right)^{2} - 2 \\, m r + r^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} {\\tilde{\\tilde{t}}}\\otimes \\mathrm{d} {\\tilde{\\tilde{t}}} + \\left( -\\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} {\\tilde{\\tilde{t}}}\\otimes \\mathrm{d} r + \\left( -\\frac{2 \\, m^{2} r \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} {\\tilde{\\tilde{t}}}\\otimes \\mathrm{d} {\\tilde{\\tilde{\\varphi}}} + \\left( -\\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} r\\otimes \\mathrm{d} {\\tilde{\\tilde{t}}} + \\left( \\frac{m^{2} \\cos\\left({\\theta}\\right)^{2} + 2 \\, m r + r^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} r\\otimes \\mathrm{d} r + \\left( -\\frac{m^{3} \\sin\\left({\\theta}\\right)^{4} - {\\left(m^{3} + 2 \\, m^{2} r + m r^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} r\\otimes \\mathrm{d} {\\tilde{\\tilde{\\varphi}}} + \\left( m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2} \\right) \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\theta} + \\left( -\\frac{2 \\, m^{2} r \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} {\\tilde{\\tilde{\\varphi}}}\\otimes \\mathrm{d} {\\tilde{\\tilde{t}}} + \\left( -\\frac{m^{3} \\sin\\left({\\theta}\\right)^{4} - {\\left(m^{3} + 2 \\, m^{2} r + m r^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} {\\tilde{\\tilde{\\varphi}}}\\otimes \\mathrm{d} r + \\left( \\frac{2 \\, m^{3} r \\sin\\left({\\theta}\\right)^{4} + {\\left(m^{2} r^{2} + r^{4} + {\\left(m^{4} + m^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} {\\tilde{\\tilde{\\varphi}}}\\otimes \\mathrm{d} {\\tilde{\\tilde{\\varphi}}}\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}g = \\left( -\\frac{m^{2} \\cos\\left({\\theta}\\right)^{2} - 2 \\, m r + r^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} {\\tilde{\\tilde{t}}}\\otimes \\mathrm{d} {\\tilde{\\tilde{t}}} + \\left( -\\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} {\\tilde{\\tilde{t}}}\\otimes \\mathrm{d} r + \\left( -\\frac{2 \\, m^{2} r \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} {\\tilde{\\tilde{t}}}\\otimes \\mathrm{d} {\\tilde{\\tilde{\\varphi}}} + \\left( -\\frac{2 \\, m r}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} r\\otimes \\mathrm{d} {\\tilde{\\tilde{t}}} + \\left( \\frac{m^{2} \\cos\\left({\\theta}\\right)^{2} + 2 \\, m r + r^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} r\\otimes \\mathrm{d} r + \\left( -\\frac{m^{3} \\sin\\left({\\theta}\\right)^{4} - {\\left(m^{3} + 2 \\, m^{2} r + m r^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} r\\otimes \\mathrm{d} {\\tilde{\\tilde{\\varphi}}} + \\left( m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2} \\right) \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\theta} + \\left( -\\frac{2 \\, m^{2} r \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} {\\tilde{\\tilde{\\varphi}}}\\otimes \\mathrm{d} {\\tilde{\\tilde{t}}} + \\left( -\\frac{m^{3} \\sin\\left({\\theta}\\right)^{4} - {\\left(m^{3} + 2 \\, m^{2} r + m r^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} {\\tilde{\\tilde{\\varphi}}}\\otimes \\mathrm{d} r + \\left( \\frac{2 \\, m^{3} r \\sin\\left({\\theta}\\right)^{4} + {\\left(m^{2} r^{2} + r^{4} + {\\left(m^{4} + m^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} {\\tilde{\\tilde{\\varphi}}}\\otimes \\mathrm{d} {\\tilde{\\tilde{\\varphi}}}$$" ], "text/plain": [ "g = -(m^2*cos(th)^2 - 2*m*r + r^2)/(m^2*cos(th)^2 + r^2) dto⊗dto - 2*m*r/(m^2*cos(th)^2 + r^2) dto⊗dr - 2*m^2*r*sin(th)^2/(m^2*cos(th)^2 + r^2) dto⊗doph - 2*m*r/(m^2*cos(th)^2 + r^2) dr⊗dto + (m^2*cos(th)^2 + 2*m*r + r^2)/(m^2*cos(th)^2 + r^2) dr⊗dr - (m^3*sin(th)^4 - (m^3 + 2*m^2*r + m*r^2)*sin(th)^2)/(m^2*cos(th)^2 + r^2) dr⊗doph + (m^2*cos(th)^2 + r^2) dth⊗dth - 2*m^2*r*sin(th)^2/(m^2*cos(th)^2 + r^2) doph⊗dto - (m^3*sin(th)^4 - (m^3 + 2*m^2*r + m*r^2)*sin(th)^2)/(m^2*cos(th)^2 + r^2) doph⊗dr + (2*m^3*r*sin(th)^4 + (m^2*r^2 + r^4 + (m^4 + m^2*r^2)*cos(th)^2)*sin(th)^2)/(m^2*cos(th)^2 + r^2) doph⊗doph" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "gI = g.restrict(M_I)\n", "gI.display()" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}-\\frac{m^{3} \\sin\\left({\\theta}\\right)^{4} - {\\left(m^{3} + 2 \\, m^{2} r + m r^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}}\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}-\\frac{m^{3} \\sin\\left({\\theta}\\right)^{4} - {\\left(m^{3} + 2 \\, m^{2} r + m r^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}}$$" ], "text/plain": [ "-(m^3*sin(th)^4 - (m^3 + 2*m^2*r + m*r^2)*sin(th)^2)/(m^2*cos(th)^2 + r^2)" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "gI[1,3]" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\mathrm{True}\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\mathrm{True}$$" ], "text/plain": [ "True" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "gI[1,3] == m*(1 + 2*m*r/rho2)*sin(th)^2" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\frac{2 \\, m^{3} r \\sin\\left({\\theta}\\right)^{4} + {\\left(m^{2} r^{2} + r^{4} + {\\left(m^{4} + m^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}}\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\frac{2 \\, m^{3} r \\sin\\left({\\theta}\\right)^{4} + {\\left(m^{2} r^{2} + r^{4} + {\\left(m^{4} + m^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}}$$" ], "text/plain": [ "(2*m^3*r*sin(th)^4 + (m^2*r^2 + r^4 + (m^4 + m^2*r^2)*cos(th)^2)*sin(th)^2)/(m^2*cos(th)^2 + r^2)" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ "gI[3,3]" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\mathrm{True}\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\mathrm{True}$$" ], "text/plain": [ "True" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "g[3,3] == (r^2 + m^2 + 2*m^3*r*sin(th)^2/rho2)*sin(th)^2" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\ell' = \\frac{\\partial}{\\partial {\\tilde{\\tilde{t}}} }+\\frac{\\partial}{\\partial r }\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\ell' = \\frac{\\partial}{\\partial {\\tilde{\\tilde{t}}} }+\\frac{\\partial}{\\partial r }$$" ], "text/plain": [ "ol = ∂/∂to + ∂/∂r" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ol = M_I.vector_field({OKC.frame(): (1, 1, 0, 0)}, name='ol', \n", " latex_name=r\"\\ell'\")\n", "ol.display()" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\ell' = \\left( \\frac{m^{2} + 2 \\, m r + r^{2}}{m^{2} - 2 \\, m r + r^{2}} \\right) \\frac{\\partial}{\\partial {\\tilde{t}} } +\\frac{\\partial}{\\partial r } + \\left( \\frac{2 \\, m}{m^{2} - 2 \\, m r + r^{2}} \\right) \\frac{\\partial}{\\partial {\\tilde{\\varphi}} }\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\ell' = \\left( \\frac{m^{2} + 2 \\, m r + r^{2}}{m^{2} - 2 \\, m r + r^{2}} \\right) \\frac{\\partial}{\\partial {\\tilde{t}} } +\\frac{\\partial}{\\partial r } + \\left( \\frac{2 \\, m}{m^{2} - 2 \\, m r + r^{2}} \\right) \\frac{\\partial}{\\partial {\\tilde{\\varphi}} }$$" ], "text/plain": [ "ol = (m^2 + 2*m*r + r^2)/(m^2 - 2*m*r + r^2) ∂/∂tt + ∂/∂r + 2*m/(m^2 - 2*m*r + r^2) ∂/∂tph" ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ol.display(KC.restrict(M_I).frame())" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\ell' = \\left( \\frac{m^{2} + r^{2}}{m^{2} - 2 \\, m r + r^{2}} \\right) \\frac{\\partial}{\\partial t } +\\frac{\\partial}{\\partial r } + \\left( \\frac{m}{m^{2} - 2 \\, m r + r^{2}} \\right) \\frac{\\partial}{\\partial {\\varphi} }\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\ell' = \\left( \\frac{m^{2} + r^{2}}{m^{2} - 2 \\, m r + r^{2}} \\right) \\frac{\\partial}{\\partial t } +\\frac{\\partial}{\\partial r } + \\left( \\frac{m}{m^{2} - 2 \\, m r + r^{2}} \\right) \\frac{\\partial}{\\partial {\\varphi} }$$" ], "text/plain": [ "ol = (m^2 + r^2)/(m^2 - 2*m*r + r^2) ∂/∂t + ∂/∂r + m/(m^2 - 2*m*r + r^2) ∂/∂ph" ] }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ol.display(BL.frame())" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}0\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}0$$" ], "text/plain": [ "0" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "g(ol, ol).expr()" ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\verb|3-indices|\\phantom{\\verb!x!}\\verb|components|\\phantom{\\verb!x!}\\verb|w.r.t.|\\phantom{\\verb!x!}\\verb|Coordinate|\\phantom{\\verb!x!}\\verb|frame|\\phantom{\\verb!x!}\\verb|(M_I,|\\phantom{\\verb!x!}\\verb|(∂/∂to,∂/∂r,∂/∂th,∂/∂oph)),|\\phantom{\\verb!x!}\\verb|with|\\phantom{\\verb!x!}\\verb|symmetry|\\phantom{\\verb!x!}\\verb|on|\\phantom{\\verb!x!}\\verb|the|\\phantom{\\verb!x!}\\verb|index|\\phantom{\\verb!x!}\\verb|positions|\\phantom{\\verb!x!}\\verb|(1,|\\phantom{\\verb!x!}\\verb|2)|\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\verb|3-indices|\\phantom{\\verb!x!}\\verb|components|\\phantom{\\verb!x!}\\verb|w.r.t.|\\phantom{\\verb!x!}\\verb|Coordinate|\\phantom{\\verb!x!}\\verb|frame|\\phantom{\\verb!x!}\\verb|(M_I,|\\phantom{\\verb!x!}\\verb|(∂/∂to,∂/∂r,∂/∂th,∂/∂oph)),|\\phantom{\\verb!x!}\\verb|with|\\phantom{\\verb!x!}\\verb|symmetry|\\phantom{\\verb!x!}\\verb|on|\\phantom{\\verb!x!}\\verb|the|\\phantom{\\verb!x!}\\verb|index|\\phantom{\\verb!x!}\\verb|positions|\\phantom{\\verb!x!}\\verb|(1,|\\phantom{\\verb!x!}\\verb|2)|$$" ], "text/plain": [ "3-indices components w.r.t. Coordinate frame (M_I, (∂/∂to,∂/∂r,∂/∂th,∂/∂oph)), with symmetry on the index positions (1, 2)" ] }, "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ "nabla.coef(OKC.frame())" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}0\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}0$$" ], "text/plain": [ "0" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" } ], "source": [ "nabla(ol).contract(ol).display()" ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\ell = \\left( \\frac{m^{2} - 2 \\, m r + r^{2}}{2 \\, {\\left(m^{2} + r^{2}\\right)}} \\right) \\frac{\\partial}{\\partial {\\tilde{\\tilde{t}}} } + \\left( \\frac{m^{2} - 2 \\, m r + r^{2}}{2 \\, {\\left(m^{2} + r^{2}\\right)}} \\right) \\frac{\\partial}{\\partial r }\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\ell = \\left( \\frac{m^{2} - 2 \\, m r + r^{2}}{2 \\, {\\left(m^{2} + r^{2}\\right)}} \\right) \\frac{\\partial}{\\partial {\\tilde{\\tilde{t}}} } + \\left( \\frac{m^{2} - 2 \\, m r + r^{2}}{2 \\, {\\left(m^{2} + r^{2}\\right)}} \\right) \\frac{\\partial}{\\partial r }$$" ], "text/plain": [ "el = 1/2*(m^2 - 2*m*r + r^2)/(m^2 + r^2) ∂/∂to + 1/2*(m^2 - 2*m*r + r^2)/(m^2 + r^2) ∂/∂r" ] }, "execution_count": 49, "metadata": {}, "output_type": "execute_result" } ], "source": [ "elI = el.restrict(M_I)\n", "elI.display()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Check of the relation $\\ell' = 2 \\frac{r^2 + m^2}{(r - m)^2} \\, \\ell$:" ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\mathrm{True}\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\mathrm{True}$$" ], "text/plain": [ "True" ] }, "execution_count": 50, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ol == 2*(r^2 + m^2)/(r - m)^2 * elI" ] }, { "cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}k = \\left( \\frac{m^{2} + 2 \\, m r + r^{2}}{m^{2} - 2 \\, m r + r^{2}} \\right) \\frac{\\partial}{\\partial {\\tilde{\\tilde{t}}} } -\\frac{\\partial}{\\partial r } + \\left( \\frac{2 \\, m}{m^{2} - 2 \\, m r + r^{2}} \\right) \\frac{\\partial}{\\partial {\\tilde{\\tilde{\\varphi}}} }\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}k = \\left( \\frac{m^{2} + 2 \\, m r + r^{2}}{m^{2} - 2 \\, m r + r^{2}} \\right) \\frac{\\partial}{\\partial {\\tilde{\\tilde{t}}} } -\\frac{\\partial}{\\partial r } + \\left( \\frac{2 \\, m}{m^{2} - 2 \\, m r + r^{2}} \\right) \\frac{\\partial}{\\partial {\\tilde{\\tilde{\\varphi}}} }$$" ], "text/plain": [ "k = (m^2 + 2*m*r + r^2)/(m^2 - 2*m*r + r^2) ∂/∂to - ∂/∂r + 2*m/(m^2 - 2*m*r + r^2) ∂/∂oph" ] }, "execution_count": 51, "metadata": {}, "output_type": "execute_result" } ], "source": [ "kI = k.restrict(M_I)\n", "kI.display()" ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}k' = \\left( \\frac{m^{2} + 2 \\, m r + r^{2}}{2 \\, {\\left(m^{2} + r^{2}\\right)}} \\right) \\frac{\\partial}{\\partial {\\tilde{\\tilde{t}}} } + \\left( -\\frac{m^{2} - 2 \\, m r + r^{2}}{2 \\, {\\left(m^{2} + r^{2}\\right)}} \\right) \\frac{\\partial}{\\partial r } + \\left( \\frac{m}{m^{2} + r^{2}} \\right) \\frac{\\partial}{\\partial {\\tilde{\\tilde{\\varphi}}} }\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}k' = \\left( \\frac{m^{2} + 2 \\, m r + r^{2}}{2 \\, {\\left(m^{2} + r^{2}\\right)}} \\right) \\frac{\\partial}{\\partial {\\tilde{\\tilde{t}}} } + \\left( -\\frac{m^{2} - 2 \\, m r + r^{2}}{2 \\, {\\left(m^{2} + r^{2}\\right)}} \\right) \\frac{\\partial}{\\partial r } + \\left( \\frac{m}{m^{2} + r^{2}} \\right) \\frac{\\partial}{\\partial {\\tilde{\\tilde{\\varphi}}} }$$" ], "text/plain": [ "ok = 1/2*(m^2 + 2*m*r + r^2)/(m^2 + r^2) ∂/∂to - 1/2*(m^2 - 2*m*r + r^2)/(m^2 + r^2) ∂/∂r + m/(m^2 + r^2) ∂/∂oph" ] }, "execution_count": 52, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ok = (r - m)^2/(2*(r^2 + m^2)) * kI\n", "ok.set_name('ok', latex_name=r\"k'\")\n", "ok.display()" ] }, { "cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}-\\frac{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}}{m^{2} + r^{2}}\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}-\\frac{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}}{m^{2} + r^{2}}$$" ], "text/plain": [ "-(m^2*cos(th)^2 + r^2)/(m^2 + r^2)" ] }, "execution_count": 53, "metadata": {}, "output_type": "execute_result" } ], "source": [ "g(k, el).expr()" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}-\\frac{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}}{m^{2} + r^{2}}\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}-\\frac{m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}}{m^{2} + r^{2}}$$" ], "text/plain": [ "-(m^2*cos(th)^2 + r^2)/(m^2 + r^2)" ] }, "execution_count": 54, "metadata": {}, "output_type": "execute_result" } ], "source": [ "g(ok, ol).expr()" ] }, { "cell_type": "code", "execution_count": 55, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}-\\frac{2 \\, {\\left(m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}\\right)}}{{\\left(m - r\\right)}^{2}}\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}-\\frac{2 \\, {\\left(m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}\\right)}}{{\\left(m - r\\right)}^{2}}$$" ], "text/plain": [ "-2*(m^2*cos(th)^2 + r^2)/(m - r)^2" ] }, "execution_count": 55, "metadata": {}, "output_type": "execute_result" } ], "source": [ "g(k, ol).expr().factor()" ] }, { "cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}-\\frac{{\\left(m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}\\right)} {\\left(m - r\\right)}^{2}}{2 \\, {\\left(m^{2} + r^{2}\\right)}^{2}}\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}-\\frac{{\\left(m^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}\\right)} {\\left(m - r\\right)}^{2}}{2 \\, {\\left(m^{2} + r^{2}\\right)}^{2}}$$" ], "text/plain": [ "-1/2*(m^2*cos(th)^2 + r^2)*(m - r)^2/(m^2 + r^2)^2" ] }, "execution_count": 56, "metadata": {}, "output_type": "execute_result" } ], "source": [ "g(ok, el).expr().factor()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Non-affinity coefficient of $k'$" ] }, { "cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left( \\frac{m^{5} + 2 \\, m^{4} r - 2 \\, m^{2} r^{3} - m r^{4}}{2 \\, {\\left(m^{6} + 3 \\, m^{4} r^{2} + 3 \\, m^{2} r^{4} + r^{6}\\right)}} \\right) \\frac{\\partial}{\\partial {\\tilde{\\tilde{t}}} } + \\left( -\\frac{m^{5} - 2 \\, m^{4} r + 2 \\, m^{2} r^{3} - m r^{4}}{2 \\, {\\left(m^{6} + 3 \\, m^{4} r^{2} + 3 \\, m^{2} r^{4} + r^{6}\\right)}} \\right) \\frac{\\partial}{\\partial r } + \\left( \\frac{m^{4} - m^{2} r^{2}}{m^{6} + 3 \\, m^{4} r^{2} + 3 \\, m^{2} r^{4} + r^{6}} \\right) \\frac{\\partial}{\\partial {\\tilde{\\tilde{\\varphi}}} }\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left( \\frac{m^{5} + 2 \\, m^{4} r - 2 \\, m^{2} r^{3} - m r^{4}}{2 \\, {\\left(m^{6} + 3 \\, m^{4} r^{2} + 3 \\, m^{2} r^{4} + r^{6}\\right)}} \\right) \\frac{\\partial}{\\partial {\\tilde{\\tilde{t}}} } + \\left( -\\frac{m^{5} - 2 \\, m^{4} r + 2 \\, m^{2} r^{3} - m r^{4}}{2 \\, {\\left(m^{6} + 3 \\, m^{4} r^{2} + 3 \\, m^{2} r^{4} + r^{6}\\right)}} \\right) \\frac{\\partial}{\\partial r } + \\left( \\frac{m^{4} - m^{2} r^{2}}{m^{6} + 3 \\, m^{4} r^{2} + 3 \\, m^{2} r^{4} + r^{6}} \\right) \\frac{\\partial}{\\partial {\\tilde{\\tilde{\\varphi}}} }$$" ], "text/plain": [ "1/2*(m^5 + 2*m^4*r - 2*m^2*r^3 - m*r^4)/(m^6 + 3*m^4*r^2 + 3*m^2*r^4 + r^6) ∂/∂to - 1/2*(m^5 - 2*m^4*r + 2*m^2*r^3 - m*r^4)/(m^6 + 3*m^4*r^2 + 3*m^2*r^4 + r^6) ∂/∂r + (m^4 - m^2*r^2)/(m^6 + 3*m^4*r^2 + 3*m^2*r^4 + r^6) ∂/∂oph" ] }, "execution_count": 57, "metadata": {}, "output_type": "execute_result" } ], "source": [ "acc_ok = nabla(ok).contract(ok)\n", "acc_ok.display()" ] }, { "cell_type": "code", "execution_count": 58, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\frac{{\\left(m + r\\right)} {\\left(m - r\\right)} m}{{\\left(m^{2} + r^{2}\\right)}^{2}}\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\frac{{\\left(m + r\\right)} {\\left(m - r\\right)} m}{{\\left(m^{2} + r^{2}\\right)}^{2}}$$" ], "text/plain": [ "(m + r)*(m - r)*m/(m^2 + r^2)^2" ] }, "execution_count": 58, "metadata": {}, "output_type": "execute_result" } ], "source": [ "kappa_ok = acc_ok[0] / ok[0]\n", "kappa_ok.factor()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We check that $\\nabla_{k'} k' = \\kappa_{k'} k'$:" ] }, { "cell_type": "code", "execution_count": 59, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\mathrm{True}\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\mathrm{True}$$" ], "text/plain": [ "True" ] }, "execution_count": 59, "metadata": {}, "output_type": "execute_result" } ], "source": [ "acc_ok == kappa_ok * ok" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Compactified coordinates on $M$" ] }, { "cell_type": "code", "execution_count": 60, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(M,(T, X, {\\theta}, {\\tilde{\\varphi}})\\right)\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(M,(T, X, {\\theta}, {\\tilde{\\varphi}})\\right)$$" ], "text/plain": [ "Chart (M, (T, X, th, tph))" ] }, "execution_count": 60, "metadata": {}, "output_type": "execute_result" } ], "source": [ "CC. = M.chart(r\"T X th:(0,pi):\\theta tph:(0,2*pi):periodic:\\tilde{\\varphi}\")\n", "CC" ] }, { "cell_type": "code", "execution_count": 61, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left\\{\\begin{array}{lcl} T & = & \\pi \\mathrm{u}\\left(m - r\\right) + \\arctan\\left(-\\frac{2 \\, m}{m - r} - \\frac{r - {\\tilde{t}}}{2 \\, m} - 2 \\, \\log\\left({\\left| \\frac{m - r}{m} \\right|}\\right)\\right) + \\arctan\\left(\\frac{r + {\\tilde{t}}}{2 \\, m}\\right) \\\\ X & = & -\\pi \\mathrm{u}\\left(m - r\\right) - \\arctan\\left(-\\frac{2 \\, m}{m - r} - \\frac{r - {\\tilde{t}}}{2 \\, m} - 2 \\, \\log\\left({\\left| \\frac{m - r}{m} \\right|}\\right)\\right) + \\arctan\\left(\\frac{r + {\\tilde{t}}}{2 \\, m}\\right) \\\\ {\\theta} & = & {\\theta} \\\\ {\\tilde{\\varphi}} & = & {\\tilde{\\varphi}} \\end{array}\\right.\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left\\{\\begin{array}{lcl} T & = & \\pi \\mathrm{u}\\left(m - r\\right) + \\arctan\\left(-\\frac{2 \\, m}{m - r} - \\frac{r - {\\tilde{t}}}{2 \\, m} - 2 \\, \\log\\left({\\left| \\frac{m - r}{m} \\right|}\\right)\\right) + \\arctan\\left(\\frac{r + {\\tilde{t}}}{2 \\, m}\\right) \\\\ X & = & -\\pi \\mathrm{u}\\left(m - r\\right) - \\arctan\\left(-\\frac{2 \\, m}{m - r} - \\frac{r - {\\tilde{t}}}{2 \\, m} - 2 \\, \\log\\left({\\left| \\frac{m - r}{m} \\right|}\\right)\\right) + \\arctan\\left(\\frac{r + {\\tilde{t}}}{2 \\, m}\\right) \\\\ {\\theta} & = & {\\theta} \\\\ {\\tilde{\\varphi}} & = & {\\tilde{\\varphi}} \\end{array}\\right.$$" ], "text/plain": [ "T = pi*unit_step(m - r) + arctan(-2*m/(m - r) - 1/2*(r - tt)/m - 2*log(abs((m - r)/m))) + arctan(1/2*(r + tt)/m)\n", "X = -pi*unit_step(m - r) - arctan(-2*m/(m - r) - 1/2*(r - tt)/m - 2*log(abs((m - r)/m))) + arctan(1/2*(r + tt)/m)\n", "th = th\n", "tph = tph" ] }, "execution_count": 61, "metadata": {}, "output_type": "execute_result" } ], "source": [ "uc = (tt - r)/m + 4*m/(r - m) - 4*ln(abs((r - m)/m))\n", "vc = (tt + r)/m\n", "KC_to_CC = KC.transition_map(CC, [atan(uc/2) + atan(vc/2) + pi*unit_step(m - r),\n", " atan(vc/2) - atan(uc/2) - pi*unit_step(m - r),\n", " th,\n", " tph])\n", "KC_to_CC.display()" ] }, { "cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left\\{\\begin{array}{lcl} T & = & \\arctan\\left(-\\frac{4 \\, m^{2} \\log\\left(m\\right) - 4 \\, m^{2} - {\\left(4 \\, m \\log\\left(m\\right) + m\\right)} r + r^{2} - {\\left(m - r\\right)} {\\tilde{\\tilde{t}}} - 4 \\, {\\left(m^{2} - m r\\right)} \\log\\left(-m + r\\right)}{2 \\, {\\left(m^{2} - m r\\right)}}\\right) + \\arctan\\left(-\\frac{r - {\\tilde{\\tilde{t}}}}{2 \\, m}\\right) \\\\ X & = & \\arctan\\left(-\\frac{4 \\, m^{2} \\log\\left(m\\right) - 4 \\, m^{2} - {\\left(4 \\, m \\log\\left(m\\right) + m\\right)} r + r^{2} - {\\left(m - r\\right)} {\\tilde{\\tilde{t}}} - 4 \\, {\\left(m^{2} - m r\\right)} \\log\\left(-m + r\\right)}{2 \\, {\\left(m^{2} - m r\\right)}}\\right) - \\arctan\\left(-\\frac{r - {\\tilde{\\tilde{t}}}}{2 \\, m}\\right) \\\\ {\\theta} & = & {\\theta} \\\\ {\\tilde{\\varphi}} & = & \\frac{m {\\tilde{\\tilde{\\varphi}}} - {\\tilde{\\tilde{\\varphi}}} r + 2 \\, m}{m - r} \\end{array}\\right.\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left\\{\\begin{array}{lcl} T & = & \\arctan\\left(-\\frac{4 \\, m^{2} \\log\\left(m\\right) - 4 \\, m^{2} - {\\left(4 \\, m \\log\\left(m\\right) + m\\right)} r + r^{2} - {\\left(m - r\\right)} {\\tilde{\\tilde{t}}} - 4 \\, {\\left(m^{2} - m r\\right)} \\log\\left(-m + r\\right)}{2 \\, {\\left(m^{2} - m r\\right)}}\\right) + \\arctan\\left(-\\frac{r - {\\tilde{\\tilde{t}}}}{2 \\, m}\\right) \\\\ X & = & \\arctan\\left(-\\frac{4 \\, m^{2} \\log\\left(m\\right) - 4 \\, m^{2} - {\\left(4 \\, m \\log\\left(m\\right) + m\\right)} r + r^{2} - {\\left(m - r\\right)} {\\tilde{\\tilde{t}}} - 4 \\, {\\left(m^{2} - m r\\right)} \\log\\left(-m + r\\right)}{2 \\, {\\left(m^{2} - m r\\right)}}\\right) - \\arctan\\left(-\\frac{r - {\\tilde{\\tilde{t}}}}{2 \\, m}\\right) \\\\ {\\theta} & = & {\\theta} \\\\ {\\tilde{\\varphi}} & = & \\frac{m {\\tilde{\\tilde{\\varphi}}} - {\\tilde{\\tilde{\\varphi}}} r + 2 \\, m}{m - r} \\end{array}\\right.$$" ], "text/plain": [ "T = arctan(-1/2*(4*m^2*log(m) - 4*m^2 - (4*m*log(m) + m)*r + r^2 - (m - r)*to - 4*(m^2 - m*r)*log(-m + r))/(m^2 - m*r)) + arctan(-1/2*(r - to)/m)\n", "X = arctan(-1/2*(4*m^2*log(m) - 4*m^2 - (4*m*log(m) + m)*r + r^2 - (m - r)*to - 4*(m^2 - m*r)*log(-m + r))/(m^2 - m*r)) - arctan(-1/2*(r - to)/m)\n", "th = th\n", "tph = (m*oph - oph*r + 2*m)/(m - r)" ] }, "execution_count": 62, "metadata": {}, "output_type": "execute_result" } ], "source": [ "OKC_to_CC = KC_to_CC.restrict(M_I) * KC_to_OKC.inverse()\n", "OKC_to_CC.display()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Spacetime $(M', g)$" ] }, { "cell_type": "code", "execution_count": 63, "metadata": {}, "outputs": [], "source": [ "forget(r>m)" ] }, { "cell_type": "code", "execution_count": 64, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(M',({\\tilde{\\tilde{t}}}, r, {\\theta}, {\\tilde{\\tilde{\\varphi}}})\\right)\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(M',({\\tilde{\\tilde{t}}}, r, {\\theta}, {\\tilde{\\tilde{\\varphi}}})\\right)$$" ], "text/plain": [ "Chart (M', (to, r, th, oph))" ] }, "execution_count": 64, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Mp = Manifold(4, \"M'\", structure='Lorentzian')\n", "OKCp. = Mp.chart(r\"to:\\tilde{\\tilde{t}} r th:(0,pi):\\theta oph:(0,2*pi):periodic:\\tilde{\\tilde{\\varphi}}\") \n", "OKCp" ] }, { "cell_type": "code", "execution_count": 65, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}{\\tilde{\\tilde{t}}} :\\ \\left( -\\infty, +\\infty \\right) ;\\quad r :\\ \\left( -\\infty, +\\infty \\right) ;\\quad {\\theta} :\\ \\left( 0 , \\pi \\right) ;\\quad {\\tilde{\\tilde{\\varphi}}} :\\ \\left[ 0 , 2 \\, \\pi \\right] \\mbox{(periodic)}\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}{\\tilde{\\tilde{t}}} :\\ \\left( -\\infty, +\\infty \\right) ;\\quad r :\\ \\left( -\\infty, +\\infty \\right) ;\\quad {\\theta} :\\ \\left( 0 , \\pi \\right) ;\\quad {\\tilde{\\tilde{\\varphi}}} :\\ \\left[ 0 , 2 \\, \\pi \\right] \\mbox{(periodic)}$$" ], "text/plain": [ "to: (-oo, +oo); r: (-oo, +oo); th: (0, pi); oph: [0, 2*pi] (periodic)" ] }, "execution_count": 65, "metadata": {}, "output_type": "execute_result" } ], "source": [ "OKCp.coord_range()" ] }, { "cell_type": "code", "execution_count": 66, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(M',(T, X, {\\theta}, {\\tilde{\\tilde{\\varphi}}})\\right)\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(M',(T, X, {\\theta}, {\\tilde{\\tilde{\\varphi}}})\\right)$$" ], "text/plain": [ "Chart (M', (T, X, th, oph))" ] }, "execution_count": 66, "metadata": {}, "output_type": "execute_result" } ], "source": [ "CCp. = Mp.chart(r\"T X th:(0,pi):\\theta oph:(0,2*pi):periodic:\\tilde{\\tilde{\\varphi}}\")\n", "CCp" ] }, { "cell_type": "code", "execution_count": 67, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left\\{\\begin{array}{lcl} T & = & -\\pi \\mathrm{u}\\left(m - r\\right) + \\arctan\\left(\\frac{2 \\, m}{m - r} + \\frac{r + {\\tilde{\\tilde{t}}}}{2 \\, m} + 2 \\, \\log\\left({\\left| \\frac{m - r}{m} \\right|}\\right)\\right) + \\arctan\\left(-\\frac{r - {\\tilde{\\tilde{t}}}}{2 \\, m}\\right) \\\\ X & = & -\\pi \\mathrm{u}\\left(m - r\\right) + \\arctan\\left(\\frac{2 \\, m}{m - r} + \\frac{r + {\\tilde{\\tilde{t}}}}{2 \\, m} + 2 \\, \\log\\left({\\left| \\frac{m - r}{m} \\right|}\\right)\\right) - \\arctan\\left(-\\frac{r - {\\tilde{\\tilde{t}}}}{2 \\, m}\\right) \\\\ {\\theta} & = & {\\theta} \\\\ {\\tilde{\\tilde{\\varphi}}} & = & {\\tilde{\\tilde{\\varphi}}} \\end{array}\\right.\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left\\{\\begin{array}{lcl} T & = & -\\pi \\mathrm{u}\\left(m - r\\right) + \\arctan\\left(\\frac{2 \\, m}{m - r} + \\frac{r + {\\tilde{\\tilde{t}}}}{2 \\, m} + 2 \\, \\log\\left({\\left| \\frac{m - r}{m} \\right|}\\right)\\right) + \\arctan\\left(-\\frac{r - {\\tilde{\\tilde{t}}}}{2 \\, m}\\right) \\\\ X & = & -\\pi \\mathrm{u}\\left(m - r\\right) + \\arctan\\left(\\frac{2 \\, m}{m - r} + \\frac{r + {\\tilde{\\tilde{t}}}}{2 \\, m} + 2 \\, \\log\\left({\\left| \\frac{m - r}{m} \\right|}\\right)\\right) - \\arctan\\left(-\\frac{r - {\\tilde{\\tilde{t}}}}{2 \\, m}\\right) \\\\ {\\theta} & = & {\\theta} \\\\ {\\tilde{\\tilde{\\varphi}}} & = & {\\tilde{\\tilde{\\varphi}}} \\end{array}\\right.$$" ], "text/plain": [ "T = -pi*unit_step(m - r) + arctan(2*m/(m - r) + 1/2*(r + to)/m + 2*log(abs((m - r)/m))) + arctan(-1/2*(r - to)/m)\n", "X = -pi*unit_step(m - r) + arctan(2*m/(m - r) + 1/2*(r + to)/m + 2*log(abs((m - r)/m))) - arctan(-1/2*(r - to)/m)\n", "th = th\n", "oph = oph" ] }, "execution_count": 67, "metadata": {}, "output_type": "execute_result" } ], "source": [ "uc = (to - r)/m \n", "vc = (to + r)/m - 4*m/(r - m) + 4*ln(abs((r - m)/m))\n", "OKC_to_CCp = OKCp.transition_map(CCp, [atan(uc/2) + atan(vc/2) - pi*unit_step(m - r),\n", " atan(vc/2) - atan(uc/2) - pi*unit_step(m - r),\n", " th,\n", " oph])\n", "OKC_to_CCp.display()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plot of principal null geodesics" ] }, { "cell_type": "code", "execution_count": 68, "metadata": {}, "outputs": [], "source": [ "lamb = var('lamb', latex_name=r'\\lambda')\n", "\n", "def inPNG(v0, th0, tph0):\n", " return M.curve({KC: [lamb + v0, -lamb, th0, tph0]}, param=lamb)\n", "\n", "def outPNG(u0, th0, oph0):\n", " return Mp.curve({OKCp: [u0 + r, r, th0, oph0]}, param=r)\n", "\n", "def outPNG_III(u0, th0, tph0):\n", " return M.curve({KC: [u0 + r - 4*m^2/(r - m) + 4*m*ln(abs(r - m)/m), \n", " r, th0, tph0]}, \n", " param=(r, -oo, 1))\n", "\n", "def inPNG_IIIp(v0, th0, oph0):\n", " return Mp.curve({OKCp: [v0 + lamb - 4*m^2/(lamb + m) - 4*m*ln(abs(lamb + m)/m), \n", " -lamb, th0, oph0]}, \n", " param=(lamb, -1, +oo))" ] }, { "cell_type": "code", "execution_count": 69, "metadata": {}, "outputs": [], "source": [ "graph0 = polygon([(0, pi), (-pi, 2*pi), (-2*pi, pi), (-pi, 0)], \n", " color='cornsilk', edgecolor='black') \\\n", " + polygon([(pi, 0), (0, pi), (-pi, 0), (0, -pi)], \n", " color='white', edgecolor='black') \\\n", " + polygon([(0, -pi), (-pi, 0), (-2*pi, -pi), (-pi, -2*pi)], \n", " color='cornsilk', edgecolor='black') " ] }, { "cell_type": "code", "execution_count": 70, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAATgAAAGRCAYAAADxbK9MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABRyElEQVR4nO2dd3wUxfvHP5sOJIQaakJAQYh0EkB6iXRpoSMqBBAEFEVA/aGgonwVFdBEunQBpdfQW+i9BEIMNYB0SICQhOTm90fYuEkuV2f3dvee9+u1LzW3NzsHubczzzPPjMAYA0EQhB5xcXQHCIIg5IIERxCEbiHBEQShW0hwBEHoFhIcQRC6hQRHEIRuIcERBKFbSHAEQegWEhxBELqFBEcQhG4hwREEoVtIcARB6BY3R3eAIGxFEARvALcA+AC4DeAOgHQAJQGUefnvMS//6QGgPABvAAsZY+86os+EstAIjtAynQHcAFCPMVaKMVaTMRYMYOLL1yPFnzHGqiNTfCcAxDumu4TS0AiO0DLdAXRkjOUUVrOX/9wq/SFj7JkgCFsAXFCgb4QKoBEcoUkEQSgK4KkRuQGZgssAsM/Ia/lAgnMaSHCEVukMYEHOHwqCEASgBIBjjLEnRt5XGMA/8naNUAs0RSW0ynzGWIaRnzd/+c/debwvPI/3ETqERnCEJjEhKVFwu6x8H6FDBDqTgdALgiAIAO4C8AVQmDH2zMFdIhwMjeAIPVEVQDFkxt9IbgQJjtAVJqenhPNBgiP0BAmOyAbF4AhdIAiCC4D7AAogM/6W7OAuESqARnCEXqiBzDVuR0huhAgJjtALXV7+c79De0GoCpqiEppFEISdyBy1FQIQ+PLHKQCuAHgO4BvG2FqHdI5QBSQ4giB0C01RCYLQLSQ4giB0CwmOIAjdQoIjCEK3kOAIgtAtJDiCIHQLCY4gCN1CgiMIQreQ4AiC0C0kOIIgdAsJjiAI3UKCIwhCt5DgCILQLSQ4QncImRR8ecoW4cRYc/Az7atEaILExET4+voiMTHR0V3RO6r/HwiN4AjdEBkZiaCgIISEhDi6K4RKsGbDSxrBEZogKSkpawRXsGBBR3dHz9AIjiAIwlGQ4AiC0C0kOIIgdAsJTgXcvHkTI4YPR3R0tKO7QhC6gpIMDubmzZto1qwZLl++jHz58mHz5s1o3Lixo7ulaSjJoBiUZCDyRpRbWupznDm2AXWDq6Ft27bYt2+fo7tGELqABOcgpHLbtWURXg+qhA2rZ5PkCIIjJDgHkFNuFSoEAADy589HkiMIjpDgFCYvuYmQ5DK5efMm3n77bRQtWhT58+dHzZo1cfz4cUd3i9AYJDgFMSc3EWeX3KNHj9CwYUO4u7tj8+bNOH/+PH7++WcUKlTI0V0jNAZlURXCUrlJSU5+jg5dBuHIsbNOlV397LPPsH//fovFnpqaitTU1Kz/TkpKgr+/P2VR5YeyqIRtcgOcdyS3bt06BAcHo3v37vDz80OtWrUwe/bsPO+fNGkSfH19sy5/f38Fe0uoGRrByYytcpPibCM5Ly8vAMAnn3yC7t2748iRIxg5ciRmzpyJd955J9f9NIJzGKofwZHgZISH3EScSXIeHh4IDg7GgQMHsn724Ycf4ujRozh48KDZ99NCX8VQveBoiioTPOUGONd0tVSpUggKCsr2sypVquD69esO6hGhVUhwMsBbbiJSyb05/E3M2DCDS7tqo2HDhrh48WK2n8XFxaFcuXIO6hGhVUhwnBHl9jRfErZs+oOb3ETy58+HoT/3QVrnNIyYP0KXI7mPP/4Yhw4dwvfff4/4+Hj8+eefmDVrFoYNG+borhEagwTHEenIbffSxahc8RXcS34AK+KcZln3z3b03TQKnSuFouGD2rqcroaEhGD16tVYunQpqlatim+//RZTp05F3759Hd01QmNQkoETxqalj1OSEDSnDcKrd8c3jUfC3kOe1v2zHd1Wj0Cnii3xZ8cpeJGa7jSJB2ugJINiUJLBGcgr5lbIqyA+DumPiQci8dW+qXaN5HLKzd3V3akSDwRhCyQ4OzGXUBhdbxB+bD7WLskZk5sISY4g8oYEZweWZktFyf18ZC6uJCZY9QxTchMhyRGEcSgGZyO2LAVJSLoF/4KlYWAGCBDMxuQskZsUZ1oMbAqKwSkGxeD0iK3r3PwLlgZjDO9uGG12umqt3AAayRFETkhwVmLvIl5BEFDdr7LJmJwtchMhyRHEf5DgrIBXhYKpxIM9chNxVslFRkYiKCgIISEhju4KoRIoBmchcpRfTT48G2N2/YBVXX5Hl9dacZGbFGeNyVEMTjFUH4MjwVmAXLWlALD50h60rtAYG+J3cpWbiDNKjgSnGCQ4rSOn3ETW/bMdYauHoVLh8jjZfx083Dy4tu9skiPBKYbqBUcxOBMoJbduq0fg9aIVcf5BPL49EMm1dhVw3pgcQZDg8kBJuXWq2BJH31ttd8WDKUhyhDNCgjOC0nITY27S7OpPR+ZwfyZJjnA2KAaXA0fJTcrvJxbjzcBGqFgkkPuzAf3H5CgGpxgUg9MSapAbAHxQ+21ULBKIpNQnmH1qGU1XCcJGSHAvUYvcpKyP34nBUeMoJkcQNkKCgzrlBgB9X+9EiQeCsAOnF5xa5SaSs6yLNyQ5Qs+4OboDjkTtchMZXW8QAMBFppiuKLkOXQahbdu2ukw8EM6J02ZRtSI3Yxy+dQp1S9Ww+4yHnGg9uxoZGYnIyEhkZGQgLi6Osqjyo/osqlMKTstyO3XnPGrN64hxDYZxOcgmJ1qXHEDLRBRE9YJzuhicluUGADVLBFHigSAsxKkEp3W5ifA4yMYUJDlCLziN4PQiNxFRclGX9yIlPZV7+yQ5Qg84RQxOb3KTkpqeCk83TzxKSUQhz4IUkwPF4BSEYnCORs9yAwBPN08kpT5BrT86KjJd3bhzI9f2CUJOdC04UW7Phae6lJtIQU8fDKvztuwxuYD2JdFhWwf8ueVPru0ThFzodqGvKLcU9gxRq+bqVm4i4mLgMbt+AADuS0hWXIpCbNBllLrlh0Fhg+C/2V8T01XCudHlCE46Ld2zfgmqVnoNcQ+vYNzeX7iNbtQkNxEx8fDj4VmIe3iFW7sLz67GexvHILxGd8RN2oZ6wdUp8UBoAt0JLq+Y25Fbp/Hdgd8xbOt4uyWnRrmJjK43CBcGbcFrRSuAMWb3Z5XKbWabifAuUICyq4Rm0JXgTCUU3q7aGXPafo/pJ/+0S3JqlptIhUIBYIxh2NbxdsXkcsrNRcj8daElJIRW0I3gLMmWhtfokSW5UTu/t/oZWpCbiCAIKF/I3+bEQ15yEyHJEVpAF0kGa5aChNfoARfBBf4FS1n1DC3JTcTWxIM5uYmobRcSabE9QQA6WOhrzzq3DEMGlp5fj76vdzL5xdei3KRMPjwbY3b9gGWdpqFnlfYm77VUblLUthiYFvoqBi30lRN7F/FG3ziGfhs+NRmT07rcgMyR3NqwGQh7rbXJ+2yRG0DTVUK9aFZwPCoUmgbUM5l40IPcRDpWDIWbixuiE47h2/0RuT6rrXITIckRakSTguNZfiVNPEglpye5STl2+yy+2jc1W+LBXrmJkOQItaG5JIMctaXhNXoAAKJvHIeBGbAxfpcu5QYAI0P644UhPSvx8Grhcui/cazdchNRW+KBcG40lWSQu3CeMYb18TsQtno4OlcM1Z3cpIiJBwGZguchNymOTDxQkkExKMnACyV2BVkfvwPdVg8HYwYUyVcIbi6aG+BaTIn8xSAA6FqpNXe5ATRdJdSBJgSn7JZHoYhs9TVmnVrGpaxLjfwXc+uBv7r8hpT0VMw/s5J2BiZ0h+qHKI7az83NxRUDN38BAIhs9TX3jSQdhbGEwob4nei/aSwuPb7OfRcSiskRjkTVIzhHblYpZlfXxe/A7Wf3uD/XEeSVLe1Rpb1qz3iYNGkSBEHAyJEjufaJcA5UKzg17MQbXqMHYgdtRSlvPyS/eK7p6aq5pSBqPMjm6NGjmDVrFqpXr861L4TzoErBqUFuIt4eBZBhyECb5QM0G5OzdJ2bKDlXwUWWKbk1knv69Cn69u2L2bNno3Dhwtz7QjgHqhOcmuQm4uriinerdbF7qyVHYO0i3tH1BmFC448AACdvxzhsJDds2DC0b98eoaGhZttMTU1FUlJStosgAJUJTo1yE8mr4kHN2FOhEHMvDnXmd3bIdHXZsmU4ceIEJk2aZFF7kyZNgq+vb9bl7+/Ptb+EdlGN4NQsNxFRcjNOLsX2q/u5948n9pZfvV68En5oPkbxmFxCQgI++ugjLF68GF5eXha19fnnnyMxMTHrSkhI4NpXQruoopJBC3KTcvbuRVTze41j7/jCq7YU+K/iYVyDYdyXkAC5Kx4ePHiALl26wNXVNeuejIwMCIIAFxcXpKamZnvNGFTJoBiqXzvlcMFpTW5Spp9YgnP34xDx5gTVrJPjKTeRyYdnY+G51TjY7294exTg0MvsSCW3cuVKlClTJtvr/fv3R+XKlTF27FhUrVrVbHskOMVQxy+9CRw6RdWy3ADAw9Udv59YopqYnBxyAzITD0feWQVvjwJISn0i63Q1LCwMjx49QtWqVbOuAgUKoGjRohbJjSCkOExwWpcboK7Eg1xyE8nn7oVnackIWdBVNevkCMIcDinV0oPcRMStlgZu/gLlC/lnnYOgJHLLTaSAR34MrNFDtsOl8yrr2r17N7dnEM6F4oLTk9xEwmv0QGEvXzQLqCfrc4yhlNxEbD3IxlKodpXgiaJTVD3KTaTra61RJF8hXH18AxP2TVNkuqq03ETEiodJB2cg5v4/3Nun6SrBC8UEJ8otNTVZd3KTcvDWSXy9/zfZY3KOkpvI6HqDEDNwM6oWrwTGmKwxudAvQjF9w3Su7RPOgSLfClFuz7ySsHnjHN3KDQB6B70le+LB0XITea1oBQDA2N0/ypZ4aDu+KdJC0/DRrx/RSI6wGtm/GdJp6b7lS/F6pUq4kfQv0g3p3J6hFrmJSLOrI7dP5Nq2WuQmpXj+IrJUPEw7Oh9j9v6Aj+v0R8O02jRdJaxG1iSDsZhbSnoqGi3uhTfK1MKit36ye1twtclNRMyuFs9fhFubapQbIE/iYdrR+Ri5YyLG1BuM/zUbjecNUyjxQFiNbN+QvBIKXm6e+LnF51hxMQr91n9q10hOrXITCa/RAx0rhoIxhr8ubLRrdKNWuYlI95NbErPWrrZyyk0QBIsSD5GRkQgKCkJISIhdzyf0gyylWpZkS1fGRqHXupHo9lobm0ZyapeblP03jqPR4p4YWquPTdufq11uUlbGRqHDq83h6eZp0/uNyU2KJad1UamWYjhfqZalS0HCKrfBso5TsfHSLpy7F2fVM7QkNwBoWLaOzYkHLckNyPx79XTzxPHb5/D9gd+t+qzm5AbQEhLCOrjG4Kxd5xZWuQ2alauHovkKw8AMMDCD2ZGc1uQmIq14ACw7yEZrcpNy4MYJ/N/eX/A8PdWimJwlchOhxcCEpXATnK2LeIvmy9yOeuiWr/Ak7RkWdpicp+S0KjcRUXJbruxDBsuAm5D3H7+W5QYAI4LfQUpGqkWJB2vkJkKSIyyBy7eGR4VCq8BG+Dt2M97ZMNpo4kHrchMJr9EDyzv9CjcXN8Q/ump0Cqd1uYlIEw+TDhpfqGuL3ERoukqYw+5vDq/yKzEmZ0xyepGbiCAIuJ/8EHXmd84Vk9OL3ERG1xuEaaFfolX53KMre+QmQpIjTGHXt4d3balUcnNP/w1Af3ITKZa/CH5p8UW2xIPe5CbyYfC7CC5VDanpqVh8bg0YY1zkJpJTcgcOHODYe0LL2LxMRM7C+cO3TiG4ZDVsvLRLl3KTMvf0Xxi4+Qu0CKiPXdcP605uUlZd3IKw1cPQKrARtl6N5iI3KeISksNHzyA5OZmWiciPfpeJLFiwAPHx8Vgw5wfutaX1StfExku7ELZ6GMr4+GFhh8m6lBuQGZMbUL0bdl4/hJ5V2utWbkDmjisdX22JrVej8UbpWpjU9FPuWy0tnDsZaWlpAEAjOcJ2wb399tuoUKEC+g/+DNeu3eTZp6xpaUjJ6khIuo0Bmz7nWruqJhaeXY15Z1binapdsKTjL3iR8UIV25/LwbSj87EufgeaBdTDwVsnMT6a77ZSDx8+Ru36neDikvlrHRYWRjE5J8dmwQUEBGDXrl1wcfVAs1Z9uUlOGnPb0/dPLO80jUtZlxqRxtzmtc9cTtFx5fsO3/5cDqQxt529F+PH5mPxPD2FW/sPHz5G5eqtkPTkGVatWgUACA4OpsSDk2N3qdb169fRvHlzGDLSsHvrEpQrV8bYbRaRV0JBLOsaUrM3fms13ub21UReCQUxJmdrWZcaMZdQOHcvDq8Xq2jzZ5XKLSoqCrVr14avry/+/fdf9O3bF4cPH6Z1cvKg+l9OLrWoPCRnLlu6Nm4bKhd9JWsPMi1jLluqJ8mZk9s/D6+iyuzW+PyNITbtQiKV2/vvv49t27YhIyMDcXFxSExMhJubG9566y2SnDyo/heTW7G9PZKzZinI07RnmHZsAcbWH2z3VkuOwNKlIKLk1nebhQ6vtlC4l3ywdCmIrYdL5xy5NWvWDEDuYvvk5GSSnDw4j+AA2yRn7Tq3HVcPoM1fA9C9cluTZV1qxNp1bsdvn0PtEq9rcgRn7To3ayWXl9wA47uJkORkQfW/mFzXI1ibeLBlEW/LwAZ5VjyoGVsW8dYpWRWCIGDRudUYsfVrzSQebFnEK5Z1Lb+wEUmpT03ea0pueZE/f36sX78e9erVo8SDE8F9wZWlkrOnQiFnWZfav/j2Vii8yEhHxIlFmsiu2lOhMLreIJzsvw6+Xj54lpZs9LPaIjcRkpzzIcuKUnOS41F+JUqupl8VVU/heJRfDajRXfaDbHjAo/yqgEd+pKSn4o1F3XOd8WCP3ERIcs6FbEvm85Icz9rSsMptMKb+YADAtivRqpuu8qwtlR5kk9fOHI6EZ22pl5sn+lXtnO0gGx5yEyHJOQ+ybFkuRZp4+L8/PsAH+8ejY8UWWNpxKrfyq2uJN1FxZijCXmvN5SAbHshVOP/XhY1oGlAPJQoU49IeD3jKTYqYeBhVKxwLwlfhyZNki+Rm6ZbllHiwG/VOnV4iu+CATMk1bt8Y1ztfR7vyTbGm1wzutaX2nvHAEyV2Bfn36V3MOf0XxjUY5tApulxyE/l616+YcOhXuM9zx9YFWy0auVlzJkNycjKa92yOEx4nsOXDLWjRVJtLchyE6gWnSFV3QEAA9m3ch5K7SiLm23jcunGX+zPEmJyjy7qU2vJob8JRfLVvqkNjcnLL7eHDx4jstxjucyyXm7VceXoFl5tchlcFL7zV9S2aruoMxbatCAgIwOE/D8PVxZNr7aoUUXKXHyfgaVoy9/bNoeR+bj2rtHdo4kEJuYkxt62LM+X27Z5v8eXOL7l91pi7MWi+oDnK+JTB+c/Oo37N+hST0xmK7ssjV4G+lLDKbXDwnb9RyKsgbj+9p9hIzhGbVUoTDx9t/1b254koKTdpzM3LzQsT903EV7u+sltyotxK+5TGjnd2wL+oPyUedIjiG48pITkXwQVpGWlo+mcfRRYDO3InXlFyDcrUVuR5jpIbAIxuOBo/hv5ot+Ryyq1o/qIAKLuqRxyys6ISkvNw9cD3TUbJXvGghm3Gw2v0QK+gDmCMYW3cNtmmq46Um4hUcvNPzbf6GXnJTYQkpy8ctnWsUtNVOcu61CA3Kcdun0XnVUNlicmpQW4ioxuOxtKwpehZtWe2n0dGRiIoKAghISFG32dObiIkOf2gyDIRU/DcTy4vVsZGod+GT7G7zxLULV2DS5tqk5uIHFstqUluOYm5G4P1cesxtuHYrH4ZWyZiqdyk0Do5s9AyEXMoNZK7OnQP6pauAcYYMgwZdrWnVrkB2RMPPEZyapYbAOy6uguf7/jcZEzOFrkBNJLTA6r4ZiohOb8Cmb/Un+z4Dm+vH2XzdFXNchMRJXc96V+8MLywuR21yw0AhtcdbjLxYKvcREhy2sbhU1QpSk1Xba140ILcpDDGIAgCrj6+gXK+ZawSlBbkJmXy/skYs30Mvmn2DT6q9RF8fX1xKP4Q3lr1ls1yk0LTVaOofoqqKsEB6pWc1uQm8jglCa/ObIkeldtaHJPTmtxEph6aijql6qBG4Rrw9fVF0W+KomzxsnbLTYQklwvVC05131Ils6srLkbh9xNLzN6vVbkBQCGvgvih2WiLY3JalRsAjKw/Eo3LNcbZO2cBAKW8S3GTG0DTVS2iym+qUpLb3WcJhtbqY/I+LctNxNLEg5blJhJzNwbtlrQDADQt1xRF8hXh2j5JTluo9tuqhOQalq0Dd1d3HLx5AoM3/1+uxIMe5CYiSm7p+Q24kpiQ63W9yK35guYI8A0AAEQejeRS1pUTkpx2UPU3VgnJAcDtp/cx7+zKbIuB9SQ3kfAaPXBpyE5UKBSAFxkvsr74apPbpEmTEBISAh8fH/j5+aFz5864ePGiyfdIs6Xre68HAHzT/Btutas5IclpA9UlGYyhZOKhe+W2eDOwIcI3fa4ruUlhjKHrqg9Qyrs4KhUpj493fKcauQFAmzZt0KtXL4SEhCA9PR3/93//h7Nnz+L8+fMoUKBArvtzLgVxT3fPWug78+xMXHp0CdPbT5dl3zwnTzyoPsmgCcEBykmux9oPYWAGDKzRQ5dyExErHoDMw15+aDZGFXIzxr179+Dn54c9e/agSZMm2V4zts4tZyWDuFzm4v2LqFS0EvfP6cSSU73gNPPtVWK6+uzFczDG0KVSK13LDUC2/fKemDmmzxZ4xtwSExMBAEWKZE8YiHIr5V0Ka7qsgXu6O5KSkpCUlJTtPkEQcOXRFVSfUZ2mq06Gpr7BckpOGnNb0SUCqelpmHx4tuoOsuGBNOY2u813mHFqKVZd3MKtfZ5yY4zhk08+QaNGjVC1atWsn0tHbq3vtEb5kuXh6+sLX19f+Pv752qnfOHymNh8IsXknAzNTFGl8J6uGkso7Ll+GKHL3lXFGQ88MZZQOHTzJOqVrsll6sY7Wzps2DBs3LgR0dHRKFu2LIDc01JvV2+kpqZmvScpKQn+/v5Gz2QQKx7GNR6Hb5p/Q9NV+1D9FFWTggP4Sc5UtlRNB9nwwFy2dGVsFPYkHMG00C9t+uLzltuIESOwZs0a7N27F+XLlwdgWW2puUNnJu+fjIijETj5/knu6+QAp5Kc6gWnqSmqFB7TVXNLQXIeZGNgBl7dVxxLloI8Tk3Cb8cX2rQLCe9p6fDhw7Fq1Srs3LnTKrlZwuiGo3F26FkUyVcEz1/GXXlC01X1oFnBAfZJztJ1bqLkKhUJhKD+/2EZxdJ1brZutSTHtHTx4sX4888/4ePjg9u3b2PP+T1c5CZS0LNg5rb285tSTE7HaHaKKsXa6ao9i3j3Xj+CBmVra2a6assiXnEJydeNPsJXjUaYvFeOCoVcfSwO4D3Av5A/To48aVZu1pyLSjE5u1D9//E1PYITsWYkZ4/cbj65jVbL31PkIBse2FqhEF6jB5Z2nIr+1cNM3idX+RVjLOs6d+ccio8ujhoValgkN2vhdZBNXtBIzrHoQnCAZZKzt/yqjE9JLHnrF9kPsuGBveVXvYI6wL9gadxPfoj/HZyR64uvZG0pr2lpXkgld/jmYe7tk+Qch24EB5iWHK/aUrkPsuEBz9rSPdeP4PM9P2WLyelJbiKjG47GicEnUL9sfVnaJ8k5Bl0JDjAuOd6F86LkYu79g8TUJ5x6zgfehfNhldtkSzw8ePBId3ITqVWqFgBgysEpGLdzHE1XdYAukgzGEBMPSYGP8KDJY1kK59MN6XBzccP95Ico5FXQ4YkHOXcFERMPXmc8wTZC1XKzJslgDKUSDwfjD2LDwg1o0bQF1/YVhJIMjkIcycHdFQUu5scXVYZyry11c3FDuiEdLZb2Q7/1nzp0uir3lkdd/FvBe0cBpCdkqFpuPFAi8fDlzC+R9k4a2nzfhkZyMqJbwQGZkjs+6zj8DpdAi9b9ZCnQd3Nxw/iGI7IWAztCckrt5/biSDq2/bgNzZo1w+Z/NnP94qtFbiJSyc0+MZtr24duHEKnFZ1Qt1xdvMHeoOmqjOhacIDyZzwoLTlHbFZ56vYptPuzHYZtGsZFcrzkZu5ke2sZ3XA0FnVZhF5Ve3FpD8iUW+vFrVHNrxq29NuCzWs2U0xORnQbg8uJUvvJ9V3/Cbb1WoDG/ny+ZKZw5E68c0/MxcD1AzE0eCgi20Xa/Gw5Rm72xuCMEf8wHmti12DUG6Ns/qxSuW3uuxk+nj4ANL0YmGJwakGpkdzlIbvQ2D8EjDFkGDK4P0PE0duMh9cOx5y35mD6sek2j+TUNi01xfbL2zF622ibY3J5yQ2g7KqcOI3gAGUkV9qnBADgq31T0W+DPNNVR8tNRJRc7P1YpKSnWPUMLckNAIYED7E58WBKbiIkOXlwKsEByh1kU9OviiyLgdUiN5Hw2uHY/s525HPPh5tJNy364mtNbiLSxMM3e76x6D2WyE2EJMcfpxMcoGzigafk1CY3ERfBBU9SnyB4drDZ6apW5SYyuuFo/NzqZ7zh/4bZe62RmwhJji9OKThAeclNPTrfrrbUKjcRH08fTGw+0WRMTutyE/nkjU/Q6pVWMDADVl9YbfSz2iI3EZIcP5xWcIByktveawGG1+lncxtql5uIqcSDXuQmZeulrej6V9dcMTl75CZCkuODUwsOUEZyTQPqwcvNEydvx2Dolq+smq5qRW4iouQWnVmEuAdxAPQpNwBo82qbXIkHHnITIcnZj9OsgzOHEuvk1sRtQ/c1Iyw+40FrcpNy99ld+BXww5nbZxC6KFRRucmxDs4UYu3qezXew6rYVVzkJkXF6+RUvw6OBCdBqcXAlhxko2W5iZy7cw7Bs4Ph7eGN2GGxKFagGPdnGENpwQHA8E3DMev4LNQtU5er3ERUKjnVC87pp6hSlC7r+mDLeKP36EFuMXdj0GJhC/gV8MOD5w/w1W7+Retq4dCNQ1h0ZlGW3O4l36OtllQCCS4HSknur06/YkD1brle04vcxJjbyfdP2l3xoGZyxtwSUxNRbXo12v5cJZDgjKCE5Lq81gr1y9RCWkYaph2dj3RDuu7kJsbcpNnVZeeWcX+mozCWUChbsCwmNJ1AZzyoBIrBmUCJmFx0wjE0X/o2qhd/DSfuxOhOblL2XduHhgENue/LJxIZGYnIyEhkZGQgLi5O1hicuWypk5zWpfoYHAnODEpIbsDGsZh3diWqFH0FpwdsgLurO9f21SA3KVHxUdgSvwW/tP6F+xcfkD/JYOlSkMn7J+OXQ7/gzJAzKF6gOPd+qEByqhccTVHNIPd0ddrR+Zh3diU6VQxF3MOreHfjGK67kKhNbgDw75N/MfXwVE3G5KxZ5za64Wic/+A8ihcojtT0VJquOgASnAXIJTlpzG111+lY3mkaShUozm0Kp0a5AUD/Wv01mXiwZRFv4XyFkW5IR6vFrSgm5wBIcBbCW3LGEgphldvg55ZfQBAEHL51yq4CfbXKTUSaeBi/2/hyGTVhT4WCm4sbOlTsQIkHRyA9RdzMRTDGrl27xipUqMACy5VlVy/uYSwl3upr6r5xDBPAxmwezAzP/8n1+u0Hh1i+iV6s1/IO7EVyrNXtP7h1jBUvVoR5enqyXbt2yfLncO7OOVb8x+KsxvQa7P6z+za3s/j0Yhb/IJ5jzxhLTExkAFhiYiKX9g4mHGQFJxVkDec2ZEkpSTa382P0jwwTwMbtGMcMBgOXvkl59uwZa9GiBStQoADbu3cv9/aNYI0/HHKR4GzAHsmZk5t4rTgVwdy+cbNaclqSm5THzx+zn/b/xOWLz1NwvOQmIkpuz9U9drdlDIUl53CBmbtIcDZii+QslZutktOq3BhjbNX5VQwTwIZuGGq35HgJjrfcRA4lHOLWljEUlJzDBWbuIsHZgTWSs1ZuUsm99msFdvvBId3KTWTO8TlcJMdDcHLJTcqsY7PYlzu/1PJ01eECM3eR4OzEEsnZKjfxSnt2gbGUePbo8QmjIzk9yE1ElNwHGz6w+Ytvr+CUkBtjjE3eP1nrMTmHC8zcRYLjgCnJ2Ss38UpPvsiCZ1Rjvf96K5vk9CQ3kTnH57CpB6fa/H57BKeU3EQ0nnhwuMDMXSQ4ThiTHC+55YzJiZLTo9xysuPyDqu/+LYKTmm5iYiSizwSKUv7MkrO4QIzd5HgOCKV3Jdrh3OVW07JhS1qzYoVL6xrucXcjWHCBMHqmJwtgnOU3ETmnZwn65+xTJKzTz5ADwBxANKRWQrKACQCGC25pxuAZ5LXHwHYYPEzrOgQYQHXrl1jZWuXZZgA9v7y3lzlJl7zon9g+BLMvZK7buUmYk3iISIiglWpUoVVqlTJKsE5Wm5Srj2+xn4+8LNs09WaXWsy1x6ubOfunTya5DPKAt58Ka8UAEWMvD4EQAKALgBcrWrbipsJC7l27RorXbc0K1eujM2Lgc1lSz2Ke2TJLcOQwbX/apGbiLXZVWtGcGqSG2OMzTw2U7aY3Nb4rcxrohcrOqIoy18wP4+RHL+pJHDmpeR65vh5OQBbAZSyqV0rbiasgEfFgyXZ0kn7JrFeK3qxFxkvuPRbbXITmXN8Dqs/pz57mvrU7L2WCk5tchORI/Egyq3dknbsQeIDXtNVnoJ7/6XgoiU/KwlgG4CyNrdrxc2ElfCUXF4JhRUxKzIXA3OQnFrlJiJ+vttPbpv84lsiOLXKTUSU3Phd4+1uSyq35y+eM8a4xeR4Cq7Ay/gaA1ATQNGXI7dX7GrXipsJG+AhOXPZUh6SU7vcRJ6mPmUBUwJMTlfNCU7tchP5af9PbPWF1Xa1YUxuIhwkx01wLFNyU14KbjmAKACv292mFTcTNmKP5CxdCiJK7ru931ndP63ITcRcTM6U4LQiNykGg4FtjNto9XTVlNxE7JQcb8G9CsDwUnItubRpxc2EHdgiOWvXue24vIM9SX1iVb+0JjcRU5LLS3BalBtjmX+v1sbkLJGbiB2S4y04VwD/vBTcJ1zatOJmwk6skZw9i3jP3z3Phm8cbna6qlW5icw5Pod5TfRiZ++czfZzY4LTqtxErEk8WCM3ERslx1NuAoA5AKa9FFw8ABe727XiZoIDlkjO3gqFNRfWZFY8rOidp+S0LjeRm0k3GWOZS2XEL35OwWldbiKWSM4WuYnYIDmegvsVQJ+Xoot/Kbn2drdrxc0EJ0xJjlf5lRiTMyY5vchNyuB1g7Omq1LB6UVuIj9G/8i6LOvC0jPSc71mj9xErJQcL7l9D2Co5L8/fim4KLvbtuJmgiPGJMe7tlSUXPja8Kyf6VFujGWPyT1+/JgBYNvPb9eV3ETEhd3XH1/PGsnxkJuIFZLjIbfPAHyW42eFADx9mXCoZFf7VtxMcEYquVNH1stSOL/y/Eq260pme3qVm4goufC/whkA5jPeR3dyE/n3yb+s4KSCbNyOcWzLP1u4yU3EQsnZK7cPAfwvj9dmvBzFTbPnGRadiyoIgpCYmGgweyNhNQkJCWjXrh2uX78Od3d3rF69WpbzLc/dOYdWi1shsFAgNvTegCL5i3B/hqNITU1FamoqAGDphaUYs3kMMAWoM7kO1r671qoDYrTEtEPT8NWur+Dq4ooWgS2wOGwxvNy8uLWfnJyMnj174tixY9i5cyeqVKmS7XVfX19fAE+YJRKRIAhCKQATAHQEUNrY+wVBCEVmFUMSgAqMsQe2fAZLBVcQmVX+BEEQUnwZY0mW3CgIQmsAvwF4Bf+d6HeCMVYnx30rAXQA4PHyR8+RmXjoxhiLs6Zzso3gkpKS4O/vj4SEBKtOFw8JCcHRo0eteZRi7+H9mZ4/f47evXvh4MGD+PXnL/HNpAjcvfsQ69evx4gRI6zun7FnXbh3Ae3/bI9S3qXwQfAHGBE1Ap0rd8ast2bBzcVN0b8nW99n7j3iCO7EnRN4e93bqOBVAae/OI0FOxbg8OPD+L7l9xAEyw5hV+vvX86/p52Xd6LXyl5oUq4J6pepj4ijETgUfgglfUpy619oaCh+//13TJ48GYMHD851j60jOEWxYj5rFbZuOlilShVrH6XYe3h+puTkZPbmm6EsXz4vtjNqEWMp8exa3F4WEFCaeXp6ssDAQKv7l/NZxmJuOcu6lPx7svV9lrxHmi29cPkCA8B+3vaz1fvJqfX3T/r3ZCyhcPfpXcYYY2npabk+q7XPMhgMrEiRIgwAi4iIMHWr3UkGuS/VCc7MH6hD38PrMxmTm3iJknNzc2PR0dFW91F8lqmEwsrzK9n7699nGYYMRf+ebH2fuffkXAqSkJDAALCEhAQ298RcqySn1t8/8e9p9ZnVeSYU0jPSWZvFbXKtk7PmWQaDgX388ceWyI0xFQjM3KU6wakZHp/JlNxySs7T09MmyVmTLd0Tt4fBRbt/T8bWuUkFxxjLktwX279wZFftIjExkaECmNe3prOl9my1ZKXcGFOBwMxdsgkuJSWFjR8/nqWkpFj7VtVi72eyRG72Ss4aud1/dp95f+/Nqo6vyp4mm99nTW3ktYj37t27DAC7e/du1s8WnlrIYu7GOKKbXNhwYQNzG+/G2ixqY3YpiC2Ss0FujKlAYOYu2QRHZMcaudkqOVvWuZmqeFAzpioUTI20n6Y+ZdMOTZNlS3C5sGURryi5bZe2mb3XRrkxpgKBmbtIcApgi9yslZw9i3i1Jjlz5VemBLcudh2Xw6WVwp4Khb1X95r9jHbIjTEVCMzcRYKTGXvkZqnkeFQorIhZwQKnBrIbiTfs/ciyYkltqblYqbVnPDgKXuVXS84sYV/u/DLXZ7VTboypQGDmLhKcjPCQmznJ8Sy/SnmRGVtMSklS5UjO0sJ5S5JBapccz9rSyfsn54rJcZAbYyoQmLmLBCcTPOWWl+TkqC3NMGSwxn805nqQDQ+s2RXE0mz3nONz2MQ9E3l2kws85SYiTTxkZGTwkBtjKhCYuYsEJwNyyC2n5NzLuLNC3xWSpXCe50E2PLB2yyNblvPsu7ZPFSM5OeQmIkqu2dhmPOTGmAoEZu5STHAbNmxgdevWZV5eXqxo0aKsS5cu9japClJSUliNGjUYAHby5MksuXl5e7IdmxdylZt4bTuygLmMdWHCUIFt3LmRy+e4cuUKGzBgAAsMDGReXl7Mr5kfcxnvwnos7+FQydmyn5u1gou7H8dcvnZx+HTVmNy+//57FhwczLy9vVnx4sVZp06dWGxsrE3tGwwG9uaYNxm8uciNMRUIzNwlFrzKysqVK9GvXz/0798fp0+fxv79+9GnTx8lHi07Y8aMQenSpQEAKSkp6NSpI6Kjo7H+71lo0bwBUtNTuT4v5l4c+uz+GJVLVUDp7SXQtW1X7N+/3+52Y2NjYTAYMHPmTMTExGD2x7PhvcUbK86vwJb4LRx6bj2HbhxC68WtUc2vGjb33Wx2V5DIyEgEBQUhJCTEqudULFoRs9+ajRnHZmDYpmGZ/+dXmG2XtqHjso5oUb4FVvZYmbUryJ49ezBs2DAcOnQI27ZtQ3p6Olq1aoVnz55Z1T5jDKNGjcK2H7ch4n8RGDZsmBwfQ31YYUObePHiBStTpgybM2eOrU2olk2bNrHKlSuzmJgYBoDVr18v27T05r39rPwUf/b3qd+4jNzOJWxixX8swmr8XoXdf3TU7ooHc/z444+sbPWyWf+t5OjGnp14ba04sbasixfWTEvFRcx79uyxuH1OCQVjOHyEZu6SfQR34sQJ3Lx5Ey4uLqhVqxZKlSqFtm3bIiYmRu5Hy8qdO3cwaNAgLFq0CC4umX+MJ0+exMbVs9G82RsAgBIFiuGNMrXQa+1IrIjdbNfzYu7FofnSt1HauwR29F6IovkKIyCgNPZtX4YSJYqiZcuWXEZyUhITE1HCvQQAIOJIBN5e/TbSDelcn2EMa0duvBhQawDmdJyDgzcO4knaE0WemdfILS8SEzN3LStSxLL9/NjLkduUKVMQEeFEIzcRK2xoE0uXLmUAWEBAAFuxYgU7duwY6927NytatCh78OCBrc06FIPBwNq0acO+/fZblpyczBo1asgAsFmRE3ONutKTL7I+f3Vkrl+72jySyzlys3UxsDXEx8ezggULstmzZzPGlFsMzOMMBXtrhtPS0xhjmaVsco7krE0oGAwG9tZbb7FGjRpZ1L6MIzcRh4/QzF02C278+PEMmVsK53kdPXqULVmyhAFgM2fOzHpvSkoKK1asGJsxY4Ydf7b8sfQzTZs2jTVo0IA9efKEvflmKPP09MhMMhxeZ1RQouQKfJef3X14mKvczEnO0s8k5ebNm+zVV19l4eHh2X4ut+R4HRDDY1OE5y+es4q/VpRtumpLtvSDDz5g5cqVy9pEwBQKyI0xFQjM3GXRhpfiYE/6H/fv38f9+/dNviEwMBAHDx5EixYtsG/fPjRq1CjrtXr16iE0NBTfffedpc+XHUs/U69evbB+/fr/5vkuLjAYDHB1dUXfXh2xYO7kXO/LMGTgzN1Y1Cr5usX9MTYtNcX167fQOLQX7tx5gB07dqBhw4YWfyYvr8yp0a1bt9C8eXPUq1cP8+fPz5p+i6w8vxK9VvbCuMbjML7ZeIs/izl4TkuTkpLg6+uLxMREqzbxzMncE3MxcP1ADA0eish2kRZvmmkOa6elADBixAisWbMGe/fuRfny5U3ey5SblvL5A5ETK2xoE4mJiczT0zNbkiEtLY35+fllG9VpiYsXL7I33qjPPD092NwZ37Mt6+cxAGzF0giWEL/P5Igs43kcG7K2D/vr1K9cRm48p6s3btxgFStWZL169WLp6el53rc1fit79PyRnX+K/8H7aD+eW3XxrniwZVo6bNgwVrp0aRYXF2fR/QqM3EQcPkIzd8kuOMYY++ijj1iZMmXYli1bWGxsLAsPD2d+fn7s4cOH9jTrEIwt4r0Su9vkFNXamJytcrNHcuK0tEWLFuzGjRvs33//zbry4tLDS2zk5pF2TVflOLeU916Ec47PYe7fuLPjt47b1Y4t09KhQ4cyX19ftnv37mx/J8nJybnuVVhujKlAYOYuRQSXlpbGRo0axfz8/JiPjw8LDQ1l586ds6dJh5BXhYI1gjMnOXvlZqvk5s2bl2eMLi/Wxa6zq+JBrkOZ5dhs9drja4yxTInYMpKztUIhr7+TefPmZbvPAXJjTAUCM3cpIjg9wLv8Siq5A5f+4io3HtNVS7G1rEvOE+fl3E36k6hPrJ6uyll+xZjD5MaYCgRm7lKkkkHrPH/+PKtCQbrOzR5cXVyxsMNkRLQaj5BS1a1OKFiC3OvkACAsKAzLwpZhxfkVGLhuoEXvcdQ6Nx687ve6VRUPtiQUrIExJ1/nZgabs6jOghxyy0nMvTg0XNwThTwL4nj/NVzkJsVYdpU3qy6sgpebF9pVbGfyPiXkxiuLmhd/nPwDA9cNxJDgISazq04gN9VnUWkEZwKl5NZ86dtwFVxx48lt7Lp2iPszlBjJda3SFe0qtoOBGfDHyT+MVjxoeeQmRax4mHFsBuacmGP0HieQmyYgweWBknIr7V0CFwZFoWeV9lzKuoyhhOQA4OS/J/H+hvfxzup3sklOL3ITGVBrAKLejsK7Nd/N9RrJTT2Q4IygtNx29F4IvwLFsLDD5CzJrb64lfszlZBcndJ1sCxsGf4+/3eW5JSSm627idhKq1dawcPVA0duHsGYbWPAGCO5qQyKweXAEXKTxtwyDBn4eMd3GFKrN4KKVeT+bECZmJxY8dA8sDkO3zys6MhN7hhcThacWoD31r6HDhU7YPuV7c4kN9XH4EhwEhwtt5w8S0vGoVun0DKwAfd+KCG5SfsmYfzu8QgpE4KovlGKTUuVFhwAfLLlE0w5NAUBvgGIHRaLfO75uLavQrkBGhAcTVFfoja5AcBvxxei9fL+mozJHbpxCP/b/z/ULVMXUX2jcC3xmiJbLTmCbZe2Yfqx6ajmVw3XE69jwu4JXNtXqdw0AQkO6pQbAIyuN0iTiYecMbcMloHG8xqj3+p+upOcNOZ2ZNARzO80Hz2r9uTWPsnNPpxecGqVG/DfYmAtSc5YQqGQVyHMeWsOVpxfoSvJGUsovFvzXdQuVRsp6SmYfnS6RYuB84LkZj9OLTg1y01ElFyvoPaIe3iFe/8AfpIzlS2VVjzoQXLmsqW7r+7GsE3DbD7jgeTGB6dNMmhBblIMzAAXIfP/R9cSb6Kcbxle3czCnsSDpUtBVp5fiQ+jPsT+AfsRWCiQU8+zI3eSwdKlIJZWPOREQ3KjJIMa0ZrcAGTJbefVg6g4M1RV01Vr1rmFBYXhnxH/ILBQIJJfJGtuJGfNOjdpxYOlIzkNyU0TOJ3gtCg3KU0D6qJ75baqicnZsog3v3t+MMbQZXmXXBUPasaWRbyi5Hw9fc3eS3Ljj1NNUbUuN5EMQwbe2TAayy9sxLJOU9Gtclvuz7BkumpvhYK4GLh7UHcs7LIQbi5uXPouxxSVV4XC0ZtHEVw6ONd0VaNyoymqWtCL3IDs2dX/HZqJDEMG92eYG8nxKL8SEw/Ssi41wktuVx9fRYM/GuSarmpUbprAKUZwepKblAxDBp6kPUMhr4J4kfEC7q7u3J9hbCTHu7ZUHMkt77YcXat0tbvPPEdwvGtLcx5kA0DLclP9CE73gtOr3KTcffYATZb0xsQmH8s+XZ22ahrGnBnDvbY09n4sKherDCBzRGPLCVaRkZGIjIxERkYG4uLi7BacXIXzouSGBA+B1w4vTJ0yVYtyA0hwjkWU277ofdi0eo4u5QYoF5Or27sr7rx5H9VKVMP+oftlqS2dd3Ietl/ZjgWdF9gck+MxgpN7V5A5J+Zg7JqxePjTQ0RM1qTcAA0ITrcxuCy57d+HDatm6VZugDIVD7dc7yC563N4Jnrg4lcXcebYGe7PAICCngXxV8xfDl0MrMSWR+cXn8fD7zUtN02gS8FJp6WbVs1By+YNcenRNSw6t5rbM9QiNxGp5Ppt+BS3n97j1vahmyfR+q/+qF6iMk4MX4eShYspcsaDIySn6H5u00hucqM7weUVc1t0bg3e2TAas08ts/sZapObiCi5Xb0Xo6R3cS5tinKrVvw1bO4+F0GvvKroQTbjd43n3n5e0GaV+kNXMThTCQXGGEZs+xqRJxZjVpuJGFSzl03PUKvccsIYw5hdP6Be6Ro2x+Ryys3H0zvrNSX2k4uKj0KdUnVQvIB1srYlBkdyswmKwSmFuWypIAj47c3xGFb7bQyOGoc5p5db/QytyA3IrF299fSuzTE5U3IDlNn+vM2rbVC8QHHcSLqB0VtHyzZdJbnpF10IztKlIKLkPg7pj7I+Ja16hpbkBtiXeDAnNxGlDrI5ffs0ph6eKstiYJKbvtH8FNWedW4GZkB0wjE0Cahr8j6tyU2KdAnJzt6LzH5WS+UmRckzHiwp67J0ikpysxuaosqJvYt4/7qwCU3/7GMy8aBluQH/jeR+afkF6pepafJeW+QGKDOSk5Z1DVg7wO72SG7OgWYFx6NCoWeV9lkxOWOS07rcRFxdXPFh8LuZR9zdOo2VsVG57rFVbiI8JHf16lWEh4ejfPnyyJcvH1555RWMHz8eaWlpAP6TXMfXOlrdthSSm/OgScHxKr/KmXiQSk4vcsvJvLMr0XPtR9licvbKTcReycXGxsJgMGDmzJmIiYnBlClTMGPGDHzxxRdZ94QFhaFbUDcwxrDkzBKrY3IkN+dCczE4OWpLxSUkj1OTsKjDzzh//x9dyg3IXdZV1qckF7lJ4RmTmzx5MqZPn47Lly9n+/np26cRPDsY3YK6YU67Och48d+OKklJSfD3988VgyO5cUf1MThNCU7OwnnGGAzMgNgHl9D0zz4o61NKd3IT+U9yG+Dh6oHaJV/nJjcRXpIbN24coqKicOzYsVyviYmHyhmVce7bc4Ah++tSwZHcZEH1gtPMFFXuXUEEQUDsg0tovKQ3HqUk4d1qXXQpNyAzJvdBrT5wEVxRqUh57nID+MTkLl26hN9++w1Dhgwx+roYk4t1jUXYkjA8ePQAiYmJSEhIyHYfyc150YTglNzyyN+nFPpXC8MnO77nUtalRg7dPIl2Kwaibunq2Nd3Kdxd3bHn+mHuzxEl5+npjkaNGkEQhDyvnCO0W7duoU2bNujevTsGDhyY5zNEyTEXBm8fbxQsWJCmpUQWfPaIlhFH7OdWxKsQvNw8MThqHADYXNalRowlFH45Mhdjdv0oy1ZLAQGlsWfrn2jXJRz37z/G/PnzUbt27Vz3BQYGZv37rVu30Lx5c7zxxhuYNWuW2WeEBYWha5WuEAQBcQ/iUMy1GABg5+Wd6L2xN8nNiVF1DM6Rm1WKiYeVF7fg4uCtKCjD3mdKk1e2VC1nPADAzZs30bx5c9SpUweLFy+Gq6urxc94kvoEFX6tgGYlm2HFOyvgOc4TLau0JLnJh+pjcKoVnBp24mWM4d+nd1Hap0S2c0m1iLmlIGqQ3K1bt9C0aVMEBARg4cKF2eRWsqRlpXUrz69E98XdwSYxhM4Kxfr+60lu8qF6wanyG6sGuQGZiYfSPiWQkp6K0KXvaDYmZ8k6N2nt6sk752Xph7nEw9atWxEfH4+dO3eibNmyKFWqVNZlKQU9C8JNyIy8+Hj4cDupS4Tkpi1UJzi1yE2Kp6sHgoq9mmfFg5qxZhGvq4srFr31EyY2+QQAcPPJbe79MSW59957D4wxo5cliAmFZuWbAQD2Xt+LK4+ucOs7yU17qEpwapQbYLriQc3YUqHgIrhAEATsv3Ecr8xooYrDpS1Bmi1d3HUxAODM0DOoWLQiUtNT7d6FhOSmTVQjOLXKTSSn5E7JNI3jhb3lV/VL10TYa21kO+OBp+TyWgri7eENxhh6ruhp1/bnJDftogrBqV1uIqLkonr8gZolgrj3kRc8akuVOMiGh+TMrXMTBAH9qvez+YwHkpu2cXgWVStyM8bc03/BwAyqWifHq3BeRMyunr57AacGrOcetAdsL+vKS27G9oMTy7q6BXXDoi6LLPocJDezUBbVFFqWGwCcvhurqpgcb7kB/43kdvdZAjcXN1m2DbdlJGdthYL0IJu/Y/422z7JTR84THBalxsATAv9UjWJBznkJuLq4opi+Yvg4fPHqDOvM/6O3cStbRFrJGdr+VVYUBiODz6OXlVNj7hJbvrBIYLTg9yA3IkHOb74liCn3KT4evqgavFK6L32Y4dJzpTcIiMjERQUhJCQkDyfUb1EdQiCkOfh0iQ3faF4DE4vcpPCGMPkw7MxoHo3FMtfRNZn5UQpuYlIKx6WdpqC7pXbcX9GXjE5S0dulpzJYOyMB5Kb1ag+Bqeo4PQot5wkJN3CvoRj6PO6fdtqW4LSchMRJbfi4mbEv78D/gVLc39GTskll0y2eFpq6aEzUskt6LwAY0ePJblZBwlOxBnkBgDf7o/AV/um2nW4tCU4Sm4iGYYM7L9x3OwpXfYgSu7ffPcg9BUQ+kqoRTE3aw5+FiVX83lNHJt0jORmHaoXnCIxOFFu+6L3YcOqWbqVGwCMazBM9sSDo+UGZCYemgTUBWMME/ZNky0m9/2iUUjv/gLpcekYVXYU98L5rlW6ov2T9jgWQXLTI7ILLtvIbdVstGjeAIkpT7g+Qy1yA+Qv61KD3KQwMPzz6Bp6r/2Y+2LgbVeiMXDfF2gWUB9l9pdAu1btuB5JKMbc1k5ei4hJJDc9Iqvgck5LWzRvgIfPH6Pq3Lb44dBMLs9Qk9xERMmNDH6Pa3/UJjcgs3ZVjoqHbVei0XHl+2hR7g1s6jMX0VuWc61dpYSCcyCb4PKKuRX28sWA6t3w2e7JdktOjXITEQQBU0LHoetrrcEYw8GbJ+xqT41yE8lZ1rXr2kG72pPKbWWXSHi5eXKtXSW5OQ+yCM5UQkEQBExo9BG+ajjcLsmpWW45WR23FQ0W9bB5uqpmuYmIkpvU7FPUL13L5naMyU2Eh+RIbs4F9yyqpdlSxhgmRE/DD4dm4cKgLShfyN/SfmhKbsB/259HnlhsdXZVC3Izxpm7sYh/dA1dX2tt8XtMyU2KudrVvLKoJDfuOFcW1ZqlIIIg4OvGI3Fu4CaUL+Rv8aaGWpMbYHviQatyA4BZp5ahx5oPLc6uWio3wLaRHMnNOeEmOFvXub1aOBCMMQyO+j+z01Utyk1EKrnNl/eaFbqW5QZk1un2rNLeorIua+QmYo3kSG7OC5e9b3gs4i3t7YfPdk8GAIyt/36u17UsNxFRcumGdAiCgAfPHxn9HFqXG/BfTA4Aeq/9GAIEowfZ2CI3EVFyjUN7oWXLlkanqyQ358ZuwfGQm5h4AGBUcnqQm4ggCHB3dcflx9dRZ15n/Nh8TLaYnB7kJiJKzsejAEp7l8j1uj1yE5FKrlmzZihbtiw8PDwAkNwIO5MMvMuvxMTDN/sjsDZsBjpWDNWV3KQYSzzoSW7GeJHxAodvnUYj/2AucpMiTTysW7cOrVu3xgcffIDff/+d5CYfqk8y2Cw4uWpLGWNYeTEKnSu9iYsPLutSbiJSyX1W/338fnKJbuUGABHHF2Lk9u/w+RtD8NOROdzkJiJK7vbt+0hLS8t8JslNTvQruJ9++gmjR4/G+lWz0KFdC+4di7kXh4aLeyK/ez6cDd+oO7mJMMbQfc1wrLq4BXVL18C2ngt0KTcgs0D/zWXvYtf1Q6hVIggH+v3NTW4i16/fQlCt1nj27DkmT56MTz/9lGv7RDZULzibs6hNmjSBt7c3fpoyF8+eJfPsU9a0NJ+bF/59ehdzTv/FtX01cfjWKWy9Eo3aJatiW88F8PYo4OguycbOawdx4OYJlPb2w5m7F7EhfifX9hljmBoxD8+ePQcADB48mGv7hPawWXB169bF5s2bcfxkDNp3HsRNctKY29nwjXZXPKgZMeZW3a8ydvVeDE83D3RYMcjh25/LgRhzaxnYAHGDt6NnlfbYl3CMW/uMMYwa+z2m/DoPkydP5tYuoW3sWgfXqFEjrpLLmVAolr9ItrKu344ttKt9NWEsoeDu4o7yvmVVccYDT3ImFAp45MfCDpMxNXQcAODOs/t2tS+VW0REBI3ciCzsXujLS3J5ZUvFiocfm49Fy0D++8g5gryypXJvteQI8sqWurq4QhAEHP33DMpPb2bzfnI55UYJBUIKl0oGeyVnyVKQ0fUGIahYRTxLS8afMet4dNshmFsKklNyR26ddlBP7ceSpSC1S7yOLpVa2XSQDcmNMAe3Ui1bJWftOre/Yzej7/pPNBmTs3Sdmyi5tWEzEFKqusK95IOl69ykWy1ZIzmSG2EJ3HcTiY6ORtu2bVGn1uvYuGY2ChTIn+e9tizilS4G/l+z0UbLutSIPYt4l53fgCdpT2U944EntiziFQ+yOfrvGZwbuAkerh553mtObtacyUDYheqXiXCpRZUijuTatm2L9p0H5Sk5WysUzJV1qRF7KxQO3TqFacfmA4DqJWdrhYI4kruX/BAerh7IMGTA1cU11300ciOsQZYNL81NV+0tv5JumvkiI938GxwIj/KrKS3/TxOJB3vLr1xdXFHSuzgSU56gwaIeubY/J7kR1iLbluV5SY5XbamYXR3XMPOX/MzdWG595wWv2tKciYdl5zdw7qn98Kwt9fbIj1cLl8t2xoMlcrPkZHvCuZD9XFRpTG7y3LFov2Yg99rSE7fPIXh+F0xq9qlqpqtyFM4zxjDp4HT0r94Npbz9OPSSD7wL54H/YnLLL2zE0o5TcHDeSYtHbhSDUwzVx+AUOfg5Ojoarbu3xosBaahc+hXs6ruYa22p2hIPSuwKcufZfey+fhg9q7Tn3rY1yCE3kUzJfYplMRtgmMYQMdGyaSkJTjFULzjuSQZjNGrUCFF/RSF0fCh8UABevfkWWKsp8aDUlkfzzqzA53t+QlLqE4clHuSUG5B5JGHx6CIwbLBcbgQhRZGT7QGgcePG2PHNDpw5Gse1dlVEmnj4M2Y9UtJTubZvCUru5za2/vsOTTzILTcx5jbt1wWI+ITkRtiGIlNUKdask7OV5BfPkd89H56mPVNsdw5HbFZpz2ld9qCU3GzNltIUVTFUP0VVbAQnwrtA3xj53fMhMeUJav7xliIVD47aiVfMrn5Y513kc/NS5JlqlxtBSFFccIAykivo6Y2+r3eUfaslR28zLggCpr35Jd6u2hmMMRy/fU62Z5HcCK3hEMEB8ktOGpOTS3KOlltONl3ajeD5nWWJyZHcCC3iMMEBykpu3N4piHt4hVvbapMbALR7pZksiQeSG6FVHCo4QDnJnR6wHpWKlDd74LIlqFFugDz7yTlKbqmpqahZsyYEQcCpU6e4PpNwHhwuOEAZyQUVqwjGGD7Z8Z1d01W1yk1EKrkVF6NgYAab23LkyG3MmDEoXbo01+cRzocqBAcok3gAMpMPtsbk1C43EVFy68JmwkVwweOUJKvbcKTcNm/ejK1bt+Knn37i+kzC+VCN4AB1Jx60IjcRQRDg6eaJhKRbqDQr1KrpqiPldufOHQwaNAiLFi1C/vyWrZFMTU1FUlJStosgAJUJDlBecitjo8y+R2tyk1LWpxR6VG5ncUzOkXJjjOG9997DkCFDEBwcbHGbkyZNgq+vb9bl7+/Ptc+EdlG8ksFSlKh4WHp+PcJea21y91gty03E0ooHueQ24dtp+Pq730zec/ToURw4cADLly/H3r174erqiqtXr6J8+fI4efIkatasmed7U1NTkZr6X2leUlIS/P39qZJBflRfyaBawQHKSA4Ajtw6jQM3T2BkSP9sP9eD3EREyS2KWYNL7+9EsfxFsr0u58jt/v2HuHf/IX74aSYWLF6NcePGoW/fvtnuCQwMRK9evbB+/XoIwn/fm4yMDLi6uqJv375YsGCBRc+jUi3FIMHZixKSm3RwOr7Y83O2rZb0JDcRxhguPb6GVwsHgjGWJRK1rHO7fv16tvjZrVu30Lp1a6xYsQL16tVD2bJlLXoeCU4xVC84RbZLsgdLz3iwh8/qD0FKemrWVktN/evqTm5AZvzx1cKBSDeko8+6j/FmYEME+pZVhdwAICAgINt/e3tn/rm/8sorFsuNIKSoXnCA/JLLuZ+cp6sHgktV05XcpLgKrvDLXxSDo8bBzcUNrco3crjcCEIOVJdFzQslsqttyjeBp6sHKhd9RbdyAzI/a8dXW8JVcEG6IR3tX2mmSrkFBmZOpU0lGAjCFJoRHCCv5A7dPIk2fw9AcKlq2Nd3Kdxd3fHXhY3c2lcT265Eo9OqIWhVvjHer9kbw7ZOQHTCMW7t08iNUAuaEhwgj+SMJRRWxG5Gz7UfKbKfnJJIEwqruv6O6a2/wd+df0PDsnW4tE9yI9SE5gQH8JVcXtnSvq93knWrJUdgLFsqCAK6VW4LQRCw7p/tmHN6uc3tk9wItaFJwQF8JGdqKYgS+8kpiSVLQXZdO4RBm//Ppl1ISG6EGtFEFjUv7MmuWrLOTZpdfZSSyLXvSmLpOrdfWv4fXhjSMThqHABYfMYDyY1QK6pf6GsJ1i4GtmURr7gwNvbBJVQu+gqvrsuOtYt4pWVdi9/6GX1f72T2frXJjRb6KobqF/pqdooqxZrpqq0VCoIg4Ozdi3h9TlvNTFdtqVAQt1r6utFHaFTWdMG72uQWGRmJoKAghISEOLQfhHrQxQhOxNxIzt7yK8YYJkRPwzf7I7KVdakRXuVXD58/xs5rB9GtcttsP1eb3KTQCE4xaASnJKZGcjxqS7WSeOBZW/rHmRXovmZEtsSDmuVGEFJ0JTjAuOR4Fs5LJTfvzEo8S5Nn52Fb4V04P6pueLYzHkhuhJbQ1RRVijhdrdg0AJcaXkc1P76F84wxPE17Bh9PbyS/eI787vm4tGsPcu0KIk08hD5rgO2TD6habjRFVQyaojoKcSR3Dv8AdwWsaB/BtbZUEAT4eHrjadozhCzo4vDpqpxbHgmCgF9Dv0LNlCrYvkvdciMIKboVHJApue1jtyNjvgG9eoyU5SCbAu750e21Ng6NySmxn9unn03Cqf9dQMR7JDdCO+hacADQpHETRK2PUuVBNjxQy2aVBKFGdC84QNmDbL7Y8zNi7sVxbT8vSG4EYRrdJhmMocT256fvXECNElW4t5sTklveUJJBMSjJoCaUOFy6RokqYIzhq71TZZuuktwIwjKcSnCAMpIDAEGALDE5khtBWI7TCQ5Q/nBpXpIjuRGEdTil4ADlJbfs/Aa72iO5mYeK7YmcOFWSwRhyJx4YY1h0bg26V26LfO5eNrVBcrMOSjIoBiUZ1I4SI7l3qnVBPncvnLkbi2lH51v1fpIbQdiO0wsOUC7xsPnyHozcMdHimBzJjSDsgwT3EiUkN6beYIsTDyQ3grAfEpwEpRMPU478YfQ+khtB8IEElwMlJPd145H4rsknqFe6Zq7XSW4EwQ+nz6LmhRJlXQDwIuMFNl7ajc6V3iS5cYKyqIpBWVStolTiYVXcVnRZNRQDN31OciMIzpDgTKCE5HpUboe3X++EuWf+RrmCZUhuBMEREpwZ5Jbc9qv78XfsZrxauBwuPryMacfmc22f5EY4MyQ4C5BLcmLMrWVgA5wZsBFfNRyOhKR/YUVc1CQkN8LZoSSDFfBMPBhLKIh/F4IgIP7RVbxaONDm9p1ZbpRkUAxKMugJXiO5vLKlgiBAEATEPriEoNltbd6FxFnlRsX2RE5oBGcD9ozkLFkKwhjDhOhp+GZ/BP7XbDTG1n/f4vadVW5SaASnGDSC0yO2juQsXedm635yJDeCyA4JzkaslZy1i3ilkptxcimSUp+YvJ/kRhC5oSmqnVgyXbW3QuFxShIKeRVEanoqPPOY0pLc/oOmqIpBU1S9Y24kx6P8qpBXQTx/kYIGi3rkmq6S3Agib0hwHMhLcjxrS73cPNHh1ebZYnIkN4IwjZujO6AXRMm1bdsW7TsPwqhfB6DHxg+51ZaKMTkg87Quxhjurn5AciMIE1AMjjPR0dFo1a8VUvul4M0KjbCm+wyutaWMMYzfNw3fHogAZgAR40huOaEYnGJQDM7ZaNSoEaIWRsF9lweS56cgIzWD+zOebHgKzCK5EYQ5SHAy0KRxE2yftB0nj1/gWrsqxtym/jofEV/oV24bN25EvXr1kC9fPhQrVgxdu3Z1dJcIjUKCkwneBfrOklBYuXIl+vXrh/79++P06dPYv38/+vTp4+huERqFYnAyw6NA31nklp6ejsDAQHz99dcIDw+3uR2KwSkGxeCcHXtHcs4iNwA4ceIEbt68CRcXF9SqVQulSpVC27ZtERMTY/J9qampSEpKynYRBECCUwRbJedMcgOAy5cvAwAmTJiAcePGYcOGDShcuDCaNm2Khw8f5vm+SZMmwdfXN+vy9/dXqsuE2mGMWXoRdrJv3z7m7e3Nmjaux54+OMNYSnyel+H5P+zjD/szACwiIsLRXbeL8ePHM2SGOPK8jh49ypYsWcIAsJkzZ2a9NyUlhRUrVozNmDEjz/ZTUlJYYmJi1pWQkMAAsMTERCU+njNjjT8cctFCXwXJuRg4r5gc09nIbfjw4ejVq5fJewIDA/HkSeaGAkFBQVk/9/T0RIUKFXD9+vU83+vp6QlPT77nWBD6gASnMOYkpze5AUCxYsVQrFgxs/fVqVMHnp6euHjxIho1agQAePHiBa5evYpy5crJ3U1Cj1gx3CM4Ymy6qqdpqa189NFHrEyZMmzLli0sNjaWhYeHMz8/P/bw4UOL20hMTKQpqjI4fApq7iLBORCp5J7cP+30cmOMsbS0NDZq1Cjm5+fHfHx8WGhoKDt37pxVbZDgFMPhAjN30To4ByOukytYsABu3bqjm2mpI6F1cIpB6+AI04gxuVKlyiAyMpLkRhAcoREcoTtoBKcYNIIjCIJwFCQ4giB0CwmOIAjdQoIjCEK3kOAI3RAZGYmgoCCEhIQ4uiuESrAmi0oQmkAQhIIAEgH4MsZo7yQnhgRH6A5BEAQAPgCeMPoFd2pIcARB6BaKwREEoVtIcARB6BYSHEEQuoUERxCEbiHBEQShW0hwBEHoFhIcQRC65f8B0hPtADM8re0AAAAASUVORK5CYII=\n", "text/plain": [ "Graphics object consisting of 15 graphics primitives" ] }, "execution_count": 70, "metadata": {}, "output_type": "execute_result" } ], "source": [ "graph_PNG = Graphics()\n", "\n", "for L in [inPNG(0, pi/3, 0), inPNG(-4, pi/3, 0), inPNG(4, pi/3, 0)]:\n", " L.expr(chart2=CC)\n", " graph_PNG += L.plot(CC, ambient_coords=(X, T), color='green', style='--', \n", " max_range=100, plot_points=4, parameters={m: 1})\n", " \n", "for L in [outPNG(0, pi/3, 0), outPNG(-4, pi/3, 0), outPNG(4, pi/3, 0)]:\n", " L.expr(chart2=CCp)\n", " graph_PNG += L.plot(CCp, ambient_coords=(X, T), color='green', \n", " max_range=100, plot_points=4, parameters={m: 1})\n", "\n", "for L in [outPNG_III(0, pi/3, 0), outPNG_III(-4, pi/3, 0), outPNG_III(4, pi/3, 0)]:\n", " L.expr(chart2=CC)\n", " graph_PNG += L.plot(CC, ambient_coords=(X, T), color='green', \n", " prange=(-100, 0.999), plot_points=4, parameters={m: 1})\n", " \n", "for L in [inPNG_IIIp(0, pi/3, 0), inPNG_IIIp(-4, pi/3, 0), inPNG_IIIp(4, pi/3, 0)]:\n", " L.expr(chart2=CCp)\n", " graph_PNG += L.plot(CCp, ambient_coords=(X, T), color='green', style='--', \n", " prange=(-0.999, 100), plot_points=4, parameters={m: 1})\n", " \n", "graph = graph0 + graph_PNG \n", "graph" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plots of hypersurfaces of constant $r$" ] }, { "cell_type": "code", "execution_count": 71, "metadata": {}, "outputs": [], "source": [ "def plot_const_r(r0, color='red', linestyle=':', thickness=1, plot_points=300):\n", " return KC.plot(CC, ambient_coords=(X,T), fixed_coords={th: pi/3, tph: 0, r: r0},\n", " ranges={tt: (-100, 100)}, color=color, style=linestyle,\n", " thickness=thickness, plot_points=plot_points, parameters={m: 1})\n", "\n", "def plot_const_tt(tt0, color='darkgrey', linestyle='-', thickness=1, plot_points=100):\n", " resu = KC.plot(CC, ambient_coords=(X,T), fixed_coords={th: pi/3, tph: 0, tt: tt0},\n", " ranges={r: (-100, -10)}, color=color, style=linestyle,\n", " thickness=thickness, plot_points=plot_points, parameters={m: 1}) \\\n", " + KC.plot(CC, ambient_coords=(X,T), fixed_coords={th: pi/3, tph: 0, tt: tt0},\n", " ranges={r: (-10, 10)}, color=color, style=linestyle,\n", " thickness=thickness, plot_points=plot_points, parameters={m: 1}) \\\n", " + KC.plot(CC, ambient_coords=(X,T), fixed_coords={th: pi/3, tph: 0, tt: tt0},\n", " ranges={r: (10, 100)}, color=color, style=linestyle,\n", " thickness=thickness, plot_points=plot_points, parameters={m: 1})\n", " return resu" ] }, { "cell_type": "code", "execution_count": 72, "metadata": {}, "outputs": [], "source": [ "def plot_const_r_p(r0, color='red', linestyle=':', thickness=1, plot_points=300):\n", " return OKCp.plot(CCp, ambient_coords=(X,T), fixed_coords={th: pi/3, oph: 0, r: r0},\n", " ranges={to: (-100, 100)}, color=color, style=linestyle,\n", " thickness=thickness, plot_points=plot_points, parameters={m: 1})\n", "\n", "def plot_const_to(to0, color='violet', linestyle='-', thickness=1, plot_points=100):\n", " resu = OKCp.plot(CCp, ambient_coords=(X,T), fixed_coords={th: pi/3, oph: 0, to: to0},\n", " ranges={r: (-100, -10)}, color=color, style=linestyle,\n", " thickness=thickness, plot_points=plot_points, parameters={m: 1}) \\\n", " + OKCp.plot(CCp, ambient_coords=(X,T), fixed_coords={th: pi/3, oph: 0, to: to0},\n", " ranges={r: (-10, 10)}, color=color, style=linestyle,\n", " thickness=thickness, plot_points=plot_points, parameters={m: 1}) \\\n", " + OKCp.plot(CCp, ambient_coords=(X,T), fixed_coords={th: pi/3, oph: 0, to: to0},\n", " ranges={r: (10, 100)}, color=color, style=linestyle,\n", " thickness=thickness, plot_points=plot_points, parameters={m: 1})\n", " return resu" ] }, { "cell_type": "code", "execution_count": 73, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgYAAAKSCAYAAACpyBP1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXiV5RvHP+82RmxjdHcjiNI1pJH4gQEiEkojJSIqSokiKCglIYICIiUhSneDSHd314CxrvP8/nh2tp3tdC14Ptd1rrFz3vc5z8a29/ve8b01IQQKhUKhUCgUAB4pvQGFQqFQKBSpByUMFAqFQqFQxKOEgUKhUCgUiniUMFAoFAqFQhGPEgYKhUKhUCjiUcJAoVAoFApFPEoYKBQKhUKhiMcrpTeQ2tA0TQMKAMEpvReFQqFQKJyMH3BXmDExUsIgOQWA2ym9CYVCoVAoXEQh4I6pF5UwSE4wwK1bt8iaNWtK70WhUCgUCqfw/PlzChcuDBYi4koYxKFpWn+gP3F1F1mzZlXCQKFQKBQvHKr4MA4hxAwhxEtAjZTei0KhUCgUKYUSBgqFQqFQKOJRwkChUCgUCkU8ShgoFAqFQqGIRwkDhUKhUCgU8ShhoFAoFAqFIh4lDBQKhUKhUMSjhIFC4WJCQkK4du1aSm9DoVAorEIJA4XChQQGBlKvXj1KlCjBjBkzUno7CoVCYRElDBQKFxEYGEiTJk24ffsmH3R+mwEDBihxoFAoUj3KElmhcAF6UfDg5g3GhoURtfAvCpcuzoABAwDo379/Cu9QoVAojKMiBgqFk0kcKdi4YQH3IiIJBIpl92fwR91U5EChUKRqVMRAoXAiiUXBjk0LqVihDBszeBEeHUPI/UdMHD8MQEUOFApFqkUJA4XCSRgTBURE4O/hQTjw/PY9hE6nxIFCoUjVKGGgUDgBo6IAYMQPZI2O4T6g0+kIffAYvwJ5lThQKBSpFiUMFAoHMSkKAJo1INuqTXDnPgCPL17Fr0BeNE1T4kChUKRKlDBQKBzArCgAiI0hb+BT+W9N49mZi9CgdtynShwoFIrUR7oTBpqmFQTGAy2AzMBFoIcQ4kiKbkyR7rAoCkZPhh9/oUzTevTI4U+e5evwFsLgECUOFApFaiNdCQNN07ID+4AdSGHwECgJPEvBbSnSIRZFQXAI/LUBRg/GNzwC36OnYdwX0PGNZGspcaBQKFIT6UoYAEOBW0KIbomeu55Ce1GkUyyKAgA/Xzi6Hj4YDKVLyBqDW3cgRzajaypxoFAoUgvpTRi0ATZpmrYcqA/cAWYKIeaYOkHTtIxAxkRP+bl2i4q0jFWi4MRZePwUvv0JGteFMsVhWH/w9oZvpkCuHNDv/WSnKXGgUChSA+lNGJQA+gKTgHFADeAnTdMihRALTJzzJfCVm/anSMNYJQoAhn4HoWFQKB98/iHUfpOoA8c4Ua4k15evI3u+3DQxIgxAiQOFQpHypDdh4AEcFkIMi/v8mKZpFZBiwZQw+A4pJPT4Abddt0VFWsRqUQCwbCY8C4ZHgXD9NnzZHy5cYdOg0cQKgV9YGI11OjQP447kShwoFIqUJL0Jg3vA2STPnQPamjpBCBEJROo/1zTNNTtTpFmsFgU374JvFti4EyqVh1E/yvTBqjl4b9tHyQJ5uXjnPsF3HnB7/EwKf9EfTPy8KXGgUChSivQmDPYBZZM8Vwa4kQJ7UaQDbIoUfDoGHjyC4FB443VYPgseBsLfm6D6K5T/ajAXew8F4NzXUyj85utQvrTJ5ZQ4UCgUKUF6EwaTgf2apg0DliFrDHrHPRQKm7BJFABMGQ33H8HLZSE6BrJkhhz+0KE/LJxK2ddq4uHliS4mlrP589K0bEksxaeUOFAoFO4mXQkDIcQhTdPeQtYNjAKuAR8LIRal7M4UaQ2bRMGVG5A/jxQD+XJDhgzQfyS8VAoG9YB7RyCjN5mrtaJEwXxcvnGHoHsPuLZjPyUqloO8uczuRYkDhULhTtKVMAAQQqwF1qb0PhRpF5tEgRDQaaD0KgA4fxkOrpEdCblzyhqC7P7ytZ/HUfnMRS5/8g0ARweOooRPFvhvNZgoRNSjxIFCoXAXmkhi0fqio2laViAoKCiIrFmzpvR2FG7G5vQBwIUr4Okp/Qlu3IZXXkp47cBR+GURTB8DPlmIjYpiUskAwh49wcPLi08WT8OnTVOr9yeEYMjQcUxeP4/OH3bmjyF/2PFVKhSKF5Hnz5/j7+8P4C+EeG7qOPO3KQrFC4ReFNx8cIO/1/xsWRQcOQUxMVCsEOTJCdmySlGwcj08i/udCwmDG3cgU0a49xDPCbN4tW1LAHQxMZy4GlcXGxtr1R41TaNJ77p4dvJg4aGFTJ8+3d4vV6FQKIyihIFCgWGkYMs/86lbuSqxuljCoyOMn/A0CJp3hqlzYfJvUKUlhEdI6+MPPoGd/8rjmgTA9qUyohAZBTMXUKVeDfmaphF08y50GQRfT7Fqnxuu7OKtVX1pVbohH+V9n4EDBzJjxgzHvwEKhUIRR7qrMVAobMVU+mDAlq+5EHiVNe1m4+OdxfCk7P6wdr70K3jyTEYNMmeCgvng/A4ZQQDQ6RLqB4oWhDuHyKlpvH73AaWbNyBn6eIw43cokNfiPjdc2cWbf31I8+KvsfytaWRomwFPPFXNgUKhcCqqxiAJqsbgxcJcTcHeW4dpvqw7NfJXShAHOh2s2wb/ayLTCLE6mSYAiIoCLy/DQsJOAyEiElbOTnhOCJPGRqZIKgq8Pb3jloqrOfhpHtOnT1fiQKFQmETVGCgUFrBUaBhQuBob28/l4L2TtF7Rm9CoMNhzENr3k/UFE+dAnTchMs44c+YCqNFaCgY9Xd+BHh0SPl+wEio2keIgMTodDBgJ85cn26cpUQAJ3QqDP+rGgAEDVFpBoVA4jEolKF5IrO0+0IuD5su68/OxxXxavyccXgcVyoBPZsidAzLGRQzqVpfRA69Ev1ZNXzNcsHwpKRaio6VdMhAbFcWljbsol8ErWSTBnCjQo1oZFQqFM1GphCSoVEL6x56WxKs7N1LsUTQe77RGREaieXoaCgBjCAEr1kPdaiZrCM6v2cKmz8bx7PotPti8iGKv1Yx/zRpRYPh2Kq2gUChMo1IJCoUR7PIpAEpsOIrH1Hlsubybf9q/TmzLLjL8D/Jj/xFwIsn8roeBsuPgyEnD569chy17AIh4Fsyz67cA2DbqR4ROB99M4dT339gkCkClFRQKhXNQqQTFC4O9ogCA77+E5yFkfn6B74s+4lxsRj6KiZAFifcfwcHj0Pltw3Py5oIHx8A7g+Hzv/0JKzfAhZ1U6vgG+yfN5tG5y9w+cIyL67eT6dpZlgTupPn7Da0WBXpUWkGhUDiKSiUkQaUS0id2iQIh4JNvoF0rmQ4IDgFfH/bePpK8W8GWToPAp7K1MUtmAM6v3sKf7fsCkLl0QUZ1us/rpRrYLAoMt67SCgqFwhCVSlAo4rA7UhAWDmcvwb0H8sL/dm8Y9JVBt8L30/vL1IAxUbBiHQwclfz5nNnjRQFA2dZNKFjjFQDCL93hvftlpSiYuwImzbHjK1ZpBYVCYT8qlaBI19gtCnQ68MkCGxYk+BJ81A1yZAdkt8Kmd+fxao8JsH20NDtKSnikjDIYY8LP8OAxTByJpmn4fdgMDp4A4NWNz/GcANx5YPp8K1BpBYVCYQ9KGCjSLXaLggNH5Z3+X7OhcAHpbJgjG7Q2HHZUt1BV+Pt3gu/eYvS2cXxT72NDh8Qub8uHMXJmh6hoQHYfvH9nCgMq5iDr6Sc8u36bw3OWUPOrj202QkqKEgcKhcJWVCpBkS5xqNAwb26oXFGOTQ4KhuqtpHlRYmJj42sFLvpE8svxpQkmSHrCTcxZAGl6NOIjg5bEj36eFf/yzjFTCQt8Kj9ZuxU+H2v9/pOg0goKhcIWlDCIQ9O0/pqmnQUOpvReFI5htyh4FCjti4sXhtnfS7OirL4w/CN4o5nhsX/8BRUaw+MnVM1XMblDIkCJujDlV5Nvt/XwWsb81Du+JbFo9Sq8EtfZEBMRye2Dx+WBT4LkhMaoKBu/EwkocaBQKKxFdSUkQXUlpG3sFgVCQOP3oEAeWPiTfO76bTkcyRiPAmHDTni/bfxTiWcrbH53Hl4rNkqHxIplk52+4coubnbrRZvrGcl57Uh890HwvYdsHTaehqM/IVvRgob7czCtIJdR3QoKxYuKtV0JShgkQQmDtItD6QOQtQVZMsuJifuPQLNOsHUx1KpieJyZi/TeW4c5cv80g6p3Nfk2+vRBZ78a/Py/cXgXKmjyWAMOnYCx02DxNIOuBltR4kCheDFR7YqKFwqHIgV/bZBdCLWqSFEAUPNV+OU7qPGq4fH3HkLl5nKIkhECCleTouD0Bf6b9h2hkaEGryeuKfi51xzrRQFIMRATA8Ghlo81g0orKBQKcyhhoEjzOBQpOHAMOg+SEQKA0DA4cxE8PaHTW4YjlEEWHVatBCWLml02ZOU/FB4zl9Yr+8TXHBidfbB0NfT+wuQ6kcEhbBv5I+FPnsm0xNr50lHRwUifEgcKhcIUShgo0jQOpw9qV4HjGyGguvx8wixo3lkKBGMUyg+//QDZzKeZfL/6nOu758UXJK66sMn47ANPT3mR189dSMTtg8eZWbkFe3+YxZZh4xO9cA/qtYXjZ2z7WpOgxIFCoTCG8jFQpFkcEgXrt8sZB93fhTIlEp4f2hdaNJDmRonR6aDXUOjTKXl6wQR1ygWw0WcuTZZ+wM6b/9GyZP3kNsfvtJIPI/gXyk9EkEwDHpu/nFc6vUXRejUgVw4oXgQy2meXnBjlc6BQKJKiIgaKNInDkYJdB2DTroSQ/J6DcPOuzOMnLTYEePxUWh/HJr+zT4ZOB827wJY9BEeFohOx5Mjsz28tvzc++yAqSg5hSoJfgbw0HvNp/OdrB4wkJjJStlH+MQXKl5Y1B7GxVn3JplCRA4VCkRglDBRpDodEgT5k//2XsHCq7C7Q6eDTMfD1ZNPn5ckJO5bJ1IMlwsIhb27+fXaBN//6kBYl6nOn/z7y+uTi1vO7hiZIAHP/hEYd4GlQsqWq9epIwepyjsLjC1fYNzHR7ITYWGjdHb6dZnlPFlDiQKFQ6FHCQJGmcEgUPAyEOm/K6ICmQYa4ccgeHrKob5KRgUcAs/6Asxet9xHw9WHDqDdocH1ifE1BRq+MxOpiabGsR3KHxPat4cA/RusWPDw9+d+Mb9E8PQHYM34mgZeuyRc9PaFNE2hY27p9WUCJA4VCAUoYKNIQDqcPsmSCCmXl/AOQd9zf/gTPnkv7Y3+/5OdERMLPC2HbPqvfZuuRdXRa0idZoaGnhyezXh+T3CExRzZpgmRCeOSrVJ7ag7rLLUdGsfrDYQh95KPv+/BaTZkSMRJxsBUlDhQKhRIGijSBQ6IgOloWGvr6yI4CvZvh5esyGmCuuj9TRji4Gj7sbNVbbbiyiwtDBnNirnfyQkMwGNlsIA7OX4bXO8uJi0aoP3wg2YoVBuDmvkMc/PkPwwNG/ghN3pNfq4MocaBQvNgoYaBI9TgcKRjxg7xoJp01ULYknNsBDUyE4jfuhDv3IWPGhLSDGfQ+BWferkG+X2cYLzQkQRyceHieow/iREmuHLLL4Okzo+d4+2ThjV++i/9864gfeHbjTsIBnd6EL/tbtU9rUOJAoXhxUZbISVCWyKkLh0UByL7/U+ehRUP5+aET8MdK+HEEeJto+YuJgVeby9bFH0ZYfAuj5kUWeB4ZTNaMfuiEjqjYaDJ5ZbR4zvqPR3N8wUoaf/sZNT7sjJbUgAlkPcRLdnyfjKDskxWK9IO1lsjKx0CRanFYFCz5B1o3kaZEhfInPH/tFpy/Yt490MsL9v4FnpaDagaioNE4vCf+Jl0TC+Yze17WjLKm4bPt33PswVnWtP0FnzPXpLOhiXObfPsZtQZ2I4cp58VdB2Sr5K7lVvstmEP5HCgULx4qlaBIlTgsCu4+gI9GwV8bE57TF+y1/x9s/EOmCIxx+CQEBcsuAT9fs2+TLFJw6wFMnC0LGq3krTLNOHjvJG8v7YVo0QUWrDR5rLevj2lRALIQcfnPENfi6AxUWkGheLFQqYQkqFRCyuOU9AHArbsyUqBpsgOhfV+oVwM+7mn6HJ0OKjWTFsmzvjN9HGbSB/rfKRvGJOtHNrfXlWJa//n4ZLH+Z+/ukVPkr1wheVph32EoU1x2XDgBlVZQKNI2arqiIk3isCjYuBM++UZe4AsXSLg4e3hAlZfhpdLmz/fwgA0L4KvBZg8zW1OgaTaJAkgoSFzmcZkpxxdaNSQpKjSMDZ98w5y6byXvUoiIhPcHweRfbdqHOVTkQKF4MVARgySoiEHK4ZRIwe8rYMMO6WroFVdC8zBQOhda4upNKJjXdIohDrOi4M2eMtrwaR/b9w6cfnSR8jPW4Hn9DsyfZPbYG3sOMr9pRwC8Mmei7+G15ChZLOGAS9dka6aTOhX0qMiBQpE2UREDRZrCYVEQHCI/ftAOlkxPEAX7DkO5BrJuwBxCyFRD3+FmD7PYfRBQHcqXsm3viaiYuwye5Upztbg/b6zok9w+ORFF69WgWp9OAMSER7Cqx2foYmISDihdXIqC85fhzzV27ykpKnKgUKRvlDBQpDgOi4J7D2VdwPJ18vPEYfzqlWDMp1C5gvk1NA1+nwxf9DN5iFUtiZ/2gVaNbdt/Ujq04W73Vmy78W9y++QkNB37OdmLS+Oj2weOsWfCrOQHzV8Ok+fIFkwnocSBQpF+UamEJKhUgntxSvpAp5O59PfbJhTa3X8EIaFQqpjl8+89lC2CxjwB4rBKFNy8C8+DoUIZm2sMkvHgMZfnzeZVryXUKPAKa9rNxsc7i9FDbx04yrxGHRA6HZqnJz12LadgtUoJB0RHy5oDCx0W9qDSCgpF2kGlEhSpHodFwdMgmSLw8IAhvQ2r74d+Bx36J7QomkKng9bdYNBok4dYbV4090/4X1fHRQHAybOU+n4RO2p/z8F7J+m2fqjJQwvXqkK9oTLSIWJjWdVtCFGhiaIMGTJIUXD/EfQaKsWLk1CRA4Ui/aEMjuLQNK0/0B8lltyCUyIF46bB35vhzNbkDoZTvoJ7D8xGAQD5+qRRkDO70ZdtcjQc3BPeaWXjF2GCRnXh+r9Uz5aVjUXy4p/RyICnRLw2rD+Xt+zm7uGTBF66xuYvvud/074xPOjpMzh0XNo8ZzW/ni0oEySFIn2hUglJUKkE1+M0n4LwCLh+C8onakH8bSm80UzOHrDEk2eQ3d/kHb49NsdOJyZGFkZmyEBYdDhj9k1nRJ3+RtMKgZeu8UvNNkSHhQPw3qo5lNHbQOuJjZXjmoVwTmQjESqtoFCkblQqQZEqcVgUxMbCsPFw/TZkzmQoCh4/ga8nwz+bLa8THQ2NO8BXxlsCbRYFQcHQ+wu4cMWGL8YCIaFQtj78uRaAC4FXmXbkD5MFiTlLF6fZ+C8BmV7IXbZk8jU9PeXX3qE/zFvmvL2i0goKRXpBpRIUbsMpkYLHT2HNVqhTNWF8sp5cOeDoBpNpAQMyZICRg6BMiWQv2RUpeBwIp89L4eIsfH1gcC+oWhGAyvkqsLH9XJov607rFb2NFiRW7fkeGf18qdCuJR5eJn69vbygeGHIbUVUxUZUWkGhSPuoVEISVCrBNThFFMTEyItaVJRhTcGFKzB1LkwcKaMIlggLhyyZjb6UKtIHFtDbJ9fIX4mN7851fI/BIU7vWFBpBYUi9aFSCYpUg1NEwcwF0PIDiIxMXmh47RacOAtR0ZbXiYyEgLdhSnKrYIdEQVSU9cfayj+bDQYr6e2TmxSrY9Ueo0LDeH7nvvEXJ86GgLZSLDkRlVZQKNIuKpWgcClOKzR8tYJsT0xsV6zTya6C5g2g2WuWOxBAphD6dIK61Q2edjhS0LQjVHtFRi2czfZ9slDy/bbxTwUUrkZA4WoArL+yk/qFaxgtSLxz6AR/dRtC5hz+dN/+Z/L0QpumkNXXZATFEVRaQaFIm6hUQhJUKsF5OEUUnL0oCwyTVtALAV2HQMkiMOpj69aKjjY6N8Ap6YO/Nsgah9dq2n6uJfSdBEYIDH9KiVkNqZq3YrKaA11sLD9Xbcnj87IgssHIQdQfPtD0+5y7ZFjM6SRUWkGhSB2oVIIiRXGKKLj/COq+Db8uMf56lQqWpyXqiYiUa81fbvC002oK3m7hGlEACaLg5t1kL+XMnJ117X7l4L2TyboVPDw9eWP2eLS483eNm87tg8eNv8eZi1C1Fazf7uzdq7SCQpHGUMJA4XSclj7Ilxv+nAFd2ho+//iJjCAM6gHtrDQU8tCgdROo/kr8U04TBecuyToASy6LjrDkH3ipETx4nOwlfc2BMXFQqMarvPalvEOPd0UMCU2+foUy8nv9en2XbF+JA4Ui7aCEgcKpOEUUXL4Oi1bJfzerD5kS1RWcPAdlG8DOf61fT6eTBYsjB8kLIE7uPli9BQaOtK7GwV5erw+Lp0EOf6Mv68VBeEwEYTGGhYSvfdGPgjWkIHpy5Qabhn5n/D1aN5XRieNn4OJVp24flDhQKNIKqsYgCarGwH6cFin4ZorM2f+32rDYEGTL4qyF0Ltj8u4EY0REQrOO8ElvePN1wAUtiULAs+fSRTGFEUKgaRr3Qh6S1ds3vuYg8PJ1fqnROt4VscPKXyhrbAqkELJro0QR+GOqy/aorzmYOm0qHw34yCXvo1AoDLG2xkAJgyQoYWAfelFw6+4Ndm5YZJ8o0Nv0GrvQPg2Ssw9esnHd0DD48nvo0xkqlEkTPgUmCQqGz8ZCr/cMUiJJ0Qkd1ee/hX9GP4OCxCO/LWVt/xEAZMmdg76H1+ObN1fyBW7dlSZRLuhU0COEoP8XX/Fz6GLeL/c+vw/53WXvpVAoJKr4UOE24kXBvRssXzXNPlEQEiqnHO7+T4qDpHffX0+Gt3rLzgJb8MkCP33jOlEQHAJN3oNDJxxfyxJ+PnI2xOMnZg/z0DyY2mRkspqDKt3fpez/ZJQg7NET1vT9EqM3BoULSFFw8y78MEsKNSfzLPI5h8qfIlOBjCz4cYFKKygUqQglDBQOkTh9sHP9IhpWrYVO6Nh544Dti/lkkQ9jfPsZLJtptN3QKBGR8Hpn2L4fcKGjYXAo5M8jL9quxsMDNi+CpIORjGCsIFHTNFrPHIdPnpx4emegaL2a5i/6e/6DOUsg8KkTvwh4GhFEs6VdufrsFvu7L2Nwe1VzoFCkJlQqIQkqlWA9pmoKFp35h85rhjCnxVh6vvKu+UViY6V5T+6cxl9fuAoa1YECeW3b3JNnsiBw2EA2ZLqXdtMHxngUKB9WpFX23jrM/1b0YsVb02lSrC4A13b+S+Yc2chXqbzl9woNMy3W7CCxKNj23gJezfuS8jlQKNyEtakE5XyosAtzhYYdX2rD/jtH6bVhOIB5cfD1FFixTg4/ypSk0DAkFEZPggePYEhv2zaYIxssmub6moLb96SxUdK9u5Lun0r7500LLR4aULga1/ruJHsmf4QQRMVGUbxBbevfyyeLrG3oPxyGD3TIAMmYKADlkKhQpDaUMFDYjKXuA03TmN50NIBlcdDzPXilvPELq68PHPjHummJeiIiodNA+HIAG7I/dX2koPMgKFoIfjc+vtklTBxp0/ckeyZZr/HVnqnsvX3Y6FTG53fuk7VgPuMLeGjSbOrRE7AiyGAMU6JAjxIHCkXqQdUYKGzC2pZEvTjoV6UTe28dSV7k9vcmGaYuUgDatjR87eZd6POFjBjkypHcDtkcT4MgJIw9j0+5J30waRQM6eWatU1RpoRtYimOZsUDkhUkxkZFsW3kj0wt15Db/x0zfqKfL2xZLJ0dhZAtozZgSRToUT4HCkXqQAkDhdXY6lOgFwe/tfwOTdO4H/JIvvDgMfT6HBb/bfzEazfh2BkIi7B9k/nzsGFmL5qc+tY9NQVVKoI1uXpns2kXvNbWpou0sYLEY7+vYO8Ps9BFR/OXKVdESBBng7+GuJZHa7BWFCS8jRIHCkVKo4SBwirsNS/SNA1PD0/OB16h1C+N+fXEn5A3F/y3RqYREqO3FK5fS6YQ8pgoSDRGRCR88Am7tyx1X6HhkVMwaY7Nd9BOIX8eqFBWdkXYQGJxMP7AbKp0a0+hmq8C8PTqTTZ9Ps78AjVeTTaZ0hS2igI9ShwoFCmL6kpIgupKSI4zHA2FEEyZ3Bfdmq34TxpDz8rvJT/o49GQwQt+sP6ONJ6rN3n+9ge81uQeRWvVd0/3wdw/YcIsOLfdtnRHKuDEg3OUy1mCjF4ZeXLlBrNqtCY6VKYXOqyYRdn/NbG8yMNAk+LNXlGQGNWtoFA4F2VwZCOapvXXNO0scDCl95KacJbNsaZpfJyjES0i8tNv3UgZOUhKhbJQrpRd628Q18jd0Y2iAKD7uykrCqKipHX0w0CbT30lb3kyemXkyP3T9DwxnkbjP49/bXXfYYQYGdZkwKqNUKERXLuV7CVniAJQkQOFIqVQEYMkqIhBAk6bfRAWHm+vK2JjGbDtG/6+uJXzvTbhl9FXOvnlymHf2hGR3OjTn4aF9/Lyq24UBamBJ8+geB2Y/i10eduuJfbeOkzzZd2pke9leqzy4fJaOXa5dIuGvPfXbDRToickVA666t3JQBg5SxQkRkUOFArnoCIGCodwmih4FAiVW8DS1QBonp5Mbzqaw11X4ZfRl9jL1+Q44bVb7Vp+z66VxG7eScvcVd0rCkJCoWRd2LLHPe9njBzZ4NwOu0UBJKo5uH+KBU2CyBKXGri0YQcn/vjL9Im+PnL+hKbJaYwRkS4RBaAiBwqFu1HCQJEMp4kCkG11H7SDgISCNU3TyO+bh/DoCBr/+yX/9qwPDevYvPSGK7tocnIMQ6Y0ZNKAee6NFETHQOe2ULyw+97TGHpHSAcKIPXiYF/oOU6/XyT++Y2ffcvzO/fNnxwUDM27ED5xpktEgR4lDhQK96EMjhQGOE0UhITC5evwagUYNiD566FhZLp0jQp5y1LnziLmXK5j2T45ERsvbOfQxx/S7t0A5rWb4f70QXZ/+PoT976nKd4fDFkywazv7F5CLw4yenlz594fnFi0imxFC5luX9Tj78fzZVNpfuFHrj674xJRoEeZICkU7kEJA0U8To0UjJsOS/6RoW5jrobjf0abv4zp53YAVjgkJmLDlV2MmN2PnQc9yDS6HxlSoqbg2GnI6gcli7r/vZPSsqFTRiQHFK4GQJnvP+N45gd0HD+NrD7+Zs95GhFEs6uTuBp6hz21v+elk4HQ1OGtmESJA4XC9ajiwyS8qMWHThUFIAsOL16VEQNjhEfAmYtQrRJCCAZsGc3Mo4s40X0tlfKUM7msweyDZuPxzprNsX3aS6MOUCg/LJicMu/vQk4+PE+dP9pTI38lo/bJepLVFHz1B5w8B3v/kpMgXYgqSFQobMfa4kMlDJLwIgoDp4kCIWD8z/DeG1C0oPFjVqyDaq9AsUJJThVsub6XZsXrmVxeLwq+v1Oa/t8uxNs3Bf9/Hj+RzoxFCqTcHhJz7hKs32H7sCkTxHcrxImDTFoGPLy84rsUjBYahoRCTCxkc8//ixIHCoVtqK4EhVU4NVLw5Bn8vhz2mrCCiIqCb6bCr0uSvaRpWrwo+OXYEuYcX2rwul4UdM9UjY/nXsJ7+3/279MZ5MqRekQBwOmLMHOBLAZ0AokdEjtM6sjsOm9yMs7C2mT3ga+PFAWPAuXUzNhYp+zFFKogUaFwDarG4AXGqaJACNmBcGS96Xy3tzfs+BP8/cwudfrRRaYf/QNN0+j5yrsG6YOpb01De+MxFM5v/14d5eQ5+GURfPuZLEJMDbz1OrzdHDw9nbZkQOFq/FVjLPubD+FhrI6NQ8aQs+7LvLXzM/PdByfPw7w/ofNbLq/BUDUHCoXzUcLgBcWpomDVRhkFWPYz+BjJRz8MhOETYMIwq6YC/tR0FDp09NownFOPLjDr2BKaF3+NFXk+IAOeKX+n/vgpHD0lOwFSC15xv8qhYcb/D+ykWb3WhLyzg1NLVxPx7Dlj33mHqx092NbxD9PdB43rwtntTimItAYlDhQK56JSCS8gTi80zJUDiheBzCYulNdvweETVg/80U9lbFWyAT8dXkCl3OVYXnMEGVp2hwUrHdurM2hUB/79BzIa6bZISfYdhvxV4epNpy7bfOJIMuWWgi7fqWDmeL9vuSUxS2ZZgPrhl7LI1MWotIJC4TxUxOAFw6mi4O4DOeWvXg35MIYQciLfkfU2VapvvLqbLdf38VKuUqxpNxtv39ywazlUMt2x4DZiYhLu0FMTr74EYz+3mKqxlUgfD/a09aP6rKcAHB01k4A2b5GncBHzJwoB5y9LYeio+LQCFTlQKJyDihi8QDhVFASHQN234MdfTB8zbxn0/kIWodkgChLXFBzrtpp8D8O58ew2izNdgwwZ7N+zs6jaCr6ZktK7SI5PFhjYzap0jbXoCw3/Lfacgm1eAyBDaCxj2rclJNJCBMgnC+xYBq0ay8/d0AGlIgcKheOkwtsehStwevrAzxd+HAH1apo+JlNGefdqQ0GcgU/BW9PwDgqDmq05+341OuXeRVhMuE0OiS7h8w+hVLGU3YMpngbB7EXQpW2CXbK9SyXpPijTOR8zD7Qg9GEguY495eiSv3itaxfzi+gHLH01CWJj4NvPzR/vBFTkQKFwDCUMXgCcKgqeB8OuA9C6KbRtafyYqCjZgfDeG/JhJclEgac35PCG3yfTvFYV+h2ebJNDosvo9FbKvbc1TPlNGks5IAxMtSS2+ukblnWQF9kDw6ZStH5NchUsZNIEKZ6c2UCns3s/tqLEgUJhP0oYpHOcHin4fQWMnQZnqhkPWUdFQbNO8HYL+Ki71csaFQXPg6XtcMtGaMD0pqMB2+yTnc6V63D2ErRomDrrDLL7w63/HNqbuSmJ5d98nQrvtOLM8nVEPHvOJxP78bROPrMOiYDhz4JeOLoYJQ4UCvtQNQbpGKeLAoABXWH/36bz2BkywP+aQJ1qVi9pVBSEhUP11jBtXvxx+m6FQdW6kjtzDse+DntZvwM++MTllr8O4eUlCyQjI20+1ZrRyS0mjaJY/Vr02L2CwUO/5+C9k7Re0ZvQqDDLb7BinazRePLM5r3Zg6o5UChsR1kiJyG9WCI73bxo5A/wegPT3QcgbYJz2XbBNioKQIad5y+H+jWhZDET2xLsv3OUuoWq2vSeDiGE/Dpz53Tfe9pKWDiUbwhfD4Gu71h9mjWiwBhJ7ZPNRg6u34bflsKoQW4tJFX2yQqFskQGQNO0LzVNE5qmTUnpvbgTp0cKIqPg8Cm4dM30MYdPQtkG8O9Rq5c1KQr0XQzd3zUpCgBWXthIwMJ3+fXEn1a/p8NoWuoWBSA9BEZ8BLUqW32KvaIAEuyTD98/xY6bB8wfXKwQjPlUioJHgVa/h6OoyIFCYT2pMEnqHDRNqw70Bk6m9F7cidNFQXS07C5YN998d0GlcjB6MFR72aplzUYKmnWW9r79PzC7RtuyzelXpZN7aw46DYSObya04KVWenW0+lBHRAGALiaGTBsvsb/KVCqWagBAdGw0GTzNRASu3IBabeC3H6GNC+c0J0LVHCgU1pEuhYGmab7AIqAXMCKFt+M2nC4Ktu6FwV/Dxj+gYD7jx4SFw70H8s5+YDerljUpCkAKg6b1oFJ5i+voaw7ATQWJMTFyf6m5vkCPELJQtHhhqF/L5GGOioJnN+6wqE13Hl+4QqGar1JhZ30m/DebTVf3mE8rlCgiIwcNa9v0fo6ixIFCYZk08BfOLmYA64QQWy0dqGlaRk3TsuofgHNt49yESwoNSxWD1+tD3lymjxk3DZp0hPAIq5Y0KwpAFs590c98LUMi9OKgX5VObLy6G5fWzHh5wZIZsiMhtaNpcpDRLtOhfUdFAUDWgnnRPOWfkdv/Hefc35uoW7Aqh+6fMl+QqGnwYRfph/Eo0OqfH2eg0goKhXnSXfGhpmkdgOFAdSFEhKZpO4HjQoiPTRw/Gvgq6fNpqfjQ6aLgwWPI6mt69kFigoLhxFl4zYzRURwWRcHCVfDwMXzSy+YtCyGI0cWQwTMDj8OekCuLC7oWgkPAO0Pqm5FgiuhokwV+zhAFei6u386St3sDkKNUMfod28C/90/QYnkPqud72XzkIDISKr0O77R0i/lRYlRBouJF44UsPtQ0rTAwFegshLD2FuQ7wD/Ro5CLtucSnC4KhIB3+0IvC3+kDxyVUxP9/ZwjCkB66l+4Yte2NU0jg2cGrjy9QalfGrumIHHKb1AuDUQL9GTIIP8/k9yNO1MUAJRu0ZCicRGeJ5evc3TunwQUrsaGd37j0P1TjNk/3fTJGTPCxBEwwLo0lDNRkQOFwjjpKmKgadqbwCogNtHTnoAAdEBGIUSskVMTr5Fm2hVdkj4A2WGQOZPpwTexsVC1JdSoDLO/t7icVaJAjxAJNrp2IIRgwJbRzDy6iDktxjq35uDcJVk0978mzlvT1bzzoQzXz/0RcL4o0HPn0Al+rdcWAJ88ORl4ZhsZ/Xw5dv8MZXIUt+yMCHJkdESkU2c9WIOKHCheFKyNGKS34sNtQNKy+HnAeWC8JVGQlnBJpODvTfBGM6hWyfyxnp6wdr4ckmMBq0RBTAys3iLf24a5CsZwaUFi+dLykZZ4vy1kzgy4ThQAFKz+ChXateTMivWEPgxk/+RfaTjqYyrnqwDAmUcX+WbfdOa2/N64SBAC3ughfTCWuvfOXRUkKhSGpKtUghAiWAhxOvEDCAUC4/6dLnBJpODoaej0Eey00Ie+diuEhEKh/NJ+1wxWRwp2HoCOA+HcZTs3b0jigsRhuybyLMKkMLYeIWDG7zJikJZo3RSaBLhUFOhp9PUneMRZMf87dS7B9x7Gv/YsMph1V3aaLkjUNPhqMHwzxOn7sgaVVlAoEkhXwuBFwGXpg6ovw7EN0KiOmTd/Ct0/lY6EFrApfdAkAM5shYpl7di4cfTi4PAHf5MtU1Z0wsEBPoFPYcQPcPaiczboRoI3b2XqoDdcKgoAcpQsRrXe0j8hOjSMXWOnxb9Wt1BVNrafa94+uV4NKFNCFk3evueSPZpDiQOFQpLuhYEQooGpjoS0hktEwf4jMGeJ/HfZkuaPzZkdDqyGDzubPcwmUfAs7m7ejMOhvWiaRhH/AkTGRNJqeU/HChJz5YDAk2mjVTERTyOCWDVtBE1333OpKNDz2pf98fbzQfP0xDOjt0H7qN4h8eC9k3T4Z5DpRfqPhLd7u3Uaox4lDhSK9FdjkG5xWaRg0y7Yfxi6tzef31+5XjrUlShidjmbRIFOB43elS6CYz618wuwjLenNyWyFXa85sDDI22YG8WhTx/cqh/Nxl9XuVwUAPjkzsmbcyaQp0IZcpYunux1vTgwG8EZ3AOCQ1Pse61qDhQvOkoYpAFcJgpA2hhHRpkXBecuwfuDYdlMs1bANokCPV8NhiIF7Ni49TilIPG3pbB9HyyaZvnYVIBBTUGXP9wiCvSUf/N1s68HFJaTN2N0MUw4MJtB1boaFiTqCzyFkEOXihd21VZNosSB4kVGCYNUjktEQUwMdBkEXdtLZ8NMFgx7ypeGE5ukE6IJ7BIFHh6yE8ENJBUHr+Z5iWr5rZvrAECObFDYtQLGWRgtNOw2RJoz/WK5vdRdXAi8yncHfmHr9f3GTZB+mCXHbp/dLlsu3YwSB4oXlbQTF30BcVmkIDJKfsxo4eIdGwt/bZB3bs4WBRt3Qs/PZd+6m9CLgzXtZlM1X0XbTn6rOXz/pWs25kRMdh80e00+3ExMRCT7p/zKxQ07kr1WIXeZeBMkowWJ3drDnAkpIgr0qJoDxYtIujI4cgapxeDIZaIgNtZ6r4Atu+GNnnDgH5NDjewSBSAFx8r1sPAnhwyNHGHh6b+JiI20Lq3wKFCOM7bCuyGlcEdLoi0E33vIb/XfIejmHXKWLk7fo+vxNGLRvPfW4Xj75HXv/ErmDEasuK/cgJJF3bBr4ygTJEV64IW0RE4vuEwUnL4AlVvAxavWHd/0NTi52fmiAODtFjJfn0KiAODQvVP02jDcum6Fd/vDwFGu35SdWBQF4RGwfT88DXLbnnzz5cY/Lv0SeOkax0y0uertk1/JU46MXkZ+hpavg8rN4eZdV27XLCpyoHiRUMIgleHSQsPs/lCnqjQnMkdIKKzfLv9tIoVgtygQQhbyPXlm9bZdxZQmI+hXpZN14mDs5/CR+/38rcGqSMHDQGj5Pvx3zG370jSNpuMSZm7s/PYnokJCjR4bULgak5uMwEPzYN/tI4ZphZYNpaVzIROjv92EEgeKFwUlDFIRLk0fhIVDwXww6zsZEjfHkn+g8yA5ZdEIDkUKrt+GT7+Ff4/Y8AW4hsQOib02DOfPc+tMH1y7CrxawX2bsxKr0weF88OpLdJMyo0UqlmZl95uDkDog8cctWCOFRwZwhsrPzSsOfDJAu1ayWLVmBhXb9ksShwoXgSUMEgluDRSMHaa9AuIjrbu+J7vwX+rIW+uZC85JApAtp5d3AUtG9l2novQi4Oxr31CgyJmpkT+vADOO8ey2VnYVFPg4QGli4OX+xuR6g//KP7f51ZtMnusX0Zf/n77Z+MOiZN/heZdZNQpBVHiQJHeUcIgFeBSUQDQtiX07iTH8JpDp4NT52Xe34g5jcOi4P4jiIqC3DlTtLYgKZqmMaxOP/L65OJeyEOWnl1reEBUFAybAEdOpcwGjWBXoeGKdTBsvOs3l4Q8FcqQK85V8+b+w4SYiETpSeyQaCAOqlSE1k1SxBExKUnFwfCpw1N6SwqF01DCIIXRi4Jb92+wdePvzhUFT57JNEKFMtDdisr7ddug+v+M3hk7LAoAvpkCrbvbfp4bmXtyBe+t/tiw5sDbG56eho5vpti+EmN398HT53ArZQr4yun9KoTgwtqtFo/Xi4MHYY95HP5UPlm/Fgzq4fAETmehFwcBn1dj3NNxfDH1i5TekkLhFJQwSEESRwpW/TWTVyoar/63CyGgfV/oNdT6c1o2gjVzoVwpg6edIgpApig+6WXfuW5iWO2+pgsSU0GUw6GWxF7vwR9TXbc5M5RPZGR1/p/NVp0TULgaJ7uvo6h/QZ5FPE+IHEz4GWYvcsU2beaH/+awN8thaka8wviPx6u0giJdoJwPUwhj6QOd0PHVnqn0fKU9Rf0LOvYGmgajPracPtATESkdEJsamuA4TRSADAWncozaJ/MyfDY2rjLeQkeHC3GKT4FOJ2tNMlpwu3Qy+atUJGuh/Dy/fY9rO/8lKiQUb18fi+d5engihKDtqv4IIaRD4oPHEJ2yRYgAEw7MZujOCYysM4DRAR/xafh3yiFRkS5QwiAFMFVTEBj+lEVnVrPozGp2dFxovzh49hz8/eA1M8V0iQkKln3iE4bJ6u84nCoKDp2AY6dl1CCVDyLSiwMvzYssXplBeELe3JDZiPGOm3CaKChYHUYOgn7vO3+TZtA0jYDP+qCLiaVc66ZWiYLE534dMIgWy3vQekVv1nxnxD7ZzSQWBV/XG6TskxXpCuV8mARXOx9aKjS8GXSXBos7AdgnDmJioO5b0KSe7L23hrBw+GkevN8WCuQFnCwKAKb8Cr/9KVvm0hhCCA7fP0X1/JVS5P2d6mi4YCVUexlecnKBqxtI7JC45q2f8VmyHurXdMnIbnMYEwV6lEOiIjVjrfOhEgZxaJrWH+iPrLso6wphYG33QWJxsL/LMvL55rbtjf7aINsCK9sXune6KNATE5Mi7XKOsu74Wt77+2MmvTXW/pHNdpLabI5TGr04+KPhGN585wdZs+LG6Ic5UaBHiQNFasVaYZD2/kq7CCHEDGCGPmLg7PVtaUks4l+AnR0X8dOR38mVJbv1bxIVJSvo325h/TlDx0HpEtCzA+AiUSCErHlIg6IAoOXqy9ycnZnsmewc2WwnLhEF12/DrgPwQTvH10oBAgpX41LvrVIsH21IjG9mt/0Rs0YUgJrKqEj7pO5kbzrBHp+CIv4F+LHRl3h5eLHn1iFuBN0xf4IQ0KwTfD/T+o0JIYu4hOwLd1mkYNMuKN9QDiJKg2jvtsZ/7jTr7ZOdgMsiBYdPQL/hsg4lBRA6HTf3H2HzF9+x/atJdq2hj6BNu7iKZks+IPT2LWdu0SjWigI9ygRJkZZJm7dwaQhHzYtidbH02/wVoVHh5msOdDro9BaUL2394poGk+RgIJeJApCV/G1bQK4czlvTnZQtiVa2JNNFfQBWXdxCj0rtLV4c7MWl6YPWTeDJSbd3JeiJjYpmUZvuRIWEkjlndhqM/AgPOyNJlfO+hO6LcTwZ1gIu/odPRusLGm3BVlGgR0UOFGkVVWOQBGcWHzrL0dDhgkRjxMbC2m3QJIAN9w+5ThSkB9ZuBV8faFAbIQTRumi8Pb15FvGcbJmcW4fyItQUrOj8EWdWrAfg/Y1/ULxBbbvXOrplJaP+GkVYwKuseWeO07sV7BUFiVE1B4rUghq7nMI40+ZYX3MA0HBx5+RphYWrYOSPtnnInzwH7/bj3/WLXSsKwiPg700QHOLcdd3JtPnye4y8C/T29OZG0B1K/dLYqWkFt4mCz76FSXNcs7YVlHvj9fh/n7PS7MgUVZq25Ythv3Pw/ilG7LYvNWEKZ4gCUGkFRdpDCQMX4IrZB3pxkM83F2HR4YYvPn0Gj5/Y5sxXuSI7N35Po6s/ujZScPQ0dOgvi97SKpsWwi/fGTxVJGsB3i3f0mk1B26NFPj5go+FCZsupPTrr+HpLY23zq/ejHBw9kHAXU8u3Xqd0QGDnLE9wHmiQI8SB4q0hKoxcDKuHIhUxL8A+zovQ9M0QqPCeBoRRKGs+WFgN5vX2nBlF28eGknzkvVdmz6oWw0u7ZYjn9MySfz5jTok2tmt4Pb0waiPXbu+BTJm9aNEo7pc2riT4DsPuHvkFAWrv2L/grfukn//eYjx4PLT63y15ydmN//W7rSCs0WBHlVzoEgrqIiBE3H5lESI/yPVf/NoXlvUkQcrV0rnQhvYvXkJOV/vSdcs1dxTU1C4QKp3OzSJENDqA9i4M9lLenHQr0onPt3+PYH6YT82kCI1BULAnfuyvTWFKNemafy/r27f59hibVvCwTXg68PD0Cesvrwt+chmK3GVKNCjIgeKtEAa/Wud+nCHKEjMN/U+JltoLDm7DOXxkqVWn7fhyi4Gbf6ayEK5mfbBDNeKguho2UK556Dr3sPVxMZCzhwmq/j14uBot3/ImTk7thTzplih4bEzUDIATpxzz/sZIVuxwvH/jgoNN3OkFegv3o8CqVOoChve+Y1D90/ZLA5cLQoStqvEgSJ1o4SBE3C3KACZVvi711JeG5mfBhELLfsckNCSWKRWfWpu24m3r/Mtnw149hzy5gI/17SRuQUvL1gwGRqarpzXNI0S2YoQHRtNu1UDrKo5SNHug/KlYMUsKF3cfe/patZuhaK14d5DAgpXixcH7/w90Cqx5i5RoEeJA0VqRtUYOEhKiAI9RfwLsLTfnzRY3Im1l7fTv2oXk8fqRUHrgnVZUqAHGUIjIauLUwi5c6bYmF+nER0NYRGQ1ddicaeXhxf5fHNZrDlI8ZbEzJngf03c+55JMLjwOqNlul5NWDgVvGQtiF4chEaHWbzIu1sU6FE1B4rUihIGDpCSogCdDpp1osjQvhzvvpqsGf0ACI+OIHMGwymAic2LFlf6lAyVWshK+/q1XLvHsHB48ixFRxU7zIFj0LQjnNwMZUqYPdSagsQUFwUAIaHw21J4szkUdYInhh34FylAnSG90TQo+loNJyzol8wKPKBwNQB0QseUQ/Po8+p7yQoSU0oU6FHiQJEaUcLATlJUFID0ByhaCHx940XB4jOrGblnMtvfSzBBSuZoGAscXQ9F3HBBmDRHXoCu7Xf9e7mKsiVl1MPKroqk4qBCrtLULlgFSCWiAOBhIIz5Caq8nGLCIEfJojS1dvqnNURFweJ/5KjxEkUMXrr05Dqj9kxl7eUdrGmXMLI5pUWBHiUOFKkN5XyYBGucD1NcFJggqUPi2ceXU9bR8PJ1Wf3u6shEKkQIwV8XNvF22dfRNC31iIL0SmgY5KwEv0+Gd1sne3nvrcM0X9adGvkrsabdbGYcXZgqREFilEOiwtWosct2YkkYPH36lEaNGqW8KNAPwclmuEe9OAiLDudpRBDNSyQRBVdvwpzFclxt7pxu3nQa5FGgtI5+oxnkyGbXEn+c+puReycTHBmqRIGrEEKm15L4TSRGLw7y+uTk6rNbqUoU6EksDsaNG8eXX36Z0ltSpCOUJbKLOHXqFMePH2dg3y4pGylYuR7yV4WYGIOni/gX4Ku6A3kQ9pgcmf2TRwoCn8oLXViE6/f44DFM/S3NTlUEZMSj7zC7nRufRgTx6Y7vuBF0h/5VO6UOUbB5FzR+DyIjU2wLQqcjNiqKmMhIdEl+hu1C08yKApA1B10qvMnVZ7cYXrtfqhMFINMKgz/qTsaMGRk2bJjqVlCkCEoY2EhAQAC9evZk9Lc/8fsff6XcRpq+Bv/8muzpDVd20XvTcJoWq8uRrv8kTx9UfwVObXFPbvlRIHwzFW7dc/17uYpK5SH0AlSpaPOp+vRBjC6W9uVaMGbfDLeMbLZIlixQrBB4p9ywrJv7j/Bt1pcY61+BrSN/dM6iHQfA6i0mX55wYDazji9mZJ0BjHltMIfvn7LLBMmV3L5zj4pVWuLt7U2nTp1UK6MiRVDFhzbi4eHBrF9+AaBb76EAfNDlbfdvpEgB+UiEsdHJt57fpcf6L5nTYpxzpjLaQoUyEHjSve/pbOx0bExaU/BKnvLkyjKaXhuGk8UrMx0rtHHyRm0goLp8pBaclc70ygAmAgBJCw3DYyJovaI3L+UsZVCQmJLcvnOPCpVbIgQc/OEHyk6dSqmePVVBosLtqIiBHejFQc8ePejWe2jKRA6iomDWH3D+MmBcFID8m3v56c2EqYxb9sBLjWSY39WksjCtXUREQtvesONfq08xVmio71b4pt7HBBSq5sINW8GTZwk1KilE4hC+0+qcFkyG1k2TPW2s+yBLhsyseHO6XQ6JriCxKNi+fTvloqPRLl/mq7t3GTx4sIocKNyKEgZ2kuLiwMsLvp4Ch0+ZFAWQfGTz7aL+0lveXbTrA/OXu+/9nE3cFEBTd6JJMdd9oGkaI+sOoIh/AQLDn7Li/AYXbNgKvvwe2tg+eMupOFs0hoUbrWUx15KY2CExJcVBUlFQrVo1mDkToqPR1q9n4ptvKnGgcCsqleAAKZpW8PCAq/vYcPc/iy2JenHQYHEnGu8cwqnR69zXuliiCOTM5p73cgUeHrBytlWH2tKS+NuJ5QzdOYE5LcbaPZXRbgZ0tXnwlrNxuvPhhh3QeRBc/1facGOdT4FeHHRbP5R7oQ8p5V3M8b3YgFFRALBtG7RqBcWLo9WuzcR69QDlc6BwD0oYOEhKioMNd//jzZV9aFWkHkst+BToxcHJR+fxDgyGPf+5J3IwYbjr38PVxMTIYUomBimB7eZFn9XsxY3ndxwe2WwXL5dz33uZwkAXOEEYvFYTFv1kkyjQE1C4Gud6bcLLw4uQqFA0NLfUHJgUBQD580PLlnDnDnz/PVrbtkycOBFQ4kDhepQwiEPTtP5Af+xIr6SEONhwZRdvrejDxTkZKdivGl5WRACK+BegiH8BxMr10PkjblcqTOHSL7t0n4SEQnAo5M/j2vdxJZWaSbvdbz8z+rI95kXW2Ce7jEWroGRRqFXFPe9nhNhIJ498zp0z3hLZHkdDLw/5p7DDPx8TFh3u8oJEs6Lg66/hyBGZbnnwAJYtgzFj0I4cUeJA4RaUMIhDCDEDmKE3OLL1fHeKg/iagpL1KTikDl5VKtl0/pMGlWk6pgDPtn7EjjwLXdut8Om3cPoC7E3B1k5HGf8lFC5g9CVHHA314sDD3aU+P/4CbZqlqDC4uj3BJjt3uVKOLXb9Nvy6GD7uyYTLKxxyNPyiVh+aL+tO6xW9XSYOzIoCgAoV4PlzmDQJ+veHL7+E48ehTBlpn6zEgcLFKOfDJFhjiWwOnU7Hh3368OtvvzFv9niniwNzhYa2kNQ+2WXi4PQFGTVIwYuQq3CFzfHxB2fdY4IkRIp2jcys0oJHZy+BpjHk2n588+W2f7Ft+6D350yZ04HBB6c67GiY1D7ZmeLAoijQExEBt25B48bw5pvQrBlkzSprXmrVQnh6MmTIECZPnqzskxVWo5wPUwhXdiuYFAVHT0O/4dIS1kqK7DzNmVV5QQgaLu7M3eAHTtunARXLpn1RsO8w7DRsV3SFKNh0dTeV57VxjwlSCoqC8CfPiIhrlyxcs7JjogCgcV0mLHzfKaIAZM3BxvZzOXjvJH9fMm2YZCtWiYIlS+DiRciUCUqVgmnTYNAg+OQT6NBBCoUff4yPHKhuBYUrUKkEF+CKtILZSEFoGBw7DY+exBdfWSRbVjKXKM6ut79j/MnfyZUlu0P7M8nVm7B6M/TtYrZ4L1UzfR6EhEGD2oDrpiQ2K16PflU6ubbm4GkQtPsQxn6WYoItc45sDL68h7tHThET4aAts07HxL2zGLp/klNnHwQUrsb5XpsolFWODNcJHR6a/fdRVomCmBgYNgx69oT334cxY2DOHJg/H/btg4cP4fBheOMNAJVWULgMJQxchDPFgcX0Qb0asP9v2+4C69eC+rUoDEzPNxqAQ/dOkidLTuemFS5fgwmzoPPbaVcY/PYjZJC/Kq6ckuiWgsTYWOmY6ZOyTn+ahwcFq7/i8Dp/zP+Gvh8txPvnjgxw8uwDvSiYe2I5i86uZnXbX+xKK1idPvDygvPnpUC4cQMOHIB58+DxY/j0U/j9d3j2TEYULl2CQoXQ6tdX4kDhdJQwcCHOEAdW1xRoGly6BrfvQ8Pa1i2u08GK9fByWUS5UvTZOIJnEcHOrTmoXwuu7Uu7ogAgS2bAtaJAT2JxsOjMarq93A5PD/PDgWwiVw6YN9F566UgEw7MZtyNhRToVJMBHUa6bCBSmRzFOXjvpF0FiVaLgtBQOdQqRw75u/LSS3Ayzk586VLZnRAbC/36yRkXp0/LlsYLF9AyZFDiQOFUVPFhEhwtPjSGvQWJNhcadhsixcGeldZFD6KjZStet/bweV/XFiSGhUPmTGnTJnn5OiK37iSg9mWXioLECCGIiIkkc4ZMBEeG4JfR1zkLh0fIR3b/FPm/0MXG4mFhCqI12NOS6Ah7bx2mxfIeVM/3stXiwGpRADBuHEyZIiMFmTMnPH//PowaJSMGZcrA3btSPFy5An5+UKRI/KFCCFWQqDCLKj5MRdhTkGhX98Hkr2DTQuv/4GfIAP/+A5/3BZLbJ98IumPdOpa4cAWK1oL/jjlnPTcTGvacbed3uE0UgIwcZM6QibvBDyg7p5nzChLXboMC1SA4xDnr2ciyDv2Z1/g9/p36GzF2jn3Wi4J/j1Xi69vF3DI6ObF98uc7x1s83iZRALKu4JdfEkTBqVNQqJDsTDh0CK5dk6/HxMjCRA8POHFC1iT06QOPHqmCRIXTUKkEN2FLWsHulsRscRGOB4/h3KX4Yjmrzjl/GcqVihcHbVf152lEkHOiBqWLw9B+UMTN0x2dwNOIIJqJZVx9C7eJgsTk983DW2WaOq/moHYVWDwN/JwUgbCBqJBQLm/eTWxkFE+v3aTWQNvnNehFwaia/ah55T5adIwLdmqcgMLV2NZhASWzFzF7nM2iICYG8uSBt95KeC5XLikWChWCY8cgJAS6dJFivnt3+OEH+fydO+DpKTsWGjZUBYkKp6CEgRuxRhw4xafg259ke93xjfKPhiU274I2PeDwOqhYliL+BTj4wV9omkZETCSB4U8p6JfP9n3o8fCAT/vYf34KYVBT0H4er+Yp7/Y9OL0gsVB++UgBLm/ZE+94WPZ/jdFsHGmdOH0wut4gtIbuT4XUKCALJm8G3eWrvVOZ3vQrg7SCzaLgxAnpU7BhA5RLZFWdPz+MHp3weUSEjBwULSo/nzZN1gh5eEix4O0tP9fp0Ly8lDhQOIRKJbgZc2kFZ5kX8c0Q2L7UOlEA0KgurJgFL5WOf0ofnh20dQz1Fr7neFpBCPh5AWzZ7dg6biKxKDictQ+vlngrxcLvenHQr0onBm8bx8PQ5FMErWbPQVi10Xmbs4ELqxM8AcoZGY9sDoOaAt8maGu2Omf4kp3cCbnP8vMbDKYy2iwKALJlg//9D0qWNHw+NFQKgdBQOWK9VClYsEB+zfv3g4+PrDF4/hy++ALGj4eqVeHtt6U4UGkFhQMoYZACGBMHThMFIAvLcueUF7J9hy0f7+UF/2si7z6SmCQNr90PcELNgabBP1vg4An713ATSbsPijdqAbO+k3dmKYReHBz+YBV5fHLaP3ho5XqYNMe5m7OC2OhoLm7YAUDGrL4Uq1/T6nOTFRr+tQG+npyiwqB2wSrxJkitV/Tm4vWrtosCkBGAadOS/2xduAA1asiP3t6wfLm0R968GerWlWkEkEWIf/0lf4fLl5cGSHGRGCUOFPaiuhKS4IquBFPouxXmrPkVr76etCzVwHFRkJhh42Hx33Buh+wIsMTYadIoacUvBk87rVshNtb6KEYK4Y6WREeJ1cXSdd3n1C9Sw760gj4E7Uaubt/PHy3fB6Bi+9a0XTDZqvNMdh88DZICOIXZe+swr//ZjcjLUWRemZkd23dYJwru3YP27aWBUTkj0y7Dw6VXQenShl0KQsDevRA3hhmQEQVv7wSb63v3ZPdClSqgaQndCn9M5qevfmLggIGOf+GKNInqSkgDxEcOWvcgZm0sbcIaO08UAIz4CLYusU4UgLQvblA72Z1Y4m6FZefX278fT095Ubp9z/41XIhJUfA8WIbfHz9J2Q3G4aF5kDWjL702DLevW8HNogDg/JpEaYQ2Taw6J5koADhzUb6YCkQBQDGPgrAQMpzIYL0oAJkiyJoVcpuwg86cGSpVMhQFv/4KH32UIAru35cfvb1lDcI778DkyVCsGNSsCYsXAzJy0GZgG7z6e/HRwo9U5EBhESUMUhgPDw9++WU2vV7tSa8+w506W4EsmaFUMelX8NtSy7MU3mgGA7rKuw4j4uBIt7/5tEZPACJj7LSyHToOmndJ0TCwMcxGCh48hvcGwNlLKbfBRCSuObBJHKzeAnXelEOt3IgQIr6+wNM7A6WavWbxHKORgu37oWpLGdVKBehrCjzveLFn9h6qVq3KzEMzCY2y4vtbqhSsWwc5cxp//c4dOVXxTqL0nT7VJ4R0QSxb1lAc+PnJdadOhbVrZacCsOv6LlotaUWDEg0YWGegSisoLKK6ElIBLh/ZfOAYDP4aXq0AVV+2fPysP2DnAVgy3cATIXsmeZf298UtfLbje7Z2WGB7WqFbe3jjddvOcTEW0wclisDdw+DvlzIbNELSboXS2YtRv4iFvH3unFCnGvj6uH6Dibi4bhvP78gLWPEGtcmY1fz30WT6oEEtWDVH/hynMMYKDa88ucLQrUNZcXYFa95bg4+3ke/z7dvSvXD6dANzomQ8eybrCjp3hoJxv2Pdu8sHyHkJQkDevPJzDw9pn5z4/CtXOLf2d1bu+oE67eqzusNqMnXJhBdeqltBYRYlDFIJLhUH9WrIOoOCVrYcFi4AZUrImgCv5D8iVfJWIFano+HizrbXHLxUxvpj3YBVNQWenpAjm9v3Zgm9OAgoVI16hatbPqF2FflwM8H3HpIhS2aiw8Kp2vM9s8eaFAWPAqWwadHQDTs2j6nug5I5SrKh0wZaLGpB6yWtjYuDwEB4+lR2FZijQgW4fDn58zExsGIFtGoFXbvK50JCwDeRL8WPP8KsWTwulhefw/vpmysrxZasJHMGmZZQrYwKS6hUQirClSObKZhP3mFMmwfXbpk/tlVj2fLo5WU05O+wQ+K5S9BpoJwKmYJYXWgohLSb3rbPvRu0Ak3TeO+l1nhoHmy6upvfTiwzfuDjJ9LbIjravRsEqvXqyMAz22g85lPKtjZdX2BSFJw6D2XqJxt9nRJYakkMKBLAhk4bOHT3EK2XtCYsOsnP+CuvwJ49plMIlrh/X05e3LBBfr5smUwfPHyYcEy7dlzs/iYv1znGJ9/Wo9jRa2TOklWKClS3gsIyShikMlwqDkJC4ec/rPcSWL4O3vnQaG1CYnHQd9Mo2/aRMSNcvw13H9h2nhOxqftA0+Qda1jKChlLbLq2h54bhhmvOdi4C1q8D8HurS/Q45c/DwGffWjSvtjs7INyJWHc51Cnqpt2axxrfQr04qBg1oJ4ecRF3Pbskc6Gz00Wghty5oysIThzxvD5QoVki2L79vLzhg3hk08ge8LY9F3coDI/U7F0XRa+OobMkbHSK+Hll2H1akCJA4V5VCohFeKytIKfLxxcY32OOVcOyJkdIqOMdjboxUEGTxt/jEoUgX2rbDvHidjVkrh2vsv35SgTGw0jMjbKuENixzegeqVUmRIxKwqePJN77vt+Sm0PsN28KKBIAAFFAgA4cf8EZZ8/JZOHB2SxcjKjvz+0aSM/JqVwYfnx0SPZ1fD55/LzkBB2PT5Cy8UtqVO4DqsDZpKpXEUYO1aObn7lFSk24lD2yQpTKGGQSnGZONCLgj/XyLvgAV1NH9uwtsURzkX8CwDwIPQxPdd/yYxmX8c/Z5Er1yGrn8wduwmHfAoiIiFT6h0fnbQgMaOnN10qxvnve3hA2ZKmT3YyYYFP+W/G79Qe1INMZoo2zYqCXQegbR/YuUy20qYQdjkaxhERE0Grxa0ok7MMa5aswcdIzY5RChWS8xBMMXasHKp08aIcqrR7N9FvtubjD6KoUyWA1R1Wy5qC7duhVi0YMkRGvmJjZdrh2jWoWVOJA4VRVCohDk3T+muadhY4mNJ70ePStMKp83D8rHVtg9v3Q7s+8TlKY0TGRHHm8WUaLO7EzaC7ltcMj4Cab8BcJ00NtAKHRMEPs+ClRq7bnJPQi4ORdQZQu2Bl+eS5S/BGD7hlxf+Lk9gzfia7x03np5cacWXrXqPHWBydXKUijBhoYNXtbhwRBQCZpv3M4cNVOHTrP1ovaW1dKyNIg6MzZ+RHY7RvDz/9JNNywJ7c4UyoHEbBCrUTRAFIl0RPT+mUOH8+DB4sjY+aNZNFkKi0giI5KmIQhxBiBjBD73yY0vvR47LIwTdxdxCaZtkJzzcu/BkSljCNMQn6tEKDxZ1osLgTOzsuMh85yJwJ1s6DV9zjLOiwo+Hr9WW3ht5dLhWjaRrfvPYxAEERwRw9t5OGOp1MDbmBZ9dvc2jWQgCiQ8PIXS55pMKiKHgeLKNJH/d0x5aN4qgoACB7dvKVqMSG9z+n+cLmprsVknLunJx9cOSIvJAnpXRp+QB2XdtJy1VvU6drAykKImIgqXv3n3/KOoeZM6VYKF7coC5BRQ4UiVERgzSASyIHHh7yAnfklDSNuWGms6DGq9Im2YQo0JO4ILHx0i5EWDJBqlVFCgQXdyc4xea4Unno0CbVi4KkzD25nEYXx/Prt82td8B0kB1fTyY2SnY/1BzQlaxJpjlaFAWrNkKFxinqkOmwKIiSUyTp2hW+/ZaAIgFs7LyRK0+vcCPohuXzy5SRw5LKmG/vvdv5Dfb0bCZrCjqsJvOte/Kir+9a0PPdd7B1K7z6qow21KghfRJGjZLpBlTkQJGAihikEVwWOShSAKpWgqy+lo89dhq+nwnzJkpXRWPLxYmDg/dOkMnLinz83kOy82HvSihZzLa9W4HTZh/ExsI/m2Wuu0wJ527ShXz8amdCT56g13onjGy2gvsnznJyqax8z5wjGwFJxm1bFAUAdavDJ72t991wMg6LgvBwaVvcrZscfBRHQJEALg28hLenNxExEcTqYk1HDnx9obb5+p5d13ex7dEG/IuXSkgfFC8u6wmqJ/G10Bc+PnggixqHDYMPPpBTHbNlg0YyTaYiBwpQwiBN4RJxkDsn/DpB/jvwqRQIpqYIenvLY4KCTQoDkOKgiH8BhBBMOTSPt8u+btoEqUpF6P8B5HJ+AaJTByJ5eEDvL2DUoDQlDLQjpxkxYB0ZJjY33q3gZLaO+CG+bqXe0L5kShRlsigKhJC1J3lywuCUSSE4JX2QMaNsTaxbN9lL+lkoXVZ1ITAs0HRa4d49+O036NED8udP9vKu67tk90Hn+oY1BZomrZRBuh/6+RkOLsuaVfoelCsHp09L90V9QWRQEPj7K3GgUKmEtIbLChKjo6HJezB8guljKpSBLYshfx6rihaDIoOZduQP8yZIWTLLYU9Otht2+pRETYMre2FgN+ds0F28+hKsmcfnvSfTv0pngiNd52Nwdft+rmzZA4B/kYJU/7Bz/GtWRQp+XQrVWsn6ghTAKaIgMFCKyOHDZdjeBINqDoo3QTJakPjoEcyYIT8mIV4U6NMHkbEwYgRcvZpwUHg4VKsG48cbnpw5MyxaJNsWCxWSEYRNm6B1axltOHsWUGmFFx0lDNIgLhEHGTLA6E/gwy7mj9Ob/bzWDnb/Z/bQbJmyWu+QuG4btOkuQ/YO4rLRyf5+aa7GgMyZoGk9tAwZmNb0KwbXkF77Zx87dyCU0OnYOiJBVDYaPRivuIp5q0QBQKPa0LeLLDp0M04RBQcOQNGi8J/53wtI7pCYTBxUqiSjBpUqGTydTBRkyCx/Jpctk4WKejJnlmKhY0fTmxg0SHYnPH4shf7gwQY1DUocvLgoYZBGcYk4eKOZNB+KiIR9h00fl90fypWy6i4/qX3yneD7xg/MmV0a2YSZaM+yEpeJAoC/NkDnj5y3nqsJCYVeQ+GivJPUX5B33jhAxV9b2jey2QRnVm7g3lE59TBvpfK83KENYKUoiImRP3Mli6VIRMYpogCgcmUYM0Z2E1hBYnGw9PRSi8cbFQUg5y6cOSPHLiema1c5gjkiQoqMpAwdKoc5deoEa9bAyJEynXDiBByWv/9KHLyYqBqDNIzLChKn/AZTfoULu4xf/L28YE5ciDI2Vj68vU0upxcH3+ybRo5M2YwfVKuKfDiAS0UBQAYvGVlJAy2LgLScPpHcq6J+kZr0rdLRqTUH0aFhZPT3IzIomCZjP0Pz8LA+UjBqIuw/AtuWGObD3YBTREF4uAzJFysm77ptIKBIAKf6nqKof1FAjqjWNE22K3bqJMP+5cubFgV6MmSQ6cAFC6BLF8Pfx86d5f527zb8uS1WTD6EgLlzoUULWbSYLZusa9i6FVAFiS8imrDG4OYFQu9jEBQURNas5tvzUgs6nY4P+/Th199+Y97s8Y6Lg8hIuHBVtuiZQwh4t58sYJzxrdXLn3p4Af+MfsZ9Djbtguu3oE/n5K+ZweWiIJ0hhGDAltHMPLqIOS3GOkUchD95xukV66jWqyM//DfHOlEAstvl1AV4v63De7AFp0UKhg6VF/DLl6ULoZ0sPb2U3479xt/v/o3P/UBZHzB0KLt018yLAj1nzsioxbp10LRpwvPHj8uPpmoerl+XcxR++01OagwIkFbLiXwOQP7MDBkyhMmTJzN9+nQlDtIgz58/x1/abPsLIUwO7lDCIAlpURiAC8QByAv/pDnQ+W3Im8v4MUv+kcY5TetZuaSg1oJ2PAp7YtwEadRE6cr412yr78rdKgpCw+T3xdp5EymJfs6ACfTi4Mj90+zt/GfCwB8HsTpScPcB5Mtt3lzLRThNFIB0EDx2LL7lz1723txL84XNqVGwRny3gsVIQVLu3oUCJozFYmPh6NHkrYwgUw2Jux+CgmDhQvj7b5g8GSpWBJQ4SOtYKwxUjUE6wSU1Bw8DYcbvsGO/6WPee0OKAiHgwWOLS2qaxvI3pwEYt08eNSj1igKdDgpWh99XuO49nMXDQLnXNVtMHqK3T97W4Q+8PLwIi3asvgNsEAXR0dCsEwwbb/x1F+I0UbBzpyzcy57dYVEAxJsgHbxzkLcXtGLXzt95c0EL60UBSFEghEwbJGX2bHjtNTm6OSl6UfDnn9C9OyxdKr0OYmMNfhdVzcGLgRIG6Qini4O8ueDEJun4B+ZbFCf/CnXegOAQi8smLkhMJg68vOQfosMnZX7cDG5PH3h4wIIp0LyBa9/HGWTJBHN/tFi3oWkaPt5ZeBgayEtzmttUkHjn8ElWdvmY0IeBgA2iAGROfNJIm1NGjuI0URAVJS+g31qfQrMGvTh4fvRf6jfsSgftZetFgZ7Nm6F+fRkdSEyPHrBlC+SzYBwlhPzazp6VrogvvSSF3A3p2KjEQfpHFR+mM5xekOgX54j4+wrY+S/89oPx0G+HNtLfwM8KB0USxEGblX24G/LAMKUgBAwcCRXKJpgvJSHFagraNLV8TGrA10dGc6wkd5YctCrVwOqCxJjISP7p9TmPzl3m6o59xP7wFl/emGt9TUHlitCsvtX7cwZOTR94e8OOHTIX72RidbFcyakxeEhFJvWzURSAbEHcty/5jAVvb1k/ALK9sU2b5DUR774rH/GbiYVeveDWLbh0CS5cgIwZVUFiOkdFDNIhLkkrZPWVHQqmogYF8iZciM5etGrJIv4FONrtH2oVrEx0bDT3Qh7KFzRNzmb45Tuj56VooeHJc9KIJzWj08HIH+VYayvRpxX6VelErw3DLUYOdo2dzqNzlwEIz+HN8KtWioKT56D2m7LI1I04TRSEhsr5AuHh0rMgSxan7lNfU/BKmXqM++4gQRkFvdf0tn4qI8jfnzp15L+vXEn++o0b0g555UrTazx+LD0Ufv5ZpkrefhvmzImf5ijfRkUO0isqYpBOcXrk4K3m8gHS4Ci3CQvjwyehXltYvwAamvd6B/DQpDb9bMd4Vl/axo6OC6V9st4n/9otmdKIs2BO8e6DfYdg7DTo3j5Fiuas4vptWPgXtGxk0/wJvTgAGLjlG1qUqE9Bv+Rh57tHT7Nv4mz5iZcHMxs9YHg9K0QByE6XNfOgSYDV+3IUp0YKjh2DWbOgQwcZYnciBoWGDeeQedrPnG1YjiWnl3D5yWXrpjImZs0aac18+rS0QNZTtKjsYChhxto7Vy6YNg1atpTti3ouXpROif/7HxQvriIH6RTVlZCEtNqVYAqndytcvQm12sCvPxgPqwsBa7dCq8Y2XThvBt2lweJOAAniICgYSgXAsIEwuGfKiwKQoVX9ZMrUjAP7FEJw5vElKuZOPtkvNiqK2bXf5OEZGRXa3hDqf2mFKAgOgUMnoVEdm/fjCE4VBXpCQ6WpkBNJ1n1w5oIsFNy9m705QmixqAXVC1S3TRxER8uugnbtTP8crF0rox7miicfPpRiIH9+maYoVAg++wwGDow/RHUrpA1Uu6KdpDdhAE4WB0LArD+gS1vLLXtHTkGxQtLV0AqMioMte6BOVZ56Rqe8KEgLRERCZJRTZk/ohI7+m0dTNV+F+JqDHV9PYfd30wG4lw/yzO3L1w0/sRwpmDQHxs+UplkWxnc7C6eKgrlzZY597FinR4qsaUnce3MvLRa1oFahWmzuvNny9zspT58m8yVACBkRKFBAehiYYtIk+PFHGWXYuhVef10OYwLpWhk3hEmJg9SPaldUxOPUmgNNg77vS1Fw94FMHRgjMhLafwg/zLJ66cTdCr+fittj03o89Yym9YL3U4coEAJafgB/rkm5PZhj5XooXkdOwXQQDQ0PTYuvObh37DR7JvwMQKwH5PnqXetEAcDHPWDnsrQpCgCCg2Vvv5MjRdb6FOjtk7u92s12UfDPP9Lh8Pp1w+c1DZYvl7UD5hg8WKZQsmeX0YesWWW3wsiR8Mor0lURVXOQnkhXNQaapn0JvA2UA8KB/cBQIcSFFN1YKsAl9slfjofzl+Dff5LfRWXMKHPJJYvatGQR/wIc/GAlOTPLu5uHoY8ZNLkzqydd4fHiCZRJ6UiBpkGZ4pA9lUaTGtaB6WOsjtKYI3HNwYdrhvP10nyIuCFXWsfqjO76reWL1M5/ZadK1ZehfGmH92QNThUFYWEy1D5okNOtsM2KggsXZHvhb7/JSYhIcQDyznze8Xm8W+Fd69IKjRvDN9/IFEBSfOO6iA4fljUFv/2WMIZZj6ZB3ryyRbNjR1lfsXat7FRo1Ahy5Eh0qKo5SA+kK2EA1AdmAIeQX9tYYLOmaS8JIVw3bzaN4HRxMHW0HNRjKrT6UlyO+sp12HsYPmhn1bK5ssg/NMvPr+f9NZ/hk8mbqN7vUqZGQ/v36kymjE7pHZimQF7o+KbTltOLg4w7rxFzWRpdiRI5GTljvnV3rpN/Be8MsNz6yJEjOFUU3L0LNWvKC+abb7pPFIAU1qVKGXQB6LkZdJOPNnzEwpMLras58PWVwgZM10cEBckOhufPDS70Bnh6gr+/FEpz5sg6lkyZZDrh3Dl5Xt68ShykA9KVMBBCNE/8uaZp3YCHQFXAiBXYi4dTxUG2rPIREgojfoBRHxu34F26BpathXdbQ6bkf+iM8TQiiG/3zSRKF00On2xEftkX/LMZ5DRTjKgo2S1RtmTK7iMpf/wFQc9hQFenLqtpGnla12Hx9f28vT0zvRf+Fj9S2SJ/zpQ1D27A6emDvHnlXXtty901tmBV+qBYMZg/3+j5RbMVZWPnjTRf2JzWS1pbX5C4Y4ecwHjggBQdiWncWN79a5psdzUm9j09DWsRbt+Wv4uNG8toStWq0jERFTlI66T3GgP/uI9PTB2gaVpGTdOy6h+A+4fBuxmn+xw8eAQbdsrBS8b4sj/sXmGTKGi2tCu3g++ztt0cMnp6y5HNh/dDxaayFz4lWfAXVGkpC/1SE5euwWnnZ80mHJjNl7t+5M0PBzDs6kEu5wpj7onlpk8QQrZ0Xr0p/8+dUAhpCaeKgogIeQfs6QmjR0uB4CSsnn0QHQ2PHsmPRkhsn/y/Jf+zzuegRg0YMMBwJkJiNE12IFSrJh0SzbFggZyfEBkpBzbNnStHOBssp2oO0irpVhhoMs45CdgrhDht5tAvgaBEj9tu2F6K41RxULIYnNoMtavIi0JcHjrRm8mLQ+BTeH+wLFo0QdKWxBYl68cXJHY/NwNefw2y+Zs83y20agRbFoOXe0cEW+SbIfDzOKcumdTm2DtLZlZf3kaPDV+aNkEKfAqLVpkuTHUyTo8UjBkDDRvK+gInYtNApFOnIE8e+dEEenGQI3OOeD8Qs/j4SKHj42NScJAjhxQQBQuaX+udd6QYKFUKZsyAevVkWmHHDujaFZ7IezElDtIm6SqVkITpQCXAkpPKd0gBocePF0wcgBPSCvr575+PhafPYc745DnZyCi4eAXuPZS58CSY8inQdysIBHSJ+4Pl5EIwm8ifRz5SExeuyEJPJ6ZZvl88lvmb5zGyu6FPwQ8NvyA8JsK0fXKuHHBkPWS2fwSxtbjEp+CLL6B5c6e6Gto8JbFECdlNYM6ECCkO9EWJ5x6do4h/EctphcOHpfHRtm1QJolXhZeXNHACKR7CwmRdQVIyZ06wTtZ3PSxYICcy5sghpzXG1SqotELaI10KA03TpgFtgNeEEGYv8kKISCA+JmxzK1Aax+kFiVUrQUiY8Yt2gbyyg0HT5IVdiPhcpiXzIv0shSfhzxgxfzCT5z8k44KfUi7Pv3AVZPCSdRMpTXQ0NO4APTvC6MFOWXL83p+5Nnwe792Dl7lJ1KshZMwqUwKJuxV6bRiOt4c377/8Fpy/DF9NglnfQXbXR3WcLgoWL4YGDWRffz3rxohbg82iAKTbYJs2Vr9HVGwULRe3pHi24pZrDsqXh7Ztk/saJOX99yEwUJobmfq7qNPBd9/JuQwTJshzKlaUaZiYGGkd7eenxEEaI10Jg7j0wTTgLaCBEOJaCm8pTeBUcdAh0R+z85ehXJIiJ70o6P4pFMoPYz61ydEwNDqMHVFX2ezxhCrP71OQFBIG2/eBb5bUIQy8vGD1PKe0KIJMH6wbN5HG9+Tn90+cxTOjt8ExenGQPZM/VfNVkE8+CYInz8DT9RlKp4uC0FD48kvo00eOG3YSdokCkPUFf/0lZxRYMajJ29ObP976gxaLWlguSPTxgSlT5L9NFRoC9O8vL+7mbpY8PGDjRvDzk2KgUiX5+/3pp9I34eFDOZ7aw0OJgzREunI+1DRtJtAReANIXIUVJISwath8enQ+tBanOiTqZyas+924De70+ZA/D09b1bXZ0dCoQ6LCKUw4MJuJf06g7xwPtBgdmocHPXYtp2D1V0yfFBNDaGwk228eoHWpRi5P8bgkfQDyYpwzp9OcDe0WBSBHJteoAQcPJp+SaAa9Q6JV9snnzknhsWqV4SyFpAgBhw7J/Zjj5Eno2VOmFLp2lfMUKlaUrZ4GyymHxJTiRXU+7IvsRNgJ3Ev0MD9DVgE4uSCx6suwdAY0qGX89QFd40XBszs3bHI01Ncc5H0Ww/X6rxN+0bppji4hpYX1k2fwRg8ZnXGQCQdm8+W2CfTdlgctRgdAnU96mhcFAB99xbX3u9FmZR9+PbnM4X2Yw+mi4MIF6NJFRgxy504dogCkGIiJsUkUQIJD4oXAC1x6csn8wUWLylbMzBb29tdf8rgLFjpesmeXa+bOLcc+jxghRcHz5zJNEyo7J1RBYuonXaUShBAvVoGAC3BaWkHT4I1m8t//HYPgUIOJevr0Qa2tl5m8zQuvnrYV8xXxL8Cy9+fhtX4AmYNToG3w8ROo9YZ0GWzewP3vr+fhYwiPgByOpRH03QejbtVCu3gAgFxlS9JgxCDLJ79Wkwqx1eiXu7zpgkQn4JJIwZ07cgZCVJTTBiM5LAocJKBIAFc+ukImr0xEx0YTrYsmSwYjhZRZssjOAjBfzPvWW3JGQpwDo0kKF5YWyyBrE4SQ5w0aJEVBZCR06waogsTUTroSBgrn4PSCxOnz5aTExnVB0wxqCuaO/BWv+lchj4kxzmYoXLAU7NkIwC/HltC8xGvuSyvkzA6d3oIiBdzzfqYoVwo2L3JoifiWxFzv4PXtKnSA5uFBm1++w8uc98SDx3Ikdoc2aMB08SaAS8SB00VBVBRkyCBNff7912npD6eJgkuXpOfA9OlQ2nYr6UxesiOkx+oe3H5+23xa4d49GfafPt24mZOHh2zfBFixQqYUihQxv4F335W1L3/8IesN2reX0YREKHGQelHCQGEUp4qD2ePj70iSFhq+nPclKFtTHnf4JLxSXv7BtoGQOzfJPfA73ms1kyX9lrpHHGgafP2J69/HHHcfwNMgqJB8PLK1xIuCKn3I8+kWAmNiAAj47EMK1zITxr55F6q1hBlj4Z1WgGG3wr2QR3bvKSlOFwU6nQxxV6oE33+f+kQByEK+rFnlRwfoXbW3ZYfE3LnlMCRLEZOICPj8c5l6+fpr88dOmiR/j3PnliOaQaYXLlyA1aulQ2KmTEocpFKUMFCYxGniIK6f/dml81xp+y6xb3iwbcAiw5qCh4HQrBN8+xn0e9+m5X2z+PO/iIL8GfiMhos7u68g8f4jOHkWmtV3/XsZY+6fMG0e3Dxg1FPfEonNiwLWh/PvRelcWaDqy9QfMdD8yYXzw9ih0KKBwdN6caBv+7305DqlcxSzeW96XJI+8PCQwqB4ccfXisPp6YMSJRLC8g6gN0EyKw68vKxLKWTKJKMreaxI+1WqJD9GR8s2xkGDZJdD3rzS3yDReyhxkPpIb8WHCifjrILEpxFBvLvhU4KIZGGbickLDfPkhLXzoXdH2xfP7o/3ofX8MHIlAA0Xd+bW87t27dMm1m2DN3vJHH9K8PmH0oHRQVHwdb1B1B7Ug5JN6+GVORNvzZuIp6moTWQkHD0t/7D3ek+O306CXhTsv32UcnOamXZItIBLRIG+gK53b2nl6wRcUlMQGyvz8kldRO0gsX3y/OPzTR8YHCznHqxda/qYvHnl//3evbK901Lx7fnzMHGiHNu8fr3sgFiyRP7M3rghUzqogsTUhooYKCziaOQgPn2gu0/OLX/xUt6X5JyByChDH/06VeXHsxfh9j3b7sQ1jSIeWTl+sQ5fVH1GtoxuaDVt1wr+18QtDn9G8faGSuVtPi2pKNA0Db/8eei0ei6Pzl4iVxkzbnszFsB30+HCLuMDsxJRu2BlPqz8nl01By4RBTt2QJMm8q7XUuudlbis0PDECTmU6MgRmzsTjBFQJIBjfY5RKof0FRFCJDdz8/WV9Qz6UczmuHBBfh8jIsx3Nbz8Mly7luCeqNNJQdC7t2yXfOcdKRxQkYPUhBIGCquwVxyYNC/qPgSeBcO6+clDl5N+hcvXoOlrtuV/IyLJun4fM1t+Axl9uRB4lUxeGV2XVvD3c8uAIKP0+QKKFZYDqmzAmCjQo2kaeSzVKwz4QAo4C6JAv15ih0SwThy4zKegfn3480+oXt0py7m0+6BYMdniV6yY05YsnVMWMa6+sJqZh2aysv1Kw7SCpkHc73h8JMDU71+PHtKrwNPTvEkSJIiCcePk7IdvvpGRp++/l0ItEUocpA6UMFBYja3iwKyj4cc9ISra+B+en7627LhmjNw54fQWyJABIQQ9NwzjTvAD19YcfD8TsvraXBfhMKWLQz7bWjyTioLrOw+Q75XyZLbiIs+WPVC0IJQpAeaKEpOQWBxMP7KQ9yu+hbent8njXSIKjh+XIesaNaBdO8fXww0tiTlywHvvOXdN/dKZc7Dv1j7TNQcxMdC5s0y19OhheiFPT7h5U1o3//qrnMpoDn27Y+nS0g0R5CyGq1dl98Lw4eDlpcRBKkDVGChswtqaA4s2xzVehYDq8s5k2Vp516EnS2bI6ieL+3p+Ds+Drd9ghgwQFYX2wyyW1BkFyJqDG0F3bPxKrSTouWzFdDef9oHOb1l9eFJR8PTqTZa068PP1Vtxdds+8ycLAd9MgR9+sWurenGwu9NivD29iYgx7jvhskjBt9/KyngnmVG5xafgyRM5kOiJyYnxdqM3QTp09xCtl7ROPrLZy0tOVzQ2PCkpuXPLQsO4gUlmads2wW761Cn5/9GtmxQWM2dKC+U4VM1BypKuLJGdwYtsiWwL5uyTn0U8p+nSD6yzOT5yCl5rJwsPGybpoT53CToOhCXTk89cMMf9R1CzNUz+ipuNX0lf9slCyG6Et5pbFc6H5KJAxMYyr3EHbv93HIDK3drTxtK45qBgOWbax7GJg0/Cn1FrQTs+r9XLIK3gMlEAcpBPSIhVMwcs4TbzoqNHnVpjYAy9fXLb8m2Z/+Z8xxeMiJBdCH4W0ms3bsipjnPmyK/x2TPZLunrm1BsGdemqeyTnYu1lsgqlaCwC1NpBVsGIgHSOvnkJihZLPlr5UvL8b0eHjKioGnWpRfy5YYz28DXhyLAzo6LaLm8B9eDbrtGGIRHgIdmV3eAzVy8Ch9/DaWKQX0TdtOJMFZTsHvCrHhRkL1EEZr/MNz4yRGR8OX38OUAuwyojJE9kz9Ni9c1qDlwiSiIjJQGQcOHyzy9JdtfK3Cro+Grr8oLrY2eHrYQUCSAzZ03U8DPhEmXEDBkiBRUX35pecF27WRB7F8WOpeKFoW//5b1BfqvTwiYPFkKIR+f+FoHlVZIGZQwUNhNUnEQqgtjnlhp00AkIEEU/PGXvLPrmyhf7+Eh7yI69Ie61WRtgjX4+kgxMW8ZRVo35UT3tXh6eBKri+Vx+FPy+uSy/gs1x90HUKoerJgFLRs5Z01zlC0J1/ZZNUnRmCi4c+gEu8ZOA0Dz9OTteRPxNtJyCMDNO7Bhp3R4dJIwSFqQ+PRpEN+2/9n5kYKHD2XV/J07Tingc7vNsYeHW4Rm7cIySvck/AmjdoxifJPxCTUHmibHP1sbOf3kE2mzbA0tWsiPZ87IeoNWrWDMGDm2uZah4FXiwP0oYaBwiMTioP/C0fg0ycLerkutFwWJOXtRzlRIarLi6QmVK8qLoi08DYLRk8DDA89u7QEYvnsiy85tcF5aIX8emDnWrrZBm4mKkvnfXJbzucZEQVRoGH91G4KIC9fWG9qXQjUrm16kTAk4tdnpd616cRASEsbn+ybg4+vDzn92Ok8UxMZK3/4TJxx2DoQUmn1w9aq0Ev7xR2l25GIuP7nM/OPzOfvorGFB4qhR1i/SKE4Y63RSlNWta/mc1atlp0iPHnD5ckKtgk4Hu3ZBgwagafHiIIooBvwxACFEvEhQOB9VfKhwmPiCxLI9CJ0SxonN5+1baNxQmPaNFAVJTYOGDYAWcX7tDwOtWy9ndji+CeJEAUC/yp0BJxYkahp0fQcK5Xd8LUvMWQKVmsWbwpjCVEvi5i++58nl6wAUrP4Kr5lqdfxnM3T+SIbjXRTKvnP3Pqs+3EKWxVmcKwpmzJDV9JGRaVcUgLwwRkYaFuW6kBoFa8SbIBktSJw0SQoVa/jzT9kaeuWK5WO/+EJaJWfKlFDsOH++FBWNG8OaNfGHhkaHcqLiCbybezPwq4GqINGFKGGgcAoeHh788stserXtab9Dor6G4OQ5KN8QDp1IfszPC6RH/5Nn1q2pD7mv3gIPHsePbAYnioNzl+RF29XUrQYDu8o8rglMiYKL67dzZM5iADJkyWze3dBDkzl5F4kCfU0BQmPX0l1UrVqVzzZ/xq9Hf3V88UqVoF49p4ThU3RKYqlSsG6d/OgmEjsktlnahlhdItdFb2/5PbWmWP3dd2H3bihpRYRP02RNQVCQTCEsWybPq10b9u+H1q0BCIkKocWiFpx4cIId3Xcw+APVreBKVCpB4TScNluhTAno/DaUM/KHpV0r+YfEyop8AIJDoP9wGNwLPukVLw4aLO7ErGOL+a7BZ7bvMTEHjsHIH+CDtmYv2g7zagX5MIEpURD+NIjVHyYUjzUbP4ycpYolXyAiEjJlhNZN5cMFGCs0FEIQFh1GrzW9AOhZxco6ksTcuCEn/tWrJx8OktKjk1MKvTg4//g8nh6JIi62hO09PKBOHfnvP/6Q0QNL0xj9/OT/W7lyCeIO4PRpwq9cYOWvgzlR+ymbumymduHa1J5YO25bqubAFah2xTg0TesP9EdGUcqqdkX7MdfKaDN3H8i0QsmiyV/bdxhqvGLdne3te1Awn0HtwsPQQHJmzhZflGjwh9AWoqNl2Nqc+5ujzPhdCqamxi965hwNhRAcm7eMjZ+NpXj9mnRYOTu5HW5UFDR+D/7XGIb2c8mXYK77QAjBgPUDmHl4JnNaz7FNHAQFyTvroUOtD3ebIVWIAje0K1rD4lOLeaPsGwk1B4sXw/btstXQUodQaChUrAh9+siUgbXExMDp01CqFLoSxTmYN4ag6GD81++gVomEn3/Vymg7ql3RRoQQM4AZeh+DlN5PWsapI5v7DoPQMDksKPEfonsPodUHMGEY9O5keR19DcDeQ1Jk5M9DHh9Zab/zxgH6bxnN+nd+s68g0YUtZYAM367ZCq/VNCoMzIkCkMV+Vbq/S7H6NfH29U0uCkB+De+9YZOroS1YaknUNI3pLacD0GtNLwplLUTzUs2tW9zfH2bPlnemDpIqRAHIO+w5cyzfabuQO8/v0GdtH349+mtCQaLeAjkmxvLPvY8PHDoEOW3saJk6Fb7+mpCLp/m8ZwH+yniVVV13UatoXXj6FLLL9KDqVnAdKmKQBGVw5DycEjm4GTclsYiRXuvDJ6FyBeuLzCIiZe1C57dhTMKd5c2gu46bIPUfAXlywVcf236utcTGJvtaLYkCq7h2C4oXdtImk2OLT4EQgl+P/sr7r7xPRi8LdQKhofLuNS4P7SipRhSkIvQmSNULVDdun2wtW7bIx/jxliMNERGE7d/F6ze+5cT9E2zqvInaFJLjm//+W3oq9EuIaqnIgfVYGzFQxYcKl+GUkc1FCshHWDiMmCCjB3qqVZIXyqOnZXGhJTJllJGH0YMN38IZBYmli0GxQrafZw3XbsmPNogCXUwM13f/Z3ntXQfg5aZSZLkAW82LNE2jV9VeZPTKyKE7h5h3bJ7pg+fPh06d4NEjh/eZ6kTB06fSKOjp0xTdhkn75C1b5CwHa7smbtyQngXR0RYPDfGIiRcFJyK7U/tRRjh5EjZskLUObxlagSv7ZOejhIHCpThFHABcuQELV8HZS8lfm7MYfpprXcV0qWLyAnv2Ity5H/90YnHQec0QbI6kfdwTPnDOgB4DTpyVUY49Bw2ethQp2P39TH5v1ol1H40iOizc9PoB1WH299KB0sk46mi44uwKuq/ubrpboV8/mYN30Oo41YkCkKOK27aVH1MYvTjInCEzgrjfC09PaUYWEmLdIj17ytZDb+8E22MjxHcf3D/B5nfWUHzDv1KEtGoFZ8/KOpIcOaSN8uLF8ecpceBcVCohCSqV4BqcklYIj4DMmaQAECKh2C8irt87i5V/0GNioGJTaFYPfvrG4KWbQXeJiI2kTI7itu0tNlbaFRfMJwdAOYuISFi3Ddo0jc/pWhIFtw8eZ27DdxGxsWienvTcvYICSS/8d+5D4FOXGTM5w+bYZEHi5MmyIC891RQkJSYGnj+XroNeqasU7MqTK+TzzWdfWuHKFfjf/+SAqKpVDV5KLAo2dd4kXRkjIqTHAchog5cXtGwpi2WPHIELFyBv3vg1VFrBPKr4UJGqcEpBYua4PxBffCcvmFO/lp9nistF37wLw8fD9G/B38zF2csL/voFSiTvdCjiL2sZgiND+HDTKMbVH2JdzcG9h1C5BSz/2bmtfpkyQtuW8Z9aEgVRIaGsSuRu+NqX/ZOLAoCvp8DBY3IWhROMgBLjrNkHSQsSPTVPur3cBdavl3eqDgqDVCsKQP6MWjOx0M3E6GJosagFBbMWZO17a/E5fQHGjYNFi6zzjsifX7YyJrqYgwlRAAmiYMsW6N9f1pR06CCLMkuVkuskckpVBYnOQQkDhdtwWrdC2ZLyjiopYWFw6Ro8DjQvDABeKiM/3r4n78TzGs5OCIoM5t87x2i4uLN1BYkF88HmRbIY0lms2wabdsGkUeDlZVWh4abPx/Hkyg25pRqv8NoXJloPJ4+SraCpVBTo0YsDv4x+VMpdUV4w1693+C46VYsCkCmEkSPl/IDiNkavXIiXhxdz35hL84XN+d+S/7H+pXFkfvBAjofOb4X7Z5Ys8Ntv8t+hoaDTEZJRMy4KElOhgowU5MkDH3wgnxMC/vlHpiiqVoW+fQElDpyBEgYKt+IUcdA9YVwvV24keByUKwX//iPvHmJjZarBXAV0bCw07wL1akCSscOFsuaPN0GyShxommwndCbPnsOjQKtFwYW1Wzk6908AMvhk4e15E/FIegH9bSm8Xl+2b5Z27gXHVaOTNU3j+zwdofUHRC5bwnau0aJ0C7vXS/WiAGTY/PZtq4r13I3eBKn5wua0ZBhrt27AJ6OvbYsIAW3aEJ3dnxatHpkXBQAFCsCUKfLfly7JFtWLF+HNN6XTYpJRz0ocOIYqPlS4HacVJP53TM4OSFyYp2nyj2mb7jBzgfnzPT1h3kT4zrj5StJuheBIC4VWew7CV5Ns+QrM0+ktWDLDKlEQ8uAxq/sOi/+8+Q/DyZF0lHVwCHw/E1ZtdN4e43CVKIjH3x/Kl2fR3U20XNzSbvvkNCEKAMqUkVMHy5RJ6Z0YRS8Ozj46y5nHZ+XQp3fekXUR1qBphA8dQq+Xr1kWBYkRAtq3h48+goAAOHUKli6FznIGChcuJHoLVZBoLypioEgRnBI5qPEqzP1RzhBITIYMULsqVLDij2r1V+THZ8/lH53s/gYv68XBxmu78bN0V3T9NmzdA6MGOR6iP3YaihVmwoU/LYoCIQSrP/ySsEdPACj7v8ZUTjQ4Kh4/Xzi4BrI5t6jWpaIgKEhWshctCosX000IjoRctMs+Oc2IgjRCQJEArn50FR9vH2KvXIarV/C8e9eqMc0hUSG0uPMdJ7yvsOm99dS+HAHWWGloGixZkmCaVLGi/Lhwoaw/+P13OdmxRo24w1XkwB6UMFCkGA6LA02Dd+PMbQ6dgMgo2X4HMOIj+VEIOY0xSQ2BATodNHpXuv7NHJvs5SL+Bej9agcAFpxaRf0iNYynFbq8LR+OIgR0HcKp4pkZWuu0RfOio3P/5NKGHQD45M1F65/HGR774LEcPz3+y2TCx1FcHino3Fl+P9auBZIXJIJ14iDNiYLjx+WEwX374NVXU3o3JtF3Jgw4N5ELA/1ZU6IwlnoVkhUabrsAvXvLscvWOD2WKyc/Pn0qx0J//z3civP6WLoUqlc3OFyJA9tRwkCRojitIHH8TIiOSRAGeib8LCcfntgEPllMbQJ+GAFlzOfcw6LD+XrfT4i9FhwSE1VJ24WmMWPc6/ywe6ZVjoYlm9SjaEB1buw9RJtZ3+GTO4kF7ZUbsP8IPA9xaiuly0UByD/8kZEGTyUWB5cCjfhaJCHNiQKQOfXvvpMf0wCdKnWixaIWfPBzM5YcLUGGyVONdlUY7T54v6a887fV/vnqVSkY+/aVboj637tHj6SZ0sOHMu2AEge2onwMkqB8DFIGh30OgkPkBT7pxf/OfTlsqf3/rFsnIlIWJZoQERbtk5t1kumJsZ/btv9E2GNzrIuN5dr2/ZRMPEshsUAxYqfsCC4XBVu3QqNGZgdT6f92aZrG9WfXKZatWLJj0qQoSKPsvbmXbj+/zpYFkHfZejLXNWwnNdmSqEcI2bHwxhvWm1ZFRSWYJul0cPcuvPIKVKsm2yfXrjUQ6S+6z4GyRFakKRwuSPTzlRfzW3dl4aHe1bBgvgRRsPeQeQtXnQ6avAfDxps8JGlB4s2gu4YHdHwTGtW1be+JmLJ9Gk07TGC2f1ubZh94eHoaigKQExkHjJR/cNOSKLhwAV5/HVauNHuYpmlomsbhu4cpPa10soLENC0Knj+HTZusL+ZLBQQUCWBe301U6qcxUzts8JpFUQCy5XH4cIv/7wbox5z37g3vvy+jDmPHwvLlch19MXIcqiDROlQqQZFqcFpaISxc3vkn5sp1eTc/f5Lp6IGHBwzpDWVLmF1eLw6GbB+HX8YkGdWu79i+3zgmHJjN1K1TqV+xLD1bfmRWFATfe0jGrL54m0qPAPj6yJoCR9IaSXBL+qBsWTh40Opxw1XzV6V3ld4GNQdpWhSAzLc3b57iY5dtJaBIAAf7HKaMZx748kvE8OGEemNZFIAsKDx92j6L6zZtZPRA06QREsC9e7BunRy+9NNP8vuJSitYg0olJEGlElIeh9MK+hB6ZCTEJEoLHDgKNStbd6HUj5bV35GY4fqz22iaJtMKz4Nh939Qv5aMYliJLekDodPxe7NOPL/7gDd++Z6i9WoYHhARmeAG6URcLgouXYLdu6FHD5tPTWyf/GntT5l5eGbaFQUgL3IPH0pDHyt+BlMdly4RWbsGQ/uV5mBRL04/PG19SyLIKYr378OHH9r+3jt3SlfM0aPloK02beSMhUKGQ85exLSCSiUo0iwOpxX0F9X3B0PXTxKer1VFvrb/CBw8bvp8nU4aH42dbtXb9djwZcJUxtv3oN2HcPys1dvVi4Lvy3fn6+CX0Yy5Oibi4KyF3Nh7iKdXb/JPny+ITWyCExwCtd+QRkZOxC2RghUr4McfpT++jegLEt8o+wYT/51IrUK10q4oACkGChVKm6IAoHRp9uz+g2leRzh45yB/v/u39aIAYO9eeYG39cb1xAlo2FBOYvzqKzhwAKZNg4IFpY32/v3xh6q0gmlUxCAJKmKQenA4crDjX/D0MHQkFAJavA+5ssPCn0yfO2cJlCspXREtYFCQ2H4+RSMyQoG8VkUmDCIF1wqiDRwFNw6YbCt8cuUGs6r/L35i4vsb/6B4g0R/cHU6mDAL2rZwmrOhW0SBnqAgaWZkB/r0QfUC1dnQaQOeHp54e6bRC+vNmzJXPny47dX6qQB9TcHpW0fo/l80J96uwz9d1ls/eCk2Vv7+mCk+NcmBA1CzZsLvX0SEHBGdMSPs2CG7GXwS9vEiRQ5UxECR5nE4ctCwthQFQsDarQkphsXTpDGSOXq9lyAKLIhng4LEZV254RtruyioNwjtg3fg1FaTokDodKzu80W8KKjWp5OhKLj/SP4h/aJf2hEFQkCfPvIODxwWBXUK12FDpw1ExUZRbXY1ux0SU5ywMDh6VH5MYyQuNNxZcxYTtnvi8d9Beq/tbf0inp7yZ/nwYWjQQHoWWEutWvL3b9MmmD5druXjI4sTt241EAWgIgfGUMWHilSNUwoS9x+R4f0dy6B2FciRTT5/6RrMXw7ffmb8Qh4VBR0HwlvNpT2xGfTi4PVl3Qj5+TcI84Fvhpg8Ppko0L9Q1PQ8Bn0KASBbscI0TdwSuWUPtO8Le1ZCxbJm92otbokUREbKXHKIBbtpMxgrNMzklYl6RerZ5ZCYKihXDg4dSuld2EzS7oNXCteGWy35KuwCeXzy2L6gvz/4+to3M2L3bjh5Evr1k86IIIXo5cswc6acs/Daa4AqSEyKEgaKVI/D4qBuNTi8LvkF88xFOcFwcE/IZWTErbc3FC9stYVwEf8CnOqxDq/pCxD3bxEY9oRcWZKva7TQcOw0OH4Gls8yuvaz67fZNuKH+M/bzBqHt2+iO596NWDCcOtsoK3ALaIgKkqO1f37b7s7J0x1H9jrkKiwH5MtiblyUVeXA1as4Hnr3Ize/Q1jGo6xLq1QunS86yWRkdaNdtbz7beygNjDQ6YTMmWCefNg4EA5jbFSpXhhAEocJEalEuLQNK2/pmlngYMWD1a4HYfTCnpRsPhvKQYA3nwdDq01Lgr0/DACWjW2+m28PLzgo+580y47NX5vKwsSE2Gy+6BSueSujXEIIVg36KuEFELvjgkphOfBckZDpowy/eGE1kS3iILdu+Vd8bVrThcFevTioF+1fny49kMuP7nsjJ27h5MnZdveyZMpvROrsOhTcOgQdOjAvQ3LmXN0Dq2XtCY0KtT6NwgKkm2b8+dbf46mybkpt27Jn7UNG2StwYIFsrCxa1d5XGBgolNUWgGUMIhHCDFDCPESYLnaTJEiOCwO9LUGm3cnPJchAwQ+laZIp84bPy80TBoF/XfM6rfqVvYNvGNEQrcCFloSWzeFQcbb9M6uXM/lTbsA8CuQlybffpbw4qiJ0KKL08bzuq3QsFQp2UaWpIXMWqz1KdCLg73d91IqRylHduxe8uSBTz6RH1M5VpkX1awJFy5Q9u1ebOi0gUN3D9kmDrJmhQ4dZP2AreTPL8+tXBkyZ4a2bWUUYflymDhR/ixeuxZ/uBIHqishGaorIfXjULdCVJQUA5omK/g9POSFv+NAGD5QTmxMSmwstOoq78jbtrT8Hk+eQeGaPPrlK2oGzwHg3fIt+f7AL8ZFwZbdkDsnvFrB6HIHf17A5i++JzYyivZLZ1D+zdcN3+v8FahT1drvgEncIgoeP5bhYD/7ZzY4Yl40eudoCmUtpNIKTsIqUZAYIWDvXvYWgRZxHSSbu2yWkTZriY6WLol589q+4efPpV9G5cpQr56c0VC+PAwalCxylR67FaztSlDCIAlKGKQNHG5l/O+YjAL8/au0TdYjhBQMSS2EbRmMJAT8vgIa1OZmdg9endeapxFBps2LGr4LpYrBHNNWzIGXr3P6zzW8NmyAPP/gcShZFHJmt25PFnBbpKBFC/n92bjRrtMdEQVCCAZuGMiMQzOY03pO6hYHISFywuKrr8riu1SIzaIApI9A3bqwezd7i2ocvXeUj2p+ZNsbd+0qhyT995/t7YyDBsmalkuXZM1Clizyd12nk22OWbMmjHIm/YkDa4WBKj5UpEkcLkgslB9eLgd+iQqg4sYdUzAvjBtqeLymSavlafOgT2fzBYmaFm+NvPTAbJ5GBDGsdl++rjcIgUAjiTDYskhOPjRDzlLFqD98oPwkNha6fyrdFWd8a+1XbBK3+hT88INdBkbg+OwDTdOY1mIaQojUX5B48aK8o02llsh2iQKAOnXkKOk6dQhAWigD/HXuL14v+bp1BYmffirbF+3xOPj2W+jVSxYW682jjh+Hjh2lSChRApYtiz/8RS1IVMJAkWZxSBwUzJfgZfAoUNoXZ8oItStDPhN53WfPYepcKShaNjK//qnzrPlnFkO91sZHCg7cPcaHG0exut0vCVMZhQAvr4QWSmvw9IR1v0NWx+8k3SYKtm6V/eiJ7sZswVmzD5J2K+T1yUvrsq3tWsulvPQSnD8PRYum9E6SYbco0FOnjvx44QKULcuDkAd88PcHVCtQjbXvrbUsDvQ/Q0LIosYaNpSF+fnJ82Nj4YsvpOVywYJyjVGjIF++ZKe8iOJAFR8q0jQOFyTGxMDrnWHoOPn5h11ktwJIe+HEFMgLF3dZFgXAzl9/oNqUtYys3T8+fVDQNx/BUaEGBYk06gAzFyQ7/+CsP9jx9ZT4ToR4lq2F8Ajpd2DCCMla3CYKbt6Eli1h0SK7Tnf2QCS9OJjeYjqNS1jfceJWMmWSw6QyZUrpnRjgsCjQs3ev7BTYv5+8vnllQeKdQ/xvyf+sL0j880+oXRuuXLH9/YOCZJfCsWOy+2P+fBkt0NsmN2hgsO4LV5AohFCPRA8gKyCCgoKEIu0QGxsrevXsKTRNE/PnTBAi4rL1j9W/CXFhl+FzP44QomRRIR6fSH586AUh/pptcr3xOz8X3iMQozb2F7rwSwav3XiwWxSfXFgUn1xYXL+3Q4ivPxFi4x8GxwRf/1eM8/MRo0FMLlJQROr3cGGXEJkyCjFvom1fn5HHrSt7RNasfsLPz08cOnTI9f9Bx44JERtr82k7r+0UWcZmEU0WNBFhUWHO35cQ4uT9k2L+sfkuWdtubt0SYvBg+TGVEBwZLALmBgi/cX5i/839ji2m0wmxYoXBz8SeG3uEz1gf0WB+AxESGWJ5jZgYIXbutH8PUVHJ/92qlRDVqwvx+utCXL9uZNs6MXjwYAGI6dOn2//eKURQUJAABJBVmLkOqoiBIl3gUOSgWX15Bx4eAXFtgbRoCB91S5jMmJjNu+Ht3kbbG/UtiUNfG8Do+h8nKzRMbJ/cfvXHiM/7QgPDu65toyYSFSzvmko2CUgwMipaEI5vgg5trP/ajOC2SEFwsDSUEUIW0dmYE3bX6OQlp5fQ9Z+uqcs++flzaen73GR9mFtxWqRAj6YltA3G1ZwEFAlgY2dZlBqts6L91tNTTlEEOQNBp7NtDxkyyI8zZ8p6jvBwmDFDuiRu3CjTOGFhcnxz/LZfkMiBOdXwIj5QEYM0jUORg4kjhfDzEeL2QcPnr+03/Dz8khBH1xuNFDAaMXLzAKELvSBEs9eEWPaz0fe68WC3uD57hBAXdxs8f3vPSjEaxGgQ3/n7iZBb/wnx7IwQU0fLSEVaihQsXCiEn59dd73uiBTo0el0ot/afoLRiDlH5rj0vdIiTo0UJGXRIiEKFRIiJCFCoNPphBBC3Hh2w7rIwfnzQmiaEMuX27eHw4eFGD1aRjH0RETIiM277wpRuXKyaFdajRxYGzFQxYeKdIVDBYl9u0CTAEMnxL2HoNUHsP1PqPqyfE7T4KUy8k740RPIk9O4eVHe3JDJ+HS/IplzwadTiBoWRd8yVxlVdyBF/PKzYcg38cc0HPUxPrlzwvrtMGwCNKwDZUrY/k2Jw63dBwCdOskRuAUK2HSauyIFepIWJHpoHnSv3N2l75lWcHqkICl16kD//gatwJqmEauLpeWiluTxycOa99aYL0gsW1a2Ltr781y1qnyAHNtcoYKMEqxaBWPGQPHiyaJd6b4g0ZxqeBEfqIhBusChyEHYRSGGDxTi3A4hQs4LMf1b+THpcZ/3FaJkUfHD1iEJkYIkNQVmH4+OiztXN8XXHGyfOSI+WjCjfCkRE3wu4dhb/6WdSMGmTXbfvbkzUpAUnU4nPtv8mdhzY49b39cop04JUbSo/JhCuDRSYAV7buwRvuN8RcP5Da2LHAghxO7dQjx4YN8bPn4shK+vEJMmyc8jIxNeCwsTYsIEIR49MjglrUUOVI2B4oXGoZqD5yGy+n//YdlK2LOD/Hjlhmxz0tOhNSt6VuOzPRONmxdFR8PdB6bfx8+XAgVKsrPjIjxiBOtGfBf/0usThuP5MFBOfxRCOiPaidsjBX/9lVBbYAPujhQkRdM0JjSdQECRAKJjo9lyZYtb39+AHDmgc2f5MQVweaQgKT/+CLMMB4gFFAmwzT45IgLefRemTLFvDzlzwurVchojJPgcfPcdBARI++StWw1OSbc1B+ZUw4v4QEUM0hV2Rw6enTH8/M4hWX/w4wjjNQXGIgWf9xWiUH7j679eX4hE+1n/9YD4aMHcRrXk85NGCVEgrxAPjqWNSIEenU7eYdlASkYKjDH36NwXtuYgRSIFAwcKMWKE0Zf23Ngjco7PKXZf3215nQsXhIiOdnw/ly4JMWOG/PehQ0JMmSLEs2cJr8fEGByeViIHqsZAocCBmoNMceNd5yyBazelE+Lvk6XbIAndB6Nq9mP03Jto11bCB+0M1+j0pqwLSEpsLJQuDnllFCDi2XNOTY2bF69Bi++GyX/3ex/ebQ3+9s0VcGukQAhpN/vOO7LCO7P1d/spHSkwRtdXu3L47uGUc0gMC5MGR+XKSUc+N+H2SIGeqVNNWo4HFAng2qBr+GX0Qyd0RMZEmv4ZKRM3dvzMGdkVY8/QJYB//oE5c+CDD2Ttgv53Z98+aaf866+ya8RH1j6kt5oDJQwU6R6HChJjoiEySl744oyNZqybxJjDMxnZcACj6w1CW/stZDZiRFO2pHwkxdMTfhwR/6nmoVG9T2cOTJ9HudZNyeflxd5fxlO4Q2eK5ixo2xcbh9vTB6GhckRwvXo2nZYaRQEkL0gEN4uD8+dlQZwbLZFTTBSAFAWxsdK0qE2bZPMh/DJKcfzp5k85dv+YZYfETz91aCYHn3wCvXvLC7+Im5Py6BG8/jr07SunRSYRv+lKHJgLJ7yID1QqId3iUEFixGUhnp8VP2wdIq5mQ+x76xXLhYaBJ2UL5Jmths/v/1umJpIcH3rnkAi+cUBEf9RVnM+fQZT6sZC4/mCXzft0e/pA3+Zlo4FRaksfGEPfythvbT/3vnFoqBBHjsiPbiClCw2FEELcvCmEt7cQf/5p8hCrTZAePHDO9+7pUyEaN04wUjp0yDCNcOJEsvdJzWkFa1MJKX4hTm0PJQzSN3aLg+1/iqf5/EWJjxDzvn9D6G4eMHz91n9CfP+F7GhILAwyegvx50zDY4sWEqL/B6bfK/ySuHV2dYJDog3iwO2i4M4dIQIChLh82abT0oIo0KPT6USsToqeW0Gpx4nQWaQKUaDHCs8LmxwSb90SYvFi+/cTGSm9DA4cMHz++HEhPv9ciPz5hfjss2SnpVZxoLoSFAoj2NutMDV0H78XDaJb4958MOhHtDy54HkwPAyUB1y8Bt9OgwuJfNt9ssCzM/BGM8PFti6GQT2Sv8nZi3KcsqZRqMRL8Q6JDRd35mbQXYt7dHv6AKS3vK8v+Fs/tyG1pg9MoWkaHpoHJx+cpNRPpdzjkHj3LowYIT+6kBRNHxijUCH50czXrXdIPHTnEFMOTDG/3ty5clhSiPnppSbx9oalS2XqQKeDwLjf96NHYft2WLxYDl9KQprvVjCnGl7EBypi8EJgS+QgWffB7YPS16B2VSHefD3hWBu7Bw5OHS12DB8o3Q0jLgvRrb0QFcsaRB1uPNgtWi9sJB4EmvcxSJHuAztIS5GCpLjVIdENPgapKlKQmEmThMiRQ4jnz80edurBKREda6EDITra4jpW8+mnQlSsmDBXQf8xIkKI27dlBCGVdyuoVIISBgoLWCMOkomCxyeEKJhPiG8/E2L7n0Kc3W54TtAZw/qBIb2F+LhHwufTvhFi7Oci+tkZ8WO+3GI0iHG+PiLs7mFpeXx5j8mL/51H+8SNB7tThyi4dk0OnLlzx+pT0rIo0JNe7JNTrSgQQob/V60ytCg2w54be0SbJW3MpxUCA4XYvt2xfZ0/L8TKlYbPPX8uxMsvy3bLEiWM/j6kJnGg2hUVCgtY6lYwanPs6wNjPpVtiPnzyAOjoyE0HLJllWOUXy4Hs+LMigrlA10io5/7j+BpECcX/03I/UcAlKpXg8yBTyFHNiiU3+R+e2z4kguB19jRcSFF/WW3QoqkDwAeP05II1hBWksfmCJxt8LYPWPp+HJHsmRwXzuhM0h16YOkFCqUkFKwku3XttN6SWvT9sljxkjjrcuXE4Yn2UrZsvIBslWxSRP589+unXz88ANkzCj/Hnh5xbdfpsluBXOq4UV8oCIGLxzGIgcTdg21bHP8+IS8w29cV4h2LeVza+YJcXyj2bC/LvySmFamRLyh0e23mwtRpKBx2+VED4ORzQ92qfRBCqLT6cTDkIdCCGE5nG0PZ84I8dJL8qMTSdWRgsTodEL07i3E999bdbhF++TAQCHu3nXO3i5cEMLTU4ilSw2fj4oS4uBBObJ51Khkp6WGyIFKJdguCPoDZ4HzShi8eCQWB+0ntbRu9kHLhkLUrS7E6rlCHPjH+DHPzghxfqf895NTQjw/K65u/CNeFMwLqC7E09NC/LfaqroEvTgo8mN+4VvQx/2i4Nw5ITp2FOLJE6sOT4+iIDHBkcGi+uzqzk8r3Lolp/vZMZnSFGlGFOgZPVqIuXOtPlwvDt5Z9o7pg8LCbO6gMcrx48lTHePGCeHvL8R33wmxbZvR01JaHChhYL9AUBGDF5TY2FjRs2cPwVuINhMbW/YpOLzOMDoQfkne9a9fIETXd+Rz8yfJX7Mnp+QwJp8sYkW7VvHC4NSMb20qWBQRl8WBkyuExyBNZHo1k/sjBZs3C1G3rlU94uldFAiRdmoO0pwosJO9N/aKUw/MFGy+954co2xl/YJFtmwRYutW+e/wcCH27Ut4TacT4t9/k52i0+lEo6GNBC0Q06ZNc84+rEQJAyUMFHYQLw40rPc5CDkvxNH1QjStJ6cyrpoj0wuPTwhxbb8Qa+cL8fysEKe3itCpX4sx3hnEaBDjfbKIaH8/2eVgpSjQpw98/X3FoUOHhE6nE4Fhge79JlnxR/VFEAV6XCIOwsNlsVt4uMNLpWlRcOOGENOn23whD40KFUO3DE2eVjh7Vka9nMX//idEhw6Gz+l0QkyeLMQvvwihacnSQTMPzhSMRlT+srLbIwdKGChhoLATm02QPu0jRL7cQkwYJkWAmWP3TxgWHy3Y2LujEL/+YLMoSJw+GL93vCg+pbi4/vS6a78pR48KMWCAVcORXiRRoEcvDrTRmjj78KzjCx45Iv88Hzni0DJpWhQIIcS6dUJkymRT94sQQhy9e9S8CVJMjOFQJHsJDk4+tOnZM9mhMH16gmNiHHpRMGjDIBEbG+v2tIISBkoYKBzAJnFw6z8hdi03fC78khCH1kr3wx9HSFvkad+In8uWjBcGDy0UKVrTknjj2Q1RfEpx14uD338Xon59wxn1RngRRYEenU4ndl7baflAawgOFmLPHvnR3iXSuigQQhb0RUTYdapZh8TWrYVo184JG4zj5EkhunRJ8DZI7J2g0wmxeLFYPW1gvCjQxUVA3F1zoISBEgYKB7E5chB+SYjdK4To0EaIWePkr9eelUJkziTEvIniuXcGMcbLU4wGMccnixCbFzkkCvS4TRxYCOe+yKIgKT/u+zFFaw7ShShwAonFQWRMIlG7fr0Q+534fdmzR4iaNYW4f9/w+eXLhWjbVlyvU0FMr24oCvS4UxwoYaCEgcIJ2CQOJo4UwieLENVfkXUG634XIvhcwuuhF0T4rf/EiclfiXN1qiU3R7JDFOjRi4M+a/o49xug08nKcAvFhkoUJKDT6UT/df0dqzm4d09Wud+7Z/Op6U4ULFwoRNWqdhcM7rmxR4zbPc7JmzKCsf1t2CDOtaolfL9ADFr/kRQFRo5zlzhQwkAJA4WTsFocPDgmfQxs7DJwVBToufP8joiIlmHXpHcldnPsmBBeXkLs2GHyECUKkuNwQeKJE0LkyiU/2kC6EwVCyEr/oUPtTikkZt3FdQlphfv3pXvnsWMOrxvPnTtyGuOFC0IIw5oC3fPnQvz3nxDVqhkVfO4QB8r5UKFwEpYcEuPx94Om9eS/z1+G3f/B/iMQGQUeHuCdAXq+B0HPoUXDeGc0Y9jjaFjArwAAx+4do9eaXqxsv5Ki2Yra+NUm4dVX4fp1KFjQ6MvpxdHQ2SR2SOy1phe5suTizXJvWr9ApUrw6JFN75nqHQ3tpU4d+XCQwLBA3lv5HlXzV5UOiTlzghD2D1gyhp+fdFYMC+PnQz/Tb30/BtUcxOSS/dFKlYIff4RSpSBTpmSnpiqHRHOq4UV8oCIGChNYHTn4YbgQ/n5CZPUT4tWXhOj+rhAfdhbik15C9Okkhy85MVKQFKfVHNy6JURsrMmXVaTAMjqdTkz+d7IIinDt35N0GSlIzJ07Quze7fAyFh0SnYRBpECnk10QX38txOPHCQcFBhot5nVl5EClEpQwULgAq8TB6a1CTB9jMExp6+d9xT/d2ovTC38S0TdNT0p0ls2xw+IgNlZa8vbta/RlJQps58LjC2LB8QXWHXzunAw5W9Fzn+5FgRBycmGBAk4xJkomDi5eFMKJRmEzD84Ufl8gTtYqIXTGBjcFBgrx6JEQ5csLMWSI0TVcJQ6UMFDCQOEibCpIDL0gxJU94qfCBcRoEGMyeovoZ2dcKgr06MVB5VmV7as52L9ftmElQYkC+xi5faT1NQc3bshZATdumD3shRAFQsic/MOHTltuz409ovavteW8iyZNhGjRwinr6iMFH6/7SOjatxf/Z++sw6Sq3jj+uVvs0t3dAopgUIJ0SYOASEoooSD8LERARcEklG4BQUS6u6Q7pbt7O+f8/jg7uzu703NnNjif55lnd+fee+7Zhd35zhvfV2zYYHqCwSALKbt2lZMaL1+2uJY7xIESBkoYKNyIXeKgSxsh/NOJUE2L8y6YUSCvR0SBkWtPr4mDt/RbT4kC59HbIfG5EQVuwiiW7506IIKfPnB5vSTpA0ts2WIqCMLCpIGYhT3qKQ6UMFDCQOFmbIqDwb2FeONVcbFVwzhhsLZ1Y4+JgoREREeIfqv72ZdWCA4Wok2bJNECJQpcx25xEBEhazwsGEo9l6Jg3DghvvhC1yVjDDGi8tTK0gQpLND2BRawKAqePpXpuPPnk14UESHEzZuy4yJvXov213qKA9WVoFC4GZvdCt/L5+6NmwHLNwKQr2ldkzWc6T5whoehD1l3cR3rLq5jW7dt1rsV7t2Dhw/lbPlYVPeBPhi7FdL5pKNIFiv/BqdOwSuvwOHDULmyyaE0231gi5gYiI7WdUkvzYvxjccz6Yv6PPksD1y4SYZM2R1aw6T7oNFYtITdRn5+sGcPNG0KpUqZXti5M9y4AWvXwjvvmO1UgGTqVrCmGp7HBypioHAQq5GDc9vFqpzZ4yIGN3Yu8WikICHOFiSqSIH7iI6JFtuubEt64NkzIdavlx8T8FxGCjzAoa0LxJjavqL57zUc6lawK31gqbPnyBFTD4WYGKudF3pEDtyWSgBmA18CbYAXAB9H10jJDyUMFM5gURwM+0jMjRUFI0GExHYqeFoUGEkoDh6GPDR/0qVLcdXfShS4l/nH59tdc6BEgZBprps33bL0rmu7RNYxWcWmS5vsOt/umgIhZErBOJ45MQaDHMQ0e7YQvr5C3L5tcRlXxYE7hYEBOAh8B/wKzAI0R9dJqQ8lDBTOYlYc3D8qxhfMK0aCGJ05U7KKAiPXnl4T3+/83vwfs4sX5Z+FtWuVKPAAFmsO7t0TYvx4+VEoURBHjRpCtG/vnrVPnRLPzhwVQsh/F6OLqDkcEgVCCDFqlBAZMkhhkxCDQXZFjBghnR337bO5lCviwJ3CIBAIcPS61PJQwkDhCubEwejMGcVIEBNKFk12UZCYlf+tNE0rhIYKsWqV2HVyrRIFHsKsODh6VIj06YU4elSJgoScOyfE3r3uWbtMGSEGDRJCyNZSSyZIDosCIWTEIFbkJWHKFDnUKSEWChGNOCsO3CkMjjt6jacfQD/gChAOHAZqOnCtEgYKl0goDmZPHh2XRphUoUyKEgUR0RGi9G+lk9QcqEiB5zGKg27Lupm82ChR4EHOnpXGQ8KyQ6JTosBReva0KyrijDhwpzA44Og1nnwAHYBIoFdsDcQ4IBgobOf1ShgoXMYoDnxBrPTzFf+AeMvPN8WIAiOJCxKP/TlWfNjCV4mCZMBgMIjomGghhBB3gu4oUWCOmTOlD4AHSCwOXBYFv/8uxMcfmz+2YUN84eGKFdL8yA4cFQfuFAZHHL3Gkw9gPzA50XNngdEWzk8XKwaMjwJKGCj0wCgOAJE+ICDFiQIjRnGQ9+e84ut6PuJs8cxKFCQjZx+cFS8OSif2lfQXlQZnUKIgIdWrC/H55+5Ze88eIQYONHnKKA6azm/qeqRg4kSLFsiidm0hOnRwatmE4mDSpElWz3WnMIgEfgEaAxkcuK65o/dyYm9+QDTQOtHz44EdFq4ZGfuDMnkoYaDQgydPnoicOXIIQLRo0SK5t2ORv079Jby+9hI1Z9VUoiCZCQwPFK9/kUvMexHxwx8fJPd2nh+WLhWiUqUk452/3PKl+9MHUVHxbY3378uoQUiI3ZcHBweLAgUKiEqVKlk9z15h4IXj+ACDgDXAE03T9mia9r2maQ00TbPmejLciXs5Sk7AG7iX6Pl7QF4L14wGsiR4FHTb7hTPFYGBgTRp0pio6CjatGrEypUr6dOnT3JvKwk7ru6gx4oe1C1Wlw2dNxASFcL1Z9eTe1vPJcGRwTT9sylnM4Wz7Ms2fHZ5CjOOzEjubT0ftG4NR46YGHtNPjiZ73Z9x8AqA3n3xXdpu7gtIZEhzq0fFiZNmszh4yNHs4PcQ8uWEBho17KhoaE0b96cp0+fMn78eOf2lhhrqsHcA7gBvA8sAu4g2xcNQAyy2G838C1QF/BPcN0pR+/lxN7yI9VQtUTPfwn8Z+caqsZA4TLPnj0TVatWETkzZxKTfH3FeBCfFy0oANG7d+/k3l4cSQoNx4wR294o6PrIZoXDmNQUXN4pDA8figErPhD5f8kvAsOdt+tNMzx5IkTlykLs2OGe9RNFAxLXFOy+tltk+C6DtE92ZmRzixZCNGiQ9PnISCHefFOIhJMYL160a5JkSEiIqFOnjsiQIYPYacdYandGDO4KIaYKIToKIfIB5YEBwFJkK2P12BfiTciIwnZN074HijlxL0d5iBQoiaMDuUkaRVAo3EJgYCCNGjXk7NmzrFk1i/tRUTwBSubJRa8eHZg+fXqKiByYtTnOkYOKjbsDUGduHa49vZa8m3xOSGJz/CQDWs6cTCjQi0O9D5EpXSZiDBbebT4vGAzw6quQLZt71m/RAj74ADBvc1yjcA3Wd17PwVsHabawmeORg88+g6FDkz7/7Bnkyye/r5gYEAJKlICE1spmCA0NpVmzZhw4cIB169ZRs2ZNx/ZjDWuqwdwDG8WHQAXgQ2AZ8IgEEQVH7+XMA1l8OCnRc2ewUHxo5noVMVA4jTFSkCVLZnHw32VChF8UY3x8xEgQ44oWFDGh50WvHh2SPXJgqyXRWftkheOY7T54/FhWpj9+LIQQIjQyVNScVVOXqYwKCyxaJMSqVTa7D3Zd2yUyfJdBtFrUSv89TJggRNWqMopgBUcjBUbcWXx4y4FzNeBl4BsPCgNju+J7yHbFsch2xSJ2Xq+EgcIpzIkCceewmBwrDL7x9haG0PPJLg5s+hRcuSLEf/+Ja0+viRLjS4iFJxd6fI/PC/a2JOo9sjlVEhgoJ05amj2gA/a2JO66tsuxceYTJsiCwsScPi3EunXxX+/bJ8Q331hdyllRIIT7LZFfceK6y45e4+wDaXB0FYhAGhzVcuBaJQwUDmNWFMSOXl6gaXEmR0FX9woRfjHZxIFd5kVVqsS1ToVFxTuwPQ176oktPjdYFQUPHggxfXqc4Y4QShyI+fPlS1aoG7pmbt4Uq8f1F77DHOs+CI8KFyO2jbBdc9CypRBffpn0+c8+E6JkSRkhcENNQWLcbYl8Cijm4HWHHb1XcjyUMFA4ikVREH5RiCNrxZp8ueOEwZWNC+KOeVoc2O1oeOZMXAjbyG/7f1NpBR2xGSk4fFj+eT582OTphOLg+N3jHtptCuH27aTWwTqxdVhnEa0h/re8v0MticfvHjfrkGgWc5EOg0GIu3eFWLBAiCZNks5SSICrokAI9wqDDEBnYDkwD6hv53VbHL1XcjyUMFA4glVREH5RiDm/ikO55Njlr729xLFxI02Oe0ocuGpzrGoO9MNVR0ODwSA2Xtzohp09n0w6MElowxHD/3jPKZ8CS/bJQgjpSbB/f9KLrlwxHZi0caMQH31kMWqghygQwo3CQJi+iGaPzeWr6YqK5w6boqB/VyH804ngOtXF7TZNRJSPjxBjhyc5z93iwGFRYDDIYTLz55s8rcSB6+htczz54OTnJ62wbp0sENSRSQcmCUa4bl6UUByYTGUcPVqILFmECAoyveDDD4UoUUKmRWzcVy9RIIR72xXjEEI8FkLMEkK+oioUzwsJWxI3r53Lq6+8aHpCVBRcvQnff0aGJrXJFxmFz49DoWu7JGt5eXkxdeK3bmllNNuSaAtNg9BQePrU5OnCWQqzvft2AEZsH6HbHp8XkrQkFqpm+eSLF+Gtt+RHK5y+f5req3o/HyZIK1bArFm6LWdsSfwjtBFjvzuMFhHh9FpvFH6Dde+uo3qh6vh5+8Uf+OQT2LkTMmY0veDXX2HDBnj7bRg0yOK6bm1JtIKPR+6iUKQhbIoCAF9f+HsKtO0DBfLB7btw9wFkSG92TaM4AJg+fToA06ZNc2mfTokCI1Onmn26cJbC7Oyxk2z+spdcCIFmo99a4aAoAOmCly5dvBueBSY0mYBBGOi9qjcAvSr30mvLKY/Jk/VbKoFPQed0LdG09eDv79KabxR+gzcKvwHAtlOrqRKTj/QVX4GXXoo/acMGKFIEypaVXgXt20OePGbXSy5RALiWSkiLD1QqQWEFm+mD8ItC7F4qxJxfhShcQIjRnwvxx1ghnp6Sxz7sLsSvSdMJeqcVdBmdHBIiK+Ojo80ePn3/tKg6o6pKK9jA3VMSExYk/n36b93XTxGEh9tVtW8P7h6d/CTsifi6kb8ITO8jgh/eiT9gMMiOn27dhLhwweoaeqYPEuKRGoO0+FDCQGEJu0RB+EUhur8tRMWyQrz/rhBPTwtRvrQI7/2O2PvzMLGwRBGxqV4Ny9fqIA50EQVCCHHokBA+PkLs3Wv2sKo5sI3ToiAmRr4Y2tmzbzAYxI+7fxSPQh85udMUziefyAmELpJEFEydKsSJEzps0JTd5zaLJj39k9onP3smxyt7e1scH+0uUSBvr4SBEgYK3bBbFIRfFCL0vBDX9gmxYb4Qm/4UYs1cEfHlh+KbWD+DsYULCEPYBbeIA91EgZE7d6weVuLAMi5FCiy0K9rD1SdXxYITCxy+LkWzbZsQc+a4tEQSURARIQsAx43TZ49CyG6Dq/L3wOiQWG9GLRE58MP43yWDQRZRmhF97hQFQihhoISBQjfsFgX/bRfiyFohfvtWiBUzhWjTWIgmdeSxDfPFvEL54/wMbn31kXVx4YQ40F0UGImJsSoQjOLgxUkviugY82mH5w2X0wePHgkxb5786CAjt418fk2QLGAxfRAVlWTMsku0aSPEa6/FpT12XdslWnxTTkQVKiDE7NlWB0C5WxQIoYSBEgYKXXAoUtCnkxDFC0sx8L8+QoRdEOL2ISkUTm8Rhyd9FycMNnl5CXFmq27iwG2iQAgh+vQR4uWXreZ4rz29JnZf263vfVMp7q4psEWac0icMEGIPc7/HM2KgvBwE1dJ3Xj0SBqEGTEYRIxBpoXC2rcV0dWrmf098oQoEEIJAyUMFC7jkCgIvyjrCY6slZ8HnpEfHxwTwstLiPnjRfD+leJrLy8xEsT4wvltphPsFQduFQVCyHD2rl12nRoVEyUGrx/83KYVdBMFjx4J8eefTkUMhEhD4iA6WorSn3926nKLkYJZs4QICJAGRHqwYkXSf6spU2QEITJSGAwGUXtKVdHytxpJTJA8JQqEUMJACQOFSzgkCo5vEOL8TplKMJ779ltCDO4tPw+7IETIOSEKFxBzCxeIixpcXT9PiEu7XRIHbhcFCTEYrFq2CiHEnaA7z23Nga6RAhdqDIwYDAYxaN0gsfzsctf2ktwYDDanDZrDavfBs2dCzJ2rz/6CgoTIk0eIb781fX7VKmlk1LKlEBcvmnVI9KQoEEIJAyUMFE7jcKSg0ZtC1HhNtiIWyi9E0Fkhfh8lxPzxpuft+Fuc+HV4nDBYWqSgEK++JIWDE+LAo6JACCF69xaiaVObbWPPY0Gi7umD6Ggpwiy0ijqKwWBInakeJ9/RWxUFNsStU1y/LusVhJATIBM+X726nKIo4h0Sa8+pLe4/ue9RUSCEEgZKGCicwmFREH5RiDuHhTi9RYjg/4Q4tdn02MYFQjSsJVMK4RdF1NPT4ofsWcVIEN/6+YrQ9fPsu0dicVAE4TPcx3OiQAghNmwwPzrWDAnFwf1gncK1KZTkrimwh8WnFqe+tMKZMzINZ6VgzxxWRcGmTULkzi3EpUuu7+/JEyGGDhUiLH4Cqbh9W4jMmWUawShAEu1h17VdIvP3mcWLbV/0qCgQwkOWyApFWsIuR8OE7DoAj59Cen/pUOfjAyWLwqy/4MoNeY63N/ingwB/uH4bn5G/8lLrxgDEREZx4vR5EAJiYuzao5eXF50+a45PN2+ir0RTaFchxxwNXaFhQ2jRQn4eFWX1VKN9cueXOpMjfQ4PbC55cNjR0F4uX5Z2uZcv67Jcu3Lt6Pdqv9Rln1ywIEybBlWq2H1JQkfDsY3GJnXlrFABBgyAYsVc39/hwzB7Nty+Hf9cvnzw+++wYwe0aiV/txPtoXLOyry47UUur7/seUdDe7GmGp7HBypi8FxiLlIQEnRShAefNv/uPeisEEULCdGvqxyMlCG97EC4dVCIrJml82Hia05vEaJIQXHvz9/ktEUvL7FpSB8h6tUQYuRguyIG288vEOm/CxD1ZlcX3d9r67GRzSZ88YVdKYWEbLq0Kc2lFdwaKTh/XoiGDeVHnUgzBYkWsOloaKdZlEOExkbr7t8XYv36+Of37hVi9eokp3u6piAxKpXguCDoD5wB/lPC4PnCnCgwhF0Qb82rI5rOq21ZHJzbIVMEj08KsWRK/POPTsR3Jdw/Gv95gsfen74Uj89uk1//OFSI1XPsFgX159QQoUGnPDayOQlr1woxbZrdwiAqJkq88PsLaarmIDWkD8xhFAftFrdzix2wbmzfLsSnnwp7PQZsioJjx4QoU8amFbFdDB8uHwn58ksh8ueXXgUWBEhyiwIhlDBwRSCoiMFzhLWagg1nZwv/UelMxUHYBVlY+OSU7DS4ts+0XfHJKdMX9LZNhKhT3fS54P8cqiswJwpsdSt4DDvfhaWlgsTUKgqMGAwGERUjC+UehLihl18P5swRomZNu8SnXbMPLlwQolcv6XboKj/8IMcpJyQ6Woi//5ZWx7uTFnmmBFEghBIGShgobGJPoWEScXBsvRAB/tLZ8OdhQuTMJsTdI/L8374RIld2GTFI0IkgNi6I/3rC17JzIXEnQtBZ2eI48ye7RUGyi4NffhGieXO7IwdpQRx4TBQcPixfZFxoV7TFhUcXRObRmVNuWkEvUaAXT56Yfh0RIUTXrkIcPRr/3MWLSS5LKaJACFV8qFBYxd5Cw4bFarKi7RS2XtvLP+c2QNmScGYrNHoT3mkJP38FWTPLkxvVhq+HmI5WrlIJaiUonnr9ZRjSG6Kj456KiYzk0vZ9kCsHpDctJNxxfT9N/+5F9QKVWdl2KgG+SUfDGkc29+rRgenTp9OnTx9nfyyOUaYMvP46GAx2nW4sSCyStQgxwr5iy5SE2woNzVGoEEycKD+6iRLZStD5xc4pryDx4kUIDU1StJcYm4WGANevQ506rhdxnjkjCxa3bIl/LiQELl2CsWPjx5SXKGFyWbKOTnYFa6rheXygIgZpHmdaEq/vnC3EsI+ECD0vDEFnZe2ArevCLggxfqQsOrRwzpEpo8Uv+fOIkSBu7PjboUhBiokcCOGUAc2TsCfi+tPrbtiM/qT29IElUmRBYvXqQrRubfUUuyMFJ08K0aiREE+furanyEiZPggJkekz43oxMUJ89FHS1IJIWZECIyqVoISBwgxO+RSEXxRi0ndCvFhWzN/xrZjXrpgwFC0oiw6NAqBtEyHW/mF6zZ3DQvj6CrHwd9PnD6wSYtl0IcIvikO/j4ozPJpTq4owBP8nRL+u4sxPfR0SBckqDpYvF6JUKYe959v/3T5VpBWSRRQ8eSI9IxKHr92AURzk+jGXeBLm/vvZ5PJlWSxoAY+mD+7eleIiIZ9+Km2ab96UXyfj7ANHUakEhSIRDvsUJOS9DrD7H3LlLsi3RW7xS+OMRPjF/vo8C4KwcPDxNr0mWxZ4dhqa1zd9fs7f8NXPALzcrS3ZSxQB4OrO/VzetpfbD28wcfcMq+kDSyRLWqFyZWjZEjJlcuiynxr8BECduXW49vSaO3bmMh5NHyTk8mX5M9XJx8Aamqbxe9PfOdznMFn9s2IQ9qWGdCc8XKbYihWDihXNnmJX+gDg7Flo3hwePHBtT59+Ch06mPqMdOsG9epB2bJw/nySlEeqTR8kxJpqeB4fqIhBmsSpSEHYBSF6dxJi8vfy69uHhHh62ny3giOPe0dNOhNO/jEuLmrwc/miIv23/g5HClJE5EAIh9/hpuSCxGRNH0RGyt54J1I0rhAeFS4azWuUPGmFYcPkyGILNtAORQr27hWiXj3X7Y+fPhXi7Fn5+eLF8f8eISFCTJyYJFqQUiMFRlTEQKGIxelIgcEAGuDrK7/u8xm8/YFJQeJvMz6TDojmmL8MOg1I+nyWTNIlMZby7ZqSt+ILAASfvkrzO0VkpGD8XBg/04HvNJ5kiRxcvgzFi8Pq1XZfYixI1DSNrVe2unFzjpFskQIjvr6QK1f8/z0P4eftR4lsJZKnILFVK+jbV7qFJsLuSIEQ8lG1KmzeDBkyOL6PqCj45BO4dw+yZJGRgQsX4N13YcQIWdCYPj3062cSLUgTkYJYfGyfolCkXpwWBRERkC4dTPgm/rnhg2TaANmtsL79LF7/fgnMGQV7VyStos4QALlzml9/1AS4dgum/4Dm5UWuAc242/ssANU3RpDuRx95Lz/nXxiM4gBg+vTpAEybNs3p9WxSrBh8+SW88YZDlxXOUpgTH5wgg5/8Ix4cGUxGv4zu2KFdJLsoALh6FUaOlI+iRT12W2NaAaD3qt4A9KrcyzM3f+UV+UiE3aIApIXytm0wf76J+HaIW7fg77+hcWPIk0c+V6oUHD8OrVtDWJjsREhAWhIFgIoYKNIuTouCM+ehXF04dEJ+fe2WzDG+9ALUfD3utDcLVyFg0g/cmfc9/TeNJCI6wnSd1o1h3Ejz9yhWCMqVAmRLYpd7v/GsjGx7fHLxKkfnLIFv/wdfDXTkW06CRyMHmgZDhkDWrPDwIQQG2n2pURTMPDKTlya/lGw1BylCFIAUphcvyo8exigOjLMVDt0+5N4b7tghc/aPHyc55JAoAMiRAwoXdk4UiNiZJUWLwrlzck+zZsG338ro4QsvwPbt8OOPJpelNVEAShgo0iguFRoWyg9tm0LZEhAZCQ06wbCfTM8xGODSNfDy4pxfMLNOLKHNsv6m4uDWXcvDht5tDR/3ivcpKPgK/X6fGHd468hfCH8a+8I6b2nS+zuAx9MKBgPUrQuDBzt8aYMSDYDkKUhMMaIApEfE7t3yYzJgFAer3lnFK/mSvovX+WaQP78UlAlwSBQYiwPbtUvywm03o0dDmzZyrXTp5HN378K+fdCsmfQtyJvXJL2TFkUBKGGgSIM4LQoeP4Xb9yBTRvjxS8iYAfz8YOoY6NfV9Nx/1kHFRnDlBrWLVI2rOTARB5WbwPhZFm+3b+9qRvzyXlz3Qcma1SjfrikAUWER3D58Up4YHAwPH9ttJGQOj4oDLy8YN07mYx3EWHMAnhUHKUoUpBA0TaNZ6WZomsb8E/PdV3NQqxbMmyf/38TikCgQAtq2lWkXV3j5ZaheXdY4PHoknxs6FD7/HLJlS1LvkVZFAaC6EhI/UF0JqRqnfQrCL0pL4krl4+2KD6xKal1sfDw9LcRfk0yeM3YrtFxQXxhCzwuxarZFc6Pt5xeIPyp7i4uFMph0Hzy9sFMs79pOBF7+17Q7wsnuhGTvVggJsdqTbgljt0KHvzu4YVOmpEjzoqNHhciUydRuNxn5cO2H+psgPXkiRJ8+Qty5Y/K0wz4FBoMQ48YJsXKlc/s4c8b064MHhciYUYgFCyzaMqf07gNLKIMjJQyeO1wSBeEXhbi0WwjjdSc3CeHlJcSCCUnPMzMt0fjYeHaOWHzMzDWJREH67wJEx19fFaE399q/v/XzhGhYS4qS1CIOPvpIiMKFnRpec/3pdfE07KkQQrjNyCZFigIhpLHOL7/IjykAtzgk7tsnRIkSQty6FfeUw6LAOPbYWS5elCZkixbFPxcZKcSIEUKkTy/E5MlJLkmtokAIJQyUMHjOcFoUGKclPjye9NjKmXKCYsLnru0TIn8em2OSDf8uE3s+bSnCA0+aFQVO+RTsXS5EiwbxQ5tSgzh4+FCI48ddWuLio4ui1uxauvscpFhRkEJJKA4WnVxk+wJ7SOBZ4LAouH9fis7Fi13bw7JlUgzs3y/E6dPxz69alUR4pGZRIITyMVA8R7hUaHjtFnw+GjbulF+HhcOWf+XnDd9M2lOdzk8OT6pcweqy97duotCUFbRZ8WFczYHZgUjTFkCfzy2uE/40kE1DfyAiMAgqVYDFk+XQJilincZjNQc5csBLL8mCrrlznaqT8PX25cazG7rWHKT4moLAQNmH70Bnh7sxFiR+X/d7ahet7dpiM2bA06dxv18Odx+ALFZ87z2H22MBOHgQli2Tn7dqJbsYPvsM3n9f/j8FWXAYED/ULE3XFCRCCQNFqsYlUQBQtCCc2gxtmsiv/1gCb38A9x6aPz9rZvjuU8ie1eqyeT4ZzJm9M+MKEjdd2W1+SmLGDJA1k9kX+mu7DjDx5Ubs+XU6W0b8Gn/gwhWo0gLOXXLse02ERwsSDxyA3r1lhbeD6F2QmOJFAchWxQYN5McUhKZpfFHzC/JkzMOdoDssOrXI8UWuXYNBg2CrNLRyShQ8fiyLAUeMgHz5HN/DrFmyQNYoVDUN/vlHWjGbEbDPkygA0ISL7zzSGpqmZQaePXv2jMyZMyf3dhRWcEkUbN4N67fDD1+YRgWEgNPnoUKiNjEhoOsgaN8Mmjew+zYbr+yi+ZI+RBtieLNQFda8Pd3u2QdPr95kUuUmRIWGgabRc8ffFHz9ZQgKhv5fwTdDpLBxEYPBwPv9v2LG7L/o3bu3+0yQrl+XPebOXv7sOrXn1Mbfx58TfU/g4+V4r3qqEAUg/Qvu3JEvesbWuRTGdzu/Y9i2YUxvPt1xE6T79yFXLiYfmuK4KNi6Vb7L37MHKliP3CVBCCkCYmLkaOebN2Vb7cyZsmVSCDmzIY1GCgIDA8mSJQtAFiGExXCUihgoUiUuRwpu3oEr1+PfGew9AvuPyj8aiUUBQGiY/Ohvxx9pgwGqNIeVm0jn7YeGRs6AbCxtPdG8KAgKNmurnLVoQWoPjzU4EoLV/YcRExUl2yn/GCtFQURE6kkrGEXB77/LMLmjl8dGDn5r8lvaFgUgxUDRoilWFAAMrTk0zgTJ7lbGI0ekN0ju3M6JAoDXX5etieXKObbh69fhtdekg6G3txz6FR0NT55AlSpw+LD8/U+josARlDBQpDpcEgVGJ7nub8OSqfG9yeNnwjfjLL/IZkgP88ZDg1p23CMSalbhiPaApn/3omah17jadwdZAzJz5uGFpA6JsxdDs+4QEppkqaoDusfNUbh38j/2/TYn/mBkJNR7B35x/R2+x8SBwQBr1sDOnU5dXjhLYeoVr4dBGBi2dZjdaYVUJQpAvoj17y8/plASOyROPzzd+gVhYdCoEXz9tXPpgydP5Dv8jBnlu3wvB1++MmaUszxy5pS2x9HR8OKLUqS2bSttjxPwvIoCUKmEJKhUQsrGJVHwLAjebAeD+0DXtqbHIiIgNFyOSk7Mr9Ph5fJQt7rdtzJXaBgWFU6JqXWplKccS1tPJJ1P7LvBx08hKASKFDC71q1DJ5hRsy0IgU+AP/2OrCNbsULy4O9z4I3X5P50wCNphchIaRwF8aFdB3kQ8oAqM6oAsK3bNopkLWLx3FQnCkCODX73XViwQFrxpmCEEAxaP4iqBavyzovvWD/59Glm31rDe3s/czxS0KOHLBo8ccIxUfA41hwsZ+zckshIGW2oUQO+/x4KJP29S6uiQKUSHETTtP6app0BLIzKUyQ3LqcPMmWAdm9BjViLV4MBvhgDl67KkK05URATA5t2wbHTdt9m3/619Jn+XpJCwwBff+a89UNSh8TsWS2KAoACr77E6327ABAdFs7qAcOIE/QDuktREBMj3RFdxCORA6MoWLdOvoMMD3d4iVwZctlVkJgqRQFIMXDkSIoXBSAjB+ObjOedF99BCMHBWweTnnTnDhgMTA7d6ZwoABgzRnYzOBop6NoV3n47Phro5wcTJsCxY/Dxx0lOT6uiwBFUxCARKmKQMnFJFMTEyEr+siVNn7//SM5B+O4TaFbf8vVCSBFhZhxsYnZc38/ZLl1pfMOPPOcOmq0p2HhlFy3/+YC6RarFRw6OnYYBX8GKmZAjW5JrIoKCmfRyYwJv3QWg2cRRvNKzY/wJHw6Hwydg91LH/3CawSORgwMHYPx4mD5djrF1AmNBIsCennvImzFv3LFUKwpSMSvPraTlopamBYkxMVCxIifL5eSl8jscFwVr1siWxCxmhLs9/PefTGPkzg2rVsEHH8jnr16FzJkhe/a4U9O6KFARA0WaweVIwaQ/oGZbePTE9PncOeDQasuiYOUm+YKtaXaLgqZ/92J7x0rk/Wuuxe6DhsVqsqLtFI7cPc2lp7E55Px5ZdQgMNjsNekyZaT55O/ivt74+WiC7tyPP6FPJ/jaibyrBTwSOXj9dRkqT58egoKcWsJYkNj2hbbkSp8r7vlULwpOnJAdCSdOJPdOHKJ56eZJCxK9vVkxoAEdcjkhCgIDoVs3mDjR9rkJiYiQw5QiI6FsWahUSfoWfP01dOgghULRos+VKHAEFTFIhIoYpCxcFgUgTYt2H4gvHDx6CkaOhdm/WPYjEALqd4JSRWHKaJu3MGteZGtbUeEE+PrHpRTiag6ssOL9zzm7bD0NfxhKpe5vJ/0DKwScOAsVHazYtoBHIgd370LlyvDLL/COjRy1DXZd20WOgBy8v+b91CsKQIbeZ86Enj2d69NPRoQQDFg7gEmHJvHHG78SnCkd/db1dy59AHD5suOjlPfuhcaNYcsW+X/LKJhXr5ZjlNesia854PkRBfZGDJQwSIQSBikHl0XBH/9ArSpJe/33HYEfJsOfv0GAlRfwqCgIj5DtgVYwEQWNxxLw/WTo3QlKFbNrm+2Xf0hIVBhLW0wg3Z7jUKY45M9j9tzwZ0FEBAaRpVB+84ut2gTt+8GRtfBCKfPnOIjbxYEQ8PPPMhecx/z3bQ8xhhhenPwil59cxtfbl42dN6ZOUZAGEEIwaEVfBveZzexykTz93EFR8OSJTDN9+WWSqYY2bhxfzPo4tuamcWPZxdChgzyWqOD1eREFoFIJilSOy6IgLBx+mASLVsY/FxUl/yhUrQzLplsWBQePw5Ub8g+SI6Kg7VQCHgXCmq2yy8BOelVsz9Zre+m0uB+ibR9Yus7iuf5ZMlkWBQBv1YMVM3QTBeCBtIKmwSefSFEQGCjfITpBWHQYGf0yEhkTSSa/TOTPZOXnlNIJDpbveoPNp5ZSOpqmUabAS3zyZiS+nbsy4s0RjkUK9u2DKVNkW6G9CAH9+sE338ivs2eXLYrly8siw59+Mm4u7pLnSRQ4ghIGihSHLumDAH9ZiPdZ3/jnPhgKH3xh+9qhP8CQb2yeZjZ9UKIonN5ic5ZCQow1B2vvHaTXNy8R8X5H2xcl4OaBY/FdCl5ecsYDwIYd8OCRQ2tZwmM+B716Qfv2Dps2GWsK/nv4H/+0/wd/H39dZyt4nPPnoXp1+TEVMmP7WPqv7U/+ngN5t+3XlPqtlP0mSABNmsClS7IOwF40TaYcChaUcxguXJAdCLNny3qDzp1NTleiwDJKGChSFC6Lgl0HoGVP6SaYLYtpj3zTOtDAjl/+pdPg91FWT7FYU+Bkas4oDv4MP8aCM6vsWiciMIiVfYcys1Y7jsz6y/RgSCi8/zlMXeDUfszhEXHwww8wb55D3gaJCw1bv9Ca7d23ky9TPkKjkppGpQpeeAFOnUoV7YqJmb5jLHVbD+bve7UZ22gsRbIWoUP5DvY5JE6dCqNHy///GTLYf9P//pMfv/hCDlYaNAjeegsWL5bPd+kiLY9jUaLAOo77iioUbkKXSIG3N6T3B78EecmrN2WdQdum1q89cx5y54Sc2a2mEKwWGr7VHSq+AKMtT0y0RMNiNTnWYxWlh06DbBcRoz+3Gn69eeA4R2fLP3wbPx9NyQa1yFI49o9fhvSwbbFVfwRnMIoDgOnTpdOdrjUHxWLrMqKi4I8/pKmNlU4LS90HhbMUZneP3WiaRkhkCE/Cn1Aws+tzJTxGQIAMgacyJh+cTP+tg1n8Tm3aDpkR9//396a/A9B7VW8Ay7MV7t2Dhw8dM71askQWrZ4+DaVLy+d++kmKhKFDoUUL8I//HVWiwDYqYqBIEbgsCu4/ku8yqr8CCyfGe8xfuAIvNYDlG2yv0f8r6P2Z1VNsdh90bAFvVnVs7wkok6M4WuUK7M8VSeulfZPaJyegRP03qNT9bQAig0JY0eczRMKpcMUKyRfVQydgphNT8CzgkcjB7t3SEvjoUYun2GpJNL4o9Vvbj1qza6WutMLNm7Lu4ubN5N6J3Uw+OJmPV/Tjo2oDaTtxK1qJEnHHEtonf7LpEx6FJkpxxcTIj8OHy6JDR2jVSkYGChSADz+URYe5csG0aXLQkhIFDqOEgSLZ0aXQsFY7GDUh6bGSRWHqGJlGsMWiifDzMIuH7WpJ7NoWGte2e+tmeb8zz9rUZcOVXaYOiWZo+MNQMheU7WxXtu9l32+zk560chPMXya94XXC7eKgTh05cviVV8wedsSn4Ns6MsKRqmoOnj2DlSvlx1TA5IOT+XxpP27OzMLYJ1XMRrqM4uBwn8PkSJ8jvi7m6VN49VX5/coT7bvp7Nky3eLjA61by3HOy5fDm29K62QvL2lqFIsSBfajhIEiWdGt0HDU/+RgJCOPn8p6A02Dd1rG2/Ca4+pNOT0xT04oYd5z3y5RcPk6bN+bZJa7MzQURThIp6T2yYnwz5KJVtN/jPt6y1c/c+/UOdOTRgyCdX841gduB24XBwULyijQ6NHSnCYWR82LjCZIkIrEQfnycO5cqkgnGAci9ao+gBx9BqLVqGHxXE3TKJ6tOFExUbRd3FbWHPj7y0JLR+opoqLgt99g0SJpZhQTI+cfHD0q10lgXARKFDiKEgaKZMNlURAcIt8Ng5yBkLCNb9xM6DpIRhOsIQR0/xi6D7Z4it3mRUvWQMf+Tg0FSsL2vVQYu5zVjcex9dpeBm/93uKpxepUo9qgngDEREaxtPtgosMTCAlvbzku+upNaNtHl5kKRtwuDoSQnvZnzgDOOxomFAerz6/Wd4/PMUZR8PGrH/JzswloX38dP17bCj5ePuTLmI/P/urNjDPzpbNhKTtbbA0G2Uq8Y4dsTWzfXroj3r0rTYsWL4YEaQwlChxHGRwlQhkceQZdIgWT/4ARv8r2wFw5TI9FR8t38KWL217n4lU5Krl86SSHHHI0jI6GW/f0KfgLj5AvigH+bL+2j1LZi1IgU16Lp0dHRDC9Rhvux0YLqg3qScMxiVozr96EboNg5s8yxaIjbjVBMhjAy4vgyGCazW3EkYcnnXY0DIwIJHM6+XsdFhVGgG+AfvvUk9OnoWVLWLEixUYNjKLgixf68N1X29HGj5dmQnYi5swhZGBfSvUO59tO0y0XJCZk5UoYNQo2bIBssTNF/v5btiNmzAjbtpmcrkSBKcrgSJFi0UUUAHzQBfauMBUFU+fL7gIfH9ui4P4j+WJesqjrogDkPfXqAvBPJ1MkYeHULlyFApny8iD0EYM2jzKbVvBJl442c37FO7YbY++4mVzZttf0pKIFYfvf8vuNjna6tdIcbo0cxIqCbz6twtQv97Gl8UKnHQ2NouDPk39SYXKFlJtWyJpVTgTMmjW5d2IWoygYWGUg3zX6Ea1hQ3jpJYfW0Fq0IMOYX2lTR85W2Htjr+2LihWTdSf+/tLeGOTPaeHCJPMUlChwHiUMFB7FZVEgBHz2PezcL0P2CWsCIiJg5l+warN967wzAHoMMXvYYVEQFg7t3ofDJx34Zmxw6RoUqw7/HgLg7MNLTD220GLNQZ4KZaj37f8AKPpmVbKXNFMvoWlysEyzHvD7HP32ivvEgTF9sDrdNTI3a8tr5Ru4vOYbhd9ACJFyaw4KFJC1FQX0bTfVg4SiYGzDX9GyZJH5/gQ+AVY5cwYePYLs2dH69uX3pr/zT/t/qFrQSjfPyZNSzL74IkyeLCMprVtLQ6zwcChZUtYYxKJEgWsoYaDwGLpECiIi4dQ5GRZPTLp0sO0v+LRv0mOJ0TQY8zl82CPJIWcGIvHkGURGgbeOv1LFC8OQPnFRiFqFX2dF2ylWCxKrftiDtn+Mo+u6PyxbJ/v5yRkSOg1aSoje4iBhTcHMAZvIN2ux3P/Vq7IAzUlSfEFiWJicrBgWltw7McFEFFT6Aq1iRWndbC9CSAfCfv3intI0jTYvtEHTNJaeXZrUBOnZM6hVS6YLjHToALNmyZTC9esmpytR4DqqxiARqsbAPegiCkLDIH1AXM45jsvXYfA3cgpi3lyWrzfyNBCyZDJbJOiUKPAwG6/souU/H1C/SHVWtpvm+LS6hAghixET12i4iB41BxYLDUND5TvEnj3lpDwXuP7sOrXn1KZi3oos67DM9gWe4sgRGTI/fFhOB0wBmIiCRmPRHjyA//1Pmgk5Mvzq8mWZCjATYRi0fhDj949nevNENQc7dsifx6efSrvkZs3k7294uPIpcAB7awyU86HC7egiChatlKOSdy1J+iIWHCJFg68d/52FgFY94aUXYILpPASXRMGTZ1JsWHHpc5oZiyBfLjkgiXj75NtB9+0SBeHPgogKDSNTvtxJD46aAAtXwJF1sq5BJ1x1SLTafZA+vRxJXKWKy/ssnKUwO7rvIL1vepfX0pUyZeDAAfkxBZBEFID0CPjjD/sWiImBCROgb18obrn2Z2yjsUTFRNF7VW+yX7hJmztZpb3xm2/KFNiNGzBkiOxU+eorJQrchIoYJEJFDPRFt0LDG7dh3lL4IkE7YFSUfCH29nZsrfXb5RyFKpXinnI5UtCos7RTnjfOsevsoW0feKEkjPrU7OE/T6+kbZlGpPNJ+sJ+bfdBlr33P7IVLUjX9fPQEguXKzekM+Lbb+m/b5yLHDjUkvjwIfz7r6zgd5Ebz27w3sr3mNF8BkWymvezeB5JIgquXoV27WDBAihb1r5Fjh6V6YC1a8HGC7YQggFrBxAwfhJDbxQl+5EzcupmnjxS2E+aBK+/Dq+9FneNEgX2YW/EQAmDRChhoB+6iIIjp6BMcen9n5h+X8KzQJg/wT7vAGMqIhG6pA927pe91dXcEPaNibEofi4/vU75GU2oW6QaS1tPNBEHMZGR/P5iQ55ek/UYDUZ/TvWPrbSEHTwOr76kjw9DAhwRBw77FHzzjRzPe+GCY0N3zGBMKwBs67YtecXBnTtyoND770O+fMm2jSSiQNNkKuCzz2DGDJAvMvbx6BHksCNlFRWF8PHh253f8l6Zdyg4d6mMNkyaZFYAKlFgP6pdUZGs6CIKwiNkpf93v5k/3rw+NKtv3wtZdLR8V//NOJOndaspqFXFPaIApCgQQr67T0TxrIUtFiR6+/nRctqYuJ/PluG/cPfEWfP3OHYaaraFTTt13769BYlOmRd9+SXs3++yKIAUVpD48KF84X34MNm2YFYUCCFTAX//bZ8oWLMGhg2TdUH2iII7d6BCBbSNGxn+5nAK5i3Fo7ebcb1iMejeXdonJ0CJAveghIFCd3RLH/ing2XTYegA0+cvxf7BblJH2h3bg7c39O4Ejd6Me0o3UXD6vKwDcKFK3ia/TodqLc06ORprDsyJg6JvVo2LEhiizLgiGnm5PKybBw1quWX7tsSBs46GeHtDoUKyVbVfP7h0yaV9JhQHDec3JCrGjf+m1njxRTlA6UUnf3dcxKwoOHIE3nhDvnjby6VLsj3R3sh0jhzQqJG0NZ4+HQIDmXF7NcVe+5clMwab+DooUeA+lDCIRdO0/pqmnQEOJPdeUjO6iIIbt+Hb8fJdRsVykDHBu8Hrt+GVpvDncvvXi4qS75q7to2rK9C1+2DvEfjqJ91nEZjQvpkc8mShQNAoDgBihOmshjojBpHnJelD/+DMBTZ/9ZP5e9SpJn9Ouw/COddeYM1hSRw4LQoSEhwsaw3OnbN9rg2M4uDXhr/i6+1r+4I0hllRAPL/RsGC9r3zN05L/OgjORbZVh3Qgwdw/rxsRZ0wQZ7/ySfQqBGfBtTng9f78fap4XGtjEoUuBdVY5AIVWPgPLpFChavhhG/wE4zHQgAS9dB07r2VdFHRUHdjnIccv9ugJtaEqOiZI1BMiOEQNM0Lj65SqFM+eJqDu6fOc+0aq2IiYgEoMuauRSvZ2bYjcEA1VtJQTZ1jFv2mLDmoHuf7lysetE1UWAkYS2GlboMRxBC8P2u7+n8UmfP1hycOQMdO8ohQeX095uwhEVRIIT9tSchIVC3LgwcCJ062XdNp07SBvroUXkfTZNCoU8fGDECUbs2A9YOYNKhSfze8Hf++fIfJQqcQBUfOokSBs6hiyhI6E8QFi4tgY08C5LFcfXfcGzN6GgYOwPqVIdXX0oVPgUWuXMfPv4aRn4MZUtaPC0iOoLS0xpQIVdpk4LEfb/PYcP/RgGQKX8e+h5aQ0D2rEkXuPsAcmR1q9AxGAy8N+Bz5oql+BbyZUevHa6JgoSMGgWHDsHSpS63jz4KfcRr02X1u0cLEm/ckP4An3wiUyUewKIoWL9evov/6y/IlMn2QtHR0m+ge3f7bZIfPoT792XXwokT8MsvkCuXiSARQtBvVT+2LdrGzZU3lShwAlV8qPAYuoiCyEho3gNm/SW/Dkj0gj1lHnT7GAKD7F/TYJDh/U8+cJ8oiIiQqY3Nu11fyxbZs8hx0g+fWD0tnU86pjf5LknNQZV+XSleV0YJgm7fY81HwzH7xiBvLikKzl2C73/XdaaCkdDoMC5Vv4ZvIR+iZkUx+9vZ+i1eubLMhevQXZEjfY7kKUgsVEi+GCe3KAD5O5Q7txxSZIu7d+X5v/5qWxSEhMCHH8Ljx3IqYrly0vTo1Ck5jMlgMPk3DAsL49y4c0oUeAAlDBQuYU4UhEaFsemKgy+UPj6yAK5UMfPHP/kAti+GzHa8Y4HYFEKHuFoEt0UKQsNlR4I58yC9SZcONi6AN16zeaq5gkTNy4uW03/AP1sWfPzTUdjWOvuOwt+rITBYp29AEhwZQpPFPTl+/z+2dVlArwY6D15q2lQ68mmatE52kcTdCneCHCi+c5bwcLh4UX50M1ZFAUD9+jBnjm2hNX++NGS6acau3BzXr8tBSFeuyDQCyJTCwoXw/fcm0R5VU+BZlDBQOI2lSMHkIwtovPg9Fp5ZZXsRIeDSVflH4LtPoebrpsen/ym9DLy8LIsGc8QY4PWX4YWS7k0fZMsCY0eYnc7oNq7ehJP/2TzNKA4O3D7O2UeymDBzgby0mzee9/ev5PUPulh3TuzWDvatkI6OOhEvCs6yocNsahR6xX1TGY8ehdKlYbMdQ7VsYBQHb5V6ixzp9bWPNsuZM1CqlPzoRqyKgtmzoUeP+EJCW7RsKSMFBQtaPy8yUq75wguyWDQyEipUgAED5OdlysjOhFiUKPA8ShgonMJa+mDQaz3oUr4VnVcNsS0Opv8JVVrCPTP92lFRMH8prHbwD7sQsjDxxy/ZkSPEvTUF5y/LnLwn6fmJLM60g4bFanKl73ZezlOOaEM0EdERlKj/BjnLlLDvXunSwYNH0LKn/F5dILEoqFZA+j64bWTzyy9L6+TatXVZrnCWwvzW9Df8vP04eOuge9MKpUrBtm3yo5uwGSnw84PMmW0XcZ4+LVMImTLJ+RW26NpVTkU03qNqVVlTMHcuHDxocqoSBcmDKj5MhCo+tI09NQUxhhh6rv2CeaeXM7/5L7xTrrn5xULDYMtuaG5hlG54BPj52l9EZhwp/HEvdpRP7/5Cw6bdIGN6WDxZ/7Utcekq5M1t3g3SCt1Xf8qDsMdJHBIBAm/eIXNBCw57z4KgY38Y9Qk42WliSRQkRI/BSxY5eTK2/bWiy0sZhIFXp73K0/Cnye+Q6CQ2RYG9CAHVqkl3xmV2DqFaskQKguBgWbtQv758/uFDWWsQixIF+qOKDxVuwd5CQ28vb2Y2HU2X8q248Phq0hOWrIFrt6RFcWJRcO0WvNVN+hn4p3Ossjw8Agrk5bB23zPdB5O+g2//5561LVGiqBQFDor6TuWbJylIjAoLZ/3/RjGhXF3uHDtt/sIsmWDdH1IUGAyy6twB7BEF4MbIAcDHH8PQobos5aV5sbzjcsCNBYn37smuhHv3dF/apigYPVo6StqDpskX+okTrZ9nMMCmTfLzdu2geXNZkzBgAIwcKZ9XoiDFoISBwm4c7T7w9vJm1ltjGP7GhwBce3ZLHoiIkJMSZy82f2F4OBiEDGM7SuZM7Pi6PbVOj/JMS2LRgmBvWF5Plm+AV99yyG3RXEHiwanz2f/7HGIipStilBlnxTiEgO5DYIj9o47tFQVG3CYO/vxTFrXphNvtk+/elS/Qd+/quqxdkQI/P9u/ezExMGaM7CwoWNDsCGUTVq+WdQOnTsmonqbJCEP37rIOJAFKFCQ/Shgo7MLZlkQvTf4X23XjIKWm1pc1B+nSyQ6D4QNNT46Oli90ZUrId6i5HSjyio6GTgM4tmSO53wKjpyCL3+U6RBPU7IoNKhp1iLZGgnFwawTS6jSryt5X5YGOg//u8TmYRZcEUH+Ma9Xw24vCUdFgRG3iIPcuWW+/M4daZ2sQ7W/URzkSJ+DJ+HWW0gdpmJF2canQ+rDiN3pgyFDYPhw64udPSuFQaKaAIs0by7PvXlTFh2uXy//Dnz+uYkJkhIFKQNVY5AIVWOQFD18CmIMMYya8D6VZm8nYsZo3n7t7aQnfTIKzl+B5TMc70F//JTH7XvQtvw5fKq95hnzouUbYOSvcGSdy0Y6nub0g/O8kLMkXpoXD85eYFq1VnEzFDqvmk2JBnb8Qb5z32KbprOiICFuqTnYtw86d5YvTCUtm0Q5gtFtMjw6nEehjyiQuYAu6+qJXaLg88+lb0L//vYt+vSpyewCs3z/vfSVaNxYfn3rFrz3HmzfLtsxE/g0KFHgflSNgUIX9LI59vbyZtgrvSmSPg/vrR9qvlvhrXrQurFTxjQ7gs9RqMlFz4kCgFaN4NiG5BMFIaEw529peuQg5XOVxkvzYs3FbXxwdhy1vx0Sd2x5n88IfWTjHfDsxVCpsdluEj1EAbgpclC1qny3W7KkzHvrgPFFduC6gdScXVOftMK5c7KoT4fZD3aJAiFktM5Wa+LatbJeIybGtiiIiZFC7Phx2LtXFhsWKCAnLq5bp0RBCkYJA4VFdJt98PgpCIF3zSpU+HcnbSu15sd904g2xBaxXbkh/zDVrgbdzUQSrGEwcLtbH74Y/57nbY51emFxmpAw+Gi4HHrkJL7ePqy9vJ3vc/9LsXrVAQi+c5/VA4aZd0U00qYJ/DQsSbpHL1FgxC3iwNdXpp5atYKxY11fL5Yva8mCPV1qDvz9oXx5+dEF7E4faJpsGfzoI+sL3r4t7ZptERIi2xyXLZPuhq1aQZMm0u7Yx0fOUohFiYKUhxIGCrPoJgoiIqB2ezktkfhuha2d5uPj5UPkvXtQtYW0PHaCPcc3c3/nNqpnLOlZURAZCXkry4FPyUXuHHB1L7Sw0OppB3E1Bzf2sbSlwD97FgDOLtvAyYUrLF+YJRN0aSNfUPYfheho3UWBEbeIAx8feOUVKFvW9bVi0bUgsUgRmDFDfnQSu0XBoEHw99/WFzMWufbqJc+15m3w99/SpOj2bXle+vSwapUUCwdMh9cqUZAyUcJAkQTdRAHIAqOhA+Dd1nFPeXt5k80/Cw9DH1NxZVd2fdUOOrdxeOkd1/fTYOsQPv2uGt8O+8uzA5GiY2D4IHjZc5PvzJI9q4y2REY6vYRRHGwIPMKtXuXjnl835FuCbZk33bkPDd8lfPo8t4gCI24RByNGyHexIF/EdCChOPj7jI0XW2tERclCSQe6ThJityiIipItkSEhlhcLCYHq1aVZFNhO9dWqBR98IK2OBw2CoCB4/XWZVjAaG6FEQUpGCQOFCbqJgvAIWL9dft6xBZQokuR4tl0nqJKvIrVD5rLwxjaHlt9xbR/7e3ejre8LrHh7muenJKYPgAHdoXRxz943MUJAvXdg1G8uLdOwWE3WtJvBoMGjKP/2WwDkKFWUyJBQ6xfmy03o6uk0yrDebaLAiNtaGSdPhhdflAY7OlA4S2EO9znMkGqybsPoGeEQJ0/KFsCTJx2+1CHzIl9f2cbZrZvlcwICZKvhazZma+zYAc+eQZ48MGwYXLoEK1dCjRqyC8TPL+5UJQpSNj7JvQFFykHXSMG8f+Cz0XBmq5zWl+T4Urw//Y6Zp6XdcedV8o+oRYfEBOy4vp/3ZvVi92lvsn/Um3TJMTp57xHw9YFX7Rwr6y40Dbq2heKFXV6qblE59th/9GCOZHvEuz9NIyCddXfF4MgQmlz7jeMP/2PXSyOoeCkK3FiUbxQHANOnTwdwvVuhY0fZypjAYMdVsgVkA2DZ2WV8uvlTNnfZ7JhDYokSsve/hGMeGXaLAiGkuVC7dlCnjuUowI0bskhw1CjrNw4NlT/HHj3kyOWsWaX1caVKsHOnSa2EEgUpH9WumIjntV1RV1EA8g/PuUtQ1kJLmBBw9gKUKx1nn7zw7Couf7CNApnyWlzWZCBSs98IyJhM/0Yte0phsGRq8tzfjey+cYgGf3WjbpFqZu2TjSSpKRg8A4JCYM0cXUYeW8Nt9slbtshugPSO2U1b4vqz69SeUxvA7fbJDkUKgoPl0KMBA6B1a/PnLFokZx+cPg1Fi9rewLlzsqagWjUZgRg9WkYkEqBEQfJib7timhEGmqYVBb4C6gJ5gdvAfOA7IYTdCdjnURjoJgqEgG/GSxMcSyN9l2+AXDmgxqsmT8cYYjh45wRVC1SyuPyO6/tpurgnP5/OS/fv/iDAltuaO4mKgqeB8ntJCew5DGcuQK+Ouiy38couWv7zQZw48BFeeCf4I2+20PBZkBRL6QN02YMtdBcHjx/LF8CRI2HwYD22CDgpDh48gMWLoX17yGUm4pYIp2YfCGFdwIWGSrvjrl0tn3PokBzJPG6cLOgUQlpP//KLdJts1y7BckoUJDfPo49BWeT38z5QHvgY+AD4Pjk3ldLRNVIQGQl7D8NpC73XQsCsv2DukiSHvL28qVqgEkIIPtv2YxKfA2OkoGVABT7Y8JSAA47nXnXF1zfliAKA7XthzmKH5ydYIqFDYtefujDltWac/mctYKUlMUsmKQpu3JZmVfaO63US3WsOsmeHPXtkwZyOJCxI7Lumr30X3bwpxcnNmzZPdUgUGAzQty8cO2ZZFFy4ANeuyaiJNVEAcPmy9Ck4eRJ275Zrjh4tv1aiINWSZiIG5tA07ROgrxDCYoWYpmnpgISx0kzAzechYqCrKIiKki+WMTHWW5kiI+UcBH/z4WmDMPDems9NpjKapA/aTiUgNEq+CCUX+47A2BkwZTRky5J8+0hIZKT8+escwl++fiHH2wwHgyB9rux02/8Pbbd+Yr3QcNte6DcUNiyAwu6P6rglrXDoEBw5AjoOcrr+7Dq+Xr7ky2RhiqUTOBwpuHdPdmL89BPUq2f+nMaNZZvxNisFwUFBcswySLHRtausJejTRxYeJkCJgpTD8xgxMEcW4LGNc74AniV42JboaQBdRcHGHVC5Kdy+Z14UBAXLsb0XrsjKZAuiAORsBeNUxs6rhjB859g4UbAmvCkBETHJKwoAIqPkjILMGZN3Hwnx85OiwAkXRGu0bNSRF1o0BCD0wWOGd2hju/ugTjU4vsEjogDc1K2wfDnMnevwJElrFM5SmHyZ8nEv+B7N/mzmsgmSU+mDPHmk6LEkCgDmzYNZsywff/hQmi/Nni2/9vKCadPkzIOQEJOolRIFqZM0Kww0TSsBfAhMsXHqaKSAMD4KunlryY7uhYZlSkLjNyGPharuJ4Fw+67dPdlGE6QGRWvw7Z6JlM1enFWvjcDv42/jWyCTk1pVYOUs65GR5GD9dihcFW7e0W1JTdNoOv5r/LJKMZbv4BNmZeptuyXRz0/WHHT+SBaZuhndxcE338hCRB/9G7ciYiI48+CMdROkCxegfn350QwOiwIh5Cjly5ctW3hPniznH+TKBcWKWV4rRw4YOBAqVJB73LNHph3GjJGzEWL3okRB6iXFCwNN00ZqmiZsPF5NdE1+YD3wtxBihrX1hRARQohA4wMIcuO3k+zoKgouX5eTBYsUkPa45l4oo6PlO8cdS6Bc6aTHLbD75iF23jhI6ezF2NJxHv4lisOpzdC2qfP71YtHT5LfDtkc1V6B8SMhq84psGwBHH47XvQd+3IiT+/ds32dtxfceWB2noI70FUceHnJFrsbN2Q738WLuu3TLodEHx/5Am1GmDgVKbhzRxYDWpq9cPOmLBpct87yGvfvw65d8oV/yBAZfXj0SP58jH4LShSkCVJ8jYGmaTkBWw3GV4UQ4bHn5we2AfuB7kIIh/6Cp+WuBF1FQUwMvNIUqlaWuXZzTP8T/lwBa+dCgP1eA0lqCg6c4nAhby6G3KbDC285v2e9KF5DznQYPii5d+J24goN751hzLZyPNh8CICH1XLz86ZtFlsZ40hY+W6rCl4ndK05ePxYTmMcO1ba/OqIsVvB28ubU31P2f5Z4qQoMBIRIZ1ILfHggfUOiEGDYMUKKQ6yZ5dRgqgoWLBAticqUZDisbfGIMUbHAkhHgJ2veXQNK0AUhQcBno4KgrSMrqnD7y9YcZPFsfuAvBiWaj7wDVREBQOzbpz7d0KdCp0BIMw2GWC5FYmjoKiKTTjFBQMYyZB+2ZQ0TW7ZpPug45zqNCpIJMqNyH8yTNy7r3PmZUbqNSmhfVFNE0Kgg+HQ8F88Hk/l/ZkD7qaIGXPLicKgnwRFMLEwc8VjJGDA7cOJBUFMTEyX58hQ1wkzumWxLFjoUsX8y/6//0nUwg//WS7LfKHH+JNkby85CyHcuWge/e4U5QoSBuk+FSCvcRGCrYDN4D/Abk0TcuraZplt5znBF1FQWgYTP5DhtJffQkKmPnxPguSf5CqVoavBtq9dBJR4OsvZwHsXELLMTPiChLNjmz2JE3qwAulkncPlgjwl7UGF6+6tIy5lsRM+XLT+Of4ivOtg0dz/upZ25a/mgaF8pl3wHQTutccCCEnBPbvr8v+jBTOUph25dohhGDs3rHxaYXjxyFLFvkRFyIFN2/KvP/u3eaPnzkjuwnCw80fDw2VEZMLF2S0oWRJKRCePpX+BSanKlGQVkjxqQR70TStOzDb3DEhhN3xtrSWStA9UrBuG3QdBHuWQykzBUoGA9TtAJUqwNgRdi9rVhQ8eAQ5s8eFKI0OifNOL+fPFmOTJ61w5jzsOyptiN1QmKYLLobsrU1JFEKwqG0fzq/dhpevL1u7ZSX9m+WtOiQmwVZIW0d0TSssXizz6m++qd8GY3ka/pTKU+XPeVu3bRQRmWHzZqhfn8kXFzmfPgA5vyCLlbZaay3Gd+9Cs2bw3Xdw6pRMJ3h7yzUzZYorZFSiIHXw3LUrCiHmCCE0c4/k3ltyobsoAPlu+cxW86IA5B+Kj3tDp1Z2L2lWFBgM0OI9GBgvLozdCv0rd6ZEVtdnAzjFv4fh89EpryMhIZomIztOdCfYGp2saRrNfh9FsdrV6LNnGV8M+ZGt1/bSZll/+4YFTf8TarWT+/MAukYO2reXokAIOHtWv00CWf2zmhYkaoHw9tuuiYL582U6wpwo+OwzGUkA8/+Xo6LktXnzwsGD0kL566/lICWj0FCiIM2SZiIGepFWIga6i4JvxkG+PND7HcvnXLkBxQo5tKxZUWBky7/SQKhyBbPXRkRHsOfWEeoUqebQPV3GaOaUkqn9NpQoCjN/svsSW6LAEontk61GDk6fh1Wb4dMPLLfNuQFdIwfTpsl3zpcuQT79zIogviAxa0gM3wS/RreYf+hSxwlRcPMmlC4t6wA6dTI9JoQcipQ5s2w7NEefPrKDYevWeOGwa5ecnzBhQtxzShSkLp67WQl6kRaEgVsGIg35VhaPDe5t/pxL16BSY5j9i90thRZFgcFg14vGb4f+YNCWUXEOiYoE7D4IubJDGfum8zkrCoxsvLKLDssHsqHDbF7PX9G+ix49gRzZHLqPK+gmDsLDpcfBW+5JZV1/dp0RvzRn9rcn+Pm3dxjSf4Hj6QOQ4qBAAdO0kr2i9uBB2aI5fTrUqiXdDBOlzpQoSH08d6kEhUR3URAULP+w/PIVfNzL8nnFC8suhWZWHNUSYDVS8M146D7Ypu9/v8rver4gsXVvWLDMM/dyhTde85goiImMJMvay+x5ZQKv56+IQRhspxUOHofSb8L+ow7dyxV0Syv4+8eLglWrpD2wjqw5v4Y5XicYvPpDGrT9lOvPrju2wP79UgAULGgqCh4+hBdflC2H5hAC/v5bCvPXXoMOHaBsWfjxR/j9d5NTlShI2yhhkIbQXRTsOwJlasPxM/IPjLl3LVFR8o+8pskWOTuKyqyKAoDypaFSeZsFdMaaA4+JAyGkmZMH3+W6xIRZsGaL1VNcFQVPLl9nYsVGrB/yLXuGj0cIwYCNI23XHFQqDyMGwcuutVQ6iq41B48eyTZAa/bBDhLXfVB1ID83GUfv1X2sOyQm5ulT6UY4blzSY5kyQdOmUMnCBNOjR6FjR1i/XhoWeXnBpEmwYYMcvBSLEgVpHyUM0ghuKTR8sSz07wYvlLR8zuzF0KAT3H1g15I2RQHA22/BwJ52rZdQHBy7p29BWBI0DcaNhMa13XsfvdjyLxy3/DNxVRQAZCmcH5/Y2Rc39x3lv5WbaFW6ge2CRB8f+Og9KSSv3YJwOwoXdUI3cZAjBxw+DB99pMu+TFoSSw7Aq1Urlr/2C2DFITExWbPK9sMEL+SANGpKlw5+/RUKWyjcrVxZti/u3SvTBz/8IJ+vWTNO8CtR8HygagwSkRprDHQXBXcfyBYmcx4FiYmJgf3HoPorNk+1KQoOHIM/l8P3n8nxvQ5gEAY0NDRN41bQXQpkcoN9xZNnEBEpZ0J4wMHPZay0LeohCoycW72ZRe0+ACBH6eL0O7KWzTf22leQGBYO5epCl7bwzRCn9+AMuhYk7twpnQPbtnXq8iQ+BZcvw8cfw9ixXM/pS+05tYHYVsasRcwvcvu2LIZM/G++dCn06iVHLZsTBfPmyXRIv1jzqZAQWVx55YqMHsTWFihRkPpRNQbPCW6JFAwcIachWhONp87Jh7e3PqIA4OpNuWY6x53lvDQvNE1j/+1jlJhS1z1phYUroMybNmsfUgyaJvPFid6N6ykKAEq/VY/C1eW4kkfnL3N0zhIaFqvJirZT2HptL5OOLLB8cYA/TP/Rev2Km9A1rTBnjkwpOPF/w6x5UYkSsHIllCgR55CYOV1m7gbfNb9IVBS88QZ88UXSY3XqwIgRUMhCx9DJkzLy8eWXcP68dFucPl3OTVCi4LlERQwSkZoiBm4RBQB37suK8QpWvOE79IMHj2HLQpvvnu0SBUZcNOdJaIKke7fCrbvw3yWoV0O/Nd2JEFC+HnRrB5/Jd4N6iwIjN/YeYVad9gBkzJuLD09vwS9Deo7dO8OLucrg7WWH78PjpzIiY81m2w3oEjkID5ci2cE2VouOhkLEGw/FPmcQBrw0L6JiongY+pB8mRK1Sm7aBEWKyDZFkN4DEREy5WGOsDAICJD3unsXXn9dXrNypUwfxKJEQdpBRQzSOG4RBXP+ll0I+XJbFwUg2xLnj9dHFISFw/iZ8qOLIXq3FiQWyJt6RAHIn+XQD6FhLcB9ogCgULXKlG3ZUN7n7gP2/TYHgJfzlMPby5tt1/by9rIBlmsOhIA2vU0MrTyFLpEDf38pCv77D7p2lS/INrBqc3z0qFzvaHzXhpcm/1z/b+P/qDGrRnzNQXS0/NigQbwoAPjf/6QhU0xM0pufOgXFi8t6guhomYI4dUpaPr/8ctxpShQ8nyhhkApxiyi4eQc+/Q5WW69iZ+YiuHFb1gDkz2P1VLsjBXsOyxbF2xbCpA6SUBx88+/vRMZE6rIu42fKOojUROfWUKmCW0WBkXrfDEGLNb7595ephDx4FHcs2hDD6kvbLBckahr8/BX8Olz3fdmDbmmFZ89kAd8D68W4NmcfFCkCs2fLj4kYUl3WYsQVJPbtC++/n/QmQ4fKYkNzzoYlSsiJiGvWyELDs2elm+GoUbJ7ASUKnmdUKiERKT2V4Lb0AcgUgrUwblAwVG4KH/WAD3tYXcqh9AHIwr5sVvzcnSDGEMOT8GfkTJ+daEM0Pl4uzDYQAirUl9/7+53126S7iYoifN5iPrj3F0vTXXObKDCyqv8wjsxcBECVAd1Nhi7Z7ZAYFg4PH0Oh/G7bpyV0SSvYSIe5NDo5FqNDIsCBgIHkDMguWycBLl+WEYAAMwW816/LupOiReXX27ZB797Sr2D16rjTlChIm6hUQhrELaLg+BkZKYiOtp3bzZQRDqyCAd2tnuaQKNh9UIY6dRYFICMHOdNn52l4IK/Nae1aWkHT4PQW6POufhv0AMGGCIKGjiLPoYtuFwUAtb/8EJ8Af7z9fOPaGI0kLEj8YIOVyECPIdBlYLIUeeoSOdA0aSZUv74s6kuA3aLgyRNpNvTkidnDxoJEgEllnsWLAoNBToE0F0EA+OADmerYtUv+fOvUgX//hblz405RokCRQsfDKRLjtkjB2YsyPB4RaXlaoBAw6Q94p6Ucg2wFh0TBtVvQ8F2Y8aNDQ5ccJZNfBirmfoHOq2QI1qWCxNTQphhLcGQITf7uxX8f+7Ky8xy3iwKATPnz0HrWz+SvVIGsRQsmOd6wWE1Wt5tOgUxW0lBffgjeXsn2szaKA4Dp06cDOB45yJhRPhLk9x2KFFy5Ioc2HT4M2cwbahU+cY3T5xrg3/t/AETFROHr7QsLFpiPFgDMnClHOdeqBdWqwdq1cmJkLEoUKEBFDFIFbhEFBoP82LEFbFkEGdJbPvfGHfh2POzcb3VJh9MHRQrAziXSMdGN6FKQuGAZvNEm/ueWwklYUxAnCjz0Drxc68ZmRYGRekWrUzZHCYIjQxi289ekNQcvloVypeWL6vXbbt6teVyOHPj7w/LlstJfCCbvn+hY+qBiRVmvUNHK3IkbNwg4fwnN3591F9bR7stSXHt0Wdoel0xgShYWJgsRAwNliqFxYzlcyWCQx2JRokBhRNUYJCKl1Ri4RRRER0P7vlC/JvTrat81j59ajRY4LApcbEt0BmMr459nVnHh/c0UyVLA/ot37INNO2HUp+7boE4kKTTMXBpqtoURH0Prxsm9vTj23jpC3YVdLNccfPw1bN4NR9dZjma5GZdrDgwGLjV4laleR4kc4nxNgUVif49uXD9F1jIvMbFBVt7546ipCdLx49IKeeBAOVGxTx9pd5zgd1CJgucDVWPgIJqm9dc07QxwILn3YsRt6QNNg4rloVQx6+cJAdP/lMVgeooCgF+nw1vdPJpHNkYONnec65goAHizauoUBQUqy9qQ5g2SpZgvMiSUnWMmcWXb3iTHqhWoHFdzYLZbYUA3mDI62UQBuB45mHx4KrM4SpmqbzkmCq5cgXfekR8TI4SsCQgJiXthL1S4AiHL/2ZBjczx3QpCyEfFinJE9KVLslPhfzL1oESBwhIqYpCIlBIxcJsoCA2z32741DkZPl86HepWN3uKU6IAYMMOOPkf/M9CkZQHGPXvREpkK2xfzcHxM1C4gFuKJPXCEy2JjvDk8nVm1etI8J375H25HH32LEczM047YbfCyrZTk5ohCQG379ln0e0mnIkcmK0pMJoW2eLCBdmGOHkylCpleuzMGfliv3o1NGoE585J/wJNi+tWKJ6tOJtv1pUdCpMmgZ9f/PTEl16SXQgoUfC8oSIGqRi3iYILV6BsbRkWt4cKZeDcDv1FAUCjN5NVFAghuPjkmv01B/XekQZQKRSboiAiAtZtg/uPzC/gBrIWLUimvLkAuHvsDKcWrzZ7nrFboXbhKuYdEn+eCjVaQ3CIO7drFUcjB2ZFwdCh0KmTfVGyUqVg8+akogCgXDkZSWjYUM5HePnluAmPxm6FmS1myrHL6dPLNX74IXYCanslChQ2UcIgheFWn4KC+aBHB7C1ZkwM/PGPrEXIk9PsKS6Jgr/XwLHTDmxcfzRNc6wgcdMC2ZWRArErUhAaDm36wOZdHtuX5uVF/QTpl60jfiXagiNgw2I1+aRKbwDWXtpumlbo3AbGfw0ZM7h1v7awVxxY7D545RXpROgKz57JosGCBeULff78MgrQqVPcKYXD/CiStQiP325G58pXCSucH77/Hu7fjztHiQKFNZQwSEG4TRQIAfceyoE1Xw+2/Qd2z2Ho9yUcO2P2sEuiQAgYMxH+WefAN+AeEncrbLqy2/LJlSpA7LvflITd6YNsWWT0x8Pipni9GhSPtZF+eu0mR2b9ZfX8O8H3abdsgGnNQb7cEGu3TEioO7drE1viwGpLYtu2coKhMaVgjaNH5ajjBJbIgLz+rbfk57duyY/NmsW3J16+LCME06cTduMKe56donzbu9zctRZyS58SJQoUtlDCIIXg1kjB1PnwShM5GMkear4OZ7bCqy8lOeSSKAD5R/HAKvisr+1zPYBRHPxY+1NqFLQwJfLJMxg5Fi5f9+zmbOBwTUHh/MniDVD/u/iowYmFK6yemy9jbpa3nWy+IHHcDKjaUk4STEYsiQO7fQomT4bata2Lg4IFpZ1xwURtnwMGwIcfwtWrsiXx70TprWLF4OefYcECCtR6i31FvgVNo9a2Llx7ek2JAoVdqOLDRCRH8aFbRQFIQbB2G3RpY/28yEhYsxVaNTL7AuKyKADZ4RDgxHUe4tSD85x9dJG3yzaNf/LydWjUGRZMgNdfTra9JcSpQsNrt6DXJzB+pPQJ8CBTXmvGvZP/ATD48r9ksjFnw6x98qlzcOiEnP+QjJ0KRhIWJNYYVIN/s/5rn0/B3r2wYYMcc+zgNMYEN4f586FdO1lH8OyZHOBUpYo8fu6cFBAff8z16uWlfbKAQqsLcXjfYSUKnlNU8WEqwa2i4PY9+W43RzbbogBg5SboMgguXk1ySBdRcOsuFHwdtu5x/FoPMfP4YjquGGRac1C8MFzYmbpFAch6kRzZICravRs0Q5nm9eM+P7fGxqAu4gsSn4Q/IzQ6XD5ZoQx0fztFiAKIjxxU//AV/s36LxWCK9jXklitGowcKUWBpTdmz57JAUfPnsmvo6OllfHx49KUyMtLfp0+1pjshx+gRQv44gu4dg3KlIGNG6FJEwpnKcy6Duvw3+evRIHCLpQwSEbcHinoOxQ69rf//HZvwanNSfwNdBEFINskhw6wXfyYjPxc9wv3jGzWCZdaEv3TwaKJULGc+zZogbItGsR9/t/KTXZd07BYTf7tvJhs/lm4HXRPphWEgC/GSH+NFMDUYwvZk+Mw5QNLcernU7xvaUaBOf76S45KNuemeemSrB24dEl+ffs2nD4tvQteeEHaHidk5EgYNw4mTJBRg+DguEOhoaH07dSX66uvK1GgsAslDJIJc6IgNCqM99cP407wfdsL2MOEb2DM5/ada2xjS2Rlq5soAFkAN6QPZMnk/BpuJnFB4qIzq2WEo3IT6f6YjOjiU/AsCK7e1H9zNshbsRxZYg2Wru7cT6SdRYSaphFjiKHBX91kzUFMJERGyUcyM/nIAvptHMHAV7tz/NvVjpsgFSgg/QfMdWq8+KIUAy/GiujCheXchMqV5YCkN96Qzy9cCOfPS5+Cd96REYVffpFzGlCFhgrnUDUGifBEjYGlSMHVpzd5Y0EHMvllZOs788iX0ca0Q0vcuQ/Zs8iqZnsICoYyteGrj6BvvEWyrqLg+BnYuFNOZkzBNQZGYgwxfLjpazqVa8EbTzPC3CUw6hP5rjsZ0M286KufYfFqOLdd1/3Zw+EZi0CDMm/VI6ODHR52j2z2EAlFwdh6X6Jpmj4jm83x+LGcsliihOnzUVFSKOTIAVmywLx50vI4FiUKFIlRNQYpFGvpg6JZC7LtnQUERQZTd2EX5yMHXQZC14/tPz9DepjwtbTNjUVXUQCy9XHeUvBzstjKw3h7eTOp0Te8UehVosuXZNfARqlfFAB0bwdzf9Vvcw7wSq+OvNKzo8OiAExHNrdZ1p+IoGfw+xwZAfEw5kQBuGCfvGQJjBhh+ty1a9Crl/y4aJFMHwwaBFOmxJ/j6ytHJjdsCJs2ycmJsShRoHAFJQw8iD01BaWyFzURB8GRTri9jR0BnzrQDujlJesLCuYD3CAKALq1k8Nw7LGDTWEs2Dab937vlCw1B7rbHJcoClWT1yrZWYziYNeNgxw/tx++Hgs77XTx1AlLosCIU+Lgxg3ZUZCw1iA8XNYUhIdDt26ykNDLS34dHi47Ds6flxGCoUPluQMHAkoUKFxHpRIS4a5UgqOFhhceX2X1xa18/Pp79t/k4WM57MiMH71FfpoiUw+/DgfcJAruPoCc2VJMNbmjGEaNJ/D3aeT4OIr5zX+xb7aCDrhl9sGVG7BkDfTtkuxOgs7yOOwp2QOyIp4GEpXJHz9vP4/c15YoSIhDaQVHJ42eOgVNmsj0Qt26sHRp3O+WEgUKa6hUQgrCme6DUtmLxomCJf+ts51WEALa9pGOhY6QNbNsYcNNogBk7/w7A/RZKxnw6t6eTMvnebRbwW0Dka7fgrEz4PEzfdZzEEN0NFe27WXd4G/Y/u14p9bIHpAVgE+PTKLNkr5EHjuh4w7N44goAAcjB5omf383b4aTJ02PrVkD3bvL+oHISPlchQpw8aJsT3zwIO55JQoUeqEiBonQO2LgaktiaFQYZac3JINvetsFidv2QqYMZh0LbeE2UQBw9BSER0K11BnCNhJjiKHn2i/I4BfAxIZfu+0+KW1Kop5EhoTyU4HXiA6PIGO+3Ay+tNvsxEV72HhlFxuH9GLUZoF2Yz/psmTTebcSR0VBQuyOHMTEQPny0u74l19kd0GdOnJE8pIl0rBo71747TdZe2A0MjIYwMtLiQKFXdgbMVDCIBF6CgO9fAouPL5KnYXvut6tkJCngdIquV9Xdjw57T5RkBZYvgEiIqFDc2IMMWiahpfmxb2Qh+TJYH7IlLOkZVFgZGHbPpxfsxWAnjuXUNAF46jtB1czfP4nZKlenSVtJ+nereCKKDBitzi4exfy5JERhHv34I8/pIlRnjxyANLhwzJ68OiRNDQaMgRQkQKF/ahUQjKjp3lR4oLEJGmFRSvh7Q/iQ432cOQU/DCZvWd3uVcUHDwu6xhSswDdsANWSVMeby9vvDQvjt49TbHJtXVNK3hEFISGQa22sHGH/mvbSdnmjpsdWaL2a80YNmgam2/sY9yhOS7uzBQ9RAE4kFbIm1eKgsBAKQb694+vPcidW9YVnD8P774L1eUodCUKFO5ACQM34A5HQ6M4KJqlAD6JZ9ZnTA8F8kqTE3upW52dB6ZQf9en7o0UnDgLs/5KluE9ujH5e5g/weSpl3KXpX3ZprrVHHgsUuCfDl4oBVk8MwfEHKXfqhuXPji3arPL6zW85sPViw34+LUeLq9lRC9RYMRucfDHH1CkCNy5Az/9JAVC06ZSJBw4IP0K5s6FatWUKFC4DZVKSISrqQS32xzHcivoLl6al9NphR3X9tF0SW+VPnABY83BvNPLXepWeB7SB4mZXe8drv97EID+xzeQs0wJG1dY4Z+1MHkerJnDvodnGH9oLnPe+sHptILeoiAhNtMKN29KT4LSpaW7YefO8ZMWo6Ph4EGoXFmJAoVT2JtKSJ39YykUT4kCgC6r/sedkAfsjX6brA3ry/50O9n/7yrKtvyYbv+ryC9KFNimQz+o/goM7GnytNE+GWDYzl9pXboh/g6+GCWLKHj4WH7Mmd3997JA2Rb144TB+bXbXBMGbZvKBxAcFcryC5tosyzYKYdEd4oCiI8cAEyfPh3AVBwULAg9ekivggsX5Nf+/rLgcPp0qFhRiQKF21GpBJ3wpCgAmNp4FNFBQfDljzzdstXu63Zc30/nDV+w9c0C/NJzsvtFQb8vYegP7r2Hu3mxLBQuYPaQURz823kx/j7piDHE2L1sskUKWrwHI5LH/dBIwdcrxX0eeOuu6wsKAQ8fU79oDVOHxGgzcwgs4G5RYMRmWuHGDfj6axgzBj7+GC5flnbIY8YQGhGhRIHC7ShhEIumaf01TTsDHHD0Wk+LApA1B2u7/0mlETl5M3qhXfbJxpbEouVeodWiDQTk0qG7wRYvlYWyJd1/H3cy7CNo3djiYW8vb/JmzEVQRDBvzO9gV81BsqYPfh0OH3b33P3MoVn43FlGT4TXmoEQJvbJvdYNtetyT4kCI1bFwcOHMG0azJolLZBLlYIbN1SkQOExVCohFiHERGCiscbA3uuSQxQYKZWlEBu7/EmDRd04fPcUzUrWtXhunE9B/kqsMbTE71ko5PRACuGDLu6/h7u5fB3y5JQzJayQ3jeAMtmL03mVbCOzVHOQ7DUFKcESOUFpky4vwq0bQcUXZF+/tzcNi9VkZdup5EpvO13iaVFgxGJa4eWXYedO6NgROnWCmzcJzZFDiQKFx1DCwAWSUxQQFQXFa1Bq5k/812cj/j7pEEIQGBFMFn/TscYJzYtWVfoSv4pNYdVsaOCBPy5nL0Ch/KnWfpfoaChXF6b9AF3bWj01Yc2BJXGQ7KIAYPdBKXZsfD/uJHOBvNT6YgBCCArpYXz1Qin5SECDYnI0cXh0BD/um8ZnVfskqTlILlFgxKI4KF8+zgVRRQoUnkYJAydJVlEAEBUN73eGAvniCt5G753MvNMrTEyQEjsa+vv6w439kDmj+/cYHgGVmsCMn6Bza/ffzx1oGqyfB6WL23V6QnHQZdX/eC3fi5TMVhRIIaIA5PjrTTuTVRhkKZyfOiMG6bvotAXwykuQ6Hfx+P2zjN43hf13jpsUJCa3KDBiVhxcuQKbNxPVrh3NHj1SokDhUVS7YiLsaVdMdlFggcQOiecfX0leR8PoaDh4AooXlqH454gYWOEb7QAAQQ5JREFUQwxbr+2Ne9eaYkRBWqZkTRj4HnyY1M9g45VdtPznA+oWqcbS1hOZdWJJihAFCUnYyngkf35evn2b9Xny8HZwsBIFCl1QlshOYksYBAUF0bBhg+QXBXfuy8fL5UymKRrFgbfmzYPQx9Qo+IqpKDj5H3z/G0z4BnLlSJ69pyYePIL5y+CdlpA3l1NLjNk7hTkn/+F28H0lCpIRozgokbUwpx9eSFGiwIhRHKye/RefZMrExOho5mzYoESBQheUJbKbOHLkCPv27eeTj3slb6Rg9WaokTQ8Xyp7UX5481NuBN4mZ0C2pJECgwGCQiDa/rY6pzl/GX6YBCGh7r+Xu7hzH8ZMlALBCYIighl7cDbnHl9hyOs9U4Yo2H1Q2iIHBiXbFgzR0UQEBRMZHEKMI1beLtCwWE16V+zA6YcX+OiVbilOFIBMK4z9aSiG3Dn4KkaJAkXyoISBg9SoUYNOnTox4tvxLFm6Lvk20qIhnNyUxGp4x/X99NkwjOoFX+HEe2sI8PXHJCpUsRysngP5PNCqeOEK/Dbb/fdxJy+9APeOSi8DBwmODKHp370IjQqjafE3+ebf3z0ystkmmTPKQr0YQ7Jt4fqew4zJ9TKjc1Zk69fjXF8wKgrqdIBNuyyeMvnIAn47/AcDX+3OuPrD2Hptr0M+B54gNDSMFm3fJyQknPXrlShQJA9KGDiIj48Pc+fOpUOHDnTsMij5xEGenFCyqIkwSFhouKnDXLIGZObw3VPUmN/e1OdACM8MNXqrHtw8aLPNLy2SsKZgY8c5rGw3jS7lW9F51RDWXUq+AUaAFDtTx0C2LMm3B73//xkMspbFQvdL4kLDh2GPafnPBw6bILmT0NAwmrXuzYFDJ1VNgSJZUcLACVKEOIiKgs9Hw74jQNLuA2P6ILNfRq4H3o6fyvjfRchQBvYe8fyeUyMHj0PNtnDvod2XmCs0NHYrjKr1MTUKJnM6wWCQ309oWLJtIWEUS5dofrp0MPMnMNP6aK77IFf6HCxtM9Eph0R3oESBIiWhhIGTJLs48PGBbXvg5h2LogCSjmy+m0mD8V9DsULu3+P3v0Pnj9x/H3eSOSOUL2336da6D7y9vPmiWl8yp8vEhcdX+ee/9e7YsW2eBkKRqnKcdIpAB2UQEyPrQKKiTJ621pKY0CExOcWBEgWKlIYSBi6QrOJA02D/Kna8ntNmS2JCcdBm6+eIXh09U2PwcrkkpjOpjjIlYMpou9otHWlJnHZsEe1XfJQ8NQdZMsE/U5PXAVFv58Nzl6BQFdhzOO4pe3wKjOLgTvB9nkUEu74PB1GiQJESUQZHLmIUBwAduwxiEdCuTROP3HvH9f28Pb8n9fNVZJENnwKjOAiMDEY7dwn+PQQ9O7p3g03rykdqRgi4+wAyZbDq3uioT8GY2p/wIPSxTftkt+DtLes/khGTglg9hEGxwrDwd6hcAXDMvKhhsZrUL1oDL82LB6GPyOyX0emRzY6gRIEipaIiBjqQHJGDHdf302JRTy78Gs2ShzXsMi8qlb0or+StQNSOvQR+OYo7D2+4fZ9cuQHHTrv/Pu4iMhKKVYdlGyye4ox5kbHmwFiQ6NHIwcWrslskOdtITWoMdBAGAf5y0FWmjE45GnppXhiEgcZ/veeRtIISBYqUjBIGOuFJcWCsKXi98Cv4T/kJ3/YtHbr+Tqs3eHFoZuou62XXVEaX+Hw0fPKde+/hTtKlg2XToW51s4ddcTQ0ioPeFTuQIyCrThu2gxNn4etx4OPtuXsm4s7xM3Gfp8+ZzbXF7j6AAV/Brbsu2Rx7aV6Mqf2J22sOlChQpHSU82Ei7LFEtkZ0dDTdunXjr7/+YtG8cbqnFawVGjrChcdXqbegExn8M5nMVtCdqzcha2b5SGPobXNsEAb23z7mGRMkg8HEMdPTzHyzHTf3HwPgw9ObyV6iqPOL7TsCvT5l1u8d6LnvB5cdDTdd2U2Lf96Ps0/WM62gRIEiOVHOh8mEOyMHFkXB6s3w7ocO9YaX2nWeyz9GERUSRN2FXXgW7iYXvKIFU78o+GctbN5t8pQ7Zh/MPbmUN+Z39ExaIRlFQVRoGCH3pZNk7vKlXRMFAFUrM/mPHrqIApBTGVe2ncqO6wfYffOw7QvsRIkCRWpBFR+6AXcUJFqNFKRLJ//Qh4bZbyZUoQw+/XuwoVUtFt3eSeZ0bpy2OPQHOZ2w+9vuu4c7mfanNJOq796BSF0rtGbH9QPuL0is00H+W3Rr5571beCbPoAPz2zl3omzhD1+5tpioWHMPLCAfvvG6Dr7oEGxN7jSdxu50udACEGMiMHHy/k/l0oUKFITShi4CT3Fgc30QYOa8uEIJYrA5/0oAXxZVFZyr7m4jcp5y+ufVggKSVYzHZdZPy+uct6dUxITjmx2mzgwGKD6K1C4gL7rOoimaeStWM7ldbaMHU7n75dxaf47fKfz7INc6eWQsa93T+Dg3ZNOpxWUKFCkNlSNQSJcrTFIjKs1Bw7VFGzcAVHR9reihYTCxLnQ6x3CMwdQdlpDAnz93VtzkIrx1OjkGEMMPdd+gaZpzH7rB7fcIy0w+cgCRi4dwRif2nQfMd1tA5ESj2x2RBwoUaBISaixy06itzAA58WBw4WGnQZAQIC0hrWHew+hchOYNgbeqhc3sjmTX0b9xcGz2BqGLJn0W9NTzFhE1Nad1G362O2iwEiMQU6/9Pby5lHYE3IEuFi5b+TmHYiIAFfz+k4SExWFt6+vy+u40n3gDM6IAyUKFCkNVXyYgnCmINGp7oMpo2HGj/ZvLE9OOL8jLsKQ2D5Zt1bGqCjpBfDHEn3W8zBhmf1ZEnzcY6IApCDw9vLm1IPzFJtcW7+CxCnzoEk3fdZygiWdBzKjZlt2/zSFqLBwp9YwioJlN15j7Ik8HhmdnNA++Yd902yer0SBIjWjagw8hCM1B063JGaOfTd+5BQ8fAQN37R9TYb0EB0Nuw9C7Wpx4uD99cMwCJ3G8vr6wvzxTo0uTm6CI0NoErmI47WDPSYKEvJCjhK0Kd1Iv5qDj3pCu7d02JnjRIaEcnHDDqLDI3h6/RbVB/d2eI2EkYKWoQFoj5/qv1ELNCxWk+2dFlAx9wtWz1OiQJHaUcIgFk3T+gP9cWMUxR5xoItPwa/T4Mkz+4QBwOLV0OtTOLsNihSgVPaibO00H4AHoY+INsS4nlZIhdbIxpqCU3fOsLXBOF7NW9Hje9C9IDF3DvlIBi5t2kV0uDQNKtOsPl7ejhksJUkf1Hd/pCAxVfK/DMDxe2f55cBMpjf5ziStoESBIi2gUgmxCCEmCiHKAa+78z7W0gp6mRcx8Tvp1mcv7ZvBnmVQJGmletfVn+iTVnj8FL4dLy2SUwEJCw335B/Iq1X7wB03u0RaIKF98ifbxhAa5WSHR3gEfPy1HL2dDPy3YmPc5y+0aujQtSaiIF97tHlLZYdFMvEg7DF/n1tn4pCoRIEiraCEQTJgThxsv7ZPH1EAssDPzw8uXYN12+zZELxcXhokJQrNTqg/XJ+aAz9fmLEQLlx2fg0Pkbj74IWGrWDpNMieNdn2ZBQHe7v8TXrfAOfSPPcfwfa98YWgHiQmMpJza7cCkC5LJoq9WdXua5NECtZvhx8nyxRYMlG/aA1Wtp0aZ5/8JPCZEgWKNIPqSkiEO7oSLGHsVli0dRG+fX2oWeQ110VBQgZ8BQeOwb4V9jndffY9bNub5HzduhWE0GeSnhvxVEuiK4RGhdHs7970frmDZ6cyusClTbuY37wHAC92aEGbub/adZ3F7oOgYMjkRlMuO9l0ZTctlrxP5tsZCfkjXIkCRYpGdSWkAoyRg/Z12xO5MYruPm30EwUAoz+DLQvtt7/t0AJGfpzkxdtYkBgSFcq/rljEahoEBoGT1ejuxqIoiIyE6X/ChSvJu8FY0nn7UThzfsenMibjm4CzKzfFfV7WzjRCElFgMMDO/fJgChAFADXyvEKZw8UJ3BSiRIEizaCEQTLj4+PDvLnzeKfIO3Tr9qm+UxkzZZSPh4/h1+m2XxgqV5BFgpqWJH9bKntRzvbaQLuyslgyODLE8f2EhEL5ejBzkePXuhmrkQJNg0Ffw6ETybfBBDg9srnrx9DzE/duzgzCYODcKikMfPzTUbJhLZvXmI0UrNkKDd9NthqJxBhrCi5uus7GWRuVKFCkGVRXQgrAHbMVTNh9EMbNkEWGBfPZPr/fl5A5I4z5wuTpDH5yDsPYA7OYdvwvx9MKGdLDT8OgVhVHdu92bKYPfH0h+L8UlQZJ3K1QMXdZyuUsZf2i1o08sLOkXNm2l+C7DwAo0aAmfjbmeVhMHzSvD7v+gbIl3b1lm6hCQ0VaRkUMUgjunMpIq0ZwarN9ogDgpbJQwbLnQLOSdZ0vSOzYAvLncewaN2J3TUEKEgVGjOJgRdsptkUBQJsm8uFhgu7exy9TBgAqvN3M6rkWRcGjJ/Lf4DXPt4wmRokCRVpHCYMUhFvFQeZMcpDRoJFw47b1cz/oAp1by8/NtIS57JC4Yx806SodEZMRhwoNB46AsTM8tzk78fbypllJ6REx/dgiy2mFh4/lLI1kqO+o+G5rPjqzlTojB1OurWVhYlEU3HsIZWrDkjWe2bAVlChQPA8oYZDCcKs4CA2T7WpnL9h3/g+T4N0PzdYmJBQHI3aNd2wfubLLVMUTi0Wxbsfh7oPs2VJMwZs5hBDsuXXUcs3B7oPQoicEBnt+c0CGXDmo9Xk/i6ZGVmcf5MoO3wyBBrZrE9yJEgWK5wXVrpgIT7YrWsPVqYxWFpa+BfawYiNcvAof97LY2XD16U1yZ8hBet8AhBAe8a13ldTQkugMxqmM804vZ37zX0xbGQ0GuHYLihZMcWkRq6LgaSBkTb7fQyNKFCjSAqpdMZXjtsiBj4+MAAz7CabOt35uy4YwpI8UBRZc5opmLUh63wBOPzhP7T87OZZW2LYXNu92YPOu47QoiIxMYv6U0kjcrbD64tb4g15eUKyQx0RBRGAQW4b/QuijJ1bPsyoKzl6A0rXk/5NkRIkCxfOGEgYpGLeJA02TL3QRkfadP38ZNHjXak2An7cfl55ed6zm4LdZMNdzExddihSM+BXefNt9m9MJozgY+cZHVCtQKf7AoJHwz1qP7ePfX6az+8fJTChXl3Nrtpg9x+bo5OKF4fP+UC35IjpKFCieR1QqIREpJZWQELelFYxEREA6K/PlD52Av1fLPK+V8xx2SHwWJGsNPPAu1uX0walzclZCg9T1wnD92W0O3z1F6x83QbVXoFdHt98z6PY9JpSvR3RYOF6+vgw4voFsxQubnGNTFDx5BtmyuH2v1lCiQJHWUKmENIRbCxKXroNKTeDBI8vnvPoS/DBUigIrg2sSFiS2WPI+NkVnlkxSFFy66taBOLrUFFQok+pEAcDkowtot3wAC4fU8ogoANj27XiiY7sfXnv/XcdFwaadUOZNOJ98czWUKFA8zyhhkEpwmzh4rSK0e8u+d2db/oUqLWRBmAWM4mBc/WH2FSKevwwVGsDarbbPdQLdCg0Dg2DaArhuo9UzhTGq1mD+l60e3ZYPdsw+2UkenL3Asdj0ULrMGan1eT+T4zZFAUCVSjDsIyhVzO37NYcSBYrnHSUMUhFuEQeF8ssUgY+PfOceE2P53JJF4ZUXbYb+S2UvSo2CrxBtiOazbT9arzkoXRwW/g719f/jq2v3QYwBBn8LJ8/qt0EP4G0QjPn6IIvPlqHzqiH8eXqlW++3edhPiNjoT43/vU/6nNnjjtkUBQaDTCFkzgQfvZcs3RNKFCgUShikOtwWOXgaCG+0hfGzLJ9TpABMGS1TAHaE/u8GP2DBmRW2CxJbNQL/dLoO+dG9JTFbFnh6Ct6qp88GPYW3N9rymTT/ZiLvvdSO9L4BbrvVtd0HOb9GRn4yFchD1QHd447ZFSmYOh9eaZosY6FBiQKFwkiaFAaapqXTNO2YpmlC07SXk3s/euMWcZA1M8z6Gfp0sn3uibNQuQmcu2T1tIKZ89nvkDhzETTrros4cJtPgb3+DymJWBth72JFmN7ke1qVboAQgkN3Tup6GyEEm4aOifu6zleD8E0vRYhdogCgZSOZQsiSSde92YMSBQpFPGlSGAA/AqkrGewgbhEHTepAxgxw+551f4FihWQeOKvtuoTE9slPwp+ZP7FoIaj8oss2yW41L5r0h3SCTC0YDNBjCOw/avL0wjOrqPJHW11rDs4uW8+tA8cByFWuFBW7tAHsFAVh4XLyZv488F4H3fZkL0oUKBSmpMK3QNbRNK0J0BBoC3h+YowHcdtUxp+mSGFwdJ35d8mZMsLU2HeHwSEQ4A8WrG4hXhzMPbWULOksvBusV0M+XMDtjoZ5ckLxIvqu6U4ePZFzMaKiTZ7u8MJbbLyym86rhgCYOiQ6SUxkFOlzZiP04RPqf/cpXt7e9kcKvvoZdh+Af5dZ/X/kDpQoUCiSkqZ8DDRNywMcBloBD4ErQCUhxDEr16QDEjbnZwJupiQfA1vo7nMQFi6LwGxNQYyIgOqtoXVjGQK2k81X/6VCztLkzZjL9EB0tEwpvFxeRiQcIK3aHLsLq/bJThIRGMSpxWuo3LMDU47+aZ8oAJmSOn3e45MflShQPG88dz4GmvzLMweYIoQ45MClXwDPEjxu6r8796J7WiHAX4qC4BD4+GvLVsDp0sGHPaC99VG6CYmMieT99cOos7Azd4MfmB708oJZf8GBYw5t12OiQAg5b+CJhXRISkIIqz4ACe2Tl57bYNtzwg7SZc7EK7062i8KHj6WDpxlSihRoFCkIFK8MNA0bWRsEaG1x6vAh0BmYLSDtxgNZEnwKKjvd+AZ3FJzcO8hrNsO56wYzXR/W7YcRkXJF00b+Hn7sb79bIIig5OKAy8v2PqXFBt24tFIQWQkvFBHmkKldE7+By81lNM0LWAUB3+2GIumaTwNd33apd3pAyGgfT/o9ZnL93QUJQoUCuuk+FSCpmk5gZw2TrsKLAKaAwm/IW8gBlgghOhm5/1SnCWyI+ieVoiKAl9f+YdcCItTFvlwOOzYB0fW2lW9n9A+eds7803TCkLA8g1Q83VI0AefmGRJH2zbC+VLQ+4c7r+XK4RHwJbd0q3Rz8/m6ecfX6HqH+2Y2HCk3WmF+6fPs+2bcTQdO4JM+fPYLwqM7Dks21QrV7DrfnqgRIHiecbeVEKKFwb2omlaYWTEwEh+YAPQDtgvhLArRZDahQG4abbCJ6MgPBJ++8b88as34dZdqPGq3UteeHyV7ms+ZX7zXyiWtVD8gSfP5Dvz4YOgX1ez16qaAn1xtObAEB3NjFrtuHPkFP5ZMxPw6zsMvD7VPlFw9JSsI/GwgZESBYrnHXuFQZrpShBCXE/4taZpwbGfXrJXFKQV3NKtUKFskup2E4oWlA8hYPs+qFPN5pKlshdld+e/4sLY4dERMnKQLQscXC1dGc2QrKJg3xHYdQA++cBz93SUi1fhxynw7f9kJ4UdGNMKgF3dCv/+Mo07R04BEJUtHV9ensrAqnaIguu3odbbMOk7iG1p9ARKFCgU9pPiawwUzqF7zUG3dvFDeC5ft3zehh3QpIs0QbID44tIjzWfUWdh53gTJKMo2HtEdj/EkuyRglPn5RhqNw59cpnb9+DEGTm50gESFiQO2jyKoIhgs+fdP32e7aN+k194aUyp94AB9ogCgML5YeUs6Oh6F4S9KFGgUDhGmkkl6EVaSCUkRPe0wu6D0KgzbFkIVc28KAshxzS/VtGhZc2ObL59D8rUhvEj4b0OyS8KnhNiDDFcD7xNsayFEEKYvNgboqOZ+ebb3D4snRN314DyX9ghCsLCYdseaFrX3ds3QYkChSKe565dUWEe3SMH1V+BmT/B6y+bPx5rwQvI6v37VsY5JyCxQ+Kd4PuyZXLbX9D9bSUK7OVpoN0/c0t4e3lTLGshwqMjaLakt4lD4p6xM+JEwYOcUH5IZ/siBQtXwLsfSbHnIZQoUCicQwmD5wBdxYGXF3RsIT/uPyoLycwRGCQ9EOb9Y/fSRnEQHBnC5qv/yidffYng6DB6/v4ux++dSRmioFZbmDIvefdgiflLocybEBrm8lK+Xj7kCshO51VDWHhmFQ/OXmD7t+MBMGiQ7vOmjG0ywr7x2j3aw/6Vtk2zdEKJAoXCedJM8aHCOroXJAohrWyzZ4VFE5Mez5wJ9ix3+IWgVPainOm1nkzpZH78QcgjPpzSk/lfneLyb4Mpk9yiAOSExTIlk3sX5unQHEoXg/SuT1FMWJDYZflgvltaiJhIOcsisnUFfu4/3rYo2Llf1mPUrib9LjyAEgUKhWuoGoNEpLUag8ToWnPw6Il8AQrwt37ejn2ylbFTK4eWn3BoDp9v/xkvTeNwlr6U6dJTui0qPEqMIYYPR3Yjz4/75NcFs/DVyX/xtfXvDtD1Y3j6DFbM9Eh7ohIFCoVlVI2Bwiy6phVyZJOi4Not6PyRTB+YY+k6WLzaoZHKwZEh/HFyOeHREeQMyE6Wjm9LUfDMwj08yZNn8K8jrtseYtl6GDlWl9HVCfH28qZ8y0b81R4M2QPoPX+6faIAYNZPMH+8EgUKRSpCCYPnEN0LEoNDZAvjYwszBH76Ev6ebPeLg7HQ8PyTKyxqOY5oEU2dhZ15uH8vlHxDtjAmJ+u2Qb2O8vtOSdy6Cxcu6/4iPPnIAgZs+pqGXbsz7NJBdma6YX1ksxAw7Ec5GMnHR6aV3IwSBQqFfihh8JyiqzgoX1qOzC1aUHoOxMSYHvfzk7bK5y5B8x4yBWGBxN0H7V94K65b4X93/4HP+0O5Us7vVQ+a1IETG22nUDzNgO6w4Dddl0xsc+wb4M/Wa3vjChLN8iwINu6CMxd03YsllChQKPRFFR8+x+hakKhp8p1imz5QtiT88pW5G0JEpKyYz5EtyWFLLYmlshdl57sLyRmQDdLFvvuMiQFvb+f26irZsshHSuLCFWkK5a9fDcZvS8cxdenvDOzWzaQlcVrj74gxGCw7JGbNDP8ulWLQzShRoFDoj4oYPOfoGjnQNHinFbRubP54iSKwcYF8AYuIMMmF2/IpKJ61MJnTZeLC46v0HdOW6HJ14MoN5/fqKr9Ohz+XJ9/9E9PpQ+g7VLflJh2cx/FPf+ftJVBtxh3CE4yaTuiQ2HnVEFac3yQPXLkBLXvCnftKFCgUqRgVMVDoGzno3Fp+FAL2HYVqZtoLIyOh4buy7e/Tvg6bF23xu82SQhHUiQnCM13xZjh1Trr5pRT+/C1pCsdJJh9ZwPxvv6ZR7ISR+6fO4ZMoEmEUB4Uy56NK/pflk4FB8meSzvY0R1dRokChcB+qXTERab1d0Rq6tjIuXQedB8Kx9eb713+fA9VfJbhCMYcdDc3aJyt0YfKRBXz15wgGTPNGi4wBTaPH5oUUtjY102DgbtB99t87ScvSDdy+RyUKFArnUO2KCofRNa3QujFs+tOyqc2A7gRXKEbTRe/x7L/TDjkaGh0SC19+wq1q9TE8eer8Pl0hJka3d+lOExwioy+HTri81OQjC+i/fgR9t+SWogCoMqCbdVEAMPwXHrfpSpul/ax3K+iAEgUKhftRwkBhgm7iQNPA+IIyb6kcvpQAY/qg8V8nODTHj2pZyji0fKnsRZny7kSK5iuJV3Coc3t0hcvXIdfLye9n8OgpZExvtpjTEYzdB5/cfBWfs3LCZfYSRaj39RDbF9d4lbJt3qVLhdbWuxVcRIkChcIzqBoDRRJ0rTkwGGSR3ktl4Y3XANNCw19/mILfbSBjBoeXLlbhNdi4FIMw8PWucfSt9C55M+Zybp+OUigffDUQihT0zP0sUaQALJ3u0hJGUfBxzpZk+n4tMQCaRoupY/C1Zq189wHkzQVN6uAFzDTIKIPFbgUXUKJAofAcShgozKKbOPDygqXT4trogsODaLKkd1xNwWsFKkOF2HNXboLGb0rfAwd4cPwINQZOo2W31azoudAz4sDXFz7u5f77WOPaLWlqVK2y06ZGcT4FFbtQ6qsD3I+dhVD1ox4UiRVyZnn8FF57C4YOgL5dgfiCRB8vbwzC4NR+zKFEgULhWVQqIRZN0/prmnYGOJDce0kp6JZWCPAHTSN01x7uVqjO/QtmagouX5djeZdtcHj5PDkLUDOgJOkeB1FnYWfuBj9wbp+OcvEq/LPWM/cyx/yl0O592eXhBAnNi1oezML9U+cAyF2hjO0UQvasMPoLeLuZydPeXt7MaDqad8u3RAjB8XtnndqbESUKFArPo4RBLEKIiUKIcsDryb2XlIRe4iA4MoQuR3/mQK4o/ug0JWmhYfHCcHiNnA7oKAXzEbB7BTMH/kVQZDB1FnbmUZhld0XdWL8d3v8i+QoQv+gPu5Y4NVgqsaPh6327ULZFA7z9fGkz59ck7YlxxMTAvlhL6s6tIWd2i/dYem4Dlee0dLrmQIkChSJ5UMJAYRNXxYGxpmBT9CWKLfmTKmVqSBOcoGDTE40dDOu3y4FAjqBplAoP4My+l2iTqwpZ03mg1bRHe7h5IHkcGA0GmaYpUdThSxOLAk3TyJArB+3/mkSffSvIU8FKIej8ZdDgXbh+2+Z9WpVuEGeC5Kg4UKJAoUg+VI2Bwi6crTkwa15kMECrnlC+DMz6OelFi1dDVJRlB0VLGAxkPnWF7wb3By9vdt84RIlshd3nc5AhvXvWtYcO/aBCWRgxyKHLzIkCI5qmkbtcaesLdGkDpYpB4fw272WsOQDHChKVKFAokhdlcJSI59ngyB4cMUGy6mi49wjkzyOr6hMTESHnKjjzTjz2nXS0IZpy0xvj7eXtXhOkwd/I4VEfveee9S0x+Q8okA9a2G8olFgUXNu5n1wvlCJD7hy2L959ENIHQOUKts9NRIwhhp5rv+BB2GNWt5tuIkYSo0SBQuE+lMGRwi3Ym1awaXNcrbIUBaFh8kUuoUBNl06KghNnoVl3Oa3PXry84MkzfD4dw7oGYwmKDKbuwi7cCb7v+DdrDxkzQICVlj530berS6Ig8MYdFrXvy+RXm3J+3TbbC/w0BUaNd2qrxsjBP60nomkaQRHBZs9TokChSBkoYaBwGFviwKHZBzv3w1e/yOmAifFPJwVDeIRjGwwJhZWbKHErLG5ks9vEwTdDoPc7+q9rCYNBDnC6Y//3klgUIATLe39KxLMgQu4/4tQiO/L/iybCrF+c3ra3lzf+Pum48vQGJafWS1JzoESBQpFyUMJA4RSWxIGjA5FoXBvObjVvnVy6OKyZC3lyyuE89qa9CuaD05uh5utx9skZfdMTaOGdqksIIb0EPDVQ6fxl+P53uHbTrtPN1RTsnTCLqzv2AZC5YD6ajh9p/uLoaBjyrfRLCPCX45RdpHDm/DQp/qZJQaISBQpFykIVHyqcJnFB4mxDBNPCFzk0EAmAXDnkC+yn30HZktCzo+nxsHCo1Q66toUPe9i3pq+vjDT8Mo1S/bpyoNtSNE0jODKEkKgw8mTI6cB3aoVL16BCfVg9B+q/oc+a1ihbEq7tlfl+G5gTBfdO/sfW4bHv/DWNVjN+xN/SC/7dB7BxJzSrb74WxAkSFyRGRETyx+fLlChQKFIQShgoXCKhOOg2/RP866Vj67vzqFqgkuOLCWSoPDEB/rJnvl4Nx9Z79ASmzofKFdCa1AGg97ovOXb/LNvema+PQ2KxQrB4slNFeQ4TFg7eXnZ1Q5gTBdHhESztPpiYWHfDaoN6Uqx2NfMLCCEjL0fWSpGlI0ZxEB0TTe/VQ/E7mY7169YrUaBQpBBUKkHhMnFphQIdiJgYyc39dx1fRNPg52HQu5P8+uFj0+MDe0K50jK8femafWsWyAtnt0GsKAD4puagOBMkXRwSvb1lEWD2rK6vZYsZC+GFOrJrwwqWWhK3DP+Z+6fPA5DnxbLUHfmx+QW2/AutekmfCZ1FgZGI8EhuTbqH71w/1i9XokChSEkoYaDQBR8fH+bNnUfHeh1dH9m8frt8ATx/Oemx4b9Ao872FyRmSC/d+ib/AU+exdUc6CoO9h+FsTNcX8cWjd6EkUOsOh1aEgWXt+5h34TZAHin85PuhpbW8fGGLJllpMYNGGsKDh46xYY/NyhRoFCkMJQwUOiGbrMValWBkYOhZNGkxwb2hBk/xg1lsov7j+Cb8TJfDibiYOXFLc7tMSHHz8Csv8ynQfSkdHFpMGQBS6IgMjiE5b0/iTuv/qhPyF3ejJGRscDzzarwx1jpJaEzqtBQoUj5KIOjRCiDI9dxxATJJodOyDB98cKmzwsBS9dBy4b2vYA9fpok3P80PJCs/vLfOCI6gnQ+js8ciNuLk9MN7WbsDFnP0KqR2cPWHA0BTi5ayZqBI8hf+UW6rJmD5pXoPYHBAE27yfHYP37plm9BiQKFInlRBkeKZEO3yIHBAAOGwTfjkh777yJ0GyzTDvaQPat8AV+8Gp48A4gTBX+cXEal2S2c9zlwtygQAg4chTMXzB62JQoAXuzYgr4H19Bqxo9JRQFIY6gubWQHghtQokChSD2oiEEiVMRAP3SJHNy8A9mymK/Ev3jVfLrBEg8eydbCUZ+amBJdeHyVOgvfJZNfRuftk9v3hTIl4Nv/OX6tvZiJTNgjCmxy6RqUKKLTJpOiRIFCkTJQEQNFsqNL5KBgPikKbtyGXp9KC2UjRlGwdB2ssaNWIFcOOLw2iVNhwpoDpx0S61aH1yo6fp09nDnvsCgwxMRweese22sfOw0vNYTNu/XeNaBEgUKRGlHCQOFWdEsr3HsIR0/Bg0RtjELAkjWw2s4iwoL55Mct/8alFMBUHHy85TvH9/dBF4dmF9jN2QtQuWlc4aQRW5GCveNnMa9pV1b0/oyIQCuzJiqWkxMu61jwM3ABJQoUitSJSiUkQqUS3IMuaYXYyYlJpi9GRICfn/25/mdBUOZN+OQDGNLH5NClJ9fI5p+F7AFZHdtbeAQcOCZfaLNkcuxaa8TEwJbdULua/B6xLQruHj/D9DfaYoiKAk2jx+aFFK7xqum6Dx/LVExVO90pHUSJAoUi5aFSCYoUhS6RAy8vGSFo9wF8Njr++XTppCg4cExOYwwOsb5OlkywcwkM7p3kUIlsRcgekJXrz27z1t+97Pc5uHMfGr4Lew/b/e3Yhbc3NHzTblEQHR7B0h5DpCgAqg/unVQUAPw8Fd79yKZZkjMoUaBQpG6UMFB4DF3EgabB283Mh+3TB0invohI2+uULi7XOnpKtjImItIQyfH7Z+03QSpaUNoHO2rbbI2Vm6DrxxApvx97Cg03f/UTD2K7F/JWfIE6wweaX/ubIbB2rlWzJGdQokChSP0oYaDwKLqIg65tpQmSELAnwTv0CmVg2XTIkc2+aYehYdC8B8Q6AiakZDYHHRI1TVo262khHBMjXQj9/OwSBZc272b/b3MA6W7YevYvSd0N5y6RI679/GQXhY4oUaBQpA2UMFB4HN0KEldthnodZYFeQp4FQZUWMOdv69enD5Bjnb8cYPZwwoLERn/1INoQbX299dth4Aj792+L1o1h1s92iYKwx09Z0eezuK8bfP8ZucslcjeMiIDxM2HRSv32GIsSBQpF2kFNV4xF07T+QH+UWPIIiUc2LwLHCxKb14fNC+GFUqbPZ84I77aCN16zvUbFcvLj5euQNXMSd0SjODj3+DI+XjZ+XQKD4cqN+CJJV9h/FArmY/K9LTZFgRCC1R9+RdDtewAUr1eD1/t2SbpmunSwfTFkzODa3hKhRIFCkbZQXQmJUF0JnkU3++Q/l0Oh/FDzddPnIyLkrIRC+S1fGxkphza1bWrVDlgIwQ/7ptLtxTbOmSA5QpXmnMvrS9lqJ2yaF51YuIJlPYYA4J8tC30PrSFzgbzxJzx8DP8bJb+33Dl03aYSBQpF6kF1JShSBbqkFQwGmL8MVmxMemzQ19Cyp8zXW8LPD+b/Bl9ZKNSL5X7oI34/Ms+6CZIQ9tU32GDmT62oV862KAAo9mZVStR/A4DmE0eZigKAW3fh1Dld9pUQJQoUirSJihgkQkUMkgeXIwdh4XLioqaZugReuQF3H0A1O/v1Hz6W44bNWTBjh31y5SbQpA5896lj+0/A5MPz6bdppEM2x8Jg4PKWfynRINGLs/FnoUd6IwFKFCgUqQ8VMVCkKlyOHAT4yxfA/UehRmspBkBOJKxWWb5ArtgoP1oiMhKqtYLREy2ektg++UHoI9MTvvxQFg06ybS9c6jZaiSTtfoOzT7QvLySioJZf0GXgRAdrUSBQqGwG1V8qEgx6FKQmCcXlCwmhUJCdh+Ejv1h21+W3f78/GD8SHjlJau3MIqDsQdnkTVdoqhS26aO7TcBk48sYNi6USyrUpb3W31iVRQE332AT4A//tZcFrNnlRbQ9oylthMlChSKtI9KJSRCpRKSH90KEu89lB0KRpFw9kLSDgZLhIaBn69dL6oH75ygUKZ85M2YS05wXL0F2jWFTBnt3qojUxKFEMxv1p2H5y7TYvL3SSMFYeFJhZEOKFGgUKRuVCpBkWrRpSAxJgbe6gZDvo1/zigK5i+DI6csXxsWDq81g1izIKu3McTQbfUn8SZId+5Dvy/h/BW7t2oUBV+W7MDY+xXQbDg3Hp29mMtb/iXw5h1WfvAF0eEJbI0jIqBuB/hlmt33twclChSK5wclDBQpEpfFgbc3/DAUPu1r+nx0NEydL0c1WyLAHz7uLX0SbN3Gy5sVbafGOyQWyQaPTsArL9q1zYSRgm+jXkfrO9R0tHQinl2/zYbPvo/7utmk7/DxT+Bu6OcHndtA4iiCCyhRoFA8X6hUQiJUKiFloUtaISwc/lkHnVvLr4NDZNeBPYV90dFSZNg4N2G3wrZ35su0gg3Mpg8ePZGWzmYwphAub/kXgJe7taPl1DHxJ9y4bd2vwQmUKFAo0g4qlaBIE+iSVli9BT4aLlsXQTr/aRps3QOfjLLcqRAcAjXb2mUhbCxI9PPyxTBuOgwaafX8JKLAYJAHLIgCiE8hAGQqkIdGPwyNP/jvIShXT06Y1AklChSK5xMlDBQpHpfFwdtvwfENsnUxIXfvw3+XLE9jzJgBGtWGUsXsuk2p7EU5+t5K8ucrTnSWjNwPeWT2PLORgp+nQt2OFkVK4M07JimE5pO+xz9rgohWlZdh4ih41XpHhb0oUaBQPL+oVEIiVCoh5eJyWsFggK9+hjrVIdYpMM4AKKEpkg70WPMZ+24fS2KCZLH7YOse2TXRv5vZ9f7q0I//Yp0dX+7SlpbTf5AHQkJlCqFsSd32rkSBQpE2UakERZrD5ciBwSBffK9cj39O0+QY4uqt4OJV89c9eAStesGJs/bdRwi+KtmR6KAgE/tkqy2JdatbFAX/rdoUJwoy5M5Bwx8TpBDGTIJGnXWzO1aiQKFQKIMjRarCJRMkHx9YMjXeBTAiQk4czJ0TShQBX1/z1xlNhJ4F2XefB48pXvFtdk4fzmuBU6m7sAvdKrTmix0/mxcFa7dClsxQ41Wzy4U+fIJv+gCiQsNo9NMwArJliT/4eT9pwayDb4ESBQqFAlQqIQkqlZA6cDmt8Ncq+O43OYY44ajlsHBpbOTt7fzmhIBVm6FKJS74BvP63DY8jQi0bF70VjfIlwdm/GhxyadXb3Js/lLe/PJDef3hk5A3FyQemOQkShQoFGkfe1MJKmKgSJW4bJ/8+stypkFCS+HoaGj0LtSvCcMHJb3m/iMYMxFGfgyZrVgRaxq0aADA5iMbeBoRyEevdGNsvS+JNkTj650oMrF6jqwVsELWogWpPewj+YUQssuiaEFY8JvNb9UWShQoFIqEKGGgSLW4JA6KFYKvB8vP/7sYn0ro0g5etWBOFB4BKzdB+2aW5y0Y2XOYHevm0S/D6rhIwT/n1jNy9wQ2d/wj3ufAOPUwYwb79g1SeCybYf/5VlCiQKFQJEYVHypSNS4XJAYGyTbBn2MthHu/A5UqyBfs+4naDQvnh/+22RYFwL7F08g2d7VJ+qBi7hd4GhEYb58MUL+T2WmOh6YvZNPQH4gITFTXsHCFrHXInUM+XECJAoVCYQ4lDBSpHpfEQeZM8Odv8FEP0+eHfCtz/zExiW8GQcGyRsECk48soFqeLcyaZVpTkHBkc52FnbkbdB86NIMqlUyuD334mC3Df2bPr9P5vWIjwp/GpgLvP5LGSUvW2P/9WUCJAoVCYQmVSlCkCVxKK9SuJj/evCOL+lo2hD6doGkd80WIqzZD/2HwxmtJiv/iWhJfM19oaBQHdRa+S79NI1n6/qQky2/9ehzhT54BULxO9Xgjo9w54Mg6yJ/Hvu/LAkoUKBQKa6iIgSLN4HJaYcp8GPqDbGN8oRQ0qCWfP3Pe9LyOLeDUZsui4NXujK39OdobbWDx6iS3KZW9KNs7LWBWUA04f9nk2N3jZzgycxEAfhkzUH/UJxAVBRNmQWSkvKcLRkxKFCgUClsoYRCLpmn9NU07AxxI7r0onMclcTDyY9i2WHobGPlnLbzeAi5djX/Oy0u+QEdFwaVrgBnzIh8fqPm6xXf3JTMXIuvw3whctorW//TlTvB9hBCsG/wtInZuQq0v+pMpfx44cBy+Hgenz5tdy16UKFAoFPagfAwSoXwM0gYu+RwEBcPgb6VQyJ0DNu6Et+olPa//MNh9kMkzO9Nv89eWfQosERnJpQeXeHN5LzL5ZWRGxvfY3ONLALKXKELfI2vxMYoUK1MX7UGJAoVCoSyRFc81LkUOgkPh2Gk5jdHXN14UHDphOuTow+4sHtrQsih48ky2QlrCz48SBV5g2zsLCA4LYumnI+MONfxxKD7PguH3ObJDQokChULhIZQwUKRZnBYH+XLD/pWyuFAI+bh4FWq1gwRrTA7dT4crkxn4SjfG1vkiaaTg1+nQoqf5e9TpALG1BKWyF2VKdAcyP4gCoNAbr1K6aV0ZqfhpiowWOIkSBQqFwlFUV4IiTeN0t4KXlxQEA0dAtqzSDGntXKhVBYivKRhcsQs//3AG7epi6YGQkJ4dpRlSYgwG2QlRvAgAEUHBnB33Z9zhRqNjRUbn1tC8vqk7owMoUaBQKJxBRQwUaR6nIweaJh0RixaUX9euBl5eLP7rF/63WhYa/tx4OFqd6vK8xBQtCC+WTfq8lxeMGAR1ZJuk5uXF6/264Z81M+XaNiF/pgysHzVY+hwoUaBQKDyMKj5MhCo+TLu4PHgpMIgZxxfTrtlo/m1fiabTFlsvNAwKhrEzZNSgbMn45/cekV0NhfObnB7+NJDo8Ai06XO5O206rb8owsauC+Ltk+1EiQKFQmEOVXyoUCTCpYLEhSsIKVeLLzeMZs6opjT9bZ6pKLh0Fb4YI9MERry8YM7fcO2W6VoffAE/T0lyC/+smcmYNxcZvvof7PyHxyLE1D7ZDpQoUCgUrqKEgeK5wllxMCfXXUZUCqJTrW4MHDAezd9fdi08fCxPePAY/l4DV2/GX5QhPVz+Fxq9abrY9sXwef+kN/nvImzeDUCJYhVM7JPvhzxKen4ilChQKBR6oISB4rnDUXEw+cgCehz6ieiB3fm1wTC0i1elC2HjLvDteHlS1cpywFLxwrY3kC0L5M/DoekL2TzsR4Lu3JfPz14Mg7+R45+Jt0+umv9lMqfLaHVJJQoUCoVeqBqDRKgag+cHe2oOkjga3rkP5evBr8OhfGkoW0IOYjLy8DFERcuWR5AmSF5e8Ns38usJs+BZEDGf9WXCC3UJvHUXH/90DDq/kwy5ssO9h5DXfE3Bifv/kSt9dvJlzG3yvBIFCoXCHuytMVDtiornFlutjElEgaZJi+N546B+TfCPdSV8/FS2NmbPCm+0hYY1YUKsEHj9ZSkMjEREQkQkpxavIfDWXQBK1HydDLfuSJdFC6LAIAx0WfU/Ig1RbH1nXpw4UKJAoVDojYoYJEJFDJ4/zEUOzIqCxFy5AT7e0LwHVH8VJn0H/x6CMsUhZ3aL9xNCMOXVt7gfO/ugxzstKbxlN5zfGS82zHDh8VXqLHyXTH4Z2frOPLJ4ZVKiQKFQ2I29EQMlDBKhhMHzSUJx0OO3tsy4v9i6KBACqrSQbYjvtYcyJeLTBwl5GigHLb3yIgSHgMHA9ZPnmF2vIwAFq1ai56Y/4b9L5j0PEmEUBxl90pNjdTaO7zmnRIFCobALlUpQKBzAmFYQCGbsWEjTarWtD0TSNJj9i0wtZMsin4uIkB+Xb4Q1W+GPsbBuG/QYAo9PwtL18MEXHEnghvja283kPAY7RAHIgsS1rWdSbfLbXLt8h43rNipRoFAodEV1JSgUsfj4+PDH/9u7+yC76vqO4+9vNiEkNFmaRo1BhBIkpFQEfGipVStDdFBLKZRK7agTnUHAgQEkY5EOJh1A6oyMjECxyCCmoBmIgVokJoUCptpAIg/yMGbkMRGEyYPZmGzSJvn2j3PvyXWTzW507z333n2/Zu7svefhl29+u3vvZ3/nnN+59Vuc1XMWSz73EIsWL9n3DsccVYSC9RthxaPF7Zm/ejNMOBAmjC9uyzz7PfA/d8MB4+D9J7LtX6/mqbuXAnDgxAnMuuzLUDvXYDi2bu3nwjlXwL8ES28xFEgaeY4YSA3Gjh3LglsXMIYxw7+3wiVXwBPPwIWfhhNPKA4vnDq7WDd1yu7zDQ6dzhO/3sKO/m0AHPux0xj37ncUsyAOQ+OJhkvuXWIokNQUBgNpgP2+8dJVny9mPGz8gO/fBssfgT85Dr5yE5z1l7DkQR5fsKjc5ITP/P2wDyF49YGkVjEYSHuxX+GgftLh1n5Y8gBcdyt84nQ45wvwo8Vw22I47o/Y+s838NrWfgCmTTiQN/zil8MKBoYCSa3UdcEgIj4MXA4cC2wBHsrM06utSp1ov0cOrr4BblkI7zwOjpkJj/+guFrh5z8EYOJpH2Ru32ZWf3cJY++8Z1izJBoKJLVaV12uGBFnADcBXwDuBwJ4a2beuR9teLmifsOw78q4cVMx8+Fb/nBE/l1DgaSRNOouV4yIscC1wNzMvLlh1c8qKkldYtgjB7/fWzx27oT7fgQrH4eHVkDPmGLiogi4+GxY83JxK+Z93LLZUCCpKl0TDIATgEOAXRHxKDANeAy4JDOfGmyniBgPNE43N2mwbTV67ddhhYvmw6J7oXcSzDoSZr0FxgT0jIXv3w8P/LgIBoMwFEiqUjcFgyNqX+cBFwMvAJ8DHoyIozJzwyD7XQp8senVqeMNOxyc9wk48yPFpYtji1+x+y7/Cn0vrmXGyX/OrAs/zbhBRgsMBZKq1vbBICLmMfQH9zvZPVnTlZm5qLbvHGAtcCbw9UH2/RJwTcPrSbV9pD0MKxwcfSTULzZYtwFWP8czt9/F+rWv8OQd9zDr1Z/stW1DgaR20PbBALgO+M4Q27zA7kMAT9cXZub2iHgOGPT078zcDmyvvx50ClypZljhYOdOOOksePgxtgWs31Wc5DttSi/jJk7Yo01DgaR20fbBIDPXAeuG2i4iVlF8wM8ElteWjQMOB15sYokahYYMBz098IH3wozDePngXrih2Hb6iW/foy1DgaR20vbBYLgysy8ibgTmR8QaijAwt7b6juoqU7caMhxcdj4Ar167+yKZ6ae8/zfaMBRIajddEwxq5gI7gAXABGAFcFJmbqy0KnWtIcPBfz/Chn+6tnw5deYR5XNDgaR21FXBIDP/D7ik9pBaYp/h4D+Xs2HL1nLbKTMOAwwFktpXVwUDqSqDhoPPn8vGhd+D517igEkHMXHqFEOBpLZmMJBGyGDhYOv64kjW771+Kv392wwFktqawUAaQQPDwbd37mT7ps0AjD9ooqFAUtszGEgjrDEcfPyTF3PnhAPZ0b+N7/2qj4effclQIKmtGQykJmgMB6ctXMgfHzuLnxsKJHUAg4HUJPVw0NPTw7JlywwFkjpCZGbVNbSViJgMbNq0aROTJ0+uuhxJkkZEX18fvb29AL2Z2TfYdmMGWyFJkkYfg4EkSSoZDCRJUslgIEmSSgYDSZJUMhhIkqSSwUCSJJUMBpIkqWQwqImIz0bE08DDVdciSVJVnPlwgPrMh2vWrHHmQ0lS1+jr6+PQQw+FIWY+NBgMEBGHAGurrkOSpCZ5U2b+YrCVBoMBIiKA6cDmEWx2EkXYeNMItwvFoY93jXCbzW67We3az61ptxP7udO+f83sY7Cf60ZjP08CXs59fPh7d8UBap01aJL6bRRZA4DN+xq++S3b3jXSbTa77Sa2W39qPze33frTjunnTvv+NbOPa+3bz4zafh5yP08+7HzXd2Dbzay5Wezn1ujEvrCfm99us9tulk7sZw8ltEL9hEaGOOFDvxv7uTXs5+azj1vDft47RwxaYzswv/ZVzWM/t4b93Hz2cWvYz3vhiIEkSSo5YiBJkkoGA0mSVDIYSJKkksFAkiSVDAYViIgPR8SKiOiPiHUR8d2qa+pWETE+Ih6LiIyI46qup5tExOERcXNEPF/7WX42IuZHxAFV19bpIuK8Wr9ui4hVEfGeqmvqJhFxaUQ8EhGbI+K1iLgrImZWXVe7MBi0WEScASwAbgHeBrwbuL3Sorrbl4GXqy6iSx1N8R7yGeAY4CLgHOCqKovqdBHxUeCrwJXA8cAPgXsj4s1V1tVl3kcxSdCfArMpZgFeGhEHVVpVm/ByxRaKiLHAC8AXM/PmisvpehFxCnANcAbwFHB8Zj5WaVFdLiLmAudm5hFV19KpImIF8JPMPLdh2TPAXZl5aXWVda+IeB3wGvC+zHyo6nqq5ohBa50AHALsiohHI+KViLg3Io6purBuExFvAG4CPg5srbic0aQX2FB1EZ2qdhjm7cDSAauWAn/W+opGjd7aV392MRi0Wv2vqHnAFcBHgI3AgxExpaqiuk3tDpnfBG7MzJUVlzNqRMQM4Hzgxqpr6WBTgR7g1QHLXwWmtb6c7ld7v7gGWJ6ZT1ZdTzswGIyAiJhXO7ltX493sLu/r8zMRZm5CpgDJHBmZf+BDrEf/Xw+MBn4UsUld6T96OfGfaYDS4A7MvMb1VTeVQYe4429LNPIuA44Fvi7qgtpF952eWRcB3xniG1eoLgPNsDT9YWZuT0ingM8sWhow+3nf6Q4qWh7w21VAVZGxG2Z+cnmlNc1htvPQBkK/gv4MXB288oaFdYBO9lzdOD17DmKoN9RRHwNOBV4b2aurbqedmEwGAGZuY7iF3qfImIVxc06ZgLLa8vGAYcDLzaxxK6wH/18AUU4qJsO/AD4KLCiOdV1j+H2M0BEHEIRClYBczJzVzNr63aZ+b+194nZwOKGVbOBu6upqvvUDh98Dfhr4C8y8/mKS2orBoMWysy+iLgRmB8RayjCwNza6juqq6y7ZOZLja8j4te1p8/6V8HIqY0UPAC8BFwCvK4+QpOZv6yuso53DbAgIlayexTmzXjuxki6HvgY8FfA5oioj9Bsysz+6spqDwaD1psL7KCYy2ACxV+wJ2XmxkqrkvbfB4Aja4+BgSv23FzDkZkLI+IPgMuBNwJPAh/KTEcVR079UtAHBiyfQ3Hi8qjmPAaSJKnkVQmSJKlkMJAkSSWDgSRJKhkMJElSyWAgSZJKBgNJklQyGEiSpJLBQJIklQwGkiSpZDCQJEklg4EkSSoZDCS1RET8bUSsjogdEZG1x6aImNuwzd9ExJaG9Rsj4j+qrFsabbyJkqSWiojZwFJgOzA9MzcMWH8OcBlwAfDvmbmz9VVKo5cjBpJaKjOXAT8FxgOzG9dFxGHA6cC7MnOxoUBqPYOBpCpcX/t6fn1BREwDvgF8KjNfqaQqSR5KkNR6EXEQsBY4GDgeWAN8Gzg3M5+tsDRp1HPEQFLLZeYW4Ju1l5cCtwEXGQqk6jliIKkSEXEksBoI4OTMvK/ikiThiIGk6jwP1EcI3lZlIZJ2MxhIarmICODrwPdri86LCN+PpDbgL6KkKlwL3A9cSDFqMAM4pcqCJBUMBpJaKiKuAp7JzNuzOMlpj0sXJVXHkw8ltUxE/ANAZl7dsOxgiksXJwJHZ+bqaqqTBI4YSGqRiLgAOLgxFABk5q+Af6O4OuGzFZQmqYEjBpKaKiLeCMwDTqW4N8IebzoRcTKwDOgDjsjM9S0tUlLJEQNJTRERH4yI1RSHCc4GpgEr97LdIuCe2svJwJqIeCIijmpZsZJKjhhIkqSSIwaSJKlkMJAkSSWDgSRJKhkMJElSyWAgSZJKBgNJklQyGEiSpJLBQJIklQwGkiSpZDCQJEklg4EkSSoZDCRJUslgIEmSSv8Pqe0lvDRYKJ0AAAAASUVORK5CYII=\n", "text/plain": [ "Graphics object consisting of 36 graphics primitives" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for r0 in [-10, -8, -6, -4, -2, 0.5, 1.5, 2, 2.5, 3, 5, 7, 9]:\n", " graph += plot_const_r(r0)\n", "graph += plot_const_r(0, color='maroon', linestyle='--', thickness=2)\n", "\n", "for r0 in [-10, -8, -6, -4, -2, 0.5]:\n", " graph += plot_const_r_p(r0)\n", "graph += plot_const_r_p(0, color='maroon', linestyle='--', thickness=2)\n", "\n", "show(graph, figsize=10, axes=False, frame=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plots of hypersurfaces of constant $\\tilde{t}$" ] }, { "cell_type": "code", "execution_count": 74, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgYAAAKSCAYAAACpyBP1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXxd5f3H3+feG3e3pnGpt2mSxtq0pfhwxtDhMnQMNjb4IRuMARvuMNxlOLRQKmm0aZp607i7+/Xz++MkabzRCjzv16svyL33POe5kXs+5yufryTLMgKBQCAQCAQAqmO9AYFAIBAIBMcPQhgIBAKBQCAYQAgDgUAgEAgEAwhhIBAIBAKBYAAhDAQCgUAgEAwghIFAIBAIBIIBhDAQCAQCgUAwgOZYb+B4Q5IkCfAFOo/1XgQCgUAgmGEcgBp5HBMjIQxG4gtUHetNCAQCgUAwS8wBqsd6UgiDkXQCVFZW4ujoeKz3IhAIBALBjNDR0YG/vz8cISIuhEEfkiTdAtxCX92Fo6OjEAYCgUAg+NUhig/7kGX5RVmW5wOxx3ovAoFAIBAcK4QwEAgEAoFAMIAQBgKBQCAQCAYQwkAgEAgEAsEAQhgIBAKBQCAYQAgDgUAgEAgEAwhhIBAIBAKBYAAhDASCWaarq4vS0tJjvQ2BQCCYEEIYCASzSHNzMytXriQ4OJgXX3zxWG9HIBAIjogQBgLBLNHc3My6deuoqqrgysvP59ZbbxXiQCAQHPcIS2SBYBboFwX1FeX8s6cH/ftf4B8WxK233grALbfccox3KBAIBKMjIgYCwQwzOFKwYf271Gp1NAOBLk7cefvVInIgEAiOa0TEQCCYQQaLgi0/vs/CBeFssNDQazDSVdfIk4/fCyAiBwKB4LhFCAOBYIYYTRSg1eKkUtELdFTVIpvNQhwIBILjGiEMBIIZYFRRAPB//8bRYKQOMJvNdNc34eDrJcSBQCA4bhHCQCCYJmOKAoBTVuP85Y9QXQdAU0EJDr5eSJIkxIFAIDguEcJAIJgG44oCAJMRr+ZW5f8libYDBbA6vu9LIQ4EAsHxxy9OGEiS5Ac8DpwO2AAFwLWyLO88phsT/OI4oih46Gn4z6uEn7ySa12d8PzseyxlechLhDgQCATHG78oYSBJkguQDmxBEQYNQAjQdgy3JfgFckRR0NkFX6yHh+7EvleLfe5+ePSvcOk5I9YS4kAgEBxP/KKEAXAPUCnL8tWDHis7RnsR/EI5oigAcLCH3B/gyjshLFipMaisBlfnUdcU4kAgEBwv/NKEwdnAj5IkfQYkA9XAS7Isvz7WAZIkWQFWgx5ymN0tCk5kJiQK9hyEplZ45Dk4KRHCg+DeW8DSEv7xDLi7ws2/H3GYEAcCgeB44JcmDIKBPwBPAY8CscBzkiTpZFl+d4xj/gY8eJT2JziBmZAoALjnX9DdA3O84S83Qfy56LN2sScyhLLPvsfF24N1owgDEOJAIBAce35pwkAF5MiyfG/f17skSVqAIhbGEgb/QhES/TgAVbO3RcGJyIRFAcCnL0FbJzQ2Q1kV/O0WyC/mxzsewiTLOPT0cJLZjKQa3ZFciAOBQHAs+aUJg1rg4LDH8oALxjpAlmUdoOv/WpKk2dmZ4IRlwqKgogbsbWHDVlg8Dx74j5I++PJ1LDelE+LrRUF1HZ3V9VQ9/hL+f70Fxvh9E+JAIBAcK35pwiAdiBj2WDhQfgz2IvgFMKlIwd0PQ30jdHbDOafCZ69AQzN89SPELGHeg3dScMM9AOT9/Rn8zz0V5oWNuZwQBwKB4FjwSxMGTwMZkiTdC3yKUmNwQ98/gWBSTEoUADzzENQ1wqIIMBjB1gZcneDiW+D9Z4lYtQKVRo3ZaOKgjxcnR4RwpPiUEAcCgeBo84sSBrIs75Ak6TyUuoEHgFLgj7Isf3BsdyY40ZiUKCguBx9PRQx4e4CFBdxyP8wPhTuuhdqdYGWJTfSZBPt5U1ReTXttPaVbMgheGAle7uPuRYgDgUBwNPlFCQMAWZa/A7471vsQnLhMShTIMlx2m+JVAHCoCLK/VToSPNyUGgIXJ+W5lx9l2YECiv70DwByb3uAYDtb2P4NjFGI2I8QBwKB4GghycMsWn/tSJLkCLS3t7fj6Oh4rLcjOMpMOn0AkF8MarXiT1BeBUvmH34uKxde/QBeeBjsbDHp9TwVkkRPYwsqjYY/ffg8dmefPOH9ybLMXfc8ytM/vMXlN13Oe3e9N4V3KRAIfo10dHTg5OQE4CTLcsdYrxv/NkUg+BXRLwoq6sv56tuXjywKdu4DoxEC54CnGzg7KqLgfz9AW9/fXFcPlFeDtRXUNqB+4hWWXnAGAGajkT0lfXWxJtOE9ihJEutuSER9mYr3d7zPCy+8MNW3KxAIBKMihIFAwNBIwcav3yZx2XJMZhO9Bu3oB7S2w2mXw7NvwtNvQNQZ0KtVrI+v/BNszVRety4JNn+sRBR0enjpXaJWxiJpNFh4edFWUQNX3AF/f2ZC+1xfnMJ5X/6BM8PWcLvX77ntttt48cUXZ+abIBAIBPwCawwEgskyVvrg1o1/J7+5hG8vfA07S9uhB7k4wXdvK34FLW1K1MDGGvy84dAWJYIAYDYfrh8I8IPqHVj3Glj49psYLaywcrWj60Au9l6uR9zn+uIUzv3iJk4LWsVn5z2PxQUWqFGLmgOBQDCjiIiB4FfNeDUFl80/m+zavZz1+Q1063uUB81m+HajUnQYtVApLvTzhovPBr1eeX6Oj2JsBEo04IK+bllJorG5i82ph7ByciA2KhCt1sBG//nUJyWMu8/hosBSbTlQkHjn7Vdz6623isiBQCCYEYQwEPxqOVKhYZJ/NBsuenOoOEjNhotuVuoLnnwdEs4FXZ9x5kvvQuxZSt1BP1f9Fq69mJ5ePdm7ytiSXoDdoQLWJkUQ6O/Gyavn4eZqR2pWEVX/eBne/mzEPkcTBf0IcSAQCGYakUoQ/CqZaPdBvzg47dNreHnXh9ydfB3kfA8LwsHOBjxcwapvOGdijFJkqDn8Z6VfncihwjoKN+1HrVYR5aQiWN+ESq08b2mhIX6ZP5t/zCVzcQxRvc2EDDr/eKKgH9HKKBAIZhLRrjgM0a74y2cqLYklWzcQ2GhA9duzkHU6JLV6iAAYjtksU1zWwIG9FZjUasJDvIgI88bSQj3kdYe+3ciPf36UtvIqkr/8kAadikXz/IgM82JDybYjioLBDLQyPvcWL7zwghAHAoFgCBNtVxQRA8Gviin5FADB63MhPYeNy5zovusBzur1Qb3hA6Ww0GyG2x6AGy6FJfNpaOokd28FHZ1agrZsZeFJy7CZH3V4seIyKKmEk1eibeukraxSefixJ1jx8jPsy6umJjWFc1semrAoABE5EAgEM4MQBoJfDVMVBQA89jfo6MKmI5/HAhrJM1lxu1GrdCvUNUL2bnSXnseeXWWUVTTj5mLHycnzcFkdDpYWQ9d64xP433rI38riS88h46nXaMwroiprF0nFeczdf4iKhfH81eUu7j37igmJgn6EOBAIBNNFpBKGIVIJv0ymJApkGf70D7jwTEiMhs4usLcjrWonp316DbE+iwdaGatrW9m5pwKTSWbxAj+CA9zHHuHd3Kq0NtraAHDom418ctEfALAJ8+OBy+q4I/w2lqvjiQj1YvF8v0mPAxdpBYFAMByRShAI+phypKCnFw4WQm29IhLOvwHmhZL03D8GChKfePGP/CbqdkrbdPh4ORG9ZC42Nn13+J9/Dynb4fl/DF3XzWXIl+6JcYQ9/RSGXi2tGzZwSZ0TD//5Bso++pndRcprJisORORAIBBMFSEMBL9opiwKzGaws4X17x42KLr9anBVLupJ/tF8+5u36M5qpbKhk+jYMILmug29ePfqlCjDaDzxMtQ3UX/PHaRlF6H2cqJ3Vy2+t9yCa34eJq2J8KJ8JIcmdqFEAJYsmCPEgUAgmHVEKmEYIpXwy2HKoiArVykm/OI18PdVnA1dnQeelmWZwpJG9h6owsnBikVeGv5d+z/+sfKPIx0Sx0B+42MK9Wr2+AWjsjNy5a7rufFja3zU/vjdfjtWVhasO2Upjo62FJY0sGtfJWHBnixdODlx0L9fkVYQCARiiJLgV820Cg29PGDZQmVscnsnxJypmBcBBoOJzJxSdu+vJMTHgbXJ86h2NfDq7o+HOiSCMjthFFrbetgcvpTdvsFoXPVckXstJwXGc/vLr9C9Zw+l995LT2MzP287RENjJ2EH9xJVfGBAIExWzAsTJIFAMBmEMOhDkqRbJEk6CGQf670IpseURUFjM2h1EOQPrz2mmBU52sN9t8M5p9DRqeXnbYeoa2gnoaueZWf9DnVLG8u9F450SAQIToRn/juwfHePju25pWxMycOgN+Hg3sy/P7uKk4MS+ey85wmIiWLJ5edjqK+n4u8PYWPWk5pVSE2HntDtWSxf4EtRaaMQBwKBYFYRqYRhiFTCic2URYEsw0mXgK8nvP+c8lhZlTIcCaiubWN7bim21pYkxIbgqO2G9Vvh9xcMLJFWmTPQrfDT795C8/kGWBCONiyYvII6issasbRQMz/ClwLTQSqvuZ6zy6xwK9050JLYWdvAz/c+zpqH/oTDHB+yckqpqW8jbnkQ/n6uFJc1snNPBSGBHkQt9hdpBYFAMGEmmkoQwmAYQhicuEwrfQBKbYGtjTIxMWMnnHIZ8sYPyHP1Zf+hGvx8nIldFoiFRqUMTxqFtMocdtbt546YqzCazBQU13OosA4JiAj1JjzEk43laZz7xU1c7hDLy795FMs5fmNuyWyWyd5VRmVVC9HOKoKefpGSf/+DnIO1hAS6E7V4rhAHAoFgQoh2RcGvimlFCr7cAOeeCnGD3AlXLMX46mPs0DhTeaiGBRE+zI/wQaprhNOvgDf+A8sXjVguyT+axDnLqcjcz46aNswWNoQGeTI/3AcrK82Q2QcvT8DRUKWSWBEViEajYkdZE4aI+YQ7WsLSAHJ2lyPLsHzJ5MSB6FYQCATjIYSB4IRnWpGCrF1w+R3w0weQFAPdPVBWRW9IEOlzImivbyc+Jhh/3z7vAZMJli+GkIBRl2vv6CV3bwWNzTpc9+3nhYh9fBDxb6wsNaMPRPr4G9icodQ0jIKus4u0J14h/o/XolGr2U0yxjYD88K8kCTYsascGYgW4kAgEMwQQhgITmimnT6Ij4LdGyA8WPn6iVdo27CNtL//HTMSaxIjcHWxO/z6OT7wxr9HLGM0mTmYX0t+UR32tlasig+lJKKXn79/ibM+v4Hbll/Bxd/8ceTsA7VaiVqYzYf9Evqoyt7NZ5feRkdVLd2NzZz18qNYWKjYf6gG4zufs+i3a5CWBZK9qwxkmeilAUIcCASCaSOEgeCEZVqi4IfNyoyDa353WBQAdddeQcbyZOytLUhaEYptv4uh2QzX3wM3XgaxS4cs1djcxY5dZfT06pkf4UNkqDdqtQpvzyQ22L3Juo+vZGvFds4ISR45EOm3Zyr/RsFpjg/adiUNuOvtz1hy2XksWBmLRpbZQwKGdjNRS12RJMjOLUOWIXpZACohDgQCwTQQ7YqCE5JpRwpSsuDHFOVuHSA1m+LcIlJ3V+Dh6cSapIjDogCgqVWZimgyDzxkNJnZta+SLWn5WFlpOGX1fBZE+KKWgNOugI2pdOq7McsmXG2ceOOMx0avKdDrIXv3iIcdfL046eG7B77+7tb7Mep0RET6sXzJXIrbDWTvLMXf24nYqEDKK5vJ2VWOWbQyCgSCaSAiBoITjmmJgv6Q/WN/A6MRJAnZZGL/t+nkJa4iJNCDZYv8UamG3XV7usGWTwe6EVrautm+s4yeHh1LFswhLMTz8J16Ty94eZDZls+5XzzJ6cHJfHruc1hprKjsqMHV2nmoQ+Kbn8Dd/4TK7eDiNOS00ddfyt4PvqJ6xx6a8otJf/J1ku+9lZBADyxUEttzSjDtLyDu96ciSRLbd5YiyzIxUYEiciAQCKaEiBgITiimJQoamiHhXEjNVi7wFhaYzGayd1eQl7iKxcHuRC0eRRS88h4cLABJwizL5BXUsWnbITRqFSevnkdEqNfQi7C9HesfOIfVZU8O1BRYaawwmU2c/um1Ix0SLzoLsr4G55HtsSq1mt+8+AiSWg1A6uMv0VxYCsDcue7Et1dT7eJO1s4S5vi6sCI6iIrqFrJzy0TkQCAQTAkhDAQnDNNOH9haw4IIZf4BYNDqSf1oC5XVrcRFBxG5aJTiPa0OXn4fNqXTqzWwLaOQfXnVRIR6s3ZVBI4ONiNO8/PO77nsoxtHFBqqVWpeOfXhkQ6Jrs6wMGJMbwTvxfOIv+MaAEw6Pd/cdC+yWUlpzLn6PBJiQ6mpbSczM585Pi7ELQ+msl8cmIU4EAgEk0MYHA1DGBwdn0xLFBgM0NwG3h4DD/X26klNOUB3axeJHhZ4rosb+3idjrrmbrbvrUQCViwPwstj9N+N9cUplFx7PWdXWONVmDNqTcFgh8RvL3xNSSscKoI7HoJ3nwEv9xHH6Lt7eHn5mbSVVQJw2pP3s+KWKweer/7PW2QGz8fH15W42BBq69rJzOmLIkQFjYyCHAFhgiQQ/PIQQ5QEvximHSn4v3/DukuUIj+go1PLptR8dJKatavnjy0KNmzFXFXL/tJmtu0oxdnRhlPWzB9XFJz7xU0cOD8W7/++OKZ5UZJ/NBsuepM9DYfIrT+gPOjuClaW0No26jGWdrac8+q/Br7++f/+TVt59cDXfmcmkSB3UtvYSeaOEny8nYiPDqaqppXtO0tF5EAgEEwYETEYhogYHF9MWxQAVNXCvkNw+hqaW7pJTT+EdWcnq86MxtbJfvRjjEZ0CeeTdfMtNLi4Mz/Sl3nh3mMW9I1qXnQEOnSdOFo5YJbN6E0GrDVWY7+2U8uB/BqqDxbTlJrOwugIEq//HdIw74OaunYysovw9nIiPiaYuvoOMnYU4+fjQtxyETkQCH7NiIiB4IRn2qLgo6+hq1sxJTp9DbX17WzNKMDBqGfNR+9ha20x5qEtnTo2/uNh2jy9WBUfxoIIn4mJgrWPYvnkG1Bdd8TtOVo5APDnzY9xxqfX0q3rhtz9I45tbO7k5215tLb14BMegNc5Z1PvF0FRWdOIKYu++Xkk/usx6uraydxRgrenIwkxIdTUtpGVUyIiBwKB4IiIiMEwRMTg+GDaoqCmHpacAk8+AL+/gPLKZrJ3leHj5UTc8mA0KkY4DfZTmrKbne1mnJ1sSIgNGepnMIwRkYL9RXDKZbD5E5jgnvtrDhLdF7LhL3lIf7wO/qbcmdc1dJCeXYybix2JK0Kw0KgxGk3sPVhNUWkjnu4OxEYFHt6jLMP3m6iNiSY9uwQvD0cSYoKpb+wgI1tJMcRFB6Ee472PhYgcCAQnPmK64hQRwuDYMyPpA4DKGpjjQ0FJA7v3VxFYdIhodS+qP1436svNZpnd+yooKmsiqLKUqD+cj1o99gV0zPRB/9/UJHwE+sXBReZQnr/lbWxtHCgqbWT3/sq+i3sIGs3QvdQ3dpCdW4ZJbyA5KQIXl6FpkbotOaR1Snj1RQ3qGzvI2FGCj6cTcTFCHAgEvzZEKkFwQjJtUbBhK/zpH2A2I8/xYW9eDbv3VxEZ6kWMtgXV/LBRD9PpjKRkFlBc3kSUvyPR56+cmigARRBMchRyf0Hip6oiXtj5KWnbi9i1r5LQIE+SVoSOEAUALrYaVJvX015Uws9bD1LXMOjvXKvD+7o7SMrLpaGxk/TsYrw8HEmMDaG2QUkzmAa5OE4EkVYQCH4dCOdDwXHDjEQK6pugph6zyUTugRpKyptYEuBCxII5sOC2UQ9p7+glbXsRRp2B1TFBePi4jnuKcUXBudcpUxrvvnHSW4/3jeK7tR/QXNpLq6GexFUL8fNxHvP1tbn7yXn2dSQrK/zv+hOpKjXLlwYQHOAO1law4X28A+eQ1Kq8v/TsYhJjQ0iMDSE9u5iMHSUkxASPK4CGIxwSBYJfPiJiIDgumLYo6OxS/nvlhZjef46s3RWUVjQRYy8TsfYcyNk76mE1dW1s2nYIC42adU//B4/7Hh33NEfsPkiKgXmhk9q62SxTWt7E+k0HaKzUEyz3ElmQws3p9wx1SBxGwMpYom+8DFmno+Kxx9Ht3UXO7nL259UoRYlhQWBhgVdLA0naRhqbO0nbXoyHuwNJK/pTC8UiciAQCIYgagyGIWoMjj7TFgW1DYrV8RP3YTjvNDKyi2ls7iI+Ohg/N1t4/SO46XJlxHEfsiyTX1TP3oPVzPFxJjYqEE1+MVhohkxbHMxUWhLHwyzLVFW3cuBQDZ3dOub4urBoni8O9tajmyCNgr6rm1difkNrqWJ8FPPcE3R5BRAwx5XoZQFKHcFf/wVbM6n/6h3Sckpxd7UnMTaUppYu0rcX4eHuQGJsyKQiByBqDgSCEw1RfDhFhDA4usxI+sBshqf/i+6Sc0ktaqGjs5ekMHc8VSYIDRzxcpPJzM69FZRVNDMv3JuFThokb48xuxRggqKgogY6OpVuhHFqDGRZpqq2jQOHaujo1OLj5cjCSD9cnAdd/OubKHrrNZZqPiLWd8m44qAyK5e31l6MbDYjqdWcvf4TitrNfQIgBAvMirWzgz0NTZ2kZhXh5mJH0opQmlu6SBPiQCD4VSCKDwXHPdMWBa3tSopApaL35qvYcqiR7m4dqxPD8fzn03DxLYpoGIROb2RbZiEVVS2siApkUYQP0tnXKHbEYzDhSMGbn8BvrhpTFMiyTE1dGxu35pG5owQba0tOWhnJyriwoaIAYO9BQh/7gC3xj5Fdu5erf7hnzP35x0Wx8p6blXOYTKTd8mcSls2lta2HlIwCdLIEDvZQ14jn3x5h5SJfmlu7SdtehJurPUlxoQNpBqNIKwgEv3pExKAPSZJuAW5BEUsRImIwu8xIpODPj8BXP9GV/T0pOWXIssyq+HAcHawV0VBbD/MPr9vZpSU1qwiDwURibAjubn3tfdu2g5vLqL4Dk0oftHcqLoujrNPQ1Mm+g9U0t3bj4W7Pwkg/PNzGcF0EMJmgsxucHUmrzMHJyoFFnhFjv9xg4M01v6Omr5Zi+fWXkvjwX0nJLMDW2pJVCWFYl5TBJbfCRy/Q6OFNalYRri52JK0IoaWth9SsItxd7UiMHb0LYjxE5EAgOP4RqYQpIlIJs8+M+RT0amnLL2NbnQ4LjZpVCeHYffQFnHOKMntgEI1NSsuelZWGlXFh2NtZQUsbuDiNeYc/EzUFbe097D1YTV1DBy7Otiye54enh8PIKY5jYTQqvggWFvQYenk4/QX+L+GWUdMKzYWlvLribAw9vQBc8uXreCXGkZJRgKWlhuSEcGwsVEqthSzT2NJNamYhLs62rIwLHRAH/WkGIQ4Egl8WIpUgOC6ZtigwmeDex6GsiuZeI1trtFhbW7BmZQR2PV3w96fh65+GHFJe2UxKRiHOTractDJSEQUGA5x0MTz41KinmbQoaO+EG/4K+cUA9GoN7NhVxk9b8+jq1hEfHcy6VZF4eTpOXBR0dUNEMnzyHQD5zSU8v/O9oSObB+EWFsQpj/8NUNILHhEhODnasDoxAoPBxJa0fHr0JuW9X3wLHt/8wKr4MFr7BIGLsy2r4kJp6UszGI2mie2zD5FWEAh+GQgfA8FRY0YiBU2t8O3P1MevIF1ywtnJlqS4ECwtNGDlCrnrlbQAyh1sXkEd+w/VEOjvxvKlcw+7/VlYwP13jNqBMKVIQVMz7D+EyWCkoKCWvII6VGqJZYv8CQn0mPTwIgDs7eDO62H5QgCWeS9gw0Vvctqn13DW5zeMWpC4/LpLsHKwZ8GFZ6DSKH/ejg7WrEmKICWjgC1p+STHh2Ef5A8erri72bMqIYxtmYWkZhaxMi6UlfFhpGYWkrq9iJUrQtFo1CO2NhbC50AgOPERqYRhiFTC7DAjosBoBI2G6spGMndX4unuoFgFF5fCs2/Ck/eDjTWgeAPs3FNOaUUzCyJ9mR/uffhOvacXbG1GPcV00gc1dW3s3l9Fd4+OsGBP5kf4KIJlhhncyrjhd29OeI89vXq2phdgMplZnRiOg73yvaKziyYDbMssxNnRhpVxYbR39LKtL82QFBeKxSTEAYi0gkBwPCJSCYLjhhkRBS+9C2dcSVlJHRm7KvDzdiZxRd/8gNJK2HMQ9AYADAYTqVmFlFe2EBsVyIIIn8OiQKeDpPPhmf+OOMVURUF3j460zALSthdjZ2vJqWvms3Sh/8yJgq9/gnf/N/Blv33yusCECe1R391DR3UdtjaWrEmKwEKjZktaPu0dvfDka5B0Ae7WapLj+wRBViFOjjasSgijtV1JMxhEWkEg+NUgIgbDEBGDmWXGCg0zdlK0p4Rc32CCAtxZvmQuKlk+7D1gNoNKRU+vntSsInp69CTGhuDp4TB0HbMZXv8QEmNg4eEq/6mIArNZJr+4noP5NVi2tbOssgi/v1438RqCiXLHg0qh5HvPjvr0D8VbSfaPHbUgsXrHHr64+i5sXJ24ZvMnqDQatDoD2zIK6dHqSfazw2X7Drj+UgCaW7vZllGIo4M1q+LD6OhUIgdOjkqBooWFiBwIBCcqoithighhMHPMiCg4WADzwsgrrGNfXg3hIZ4sWTAHCeCquyBkLjzwR4CB8Lckwcq4MJwch6ULDAaltmAYUxEFza3d5Owup6Ojl7AQTxYUHMDC3QVWrZj8ezwSJtMQ18Yh++htJfiVNSz3Wjii5sBsMvHy8jNoOqQURK6+/w6S71PmRej0RlIzC+ns1rEqLgw3VzvIK4R5YbS0dpPSJw5WxofR2allW2YBjo42rIoLE+JAIDhBEakEwTFlRkRBXSNy4vns/Wgj+/JqWBDho4iC/jvyqAXQNy2xobGTzan5WFlqOGll5EhRoNVB4vnw9mdDHp6sKDAaTezaV8mmbYdQSRLrkuexdKE/FuefNjuiAA6LgoqaEU+52bjw/YX/Jbt274huBZVazTmvPY7Ud3zKoy9Qlb0bACtLDasSwnFysCYlo4DGnIOw/Ez4YTOuLnYkJ4TR0aVlW0YBDg5WrEoIp6NDy7bMQgwGkVYQCH7JiIjBMETEYPrMVPpAlmVyv99OscmCJQvnEBHipTzR1DLEp6CiqoXs3DI83O1JiAkZ/Y5Wr4fHX4bzTx8wIJqsKGho6mTHrjK0WgML5vkSHuyldBvkFUJBKZy1blxb5Wnx0ddw/T1QnAZe7iOeHm+2wtZHniPlkecAcA0J4Mbt32BpbweAwWgifXsxza3dJJnb8Dpz1YAQaWlT0gr2dlasSgijq0tHSmYhjvZKJMFSRA4EghMKETEQHBNmRBQUlWH+4Euyc8soNlkQvTTgsCjYmwcRq2Fr5sAgpKydpfjPcVGq50e7WJnNYGmptCdOQRQYjSZy91awNb0AG2tLTlkzn8hQ78MtiN9shNvunz1RAHBqMnz4PLg6jfp0f0Fir1FLj7F3yHOr/nozfrFLAGgpLufHe/418JyFRk1SXCgebvakSk7UNnXB7gNQUIKrsx3JCeF0detI6RMIA5GEzEL0InIgEPwiERGDYYiIwdSZqUiB6eFnybJwoWb+AlYsD2Ku3yAXQ6MRXnkf+fpL2F3QQGFJA/PCvFk4z3f0oj+tDk65FP50A5x7KjA5UdDU0kV2bhm9Wj2L5s0hLNhj5HlkGdo6FBfFY4wsy0iSRG1XA46W9gORg+aiMl6NPWvAFfHi/71KxJknDRxnMpnJzCmhrr6DuC8+ZY6pd6DYsX/mgp2tIgy6enRKJMFeKVCcTuTg2eef5fZbb5+hdy8QCMZDFB9OESEMpka/KKisKWfr+g+mJgpkGaPJTHp2MU3NXcTHhODr3XexHTT7wGQysz23jOqaVpYtnktokMfYa3b3wN8egxsvhwXhExYFJpOZA/m15BfW4epiR2xU4OG+/2NFeyf8+Z9w/SUQs2TMl5llMzFvn4eTlcOQtMLONz7mu1v+DwBbD1f+kPMD9oPSEmazzPbcUqqqW1mx0I+5Id4Dz7W197A1owA7GyWt0NOjJyWjYCDNMNnWTFmWueWvD/Jy94f8PvL3vHPXO5M6XiAQTB6RShAcNQZEQW05n335/NREQVc3+vNvZNuGXTS3dLMyPuywKADF6vi8G9D3KGHs2ro2EmJDxhcFAHa28Nw/JiUK2jt62bTtEAVF9Syc58ealRFji4LOLlh3CezYM/n3PFkc7KCsUqmxGAeVpOLZdfePKEiMuuZ3RPxGiRL0NLbw7R/+xuAbA5VKYsXyIAL83cjaX03priL49ysgyzg72bI6IZyeXkUQ2NpaDqQZtmUUojcYJ/VW2nQd7Ji3D2tfK979z7sirSAQHEcIYSCYFoPTB1t/+IA1y+Mwy2a2lmdNah2t3kjK2RfQYZZITgjH032Y/8Ajf6bnwxfZsr2E9o5ekhPC8fNxHmdBHZx6OWzOACaWPpBlmcKSBn5OycMsy5yUHMm8cG9U4/kSdHaDj6dy0Z5tVCr46QM4fc0RX9pfczBYHEiSxFkvPYqdpxtqSwsCVq5Q0iCDTyFJxCwLIDjQnR0V7RTtL4fmVgCcnWxJTgynt9cwLXHQqm3nlI+voqStkoxrPuXOi0TNgUBwPCGEgWDKjFVT8NHBb1nz0eX8d88nR17EZKK3up6tu6ro8fFmdfI8pae+n/e/hJp6OmQVm5tNGAxG1iRFHB6ZPBY9veDuAl7uExIFvVoDqVlF7NpXSVCAO+uS5+HiNNIwaAS+XkouPjL0yK+dKRqbFX+HI9AvDnLrD5BZswsAO083Lnj3Ga5L+4KEO69DGqVgUpIkli+eS1iwJ7nnX0h+u2HgOWdHG1b3i4P0AmxtLElOPFygqNePLw4Gi4JNl7zLMu8FoiBRIDjOEDUGwxA1BhNjvEJDWZa5deNDvJT7Aa+f/k+uW/K7MdfpeuRFUnzDkP28SR7s3w/KdMGlp9F0502kBS3AxsaSlXGh2NpMfH7BRERBXUM723PLAIhdFoiP1ySKCKtqldZJa6uJHzNdzrpasX/+8f0JvbxV246LtROyLKM36bHSTGyvsiyzL6+GQ4V1LNyXy/wLVsM8xTeivaOXrRkFWFtZkJwQRq9WEQr9BYqWliNrDoaLgqVe84ecS7QyCgSziyg+nCJCGByZiXQfTEQcdHRqSUnNQ63Xk3zKUuxsR16wqvMrySpoxNXFjsQVIUcuctPq4LLb4G+3st6ldVxRYDKb2Z9XQ35RPd6ejsQuC8TaeqQz4risvggC5sA7o49vnhUKSpQJkn1TJCfKA9ueIa0qZ9SpjB3VdTj6eY84RpZlDu4r50BpM/OszSw8JXqgK6O9o5eUjAKsLDUkJ4aj1RoGChSHi4PxRMHgcwlxIBDMHqL4UDArTLQlUZIkXjj5IW6Ouoy0yp0MF6BtX/3MltRDWFhbsua0qKGioKIGbvwrJfnVZBxqwNvLqa8tbgKV763t0NVDatO+cUVBV7eOLan5FBTXs3iBHyvjQicvCgCeegDuun7yx02H8OBJiwKAU4KSRhQkmvR6Nt3/H56NXEPV9l0jjpEkiQWLA1k83488rYo9B6qQDUpqwakvraDTG9maXoC1tQWrE8Lp7lXSCrq+tMJEREH/uURaQSA49oiIwTBExGBspuJTIMsyZtmMWqWmrqsRb3sPmouq2ZZdjL2lmlVnr8BqWNhZ3ppF3tep7F+9lpBAD5Yt9h+/AHAYR0ofVFa3krO7DEtLDXHRwbi5HIXCwZnmxxT453Ow+RPQTLxVcLhDYt47X/H9bQ8A4BI8l5uyvx1wRRxOYUkDu/ZVElJeRNRtFw1EDjo6tWxNz8fSUsPqhHC0OgMpGYXY2FiwNMqbM7+49oiiYDAiciAQzA4iYiCYUaZqXiRJEmqVmkPNxYS+ehJvp39HyqEGnDycSB4uCsxmzLJMrosv+1evZUGkL1ETFQVaHVz5J7Zt/HhMUWAymcndW0FmTgneXk6cvHr+9ETBzn3w1OuK6dLRxscTFkQoXRGTYHC3wuNZrxF19UXMWbEUgNaSCn78y6NjHhsW7Em0roXiuSHk7C7H3HdT4ehgzerECPR6E1vTC7CysiA5MZzuHh2fbMygrqN5wqIARORAIDjWiIjBMETEYCQz4WgoyzKvvfEszu5JmC11/PaUODSaoY55pj/9g+0Loqh29yFqyVxCAo/gUTCYkgo6zr+SVetqCYhLHiEKurp1ZO4oob2zl6UL/QkJdJ/+eOQ3P4EnXoG8zTDTo5ZnmT31eUS6BWOlsaKluJxXYs/C0K2kFy7+/BUifrNuzGPLK5vJzi1jrrsdMQkRA8Kts0vL1vQCNBo1y6K9ufrrv3Gh/aW4OzhyWvLiEZGhIyEiBwLBzCIiBpNEkqRbJEk6CGQf670cT8yUzXFVTRsu7klYN1Rz4+4befvA50Oe1xtMbItfQ62bFwmxIZMTBcB6uRSPS0cXBZU1rWzcehCD0cRJqyIJDRrF1ngqXPO7YysK9Hr4Yj00NE/60CVe87DSWLGzbj/X7XmctY//ZeC5b/5wL131TWMeG+DvxgpzBxX1HWRvO4DZrNxcONhbszoxHL3BwJebcjjUXsTCZe5gVJOSUTBQczBRRORAIDg2CGHQhyzLL8qyPB+IPdZ7OV6YKVFQWlRLVk4Jc/3d+M3VZ3JF9AU8mPocnbouAHprGtialk+bnQOrVkaOb1w0HK2O8iuv45a3buS04KGiwGQ2s2tfJZk7SvD2dOLkiXoTTIZjGSno6oGr71LqDaZIr0HLT6Vp3GuzntDfrAUUV8RvbvrbiILRwcw9OZa4jloq23Vszy0dEAdGjY4XGp5DklU8Ff4fFnuHD/E90OmEOBAIjneEMBCMykyJgsK9pew4UEOQsZsVUYGoLTS8cPJD5Fz1JQ5W9rQfKGLzD7noOrpZkxSBh5vDkRcdRGrK/zD9tJUzPJYPEQU9vXq2phVQXNrIskX+xEUHjT55cap0dUNIImxMnbk1J4urM+RtgSvOn/ISAzUHdft4d107tp5uABSu38Ke974Y+0B7O/yvOof46GCqqlvJyi6iuaeNUz6+ityWvURF+2AhadiSXoCFhVoRBzqlnVGIA4Hg+EYIA8EIZkoU5BXUsqu0hfCmGpbHhg6E7yVJwsfek9qmVr4sqEFnb8naxHCcHW0mtf764hTW7X2Yu55Zw1O3vjUgCuoa2vlp60F6tQbWJEUQFuw5M6mDwRiMcPkFEOQ/s+tOFt++cdTTKIDsFwfp3Xns//3cgcc3/PkROqrrxj12jp2GhJdeoLq2jZe//57ytho2XfIusQELWZ0Ygdkss7VfHPR1LAhxIBAc34jiw2H82osPZ6rQcN+ecg6VN7Mg0of54T4jLsz1FY2k766ghVb+lP9nnjrlr+M6JA5nQ/5msv94E/m/S+KtK17BUm2pmPHk13IgvxZvT0dWLA+adMHbCcnv7wRba3jlX9NaJq0yByuNJdX/9x57PvgSr8XzuPC9Z3CPCBn3uI5tqfyh9GvOcLoQZ1crTktcglqt3HN0devYml6ASiWxOjEcg8E0xDHR2mpy3hGiIFEgmDqi+FAwaWZKFOzaV8mh8maWfPUFCwLcRoiCiuoWUneW4X7gAFeujuOKJWdz/fr7JjZbASVScN9rN3Nntoq3592MpdoSnd5IalYRB/JrWRDpw8q40NkVBbv2Q3H57K0/Gc5YA2esnfYySf7RxPgsZs1jf0a+LoFLt7x/RFHQqm3npJKn2NC6lVBXLb2tJjJ2lGAymQGwt7NidWI4ZrPMlrR8NBolcqDr8zrQ6gzjrj8cETkQCGYfETEYxq81YjATosAsy+TsKqesspnl83wI6WmFpQuGvKbfJCfAx4kYqRtVzJIh9sl7rvmOxZ6RY55jiHnRKY9j6ehMS1s3GdklGI0m4qKD8PacxKyDqbL2YpjjA+8+PfvnOsrsbThEwnsXDZggDbdP7meEo+GD71HXqSP94svxcHcgMTZkIHLQ3aNEDgBWJ4ZjMpkVz4M+O2URORAIZh8xK2GK/BqFwUyIApPZzPadpVRXtxIb6EzA0qHTBmVZZv+hGvIK6gj3sGVJfOSQSIIsy2wsS+OUoJVjnqNfFDxWHcYtj7yPpb0jJeVN5O6twMnRhoSY4FHnLcwKTS3Qo4W5vkfnfEcirxB+2AJ33TAjyw13SLSWLFBpNAM/s1Ftjru6wWiiXg9p2UW4u9qTuCIUzRHEgaWlhtVCHAgEs45IJQgmxEyIAqPJTEZ2CTW1bSS89zYBB/YNed5slsnZU0FeQR2LN/zA0h++G5FekCRpQBS8uusjXt/98ZDn+0XBNdbR/PHNQtSbtrNjVxk5u8sJnOvG2qSIoycKQJmoeLyIAoD9BfDSu9DeOa1l2tp7KK9sxl03h2/OUBwSL37qUl5LOJe9H34FjDP7wN4OnB3xkgyszN9DU0s3aVlFGI1KWsHO1orViREAbE0vQK1W9TkmKrMWRFpBIDg+EBGDYfyaIgYzIQoMBhPp2cU0t3aTGBuCt70F2B7uLjCazGzPKaWmvo2YpYEE2qnAyWFcf//bfvo7L+S+NzCVcfjsA0NpHRnV3bR39LJ8yVyC5rpP6f1Pmb158OoH8MifweUopC0mgtGoeCqop9aSqdMZ2bW/koqqFgDUKgmTWUalMtLw5Xe0fPsdFmqJy7I+5bytfx5/9sGmdLj2bhq/eY/Uik5cXGxZuSJ0wOmyp1fP1vQCzGZ5oP5g8KyFyQ6zEpEDgWBiiFTCFPm1CIOZEAV6vZFtWUV0tnSS9M3/8Hj+AbA7nI/WG4ykby+mpbWbhKwUfO6+ZkIX0sE1B7dH/55Xdn3EaUGr+NzzSlrC55O5qwwLjZqEmBBcnGfYsGgibM6A+x6HrZ+C1VGMUkyE7p4hP4OJHaJjW980xMUL5uDv54JaraKpuYuKqhZKCmsw9vZS99//Utibx6eXqth06Xvjzz7o6QVbG5qau9iWWYizsyIO+r0kRhcHBVhaqoU4EAhmCZFKEIzJTIgCrc7A1vQCurq1JDvJeNhagI31wPO9vXq2pBXQ3tFLsouEzw8/TnjgT//I5jNDVvNczrss9ojk09j7KHr5S7ZlFeHqbMe65HnHRhQArE2AzK+PP1GQngM+y6GkYsKHdHXr2Jyaj1mWWZc8j+AAdyw0alSShKe7A9FLAzg5KRRdWSlz7rqLqNVX8Zr1NUceiGRrAz29uN/3T1Z5W9PW3kNqViEGg6nvaUtWJ4ajUklsTc8faGfsH8TUqxVpBYHgWCGEwa+MmRAFPb16tqTlo+3VsSYhHNc1sfDCw6BSfp06u7RsSs1HrzeyJikc96RlsPOHSeXkN5RsY2NZOvPdQ/ny3FfIqTOw7+KLiQzzImm2WxGPxLGYpjgRls6Hf/5FSdVMgM4ubV8LoYq1SRHY240hdFws+V/LB1Q//zz2S5eitYvk4L7CI59AluFQEe71NSTHh9PeoWVbZiH6YeJArVKxJS0fSYI1SeEYjEIcCATHEiEMfkXMhCjo6taxJS0fk9HEmgcfxOm1d4eeo7Wbzan5aNQqTqorxOmuv4PJNCAaJsLgmoJtv/2UfVm11DW0Y/JuZtGCCY5hnk2Wnwn/eObY7mE07GzhtqvBzeWIL21r72FzWj4WGjWrEyOwsbEc9XX9hYaZgR04uKoouftudMUl7C/pICOnaMCvYMz9bPkUzjwJN1c7khNC6ejSsi2jAL1BEVf94kCjUQ3pWDAKcSAQHDOEMPiVMBOioL2jl82p+agkibWr5uHw15vgyt8OPF/X0E5KegH2dlasWRmBraVGuXudREHcYFHwbNwjpKQWIZVUYJ31AZduuXnCJkizyl9uglOTj/UuRqe1HR5/CWrqx3xJXUMHW9LysbW2ZE1SBDZj5POHdx9c+tJ/sLJQUfn449S8/DJVVa1szThCN0G/iHvwKVyffInVCeF0detISS8cmLZoY2PJ6sQINBr1KOIgX4gDgeAoI4TBr4CZEAWtbT1sSc/HSiOxpqcOWxtLuOAM6Bu6U17ZTGpWER7uDiTHBCqh/kvOgf/834TP0S8KTg9K5qHI+8jeWYG3lxMnBdhzxp/u5+aoyyblkDhrXHYerFh2bPcwHs+8AfsOjXhYlmUKSxpIzSrEzdWe1YnhWFmNnpIZrSXR1t2VM5/7BwDtW7dS88TjtHf0sDElj/aO3vH35OYM7q64ONuSnBhOd69uyChmG2sLVieGY6FRsyWtAFnuFwdmIQ4EgqOM6EoYxi+tK2EmREFTcxepWYU42Fuzcv8OrB5+Bg5sGghZ5xfVs+dAFYH+bkTP90F12uVw/ulw+zUTPke/KDg76GRu9rmFpqYuFoW4E7Fg7oDnweBuhf5WxqNOcRkcLITT14zbcnlMMRpH7M1gNLFzTwUVVS2EBXuyZMEcVKrRUzJj+hT08fkVd3Dgs++RVCoKb15MQuL1eFl6khATgrfnBP5m9HratCZS0guwth46M0GrVYYs6fUmVieGI0mK54FGrWJ1YviYKY+xEN0KAsFhRFeCYEZEQX1DByl97WbJCeFY3XwFZHwFbi7IssyeA1XsOVBFZJg3McsCUFlZwm/WQUL0hM/RLwouCTqPKx2vo72jl1VRc4m84EqkF94eeF1/t8Id0VfhYeM66fcyI/ywBa7806RqJo46Go0iDnQ6AFpau/k5JY+a2jbilgexbJH/lEUBwOlPPUBgchzXbvucG+/4K/eX3k+JtpjUrEKKyxrH39vn38PyM3E26lidqExbTBlkbmRtbcHqhHAsLdVsTc9HlmFNUgTGPpfE3l79pL4VInIgEEweETEYxi8lYjAToqCqppWsnaV4ujuQ8MPXaE5ZBStjAcXNcMeuMsqrWli6cA7hIV6KTbD75C7Y/aLgD8HXkmS5FicHGxJig7GztoC3P4PkFRASOOqxsiyTUZ1L4pzlk35vU0aWlffp4Xb0zjlZenph3hpMf7+LvLhE8gpqcXayZUVUEI4O1mMeNhFRMBpplTmc8el13BFwK4sslhEe4sniBXNGLxItq4I3PoYH7gALCzo6ew/bIg/yL+gXDDq9sa+tUdXX1qhEDmxF5EAgmDQiYgBIkvQ3SZJkSZKeOdZ7OZrMhCgoq2gmM6cEP29nEpfMQbNjDxSWAkpYOm17EZXVrcQtD1JEQc5eiFgNmbkTPsf64hQu+OIW/i/kryRo1jDXz5U1KyOws9Iod+TX/G5MUQDwv/wNJL3/u6NbcyBJx7coALC1ofmhv/CzVyh5BbXMC/fhpJWRsyIKQJnK+MNF/+XZiuex8O6lsLiBjOxiDEbTyBcHzoGH7wYLC2hsxtHBps8W2cSWQV0I1lYWJCeGY2VlwZb0AkwmM6sTIzCblchBj4gcCASzxi9WGEiSFAPcAOw91ns5msyEKCgsaSB7VxlBc91ZsWQOalsb+P5tuOZ3A3dyTc1drIwLZe6cvgjB4kh46E6IXjShc6wvTuHKr//KE6GPEalZRNTiucQsC0AjAadcDi++c8Q1Log47egXJF52G3y/6eicawroDSZy91awyTUAlY0165LnsTDSd8zUAUxPFACYjUasNxSSEfUs561IIikulIamTrak5Y99AS8uh/lr4ZuNODpYsyaprwth0DHWVkpawdrKgq1DxIEsxIFAMIv8IoWBJEn2wAfA9UDrMd7OUWO6okCWZQ7k17JrXyURoV4sb6xEtfxMqK4DtXrAJa+nV8+apAi8PB2VsHVxGVhaKj30Fke2sl1fnMKff3iSJ4IfZ66NP2uSwgkN8lCKDM1mOHklLJ53xHX6aw6OmjgwGpX9HYf1BbIsU1bRzIZN+ymraGbJAj9OKtuPy+7xdfF0RUFbeTUvLz+T72+7n+0PvoAsy7xb+jEfdryNTmfg55RDtLSN4ngZPFeJHKyJB8DB3po1SRGYhkUErKw0fUWHijgwmsxDLJSFOBAIZp5fZI2BJEnvAC2yLN8pSdJWYLcsy38c47VWwGDLNweg6kSrMZgJUbDnQBUFxQ0smudLZJg3Unk1vPA2PPZXWrv0pGYVotGoWRUfdtgl7/+egA++goObh1gij8UPRSm8uPlzrvD8PR5u9iTEhI7ZRz+Zvd+68SHqu5v47NwXRkxu/KXT2tbDrn0VNLV04+/nwpIFc5QcfPKFcFISPPDH0Y+bpigAJVrwSuxZNB5UnBB/+9ELtES7c/pn17LKZwV3+NxBZ5eeFVGBzPEdw3ipsVmZzGhjTVe3MppZkmB1YgR2tkotgU5vJCWjgN5eA8kJYQOeB/1WyqLmQCA4Mr/aIUqSJF0M3AfEyLKsnYAweAh4cPjjJ5IwmK4oMMsyO3eXU1rRTNRif0JtVeBoP3Chr2/oIH1HsdKuGBc60FoGKGN+9xyEVSuOeJ4fClNYn7mLlU4rCQ50I2pRwNAQ9/tfQkMT/On6Se0flA96o9mIhdqCpp4W3G1noWuhswssLY6bGQm9WgP78qopq2jG0cGaZYv88fIY9DtrMIwZwZkJUdBPwQ+b+ej8GwBwDQ3k5l3ryazbw+mfXUuc91IeCLmP2rpOohbPJTTIY+jBOh0sPhV+ewY88hdAGeo02Oiof5x2vzjo6dWzOiEcCwvF80CIA4FgYvwqiw8lSfIHngUul2VZO8HD/gU4Dfo3Z5a2NytMVxSYTGayckooq2xmRVQgoYEe8Ls/wPXKh3R5ZTPbsgpx7zPEGRAFWbnQ0Kw4G05AFHyft439uU3EO8azfOkcopcEjsx7l1VCfvGk9t+PJElYqC0obi0n9NWTZiet8MwbELlm5tedJEajmYP5taz/eT81dW1ELfbnlNXzh4oCUESBLEPv0D+FmRQFAGGnryGgr1ulpaiM3Dc/Ick/mvW/fYOsut183/MVYcGe5O6t4GB+LUNuRqys4Mn/g1uvHnjIztaK1YkRSJLElrQCurqVtksrSw3JCeHY2VgpXgcGE2uSwpFlefx6hjEQaQWBYHR+UREDSZLOBb4EBpdDqwEZMANWsiyPUio9ZI0Tpl1xuqLAaDSRnl1CY3Mn8dHB+Pk4K0/k7EW2tiLf2om9B6oV46Klg+7uTSZYfgbELoPXHjvieb7dnUZjiQlZZebs5Cg8xhu9LMuHbXSnwKyaIOUVKkVzv1k3c2tOAlmWKa9sYV9eNTqdkdBgD+aH+2A53kCp394EDvbw5n+AmRcF/VTv2MN/V14AgJ2nG7cd2ISVgz276g4Q7hqErYUNBwvqOHCohvAQxWBpRMqnuwe0ugHjrP7RzKa+ugIHeyWCpdcbSckspLtbR/KA50F/hOFw+mGiiMiB4NfCrzKVIEmSAxAw7OG3gEPA47Is75/AGieEMJiuKNAbjKRmFdHe3kvSilA83e3hqx/hnFMwSxJ79ldRWNLAvHBvFkb6jvwQr6pVhuSMc5GXZZmvszLR1ltQK1dy/WmnY29jM/KFRiN8sxHOOWVScxXGO+8xd0icYeobO9hzoIq29l7m+DqzeP6csachDubbjWBjA+uSZk0U9PP55bdz4PMfAFh1762sGVTbcKCxgH+kv8ADC/7CgYP1I8WmLMPJlyo+GB8fvnPv7dWzNaMAo3GYODAY2ZZRSJcQBwLBhPlVCoPROFKNwSivP+6FwXRFgVZrYFtWIT09elbGh+HmYgc798HKCzB9+zbbHb2ormlj2Wg54e9+htXxSrHYOOj1Rr5N24mhQ8U+cy4PnH0VVpoxLmQ/p8FvroKc72FhxKTey1j0i4PPDq2n4Iafcbae5s9SluGld+G01RAyXHvOHm0dvew9UEVdQwduLnYsWTgHd1f7Sa8z26IAoKW4jBeXnIbZaMTCzpbb9v+Mg48nAOlVOzn1k6uJ9VnMKwn/Zs/eGny8nIiLDkaj7stopmaDlzuEBw9Zt1ertMjqDYpNcr8fg95gYltGAZ3dOpITwrCytGBrej4wtDZhoghxIPilI4RBH780YTBdUdDdoyel7w4sOSEMJ8fDd/C6g4Wkt5hpbe0mbnBqYeDkrTBvjVLlfutVY56jta2HnzMO0KntYYecyrPn/gVL9RHu4IrLxjUzmgqyLFPZUctcJ1/MshmVNI2SmqYWCFsF7z4NZ508c5scg55ePfsP1VBW0Yy9nRWL5/vh5+M8pY6Lzp9+5sn/PcLz87pmTRT0s/5P/yD7JWUU9/LrLuE3Lzw88FxaZQ6nfXoNsT6LeSP5KXJ3VeHqbEfiilAsLQZFigwGqG+COT4DD2l1BramF6DXG0lOCB/4vdUbTGzLLKSzS0tyfBhWVkIcCARjIYTBFDmehcF0RUFHp5ZtmQVIkkRyQrgSis7YCQcK6L7sfFIzi9DqDSStCB37rrSkAub6jjlAqKS8iZw9ZZT0lrJXncXb5/1rfFHQ1gHOs/t91hl1nPvFH7gg4tTppRXMZuXfLA5P0huMHCqoo7CkAY1GzfwIH0ICPcY1KBqPVm073/72VEKKWrHb+uWsigKA7sZmnpu/FkOPlpibLue0//zfEDHTLw7WzF3BWyc9TWpWEXa2lqyKPzxIiRv+CrsPQNbXQzwjtDoDKRmFaLUGViceFgeGPnHQ0allVUIYNtYWbEkT4kAgGI4QBlPkeBUG0xUFrW09bMssxMpKQ3J82OEpdQ8+RWthBam/vxq1WsXKuLDRrXP/9wOcffKY7W9Gk5ldeysorWhmc9tm6u1K+eS8Z8YXBWYzRJ8JZ56kmN3MEidCzYHJZKaotJG8glpMZpnwEE8iQ72xsJh6zUV/+qCyqYINV7w366Kgn7yvfsRzQThuYUGjPp9WmYNZNrNqbixtHb1syyhEo1GRnBCmXMTzCqGzG2KXjjhWpzOSknnYz8DZyRZQxEFqVqEygKvv93tregFms8yaJCEOBAIQwmDKHI/CYLqioLG5k7SsYhzsrVgZH4bVoCr22vo2MneU4uhgTdKK0IEhNkPIK4To38CnLykX8WF0devI2FFMW0cPr9W+jp0bfHbe80dOH5jN8O3PSgRi2cJJvafJMm1x8MbHsDkdPnh+RvdllmUqqlrYn1dDr1ZPcIA78yN8p236dDRqCqaL0WzkiazXuH7+pezIqcJkMrMqflB6S5aVoUtB/kOO0+mVwsPuHqXw0MV5sDgooq2jh1XxYdgKcSAQDEEIgylyvAmD6YqC6to2MnNKcHe1JzE2RLkDNRrhijsovvxSck3WeHs6ER8dhEYzzt1pURmEBo54uKqmlR27yjCqjNxb8H/M9wucmCg4BgwWBzuu/JJon4nNdQDgyw2wfRc89rcZ20tdQwd7D1bT3tGLn48zi+b5jTvoaKKMKgquvksxZ3r1yO2lR4sDjQXEvfdbYrwX8dlZL5GTU0Vvr56VcWG4udrBEy/D828prpoOQ1Nber2RbZlKV8KqhDBcnZViWIPRRFpWEa1tPayMD8PO9rA4WJ0YPrFOjkEIcSD4JSGEwRQ5noTBdEVBSXkTO3eX4+frzIqoINR91d9yVzf7nv+EQ/OXEBLowbJF/qPnsE0m+PonOO+0Ed4CZrPM3oPVFBTXo3E0ck3uH0gOiJm4KNiwFT7/AV54GKyPnpOgLMt8X7yFM0PWHDPr5ObWbvYerKKxqQsPN3sWz/fDbQqdBqMxZqTgo68VYXDBGTNynoli1OrIfuU93CNCCD99pDlUWmUOp392LTHei/jinJfJza2mrb2XhNgQvCWD0i1z2upR19YbjGzLLKKzr7bAzUURB0ajibTtxbS0drMyLhQ7OyshDgQChDCYMseLMJiOKJBlmUOFdezLq1Eu/Iv9UfVdBE16A9l7K6msbmXJgjmEh3iOfYHcuA3OuU4pAhs01KinV0/mjhJa2rqx9NJx0bZrOS1o1eQiBV+sV+oW3n9uWoZG0+H9/V+hNekmllZobAZbG8W7YYp0dmnZl1dNVU0bTg7WLF4wB29PxxkTKMdb+qCztoE3kn9Le0U1bmFB/CH3B9Sj1KgMFgdfn/8au3dXU9/QyYroIPz75ysUl4/aJmowmNiWVUhHX21Bv8AyGs2kbS+iuU8c2A+IA2VCoxAHgl8jv0pL5F8K0xUFu/dXsS+vhgURPkQNEgW6PYdIeeUbampaiY8JJiLUa/yL0smrYO9PQ0RBbX07P205SK9Wj01Qz9REAcD5pyv5+mM48GhH7b6JT2X83S1w2wNTOk+v1kDOnnI2bD5AS2s3scsCOXnNfHy8nI6eKOjVwuYMaG2fkfNNBHtvD5z8fQFoLixl19ufjfq6fvvkJZ6R2FlZkxgbyhw/FzJ3lFBc1giffQ/LToOKmhHHWlioWRUXhpOjLSmZhTS1dAGg0ahIigvF3dWO1CylnXF1YjgqlYqt6fkDNssTRdgnC35NiIjBMI51xGA6osBkNrMjt4yK6tYRA2tq69vJyC5GrdWyMjECN1+3sRfq6oZt2+GMtQMPmc0y+/KqyS+qx8fLiU6Xas775qbJiwJZhjc/UdITrs4Tfm+zwaQKEjNzwcYKli6Y8Pp6g4n8wjoKSupRq1TMC/chNMhjIKUzU0woUlBeDRHJ8NV/xwzNzwZV23fxRvJvAbDzcuf2A5uwPII5VnrVTpZ4RFKQ30xRaSOLQjyIPLQP6fzTxxx5PbS2IBQPNwdA6ZbJyC6msamTpBWhODpYD4xvXpMkIgeCXxciYnACMh1RoHwwFlNV20Z8TPAQUVBX10rmDmU4UeLaReOLAlDy0ZffoZjMoEy725KWT0FxPYvn+9HpPkVRAEqV+d2PQObOiR8zS0iSxAsnP8TNUZdx/fr7+CTv+7FfHB81YVFgMpnJL6rnh437KCipJyzYizNOXkhEqNexEQUA/j6wbyOsS5rR8x+JOSuWMf/80wDorm8id4yoQT+dui7O+d9NnP2/GwmPcGNBhA/7ihvZE7kEWZKUwtlRsNCoWRkXiquLHdsyi2ho6gRAo1aRGBuCp4cDaduLaO9UIgcatYotafl0dk101pqCiBwIfg2IiMEwjlXEYDqiQKszkJZVREeXlqTYUDw9lLslWZYpKm1k994KvEqKWHHjOVjZjTKrYDiyrHQhhAUpXQe7y7G0UBO3PJjs1hzO/WKKoqCfxmbFE/8YphEGI8sy/8p8mWuXXISXnfvoL3r5XViTAJGhY65jlmXKK5o5kF9Dr9ZA0Fx3FkT4HPaMmGGOt5qCsWg4UMDLy5Wix7mJMVy96aNxXz/YIfHbC1+jpqqLXfsqCexsJvqdt1H99MGYvztGo5n07CKaWrpIWhE6MHHSZDKTsaOE+sYOEmNDcHayZWt6/ogZDBNFRA4EJyIiYnACMR1R0N2jY0tqPt29etYkRgyIArNZJndvBbv2VRLmbEmSs3RkUWA2w75DIEkYgwLI2VNOxo4SvDwcOHn1vOmLgrpG0OvBw+24EQWg3AXem3AzXnbu1HY18PHB74a+QK+He59QKuRHQZZlqmvb+GnLQXbsLsfVxY5T1ywgemnA8SUKPv8e7n18VvYzHp4LwnGPCAGgIiOHrr5I1Fgk+Uez4aI3ya7dy1mf34DvHHtWLA+i3MGVjGuuw2QYPWoASm1B4gollZCWVURdg/LZp1arSIgJxtvTkfTsYlrbelidGIFGowxfmm7k4L5n75vU8QLB8YwQBseYflFQWVfOzxvemZQoaG3rYdO2Q5hlmbVJEQNGL7q+Hu/S8iaiF/uzdPViVNdMoPL++00Q8xvadufzc0oe5ZXNLF8yl/joYDZVpE8/UvCPZ+CsayZ/3FHkzb2fc8k3fxxakGhpCa374dJzR7y+samTzWn5pGcXY21lwbpVkSTEhMyIH8FYTDlS0NoBlSML+I4GkeecovyPLJP/3c9HfH2/OKjvaaKpt5WAOa4kxYVR7+DMth0lGAxjT08fnj6orVcKLtVqFfExwfh4OZGRXUxrW7eSVpimOEj6SzSPtj7KX5/966SOFwiOV0QqYRhHM5UwOFLwxTcvsjIqZsLH1ta3k7mjZIRjYUdnL2nbi9EbjCR+9AEeGhne/M+E1pSNRgp/ymavyRoHe2vilgfh5GjD+uKU6YsCgNz9Shrh1OSpHX8UmGhBYmtbD/vyqqlr6MDFyZZF8/3w9pz91NOJkj4YTs3OfbyeeB4Aoaes4rJv3pzQcSazCbVKTZu2AwuVhp5OM2kpB7A3G1l5Vuzh+QqjHWsyk5lTQl2Dkj7w8VJGhJvNMlk5JdTUtRMfE4yrix0p6QUYjKZJpxWeyHqNe7Y+wYreJWx/fI9IKwiOa0Qq4ThnePpgZVQMZtnM/duepry9etxji8saSdtehKeHA6sTwwdEQV1DO5u2HUKlkli3ah4e110I1186of30tHWxLbuE3QYrQgI9WLcqcmZFAUDUwuNaFMDIgsT/7vkE9hyEUy6Dqlo6u7Rk5pSwMSWP7m4d8THBrEuOPHFEgdkMusm16s0EPlELceyblli6NRN9V/eEjlOr1MiyzAVf3sJZn9+ArYOKNbsz6UXFlrQCenr1Yx/bFyHw9nQkfXsxNXVtAKhUEnHRwfj6OJOxo5jmli5WJ4ZjoVGzJW3ikYN+UXB/wq1kPPiZKEgU/GIQEYNhHI2IwVg1BY09zax450IAtlz6PgFOfkOOk2WZ/Xk15BXWERrkwdJFikeBLMsUljSwZ38V3l6OxIW6Y+HmPOE8fmVhDTt3FKG2tSYm4fBFbkZFwY49sGs/XHfJmC1nxxOyLPPHnx9hhe8SLpUj6HnuHQ5eexWl9Z1YW1mwINKXQH+3KU89nCwzJgr8YuD+O+Dm38/8Jo/Ajlffx2w0EXnWyTjN9Z3UsYNNkL698DXMehUpGYUAJCeEjXuXPzhCEBcdxJw+0ySzWWZ7bilVNa3ERQfj4WrP1owC9HolcjBeOmiwKPj7yjuQ+v4ORUGi4HhGOB9OkdkWBkcqNKxor2H1h5cBQ8WByWRmx+5yKqpahjgWGo1mdu4tp7yyhfAQLxZHeKFKOh/WrYR//mXcvej0RnbtraCiupU5Hc0sT16IVd8H9oyKAoBn/gtvfKK0zJ1AaHUG8grqKCptwMJCzbwwH0KCPNDMcNvheMxo+uDd/0H0Ipg/OXvt44Eh4uC8l5E++ZEU71AMSKyKPzxpcTTMZpntO0upqm0lPjp4iDjI3lVGZXULccuD8HBzOKI4GE0U9CPEgeB4RgiDSSJJ0i3ALSjplYjZEAYT7T4YLA4yrvgUF0sXMrKLaW7tZkVUIP5+roBisZuxo4Subi3RSwII8O/zJ/hivTKRbpyJhTV1beTsrsBsNhO1eC7+fi4DH3AzLgr6MRpBozny644D9Hoj+UX1FJY0YDQb+armc9auWM51yy46qvs4UWsKZot+cfDemoc597f/Rnv3TaRGRtHVo2NlXCju48ycMJtlsnNLqaxpJW550MDfkVmW+4zBWlgRFYSnhwNb0wvQ642sTowYIg7GEwX9CHEgOF4RwmCKzFbEYLItiRXtNTy38x3uXX4bWTvKMBhMJMSG4OGmfPBV17aRnVuGlZWGhNgQnB1tlLY6y/Ev4jq9kd37KimvasHHy4nl33+NbYAfXHcxMEuiQJaPq/bE8TAYTBSWNJBfXI/ZLBMW7EnEl1/S++KruNzeO7WRzVNkVkRBWRWkZMGVF05/rWNEXVcj3vYe0NGJ0d4Gs0kibbviepgUG4LXOPUeAyKgqoXY5UEEzDksDnJ2lVNe2UxsVCBeno4jxMFEREE/QhwIjkcmKgxOjNu3E5yp+BTMdfLl7oU3k5JWiKwxsWCZBx5u9pjNMvsP1XCosA4/b2diogKxtFArF99TLoPT1sBfbx6xnizLVNW0kbuvArNZJnZZIAFzXJA+7QbZDMxipODHFLjz77Dtc8XD4DjEYDRRVNJIfnEdRqOZkEAPIsO8sbG2APXpWC5fyM2qLVy/XulXn21xMGuRgpw9cPN9cM4p4Hz0Lb9ls5nKrF0c+uYnNFZWrP37nya9hre94ur5fMGXfJn/I98mP8aquDAydhSTur2IuOWH6wiGo5IkYqICkSSJ7J2lyLKs1IpIEtHLAkCC7NwyYqICWZ0YTkp6AVvT8ym238M9aRMTBXC4lRHg1ltvBRDiQHDCICIGw5jpiMFURMGAY+G+Srw8Hbkz7y+06tr46cJ3qCrQ0tjUyaL5fkOHIJlMygyCeWGQNLTtsbtHz659FdTUtTPHx5lli+cqF7xBzJooANifDx9/DQ//+biLHBiNJopKG8kvqsdgMBEU4M68cG9sRzEm6m9lLGuv5rsLX5+1sc2zmj7o70iwOnqjrgdj1Or495xY9F3d2Li5cHd5JqopppfSKnPYefXlnF+owbVgO9YWNmTnllFV3UrMskAC544tQmVZJmd3OaUVzcQsCyBorvvhx/dUUFreRMyyAHy8nPj85+30aHU0uhZz7+rrJ/VzF5EDwfGESCVMkZkUBlMRBSaTmZ17KiirbFaKCRf4UdVRy43/e5gLnX+Hi7UTSTGHbY/Hw2yWKSip5+ChWiws1Cxb5H/4Tspkgu82wbok1tftmD1RcJxiNJooLmviUFEdBr2JwAA35oX5YGc7ynv/7mewt4PV8ciyjMFswFJtSZu2A2frmb3r/jXUFHx++e0c+PwHAH6/4T2CVsdPea3cjf/jgS8eoCdpKd/+9nVsLGzI3VNBSXkTSxf6Ex7iOeaxsiyzs++10UsDCA44LA527q2gpKyJJscy/przCC/MexYntROrE8NxcpyArfiw8whxIDgeED4Gx5ipiILuHj2bU/OprG4hdlkgSxfOQTbLNFeYuNrtOqoNVTxU+QC9lsN+nu9/Cff/R0kn9NHQ2MlPWw+y70A1QQHunLZ2wdDw6t48+N3NZP7w4eyKgl4tfPUjdHbN7LpTxGAwcbCglu827mPvwSp8vZ05fd0CopcEjC4KAJ5/W/keo4SILdWWlLdXE/rqSRMb2TxBjpoo+PMj8NTrs7P2BIg859SB/8/7+qdprRV18gX89d53yK7bx/9tewqVJLF8yVwiQr3Yvb+SA/m1jHXzI/W9NiTQg5zd5RSVNh5+fPFcOmwacO8I5O9L7+GidXFYW1uwNaOA9o7eSe1RDF4SnGiIGoNZYCqioK6hg+07S1GrVaxdGYmLsy3tHb1k7Syls0vLskX+rHD1ZsO3X9NjGPbB1NoGTS0gSXR169h7sIqqmjbcXO1YlzxvwCp5CMsWsnXDY5y+/f84LSR59iIFufvh4ltgx3ewKHLm158gOr2RwpIGCksaMJnMBM11JzLMCzvbCYTUf3xfibAMYq6jL7+bd8aM1Rwc1UiBgz1MZJjWLBF26irUlhaY9AYOffMTpz95P9I0vC2SatQUVp6K7S13AMqFePF8Pywt1OzLq8FgMLJkwZxRUwCSJBG12B+VSiJ3r9KlEx7ixb+3v849uU/w0tKn8esJo6q2ndUJ4WzNKGBresGkIwei5kBwIiGEwQwzWVFgNsscyK8hr6AOLw8H4pYHY2Gh5mB+LQfza7G3t2LdqsiBHu30yz9FkiS69T20atuZ4+gDt12N3mAk70AVhSUNWFlqiI0KJGCO65j50PXFKZy74/7ZFQUAidFQuA38vGdn/SPQqzVQUFxPcWkjMjLBAR5EhnpNfriRWj3ky36HRGDa4uCopw8e+OPsrn8ErBwdCF6bSOGGrXRW11Ozcx9+MUumvmBlDT4Zh8Cooqi1jAdTn+O10x5hXrgPFhZqcvdWYjCYWL40ANUY4mDpwjmoVRK791expWw79+xQCg1vTDqTPQeqyd1bgSzLrE4IJ0WIA8EvHCEMZpDJioLuHh3bc8tobu5iYaQv88K9aWvvZUdmGe0dvUSGejM/wgf1IDOd/gv9LT89xLbKHaR63kZn+HIOVbZiMstEhnkTGeqFRqMe67Rs++kj3G5+gKvujOP5o1FT4D85l7uZoKNTS35RHeVVLahUEiFBHkSEeA3YR08YWYbfXAW3XQ2nrR7y1GBxcPfmxzgv/BTcbEavhh+LY1JTIMtQUw8erkdsb50tIs8+mcINWwEo2Zw+PWFwwRlw4ZkANFTl803RJmo/b+DbC18jNMgTC42a7F1lGIwmVkQFDfl76keSJBbN9yOzdhcuXX48v+zf3Jx0DiqViqUL5yBJsGtfJQDJA90KQhwIfpmIGoMZYjKiQJZlyiub+WlLHj09OpITwwkN9mTXvkp+TslDluGkVZEsmu836ocYwAPxt3OR7XlkSHPYV9yIv58rZ6xbyMJI33FFwfriFO746e/o5njw/JUvzq4oMBiUFsrU7Nk7xzCaW7pJzy5mw+YD1Na3syDSl9+csoglC+ZMXhSAkkJwcx2zir9fHORe/TVuNi5j5rNH45gVGu46ACFJsCfv6JxvFJwD/Qf+X989uZz9CPqjAI3NJMyJYv1v32BH3T7O+vwGuvU9BPi7kRATQk1dO+nZxRiNo09m/Pf217kp507qbErx1M5lX14NsiwjSRJLFswhItSLXfsqKa9sJjkxHBsbC7amF9Amag4EvzCEMJgBJiMKenr1pGcXsz23DB8vR9atnkdXt44Nm/ZTVtHMogV+nJw8D1dnu1GP79Ua2Huwmj1ZTUQ5J9JsbOa1mqdxD1SPaEEcTn9L4ty4ZFZs2oql/Sz3sbd1gJc7OIz+XmYKs1mmsrqVTamH2JR6iPaOXpYvmcuZJy9iXpg3lhbTCIxpNPDu07Bm7Mp5SZIIdp6LwWTgwi9vnVBB4jHtPpgXCp+/AmFBR++cs813P0NAPNQ2kOQfPSAOfvvVbciyjJ+PMyvjQmlq7mJbZiF6g3HI4YPNi247+QKWLvQnv6ieXfsqB8TB4vl+RIZ6sXt/FWUVzSQnKOIgJb2AtvaeSW1XiAPB8YxIJUyTiYoCs1mmqLSB/Ydq0KhVxEcHIUkSW9MK6OjUMtfPhcUL5ozaPw/KmN/iskbKKptRSUpoPCzYkyZ9E098+ATfFW3mluVXjLnPflFwll8iH/lei0W3DhxnOYzs4QbvPTtry+v1RkrKmygqbaCn14CHmz0JMcrUvNFyyVPCYIAeLTjaH9GDQaPS4G3vfsSag2PekmhjDb9Zd3TPOYwhtS8z0TK9cgW8/yz0Rcv6xUG3oWfgXF4ejiQnhJOaVcjW9AJWxYdhbWUxqqNheIgnarXEzj0VmMwyy5fMRdWXbpAkiT0HqpBlmeT+moOMAlYnhI87r2G074FIKwiOR4QwmAYTEQWyLFNT186+g9V0dGkJDnDH1dmWvII62jp68XR3IHZZIK4uI++q9QYjFVWtlJY30dreg421BQsilCE+lmoVnHIZc+/5A7uv+QZHK8XXoNegxcZi6OCXweZFHy6+G4vFpyuV9slxs/ON6aenF1raoG/c7kzR2q6IpPLKFmRZZq6fK2HBnqN3X0yXrF1w8qWw9ycIDx73pRMpSDzmogCgqxve+BjOPQ0C/I78+lnAaa4vCXfdgCRBwKrYGVjQAc4/fchDSf7RAJhlM8/seIsbl16Cm6sda5IiSMkoYEtqPgdtdnBP6uiOhiGBHqhVKnbsKsNsMhOzLBCVSmLhPF8kSWLvweoBcbAto1CIA8EvBmFwNIyJGhwdSRSYzTLVta0cKqyntb0HNxc7HB1tqKtvp1drwNvTkXlh3ni4DzUq0umM1Na3U1nTSn1DB7Is4+PtRHCAO96eTofH/Hb3wO0PKmOM46MA+PDAN9yf+jSbLzk8lXGEo6EJKCqDuX6Kac9s8shzygWoNGPaSxmNZiprWigua6KltRsbawuCA9wJCfSYWu3ARGloVmYLnLEG7Cb2gd/vkPhS7gdkXPEp8X7Kz+e4EAUAJRUQexZ8+TqsnIGL8vGAXg8ffg2rVkDw3CFP5TeXsPztc4n1Wcy3F76GnaUtXd06vt68k3ZdJy1uZdy3+oYxO3gqqlvYvrMUPx8X4pYHDfwNHjhUw4H8WhZG+hIS5MG2jEK6e3WTFgcgTJAERwfhfDhFJiIMxhIFZlmmtbWHqtpWyitb0OoM2NlaopIkOrt1aNQq5s5xJTTIY+CDQ6830tzaTWNzFw2NHbS0KblKd1c75vi64O/rMuHWuuEjmw82FR1bR8OiMqium3JkQpZlWtt7KKtopryqBYPBhLenIyGBHvh4DRJJxyGyLPNF/o+cH3EqkiQdP6Lgl0p3D7gthneeht+dNeLptMocTvv0mgFx8GLu+zyW9jrPRDyFk8aRVQlhuIxzMa+ubSNzRwneXo7ERwcPFAUfyK/lwKEaFkT4EBbsSUpGId19BcXjrTcaQhwIZhshDKbIkYRBa2srJ510EnfffTcWFhqsrS3QaFSYTTK9WgNms4wkHU6batQq3N3scXezx9HeGp3eSFe3js4uLe0dvXT36AGwstLg6eaAt6cj3p6ORxYDbX0/02GDcPrFQY+hl1ZtO6cFDxMFJRXw+ofwp+uP24FGvVoD5VXNlFc0096pxdpKQ6C/G8GBHtjbHWWP/8ZmxTr6nFPA1XlKS7y37yvuT3uaTl23EAV96PRGjEYzkqSE0yVAo1Gj0UyxHlqWwWwe4TcxmH5x4GXnRklbJfcn3Mq9sbeQur2Iri4dK+PHH9tcW99ORnYx7m4OJMaGDOz1YEEt+/NqmB/hQ1iQB9uyiuju1pGcED7p9NZgcfDoo4/yt7/9bVLHCwTjIYTBFDmSMNi2bRuXXnopTz311NTWB2xtLbG3s8bJ0RoXJ1tcXeywt7Oa3FCeNz6GW++Hzjylcn4Q7+z9gqt++Avedu6U37xtaKRgxx645m747u3Zzy/XNynDky4994giRKc3Ul3bRmV1Kw1NHUiShJ+PM4H+bnh5OB676MDuAxB3DmR8BVELJ314q7adyNdOoaGnmfsTb+EfK++c+T1Olp9S4PFX4Ie3j+owJZPZTE1dO6XlTdQ1jPxMUqkkfL2dCfR3HZo2m0H+sOEBXtn9IffF38zDq+5EkiQMBhNp24toaeshMTYE73HGNtc3dpC2vRhXF1uSVoRi0VfsmFdYx76D1cwL9yY8xJNtmVMXB5VVtYQtWIdOpxORA8GMIsYuzxJJSUlccvHF9Pb2Ym1tPe7FXKNR4WBvjaODIgA83R1wdLCZmQ+8k1fB1/8d8fD64hRu+PE+Tg5M5O0znxiZPohZAvs2Tv/8E6GxGf7xrFIxPoow0OoM1Nb11VM0diDL4OFuT9Tiufj7umBpeRz8ei6eB935496JjkV/+sBoNnFR5Ok8nP4icx19Z31k8xGxtYXAOUfN3MgsyxQU1ZNfVI9Ob8TNxY4gOzMp9/4LJIl555/OsisvpKNLS3llC2nbi7Gy0hAwx5UAf7eJh+QvvRUuPgfOPnnUp5/Ieo1Xdn84UGiYU7eP+W6h2FnasjI+jMwdJaRlFREXPfbYZi8PR5Ljw9iWVci2jEJWxodhaaFmXpg3kgR7D1Qjy7AqPpTUzCJSMgomJQ6qqmtZGHUGlpaWXHjhhaIgUXBMOA4+eU8sVCoVjz/xBDfdeCPvf/ABr73yNJbWo3+ImIxmtFoDXV06yitbALC3s8LVWYkSuLrY4exki2YME6Nxmeur/BvEaKOTKztquPaHv/H66Y8OFCQeNRaEQ/PegS9lWaajU0tNfTu1dW00tXQD4O5qz9KFyuTHI3kxHHWm6OE/vKZgiec83G0f4vr192GrseHSBWfP8EYnQVLMiNHcs0VPr57tO0tpbO4iJNCd0CBPnBxtKE/bQfde5XfDYk00vt7O+AKRod60tvdQXqnUlRQUN+DkaMO8MG/8/VzGj6ppLJSQ3CgMb0nsNWo56/MbmO8WOlCQmBgbwvbcUjJ3lBDVN1xpNNzd7JVOhMxCUjKUtkcrSw2Rod5IHG5lXDlJcVBVXcuCZWcgy5D9738T8eyzhF53nRAHgqOOEAZTQKVS8cqrrwLw+6v+wFuvPU5w+CJq64ZGZmSUfDmAr7cTHm729PQaaGntpqq2baAewcnRBldnO1ycbXFxtsXJwWZMx8MB9Hp48xNYHQ+RoaOKAlBSr0WtFaz58HK2XPo+AdklcMeDsOVTxXxoNpEkerUGGho7qG/spL6xg16tAbVahbeHI9FLA/D1cprdroLpotXBZbfBrVePa3I0mLEKDV84+SG87TxImhM9mzs+Mi1tiuBxnl2Dq6qaVnbsLkejVrE6IXzIqPDBF/jh6UwXJ1tcnGxZPH8OdQ0dFJc1krWzlJLyJqIWz8XRYWg77gDvPj3qw6P5FNha2PD5uS9w+mfXctbnNwyIgxXLg7Cy1LBzTwVanYH54T6jihE3FztWJ/a1KaYXkJygeCJEhHohSbB7f1Vf5CCMbZlKK2NyQtiYxmWDRcHmzZuJzMqCoiIeDAqi4847hTgQHFWEMJgig8XB1Tfcw1uvPc5JJ60hY0fJqK+vqWunpq6dOT7ORC8NwMHemraOHlpae2ht66a5tZvSiiZkGVSShKOjNc5Otjg72uLsaIOTow1WVoN+XBoN/P0ZsLdnvUX1mN0Hc5182XrpB6z+8DLWfHg52056ljkXnDEr3xOzWaajs5fm1m6aWrpobummq1sHKOLH388VLw8HPNwdphYlORZY9omWCWZ/xus+kCSJ+xOVD/jm3la2lGdxYeTpYy01e/ztMcgrhG3/m7VT5BfVs+dAFX59v+9Ww9NCE6inUWoOnPD1dqK2vp3cvRX8tOUg4aFezA/3GVqo2NOrdCYMS1mNJgr66TdBGi4Oli3yx9ragv15NWi1BpYtnjuqYZaLky2rExWDoy1pBaxOCMPGxpLwEC8kSRpwTVwVH8a2rCJSMgpZFR+G2zDPkuGiIDo6Gn7/ezAYkH74gSfvuQcQPgeCo4coPhzGRH0M+jGbzdx044389403eOu1x7nwgjP5cctBjEbzqK9XqSTMZpk5vi4sjPQdcvdjNJpp7+ihpa2HtvYe2tp7ae/sxWxWfkbWVhocHWxwsLfC3t4aG0lmT0chF2+8mXVBCeO2JPZ3K1ioNey79vtptS7KstKBoXRWaOno7FX226HsVQKcnWyVbowffsRjXiDWZx9bp72jwWRaEvsvWK+f/s+jX3Ow7xC0d85KOkGWZfYcqKKguIHIMG8W9ZkBDacyM5c311wEQNztV3PqE/cdcW2jycyhwjoOFdZhbWXBskX++Ho7Kev/7we4/A4oyxyIhI0nCgaTVpnD1T/cw/qL3iDUJXDg8ZLyJnbuKcfX25m45aMPXwLo7NKyNb0AtVpFckI4drbK31ZRaQO5eysJC/ZkQYQPqVlFtHf0khQXimeff8moogCgthbOPBOCguDjj5E1Gu666y6efvppUZAomDKiK2GKTFYYwEhxcNkl5/R59mvHOIfSmmUwmAia68aCSN8xrZDNZpmubuUC3N7RS0eXls4uLV3dWkwm5Wdnls3Y2Vhha2uJjbUlNtYWWFtbYGWpwcpSg6WFGgsLNQ29TeS3FnOK4wJUWTuRzj0VUD7MZbOMySxjMpkxGk0YDCZ0eiM6vRGtzkivVk9vr4HuHh3dPbqBc6tUEg721jg72vSlQuxwdrIZqNb+RWA0KsOUxqngn6xPwWATpGMiDmYBs1kme1cZFVUtLFvkT1iw55ivrczK5c3VijBYcdtVnPbv/5vwebq6deTuraCuoQMfLyeWLfLHvqdLGdbV5344UVHQj9FsRKPS0KXvRkLCzlKpB6ipayMzpwQXZzuSVoSMOXejq1tHSkYBsgyrE8MH2mqLyxrZuaeCkEAPFs/3JT27hOaWLhJiQzAZe0YXBf383/9BdTUEB8MFFyDPmyfEgWBaiK6ESSJJ0i3ALUxhsNTwtALAFZefR8b2Ymrq20e8XpbBYDDhYG9FdW0bFdUthId4ERnmPeKCqlJJODrY4Ohgg7/f4SLHH4pS+OO3j/Lu3oW4JSSgTYqjp1e5eHd09KLVGdAbRpsi58jXVILGE77bdcT3JgGWVhpsrC2wtbHE090BOzt37G2tcHSwxs7Wavwui65u6OwGn7EvEsc9i09RLjiP/HnUp6diXjQR++RZ44MvISQA4qJmbEmT2UxWTim1de3ERwfh7+c6/ut1+imfy97OipVxoVTXtrF7fyU/bj5AZLg3keeciprJiwJQ5lwAXPz1H+kx9A6kFXy9nUlOCCctq4gtaQWsjAsdVcTb21mxJimCrekFbEnLJzkhHEcHa0ICPZAkiZ27y9EbjCTEBpOdW0ba9iJefvnl0UXB3/8OO3cqdxD19fDpp/Dww0g7d/Lkk08CIq0gmF2EMOhDluUXgRf7IwaTPX40cfD7y88bCKuORmeXDksLNb5ezhQU1VNa3szi+X4E+LuO+2G2vjiF875UagqirRejWRwM80Z2HJjNMnqDEb3ehMFowmg0YTKZaW9v4ZEtz9Jjreb/Em7Gw9YVSSWhVkmo1SosNGo0GjVWlhosLNXTG0h09yOwPx/Svpj6Gseax/8G/r6jPjUdR8N+caA62kNO//MqnH3KjAkDk8lMZk4JdQ0dJMQG4+vtfMRjSjYftsn2iAyd9DklSWKOrwveno4czC7g4MFqKsqbyLfZyz3pkxMFg/lr3I2c9uk1Q2oO3F3tWbsygm2ZhWxOzWdVfNioBZC2NpYDcxi2piviwMnRhuAAdywt1GTtLMVgMOHva8OXX//IDTfcyP33e42MFCxYAB0d8NRTcMst8Le/we7dEB6uzFYQ4kAwy4hUwjCmkkoYzPC0wpVXnE9+cT179lcNOsfIgXIhge7o9Eaqatpwc7Fj2WL/USuYx+o+mCzD7ZNnrZVxf74SNZjBu9PjhdmwOd5df/DoOCPK8oQKAI+EyWQmY0cx9Y2dJMaG4OPlNKHjXoo6ncaDhSBJ3FWagb336K2BE2JTOu33P8W3f7sdlcmaJttKbl13PqoptpoOt0/uTyv09OpJzSykV2tgZVwobmO4JGp1BrZlFtLTq2flijDcXJW/4/rGDlKziigqKuK5557njTfeoLOzkyVLlhDed9E/vIgWKivhpJPg3HPhlFPA0VHpJomLQ1arRVpBMGkmmko4QUrDTxz6IwfXXXstV99wD++89wURIV7ELQ8aeI3SeTD0uOKyJrRaAwkxwRhNZn5OOcTOPeXo9Yfnxo8pCnL3w833KZawE2Tu1v0c+NILZJk1H15OTWf9tN73mCyMOPFFQXoObM0c8tBsiIIfS7ax7K2z+e+eT6a91hGZIVGQnl1MQ2MnSStCJywKelva0PZZevuvWDY9UQBwUiKvPnkKVx24gVbrWrx7g9iWWURP79TSFUn+0Wy46E2ya/fyVeFhM7D+iICjow1bMwqoqRs9sGhtZcHqhHAc7K3ZmpFPdW0bAAZ9N//4xz/w8PDkxRdfZNWqVURGRrJnzx527dqF2WyGjz6CggKwtobQUHj+ebjjDvjTn+DiixWh8J//DEQO7uxrZXzxxRen9F4FgtEQqYRZYLS0wpVXnI+FhZrUrCIAzPLIyEFTSzcdXRXELw+ivVPL/kPVVNW2sXTBHA7o9g+kD0ZECrp7YNd+aGyZuDeBsyM2wUGknP8vHt/7Du62o5s0TZuSCvjmJ/jDFUfVfndGeeEt6OpRPCOYvSmJpwSt5Oaoy2a35qC1HS68Cf7552kJtn5R0NjcSVJcKF4eE4+u2bg6c2dRKjU792HU6qa8BwDMZp5Me4V7Mp7i/oRbuXnlOTQ0dZKdW8ZPWw4SvTRgTBfD8Ujyj+bQ9T8yx1EZGW6WzagkFZaWGlbFh7E9p5T07CKilwQQFDDyb87SUkNyQjjZuaWkZxcT6O/IyaddhCzDvHnzaGlpYcuWLSQmJmJnZ0dubi6dHR3EP/wwlpddprQrPvwwvP46vP02pKdDQwPk5MA55wCItIJg1hCphGFMN5UwmNHSCk3NXWxJzx8QBP3ioL+NsZ+lC+cwx8eZPQeqqaxpZX/3foot9/PWef8cPX0wA6HhHbV78bR1m9m0wk8pcNVdsPcncB+/IO24pacXLDRgYTHrUxJnvVuhqQX+/E9liNaiyCktMUQUrJicKJhp3nvzIS64/X3eePlSbr387wPheJ3eSM7ucqpr2wgOcGfpwjloptgp8+aez/jg4Dd8c8GrA2kFsyyTu7eCkrImFs7z7bNEHvn3J8sy6dvzqanv5ueff+b6668nJiaGnp4e0tPT6ejoIDY2FktLSzIzM7G0sCBx+XKcWlqUCMGf/gTNzbB3L7zzjiIQLCygsBDmzIHkZGXwkkgrCCaAaFecIjMpDGB0cdDa3sOmbXlDIv8qSYk0GE2HH/T3c6HVqZIHfnqJm/1uwlHtxMJIX8JDvEbvBCgshaq6CTv0YTbD5z/AogjkyFCWv30ObdrOma050PXdEZ6o0YJBHK3Ryf3i4GBTET9f/C5q1fHT+mk0mUnfXkxTy7EXBU9kvcaj65/gf3UrWPvC20gWQx00ZVmmpLyJ3fursLWxIG558KQHGoFSc3D6Z9cS471oSM2BLMsczK/lQH4toUEeLF3kP6JQt9+nIDl5NZdffjm+vr7ExcWh0WgwGo3k5ORQUVFBRHAwQV5eZB48SHd3NzExMfj7+yuLfPwx5ObCv/4FUVHKjIv9+8HHB/LzwcJCiAPBhBDCYIrMtDCA0cVBZ5eWjVsPYjQd/v5rNCpkWR7wCACo0lWSo0rlv2f9k4LCRgqLG3BysiFmaeDID7mr71LEQer/JhY9MBiUVryrL4K//GF2CxJ7esHGekZy20edz75H9/NWkuKLZl0U9CPLMlqjDhsLazp1XThYjT0OeFL0apV/Lk6T/lkYjWbSs4toaumasigwm0yopjCQajiTaUns6NSyfWcp7R29LJzn22dbPLn3PpY4AMWrIHdPBb4+zsQuC8TCQnl/w82LfH19yczMxN7envj4eBwdHZFlmYKCAvbu3o1HQQHRf/gD+woLqaysJDIykoUeHqgefBDuvhvCw6GmBlxdobgYHBxg7tyBfQhxIDgSovjwOGK0gkQHe2tOXbsAS4vDH5JGoxmNWq1EAyRFHMyx8ue3tlfQ3WVg6UJ/1q6KRJbh52157DtYjWlQhIGnH4Qf35/4B76FBWR+DX/5A3DYPhlgzYeXU95ePTPfgPxiCIiD7Uf2TTge6e7pYNOhLUdNFICSP7axsKams56I10+ZuYLE7zaBbzR0dk3qMKNRGU3c1NLNyriwKUcKPr34Ft466RIyn30Do25q9QX9oiBz12L+XhV4xIu8o4M1a1dFEBbiyd6D1aRkFE66MLHfPnlH3T7+svXxIc+FBHqQuCKEhsYONqbk0dbRO6qjoa+vL+vWrUOWZTZu3EhZWRmSJBEREUHysmV0RESwJTOT0NBQFnt6kn/wIGk5Oej37YPSUnj1VcVsy9pa6U7YswfuvRduvBEaG0VBomDGEBGDYcxGxKCf0SIHvb16Nm7NQzuo+0DSmDEYzBgxYC3Z9O0LohYrE9/MZpm8wjry8mtxsLciZlkgroP91+ubFC/81RNMKQAcKoK+fvKK9hou+PIWXj/9nzNzETSb4anX4dJzwddr+usdRY5W+mAsZrzmoKoWsnfDeadNWEAa+kRBa2sPK+ND8XBzOPJBo6Dv6uYJvxhMOj0Ovl7cWZSKNMmWwn5R8MCKm3nowzqkpFi48sIJH1/f2EF2bhkmk5mYZYH4+ThP6vzZNXsIcZmLm83IgsbOLi0ZO0ro7NLy3/++QUZGxqiOhkajkdzcXMrKyggICCBq8WIsbGzo7e0lMzOT5uZmlgQF4bhlC1khIVhaW5MUFYXj4sXw2GNwzTXKv127FGdEtRo+/BDWrAFE5EAwNiKVMEVmUxjA6OJAqzOwKeUQ3X13MWbZTA/d2EsO2Nla0t1z+O4mNMiDpQv9Uakk2tp7yN5VRntHL5Gh3syP8FH83G97QGmv271B+dA4Ej+lwNnXQs73SnshyoeLJElojTqae1vxc/Ce8e/F8c4QUXDRWyz1WXhMUiHH0j7ZYDCRur2ItrYeVsWH4e429ZTGwS838NklSvV89A2XcuZz/5jU8VNxNBwNnd5Izq5yquumXphY0V7Dg2nP8sLJDw5JK5RX1vDkc5+RlJSEg4MDp5xyCuox/gbLysrI3bED68ZG4uLicI2Kwmw2s3fvXgoKCggICCAiIoKsrCx6e3qIDw3Fe/Fi5eDubkVwq1RK5M/SUvnabAaNRogDwagIS+TjlLFaGdetnsc3m3Ix61RISNhLDtjaKKLA0cGajk5l7kJRaSMdXVoSYkJwdrJl3ap5A9GDmro2YqICcf3HXUrIcaK53LWJ8PkrMD9s4KH+D907fn6YjaXp0685kGV45T0IDYSTV019naPEYFGQ43gjQcHnQcMucJza3fJ0GGyffOemRzk7dB2edm7jHzQWqdlKZ8J5px3xpXqDkdTMIjo6e1mVEIb7GIY+EyX/m8OeAJFnnTypY4eIAvt1SN/+DGetm5JQs7LUkBAbPFCY2NjUyYrooDFHIo9GdVcdnx1aT3l79UDNQVV1LYuXn4ksw7nnnktrayubNm0iNjYWZ2fnEWsEBgbiptORlZbG5uJiFtvbExYWxtKlS3G1tWXHnj10tLYSHx3NnueeI9VgIMrWlpCGBkhIUBaprYV//xu8vJQiRX9/+OorJJVKtDIKpoyoMTgGjFZzsLkynesP3kS73DJwUe7VGrC1saSzS4uzk83AZ2BDYyc/p+TR1a1DpZJYEOHDuuRIJJXEpm2HOFDfjdnNVckjp+cceUMaDfxmnXL3Mcwk6b74m4EZqDmQJPh6I2TvmfoaR4nh6YOgtafDK/9S7syOEf3iIOfKL/G0c2PKkb7//aCkdY6ATm8kJb2Qzi4tyQnh0xYFJoOBgvVbALBytCcwecWEjx0RKfhiPfz96ZH2oZNAkiRCAj04OXkeGo2azdvyOVRYN+Hva7xf1IAJ0lmf30BBWcmQmoK1a9eydu1azGYzGzduZO/evRiNxhHrOEREsPaqqwgNC2P37t2kp6ej1+uZ29XF2r/8BV1PDykZGcyLiyPE35+dubnsefFF5NxcZYHiYvjiC+VveN48xQCpLz0jag4EU0WkEoYx26mEwfSnFV7/9r9o/qDmjNDVfHTWM6RlltLW3guASpKwstKg0xtxcLCmu1s3MNLZwkLNyrjQgQ9ts1nmYEEteQW1ODvZsiLlZxzf/BDytigdAUfin88rRkmfvzrk4RnrVjCZJh7FOEYc65qCiWAym7jq+7+QPDd2ammF/hD0GGi1BlIyCtDqjCQnhOHsNPkWv+GUbM7gvTN+D8DCi87ignefntBxY6YPWtuVzooZwGQ2cyCvhkNF9Xi6OxAbFTjmtNPhpFXmcOonV6Mr0mPzPxu2bN4ypKbAZDKRn5/PwYMHsbGxYfny5Xh7eyt3+hddpBgYRSp+EtXV1WRnZ2NlZUV8VBQuDQ1o584lfedOWltbiYmJQafVsnvPHvz9/YmNjVXSFHq9kkro9zKprVW6F6KiQJIOpxXee5rnHnyO2269bUa+b4ITD9GVcAIwEDk461qM35k4u+ckbK1sWJsUiavzYSMVnd6IhUZNd7duYMohKPnfLWn5lFc2960nsTDSl5NWRmI0mti4LJGCT95Etp6gh8DCCKVgcZhYHNyt8OmhH6b+htVq5aJUVTv1NWaRMUVBRyd8uUEJwR8HqCQVjlb2XL/+vql1K4wjCnp69WxJz0enN7EmKXxGRAHAoW8HpRHOXjehY0aIAoADBcqTMyQKANQqFYsXzGF1QjidXVp+2nKQqprWCR0bqPKD98Fij8UIUQCgVquZP38+p556Kra2tmzbto3t27eja29XZh94HLaD9vPz4+STT0aj0bA5PZ1yJyesnZ1ZvXo1/v7+bN++HcM33xAfH091dTXbfv4Zfb8o0Grht7+Fp5+GwEBYsUIpSESJHJx929lobtFw+/u3i8iB4IiIiMEwjmbEoJ/RChJNJjMpmQU0NXcDykVfrVahkiTUaglra0taWrsH1lgQ4cP8CJ+BOyqj0cy+vGoKSxrwdLMjpnA/dleeP+5FYQijOCm2attxtnJEkiR0Rh1WmimYFv35EVi/FfZtPK48DcaNFBSWwqKT4acPYNXEQ+CzyZQKEr/ZCI+9qLwP+5H59M4uLSkZhQAkJ4ThYD+BKNME9/pM6Eo6qutQW1rw56psrI5QqzFqpGBTOpx5JWR+BcsWzsjehqPTG9m5p5yqmjaC5rqxdJH/iFHo/QxvSVy+fDkv57zMlUuuxM5y5PdXlmVKS0vZu3cvkiQRFRV12MRoECaTiZ2pqZQ1NBDu68vihAQkSSLv/ffZb2VFYGAgAfn5ZBqN2Hh6smrtWmysrODaa+H885VOhcBAOPlkUKtJKUvhjA/PIGFOAvN2z+P5p58XBYm/UkTE4ARitJoDtVpFcnw4nu6H0wQmkxmT2QxIdHVr8Rs03vZAfi3Zu8r6nlfMkpYt8ic5IYyu1i422PmyY9PuieVQX3kPLrl1ROTAxdoJSZL4qmAjC984Y2o1B1dfpOTrjyOOmD4Ings1OZAYPfoCx4D+moP+2QopFduPfJCHGyREjyoK2jp62ZKWj1otsXZlxIyJAoCC7zfRUV0HQNDq+KmJAoDVcfDl67B0wYztbThWlhrio4OJWRpAZXUrG7fm0TxIgPczmk9BSWsJ9/x8D2d9dBbd+pHHSJJEsKUlp334IR52dmRmZpKVlaXc9Q9CrVYT4+7O0m+/pbCmhtTUVAwGA/OvuIIVK1ZQUVHBIR8fVqpU6M1mNm3aREdXF7z1Fpx1Ftx0E8TFQXExeU/dx//uOJkE/wS+ueQbnn3yWVFzIDgiImIwjGMRMehntMiB2SyTtr2QuoZOANR9Vsi2tpb09uoJ8HejuKxpYA0PN3sSV4RgaXG44URvMLFp0346dUbm+DizfEkAVlbjNKR8vwm274YH7lCKmoZx1EY2HwVOhJqC8ZBlmY/zvuN3885EJU1N5ze3dJGaVYStrSWr4sOwtprZIsuc1z/kp3v+haGnl999+jKRZ4/dkTCmKGhsVoTNUaSzS3FMbG3vISTQg/kRPlhbWYwqCvpJq0jj9A9OJ8Y3hm8v+XZk5GDPHrj1VuQvv6Siu5vc3Fw0Gg2xsbF4eY30+GhoaCAjIwMrKytWrlyJvbU1DZ9/TrqlJbZ2dsTExJCdlYXOYGDlypW4urrCf/4Dr7xCU6AXPTkZdLs7Eri3Ehtb5fNMtDL+ehE+BlPkWAoDGFscZGQXUVOv/BzVKgmzLOPkYENnl5awYC/yi+sHogEO9lasig/DznZoqL+iqoXc7EJUVpbERAdPbEzuGMOZpiUO8grhkefgtcfBbmZy2FNhwqJAluGau+Hy8+GkxKO7yUnwY8k2qjrruHbJRSOfbGqB/flK1GNQd0V9Ywfp24txdrIlKS50iBPnTNJZ28Ce978g8e4bx/QfGFMU7DsEqy5UogWTMe2aAcxmmYLievIKlI4FHy87zjn/92i1ulHNi2CoOPju0u+wtRj7d7ynp4cdO3ZQX1/PvHnzWLBgAaph6b7Ozk7S0tLQ6XQkhoXhsWwZ7e+/zzYbG6TeXuKefJLdDz1ER28viYmJePX2UvDhCyRrXyLRM5r3fv8VNo6uSgtzn9AX4uDXiUglnKCMllZQqSQSVoQOpA5MZsV8qL2jFycnW/KL65gX5jWQC+3s0rEx5RAtbUPDmXOdLDn18X/h3N1BalYRuXsrBjocRuWz7+G3N41oYVTWOlyQ+IcfH5jcm7SygrIqqKmf3HEzyKQiBZKk3LH29By9DU6BH0tTuW79vaMXJG5IgdN/D52Hfycqq1tJzSrC3c2eVfFhsyYKABx8PEn6802TFwUAkSHw6F8gYfms7W8sVCqJyDBvzjh5IZ7uNpSUt/Doo//iyy+/JCpq9LHVSXOTWH/Zevwc/dCo+iJuqalw3nnQMfSz2NbWllWrVrFo0SIOHTrE1q1b6enpgQMHICICDhzAwcGBk046CWdnZ1Ly8ijPysLpoos46aST0NjakvbHP7JoyRLc3NxITU3lx9Z8lvEyC8MSeX/pw9joTPCb38CiRfDNN4BoZRSMj4gYDONYRwz6GTVyIMtk7SylqlqpmO4f1ezuak9TSxfzw70pq2qhp88pUaWSSIgJxndQLQJd3ch2thSVNrL3QBW2tlbELQ8aferclkz4+Gt45qEx2x0r2muwUGvwsfec4e/A7HGipw/GYtyCRLNZKaKMCAGgqLSB3L2VzJ3jSsyyANSTtCaeScYVBS1t4Op8rLY2QH/6wMXFlZdeeomuri7s+wyJAgICsLQcu71xT90eInaWY/3mO/DJJ6Om5wAaGxvJysrCZDIRHxqK1zvvwB13KOOV6StK3LmTsrIyFi1aRKSbGwZnZ9LS0mhtbSV+6VJ2lO6np7mHVGMqTybciU3kQvjnP+Hzz5WCxL//XREcfYjIwa8LkUqYIseLMIDRxYEsy2TnllFepbTO9YsDTw8HGho7iQj1orG5k5bWw3e3y5coMxaG8Mm3dLR2kRW5RJk6F+lLRJj3iLGxE6W+u4nrfvgbL57yd+Y6+U7soOIyxUnwKOaOpyUKtDqYaOvnMWKwOHj3N//mioXnjXj+wKFaDhbUEhbsydKFc6ZsLTwePc2tbH/xHeLvuBZrp7GLDccVBSlZcMGNsPXTAavuY8FoNQVtbW0cPHiQ6upqVCoVc+fOJTg4GFdX1yHvQWvUEvpcKOFu4aPXHAxDp9ORlZVFQ0MDixcvJjw8fMh6sixz4MABDh48SEhGBssefRSzpSWZ3/8/e2cdHll9tuF7JO7usnHP7sZ9F1iKayneUrRFWqBIKS2FFgqFDyq4FZcCLcV1Ja6bjbu7u0zGzvfH2UySjW42WVbmvq5c2Z058ztnJjNznvPK835Bz+QkHze9TJDvToJkQWzdupWA/n6xEFEqFSNfGg0MDopDmeLidGvqxcHJgT6VcJhIJJJbJBJJFVDwQx/LLEulFSQSCbHbvfH2EE+mWq2AVCqhr38cZ0dLaht6sbEyWzAcZn9pG+VVnQs7EsprsCw6wKkpgQT6OVNe3cW+rDomp5aYeLcnB358k5ijXIYZtZLKgQZ2vHslbaNdqz+5aQXEnQ//2qCpgWvgiETBEy9AyCmbd3AbxGy3wh8SbyXBbZt4Y3U9nH8d2rZO9pe2UVXXTXiI26aJAoDMvz5Hxl+e4Z8hp9D4fdaS26w6+2B7GPz+tgVW3Ueb5QoNra2tSUxM5JxzziE4OJje3l52797N7t276eyc+6wZP/08RUXbKWzPX7ZbYT6zRYYBPj6UlpZSkJu7wDFRIpEQFhZGtKcnTYmJZO/fD4Dgb8RoUy7n+/+Ci7ddTGBgICUlJVTZ2CBIpeLApddfhzvuEI2PTj8dhod1a+rTCnrmo48YHMKxFDGYZbnIwf7SNppaxY6E2ciBq7MVXT2jeLnbYmgop76pT7eOl4ctMVu9xbHOWq14BSER/90/NEl+cQtKlZrtEZ54uc+78ikogcefh1eeAOvlX5P5BYn7rnhn9chBXjFEhqzNlfEIOeL0QVk1VNXDpeceU/4LqzGqGKf4y/dJebOAvHvupntgnOhIL7Z42W/aPkdaOngmYhcapQq5sRG3VXyPpbvLgm1WFQVj4z/IXIr5rNR9cCharZaenh5qa2vp7+/HwsKCoKAgPNPTkTU0kHXjGZzx9hnEusWuKXJAcTFtt91G4e23Y2ltTVJSEqamC9N9PT095OTkIDGCm8p/QaRbJH8J+QvNjc2EhootnZWVlQQFBRH+zjtIMjPhueegtha2bIHY2AXr6SMHJz76VMI6ORaFASwvDorL2mls6QcWioPu3lHcnK2xtTGjrGrOb8DRwYKkGF8MZgvN9pfD9XfD/15F6erMgbI2WjuGcHe1ISrSEyPDw5uzNSsOZFIp5dd9ifFaTJAmpza1O+FErSlYC38r+Bd/TH+aF8KewVhjSny0D67OG+cauBQf//w3lL33CQBJd93EaQ/fveD+VUXBx1/Drx6A3E/gEEFxtDgcUXAoAwMD1FRV0dXTg6mpKZGRkbi7u5Pdns2V/72Sr678ihCHVd6DExNQXs6wpyfZBw6g0WhITk7Gzm5h2q321mvZH5PIuJGGS868BJuBYar/+EcqzjuPgIAATExMKC0txdfHh+3BwUjMzOY6jT78EMrLYccOOEWMhunFwYmNPpVwgrFcWmF7hAf+PmL9gFYrIJVI6OoZxcXJmq7eUXr7x4nb7q378u3rH2dPVi3TCpW4sKcrREWApTmGBjLioraQEL2Fvv4xvt1bRU/fvPfOgQq49GaYml72OGe7FR5Nu2ttoiCrEPxSxHqDTWDDRIFGA//9CuqaNvYAN5nr/C/hOd+nmJhSMOLYuumioKe0irL3xcp3E1trku+6acH9axqdnBQDd94Ibj/MqO8jEQUA9mZmJN95Jz8aGsLKyorc3FzS09MJswyj/rZ6QhxCUKgVK6cVzM0hIQEbNzdOO+00zM3N2bdvHx0dHbpN0lvSeaf+bfr3v4GruSvZGdmM2dsTEhrKtoAA6urqGBsbIyoqisamJgoqKtD29Ig1B598Aj/7GXz8MZSU6NbUpxX0gH7s8nHFciObt4Z5IJVIqG3sQyuIrYxdPSO4OlnRNzCORqMhKc6XvKIm1Goto2PTfJ9eTVpiAJYOdvDK4+IOBofB0hwPN1vsbM0pKG4hI7cefx9HwkPckBsaituMjoOpybLH6WnliqeVq2iFW/gaFwX+aHmfg+1hcMvPwH7jCxA3NFIglcKNvxVNnwJ8Nu4gN5GBoQmysuqw6xmnV5rDXfUfoTWaWd/gpTXy/e+f0Dlmptz7S4znpZ5WFQWCINaeONrBHddv2jGuxJGKAkBsx73wQqzi40nZupXu7m5KSkr47rvv8PX1JTQ0lKs/vZrBqcHl0wrd3fDqq3DddRi7uJCWlkZBQQE5OTlERkbSbdjN2e+dTeJVaXx62aeghoyMDPbu3UvyDTfgb2+PgaEhhZWVqFQqYmNjKSwsRKNUEufvjywoCCoqwNNzrktidBSsrHTiAPQjm09W9KmEQzhWUwnzWS6tUF7dRU29aD0rkYjfsy5OlgwMTWJmasi2cA9yi5pRHIwWGMhlpCQcnM6oUkHsubArBR6/HxDDivVNfZRVdWJuZkRc1BZsLE3mFl8l1z6iGGP7a+cDR98hcVPSB6PjYGl+XNQYtHcNU7C/GRtLE5JmBjDcGc9tex/B19qTO2Kv3ZR9zp+gaOXpxq3l3yI3EqNGa4oUvPwe/O1lyPvkB6kv2BBRMDgIdotFrkajoaGhgcrKSmQyGaZeplz01UXLOySWlcGPfgTffAMREYD4eSwvL6empobdI7tpNmnmk8s+EX0KHnsM5U9/SlZHB8PDwyRFR+N86ql03nYbuW5uODo64u3tTUFBAU5OTiQmJiLTaKC/XxQIzzwD2dmQlQUhIbr96dMKJxb6VMIJzHJphYgQN4IDxPCrbgJr7xi2NmZMK1QUlbSRHOuLpYVY7KdSa9iXVSdOkjMwgAfvhF9crduPRCIhwNeJXWnBSCUSdqfXUF3fi7ZvQHSiy1jZn9/a2FJngrTz3atWnq3wxW4471oxZH+EbFpNgZXFMS8KBEGgqrab3MIm3FysSUsOxOj0FCQGBjy96486UVA1UL+x+9Vq+f73j+v+f8qDdxyeKAA4JQF+efXxKwry8sDLC/IXfy5kMhmBgYGceeaZ2NnZMVw3zHsJ71HWXbZ0t0JEhBg1OCgKQPw8DlsO81rfa+y02snvPH+HHLn4nvzgAwxLS0lNTcXR0ZGswkLa//hH3M4/n5SUFPr7+2lsbCQ+Pp6+vj6ysrJQ33GH2J0wMCB+YdxxBwQELNifPq1wcqIXBscpS4kDgPBgN0ICxIKt2WBQX/8Y1pYmaDQacgqbiIvagoPdweFMgkBOYRMNzX1w/uniwCDFDGQX6fZlZWnCqalBBPg5UV7dyb6afia2R4onylWY75C4892r6BzvWXpDOxvRyGaF+oW1sKmFhv/9Cq761catt8FoNFoKiluoqOkiNMiFuEBHZL+4T1cXMXtC3teaR9grZ61vZPMyVP7nK7qLKwBwiggm/LLzgDWKArVafM/5esNtP9+wY1orGyIKALZtgz//GaKWd2g0MTEhKSmJ6OhoZgZneDHkRQYGB3i/4v1Vl5+dkqi2UpOQlMDQ4BB79+5lWioVnRIvuQS5XE5SUhLu7u7kGRvTpNXiZGVFWmgoIyMj1NTUkJCQwODgIBlnn43qn/+EK6+Ezz6DP/xBTCeUlkKR+PnXi4OTE70wOI5ZThyEBbsSGjjXKigI0DcwgZmpEVKphMzcBraGeeDpZqPbprisfc7r4O+vwsU3iqHzg8hkUiJC3NiZHMj0jJpvd51Lo5UDgloNh0yHO5RZcXCKVzy2xtZLbxS/HV5/CizM1/16bHr3gYFcjKwcg+k3xYyK9Jw62ruGiY/aQmigK5LuPiitWnS8aZ5x/HL7Fdzw1f0bJg5Uk1MYHRSKpz1yNxKpdO2RggeehDOu3pBo0eGyIaJgehpaWsTagjvuWNbZcBaJRIKPjw+nn346VqZW/N7j98QbxaPVaue8RqqrRb+B6mpgThQkeiTy6WWf4uXuxSmnnMLMjDizYVyhENOBr76KVK0mLi4OHx8fioqKqPnzn7G/4QbS0tKYmJigoqKC+Ph4RmdmSBcElDMz8K9/QVeXGKG44gr47W8XHK9eHJxc6GsMDuF4qDE4lKVqDgCq6rqpqJ4zG5JKJdham6JSa5meVpIS70dH9wi1DXMzC7w97YgOckZa3wwRwUvuT6XSUFLRTnPbIC6dbUTXV2Dytz+s+XjL+2qxMrJY2ufgm3RoaYebrlrzenBytySOjE2Tnd+AWqMlOdYXO9vVxdWK9snrZHpohIqPviD6hit4Iv/ltYkCELtdymvhpxcf8TEcDhsWKbj3XnjnHWhoAOPD8+TQarVUVVVRXV2N1ljLv0f+zVuXvoVZzyD89a9w772ka5sXiAITg7nC38nJSTIyMlAqlaS4uWGbmAhffAG7diEIAhUVFVRXVxNkY0P4aacxNjZGeno6BgYGbN26lfz8fEzlctJuuAGjf/xDbJNMTgYHB7CxWXCs+pqD4x+9j8E6OR6FASwvDmoaeiirnMvtS6USrC1NQQJjY9OkxPsxPDpNSUW7bhtnR0sSY3yRyyTw1MviVEGnxYY4XT0jFOXVoZVI2R7tg6eb7arHKQgC8W/+mP6poaVNkB54Upym99+X1pzPP6qiYHJKvAI3X8Wg5ijR0TVMQXELZmZGJMf5LpyoucqcgVlxsL+ngqyr/j038OcIWXOkoKsXnB3Ejo+jzIaJAhAdBA8c0HkBrIeBgQHSs9MZnRplr3ovL1z6AmaGZosiBfNFwSwzMzNkZmYyNjZGUlAQTiEL3/+1tbWUlpbis2UL2wWByeBg0tPTkUgkbNu2jcLCQoxlMtJOOw3jWWEzOgpvvw3/+x/87W8QFgboxcHxjl4YrJPjVRjA8uKgrrGXkoq5/meZTIKlhQlymZShkUmSYn1RqTTk7W/WRZ1trE1J9bXFKPUi+Mu9cDBnfCgzM2r2l7XR0TWMu60pUbH+GBmtfIJZ0SFRrQaZ7NgUBVot2IbDI/eILZY/IIIgUFHTRXVdD+6uNsRu80IunzcdsW8QvOLhg+fg3F0rrjOlmsbM0JQp1TSmS5x4Doc1iwKVCradCeecCo/dd0T7PFw2TBTs2yeeMO03xkVSqVTy1d6vmB6ZpmAmh/M8orgw85dEb0laVhTMolarycnJoa+vj9iYGDxbWyE1VXd/U1MT+wsL8cjNJfaee5i2siI9PR2NRkN0dDRFRUXI5XLSxsYw/eYbcY7CPfeI9RJPPw0HnRRBLw6OZ/RdCSchy9UcBPg6sTXMXbedRiMwNq5ApdLgYGdBVl4jEomE1AR/ZDLxLTE8MsX31f1M5n0+JwqWEJFGRnISY3yI72mmr72fr3dXiF0OKzC/IHHRbAX5wSrrojIxP74CRz19IJXCm3+HM3Zs7n5WQaXSkF3QSHVdD+HBriREb1koCgBMjeFf/yfWbqyARCLBzNCUvslBQl4+47BqDjqLyvjP1bcz2TcIHIYoALFW46k/HHbK6EjZMFGgVMK118LDD2/YsRkaGnLurnOxdLUk3jgZk48KuEK6dVVRACCXy0lOTsbDw4O8/HzqHn0Uiot19/v4+BAfG0t7YiI5TU0YGxuzc+dODAwMKCwsJDo6Go1Gw15g0shIfG5VVbBnj9i+qFJBayugrzk4GdBHDA7heI4YzLJc5KC+qY8D5XMpA7lciqmJIeZmRnT3jhK7zRtLSxPSc+pRKsXBLUaGctIS/bH+35ewLxdefWLp0G9XL9PpBez3CaarZxQPNxu2h3uuGD1oG+3ivP/cxAs/+hPxswN/QBQgiRdAaOCc+dIhnKw1BaNj0+QUNqFQKImL2jh748OtOVDPzPBS/Pn0Vzdgam+D5okLua/1X2uvKdgWtiHHfThsaPoAxBOlgwMcMsPgSElvSeevHz3IT92vx9baluTUtEVzEpZDEATKSkuprasjODiYsLCwBX+Lrq4ucnJycNBqSTrrLNRyORkZGUxNTREbG8uBAwcQBIEdO3ZgPjoKzs5www3Q3g719eKchYNtqPrIwfGHPpWwTk4EYQDLi4OG5j6KyxaKAxMjA6ytTWnvHCYq0hNnR0v2ZdcxOSV2G8hkUlJUQzimZ8KTfxBD/csgCAJt+VUcGFIhkUrYHuGJh6vNsttrBS1SiRSVRsXA9DAu5o7iHZ09Yv55iX39oKKgrBoKSuH6y47ePg/S2j5IUWkbZqaGJMbM+VEsQquFPz4F1/xYbAFcI4cjDnY/8CRZjz8PgCTAiYcu7eX+lIWiQBAEZpRqpqaUTE0f/GnrQfb6B1hcehYW8VuxMDfC8DDncayHDRMFk5NiUeB994HJkaVdlmJ+TcGbP3qT/Lx8xhXj7Ezdibuz++oLHGS2rmCLnR1RO3cinSfm+8rKyCopwdrQkJSLL0ar1ZKZmcn4+DixsbGUlZWhVirZ8dvfYnHLLeKIZj8/8WfXwrSUXhwcX+iFwTo5UYQBLC8OGlv62V/aptvOQC7D0FCGg70FLW2DRIa64+1hR0ZuPcOjU4AY3Y+P8sHDzQb6B8FhGQvjojJIuZjpz9+k2NyRzp4R3Fys2R7hiYmxwbLHevv3D/Np/e7FDonN7WLh40EL5h88UvD8m/DI09CWf9SK5jQaLSUV7TS2DODlbktUpOfi1MF8mtrg1Mvg3WcgYeVUwqHMioN/lX1Ew027cbNYPK+gq7iCV1IuRtBoQC7l+eu13HjRrdy9/Rc0tw4wODzJ5JSSaYWKtXy/GMhlWJgbYWlhgoW5MRbmRgd/G4uTQI+QDY0UZGXBRReJ9QUhG/veW1BouPNlTD74L/kpAXxXVYKvsS9bt20lOGDpTqGlaP34Ywqmp3GxtSVh1y5k80T2QFkZmY2NmJubk5qailQqJTMzk5GREWJjY6moqEA5OkpaUhJW7vMESV2d6MZ4zjnihEb04uB4Qi8M1smJJAxgeXHQ1NJP0TxxYGggQy6X4uJkTWNLP6GBLgT4OpJb1LxgkNI2F3P8z7lUHMF83hJFbYIAn38PZ5+KIJHQ0TVCcXkbWq3A1lB3vD3tlgwzzy9I1ImD0XHwS4bf3QZ3XP/DiwIQe+2l0qPmgDgxOUNuYROj49NsC/fAx8t+5TD9LEdwnIIgUDlQT5hDwKL7NEolLyVcQF9lHQB7T5Fw9p1/INY0nt7+8UXbHwkymRQnBwucHa1wdrTE3GwNQ7kOYcPTByBGDcw2titlUfdBZa1YPJiRQab1OO999x47rHbgtcWLmKiYBRGAZVGp6P74Y3JkMuzs7EhKSsLAYE6cDw8Pk/HddxjLZKSedRZyuZzs7GwGBweJjY2lqqoKhUJBWng41tnZ4OIiOiW6u8Pdd8Ntt+nW0ouD4wO9MFgnJ5owgOXFQXPrAIUlrbrtZsWBu6sNdY19BPg6ER7syv7SNlraB3XbBY33E35+MpLVzIj2l4O3OzMWFpSUt9PaMYSjvQVRkZ5YmC8Ogy8pDr7LhMQohmWqH14UHGXaOobYX9qKoaGchBgfbK3XcDJSzMCMck2ulKuhFbTc8u2DRDmH6tIKex/6OxmPPoPMwgLpeTvxOv9iDITFf0uZVIKJiSFmZkaYmRhiWlyG6SdfYvqPP6I2NmF8UsHEhILRcQXj4wpmDta0rISJiQEuB0WCo4MlhgYrRE3YYFHwr3+JOfZHHtnwSNFaWhKz2rJ47LPHuMr+KpwcxVkHRkZrE0r9/f1kZmRgaWVFSkrK3OMEgbHLLyf9rLOQ2duTlpaGkZGRrrshJiaGuro6JgcGSPvb37D55hv4/ntxhsPsd6NarTN00ouDYx+9MFgnJ6IwgOXFQUvbAAUH5okDQxlSiZQtXnZU1/Xg623PtnAPKmu6qa6fszP28rAlxtEEaU8fREcs2h8zMxByClxyjq4dradvjP2lrUwrVIQEuBDo56TrgphlVhxcE34RDySLVyTDilHOffOnVE91/vCiQBDg7GvgZz+GS8/dlF2oVBoOlLfT0j6Ih5sNUZGeGBqsMQ//zsdw2wNQnyHaTB8Bh9YcnK0N5eW0n2B7zjk4XHwxkkMc/kyMDfDzccTbww5jI/nCyIZWC7WNEOy/5L5Uag0TkzOMTygYn5hhdGyK3r5xVOrl3RBtrU1xcbLC0cESC3MjjAzn9rnhkYJ//EMsvHv22Q2NFq1FFMyS1ZZFW3cbpt2mGBkZkZqaitlaIheffMLQ739P5kMPYWxmRmpqKiaz9RETE0xotaRnZiIIAmlpYqFjXl4e3d3dREdH09DQwPjYGKlpadjZ2orPf88e2LsX/vtf8d9OToBeHBzrnJTCQCKR3AdcBAQB00AOcK8gCLWHscYJKQxgBXHQPkhBcYtuO6ODxWB+Po5U1XTh6W5LzDZvmlr7FxQuOvV0kfTWa8gzPlr6KqqqDny9dFXMAGq1lqraLmobezE3M2J7hCdODgtf54GpIexMbJBIJPRNDvDrv13Fs081MvDu4wScceEGviLr5PYH4aydcHrahi89ODxJ/n5xAub2CE+8PGzXljqYpatX7B654oINOZ5ZcfBiwTs8um87TuddhrGX14JtnBws8fdxwNnJCumhx7ovV7S5jgpf176HR0WB0N03yuDQxIpu1FKpBBNjA+Qy+OyL7xkcHOTGG28kNDQUuVyOVCpFJpMhlUp1PzKZDPlKFsZTU3NdB2uYKHo4rCgKamvhuuvE0cuBgQseNzY2xpfff4mJ3ITUlFRsbFYRgBMT8OqrjF19NenZ2chkMtLS0haIiqm8PNKrqlDZ2ZG2YwcWFhbk5+fT0dFBVFQULS0tjIyMkPrNN9jv2gWffy52KoSEwFNPie2nB9GLg2OXk1UYfA28DxQCcuARIBwIEQRhcqXHzlvjhBUGsLw4aG0fJH++ODCSI2gFAv2cqajpxNXZmvioLXT3jpJb1KwrKrM2MSA1LRhjo+ULC2lsgawi8Sr7IKNj0+wva2NgcAIPNxsiQ90xNTFc8LAPa77kp5/djZnEkIqBs3G+564VnfyOZzRaLdV1PVTXdWNjZUp8tM+6cuqbgUaj4R8vvICbSwySeQVsflscCPB1Wvk4z78ODA3gwxeO+DjUag39gxP09I3R3TvKxOTMEa8J4mAja2trbGxssLa2xsrKCnNzcyTd3aLRz9NPwwUXbMi+Zlk1UtDSAg8+KP54ey+4q3WklYQXE/id1+9wNXQlKSkJp4NX7Ksx2d9PemEhGo2GtLS0ue+43btRPPYY6XfcgUKlIjU1FSsrKwoLC2lra2P79u20tbYy3NNDioUFDmecIdaxGBuL6YT6erC11UcOjnFOSmFwKBKJxAHoA9IEQchY42NOaGEAy4uDto5B8va36LYzNpKj0QiEBLhQXtOJo70FiTG+DI9MkpknevMDmBkbkLb3a8zvuXHpE/cjT8MHn0P+p2A8dxIRBIHW9iFKqzrQqLUEBzgT4CumF4YVo+x450oqBupwNnMg5+oPxJqDeTnNHwylUuyWCPTdkOWGR6YoONDC2Pg0wQEuhAS4rK8a/63/wugY3HrNhhzX7LHlFzczNq7Q3WYil5CUGIitzdGteTiUqWklvX1jB7sgxPTD+IRiQYHdepFKpVhZWuJcX4/POedgdkiU5Eg4nPTBcmS1ZXH+O+dzn/d9eMm9iI2NxWu1Y9y7Fy65hOnMTDLa2lAoFKSmzos4CAIzSiUZGRlMTEyQlpaGtbU1+/fvp7m5mW3bttHZ2cng4CApKSk4Tk6Kn8VTTxWjKVFR8P7clEi9ODj20AsDQCKR+AH1QLggCBXLbGMEzL/ksQA6TmRhACuIg84h8oqaddsZGxmg1mgIDXKlsroLG2tTkuP8mJxWkp5Tx8yMWDRmODlBmrs5NqlLjJzVamF8ctmTg1Kloaq2i/qmPsxMjfDxs+HqfbfSNNLO2+c+yS3fPghAZswjuF11v2jzu8yAp6PCK+/Dr/8Ig2ULhM7hotFoqarrpqa+BysLE2K2e2NjdQRmOQ88CX0D8MKj619jHq3tgxQcaNVFhwQEArfYM2rZR+NoK9dGXrL0AwUB/vIMXH6+OMb7KDC/puC7774jICCAyclJpqammJ6eRqPRoNFo0Gq1uh+NRsPMzAxjY2NoVpns6OzsjL+/P05OTmvrCFiGNYsClQpGRsDaekGYfj5ZbVmc/fbZ3Ol9J8HyYMLDwwkKClo+9TQ5CU88AXffzYxcrvMuSE5OxsHBQdymrw/l+eeTedddjEokpKSkYG9vT3FxMY2NjWzdupXu7m4GenpIevJJnN99V5ylcNllEBy8yB5aLw6OLU56YSARPx2fADaCIKSssN2DwB8Pvf1EFwawvDho7xwid544MDE2QKnSEBHiRkV1FxbmRqQk+KNWa0nPqdOFdGUyKcmxPjjZmS9tgjQ4DHf8CR77LbguDn2Ojk1TVN7C4MAUDYp6dkaHkeAbpitI9Dd35ZsiP/jNTeC5xGTGo0V3nxgxiI1cd/Sit2+M4rI2JqeUBAc6E+y/zijBoWxAHlwrCJRXdS6YuqmQTnJOShS21mbctedRnix4dXkTpIEhSP0xPHgn/OScIzqWtXCkhYaCIDA5OcnIyIj4k5vLsFbL9BK5exMTE/z8/NiyZcvcwKE1cliRguJi8Qp8/35x/PIyZLVl8be8v/H7wN9TX1uPn58fW7duXV28qFSoQNeemJiYiIuLixiRu/VWVLfcQtbAAENDQyQnJ+Po6EhJSQn19fVERETQ39NDb28vSamp4uNArGUoLIQ33hDrDmzFoWp6cXDsoBcGEsmzwNlAsiAIHStsd1JGDGZZThx0do+QU9DI7LtDFAdqIkPcqajtwsTYkLREfyQSCZl5DQwNiyUcEkFL7IF8vB68ZfEJqqsXLroBnn1kyWK0WZ8Coxlz7vK5A+WUgLurNWFBroxohxEQ5syPNrgQ7GgxNa2kpKKDjq5hHOzM2R7hiZXlBjjo1TaKhZ5HmGZRqTTkFjUt8K4YMuzmhtPP1BnkrMkhcVoBJod34lwPm+JTMD4OJSVMR0fT3NxMQ0MDCoViwSYSiQQPDw/8/Pyws1vam2M+h50+GBmBjAzRy8Daek2HnV2aTWdtJ25ubsTFxS1fVFlUBBdeCLt3o/H1JTc3l56eHuLi4vDw8NBtpp6eJjsnh4GRERITE3F2dqa8vJyamhpCQ0MZHh6mp6eHBKkUN19fePNNcSKjrS189JF+8NIxyEktDCQSydPABUCqIAjNq2x+6GNP+BqDQ1lOHHT1jJCdv1AczCjVbA3zoKq2GwMDKWmJARgaysktbKK7d1S3ZmSoO4F+SxREzZ7QBUH8OXhlc6h5UYRjMK3tg1TWdDM9rcTLw46QQBeU0ml+//od/O31Poze/OeG5fkPm7c/BgP5mlsW1Wot9U29VNf1IJdLiQx1x9P9MDsOlkOlgi2JcP0V8OAd615mYnKGzLx6xifECJCg1dL7xhu4WRtyzj8fwshyLhU0Xxy8cfYT/DT8QqhpEK2YX3gUbDZmhsNKbLgoePdd2LEDXBdGo7RaLd3d3dTX19PX17foYZaWlkRFRc2F4w9hI2oKVkOpURL4TCA7bHdwtunZ2FjbkJycvLTXweQk3H+/+OPggFarpaCggPb2dqKiovDx8RG3u/xyNMPD5N5/Pz29vSQkJODq6kplZSVVVVWEhIQwOjpKV1sbCdXVuN9zDzQ2ihMnZTIx+jA9DRbi+0YvDn541ioMfuAqro3lYPrgaeBCYMfhioKTldmpjAA/v/FeAH529UW4OluTFOdLdkEjggDTChUmJgYcKG9nW7gHNfU97M2qJS0xgKRYX4rL2mhqHQCgtLKD6a4+IlMWDnHRiYJr7wJ3F/jzXcs6Gm7xtMfTzZam1gGq67pp7RjEztGEcmGCb6VtbB/rwY0fSBjsyQZz01WFgVYr0Nw2QGVNN0qlGt8tDoQGua5qznNYyOXw6WtH5FswPDLFvpw6VCox165UTtP9+JNMlZcjD/ZDZrSwY0QikfDMrgexMbYiyvngleHQKAyNgGz9Ofi1suGiYHJSnH9w003wu98tuEsqleLm5oabmxvj4+M0NTXR1NSESqUCxC/bvXv34uvrS0RExILix3WLgv5+0SPgoovEQU2rYCgz5K0L3+LMd85k2m2ay2SXsWfPnqW9DszM4O9/F/+t1SKVSomLi8PAwICioiJUKhWBgYFwyy3I1GoSEhPJz88nJyeHuLg4wsLCkEqlVFRUEBQUhLurK7lyOfHDw3hERIif77vuEjsr+vpE+2ipVDeVEeDWW28F0IuDY5QTKmIgkUieA64AzgfmexeMCoIwvcY1TrqIwSzLRQ66e0fJym/Q9ZCbGBugmFGxLcyTuqZeNBotaYkBWJgbUVnbTVVtt25ND7mG2DOjkR2a83zmdXBxZPjspDU5GqrVWprbBqip72FaoaJiupzsyUxevfghvK3XPlzmaKHVCrR3DlFZ283E5Axe7raEBrkeMy2I8+kbGCczrwHNwS6Tvqluxn7/OKrOLiRSKdelf4hbTOTyC6jVTGpm2NOWx7l+p2x6imdT0gcgnozt7NbkbKhWq+no6KC2tpbR0blImbGxMdHR0bi6uh5ZpKC4GGJjoaBgxRqDQ8lqy+LMd87kNLfTuM72OrRaLSkpKUt7HVRXi8Lj448hKAhBEBakCkJCQkRRLwhoCwooBNra2oiJicHb21s3qCkgIACFQkF7Wxuxn3+O1+9+B9dcI85TCAtb1Oqpjxz8cJyUqQSJRLLck/m5IAivr3GNk1YYwNrFgamJIVPTSrZFeNDU3I9iRi2OZ7YyXTSkydHegqRYXwwOuUqejRSMdLby4fVvr8nRUKPR0tI+SFV9F9NTauRdLYRFBeGzPWjlwUKbxSG1Diq1hubWAeoae5maVuHiZEV4sCvWR9JtsBJDI/Dz38Bf74Mgv8N+eGf3CDmFTbrOg/qpOjR/ewWhTHTDTLrrRk57+J6VF7n5fioG6wnfVrymkc1HwoaLgtpaePhheOGFdc0/0Gq1NDQ0UFZWhlar1d1uZGvETUU3Ee4Wvmnpg+XIasvi0o8u5ZMff8Jw7TDj4+O6GoEFTE3BrbfCH/8I81odq6qqqKioIDAwkIiICCT//S/85CcIlZXsn5igqamJqKgofH19qa+v58CBA/j5+aEeHaW1r4+Y0FC8g4PnCpDHxkRDpPPP173GenHww3BSphIEQTj+qtGOMZZLK7g4WZES709mXj2CIBbRmZoYcqCsnW3h7rS0DbE3u47UeH98vR0wNjIgt7AJrSDQNzDOnq+KST19q27C4qwoiP++gb/tliO/3nFNxyeTSfH1dsDHy56K6hp6mpWUdCuo+KYMTzdbtnjaY2tjujG5+5UYGIL48+GZP8MZOxgemaK5bYDWjiHUag2e7rYE+jljvRGFhSvRNyAW+tkefhqhqXWAonmzMg5MHMAoOwvJQVFgH+jLjt//evWFUuMI1URzs0MwN3x1P8CmiINNiRR0dormPErluoSBVColICAANzc3CgsLdTUIM0MzPLHlCeJj4jGWb34R5nySPZNp/FUjxnJjpp2mycvLIzMzU3elr8PUVJwBAQsEbkhICHK5nJKSEjQaDdsuuADJ998jCQoiShCQSqXs378fjUZDQEAAEomE4uJifHx88DY3p6CqCq0g4OPiIs5W+PWvxVTNzAz8/OcA+rTCMc4JFTHYCE72iMEsy0UOevrGdOIA5iIHW8Pc6egaYWR0iuR4PxztLRgYmiAjtx61WrySkkolJMf5YmSJLn2w78xnCc9ogusvW3cIemJyhv8UpGM144ByRoupiSHurta4u9hga2O2MW2AhyIIjD/6Al1pKbQqpYyMTWNsJMfbww4/H8dFLo7HGnWNvZRUzDXrZIxkYKvqx+D2/6JVq5FIpfx8z/t4xK8Qxu4dEEdiH2RN3QrrZMNFgVIp+gPM1rxsgJAUBIFv9n9Db30vJrI5Qejk5ER0dPTa5hrMUl8vXs0/8wz4Lz1fYi389OOf0jXWxZ8C/0RHW8fSXgfd3WLY/5lnICFBd3NjYyP79+/H29ub6OhosQXyo48QYmIoGxmhtraW8PBwgoODaWpqoqioCG9vb6RSqRhVyM7G9/e/h9dfh5/8ZEFUYhZ95ODoclJGDPRsHMtFDpwdLUlN8Ccjd2HkoKSig4hQN2QyCZm59STG+uLiZMVpqUHszaplRqlBqxXIyG3gi4lPdDUF4U4hEBgn7rSoDCKDlzV0WZaRXiz+cBdPnG3NC5e/jnJUTlvHEHWNfRjIZTjaW+DoYIGtjRlWlibI11EcJwgC0woVQ8OTDAxN0N0zynhoLNIhJS5OVoQFu+LsaLU5ImQ5unpheBRCF49HXonquh7Kqzt1//9i8Au83ExwvLuIQbVoWJV89y9WFgVtXRB9lth6esnZwFxBIkD3RP/hPZcV2HBRoNWKee+ICHjssQ2richozeDiby/mVI9Tudvjbrq7xFqb3t5evv76ayIiIvDz81tbNEsmEycYLuUHchjcGHUjZ7x9Br/n9zy59UnKy8tRKBRs3bp17jgcHCAyclHExNfXF7lcTkFBARqNhrjISKT33IPk6quJePBBZDIZ5eXlaLVaQkJCkEqlFBYW4unpia+1NfuTkhBGR/G7+25xwexsMXXz6aeiQ6KxsT5ycIyijxgcgj5isJDlIge9/WM6cQBzkYPwYDcGhyfo6R0jPnoL7q42DI1MsiejFu3BjdVaFZ7BZiQHzfMy6BuEoB3w8N1w808P7yCHR1Huuoyrd4xQ6GvM3ivexsPSlaHhSfr6x+ntH2NwaBKtICCRgKW5MeZmxpiaGmJqaoihXBw3LZPJEAQBjUaLWqNFoVAxOTXD5JSSsXEFihmxCt3E2ABnJytcjcCprQX5jzZ+mNKaePif8PRr0Ja3YFDVcgiCQGVNF1V1c1MyP+z/kGB/Z5K/mib3768C4BoVzrX7PkC2kkATBNEB8vLzwNzskLsE3UmnfqgFf1vvw39uB9m0QsOXXoItW2DXrg1ZbqlCw87OToqKipiZmZvpYGdnR0xMzFH9bslqy+KMt88g1i2Wp+OeprKscmEUYD5LRE86OjrIy8vD2dmZBF9fZM7Oum2qq6spLy8nKCiI8PBw2traKCgowN3dHWNjY+rr69na10fANddAcrI4S8HWVowizHvP6iMHR4eTsvhwI9ALg8UsJw76BsZJz6nXFa6ZmRoyOaUkNMiFsXEFHV3DxG7zxsvDjs6hfnbvq8FYNleEF73VCx+veRaqOfvX7yYoCLSNdbPj3SsBSL/yHTws5/rRNRoto2PTDI9OMTI6rTvhT03PoNEs/RkwNJRhZmqEmakh5mbG2NmYYWttislsmuDV98URx4NlR8XMZxFKJdQ0rskeWjjoZlgzz83wnb53iAz05KGUXzPR088nN95La1YhN+V/in2Az9ILzcxAZT1sD1t1nzkdxaS8cxkvnvHndaUVNkUU1NYumlZ4pKzUfaBUKiktLaW5ea5zWiKREBoaSlBQ0PIOhRoNKBTikKIjjBrAnDj462l/5RyncygoKMDV1ZX4+HidcRXj42KB4J13iqmFeXR3d5OTk4O9vT1JSUnI8/Lgiy/gL3+htq5O150QGRmpExKurq6YTU9TNzREpIUFgZGRolnT7LTK1lZwcQFD8fOkFwebj14YrBO9MFia5cRB/0FxoD1EHAQHODOtUNHSNkhwiAPXZv+atpFuXot6nomhuertkABnQoNcF4ZXq+qgo/vwxxqPTzD2wKP8NmqEv17yVyyMzNf43ATUGi0atQaJVIJcJkUmk64e8h0dF4cEzcuzH4sIgkBJRQf1TXPmPG/0vEFUsA8Ppfxa9zwFQaC/qh7HlVITT70Mjz4DtemrTro8kpqDTREFe/fCaadBbq7YCrgBrLUlsa+vj4KCAqampnS3WVpakpiYuPT3zBotkQ+H+sF6/GzFVEZXVxe5ubnY2dmRlJQkei8IAvziF3D55aLR0xLPISsrC2tra1KamzF46y346iswMdF1J/j6+rJ9+3bd+s7OzlgYGVHb3CzWIwQGiuOab7xRbJe85BI4mEoAvTjYbPTCYJ3ohcHyLCsOBsdJz67XhepNTAyZmlIS6OfElFJBe9soHw5+wP1n/4xIx2BKKzqom3eS8vKwJWar91x+/vp7oKEZ9n5wePnf/kFIvhie+RPsSqV2sAljudGcjfKJxE2/BW8PuG/lL05RFLRT3zSX83+l+xXiQwIXiII1o1RCcQWsVH9wyP4PVxxsWvpAqxVNgy6+eEPqCg7Xp0CtVlNZWUlt7ZzFikwm0zkKLmBoCL75Bn70I93MgY3i09pPea7wOV465SX25+/HwsKClJSUhS6Js+eFQ16ngYEBMjMzxcckJWFkYiK+rlKprlhxy5YtREdH66IMjo6O2NjYUF1dTVhlJSFXXQU33CCKg9NOA8eFHUl6cbB56IXBOtELg5VZThwMDE6wL7tukTgoVOQxqBjmDOszCQ1yJSTAGYlEQu2eYkrHtYD4xbPA62BqWrRTtVzHqF6VCgwMEASB1Hcup3O8l71XvL154uCx58DS/PDrIo6U/3sRnB3hqguX3UQQBA6Ut9PQLIoCAYGXul8iKSSEh1J+Tcu+PJwjgzFZ5cofgO8ywcsNlksxrMCsOMjuKKbgZ//BULZ8x8amiIKSElHQbFCUAI7M5nhoaIj8/HzGx8d1t4WFhREcHLz5bbbMmSDFuMbw9plvU5hbiJGREampqZiamoqfvauuEusvrrtu0eOHh4fJyMjA2NiYND8/jC++GF55BaKjaWlp0RUgxsTE0NfXR3Z2Ng4ODtj09lItCISGhhI6O0dhagp6euCtt0SL5oNpRL042BzWKgw237tUzwnFbLfC9dddx89vvJc33vovAPZ25uxIDkAqlYj2ydNKRjTDxBjHc2ngOYQFu1JZ00VZVSeCIBB4ynYSYnx1X4R9A+PszqxheloJpiaiKOjpF6MHY+MrHdJCDAxAqUTyxAu8l/gAADvfvYrW0c5VHrhORsfElMLR5q6bDlsUvND1gk4UDDe18d6Pb+L5mLNp2p298r4EAf70d3jixXUd6my3QsaV72IoM0Shnllyu02LFDz8MNx999xV8BFypLMPbG1t2bVrF25uc2K1oqKC3Nxc1Ae7QhgaEgcSDQ1tyDHPJ9kzma+u/IrCrkKu+uoq4lPiUavV7NmzRxQrcjm4uYHV0vMubGxs2LFjBzMzM+ytqWEqNlYX1fD29iYuLo62tjby8/NxdHQkOTmZ/v5+Bh0cCA0NpbKykoo9exC0WtHX4Lzz4LnnRAvlg8x2K9xxxx3ceuutPPvssxv+OuhZHn3E4BD0EYO1sVzkYHBogr3ZdWg0WjRoMDaSo1bCFi97rC2NOVDegY+3PdsjPJFKJPTnlJLZOob6YEGSsZEBaYn+4sTB6nq44jZ475nDc/Xr6Ye4c+Fvf6Tt1EhdQeKmRg6OFoIA//o3XHjGsjn+pUTB813PkxoazkMpv0bQaHjt1MvoyC8BYNvPf8J5z/9l5f2OjoNcBmZH5uA4ND1C/Js/5p74GxakFTZNFIA4yGdiYk0zB1ZjIwciCYJAdXU1FRUVutssLS1JSUnBrLZ2w2sMDmU2cnBx8MU8d/pzpKeno1QqSU1NXdpC+RDGx8dJT09HIpGQlpaGuVwuRuwsLHQFiC4uLsTHxzM0NERmZiY2NjY4GhlR2dFBkFpNeEQEktFRsV3S3FwsugRdwaU+crCx6CMGejaV5SIHUlMNb4y8ilKrRC6Ro1FJMDUxoLl1gKHhKaK3etHcMkBBcQtarYBDYiSnRbpiYiK2xilmVOzOqKG3fwyC/WH/l6Io0GrXfsXn7ACVu+GiM/G0cmXfFe9gamBMy+iy07ePjGmFWK1/NKhrgtsfgvKaJe9eShQ81/WcThRIJBIyH39BJwpsfDw544n7l96XYgbueEhsJbWyOGJRAGBjbMWuLUnc8NX9vFL6b2CTRMHMjJjHbmkBE5NjThSAeFUcEhJCUlKSrjNgbGyMb7/9ln43N7ErYevWIz7u5Uj2TObbq77loR0PYWpqys6dOzE1NWXfvn309/eLn7c774RHH13y8RYWFuzcuROJRMLevXsZu/Za+NnPAHB3dycxMVFXZ2Bra0tqairDw8P0KhSEGxpSI5dTptEgJCaKHgp/+5v4+JtvXvAa6SMHRx+9MNCzbg4VB8+98Tanv38NOYP5+EdaIpNKEQQBhUKNqYkBbZ1D9PaPERe1hY7OYXIKG9FotFiG+LIrNRhrjRIAtUZLRm49LW2D4kAbjQYuvRn+8eraD87cTBQTr76P54wRpdd+TppnHBqtht7JgY17Ebp6wS4CVgvHbxSBvtCcDalxi+5aThSkhUboREFnYSnpjzwNgEQm46LXnsTwEB8CHW2d8NU+8fcGMZtWuHn7ldzw1f08se+lzYkU9PWJ3QedG3Psmzk62c3NjdNOO03M7wMqlYp9GRk0tLevaaDTkZDgkYCXtRdD00PctecuYhJjsLa2JiMjg+6eHrG9cIXIqZmZGTt37sTAwIC9F17IyO236+5zdXUlOTl5QTdDWlqaOKrZwoLw8HBqa2speeMNhJYW+POfwd4edu5csA+9ODj66FMJh6BPJRw+s2mFl2tfwew0U7KueZ+tTiEMDU/q0gpSiQQjIzmKGTWuTlZ4e9qSV9SMvZ05SbG+yOUy1Pc/Tu6WULod5oa9BAc4ExbkiuTRZ2FbKJy5c4UjOYTBYdj6I/jTXfDznwDw232P80H1VxuXVhAEeOMjOC1ZHCO9mSiVYv53iZPFWkSBcnKKF+POY6ihBYDU393KzgduX3mfB4s5NxpBELjm43t4s/pjzF41Y98n+zZOFGg0Yih69vcRspmiYD4zMzPk5ubq5i0A+Njbsy0tbc5rYJMo6CzglDdOIdYtlv/95H+U7S+ju7ubuLg4PD09V328QqEgIyODqakpUpOTsa2thaQkQGxzzMzMxNbWluTkZF0KwtzcHM/6ekrt7fHbsoVtPj5I7OzEBbVaSE8X2ybntdPe9pvbeDbnWZ6+6mmdU6KetaNPJeg5augiB4HXMfn3KUq/FcPctjZmnJIciFwmRSsIzCjVGBvJ6e4bpal1gKQ4PwaHJ0nPrUepUiN/+G6Srj0Tvy1zYd/quh7y9zejuffmOVHQN7i2A7OzgZJvdKIA4OZtVwEbWJAokcA1l2y+KAB4+T2IOF0UCPMQBIHisrYVRQHAt799TCcK3GIiSV2u1fGTb+GqX4nh+E0QBQCdXT18/IvvMH3XdGNFwbPPitX0MzPHlSgAdJ0BAQFzPhJNAwPs27cPhUKxafsFiHWL5eurvqags4ALPriAyOhIPD09ycvLo6GhAZ56Cu66a9nHGxsbs2PHDiwsLNi3ezf9N94IjY0AODo66tIIs62OO3bsYHJyklY/PyKDg2lobqa4uVk0S3v9dVFUnHoqfPaZbh+TqklKw0oxPMOQ2/54mz5ysInohYGeDUEqlfLiiy9xw8XXL6g5sLE2ZeesONCK4sDIUE5v/zi1DT0kx/kxPq5gX3YdCqUaqVTKNmGCrf/9SLd2W+cw+7LrmFGq4fk3RY/+oZG1HZjdwSKqT7+D3gFdzQFsoDiorhdP2ptNUjTcdo3OKQ7mREFji5geWU4U1H25h/0vvwuAgakJF7725PKWx1KJmJffJFEwW1OAICH9/XSioqK4+9u7eaX4lSNfPCICUlLWZBG9GkdTFMwilUrZunUrsbGxur/d4OAg3377LcPDw5u672TP5AXiICo6Cn9/f4qLi6mytkYwMlqxzsfQ0FAsXHR0JOPBB+k1nzMYc3Bw0KUR0tPTMTMzY8eOHUxPT9PS1cXWoCDRB+HDDxF8fMRhTjk5cO65AEwoJzjznTMp7S1l77V7ueNn+rTCZqJPJRyCPpVwZCzXrTAyOsWerFrUai1SqQRDQzkqlQZba1MiQt3Izm/EwEBOWqI/phIBHv4nnddeRW5lN1qt+B41NTEkLcgBi33Z8NOL135Q4xMQcgrccQPceQMAbaNd7Hj3Si4NPotHd9x9ZE/6tQ/gvsfEmQWGR2+qoiAI7C9to6l1ThQ80/kMO8O2LhAF08OjPBt5OpMHIy1nP/1nom+4fPGCihkwPvIT6kosVWgoCAK3fnkrzxU9x8vnvsz1268//IVbW8HTc8MGIv0QouBQBgcHycrK0s1akEqlxMbGrim0fyRktWVRM1DD9duvRxAEqqqqqKys1Fker+a1oFarycnJoa+vj6SZGVxSUsS/DaIHQnp6OqampqSlpaFQKEhPT8fQ0BDf0lIObNmycI5DRQXTjbV88Mod3JYwzDdXf0uCR4K+W2Gd6A2ODhOJRHILcAtiFCVQLwzWz0riYG9WLapZcWAgQ63WYmVlwrZwT3IKGpFIIC0xAHMz8QQ1VN9ORm0/yoPzDORyKcmxfjg6WEB2kThbYS1Xth3d4Oa84MTRNzmInYk1MqkMjVaDTLrO0LNKJYatN7NQ7Nk3RHOhXSmAKAqKSltpbhVP9suJgtltD7z2AV/f/Qhb0uK47D8vLf5yVyrh1MvhnFPh3pvZDFbqPjgicTA6Cn5+cO+9K4a718qxIApmLZGn8/PJGh1dEC0ICgoiLCxs+TkLG8i75e9yfuD5dLV2ceDAAbZotUTt3o30pZdWFGEajYbcrCx6OjuJHxjA/Ve/0t03MjJCenq6aJCUloZSqWTfvn0YGBjg5+dHyYEDeFpaEpOUBL4+FDipGVWNY/XlXuJ9UnTr6MXB4aOvMThMBEF4VhCEEGDj7NFOUpZrZbS2MuWUlCAM5GJaQanSIJNLGR2bpri0leQ4X6QSCXsyaxkdmwbA9q4H2fXKC1iYi0OK1Got6bl1NJY2wdk/E6/W14K7i/hFllUI3WJxl6OZHTKpjH2teUT86+z1pxUMDDZXFAgCfPY9FJYCoBUECg60LBAFT3c+vaQoALGqe/u1l/KLgk859/lHl77iMzCAy8+HXamb8hRWa0mUSCQ8c9Yz3Bx9Mzd8dgNfN3y99sWtrMRpiddee8THeUyIAhCvsF9+GRMfH0455RS8vb11d9XU1JCVlYXykFqTjaZzrJObPr+Jc987F1cvV+Li4miRSMgND0ezSnuuTCYjMSUFN1dXcl1caGtr091nbW2tM0iaFQQ7d+5ErVZTX1/PtqEh2oaHySkq4Lbr3bjgx2osv0kXRcE8gaTvVtg89BGDQ9CnEjaO5SIHo2PT7MmqQaUSIwcGBjK0WgEzU0Pitm8hb38z0wolqQn+2I6NAqBycSK3qImevjmR628mITItAqnBGqcxKmYgeCdcdRH8ee7KcjatAEdggnTL78HRHv54++E/dq1oNGilUgr2t9DWKTriCQj8o+MfnBYetb7ZBwDN7bDFY4MPdo7D8SkQBIFXil/hp5E/xUi+SlpjchL27NHloY+UY0YULIEgCNTX11NSUqK7zczMjNTUVCws1mEdvkbm2yd/dvlnjA6MLh6+tAJarZaioiJaWlqIbm7G5557dJGG8fFx9u3bh0wmY8eOHWi1Wvbt24cE2CLRUjoxyf6J/Vy06yISJR7w+OPwv//Bffct8DrQRw7Wjj5ioOcHZ7nIgZWlCackB2F4UBCoVBqkEglTU0pyi5pIiNqCuZkx6dl19JtZgKcrBiolyV98jL/HnCNb/aRARmETyqJysbhwNYyN4Lt34cE7Fty8IQWJ/t7g7X74j1sLze0AaCVS8oqaF4iCpzqeWlIUaNVqWjLyV187PQ/Cd0FR2aYc+uGaF0kkEm6IugEjuRGFnYW8duC15Td+/XW48kro719+mzVyzImC4WFx4NPBK2SJREJAQABpaWm6k/Hk5CTfffcd3d3dm3YY8+2Tz33vXKzsrUhJSWGor4/0V19lZnp6xcdLpVJiYmLwVSop2rKF+nkDpGYNkrRaLXv37kUikYj/RyBnvI93+98lzjwayofRlpaKkxxvvRUuXGgFro8cbDx6YaBnU1lRHKTMEwdq0Qp1ZkZNdmEjsdu8sLE2IyO3np6+UWhsRfr2x2zTjBMV6alLb/b1j/Nd3RBjb368NmdEP2+xHqCqDjp7dDfPFwdXffYbDjuSdvv18LMfH95j1kJpFQTvRJNRQHZBIx1d4olCQOD/2v+PH4XHLhkpyHjsOd44/Uq++NUDqKZW+PJOjoGXHoOo8A0/9CN1NPyo6iOu/fTa5bsVbr5ZtAw+QlfDY04UADQ3i1Mgm5sX3Ozk5MSuXbt0UQK1Wk1mZiY1NTWH/55dI7PiwMTABAEBR0dHdlpbM2lqyt69exeMkl4KiUTC9iuvJMDfnwNlZdRWV+vuMzc3Z+dBQ6O9e/cyoZzguYHnmFZPc43bz9j2/W66JibItbFBU1Eh1pHY2sLICLz77oJ96MXBxqFPJRyCPpWwOSyXVhgbV7AnswalSoNUKkEuk4q/5TKS4/woreygt090S/SwNQETYxAE+vrHyC5s1gkKuUxCQowvLk5LD35ZgFoNYbvg9BT4558W3NU22oVCM0OA7ZbDe4IajWhX7Oa8vqmQy6GYQf3FbrKcfOkbnABAQMtjbX/l3MjkJUVBR0EJ/9p5KYJGg0Qm4/qMj3A99MTf2SMaQEUEb9yxzj+GDbA5XrYg8W9/E+cHpKUd8XEek6IAxPfo2JjoOihfnCpTqVTk5+fT1dWlu83Dw4OYmBjkS2y/kTQONeJs7oxGoSEjIwOJRLKmlIYgCFRkZlLd00OojQ0hp52me+9OTU2xd99eesd6ebTjUf51wb+YqJ9ArVIREhrKgQMHcHZ0JCExEdm554rFsvv3Q20tODkt2Ic+rbA8+lSCnmOK5SIHlhbGnJoahJGhGDnQaLRoDv7OyK0nMtQddzcbcouaaOw9OMXwt4/i+MhT7NoRPFeUqBHIzGug+uGXEUaWfb+LyOXw3xfh8cUzAjytXAmw3cL4zARXfnrn2tMK3X2w7UwxNL+BKGUy9jn46ESBFi1/bn14WVGgnJjk45//BuHgMJrU+25ZLAoAHvo7/PT2uaE1G8hGzT44tCDxtQOviSfML7+EjIwjPs5jVhSA+B61tV1SFAAYGBiQlJRESEiI7rb29nZ279696hX8kaDWqjnznTM5571zkBnL2OnggLS7m7179jAyMrLiYyUSCeHR0YTV11M5PEx5ebkuyqGVa/ln3z8ZVY/yqO+jRDhEsGPHDgwMDamsrGSbsTE97e3k7NmD5rLL4Pe/h/JyURTMu7jVRw42Bn3E4BD0EYPNZbnIwfiEGDmYUYqRA7GdUY4gCKQm+NPY0k9Dcz/hwa4EZWUgUavhxitRqTXk72+mq2dUtw9XCwPiUkIxMFhD+2FHt1iR72S/8OaxblLfuQJYY0GiIEBmgWjbbGG+8rZrRPH5HvaNShgzF9+HWjQ82PIQP9m2a9lCw89uvp/if4nDidxiI7l2z7+RLnVymZwS5zz4H2ZkZBU2YyCSIAjct/s+Lgm6mCj3GLE9VC4/Is+CY1oUgJhC+MMfxPkBW1b+G81OMtRqtYBoNJScnIy9vf2Kj1svWW1ZnPH2GcS4xfBlyF+Q/O4BMm6/ncmDkxntZm2NV6C2tpbS0lL8vbzw2xrCWe+eRWlPKV9e+iWT9ZMoFArS0tIwNjYmPT0dxdQUYdXVlAQE4ODoSGJiInKZDD79VHRHjIqCX/5St74+crA0+oiBnmOS5SIHFubGnJoajLGRHK1WQNAKKJVqpFIJ+7Lr2OJpR2igC+XVXZTGJiHcIJ60DVo7SIr1JSzIVbePrnEV3+2rYnRslSsnjQbOuBoefGrRXe6WLodXkCiRiIONNkgUTEzOsFtlphMFGoma3zXfv6IoqP38e50oMDAz5aLXnlwsCl59XxRDZqbHhSgA8SrwMccriDr3Rmbqa/iq5fsTWxSAKH46OsTfq+Du7s5pp52GiYn4PJRKJXv37qWpqWlTDm3WIbGws5Czqn6H5vOP2bFrF1ZWVqSnp9Pb27vqGoEBAWzPyKC+tZUnPnqCsp4yvrnqG5J9ktmxY4duyuP09DQ7duzAxMyM8pAQtm7bRn9vL9l796LOzIQLLhBHah+SxtBHDo4MvTDQc9RZThyYmxlxSkoQxkZyNFpBnMw4o8LQUEZ6Tj0uTlZsC/egrrGXwgOtaPOKIeJ0JFmFhAS6kBLvh1wmvqUnppR8t6eSto6h5Q9EJoPXnoRHf7vk3Yd2K4zPTKz8xDIL4I+LRcbhMjw6xfcZNUxKxZO6WqrkNw13cdX2s5cVBRO9A3z6y9/p/n/GE/dj6+u9cKPxCXjsOfj4MDwC1shmiQIdVlYQHMw7Xd9w1rtnrds++bgQBQABAbBvn/h7DVhbW3P66afjcLAQUxAEioqKOHDggC6SsJHMioOq/ioqB6ow7Ogg9aWXsLe2JjMzk87VplpKJLiddxalXZ8TIg/hnbh3iHMTJ4YaGRmRlpaGubk5+/btY2JigrS0NMzMzCgvK2PrF18w2N9PpkaDurQU3n8frhJnoDCv60EvDtaPPpVwCPpUwtFjubTC5NQMuzNqUMyokUklCIiiYWpaSUq8P1NTMxQcaMHFyYqElmpkl5ytMxgan1CQXdDI2Pjc0BkfL3u2hnvoRMOSjIyJ6QCbxcWLbaNdfN2cwY1bL1v5Cb31X3jhLcj4aN0DfHr7xsgqEMdRA6hkCn5dcyc3x16+rCgQBIH3LrqR+q/2AhB4zqlc+uELS3saDI+CteWGWQfDJouC0VHRZvrg1fCROCQeN6LgCNBqtZSWllJfX6+7zdXVlfj4+E0pSpxUTmJmaIamsQF+8hN4623yR0bo7OwkJiZmgTHTfHSzD3pK+fj0/zDUOIybuztxcXG6SZIqlYrMzExGRkZISUnBysqKjIwMxkdGiPD3p7SxEWtra1JSUjD4979FT4s33hDHbcfO+dTp0wpz6FMJeo55loscmJkacWpqECbGYuRAIoGJSQVmpkZk5NZjbGxAUqwfvX1jZLgHoNIIoitgViEW5saclhqMl4etbj9NrQN8n17N2PgybXtaLZxyKdz/+JJ3e1q56kTBm+UfL59WuPoiyP543aKgqXWAjLx6nSgw7u/kF9W3rCgKAIr/9W+dKDBzsufc5/+ycNveAfjl72BsXBQ+x4soAPFK8JJLdP89tCBxrZGD404UlJSAmZn4+zCQSqVs27Ztwd+hq6uLvXv3bsqERjNDMwBurX6SXbdZofDzIj4+Hm9vbwoKChYIlFnmi4JvrvqGU8s7SXzqKbo6O8nNzUVzsCDWwMCAlJQUbGxsdAIhLS0NSxsbShsbifT3Z6Snh8x9+1B1dIiLv/8+xMQs2J8+cnD46CMGh6CPGBx9lo8cKNmTWcO0QoVMJkGrFbC2NGV0fJqkWF/kchlZeQ2YmxmR8vILGE9MwCevAuJVQnPbIMXFzWgPRhOkUgnbwj3w8bJffJLdnQ0BW8DDleWYUk0T/qp4ElyxIFEQDuvkqxUEyis7qG3s0902wwB/yruDy8+8cVVHw5HWTv533V20ZhVy+ccvEzA7nnqWnP2iMPji9Q0dD73pogCgsFAcoZycvODm2ciBuaE5f9311xWXOO5EAUBfn3iSu+wycHRc1xI9PT1kZ2frTrSzg4s2wylx1iHxR6YRvFfsg/ypv1Pa3k5dXR1hYWEEBwcjkUgWiYIEjwRRmBcX0+3mRk5ODvb29iQlJekiHGq1muzsbAYGBkhKSsLOzo6srCyGBwaI+Ogjyi+5BEsbG1JSUjA0NBQNryorxdfwJ3Mj1/WRA/0QpXWjFwY/DMuJg6lpURxMTauQSUVxYGNjxsjIFPHRWzA3E6MIBjIJqdu9MLNbmAoYbWgnu7yLCelcGNXFyYqYbV4YGy1h56qYEYsSzUyXPM5V7ZNPvxJiIuGRe9b0vJUqNbmFzfT2z31GR016uan41/w+8ZY12xxrNRqa9+TgO2/I0vS0krGJGaQSCYZyCYbGhhgZypGtlFJZI5suCr7/Hk45ZcUZFLPfXRKJhJaRFrytvRdtc1yKgg1keHiYjIwM3YTG2avwzehYyGrL4ufP/4jv3gSnD77EODGV6upqKioqCAwMxCfIR9d9oBMF8xEE+l5/nSxLS2xsbUlOTta5PGo0GnJycujt7SUxMRFHR0eysrIYHBwkMjKSivJyzM3NSfXxwTAqCqKjxdHbn3++QKSf7OJALwzWiV4Y/HCsLA5qmZpWIpNK0GgF7G3NGRyeIHabN7Y2okOiViuQtsUKy7seguf/IpoNIQ5eKqlo140nBjAwkBEd6Ym7q83ciVerhdQfiy6A/3ho2eOcLw72XfEOnlbzogyvfyhGHU5NWvX5joxOkZXfyNT03DCcEaMmYn5xH0X3Xsz1v3hszbMPBEGgp2+M3v4xRkanGRmdQqla2qNALpNiaCjHxNgAO1sz7G3Nsbc1x9h4DVMqOQqioLYWQkLEK+Z5aYTlKOoqIuHVBJ4/+/kFNQfHtSgYGxNz5QkJosnRETA1NUV6ejrj46IPiEQiIT4+Hg+PjZ+PkdWWxVlvncEfdz7EbxJ/A0B9fT0HDhygUlXJ39v+ztdXfb1YFAAMDkJICAOPPEKmnR0WFhakpqaKUQBEcZCXl0d3dzfx8fE4OzvrIgmRZWVU+Ptj5uhIakMDRpdfLtalGBuLnR3zZjqczOJALwzWiV4Y/LAsJw6mFSr2ZNYwOTUnDhzszekfmCB6qxcujpZk5NYzPTVD6rtvYfvn28HXa27hxhY6r7mPgt/ciUoydxXq6mTF9khPTE3ELx8+/hoCfSBk5WrwttEufrPnL7x05iPYGK/BbXEegiDQ1DrAgbJ2tAc/fwZyKe0WNfz16z/weVkgW599CYnX8t4J4919GFmaIzUyprVjkLrGXsYnZjAzNcTayhRrKxOsiw5g1dyMcPv1KJVqZpQa8bdKjVKpZnJyhoGhSZ0wMTczwt7WXCcWLC2MF7sqHo30AYiudtu3rykls1RB4nEtCkA3dln3OhwhSqWSnJwc+vrm0lWRkZEEBASsb/DWCtQM1BAgc0T6+BMI99/PpCHc8e87ONXwVMzszThrx1m6AsNF9PeDgwNDQ0NkZGRgampKamoqxsaikZlWqyU/P5+Ojg7i4uJwO5h+6O3uJhKoMjLCxMSEtLQ0jIaG4IsvxOFL//wnnHGGbjcnqzjQC4N1ohcGPzwriYO9mTVMzBMHTg4W9PaPszXMAy8PW7LyGhgdmyYhxgcXa2NQz0sL5BWj2BpGUWnbAkMkmVRCWLAbfj4OyGZD11qt6LJ38GplJVpGOpBIJGJaYWwcMvIhLX5JTwOFQkVhSSvdvXP7t7I0odKwgN9kPswfEm9dNX0gaLW8cfqVKJ3csL/0MjSCBDcXawL8nLC3NRfTIcarTCacx9S0koGhCQYGJxgcmmRkdAoBMDSQYWVpgomJIabGBswoFfzmnocZGhrm1VdfJTY2dmNPKvX1oqPhddcd9kPni4O7Eu7iuaLnjl9RAKLlb1+fWF+whvfgWtBoNBQVFdHa2qq7zc/Pj61btyLd6LHh9fXMJMRy783+FHjJqeir4OMzP2a4YRjHWYOilbok/vc/Rvr7SXd01LUvzvo0aLVaCgsLaWtrIyYmBg8PD3Jzc+np6SEiIoLq0lKMLS1Jy8/H+NVX4bzzxBkL7guHnJ2M4kAvDNaJXhgcGywnDhQzKvZm1jI+OYP0YM2Bs6MlPX1jhAe74e/jSN7+Jrp7R4nKzcSnoQY+fGHB2kL2fjrUUoomJajmhdvNTI3YGuaOq6MFkjN/CglR8NCdqx7rqe9dTfNIh1hz0DkJ288SpzimLGyZam0f4kB5Gyr1XF+5r7c9e6a+5Z70v/JY8LXcI49DcnrqgtDnoWS/8C41XRNYREUxXVLMBbdfjpXVQREyPiGmQ269Bq5bpb1yGVQqDUPDkwwMTTA+OcPUtJLx8Wkmp2YWfJlLpVKMjIyQyWTIZDKkUumifxsaGmJtbY2trS1WVlbLXykCPPoovPkmHDgghoAPE0EQuPDfF/Jp7afs3LKTzy///PgUBZuIIAhUVlZSVVWlu83FxYWEhIQNb2f8vupzfvTR+UiQ8O1V33KKzyn09vaSnZ2NtbU1ycnJujTBIu66Czo6GHvpJdLT05HJZDovAxC/H/bv309zczPR0dF4eXmRn59PZ0cHka+9Rs2112JoYcGO4GCMvbzEguDJSSgrg8TEBa/HySQO9MJgneiFwbHDiuIgq47xCYVOHLg4WdLdO0ZwgDMhAS6UVLTT2DJAiLGW0NOj565sBQHO/CnY26D811OUVXUuqD0AsLU2JbSlDuctLkhSYw89rEUsKEj8yet4KYzA1UkXBh8cmuBARQdDw5O6xxgYyIjd5s07rR9w777HxUhBsxuS2x6A1rwl/RQA6kvrKaroQqtU0vPKK1z0yO1s2TEvX6vVwuMvwMVnbpiz4Wz6ACR88803BAQEMDU1xfT0NDMzM2g0GrRaLRqNZsG/tVotCoWC0dFRBEFAKpVibW2NjY0Ntra22NraYmFhsfBqdXRUNDNaB7PpgxjXGL668itkUhmGso252j7qtLXBI4/A/feDp+eGL9/c3ExRUZGugNPa2npByP5Ime0+qGjfz7X5KkovSuSTq7/EzNCMgYEBMjMzMTMzW36fGo34+ZFKmZiYID09HUEQFnRVCIJAcXExjY2NbNu2DV9fXzHN0N5ORGQktbW1GBgYsCMhAZOf/1wsRty7F5qaxFbQg5xM4kAvDNaJXhgcWywnDmZm1OzNrmVsfE4cuDpb0dUzit8WB7aGuVPb0Ed5dSfeHnZEdzYgPedU8ctmaATMTXUh2qHhSYrL2xecuAEszY0J8HPCw9UaA4OVr6YO7VbwtHSlf3CC6voeevsWfv7cXW3YHuHBPw+8NicKZtMHrZ2wRG2BIAjUNfRSUtHOZHk5nf/4B9uvuoCz5xdJ9vSD85GNID6UjagpUKvVjIyMMDw8zNDQEENDQ7pCOJlMhs3gILYODnimpWFra7vKaktzaE2BUqMk5bUUfhX3q8MyQTpmqKmBq6+Gt96CoKBN2UVvby9ZWVm6dsbZ3PyRfu/Nb0nM3P4MYRfcyJlXS3A44yLeuUh0Eh0ZGSEjIwMDAwPS0tIwNV26C4iiIrjrLqbee4/0khJUKhVpaWmzJzcEQaC0tJS6ujoiIyPx9/fXpRkiDA2pm5pCZmnJjo8/xvSii8DDA8IXDxU7WcSBXhisE70wOPZYVhwo1ezLqmN0fFonDtxcrOnsHsHLw5aYrd60dQ5RWNyMU0kpCadtxSApam7h+maxi+DhuxGAzu4Ryqo6mZicWbB/qSDg6mqDq4s1DnYWmJoYLJlbbx3u5Lr/PcD9mtOYsvBg0nhhGNvM1IioSE+cHS15PO+lhaIAli20EwSBA+XtNDT3M/jpp/S9+y7WXu78suhzDM0PXvl8lwk/+SVk/gfCAtf7Ui9gMwsNVSqVKBT6+hj+6isGvLyYBpycnAgJCdFZ+66FpQoNj8Qh8WRi9gQ9a34kl8tJSUk5rNd/Pkv6FAwMkD1Vi6OZI/52/rptx8fHSU9PB1jeX6G+Hu64A/71LxSWlqSnpzM9PU1aWho2NjaA+PkoLy+npqaGsLAwgoKCxDRDUxPhxcU0pqQgkUjYsWMHZqam0NgIzz0nzllITdXt6mQQB3phsE70wuDYZDlxoFSq2Ztdx+jYnDhwdxXFgauzNfFRWxgYnCA7rx5zSxNS4v0xmW3L+9834gCl798De/FKVRAEOrpHqKnrYXh06SFMBnIZ5mZGGBvLkUqlqNVapqaVTEzOsNTnydjYgNBAF7Z42iOVShaLAokEHnkaSioX1UNotFoKilto7xym7/XXGPxKnHPw06/fWphCUMyIlszXX7YhzoZHpftAqRSjNoKAVhDo6Oigurqa0dFR7O3tCQ4OxtnZecUCx5W6D/TiYG1MTU2RkZHB2Jh4npBIJMTFxeF5mCmMJUXBLFotfPQRY+eezoMZf+LPO/+MmaGZrpVSpVKRmpqKtbX18juYmWEGyMzMZHx8fIEfgyAIVFVVUVlZSUhICCEhIRQXF9PU1ERYWBjNTU0gkbCjrw+zW28VOz6uvRauuWbBLk50caAXBoeJRCK5BbgF0SY6UC8Mjj2WFQcqNfuy6xkZnZoTBy7WdPWO4mBnTlKsLxOTM2TmNSCZmibVYArLcw66Ax7S4zyfoeFJmloHaO8cRqVe2hNgJVpmmjl161a2+fkilYontyVFAcBn30FTG/x6riJfo9GSU9hEb/8Yyu++ov6l1wCIvvEKzv7nn8SNxsZhaBS8F1ZcHwlHRRRkZIhfyrt3LxgrLAgC3d3dVFVVMTQ0hI2NDcHBwbi5uS0SCGtpSZwVBy/uf5GaW2vws/Xb+OeyGZSVwamniq9PRMSm706lUpGdnb2gnTE8PJygoKA1dZ6sKAoA8vMhIYHaj14kuvZOYlxj+OzyzzAzNEOhUJCRkcHk5OTy5kujo2LR4N13o7rySp1FcnJyMo7znCGrq6spLy8nKCiIsLAwSkpKaGhoIPTrr2k980y0RkbsUCoxv+iiOfOswUGYNyr6RBYHemGwTvQRg2Ob5cWBhvTsOkZGp5DMSyv09o1hZWlCSoIfKqWGzP9kMmlmQcS2Lfj7HPxCGRyGn/9GdCsMX5zP1Y5PMvD4y/SmpTBoasHo6DQzSvWCbSQSMDUxxNbGDAc7CwSDcc79+FqUconOIXFZUbAEarWW7IIGBoYmcJ8Z5OsrxVnzFq5O3FLyNUaWB8Outz8I36RD2bcrdjKslaPmU9DVJfaXP/HEksctCAJ9fX1UV1fT19eHpaUlwcHBeHh4IJVKD8unQBAE8jvziXeP35znshn09MBrr8HPfw7Ozkdll/Mr/Wfx8fFh+/btK7YzrioKZqmvB39/nX3yfHGgVCpFm+PhYZKTk3Fyclr4WEGAhx8WDa+CghbYJCcmJuLiMmf1XVdXR0lJCf7+/kRGRlJWUkJdQwMhnp60Dw+jVqvZsWMHFl9/LRZ5Pvyw6BtxiEA9EcWBXhisE70wOPZZThyoVBrSc+oYGplCIpEgCAKuLlYMDExgamJIaoI/ErWKLzPqUKs0xGz1wtvLHian4Irb4P7bIHbr4h1qNHD2NXDD5XDxWQdv0qJSa9BqBWQyKYYGsrkT/dAIeMTR/+IfiRt/GYBLg8/isbwXlxYF32WAgx1sDQVEUZCV38Dg8CQp8X60fPgx3/72MTQzSn7y/rMEX/CjuccOjUBNIyTOq51YJ0dFFAwMiNXhh+HXPzAwQHV1Nd3d3ZibmyOxl3DZ95cR6xF72D4FD+57EHdLd31aYRkEQdDZGM/i7OxMQkKCzp54PmsWBXM7gKwssjzhzIMdJN9e/S1yqRy1Wq0zYYqPj8fdfZkomEoFQ0No7O11/gWHbt/Q0EBxcbFO2FRUVFBTU0OQjw9d7e0oZTJ2vPQSlm5uEBwMv/71ohTciSgO9MJgneiFwfHBsuJArSEjt57BoUkkEvF7yNXJiqGRKQzkUlITAzA0kFK8p5RWBQQ5mxMeG7CwnVGrXTwh8XAGIwkCvPER7EigzUbK1tfOZVgxunykYOel4OcNL/9VJwqGDooCB3vxBDrY0ELFvz8j9Xe3io8vKBGdHe1s1v8izuOoRQrOPFN8fb7++rAfOjw8TEZRBtND00wxRVxkHIF+gWvuvxcEgdu+uo1nC5899msOJibEyYpbt4L5YqOszaa1tZWCggJdzYyVlRWpqak6kyFYhygAyMmBpCTIyCDLS0JxdzG/ivuV7m6NRiP6Eaw0tvmaa8QhSfn5aEHnhBgbG4uX15zbaVNTE0VFRXh7exMVFUVNTQ2VlZUE7t1L93nnMTMzw460NKxsbMTPfF6eaD8dFqZb40QTB3phsE70wuD4YTlxoFZryMxroH9wQicOXJwsGRtXiL3QiQGYjwxT++YXlIVuw9XZirjtWzCQS+Ga34CbE/zl3sU7nJqGp1+Dm64C67W9N2bTB79L+CUPp96JgIBUckhYVq2GsQnUlhZk5TcuEgWL0Ggg8keiu+KzDx/OS7YkR00UAFRUgEIhDrk5TGbTB2d5nsUdvnfQ2dGJoaEhAQEB+Pn5LXlFeyjHTUHiBlsir4e+vj6ysrJQq8W0mbGxsa5VcF2iYJacnAUmQwD/rf4vP/L9EWaGZgtSGtu2bcPf33/h4ysqYHgYUsSBYVqtlqKiIlpaWoiOjsbHx0e3aVtbG/n5+bi7uxMXF0dtWRnldXX4+/vT19eHQqEgzdkZ65//HExNwccHPvhgwe5OJHGgFwbrRC8Mji+WFQcaLVl5DfQNjB9sBQRHewumplUolWpS4v2wtTGjq2eEvKImTE0MSYrzw+LtD8HZEeaH62fp6oXos+GVx+GsU1Y+sPIaPvvkBc6Tf66LFOR1HeAXXz/Apz9+cW4q48FIhFqtITO/geHhKVIS/HCwWyXU3toJlubLGiGtlaMmCr7/HnbsgHW66y1VUzAxMUFNTQ0tLS3IZDL8/f0JDAxcVSDMFwefXvYp5waeu65j2lQUCmhtBS+vdblAbhSjo6Okp6cvaGeMioviqm+vWp8omE9tLQQG0jvRi9/TfkS7RvP55Z9jZmi2wJ8gNDSUkJCQxZE2QRDHcsfGLjA72rp1KwEBc7NOOjo6yMvL06VEGhoaKC0txbe3l0Fvb6ZUKtL27cPm9tvFeo4lPBVOFHGwVmGwwQbZevQcXaRSKS+8+CLXX3cdP7/xXt5467+AOEEwJd4PZ0cLBMTvkP6BCYyN5JiZGrIvu46evjFc7c057Z9/R+gd5Pv0GrouOHdOFIxPLNyZqxPUpa8uCoB9rzxB9N8/5w8Jc6OT3cydGVdOsvPdq2gd7RQ3POUyVM+/TUburCjwx8HOgoIX3mLvQ39HNTW9cOEPPodphWiCdLyIgrY2OOsseOeddT18uUJDc3NzoqOjOeuss/D29qa2tpbvv/+e4eHhFdeTSCQ8c9YzPHPmM5zqc+q6jmnTMTaGwMAfVBSAmELYtWuXzlBIrVaTm5WLyYTJkYmCrCzRuCknBydzJ7668isKOws5571zmFROIpFIiIyMJCwsjMrKSg4cOLC4Ffjf/xanTzY2IpFI2L59O4GBgZSUlFBdXa3bzN3dnaSkJHp6esjOzsbX15dtgYE0OjlhMz2NuaUl+3buZNDKSkzh5OSIIraxUbeGRCLhySef5I477uDWW2/l2WefXd/zPk7QRwwOQR8xOD5ZLnIgtvw10t0rimOpVIKNlQlyuYy+gXFit2/Bq6ocpZ8PBf0zdPWMEuTvTNie75A+/xbkfwqzJkKzaDRiJ8AyAuHxvJf4w/eP89vkW3gw7fYFVzoLHBIvexPnV74iM3gb4xIDUhP8sLM1Z6Knn6fDT0M5PomVpxs3F38pGhm1dkLk6eJI6cvPP6LX66imD0DMl0dEzLWIrZHD6T4YGxsjLy+PsbExIiIi8Pf3X1OrXXlvOcXdxfxs688O69g2lY4OeOopuPPORcN/fghUKhWZ2ZkM9M3Zh4eFhREcHLy+QVqCAP/9L1x4oe49kdWWxRlvn0GMW4wucgBzhYSenp7ExMTMzdvQaESBkZY2b9k5P4Pg4GDCwsJ0xzfr9GhnZ0dSUhJtzc3sLynB29ub8bExRsfGSP3sM+wrK8HWFl58UYzYLDjs4ztyoI8Y6DmpWC5yIJNJSYz1xdVZvOLRagVGxhQoZlS4u9qQv7+ZWt8gDH08SAp3I1w+Q21DD/sCtzF1+w1zkxnn820GXHQjlNcsumu2puDe1FsXiQIATytX9l0hXjlf+9kf2BuVxKTMkB1JAdjZikVmux94EuW4aM/se1rynLuhlxuUfAOXnXdEr9VREwXj42LLnSCIRXSbKAoALC0tOfXUU/H19aWkpITs7GxmZmZWfAzAexXvcc0n1/BK8SuHdXybytgYfPON+PsYYEaY4cHmB9k3uk93W0VFBUVFRWi12uUfuBwSCVx8sfieOJimSPZM5uurxKJUlVal29TPz4+EhAQ6OjrIzs7W1Twgk82Jgr17QatFIpEQGhoqTlmsrl4QaXByciI1NVU30tnD25uYmBhampsxy87G2tKSjLPPpv+FF8TiWC8vmJqC7u55h31yRA70EYND0EcMjm+WixxotQJ5RU10dI8AIJdLMTEywNHRksbmfgL9nIjYtxvJg0/Rn/8V+Q0DqNVatkd64ilVg8uciQqCANX1EBKwYN8LfAqSbkNy4Q1w/eVw3q5Fx1nd2UpNQTcGRsakpgRhaSGGjDsLS3kl5WIAjKwsuK3ie8wszOGND8W1VppOuAaOaqTgnXfgl7+EqqrDvuo9XFFwKF1dXRQUFCCTyYiLi1tggnMox01B4g/E/ELDr6/8GtspW8rKynT3Ozo6kpSUtKbiz0W8+644ErmmRjfYSBAEJBIJbaNt2JnY6SIHs5MZraysSE5Oxsjo4Gjx2lqx5fCDD+DHP9Yt3djYyP79+/H29iY6OlrnxTA4OEhGRgbm5uakpqbSk5tLQW8vru7uKJVKhoaGSI6Lw+mpp0S/jbo6cWbDPGF7vEYO9BEDPScly0UOpFIJ8dE+eLiJ7X1qtRaFUk1P7yjBAc7UNvRSGJ+KJvM/OPi4smtHCE4OluQVNZP79IcoCua+CJFIRFEgCNA3CCzhaCiTgZMDGC+e7tfRNUz1gSHM2ztJbSzmjswHaR3tRNBq+eo3f9Jtt/OB2zFzsIM92fC7x6Gx9Yhem6OePrjySvEL/yiLAgBXV1dOP/10zM3NSU9Pp6KiYtkr29mag5ujb+aGz27gXwf+ddj7O1E5tPsg0TORoKAg4uPjddGwvr4+du/ezdTU0hbiK5KYCLfcsqAVWCKRoNFqOOudszj3vXOZVIrRMycnJ3bs2MHExAR79+6d219goOisePHFC5b29fUlPj6e1tZWcnNzdcOi7Ozs2LFjB1NTU+zbtw+n+HgSkpLo6urCYGoKezs7snJz6amshHPOgaefXhTtOtEjB/qIwSHoIwYnBstGDgSBwuIWWjuGADA0lCOTSvDzcaSyugt7O3MSo7wxfOJ5hCsvpF1uQvH+ZjAyJDzEjS1e9khnv8QeeBL+8yX/9+KPuTvryVUdDTUaLWVVndQ39eHuakOsvz19U/0kfyJeob5q9DMybhbbDx2C/bip4DNks1dh/YOiCdI6Oaqi4NtvxRD4vKu3tbIRomA+Wq2W6upqqqqqsLOzIz4+ftlJfoIgcO/393Je4HkkeyYf0X6PmIoK8aT0+ecL+uqPJqu1JPb395OZmbmgnXHVeQeHwVIOiSBe9WZkZABLDF/KzBSFwrwIUVdXFzk5OTg4OJCUlKTzvZjtuJid8DjS1kbO/v04ajTg7U1fXx+JiYm4urrC9DQ884zoRDnPsvl4ixzo2xXXiV4YnDgsJw4EQaCotJXmVvFq38hQjoBAWJAbFdWdGBlISfnzI5jfdBlceSGKGRVllZ20tA9iZWFMeIgbLk5WSKrr+eibV7lE8R/+kLSEKFCpoH8IXJ3oGxhnf2kbk1MzRIS44+/joNu2bbSLU968ggv/2odrUCzm27fjnJyAmZkxhkPDuEQH4e5mi5Hh+lr9jnqk4Be/gPZ28aR2GIVpGy0K5tPf309+fj5qtZqYmBjc3BaPtp6PSqNiX8s+dvkuTgMdFbq6xAmAN98Mrq5Hffdr9SkYGxvTTTwEcYz2kpbGq/F//ycaOf3iFwtuXk4czA5+mpmZITU1VZy0qFCIPgTXXAN/+cuCdWY9GaytrUlOTsbw4Mj12QmPEomEtLQ0JrKzyZ6YwM7ODrlcTnd3Nwnd3bi/8QZ0dsLf/w6XXbZg7eNJHOiFwTrRC4MTi5XEQUlFB/VN4tAYY2MDVCoN28M9qK7vQaVUkxTvh/3BgkAGhxk881rKfnM7/cbmWFma0CjUcHfRg/wm/tolIwXCA0/Sn1dO7Z9+T3fvKHY2ZkRv9cLK0gTOvw5+fDYcPJ7P//Eqw4aOGLm6ountxj8uHE1VA1Od/Qz4+4MEnB2t2OJph5uL9ZorwY+6KAAxxaJQgMnaT+ybKQpmmZmZoaioiM7OTnx9fYmMjFzWNfG1A69x7afXnpQ1B4drXjQ7BGlkZAQQw+zR0dFsmTd7YFV+9SuwsoI//3nRXVltWVzw/gV8fOnHpHil6G6fmZkhMzOTsbGxuWFKdXWiOFji7zo4OEhmZiampqakpqZifLAVdHJykvT0dDQaDWlpaSgUCrIyMrCamcFkyxY6OzqIGx7G87LLxGMEsSNiXr3P8SIO9MJgneiFwYnHSuKgvKqTmoZeAExNDJhWqImK9KClfYih4UlihrvwqqkUnRC/3IOQGkf/tJYviwownrEUjZMG+rEzN8I0JhyZTIpSpWZsTEFf9xBTagFLC2NCAlzwcLMRT+gaDdz7KJyeAqenUVfTwYGqLhRNTXS/8jLX/PtpnCNDxIMfHEZhZk571zBtHUMMDk9ia21KRKg7jss5Ix7kqIoCQRD95i+5ROdIt1aOhiiYRRAEGhsbKSkpwcLCgoSEhCU/5z94QeLUlFifERS0pOHOZrFeR0O1Wk1ubi7d8yr4Q0JCCA0NXZuIXcVyfHxmHAsjC7SClhn1jO49olKpyMnJob+/f+G8hMpKsSsmfuHgrJGRETIyMnTpg9m00vT0NOnp6czMzJCWlob6rbfItLLCwskJM0tLOjo6RIvmzk5xGNQrr4hdI2ZzrczHgzjQC4N1ohcGJyYriYOq2m4qa8UvNFNTQ6amlGwN82B4ZJLWjiECOpqJ+MVFSGViAdKzXzzFb4ue4+60O7nc88f07S1kxM6eaakBWkFALpdiYWaMvZ05bi7WONiZL/vlWNfYR0lFO8aD3VT+7gGCzjqFC39zI1lZH+Nx2VVzDokH6RsYp7Syg+GRKVycrIgIcRMjEIdw1CMFExNiTvyWW0RxsEaOpiiYz8jICHl5eUxOTrJt2za2bNmyOOLzQ4qDH8AS+YhsjhE/Y7NjjmdZ5D2wEhqNaFp03nnLzoe485s7OdBzYIHPgUajoaCggI6ODqKiokRL5BVmchyaPjA/uK+ZmZkF458l09NkFBVhYmKCtbU1ra2tRL3xBr4hIeJshSeeWFSUeKyLA70wWCd6YXDispw4AKiu66G8WnQjNDM1ZHJKSXCAM0aGckorO7C3NSch0p1nSt/k4h8/SffOSBLe/WjByWT2s6S7bXIKXv8QzkgDX++5AymuAC83aoeVlFZ2iK2SIW5MD42gVWswfvIFGj98h3N+48T3V7+zSBwIgkB71zDlVZ1MTSnx9rQjNMgVUxMxb3rURcHs1Z5We1heBT+UKJhFrVZTUlJCU1MTHh4eREVF6XLPs8yKA4Bnzz6KledHOWJwpKJgFkEQqKuro7S0VHebra0tycnJutD9srS3g58fvPUW/OQnS26ynAmSVqvlwIEDNDY2Eh4eTpCtLRILi2Vfu8nJSTIyMlCpVLr5DwBKpZLMzExGR0dJSUnBQKEgffduDM3NsfP0pKWlhW2RkfgHBooLlZWJxzxvP8eyONALg3WiFwYnNiuJg7rGXkoqOoA5ceDtaYeXux15OXUoVSo+bHmVs+SW/OyK+5A4zlUn0z8I73wMv7p27uQ4OQWu0fDm3+H80+e2DdxBzS+up8wnmCB/Z8KDXRderQoCHc3VpH4jfqHsveLtReIAQKPV0tQyQFVtNyq1Bn8fRyzNJWyNOefoiYKuLrj0Unj9dfD1XfPDfmhRMJ/29naKioowNDQkPj4eO7uF3R+CIOiGX3WMdeBu+cM7EW4kGyUK5jM7n2C2RXTNHQsdHau2ty4nDgRBoLKykqqqKgICAoiMjETS2Sl2Klx++aJ1ZmsjpqamSElJ0f3d1Wo1WVlZDA4OkhQbi+lDD5F+5plIjY1xcnKiqamJCAcHgr7+WhQxV10Fjz++YO1jVRzohcE60QuDE5+VxEFT6wBFJa1IJBJMTAyYnlbhaG9B5VgmtqN+SIxNCQ1wISTQFenEBCiU4GgH2UViQWHmRxA8bxrcIblTQRCoLKijqmeC4ABnwoLmiYKqOpiYgtitwEL75H1XvIOn1dLV6SqVhtrGXmrqe5iYmOTbb7/l9ttvJzY2dmNfuKWoqxNrC956a0Eb10ocS6JglomJCfLz8xkaGiIsLIygoKBFqYWy3jJiX47lmbOe2fy0wlHqStgMUTDL8PCwrnMAxI6FhIQEsf1vNbq6Vnzes+LgvuT7uD/1/gX31dfXc+DAAdHY6Ouvkb76qlhzsER6Yn6EICkpSddNodFoyM3Npaenh/j4eKytrUnftw+tRoOruzuNjY2EZmURcuGFSGJillz7WBQHemGwTvTC4ORgJXHQ1jFE3v5mpFIJRoZyJmcUtE23M+PYy4UuF1Bd242VpTHRL7yErUQN7x8MMY+Og9XyBYEajZb9pW20tA8SHuLGxJ7vmewbJOYXV4lGRr/8HRSWQsFnuqhD22gXt373IK+c+SiOZsv7GHR0dhOX8hPOPPMsTj/9dIyMjAgODsbX13dt+d2jxLEoCmbRarVUVFRQU1ODk5MTsbGxmMzrrDiqNQdHwcdgM0XBLNPT02RmZuo6FgAiIyMJCAhYvijxb3+Dhx+GlhawWP7zVNFXQZB9EHLp4g6E2XHLLk5OxEdEIF8hUqFWq8nJyaGvr4+4uDg8PDwA8f1QUFBAe3s70dHROL38MukeHqjc3PDw8KC+vp6goCDCAwKQDA7CP/8ptkkew90KemGwTvTC4ORhJXHQ2T1CTmEjGkHLiGoEC0MzzA3NSAp3Q3rFbRTdcjMjRqZssTEmNMZfl99nZka86rcTHRa5/3HQaBi579cUFLcwPjpJdG8rbj87l38E7WCipx9DczNur0vHxMoCuvvA3WXJ4+0a70Wt1SyKHBxaUxAcHExVVRUtLS2YmpoSGhqKp6enzhJ2Q2hpgVtvhZdeWvMV7bEsCubT29tLfn4+giAQGxuLi8vc3+MH71bYII6GKJhFrVbrigNn8fb2JioqamnR2tEhWhCff/6afDCy2rJ4IucJ3r3oXV1aAaC7u5ucnBxsbGxICg3FqKoKdu5cco1ZEdDW1kZUVBS+B9NiWq2W4uJimpqa2OrqimdvL+nm5igUCry8vKirq8OvoIBtSiWSL74Q0xaHfB6OJXGgFwbrRC8MTi5WEgf/TH8P6yFPDKUGGMoNMDM1YnxCQfT0AJ7JkTQqJGJ+X6XB3cEcb18nHH58HbIQf3jhUQRBYOjVj2g0taHVzAZLC2Pi9udi3d1FUVgQ+XuKMYuMxNTCjJBwX/yiAzA2Wt5v/swPrqV2sHlBzcFKhYZjY2OUl5fT2dmJlZUV4eHhuLi4rG8a3qEUFcFdd8Gnn8IaPifHiyiYRaFQUFBQQE9PD4GBgYSFhelOYrPi4MuGL6m8uRJTg6PXTrgRHE1RMMv8/P8s9vb2JCUlzc08WCfLmSDBnHeB0cgIqX//O2aFhbDMTAdBEDhw4AANDQ1iAePBdJIgCJSVlVFbW0toaCh+fn5kfv454xIJPj4+1NbVscXGhqiUFKTGxqKxmVy+KIV4LIgDvTBYJ3phcPKxlDh4Iv9l7tn7V/4Sex+B09sRBHE7BzsL+gbG8fG2Z5u3LdqRMZqe/5DGsAgmLKyQIGBmIENqZMjUtBK1RouJsQGBfs74brFHJpUyNT3D/978DqmtHeMFBfh4uTPq4AxmpgT4ORHk54RcvvhKasHI5iveRjYhXVP3weDgIGVlZfT392Nvb09ERAT2a6wH2AiON1Ewy2yFfXl5OVZWVsTHx+vsdwVBYGBqAAczB9Ra9ZLh7COiqkps+/zwQwgJ2bBlfwhRMJ/ZEP/seWfWbGjRd60giC6IPj7ikKVVWEkcjI+Pk7lvH2q1muS0NGxtbZddZ/7YZl0B48ETfHV1NeXl5fg7OBB63nlkv/IKQ3I5fn5+1NXV4eHmRqxcjvSBByAuDh56aNHaP7Q40AuDw0QikdwC3II4WCpQLwxOLuaLg0uePJMPxr7UzT4YHZsmPacOtUZAo9Hi4WpNZ88olv19xH/5GZY3XorgYMuory8DgxNMTs2g1QqYGBtgZ26InWIS6RYPmJpmSq3lu/RqJvoGaX/sMZy9nLnms9eYqW6kxsiKhqY+TE0MiY/2wcZ68ZXorDjQaNQM/W0MyZh0Td0HgiDQ09NDeXk5IyMjuLm5sX379gU59DVRUyO60z3zDNjYrLr58SoK5jM0NEReXh4KhYKoqCi8vLx0900oJzjljVO4MerGjU0rdHTAU0/BnXce9hCq5fihRcEss1fxSqUSALlcTmJiIs7Ozgs3fOgh8PQU5xOsgVlxcKbfmXxwyQcL7lMoFGRlZTE6Okrili24rOIN0dDQQHFxMV5eXsTExOjScLO3e1tasu2UU8jNy6Ovrw9/f3/qampwLSkh3soKWWwsnHLKonV/aHGgFwbrRB8xOHnRarXcdNONvDL4Kucln8r/bn5Bd7UwMTlDek4dihk1Go0WdxdrRgdGmVAJuDhbkRDtg0x60NUwowA++AxeeBTe/xSuuROGyhn/95dkqE2ZNDej4d7fourr4+JnHybsujnv9bFxBfn7mxkdmyY8xI0AX8dFof/8uhISX70Ew3QjMl/OPKyWREEQaGtro7S0FEEQiI6OXnVuwAK++078wv7221X7608EUTCLSqVi//79tLW14e3tzbZt2zAwMDhuag6OFVEwy+TkpM7OeJZt27bh7++/wqNWJ7stGytjK8IcFxdsqtVq8p59lm4nJ7bHxOjqCJZjNrrh7OxMQkKCzj5bV9jo4kLs1BRFU1N0qlT4b9lCQ1MTDk5O4rAmmUyc+niI+6IgCJx232nsKdvD02c9za233npEz/lw0AuDdaIXBic3OnHw6qu8/tLjC2oOFAoVmXkNjI1PoxUE3RyF/sEJLA2lRHz2KS4u1kiiI+CZ1+Hfz8H4JEJFHR0BARSVdWCoVFB+1z3MdPdgYmbKnXIZ8srdYD8X3tRotFTUdFHb0IuTgyWx270xMRbzorM1BVqJwN7v9xIVFcWwYhhbk+XDo0uhUCgoKiqiq6tr1bkBi1jFvhZOLFEwiyAItLa2UlxcjImJCfHx8djY2GyOOFAooLUVvLxgNWOgVTjWRMEsKpWKvLy8BTbKvr6+bNu2ba5Qtq0NPvtMbNs8jNqYKdUUf0r/E39I/cOCtIK2qoqS7m4aBgcJDg4mLCxsxZqbnp4ecnJysLS0XGDSNFvYaNvZSWJhIWW/+hXNzc34+fnR0tyM9dQUydPTGP7iF2KHybx00POFz3PzlzezbWYbBx49cFQjB3phsE70wkDPSgWJKpWG3KImevvGkMmlGBrICawup10tY8DPDwuJFnd/V2ysTJHJpIxPKGjrGGJoZAp3F2vUhTlU13Rh5OGBjaGEM+xNMbrq/CWPo6dvjILiZgDio3xQKicW1RQ8nv04LxS9wN6f7cXL2mvJdZZDEASampooKSnB1NRUd6JbkgMH4F//Eo1cVkk/nIiiYD5jY2Pk5eUxNjZGRESE7ir31i9v5fmi56m8uZJgh+Aj28kGWSIfq6JglvmFfbM4OjqSmJgoulB++SVcfDE0Nh6Wn8OB7gOkvJayyARpdp91NTWUlpfj5eVFdHT0ii29Q0NDZGZmYmBgQGpqqs5CeWBggMyMDMzMzEhJTaW2tpa6ujq2uLnR0dCAuVxOqqsrRvM6IWZFwa/jfs1Tpz/FXXfddVTTCnphsE70wkAPrCwOtFqB/aWtNLcNYmJsgEKhItgMHCL9aWkbpKdvjBmlOKNeKpHgODVGQJArVvsP8D/BEsHImKmKCmySE5HL5WyL8MDTbekrfoVCRd7+ZvoGxvnf/z7miy++ZPfu3br0QdtoGzte3wGwLnEA4pdFfn4+o6OjhIWFERgYuPgq6s03RWHw7bdwiG3wfE50UTCLRqOhrKyM+vp6XF1diYmJwdDQkIzWDNK80458BxMTUFICW7cuOzdg1SWOcVEwn+bmZoqKinRFiWZmZqSmpmJhbCxaba+jc2E5h0QAzjuPNl9fCpKSsLe3nxMiyzAxMUFGRgZqtZqUlBSdgJ4dyiTXaEj55hvab72ViqoqPF1c6B0awsjIiNTUVEw/+YTPBnM5b/Bpfh33a/72o7/pOh6OZs2BXhisE70w0DPLSuJAEARqG3opq+rE3MyIyakZzEwN8ZWqCHjzbWZ2JqK973GM/vcSsh9dxejzfyVjTMKYgZzWh/6E4/gYV/7nZQ6YOdDRNYy/jyORoe5IpYvDmu0dXdz3xxc555xzMDMzY9euXQt85zdCHGg0GiorK6mpqcHR0ZHY2Fjd5Ll5T3rFcO7JIgrm09XVRUFBATKZjLi4OHH0L/BkzpNYGVv9YDUHx5MomKW/v5+srCxUKhUABgYGJCUl6V7T9TBfHHxz1TcYyg6e/L/6Cqyt6ffzIzs7W2fZvOg9P4/ZAsaxsbEFxZKTk5NkfP01yrExUlNSGASKi4txdXVluKsL6cQEfv95ne/7M6n/05womOVoigO9MFgnemGgZz4riQOArp5R8vc3I5dL0UxOo5TJse3uxNPdDisDKZrQALoHJ2luG8Dc1AhHK0NGqhtw+PdHhP/zjwhbPGho7qekoh0HOwsSYnwwMpzL9c/3Kfj8888ZHh5GKpWSkJCwoOVwVhyc7ns6L5zzwrqfb19fH/n5+Wg0GqKiovBwdxfnIFx66YrFhiejKJhlamqK/Px8+vv7CQkJITg4mF9/82ueLXx2/TUHPT3w2mtiRf6h1fqrcDyKgllmr8wnJiYAcSBZlEqFz1NPQWHhYdUZzJLVlkVmayb3pdy35P1jY2NkZGQgCAJJSUkrtjPOjpfu6emZm+TIYtGgUqnIz8/HTiJhdGiAflMJzVYtPHL2I0jEJ7Zg3aMlDvTCYJ3ohYGeQ1lNHExMzpBb1CSOQpaq0drZ0j84jlYrfrZMjA3w9rRjYHCCweFJpBIJEqmEqEhPXQqhb2Cc3MIm5HIpyXF+WFmaLGleND09TW5uLkNDQ2zbtm1BZXXXeBd2JnYYyY0QBGHdRkYzMzPs37+fjo4OsS3rkksw+Owz2LFjye1PZlEwi1arpbq6mqqqKuzt7YmPj+euPXetIu/6iwAA171JREFUvyCxrAxOPRV274aIiDU/7HgWBbMolUpyc3Pp7e3V3RbQ20vEDTeIBkJHwJf1X5LmlSamFXp74brr4OGHmQ4MJDs7m9HRUaKjoxe0pB7K/EmOQUFBhIeHI5FIRGvlvXvpHRwkxtsbky1b2Jexj+apZpzMnLCWWpFsb4/Db34jFlQeIviOhjjQC4N1ohcGepZiNXGg0Wqpqeuhur4HCRJcTCRsaW/GqKSCSQMjKiOimDI1I8VejuXkOMVOXrR3Di8YpDQ5NUNWfiNTUzP4b7EmacdFS5oXzZ977+Pjw7Zt2xYUTx3oPsANn93Af37yn3WlFUD8kmppaeHAgQMYy+XEJSUtmjoIelFwKP39/eTm5iKRSIiPj+fBggd5rug5Pr70Yy4IumBT930iiIJZtFotpaWl1NfX626bbRs0WMa5cDUGpwbx+acPUS5RogmS1Ei0Xb7vPkhORqPRUFRURGtr64IT/lLMHy/t4eFBbGwsMpkM7ego+//5T5oDA5mynuLPB/7Mn3z+hI2BGUY1NYxs2UJ8Xh5uf/wjLDG/YbPFgV4YrBO9MNCzHKuJA4DxCQWZXxczKZEhzGv/sx8ZIqqtFquBfiirQdjzvq5GwcPNhtht3shkUlQqDXuzqhkYmuSdd97hoYceWtanoKmpieLiYmxtbUlMTNTVHWxEzQEAHR1MWFqSV1DAyMgI8fHxuM8z29GLgqWZH9WJjIzki4EvuHb7tVgabd73yYkkCubT2NhIcXGxrijRwsKC1NRUzMzMVnnk0qzkkAgHa4dqaykrK8PV1ZW4uLgVhUhHRwf5+flYW1uTmJiIiYkJgiDwxndvYDpiSq9BLz895adkZ2WhGh3FysGB/pERMQ1hbS0Wlh5S9LiZ4kAvDNaJXhjoWYm1iAMaWlDvy2P4lFRUpqZYmBtT8PizTPYP4ntqMoGpccgdxavvjq5h8vc3Y2NtSnKcH339/YRHncPll1/Bjh07Vr1yGRgYICcnB4lEsiA/esTiQKuF8HBIS0Pz9NMUFhbS1tZGZGQkgYGBelGwCvO7Fry8vIiKiqJptIn8jnyujrx69QVqauDqq8Vx1kFBK256ooqCWXp7e8neswf1waiYgYEBKSkp67b1XiQOWrtgdBTmCfDu7m7y8vIwMTEhOTlZ16K4FENDQ2RlZSGRSEhOTub9hve5978382XPRXSfeSkOjo5s376dgoICRkdHcbS2pntwkNA9ewgxN0fyf/+3aM3NEgd6YbBO9MJAz2qsSRzMotFATx9P77iUofYuZEaG/Lb3AHLjufarwaFJMvPrkcsk3HLr7QwPj7B7924sLS0pLS3F3d2duLi4ZXutp6enyc7OZmRkhOjoaLy9vYE5cWBtbM3+G/cffs1Bbq54RRMejiAIlJeXU1NTg6mTKZdlX0aCR4JeFKxCa2srRUVFWFhYkC/N54HsB9ZWc9DWBo88AvffL9oCL8OJLgpmGW9qIqOigkmFAhCLEiMjI/H3919XLU1WWxb3fHcPn1z2CQ4XXCEOVvryywXbjI2NkZWVhVKpJCEhAScnp2XXm5qaIjs7m6GRIf7e/nfig2J56o0eBn72M7KVSgwNDUlISKCyooKuzk5c+vrodnZmi709UTt2LDn5dDPEgV4YrBO9MNCzFtYkDm64Bz78gukZJY8f/Jy5uzlzXWPWok3rGtrYnVGDIAhs3bqVxMREYC5UaWtrS3Jy8rJhTY1Gw/79+2lpaSEwMJCIiAgkEglto230TfYR7bp22+SV+Cr/K0ZbRmnVtnLLhbdgbry+HvuTiZGREXJycpiZmaFYWszDJQ9viEPiySIKZlEqlWRnZ9Pf36+7zdnZmbi4uHVNaJwt0O2rLMTMfQtmVosjEDMzM+QdnIcQGhpKcHDwskLk+fznqS6rJtkqmcDAQMLDw5FKpYyPj5OVlYVCoSA+Pp6ewkLqFQqcnJzo6+vDyd6eBAsLDJZIGW60OFirMNjAAe169Jw8SKVSXnjxRa6/7jp+fuO9vPHWfxdv5GAH0eF0nb9Ld5Nr7NZFm3V0dhOTeD6PPfYYLi4u9Pf3MzQ0BIC7uzupqamMjIywd+9eFAevmA5FJpMRExPD1q1bqa2tpaCgAK1Wi6eV5/+zd95hUdxrG75n6U2qIiCKYEdsgCIda4zpvZeT3k56OTn5kpOenJPeTGKKiTG9ahI1NnqVooKI0nuR3nZZduf7Y9wVZIEFdi1x7+viItmZ+c0sws4zb3legjyD6FH1cM8f91DWUjb8m+vslNzmDhzo93JcaRyX7bqMHb078LP0Iy0pDYVCMfx6ZzlOTk6sWLECNzc3AhQBvDrvVW7fcjufZH0y+EE9PdIgpWODhk7kbBMFAJbr1hG1YwczZszQvlZbW8u2bduor68f8XqCIKAW1axJupPzfr2cTnn7gH2srKyIiIhg9uzZ5ObmkpCQoPN3fl3GOu7edjeySTLmz5/P4cOHiY+PR15fj8Pjj7N86lTc3NxITEzEevp0Fi5cSH19PU62thytrWV3YiKdx/7mT7zG119/nQcffJB7772X999/f8TvczSYhIEJE6NkWHHw0uOw81vqQo5b2nqc23/iWt+WxJ9++olzzz0Xe3t7YmNjte1a48ePJyYmBrlczu7du7U93iciCAIzZswgJCSE8vJykpKS6O2VHBiPdh1la+FWYr6IGV4c1NXB0aP93Ob61hS8d8V7xETH0NHRwa5duwa9HhPHsbS0JDw8HH9/f3yUPqwLWIe3nffgB+Tmgre39P0EzkZRAIBKhay3lwULFhAREaGNnikUCmJjY8nLy0OtVo9oSZkg4+1z3sbjrxSafdzpbB94c5bJZMydO5fIyEiamprYsWMHjY2N2u19bY7fPOdNZs6cSVRUFG1tbfyVkkJ9ZSWWhYWEhYUxa9YsDhw4QH19PUuTkuhsbMTS1paeyZPZmZDQLxqi4VSIA1Mq4QRMqQQTI2XItEJZJb+HXULmUekD55b4H5l0LGqgy6cAJBOV5ORk6uvrCQ0NxfOYR3xfW9bIyEicdLQ7adAMeXF2diY8PBxLS8tRFyQOVmiouR6lUkl4eLjOdkYTA9EUtmnyzvvb9hPtE91/p7Y2qcZj6VLo8zl01ooCHXR3d5OamtrvZqrxkBjKwVAXmXu+ZudzN5F02WK+uW37gG4FDV1dXdqOE39/f+I64rh76939bI51Xd/s2bPx9/dHJpNRVVVFeno6lqLIvPHjOdjVRXt7O3Z2drS3tzN58mQWL148oO7AEGkFo9UYCILwOVAI5B/7OiKKYu+Ir/A0xSQMTIyGQcXBC+/w5QvvUHJsv0erMrB1dR5UFGhQqVTayXN92wS7u7tJSEigs7Nz2Mrso0ePkpiYiK2tLZGRkVhbW/cTBxm3ZeBqq+NmXlwMU6eCIAzbfaBQKEhMTNS2M45ohPNZTEdHB8nJyTS3NvNe5XvcGHXjsDUHJlGAlOZqaYFjv2dqtZpDhw6R2yeyYmFhwZIlS7SCWl8SyxM5/5vz+eHyH1jhu2LQ/dRqNXl5eRzMP8jhrsN0TOjglTWv6Kw90FxfXl4eTjIZi1eswNHRkY6ODlJTU2lubmb2rFl0dHRQXlGBdXMzcmdnJk2aRHBw8ICaorGKA2MKAzWQCfwF2ABOwC3i3yT0YBIGJkaLTnHQ1s47i9bQXFmL1TgHnqjPHlYU9F0vLS2NyspKFi9erHVj0xRhNTU1sXTp0iE/AFtbW4mLi8Pc3JyoqCjs7Owoby1n0/5NPBH+xMAPs6IimDYN/vyTuNm2erUk9vb2kpaWRnV1NQsXLmTatGmj+wGeZfT29pKZmUlZWRlbm7YSFhzGrYHHxEF9PXz7LVx1FUyYYBIFGsLDJVHw3Xf9XtYYS/WtwZk+fTrz5s0bcnJiP/LyaJMpGTd7AaIo0qPqwcpcd1Hjuox1vL3nbZ6c+iR2MjvmzZuHn5+fzu4CgKbXXiPN3JzOSZOYPXs2s2bNQhAEaT5JXh6OCgVeCxZw6PBhzC0t6e3t1Y72PtGieSziwJjCoA1wF0Wxe0QHniGYhIGJsaBLHLwyYQGKtg5cpvlw8faNeomCvuvt3buX0tJSgoKCtN7sKpWKlJQUampq+okGXWhC/iqVisjISM0HAwBbCrYwz33e8bRCdzfs2kWijxmrN1+mt09BX6e64bwXTBxHFEUKCwvJzM7kSNcRPOd4csviW6TJimFhkJREx5xpJlGg4fBhaGqCkJABmxQKBRkZGVRXV2tfc3R0JDQ0FAcHh+HXnjUL1qyBN9/k6T1Pk1ieqNMEqW9NwX+X/Zf9+/dTXFyMi4sLQUFBulN8ra2ourrIa2igoKAAOzs7FixYgIeHB02ffkqGkxPtosjkyZNpa2ujublZclJUq5k5cyZz5szBvI9h2mjFgTGFwT5RFOeP6KCTjCAIdwOPAh5AHvCAKIoJeh5rEgYmxkRfcfDZBy9Rdpc0vGXC3Jk8UV6ttyjQIIoiWVlZFBUVsXDhQqZPn649T2ZmJiUlJSxYsKBftfaJaFIQXV1dRERE4OrqSo+qh4B1AShVyn41B2MxLyooKGDfvn1MnjyZ4OBg/Z/WznKOHj3K1j1bEUWRc6LP0U4UNEUKRoZGaOXk5GjdEs3MzIadfwBIplJubuDmNqhDYr9Cwz41BQ0NDWRmZtLe3o6fnx/+/v6DtlC2traSnZ1NfX0948ePx9/fH1dXVw4fPkx+fj50d2PT1UWns7PUOaFWY2Njw/z585k0aZL2nKMRB8YUBumiKC4e0UEnEUEQrgQ2AncDScAdwK3AHFEUy/U43iQMTIwZjTjY8Mkn/GRpgbJHyWeWFsRbWY9IFGgQRZF9+/Zx+PBh5s2bx6xjbniiKLJ//34KCgoICAhg9uzZg67R09NDYmIizc3NhIWFMXHixAEFiS1bf+HTbx8j/7KoUZsXVVRUSJPlXF0JCwsbcs69ieNorJQbGxvxneXLjBkzOPfrc02ioC+ffQY+PrBs2ZC7NTc3k5ycTGdnp/a1SZMmsWDBAr0LE08UB1/u+1KnKNCgUqkoLCzk4MGDAMyYMYMZM2YcrxN4/30pVffGG4iiSE1NDbm5ubS0tOBiZoafvT1uoaEc+esvilQqRMDW1pauri4EQUAURezs7Jg1axbe3t5YWlqOWBwYUxhkiaK4aPg9Tw2CIKQBWaIo3tXntXzgV1EUB8zdFATBCugr7RyASpMwMDFWNOJg/SefYGtjg5m5+ahEgQZRFKWip4MHmTNnDv7+/toPDM3r/v7++Pv7D7qGZmxsXV0dS5YswdvbWysOunu7uWvrUa4osWXKodoxORpqCh+tra2JiIgYtbf92YZarSY2LZajFUexzUnmeeWXvPXPP0yiQENYGERGwssvD7urUqkkKyuLsrLj7blmZmb4+/szY8aMgfUAKSlS7cJbb2lf0oiDyMmR/Fn456CioC9yuZz8/HyKioowMzPDz88PPz8/7L74Qirs7WOBLIoitbW1HN60iTpvb8zMzXF3d8fBwYHq6mqUSiVyuRyZTIYoivS9X1taWmJmZoZKpUIul6NQKOjq6uKuu+7SdVmAcYVBD/AusANIEEWxc5hDNMedL4rilhGdbIQIgmAJdAGXi6L4S5/X3wYWiKIYpeOY/wDPnPi6SRiYMAQtLS1MnzaNo42NXHDBBfz2229jXjM/P58DBw70czgEOHjwILm5uf1Egy7UajXp6emUl5cTGBiIn58f3+d9z9U/XU2Ydxjbr9tuEJvjtrY2EhISUKlURERE4OzsPOY1zwbaFe3c8/blrPW8BqV5LxeuvVy/HLkJnZSVlZGVlYVSqdS+Zm9vT1BQkDZlA8Avv8Dzz0sCoU8a4KndT/Fiwot6iYK+dHV1ceTIEYqLi1Eqlbi7u+Pt7Y2Hhwc2Nif8ffX20tndTUVVFTVlZRxtbUVzZzY3N0cmk9Hb2zusT8Obb75JSkrKoNuN3ZWgOUgF7AVigT1A4mBFiYIgZIiiGDyik40QQRA8gSogTBTF5D6vPwncKIriTB3HmCIGJoxCW1sbq1evIj8/n+UxS/n51+3cdtttfPzxx2Ne+/Dhw+Tk5DBt2jQWLlyo/bDSiIbZs2czd+7cIcfGZmdnU1hYiP0key6PvVxbU9Cp7KRL2cVkx8E9+vVFLpeTkJBAe3s7oaGhTDxhBr2J/vStKbjU91Lm98zHw8aDiNCIEbffmTiOQqEgNzeXoqKifq97e3szf/78QdMLfWsKrg24lpcTX2bjxRsH9TnQRW9vL+Xl5ZSVlHC0sRERGDduHC4uLjg6OmJnZ4eVlZW2uFCdnEzrq69S+uSTyKyt6erqoru7G5VKNeg5RFGkra2NadOmERMTM+h+xhQGFcALQAwQBWgmS4iAEkko7Dn2lSyKovzYcbmiKM4d0clGSB9hECqKYkqf1/8NXC+K4tBjyjDVGJgwDBpRUHjwIM91y1EqldT4TOKV0kqDiYOioiIyMzOZOnUqgYGB2tCopgDwxIjCiYiiyJ/Jf9JZ1cn+3v08edmT2L75LrG/v8c/LrMY28jmPmjSF7W1tdK42WOdFSb606/Q8Ko/CBk3hwcTn8GhxZkAm4B+JjlnJS0tsHw5vPmmlE4YBU1NTWRmZtLc3Kx9TZNemObnh3kf34ATCw2TK5JZ/dVqgr2C+f3q30ckDgC48ELkokjdu+/S0NBAc3Mz7e3tWnfS0WBra8uGDRvYvn07f/75JxEREUPub0xh0O/JXxCE2UgiQSMUNI4rItADpAHJwP2iKBo10TiaVIKONUzCwMSY6Bsp+Gvzp2yNuhyASUsWkjpnBp98/p3BxEFpaSkZGRl4e3v3c0vTRBSmT5/OggULdIoDTffBrVNuJcwiDB8fH4L276e1roxA+03AKEc260CtVpOdnU1RUdGwqY6zkQHdBw1WEBiIuHcvNdM9aK1q5cCBA2MaGnTG09QE//oX3HuvNBJ8lIiiSElJCfv27euXXrDo6WFGZSXTHnyQz/Z/prPQMLE8kXO+Omd04iA5WZp9ER3d71p6amtRPP00iptvps7eniNFRf2uSxdmZmaEhYVxzTXXkJ6eztatW4cVBXAKiw8FQZiLJBKWAZGAJrEoiqJo9N6lY8WHmaIo3t3ntYPAb7qKD3UcbxIGJkZNX1Gw888vCAoM4FX7Wch7e3HymcR9B3dzxz3/Z1BxUFFRQWpqqnY8s0YcFBYWkpWVNSDdAANbEuur60lPT8fDw4OlS5dS1VE1KvvkoRBFkUOHDnHgwAFJhAQFnb1Pv33Q2ZLY3Ax79kBMDDg7063s5tavb+V8u/NxsHEgNDTUVLMxRhQKBQcOHKC4uLjf66IgsrVxK+6T3XU6GmrEwUq/lfxy5S+MBbVaTV1dHRUVFVRUVAyZLtDg5eXF/PnzueCCC0YkCsC4wqBKFEW9fE8F6Sc6H7gE+PdJEgaadsU7gRTgduA2wF8UxWFHy5mEgYnRoksU0NzKh95LqOvtRWZmxlPt+YhgcHFQVVVFcnIyXl5ehISEaG+4mnSDr68vgYGBCEPYHGvmK7jY2hI+ZQo1XvYs+2IZLyx7gavmXjXma9RQVlZGRkYG48ePJzQ0dNBR0mcD+voUiKLIvX/ey/c53/PO3Hew7LUkMDAQHx+fk3vBp5L2dmhtBU9PMKCgbGlp4dChQ5SXD+xmHz9+PFOmTMHLy6tflCaxPBFrc2v9x5m/+y5MmQIXXEBPTw91dXVUV1dTVVFB7wgGPwUFBTFx4kTOO++8EYsCMH7xYbAoipkjPK5YFMWTklw8ZnD0GJLBUS7woCiK8XoeaxIGJkaMTlEA8OSrfP3mJxw59nf2cGkK9hPHo1arjSIOUlJS8PT07CcOSkpKyMjIYOrUqXS6dbL2m7WDmhc1NDSQuHUr9t3dRNx4I5iDtbk1AK3yVhytHQecdzTU19eTlJSEra0tERERIx5683dgSFFw9Cj8+itcdJFkusNxcbA+cz2fBX+GZbslfn5+LFiw4Owwktq0Ca67Drq64MSq/rFSVcWWX97gV1kTK91WIzth8LAgCIwfP54JEybg5uaGi4sL5ubmKHoVvJz4Mo+GPqozrSCKIp2dnTT/6180zppF/fTptLS06LwEMzMzZDIZSqUSc3PzfrUHZmZmxMTEYG1tPWpRAMa3RC4HzhdFsWS4/fsclymKYuCITnYKMAkDEyNlUFEAcPAwf669iYwaaV78jX9twidyCYBRxEF1dTXJycnalIBGHJSWlpKenk5SWxL5Vvn8dtVvg7YktmRlEV9ejrmlpXa+wnvp7/FGyhsGSyuA1BKckJCAKIoDrJr/7gwbKcjKgsBAyMyERccztxpx8MHeD4i7MI76wnqcnJwIDQ39+4urmhrJKnrNGoMvvef/rifyxa944pd7eH71axQVFVFSUkJXV9egx1hZWSGzkpFQnYCdtR2rp63GXCbd0OVyOV1dXXR1dQ3ZYmhmZoaniws2tbWUKRT02NpidoIosLGxYcWKFYiiOCZRAMYVBnbAxcBlQDvwhSiKO/U4bpcoistHdLJTgEkYmBgJQ4oCgG83k/noC/ze0IRgJuPC159m/p3XaTcbWxyEhIRgZmZGXGkcz25+ltvdb8fb25ulIUuHzO93dHQQFxeHWq0mOjqaZnWzwWsOQOr1TkxMpLOzk9DQUNzd3Yc/6AxnrDbHoiiys3gnK/1W0tjYSEpKCiqViqVLl/bvyzehF+sy1nHP73fzf9P+wX+u+6Sf5XBzczPl5eWUl5f3G9A0FhwcHJhoa4uHKGIXGEhOTg41NTW4tLfT6uSEKIpaMeHq6kpUVBQ9PT1jFgVgRGHQ72BBcAEuAj43TVc0cbYxrCh4+Dn49Ds6lwbS5uzI+M07MP/fk3DXDf12M7Y4UHooWfutlD74MOJDsjKyBhQq9kMU4aGH6A4KItbFBaVSSXR0NC1ii1HEgVKpJDk5mYaGBoKDg4f3tD+DMfTsgw/3foiFaIFfpx8NDQ0EBAQwc+bMv2fHx7ZtUo3BlVcabMl1Geu4+4+7uT9kaPMiTUrg6NGjNDQ00NLSQkdHx5DdA4IgYNvTg2NeHk6XXYazuzuurq5YW1uj/uc/KWxuJveiizC3sMDZ2ZmamhpkMplWFHh7e7NkyRLkcrlBRAGcJGHwd8QkDEzow7CiQKmEq+6B5eHQ2wvx6bAsFG68DOwGhnyNIQ5qampISEwgqz2LbItsfr3qV2wsbKisrCQ1NRVPT0+WLFmiOz99xx0wbx7yW24hLi4OuVxOdHQ0rbQSvSGayCmRbLhow5ivUUPfKZJz585l9uzZf7ub24hEQWEh3H8/vP22NAZ7EO778z7ey3iP9eetJ9g8mIKCAiZNmkRwcPDfr6jzrrskS+Ht2w2ynMan4MvO1VyX0omwYwdYW49oDaVSSU9PD0qlkuyabJIqkrh/6f1YWlpiaWmJoFZDXh7Mm6c9prW1lb0ZGTQ2NTGlsJBKHx9U5uZae3NA60HS3d1tMFEAJmEwakzCwMRwDCsKNKjVcOnt4OUBWQdgRQQ89/Cg6xpaHMSVxvH4r4/zT49/4uXhRXhYuFYEaCIKEydOZOnSpUMWrykUCuLi4ujq6iIqKopOs06crZ2xs7RDFEWD3cD7znzw9fVl0aJFf5t2xhFHCoqL4ZFHJF/9IQyh+tYcrD9/PedMOIf09HRsbW0JDQ01fYYNQj/zIqsLEbZtg1dfNdj6e3J/Z4nKA9v5x8vq1Go1+Vu2kN/Tg529PTNmzODg3r0oBIG+VQiaSaldXV0GFQWgvzD4e/zVmTBxktBLFOzdD99uhlkxEBkCkYth97eSKHj0BfjgS51ry2QyPnr/eW69+UrWr1/P7bffPurr1LQkOrg6EBYWRkN9A8nJydo+aU9PT8LCwqitre33ej+6uuCTT7AyN9cWIcbFxWHba4udpR0HGw4S+lkoZS3DdgHrhSAIzJ07l6CgIEpKSkhKShrW6OVMYFTpA19f+PnnIUUBSD+z9859j7uD7ua2LbeR2paqLVTbuXMnlZWVBnoXpxiFQkpxGYABo5NjYgwqClrkLSQ8cjmq0BA6G2sBadrjzh07ONjdzYwjR5jp7Ex2djZqa+t+omDJkiVGEwUjwRQxOAFTxMDEYOgdKbjzX5B9AEIC4dUnIexiFKGBZM/0o3TdRtx8JrHijy8GPc9YIwe6fApqa2tJTEzE3d2d0NBQbYSgtraWpKQkraeAxq8dkCriQ0IgIQFCQujp6SEhIYG2tjYiIiLosugySs2B5rqSk5NxcHAgPDx84NCZM4RR1xSo1VI6ysJCr559URR5Lfk1bll0Cy42Ul1IRkYGlZWVzJo1i7lz557Z0ZfHHoOMDMn0aQwMEAXr18PSpWNyUtRF0uFdvPjf8+iJCOPV+a9SfKQYR0dHAmfNouLAAQ53dmIrCHQdu/8KgkB4eDgeHh5GFQWmVMIoMQkDE7rQWxSA9KHe0ASHCqUP9R4lPcl7efWl91CLIo6Tvbi/IHbIEPxoxcFg5kVwXARMmDChnzioq6sjMTERNzc3wsLC+ouD2lroM/hIqVSSkJBAS0sLERERdFt2G00cNDc3k5CQgJmZGVFRUdjb2xts7ZPBmAoNB2lX1IeyljKSKpK4eu7VFBQUcODAASZMmEBISMiZa6UcGwtlZXDjjaNeYoAoUCphzhy47z6pnsMQlJaCIMCUKezO283+7P24W7gzt6KS6VdcSVpJCfX19dio1XQd+/vX/H67ubkZPVJgSiWYMGEg9BYFpZVw8DB8+h3k5MFHX8Eb62F5GJaRS5g6yQOA1vIqal56d8hzjiatMJQoAJg4cSLh4eFacyFN+sDd3Z2IiAgaGxtJSEjoH76fOFESOrVSSNTCwoLIyEhcXFyIj4/HSm5F7E2xAJz/zfmo1MNbuuqLs7Mzy5cvRyaTsXv37kGNYU5Hxtx94OMDGzdK30fIhpwNXPvztXya/SmzZs0iKiqKlpYWduzYQVNT04jXOy2IjjasKBAEsLSEQ4fgzjsNd50PP0zv1VeTk5ND48FGpjhPYWvpR3h/vYk9yck01ddjZWVF97Hojbm5OcuWLTspomAkmCIGJ2CKGJjoy4giBf98GnYmwkw/8J8Ozz8Kza3w01ZYFkpWXCpb7v43AGEyGStyd4Lv0KON9Y0cDCcK+qKJEIwfP56wsDBt5KChoYGEhAScnJyIiIg4XtV+xx2Qni49xR57yunt7SUpKYmjR48SFhZGj00PFa0VhE0OG/L9jAbN6OaOjg7Cw8MZP368wc9hSAzdkjhSTixIvHXRrXR1dZGcnExLSwuLFi06syZcvvsuBAVJIf9RoFMUKBSSxbKb2/ALjICGoiIyDhygq7eXuXPnMmP6dOqPNpCanIKstRUVoLK3R61WY2lpybJlyxg3btxJEwWmVMIoMQkDExpGJAoA5AooLoM5M6QpapaW0N4B7ovgyzfpnD6V15dehKhW4zzZk/sK4vSq6B9OHIxEFGgYLH3Q2NhIfHw848aNIzIyUhIHWVlSIWJ4eL81VCoVycnJ1NXVERoaiqenJ73qXh7f8Tj/XPJPg6YVlEolSUlJNDY2snTpUjw9PQ22tiExmChoapLa8lavBheXER+uSxyoVCqys7MpLi5m6tSpLFq06PS3UlapJFFw3XXw8OAdPYOhUxQAfP453HOPlJ4wgNBU/vYbB8aPp7CyEjc3N4KCghj3zTcUHzlC5pIlODo60tzcjIiITJBhbW3N8uXLsbOzO6mRApMwGCUmYWACRigKCook73a1GhqbITAArr8fvD3hpcelamq1GmYv40ugpLwKgJu2bWTK9KngNXHwtY8xmDgYjSjQUF9fT0JCwgBx0NTURFxcHA4ODkRGRmJpaSkdIIqSQLA77gmvUqlITU2lpqaGkJAQzJ3MCf00FDB8zYHmXNXV1QQHB592A4QMGikYQ42BBlEUeWj7Q0T7RHPhrAu1r5eUlJCZmYmDgwOBgYG4Gfip2eCIouQFMkJfhkFFAUBbmzSL4oYbBj1eX2qKi8n86y8UTk7MCwxk2jHfif2//EJBby/u1dXUe3oiAmpRTbvYziVrLsHV0fWkpw9MwmCUmISBiRFHCi68BTq6YJE//PoXHNwFX/wETg5w2drj+6VlcyDzAD8/9BwA86ZM4uLxLpDwkzZEPxQnioNrn7x21KJAw2DioLm5mbi4OOzs7IiMjJSK1m6/Haqq4Pff+12vWq0mLS2NyspKQkJCEMeJRitIVKvVZGZmUlJSwvz585k5c6bB1h4LBk8fqFQgl0uGOwZ4qhdFkeSKZG2qp6Wlhb1799LU1MTUqVOZN2/e6VmY2NAwqif6IUVBZ2c/cTtaFAoFOTk5lJWV4e7oSGBICPaOjvSWlZFWWUl1dTWTXFyoaGhAZmaGWhQxszbj3vx7mTVxFt9f+D1XXnLlSa0pMAmDUWISBmc3IxYFINURNLXAFC+pAHGaz/Ft8Wnw2kew6R1wsKdXruAN3zC6m1ows7Tg4c2fYROt/01EKw52f4f5jeZET4setSjQoBEHrq6uhIeHa8VBS0sLcXFx2NjYEBUVhVVcnHSzuuACndeVkZFBeXk5ixcvRnAStOIg7dY0xtsZri5AFEUOHDjAoUOHmDVrFgEBAafUJfFU1xToww95P3DFj1do0wog/ZsVFxdz4MABBEFg3rx5TJ069fRxnMzPh7lzpRbFyEi9DxtSFOzcCddeCykpw3pEDIYoipSXl5OTlYXY3c38oCB8pk9HEAS6y8pI/O472qZMwWvSJMqrqrQ2x05OTkRHR5Nem87aTWuZkjmF4m3FJ7XQ0NSVYMLECBmxKEhIlwSBrbXUlmhuLomCz76DkgppHzMzsLYCG2sor8b8P28w7+JzAFD1KNmfd1gKleoyGNKBTCbjmsfPx/xGM3pLevFO8B6TKACYMGECkZGRNDU1kZiYqJ3spvkg6+7uJjY2Fnlk5HFRcILxkEwm0845SEtLQ9WkIvamWK6bdx2utq5jur4T0dzE5s+fz6FDh9i7d++QE+yMidFEQXExXH659N0AXDbnMq0J0idZnwDSv9m0adNYs2YNnp6e7N27l927d9Pc3GyQc46ZSZPg449hyRK9DxlSFIAkNO69F6ZOHdUldXR0kJCQQFpaGhMEgdXPPsvUY3bGra2t7DpwgO4pU/CqqOgnClxdXYmJicHS0pJFbosI2BNw0kXBSDAJAxMm0C0KupTdKHoVug9QKuG2x+GFdyQhELRWEgmNzfDkq5CWLe0XFgTfr5NEg1IJv2xn0XIpnCvIZLRX18F5N8H/PtLrOuPK0zjvp9uImrqEmywu5fP1n4/JIVHD+PHjiYiIGCAOHB0diYmJQaFQEBsbS3d3Nzz5JFx00QAnOo048PX1JSMjA+VRJc/FPIdMkLGzeKfBHBI1zJw5k8WLF1NaWqqdMHgyMWqkQKWS8uAGek8nOiRqxAGAtbU1ixcvJiYmBqVSyc6dO8nOzj71rpMODnDLLaBnimNYUaBWS+23//d/eqXu+qJSqcjPz2f79u20tbURHh7O0osuwiYnB3x9qSsoYPf27VhYWODm7U355MkISFGZ8ePHExUVhYWFhbamICc557QVBWBKJWgRBOEe4B4ksTTTlEo4e9AlCkRR5Pwfb0dE5OeL38fKXMeHU1kVuDhKUYHdSXDeCun1zi6wMJe6EtrapYiBpoDvGKnvfs7M81bgPNUb3vlM6mRYET7wHH2IK0/j3B9uJdRrEZsv/QgrM0uDD17StCw6OzsTERGhTSu0tbURFxeHubk50Wo1NtXVcOutOj9gRVEkOzubwsJCFi5cyFS/qcxbNw95r9zgNQcgzX1ISUnB1dWVsLCwkzI86ExIH+hC061Q31XP95d9P+DmqVarOXz4MHl5eVhYWLBgwQK8vb1PfnohLg7+/BOee04vYTCsKNi3T5rK+PvvQw6l0kV9fT1ZWVm0t7czffp0/H/7DQu1Gp59FoDi4mIyMzKYUFCAMG0adcd+/0RRxN3dnfBwaUbJ6eBTYKoxGCWmGoOzi6HSB3+VJHDhT3eybMrS4+JAFCUDo2svAksLONoM7sequuXH/Nxt+kxou/Y+aGqFrX3mI/T2ShGEEXCiKLCxkM5hjKmMR48eJT4+HmdnZ8LDw7U32vb2dmJjYzEzMyM6OhpbW1vpKUyH1a4oiuzfv5+CggLmz5+PzUQboxUkgiRoEhMTsbe3JyIiAusRTskbCWeqKNAgiiIqUYW5zJyjXUdxsx3YldDV1UV2djZVVVW4u7uzaNEiHBwcTt5FfvEFfPqpJBCGESXDigKQplW++iq8//4AkT4Y3d3d7N+/n7KyMlxdXVm0aBHOzs7w3/+CWo34+OPaoV8+U6bQUVZGU28v6mN/215eXoSEhJw2ogBMwmDUmITB2YM+NQUDxEFhBSy9CL59H46UwCvvQ+4ucBoH67+G596CQ7HHRyunZYOiByKP5Uk/3iSlDQ6f8IGnVMI/HoFzouHai/tdw2CiQIMxxcGJZkcdHR3Exkp2ztGFhdjt2gW//TZo5CA3N5f8/Hzmzp2LvZe9UcVBS0sL8fHxmPcZ+mRoTpooyMqCxYslY6lRtisOR2FTIYEfB/L6qte1BYknUlNTQ1ZWFt3d3cyaNYtZs2b1t8w2JqJoGFEwQtRqNUeOHCEvLw+ZTEZAQAC+vr4Ira3g5ARIqYW96emUVVQwx8WFarWa9vZ2bTrL29ubJUuWIJPJThtRAKbiQxMmhkTfQsNVUyP47dIP2V2Wwk8F22HWNDi4G1ZHwdUXwmv/J4kCgNXR8OzDx0UBwJKFx0UBwOIF8PBtUtTgGKqeHopiU2G8K9j2LyQcThSAYacyanBzcyMyMpKWlpZ+Nsn29vbExMQAEOvpSWdoqBQ10IFmWqK/vz+5ubm0VbRpBYFKNHw9gJOTE8uWLUMURXbv3k1ra6tB1z+pkQJvb+np1tvbaKfwc/bjuoDrBtQc9MXDw4PVq1cza9YsDh06xPbt26mpqTHaNQHS031Xl2FEQXk5xMToVcQpiiLV1dVs376d/fv34+Pjw5o1a/Dz80PIz5cKFnft0g4Tq6isZOGePVSWldHR3KwVBT4+PqelKBgJpojBCZgiBn9/RtOSWJGegPdf2fDkvYgqFUK3HMYNE1oVRSlCsCIC/HQ/HWdv+IE9z71Fe3Udt8T9wKQlC7Xb9BEFfTFG5EDjhOjo6NgvctDV1UVsbCxqtZro6GjsrayGNKDJz8/nwIED/doLW+QttCva8XY07M2vu7ub+Ph4uru7CQ8PN4iBz5mePhgMXQ6Jg9He3k5WVhZ1dXV4eXmxYMECo0RlCAsDd3dp7PQg6B0pyM2FRx6B774D6UlZJy0tLezbt4+6ujomTJjAggULcDoWHQCkiN7rr9N1220kZGTQ1dVFYFAQB/bvp6e1FeWx331fX18CAwMRBOG0FAWmiIEJEzoYlU8B4J1bDb/9xaaM79h087mIi8+Hrm5poyhKtQS7k/sf1NIGj7wI+/P7v74/H7ZK42PVvSqpMwHY9X+vIfb2wkPPkf/u6yMSBWCcyIGrqyuRkZG0trYSHx+vjRzY2toSHR2NmZkZe/78k/bISDh6dNB1Zs+erW0v3LdvH6IocsfvdxC1Icrg3Qo2NjbExMQwbtw44uLixvyEe0pEQUsLbN4sfTcifbsVntz1JC3ywc+nccIMCQmhsbGRbdu2cejQIcO3in71FTzzzKCbR5Q+mDsXtm0bVBR0dHSQmprKX3/9RVdXF+Hh4URFRR0XBXV1kriwsKDlzjvZlZyMsqGBxd98Q05mJsreXq0omDZt2mktCkaCKWJwAqaIwd+X0YoCLQoFf1Wnc98nd3Bbpy/3vfaTVJDY0gb/eBgeuLV/2gCkMLta3b/Y8KHnJOOjvX+gUir5YME5NBVJN8frtnyOzcYveUmRSMHFi/UWBf1PabzIQb8ZCkhP53E7d9LT2kr0Oecwbpin8yNHjpCdnc20adNw9XUl5gspLWGMmoPe3l5SUlKora1lyZIlTJ489MAqXZyySIEBLJFHgiiKVLZV4u3ojVpUIxOGfmZUKpXk5uZSWFiotVYe83AruVz6OxmihkFvUZCfD489Bp99ptM5sbOzk0OHDlFcXIy1tTVz5sxh6tSpyE4spL3xRti7l7odO0hKTcXBwQF/BwfSi4uRdXYiPyY4ZsyYwfz58097UWAqPhwlJmHw92RUokAU4Z/PwKK5cPMVx8yMbPirJn1gt8JIaG0HOxvtB2Du97/z0w0PAGDv78PTV9US6h04KlGgwRjiQDNDYdy4cURERGhnKMjlcuLi4pDL5UQHBuI4adKQ6xQVFZGZmYmvry/jp403qjjQODKWlZWxcOFCpk+frvexpzR9oFRK0QInpxHPCBgLil4FF357IZfNuWzItIKG5uZmsrKyaGxsZMqUKcyfP3/0HSH/93/S4KiUFJ020COKFKSmwlNPSYWxfdId7e3tHDp0iNLSUiwsLJg5cybTp08fvKCytZXSgwfJqKzEXRSZtnQpqRkZmJubI5fLASkaNnfu3NNeFIAplWDChJZRRwrUahA4/sF8++Nw+Z39ChLf/eRxyQFRF1/9AtfcO/B1R4d+T0X+l53LxPmzAejIK+X8mimSKHj7C3j70xG80+MYI63g4uJCVFQUbW1txMfH09PTA0gGOdHR0djIZMRu307L5s1DruPn50dwcDDFxcXUHa5jz417EASB3SW7x3yNJyKTyVi8eDEzZswgOzub3Nxc9HkYOuU1BRYW0pPuSRQFAJZmlvg5+w1ZkNgXZ2dnli1bRlBQEDU1NWzdupXCwsLRpRcuugjuumtsokAUpa+QEMn+2M4OURRpbGwkNTWVbdu2UVNTw7x581i7di2zZ88eKAqUSnj0UcTaWg5WVZFeUYGPiwt+r79OclISgihqRYG/v/8ZIwpGwknqOzFh4tQwalGgUEjGKu88d/y1px+QnvaRuhW2XfEZi1/6ETa8ACk6WvbsbGDCIKH1F96RDJLWv4ogkzH+3vOovU2qRQj9S4HVf82lc1mO/sagEQcA69evBxhz5EAjDuLj44mPj9dOX7SysiJq1Srif/iBWJWKqOZmqed7EDRh2/T0dNRqNTm35+BgLRVzdvR0YG9pP6br7IsgCMyfPx8rKysOHDiAQqFg4cKFA8PGxzjlogCgtBT+8x/p6yROkdTUHADctuU2gGEjB4Ig4Ovri5eXF/v37ycrK4uCggK8vLzw9PTEzc1t0J91PwIDpa8TGFGk4OOPpdkKX31FL1BeXk5hYSEtLS3Y2dmxYMECpk6dOnTLZVUV6p9+Iis8nGKFAn9/fxwcHEh++GGsW1vpPpY+CAgIYPZsSdD/nUQBmFIJAzClEv4+jFoUHDwM598M362DoHnSDXzSRN1T7tRqaooO8kLJD7yx7En90wqbfoH6RnjwVqn74PtbuGOjJY4FUnTvvPdeIPDWq/R8p0NjjLSCZvqivb19v9HMPT09xMfH09HWRmRwMC7DtNtVVFSQmpqqNYP5POdzXkx40ShpBZDSGFlZWUyaNInFixdjdsK/6WkhCgAKCiQ74E8/hVMwQbJvt0LGbRkEeQbpfWxjYyMlJSVUV1cjl8uxtLTEw8MDLy8v3N3dBzpTxsVJDoc//AAuLv02jdSnQPXDDzQUFFB5zjlUVFSgVCrx8PBg2rRpTJw4cejjj41H7xVFUpOTqamrI7C7G6G5mQwPD+zs7Ojs7AToN9nzTBIFphqDUWISBn8PxlRo2N4Bz78tRQgsLWDuSrh0Dbz8xPF91GppUJLfFGLLUlnzwy0Daw6qamGC65Dh4L4tieu87mTTyusBsHVz5r7cXVg7jYONP0NBEbzw6Ch+EprLNZ44sLOzIyoq6rg4UChIeP992tzdiTznHFxdhx6iVFVVRUpKinTzmOPFsi+XAcapOQCorKwkNTWV8ePHExoaety86XQRBacJoijyx5E/WDt97aiMg0RRpLm5maqqKqqrq2ltbUUmkzFhwgRtNMHGxgbi42H9esntsE9kQV9RoFQqqa2upqqmhpqaGpRKJXZ2dnh7e+Pn56d/S+VLLyHPySHx9ttpa2tj6dKltP/8Mznjx2PX1kbnsftB31qVM0kUgEkYjBqTMDjzGbUoaGqRbI093fu/vicFpk0Bb8/jr/3wB9z8MBzYAVO9ddsnuy+ER++ER+7QebrUlN954tvHsVgapC00/PG6f5L3459Y2Nly1ffr8F0eBuu+hH358MGLOu2H9eVkigPlzp0kKJW0dHcTGRk5rJdATU0NSUlJuLu74+3vzbKNxhUHdXV1JCUlaQsplYLSJAqG4Kv9XyHvletVkDgYHR0dVFdXU1VVxdGjRxFFERcXFzw9PfHw8MDKygozMzPMzMxYn7Weu7f2FwWiKNLZ2Ulra2u/r/b2dkRRxFEux2vRIiZNmoSjo+OIxUzH778T39qK0t6eiIAAauVycnNzsTMzo7O3FwSBwMBA/Pz8gDNPFIBJGIwakzA4sxlTpOD6+6GwFJJ/leoF9udDwCzdDmxyBWyPgwtXaV/SiIPVUyP45eIPEHYlge9kneZGceVplF91A6EN1ngeTNN2H7RWVBP7/Dss+8+DOGgEih7WsPpiDHHQ0tJCbGwsdnZ2REZGYnVs6I1SqSQxLo7m5mYioqOHbWerra0lKSkJNzc3JgdMZvnG5Sz2Wsy3l3075mvURVNTEwkJCVhYWvBO3Tsk1ySfPqIgJwciI6Wn6QULTvXV8M+t/+Td9HeHNUHSF4VCQW1REVW7dlHr6UmvjimSatRYmltiZmaGTCajp6dH6y5oaWmJo6Mj48aNw9HRkYnbtmE/ZQqcf/7ILyY/nyZ3d+l3wcKCCCcnSj7+mEPnnou9vT0dHR0ABAUF4evrC5yZogBMwmDUmITBmcuYfQqqaqG2AQIDpDkI81fDxrfg0nP779fTM+gglh0libQo2rh81rk6t8Px9MEFNv58dsW72Ljp2f8dmwJvrJfGOFuPsEWyD8YSB3FxcdjY2BAVFaUVB70PPkiimxuNs2YRERHBhAkThlynvr6ehIQEXF1d8QnwwdnOGUdrR0RRNMqEv9qmWn7/63eUKiX+wf5Ezog0+DlGRV0dbNoE114ruQCeYkbikKg3aWlw7bWoYmNpsrKit7eXPwv+5LPsz1jrt5Yr5lyBSqVCrVajUqkwNzfHyckJR0dHrK2tpd+H7m6wsRn+XINRVETNVVeR/MgjOLm5ERYWRt6BAxSVlGBfW0unuzuiILB48WJ8jhWBnqmiAEzCYNSYhMGZyahFgWZa4lXng/0Juci/4mB5eP+iw7qjsPRC+PjVIccki5kHSP1tA4ueegEry+MfXCO1Oe5Hdi68/L50bqex/W6eNHHQ2EhvRQVJra0cPXqU8PBw3Ie50WlGP2sGOJW3l/OPzf/gy4u+NGhaQVNTUNZQxluz38JMbUZERAQuJxTAmZDoKw6+vfRbrpx75dgXVam0f18jHojU0ABBQfDaa3D55aM6fXFxMZl79+Lh4cFic3Ny2tspbWnB3t6ezo4ORGDJkiVMmSL93p3JogBMPgYmziLGFCkoq4InXoa/4qX/75bDriTpv1dFDexEsLKUhictmjvksvW7d+D94W9c8tt9KHoVwCCi4ONNcPsTg64jb2ljx5Ovomhrh4VzpWiB0zhJ0IwBY/gcODk5ER0dLbkhxsWhUCjA1RXzBQsIX7qU8T09JCYkUFtbO+Q648ePJyoqSmvDLKgFKloriPkixmD2yX0LDb+7+jvWrlqLvb09sbGx1NXVGeQcY6KtTerDbxv0s/uko2llfGnZS0T7RI9tsU8+kQycRisKQDJ/+sc/IHxwgT4YYno6uT/+yN69e/H18yNk6VL2xsZS1tSEvVpNZ2cnIhASEvK3EQUjwSQMTJzRjDl94DMJcnfCJWuk///yR7j8TikyoAuncfDiY+DiNOSy7o8+xMGUT9ldlsIlv9zDjpJE3ZECeztwctB5oy9LSOf9BatJfmM9u5554/iGIyWw5AKpU2EMGEMcODo6asVBbGysJA4As8xMwm65hQmWliQmJg47v8DV1ZWoqCja29spyi5i5zU7AQwiDnR1H1hZWREVFYWbm5s0Oa+iYkznGDOFhbBypfT9NEIQBP4V8S/c7d2paa/h29xR1H+UlcEDD8BuydBqVKKgqUnq9nnmGfDwGNHp1Wo1e5OTOahWEzB3LvPmzSMlJYXqadOwVSjoFEVEUSQ0NFRro302iQIwCQMTZzBjEgU7E+GRF6RQ5sQ+Of7br4X4H8H9hCp6UZSKE7fs0PsUq/yi+O3SD9lZmsQ53/+DJR4LBqYPrrkI/vtvncWFjt6eKNqkwqeMD7+iMj1H2jBxvDT+2Wr0dQYajCkO5HI5sbGxkkvc0qWYHTpE6Nq1TJw4kaSkJKqrq4dcx8XFhejoaLq6uijMLmTHNdLPfs2mNfSqe4c8djCGakk0NzcnLCwMLy8vUlJSKCoam/AaE/7+UFIifT9N+Sz7M67+6Wq9HBL7MWWKNAb54otHJwp275ZMn3JzR3zNSqWSxMRESr28WDxvHtPUapI++ID6ujqsbWzotrMDMzPCwsKYdMza+2wTBWASBibOUMYcKaisgZJyyY8AICUL0rKlG/RcHYYymkmK+hT9qdWw5HzYvAMrM0sEBNxsnPn54vd11xS0d+i0VXbymUT00/dL/yOK/H7PU6iUSnCwhy/flKIdCsVpmVbQiAOFQqGdo8DkyZiZmbE0JwcPMzOSk5OHFQea9IRcLudI5hH+uvov3l3zLuaykZu26uNTYGZmRkhICNOmTSMzM5ODBw/qZaFscKyspJufAcSfsXgy4knuDrpbb/tkQBoO1dMDEyawbu+HIxcFAIsXS46Qc+aM6HrlhYXEfvABR+vqiIiIwNPXl/iSEppcXbGqr0fe1YUoioSFh+Pl5QWcnaIATMLAxBnImETBsdA2N10OP3503Hzo7U/hubcGv8na2cLGt2GlHlXrih6IWEKW0MC5P9xKhHcwpXfF4WQzjoNHj2hrDrR8/j2cdxN0dg1YKuTem7RzFOoOHCL13Q3HN/b0wPKr4fWxFw6eNHGgVmP2xx8szc7G09OT5ORkqqqq9Fqnp6eHI5lHCPUIRS2qeWr3U3qnFUZiXiQIAgsXLsTf35/c3FxycnJOvjgoL4d77pG+n6b0Hdl825bbWJ+5fugDurth9Wp49tnRRQqam6GyEuzt4aGHRuTp0d7ezq78fLqdnIiZNw8nuZzYPXto6+3Fctw45C4uiIJAeHg4np6SX8nZKgrA1JUwAFNXwunNmERBaztEXQYP3Q43XNp/m0IBXXJw1jG3/Y31sMAfloXqfSpdhYbdSjl+Hy1jofuc/g6JTS3Q3glTvHSuVbV3P59EXAqiiLmNNXdnbcV56jGr4fc2QHiwdH0GwBjdCm1tbcTGxmJpaUl0dDTWMhlYWqJWq0lLTaWyqoqlS5dqQ7eD0d7eTlxcHDKZjIDFAURtigKGN0Eai6NhYWEhWVlZTJkyheDgYP08/w1Bfr7UqrhpExzz4z9dEUWRB7Y9QMikEK4OuHronfPy+LzqD/6R8vjIIwU33wwZGbB//4hEQWNJCQk5OVhZWxMZGYmst5e4jRuROzlhZm+PoldKS4WHhzNx4kTg7ysKTF0JI0QQhHsEQTgIDDIqz8SpZszpAwc7uGwthB0b1KJWw79egaJSKWSrSxSoVLAjAXLy9D5Natqf3L7+HwMKDW0srNmw9lVtQaI2cuDiNKgoAPAKmsfiuySr5N5uOb/f+9TxJ9h7b5JEgUoFR5v0vsbBMEbkYNy4cdon/tjYWOTH0jey7dtZ8uyzeHt6kpKSMmzBn4ODA9HR0YiiyP60/Wy7chswdEHiWG2Op02bRkhICBUVFSQlJdHbO7rahhEze7YUdj/NRQFIkYO317zN1QFXI4oiGVUZA3eqqQG1mnVd8aMTBQCvvCJ1M4xAFFRVVRGbksK48nKWLTvmppmURI+7OzK5HEW3lCKMiIj424uCkWASBscQRfF9URTnAItP9bWYGMiYRIFKBYcKpQ+Up/4Jfj7S60eb4c89kD9E5beZGfz5Bdz/D71OFVeeRs5jD7J9k0ynT0Hfkc39xEFOHoRfAo3NOtdd9uxDjPOSPriKdyWR9dl3/Xd44Fm44B/HaybGwMkQB93d3eDqiszNjcXz5zN58mRSU1MpHyZ0bm9vT3R0NIIgcHjvYbZdflwc1Hb0b4M01OyDyZMnEx4eTn19fb9x0yYGsuXwFhZ/srh/zYFKBStXcuCqZaOrKfjjD2htlYyeQkL0vpbCwkKSk5PxcHUlMjycnooK9mzejEqlQrS0pMfREcHCgsjISK23hkkUSJiEgYnTnjFHCj74EiIuHXjTneAKe3+H81boPm7zDumGLQi6JyuegCZ9EHvVQiZ+98Wg5kUacZBVm0dRy7EboedEKWpwrAvhRKwc7Dl/3Yva///riZdpr6k/vsPt18CzI8u7DoWxxEFMTAxKpVISBwEBsGkTMnt7gmfPZsqUKaSlpVFWNnTdgJ2dHTExMZiZmVGQWcDWy7Zy6exLGW97vLvE0AORJk6cSHR0NG1tbezZs0cSNsZk/36pDW//fuOex8CcP+P8gQWJZmb8du9KrhwfN3JR0NYGN94I77+v9zWIosj+7GyysrKYNnUqIStX0jltGnsyMhCam1E3NdGrVCLIZERGRWndOE2i4DimGoMTMNUYnF6MWRSAZFqUmH68cDA7F/7zJnz++uB+BKIIK66B6T7w4cvDnmI0jobdSjk2FtbaqIE+I5t/u+MJ8n/ZxqpXn2ThTZcP/IAVRWnGw/yRVWwPhjFqDtrb24mNjcXc3Jzo6GhsWlth0SLUr79O5rRplJaWEhwcrLWgHQxNO2RPTw9RUVE4OjqSUJaAq40rd/xxh1EGImlMl2QyGZGRkTg4OBhs7X7U1Egjl2+5ZcR9+qeavg6JX4a/QYeDFXdvvWd06QOQWhsnTwbz4TtRVCoVGRkZlJeXM//775nx+OO0+PoSl5CAlZUVivZ2VEolgpUVkdHR2uFeZ4soMFkijxKTMDh9GLMo+PIniFwitfX1JTULXl0HX78LNkPcwJVKaViSg/2Qp+knCs55E5uX1sFt18D0qXpd5hW/3kenspufL3gHq+R9MNN34ITHY8hb21G0tePYd9JjX7bsgCvuhqw/YfZ0vc4/HEYXB1FR2Lz/PtxwA+KECWRmZlJcXExwcDBTpw79M5TL5cTHx9Pd3U14RDgR30RQ3FyMhZkFf133l1EGInV2dhIfH49SqSQiIgJnZ2eDn+NMRxRFHvjtLh66/XM+n9NDyxMjFAXNzfD22/Dvfw85trwvPT09JCclcbSxkcWLFzPZ3p6jLS0kJCZia2VF17GCV0EQiIqK0o4DP1tEAZiKD02c4YxZFHTL4dUP4NvNx19TKqUn6pBF8Mv6wUVBxj4oqZA+kEYiCi79CJvGNvhjt9RloCe3zr+C3WUpXPP93YiX3g4/bx10X2tHh8FFAcDa5fDbJwYTBWCctIKDgwMxMTH09vYSGxdH9733grs7Qns7gc7O+Pn5kZGRQXFx8ZDrWFtbExUVha2tLfFx8fhZ+9Gj6sHB0gFPhyF+TmNAk8qwsbEhNjaWhoYGw5+kowNSUqTvZyCCIDDTax6PRvVgcd0NPBP1zMgiBamp8OGHMEwrq4auri52795Nc3U1USUlTJ48mTqlkvjsbOwUCjq7ulArFMhkMqKjo89KUTASTBGDEzBFDE49BkkfADS3ShbGmg+kWx4FczP46JWhj1t5jdTB8PPQfdljGoh0ApqRzddYL+CDOz7FagRrVabn4BU8f+AH7/Y4aabDeNdRX1dfjBE56OjoIDY2VvuBbXvTTVBcjJieTnZODoWFhQQGBuLn5zfkOs0dzWzcspFxjMNhhgOPJj4KDN/KOBaUSiVJSUk0NjYSEhKiNcUxCFlZEBgImZmwaJHh1j1JfBL7JrfFPcT9S+7ngSUPELQ+iFdWvDKyqYydnWBnN+xuzc3NJCYmIggCkYcOMc7FheqICJJzcnB2caG1tRVRqURmbk70smXaCM/ZKApMEQMTZyRjFgUJ6XDhLZKboLNjf6vhc2NgpR5//D9/DO+9MOQug4qCUQptTUHi1/IcNh3cotc6irZ2Nt/1JJ9GXjawS6GzC+54Aj7aNKrr0YUxIgeaLgO1Wk1sbCxdzz8PGzciyGQsXLiQ6dOnk5mZSeEQMwM6ejq44IcLeKHsBZycnBDKBDZfuBkPBw+6lANNowyFhYUFEREReHh4kJycTElJieEWnz1bsvw9A9oVT2R93Jssu/ghfqiL5s3VbzLFaQpX+l+pn0PiRx/Byy9Lv/96iILa2lr27NmDNbB8+XLGPfIIFStXkpyZiUtxMS2NjYiiiJmVFTHLl5/VomAkjNxX1IQJI2GQSIGZGdhag2WfvGRppVRncOm5Qx978DBMcAM3lyFTCENGCtbeBPNnw8uDT0wcjFVTI8i5eQsznvwYnAsRX35iyPBrZfo+sj//HpC6FKatjMRx8rHwuZ0t7Pl+SH+E0aARBwDr10sRlbFGDjTiIDY2ltiiIilyoFQifPklC266CUEQyMrKQhRFpk/vnyI5sfsgaGIQSUlJHM46zM9rf8Z9vDudPZ00y5uZNG5oA6XRoLFQzsrKIiMjA4VCwaxZs8a+sI3NaT0nYTDWZazjnt0P8f3V0Vz68Cfa39/3zn0PgNu23AYweOSgrg6OHtU5O+REiouLyczMZKIoEnLDDVhkZVFqaUlGRgYTXF1pUKsRFArM7O2JiYnRPCmbRIEemFIJJ2BKJZwaxiwK6hthvMvAD5QjJRB4Lnz5Fly0eug1Yq6UUg+/DJ5CGDZ98OVPUhvkOdEju/6+fPQVaR1FvOxTw3cXvj1kt8LmO/9F9oYfAJgavZTr//wC4cSWxb37Yd9BuOWq0V/TCRgjrdDZ2cmePXsQBIEYKytszzsPkpIQFy1i//79FBQUsGDBAmbMmAEM3pLY29tLUlISR48eJSwsjMdTHyehLMGoaQVRFMnNzSU/P5+ZM2cyb968kVff96WyUiq+u/9+GMYR8nRhXcY6Hvztbu4M111oqOlW+Dr3awrvK8TVtk+KS6U63hIsikMKg74/az8/PxYGBCD74w8KZ84kKzcXD1dX6pqbEQQBc0Egevlykyg4himVYOKMwSCFhpGXwQvvDNw2zUeqKTg3Zvh1vn0fXntq0M161RTccOnYRAHAHdfReskytpck9DdB0sGqV59k3CSpna0kNoXUdz8fuNPmHfDVL2BA1z5jpBU0RX0AexQKOvPyIDAQQRCYN28es2bNIicnh4KCgmGnJIaHhzNhwgQSExN5aO5DgGFGNg+GIAgEBASwYMECCgoK2Lt3L+qxmE21tsLmzdL3M4B1Get44ue7qfzUkTebl+gURZrZCpm3Z+Jq63rcvbOlBYKCpPcr7TjoeVQqFWlpaeTn5zOvp4dFlpbILC0pmDOHrNxcvA4coLauDkEUMTc3J2bFCpMoGAWmiMEJmCIGJxeDFRr++AcsWQiaiv2mFsg7DBF6GFmWVkpP+bY2g+6ilygoLofyKqlFcqxGQ8Xl5P68kWC+ZtmUpf1nK5xAyZ4UvlwjWSabWVpwW/KvuPedEKlSgbJXv8mQI8RYkYPY2FgAoqOisHv3XZg1C/Gii7RPikk9SXxe8fmQPgUqlYqUlBRqa2uZNn8al/x5CWDcgkSA0tJSMjIy8PT0JCQkBDM9zLHOZDQDkR5adC+v7XVBuOUWyXdgCJQqJVf+eCXnTj+XW+dcBw8/DA88ANMH76ZRKBQkJSXR1NTE4sBAJl96KeK553LwiivIO3QIb29vKisqkPX2YmFtTczKlVqfCZMokDBFDEyc9oxZFHR0Sk/DIM1A6NvG99ancMMDUjRhKEQRbnoQbnpo0F307j748Q+46h698qPDEpvC3Dd/5fdz3mJ3WQoP7X5p0F2nxixl6QO3AKDqUfLzTQ/RK+8TZTAzk0RBaSVcertBZipoMFbkIDo6GoDY2Fg6Dx+GgwcRBAGfGT6k9aQRZhnGD9E/DOlTYGZmRmhoKJ6enhzJOcJP5/wEwO+Hfx/zNQ6Fj48PYWFh1NbWav0O/q5oRMGDQffx2nnvIDz77LCiAMBcZo6HvQePf3cbnxz8SnI2HEIUtLe3s2vXLtrb24mOjGTy1KmIsbHsv+wy8g4dYnJFBZWVlcjMzLCwtzeJgjFiihicgClicHIwSKRg3ZfwzBuQt2tgS15vr/QEP8N3+HUKS6VRyf4zBmwaUUtiby9U1Rmm4E+ukESLjTWxZalMd/HBy2Hi4KdWKFgfdgn1uQUALH3gFla98q/+O5VWwo0PwKevSSkWA2KMyEFXVxd79uxBFEViYmIQLUTO+2I1WUcP8H3U97RVtuHv74//MEV6arWa9PR0KioqCFgUwCw/qTiwW9mNjcXgUaKx0tDQQGJiInZ2dkRGRmJtPYJ21rw8uPBC+O2307YIUSMK/jX7dl78v1iEt9+Gc87R+3hxwwY677+L6bfJef6a9YMWJDY0NJCUlISVlRURCgX2L72EuG0b2aWlFBYW4gOUqVTIVCosHR2JiYnB3l4qHjaJgv6YIgYmTlsMlj6483pI+a2/KPjoK6m7wNx8eFFQ3yjdzKf5jF0UgHROQ3UBWFtJBkzdcqInL8HLYSINXY08sPMFnTUH5lZWXLLhDcyOdWOkvPUpJXtS+u/kMwlif5Deb2/vqFsrdWGMyIGtrS0xMTHIZDJ27d7FK/+3mo/+ncquc77hnNBzmDt3Lnl5eeTm5jLUA45MJmPx4sVMmTKF/Zn7KS0t5esDXzN33Vyj1RwAjB8/npiYGORyObt376azU3/TK5yc4PLLpe+nIRpRcP+S+3lx9X8RVq2CefNGtIZwwQXYvfIGl8RIsxVSKlIG7FNWVkZcXByOjo4sX74cez8/1IGBZBQUUFhYyNSpUykTBGQWFljZ2rJs2TKTKDAAJmFg4qQyZlEgivD4SxCfJoXs/frkihUK+PQ72LJTv3Wuvhdufljn5hGLgm45XHYHZB4YwZsZhqIymBoKSXsByD9axEc53wxakOg+dybLn38EAJ+oEFym6cijCwL09MB5N8N7Gwx3rRhPHASHBVPbWcvkuddicfkNBPuvBGDOnDkEBARw8OBBvcRBcHAwvr6+pKenM12YLkUijFiQCODk5KQd97tr1y5aWlr0O9DLS+rnN6RpkoHoKwreXPUGgqMjvPsueOrpNHnwIDQ2gosLwl138d657/HTFT8RMun45ERN50FaWhqTJ08m0tUVS5kMtb8/aTfcQFl5Ob47d1JSXIxMJsPK2pqY1auxO+Z9YBIFY8PkY2DipGGQSIGiB3ILwH+mVOTXFysr2PPdkEWEWgQBXnlC51PzqBwNm1uhRwlmBtTavpPh4du1UYjIyYv57dIPufCnO7nkl3t0FiSG3HczDh7u+F927sC2RQ2WltLPzkCDlvpiaJ+Djp4OLvn5Esoaynhr1lscXHMpE3p6sK+uBi8vZs+ejSAI7N+/H1EUCQgIGLRNUBAEAgMDkclkFB4s5Ntl33LV7quI+SLGqAWJ9sf66BMSEti9ezfBwcF4e3sPfVB3Nxw5IuXdbYyX7hgp/UTBwn8hzJ8PH38MS/WcSSGKcN110vv6TjLlEgSBS2ZLhaE/5/9MU2cT/kp/KfUTEMAsDw+EqVNRPfYYKRER1NbW4jttGkWAWU8P1paWxCxbhq2tLWASBYbAVGNwAqYaA+NgEFHQ1S3d9NXq/lX/xeXw0HPSFMSJ4wc/XkNLGzg66CwSNKTNsbHQ2CevmBLK5ss+Hlu/vChKxYgGsk3WYIiagxNbEue7zic2NhZVby8x//439hddBM9LIqSgoIB9+/bp5SEgiiL79u3j8OHDTJk5hatjr2b+xPn8cuUvo327etHb20tGRgYVFRXMnDmTgIAAZIOJt9PQErmfKFj9JkJDAzzyCPzvf+Cue+iXToqLwdpaZ4Th0T8fxanBiWm20whbGsakYx4OvbGxJKpUNNbXM9XSkkKVCjMzM2yOORraHBNPJlEwNKYaAxOnDQYRBd9uhkXnQkPjwFbAjk5JNFjoEQATRbjoFrj/mQGbxiQKmlslwWIMPvkW/til/V+NffKlM8/RSxTIW9tpr6nXvfGFdyDqcqnY0YCMNa2gy6dAU3NgbmHBnqefpv2OO7T7z5w5U+shsG/fviHTCoIgMH/+fGbNmkVZQRlfR37NJ+cPY9VrAMzNzQkJCWH+/PkcPnyY+Ph45PJBumZmzoT0dOn7acAAUQAwYQJ8+aV+okClgjffBLkcfH11ioLm5mYiVZFMtp3Mv4r/RXrSJ/DWW/T09BCvVtPU2srUw4clUaBWY2NjYxIFRsIkDEwYFYMVGoYFSeZBbi7HX1MqpQ+cebPhr03gqsf4W0GAJ+6Bay/u9/KYIwVX3QM3Dt7yOCa27oaUzH4vrZoawU3zLgXg67zNg5oglSVm8GHwefx844OIuoTLdZfAsw8bxeNgtOJgKPMiGxsboqOjMbe3JzY7m/bycqlyH5gxYwYLFy7k8OHD5OTkDCsOAgICmDNnDuVHyqktqaWitYKVG1cateZAEARmzpxJVFQUra2t7Ny5k6YmHe2jdnYQHKzXvABjM0AUlJZKhkSHDum/yP798PTTkJGhc3NFRQW7d+/G2tqaS9deypq5a0j+9FlqN64nbs8e2lpamDp1KoWzZ2MmithaWrJs2TKTKDASplTCCZhSCYbDIKIgKxdm+kre/ydy97+htQ2+ekc/7wBNKuIEDJI+iE+TxjQvNULYt69d7AkUt5Tj/8kanSZIqp4e3gtYRUtZJQArX36C0AeHmG6XsQ+C5hnGh6EPI0krDCUK+tLd3U1sbCy9TU1E//e/OCQna2+iRUVFZGZmMm3aNBYuXDhsVEVTvOjl68X1SZJRlLFNkEC6mSUnJ9PS0sKiRYvw9e3TRVNTIw0UuuMO8PAw6nUMxQBRIAhSKuDxx+GTT+CYq6BeNDaCa/+UVV97Y29vb4KDgzEXRURzc17a8xLzugJQt3finZhIYVQUZmZmWp8LTfunSRTojymVYOKUYhBRIFdIlf4vvqt7+/kr4LwV+t3Ienth9XXw3Fv9XjZYTUHkEuOIApBEgShCScWATb5Ok/nt0g/ZXZYyoFvBzNKSCz9+Rfvz2fX069Tuz9d9jpw8iLgUdsQb/PL1jRzoKwrgeOTAwsWFPf/5D20qlXabn58fQUFBFBYWaocvDcWcOXOYP38+VcVVfLH0C8C49skaNKkRHx8f9u7dy969e1Fp3sfRo9KN9+hRo17DUOgUBaIopQJ++EE/UfDHH/DUU1Ka7QRRoBlbnZ+fT0BAACEhIZg3NMDcuXRt28ZC+UIQBdw83CRRoFBgb2NDTEyMSRQYGZMwMGFwDJY+sLaSBho9eW//14uOfWCviYGrL9RvLTMzuO0aWB2lfclgoiDvsFQHYEyHuzfWw9ILdTo5amoOdIkDn6gQbZRArdThiqhhgT9s3QgrI41y+cOJg5GIAg02NjZEx8RgaWND7J49tD38MBQVAeDr60twcLA2ejCcOJg5cyYLFy6kprSGDUs2ALDqq1UoVcZ1LTQzMyMoKIigoCBKS0vZs2cPXV1dEBAgDVIKGOXfzhjRKQqysiA8XIpm6EtRkdSeeMLPX+NkWF9fT3h4uLa7BFdX2i+8kD0KBWJrK55ublTVN6MW1aispIFIVlZSVMwkCoyHSRgcQxCEewRBOAikn+prOZMxiCioqIbn35aeMubPAfs+edbyamla4te/6r+eUik9Nd9wqTRPAQN3H6Rkwf/9TzI4MhZXnCcNeRqkFkAjDgBUYv9agphnHsB93mwAGg4eYef//U/3OWKWSj+nxAwoKDLctR9jMHEwGlGgwdramujoaCzNzYn196ct/3hEZOrUqSxevJji4mL27t07rDiYPn06gYGB1JbX8lnwZ7y+8nUszCyGPMZQ+Pr6smzZMuRyOTt27KC+fpBi0ZOATlEA0u/GpEkDnvx1ool8/POf8OOP/VJh1dXV7Ny5E7VazYoVK/D09ISGBjh8mJauLvaEh2NuZoZ7YiJFFRXIgB5ZD/ceeYiNeRsBkygwNqYagxMw1RiMHoNFCr7/HZ55HeJ/1N1G9/NWOHeZfgVzSiUsuwquugDuuREwUkuiUinVGJxiRFFEEAQKm0vxdvDQ1hzUHzzMx0svQqXoAeD6P77Ad3nYwAXUagi9SBJkH71ilGvsW3Nw0+03URhSOCpR0Be5XE5sbCw9PT1ER0czzs5OezMqKysjPT2dKVOmEBQUNHiL4DE0Q5AmTZrE4sWLeSXpFa6bd53Raw407yM1NZWG+nrm7djBjAceQDiJlsiDioJhRiH3o7MTli2TRkZfc432ZbVaTV5eHvn5+Xh6erJ48WIsLS2ljddcQ2NzMwm3346tnR3Ozs6UlJQgUypxsrEhYu1aHtr5EB/s/YD3Vr3HT//+ySQKRoG+NQYmYXACJmEwOgwiCvr6E3TLJUtgDa3tUnHcivCRrdnbC29+AjGhEDTvjPApGJSaenjwWfjPgzBr2qC7KXoVzPh4JXPHz+hXkJj63ga2P/ICAA6e7ty19w9sXJwGLlDbAK5ORhU6arWaf9z7BF+IP2PhbUHcrXGjFgUa5HI5cXFxKBobidq2DccNG7S/T+Xl5VoXveDg4GHFQWVlJampqTi7OXPXvrvopfekFCSC9LM5kJxMQXU13q6uBEdFYW7MaNQxBhUF27bBO+9IhkTHBhMNSW8vPPYY3HST1iZZoVCQmppKfX09c+fOZdasWf2KQuuPHCFx3z4cu7pwqK+ndPJkzMzMcHJyIjIyEgsLC0RR5O4td7Pn2z1Ubq40iYJRYCo+NHHSMIgo6OmB82+GzyQ3tH6iAODDjXDjg9DWrv+aarUU3n/0TuOJAoVCSm3sTBz7WsPh4iiNkz7aPORuVuZWrF/z4oCagyV334DvMilK0F5dxx//fFp3eH3ieEkUFBTBS+8ZdKaChq7ebopCy7DwNkf5mZLPn/98zGtaW1sTFRWFlaUlsWvW0Np2/HNv8uTJhISEUF5eTnp6OuphPCcmTZpEeHg4LY0tvDPnHSwFy5NSkAhSymV+eDhLly6lprVVO1XQmAwqCkD6G5owAY7NIBiS2lpp/zfe0IqCxsZGduzYQUtLC5GRkcfrCTo74b77qDl8mIT9+3Fxc8Pe0pJSb29kSiXOfUQBSJ0oBW8VmETBScAkDEyMCV2ioEvZzY6SEd4ozc2lArjpU3Vvf/ROiP0exunxxALHUghXamsRjBYp6JJLHQkeEwyz3lBYWUl+DeHBw+6qqyBRkMm4cP2rWDs7Ym5txeTh1knNhh9+h7YOA70BiY6eTtZ8fwv76g+x5/pN3LrScLMVrK2tiT7/fKxdXIiNi6P14EHtNm9vb5YuXUpFRQVpaWnDioOJEycSGRlJd0c3r898HRvBhpgvYqhpH0Hx3WiRy/FWKFgeHo5KpWLnzp1UV1cb5VRDigKAFStgw4bhUwlffSUZMlVK7bGiKJKfn8/u3buxsbFh5cqVuPc1Qyovp6K8nMScHNxtbbG2tqZMJkMmk+FqbU1EH1Fgqik4uZhSCSdgSiXoz2CRgtfTPuGx2P/y1fmvc/Wc84deRBShuAz8fHRvX/81BM6DRXNHdnFyBTz9Glx9IXGunWdu+kAXpZXQ3gEBs4bd9a+SBK7d/BA7rvqCBe7SbISinYk4envgNtNv+HMpFJIgMRDHRUE+26/8nKVei4wyslmhUBC3dSvdDQ1Ee3vj2GcccGVlJSkpKXh5eRESEjJsWqG5uZn4+HhkFjL2qPfwyppXsDSzHPM1DkkfS+SeuXNJT0+nurqaOXPm4O/vPzYb7D4MKQo+/xzi46W2yUF8NPrR3g7ffw+33EJ3dzdpaWnU19cze/Zs/P39j/+ce3rAzIzisjIy9+7F29YW9c6dVC5diiCTMX78eMLDw7XpE5MoMBymGoNRYhIG+jFU+kClVnHLn/9iY96vw4uDjzfBk/+FvF3g7tZ/m1IJK66G5eHw9AP6X1yfQimj1xQcLpaiGPrMaDAUy68GR3v4eb1eu3f0dGJvaUevuheVWjVg8NKwNDTCrY/B//49/CjrYa7jRFGgwSjiQC4n7tdf6ba2Jio6Gqc+I4yrqqpISUnBw8ODkJAQzIa58bW1tREXF4eZmRlRUVEcbDnIBLsJxqs5aG+X5iQEBoKDg/bpOzc3Fw8PD5YsWXK8cG+UDBsp2LRJsmV+++2hF8rLkzoVJk4EoKamhvT0dARBYMmSJf2jBABXXcXhWbPImTMHX19f5HI5NVVVCL29jLe3J2ztWpMoMBImYTBKTMJgePSpKdBbHHR1w65EOH+l7u1yBVhaDJyPMBiakcIP3kqcv63xIwXn3gj2tvD9OsOvPRhFpTBxgm43yCG46ffHaOhu0jmVsa2yhnGTBnHYa22XLJ9feBRG2WkylCjQYLTIQVwcXe3tRE+ahNOS4xM5q6urSU5OZuLEiSxdunRYcdDR0UFcXBxqtZq3a9+muKv4pBUkaqipqSE1NRUrKytCQ0P7iZ2RMKwo0BdRlCYrenjQ89137Nu3j5KSEjw8PAgODtYaER3fXeTgjz+SJ4rMUKtps7SkTqVCEAQmODkRGh1tEgVGxFR8aMIo6FtoaCYz49NzX+Z6/4s40lQ6cIcf/4CyKsmi+ERRUFYFa2+U/AysrfQXBSAJCa+JZAr1Jyd98MGL8Pwjxll7MPx8JFEwQlF/jf/5AwoSld1ytj3yAu/MWUZNTp7uAx0dYOuXkihQq6Wq8xGgjyiAsQ9e0oWVlRVRUVHY1dYSW1BAS0uLdpunpydhYWHU1taSnJx83HVwEOzt7Vm2bBkWFhbcPf5uPMw9jFeQWFcnTS2sq+v3soeHBytXrsTMzIxdu3ZRXl4+4qWHFQUvvwz//rd+iwkC/PgjVc89x/bt26moqCAwMJDw8PD+okCtRvzrL3JycsgTRfznzKG1poZ6uRxUKtzd3QmLiTGJgtMEkzAwoTcj7T4wk5nx2dpXeDr8PgDKWqukDQoF/OdN+Px73QfK5aAWR5fbHudA3LNXEJn3wsmpKfCZBPrk6g3Nr9shaO2I3BZ1FSRmfPQVae9tQNUjuSIqdTgrahFFuOlhePh5vc+pryjQYDRxcNFF2E2YQGxsLM3Nx7s6PDw8CA8Pp76+Xi9xYHPMktfBzoGHPB5issVk44iD2lrpBl1bO2CTvb09y5cvx8vLi9TUVHJycoa9bg16RQosLYf/21Op4JVXkDc1kVJRQVJ+Pk5OTpxzzjn4+fkNWFe9ZQsZv/7KkSNHmD93LvUNDTR4eyOameEBhIaGaiM2JlFw6jGlEk7AlErQzVhbEhMqMlj+zQ18cd5/pbTC0SZwceofDejtlW4+o+mf7+2FGx4g55IgwspePzmiICsXfvoT/n2fzuFMRiW3AL76WbKL1rdT4xh/lSRw4U938sayJ7l97uV8EnkZtTlS9f7ie25kzev/N/jBX/wotU0Olvrpw0hFQV+MkVbo6ekhbudOOpubiVqxAuc+ue+6ujoSExMZP348oaGhw/oGKJVKEhMTaWxq5Nu2b3lqzVMsmLhgzNc4EkRR5MiRI+zbtw9ra2tmzpyJr6/voNdusPQBoNq/n8LnniP/yivBwoKFCxcyefJknWuqVCpSU1Oprqoi0Nqa0kOHaPbxQS0IeHp69qvxMIkC42KqMRglJmEwEEP4FKjUKl545w4Wfh6L4pOXuTz48oE7PfoCHC6BXz8Z+YS/phaarriZS/0LMF8afHK6D37dDv95A7K2jizdcRqQ13CY2W7TkAkyGvKP8PHSi7QzFK7b8jl+K/X4QK6pH7RNcyyiQINRxEFyMvEpKXT4+BC1bBnOzsdHdWvEgZubG2FhYcOKg97eXlJSUqirq2Pp0qW4urvS2NWI1zivMV/nSGhra+PQoUOUlZVhaWnJjBkzmDZtmrbVD/QUBU88Ad7ecM89g55LFEXKy8s5cOAA3d3dTJ06lblz5w6oJdCgfPllkmfMoEEUCQ4O5kheHq3NzagEgUnu7oTExGi7FUyiwPiYagxMGARD2Rybycx4KvA2pti6849tT/LNwS0Dd1q7HC4+Z1Rjf+M6CvBeU3jyRAHARashZ/upEwWdXbDhB8n0aIT4j5+BTJDxR+Ee7sx/i+jnH9Zu+/X2x+lqHNpEic+/h4XnQN3A6X+GEAVgnLSCZWgokXfeib2jI7GxsTQ1NWm3ubu7ExERQWNjI4mJifQOU0thbm5OaGgonp6eJCcn8/KWl4n4PMIwaYWCAqmor6Bg2F3HjRvH4sWLWbNmDZMmTSIvL4/ff/+d3NxcFAqFfqJAFKW01CApCbVaTVVVFTt++om0tDScnZxYvXo1QUFBg4oCRXc3cePG0ahUstTZmYL8fNrkclQWFky2szOJgtMYU8TgBEwRg+MYbPZBUws4O4IgaLsV9tXnk3HTL5jLzKVxwj6TRiUIUKupvvlOLnNLwi446OT6FPS1cD4V1DfCtHD46h24YPjQvi40aYVl3iFc+aWSkl3JAMy+eDWXf/3e4OHm1nbYvAOuu7jfv5uhREFfjBI56O4m/rPPaHd1JWrVKlxcXLTbGhoaSEhIwNnZmYiIiGEjB2q1mszMTEpKSvi19VdSu1LH3q1QVgbPPw//938wZWTrdHd3U1BQQFFREb3qXrYc3YLHFA/+u+a/I04ftLe3U1JSQmlpKXK5HLfeXubFxeH2wQdDeht0NzYSl5GBQi5nycKF7PvlFzpdXem1smLKlCn9bKlNouDkYUoljBKTMJAwmChQKCD4fLjsXK0XgUqtoq2nA2drR3rq6rCcd47k/3/XDSNePjn7L2wvuYevbpjD8099d/JEQU8PTFoM770gTT48VTS1SLUaY0AjDlaPW8TS/xxE3tQKwMWfvca8ay4afoG0bAgMoEOtMLgo0GAUcfD88yTMnk3bMW+CvuLg6NGjxMfH4+TkRERERL+wvC5EUWTfvn0cPnyYbW3biO2MPemtjCfyYeqHxGbFcoHbBVjKLJkyZQrOzs7Y29tjZ2eHra2tlNt/4AEIC0N96aV0dnbS1tZGW1sbtbW1NDQ0YGFhwRRvb6b6+Umpl2EGKnV8/z1xjY2oPTxYEhpKZmYm8s5OlL29+PT2EnTNNSZRcIowCYNRYhIGBhQFGr7dDMHzwa//h+TRriYiNl3Nx4pIIm68Hxz08GLvg8a8KMxjIb9d/vHJdTTs6pbmOqyKHJPpj0HQhIHHYHijEQe3tQXi+l8pamDt7Mg92duwH8q8qaYeZkUjf+VRVjpsN4oo0GAMcaBUKomPj6etpYXI6Ghc+4wUbmxsJD4+HkdHR73FwcGDB8nLyyO2Ixbfmb48EjbKVlalEo4eBTe3URXj9k0fvBrzKkVFRZSWltLZ2dlvPoatjQ125eUoXV1pt7DQdjdYWFjg4uKCj48PXs7OmC9fDnfeCbfcMuR5m5ubSYiNxaKzk2BPT9IrKugZN44epRLfKVMIXLxYG7UwiYKTj77CwPgju0ycURhMFMgVEJsC50RLI491bHdO2M8Sj/lE533BVxXzhrdP7kNcWSppt9/EpWvn8dHJFgUgdSHce9PJPacuRFFyQgwPhuceHn7/QVg1NYI/LvsEHycvskpeJ++HP3Cd7kNPZ9fQB3pMoOv39awpeYd99YeMJgrgeM0BwPr1kuvjWMWBhYUFkYcPk9DcTBwQGRWFm5vkwOnq6kpkZCTx8fHEx8cTERExpNugIAj4+/tLqYd94GfthyiK9Kh6Ru42eeCA1hKZRSP7eeqqKZgzZw5z5sxBrVbT3d1NR0cHnZ2d0nc3NxzMzfFxdGTcuHGMGzcOGxub42kHtRpWr4bgoWdr1O/YQVJ7O/YODiyKjCRl50561Wp6lEr8fHxYFBxsEgVnCCZhYEKLQSMFG3+Cx1+Gg7t12wVv/Bmzx17k07ydAFy3Rbqp6SMO4srT+Mdnt5KYZ4bLP2/D6lTMPkjJAgtzCJp38s/dF0GAGy4F38ljXmqZjzT22Prlh8hybuTa/32MjdXQ7oodPZ2sKXuXfUcPkTDvGeYXKcGIRflGEQdXXUXEn3+S6OKiFQDjx0u/s66urkRFRREXF0d8fDyRkZHDWhHPnDkTCwsL9u7dS3FjMU8VPMVf1/81srSCnx/8/rv0fQQMV2gok8mws7PDztYW7r0XLrsMYmIGX7CiQupUeOGFIc9bVVxMSn09bnI58wIDSUxKQrS2pkcQmN7VxQKTKDijMKUSTuBsTSUYPH0gitLY3lnTBt+efwTmzNAWJH6Tv4XiO/fg5TBx0GX7zT44711s7E/Rv9GFt0jC4MePTs35jUhixV5Wfncjy6Ys1WmfrGFAoeFDn0B7J/yxYXSFpCPAGGmF3t5eEjdvplEUiYiIYMKE462Yzc3NxMXFYWdnR1RUlF5zCsrLy0lLSyO3O5dvmr9hx407jFpzMCKfgo4OuPBCSRxcfLHufb79Vkod5OWBj8+gSxUXF5OZmYnXuHHMcncnITMTwcoK+bHWyfnz55tEwWnCWVdjIAiCD/B/wDJgIlANfAW8KIpizwjWOeuEgcFEgSjCc2/D8rDBRwP/uh3Gu0JYUL+XVWoVGTX7CfFaOOjyceVpnPv9LbyWN5GbXvwSG0/P0V2nIVAqoaVNei+nA8mZcPAI3HqVQZbTdiscEwfmogyzPrlund0Hre2SWDpJZk8GFwdNTfTOmEHSG29w1M6O8PDwfgOA+oqDyMhIrPRw5qyuriYpOYnD3YfZ2LyR7Tds108cNDRIkwqvuALGDz+ga1TmRcMUEdLVBT/+CDfoLgoWRZH8nTvJbW7Gb+pUfHx9SUhIQNbRgdzSkllAwOWXm0TBacTZ6GMwC+n93AH4Aw8CdwIvncqLOt0xaKSgpwdSMiFvkN5rUZQK9r74ccAmM5kZIV4LEUWRx/f8d4DPgSZScKHNXO7c3oJN+oHRX6chsLA4fUQBSPUcG74f8fyEwehrn3zD/67nw+DzyPvpT2CIlkRHB0kUVFRLZlV62vSOFoP7HLi4YB4bS9jVVzN+/HgSExOp7WNJ7OzsTHR0NF1dXcTFxaFQKIZd0tPTk6jIKGbazuQWl1u4/4/79buWykp46CHp+zCMSBSo1XDXXZCTM7goOHJEape0tR1UFKjVarKysshtbmZuSgqTe3qI370bMzMz5JaWzHF3N4mCM5i/TcRAF4IgPArcJYrioGXjgiBYAX2lvwNQeTZEDAwqCpRK6WapUg09u72nR5qDYK37aUstqvnHH0/0m8o4YHRyl1K6CZ0qUrPgzU/gw5clf4bTgZ4e6edv4BD+r9u+Yd8lT4NaxHa8Czem/cSlux8duvtgTwrc/SRs3wSTjR/VMUZaQZWeTvKRI9RZWREWFoaHx/HJk62trcTGxmJtbU1UVNSgBj99aWpqIjYuFitrK5bHLNfrGH0YcaSgrg7WrJEGNC1frnufc86R2oz37NG5ube3l/SkJKrq6wkMDMTO1pbE3buxamujy8UFf39//P39tfubRMHpw9kYMdCFI9A0zD7/Alr7fA0v0f8GGFQU/BUHi86F6jrdoqC9Qxrbe6REaqkbRBQAyASZdirjdVse5un4N7Wi4A/5udgoVKdWFAD0KKFbDuNG1l5pVCwtJVEwChfEobhw9VXMvmAVAF0NTTx95SXDtyTGLIV920+KKADjOCSabd5M6EcfMdHdnaSkJKqrq7XbHB0diY6O1o50lsuHGDx1DBcXF5YvW45KqWLHrh1c8fUVY3ZIHFX6wN0d9u4dXBQAbNwIn32mc5NCoSB+1y5qKioI7e7GxsaGhMRErB0c6HJxIaC6Gv85c7T7m0TBmcnfVhgIguAH3Ad8OMyuLyMJCM3XJCNf2inH4IWGM6fBOVHg7qZ7e3MbVNfqPQlQM7J5pU8Yzye/zywXX7YEP4Plg8/DttixXashiFwCmz8bOjJyKtgWC5NDoLLGYEsKgsC5bz+LpZMkxjwymvnM4bbhWxItLaWag+v+KRWZGhmDi4PnnsPsr79YGhqKh4cHycnJVFVVaTf3FQexsbF6iQNHR0diYmJQqVQsZzmXfXXZ4OLgyBFYsUL6roMRiwJRlEYpFxcP7ta5bh20tEg1DVOnDtjc0dHB7t27ae/uJrq5GXHyZBJjY7ERBDq7u5k/fz6z779fG7UyiYIzl9NeGAiC8B9BEMRhvoJOOMYT2Ab8IIriJ0OtL4qiQhTFNs0X0G7Et3PKMagoKC6XjH6meMH/ntJ9o+ztlZ4c436EOTP0Xjqxci/xFRnMcJnKrqs2Yu3nC7k74dJzR3+9hqKxWcrVnm4sDYS3/wNOBk6BOduQeflx0Zfz7/dpqasb/jgzGdQ06JynYAwMKg5kMrC2xqy6mqVPP43nuHEkJydT2SfnP27cOGJiYlAqlezZs4fu7u5hl3VwcGDVilV4OHpwp+udXL3pat3iwNxcukHrsGMeVaSgpga+/nrw2QuVlfDkk7B1q87NTU1N7NqxA7Gri2XLl9N+/vkk19dj19JCp0rFQnd3Zs6caRIFfxNO+xoDQRDcgEEeRbWUiqIoP7a/J7AHSANuEkVxRJ/gf+euBIOKApUKAs+FkEVSrl0X67+Gr3+DP78AG/1zqgNqCtJzyfQ2o7Czmitnrx39NRsK3zC46XKtxfPfGW2hYd1BXtkzh4adewE4unQCr+3YM7xxT9/K9+Gq4A2EQWsOmprguutQv/EGac3NVFZWEhISgre3t3aX9vZ2YmNjMTc3JyoqClvbob0fAORyOTv37ORo61G+aP6Cbbdt08sEaUyjkxUKGKqToqFBZwdEZWUlaWlpOLW0EPbmm1Ru2EBWcTEODg60t7cTqFDgd911JlFwBvC3cT4URfEooNcjhyAIXkiiIBO4eaSi4O+MwdMHZmbwyf8GHbsLQMAsWNYwNlHQLofzbqLs2rlc452FWlSPyCHRKLz/gjT06XSkvQNe+UCa3zB/zvD7D0G/7oOrNjD3mkl8sGgN8uZW3FLqObh5Owsv0eFq2RdBkATBfU/DJA944u4xXZM+GNQEycUF/vwTGbBEoUAmiqSmpqJWq5lybLiRg4MDMTExxMbGEhsbS3R09LDiwNramlXLV7Erdhd3md9Fa1NrP98EVCro7AQ7O20kbtQtiW++Cddfr7vt8dAhKYXwv/8N2C6KIgUFBezfvx9vb2+C16yhcNYs9hcX49DYSDsQHBzM1D5pB5Mo+Htw2qcS9OVYpCAWqAAeAcYLgjBREITB3XLOEgwqCrq6Yd2XUig9aB546fjxtrZLH0ghi+D/9GzPQocosLCWBgTF/8iFr3yiLUjUObL5ZLImBmZPP7XXMBg21lKtQWHpmJbR1ZLo4DGBc157SrvP7ode5nBpPoreYdr2BAG8PXQ7YBoJg9cciCKySy4h+PPPmTJlCunp6ZSWlmo329vbEx0djVqtJjY2lq6uYaykAUtLS1YuW4n7eHfi4+NZt2vd8bTCvn3g6Ch9ZwyRgspKeOklSEzUvf3gQYiPhxNqJFQqFXv37mX//v3MPnyYJS4u5BcVsb+qinFmZrQ7O7OkuNgkCv6mnPapBH0RBOEm4HNd20RR1Dve9ndLJRg8UrB1D9zwACT/CtMHFiihVsOyK2HhXHjzGb2X1SkKGhrBzUUbotQ4JG7M+5WvL3jz1KQVDh6G1GzJhniYcbynjDGG7IcanSyKIt9eejuH/9yDzMKC3Tc6YRvlP6RD4gCGC2kbEIOmFb7/HtzdESMj2bt3LyUlJQOemDs7O4mNjQUgOjoaOzu7YZdVqVQkpiRSV13H7o7dPHHxE/jgCDt3wooVrCv8dvTpA4DWVklkDH4B/eqD5HI5ycnJNDU1ETR9OlNuuYWcp57iSE8PjuPG0dbeTsi8eXhPn64tZDSJgjODs8750FD8nYSBwUWBhobGoc19fvsLPN2liYp6oFMUqNUQdrG0xjvPafdVqVU8uOtFbph7MUEeBno/I2H9N/DvV6Eu+6Tky0dNV7fUujjJY9hd+zKUKNDQXl3HL/94hNX/+zf77Bv6OSQOKw7Wfw2ffAN7vj9zHRJFETE/n8yuLoqLiwkMDMSvz0yDzs5O4uLiUKvVREdHY28/fFurKIqk5qRSdriMI4ojXLPmGvzG+42tpuCrryS7Y13i5PHHJbHw5JP9Xm5qaiI5ORm1SkVYYCDOnp7s3buX0tJSHCsqaPfwYGlwMF7Tj0fMTKLgzMEkDEbJ30UYGFwUPPcWeLjDbVcPvk9JBUz1Hny7DnSKAg27kiQDoUVzdR6r6FWQXJVFzJSlIzrnmNGYOZ3ORF8Ofj7w6f/0PkQfUaCLE+2ThxQHeYdhy0547M7B2+aMgEHFwccfwwMPIBYWkl1bS2FhIYsWLWLatONzQbq6uoiNjR2ROADYX7SfzIxMlCo5E4v2cnPnZ1wfMwpRUFkJM2bAJ5/ANdf03yaK0lCkcePg/uOpvuLiYrKysnB0dCRs82ascnNJff55qmtqGDduHB2trYQeOIDHf/6jjTCYRMGZhUkYjJK/gzAwykCkh5+Xnj4fuk33PkVlsPAc+Px1vVsKBxUFarVeN413937JA7te0DokmuhDYgaMd4GZ+k3nG60o0PBXSQJX/no/26/8nMWe+kWKaGwGV+cRnWcsGEwcyOWwaxesXYsoiuTk5HDkyBEWLlzI9D5P0t3d3cTGxtLb20tUVJTenyeHaw8Tt30bLjJn6uQHuOvWV0eePgBJHHh59Y9s6RC1vb29ZGdnU1JSgq+vLwsXLkS9dy/JpaU0qFQ49PbSoWN2hEkUnHmYnA/PUgwuCto7pA+W1/8PHrx18P18J0tdCucN4ajWhyEjBc+9DTc9NKzv/92Lrj35BYkX3wabfjk55xoL4cEnTRSoenpw/LOY5MB3WOw5H7WoHr4gMWMfzIiCtOwRnWssGKwg0doa1kr1LcLvv7PAz48ZM2aQnZ3N4cOHtbvZ2NgQHR2NpaUle/bsoalpOBNWiV0Vu7in9BFq7VpxcwwiIS0B9Uh8M9LSJAEwaVJ/UXD0KAQEwG+/aV9qaWlh586dlJeXExQURFBJCb1KJfEdHTSam2Mvl9MpikTW1ZlEwVmESRj8jTC4KEjNgpnRsO+g9AGj66lFqZQ+5AVBapHTo6hsSFEA4D8DFvoPm8PXOCSeNHEgipKZ00l8yh0T73wGf+wacpexioLm4nLen7+abQ8/T/LTbyOKIvf+9R8u+eWeocXBQn945gFYMLaWypFi0G6Fxka4/nqEzz9n/vz5zJw5k5ycHAr6mAhpxIG9vT2xsbHU19cPuaSmpuDuJXdz54V3sat7F1VlVWzftV0vd0VaWiTHxLfeGrjNwQHOPRcWLkStVnPo0CF27tyJIAisWLEC35YWuu66iz2//057Sws2trZ0OzsTNWkS42+5RbuMSRT8/TGlEk7gTE0lGKXQsLML3voUHr1DsrjVxceb4LGX4FCsXu1ow4qCUaDpVnC3c+PVmMfGvN7fhgtvgSUL4cl7dW4eqygAUPf28mHweTTkFwJwxXcfUDHPZmQFiWVVkp32EDM0DI3B0gpFReDrC4KAKIrk5uaSn59PQEAAs2fP1u7W29tLUlISDQ0NLF26FC8vrwFL9Ss0nHYvwkMPUf3co1yb/DTXOl+Lq60ri4MW4+npOXRqITsbpk+HvnUNTU2SJwPSEKi9e/fS2NjI9OnTCQgIwNzcnPb2duJ27kTs6sKssRHl+PFEnnMOzs7HhbBJFJzZmGoMRsmZKAwMLgpqG6QWJl0eBSeiUkFaDoQGDrvrsKIgPQe+/hVeenzEFetqUY2AgCAIVLXX4uVgBPuK5lZQ9Eg3sdO5I0HDEG2LhhAFGgp+38m3l90JgOsMX+7O+pOdFSn6iYNuOcxZBtdfCs89POprGA0GLUiMj4eGBsRLLiEvL4+DBw8yd+5c5vQZKKRSqUhLS6Oqqorg4GB8fHy02wZ0HxQXw4MPwptvUu5mwflfns/lTpczw2oG48ePZ/78+bgcu9Frqa4GD4+B/+Y//wy33ooiI4O81laKioqwt7cnODgYNzc32LiRpu5uEtzdsbCwQFSpULW0EPXbbzh++622LdckCs58TDUGZwlGiRTc/4w0DXEo0ZhbIH2ZmRlGFACUVkprWg0SnRgCmSBDEATSqnPw+3CZcdIK3/wGM6OGrX04bRAEqZBT3j+kb0hRADBj7XImh0rjShoPF5O94UdWTY3gt0s/ZHdZCh9kbRr8YBtrWP/foetXjIRB0wobNsBnnyEAc+fOxd/fn9zcXHJzc9E8fJmZmRESEsLUqVNJT0/Xphx0tiT6+cHmzeDnx2THyWy5YQs/dv7IhNkTUCgU7Ny5k7S0NDo6OqTzK5UQHg7/+teAS+sMCSHntdf4IyeH0tJSAgICWLVqlSQKgJqyMmLt7bFpaUGtUCAKAssuvhjHb74xiYKzFFPE4ATOpIiB0XwKauqlivG5Mwff58q7oaEJdn0z7NPziNIHYzTn6WuCZPBuhapaOFQEy8MMt6YxEUXwXw43XgaPS1bEhhYFGipSsvgs5goA7CeO5768XVja2ZJTd5CA8TMxk+kxibKpRYrIDGWzbQQMEjmQyyWR3KfiPz8/nwMHDjB79mzmzp2rDf+LosiBAwc4dOgQXY5d3Jx680CfAlE8bjx07DW1qEYmyFAoFeQdzqOisAKFQoGjoyOenp64VVRg4eGBmY8PXV1dtDY0UFNXR2NrKxYWFkybNo3p06djbX3s76+7m9K6OjIyMnAbN4728nLM5XKiAgKwi47Wvg+TKPj78LeZlWBCN0YRBRt+gEvXSB/Mw304f/46tLQZRhR0y6VahduvHdFcBV1oChIBrtsihaYNJg68JuqXXjldEAR48j7wl1rojCUKALyXLmLWhas49NtfdNQ2kPruBiKfuJsF7lIofc+xyMFX57+uO60ginDJbTDBDb5fZ7Dr0geDzFbQ3GwPHZIsiNevZ/bs2QiCwP79+xFFkYCAAARBSnfNmzePzLpM7JrteHve29y76t7+dQPZ2RAYCJmZsEj6d5IJUoD3sZ2PseXwFnZeuxOLbguqq6ooKioiv6dHGtN8bFSzhVLJ+OJillx3HZ6TJmHRR7SIBw6Q/9pr5K5di6eHB0cbG7Hx8iIyPR2bwOMRQJMoODsxRQxO4EyIGBhFFFTWwKI18PazcPWFg+/36bewKhK8PYddUu9Iwa4kuOIuSN8smfIYAE3kIK1mH/v+sQVLs5GnJwbw9qfSaOPFC8a+1knGmKJAw9GCIj5YdC6iSoWlgx3/PLgbu2MOmTtKErngpzuGrjnYu18qYB2hW6OhMEjkIC0N7rkHfv1VahcECgoK2LdvHzNnzmTevHkIgqBNH7y48EWmyafh7e3N4sWLMdNYEzc2wpYtcP754NrfZbS8tZzoDdEA7LlxD1MefQG1TEb3G2/Q29uLSqXCxsYG6/p6hIICWLVqwPvMTEujpKKCqY2NVNjZMc7ZmYhVq7Dq01VkEgV/P0zFh6PkdBcGRksfgJRCGCpS0N4Bi86Ff94M99085FIj7j5obpVcDg2ISq2iWd6Km60LvepezGVjCJCJIsxdIb33O64z3EUaG6US+cbvubPuO362KjOaKNCw5Z6nyPr0WwCW3HtTv6FLejskdsvhaJNe4tPQGEQc6EiHHTlyhOzsbKZPn06qMpW7tx6vKaiqqiI1NZUJEyYQGhqKuR4zOPqKg3Sb+3GzcZEmKAIUF0tFiDYDC3h7iotJPnyYox0dTJ8+ncKCAlyKiwlPTcXi11+1+5lEwd8TU/Hh3xCjiIJ9B+GxF6G3d/j0gYM9pG+Be28acrcRiYLEDCmXamBRAFJawc3WhRZ5G8EbLh5bQaIgQN4uKd1xBtGhVtD+5Au47y00uigAiP73fZjbWGNmaYH5Ce2HfQsS79z+9OCL3PwwXH//KSnyNEhBoiBIZkIrVkipAGD69OksWrSII0eOkJGVwf2Lj9cUTJo0iYiICI4ePUpcXBw9PT3Q3Aw//CB918Fkx8nE3hQLwAczW4+LArUaLroI7rhjwDHt7e3s2rWLlvp6ZtnYcOTwYSZ4eBBxww1YfPqpdj+TKDBhqjE4QzBapCC/UGoTVPQMPi1QFOGDL6UUg4vTkMuNSBSUVcGqa+GT/8I1F432HQyLg6Ud8yfMNkzNwZnQpniMjp5O1vxwK4cetGDzdRuMLgoAHDzdufiz1/BcOBcnn0kDtq+aGsHvl63Hy8Fdx9HH+Pd9YCY7ZT9rg9Qc2NtLXyqV9qUdzTv4seZH7vC4A9/xvv12d3d3JyoqioSEBHbv3k2YkxMOV1whCYs+PgJ9mby/jLyClVjf9ggASpUSCzML2LRpQLSgpqaG1NRUrCdOZLpKRV57O5MPH2bx8uXI+rQ9mkSBCTBFDM4IjCIKNBarV10Au74FO9vB962ogeffhvi0IZcccfpgihfE/yg5JhoRgzgkbvoFwi85/nM7zelbU6AVBSfpCXzOxefoFAUalvuEMsvVj46eTp6Kf2OgQ2LALJgzQ7qpllcb+Wp1M+bIgbW1VGeweDGIIuvS3ufuP+8mYGYAQUFBFBcXs3fvXvqmcl1dXYmJiUGtVrOzpoaawkKYP8TciYoKbA4XIVhbs/XIVi7793TKGosl2+NjA53UajW5OTkkxMfj5uTEJB8f8np6mNbby5I//0SmOP6zN4kCExpMNQYncLrVGBhFFPT2SsV+KyLg7hv0O6apZchowYhFwRjbEkeDpiDx64NbOHLHTqY4DnSfG5S4VNgRDy+c/s6KAwoNx82AiEvhmQfh4nNO9eVpSanKYtk31w9ec/Dgs7AzEbK3Dh7NMjJjrjlQqylaGcRHsmx6Hj6ePigtLSU9PR0fHx+CgoKQ9Rka1tPTQ1paGjU1Nfj7+zNnzpzBnQ6P/R1VlOfiNHMe76904uovs5niNIWuri7S09Opr6/H/88/kYeHUzRuHP5z5jDH3x8BtH+DJlFwdmCqMRghgiDcIwjCQSD9VF+LBqOlDwQB5vvD9KlD7yeKsP5rqRjMkKIA4I31sPbGk5pH1kQOdl71xchEAUBUyJkpCrwWSbUh5688JcV8PZ1dxL/yASV7UgZsW+q1SFtzoHO2wr03wocvnzJRAGOPHKzL/IjPyGZmyNp+PgU+Pj4sWbKEsrIykpOT6e3t1R5jaWlJuJcX/vn55OXlkZSU1H9OgijCF19AZ6f2xu49eS6dv/7AprBxxHwRw96De9m+fTvtbW1ERETQeuutFDs4ELhpE/6ffSZdh0kUmBgEU8TgBE6XiIHRREFXt/52w7kFUvj85/WwLFTnLqOefbA9Dg4cgkcGFkmdLF5Ieh8/58n61RzsOwiTvYxSJGkoTkZL4khoLi7ns+VX0VFTz8QFc7g9+VcEHeO0+3YrbL70o4FmSKII1XWn1ENiNJEDnY6GGtOiY1RXV5OSkoKLiwthYWFYamaSHDkCd91F9SuvkF5ZCUBAQAC+vr4I+flSiuH332H1aigogBkzQBDIr8jnl9hfmGY1jcnt7fhnZ5Nx8cU0t7QQsmQJXsnJMG8ezJoFmETB2YapXXGUnA7CwGii4EgJLL8KNr4tPQHrQ91RaTaADowxEOlkIYoiN//xuP4OiW7zpaK4U2Ddqw/DigKFAnYnQ+A8mOCqexEDI6rVrA+7mJrsPAAu2fAGAVddoHPfv0oS2Fd/iEeX3DZw4/8+hPe/gNydYG9nzEsekpGIA52i4MknpaFL337bL4129OhREhMTsbGxITIyEpsTCgflcjn79++ntLQUR0dH/Pz88JLJsJk6FWpqUPr7U/fWW5T4+lJTU4O1nTVTZkzBL3U/CSoVClEkvLUVtwce6LeuSRScfZiEwSg51cLAqD4F3XJ45QNpWuJQH7AqFWz6Fa65cNAw7phEwQ9/wHQfWOA/oss3NCOyT87OBQ93vSZInmz0ihQ0t4JnEHz6P6N2gJxI8a4kNq69EQCnKZO4Z/92zIcZzf1nUSzLpyw9XnNQUy91zly4asjjTgb6iAOdogDgp5+grg7uumtAfU1rayvx8fHIZDIiIyNxcHAYsO7Ro0cpyM2lur4eESnlIAgCimMFhM7OzkyfPp3JlpY0WliQmJhIs6KR87/6ifEJyVIUYoLUkmwSBWcnJmEwSk6lMDCaKBBFqG8c9Ml/AAnpsOYGiP0eguYN2DwmUSCKELQWzl0Gzz+i/3FGoq842HbFZ6ycGn6qL2lEjCh9UF4N3jqm7xmZjWtvpHhXEgBr3nyaxXcNXvBa01GP34fLiJkSorsgsbNr6A6ak8BQ4mBQUXAiJ6QUADo7O4mPj6enp4eICRNwiY6G1FRYuPD4TtdeS3d3N43vvEN7VRWigwO2tra4ublhb2+PWFRE0YMPkn3ttYxzsOGhwn/Rre4iftlXTJonzfgwiYKzF1Px4RmGUSMFH30FgWukwUj6ELEYDu42vCgA6aaUvgUev2tkxxkJTUHif6MfI2zSIFMim1vhP29CcfnJvbhhGHFNwWTPU+INsOLF40Wb+7/5bch9Pewn8Oul63QXJL71CYRcKE0SPIUMVpCotyhYtw6io/t5HADY2dmxbNky7Ozs2FNVRfn772ttlbXcey82t97KpN5eZkdHMycvDx8fH+zt7VEqlaQfPUrWddfhd+AAK2+9kz2TnwRBIHLP9ZS1lJlEgQm9MBkcnQYYVRQAXH4e2NmBq26jFC09PfDHbrhotXQTOQGD1BR0y6VBSacwV3wiZjIzHl4i1Q7kNhwmv7GQy2ede3yH5lbJx+DcGPCdfIqusj+jKjQsq4JbH4W3/yP5BJwkPBb44x4wi7oDh6hK30d7dR0OnoMbHGkcEi/86U4u+eWe45GDFRHg5HhamEydaIJ00O4gSU5Jw4sCgAULpJSCWj0gamBlZUV0dDSZmZmkqtU0VVUxz9X1eDvj0qXSd7UaPvoI1q4FoLGsjPTMTLqBJUuWMGX+fEhPZ4KVC7E3xRK9IZqYDTF4/+5NZnqmSRSYGBJTxOAUY1RRUF0n3dRcneH6S4bff/MOuP4BKCwdsMkgoqCqFiYtlorgTlM+3fc9V/32QH8TJN/JcCT+tBmeNOruA3c36XdB2Tv8vgZm5vkrtP9d8MeuYffXiINmeStdvcda9ebOhJsuP6Xti33RiIPQ+wJJckpibsfc4UUBSDf3//xHGtGsI5Vrbm7O4pkzWWBpyZEjR9i5cydNDQ1www2wbx90d4NMBjfcgFwmIzMzk12pqVgUFbFy/36mAMycCX/9BWvWMNlxMluv3Ip1qjWZqSZRYGJ4TMLgFGL0SMFdT8JV9+i//2VrpcrvE/wNDNZ9YGsDT94Lhn6fBuS1Zf8am0OikRlTS6K1FXz7PsyfY7wLHIRZF6zU/vehzTv0OmbV1AiSrvseZ2tHqtvrpLSCKMK/XpH8NU4DPsr5hmTXTPzbppP7Wi536JhRMCjffQcrV+p00xSKi5lx8cUs95L8Nnbu2UPC7NkU19dTd955lH39Nenp6fzxxx+Ul5czPyCAZZMm4fC//8GSJdDRoV2rq6uLu665i/Lfy02iwIRenB7S+yxElyjoUnbz4K4X+U/4P/GwH2agkT688xw06VlXUN8otbGdYGVr0JZEZ0d4eBRDaU4impoDgOu2PIyAwFW1LvDI87Dzm2FnRRgTg/gUtLZLUaQhLIuNwcT5c3D09qS1oprS+DR6Oruw1KOIUBAEVGoVK7+7ER/HSVJaoUcJPae2zgBgXdYm7v7rGe4PuonXY/7Fnc1Pj2y2gpeX5D+gUAychBgQANXVuLi5scLMjPLycgpdXNjb1KQdkOTQ2MhspRK/efOwmjMH5syB4GBp9LO9PWAqNDQxOkzC4BQwWKSgvrORP4r2EF+Rwe6rN45eHNTUg4ujNItgih4Of+0dsGA1/N8/oU/FuEFFwb6D8Fe8NJnR5vT2O9CIA1sLayY5TASVPSwL098YyggYzLzotY/g+9+hINag1zccgiAQ8fjdIMDMtcv1EgUazGRmvLn838drDl4dYmTzSaKvKHhz+b8RBGHkg5fCw6UvXVhYSKOTAVlTEz4qFT4rVqBUKlEoFFhaWmIpCLBoEbi6gqMjbNwozUg4NifBJApMjBZTKuEkM1T6wMdpEnuu3kR7TwfLvrmemo760Z3k+vvhhgf139/OFt55VrLNPYbBzYtyDsLGn8HSYmzrnCTMZGZ8sPo5wr2D6PWfRsL9q6VQ/CnAoI6GN10GX7xhuIsbAYG3XkXgLVdhPwoviL4jmy/55R4U7a3w3gYpAnKS0SUKYAz2yT/+CM880/+1sjK49Vbp+7ffwuzZ8MADWHz6Kfb29pJDooUFJCXBqlWwYweYRiebMBAmYXAS0aemYLqLTz9x0NHTOfITvfkMPDaCdkCZTKovmCQ9oRjF0fDGy6RhOCdUYZ8JbNrzOf9475pTUnNgcJtjPx8IObVWyaNFIw4SKjLYV5AGz74J8akn9RoGEwUaRiUOKirg0KH+tQZyOeTlSd9vvFEqJJTJpP+Xy+G+++DwYRg3TnJUzMuD++8HTKLAxNgxGRydgLEMjkZaaHikqZTfC3fz4OJ/6H+So01SDlyHH/2g/O9DKfXwxtOAkURBbQO4OZ821eQjRf3C27S99zGuDyr1s082EEaZfVBSAT/+AXddf1q1jP5/e3ceZ3P1x3H8dWYfzNj3fV+LlApR1iLZi0Ly04ZW0qqiVXsqWRMhlCUhOxHZFYmQXXaDmTH73O/vjzP3unNn7tz93pnxeT4e8zBzv9/7/Z65xX3fs3yOK2ISL1MssgjG5VhSoyIICw7zy30dhQJrLu2t4OpOo3v2QIcOcOkStG4N8+db/m5JKBA5kQJHuYg7qw9qFqtiCQVz/1nqeFjBMKDH4zD4NdcaVyTaUt/AZ3sfPDocHnzKO9cKgKBHHiDqp+l+Xa3gsw2Rjv8Hn02GmCveuZ6LTGlpHFm7iaVD3+LXt8e4dY1ikUUAeHHn13SfO4iUP3d7sYXZcyUUgIs9B0rpv7+rVsFff2U+tmQJPPKInj+QkqIfa9AA/v0XOneG8+ctj0soEN4iPQY2vN1j4OmSxITUROpMak/B0AKOJySu3QRRBbOtWOiITzdE+mMPJKVA07zZhW1mLp9cMCySse1H+ew+uW2XRG9KuZrAR+WbkJaUTKGypRh6aEO2Oy46Y8WR31gx7FHeWWWgTmwhvLCDAl5ucjUUWHO65yA9HerX1wWLPvlE1yto1QpeeEHPQdi/HzZtgi+/1HMPbrvNfAMICpJQIJwieyW4yZvBwFt1Cg7GHKXVrD5EhRXybLWCtcuxulTy4IdZd+nvPLtLol/8tBySU6DXfaSb0lFKEaSCOHv1AqULOrn/hJPycygwm9XjcQ4sWQPAwPVzqeBB4ahfty3mjRnDKdysGXN7fO311QqehAIzp8PBmTNQurTuQTh7Fr77Thc1Kl0azp2DHTt078HFi/DBBzBsGCA9BcJ5MpQQYN4sXmQ7ITHLsMLsn+H+J691NTpj5x74YByb9v3m21CwbZeex5CXA+jydbBIF+UJDgomSAXxx5m/qTruLq8OK/glFCQkQssesGKd96/tpDr3uV7syJ67mnRixHMTWXViM59vn+phyzLzRigAF4YVypTRoSA2VoeBIUOuzT0oVUrPKzhwAPr0gWbNAAkFwjckGPiALyoamsNBlcLlCQmymdlfqACULwNhLkzCat2M9VvH0/a3F33bU7B7H0yZkyvq27tt3Hsw44tMD91Yqg4P1OnotTkHfuspiAiHujWhsP+3FDerdW9ry/DB/kWrPL5e+2MhHP23Hc83GeDxtcy8FQrMnA4H330HlSvD6dPw0Uc6IHTsqEPC1q26XsG0adC0qYQC4TMylGDD06EEn5c5zvBf3BmCVJDbwwrrjm2m49zHZPjAA9ZbNnuyWuF6GD6w9W2bBzm+cRsAQ3Ytp0Tt6u5fbN4vMG46LJnK5gt7GbN9GlPv/cDtYQVvhwJrDocVTp7UNQlq1dLFj/r21TssfvoppKXBtm3QuLGEAuEWZ4cS8ub6sVzKX6EAoN+iFzh99Tyb0u6nSPu2en26k7ZsXESdLs/T/4WGfCKhwLFeg6HZzfDswEwPW5dPHrH+U7rVak+Ei29GAQkFF2L0nyWK+f5edtTp3NYSDA78stazYNCjo/4C4lMT+OngSroviL+2K6MLfBkKIOuujGBTIbFCBRgwQNcqOHhQ/xwRoSccTpoEDRtKKBA+J0MJXuLPUAAw4Z53SIuLg9c+5PLqNU4/b93xLfRd/gpr7izPJwPH+T4UDH4NXv3At/fwtRvqQKXsS0ubw8HGvj8QERJOuind6csGrKeg8//gzcBUPzSrcOtNlu9j/zvj+QUNAy7E0LZK88wVEtOSnb6Er0OBmcNhhRMnYNQoGD0ann8eDh+G6tVh9GgSkpMlFAifk2CQQSk1RCm1F9jq6nP9HQpAzzn45ZHvuenNEtyZNsup8snmJYlV6t1M19nLiSzphdUNjtxYB+rU8P19fGnEM9DtHruHg4OCKVOoJHHJ8dwxo5dTcw4COnzw6Rvw9CP+u192lJ3v3fX+WGjSCQwjU/nkR5e+6tTT/RUKzHIMBxcuwMSJMGUKjB8PNWvCiRPSUyD8RoYSMhiGMRYYa55j4OzzAhEKzGoWrsiKft/TbnZ/dpzZQ6care2ea6lTUO4mlpi6EHYlAUr4YQjhyX6+v4evHT4OpUvoPSVyUCA0ktrFqtF3kV5GZm/OQcDnFOSGkshWU5u88ibc7W5oWFev6w8Opn3VFvzcYwIlCzgeLvF3KDCzO6zQqBGsXw+9e8NDD8HJkyQULy6hQPiNBAMPBDIUkJoK1ZpT85uP+OfxFUSEhGMYBrHJ8RSOiMp0qnXxokU3vUZYw46w6Fto54d/XPYdhIrl8mz5XdLSoF5rmPgBPNwjx1Ntt2yGrOEg4KEAYMM2HXYc/D6+FF2+DC1feQrDMKjojcJXdWvqLyvtquqdC5PSkvlw80Reuv3xLHMOAhUKzOyGg/r1LVUQpadA+JsEAzcFNBQApKbBE32hfFnLhLf3N41j+t8LMxVBsq1oGBEaASe2QHQh37cxKRlu6gCTP4K+3Xx/P19QCpZNh1rVnDrdOhz0W/QCTcreQI2iVYBcEgpAb3+9cn1Ag0HhSuVo9eZz3r3oxJlw841g83dx17l9vL95PFtO78o0ITHQocAs23Bw5AisWkVqz550unhRQoHwK1muaMOZ5YoBDwV22FZIPBBzJLAVDdPSYNtuqFZJd8VfR9JN6aw5tsnyqTXXhIL8rEYLePZ/8HTWegYrjvxGl3lP0rpyU+Z3G8uU3XNzRSiwZr2UcWe5cjQ6dYplpUtzf3y8hALhFVIS2U2OgkFcXBzt27cLfCg4fU5/NaqXaTdFczgIVsGcT4iheYWbM4eCv/6B976EL96CksUD0/a85PxFmLEAHuwCZUq6dYnRm8Yz9a95nIo/J6EggMzhoHqRSvx94WCuCgVm5nCw+Ns5DI+KYmxaGlOXL5dQILxCSiL7yM6dO9m8eQvDn380sD0Fi1dB86zd8zWLVeGDO1/kROwpSkQWzdpTYDJB3FVIc35ZndsOHIYPvoarCb6/l6+cPgejx+qA4Ia45Hg+2/Yt+2OOMOzWgbkjFGzYpssix8YFrAmmtDSS4+JJib9KuiulvD3QvmoLHmvYi78vHOSZm/vnulAAeljhs49exVSqOK+nSygQgSHBwEXNmzfnoYce4s23xzB3/tLANaRze/hrZZZSw+uOb+Hx5SNoVuFmdv9vCZGhEWTqFWpYDxZPhbJ+WKp48Ah8+a3v7+NLN9aFs3/oWgYuik+5SscfHyUhNZGO1e7krY1f+WXLZoeiC+mJeummgDXh+O87GF2yEe+XaMiaUZ97fsHUVGjVC1b+ZveUcTtn8uWO73j2lkf4vO0I1hzb5FKdA39ISEikc48nuHo1iWXLJBSIwJBg4KKQkBCmTZtGr1696N3vucCFg9IloEaVTMHAeqLhyl7TKBIZzY4ze2g+44HMdQ4Mwz+bGt3bBk5uc7jMLz+ynlOwovdUfu45kX71u9J30TCWHgrcBkaADjsTRkPRwoFrg7f//zOZ9FwWO6tfbCcaXkiMocu8J10uguRLCQmJdOr2GFu3/yVzCkRASTBwQ64IB6mp8PL7sHknkHX1gXn4IDqsEMdjT13blfGff6Fgbdi00/9tzou27YIWPeDsBaefkt1EQ/NqhXdaPk/zCgEeTjCZ9O+TkBiwJlj3YnmlNz88HL75CLJZ+pjd6oOSBYozv/tYtyok+oKEApGbSDBwU8DDQUgIrP0dTp62Gwog65bNZ6IUjBkFVSv6vo3vfQV9n/H9fXwpuhDUr+X06TmtPggOCuaVpoOIDo/iYMxR5v2zzBctduxyLFS+XW8nnSt4IRmkp+t5IKmpmR7OaUmidYXEQIYDCQUit5Fg4IGAhgOlYMsi1t1awuGSROtw0H3NyxiP9vbPHING9bIUnclzaleH8e87tdzSlSWJE/+czQMLnwnMnIPCUTBvQmArIHq78uH+Q1DxNvh9h+UhZ+oUmMPB6fhzXEmO97wdLpJQIHIjKXDkIXM4AOjd7zlmAz27d/DLvdcd38L9MwbStmxDZjuoU2AOB7Ep8aj9h2DjdhjY27cN7Nhaf+VlhgFnzkNUwRyrN7pap2D0XcM5nxDjsHyyTwQH6/kfAZRpQqw3gkHVSjDrK2jcAHCteFH7qi1oW6U5QSqI8wkXiQ4r5PaWza6QUCByK+kx8IJA9BysO76FzrMHcvDTNOZeaO5U8aKaxapwc5kGpK7bROxr73D6wgmft5MjJ+DPv31/H19JSYGqzWDBcrunuFO8yDznwDwh0a89B/8e1atFArmMNNMcAy8Eg8gIvdFVVCG3KhoGqSBMhol75vzPL8MKEgpEbibBwEv8GQ7McwpurXQzEeM/IvSBLi49/3TXO7jh1WhaL3jUqV0ZPfLy+zD8Xd/ew5fCw2HBJGjdLNvDnlQ0NIeDxxr2onhkES812Am798GozyEk2H/3tHF6117L9wVKFPXsYmfOw1Ovw39nPCpzHKSCGH3XcJ/POZBQIHI7qXxow5mSyDlJS0ujf//+zJkzh9nTP/f6sEJOEw1dcTDmKG1mPkTBiKhMeyt43dGTUCRaf+Uz3i5zbDJMbDn1p3+KIJlMmSpm+ts3d/bk5JY/AXj671UUq17F/Ytt3gmPvsiUr3oxcPMHHlc0XHlkA53nPWEpn+zNYQUJBSKQpPJhgPiy58BuKFi8Cvo87dLa8Jq/HeDwh6mkXo2j9ax+XEnyURW8KhXyfiiY9wus2pDpIV/sfTDtr/ncMaO3f4YVAhgKUhMSuXpOV5IsVb+WZ6EA4PbGjPtugFdCAehdGX/uMYF1x7ey4eQOx09wkoQCkVfI5EMf8MWExBx7CsLD9T/0CYnOFxNqUJuQIQNY3rUls0+tJzrch7stvvqB3p3wkft9dw9fmvi9LibV1rcbIj3coBvrjm/1/YTEVr30f4v+PX1zfQdCC0Ty9N41nN29j8SYK55dLCGRb7bOZPDm0V7d+6Bd1Ts4MmgtJQsUxzAM0o10QoLc/+dSQoHISyQY+Ig3w4HD4YN2LfSXK6pXhpcHUx14rYqeyb3k37U0LlPf+8MKcVcDWkzHY8umW2bO+3KXROstm30WDkwmaHYzVCrv3eu6SClFmYb1PL7O6s/eoO97Czg040He9fLeByUL6E3GRm34gm1n/nJ7WEFCgchrZI6BDU/nGNjydM6BS3MKVqyD1DTnl6JdTYCx0+DRB0mKjqTOxPZEhkb4ds5BHuavrZPTTekM/OUVlFJ8e+8HPrlHfjBu50xGzn+T0SF38cibk3y2IZLtls2uhAMJBSI3kW2X3eTtYADuhwOXJxo+9BRERurSsM44ewEad4CJo+HeNpYtm6PCCnk/HFzJmMNQOMp71/SXybNJXbOe1h1jfB4KzNJNevfL4KBgLiZeonikhzP3zU6ehuRk8HRc303pqakEh4Z6fB1PVh+4w51wIKFA5DYy+TAXcWdColurD8a/D5M/dL5hpUvAgXWWHgbb8sleW8qYmqprAXw31zvX87PE6Ajmxu/yWygAHQiCg4LZc/4AVcfd5b0JieOnQ4f+3rmWG+b2fZbJLXqw4aPxpCYmuXUNcyhYcKIJn+0u7Zetk63LJ3+weaLD8yUUiLxM5hj4iStzDtxekhid8Wl85x64cBHa3+n4OQULQFoabNgGdzW1hIMnlo3AZHhpW97QUJgxxq2tiwMtPuUqHVJms+uueL+FAmt1i1ene627vTfn4JmB0PNeL7TMdSlXE/h3+TrSkpK5fPw/mg19zOVrWPcUdEmIRMVc9n5D7WhftQW/PjSThqXq5niehAKR10kwyKCUGgIMwYe9KM6EA6/UKfh0Ily64lwwAPhhMTz6IuxbC5XLU7NYFdY8NAOA8wkXSTOlez6skAdLI5vnFOw5vZc17T7nljIN/d4Gr09ILFVcfwXAoZW/kZakiwbV7tSWoGDXCixlGT5o6/ueAlu3lWsEwK6z+/hk6zdM6vBupmEFCQUiP5ChhAyGYYw1DKMecKsv75PTsIK3ihcx9l1drc9ZD3SC3xdA5awz1R9ePNw7wwoxl+HtMbpEch5gPdHw93LPcsvtj8NpH1eJtMO6fPLwtaNJSHVzhUdSMjw/Sm+9HQD/LFxh+b5u1/YuPTdTKCj7AGr6fL3CIkDOJ8bw4/6lmSokSigQ+YUEgwDILhz8emyzd0IB6Al+YWFw6BgsXetMg6BRfV0gyaZr9ou2b3hnzkFYKEyeBQcPu38NP7FdfVC3fVeYPxGKFQlYm8zhYFO/HykQGuneMM+5i/DrpmsTQf0oPSWF/b+sASC8cBRV77zd6edm6SlY9it8OE4PgQVI2yrN+bnHBEv55EuxVyQUiHxDViXY8MWqBHvMqxVmr5lN6KAQWlRu4nkosPbU67D1T9i80LlKdy+9B2s3ZTnfa6sVDMM7O+n5kL+WJHoiITWRTj8+xmONevl3V0YPHFr5GzPuGwDADb06033ap049z+7qg7h4iPJhUS4nrTyygc5znyD6VCGufpckoUDkarIqIQ8w9xw80PoBUlak8khId++FAoD3X4LVs5wvf9urM4x8Psubt3lC4tXUBDZ6UiJWKYiNAzdno/ua3VCQkgKTvoeDRwLbwAzhwWFUii7n+q6MAfwQsO/nlZbv6zg5jJAlFJhMsH6LPpgLQgFA89I3U3tHNWJXXpVQIPINCQYBFhISwvRp03mw8oP07/+id3dljCqkvy7EwKeTHL8xNG6gJwkqlWX8tmaxKux7dDk96+jJkvEpV11vz9UEqN8Gvpnt+nN9LMeeAqXguVGwfXfgGmjF7S2bH34eBg73beOyYZhM7F+kg0FIRDg12rd0+JxsewqWrIH2fQI2R8KWeU7BvyuPs2LKCgkFIt+QVQm5gC/2Vshkwzb4fLKeZFihrOPzB78G0YVg9CuZHi4Ypvdh+GzrFCbumuP6sELBAvDRCGh5myut9zmHwwehoRD/T64aBrFdrdCwVB3qlaiZ85O63e2HlmV1ZO0m4s+cB6B6uxaEOdjPw+7wwX1t4bd5UKeGr5vskEw0FPmZ9BjkEr7clZGud8OeVc6FAoAb60AD+zUHOtVo7f6ExN6doVxp157jQ07PKchFocDMHA4W9hjvOBQAdO+gv/ws7sw5wqIKAtDg/k45nms3FFy8pP8bNPH/klFbEgpEfifBIBfxaTiIjtIbGT03Ek6cyvncJ/tB3276+2yWhHlcIXHdZujwsK6IGEAuTTR89k34bLL/Guek4KBgOtXQNSIm/Tnb/rDChRi9l0YA5nc07NONZ/auodXIodTrYT+Y2A0FZy9A7btg7hL/NDgHEgrE9UCCQS7j03CQkKiXq+076Nz5H3wNfZ7Odm6CdTh487cxrrWjZDE9VHHJ7qRYn3N59UGxorlmwlt2DMPg9//+sD/nYMM26DwQYuP93zigYMnitHx5sN2iRjnufVCyGLw1DNo5npvgSxIKxPVCliva8OdyxZx4uitjDhfWdQucsXAF/HsUnn/U7sqGo5dPUqpgcQqERmIYhl/q1nsqLyxJdId5V8bpf//EjPs+ybyU0WSCY/9BlQq5blgkx1BwORaKBO7voZmEApEfyHLFPM5nPQchIboHYMRHMGFGzud2aQ/DHtehwE6VuSpFKlAgNJK/zx/gru8fcm1YYe0mWLXBhcZ7zu1QkJKSpfhTbmO7WmHxv2uuHQwKgqoV/RYKkmPjWP3GJyRcvJTjeTmGgn0HoVZL/f9JAEkoENcbCQa5mM/CgVL6jS45xbnzZyyAdn1ynBMQFhzGocvHXZtz8OUUmOa/HRc96il481O4837fNc5LzOFg5B3P0LT8TdcOPDcS5v3it3Zs/GQSGz4cxxf1WrN/yepsz3G4dXK1SvDyEGgauB4dCQXieiRDCTZyy1CCNZ8NK5glJ0N4DvvLb98NPy7W47w5nOdyhcQrcXqugR8+xXo8fLBnv94roV3eemM4fuUUO87soduHK6HpzfBob5/fM+7UWb6o34a0xCSCQkN5atdyilarlOkch6Hg0hUoWtjnbc2JhAKR38hQQj7i0wmJ85fCTR3g/EX759xyI3zwqg4FOWxcYz0hsfPcJ3AYOgtH6VBw6KhPN8TxypyCBrXzXCgAGPfHTHr+9BSzhrX0SygAWPv2GNIyVj80eaKP66Fg5XqofSccCNy+GhIKxPVMgkEe4bNw0KQh9LzXuU9nqzfCbZ31hDA7zOHg87YjnJuIeOAwNGgHv6xxfK4bvDbRMDYOJs6E4w6WeuYy77QcygtF29D/p6GulU920/l9B/kzY3goPLoQLV8enOm4w1AAcNtNMOIZqFnV5+3NjoQCcb2TYJCH+CQcVCynhwhCQvQn9/R0++fWqAI33+Cw679msSo0r3AzaaY0Xlr7Yc5zDmpVg1lfQVvv/+Pr1dUH6SYY+jb8tc97DfSDYJPB6FHb+GFfbfouGsb3f//s0/utGvERRkbvT/MXnqBAiWKWYw5DgcmkhxCio+CZ/wVk9YSEAiEkGOQ5Pus5uBwLd/SAMVPsn1O5PIx/Xw8BONH1fyb+PDP3LnQ8IbHr3RAR7tVNfry+JLFoYbi8B+5t450G+ktwMOqnb7jvrbH878aeFAiN9Nmtjm3YxoEluucnqnxpbn/qEcsxp3oKJsyAmzsGZFtokFAghFm+DAZKqXCl1J9KKUMp1SjQ7fE2n4SDItEw5WN4/CHH5+7eB407wP5DOZ5WIbqs8xUSv5kNnR7xSjjwWZ0CZ+s/5CYZZYSDq1ZmUof36FqrHYZhsP30X169jWEYrHx1tOXnVq8/R2gBHUKcCgUAXe7WQwiFo7zaNmdIKBDimnwZDIAPgbw1GOwin4SDDq2gUEE4dTbn+gJVK+px4CKO5yXYlk++lHQl+xOrVITGN3hcJtmnxYu+/k5XgswrTCYYMAy2/JHp4Vl7F3Hbdz28Oudg34Jl/Ld1FwAl69WkYb/ugJOhIDFJ77xZrjT8r5fX2uQsCQVCZJYHPwLlTCnVAWgP9AD8v2OMH/lsV8aPxutg8MfS7D8lRxWCCRmfDuOvQmQE2Cl1C9fCwbQ98ykcbufTYJvm+ssDPq9oWLoEVKvs3Wv60sVLel+M1LRMD/eqey8rjmyg76JhAJkrJLopPSWVAiWKknDhEm3ffZGg4GDnewpe/xg2bIWNC3L8/8gXJBQIkVW+qmOglCoN7AC6AheAI8BNhmH8mcNzwgHrxflRwMncVMfAEa/XOUhM0pPAHO2CmJwMzbpBt3t0F7CTVh3dSIMStShTqGTmA2lpekihUX3dI+GC/Frm2FdyLJ/spuTYOPb8sITGA3sx/o/vnQsFoIek/j7g950fJRSI6811V8dA6X95pgLjDcPY7sJTXwGuWH2d9H7rfMvrwwqREToUxF+F50fZLwUcHg5PD4AHct5K11pKegpPLBtBq1l9ORN/PvPBoCCYMge2/ulSc/0WCgxD7zdwyc5wSG5iGDnWAbAunzx//3LHNSecEB4dxc2P9nY+FFyI0RU4a1eXUCBELpLrg4FSamTGJMKcvm4BngaigfddvMX7QGGrrwre/Q38wydzDs5egKW/wv4cCs08cr9ecpiaqt80HQgLDmPZA98SlxKfNRwEBcGaOTpsOMmvPQUpKVC3lS4Kldv99Q/c2F7vpmmHORx83/kzlFJcTvJ8t0unhw8MAx4YDI++5PE9XSWhQIic5fqhBKVUCaCEg9OOArOB+wDrXygYSAdmGobR38n75bqSyK7w+rBCaiqEhup/yA3D7i6LPP0GrNsMO39xava+dfnktQ/OyDysYBjw03JocStYrYO3FZDhg7WboH4tKFXc9/fyRFIyrN6gqzWGhTk8/UDMEW7/ridj2490eljh3N8HWPvW53T87E2iypV2PhSY/b5DL1Nt3MCp+3mDhAJxPXN2KCHXBwNnKaUqoXsMzMoBy4GewBbDMJwaIsjrwQB8tLfC8HcgKQW+fCv740dPwn9noPktTl/yYMxRHlnyIjPu+4SqRSpeO3Dpiv5k/sZzMPjhbJ8rcwq8y9U5B6a0NCa37MnpnXuIKBJN5KcP8uzxCc6Fgj/26Hkkfi5gJKFAXO+cDQb5ZlWCYRjHrX9WSsVnfHvI2VCQX/hktUKDOllmt2dSpYL+Mgz4dTO0aurwkjWLVWFD3zmWbuyktGTdc1C0MGxbrKsyZiOgoWDzTvhtKwx/0n/3dNW/R+HD8fD2C3olhRPMwwqAU6sVNn4ykdM79wCQWjSc1w5P4NnbnQgFx09By/vh63chY0mjP0goEMJ5uX6OgXCP1+cc9O95bROew8ftn7d8HXTop4sgOcH8JjJgyUu0mtX3WhEkcyjYtFOvfsgQ8J6CPQf0NtQ+3PTJY6fOwu69eudKF1hPSHxu1TvEJcdne965vw/w6ztf6h+CFOPbnOcpZ0IBQKVy8PMU6O35KghnSSgQwjX5ZijBW/LDUII1rw8rbNgGd/eF1bPg9mzelA1Db9PcpKFLl812y+ZTZ6H2XTBmJPyvV+BDwXUi3ZTO8dhTVC1SEcMwMr3Zm9LS+ObO+zm1Q1dO3NAc6r/iRChITIK1v0PH1r5ufiYSCoS45rpbriiy5/Weg2Y3wzcfwa2Nsj+eUYIX0LP3z+WwnbMV2wqJp+PP6SWTa+fAI/dLKHDW5VinX3N7goOCqVqkIklpyXSa+1imCom/fzbZEgrOl4D6w/o611MwayH0eUaHPT+RUCCEeyQYXAe8Gg6CgqB3Z/3nlj/0RLLsxMbpGgjT5zl9aXM4iE+5yqqjG/WDt9xIfFoiA7/qw66ze3NHKGjZA8ZPD2wb7JkxH2rfCQmJHl8qNCiEkpHF6LtoGLP2LuL8voP8+vYYAEwKwl/uyGcd3nRue+0BD8CWnx0XzfISCQVCuC/fTD4UOfP6hETD0KVsixWB2WOzHo+Ogt9/cvmNoGaxKux9dBlR4Xp8/PzVizw9fiAzXt/D4S+HUjvQoQD0Dou1awS6FdnrdR/UqgoFPN9F0XpCYr+fhvLu/Iqkp+i9LFK6NeDjIWMch4L1W/R8jLua6noXfiChQAjPyBwDG/ltjoEtr845uHhJvwFFRuR83rrNeinjQ11duvwX26fy8q8fE6QUOwoPona/gbraovCrdFM6T4/sT+kPN+ufKxTm9b82EurovzvAw8/D5Suw8Bu/LE+UUCCEfTLHQGTLq8MKxYvqUHDsP+j7jB4+yM78pfDDYpe2VI5Pucp3f/1EUloyJSKLUbj3/ToUXLFzD3+6dAU2ulJ1208WLIORn3ll62prwUHB1O9yN3MeAFOxSB6bMcm5UAAw5SOYMUZCgRB5iASD65DXJyTGX9VLGGPs7CHw0Wvw4zin3xzMEw0PXDrC7C6fk2ak0WpWXy5s2QQ17tBLGANp6Vpo01v/3rnJf2fg4GGvvwmP2zmTp1aOov3DjzDi0DbWR53Iectmw4ARH+qNkUJC9LCSj0koEMJ7JBhcp7waDurX0lvmVqmgaw6kp2c+HhamyyrvPwT3DdBDEHbYrj54oO69ltUKL5yZBy8PgXo13W+rN3RoBbtXOB5C8benHoGZX3r1krZljkMjI1hzbJNlQmK2rsTBit9g70GvtsUeCQVCeJdMPryOeXVColL6k2L3x6FODfjk9exuCMkpesZ88aJZDttbklizWBXW95lFiciiEJ7x6TM9HYKD3Wurp4oW1l+5ycEjuihUhPfmYHw5/3MmzP+KZ/v3z7QkceI975JuMtmvkFgkGjbO12HQxyQUCOF90mNwnfNqz4FS8GBX6HZP9serV4YVM/UbWHJyprFwR3UKqhWpRHR4FAdjjjJodA/S6rWCIyfcb6unPp0E3/8UuPvbeuhpGPSq1y739bbp7HrxK+6fC00nnybJaqtp6wqJfRcNY+GBlfrAkRPQZSCcPiehQIg8THoMhHd7Dvp2038aBmz+A5pms7wwJQXa99HL/l4c5HLxotVhp5hbMZlW6XH4Z1V8Nvbs19X8covvv8w6hOOmcTtnMuPtUdydscPIuT37CbHpiTCHg4rRZbmtXCP9YGycfk3CHe/m6CkJBUL4jixXtJHflyvmxKtLGecvhb7Pwp/Lsl+//tVUaHYL8Q2qulzRMNvyycIrxu2cyevfv8lTE4NRKemgFANWzaJSTrtmmkyciTvHlrN/0aVWO5+3UUKBEO6R5YrCZV4dVuh2D6z83n5Rm6ceIb5BVTrO/h9X/vnbpYqG5gqJlQ5f4r+mbTFduux+Oz2Rnu61T+lui7+qe1+27/b4UuN2zmTIsjcZtLqUDgXAbU/1zzkUALzxCTHdH6b7/ME5r1bwAgkFQvieBAORidfCgVJgfkOZPl9vvmTFPHxwz5zdbJ8aRtPCtV26fM1iVRjfZyxVytYgKD7BvTZ64vBxKNko8PUMLl6GQgWynczpCvPqg+EnbyFkn97hslj1yrQZNczxk5vfQp3ufejXoFvOqxU8JKFACP+QOQYiC6/OOTCZ9CS9G+vAHU2AzBMNP/1gPGGngEIFXb501QZNYMV8TIaJUb99zqCb+lCmUEn32umqimXh9WehcgX/3M+eyuVh/iSPLmEOBc+X6ELUe7+QDqAUnSeMJjSn0spnzkOZktChFUHANybdy2B3tYIHJBQI4T8SDES2vBYOgoJg/kTLMrr4pDg6zH3MMqegSfnG0CDj3J9Xwj136roHLji/ayfNn51Il/6LWThwln/CQWgoPP+o7++Tk2P/6aJGTRu7XdTIUqegYT9qvr6Vcxl7Idz+zAAqZwS5bMVchib3wqtPwaCHgWsTEkOCgjEZJrfakx0JBUL4lwwlZFBKDVFK7QW2BrotuYXXhhUiI0ApEn77nTMNmnHuYDZzCg4f19vyLlju8uVLlyhPi8gahMfE0WpWX87En3evna769yjM+8U/98rOjPnQ8wm9ysMN1sWLumwrzLk9+wEo1aC24yGEYkXg/Vfg/k6ZHg4OCmZyx/fpU78LhmGw6+w+t9pmJqFACP+TYJDBMIyxhmHUA24NdFtyE2+Fg/iUq/T742O2lkzlu4fGZ51oWK0S7Fiidwd0VYWyRG5YyDfPziEuJZ5Ws/pyMdF+dUWvWfYrPPFK4CYgvjIEfpvr1sZSthUNbx3Ujzqd2xEcFkr3qZ9mWZ5okZ4OmzNKUvftBiWK2b3H/P3LaTy1i9tzDiQUCBEYEgyEQ56GA/OcgpVph6g693tuq91cF8GJi898onkFw7Jf9YZArlCKmkmR7N18I91L3kaRcD8sNR3wAJzcGpgKjCaTHqapXsXlp9qGAqUUBUsW54E5X/P45oWUbpDDRNAZC6BdHzh+yuF9utZqZymC5Go4kFAgRODIHAPhFHfnHGRbvMhkgq4DoX5tmPJx1if9sBhSU+1XULTHZCJ6zxHeHToEgoLZcGI71YtW8l2dg4IFfHNdZ/QaDA3qwJvPufS07EKBmVKKUvVq5XyBft2hZlWoVM7hvcxzDsC1CYkSCoQILClwZON6LnDkDFeKIOVY0XDTTihXWs+qt5WcrPdVcOeTeMYn6TRTGvUm3UNwULBviyANfUtvHvXM/3xzfXvGfQfly0Jn5wsK2YaCY+u3ULJuTQqWKu74yRu2QYFIaNzA8bk20k3pDPzlFc4nxrC456RMYcSWhAIhfEcKHAmfcHZYwWGZ46aNdShISNRvctYBNTxch4Ld+6DTI3q3PmcFBcGlK4S8OJql7T4jLiWe1rP6cTr+nOu/rDMKFYTIHJb0+cqghz0KBbEnTjP7gUGMu6UjB5audXyBj8bDO2Pcaqq552Bet7EopYhLjs/2PAkFQuQOEgyEyxyFA5f2Pli/BV7/RO8OaCsiXAeGpGTXGng1AX5eSfX/Ei1bNvssHLw1DB570PvXtcdk0hs4nXb+d7ENBRgGPz32IslX4rh67iJ7Zjsx/j97LEz5xO1mBwcFExESzpHLJ6gxoU2WOQcSCoTIPSQYCLfYCweubojEPXfBvjXZl06uVQ2WTIPSJfTmPM4Oe1UoC3+vgha3WsonFwotQKydT6oeMQxdS8BfGyodOAzvfQXHTjp1enZzCjZ9MYWj6zYDEF2hLB3HjMz+yWlpMOxtXS8hMkJvp+yhStHl6FDtzkwTEiUUCJG7yORD4TbbCYnfmpKZmDTbpQ2RAChZXL/Bvvgu1KkBA3tnPp6YBC17wsM94OkBzl0zNFT3NHwykZqDH2Zr//kopYhPucrV1ERKFyzhwm+ag0PHoEFbWDwV2t7hnWvmpE4NOLZJj/c7kF0oOPvXP6x5I+OTv1J0nfwhEfbe8M+chxXroVPb7OeCuMF2QmJycgrfvbxAQoEQuYgEA+ER63DQf9JwItqEs6bPdG4vf5PrFzPQXeW2IiP0mvk2zV273sVLMGEGNG6A6tAKgMeWvsaf5/ax9sEZ3qmQWLUi/DDOrUl5LktMguAgp1ZDZBcK0pKSmf/IUNIzqhs2fW4gVe9qmv0FDEP3vOz8RYcsLzKHg7T0NB5b/Cphf4WzbOkyCQVC5BIylCA8ZhlWKN+L5LEpnNxyxvWLKAUfj4DHHtI/X4jJfPzZgVCvlu7ePnTMuWuWLwP71kJGKAB4q8VzliJIXqmQGBysJwEWK+L5tRyZPAvqttKrNnJgb0ni6jc+5tzfBwAofUMdWo98PvsLrN4IXR/VdSa8HArMkpNS+O/rs4ROC2PZTxIKhMhNJBgIrwgJCWH6tOn0btPb8y2bl/2q3wAPHM567I1P4O6+zk9ILFhAV+sb9x1cumKZc+DVcLDlD/hssufXceTuO2HksBwrHdoLBYfX/M7mL74FIDg8TFc3tHedkGAoHK17anzAPKdg2/Y9LP9+uYQCIXIZCQbCa7y2t0LL22DkUKhRJeuxZwfC5A8tmzI55dxFeGuMHi+HTOHg539Xu9dGa7v2wpQ52Q+DeFOtarrAkB32QkFK/FV+emy45by27wynVP1sChmZJ3jeeTt895muJeFlMtFQiNxPChzZkAJHnnOlCJJD23frbvpqlTI/bhgwfyl0ae/cG1jM5Szd/ZeTYikSof8bJ6clEx7i+p4Dlra4ubuh0z6brOczdL0728M5VTQE+Gv2zyx59k3KNb6BfkumooJsPhOYTNCxv94e+8PXfPIrSCgQIrCkwJEIGK/1HJhM8NQIeOvzrMf++Rf6D9XDDs4oVkS/gf+wGC5dAbCEgu/+WsBN33Z2v86Br0OBYcDWP2DvwWwPOwoFADf07sygbUvoOvnDrKEAdGGoft31CgQfkFAgRN4hPQY2pMfAe7zSc3DyNBQtnP1M/H+PZj/cYM/5i3pp4TsvZipKdDDmKK1m9SEqrJD75ZMfGAS1q8PbL7j+XGdl0zPhTChw6NAxqF7ZS43MSkKBELmD9BiIgPNKz0GFsjoUnDgFj76oSyibmUPB/KWwxIm5AiWLw45fslQqtJ5z4HaFxNbNoElD15/njL0HXA4FpvR0Dq/53fG1//wbbmwPqzZ4u9WAhAIh8iIJBsKnvDascPYC/LEHztssYzQMmLsEFjs5ibBCWf3n6o2WIQXIHA6eX/2u6+17sp9Lexc4bd9BaNzRMnHSzFFPwaYxU5je8WEWPvYSybE57DXRsJ7e4bKVnXoGHpBQIETeJEMJNmQowTe8MqyQsXNilt0Xk5MhLMz5sf4rcVD7Thj+JAx7PNOhQ5eOUTSiMMUii7jWtqRk2PqnfqMtHOXac3OSng6rN8BdTfXviONQcGbXXibd0QNTaiooxYBVs6jU/JbM170Qo4dibneyOqWLJBQIkfvIUILIVbzScxAUpHsIej4JL71/7fHwcB0Ktv6pd2OMv5rzdQpHwfq5MPSxLIeqF61MscgiHL9yint/fNT5Ogenz0H7PrBph9O/jlOCg6H9nU6HgrSkZOYPGKZDAdBs6GNZQwHAxxOgzzMOiyW5Q0KBEHmbBAPhN14JB0rB/Z2y77YvEKkr9SWnOL5OrWr6Wn/s0UsZbaSYUth1bp/zRZCqVNDlg10t25yTn1fCw89Div59nJlouOr1jzifsXqhTMO6tHrj2eyv/dYw+GVajsWS3CGhQIi8T4KB8CuvhIOHe+giSIYBv1t9Qm9QGxZMguJFndvtMCER7hsAGRUBrdUo6mKFRKV0yWZvlhBOT9dVCMPCnAoFh1ZtYMuXUwFd3bDbt59krW44ba7e4josTK+i8CIJBULkDxIMhN95bULiolXQpreeoGftShzc1hmm/pjz8wtE6m2dX3sq28PWExLvnjOANFNaztdb9is8+6bz7Xek2z0w5WOnQkFizGUWPv6S5ed2771EqXo21Q2Tk2HMNzD7Z++1MYOEAiHyD9ldMYNSaggwBAlLfmG7ZfNscH1C4n1tYdUsqFsz8+PRhaBPV7ijieNrNKyn/zx8HIpEZ6mOaA4H+2MOExLk4K9LbDwcOXFtkqQntvwBFcoy7uxqh6HAMAwWP/06cafOAlCtTXNuHdQv6zXDw+HXH6BQQc/aZkNCgRD5i6xKsCGrEvzLa+WTv/8JKpaDFrdmfjw5We+VULGc/eempOhNm3p0zLEcsGEYfLB5Av1v6O5eESRX3HYf+8uEUqfpbofFi3bPWsiCAcMAiChamEHblxBdvsy1Ey7EwAvv6N+tVHGvNlNCgRB5h6xKEHmCV4YVTCaYsQAWrsh67LlR0GWgHq+3JywMZnwJr9uZqJfhXMJFvto5PeciSIbh3PwGB775qCtt6jkOBQBV77yd6m3vAOC+se9kDgUA/52BPfu90i5rEgqEyJ+kx8CG9BgEhsc9B4lJesdFpTJXCTxyAs6ch6ZOrte/EKO3G86uBDNOlE9u3AE6tIJ3X3St/VbG7ZjB4JUjXSpzbJhMHF69kertbN6cza+FN4Y3rEgoECLvkR4Dkad43HMQGaHfALf8Ac276TAAekfCpo31G+TCFfpPe1JSoGlXeH+s3VNsyyefT7iY+YTXntaTBt00cdNUWnQdyTjV1qW9D1RQUNZQMGUO9HsW0tIkFAghnCaTD0Wu4ZUJiaVLQo2qOihY27ANeg+BtXPsV/sLC4MxI+HmG3O8hTkcfLZtCkXCbXqVenR0rb1Wxu2cyYil77Dgtjo80XV4jqEg/sx5QiIjiMipymKxIroEtDPbUjtJQoEQ+Z8MJdiQoYTA89qExLMX9AoFc0jYdzDrCgZ7EhIhLNSpN9Vtp3dTMaosZQqV1Ds4Ll4NPTtCVCGnm+rKLomGYTCj0yNc2H+YzuPey9pTkJiUNRh5gYQCIfI2GUoQeZZXJiSmp8O9/WHY29ceM4eCGQtg5x77z01MgiadIKNYUI63MaXTf/Hwa0WQTp+Dwa/BgSNON9UcCl6r0YvPzjVAOajc+Me3P3B49UZiT57m5ydfIS3JqqxxcjK07gWfTHT6/s6QUCDE9UOCgciVPA4HwcHwwavw4qDMj6elwYQZeqtmeyIj4PnHdJ0ER7cJCmZhjwnXKiRWLgoXd8PNNzjVTOuegrdTb0UNejXz1tI2rhw/xfKX3rP83OnrdwmJsKpuGBYGfbuDbS+CByQUCHF9kaEEGzKUkLt4ZVghMQnmLYW+3fTP8Vf1qgNnJvalpemQ4eBc69UKax+coYcVHMh2+ODiJV3SORvmIYTDqzcC0Kh/T7pMGH3thBOncq7X4AYJBULkHzKUIPIFrwwrLF4Nz7yhly6CrvynFKz5HYa/Y3+lQvxVaNHDqRLC5gmJYUGhmD6fBM+NzPH8LKHAZNIH7IQCuDaEABBVvjR3f/DqtYMbt0O9NnqHSS+RUCDE9UmCgcj1PA4H998Lu5brpYvWzpyDfw7Z342xUEG4+y6oWdWp29QsVoU//vcz5cpWI61wIc5dvZjtedn2FHw8AVr3thtSYk+ezjSEcN/X7xFRxKpH67ZGMPYduCXnFRXOklAgxPVLhhJsyFBC7uXxsILJBK9/DK2aQUalQEsBIOuiSF4wYMlLbD71Z5YiSHZXH6z5Xa+aGNI/2+vN6TWYfzIqOzbq14Mukz7QB64m6CGEOjW81nYJBULkTzKUIPIdj3sOTCb95nvk+LXHlNLbEDfrCv8ezf555y9C10dh9z7n7mMYvF6jN2lxcZnKJ+e4JLF1M7uh4J9FKy2hoGCp4rT/0GoIYfTXcHdfr5U7llAghJACRyJP8agIUkgIzJ1wrQpgcrLecbBUCaheGUJDs3+euYjQlTjn7nM+hmoN72f9pDdoEjuB1rP60b9BN15Z93H2oeCXNVA4Gprfku3lEi5cIrRAJKkJidz90Qgiixa+dvDlwboEsxfqFkgoEEKADCVkIUMJeYPHwwpzFsG7X+ptiK23Wk5M0oWNgoPdb5xhwKJVcNtNHAyN59Zp3bmcHGu/eNG9/aFsaZj8od1LXj56kj9nzOfO157Wz9/xF5QpCbYbJrlJQoEQ+Z+zQwnSYyDyJI/LJ9/aSO9pYF1SOC0N7u4DbVvAG89lfc65izB6LIx8HqJzKEWsFHRuB8Cqncu5nBzLMzf357M2r5FmSiM02KZnYvFUPVcgB0WqVOCuEc/oHwxDr7KoUgFmfunwV3VEQoEQwpoEA5FneRQOqlaEUUP19//8e20ooV9PuMVOcaKkZPh5JTzQyf5+C2a/72Dd0ukMLrjY0lMwb/8yRm74glW9v7tW58C862Ghgs61G3TwWDDZ+fNzIKFACGFLJh+KPM3jCYmxcXqZ4McZJYQfexBuaqDfsM/ZLDesVA7+Wes4FACbf5hI0WmLMw0fNCxVl8vJsdfKJwO0fSjb3Ry3T5rFylc/IDnWZl7DrIV6rkOp4vrLAxIKhBDZkWAg8jyPwkF0FHz/JTwzIPPjw97WY//p6bY3g7h4PUfBjnE7Z9K09GqmTMk8p8B6y+ZWs/pyJu4c9OoEt92U6fkJF2JY/cbH/P7pJL5qeDdJlzOGAs9d1IWT5i5x/vezQ0KBEMIeGUoQ+YJHwwp3NdV/njytJ/V1aQ+PPwQdW2U/CXHRKhgyAu5okmXyn2VJYpPsJxqaw0GrWX0YvHIk85/4Osvl14z6nKRLVwCo1qrZtUJGpYrDzqVQrrRzv5cdEgqEEDmRHgORb3g8rDB+Brz6gV7GWLcmtGupH997IPN5vTvDnlX2Q8Etj/DZXS+j7ugOPyzOcpuaxarw60MzmRLXHA4cznTszK697PxmNgBhhQrS9p3hkJoKX0yBlBR9Tw8KMUkoEEI4IsEgg1JqiFJqL7A10G0R7vMoHIx8Htb+oGsbmM37BW7tDIeOXnssKEi/QaemwqFjQDbFi0JCoMWtdj/d14iuSJE3viR2wSK6zRvE6fhzGIbB0qFvY2Tsm9DylSFElSsNW3fBqM/h7wPZXstZEgqEEM6QOgY2pI5B/uBRnYO4eBj6tg4KpYrDivVwb5us5w0ZARu2Me6bvgxeNcp+nQJ7UlI4dP4Qd/70KFFhhZhc6H+sGvAaAMWqV2bQzl8IMYeUHHZddIaEAiGElEQW1zWPeg7iE+DPv/VujKGh10LB9t2ZNzl6+hF+eLW9/VBw6YpeCmlPWBjVy9dl7YMziU+MY/6LIy2H2n/4KiFX4uGrqXqFhIQCIYSfSDAQ+Zbb4aBsKdjys55caBj669+j0LInWF1jXMIWeh0Zx7M39+ezVq9k7Sn4dBJ0Hpj9PVr1goy5BDWLVWF8Wi+iz6cCUPGOW6jVsbXuqfhovO4tcJOEAiGEq2RVgsjX3F6tEBSkA8Gzb0LRIroY0i/ToOVtwLU5BUMb9uPjD/aijv6gayBYG9hbF0OyZTLplRDVKgOQHBfPvs+/txy++/2MkNG3G9zXNnN1RhdIKBBCuEN6DES+53bPgVK6ImKVCvrnu5pCUBA/zPmEFxbriYYf3/MGqlUzfZ6tKhXghjpZHw8Kgjefg1Z6maQKCuLWwf2JKBJNvR4dKBdVkGXvDNV1DiQUCCH8TCYf2pDJh/mXxxsvxcYxedcP9Oz0PhsfuImOE3/IeaJhXDx8Nln3GtSpce3xTTv1qoZK5TKdnnQ5lrSkZNSkaZyZOIlur1RmxcMzr5VPdpKEAiFEdmTyoRA2PJqQOGshV+u15LXl7zP1nY50/HJ65lBw6Ci8MloPE5gFBcHUH+HYf5mv9eQr8PH4LLeIKBJNoTIlKfj6C7B+HjHG1czlk50goUAI4SkJBuK64m44mFryDG/eFMdDLfvz7FNjUBERetXChRh9wvkY+HEJHD157UkFC8DhjXD3nZkv9usP8PKQrDf5519YtQGA6lUbZCqffO7qxazn25BQIITwBgkG4rrjajgYt3MmA7Z/RNqzj/BpuxGof4/qKoT39IO3x+iTbm+sN1iqVslxA4oWhnKl2T5pFqtGfEjc6XP68W9/gKFv6e2fuVY++fZyjYgOL5TjJSUUCCG8ReYY2JA5BtcPZ+YcZKloePoc1G8Dn74B9WtBnep6IyazCzGQmqaXPIIughQUBF++pX/+YgpciSP9pUF8Ubc1sf+dISQinOcOrKdgyWJw9gKUyX5Owe5z/1CyQDHKFiqV6XEJBUIIZzg7x0CWK4rrlqOljFlCgVK6xPH0z6FtC4jIqEoYc1kvbSxWBO7oAe1bwBcZQeDWRjoYmCWnQHIKe35YQux/ZwCo3uJWCv53WldZtBMKTIaJfoteIMWUypoHp1vCgYQCIYS3SY+BDekxuP5k13OQbSiwdeQEhATDfQOg2S3w9buwcTvUrgYlitm9n2EYjL/lXs5l7H0w4MEuVFq9AQ6svxY2snEw5iitZvUhKqwQax6cTuGgKAkFQginOdtjIMHAhgSD65N1OBjwZQ8mn/sh51BgGHBbZ70M8X8PQO3q14YPrF2O1Rst3XwDxF8Fk4njf+3n2za9Aahw+00MXPk9/HMo+5oHNszhoFBIAYovLsqu3/dLKBBCOEWGEoRwgXlYwcBg8rpZdGx6V84bIikF336ihxaKFtaPJSfrP39aAUvWwHefwdK1MGAYxPwF85fBk6+w06oaYpP7O+n9GJwIBaAnJP7S7RuajrufY4dPs2LpCgkFQgivklUJQmQICQnhu2nf0Tu4N8uGrWfegmU5P6F+LR0KLl6CLX/o7Zk//wYiIyAyXG/L3K4FbF4IYaHQqilJE0fz98IVAEQUiKTuax9CxlwDZyQkJPLcgHdgnGLFtxIKhBDeJz0GQlgJCQlh+rTpBBHk/N4KL7wDu/fBcwOhaWM9vNC5nT5Woti1+QYVy7E7/ippiUkA3PhQV0Kb36KrIDrBeqLhsqXLJBQIIXxCgoEQNlzeeOm9l3TFQ+s3+MQk2LANbmsEn0yC3vfBsnXsmj7PckrjJ/o4PYQgqw+EEP4iwUCIbLgUDsyTDhMSYdmv8NU0eLg7PPkq/L4AZi6ARvVI+OBrziUkAlAmMoLS/51xKhhIKBBC+FO+CwZKqXuBN4AbgavAesMwuge2VSIvcrnnYPTX8O0caNII6teGXcv1aoV/fwOgQNe7GR4bx4H5ywiZu8SpKokSCoQQ/pavlisqpXoAk4BXgTWAAm4wDGOuC9eQ5YoiE6d3Zbx0RVc+rFnVK/eVUCCE8KbrbrmiUioEGAMMNwzjG6tD+wPUJJFPON1zULSw/kpPh9W/w/ZdsH4LBAfpwkVKwdDH4cQpvRVzDls2SygQQgRKvgkGQGOgPGBSSv0BlAH+BF4wDONve09SSoUD1uXmouydK65fLg0rPD8K5i2FwlFQtwbUrQlBCoJD4Jc18OsmHQzskFAghAik/BQMqmX8ORIYChwFhgHrlFK1DMOIsfO8V4A3fd46kec5HQ4GPwz3d9JLF0P0X7HVb3xC7LGTVG97B3WfG0iond4CCQVCiEDL9cFAKTUSx2/cTbhWrOldwzDmZTx3AHASuB+YYOe57wOfWv0clfEcIbJwKhzUqQHmxQYXYuDAYfZ9/xMXT55mz49LqHt2Z7bXllAghMgNcn0wAL4CZjs45yjXhgD2mh80DCNZKXUYsDv92zCMZCDZ/LPdErhCZHAqHKSnQ+vesPVPkhRcNOlJvmWKFSa0QGSWa0ooEELkFrk+GBiGcQG44Og8pdQO9Bt8bWBDxmOhQBXgmA+bKK5DDsNBcDC0bwnVK3OqSGH4Wp9brunNWa4loUAIkZvk+mDgLMMwYpVS44FRSqkT6DAwPOPwj4FrmcivHIaD154G4OyYa4tkynVolekaEgqEELlNvgkGGYYDacB0IBLYArQ2DONSQFsl8i2H4WDjNmLeGmP5sUTtapbvJRQIIXKjfBUMDMNIBV7I+BLCL3IMB6s2EHM1wXJuseqVAQkFQojcK18FAyECxW44eGkQl+YsgsPHCYsqSIESxSQUCCFyNQkGQniJvXCQcFGPZBUqVYLExCQJBUKIXE2CgRBeZBsOZqWnk3wlDoDwggUkFAghcj0JBkJ4mXU46Nd/KHMjI0hLTGLR5Vi2HjouoUAIkatJMBDCB6zDQdc5c2hwY13+lVAghMgDJBgI4SPmcBAcHMzKlSslFAgh8gRlGEag25CrKKWigStXrlwhOjo60M0RQgghvCI2NpbChQsDFDYMI9beeUH2DgghhBDi+iPBQAghhBAWEgyEEEIIYSHBQAghhBAWEgyEEEIIYSHBQAghhBAWEgyEEEIIYSHBQAghhBAWEgwyKKWGKKX2AlsD3RYhhBAiUKTyoQ1z5cMTJ05I5UMhhBD5RmxsLBUrVgQHlQ8lGNhQSpUHTga6HUIIIYSPVDAM4z97ByUY2FBKKaAcEOfFy0ahw0YFL18X9NDHrV6+pq+v7avryuvsn+vmxdc5r/338+VrDPI6m12Pr3MUcMrI4c1fdle0kfFi2U1S7tBZA4C4nLpv3Ly2ydvX9PW1fXhd87fyOvv2uuZv88zrnNf++/nyNc64vrzOXLevs8PnyeTDvG9sHry2L9vsK/I6+0defC3kdfb9dX19bV/Ji6+zDCX4g3lCIw4mfAjPyOvsH/I6+568xv4hr3P2pMfAP5KBURl/Ct+R19k/5HX2PXmN/UNe52xIj4EQQgghLKTHQAghhBAWEgyEEEIIYSHBQAghhBAWEgyEEEIIYSHBIACUUvcqpbYopRKVUheUUvMD3ab8SikVrpT6UyllKKUaBbo9+YlSqopS6hul1JGM/5cPKaVGKaXCAt22vE4pNTjjdU1SSu1QSrUIdJvyE6XUK0qpbUqpOKXUOaXUT0qp2oFuV24hwcDPlFI9gOnAt0BDoDnwfUAblb99CJwKdCPyqTrof0OeAOoDzwNPAu8FslF5nVKqF/A58C5wE/AbsFQpVSmQ7cpn7kQXCbodaIeuArxCKVUwoK3KJWS5oh8ppUKAo8CbhmF8E+Dm5HtKqQ7Ap0AP4G/gJsMw/gxoo/I5pdRwYJBhGNUC3Za8Sim1BdhpGMYgq8f2AT8ZhvFK4FqWfymlSgLngDsNw1gf6PYEmvQY+FdjoDxgUkr9oZQ6rZRaqpSqH+iG5TdKqdLAJKAfkBDg5lxPCgMxgW5EXpUxDHMzsMLm0Aqgmf9bdN0onPGn/L+LBAN/M3+KGgm8A3QCLgHrlFLFAtWo/CZjh8ypwHjDMLYHuDnXDaVUdeBpYHyg25KHlQCCgbM2j58Fyvi/Oflfxr8XnwIbDMPYE+j25AYSDLxAKTUyY3JbTl+3cO31ftcwjHmGYewABgAGcH/AfoE8woXX+WkgGng/wE3Ok1x4na2fUw5YBvxoGMbkwLQ8X7Ed41XZPCa84yvgRuDBQDckt5Btl73jK2C2g3OOovfBBthrftAwjGSl1GFAJhY55uzrPAI9qSjZaltVgO1KqZmGYfT3TfPyDWdfZ8ASCtYCm4DHfdes68IFIJ2svQOlyNqLIDyklPoS6Ay0NAzjZKDbk1tIMPACwzAuoP9C50gptQO9WUdtYEPGY6FAFeCYD5uYL7jwOj+DDgdm5YDlQC9gi29al384+zoDKKXKo0PBDmCAYRgmX7YtvzMMIyXj34l2wAKrQ+2AhYFpVf6TMXzwJdANuMswjCMBblKuIsHAjwzDiFVKjQdGKaVOoMPA8IzDPwauZfmLYRjHrX9WSsVnfHtIPhV4T0ZPwa/AceAFoKS5h8YwjDOBa1me9ykwXSm1nWu9MJWQuRveNBZ4COgCxCmlzD00VwzDSAxcs3IHCQb+NxxIQ9cyiER/gm1tGMalgLZKCNe1B2pkfNkGLpX1dOEMwzDmKKWKA28AZYE9QEfDMKRX0XvMS0F/tXl8AHri8nVN6hgIIYQQwkJWJQghhBDCQoKBEEIIISwkGAghhBDCQoKBEEIIISwkGAghhBDCQoKBEEIIISwkGAghhBDCQoKBEEIIISwkGAghhBDCQoKBEEIIISwkGAghhBDCQoKBEMIvlFIPKKUOKKXSlFJGxtcVpdRwq3N6KqWuWh2/pJRaHMh2C3G9kU2UhBB+pZRqB6wAkoFyhmHE2Bx/EngNeAb42TCMdP+3Uojrl/QYCCH8yjCMlcBfQDjQzvqYUqoy0B241TCMBRIKhPA/CQZCiEAYm/Hn0+YHlFJlgMnA/wzDOB2QVgkhZChBCOF/SqmCwEmgCHATcAKYBQwyDONQAJsmxHVPegyEEH5nGMZVYGrGj68AM4HnJRQIEXjSYyCECAilVA3gAKCAtoZhrA5wk4QQSI+BECJwjgDmHoKGgWyIEOIaCQZCCL9TSilgAvBLxkODlVLy75EQuYD8RRRCBMIYYA3wHLrXoDrQIZANEkJoEgyEEH6llHoP2GcYxveGnuSUZemiECJwZPKhEMJvlFIvAxiGMdrqsSLopYsFgDqGYRwITOuEECA9BkIIP1FKPQMUsQ4FAIZhXAZmoFcnDAlA04QQVqTHQAjhU0qpssBIoDN6b4Qs/+gopdoCK4FYoJphGBf92kghhIX0GAghfEIpdbdS6gB6mOBxoAywPZvz5gFLMn6MBk4opXYrpWr5rbFCCAvpMRBCCCGEhfQYCCGEEMJCgoEQQgghLCQYCCGEEMJCgoEQQgghLCQYCCGEEMJCgoEQQgghLCQYCCGEEMJCgoEQQgghLCQYCCGEEMJCgoEQQgghLCQYCCGEEMJCgoEQQgghLCQYCCGEEMLi/yQDZz0/ehQUAAAAAElFTkSuQmCC\n", "text/plain": [ "Graphics object consisting of 72 graphics primitives" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "tmin, tmax, dt = -10, 10, 2\n", "for i in range(int((tmax - tmin)/dt) + 1):\n", " ti = tmin + dt*i\n", " graph += plot_const_tt(ti) \n", "graph += plot_const_tt(0, thickness=2)\n", "show(graph, figsize=10, axes=False, frame=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plots of hypersurfaces of constant $\\tilde{\\tilde{t}}$" ] }, { "cell_type": "code", "execution_count": 75, "metadata": { "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgYAAAKSCAYAAACpyBP1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXhd9f3HX+feG3eXJo1LvU0t1qaFUtxl6HC3MdjYYDA22H7AhjsMhvtwaJHSxtO0Tb1p3N3l5vo9vz9OksYbrcD39Tx9IPfY90bueZ+PvD+SLMsIBAKBQCAQAKiO9gIEAoFAIBAcOwhhIBAIBAKBoB8hDAQCgUAgEPQjhIFAIBAIBIJ+hDAQCAQCgUDQjxAGAoFAIBAI+hHCQCAQCAQCQT+ao72AYw1JkiQgEOg62msRCAQCgWCacQFq5TFMjIQwGE4gUH20FyEQCAQCwQwRBNSMtlEIg+F0AVRVVeHq6nq01yIQCAQCwbTQ2dlJcHAwHCYiLoRBL5Ik3QrcSm/dhaurqxAGAoFAIPjVIYoPe5Fl+QVZlucCK472WgQCgUAgOFoIYSAQCAQCgaAfIQwEAoFAIBD0I4SBQCAQCASCfoQwEAgEAoFA0I8QBgKBQCAQCPoRwkAgEAgEAkE/QhgIBDNMd3c3ZWVlR3sZAoFAMC6EMBAIZpCWlhZWrVpFeHg4L7zwwtFejkAgEBwWIQwEghmipaWFdevWUV1dyZWXn8dtt90mxIFAIDjmEZbIAsEM0CcKGior+EdPD8Z3PyM4KozbbrsNgFtvvfUor1AgEAhGRkQMBIJpZmCkYOOGt6nTG2gBQj3cuOuOq0XkQCAQHNOIiIFAMI0MFAWbv3+X+fOi2WijQWcy013fxBOP3QcgIgcCgeCYRQgDgWCaGEkUoNfjplKhAzqr65CtViEOBALBMY0QBgLBNDCiKAD4y79wNZmpB6xWK9qGZlwC/YQ4EAgExyxCGAgEU2RUUQCwfg3un38PNfUANBeW4hLohyRJQhwIBIJjEiEMBIIpMKYoALCY8WtpU/5fkmjfXwhrEnq/FOJAIBAce/zihIEkSbOAx4BTAQegELhWluUdR3Vhgl8chxUFDz0F/36F6JNWca2nG76ffIutLA/aRYgDgUBwrPGLEgaSJHkAmcBmFGHQCEQA7UdxWYJfIIcVBV3d8NkGeOgunHV6nPP2wT//BJeePexcQhwIBIJjiV+UMADuBapkWb56wGvlR2ktgl8ohxUFAC7OkPcdXHkXRIUrNQZVNeDpPuI5hTgQCATHCr80YXAW8L0kSZ8AKUAN8KIsy6+NdoAkSXaA3YCXXGZ2iYLjmXGJgt0HoLkNHnkWTkyC6DC471awtYW/Pw3ennDLb4cdJsSBQCA4FvilCYNw4GbgSeCfwArgWUmSDLIsvz3KMX8G/nqE1ic4jhmXKAC49/9A2wNB/vDHmyDhHIw5O9kdG0H5J9/i4e/DuhGEAQhxIBAIjj6/NGGgArbLsnxf79c7JUmahyIWRhMG/4ciJPpwAapnbomC45FxiwKAj1+E9i5oaoHyavjzrVBQwvd3PoRFlnHp6eFEqxVJNbIjuRAHAoHgaPJLEwZ1wIEhr+UD5492gCzLBsDQ97UkSTOzMsFxy7hFQWUtODvCxi2wcA48+G8lffD5a9huyiQi0I/Cmnq6ahqofuxFgv90K4zy+ybEgUAgOFr80oRBJhAz5LVooOIorEXwC2BCkYJ7HoaGJujSwtknwycvQ2MLfPE9LF/EnL/eReEN9wKQ/7enCT7nZJgTNerphDgQCARHg1+aMHgKyJIk6T7gY5Qagxt6/wkEE2JCogDg6YegvgkWxIDJDI4O4OkGF98K7z5DzOqVqDRqrGYLBwL8OCkmgsPFp4Q4EAgER5pflDCQZXmbJEnnotQNPAiUAb+TZfm9o7sywfHGhERBSQUE+CpiwN8HbGzg1gdgbiTceS3U7QA7WxyWnU74LH+KK2roqGugbHMW4fNjwc97zLUIcSAQCI4kvyhhACDL8jfAN0d7HYLjlwmJAlmGy25XvAoADhZD7tdKR4KPl1JD4OGmbHvpnyzZX0jx7/8OQN7tDxLu5Ahbv4JRChH7EOJAIBAcKSR5iEXrrx1JklyBjo6ODlxdXY/2cgRHmAmnDwAKSkCtVvwJKqph0dxD23Ly4JX34PmHwckRi9HIkxHJ9DS1otJo+P37z+F01knjXp8sy9x97z956rv/cvlNl/PO3e9M4l0KBIJfI52dnbi5uQG4ybLcOdp+Yz+mCAS/IvpEQWVDBV98/dLhRcGOvWA2Q2gQ+HqBu6siCv73HbT3/s1190BFDdjbQV0j6sdfZvH5pwFgNZvZXdpbF2uxjGuNkiSx7oYk1JepeHfbuzz//POTfbsCgUAwIkIYCAQMjhT8+OWbJC1ZisVqQWfSj3xAWweccjk88wY89TrEnQY6vWJ9fOXvYUu2st+6ZPj5QyWiYDDCi28Tt2oFkkaDjZ8f7ZW1cMWd8Lenx7XODSWpnPv5zZwetZY7/H7L7bffzgsvvDA93wSBQCDgF1hjIBBMlNHSB7f9+DcKWkr5+oJXcbJ1HHyQhxt886biV9DarkQNHOxhlj8c3KxEEACs1kP1AyGzoGYb9joT8998A7ONHXaeTnTvz8PZz/Ow69xQkso5n93EKWGr+eTc57A53wY1alFzIBAIphURMRD8qhmrpuCyuWeRW7eHMz+9Aa2xR3nRaoWvf1SKDuPmK8WFs/zh4rPAaFS2BwUoxkagRAPO7+2WlSSaWrr5Of0gdm4urIgLRa838WPwXBqSE8dc51BRYKu27S9IvOuOq7nttttE5EAgEEwLQhgIfrUcrtAwOXgZGy96Y7A4SM+Fi25R6gueeA0SzwFDr3Hmi2/DijOVuoM+rroQrr2YHp2R3J3lbM4sxOlgISckxxAa7MVJa+bg5elEek4x1X9/Cd78ZNg6RxIFfQhxIBAIphuRShD8Khlv90GfODjl42t4aef73JNyHWz/FuZFg5MD+HiCXe9wzqTlSpGh5tCflXFNEgeL6inatA+1WkWcm4pwYzMqtbLd1kZDwpJgfv4+j+yFy4nTtRAx4PpjiYI+RCujQCCYTkS74hBEu+Ivn8m0JJZu2UhokwnVhWciGwxIavUgATAUq1WmpLyR/XsqsajVREf4ERPlj62NetB+B7/+ke//8E/aK6pJ+fx9Gg0qFsyZRWyUHxtL0w4rCgbS38r47H95/vnnhTgQCASDGG+7oogYCH5VTMqnAAjfkAeZ2/lxiRvaux/kTF0A6o3vKYWFVivc/iDccCksmktjcxd5eyrp7NITtnkL809cgsPcuEMnKymH0io4aRX69i7ay6uUlx99nJUvPc3e/Bpq01M5p/WhcYsCEJEDgUAwPQhhIPjVMFlRAMCjf4bObhw6C3g0pIl8ix13mPVKt0J9E+TuwnDpuezeWU55ZQteHk6clDIHjzXRYGsz+FyvfwT/2wAFW1h46dlkPfkqTfnFVOfsJLkkn9n7DlI5P4E/edzNfWddMS5R0IcQBwKBYKqIVMIQRCrhl8mkRIEsw+//DhecDknLoKsbnJ3IqN7BKR9fw4qAhf2tjDV1bezYXYnFIrNw3izCQ7xHH+Hd0qa0Njo6AHDwqx/56KKbAXCImsWDl9VzZ/TtLFUnEBPpx8K5syY8DlykFQQCwVBEKkEg6GXSkYIeHRwogroGRSScdwPMiST52b/3FyQ+/sLvOCPuDsraDQT4ubFs0WwcHHqf8D/9FlK3wnN/H3xeL49BX3onxRP11JOYdHraNm7kkno3Hv7DDZR/8BO7ipV9JioORORAIBBMFiEMBL9oJi0KrFZwcoQNbx8yKLrjavBUburJwcv4+oz/os1po6qxi2Urogib7TX45q0zKFGGkXj8JWhopuHeO8nILUbt54ZuZx2Bt96KZ0E+Fr2F6OICJJdmdqJEABbNCxLiQCAQzDgilTAEkUr45TBpUZCTpxQTfvYqBAcqzoae7v2bZVmmqLSJPfurcXOxY4Gfhn/V/Y+/r/rdcIfEUZBf/5Aio5rds8JROZm5cuf13PihPQHqYGbdcQd2djasW78YV1dHikob2bm3iqhwXxbPn5g46FuvSCsIBAIxREnwq2ZKhYZ+PrBkvjI2uaMLlp+umBcBJpOF7O1l7NpXRUSACyekzKHG08Qruz4c7JAIyuyEEWhr7+Hn6MXsCgxH42nkirxrOTE0gTteehnt7t2U3XcfPU0t/JR2kMamLqIO7CGuZH+/QJiomBcmSAKBYCIIYdCLJEm3SpJ0AMg92msRTI1Ji4KmFtAbICwYXn1UMStydYb774Cz19PZpeentIPUN3aQ2N3AkjN/g7q1naX+84c7JAKEJ8HT/+k/vbbHwNa8Mn5MzcdktODi3cK/PrmKk8KS+OTc5whZHseiy8/D1NBA5d8ewsFqJD2niNpOI5Fbc1g6L5DisiYhDgQCwYwiUglDEKmE45tJiwJZhhMvgUBfePdZ5bXyamU4ElBT187WvDIc7W1JXBGBq14LG7bAb8/vP0VG1fb+boUffvNfNJ9uhHnR6KPCyS+sp6S8CVsbNXNjAim0HKDqmus5q9wOr7Id/S2JXXWN/HTfY6x96Pe4BAWQs72M2oZ24peGETzLk5LyJnbsriQi1Ie4hcEirSAQCMbNeFMJQhgMQQiD45cppQ9AqS1wdFAmJmbtgPWXIf/4Hvmegew7WMusAHdWLAnFRqNShieNQEbVdnbU7+PO5VdhtlgpLGngYFE9EhAT6U90hC8/VmRwzmc3cbnLCl4645/YBs0adUlWq0zuznKqqltZ5q4i7KkXKP3X39l+oI6IUG/iFs4W4kAgEIwL0a4o+FUxpUjB5xvhnJMhfoA74crFmF95lG0ad6oO1jIvJoC5MQFI9U1w6hXw+r9h6YJhp0sOXkZS0FIqs/exrbYdq40DkWG+zI0OwM5OM2j2wUvjcDRUqSRWxoWi0ajYVt6MKWYu0a62sDiE7bsqkGVYumhi4kB0KwgEgrEQwkBw3DOlSEHOTrj8TvjhPUheDtoeKK9GFxFGZlAMHQ0dJCwPJziw13vAYoGlCyEiZMTTdXTqyNtTSVOLAc+9+3g+Zi/vxfwLO1vNyAORPvwKfs5SahpGwNDVTcbjL5Pwu2vRqNXsIgVzu4k5UX5IEmzbWYEMLBPiQCAQTBNCGAiOa6acPkiIg10bITpc+frxl2nfmEbG3/6GFYm1STF4ejgd2j8oAF7/17DTmC1WDhTUUVBcj7OjHasTIimN0fHTty9y5qc3cPvSK7j4q98Nn32gVitRC6v1kF9CL9W5u/jk0tvprK5D29TCmS/9ExsbFfsO1mJ+61MWXLgWaUkouTvLQZZZtjhEiAOBQDBlhDAQHLdMSRR897My4+Ca3xwSBUD9tVeQtTQFZ3sbkldG4tjnYmi1wvX3wo2XwYrFg07V1NLNtp3l9OiMzI0JIDbSH7Vahb9vMhud3mDdh1eypXIrp0WkDB+IdOHpyr8RcAsKQN+hpAF3vvkJiy47l3mrVqCRZXaTiKnDStxiTyQJcvPKkWVYtiQElRAHAoFgCoh2RcFxyZQjBak58H2q8rQOkJ5LSV4x6bsq8fF1Y21yzCFRANDcpkxFtFj7XzJbrOzcW8XmjALs7DSsXzOXeTGBqCXglCvgx3S6jFqssgVPBzdeP+3RkWsKjEbI3TXsZZdAP058+J7+r7+57QHMBgMxsbNYumg2JR0mcneUEezvxoq4UCqqWti+swKraGUUCARTQEQMBMcdUxIFfSH7R/8MZjNIErLFwr6vM8lPWk1EqA9LFgSjUg156vb1gs0f93cjtLZr2bqjnJ4eA4vmBREV4XvoSb1HB34+ZLcXcM5nT3BqeAofn/Msdho7qjpr8bR3H+yQ+MZHcM8/oGoreLgNuuyy6y9lz3tfULNtN80FJWQ+8Rop991GRKgPNiqJrdtLsewrJP63JyNJElt3lCHLMsvjQkXkQCAQTAoRMRAcV0xJFDS2QOI5kJ6r3OBtbLBYreTuqiQ/aTULw72JWziCKHj5HThQCJKEVZbJL6xnU9pBNGoVJ62ZQ0yk3+CbsLMTGx48mzXlT/TXFNhp7LBYLZz68bXDHRIvOhNyvgT34e2xKrWaM154BEmtBiD9sRdpKSoDYPZsbxI6aqjx8CZnRylBgR6sXBZGZU0ruXnlInIgEAgmhRAGguOGKacPHO1hXowy/wAw6Y2kf7CZqpo24peFEbtghOI9vQFeehc2ZaLTm0jLKmJvfg0xkf6csDoGVxeHYZf5ace3XPbBjcMKDdUqNS+f/PBwh0RPd5gfM6o3gv/COSTceQ0AFoORr266D9mqpDSCrj6XxBWR1NZ1kJ1dQFCAB/FLw6nqEwdWIQ4EAsHEEAZHQxAGR8cmUxIFJhO0tIO/T/9LOp2R9NT9aNu6SfKxwXdd/OjHGwzUt2jZuqcKCVi5NAw/n5F/NzaUpFJ67fWcVWmPX9H2EWsKBjokfn3Bq0pa4WAx3PkQvP00+HkPO8ao7eGlpafTXl4FwClPPMDKW6/s317z7/+SHT6XgEBP4ldEUFffQfb23ihCXNjwKMhhECZIAsEvDzFESfCLYcqRgr/8C9ZdohT5AZ1dejalF2CQ1JywZu7oomDjFqzVdewrayFtWxnurg6sXzt3TFFwzmc3sf+8Ffj/54VRzYuSg5ex8aI32N14kLyG/cqL3p5gZwtt7SMeY+vkyNmv/F//1z/95V+0V9T0fz3r9GQS5S7qmrrI3lZKgL8bCcvCqa5tY+uOMhE5EAgE40ZEDIYgIgbHFlMWBQDVdbD3IJy6lpZWLemZB7Hv6mL16ctwdHMe+RizGUPieeTcciuNHt7MjQ1kTrT/qAV9I5oXHYZOQxeudi5YZStGiwl7jd3o+3bp2V9QS82BEprTM5m/LIak63+DNMT7oLa+g6zcYvz93EhYHk59QydZ20qYFeBB/FIRORAIfs2IiIHguGfKouCDL6Fbq5gSnbqWuoYOtmQV4mI2svaDd3C0txn10NYuAz/+/WHaff1YnRDFvJiA8YmCE/6J7ROvQ039YZfnaucCwB9+fpTTPr4WrUELefuGHdvU0sVPafm0tfcQEB2C39ln0TArhuLy5mFTFgML8kn6v0epr+8ge1sp/r6uJC6PoLaunZztpSJyIBAIDouIGAxBRAyODaYsCmobYNF6eOJB+O35VFS1kLuznAA/N+KXhqNRMcxpsI+y1F3s6LDi7uZA4oqIwX4GQxgWKdhXDOsvg58/gnGuua/mIMl7Phv/mI/0u+vgz8qTeX1jJ5m5JXh5OJG0MgIbjRqz2cKeAzUUlzXh6+3CirjQQ2uUZfh2E3XLl5GZW4qfjyuJy8NpaOokK1dJMcQvC0M9ynsfDRE5EAiOf8R0xUkihMHRZ1rSBwBVtRAUQGFpI7v2VRNafJBlah2q31034u5Wq8yuvZUUlzcTVlVG3M3noVaPfgMdNX3Q9zc1AR+BPnFwkTWS5259E0cHF4rLmti1r6r35h6BRjN4LQ1NneTmlWMxmkhJjsHDY3BapH7zdjK6JPx6owYNTZ1kbSslwNeN+OVCHAgEvzZEKkFwXDJlUbBxC/z+72C1IgcFsCe/ll37qomN9GO5vhXV3KgRDzMYzKRmF1JS0UxcsCvLzls1OVEAiiCY4CjkvoLEj1XFPL/jYzK2FrNzbxWRYb4kr4wcJgoAPBw1qH7eQEdxKT9tOUB944C/c70B/+vuJDk/j8amLjJzS/DzcSVpRQR1jUqawTLAxXE8iLSCQPDrQDgfCo4ZpiVS0NAMtQ1YLRby9tdSWtHMohAPYuYFwbzbRzyko1NHxtZizAYTa5aH4RPgOeYlxhQF51ynTGm858YJLz0hMI5vTniPljIdbaYGklbPZ1aA+6j71+XtY/szryHZ2RF89+9JV6lZujiE8BBvsLeDje/iHxpEcpvy/jJzS0haEUHSiggyc0vI2lZK4vLwMQXQUIRDokDwy0dEDATHBFMWBV3dyn+vvADLu8+Ss6uSsspmljvLxJxwNmzfM+JhtfXtbEo7iI1Gzbqn/o3P/f8c8zKH7T5IXg5zIie0dKtVpqyimQ2b9tNUZSRc1hFbmMotmfcOdkgcQsiqFSy78TJkg4HKRx/DsGcn23dVsC+/VilKjAoDGxv8WhtJ1jfR1NJFxtYSfLxdSF7Zl1ooEZEDgUAwCFFjMARRY3DkmbIoqGtUrI4fvx/TuaeQlVtCU0s3CcvCmeXlCK99ADddrow47kWWZQqKG9hzoIagAHdWxIWiKSgBG82gaYsDmUxL4lhYZZnqmjb2H6ylS2sgKNCDBXMCcXG2H9kEaQSM3VpeXn4GbWWK8dHyZx+n2y+EkCBPli0JUeoI/vR/sCWbhi/eImN7Gd6eziStiKS5tZvMrcX4eLuQtCJiQpEDEDUHAsHxhig+nCRCGBxZpiV9YLXCU//BcMk5pBe30tmlIznKG1+VBSJDh+1usVjZsaeS8soW5kT7M99Ng+TvM2qXAoxTFFTWQmeX0o0wRo2BLMtU17Wz/2AtnV16AvxcmR87Cw/3ATf/hmaK//sqizUfsCJw0ZjioConj/+ecDGy1YqkVnPWho8o7rD2CoAIbLAq1s4uzjQ2d5GeU4yXhxPJKyNpae0mQ4gDgeBXgSg+FBzzTFkUtHUoKQKVCt0tV7H5YBNarYE1SdH4/uMpuPhWRTQMwGA0k5ZdRGV1KyvjQlkQE4B01jWKHfEojDtS8MZHcMZVo4oCWZaprW/nxy35ZG8rxcHelhNXxbIqPmqwKADYc4DIR99jc8Kj5Nbt4erv7h11fcHxcay69xblGhYLGbf+gcQls2lr7yE1qxCDLIGLM9Q34fvnR1i1IJCWNi0ZW4vx8nQmOT6yP81gFmkFgeBXj4gY9CJJ0q3ArShiKUZEDGaWaYkU/OER+OIHunO/JXV7ObIsszohGlcXe0U01DXA3EPn7erWk55TjMlkIWlFBN5eve19aVvBy2NE34EJpQ86uhSXxRHO09jcxd4DNbS0afHxdmZ+7Cx8vEZxXQSwWKBLC+6uZFRtx83OhQW+MaPvbjLxxtrfUNtbS7H0+ktJevhPpGYX4mhvy+rEKOxLy+GS2+CD52ny8Sc9pxhPDyeSV0bQ2t5Dek4x3p5OJK0YuQtiLETkQCA49hGphEkiUgkzz7T5FOj0tBeUk1ZvwEajZnViNE4ffAZnr1dmDwygqVlp2bOz07AqPgpnJztobQcPt1Gf8KejpqC9o4c9B2qob+zEw92RhXNm4evjMnyK42iYzYovgo0NPSYdD2c+z18Sbx0xrdBSVMYrK8/C1KMD4JLPX8MvKZ7UrEJsbTWkJEbjYKNSai1kmaZWLenZRXi4O7IqPrJfHPSlGYQ4EAh+WYhUguCYZMqiwGKB+x6D8mpadGa21Oqxt7dh7aoYnHq64W9PwZc/DDqkoqqF1Kwi3N0cOXFVrCIKTCY48WL465MjXmbCoqCjC274ExSUAKDTm9i2s5wftuTTrTWQsCycdatj8fN1Hb8o6NZCTAp89A0ABS2lPLfjncEjmwfgFRXG+sf+DCjpBZ+YCNxcHViTFIPJZGFzRgE9Rovy3i++FZ+vvmN1QhRtvYLAw92R1fGRtPamGcxmy/jW2YtIKwgEvwyEj4HgiDEtkYLmNvj6JxoSVpIpueHu5khyfAS2Nhqw84S8DUpaAOUJNr+wnn0HawkN9mLp4tmH3P5sbOCBO0fsQJhUpKC5BfYdxGIyU1hYR35hPSq1xJIFwUSE+kx4eBEAzk5w1/WwdD4AS/znsfGiNzjl42s489MbRixIXHrdJdi5ODPvgtNQaZQ/b1cXe9Ymx5CaVcjmjAJSEqJwDgsGH0+8vZxZnRhFWnYR6dnFrIqPZFVCFOnZRaRvLWbVykg0GvWwpY2G8DkQCI5/RCphCCKVMDNMiygwm0GjoaaqiexdVfh6uyhWwSVl8Mwb8MQD4GAPKN4AO3ZXUFbZwrzYQOZG+x96Uu/RgaPDiJeYSvqgtr6dXfuq0fYYiAr3ZW5MgCJYppmBrYwbf/PGuNfYozOyJbMQi8XKmqRoXJyV7xVd3TSbIC27CHdXB1bFR9HRqSOtN82QHB+JzQTEAYi0gkBwLCJSCYJjhmkRBS++DaddSXlpPVk7K5nl707Syt75AWVVsPsAGE0AmEwW0nOKqKhqZUVcKPNiAg6JAoMBks+Dp/8z7BKTFQXaHgMZ2YVkbC3BydGWk9fOZfH84OkTBV/+AG//r//LPvvkdaGJ41qjUdtDZ009jg62rE2OwUajZnNGAR2dOnjiVUg+H297NSkJvYIgpwg3VwdWJ0bR1qGkGUwirSAQ/GoQEYMhiIjB9DJthYZZOyjeXUpeYDhhId4sXTQblSwf8h6wWkGlokdnJD2nmJ4eI0krIvD1cRl8HqsVXnsfkpbD/ENV/pMRBVarTEFJAwcKarFt72BJVTGz/nTd+GsIxsudf1UKJd95ZsTN35VsISV4xYgFiTXbdvPZ1Xfj4OnGNT9/hEqjQW8wkZZVRI/eSMosJzy2boPrLwWgpU1LWlYRri72rE6IorNLiRy4uSoFijY2InIgEByviK6ESSKEwfQxLaLgQCHMiSK/qJ69+bVER/iyaF4QEsBVd0PEbHjwdwD94W9JglXxUbi5DkkXmExKbcEQJiMKWtq0bN9VQWenjqgIX+YV7sfG2wNWr5z4ezwcFssg18ZB69C1Ef7yWpb6zR9Wc2C1WHhp6Wk0H1QKItc8cCcp9yvzIgxGM+nZRXRpDayOj8LL0wnyi2BOFK1tWlJ7xcGqhCi6uvSkZRfi6urA6vgoIQ4EguMUkUoQHFWmRRTUNyEnnceeD35kb34t82ICFFHQ90QeNw96pyU2NnXxc3oBdrYaTlwVO1wU6A2QdB68+cmglycqCsxmCzv3VrEp7SAqSWJdyhwWzw/G5rxTZkYUwCFRUFk7bJOXgwffXvAfcuv2DOtWUKnVnP3qY0i9x6f+83mqc3cBYGerYXViNG4u9qRmFdK0/QAsPR2++xlPDydSEqPo7NaTllWIi4sdqxOj6ezUk5ZdhMkk0goCwS8ZETEYgogYTJ3pSh/Iskzet1spsdiwaH4QMRF+yobm1kE+BZXVreTmlePj7Uzi8oiRn2iNRnjsJTjv1H4DoomKgsbmLrbtLEevNzFvTiDR4X5Kt0F+ERSWwZnrxrRVnhIffAnX3wslGeDnPWzzWLMVtjzyLKmPPAuAZ0QIN279CltnJwBMZguZW0toadOSbG3H7/TV/UKktV1JKzg72bE6MYrubgOp2UW4OiuRBFsRORAIjitExEBwVJgWUVBcjvW9z8nNK6fEYsOyxSGHRMGefIhZA1uy+wch5ewoIzjIQ6meH+lmZbWCra3SnjgJUWA2W8jbU8mWzEIc7G1Zv3YusZH+h1oQv/oRbn9g5kQBwMkp8P5z4Ok24ua+gkSdWU+PWTdo2+o/3cKsFYsAaC2p4Pt7/69/m41GTXJ8JD5ezqRLbtQ1d8Ou/VBYiqe7EymJ0XRrDaT2CoT+SEJ2EUYRORAIfpGIiMEQRMRg8kxXpMDy8DPk2HhQO3ceK5eGMXvWABdDsxlefhf5+kvYVdhIUWkjc6L8mT8ncOSiP70B1l8Kv78BzjkZmJgoaG7tJjevHJ3eyII5QUSF+wy/jixDe6fioniUkWUZSZKo627E1da5P3LQUlzOKyvO7HdFvPh/rxBz+on9x1ksVrK3l1Lf0En8Zx8TZNH1Fzv2zVxwclSEQXePQYkkOCsFilOJHDzz3DPccdsd0/TuBQLBWIjiw0kihMHk6BMFVbUVbNnw3uREgSxjtljJzC2huaWbhOURBPr33mwHzD6wWKxszSunpraNJQtnExnmM/o5tT3w50fhxsthXvS4RYHFYmV/QR0FRfV4ejixIi70UN//0aKjC/7wD7j+Eli+aNTdrLKV5W+ei5udy6C0wo7XP+SbW/8CgKOPJzdv/w7nAWkJq1Vma14Z1TVtrJw/i9kR/v3b2jt62JJViJODklbo6TGSmlXYn2aYaGumLMvc+qe/8pL2fX4b+1veuvutCR0vEAgmjkglCI4Y/aKgroJPPn9ucqKgW4vxvBtJ27iTllYtqxKiDokCUKyOz70BY48Sxq6rbydxRcTYogDAyRGe/fuEREFHp45NaQcpLG5g/pxZrF0VM7oo6OqGdZfAtt0Tf88TxcUJyquUGosxUEkqnln3wLCCxLhrfkPMGUqUoKepla9v/jMDHwxUKomVS8MICfYiZ18NZTuL4V8vgyzj7ubImsRoenSKIHB0tO1PM6RlFWE0mSf0VtoNnWybsxf7QDve/vfbIq0gEBxDCGEgmBID0wdbvnuPtUvjscpWtlTkTOg8eqOZ1LPOp9MqkZIYja/3EP+BR/5Az/svsHlrKR2dOlISo5kV4D7GCQ1w8uXwcxYwvvSBLMsUlTbyU2o+VlnmxJRY5kT7oxrLl6BLCwG+yk17plGp4If34NS1h921r+ZgoDiQJIkzX/wnTr5eqG1tCFm1UkmDDLyEJLF8SQjhod5sq+ygeF8FtLQB4O7mSEpSNDqdaUrioE3fwfoPr6K0vYqsaz7mrotEzYFAcCwhhIFg0oxWU/DBga9Z+8Hl/Gf3R4c/icWCrqaBLTur6QnwZ03KHKWnvo93P4faBjplFT+3WDCZzKxNjjk0Mnk0enTg7QF+3uMSBTq9ifScYnburSIsxJt1KXPwcBtuGDSMQD8lFx8befh9p4umFsXf4TD0iYO8hv1k1+4EwMnXi/PffprrMj4j8a7rkEYomJQkiaULZxMV7kveeRdQ0GHq3+bu6sCaPnGQWYijgy0pSYcKFI3GscXBQFGw6ZK3WeI/TxQkCgTHGKLGYAiixmB8jFVoKMsyt/34EC/mvcdrp/6D6xb9ZtTzdD/yAqmBUciz/EkZ6N8PynTBxafQfNdNZITNw8HBllXxkTg6jH9+wXhEQX1jB1vzygFYsSSUAL8JFBFW1ymtk/Z24z9mqpx5tWL//P2749q9Td+Bh70bsixjtBix04xvrbIssze/loNF9czfm8fc89fAHMU3oqNTx5asQuztbEhJjEKnV4RCX4Gire3wmoOhomCx39xB1xKtjALBzCKKDyeJEAaHZzzdB+MRB51delLT81EbjaSsX4yT4/AbVk1BFTmFTXh6OJG0MuLwRW56A1x2O/z5NjZ4tI0pCixWK/vyaykobsDf15UVS0Kxtx/ujDgmay6CkCB4a+TxzTNCYakyQbJ3iuR4eTDtaTKqt484lbGzph7XWf7DjpFlmQN7K9hf1sIceyvz1y/r78ro6NSRmlWIna2GlKRo9HpTf4HiUHEwligYeC0hDgSCmUMUHwpmhPG2JEqSxPMnPcQtcZeRUbWDoQK0/Yuf2Jx+EBt7W9aeEjdYFFTWwo1/orSghqyDjfj7ufW2xY2j8r2tA7p7SG/eO6Yo6NYa2JxeQGFJAwvnzWJVfOTERQHAkw/C3ddP/LipEB0+YVEAsD4seVhBosVoZNMD/+aZ2LVUb9057BhJkpi3MJSFc2eRr1exe381sklJLbj1phUMRjNbMguxt7dhTWI0Wp2SVjD0phXGIwr6riXSCgLB0UdEDIYgIgajMxmfAlmWscpW1Co19d1N+Dv70FJcQ1puCc62alaftRK7IWFneUsO+V+ms2/NCUSE+rBkYfDYBYBDOFz6oKqmje27yrG11RC/LBwvjyNQODjdfJ8K/3gWfv4INONvFRzqkJj/1hd8e/uDAHiEz+am3K/7XRGHUlTayM69VURUFBN3+0X9kYPOLj1bMguwtdWwJjEavcFEalYRDg42LI7z5/TPrj2sKBiIiBwIBDODiBgIppXJmhdJkoRapeZgSwmRr5zIm5nfkHqwETcfN1KGigKrFassk+cRyL41JzAvNpC48YoCvQGu/D1pP344qiiwWKzk7akke3sp/n5unLRm7tREwY698ORriunSkSbAF+bFKF0RE2Bgt8JjOa8Sd/VFBK1cDEBbaSXf//Gfox4bFe7LMkMrJbMj2L6rAmvvQ4Wriz1rkmIwGi1sySzEzs6GlKRotD0GPvoxi/rOlnGLAhCRA4HgaCMiBkMQEYPhTIejoSzLvPr6M7h7J2O1NXDh+ng0msGOeZbf/52t8+Ko8Q4gbtFsIkIP41EwkNJKOs+7ktXr6giJTxkmCrq1BrK3ldLRpWPx/GAiQr2nPh75jY/g8Zch/2eY7lHLM8zuhnxivcKx09jRWlLByyvOxKRV0gsXf/oyMWesG/XYiqoWcvPKme3txPLEmH7h1tWtZ0tmIRqNmiXL/Ln6yz9zgfOleLu4ckrKwmGRocMhIgcCwfQiIgYTRJKkWyVJOgDkHu21HEtMl81xdW07Ht7J2DfWcOOuG3lz/6eDthtNFtIS1lLn5UfiioiJiQJgg1yGz6Uji4Kq2jZ+3HIAk9nCiatjiQwbwdZ4Mlzzm6MrCoxG+GwDNLZM+NBFfnOw09ixo34f1+1+jBMe+2P/tq9uvo/uhuZRjw0J9mKltZPKhk5y0/ZjtSoPFy7O9qxJisZoMvH5pu0c7Chm/hJvMKtJzSrsrzkYLyJyIBAcHYQw6EWW5RdkWZ4LrDjaazlWmC5RUFZcR872UmYHe3HG1adzxbLz+Wv6s3QZugHQ1TayJaOAdicXVq+KHdu4aCh6AxVXXset/72RU8IHiwKL1crOvVVkbyvF39eNk8brTTARjmakoLsHrr5bqTeYJDqTnh/KMrjPYQORZ5wAKK6IX93052EFowOZfdIK4jvrqOowsDWvrF8cmDUGnm98FklW8WT0v1noHz3I98BgEOJAIDjWEcJAMCLTJQqK9pSxbX8tYWYtK+NCUdtoeP6kh9h+1ee42DnTsb+Yn7/Lw9CpZW1yDD5eLoc/6QDSU/+H5YctnOazdJAo6NEZ2ZJRSElZE0sWBBO/LGzkyYuTpVsLEUnwY/r0nXOieLpD/ma44rxJn6K/5qB+L2+v68DR1wuAog2b2f3OZ6Mf6OxE8FVnk7AsnOqaNnJyi2npaWf9h1eR17qHuGUB2EgaNmcWYmOjVsSBQWlnFOJAIDi2EcJAMIzpEgX5hXXsLGslurmWpSsi+8P3kiQR4OxLXXMbnxfWYnC25YSkaNxdHSZ0/g0lqazb8zB3P72WJ2/7b78oqG/s4IctB9DpTaxNjiEq3Hd6UgcDMZnh8vMhLHh6zztRAnvHUU+hALJPHGRq89n329n9r2/8wyN01tSPeWyQk4bEF5+npq6dl779lor2WjZd8jYrQuazJikGq1VmS5846O1YEOJAIDi2EcWHQ/i1Fx9OV6Hh3t0VHKxoYV5sAHOjA4bdmBsqm8jcVUkrbfy+4A88uf5PYzokDmVjwc/k/u4mCn6TzH+veBlbta1ixlNQx/6COvx9XVm5NGzCBW/HJb+9Cxzt4eX/m9JpMqq2Y6expeYv77D7vc/xWziHC955Gu+YiDGP60xL5+ayLznN7QLcPe04JWkRarXyzNGtNbAlsxCVSmJNUjQmk2WQY6K93cS8I0RBokAweUTxoWDCTJco2Lm3ioMVLSz64jPmhXgNEwWVNa2k7yjHe/9+rlwTzxWLzuL6DfePb7YCSqTg/ldv4a5cFW/OuQVbtS0Go5n0nGL2F9QxLzaAVfGRMysKdu6DkoqZO/9EOG0tnHbClE+THLyM5QELWfvoH5CvS+TSze8eVhS06Ts4sfRJNrZtIdJTj67NQta2UiwWKwDOTnasSYrGapXZnFGARqNEDgy9Xgd6g2nM8w9FRA4EgplHRAyG8GuNGEyHKLDKMtt3VlBe1cLSOQFE9LTB4nmD9ukzyQkJcGO5pEW1fNEg++Td13zDQt/YUa8xyLxo/WPYurrT2q4lK7cUs9lC/LIw/H0nMOtgspxwMQQFwNtPzfy1jjB7Gg+S+M5F/SZIQ+2T+xjmaPjXd6jvMpB58eX4eLuQtCKiP3Kg7VEiBwBrkqKxWKyK50GvnbKIHAgEM4+YlTBJfo3CYDpEgcVqZeuOMmpq2lgR6k7I4sHTBmVZZt/BWvIL64n2cWRRQuygSIIsy/xYnsH6sFWjXqNPFDxaE8Wtj7yLrbMrpRXN5O2pxM3VgcTl4SPOW5gRmluhRw+zA4/M9Q5HfhF8txnuvmFaTjfUIdFeskGl0fT/zEa0Oe7WgtlCgxEycovx9nQmaWUkmsOIA1tbDWuEOBAIZhyRShCMi+kQBWaLlazcUmrr2kl8501C9u8dtN1qldm+u5L8wnoWbvyOxd99Myy9IElSvyh4ZecHvLbrw0Hb+0TBNfbL+N0bRag3bWXbznK276ogdLYXJyTHHDlRAMpExWNFFADsK4QX34aOrimdpr2jh4qqFrwNQXx1muKQePGTl/Jq4jnsef8LYIzZB85O4O6Kn2RiVcFumlu1ZOQUYzYraQUnRzvWJMUAsCWzELVa1euYqMxaEGkFgeDYQEQMhvBrihhMhygwmSxk5pbQ0qYlaUUE/s424Hiou8BssbJ1exm1De0sXxxKqJMK3FzG9Pe//Ye/8XzeO/1TGYfOPjCV1ZNVo6WjU8fSRbMJm+09qfc/afbkwyvvwSN/AI8jkLYYD2az4qmgnlxLpsFgZue+KiqrWwFQqyQsVhmVykzj59/Q+vU32KglLsv5mHO3/GHs2QebMuHae2j66h3SK7vw8HBk1crIfqfLHp2RLZmFWK1yf/3BwFkLEx1mJSIHAsH4EKmESfJrEQbTIQqMRjNpOcV0tXaR/NX/8HnuQXA6lI82msxkbi2htU1LYk4qAfdcM64b6cCagzuW/ZaXd37AKWGr+dT3Slqj55K9sxwbjZrE5RF4uE+zYdF4+DkL7n8MtnwMdkcwSjEetD2DfgbjO8RAWu80xIXzggie5YFaraK5pZvK6lZKi2ox63TU/+c/FOny+fhSFZsufWfs2Qc9OnB0oLmlm7TsItzdFXHQ5yUxsjgoxNZWLcSBQDBDiFSCYFSmQxToDSa2ZBbSrdWT4ibj42gDDvb923U6I5szCuno1JHiIRHw3ffjHvjTN7L59Ig1PLv9bRb6xPLxivspfulz0nKK8XR3Yl3KnKMjCgBOSITsL489UZC5HQKWQmnluA/p1hr4Ob0AqyyzLmUO4SHe2GjUqCQJX28Xli0O4aTkSAzlZQTdfTdxa67iVftrDj8QydEBenR43/8PVvvb097RQ3pOESaTpXezLWuSolGpJLZkFvS3M/YNYtLpRVpBIDhaCGHwK2M6REGPzsjmjAL0OgNrE6PxXLsCnn8YVMqvU1e3nk3pBRiNZtYmR+OdvAR2fDehnPzG0jR+LM9krnckn5/zMtvrTey9+GJio/xInulWxMNxNKYpjofFc+Eff1RSNeOgq1vf20Ko4oTkGJydRhE6Hrb8r/U9ap57DufFi9E7xXJgb9HhLyDLcLAY74ZaUhKi6ejUk5ZdhHGIOFCrVGzOKECSYG1yNCazEAcCwdFECINfEdMhCrq1BjZnFGAxW1j717/i9urbg6/RpuXn9AI0ahUn1hfhdvffwGLpFw3jYWBNQdqFH7M3p476xg4s/i0smDfOMcwzydLT4e9PH901jISTI9x+NXh5HHbX9o4efs4owEajZk1SDA4OtiPu11domB3aiYunitJ77sFQUsq+0k6ythf3+xWMup7NH8PpJ+Ll6URKYiSd3XrSsgoxmhRx1ScONBrVoI4FsxAHAsFRQwiDXwnTIQo6OnX8nF6ASpI4YfUcXP50E1x5Yf/2+sYOUjMLcXayY+2qGBxtNcrT6wQK4gaKgmfiHyE1vRiptBL7nPe4dPMt4zZBmlH+eBOcnHK0VzEybR3w2ItQ2zDqLvWNnWzOKMDR3pa1yTE4jJLPH9p9cOmL/8bORkXVY49R+9JLVFe3sSXrMN0EfSLur0/i+cSLrEmMpltrIDWzqH/aooODLWuSYtBo1COIgwIhDgSCI4wQBr8CpkMUtLX3sDmzADuNxNqeehwdbOH806B36E5FVQvpOcX4eLuQsjxUCfVfcjb8+y/jvkafKDg1LIWHYu8nd0cl/n5unBjizGm/f4Bb4i6bkEPijHHZubByydFdw1g8/TrsPTjsZVmWKSptJD2nCC9PZ9YkRWNnN3JKZqSWREdvT05/9u8AdGzZQu3jj9HR2cOPqfl0dOrGXpOXO3h74uHuSEpSNFqdYdAoZgd7G9YkRWOjUbM5oxBZ7hMHViEOBIIjjOhKGMIvrSthOkRBc0s36TlFuDjbs2rfNuwefhr2b+oPWRcUN7B7fzWhwV4smxuA6pTL4bxT4Y5rxn2NPlFwVthJ3BJwK83N3SyI8CZm3ux+z4OB3Qp9rYxHnJJyOFAEp64ds+XyqGI2D1ubyWxhx+5KKqtbiQr3ZdG8IFSqkVMyo/oU9PLpFXey/5NvkVQqim5ZSGLS9fjZ+pK4PAJ/33H8zRiNtOstpGYWYm8/eGaCXq8MWTIaLaxJikaSFM8DjVrFmqToUVMeoyG6FQSCQ4iuBMG0iIKGxk5Se9vNUhKjsbvlCsj6Arw8kGWZ3fur2b2/mtgof5YvCUFlZwtnrIPEZeO+Rp8ouCTsXK50vY6OTh2r42YTe/6VSM+/2b9fX7fCncuuwsfBc8LvZVr4bjNc+fsJ1UwccTQaRRwYDAC0tmn5KTWf2rp24peGsWRB8KRFAcCpTz5IaEo816Z9yo13/okHyh6gVF9Cek4RJeVNY6/t029h6em4mw2sSVKmLaYOMDeyt7dhTWI0trZqtmQWIMuwNjkGc69Lok5nnNC3QkQOBIKJIyIGQ/ilRAymQxRU17aRs6MMX28XEr/7Es361bBqBaC4GW7bWU5FdSuL5wcRHeGn2AR7T+yG3ScKbg6/lmTbE3BzcSBxRThO9jbw5ieQshIiQkc8VpZlsmrySApaOuH3NmlkWXmfPl5H7poTpUcHc9Zi+dvd5McnkV9Yh7ubIyvjwnB1sR/1sPGIgpHIqNrOaR9fx50ht7HAZgnREb4snBc0cpFoeTW8/iE8eCfY2NDZpTtkizzAv6BPMBiM5t62RlVvW6MSOXAUkQOBYMKIiAEgSdKfJUmSJUl6+miv5UgyHaKgvLKF7O2lzPJ3J2lREJptu6GoDFDC0hlbi6mqaSN+aZgiCrbvgZg1kJ037mtsKEnl/M9u5S8RfyJRs5bZszxZuyoGJzuN8kR+zW9GFQUA/yvYSPK7vzmyNQeSdGyLAgBHB1oe+iM/+UWSX1jHnOgATlwVOyOiAJSpjN9d9B+eqXwOG38dRSWNZOWWYDJbhu8cGgQP3wM2NtDUgquLQ68tsoXNA7oQ7O1sSEmKxs7Ohs2ZhVgsVtYkxWC1KpGDHhE5EAhmjF+sMJAkaTlwA7DnaK/lSDIdoqCotJHcneWEzfZm5aIg1I4O8O2bcM1v+p/kmlu6WRUfyeyg3gjBwlh46C5YtmBc19hQksqVX/6JxyMfJVazgLiFs1m+JASNBKy/HF5467DnOD/mlCNfkHjZ7fDtpiNzrUlgNFnI21PJJs8QVA72rEuZw/zYwFFTBzA1UQBgNZux31hEVtwznLsymeT4SBqbu9icUTD6DbykAuaeAF/9iKuLPWuTe7sQBhxjb6ekFeztbNgySBzIQhwIBDPIL1IYSJLkDLwHXA+0HeXlHDGmKgpkWWZ/QR0791YRE+nH0qYqVEtPh5p6UKv7XfJ6dEbWJsfg5+uqhK1LysHWVumhtzm8le2GklT+8N0TPB7+GLMdglmbHE1kmI9SZGi1wkmrYOGcw56nr+bgiIkDs1lZ3zFYXyDLMuWVLWzctI/yyhYWzZvFieX78Ng1ti6eqihor6jhpaWn8+3tD7D1r88jyzJvl33I+51vYjCY+Cn1IK3tIzhehs9WIgdrEwBwcbZnbXIMliERATs7TW/RoSIOzBbrIAtlIQ4EgunnF1ljIEnSW0CrLMt3SZK0Bdgly/LvRtnXDhho+eYCVB9vNQbTIQp276+msKSRBXMCiY3yR6qogeffhEf/RFu3kfScIjQaNasTog655P3lcXjvCzjw8yBL5NH4rjiVF37+lCt8f4uPlzOJyyNH7aOfyNpv+/EhGrTNfHLO88MmN/7SaWvvYefeSppbtQTP8mDRvCAlB59yAZyYDA/+buTjpigKQIkWvLziTJoOKE6IF37wPK3LvDn1k2tZHbCSOwPupKvbyMq4UIICRzFeampRJjM62NOtVUYzSxKsSYrByVGpJTAYzaRmFaLTmUhJjOr3POizUhY1BwLB4fnVDlGSJOli4H5guSzL+nEIg4eAvw59/XgSBlMVBVZZZseuCsoqW4hbGEykowpcnftv9A2NnWRuK1HaFeMj+1vLAGXM7+4DsHrlYa/zXVEqG7J3ssptFeGhXsQtCBkc4n73c2hsht9fP6H1g/JBb7aasVHb0NzTirfjDHQtdHWDrc0xMyNBpzexN7+G8soWXF3sWbIgGD+fAb+zJtOoEZzpEAV9FH73Mx+cdwMAnpGh3LJzA9n1uzn1k2uJ91/MgxH3U1ffRdzC2USG+Qw+2GCAhSfDhafBI38ElKFOA42O+sZp94mDHp2RNYnR2NgongdCHAgE4+NXWXwoSVIw8AxwuSzL+nEe9n+A24B/QTO0vBlhqqLAYrGSs72U8qoWVsaFEhnqA7+5Ga5XPqQrqlpIyynCu9cQp18U5ORBY4vibDgOUfBtfhr78ppJcE1g6eIgli0KHZ73Lq+CgpIJrb8PSZKwUdtQ0lZB5Csnzkxa4enXIXbt9J93gpjNVg4U1LHhp33U1rcTtzCY9WvmDhYFoIgCWQbd4D+F6RQFAFGnriWkt1ultbicvDc+Ijl4GRsufJ2c+l182/MFUeG+5O2p5EBBHYMeRuzs4Im/wG1X97/k5GjHmqQYJElic0Yh3Vql7dLOVkNKYjRODnaK14HJwtrkaGRZHrueYRREWkEgGJlfVMRAkqRzgM+BgeXQakAGrICdLMsjlEoPOsdx0644VVFgNlvIzC2lqaWLhGXhzApwVzZs34Nsb0eBvRt79tcoxkWLBzzdWyyw9DRYsQReffSw1/l6VwZNpRZklZWzUuLwGWv0siwfstGdBDNqgpRfpBTNnbFu+s45AWRZpqKqlb35NRgMZiLDfZgbHYDtWAOlLrwJXJzhjX8D0y8K+qjZtpv/rDofACdfL27fvwk7F2d21u8n2jMMRxsHDhTWs/9gLdERisHSsJSPtgf0hn7jrL7RzJbeugIXZyWCZTSaSc0uQqs1kNLvedAXYTiUfhgvInIg+LXwq0wlSJLkAoQMefm/wEHgMVmW943jHMeFMJiqKDCazKTnFNPRoSN5ZSS+3s7wxfdw9nqsksTufdUUlTYyJ9qf+bGBwz/Eq+uUITlj3ORlWebLnGz0DTbUyVVcf8qpODs4DN/RbIavfoSz109orsJY1z3qDonTTENTJ7v3V9PeoSMo0J2Fc4NGn4Y4kK9/BAcHWJc8Y6Kgj08vv4P9n34HwOr7bmPtgNqG/U2F/D3zeR6c90f2H2gYLjZlGU66VPHB+PDQk7tOZ2RLViFm8xBxYDKTllVEtxAHAsG4+VUKg5E4XI3BCPsf88JgqqJArzeRllNET4+RVQlReHk4wY69sOp8LF+/yVZXP2pq21kyUk74m59gTYJSLDYGRqOZrzN2YOpUsdeax4NnXYWdZpQb2U8ZcMZVsP1bmB8zofcyGn3i4JODGyi84Sfc7af4s5RlePFtOGUNRAzVnjNHe6eOPfurqW/sxMvDiUXzg/D2dJ7weWZaFAC0lpTzwqJTsJrN2Dg5cvu+n3AJ8AUgs3oHJ390NSsCFvJy4r/YvaeWAD834peFo1H3ZjTTc8HPG6LDB51Xp1daZI0mxSa5z4/BaLKQllVIl9ZASmIUdrY2bMksAAbXJowXIQ4Ev3SEMOjllyYMpioKtD1GUnufwFISo3BzPfQEbzhQRGarlbY2LfEDUwv9F2+DOWuVKvfbrhr1Gm3tPfyUtZ8ufQ/b5HSeOeeP2KoP8wRXUj6mmdFkkGWZqs46ZrsFYpWtqKQplNQ0t0LUanj7KTjzpOlb5Cj06IzsO1hLeWULzk52LJw7i1kB7pPquOj64See+N8jPDene8ZEQR8bfv93cl9URnEvve4Sznj+4f5tGVXbOeXja1gRsJDXU54kb2c1nu5OJK2MxNZmQKTIZIKGZggK6H9JbzCxJbMQo9FMSmJ0/++t0WQhLbuIrm49KQlR2NkJcSAQjIYQBpPkWBYGUxUFnV160rILkSSJlMRoJRSdtQP2F6K97DzSs4vRG00kr4wc/am0tBJmB446QKi0opntu8sp1ZWxR53Dm+f+39iioL0T3Gf2+2wwGzjns5s5P+bkqaUVrFbl3wwOTzKazBwsrKeotBGNRs3cmAAiQn3GNCgaizZ9B19feDIRxW04bfl8RkUBgLaphWfnnoCpR8/ymy7nlH//ZZCY6RMHa2ev5L8nPkV6TjFOjrasTjg0SIkb/gS79kPOl4M8I/QGE6lZRej1JtYkHRIHpl5x0NmlZ3ViFA72NmzOEOJAIBiKEAaT5FgVBlMVBW3tPaRlF2FnpyElIerQlLq/PklbUSXpv70atVrFqvioka1z//cdnHXSqO1vZouVnXsqKats4ef2n2lwKuOjc58eWxRYrbDsdDj9RMXsZoY4HmoOLBYrxWVN5BfWYbHKREf4Ehvpj43N5Gsu+tIHVc2VbLzinRkXBX3kf/E9vvOi8YoKG3F7RtV2rLKV1bNX0N6pIy2rCI1GRUpilHITzy+CLi2sWDzsWIPBTGr2IT8DdzdHQBEH6TlFygCu3t/vLZmFWK0ya5OFOBAIQAiDSXMsCoOpioKmli4yckpwcbZjVUIUdgOq2Osa2sneVoariz3JKyP7h9gMIr8Ilp0BH7+o3MSH0K01kLWthPbOHl6tew0nL/jk3OcOnz6wWuHrn5QIxJL5E3pPE2XK4uD1D+HnTHjvuWldl1WWqaxuZV9+LTq9kfAQb+bGBE7Z9OlI1BRMFbPVzOM5r3L93EvZtr0ai8XK6oQB6S1ZVoYuhQUPOs5gVAoPtT1K4aGH+0BxUEx7Zw+rE6JwFOJAIBiEEAaT5FgTBlMVBTV17WRvL8Xb05mkFRHKE6jZDFfcScnll5Jnscff142EZWFoNGM8nRaXQ2TosJera9vYtrMcs8rMfYV/Ye6s0PGJgqPAQHGw7crPWRYwvrkOAHy+EbbuhEf/PG1rqW/sZM+BGjo6dcwKcGfBnFljDjoaLyOKgqvvVsyZXjl8e+mRYn9TIfHvXMhy/wV8cuaLbN9ejU5nZFV8FF6eTvD4S/DcfxVXTZfBqS2j0UxattKVsDoxCk93pRjWZLaQkVNMW3sPqxKicHI8JA7WJEWPr5NjAEIcCH5JCGEwSY4lYTBVUVBa0cyOXRXMCnRnZVwY6t7qb7lby97nPuLg3EVEhPqwZEHwyDlsiwW+/AHOPWWYt4DVKrPnQA2FJQ1oXM1ck3czKSHLxy8KNm6BT7+D5x8G+yPnJCjLMt+WbOb0iLVHzTq5pU3LngPVNDV34+PlzMK5s/CaRKfBSIwaKfjgS0UYnH/atFxnvJj1BnJffgfvmAiiTx1uDpVRtZ1TP7mW5f4L+Ozsl8jLq6G9Q0fiigj8JZPSLXPKmhHPbTSZScsupqu3tsDLQxEHZrOFjK0ltLZpWRUfiZOTnRAHAgFCGEyaY0UYTEUUyLLMwaJ69ubXKjf+hcGoem+CFqOJ3D1VVNW0sWheENERvqPfIH9Mg7OvU4rABgw16tEZyd5WSmu7Fls/AxelXcspYasnFin4bINSt/Dus1MyNJoK7+77Ar3FML60QlMLODoo3g2TpKtbz978Gqpr23FzsWfhvCD8fV2nTaAca+mDrrpGXk+5kI7KGryiwrg57zvUI9SoDBQHX573Krt21dDQ2MXKZWEE981XKKkYsU3UZLKQllNEZ29tQZ/AMputZGwtpqVXHDj3iwNlQqMQB4JfI79KS+RfClMVBbv2VbM3v5Z5MQHEDRAFht0HSX35K2pr20hYHk5MpN/YN6WTVsOeHwaJgrqGDn7YfACd3ohDWM/kRAHAeacq+fqjOPBoW93e8U9l/M2tcPuDk7qOTm9i++4KNv68n9Y2LSuWhHLS2rkE+LkdOVGg08PPWdDWMS3XGw/O/j64BQcC0FJUxs43Pxlxvz775EW+sTjZ2ZO0IpKgWR5kbyulpLwJPvkWlpwClbXDjrWxUbM6Pgo3V0dSs4tobu0GQKNRkRwfibenE+k5SjvjmqRoVCoVWzIL+m2Wx4uwTxb8mhARgyEc7YjBVESBxWplW145lTVtwwbW1DV0kJVbglqvZ1VSDF6BXqOfqFsLaVvhtBP6X7JaZfbm11BQ3ECAnxtdHjWc+9VNExcFsgxvfKSkJzzdx/3eZoIJFSRm54GDHSyeN+7zG00WCorqKSxtQK1SMSc6gMgwn/6UznQxrkhBRQ3EpMAX/xk1ND8TVG/dyespFwLg5OfNHfs3YXsYc6zM6h0s8omlsKCF4rImFkT4EHtwL9J5p4468npwbUEkPl4ugNItk5VbQlNzF8krI3F1se8f37w2WUQOBL8uRMTgOGQqokD5YCyhuq6dhOXhg0RBfX0b2duU4URJJywYWxSAko++/E7FZAZl2t3mjAIKSxpYOHcWXd6TFAWgVJnf8whk7xj/MTOEJEk8f9JD3BJ3GddvuJ+P8r8dfeeEuHGLAovFSkFxA9/9uJfC0gaiwv047aT5xET6HR1RABAcAHt/hHXJ03r9wxG0cglzzzsFAG1DM3mjRA366DJ0c/b/buKs/91IdIwX82IC2FvSxO7YRciSpBTOjoCNRs2q+Eg8PZxIyy6msbkLAI1aRdKKCHx9XMjYWkxHlxI50KhVbM4ooKt7vLPWFETkQPBrQEQMhnC0IgZTEQV6g4mMnGI6u/Ukr4jE10d5WpJlmeKyJnbtqcSvtJiVN56NndMIswqGIstKF0JUmNJ1sKsCWxs18UvDyW3bzjmfTVIU9NHUonjiH8U0wkBkWeb/sl/i2kUX4efkPfJOL70NaxMhNnLU81hlmYrKFvYX1KLTmwib7c28mIBDnhHTzLFWUzAajfsLeWmpUvQ4O2k5V2/6YMz9Bzokfn3Bq9RWd7NzbxWhXS0se+tNVD+8N+rvjtlsJTO3mObWbpJXRvZPnLRYrGRtK6WhqZOkFRG4uzmyJbNg2AyG8SIiB4LjERExOI6YiijQ9hjYnF6AVmdkbVJMvyiwWmXy9lSyc28VUe62JLtLhxcFVivsPQiShDkshO27K8jaVoqfjwsnrZkzdVFQ3wRGI/h4HTOiAJSnwPsSb8HPyZu67kY+PPDN4B2MRrjvcaVCfgRkWaamrp0fNh9g264KPD2cOHntPJYtDjm2RMGn38J9j83IesbCd1403jERAFRmbae7NxI1GsnBy9h40Rvk1u3hzE9vIDDImZVLw6hw8STrmuuwmEaOGoBSW5C0UkklZOQUU9+ofPap1SoSl4fj7+tKZm4Jbe09rEmKQaNRhi9NNXJw/zP3T+h4geBYRgiDo0yfKKiqr+CnjW9NSBS0tfewKe0gVlnmhOSYfqMXQ2+Pd1lFM8sWBrN4zUJU14yj8v7bTbD8DNp3FfBTaj4VVS0sXTSbhGXhbKrMnHqk4O9Pw5nXTPy4I8gbez7lkq9+N7gg0dYW2vbBpecM27+puYufMwrIzC3B3s6GdatjSVweMS1+BKMx6UhBWydUDS/gOxLEnr1e+R9ZpuCbnw67f584aOhpplnXRkiQJ8nxUTS4uJO2rRSTafTp6UPTB3UNSsGlWq0iYXk4AX5uZOWW0NauVdIKUxQHyX9cxj/b/smfnvnThI4XCI5VRCphCEcylTAwUvDZVy+wKm75uI+ta+gge1vpMMfCzi4dGVtLMJrMJH3wHj4aGd7497jOKZvNFP2Qyx6LPS7O9sQvDcPN1YENJalTFwUAefuUNMLJKZM7/ggw3oLEtvYe9ubXUN/YiYebIwvmzsLfd+ZTT8dL+mAotTv28lrSuQBErl/NZV+9Ma7jLFYLapWadn0nNioNPV1WMlL342w1s+rMFYfmK4x0rMVK9vZS6huV9EGAnzIi3GqVydleSm19BwnLw/H0cCI1sxCT2TLhtMLjOa9y75bHWalbxNbHdou0guCYRqQSjnGGpg9WxS3HKlt5IO0pKjpqxjy2pLyJjK3F+Pq4sCYpul8U1Dd2sCntICqVxLrVc/C57gK4/tJxraenvZu03FJ2meyICPVh3erY6RUFAHHzj2lRAMMLEv+z+yPYfQDWXwbVdXR168neXsqPqflotQYSloezLiX2+BEFVisYJtaqNx0ExM3HtXdaYtmWbIzd2nEdp1apkWWZ8z+/lTM/vQFHFxVrd2WjQ8XmjEJ6dMbRj+2NEPj7upK5tYTa+nYAVCqJ+GXhBAa4k7WthJbWbtYkRWOjUbM5Y/yRgz5R8EDibWT99RNRkCj4xSAiBkM4EhGD0WoKmnpaWPnWBQBsvvRdQtxmDTpOlmX25deSX1RPZJgPixcoHgWyLFNU2sjufdX4+7kSH+mNjZf7uPP4VUW17NhWjNrRnuWJh25y0yoKtu2GnfvguktGbTk7lpBlmd/99AgrAxdxqRxDz7NvceDaqyhr6MLezoZ5sYGEBntNeurhRJk2UTBrOTxwJ9zy2+lf5GHY9sq7WM0WYs88CbfZgRM6dqAJ0tcXvIrVqCI1qwiAlMSoMZ/yB0YI4peFEdRrmmS1ymzNK6O6to34ZeH4eDqzJasQo1GJHIyVDhooCv626k6k3r9DUZAoOJYRzoeTZKaFweEKDSs7alnz/mXAYHFgsVjZtquCyurWQY6FZrOVHXsqqKhqJTrCj4UxfqiSz4N1q+AffxxzLQajmZ17KqmsaSOos4WlKfOx6/3AnlZRAPD0f+D1j5SWueMIvcFEfmE9xWWN2NiomRMVQESYD5ppbjsci2lNH7z9P1i2AOZOzF77WGCQODj3JaSPvifVPxITEqsTDk1aHAmrVWbrjjKq69pIWBY+SBzk7iynqqaV+KVh+Hi5HFYcjCQK+hDiQHAsI4TBBJEk6VbgVpT0SsxMCIPxdh8MFAdZV3yMh60HWbkltLRpWRkXSvAsT0Cx2M3aVkq3Vs+yRSGEBPf6E3y2QZlIN8bEwtr6drbvqsRqtRK3cDbBszz6P+CmXRT0YTaDRnP4/Y4BjEYzBcUNFJU2Yraa+aL2U05YuZTrllx0RNdxvNYUzBR94uCdtQ9zzoX/Qn/PTaTHxtHdY2BVfCTeY8ycsFplcvPKqKptI35pWP/fkVWWe43BWlkZF4avjwtbMgsxGs2sSYoZJA7GEgV9CHEgOFYRwmCSzFTEYKItiZUdtTy74y3uW3o7OdvKMZksJK6IwMdL+eCrqWsnN68cOzsNiSsicHd1UNrqbMe+iRuMZnbtraKiupUAPzeWfvsljiGz4LqLgRkSBbJ8TLUnjoXJZKGotJGCkgasVpmocF9iPv8c3Quv4HGHbnIjmyfJjIiC8mpIzYErL5j6uY4S9d1N+Dv7QGcXZmcHrBaJjK2K62Hyigj8xqj36BcB1a2sWBpGSNAhcbB9ZwUVVS2siAvFz9d1mDgYjyjoQ4gDwbHIeIXB8fH4dpwzGZ+C2W6B3DP/FlIzipA1FuYt8cHHyxmrVWbfwVoOFtUzy9+d5XGh2NqolZvv+svglLXwp1uGnU+WZapr28nbW4nVKrNiSSghQR5IH2tBtgIzGCn4PhXu+hukfap4GByDmMwWikubKCipx2y2EhHqQ2yUPw72NqA+Fdul87lFtZnrNyj96jMtDmYsUrB9N9xyP5y9HtyPvOW3bLVSlbOTg1/9gMbOjhP+9vsJn8PfWXH1fK7wcz4v+J6vUx5ldXwUWdtKSN9aTPzSQ3UEQ1FJEsvjQpEkidwdZciyrNSKSBLLloSABLl55SyPC2VNUjSpmYVsySygxHk392aMTxTAoVZGgNtuuw1AiAPBcYOIGAxhuiMGkxEF/Y6Fe6vw83Xlrvw/0mZo54cL3qK6UE9TcxcL5s4aPATJYlFmEMyJguTBbY/aHiM791ZSW99BUIA7SxbOVm54A5gxUQCwrwA+/BIe/sMxFzkwmy0UlzVRUNyAyWQhLMSbOdH+OI5gTNTXyljeUcM3F7w2Y2ObZzR90NeRYHfkRl0PxKw38K+gFRi7tTh4eXBPRTaqSaaXMqq2s+PqyzmvSINn4VbsbRzIzSunuqaN5UtCCZ09ugiVZZntuyooq2xh+ZIQwmZ7H3p9dyVlFc0sXxJCgJ8bn/60lR69gSbPEu5bc/2Efu4iciA4lhCphEkyncJgMqLAYrGyY3cl5VUtSjHhvFlUd9Zx4/8e5gL33+Bh70by8kO2x2NhtcoUljZw4GAdNjZqliwIPvQkZbHAN5tgXTIb6rfNnCg4RjGbLZSUN3OwuB6T0UJoiBdzogJwchzhvX/zEzg7wZoEZFnGZDVhq7alXd+Ju/30PnX/GmoKPr38DvZ/+h0Av934DmFrEiZ9rrwf/8eDnz1IT/Jivr7wNRxsHMjbXUlpRTOL5wcTHeE76rGyLLOjd99li0MIDzkkDnbsqaS0vJlm13L+tP0Rnp/zDG5qN9YkRePmOg5b8SHXEeJAcCwgfAyOMpMRBdoeIz+nF1BV08qKJaEsnh+EbJVpqbRwtdd11JiqeajqQXS2Q36e734OD/xbSSf00tjUxQ9bDrB3fw1hId6ccsK8weHVPfnwm1vI/u79mRUFOj188T10dU/veSeJyWThQGEd3/y4lz0Hqgn0d+fUdfNYtihkZFEA8NybyvcYJURsq7aloqOGyFdOHN/I5nFyxETBHx6BJ1+bmXOPg9izT+7///wvf5jSueJOOp8/3fcWufV7+Uvak6gkiaWLZhMT6ceufVXsL6hjtIcfqXffiFAftu+qoLis6dDrC2fT6dCId2cof1t8Lxeti8fe3oYtWYV0dOomtEYxeElwvCFqDGaAyYiC+sZOtu4oQ61WccKqWDzcHeno1JGzo4yubj1LFgSz0tOfjV9/SY9pyAdTWzs0t4Ik0a01sOdANdW17Xh5OrEuZU6/VfIglsxny8ZHOXXrXzglImXmIgV5++DiW2HbN7AgdvrPP04MRjNFpY0UlTZisVgJm+1NbJQfTo7jCKl//64SYRnAbNdAfjPntGmrOTiikQIXZxjPMK0ZIurk1ahtbbAYTRz86gdOfeIBpCl4WyTXqimqOhnHW+8ElBvxwrmzsLVRsze/FpPJzKJ5QSOmACRJIm5hMCqVRN4epUsnOsKPf219jXvzHufFxU8xqyeK6roO1iRGsyWrkC2ZhROOHIiaA8HxhBAG08xERYHVKrO/oJb8wnr8fFyIXxqOjY2aAwV1HCiow9nZjnWrY/t7tDMv/xhJktAae2jTdxDkGgC3X43RZCZ/fzVFpY3Y2WpYERdKSJDnqPnQDSWpnLPtgZkVBQBJy6AoDWb5z8z5D4NOb6KwpIGSsiZkZMJDfIiN9Jv4cCO1etCXfQ6JwJTFwRFPHzz4u5k9/2Gwc3Uh/IQkijZuoaumgdode5m1fNHkT1hVS0DWQTCrKG4r56/pz/LqKY8wJzoAGxs1eXuqMJksLF0cgmoUcbB4fhBqlcSufdVsLt/KvduUQsMbk09n9/4a8vZUIssyaxKjSRXiQPALRwiDaWSiokDbY2BrXjktLd3Mjw1kTrQ/7R06tmWX09GpIzbSn7kxAagHmOn03ehv/eEh0qq2ke57O13RSzlY1YbFKhMb5U9spB8ajXq0y5L2wwd43fIgV90Vz3NHoqYgeGIud9NBZ5eeguJ6KqpbUakkIsJ8iInw67ePHjeyDGdcBbdfDaesGbRpoDi45+dHOTd6PV4OI1fDj8ZRqSmQZahtAB/Pw7a3zhSxZ51E0cYtAJT+nDk1YXD+aXDB6QA0VhfwVfEm6j5t5OsLXiUyzBcbjZrcneWYzBZWxoUN+nvqQ5IkFsydRXbdTjy6Z/Hckn9xS/LZqFQqFs8PQpJg594qAFL6uxWEOBD8MhE1BtPERESBLMtUVLXww+Z8enoMpCRFExnuy869VfyUmo8sw4mrY1kwd9aIH2IADybcwUWO55IlBbG3pIngWZ6ctm4+82MDxxQFG0pSufOHv2EI8uG5K1+YWVFgMiktlOm5M3eNIbS0asnMLWHjz/upa+hgXmwgZ6xfwKJ5QRMXBaCkELw8R63i7xMHeVd/iZeDx6j57JE4aoWGO/dDRDLszj8y1xsB99Dg/v83aieWsx9GXxSgqYXEoDg2XPg62+r3cuanN6A19hAS7EXi8ghq6zvIzC3BbB55MuO/tr7GTdvvot6hDF/9bPbm1yLLMpIksWheEDGRfuzcW0VFVQspSdE4ONiwJbOQdlFzIPiFIYTBNDARUdCjM5KZW8LWvHIC/FxZt2YO3VoDGzfto7yyhQXzZnFSyhw83Z1GPF6nN7HnQA27c5qJc0+ixdzCq7VP4R2qHtaCOJS+lsTZ8Sms3LQFW+cZ7mNv7wQ/b3AZ+b1MF1arTFVNG5vSD7Ip/SAdnTqWLprN6SctYE6UP7Y2UwiMaTTw9lOwdvTKeUmSCHefjcli4oLPbxtXQeJR7T6YEwmfvgxRYUfumjPNNz9BSALUNZIcvKxfHFz4xe3IssysAHdWxUfS3NJNWnYRRpN50OEDzYtuP+l8Fs8PpqC4gZ17q/rFwcK5s4iN9GPXvmrKK1tISVTEQWpmIe0dPRNarhAHgmMZkUqYIuMVBVarTHFZI/sO1qJRq0hYFoYkSWzJKKSzS8/sWR4snBc0Yv88KGN+S8qbKK9qQSUpofGocF+ajc08/v7jfFP8M7cuvWLUdfaJgjNnJfFB4LXYaA3gOsNhZB8veOeZGTu90WimtKKZ4rJGenQmfLycSVyuTM0bKZc8KUwm6NGDq/NhPRg0Kg3+zt6HrTk46i2JDvZwxroje80hDKp9mY6W6VUr4d1noDda1icOtKae/mv5+biSkhhNek4RWzILWZ0Qhb2dzYiOhtERvqjVEjt2V2KxyixdNBtVb7pBkiR2769GlmVS+moOsgpZkxg95ryGkb4HIq0gOBYRwmAKjEcUyLJMbX0Hew/U0NmtJzzEG093R/IL62nv1OHr7cKKJaF4egx/qjaazFRWt1FW0UxbRw8O9jbMi1GG+NiqVbD+MmbfezO7rvkKVzvF10Bn0uNgM3jwy0DzovcX3oPNwlOVSvuU+Jn5xvTRo4PWdugdtztdtHUoIqmiqhVZlpk9y5OocN+Ruy+mSs5OOOlS2PMDRIePuet4ChKPuigA6NbC6x/COadAyKzD7z8DuM0OJPHuG5AkCFm9YhpO6ALnnTropeTgZQBYZStPb/svNy6+BC9PJ9Ymx5CaVcjm9AIOOGzj3vSRHQ0jQn1Qq1Rs21mO1WJl+ZJQVCqJ+XMCkSSJPQdq+sVBWlaREAeCXwzC4GgI4zU4OpwosFplauraOFjUQFtHD14eTri6OlDf0IFOb8Lf15U5Uf74eA82KjIYzNQ1dFBV20ZDYyeyLBPg70Z4iDf+vm6Hxvxqe+COvypjjBPiAHh//1c8kP4UP19yaCrjMEdDC1BcDrNnKaY9M8kjzyo3oLKsKZ/KbLZSVdtKSXkzrW1aHOxtCA/xJiLUZ3K1A+OlsUWZLXDaWnAa3wd+n0Pii3nvkXXFxyTMUn4+x4QoACithBVnwuevwappuCkfCxiN8P6XsHolhM8etKmgpZSlb57DioCFfH3BqzjZOtKtNfDlzzvoMHTR6lXO/WtuGLWDp7Kmla07ypgV4EH80rD+v8H9B2vZX1DH/NhAIsJ8SMsqQqszTFgcwHATpKuuuorNmzdzxhlnTO77IRCMgHA+nCTjEQajiQKrLNPW1kN1XRsVVa3oDSacHG1RSRJdWgMatYrZQZ5Ehvn0f3AYjWZa2rQ0tXTT2NRJa7uSq/T2dCIo0IPgQI9xt9YNHdl8oLn46DoaFpdDTf2kIxOyLNPW0UN5ZQsV1a2YTBb8fV2JCPUhwG+ASDoGkWWZzwq+57yYk5Ek6dgRBb9UtD3gtRDeegp+c+awzRlV2znl42v6xcELee/yaMZrPB3zJG4aV1YnRuExxs28pq6d7G2l+Pu5krAsvL8oeH9BHfsP1jIvJoCocF9Ss4rQ9hYUj3W+kRgoDiIjIykpKeE///kP11xzzcS+FwLBKAhhMEkOJwza2to48cQTueeee7Cx0WBvb4NGo8JqkdHpTVitMpJ0KG2qUavw9nLG28sZV2d7DEYz3VoDXd16Ojp1aHuMANjZafD1csHf1xV/X9fDi4H23p/pkEE4feKgx6SjTd/BKeFDREFpJbz2Pvz++mN2oJFOb6KiuoWKyhY6uvTY22kIDfYiPNQHZ6cj7PHf1KJYR5+9HjzdJ3WKd/Z+wQMZT9Fl0ApR0IvBaMZstiJJSjhdAjQaNRrNJOuhZRms1mF+EwPpEwd+Tl6UtlfxQOJt3LfiVtK3FtPdbWBVwthjm+saOsjKLcHby4WkFRH9az1QWMe+/FrmxgQQFeZDWk4xWq2BlMToCae3uru1xC5cT01tA6B8b4Q4EEwXQhhMksMJg7S0NC699FKefPLJyZ0fcHS0xdnJHjdXezzcHPH0cMLZyW5iQ3le/xBuewC68pXK+QG8teczrvruj/g7eVNxS9rgSMG23XDNPfDNmzOfX25oVoYnXXrOYUWIwWimpq6dqpo2Gps7kSSJWQHuhAZ74efjevSiA7v2Q/zZkPUFxM2f8OFt+g5iX11PY08LDyTdyt9X3TX9a5woP6TCYy/Dd28e0WFKFquV2voOyiqaqW8c/pmkUkkE+rsTGuw5OG02jdy88UFe3vU+9yfcwsOr70KSJEwmCxlbi2lt7yFpRQT+Y4xtbmjqJGNrCZ4ejiSvjMSmt9gxv6ievQdqmBPtT3SEL2nZExcHWm0Pp519LWkZ2wa97uPjQ1FRUd8HukAwacTY5RkiOTmZSy6+GJ1Oh729/Zg3c41GhYuzPa4uigDw9XbB1cVhej7wTloNX/5n2MsbSlK54fv7OSk0iTdPf3x4+mD5Itj749SvPx6aWuDvzygV4yMIA73BRF19bz1FUyeyDD7ezsQtnE1woAe2tsfAr+fCOaAtGPNJdDT60gdmq4WLYk/l4cwXmO0aOOMjmw+LoyOEBh0xcyOrLFNY3EBBcQMGoxkvDyfCnKyk3vd/IEnMOe9Ullx5AZ3deiqqWsnYWoKdnYaQIE9Cgr3GH5K/9Da4+Gw466QRNz+e8yov73q/v9Bwe/1e5npF4mTryKqEKLK3lZKRU0z8stHHNvv5uJKSEEVaThFpWUWsSojC1kbNnCh/JAn27K9BlmF1QiTp2cWkZhWOSxyMJgoArr32WiEKBEcUETEYwnhqDKxWKzfdeCPvvvcer778FLb2I3+ISIC9vQ1msxVTr6mKs5Mdnu5KlMDTwwl3N0c0o5gYTZSRRidXddZy7Xd/5rVT/9lfkHjEkOVBLX6yLNPZpae2oYO6+naaW7UAeHs6EzzLg6BAj8N6MRwvDK0pWOQ7p78g8b0zn+TSeWcd7SUeEXp0RrbuKKOppZuIUG8iw3xxc3WgImMbb667BICE313L+kf/3H9MW0cPFVVKXYnBYMbN1YE5Uf4Ez/IYO6r227vgwtPgzOHCYGhLos6sJ/zltcz1iuwvSLRaZbbmlVFd00Zc73Cl0Whp05KWXYSzkx2rE6Kw6xWxBcUN7N5fTUykH7FRfqRnF9N9mMjBaKLAS63mgrPO4pXPPxdTGQXTgogYzCAqlYqXX3kFgN9edTP/ffUxwqMXUFc/+Psso+TLAQL93fDxcqZHZ6K1TUt1XXt/PYKbqwOe7k54uDvi4e6Im4vDqI6H/RiN8MZHsCYBYiNHFAWg3JuL2ypZ+/7lbL70XUJyS+HOv8LmjxXzoZlEktDpTTQ2ddLQ1EVDUyc6vQm1WoW/jyvLFocQ6Oc2s10FU0VvgMtuh9uuHtPkaCCjFRo+f9JD+Dv5kBy0bCZXfHha20GlGlafMt1U17axbVcFGrWKNYnRg0aFS0ME40A83BzxcHNk4dwg6hs7KSlvImdHGaUVzcQtnI2ry+B23H7efmrEl0fyKXC0ceDTc57n1E+u5cxPb+gXByuXhmFnq2HH7kr0BhNzowNGFCNeHk6sSeptU8wsJCVR8USIifRDkmDXvureyEEUadlKK2NKYtQw47JRRYGTE5sMBhYaDDjedZdoZRQcUYQwmCQDxcHVN9zLf199jBNPXEvWttIR96+t76C2voOgAHeWLQ7Bxdme9s4eWtt6aGvX0tKmpayyGVkGlSTh6mqPu5sj7q6OuLs64ObqgJ3dgB+XRgN/exqcndlgUzNq98Fst0C2XPoea96/jLXvX07aic8QdP5pM/I9sVplOrt0tLRpaW7tpqVVS7fWACjiJ3iWJ34+Lvh4u0xblGTGse0VLePM/ozVfSBJEg8kKR/wLbo2NlfkcEHsqaOdaub486OQXwRp/5uxS/Q9Oc/q/X23G5oWGkc9jVJz4Eagvxt1DR3k7ankh80HiI70Y250wOBCxR6d0pkwJGU1kijoo88Eaag4WLIgGHt7G/bl16LXm1iycPaIhlkebo6sSVIMjjZnFLImMQoHB1uiI/yQJKnfNXF1QhRpOcWkZhWxOiEKr17PklFFgZcXm1xdWVRWBt99xxP33gsInwPBkUOkEoYwXh+DPvrSCv95/XX+++pjXHD+6Xy/+QBms3XE/VUqCatVJijQg/mxgYOefsxmKx2dPbS299De0UN7h46OLh1Wq/IzsrfT4OrigIuzHc7O9jhIMrs7i7j4x1tYF5Y4ZktiX7eCjVrD3mu/nVLroiwrHRhKZ4Wezi6dst5OZa0S4O7mqHRjfPc9PnNCsT/r6DrtHQkm0pLYd8N67dR/HPmag70HoaMLkpdP+6llWWb3/moKSxqJjfJnQa8Z0FCqsvN4Y+1FAMTfcTUnP37/Yc9ttlg5WFTPwaJ67O1sWLIgmEB/N+X8//sOLr8TyrP7I2FjiYKBZFRt5+rv7mXDRa8T6RHa/3ppRTM7dlcQ6O9O/NKRhy8BdHXr2ZJZiFqtIiUxGidH5W+ruKyRvD1VRIX7Mi8mgPScYjo6dSTHR+LkoB5dFGzaxCJfXzj9dAgLgw8/RNZouPvuu3nqqadEWkEwaURXwiSZqDCA4eLgskvO7vXs149yDaU1y2SyEDbbi3mxgaNaIVutMt1a5Qbc0amjs1tPV7eebq0ei0X52VllK04Odjg62uJgb4uDvQ329jbY2Wqws9Vga6PGxkZNo66ZgrYS1rvOQ5WzA+mckwHlw1y2ylisMhaLFbPZgslkwWA0YzCa0RvM6PRGdDoT2h4D2h5D/7VVKgkXZ3vcXR16UyFOuLs59Fdr/yIwm5VhSmNU8E/Up2CgCdJREQczgNUqk7uznMrqVpYsCCYq3HfUfaty8nhjjSIMVt5+Faf86y/jvk631kDenkrqGzsJ8HNjyYJgnHu6lWFdve6H4xUFfZitZjQqDd1GLRISTrZKPUBtfTvZ20vxcHcieWXEqHM3urUGUrMKkWVYkxTd31ZbUt7Ejt2VRIT6sHBuIJm5pdTUNvP880+TszVv0Dn6RcGi3kmTf/kL1NRAeDicfz7ynDlCHAimhKgxmCCSJN0K3MokBksNTSsAXHH5uWRtLaG2oWPY/rIMJpMFF2c7auraqaxpJTrCj9go/2E3VJVKwtXFAVcXB4JnHSpy/K44ld99/U/e3jMfr8RE9Mnx9OiUm3dnpw69wYTRNNIUOVe+pAo0vvDNzsO+NwmwtdPgYG+Do4Mtvt4uODl54+xoh6uLPU6OdmN3WXRroUsLAaPfJI55Fq5XbjiP/GHEzZMxLxqPffKM8d7nEBEC8XHTdkqL1UrO9jLq6jtIWBZG8CzPsfc3GCd9LWcnO1bFR1JT186ufVV8//N+YqP9iT37ZNRMXBSAMucC4OIvf0ePSdefVgj0dyclMZqMnGI2ZxSyKj5yRBHv7GTH2uQYtmQWsjmjgJTEaFxd7IkI9UGSJHbsqsBoMrNonj+/+/297N69d9Dxg0TB3/4GO3YoTxANDfDxx/Dww0g7dvDEE08AIq0gmFmEMOhFluUXgBf6IgYTPX4kcfDby8/tD6uORFe3AVsbNYF+7hQWN1BW0cLCubMICfYc88NsQ0kq536u1BQss1+IZmE4zBnecWC1yhhNZoxGCyazBbPZgsVipaOjlUc2P0OPvZq/JN6Cj6MnkkpCrZJQq1XYaNRoNGrsbDXY2KqnNpDonkdgXwFkfDb5cxxtHvszBAeOuGkqjoZ94kB1pIec/vsVOGv9tAkDi8VK9vZS6hs7SVwRTqC/+2GPKf35kE22T2zkhK8pSRJBgR74+7pyILeQAwdqqKxopsBhD/dmTkwUDORP8TdyysfXDKo58PZ05oRVMaRlF/FzegGrE6JGLIB0dLDtn8OwJVMRB26uDoSHeGNro2ZLZj433/J7du/ZN+i4YZGCefOgsxOefBJuvRX+/GfYtQuio5XZCkIcCGYYkUoYwmRSCQMZmla48orzKChpYPe+6gHXGD5QLiLUG4PRTHVtO14eTixZGDzi6OXRug8mylD75BlrZdxXoEQNpvHp9FhhJmyOdzUcODLOiENaSSeLxWIla1sJDU1dJK2IIMBvfP32L8adStOBIpAk7i7Lwtl/9NbAw7Ipk44HnuTrP9+BymJPs2MVt607D5VqcoJrqH1yX1qhR2ckPbsInd7EqvhIvEZxSdQbTKRlF9GjM7JqZRRenk5otT2sO+2qYekDFxcX3nnnHc4666zBIkavh6oqOPFEOOccWL8eXF2VbpL4eGS1WqQVBBNmvKmE46Q0/PihL3Jw3bXXcvUN9/LWO58RE+FH/NKw/n2UzoPBx5WUN6PXm0hcHo7ZYuWn1IPs2F2B0XhobvyooiBvH9xyv2IJO05mb9nH/s/9QJZZ+/7l1HY1TOl9j8r8mONfFGRuhy3Zg16aCVHwfWkaS/57Fv/Z/dGUz3VYpkkUZOaW0NjURfLKyHGLAl1rO/peS+/glUumJgoATkzilSfWc9X+G2izr8NfF0ZadjE9usmlK5KDl7HxojfIrdvDF0WHzMD6IgKurg5sySqktn7kwKK9nQ1rEqNxcbZnS1YBRSV1nHb2tcNEgaenJ6+//joGg4GdO3ditVrhgw+gsBDs7SEyEp57Du68E37/e7j4YkUo/Pvf/ZGDu3pbGV944YVJvVeBYCREKmEGGCmtcOUV52FjoyY9pxgAqzw8ctDcqqWzu5KEpWF0dOnZd7CG6rp2Fs8LYr9hX3/6YFikQNsDO/dBU+v4vQncXXEIDyP1vP/jsT1v4e04sknTlCmthK9+gJuvOKL2u9PK8/+F7h7FM4KZm5K4PmwVt8RdNrM1B20dcMFN8I8/TEmw9YmCppYukuMj8fMZf3TNwdOdu4rTqd2xF7PeMOk1AGC18kTGy9yb9SQPJN7GLavOprG5i9y8cn7YfIBli0NGdTEci+TgZRy8/nuCXJWR4VbZikpSYWurYXVCFFu3l5GZW8yyRSGEhQz/m7O11ZCSGE1qZj5nX3AD+fn5g7a7uLjw0EMPsW7dOlpbW8nLy6Ors5OEhx/G9rLL4Le/hYcfhtdegzffhMxMaGyE7dvh7LMBRFpBMGOIVMIQpppKGMhIaYXmlm42Zxb0C4I+cdDXxtjH4vlBBAW4s3t/DVW1bezT7qPEdh//PfcfI6cPpiE0vK1uD76OXtObVvghFa66G/b8AN5jF6Qds/TowEYDNjYzPiVxxrsVmlvhD/9QhmgtiJ3UKQaJgpUTEwXTzTtvPMT5d7zL6y9dym2X/60/HG8wmtm+q4KaunbCQ7xZPD8IzSQ7Zd7Y/QnvHfiKr85/pT+tYJVl8vZUUlrezPw5gb2WyIP//sbyKfjmm2/o6uqis7OTFStWYGtrS3Z2NrY2NiQtXYpba6sSIfj976GlBfbsgbfeUgSCjQ0UFUFQEKSkKFMZRVpBMA5Eu+IkmU5hACOLg7aOHjal5Q+K/KskJdJgthx6MXiWB21uVTz4w4vcMusmXNVuzI8NJDrCb+ROgKIyqK4ft0MfVit8+h0siEGOjWTpm2fTru+a3poDQ+8T4fEaLRjAkRqd3CcODjQX89PFb6NWHTutn2aLlcytJTS3Hn1R8HjOq/xzw+P8r34lJzz/JpLNYAdNWZYprWhm175qHB1siF8aPuFph6DUHJz6ybUs918wqOZAlmUOFNSxv6COyDAfFi8I7i/UHU0UuLm5sWnTJpYuXYrZbGb79u1UVlYSEx5OmJ8f2QcOoNVqWb58OcHBwcpBH34IeXnwf/8HcXHKjIt9+yAgAAoKwMZGiAPBuBDCYJJMtzCAkcVBV7eeH7ccwGw59P3XaFTIstzvEQBQbahiuyqd/5z5DwqLmigqacTNzYHli0OHf8hdfbciDtL/N77ogcmktOJdfRH88eaZLUjs0YGD/bTkto84n3yL4actJCcUz7go6EOWZfRmAw429nQZunGxG30c8ITQ6ZV/Hm4T/lmYzVYyc4tpbu2etCiwWiyoJjGQaigTaUns7NKzdUcZHZ065s8J7LUtnth7H00cgOJVkLe7ksAAd1YsCcVoNIwoCjw8PLj//vuZP38+CQkJuLq6IssyhYWF7Nm1C5/CQpbdfDN7i4qoqqoiNjaW+T4+qP76V7jnHoiOhtpa8PSEkhJwcYHZs/vPL8SB4HCI4sNjiJEKEl2c7Tn5hHnY2hz6kDSbrWjUaiUaICniIMgumAsdr0DbbWLx/GBOWB2LLMNPafnsPVCDZUCEgaf+Ct+/O/4PfBsbyP4S/ngzcMg+GWDt+5dT0VEzPd+AghIIiYeth/dNOBbR9nSy6eDmIyYKQMkfO9jYU9vVQMxr66evIPGbTRC4DLq6J3SY2ayMJm5u1bIqPmrSkYKPL76V/554CdnPvI7ZMLn6gj5RkL1zIX+rDj3sTd7VxZ4TVscQFeHLngM1pGYVTbgwsc8+eVv9Xv645bFB2yJCfUhaGUFjUydff7+T9WdcPWL6YPPmzVx33XXIssyPP/5IeXk5kiQRExNDypIldMbEsDk7m8jISBb6+lJw4AAZ27dj3LsXysrglVcUsy17e6U7YfduuO8+uPFGaGoSBYmCaUNEDIYwExGDPkaKHOh0Rn7cko9+QPeBpLFiMlkxY8JecuhdF8QtVCa+Wa0y+UX15BfU4eJsx/IloXh6DGhtbGhWvPDXjDOlAHCwGHr7ySs7ajn/81t57dR/TM9N0GqFJ1+DS8+BQL+pn+8IcqTSB6Mx7TUH1XWQuwvOPWXcAtLUKwra2npYlRCJj5fL4Q8aAWO3lsdnLcdiMOIS6MddxelIE2wp7BMFD668hYfer0dKXgFXXjDu4xuaOsnNK8disbJ8SSizAtwndP3c2t1EeMzGy2F4QWN9QyvrT7+avfv2D3p9qE+B2WwmLy+P8vJyQkJCiFu4EBsHB3Q6HdnZ2bS0tLAoLAzXzZvJiYjA1t6e5Lg4XBcuhEcfhWuuUf7t3Kk4I6rV8P77sHYtICIHgtERqYRJMpPCAEYWB3qDiU2pB9H2PsVYZSs9aHGWXHBytEXbc+jpJjLMh8Xzg1GpJNo7esjdWU5Hp47YSH/mxgQofu63P6i01+3aqHxoHI4fUuGsa2H7t0p7IcqHiyRJ6M0GWnRtzHLxn/bvxbHOIFFw0X9ZHDD/qKRCjqZ9sslkIX1rMe3tPaxOiMLba/IpjQOfb+STS5Tq+WU3XMrpz/59QsdPxtFwJAxGM9t3VlBTP/nCxMqOWv6a8QzPn/RXnGwdxx6INNC8aADl5eXkbduGfVMT8fHxeMbFYbVa2bNnD4WFhYSEhBATE0NOTg66nh4SIiPxX7hQOVirVQS3SqVE/mxtla+tVtBohDgQjIiwRD5GGa2Vcd2aOXy1KQ+rQYWEhLPkgqODIgpcXezp7FLmLhSXNdHZrSdxeQTubo6sWz2nP3pQW9/O8rhQPP9+txJyHG8u94Qk+PRlmBvV/1Lfh+6dPz3Mj2WZU685kGV4+R2IDIWTVk/+PEeIgaJgu+uNhIWfC407wXVyT8tTYaB98l2b/slZkevwdfIa+6DRSM9VOhPOPeWwuxpNZtKzi+ns0rE6MQrvUQx9xkvBV4c8AWLPPGlCxw4SBc7rkL7+Cc5cNymhZmerIXFFeH9hYlNzFyuXhY1oKDYaNd31fHJwAxUdNXx46tNceOHtw0SBi4sLDz/8MCEhISOeIzQ0FC+DgZyMDH4uKWGhszNRUVEsXrwYT0dHtu3eTWdbGwnLlrH72WfJMlhZ2umGf0MXqoUxqGepUXU0wL/+BX5+SpFicDB88QWSSiVaGQWTRkQMhjDTEYM+hkYOfBO9uOSLu3g8/FHcVV59a8HB3gad3oibqwMdnbr+NkdnJztWJ0T1D2sZGD2YGx3AnOgAVFot7DkIScsmsjDlKaSXaS1IPOUKWLUC7r998uc4AgxLH+hclQjMb85UCiiPErIsU9haRoxXeH9EZ8L87iHYsVcpUB0Dg9FMWlYR2h4DqxOiBqeqJoHFZOLfwSvRt3di5+rMH6pzUduOz7VzWKTggX/Dhs2w7ZtBv6uTYSqFiRlV2zn53aux+UBDR2HXoG1eXl58/vnnaLVaurq6iImJYe7cuWg0w5/FLBYLe/fupbCwkMDAQKV9cd8+2s4/n8wnnkAjO7K8MQRafVFZB7xfCWw8u7B/6w40F61S5iusXKkYIvUiIgeCgYhUwiQ5UsIADomD177+D5qb1ZwWuYYPznyajOwy2jt0AKgkCTs7DQajGRcXe7RaQ/9IZxsbNaviI/uf5KxWmQOFdeQX1uHu5sjK1J9wfeN9yN88vhvaP55TjJI+fWXQy9MmDiyW8UcxjhJHu6ZgPFisFq769o+kzF4xubTCEPE3FL3eRGpWIXqDmZTEKNzdJt7iN5TSn7N457TfAjD/ojM5/+2nxnXcqOmDtg6ls2IasFit7M+v5WBxA77eLqyICx112ulAtNoekk75Dbu3DTYvGpg+sFgsFBQUcODAARwcHFi6dCn+/v5QVwcXXaQYGMUqfhI1NTXk5uZiZ2dHQlwc7g2NaDuD0adbsGDBusBKj7+WnSW7CPUNZZ7LPEx5JiyNFmzm2OC43gGVq1o5d22t0tooSYfEwTtP8exfn+X2245tYS6YOURXwnFAf7fCmddi/sbCWT0n4mjnwAnJsXi6HzJSMRjN2GjUaLWG/imHoOR/N2cUUFHV0ns+ifmxgZy4Khaz2cKPS5Io/OgNZPtxegjMj1EKFoeIxYHdCh8f/G7yb1itVm5K1XWTP8cMMqoo6OyCzzcqIfhjAJWkwtXOmes33D+5boUxREGPzsjmzAIMRgtrk6OnRRQAHPx6QBrhrHXjOmaYKADYX6hsnCZRAKBWqVg4L4g1idF0dev5YfMBqmvbxjymr6ZgLFEAoFarmTt3LieffDKOjo6kpaWxdetWDB0dyuwDn0N20LNmzeKkk05Co9GwJT2bpj3+mLaA/QJ7KldXkq5LR7/lc1YmraS8tZyc1jTsrrLD8WxHzBUmOp+ow/ivzyA0VIkcvP8+oEQez7r9LDS3arjj3TtEt4LgsIiIwRCOZMSgj5EKEi0WK6nZhTS3aAHlpq9Wq1BJEmq1hL29La1t2v5zzIsJYG5MQP8TldlsZW9+DUWljfh6ObG8aB9OV543/tDrCE6KbfoO3O1ckSQJg9mAnWYSpkV/eAQ2bIG9Px5TngZjRgqKymDBSfDDe7B65dFb5AAmVZD41Y/w6AvK+3Aenhro6taTmlUEQEpiFC7O05M2kWWZpyNX0VlTj9rWhj9U52J3mFqNESMFmzLh9Csh+wtYMn9a1jYUg9HMjt0VVNe2Ezbbi8ULgoeNQh+r0PCGZ27g/gvvx8l2+PdXlmXKysrYs2cPkiQRFxd3yMRoAKZmEy1vNaHW2dA2t47Ic+YjSRL5777LPjs7QkNDCSkoINtsxsHXl9UnnICdxYaeh9MxOS/Gzr4Ih3ltSCevA7Wa1PJUTnv/NBKDEpmzaw7PPfWcSCv8ShERg+OIkXwO1GoVKQnR+HofShNYLFYsVisg0a3VM2vAeNv9BXXk7izv3a6YJS1ZEExKYhTdbd1sdApk26ZdjEsIvvwOXHLbsMiBh70bkiTxReGPzH/9tMn5HFx9Ebz8fxM/bgY5bPogfDbUbp9YrcYM01eQ2DdbIbVy6+EP8vGCxGUjioL2Th2bMwpQqyVOWBUzbaIAoPDbTXTW1AMQtiZhcqIAYE08fP4aLJ43bWsbip2thoRl4SxfHEJVTRs/bsmnZYAAH0sUvPnZmzxX+RxnfnAmWqN26KmRJIlwW1tOef99fJycyM7OJicnB6PxUNeRuc6M9i0tDpINnWWPs9t8kPT0dEwmE3OvuIKVK1dSWVnJwYAAVqlUGK1WNm3aRLe1B6dH1+B4qiMGYxRdNSuw7isl/8n7+d+dJ5EYnMhXl3zFM088I3wOBIdFRAyGcDQiBn2MFDmwWmUythZR36gUN6l7rZAdHW3R6YyEBHtRUt7cfw4fL2eSVkZga3OoyMlosrBp0z66DGaCAtxZuigEO7sxGlK+3QRbd8GDd8IIxVJHbGTzEeB4qCkYC1mW+TD/G34z53RU0uR0fktrN+k5xTg62rI6IQp7O5vDHzQBtr/2Pj/c+3+YenT85uOXiD1r9I6EUUVBU4sibI4gXd1KYWJbRw8RoT6EBLlx3kU3jdmSmFGZwanvncrywOV8fcnXwyMHu3fDbbchf/45lVoteXl5aDQaVqxYgWePJ90fd6P2UeN8sTMqRxWNjY1kZWVhZ2fHqlWrcLKxo/mdNOqM3jhbXHB3c6dR20CbQzsxJ8fgGeCJ+fG36G5LwKqCnk8uoMtaQeieKhwclc8zUZD460UUH06SoykMYHRxkJVbTG2D8nNUqySssoybiwNd3Xqiwv0oKGnojwa4OCsdC06Og0P9ldWt5OUWobKzZfmy8PGNyR1lONOUxEF+ETzyLLz6GDhNTw57MoxbFMgyXHMPXH4enJh0ZBc5Ab4vTaO6q55rF100fGNzK+wrUKIeA2YKNDR1krm1BHc3R5LjIwc5cU4nXXWN7H73M5LuuXHUqv9RRcHeg7D6AiVaMBHTrmnAapUpLGlg555yHvnHPzhwYOyaAmCQOPjm0m9wtBn9d7ynp4dt27YhF8ssrF+ITagNzhc6I9ke+h51dXWRmZaJd6034e2hSHo12OhoddAhW8141mqRXMOwSBaIAc+5Wkq/eJM6cwqRqmhczrTHebGn0sLcK/SFOPh1IlIJxykjpRVUKonElZH9qQOLVWlV6+jU4ebmSEFJPXOi/PpzoV3dBn5MPUhr++Bw5mw3W05+7P9w13aSnlNM3p7K/g6HEfnkW7jwJgZNe+o/16GCxJu/f3Bib9LODsqrobZhYsdNIxOKFEiS8sTa03PkFjgJvi9L57oN941ckLgxFU79LXQd+p2oqmkjPacYby9nVidEzZgoAHAJ8CX5DzdNXBQAxEbAP/8IiUtnbH2joVJJBAe68uKLT49LFAAkz05mw2UbmOU6C42qN+KWng7nngudgz+LHR0dWem0koW1C6l3rme733Z0Zh3s3w8xMbB/P/Zt9sRXxhNeH06tXT3dq2rw+FMgAdcHUBxVRFpcAcaLdTSFNGEpstD2hTPvyFaenP0Mjt5GTN+A/pqnYMEC+Oor4NDIZpFWEIyEMDg6BhnNBClhRTg5O8qormnDapVRqSRa27R4ezpzoLCeudH+lFe30tNjxGg083N6AYnLwwnsq0VwccZh03uscnKkuKyJPfuraWjqIn5p2MhT57w9wcsDDMYR2x37xIGNeoK/RuGzIfPziR0zjUwqffDNmzO+rqnyxAn3YbAYuX7D/QCDCxIvPRuWLwRPdwCKyxrJ21PF7CBPli8JQT1FP4CpMKYoaG1X1nzzb4/K2vpqCjIytw963cXFhYceeghHR0eMRiO2QzwZkmcnkzw7GYDd9buJ6WzDXqUCx0N/Z7Iso0/To0/TY7/CHp8lPpRsLeGHH34gITIS37PORl/ijX53N+pZahyvdaSnuocD5eV056uJ9fLihPXrycjIIGNPNgmJi8ktziWgOIDbWm/DphMcnz4L0/WPowu7CtnZH/voGPq+u33iAIQJkmAwIpUwhKOdShjISGkFWZbJzSunolppnVOpJKxWGV8fFxqbuoiJ9KOppYvWtkNPt0sXKTMWBvHR13S2dZMTu0gxd4kNJCbKv39s7ERp0DZz3Xd/5oX1f2O2W+D4DiopV5wEj2DueEo1BXoDjLf18ygxsFvh7TP+xRXzzx22ff/BOg4U1hEV7svi+UGTthYei56WNra+8BYJd16LvdvoxYZjioLUHDj/Rtjycb9V95FkrELDzz//HLVaTU1NDSqVitmzZxMeHo6np+eg96A364l8NpJor+hBNQeyLKP7QYch14D9Wnvsk+yVbh+DgZycHFrrWknoSsCu3m7QdlmW2b9/PwcOHCAiK4sl//wnVltbsr/9lnqtlv9n77zj6qrv//88d3PvZe9NAiFAyCSDkACJGkfcq+7Waq39VTtstf22tba29Vtbv93WWq21VaPWWfeMCSsBQkhICDOBsPe8e53z++PAJSSsIMTF6/HgQXLvued87uXee57nPV7vVxseJyVxKxnuDNYNrUM9qMJniw5JKWD/0I5mhRr9eitCc6Pc0shCWuGLpIVUwmlKEIQ7BEGoAko/6bWMaqK0giAIrF+TQEKsfDIdjRx095iICPOj9mgXgf6GccNh9lc0c7iqbXxHwuEa/MoOcHb2UpYmRXC4up3dhXVYrBNMvPtoD1x1u5yjnEQOt5MjvUfZ8uwNNA+1T//kbHbYcCn8c46mBs5AHwsKHnoU0s6av8XNkUa7FX6adScbo1fLN1bXw6W3Ija3sb+imaq6DpanRc8bFAAU/OYR8v/3Yf6cdhbHPiyccJtpZx+sSYd7vzXOqvtMabrZB9nZ2WRlZXHRRReRmppKV1cXO3fuZOfOnbS1jX3WdH/5G2Vla9jXUuLtVpAkCdu7MhToL9Djs9nH+9y1Wi1ZyVlsatuEoltB66pm1Jlq7/2CIJCens7auDgasrIo2r8fAGmJlqGGvVy65BtcufpKYlbEkBeahznZgm2XA8+hfnwCD+KssGP5aRHS9ktgYMC7z4W0woJO1ELE4CR9miIGo5oscrC/opmGJrkjYTRyEBXhT3vnEPExQWg0Kuobur37iY8NYt2qBHmssyjKuXNB/ndPv4WS8uM4XW7WrIgjPuaEK5/Sg/Dbv8E/HoKAyV+TEwsSd1+/Y/rIQXE5rEw7IzbDH7v74FA1VNXLtsifIv+F6TRkN1H+9vNkP1VK8Q/uoaPXxNqV8SyKD5m3Yw4eb+XhFdvwOF2odFq+VfkhfjGR47aZFgqGTZ/IXAqYHgomGogkiiKdnZ3U1tbS09ODr68vKSkpxOXloTx6lMKvn8/5z5zPhqgNvBL8CuJBEf1FerSrx0egnNVOLK9ZUPo4GHrjm5Tefh1+AQFs2rQJvX58uq+zs5M9e/YgaOH2w99gZfRK/jftf2k81siyZXJL55EjR1gVuIqwvUYE6wC6TC3WygBU/k4Mt0Wg0I1dGy5EDj7/WuhKmKU+jWAAk8NB+aEWjh3vAcbDQUfXENERAQQFGjhUNeY3EBbqy6Z1iahHC832H4av3QP/fQJnVAQHDjXT1NpPTFQgGSvj0GpOr35gFA6UCgWHb30b3UxMkCzWee1O+Ky3JH4c/aH0n/ws7y88mv4wOo+ezLWLiYqYO9fAifTqV7/PoedeA2DT3bdzzq/uGXf/tFDw6rvw7ftg72twElDMt2YDBSert7eXmqoq2js70ev1rFy5kpiYGIqai6h9rpbLXZdjuNiAdtX4z4aj3IH1bSvqVDWGsySEmkoG4uIoOnAAj8fD5s2bCQ4en3arvfMW9q/LwqT1cPUFVxPYO0D1z35G5SWXkJycjI+PDxUVFSyNSCbhSALisIQuW4ejyIFCGsZofhbFlvVwlhwNW4CDz7cWUgmfM02WVlizIpYli+X6AVGUUAgC7Z1DRIYH0N41RFePiQ1rErxfvt09Jj4qrMVmd8k7jouCjBXgZ0SjVrIhYxEb1y6iu2eY93dV0dl9wnvnQCVc802w2iZd52hB4q9z754ZFBTug6Rsud5gHjRnUODxwCvvQF3D3C5wnnXrkqt5JPH3mK12BsOa5h0KOiuqOPS8XPnuExTA5rtvH3f/jEYnb1oH3/s6RJ/ZUd9zAQUAIQYDm7/3Pc7r78ff35+9e/eStzuPZfuWcYX7CgyXGpDSpXEmSPYiO9a3rGgztBiuMCAE+sLGjQRGR3POOedgNBrZvXs3ra2t3sfkHc9jR/0z9Oz/N1HGKIryixgOCSFt2TJWJydTV1fH8PAwGRkZ1HbWUbuiDlWUB/uHVjTGZsReCyb7hXjK6737XEgrLAgWuhI+U5qsW2FVeiwKQaD2WDfiyNS99s5BosL96e414fF42LQhkeKyBtxukaFhGx/mVZOblYxfaDD847fyAfoGwM9IbHQQwUFGSsuPk7+3niWLw1ieFo1Ko5G3GTKB3mfSdcb5RxHnHyVb4e57kiuWnje5z8GadLjjKxAy9wWIcxopUCjg6/8jmz4lL567Rc6jevvNFBbWEdxpokuxh7vrX0LUOmY3eGmG+vDeh7yOmdk//H/oTkg9TQsFkiTXnoQFw11fm7c1TqS5ggJAbse9/HL8MzPJXrWKjrYOTP81IfVL9KzqIWFpAje9ehN91j5ev/Z1FAUKHHsd6LJ16HLlIkM6OuCJJ+DWW9FFRpKbm0tpaSl79uxh5cqVdGg6uPC5C8m6MZfXr30d3JCfn8+uXbvYfNttLAkJQa3RsO/IEVwuF+vXr2ffvn244x2s3N+OQzgXzXIH7kEdJvEafHs9KNVm8Pdf6FZY0EIq4WR9WlMJJ2qytMLh6nZq6mXrWUGQv2cjw/3o7bdg0GtYvTyWvWWN2EeiBWqVkuyNI9MZXS5YfzFsy4bfyu1ukiRR39DNoao2jAYtGzIWEejnM7bzaXLtg/Zh1jx5KXDmHRLnJX0wZAI/42eixqClfYDS/Y0E+vmwydGLZmsm39r1AIkBcdy1/pZ5OeaJExT946K58/D7qLRy1GhGkYLHn4M/PA7Fr53R+oI5hYK+Pjgh3C+JEpb/WnBVuRjKHKJ8uBylUok+Xs9Vb1/F47rH2WbZhs+5Pug2nFBrc+gQnHcevPcerFgh70uSOHz4MDU1Newc3EmjTyOvXfsaOrsb8beP48i9kvruQexmO4tSYgi+6yt03nQJe2OiCAsLIyEhgdLSUsLDw1mrX4v9HTuqSA9ivxPJ5ML4n+tRvfo4pKV5j7eQVvh8aaHGYJb6LIABTAwHAIer26iuGw8H4WF+DA5Z0ahVbFiTQOmB4wyb7IA81jlz7SJiogLhtfdheYrsM3CChoZtlOxvZNhkZ1lKFEsDVCiuvB0e+MG0Q4Vm7JD41k74+w7Z3e5jjmb+ItcUSJJEdV0nlTXtxEUHsm51Akqlwnvf6Am5qreetJC5q/aXRJHHN19BR3klAJf/8/9Ycf1lwAyhAOR00tu74FtfnbN1Tac5hYLiYjjnHNi5EzZsQPJIWF614Kp1YbjCgCZVg81mY//+/XS0drBqYBUBvQE8EvQId99294SDl05W3vE8HnzzQb4S+hUSjAmkK9Lx1LsQh8a2EQURhST/zQWdiHuxRLmtHHW0miVLllBSUkJISAgb/luOzfdLKAwuhIFBREM4xi8HoYofSwEuwMHnSws1Bp9zTVRzALA8NZq0ZLlga5T5unuGCfDzwePxsGdfAxsyFhEaPDKcSZLYs6+Bo43dcOm5MhTYHXCCoYu/nw9n56SQnBTO4eo2dtf0YF6zEqboTx/ViQ6JW5+9kTZT58QbBgfKRjZT1C/MRPMKBa+8Azd+e+72N8fyeERKy49TWdPOspRINiwNQ/mNH3nrIkZPyLubikn/x/bZjWyeREdefscLBeErUll+7SXADKHA7Zbfc4kJn10oAFi9Gn75S8jIkKHg5REouEqGAgAfHx+y1mWRa8olsC+QqoQqXna8zPOVz0+7+9EpiX4GP7aKW0kuT8ZSYUFIUGK8Sof/Pf4E3BtAwI8COJp7lP2x+7EtcqJqUbGucR3xB+JpLWll48aN9PX1sWfbUnwympA0AYjRCSgiDZieteDaWQNl8ud/oebgi6kFMPgMazI4SE+NYtnSsVZBSYLuXjMGvRaFQqBg71FWpccSFx3o3ab8UMuY18Efn4Arvy6HzkekVCpYkRbN1s1LsTncvL/tYo75hyK53XDCdLiJNAoHZ8VnEqQLmHijzDXwr9+Dr3HWr8e8RwrUKnnOwKcwymZ3uMjbU0dL+wCZGYtYtjQKoaMbKqpOWW9u3Ab+35rrue2dn8wZHLgsVrQjoHjOA/cgKBQzjxTc9zs4/ya5wPMMaU6hwGaD48fl2oK77kJCieUlC66jLgxXG9AsHXNFFG0i5h1m1P1q1FeocUW6uDf2XjK1mYiiOOY1Ul0Na9bIv5Gh4OodV/Mn4594tPNRtO1ahC0CpWmlFCgLsMe4USg9CP/8J0qPh7XZawlcHkiBWEBnz/9hOPhrAvQBLK1aiv0VOxuXbWTI4aDQYEV3vRbBNIyn342ytQJzfgCu346BygIcfPG0kEo4SZ+VVMKJmiytUFXXQWX1mNmQQiEQFKDH5Rax2ZxkZybR2jFI7dGxmQUJccGsTYlAUd8IK1InPJ7L5eFgZQuNzX1EtjWztr4Snz/8dMbrPdxdi7/Wd2Kfg/fy4HgL3H7jjPcHX+z0weCwjaKSo7g9IpvXJxIcND1cneiQ+PgFD8xJQaKtf5DKl95i7W3X81DJ4zODApC7XQ7Xwpev/NhrmInmPFLwwx/Cjh1w9CiSSitDQYML49VG1EvGBlaJJhHTDhOSRcJ4vRFVpApRFKmqqqK6uhpRJ/Kfwf/w9DVPY+jsg9/8Bn74Q/LERn6x4xc8JjxGEEHoMkecELUCFouF/Px8nE4n2dHRBGVlwVtvwbZtSJJEZWUl1dXVpAQGkn722QyXDWP/yI7arcaz3sMeyx70ahU53/oBzm++jceuRxkCnn61N/0xqoW0wmdfCzUGs9RnEQxgcjioOdrJoSNjPgYKhUCAnx4EGB62kZ2ZxMCQjYOVLd5tIsL8yFqXiEopwO8fl6cKhp9qiNPeOUhZcR2ioGDN2sXERQdNu05Jksh86ip6rP0TmyDd9zt5mt4rj824yO+MQoHFKl+BG6fPB58JtbYPUFp+HINBy+YNieMnao7OGZhEo3Cwv7OSwhv/Mzbw52NqxpGC9i6ICJU7Ps6Q5hwKQHYQPHAAKWcr5hfMuJvcGL9kRJ04BgWefg/mHWYkUcL3Bl+UIePraHp7e8krymPIOsQu9y4eveZRDBoDeY15vLzjZe6T7kMdp8Z4qRFlwPjHOhwOCgoKGB4eZlNKCuFp49//tbW1VFRUsHjRItZIEuakFFpeaCGyJxIxTGR/4H7Qu8jJORv3627cTW6U4eDpEDFU/wXNj6+C9HRgAQ4+61oAg1nqswoGMDkc1B3r4mDlWP+zUing5+uDSqmgf9DCpvWJuFweivc3eqPOgQF6chKD0OZcAf/7QxjJGZ8sh8PN/kPNtLYPEBOkJ2P9ErTaqU8wUzokut1y8eGnEQpEEYKWy0WXd3xl/o4zA0mSRGVNO9V1ncREBbJ+dTwq1QknjO4+iM+EFx6Bi7dNuR+ry4ZBo8fqsqFXT96GOhPNGApcLlh9AVx0Njz4o491zJlqzqFg9275hBkSguSSZChodmO81oh60RgUuLvcmHeYEXQCvjf4ovCfGIScTifv7HoH26CNUsceLo1aT+MeB5cKV6Bcr8R3my+CYuLX0+12s2fPHrq7u1m/bh1xTU2Qk+O9v6Ghgf379hG7dy/rf/ADbP7+lL9ZTuLxRHSSjtqoWgZDB8kZNCEdDMVlXIGydT+e6Az0GcNoL1zk3dcCHHx2tQAGs9RnGQzgdOBAga9Bi06nprvHRObaRajVSgpLjuHxyGOWDXotW1ZGYwgbqUWYokWx+e8vUe4bhhDgR8aqeLnLYQpNa59cdkjO6a+c/ET/iaQPXv8AliVDYvz8H2sSuVweSsobae8cYnlqFClLIk49AZst8MaHcM7mGQ2p6rb0sf7fV3Dvpm/OOK3QVnaI4j/9k/N/91MMYcEzh4JRvZ8HSxbDotgZHe/jaM6hwOmElBS45BKkh/6A+Xkz7rYRKEg4AQpa3ZifM6MIUGC83ojCMHV0RBRF3i16F0+Th3V1iQjqQAyX+mJcMX16SBRF9u3bR1NTE6uefJLkBx6Q6xRG1NLYSPG+fURGRbFx40acTieFHxUS1xBH2GAYncGdNAZWkpO/C2H7b3AedKOMUeJp9eCzTYMushfi5ff9Ahx8NrUABrPUZx0MYHI4qG/o5sDhsZSBSqVA76PBaNDS0TXE+tUJ+Pn5kLenHqdTHpik1ajIzVpCwH/fht174YmHJg79tndhyytl/+JU2juHiI0OZM3yuCmjB81D7Vzy8u08et4vyBwd+AMygGRdBsuWjpkvnaQvak3B0LCNPfsasNudbMiYO3vj0605cDscPJZ5KT3VR9GHBOJ56HJ+1PTPmdcUrE6fk3XPRPOSPgBoakLyD8H8uoi73Y3xeiPquBOgoMWN6VkTqggVxmuNCNqZRcH2F+0n/KMwBLVAQ/JRMs5ff8qchMkkSRKHKiqorasjNTWV9PT0cX+L9vZ29uzZQ6gosmn7dtwqFfl5+fi1+ZHcmYxFa6FmUQ2Z2zJRfWTDfkiN0t6ERxePT8nv0L38U7nIkgU4+CxqAQxmqc8DGMDkcHC0sZvyQ+PhwEerJiBAT0vbABkr44gI82N3UR0Wq9xtoFQqyHb1E5ZXAL/76ZQ+A5Ik0VxSxYF+F4JCYM2KOGKniB6IkohCUODyuOi1DRBpDJPvaOuU888THOsThYJD1VBaAV+79swdc0RNLX2UVTRj0GvIWpeIn+8kw6dEEX72e7j5KrkFcIY6HTjYed/vKPzt3wAQksO5/5oufpI9HgokScLhdGO1OrHaRn6aO1H+6wV8r9mOb+YqfI1aNKc5j+N0NOdQYLHIRYE/+hGSQof5OTPuLje+1/uiih17Hq5mF+ZnzaiiRqBAMz0USJJEzZs1hB0M44DPAZZds4ySAyWY7Ca25mwlJiJmxsscrStYFBxMxtatKE6A+e5Dhyg8eJAAjYbsK69EFEUKCgqQuiXWdK3BY/dQE1fN6l99A/Wtf8VmW41S2YfHE4xuiw6f7LF00wIcfLa0AAaz1OcFDGByODh2vIf9Fc3e7dQqJRqNktAQX44397FyWQwJscHk761nYMgKyBmEzIzFxEYHQk/f5OHpskOQfSW2N5+i3BhGW+cg0ZEBrFkRh49OPfFjgO9++Cter995qglSY4tc+DhiwfyJRwr+9hQ88BdoLjljRXMej8jByhaOHe8lPiaIjJVx4+sJTlZDM5x9LTz7MGxcM/l2E2gUDv556CWO3r6TaN9T5xW0l1fyj+wrkTweUCn429dEvn7Fndyz5hs0NvXSN2DBYnVis7uYyfeLWqXE16jFz9cHX6MOX6N25LdOngQ6S81LpKCwEK64AumDPEzl0Xh6PDIUxJwABU0uzM+ZUUWPQIF6BlDgkGh6tgn/Vn9e9H+RGy8/F/2Lr1CSncwHVQdJ1CWyavUqUpMn7hSaSE2vvkqpzUZkUBAbt21DeQJk9x46RMGxYxiNRnJyclAoFBQUFGDuNZNlykLRruBYWA3JF8ah6wrF+rYVZbgST5cHnfYQuqviEBbLdQcLcPDZ0QIYzFKfJzCAyeGg4XgPZSfAgUatRKVSEBkewLHjPSxbGklyYhh7yxrHDVJaHWlkyUXXyCOYL5mgqE2S4M0P4cKzkQSB1vZByg83I4oSq5bFkBAXPGGYeUKHxCETJG2GH38L7vraJw8FIPfaKxRnzBbZbHGwd18DQyYbq5fHsjg+ZPrcPXysdUqSxJHeetJDk0/drdPJYxsvo/tIHQC7zhK48Hs/Zb0+k64e0ynbfxwplQrCQ32JCPMnIswPo2EGQ7lGNG/pA0DsM2N+TUTsEzHeYEQVdQIUNLowP29GFavCeM3MoEAcFun6VxfOISd/C/sbP7vlZ/gcqZWLB/PzKQgw8dwHz7HFfwvxi+JZl7FuXARgUrlcdLz6KnuUSoKDg9m0aRNq9RicDwwMkP/BB+iUSnK2b0elUlFUVER/bz+b2ISmWkN7UDtR5/lg+KARS+9qFJ3ViBFpaLVH8Lln07jo0AIcfPq1AAaz1OcNDGByOGhs6mXfwSbvdqNwEBMVSN2xbpITw1meGsX+imaOt/R5t0sx9bD80s0I05kR7T8MCTE4fH05eLiFptZ+wkJ8yVgZh6/x1DD4hHDwQQFkZTCgdH3yUHCG1dzaz/6KJjQaFRvXLSYoYAYtknYHOJwzcqWcTqIkcsf7PycjYpk3rbDr/j+S/+uHUfr6orhkK/GXXolaOvVvqVQI+PhoMBi0GHw06MsPoX/tbfR/+hlunQ8mix2z2c6QyY7JZMcxUtMylXx81ESOQEJYqB8a9cRRk3mBgn/+E+rrEe/9FebnLIgDIsYbZS+CUbkaXJj/Y0YVr8J49cygwDPgoedfPfSae3ko6iEe/fKj+EzQGVLYXMiDbzzIjSE3Eh4WTlZWFlrtzECpp6eHgvx8/Pz9yc7OHnucJDF83XXkbd+OMiSE3NxctFqtt7shKyALbbGWQV0/Qa/chuHhV7G8LaIIUCAOgHa9Fp+z1AgjsLEAB59+LYDBLPV5BAOYHA6ON/dSeuAEONAoUQgKFsUHU13XSWJCCKuXx3KkpoPq+jE74/jYINaF+aDo7Ia1K049oMMBaWfB1Rd529E6u4fZX9GEze4iLTmSpUnhXh//UY3Cwc3Lr+C+zd8C5PTBxU99mWpr2ycPBZIEF94MX7kKrrl4Xg7hcnk4cLiF4y19xEYHkrEyDo16hnn4Ha/Ct+6D+nzZZvpj6OSagwvFZTye+yWCLrqI0CuvRFCNX5OPTk3S4jASYoPRaVXjIxuiCLXHIHXi+QwutwezxYHJbMdkdjA0bKWr24TLPbkbYlCAnshwf8JC/fA1atFqVFittvmJFPzpT4h1zZhX/QxxaAQKIk6AgmMuzC+YUSWMQIFqBlDQ7aHvqT5abC08FPMQT9745IRQMKrC5kKaO5rRd+jRarXk5ORgMMwAFl97jf5776Xg/vvRGQzk5OTg4zNyHLMZsyiSV1CAJEnk5uai1+spLi6mo6ODDTEb0H2kw6Fy4HO1D36iL+YXLSiUdkS7Dk39q+h/eyFCRDiwAAefdn0hwUAQhB8BVwApgA3YA/xQkqTa09jH5xIMYAo4aOmjtPy4dzvtSDFY0uIwqmraiYsJYt3qBBqaesYVLoZ3trPp6SdR5b80cb69qk5u6zvhysbtFqmqbaf2WBdGg5Y1K+IIDx3/Ovda+wn2CUQQBLotvXznDzfy198fo/fZ35J8/uVz+IrMUt/9OWzfCufmzvmu+wYslOyXJ2CuWRFHfGzQzFIHo2rvkrtHRgYYfVyNwsHfS3fw691rCL/kWnTx41s1w0P9WLI4lIhwfxQnr3X3XtnmOmP5rI49MCQDQkf3EH395indqJ1OB7958EEqj1SNuz0oKIhXX32VFStWoFQqUSgU3h+lUolKNQV0Wa2g1yNaRczPmBBNEr43+qIMH4tWuI7KUKBerMZwlWFGUODucDPw9AB1jjr+EPsHnr7h6fFQUFsLt94qj15eunTcY4eHh3n7w7fxUfmQk51DYOA0AGg2wxNPMHzTTeQVFaFUKsnNzR0HFdbiYvKqqnAFB5O7ZQu+vr6UlJTQ2trKuqR16D7UIbgElO2PEbA+E1PDMgTnMJIuDM1KNfqLjV6PhQU4+PTqiwoG7wLPA/sAFfAAsBxIkyTJMsN9fG7BACaHg6aWPkpOhAOtCkmUWJoUQWVNG1ERAWRmLKKja4i9ZY3eorIAHzU5uanotJMXFnLsOBSWyVfZIxoatrH/UDO9fWZiowNZuSwGvY9m3MNerHmbL79xDwZBQ2XvhUT84O4pnfw+y/KIItV1nVTXdRDorydz7eLTyqnPpzweD3969FGiI9chnFDAlrQolOTE8KnXeemtoFHDi49+7HW43R56+sx0dg/T0TWE2eLw3me323nwwQepHpktMCpfX1/uvfdeEhISJt2vj48PAQEBBAYGEhAQgL+/P0ajEaGjAzZsQPzDo5j7shEtogwFYWOvgbPOieUlC+rEEShQTg8FriYXQ88NcdB1kIdjH+a5G547NVJw/Dj8/Ofyz0lrbxpsYuPfN/Lj+B8TpYli06ZNhIeHT3tcAEtPD3n79uHxeMjNzR37jtu5E/uDD5J3113YXS5ycnLw9/dn3759NDc3k5GWgeYDDTqzFhJqCchdi/k/NlALSCYJTawN/blKhMiFyMGnWV9IMDhZgiCEAt1AriRJ+TN8zOcaDGByOGhu7aN4/3HvdjqtCo9HIi05ksM1bYSF+JK1LpGBQQsFxbI3P4BBpyZ317sYf/D1iU/cD/wFXngTSl4H3fiRrk0t/VRUteJxi6QmR5CcKKcXBuxDbNlxA5W9dUQYQtlz0wtyzYHbDVNd4Z0JOZ1yt8TSxDnZ3cCgdWQUto3U5EjSkiNnV43/9CswNAx33jwn6xpdW0l5o3dMN4CPSmBT1lKCAs9szcPJstqcdHUP09rey7e+8z9UHKocd/9MoGAyKRQK/P38iKptIVq6FDwqGQpCT4CC2hEoWKLGcOUMoeCoi+EXhtnj2cPf4/7Oi9e/OGX6YDIVNhdy6Y5L+VHCj4hXxbN+/XriT4rknKJdu+Dqq7EVFJDf3Izdbicn54SIgyThcDrJz8/HbDaTm5tLQEAA+/fvp7GxkdXLV6Pepcavzw9PtocgfyumnUbo60XSBaM2lWP4zTbv67AAB58+LYxdljXq/tI/2QaCIGgFQfAb/QHm/hvsU6bJpjLGxQSTuXbM+tTucKNUKjhS187ytGh6+8wUFNcT4K/nrJwUr3mRxe7iwxUbGKg8NvEBf3QH5L80DgpAntqWEBfMBWenszghhMqadt7bVUXN8TbOff5mWk2dvHnV42iVGnlkc9keSN8mewl8knrqFVizXT7pfQx5PCKHq9v4ML8aATgnN5X0lKjZt+jVN0LljLNm06qppY8P82u8UCAhkbwoGL9lbv7b/PbkD5QkGQYbmuW/+TxAAYDeR0NYiJ57f3r/KVAQFBTESy+9xGWXXcbSpUtJSkpi0aJFxMfHExsbS3R0NBEREQQGBo5r4xuVKIpYe234W8/DZnFRk1pDt7sbUZRh2FkzAgVLZw4Fzionw/8Z5kPPh/wt7m9TQ4HLBT098u8JtDluM6/d8Bq/bPwlVa4qSkpKqK6unro9dP16uPNOfOLi2LJlCwaDgd27d9PT0yPfLwhoh4bIve8+/ESR3bt309fXx9q1a0lMTOTA4QM4z3LSF9WHqkBF/+/fwHjWEGg1CFoRV8BaLK9YkDzSyO4WpjJ+VvW5jRgIcmL2NSBQkqTsKbb7OfCzk2//PEcMRjVZ5KClrZ+9ZY3e7Xx0apwuDyvSoqmsbsfXqCV74xLcbpG8PXXekK5SqWDz+sWEBxsnNkHqG4C7fgEP/g9EnRr6HBq2UXb4OH29Vo7a69m6Np2NienegsQlxijeK0uC798OcRNMZjxT6uiWIwbrV846etHVPUz5oWYsViepSyNIXTLLKMHJmsK2eqYSJYnDVW3jpm7aFRYuys4gKMDA3R/9mt+VPjG5CVJvP+RcBT//Hnzpoo+1lqk0V90HkiRhsVgYHByUf/buxeLSsmz4LJSSkrLYMmwaGyCnHZbplhFYGog6RY3hcsOk8wtOlOOgA8ubFv7Lf3kh7gVeve7VqSMF5eWQkQH794+zNT5Zhc2F/KH4D9y79F7qa+tJSkpi1apV07czuly4gKKiIvr6+sjKyiIyMlKOyN15J6477qCwt5f+/n42b95MWFgYBw8epL6+nhXLVyCVeYg4HoU72U3QuUGYd5gRbSI4RNTmIxi+n44QGuR9fRciB58OfeFTCYIg/BW4ENgsSVLrFNtpgRMvZX2B1i8CGMDkcNDWMcie0mOMvjtkOHCzMi2Gytp2fHQacrOWIAgCBcVH6R+QSzgESWT9gRLif37HqSeo9i644jb46wMTFqON+hRoHUbuXnwXTqtETFQA6SlRDIoDSEhj5kdzcAL8JGS1OTlY2Upr+wChwUbWrIjD3+/jDS4C5Ir/xPiPnWZxuTzsLWsY513Rr+ngtnMv8F5Zz8gh0WYHn0mcGedA8+pT0D6MaYcVUa2lO6ub2s5a7HY5ahI+HE56Rzpdfl0MrxsmKTmJ4OCJvTlGZS+xY3vfxlPCU7wV9xavXffa9OmDwUHIz5e9DAICZrTuoooi2mrbiI6OZsOGDZMXVZaVweWXw86deBIT2bt3L52dnWzYsIHY2LG5FW6bjaI9e+gdHCQrK4uIiAgOHz5MTU0Ny5YtQ6wWiaqOQvTtJ2idA/MHGkSXBtQ+qKJEjLdEeAsxF+Dg06EvNBgIgvAX4DIgR5Kkxmk2P/mxn/sag5M1GRy0dw5SVDIeDhxON6vSY6mq7UCtVpCblYxGo2LvvgY6uoa8+1y5LIalSRMURI2e0CVJ/hm5sjnZvGhFWCpNLX0cqenAZnMSHxtM2tJInAob9/7rLv7wr260T/15zvL8p61nXpWHPM2wZdHtFqlv6KK6rhOVSsHKZTHExZxmx8FkcrlgURZ87Xr4+V2z3o3Z4qCguB6TWY4ASaJI17//TXSAhov+fD9av7GUwIlw8O8LH+LLyy+HmqOyFfOjv4bAuZnhMJHmDQqefRZPxlbM78tzCYw3ySOORVGko6ODnqIe4mrj6PDr4EjEERj50/n5+ZGRkUFoaOi43UmShL3Ajj3PziPCI+yO283r170+q5qC6eT0OFn68FK2BG3hQv2FBAYEsnnz5om9DiwW+MlP5J/QUERRpLS0lJaWFjIyMli8eLG83XXX4RkYYO9PfkJnVxcbN24kKiqKI0eOUFVVRVpaGu4GNzGHosHTTcAtsVhfseGxa8ADqjglxgtBCPTzvh4LcPDJaqZg8AlXcc2tRtIHfwEuB7acLhR8UTVacwDw1a//EICv3HQFUREBbNqQSFHpMSQJbHYXPj5qDhxuYfXyWGrqO9lVWEtuVjKb1idSfqiZhqZeACqOtGJr72Zl9vghLl4ouOVuiImEX949qaPhorgQ4qKDaGjqpbqug6bWPoLDfDgsmXlf0cya4U6i+YTA4KMiMOqnBQNRlGhs7uVITQdOp5vERaEsS4ma1JxnVlKp4PUnP5ZvwcCgld176nC5ZN8Ap9NGx29/h/XwYVSpSSi14ztGBEHg4W0/J1DnT0bEMvnG/iHoHwTl/JUuzRsUWCx4HvgL5ms3QaAe35vGxiMrFApC+kLQ1+kR0gTciW7UjWpcI/n/4eFhdu3aRWJiIitWrECtViNJErYPbTiKHTwoPEh5XPnpQUFPD7zyClxxBZwEHBNJo9Tw9OVPc8GOC7BF27hWeS0fffTRxF4HBgP88Y/yv0URhULBhg0bUKvVlJWV4XK5WLp0KdxxB0q3m41ZWZSUlLBnzx42bNhAeno6CoWCyspKUlJSaFE0EnUonsH/Ogm4NhjrG1Y87Tbcx8B8fzXGB7MRdEpvzQHAnXfeCbAAB59Sfa4iBoIgPAJcD1wKnFiFNSRJkm2G+/jCRQxGNVnkoKNriMKSo94ech+dGrvDxer0OOoauvB4RHKzkvE1ajlS20FVbYd3n7EqD+svWIvy5Jznw/+CyDAGLtw0I0dDt1uksbmXmvpObHYXlbbDFFkKeOLK+0kImPlwmTMlUZRoaevnSG0HZouD+JgglqVEfWpaEE9Ud6+JguKj3nHb3dYOhu/9La62dgSFglvzXiR63RQnXLcbi8fBR83FXJx01ryleOYzfeDp92D69xCCWonvl31R+I29Xx0VDqyvW9Gs0qC/SI8gCLjdblpbW6mtrWVoaCxSptPpWLtmLf4H/XEecHKvcC918XW8fu1pRgrKy+ViwdLSKWsMTlZhcyEX7LiAc6LP4dagWxFFkezs7Im9DqqrZfB49VVISUGSpHGpgrS0NBnqJQmxtJR9QHNzM+vWrSMhIcE7qCk5ORmxTySiNAKtzYb/BRLWFzrxBCWDoEAVq8V43dggqYXIwSenL2QqQRCEyZ7MVyVJ+tcM9/GFBQOYORzofTRYbU5Wr4ilobEHu8Mtj2f2158ypCksxJdN6xNRn3SVPBopGGxr4sWvPTMjR0OPR+R4Sx9V9e3YrG5U7cdJz0hh8ZqUqQcLzZdOqnVwuT00NvVSd6wLq81FZLg/y1OjCPCf2djc01b/IHz1+/CbH0FK0mk/vK1jkD37GrzV7PXWOjx/+AfSIdkNc9PdX+ecX/1g6p188ydU9tWzfHX5jEY2z0bzBgW1tXh+83dMy3+KoFHIUOB7AhQcdGB9w4pmjQb9dv0pqR9RFDl69CiHDh1CFEUESSC9I51wUzg/Uv6IhtiG04eCj6nC5kKueekaXrvqNQZqBzCZTGRlZRHmF4bYLyIOiHgGPYi9TsR9dYghi0GvQhmqRBmipMPRQXVXNTHpMaxYtQLhlVfgS19COnKE/WYzDQ0NZGRkkJiYSH19PQcOHCApKQm6rYRWxKPHB78v+WIvdOJucYMASlU/vreGIwTJNuoLcPDJ6AsJBnOhLzoYwORw0Nk9TEFx/alwsDyG4839mK0OcjKXEBxkoK1jkL37GhBHNvYXRHLOXeWdsDgKBZkfHuUPO1WoDn4gT1GcoSRJorK6hs73DzKwKBmVSkFcdBCL4kIICjz1C3zO1dsPmZfCw7+E87cwMGilsbmXptZ+3G4PcTFBLE2KIGAuCgunUs1R+PbP4Jk/Q9gkEy8nUUNTL2UnzMo4YD6AtqgQ4Z+FAIQsTeT2ktdR6aaJcjz/OpLHw52hB2c0svl0Na+RgjeLMO0NR4gMxvdmfxTGE6Cg3IH1LSvaDC0+F/hM+Z6yWCyUFZcRWRFJsCWYw1GHaTG2kLkuk6RFSfP/fjxJdrcdnUqHzWHj0HuHCDoaRIhl7PMl6AUUAQoUgQqU/kokh4inV8TT40Gyyp9Zl8KFLdZG1NmRqOuKYOtWJEniwIEDHD16lFWrVpGcnMzRo0cpLy9n8eLFCA6BoD1B+Lv9MJ4r4djdj3vYH0QXSqMD3+8sRtAtRA4+KS2AwSy1AAayThcOVqXH0No+yOCQlc2ZSYSF+NLbbyZ/bz1utxyiVigENm9IROuHN32w+4K/sjy/Ab527axD0GaLg5dL8/B3hOJ0iOh9NMREBRATGUhQoGFu2gBPliRh+vWjtOdm0+RUMDhsQ6dVkRAbTNLisFNcHD9tqjvWxcHKsWad/MF8glw9qL/7CqLbjaBQ8NWPnic2c4owdlfvOJibUbfCaWreoMDpxDOkwPSMGcFHwPdG3/FQsN+B9W0r2nVafM6bGgpAHpts/o8ZR4uD0ohSzL5m733h4eGsXbt2ZnMNRlVfD3feCQ8/DEsmni8x5XokCfdxN+WvlpNsScZhcHDU9yjh6eEkrk5EoTshtdfRARddJB9r40ZEi4in10NPWQ+KWgVajxZFhALtai3aY+9A5hoODQ5SW1vL8uXLSU1NpaGhgbKyMhISElCKSvyK/Ai2BGA4V8C1sxWXFAcqAWWoEuP1RhQ+Cu86F+DgzOkLWXy4oLnTZAWJEWF+5GxcQv5eGQ6sNid6Hw0HK1tZsSwapVKgYG89WesTiQz355ycFHYV1uJwehBFify9R3nL/Jq3pmB5eBos3SAftOwQrEwF9RT2yhNpsAvfn97NQxcG8Oh1/8I5pKK5tZ+6Y92oVUrCQnwJC/UlKNCAv58PqlkUx0mShM3uon/AQm+/mY7OIUzL1qPodxIZ7k96ahQRYf7zAyGTqb0LBoZg2anjkadSdV0nh6vbvP9/q+8t4qN9CLunjD63POVw8z3fmBoKmtth7Xa59fTqC4GxgkSADnPP6T2XCTRvUCCKeK77JqYVP0MI95MLDQ1j7wn7Pju2d23y9MBzp4cC0Spifs6Ms8fJlVyJv8afe6LuoaNdrrXp6uri3XffZcWKFSQlzTB6oFSCn9/EfiBTSJIkXPUu7IV2PG0eYoNiuc12GwNBA/zf6v/jQO0BzDozq1atGltHaCisXCkXJQIKgwKFQUFUfBRNjU1U76om0ZGI77u+2O2r0VUfZPlPLkapVHL48GFEUSQtLQ2FQsG+ffuIi4tjeNlx3DUxhH8Yjv7CFDjmxlXtxNNhx3z/MYw/TEER6LNQkPgp1ULE4CQtRAzGa7LIQVfPsBcOYCxysDw1mr4BM51dw2SuXURMVCD9gxY+yq/1phXcoou4VAObU07wMujug5Qt8Kt74JtfPr1FDgzh3HYtN20ZZF+ijl3XP0OsXxT9Axa6e0x09QzT129BlCQEAfyMOowGHXq9Br1eg0Ylj5tWKpVIkoTHI+L2iNjtLixWBxark2GTHbtDrkL30amJCPcnSgvhzcdRnTf3w5RmpF/9Gf7yJDQXjxtUNZkkSeJITTtVdWNTMl/seZHUJRFsfsfG3j8+AUBUxnJu2f0CyqkATZLgH8/DdZeA0XDSXZL3pFPff5wlQQmn/dTmNX3Q48H0WDcKnYjxG5HjoaDUju09G9pMLT7nzAAKTCKmHSacw04udF2If5y/t6agra2NsrIyHI4xh8zg4GDWrVs3598tkijhqnZhL7Lj6fKgjFXis9kHVaKKopYizn/mfNZHr+cvG/7CkUNHSEhIYO3atacaIU3gD9La2kpxcTExgTGkDyTiqlGh8FOg26KjQdXA4crDpKSksHz5cpqbmyktLSUmJgadVoeqUEXMUAy6bAHxmfdwxp0DogNlpB7jjX7e134hcnBmtJBKmKUWwOBUTQYH3b0m8vbUewvXDHoNFquTZSmRDJvstLYPsH51AvGxwbT197Bzdw065VgR3tpV8SyOP6GuYM/+2bsJShLNwx1sefYGAPJu2EGs35g7oscjMjRsY2DIyuCQzXvCt9oceDwTfwY0GiUGvRaDXoPRoCM40EBQgB6f0TTBE8/LI477Ds2rmc+kcjqh5hisSJ12U2nEzbDmBDfDHd07WLk0jvuzv4O5s4fXvv5Dmgr3cXvJ64QkL554Rw4HHKmHNenTHnNPaznZO67l7+f/8rTSCvMKBaVHMRWGoDAoMN5oHA8FxXZsH9jQbtTic/b0UOAZ9GB+xozdYedc+7mExYWdUmjodDqpqKigsXGsc1oQBJYtW0ZKSsrkDoUeD9jtoNNNGTWQJAnnYSf2Qjtin4hqsQrdZh2quPFjrwubCzn/mfP5zTm/4aLwiygtLSUqKorMzMwxS2iTCS69FL73PTm1cII6OjrYs2cPISEhbEzZiPPVdlw9/ijDFfSm9VHWXkZycjIrV670gkRUVBQGqw2xLohF/YvQrnQhebQ4K0XQgsLHI6dwArXe57IAB/OrBTCYpRbAYGJNBgc9I3AgngQHqckR2Owujjf3kZoWyi1F36F5sIMnM/6GuV/07jctOYJlKVHjv4Sr6qC14/THGpvMDN/3a/4nY5DfXP0bfLXGGT43CbdHxOP2ICgEVEoFSqVi+pDvkEmel3AaRZOfhCRJ4mBlK/UN3d7b/t35bzJSF3N/9ne8z1OSJHqq6gmbKjXx+8fh1w9Dbd60ky5nU3Mwv4WGezEVBqMI98N4exgK/QlQsNeO7UMbuk06dFt100NBrwfTDhN2yU6uJZe4uLgpuw+6u7spLS3FarV6b/Pz8yMrK2vi75kZWCJLTgnLGxZcVS7US9TosnWooieH6vq+epKC5FRGe3s7e/fuJTg4mE2bNqFWq+VowTe+AdddB1u2TPgcCgsLCQgIILuxEeG1UqyX/gZPu4QtycZeYS8JSxJYs2aNd/8RERH4arU4yiSW9C5Bk6EGkwVnnQYcJhQqO753J3nrOxbgYH61AAaz1AIYTK5J4aDPRF5RvTdU7+OjwWp1sjQpHKvTTkvzEC/2vcBPLvwKK8NSqahspe6Ek1R8bBDrViWM5ee/9gM42gi7Xji9gsSePth8JTz8C9iWQ21fAzqVdsxG+fOk2/8HEmLlAVVTSIaCFuobxnL+/+j4B5lpS8dBwYzldEJ5JUxVf3DS8WcKB/MKBd0eTE+bUHiGMd4RjcIwdhVuL7Jj+8iGbrMO3ZbpocDd4cb8rBmb2kaWKYukuKQZtSS63W6OHDlCbe2YxYpSqfQ6Co5Tfz+89x6cdx4EBZ36fPo9mF8wIw6KGC4xoEmbebHr67Wv88i+R3jsrMfYX7IfX19fsrOzx7skjp4XTnotent7KSgokB+zaRManQ5HqR3bLjsetYeKoAr80v1Yu3atN8oQFhZGYGAgw3uHSe1MRZPgQFHwAY64i0EjofBVynUevgtwMN9aAINZagEMptZkcNDbZ2Z3Ud0pcLDPXkyffYDzAy5gWUoUackRCIJA7UflVJhERn1lx3kdWG3yMBe/WUzlc7lgxHkuZ8d1tJm62HX9M/MHBw8+An7G06+L+Lj6v79DRBjcePmkm0iSxIHDLRxtlKFAQuKxjsfYlJbG/dnf4fjuYiJWpuIzzZU/AB8UQHw0TJZimEKjcFDUWk7pV15Gozz1JDavUJB/BNOeMBRBWjl9cEKkwFZgw77bji5Hh0/u9K2l7hY35ufMWIwW1g+sJy0u7bR9Cvr7+ykpKcFkMnlvS09PJzU1dUag5qxzYv2vFcEgYLzaiDLs9AoUR02Q1kWt45kLnmHf3n1otVpycnLQ6/XyZ+/GG2HbNrj11lMePzAwQH5+PjqdjtykJHRXXonnz//C2pyIu9FNu1871gwrGVkZdHd3U1RURGhoKIFdXQwMhZPemY56iRplsBLHXgeCWkRwDuF7ZwyKIPm9sQAH86OFscsLmhdNNrI5JNjIls3JKBSCbJ9sczLoGWCdLpNrll5EemoUR2raOVTVhiRJLD1rDRvXJXq/CLt7TewsqMFmc4LeR4aCzh45ejBsmmpJ46VWg9OJ8NCjPJd1HwBbn72RpqG2aR44Sw0NyymFM627bz9tKHi0/VEvFAw0NPPcVbfzt3UX0rCzaOpjSRL84o/w0N9ntdTRboX8G55Fo9Rgd48fVz2fUODucmPa6YuirwnjjYbxUJA3AgW5M4MCV4ML0w4TpgATawbWzAoKQB4JvW3bNqKjx2C1srKSvXv34h7pCqG/H555Rv49IkmSsOXZsPzHgipehd+tfqcNBSCPbH7nhnfY176PG9+5kczsTNxuNx999JEMKyoVREeD/8TzLgIDA9myZQsOh4NdNTVY169HGeOH8QYj+ov1RNoiiS6MpuL9CsLCwti8eTM9PT30hYYSvDGYg1EHcR114u5wo+1+B8mlQHQqMf17GHFITjMujGz+ZLUQMThJCxGDmWmyyEFfv5ldRXV4PCIePOi0KtxOWBQfQoCfjgOHW1mcEMKaFXEoBIGePRUUNA3j1stFiTqtmtysJfLEwep6uP5b8NzDp+fq19kDGy6GP/yM5rNXegsS5zVycKYkSfDP/8Dl50+a458ICv7W/jdyli3n/uzvIHk8PHn2tbSWHARg9Ve/xCV/+9+pjztkApUSDB/PwbHfNkjmU1fxg8zb+NrKa+YXCjrdmJ8xo/AD4wUuFLHyzAFJkrDn2bEX2NFt1eGzefoTu7PGieUVC8MRw6zpWMOauDUf29FQkiSqq6uprKz03ubn50d2djaG2tpxNQaiTcT6mhVXvQvdFh26zdOnPKbTaOTgytQreeTcR8jLy8PpdJKTkzOxhfJJMplM5OXlIQgCubm5GFUqcLnwePQMPD+A0CPQs7iHpC8lMTA4QEFBAYGBgYRptbTXWVjTugp1oAeV7zCOplAErYCgA+MNBpTBau9rtBA5mDstpBJmqQUwmLkmgoMB+xBffvHHfMlwA1qlFkEQ8NGpsNpcxMcEERriy/6DTcTGBLF+tVxXMFx1jLxWCzab3A6oUirYtCGR8FA/EEV5AqMoyvnOmX4Zmi3eNrrmoXa2v3grfz335+TGbZj7F8JmB4Uwo5bBj63aY7D2InjzScjNPOXuiaDgkfZHyF22wltTkPe/D7P7F38EIHBxHN8ofQPNSS2HgFxY+aMH4Ud3nrar4mQ6sebg4S0/44V7354fKGi2Yf5nH4pQLcZbgscZ6th327EX2vE52wdd1vTdJI5D8qyEwbhBVresZl3cujm1OW5ra6O4uBiPRx5gpVar2ZyVRWhAAKjVeHokzC+akWwShssNqJNO0+djCu1t2UuUbxTxAfHY7XYKCgowm81s3ryZ0JAQ+P73ZZ+DH/1owsdbLBby8vLweDzkPvccfnY7vPIKkkei560eVBUqLAEWIm6KYMg9RH5+PgEBAUQOD9M0pGNtx1o0QRrUS1XY8x3gsSJIDny/G48ycGzM9wIczI0WwGCWWgCD09OJcPDwoz/jSellGgZbeOvif9FW5cIjiigEAZ1Ohc3uIiYqkOiIAErLjxMR7sfGtYtRKhXY7S7y3y5jcCT/LAiwblUCCXHBcuvWtXfAprXw3a+dzuLgyRfg4m14QgJQKpR4RA+9tgHCDXPUSdDeBUnZ8NKjsP2sudnndOrtlycpngRJM4GCtn0VPLHlS0geD4JSyS0fPU/MhtUTH6euAS65FZ75E6xdMWfLlySJ29+4l8fv+Q80jb9vTqCgw4356WEUHTUYLxVQbNnoPa7tIxuOPQ58zvFBt3F6KLCX2bG9Y6MvqY/VDavJjMucl9kHQ0NDFBQUeLsWBEFg9erVxNnjsLxpQRmkxHC1wXuynGv12/q5b9d9/Cr3VxwoPUB/fz9ZWVlEPv44BAfDFCdjm81GXl4eDpOJ3PBwAnJyvPd17e9Cel9CKSjxvdIXS5CF/Px8/Pz8iIqKoqGsgfXNa9AY1Wje/TP2rLsQFC4waPD9si/KoAU4mEst1Bgs6IzoxJqDO575OdVdx9h53VNkJqazdXMySqUCUZKw293otGpa2wdpaRtg47pFdHUPU1hyFLfbg06n5qz9BUT2yOY7kgSlB45zuLoNSaGA1emw9DRHLA8Mwc9/D2/tRKmQv2B+kv87Nj519dzVHESGwSMPzMhL4GPL6ZRhJyRoVlDgtFh55avfRxq5Ms3+4f+bHApALjQ8/P6cQgGA1Wqj9s8N8wcFz5hQBKsw/mr9eCjYOQIF584MCmyFNmzv2OhJ7WFlw8p5gwIAf39/tm3bRlhYmHyDCOZ3zVhetaBOVuP7Vd95gwKAo/1H+dfBf3HFS1eQkZlBeHg4hYWFNN9885RQAODj48OWLVvw8fdnd38//b29UCTXrYRnhKO4XsGQZgjr81Z0lTpyc3IZHh6mtbWVJFMTxfFlOJwijvO+iy5XhySqkZwSpsd78fTKNRejNQd33HUHdz59Jw8//PC8vRYLWgCDBc2BvHCw9FYsf7RS8X4NAEGBBs7avBTVCBw4nG50WhUd3UM0NPWyaUMSfQMW8vbW43S5Uf3qHjbdcgFJi8bmz1fXdVKyvxHPD78JF2yVb+zum9nCggPh4Hvw1S95b/rm6huBOSxIFAS4+WqIifz4+5pOjz8HK86VAeEESZJE+aHmKaEA4P3/eZD+o8cBiF63kpzJWh1fex9u/LZsZnS69tTTaF5rCjrcmJ/oRdFdh/EqDQqD3NMvSRK2D2w49jrwOd8H3YapoUCSJKw7rdh32elc2cnq2tVkxWXN+5TE0c6AlPgU1rSsIXYglpqwGkr8SnB4HNPv4GNoffR63r3xXUrbSrnshctYuXYlcXFxFBcXc/ToUfj97+Huuyd9vE6nY8uWLfj6+rJ75056vv51OHYMgLD4MPxv8KcptAlnvhPV+yq2bNyCxWKhKSmJ5JUJ7I3ai0N04djvQOdXDXYRacg2AgcyyFpcFirSK9Ccr+FbP/vWQkHiPGoBDBY0J1IoFPz9749x25VfG9etEBigZ+soHIgyHGg1Krp6TNQe7WTzhiRMJju7i+qwO90oFApWS2ZWvfKSd9/NbQPsLqrD4XTD356SPfr7B2e2sOCRIqrXP4CuXuL8o9h9/Q5gDuGgul4+ac+3Nq2Fb90MmrF2v1EoOHa8V/7/JFBQ9/ZH7H/8WQDUeh8uf/J3k1seKwTw8TmjUHDhLy9kn2ffJI+cXnKkwIzC6MFX/yEKf/nkL0kStvdtOEoc6C/Qo1s3PRTY3pUjC+1r21lbufaMQMGoxA6RuL1xBEgBlMeV0xLYQl9/H++//z4DAwPzeuzNcZvHwUHG2gyWLFlCeXk5VQEBSFrtmL/BBNJoNHLhYlgY+T//OV3GMYOx0PBQ4q6O43DcYRyNDoSXBHLTc7HZbBxvbyd1+SL2hu/B7hrGYV2Czp4HPn6g1GJ6yoSp3cQFOy6goquCXbfs4q6vLHQrzKcWwGBBc6bJWhkDA/Sclb0UlWoMDjQaFb39Fo7UtJO9MQm73cWuwjqsNifC0kSSY4PYtDzKa3rUN2Dhg93VmC48F371g2ld98bJZIY7fgI7XgUYBwePHnj24z/x4gPw04dOuZKfc61aBrff6P2vJEnsrxgPBQ+3PXwKFNgGhnj9G2PFY+f+5scEJyWcun/7yFXpxdvg8d/IRZ9zpKmg4MMPP8QYZ+S2N27jH+X/OO19u9vdmJ8aRhGswPf/RSHc/xPghJN8qQP9hXq0a6cuDpVECesbVhxlDloyW1h/YD1ZsWcOChzlDkz/NqHwVxD4jUDWXLTGazpkt9vZuXMnzc3N87qGUTi4Lv06VEoVq1atYtmyZVQajVRcfTXTVaSp1Wqys7MJDQ+noKCAjh07YGTNwcHBLL9kOfsT92NxWOAlyI3OxeFw0NDezrLWOvbElmE1uLAHbEWX64PkkJCsThyPWwlvC+e9G98jKy5roZVxnrVQfDgiQRDuAO5AhqWlC8WHs9dkrYyDQ1Z2FdbicosoFAIatRK3W8Tf34fVy+PYU3oMQYDcrGSMBvkLsb++hfzaHpwj8wxUKgWb1ycRFuoLRWXybIWZXNm2dkB0xLjcfLelj2CfsaLE0TqE05bLJfvZz+GJ9BT99d9yzn9bNiCf9MoqmmhsktMqo1CwNX3VKY6GkiRx4MkXePeeB1iUu4FrX37s1FY3pxPOvg4uOht++M05XfpM0geSJHHn23fySNkjPH7x43xtzcyKTN1tIzUFTeX4LqpEuOc7wEg64G0rznIn+ov0aFfPAApes+I84qQ5q5ms4qwzBgWSW8L6rhXnASfatSMTHSsOQEYGtpISCoeGxkULUlJSSE9Pn3zOwhzq2cPPcunSS2lvaufAgQMsEkUydu5E8dhjU3YIeTwe9hYW0tnWRmZvLzHf/rb3vsHBQQp2FZDankpwfzDCeoF8ez5qjZqkpCQO7z/Ehs616G1+aIr+gmPt7SAoELUCATcHoIoYSxEtFCSenhaKD09TkiT9VZKkNGD9J72Wz7omixwE+Os5KzsF9UjkwOnyoFQpGBq2UV7RxOYNiSgEgY8KahkatgEQdPfP2faPR/E1yiFgt1skb28dxyoa4MKvyF0HM1FMpPxFVrgPOmQ75jBDMEqFkt1Nxaz454WzTyuo1fMLBZIEb3wI+yoAECWJ0gPHx0HBX9r+MiEUgFy4teaWa/hG6etc/LdfT9z/rlbDdZfCtpxT7/sYmmlNgSAIPLz9Yb659pvc9sZtvHv03Wn37W5zY9phQhGmxPcsC8KtNwEjUPDWCBRcMgMo8EhYXrXgrHLSlN10RqFAHBIx/duE85C8Vv0FegSlAHFx8Pjj+CxezFlnnUVCQoL3MTU1NRQWFuKc5whV23Abt795Oxc/dzFR8VFs2LCB44LA3uXL8TimrnlQKpVkZWcTHRXF3sjIcZGOgIAAcs7KoSqmiuaYZqRSiRxzDpJDor6+nhWDPRSHFmPyHcK6/nYeFR5FUihQKpSYnzLh7hhfkLgQOZh7LUQMTtJCu+LcabLIwdCwjY8Ka3C55MiBWq1EFCUMeg0b1iyieH8jNruTnI1LCBoeAsAVGc7esgY6u8cgd4lBYGXuChTqGU5jtDsgdSvceAX8cqyQqnmo/eObIN1xL4SFwM++e/qPnak8HkSFgtL9x2lukx3xJCT+1PonzlmeMbvZBwCNLbAodo4XO7tCQ0mS+Ef5P/jyyi+jVU1+Qne3ylCgVA/he0c8gnZkEJQoYX3T6j3RalfMAApetuCqd3E8+zibCzefMShwHXdhedmCoBYwXG1AFTn5+1iS5JPmwYMHvbcZDAZycnLw9Z2FdfgMdaJ98hvXvcFQ79Cpw5emkCiKlJWVcfz4cdY2NrL4Bz/wRhpMJhO7d+8m2BRMaksq+ML+8P04tHYWCSKHTFbiWuJIcaSgW+bCcVgApx1BJ3tTqKIWIgenq4WIwYI+cU0WOfD38+GszSloRoDA5fKgEASsVid7yxrYmLEIo0FHXlEdPQZfiItC7XKy+a1XWRI75shWb5HI39eAs+ywXFw4nXRa+OBZ+Pld426ek4LEJQmQEHP6j5uJGlsAEAUFxWWN46Dg962/nxAKRLeb4/kl0+87rxiWb4OyQ3O65Nl2HwiCwG0Zt6FVadnXto8nDzx5yjajUKASu/F9YCPC8EiNxUiNgPOQE8OlhumhwC1hedGC66iLxtzGMwYFkiRh32vH/IwZZbgS36/5ngoFAwPwyivyb+TXJTk5mdzcXO/J2GKx8MEHH9DR0TFvaz3RPvni5y7GP8Sf7Oxs+ru7yXviCRw225SPVygUrFu3jkSnk7JFi6g/YYCUr68vW7dupd+vnwOJB8ADGQ0ZGE2+7DF1s6N3B+2xLQwF9uCoVKM98jxofZBUakzPmHC3LUQO5ksLYLCgedWUcJB9Ahy45ZYkh8NN0b5jrF8dT2CAgfy99XR2D8GxJhTPvMpqj4mMlXHe9GZ3j4kP6voZfurVKSumvUpKkOsBquqgrdN784lwcOMb3+e0I2nf/Rp85arTe8xMVFEFqVvx5JdSVHqM1nb5RCEh8X8t/8d5y9dPGCnIf/AR/n3uDbz17ftwWaf48t68Dh57EDKWz9mS56ol8aWql7jl9VvGFSS6W0agIEKF8XtLEIrzITR0rEbgsBPDZQY0y6eeNii5JMz/MeNqdNGwpYHs/OwzAwVOCcsrFnnE80YdxuvHD3XyqrERrrxS/n2CwsPD2bZtmzdK4Ha7KSgooKam5vTfszPUKBz4qH2QkAgLC2NrQAAWvZ5du3aNGyU9kQRBYM0NN5C8ZAkHDh2itrrae5/RaGTr1q3YfGwUxxYjhoikHU0jaiCKm6O/wqqdH7I/+CD90QM40m9Cs1YPkgAimJ7sx926AAfzoYVUwklaSCXMjyZLKwyb7HxUUIPT5UGhEFApFfJvlZLNG5KoONJKV/cwGzIWERvkAz46kCS6e4Yp2tfoBQqVUmDjukQiwyce/DJObjekb4Nzs+HPvxh3V/NQO3aPg+SgRaf3BD0e2SkwOmJ2UyEnk92B+62dFIYn0t1nBkBC5MHm33Dxys0TQkFr6UH+ufUar7vh1/JfIurkE39bJ/QNzLkx01z6FJxckHhz6M2YnjWhcndi3NiLcNZIIaYoYfmvBVeVC8MV048glpwyFLjb3Bzbcozcj3LPCBR4+jyYXzQjDo2MSk6dYp1uNwwPg5+fPNToJLlcLkpKSmhvb/feFhsby7p161BNsP1c6lj/MSKMEXjsHvLz8xEEYUYpDUmSqCwooLqzk2WBgaSdc473vWu1Wtm1exfdQ92IjSJXeK6gPbydhvBjpKUv40D5AVaaVxDSGoqmcyfOkI3yZ85oxPcGP1SxC2mFmWghlbCgT5Umixz4+eo4OycFrUaOHHg8Ip6R3/l761m5LIaY6ED2ljVwrGtkiuH//JqwB37Pti2pY0WJHomC4qNU/+pxpMFJ3++yVCp45e/w25+cclecfxTJQYswOczc8Pr3Zp5W6OiG1RfIofk5lFOpZHfoYi8UiIj8sulXk0KB02zh1RPcDXN+dMepUABw/x/hy9+Vv1znSHNtXnRiQeI/3vgH/U/3o4pQYsy/B6FoNzBWOOiqdmG4cgZQ4JAwP2fG3e7m6NajZwwK3K1uTE+aQAS/W/ymhgKQ36NBQRNCAchtgZs2bSItLc17W0tLCzt37pz2Cv7jyC26uWDHBVz03EUodUq2hoai6Ohg10cfMTg4OOVjBUFg+dq1pNfXc2RggMOHD3ujHKJK5M/df2bQM4h/ij9CtkBUVxRpzcuoPlTNah8dFep9dEW34Yw4G02kDQxGEARMO0y4mlzeYyxEDj6+FiIGJ2khYjC/mixyYDLLkQOHU44cyO2MKiRJImfjEo4d7+FoYw/LU6NIKcxHcLvh6zfgcnso2d9Ie+eQ9xhRvmo2ZC9DrZ5B+2Frh1yRHz5+dkLrcAc5O64HZliQKElQUAqrl4GvceptZyj7mx+xe0hg2Ci/D0U8/Pz4/Xxp9bZJCw3f+OZPKP/nfwCIXr+SWz76D4qJTi4WqzznYclpRkYm0Xw6GrqaXPQ/048nzE3kV6IQBDeoVEgiWF6x4KobgYKUqU+2ol3E/KwZsVekfms9Wz7YckagwHXMhflFM6oIFYZrDSh0M7gea2yEn/4UfvlLWDT136i1tZXi4mJEUR5ZrNFo2Lx5MyEhczQP5CQVNhdy/jPnsy56HW+n/S/Cj+8j/7vfxTIymTE4ePqBW7W1tVRUVLAkPp6kVWlsf3Y7FZ0VvH3N21jqLdjtdnLicuA9sKgtHI6tIPloBQeTk0l1pBHZEIk6TYWrxgZuDyhUGG8KQJ2wMJVxKi1EDBb0qdRkkQNfo46zc1LRaVWIooQkSjidbhQKgd1FdSyKC2bZ0kgOV7dTsX4T0m3ySVvd1Mqm9Ymkp0R5j9FucvHB7iqGhqe5cvJ44Pyb5HkKJynGL/L0ChIFAXI2zBkUmC0OdroMXijwCG5+3PiTKaGg9s0PvVCgNui54snfnQoFTzwvw5BB/5mBAvNzZvRBIpF/vxJnUy3vHP9QhoKRbgLD1TOAApuI+RkzYp9I3dl1ZwwKnJVOzM+bUSeoMd5gnBkUgOyN0doq/55GMTExnHPOOfj4yM/D6XSya9cuGhoaPs7SJ9WoCdK+tn1sr/oxnjdfZcu2bfj7+5OXl0dXV9e0+1ianMya/Hzqm5p46KWHONR5iPdufI/NizezZcsW9Ho9eU15cCUYlUbWNKylYdE6Vq1eTbXmCK2LmnBVuVFVvgeiCwQ5EuRqXIgczIUWwGBBZ1yTwYHRoOWs7BR0WhUeUZKrtx0uNBoleXvqiQz3Z/XyWOqOdbHvQBNicTmsOBehcB9pSyPJzkxCpZTf0markw8+OkJza//kC1Eq4cnfwa//Z8K7T+5WMDnMUz+xglL42amQcboaGLLyYX4NFoV8UncrnHz/6N3cuObCSaHA3NXL6//vx97/n//QTwhKTBi/kckMDz4Cr07vETBTnQkoUMWoMJ7rREhezI7297js2cuo+kcVrqMujFcb0SRPAwVWEfPTcm6/9uxatr639YxAgb3MjuVVC5p0DYarDQjq02glTU6G3bvl3zNQQEAA5557LqGh8pwRSZIoKyvjwIED3kjCXGoUDqp6qjjSW4WmtZWcxx4jJCCAgoIC2tqmB+noS7ZT0f4maao0dmzYwYZoeSS6VqslNzcXo9HI7srdeK7woAvSsbphNW1Frax66y3qFVU0LWnCnXYhqqWB4KMGAczPmnAdW4CDj6uFVMJJWkglnDlNllawWB3szK/B7nCjVAhIyNBgtTnJzlyC1eqg9MBxIsP92Xi8GuXVF3oNhkxmO0Wlxxg22b3HWRwfwqrlsV5omFCDw3I6IPDU4sXmoXbebczn66uunfoJPf0KPPo05L8kQ8cs1NU9TGHpMTwe+cvcpbTznZrv8c31100KBZIk8dwVX6f+nV0ALL3obK558dGJPQ0GhiDAb0rXuplqXqHguAvz82ZUEWC8QovgpwdAdImUPFJCwlACZevLuPj8i6fcj2gWMT1jQrJK1Gyt4ex3zp53KJAkCXu+HXu+HW2mFp9zfGbnLzELiaJIRUUF9fX13tuioqLIzMycl6JEi9OCQWPAc+wofOlL8PQzlAwO0tbWxrp168YZM50os9Mszz7orODVc1+m/9gA0TExbNiwAeXIZ8flclFQUMDg4CDZmdlo87S4j7qpD68lZIOeimPHSHAnsKh+ESpND26zBjxK0OkxXuuHOmkhrXCyFlIJC/rUa7LIgUGv5eycFHx0cuRAEMBssWPQa8nfW49Op2bT+iS6uofJj0nG5ZFkV8DCffgadZyTk0p8bJD3OA1NvXyYV82waZK2PVGEs66Bn/x2wrvj/KO8UPDU4VcnTyvcdAUUvTprKGho6iW/uN4LBbqeNr5RfceUUABQ/s//eKHAEB7CxX/73/HbdvXC//sxDJtk8PmsQEGsCuMrtyJcL0/HHPUdSLGm8NyS57ik5JIpZyuIJhHTUyYkm0TN2WcOCmzv2rDn2/E5y2f2UHDwIBgM8u/TkEKhYPXq1axdu9Z7W3t7O7t27cJut0/xyNnJoDEAcGf179j2LX/sSfFkZmaSkJBAaWnpOEAZ1YlQ8N6N73H24Tayfv972tva2Lt3L56RgtjRuQuBgYEUFBdg32pHs1ZDclcKliKBlUlLOO6u4diSetz2QJSuXtCrQKWQW1HrFyIHs9VCxOAkLUQMzrwmjxw4+aigBpvdhVIpIIoSAX56hkw2Nq1PRKVSUlh8FKNBS/bjj6Izm+G1JwD5C7qxuY/y8kbEkWiCQiGwenksi+NDTv2y3lkEyYsgNorJZHXZWP7EdiRpmoJESTqtk68oSRw+0krtsW7vbQ56+UXxXVx3wdendTQcbGrjv7feTVPhPq579XGSR8dTj2rPfhkM3vrXnIyHnlcoaByBgjgVxi8ZEQ6WgcOBtGET5hfMuJvdGK81okpQcefbd2LUGPnNtt+csh9xaCRS4Jao3lrNOW+eM/9Q4JGwvCa3Teq369GumdpgaUp1d8Pzz8O110JY2Kx20dnZSVFRkfdEq9fryc3NnRenxFGHxPP0K3iufDGq3/+RipYW6urqSE9PJzU1FUEQToGCjbEbZTAvL6cjOpo9e/YQEhLCpk2bvBEOt9tNUVERvb29bNq0Cd/jvjg+cNBj7EFZ8ksOX3UZUYpYkuuSUYYq8Qy5wSaCKGD4ki+apXKqaSFyMPOIwQIYnKQFMPhkNBkcWG0yHFhtLpQKGQ4CAw0MDlrJXLsIo0GOIqiVAjlr4jEEj08FDB1toehwO2bFWBg1Mtyfdavj0WknsHO1O+SiRIN+wnVOa5987g2wbiU88IMZPW+ny83efY109Yx9Rod8uri9/Dvcm3XHjG2ORY+Hxo/2kHjCkCWbzcmw2YFCENCoBDQ6DVqNCuVUKZVpdEagIF6FMaQU4ZytoFB4zYjcrTIUnFh5DvIV4fHB4yQEJADgGfRgflquBzmy5Qjb3tg2/1DglDC/ZMZ93I3h8mk8Cs6gBgYGyM/PxzEy22D0Knw+OhYKmwv56t/O44OnIPyFt9Fl5VBdXU1lZSVLly5lccpib/eBFwpOlCTR/a9/UejnR2BQEJs3b/a6PHo8Hvbs2UNXVxdZWVkEDQVhecWCSWvCc76Hw/WHCJfCSalbiqK1CskvDEnjD2rtuI6VLzocLIDBLLUABp+cpoaDWqw2J0qFgEeUCAky0jdgZv3qBIICZYdEUZTIXeSP3933w9/+VzYbQh68dLCyhYamXu+x1Gola1fGERMVOHbiFUXIuUp2AfzT/ZOu80Q42H39DuL8T4gy/OtFOepw9qZpn+/gkJXCkmNYbWPDcAa1Daz7xo8o++GVfO0bD844DC1JEp3dw3T1DDM4ZGNwyIrTNbFHgUqpQKNR4aNTExxkICTISEiQEZ1uat/7eYWCBhfm/4xAwap2hOVp8PzzSJde5TUjMl5nRB1/6hrL2svY+MRG/nbh3/hqwlcxPW1CUAoc2XqEba/NPxSIVhHz82Y8PR6MXzKiXjSDaZ/TaXgY9u6FjRtlk6OPIavVSl5eHiaT7AMiCAKZmZnExs79fIzC5kK2P30+P9t6P9/P+j4A9fX1HDhwgCOuI/yx+Y+8e+O7p0IBQF8fpKXR+8ADFAQH4+vrS05ODhqNfFL3eDwUFxfT0dFBZmYmoWIoQ88O4cKFw/YCh5aEEmpIIO1IEooALZIHJCvgYZzx1RcZDhbAYJZaAINPVpPBgc3u4qOCGizWMTgIDTHS02tm7ap4IsP8yN9bj83qIOfZpwn65XchMX5sx8eO03bzjyj9/vdwCWNXzFHh/qxZGYfeZ+QK79V3YeliSJu6Grx5qJ3vf/S/PHbBAwTqZuC2eIIkSaKhqZcDh1oQRz5/apWCFt8afvPuT3nz0FJW/fUxhPjJvRNMHd1o/YwotDqaWvuoO9aFyezAoNcQ4K8nwN+HgLID+Dc2In33azidbhxOj/zb5cbpdGOxOOjtt3jBxGjQEhJk9MKCn6/OCyZnBAoSVBivNiKoBNi/Hyl9NebnLbg73fhe54sqbuLiuVGHxPfL3ifPJw+D0UDllkrO/e+58w8FwyKmHXJxo/E6o3ewz8dWeTlkZMD+/bBmzcfendPpZM+ePXR3j6WrVq5cSXJy8pwXRtb01pCsDEPx24eQfvITLBq46z93cbbmbAwhBrZv2e4tMDxFPT0QGkp/fz/5+fno9XpycnLQ6WQjM1EUKSkpobW1lQ0bNhBpiKT3X70oHAqs0Qc5FGAnSAoivSEdQSGCxYrkVIFKi+FyI5r0LzYcLIDBLLUABp+8poKDXQU1mE+Ag/BQX7p6TKxKjyU+NojC4qMMDdvYuG4xkQE62fxkNC1QXI59VTplFc3jDJGUCoH01GiSFoeiHB2fLIqyLa1m+pDw8cFWBEGQ0wrDJsgvgdzMCT0N7HYX+w420dE1dnx/Px+OaEr5fsGv+GnWndOmDyRR5N/n3oAzPJqQa67FIwlERwaQnBROSJBRTofoZp7fttqc9Pab6e0z09dvYXDIigRo1Er8/XwAD/f84KfsL68Y97g5gYJjMhSoF6sxrOpAKMqHW28dcyjscuN7va/X8nYyubvdtD/RTpurjffWvMdDhx6adyjw9HowPyunLIw3GFEGz67odEI5nXKdQVjYjN6DM5HH46GsrIympibvbUlJSaxatQrFXI8Nr6/HsXE9P/zmEkrjVVR2V/LqBa8ycHSAsLAwsrKypu6S+O9/GezpIS8szNu+OOrTIIoi+/bto7m5mXXr1hETEkPnPzvRDeswZ5mp6NuHvyaUVRWLwTwMPlokTTBIAvpL9WiXy5+NLyIcLIDBLLUABp8OTQYHdoeLXQW1mCwOFCM1BxFhfnR2D7M8NZoli8Mo3t9AR9cQGXsLWHy0Bl58dNy+paL9tLoVlFkEXCeE2w16LavSY4gK80W44MuwMQPu/960az37uZtoHGyVaw7aLLBmuzzFMXv92DEliaaWfg4cbsblHusrT0wI4SPr+/wg7zc8mHoLP1BtQDg3R3ZjnERFjz5LTbsZ34wMbAfLuey71+HvPwIhJrOcDrnzZrh1mvbKSeRyeegfsNDbb6a7d5Dvfu/HHDpUOW4bX19f7rvvPpYuXYpSqUSpVKJQKE75t0ajISAggKCgIPz9/cddKbqOujC/MAIFVxkQHnoQnnoKqbgc0ysuPD0eGQpipoGCTjfmHWYEX4E79Xey49gOti7aypvXvTlvUOBud2N+zoygF/C9wReF32ejwUuSJI4cOUJVVZX3tsjISDZu3Djn7YwfVr3JeS9dioDA+ze+z1mLz6Krq4uioiICAgLYvHmzN01wiu6+G1pbGX7sMfLy8lAqleTm5mIwyF0Qoiiyf/9+GhsbWbt2LXHRcbT9qw3fbl8sjU9z4IIojJpg1jSuRJIUCFoBaVACj4T+EgPalV9MOFgAg1lqAQw+PZoSDgrrMJntXjiIDPejo2uY1OQI0pIjOVjZwrHjvaTpRJadu3bsClyS4IIvQ0ggzn/+nkNVbeNqDwCCAvQsO15HxKJIhJz1Jy/rFI0rSPzSv4i3ayEq3NuZ0Ndv5kBlK/0DFu9j1Gol61cnsKPpBX64+7dypKAxGuFb90FT8YR+CgD1FfWUVbYjOp10/uMfXPHAd1m05YR8rSjCbx+FKy/42M6Gk6UPgoKCeO6551i0aBEOhwOPx4Moing8nnH/FkURu93O0NAQkiShUCgICAggMDCQMFsYxnwjqsUqjFeNpA8AqXsQ05sKxD4R4w3Th+bdHW7Mz5hRBCo4lH2I814+j3VR63jnhndQKpRolHNfBOhqlIFGGarEeO0k0xE/rpqb4YEH4Cc/gbi4Od99Y2MjZWVl3gLOgICAcSH7j6vR7oPKlv3cUuKi4oosXrvpbQwaA729vRQUFGAwGCY/pscjf34UCsxmM3l5eUiSNK6rQpIkysvLOXbsGKtXr2bx4sU07mgkuCkY6xIr+332o0fP2pYMpO5hBI8ZSRUCKg36i/VoV33x4GABDGapBTD4dGkyOHA43OwqqmXYNAYHURH+tHcOkbQolFXpMdQe7eZwdRsJscGsbTuK4qKz5S+b/kEw6r0h2v4BC+WHW8aduAH8jDqSk8KJjQpArZ76BHVyt0KcXxQ9fWaq6zvp6h7/+YuJCmTNilj+fODJMSgYTR80tcEEtQWSJFF3tIuDlS1YDh+m7U9/Ys2Nl3HhiUWSnT0QEXq6L/GEmsuaArfbzeDgIAMDA/T39yM2iCQfS6bX0MuR2CME9PcSFBpKXGYuqrdViP0ixhuNqCKngYI2OVKgCFFQsbmC818635s+cHqcZD+Zzbc3fJuvrfnarF6DieSsdmJ51SLXQ1xlRNDMk3FRTQ3cdBM8/TSkpMzLIbq6uigsLPS2M/r4+JCbm/uxv/dObEksWPMw6Zd9nQtuEgg9/wp2XCE7iQ4ODpKfn49arSY3Nxe9fuIuIMrK4O67sT73HHkHD+JyucjNzR09uSFJEhUVFdTV1bFy5UqWLFlC/cv1hNaE4vDvZX/wATSGANbvj0bShSHoJSSrBkTQXzjWUvpFgYMFMJilFsDg06dJ4cDpZndhHUMmmxcOoiMDaOsYJD42iHWrEmhu62dfeSPhByvYeM4q1JsyxnZc3yh3EfzqHiSgrWOQQ1VtmC2OccdXSBJRUYFERQYQGuyL3kc9YQ1A00Abt/73Pn7iOQerbywW3fgwtkGvJWNlHBFhfvy2+LHxUACTeh9IksSBwy0cbeyh7/XX6X72WQLiY/h/ZW+iMcqhVT4ogC/9Pyh4GdKXzvalBua50LBeHiikXKzEnmunv6+bgXfeYTAmkbSWDPQePVwGoalTA4672Y3pOROqcBUHsw6OgwIftc8pI5vnAg4c5Q6sb1tRp6kxXGpAUJ4ZN8P51OgJetT8SKVSkZ2d7bVWPl1N6FPQ20uRtZYwQxhLgpd4tzWZTOTl5QFM7q9QXw933QX//Cd2Pz/y8vKw2Wzk5uYSGBgIyJ+Pw4cPU1NTQ3p6OikpKdS8XUPYwTA87nYOrGoHATJ7MpF6JRR6N+KgAIISnwt80K3VeffzeYeDBTCYpRbA4NOpyeDA6XSzq6iOoeExOIiJkuEgKiKAzIxF9PaZKSqux+jnQ3bmEnxG2/L++548QOnD5yBEdkqUJInWjkFq6joZGJp4CJNapcRo0KLTqVAoFLjdIlabE7PFwUSfJ51OzbKlkSyKC0GhEE6FAkGAB/4CB4+cUg/hEUVKy4/T0jZA97+epO8dec7Bl999enwKwe6QLZm/du3HcjacTyhw1jmxvGhBvUSN4UoDgscFGg2ixYNphxn3oJsjS47Q6eokJCSE1NRUIiIiToEwrzNilIqDGw9y/ovnT1hoOFdwIEkS9iI79l12tGu1+Jx/5iyOz4SsViv5+fkMD8vnCUEQ2LBhA3GnmcKYEApGJYrw0ksMX3wuP8//Bb/c+ksMGoO3ldLlcpGTk0NAQMDkB3A4cAAFBQWYTKZxfgySJFFVVcWRI0dIS0sjLS2NIzuPELYvDEEvcCiuApfKzcaaRCSTAYW9E9EvAVDgc54PuvVfDDhYAIPTlCAIdwB3INtEL10Ag0+fJoUDl5vdRfUMDlnH4CAygPauIUKDjWxan4jZ4qCg+CiC1UaO2orfRSPugC7XpIV+/QMWGpp6aWkbwOWe2BNgKh13NHL2qlWsTkpEoZBPJBNCAcAbH0BDM3znVu/jPR6RPfsa6OoZxvnBO9Q/9iQAa79+PRf++RfyRsMm6B+ChJjTXt/JOiNQkKzGcIUBoagAbr4Z8a2PMBcEIZpEfG/0RRGmoKOjg6qqKvr7+wkMDCQ1NZXo6GgEQRhrbYxTcWDDAS544YIpuw9G4eDv+/9OzZ01JAUlnda6JUnC9oENR4kDXY4OXY7uzEDBoUNw9tmwcyesWDHvh3O5XBQVFY1rZ1y+fDkpKSkzer5TQgFASQls3EjtS39nbe33WBe1jjeuewODxoDdbic/Px+LxTK5+dLQEGRlwT334LrhBu8Mhc2bNxN2gjNkdXU1hw8fJiUlhfT0dCoLKwneE4zW5qIyqRqrr4eshqVIthCEEAGpRwIJfLb5oMv8/MPBAhjMUgsRg0+3JocDD3lFdQwOWRFOSCt0dQ/j7+dD9sYkXE4PBS8XYDH4smL1IpYsHvlC6RuAr35fditcfmo+VzRZ6P3t43TlZtOn92VoyIbD6R63jSCA3kdDUKCB0GBfJLWJi1+9BadK8DokTgoFE8jtFikqPUpvv5kYRx/v3vD/APCNCueOg++i9RsJu3735/BeHhx6f8pOhuk0r1BQ68Ty0glQoBSgvR3xoYcxL/0holXC90ZflGFjHQuSJNHd3U11dTXd3d34+fmx3Hc5+jw9qkUqDqw/wAX/mRoKTtxXSVsJmTGZp7VuySNhfcOK87ATn/N90K2bm8K8GamzE558Er76VYiIOCOHPLHSf1SLFy9mzZo1U7YzTgsFo6qvhyVLvPbJJ8KB0+mksLCQgYEBNm/eTHh4+PjHShL86ldw9dWQkjLOJjkrK4vIyDGr77q6Og4ePMiSJUtYuXIllSWH8CsMwNdlpHZxHf0+/Wy2bkY66kFBP6IYAAoVPmf5oNv0+YaDBTCYpRbA4NOvyeDA5fKQt6eO/kErgiAgSRJRkf709prR+2jI2bgEwe3i7fw63C4P61bFkxAfAhYrXP8t+Mm3YP2qUw/o8cCFN8Nt18GV20duEnG5PYiihFKpQKNWjp3o+wchdgM9f/8ZG0yPA3BN6nYeLP77xFDwQT6EBsOqZYAMBYUlR+kbsJCdmcTxF1/l/f95EI/DyZee/yupl5039tj+Qag5Blkn1E6cpuYVCmqcWF62oF6qxnC5AWGgD7RaRMEgzzKwjUBB6OQeAL29vbQWtBJbGcug/yD16+u55qNrWB+7/rR9Cn6+++fE+MVMm1aQXBKWly24jrkwXGrwGuN83iVJktfGeFQRERFs3LjRa098omYMBWMHgMJCCuPggme3sy5qHe/f9D4qhQq32+01YcrMzCQmZpIomMsF/f14QkLYu3cvnZ2dp2x/9OhRysvLvWBz5OARdLt1BFuDaYiqoT24l5yPBKTgLBSKAUQpGADdFh0+2T7e1+LzBgcLYDBLLYDBZ0OTwoHbQ/7eevr6LQiC/D0UFe5P/6AVtUpBTlYyGrWC8o8qaLJDSoSR5euTx7cziuKpExJPZzCSJMG/X4ItG2kOVLDqyYsZsA9NHinYeg0kJcDjv/FCQf8IFISGyJGBvqPHqfzPG+T8+E758aUHZWfH4MDZv4icIShIUWO4bCRScMEFiCo/TNsfQ7JL+N7kizJkamMgZ5XcCcAiKAguwDpoxYqVDSs3sDRp6Yz77yVJ4lvvfIu/7vvrlDUHol3EMuK4aLzaiDpxDiyOT1dmszxZcdUqMJ5qlDXfampqorS01Fsz4+/vT05OjtdkCGYBBQB79sCmTZCfT2G8QHlHOd/e8G3v3R6Ph5KSkqnHNt98Mxw5AiUliOB1Qly/fj3x8WNupw0NDZSVlZGQkEBGRgY1VTVIuySih6JpiW6mMaCRHHLhCCjDFXi6PIAwLmX0eYODBTCYpRbA4LOjyeDA7fZQUHyUnj6zFw4iw/0YNtnlXuisZIyDA9Q+9RaHlq0mKsKfDWsWoVYp4ObvQ3Q4/O8PTz2g1QZ/eRJuvxECZvbeGE0f/Hjj/+NXOd9DQkIhnBSWdbth2Izbz5fCkmOnQMEp8nhg5Xmyu+Jff3U6L9k4zSsUVDuxvDICBZcbEEZqLMR9VZgKgpEUWhkKpnELdB52YnnNgmaZhrKVZWx/fjvb47ZzV+JdtLW2odFoSE5OJikpacIr2pM1XUGiaBIxP2tGNInyFMdpzJXmTXNsiTwbdXd3U1hYiNstp810Op23VXBWUDCqPXvkeoET9Er1K5yXeB4GjWFcSmP16tUsWbJk/OMrK2FgALLlgWGiKFJWVsbx48dZu3Ytixcv9m7a3NxMSUkJMTExbNiwgdqKQ1j2uknsS6QrrIvasFpyTOnQFIRysB6PfyIICnSbdei2fP7gYAEMZqkFMPhsaVI48IgUFh+lu9c00goIYSG+WG0unE432ZlJBAUaaO8cpLisAb2Phk0bkvB95kWICIMTw/Wjau+CtRfCP34L28+aemGHa3jjtUe5RPWmN1JQ3H6Ab7x7H69f9fexqYwjkQi320NByVEGBqxkb0wiNHia0bhNbeBnnNQIaTrNOxS8bJHb+i4bgYIPP0TMyMH0rA3JPRIpCJoaChwVDqxvWNEs11C2XIaCE2sKzGYzNTU1HD9+HKVSyZIlS1i6dOm0gHAiHLx+7etcvPRiADz9Hsw7zEgeCd8bpk5vzLvsdmhqgvh4mCPTodloaGiIvLy8ce2MGRsyuPH9G2cHBSeqthaWLqXL3EXSX5JYG7WWN697E4PGMM6fYNmyZaSlpZ0aaZMk2LcP1q8fZ3a0atUqkpPHZp20trZSXFzsTYkcPXqUnrwe0rpSGfQboDKqkuz9Ihi2ogwV8PTI50Rtlhafs3w+V3CwAAaz1AIYfPY0GRx4PHIBX2e3PFVOIQgEBxnweESGTXay1icSEaRnePstFN18K3Z/fzZkJBAVESDv2GQ+dd6B2QKj3gFTaPd3bmXpjjz+9vId3J/zXQRBmHhk89ZrcH3pYgrS1zE4ZCV74xJCg42UPvo0lq4+Nt9zO2r9CTn0F96Ei88Bn9mfLOYVCqrkSIFmmQb9pXoZCpqbEdfkYPp+IRh8Md5kRBk4DRQccGB904pmtYayZWVsf277pIWGVquV2tpaGhoa0Ov1ZGZmenvcJ5MkSTyy7xG+uvqr6NV62Vb5WTOCVpDnHgR8glDwKZPNZiM/P5+hIXm+hyiJ/LP7n9x/2f2zh4LCQvmKv6gIsrIobC7k/GfOZ130unFwMFrvkJSUxOrVq8fDwfPPww03QF0dJCYiSRKHDh2itraW5cuXk5qa6t20o6ODoqIi75yGxiNHaNnfx8r2FVgNNipiKtgYuBHFXgUKgx3RIn++tJlafM75/MDBAhjMUgtg8NnUVHCwZ98xOrrkz4BCIRDo74NKpaS718T6NYuIrzqMM2kxpT0O2juHSFkSQfpHH6D429NQ8vqpIODxyJ0Ak0QNflv8GD/98Lf8z+Y7+Hnud8d9mY2Dg2ufIuIf71CQuhqToCZnYxLBQUbMnT38Zfk5OE0W/OOi+Wb527KRUVMbrDxXHil93aWzep3mFQqOyLUA46AA8Ax6MD/RB2oNxi/7TnvSte+zY3vXhnatln0p+6aEghM1PDxMcXExw8PDrFixgiVLlsyo1a72YC2B7wSiC9VhvM6IwvApmHvQ2gq//z1873swWRHeGZTL5aKgqIDe7jH78PT0dFJTU2fXvilJ8MorcPnlMNLxMBEcwFghYVxcHOvWrRubt+HxyICRm3vCbsf8DFJTU0lPT/eub9TpMTg4mE2bNtHc2Ej93gYyOjNwK9wciD3Ahj1tKEKvQmFpQTTIY6m167X4nPv5gIMFMJilFsDgs6tJ4UAU2buvwTtRUalUYDRo8PP1oaVtgJXpMSxNDEey2qjZdYBKj5ZgHxWZx6vRf+2aU4sO39kFl98G+948pb1xJi2Jo3CwyBDPPTH34HC4ydm4hMAA2Rb2ta//DwefegmANbdcw8WPPDD24OOtsmXyLL6MzwgUpGvQXzICBSYTnuffxmw7DxQCvjf5ovCf+qRrL7Zj+8CGdoOWfUtmDgWj8ng8HDp0iPr6eqKioli3bh1a7eSTJp21TgZfGmSPZw+D5w9y8/qbT/epz4+qquTWvBdfhLS0T3o1mJ1mtu/YTro7nS3+W7y3L1q0iIyMjFlPZ5QkCU+TDXe7Askh0TrQSmlTKdsXb0cjaZDcErjBZrHRb+pHCpKIXxOPJkKDIkjhhU927ZIBYWQdNTU1HDp06JRIQ09PDwUFBfj7+5OdnU1bWxuVhYdZ37gcQWPgYPQB1vgvQlkRiiJYntkBjDO2+izDwQIYzFILYPDZ1mRwIIoSxWUNtHYMAqBSKfDRqgkL8+NYYw9Lk8JZsXsnws9/T0/JO5Qc7cXtFlmzMo44hRsix0xUkCSoroe05HHHHgcFm76FcPlt8LXr4JJtp6yzuq2JmtIO1FodOdkp+PnKocu2fRX8I/tKALT+vnyr8kMMvkb494vyviabYz+N5hUKKp1Y/nsSFACef72K6UgyQkwEvl8NnHYCob3Iju0jG7osHaWLS08bCk5Ue3s7paWlKJVKNmzYMM4EZ1SjNQzqpWp+rPsxfyn/y5zZJ3+edGKh4bs3vEuQNYhDhw557w8LC2PTpk0zKv4EkNwS7iY3rloXzoNDSB4dqJGHUSkBFQgqAQcO1Bo1Ko0KlOAYduDudKPxjLSOKkEZqkSpNaP6/V2of3Qdimsu8x7n2LFj7N+/n4SEBNauXeuFl76+PvLz8zEajeTk5NC5dy8H2vpZ35uJxqzhcMxhliWmoP5IjcLZi6iVPRU0qzXoL9R/puFgpmDwCZXcLmhB8yOFQsGjf/87AF/9utxZ8JWbrkChEMhcu5iS8kZa2gZwu0XsgpvOriFSkyOoruvEkZlDRsEmQhdHsS0mjPKKZorLGmkrKWb1Zdno1o840AmCDAWSBD39EBY8caQgPBR0p/a/t7YPUH2gH9+WNjYIQ9zF89y36VvE+Ubyzvd/4d1u633fxRAaDG9/BD/+LWzNguTFp+xvOs0rFIx2DSyXJ9Z5oaDXg2lwK0KsR4YC36mhwJZvw55nR5ejozTu40EBQFRUFOeeey4lJSXk5eWRmppKWlqa9+Rg32vH9qFN/rLfrudPwp/wKDzc9sZtKAQFt6y+5fRfjM+hJus+0Ov1lJSUeI2odu7cSU5OzqTDkESbiOuoC1etC9cxFzhBEaBAs0RAXf8GqjuuRPAdS9l5RA9Zj2YRpgrjjctlEyQjRvr7+9m7ay8BngDSo9JRDirxdBhxXvkoHAXVDhOapRrUS9UkJiaiVqspKSnB5XKRmZmJUqkkODiYLVu2kJ+fz+7du8nNzWVtby97i/ayrnMVK5tXUuOsIvHI62iW/wCF1oFo1+I84JSHL10kv89/97vfAXDnnXcCfGbgYCZaiBicpIWIwedDk0YOJIl95cdpau0HQKNRoVQIJC0O40h1OyHBRrIyEtA89DekGy6nReVD+f5G0GpYnhbNovgQFKNh/Pt+By+/zf/9/SruKfzdtI6GHo/Ioao26hu6iYkKZP2SELqtPWx+Tb5CfUL7FfK/KbcfhqYmcXvpGyhHr8J6+mQTpNPUfEKB47AD62tWNCs03i9LAM9/8zFVJSME+sjpA+PkUCBJEvbdduyFdnRbdJTGlrL92Y8HBSdKFEWqq6upqqoiODiYDRs2IBQLOPY40G3Sods6ZnEsSRI//PCHXLL0EjbHbf5Yx/3YqqyEiy6CN9+E9PRPZAnTtSSOhuVPbGc8cd6BZ9Ajg0CdC3eTGyRQRipRL1WjSdagCFNMWZ8wkUMiyFe9+fn5wNjwJXFYxFnrxFXcg3vIAJKAKl6FNkNLr18ve0r2EBoayqZNm7y+F6MdF6MTHgebm9lbVs7KnjSCzfEcCzlGzPoYtB9qEXQgX19LqNM18hAtxWcvcrCQSpilFsDg86PJ4ECSJMoqmmhs6gNAq1EhIZGeEk1ldRtatYLsXz6A8fZr4YbLsTtcHDrSxvGWPvx9dSxPiyYy3B+hup6X3nuCq+0v89NNE0CByyVHFKLC6e41sb+iGYvVwYq0GJYsDvVu2zzUzllPXc/lv+kmKmU9xjVriNi8EYNBh6Z/gMi1KcREB6HVnF6Ab16h4JAD6+sjUHCx3vtcPN0eTI+0o7D3Y7w3HYVx8tSHJEnYdtpw7HXgc44PJZElcwoFJ6qnp4eS4hIWNy0mciBynDf+RHJ5XOw+vpttiaemgc6I2tvhkUfgm9+EqKgzfviZ+hQMDw97Jx4CqBQqsgOy0R7T4un2gBJUCSr5Kn6JevJ00v/9n2zk9I1vjLt5MjgYHfzkcDjIycmRu1Dsdli8GPHmb+C65oc4K5y4m9wIRgF3spsScwk+oT5s3rwZzcjI9dEJj4IgkJubi7moiCKTmVRrKpFNkbT6txLsPox+YBM4LEi+svWytxVX+dmCgwUwmKUWwODzpang4GBlK/UN8tAYnU6Ny+VhzfJYqus7cTndbMpMIiRopF2xb4C+C27h0Pe/S4/OiL+fD8ekGu4p+znfz7xlwkiBdN/v6Ck+TO0v7qWja4jgQANrV8Xj7+cDl94KV10II+t5809PMKAJQxsVhaergyUbluOpOoq1rYfeJUtAgIgwfxbFBRMdGTBtJfi8QkHFCBSsGokUjKzF3enG/IwZhZ8C45UqFMETh5VhBAret+EodeBzng8lYfMHBSDntU0vmXAfdXMk/Aj6NXpWrlw5qWvikwee5JbXb/lC1hycrnnR6BAkqV0itSsVo9OIK8FFYEYg6kQ1gnYGhbLf/jb4+8Mvf3nKXYXNhVz2/GW8es2rZMdne293OBwUFBQwPDw8Nkyprg4WL4aRv6un24NjvwPHIQeSS6Lbr5vuuG7Wn78e3Yg/hMViIS8vD4/HQ25uLna7ncL8fBb1hhDfu4JefS96zUGMjm1IEiAzkGzzfeVnCw4WwGCWWgCDz5+mgoPDVW3UHO0CQO+jxmZ3k7EyluMt/fQPWFg30E58zRHZCfHtj5ByNtBjE3m7rBSdw082TurtIdioRb9uOUqlAqfLzfCwne6OfqxuCT9fHWnJkcRGB8onUY8HfvhrODcbzs2lrqaVA1Xt2Bsa6PjH49z8n78QsXKkEr1vALvBSEv7AM2t/fQNWAgK0LNiWQxhkzgjnhEoOKEQC8Dd7sL8eDcKPwHjNyJQ+EydPrC+Y8W534l+u57i4OL5hQKHhPk/ZtxtbgxXGmhWNHPw4EF8fX3ZuHHjhJ/zuRrZPGtZrVBTAykpMEnefj40G0dD0Spi+cCC+5CbId0Q1eHVmHQm0tLSWLZs2czaGaexHDc5TPhqfRElEYfb4X2PuFwu9uzZQ09Pz/h5CUeOgMkEmfLgLMkh4TjkwFZkAxP0BfQRcVEExkUy+NtsNvLy8nA4HOTm5uJ++mkK/P2J1iaz+FgSZrUZxRYF/ru0iE5AVIJCiSpRhfFqI4LqswEHC2AwSy2AwedTU8FBVW0HR2o7ANDrNVitTlalxzIwaKGptZ/k1kZWfOMKFEr5ZPfXt37P/5Q9wj253+O6uKvo3rWPweAQbAo1oiShUinwNegICTYSHRlAaLBx0i/HumPdHKxsQdfXwZEf30fK9rO4/Ptfp7DwVWKvvXHMIXFE3b0mKo60MjBoJTLcnxVp0XIEYkRnBArWyAV7Y1DgxvyMCUV3Hca17SiuvXzSfUiihPUtK86DTvQX6ykOmF8oEC0jFscDIxbHcfKV5ODgIMXFxVgsFlavXs2iRYtOjfh8knDwCVginy4USJKE84AT20c2kEC7VUu1UM3RY0e925ziPTCVPB74z3/gkksmnQ/xvfe+x4HOA+N8DjweD6WlpbS2tpKRkSFbIl9wgQwb7747fs0eieF9w1jyLPg4fRASBXzPkSd7OhyOceOfBZuN/LIygsVgUupTcEpOXAd/R2DKNxEFPSh8QJBTJcZrjAjqTz8cLIDBLLUABp9fTQYHANV1nRyubgPAoNdgsTpJTY5Aq1FRcaSVkCAjG1fG8HDFU1x51e/o2LqSjc++NO5kMvpZ8t5mscK/XoTzcyExYWwh5ZUQH03tgJOKI61yq2RaNLb+QUS3B93vHuXYizu46PvhfHjTjlPgQJIkWtoHOFzVhtXqJCEumGUpUUiie/6g4OCIPfHJUNDqxvSsCWWoEt9rDAj6KWoKRAnr61aclU70l+gp9ptfKPAMjlgcOyWM1xtRhY9PG7jdbg4ePEhDQwOxsbFkZGR4c8/eNY/AAcBfL/zrnK5vSp3hiMHpQoG7w431HSueNg+alRp8zvZBYVAgSRJ1dXVUVFR4tw0KCmLz5s3e0P2kammBpCR4+mn40pcm3GQyEyRRFDlw4ADHjh1j+fLlpAQFIfj6TvramU1mql+rJrotGh+XD5oVGnQ5Ojx6DwUFBQwNDZGdnY3abidv506M2hCWdaxFsAvYNloIqg/B0+8BlxzpUMWpMF5rRNB8uuFgAQxmqQUw+HxrKjioO9bFwcpWYAwOEuKCiY8JpnhPHU6XixePP8F2lR9fuf5HCGEhYzvu6YMdr8K3b/GarGCxQtRaeOqPcOm5Y9su3ULNN77GocWppCyJYHlq1PirVUmitbGanPfkLxSvffJJ8ogiDcd7qartwGS28Mc//I795RXjtpkTKBixJ9ZmaPG5wGcMClrcmHYMo+quwvj1SISUxEn3IXkkLP+14Kp2YbjcwF7D3vmFgm4PpmdNCKoRi+MpLJhbWlooKytDo9GQmZlJcPD47g9JkrzDr1qHW4nx++SdCOdSpwMFkkPCttuGY58DRYgC/XY96rhT/QtG5xOIomwQdHLHwqRqbZ3W6XEyOJAkiSNHjlBVVUVycjIrV65EaGuDggK47rpT9mO32ynYXYB/mz9JA0kITgHdBh2qTBVF+4ro6+tj0/r16O+/n7wLLkCtMrCiZQWaQQ3mpFaCapR4xGBQqUGhQhmjxPc6XwTtpxcOFsBglloAg8+/poKDhqZeyg42IQgCPj5qbDYXYSG+HBkuIOj/s3fe4VHc59q+Z3tVL0g00YvoVUhCCBwXcLdxrwlOnLicJE61k5w056R8iRM7TuzEvfdugyuoAwKJ3gVCAtT79p2d+X1/jCqogEC47ZOLC2d2vxQcpAABAABJREFU2i67M/e85XlbxyNZbKROTGLqpGR0bjf4g5AQC4WbtYLC/NdhSrdpcMflToUQ7Crez+4aN1MmDmPa5G5QsHs/uL2wYBbQ0z455/oXGBXZe3V6S4uLb1x4KyUlQwgF3ZzfAOQKGfdLbgzRQRzv3o70zOMQF9frPoQi8LzpQd4vY7/Cznrr0EJB6EgI98tudJE6HNc7+m2X7JDb7Wbjxo00NTUxbdo0Jk+efEJqYXvtdhY8toCHVzw89GmFs9SVcLJQIIRA3iXj/cSLCAisS6yYF5i1Udp9qLm5ubNzAECv17No0SKST+b9VFX1+7474ODezHv5RdYverx24MABtmzZohkbffghuiee0GoOeklPBINB8vPzcTe5ybBloN+uRzJLmJeYKfGWUFNbQ1paGlFRUeTm5CBklZmNs7FX22lzf0LsiDRCbVqtEarWjum8wYlk+WLCQRgMBqkwGHw91B8cVB5tYkNJOTqdhNlkwBPwU+k7QiChlsuTLmPPvmoiIyzMe/S/xEgheLk9xNzqgsi+pyIqikrJtkoOH2lk+tThuNd+iqeukfnfvVEzMvrefbBpGxS/1xl1qGyt4q5PfsPjy/9Igv1EH4O+agqcTifPP/88F1544cnld3tRoDSA94NeoKBcxv2yG8PIrtxqXxIhged1D/IhGftKO+tNQwsFcpmM+zU3hmQD9mvs6Cwnb9Wrqio7d+5k7969JCYmsmDBAqzWrvM7qzUHZ8HH4GShQGlU8K7xEioPYZxsxHaebUBr6w75fD7y8/NpaWnpXDZz5kwmTpzYd1Hi3/8O998Phw+Ds+/f0866nUyOm4xBd2JnSce45aTERNJmzMDQT6QiFApRVFREXV0dadPSiN4bTXBHEP0wPYdGHuKA6wDz5s0j8bHHyB05Ejl5ODM8M4g8GIlrjItoQyShAwqIEOiM6BP1OG50oLPqvnBwEAaDQSoMBl8f9QcHx6pbKNp0EEWotMgtOE12HCY7GdOHo7v+bjbfeQctZhtjoi2kzp+Azdqemw4EtKf+2Pbpfr/4CygKLfd+n+LSw7haPcyrrWD4LRfz4ORs3DX1mBx2frA/F2ukE6rrYERSr+db5aolpCqdkYO+oCAmJoaHHnoIk8mEzWYjNTWVUaNGnZKffaAkgHe1F/N8M9bzu0HBQRn3q24MCTKOt29H+s+/+nyyE7LA/ZqbUEUIx9UOivRFQwoFwR1BPO96MI5rbyPrB1j6U21tbaer34IFC0hK6vr3+Ny7Fc6QTgYKhCzwF/jxr/eji9BhO9+GccLJ2R53VygU6iwO7FBKSgpz587tHVqPHoXNm+HSS09qJkhBZQH/r+j/8eIVL3amFUCbqFhUVER0dDQZqamYd++GpUt73YeqqhQXF1NZWcncuXMZbR6t1VDUKLQNb6PUUkrqqHhG1daS63Dg9/tJFanE7IjBK+8jKuRHts4CvQBVQhen08y97F8sOAiDwSAVBoOvl/qDg4dyXyKqaRQmnRGTwYjdZsbl9jPP18CozJkc9Evs3leNLCuMiHeQMi6R+JWr0E+dAI/+ESEETU+8zkFbNBX2aCKcFhaWrCequorN0yazcW0p9pkzsTntTJ0+jvHzJmIx933hXf7qt9jXWM66658nzhA9YKFhW1sbO3bs4NixY0RGRjJ9+nSSkpIGbB/rhIJuU+UA5APa07hxrBH7mH1IP/sRvPsu9NbuF2xvETwawnGtgyJpaKHAX+zH95Gvy3BJNzgo6Nyf309xcTE1NTVMmjSJadOmdd7EOuBgddlqdt2xC5vx7LUTngmdDBTIB2S8H3pRXSqWdAuWDMugQQt65v87FBcXR0ZGRr9Drk5GfZkggTYXIT8/H3NLC1n/+Af2TZugj5kOQgi2bNlCWVkZ06dPZ9LESchbZXxrfYSUEPti9hGVHsX4CePJf/99XJLEVHsqsZtika0+nBMikbcp2qABBXTROpw3O9E5vzhwEAaDQSoMBl8/9QYH/2/jY/x03Z/5vwX3Msk3ByG09eJjndQ1uBibEsfslBjUljYOPfIaB6fNwO2MREJgN+rRmU14fUFCiorVYmTS+GGMGxOHXqfD6wvw9rOfoIuJxVVczNjRI2iNHwZ2GxPHJzJ5fCIGw4lPUh01B2pAJfGdOIrXn1xNQWNjI9u3b6e+vp64uDhmzJhBXB/1AP7NfnxrfCdAQXB/EM/r3Z7GDf2kDwIC98tuQjXtUCCGDgqEEPhz/fjz/ZjTzFi/YT25vvmT3Pf+/fvZsWMHkZGRpKWl4WwPbQshaPA2EG+PJ6SGeg1nn5aGaLriQFCgtqp4P/Ii75MxjDFgW25DHzu4VFRv6gjxd9x3bDYbWVlZJ15rhdBcEMeOhZ/9bMD99gcHLpeL/JwcQqEQmUuWEBMT0+d+uo9t7ihgFF6B71Mfwe1BWiwteKbUMPG68yh8/HGaDAamxE0hpjBGK3RN9BCsjAYRBJ0JXYQO5y3aVNEvAhyEweAUJUnSncCdgA6YFAaDr5e6w8FVf1vOq22rO2cftLb5yC3aT0gRKIrKyOQojtW0ElFfR9rq94j4zjWI+Bhax42jodGNxxtAVQVWi5FYh4lYvwfdmJHg9eENqXySuwd3XSNH/vQnho0exq3vPUVgz0H2miMpO1SHzWoibd7YzjHM3bW36iCzz70E/8FAj+UDFRoKIaipqWHHjh20tLQwfPhw5syZ0yOH7t/kx/ehNvLYem43KNgbxPOGB+NEI/bUo0h/+D08/DBER594HL/A9ZILpV7BeZ2TQqVw6KBAFXg/1IySrOdYsaQP0A43SDU1NbFhwwb8fr8WZh49uvM1d9DNsmeW8Z253zmzaYWjR+GBB+Ceewas0j9Z9QcFQhEENgbw5fmQzBK282wYpxrPGGR1V8dTfDAYBMBgMJCens6wYcN6rvjb38KoUfDNb57UfjvgYPn45bx61as9XvP7/RQUFNDa2kr6mDEkDeANUVZWRmlpKaNHj2b+/PnodDrkCpnWt1qRXBItSdWMvG4CG0o2UldXx+Thk4nMi8QaMGDR7UMWM8AoQQgkh4TzFif6aP3nDgdhMBikwhGDr69UVeX227/D441PcEnmObx9x6OdF0a3J0Bu0X78gRCKojIiKYrWhlbcsiBpWCSL5o1Fr2t3Ncwrhlffg0f/CC+/C7feA007cL2ymryQDY/DTtnPfo5cV8eV/7qfaauu7TyHNpefjSXltLb5mD51OBPHJXSew5kwLxJCUFlZybZt2xBCMG/ePIYPH94FBcc9dQd3B/G86cE4pd0bfu2n2gX7449P6BFXfe1mQk0qjhscFAaHEApCAs87Wvuj7UIb5tmnF44eSLIsU1JSQmVlJSkpKcyePRuj0filqTnoDwrkChnvGi9qg6pFipZYT87G+DTk8Xg67Yw7NHv2bCZMmNDPVgOrsLKQSEsk0xJOLNgMhUJs+Ne/qE5MZM78+Ywb13d7LXRFN4YNG8aiRYswGAyIkKB2dS3G7UZki0xkSjlbDLUck2UmjhiHoyiCKF805llm5K0ySAoIPZKtHQ5iNTj4xr3fYO32tfxzxT87pzOeDYXBYJAKg8HXW51w8MQTPP3fv/SoOfD7ZfI3lNHm8qEK0TlHob7RTYRJx4z33iUpKQpp3gx4+Gl45d/g8iB27ufoxIls3n4UU9DPjh//lEB1DVa7jXsMegy7PoO4rvCmoqjs3FvFvrJaEuMjWDAnBVWR+4SCNz94k6yFWaf0Pv1+P5s3b6aqqorZ+tnE7Y7DvMiM9ZxuULAziOdtD6ZUE7ZLu+Xte7GvVb0q7ufdqG3tUBAYQigICtyvuglVhrBfYcc0+cTR1kMhIQQVFRWUlpZitVpJS0sjOjp6aODA74eKChg9GgYyBhpAfUGB6lE7Q+T6EXpsy20Yhp3hlEg/kmWZDRs2UF1d3bls3LhxzJ49u6tQtrIS3ntPa9s8heiFV/byu9zf8ausX/VIK6i7d7O1upqyxkamTJnCtGnT+o2K1NTUUFRURERERA+TpprdNfhW+4jyRaFvKeTAlUkcPHqQ8WPHY15vJrklGb25AsUVB1YrKDokiwYH/634L3esvoPZgdls+eOWsxo5CIPBIBUGg7D6K0iUZYX1mw9RW9eG3qDDZDQwac8OjoT0NIwfj1NSGTEhmehIG3q9DpfbT+XRJppavIxIiiK0qYg9e6swjxxJtEnigjgb5hsv7fU8auraKC4tx+/384+//431G0t7vB4bG8uNf72Rd1vfZd0t6xgdNbrX/fQlIQTHVh/DXmqnKrGK5JXJRMdo6YHO6YnT24v5tm2FJ5+Ev/xFu9B1/7w87VDgVnHe6KTAVzBkUKB6VdwvuVEaFBzXODCmnHqV/Omqra2NDRs20NbWxowZMzqfcu9afRePbH6EXXfsYkr8lNM7yBmyRO4LCgLbAvg+9oEE1nOsmGaZhiRtMJCEEGzfvp19+/Z1LktISCA9PV1zoVy9Gq68Eg4ePCU/hy3VW1j81OITTJA6jrl/71627djB6NGjmTdvXr8tvU1NTeTn52M0GsnKysLR7ofQUN/AwXfKGFc7Hr1NT92UOra1bWNM8nCkLTCuZSq6yDZUfwQoQAhkvcx58nlkL8zmgfMe4Mc//vFZTSuEwWCQCoNBWNA/HKiqoGRbBeWVjVgtRvx+mSl2iJ85gcOVjdTUtREIajPqdZJEgreNiZOTiSzZwtsiAmG24N25k+jMdAwGA7NnjGTU8N4LohobW1m2/Ba2b9/ZY3lH+iA6JZrsp7MBThkO/Bv8+D7xIc2V2GTYRGtbK9OmTSPFl4LvfV/P6YnPPquBwccfQzfbYNWl4nrehfALDQo8QwgFrSquF1wIX7vFcdLZe7o9XoqisH37dg4cOEBycjLz58/HZDKRV5HHkpQlp38Atxu2boVZs/qcGzDgLnqBAhFqr8vYEsQ0w4T1XCs628m3sQ6VysvL2bx5c2dRot1uJysrC6fFAqoKg+hc6MshEYBLLqFy3DiKMzKIi4vrApE+5Ha7ycvLIxQKsXjxYm3MM+0zNz7dwMSj44l2xeIb4WWjuZikkXEo5TomHZmEPkYPTX5U1QBCh6JXiL4xGuNo41mvOQiDwSAVBoOwOtQfHAgh2FdWy/bdx3DYzXi8Aew2E+N0MhOffZ7A0nTUe/+C+e3/oj//Rlof+TN5bRJtRgMVv/0dCa42bnjjMbbY4zla1cyEsQnMTB2Brlub3cnWFFS2Vp4yHHRAgSXdgmWZBVVV2bVrF64NLqbWTkU3U0fExREnWDV3D+eqbSqu51wIWeC8yUmBa+igQGlQcL3gQpLaLY7PYKX86aiqqori4mL0ej0LFy7URv8Cfyv6G5GWyM+t5qA3KFBbVdyvuVHqFGwrbJhnDW1dxqmqvr6egoICZFkGwGg0kpGR0fmZDkbd4eCjGz/CpG+/+a9ZA1FR1I8fT2FhYadls62fuRQdBYxtbW09iiU9Hg95az4kqjaCye45qBLsjNmJfpIeudzN1CMz0Ps8YIxA0hnQoQM9OK51YBx7duEgDAaDVBgMwuqu/uAAoKqmlY0l5RgMOhSPj6DeQEz1MUaNiCXSqENJnUh1o4fyygYcNjMJkSZa9pQR/8rrTH/o14gxIykrr2frziPExzpZNH+s5rbYj6Ph/fffz/XXX9+j5bADDs4bdx6PXvRov+/Jv96P71MflgwLlqWWzpt/R6tiVVwVB4YdYO68uYwcMQKefhquuaZHsaHSouB+3g0qOG5yUNA6dFAQqgrhftGtVXdf70QX8fk/4XaX1+tl48aN1NfXM3XqVKZMmcL3P/o+/9r0r8HXHNTUwFNPaRX5x1frD6DeoEAul/G86UEySthX2jEkf37Rlv7U8WTudrsBbSDZXFlm7AMPwKZNp1Rn0KGCygLyK/K5d/G9vb7e1tZGXl4eQggyMjL6bWcMhUKsX7+empqarkmOdEGDr8nHouAi9OV66hx11CXtx9XSzOTWTOxBO+ZYM6Kx/Z4rgf0qO6ZJprMGB2EwGKTCYBDW8RoIDtyeAOs3H9JGIetCqLEx1De6UFXtt2W1GEkZFUtDo5vGZg86SULSScydOaozhVDX4GL9pkMYDDpmT0vmupvu6jVS8MEHH+DxeGhqamL27Nk9KqurXFXEWmMxG8wIIXrNGfuL/Pg+82HJtGDJ7gYF7QZB5oVmdFk6SktLOXr0KCkREcy+6iqM770H2dkAKE3tUKADx40OClqGDgrkQ5rToj5Rj+NazWb2iyhVVdmzZw+7d+8mLi6OtLQ0frz2x4MvSNy+Hc45Bz77DGbMOOnNjoeCtBFpBIoC+Nb5MIwxYL/c/oVIHfSnYDDI+vXrqa2t7Vw2sbaWGd/+NrrTLMRcfWA1S0Yv0dIKtbWwahXcfz++SZMoLCyktbWVefPm9WhJPV7dJzlOnjyZ6dOnI0mSZq28bh21jY0ssk7DdiCZUCBEQVQB7jg3adULiXPFo2urQESMRhuwALZLbZhnmM8KHITBYJAKg0FYvWkgOFBUlb37a9hzoAYJiSSrxJgj5Zi37sRjNLNrxly8NjuL4wxEeFyUJo7myLHmHoOUPN4An+bu4r5f/Jrdu/f02H/39IGqqmzdupWysjLGjh3L7NmzexRPbanewrff+zZvXP1Gj7RCJxQstmBZ0g0K2iMI3bsShBAcPnyYLVu2YDEYWJiRQWxsLEqjgus5F5JRwnmTk/ym/CGDgsA2bYCTYYwBx0ptpO0XXfX19axfvx5JkkhLS+M3xb/h35v/zVvXvMVlky8b0mOfAAUJaVpL5z5Ziw5lW07bEfJsSVVVtm3bxoEDBzqXdbQNGvtwLhxIjd5Gxj40lrlJczUTJJ1Zs12+917IzERRFDZv3kxFRUWPG35v6j5eeuTIkSxYsAC9Xo/a2krJQw9RPmkSsl2GrbBCXUGzo5GjvjU4IhcxpmkcukhQW7v2Z73AimW+ZcjhIAwGg1QYDMLqSwPBAYDL7Sf/w1I8kh5h6ArXxrU0MbdyH5EN9bB9L2Lty501CiOHR7Ngdgp+v5/ll6wiv/DkfAoOHTpEaWkpMTExpKend7ZS9VZz4C/041vbCxR0LD8urQDA0aO4IyLYUFxMS0sLiyYvwv6JXWu7utFJfuPQQIEQ7R79OX6tAHKFrd8pfl80+Xw+1q9fT1NTEzNnzuSDhg/41pxvEWEeuuvJ8VCwwLIA92tap4j9krPX0nmmdfDgQUpLSzuLEp1OJ1lZWdjt9gG27F39OSRCe+3Qvn1s376d5ORkFi5c2C+IHD16lI0bNxIVFUV6ejpWqxUhBM988gy2Fhu1xlpuGnMTgQ/96EJ6qlOO0uxvY3rtdHRWEJ6u77Uly4IlS/sNDxUchMFgkAqDQVj96WTggLLDhHI20LwsC9lmw+mwUPyXf+Gpb2TcOZlMylqIIUGblHi0qpmNJeVYzDr+/Oc/kV+4uceuoqKiWLduHbNmzer1fBoaGigqKkKSpB750e5wUDi1EMsG7aJjXdJ18/bl+/Dn+DsvSD2gQFVh+nRYsgTln/9k+9rtJG9KRufQEbsqlvz6IYICVeBdrVXNW5ZYsCy2fC5tdKer7l0Lo0ePZu7cuRxqPcTGoxu5aeZNA+9g71646SZ47jmYPLnfVY+HgrmuuXje86CL0OG4+otTqDlY1dbWUrh2LaH2qJjRaGTx4sV92noPpBPgoKIKWlth3rzOdaqrq9mwYQNWq5XMzMzOFsXe1NTUREFBAZIkkZmZyctlL/OzN+9gdc0VVC+/hviEBGanzqbuzTri6uJwR7g44ChjemUKBp0VdF3pEdNcE7blWi3PUMBBGAwGqTAYhDWQTgoOOqQoUFPHP7OvoelIFXqziZ/XbsFg6aoIrzxaz/JLVvUYMAMaFNx7771kZmaycOHCPnutfT4fhYWFtLS0MG/ePFJSUrT9tlby7H+e5c7AnT2gQAiBP8+PP8+PJduCdXEfN/X168HhIBQ3BfcLbgKmAEXxRRiTjVxbeC2LRi46s1AQFLjfcBM6FMJ2kQ3zzC9W1fxgVFFRwebNm3E6nWzUbeR/C//35GoOKivhD3+AX/xCswXuQz2g4PqPmHlgJoH1AYxTjdgvtn8p0i8nI9ehQ+Tt3InH7we0osSZM2cyYcKEQYFjQWUBP/3kp7xz7TvEX3a9Nlhp9eoe67S1tVFQUEAwGGTRokUkJib2uT+v10thYSFNLU3848g/SJu8gAeeqaHhllsoDAYxmUwsWrSIw3nlJO5OxBwyUR5bQVIwAZvLqZUbtN+KjZON2K+wg+7Mw0EYDAapMBiEdTI6KTj49k/htQ/wBYL8pf13NmL4MFYdLOhcZaCWxNjYWDZu3EhMTAyZmZl9hjUVRaGkpITDhw8zadIkZsyYgT/fjz/XT9OcJsZdqBUpCiHwr/PjL/RjXWbFktF/MVfomNYRoIvR4bjewUfbP6L1cCsVagV3Xn4nDsvgeuyPl+puNy5qUnCsdGAcd/aNi4ZKLS0tFBUVEQgEKNWVcv/W+8+IQ2J3KPj0yk+ZsnEKoYoQ1m9YMS80fykjLf0pGAxSWFhIfX1957Jhw4axcOHCQU1o7CjQrdu1CfuIMdgjT4xABAIBNmzYQF1dHampqUyZMkWrwVEEaouK2qoivAIREOQdyqOmqoYUWwoJoxMYmzoWfYweT8hDQUEBfr+ftLQ0ajeUwLERjGoeRZupDbPehMVn1aYyavYn6EfqcV7vBOOZhYMwGAxSYTAI62Q1IBzc92co3sLBuBief/tjABZcfgHLX3oY6BsKnE4n77//PllZms1xR393h+mLpY/KbCEEBw4cYOvWrcwOzSbuYFxnRCCoBPnhmh/yK+lXmEu1IUmWtD6gwOOBm28mdPf/4dqYgD5Bj/M6J3k1eax4cQXXjr6W5ZblREdFk5mZedpjc5V6BfdLboQqcFzrOKu2vGdLwWCQjRs3Ul1dzWHjYX6+/ef89+L/9g0HwSDU1UFCQg9DqQ51h4Lc83MZkz8GFLBfacc4+qsDVT304IOotbVsv/pq9u/f37nYbDazaNGiQfkdqEJl/mPziTBH8P4172K3OE9cR1XZt3kfDdsaSJKSiPPHIVpE5xP+QJJUL1KinlprG8eUYyTNTUJv03No/SGm107D7LfQYjhCDKNASJpLIqCL1SYzSjbpjMHByYLBF7tvJaywvsDS6XQ8+p//cNuqVXzzOz/jmefe7LnC//0MPn2Z2rQuS9ukFcuA/iMFf/3rX2loaOhs14qPj2fp0qX4/X7Wrl3b2eN9vCRJYuLEiWRZsog7GEftmFqMi7SbRIOngSm7pmAuNePP8vcNBQC1tchiFK6ieAxJBpzXd0FB+sh0Hr76YZZmL8XtdvPZZ5/1eT4nI7lCxvW0C0wQ8c2IryQUAJhMJjIzM0lNTSVFTuGR6Y8w0j6y7w127oSRI7W/j1MnFFRvY+O8jaSsSUEXoSPitoivLhQAKAq6UIhZs2axePHizuhZIBAgJyeHXbt2oarqKe1SJ+l48IIHSfp4Pc0piXhcTZ2vqS4Vf7Ef91Nuhn00jGk104itjkU0nzwUAAidDbXeTHxlPLOOzSLh3QTsH9iZtcfL7qjNHEmoJEoZgV8KICxdO1YbVdoebUNtVvnb3/7GD3/4Q+666y7+9a9/ndJ7HIzCEYPjFI4YhHWq6jdyUHGU9zOuoKRBu+Csynud6NSJ/aYPUlNTKSoqoq6ujvT0dJLbPeK727JmZWURFRXVY3shBP5cP/58P/J8mXxPPtHR0WRkZKCsUwhsCvAny594zfRavw6JwZ1BPO94MI7Xcp15x/J6LTTsOB9ZlsnMzCQ2NvaUPrfgLu04hpEG7FfZ0Vm+Hs8pHYVtHXnn7W3byU7J7rlSW5tW47FoEXS7DnVAwd7qvRSPKSaqLArzPDPW86xfqs6NMyGfz8eGDRt6pBY6PCT6czDsTSXrXuTT391K4ZULeOG8NVAMofJQr+sKBB6TB328nnJTOS8cfIEFYxdw3YzrtNeDAuEVyM0yrRWtmN1mjGrfwBYwBmiwNRARjMDpc6LoFPRqt3oiPZoF+GjDaUcOhiyVIEnSU0AZsKf9zwEhRO+f4JdQYTAIazDqEw7uf4hn73+I8vb17jiQx8pv/mhAm2NFUTonz6WlpTFixAhAuxjm5+fj8Xh6VGZ3h4KO2oGGhgYK8guYUjeFhLoEbBfaqB1X29mtsOnbm4i19byZa+6H7cOTLrGTV9k7FHQoEAhQUFBAS0sLaWlpDB8+fMDPSghBYEMA36c+TNNM2C75crUjngm53W6Kiopobm3m4aMPc8uSWwasOeiAgsbqRj6L+gxLq0WzNv4KFGmetDweaGmB9u+Zqqrs3buXnd0iK0ajkYULF3YC9clIqIIdBTtw5bmYKqae8LouTodpignDaAO6JB27D+xm957d7Pfux53g5k/L/9RrTUfH+ZVtLSMpEMX4uOnojuhQG3uPbISkIAgdOnTahMluq1kvsGKeZz4tOBhKMFCBEuBjwApEAavEVyT0EAaDsAarXuGgzcVDc5bTfLQGyengs5lTBoSC7vvbuHEjR48eZcGCBZ1ubB1FWE1NTSxatIikpCT8OX78BX6s51ixpGtpAiEELW+2IHYLDo4+yNQrp2K326lsreSF7S/w88yfd17MhBCdxYrmokew3j2bvKm2k2pJDIVCbNy4URvhPHs248eP7/MzEqrA97GPwKZA794JXyOFQiFKSkqoqKhgTdMaMuZncNvcdjioq4OXX4Zrr4WEhE4oiKyK5Gnj0xitRuxX2b+yqZc+lZmpQcErr/RY3GEs5W/vWgCYMGECM2bM6HdyolAFwW1B/Pl+1NaeN2vJKWGeZcY01YQ+oec+Htn0CA+ue5D7xtyHXWdnxowZjBs3rmtc9HFq+utf2Wgw4BkxgilTpjAxeSKhshAtm1swN5iROPE3INrzFd1fM6YasV1q48c/GdxUxqEEgzYgUQjhO6UNvyQKg0FYp6Pe4OBPCbNwtbl5xWLmoD/QY/2+oKD7/jZv3szhw4eZN29epze7oiisX7+e6qpqFhsWY95lxvoNK5ZF7VCgCrzveQnuCKI/T09BQwGKopCVldVxYQDgvX3vMSNhBvHF8QSKA1gyDVjcuRSO0XP+uytP2qegu1NdX65xQhZ43vIg75e1J905X6Mn3T4khKCsrIySLSUc8B4geWoyqxas0iYrZmRAYSHuqeNZ8fwKMqsz+bH6Yy3Fc5n9C2sPPaTavx+amiAt7YSXAoEAmzZtoqqqqnNZZGQk6enpOJ0nFhWGjobwfOBBresJBLoEHe9Fv8fT3qd55/p3TjBBemTTI9yx+g6+v/D7/GXZX9i+fTuHDh0iJiaGefPmnZDiA6C1FcXrZVd9Pfv27cNutzNr1iySkpJoeuw5KqQJRLcOI8rXy7bHSXJKOG518NPf/fSU4WAowWCbEKL3q9gXRJIk3QH8BEgCdgE/EELkn+S2YTAI67TUHQ6e/Pf/set79/IsUHfcegNBQYeEEJSWlnLw4EFmz57NhAkTAA0OKp+vJKoyCtdsF6Mu0vrdhSrwvuMluCuI/TI7pmmmzhSE1+tl8eLFxMbGElSCzPr3LH7h+QXL5eXYV9gxzzWTezh30OZF+/btY9u2bYwaNYr58+d3Pq2pHhX3K9pkP8eVDowTvsJFcoNQQ0MDa9atQQjBBdkXdFbYu4NuVj63km9Wf5PzxHknOFeG1VMdoLV169ZOt0S9Xt9j/oHqUfF95iO4LdhjW0N8EMtCPYZZsRQeKezVIbE7FPz9/L93/jvU19dTUlKCy+Vi3LhxpKam9tmt09raypYtW2ioaWC4YzjjE8bjMDioO1ZH49FGElrjsMl2pAF6A8zLzPzyjV+eEhwMJRgUCyEWnNJGZ1GSJF0DPAfcARQCtwO3AVOFEJUnsX0YDMI6bXXAwZOPP44Z8B73+slCQYeEEGzbto39+/czY8YMJk2chPcDL8GtQRpnNlLqL2X69OlMnjgZz9se5L0y9svtmKZ2tboFg0EKCgpobm4mIyODxNhEGl5uQBwW/Mr6K+677T5a1rzFEy//lD0rlwzavOjIkSNs3LiR2NhYMjIy0Lv1WjtioL0d8Qs62e/zVoeVcmNjI2Mnj2XixIl895nv8qPaHzHKNIqIyyMwTfxyWhufMT35JKSkwLJl/a7W3NxMUVERHo+nc9mI4SOYLk0nlB+Cbkygi9dhX2HHMKrn9/J4h8Rntz3bKxR0SFEUysrKOo3KJk6cyMSJEzu7J8TDjxCqFMhLb0WulFHqFSTRtQ8hqUg6HUIRPdIHAtFrqkE7eSjwFHDfU/dx5y/u5Lt3fbffz2UowaBUCDFn4DU/H0mStBEoFUJ8r9uyPcDbQogT5m5KkmQGuqOdEzgaBoOwTlc1NTWMGjWqc758h04VCjokhGDXrl3s2bWHdG86tmM2bJfYME03dS7PcGdgrbFiv7J3f/yOsbGNVY1ktmSib9bjXeFl8brF+EI+vremgavLbYzeW3NajoYNDQ0UFBQQF4oj9XAqOpsOx3UO9NFfbnveoZaqquRszKHhSAOjdrQy2rgCYnQkXJ+APib82ZGRAVlZ8Mc/DriqLMuUlpZSUVFBpC+SKTVTcAa7pRSMYF2mFfRJOknrAnnlFfjHPzpX6YCDrFFZrC5b3ScUdJff72fPnj0cPHgQvV7P5JjJJDclo+7ygzChi9ZhGG3AMNyALk5HQ7CB/W+9SO2oEegNBobFDSPWF4tltzZUSS/rsYQs6IUeqf1/fWl11GpuuPuGPl8fSjAIAv8EPgHyhRCeATbp2O5iIcR7p3SwU5QkSSa0h7OrhBBvdVv+IDBLCLGkl21+A/z6+OVhMAjrdHXVVVfx+uuvn7D8z3/+Mz/96U8HtU+hCGqersFUZaJxXiMTLtAsYUWofXmNieaFzYz7xrg+L16hthD1T9Sj9+rxfsNLysIUXt31Kte9cR0ZIzP46MaPzojNceuWVuQPZNxWN5HXRRKdHH3a+/w6qM3bxmf/eI9sZQXHnJWMunkMETHha9FgJEKCujfrMO3rCcl1MXVEXxhNQko3U6S33oLf/14DhG5pgF+u/SV/yP/DSUFB53GFwL3TjTvPjaXJgs/goy25DcsMCwmTEk5opxR+GfcuL+5tXozVRvSqHoEgqA8S0ocwqAaMISO6AdILl314GbmFuX2+PtRdCR0bKcBmIAdYBxT0VZQoSdImIcT8UzrYKUqSpGTgGJAhhCjqtvw+4BYhxKRetglHDMIaErW0tDB8eDJeb8+fhE6n48UXX+Saa645pf0JWeB+3U2oPERreivFdcWMHz+eWdNn4X3Di3xIpimtiZKGEqZMmcK0adNODHc2K7hfcCNkwZE5R9hTuwfHCAdX5VzVWVPgkT14ZS+jIvv26B9I/k1+fB/60E/SUxxZTJunjfT0dIYNGzbofX4d5Gpyse2xbUwMTuS9+Pdw2Vwk2ZJYnL74lNrvwmp31HzdjdrQVVzoNrnZk7iHFlsLACNHjmTmzJl9+h50rym4YfoN/LHgjzx3+XMnFCR2l1wh4/vUh1KloB+px7jASLWpmoqKchoaGxFAREQEMTExRJmjiKyIxLjPiOSXIAFUfQX+gg2YJlyBQTWiSiqKpGBUjZ1pBb/OT7O1mYAxgF7VY5bNKLJCbVotS5cu7fPchhIMjgD3A0uBJUDHZAkByGigsK79T5EQwt++3U4hxLRTOtgpqhsYpAsh1ndb/gvgJiFE/2PKCNcYhHVm1NbWxvnnn8f+nTuxuj0cO+71U4UDERS4X3ETOhrCcY0D41gjBw8eZOumraQ1pWFrteG4Wpsx0FEA2DEzoQMOlDoF1wsuJJOE43oHuigdq4tW4znmYXtoO/etvA/b3/9JzvsP862Vxn5NkPo8TyHwfeYjsD6AOU3rlOjooKipqWHu3LmdnRVh9VTboTbqXqojpIbwn+dh5vgUfljwa5wt0Uy3TmfKlCmkpqb22RL3lVdLC5xzDvz971o6oQ8JobUgeld7O+2F0WtpA+94LyVbSmhubu5cX6/Xk5qayvhx4zB0m0VyfKFh0ZEizn/+fOYPn8/7171/AhwoLQq+T3zIe2X0yXqsy6wYUgxdcH7ppfiFoPaf/6ShqgHLHgsJ1QkgoCqyiiNRR7CELEyon0BEIAJFUpB1MhbFgtpuaFAdUU1lTCVus+Y2arPZePrpp/noo49YvXo1ixcv7vcjHEow6PHkL0nSFDRI6ACFjkkUAq3EYyNQBHxfCDG4Idonf26nnEroZR9hMAjrtNQBBXv27OHjd5/ggyVX8S6w9bj1ThYOREDgesmFUqvguM6BcZR28VI9Ko3PNEIzVM2uYvoF0ztvGvv372fr1q1MmDCBWbNmoRzT5hHoIrVhSDqHrrP74LbRt5FhzCAlJYV527fTWlvBXMcLAKcEByIk8LzjQd4tYz3fimVBl+2yqqps2bKFgwcPMnXqVFJTU8OV9e0SQtC2oY3gp0FKKSX66mgWeAwwdy5i82aqJyTReqyVHTt2nNbQoC+9mprg3nvhrru0keC9SAQEng88yLu66np0MTocVzk6vQiEEJSXl7Nt27Ye9T/GYJCJR48y/oc/5MntT/ZaaFhQWcAFz1/QAw6EKghsDODL9SFZJGzn2DBOM574/S4qQgSCBGMW4fvMhwgIzAvM6Ma2EvjzA4Rm3o2uwYnL4sIUNGFWzcg6GaNqpNZRy4H4A/hMWvRRr9eTkZHB9ddfT3FxMWvWrBkQCuBzLD6UJGkaGiQsA7KAjsSiEEIMefVMe/FhiRDijm7LdgPv9FZ82Mv2YTAIa9DqDgWfrn6GeXOn82fHZHyhEGudDvJdPecKDAQHqk/F/YIbtVnVbFGHa5XTSouC+0U3wi/wLPNQdKCIESNGsHDhwk44KCsro7S0lOmR0xm2ZRiGYQbs12rWw8e3JNZV1VFcXExSUhKLFi3imPtYp0PiycCB6lPxvOohVBXSuiF6KXwUQrB371527NihQci8eV/fp992CVnQ+l4rYpfgCekJMm7KYNHoRdDcDOvWwdKlEB2NT/Zx24u3cbH9YpxWJ+np6URHh2s2uitUFcLzuqeHUZFptgnb+TYk44kQGggE2LFjB4cOHeqxXEiCNY1rSByV2KujYQccnDvuXF5f+jqedzwoNQrmBWas2VYkc+/AqzQpeN/3EqoIaUZF59gQDkHjukb0xXqCUpAaZw3JLckYhAGBIKQLsTtpNw2Ohs79DB8+nJkzZ3LJJZecEhTA0ILBMSHEwL6n2roSMBO4AvjFWQKDjnbF7wLrge8A3wZShRAVJ7F9GAzCGpR6gwKaW3l05EJqQyEknY7622/g4Uee67FdX3CgelTcz7tR3SqOG7qmDip1Cq4XXUh6CccNDvQxeo4dO0ZRURHDhw8nLS2t84Z7ZO0RbIU2fPE+kr+VjM50IhR0FBpWV1dTVFREjM1G5ujRVA93sOyZZdy/7H6unXZtn++7E1K87e2II/pvR6yoqGDTpk3Ex8eTnp7e5yjpr7qUJoW2V9vwN/j5ifQT7rz5ThaNXNTrukII7lp9F69ufZWHpj2EKWRi7ty5pKSknN2T/jzlckFrKyQnQzegFEIQKA7g+8TXVf1mBPvFdkypA7d3trS0sHfvXiorT+xmj4+PZ/To0QwfPrxHlKagooDEfYnEbY5DF63Dfom9E9qPlxCCwN8+xheYiy7CiOk8Ew22BuoO1RG1OYoYbwxHI48iCYnhbcPx6/1YFAu1jlp2D9tNSN81cWDevHkMGzaMiy666JShAIa++HC+EKLkFLc7JIQ4K8nFdoOjn6IZHO0EfiiEyDvJbcNgENYpq1coALjvz7z498c50P47u6e8iF/8v0f557+f7bH98XCgulRcz7kQAYHzBmdnGDR0NKSlBCLaUwLOrgvksWPHWL9+PcnJyaSlpSFvkfGu9hIcEyTPmEfK2BQ8cR4ufOnCPs2L6uvrKVizBofPx+JbbgEDWAxaSqDV30qkJbLH+qFq7Xwkk6S1I8aeHPvX1dVRWFiIzWZj8eLFpzz05ssu+YCM+y031aFqbuEWHrrpoZ5Q0NAAb78Nl10G3eZh3LX6Lh4reYwn5z+JyWVi3LhxzJo1q1/b36+MXngBbrwRvF6wat9b1aviecdDqKzr5qkfpse+0n5qrbHHjvHeWw/wtq6Jc+POP6H6X5Ik4uPjSUhIIM4ah6XAgnJYwTDfwD+M/+Cexff0WpCouBVcb7sQ5QKX+QD7p7fR5Goizh1Hak0qqqRSFlfG6KbR2GRbZ5HhwYSDlEeV09GZqNfrWbp0KRaLZdBQAENviVwJXCyEKB9o/W7blQgh5p7SwT4HhcEgrFNVn1AAsHs/qy+8lU3Vmu/hLR+/wOjFC/j+j37fJxysPHel9gSuCJw3OjtvtnKZjPt1N/phehzXOHq1xK2qqqKosIjpwekkHErQwpvnWamoqKC4uJjCtkL2mPfwzrXv9NmS2FJaSl5lJQaTiSVLlmC323m4+GEeWP9Aj7SCfEDG/YYbfbwex7UOdPZTSwu0traSn5+PEOIEq+avqoQQ+PP8+PP8bLRs5Db5Nl676bUTIwWlpTB3LpSUwJw5Pba/a/Vd/Hvzv8m9NJe6sjqioqJIT0//6sNVdbVmFb18OaBV/3ve8CA8Xfcw8yIz1qWnPmly3a9uIusPz/Pzt+7k9+f/lYMHD1JeXo7X29OaLMYTw/Tq6aiSyv6R+2mLayO/Kh+7xc7548/HoDMQCoXw+/3oa/WMPzQendCxa9guLR0gYFzDOMY2jaXeXk9tZC1TaqcgpCCqKqFKcCjxEMecXeXKVquVb3zjGwghTgsKYGjBwA5cDqwEXMAzQohPT2K7z4QQ55zSwT4HhcEgrFNRv1AA8PK7lPzkft6vb0LS67j0b//LzO/eiBCiTzh47PrHuDLtSi1NEKVBQeco5HFG7Ffae82ZgnbjaHirAcMuA3Vj6hh37TgMBgO5h3P57bu/5TuJ32HkyJEsSlvUb37f7XaTm5uLqqpkZ2fTrDb3qDkYdmgY3tVejBO00cx9nc9A8nq9FBQU4PF4SE9PJzExceCNvqRSfSqet7Wn2+cjnueXnl/y4U0f9pk+6EtCCD499CnnjjuXxsZG1q9fj6IoLFq0qNNK+assoQp8eT4C+V1zRySLhP1yO8bxp56WemTTI9z5/h38avy3+M2Nj/cYLNbc3ExlZSWVFZUkH0tmbONYmmxN7EjagWyQe9+hgNHNoxlfP54Waws7k3cSMAQwKkamV00nxhtDc0oNEQIMFUl4nV7MLjM+YytbU3YTMARQVa1OIjY2liVLlhAMBk8bCmAIwaDHxpIUA1wGPBWerhjW100DQsGPfgdPvIJn0VzaoiOJf/cTDP/vPvjezQB9w4Gk4/mnnue6W7T57v5iP76PfJhmmLBd1PeIYiELPO9pFdnBRUHyW/JJSkpCTpK58GUtffDo4kcp3VR6QqFizx0JuOcefPPmkRMTgyzLZGdn0yJayH4qm+8FvsdtwdswzzNjPd+qucadhmRZpqioiPr6eubPn9/paf9VUqimvTDOp/Ibx294quUpPrrxo1OGguP16OZHMQoj4zzjqK+vZ/r06UyaNOmr2fHx4YeojT7cwXNQjiqdiw2jDdgvt/dIq52sHtn0CHd8cAffT+vbvEj1tAPdoRD+mX6ODjtKS2sLbrf7BFdTvapnas1UhrmGUR5bTnXEXiJ37yTu/OuIL01Gp+iwX2Yn+FQRsmUmTbYmYrwxtCS0UBJZAgY6oWDkyJEsXLgQv99/RqAAzhIYfBUVBoOwTkYDQoEsw7V3wjmZEApBXjEsS4dbVoK9K+TbX+TghRde4JL4SwgUdXkC9HXBV1oUPK95UBoV7JdoMxKqq6vJL8in1FXKFuMW3r72baxGK0ePHmXDhg0kJyezcOHC3vPTt98OM2bgX7WK3Nxc/H4/SxYvIfhZEONeI+8Oe5ebb7v5jN2Auk+RnDZtGlOmTPnK3NwC2wN4P/BCLHxb+jYfN3w8MBSUlcH3vw8PPgj9jLG+e/XdPLzpYR676DHmG+azb98+RowYwfz5879yRZ2hu3+LO/ImhLm9G0MCS7YFS7plUHDa4VPwrOd8blzvQfrkE7BYeqwTqg7hftUNIbSIxNien6ksywSDQWRZZteBXSTmJhIbisV0oQnbNBuSqhL87CCeLfHoo/TYLrHhWu1CrVZpsjQR54ujPLqMsvhyJJ3UOfipw4PE5/OdMSiAkweDr3evUFhhDUIDQgGA0QivPQqf5MH+cqiqgZr6HlAAWlHTX266n++kfbvHclVVueH6G3jpPy9hPdfaLxTIFTKuJ1wIv8B5q7NzcNL+wH4eOPYAM+wzuG/0fZh02vIRI0aQnp5OVVVVZxj6BP3nP3DnnVgsFrKzs3EYHTQ93YRxvxH/BX5W3rJSs2I+Qw8WOp2O+fPnM3XqVHbu3ElJSUnnk9OXVUIReNd48b7jRZossdKw8uSgALSqe7O5R/V9b3po+UPcMe8Ovv3+t9mkbCI9PZ2amho+++wz2tr6vO5/6RTcF8SV/D+dUCDZJZy3OLFmDi5i1d286MblP0NKTz8BCoK7g7iedqGz64j4dsQJUABgNBqx2+3YW+2k5qYSb4knYlUExdI6vNtK8W+S8WyMxzjGiOUSC83P1hKsDeKyuYj1x3IgcSeHErQiw47f0qxZs5g5c+YZh4JTUThicJzCEYOw+tPJQIFavB1ltw/l/b2ItDR00QqmleOQIs3wk/thzCi442aEAF+ulUCxFdNsHz9ffS8PP9J/t0J3CSEIbA7g+9iHYZQB+5V2dDbtRtK9JfHxpY+zacMmEhMTSU9P74wQVFdXU1hYeMLyTnm98OKLqFfeQtsrHuQmmZ2jdzJz+UxiYmLYXb+bVe+u4uUrXz5lh8T+dOjQIUpKShg2bBhpaWlfyidf1aXift2NUqWg+4aOi3ZdxLbabWckfXC8uhckvnbVa5w34jwKCwvx+XwsWLCAESNGnNHjnU0JIQisD+D7rMtWXJ/UXuzqGNxzbV+jk7sf05/rx5/vx5hqxH5x/zU0gS0BvKu9WkrjSjttUhv/vGwEd1t+i5j7LcyLzASSA8jvyMhSEL3sxaSPZVvydtqi2wgEumolFi5cyOjRo/F6vUMCBeFUwiAVBoOw+tJAUCAEBPcZ8b5tAZ0RVB+6SCNqmw5UH1XWdex47FfEpYzgnLefwfO+A/mAEesyL+a5AUDwP3fez8NPPtNjv73BgQhpT6PBrUGt8+Dcrien3nwKampqKCgoOAECampqKCws7PQUMBi69WKXlBC85bd4b3wCyWbCvNJM4Z5C2traWLx4MV6j95RMkE5FNTU1FBUV4XQ6yczMxGo9/aFOZ0sd1fLoQHepjgtzLmRbzSlCgapq6SijccCoAWg3s78W/ZVVc1YRY9XqQjZt2sTRo0eZPHky06ZN+9KZSYmQ0EaLb++akWycasR+qR3JMLg00wlQ8NhjsGhRp5OiCLa7d+6VsSy1YMmw9Bmp62H/PU/r/pH0EiIoOPJcBbZjdh6LfZxLx19KwqYE/DY/Np0F1aeyObmUkM2Ft/3+K0kSmZmZJCUlDRkUQBgMBq0wGITVmwaCAtUl4fnQTqjchC42hHFYKzrfEXQGgSS58O2ORtFPJ3f1vfjUalbc/DiqS4/9Yjem8VoBk1xuwP2OnZ9/eC//zXm8x/67w0Hn02i1gu1CG+aZXcYrfZkXQRcEJCQk9ICD2tpabURyXBwZGRkYDAZEUOD92EtwSxDjJCO2i2zobDpkWSY/P5+WlhYWL16Mz+QbMjhobm4mPz8fvV7PkiVLcDgcZ2zfQyEh2q1xP9UiOFwMK95ecepQAH22K56MKloqKDxSyHXTrmPfvn3s2LGDhIQE0tLSvjRWyqpHxf2qu0eRoSVyD5a7Fw269uQEKJBlmDoV7r4bvv99rU7nFQ9Ki4L9MjumSX2bIwm5HSD2yFjPs2JZqKUh1D0VuNfZUVx6yuaXUbuvlkUNiwjqqrFYkggqITYP34wwuPG2v4+O73dcXNyQQgGEwWDQCoNBWMdrICgIlhnxrraDUNDZvajNJoTo+YSrj6yjfGM+oyZfCYCqVhF1mw19nIoQENhkwZdrxZAiY7/YzQ/u+12vBYnPPvgsFwYvBB04rnL0cFvrDwo61AEB8fHxZGRkdMJBXV0dBQUFREdHs2jcIgLvBVBdKrbzbZhmGJDq66F9MmIoFKKgoIDGxkYyMzMJWAJkP52Nw+Rgy+1b0OvOnNmOx+MhLy8PWZbJysoiKirqjO37TEr1qHje1VoRzYvMKJkKK14aJBSANhdg9WpYsQJiYk5p09/m/Jbf5P6Gxy5+jNvm3EZdXR3r169Hr9eTnp5OzCnu72xLqVNwveRCtLXfm/RoN+qpA7sY9qU+0wehECgKoTo97lfbjbqu6Zqr0JtUj4r7FTdKnaLZf7cDhNKk4H6gDCEMHDvXj2evhwn1E9gqrWeWfwpep4GtI7egODQ7ZiEEBoOBpUuXEh0dPeRQAGEwGLTCYBBWd/UHBUKAv8CKf70VfXwIpU4Aesw1azBFHEb/i2sRDS7kNw/gJ4uQD/I/+A2NtbsZXbmeb+z4GDFyFN4P7QT3mLEs9GFZ7EPS9d/K+MT3nuDmP9/cI8d6MlDQob7goL62noq3KxhbPxZ9oh7HFe1OhrffDsXF2lNs+wU1FApRWFhIQ0MDGRkZBK1BjrQeIWNUxhn89DX5/X7y8/Nxu91kZmYSHx9/xo9xOpLLZTxve0AF+6V2AqMCLH9h+eCh4DTVveagAw68Xi9FRUW0tLQwZ86cL+yEyw4TL9q7ACWbhEP3AYa0sVrIfxDqFQoCAc1iOS6O4J4gnrc9GJIN2K/qqtPpTUpTu/13sN3+O1kD81B1CPeLblRDiC3DNhHbkMToptEYpxsI7pFxGdvYFV1IQC+jOByoqorJZGLZsmVEREScFSiAcFdCWGGdtvqFgiB43nbgX29BF6Wg1BswTpZxLNmO+VcZqNdej3zIhOq1YPr5TUQkvIk+1kPGeb/GYLSye3gCQd0Y2p6OJFhmwn6JG+sSDQpAyzk++LdfcfcdN/c4J1WorHp0Fa998FrnslOBAoDExEQyMzM1++OCAkKhEGqriuUjC2PrxlIZW0lJSglqRHtXwO23wz//2QkFAAaDgczMTBISEigoKMDgMZAxKoOQGuJHH/2IipYBx5KctDo6I6Kjo8nLy6OqquqM7ft0JBSBb60P9/Oa+2PEdyLOHBQ0NcFLL2l/n6IkSeLhFQ9r3QrvfZvHSx/HZrOxdOlSUlJS2Lx5M5s2beq9G+VzkhAC/0Y/7pe6oECXoCNilR3Ds3+FoqJB7bfPSMGLL8KoUfg/a8DzugfjRCOOGxz9QkGoKoTrKRfowPktZycUyIdkXE824zN4yYsvYHTLBEY3jcZkOUhwu58mUxMHUstwOQwErBZUVcVisXDuueeeVSg4FYUjBscpHDEIC/qHAtUt4X7TidKgB51AkkLY5lWjtpkIlEWi+o5rSbSqmGf5MH/vXPZm/Z5ho5bibqvCGTUCQ4IH28Uy+tjeW/PkI3ru+ub/8d+Cx3os76g5GLZw2ClBQXfV1dWRn5/POHUco8tHI5kl7JfZcTld5Obm4nQ6ycrKwmRqD+EKoXUq2Ls84RVFYcOGDVRXV5OWloYhykD6E+nAma856DhWVVUV8+fP/1wHCCktCp63PCjHlM5eek/Ic+YiBadRY9AhIQT3fHQP2SnZXDr50s7l5eXllJSU4HQ6mTt3LnHtsxg+L3W0dQa3dCsynGTEfpkdySRp37tQSCvEPAX1130gWlvxPVVGwDVWs1E+p+92YOhmR57Q3hHRDhDBXUHcb7tpNlSzc/geFgYzMVebMc02ESjxU+eop46PqR0+DIEG9i7h4orlVxAbGXvWoSCcShikwmAQVn9QoDTqcL/uRPVJEJQwjA6hW/8xctxihNGG6cAHmH6ShT73HYi0oC5eTnCPmcBWMzqTj2rxFttfLCI2cQpGz14W+3ch5b/e42kcQKjgX2/BX2RFnyzzi/U/5eHHT6w5MFxlIOvCrFOGAtBm1ze93YRuv46W+BZG3DACo1O7+DY3N5Obm4vdbicrK0srWvvOd+DYMXj//R7nq6oqGzdu5OjRo6SlpSEixJAVJKqqSklJCeXl5cycOZNJkyadsX2frIK7g3jf92o2vFfYMYww4A66z2z6QFHA79d668/AgCQhBEVHijpTPS0tLWzevJmmpibGjBnDjBkzPpfCRNWn4nnNQ6iiawiSOaN93oEkQX09DCJ11C8UtLjxfALyPhnr+VYs8y397AkC2wJ43zvR/tu9wU3wkyDVEdU0ja9met1cRA0YxgWQ95mojqimLbWGIw316PR6VCHQW/TctecuJg+bzKuXvso1V1xzViMFYTAYpMJg8PVWf1AQqtLjft0JAkRAh2mGn2C5EVw6jCObsV2gomushPEpXTvM2wh//Q/Kv/6N57MElGYdH7x8Mwe3rUZvMvKjd5/Emt3zJqK26fC8byd0zIBlkR9Lug+k3msOkODZ557lphtuOqX3GToawvOWB9WrEsoIkVeTR2xcLJmZmZ0tiy0tLeTm5mK1WlmyZAnm3FztZnXJJSfsT1VVNm3aRGVlJQsWLECKkjrhYONtG4m3n7m6ACEEO3bsYO/evUyePJnp06efFZdEIbd3apQGMU5p79Sw6M48FAyBXtv1Gle/fnVnzQFo/2aHDh1ix44dSJLEjBkzGDNmzFlznFQatXy92tIeLdOB7WIb5hntgLJnD0ybBuvWQVbWSe+3PyhQ16zD/Z6KMmI29isd/XceCIG/0I9/nR/THBO25TYknYSqqtR+UItlq4WjkeU4s53EbEpEaVTQjw6g7DdzJKoC72wPlVXH0Ol0qKpKVFQU2dnZFNcUc+ELFzK6ZDSHPjx0VtMH4RqDsMI6RfUHBfIhI66XIxAChCxpULDTiISKbVkrjrQj6KJ1GhQ8+QqUH9E21OvBYkafZMCZtQ+D5wDLL3+SUeOWogRltu/ar4VKFUXzQdhjou2pCJRWHY5rXVgztbqDvmoOEHDrzbfyyiuvnNR7VN0q3jVeXE+7kBwSEd+JID4znqwlWTQ1NXXWHACdFzKfz0dOTg7+rKwuKDjOI77DuXD06NFs3LgRpUkh59YcbpxxI7G22EH9e/SljpvYzJkz2bt3L5s3bx5yl0SlTqHtiTaC24PYLrRpZlJDCQWHDsFVV2l/nwGtnLqyR80BaP9m48ePZ/ny5SQnJ7N582bWrl1Lc3PzGTlmf5LLZdoeb+uEAsmqORl2QgHAiBHw3//CwoUnvd/+oEBpVnAdmIGaNBnnzc4BocD3iQ//Oj+WLAu2FRoUuFwuDj59EMtWC/WJ5Yx98i6ic6K19zEBlP1mKmMO4fV/2gMKYmNjWbp0KSaTiTlxc5i+bvpZh4JTUThicJzCEYOvp3qDAq/sQy/pkA448XxgBz2gExiGhwgdMmHa9ya2qA1I45NR//gM8ksfE6q1oObsQYwdg250JIbkEMZJQfRRKhysQFx0G013vovaGstn7/6AuG9Ecc7WXYQWX4Vv5HUox4wYJwWxne9BZznxt5lTsYFzb72F0PqehWP9OSSCljbwF/nxb/Qj6SUsGRbMaeYedrL19fXk5+cTExPTI3LQ1tZGTk4OpvYxzNbf/x62bTshpQDaBbWkpIRDhw4xd+5cxo0bB8Cnhz5lQsyEM5pWADh8+DCbNm0iOTmZtLS03uc+nIaEEARLg3g/9qKL1mmdGu2tbEMaKThwAO66Cx5+GCZMOCO77K1bobvq6+spKSnB5XIxfvx4pk2bNiSuk4GSAN41Xmj/euvidDiu65okOlj1BwWhqhDul91IZkk7VkzfxxKKwPuel+COILblNszzzCiKwv69+xGfCYa1DkNOl4mbG4f7ORdCgVCsB/1hG0dGHME9yc3Ro0eR0N5ifHw8ixcvxmAwfO6FhuFUwilKkqQ7gTvRoiiTwmDw9VFvUCCE4OLXv8PStnP5VuPtYAAsKjqzQG3VYzvPg9lZTkiJw78lCvmgGSQJ/TAFvTMARgnVbSR0TA8hCePkINYlPvSRKkKBin/UEKlMRRepIFp9CBzoE0NYs3wYUuTj77cA5FZuZMVrt7EoeTYTN6bwyKMv9ni9L4fEQEkAf4EfERSY55uxZFjQWXsPFnbAQXR0dOfFrOMzys3NxWAwkK2qWKuq4LbbTgAD0G5AW7ZsoaysjNmzZzNm3BhmPDIDf8h/xmsOgM6ZD7GxsWRkZJyxm5nqU/G+70XeK2Oaa8J2rq0rv/wlSB/0pg44qPPW8erKV09IG6iqyv79+9m1axdGo5FZs2YxcuTIM5JeEGp7KmZTV5GhYbwBxxUOJPNx+8/N1Xwcfvc7bWbEAOoPCoL7g3hed6Gv2YXj9uHoUsf1fY6ywPOGB/mgrHknpJqoq6tjy+YtpOxLId4Tj0X5ELNaiyvmm0g6CV+UD/NhM8dEHk3jPdS2f/+EEJ0dQHq9/nOHAgiDwaAVjhh8vdRf+mD7mmpG7khFRsYYJUFAh84osPM6uiuX4F0fhbzXgi5awTzXj2msC51ZBWtXMZO48UcEzXPxzb0DEZCwnevBPNmL0BsIHTYgl5uQDALDyFCfQABdUJA+fA7vXvkfLAZzn1MZX3zxRa6+6mqCO4L4c/2obSqmWSasWVZ0EQNnDxsaGsjLyyM6OprMzMzOG63L5SInJwe9Xk92djY2m02z7u3FalcIwfbt29m3bx8zZ87EOsw6ZAWJQGfrpcPhYPHixVgs/ReUDaTQEa0GQwQEtotsmKZ0hZ2/rFDQISEEilAw6Aw0eBuIs53YleD1etmyZQvHjh0jMTGROXPm4HQ6B39Mv8D9hpvQoW5Fhmnt3QC9DUF65hl44gkNEAaAkv6gIFCqzTEwDg9gX/9bpIcfBFPvKQTVr+J52UOoJoTjKgeh5BDbt2/naPlR5tXNI8IdgeMqB9Ibz+CWlyPFOXCb3FirrNRNraVK2UFTKITaDtPDhw/vjGJ9EaAAwmAwaIXB4OujvqCgu3GRQGUv+xjHOCzJ4Ji2k9A9r+BdcT+SGsT66e8xvfxdpJgIeOxF+N0/YG9O1xTFjVsgEEQsXIj3MzvBnWbMu17A+uQFSPpuFzxZhm/9GC7Ihhsu73Gex0OB1WhpP8++RzY//s3HuWz0ZRgnG7EutaKPO7UwbQccREVFsXjx4k44cLvd5OTkIEkS2WVl2D/7DN55p8/Iwc6dO9mzZw/Tpk3DMdwxpHDQ0tJCXl4eBoOBJUuWYO/WVnmyEmp7wVmuH/0IPfbL7D1C3GcNCkpLYcECzVhqkO2KA6msqYy5/53L38772wlphQ5VV1dTWlqKz+dj8uTJTJ48uec8jZOQ0txeZNjUXgcioVl5zx4gEiDEoKFACIG/wI8/x495fvscg36mMKpuFfcLbtQ2Fdu1Nsq95ezatQuTMLGwdiEGlwHHRSBFOXG/6EaKlGhVW7HX22kZX8HB2AZcLlenN8TIkSNZuHAhOp3uCwMFEC4+DCusftUfFPjW2vCvtwICfZzKFKbwLu+ybvz7eA9Mw3vBnzFNU4i4sQ7ztyZrUABwfjb89kc9RysvnA1ZC5HMYF/hwTblAIHU6/C8Y0e0PzwpwSAHczZAfCzYerYc9gUF0I8Jkqpy25O3sSZuDY6rHKcMBQBxcXFkZWXR0tJCfn4+cnuxocPhYOnSpQDkJCfjSU/Xoga9SJIkpk2bRmpqKjt37qTtSFsnECjizJvrREVFsWzZMoQQrF27ltbW1lPaXnVpNwd/jh9LhgXnzc7PBwoARo6Ef/1L+3uINC56HDdOv7FHQeLxSkpK4vzzz2fy5Mns3buXjz76iOrq6pM+hlwh43rM1QUFZnDc5OgfCsrKNL+M04AC38c+7d9xVgDrny9EOlze536UZgXX0y5Un4pvhY/Pdn7G9u3bGZs0lsz6TIxeI86MBrjmGlzPtCDFSDQHm7HX23E3vcQB7xbczc2dUJCSkvKFhIJTUThicJzCEYOvvvqEAhW8H9sIbtduvrrYEGqjAcsiHy1NO7HsnYtkAduKVkyJbRAxQGhVCPjvC/CNxTCu6+k4WGbE844Dw2iZg65nWfv7v+GqqmVV7muMWDi7c73+oKC75Godd3/nD/znkyd6LB+oIPFk1NjYSF5eHpGRkT0iB16vl5ycHFRVJTs7G4fZ3K8BzZ49e9ixY0eP9sIWfwuugIuRkWf25ufz+cjLy8Pn85GZmXlSBj7yARnPu55OX35jSs/38mVPH/SlgQoSu8vlclFaWkptbS3Dhw9n1qxZ/UZlAlsDeN/vVmQYrcNxff+FfwBkZEBiIrz5Zp+r9AkFxxcOWg7Aj38Mr7wC2pNyDym1Cq4XXQiDYM/EPRxtPUpCQgIzx81E964OERQ4b3CitgRxv+JCSjbQ7G4lwuXEvyzA1qYtBFtbkdu/+2PHjmXu3LlIkvSFhIJwKmGQCoPBV1t9QoECntV25D0mQEIXraA267Ce5wVZwrfOgs5dTc6SHFxPPcANm2Wk0jXaE74QcOP/wKrrYFl618GaW2FUGjz7d7j8gq7l2/cg71NxH8nEKx3hqV8tRAkFSMlayM2rn0H66f+xZ4ydecGn+4UCpUWHL8+KvNeMFBPiF0U/5d8vPt1jnTMJBxEREWRlZfWAg9zcXEIuF9l//zvO996Dfm7C+/btY9u2bUycOJGZM2dy7RvXsunYpiFJKwSDQQoKCmhubiY9PZ2kpKRe1xMhzdY4sDGAcYIR28U2dPaegdTPBQpaWiAvT+vfH+LBUR1w8Nru19h/936iLH0fTwjBkSNH2Lp1K7Isk5qaysSJE3uMdO4+jrhDhjEG7Cu1Fs8BVV4ObW0wc2avL/cJBbLA/bpWx9BRONifQsdCuF5w4Tf52ZCwAUu0hZkzZ5JgTsDzggcAx3I/ymEXnk2xMBxaGltwep3IBx9i0yWzUSWJYFArphw/fjyzZ8/+wkIBhMFg0AqDwVdX/ULBuw7kMiMICV2EgurVYb/QTXCfCXmvGfMCH9aFLXxSU8zdj9/Otz1jufuvb2A2mBHNbYjv/g71llUwczqSSaCLUpCMaGF2VYXuedl7fgd5G5Hf+Aj3G06qKzfy1hMrCclebnzvKazPPcv/BQrYd/mCXqFA9Ur411sJbDEj2QTWTC+macE+TZCGEg58Ph+5n35KsLWV7AsuIGKAp/MDBw6wZcsWxo8fT+zYWJY+o6UlhgIOQqEQ69evp6amhoULFzJq1KgeryuNCp43PSj1CtZzrJgXmE+ovv/cIgVnwBL5VCSE4GjbUUZGjkQVKjqp/xu4LMvs3LmTsrKyTmvl+Ph4REjgecuDvLfL58I0z4TtfFu/OX5AM88yGHr+Vo5TX1Cg+lTcL7tRahUcVzswBsrgpz+FJ5/s1TnRtddF8M0gbaY29ozbw6QZkxgzZgyiUeB63oVkknDe6CR030N4Em5ATZFoq3fhDDgJzTnGhuZd6Dwe/O1RiA7Y/SJDAYTBYNAKg8FXU31CQQjcbzsIlWtQIDkUkCVsyz34C60otQr2qFxM350HTS1gs/JxdTErX7+bH8TfwY9jvo96xIzwHHchlQT6RAXTxCCmaQF0jm6/s1YX2K1gMCBXGmh7xUrdke188NLNSKPM/O+1NaSPnHsCFIgg+Ess+Ddqyyxpfixz/RqAdKzTT0Hi6cJBU1MTubm5REREsHjx4s4ZCn6/n9zcXPx+P9lz5xI5YkS/+zl48CAlJSWMHTuW+PHxQwoHHY6MFRUVzJ49mwntngCBbVovvc6p02yNk068GX2u6QNZ1qIGUVGnPCPgdBQIBbj05UtZOXVlv2mFDjU3N1NaWkpjYyNjksYwYd8ERHXXd916wcCWw5361a/go49g/fpebaD7hAKXiusFF8ItcFzXPop8wwb45S+1wthu6Q6Xy0VlXiWJWxJptbcif0Nm/JTxGAyGzgmJOocOxw0O5IOylpaIb8PXKnDINuQLZNZXbMRgMOD3+wGYMmUK06ZN+8JDAYTBYNAKg8FXT31CgQzuN52EKg0gQLIK0IF1mQffWjuSTuA48Cf0c4bBjZfDytsRIT3+nz9JW7EOk99Co66S5GEhDAvi0UWoSAaB8OtQGvTIebXI3uFgNGGeGcCS7kNnO/H3JldL1P1HRhI61n/2B95esIX//vlFrA8+gzCYkC/6DsE9JuQyEyhgnh3Asqj3fcHZgYPjBywFAgFyP/4YX10dS+LjierFNrm7ysvL2bRpEykpKSROTGTZs8v45eJf8s3Z3xz0ufUlIQTbtm1j//79pE5IZfTh0cg7ZUwzTNgusJ3YQ89Xt6ZgIJ1KzUH3bSq2V2BaY8IqtxfPGsCx0oFxwilATUkJbN8O3zzxO9AXFHTYKgtV4LzeiT6uczxpj/NramriwIEDBHcFSa1KJTg8SOx1sZis2vc3dCSE+yU3ulgdjqssyH96Ha91Od6RXkK1IeyqjeC6H1D0rYvRG43I7YWGqampTJ069UsBBRAGg0ErDAZfLfUJBUFwve5EOaZBAWaBziowL/DhW2dHHyPjuNLT+aQvFAh80IK/bARCGDFNC7AzaRMz/v001q37YH0vLXtvfYiat43A1b/Gv9GCpAPrOV5MU4NIf3gIKo7BY38G4L1nniXu42Qmz7waRQliTNRBXSuq5ADJjC42hGlqEHNqEF1E710A3TXUcJCXl4fD4TgBDvJeew2P3c6S9jHJ/amiooLi4mJGjhxJ6qxUnBatmNMddOMwOQZ9fr1JCEHZ+jJseTYsqgX7hXYsM3t/kv1CQMHhw/Cb32h/zvIUyVOFg9BR7aYq/NpvJagPsmfCHqImRJGcnExcXFyPGoRTVV9QEKrWjitZJJw3ONFF6uA//9FmKzz/PCGgsrKSsrIyWlpaGOMbw7jKcRinGXFc6uhMbcjlMu5X3BiSDDiudRBYW41vs5W26GoktwObzob/PD/r9xdhaW3F154+mD59OlOmTAH4UkABhMFg0AqDwVdHfUJBQML1qgOlpj18rBfoY1SMEwL4C20YhzVh/8M3kF74O8ybQWhzM55to1Gb9JimB7Bm+NA52383qkr1wd3cX/4aDyy7D7Oh9zYs1SPhW2sjuMeMcXIAe+srSA018MPbtO6DV1dx+3MmRtXHMXrCOcy+4iYSZo5DZxUYxsjo45WBurdO0FDCQcf0xePhIBgMkpeXh7utjaz584kZoN3uyJEjbNiwodMM5qmtT/GH/D+c0bSCEILAxgC+z3yEokJsjNpI7NhYFixYcIKF8hcCCgD27YNVqzSTn89hgmR3ONj07U3MS57X63rBvUE8b3qgvftUF6MjdGGI8oZyqqqq8Pv9mEwmkpKSGD58OImJiSc6U+bmag6Hr70GMTE9XuoLCuTD2s1cH6fHcV3XGGTltdeo37ePoxdcwJEjR5BlmaSkJCZ5J2EsNmKeZ8Z6QdeIZfmAjPs1N4YUA46VdgIb/fhyAjQlNWJqMGNTDbgtH7FxhA273Y7HoxUldp/s+WWBAgiDwaAVBoOvhvqCAtUv4X7FiVLffkOQQD8shD5eIbjVohUZzqlHuv9BxL0/xLcpmsBWO/pQBbZVURgS26+AqqoNSho3mpyKDSx/bRXLRi/izcv/1QUHx2ogIbZHjji4x4TnIzs6p4rjChcFrvWdLYmPDP8uL5yrTUm0xUVz987PsERFwHNvwr6DcP9PTvlzOBtwYLfbWbJkSRccBALk/+tftCUmknXBBcTG9j9E6dixY6xfv167eUwdzrJnlwFnpuZA9ah43vUQKgtpTnvLrByrPsaGDRuIj48nPT29y7zpiwIFXxAJIfjgwAdcOOHCXi2R/Rv9+D72df5/wygD9mu6Og+EEDQ3N3Ps2DGqqqpobW1Fp9ORkJDA8OHDSU5Oxmq1at0Xjz2muR12iyz0BQUdMGIYZdAcCnUhaqqqOFZdTXV1NbIsY7fbGTlyJGPHjkW/WY8/X/OmsCy1dO1nj7Yf4wQjtsttBP78KX4xn9phtTgbnViNVpqN71MyzIK9rQ1P+/2ge63KlwkKIAwGg1YYDL786hMKfBLul50ojXo6JpwYRobArBI6YMKW3oB5TAMkJxKq0eN5z4Hq0mFN2o05XSCNTu46yGsfwDd/BDs+gTEj+bg8n0vf+G5POEicDT/5Lvz49h7npzTqcL/pRHaF+GX1VRycKzoLDV+/8X/Y9fpqjHYb1776CGPPyYBHnoVte+Dff+jVfnggfR5wIH/6KfmyTIvPR1ZW1oBeAtXV1RQWFpKYmMjI1JEse+704UAul/G87QEV7JfYe+S7a2trKSws7CyklCU5DAX96Pntz+MP+bltzm3azINPvASLu2YeGKcZsV9i7+nmeZzcbjdVVVUcO3aMhoYGhBDExMSQnJxMUlISZrMZvV6PXq/nsdLHuGNNTygQQuDa6CL0aQh/sp/KSZW0uFpwuVwIIYj0+xk+Zw4jRozouPnh+9hHoDiAdZkVS0ZX6ii4I4jnHQ/GqUZsl9jw5/oJFAU4FnmQGF8yFoOJ+sWNbDu8DbtejycUAknqMRjsywYFEAaDQSsMBl9u9QkFHgnXy07UZr3m96mAcayMKksoxwzYL3Zj+v0diLLDBB76EF+uDb3Dg32ljD6ul9+IPwAf5cKl53Uu6oCD88cs5q3L/430WSGMHdXD3KhDBWUlDPuvjZiouZiu8OCYrF1QW49UkfP7h1j2mx/iTE7UVj4Ja9iBNJRw0NLSQk5ODna7naysLMztQ29kWaYgN5fm5mYWZ2cT30vbWHfV1NRQWFhIXFwco6aP4pznzmHB8AW8vPLlUzofoQj8uX78hX4MKQbsl9nROU8EqqamJvLz8zGajDxU+xBF1UVfHCjYulXzMMjLg1mzPu+z4X/W/A//LP4nT654kqsOXYW8v6sd0Zxpxppt7TWq0JcCgQA1Bw9y7LPPqElOJqSc6ISpomIymNDr9eh0OoZVDWN83XiORB7h0MhDREZFEhERQWRkJMM+/BDH6NFw8cVA+8Cm970Et3VNSOw89tYA3ve8mGaasF5oxf9qFYEyOxXxFSS2JmLR6aja9yd2nbcIh8OB2+0GYN68eYwdOxb4ckIBhMFg0AqDwZdXfUKBW8L1cgRqi06DghAYJwVRmvWoLTocV7gxjgqhltfhzYlDro/DPL4G6y2zkZ7+f3Dlip4HCgb7HMTySXkBLYE2rpq8otfXocvR8ArLLB6Ofxm1woFthQdzarDPbQDIWQ8PPAavPgKWgSfOHa+hhoPc3FysVitLlizphIPQD39IQVwcjZMns3jxYhISEvrdT11dHfn5+cTGxpIyPYVoezSRlkiEECd141FaFDxveVCOKViyLVjSLf32z9c01fD+x+8jKzKp81PJmph1am98qFRbCy+8ADfcoLkAfs4SQvCzd37GBdsvYLbU7s4pge0iG+ZZp/5dBGDjRrjhBpScHJrMZkKhEKv3rebJLU9y4bgLuXrq1SiKgqqo2LfZcZY5Cc0OYV9mx2ptBxGfD6w9bcSF0uWlYLvEhnlG1/n5N/nxfejDPNeM5QIL/ldrCRywcCimjBHuUZjtZg7PPMT+6jIcNTV4EhMRksSCBQtIaS8C/bJCAYRnJYT1NVOfUOCScL3YDgV6oY1AnhokVGNAeHQ4r2vD+PHzKBVBXJ9MINQWg/1yF7YrTEhv/BsuO7/ngWobYPJS+LSg1/M4d0wmV01egSjZwfr//RGBoK/H691tjv/7nceIWCljmhbE+4GdwNYBLrCRTg0I/IH+1+tD/c1WuP7663nllVcGtV/Q5hQsWbJEMzzKzSUQ0M7R8MtfknnhhcTFxZGfn09tbW2/+0lISCArK4umpiYObTuETW/jYNNBsp/JpqKlos/thBAEdwVx/deFcAmctzixZvY/OMcddHPVO1fxu8rfkRiRSPOeZpqamgb1/s+4EhPhnnu+EFAAoDap3FdxXycUKHoFx3WOwUMBwMKFsG8f+hEjiI+P5+2jb3Nb7m3MnzKfey++l/HjxzNxwkRGHRiFs8yJ9Xwr8RfFY7PZNCior4fJk7WixXaJkMDzmgd5v4x9pb0nFKxvh4KFZiznW/B94MN/wExZ7AFGukdjNggOpmzRoMDhwDNsGEKSWLhw4VcCCk5FYTAI60uvPqGgTadBQWs7FMg6TNP8yIeNSDpw3tCGwVdJ8KnttL0ah2QSOK+px1SZo+34vCUnGq2YTXDdpTBnWr/nVLf2E0Y++g5XvHM3gZB2k+xt9oH0+AvY3vofzLMDeD+249/S80Lrb2njk/v+TKDNBbOnadGCqAgtvTAIDTUcZGdn94SD2FgMs2aRuWgR8cEgBfn51NTU9Luf+Ph4lixZQmtrK3l5eUiqxJHWIyx9ZukJcCCEILg/iOtJl1aQNtaA8ztODCP7nwDYvdDwlete4cLzLsThcJCTkzMgvJwVtbXBp59qf3/OCh0J0fZEG6JN+855jV7U61SM407DeOnxxzUDp/bfV2+Fhh03+eDOILbLbFgWHNdeGhUF3/oWZGYCIIIC98tu5HIZxzUOTJO1qJ4QAl+eD9+nPiyZFiznWPA+fYTA1gAH4g6Q4hqDOcLMvsDLHHLX4lBVPB4PAkhLS2P0aC0V+HWBAgiDQVhfcvUFBUqrjrYXnKhtOjC0Q8EMP8H9JvQRKs4b2tBFqviOTMBz6aMYJyk4b2hD/84rcNV3tchAb4qKgD/8FGKi+j2vxJ/cw+71T7C2Yj1XvHUnn5QX9D4QyWFHinJgPceDea4f3yd2/KUaHFTkF/OvWedT9MBjfPbrB7p2fqAcFl6idSoMQkMJB5GRkZ1wkJOT0xk50JeUkLFqFQkmEwUFBQNO6IuNjWXJkiW4XC4ObjnIp9d/CtAJB0LtihB4XvEgGSQc1zuwXzmwH39v3Qdms5klS5Z0RjaOHDky6M/gjKisDM49V/v7c1RwdxDXsy5oD1Lp4nQk3ZFEwpgEql3VvLzz1Oo/AKiogB/8ANauBfqAgoDA/ZIb+ZCM42oH5unHRSaamrRun1//GpKSEH6B60UXoWMhHNc7OqFFCIF/nTZG25JtwZJlwfu2l2CVgwNxBxjfNg5TlIldE3dxZMJwbIEAHiEQQpCent5po/11ggII1xicoHCNwZdHfUJBixYpEB6pJxTsNmNIDuG43AU56/FsHIlsmY41y4d5oV+r7xMCdu2Hacf1jgsBN/8Arr4ILj73pM/x4/J8Ln79O4RUhSUjF/LBVY/1OSVRCPCtsxLYbMX6DQ/+mIP8e85yZK8PJEmbvrhgFrjccOev4Hc/gpT+7Yf701DWHLS2tpKTk4PFYmHJkiVYLBaorEQZPrxzfkF6ejrJycn97qd77cK42eNY/sJyLlEv4ZfmXyKaBIaxBiyZFoyjT+7pdaCWREVRKC4u5siRIz0q0M+6AgGoroakJDCfRrh+kBJCENgQwPdpt3bEFK09ULJo6Zk/5P2BX6775Uk7JPZQXR3Ex/PI5kdPgALVp+J+0Y3SqOC41oFx1HH/tmvXwmWXQVERTJuG6tXWV5tVHNe3WyLTNX45UBzAeq4V83wzrtddyAdkyuLKGN86HoMtxHblTepGxGO2WPD7/QhVJT0jg+HDhwNfLSgI1xiE9ZVWn1DQrMP1QjsUGNuhYLqf4E4zxtEyjpUulCYdbTvTkI0TsF/SiiXNj7ShFDZu0ar/j4cCAG/7BfJkiv5UFRZeDO9+gllvQkIizhrNm5f/q3cocLkhvxhJAutSH+Z5Pnyf2rE0jiP7f7+vrSME79/5SxRZBqdDm9iYMkK7gXwB0wodkYNAINA5R4FRo9Dr9SzaupUkvZ6ioiKqqqr63U9HeiLgDdC6ppUiUcQvPL/AEG/AucqJ8wbnGYMCAL1eT1paGuPHj6ekpITdu3fzuTw8mc2a4+HnAQWqwPuhtwcUmGaYcFzfBQUA9y2+jzvm3cG33/s2j5c+fnI7Ly3VincTEnqHApeK6xkXaouK8ybniVAAsGCB5gg5dSqqW8X1rAu1VcVxU08o8K72EigOdHYltD1dh7w/yMG4A0xonYAh1sCWESXUxzkx19Xh93oRQpCRmfmVhIJTURgMwvrSqU8oaGqHAm87FAQlTNM0KDBNDmK/zI1So+B6IRJVisH5rQCmye32wg8+Ab/7R983WbsNnnsQ8Y0slFYd8hEDwQNGgnuNBMuMhKr1qL72i2YgCIsXUirVs+K121g8cj6Hv5dLlDWC3Q0HOmsOOvXUq3DRreDxdsHBfB++z+zMTv8ew2Zqtqu1O/ay4Z9Pd20XDMI518Hf/jvoz/Ksw4Gqov/gAxZt2UJycjJFRUUcO3asz32IoMC820zmwUxSKlJoNjVjusWE7Sobv9n7m34LErvrVMyLJEli9uzZpKamsnPnTrZu3Xr24aCyEu68U/v7LEoEBe5X3AQ3d3XIWLIs2C6xneBRIEkSD694uBMOHit5rP+d+3xw/vnw29/2mj5QmhVcz7gQfq149ITBVs3NcPQoOBxwzz2obrT1fQLnzU4Mw9qhQBV43/USLA1iu9iGaaaJ1hdakav1lEftZkLLBPSRCpuTNtFMAFNEBP6YGIQkkZmZ2RnF+rpCAYRTCSconEr4YqtPKGhsTx/4u6DAODWAvNuCaZYf27leQntk3G/a0VlD2G8Aw7BuMwcCAfD6ITryhGMqf3sTeVgGsn48oSoDhPqudJccKobRMgeidvGN9VcxZ8TUzpoCn+xn3H+WMTtxak+HxKYWcHlg9PDO/QgBvjwrgY1WgmMP8ehN80EIDFYLd5SuIXpMu9Xww09D5nyYlXpan+tQphXa2trIycnBZDKRnZ2NRacDkwlVVdm4YQNHjx1j0aJFjOg2lVH1qQQ2BQgUBxABgWmGCWWmQt72PHQ6HdMXTGfJC0uAgU2QTsfRsKysjNLSUkaPHs38+fNPy/P/lLRnj9aq+MIL0O7HP9RS3e0h/Np2TwEJbBfbMM/sP2ohhOAHH/6AtBFpXDf9uv4PsmsXTx37gG+t/1lPKKhXcL3gQjJKOG5woI86cboi3/wmbNoE27ejtArcz7tBgONGB/oYbX2hCDzveJB3y9gvtWOcZKT5mXrUWh2VIyoZUzMGKR6Kva/gjXagdzgIhEIAZGZmMmzYMOCrCwVhH4NTlCRJdwJ3okVRJoXB4IunPqGgoR0KAu01BSEJ48Qg8j4zloU+LFk+5D0mPKvtGEIHcVzmRpo8Sgv5/+IvcNu1MC6lx7FEQCKww0Rgmxm1sf8K977kk3zYZyg4FobQR2kQ0qtDYh8SAvxFFvyFNo65P+WNv1wNwNhzMrjx/ad79vUrCjS3QlxMH3sbWGcVDiwWWLMG9R//oPh//5cjVVWkpaUxPGY4gQ0B/Jv9oIJ5thnLIos2IAfNPS83NxeACXMncMErFwB9w8GZsDmurKykuLiYxMREFi1ahMEwuO/DF1kdN2bhar8fGMFxjQPjmFPrPBBCsLlqM/OHz+/5QnU1JCbySMl/TogUhKraxx07tXHHOkcf8FVbC+XlKOPn43pegwjnjc7O74ZQBJ4321sVr7BjHGuk8ZlGRJ2g2lTCSHUhUqLEhrgNBP0uaG0laLeD0cjixYtJbG8N/apCAYTBYNAKRwy+mOoTCur1uF5ydkGBImEYKxMqM2HN8mJe6CewwYQv34FpWgDb+R6kjoeRukY493r4w0/gom8AmhmSv9hCYKul18iAZFO12QoxKpJNRdKBCIHq1qHU6ZFrdOjU4592BMbUINZMH/pItXc42LoL7voVvPMExPacSujfbMa31s6BfW/x0Uu3o6ohLvrX/cxddW3XSnf/L5Rsh4I3B2Wb3HmmZwkOlixZgnXHDnjwQdT//Ictm/dh2GlgZNtIJL2kGdCkWXq9SXg8HnJzc1FVlYlzJnLBaxocFK0qYphjWOd6Z3L2QYcrY3R0NJmZmZ3Wz18FyRUy7pfd0J49kBySNsI4sZen9gH07r53ufTlS3sWJCoKzJzJjqlxzEjN7QEFHcfWx7cPQ7L28t394AOtJTEyklBtCPfzbiR7OxS0fz9ESOB53YN8SPMvMI4yUv9UPVKTRP2IoyQdHYUUH6LInoMSYUNVVeRgEEmSWJyV1Wm89VWGAgiDwaAVBoMvnvqCglCdHvdLTkSwHQpUCcNImdBhI7ZzvZhmBvB9ZiOwxYKl6B9YHr8YKe64UcCyDEYjqk/Cv8FCoMQCak8g0CeGMKUGMI6T0UWpfboT51Zu5NJXv8cPzdfxw8i7UeqTQOm2sk5gSfNjWejjk6P53PL+T/nsumeZGjdBg5Qf/gbu/yl0pAm6KbDLhOcDG8fKC1nzyrdQ9H7u2v4JzqR2J8Ede6GmDs49fee+oYQDl8tFwacFRAYimZ44HaleIlQdQrQJFIPC4ajDxJ8Tz+iJ/c9H6GiHDIVCTJwzkcd3Pc6fvvEn9DrtZjYUA5EaGxvJz8/HarWSlZWlDQAaKm3fruXjP/oIZswYssMEd2ozA2jPquniddoI414spE9GfY1sfufRH3Lvjn9w3sXdoOCAjPt1N4aRBhxXO5BMvfyw2tpg7Fi45x5Ct/4U9wtudFHtkYX2iYpCFrhfdROqDOG4yoEuWUf9E/Xo2nS0Tmoh7kA8DIdC/cdIrY2E7HZCdjtIEllZWZ1W3V91KIAwGAxaYTD4YqlPKKjVIgXI7VAgJPRJIZSjBmwrPJgmBvG870AuM2LLbsXcktN109yyE37zd3jqb4ioKAJbzfjyrBDsdjHUCUwVq7GwCf0//2fA8+zNvEj1SwRKzfiLLT32rYtUsF/oQU50YzVaOosR+0srAMhHDDQ9DwF3K22ji0n9dvaJNsFCwPY9MHPqwB9uPzpTcCCCglB1CKVK6fxbbdbuQiF9CNNwE8aoIIb/9xP031tB6cQxHD58mPnz53e6zfUlv99PTk4OwWCQJUuWEBkZSX5FPrHWWG7/4PYhGYjUYbqk0+nIysrC6XSesX33UHW1NnJ51SqtZfEMSwhBoCiAb223dsSxBhwrHUjm05/L0QEHz2Y+gNtp5o41d/aIFHQAiXG8EfuVdiRDP8c8dAhZSsb9qg99QntkoWOCY3uxZOhYCMc1DoiDhica0Hl0BCpfxznyOhgFeY58TFYTAZcLRZaRzGaysrM7h3t9HaAAwmAwaIXB4IujPqGgRo/r5QiQAQMgCfRxCkqtAfslbgzDQ7jfdKBUgyPjKMb04woKN5TCnx8h9MCjeNZFozZ0yxnrBOY5fiwL/OjMQc1+2Ono9zx7QMEFf8f6f4/At6+HCWMAbdSzf72FwGYLiI4LoMC80I8108c1792NR/bx5iUPYS7aBpPGQscApePkPeol8GEMNFuxLPBjyfAhdU95v/cJXH0HlK6GKRNO/sPuRf3BwVP3PsUVc65AeAWEtFCuCAlQtP/uWNYRnsYA+mF6DMkG9El6ApEBcrflYjAayF6yBOu//gU334xISKCkpIRDhw4xf/58xowZ0+85+v1+8vLy8Pl8ZC7OZPFLiznUfAij3sjHN348JAORPB4PeXl5yLLM4sWLiY6OHnijL5CEqrXyBbd0dR6YZpmwrTix82DQxxCCH7zzPe75zlM8NTVIy8+7oCBQEsC72otpuknrdujNtrq5GR58EH7xC+Qj4H7FjWGEAcc1XZEFERC4XnKh1Co4r3OiRCg0PtGIPqBHmatg3WxBJMvk6T7BajHibS94lSSJJUuWdI4D/7pAAYTBYNAKg8EXQ31CQXV3KBCgA32MgtJgwHGFC12Uivs1J8IPjtduxrBiCvz8Dm2nsgwGA0KW8OXbCJSY0eYvazJOCWBb4kO3b4tWxNdLSP94nRApqKyBS1bBcw+eYJusNOjxrLaj1HTdyfWJIUrnrmX5h7ewInE+r3+/BOl3P4K7bu3zmEIBf7EFf5EVXaSKNcOHcWJQq51QVfg0X7NzHoREEELVBkLHtD9Ko46fvfwL/ruhZyuaTtLxxPeeYOWyldrTngHtbz09/r9kkdAn6dHH60+4AbjdbtatW4fBYCA7O1sLzbe1IerrKW1p4eDBgz0m2vWlQCBAXl4ebrebJ5ue5IOjHzDMMYz1q9YPemTzQPL7/eTn5+N2u8nMzBxwcuQpy+2GHTtg+nStPe8MSQQF7tfdhA6GOpdZllqwZFhOaTriyejfm/5Nzl/uZOb5N3PHDf8g2hqNv8iP7zMf5vlmrOf3M5FxzRr45jcJvrYZT74dw5j2aIZRW7/DBEltVHHc4CBgCtDydAsGWY9eKkGvpqOOVsmz5GJvbsRtMCCsVnTtDpcxMVqR7tcJCiAMBoNWGAw+f/UJBVV6XK90gwID6CIU1GYDjpUuJLPA/ZoTySRwXOVCL5o1C+OOi8+qnxByTMQ95ceItq7CKl1sCPsFXgzD2y+W514PTju82X9fdm/pg4EkVAhssmipi47ogUll38KNLC28gusts/j37U9gPol9KQ16vGtthA4bkZwKlrkBTKkBdPb23/RHuRqcxMf2uQ/VJbVDgJHQUQNKnR6EhGRW0Q8PYYhXwKnw44f/l3+/+HSPbc9EzYHb7SYnJwedTkd2dja2W2+FQ4cQxcVs2bqVsrKyk3IgbHY389x7zxFBBM6JTn5S8BNg4FbG05EsyxQWFtLY2Kh1VAwfPvBGJ6vSUpg7F0pKYM6cM7JL1aXietGFWtdRUAD2S+yYpp/5QsrHc/7Ot3Pv4fsLv88PFv6Aef+dx3sj32PywcnavILsgUEkWNqGZ42CcaIR+xX2zmiG6lVxv+DWTI1ucOAKufC+5EWv6rFQipAXEhopk2crICo2mtbWVoQsozMYyF62rDPC83WDAgiDwaAVBoPPV31CwTEDrlecEKILCuwqwq3DcZULVAn3Gw50BheOtf+D7unf90gBCAV8T1QRaEmlM0qgE1gX+zDP83d1KoDmROjy9BnOh36gQAj6rE7splC1Hvc7jm6AIjgyfTcLd36Df533G741Y+WA+wm0ufjoZ3/kyOpdXHzPYzjlSaBKSHYVfWwQ/dvPoZ8RC5ech/DpED4J1Sch/O3/3apDbdWOr4tSMAwPaX9GhNDFKj0OP5QFiT3gYNw4bKoKU6YghGDr1q0cOHCAOXPmMH78+N63by803Fe7j//O/C+qT+tWuH3t7Tx+8eNMiR86HwBFUdi4cSPHjh1j3rx5A6Y+Tlo+Hxw6pBXenYEiR6WuvR3R3X69N7W3I6acxiCkPvRY7t8557J7KL0umyv/tRYhBB//52MWNixk+5TtLFnZTzTrP/+BpiYCK+7B+54X07Se6QbV3Q4FbhXHjQ4aXA0obyjohQ57poNQTgh5jEy+bh3RlYdpHjMG9Hr0ej3Z2dlERUUBX08ogDAYDFphMPj81CcUHDXgerUDCgCjQGdREX4djqtdCLcO9zsODEkhHMPzkR55DJ5+oNNOVtlRh6dkPEpdtxB+Ugj7hW70Md1Mjnbvh4S4Ab0A+o0UrLgFZk6BP/58wPer+iU8H9gJHex6YvOPayTx41+hi7Yj/vjzfp+qDn5awPMX3QqAyWnnewWfYGM4Sp325B+qAuFr37dRoLOqSBaBZBNIFhWdU8WQrMGAzjHwdeCswUF2NjajEZ59FnHrrWzbsYP9+/cze/ZsJkzoWTdxfPfBvGHzKCwspKmpiYyMDBITE/EEPTT7mxkRMfi5Ev1JVVVKS0s5dOgQM2bMYPLkyUNynMFKLpdxv9qtHdEp4bzBiT7+1NsRB9Ijmx7hzvfv4NX6bK780eOQMlZzIdwZ5K1Rb7Hq8Kr+Zyv87ncE3Cl4nRdjmm3CdqGt8zegulRcz7kQAYHzRidHqo9gXG3EICQcH/6Z4Lm/JjhGJs+YR0J0FPX19UiKgt7hYOmyZR03xK8tFEAYDAatMBh8PuoLCuQjBtyvOkFBgwKTQDJqJkbOa9pQ6gx4VtsxDvdgXxnozEF2KLC2Fe/6YWBsf+qS2qMEC/xIx3dkLb1GSz281XcKYcD0wbNvQEIsXJB9Uu9bCPAXWvAX2TqX6fVV7BP/5A9jDvLKpQ/2263w7nfvZcvT2jz6MdmLuGn1M0jdfAxEANi2A2nHLujuezBIDSUceDwe1q1bhyRJLDWbsV10ERQWIubMYfv27ezbt49Zs2YxceJEoO+WxFAoRGFhIQ0NDWRkZPCzDT8jvyJ/SNMKQgh27tzJnj17mDRpEjNmzDi9nP3Ro1rx3fe/DyMGDzSB7QG873qh/TKvT9TjuL4fE6HT0CObHuGH79zBdzO1QkMU8LzhQS6TsV9mxzjVyF2r7+LFnS9SdncZsbZuKS5FAb0e/0Y/vo99mBeYsZ7XVYOgtqq4nnchQgLHjQ72H9hP1LooDCYDjoU2AuuC+Ef7yDcXkhQXS21zM5IkYZAkss85JwwF7QqDwSAVBoOzrz6hoNKA+7V2KNADFoGk076vzmtcyIeN+D61YZriw/bTTKTrL4ZfaUOHhAzeT20Ed3TduHWRCvZL3RiGKb2fSG0DuD0wrvebx2BqCk5WwX1GPO87On0PAnYPS7zLGJ8yvF+HRH+ri0fmrqDtqDbG+Lw/38ui76/qudL//g3yi+GTF+AMuPYNNRzk5OQAkD15Mvb22gIhBDt27GDv3r3MnDmT4WOGDzglsaioiNraWibMmsDlH1wODG3NAcD+/fvZunUrY8aMYe7cuYO3UN61C664At58E1JP3e5aCIG/wI8/x9+5zDDegOPKPvwCTlOPbHqEn795BwefjiT2gUfgims1b4GjmreAcXzXGOTylnLGRo9FCKHd+FtaYOlSfHc8gb9mDOZ0M9ZlXVCgNCud9se2G2xs37qd5OJkDIRwTJTx747GN9ZHgaGA4Tt3UDVlCjqjEYPJxNKlSzuv4193KIAwGAxaYTA4u+oTCioMuF/vgAIBVgECdEZwXO0iuMuEv9CGeZ4P61If0hsfwMLZMDIZpVmH+3UbanNXiN6UGsB2rgeptzqrw0e1p3xb37nck4KCQ5VQeQyyFg7KfTBUrcf9uhPh07ZVcLNcupyEFGe/cFC+bj3PLr8JAL3JyLeL3iax+4RIRQE5dHKTIU9SZw0OlizB/s9/wuTJiMsu63wqLwwW8tSRp/r1KVAUpXPE8/iZ47li9RXA0MPB4cOH2bRpE8nJyaSlpaHXn/mQfX8SisD7gZfgtm7tiHNN2C7oozXwNNUxEOmeOXfx180xiBtX4c6L6ntsMiArMte8fg0rJqxg1ZQb8P9mDX7HUixLLFgWdxUmKk0KrudcSHoJ0zUmSjeWMm7HOAw2A47Cx/FNvx1Pipsi03pGjhrJ0SNH0IVCGC0Wlp57bqfPRBgKNIXHLof1hVefUHC4Z6RAsmlWxzozOK5tI7BZmx9gWdiC1fWuViS38kIYmUzwgJG2pyO7oEAvsK1wY7+wDygQAm79Idx6T5/nedKRgtc/gGvvPKniw95kSFJw3tyGLlqLaOhxsEa3hsBhHfes/b8+txuzdBGLfqBFCZSgzJu33kPI322Co16vQcHho3Dld6ChaVDn111DOZXRbreTnZ0NQE5ODp79+2H3biRJImViChuDG8kwZfBa9mv9+hTo9XrS09NJTk7mwNYDvHHBGwC8v//9QZ/bySglJYWMjAxqamo6/Q7OllS3Nra4OxRYz7FiWz60UPDDeXfz14seQvz417g+i+x/bDJg0BlIciTxs1e+TfEb2/E7lmI9x4o1q1ukoEGbtigZJaQrJTbkbWD8jvGYnCbs8+z4pt+Oa0wbRab1jDp6hKNHj6LT6zE6HGEoOE2FIwbHKRwxODvqEwrKDbjfcGoWrTptWqEISuidKvaVLvw5NoJ7TNjO82Je/xj8+gHY9RkiLhZfgZXA+q6nfp3dj+OaAPq4PlIHHSo7rI1KTp14wkunlD4IheBYbY8piYOR6pNwv2pHqdVIRpVU5POPMmxG3/3soUCAxzKuoG7nPgAW/WAV5/3p3p4rHT4Kt/wAnvgrjE85rXPs0FBGDrxeL+vWrUMIwdKlSxFGwUXPnE9pww5eXfIqbUfbSE1NJXWAULuqqhQXF3PkyBGmz5nO5HFacaBP9mE1Dp2tcX19PQUFBdjtdrKysrTBUSerXbvg0kvhnXdOOpUQqgrhftmN8HQUFID9Ujum1KGZ69ABBfdO+Q5/+FUO6l8exX1kDiKkFQfq4/qPlKhPPY3r/WbUWbeyNXUrS69Y2vmaUqdog5JsEsHlQbYWbWXm4ZkYDQEsW17DP+WbtI5ppdhYTIoEFYqCTlEwRUaydOlSHO3eD2Eo6KlwKmGQCoPB0KtvKDDifsPRBQVOFeGT0Meo2C934f3ITuiwEftFbkyTZe1p/1AlYkQK7nfthMq7LoDGiQHsyz1I/UXP6xohJrLPvPtQ1hQMJCGD+x0HoUPt70kSKOfUcn/TX/hz9k96TSvU7tzHY+mXoQS1J9Sb1zzHmKXHPVF3tFOGQlok4QyY2gw1HOTk5BBSQhQX/JmbntpA20fvMn/2hezevZudO3cydepUUlNT+y32U1WVzZs3c/jwYRYsWECRq4hfrfsVa29eO6RphZaWFvLy8jAYDCxZsgS73X5yGx47Bg8/DHfdBSfhjxDcEcTznkeLsgGSXcJxrQND8tBMguyAgu8v/D5/X/Rb1F8/iGvkXUgWfd9jk7tJqALvG80E98Kbo97itsO3UfStIv4/e+cdJ0V9N+BnZraXa9Sj995776IURYqAimCP3STGFE1iYkksUd8Ye1dQQUFQUUDa0Zv03vsdHFzbvjvt/WOuwu017gB1n0/8QHZnZmf3jp1nvr9v6V2/N8oZY1CSGCeSPTCbPZv20PVkVyzVLFgSswjtiyezYQabrVto3MRooS0KAlZRZPC11+Z/xjEpuJjYUkKMq5KoUnCkGCnwi5hqqjjHeAl850I5acY1zovlo3/Cyg0gCKgJjfF8ElcgBbqGXV+Cc0wpUqDrcPNDcMdjxT5dbikIhmDCb2DzzvJ/KMUgmMHVcTfmvXNzz1dAWlKb4FYz4+Y+mD9foTC12rVk6DN/AKDRwF4kNSvmgicIEInA6Dvg9Y8r51yrcFnB4XDQvW93zvjP0KDdrZhvmkr3ttcA0KZNG9q3b58vCCXd5IiiSPfu3WnSpAkbN26kudDciER8Mpjj2ccrfH6lkZCQwJAhQwBYunQp2dnZZduxbl34979LlQJd0wksCeCfVyAFUh2JuHvjLo8UDH8F1e/EW+8RRJcJ9zR36VKwaw/+WVlE9gs4x7q4c+qdzJk4h171ehlRj+nGoKST3U6yZ/0eup3shsWlYmkuEdoXz/lG59li2UyTpUs4euQIoihitdliUlCJxMQgxmUjqhQcvkAK4nKloI6CY4QP/9du1PMS7kkezHX8sGs/HDuFfMSM59N4tOzcLyKLhmtMBrY/di79RlgQ4Pk/w8N3XPRUhSIFWTkQkUGqvH9SQrMGOFvvxdI8I/+x5/UXaH6sQ1Q56PXwHYz/9P+YuuBT4uvXKf7AFouRIHmJg5aKnGsVyYEv4mPc1+N49sSzVI+vzZ4R4/FFInDsGMgyrVu3pkOHDuzdu5edO3eWKAeCINC1a1eaNWvG0T1HmTlkJkCVy4HL5WLw4MHYbDaWLVvGyZMnS98pGDQmLAaDUTfRQhq+L3yE1xX8Hlg6WnBPc1dJOSJcIAWd/4Iy7Ha8H2cjJom4ppZeBqnLGv43DiMfUHGOd2JpZ0EQBMa1Hod6WiXrkyzO286zt+VeTu08RffU7liqS5gXvENotUx6w3S227bTpHkzjgwdihSJYBNFhgwZEpOCSiS2lHABsaWEqiGaFEQOmfHPdRntgQUdIUFDzxExNZSxDwngn+NGlwXck7xIDh847OiqRnizg2CKnbwuhmLgJK5bZaTmCaWfTLYH4t3FhtGv5PJBNHQdgivthDcUrIe/KLzIrkYb+HbCu5dWL6/rRjJiCW2Ty3e4yltWuLBPQcdqHUlJSUFVFAY/+SSuG2+EZ54BYP/+/Wzfvr1MPQR0XWf79u0cOHCAhi0bcnPKzXSs3ZG5k+ZW6D2XFUVR2LRpEydPnqRly5a0b98+ejljKS2R1fMqvi98aNm5DboEsF9rx9rNWukzD/IoIgXXvoq86Tz+BTqm+hKuKUmllkHqso7vKx/KURnXsAjmnrXzn5OPy/hm+jhhOcGihEV0FDvSPa075tpmpAYS4TVhztRPZY91B40tFg6pKpIkYbdaGTx0aP4I7JgUlEwsx6CCxMSg8okqBQfN+OcVlgIVPUfC3ETG1j+Ab7YbQQTXJC/Swnnwj1fRU+YQ2FKfyK6CdQJzzQycs+5GmPEfqFbKpDtdh8EToUNreO3pIk9dkhRk5RiyUdG69ZJ4fyYk1yCYOIrQ6oJGSPubbKHn+EalRkdCOV7kQBB3cs2Ln3zmv/DFN7BlQaWVM1aGHERrXhQMBo2cA5+PQb174y7U/Cevh0CLFi3o2LFjqXKQ1xehQfMGNG/ZvGjDnSpC13UOHDjAjh07qFGjBr169So+KdHvhz17oE0buCAvQT4o45vjM2aGAIJVwDnRWSXtjfO4UAoiOyIEvgtgbmnGObaUscmAHlTwvXoARUw2WjE3LjhX+aiMb5YPasHaxLWQA51OdCJsz6C2kk1Ybk9qg1T2u/fTaOdODrVujaRp2OPiGDx4cEwKykEsxyDGVUFUKThwgRQkqujZEubmMtY+QXxfxiFYwH2LBylBg77d0KZOwbukYREpsPb045wmICz4oHQpACNK8OcH4daxRR6+5EjB5AdhWvSSx0tiwTJYtxl7nxD2QYH8h1se6UJwhZ3Pd31b7LICwPHVm3i7+2i+nvY7dE27eIMp4+Cfj1Vqj4NLXVaIJgUAdrudQYMGYXK5SNm6Fe+JE0bmPtCiRQs6d+6cLwilLSu0b9+eNm3acOLgCc4cPcPJnJNcM/2aKl1WEASBli1bMnDgQHJycliyZAmZmcWUjzqd0L17ESnQdZ3QmhC+mQVSIFYXcd/jvqxSEF6YSuDbAJZGQZzjyyAFIR3vB+dQAi7cbY8UlYLDRqRAqaGQ4kqhmlKNPql9SHWnsu/A14Tl9pyqd5KD7v00btzYkAJdx2GxMGTIkJgUVBGxiMEFxCIGlUdUKdhvxv/tBVKQKWFpHcHSOYT/azdinIZrohdx305o2QQ15ML7lbtg6JCo4zzzAZa05TDjtbJl1weCxTYxqpTlg5UbwGyG3pUzCa8Iue1i8whtthJcWnDBeJu3Wd3oR74eV7QJkhqJ8Hr74WQfPwXANf/+M31+F6VHPcCm7dCtQ6VUKkDFIgclSUFh8iMHmZkMevFF3GvX5l9EDx8+zObNm2nWrBmdO3cuNbSel7xYt0ldbltjNIqq6iZIYFzM1q5dS3Z2Nl26dCk6XjotzRgo9JvfQHIyuqzj/8aPvLegJ4K5pRnnjc4q6WSYR2EpeGX4K4RXhgmtCmFNX4T9mesQcocSRUML5I5HztJwjVIxtSmIykQORPDP9hOsHmRt3FpauFpQf2d9TPUlxBoSkY0RjtQ9win7AeqvXs2hgQORJCm/z0VepCUmBWUntpRQQWJiUDlElYJ9uVKAAOgISblS0D6CuXUY/1w3Uk0F13gfIiFoMwR5yu/wJd4DsvEFKNg1XBO8mLYtMfIFbh5T+gkpijEL4Zr+8Pff5j98NeYUFIuuG30IGtcHILzVSmBxgRy8y7usbLTwIjk4tmI9n1x3G+g6otnMPWu+pnaHYqYNbtsNvcbAtx/A8BKm35X7tMsuB2WVgjyCwSArUlKIhEIMGjq0yL/XI0eO8NNPP9G0aVO6dOlSqhzk5SgkN0pm2rppwOWRA1VV2bp1K0eOHKFJkyZ07tzZ6JS4cyeMGAELFqA1aIt3ZqFxyXBRh8Cq4EIpCP0YIrwpjH2IHVvf0v+daH4N35upaEEB1z01MSUXRAoieyP4v/bjqeZhY+JGutboSuL6REx1VMQfvyLSejJH6x/ldLXTJLltnE7PQgqHcVWrxqChQ7HmDkiLSUH5iC0lxLhiRJWCvZZipMCEpVMYc/MI/q/dmOoquG/yItp0sFkJ/+9bfO4CKRCrK8QN2oMpWYURg8smBWDccd9zC1xbcNGrNCnYfcDIA6jKDnevvAe9xxhlkYC1cxjHtX7ypuPcy70MPDaCcV8XrVZoNLBXfpRAk4vpiphHp7awYDpcM6BST7usywrllQLIXVYYPBiL3U7K8uV4HnsMDh8GoEmTJnTv3j0/elDaDVDLli3p3LkzacfS+LjnxwAMnzEcWa3aroWSJNGtWze6devGsWPHWL58OYFAANq3h1OnkONb4XnXUyAFJnBOdBbpEFgVFJGCYa8Q/CZIeFMIx67/YWuSVer+msfowKiFBdz7/oWpZsGlJrIrgn+On/MJ59lSYwv9G/QncV0i5mZmxOoWIq0nc7jOQdKs+6lTvTqn07PQdA3VKsSk4DIRixjkIgjCg8CDGLLUMhYxqBhRpWCPBf98JxdKgbVrCKmOQuB7J+amMs7rfQhpqegfzybY/4+ENxYk25maRHB1PoTQdSi8+RzccmPZTkqWjTB/ISo1UvD+TPjbS5D6U6WF4S/iZCocPg4DexV5jfAOC4GFeZ8rLHJ/z/V3dcJpKVgyUcJh3u8/gbM79gLQ8+Hbue6lv0Z/rdWboEYStGxaaadfUuTgw08/5P3I++WSgsKEQiFSli4lcvYsg2rWJG706Pznjh07xsaNG2ncuDHdunUr9WKaJxI169XEV83H6JajS9y+MsnMzGTt2rWoqkrv3r2JPxlPYEHBZEQhXsA92Y1Us2pnLxSRgiGvEPg6gHxYxtkpHcunf4fp042S1yio2Sq+6V7QBVxTXEgJQn5SbnhHGP+3fs7Gn+Vok6P0rd0XbaGGuZGGIISJHLZzsN5BMqufpfrChRwZOBARCAgh/nDgD/xrxL+4u8vdMSmoILGlhAoSW0qoONGkILzbQuD7YqSgRxAxUSX4oxNL6wiOEX4ECfSZP+BfURO58fD8Y1u6hnAMDhijkr9eACOHlC1hTpZhyGSYfAM8aISIq2T5oBj5uFyEd1oILCiQA0vnEGld91A/Ljl/WSF9zwHe7X0jatjooX/b95/QZGjfiw+madDnRqPHwTvPV+p5RpMDBLBNsrHsxWXlloI8QqEQKSkpRCIRBg0aRJzTmZ+Xcfz4cTZu3EjDhg3p1q1bqRMP84Yg1atXjx49evD8mueZ0mFKlS8r5L2PDWs3kLQrkXo59fMfNzUy4ZzgRLRXbZC3iBQMfAX/l36UVAXXTU7MzUpvraxmqHinexDOpOJqvR9p2rj850KbQwR+CJAan0p252y6xHUh/F0Yc2szrFlGJKEvB+oewFPfS2JiIkePHkWUZRLsdvqPGsXvl/yeN396k9eHv86cJ+fEpKACxJYSYlxWyioFYjVDCmx9gghOjeAiF5aOYRyj/AiChhYQ8MqTC0mBjn2YH2e3swjLVhsPjRtR9ix6QYAbrjEmL1KFOQWXQwrS0o3qh32HijxsbR/BMbJgWSGy1cbij/cVWVao2aYFw577Y/4+8+75I8HM7ItfQxRh3gfw+jOVfvrRlhXQIfJlhBNrT1T42DabjUGDBmG1WkmZP5+cO+4wJAdo2LAhPXv25Pjx42zatAmtuOqMQjRq1IjevXtz+vRpUlal8MnWT6q8CVIeFtVC5+Odi0iBubsZ162uyyoFL/d7Gd8MH2q6irvZbsyP3Aheb4n7q+m5Q48sIm55FlLnZvnP+db5CP4Q5FTCKaRhEt3juxtS0NYMZogk9mNfnX34zQdJ2LGDo0ePIkkSibVrM/D667Farbw+8nXu63wf//vf/2JSUMXExCDGJRNVCnZeIAVJKlqGCVv/AIg6oeVOrD2COK4JIMgR1JuewPumhJqW28rVpOMc58PWJQxvT4dpvwNPyV9ORdA0Yw7C4/dBtw5VIwXhMHQdCUtWX/qxSiMpHjKz4fzFa7zWdhEcowrkYLJyC0OOjS4iBz0fmEqTIUaUwJt6lu8f+Xvxa++1axiis/8w/Ot1I/GxksiTg/t+c3ORxyujfbLNZmPgwIFYLRZSRowgx1NwQ9SgQQN69erFiRMn2LhxY6lyUK9ePfr160d2RjavtXkNi2CpcjlQ0hQ873pQTxm9jXVRZ2/dvawR1uDz+6rsdeECKej1Mr5PfGheDddUF6bEENSsCa4ShnilKXg/9SJaVaPz4stPQ4cOAGQsy0BeInOq+ilq3VSLJnITAt8EsLQWYNMGIjsi7Kmzh0gzGZfFwrH69RFlmcSEBAYMGIA5V7qDwSD7/28/p749FZOCKiYmBjEuieKkICAH2bLseKHwdq4UZJqwDQqghwVCqx3Y+gewDwwaM33SbXi7/x+aZizfCA4N9y0eLM1yk78evw9SvoQ4d9lOTJZhyCT4fB5QhZGCQMhoL1xc86DKxmqFHz+Dft2Lf7ptUTm4kzuLyIEgiox57wVsifGYbFYaRDlOPuu3wlfzwVO5FyW/HGBntwOYexft5V9ZcjDo+uuxJSWRsmIFOXv25D9Xv359evfuzcmTJ9mwYUOpclC7dm0GDBhA0Bfk5ZYvYxfsDP5kMGnetAqfXzQiuyN4P/Ki+4yfnWCHuKEe2o5uhqqqLFmyhNTU1Ep/XSgqBf/p+h+8n3hBA/ftbky1TDBsGHz8cdT8GeWkgne6F1HLxPXPTohZxnnqus6JuScQ14icqXuGJlObkJCWYPRA6GxB9waI2Dqxq/YuqOPFZrNxXBQRRZFqNhv9C0lBLKfg8hLLMbiAWI5B2YkWKfh27gb6HbguN9FLR0zS0DIl7EP9qBkSkW027EP82LqFQdeJrMrGv7EJaLmVB0kq7olexDgN3vscunaALu3Kd3KhMPz9P3DzGFZU8/88ShLLyrFT4PVB+1bFPl10+QY+E2fQb0ojOtU2ZiMcXrKa+PrJVC9LcmE4bAhJJeGL+Bnx5V1sT9/LwokfMvOV76tkKmM4HGbFggUEz51jUP36xF93Xf5zp06dYt26ddStW5devXqVmnOQlZXFypUrEc0iy7XlPD/ieSxS5Ywy1nWd4LIg4bUFlSJSsoSrzVHEvp1g82Yi7dqxceNGUlNTyzRJsjwUloKXOryE/ws/glPAfYsbcc4nsHIlvP9+kT4ahcnrWmhKNuEarSPM+wruuotAIMDxr45T+0RtclrlUH9cfZStCoEFASydTGhhHXmfws7kHVhr+dCWLOFU794IokiNGjXo168fptyppzEpqDxiyYcVJCYGZSOaFIS2WQn+aNTXa7pGwOXF5Y/DPjyAespEZK8Fx7V+rB2MJLjQ/3YSDPTHyCoEU30Z51ifUa4oyzDsZhjar0jvgVLJGy3MZehTcOCIEcWoXaNyj1sSQ2+GeBd8/V7UTS6UA0unEJahHjRdLXZkc4mcy4C7/wgvPQktmpS+fRQKS8GiSR/Ru26XKh3ZHA6FWDFvHkGbjYGDBpFQqBnP6dOnWbduHcnJyfTq1cvoHVACHo+HFStWIEkSAwcOZE/2Hmo6a15SQqIe0vHN9aEcUvIfM3cw4xzlRAj6jDkJXbuC242u6+zdu5ddu3aRnJxMz549sZRQGVAWCkvBiy1fxP+lH6m6hOtmF6JDhM8+g40b4b//LXZ/+aCM7ysfpmohXKMEhHrG7IO01DTSv02nwbkGKN0ValxXg9DGEMFFQSzdLWhL1iHHdWJH3V24OroIhUKknT6NoCjUcLnoO2pUTAqqiJgYVJCYGJROVCnYaiWY33RHJ91ylmrhGuzpsJ4uoe7Ih804R/uxtIoYg4FS7IQ3FZTVmduEceZWJuQTCoPFXPYZBHkjhX93NyvaOqo+UjByGrgc8OVblX/saBw+BrVrgtNR4mYXysGahBTeTvgfc8a9fpEceE6lEVcvufgD5XiNpMdnH4fcn3V5KU4K8qhSOQiHWbFiBQGvl0H16pHQs2f+c6mpqaxdu5batWvTu3fvUuXA5/OxYsUKNE3jv2f+y5HAkQo3QVIzcocgZRUsZ9iH27H2KHkIUlpaGuvXr8dqtdKnT58islMeikhB4xfxz/FjamDCNdFVpk6KeQ2KzM1MOP87EqFWdSKzZrF923bMG800zGqIebAZVz8XofUhgouDWHtaUbNU5AMRttfZQaLzLB6LhbOqiiAI1ExIoM+gQTEpqEJiVQkxqoSoUrClsBSAmKBRM1KLmXU/Ju5kLeQjZlxjfYYUKOB/01NECqy9gjhH5UrB8dMwappRu2+zlm8wUSgMdWuzWUi/PMsHbz4Hz/yhao4djaaNDCkoReovzDnomz2Ia4/dyPivH8pPSJSDIRb+4VleazOEtG27iz9QvBsWfGpIgaYZXSTLQUlSAFU3shnAarUycOBAnGfOkLJ/P9nZ2fnP1alTh759+3LmzJn8/gEl4XK5GDJkCGazmQdqPECyKbncCYm6rhP+KYznPU+BFFjAdasLW89CnQzPnoWXXjL+LERycjLXXHMNkiSxdOlSTpwofyVHYSl4IfkF/F/5MTc345qcKwX//jc8+WTU/cM7wvjn+DG3NuOc4EL48gtOP/00ixYuwrbRRsOshtivsxtSsCZXCnpbUPafQT4ks63udmr2rEFOWhrpoRCoKrVq1aLv4MExKbhKiIlBjDITVQo2WwkuKSwFKlqOiGOkj6niVBr6m+Ka4CW1+jG0kIB3pgvZ3yh3ax3HcD+OAcGC3KZQCDS9YmvbcW5W/HMiA3Y/e3lyChrVq9RGQGVm3iLoNqrUbovWthGcowvkYAq3MfrYRMZ//TBhJcymd2aw4fWPUSNGV0Q5t7Niseg63P4YPFb2UsbSpCCPKpeDG2/EWbMmKSkpZGUVVHUkJyfTr18/0tPTyyQHdrudwYMH43a6+X3y72lgblBmOVDPq3g/9hpNi/KGIFUTibsnDnOTC8pdz5wxLtBnzlx0HJfLxdChQ6lbty7r169n27ZtpZ53HoWl4PnE541EwI6WosOQLJao//bCW8JGRUEHM879bxDOyWLdyZOs2bOXNultqJdVD8doB7buNoIrgwSXBbH2s6LsTEPOcrE1eSt1e9Um/dw5ztWvjy5JJAN9+vTJj9jEpODKE1tKuIDYUkLxlCgFhQb6iPEqmlfEMdJP+CcbWpaIa4KPddo67vniHyx2LsTljzc2lnScY3wFlQeKYlx8KtITQFFg6m/ZNq4bfY+/XKoU6DroYQHNI6KHBZAFdBkQQTDrCGZjJoMYpyGYij0EbNkFc36AJx8udjhTlbJrP8z4Gp54qEyVGpG9uZ0ndePLfx7zCA85xT0dJvD+gAmc2WZk7/d4cBojXv5b9AN9Mtsom7z+mlJfs6xSUJiqXFaIRCKsWLIEf1YWA4cNI7FWrfznzp49y+rVq6lRowZ9+vTJv3ONhizLrF69mozMDGZ6ZvLXEX+lU+1Oxb8nVSe0LkRoRQgKFUJYOllwDHcgWCuWSKjrOgcPHmT79u3YbDZatmxJkyZNop57vhT0eJR/O/5NaGUIay8r9mFla6+cvyTQ3Yol+RCHn3mavZMmgclM70BvLEctOK53YOlgIZQSIrQ6hG2ADfmUjHxMZludrTSuFuDYvn1kNWqEJgjUqVOnSI5HTAqqlliOQQWJicHFRJWCn6wElzkx7kYFhHgV3SfiGOEjvMGO5hNxTfRiqqUS2ifh/9aNmBukEqzG9ERTcqE7ncefhQNHYd775W8tnJlN5sQ7GN92P6be3YtIga6AesaEclZCPWtCTZdQs0WIlCVgpiO4dKREFSlZwZSsYKqjILp14679H6/AlgXlW+64QhSZagmYmodx3eDn/IGDvNv7xvwZClO++4im15ThCzktPWqZZkWkII8qlYO1a1m5bh2+Ro0YOGQIiYkFo7rz5KB69er07du3VDlQFIV169Zx9uxZevfuTbVa1cgIZFA3rm7BNmkK/m/8aOcKjECIE3De4CwyfvhS8Hg87Nu3j+PHj2OxWGjRogXNmjXLL/WDolLwnPAckU0RbINt2PoWWr7485+hfn148MEix9d1ndDqEKGUENY+Vs41PcfOXTsJBoM0btiYFsdboO5XcY51Ym5jJrg0SHhdGNtgG3LKIWSS2VZ/O80GNePg7t3kZGWhCgL1atWi1+DB+VUhMSmoemJiUEFiYlCUaFIQ3GQltLyQFMSp6H4R50gfwdUO9IiAe5IHqbpGeK+ZwHd5w5MgXT/LviFrGNN9UNEXS1lnlOLdflO5z/PC6gOLz4F8yIJ83IRy0mwMYZJ0pBoqUi0FKUFDjNcQ41QEq45g0cFkvB1dFkAGzS+i5YhoORJqhoSSJqF7jTsbsZqCuZmMpamMVEfJK6q4vPgD8NX3RmfHpIQy7RI5ZMY/z5VfGppZK40nnX/i4bQOLHn8XwC4kmty/0/f46iWGP1AH30Jf3ketv8ItaoXeepSpCCPKpUDv5+V69bh9XoZOHAgSUlJ+c+lp6ezevVqkpKSipTMRUNVVTZs2MDp06fZZdrF9BPTWT5tOQ2cDQiuCBJeH86fdQAYd+iD7AjmUsR3/364/Xajf0DLlmV6Xz6fj/379+d3DWzevDnNmzfnwx0f8sAPD/C77r/j6cjTyDtlHCMdWLsWWi7QdfjDH6BhQ3jkkUIP64SWhQitDRHpEmF7YBXZukbdOnVo17Y90mIJ+aCMc7wTc0szwcVBwhvC2IfaCR8II58Ms6PuVlo2NLFblvEFAiiKQgOrlR7XXx+TgstMTAwqSEwMCogqBRtshFY4yJMCMU5FC4o4rvURWuUAHVyTvEiJ2kV3qZh0nm/wd370LGPT7XMxiSY4etJYq69IbbamkXrHfUyovoZGnUfxTqNX0A85UNNNYNIx1VMwN5QxNZSRaqhFKx4qgOYTUE6ZkI9YkA+b0YMigkvD2i6MpV0YKankpjmVSnoGNOsHM14z5KCMyEdN+Oa48+VgAxt4v/5r3DAjh6NL1wLQeuy13PT569FDzDle+HYxTBlb5OdWGVKQR5XKQTDIyg8/xFutGgOHDy8iB+fOnWPVqlUkJibSv3//UuVA0zQ2b97M0aNHmZczj4gnwjumdxA9BbYoVhdxjnFiqlPysfI5fhyeeQb+9jfjYl0OgsEg+/fv5/Dhwyiawnfnv6NBvQb8xfsXlKMKzjFOLO1KL3XUdZ2c+Tno23QO1znMEfcRqisKHVasoNprb+CfG0I+IuOc4MTc3ExwYZDwT2Hs19gJ7QqgnNXY2WgHrfs1ZfvcufirVUOxWmnYsCHdu3ePScEVICYGFSQmBgZRpWC9jdDKAikQ3Cp6WMAx3E8wxYlg1nFPMpoThbZYCS5xkBcpEBMU3Ld40B0qnoiPRFs8kbNnsXS4Dv7xO7h/atTzica6n5ZQ7S+L8Q35DY2lbmDWMTeNYGkZwdxERqiqEQaRCHr9XqgvvUWk9mAiey3oYRFTPRlrtxDmZvLliSJkZpc5WlAY+XiuHCjGz2Yve3k77lnaPr2WUGYOAGM//A8dyjLBcsNW6NoenxauNCnIo0rl4JlnWNW6NZ7c3gSF5eD8+fOsXLmShIQE+vfvXyQsH+08d/y0A3GdSL2ceoVOFGwDbNj62BCkqhuTXBxvr3+blC0pTEiYQPfT3XHJLnz9fVibW3E6nTgcDmNt/7e/hb590caPx+/34/F48OR4MK82k3Q2iQN1DmDpaKJx06YkJiaihzV8X/lRTiq4JrowNTER+D5AZGsE+7V2QivSkMMOdjfeTZtr2rF582ZCfj+yotBIUeh2yy0xKbhCxMSggsTEoAQpWGczIgJ5UuBSQRawDwsQXOZAcGq4J3kRHDrBVXbC6wv1KGiQgfMmocgd+/lAJv0/u5l3wwPoP+1RcEfvxX4hmk/gwIrzSLsTqU51hLph7B1lLC0iCJXTlK5kAkH4cBYMHwAtmqDLIB+0EN5mRTllRkxUsfUIYWkbjp68WFnouc2gytnwRkmT8H3pRg8bX9InOMEc/z+RXpgLgC0xnge3LsRVUvOmtHRoNYjQ849zjXtRpUpBHlUpB7Iss3LlSjzZ2QwYNIhq1arlP5eRkcHKlSuJj48vVQ4iByIE5gfQ/QXfp+lx6TS7pRlSjQqEqWQZzp+H6tUrlIybl1Pwz47/5JGTj6CEFHY13sU5/VyR+RgOux3niRPI1arhNZtRVRVBF2h/tj01c2oS6huiZjcXpqFD4b770KfciW+mDyVNwTXZhamBicD8AJHtEewj7AS3BJHPyeyrvYE2jZ1sPHmSSFwcEVmmScOGdO3RIz8KFZOCy09MDCrIr10MokrBWhuh1RdIgSpgH+wnuNSJmKjhusmLYNEJLHIS2VWwfmntGcReuBwRIBRGXbGOu+QfmL57HjOuf5mb21xf6vmpmSKhDXZCu02okRDrrIsZNqUPzlpVffUtO0qqRGijHfmAGcGpY+8bxNI+fMnLGMWi60YnxH7d4enHyr27miHinRmH7jfkQLPJbNr5FBumv03dHh0Z99ErJDUtOZQdWLWGEUdfY+v5fZUuBXlUqRy89RarsrLIbtmSAQMHUr16Qc5EnhzExcXRv3//i7oNan6NwIIA8t6CslFd1NlffT+Wrha6dO1CRI2Uv9vkli1G18PNm6FL+T7PPCl4se2L3HP8HgS7gOsWF1KChKZpBINBfD4ffr8//0+zyURcfDxxzjjsK+1oRzScY51Y2liM3hV//zva2En4tjdEPa/ivtmNVFci8E2AyO4I9pF2/CnnUUMWDrY+SKsBrVi3ZAlKIEDE6aRpo0Z06d49JgVXmJgYVJBfsxhElYI1NkJrCkmBUwVdwDYgQHCpE1MtBdd4Lwjg+8aFcjT3y1PXsPc4h21wMXc8730Bf3wOdfcS7trySqlyoJ6TCK6zIe+3IFvDvOl5id989BlJr/0T66iyr69XGuu2gNkE3TpE3UTNFAmttRPZY0FM1LAPCGBuIVcolaJEPv4KmjQwhjlVAM0j4p3pRss2zEWXNOadfZabn7kTu7Xk7oqFcwpWdXiKjpa6FT6P0qgyOcjKQv7hB1bXqUNWVhb9+/enRo2CKElmZiYrVqzA7XYzYMAALBYLyhmF8OYwkR0RKNTvydTEhGOUg+OZx/npp58QEgT+uv+v/Hjbj+XrkJiTA6tXQ79+EB9f5t3ypOCNlm9w89GbkWpLuCbltjgujK7DQw/BhAkweLDxUETH95UP5biC6yYX5uZmOHkS6tdHC2j4PvOh5Wi4bnUh1ZTwz/Mj75VxjHLgW+NBydE4Wm0VLUZ0Z/X27UYzp3CY5oEAnaZNi0nBVUBMDCrIr1UMokrBKhuhdYWkwKGBAPY+QQLLHZjqKbhu9KIrAr6v3Khnc+/cRR1nl0NYhlQr/gV1HfYehDYtUDWVu374C1/s/Y4j9y2nrrt2/mZqpkhwjR15rwUxTuNEi70M3HIDXeu15dvR/8PuukI/ozF3GWIw+51SN1XOSgRX2VGOWJCSFRzX+DHVLltDmsuFFij689PQ+Crxc26/fSg2c/F3uxclGv7+ffD64fuPK5ZIWgaqMnKgKAqrv/2WDF2nf//+1KxZUIqZlZXFyuUrqReuRzN/M7S0C5JMreC4zoGlvSX/AnjixAk2bNjAruAuvsj6gsXTFl/SbIXSyJOCTxt/yugTozG3MOMc6yy+AsLngzFjDDkYOxYtpOH7woearuKa5MLcyAwzZ8Jdd6H9tAfvigR0v45rigupuoR/jh/5oCEFnlUeNK/Gqdb7adw4jlWbNyNYrYRySyc7duwYk4KrhF+dGAiC0Aj4GzAEqA2kAjOA53Rdj5TjOL86MShOCnQdgqvthNfZyZcCuwYmHVuPIMHlTsxNZJw3+NB8Ir5ZbrSc3Fi5qOCaGMDcoJjWufMWQY1q0LdbkYdVTWVT2g561e0MGDkEwdV2IjutRji+T5D1CasYOftO/rO7Nrc/9yn2OnWq9oMpCVmGbI/xXsq6ywkTwaUO1HMS1s5hbP2DxrCoymDtZthzEO6eXOFD6DL4f3Ai7y8QgXXOVQy5sxlmk4hUaK272OqDHK8hS1Xc7KnK5CAzE6VFC9a88grnnU769etHrVq1ULNUwlvChDeHIXzBPiawdLRgH2hHdF6cbZqamsqatWs4EDzA9KzpLJq6qGxycO4cfPklTJwINUrI8cglTwrm1pvLwNSBWLtZsV9rRxBLELTcYWOaT8P3uQ/No+G62YWpbq7cBwJoM+fjDV6LLuu4p7gRE0T8s/3IR2Tso+14fsxEi4ik9z5D3Q71WbVqFaLPR8hioRXQ/qabYlJwFfFrnJXQCuP9/AZoC/wOuA/415U8qaudqFKwsrAUGF0ABYuOtVuI4DIn5pYRnGN8qBkS3ulx+VIgRLJwO2YVLwW6biTsfTL7oqckUaJX3c5oYZ1vZ2wm4x0X8kEL9kEB4u/NZn3SSkbOuYsx9nbctygb+8adVfmxlI7ZXC4pADA3UHBP82AfEiC824rnvXjCuyyljTwoGynr4OMvS52fUBKCGZw3+LH1D+Q/1tvfn/2v+fh04F3snvMDUEJJYrzbkIKTqUazqjK26S33eVZV++SkJEwpKfS9+WaS45PZ98M+zn90Hs/rHmMsciEpCNqCmK8xk/D7BJwjncVKARjzGAYOGEhLR0vuSrqLR79/tGzncuoU/P73xp+l8Namt3jkh0dYWnMpA1MHYh9ix35dFCnQNLj/fti2zZCCHA3vJ140v4Z7qtuQgoMH4fhx1IgVr/9aUME91Y0YL+Kb5UM+akhBzpIcVFkgJ+N9ki1+Vi5bhiRJhCwW2tSqFZOCnzG/mIhBcQiC8Dhwv67rUWfFCoJgBQrHSt3AqV9DxCCqFKywE95YIAXYdESbjqVdmNBqB5YOIRzDAygni5a8iQkqrpuykRJLuEuJRIw5CLai4Wldh8geC8EVdmS/xlva27S+rho3dbzu4tHJAdm4CF0p1m+BV9+Ht/8NiWVf/y2M5hMILncQ2WvF1DiC89oAYtwl9ECIRAxZqaQQfuSAGf98V/7PVo4EWL/6OXp9MJHxyx8vufpg+Tp44AlY9Bk0qLqoTmVEDnRVRz2vop5VUdNV1DQV9YyKHirme1EEcyszSmuFFQdWYLPbGDhwIDZb6bM4MjMzSVmRgtVmZejgoWXapyy8tektHv/hcZYlLqO5tzmO6x1YO5SQ6Hj2LIwYAS+9hNppEN4ZXgRRMPIGknIjftddhyom4b32TQRJwDXFyFHwzfShpCrYRtnwLMxBU3TCI8PYa9lYvWwZVo+HQFISbdu2pW3btvkvGZOCq4df3VJCcQiC8Cxwna7r3UrY5h/AUxc+/ksXg6hSkD8KOff3wqojOnUsLSOE1tmxdg1hHxJA3le09750fheu+y2Ijatf/GJeH9zzJ2MKYfPGFz2tpEkEljpQU82YW4ax9vdxz9o/MX33PJ7sfT8vb/qQPnW78H1oJJYJo8HlvPg1LicrN8B/3oG570Epo3pLQz5sxr/IiR4Bx5AAlvaRS7u2V7CvQXEo6RK+2S50X8F7PHx+HVNr/Z4PJj9TcvVBJFLu8smKUJIcfPSXjxjXeRxajoYe0Y0kQdWQAbTcP2WKdCYsjrApjNhRpPqA6oguIzKQk5PDihUr8qc3luVCn7ePIAlMz5nOSyNfuqScg7c2vcVTPzzFctdy6ih1jITBC4cxFYemoaQbyweCXcB9qxsxriDioe4/h/dbEcFpwn2bG8Ei4P3Ci3pWxTLCgnehB03VoOZahJH9WLNmDXarFX8wSPvUVFo/+mi+oMak4Ori17iUUARBEJoCDwNvl7Lpv4H4Qv/VK3nznz9RpWDZBVJg0RHdGuYmhhTYegeNMPhmK/7vCvXcT/bg1qcjNojSQjfLA6lnLpoEqAUF/IsceKfHgSzgmuzBNcaPOUngg5H/5ppGfXlm7Ru0SmrCd92fwvK7Z2BhStV9MGVlQE/49sNLlgIAc1OZuDtzsLSUCSx04fvKjeatoBksTIEGveBU2iWfF4CppkrcnR6Epjn5jzWt3puV6ko6p/cuedXCYjFyDqY8YiSZVjJaUCCyz0xgkZOnW/+He3vfU/R5TeOOf93BrFmzUE+raOc0tCwNzaOh+3X0oA4RipUCwSZgaihh7WbCfpOdw/0PszKwkrScgs81Pj6eQYMGEQ6HSUlJIRQqYSploX0GDx6MqqoMZSgTZkyIPpXx4EEYNsz4sxje2vQWL//wMuvt66kr1sU9zV2yFOi6MUr5yBGU0xq+T32IcSLuaYWk4K23UA5m4Z1vRowz457mBhN4Z3jRzmlIwyW8C7xouo7VsQitaQ1Wp6RgFwT8wSAdO3aMScEvhKs+YhDtjv4Cuuu6/lOhfeoAK4AVuq7fXc7X+0UnH0aVgqUOwltsFJYCKUFDSpaJbLdjHxDA2jNUKKKQu1kbP46R4ehd/hQFTKb8RCfIXTbYZSGY4kBXwd4/iLVz0WOsOLGBEV/eRf24ZDbcNocEexycPgN1alVZxnuZycgylhAqeXCSfMSMf6ETFHCM8GNpXvJI5YvI8cLs72HS9ZUaVfFF/Lz05AvcY/srzkIVI1ItBWu3EJaWkeKbOPn8MOZu+NsjMKj3JZ2DroKSakI5ZkY+bEZNl8jrqAlG5OAvP/yFdze8W2Q/URB5d8K7jOs4zpicKQkgARLGGrwFpJoSplompFoSUi0JwSUUtII+eRLt9ttZ/6c/cTonh969e1OvXsG9g9frJSUlBZPJxKBBg7DbS0+8DAQCLFm+hHOec3yQ+QFf3PrFxZGDo0fhiSfgX/+CxkWjbG9teosPf/iQeZZ5uOJd+T0KSiQ1Ffr2Rf73Z/iOtcaUbMI12VUw2fHUKZRrbsU35SvEWjZctxjNxvJKFLVBGpHFYTRRw3Wbm8xIJhs3bsSVkYGvWjU616pF84EDi7zHmBRcffxilhIEQagOFBOfLsIxXddDudvXAZYDG4DbdV0v18LtL1kMoklBYLGDyLZcKRAwhg1V1xCrKci7bdiH+bF2DONf4ETeU6hx0c53sTs3I7z97+Jf8L3P4fNv4IdPwG6EWtUMkcAiJ8opM5bWYeyDA4iuor+DF+UUbNzF5voSh/ypTGo9qoo+nXLQpK8x6Onvv630Q2tBgcBCJ/JBC5aOIRxDAlXX1rkM5Ccant3Df1Z2o5X1Rtp3u73INoJNw9opjKVjGCn+gn9uhYSwyN9LQddByxSRj5mRj5pRTpjz8x0uQtARXBpivMqf5jzJ299/UOTpS6pWyMyEKVPQXnmFDVlZnDp1il69elG/fv38TQrLwcCBA3E4Su79ABAKhViyfAnnc87zSdYnLLxnYZmaIL216S2+/eFbPjF9gq2ODddkF6K9bIIa2enH/10EU2MTrgmuImWM8nEZ3xdepFom3De70RXdkAKfRqBXAHGliE6YhDlTOf32y2w5cgS3243X66VrOEzTKVNikYKfAb8YMSgPgiDUxZCCzcAUXdfLnRb9SxWDsksBSDUVRLeGfMCC4zo/lpYRfHPdKMfzrlA6juEBrMomY+xu3drFv+j6LbB4FfztUXQFQhtshNbbEd0ajmv9mBteXLlwkRR4Q9C0H1/f2o6b6m8pc4fEKmXBcmPoU+vmVXJ4XYfIdiuBZQ7EOA3nDT5MNcv4q+z1wfNvwsTR0LHNJZ3HhdUH7cR6vNllBNUTOzJo1Isk1Whx4ZljaipjbR9GSsybXJn7hh7+O9RLhj8/cNF71b0iaqaImiWhZUqoGSJqugk9EP2CJyYpmJvKmBvJmOop+fJUlX0OtHCYTZs3c+L0aXr06EHDQsONfD4fKSkpiKLIoEGDyiQHkUiEpSlL8Xq8DBowqEjfBFQV/H5wOvOXrN7a+BY7F+zkGfEZrK2sOG+M0qOgMLoOr75KuMdUAikS5tZmY7+8uQ379iG//yO+ardhqmfCNcmFHtbxTveih3UyO2Ti2OAAGyTd5ubIgW3sOH0ad0YG3mrV6N69O40LRTRiUnB186sTg0LLByeAqUD+N6mu62fKcZxfnBhElYJFDiI7cqVABAQwJStg1VGOmnGO9mOqLxuNb9ILNS6yzMfyUO/oofQcL8S58u8glFQJ/wInWpaErUcIW+9gsXfBF0mBOTeha+c+1Mb1uCvl6XK1T/65o2aI+L9zoWZIOK7xly0xUVGg5w3wxEMwfmSFXztaSeL2z+Yy767HAWjaeQRDH/4/bKerF0zPvBCzkaciZhxFdIQRuzUGWUDNNEZZa9kiqKVHEQSbhqmxjLmxjLmhjOiO/r1VJXKg6zB6NFqdOvx0zz0cP36c7t2706hRo/xNKiIHiqKwZs0azp07x7nEc4zsOtJYVrigJfK7699F/VFlsjAZa28r9iGl9CjI4+RJQre/QnDQ37F0tuAY6SiyX+TjlfiPt8Lc1IxzcoLR02CGD13ROd3sNNV3VAfVQ7UbdPaKYfbu3UucJOGRZXoeO0bDP/85/1gxKbj6+TWKwe3AR8U9p+vRvrWKPc4vSgyiSsFCB5GduaHL3Ou7qZ6CLuiop8y4bvQhJqlG4yJP7vqlRcddbwWm+2+DtfOKrTBA02DIJOjcDv2FpwiuchDebEWqreK4zh/1zrdYKTiXAdWT8gUjr0Pi9N3z+PyGV6/MssKeA7B+K0wdb+ROVDG6AoGlDiLbbVjahXFc4y99aaEcIfviKGl0sq7rzBx/Lwd+WI5oNrNsWgLJffvybv3/omxzlniXXy5MOqZkBXMTGVPj3JHZ5XhLVSIHX34JtWqhDxjATz/9xNGjRy+6Y/b7/aSkpAAwaNAgnM7Scz1UVWX1utWcTT3LMt8y/jz2zzQiHpYsgWHD+HjXN9RbXo8OYgfix8RjbV+2uQu6rhNaFSK0ImTIxFB7kTHa4R1hAt8GMLcy4RzrQsvJlQJ0DiUfosGBBghxGkmf38yOPz3KwUiE+Lg4PF4vvTp0oH7z5vk3BzEp+HnwqxODyuKXJAZRpWCBk8iu3FKyPCloIKPLAmq6Cdc4L4JVNybvhYwN8iYnStVV44JdUnOfb35EtrckcKwDmk/E3i+ItVsoaoJisVKgadB3LHTvCK89nb+tqqn8bulzTG03lm7J7SvjYyof730BT74AZ7de1iTI8C4LgR+dSIkqzjE+pKRSUmcCQaN0sV5yuV6nJCnIw5t6lrl3/oFrX3qS7a5zjJlzH0Ma9mbOmDcQj7tQz5jQPCJajoiaIxoDmrRiPitBR4zXEKupSEkqUpKGmKQiJaoITv2SP94qW1bQdfS9e9kcCHDkyBG6du1K06ZN85/2+/2sWLECTdMYNGgQLlfpU0N1XWf9tvUcP3Ccg+GD3DLiFprWaMqXP35J+/XtsVvs1J1aF3OdsiWc6JpO8LVthL2NsA22YetrKyoFT35OwHYdlo5WHKMdaBmaUX1g0tibuJcWx1sgVROIn5rI5l2bOXbsGPEnT+JNTqZ39+7UbV6wjBaTgp8PMTGoIL8UMYgmBf7vnch7cqVAAjQwNZbR/CJ6tohrgg9dBt/XhRoXJaq4015FTLbDPTdHf9GjJ9Hr1ie4wkF4qw1TPRnHdf4SL2JRlw8Alq4xsv+7tCt237ASZu3pLQxueGkZ7+VGlis0CvdSUc9J+Oa50PwizlG+kqsWBt0ETRvBBy+V+fhlkYLi+PHoqnw5+HrsGxcl0ek66H4BzSui7T6L8NNmxHuuRUwkejVLJVElcvDuu/Db36IfOsTWM2c4dOgQXbp0oVmzZvmbBAIBUlJSyiUHADsO72Dzps3IaoiOh0UaMYY09xna390eyV228lhd0fF/cR75iICj1h6s9w0o8nxoXZDgkhBWy17sf+yNmq7im+FDMSvscu+iXWo7TKGTuNY9wYZ/PElqWhpxcXH4cnLos3Mnyf/4R37eQ0wKfl7ExKCC/BLEoFgp0HKlYG8hKVDB3ExGzTbu6lwTvajnJQI/FGpcVEfGNd6L+OTTxt3n7+8p/kUPH0ce808Cd05HE1xGeWOXcIl3fVGlQNPKVAr4v58+5bdLn/3V5BwA6GHwL3Qh77dg6xPE1jdY/Ge8ehPUSIKWTYt58mIqKgV5/Hh0FZPmPcqiSR/Ro07Hsu2UkQXVovS+qEQqXQ5CIVi6FEaNQtd1tm3bxsGDB+ncuTPNC91JB4NBUlJSUBSFgQMHlvn75EDqAXJmZdDM14qD9i10++1gRFPZDEoP6/i+9KGcUnAOCGHpU7tQmbBOKCVAaHUEW18btsE21DQV72deQpYQ+5z76JDeAXM9M7am+1h36ijnVBW3ouArNDsij5gU/Pz41Tc4+rUSVQrmFyMFLWSU8xJ6UMR9swfluJnA9wWNi8zNIrhHnUG0Ay//DX5XfEsIXYbA0Vb4ps5DrGkh7vYcbF0rKAUAT/8Xbv99qX3/H+hyK7e1vZEp3z3GF3u+K8endAmMvQc+m3t5XqsYBCs4b/Bh6x8gtNaGf64L/cLBPgD9ul82KVAjEeJ/OMLarq/Ro05HNF0jrBR3UoXYtB1aDIQNW8v1WhWh0mcr2GwwyshvEebPp1PTprRo0YKtW7dy4MCB/M3sdjuDBg3CYrGwfPlyMjMzSz20FtDQ5mo09DZlY/JGjjXIYPVPq9G00quuNZ8x90A9FcY1yY6lb3IRKQjOzzSkoPZR7EPsqKdUvNO9eCUvB+MO0jG9IxZbJpaxZlaFvGSYTLhCIfy6zoCzZ2NS8CsiJga/IKJKwbdO5H25UmDCkIKWEZQ0CUED180ewjusBFMKsqgtHUM4k1citB0I2/cYXzDFXOmVE+B520Z4hw37ED+uW/1IiSV/iZUoBQBtW0DntqWu4UuixAcj/3355EDXoWHdy3KXWxKCAPbeIVzjfcgnTHhmxKNmFvNP+bUP4fulJR7rUqUg68gJ3uh4LQsfe4a1f/8vuq7z0I//YNzcB0uWg85t4anfQqdLK6ksK1UyeCkjA267DeGjj+jYsSMtW7Zk27Zt7N+/P3+TPDlwuVykpKSQnp4e9XDKGYXUN1IRM0RmtJ7BsDuGsTS4lNPHT7No6aISuyuqmSrej71oPhX3u9dhnvO//Od0TSfwfYDwNhF7YCH2a6sTORIhZ3oOWaYsztQ+Q/vU9liqBxBfGEjKou/xZmdjdzgIJiYysF49atx1V/7xYlLwyye2lHABP9elhKhS8I0L+WDuergJUATMrcPIx82IVh3XBC/BVXbkfQXrwrZ+AWy9QwiBAPzfB/D4by7qe6+rEFpjJ7TeinR6G84HEpBaJpR6nqVKQQXIq1ao5azOC4P/eMnH+zmhZoj45rrR/QLOMT7MjQr1hhhzF/TsbJQuFsOlSgGApii83X005/YeAmDirDc52cFeYs7BRRw/DbWqXzRYqyqo9GWFw4ehSRMQBHRdZ9euXezdu5f27dvTunXr/M0KlyX27t2bunXrFjmn8MYwviU+dqm7WNZxGf9sOxXh978n9enHuXXt37k18VaqOarRo1sP6tSpUySRUElT8H3hQ7AJRhfEozugeXNwudBVHf9cP/K+CI7rnVg7Wsnelo06XyXTnonWQqPmjpqYW5rRhmmsXL4UPRBAyshArlGDAdddR2JigQjHpODnTSzHoIL8HMWgWClQwT/PhXzYnN+4CEXA3CaMfNiMFK/hHOMlsMhldJUDQMdxbQBrrVNGg5UojYvUcxL+752o5yVsvQPYWIfQt/SLSqlSsHEbfD4P/vUnY3xvOdB0DQGjle1p7xnquqM0XboUsnIgHDEuYle6LXMh9LCA7zsnylEzjmEBrJ1z79RLKFusDCnIY//8JcyccB8A1Vo04YEtP7Dk5LqyyUEwBG2GwG3j4enHKnwO5aFKEhJXroRz59DHjWP37t3s2bOHdu3a0aZNQUREVVU2bNjA6dOn83sgaF4N/7d+lCMKb+tvc77bef4z4j8IR47A734Hr77Kiepmrv/0em5KuIkW1hbUqFGDjh07kpSUhHxUxvelD6m6hGuwD7FxoeWDiI5vtg/lSATnNw+iz3yOo/tkamypQXZCNgmdEhBXiFgcpwg717Oqdk3MZjO6qqJmZzPwm2+Inzkzvyw3JgU/f2I5Br8SokmBb26uFABIeoEUHLAgVVNxjPbh+9pdIAWijnOsD2vHMDz6FEx+8KI1fl2H0EYbnk/j0AMR3L13YO8brhwpADh2CnbtB2v5p/KJgoggCGxI3UbTt4dUzbLCF99Ay4Gl5j5cbgSrjmucD2uXMIHFTgJLHegaxgVC0yBUNKRfmVIA0GLUUBr0MQaYZhw4wtaPZzO8cX++Gf82y46v480tn0Xf2W6D916Mmr9SFVTJssLHH8OHHyIA7dq1o23btuzatYtdu3aRd/MlSRK9evWicePGbNy4kWNLj+F5x4P3tJfx2njO9jhrSIEgQNOm8O230LQpDeIb8N3U75jtn03N1jUJh8MsWbKEPfP24PvCh6m+CfdkG+KwfvCXvxjvJaTh/dyLckLBdJ3MnvuHsznlDDW31CTcIExyz2TEFBFLJwse/zekuJ3Ys7PRwmF0QWDI2LHEf/FFTAp+pcQiBhfwc4oYRJWCOS6UY7kXfLMOsoilbZjIfgumugr2gX58X8eh+3K90KLhvsmHqW5uGDot3cgYb9cy/7XUHJHAD06Ukyas3UPY37kXIf0sLP2i1Lvnci0fXGJznsJNkCq9WuH0Gdh3GIb2rbxjVjKhrVaCSxyYGsu4RvsQugyBaRPgT0Yr4sqWgjxOrtvCh4MnAuCqXYOHdy/F4nSw7ewe2tdoiSSWodQuM9uIyCTXLHXTyqBSIwehkFHCV6iMde/evezcuZPWrVvTrl27/PC/FtI4Pes0rhMuUhNTGZAxgNt63sar175asESg60bUTpLy/z1ouoYoiIQiIU5/d5qkPUmkxqVyusVpkuslU/3kSczJyUg1G6HN08Crc6D5Pk6qqTT0NKRFWgukDhLmWmZCi0NYO0ukt81k00+bqB4Xh/fECUyhEAPbt8c5aFD++4hJwS+HWMTgF06xUqCAb7a7kBRQIAV7LZgby9h6BfHOLJACwa0Sd5vHkIKPvzJ67SfXzJcCXYfwbguej+JQs0Vck704BgcRPnweZvy3cqQgGIL/fmD8eYkh+ipNSKxb+6qWAgBb5zCuCV6UUyY8n8eh/fHPMNyoY68qKQCo37sLrcYMN17nzDnW/+9jADrVaoMkSiw/vo6b5j4UPSFR12HcPUa06jJRqZEDm82Qgn37YOpUCIdp3bo1HTp0yBcEXdeRj8p43/fiSnOxpckWdtfYzVMdnuKV4a8UyRtg61bjeFsLqjZEQURXdda+v5akPUkEuweJGxtHfGIchw8fZpXPx9o9JwlMDyDnyGyutQZ1z3L6O/rRIq0F1p5WTEkmQwqaezn21cNs3LSR5Nq1yQkGsdaty+CMDJxdu+a/ZkwKfp3ExOBnSFQp+MqNcjy3Ta9ZB9lYPojstmBpHcHcOozvKzdEjB+7WEMh7jYPUjUNTqXBH5+D+QVZ7FpQwP+tk8D3LizNZOLu8GBePANOpho5AHVqFXd6+ZQ5UrB2s1GimFrmkRYlUlgOnl7zOhE1UinH5b8fGHkQVznmxsbPFVnAE5iIUqdjlUpBHkOffgwht/HNmpffwX8uI/85RVOZf3h59GoFQYD//A1e+Xuln1dJVPqyQk4O7NkD584B0KpVKzp27MixncdI/SAV3wwfgktgfq/5DDs0jEP2Q9SWa7NhwwZUtVC78IYN4aOPjD/zzimk4fvcR6esTvzV9lf67e+HFqfR84MPuGHBAkb0HEH/s/2x2+2473AzbHAnutYZh22rHWs/K5ggnBLGOsDK7gan2TVqFI0zMkg/ehSXJDFo6FDs//gHuN1ATAp+zcSWEi7gal9KKFYKZPB+5UY9dYEUtIog77Ni7RxCTFQJLnOQN8Pe1FDGdaPXmH6XR1p6fhhXPmbC/4MLZHAMD2BpHTGiCV1GwiN3wMN3lHie5a4+yMoxuhxWIqqmkhXKobojCUVTMImXMNtA16HdMOO9/2ZK5Z1kFaL5BHyzXajndN5W/sy/rV9VmRTk8d2Df2XLBzMB6PnQ7Vz3n7/mP1dah8R8giE4nwn161TZeV5IpS4rFFoO0yM6obUhgmuChMUw3nZeltZcygMLH+DRno/y6rWvcvr0adavX0/NmjXp06cPpmJmcKjZKr4vfOg+HedEJ2kJaQz6eBAAG+2PEi80w5/dFzFexNU3A6FxLYIrIPxTGNswG7pXJ7whjKVLgE3STs77fDRv3pxD+/eTdOQI/davxzxvXv7rxaTgl0msKqGCXM1iEFUKZrlRUwtJgSJgbi4jH7Bg7RlE1yCyqSDL39w2jPM6P4KE0aPgs7lGJYDJhK5gtDTebMPUUMY50ld0kl1WDiTElRjyL5cUrN4Evbvkt1itCrJDHgZ/fit/7HXvpeccXGIOxOXG6/UTeXwfNB7M2d77aTOgfLMTyv16qWd5re1QdFWl1yN3MuzZx4s8nycHk1uP5qNRLxR/kMkPwpl0WP7lZf2sK1MO9LPniTz2LsGO96DLJmy9bJxOPs2WnVtYmLmQuIZxvHpdQU7B2bNnWbNmDfHx8fTv3x+L358/REkJuPHN8iFYBFyTXUjVjX8rJ3JOMOjjQfyz3j8ZfWA0promXBMc0LsbgeEvEonrhn2kHTVNJbI1gjhYZO3eLwlbrTSrVo19gQC1atemd9OmmKxWqGbMP4lJwS+XsopB1Y+Hi1EpFCsFkVwpSCskBaqAqYkhBbb+AdRzUpEeBdbeQez9CrXR3XvICI+HIyiZVvzzjfHI9iF+rHndC3Ud3vwUbh4DSQklnme5pOD4aRh+K7z/Itxy4yV8OiXjtjjpWLM1U74zyuEuSQ5+RlLgi/gZ+c1dHGy8n7XN15C8vi1BsYQ2ypWAu04txn74H+p0bkdCo3oXPT+8cX/mT3iPuu4SlqGefBgk8bJ/1nnLCkAROchbVgBKlQM9rBPeEia0XkJveT/meC/2m+oiJUos3rSY2Wmz+U3yb2hSo0mR/WrVqsXAgQNZtWoVy5Yto29CAu6JEwnP209gN0jJEq6JLkRnwepvgx3H2X7iCRTvaMwtzVhusIAk4n/oe+R0G44bHMgHZeQ9MpGBEdaeW4utdm2aqyq7vV4aHDhAj6FDEZOS8o8Zk4IYEIsYXMTVGDGIKgVfxKGezb3TNuugCZjqySjHzdgHBZAPWVBOFepRMDyAtVPu+m6heQS6ohLe4iS4yo6UpOIc7UeqUWi980Qq9BgNb/8bbrw26nlWqHnRTzuM7ndVPML4kqsVPpsLb02HlbPLNMfhSnNhTkGvOl0IrbcSWuXE0jGE45pAlQ8wKss5Pr/+Hf7W58HilxVUFU6fhQaXb0kBKhY5ULNVIlsihDeH0SM6lvYWbL1tSDUk0HXe2vgmDyx8iEd7PsojLR7hp59+onHjxnTr1q1I0mFOTg5r1qwhEorQV+6J6YANS2cLjuscCKaC7XRdJ/TmRkKZLbB0sbCy2Uo++ehx/td8GaZ0M85xTiJbI8iHZTI6n2OLdyvJNWuSUL06e/fupVkkQufXX0eYOxeSjShSTAp++cQiBr8QipWCcK4UpBeSAl1AqqWgnDRjHxIgvM2Glpn7vKTjvKHQND5FgYn3w7D+aFNux/+9u6AMsX8Q4cLfigZ1YM+yEqMF5ZaCvJB8tw4V+lzKS15CIsC0+X+kT90uNIyvW8pehaiXDIN6/SyloHdcC+h8Lfanfoc44gYCC53oARHn9b6Lf9aXkZ3n9vPyxg/YenZP8TkHf3gWlqyGrQuqXBwLU9bIga7pyAdlwlvCKIcUsIC1sxVbTxtivJi3E4ev6cZRcSuPPvZofkmiKIps3LgRXdfp1q0bYu7vVXx8PEP7DCV9ejpitoXsTtk0HNkQQSwkBapOYEGASGYLbANs2AbYaH+gIW953yB8IkB4vAnTRhPKKYUjrY9w2HeYtgsWEOrXj73nztG2TRvatG2LcOut+VGZmBTEKEwsYpCLIAgPAg9iVGq0vBoiBsVLgYDnMzfa+dyLvgkQdaREDTVDwj4gQGidHT2YW45o1XDd5MVUp1AEQFXh2f8RaXUDgTNdwKLjHOnH3FApegK6Du9/AVPGGY1oolChSMHL78KyNTD/48saMlY1lTWnNjOgQY/L9pqXk6jVB3/7D4wZDt06EDlkxv+tC1NtBec4H6Kt6r4DIv4A6//3MfV7dqbx4IvHY5eYkHj4GJw5D327Vdn5lURJkYNPnvuE0fbR6B4dqY6EtYsVS1sLgqXo7/Jbm97i1J8foEmfUdz59HdFogPHjx9n48aNJCcn06tXL0wmE8ppBf8cP3pI4Vzwa7a2jqdOnTp069YNm81mTE+c40M5HMFxrRlrjzgjMfEzH6o3yEP6fdyvPUZrsTU76u/AH+ejW/fuHD18mNOnT9Pl889p2rQpvPJK/nnEpODXQyz5sIJcLUsJxUmBFhLwfuZGy8iTAh1MIDo0dL+IrVeI4Go7qMaXjxiv4proLTrUKBBEEx0EFzuI7LVibhXGMTxQ/MVh137oNw6+fg+G9Cn2PCs8+2DRCti5D/7wm/J8LJXKs2veoGlig7ItK2zfAw3qVnrlRGVSnpJE5bQJ3xwXotsQR9FV+d8DWUdO8OHQyfjS0qndqQ33rp2HUEzEpbAcfDv+nYubIek6pJ6N2qK7KokqB4LIh7/7kFv/cCum5OKjGW9teosHfiioPhAEoaBpUS6pqamsW7eOpMQkelh6EFkRMfIJupxD/MNvSH3+eTaeOgVAh2YdqL6uOup5GdfHkzC/9jhKx6H4pmcj2M04b3SSOTcTxaOwvf52EuVU2m7dyqaxY8nKzqZXz57UXbsWOnSAVq2AmBT82oiJQQW5GsSgWCkICnhnxKFl5X6xSoBFR7AYVQiW9mHC623klSNKyTKuCT5Ee6Gf78GjyFNfxT/pPRCs2IcFsLYtpcb/7HljNkAxVMVApMuFruvc8f2fyp5zUL2jkRR3GVv3lodSpSAchmVroWsHqGlkn6vnJbxfuhFMuiGQCaWP9i0PuqbxXt+xpG3dDcC4j1+h/eQbit32x6Or2J6+j8d73nPxky+9DW98AruWgMtZqedYFnRd5+HfPMcbn35c5PGScg6KlYInnjCGLs2cWSRKdv7UebJnZ1PNWw2pm4R7uBtBKng+FAqxb/U+am2qhSiIBIYGqF1NxyTUwzfLh3hqF7722Zg8PdEUjV0tdlGzQ02art/BKlUlrOv0y8mh+m9/W+QcY1Lw6yMmBhXkSotBsVIQyJWC7EJSYNdAB0EyehLIOwsuyuYWYZyj/UXWj7UQBJdZiexyYqoTwnlDCDEuyoVAVeGzeXDLmKhru5ckBV99D80bQae2Zd+nCihXQuLWXZBcC2rXuHwnWEbKFCnIyoE63eCDl4pUgKg5Ir5ZbnRFwD3Rg1S9cuXgyNI1TB81DYCEhvV4cMciozSuBH44nMLQhr0LlhXS0o3KmdzOipcTzSsQWOwkctDMEyl/4p3l7xd5vjg5KFYKAObMgbNn4f7788VAPiLj/86PHtHZnbybnMQcBgwYgDu3yRBAZH8E/1w/erzOwSZ7OJGTSk1PLdqdaUeOM4eDiQfpmNoRzawhj5Spn2gmw2xm9erVZIUzuH7GHGqsWgsHD0JNo09JTAp+ncTEoIJcSTEoVgr8At7pcWieXCkQQXBq6LKA4NCQ4jWUowVDh6w9gtgHFi1HU86IeD+PA0XAPjiItVuo5GX9VRthxFRI+bLY5MBLkgJdh26jYOQQeOYPZd+viigsBwsnfsg1jftd6VMqF+XqaHgiFeonX5TTofkEfF+50XwirgleTMlqlANUjOmjpnFk6RoARrz6d3rcPzXqtmm+dJq+PYTBDXsVn5DoD4DTUannF43IATOBhU4wgWNQAFOrML/9Q8nVClGl4AL0oEIwJUL4pzCmxiac1zsJmoKsXLmSSCRC/5o1SRw0iPCMPQT3JWFuZcY5xgl3TMHn7o9SdxLBZA+BpjJJG5IQk0Tibo1DOHOUw7/7HVtvvZU4t53fH/oLQS3AyiEzqNfBaOcdk4JfLzExqCBXSgyKlQKvgGd6oWFHIgguDT0gIiapoIN2LveOXtBxXFOoHBHQNQhtsBFaZUXMOoF9vB1LtzJOLjyRWmyZWKUsH6iq0d3uCoSFi0PVVP5v00fc3+VWHOZixj1n5cB/P4Sp46FJg8t/glGozDbHWii3S+J5E65xXswNlNJ3KiNp23bzbq8xANTt0ZG7V84pcfuoCYn/9z58MAu2/FBkWFFlo0cgsMxBZIcNc/MIjuv8+UtyJSUk3v7M7Xwof1iqFMj/nUMgrRVafB3sw+xYu1nztw2Hw6xatQpvpoe+x5thDtXH1teGbbANdAh+cpTwqURs7UKITz9CYPzbmBpZcN3kQhEVtmzZwvHjx2m2YwedPvyQ82++RK/jRoXF8mnLqWGpEZOCXzGxIUo/I4qVAo+I59P4XCkQjP/FaeheEamWgu4XC6TApOMa7ysiBWqmESUIrbZj6+ghrvXy0qUgEoG5C427+qqSgmDuFLqrRArAKGV8rOfdOMx2dp07wFf7fii6QVaO0cfgfOaVOcFiqJAUHD8N19wCew5c9JRo03FP9GJKVvDNdiMfqbwLb3KnttRqbyS7nd64HW/q2RK3LzyyuchshWH94bF7q7SKRUmT8HwST2SvFcd1Ppw3Fs3TKWm2wod//ZARoRFRpUALavi/8+PzDEF06MTd6cDW3VZkW6vVyoBOA+iV2hsxXIdzXc9hHWSFCPi/9BM+nYhjpAOhTgKBce9gbmnCdbOLzDMnWPLdd5w+fZqePXvS5bbbENu1o6Y1iZTbUwAY/PFgRtwwIiYFMUolJgZXmOKkQM0W8XwSh+4XMJIJdYQEDT1bxFRPQT1rQvfnliM6NdxTPJibGD0KdB1CW6x4Po5H92q4r0/Dfq2OMPXG0k/m28Vw22/h0LGLnqoUKTh9Bur1MJLgrlI+2P4lk7/5bdGpjE0awMGV0KPTFTuvwlQ4UlCrOlRLBLn4aIBgAdd4L+ZGMr6vXUQOVJ4ctLx+WP7f93+/tIQtDfLkICuUQ0AJGQ+2awm331QlPQ10DULrbXg/i0Ow6sRNy8HaIVKsg0STA3RY9OIivvzyy6IP6zqRXRE8b3mI7I3gGOnA9be2SLWsxj/YQsgHZQIfBXAINnKabWW7fzsrv19J1gdZyPu8OHuko54LE/wxhLWXDWm0hS3btrB0/XrMhw9zzY4dNARo2RJ+/BFGjKBBfAMWTFqAbb2Nzes3x6QgRqnElhIu4HIuJRQrBVki3ulx6KFCUpCooWdJSPUiqKfM5Fce1FJwjS8oNdO8Av4FLpRjZqydQ9jfvB0h4IFFM8p+UsdOwQWtbCut+iArBz6cBXffDPHu0re/Alxyh8Qq5nJMSdRV8M93Ih+w4BztNwZoXSKFlxOaXtOfKd99VLZz0XUEQSDVe5Zq9gSskgWeeMGQtXtuueTzAtA8Iv7vnSgnTdh6hYyW0WUY3aHrOkNum0LK7A1FHi+cc6BmqwQWBFAOKZhbmXFc50B0596PzZoF770HP/6IjkAoJURoTQhzCzOORocQe3Um84ctKNvrougKp7XvaZAwBHNGAuHq+znZzcTJkycRRZE2LVvSfPt2xLvvNqYjHjoELhcQyymIUUCs8+FVTnFS4Dsj450Rh03LC+ToiIkaWpaEVFtBPVWwFGBuEcY5yo9gNm46IrssxvREM7hu8mJuLEOLJyEzq2wnlJ5hlLFVlRSA0QPgsXsrvv9loHCHxCnfPYaAwOQzSfCHZ2DJF6XOiqhKKkUKcryGoBUzxyAPQQLn9X4CCwxB0BWwtr80OajdsQ3x9euQczKVYys3EPEHsJQhiVAQBFRN5ZpZ02gUX8/IOYjIEJEv6XzyiOwzE1jkBIuOa3L5cive3vo5KW030DHcmu3f7c1/PK9DonxcZpQ2CsEu4JzoxNLygqW8unWhRQu0cyF8CxTUUyr2IXasfawISlvCKWcR1pix1ZHI7pRN7ZTrkLLs7Ki7k3R3Ou4MN61lmaYdOmBt0wbatIHu3WHDhpgUxLgkYhGDC7gcEYPipEBJl/DMcCEoEjo6AgJCnIruERETNLTsgluYwoOQNK+Af5ET5YgFS9sw9qEBxKyzkBQPpZSF5eP1QctB8LdHoFDGeKVKwfY98ONKeOj2ErsoXi2omsrDi//JLW1uoF+2Cz6ZDc8+DrYyfqaVTKVFCv72H/hyPuxPKXVTXYfAIiMJzzHcXySHpSJsfn8mCNBy1FBc5Sz7LPPI5jKihyGw1ElklxVzyzCOa6M0+YrCW1s+44Efn+LRbrfzypAn+O0fni2+CdIfPmTqM1MRrMXnRUT2RQjMDyBYBJxjnZjqm9BVneDiIOFNYSydLFibh/H/oKFjwjbehlJNwWKxYBEE6NLFmIoYHw/Tp0Oh76yYFMS4kFhVQgWpajEoTgrkNAnf53GgCvlSkC6cpYZYHdEsoIfyqhKM1sWWNpGiUQITOK71Y2mWexc17GZjLXnWm2U7KU2DrxdAry7GTACqoHnRJ7ONNshbF1TpiOWqQNEU1p3eSv/63a/I61fq8sHhY3Au0/hZlwFdh+BSB+EtNuzX+LF1vjQ5uBSKyMF1L2P9ZC7cNr7cy1JKqoR/vgvNL+K4xo+lbfG5BNEoLAWvDn0SQRDKPXhJl3Mv/pvDmN3pOLLmIP7zCTSvhn+OH+WUjP38XIQJ1xFIMSOdOYjT8iNSi2S4776CA3k88Prr8Oyz8Nxz8LvfATEpiFE8saqEq5BipeCkCd9ncbltjHUEQLPJWHUbsqrmS4Hg0HDf6sHSJoLmEfHNcRFY4MLcTCburpwCKQB49Sn44/1lPzFRhAmjqk4KAKZN+FlKAcBnyz/iztdvKZqQeJmo9JyCpo3KLAVgFADYhwawdg0RXOwktOXKREygICFx1clNbN+/Af75KqxcX+b9dQ2C63ITDO06cbfnYG136VIAxpLHS/c9zb19inZuzFtWmDVrVv5j6nkV74dewtvDOEY4cGo/IO7bjnwsgud9D2q2imtQFvp5D4HldsxNLLjHqkh4IRQy/nv4YThwwIgQPPEE7N4Njz4KxKQgxqUTixhcQFVFDIqTgshRE/7ZbtANKUAAJGP+AaECZ8tLMhScOuGtVoIrHAhWHcdwf1EhOJ9prIGXZwLgS28bneVe+TtQRVJw5hxUT7ysE/IqE+3Z/+J5/V2q/U6+rAmJVZJoePQkzP4e7r+tXCWjug7B5XbCP9mxD/Fj63blIgeZwWyS7Ano2R5ktw2LVHpvDs0j4p/vRDllwtY7hK1P2RIMCxNNCnQdQqvthNbZMTUP80TKn3j9neIjB2PbjsU/348YJ+Ic78RUy4SuaYQ3RAguDWJqYMIx2kFwaRB5n4ytvw3bwKIljezaBSNGQFYWDBkCX3+d/28rJgUxSiIWMbiKKFYKDphzpQBAN9ocYyR+FZYCc9swS7p9RXpmFt7P3QSXOLG0DRN/YZRA12H8vfDAk+U7uYQ4Y9mBKpx9cPfjcPNDlXOsK4B4+0Tc86ZzW9sbmfLdY5clclBl1QcnTsOr70NmTrl2EwSMrpk9ggSXOQltqljkQFMUji5fx4LfP03KM/+t0DGS7AkA/HHLm4ybfT+RbTtK3D6yz4LnozjUHBHXzV5jtHhlSYEKgQVOQuvs2AcGcN3o57X/K77PwS233ML0p6djaWkh7u44QwrCOv6vAwSXBLEmn8He9BS+WT7kIzLOm5zY/csQ7rjDyB+I5CaAtmtnVB3ccAOcO5f/eEwKYlQWsYjBBVR2xKA4KQjvshD4odDdmglQBGNaopJ7ZyDo2IcGUFpl8793vuFO+W5MCTpxI8KY60fJnF6+DtzOYtsYl0aVDkTaugtCEehd+aV1l5O8Ukanxc4bw/9ZZa9zOUoSK4quQ2ilndAGO/bBfmzdyxc5iPgDvFS3O0oojCu5Jr8/vLrYiYtl4cejq/jxsbt5domOcHID1vjEoud6iQmGeUSVggj4vjXKgx0j/EUGkpWUc/DZZ58xefJk1EwV35c+tBwN5/V2hIcewDfoOcTqDlwdTiHd0B/+8AeYPRv274d16+B//4O774aePY0DahqIYkwKYpSJWPJhBalMMShOCkI/WY2EwTxMOigiRuggd73SruG80QcqBH50onoE3pXe4QvnDBbe8gHJrpqXdF4AZHvgnRnwwFRWZO3+2U5JvCzMWwThCEy6HlVTEQQBURA56z9PLWfxkycrytUsBXlcqhx8Mf5eDny/DIC7Vs6m3iU0jkrZNJ+/z3ic+D59mD3+zfxqBSVNwv9dboLhMD+WcuYS5BFNCrSAgG+OG/W8hOtGL+bGF8u6rus88ugzvP7uxXLw6X8/ZVRwFILDKGVUDigElwUwtzDjvNGFkJ0On34KU6dCrVqQng6bN8Ptt0NGBrzwAjz2GBCLFMQoO7GlhCtMcVIQXG0juKxQpECiIEKQ17SojozrJg/hrVZ8X8YhujXi7/AwflpPMuRMhnxxG2m+9KIvNvNbuOm+glBjWdiyC154i3V7V1WtFGzabuQx/JwFdNEK+G4xYPQ5EAWRrWd20/itQZW6rHBZpCAQhAHj4ccVFT6EIIBtQBBbzyDB5U5Cm8r3O9Pq+mvy/77v28UVPg+AQd1H89ffvsuSk+v5v58+LppgaMtNMGxfuVKg5hjtxrUcEfdkT7FSAKB5JJ7p8B/u7XtxQuLUR6Yy79g8XNNchNeFCS4LYutnxznRhRD2GjLw4IMF7Z9r1jTyCg4cgFtvhT59gJgUxKgaYmJQBVwoBV27tMe/yEForYPcpALDA7S8vxhYugYxN5XxfhGPctKMY6QP12QvUjWN5kmNWH7zZzSKr4tJvGCB1OWAurXBUsYBSQBD+rBy49sMW/XHqo0U7NhrdDuswv72Vc5b/4IZrxV5qEPNVkxsNbLScg4uW6TAZoXWzSH+0qJh+XLQK0hwuYPQhrL/7rQYNSR/+WD/d0su6TwAhh83cezQNTza8i58s9yEVtmx9QjhvtWDlFixMdLRpEBJl/DOiAMN3Ld6ok6iVM8Z2wmqwBuz/nxxzoGucdfbdzH9z9OJ7IrguNGBfbAdYfp0aNgQ0tLgpZcMQRg50pCEjRuNfgWffAK9e8ekIEaVEVtKuIBLXUq4SAo6t8c3z4VyqPBFO+8zz71YWjSsXULI+6xoOSLWLmGjgZE1+s/mtPcMoiBWeFlhxfH1jJx9T2z54BKorPbJP4flg2gUzsi39Q9g7x0q034fDb2ZE2s2AfDg9kVUb9m04ucw+wci36QS7PYHIlKE16u9zJM33VnhJkjRpEA+YcI/14UYr+GaUNCK/EKUMxK+L92IcRqum7yITh1d13nw1n/x1tdFW0GLgsinr33KrQ/dajxw6hQsXgwtWkC/fjBlCtSrB6+8AooCmzZBly4xKYhRIWItka8AF0lBh/Z4P3OjpuV9zHl5BAV3z2INBcGkE17vwNRIxjXOh1S9+LuQwtz23R9I859jnXITCcOHGfXpGF/UelhA9wtoARE9JBj/hQV0WQBZIPXEEdp+d5LZXV6nb+Jw9BUSAREEkw4mHcGiI1h1BJuO6NARHBqiW0P4tf62THoA+nSFR+8q8nDh9sl/XfkKY1sMx1bOi9EVkYK8KZHVky75UIIA9v5BEHVCqxygga1PqNQAUasbhuWLwYEflldYDNRzEoHIJJT2ZsxNwmxtmcJL377O5rmbK9QhMZoURPab8c93Yaqn4LrRixDlsMppE77ZLsSkXCmw6Uap5woHz3b8D2gCb837MH97TdeY+uhUTDVMRhOkevXgjjuMXgUHDxr/32YzEg7few86doxJQYwq59f6VV/pXCgFXVp3IOeDOHRPwdyDIgg6YjUV7ZwJsbrRp8DURC5TxF2PwPvdXmb6N/PRD3chK2zGVNuN5hHRfGKhvIVC5F7ww0IIj9eKufVgeldrAGkmFB10VQAVdMWQiOKOIdg1xDgNMUFDTFCRklSk6ipSNRUh2irGA08aJZH/+lPpb+xqpX0raFC32Kfy5OBcIBObyYqqqUgXLvVE4YpFCm64Ezq3gzeerbRD2vuGQILQSgd6WMA+OFji73K9Hp3z/+45fabcr6dHILjGTnizzbiDv8mD2Z3O4Oo9+Gb824yZcx/j5j5YLjmIJgXhrVYCix2YW0VwjvRHFWT5pAnfbDemvL4jucMTAz86iGy34Rjq53/3PYmaJfLuivfz98srZQQMOTh5Et580yhFNJvh8cehaVN4/vmYFMS4LMTEIBdBEB4EHqQCeRcXSkGnRh3JeScO5LxqAygcJcCiQcS4ADuu8xkZ08W8qi6Del5CPSehnjMZf8+Q0H0iiSTxCK3RmmjsV/bSwhzE0dyM6NYQnTqCU0N0agj23Lt/qVBJYqO85YNA1Pekq6AHBfSgiBYQ0Lyi8V+OiJYtIadZCHsKLoBigopUS8FUW0WqrWBKVgxZ6NAKHKUPy7mq+esjJT4tiRK1XTXwhn0Mn3U7j3SbVuqywhVdPnjl74asVTL2XiEEi05wiQM9IOIY4Y/eL0CI8vdS0HWQ95sJLHOihwRsfYPYuocQXnwd3vscjqzJ75A4Zs593L3gCaZf/3Kpxy2+zXHBMom1awj7kEBU2ZGPmfB97cZUV8E11otgyZWChU4iOy04Rvow1VXwfRHHCzf+C0szmdc/+CR//yJy0KIFvPuu0cBI142/HztGoFq1mBTEuCzExCAXXdffAN7IyzEo634XSkEHdxe8H7oKBQgKf5PkPmgCe78A1o5hhNyR93oYlLMm1LMm1DMSSroJLVPM74ooJmpI1VWs7cOISSpSoooQJ3MkcoJbZk7j9Y5PMbrZkKjnmS8FdTrzvTYGS04AqkfPKxAkEFw6uFSifbfrEVAzDFlRz5pQz0oE11pAFkDQkWqpmJr/BlMDGXNYKTFn4qrmyAmoVR1KmQboMNtpmdSEKd8ZZWTR5OCK5xSUoyVyebF1CSM6dPzfO9ECIq4xUcLuhX4VhDImpqqZIoElTpRjZszNItiHBpDic5MLx14LHVsbdf2SxPDG/fl2/DvUcJS+XFKsFGi5d/o7bNgHBrD2iL48Ejlkxv+NC1NDGdcYnzHxVMuVgt0WHKP8mGoreD+PQ7DoxE3y8Zr7rwhWvUifg3w5+OwzJq1cCZMnwy23wKlTMSmIcVmJJR9eQHmSD4tIwfef0DqjB5HtNgwZKOhLkI9Dxd4rhKVtGC1bQkkzoaaZUNJyJQCjyZFUU8FUS0WqqSLVVJCqq/kCkY8sQ5O+8MFLhIb0wmayous6nrCPeFvRoTKFmxd91/lJbB1HwncfwTWV/+Wi66Cdl1BOm4z/juhoQZshCskK5oYK5qYRpGT151GooCjgagXvvgBTx5e6eWkJiVdcCgBWbzJkpwzvp6LIx0345roRnRrO632YahfNm8k5kcqWj75E13Xq9+5C82sHRj2WLkNovZ3QRhuiS8M+NFC062cphJQwL65/lz/1uveiZYVipUAG/3cu5MO5jYvaRS8Djhww4//WhbmpjPN6H4IpVwoWOInsseAc5UeqpeCdGYdg13BPMpIRoeQmSIUHL8WWD2JUFrEGRxWkrGJQWAqWzfmCxlt7QLD4e2vBoWJqKiOIoKabUNMlY2iSpCPVUDElK0b4vbaKWE0tdlnhIgJBeOU9GHsdtG0BwL/Wvsn03d+w7Obp+dUKxXY0PJcBca6yj2WuKKEwJLRFffttlE6jkI+bUY6b0EMiglPD3CSCuZmMuZF8sfhcLagqrNoILZpAnVpl2yVXDmbs/oZ99y6iWWIj4CqRAoC/vwyLV8K6b6r0ZdRMEf93LtRzEvb+wRLvuovdP0MksttKeJcVPShg6xHC1isY/Xfl3c+gawfo2r7IwxtStzHo81svGtlcnBRoIQHfHBdqugnXGB/mJtEFJLLHgv97J+aWEZyjjGUTXYPAD04iey04R/uRaih4Z+VKwWQvoqPo921UOQA+B8ZNmMC1GRkxKYhRKcTEoIKURQw8Hg/jR4/Dmm3l/WlvYw04uXihNHcYkk7u5EQQE3MlINlYg5dqqpWa6X8w8xiDv7gVt8XFspuncyDz6JXtaKgosGkHNGlghOIxvjiV0ybkw2bkQxa0TAnMOuZmESytIpgby7+I6gdVU1l2fB3XNO4HXEVScJnRVQiuthPeYEOqpWLtFMbSKhw1q18LCkT2WYjssqKmmRCsGuZWEWzdQ0hJpfQkaNYfHr0THr7joqeKjGwe+wYf7ph9sRT4BHxfudF8opEMXCd6dVB4h4XAQieWdhEc1/kRRON32z/fibzfgvN6o7rIOzMO0anhmnSxFOR/RiXIwePx8byuKDEpiFEpxMSggpQmBl6vlydu/QtPd3+m5AOZNESXjuDSEOONzH0pQTeSA+NVBKd+aaH0tHTjv05tikxTzJMDSZA4F8ikb72uRaVg5z741//gtaehRrVLOIHKQc0Qiey3IO+3oJ4zgUXD0lzG0i6MqYFy5ZcbzmXAjLlw8xioXaNCh3h+3dt8vHMOqb70X5UUFEY+aSK0wYZyxAxmsLSKILq1glwDHdRMCfmQGXQwNzF+B8xNK08U8+SgaUIDdp8/WEQK1BwR3yw3uiLgnuhBqh5dQkJbrQQXO7F0CuG4xkhI1NVcKThowXmDDylJwzvTXaoU5BFNDgCeeuop/vGPf1zq248RIyYGFaU0MVixYgW33Xgb23+/PcoRjPHJgtXoCYAIqEYvgbzIAQAWHam6iqmmglRHwVRXQUzQyn4hfO9zeOQp8O+/aMzyZ7u+4bb5j1HPncz+excXjRRs3wNPvgjvvQjJlTBzoSQOHIG5C+Gh20tN3ANQzxuSENltRcuWEONULG0jWNqFK9zB7pLZsReuuQWWfGGULZYTb9hHs3eGkh7I4B/9HuGpfiVXOFwWVm+CJ56H+R9DnLvUzSsTzSMS3mkhsteCHsYItIkgiAKCXcfSOoyldSR/Hb6yeWTx0/xv86c80nUa/zfsr4YUZIh4v3QjSOCa6EVKKEEKNtkILncUqVLQ1dychENmnGN8SInlk4I8oslBUlISR44cyftCjxGjwsTEoIKUJgaKojBt2jRusd1C0zZ1adC2JoJNQ/NIKGcktHMm0AQw66ACmoDg0jA3j2BpEUawY5T8ZRpliMpZE1qGkXgouFXMjWXMTWQjpF7SuvvZ8+D1QdOGRdoN5+UUdK7Vhvnj3yPBHoeu62XO/K5Uvl8Kv/kz7F9RJjHIQ9dBTTUR3mVcQIiImOrJWDuFMbeI/GyWGvKWD7ad3cOA+t1ZeHTVJXVIrDR27IU3PoHn/wKJV+Zic2zlBj4ZbnT76/PYvVzz3B8v7YCyDMOnwBMPRU2qvTCnYNnxdfQx9yT8dTUEp4Z7YvRuhmDMYAitcmDrFcTWP1ggBd8aiYrOG31I8RreWW5El4ZrYtmlIA+/P0DLDsM5ndvbIS4ujsWLF9OjR49yHSdGjOKIdT6sIkwmE5988gnTpk1j1p9mMXP6/zFh3Ij853UZ5KNmIrusRljUrCG6VeQDFiJbbUg1FKydw1i7hPIv/FpIQDllQjluNvbdYTPW3ZtGsLSOYG4iX1wPXqt6/rp9HsUlGm4+s4uHF/+TOWPfKGifnCeDVS0Lo4bCqU3l3k0QwFTXiKI4hgSQD1oI77Din+9CsGtY2oexdryCUYQyUDin4MfJH9MjuSN3/fAXpnz3GAnWOEY0jZ6FX+V0aA3vPH/lXh8qf6iWphm5LC5nsU9fKAXng5k8N/tDpuuDcdVScN/kR7RHywEo1Pa5XwBb71CBFHzjQj5qxjXWhxhXSAomeaMeLxqBQJDrx91LVpaH8ePHs3jx4pgUxLgixMSgAuTJAcDk237LTMiXA8EMlhYylhYyao5IeJON8HYrWHSsnUNoXpHAYgfB1XZs3UJYu4QQbTqWZnJ+CZaaWbDu7p/rRnBqWNuFsXQodDGUZfjbf+DGa6FXl+KrD4A4i4sTnlSGfHGbUa1wygNdRhqh8T5dL/tnV14EM1jaRLC0iaBmiIS324jssBLeaMfUSMbWLYSpcdk6RlaITdvh90/D7HcuErFoREs0/GDkv2lZrTF9613hHANNg3OZ4HaCw35FTqFwpLJSfnZWK3zwUrFPFVd9kHCmNl/xFWv0tXxifYvPzS9j5eKMSF2HYIqd8CY79kEBbD2MWRC6kisFx3KlwJ27fOCuuBSMHnsPG3/aycKFC+nXrx/Hjh2jcePG5f8sYsS4RGLTFStInhxMmjSJybf9ltlfL7hoGylewzEsQPw9OViayIS32tA8Is4xPswtIgRX28l5N4HQFit6oQRoKUnD3jtE3O0e3LfnYGkZIbzNiue9BHxzXCinTGAywfK1cCotqhQA+VMZvREfQ764jTNuAf77T2hcv+o/pH+9DlMqb01dqqbhGBIg/v5sHCN96EEB32w3ng/iCW+1opdj6nSZiXPll4OWhZKqDyRR4i+97yfO6uZg5jHm7FtYBSdcBrI90LCXMU76qqASzEBVjURRuWh5YXFSENlnwfe1C2sTFfu4bH44uZxxcx8krISL7KvrEFziMKRgmL+IFPjmuZCPm3GN8yG4Kk8K8qoPBEGISUGMK0ZMDC6BssgBgBin4Rzlxz3FaKjo/8aFYNaJuyMHc1OZ4BIHng/jkY9cnFRgqqkacvFANo4RPtRsYxa85/M4IjMWsqJb9VJLEgvLwbhlf0a/e3LVJx6CUTHRunmlH1Ywg7VdBPdUD+5bPEg1VAJLHOS8lUAgxY7mrcTwQcum8Pa/yxQtKE9J4rvbZjLxm0cqZWRzuYl3w5x3qrQDYqlUoPNhiew/DPV7wtrN+Q8VJwXh7Vb83zqxtIrgHOPjmmZ9+Wb826T50skJ+wpOT4PAQgfhrVYc1/qxdTGkQVfAN9eFcsKMa5wXwanhm1W5UhAjxpUmlnx4ARUZu5yXkDhr1sU5BxeiaxDeZCO42o4Yr+Ec7UOQILDUgXLCjLlFBMeQAGJc8evnug7yYTOhDTbU02bCepiZ7ve49+5xOCwl9yk4mHkMT8RH12wbrPkJ7ppcpvf3c0DNEQlvsRLZYUWXBSxtI9h6BJGqXWIegq7DmXNG2D3K+jWUv09BZY1s/rlyZNlapo+cCkC/P97P0Kcfu7QDBkOwMAWG9QO3q1gpCG20EUxxYO0cwj6s6NwDTdcQBZFzgQzcJhfqoiQi+yw4RvqxtjVCUboMvrlulFMmY0iSXTekIC430TAmBTGucsqafBiLGFQCZY0cAAgi2HqGiJuWg2DS8c6IQz5qxjnRi/N6H8ppEzkfxhPeZi02P0sQwNJMZmv/JfyWh7F6zzPN9xDK5zWRj5acMtI8qRFda7dDXrEOz5PPknb+5KW+9dI5ehK27a7yl5HiNRyDg8Tfl419QBD5qBnPBwn4vnahnL6EVJpIBBr3gbmLom5SkeZFeVMZb2t7I1O+e+zyRg4OHYP/fQT+6EO0qpwiOQaVEDGw24wuoMVIAQgEV9kJphgVBRdKAYAoiGi6xuiZ97Li3WNEcpsUFZGCr90op024JsSkIMYvm5gYVBLlkQMAqbqGe4oHa9cQwRQHga9dmBrJxN+dg6VVmMCPTnyz3KjZF/+I8nIKUhscw9FpCa4hh8Gs4/sqDu+XbtRzJY/9TbuxH+2fiGPI3LtJ86Vf0vsulT//Gx5/rmpfoxCCFWw9QsTfm43jOh9qpoT3szi8n7uRj5nKnwxvtcLc92BIn2KfvpSOhnlycE/HSVSzJ5TzxC6BHXvhn/8HprKNh64K0rbvyf+7o3ripR3szDl46G9w+kzxUrDEQWidHfvAAPYB0cdBC6rITPMXdAx04eUa/0ZvZiwt6BHwzXGjpOZGCqw6vpm5UhBbPojxCyS2lHABFVlKKEx5lhXykA+b8X/vBLOO60YfpmQV+ZiJwCJjQp3jGj+WthEEIcrsA3KXGA6ZCaY40LJFLB3D2PsHo35pHcw8xtDPbsFpcxeZrVDpHDtljPitgjG/ZSHvcwmts6OeMSElK9h6B42Oepd4o1rZbY41XWND6rbL0xlR0y5qjHU5+WDgBE5t2AbAw7uXkNS0UcUPtn4L3P1HPnx9Enetf6FACnTBmFuwx4LjWmOaaTQKLxMc6L2eQWvGMaRhb+aMehP5m2ooZ3IjBZbcSEFCbqTAFpOCGD8fYksJV4jyRg4AzE1l4m73ILp0vJ/HEd5hwdxIIS63IiHwgwv/d05WHdpcfKLh/CUIUx7G0ixC3J052AcFiOyx4Hkv+pJE81UHOPKijOz3MuSL28gJeSv5k8ilUb0rJgWQu/TSXMZ9mwfXTV4Qdfxfu/F+Ekdkv7lsEYQ5P8CS1UUeqorZB5/s/Jp+MyZfnmWFKygFciCIPz0DgJptW1yaFAD06sJbn95RVApUAf88F5F9FpzX+0uWggj4ZhcsE/Ts3ZJvx7/DT8d3kz7TjHLWhPummBTE+PUQ62NQBZTU5yAaYpyG+2YPgSUOAgtdKGkhHMMCOEf6MTeW8Sy0Er+vFXfUnMJL4x8tWn1gtRpf9IEggtOBrXsYS5sIwRUOAj86Ce+04hjux1SrUE1ku5aYHryDRTcOYGbqSuKsrir4JHJ54gVjOuHtN1Xda5SCIIC5sYypkYxy0kRorR3/N26kGgq2PkHMLUqIILz7OTRrZCS2UXUDkaa2G8uKExuZ8p2RiFdlCYmDJxk/i2kTqub4pWB22Hl4zzLO7thLMDPn0g4WCPLBxs94YP3zBVIgC0Y+QKoJ11gf5qbRJyTq4dxlgnQT7oleTHUVAIbV6cfeWtsQMmy4JnhQJZXgrISYFMT4VRBbSriAS11KKExFlhUAwtutBJY4MCUrOG/0ser8eu758ik+MX9Mq0hr7APKPsJWOWXC/6MDLUPC2i2EvV/0sbXfH1pOl9ptK39Z4eG/Q+tm8MDUyj3uJaKcNhFcY0c5ZkaqqWDrG8TcrBhB0PX8LjxVPSWxyqsVNM1ojDWsPwzuXbnHvgIsfe5x+v1rLv+ccTPP3fg0ekjEN9uNmiHhGu/FXF+Juq8eBu9XbtTzkiEFudMUL3z8ne1fcMPuW4mracU90R+Tghg/W2KzEipIZYoBVFwOlFMmfPNchIQQ1wVHUqOem2/GvoOwIZHQejvm5hGcI/3GsKY8flwBsmK0Ii6ErhrDX0Jr7YguDce1fswNFSMr/Y1P4O6bCcXZafXucOxmW9XmHFyFKKdMBFfbUU6ULAiXa3RynhwIgsBHo16oktf4JfDWls/4x9dP8bxpELc/9R663xiGpPtFXDd5MdWOPjZZC+WOWM4UcU30YkrOkwIB71dutAzjcQTI+sLODnkXbzV8hc/Gv4TVFGVmdDHEpCDG1URMDCpIZYsBVFwO1u7ZgTC/Fg2EBsSPCeFqYVypIgfNBH5wIjiMZEWpRu4X4C0Pgd0etTWsmikSWOhEOWXG0jGEo+1JhJ7XwbvPw6ih+SOb3RZX5ctBTm4OQ/zlneZXHuQTJkKr7SinzEi1Fez9A5gaKQgfzERetpIhIzOrXAryUDXjZyqJEhnBLKrZLzFzP49TaRAOw6Wu61cQVZaRzCVNBysbF1YfaB6pYGzyJE+J/Su0kIDvSzdadq4U5ApEvixk5UqBDr4v3YhJGpt6LmL0t3czpGFvvh77RpnkICYFMa42YsmHVxEVSUhccWID1yy4lX/VewpXIwn5myRCm40vI0tzGfdUD4JJxzM9jvBui7HT2/+G91+MekwpScN1sxfHNX4ie6x45jdBXro+P8JwYfvkSitllGWjF8CnsyvneFWEuYGC62YvrkkeEMH3VRy+L9z4LQ2Z7dt+2aQADCGQRIld5w7Q+K1BlZeQ+PZ0GDGtco5VAWZPeZT3+49n9UtvIwdDFTpGnhTMPdmdV3fUQsstSQVw31qKFAQFfLPcaDkirkkXSMGXuVIwqZAUVDOmLg5t0Ztvxr/NsuPreGH9u6WeY0wKYvyciUUMLqAqIgZ5lDVycGFJok2yEVxhDHKxdgtiH5w78lWGwI9OIrutRje3IQFjCuOWXXA+A4ZHn+CnZudGD06YsXYKYJdWIAztCRiljL9Z+FemX/8f6rprV86b/2EZtG8F9etUzvGqGF0H5YgZ30ornLOQIqTQ6Fo7nTtUfovnkqj0nIP0DEg9A53aVs4JloOIP8BLdbujhMI4a1Xn90fWIErl66VQJFKw0o5KbXw1HizT2GQtkHvx9+ZKQc1cKQjmPu7JlQK1kBTc5EEoFBzYkLqNjjVbYyshYhCTghhXK7Gxy+VEEIQHgQepwihKWaoVovUpcAwOIsZrBJc60DwSzlE+BDM4Rvox1VUILHGgnpdwjvEhvvIuZOWUKAZSgtGcJbzFSnCpFTmjBc7ETExdkmie1Ihlt8wA4FwgA0VTL31ZYeSQS9v/MiMIEK6fzRjT3dSjEa86XsKyMA7fkQj2/oFLb7VcRvKaIAGVU61Qs5rx3xXg8OJVKCGjbLDl6GGXJgVDn0RpacY3x42UoOKaUHKjIS2QGynwi7gne/OX3/IjCN4LpUA1ShQvuP73rNMJgO1n9/Lyxg94b8RzRZYVYlIQ45dAbCkhF13X39B1vQ1QpcPPS1pWKGlKIoCtSxjnjT7kI2a8X7rRAgKCANZOYdyTvajnJbwz4lCffdHo1lcKggC2rmHibs9BaFwT79KmBNfa0Atd86bOf7xylhUys+GZ/xotkn8G5CUabju3h7/VbUbNx5vi6HUK9YyE58N4/AucaJ7L88+ncPvkx5c/T0AOVuxAoTD87p+w71DlnmAZ2ffNj/l/b33j8HLtW0QKkieivLcJ31duTLUV3JM8JUuBX8A7040WEHHf7CmQgoCAb6YbzWfIAip4Z7kRqxcvBYU5F8zkq/0LikxljElBjF8KsaWEC6jKpYTCXLisUL1rIqNm31PilMT8fdMkfHPcCFYd1wQvUqJxJVdzRHxzXGgeCdf1PswcggNHYMTgUs9HVyG01kZovR2pjoJzlB8pQau8hESfH9oOhfdeKDGScTVwUfWBpSFs2g6DeqNb7IS3Wwmts6OHBaydwth6BxEdVf/vSNVUUn1nqR9XJ3/oT7k4kQpj7jRyUXp2rpqTjIIaifBS/Z6Ec7xY4908fnIDksVSpn0vjBTI/1mNXx2JuZmK88YAQglxT80n4J0Zhx4WcE8uyD/Q/ALeWW70gCEFegS8X7qRaqi4J5QsBXksPrqaG+b8hiENezPj2pcZf9ODMSmIcVUTq0qoIJdLDKBADmYum4n5fhP9G3YvVQryULNFfF+50cMCrnFFa7D9813IR8zYM+dgXfoqwvpvytbp7k//QtnhxT/mTbSQgHN4AEubSOXJQaF+AFcrZS1J1MMQ2mwjtNEOOth6BLF1C5XpgnKpBOQgo7+6h3s6TfrZTGU8vHgVM66/A4D2k25g3CevlGm/C6UgvNVGcIkDSws/jusjRk5NFDRvrhTIuVKQVEgKZrrRQyLuyR6jRLGcUpDH4qOruWH2b4hLdeH/NBSTghhXNbGqhJ8BecsKE4dMJPKjzO2mcWWSAjByBNxTPEhJKt6ZcchHjBIwwQrOsT6s3UMEEycQ+OsidL2MP+ZJN2B6+Bribs/B3FTGP9+F/wcnzVxGtYJfDrDm1ObSjxMNQQCP1xiRexUSVQoiEXjvczh4NH9bwQr2PsawJmunEKH1dnLeSyC02YoevXy+UrBKFhrE1Sn/VMYreBOw99vF+X9vVcZlhMJS8MqQJwmtsRFc4sTaNYxjTBmlQMFYPsiTgrwIQhEpiMNUs/xSANC3Vldabm6CZ7E/JgUxfjHEIgYXcDkjBnlUtM8BGJUJ/u+MCIFjRMHseIDwLguBRU5M1UM4z7+H+Ptby3zHrqsakb02AoudiC4N5w0+wolenBYHYFxEXRZn+d6oPwCtBsGfHoCHbi/fvlVMiZECWYaEdkYp6M1jit1f84gE19iJ7LIgxmnY+gWxtIlUWYCkQtUKt/0WLOaofS6qCl3TeKVJX3xnzmGyWXn89CYsTkeJ+1wkBcuchLfYsC15Btt/r0Vo3SzqvppHxDvTDRq4JnuREnKlwCvgnRWHHjEiCHpQxPuVG1NNJXdqYvneVyynIMbPjVhVws+IisxWyEMwg/NGH4FFDgLfu9D9AWw9jDtya7sIUqKGb6YFb9ZYnNtyMHVOKP2gDzyJEOfC+vxfMNVR8H/rwjsjDvtgE3rnMP+36UPe3T6r/MsKTge89FcY0LPs+1wG/r+9+w6Pqkz7OP59pvfQEZAuTQQBBUSKIKCgIiAgxcKiq7vqWlFf1153Xde6rm1FRZGqAiooVRALoggKCApK7z3T+3n/OJNJIQkJqYT7c125IDPnnHkyKfObp9zPcYcPzGbw/1poqDJ4kjgHBrB1DhNaZic410Xkhzj2XiFMTUu+k2NeeVcrnF2nNWfWOs5SyqEXl24jimjLkuX49x4AoHn/nsULBb0fIPSZS98hsb8fa58eenntAiQyDfin6UW0XKN9GDNyhIIcPQhaMEcoGO5DFW26Q5qEAlGVSTCoJEoUDgzgGBDE4NT0bZeDCvsFeq0DU4M47j8n8U89Dd9CEw4VwNohWvgF27cGl76pkrGGPmQRWuogtEivezCoa3+e++EtLpx6TfHDwajLi35sOShymeMivrIbayVwXeHX92H40o7/QzemhjHsFwTT80BKS1Y4GN56wPFDAUAxeqJKk2/vfixuJ1FfgLNGXFbosblCQa8HCM52E9tqxtlnH5aOFuDsAs9NHE2FAgO4R/kweHKEgqketIR+u4QCIQonQwl5VMRQQk4lGVYACP9oJbTYieWsCI6LA+lx2KQffFP12vCOznuxXmgv2gWTyfTExehGM8HPnSibxuHem+i5aOiJTUj88jt4+lX45C393XgFKdbeB7c/Ak0awp1/LvL1s4okBb+0kzxowtyybGsgvPnTNFwWZ/7DCgcPw6q10LMr2Is2j6U0BQ4c4se3ptPjnr8UWL8gZyh4rvuDBGe5ie8z4bpgF+aLusHr/4Dhl+Z7buKIPnygTOAe5cXg1v+u5R1WyNpPwVRXQoE49cjkw5PUiZRPzsl2TgTnZX6i6y0EZrnQUjvOGlzgGbwN68YPCK5sQHCJ/fhz0f71Klx1a3rSmqVlDPdYL8quUe3TVixvvwBfxM8jX71UvC+ydg3wuOBIgT+XZa7YGyLVqA7u4m1NrRSYm8fw/MmL4xJ/dg2E+Q6SvtIdW9A0jW93rS54QuLXP8Dl14PXX6qPW1TO2jXpdd/NRQsFXR8kMN2j72440ou5gw0eHw/9e+V7buKwAd9UzzGhIJFpwDfVDZo+rKD5U6HgNAkFQhRGegzyqOgegywl7TmIbTHjn+3CWDuOa5g/uwBMPE74JyehLxyYW8VwXuIvcBtmPl4Av2/V3yXnWO6oxSH0pYPIjzaizY7iGhDE6bKhaRqqki9HhPLbJTEvLatTDE8AAEf7SURBVA6R1TbCy21ocYWtcxhbl3DuHTJLoNAJickkbNsFTU6vdEtGc4aCZ895iMAHHn0zpCt9GE1HoFrBv4eJQwZ80zwom6YXOnJlhwL/NDcoffgg6U0NH5yWmmgooUCcgqTH4CRX0p4Dc9MY7lFekkeM+Ka4s9+hmkzYzgnjDL5P7De9yEsyWMALxeCLYPyNeihIZnd/KxM4+gZxDvZh2ZlBfGpdfvttB72njClehcQly2HR18X6ukrqhENBNKpXbywBZQJb5zCeGzOxnRsm/IONzP9lEF5pRYuX6NJA7gqJV386njm/f5F9p8EATRuWWyiIeH0sfvg5goeOFHpcrlDQ/mH8UzKA1GZIB36Flr30n5N8JA6mQoE9qfcUZIWCowb8U/MJBfUkFAhRFBIMKrGShgNTvQTuMV6IKbzve0gcSn27lcIS/Am3ZTrJo6kyykcK+VF4fxb0v0pftpeDpVUMz7WZKJNG7TntaHugY/HKJ7/8Nrxbfjsulqin4JHn4YIRpdIOg03D3itExg1HMbeIElriwDshg8gvlhKXGsgKB4/2uI1uDXJUN7zjUfjos5JdvBi+ee5Nvn7mNf5z5oX8NndxvsfkDAX/bv0I/qkeDM6kHgoyktCsEdx3C3Q79vuUOGDEN82DwZHUJxo6U6HgSGr4wKivPkhkSigQorhkKCGPyjKUkFNJhxWSPr2ymxYy4Brhw1Q3e3Z84qgB/wwXWsSAa5gv/5nzK9fAB3P0cV7rsYu9tRgEFzmJrrXyoWkG/3W9xLwxbx1/QmKmT59rUA7vYks8fLDuN9izH/qX/gtD4pCB0DIHsU0WjHXi2C8IYWpSOksct2fu5se96xj6zELodg78eVTJL3ocvt37+E/bvsRDYQxmM3/7eT7VmzXKdUzOUPBMs0cJfJyaEDjMrw+tHMmE6hn5Xj++34h/uhuDO4nrSl+6HHXicKoHwazhHuUlcdSorwrJCgXFnOcqoUBUNTKUUIWUtOfA4NZwj9GXb/mmuonvzF6lavxiLu7X+mJwR/BN8xDdlM9fz3Pbw7/u10NB8tgZ9coMzoEBHAP8DNOG84r3DW6Y/gjHDZ0Zbj0U/LE13+uWllKZU3BWqzIJBQDGmklcQ/24r/KCWcP/gRv/DDfxvcXbfTA/r62ezPDZf2Pq+F7lEgoAljzxEvFUdcvOf7mq0FDwrwaPEZjpxtwohmuETw8FC5dBqwv0fT7yiO9LhQKPvjtoOhRkzTWwaHpPQVYoqC+hQIjikmBwkihxOLDrk7NMdRP4ZrjTJZTpfDaGQT1wj/RhbhYjMNtFZHUBJeAWfwNdL4ej+QdNa/sonqt8tHa2YKLvfeJbitBvu3EznNUfPvvi+MeegFKbaOj1wf8m6xsRlRFTgzjuMT6cQ30k/QZ872UQ+NRJ4uiJ/5o+2esu7q7el7Gz7ype+eQTdGDDJn5KDQ9ZPS563XdzrvtzhoKnazxO8FMXljZRnENyTILt2hEevA1aNM11bnxvKhRkpEKBPU8osOpzDRKHc4SCKyQUCFFcUuDoJFKSIkig1/d3DfcR+MSFf6YL52V+LK3rw+PjUYDzrHWEnK0JLnSS9Bmw9Qzl7s4+owmc067Qrn/TaQlqjAsSnOPE/6GLr+sv5tzBp1PPXcCwQstmMPW/0K/0//iW6uqDRBLuegIanAaN6pdeI/NQCiwtYpibZxJdayX0tZ3oWxasHcPYuoUL3V44P8akxtOP/UC3C1sxzDgeTdMY07bsikwtevDfaKnen+53/wVHrRrp+9Kh4Jw/8U/Hk4QWObCeE8Z+YVD/kUom9eGl6hlw23W5rhvfY8Q/w42hRhLXCB8GW55QYE/iHukjcUjfeVRCgRAnTuYY5FEZ5xjkVdI5B1oCgp85if5qwXFxAGv7qN4L0KYP2t1/JdLzVkJLHVjaRnAMCOS/WU2Owkf5PoYG+5fGMP1Qm+9My+l0bW3q1ap1nIaV3u6LZbIkMR4HU/lmaS0K4ZU2wivsKIOGrVsYa6dwoVsN576ABivXkKhVjb/++gaXNu/DkJb9y6St277+gYn9RgPgblCXW9cuwuzQC2llh4Jx/MPwJJEf7dh6BLF1C2d/y197D/79Bqyepw8zpcR3G/XdD2slcI/I3tMgcdCAb3o+oaBBHNdQCQVC5HVK75WglLICK9Drp3bUNO2nim1R6Spxz4ERHJcFUFaN4DwXWjiIrQvw9rOonl2wucIY3EkCc50kAwZcg/NsMLNmA1x7B0x/FVo1z/8xFNTtY2ZrzT84c15bDk0MoIZnclqT/CeU8dY0mPk5zJlY4nBQZnUKyjkUACiLvouj9ewI4W/thL60E1ltxd4rhLl1ETZpUgo6n40ReLPpPwC9GNKPe9dxbr12pdZOTdNYeP/T6c/7PHTHMaHgznOu4/HIU0TWW3D0D2DtGMl9kcEX6/NYcoaCXaZ8NzpKHDTim+bG4NSHFRIHUqHgdAkFQpRUVZ1j8AxQdoPBlUBJ5xwoBfb+QWznhfR9EL6yow3oAy4n7N6HZdcXuEb49Hdr0zwk/TlegZo21MeBqxXwIp9Dk/Y1SY7cSSaZMKMeR1YXsF9Ak4bQqd0xSyKLq0yLF736nl4JsgIYnBqO/kE812VirJUg8KkL32QP8d2F7T2chHHjYcXqXDdPXf8pXd8bVqpzDjbMmseu738GoPaZLTj7miuA7FAwvtMNPOb9B7FfLTgH5QkFobC+82b9unDdyPTN8Z0mvVJh1p4GWaHgQAGhoGFMQoEQpaDKBQOl1EDgIuDuim5LWSuVcNArhP2CIOHldkKLHfo6+n+/Dnc+hrlBGPeY1ES4yR4Sh1M/Lm4XvPE01K0F/gAkCt8cqHnj+tS5NsKm2r/AwtoEFzrQ8p7Stzs8cTdYirnQPIcyr2hYtxY0a1y61ywmY80krmF+XCO9EAff+xkE5jhJevP5VT50BHbshlju6kkj21yaLoJUWuEgEY3hqFUdgH5P3YvBaEyHgns7/pWHDz5JfLsZ1zA/ljZ5NvF66FnoOyrXz1Fsuym7/kCO8sWJA0Z8090YXElco/KGgkKqeBZAQoEQx6pScwyUUnWBH4EhwEFgC8cZSkgNO+TsKHcDOyvzHIO8SjrnACDyk5XgAgeWtlEcvQ+hMjP1d3Ckyst+4EYLKVzDfZjqpf6ARyJw/lAYOkCfRX4cmgbRn6z4F9uhdoTqV4TTde1TX4g+pNChrd4jUQwVVea4ImlJ9AmKX9nRogrbeSG9xHIRRjwKLZ98giJeH+tmzKXT9SN5ffUUbl7wCI+0u4s7996HFjDgGubH1CCfEo+//QG/bEzv/hjbZsqeK5BjAmGu+gUjfST25wkFxRzpkVAgTjWnXB0DpRfpnwi8rmnaymKc+ncgM8fHztJvXdkqac8BgLVDBOegANENFgLza6HVqav3Btz5GMbEYdxXeTFUT+Cb5sle6mi1wq3j4MrCt9LNohSo9j6us13Lof0+jr7rJrYjx19zgwHeng7f/1SstpdbKNA0fb+BI5llc/1iUgawnh0h44ajWDuGCX9rx/t2hv790bR86wBkyVk+eeZv849fc6IIrB435/x5VDoU/Lv1o9yx5X5IKNxXeY8NBQcP66WmWzXPDgVbTdlzBQoLBftSoaCRhAIhSlul7zFQSj0KPHKcwzoD5wMjgV6apiWUUk04RXoMspRGz0HsDzP+j136cq8O61FDroV3noNundBiEPjERWyLGceAANazcnQJx2Kwez80bnDcx9h0eCvDp9zGC9H/0CHZEUefINZOEX0iXSAITkeR21uuPQWRCFRvBy8/DteXT7Gg4kgcNBBc5CS+3Yy57kEc43ti+PBZ6N2t4HOSCZJaErPRzNGwl2q2kv3MZw0fvNnsJYbtuBpTvTjOIf50IaI0TYO+o+H0evDeC0Bq46+ZLkyNY7iGZL/Yp4saZeiVDhP7jPhnpkLBEAkFQhRVUXsMToZgUAs4zjo3tgLTgEFAzi/ICCSAyZqmjS3i41X65YqFKZVwsEN/12asmcA15DAGt0n/Q65paBgIzncQXWvDfkEQa5fUcrNbH4Yvv4NVnxVp9v6mw1vpP2Us/5e4j1GRq/SlkRcF9HeImgaz50PPLpBjHXxeFTJ8sGQ5tG0JdWqW/WOdAE2D2AYLwcV2iCSw9wlh6ZQ47uqFjYe3cN57w3nlokeLPKyw/5eNLHn8RS554RHc9eumQ8HMBlPovWeA/j29OFDwC/e3P4LNCp3O0gPpbBfmJjGcg/MJBdVSoWCPEf8sCQVCnIgqEwyKSinVCMj5Sl4fmA8MB1ZomlakIYKTPRhA6YSD+F4j/g/cKGcS95U+DI89AeEovPw4mgbhr+2El9uzC9Rs2wm79kL3c4v8GJsOb+VPc+9lepu3cC5rhLFGAucQP0btCLTpAw/fATdfm++5p+KcguJIhhShpQ6ia62YmsRwDvTnns+RR3HnHCTjcSb0Gs6eVeuwVfNgf340926fyPyac2h/5BxsPYPYzgvnH0hWr9PnkaTujP5uJvCxC3PTVChILbSI700VNcoZCma6MTeO6ZUSJRQIUSynXB0DTdO25/xcKeVP/fePooaCqqKkdQ5Ar2DoHuPFN92Db4oHV5tzMSaPAqnVDD1DKFeS0EIHyaDCecnpqCan629Zl34HfQruvs7SokYTvr56Okopjpy2m/ic2vje8+AcZMT8wxxomH+FwQoNBd+tgq++h3v+Wn6PWVy/b8XwzOs4n7gbS+t6BD5z4n0nA8fFASyt8l8OmjXnAODqT8cDFBoOvnnuf+xZtQ6AWHUrz2/+kBXVv6WRrwnOy/1YWkfzP3H7bug1Al59Cq65guimVCg4I4ZzUJ5QMD270mFijwn/zGN7FIpKQoEQRVdlJh+K3EpjQqKxZlLfthnwRUaSuGKMfsdmPYPZOkZwDvYT22jB/6EbLQLM/xIGXqMXQSoClXrXeN2KuxigBhCvE8T/gYvQzmb60snlq/Sx/ZQK7ylYt1HfhroMN30qsd37YM168Ojvwj3XZWJqHCfwsZvg4nyWiqbknJB4x6In8UX8+R63/5eNLH3yZf0Tg2LBxTVY7vqOxlpj3KO8BYcC0MtJf/I2jBpE9LdUKGgRzR0K9mSHAveVPhK7JRQIUZ6qzFBCaakKQwk5lcawQq5tm1ssx3TFEFg8Fc7TX5Rj20z4Z7kwVk/iGubFsOFn6Hx2sR5j0+Gt9Jl6FRlmD0ubz8X0Yy3MDb04/9YR9e+74bqRFR8KTmKaBpHVVkJfODDWi+Mams+EwJREMsF2726aVmuIpmnp8Ab6EMJbF4xg949rAcgcdAH3nDcFR3W9RoExo4DAFArDkm/hkgsBiP5qIfCpE3OrKM7LAqjUW5T0ngg19fLH8V1m/LMkFAhRGk655Yoif6XRc2Bwa7hH+zC4kvh/60b81XegS4f0/ebGcdyjU4WQpmSQaJGqQTDzc9h/qEiP0aJGE5aMnkxmzEuvzQOJDtxJbJ8L72NrSQwaJaGgqI56833OlQJbpwjuMV6SR434JnlIHMr/199oMNK0WkPC8QiXfXhDriJI374wIR0KGvceywOdP8TVyIjnKm/BoQBg6sdw1W2wex/R9XoosLTJEwp2p4oX1coTCprKnAIhypMEg1NAqYQDh4ZrlA9DzQS+w5cS22nRS+2u1seZTXUTuK9KDTtM9hDfHIY7H4NJHxX5MbLCgT8aYIGaj+caL9gteN/P4OX/vM7P+9ZXjlDQaxi8Pqli21CQ92dCqwsgGMr3blP9BO6rvWDW8E3xEN9bcElls8FEbXuNdIXEAxs2sfSJlzBbXPQZ/CKDL3wBW8cormH+3Htp5GfclbDiEyJHGhKY69QLaV2SJxTMcGOsncA93Ed8Z45QkGNCYlFJKBDixMlQQh5VbSghp9IYVtCi4J/lJr7LhOuHhzFrv8O0V9L3JwMK/4duEkcMuHptx9zRXexNkXwRP26rC4ADRw7z85s7OIc+BGzf0OBvbdIvJhXmX69Cl45FmmBZ7g4c0sPaRRcUelgylPo+HTLgvtKHqX7+Ew+yViu8v2YWT81sSK1AY/oNeRmbpxYZlySxnV3IfAKAZSv0+Ri9uxFZZyH4mRNLu6i+jDErFOTZKCm+M7V0sVkM5+USCoQoLafccsXSUpWDAZRSOIinCh1tNuO8+AiWPJv0aRHwf+wmvsOE8zI/lr1f6UsZxwwp1uP8Z+VE7lv6LAYUG6zv4QpfiKlxHOdlBY+Pi6LTIuD/yE18vwn3CF/+5YrRw8H4R//CkF8GcnbXG9ixezmt7muG9bQibExw7Z1wNJPIE+8TnO/E0j6C4+JgOivGd6ZCQV19T4TY9tSERAkFQpQ6mWMg8lUawwrKBM7BfsytogTmVSeyNABX3wZen36/FVzDfJhbRgl87CIyzwsz5ugz4IrIHw3w3trZhOMRajlqYB53ur6Wfa8B33uFd4GXuSOZ8E1xqm6Xk1nz4NEXivw8Kyv63hd14/imu4n9kf8LfXKnlbtqv03LzmNYsuQBqo8MFC0UALz9byL3v0VwvgtrhwJCwWk5QoH0FAhR4SQYnIJKJRwYwXlpAEu7CMHvGxLWOsHhzNz3XxbAek6EYPVRhO56D42iDSlkTTTceGQL0wa/SFyL02fq1WTu/QrPi+ejkn58kz1E1pz4Towl8vkSfTdAf6BiHr8gu/bCps3FGrpRFj0cmJvE8H/kJjDPQWyrifheI6HlNjLf9uCf5uGX4K+8edZLDJp5C8s8OwrflVHT4MFn4JeNRNY6CS6ribVTGHv/7FAQ25EjFAzLEQrOkFAgREWrMgWORPGURhEkZUB/B2iBEHfBviC2epl6SWSjUS+EdGEQ5UwSXuZC27sf+6S/oCY+CzWr53vN/FYfdKzblj5Tr+LuvR8x8ZahuEceJfiDleA8F/E9YRx9g8WesV4iA/vAmgVgt5XjgxbB3/6kfxSTMoNziJ/Iz1bCy+xE16S+LrPGthobuS/5KG3Oqc/z/e5HKcUX25Yzce1MoIAiSJk+WPAV4SZXEDrszK6OmSMU+D9Mbak8zEdsa/5FjopKQoEQpUvmGORR1ecY5FUqcw40CH9jJ/ytHdu26dhs36GeeyjXMZE1FoLznJj3fYPz1uqoJvWOuU5hSxI3H91OLXt1PFa3fkMiQeQXO8GFToy1EzgHF7KG/lSwaYteKdJ2vOUBhdMSkPQZ0PwG/vfdS7w6+wX6jR3LC/0eTNczKEr55PAKM6Ev3Vg7h7D3DmWHgu2p3RPr67snpkNBixjOyyQUCFGWZI6BKJJSGVZQYO8Rwt47SLjxSEId7jhmmNvaPopzqJ9Yg+74l7dE80ZzjYUfr05Bs2qN8FjdbDq8lZueHkb8zD5Y3X/gvsqLFlL43vUQ21KO3QbPvwlTZpff4x3PmFvhpvtLfBllBGO1JP/b8w6r7nuBER9Ctwl7COfYajpnhcSrPx3PxxsX6nds2QGDrye8KK6Hgq55QsG2gkJBVEKBEJWIDCWIUhlWALB1CaMsGsEFjdDmRXBkfI06P/sF3tIihhrhIzDThe9fPlwZczHce22xixcttuzmw4YR+iR81D0tgftaL4G5TvwfuLH1CGHrVsDmPaVp3W96Nb/KYsrLkCig1nExvbZqMu8/8RgXp3YY2b/uN0x5eiKywkFDTz261u+g3+j1Ea4ziNCqOti6hbD1yCcUnB7HNTRvKAhIKBCiEpGhhDxOtaGEnEpjWAEg8ouF4FwH5nWf4Ly/Iap101z3Jw4Y8U00omxGDCOPcsmCscWqaJhVPtltcfHF6EnUc9XRhzO+tRH+xo65WQzHpQEMdvnZLq7XVk3moSmP8Lf/GVHRBCjFuEVTaVTYrpnJJHt9+9m9LE7TDe2xnR/C1j1HKNhqwj/TjamhvlVybIuZwCdZeyQEil2XQkKBECdGhhJEsZXGsAKAtW0U5+AAsXaXE/ilHVqe5fHG2gncN8ZJ2kwcfM9GnY2qWBUNsyokNtp8hF3d+pE8clQfzugexjXcT3y3Cd+7HuJ7ynhJYyJRau/ST5g/ABddBSvXlPhSr62azC3zHuGmxXX0UAB0/dvYwkMBwMPPEb3nK5puaM+mlqux9yggFAzNEQpaSigQorKSYCByKa1wYGkVwzU8QGybGf9/Q2hfrsp1f8ju4yrLaCJHtzDB8hHn+toX6/otajTh9ateoUm9MzD4g+nbzc1ieP7kRTn1kr+R1dbilE8ous3boXaHiq9ncOgouBwFrvIoqtdWTebmBY9wz85zMW3YD0CN5o3p+9j4Qs/TNAidcS3uM/7C3Noz6fZb//RSxtiWVCholAoFf+QIBZdJKBCispJgII5RWuHA3DSGa3gm8WB1fF+fQTKsv43MmlPw9aEV+IfvxFQzgH9ObaIbileXoOlZnam1YCbJ00/jka9eZK//AAAGj75dtPXsCMGFToJznGjHqdxbbA3rwUO3Q+PTS/nCxdS4Acx8E5o2POFLZIWCO2sNxv3+z/qNSnH5G09jdtgLPE/bc4DwV3bC+9tgvyDI6LE90xMSFy79Ef9MN+ZGqeGDrFDQSkKBEJWdBAORr1ILB42SuMcESLob4Z/mxnc490TDczv0wHWjGUvrKIFPnYS/L/582AM/r6L77f9j8Fuj0+FAGcHRL4hzkJ/o7xa872WQOFCKQwtmM9z5Z/2FuaJs2wXf/lisipJ5ZYWC28++hhav/0oiGgPgvNvG0bhH5wLP0w4dJXTHl4S/s2PvE8TWNZyekPh0k4fpuLKPvlVyzlDQOorzUgkFQlR2EgxSlFK3KKXWA99XdFsqi9IKB6YmRtyjfSQOx4m+kkGNP4y55hQoIzjabMC6/DVCSz2EltmL9VpXt1YDetrPwHrYR5+pV6fDAYClTRTPtZkoo4Z3kl4tsdSGFn7fCh99VkoXOwHvz4Thf4HoiXWHpEPBuX9i8A8Z7F/3GwB1zmpV6BCCpkHo53pEzrkRe9cD2Dpnr85IbrHx5523YmuWxHG5j00/7ifwiQuLhAIhThqyKiGPU3lVQkFKY7WCPxrgqVee5e7Iv0nak9QYG8ZYLU9Boo2bCR89k9BSB5Z2kVw78B2XprHpyLb0aoWvr55GTXv2uLsWg+BiB9E1NixtIzj6B1Alraj834n63gT7VoGxAvZuSCZhy3Zo3qTYp+YMBS/0fYDgwcPMueVBNs1byg3fzqbuWa3yPU+LJwhNCxPZ3RB7vwC2TpH0fdHfU0sQU1slf710Pa1Xnsf+Bts5c0w1CQVCVDBZlSBKTUl7DrLmFLyizWTz0BVYHGZ8k5wktuepA9CyGbYuYRwNfyC61kxglgstVsQHUYoWYTvrv2vPFbW7Us2aO9QpMzgHBHFc6ie6sZSGFsZdCTu/r7hQYDCUSihQSuGsXZMrp7/Kjd99XHAoSELwtYNEdjXAce6uY0NB1gZIg/3ENlo4a1V3fqq2kg67zmPar4XsrZAPCQVCVBwJBqJITjQc5C1e1LlVW9yjjqL2bsf3vpv4vmNfVK0LX8O15Vli2834prtJhopYrSiZxLNuC081vhKjwcjXO1ayx78/97Xb5hhaeK+EqxacjhKXID5hI2+Gx14s9mn5hYIsSinqnNky3/O0JAQ/cxINt8bRcj3WC7MnJUY35d4AKbbRQmCOE0ubKH2ub85VbS/n6k/HF77xUg4SCoSoWDKUkIcMJRSuOMMKhVU0TC5bg39jF5IBG67hfkwNchQ7iETAZCK+34L/QzfKoeEe4cPgKcJeCKl30vFknDPfHIDRYEwXQcpJi0FoqYPIahvmllEcAwIYbCfwu3DX49DkdLjtuuKfWxKvvQcN6sHl/Yt+Sp5QsG3ZCmq3aYGzTs1Cz9MSEJgYJXa4Ds5BQSyts+c0RDfl3gApHQrOjOIYqA8FZe2tcCB0mDnD38wVRvKSUCBE2ZGhBFEmitpzcLwyx4Ze7XFfE8ZYM4Zvso3Y1hw9B1YrGI2YDqzDvexmiGp43/cUrevfYIAjmZjufZrP+7+AL+rnwqnXHNNzoMzg6B/EOcRHfJsJ7zse4jtPoEK4ywn2gpf0lZmbri1RKPDu2MO0K2/itXMvYePnSwo8T4tDYLaL2IGaOH99Jnco2JijrHEBoQCyyyd/NPQVlFL4Iv58H0tCgRCVgwQDUWzHCwdF3ftAWcFVYx6mzd/g/9BN9Hdz7gNsVozBXbgHbMPgSOKb4ia2owgv3oEgfLKQ5rtCLBk9ucBwAGBpGcMzzovBk8Q31U3oKztacYoZPj4ebhhdjBNKKJnUN3Dac+zXUpC8oQBNY/YN9xLJ9BHYf4h10/Lv4tdi4J/pJrbNjGuIF8tzo9L3RX/LXcEw9lsqFLTNHQqyGA1GbCYrW47u4Iw3+h4zrCChQIjKQ4KBOCEFhYPiboikLumJ69GGmM+IE5jtyl3kqGUzmPsuhqbVcQ89gLFuAv8MN9HfzAVfEOD0evDLIujZJV0+2WV24C3gnarBk8Q92oete4jwdzZ8UzwkjhTxV0PTYNfe8ttQaeNm+Md/YdvOIh2e35yC5f95m61ffgeA5/R6XPLSo8ecp0XA/4GL+OYkrh5bMLdWUE0fWssVCi4LEPvVQmBuKhQMKHwlSSNPfQY2uyDXnAMJBUJULrK7ojhheXdlfCcZ4X/hacXaEAlAnVYD5yAfwac2E/j0XLSownp29ox3QmFUv+G4rrmSQIubCHzsItkvmGtW/DHMZghH4Ln/0eLma/l+7EyUUvijAQKxEHWdtXK3wQD288OYm8QIzHHhnZiBo28AS7to4Ts1/rENzuoHcyZCvx5F+npLpPUZsG05FFKRMEt+oWDf2l/54uHn9AOUYsiEZ7BVyz2XJhlW+D90kdhvwL3gBkxdhwHdAIj+aibwqV6XwHFpgOgGC8HPnFjOihZpeWnWsALA1Z+OJxKJ8t59syQUCFGJSDAQJZIzHIx98x5sfa18cdUkzmvQsVjXUQZweKehMqwE57dHi4Ht3NQLv90GVw9F9TsPZ5sAIVeS0CInmt+ArWeo4BfuQ0fgjfeh01mogX0AuOHzB/hp/waWjH6f01y1j/166ifwjM0k+IWT4DwXsU36C57BVcDExKYNYcZr0OmsYn29JyQUBqNBXw1xHPmFgng4wsw/3ZWubtjtjutp2rtbrvOSIYV/hptkpgH3aB+mW/+phywguiF7tYHjkjyhYECgyFtdZ4WDeCLODXPux7LWyrzP50koEKKSkKEEUWLpYYUGI4m8EmXnir3Fv4hSqGcfwH7b6di6hgh94ST0jS17KeHt18OZLVGJOI7Gv2LvHST8nZ3gZ86C5wQ0OA02LIFUKAB4vOcd+KL+Yyok5mqKFZwDAziH+ojvMeF9J6Pg4QujUZ8EWKNa8b/m4powFdr00VdtFKKgJYmLH36W/b9sBKBuu9Zc+Oiduc5LBhT+aW6ShxK4lo/H5MrMDgXrc0wsLEEoyBIJR9n16j7M71qYN1tCgRCViQQDUSpMJhOT3p3EqL6jSlQ+WSmwhz7Htuxpwt84CC3NUx754efg4quxtc/U90HYYMH/kRutoNdKp0PfGvm19+BIZnrOwfHCAYClRQzPdZmYGsYJfOzG/4mTZDCfV8AVq+GFCSf09RbLxRfAo+P1VRsFKCgUbP7iW777zzsAGK0Wrpj4PKYc10n6FL6pHpJBA+42KzCZD+s9NaRCwdzs1QbRDRaCc51YzoqcUCjImlPww8p1zJ8yX0KBEJWMBANRakprbwV6dcU+0Iq9r5/ID3aC8x1oWSUMbr8eJjwDNiuWNlFcI3zEdxv1FzV/Aa9Q+w/B4y/BgmUAucLBJ78vLrQpBoeGc7Afx6V+4lvNeN/OIPprnt6Dn9fD29P1FQNlqWUzuOaKAu8uKBRE/QFm33BP+rh+T95DnbbZhYwSmQZ8Uz1oUQ336EyMA8+C914Ak4nILzkmFg4MEF2fCgXtIzgGBE84FMicAiEqLylwlIcUOCq50thbIUvk030EN7TO3pkvq5SBpsHMz2HwRSSOWPF94EYZNFwjfBhr5vMCffjoMd39R8Neqtn073EkHsFqKryKYdKvCC50Ettk0Ysi9Q1gcGt6W4r7CllcL0zQ5zMMuTjfuwuraAiwdtonzL39Eep3asc1cyeiDPp7gsQRA/7pblDg+vzPGFvWgGceACDyS+7hgmjW5+0jOC6WUCDEyUYKHIkKU2o9B8kk1qduwLnjFb14Ts69E379HcbeBfOWYqydwHO1Fywavsme/Gsd1Kimv4DPmANHMgHSoeC9tbPo+M7l+dY5yMng0nAO8eMc5Ce+04T37QwiP1nRKONQoGnw/WpYvynfu48XCgDajbqcm36Yy5AJz2SHgkMGfFM8YAT3GC/GET3gsn4ARNblHi6IrkuFgrMlFAhR1UmPQR7SY1B6SqXnYOceqJ5BbH8G/lkuTPXiuK7woazo2x6f0SR9aDKsCMx2Ed9lwnlJAEubPNsRHzikLy188t5cRYk2Hd6a3pUxv/LJ+UmGFKGlDqJrrRgbxHAsuB9TIzM8cXfxv8aiyqdnoiihID/x/Ub8M9woRxJ31w0Y2jZI3xdZayH4eXbPQHStheA8J5YOERz9JRQIcbKSHgNR4Uql5+D0euB0YDZtw735X8T3GfFN9+gbK2WFgpmfw9zFGGz6UIKlVZTApy7C39tyT1ysXRN+/OyYSoU55xwUVCExL4NdwzkwgGuUFy1kwNf2XwQbjS14EmRJrN9Y7FCQTCTY/MW3+V4uvseIf5obgyuJ+6wfMHS5EBZ9DUBkTSoUpHoGomusBOe5sHaUUCDEqUKCgShTpTassO8gpuWzcV/wB8lMA76pbn2yoabBh3Nhjj6JUBnBcWkA23khQksdhBblmLgIetAAWPxNekgBcoeDOxc/VeRmmRvF8YzLxN4rTMTXkswJ1Yj8YjnxHRvz2rAJOl2SnjiZ5Xg9BctfeptJl1zLxzf8HxGvL317fJcJ33Q3hupJXKN8GDq3hLefhT7diPyshwBLhwiOi4JEf7YSnO/E2imMvZ+EAiFOFTKUkIcMJZSNUhlWSO2cmNgTxzerJsoErit9GO0hsFiOeUcd+dlKcIEDc1N9O2CVVW050wetLoB7/grjb8x1zh9HtlHdlkENe7XitS0cIfHVr4QyuxDb7MRYP47jwgCm+sXZeCEfiQQs/hp6d9O/Ro4fCvb+vJ43ewwjGYuBUoxbNJVG3c8ltt2E/yM3prpxXH22o7ZtgfP06pSRrBDQUQ8B0Z+sBBc6sZ4Txn6hhAIhqgIZShCVSqn0HBgMoGkYb7wB99Z/AOj7Gvjseij4/ie47E/gDwBgPTuCa7if2E4zvikekr7Uq1uGG5Z9CHfdcMxDNK/emBr2amzP3M2lH/y50DoHuezZj3HQMFyu+bhGeSEGvvcz8H/iJJFZgl8zoxEuuqDIoSAejjBz3Hg9FADn33WDHgq2mPF/6MZUP45rhA/10utw1W0QiRD5KXcoiKyWUCDEqUyCgSg3pRIOlIIRl2G87FzcY7wY7El8Uz3E9xj1/QPMZohkTzo0N43hHuMlGTTgfd9DfH9qvWPLZvq1Vq/TlzLmEU1G+Xn/huMWQUprcjqs+gz6dsfcKI57rBfHAD/xHWa8EzIILnbkXxypMJ8shGvvhKj+9RRlouGih/7NgdTqhdPObkOfh28nusmMf6YLc6MYrmE+lBl9V8jP3iWy3kNwQfZwQWSVldAiJ9ZzQxIKhDhFSTAQ5apUwsG1w6BXVwzOJK7mX2GonsQ3zUPM3RZmvQk1q+fa7dBUJ4HnmkwM9tRyxj9SBYqCIRg0DlIVAXM6o3rRKyQCesg4s2W6hLAygLV9lIwbjmLrFiKy1krm/6rpZZ6LOkExkQCTESyWIoWCPxZ9zYqXJwJ6dcOh7zxHcouLwMcuzM1jOIf6UZM/hE1bwGIhHDwzu2egb5DIj1ZCi51YO4ew9ylkD4oCSCgQomqQOQZ5yByD8lEqcw4+WQgjb0b7fh7+DR2I7zDhvNyPpc5h6DlMHyr404j04VoUAnNcxP4wY++b2p3x5/VwZov0C3peWUsZa9qq8+O42ZgMhew7Nm8pfL4EXnrsmLuSQUX4OxuR1TaURcPWJYy1U1h/934cRQkFocNHee3cS/Ht3gfAgOceokPvG/TaA6mdEFUsAt2GwNABhC+9V+8ZSA0XRFZaCS1xYu0Swn6BhAIhqqKizjGQ3RVTlFK3ALcgvSjlIu+WzdOg+OFgUD9YNBXVrjmuNj4Cc10EZrvQBoD1qiHQo3Ouw5UFnEP8qdUKTpKHjNj7nqlvFbx5O1TzHFMdMWu1wm+HNxceCgC8ftiyIz1JMieDQ8NxYQhb5zChb+2EvrITXmnD1jWE9ezIsQFhxWo4vR6v7Vt83FCgaRpzbn0oHQqa9e1O+y436AWK2uXYDtlqhaUzCG+smT1c0CdEZKWN0BIHtq4hbL0kFAhxqpMegzykx6B8lVr55Cmz0U6vTzDYm+gaG/YLA/q2zZGIvldCw/q5Do/8ZCW4yIGpURzngMMYOvaGYZekywHnR9M0/vXdG4xtd0WRiiAVJnHUQHi5neg6C8qpYesWwto+kl3yuesgfjvNTOtua45bvGjN1I+ZNW48APYa1bnxte/RfquZ/e7/0GG4+0l45gHC2+sT+iI1XNA7ROQHG6GlDmznhQrfwroAEgqEOHnIqgRxUiiVOQfJJLw/C/XJAhwXB7Fmbdv8lR3tjsdg8PX6eH0O1g4RXCN8JPYa8c2oReLNCfDQ7YU+zP7gIf67alLhRZA0Ldf8hoIYqyVxDgzg+XMm5sYxQgsdeCdkEF2v10B4699D6Hvm8UMBQNMLzqN5vx6YzHaueWAJ2sYaOPoHcPROvdDv2gvrfiP8k1MPBV1SoeD7VCjoJqFACJFNegzykB6DilHinoNQGGxWfRKgphH+wU5oqQNLs4M46v+EOr9TvqclDhvwz3SjBRTOwX7Mrv36dsNOR77HH7d8cqeBMLAPPHVvsZqfOGgktMxO7HcLBz17GXF0NL3P7VjkMscJv8bhiQpTrDrOQX4sZ6Q2lUhVTAx/byG01IW1awh7rxCRFTZCyxzYzg9h6y6hQIhTgfQYiJNKiXsO7DY9FKxYDd2HYmu0A8dAP9EtNQkc6IkW0+DjBeQtSWiskcRzjRdjgzj+D9yEb/gI7Z+vFPgwecsnHwgeyn3AA7fC0AHFaztgrJXAdYWfJe1mkLH5EIvVYv5hfgqSRQgFhw34p1TDrKrhHuXNDgVvT4drbif8nZnQUhe28/RQEP4uFQq6B7H3kFAghMhNJh+KSqNUJiTWrQ1nNAW7DWu7KMqmEfjEhf9tDde9/4eaXytd7S+Lsmq4rvATWmYnpP0fiWZeHLF4gSsGssLBCz+8TTVrnl6lYZcUr705vLZqMg8uf4RZm9vSuedUwj80IL7DhGuoH4Mzd6Dx7z2AyW7D5K+Of6YLZddwX+3FmJGj/nONaoTPGE1omVsfLugRIrzcRvjrVCjofvwhj7wkFAhR9clQQh4ylFDxSm1C4r6D4HERO+DCP9OF0R7EdU0Mg6Pgn/noeguBeU6M1WO4Bnsx1Dh+p9oPe9bQ0F2P01y19R0c5yyG4ZeA21Xkpua3JDG+24h/lhtl1nCN9KVf9DVNY/Jl11HPcSEdu9yKuUEC5xV+DLbU1xUKg91GeIWN0JeO7FDwrY3wNw5sPYLYz5dQIMSpRoYSxEmrVCYkJhJw6VgY/4ReiXC0j2TcgW+yh8TEhbBqXb6nWc6M4h5+AG3LQbwTHMS2Ft6plkgmGDvnnuwiSHv2w80PwMYtRW5qVih44IyRvLD/LFSqcqOpfgL31frvrn+qm8Qh/df1lze/4JzmD9PhnL+xdtUEbJcfzA4FkQhcOJLQv9fooeD8ENbuIcLf2PVQ0FNCgRCicBIMRKVU4nBgNMK/7od7b9KvVzeB+yovJDV82/sRn7264MduZMJ9+ucY6+jzDkLf2QrcLdFoMPLxsDeyKyQ2rg6H1sA57YrUzJw9BU/EuqBuul+vyJh1/Ywk7tFeMIN3YgZH/uuiwdERWG0ePpgwgPp/qo3ZZc2+oMVC6MqnCWu9sXUPYuseIvKNnfC3duy9gti7SSgQQhROhhLykKGEyqVUhhVCYfjoc7h6KMmAwj/DSSJTH7s3N44XeJqWhPBXVsIrnJib6dUDDfb8f19yrlZYMvp9fVjhOPKtaHjoiF7SOW9bYvoOiL+8t5BfvpzOtt+/oP3Vgxn8xtPZB+3YTWhHs/QcAtv5YcJf2wkvt2O/IIitq4QCIU5lMpQgqoRSGVaYsxhuexi27MDg1HCP8WOqn8A/w0n0wTnHrFTIooIB7PcNwFVrAfE9Jnzveojvyn9oIWtCosVgJvnim3DHo4U26ZhQkExNGswnFAAoM6xf8x5z/ncdW36bj/O0Glz8r/uzD/hmJaG/fqaHgh6pUPBVKhT0llAghCg6CQai0itxOBhxKfw8H5o2BEBZwTXMh8W+hYDnWsLfFbD8wOWEi3tjbm/BM9aLcifxTUkNLSSPPbxFjSasvu4T6tdrRjzDxf7AoWMPooCegmffgAtHFRhSvDv3MP///pH+fNCr/8BWLbtHK5ToTviCe7H1CGDrFia0zE74Ozv2PkFsXSQUCCGKToKBOCmUOBw0rK9XSHzgGVj0NcoIjltqYO0SIvSVh+Bie/6vyY/eCee2x+BJ4h7tw9Y1THiZHf90N0nvsb8+BmWA60dxQ5cDXDBlzDEVEgvcEKlzBxg2kIKKCnw+/gmivgAAHa4ZRouLLwBA8wcJzQ4R/s6JvVcQW7cIoS/tRFbY9bLQnSUUCCGKR4KBOGmUOBwkk7BhE2zZDuivwY7eIexnbyey0kJgskKL5XPegUMw5M+odRuw9wrhGuUjcdSA9x1PuoRxLprGQ2eMIu7z5SqfXOguiReeD7eMzbfZv366kF8/XgCAs05NLnrm/qyHIfzCJsIbG2A/34u1a5jQUjuR7+3Y+6b2iigmCQVCCAkG4qRSonBgMsGHb8ANY/TPI/oLp+08Dee2l4jty8A33U0ymOdde4Zb/zfTB4C5URzPOC+mZjECc1wEPnGRDOQ458Bhmp09gmW1/5qukPj08tcLDgWffQHfrCyw2cGDRzA77ABc/O8HsVfP0LdkWOIgbO2DvclGrN3jhJY4iPxgx94vgO0cCQVCiBMjqxLykFUJJ4cSr1aY/ik89TIsnZHeajm+x4j/Q1d6DoKxZj4TCfKIbrAQXKTvq+DoG8TcJopCg08XQdeObDL76fLuFRyNeAveEOnSsVCvLkx4psDHObp1Jz+9P5MLHrgVNEVwSoTo7nrY+wewdogQ+sJB5EebHgo6SSgQQhxLViWIKq3EwwpdOuh7GmT1BgCm2hHcc66Gw4fwTfYQ255nBcL+Q3DX4+D1pW+ytIniuS4TUyO998D/oYtEphEu7w91a7Fo6zccjXi57ZyxvND3AeLJfJZHzpkILz5SaHOrNTmd3g/eBklFYI6T6K46OLa/poeCxXoocPSXUCCEKDkJBuKkVaJw0LQhPHaXXgjp198hFgOTCePwHrgv3ISxbgL/DDeRNZbsc8IR+GQhrN+U61IGp4ZrcADnFT6Sh4x4384gNPUIyx66Jz188GK/B/not3l0fOdyvUJilmRSn+zgch63yVocArNdxDZacPbZj+WhfoQWOYissuG4KIC1o4QCIUTJyVBCHjKUcPIp0bCC1wet+8Ct4+Dvt6Rv1mJJgnPNRDdmYD03hL13CGUA4nF9rkIBtCiEv7MTWm4m4dvD7PZLuH74pRgMKv8iSBeOgv49cz02wMo3p3Jky3Z63XczVo8bLQr+WW7i2xWuAYcwnWUmtNBB5CcbjosDWM+WUCCEKJwMJYhTRol6DjxumPIy3DYu183q3idwPDUQex8/kR9t+D9ykQwrPRT4/PochXwoC0x0TaBz8jx+b5jJ8K3X4p+cQWyHKdeWzX2mXs1e334YeRl07ZjrGsGDh1n88LN8+/yb/Pfsiwnt8+Ob4Sa+24Br6mhMKz4iuMBB5CcrjgF+CQVCiFIlwUBUCSUKB727gdMBO/dAalkgN45B/eNebJ2juIb7SOw24ZvkIXHQoE8s/OvfYdfeYy6VtSRxUOdenHdjPVwjvZAE/1QPvg9dNI03T4eDmxc+Cn+5Wl+qmMMXj71I+EgmAK36XUzs8/okDxtxj/Jj+uQxgqdfR/RnK46BAazto8V+riQUCCEKI8FAVBklnpD4+vtw/7/0ZYxtWkD/XgCYQ+txX+sFo4Z3UgbRTsNh3SJocFqu03PVKeh9H6rHFZhXzMZ9rRfnID/Jw0Z8Ez3UX96WZZfP4G1fd9i4Odc19v68nlVvTQOg+mnN6X7OMyT9CnfyPYw1QgTXNiO6xorjkgDWdhIKhBClT4JBilLqFqXUeuD7im6LOHElCgeP3glLZoA1x26FH30GXS7HeHgznqu9mJtFCXziIbixKVo4Bn9sA/IpXmQyQc8uUL8uSqVWL1yfiaN/kNgWM9U/OAvb7AiZs+Yy9KOb2OPfj6ZpfH7XE2jJJNVrtWTkzQsxYMLdejmGJx4i+AFE11pxXBrAepaEAiFE2ZDJh3nI5MOqoUQTEn1+uOsJPSjUqQkLlsGlfQG92mBkpZXQlw6Mwc24Pr+dN17uz82LHiu4TkEeWgRC39iJ/GgjVstHf/+lRG1hJriuY9G4B2ja6mIuHvEmtnpW3CMCKFeS4Mcmor+79Z6CthIKhBDFV9TJhxIM8pBgUHWccDjYsx8uvw5eeAR6dM6+feUaOKcdKEV8lwn/TCvRSILr4n/hjHNrHxsKjmTCvgPQ+oz827fLhH+2i7ghxiXRgfR+fhN92txC1973Es3YQ93LQzDzU4JNbyK6wYrz0gCWMyUUCCFOTFGDQcHrroQ4yWUNKwCMuuYOpkHRwkG9OrDiEzAYsnc7/GMb9BoOk16EYZdgahDnoy7TMC+txyTDJCzREERDkGMUguff1FcvbPzy2MfoMxLT1UNxXz0G/zQ3cyJziFxzFIezDr9ufp/zXr8UJs8n+FMzomErzssCWNpIKBBClD0JBqJKO+FwkBUKbn8EqlfTiyF99i706gqk5hQseYS72l/DldN/J8QtxLdn4BgQwNwkVd3w+lFw5WXHXjuZ1FdCNGuMMSOJdcge1ty5kHg4ytrv32HYrH+iUASrXUW0tUVCgRCiXEkwEFXeCYcDpaB5Y73WAegv5sCM6c9x92+vcfv5f+LZvg+gVv8Xc7uvCWb2xD/Dg+WsCPbeQQxNTs//ugYDPHJH9qcu0Nrv4vsXJ9Csb3fqOZ38/q/fqGk6D9cgP5bW+W35WDgJBUKIEyVzDPKQOQZVV4k3XvL6mPDzDIZf9k++ubIjl/xvRq45BZoG0TVWQkvtoMDe+SiWhf9BXXlJ7nkGy1fpSx0b1c91+fBRL7FghOS7ERK04WHnAzx43fV6hcRikFAghMiPVD4UIo8SLWWc+jGBM3vxwPx/MvHJS7jk5Um5Jxr+sRV1/9NY24Xw/DkTc4sYwa9q4A2MIbY2Tq78/de/w7OvH/MQVqcHvm1K0twOf4+NzDZ+qldIzLm3wnFIKBBClJQEA3FKOdFwMLH2Xh7p6GNMr7Hc/reXUDYbbNkBBw/rBxw4DB/Mha07MTg1nAMDuK/JxHB2U/xbzsc/3U18j1E/dukMuC/33gjJsML3rpn4VgOu4T4a9ayXq3zy/sCh47ZRQoEQojRIMBCnnOKGg9dWTWbcyn8Tv/1PPN//QdTvWyEahQHXwBMv6Qed1wl+XQLNGmU/Tr0ErtE+fdfFoMI3KYPAXCdJSzWoX5eVb05l0YPP4P3jEP6pbpIHDbjnXo/59DBAem+F8+p3wGN1FdpGCQVCiNIicwzykDkGp46izDk4pqLhnv3Qti88/zC0bQmtm2dPTgS9ByEW15c8AtzyIBgMaC89TnStldB8BVoS+8gIr/btiSVek0vHvE9Gg/p4RgYwJvbBafnPKViz/1dqO2pQz1Un1+0SCoQQRSF1DIQ4juOtVjgmFCgF9evqtQz69QRbqmjB4aP6zMMa1aDHMLioJ/zncf2+Lh3AYEAZwHp2BPP8SQQSg/B/0JBOHcdzZserCEZ24+m0CmPtFkD+oSCpJbnm07uJJmN8MXpSOhxIKBBClDbpMchDegxOPfn1HOQbCvLasgNMRhg0Ds4/F159Cr5ZCa2aQa0aBT5eMqqx5s6V1K7ZkV9/nkGLmj/TaNFS2LgsO2zkY9PhrfSZehVui4svRk8iw+CWUCCEKDIpiXyCJBicmnKGg3EvD2PC/hmFhwJNg66X68sQr7sSWjXPHj7I6ahXr5p4TjvwByCZZPva33in7ygATj+vI9cvnAK//gHtWh+3nVnhwGVyUHNOdX7+9jcJBUKIIpGhBCGKIWtYQUNjwpdTuaRb78I3RFIK3nlOH1qonqHfFono/85eAHO/gPdegM+XwLjxcHgtzJwHf/07q3JUQ+w84jIwm4sUCkCfkPjZ0Lfo9toItm3ew4LPF0goEEKUKlmVIESKyWTivXffY5RxFPPGL+OjWfMKP6FtSz0UHDoCK1ZDl8vhxbfAbgO7FWIx6N8TvvsYLGbo043w/57ml48XAGBz2GnzwDOwa2+R2xgMhrhj3JPwmmLBOxIKhBClT3oMhMjBZDIx6d1JGDAUvXzy3U/Cmg1wx/XQrZM+vHB5f/2+WjWy5xs0rM8af4B4SF+O2H7MEMzdz9WrIBZBzomG8z6fJ6FACFEmJBgIkUex91b4x//pGyPlfIEPheHrH6BrB3juTRg1COZ9yc+TPkof0ukvVxV5CEFWHwghyosEAyHyUaxwkDXpMBiCeUvhv+/CtVfAX++Hb2fB5FnQ4UyC/3qV/cEQAKfZbdTdtbdIwUBCgRCiPFW5YKCUuhR4GGgPBIBlmqZdUbGtEiejYvccPP0qvDMdOneAtq3g5/n6aoXfvwLAMeRi7vH62DhzHqYP5+aqklgQCQVCiPJWpZYrKqWGAW8C9wNfAApop2nah8W4hixXFLkUeVfGI5l65cMWTUvlcSUUCCFK0ym3XFEpZQJeAu7RNO2tHHf9VkFNElVEkXsOqmfoH4kELP4WVv4My1aA0aAXLlIK7roRduyGKy/TPy+AhAIhREWpMsEA6AQ0AJJKqdXAacBPwN2apv1S0ElKKSuQs9ycu6BjxamrWMMKdz4GH30OGW5ocwa0aQEGBUYTfPYFLF2uB4MCSCgQQlSkqhQMmqX+fRS4C9gKjAe+VEq11DTtcAHn/R14pMxbJ056RQ4HN18LIy7Tly6a9F+xxQ8/h3fbTpr360GbO67HXEBvgYQCIURFq/TBQCn1KMd/4e5MdrGmpzRN+yh17jhgJzACeKOAc/8JPJ/jc3fqHCGOUaRw0PoMyFpscPAwbNzMhimzObRzD+s+mEubfavyvbaEAiFEZVDpgwHwX2DacY7ZSvYQwPqsGzVNiyilNgMFTv/WNC0CRLI+L7AErhApRQoHiQRcOAq+/4mwgkNJfZLvaTUyMDvsx1xTQoEQorKo9MFA07SDwMHjHaeU+hH9Bb4V8HXqNjPQBNhWhk0Up6DjhgOjES7qBc0bs7taBryqH1u/2znHXEtCgRCiMqn0waCoNE3zKqVeBx5TSu1ADwP3pO7+oOJaJqqq44aDB24FYN9L2Ytk6g/sk+saEgqEEJVNlQkGKfcAcWASYAdWABdqmnakQlslqqzjhoNvfuDw4y+lP63Vqln6/xIKhBCVUZUKBpqmxYC7Ux9ClItCw8GirzkcCKaPrdG8MSChQAhReVWpYCBERSkwHPzfTRyZ/ils3o7F7cRRq4aEAiFEpSbBQIhSUlA4CB7SR7JcdWoRCoUlFAghKjUJBkKUorzhYGoiQSTTB4DV6ZBQIISo9CQYCFHKcoaDa8bexYd2G/FQmE+Pevn+j+0SCoQQlZoEAyHKQM5wMGT6dM5q34bfJRQIIU4CEgyEKCNZ4cBoNLJw4UIJBUKIk4LSNK2i21CpKKU8QGZmZiYej6eimyOEEEKUCq/XS0ZGBkCGpmnego4zFHSHEEIIIU49EgyEEEIIkSbBQAghhBBpEgyEEEIIkSbBQAghhBBpEgyEEEIIkSbBQAghhBBpEgyEEEIIkSbBIEUpdYtSaj3wfUW3RQghhKgoUvkwj6zKhzt27JDKh0IIIaoMr9dLw4YN4TiVDyUY5KGUagDsrOh2CCGEEGXkdE3TdhV0pwSDPJRSCqgP+Erxsm70sHF6KV8X9KGPLqV8zbK+dlldV57n8rnuyfg8n2zfv7J8jkGe5yyn4vPsBnZrhbz4y+6KeaSerAKT1InQswYAvsK6b07w2snSvmZZX7sMr5v1X3mey/a6Wf89aZ7nk+37V5bPcer68jxzyj7Pxz1PJh+e/F45Ca9dlm0uK/I8l4+T8bmQ57nsr1vW1y4rJ+PzLEMJ5SFrQiPHmfAhSkae5/Ihz3PZk+e4fMjznD/pMSgfEeCx1L+i7MjzXD7keS578hyXD3me8yE9BkIIIYRIkx4DIYQQQqRJMBBCCCFEmgQDIYQQQqRJMBBCCCFEmgSDCqCUulQptUIpFVJKHVRKzazoNlVVSimrUuonpZSmlOpQ0e2pSpRSTZRSbymltqR+lv9QSj2mlLJUdNtOdkqpm1PPa1gp9aNSqmdFt6kqUUr9XSn1g1LKp5Tar5SarZRqVdHtqiwkGJQzpdQwYBLwDnA20B2YUqGNqtqeAXZXdCOqqNbof0P+ArQF7gT+CvyjIht1slNKjQReBJ4COgJfAZ8rpRpVZLuqmAvQiwSdB/RHrwK8QCnlrNBWVRKyXLEcKaVMwFbgEU3T3qrg5lR5SqmBwPPAMOAXoKOmaT9VaKOqOKXUPcBNmqY1q+i2nKyUUiuAVZqm3ZTjtg3AbE3T/l5xLau6lFK1gf3ABZqmLavo9lQ06TEoX52ABkBSKbVaKbVHKfW5UqptRTesqlFK1QXeBK4BghXcnFNJBnC4ohtxskoNw5wDLMhz1wLg/PJv0SkjI/Wv/OwiwaC8Zb2LehR4ErgMOAJ8qZSqUVGNqmpSO2ROBF7XNG1lBTfnlKGUag7cCrxe0W05idUCjMC+PLfvA04r/+ZUfam/F88DX2uatq6i21MZSDAoBUqpR1OT2wr7OJfs5/spTdM+0jTtR2AcoAEjKuwLOEkU43m+FfAA/6zgJp+UivE85zynPjAP+EDTtAkV0/IqJe8Yr8rnNlE6/gu0B0ZXdEMqC9l2uXT8F5h2nGO2ou+DDbA+60ZN0yJKqc2ATCw6vqI+zw+iTyqK5NhWFWClUmqypmljy6Z5VUZRn2cgHQqWAMuBG8uuWaeEg0CCY3sH6nBsL4IoIaXUy8DlQC9N03ZWdHsqCwkGpUDTtIPov9CFUkr9iL5ZRyvg69RtZqAJsK0Mm1glFON5vg09HGSpD8wHRgIryqZ1VUdRn2cApVQD9FDwIzBO07RkWbatqtM0LZr6O9EfmJXjrv7AxxXTqqonNXzwMjAU6K1p2pYKblKlIsGgHGma5lVKvQ48ppTagR4G7knd/UHFtaxq0TRte87PlVL+1H//kHcFpSfVU7AU2A7cDdTO6qHRNG1vxbXspPc8MEkptZLsXphGyNyN0vQKMAYYDPiUUlk9NJmapoUqrlmVgwSD8ncPEEevZWBHfwd7oaZpRyq0VUIU30XAGamPvIFLHXu4KApN06YrpWoCDwP1gHXAJZqmSa9i6claCro0z+3j0Ccun9KkjoEQQggh0mRVghBCCCHSJBgIIYQQIk2CgRBCCCHSJBgIIYQQIk2CgRBCCCHSJBgIIYQQIk2CgRBCCCHSJBgIIYQQIk2CgRBCCCHSJBgIIYQQIk2CgRBCCCHSJBgIIcqFUupKpdRGpVRcKaWlPjKVUvfkOGa4UiqQ4/4jSqk5FdluIU41somSEKJcKaX6AwuACFBf07TDee7/K/AAcBvwiaZpifJvpRCnLukxEEKUK03TFgJrASvQP+d9SqnGwBVAF03TZkkoEKL8STAQQlSEV1L/3pp1g1LqNGACcJ2maXsqpFVCCBlKEEKUP6WUE9gJVAM6AjuAqcBNmqb9UYFNE+KUJz0GQohyp2laAJiY+vTvwGTgTgkFQlQ86TEQQlQIpdQZwEZAAf00TVtcwU0SQiA9BkKIirMFyOohOLsiGyKEyCbBQAhR7pRSCngD+Cx1081KKfl7JEQlIL+IQoiK8BLwBXAHeq9Bc2BgRTZICKGTYCCEKFdKqX8AGzRNm6Lpk5yOWboohKg4MvlQCFFulFL3AWia9nSO26qhL110AK01TdtYMa0TQoD0GAghyolS6jagWs5QAKBp2lHgffTVCbdUQNOEEDlIj4EQokwppeoBjwKXo++NcMwfHaVUP2Ah4AWaaZp2qFwbKYRIkx4DIUSZUEpdrJTaiD5McCNwGrAyn+M+AuamPvUAO5RSa5RSLcutsUKINOkxEEIIIUSa9BgIIYQQIk2CgRBCCCHSJBgIIYQQIk2CgRBCCCHSJBgIIYQQIk2CgRBCCCHSJBgIIYQQIk2CgRBCCCHSJBgIIYQQIk2CgRBCCCHSJBgIIYQQIk2CgRBCCCHSJBgIIYQQIu3/AbhbGYA6SrjMAAAAAElFTkSuQmCC\n", "text/plain": [ "Graphics object consisting of 110 graphics primitives" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "tmin, tmax, dt = -10, 10, 2\n", "for i in range(int((tmax - tmin)/dt) + 1):\n", " ti = tmin + dt*i\n", " graph += plot_const_to(ti) \n", "graph += plot_const_to(0, thickness=2)\n", "\n", "graph += line([(-pi,0), (0, pi)], color='black', thickness=3) \\\n", " + line([(-pi,0), (0, -pi)], color='black', thickness=3)\n", "\n", "show(graph, figsize=10, axes=False, frame=True)" ] }, { "cell_type": "code", "execution_count": 76, "metadata": {}, "outputs": [], "source": [ "graph.save('exk_CPdiag_M0-raw.svg', figsize=10, axes=False, frame=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Maximal extension" ] }, { "cell_type": "code", "execution_count": 77, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left( {\\tilde{t}}, r \\right) \\ {\\mapsto} \\ \\pi \\mathrm{u}\\left(-r + 1\\right) + \\arctan\\left(\\frac{1}{2} \\, r + \\frac{1}{2} \\, {\\tilde{t}}\\right) - \\arctan\\left(\\frac{r^{2} - {\\left(r - 1\\right)} {\\tilde{t}} + r {\\left(4 \\, \\log\\left({\\left| r - 1 \\right|}\\right) - 1\\right)} - 4 \\, \\log\\left({\\left| r - 1 \\right|}\\right) - 4}{2 \\, {\\left(r - 1\\right)}}\\right)\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left( {\\tilde{t}}, r \\right) \\ {\\mapsto} \\ \\pi \\mathrm{u}\\left(-r + 1\\right) + \\arctan\\left(\\frac{1}{2} \\, r + \\frac{1}{2} \\, {\\tilde{t}}\\right) - \\arctan\\left(\\frac{r^{2} - {\\left(r - 1\\right)} {\\tilde{t}} + r {\\left(4 \\, \\log\\left({\\left| r - 1 \\right|}\\right) - 1\\right)} - 4 \\, \\log\\left({\\left| r - 1 \\right|}\\right) - 4}{2 \\, {\\left(r - 1\\right)}}\\right)$$" ], "text/plain": [ "(tt, r) |--> pi*unit_step(-r + 1) + arctan(1/2*r + 1/2*tt) - arctan(1/2*(r^2 - (r - 1)*tt + r*(4*log(abs(r - 1)) - 1) - 4*log(abs(r - 1)) - 4)/(r - 1))" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left( {\\tilde{t}}, r \\right) \\ {\\mapsto} \\ -\\pi \\mathrm{u}\\left(-r + 1\\right) + \\arctan\\left(\\frac{1}{2} \\, r + \\frac{1}{2} \\, {\\tilde{t}}\\right) + \\arctan\\left(\\frac{r^{2} - {\\left(r - 1\\right)} {\\tilde{t}} + r {\\left(4 \\, \\log\\left({\\left| r - 1 \\right|}\\right) - 1\\right)} - 4 \\, \\log\\left({\\left| r - 1 \\right|}\\right) - 4}{2 \\, {\\left(r - 1\\right)}}\\right)\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left( {\\tilde{t}}, r \\right) \\ {\\mapsto} \\ -\\pi \\mathrm{u}\\left(-r + 1\\right) + \\arctan\\left(\\frac{1}{2} \\, r + \\frac{1}{2} \\, {\\tilde{t}}\\right) + \\arctan\\left(\\frac{r^{2} - {\\left(r - 1\\right)} {\\tilde{t}} + r {\\left(4 \\, \\log\\left({\\left| r - 1 \\right|}\\right) - 1\\right)} - 4 \\, \\log\\left({\\left| r - 1 \\right|}\\right) - 4}{2 \\, {\\left(r - 1\\right)}}\\right)$$" ], "text/plain": [ "(tt, r) |--> -pi*unit_step(-r + 1) + arctan(1/2*r + 1/2*tt) + arctan(1/2*(r^2 - (r - 1)*tt + r*(4*log(abs(r - 1)) - 1) - 4*log(abs(r - 1)) - 4)/(r - 1))" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "Tc(tt, r) = KC_to_CC(tt, r, th, tph)[0].subs(m=1).simplify_full()\n", "Xc(tt, r) = KC_to_CC(tt, r, th, tph)[1].subs(m=1).simplify_full()\n", "show(Tc)\n", "show(Xc)" ] }, { "cell_type": "code", "execution_count": 78, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left( t, r \\right) \\ {\\mapsto} \\ \\pi \\mathrm{u}\\left(-r + 1\\right) + \\arctan\\left(\\frac{r^{2} + {\\left(r - 1\\right)} t + r {\\left(2 \\, \\log\\left({\\left| r - 1 \\right|}\\right) - 1\\right)} - 2 \\, \\log\\left({\\left| r - 1 \\right|}\\right) - 2}{2 \\, {\\left(r - 1\\right)}}\\right) - \\arctan\\left(\\frac{r^{2} - {\\left(r - 1\\right)} t + r {\\left(2 \\, \\log\\left({\\left| r - 1 \\right|}\\right) - 1\\right)} - 2 \\, \\log\\left({\\left| r - 1 \\right|}\\right) - 2}{2 \\, {\\left(r - 1\\right)}}\\right)\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left( t, r \\right) \\ {\\mapsto} \\ \\pi \\mathrm{u}\\left(-r + 1\\right) + \\arctan\\left(\\frac{r^{2} + {\\left(r - 1\\right)} t + r {\\left(2 \\, \\log\\left({\\left| r - 1 \\right|}\\right) - 1\\right)} - 2 \\, \\log\\left({\\left| r - 1 \\right|}\\right) - 2}{2 \\, {\\left(r - 1\\right)}}\\right) - \\arctan\\left(\\frac{r^{2} - {\\left(r - 1\\right)} t + r {\\left(2 \\, \\log\\left({\\left| r - 1 \\right|}\\right) - 1\\right)} - 2 \\, \\log\\left({\\left| r - 1 \\right|}\\right) - 2}{2 \\, {\\left(r - 1\\right)}}\\right)$$" ], "text/plain": [ "(t, r) |--> pi*unit_step(-r + 1) + arctan(1/2*(r^2 + (r - 1)*t + r*(2*log(abs(r - 1)) - 1) - 2*log(abs(r - 1)) - 2)/(r - 1)) - arctan(1/2*(r^2 - (r - 1)*t + r*(2*log(abs(r - 1)) - 1) - 2*log(abs(r - 1)) - 2)/(r - 1))" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left( t, r \\right) \\ {\\mapsto} \\ -\\pi \\mathrm{u}\\left(-r + 1\\right) + \\arctan\\left(\\frac{r^{2} + {\\left(r - 1\\right)} t + r {\\left(2 \\, \\log\\left({\\left| r - 1 \\right|}\\right) - 1\\right)} - 2 \\, \\log\\left({\\left| r - 1 \\right|}\\right) - 2}{2 \\, {\\left(r - 1\\right)}}\\right) + \\arctan\\left(\\frac{r^{2} - {\\left(r - 1\\right)} t + r {\\left(2 \\, \\log\\left({\\left| r - 1 \\right|}\\right) - 1\\right)} - 2 \\, \\log\\left({\\left| r - 1 \\right|}\\right) - 2}{2 \\, {\\left(r - 1\\right)}}\\right)\$" ], "text/latex": [ "$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left( t, r \\right) \\ {\\mapsto} \\ -\\pi \\mathrm{u}\\left(-r + 1\\right) + \\arctan\\left(\\frac{r^{2} + {\\left(r - 1\\right)} t + r {\\left(2 \\, \\log\\left({\\left| r - 1 \\right|}\\right) - 1\\right)} - 2 \\, \\log\\left({\\left| r - 1 \\right|}\\right) - 2}{2 \\, {\\left(r - 1\\right)}}\\right) + \\arctan\\left(\\frac{r^{2} - {\\left(r - 1\\right)} t + r {\\left(2 \\, \\log\\left({\\left| r - 1 \\right|}\\right) - 1\\right)} - 2 \\, \\log\\left({\\left| r - 1 \\right|}\\right) - 2}{2 \\, {\\left(r - 1\\right)}}\\right)$$" ], "text/plain": [ "(t, r) |--> -pi*unit_step(-r + 1) + arctan(1/2*(r^2 + (r - 1)*t + r*(2*log(abs(r - 1)) - 1) - 2*log(abs(r - 1)) - 2)/(r - 1)) + arctan(1/2*(r^2 - (r - 1)*t + r*(2*log(abs(r - 1)) - 1) - 2*log(abs(r - 1)) - 2)/(r - 1))" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "TBL(t, r) = Tc(t - 2/(r-1) + 2*ln(abs(r-1)), r).simplify_full()\n", "XBL(t, r) = Xc(t - 2/(r-1) + 2*ln(abs(r-1)), r).simplify_full()\n", "show(TBL)\n", "show(XBL)" ] }, { "cell_type": "code", "execution_count": 79, "metadata": {}, "outputs": [], "source": [ "def plot_I(n, t_values=None, r_min=1.0001, r_max=100, \n", " color_t='dimgray', linestyle_t='-', \n", " r_values=None, t_min=-100, t_max=100, \n", " color_r='red', linestyle_r=':', \n", " plot_null_geod=True, hor_thickness=3):\n", " n2 = 2*n\n", " res = polygon([(pi, n2*pi), (0, (n2 + 1)*pi), (-pi, n2*pi), (0, (n2 - 1)*pi)], \n", " color='white', edgecolor='black')\n", " if r_values is not None:\n", " for r0 in r_values:\n", " res += parametric_plot((Xc(tt, r0), Tc(tt, r0) + n2*pi), (tt, t_min, t_max), \n", " color=color_r, linestyle=linestyle_r)\n", " if t_values is not None:\n", " for t0 in t_values:\n", " res += parametric_plot((XBL(t0, r), TBL(t0, r) + n2*pi), (r, r_min, r_max), \n", " color=color_t, linestyle=linestyle_t)\n", " if plot_null_geod:\n", " res += line([(pi/2, -pi/2 + n2*pi), (-pi/2, pi/2 + n2*pi)], color='green', \n", " linestyle='--')\n", " res += line([(-pi/2, -pi/2 + n2*pi), (pi/2, pi/2 + n2*pi)], color='green')\n", " res += line([(-pi, n2*pi), (0, (n2 + 1)*pi)], color='black', thickness=hor_thickness)\n", " res += line([(-pi, n2*pi), (0, (n2 - 1)*pi)], color='black', thickness=hor_thickness)\n", " return res\n", "\n", "def plot_III(n, t_values=None, r_min=-100, r_max=0.9999, \n", " color_t='dimgray', linestyle_t='-', \n", " r_values=None, t_min=-100, t_max=100, \n", " color_r='red', linestyle_r=':', \n", " plot_null_geod=True):\n", " n2 = 2*n\n", " res = polygon([(0, (n2 + 1)*pi), (-pi, (n2 + 2)*pi), (-2*pi, (n2 + 1)*pi), (-pi, n2*pi)], \n", " color='cornsilk', edgecolor='black')\n", " res += parametric_plot((Xc(tt, 0), Tc(tt, 0) + n2*pi), (tt, t_min, t_max), color='maroon', \n", " linestyle='--', thickness=2)\n", " if r_values is not None:\n", " for r0 in r_values:\n", " res += parametric_plot((Xc(tt, r0), Tc(tt, r0) + n2*pi), (tt, t_min, t_max), \n", " color=color_r, linestyle=linestyle_r)\n", " if t_values is not None:\n", " for t0 in t_values:\n", " res += parametric_plot((XBL(t0, r), TBL(t0, r) + n2*pi), (r, r_min, r_max), \n", " color=color_t, linestyle=linestyle_t)\n", " if plot_null_geod:\n", " res += line([(-pi/2, pi/2 + n2*pi), (-3*pi/2, 3*pi/2 + n2*pi)], color='green', \n", " linestyle='--')\n", " res += line([(-3*pi/2, pi/2 + n2*pi), (-pi/2, 3*pi/2 + n2*pi)], color='green')\n", " return res" ] }, { "cell_type": "code", "execution_count": 80, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkwAAAE7CAYAAAAvq94nAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAADZ1klEQVR4nOydd3QUdReGn00h1ITeQ+/SmzSld5AuVUGKCgFRUEE+VFSqIFjoHQSkSAfpvQpI7733kgRCSJ3vj5tNdpMtszUJzHNOzsLuzG8myWbm3Vveq1MUBQ0NDQ0NDQ0NDfN4JPYJaGhoaGhoaGgkdTTBpKGhoaGhoaFhBU0waWhoaGhoaGhYQRNMGhoaGhoaGhpW0ASThoaGhoaGhoYVNMGkoaGhoaGhoWEFTTBpaGhoaGhoaFhBE0waGhoaGhoaGlbQBJOG09AJvjqdTpfY56KhoaGhoWGIo/conQ1O35oluIZFgoOD8fPzIygoCF9f38Q+HY2kjyPCWrseaWhoqGLSpElMmjSJqKgoLl68aOoepepapAkmDaehCSYNG9EEk4aGhtuwcI9SdS3SUnIaTuPp06cAaPMJNTQ0NDReNzTBpOEwkyZNomjRohQtWhSAr776ShNNGhoaGhqvFZpg0nCYjh07kiZNGsLDwwGYMWMG/fr100SThoZGonHu3DmOHz+e2Keh8RqhCSYNh3j69Cn16tXj2LFjRs+vWbOGR48eJdJZaWhovMls376dChUqULFiRZYtW5bYp6PxmuCV2CegkXwxJ5YAqlSpQubMmRPhrDQ0NN5ktm/fTrNmzahboRSFvL3p1qEDAO3atUvkM9NI7mgRJo1YpkyZQunSpfH19cXX15eqVauyYcMGk9taEksbihTh77//5uOPPyY6OtrVp62hoaEBxImlZsUKsnTvIcbv2EePogXo2LGjFmnScBhNMGnEkjt3bkaPHs2RI0c4cuQIderUoUWLFpw5c8ZoO3NiKVfMY7WXL5k3bx6zZ8/WRJOGhoZb0Iuld6pXZPQvQzkM3AMavFOZ9m2baqJJw2G0lJxGLM2bNzf6/4gRI5gyZQoHDx7krbfeAsyLJX9/f9b4+lLuzBkoVowPGjeGefPo2rUrANOnT8fDQ9PnGhoazsdQLK1aNoXItVvJB9wFPC9eY/76uYA0qICWnnvTMDSudARNMGmYJCoqimXLlhESEkLVqlUB82Ipd65crFmzhiyhoVCtGuzeDbVq8cGECZpo0tDQcCnxxVKqVCmJ9k0LSNQ75+5/8Qh+wfzZYwFNNL2JBAQEEBAQEGtcaS+aYNIw4tSpU1StWpVXr16RNm1aVq5cSYkSJcyKJR0w584d7pQrxwn9k0uXQvv2MG8eHyxYAKCJJg0NDadjSiwBeDSqBX/+Dh98hq5udUibGk9PT000aTiEJpg0jChatCjHjx8nMDCQ5cuX07VrV1avXk3fvn0TRpZy52bt6tUUW7sWz82beXngACgKLFkCefNCr16gKHzQuTOgiSYNDQ3nYU4sceYiHDoO9arDd59Diwbg7Q2KookmDcdQFEXtl8YbyLvvvqtkypRJQWZ3xX75+/srl48eNdo2qHp1BVCCNm5UlB9/VBRQlAYNFKVfP0VRFGX+/PmKTqdTevTooURFRSXGt6ORtLDl+qNdjzRi2bZtm5IqVSqlQb13lJfPTivKq8txX590lmuPh4eiNK2rKO2bK0q7ZorSq1PsNpEhF5RO7d9TPD09laVLlyb2t6Ohktu3byudO3dWMmbMqKRKlUopU6aMcuTIEdX7BwUFyT0qKCj+S6quO1qEScMsT58+5ejRo7x48cLoeX9/f3ZMmULB2rVh/nxIlQrq1oV//gE/P6haFRo0gHLloF8/ePwYgA8++ADQIk0aGhr2YzaypGfC91A4P2zYAeu3oaT0IapNY7yKFYzdRIs0JT+ePXtG9erVqV27Nhs2bCBr1qxcuXKF9OnTu+0cNMGkEcuQIUNo3Lgx/v7+3L59m7Zt25oWSzt2UNDfHwYPhosX4YcfIE0a+O472ejcOShbFpYvh759oUQJSdU9eaKJJg0NDbuxKpbuP4LsWaBvN8I6vMexhl2ofOYih46fpdqscUabaqIpeTFmzBj8/f2ZM2dO7HP58uVz6zlogkkjlgcPHvDBBx9w9+5dFEUhMjLS6HV/f392bNhAQZ0OUqQQwaQo8M47MHEijB8vG/r6yusREfL43nvQvTv89RecO6eJJg0NDZuxKpZOnIXqraFYIejblRQvQjh//xE7gZRXb1J56168zlyAqzfhtx8ATTQlJ9asWUPDhg1p164du3btIleuXPTp04devXqZ3ScsLIywsLDY/wcHBzt2Empzd3YnHTWSFU+ePFHKlStnumbp8mVFGThQUXLlUpSQEEU5ezZux1OnlKBu3UznhzdsUJThwxXFx0dRHj6MfVqraXrj0WqYNFRhsWZJ/xV4RlGG9FWUiqWlhimlj3InT05lDShnQQnPkVVRJo9QlK97K0roJaN9tZqmpI+Pj4/i4+OjfPPNN8rRo0eVqVOnKilTplTmzZtndp/vv/8+wb3M5D1K5XVHp6ifKK+Nnn/NsWRKuWPHDgoWLAiBgXDqFAQHQ/PmsH493L4NXbqIx0X27ATdv49vtmyy86tX8O230KkT3LwJZcrArVuSpsuUiT///JOuXbvSvXt3LdL05qFzYF/tevSGYDWyBBAWBj4+8m9FgWu3IL8/Txt24eHufykK3ChTnHz/ro3bJzoaDK43UVFRfNj9K5b8vZ6//vpLizQlMVKkSEHFihXZv39/7HOfffYZhw8f5sCBAyb3MRVh8vf3JygoCF9fX8NNVV2LtJScBqBCLO3dK6m2LFkkBRcVBatWwYMHMGQIlCwJz57JThcugF4w6XSwcyeUKgXjxsFbb0lxePv2MH26lp7T0NAwiyqxdPcB1GgNH7aBds3grSJQIA8AqRZPYk2uSlRUFJ49DSLvy1B00dGw8wAM/x22LIJ0YnKppeeSNjly5KBEiRJGzxUvXpzly5eb3cfHxwcfvZB2Appg0rAuljJmlHqloCDpertxA/Llk9okYPqjR7z/zjvM0Sv2QoXiFvHxgYMHwdNTuufSpIFDh6By5dhNNNGkoaERH1ViCcA3LXRqCeu3w72HcOk6DO4N42eSaspIslStwJ79R9DdukuLco3wav8efNAaKpWV65IBmmhKulSvXp0LFy4YPXfx4kXy5s3rvpNQm7tzWiJSI0lhtWZJz4MHihIdrSjz5ilKypSKcv26oty8Kc9FRyvK+fNK0Llz5vLDihIVpSijRyvK3r2Kcvmyovz8s6KcO6co/fsrSmSkoihaTdMbiFbDpGESVTVLry4ryovzcf8OOqMoO5cpSosGinJglaK0a6oo8yYokd7eynRQ7oHyOFc2RTm73XiNe/8lWFeraUp6HDp0SPHy8lJGjBihXLp0SVm4cKGSOnVqZcGCBarXcNSHSbtAvcFYFUt79ihKly6K8upV3E6hoYqydKmihIUpSs6civLdd7EvBV24IG/GCxcSHiwiQlHeeUdRxo0T0eXvryg9eihKunSKcvdu7GaaaHqj0ASTRgJUi6WLuxWlQB5FWTJZUa7tN73N1X1K2A8DlPFensoNUJ56eihRNw8qyvNzUvh9Za+iZM6gKH/+pommZMDatWuVkiVLKj4+PkqxYsWU6dOn27S/ZlypYReqCrzPn4cnT6Q48tkzeP4c8uSBdu2ksHL+fBmBMnUqREZC+fKyyOPHUKSI8QG9vGDbNhlRANCqFfz7r5heZssGoaGQMqWWntPQeINRnYYDSJsa6taApetg2HhYNxdu34PKZeFlqFy3cmYjxaA+5Dx6mjmrN6OLiqbzwaMUHP4HBHSVuqdBfaBOtQTLa+m5pEezZs1o1qxZoh1fuxO9gVgVS3rn1KZNpQsuVSr45htx846MFLGk08n/CxUS88qrV6XwG+Ie46MXSwsXwrRpUtN09y7s3i3//uknQGqa5s2bx+zZs/n444+Jjo52wU9BQ0MjKWGTWHoVBhnTwx8/wsSfYNY4WLwGmnaD0FcwaR4UrSXbnjxHlZLFACiaKztp9h2BymWgdDG5jvX7CDJlgCfP4PJ1o8PoRVP7tk3p2LEjy5Ytc8W3rpFM0CJMbxiqCrxLlpTOt4AAuaAAjBwp3W9eXvD993DlCvz5p7yuN6xUawp28aJYC3h6igB7+lTWNthfizRpaLw52CSWNuyA/sNg/VzIkgky+MlXmeLQtA6kTgUtG0q3HMC0heQ5coKOK6ZTeMFKdAtXQYnCUK5k3Ic/gD7/k4673X/HPYcWadKIQ/NheoNQlYYDmDFDOuCyZZO0WaFCkClT3A5Lloj30sCBkqrz9QVPT4IPH8avcmWCDh3Ct1Il8ycSHS0XJJ0u7oK1ejVUqiTH3LED6tUD0HyaXm80HyYN28QSwK27MHMxREXC8g1wYpN8+IrX8RbLsyBIk0qmDjx+Ci9CRGhFRkH7PjDwY6j/Dty4Ix/gCpruutJ8mpIvkyZNYtKkSURFRXHx4kW7fZi0u88bglWx5OsLmzbJk716iXCJjIQPPpBokyHt24tYAujfH+rUkX+nTm38aA4PDxFJe/eKp1NQEJw8KQN7J06Ehg3h8mVAS89paLzO2CSWXobKl39O+GEAfNIFRg4SIdSiB4ycGLft0nVw6Lj8O4OfbAOQOSPk84engVI3mSOLRKQA8uYSsRQWBlP/lA92BmjpueRLQEAAZ8+e5fDhww6to6Xk3gBURZb+9z+YNw8uXZKaJZD026ZNkDGj/P/MGSnwHjFCokoA/fuzeu5cvilRgqioKP3C6k4sWzbIkUNMMNu1g1y5JGKVNWuc8SVaek5D43XE5sjSwJ/g3GXYvEAi0/455UtRoFEtKJw/btuRf0CzelIADvDxYKhUGnp1gifPUErWQ9Hp8PjpS6heUdYA+SC3/yh8MwZqVIaSRY1OQUvPvdloguk1R3Ua7ocfJLKUKpVEln79Ffr2hfwGF6GLF+HAgbgRBAAVKtCiQgVaAMGPHuGXNat8QlND4cKg/5SWKhUUKyYXrnz5pED8t99EfLVurYkmDY3XCJvFEkhX2/VbMH4m/L0e9q+UyJFOB327GW97bKN8ENOT0Q9SpSI6MpLFPb5CFxZORt+01G3ZAK+oKOj6BVSrCH0+hNpV4dwOyJ7F5GloounNRbvjvMZYFUu5c0OXLnDihEST8uWTDU6cgB9/hKNHjRds1UpcuvWC6a+/YNGiuNfPnTN+VMvjx1JovnCh/LtrV0nN/fyzHCMGLT2noZH8sVksXbwqH+JKFpWoUYv68ElnEUsPHsOPv0JgvIYTnU6uaXpGfwNdWuHh5YVXKh8uAgeDX3B0zVZZu1B+Y4GUPYt8eBs2Af5ckeCUtPTcm4kmmF5TVEWWXr6Ea9ekS82QChXg+nWoFuNNcvu2tPyHhRkNq2TnTti4Me7/BQoYP6olUybo1g2qV5dZdQcPSm1UvXrw6aeyTWAgoIkmDY3kjM1i6WUo1O8Ew/8QK4HISCheWFJrAMdOw6zFcSk1EGuAhl0SWARw4w48fso7X/cGoABQ+KsRKG/Vg6rloXVj2c7wmvLoCTyJd32MQRNNbx5aSu41xKpYypNHaoUyZJDCa30L7e7dsHUrDBsWV7cEss2sWTJHzjAdN22a8cVFX9dk3H1gHZ0Ovv1W/h0aKkXj3t7QuzesWSPr1a0r9VRVq2rpOQ2NZIhdabjUqWD+r1CqGHw1Aq7dhLVz4q5ZjWrBpd1xRd0g4ilrprhibhCxVaoejBpMjoCuFGvRgDurN3M5Oppc+XKTU1//NHSsiKRpo+UYE3+KO9bzF7GDevVo6bk3C00wvWaoiix98gkcOyaRHEOhceqU1ChFRRk/36EDtGwJKQ0ucIGB4OdnvN3Dh3GPtoomPf36wf79ci5nzsCePSLswsOlKDwGTTRpaCQfbBZLERGwejO0aQI1q8hzHd4TJ2+9gDl5DooVNBZLIMXff/5m/FxKH1g/L9abqda3/Zm6Zgv/KAqpL1zhs8wZ8ImOhmKFIGe2OLsT/bE27YKeX8HOZQlsBzTR9OagCabXCNUF3p99Jik3vcCIihIPk4AASYHp/UyePIEVK6BHD2OxBJIuq15dCrP13L8f91iokH3fxLBhcO+enEOPHpKqCw0VsZQnjxhm3rwJtWtroklDIxlgV2Rpw0746EuJLGXPCr5ppZtNT3g4NP8IurSGEV8b7/v4qUSXDCNMAO9Ujv1ntpJFKdm2KaeXrSPXo6c8qteJ3Dpg5GDo0iruGHoxVqU89P5QrAdMoImmpI2hD5NDqB06Z9ekPA23YXWQbmSkokyapCjh4cY7vnihKG+/rSiLFiVcdN48RcmQQVEePEj42rp1inLwoNFTFgYb2k5UlKLMni3n/fSpohQtqijz5ytKrVqKUqSIvB6DNrA32aIN333NUT1I19TXma2K8vKiolQppygBXRO+fmyD6aG77ZopSo1KCZ+/fUhRPumsKCc3K8qry8qTM9uUH729leWgXNDplFcd3lOUg6tl25ljFaVEYUV5dDzhOofXKcr1AybPWRvYm7TRhu9qqIssHTkCX34JpUqJWaQeHx+Z41aiRMKFP/wQmjSBzJkTvta0qZO/i3gcOyapw3z5oFYt6NgR3n5buudq1ZLoWEzYXIs0aWgkPeyKLG3cKfVGLRtCwXzy3Oc9IVf2uG3CwiTyU7yw6TUG9oKXrxI+nyY17P4XmteHIgXIWDAvbwd8yIFfZ3FKUSgFtC77llxXqpSDFg0TRqmio6HbAChTAmaPS3AILdL0eqONRknmWBVLBQrE5eHv34fsMRceRYE7dyB37oSLPnkCu3ZB69YJX4uOlpTeJ5+I+CIu3JkrNJSt168TdOQIvhUqOP7N3bwpaThDHj2Szr7ixaFNGykWjxGA2hiVZIc2GuU1xS6xBPDpNzLKZPEkmetmKJT0DP0ZjpyCDfONZr7ZQ+izIP54qy6hTwOpVLIoDXt2wHP1FhjUG2pVlY2ePJPhvHouX5fRKn7pzK6rjVFJmgQHB+Pn56eNRnkTUSWW+vQRZ26IE0sAM2eK99GDBwkXXrBATCyfPUv42t27sG0bPH8e+5Tedn75mjXyRPwiTHvRi6Vp02DpUvn3pEkS9Tp4UArUDc5fsxzQ0Eh87BJL+g/uk0fAvAlw5z6UaQiLViXctv670L65abH0IgQmzJR5c+YIeg6hEoFKlcGPRr98S7tFf9D43bfxXLkJsmWOq+88cxGK1oIdB+L2L5RPxNL9R/DZd7FrGaJZDryeaCm5ZIrqAu9cuWT8SHw6dIA0aYxGkMTy2WdiUpkhQ8LXcueGs2dNn1TevMaPzkBRpFMue3Z4/30YNAiaNZNjvP++zJ+LjoarV6FQIS09p6GRiNgllh4+gfc/hV++gwqlpKMtV3b4dRi8Vz/h9jWrxHXOxefOfRj+uxSI++c0fawC1WHeeOnAA0p3bCGvNakD3l7GQ3yLF4Lv+sPbZROudf0WbNsH9x5CgTwJXtbSc68fmmBKhqiKLJ05A2+9BUOHGu+8e7eMJMmRAzp1Mn7tyhW4dUtqhOKnwgBCQmRQbk4TFyKQVmDDR2eg08mMO73o8fKCijGzn/z95ZxXroTff5dUXYYMmmjS0EgE7E7DeXpAtiyQMb38XZ+7BCWKxHWr6Tl5TsTQlJHGKTJDihaExyeMjSwNyZoJZoyRMSjxSRnjMXf+Mly6JgN8WzWCz7rL87fvQXpfSJtG/l+lPJzYJNekiAi5RhmKLTTR9Lqh3UWSGaoiSwsWQPnycOOG8c5RUVJ7NGyY6cX/+AM+/ljcdE2xYIHMlnvyxPTrZ84YPzoLT08RTvv2Se3StWtiNfDPPzKq5fBhEYDp08fuoqXnNDTch11iKTJSRppkygBLJkN+f1i5ESo1F8ESnyeBkv7yTZvwNUN0OmN/uPh0bAE5spp9OXjATwR//oMII70AiogQ9/AhY4w39vIScdalPwz40eR6Wnru9UGLMCUjVKfhOnSQcSPxU2OenrB5s7GLtyG//AIDBxrPYDKkUydJyWXKZPp1/Sw6/aOzKVoUGjWCrFnFDXzfPnEEb9ZMjDR1OqnNKl8eypfXIk0aGm7A7sjS0LGwdS8cWCV/xyApuGVTxHwyPrWrypclfvhVnLon/mR+m7AwGDsN6r8Db5czemlVz685v30fUTod3T/uRI5yJeUFLy+YOkoiWPHR6aTzLouZ6ypapOl1Qbt7JBNUiaWxY6W+yNtbCqP13L0rkaWXLyWNlSaN8eI7d8LJkyKo/P3Nn0S6dJbtBPQRHoNIj1PJnFlsBdKkkfl2L1/K80eOQOPGcPEi/O9/MH9+7C5apElDw3XYLZYAenSAbwLkenXvIZy+IMKkSR3j7UJewjejxZDSGvlyQyErNZQpUsCaLXDucoKXshQvRBgQqSjs6D0E5cB/MHiUCLF3KktKLzBYnL8N6dIKGtaUaNO+IyYPq0WaEo9JkyZRokQJKlWq5NA6mmBKBqgepLtggcyCi8+lS1I4barrDaSLzlyaTs/nn0vKzhKPHxs/uoroaBGE/frJ/6tUgY8+Ek8pPz9oEVPEGR4OaKJJQ8MV2C2Wdh2Uv83C+WMLr/lhAnTsK2UD8Tl1Hv5aDc9DrK/dta34NllCp4N/10C3hBGeKv26kbmYRJFKHT/Lyw/6Q9bMIpT0TJwLvb6Wjrz47DgAdTvA4RMmD62JpsRB38l9+PBhh9bRfJiSOKrEUliYiIXQUEhlYLQWESGf2HS6uPEnpggNhVevTHfF6fnqKxl38sknCV7S+zAVCglh7c2bBO3ahe+779rz7arn338lGha/AF1fz3TzpqQQN2+GIjI/SvNpSnJoPkzJFLvF0uOn0qb/wwDo2y3u+ZCXYgVQzMxIJcMxJeYID4crN6TtX5/is7b985AEBeTXdx1kXsMupAa80qTmo6MbSK8fiaIoUnt1+77UXMVHUWD/f8ZjXEyg+TQlDo76MGmCKQmjSixNnAhz50oEyVAsKYpEWt56C0aNMn2AmTOlLd9UR5wdWHgzuo7nz6WLLiBAvufy5eV7zp8fpkyR6JpBzZYmmpIUmmBKhjiUhgPpditRWD7MLV4DNSpBbhPWJyCRpRYNEjpum+LYaajaEnb/DZXLWt++RmuZVTdlZIKX1vX9lv9m/gVAsZpVeH9oP3RnLsL2/VKgrtOJ4Bo9Wbro0pu43q3cKNek1o1NHl4TTe7HUcGkFX0nUVQXeL/zjoiG+MNxdTpJW5nzRHrxQlJxQUFS6G2O8HAxjWzXTqJYSY0tW6RuqWlTEUmrVolAundPIlAZM8qg4bAwKFpUKwTX0HAAu8XS1ZuwYgMM/BhKF5fnQl/B9+Phwzbwv36m9/lksLT7t2pk/RhFCsDmhVCyqLpz+v4Ls91y9Ud+zaUNOwi+c588uw4ScfIcKaaPhiL5JVrv5QV3HsDsJVC1vJhpxmftVrkOmxFMWiF48kOLMCVBVImlzZuhTh3THW2nTsWOLbFIYCD4+lpuwd26VaJQp0+bnjdnQPCxY/iVL0/Q0aP4litncVun8ugRZMli/Ny9e/DFFzB5MjRsKCH6ffti3YG1SFOSQIswJSMciizNXiIO3HtXGI8UefwUMviZLxe4dVeiTw6OQLGHS5t2sahFD3wA33Rp+ODEZtLljDH6jYyUa+/LUPPRr8hIOW9Pz7iyCRNokSb3oY1Gec1QJZauXZOIyuLFCRdYvx7KlJGuN1NERsr8tWfPpJvNQCiMGjWKSpUqkS5dOrJmzUrLli254O8v9UBWxBIQt5a7xUeWLPKpr3dvWLhQngsMlK65mzclwlS1qtFFVysE19BQj91iSf+BvHt7OLhaxFLQc/jiBwh+DpkzmhZLh47L37R/TvViadoCWLtF3bZ6VmyAX2eafKlww5qU6dyKMODR8xC2fjlchvdu2Q3lGotreOpU8j2OngxT5hsv4BXjGn7hCrxVDw4eNXkcrRA8+aAJpiSE6jRc/vxS3Ny5c8JFGjeGNWugdGnTB7lwQWaznTuX4KVdu3YREBDAwYMH2bJlC96vXtGgfn1CLBWDG5I/v/GjO9HppMhd7zJevDj89x+ULQt798J330kasnNnGaOCJpo0NNRgt1h6FQZNu4ljNkCa1PJ4/jL8s0MEhykePYEGnWHaQttOdOte+Pe4bfucuWi2ow2g4dj/kSZbZgrWf4dGBfJA20/APxfUqwFpYiJLOh08C4TA56YXyZsbWjU07eEUgyaakgdaSi6JoEoszZsn6acvv0y4wNq1MheucmXrBwsJSejFZILwunVZuH07BXft4l0VXW/Bz57hlzEjQU+f4qtWZLkKwzRd587y/4EDoX17+PtvqFcvdlMtPZdoaCm5JI5DabjISHG/7thS6nwMiYiw3Ml2+IQUZKd0cd2koliNYAXdvIuvfw50YeFw9YaMbdHzIkQcwQ3XsdTR9/ipeE6VKmbyZS095xr0ndxRUVFcvHhRS8klZ1RHlq5ckTRTfJGrKDBhAkydav4gZ87IUN2wMFViCeBx584sBDKacwaPz6lTxo+JxcqVYoEQE0mib18RmRkzQqVKcbPoYvyitEiThkZC7BZL0dFw446kpH7/MU4szV8Ofb+VVJs5sXT1pvxtVirjerEEInIURewIzOCXJyc6nU7Op0QROf89h+D6bXirLmzYESeW/tku6boHZrzoBo2CDz837TeFFmlyFc7yYdK65BIZVWLp8WNxuf7xx4SfiPT/X7vW8ie2c+fgwAH51Kei201RFD5dtYqwGjUoWbKkyW3CwsIICwuL/X+wPqrkJJsCu6lfH0aOjEsNVo0Zp6Ao8OGHYr8waBAsXy7F7KlSad1zGhoGOBRZmjQPRk2C01tloK4eRZFBu+b+rp4FQdUW0jGnH3irlr/Xw9BxcPQfdRYEhsxdBv2/h2v7zQ/1NSBi7jK8PvsO3ckt0PtDqGhQ/lC6ODSrCxnM2KqMGypRJnNF7mjdc0kZTTAlIqrE0u7dYg+we7d4DBmKpTNnxEhy8WKZ8WaJtm2hVSuLf6ix3LnDkdq1uf/yJSsOHjS72ahRo/jhhx8SvqA2IuUq0qYVXyaQzricOUU8Xb4sw4VTp5Yuw+zZjbyrNNGkoeEEn6UP20pnm14shb6CVCnFhbtrW/P7ZfCDuePVeSjFp2Be6NzSdrEE0Lwe5M5u2kspHpc372LtyIlk8U1H6/S+pB7cR14Ieg7eXvJ9jxkiz12/LesadjJn8JOv8HD4agT07wEFEn7A1ERT0kS7GyQSqtNwVaqIX1KZMgkX8fGRyFNaC9O7R4+G4cPl32rEEjC+f398rl9n6T//kNuCEPvmm28ICgqK/bql78x7qmLmkzuIjpbOuZ9iBnEWLixF723awO+/w+zZ8vySJTJvDy09p/Fm45BYWrkR7j+STji9b1LQc6jcXKI4lggMlsfGtVVFeRJQriR829/2/UA69eq/q+r6eGT6IoLv3OfKsyDWBfwPZcMOqcdq0Elmzul5EQI128KYKaYXCnoOew/DpWtmj6Wl5xIybNgwdDqd0Vf27NnddnxNMCUCqsTSxo1Sr5QiBfTvb/zH/OiR1CIVKiRGjZaG3UZGypcKFEWhb9++/HLgAKlOnyafuU67GHx8fPD19Y370s+qu3lT1fFcjocHbNggXkx69OnC+/fFAf3xY/j0U5gxI3YTTTRpvIk4JJZehkrEJMYdO5Z0aWQw7btvm9/3RQhUbCoz2uxl2z7zXXdqePQEPvhcBgBboOkfP5EqJnL2eNVmaP0xbNkjJpj9DdKIadPA1FHQ50PTC2XJJPPsGtaU/4e8NLmZJpoS8tZbb3Hv3r3Yr1NurJnVUnJuRpVYioqCIUOkQHnaNOMFoqPFg6l4cemaM0d0tAiGoUNVn1tAQAAP5s1j2Z9/ks7Xl/v37wPg5+dHqlQqQt16gWVFaLmVXDEzoK5eFUfwGTMkIqdPbV66JD/vhg3l/zE1YVp6TuNNwuE0XOpUsGc5ZMss/9cXUhfKB4P6WN43TWoY0hfqVLfr3Al9Bc0/gj9+hB4d7FsjvS/cfyj1RRZIlyMrzSYNZ1nHvjwCZqVKSZvihcmgnysXHg637kmKsHFtee7RExnb0qCm8WL6VN1vsyQCt3dFnPWCAVp6zhgvLy+3RpUM0e4AbkSVWFIUiSZt3gx//JFwEQ8PGDsWBg82f6DQUBmZsnSpTec3fcoUfn35kj1t2pAjR47YryVLlqhbILGMK9Xw9KlE7AID5f/t2skMvqpVYf9+ePttqXeqXl3rntN4o3BILP13CroOENGSI2vc3/785VCpGdy+Z3n/0Ffy4aV7e8hnpQ7THCl94NJuaNPEvv1BGma2LIJaVa1uWqJVI8p0aQ3AnZehrOrxFdGbdsHTQBg4HFr0MI7q/zYLAr4VXypTNKkDPTuaFEt6tEhTHJcuXSJnzpzkz5+fDh06cFXfDe0GtAiTm1AllnbskE64VaukNsmQsDBxsf7oI6gZ75NKfDw8oFw5qdmxgUhFgWfPGAQMssdH6dq1uEdTNVeJScWKcOSIXJxDQ+UC6eUljue1aklE7+pVuH3bqItQizRpvM44HFl6+gwePpaItiHtm0txs7mhuiBO35Xfk664D1rbfvJ6dDrI5aSIw537kh4rUsDiZo3Hf8uNPYcIvHGb+/uPENUxAI9BfeDrT+V7MSz0/u5z+KSLeZuEwvnlC2DHAShf0nh8TAxapAnefvtt5s+fT5EiRXjw4AHDhw+nWrVqnDlzhkyZMiXYPkEnd3CwQ8fXrvxuQHWBt5+fdG6ZavvftEk6vy5etHywly9l/4kTRTSpJTRUvjJkkC970F80k2okRu+50qyZeFKBfK9Tp0L37lC3LvTrB+nSiXCKKV7XIk0aryMOiaXg5/K3VP9d+GdeXHTkyEnxUkrpA+/Vt7xGqpTQ/X3L9U1qmDwfxk2zvp0a2veB73+xupmPbzpazhqLzsODcGBaWAT36tWQUS6Vy8o1cOte2ThFCnn+VRh8Ody8R9OLEPiwP/w+2+xx3/RIU+PGjWnTpg2lSpWiXr16rF+/HoB5ZspTRo0ahZ+fX+yXv7+/Q8fXBJOLUSWWLlyQOpry5eGvvyCliQvXe+9JvU1RC5O49+2T9vkzZ2w/0UmToFgxePXK9n316IWf/jEpotOJtUBM5AgQy4X06aFGDalvUhQZMdOjR+wmmmjSeJ1wSCyFvoJ328aJFH09oKJI4bdht5g5IiMlyvt1b8iby/ZvwJAnz6zWHqlmxhiYNlrVpnlrVKL6wI/lFKKiWNHjKyIP/AcnzsLGnVJXdcbgA+7jp7B+m/nC8rRpYOtf8E2AxeO+6aLJkDRp0lCqVCkuXbpk8vUEndy3bjl0PC0l50JUiaXAQLEO+OYb+Ppr4wUURQwWS5WSG7w1r6USJaBXLyhSxPJ2pmjZErJmNS3WrGBoO58saN9eHqOjYcuWuILv1aslJVqjhojYeLP6tPScxuuAw2m4VCkhoBvUqmL8vE4Hf09NOIkgPkHP4Z02MOIraG4lCqUGe+0ETFHctjKGWt9+xpWte3h84SpVArrhOXg05MkF8yfA/pXwlsG1OHcOOLEpbmyKqbEs+nlzpy/AhJkwebjJjIOWnhPCwsI4d+4c77zzjsnXfXx88FFh1KwWTTC5CNVpuPTpxQeoWrWEiyiKpIWCgiwfLDRU5sNlzhznuWQrhQrJlx0EBAQQEBBA8O7d+NWsCcePg4rZc4nOP/9I5O7ECRGlPXtC69ZivLllixSAv3wJ334rw3v9/DTRpJGscUgshYXBwWNQswr06hj3fEQE/PArDOilzkPJyxMa14Iyb9l6+qbPCVRNL1DNX6thwQpYN9fqnDnPFCloM/9X0OnIVCifmGBm9JP9ysVMSFiyFupUEysBvVj6fjw8fwG/fGv6GA+fwOVr8OKl2e/tTRRNX375Jc2bNydPnjw8fPiQ4cOHExwcHHs9djXald4FqBJLR4/ClBhTswYNEppPPnsmxdszZsgsNEsMGiQCRaXfkhHh4VLTY8HRWzX6/LCDeWK30bQp/PefiCU9GTPKz/G338TSYdMm+R2cPx+7iZae00iOOBxZmrkYWvVK6Hd07RYsXAlnTadFjFAUqXcaMwTy5LTt+KbYtBsylnbMgyk+2bJIpCc8XNXmmQrnF7EEkD2LiKIr12HdVommfTVcRJghuXNYTkXWqQY7l4kADX6uzZ6L4fbt23Ts2JGiRYvSunVrUqRIwcGDB8mbN69bjq9FmJyM6sjSunWwfr1ENeLPgFu7Frp2hcOH1dUDffklNGpk3JmhlseP5cKQLmFXhs3ouxRMdCskSXS6uML4GTMgSxZJTXp6Sq1Y3rxiElqoELz1llzsw8IgZUot0qSRrHBYLAF82gWqV4Ss8f6+ixSAs9slVWeJoOfiiD16CNS23r6virJvif9SFieOY6pTTb4cIOS78aS+eBXdwdXw71oRUoYYRugePxW38fjodCKUGn8I1SrAWNOeem9SpGnx4sWJenxNMDkRVWIpPFw+gXz7rQgdUwNza9YUk8UClltbOXlSrAPy5LF/4G3OnOL55Az0Tt/PnoGv9blMSQZFgW3b5GfRsqVcqEYZFK6WKSMRwK++EhG7bRt4emqiSSNZ4LBYGjsV6taQdveyBmm0NVtg9WaYMsK6WAKJ3JYqLqaOziJPTvFwcjahr2DFBun0S2dh9FQ8Il6Gsvmb0Rxf/g/v/fETpTw9xZ8KpGvuyTOxXNCzfT+83xt2LTOud9Lj6Qlf9LRaW/UmiabERLu6OwlVYunKFYlc7NkjN+XU8YzK9u+XkR2+vjBwoOX8eXg4NG9u2cDSGtu3iwBwFjduGD8mF3Q6WLAAfolpJzYMxa9eLY7rx46JP1aGDEZjarT0nEZSxmGx9CoM1m6BfSauExER0jihNrKdKQPM/Nk5qTg9M/6Ciy4wLnz0FD4eDLv/tWm3a7sOcmTaQiKBdUNGE3jkJExbIC8u/0dEmGFRfPUK8P3nUMxCJqFtUxFTkZGweI3Zovo3LT2XGOgUax0Ncaje8E1DdRru1SsROEOHJjSmjIqCkiWlQ8tgrplFTpyQzjl7U2DvvSePa9bYt388gp8+xS9TJoKePME3oxND5O7k33/h/fdlll/x4nJD2LBB6p2mTJHoX4kS8nrNmhAzMubPP/+ka9eudO/eXYs0qcdyRa1ltOuRFRwWS1FR8uFAHxXX8yrMvAmjKQKDZeba2P9BhVLWt1fLy1Dwfxt++0Hm1Tmbew/jokM2sKrn15xYsAKAOoXyUSPoObr//gG/tCIuzQ35PX1BRstkMXM937gT2vWGg6tNR6NiiIqK4sPuX7Hk7/X89ddfWqQJ407uixcvEhQUhK9xFkTVtUi7qjuIKrF06ZJEl1KmhF9/TSiWQP6INm6ECRMsH1BRZORJVJSkihypF1q5EubMsX//+Og/adpTS5VUKFYMWrWKS3F6eIhYAsiRQ9zA792Tbrrp02N30yJNGkkJh8XSxp1QtaXMQTMUS6GvoGZb+MOG60bIS8jga14I2EvqVPDwGLzf1Lnr6tGLJZXF33oaj/+W9HnFAmb75ev827OD1H35+Mh1/uQ56P6lROj0REbGmGaON79wo1piS2BBLIEWaTJFQEAAZ8+e5bCDGZVkfGdLfFRHlnr3lrTPli0JF7l+HUaMgN9/lyJjaxw9Ch07St1R3br2nXhUFNy9K91sTijQ1qv3bHrTy+vXk9YAXlvw8xNRC3Drlggm/QDfv/6Si96rV3Kxa9zYaFfDmqZwXTizp87Gy1P7E9NwL04p8C6QRwqNM/gZP5/SBzq0gNo2FEXnyg7Lp1vfzh48Pc1HbJxBq14y427C96p30buAz63fCRSFLeOmk6/Bu2TfcQC+/Bieh4hlwLPguAJ6Ly9YNkU8nCxRIOaD3NipkMIb+vcwuVn8mqaQqBC6deim+nvQMI2WkrMT1WIJJCKhKFJUHJ/t2+GLL0QAZcum7uCXLtk8J86IJUvECPPyZfuLxU0QfPQofhUqEPTff/iWL++0dRMFRZGUW7p00s0I8knTw0MubqdPSwr133/FgmDOnFi/lMlzJxPwbwClUpfi+NjjWnrOPFpKzsls376dxn0bU6JUIfZPW2q7WLpyA/xzGEeVYl+7DgXzqV8rMBg+GgijB8cZMjqT736R6NUv3zp/bT1/rZYOtvqmjREtsXXoWPbFuKEXy5eb9wOD0a2dA5XKxJlWmjKvvPtAap36djO/+He/iGAa+pnFc4iKiqJRQHe2ZtvHt0W/5cePfrT5+3idCA4Oxs/PT0vJuRNzYiltlrRs375dxNLNm9ClCzx/Lqmc+GIpNFT+WOrUkaiRNbF08ybMnCn7OCKWQFJMf/7pVLEExBlf2mmAmaTQ6eTnbZB2I0UKEUsXLkj917//ilfT0aOxYfvHLx8z/dV00uVMx6kFp7T0nIbb0EeWMtVKz+mSF9l8a49tC4SFSQv7t+MSvrZmC5RtDBeuqF/v8VOxEkidyrbzUIt/TsfHqlijYwu7xBJA7e/6k71sCQDOX7/NlrZNRSyBXF8ePIY6HWT+niGbdonL95Nn5hf/YUCcWLr/yOxmB+4e40DhY2SLzsyIPiO09JyDaILJRsyJpYzZMvKi4wvGXxiPoijw4IHMdAsMTLhIZCTUqwc//CD/VxNSXr5cXLxfvHDsG1AUaZFv74JW3NeNIkUkHffihYyuCQ2V5/39RXQWLCj1aJ07Q7p0PL5xjnrz6nL3+V32f7Kf+ePmazVNGm7BMA13/qdNtCpSn7ar+rH6ookyAHP4+MCssfDlJwlfa1wL5v5iW6SoUD7YvliEjSvo1RE+6+6atQ05eQ5GTbJ5N88UKWg95xe8YgrkD8z8i8sbtsPw3+HOfUifDnJnB+94afuP3oejGyy7puujUsfPQPHasPNAgk323jpCo6XdqZyjNBeHbKFDi2ZaTZODaILJBiyl4Q7tO8SMrjM4dHM/L14FSyv6f/+Zdr328pLoU1MbihW/+EJa2x0xmIyOhlq1pGjcFZw8afz4unDhgqTc9G7fqVPDH3+IWPr6a2jZksfB96k3oRx3719ie9ftlMxaUisE13AL8WuWfNOmY2Hz8bQqUp9dtw5ZX+BZkLS+Kwq8U9m4OPvMRTh3Sfzi2jRRd0KBwdB1ANy6a983pIag53DpmlzTXM2FqzIqJfi5zbtmKV6YeiMHAZCnWkUyZ8sKf66AfUdEoP75G5QpIXWlhkXgfukk3di5Hxw6bv4ApYvDmG+k3swAQ7G0tu10fFOl0wrBnYBWkaoSNTVLBcP96dp1At43RvH4uy/JlCqTcWI0KkpGkFSvLoXgapg5U4bivveeeAA5QmiojAFx1eiSHDmMH18XKlSQ7rjUqeWmoihSywTw1Vc8PrqXet08uJsijO15RlIya8nYXTVzSw1XYq7A29vTm0XvTcBTJ9HrRy+fkCW1mQaPDTvgx99kEG7OeKUBQ8fCixDYvNDqXLVYbt6BMxfs/ZbUsXk3fNAf7hxWN7/OEVo3gjaN4/7mbaTyp11InTE9b7VrioenJxzfaGz0qSjQsa8UxxsWl3t4SIF4sIWsgocHfBwzJPz8Zbh1l73FUhuJpTQpxO9PM7d0HK3oWwU2FXgvWUJo6RKU3NKSRgUbMbHJRHT6C83MmRAQIBYDuXNbP7CiQIcOUv9kzW4gCWChoO71oV8/+b1MnAjA47uXqbesOXfDn7A9XV9K9vhGhPGkSdC/f6zFgubTZBKt6NsB1HbDHbxzjHqLu7Kw+S+0KFLf9GLmxnMEP5cBsPGFlDVMFTM7k6Dnko6qWcV1x4jPg8eSRnPGoF9FgSl/QuWyULE0zF8uNgbx66UMi8NfhVl2VP/0G/be+Y9Gte4nEEuGvIk+TZoPk5tQJZaePAH9jJv27UlVvBTf1PiGyUcm0/efvsSK0u7dYdcudWIJ5A/lr79g7FjHv5EtW6TQW71Atp3gYOPH15EyZWLnzz1++Zh6a9qKWOq0iZKnH4qlwpIlMvrmzJnY3bT0nIYzscU6oEL2kjQpWJN2qz6Lq2mKjhYn6yVr5f+GYik6Gn74VYqJfdOpF0tBz6H/91Ks7EqxBJKycqdYuvsACtaANVudslx4YBBR8/6GHfvliQ/biFhSFONBwvqf47AJ0LSbxQHre79uTqOa90QstZlmUizBm+nT5CwfJk0wWUB1ZGnePIkmGBR49yzfkxnNZ4hoGlUD5fBhCZ9WUfFH/uqVGCPq93GGEeSmTTB/vmsvZFevGj++jvTsCT16iFiaUYO7z+9KzZKPv4y8uXBBas0KF44b2BsjjjTRpOEMbPVZ8vb0ZmHz8bQsUi9ONOnfe54mbgG378P8ZXD0lG0ndvYSbNgpDtyuZsgYOHzC9cfRkzObFL3Xq+HwUrcOHGVq9dYsTu+HMvBj4xd/nQVV3ktYL9WkNnRuafZesPfWERqt/JTKOcuwtu5Y0rTsbfHn8yaKJmeg1TCZQZVY0odLv/hCUmfp0xtt27N8T4iMJGB9H3pt+ZOylSqpO/jz5yK+nCluxo2TtmEXoA93eug//ZQo4ZLjJBUev3xMvanVpMC75uy4mqX//pMLWuPG4r3l5SWjcB49knSsTqfVNGk4hL2mlHrR1HntAAZtG02TgrXwnj7a9MZ5csKprbbbAVQtD2e3ud7pP/SVtN5XLhvXpu8O2jruKB4VHs7yDz8n6NZdnl29yeFpC6icNbMU1b9XXwbzZssskT1D3i4nXyCF+AZu3/ELvNOEK5A2dcLuu3hoNU22o9UwmUCVWAoOlijQt9+KwaEpIiPBy4tbjy7jn7lg7A9QZ0kIRUdLVMmZNQBHj4IbjCTfhBqmxy8fU29+PYks5R5CyQ79E/6eJk4UM8tt28SNvXZtYz8ntJqmGLQaJhtwhoN3xJLVPB4yjBy7/iE6VzY8dAbvu50HYOZfMH2MbWIpMhImzYOeHSGN6TTQa8OYyZApI/TsYPcSV7buZUGzbgB4pUrJlzUq4eOfEyaPMN7w3CUoHs9z7/gZGVmzeiY0qJlQLMVPw0VFwZ0HFgcev0k1TZpxpZNRnYbz8oKMGc23+a9fL91Vjx7hn6UQ6HR8vvFz45qm+OzbJ3YE9+45Tyz9+6+cx65dzlnPErduGT++ZhiJpa7bKdnxc/k97dsnKU89TZtC377SLVi7thT6g6RYY373WnpOwxacMu4E8G5YmxxfDyQwU2qqzm9n7NMU+goiIq1GJhJw4px02Z27bNc5JSvuPZT5eg5QsF4NKvWWSHNk6CsWPg0k+rdhxhsdPgHlmyT0Vyr7Fvw9Feq9Y10sgfxear8vv1szaOk59WgpOQNUiaWQEHj6VFrzLfkZFS4M775rZAVQOltpeq7tCWDcPacnQwaZwWZqOK+9VKokY1fesc+t1ib0xo6hbqhhcDMJxJKBdQB//CERxwYNREDlzy81bSCp2ty5ZQxNtWri59SlC6BZDmiowyliae9hKFJAZpd90oU0URHk9ctJ21X9+LvZBFqUaAyNa8uXrVQoBZf3JJw75yqG/w7b9sGOJe45niG/DnPKMvVHfM3VrXt5cukat/47xZ6x06hZo5I4qffqJJ1zSybDu28n3LlpXRFLi7tR2beQebEEENBVUqVW3jNaek4dWkouBtWRpY8+klqV48dN+3KcPy83TDOtp7OOzqLn2p70qdgnTjQZzihzJvr0npt4XVNyFsUSxAnEVKmMU6mvXsmYmC5dIEsWSd/euCH/NuANTs9pKTkrOEUsRUZCmYZSsPzbD7FPR0RF0Hn1F6w8v4m/lSa0+N9vtq+9Zou4gHt7276vvWzbJ8NrP+nivmMa8ioMLl4V00gHuH3oOLNrt0eJisLDy4vPO7Uk3e17sG6O8XX76GnI7x8rSGMjSw+9WHuzImn+UjnYePYSaPAu5Dbvk/e6p+e0lJwTsMln6aefZH6YqZvaq1cy8uRb88Mge5TvwczmM5l8ZDKzj82WJ/v3F2NKZ7f8f/CBjPTQsBurYglEKKVKJWKoRg24eFGeT5lSUqE//SRpuY0bRSz995+8R7T0nIYFnJWGw8sL1s+DUYONnvb29GZhiwm08inO+16buBlkozP3+cvQIUAKsN1J3eqJJ5YAhv8GTbtabPFXQ+7KZXnnazEwjo6M5M9/jxKxdLLxveVVGLT5GMZOBeIVeH+xjjSzf1d3sODnMt5lxQaLm2npOcu88Sk5VWLp1SuZ4/bNN5JeMeejlDKl+DG99ZbFY/Yo34M8fnmola+WPNGhA9y54/yW/+rVpc7KXZw+HfdYrZr7jusiVIklQ9KkgUyZjCe968X2pUuSuitfHsaMgbNn5f2UWkLpWnpOwxCniKUbd+RGO24o5DNxzbpyA++CeVn4+XJ23DxIHj8bZ74VKwTHNkiqz10oirh8VyoDGdO777iGfNIFPmjjlIzAu9/04dLGHdw7doZHF66y/cdfafhhW1i9Gf7XD1L6wJrZUCS/+Zqla7fg5ynw6/fmTTV908G/a+J+Zhaail7H9JyhcaUjvNFXZNWRpQsXYMaMOEEQn/v3xYlbUSTCoGKESf2C9fF+8IgDN/fzVdg6lJg3plPp00fEmLvQp5ripZySIzaLJZDaszVrIF8+SdM9fhz32vPnUsz//LnYDLRrJ2Lp+XMt0qRhhNMiS5evw/4jYigZn10HoXQDOHISb09vGuSXGsefD05XN7D3xFl53xYt6HqTSkPu3IcWPeDgUfcdMz7+OW0bQmwBzxQpaDV7HJ4+KfD0SYFv7hxw7IxEgvReTKWKsffhKalZSpU3Yc3SvYfw7zFjw0tT6MXSlt1Qr5PF2XivW6TJWcaVb2yESZVYioiQTxFlyogZY5o0phfbsAF++UVSYGoLtl+8gEqVON+7KuOilvMy4qXpQnB7uH0bpk6Fr74CP9cXYiZQ79lsHKOQxLBLLMXno4/k97Bnj9xQ3n477t9Ll0p3ZWioPN+1KwySAZ1apOnNxiliKTxcopx1q8PhdeDpmXCbGpVg9jgp2I4hWonmyP1TDN09gWUtfzc/RuXWXajeGqaMhA9a235+jpAzG1zcDRndVGBujhNn4cvh8Pc0cR13gCzFC9Ni+hiylSpK1hJFRIi2bxYbqY6NLD1Py9q1HqTpHc/yoVqFuN9zVJTp37chWTNLxNEnhcXNXsdIk6O8kUXfqk0p27WT9Nuvv5peyDCsGRRkuzj5+2+oUYOZd9fRa20v40JwR1i9Wtraz5wBNxZfB9+9i1+uXATduYNvThvD+0kEp4glgFOnpHOuenXj5xVFuicLFIAePaB5c0njNm5stNkbUgiuFX0b4LQC7yZdpbtq6GcJX796UyILZU2XDURERdB57QBWXdxqWTTtOADVyjtnrlpy5M596Pst/PItFMjjmmPcusveKaNplGmnpOEajieNZ0pIb+aa/ioMWvaEdk2hh8rMwvXbkD2LpP7M8DoVgmtF3zaiOg2n00GTJmI8aIqwMGjWLG6GnC1i6WhMOLltW8ie3WiMypBtQ2z8jkzQooVExNzdqXb5svFjMsNpYgmgVCkRS4oCs2bJp36Q99W338LAgRK57NtX3mPh4UY2FVp67s3CqQXeLRpAbTM1hD/+Cp8MjhuNEo/4Y1R23jhovMGDmDRz7aqJI5ZmLRbzyMQmV3ZYOcN1YgnYcfgfGqXaQOUMRSUNlymriKXHT6U2LX6wwyeF1HaprSmLiIAmH8I3ZhzfY3jd0nOO8Eal5FSJpago2L1bDAe7dze/mKenRJ+yZ7ftJLZtk066Q4fEIymGnuV74u3hTdnsZW1bLz7HjknReQrL4VaXUKyY8WMywqliyZCzZ0UU5cwZF0Vq0EAeIyMhTx55L/3xh6TlKlaU6BNaeu5NwSliSVHEBbpcSfHeMcfkEVLrYuF9pBdNow9Oo2KOuJQdTwOhXCMY9gV83Nn2c3QGD5/AvQeJc+z4KIrUDuXzlyiNk4gMC+OPEd8w2HsNVXKXZ23nucY1S/v/g99nQ/v3jB28dTr46cu4c7v30PLgZG9vmDZalcDS0nPCG3P1VR1ZWrgQGjaUqfOmiI6W9nEvL7EXqFXLthOpU0dcoU3MletatitlspchNCKUyYcnm3cEN0dYGNSvDz/8YH1bV5AypfFjMsFlYglEvF6+nCDlBoho7t9fHMA3b4Zy5WLFkh4t0vR647TI0l+r4Z220jEVH0WRqMytuzLyxFTHXDy8Pb35tnpf0qZIw/knV1h3ebv4AI0bCi0b2XeOzuCbAPj9x8Q7viEhLyX9uWSNU5f97YevGOS1hpy3ofvm9KQJiYABP8YVab9XH85sszjuhJ+nQI3W8CLE8sHeqSyz64Key3vEwvVFizS9IYLJJp+lDz6A/ful08kUv/0mreFPn9p2EvfvywgNnS4uwmCGHdd3EPBPgOUxKqbw8ZHC4r59bTu3GHbv3k3z5s3JmTMnOp2OVatW2bbAnTvGj8kAl4olPblyyePs2TKMV/87rVZNUqdVqsD8+dJhpyiSspswIXZ3TTS9njhNLIEMbV0zWwwO4/P4KcxeCnsO2bX0H//Np9WKPqy+tBU6tRS38MQgOtph7yOnkjYN7FsB/T5y2pJ7bx3h+4w7yPPQi06L4PrK7VxbuQHWbjUePeObTgTb4FES+YtPt/dF3KY106gUn4NH4Y85pgW3AW+6aHrtBZPqAu8BA+IETcWK5hfs3l0GqdrqbzR2LHTqJFEgKzQp3CS2pkm1aNJvU7y4zDCzg5CQEMqUKcPEiRPt2p/nz40fkzhuEUuGPH8uzQGGv099cfzcufIeefYMliwRgW2AJppeL5waWTp+RtK6dczULWXJJH5JnVradYhfa3xFqxspabsiQJ3lgKu4cgPSl4QDiWgpEJ/ihZ02TSG2Gy5nGRZWH06KCHl+zZipRBxZB2+XM97haSAs3wDHzyZcLFtmaB0T1d68K66G0hwNa8LZ7VAwrwhTC/ec5CiaJk2aRIkSJahkIrNjC6+1YFIdWXr1Ck6cgCtXzC+2YgU8eCDF3W3a2H4yo0fD1q2qCyUNC8FViaY1a6ByZbkh20njxo0ZPnw4rVvb2SqcjGqY3C6WQNJvk2OcfOP/nlKkkPdGWJj4WLVvL8/fuBG7iSaaXg+cJpaiomDqnyKaTHH9NnQbAIHBkoqzE29vHxYW+JRWOarRdlW/xBNN6X3hl6FQJH/iHN8cnw+D//3s0BLxTSkrd2hD/lpVAQi8cZs9E2bJAN3Bo+T3CuIHdXqLeaEMcPsetOsNi8y8RwzxTSdC6ZNvYNgEi5smN9Gk+TBZQXVkKTBQjCa3bDH/SeHlS/j8c4kuDRtm24ns2SM3wGLFZCCvDfQsL4N6bwTesLIlkDWrpHjc4LukJywsjDCDiFlwcLDbju0IiSKW9Oh0UgheowYsWxbXhfmZQQv4woWSEj5yRH6nGzbEbqcVgidvnCaWFEWiSv/MN98SfvuezDxzxN1YUcDbG++Bn7Iwqgc9NwwhXYq09q/nCFkyJe5IFHMUzm91uK0lzDl4N/ltGFMqNiM6IoL946dTpnk9Mm3YCVXKx9Wh+fhImvKn36U7sny8a1nuHLB/FZRQee/R6aBkEcie1eqmb2Ih+Gvpw6Q6sjRmjDh4nzhh3pRSz927YshozRTMEEWRIu8MGSRC5SD/3v6XyrkqO8fc0go6nY6VK1fSsmVLs9sMGzaMHwwKzIsB54GgAwfwrVLF5edoD4kqlvRERUn6rW9fSBvv5nPhgtgNLF4sKeIFCyTymdp4Gvlr4tP0RvkwOU0sHTsNX/wIiyeZ7s7SX9N1OosjMKyiKNCxL9R7B3oa+/pERUdx9MEZKuUobd/a9rDroLTOVynvvmO6GLPjTmLY9u049sbMkStQpzpdVs1AF78DOjwc6neCru2ge3vzB9v9r/hHdWyh/gRPX4CSRS1ukpx8mjQfpnjYVODdoYPM8zInlk6fhm7dxJE5Z07bxBLIhWrdOhFlDnL12VWqz65uOj23ZIl0WrmZb775hqCgoNivrUeOyAsqRsMkBklCLIG8jwYPFrF0544YjOopUkTeL40by2ibyZNFLJ04Eef5hZaeS244tcA7dSrIkQXSpjb9+vgZEDDUMbEEErnI7w85E0Ybph3/i+p/tndvem7MFClMTorcvAurNtm0izWxBPDuNwH45ZGmkavb93Fm9Rb5wDV6clwtV4oUsG2xZbEE8Pd6WLxG/ZD3vYehYlOrNWPJLT3nCK+VYFItlhYtkjRb3rzitmyOO3dkaKq1gjlTLFokUSn9QFYHKZChAFObTU1Y06QoMpZlyRKHj2ErPj4++Pr6xn6l06cc7Sw6dyVJRizFp29feQ8aRgU++EBC7RERcV1BgwfDzz8bpVc00ZQ8cJpYehYk74miBeGvSeY7oLJmFv8dRyPR3t4wajA0qZPgpV5l2seaW7pNNK2ZBZNGuOdYtvL3ehGpKpp6QJ1YAvBOnYrG47+N/f+xOUvlWrFlD/x3Mm5D/SDgKfNh3t+mDzpuKPw9Vf37onpFMeesUs7qpokhmkaNGoVOp+Pzzz93+bH0vDY1TKrF0q1b0KuXdAJ0MZMPf/VKvIQaNhQLAFsvPC9fyg3u009hiBOcu2PQ1zT1WtsLIG6MysGDEgVLbF6+jHt0t8u4BZKsWAKZ+Rcebvo9Nn26+DPVqiXu8AMGJJgXpdU0JW2cWrPU5hOJ+Mwaa3qbV2FSz+SM+W4//CrF1WbSN3pzy85rB9Bu1WeWx6g4Cy8v82NBEpueHeDjTqqaetSKJT1Fm9WjZLtmZC9bgir9usnPYdOfcSLJkNMXzf+M9Km885dh+O8w42fLtVc6HTSuLf/evl/uiybEsx531jQdPnyY6dOnU7q0G1PCvCaCyaY0nL+/FN3mzWt6sYgIcflu0kT8cOz5lJY6tdzg0qe3fV8r6EXThIMTCAoLIn1IlESwrNVgqeDFixdcNhhrcu3aNY4fP07GjBnJk0fFCICLF+MebXVAdxFJWixB3KDikBD47jtpKkgXM8xzzBgR3BkzwvHj8jN9+lTMSb/7TkbgoImmpIpT03A6ncyGy2DmZhjyEt5pA70/gF6d7D8OiDi7ddf8sWIwFE3/XN3lWsF0/jIMGQO//mDZsDGx8FU3gNdWsaSn9fwJxrWrXl7ye5r3N6RJLfPjAP740brNQVg43LwjtgS5VF6n5/0tH8otCCZwj2h68eIFnTt3ZsaMGQwfPtypa1sj2V9VVYulSZPgiy/kTWZOLIGEobt0Me3MbA19eiw4GDJnNv0JwAn0LN+Tox8fJf2ZKzzLnx3FSfVLR44coVy5cpQrJyHYAQMGUK5cOb777jt1CxQpYvyYyCR5sWTI9euSVj13Lu45T08RS0FB4uG1bZvUqj18GOffFIOWnktaODWytHlXTANJNRl9YopUKaHDezJ011F0Opj5sypDRm9Pbxa9N4EpDcV9+2looOPHN0VYOEQrkM7xD4YuY/02KNNQPnSbwF6xBJhu9NHpYOcBOGRw79OLpdWb4Wsz6csyJWDX3yKW1F4npo+CBb/Jv63UQLk6PRcQEEDTpk2pV6+e1W3DwsIIDg42+nKEZC2YbIoseXhYLtpWFGnjBggIsGxeaY6LF+GnnyRF5mJ8vHwIy5ub6l9npu+D2baPUTFBrVq1UBQlwdfcuXPVLaDv5Eqt/kLgKpKVWAIZoXLlinhpKYrxhSxlSnELz5BBBFSNGjLcNyLCqNhfE01JA6dGlvYdgfd6WC68vfdQrm9f95b6JkdYuBI27pR/q4yue3l44aHz4Oj90+SbUtM1NU1lSsCqmTKeJamSzx+a1IaXrxK85IhYMsWDU+e5uGGHpGfHDk24wbMg6YgzI97Q6WQcSp0O8M926wf08ZGU3pUbULUFnLtkcXNXiabFixdz9OhRRo0apWr7UaNG4efnF/vl72/CCd8Gkq1gUi2Wrl2Tx969Ydw48xeBhQuhalUZVWEvRYvK8ayMPnEWPpmzMaDJT0z+b6rtY1Rcwb17xo+JRLITS3r09Q9ffCG+X4bPL1gAFSrIWJ6ffhIRNWyY+DMZjOnRRFPi4lSxBFCjEhxcDdUqmH59xwEoXhtOmHB7tod1W9XdQE1QKktRGhV41zXmlk+eOeYn5Q7eKiJF8n7G6TlniiUlOppNg0YyrUoLVvX8mpeBMRGT9dtkKK+erm1hwe+SMTFHujRiGZDFhqakjOnFd0pFCtLZounWrVv079+fBQsWkFLlvNL4ndy3blke/WKNZCmYVIul/fslPbRvn/VFO3aUobjxhp+qIjwcxo+Xojh3tdTPnw+jRtnuCO4C9Lbz7Rs2lCeePXP7OehJtmLJkBIlJIJkijFjRNg/fRpnfBlvTI8mmhIHp4ql7ful8wqg7Fvmt6taXiIMpZzkrr9oIoz9n1276muaWhWp73zR1Kon9LbvvNzKk2ewJu77dnZkSefhwYu7D1Giogh98oxt346TiPS46bB0rcGGOvnacwh6fGU69ebhARN/gkpl5PWQl9ZPIIMf/PmbpPNehMD9RxY3d6Zo+u+//3j48CEVKlTAy8sLLy8vdu3axe+//46XlxdRJgR1/E5uXwebkZKdcaVNabjoaGnv79TJfCHcmjWQO7d8creXPXuk5mn/fnBX1f6wYRLJmTYNgJlHZ9J7fW/2dd9H5VyV3XMO8bBgCuYWXguxFJ/7940L6IOC4MABaNRI3neFComNw+jR8Pbb0rAQQzIwt3xtjCudHlnq950UXq+cYToqHhUlqbjcTrLw2HNIOuwqlXF4qYioCDqvHcDhe6c432sTPl7qxkFZZOcBSJcWKpj5IJFUWLoOun4B1w+wN/y6U8WSnud3HzCxTAPCn4eATkePnUvJXawQ+KZN+F7ZcQDGTIa/JlpOZ376jaTw1sxW3+jUMQDuPYIdS6zu4wxzy+fPn3PDYFQUwEcffUSxYsUYNGgQJUtav947alyZrASTarG0apXcRN62UgCpKNKyXbCgTJJ37ORsH8jrZK4+u0qBDAVio0zucAQ3JDEF02spljZskLmFR45I1Ck+M2ZIhCl9eqhUSewyBg822iSJi6bXQjA5XSyBfNgLCzff9v3bLPh5KpzZ5pxW+w4BEPwC/pnn+FqIaLof8gh/35woiuL2a1GiEfISXrx0mVjSc3DiXDZ9KR1i2cuWoNfeFXh4ecG/xyTFVsCgq1mNgemOA9Kp28x6IXUsF65ASGjCcSxmcIUjeK1atShbtiy//vqrqu3fGKdv1WJJUeD332HmTOuL6nRyU5o82b6TCg+XKfNRUe4VS9evmzRIK5BB0olDtw9NnPTc+fPGj27itRRLIGN1xo83Pcw4NFRq8pYuhZMnpTNTP8bm+fPYzbT0nGtxqlgKfQUte0qBt4eHZY+cru2khdxZvkSL/oD5lgeu2oK3pzf+vjl5ER5C7UWdHUvPXb0JMxapSxklNmlSu1wsAVT+tAvZShcH4P7xsxyevkhMbj/8AibPN95Yp4PjZ+Cb0eY73GpXjRNLDx6rO4miBUUsRUXBpHniA2aB18ERPFkIJtViKTpa3hxr11oWQYGBMg3+1i3p6FJZQJaAbdvgk09k/pc76dxZ3KDNkD9D/sSpadL7B6VT50niDF5bsQRS7P3pp3Lz1NsJ6EmVCg4dgkGDJEp69aoIq+3bIX9+8RqLQRNNrsHpkaXQV3JDS5nC/DZPA6VOJr0vtLbD+sQUD5/Ieyyz8z/0+XimIGuaTI45gh87DQN+su4vlATYe+sIjf7qSuX7HqxtMdElYgnAw8uLpr/HzfHcMWw8oc9DYMN8GPNNwh1u3YWte6V7zhIz/oLyjeHxU8vbGXLhCnw/XkapWMHZomnnzp2qo0vOIMm/A20q8K5USep60qSx3B3w6BFcvhznTG0vjRtLK7ipdIkrmTbNooN4ohWC58pl/OhiXmuxZEhEhMw9NBh0DICfn3xA2LJFoksvXkg3Xb58oB9TE4MmmpyL08VSWJh0IK2eZd5rCeDL4dDkQ/X+OdY4chIKVJdHF6AvBHdojEqbJvDslOWIWxIgtsA7Q1HWBtYhzUvXdvX5VylP2Q/bAhAW/IL/Zi2WVJynp0TlQg3sDZrXhwOr5D1midaNYMwQyGRD81KJInBuO9SroWrz5BxpStKCyaYC76xZxcvGkru2okjYsnBhqQspankKs1nCw2H1alkvd2771nCEkiWhbFmLmxiKpqlHprrnvF69Mn50IW+MWAIR///8Iyk4U2TMKIXhnp4SberfX/Y5cwYM/nY00eQcnC6Wlq2His0kcmSNHwfCL985L9pStAD8OgzKWejEc5D4oulq4E3bF3GRCbCzMOqG67qANDPG29aubyc1vv40tj7p0OT5RIWHSxSpYlOYHW++qJcXXLsFEyyUq2TKAF1ayZrXbGjB13+vU+bDwJ8S3dwyPvpO7kqVKjm0TpIVTKrF0uXLcoMuVEha7VOlMr/ozz9Ds2YimhwpQly1Ctq2dcyzyV6GDJHjq6Bn+Z6s77Sej8pZd+x1Cm6qYXqjxJKeokXlvX3tmryPDalQQXzEUqWCevXEIgMknTdwoNHFSxNNjuGSAu/yb0kUxdKnf33EIHcO8WZyFunSyhw0S6a+TkAvmpa3mkiB9CrGLBnyfm9JFSVRTFoHPH8Bh0+4/NiZCuWjaLO6AHinSkngjTvSDbdkEnz0fsId9h+BKX9KatcSB49CyXpinGoL3ikghYXsjgHuFE0BAQGcPXuWww5OxUiSsl21WAoPF5PI5s3ht9+sL6x373b008r774t9gGGEyx0oikQNbHArbVK4CQDH7h1j6ZmljKw70nUdK4UKGT+6gDdSLBmyfbukZD/+OGE09dUrqFZNbDTatIG9e8WrKd7vW5s9Zx9OF0v3H8m8toL5YNgX5rdTFOliK14Y5o137JiGfPcLZM0Efbs5b00LeHt607yw3NwnH11ArrTZ1M2fK5QPsmV27cnZiVmfpaXrxBri8QlIbeFDvBOoOaQvZT9sQ5EmdfDQC9/678pjRIRxeUqnltCqkfVzerucjMepUs62k+nZIe7fz4KsOrO7c2CvM0hytgI2peFATCmLFIEsWcwveueOzN5yhlA4f95011ISZ97xeXRb3Y0+FfswsclEp4qmSZMmMWnSJKKiorh48aLLbAXeeLGkJyTE/LDlNWukli9HDti6VWwHnjyBnj3h11+lvimGJGA5kGxsBZwulhQFarWD/HlgrgoRdPaijKYolM+x4xryv59FMPXv4bw1VaAoCh1W92fFxc383fIP1w7tdSEWTSkfP4WHj6FYocQrVt95AHp8CftXJxScj57Ahp3wYRvr61y4IrVRluqC43PiLNTvBCtmqIqIusJywBSvla2AarF0967UcygKVK9uWSw9fy43kPFO+GR2+DAULw47dzq+lj1cv241N2yOrmW7uqwQPDbcuW6dPPHggdPW1qOJJQPSpBE39XbtJCVtyHvviVgKDpa/E50Odu2Srrl4gye19Jw6XJKG0+nEoXtAL8vb3borbdslijhXLAGM+NrtYgnEH25B81/UOYI/DZSfQWKPfYqHVQfvzBnld5aYkdvSxaFtU/AykW5dtQkGj7JeN/c0EGq0hok2+nO9VQQGB6g2Gk0uheBJRjDZFFnasgX++EM+OVsjXToRS507O36SFSrAypXw7ruOr2Urr17JuIwJ9nulGBaCD9o6yIknF8OjR8aPTkITS2a4d8/YasCQZcuk+Pv+fdixQ0b+lCol9Xva7DnVuEQs/XdKBEDlsnJTM0dUFDT7CAb86PgxDXkRIkN2w8Odu64NxB+jsvW6mfFVS9dCibpJao6c6nEnMxfDtAXuPTng4dmLBN28KzVx5jrePnpfTE+tdcNlTA+LJ8OnXWw7CS8v+TCQKiVcvw1XrlvdJTmIpiSRkrPJZ0mv2J8/t+73c+aMdM45g/BwCYknFlFREikoXNimGiZTzDk2h+JZilMldxUnnZzgCqdvTSxZQO/gq/8bNkyzKopEmHLlkvdOZKT4OgUEyGiVw4eNCn0TKT2XpFNyLhFLt+9B8TpiOtlNRdrhwFHI6Ccmgc5i9Wbo0l9umHlyOm9dO4iIiuDHfRMZULk7GVKaqHe5/wjOX4ZaVd1/ciawaTbc1yMgIhImfO+Wc3t27Rb/9P+ey5t3U6FXJ5r9ESO0V2yA42elwzI+IS/FqLKAikL8O/dFQNn6d9CwC3h7wbq5qjZ3ZXou2Y9GUS2WQkKgYUO54Ou7gCyxa5e0WO/fL8NKHSE8HMqUkSnyH3/s2FpJiPCocOYdn0fP8j2dUtPkbMGkiSUVREfDRx9JQ0O/fglfj4yUSFPHjpAnj8yaMzFCBRJFNCVZweQSsaRn10GoVsFyTUhgsEy9d1WDxt0HkDOba9a2k2uBtzj35ApNCtZK7FMxibMH6TqbV0HPmVCwBuEvQvBK6cMXl/eQOnNGafXfcwgW/J4wRdjmY3gWDNsXW1489BWUqCMO85YaFExx867MKcyq3mbBVaIpWdcw2ZSGS5lSBuTGM+Qzy7vvildSFSdEURRFbkrVqjm+lr0MHizDVp3Ijms7+Hjdx86rabp40fjRATSxpBIPD4kiZTJzMYqKgkuX4OZN8SqrWzcuPb1woZhdxqCl5wSXiCVFkWgRQM0qlsVSdDQ06yYRCmcTESGPSUwsAfx6eC4tl/c2rmlavAbWOjBWxUnYLZYUJe5n7mJS+qWj3EciLCJfhXFEb8XQ+0NYNNF0PdWwATBrrPXFU6WEqaPgMzssavLkFLEUGAxjp6oyXU2q6blEE0yqxVJEhFzwPT1lRpzeGsAcQUGSbtDppADWGZ/QfHzg66/FMDIxiIyUjqebdhi+WaBhoYbOLQTXe2BZ8sJSgSaWbGTkSLESAHmvGOLjA5s2yespU8LEiZLSvXJFfJr+/tto8zddNLkssrT7X6j9vgxHtYZOB4N6Q/v3nHNsQz77Htp96vx1ncC4OoMTOoKv3CjdXImI3WIpLAxyVoRFq117gga83acruhhhdGjqn0Tq57spirwH418fShWD/P7ywcpanVjDmpKSexFin9P8v8fg11lwTd19zJmiKVkbV9oUWRo1SjrhDAaKWmTcOGja1PGxJ3pGjnSo0NopeHmJM7kzCtfj4dQxKvraKgdqrDSx5ABjxogxa/wLn/5Dw5Qpkp5++RJGjJBuOhMzCd9U0eTSNNy7b8PWv8Tfxho6nYyyqFjaecfX07IhtGvm/HWdgMkxKksmw2QXRNpU4lAazsdH0leVy7juBOORIb8/xVs2ACDkwWNOLVkrL5y5CA06wzYTxfUvQ6Fyc/hzhfUDPAuC0g1gwUrbT65hTTi7XXzHVOIs0ZRsjStt9ln6/HO5yKsd6Prtt2Lal9pJ+eWnTyFzIpum6Yt7XUTP8j0BOPPwjF37632YPPSfXuzsvtHEkoNUqCDvE3O1R9WrS2dpqlTw449i/+DpKcOqly+HWbNiC8HfNHNLl4mlyEg4elo64tQ4dP82C85ekvSHK/7mG9Z0/ppORC+aPvpnEJ4ernUft4ZTapY+sbG7zAlU7d+Dsys2AnDw99mU/bANupJFYe8K023+qVNB51ZQXIXhcAY/6X6raWepi186uT8MHC4jWFR8gEhK5pZuLfq2SSzNni3DbXPkULf4nTvSeu9u92138PXXcPAg7N7tlsMdu3eMstnL2lwIHrx7N341axK0axe+NlovaGLJyURFWR53ce0a5M8vofVPPpEPBosWyadiA1xcCJ4kir5dGlmau0wcn89tl7Em1vhzhYxB+f5z552DnhUbxB/o3bedv7aLiK7WghP9mlGuoxW/KifjtALvew9h404xiHTx+BlDZtVqx+2Dcp/tuWc5uSoZRLmc9QHc3nXCwqBFT+jRAdo1Vb2bMwrBk03Rt01iKSgIvvsOlsQbHmiJ776DJk2c69exaZNbBslapWFD6NbNLYe6FXSLKrOq2JeeK1DA+FElmlhyMgsWSLODuUjflStiwLp0qTjX//WXdH/6+EBgoNGmr3t6zqViCeCD1rDxT3ViSb+9K8QSwPRFMug3uRAVxZya6ah8c5xlc0sn49RuuLOXIGAo3LjjvBNUQZnOrWP/fXmLQbPQx4PhezMmzvv/k446NVy5AVXeg4t2zFP18YEN820SS5A0CsHdIphsTsP5+cGJE9IOrZbffhOzPmep+OvXoVEjSVckNnXrQvfubjmUv58/k5pMsq+mSa/YbbAU0MSSCyhVSuwDzImbggVh7lxo0QJKlJAh0g0bSoqueHEZYm3A6yqaXCqWFEUM+zw9obqVRhUQcfvzFPEdchUb5sPPQ1y3vrPx9OTD4XNoVbSBdUdwJ+F064B3KsGj4+p8jpxIofrvxP77iqFgqlhKirxNceA/iXCqCTrkyg6lS4jdgD3oI1OjJ8OQMap3S2zR5PIaJpvE0pkzUuQ9bZr5Nun43L0rRdFZs8pAXGeRLx9cuAB58zpvTXsICZEOuVq1REi6AX1NU6+1EgZXPXvO0OlbhWjSxJKLKFNGvsB82LxDzJDMa9fiuhr//hsqV5ZUeDxet5oml0eWVm2CDz6HExvVFbmevQRjpkDTupDdwqgne4mMlOuks79PVxL6Cu/7j1jYaAydgbar+rl09pxLfJZSpEgUw+P0+XKTs0Ip0uXISuFGteNe+NhC49BnH0l9kpprfUofmKFe6JglbWq5RtmQ3kvMmiaXCiabI0v37klkx5a02sCBImz++895RZL6X16RIs5ZzxFOnYKWLeHYMShb1m2H1Yum0XtH8yT0CZlTqyh8v3cv7tFKLZkmltzAypUwfTqsW2c68hodLR2llStLxOnePShUSJocAgPFzsOgDfd1EU0uF0sAjWrBnF/UdwSVfQtuH3KdoGn4AdStDkP6umZ9V3D4BDTojPfJzSxsPp7Oawew7MIGlwgml5pSfvA5tG4ErRo5b00V9Ny7wvQH3dMXxK6nXLxrrt4b7NZdSSGruZ/+e0zSc51a2neSfbvF/TsZiCaXCSabxJJ+5Em9epJ+skX4/PabiCxndpRs3AjDhsljBiuzdlzN229LQbulAcMuomf5nnQu1ZlU3qkIDgsmXYp0liNN+giflUifJpbcRLZsYmr5/DmkT5/wdQ8PMa/Mn1/+/9NPcX9HQ4bI+//CBSOTxeQumtwiliIiRPiordEIC5PfhSujPx1bQB6VdVRJhVLFYP088M8Z2z2nJzjsOb4+KjunreByB28vT5d2OZvD7LV64E/SrbZ0SsLX/j0Gtd6HE5ugiIpa1DVbYO8heX858j0uWAkrN8Df01wimvSd3FEO1ji7pEvO5sjSJ59A2rTwyy9qDyFqNDw8QVePUzh4EP78U0z+EuGNntSIiIrg7ZlvUzV3VYvpOTWjUTSxlER5/Bhu3BBrgi1b4KuvYMYMowiTIU7qnnNrl5xbxNKjJ1C1JUwbLREdNcxZCsPGi0dNmqQ1biMpcvrRRd5d2JE5TUY7HG1K6uNOXMLNu+K8ndLEvfNFiIigpnVFVFkj9BX4pDBvZaKWrXth3VYY843N93RbuueSXJeczWIJoFw52120t26VlJm5ae2OUKUKTJqUNMTS11/DzJmJegrent70qdTHeiH45cvGj/HQxFIisWyZRIss0b+/NBYoiqRTK1SQAvDwcBg/PsF4h+RWCO4WsQQQrUCH96BMcfX7VK8IQ/u7TizdvCuzxJzZQewOTl+ACTPjhkvHUDRjfurlq2bsCG4HbhNL0dH2F0c7gajwcB5fvEqUvms2T07TYgkgbRpJr6kRSyBRUQ8PCFJpLG2OejXg12F2BUDcWQjuVMFks1jSX4Q//VRmtdmCv7+4FDs7VRUYCDt2QGioc9e1lxcvJGSfyFhyBNfbzrdo21ae8EqY6dXEUiIyZ471bs9Ro8RGQ6cTW4hZsyTqe+IEfP89HDqUYJfkIprcJpYAsmWG4V+J35FaihSAXioGitvLqo3wXvek8QHQFk6chdEJP7iadAS3EbdGllr2hG4DXLe+BTYPHsWI9CWZVLoBj84ZfJD97DuYtsD0TpeuifWA2r/nLbshRwW4fc/xE16yFn6ZbvNu7hJNTqthslkshYeLg/enn8r0dFspVgyGD3fgjM3w779iJ3D1alxtR2IyeXJin0Es+kLwT9Z9QsdSHamRpwYgtvMBAQGx4U7y5TPaTxNLiczy5dbn++WJaXsODZXOzMyZpWu1UyfYtk0Kw02Q1Gua3CqW9hyCC1eh+/vqUxRL10nkp2ML153Xp10kxZKEfi+q6NxKvkygF02d1w4gYMswGuR/h1Te6n63bk/DfdELPBPnZ58yvR9KjPB5cvk62cuUkBcypDcviO4+gHnLxFgyT07rB6lQGiYNh3RpHT/hy9eliNwOU0x3FII7RTDZlYZTFPGBsWcY3rJlErp7zwXDKevUgXPn4m4giYmiSDuwp2eSudj1LN+Td/O+S5FM0kGoKEpcTZN+NIrBgEdNLCUB9GLpyRPLdh2KAvXrQ+7csHixfGCoU0csO6KiZPh1p05STG5AUhVNbhVLAPuOwOpN0LOD+n027pQaEFcKphQpoGAi26O4AL1ouvX8Hqm8Uxpfi8yQKDVLtau6/hhmyFQo7vf+9PL1uBd+sBDxeqcyXNuvXrBkTA8fvW/X+SVgSF+HIqGuFk0OX9XsEksggue77+xrlV++3DYXcFvw9pbolRtt7M1y4YJc7PbvT+wzMUIvlkbtGWWcnjt92uhRE0tJiOHDpXvRUpOHTgejR8PQofL/1KnFEy1fPnj2DMaOhfWmnaKTWnrO7WIJYHAf2GfjUNLZ42DKSNecD8jvu+sAiX4lN9ZukY4tC3h7elMgfR5eRoTSZFkPi+m5RCvwPntRxtIkAhkL5Yv999PLN+JeiI6Gx09N7+ThYbtouXIDRk5Un8Yzh04npTp7Dtm9livTcw5FmOwWS2PHimD67DP7Drx4seULvyP88IMUvXZx/9DEBOTIIf44hQsn9pmYJEuaLAzZLs7BE5tMjDP5zJtXE0tJjVatRDBFR1v+MFCjRsLntm+X+qbLly0OtU4qkaZEEUv6FEISiKwZ8TIU7t6HyGRW8A3g56uutR3w9vAiXYo0Zs0tE7Ubbt02+G02tE5oCOtqMhpEFp8YRpimL4SvRkLwWdPiqMdXkN4XfvlW3YEuXYOJcyWNl83BYfUHjkKDzvLhw9SwYBW4KtJkt2C6fPkytWvX5vbt20bPWxVLIJ1tFi68qnBVAePVq5AmjWvWthU/P4i5+SRF4juCj6whn5Sf+ETTShNLSYu33pIvNezcKYN4p8cUX965I1Ybnp6Smrt61ayIT2zRlChiCWD1Zvh6JBxep77DaMtu+PQb2L/a8ZuMOdKkhi2LXLO2q3n3bdWDgg1rmuKLpkS3DvisO3zew73HjMEnXVq8U6ci4mUor4KC415oUFPGm5j7AFW9IqS2UvdoSKNacPeIw+cLQNXysHcFlFN5vTKDKdHUsGFDh9a0SzBdvnyZ0qVLExqvk0yVWAKJMNnLn3/CmDHifG1gqOc05s1z/pr28vKldDe9+65Em5IghqIpb5TUx7z3ZxMe8EQTS0mNuXPFiqNaNcvbPXsm0aSICPkb69JFOlIBfvwRfv1Vxt+YiVQllmhKNLEEkDMbfNxJvVgCyJYFenaCTOlddlrJmpehEPxC9aiY+KLpVI/1PH75LPF9lsy18LuJqHDpRvfyMRjRUiCP5fl23du7+Kws4O0NFZ0z5kwvmi5eusb7779PDgfvo6qMK3U6nS4oKCga4MqVK1SrVo1Xr4x9JXLmzMn69espYG1SfVSUtMr7+toXJTp4UNr+Bw92TZRJP9cmKYTWb9+WqMDff0sxbhIjLCyMsBjLg83XNpPvxivqfhBAhkF+/NNrIyWylEjkM9QwomJFaNMGvvnG/jUePYKLF6VZw8qMrMWLF/PJJ5/Qo0cPxo9POCHdz8/PD3iu2DThORajffbv30+9evUSRywlZQKDoUB1mDse3kt61xCLTF8IA36CF+dt2i0iKoJVl7aQI03WxBdLAKfOw4+/wuQRkEXljFQnoURH82NqqTnNXaUcPXbG1POEvoK/VkOtqqaF07MguHpTfUosLAzqd4JBfaQj01E27oQNO+C3Hxxfizhzy8XL1hEdHW23caXaCFM6PyuDX+/evUu5cuVULucERo9237ESG72/UTLh2Zggqo5JvM4QDQuMHu32v51Zs2Yxa9YsUy8FAX5AsKkXbeHQoUOEhobyaa+OiSOWbt2Fh09sq7l48kxqPyqVcV2TSSof+OlLeCtp1kFapEFNWGp7RMDb0ztWLPn75uCTsh0S18Fbp4OISAiPsL6tk4kMC4/9t5ehKeTDJ9DvO1g7x7RgmjATFq6EK3vVHShFCihZDNI7aUD800AxXHUSnp6eBHzahUVL1ji0js0RJpDUW3BwwmvcwIED6d+/P3ny5OHWrVumx2PcugVHjlBtxAj2HzGf86xUqRKHDx9O+EJ4uPjD5MtHpQYNTG9jbY0YgoOD8ff3jzvX6GiYOlV8mGIiZdbWULONo2skOE8XHMOeNfQRpqevntJxdUfuPr5L4OhA+AJ6Vu3JuAbjTLb5uvrnpeb1pPoztec8nXEeRq//8w/06AEnT8YZw27YQO8vv2TKzJky6DogwCjCG/88AwMDadmyJdevX2fNmjWUjpkvaHgcZ0aYwsPDadeuHRs3bmTVsik0bljTjiUdYMQfMGMRXD+gfp9l6+GD/vDwGPg6Zy6ahnHNUsZUfqy+tM1kIfibwKvAYMZkLw9AoQbv0nnN7LgXo6Mlm2JKrD9+Kn5MpW1wrE/C/HvoOA2afUSJEm9x8OBB10aY4l/QcuXKRevWrZk7d67Rdr8YzILz9fU1fYGPKT6NHjPG4g3A09PT9OsPHkCtWrBqlfltrK0RD6NzHTzY5jWccR4mt3nxAnr0wPOTTxKep7OO4eAaj18+5sP5H/Io+hHL3/mVuqO78XPFr/n67M+kSJ3C5Ow5l/28bFwDkubP1NbzVLNGOp0O3+rVZeTPu+9a3r98ealVMqxFbN+eYz/8gO/Jk7BqlQznNXOe0dHRtGnThhs3brB9+3bKGliHGB5HURSHI0t6UqRIwbJly2jXrh0t2/V2v2jq0hq62hgJbvAuHP3HtfPjIiJg5wEoXcJ1heWu4vQF6ZiywQU9foF3Ck9vk4XgbkXvS2diAoKrSZEuDX2ObyQqLBzv+EXclspOMme0za0++Dk8DRKjS2eUs+jrJ+MxZfpCpkxfxPUb0mz2VonCfDekn8W/db1YKl26DIsXLyZ37tx2n5Zd31lAQABz5sxh8uTJCW6GetFk8UPjsWMsyJXLojVAQECA6ReyZIEjR6BOHfPbWFvDEkePwr59Nq3hjPMwu82TJxJVc/Ac1Gxj6xrxrQOK+hUCoFPe92LHqHy15SuXn4e9azh6DGedhzvONaBrVyn2zmnauddo/yJFYODAuP//+Sds3CjbfPUVHDAfRQkMDKR+/fpcvXqVbdu2GYklNefpCHrR1KhRI1q2682GTbtcdqwE5M0FuW1MH/mlgxJFXOv59uIlNO8OB/5z3TFcxf4j8I369LGpbjh9IXirIvVpu6ofm6/tceEJm2HHAUhX3KkpJrV4eHqSpVghspcpQabCBpMrNu6E5h+Zni+oKDDwJ/jvlPoDbd4NxWo5PlMOpB4qewWYtTjBS7lzZWf08K84sn8VR/avok7NqrRo+ylnzl40uZShWPrnn39Il86xSK6qlFwMJjecPXs2PXv2TCCQBg4cyNixY007r/7zj1yQ9++HDBlsPGXnYXJycYcOYnuwfXuinVd8LExYTjRM+Szdvn07Ni2TO3duZh+bTYEMBaiVr1Zin24CkuLP1BRuP889eyQV9+mnciOPjpaIbu3aUL26NB+Y+JvWn2e5cuW4ceOGSbFkAke6NsxeuBItPfftOGmFVuu3oygys6taBWnLdgXR0ZJayZjetjbxZIY164CIqAi+3TOBAZV6kDWNewuvuX1PBEXnlnYNl3UJW/fCvL/hz18Tvhb8HOp2hB8HQuPa6tZ7/BSOnYH67zh+bmFhsGSdWBuocKjPmKMCY0cOokc8t3FTYsnC9VTVtcjh2Fn37t2ZOXOmyUjT0KFDTUeaGjeWi7K9Ymn/fml1dtBV1MfHh++//x4fwzfxpElm3YwTC5PnmYiYM6X0iQmh6h+7l+tOrXy1iIqOYv6J+Zajjm4mqf1MzeG089yyRVK81ti7FxYujAure3jArl1Qty40bCiCygShoaHkyJGD69evqxVLLiPRIk2nL8DzEPXb63Rw7DTcvOO6c/LwkMjXGyyWQArBR9f6mqxpMnHn+X02XnVj9DF3DmnTT0rXmno1TIslkHq6w+vUiyWQ9J0zxBLIz+nDNlbFUlRUFIuXriMk5CVVqxg3nOnFUsmSpVi8eDGKohAcHGyy9toWHI4w6TEXaRoyZAjDhw83HWm6fVsGe9pqzrh3r4xvWLYsrij1dSQ8XCbGz56dNJzHsTzuJHj3bvxq1iRo1y58Depktl/bTt35delTsY/JmiYNF3PzpriwL18OrVtb3z48XLpeDh0SE1e94eXRo1LfFA9raTgLuCTCpMftkSY7Boa6hfnLZXSFpflhSZE1W2DOUlg5w+wm9phSDtw2kt//m+++mqb9/0FYeKLMlLuwbiu3/z1O3ncrk7d6pbg6plt3xTvMGelgRYGvRkgNX6lijq219zD8vR5GDQYz3a6nTl+gas12vHoVRtq0qVk0bwJNDCK0hpGlGjVqMNpEV3CiRZj0mIs0jRw50nykadEimScXYsOnMpDxDTt3ukYsnTwJ778Pjx87f21b8fISk0B7BhS7AKvjTvQDi+MNLq6Tv05sTZPR7DkN95AnD1y6JBEic7x8CatXy8VP76/0ww/Qrx+sWyf/d65YcjlujzTpdGK2eO6Sbfu9CJE0hKsIDIIHj1y3vqvwSQEZzLep2+vgPbrWV7E1TZZmzzmNKfNhzGTXH8cEp5euZ+/YqSxs3p2HZwzqfOp3hv/9bHqnH3+F2jYYV95/BFv2iHeTo9y+Bxevye/eDEWL5Of4oTUc3P03vXt1omvPrzgb8zcXPw03bNgwgoKCYr9u3brl0Ok5LcKkx6ZIU1QUBAfbn5o7cUJuBs6sg7p5Ez78UIaOFi3qvHWTOWpmw1mrt5l5dCa91vbSIk3uJCJCPkVa61xZuBA++kgcvvWCNzQUfv8dfvoJrlyBbNmMdnGCWHJphEmPWyNNHw+Gg0fhxCZ10aYnz6BoLZj4E3R4z3Xn9Zrh6LiTiKgIOq8dwMqLW1wfaYqKEiGdLq3rjmECRVGYULAGz+8+IEXaNAy6/x8eXl7yoWjvYciSEYoVSrjj9v1w5Tr06mTLweTRGdd0GyO19Rp/SMECeejeta3VAu9Er2GKj02RJk9PETvBwdJ9E2/UikWePoV33oEpU5x05jHkySPRq6Qilk6cgM2bE/UUrImlSZMmUaJECerqIxBPTU/B7lm+JzOazyA8KhxF/f1OwxF++UUisqa6YQzp3BlOn5b3/7Rpki5PlQq+/lp8l5wvltyGWyNNgz6FVTPVX/AzZYCx/5MCV1cSGenaKJYriI6WqEW8WlVnzIbTd8+1K9aYsCjrXcgO4enpdrEE8OzqDZ7ffQCAf9XyIpZA3pvvVDYtlgDqVFMvlqKj4cFjWdMRsfT8Bfw6UxzIbVxHURRu37nv1G44c7hk/ofN6blr1+QT7tmz6g+SMaMUoH79tRPO2ASnT1u/ybiD6dNFTCYSaiJLAQEBnD17lm2zY0zRbt40u17P8j2Z8d4MPHQenHl4RkvPuZoaNaBjR/O1CqGhMmoIxE4gOBhGjoRvv5Vib50uwYeH5CSW9LhNNBXMJ87JUVHqm1I+eh/8Tds9OIWwMMhSFhavdd0xXMHGnZCjgrhSx+DMQbrent4sem8C7xdviqIonH5kujXdYdr3kUHLbub67kOx/85bw6CsY/YSWLnR9E5Xrssgab13lDX2HYF8VeGEDfduU+w9DGOmiPiywJBvx7Fn72GuX7/NqdMX+N93v7Bz97/s3P2vy8USuEgwQZxois/IkSPp37+/8Y2yTBmZgF6hgm0HKVNG6nxu37bo6WSN69ev06NHD/Lnz0+qVKlo7O8PpUoR8c8/dq/pNEaMEN+p2P+OoFq1aqROnZr06dO79NBqxJIRpUoZP1rg3vN7VJpRye01Tbt376Z58+bkzJkTnU7HqlWr3HZsWxg1ahSVKlUiXbp0ZM2alZYtW3LhwgXbF6pRQ+qQzDF7NjRtKlYaIDMejx+X/y9YkGDz+GLpwIEDlC5dOtZYs2rVqmzYsMH283QDbhNNz19A5eaw2IYxDNMWwKJVrjkfHx+Y8L3YFyQnypeCRX9AujSAc8VSfBaeWU25Oe85v6YpIsLhbm57ubHHQDC983bcC9v3iUAxxdqt0Heo+vtpxdIwdZTjxd6Na8P5nZDPsqnkg4eP+aD7lxQtXZ+6jT9g87a9pEzpQ/nyFVwulsCFgglENLVv3z5BpOmPP/5IGGlKmVJUbZ8+4iSslkuXxJF4rf2fns6fP090dDTTpk3jzJkz9J44kQ5+fgxNCl5M6dMbOZ7q6zF69+7t0sPaLJYgLoqhovMiR7oc/N74d7cXgoeEhFCmTBkmTpzoluPZy65duwgICODgwYNs2bKFyMhIGjRoQIjaBolTp2TQ7h0rLeu9e4sRpU4n3kuBgZImX7VKLDYMMBVZyp07N6NHj+bIkSMcOXKEOnXq0KJFC86cOWPX9+1q3CKa0qUVL6biZlIepjh0As64KMIB0K0dGBoXJgeyZ5GfY5rULhVLAO2LN3VNIbi3NyybCvUTuuu7Gr1g8kqVklwVDT7ELvgdxg01vdPnPeHoBpMu2yZJlVK64+x19752C6b+KQLNz7rYmTVtNNcv7iIs+Bxrl0/n4qXrbhNL4IKib1OoLgSPjpZaisaNpfBaLfPny4Da1M77Ixo7dixTpkzh6tWrTlvTLqKjoX176NQJWrWKfXru3Ll8/vnnBAYGOv2QdoklIPjECfzKliXo+HF8y5RRtU9iFoLrdDpWrlxJy5Yt3XZMe3n06BFZs2Zl165dvGtitEkC9u6VYu1Vq6QWKT4HD8pjlSryeOCAvMcyZ4bFi43HomBbGi5jxoyMHTuWHj16WDtLtxR9myLRZ8/Fx9WWBM9fiHNyq8biSp4ciIiAv9awt0gKGu37n8vEUuzhXFEIHh4uv1e1AsRJBF6/zW/FagGQv1ZVPtz4p7zwLAjS+5p+r5kZR2KWLp9BrWrQs4P9JzplPvw2Bw6vtanOy14H7yRX9G0K1TVNHh5iNaAXS2qM9kC2T50anj1z2jkHBQYy5sULGcabmHh4yPfmJiFhr1gC4kLPNoSg9YXgay+u5WHIQxvP9s0hKEhadjNmVDnfqUYN2LTJtFgC+PlnsfSIjJSbddWq4m6fPbt4LxmgVixFRUWxePFiQkJCqFrV/Z4ztuCWSNODx9CwCxxXEW3T6eT3sGmXa2onPTykRuSoDeMuEhsPD/YOH0SjXYNcLpYAozEq806vdE7Ue+1W8C0BgU4bm6iK60bpuMpxLzTtCl8ON73Th59Db9MzIhMQFSWGnFlsmDdnit4fwqE1bhFLzsAtgmnQoEH069fP5BswgWjSC4P586FECXik0j/k8mXIn98pLt1Xrlzhj4kTKVa2bKIMTEzAvHnghiiIQ2IJ4qIS8aIT1uhZvifnAs6RLW02QsJDtELweCiKwoABA6hRowYlS1r5nWzcKCan1jpOFy2CJUskDffpp+KFlj+/pLazZ4/dTI1YOnXqFGnTpsXHx4dPP/2UlStXUqJECTu+U/fictGUwVfSDOER6rY/dR5a9JAaE2eTJjXcOACtGjl/bRex9+4xGn2Sisr+5V0ulvToRdNf701Ap9PxItxGj8D4lC8Fk0eoSjc5kxumBJOiwLf9oX1z0zu1bare3dvTE0Z/Ay0a2HeCMxfD8pgaYV/1Pxt7xZK+k7uSg56GdgmmYcOGodPpLH4dMShU/uqrrzh27BibN2+mUKGEeX2T3XP16kFAgKQI1FCwIHz/vXyytvM8Ae7evUujRo1o164dpTZvhp49bfvh2IGa8zy5bp1Dhe3WcFgsOUiaFGmIio6i/p/1NXPLePTt25eTJ0/y119/Wd/45UsJrZsawxARITVLV69KzWCGDDKQ98AB6aSLh9rIUtGiRTl+/DgHDx6kd+/edO3albO2dLwmIi4VTSlSwNIpULmsuu1LF5eRFK6qd0mRQqK/ycBeIK5mqYzbxJIeb09vfLx8uPDkKgWn1nGspim/v3RButlzrmS7plTu8yE5K5Qit/79p9OJIDL3fmzTBN5TkYZct1Uc2O29RiuKDFY+cNSm3RyJLOk7uQ8fNlPsrhK7apgeP37MYytO2Pny5SNlyoTW5voBrTqdTv0YlcOHJdoUL1VglidPwM+Px4GBNp3n3bt3qV27Nm+//TZz587Fw8MDgoLE8qB3b5e96a39PNPs2IF/nz5w6xbkli4CZ9YwOSqWJk2axKRJkygUEsLamzcTjEaxBXfWNCWHGqZ+/fqxatUqdu/eTf78Dhbt3rkDDRpIMXfOnGIjAPL3pShQOS5074h1QL169ShYsCDTpk2ztmmi1TDFx6U1TcHP4ZPBMOBjqKSuto/AYKk1cSYREVCyPnz2EQTYOI7KjRgVeJ8tTpoMWWDgx24/D6fUNG3bJ67VNRyLbDhMyEv44kcY1DvhjLag5zBkDPyvn4xLscaQMXD5OiyZbP89UVFEvKsczeKsNJyjNUx25ZsyZ85MZrWRn3joRdKXX37JuHHjjETTyJEjAYxF08uX0KyZRHpGjLB+gJcvZYTDJ5+QecgQ1ed5584dateuTYUKFZgzZ46IJYBjx2DgQKhZM26mlpOx+vPMmlUMBdXWr9iAMyJLAQEBBAQEEHz1Kn4FC8aKOnvoWV4ier3W9gJ4Yx3BFUWhX79+rFy5kp07d1oXS9OmScfo2LGmL2KKArlyyeifgwehWDEYPBiGD08wesdRnyVFUQhLBlEMQ/SRpnbt2tGyXW/niqaUPhAapr6O5deZ8MdcOLlZUmnOwtsbvvxYfcQrEUjQDTdmBqRwb8G0Hn16rvPaAbRd1c8+0fTdOPl5J7Zgun5bHOhNCZSLVyUNPKSvurVGDhLxbet1Ofg5tOsNPw6Et8u5XSw5A5cW6Bw6dIhDhw5Ro0YNMmTIwNWrV/nuu+8oWLAgP/30E8WKFUvQPZdANKVOLXUZxYurO2jq1GK8V6uW6vO8e/cutWrVIk+ePIwbN45HBnVT2WvVksiOnQLRKWTMKF45wM2bN3n69Ck3b94kKiqK48ePA1CoUCHSprXNTdbpaTj9z8jBn5VeNH289mPalGhDnfx1HDsvA168eMHly5dj/3/t2jWOHz9OxowZyRNvBl5iEhAQwKJFi1i9ejXp0qXj/v37APj5+ZHKVCF3ZKR8mbqIrVwJf/wBa9bIMOdq1WDYMBFLLVs6FFkaMmQIjRs3xt/fn+fPn7N48WJ27tzJxo1mjPGSMC4TTSlSiPu3Wlo0hMyZILWZgn1HsGXchZsxaR3wbf9EPSdD0dRr4/+om68aaVOozHQA7Fku0Z3E5q0i5sf1VCoDZ7ZZtwbYdVC+lyZ17Ov6i4gUTy0bIqdJSSyBi20FTp06Rf/+/Tlx4gQhISHkyJGDRo0aMXToUHLlktZWm2bPXbkCc+bAjz+q8314+RJevbIamZk7dy4fffSRyddizysiQoRTgQLWj+sKdu2Ckyfp9t9/zJs3L8HLO3bsoJYNItEVNUvBN2/ilzcvQTdu4OsE8XH64enY81IUxSmRpp07d1K7dsLCxq5duzJ37lyH13cW5r7XOXPm0K1bt7gn1LSj798Pc+dChw5Su1Stmjx/4wbkjQvP2xNZ6tGjB9u2bePevXv4+flRunRpBg0aRP36qj6JJ5mUnCEuS89FR8Nn30PJIvDpB2pPJm4YsrNYug4ypod6Naxu6i7M+ixFR8twYhsKg11BRFQEVwNvUTRTAaddi1zB2j7/I0N+fyr06ECqjOnlyQtXIG0ayJU94Q7/bIeqFSwOOY4lYChcuQEb5tsWXVIUsbWw8XfoCrHkaErOLT5M1lAtmhYvlk/G+/ZBpkyWF1UUqFtXIk76aeuO0KuXeNucPev2Aj4AxoyBFSskneLg8V1V4B28ezd+NWs6VMNkij/+/YMLTy7wR+M/kuyFKlGIihJvriZNpNMtPvqaN/3PrFkzuHABBgyQmjwDEmncSZIUTOBC0TRkDBQpIEaS1pg8H/5cDrv/dq6PT7NuULQg/PKt89Z0AIumlKMmiVfPzX8T7wQNCIsMo9OaAXxYsqX19Fz/7yUdO0Zlq76DPL54lUmlpWstc7GC9Dm2Ua6XbT6WIc87lxnvEPISCr8L/bvDoD7WD6AoIl5tnYv3y3SY9zccXK06auqqyFKi1DA5m+7duwNYT8916CA3CB8f+eTl7W1ePOh0MGqUpCCcwcCB0Ldv4oglgC+/hEGDHF7Gpd1w+hovJ9d6pfJOxaTDk1AU5Y2taTJLsWKmo57Pn0uqrW9fGDJE3rdLl8rsxXhzopLjbDhX47L03EiDv+GoKMt1HFXL2zWM1CpLp7gm3WcHVh28WzaAEoUT5+RM4KHzwNPDQ11NU4nCbrWlOfjH3Nh/l+vWLu46OfsXuG/C4y5Naji2EdJYeS/8d0quGW+Xs2+IcMsG4Js20cWSM0gSESY9qiNNERFQp458YlYjIiIjYfdu2cdRFEU8bpzoKm4TL17YLQJdbR1gQb07TGI6gidJ1LwPVq4UT6Uvv4Rffolz9TYgkcVSko0w6XFZpGnSPFizBdbNURc9coUT+KVriTouxdXjTlyFSxzBHeTl46dMKPwukaGvSJE2DV9c2UvKVD7wKsx0KuzxUxExatK9Hw2EqzckQmXLe/DwCShdzLTFiRlcJZb0ndxRUVFcvHgxaTt9q0W1I7i3txSr1lR58ZozR9IW1uZqqaFtW/jkE8fXsYcpU8RcUO0kaQPc4rN044bxoxPRO4JPPjKZ8QfGO339ZMXx45AvH/xrIk3x7Bksiwm9t2oFOXJIHV/dunDtmtGmWmTJOi7zaSr7FrxTWV2n0Owl0KqXc4e4bt4Fpeq7dn6dBVSLpcdPJZ3zLMi9J2gBQ0fwtqv6ceqhiaHYZy5K95mbODJzMZGhrwAo91E7Uvqlg2kLoUxDSaPFp9cgaGa6bjcBM8bA0qm2iaXnL8SE9ZcZqndxZWTJWT5MSSIlZ4jq9NzAgfJCdLTUFlmqmeneHSpWlLZqR+ncGfxUFMi5gjp1JLIVFWVTqNdtppTh4caPTqZn+Z5kTJXRqV1zyZLChWVItal5ffPmSffbW2+JqMqXD/bsERGVL1/sZppYUo9L0nPVK8oXWPdcypsbCueTv3t7h5zGp3Y1Sc0Vs82V3xnYFFm6c188rEoVU1eY7Cb0omnJufWUzFIk4QYj/4C7D2HHEpefS2RYGIenyqw4nYcHb/eJ8dhq2RD8fKXgOz6jBsFTKyJ08y557xUtCNls7HxOlxbWzVWdTk3KaThDklRKzhCbCsG7dIHz58GEi7gRigLTp8sUd2fYBLh6YKYTcIdYUhHudDpXn11l3vF5DKs17M1Jz714AU+fiieXORQFbt6E1q1FXC9YYNQJB0lKLCX5lJwhLknPHTgKLbrDpgVQTsXfZjK45ljC5jRcVJR8ObtT0MksO/8PKTy849JzL0JklmB8k0gXcPzPFazu9TUAJVo3ot2iiebfJy9CIFVK65FNRYGabaFIQZj5s/qTufsA/loNA3qpfp+6Uywli+G79qA6Pde+vUSYrIklgMeP4dtvxY/GERRFJrurMdJ0NpcuSaegCqHrrsiSs8KdtnDg1gF+3P3jmzVGZeBAceqOn5KNjpaI044dcpHKm1cMLG/dgtmzjTZNQmIp2eGS9FyFkvB1byiu4pP45l3wThvTKRZ7GTwKhtpwQ3QAu2qWPD2TvFgCWHlxC21X9Ysbo5I2jVvEUnRUFAd+mxX7/yr9ukvrf+XmYicQn8++hzYqSkp0OvhnPkz4zrYT2r4fpi6QrjwVJJfIkp4kK5hApWjS6eKKWadPh9WrzS+YJQucOycpOkfQ6aBs2bjREu7k1i2YOhVu37a4WaLMhjt50vjRhXQu3Tm2pumNEU0//QSzZiVMx4aFyXy469dhwgQRUHXqwJEjMl8xBk0sOY7TRVOKFPDlJ9J+fuWGuCGbI38eEVbOrGXKld20P4+TcajA+/vx8NNvrjs5JzCv6c+xNU2rp/8Enw9zy3H/nTSPh6elhipX5TLkrlJOPky/VQT8cybcoWdH6N7e/IKKAhNmwr2HIvrUdsXpr79dWsGxDZDZ+lSK5CaWIIkLJrAh0qQosHWr1GtYQu/f9PffMG6c/Sf29dfw/vv2728vtWpJ8bq/v9lNEm2Qrn7KfXbXX4DBuBB8wKYBbjlmorB0qcw0zJoVqlePe15RpMg7VSrYsAF8feG77+Q9EhIiaeeYmhdNLDkPl0SaIiOh+UcwdKz5bQrnlwJc33TOE039PoLeHzpnLTM43A2XNrXpOpwkhFEh+NM/2eB50y3HTZstCyljarvqjxws98lC+WDueOM2/shIuV5Uq2B5wO7DJ/D7bNhzSP1JRERAhwBYuDLmpKz/rpKjWIJkIJjAhkjTokWSigBp/bfEqVPSbeRIZEJR4LPPpGXbXXh4SJjazPeXaGIJ5IZu+OgGepbvyczmM6lfMPFbe13C06diMmnC3Z3ff4dy5URM6XRSm7d0KRQsaNTKq4kl5+N00eTlJTe5HwZa3/bkOSjfGK7dcuyYegKDYfwMl4zwcIp1wFefwhc9nX5uzkYvmj6r1I3Sw0a65Zil2jcn4Pgm3ps2mrzVK8IXP8CJswk3/HYcdO5n/X6XLbPMMHy/mfqT8PCQ/bKom3WaXMUSJBPBBCpFk5eX3DgOHxYzv5g5ayYZNgzmx1i829GmD8i+vr7OM8dUy7//SqTsgnE7a6KKJYDgYONHN9GjfA+aFG5CtBLN4tOLX6/0XMaM8j7u1y/ha23aiMdS+/ZST6co0Lix2GjEpO00seQ6nC6aKpeVTrDHT2HZevPb5c0N5UuBj5NqewKD4ecpcPCYc9aLwWk+S4oC9x+5rPvWmXgHvuCXMp+SK112Hr18wuZrVjIeTiBttsyU69pWokN7DpnufqtWQTojzRViPwuCgT+JHYAtabibd+UD/O8/QgPrTRDJWSxBMhJMYEN6rkQJ6NrVco2RTifK+NQpKFpUHu1h+HD3+zKVLi3z9DJkiH0q0cUSSB2N4aOb2XdzHx2Xd3w9apouXoQvvpBwt7+/8YVuzRpJueXOLcXeuXNLfdMMY88TTSy5Hpek5+Yvhy9/Ml/P5JcOZo+DnNmcIyLy5YbLe6BudevbqsSpppSnzkO+qnDsjNPOz2XMWgxv1YWoKH45NIumy3rFFYI7iShzv/NsmeHQWqhd1WDjKHlsXt/y4OWzl2DtVngSqP5Epi+ESk3h0RNVmyemWJo0aRIlSpSgUqVKDq2TZG0FLGHTwN4bNyTiUaqU6cVevICvvhLhY20+nSXGjJG1fvrJ/jXsJEmIJSD40SP8smYl6OFDfLNkSZRzeG0cwVeulCjorl2QPn3c848fS8rtu++gYUMoGfO73rgRateOTcUlE7GUrGwFLOFUy4HoaImo5MxmebungVC7PQz9DNo1tf94eiIjYf12qXFx4O/G6Q7er8Jg0y4x+tQPlE2q3HsI5y5DnWoucQRXFIXFbT4mpZ8vDccNJXWmmA/NG3bIjML4nXm9h8gIlHFDrS9u66Dn4Oewabeq915SiSy9trYCllAdaQL5lN6rl/ncbdq04qCdKRM8eSJFtPbg4eE8Uzk1KAqMHcvj1X8luliKVe81Yqaf22CF72wMC8GTZaRJnx5u1Qr++89YLIEUcv/3HwQGQo0a0jEJ0KhRchNLrxVOjTR5eIhYCguDz74zX6uUwQ9aNYIyxe0/liHb9knx7mkTztUqccm4k5Q+0KJB0hdLADmyQp1qQEJHcGdEmk4vWcvFf3Zw8q/VzG/8oVzfFAV+mAAG9gKxVCoDZUqYX3DnAfh6hESy1Yql5f+IMPRNl6zEkjNIlhEmPaoiTU+fwsuXkrawhKLAO+9AtmywfLkLz9p5PG5el3qVznE3VWSiRpb0BJ85g1/JkgSdPo2vkwfw2srMozPZfm0781vNx8sjyRnamyY8XKJGLVrA558bv7Zxo3yNHy831BcvoGdPKfhevz65dsO9NhEmPU6NND1+Cg27yMBea+tEREgkxp7hqHoURcZ5FLXP/duls+G27pWfR4f3nLemszl6GlZsgG8CJKoTQ0RUBB+s+5KG+d/ho9Jt7V4+5OETJpVrRGiMx9H7SyZTvEUDeTHoufz+9I7x1gY765m7TM55xXR10yNehsq4lW7t4H8m6irjkdTEkqMRpmQtmMCG9FxIiNxghg2TmiVT6Iup1ZhgmmPePPG/+eMP+9dQQVJJwxkSfPgwfpUrE3ToEL4O5oqdgaIo6HQ6Lj65SOGMhZN+ek5RpHi7dm1j+wAQA8rVq+W92aePpOUURURW8o0svXaCCZwsmgxvfJZugm0/kRve4kn2H0uPHcLJ5YN0+38Pl6/DehPdokmFv9fDyIlwZH2CbIP+WgRw4clVimYqYPvyH/TnTEwzQIk2jWm38A9YvVlG7Bj6HkVHyxy3ejWgfw/Ti0VHx52j4b/VcP8RZM1kdZ+kJpbgDU3JGaI6PffypRj7PX5sfrG335YbUliYCB970jk6nRxLX2znAozEUpctlLz5ymXHsgm9EDUnSN2MTqfjUcgjKk6vmLTTc4oiHY86HQwdaiyW9Cni7t1h8mSxDahcGY4dk+2Tr1h6bXFqek4vkEZOhPd7m7+ufNLF/M3RVmYsgiotpOtKBS4XSwATvk/aYgmgbVM4usGkkNDfn/4+v4GSs5rYnJ47v3ZLrFhKlTE9jcd/LzYQnw+TIbuGKApUrwQli5leLCJCPL9mLJL/qxFLu/+FTn0h9BVkz5IsxZIzSPaCCVSKpixZYP9+uRkpCjx8aH7BTZuk8+2iHZO8P/xQ3Jg9PZ3ryBtDgsjS2n+halXL349KRowYQbVq1UidOjXp49fOJFOypMnC+Ibjk3ZN04IFMkj3xg3j52/cEAH/998i4nPlEhf1Hj2MOkA1sZT0cHr3XIVSUKOy+RtV/Xeganm5tl110DSxYwtYOlmiCFZwi1gC99aH2kNEhPyNWqFF4Xo21zS9Cgxm/Wdxjv2Nxg0lbbbMkvbbvwq+MujS1kchB/cx3/Xo6SlzC21JvUZEQli4qmaA11UswWsimMAGc0uQjri335ZIkCnee0/EkiORkn37xFTwwQP714iHyTRchw4iBJ1gFqlPJfTu3du+BU6fNn5MIiT5QvD27WHJkgRDcsmTB/73P9i8WUad3LwpVhI//wxpxE1XE0tJF6eKpoY1xbxRp7MsiH6dBTVai7eSvaRLC/XflX9bmFvnNrEE0rperSXsOui6YzjCjv2QvQLcvmdxM3sKwTcPHsWLe/KBuFDDmpTq2EIG3Ia8lCJzfbH2y1CZNfi3BQ+vJ89EfA7/Ct592/r3dfeBiPC61WH5dCnAt8DrLJbgNRJMYEN6rnt3GDlSprmbI08eeaMMHSoGl7aSL59EDZw0ONJszZKvL+jrhRwUAj/88ANffPEFpcxZMFgjc2bjxySEXjQtP7ecO8/vJPbpCOvXizBPkUIKvfVcviwiWKeDAQNkBM/t2zBkiNHumlhK+jg90nTqPJRuIIN4TdGtnUyXT+9r+nVbGDNZbsAREQlecqtYAumQK/sW+LrZJFgtpYrDsC9UzeUzFE1Tji2y+AHu6rZ9HJu7DIAU6dLQbOJP6G7fg4ChsCae2PL0gKoVZI6cKXYdhKK15D2khifPoFIzmPqnqs2Tslh6o32YrGGTT9OSJZKmM9VFpyjw8cdQrJhMireX0FCZ92UnVgu8IyKgaVO5sfZ0fITA3Llz+fzzzwkMDLRpPwsFdUmG4LBgfH18eRX5Ch9Pn8QrBI+KklqkypXF1sKQLl1kSPTQodCypQgnfXQp5iL0moil17Lo2xROKwRXFFiyFto2sd7VtHWvmBiq6ZYyxclzcPysDFQ1SIm5XSy9pkRERRARHUlq71SERrwilXfKBNus6T2EY3OWAtD0jx+pqDefvHUXcueIy5qEvoJUCfc3IvSVmE327ab+PbF4jUQ3Y+bVmSMpiyVD3viib1PYVAg+eLB0IJlCp4Pp0+PEUpAJy3lrPHwozuNLlti+Lyq74by9oWJF69YJTiYsLIzg4OC4r3sx4egXL9x6Hrbg6+NLtBJN00VNEzc95+kpw6J//TXha9Oni1hq3Rrq15f3aZ48r5tYeqNwWqRJp5PWei8viRQcOm56u8vXpVNq5UZ7TxlKF4cP24hYivk7SVSx9CwIzl1y3/HUsvOAeCDZWLPq7elNau9UXAu8ReHpdU2m55pPHkGL6WMo1qIBFT56X1zgIyPBP2ecWDp6GorXFoFrigeP4cYdEVT9e1gXS9duSfcdyHvtNRFLzuC1FEygUjSlTi1WAt9+Ky+aunnq99+yBfLnh/Mqw5l6smSBjz6CKlVs/h5ssg4YOVLMC+MxbNgwdDqdxa8jR47YfG4Ao0aNws/PL/arabGYrozLl+1az1146DzoWLJj4tQ0XbwoNXJPn0rESG/yefeuzIG7eVPel61ayUy4qCij8ReaWEq+OD099/0vMGyC6dcK5YO9y6FNE8eOAdKh1+d/iR9Z+mUatOzl3mOq4dgZWLnJ7sL03OmyUy1XeZM1TTqdjrIftqH9ksnojpyEPv+DwyeNFyiQR6KARc1YFXw5HN7/VH3Jxsy/ZFivirE7b5JYgtc0JWeI6vTcgQNSL7J6tekC6hcvYOJEGXaqxuDLFKGh8ib0s6zYwU6fpYsXRdgFBMSt8/gxjy1ZKQD58uUjZcq4cK7alFxYWBhhBp0hwQ8f4l+4MEH37+ObzcpYhyRAooxROXpU3OeXLzeu9bpxQzosS5WSFHBAgIh1g2aF11AsvTEpOUOclp57FiQ3aT8rN6kdByT6Ye+suD9XsPf+MRp5rE7cNNz121KEXjJp2JYYYauXUTxUj1G5eRfy5Iw7ZtBzqxEgHj0RZ+7SVhzh9dea6GipX8piuUvS3WJp1KhRrFixgvPnz5MqVSqqVavGmDFjKGpDc5aWkrOC6vRcpkxSqG2uEDxtWknfeXnJoN74LeDWUBQp7FVRY2S3KeXevRJpeh43tDNz5swUK1bM4pehWLIFHx8ffH194770QtOBei13Ytg9t/GyA6kLNQQGSrSofHnYuTNOLOmd6PPmhR07ZLtvvoEJMZGD11csvbE4LdKUwU/E0v1H8EF/ucmZYtJcmL3Y7vPdWytP4oslkCHBSU0s3XvosFgC40LwD1Z8wbENG+JefBkKi1bJPUQvlgB+mS5+WSFmur0Xr5FuySyZrIulx0+hfif475R8L0lMLAHs2rWLgIAADh48yJYtW4iMjKRBgwaEhJjv5HQ2r32ESY9NheB37kDKlKaH8SqKdKUVLGh7XdK2bZAxo9gNmMEhB299CNXOzrybN2/y9OlT1qxZw9ixY9mzZw8AhQoVIm1a690pwefO4VeiBEFnz+Jb3EnzrdzAsXvHKJfD/O/EYaKiJCVbtSr8/nvc84oCNWtCzpxSy5Q9e0xR7xKpXYp5/73GYumNjDDpcVqk6fJ16NwP5k2AYiamFLwIkXZwOyLjRmm4+9VIkyU7fNDavvN0lIgIGDkJGteCymUT5xzi804b+ZnPGOOU5W4ePcGY1u3Iej+a8t3b02zScHR//wMfD4JjG0U06rl1F3YeNP37ePxUuim/6w+ffmD9wIHB0OtrsRuw4s+UVNJwjx49ImvWrOzatYt3331X1T5v/GgUW1AlmhRFuuayZZOJ8aa4cUOGoqpIrZkkKkrSZ/FEhdPGnQQGysVRhcgxpFu3bsybl9BNd8eOHdSqVcvq/sH//otflSoEHTyI79sqPD6SGLOPzebYvWP83vh356fnVq4UE8r4lg1790rEacwY8VeK54H1GosleMMFEzi5e06nk4JgRZFGkPicvQijp8D00Vb9dMBEgXf/4TIU+Nv+9p2joygKlG0EX38KnVslzjnE5+BR+VlXsNOKxYCoiAhm1mjN/RPniPKAg0OLEdC2v6Tnbt2VQm+QqJZfOkhtJZJ/5778vixdy56/gNAwVSalkHTEEsDly5cpXLgwp06domRJdfdKLSVnA6rNLadNi0uJmCJvXhFL9++L7YA5A0xzjBkjk+aD48zlnCaWXr6U6Ne0aTbvOnfuXBRFSfClRiwBcQIwGUWXDFEUhYmHJzqvEDw8PE50t2oVJ5b09XCKIu+Dzz6Twc9Tpxp53rzmYkkDJ3fPAXT9Anr/z/Q2L17C9ZuqTC1NFnhPHpF4YgnkezyxKemIJYAq5Z0ilgD2j5/B/RPS6Zb1rSL45ctO2xUBUgiuF0uKIunXrl+YXuTWXRg0Uq49ubJbd+buPQTafaKqIDwpiSVFURgwYAA1atSwKJYSdHIHW3/vW+KNEkygUjSVKiX1TC9fiqWAuR/yrVuwa5d0ONlCQAAsWyamkzh5kG7q1NKW3rmz/Wu8ofQo38O5juDLlkHHjjLD0JAtW8Q2YNw4ee/4+sK6dfJeiokMaGLpzcGp3XNtm0K7pqZfq1wWdv0ts8AszLo02w2nLwj+cwWcOGv/Ob4OREdDr0Fw5KT1bVXw6Pxldo2Qge06Dw9aTx3DoltlaXXZy7h7TqeDX4fB0M9ML3TyHPyzQ4rB1TBsAPz8P6vCKimJJYC+ffty8uRJ/vrrL4vbxe/k9vf3d+i4b1RKzhBV6bmzZ6FBA+loMpdiioyU9FdEhBTL2WISpyg83rCcejeHO0csJTLJPSWnR989N6ruKAbXGGz/QopiPGLHcDzPtWtS06TTwdq14qMVwxsklt74lJwhTkvPgbzX/j0mEZD4BD+Hpt3EwLB9c6OXrFoHRETA2+/JfoP62H9+9jJnKYydCme3u//Yhtx/BO17w6hvoFoFh5aKjopiTt0O3D54DIBqAz+m/oivQVGIuHmLzsfGsvLiFg5V/ply7zQ1fY8xvLaEh1uuYw0Ph9/nQL9ucbYmFkhqYqlfv36sWrWK3bt3kz9/fovbJujkDg7G399fS8nZiqpIU4kS4in09tvyhnz1KuFCXl7yWvv20N+2cPXj/Vupt7Ydd5/ecL5YWr4cunZ13noW0NvON+kU40Jrb21XEqFn+Z4sbbuUHuXsmP6uKOLrtXGjXMD0Yik8XLok586VbfLnFyuLBg2k6DuGN0gsacTDqZGmrXuh1vtiahifdGmhRiUoYnyzUeWz5O0NO5YmjlgC6ZLr1s5ihMwtZM8i0ToHxRLAoSl/xoqljIXyUat1Y9h3BHQ6vPPmYWHz8UypPogybYfCxLkJF1AUiXaNnSr/t9b0c/I8/DwFTpgxujQgKYklRVHo27cvK1asYPv27VbFEpjo5HZwAsUbG2HSo7p77n//k/leW7eaVvjz5kmhuAnzSFPEpuGe3WR7j93OjyytWgVLl4r5oYpPEc4gOYxGsZXbwbeZc2wOQ98dqq4QPDIS2rSBevWgX7+456Oj4fPP5WJ2/DjMmpVg2O4bKJa0CJMJnBJpUhTYc8j6gNWoKHgSyN6wa7abUm7aBfn9oYgZw8TXlZehMmTXCd/3s6s3mVKxKREvQwHotvUv8i5YAcdOw4HVxnYFB46y3u8RkV4exj5NigKjJomBZYf3zB/MMAr1LCjZOXj36dOHRYsWsXr1aiPvJT8/P1KptLLRuuScgCrRtG8fnD4Nn3xieTFFgUOHzKfwMFOztH49lC4NDuZYE5PgBw/wy5492RhXquGvU3/RaUUndeaWISGQJo2xL0tkJFy5Ehdp2rxZhj+XLg3//BO76xsolkATTGZxanpu1SZImwbq1Uj42sCf2HtqO40aPrFNLEVEQPkm0LwejBxk/7nZw5GTcrMvmNf6tq5gyVopur68R+a5OcDitp9wYd02ACp92oUmvw6Ta8bDJ9LhFh0NG3dC49qg0/HB2oEsPrc+ztzy0ROrnkmA3JcChkLWzDIk2ApJTSwBZq+9c+bMoVu3bqrW0LrknICq9Fz16nFiacsW0+k5gE2bxHPn2DGTL5sUS69eSSF4/CGsjhIdLTflBw+cu645LlwwfnwN6Fiqo7pC8BUrxKH77l3jT4U//wzVqongVhRJwe3aJR1xMbyhYknDAk5LzykKLFgBy9aZfHlvmzI0qvfQdlNKb2/YsghGfG3feTlChwCpZUosWjSA9fMcFksADccOJX/tavj556Re49oyK8/LS8QSwLZ90OaT2CL72U1G06pIfSkEXzcNitYyP0/QEJ0OCudXJTKTolgCTHZwK4qiWiw5Ay3CZICqSNOjR1J/MmqUccpFj6LIDdFEK77Fbrjbt6WWxUHHWCMCA2Vo68iR0Lev89Y1Q/C9e/jlzEnQ3bv45nD8YpKU0BeCf1b5M35r/FvCDR48iBuaayi8nz+XbrmePcWMcvVqMUWN4Q0XS1qEyQpOiTS9CgNvLyklMIh+JqhZOnBSUni2epAdOQm+ad2Xmrt0TVrmrfkQJRMUReH5nfv49vxafo5L431wPn3ByOHccIzKqhRtaNr3B/OmpIoiIqxEEVXnklTFkrPQUnJORpVoOnNGvIasiZsVK8Q8skED9dYBhw5Jobm+gNpRbtwQ0eSGOWmvYw2TIbOOzsIvpR9tS7SNe/L/7Z1ndFRVF4afC4ROQkekiDSRqggIiAhSBKRZsEtTVAQbKJ+iNEVAKYIaRAFRUUEREJVeRQTpRQGl9xpKAgFSz/djZzKZZGpmQtp+1po15M65554Myc07e+/z7g0bJN2WtNDdGBg+XFJvZcrIsQ8/hC+/lOhkQto1m4slUMHkFQFLz+3YDc8OgB8msibXaUextPU/uKcLLP4W7vGhUXh8PNRtC43riU9TVmfyDPh3H4wdFPi5r1yFq9egWBGpkdq+C+5vkXLckRPEXLlM/6MzebV+dyoWLu96zrmL4KlXYOtCj4I2q4sl0JRcwPEqPVejhoilDRtkJ5qzrs7GSCH4Dz/45rM0fbpEKuLjA/MN3XSTiCUPDXgDwqlTjs9ZjGfqPsPD1R/GGMPc3XMxUVHQpQsMGeI48OxZKer+6CP7rrgBA6QGTsWS4iMBS8+VKgHVKrPmyr6UBd533g6/z/JNLIHcB+d9CROGpm5NqWH3Xuj6mhQuX3eM3x8+j2/aQfTlJP3P5i8XV+78+UQsAXz5A7w6TARUct4cQVDPAXzcchAVC5fn4rUIlh9a6/xiHVrCjxOzvViy7eSuX7++X/NohMkFXkWaFiyAsWNlR5qzH7Br1wiLCafld/d577MUHS1/YAO5s+3rr8VN+uBB6WWXRkSsW0dI48aEr11LcKNGaXad9Gb9sfU0nNpQCsFv7oN1001S7G2MFGwGBYnp6QsvSAruzTeloW4CKpYS0QiTDwQi0pSYhitenV/bjqdAyRtSDlq4EkqXhNtq+Db5/kPyXKmCz+vyiX/3iZv5lA/S/loBJvLsOSbe3obcBQrQPnQ4le65U9q9dGgJo+z3CIyBE6cl9ZicC+Fw/kLi9z5o9UeM+utzeyE4iOCqV9tz012yvlhKikaY0givIk3t2onNQKFCEsGJjXUYGxZ/WcTShSOsmFeYmpe8yLnnzi1iaf9+ePHFFHOmirZtYcIE56IukNSo4ficRbkzugSTr7WWQvCDoZj8CYWyw4dDhw6yWy5/frF0GDVKbAYSULGkpBZ/I00ONUvfxVOg77CUg+LjYcSnMNXHxuLGwBMvwdDxvp2XGqpVhpU/XH+x9McGv6Nai/q9x5WwC1w8fIzNU2fIh6vVP8HgV2XAt3OlP51lOYolY2DURNkVVyTE4XsffFdfeyH4nqWyg/HLH2DuYo/ryU5iKRCoYHKD173nYmOheXN4/fXEMQ5puM5zqVmhARQp4v3Fjx+XpqyBSG+VLAnduztvyBkAAhXuzDRs28az844yufk4x91zd90lDXYrV5ZdcDlzSjPdqlJwqWJJ8ZfUiqYUBd4j3pHO9MnJkQN+SUWKzbLg249h0gjfzvOHBO+i60JsLDz5Eoz1vUenjf9+W8Y/CbsV8xYJoWOzxtLXr1gRScfFx8P02TB7QcqTj52ESdNFTCUjKGcQ33UYZxdNB1dJLdpg90bKKpZ8R1NyXuBVem7ePKhZEypVcl+zdO6cPBfzwjsjLs63ViueePNNSckNSJutwBEbNhBy552Er19PcIMGaXKNdCUmxi46E9oPTNkyhV/XfcVPz68gKFdu2Zl4//3SP27PHknVoWLJBZqSSyW+pOfcOnhHR8PUmfDckynvNVv+ke37E4b6tnv3dJiImZvT0FPutWGwcTusmZN210jO6TARhiW9uHcn49rFCEJvb8Plk2cAeOijodQcNg6G9YPnn7IPjI6Wazj7cHs5Uvy0XBDzyyKeXDqQex55gT53P+d2PdlVLGlK7jrgVaSpUycRS+eP0XLcbc7FkjHw8MMS7fGGnDnh/HmZ+++//f9Gcuf2bJvvDwULOj5nJa5ehbvvhtBQ+TrhfXw2Z31+7vsnQR9/ysH9mzAhIbB6tbQ9UbGkpBHeRpo8tjv5aysM/FB20CXn5GnYsQsiLvu2uEd7w+vv+XaOrzzSAd68ju1ZjIFSxVMllgCWvDkyUSxVbt2UGi88CZsXQK8nxPahR3/Yd0juK0nF0qJVUuAeFeVWLAEEVanED0Gd6NNYWjoduHjE6bjsKpYCgQomL/FGNIVdCaPl1Hs4EXGcFY0/T1ngbVkwbpx0qfeWvHmlgDg8ADtC3n1X2nOkFWXLOj5nJfLmlchR8mL2OnWwfv+d819M4I4pDej79aOYHDnEygEVS0ra4Uk0edUbrumd8O8quN3JZpT7W0jfuMLBvu3aDX0fJo307ZvxlUZ1oX3LtL2Gjb0HoWZL2Z2XCg4s/5OtX80CIHeB/DzQrBFWdLTUKOXIIa7eu/Y4F6YxMfLsymcJxH4gJgZurYI1bgjkzMmve5dT7Yv7pKYpCSqW/EMFkw+4E039/tePFl+34ASXWNFjFTXvekA+lSRPed5+u/j2REfD+PGei7rz5xfvniZNZC5/7QYiI+W6l3381OgNNvdzVy7omZHYWHFttyxpqls3ofv7V1/Bd9/Jv5s2peiMn/nweHUmHp6VWNOkYklJa1yJJq/Eko1SxeXe8t4E+PhLx9dsf9DvegBWrvNuUTWqSruOS5fh6IlUfmceMEZalPz9b9rMn5Qcltgt3OzG78gF0ZFX+PXFtxO/bv9yD/IPHQe//yUHjIHyN0rfuLpJRKvNdqBDK/jmI9elGeGXoM3TMHayw+E2FZvSuWpLeyE4KpYCgQomH3ElmsaPHs++n/axvOtyat6aUE8wcCC88kpK0QSwaZO4Qm/b5t2FjZFU3vDhfq2fc+ekkfCaNf7N44x//3V8zgpMmABNm9prz2ysWSPGpI8/Li7tt9/Os9/8k9hGpdfPvWjZqqWKJSXNSS6axsye4nsjXcuCqGh5JKdIsFgM3FDct4U93heef8vzuNRgWfDmSLFASGsqVRBTzry+W72sGDKOi4ePAXBTk/rUHPQK7FoBre8R0XR/dyn8TlojduUq3PUgjJ/i+QIhhWD2F/BKT4fDyQvBR8//QsVSAHAT51Nc0bOn/HAmLwS/suIKMz+eSc3hNUVQ3XyzpNOcGZ01biyFwcW9vAlZlmzXL+/7pxwHypeXHXiFC/s3jzMqVXJ8zgr07Qv169uL9C9flhqtL74QH64ePaQubd06sCyerfssV65cod/CfhQ8W5BVy1epWFLSHJtoat21NW/sHEXtotV86w0Hjrvmzl2wmygGBcFnCbvfYmIg8qqk6byZLzgN/zD/swwK+PD9pYa1m8Xz6P4WqTKsLFyhLLny5SVnfDwPt2wilcW2HnRBQfIeF0z2PeTLCy88CS3vdj3x9l3SZ+61Z6HxHU6H2ERT26978tbCsTSs3TDbiqXQ0FBCQ0OJi4vzax7dJecHXu2es7F9u3Sod/ZLN2SI/PK88473F796FfL50UspPh4OHJAt8AEiS7VGGT9eapaqVLEfW75cIkpz54qFAEij4YgIEVXYa5b2Hd/HygUrVSy5R3fJBZjLVy9T79V6HPjuAPO+n5S6Nip/bIAHesGy71OaV3Z9Dc6EwcJvvBcQMTFw7iLcUML3taQ3rw2DLX/D7z+leorz+w9zedqPlA/9Gtb/AhXKyv0++fsXHw/bdjmm5lzx8ZeSklw+023ka/2GbbTq2J0adWqy5Ncl2VIsJUV3yaUjXu2eA9i7F+64A35y8UuXO7f7or7kTJgADRuKaEot77wjqSZnbV18xObDdN/tt8uBM2f8njNduXwZPv8cFi1yPF6/vqRFO3USMRUVJfVoycTSgQMHVCwp6ULBfAXZ8ckO2rZom/o2Kg3qwKCXHRq+JvLi07I7zZdoS/d+8OTLzksT/GHjdmjyYNq2SPloCPwyza8pila6ifLD35BUXNWK4lL+gpNU5fQ50s/viJu6L9v9+uWesMKzWGrdvgd1at6mYilAaIQpAHgVaVq8GFq29OyrdPo0lCrlfszOnTLfa6+lvq/RoUNiitnQx95Rboj4809CmjQhfM0agm0RmMyGrZt7ZGSiLQCrV4v55A0JzrsDB0pKbuVKqFUL0N1wqUQjTGlEwBr27twDuXLCLcnS7MbA+q3QsK7nOTbtgJw5nO/E84d9h8T9elg/5y1E/OXSZSjku0XKlXMXyG9LZx4+Dms2wJMP2AfMXgDxBrrc73hibCys2QjNXLSVOnEaWj4O4wZDm2Zu16AF3s7xN8KkgilAeJ2e27IFVqxwcAVPZN06aNFCXvdWyJw5I07e/mBzLPeTTJ+SmzNHGuYuWGBvIxMbC9WrQ7160mi3c2d5r2y1TKhY8gMVTGmI36LJGGj1BAQXhDmOu7D4dSk88iJsng/Vq3o3X3y8FDgXLezbOtKD2Fi4pRm83ANeecbr0y6dOM1n9dtT69EOtHx/AEETv4HPv4OtC6WYu4QTH6dFq0Tw1armfvKYGBg0Bl7q4VYgqlhyjabkMghep+dWrYJZsySdk5z69cWjqV497y66di1UqAAbNqRu0bGx0mfu89Tb/WcpypeXiFH+JEWYuXKJrUOhQtC1q3hZgYolJcPjb+85LAumT4Avx6Z8rX1LWPKd92IJoO8geODZwKbmLl2G/YcDN58NY+C916GVm8Lr5KfEx/NzrwFcPXeBDRO/YcXQcdD/OVj3sxTK394GEvyYHK7z4ST42E3a73SYNBwOCpIGvSqW0g2NMAUYryJNUVHSYNdd4fY//0i+uq6bkHdsrPQse/751PeJGzRIoln33+95rAciNm8mpF49wjdtIvgO5zs3MiT79kHFio5bezdulFqxKVPEtDI2FkaOFLfvZs0AFUsBQCNM14GApOfOnIOBH8C4QSl3vs1ZCHVrSTGzOzZsE3PGlk18v74rnh0gYuJ6tkhxwfrQr1nUXxzOqxcrTIcJw8j7cMJ91RhpaPxgm5QRtsuR8sHMVT1St35ibLn+F7ctalQseUYjTBkMryJNefLApUsSSZo0yflEAwZI7zd35Mol296DguSPvrOolSfeey8gYgmQ7yvpc2YgPBzuvBM+/NDx+IULcPCgOHt/9ZW814MGqVhSMh1+R5pAdsZt2g4nk23ouBYFb38IX3uxi6zBbXaxFHnF9zU44/XnAu8qfvIM9HtXRKKXnNm1h6UDP0j8uk2dGuT9ZrakIXftkWjds4/ZxVLYeXiir9QlFSzg3uPpo8Hw3ccqljIAKpjSAK9EU8GCkuJp3tz5JN9+Cz/+6N0FIyPF12lkKm8cR4+KQLPZ8KcWm0eUv15R15OQEHmvX0zoS3XmjHwabN1aGirHxYkoDQtLPEXFkpLZ8Fs01bxFep/dUkmirbZ7Rd48sGoWDH7F+7neGQ3tusrvlr9Uq+x8N58//LcfFqyEPN713YyNimJOt37EJZh+3vlSdwr9Nk1EzuyF0KAj7D/keNK5C1IQfs3Fh9zLkZLCPHdBRFbVii6vr2LJM7ad3PUTdjSnFk3JpSFeF4JHR8OyZdCuXcpJzpyRP9iffuq+uHvZMomUpOaXZccOEQjLl4s5ZiqJOHeOkOLFCQ8LI7hY6ppUXjeOHpXvN2kj5AsX4NZboU8fEVDFiskfh7//lpY2qFgKMJqSu84EpBD86VfEMPLzUY6v/bkJlv4BQ19zP8e6LXD4GDzawf/NJnFx8MFn0Lyx9JcLFD5shFny1ijWfSSu3PeULkmTGZ+Sy7Z7MDYWlqyGdvfa12uMRKzdXeO//fDgc/DtBLe7C1Us+Yam5DIwXheCT58ODz0kDtzJuXRJ0m1JIhxOadlSxNKpUyKAfKF2bThyJNViyaben7LVW+3cmap5riszZ8KwYY499YoUgVGj4JdfpHZs+3a5salYUrIIASkE73QfdL4v5Wu798GfG11HTWw0qguPdZS5PPXS9ETOnLJNP5WNcVNw7CREXPJaLB1avZ5146cCkCsoF42LFSHX4tXSQ2/3Xrl/2MQSwFuj4LE+rsVSVFTCDr1KsH2xiqUMhkaYrgMeI00Au3a5Fiy2Xy5bKNydw/eDD8KJE4mtOnzi4kURTrVr+3ZeAhFHjxJSvjzhR44QXK5cquZIc2zvpTFw/rxEkQ4flp5+nTrJmHXrJMqUpL5LxVKaoBGmdCJgPk1/bXH0YoqLExHjTYRmzOcSkVr4jdv6nOtKj/4idP76xePQqEuXmVSvfWKvuFYj36Rxn67yvTz/Fmz9BzbNd/zelq6Goyeh56POJ32ir9SATnOyMzEJKpZSh0aYMgEeI00gYskYGDpUamqSYjuve3dpzeFO5H7yibTuSE2o+4UXpK4qtdt+Q0IcnzMaV65I2nPpUnl/bGnDiRPFBLR/f0mBNmokzZFVLClZlIAUgq9cB80eEcdtGzlzSm1O487wt4cm3PVqQ7vmgbEZCJRVwXuvw/ihXg2NCr9EwdLS7qVz2dI0bN/C3rXh42EwM9QulvYcSPC1aupaLAE83gkeae/2uiqW0g8VTNcJr9Nzx47ByZPOJ+naFXr1ci+GypSB0qUl1fTdd74tcsQIWLgw9XUFtrShp/RhemFZEByc6KGUeJMdMUIK5r/4QlKbcXGJNzoVS0pWxW/R1KyheDHVr+N4vFhhqFwB8nvoddmskZhC2iJSqWXZGihTPzAtUsqW9s69HAguW5oey2fS9s0XqWlZ5NhzAH5ZKjvfCuS3F2ofOQH128P3PzufKD4ebO99h1bQ1sVGIFQspTeakrvOeJWeswmWU6fs7TiSs3Sp/HF3JW6mTYNXXpHmsKVL+7ZIm2DwUThF/PEHIU2bEr56NcF3e2/4lubExcHZs47vZVgYPPyw1CzZXNW3bpX0XOfOgIql64Cm5DIAAUnP/bJUREKLZC2RoqKkDUi+vK7PnTwDFq2Enz5P3Ye1Q8dEjLzwlH8u4j1fh46tnNdneSI6WkTfbW3goXYw/A3H139dCq2bOrdcWbACHnpe0nc1XBuBqljyH03JZTK8Ss+B1NFUrAh//ZVyko0bZVfbihWuL9S9u9RFeSmWDh06xDPPPMOd5cpxICiIp8qUYciQIUT70py3Th3H54zCu++mbFacM6c4ej/zjAinmBgp7laxpGQz/I40GQNf/Qgzf0l5/KHnoc877s+/6UaxB0htAXiFsjCwr39iKToaYmK9EmyxNr+7iEvyvZ09J6m4PHng95/sFgunw2D+cvl3h1au/ena3QsbflWxlAlQwZQOeJWec9cmpX59qbFp0cL1RSwLypYVITBihBR0u+Hff/8lPj6e96ZMoWivXvQcOJBJkyYxcODAVHyHGYwXXoBx46RYPiJCok1FikjPuJYt4bff4M8/E4erWFKyG36JJsuC7z6BSSPka1v03LKg99Pw/JPuz299D7w/IPXdCkC24a/bkvrzc+eG6eOhU2u3w/6ZNZ9J9dpzbMM2acmyci2cuwjvjhcBVbKYzAXwxXfw8hDpIeeMEZ9KdAnc9pFTseQ/6sOUBfDap2nHDqlrus9JqPjnn8Wtuls35xc5fFgE1tSp0KGDT+sbPXo0n332GQcOHPBqfMTWrYTUrUv4li0EJ2zFT1dmzJDC7aSh14cekl2EI0cmunZz8mRiJE7F0nVFU3IZDL/Tc3//C70HSsFz2STR7fh4aWHirvfcrPnSiHbKh76n5vxpkRIbC6v+guaNJPLsgksnz/DZHe24ev4iVo4cPL/hV0pVqwS79ooR55zJ4mZuIz4ejp+CcjemnCwuDp58Wcb36+XymiqWAoum5DIxXheCjx8vaSVn4nbJEli82HXR5E03wf79Poslfv+dWosWUbRoUZdDoqKiiIiISHxcsqW83Nx0rhtnzkDv3iKakjJiBNSsKU2HBw2SYyqWFAUIQHquaGEoVzplq49J38LdD0v6yhVBuaR2MjUdB4a/AQu+9v08gDUboX132L7b5RBjDL/2HsjV8xcpBjxZoQwlK5SVHXG1b4X/freLpfc/kb55OXI4F0sRl+Qe+f0nKpYyGSqY0hmvRNOkSTB/vt0/KCmffCLGl+5M4AoVkvPGjZM0lBeELVtG4d9/p3cv17/QI0eOJCQkJPFR9q6Egs8KFby6RppSsqQ4dD/3HFy7JhGl6Gi45RaxEejVS8RkAiqWFEXwSzSVuQFmhELxorJrzdYzrscj8MNEKOGmA0Dn+2DyB/aUli/cUCJlU2Bvuaeh1BDd7tq4d+tXs9i7aBUAZQsHc3OBAlj7DokRZXS0FLyDmHYu/QO2uTDvnTUfareWnXTaGy7ToYIpA+BRNAUFQeHCcO4c3HUXrF5tH5Qzpzx275a2Htu2OcwxdOhQLMsiR44czOvfn8H3349lWQ6PTZs2OZxz4sQJ7poxgynduvHM88+7XPdbb71FeHh44uPooUPyQiB6RKWW5cvFdDIuDsqVEyG5dSt88AE88IC4eAcFwccfw7PPAiqWFCU5ASkE7/wM9H5bvs6X195499el7t3AF62S+h5fiImBZ94QiwFfsSyJErlIA0YcP8WS/41I/Lr6tLHkWP8L7DkIy/+E6ISImDESWVv2PTznom6rWUN4uSeUdt3mSsVSxkUFUwbBq0hT/vxw8812w8WklCsnReBlyzoc7tu3L7t372bX7t3c8s8/PLF7N7uTPWrWtNvvnzhxgubNm3Nn48Z8MXky/Puvy4LxPHnyEBwcbH8cPiwv/P23X++FX5w8KW7lcXFSQwBiRLl5s1gsPPww2IQdKpYUxRV+F4K/+zoM7ON4/NhJePpV+OFX1+fuPShmmL588AoKgvMXpWmtL8xfLuk4F4XZxhgWvDKEqIjLlAUeq3kLVVs2kejQI+1h7VwoWEDqp5o/Ip5LuXKlnGj5nxJxK1FM0nAuxJmKJfesXr2aDh06cOONN2JZFj///PN1vb4KpgyER9GUN6+YUdaoIZ+odu2yDypYUFJ3xYtLy4+EvnTFixenWrVq8qhRQ5537KDa1KmJx/PmFY+U48eP06xZM+rWrcu0adPIcemS9FSbOtW7b8CW4kqS6rpu2HrCPfWUPYr01FMweLAUxVeqJO/X3LmJKUMVS4riHr9E0z0NxS4gOlp8koyRQvCNv0HXh1yf16cbzPnC91rIuZN991DKm1fW5MJkc9fsBfz3m1gDlCtUgMoFC8DXP8HYL+xNdEHWWqIYhDgROFeuwrNvwIQv3S5FxZJnIiMjqVOnDp9+6mMEMkCoYMpgeF0IPmIE3HOPNOdNTteu8MQTrgvBL1wQQZWk5unEiRM0a9aMcuXKMWbMGM6ePcupq1c5N3Mm9O3r3eKLFHF8vl6EhYmI/Dqh6NOy5HHbbbB2rfTG+/tvqY3QdieK4hN+p+eWrYEX3pIoDECVm+X3c9ka+7b6pNhMc//aAt/O9e1avkaYWtwFk0Y6felK2HkWvDYs8euyX3xAzuUz4NRZOHJc1hgdLY8qN8OsSc4FU/58sGwGvO36PqpiyTvatm3L8OHDefDBB9Pl+k5ih0p607NnT4AUlgMjRkgeffjw4Vj9+olgcvaLNW6chLNdbc197jl5JHl9yZIl7Nu3j3379lE2WVrPGONdM83z5+3Pjls205ZixaRuqVUrWef27SKWBgyApk2l/96qVVCrFqBiSVF8xSaaunTpQucuvX2zHGh3L+xYKgaTSfnqR/l9bXev8/PmLIStO+HJzt7ZDHz+Lbw5Cs7t8K6Z747dMq7mLU5fPrJ2M9cuXqIqcEutalTvfJ+s452X7R9GXx0macZ5U1Ouce1m+HaO9JWr5DrqrmIp7YiKiiIqyl4vFxER4dd8GmHKoHiMNBUsaPcRGjvWsdi7alUpAI+OlteSu3XbIjBr14pxY2Qk3bt3xxjj9MGUKSLOPHl2HTni+JzWXLoEGzbI9zJgANx4I3zzjfhOjRwJkZHi8L17N7z0EqBiSVFSi1+Rpgpl5f4xMhQWrpRjkz+Eb8a7Pufd12Hxt957Mt17F3w+yvvap9GfQ5+3Xb5crWMrnv9rHjVvLket0iWldcqs+fKibU1PdJb0orM1njojbVtiXDuYq1hKW5Lv5C5Xrpxf86lgysB4lZ67dk28hpYvTznB9u0wdKgUPDujSBEpJL/qwonWRpUqIpg8+aNc79YoI0dCx45w5Yr92JNPSoRt0CCpv7p6VeoUULGkKP7il2iKj4et/8DuhNRcvrxS+/P3v9Ctn/SdS0rePBIB2nPA9Tb9pFS5WQqxvXUMn/ohfD3e7ZCSNapSa/dKgmZ+KvVKuRPm/nefCMAm9eHh+x1PCk8ok3iwLcz/ymUfPRVLaU+KndxHj/o1nzp9ZwI8OoJHRSWKAq5ds/8bxIrA2a665HiTcnNBaGgooaGhxMXFsWfPHmcuqmnDtWuy861OHRg9WpzQa9eW15YuhS1b4H//A1QsZVDU6TuTkmpH8Ph4e7osNlZEyF9b4H8j4MdJUKp4ynNaPA5FgqU5ryd+XixF3PVqe//NuGLOQllvckF06ixUvxdGvZnSPuDcBWjQAd5+CXo+6nJqFUv+Y1kWc+fOpXNC/09vUKfvbIDHSJOtqePSpWLMmGTbPMWKiRh6912YMMH5BfbvhwYNYO9e14u4fFlMMm11Skno06cPu3btYuMPP8gBL1uppApjJGq2b58Iwzp1JIr0/fdSnP7ss3IjbtVKxZKipBGpjjTZxNKvS0VYnLsADevCqlkilpx9gJ82Fr792Lv5h30kQscTj/eBj6akOBz2337WjPmcuOhoMaCcuxjuewpWr7cPuqGEuHQ/7WSnX9HCYhvQtrnLS6tYyryoYMokeJWeu+02ePRRKFPG8WTLEsET6WIHScmSnq0ArlyBN990aFKbLly8CDNnwl9/ydfR0dJU17Ybbto0+PHHJMNVLClKWuBXeq7GLVJzFFxQvrYsOB0m0aQt/ziOLX+jpOdOnRWvJXf8ORdG/M/9GGPk+hXLJztsWPjauyx/ZzSf3XE/Ya8+A2PehsLBUKKo7MD7dakMbtPMMdV2/iL8kVBP2aebS2NKFUv+cfnyZbZt28a2hJrdgwcPsm3bNo5cp7pZTcllMrxu2Lt7N+TJAxUrytdJU26XLjnfXZd8XHIiItzufnMT7gwMtrXZ0o7TpknU7MsvpV4JpFFxrVpgWSqWMj6akssC+N2w99AxKHsDxMZBz/4woDfclqxNSUwMVG8BnVvD6HcCt/gk7P55MT8+1ofKQJ6Sxem0ewVBtpYnILvw3hkNO1dAyWRlDu98CDPmyWvJ++gloGLJf1atWkXz5imjd926deOrr77yeL6m5LIZXkWajBHbgFdesQ+wjV+2TETUnj0pJ794EZo0cd1vLjhYcvrh4c5ft4k470W49yxcCPfeK6LNVqNVv76YUN55JwwcKMdq11axpCjXEb8iTZcjoelDsmMtbx74/lMRS/HxjrvdgoJgyofwlgdPuD83QfNH4eo112NWrJVebkmIuXKVxW+8D8BtwH03liLovqfgv/32Qc89CX/NSymWAAa/Cou/U7GUxjRr1szpTm5vxFIgUMGUCfEomkDSVtOmpTz5zjvh5ZelxUpyQkIkOlO0qOuLd+wIrvrLbd/u+BxIihQRcZQ/v1gJxMRAzZrwww/w4IMi4hKEmoolRbm+pFo0FSwgxpG9n7Yfi4+HLi/Au8lqLu9pKDVCyXfTJSW4oFgYuDKwjI+Hbq/C5BkOh9eM/pzwoycA2NriLgp+PhLKlYZSJSQN9/tf8qGzUgX7STEx0OcdEVW5c0PlCjhDxVLWQVNymRiv0nPnz8MLL8hW+2SGlOzeDSVKSDuV5NjmTJ6eW7RI0nl33ZXilIhDhwi5+WbCDx4kOKH9iN+cOSPrsxWLnjsnwqlVK3j9dWjc2L5ejSxlNjQll8XwKz139pz0kGt3L0z8BqpUgFZNHcccPi49274cA80apW6R5y9K9KqERIrO7z/MxLptKREVDbly8dCWBRSvWtE+vssLUCA/fDXOcZ6w89Chh/hFtbrb6aVULGUMvNjJ7dW9SAVTJsejaDpyRBrOTp1q33IPcsOoWVOMHZNHomJioEsX6NQJevTwei0Br2GKjpY1P/CAeC7ZWLkSunWDU6ck2pQgilQsZTpUMGVBUi2ahn4E02fDP8scC6ojLkFwgtAwBoaNh24Pw80uTAgjLkF0DBR3EylPwoyHnmPP/BV0AcqULE7IrZVh6mixJwDZdRsTa1+TMZLyy5/P0SYhGSqWMh5aw5TN8ZieK19eREXt2vKLf/GiDMiZU3aTffRRykmDgqByZeeRJ5Cdcm87cci9cMHx2V9y55aeeb16iafS2LEi9Jo3F2fzceMSRaCKJUXJGKQ6Pfd2X/h9lqNYGv4xtHzC3q3AsmDoa67FEsC9j8l5znjoOfjh18Qv9y5axZ750s9uSemS5PtkmAih4ILw8mDYtUe8opKu6b0JYjUQE6NiKZuhgikL4FVNE0jtUps28qkIpF6pcGFJe40d61isPWYMdOjg/IKHDsHixYkO4aGhoVSvXp2nmiaEzw8f9u8bio2VIm+Q+qSKFWHFCpg4EapXF/FUtKj4LuXIoWJJUTIYqRJNQUES1bl6DV4bBifPQIeW8FKPlO7d67fCY30cGognMm4wPP9kyuMxMVC6lNgEACY+nuWDx1IICAZajHqL3J3ug7mT4Vq0XOP4qZTzdGwF3bq4dBRXsZR10ZRcFsJjem7HDjh4EJI7o86YAf36iRApXdp+PD4eXnwR6tUTQ0gbLqwHIi5cIKRoUcLPnye4SJHUfyMzZ8LTT8O//0L58vYb05o1IqAeeQQ+/RTQyFImR1NyWZxUpedOnoHWT8L4odAiSa1k0tTc9l3wv5FSy3RjqVStLebKVZYNGkOpz6ZTJWcOCrZtjvXZCCiWcO9Knm5buQ6aNpDovAtULGVsNCWnJOIx0lS7tl0s/fCDvYfc44+LOEkqlkBuFnnzprxB2OY/ftzxuG2cmxuKVzz6qPS/K1BAomCffiqfJJs0kXWOHw+oWFKUjE6qIk2lS8KWBXaxZAx8Oxfq3CeF1gB1qsOi6c7F0p4DMPaLlPYmm/8W0ZVAUP58tB07iMpbFmJe64V15SpcCJe03YnTjmLp0DEp8J75i8tlq1jK+qhgymJ45dN07Bj07AmzZtkHhISIm3fXro7NesePd174vXy57LpL6udka8mStDWLL8yZIz5RliW1SUWLwt13Q//+cOutUn9VtCjkyqViSVEyCalOz4EYRQ4eCy2bwGvPQpEQx3Gb/xbvpaTs2gujJ9mb4IJEi9p3hwlf2o/FxUH4JYKrVSL43f7w21diR3AhAvLkdpyzQlmpr3q8k9PlqljKHqhgyoJ4FE1lysDOnSKOkmJZIqZOJcvbx8XBoEHwq71YksaNpX9b0jYsNqO5pIZz3mIMfPstTJ8unkp790rR9+TJ0sPujjukBQoaWVKUzEaqC8FLFJXHDSXg5Z4SvU4qhIaMhQlTHc/p1BpObUmsVQLk3vbHbHj2cfux6XOgxr3Q522JLIGYZi6fYU/Lbd8Fk6bLv++o5bTIW8VS9kFrmLIwXvk0LVggkaYpU+RmlLQ+ydZN3Bh46CFo1kwKx13gt61AbKyIrb59pai8Rw8YPNghxadiKUuhNUzZDL98mq5FSSH2I71h1Y9waxU4cw6KFfapDOC/+cs5u2svDTq1JvcX38OCFfDBQPh+Lkz+UMw0bXwwEeYtkevlzp1iLhVLmQutYVJc4lV67to1acxriwrZxg4ZIv5H8fFybPbslGLp1Clpv+JP48PISCnk/vtvEWd58sCoUdCihVgKvP9+4lAVS4qSuUl1pOmn+XB7G6h0E7z+PNyc0Di3ZDERSxcj7GONkSa+P823H/v4S5j8veyMGzSG5YPGMOHeRwl/uSfsWAJBuWRcUq8lgP+9CMtmqFjK5Nh2ctevX9+veVQwZXE8iqYHHhA/pty5RQDZbhQNG0Lr1nYBZVkSAZo4Ef5J6CaeLx/Mn2+vWUpNa5SICDh7VgTbqFFw+jQUKyYNdX/6KbEfnoolRckapEo0NawLj3WS1NwbL0jPtmsJLVLWbobyd9r7vlkW1KwKRZPs1D18HI6cYNechYTv2ksPoE2uXAQXLyIf1No0gxmhIr4uR8ouPdu68udLsRwVS5mLPn36sGvXLjZu3OjfRM4a2bl4KJmYqVOnGsuyDJLKSHwMHDjQxMfHGxMebkzp0saMHp3y5AsX5DkqyphbbjFm/HiHlz/99FNz6623mgYVKxrAhO/f792iYmLkOT7emMOHjSlWzJgSJYzp3z/Z5S+YevXqmaJFi5qtW7f69o0rGRlf7j96P8piREVFmY4dO5rcuXObBfOmGnNtn3ePYxuM+XOuMSWKGrNlgTHhO40ZO8iYU1vcnhd/ZY8JvbWy+QjMITBxuYOMeedlY3o9YcyVPfaxF/4x5onOxvw1z+k8f63+yQQHFzJNmjQxERER6f02Kj4QHh4uf6PCw5O/5NV9RyNM2QSPkaZChcSsMnkh+G+/SaPe/QkNJrdsSYz62OjTrRu7tm9n6datcsCVQ3hSfvwRGjWSCBOI39LOnVCpEsybl2h5oJElRcmapCrStO8QVGsOx06IeWSpEpLG79PNscg74hIckWa6RF6B2FgOLP+Ts7v3EQ4sb1gX68h6sTDIm1uKuY2B02GSlvtyjBSAJ0MjS9kbFUzZCI+i6fHHoWRJ2b4/c6a82KyZtEG56Sb5On9+ubEsXCgpur17oUgRaZcSnrDTxPbsjsqV4Z57RBw9+CD89x+UKgVr14qtQb58KpYUJYvjs2iqdBO81x/uvQuGvyG72YyRx6iJMHuBjPvfSHiir/x73GSo3oKNn39LFeA2oNHLPbAKB8Mzj8Hod+zjGnVy8GpKioolRQVTNsOrQvDp06FPHzh3DgoWhNdflzz/gQNSBL57N7RrJ9GnSpUgNBSqVRMXcbA/O+PKFZmjbl2JaBUoIH3hbr8dli6V+oPgYBVLipJN8Ek0WRb07gqFCko0aN1mqN9e/v3Pv3DwqIx7qbs4hQN0vo/I/s+xZ8FK6gPtgVvmLZGecLY2UQBPPwQj37S7iSdBxZICaiuQbXFrOfDee1gnTogxpY2zZ0UcffAB9O4t6bMajiHriHPnCClenPCwMIKLFXN+4UceEfE1caL0sQMpGu/XT+auUkXFUvZBbQWURHyyHLgWBbVawQNt4EwYvD9AXL+dtGwCWDFkHH98MBGAjt0e5vbyZWDPQfh6nHgtVSgHIc5FkIqlrIO/tgIqmLIxHn2aYmMl0vT449C8OcydKzvnCiTxKYmMlOa9s2YR8dxzhBQp4t6HadEiuHABBgwQ9+4xY8TVOwEVS9kKFUyKAz6Jpl+WQoPbZOecfQI4mlC7NHcx9OhC/I+/MfmDz7h86iyROXPy2r4/KFS6pKTx4uOl5crdDeCzESkuoWIpa+GvYNJdKdkct7vnrl0zpn17Y2bOdDzpxAljIiKMGTHCmGrVjFm61JhChUz44sWyA+Hvv1Ne6PJl+7/j440ZNMiY3LmNqVDBmLg4Y4zuhsuG6C45JQU+7547t8OYn6cY0/tpY3o+aswtleTrwsHGLPjGxOfMaWaCiQdzoWB+YyYMNSbyP/v5O5YYc3yj7obLwth2cletWtWvXXIaYVI8p+ds7QAiIsR7qVo1aN8eunUTT6bHHoNcuYjYupWQevUI37SJ4DvusE8UGys74lq3lgLvunUldL5vn0Sb6tfXyFL2RCNMilO8jjQZA80fhZw55D4zZpD4JlWvYk/PxcRwef8RLr86lEKRVygQHy/O3VNnQs9H1ZQyG6EpOSUgeEzPffklvPcebN0qj1q1oEQJh7EufxhtfeJ274YPP5Rzly+XRrpoGi4bo4JJcYnXomnVOihzA1Su4LKGyYFrUfDPf9DycVg4HRrVdXhZxVLWxV/BlCttlqVkNnr27AmQQjSNGCF5/eHPP48VESGF2vfeKy9evgznzrG9e3c27djBDVFRKSe+dg3y5oWnn5ZPgBcvwrRpsGYNdOyoYklRFKfYds916dKFzl16uxZNzRrJc2wsbP0H1m+HA4dh8w4oXQqKhMC/++CxjvDck+ISXq82/LvKsf4JFUuKezTCpDjgVcPeLVugZk1o0EDSaxs2QKdOskvu888JX7OG4LvukgLMunUlfde5s7RbARFNhQurWFI0wqR4xKtIkzHSzmT3PqhYHgqHwA3FpZFu2AWYPR/i4uG3r2DXHujbXcwqk6BiKeujKTkl4LgVTa++inXzzZKeq14dqlQRJ3DLImLfPkKqVCF8716CK1eGmBj45BNx9d68WeqYVqyAXLlULCmggknxEq9E0+wF0gvu/nshKAiAOd37ka9YESo1a0iVG2/A2rYTRobCxt8k8pSAiqXsgQomJU1wK5ratMFq2DDxpkRcHEREEPHXX4S0a5fyhzEyUlJy+fPD9OlcDA9XsaSACibFB3yyHIiNJeaf/5jWsBOXgHy3VubFrYvktcuREnlKQMVS9kEFkxIwOnbsyLZt2zhz5gxFihShQoUKrF+/3nV6bs8eOHxYnMBPnybizBlCgPBjxwieMEGcwh97DFq1SjxXI0tKElQwKT7hUTSduwBtnoa9B4mPjSNHbCwGOFO6FKWGvw5PdHYoDFexlL3wVzBpaxQlkebNm/Pjjz/y33//MXv2bCzLomLFiq7bqLz1FgwfDm3awLvvyr9BGvXmyCGpuNat4f33ARVLiqL4h8c2KoWDoWgING/MseYN+R04CgSVLgFDP4Ko6MShKpYUn/HWsCktzKSUjM28efOMZVnmiy++cG5u+dprJj6JAVj46dNiCnb6tBw4ccKYRx4x5r//1JRScYYaVyqpwhtzy9mPdjRDwQwFc3L9L8ac2KSmlNkUNa5U0pTz58/Tu3dvjh8/zpo1a1zWNPXv35/BvXqRe+ZMrsyaRbGdOwkfNIjgli2haVNAI0uKSzQlp6Qat+m5pX9w/sFe5ImJZQPQNGIXORMMKjWylH3R1ihKQBkwYIDJnz+/AUzDhg1NWFhY4muu2qg0B3MWzLmEr8Nlk68xc+dqZElxh0aYFL9wFWmKr1/HxCe0QzFgzJ9zNbKkmPDwcL8iTFrDlMUZOnQolmW5fWzatClx/BtvvMHWrVtZsmQJOXPmpGvXrolRpZ49ezJlypQUNU0rgQ969+bq8uVyIDQU2rXj4p13amRJUZQ0w1VN07XPRvAh8B6wolY1qFtTI0uK32hKLosTFhZGWFiY2zEVKlQgb968KY4fO3aMcuXKsXbtWho1apR43GV67uWXGfvxx4SHhxMfH69iSfGEpuSUgJA8PVf/5nKE1m4NQO3HO3Fj76dVLCnaGkVxT/HixSlevHiqzrUJoqhkLU9ctVEZ+/HHAETfdx9tY2NVLCmKcl1I3kZl+rv9GYT8Ffzu2jUVS0pA0AiTAsCGDRvYsGEDTZo0oUiRIhw4cIDBgwdz8uRJdu7cSZ48eVKc4yrS9GhQEEsKFmTFihUqlhR3aIRJCSi2SNOGhQs5FhNDDqBh3jzkrldfxZKiESYlMOTLl485c+YwZMgQIiMjKV26NG3atGHmzJlOxRK4jjT9EBPDMw8+SJ06da7L2pXshWVZVnh4eHovQ8mgTJ06la5du5Jv2TLy5MlNzZq1mDlzJsYYIiIi0nt5ynUkKirKIUNy6dIlgBQ/ByEhIcHAJeMhgqQRJsVvnEWaSpYsyY4dOyhVqlQ6rkzJ4KQqwmRZVjCgiklRlEASYoxxq6g1wqT4jS3S9MwzzwBSN7VixQoVS0pacalq1aps3LjR7aD69eu7HBMREUG5cuU4evRo8tC8V+d7O8bfObxZ5/VYhzev63uaOdcZiDky6v998gjTyZMnadCgAbt27aJMmTKJx0NCQkKAS24nRgWTEiB69uzJ1atX6du3L7/99hs1atRI7yUpWRRjjKlevbrbPyIAOXPm9DgmODjY5Rhvzvc0JhBzeFrn9VqHN3N4Wmt2ek8zyzoDNYentWak//tChQo5jPEUWbKhgknxm9DQUEJDQ4mLiwPg1ltvTecVKVmdPn36BGRMWl/jeqzzeq3jeqwzUOvICO9pZllnoObw9xqBWkcg1uoKrWFSAoabHQiK4ox02yWXWX5WM8s6IfOsVdcZeDLLWm3egkePHqVs2bJJX/LqXqRO34qiZDvy5MnDkCFDXO4AzShklnVC5lmrrjPwZJa12taX2nX6EmFSFLck2b3kcbeBoiiKolxP/P0bpYJJCRiWNJkrhBd+FoqiKIpyPfH3b5QKJkVRFEVRFA9oDZOiKIqiKIoHVDApiqIoiqJ4QAWToijZHsuy7rcsa71lWVctywqzLGtOeq/JGZZlHbIsyyR7jErvdbnCsqw8lmVtS1jnbem9nuRYlvWLZVlHLMu6ZlnWScuypluWdWN6rys5lmVVsCxrqmVZBxN+RvdbljXMsqzc6b225FiW9bZlWWsty7piWdbF9F5PIFHjSkVRsjWWZT0ETAYGAisQT5Za6boo9wxG1mvjcnotxAs+BE4AGbUT90pgBHASKAOMAX4CGqfnopxQDQlwPA/sA2oiPwMFgNfTcV3OyA3MAtYBz6TzWgKKFn0ripJtsSwrF3AIGGKMmZrOy/GIZVmHgPHGmPHpvBSPWJbVFhgHPATsBG43xmxL10V5wLKsjsDPQB5jTEw6L8ctlmW9AfQ2xlRM77U4w7Ks7sjPauF0XkrA0JScoijZmbpIZCHesqytCWmZhZZlZeRmiP+zLOtcQqrr7QyalimFRECeBq6k83K8wrKsosCTwNqMLpYSCAHOp/cishMqmBRFyc7YPp0PBYYD7YELwO8Jf0AzGhOAx4DmwKfAq8DE9FxQchK8br4CJhljNqXzcjxiWdYHlmVFAueA8kCndF6SRyzLqgS8BExK77VkJ1QwKYqS5bAsa6iT4ujkj3rY74HvG2NmG2M2Az2QXnVdMthaMcZ8ZIz53RizwxgzBXgBeMayrGIZaJ0vAcHAyLRek5/rtDEauB1oDcQB3ySIvoy4VhKK0hcBsxJ+BjLkOrMiWsOkKEqWw7Ks4kBxD8MOAY2QQu+7jTFrkpy/HlhmjHk7zRZpv5ZXazXGXHNybhngGNDQGLM+LdaX5FrevqczgQ44NkjOiYiR74wx3dJkgQn4+X6WBY4CjY0x69Jifcmu59NaE8TSSmA90N0YE5/GSyThuj6/p1mxhkl3ySmKkuUwxoQBYZ7GWZa1GYgCbgHWJBwLAioAh9NwiYl4u1YX3J7wfDJAy3GJD+/py8A7SQ7dCCwGHkX+0Kcpfr6ftsjSdeki68taE8TxSmAz0ON6iSXw+z3NMqhgUhQl22KMibAsaxIwzLKso4hIeiPh5Vnpt7KUWJbVCGiI/NEMB+oDHwG/GGOOpOfakpJ8LZZl2WwP9htjjqXDkpxiWVYDoAEilC8g9WzvAvuRLfEZhoTI0irgCGIjUMKWNTTGnEq/laXEsqzyQFGkHiynZfff2meMycgWGB5RwaQoSnbnDSAWmA7kQ6Ig9xpjLqTrqlIShURphiARkMPITrQP03NRmZirwIPAMMTP6CRSG/SYMSYqPRfmhNZA5YRHctF5XeqtfOBdIGnadWvCc3NE9GVatIZJURRFURTFA7pLTlEURVEUxQMqmBRFURRFUTyggklRFEVRFMUDKpgURVEURVE8oIJJURRFURTFAyqYFEVRFEVRPKCCSVEURVEUxQMqmBRFURRFUTyggklRFEVRFMUDKpgURVEURVE8oIJJURRFURTFAyqYFEVRFEVRPPB/5EkNZRqHMQgAAAAASUVORK5CYII=\n", "text/plain": [ "Graphics Array of size 1 x 2" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "r_val_I = [1.2, 1.4, 1.6, 1.8, 2, 4, 6, 8, 10]\n", "r_val_III = [-10, -8, -6, -4, -2, 0.2, 0.4, 0.6, 0.8]\n", "show(graphics_array([plot_I(0, r_values=r_val_I), \n", " plot_III(0, r_values=r_val_III)]), axes=True)" ] }, { "cell_type": "code", "execution_count": 81, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVIAAAKQCAYAAADNHfLNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3iTZRfGfymU0bL3njIEVMTJkrJlqgzhQ4bKUMEBKCIKCAKKCoiAgAgoe++99957Q9kUWijdbdo83x+naZI2e5QWcl9XrzTveN43aXrnzPtolFJ44YUXXnjhPHye9A144YUXXqR3eInUCy+88MJFeInUCy+88MJFeInUCy+88MJFeInUCy+88MJFeInUCy+88MJFeInUCy+88MJFeInUCy+88MJFZHTgWJcq9yMjI2nevDmHDx9i3Ypp1Kr5qnML7ToI5UpDofzWj4uNhfBIyJfHuesA7DkM34+E9bMhaxbn13EB9yNDqD+vI48iHnGx8yr88th43Q4iWhvDu0s/ZdfNw6xp+w91S1Z36/rOYOcvf7Ft6B8ANPp1ANVrvgbHz8KHbSCj0UdWqwVfX8sLabXQpDO80wi++Mj2hePj4c/p8Fkn8Mtq9pDHj8Np1PxDDh46YbK9UKFCbN++nQplysCxY7B+PUyeDJ9/DjodvPgilCgBmzZB585QsKCc2Ls37NkDH38M3brJ64mKIjZDBlq3bs3mzZtZsWIFjRs3tn3/XngCGrsOcqCzyWkidRuJJiTAi42g9usw+Rfzx4SGQUysbaJNR7gfGcL+O8doWa6BW9d1mURjYiE6BnLndOt9PTh3iYkvNwGgTL2adFo7w/LBEZGg0YC/n/n9o/6G16vCW284dhO370G+3JA5c4pdoaFhNG7xkXky7diRCn//Dfv2wfXr0LSp9escOwYjR8KiRVCoEFy+bEKiK1eupFGjRo7duxfuhF1E6nHX3m0kCpAhA+xdDj/3t3zM9AXwSlOxSF1BdAzcCXJtDTehwIlAWk4/jEpIYOS+yZwPueLymm6xRGu3hiFjXL6X5MhX8TlyligKQOCug8RFRELgLRg6Vshbj6hoeK42zFpiebFvPnGcRGNi4a02MHy82d25cuVgw6p/ef21l0y237t3j4DZs7kwbRpUrmwg0cBAGDUKBgyALVsgPBzi4kApePllmD8fBg+GZs2I9fHxkmg6hEctUreS6ONwyJjBsuWhx/0QOHwCmtZz/loAKzZCu55waScUL+LaWq5iwSoYM4WIXfN5c2YbgqMfsb3DHCrmLevUcm5z57fsgQJ54YWKzp1vBWu+HMzhKXMBaLdoEhWLFoaWH8GW+VDB6HUvWAXVX4ESVv5GZy/CnOUwvJ9Yr/Zg/XZ49UWroSGrlum2bVTYtg0ePIAJEyA4GLJnh7AwOHJEyHPTJmjUCH75BXx8iI2N9ZJo2sOTde3dSqIA/X+GNVvhxAaxTD2NR49h90Fo0dDz13IA9yNDqDevo9NkmhZjouZwce1W5rXqAcAr3f5H8/E/yQ57idAY2/bBZ9/D1vlQpKBj54aFQ2wc5M9rdrdFMi1QgO3x8VTo109c9vr1IX9+uHULihWD7dvhs8/EWu3Zk9gxY7wkmjbx5IjU7SQK4tqdPg/NrcQJfxwDxQpD9/+5fr00DGMy3dtpIWVylbDrPLeT6MWrsGU3fNrJOYKzgriISH7JXxWUoujrL9FtZ6L7rlTKa01fIImlTzqaX0wp+fFxMJKllLj4pYrDrLEWD7NIpgULsn3HDipUqGD+xIQEGDuW2HbtaP3pp14STZt4MjFSj5CoUlCqmHUSBbgfDAnx7rnewN/h1HnX13IH+gyFjl8mPS3gn5et/5tN2wpNKJLNPgvLI5bo4ZPw3Uix2NyMTNn8yZUYJw2+cBWlFPy3CCrVk7+PMQJvwbEzlhfTaIREg4IlRGQvNBqJxw/7xuphFmOmQUEEBARwYcwYsUgzZ4YXXoCqVSVDnyEDsZ9/7iXRpwButUg9QqKRUdDgfzD1d6hc3vX17MHjcHijJYweCM3qp841rWHZeinl6tza7O7jQWfJkjGzRTffY+68OevQjZjT8mMub9wJwNeB+8h2Jwi27oEvP4JMmRxbLCoaSr4Jg3vbVwqVHDqdvFYrr9eiZZo5M9tLlqRCeLgkQUNDQacjbtcuWo0c6SXRtI3UtUg9QqIgscoyJSCzjX+ckEemGV1XkDM7nN+WNkgU4L23LZKoUorem4dTd25Hs9l8j8ZEPUiiAHkrlEn6PfjCFahWRbLw5khU775bgl9WWPqPczHvByHwajOpK7YCi5ZpbCwBYWFc2LYNQkIgKoq4adO8JPoUwS1E6jESBYl5zhkPz5WyftzQP6BWK/ddNy3hynWJR5qBRqNh4bvjyeeXOwWZejyxdO4SNO4I1266d91EVO3YivZL/ubz05spof9M7T0CF5J9YZw4C/mrwukL1hes/bqEiBxF3txQ6zXI7m/zUKulUa++ytGAAGKBVkuXekn0KYLLrr1HSRQk/pUjG+TJZf24sxfhXjDUq+H6Nf+ZCzOXwC4r9YmpiY5fwsPHYKUw/X5kCPXndyI46hHbOsymZI6ins/OX70hCb7h/aBkUfevbw7VmkD9mvD7QMO2h6EwczG838J6Vv7AMYnr9uri8du06OYDw3Plold0tJdE0wc8n7X3OImCFNcHVIfRg9y/tiVs3AGnLsDXPVLvmtYQeEsyvGVLWj3sfmQIrZb1ZMRbffl536Q0X+LkFO7ehyyZneum+msGTJoFpzc7fm7IIzh5Huq8YXf23xKZZgSGDB/ODz/84Ph9eJHa8DyRzpgxgw8//JCZ036n0wfvOXJz9uPIKbFIy5W2ftyStVLr52gXy1OGqLho3lv2GbtuHmZak1/4X+UWnruYUhAWAVkymW2lTFUcOgG+GaFqZc+sr2/QuHnAYk2pOTx4EEKFFxvx6NFjk+2+vr6Ehobi52ejwcSLJw3PJ5saN25MhQoVGDB4NJevBLqylGW88oJtEgUY/6+QqTvw6LHE3dIK5q+EGYttHhatjUki0ebP1aXP1hFuaSe1iOCHUPBl2LDTI8sHnb7AqQWrOLd8AxH3HsjGXyfCvBUpD/6wr7xPnkKzenB8vSQi7YRWq+XTLwanIFGAPn36eEn0KYJLRFqoUCG2bdtGtmw5CWjU0TNkun67FFzbwvZF8OdQ91xzxUYpf0pIcM96rmL/UVG9soLkiaUJDYeQL2tuAuZ+4DkyzeYP8yZIK6UHcH7lJpZ26cPC9r24ezyxTvTCVbh5J+XBe5ZBv0+tLzhvBdRpI6VMjiJjRqj4nN1lV1qtlvaderN0+YYU+yoUKMD06dM5ffq04/fhRZqEy1n7woULe5ZMt+8DMx9Gj6JZPfnH9HB5j90YOwSm/mZxt7nsvL5o36NkmjWLlGY52nZpJ+KNytky6kMH00fBt5+lPDhXDsmuW0PhAtKX72iHU3w8tO4Buw/ZdbglEs3i68tf/v6cyZSJEkWLUrduXS+ZPiVwS/mTR8n0l+9g5XTbx23dC2+0cE8taf68ElJw9B/uCcBaiZMxmc47u8r9F79yXbqNXFXasoB4o3UzZsksHoI5L+HcJfj4G+lcsoaA6jBygOM38vAxxCeAv3mNUmNYItGsGTKwLmtWegIZ7txha//+FCtWzEumTwncxhQeI1O9VRgVbf24AnnhtarSCeUqwiNEsu3MRdfXcgf6DIWeKTO89tSJFvDPy95OCxlS6ysAYuLdSHqHTsCnA1yU/LaMcCMZw0zZ/eHgCSjwMly6ZnpgWISUYllr2ggNE/ESZ8I1BfLCimnwchWrh1kk0SxZWJstGwEJCfDKK1CmDDmLFWPLwoVeMn1K4FaTy2Nk+u0IEY+wFtuqUgEmDLPt3tmDLJlh9lK4HOj6Wu7Ai8/Dm9VMNjlSbJ8jc3Y0Gg0bru6kwpSG7nPz27eE8HPyfrkZSikCdx4AhETzVywLRQvBD1+krFl942XYvlDce0tYswWadYEHDx27kaOnpQnABiySaNasrF23joBFi6BHD/j0U1GAWreOPLVrs2X+fC+ZPgVwu+/qETL93zsw6CvbMcuYWFi92XqroD3w9RUd0nfSSLH0R++btIg627H0csHK5MiczWI7qVOwNurDBQRfuEJkoqtesuZr+GTMKJqjfbubJnx0OrhhJvmUHB3ehSNrHJ+cMOE/GPCL1c+UVUu0WjUCKlWCmzdlvEi3brBunbxvYWHk2bqVzZs3e8k0ncMjQUC3k+nLVYTUbBHptr3Q5tOULYTOwlVCdhcehkrnFq61fRbwz8uW9rPMtpM6hXHTod9w19awgGvb9yX9XqrOm/LL4jUSlzXG/mNQ/i04ZoOANBp4vpzjN/LPr7Dob4ufPauW6JgxBAD07AmrV8Py5fDDD1CpEtSrB1WqQNmy5L1+nc0bN3rJNB3DY9kUt5NpfDx072++hlCPhrWla6Xic65dC8QVLPyKe2KurmLafGjQwS2988Zk2m3d9zjQkJESWTJDVtsJGGcQuGN/0u+lA96U0S+9Bkqc0xgvVIA54yT8YQl/TIX3P3Os7OnAMTh/WUTEC5gvwLdKoqtXE/DZZzJi5MoVcesPHoRWraBAAVi7VkSdS5eG6tXJO3++1zJNx/D48Lu7d+9St25dIiIes33jbJ4rW8qZZQSfDxLxiPYtrR+nlBCvK27nlesiX9e9g0NF2B7B7XtE37nNu1fHu63t835kCLEJsRTP8YTHqJiB0un4vfgbRIc8IkuuHPS7fQifDBlsD7qzhBUbhRT797T/nOYfStWGhYoRqyT6xhsElC0LU6fKxtu3oUgRGTty5AjUrCmVDoGB8OgRtGwpKvrnzhESFUWDBg24desW27Zto0oV6wkuLzyOtDNF1K1kags6HTT6AOrXggG9PHedVIQnVZxCoh/RcdXX/FH/B8dnQN29LzFHD6jjbx36B4Hb95O7TAnaLZgof9fk5Wj7jsLc5TDyO8fJ1RYiIiXmbmZmk1USXbuWgOBgGW536BD06yeD8AYPhjp1JGt/5AhUS0wehoVB375Crq+8AgcPEvLee14yTTtIG1NEwc1ufnw8DBgpSSVz8PGB1k3AHQIq9x7AxJnOdcK4CdHaGN6d8xG7ru5nTaMxbhcgSdDpuBl21/Gi/eCHULqGWO1uRqZs/rz9+0A+PbSatnPGSSdTmZqi3GSMO/ckHp41i/mFbtyBr36Ull97oBSMGC/TY7P5O06i48cTEBAAbdpAyZKwZAlER8OsWTKjafduSToZE+PYsbBqFbRtC//8A7/9Rt6sWb1ufjpDqlWcu41MM2SAG7fh7gPLx3zW2T3iJRevwve/pkxwpBKSLNH7J1izJjt1M5WxfZKDcLoDyi8rLJ4MNV9z+z0ZwydjRvlybN8SKiR7/a2bwobZlhsnzl2CHftFzMQe3L0v7cjJ1Jr0sEqio0cT0K0bbN0qG2vWhMuXoWxZaN4cKlYU975YMdOqg5494b//5Pc5cySeumgRefPk8ZJpOkKquPbGcIubb8+Ii3sPoO9QGNEfShd36l7R6STZlD2bc+e7gNSe9qkfqPcw5jEXum8ke+bUf80OYclaaPSW7b+NuZCANURFy5dEMth05+vUkbKmChXEshw6FBYtgvXrhSgzZoQbN2DECMnclzAzsPDvv+X8ypWhRQsYOZKQF17wuvlPFmnHtTeGWyxTjUbI9I+pMHuZ+WNyZIObd2UgnrPw8ZF/1ISEVHXvn8TIZL1l+kf9H+wj0fkrRbfVzdg/4T+CjIcOrt0Kc5L9je8EwUdfw8pN5heJiISREyXGaQ+Jnr0o6lHhEY6T6LBhBMTFyWeyaVM4flzKnGJjIUsWyJYNrl2DoCCIioKjR+UxOdaulfHMuXPL/rg4WLeOvHnzei3TdIAn0kzuNjI9fxkCLYy58MsKOxdL14sruH4bytaCxC4bT8MsiSolOgILV3v02gX889Lu+WYAjDs8w7qbP38lrNri1uuHXA5kwzfDmfxac5Z37Scbt+6FpetMDyxSEM5uhXYWtFb3HYU/pwnh2oOgEPkcmfFybFqihw7BxImGHa1bw4kTkCOHxEonT4Y+feCDD8S9P3RIHpPj7bdh5Up48UWxaK9dg337IDqavCEhXjJN40h1194YLrv5xm6bJXf/0WP4aay0FppJHth1jaFj4eN2Hh+nYdUS/e4XGUddy7MxSf19vD6zVdLYEovZfEfdZhtY23sIhybPBqDBiG+pqZ9QEBdniCvevid1nbZK28IjbLv9cXGyjt7DSfb5sUqia9YQULcuaLXyM3OmZOD79RPrc+xY+P57IdR796T06YUX7HsjtmyB4sWhVCkYNkzKqK5cISQ62uvmpz7SpmtvDJctU/0/8bL1ol4eb2amfWycaJo6K0Di4wND+z5ZEgVRLUoFEgXI6pvFvg4oN5Jo9KPHHJ8pM7J8/bJS7aP3xbIEA4kqBW0/hR7fmV/kcTj8PVtCMfbETt/rLjOnwDESnTSJgL594dIlIWI/PyHL27dlnSNHYN48w+exUCEh0ZMnIX9+ebSEsDDJ4C9eLK/j5El53Zs2ed38NIwnrhPnFjc/Zw75x4k3o+xTKD+c2gT6NkNnsXm3WIUegF0x0ZBH7mt9tQPJ20kvPwo07Jy7HKq/Y/6Ly0kc/Xch2kSFr5c6tSLroRNQ933TSQUaDUwYDn26mV9k404YPFoSjbbg4wPvNjY7LNGmO//22+Ke58ljUJMaMkSsUIBmzSRjnycP/PqrYXuBAlIzWqCA5fvKkQN27YL+/cXSffgQ3noLXnoJxowh7927XjJNg3jiRApuINN6NWDa79KyGBeXcn/GjBL8HzpWZpQ7g/vBMvzMzdqbdieWhv0JHb5w67VtQU+mLZ6rRyF/I7GP0iWgbg15X92AhLg4Dk6cmfT8zc8/lIz85nnwUiXZGBEpllm1KpbbQds2k9hp0UKWL6aUgZy7dxCNUiNYJdGpUwl4+WURH5k3T3a8/DKsWZP4QhIk867VGkIPjx7JD4hlOmCAPFpD5cpS5nf1Knz+OSxcKOQ7fTr895/XMk2DeKIx0uRwOWZ67hK07Arz/xJhZpPF70Ot92QcSfMGjt+cPSVXDsKh7PyV6/Il4YzwhptwLvgyGo3G8Q4oG9g//l829BsBQLkmdekw6eeUKk3vfyZ9/TPGpFzg2Gk4fRE6tbJ9sVWboF0vOLwaKpU32WWzd753b0kGzZY4LjEx8PXX8lOmjBTdv/027N8PVaumvHZEhGT1q1aVbL4tfPGFhAl274bffpOfTJkkEeXjQ0hEhDdm6nmknRZRR+ASmcbEwsDfpTXUnC5pdIzlLhh7ceiE6F7aM5DPCp5EiZOraDi/C6funmV7he+o+PZ7bomRRgU/ZHyVBsSEhoFGw6dzJ1Dwwz6waBI0qmM4cNNOSNDB2wEpFxk8Grbshh2LbFvJOh1s3mW6Nna48wEBQoIFC8pPUBAULpxy/Xv3DBbnuXNCsPoxKUePpmwRtQatVr48/f0lHrt+PVSvDiEhomu6Ywch/v5eMvUs0n6yyRxccvOzZIZRA4VEH4ZK8sEYWbPIP9KYfyx2r1hFQgJ07i2z0V2AUyQaHiGJkbNPTrV/Tosx5IuGgP0DOP/wqlvW3D58nJAoULVjKwq2qA9//GiIaevrdxu+ZZ5EQZKB62dZJ9FFa+Rv7uPjGIn+9x8BGzbI375qVSHPsWPl99BQ/QLifitlIFGlxDrt18+wYKVKcP68PNoDX18h0du3oXdveO89ePVVSUgVKAD373vd/DSCNEek4IaYqVLwXjfolXI8BwkJsGID7LOtep4CGTLA2pnwu5l17YTTlmgmXylMD7zl9LVdRQH/vGz9ch35CpckYJ7reqa6hASCLwgh+/r7UW/gl0KGH7czWHFfDYFPLGTp/5gKm3ZJyMVall6ngylzZOpBMti0RH19JYMebNTY0aUL/Pkn5MolzzdsgA4d4GyyxNi6dfDVV4ZtWbJI51IWB70ijUbIMzxcrNGPP4a7d6Ve9exZ8oaFecn0CSPNufbGcMnN33MYCuUDc+cY1yU6i4ehkCeXQ6ekR3feHO5HhtBicQ9+q/stdUq4pmmglOL8io1E37pLtcmzYUgfaNPMcMD8lRCnNZkQAMgXYutPZATLd1bk8fSx7aho+TIyslqtkujy5QQ0SpyQEBsrxH7gAJQrJ9n45Lh8GZ6zoYN76xaMGSOZ+2LFrB9r6XVotXDmDDz/vHyGa9WSbqjVqwkJCfG6+e5H+nTtjeGSZVrzVSHR2FhpMzSGnkTnrZC6Q0ex66AoH52/bPcpTwWJjvkHOn5JAf+87O+8mDol3iBBl8DNMDtGfViARqPh+XcbU+3jdjLa+ZUXZYe+tKp9y5QkCuIdLPkbvrUyy/7YaZn1dfuedLrZS6KLFkli6Z9/ZGPmzHI/H3wgffKGRWBzogqZMYlGR0u76IFk3XBhYWK9hoVZeUcsQN800LYtjB8v93TkiLj+R47A7dteN/8JIk0TKbjBzZ+zXMqGzLULHj8Dx844PlLk9Zfg5/5QzEyywQzcRqK/ToQG/3PuXHegRBGoXAEQAgQYsnscr89o7frYEr+sMOwbEZjR6aBVD+mXT46oaMngnzwnZGot4ZUjmzRSJBPmtunON20KHTuKfqgeGTNKsue33wzbFi2SOOjVZPHiBw/EYk5uuVaqJNakvTHS5NBoJITwv8TPwNmzUlrVrZsQ6/vvkzcmxkumTwBp2rU3htNuvlJSyG5u/IhOJx9OV8qabJRFudUS3bRLpP16dXF+DTfjfmQI9ed3st1OaoTTi9aQJVd2nmv4lrx/H34NzerB+83lAJ0Oxv8r5UkNa5uefPc+dPwK/hwik2PN4U4Q5M1liLMawSqJzp9PQN68IoGX9ALvw++/w/DhKddTSuKU5kqdPA2l4PBhyf5nyCAE3aaNhA6aNPG6+e5D+nftjeG0ZarRCIkqBT9PECtUDx8f2b/rILzTVcqnHMHC1dCwg8UOH7e78w1rPzkSPXbabMWAowP1Iu49YM2Xg5nT4mPmvtedhOho0Qv1S0zAxMfL3+WrrilJNCEBCheAzXMtk6hOJ3/Lr4ak2GXTEt2+XSw+46aLEyfE8gwy8mju35fuI40mJYkGBopLb85AOX1a+ufdYSWuWAFvvCFVANHRQqJhYdLzHx9PXvBapqmIdEOk4KKbH5MYKz1wLOU+fz/ImMFxIi1TQv6h47QpdnkkJhofD/uPQpAL0oDO4ucJ0Ocns7uMyXT6ycUWl1BKsebLwcQkKtZnzZ2TDH5+MPU3aZKIjoFarVLK5oHoj9ZuDYn1phbh4wOjB8G3n5lstqtO9OefJeaZObNR2VVDuHDBVD907Fho104ILDmmTRMtUW3KzwR58kjIwFyyylG0bAmbNkkXVNasUrw/fz5MmSLJrPr1yZszp5dMUwnpxrU3htNuvnG23pJyUUKCuEouwGOJpegYyF0FpvxqPgHjScTEwv0QiZNaQGhMGDkyZ8NH40NcQhyZMphWRpxetIYlnaQcyC9fbvrUep2M3TtA/URXOi4OfvoTOryTouuIk+eEYEcOME+koWGiAfBZJ8cESBYtImDGDCFRfcJIKSG8ihVh0KCU10pIECX78uXN77t6VbL7qYWFC6VJoE4dsaZHj4Zly0QXtWhRr5vvGp4u194YTlumehJduBrq/y/lqOUbd6BaUymdcgSrNsmoYDycnc+aBY6uhTZN3bemvciS2SqJAuTKkgMfjQ/br++nwpRGJm5+5IMQ1vUZkvS8+S/fkTEm1kB6MbHy9xnez5REH4QIOb34PPz6vWVrdONOw7wlI9i0RKtVE+V6fXG9Hi+9lFI39OBBccszZDBPonFxss8SiVoTdnYWSkkP/oIF8nzBAlHnB2lh/fdfr5ufCkiXRAouuvnlSsHLlSFzslrSwvmh9uvWRS/MIU4Lj0KJjnzs+RKnSuXNqrh7FP2Gi6arnaiUrxz+vllNZkCt6/sTUcEi3vH8e415vlNrWD5VBGcuXIHn6xpk8/RISJCxyH2GWr6Y3qN6vzmc3Gjyt7NKokuXEvDqq9KptG+fdAyB9LFrNPDtt1JqZIwhQ+Cbb8zfR3y8uNn6kilzOH9eWkTPn7d8jKPQaMT6nDBBnn/wgUjvHTwoDQP9+8P06d7SKA8j3RIpuECmL1eBMYMT5+jcMfwz+vrChGFQqpi40WHh1tfRo3VTomeM4t3VX3m+TnT1ZuktT00UKgAF89l9ePKBemsWzuTMIlFIypY7J61itaZJv6KFoMO78GIyCzBDBrFQe3Y2f6HYWHi3mxTtg4m+gk1LdMoUSdAYV13oZy5Z0gtdvFiSOeYQHy+jQt60ItdYsaLUfJpTyHcFWbNKmErfy5818Yt27FhJbi1aBDqdd6CeB5GuiRRctExDHskIj4lm/jna94Ku/VJuN4Mkd/76QdZkaOXZYvu79+GUGy0ae/B1D/iko0On6Mk0T6YcfLr/56QAe5NBX5Hx0WP5x1dKOsSy+cOIb01n0+/YL/sbvmW+dA3ki7Bk0RRKUXYllr77ThTsjUMFDRvCv/+mVLKfNk26kvz8LGuJZskiSR5rKvh+flKu5Odn+RhXUKiQWMU5csjz+/chIEA0UTdsgDp1yOvr6yVTDyBdJpvMwekE1JK1UmaTw7Rom50H5B87uRxfMpjERHUtqbvlBqyd4XLCKs1g/1EoVTylrJ2dmPXFNxxevJw8j6B8s3q0X/y3RO81GvhnHowYB0fXmbbb7jkM9dvDlvnSoZYc8fGiOfBcqRS7bLZ9Xr4syknGicaNG2VUsrkkTHi4bP/qKyFKc9i7V7L9/fubrV1Nwp07Mt+pZ0+5nifx4IF4WHo9gI0bJXG2ciUULOhNQNmPpzfZZA5OW6atmwqJ3nsgI0v0eOsNIVGdzmLyKUViqe9PokKUGiSaGlNNdTr44EsY9bfTS7zz3Te8Wb0umfL5s6DsSS6c2GOwAls0gB++TKlZUPNVkcQzR6IAv02GgLaiiGUEm5aoj4+oMZ0xCisoJcmZ3383f63s2UU+r3dvyy/yzBkRd7al3/DwoWiZPnxo/ThXoRS88w507y7Pd++W5xcuyDyoK1fImzmz1zJ1I54ai1QPpy3T4eNgxmI4scE0mTN7GXw6AM5sMZnbZDU7f/KcWEwtG7rnRRkjNhZK1YDfB0LH99y/fnI8CBEdUCctUpD60avr1/Hurn4EF/BnW4u/qVigXErFplPnZZpnCxvvW1g4HDhuUrBv16A6kML6ggVN13v8WCxJY1WmqCgYPFh+9K6yNbh5EKDLOHhQ6lWfe05qWvUx4Xz5xP2vVQumTvVaprbxbFmkejhtmQ7oJeObk2fE/9dSOmnsJVGAybNF4MPRHn57kDmzqB1Vq+z+tZNDKcif1yUSBenLL9ukKVu+30G+7PmoO/cDznfslPL9+W8R/PKXYQ5S8nsZPUU8hxzZ7SfRVasksaQfmawn0QsXoHFjiSPmzJlS2u7sWRkncv269Rd34IAQVVoiUYDXXxcSjY2FSZMknFGwoJRv1aolry8y0pvNdxPS2F/fPXCKTDNkkPbD6Bjo3AcOnzRsfzNRzXzWUqJv3bRd4vTrANg42+2jSZLwVdeUBevuxu17ULm+tIY6iHsnziaJNXP9NnTqDSGPKJAtn3RA5S1C3To3CY1NVhXx+w+w+j/zoZEHD2HiDNi6x2SzTXe+Xj0ZbZxczV6rFSvSUhjm1Vel6N5a8ig0FOrWFTUme3D2rFiDxrqlnsa+fZJUO3VKno8cKZUDL78sdaZ9+5LXz89Lpi7iqXPtjeGUmx8ZBW0/gz5dJWOsx+Nwol9pxLufZGeX5o59JU7Xb4tr/OqLLr2OFLgTJPoA7Vq4d11jXL8talO/fJdCPckaokIeMfk1ER9pPmEY5XPmgP4/w6p/4dZdqFiW+3FhrLu6gy4vtBJC694fPv/Q8vuk7zZLNqve5oylQoVSKi09fCiuuiU1/U2bpCNo7FjDADtrOHVK2kdz5rR9rCt6pK7gwQMZAw0SsoiLkyTU/v2iur92Lbz8stfNN49n07U3hlOWqb8frPlPSFSppHEl0X6+vPtjGftJFKDPEBgw0pWXYB77jkCXPhDswaRFyaIwcYRDJKqUYs0Xgwi/E0T4nSAO/DUDVeMV2LVERJWbdobh4yngn1dIFJh6aA7nH12TKaHmMHaqzLKPj7efRNeuJeDkSanpNFa21+lE9q5XL8sv4u5dITxbrrpWK5+PF16wj0RByHPMmNQlURASVUq0VCdOFBK9f18SbwkJkgBLSCBvtmxey9RJPNVECk6Sqd4lHz0FarcmOjxU3PmgE0Ki52Lht0m21xn3Eyx2PuNtEU3rwf1jkM8N4hfmcOIsLN/gcGXAyTnLObtUKh8qZfOnXZ7caOLi5P3094MlU+Dr7knHx0aG8+e5hQQ0uMv5FyzUZ1YuL2LP9ooy6+tEP/lECujzGTUS+PhId9Lnn6e8jt4z69xZLFJblReDB4t4syNx8JgYic3GxNh/jrug0RjUzkBiwnnzysiUwYOlmaBdO2/RvpN46okUXEhAvdeY6C878e7a3qYx0dMX4OBx80kRYxQrLBZdyCM5x13ImiVl3as7sXwjDBrlUIz30bWbrDXqpa/+YVsyJcQLIS1bL4TzelXDfc9aSuZabdnSdGJSB5SJBN+x04aC/B++SNpsMzu/c6dI2WXNCvpRIXFxIuwBQn7J455KiXzemMRRz/a87rp1xS12JA5+9qx0NaVmjNQYw4bJ6GgQMl++XESi/fzkPYmLA63Wm4ByAs8EkYJzZBpdohDvZt8iJPpcH+oWTEw6fd0DFkwUkrDHIuk1UAa4uTOLP3IiDB3rvvWM8WNvccftJAldQgLLPv6GuHBxz6t2ak2xUQNh7gSpwe3whSF5p8cbVaF1UwoUKmnSTnrx4TUZ4VLjPVi5yeQUm5boiy/CrFmiFWqMlSuhUyeZq2QOSonQSKlSdr1eQEi6Rw/7jwcROtm1y7zgSWpi5055rUcSB0AOGCDC1efOSWhj9Wry5sjhJVMH8FQnm8zB3gSUSYlTozHUrddPCOaLjwwHnb0IH38D8/6SERmWEHhLBFIKW3BfncGov0Us5XszbqoriIp2WBRl168T2fqjWHMNc+Xg9a7tyTjiW8MBF65AhUTl/CvXoXjhFMXr9yND6LdtJH82GESuLDlg824RNEmMVdq0RGvWlDWjow295sa4cgXKmlHvt3S8JTx+DH36SIjAWKM0PUGrhb//lpKojBklXnrqFNSuLaOfK1SAqVOhc2dvAsqbbDIPeyzTFHWiLzaCbQtSimcUyCdtislVpJKjVDEh0ahoGRXiDnzziftJFGQm1KBRdh9+58gptg8bB4DGx4fn329OxuzZ4HKgyBWCgUTj4qBpF/jhtxTrFPDPy4wMTcm1ZjdXQ29w/uXC9pHo2rUE7N4tNaHx8aakOGiQuK9gnkSvXpXtW7bY/Xq5fFlaQu3J6CfHvXvwyy/y+CTh6ytx4owZZQLAvXtQv758Ea1cKcr727YBeN18O/HMWaR6WLJMbRbbHz0N67YJiRm7vhGRotlpqawGxHo9cRYOrXZPAfejxzKmI5u/62uBuLiL1kDxIlC9ms3D42Nimfx6C0ISvxxq9+9JvaGJ/eg/jYXFa+HQKtP+8z2H5cvHnJrUpwPgcRjN3ovhaNBZtnWYTdkcJWwnlvbulflFX35pOCAhQeJ/NWuazpY3RkwM/PSTSObpe9LtgY05XRZx8qQQ1pYt8KKbS+KcRYMGknhavVqs7apVZVvr1hK6WrgQJk8mJDT0WbVM7fpDP7NECinJtGiJQraL7afMEaX29bMl6QPyT1u7tWiZ/vq95QtevSFWU/kyrt98RCTkrypq+Z1aub6eE1BKcWL2Mtb1HsL/fDNS4uf++HzcTr9TiD5PLumuWbBa7tMcAWm1YiUlJEBCAve14YkD9R7ywuEKbFpgWoSfRKKxsRKrTL5mRARky2aZ8JQSKyx5kb4t7Ngh8+QtKUClRzx4IF90+jbYsDDD7/PnSwJuxw7ImvVZdfO9rr0tGLv5dZp8QKPZXWzrifb4ADbPExLVD73LkEG6jTq3sX7BMiWERPXqRa4gm78kvOrVcG0dPaJj4OthUohvJzQaDVU7teLTvcsp1KwePsULw18zYPs+ITC9GMnGnfDlYHH3k+P4GajSUOLNGTJApkwU8M/L+jbTiQqOYVOxPWBkvCaRaJ480KSJaIgaY+VKSRzduGHZahw/XizCR4/sfq3odPDxxxIbfZqQP78Q5927ModKP2tq1Sqx1g8fluTU3bvkzZ07yc0PqB/Auv3rrK/9DOGZJlIwkGlk7Rj23D7ClJrDbRfb+/omapm2lHpLkC6jyuWFJE/YKG/5Zrgov1uYPmo3WjZ0XM3fEi4HwvL15oe2WYNOR+4KZcgybRTUqylhj10HTY9p0RBOb4ZypVOeX7IYNAmAEgYtA61Wy5efDCNsQgSEA4n17ibu/IsvSta5abKxKzVqSMG9taL3jh2lfjJ3bsvHJIePjwiBuEKk58/Da6+5VyHfXQgPh0uXDA0Mzz0nWqbHjkkS6s03Ydgw8ubNy7oN64h/N57mS5pz+ISDY3meUjzTrr0xjl85TssuLdEFau1rJ9Xp4PtfoWt7U4L4bZIU8l/YAbksqAZdCYTgR/DGy67d9LlLsGIT9P/MPX39digYKaW4deAYxd+sJq57444Szqib+OWjH6fs4wP/zBXL+X/vpFzowhWxWPPnNdmcIrGkQT55vjBj0Qw63wyTmF63bqbrHTokiSNrEzqvXpVYqKNTPOPi5L1JLmziKG7cgBEjpMMoLWb89aEQrVbCLPrXe+GCjDLRatFOGEe7Je1ZfXE1xfYWI/xw+NPu5ntde0dQtWxVDiw6YH+dqY+PTLQsV1r+0c4n1ih+/iEsm2qZRAHKlhISVUrUjJzFpUCYNFMIzRU8DJUpnHYkwI5OX8D0gPdZ1fMH4qKjoWplqV5o84kQe8aMBvX7o6fh6KmUiyglLa59Tcc7m83OK7FES/UqRf/L/Tl/aZ/8YxsjPl4SSwMHWr5xpaBLF+lcchT//CO1n64OrStRQsqO0iKJguHLuGNHw/sUHy/jpY8dQxsRRrv5rVl9fiVL2i7m0OxD3mx+IrwWaTI4JXQy8DeYsxzObjUkoJSCmUugdRPLWfXBo2HxGji+3rYosDm4SwNzyB/w7wK4sttq1cHDK4FMfr0l2sgoNMD/VkyjXOM6IkbSuQ9MHC5jQfQiI0rJj7l7vHQNcuaAAmKR2ipxqlS2EPVXt+WDKh34rtZ3KS3wixcleZTdSsdXYKBYW46OSr54EbZvd7wAPzni4qRms0AB5/7eqYW1a+Xv17ixPD96FG2xIrTb1pPVF1axZHkmWiw5DaVLPwsJKG/W3lk4TKahYXD2EtR4xbDt1l14+W3ptzfn2oLEJS9eld75J4m79+H0eVO1q2TQxcfzb/323DpwnEJAx+zZ8N+7DMqWNFigGo0U3L/XHf4dnXJMy+17EvYY+Z0JkdisE42MhA4diNi7Hf9KVdFoNERpo/C78wD++EPU7a3Vda5cKdl9V11zV6EfTnfkiMxuSutQCjZtQlsvIMmdXxJcjxazDkqI4pNPQKMh5OHDp5lMva69s3C4nTRXDiFRpWD8v3A/RPrsT2y0TKIg9ZR6En1s58TS5Og9BHr+4Ny5ehQuYJVEAXaPmsKtA8cB8C1RhCxtmkqcs147CS3oLcS8ueW9KGUm2XPusmTwHxhUq+wSIAkIgKFDyfb8S2g0GlZeWEn58eU5f3i9DHWzln2/exfatxeFI0eh1UKrViI35w489xysXy+P6QH79qFt0ph2fzcQEn1hGC1WnJfBge3aiYU+cKC3aB8vkVqEU0InwQ9FGX/DDnleJFGNfek6mDrf8nl/TIXq70jnk6N45UXXklb9f5ZxKlZw5+hpdgyX7qWMGg0NZ44lw6SfoXBBqFxBhFmiY0R7NVcOmPyLyWhkohPVjhrUgmPrkioNbJJoWBjcvAn+/jIzKTFE8GaBauTKkouAaz9yfutC63WdhQvLzKWuXR16WwDJYIeGum/qZ44c4i7bM7okDUD7xmu0m1iX1Q/3s+T9JbR4t7+EOb79Vl5DiRIyugVvB5SXSK3AYTLNnxeOrTcUyOvDJnuPwJ5DlkVLWjSQls+sTrienVpBFxv1q5aglIQlYmItHqKNjmHZR1+ji4/nZeCrvLkpXrakxGdfeQH+Gi4E9/Uwaf9MrogVGysTQUdPkeeJLrhNEq1RQ5SKkqvPx8VRoEV7tka2IZ9fPgLmNOR8sJlyoogIOVenk0SRM1UNhQvD1q3u60K6fx/GjZPHNA5tgpZ2i9ux+v5uIdFTsSIIow/JfPihDPxbvVrEsg8ffqbJ1BsjtQNOJaAWrpa6zJljTbUgbbUXxsRKq6m9iI+HY2ekHrNAXtvHO4j13wznwIT/AKhUsSyt2zbD59xlIcR/RxsODLwl8dH6NVMuMuE/mcr64vOAHSRap468R/fuScG4sTaoUhITrVOH+1VKU29GPQr4F2Brl62m11y+XLL0x49DaTP1q7awc6d0R7kzlnn8uLSs7tkjrZhpFEkkenG1kGiFFhIPjY6GmTPloKVL5W9Uq5aUdb36qoRZGjV62hJQ3mSTO+EwmW7YIcX6438yZMKPnJIOnyVTzA+U+3ehuPn7losQsj2IioZ8L4ll+NH79r8gpWDLHgh402Km/uqWPcxq1oUMgE/mTHTfv4L8z5eTovuEBGjeANZskUL85NZ0dAwcOiEEagS7EksTJ8KiRaYudUKCENErr5icdz/yPgm6BApnN9PuGRxsKuzsCN55R76k1qxx7vx0CrMkCvL+6w0CfUuvHmvXihhL+/ZJ0weeIjL1JpvcCYfd/MZ1YNLPQlJ37wtxFcwnSZiMFtTXa70GH7wrYznshV9WOLDS8flNx89Id9XOgxYPyVuuNKXqvEkT4LPSJcivF2VuUldINChYyp5mLUl58sSZMiLEqMbVrsRStmzScZQ8C//339Jhk0w5qYB/AQpnL0xQRBANZjbg/NqZUvcJzpMowJIl8N9/zp+fDmGRREG8Ah8fOHNGZPaOHZPtJ09Cs2ZQqBCULCllYmPHPnNuvtcidRAOW6ZBwVC1MYz4FvSCHiCz2bP5W64D1ddiehLHz4i7baUWVel0BP48nlKF8qMZOAqGfwvd2hsOuHTNUAJljPh4ydK/UBGwg0SLFJH6TkthD61WJmK+Zb664H7kferPrE9w0DW2HapMxZV7nXv/nBU0sQcXL0qme8qUJy/unAxWSdQYkZHQv7/04es7xI4eNYRAhg4VF3/XLsiQ4WmwTL0WqSfgsGVaMJ+0ULY26gmPjYU6beHnCebPWboO3nQgi7/7kKjwO4qqla0X9IdHoNFoKD3wKzTdOsCYwdCmqahYDR8niZxypQ1rJCRIOdap82KJ20uiFSrIeGC9JWmMiRNlNIevr0USBbFMt3TeQr6Cpalb9wbnH11y9N0QrFol6vFXrtg81GH4+ooGgDNaph6E3SQKUkExYYKQaHAwXL9uINHVq6Vff98+sVwjI58Zy9RLpE7AYTLt3FpKhIKCYeMOkS3r3Q3+19L88S9UlN51e72FsHBpCLCXeJeth7c7mT0+KuQRcZFRQpItu4rAin7eVId3pbxp7xFJpoVFmJ4cHilx4Ks3kjbZ5c4XLgzz5sk4EGPExIhLv2KF7df03XcU2H5IyNQ/Hw1mNiAyzsJkUmuoVQumTzcvBO0qSpeWelZnkl8egkMkmhwffwwffGD4nJ49KxbrqlVQpAhUrgwzZz4TZOp17V2Aw27+97+K2PGpjQax49hY6ZmvUsHTt2vA1r2wYgP8OTTFroX/68XdY2dpOelnSoc+hsvXYfAoOLIGKhm5o8bVBUpBZJSEKoxCEjZJNHNmsfw6dkx5j/rqhshISTpZq3TQakWIuEUL6N6d+5H32XdzH+9UtNIM8SQQH2/Q+7QmAJ5KcIlEAa5dk/feOEyhb1t+/Bi++ELUuD79FEi3CShv1j414BCZxsWJVVq8iGHbwN8lWXNuW8pZSas3w6ylMG+CfT31ybOpDuLs0nUs6vAFmYCM+fPw1fntZMqSGTbtkuTZlz9C1UqieGWMEeNhxUbYvSSpztAuS7RPH8nEb9li+vq2bRMBkpUrZWSwPTBTVqaU4ve9v9OyQksq5qtoe43ffpP3r08f+67pKNJQi6jLJGqM2FjJ2vfrJ67/3bvy+ipUEMt0yhRJQjVvnh7J1BsjTQ045OZnyiQkGh0jU0UvXYN+n0o5lLmBc9n8xXLVdwZZQ+OO0DulhZkCe49IDDMZokIesbb3EHyBHkCn2m+Q6XKgWJdvBwhRZcxgOjZEj1Zvwycf2E+iNRNrTUePlvKi5F8SefKIa21NgAQgJETaR0+cMGuxRmojmXliJgH/BZgv2k+OR4+kk8lTKF1aqgGesGvvVhIFiYv+9Zd8UYBk8Pv2hblzpe506lTxOkJCnlo332uRugkOWaYPQ6HFRzCkLzSsLdt0Ook7tm3mXLZ52XrInRMCbIhSv9MVMvjAUtPEzrKPvubkPIlFNnuhAq+8VAnN9v1wdgvEJ5gn+tWbxVI1soJtkmiBAtC8OSxenNIqu30bCha03+29cwe6d5eEVMmSZg+5H3mfejPqERwVzPYPt9tnmT7FcDuJ6qEf7wKm3kFoqHx5DBwocfCAACBdufn2tcQppez98cIG7ty5oypUqKCKFi2kLp3ZrFTMZcs/URcNv4efU2rfcqUyZFBq7cyUx66dqdS3n1lfz96f8HNKBe4z2XZh2T9qCKgRoH7JmV2FXd2jVOgZpQ6vUWr/CqUK5FVq73LTdc5uVcrXV6n/xiRtiws/p1q921ghX7pJP1mzZlXbtm2TNyksTKmePZV69Mj0zYuNVapsWaW+/tq+Nzs+3u6/S1BEkKr8V2VV8PeC6srDK+YP2rRJ7sGTePBAqX/+kccngLj4OPXe/PeU70++auX5lZ65yI8/KtWjh1I6nTwfMkSpAgWU+uILpYKClOrVS6m5c5VSSgUHB6uqVauqfPnyqVOnTnnmflyHXfzode3dCIfcfL07+9NYkZ178Xk4tcn8DKbrt6RLKNZyTzwPQ2HBKgiPsHyMUmI9GnVVxTwOZ/XnA/EDvgA61q9J9jitJJKqVBCFqi5toVIyDc8yJeCgoRHApiVaqJBYkNmzixuYfGpnpkzSG9+7t+X712P9emlJDAmxfSwktZC2qdSGwtnM1IcGBkLDhvZVB7iCGzfEgr5xw/axbobHLNHkKFnSVN3qhx+kHGrcOGmQePRISqN4uoROvK69B+CQm79tnyjL9zRSbp+zTOY/Va0sz/V/I2uZ61Pn4bXmsHMxvF7V/DGNO8qcp15dkjat+XIwh6fMxQdoXqYEVfPlQZM/j/TRR0QZFKz0WLpOYrvfGsab2NU7/8YbUkO5dKnpepGR0hf/wQeWX1tyHD8O06bJ3CUnhK1P3DtB5oyZTd38M2ekISAtCy47iVQj0eS4fRuKJs7iio+Hzz6TqaUnT8qUg7t3oUSJtO7me5NNTwoOWaZ1qxtI9MIV+cD9NQOWrjcco9HIz+GToqhvDs8/B/eOWiZRnU7ip0ajoG8fPsnhf+bhA2Tw96P02ploVkyDCcPh68QBfcnVnC5dgzOXksjdruy8RiOjfSdNSnlfixdLecxtO6aXKiWvo2pVsV6dIFGlFL039KbujLqSgNJ/SVWu7CVRd+LgQUkY7t4tzxMSRHKvdWuZ/Lp9u3xxHT/+dFim9sYAUjUq8ZTAoZjpodVK+fgotXyqUg+OKxV9KeUxn3ZUqsar5vc58XP075FqdCZf9RDU9Ya1lbp9yLD/6h6lti4wPA8+kSK+azMmeuOGxMuioqy/UTdu2PeG/v23Ug0aKBUT49LfJSgiSFWZWEUVGlVInZvys1I1a7q8pl24dEmppk3lMRWQKjFRS0hIUGrKFKW0WsM2fdxUKaUCA5WqU0epw4eTNqXRmKk3Rvqk4ZBlWqUCzB0vWfzs2cSK27IHBo0yHDPiW9g0x7KLP3aqzI8yh0Vr4E6QyaaXu7Thw91LeVylPMVPnoM/p0uxfkSkuPT60SkXr8LzdWVePYCPj32W6JUrYpE8fEgKDB1qiEkWL275fTFG2bISIjBXguUAktpJ/fJRN3gU59+q5PKadsHHR67jjjlbNvDELFE9fHwkHpwxI5w6JT/6z+3s2fDSSyLLd/OmfEY2bUrXlqk3RpoKcLgD6vgZiI6V1syVG2HJ36Zu59Ub8qEsnYyA/pwmY56HfWO6/XE4lHgDxg+TdlU9jMtUbt+Ta7zcGD7tBAO/NByn1cLIidC7K2TPZptEX31VCrM1GvPiKwkJMqqiRg2pN7QFdw35S4b7kfd5b8F7jG40mjeLven29Z8UnjiJJke9epA1q0GS8PFjCfV06yafjXbtJAm1YYPMgEpbMVNvZ1NagkNk2qo7aONh5fSUUziVgqpvw2svwVQL1qc5PA6Xgnq9zmlklCSf3g6Ar3sY9EQvXYMSRcRyun5brIaKhiysTRKtXh1efx3atjU/HlnffaXTGWK/tjBokGS6//vPOaV7S5g3D1WhAppq1dAmaLkdfptSuUq5b/3k0OkMr99DVmmaI1GQ2GjWrOZHrGzeLBbppElw+rR0svn4pCUy9Sab0hIccvOnj5a2UL2Q7slz8P5nIjKi0UgI4M8h5s8Nj5CEVXLkzA7+fgSdvsD24ePQPgyFIoVg1N9SJTB5VuKo4tIGN/fbEdCjv2OJpcyZRdy3VauU93DkCFSsCOfPGyYG2INKlSTB5E4SVQp++QXNEtFS/WHrD7w59U37OqCcxfHjMsn0+HGPLJ8mSRSkySJHDiHUHj2kUgPki+Xbb+HyZRgyRMr7qlWD/fvTn5tvbzA1VcO7TzEcSkBd3KnUB+8ptWuxUjVfkwSQ8f77x0wTT3uWyST5AysN2yIvKFWtilKLJysVc1nNrF9TDQE1pmghFXR0rRTWb56rVNYscr7x+ncOK3V+u32JpbAwpdats/7ig4KU+uwz28knPRISXHuzbSE+XqmICKWUadH+uQfnPHO9kBClZs2SRzfjiSaW7MWRI0qVL6/UhQuGbUFBhkaIiAhJJu7albQ7DSSg7OJHL5E+AdhNpgdXKVWpnFJnNqfM1F/YoVTO7EqtnGZKrP+NMc2+Pziu1GedlNqzTAVumquGgDoEakeunEprnIm/vt9wfNf2St066FjH0siRSuXJk7JjSSmlgoPNb7eFLl2UGjTI6ffZKszcT6qQqQeQLkhUD30WP/mX5LlzSjVrplTFivJlGxmp1JkzSqknTqZeIk3LsJtM9a2k0ZfEIq3zplInNsjzXwcodW2vXaVOuuhL6t/ar6ufQd0EpdNolPr9B6VGDzIl6ePrlSpbMsmqtYtElZJ/jIsXzb/YZs2UqlfPsTdIp1NqzBilZs929i22jCNHlMqc2aT0Rg89mQ7a6gECDwmR9kg3WqTpikT1iItTqkULpSZMMGw7eVKpt95S6vhxsVB791aqePGksrQnSKZeIk3rsJtMH51WqnEdpaaMVKpJXVPXPfnPymlKrZlheL5lvlJ3Dqur62apIaCGgBr/XCmVsH+FUmMGC2kGn5AQQOQFOSfivH0kGhOjVIcOSh06ZP2Fnj1r+5jURHCwUmPHmtY4GiE0OlTpEmseo7XR7rvukSPyL3fkiFuWS5ckqsf33yu1Zo3pNn2daXi4Ujt3KvXGGyZfOk+ITL1Emh5gF5lGX1KqZ2dTgtT/LJ0icVT988Z1lGrbTCUJlPj7Kd3wfmpa9VfUXFDzQZ38d3TKQvvPOinVtnmSdWqXJRoaqlRAgAh+mMOqVc4JgYwYodSvvzr7lroNGy5vUCX+KOE+N18fk3VAcMUS0jWJJoexha7TKVW7tlKtWokXc/euhHfOyd/gCZCptyA/PcCubL5GI/OS6teUbPON25LFP35GnkdFSTkTwMKJMOtP+d3XF46t51qpotzcd4QaQFug8o4DItkHonkKULeGrK/R2M7O16olRfY5c8LWrdCgQcp7vnFD2gEXLHD8TYmNlTEjnsDJkzK4TZ85toKqhaqSI3MOQzupq8iQQeprXRxqmGaz885g9GjJ1Eckiu1oNCIQ/cMPIvjt5wfLlsGOHUAaFjqxl3FTg/qfZdjt5n/XS6lXXlCqQS2l1s2yKz46rforagiooaCuf/mRUl3aKNW6iVifx9ebHGuXJdq7t1IvvmjRNU7C2bOmbYFpAfPnK1WqlN1WoUk7qauW6ZUrSrVpI49O4qmyRJWS9uBp08zvi49XatEiiZ2+/75sS/2Yqde1T2+wi0x3L1Vq6u8pXf81M0RndM0Mpd56Q+KdQ/uq0G96qJ9B/Qnqr+efUzp98irsrJBohgxKLfnbscTSxYtKLV1q/kWEhEgSwRkCPXJE+rPd4PpahYP3pifTGtNqJMVOncLFi0o1amQ5KWcDTx2JJsepU6Z/m7Vr5fM5bZokoebNk/Kp4GClVKqRqZdI0yMcqjM9v01KlbbMlzrQPwaL0Ei7lkqFnFTqiw/V7RYN1BYfH5UA6uELFZVa/Z/pGgsnKRV5wT4SnT9f2RT3mDVLqbx5lbpzx/EXP3KkUlWq2LZ0nUVCgtMkHRQRpK6HXnfzDdmPp55ET5xQSqNRavVq0+3nzxt+v3xZKkDi4pI2pQKZeok0vcIuMp0zTqns/kq9+qJSc8ebrzVN/Ik4vUndqPW6SqjxilLtW0rNqFHiyi4SvXJFSoYWLLD9AhItBqcQGen8ubawd69SOXOaFoQ7iJCoENV0TtNUrTN96klUj1WrLDdhjBsnnk7mzPJ3PHo0qRbYw2TqJdL0DJtk+uC4UuOGGkqWjOtO7x2VovywsylDAA9PKfXNJ0oVLaRU6Bn73XmlrMf21q4Va9QZ1zc2Vqn16z0fTw0MVGr4cJcsXpeK9o8cEVfVgfKnZ4ZEjXHiRFLHmVJKvIh69ZQaOlSp27fl81KypFKff550iAfJ1Euk6R12u/lntyr1y3dKdW6tVI8O8mft1Fo6n958WanXqiq1Y7Hh+MgLSp3bZh+Jrlgh5Se2SK53b6WaNHGODBcuFLculXQ6XYXTZHr/vlKTJ8ujHXgmSTQ8XDrkfvzRdLtxGZ1OJ7O9xo83OcRDZOol0qcBNsl01xKlMvkqlSWzUl98pNTU35SaM05pV/2rdFN/V6peDaVy5VDqzWpKjRoobaeOJJbGjFGqbVv7YovRThav63SSTPAktFoRhr53zy3L6cm08KjC6nHMY7esaYxnkkT12LvX8mdp7VqlatRQqls3+YK/cUNINfHz6QEy9RLp0wKrZBp5QanxP6WYDLpreD81qlB+tbxLGxVyfL2Ij7zyglLDvrGPRI0/yNaszM2bldq40fkXl1rlUWfOiFu9Z4/blgyKCFLzTs2z/4RHj8TCt6E78EyTqDGuXVPq6lXTbSdOiAZDeLg8X7dOqTJllLp1K+kQN5Opl0ifJtjl5j88qdSK6UoN+0YdL1JQ7QY1GVSI/vjQMyru8RnbJHrnjsSgli+3fWOdOyv19tvOE+Inn4h1kRoID/dYRcD4A+Ntu/l2tIh6STQROp1SVasq1amT5WMiI5Xatk2pIkUkLGSUqHIjmXqJ9GmDVTLdukApvyxK+WVVOn8/lSA9T/L40ftKndlivzsfFye90Hfv2r4pnU6pxy64trNmKTV9uvPnpwFExUXZV7QfFyfxUaPyHZPdXhI1xbFj0oZsDteuCYGuWqVU//7yGWzUSKlJk5IOcROZeon0aYRFMr1/TBJMc8apK0unqCGgZoI693IVpcqUUNp1M2yTaEKC/YPojh83q56UZjF8uFL9+nlseVc7oLwkagWhoSk9ifh4IdDbt+W5TidZ/GS6D24gUy+RPq2w5eZvH9w7Senp+LTfVdzDk/ZZon/9JXWWDx7YvokPP1TqpZdci3H+959LNZ0O4c8/lRo2zKOXMCbTSyFmKhCuXZP43rVrJpu9JGoFoaFKFSyo1MSJlo+JjZVyqcKFlRo8WD6T7lON8hLp0wyLZNrvE6XVaFQCqGBQ9zfMtr9O9PFj6V6yB1qt/darOeh00gE1cqTza6RBBEUEqW4ruqnw2PCUO8+fl9HPRt06XhK1A//8Y5JMMsGDB0pVqCAty6tWyfMff5RtRl14LpCpl0ifdpgl03cbq/jE2Gg8qD+qvWCbRCMjHRMbdtcIkIQE2y2n7sKDB57v4U+G8w/OW3XzvSTqBuh04mkYh5mOHhXNhmRwkky9RPosIDmZ6iIvqJ98fdUQUAOz+ysfeyzRb7+VLL092qE6nVKVK5uqm6d16HRKZcokbYapiIYzG1os2veSqINYvFipH36wfVxCgug1fPWVPA8LM9ntBJl6ifRZgTGZnt6zRI0HNQ3UB/aQqFLiotsaXKeHVqvU6NFK7dvn2k3PmyfjJlKjjjQhQUq5Ll/2/LWMkKID6tgxpbJnV3FHDnpJ1FGMGydiz5Zw4IBS33wjv69cKeVQkybJuJJkwxYdJFMvkT5L0JNpxfx5VAIoHaju9pDok8KKFVJD+pTDhEzP7VJxo35T781o6iVRd2PJEqWqVTNtdrh8WVpyzYSPHCBTL5E+a7h8+bLK4uOjLoKKAlXSHhIdMkSpqVPtv8jZs1IEnZ5w/brEzMLNJIBSAUERQeq1Ka+pTVc2eS1RZ6HTOea9zJ2r1M8/Wz3ETjK1ix+9o0aeInTo0IEYnY7ygB9wHdBoNEyfPp2AgADzJ12/DuHh9l/k33+hRw/XbzY8HIKDXV/HHhw/Dj172jVexBMo4F+A3R/tZuK+P1l9YRWT6/+RvseDPAkEB0OmTLB2rX3HX7sGZ87A9u2waJHZQ/LmzcuGDRuIiYlhwIABrt2fvYxr/1eBF08Kx48fVz4+Pimy9KVKlVLXktUuOo3wcPcIf7Rrp1T9+q6vYw8SEp7oyJOkxNLQjKpdG1ShX/Kmqp7pU4GwMKklDQw0vz88XMrpFi403f7BBxKLNwOtVqvat2+vMmbMqJZamvjgde2fLcTExKhmzZqpAhkyqMzJiNQmmd68mXplSHocPux6wiodwCQ7f2qJCjp7SFX5q7J7ZkB5YUBEhFK//y5jXKKilAoKMuwz89k2JtHFixdbW9lLpM8K9CSaOXNmtWrmH+ooqDL2kumDB0plzSoSc/YgKEgGkXla9s6dePRI+rB37UrVy1oqcXLrQL1nBVu22K/cNXq0UrlyiVKUGThAokp5ifTZgDGJrl81XSXc2K9iQAWBKpHJ1z4yXbYsRb2dlQvKLHtXSenmTUkGJCtN8Qiio5Vq3Vp0LlMJZkn0+nWlevZU6vr1JDL9esPXqXZP6RrNmyv13nvm9z14IJ8lfVNJcLBSY8eKbOKqVSaHOkiiSnmJ9OlHchLVt4nezZBBKVB3QFUpVcx+N9+S0o4ncOSIUtmzy+TIpwwWi+3PnlXq5ZflUSn1MOqhStBJl1hsvB3NEM8yEhKUevjQ/L5Vq6Qf/8EDw4iShASpVTZS2nKCRJXyEunTDbMkGnZWqX9HKQXqOqjboC5vmquqVC5vm0wvX1Yqd26px7MHV68qdfCg8y/AhYmeTiE6OlXKn5zpWNoRuEOVHlva6+Zbgj2jWaKiRD2/YEF5TAYnSVQpL5E+vbBkiaq545UCFVK0oLoKKhbUpWm/q/tXd9smU51O3CEb6u1JaNxYqQYNXH8xqZVNr1pV3GoPwtm2T5cG6j3tOH1aqSxZZBJDckRGSiZf/4V89650P2XKJKGjRLhAokp5ifTphEUSjbmsVPg5pWaNVXe6tFYq0SI90KaZUkULqfs7F9tnmSolFoBx1tMcrl93fXTy/PkyJsJ4YqSnsGGDQ9M7HYVdJHrihFKFCplNgnjJ1AJiYkTe0ZwOxPLlSvn7S+ut3gDQak3anV0kUaW8RPr0wSqJhp6RUcx9u6uEgvnUOVDhmXzV5c5tlPqwrVK3Dqr7Nw/YZ5m++ab1vmZj3LtnUfHdJq5eFf1Ie63gNAq7LdE7d0Sp6M4ds7v1ZPrK368o3ROse00zsCf0ExSkVIcOSpUvr9TJkya73ECiSnmJ9OmCVRK9dVCpAvmUKpBXqdZNlRreT8Vd3a3U6U1K+WVVqn9POS7kpH1keuiQWJy2EBamVP78Sv36q0dfu1tw65bUGbq5SsDdKk5BEUHmRaGfNYSHi6bosmUp9x0/btrWfP68UpUqKdW1a9ImN5GoUl4ifXpglURjLiv16LRSX34sc+1vH5JtP30ts5pyZFPq6FqlbhxQqlhhpWaOtY9MlRLXfcoU63HMhQvtU9S3hIgIUfax1LHiLhw5opSfXwqrxRU4TKLh4VKCZUfS63HMY9VqQatn180PD1eqb9+UU0SVEn2Il18W115fbP/4cdLvbiRRpbxE+nTAJolGXjD8fmKDkGrHVkp1bqNUz85K+WZUav0spa7uUWpoX6Uu71Iq5rJ9ZLp0qcSg7JGfe/jQORc/IkKqBVz/wFtHQoJbJ4g6ZYnaMUVUj/sR95/don17whoXLyqVObNSL75oMqTRzSSqlJdI0z9skui1vUqVK61U9w5KLZykVIWyYpXWfl2pJX8rFX1J6cb/pIJGfqd0vr5CqDGXlXp4Sqk7h+0jUwvxvGQ3qlS5cjJ51BmkZv2qG+C0Ox8VJVloO8MLz2QH1OPHSr32Woohdio+XqmOHSVpqMeKFRLPT/yMeoBElfISafqGTRKNuazUg+NKffKBUo3eUmrQV0qd3KjUqU1J+6/O/0uNL1pI3QP1uEQRsVZjLivVoJZSTerab5kmJCj19ddioVrC/PmuuecJCW51u81i2jSlqld3aYnUVrY3JtOHURYK0p8mPH6sVOfOYnEaIzJSqZYtpYOpXz9DFj/RevUQiSrlJdL0C7tINPSM4ffoSwYXP/qSPN45rBSohaD2gzqQ3V8lRF5Q6vEZpXYsUurgqqTzbZJpfLxS7dubzAy3iOhow4hcRzBmjMQwPZnB37ZNrGYnGwFcJtGbN0XF3ajG0R4ERQSpf4/96/j10hssjbrRl8fpdPI5yZ7dRBTcgySqlJdI0yfsItG1M5UqWlCpf35VavtCpUJOKvXWG0rtWiIufjZ/IdJZf6qlAdXVdlB7QAX+9LVSBfMpdWStrBNxXqlFk+wjU+O4lbVOkzZtlKpRw/FC+5AQpXbvduo9Sw24xRI9fVrKdE6fdvo+ph6Z+nS6+du2ydyw5MmlBQtkXIjx9lWrksZ4e5hElfISafqDXSSqj41++5lSLRoo1bKhUhd3KtW0rlLntyt1erNSI7+TmtKYy+riimlqCKgxoEKzZFaqw7tK3T8m6yycJMIOx9fb7+avXatUtmxKnbPwz3zihGvKUDqd64X+1nDnjsOCK2llUF2MNkZVmVjl6Szav3VLwkfJE4K3b4sVX7iwUp9/brIrFUhUKS+Rpi/YRaKPzygVdMzwPOK8UveOWibcM5uVbuCXalzZkmooqIug7vw90pBwirms1LF1JufYJNOoKKX+/NP2SOb4eJE+cxQ9e0r7qacK0nv0EKvQzvXTConq8dR1QEVHS1w0OU6dMiiSabVKNW2qVL58Sd5QKpGoUl4iTT+w2xL9tKNSVSsptXyqlDrFXJYa0a0LDMfsXqrUnmXy+4bZSuXLrU793F/9AUoLatvz5cSCLVxAqWX/GM77/Qeltsy33zJVSqn9+2V6oznMnq1Uxozm6wCtYcMGKYXyFJHevm1ZRSgZ3E6ip08rVbasS669UqZkeiH4guv39STRtatk3o2/mLVaeZ86dzZtp019ElXKS6TpA3aTaMxlycovmKjUG1WV+uA92fZZJ6XKl0ly5VWLBkq9HSC/R11UKvqSSog4r8aVLan+ADUWVNTLlZXq001CBHrLts6bSv3Yx37LVCmlmjQRnUhzSEiQDilXYMvqdQU2iNojluitW0p99508uoigiCDVaWmn9J/JP306hWaoUkoItFUrSUAadTelMokq5SXStA+7SfTgKpHI0z9/eMrg4kddTCqyVzGXlQo+odTNA6bnR19SJ6aPUkNAjQQVlM1f6Q6tNqwVddF0/Yjz9pHp48eGLh1rxDR1quOZ/L59lfrsM2ffWuvYvFlaCi3EYtOaO28L1x5dS39u/o4d5uOhAwcaqioePJDkZWIDwxMgUaW8RJq2YTeJhpxUKn8epb7rJTJ5eisy5rKhHdTaz5RflSpZTCWEn1MTKpRVc5GZ98GLJguJli8jySn98av+VapiWaUC99lvmd6+rVTNmuZFmkNDlSpaVOKqjmDqVJFI8wSuXBGSNlN94FESjYoSS8vN/f7N5jRLX0X7d++KNF7yv+/SpZKhb9cuxTSDJ0SiSnmJNO3CIXc+5rJSOxcrdX2fUiWKKvX957Lt+HqlMmdSas0Mw3FBx5Rq01QpvbUZc1mp/SuUGt5PqdAz6vSccWpJm2bq8Z9DlbqyW8IDP/c3KeJXF3dKkb9RnapNMg0JkWLpK1fMv+Dg4NR8e52Gxy1RB1pEHUG67IA6fNhgeRrX9Z4+rVTOnEoVK5ZksT5BElXKS6RpE3aTaPAJpcYPMxTYx1wWlz38nPweekapsT9KJt+YBOu8aUqkln4u71KqQhml9i2X52FnU4YEzm2T+3AkARUdrZSlaaWrVkmJiyOJpOHDlRowwPk33BJiYmQURWKfdqq48xERMlXAA/qr6YJMb9wQgRrjv39MjFJ164qouL4g/+7dpOkLT5hElbKTH32sT733wp2IjY2ldevWbN68mRWLJ9G44VuWD16/HX74FQJvwR9TISwc8ucFX19QCrJkhk87QebMhnNKFIENs+GFiqZrBd6CRWtMt23aBeGRUKakPO/aD9p/LmsDxMdDi49gwK8A5M+fl63rZ1GlcnnTpQMDqVu3LoGBgbLh66+hYUPQalO+pnv34OpVWdteZM0qP+5GdDR89BFs2oQ2QUu7xe1YfXE1S95fQosKLdx/PQB/f3jtNXl0Mwr4F2BL5y0UzV6Ua4+uuX19t2DVKhg9GsLCDNsyZYKaNWHxYnjxRXj4EAoVgtdeIz4+nk6dOrF48WLmz59P69atn9y924K9jJvK3wJPHRx252MuK3V9v5Q55cyu1Or/khJHql5Npf75LeXxoWdMLVj9z9gflcrub+i1j7ms1KWdKv7n/urq/L/ElV/9n1LbFpqet21hCivVpmV6965SO3dafiP01kh0tONvortLooKCUjexdOeOUj/+aJ8QjJPQD9NL0CWo22FOtOp6GnqBGq3WtLRpyhSlChRIGrmcBixRPbyufVqBQyQ67Bul/h1tuu3uEVOy/PIjqRFNfm7nNqL8ZC5MoC/AT/w5u2Ci+qN4ETXGN6OKL1lUqXWzDESdnFDvHpGEVCJJ2620P3KkeYHoq1clqZBc4ccaZs6UkcpuJNNUz86fPCmJN0+LsyilRuwckTaK9hMSpAli4ULT7aNGSYfcpEkG+UXP6Im6Cq9rnxbgkDuvFFwKhGs34fptGDRKXOTcOQ3HZMkMv/0Add5MeX6nVtC7a8rt2fzBz9Q9vnP4JI9v3qGUNp7QR4+hRjXZsXgt1G8PVwINB+/YD7//DTfuAHa6+Y8ewZQpsGVLyvspXhw6dBBXzl7kywf585sPGTiBJHf+7HKWhDfxnDtvjBdegFu35NHD6FatG/n88hHwXwDng897/HoWkZAAkZHyaIxevaBfP+jZE95/X7Zlzpy+3HkjaJQ+JmYbdh/ohcAhEo2Lk3iR/u+xdB38OAZ2LoY8uWTbzCWg0QhhOorVm2Hg73BoNfj6EhcRyYSXGuF3O4gXgLz/jqLiyfPQqglo46HGK6bnh4ZBrhxyfxoNAA8ehFDv7U6cPnPR5NBSpUqxbds2SuXPb4gHarUS302Ox4+FdEuVsv+1GN2DMzCJieb5lBZlmkCTJk6vl1ZxP/I+9WbUIzgqmO0fbqdivoq2T3InQkIgb17Dc6Vg6FDo1AnKlpVtf/0FpUtD06ZplUTt+qB5LVIPwSESPXMRqjSE42eEIDQaaN0UjqwxkCjAoRNw6Lj5NWJiYfYyCAo2v79UcXg7AKJiAMiUzZ9GI78nCNgMrBvwK7rdh+D8FQOJLl4DwQ/l91w5QKeDj7+BXycCdlimDx7IhkWLoFo1SSQkR9eu0K6d4QvEFrZskeRERIR9xydDisRSr3GpR6Jnz4oVfvZsqlyugH8BtnbZSj6/fIw/MD5VrpmEmTOhYkW4e9ew7dEjmDdPknwDBsi2Xr3SMonaD3tjAKkblkjfcDixdO+otHoGn1BqzGClfvnO8rHGo0WMf46vl5C3cd+9jR9d9CU1t2ldNQTUHFAP8+Y2JKSCjkkjwK8DTM8b0lep2X86loC6eFEUfMzpgF696ljv+YULMjXSzn55Y1iMiR4+rNTffzu8nsO4cUOpL76Qx1RESFSI0iYk1mQmuG/civWLhsgYZZ1OfvSlTeHhStWuLapjqSeF5wrs4keva+9mOGSJPnoMsXFQKL9h25A/IDYWfvnOsG3nAYiJgUZ1rF88Khp8M5p3oQHCI2DFJni/mYQRgMc37zCxWhNyhEdSHci7dAolL16FgvnhrTegSEHLbvSZi5Bojdp08/Wu+4kTEiPNk8d0La0WxoyBL7+0v9zJARffaonT77/D9Olw+jRkyGDftdMhDtw6QKdlnVj5v5Wec/O3boWXXjJ16UeOhNWrxUotU0a2nT0LlSqlB0vUvg+YvYybul8C6RMOW6LvNRYBEmOFe33m3Pi4D9sqFVDdfGmTIz+HViul0aSwWg/+OUQNATUE1LiyJVVC+5ZKDfzScMzamUpNGG661tqZstbupfZbplqtzHbq3j3lm3fypHS0bNtm35t9+rQMPrNDXcpmdj4mxrMCKXpERyt16ZJzpV9ugMeL9mNipBrjm29Mt+/fLzJ4WbOaDDlM45aoHt7yp9SEU3Wi57YptXe5lBe9+LyprJ3xT/QlUx1Scz8Dv1Tqhy+sHxN9ybRXX+/iR11U06q/ooaAmgbqUZECBvHnmMtK9e0uilJ6hSn9WosnpyB3m2R65ox5/UmlTN11W2VOoaFKvf++TSUlh0qcbt92egyJXfBQi6gj8DiZXr2aVMakNm82fEHdvavUG2+IvKJKNySqlLf8KfXgkDuv08H4fyE6BkoXh2pVIGsWeONlKF/G9NgrgXDklLivObNbv4ksmSFzJuvHaDRQuIDhPvSbfXxoOflnMmTyJSZLZnT58kjIYek66NQbfvoaFk0CHx9DUkijgeYN5HHTLli1CbAjAeXnBzlySBLio48gPNxwUO7c8vjrr9Cnj/UEVM6csGABFC0qYQ8zxzrUsXTzpmSPlyyxfIyrKFcOtm2TxycEfQdUPr98tFvcDp3S2T7JFs6ehR49pPKkdGnptjt/XjrcPv4YzpyRbqV9++CDD9KDO+8wvETqIhwiUYBzl+GnsbD/mPzzBz8UEhz/E5QtaXrsn9OhS5+UNXjm8M0n8O1nto+LjIJXmkq9qBHyVSjLu9NG0eH4BvIcXC3tqH5ZJeaakCBx10vXoHZruHLddM05y2DO8iQys6vO9M4dOHgQ9Jl9Y+TMaSBVW4iKgjfflDIaIzjc9lm8OPz7L7z9tn3XdQbZs0NAgDw+QejJdF7refho3EAB167B8ePyt9CjYkVYu1ZaP2vXli9MjeapJFHw1pG6BIdJVI/gh5AvD0xfAD+OhqPrhLiSIz5eiuDLlLC+XmSUWLj58lg/To+hY6FpXXjtJcvHXLkOH3wB/42Bis8JmYaGQa+B8PsPULyI4di4OHnMlEmOS0zY2ExAFS8ux8bGynl+finv484dKFIk5XZj/PYbNG0KVaoATpBoaiEoSBIunTtDwYJP+m4AiNJG0X1Vdwa9NcjxBFR0tCExqNOJxzJ7tpSm9eghzy9ehGPHoF279Eqi3jpST8JhEp04E777Raw2PeG90wiG9E1JoiGPxK3PmNE2iQJs3AnFXof7Ifbd/I+9rZMoSCVBuTLExsRKfetLjaXKYP5fQqJ68gYh0EyZ4OoNeLkJHDwO2GGZ3rwpG7p0gfbtU97DiRNSuL15s/V7/fZbIdH4eLRBd10j0blz4b337K9rdQT37sEvv8hjGkFkXCQn7p1wvAMqOlo8gdGj5blPIpUcPSodba+8InXD5cunZxK1G14idQJOW6L6Up2LV4WU8uaGrmYIZORf0KijwdKzhRqvCsEVMGPVWsK2fbBum8XdccCaPDmZ9H5PYnLnhFqvGeK0SsG73eCLwaYnFcwHNV81sVbtcvM//RQ+/zzlTbz4Ivz5J7xl3/ur7dGNdkMqu2aJ5skj8Tx733tH8NJLQi4v2fgSS0Xk98+fVLTvEJlmzSoxbn0oRK/oNHq0tH1evAgbNgA89SQKXtfeYThMono3Xg+loMa7YmnOsdBtEhklNZqvV3XXbadExy8hTgsLJ5ndvaJ7f47PWkIm4JN8ecgz/id4722IiAR/P5H5K1wAqlY2v35YONy9DxWkFdCuOlOlpPOlTZukOtcknD8vJFSjhtnLaRO0tJvamNVBu1jSbmnacefTCYzbSU/3PE0+v3zmD4yLg8OHTf8Ou3dDy5Ywbhx88IEYDMHBkC/f00CiXtfe3XCYRM9ehIp1Jauth0YDs/+EkQNSHv8wVFo8/f0cI9GxU+HYafuPB5j0MyyYaHF3nYFfkim7P3HAxeCHXLscKAT/5jvw1wxoUldINCEBdh1MucC3P0ObT5MSZXZZphcvipWzdm3K9QYPFhfeWnb+/m4h0fLN4dQpB96MZEhIEEI/ccL5NczhwgWoXl0e0xj07aSD6wy2TKIgSb3GjYUo9ahWDdq2lR76t99ODF89FSRqN7xEaieccucrlIUhfaD26/LhmjZfEitlS5kma/T4cQzUa2dfll4PrRYmzIDjDvZvZ88mpB4WbnZ3rpJFaTLmRwA2AIvGTiMiLAI+7SgkqsfcFdC0S5IyVBKGfSNfGEadQjbJNHNmIZl33015Q9OmwYoVKTqZzCaW5s2Tf+6rV+1+O1JgyBARInYnsmSBypXlMQ2igH8Ber7WE4B5p+aZd/O/+EK6l/Llgz174Pp1SRL+/TcMGgR16jzV2XlL8Lr2dsBhEr16QzLc1aoYtp2+ALVawaLJ0LC2+fMehEh51FtvOH6TzigizVsBX/0IV3YLsaZYUrHof59zbrnEuj4umI9iHVuhGfGtfCGEhkP+PHD0NLxqQRIvIUHaXnt0SPrysMvNX7QI1qwRAjVu2wwJgc8+gz/+QFuogPnEklYr4iaulDKFhUm96zMIbYKWV/95lfuR99nWZZtk83/5BZo3N0gA6nTyZeXnJzJ4vXsnnf+UkajXtXcHnLJEfxwDnw80dUOrVICzW82TaGiY9MHnz+sciYJzsnK1X5ee/owZLSypofmEYfgXFFfvVFAwVyISawW7fQvte8l19ST6z7yUNabBj2DJWmksSITdY0ukD8h0vagouHoVbdAdy9l5X18DiW7aJKTvKPQkevmy4+daglYrjQhu0lT1FHwz+LKp0yby+eWj7oy6nL95TL7YdhmFqHx85IsuQwZpntizB3jqSNRueC1SK3A6Ox8RKeRYrLCUAm3eDQN6WSa7T76DE2dh73JDGYm9GPIHXL4Gs8c5dp4DuLhuG/Pe6w6Ar78fnx5cSZ6QUHk9+jKqqGh4oyV83A76dDNdIDbWMFtKr7uKA0In169LwXzie6ONj6PdkvZCou/MpcWLbczf+N27IpIxdix88onjL3zhQhGgvnzZMb1USzh6VMqCjhwRay6N437kferPqEdwdAjb/7eRCkVekML7YcNg4kSphdVqxdVv1Ij4hISnkUS9FqkrcJhEo6Lh0wFw+54o0hcrLNuPnJRkk7Vymv49YVg/x0kU4IUK8KYL/5Rh4fDDb3DuksVDyjepS7XEMi1tZBQ3Gn6A+nEMvPKCuHhHT0sX1J6lKUkUDCQ6dT7UaStJK+y0TB8/hldfhVGj5PoJWgOJPqhLi37/WK75LFxYuqd69HDsPdGjeXPpzClhRy2vPShbVlSQ9KLGaRwF1u1kyywf6hSpTu6ciQ0EERGSFCxfHubMEeu/ceOnlUTthpdIzcApSzQoGPYfhTtB8lz/z/1ZZ9g423Tapx7hEUKwZUpYjpvaQuum8PmHzp0L0p66egtcsJ6YafzrAHInNgfcy52LuGb1xCL9dyHUfV++QHIk1pmu2yauv1E/PwBvviz9+UZjT2ySqX5kSffuKRNLbQeKpWktrPHCC7J/717p9XYEfn6S+DLWGHAFOXNCs2bymB5QsSIFqjdgfrvFFAjXcSfsNucr5pNwSaFCYp3y7LrzxvC69sngMInqdNLKadweGR8P7XpCm2bwv3csn9vtW7hxW0YoOxPjjIqGU+fhpUpCiM7CzkTVzf1HubHnMNV7d8VHnwAKDZOwhPEMqVWbJJE1fbTl+zp8EiqVSyJVW25+0eJFaTfnXVZf2yAlThVbmq63fj00amTeqldK9uXKJbE+R/HVVzIy5eefHT/XGA8eSLjg/fdl/lRaxblzIqyij51HRkLFirT6nw9780Wz/eOdVMxRBnx9nwVL1OvaOwqnLNHvf4W2nwmh6slFKShSSMSRraFXZ/jyI+fnD504J67yJRfnmGs0QsrXb1s9rPib1aj5dQ8Dic5cInHRlyrJ87VbJWbWoiHMnSAkGhWdcqHIKHivG/w2OWmTLcu0+cTmQqLrstMid7KE3Jkz0mtvqVxJoxGlqDlzrL4+iyhVCkqWtHmYTdy6BX37ymNaRUSEdJKNGGHY5u8Pw4czeeZD8t0MIWD6W5wPu/oskKjd8FqkiXA6sbRtH1y7IUkWkJij3sW1hOgYkbxzJiZqjJhYOH9ZLLvknUCOosVH8mWwZob959y4g27ecny++UTqSF9sBFN/g3YtkvZTty1MGG5aewrSv1/xuRQWqyXLlFzwz+J/6PZKG7EsjcRRZL3jULWq7Xu+eFGs0h9+sP91PmvYvl2SYeHhkqnX6yDs28f99UuoV3A9wVHBvHLqFTbO3fi0k6jXIrUXsbGxvNvmXdb5ruPvOcPsI9HDJ8XyrFvdQKKbdkknky0L8fNBoqzkKrJklu4iV0kUYOjXMH6YQ6fcvH2Pv2Yu4eqOA5A3FxxcCe83NxxQrBB0aQvVzIwfrlpZ7v/KdfhmuIRDsGyZEgojuo0gMDRUSLRtW6ltTFqvqjyuXSutipawb58oFD1+7NBr5fFj+Oknx89LL7h1yyBFGBAg5V/Tp0tYo2FDGVxXvToFho5i4wcbiQ2JZf2R9U87idqNZ55I9Zbo1r1bKfhGPn688SeBoTZcrwtXRJdzxUbT7a9XlbnyyXVFk6PDu/C+G3rB/5wGC9zUfVOtin1KU4m4ue8o/9Zvz8Mr1zncuTeq3FuQoDMIPR8/Ixb34N4iZvI43Hzo4OJV2LoHHhoIKn/+vGxY8y85ips2CZioRr32mvn58Pv2STlO8kSXHl26iKybowmfyEgRUDloph3WXly6BA0ayGNaw4oVIkcYGmpIrA0cKN1KO3fChAmAJJa+/vRrwkeHs3DoQi+JJuKZdu2Tu/OV3niOunM7Eq9LYHuHOZTKVczyydv3SfG8j49krDNmFMKwBkuz3Z3FR18L+Q36yj3r7dgPf0yFJX/bHAKndDpmNe3Cte37yAC89+LzVN6xSEIWddrCCxVholGc7X+94NY92Lk4ZUw4Pl7ev+gYyJIZrS6e9it6s/LEFoouLcD1S6btpynqTA8cgDcS46ZKicWaMaNp/WpyBAXJoL2xY6VMyh4Y6286g2vX4PvvJWlVurTz67gTxolGPYm++64U2etbdS9cgOeeI16pZzEm6nXtrcFcTLR4jiJs6zCbjD4ZWHRhXcqT9h+FRWvk94Dqhhhnzx+gwxe2S2Q+/V7cenfh39HuI1EQsRTfjCKeYgMaHx/emfIrmXNmJwFYfPIcZ9ZuFXnA5VNF8d8YI/rDlJHmE2sZE1X4m3+EdtCvtF/Rm1WXt7Ks00QObV1mvc5082bRxTx8OPHGNLJeYCBUqCDWqTnodFJof+eO+f3mkDWrlKudPGn/OcYoXVp0ANIKiUZHQ5MmYo2CxJ59fSW51K6dVDrodFChwrNKonbjmbRIbSWWQmPCyJk5OxqNhtj4WDJnTLRq+v4k5UYbZpsmim7ckWxnpWRxveSYv1LOM44jOgtneus9gJNzl7Ps428AyJ8rB58phWb8MHmNJ86K5f5VV8MJWi38t0h0WJMl27TT5tKeNawKOcrSVn/R/Ll6gI3SqK1bKRUYCHWTJbO0WhgwAPr1s6xGr38PHXkvv/tORpLcvOl4bDohQUIE/v5pY+xzXJw0K3TrJhqp4eEyjUApqc8NCYH584nXaJ5lEvVapOZgT3Y+V5YcaDQall/cROWpTQgMTVRyHzVQrC09AcxaKuU9JYpYJ1H9l1X7lu4hUYBVm6Hoa6Km707odCKLFxpm1+Ev/O8dKrWSvvYHoWEcLlIQVb+m7Ny2V2K4MUa97geOS3LpqKnsnzZBS/vce4RE351A8yt2qkbVq0eg3sJbvlwSJCCW1ahRQqKPH8uAtuTQaCSs0L69iKPYgy++EEEUZxJ8J05IbNbd8nyOQqeT5FKmTPDff1Crlogx160riTiNRpogFi9+1knUbjxTROpoidOrhapAgo6AMY0I3LlJCNQ/ca7Q9duinLR6i+0LfzJAeuLdiQpl4KuPIU8u96774CG83SllIs0CNBoNzcYPI1vidNK15y5zZOk6cfE/6QjbFpiWONV6Dc5tM1GL0iZok9z5pa3+ovklRIHfyAK1q51061bpuknuZfXpA61amZcnzJgRihUTt9YeFC0qY030sVhHULq0FOQ/adf+t9+k7TbM6Mty+HAoUECScYmuvrdO1H48M669s3Wit25dImBaa+JzZ2d75wWmCahbdw099ZaglIxfzpsbPnjPhVeQijhzUWpTHQgdXNqwg7nviAufOWsW+hXMR4bWTWHEtxL6+OE3mDDMdFzJqL/RlitJe91qA4kmuvOcOGso9DeCVTd/yxZKlSgh5Kh3oUFEiO/dSxqOZxXWElR6xMdDvXpCzkbycekGISFSK9q8OYwcCV9/DdmyyWufOhW6diU+Y0YviQq8rr0eTpFodAw8CKFYsXJs77OBjJky89nGwaIrOmiUWCO2SBSEjL782P0kummn6J56ApXLOxx/Lde4Dq/26ABAvE7H7ZaNxCIFicVdvAJBRqOXlUJ74jTtz/+ZkkTBQKJT5sCMxUmbrVqm9esTeOuWJJrKlTMo7efLlzQcj4EDzY+ABsmmN2iQVNNqERkzCgk5OnspJERc6RA7hxS6G/Pny7iWvHmhdWsJd4wZI6OTZyfqQfTq5SVRJ/DUE6nTHUu9h0DzD0Gno1iOwmzvMIfpTUdKbG/LbtO4nyV8MRgm/OfC3VtBl76waLVn1gbRARhhYaaUBTT85TsqtXqbHvuWU+K37yV2HBMrnV77V0L5Mklut1Yl0L6VjlU+14VES1n4u5w8D2dMR3PYdPMTEiSJoi+J0uPePRmHfOCA+WsFBMi8KHsSQd9+mzLBZQvXr8solevXbR/rboSGSrnXf/+JEaAUvPyySPppNEKkeAVInMVT7do7TaIgHTeBt0CfOEnM7AZFBvPR6n5MbDzMep2pUjDod3iuNHzY1rUXYg6PwyVpkNtDSkJj/pHhdtZEV+xBq+4QEwdrZ4hOa6feaD9pT/uopQZL9IKCwaNh4xwJgRhDl1jkrx+LYtR+a5eeaUiIJHfqJVq7xrWgydtMjZE4vM0qLl+WOtQ//rCvPlgfV82Q4clUXNy+LTWzH35oSMblzi3viU5HfObMXhJNiWfbtXeKRJWSTHxMrHQn6UlUp4POveGfeWgTtFx8dJ2AuR9Y74DSaGD4t54hUZBYo6dIFKBvd9dJFOC7XqiR38nvflnR5slB+8Appu58xeekuSG7f8rzfXzkvTx5DioEwN4jSbvsSkD99ht07gwxMbJTT6Jjx0KLFubV6jdvFqGS0zYGCkZFSfhAr+hvC/oa19Qk0a1bhTjj4iRR5uMjlrpeF/X6dcia1UuiLuKpJFKnLdGr1+HLwTJq2BhKQZGCUCgfxXIUTirat0imP0+A2ctcfh0WsXoz9PjOPRqZ1nD1ht3Ze3OIj41l0/INbJi1BBIS0F6/SftmMawKO2nqzpctCX/8KOU4t++Zb+98/jmJNVc1TUDZJNOuXWHHjpQD56pUEUIxN2aldm2Jl1asaP0FvviiWKXlytl6KwRXrsjY4itX7DveHXj8WPrkdTpDe2uvXhLiqFcP8uTxuvNuwFPn2rvkzgPcvGM64dOCmtPNsDvUndsRheJMt/Vk0RftKwWffQ/PlYJvnBhvYQ8WroZl62DeX55ZX48R42Xy6cUdFuc6WYLS6ZgW0JbbB6Vmsud7jfg05y5WldGytNVEmk/eC/dDYMYYg4X2OByq1Ie+Pcwr7etx/Tbcuw9vvJy0yaabX7QodO8u1llAgOl6Z8/C88+btxT1Y0asvf6gIEniPP+85WNACLRPHwkFeFol/9EjcdtBPpOLFkm9bOvWUjObOJPKS6I28ey59k6T6JK1MPB3+cAZk+i+o+JOnkhZzK1vJ/0toL+BREH+GSf/Al87Od7CHrzf3PMkCvDFh3B6s8MkCtJC+kI7EV9O8IG3s29nVek4IdHn6kGNV6BBLVPyypkdxg6BLhZmMOnx42ip4TWyXG1aplevStwzNNR0rdu3ZY6SuYL8R4+k3vLPP63fT/v2QpC2ULYsrFzpeRJ9+FAs7ilT5LlGI0m0gQOlRjSxZMtLou7DU2ORumSJ/jVDZPGm/W7athgZBeP/g6+7W00mKKX449B0Wh2Lo1TxCtC0nsVj3YLwCLPjkz0GvaiIg1A6Hf+16MLvefdxoQL0v/M6P0+YI3WlJYsaDoyIlDlXxgh5JHKE5uZRhUdAeKSEW5LBZjupvhj+7l2DWMmaNVL2ZK5+dO1amdXubyZ+q8f589JBlTu35WMg9ZJNSsGkSVLnOnu2KGXVqSP79u2T3vkcObwkah+eHYvUpWmfAL26wPRRBhINfijF9v5+8F1PmxnZsNgIJh6dQ8C9vwjcbUenkyuIjYWC1SQplhrYfxRKVZf3w0HEqwSWdcjExQrQbgFknnaQ+58PhDdaGIRRZi6Bqm+nFEr5cQx07We+pjN7NiHRiEjo3AeuBCbtstlOGhgIs2ZJ/PN2oqxfs2ZCohcvSq2lMZo2FRK9c8dyUqliRSFRS9J9ehw7Jp+lY8esH+csQkMlHqzRSMtnnjwyvO+99+Q16nRQvbqXRD2AdE+kTpPojTtQpYEkbsDUQug3Alr3sDuZkzNLdrZ3mEPGggUIKLbLtp6pK1CI6lOt1zx3DWNUKgcfvu+wRapv+1x/ey9/FPqYCokG4pL1O9CO/dHQ2lq/pnyR5cphusDP38Lq/6xfNzpGphMEmRa423TzX35ZsvZFi5rsZ9o0GbGRPJOvlAhJf2FFjPv4cRlHcs2KqHfJkiJ44o6xJeYwZozMg4qMlCqFTJmEWBs2hKtXITzc6857COnatXfJnU9IgF8nwScfpKxdDAqWpJNRP7hVbNkD/lm5VakwAXM/IF6XwO6O8ymWw06dy6cMyXvnm5Wty+zmH3J1yx4AqvfuSqORA1Im9oIfQr48povFxMLvkyXm7GdGC9RYwSk8wvE603XrRPHopZfkMxEebr7v/tw56QgqUMD8i46KEmWob75x3/hmR6HVSkLr0CFR8//tN7FGAeLiiPfx8ZKo43i6XXunSTQsXHrJM2SA7z83JdGdB2R/wXz2kyjA37Pht0lJHVCNStcib1Yb8TJnsecwrPFw+CA54uIke598jpIZpBAgea6eCJuM+4mMieIl+8f/x6M/popHoHfLDx6H8nXk0RhXrsPk2XDsjPkL6j2JwaOhYQcTa9KmZXrtGgwbBuMTO7gyZBASffhQXHpjlabnnxcSDQszr3Hq5ycjTqyR6KNHkj1/5EbFLqVELPrMGQkbVKwINWqIylTbthLGAC+JehjpkkhdskSHjhVlobg40+3RMdClj8lkS7sxbwJMGwVAsRyFmdJkBFl9s3Dy/nn3u/nzVoiFlprIkAF++Qt2WWitTIQ5EtUjT9mSvDWgFwAqIYEdR07BXyOgTKKbW60KDO0LLyUrIapcHi5sh5qvWr/H/7WUOtNk8WybMdPJkyUxA4ZQTsaMEk80V6z/66/QoYNYoOawcKFYueZw7Zq43tbcf0cRFibXO35c3PiYGKkK2LVLWkLr1fO686mAdOfau1wnGh4BlwPhZTNKQFcCoXBB8y6kOdy6KwRcLqUsmlKK6rPacC8i2PbYEkcRHQNZs9g+zp2wcU1rJKpHQlwc0wLep2LLRtTs240Mek3PkEemnsHte9KealxBodPJl+DLleHdxtbvdf12mWBgJN9n082PiYEPPpBkk3GBvU4nZKV396OipG7UkhRes2ZSd/qXmfI0dws766sptFoJSZQsCcWLw9ChYo3iLXFyA54+195pElVKBsXdCZKMrzGJJiTA5FlioZYtZT+JAvw2CZp/ZDazrNFoWPTueOsdUM4itUlUf02lzL5We0gUIEOmTHTbtYS3vutpINGte6HcWzJWGiR7/1pzceeNodFIp5Wt6oF7D2Tsy6wlJpttuvnh4WLJJR+K16ePlEbptUf9/IRE4+KkJjQ5liwxT6Ig5Jkjh3tIdP58qF5dOpd8fSVDv2yZKFsNGAAJCV4STUWkG4vUJUs0+CG8+Y5MtOyc7MN04JgIGa+bab5m0RqiY8S6fcFyK6G+A8qugXq2cO8B/O9zGPujWa1Oj0IpqPEuvNNYSsISYS+JWkRsLPwzD7r/z1DHuXA1NKydUkvAeCSITpdiVEkSzl+GCmXN1mralYAKDZXRMcWKwalTMvWzVSvThWbOFIWpS5fECkyOGzdSxkvdOfzu5EmYMUNaTtetgx9+gOzZxeINCSG+SBEviboHT49F6rI7ny8PHFuXkkRB2gzPb3eMRLVaaW/MmsUqiYKhAypP1pwERQU7dt/JERsHJYqabVn1ODQa+Lg91H49aZPLJAoEXQok8MXnhUT1cev3mwuJPnosRGt8DwBzl0Pjjqb7jFHxOTl29yH4doRJGZtdQiddu0onkFIy8llPolu2GNbq2FGSUeZIdNYsCQ/cv2+6PT5eLEZbeqfWcPmynP/iizB6tAirTJsGZcqIAIm/v5dEnwDSPJG6RKL7j8oY4IjIlJ1AZy/K6GGlbI9RTo7/FsFLjeQf3Q4Uz1GEwx8u540iVdEmaLkTHuTY9fQoWVR600ub+edNDXT/X1LSx1US1cXHs3ng70x58x1WffY9CRt3wPN14W4i+cTGigX8sxk3+blSYpHb6g4KvCV6psm0Y22S6VdfSXul8fqnT0s95upEDVgfH5lSqtNJ0buxZ9esGSxYkLKMqlw5UZayV+QkOSIjZb7STz8Zkl29esHff0tnVWys151/QkjTROqyJRoZDdGx5ou6t+8Xy8YegebkeKexqBU5IGPno5G3ut+2X6kx633nYqa37xm6sZ4UVm1Cu++Qy5aoJkMGbh88ji4+nodXrnPq/BVo1xL8E2PUmTPD8H5C3snxelUZRJgpk4RXLKHje6KDmjVLivfNKpl26UJgjhxi+f34o6F3/eBBUcY3xoEDkonfvduwLU8emQnvzIA8a/D3hzlzJJFUvrxYzpGRYjGfOkV8mTJeEn1CSLMxUpdINDpGMra2LJaYWNPBbKmAW2F3k4r2HY6ZtvgIMmeCxX977gZtQFujJe0bR7Iq6x2nSVSPWweOMa2OZJezFy3Il2e2Sq1p8vHI0TGS7Enej3/0NLzXDVb9Cy9aUV4KDYPq78DXn0C39ia7rMZMZ82i1Pvvi+vcpIlh54YNcj9Nm8rzixeF2IwRHCwq+n37GmZFHTsGb74J+/eLOr29iI6WCan/S/xSSUgQpf05c0QKb9MmryXqOaTfGKnLHUvNP5JebXNYuNqgFeooicbFQf3/SSeTk9AX7TuVzR/eD36w0qboYWgTtLTvXdgtJApQ7I2XqdC8PgDht4M4NGUO7NgPtVsbLEil4O2O8PWwlAtUKgedWkFJG19GObNLB1vD2il2WbVMO3UicPNmA4nqY5v//CPJJj3Kl5f73LDB0G+fI4cUyd81qjIoVkzaOIs5mHBctkysz0OHhIwzZJDrL14MI0d6STQNIM1ZpC678yBdOJXLm08g9R4CYREiUuIogh9Cn59gQE/rc+ztgN4y7VzlPQbXenLkaC9SxETL1nWLglHQqfNMfr0FKIVfvtx8uX42mUdPgZEDDLHrdduklbRKBcsLhTySUIulTL4eUdHSJZWswN9mNn/FCli6FDZuFLL09TUNGZ0+LYmpVatSuv/uQGCghBlWroTGjWHePNBovCTqedj1IU9TROoyiV6/bSrPZglOysK5Gw+jQ8mdJScajQZtghbfDFZUpq7fhgUroXsHz44YMYMUJPrdAnjhefixt1vWX9qlL6cWSE1mwKCvqGPJ6tZbe8nJMjJKFKQ++cC2mPaI8SKbeGF7igSkVTIdPZpSZ86Ipqf+C+T0aXHdFywQ9adjx1K67A8eyH0XLCg1n7t3S8Ioeb2qOUybJnOj3kkc+fL4sQgz794NJ096Y6Kpg/Tl2rtMokdPS+/29n3m9/+7UEYYg3MkunYrbNjh+HlWkCdrLjQaDeuv7qDy1CbW3fxL12D0FM+PF0kGs9n5BrVSjPxwBQGDv8Qn8W+yd+xUokIeyd/qb6Oi/NhYqNcepi9MuYC/HwzpY9+MqW96yJA9M3quVt38r78msFMnIdFDh+R+MmWS59HRcqCeRE+flr+TTidW6pjEMNOVK2Kt2jNqRCnJ8G/cKJn5gweFfDdvhsBAL4mmMaQJi9Qt7rxOB3NXSM918s4RpaDtp1CmBPz2g3M3+WFfiZHOneDc+VZgd9F+8iSMh+GOOlF7sfrzQRyZOg+AGn270zBTJjh6ClZMM7zmEeNlSJ5RLWsKRMlEzBSJqeTQ6WDkRKktLmaq0mXVMl2xglJvvSVKT999Z9gZFyfEeugQvP661JzWqwd79kjHVKFCUn+sn05qTeNW/3fW6aSIv0YNOe/XX+Gbb7zufOoifbj2LpNoWLi0DlatbP04fXujPWNzLZ0fFS3Wjwfg1g4oN8AqicbGwsETEofW64q6iLDb9xhXqR4JsXEUqFKBT/YsxUdv8dkLnQ7qtJUM/l/DrR8b/BBqtoKfvoZ2LVLstkqmY8ZQqmlTQydWRAS89ZZYjh9/LLWmTZs61woaHCylU2PHQtWq4j2FhkqJ1RdfEN+kiZdEUxdp37V3iyX6y1/wTlfL9YSTZsKRU/IP6SyJBgXL+R4iUTB0QGX0ycDHa79LeUDLj2XWfCrApiX6KEwk63ZaV4NyBDmKFiJg0Fc0nzCcHvuW45M5sXzt+BkR4dYj+CG07wWnL6RcxMcH+n8Gn3exfUF9t5ueRJMZFFbd/L59Cbx7V8qeBg2S+s533pH5ThqNjHnOkEFqPJWS9s2VK6XzqFs3ebSEhASxWOfMkREhW7ZIYf/GjV4STcN4YkTqFhIFiY2t+te8kIdWC3OWw5bdKffZiwch8FxtWLTG+TXshJ5M/232a8qdtV+Hih4emoad7nyh/HB0LTRzr6tf65tPeKVbezLov/C0WmjVQ74M9ciRTaaNPnhofpHmDeD5cmKdWivWB4NAzbT50KVvilEhNjug1qyR0qTHjyWjrheHfvxYMvylS0uy6cwZuHlTJO7OnJFHc9BqJSm1fDnUry99/M2bw6NHXnc+jeOJuPZuIdHTFyQOVsqGC6zViqXirOJOTCys3AT1aqRUb/cgHkaH0m3d94yp932qufmpGRO1GxeuyNx7RxKESkGzD+WLZ8xg28ev2Ai7DsKvA8x+Tqy6+Rs2UKp8eUMlSOfOcO+eWJTTpsFXX0FWOxTFFi2CIUNkFMlrr4llGxgIp08T//bbXhJ9ckibMVK3WaLNuoBOiWqTOew5DAXymtUKTQ8w6YBqPZ1S97XSY+4hCT2HSXT7PmlsmPqbR+4HZAqpRl/qlFzt6cYdWLEBvvjI/Mlzl0vtqbXElDmEhZsVhbFKpmvWUKprV+jeXRJLWq1I7xkjNlasVT8L4aFz50R+759/IH9+yc5XrOi1RJ880l6M1G0kCjBnPPw90vL+n8bCACv77cHFq/DlYCn2TmUUy1E4KWYaMK8TgQ2bw7nLHrmWU5ZobJzou0ZFu/1+zq3YyML/9eL34m8Q8zhcyqBqtTKNY54+D8PHif6AOXR413ESPXEWKgTAvqMpdll185s1I7BaNVFkqlNHSFQpmTw6YYLUnubJI1n3PHlMR5jExQnBPv+8HPvttxASIjFRL4mmG6SaReo2Ej10QsqYkg+sS46YWOmxLpTfueuA1DJ+NxL2LEv1nnw9bobdoe6cD0iIjeXMh6vwy5XXreunRXd+3dfDOPjXDADazptApYL5Yc8h6N3VkDBMSIA4rXULPToGOn4JnVrbVtUHsSRHTYEvPrRYPmWzA6p4cbEuN22CUaMkuRQdLSRbrhzs3Cnuf8GCcmL//jJrvmdPycz7+MDjx8T7+3tJNG0g7bj2biNRnQ5eaQqvvGjZpYyOkX+IJ6HZ6SHcDLvDjhsH6VjlXbeu6zKJKmVeotBFXN64gzktuwLw8odtaTn5F8sHx8SCj8ay0lKvgdCiAbwd4NhNBAVLj76ZL1CrZPrBB5QaP17qR8+cEXK0VsK1c6cU7K9aJaNCzpwh3tfXS6JpB2nDtXerO+/jA+tmiXiHJSxaAyWr260VahExsTLfKQ2g+L0YOi67DhGRTDo6xy1jS9xiib7TFXoNcvlekqNk7TeSJo5e3rgTpZSEV/6Yaip7+DAUSteAFZssL/bXcMdJNDYW3moj4SEzsOrmz55N4MSJovjUrp2Q6P37MH06/PKLlDOFhxsqBN56SzL8PXrAq68SnyGDl0TTITxqkbqVRCOjIGMGQxG0JdwJkvrG9i2dvxbIyOM2n8LlXVC0kGtruYpNO+HTAUTsXUTVZa4X7bvNnd+0U/4eb73h3PlWMOedrlxObMn95OAqCmXNAq+3gCVTpIJCj8mzoHGAdbHrm3dgylwY9KX9GqFrt0K1F6yGhmy6+Xv2CIn+/ruoQPn6ird05IhYoBs3ihJ/795eAZK0iyfr2ruVRAGG/QkLVsHx9akjOHL3PmzdI0mLVGzLtAVXO6DSYkzUHA5Omsm6Pj8BUH/YN9Tq96nERZ0pYztzERp/AOtnW1eQMofoGLEeLTRjWCTTEiXY9ugRpfr0gbx5xfIsV04ItVgxKdDv3Vuef/UV8aNGeUk0beLJEanbSRSknvD4WbPtfElYtAbu3IOvurp+vTQMYzLd+cE8SuQsYtd5bifR85elkuC9t11bxwweXrnO+MqiVVqy1mt8uHme5YNnL5N4badWlo/Rah3vbEtIgDdaigVsRaPBIpkWL862nTtloJ6le/r+e+I//5xO333nJdG0iScTI/UIiYJMhbRGoiBke+S0e6735zTDiOAnjQWrZH5RIvQdUG8Vf408We2T1POIJbp2G3xipp3VDchTtiS5y8gUzlsHj0ucdOk6ePntFB1InDgj3oM1+PpKYuxxuP03kSGDCGl372D1MIsx05s3pQNq+nRpG/X3h2rVoHZtKYny9SX+l1+8JPoUwK0WqUdINCZWRhAP/BJeecGOu3SDQlJYuNQTThgGrZu6tpY7sPsQrN4sYsdmcCHkKpkzZLLo5nvMnY+OkffaQ6Vhs5p14WriNIL+QcfIcjkQlq2DH750vDFBq4UyNeG7XtDLjl58J2DRMs2ShW0FC1IqPFw+n6GhoBTxe/fSadw4L4mmbaSuReoxS/TGbSlvyW5DFi0mVrKt7ohn5sgOdw7bV3uYGqj1mkUSVUrRfd0PFseWeDQmmjWLR+tr/fIYaoWjgh/KF+nwb53r7vL1hT+HQuM6jp97/baMPzEnlGIEi5ZpTAx1NRoCjxyRQXqPHpHw669eEn2K4BYi9RiJApQvI5na8mWsHzdiPLzkxlidRuN8f7678SDEVAHJCBqNhjktR5udAeXxxNLlQFFiun7bvesm4rVPO9J23gS6bJxD9sIFZGPgLRmlbYx9R6HEG7bvo1UTabN1FEUKQKniEjO1AaulUa+9xqmPPybe35+Ox455SfQpgsuuvUdJFKQFsGA+25n6k+ekzKVZfdevuXIT/DoRdi9NGxn773+Vezq92eIhybP5RbMX9Hx2/uoN+OpHGU3tDEE5gzptoMJzMMWo/ffWXZi1VCaE5rfS+XXjDixZC706u39UcjJYdPOB4QUL8mFIiJdE0wc8n7X3OIkCVKwLrd6Gn/u7f21L2H0I5q2wLQ6cWrh2U3Q4X3vJ6mE3w+7QbFF3/qj/PROPzk3zJU5O4UqgkGBx+yoVTLBpF7T5BM5sSaGKbxPBD+HeA4fKpyyRaSZg8PDh/PCDk9MavEhNeJ5IZ82aRefOnfl3yq982NlD36zrtsnETltD7bbsAd+MHikOT0+I0cbwwaqvWXV5K9Oa/EynF97z3MV0OkmepIUQyJFTotZvrTDfFfw2CcZOk9i5A7h37wHPV21MaGiYyfZMmTLx6NEj/CypQXmRVuD5ZFOdOnUoWbIkw0dO5OZN8zE8l9Gkrn2TQcdOlS4Xd+BxuHRIpRWs3gwLV9s8TJugTSLRluXqMWjXWLe0k1rE5UDwryCShR5A6PXbnJy7nFsHjokKFMCUOeKeJ8f7n8GMxR65DwA+eM+yZKMFJCQkMGDQqBQkCtCjRw8viT5FcIlIS5Qowfbt24lPgLqNO3mGTDfugFVWeqn1WDEN/h3tnmtOmQOvNnPPWu7Amq3mycMIyRNLf9T/wWwCyq3Inxcm/eyx+GjgzgMs+/gbptVpy/GZiSS5Y79MjE2OfSvgo/etL7hpJzTuKNJ1jqJoIXjJ/smpCQkJdPv0e/6btSTFvmK5crFs2TIuX04jdcpeuAyXs/alSpXyLJnOXwXzV9o+zsfHdh++vXinESya7J613IFJP8OCiRZ3m8vOG8+A8hiZ5s4p5FUwn/vXRrqb9MhTtqT8Mmc8jPg25cEF8tr2XLJkgQI2JniaQ3w8dOot4QM7YIlEfTNkYLifH1fz5CGHvz8BAQFeMn1K4JbyJ4+S6bihMHuc7eNOnRfx37v3Xb9m+TJQ81XX10kFWCtxMibTycfnuv/iN+7A8g1S7O4BPDImUmtW79HT8MVgaaSwhtqvw6yxjldiBAVLZYAd51ki0Uw+PizNmZMfAN8bN9g5YgTZsmXzkulTArcV5HuMTLP5ywc4Msr6cQXyQZmS7lFsj4uTFtFT511fyx34aazoaiaDPXWixXMUYV/nRfxc5xsA4nXx7ruv3QeljjRBZ/tYJxByJRAAjY8PuUoWFQX7MjXh3CXTA4ND4PAJ61NewyPk75m8vdQeFC0E2xZAtSpWD7NIor6+LMmaleZaLbzxBhQuTL6cOdm+Zo2XTJ8SuLXX3mNk+vdsqNLAuuVTMB/M/EMGpbkKX18Y9beIpKQFlCiaIg7pSLF9fr+8+Gh82H59Py9Ma+Y+N//95nD7EGR2f02mUirJtc9ZvAgZM2eGnDlE7T65rGGjOhIjtVY9sHEnvNbc8mgSSzhyyq4vVIskmikTS5Yupfn06dC+vQg9370LO3ZQqH59ti9d6iXTpwBuFy3xCJkGVIchfVPMHk+B2FjYe8T2cbag0cCNA9bVhFITH7aFPt2SnjrbsVQ2dwm0CVr3xUwzZpSRLx5oWogOeURsYqY+KT5aqhgM7Ws6/UApqe+0hWb1Yct8x+tPf5sEfX+yeohVEq1Rg+Y1a4oR8Pzz8PXXsHatxGuDgyl04ADbtm3zkmk6h0cU8t1OphXKQpc2trtRNu+Geu3g5l3XrgdCDq4SsrsQHSNdRLjW9un2BNS8FdD/Z9fWsIDgC1eTfs/zXCKRrtok7bLGOHJK3P1DJ7AIpUQTwJm498w/YOZYi7utkuhPP9H84UOZyzR7NqxYAYMHw0svQc2aUKoUZMtG4ceP2bZ1q5dM0zE8NmrE7WSakCCWgbUM/ltvwM7FUMKJrpfkWL8dytfxyJRMh7FoDVSqhzY60uW2T2My7bj6axxoyEiJmFi4a4c16AQurtua9HuhFyvJIMMOX0opmDEqlIGJI6zHLwf+Dn2GOnYDx89IX3/mzKDv808GqyS6eDHN+/eHSZNkvEi3brBjh8jpFSggv9+/L7J61apReNkyr2WajuHx4XeBgYEEBASQMQNs2zCL4s609unR4zt4oyp0bW/72ORz0B3FlUD4dxH07S4dM08Sd4LQnr1A+8fzWHVlu1vaPm+G3SEmPo5yeUq55x7dCKUU4yrWJfT6LTQZMvB14F788+cVazRrFosTPi1i2nwhfUfk8xp9AH5ZYflUs7utkuhbb9H8+edhXGK1yd27UKgQXL0KFy5ArVoQFQUXL8rntFkzUc0/cYK7jx5Rt25dIiIi2L59O88995xjr9ULdyPtTBF1K5naglLS5fLi8zDoK89dJxXhSRWnsNhwPlk/iF/qfOPY2BKlpJLCUVKzA9qoaLYOGcOZJWvJX/E5Oq2ZYf7Aucvh4jX4sbf747SPHktIpUjBFLuskuiSJTR/8EC+xO/cgQ8/lNjoiBFQvTq88orMbKpWTU56+BA+/RTefBNatoQjR7j71lteMk07SBtTRMHNbr5WK8pMloqjNRpx8V+u7Pw19Ah5JHHAJxgr1SZoab+kF6submJpzaFuFyAJj4vk0N2TjsdMb9yBfC+JxoGb4euXlca//UCfS7to9d8YmRb68tuw/6jpgcEPJQtviUQfhMDQsY6p4v+3SP7uuXM6TqJ//UXz5s3ho4+gfHn49Vch06lTZXb9sWNw86ZMGNVj6lTYtQu6d4c//4Tvv6dw7txeNz+dIVWIFNxIphoNrNgIR610mXzxETRv4Nz6xjh+Fj7+RnrKnwCSLNHAnSxd4kvzKPdPMy2avZBzCaic2eGf3+Cl591+T3pofHzEpY+OgVdfkjphY3z5Mfzzq+UFTp6HafOkM8keBD+Egb/B0vVmd1sl0ZEjaf7pp7A1MYZbvTrcuCEWaJs2kqXPmFFceOOkaadOhhDA/PkQGAhz51K4cGEvmaYjpIprbwy3uPlxcbYz+A9Dof8v8P3nzisCabWS5LCmcekhpPa0T2M901Nd15A9czaPXs9l7DsKVSvZVsuPjLJeqJ8cQcHSbprMyrXpzjdrBvPmybTQmTPh229hyRLYvFkSThkzCrGOGAE//AAlSqS89p9/Sia/Zk3o2BGGD+du0aJeN//JIu249sZwi2WaKZO429MXiOtt9hhfOHUuqWzIKfj6ConqdM51xDiJJzEyWZ/NH1izp30kumqTR1SfAnfsJ9xYeWvbPlG/MkZYOLT4CCZaUGOKiRXhGa3WPhK9HAhfDpbzCuZzjESHDaN5rlxyTocOsHu3EOfjx3J9nQ7u3YPoaEkwHT0qj8mxfr3UmJYqBTExcOsWrFzptUzTCVLdItXDLZZp9/6QO4flUbnuGIR3PwTqvg9jBjs378dBWCTRTr2lYuHzDz1+DwD/nVxCQIk3LCeg6raDyuVlQKCbEBsewdjydYgJDaNsg1p8sHI6mi8Gy5fh2mQJp7MXpePLXLJr4w54vyccWCk1yLawdisM+QM2zJbYqBFsWqLTpkkjyFojda7wcMhu1DTQvLmQ6oYNlu8hPh4WL4Z27cRiHT8eKlaEPXvg3j3u+vp6LdMng7STtbcEl8k0IcG2qHBEJIz+B3p3lbieo1AKBv0O7d9xSB3dGVi1RIf8AZXKSVumhxGtjeHF6c3QJsSzvcMc82SqlFhwzgyis4Bdv01i62CRQnypYyvenfqb7IiINBDmjTtQrJDt0ragYNuqVMafHzOfJZsk2ry5WI9arRTbh4dLBj40VOKe33wjI5jPnoWICHj9dXveBiHPnDmhdGkYPRomT4ZLl7gbFuYl09RH2nTtjeGym6//4G/cAZ99bz67/uixJBwOn3TuJjUamVz5JEkUYEifVCFRgKy+Wdj6v1nWE1AajVtJNC4ikn1/TpelfXyo3e8TQ4+7nkS1WqnvHDDS/CKRUYYqC3tItF1PGJkoT+gIiU6aRPPRo+HaNUkiZc8OJ0/CwYNy0L59MHEihCUKOleqJCR68iTkzy+PlhAaCk2bwrp1EsK6fFlCTHv2eN38NIwnSqTgpphpdCzcDxYLKTmKF4ELO6B+TddudNs+Kez2AOyKiYZHpKpqf/J20uuPjSZ0Lt8Ab3cSl9ZNODRlLtEhjwCo8n5z8l64KiIj543IwtdXht5172B+kZWbRCXrlh0twj4+UP0Vs2VyNi3RBg2E5PSxeoDffpNSJo1GiPDaNShcGP7+G6bLFwQFCkDfvvJoCblySQigd2+Jsx45AhUqQPHiMHUqhSMivGSaBvFEXXtjuOzm6+Ohltz9+HgY96/07OfNnXK/LQweDQeOwfpZbi3+tjux1HuIJHcO2R454k7cDLvDN1tHMvntYeTOkhg/3LQL1myBsUPcco24yCj+rBhA1IOHoNHQ89g68pcrDVv3gH6gYnSMfRbwzTu2hUkuB1pU9bdKolOn0rxVK3HXQazHt9+G4cOhQQNJLC1YAG3bGqbe9uolv//5p+17T47z56UT6p13JIRQtSo0aQJ//MHdu3e9bn7qIO279sZw2TLVaODSNXilKZy+kHJ/8COZ67Rtr3M3OPCLJ0eiAD06wDjrKkSeQPEcRVjw7jhyZ8lJYOgtcfMb1nYbiQIcmTpPSBSo0qYZ+YsXkS9DPYkqJbqnvS1c80qgIbNvi0RXbYKqb5tauomw2Ts/bhx88olhh6+vFN4XS4whHz4sZUuHDhmO+esvA4lGREhWPyLC+j3q8ccfQtI6nVi2jx7B3LkQFUXhAgW8lmkaQpqxSPVwyTKNjILeQyWemFyzEqRsJocTCSdjnLkoIhYu9t8/iRInV9FgXmcuB19l+ytDKfVmXde0DBKhjY7hz4oBRAYFA9Bz0xzy/+9zGa/SoqEcpBQsXQc5shnI1RiDRsn+Y+ts1xfHx0tDR+umJpvtSizt3QsFC0KZMtLamddMffGlS1CunPx+7RqULGl4n44eTdkiag0xMRI+yZkTTpyA5cuhTh35Mv/sM9i4kbsZMngtU88ifVmkerhkmfr7SadL0UISU0yu3JQju/xTTpsv5TOOIjIK6re3XL9oJ5wi0aBgGPNPShm5VMS/zUaSMTKGgFWfEBgc6JY1D02enUSilVq9Tf5XXpTOtBqJknf6kE3rpuZJFOCnr2HrAuskumWPfAlmzOgYif77L83PnpX7qFEDypaVjPxLL0kMU3+P69bJo55EtVrpnx9qpDpVqZK465XsHKKXJYuQ6IMHMGoUfPEFBARIEit7dnj82JuASiNIc0QKbnDzlYJ3usHng1Lui42DCf+llGOzB/5+sPo/+PZTx89NhNOWaHgE/DwBrt10+tquoniOImzrvoSMhQsTsPgjl/VMlVJc2bRLnmg0vDXgc1Fc6t/TEMce+Dt8M9z8AvNXSoeTRmM9S68UDPtTph4kg01L1NdXXOw7Rp/B998XgsyZGDPeskUSTEeOGI7JmFE6m7oYKU5lySKJoywOVjuEhsLx43IPDx9K4f+1a7BtG1y7RuGEBC+ZPmGkOdfeGC65+Rt3QJFC5suWwiMgu4stkA9DHXbvXXLn9X8nD6jRO4qbYXd4e+HHjKn3PY3LWLAS7YTS6Tg2YzGPrlyn/pVAaFrfdDLBP/PEvU3eiKAUNO0C5UvDn1a0RvUWbWiYiDtnMUyatUqiCxfS/J13ZENYGOTIIaIjzz1nWmyvx/Hjkgyyhlu3YMwYydzr46r2Qi8LmZAABw6IVZszp7SkZs8Oa9d6E1CeQfp07Y3hkmXaqI6QaHy8zEI3hp5E12wRtR9HcfYiPFc75bpW4HJMVKN58iS6Yz907kNxn5yc+Hg1jcu8hU7peBDlfLhB4+NDtY/ep/6gLyFvHiiUX3boW3K7/898N5dGAyumwu8WutpAxJkbd5RwSK4c9pPonDk0/+UXmJHYTZUjh7jqrVvDd99htIgUz4MpiYaGyrEXkiU9w8KktElfX+oIfHzkS6FjR5gzR8qkzp+HPHlE1zQoyOvmP0GkaSIFN7j5s5ZKX7a52sIte2DzLsdl8p4vJ3G5qvZJ9bktsfTjGPjkO9vHeQrRMZJx9vcjo4+U9wzbM4HX/mvl+tiSzJml3bRhbSHRNp9ICCY54uLg0wFSoaGv5bQEX19JUCUbzmfTnW/VSpI6L7xgutbq1SI6oseiRWIRXko21fT2bflJbrlWqgRnztgfI00OjQYaN5YfkAqACxfkeaZM0K0bhTNk8JLpE0Cadu2N4bSbr9OJHJ65URTx8fJN70r22UY/v1uz87OWQuhjScakERirRllsJ02GM4vXkL1wQUrUfFXev27fQusm0DTxvUlIkHjwG1XFszDGrbvwXncpBatuIfN9667ETH19U+yySqKzZ9O8XDlT6zIkBCZMgIEDU9YnKyVu9ptv2nzNHsHZs5L8ypwZzp0Tpf1Jk6BxY6+b7z6kf9feGE5bpj4+QqJKSbb90jXDvowZZf+hE/BhX/t1K/XYsgeqvyPZfDNwe4lTp1ZPjkSDgqXYPRkcHagXeT+EVb0G8m/99izv2g9dRKTErPVfRvqGikFfpSRRpaBYYREjsUSicXHQsIMkqZLBpiV64ICQUUyMYef+/VLDecvodT16JASq0aQk0aAgaes0h9OnRd3p9Gnz+x3B8uXw4osyviQqSnRNY2MlHKHTUdjf32uZpiLSDZGCi25+dIxIq63blnJfTKxYMY4oqQOULQkvPC9rJ4NH6kTj4+HcJSGe1Mbk2fB6C4kVJoMxmY49/J/VZTYP+j1pzDIaDT7Zs8HCSdCkrryuGu9Kq2dybNwhbamPw617EJkywbihIvpsBLvqRIcOhVWrJKuu99SaNRPXvaSRqPSYMTLEzpwc3rhx0ldvrn02Tx6JcebJY/n+7UWLFlIV8PzzkDUrvPee9PdPmCBx3Hr1KJw/v5dMUwnpxrU3htNuvrHIb3KXXP/c1aF5eLDY/uYdKPeWDGR7O8A9a9qLsHA4c8myJQgERQaTN2suMvpkJEGXQAYfU1f46ta9zGraGYDM2f3p27opmTq3gRqvyAFR0fDDb9CzM5Qrbbr4vqOiPzv5Z/MtwPdDpNC++/9S7LJKovPm0XzDBnHdixfXnwDt24vAcu/eKa+l1Yor/eKLKffFxIjF+aoTo5+dxerVYulWqSL3PmGCSPKtXAm5c3vdfNfwdLn2xnDaMtWT6OrN8G43U6tBo4G796Hme7D3iPnzLWHTTvhpLODhjqWihWDjHAPxpCZyZLdKogAF/fOR0Scj+24fpeq/LUzc/JjH4aw0SpQ1+P5zMl24KuM9QKxtv6zwx4+mJBoRKV9y1atJs4Ul2cQVG2HEOJm3ZASblujrr8vMpGtGIR8fH6n3LJtMy/T4cUnu+PqaJ1GlxJq1RKLWhJ2dhU4nlvTERBWrWbNEvi8oSASllyyhsJ+f1zL1MNIlkYKLbn6unOaFS/LmgsoVIE/OlPus4dpNOHgcbUyUZ9s+fXxksJ+rba6OYtif8Ptkuw8vlr0Q0doYk5jphn4jeJz4NypV501e+aorbJkHLRuKcPMLDVNKHep0kljqa0VjQO9Rdf8fHFlr8ne1SqLz54uKU7FiImv31luy1tWridKJw8V9Nsb330PPnubvQ6eD116D2bMt3+v589Iiev685WMchY+PlFTp5z517iwyfufOSTtr9+7w99/e0igPI90SKbhAprVeg+mjJNv5IMTwz5gpE0z9DSo+J+5bRKR963X7H9rlU2i/tp/ne+fXbTNfFuRJOFi/mjwBtWXZAo7PXAxApmx+tC9WGM2la4YQSo5s0KC2FNcbw8cHPusEbS3osEZFS1G+XrDEXhJdsoTmS5fKUDqlDEpN8+dD5coygM4cFiwQi88cYmKgUSOxZC2hYkXpfqpY0fIxziBPHnkNJ0/KPZQuLZb7jBkSQ12/HpTykqkHka6JFFy0TEMeiVrU1Hkp93XqDV372bWMViXQfmUfVl3awtISn3hWgOToadi403Prm8PAL6GfY22xejLNgIaPdv6YFGBvNvBLMh87DbcTtVWjoiFfHhj/k6mlfeKsPLZqYjmUkTGDZPGTDSe0K7HUtasoORl/SbRqJYPrSpUyvc6cOeImZ88ORSzE4/384OefxSq1BD8/ESvxc2AYnyPIlEkIVaeTL4j9+4XYe/eW8EWzZhTOkcNLph5Aukw2mYPTCah/F0KLBvLPbIzNu2WA3ltvWD3dJCZ6/WWaX/OFNf89+S4kd2H3IRm57GRL7dRPenF03QYK3odyTeryv6VT0Oh0YjHNXylNBruXmJLhvqMyJ2vTXKhtZjxHXJwQsZnpsDbbPqOiJJFk/PdZsUIsUXNJmIgIsSC//FImg5rD2bOwfbuQc+bM5o8B6ZWfOFHCA5YI2V0IDZVYrp+fvNZNm2QW1Pr1kCePNwFlP57eZJM5OG2ZfvS+kOjDUBEs1qNBLSFRpeDkObOnpkgsjZwCK6c9PSQaHQMtP5bSJyfRun9/Xi//Gn75srPhuQtcv3zSkDCq/orh/TfGmy/L+1jLgnX301ipFU02EcGmJernJzHE48cNO+PjYdAgGTZnDtmySY/9/9m76rCoEi96hhC7V8XEdo11/dlrYa+x5trdsa5rrbF219q1dnd3K9iFgWIgCoKAoHTDzNzfH5dheuZNUc75Pr5h3rxmOO/muZMmab/IW7dYIV9ftUdoKMdQQ0N1r2cqpFIWnB4zhr+LDx6w2LS7O6tU+fvDMW9eq2VqRmQai1QGoy3T2SuBvceBV9c4eyzD/pPAyH+Al1cBJ3nXjs7s/Acf4PMXoIkFOl7i4oH/tQHmTAB6/KZ/fVPh8xnImV2d7AwASaV4c+IYOjybDXGRAnDpuBVOP5RWV7x3fwN8DdU/FuZbKPDijdJ6gtx5gJNJZcoo7y8khPvpFTuhEhO5HXTSJM0iJaqIjbWcy24MLl/mRFqVKhy/Xb6cVavKlWMJwPr1ga1brZapfqT/KaKWglFkmpTE5KfqLiYlAS4PuAdctkhfiVO/v7jm8+YRy1inC9ZyO6Wmttd0DL9wfzQ91A/ioGC4vPoJTkcPKK8wfCrwzovvm6p1RwSs2gYM7KamuqWTRI8eRftLl5g4+vWTf+juzln4vXuBfBoqONzcuIf98mXOtGvD69ec0EmvXkhSEnDkCEvviUTcXLB6NeDnxwX99vZWMtWN78u1V4RRbr69PZNoYiLw5ywWAZYtl5Ho2atI+vZNf4nTqtnA+d2W++eaMdbyJPrlK7e/vjS8VMf37hMkyioeXr3jpF1UNErkLcbZ/Hx54fzLR4THq6ggbZgPnNiq2UX+HAis2grceqi0WJAlKhart/8mJDDJaKtLrVkT+PRJN4mGhPDnmzZpX0cRr1+zhfj6tbD1zYFr14BBg1gsBQCmTQNu3OCQRXQ0MGcOHAsUsLr5JiJTEilgQsw0LgF44QF8/KS8PDwSSaOnoeeO/vpLnArm5+L/oG+cZTc3voUCl13Nv19FxMRwC6ymkS06EObth/0dh+C/2u3x6c5jJkBvP84mv3yLEjkK4+bAI5jQaBTyZs3ND66hk1ma0N5ec32vVMqzmF5dBzq1Tlmsd8ZStWpMylu2MJkAHJ+U1XxevswuvSIePgT+/puJVzbkThvy5+eYYy/1biqNyJ2brVzVY1oSbdqwzF7V5Afvjh2cGDtwgGtN160DPDyspVEmItMSKWAkmebJBbgclc8LSk5oJOXKhp6Lf8JZeAuvE504D/hjuuEyffpw8z7QcQgnyCyFsk7AvrUGiVeTVIrTw6cgMToGYd5+eLHvBLeyXj/Isd1mPYC1O1Eid1GMrcXK8YefnoCPjwcPJ9SEZZuAAROY/PLIY5V6LVFfX1Zx+vpV/qFYzKM6tGXfAbYWHz3iVkudF5vcUuzsrDk0oAnFi3OfvqGizqbCyYnPd9EiducLF+as/qLkdtuTJ7nO1NqbbzQyNZECRpKpzLVctxNo8juSoqPYnQ+4zyT6JRf3fevD0n+AMzvM7+L/2gT4cAfIZ2AHllB88meylokrC8TDDbvx6fYjAEDtAvnQ1iELE5JIxIR8fAtPQ01GQlwMZr7YBucu0fD5qZjmnZYvDVQur+TuC3Ln+/dnS/SHH+Qr2NkBs2YBQ4dqv4hBg3iEh64yJgBYsoTLqAx5SMbHc4uporpUasLXl3VSAX6oREVxnPjPP1m1v29fOBYpYiVTI5DpiRQwwc1v1gBJPduj55Upyu78+evAsQv6iaZYEa6PjI4B3n0w/UJkyJWT922pGOzhM0CfPzUqPWnDt3cfcH3mvynv6/TuBLuY5OGDF24w4TSuK9c72H0MDi364nqHzZol+GQx6s6/AtP+SFmsl0R9fIDAQM60d+vGHyYksOwcwN1MmjqLRo+Wt1kKEa2RZb8N+Ru8fs3HTs0YqQwiEcdyZ8zg91mysIs/bhxPQy1bNuXvbXXzDcd3QaSAcWSaVKk0epZyx1mvmzhRbRLal0pOOi34m8dcCFWJGjWdO6XM6eKv3sY/lsDfI4H7p/VbZcmQisU4NXQyxMlhkDp/DEDB5dNZZOSyK9B1hJwYZaj+I9CiEUoUKaOuZ/rcA6jVjsVgFKCXRH/5hS3Fs2eVj3XwIMcx/bQMDpRKOW6pLyaqiG7dOHFjCCpU4A6jChUM285ckJH+rVvKuqgzZrC2wO3bfI9cXeFYqJCVTA3Ad0OkgGFkqlTi1GIJ2vddIy9Mt7XlxIiXD/d6J48T1oo544FDG8xrQYZG8I+5IXPFS2lxtTXgzr9b4P/4BQCgXb48aOVYiD8QibhM6/E5+RDCT/58jJ+rAHMnACJRSjvpz4V/RHb7bED1ysCx/4DmDRVOSw+JtmnDyZ9Xr4Dhw5VPcMAALsKXyeQpIimJH4hLlnBnkj7ExHCMNShI6O2RI2dOoGFDfk1L1KoFTJwo1wUYOZKt1ffv+aHSogWwf7/VMjUA3xWRAsLIVK1O9H8due1zZF/lFR2ysJWpQdhZCWVLAWVK8j/tJ3/zXMi8ifxjbnQfBcxYJnj1Ly9ew3UhdwWJRCJUaNsMtvZ2gOdHdukBOYnGJwDNe3LzgwpK5C6KU9l7oNCdVwiIDoZPg4opFr9eEvXyYqWmpCQeCgfw32XmTG6NFIk0i4n4+7Orff264OvFq1fcjx8XJ3wbGb58ARYv5te0RPbs3C6aJQtn7hMTWRg6Tx62Vhs25OWwuvlC8d0RKaCbTLUW29f7H1uhb95zEgrgkpyLe7jjKT5Bf8z0j5lA1+EGJ3G0IiFBsxK7KWjbjK9VAMQJCTg55G9Ik2NrDSePQu7ty4G/hrAQzIzlyvWbWR2ATQs1TwUFuIts3wkMvfhPipsvKLFUtSqr0stUnAA+7tOnuiXr8uUD2rdXHnKnD3XrsvurKmwiBMHBnLUPDjZ8W0uAiK338eP5fUQEq+vnzcv1sffuARMnWhNQApApO5uEQrUDqkjRH/QX26/ZDuw7Cdw6Jm9xlEiAln24N1yXlfjuA6sd1TBDMX1oOFCyHrBnFSskpQFIKsWD9btwY8Zy9M7qgJLr58O2e3LbqlTKJU2FCrDFc+669vOUzWlKSgKkUvglhKQM1Kv1shqO77yktHoKiRYsyMSmGjKJi+PxG9qmHRBxPWmBAuqf6YJMAs+QWGp6x+fPbKHKxp8EBQGFCvE93b2bE3B37gDZsn2vHVDfb2eTUChaps6/9kXHQyP0F9uPHQy4HmUSlVmWtrZA705A++a6D1ixLJOoVMpq/KYgf14eX/w/A6wpXZBKgSUbNY+t1gKRjQ3qjx2M4beOwbFJPdj+UBDYvI+HCdrYMIkCwOmrPFzwo6/6Tp6+Amq04XizvT3g4IASuYviWo89CA0Jx/E8l4C88tVTSLRUKW77PHdOeX+nTjHZ+ftrTwZu384jkb/piW0rQiJhmb0pU4RvkxFQvDiTaEgIi0Bny8Ykev06k+jTpyx6EhamZJk2adoEd93vpvXZpxt810QKyMn0a80wXPS5hc2N5usutheJWNQkLIKl3i658PKhPYE6PzMheX7UfdBpS4DWfQ2fWqqKgd2UhFRMgpcPVwH4Gxi/I8IPP1dB1qP/AY1qAwfPqHdddWsHPLvIcWJVFCvCeqNF5PWeEokEcyevQ9S6GEAMoDAvV3Lnq1Xjek+ZGIkMdepwcsnRUfs5d+wIzJsHFCwo/DptbTl+OHWq/nW14e1b7qgyp0K+uRAQALi6yqel5svH1QWXL/M9rVMHWLwYjo6OuHb9GqKbR6PJniZ49dYCnXsZEN+1a6+IO6/uoOuIrsj1JZswoROxGBg7mxNQP/0oX75qG7B0I/DmpvaC+XcfAL9AluozBZ4fAdeHGge+GYW4eI5j6qkuCH7tiUKVK/DDpMNgYNl0+TynhAS2LG1sgN3HeHxL+xbqO/Hy4RpbhW4lQENiyRaAhF+37duGIWIHjoX27Km8v+fPuRZSl1KTvz9nzPMY2Mggy+xr68sXCl9fVpSaPh0oqeGhktYQi/neSiRsEMjUsHx9gX//BfLkgWTuHAw+Mxj73Peh8N3CsPGwyexuvtW1NwQNqzbEw/0PhdeZ2tkBGxcyiUokLDcHsGW6d7XurqOKZeUkGmZCCdPjF8DUxRx3NQUxsUyi2bLqJdGXh89iU812uDJtCcSxsUDJonyt/ccDHz5x7amNDcchr94Crmtw/6RSoMdoYNwcpcUaE0sStkSLDC6C+V/mw8f1FFuiikhMBDp14i4dXejfH+jRQ/c6mrBzJ7ebmtqRVLIksHlz+iRRQJ6sGzhQ3v0lFrM+wN27kLi/wODj/bHvxV7s67wXbrvcrAmoZFgtUhUYJcE3awWw/wSLaihqbJ64yL3mivqmili6ka02twvq2pxCkJjIVpKpltKa7cDKrYCnq84i/AjfAGyq3S5lLn3PY/+hYvsWHPvsPYbnYFWuIO9Dl/Wrazq/l2/ZIk126fVl56v/rxyaHmuPvlV7Y06T2er7fPmSCUqXtenlxYkoQ7L0APDkCZP338JGz2hFYiJn7AsV4tKj9IqjR9ka7dSJ39+5A0mpkhj8eDr2vdyPfWft0evoW6B06e8hAfX96pGaCoPJ9GsI8Py1kmYpAoOBqi2Af2ewCrwmvPcGHj3nRFVa6ll+9OXz6NlB6yoklWJPm/7wcX2AQgB65c2NvPdOsfSgSCQnz0/+QM/RwJalQDWVVszAYGDjHmD2OKVSJb0lTg4OQN++CLl+Fvmr1IZIJEKSJAn2X4K5kHzuXN0Pk2vXeEpoWpPX06dcVuTmxrObMgLu3YOkXt0Ud35fXBv02vmEy7h69QJEosxOplbX3lgY3E76QwE5ie4+xqVJjoW4o2dgN+3blS8N9OnMBGSsez5+LjB3tXHbylCmpE4SBYAH63fBx/UBACBrkULI1bIRPwh+GwRERskfBNmycgNCIQ2JnKcvgcNnlTrBBNWJ1q4NjB6NApX+B5FIhMtel1F1U1X43D7LcnCKCk+qCAoCOnQAthnRTkvEYh5uboZvqwnlyvHMpIxCNPfuQdKwAQZvbcckWukf9Nr6AOjTB2jWjLujkhNQ33udqZVItcAooZNvocA/S4ETyXWPZUomDx67xUP2tGHrQe4tFzr+WRElixmsGaqEZZuAo+d1rhL82jNFkEQEwHnXCtjuXcOkmT8fC5EkJAARUVzytG8tUFiBSGXiJ+2aA+5XUs5X0Iyl4GAuEJ89O8WKrZy/IiRSCZy/LIHP/YtAER3XX7gwa4yOGGHQbQHAtabXrpmvgD4t9EhNgKReXQze1Br7gq5iX+d96NV9PuDtDaxYweEJBwcWv4a1A8pKpDpgMJkWzA88vcgJJ0VcvsWKUdrCKM3qc/bfmDjp+KHqxxMKIuCVJ+Ctob4zGZLERJwcNBGShERUBTC28A8o/VMluZrTnlXsVk9aCLTtr961FZ/Ag+o27eH3WTkGq5dEW7Xi3vfFi5X3l5iIEr1G4CYGws7GDs4HW8Mn3Ef9xGNiOLFDxDFRY+LIBQoAL17wIDlzIDiYazPTS2eTDkikEnbnZSTqm5tjp7KqiD/+4LjxsWPcEfX27XdNptYYqQAYlYA6fx04e40z+0T8Y2cnjyVqg6wERSikUs6WF/nB6JHJus7p+qwVuLOMR2lUcSqOLh1awiYsgpMRGxfKV3zrxSVNqqVORFzo36oxUJOTPIIH1fn4cD2oYgKMiDVFW7SA389l0HR3U5TIUwI3B6hk8o8f5+zzy5fGtXP6+PC9VR2UZwqePwcaNADu3uUqgHSKFBJ138ckWq0X67TGxACHD8u7nqRSFrYOC+Pwy6VLQMuWmS1mak02mRMGk+nxC5y137lCnuR47cn99gfWcQxVFQdPc/b89vEUy00v/L8AZRsCRzfJVf2F4ukroEYVrSTqd/8pdjbvCUilENnaYujdE3D8uQrHOQGeYur6gAvqFSdwAuzqv/JMIU8Z9JJorlxsSe7apZwcImJRZBUt0c+RnyGWiuGU10n9AoKC2LU3BiNHAleucKZfqFxiJoBGEgU4PCMSyetMFS38O3c49DJ8eEp5WSYiU2uyyZww2M3v2pZjhVmycOwQAPLkBvLn0S5aUqMK0LqxYSdWtDBwYQ/Q2MDRz689gV866Zz9lK1AXjj+rypaABhVvjQcSyV3UfX4jX++fAU6DdU8LWD1dqDdACBcPuBOkCUaG8vK7aqjPrZu5Yx3oHILa/HcxeGU1wlhcWHoeqQrfK4e5cmggPEkCnBW+tQpK4nKYG/PJPruHYdK3N15+atXQKPkRKtUymNatm//7tx8q0VqIAy2TAODgXodeOyIYmZcXxeRvhCAqZBKeSJng1rq1qQCJElJ+Pj3IpQtUQQ263YBs8crl3M99+AyJ9UYZEIC4P4WqF2d96OPRH/+WT7LSNO1x8dz4ke1JTQZ/pH+aLKrCcQhX+HyoBKcLt43ngQNDa8IhacnW21btqSduLMW6CRRRURGsqr+kiWccAK4tbRxY/6bTZvGf6f79wE7u8xgmVotUkvAYMu0yA+cEGreQL4sIYEHwa3Yonmbc9eAVn24gFsI7rkBc1YJW1cGGxvAub5OEkVCAmzt7VF+9WzYTBgOTBnFMnufA4H1u5jwfq4iJ1GplKXzvHw4rimURGvV4jHF27fzB4okun8/8PEjkDWrVhIFgGK5i+HmgJuwK/ADnH/9Ap9I7Qk0nQgN5Zjq1avGba8L9vb8sNB1z9MAgkkU4IqDHTuYRCMiuEe/SRP+m926xaVoL17wQyMx8buxTK1EagQMIlORCBg3lGtNwyK4rdPBAejbhRMwmlDcEShdEkgQSKQffTm5JVQE5cINoOcfKRNSFZEQGQVJYiKTYsehwMx/OZklEgGj+nNZ0yVXYM0OJbcdAL+/cAN45pGySJA7X6QIsGED0F2lcSEhgUdg7Nyp/5rmzEGJx++YTG3t0XR3U8QkGlFORsR1ktWrG76tPpQuDezbx6/pBAaRqCpkLbcyr/bmTS6P2raNwyo//wwcPvxdkKnVtTcBBrv54+YwCb28IrdKJBLAP4h71lMLF25w7ejOFWofnRg4AUEv36LDf4tR7NU7IPgbMH8t8OQcUEnBLYuMAnInl8IQsfXs4MCvyUkivSRaogRnxzt21H6uYWHc9qnLTU9KYoX89u2BMWPgF+EHFx8X9KveT+gdSR2Ixewa585tmdCBgTCJRAFWsUpKkrfcEvH7LFk41j1kCJeODeDR2xnUzbdm7VMDBpFpVDTHTCsolNRMXQycugK4X1ZvYbxxjwv5d68UFu8zMa7qefEmDnYeBlsADgXzYZznLdjb2wEnLwPd27PbXq0SJ5oUsfw/toiv7BdOou3b8+TOZ8+4HEjx+u7eZZm7I0eEKzVJpXztKtf/35P/8Gu5XzVn9VVx5AgQHQ0MHizsmIYiHbWImkyiihCLgXXruLY0SxaulvjlFx6FXbQod589eAA4O2dEMrXGSFMDBrn5uXIyiSYlAdOXMamOGQhsWKC5D9zWhsk3SoCL2nEIMHmh/vVevQO81adpxkdE4dyYGbADMAxAr2YNYB8QxJZz9/ZsOQcEAWHh6vts1oCrFISSaNu2vGDtWq49VH1I2Nqyaru+3viICKBNG64VtbFRI9HoxGj8e+9fOO9y1ly0r4oHDywTG5WhdGmub01j196sJArw/Z81i+8fwATauzdXTxw4AGzcyB7Dt2+Z1s23WqRmgkGWaUAQ0KwnsHo2q0MBbE1euw20aGScVbnnOMcvWzfRvd7vI4CwSOD6QaXF58bMhNu2gxAB+K2cE37+pSZE1+4Ar28wodvbq1u8tx9x1l+BCPWSaMWKQNeu/A9WVWXkSnAwiy0LzbZ//sxu4+bNWvvX/SL80HR3U4ilYrgMdNFvmarWSGYymJ1EZfj2TbNQdkwMTzGYNo3/5vW4TC8DWaZWizQ1YZBlWrQw8OKSnESlUk5C/TaYC9xV8fAZMH+N7hPo31U/iQLA7lXAFuW2Sx/XB3DbdhA2AOxyZEfp87shWjGT62A/fgKqtQJevFYmUZ/PQJv+wKEzKYsEufMFCgA//SQvnZEhIYG7fmbO1H8NAN+z4sV5JIaOf0JZ15OdjR2cdznDN0JDNp+IwwlEliXRb984EWPIiBMzwmIkCshJdNky5b/h8uXs8jdqxOOwZ8wAzp7NdJaplUjNCIPIVNb2uGILixzXrAY8OM0lSap448WF87rGPkdG8diTmFjdJ5kjO1DWKeVtUmwczoz6B9kA/AGgd6tGyOuQhcMQv9QEihQCWjVSHxPiVBy4cSilNlYviVatygSSPz9nrlWJ1MGB++qHDdN9/gDXLf7yC88ZEoASeUrAZaALGpVqhHxZ86mvcP8+jyC+c0fQ/oyGry9fn6+RpVkmwKIkqggbG7mwN8CWqIsLt5QWKcIF/Mn3OTORqdW1twAMcvMv3mQt06mj5RbfmatMXLJ58LJOKF0u77NXQP1O3F5aW0vpTs8/gOYNlUaTXJm6GPdXb4c9gPZFC6Na4R8gKlYY2LOaibuACvFcvQ188AFGyjPiekm0XTt26YoVA06cUN5ffDzHJX9TSWDpwpMnwPr1XHdqhAXpGeKJLLZZ5G6+zCJt0CBtdWEthFQjUVV8/crxUoC/w1OmcHnUkydcZxoZCRQsmN7dfGvWPi1hlNDJh09s6TXoDDSsw6LQinj3gWtG2zRV3zYxEfjyDSheRDPhSqWc4PqlZkpP/hf3N9hSvxNIIoGtQxaMfHwOBfPk5vrVJRuAJ+7A/VPKZDVrBfDqLXBsM2BjI1yA5M0bnpdUooTyee3Ywa7f+/fyziZtkH1XTSA7IoLzbmd8Cv/EMdNcJawxUUvgyRMu1L94kbue4uK4FKp7d35ghYXxw/PuXaB69fRMpsK+bEQk9McKA+Ht7U2lSpWismVKke/7W0TxXtp/Xl4lsrcnOryRKOAJUayn+joDuxHVrk4U9173vgT+PFo7l5bY2FAgQF6tmxB9eyH//PUNorM75O8jPPg17j1R1BuieC8Sx7yjgf26Evghm/KTJUsWOnv2LNGXL0STJhElJmq/SVIp0Zs3wm7ohg1Ebdvq3p8A+Ib7Utk1ZanUqlLkPaAj0V9/mbQ/wXj/ns///ftUOZxYIqb+J/uTzVwbOuB+IFWOKT+4mGjtWqKEBOVlMgQFETVtSvT8ecqigIAAqlixIhUrVozep9I9EgBB/GiNkVoQBsVMy5cGti8H2jblmfU2NsCDpzwiWYYl04CrB7RbZJv2AP9u1vzZFVdW7ldA7eF9MOjKfiQ4FUcZt5csd/foOXc8lSkJtEzuvHrvDVRpwa2oIhFgby/MEn3xgst9vmgY8bx0KSeKRCI1RSetKFOG6zBNbLFUSkCVuwOfmmVN2p9g2NjIhwNaGGlmicpgawv8+SeXsHl6stiJzPI/epSL+ENCAA8Prq+9fTtjx0yFMm4qPwUyFQyyTOO9iNyvED08Q7RwMlH9mikWYMqPz30iTw37mTGW6K/B6suDnxHZ2RGtX6D9mB7XiD49ICqQj+ifMcqfhb3i/X55KswSjYuTX3x8vPoNSUoi+vVXosWLhd1ARUvGjPAN96WqG6vSTe+bFtl/WiFNLVFNcHbmv7cMwcH8t5d5Fl26EDVpwt4JpTvLVBA/WmOkqQSDYqa/DQIkUuD8Lu4aUbTAiHgsSbVKwK6Vwk8gMBjIkU3e1hkbxxJ4v7fluVKy4vcXr9k6zp4N8AsAxBIecJcMvZZoixZc6tKzJ8/0UYWsTlMi0VhErxEjR3JL5fr1wq9XH4iA1ash6dgBtmXKQiKV4FvsNxTOaYL0nj5IpdyMYW9vMas0zS1RTfD3B7Jl44oNVTx8yFn99evZMi1YML0N1LPWkaYnGOTmb/+XxZ+T3Wh4+QD9/mLyE4mArcuAVbM1byuRqGt5AiwknTsXwj764uGG3ZCEhAJZ7IDJi4D/9gF7T/A/evXK8vHRY2cDQ/5OSfIIcuezZmUSbd5c/Rzc3LiG9MMHJlOhSaN69YBatYStKxSBgcDcubB9/QYAMPPmTNTdVldYB5SxeP6c78/z5xbZfbokUYCrNfLnZ1d+0iS5qplUyuVgT55wu7BEwgmqZ88ynpsv1HRNXWs688IgN9/vIdG4IUSPzhD9ryrRm5vKn4d7KCee3C4Q2doS3TkhXxbrSdSsAdHp7UTxXnSkaxuaA9C68qUpyO0C0aOzRGe2c6Lr/in1EILHNWHufHQ0kaur7ov38yMaOJAoJkbYzUp29SyGuDgOM5BKAirM2zLHCwkh2ruXX82MdOfOa8KdO0TFixO9fStf5usr/z6EhxM1akR0+3bKx+nAzRfEj1YiTQMIJtNrB4mKOxK9uqaeqfe8RVTkB6ILe+TLvj4nWjePyPuecny0dyeim0fo043DNAeg+wCdz5WD4r+4Ke9Plp2fNIK3S/5ML4kSES1YQJQvH1FEhPoFh4Qw0RqK0aOJ5s415VZrhkSiHMdNRqqQqQWQIUhUBlnMXPUh6eND1LcvUdmyRCNHcrb/40ciSnMytRJpeoZgMlUsO/r0gOi3FlyaFPeek0uqVqqWH2nce9pevyYtBegLQFIbEdGCv4k2L1Fe1+0CE7TLEeEkSsSJA3d3zRfbti3/GAKplBMSW7cafY+14sYNojx5Uv5RFSEj08lXJpv/uCEhRAcOmNUizVAkKkNSElHPnkSbN8uXPXxI9NNPbI3GxhJNnEjk5JRCvGlIplYiTe8QTKaRr4m6tiHaupTol1pErke1r3v9ENGNw/L3908RhXvQx4t7aQ5AcwBaX7EMSS7uIZozgahsKc7Kx72XW72hL4WRaGIi0dChRK9e6b7QZ8+I7t1LjVsqDJ8+ES1ZojV0EBwdTGIJVwokSZLMd1w3N/6Xc3Mzy+4yJIkS8X2fOJHo6FHl5RIJv8bHEz14wNn+yMiUj9OITK1EmhEgiEzj3hMN7sHF+qou/vndRGMGyt+3akzUoaWcgLM6EC2ZSrsa16XdAG0HyH33Kvn6Qc/4deofXPCfvH9BlmhICFGdOkSXLmm+OFdX40qXpk8nWrfO2FtqNrh4u9CP6380n5svFnOIwwzlXBmWRDVBMRwkkRC1bMkWa82aHENduZLI25uI0oRMBfGjNWufxhCUzReJeIZ8x1b8e2g4MHQy8PIt64O+fi8XK9mzmjP+AJcM3T4OvzKl4HPrIZoBGACgysNnLHACAHmSy6HKOwGVygIikTA90ehozsTevw+0bq1+zn5+QIsWwJ49ht0QIu6/T1Afg2IWeHjwWJN4HQIwySiTrwwSJYnC9Uz1wdYWyJHD5JbUdJudNwbr1/NYl/Bwfm9jw6NeRo8GHj/maQLr1wNnWGUs3WbzhTJualD/9wzBbv4/Y4haNSFqUIvo5FZB8dE9zRvQHIDmA/Sp/+9EPTsQOddn69PrttK6gizRadPYWtDXqvnwocWK6Y3G9u1EhQoJPi+zJqA+fCD6/Xd+NRKZyhIl4iTThg2awyxSKXs1MguVKOXvloqWqdW1z2gQRKZnthOtnKXei3/nBFGgG9Hlfezax70nWjSFwudNpAUALQdoTekSJIl+y58FPyN6cZnIIQvR8c2GJZbc3Yl27tR8EV+/Eu3YYdwNuH6daNcuy5c9GdirLyPTX7b/QlJTzs3Tk6hVK341ApmORFXx6ZPy+xMniEQiTkrdu0d06hTRzz+nJOtSiUytRJoRYVCd6acHROOHcoY9iz3RvzOILu4l+tWZE0h9u9DnX53pIkBigL7WrEZ065hy7HXLUqLI18JI9NKllLpLrdi0iahgQaJv3wy/+KlTOcFgKSKVSo3et2+4L7379s7MJyQcmZ5EnzzhWuabN+XLpFLlJOXr10Tt2ikJoaQCmVqJNKNCEJke30yULw9RxbJEu1cRPT5HFP1W47rhd06Qf7VKJKlRlahbOyLfh0Q3jxjmznt78xd97179FxAUZPzFa6jvNBuuXiUqVYooIMDoXUTGR1KvY71Stc4005MoEZPmrl3aH9R79hCtWsUW6pMnXNQfFUVEFidTK5FmZOgl0+BnRIumEIW/Uv8s5h1R2Ev1DH/0W95udH+iksWEW6IyvHih3aK7eZPo9GnjLjY2lt16S8PDg61eEyzezxGfjY+Zurlx55kB5U/fBYmq4s0b5QYOiYRFTSZMIHr5kkMzTk5Ef/yRsooFydRKpBkdgt38QDdWdhrWm7uSbGyIBnUjKlSAqI0zUZN6RE8vKNelelwX7s4vX67/ZIcPJ2re3DiS2rGDCcbPz/Bt0wBGJ6CCg4n++49fBeC7JNHYWKLChfmBp4iYGOXv1rRparF4C5GplUgzA/SSqcsRojy5iOztiAZ1J1o9m2j9AhIf3UTSNXOI6tYgypGNqGFtop0rWEDakMTS/PlE7dvrz3JLpSmulsGQStnSsCSiooiOHFEq8DYFimQaEa+hLdZEfJckKsOdO9pbil1didq04Sz+uHEcRlq40JISfFYizSzQSabhHkTT/yR6c0Np+cNVs2hN6RJ0efxQCnt+mejVdaKqFYkmjRBGoorEqSvBdP060d27xl+cpTP0Mty7x193BUV2U+EX4Uebn2zWv6IMYWEc/ggL07nad02iivjyhcjfX3nZgwdEv/3GyUyplDP7RYooeTNmJlMrkWYmCHLzY96xhbphAT0qXYIuAbQKoC9PzqfEVcURHvpJ9Ns37ns+f17/iXXtangfvSKGDCEaO9b47YVCKmXrRV/VgZHY/Xy3fjdfQIuolUSTIZUSVa9O1K2b9nXEYqL79zle6u2t9FA2I5laiTSzQSeZuh4lypObKHtWkubMThLuESIJQNJxQ4k+3hXuzsfHs/KSkMJxsVivhaUT27YR7d5t/PbpALGJsVRubTn9MdPERI6PaqljtZKoCp4947pkTfD2JqpYkWP4o0bxw//334kOHkxZxUxkaiXSzAitZBroRtSxFdGq2eS7ezUtBug0QO8rlSNyLETi41v0k6hUKjgRQi9fcl1fRsG8eUQrVlhs96Z2QFlJVAdiY9U9icRETnDKHvYSCdGAAUQnTyqtZgYyFcSP1l77DAatvfn58gCHNwKj+sHb2xcJAJ4BiJ44HBL3Kxh66rL+kcnbtgGVK/M8cn1YsQLo1Us+ItkYuLryeInUQFycoP56Y6E0UG8Xj3tWg48PMHAgvyogU/XOmxuRkUDFisDu3crL7e2BzZt5ICIRaz/cuAF8Sr7vsaw9kWq9+UIZ1xgqt8Jy0GqZzptEibY2JE7WHQ1yOSy8TvTrV+H6n/HxRrc6pqBhQ6I+fUzbRzqDb7gv/X7kdwqNDVX/8O1bogYNlBTirZaoAKxdq32EdXAwUe3aXMe8dSvR58+sY1ujBikOXjTBMrW69pkdGsm0dROOiybHR7fXrSEsJmqIgr1MN9JUJCQY10pqKKRSg/vrzQHvMG+dbr6VRM0AiYQ1cR8+lC97/Ji7oFQqQowkUyuRfg9QJVNp5Gua75CF1Z5y5SR7IZbookU84kFIe2ZSElGlSqz0nlHw6RN/1S9fTtXDttjTQmvM1EqiBuLUKdYl1YekJKJq1Yhmz+b3sbFKHxtBptYY6fcA1ZjpB09vICERIgDvoqKRpLCuWkxUhu7dgRkzeMKlPkRHAz16sIakKbh1C+jaFYiKMm0/QpAvH7BrF1CtmuWPpYAdHXakxEx9wn14emju3JA8c7PGRA2Fpydw8aL2mLyHBzBrFmvwTpjA3629e/l7miT/L7BYzFQo4wqhbivSDjLLtHqxIimu/XB9lmha4to1rj9NrYL8NIJSNt/zEYn/XU79D3SzWqLmxo4dROXKKSlDkbs7j5TR4GkZYJlaXfvvDe/evaMctrYUCFAiQOWFkOiCBdwdIvwg2ofcpVcEBREdOmS29lBD4RvuSz+u/5HOvj1rdectBdUH8unTHCfVAYFkanXtvzcMGjQIMRIJHAFkAfA+efnWrVvV3XkZvL2BR4+EH2T1aqBvX9NOFAAkEiAkxPT9CMGrV0DPnkBwcOocTwUl8pTAsxHPcPTFAex7sQ8bm62wuvOGwt8fKFwYuH5d8+cikfL7Bw+AO3eAZ89SxpSowtHRETdu3EBERAQmTpxo2vkJZVyDnxBWpDru3btHIpFILUtfqVIlCjBBg1MJ3t6m6Y3KMHo0t6GmBsRiHrCWRmNPUhJLc2zo926gUksdU1XPNFMgIYEtzCdPNH8eEUFUpgzRmTPKy3v0IPr1V42bSCQSGjZsGIlEItqrXWfX6tp/T0hKSqKePXtSAZGI7FSIVC+ZBgUpx5ZSA0+fcpw0k0MpO/90N/m+uktlV5cxzwwoK+QICSGaMYPIy4sfmLLvs1SqsYVZkUR37dqla89WIv1eICNROzs7OrhxId0EyFEomYaGEuXJQ7R+vbCDBQYSjRihvUA6PeLzZxa/SOWWVm0lTmYdqPe94NIlolevhK27dy9Rvnxa/94GkCiRlUi/DyiS6LGD60ny6T4lAuQLUBF7O2FkevCg8ML4sDCuI330yLQTj47m+U4mTNQUjC9fiFq0YBGMVIJGEv30iUManz6lkOmfF/5MtXPK0KhalWjMGM2fffvGOgqy7Ly/P2srZM9OdPSo0qoGkiiRlUgzP1RJVNYm6mtvSwSQF0BlixYW7uYLFWY2R8lSTAyRnZ3aFz0zQGux/evX3LqYbCkFRgVSopg7riRSM3WLZVYkJKRMD1XDsWNsgSqGqCQSojVrlAryjSBRIiuRZm5oJNGYd0THtxAB9BmgQIBeH9tMZcuU1E+mfn4skHvqlLATCAgw3b23kDaoRkilqXI8YzqW7vvdp2obq1ndfG1Q6U7SiIgIFhl3ciK6cUPtYyNJlMhKpJkX2ixROryRCKCQooXoHUDxAHntWkl+72/pJ1OplGtKAwOFnUSdOkSdOpl+MalVkF+hAs/5sSCMbfu0xkx1wM+PqEABngCrishIop075d8hb28O4WTPrvQ9NoFEiaxEmjmhlUTjvYhCXxKtmEmfB3cnSlZ/eti7I1HViuR354Qwy5SI46Dh4bpP5OVLTlSZgitXuMff2FlPhuDQIWVhCzNDEIm+eMFW/4sXah9ZyVQLIiKI5szhV1Xs20eUMydPHZV9h+LiiBSaT0wkUSIrkWY+6CTRWE9+nf4nSYoWprcAxdra0NveHYnaNyfyvkd+XreFWaa//ELUvbuwk4qMFOZ6aYKPD9FffwkXk06nEGyJBgTwMEEtZWgyMq21pRZJM3nrrNng78/f1Z9/Vgs1mYFEiaxEmrmgk0Q/PyIq50RU3omobTOiyaMo5uEZove3iHLmIPp7ZMpce0Fk6uqqpJmpFXFxRCVLcoY0vSMwkPUqzVwva24VJ78IP3L/ksFacC0BqZSoVy/2JFTx7h3R8ePy98+e8dgRBW1bM5EokZVIMw90kmi8F1HQM6KB3Yh+dSbyus3LFvzNy+xsiR6dIfJ9SPRjOaKTW4WRKRGTjuIXVhMOHOCyHmMRH88zm3x8jN+HENy+TWRjY9ZaUoNJNCqKp5kKCGXEJsbSoFODvl83Py6OqF8/ogsX1D+bOpVL8C5flicQg4NT7qsZSZTISqSZA3pJNO69/Pf3t4ii3xKNHUTUvyvRiD5E2bLxZNFAN17+4jJRvJcwMj14kChLFmG1nlFRxll7MTHcELBtm+HbGoLERD6WmWCUJSpgiqgM/pH+1pipNkilHGe2syOqW1epc8nMJEpkJdKMD70k6v+YqNZPRGMGEl09QPTTj0ygVSsSHVjHcdPFUyls7VyS5shGdPs4bxf5mijomX4ylUqFjRNJSuLRuZMnG3ehpkwhTQMY7c7HxnJ3jsCY8neZgEpIIOrQgUeHKEIiIfrjD6I7d+TL9u7l2Kivb/IqZidRIiuRZmzoJVEZkf7ensl0zgQmykdnUz73PrWVNlcuT94ARRUrQhT8jD/r3JqoVWPhlqlUykmSK1e0n/D+/Zw9NRZSKfdJWxKrVxMNHmzSLlJb2V6RTDXOgcpsCAtjnVrVzrnoaKKmTYmWLuUf2bib5FcLkSiRlUgzLgSRaPRbZfc+6o3y574PSSoS0SGAHgL0IE8uksS84/WuHSS6fihlXb1kmpTEX+5//9V/8omJxqlDbdzI9X/a5pibA/v2EU2ZYnTtqskk6udHNGkSvxoA33BfWnV/VebP5GubBSaLg0qlRAsXcsnTqFEKm1mMRImsRJoxIYhEr+wnKl+aaOdKomcXicJeEf3WgujhGaLT24mKO3Imf/tyOt6wNj0G6C5A3sv+4c/cr8gJ+OYR4WQqg65BeX37EtWvbzhZhYYSnTuXbhXzzWKJvnrFjQFCxTc04MirI5nTzX/xgsNDHz8qL79wgahy5RT3nYiI9uxJqQm2MIkSWYk040EQicZ7Eb2+QTSyL9EvtYi6tSd6c5OoQW0ij2tMrFP/SLFY353YQnMAWgZQYJ5cRF3bEPk95P0cWEckEhmWgLp8mYvKtSWg3NyU41jGwJK6oWFhGlsIdSG9DKqLT4qn8mvLZ86YqZcXP4RVE4IfP/KU0B9/ZJk8BaQCiRJZiTRjQbA7H+Ehfx/2iijgiU7Clc6dQGtKl6C5AH0C6NuGBfK+fAWLVLCbHxpKNGuW/r51qVRQdloN48fzP5SlsHw5hxCETEyl9EOiMmS6BFR8vObk2+vX8uXx8URNmhDlyJHSzJBKJEpkJdKMA8GW6IRhRPVqEF0/SPThjtw6dbsgX+f5pRQLk87vJsqbm57O/IuWA5QE0INqlYheXePQwJ0T8u22LuMyKaGWKRG3iaq6YjLs3Elkb294jen+/UTbtxt9L/Xi2zfWJxUAs5Poq1fcEmuCa0+Uych0+HAiZ2flkE5CAjd6KOreSqUpXlAqkiiRlUgzBgSTaLwX0f1TRFuWEv2vKlG3drxseG8ipxJsYcoy8s0ayK3OWE9KCveglcWK0BqAlgMU3aoRl0m9c5Wv16A20fihwi1TqZSoXj2izp01X1hiYoZWwLeIJfr5MxeTCyRyXfCL8KMOBzvQl6gvZjixNMSjRyyDp4oHD4i6diXKnVupWiSVSZTISqTpH4JJ9OVVeS99vBcX1/vc59+j3vDnCtl68riuVrT/ZMOClFhpeLasRK5H+bMID3bxQ1/Ki/uTX/WSqa+vMOGSY8e0a0lqw4wZajExs8HVlfUEtLj36c2d14eAyICMZ5k+f66epQ8M5PHJMuvU15eoWbMUIk0DEiWyEmn6hmAS/fqcqEA+rhM9s53oy1Pl1lBdFmy8F9HGhUTVKpE46g2tKVOSjoJHNQed3s7kWf1HojVz5OtfP0RU92euURXq5gcHE/XurVllPySEZdBWrDDsBi1bxj+WwOvXfL5f1K05i5JobCxnp40VedGCtvvbZiw3PyiI49Tr1ikv37+fqFgxTi55eCh9lEYkSmQl0vQLg9z5eC+ic7uIPt4lKlyQaNoYXvb4HFF2hW6leC8m2aG9lC3U64eYhKPfkvuulXSg2S8UOvMvXnfScKKZY4menFe2fru1ZwIX6ua/fUtUrZr2PnZf33Rb1qQIi1uiBrSIGoIMGTO9cUPuESh+Nx4/5jrRYsVSWo7TkESJrESaPiGYRKPeEB3ZpLzsnStRuIecNBdNUS7E97jGbaIK3U2KP1LFvnyP60SFCnBxvixOGuimvI3vQ24nFUKmMjctKUl7nenNm4YXxK9Zw5l2cyMxkV3GRB71kSrufHQ0xwR11eEaiQxBpiEh3BShiPh4otatOcEoK3v7+JHL7CjNSZRIID/a6Jt7b4X5IBaL0a9fPxw7dgyH9q5G186/al/51BWgz1jAyxvYfQxISABKFQOyOvDneXMDE4YB9vbybco6AY/OAj/9qLyvz4HAsfMQiUTyZbcfAblzAf+ryu+HTwW6jwKI+H1SEtCyNzBlMQCgeHFHuFzZj7JlSirt+u3bt2jWrBkCg4J4wdChQJcu8v0o4v17wM0NSEzUc6cU8PUr/5gb7u5Aq1bA3buQSCUYfGYw9rnvw77O+9CrWi/zHw8AcuQAatfmVzOjRJ4SuDngJhzsHPAs8JnZ928WHDgAjBsHhITIl9nZARUrAgcPAnXqAFFRQOnSQKtWkEqlGDlyJLZt24adO3diwIABaXbqeiGUcVP5KZDpYLA7L3Ozn10kcsjCHUuy5X06E+1epb6+osWp+LNhAVG2rETfXijtWzLrL/p8eR/RvIlE53cRXdyrvN2Z7fLMvlA3/9YtJYVyNcgs12RLUC8sFRKQSomePyexOCn1EksBAUSzZ2sVdjYHEsTsDkulUgqJNTDBZ2lIpSzETMTfA8WmjlWr2KVP28SSJlhd+/QCg0h040KiE1uUl8k0RuO92NXu/zvRoQ3q2w7uQdSumfryEHelmCfFe9GHC3tofaWytDarA0ny5SE69p+cjJ9eUN4+9CXRqlnCs/kyHDrErpsq/PyIypfXPIdHG44cIZo40eS/hSJSPTvv7s6xP3fLCzcvv7s8fbj5UinRn3/yXHpFrFnDpU0nTsgfrsnjbdIRiRJZXfv0AYPceSLg6i3gxj3ALwBYuRWQSoHijvJ1smQBtiwBOrVW375DS6D7b+rLc2QHcuVUWvTu3DV8e/sBReITEAYArRrzBwdOAfU6Ap/85Su7PgBmrQDeewMQ4OYHBgIfPwIDBgCnT6ufT5EiQNu2QIUK2u+FKsLDgYAAQCwWvo0OSKQSDD7SB/ue78G+sn9bzp1XRLVqwOfP/Gph9KjSA3Y2dnDe5QyfcB+LH08rEhMBHx/18MzgwcDYsRwG6tmTl+XJk7HceQWISFMsSzMEr2gFwyASlUoBGxtAIuH3e08AizcAD04D+fLwsiPnAIcsQMdWhp/MFVdg8iLg4RnAwQFxYRFYX60Fcn0LQw0ABQ5vQDm/QKBJXeDzF6BNU+Xtv4YAPxRgsk+OtX7+HAjnVn3w4aOv0qqVKlXCjRs34BgXB5Qpo/u8YmM5ZlaihO71FI5rKpRiot8ao1eX2YCzs1n2nZ7gF+GHprubQiwVw2WgC5zyOqXuCcTGAtmzK//t1q1j8ixWjJfPmgWUKwcMGJBeSVTYl06o6Zq61nTGh0Hu/KtrRNUqqbvUijHNeC+i3p2I+nXVvI/I1xwS0NZ7/+IyC0ArfP508xKaA9AcgNYWcyRJxTJEy6fLtzm1Ta5hKnP7/xjA5VRCY6ZERKdP8zwdTf35ffoQ1aihXUJNFbdu8bAzI2fUp2mxvYcHl4mp1EhaErJs/rAzw1LtmEREdPIkUYkSyl1coaG8rH17tbridObOK8Lq2qcVDLJEAXa7fywPFP4B2H4I2HOcl+dUye5uXw6sm6d5H5/8gS7DgZdvNX9esSzw7wwgf96URT/374rSzvUBAPn9A/EtNh4Y2Zc/DIsABowHdhyW70MkAgrmBwrkS1kkyM2XSvlHk/czbx6wZQtb40IgErGbHxUlbH0FaM3Ov38PbNxo8P4MRq5cbPnmymX5YyWjRJ4SuD3oNta2WQuADadUQd267L47JoelpFIgXz7g2TMO0UyaBLx5k/xRurREDYLVtTczDCLRqGhAIuVSJhn+mg3Y2gIrZ8mXPXsFxCcC9f+nfV9SKRAYzESZLavmdaJjgAs3ga5t+BgAQj/4YFPNdigUn4D6APJd3INi38KA7FmZfMuW0u5Sf/jEn0OAmy/7h/L1Zbcu+fhK5799OzBoEJfE6ILMVTTA3ddZ4rRtGzBnDv9jpyLJpTaef3mOwacH40SPE5Zz81+/BooXB3IrfKc3bgTOnAH27AEKFeI498OHQIMGGYFEra59asPgEqeubVgsJO69cumSYl99vBdn6f9XVXt5k9AflyNcqHH3pNLyOwsnp7j4G6tUIOlvLYiG9Zavc/MI0a6V6vuytTVMaT86mqhoUaI5c9RvnpsbkYOD+qwebXj/nkVTBAzm0+vOJyRori4wN+Li+LwFSviZGxYv2heLeSzykCHKy69fJ2rThihXLqXSuHTszivCWv6UmjCqTvTpBR5a9+0FUeO6RJf3aV4v5p1cpETbz8LJRMv+0b1O3Hsiz1tqyyXRb+m/6j/SHIC2ABTqVFy5XGpkX6KmvygTedx7oj2r1UhfL5mePat9nIghqkjh4USdOukdzmdQTDQ01HBxFUNgoRZRQ2BxMnV3Z+0FIqInT+R1wD4+PB1g7VoiyjAkSmSNkaYeDC5x2nuCO4cqVwAa1WG39of8HH9URGAw8O4Du8FFftB9EmERQHik7nVEIqBkUfl5JMPGzg6/bVoMkY0NEuzsuMQqOha49RCY+S+wfDpwcquyGy0SAd3bc2zz4TPg/HUAAmKmNWsCBQsCoaHA0qXKcdNixfh140Zg7lzd15InD3DyJFC+vLzSQQUGdSyJxVyWtGyZ7uOagvLlgZs3+TWNIOuAsrOxQ6dDnSAlqek7DQnh0IhEwvfwhx8AT0/uVJowAfDzA0qVYrf/zz8zgjtvOIQybio/BTIMDLZEH50lymJPdHan5sy84s+YgUTFiqgPtjPl5+tzVnzScK4PV8+mL4/PyZdtWkTkXF/e3//6BlumMlFp2U/fLmoWq17L9PhxokKFNAs/L1pENG6csK6m6GiWxFOxaozKzl+6pFERKjPCN9yXHvs/Ns/Ozp7lkI3q3/LYMaJs2Vj9K30W2wuBIH60JptMgMHZeRk++XPf/N4TwPw1wP1TSpnwFMTFs0X6cxXd+0tI4FcHB2HHn76Mi/fr1tC+jpcPMGYmsONfoGhhXub/BRg6GdiwAFC0OBMTgSQxF/4bUmeaPTtblhIJW7Yyi1f2nRSJ2HLNr2Kpq2LaNKBDB6A+VyCkWu+8oQgK4oRL//5A4cJpfTYAgERJIsZfGo+/G/xteAJKVvsMADExrCFw9ixXVPTuzcsfPACePAHGjMmolqigZJPVtTcSBpPo/pPAsk1MEqWSXVjnesCIPkolSQCAyCggIIiz7/pIFADOXAMKVNfv2suwcLJuEgVY0EQqhSQ8gsm8w2A+n4t7mEQTEjg8AXAoIEd2PucGnYFHzwEIcPNjY/l+9OsHTJ0qX0Ek4p+XL1nA4sYN3ee6eDGTKBEksTGmkeiNG8AvvwDx8YZtJwRfvvC5fvli/n0bidC4UFz+cNnwDiixGOjcGVjLZVUpQiznzwOrVgFNmzKh1quXkUlUMKxEagSMskR9AwCZZfbJH4iNA0oUBSYOVy/hWbwBaNRVbmnqQ+3qbCUqllHpw+1H3IqqBZK8uXCjfk1sH/I3JCIRW8eR0fwhEdBpGDBxvvJGeXIB5csoxXr1kumXL0CDBhxPU0XlysCMGfzPKACSQQMw+J8qplmixYoBTk5ApMCHkiGoXp0t7OrVzb9vI1EkZ5GUmKlBZGpry9cha/OVfVc3bgT69gXu3gUOcw1yZidRwFpHajAMJtGYWLbWALnLWq8DF+DvWql5m7AI4PlroGl98524KroOB7LYAwc3aPz4xIAJeHn4DLICGFqqOArsWsl1rDJ37sg5fhBoq22NT+BQgKF1prdvAw0bqj9cPn3ifu1atTQeTiKVYPCGltgX6op9XdKRO59BoNhO+mT4ExTMXlDzikTcwKCok/D4Mbd9bt7MGgoA99eXKgUpUUYnUatrb24YTKLvvYEfmwI37/N7mcu6eQkw8y/19aOi2T3Pl8cwEt16EPD8KHx9ANj+L3BgvdaP648fAhs7OyQA+PLpM4JevOaQQ7OewKnLnLGv/z/+x3r2Sn0H05YA7QemuP+COqAePQIaN+bMtiomTwZGjVLO8icjJSYapkCigYGG3A1lELGL6upq/D404d07DkG8e2fe/ZoBJfKUgMtAF4yoOQIFshXQvuKuXcDPP7P4igwVKgBNmgDt2wOdOvH9c3LKDCQqGFYiFQij3PlSxYAhvYCaVfnLdew8J1Z+rpJiqSlh9kqgSTfDFI7i4oGpi4HHL4RvA3AYQCTiEIMGOP5cBc6z/gIBOAbg0KptSJBKgRpV5MkngEWnm3Rj8WhFTBvDZK0gPK2XTEuUYIu0WTP1E9q8mbtjVCxVjYml7ds5LGBsLFIkApYvZyFicyJrVqBKFX5NhyieuzimNZoGkUiEs+/Oanbze/cGDh3i7qXnz/ke58kD7N0LDBvGYRF8H+68IqyuvQAYTKKBwWxdVlBQPnruATToApzeDrRoqHk7vwDg1Tt15SV9kEj4J0sWw7bbdxKYugh4f1tjW6lUIsHuln3ge+8JRAAGlyqO4n8NBkb3Zxc/PgGwtwPuPNFuQROxHGCvjikELMjNv3AB8PAA/v5beX9RUcCffwKLFkFSpLDmxFJEBMv39etnvGJUZCS3i5pJcSojIUmShJ/++wlxSXFy1aj9+7l/vlw5XkkqZcs0Xz4m0L59U7bPZCRqde3NAaMs0cmLgH5/KbuhP1cBXlzWTKIxsUxKJYoaTqIAB/4NJVEAaFBLc4ghGTa2tui8419kyZUDBODjp8/w803WKR35D1+jnZ2cRA+d4bioIkLCgP/2KSW2BLn5T58Cd+6oF9uHhwNubpB88taenc+Th0uMRCLej9SIovPcyRa7j4/h22pDUhKHHGTVDukU9rb2uNL3ijwBFewJLFrEbr0MNjbcEJGQwPf69m0AmY5EBcNqkeqA0XWioeHAt1C2SJ97cOfPiL7a1x87C3jmAbgeFa6CJMP8NXysNXo6gUzAi30ncWooW4bZ8ufFqCfnkcv9DYcg2rfglaJjgJ9/5XKuv0cq7yA6Rq5kJZGkCJbotEyvX4dj4cK8bkQEk2MyJOIkDD43lEm03Q70qqnln/XjR47f7d4N9Olj+IXfuAG0aMGKRebItD99CtSsyXOr/qdDgCadQEnPtMsZOBWvCnz4ACxZAqxZA+TMCcTFAceOAX36QApkRhK1WqSmwGASTUoCZixjCyx/Xrlbf8mVZfF0DXwb0ZfLoAwlUQAoVgQoWczw7WSIiGL1+w8+Wlf5qU8nVO7C1x8XGg6f5j1BB04B7ZrzCp8DmSjvnQImjVDfgYxED58FmvVgYoUey7R5cwQGBwPBwcCPP3IMDskxURmJxrRGryl7tVucZcoAly7JFdgNRePGwL59fHxzoGxZ4Nw5fs0AKPHCGzcvFUGlvOVgmycffz8/fWJPoVw5tkizZQP69cusJCoYViLVAOPqRP2Bg6fV9UCnjgauHtDsescnMAlUqaB5dIgQDO7BJGwsHLJwKZPHe62riEQitFs3H7mSY5xfpFIkVanIH+45DtT4lYvxCxVgd/jGPWDSAvUMe8UyQJ2fleKxet18sZi1K1u3Vk8stZ/GbqWuB1CLFmzVvnjBZTuGwM6OkyvGhE00IU8eoF07Jes6XSNrVpTI4YhLPc+hBOXCt5iv+FSrPHD1KicRL1wA8P2684qwuvYqMJhEWc+H/5nj4pkkJBJg8N9A93Zyq00T/pwFfPrMCShjkhrRMZzYKlNSXd/TECi2+unAh2t34O1yD01njYOtjFxCw4FLLpxMkl3D/pMcLz36n3x8tCrevAdKl0z5XF8CqlDhQhh8rC/2vTmiuU701i2uP9V0HUTsUleqZFwmfs4cdmGXLjV8W0V8/QocOQJ0787CHukV/v4syKzY/lm9Orp0JzwtmASXwbfglKUQ4OAAqUiU2UnU6tobCqMs0eX/Af3HMRnJLK0kMSBO0k9O3dsDvTsZnxm+8xio1pJnLJkCGxu2jlVLmFRQtkVDtFgwWU6ie08ArfvyDCmRCHj6iu9Dn87AmR1MkpoSK3HxQNsBHN9Nhj7LtOeuntj35jD2XcqOXiXaKO/v/XtuSTx2TPOJi0Tshm7bpvdWaETevPr7/YXg82dWQ1KswUxviIvjFtk5c+TLcuQAxo/Hmj1fYefnD+ftjeCTGPw9kKhgWC3SZBidWDpzla2rKaP5fXyCditMhqQkdhtNLa2JjAKevOSsuan7ajuA3fyTW4Vv89YLdOA0RDPHAv5BQNUWPOG0dyf+3DcAaNMPWL9AvTzq/lOgagW16abaLFMUBDYcXo/RZduzJJsqHjzg8hx998HPD7h2jZX4rdCMU6f4XtrZcdeSrFvp4kX4nT+IphXuQSwVo/67+ji8+XBmJ1GrRSoUYrEYffr1weGww9i0c64wEpUlZzq0lJPojXtMJt5+uredOB8YPMmkcwbAwiLNfjFPrePsccCyfwzaJChJjM2XXOBz/ynrpZ7dCfRQGAft+APwqzNQ3kl94/r/YxINDOZGhOSEkTbLFN+AdX+sR2CWLBw6GTSIaxtlqFeP78OtW8CmTdpP+uBBYP58dlcNQXQ0C3RERxu2XUZBWBjfG4C7kxwdgfXreaR29+58v9q0QYn1e3C933WEhYTh0N1DmZ1EBeO7J1KZJXr8ynHka5QH/4ZtR2B0sO6N3nsDP7fhVklFVKkA9PxNLp6sDU1/AZo1MO3EAWDRehZfNgfq1gDKlxa8uv8Td2xt0BlB7m/wqO9YUIUmQAlHjtW6v2EZPnt7YMVMoLgj18p++aq+Izd3TtIFyu958eKOuH5pL3IVUR7+pyR0YmenOS58+TJw4oRWsWdMmsTlRzlyaP5cG0JDWa4vuV7SKLx/z8kvQ5NeqYF9+7jRISREvmzWLGD8eA6LLF4MgBNLC6csROSSSOyauMtKosn4rl17VXe+unMlOB/og5z2OXCz9z445iykfePjF9gatbcHgkPYLc6jZ3CawKSOIBABv3QCBvcEhplJoMP1AbBxD3Bwvd7zlEok2PNrP3y6/QhZAHT9sRwq3D7OAi31OwIVywG7FURZev7BRHrzsLoFLUvSJYc8JCTFkAvTsOfeSRQ6UgBBn78pra4mdPLxI5c6AXxfkpI40y4Wax+kFx7OylKLFikPatOF8HCOlxoLb2/gn3/4mKWFP7RSBUQ83TN3bq65nTiR++cB1hOtVg1Se/vvMSZqde11QVNMtFw+J7j03o/opBjscNeQuHjtCVxJFrLo2lbeRz5kEtDnT/0HHT8XmLLIPBcgEgH3T5uPRAEmn8QkVp/SAxtbW3TathwOuXMiEcDBN154ddGFKwkObwL+U7nOWX8Bq2ZpDkNky8oPmW6jIJm3CkMuTMNej1M40HcVnric1N0Bdf48ULEi8CpZOEUk4uv4/JnHXmgSQAE4g37hgmECInnz8nl++CB8G0WULs3uc3ohUbGYy8euXuX7VqwYLwsP5zKtzp2ZYGvV+l5JVDC+SyLVlVgql88JbgNP45/6owBwAXgKNuwB5q5WLwBfPh1YoNITrglVKvCIY3PAEvPJ6/+Pk02a1Po1IG+pYmir0FF164/pkFZqCrx4zeToG8D9/ADPp6pRlV3uw2fVz9/GBpIWDTCk6Avs9TiF/b+tRM/K7fXXmf70ExfrV1ERwC5UiDP52orfy5dnEq1dW9C1pmD6dC7U19VgoQ0SCffwaws7pDaSkrhrLCGBhaxDQrh33tUVaNOG46aJidY6UQH47lx7Q7LzFz+4YqrLclzqsYPdfLGYO4FkRHPmKtDGWUnhKNWwYC1w/S67yuYEEfDgGRfPqyr3a1ydcLz/OHgcPQ8A+K1MSdS4fggix0LA0o3ArqOA2wUgezbewOU+0G4gcOsYULNayn4kUkmKJbq//Qr0jCympHUqSOjk6lUmB1mWWYbYWHZbZYIbikhKAsaMYeLo1En//fH2ZsWj+kZoxaaXFlEijvkWKCAfDTNwIJ/X0qXy+yeRWEucrK69OgwtcSqfvxRCYkPRdHlzBD65z/E2GYl++AT0GQucvqL/wPNWA0s2mn4BiqhfE+jR3rz7BLjFtWVv4PhFQauLRCK0WzsPuYpx19PZj754cPQcq1/9NZjbRmUkCgDO9QH3K9pJ9LeV6Pk5N9C0O1u2yRAkdLJ9u+Za0QkTmBw0yRPa2nImPipK0PWidGk5iRrqFZQuzQX5ae3ar13Lyk0REfJQy7RpnIDr0IHDJYCVRA3Ad2ORGlsn6uX1HM77eyNn/kK4OeiIcgLK8yNnuvWVHy1az2r0mvrQ0yNevuUwhAGJsY837mFv2/4AAPss9phcrAjsuv8GzJ3AMdf5a4B5E+V99wCwaQ8k5UtjSPxZJXceRMDdJ0BDdbdbp2V68SJbpg4OyommoCDA11eYGy8kIZiUBHTsCHTtCgwZon+f6Q0BARwfHjgQ2LCBBbOzZOEHyooVwIQJkObIYSVRhtUilcEoEk1KAiKjUK7cz3AZewHRNkkYfGEq8NYLWL2N/9krlBFWw/nPGPOSaEICt2VGCLSiDEW1SgZXF5Rp9gvqjeUid7FECr/GdYH+XfjDL8HA2WuAp7d8A6kUkos3MeThUmUSBfieykj06Hn+SYZOy7RNGwSGhrKwRpUq8lKlwoWZRKVSdl1DQzVfxMqV7N7ri2Ha27MalKxqQChCQliKTrHEKDVx4QJb3kWLAkOHsjDztGlA1aqs35ozJzB7tpVEjUCmJ1KjO5YmL+JYnkSSks3f1GoeF93vPcElO/rw315gq5lV1gHgjRfQaSiTuqUwejqHJAxA83mTUKlDSwy+eRilNy8ByjrxA6loEcDjGvC/qinrSkAYMqwA9tp5Mon+2E7zTi+7AleVazf1uvlSKavsq8ZEAwKYLLVl8itX5plQQh6Oixerx2L14dMnbiT49Mmw7cyB8HAWut60SR6SqFWLlZzCw9kShVWAxFhkatfeaBIFWKn+vTegsk1YfAT+uDATK1rN0F1nCgB/L2DLbqlhHUN6QcQZ8SIFhc+yNxSrtnE8uH9X0/bTcQiQPSsP2UtMBMbPg6RTKwxJOCe3RP1zAwvXcX9+bpVaXLGY76GNDVviCtcrKAEVFcUF8LLkTmSkvG5UlmjRhOhottB0wc8P+O8/YN48YaIxRHI91rRQ3vfy4lEgf/3F93H+fI6LRkUBYjGkefJYSVQd37drbzSJXrjB/7xVK8pJVCoFhk0Bjp5HWHwEbgW6oemBvvo7oJbPAJZMM+1CNEEk4nlQliJRABg/1HQSBYAxA4GJyWENW1tIgr9iyNuNyu58sSJAudKai+ft7JhE33oBlZuzSHYyBCWgZs5kd102LlhGolu3Ar//rjkBdfMmE46+GtOgIE5ueQn0DEQi82gsGIIHD5g4JRK20O3seN7SwYNcGhYQAOTKZSVRE5EpidRoEv3gA3QfDZxUaf2USJhM7WxRJm/JlKJ9rWR65BxwIjnrbYl/mrmrgR1mLnvShE/+wqoStEAqFuPOi9e4duoyQARJSCiGDMiNvbFPld35yhWAbcs4u/81RHM23KkE0K2dWh2uXjIdM4bFlFUfOkWLsviJplhw7drcLpk8yE0ratXiJFbFinruRDI+fOCsuLEF/cbgwwfA3Z0fJG/e8LJp01jhvkoVIEsWqztvBmQ6194kdx7g7qUfy8sJUIuak1eYD5wP9EGuLDnxbNAZZLVTWGfYFCaDbctMuBId+HMWULYkMG6oZfYvw5KNwMbdwIc7BtfKklSK3a364NOdx4BIhL86tcK4PPext3Q0k+j5zyzusnGhfKOIKODn1pyY+0PHP3NwCBD0lZNiydDr5hcuzH32/ftz6Y8ifH2BEiU0P/RUtTk1ISKCE1j6ypo+fODe9VWrLK+SHxfH6vUAGwEnTvCkgMGDmUSTP7OSqF58f6690SR69RbHBAG2jmT/UPfcgMrNNCZ1ZAmoKXWHK5MowFJyGxeYcCV6sG6e5UkUAEb1A17fMKrhQGRjg/JteayyFIQO2W5hr1OU3J0v/AO79IoP8jy5gNnjgd+1JJ5kmLIIGDRRqcNMr2X64QNw757cKpPh82dOMiWPMlFCWBhn59eu1X0+HTsCf/yhex2AyfPMGcuTaFgY8NNPwM6d/N7GhsMbf/4J7NiRcq5WEjUfMo1FapIlumQj8OgZK7orJg1Cw4GVW/ifWw+ZbHtxGO38s8MxV2GgUR3jLkII4hMAW5vU7aZSGFhnCKQSCbY3644Nji/g/hMwJbYJFi/YDgR9AwoXlK+oSVwkIoqFpqtUUN9xaDgQFs5VASrQaZlevQrH4sWT968wUG//fiYaTYpQhw8DrVpx66Q2PHvGJVZF9ah+pVayiYirCnr3Zu3VmjWBGjX4s4sXgZ9/hrRwYSuJCoOgP1SmIFKjSTQxUT6PR/GfOTIKEEsEtUgCQER8FKps/xU5v0bj5rsacDy4y+BrEIwdh4EJ84Cgp5ZNNsnw+AXw+wjg1nFOcBkAiVSCPofG4IjPVXQ5AVTzEOHPMQOQ/9AZwP0qkC8PSxEuWAvcOKScsR8+FXjwFHh2UTuJJyRwmdrEEUrShXrd/Js32c1/+hQoUkS+gq8v8PYtE6cqQkK4H72YjnugqwoAsHyLaEwMW9y1avH7xEQWaA4IYN2BgwcBkchqiRqG78O1N5pE/b8A1VvLaxQVLaIJ84F2AwTPQ8+TNRcnoArmRNMmn/Vn801B47rAuvmpQ6IAUKksK97bGWaRyto+j/pdx5wsHVDtFQAiHD97DeL5k4C8ydnzqhW5bVR1wNzCv4Gjm3RbwmGRLP3n+VFpsV43v1o1lokrXFh5f0uXAuPGac7kd+kCjNDRVOHuzskbXWNESpVid1uTwr85sGQJ17bGxLDlmyULC13XqAHcvQuEh1tJ1ELI0BapSe58QgIw819gwnBWd1fER1+eCuosUJji8QsgezZ4Fc2Somfq0ns/iuRMxwPOLAjV3vnuFdtgZ/Oe+PyAS5fq/jkQvy6fwUmjQgXkG8p0SRWRlARsOwgM6625PErRk1DZXlCd6e3bXA5UujRbnOHhylaqDC9esHtfsqT6ZwDXYo4ZA8yeLddGTW3ExwOvX7Owyvz53HzQjOPUiImBNFs2K4kajsxtkRpNonHxnC12cACWTVcm0ftPOQZZpqRwEgWAxeuBSQtSElDVC1VCDvts+rczBlsPsmBKaiIpCdh9DPDw1LuqmgBJ5fawsbVFxy1LYZdc/fBw/W58W7kVqOQsvxYPT37/6LnyDp++Av5ZBjxx13xAGYku2wS06CWvF4UAy9TfnxMw8+fzB1mzMolGRQF9+zIhyVC9OpNoXBzPMVJFrlzA7t26STQsDDh6lF/NBSJg4UKuCMialUMGFSuyRdq6NYukAFYStTAyJJGaZInO/Bf4tZ+6nmRUNNBlmDx7bwgOrgd2cotduXxOONxpLXI55MT7UB/zuvkRUcCk+cCzV+bbpxDY2HC76DXdYzY0kagMBSuUQdPZ4/kNEW7cegAsnQY4JSd/KpQGBnRTH3dStwbw1gWopyem2KoxhyBUQh46ybRFCwTu3MnCHYqIi+NYaUCA+nHmzOFa0HgtLcKXL/OPJnh78/wjRYI2FRERwJ49bFk/fcoPvapVufWzTx+gZk2rO58KyHCuvcl1oiFhwOv3mjPr7m9YiETfFFAZAoLYIiim7goSEert+R0RCVH6x5YYArGYY7eqMUVLQ890VF0kKoNULMa2Rl1RulkDNJ46Gg6yCaLRMcqqUNExPLJEMXFDBPy7Gaj+I9Cqie5zvfMYqP2TYe2k8fEcA921i7PvssQREVu5WZNDBhER3BpatSo0okMH7p7at0/DTZJw/DJHDqOqINQgO8e4OCb2UqW4e2npUqBlSwDWEiczIPO59iaR6L6TXDZTIJ8yiYrFwJ7jTE4//SicRAHuD2/ZW2NSSiQSYX+HFbo7oIyBnV3qkyggvy8aHrxCSBQAbOzsMPT2cbRcOFlOotfvAuUby138kDCgRhtg/ynljaVSzuK/UKkDVcW3UBZ02bxfabFeNz8oiL8LMuUnGYn//TfQvr38b5wnD5OoRAJc0dD1tX+/5ppUgMkzd27zkOjZsxz/jIri4vp8+TiR9fEjMGwYizJbSTTVkGGI1CQSDQkDpi4CjpxV/8z1IfDHDNbgNBSLpgC7V2ntelGcAWUWMl2wlkc5pwVi44CfWnH7qwKEkqgMNqoJo7o/A2MHA0WTM+gF8gGj+3N1giJsbYEjm4C/R+o+z4L5gav7eR8q0EmmgwYhcP9+7nCKiQG+JQ/c69CB46Wqf+OjRzlDrjoRNFcuJmFNUnne3kCvXuZx7QsWZOvTw4Oz9fHxrI/68SNw+bJVlDmVkSGI1GR3vkA+4MkFYERf9c+aNwA8rgPVKwvfHxG7n3lyAbWr61xVRqZSkuJ9qI9h562Kgvl4tHFaIHs24Pe2nIhLhqEkqgkRoREI6dZOPkUUYMGUkkU5nKBYiiSz5I6eB/qO1V6eVqMqW+7ub4AZy5SsaEFCJwMHyge/NW7M7wHg4UP5vnr04Jhk+fLqxz9yhAlZNakkFvPQPU3lVUIRGMjXXb8+C6/cvg0sW8bn8eULkD8/pOXLW0k0lZHuidQkEn32Chj1D8e4ivygHHPz/MiZaED/HHpVnLzEraOa5rRrQLl8Tng97BIal6wDiVSCkDgjs7Yj+zHJpBVmjUt5cJhKouKEBLguWo/11Vvh7MhpoHtuwI/NWCgFYFJt2l3ziJbcOYHs2eXEqw0v3wIuD/ihpwC9ZPrHH0xOit+X16+ZvM6c4fciEbdhEgHXryuHPJo0YXk91Vrf8uW500gT+QpBXBxQrx7L9smu/e+/uczJxgb48sXqzqcR0jWRmmyJ+gWypqhEg+Vy4hKwcitbPYaizs/ARA31pzpgZ8Mu7VSX5Wiwt4dxbr5vgHHTK82FhATgwg1IPgeYbIkCwIt9JyCOi8enO4/x5r03W7yyOlB7e2BIL6Cjhi6j1k1Yz8DBQbeafZ/OgMsRIFdOtfumk0xHjUKgkxNbfitWcIKpcmXgxg129RVx+zbQogVw/758WeHCLI6SPbsBd0MAsmVjwZMOHYAffwQmT+a/ycCBwMePkP70k5VE0wjpNmtvEokqFmnratuLiGL3PBUhU43KaZ/DsGx+fAKQtwqwdRnQr4tlT1IboqIhKVoTQxZUx9745yaRKAB4XriBg12GAwByFSuMMS+uIEtODf3uRGyBqSbZ3F4CA8azILQKISohMgpo3gv4c5CaxqrObP7u3XBs25Y1RxUnjN69y+fj7MzvHz0C6qhUgQQFcfZ88mR5gf+zZ2xRPngg730XgoQEnpDaPvleJyZyrPXECW5nvXzZaolaDhk3a28SiUokQNcRXKANqJPoiYs87wgwnETjE4A2/Tl7bCSMTkDZ2gBndwLNfjH62KZCkiMbhmxvZRYSBYAKbZuhfJumAIAo/yDcWrIRuOLKffayBzwR0GEwMGeV+g7KlOQKDH1/x1w5gd9acEmUCnRapgMGIPDOHTmJymKyS5cCq1fLV5aR6P378vO2tweOHwc8FZoYihdnN1wmnCIUhw6xCLW7O+8vSxbe99atwPTpVhJNB0h3FqnJ7jwRu+zVKwMtGqp/3m8cYG8H7PjX8JMLCALGzOCOqHJOhm+vAJllOrBaVyxoPMGkfaUGzJFY0oTQDz7YWKMNJIlJsMuWFRM3LkTWY+eBPau5lhRgoZZSxTkxqA2aak81ISkJePtBScsUEFBnev48J5HOnpWL3SjGQF+/5l77Y8c4ew7oFzERCiJuEFi6lEWqu3UDNm60CpCkDjKe+pPJJKrau60JREBComH1ohZCQFQQCucoCFsbW0hJChuRDgfhtScnTob1Sl0JPaiQaINZ6Dn7PLDsH6XZ9Kbg0qQFeLh+FwCg8bQxaDp7nGE7iIwC6nUExg0BhvfRve6i9cD6XcDbm2rzoXSS6cKFcLx3j5NQslIoLy/urd+6leOh9++z665IntHRbMnmzs2x1jt3gIYN5RJ+unD8OJA3L9C8Ob//9g1o146rBV6/hrRsWSuJWh4Zy7U3mUSfuAMVm/A8dE3YuIfFRUQi40j0zmP+MSOK5ioMWxtb3Px0H7V2ddLt5ru9AmatME8xtwFQs0Tr9gCKFjKrnmb9vwan1Jc++m8vEqKigduPeH6WDImJQO8xwGENtcC5c7EIdcvG+g/212DWnVUdsgc9bv706QicODF5ftRbDiFFRPBcJ9l45/r1+b74+srPuVQpYPNmfv/hA8c5hYwaIeLuqN27galT2aUvWJDjq56eVhJNZ0gXFqnJJAqwy7blADC8t7rFlpTEghZtmwFTRht3kv3G8TyhS1q6VkyA4ASUuVxFgbCUO68Jp4ZOxot9JwAArZZOQ/0nL7nc59hm+Up/zQaaNdCcyZchKYnvk77uLyJgw26gU2u12lydlumJE3CsXx+YMYM1TWV/E6mUSfbhQ6BBA8DFhS3PkydZg7RkST63b9+YEIV4FWIxE2jDhtzBtHYtMGqU1Z1PXWQM195kEo2J5dilqtiFKpKS+IturEUnlXKLacH8xm2vB0Zn8y0EnSQqFrMqU7VK6rJ3RuLrm/fYWKMNAKBwtUoYcf0gRDlz6J6VpHbSEqBZD6BJfWDeRN3rhkcCtdsDk0dxuEQFOsl01iw4duwoL2+KjuYupz/+4Pjl/v08H8mYEExEBIuNLF3KJVciEc+N6twZmDQJ0t9/t5Jo6iL9u/ZmsUQXrwda99VeD7rvJBff29sbT6JB3/gf2kIkCihn8/uc0ZB8GjeHFZhSAXot0ffeQOPfzRrq+OHH8qg1vDdaL5+OwTcPQ5Q7F9/zdx/YE5AhJpYnBGhq6bW1BQZ2ZytTH/LmBtzOayRRQI+bP28eAiMigE+fOHufIwdbnSVK8Dn368ffN5l1vGwZcOkSrz90KL9qQ0wME/Pu3dxV9fgxq/I/emQl0XSMNLNIzUKiAMvfPX+tWc0pKQmo8xvQ6VfA0ASGDD6fgaotgIt7LDuLKRleYT6QEqFCfhULe+VWjusN7WnR4wty54lYN7RmNc1iy+ZCfAJQtiEwtBcwN/nhkpgINOvJHV5d22rflogtZyFW4bHz/FBYNVstdKLTMh04qfxNBQAAjatJREFUEI6bN3PyJ29e+XHj4rh4f9Qo4OVLLl1q3ZoL6QcOZIUpTSOcZeEBIp4VNWgQn09AAKS5c1tJNG2Qfl17s5CobwAnjfRl6ePiARuR8aM5IqOAI+eBHu25HjGVEJUQjbHX5mNRk4mp5uanZkxUMJ64A9UqKv/9ZISjDURAt5FcZ7psuv5j7D0B3LgLbF2q8cGgk0zPnIFj+fLycxoxgseNbNsGrF8PTJkiFzLRhbNngQULgO3b5RJ9Hh6AuzukPXpYSTTtkD6J1GyWaJdhPLPnxiHNX1K3l4BjIbmqUAaDd7gfGu3vyTHTnnvgGCrmbLmFJPQMJtFHz4FNe7WSjzlARBDJ/raqibaoaODcdaBXR80b7zwCFC8iLJOvuH8tuqs6yfTCBTgOG8YuvaMju+ZdVLrPpFK2kLX9/Z48YYHpw4e5YP/6daBECWtiKe2R/mKkZiNRANi4CFg/X/uTfuJ8YOws4/cPsIDGrBWcZEpllM5bQt4Bta83Ams5ywf1mRlGWaKxcewVxMSZ/Xw+3riHs6OnY33VFhDHJwD7TwL1OiirPd1+BAybAnj5aN7JoO7CSRTg79FbLxajUR13Aj0x07ZtEVi2LODkxC2bMhKNiGA3fvFi7r9fvBjIn5/nP8kgkfB11arFM+eHDAF8fID9+60kmoGQahap2Uj05VugdAllRXVNiIjizKyBI4SVcMWV1aNeXNF/PAvBK8wHzvv7IGeSCE97HUH2IgYqVelBenTnT4+YiufJyly9T21D+YL5gbPXgCmjWM4PYPIJCNItK5iQAAybCnRuDQj5viUmArNXApNGsPSiBujtgCpShJNJZ85wO2i3bpxAql4dqFCBLc/+/eUTTGfN4vHMf/0lHwMdGAhpoUIYOWqUlUTTHunHtTcbiUqlPEK5QS3gv8XaDsadS7L2QlOhLx6XCvAK88EV7zsY/T8NeqomwCwkaoHa1rdnr+Jwt1EAgJpDe6H9eh1i1lIpZ/K1xa9HTAV+dRZGpIoIjwSyZ9Xoiusk05494bh2LSebHj5kC1NXtcj588CmTcDFi0ClSsDTp5Da21st0fSD9OHam9Wdt7FhpZ+pf2hfZ/8pds/CIow/DsC92/EJaU6iAFDuQyRGP2S3dr/HabOMLTGZRCUSwLEm98GbGWWaNYCtAxOY54UbIKmUpxxsO8QhBUX82g+Yu1r7zjYvMZxEZVqo89Zo/Finm3/gAAKXLWMLdPhwJtG4OODUKe6Pv3GDi+tlBky7dvxZ166Ao6NV2T6DwqIWqVlJNDqGkwD6Ehuf/IHLLvp7rvXhwCmu3fz0wGxF50Zj/S5g7U5Ev7qAH7e2Rg777CYV7ZvNnd+0B2hYR00AxBw40HkY3l+8CQAYdvckimZzAGr/xsnFugoSdEfPc0KxQS3tOwsJ4zHWE4cJL5I/cg6o9ZNOeT69br6bGw/KW7JE3jYKsCt//Tp3P/XuzQX4sA6qS6dIW9ferCQKAH/O4umf1w6kTpvkBx/g1iNOWqQHJLvQpnZApceYqCa4bTuEc2NmAEgWMpn1FxAZbZx+7Kt3QPOewPEtQMPahm2bmAjEJWg9rlYyLV8eN/z94fjnnyzI3KgRK+qHh3NW/uBBLo36+pU7lpYutZJo+kTaEanZSRTgcqZPn4EubbSvs/cEk2zfzqYfLx3DWDI1O4m+esexREPJSQCiAoKwsgzL5hWrXR1Dbx/XvvKFG4BYAnRoqX0dRbFvQ9B2ACcsNy3SuopWMi1TBjdu34ZjUS0JwshIYNw4SKdPx8ilS60kmj6RNjFSi5AowF00ukgUAB4+A+5pUX8yFDuPsFWaHrBxD4umJEPWTloxf2lktRPWaGARS3TdTmDaEtP3owG5ihZGnpJccRHyPnnq5uMX3GX2LVR55YNngGMXdO/Qzo5jnwkGjpYZ3ps7q3RAa8z040c0a94cgSdPsqJ9/vxA3bqsALV6NZA7N6TbtllJNBPArBapRUiUCBg9nV3sOj8LW99U1z86BihWmysDtBV8pyaOnueyLy1CHJ8i/JHF1l6rZWoxdz4kjEWyNUjSmQN7fu0HbxeehTQ50A3ZQsNZsWnKaKBwQfmKMqFlXYiOASo5A4umqo0bMRe0WqbZs+NGnjxwjIri5FMEJ0KlDx5g5PbtVhJN30hdi9RilmhIGODxTn/ht2zErTnipzlzACHuQBczXYOp6NZOK4kSEfqenah1bIlFY6IF8lmMRAEgb+kSKb+HffQFypYCVs5SJlFAWLdXzhzA7AlA/f8ZfiKf/IGOQ1h3QQe0WqaxsWiWJw8CPT05RvrpE6STJmHktm1WEs0kMAuRWoxEAVZcunUcaFpf93rTlgD1zWg92tkZ359vbkTHsPq/BohEIuxst0TjDCiLJ5Y8PIEBEyzW+VWt+29ou2YO+pzdgQLlnXjhR1911z4sAqjZFrh6S/cOh/XSL7eoCQXzcW1yiP4x2jpLo+rXh+eyZZAWL46RERHYtn27lUQzCUwmUouSKMAxLcXWQG3o3AaYMNw8xzx9BeiUhvPjVbFiq86HhKaBeqmSnZdIAP9ALoi3AEo3rY/aI/qiXMvGcJBZvvU6AHtUEk95cgGN6+qXOfzkz7Fv4eEsRo7sLOgtcLSKVjL99Akdp0zBSScnqyWayWBSjNTiJAoALXsDxYoAu1aaf9/acMUVOHwO2L489Y6pC54fgc9f9E4Q9QrzQevDg7C+5RwcfnM+3Zc4GYV7boBTcePEaM5cBXr+AXy6D/ygRzVMFdExQEi4QS3H2mKm2QBMnTsXs2aZqAVhRWrA8uVPBw4cQJ8+fbBlwwIMG2Ihncyrt7gOT1+JzblrQKVyJk/3zOiIS4rDqMuzsdfjFDb/ugBDq1uwDlb23UnF8Sda8eY9W6S6CDIxkV+NUdBasx1YsBb4+kL/ugrw8wtAtZrtEBEZpbTcwcEBoaGhyJ7dTK3MVlgKlk821alTB4ULF8bajXsRrCWGZzJaNhZWp7j8P2DJRvMcMz6BLZD0guce7JLqgUQqSSHRjuVb4N+H28zSTqoV7m+AvFWAZ68ssvuYryHwu/8U/k/cESP7fp26DBw6o77yr/24e0kXsmQxXoaw0688NM8AEBGWr9qmRqIA0KdPHyuJZiKYRKTlypWDi4sLvn4LR/M2/S1Dpo9fAMmtgjpxfAuwWYuQiaFYs51LZdILXO4Dc3SHNlRjosuaTtaYgDIrihQCFk8FSpqgsKUDH67dwY6m3bGtYRe8OnqOF+47wd8JVZzapr+sae0OYNIC406mVDHAWU/CUwFEhL8mzse6jXvUPiuYIwdcXV3x+bPuKgArMg5MTjZVqlTJsmS66yiwZIP+9QrmN9+o4nbNga3LzLMvc2DcUO751wJNiSVNCSizo3BBYHR/rZJzpkKSmJTyu419clfSsc3AipnqK9eoqltSDwAcshinm0DEBPzcQ+DqmklUJBJhkoMDPpcsCUlSEpydna1kmklglvIni5Lp4inATf1uLbx8ONP+yd/0Y1atCLRpavp+UgG6svOKZLri0XbzH/zdB+DGPfPvNxlh3n4pv+cqoqMN9sMnYOa/+suTRvQF5k8y/ES+hvIokpBwvatqI1EbkQgHCxTAcnt7OHz4gLv//guxWGwl00wCsxXkW4xMZdMkZQX32pA9Gyc94syg2B6fwDFJberrqY1z14AOg9UWCylxKpfPCff7HcXiJkwgBiQX9ePAaWDYZPPtTwVfX3um/F6oSgXO2FdvDXwOVF7xoy9w4CRbnNoglQJfvhpe+gTwXDC3C3qrJrSSqI0NDmTNih5JSTxtNH9+FLWzg8uVK1YyzSQwa6+9xch0zXagaQ/d/wRFCwMnt3Lm3lTY2gBjZ3PvfnqAgwOQP6/SIkPqREvkLgp7W3vc93+Kunu6ms/NnzoauHPCPPvSgGAPJlK7bFmRr3QJIF9uoGUj9XrRlo2AD3d1TzG4/Qhwqg/cf2rYSXh+ZItXJNJZnaCTRA8cQI9164C2bVl39MsXwM0NTp06wfXMGSuZZgKYXbTEImRaqzrQvT0XgOsCEfDUDBlke3sg1B3ok05UpFo2UqqjNbbY/ofs+REQHWS+mGm2rDxg0AJIio1DaHL9ZaHK5SGysQF+LA/8O0N9OJ0+bwVgDdNDGwxvEV24Hujzp86HuE4Sbd4cPdq3BwoVAlq0AKZO5TEkOXIAAQEo5ekJFxcXK5lmcFhE/t3sZNqgFvDnIP0yaBdvAr904ppCUyFUADg1kJTEY6GJTOpYMnsCau5qli60AIJfv08hr0KVK/DCK67qZWlB34BCNYDrd3XvMKsD0Km14TWvG+YDO1do3U4niU6Zgh6+vjyXaflyHoQ3ezYrQFWvzmpQERFwAuBy86aVTDMwLDZHw+xkKhYDc1ax9qQ2tGwEXNxrHvf+5n3gf22AuHjT92UqDp4BCtWAJCnR5LZPRTLtfmqsaTHTgC9AqP7+c2PgdUXeN+9YsyrHNzsO5e4kRWR14BDDTzpU+ncc5qy7Idf67gOTdM4cbAlrgF53ftEi4L//gL17gTFjgNu3gTZt2Dp99gyIj2crtVo1OF2+bLVMMzAsPvzu7du3cHZ2xg8F8+L6xT0oVMjA1ryUoxPQfRTX8v2RCv3Jnh95xMfMvwxvJzQ3fD5D8uQ5hmR1xV6P02Zp+/QK80FsUjx+KmT+MSHmwJb6HRH4jMuNxr2/hTwlirL60g/5DR9suOMwC4NvMKCGtE1/jpWf26XxY50k2rIletSsCSxcyAtDQoB8+YDXr3nCaKNGvOzFC7ZKO3QASpUCHjyAT1AQnJ2dYWdnBxcXFxQvXtywa7XC3Eg/U0TNSqb6XDMiYNBEniM00UwiJmkMSwqQxCXFY/z1hZjd8E/DxpZYsD1UKhbj7KjpeHfhBvKWKobh905pXvGeGwt5/zXY/KGYL195jHJZJ7WP9FqiAQFA1qx8b3r2BH78EVi0iN35mjV5ZtP/kmO1/v48JK9GDX59+xY+FSpYyTT9IH1MEQXM6OaLRJxw2rRHc3eLbJ0KZVjoxFREROmPvVkYEqkEQ46Mxd5XJ7G/zTKzC5AExXzDuQ83DI+ZBocAeSpz3NLMsLGzQ8etSzHp0330OLwReOvFqk8fPimv6P4aOHlJe+w86Bvw72bDwjPHLwBR0UCRHwwn0Y0b0aNHD2D8eKBaNX718ACmT+dBdx4ePAyvalWF4x3n5VOmAPPnA6NGwalYMaubn8GQarOGzUamRMC+k4Cr9k4f/DMG6NnBuP0r4tw14LdBwFcL6QjoQYol6nMF+48RehaoZ/ZjOOUtblwCKpsDsGQaUElz/NAcsLGzY5deKuW4d3GVh+PIfsCtY9qt4juPuC1UKJF+DeFpDAdOafxYJ4kuXIge48cDrskPloYNAR8foEEDjo9KpRznL15cud+/Qwfgn3/49/Pn2fU/dAhOTk5WMs1ASBXXXhFmcfPjE9RLYFQRFQ3MXgn80V+jZSEI0TFs1ZQtZdz2JkDJnW+7DD0rtbNoJYHiQL3HA04gl0NOix3LLHj4jMcl62sLjok1LKbqGwCUcFQjZ73u/O+/A5s2ca3oxYvA6NE8r/7JE2DePD5PX1+Om06fDpTUMOZ5zRoge3auNR0yBJg2DT6FClnd/LRF+nHtFWEWy1RGoscvqGdxZbC1BW495BHOxiJnDjmJmrMjSA/UYqLVOlm8HEuWzR9WvTtyZtFR2C7DuWvAi9dmP48X+04iUrFz6f5T4M5j5ZWCvrFO7Y7DmnciFvOcK6lUGIl6+wHTl/F2JYsaRqKLF6NHhQr8fRszBrhyBVi6lCeEfv4MvH8PhIZyCVtsLPD0Kb+q4to1YNo0oF49zuZ7ewMXLlgt0wyCVLdIZTDZMiUC+o4F8uQGNi7UvI5Uyu2lpuBrCLdnLpyit0XQHNCaWOo/Hmjb1DwhCwE48e4y6heroT0B9b82XG629B+zHTPEywcbfmoFka0t6v81GC0W/A0M+Zuz9dcOKBPc4xecUNTkmVy9BXQaBjw4zevow4mLXBN745CaAIteS3TvXp7icFXhgR4RAeTJI9sB0K0bEBYGXL+u/RwSE4Ht2znhNH06sH49Z/KfPgWCg+EjkVgt07RB+snaa4PJZJqQwPEmXZnj+ASePDmsl3GD2oiAv2YD/X9nV9KC0JmdH/UP0KIh0LWtRc8BAGKT4vDj1tbIZpcVN3vv00ymYjEQG2fW4XenR0zF893HAADN5k1Eo8mj+GEYGi5vCw0J43ZZfdUCHz7pD8koPmg1TCLVS6I9erDlmZQE3L3LlmT37pzt378fGDiQ9/niBQ+9a9JE0H2Amxu/likD7NgBLFkCvH8Pn/BwK5mmPtKna68Ik918Bwf+h7r9iF0zTQ+F4BAWfb5r5Lx7kQhYOy9tSRQANi1KFRIFgOz22XC91x7dCSg7845hjvANgPv+UwAAhzy5UHtoLyZDGxs5iYrFQPOewEwtI2CSkuRVBPpIVCLhsSMbdvN7Q0h0wwb0OHgQCAwEcucGChTgRNGR5HlQrq7AX38BAQG8UfXqTKLu7sAPP/CrNkRGAi1bcpw1d27g40fev4eH1c1Px0hTIgXMFDP19mNXLyFR/bOSRQFPV9Nl8dxeWqwdUlCdqMwySyXobCcdM5Nl68yIu6u2QprcM19nVH9kvX4X+KmV8ghkW1tg4WSgh5bwxolLQJcR6mVSmmBjo3U0jV5LtGlTFh6JV6gG+O8/tkJFIk44ffgAODmxu75vH69TqBAwYQK/akPu3MDJk7xeaChw6RKQNy8T/f79cIqLs5JpOkSauvaKMNnNl0j4H01b0T4RsO0Q8HtbIF8ew09w5r+sSXn7uOlxVwUILrafswrYexz4cMdsxxYCrzAfjLkyF3va/4tCOZL/Jut3cSJuYDezHCM66BvWVGwCcXwC7LNnwzhPV2TPmQO4cgvo0JJXEhLvJuLkYpUKutcLCNI6PE8niW7dih59+zKpETGRduvGSaIGDfgcr1wBWiv09A8dyp7TBgHi5Krw9WXrtX17trZr1uSuqA0b4OPjY3XzUwfp37VXhMmWqa0tW6aNunIBtyqCvgGz/gXO6+jV14V/xnDNYlqQKAB0bwesn2+2YwtFuXxOuNRjJwrlKIDA6GC2TMcMNBuJAsD9tTsgjk8AANQc1gvZ8+flJJKMRAHg74XAuDmad+AXwONYRCL9JHrhBlClOffSq0Anie7fjx6yZBDAx4qPZ0LNmqy6f/0699I/fy7feNs2ThwBQHQ0cOcOvwrBkiVcqC8WA1u3stt/8iQQEwOnEiWslmk6QrqxSGUwyTKNjAJGTgPm/605RvY1xPS+eZ/P3INdoqhJu0mVufNmRouD/fH5my9uNl0Jx6oGytFpQVxoOFZXaILE6BjYZrHHXy8uI9fvI4HpfwJd2shX3HGYvY5hvdV3Mm0JcPwi8Oqq/uF28QlccD+ou5LnIiixdPkyUKQIxzzj4+UEqogXL/hzAAgO5pio7DhPn6q3iOq8OXFAVBSHAm7dAk6cAJo1AwoX5jrT8+fhQ2S1TC2LjGWRymCSZZo7F3BgPZNoQoJ8/K4MMhI9et64yZdSKdCmn8nTSo0i0egYYPshLhhPI/z36zxEh31F08P9zSYO/XDjHiQmS+P9PKAbchX+AWjegMe9APIE4uAemkkUABb8DVzZr5tE77kBH3zY0h3cQziJbt+OHpGRfB6tWzNJ7t0L/PQTxzBlkCWQZCRKxAmmSQqjTSpXBt6+5VchyJaNSTQigltJFyzgTqjISI6lRkZaE1DpBOmOSAEzuPlELLmmaWKkWAys3AIcu2D4idnYAAfXA8uMr5002hJNEnOS54WwAWyWQLl8TnAZeATRBXOaTRzaP1kzQWRriwYThvHImGXTWS8BAP5ZCsxfo3njs1d5JLStLeCkwxIjAiYvBOaq70evJWpvD/z9NxfXy9CgAdCvHys6AcDNm0ygD1TalteuBfr3l7/PmhWoWFGzJasLfn7s0nt6chnV779zof+5c4C/P5xsbKxkmsZId669Ikxy84+c4xG6dWuofxYRBeTOaZpyUXSM7tEWGmCSO0/ED4F0IDjtFeaDFgcHYG3LmehQvoVJ+5KKxbi/didCvXzwW/A3jr22V9jnv5tZiV9VOpEIaNYTqFSWS8P0ITiE9QFyyVtf9cZEe/bkBV++sEv/+jXXdqoSIRG7/YpJJk34/BlYuZIz8oa64AkJnLQiYje/YkV28Vu35u/FjRvWBJRlkDFde0WYZJl2b88kKpUCT1Tq9vLk4i+86wPg8FnDT+yDD1C+sW7hFBWYHBMVidKeRHcfAyYvRLl8Tng7/Ao6lG8BIkJkQpTRu7Sxs0ODCcPQfuk07jPPk1t5hUkjNOvPikTA+V3Aylnad+7tx2NCwiN5gJ1QEt21Cz127waOcXMAihThMFGbNpyhl0EqBV694nP59Vc5iSYlcVJKtV40MpIJNzJSz13RABmJjhzJJVFFinAbafLIEnz5YnXz0xDpmkgBM7j5e0/w4Dw/DbHFI+eAw2cM76MvUwoYPxSoWFbQ6mZLLM1bDcxYZty25kBCAhDH2fWsdtyaufTBZtTZbfpAPVGunMCeVUCjOrxgzExg60H1FZOSgPFz+e+ZPZvuOfWh4RxTTq4IkEGvO9+rF1uMP/wg/zBLFuDoUWDmTPmyffs4aeTrq3zcz5+Be/fUv1eVK7NkntAYqSpEIt72xx/5/aNHTNa1azPRjh4Np6xZrWSaBkjXrr0ijHbzxWJONDSuq/5ZQgJ36OhTEDIBZs3Or9sJJCalK8FqRdUore2kKri1ZCPKNPsFxev8zAsmLQDaNQea1uf3UikweRFQvTLQr4vyxj6fgXYDgC1LeZaXJkRGcdjFxkatrlgnie7ejR516wLlFaQBIyN51tKff6q77UlJXPL066/q5yBEhNxU+PlxMsrBAXj3js9jzRqgQwerm28+ZHzXXhFGW6Z2dnIS3XdSuVPGwYFJ9LUnW0D6ppSq4sY9oPMwrduZvcTpz0FpR6IhYUBYhNpiQwfqfbx+FzfnrMQO5+5wmb+G+/VfvQNCFDLgNjY8LVSVRAFOKj2/pJ1EJRLWkJ2cHDc1pMTp5UugaVPljqWrV3lgnaLVGRXFxGVvr06iQUG8riYSffWKu51emWHS7blzTPgfPjChDx3Kr7t2AURwKljQapmmIjIMkQImuvmxccCidezKqyLwK/DkBRASbtgJ5cnFNaXh6jEvi9SJEgH+X9iSTm38tw+o2oKtRRUokunCe9pLwxKionFmFFc8kFSKHIULsnt+cQ/rCIjFwO8jgPMaVJIePAV6jGadWV2xYltbfuD06aS0WFCd6NSp3OapmEzq2hXw8mIlJhnmz1cnXBnWreOxIaqldwDPZ+rbl19NRatW3Jb64498P37/HVixgjuo5s0DGjWCU9GiVjJNJWQY114RRrv5oeHcHqrJWpC1IJrBJbNYsb2HJ1CzLXDtINCwtnn2KRSfA4F3H7nGUws+RfijcI6CyGrnACKCSOU+nv9rNp5s3g8AcGpcF/2b/QJRm6bswgMswjzyH2BEH/Xru3EPWL+TZ9NrqhdNSACu3lbO+CdDJ4nu3YseHh7AuHHKMdFp09jiGzxY/VjR0Ryb/EWDrKKuzyyF27eBokWBsmX5e7xxI8dzT50C8uWzuvmmIXO59oow2jKVya/duAcMnMAWkAw2Ntz51LI38Oi5YSd0zw3YdRSAhTuWKpQGjm7S3wZpCRR31EmiAFAqTzFktXPAsy8eaLCvu5Kb73PrYQqJ2mfPhg4rZ0F04hLwODmzTcQizHtXK5NofEJyqdMvwImt2ovuD58D+v6lllTUa4k2aADs2cNdRzJIpVyvqdrK+eoVKz7lzKmZKIm0fwboFnY2FlIpx28XJYcyTp0Cxo7ljL63N3D+PJzy5bNaphZGhiRSwEQ3PzGRXcTEJOXluXNymYy2YWracP46cOAUJOIky7Z92tsDv7U0TnTFFKzfxYkugcjlkAO+kQEpMdOk2DicGSkvG2o+fxLyVa0I3DkODOnB1m7dDuqK+1Ip0GU4SyTqQ78uwKOzSq27Okl03z706NKFXXZPT67HBLiLyMaGrbqxY5WPMWoUMGyY5uMTcfvm/v3az/HtW24RfftW//UIhY0NcOGCXBSlc2fg4UOOnZYtCwwYAKxZYy2NsjAyLJECJpDpr87Asc0cnwuLkJepODhwi+n/qvI/sdBY5OxxkJzfiSGXplu+d/7uE0CFGCyOL1/5RyBUE1BH58xH2EdO1pSo9z/U+RbKST+ZKLetLZeSqU5+tbEBurUDWmsRRJZKgbGz2MOQTY9Nhl5L1NUV6NOH//bZsvGH164BpUsDb95oDu8cP84Eqwnx8RwbLVFC+42pVIn77CsJUO03BEWLclzXywvo0YP3b28PHD4MVKnC1yWVWsnUgsjQRAqYQKYiESeJarcHNu9T/3zgROCPmerLNUBiZ4shl2dg76tT2F+4n2UFSO7LwwiphgV/sw6oAZCRaUR0OCbHHgEBsMvqgE6Lp0C0/xTw8g2vKBYDjoXYpS+okISRaYoO6g400TI9NTEJ8AtUm/IqKLHUrh33rSsSZr16wOTJQAWV0MmFC1wGVaiQ5qF1AJPxypVA48bab0r27Fx3mt2AYXyGICqKp5DKtAEePgQcHbk5wM0N6NQJTj/8YCVTCyBDJps0wegE1Jb9XMOoag0dO88Wa9tmOjdXiolGNETPG9+AuyctV5uaGvWJinjiDvxUSb+qkgaQVIp5zq3g/9kHxQKAloun4pfxQ+VTYC/cAGYsBy7vU1bleviM2z8v7ZUX6CvtmDhxWCCfYXWi+/ejR9686iVLbm7cKVSsmPqxIiO5LXTiROWuJkV4eDBp9eunu6IgIIAt2tGj2Yq0BGT3IzaWLXrZFIlr1/ghcfEiULiwNQElHJk32aQJRlumw/swiUbHsKalDL+3k5Oo/xeNm6ollmZsAG4esWiBf6qSaGQUj/bYrCPupwMiGxuM3LAetQpXgWPtKjgceQ6Bn73kA+vKlOQBeoqWKADUrg7sXKG9VnTtDo6pRkYZVieaPz+3eaomloYOZZLRhNy5gcePlVWcVHHtGpcc6UNoKHdDKapGmRsiEZNpu3ZciSASsbRft24cmz11CggOhlPhwlbL1IzINBapDEZbpgvWAv/tBd66KIuR7DjMepfuV4HCBVMW68zO+38BPN4BrQQOOzMUv/bjuOH4oZbZvyJevWPXW2W6piGQisV4f/0imt+eiJyFHLkDKk8RdevNNwD4EgzIOp60ISCI1fMVxKUFufMA8OwZxzIV4ecH5MrFIz1kEIt5Tv3IkcI0DqKjOWOfXnDsGMdr69bl5OqSJUCnThwzrVOHZQB37rRapvqR/qeIWgpGkWlSEvDRV71/PjIKOHcd6N0pZZHeEqcJ87im8dlFwysAhODfzexuW4qoLQSvQE84nxiEnCExuPmyGhyP7FG2sEf9wzFgtwuarfqj54FfmyiJjwAC3HkPD6BWLaBjR/mHAQHAnDnA6tWaY5Z373LRu6srb6sNPj6c+U9NT8EQSKXszrdrx+99fTmW++EDJ8+yZLGSqW58X669Ioxy8+3tmUQlEtbAlI0ryZ1LTqKuDyCJidFf4jRnPI8lsQSJAqyIZGkSffMeaN4L+ORv8KYfb9yDRNbZ4/8FmLIIiItHOccKnM3PmQVN639EuKpq1KrZwKntmkk0OAQYMwM4pNyZptcS7daN2zm9vVVO8iMXsodo+W40aMAkqYtEw8OBatW4v10IXr9mi/D1a/3rmgsXLwK//Qa8fMnvZ84Ezpxhgo2OBhYvtnZAmQGZkkgBE2KmMbHA9TvAizfKy0PCIPl9OIZs7Ku/xCl3Lq71jIjiYn1zIyYWuPVQcxuiuRCfABTMBxQpqH9dBQQ+e4V9vw3Cll86I+DpK64NPXedz9nnM8rlLQWXQUfQp24v5HHIxf/QM5azN5DVQbtAc6ECwOPzwNBeKYv0kmjz5kzKhw9zvBDgkjYioGFDLrBXLVdycwOWL+d1FDudNCFPHnahe2tR7ldF7txcr5o7t/51zYV27XiGVLVq/H7DBn6AnDvH9bNLlgBPn1pLo0xEpiVSwEgyzZ2Ls+49fuP3SVy0L8mXG0NW1sNeqYfwOtG5q7iDKilJ/7qGwP0t0KoP8EbDkD9zoUZV4PBGzvoKhCQxEaeHTwVJJAh+9Q6eF25wwu75Jbb4G3QGVm1DuXxOmNlgDEQiES48P4fAyxfUi/FlOHwW+HMWE27JoikutF4SjYpiybmvX+Vut1TKxPJP8oQDTZavqyuTo76HlCw73rq17vHKiihenN3q1Hadf/qJX//7j/VQixXjrP6//zKpHz/OQifWgXpGI1MTKWAkmcpc8u2HAOfukERFsTsf4MIkmuAkTBB6+p/A9YPmF2SuUYXjr5ZqFX31DnB7abBO6+1l/yHoJXft1ChdAo3FYg6V2NuzwMvmxUoJooSkePzxcCWaDrVDYEstw+ASk4AEZVITlFjq3JlnHClalTY2QPfunLnXhgkTWIFe3wNkyRLuGjLkHsXHc5hBk9iJpSFT1r+fXJmSmMjD+f74gzu4Zs4E+vWDU6lSVjI1Apky2aQJRiWg3N9AcuoihvwvEHs9Tsst0QnzgGceTJJCxjMnJACe3kA1M3e0WAojp3H96ONzgpMoQS/fYkv9TpCKxRDZ2uKvsYOQ58Ub4Mx24NEL4JeayhtcuAGs3QmvrdPgfGaYup6pltnzeklULGaiVFRYkkq5zrN+fe0XMHUqz13q1Uv7OorYv5+L32XWrRAYOkXU3BCL2QoXifg7KessI5JbqydOADY21gSUHN9vskkTjLFMJVUrYMj/vjCJ1vgbPSskF3IvncZjLoTOuJ/5L9BpiHljmofOAAvXmW9/ilg/Hzi+RTCJSsVinB4+BdJkEZiGk0Ygz+KpwNkdwPW7QLMe6q57vryAU3GUK1pRXc/03QeePX/hhtImekm0ZUtg/Hiu1VTEoUNAo0acqdYEiYSz+GFhgq4XALeXGkKiAHdM3b6t3jmVWrCz47/pgwdAuXLcCgsACxdyBYOLC7eZPnwIp5IlrZapAfhuiBQwjEyVSpyazkfPvhtYvANgVzV7Nq577DZSrUVRDRNHAGd2GtUdpBWBwcB7b/3rGQoi/ocrpaHLRwvurtyKwGc83bRZ4R/QxDHZnba1BVo1Ztk/mVTet1A+Rv3/Af8tBmxtU9pJHXP+AIlUwj3zK2cpqU3pJdHu3dkKffGC1ZAU0bMnk0RZDaNhiPg8d+9mURJ9iIkBZswAvn0TenvkyJmTk1xpXW9auTKHOJyc+P3AgcCqVfygyZaN21x37rQmoAzAd0WkgDAyVasTrdMDOLwJGNlPeUWpFAj6qlE5XgmFC3I8Uyrl7LQ5MH4osGulefaliJa9uXNIIL6+eQ/XBWsBcCdTjUa1YesbwGVTtx6yBSSTxUtM5NbP2ernXS6fE25WmILiL/zwLS4Mgd2cU+KUekk0Opoz52Ix95bLLOnNm9mlt7FhAlNFUBC72g8e8DZCLPDnz7lQX1ViTwi+fAEWL+bXtETu3CwCnT27XPm/d2+gQAG+F82bp6j4W8lUGL47IgV0k6nWYvum9bk856MvsO0QL3MqDrgeYwtKLNafeJi1AmjZS20Ym9EgMm+4QCJhZayqwmK5UokEp0dMhSRZjrD++KHIuW8tC5ys2c4F9ooVC1myALPHAQN+17zDlVuAResx4NzfKW6+oMRS/vycOVfMwkskHMc8qyMpaGfHSkm6FJtU0aAB4O8vt+YMQXAwZ+2DTRsUaDYQcYhixAh+Hx3NoRE7O6BqVe4C++cfawJKAL6bZJMmqCagChTMq7/YfsUWYOcR4OEZFiIG+J+201DuEZ81TvsBPwfyiGBNQhyGQioFStUDpo0BRvc3fX/GnIJYjNtLN8F14Tp0yZkDlbYsgV2nZF1PsRjwD+IQgUQCuD5kcWZNkJUSxcUDiUnwkoakDNRr4Pk/7Fh/TGn1FBL96Sf5RE1FSCRMqvHxctEOVcTFyeXzhMLdneObqnPtMzK8vNgylYmoBATIrfqdO9lyffAAyJnze01AWZNN+qBomTZr0w99TkzQX2w/YRjXmebILrdAbW3ZkmukYVKpIoo7MokScaeOKbCxAeZNMg8pA2w5rtmuP96reAp2dmgy/U8MvrQHZX+qBDsA2H+ShwkqxllPXuKBdF4+6jv54MPuvs9nHq2cJxe7+b324/PXL9iBY4BCSDGFRCtXZqvp3Dnl/bm4cEY8MJAJTxOJ7tnDtZWGiIdIpSy7N3Gi8G0yAsqVYxKNimLhlnz5+J7duwds3crKVi4uQFSUkmXaxLkJXn54mdZnn27wXRMpICdT7/Kfcfj9eWxsMld3sb1IxDWRkVFA+4HAzeS6vD8GsPtPxEkoXViykYvT40ysJxzU3XwlVR6eHLsMCDJ40+KN6yHb1QNA++ackDtwSnmFrm2B28eBck7qG9tnAfLlVppPT0RYt2APYjbEAvYAkufOKbnz1apxIblqTWiJEizKUUBHeVvDhsCgQUwaQmFjI5eiMxZv3/IMenMq5JsLnp5c7fDuHb93cOBwycmTHDOtX5/bSZ2ccPPmTXyt+RU1N9bEe5/3aXve6QTftWuviAuPLqD3uN4oEVlEWJ1pYiIwZDK71fUVagI37GYlKY/rPCNKE7z9gGevgC46CsOFQKaC1L+r8FIsXYiM4s4uPYjwDUCekkVZerDXGGDuRJ4qAHArqEMWtkhPX+H9NdVQv/nlK5Arhzw8kgy1mKg9gCQAImDTjk0Ymc+RqybatlXe38ePcqV4bQgJ4Yy5Ad1aADhUYGNjujCJry+XGk2frl0gOi0hC3cQ8Y/sOxUYCCxbBmTLBlq4EGMvjsX6x+uR/25+5PuYL7O7+VbX3hC0rdMWD3Y8EF5nmiULq7rX/x+7fYHJCYQ+nYENC7STKACULiEn0egY40/61VtO6Hw2MQscn8AxTQEk+u7cNayt3Ay3lmyENDyCr93eDhgzkwVKcmRnEiUC9h4H9p1Q3wkRj10eNV1lsYbEUhJbovn65MOamDUIPLwNOHBAeX9JSazUpM/t7tWLS6EMxf79HC6IizN8W0WULMmVBOmRRAF5zHjMGHkJmUTCbbC3boHu3cXYs6Ox/vF6bG6/GW5b3KwJqGRYLVIVGNUBNX8NsPcE8OKykouKq7eBxnW0W0Drd/G8+EdnuS7VUCQmAmKJcdsqYvU2Fm92v6KznTX6y1dsqtUWsd+4cL3bwfWo3PlXrmftNBTYu0ZumQJMcFKp5ut/+IxFUco6AdBf4lSzSTU4H2iFAdX6YqHzfPXzvHuX432F1buhUvD4MRNDPS2jS7ThwQPg0iUuWjcFsrbMQoXMW1NsbuzYwdbowIH83sUFVLIkxr7+F+vdNmHzBVsM3/8WKFfue0hAfb96pKbCYDL1/8IjnDsrjLAIDAZ+bAosnwEM09J26PkRuHkPGNbbPK65sfDwBB6/UOqDVwUR4WDnYXh/yQX5AfTMnwcF75+BSJZQEovZEg36BvQfB6ydq67tGhHFQtl/DVa6Xr0lTkWKAIMGwf/MPhSpXBe2NraQkhQ2YeHA3r3cK67L7X76FPj557S9x7LzSMsWUWPg4QGqXDnFnd+M9hi+wx2YPx/oz9UimZxMra69sTC4nbRYETmJnrrMo54dCwF3TgBDdbiSFcoAI/ryP7ixClGLN7B+qimoUkEniQLAky378f6SCwAgV4G8yFfzJ4jefwT6/MnhCZnQS1ISu/qaYpUu91mU2i8wZZGgOtEffwQ6dECx8jVha2MLFx8X1NpSC4EXDrMwSYCO5N6XL1z7uWWLoFuhhkWLmPjMgXLl2LItV848+7M07t8HVauKsdu7MomWn4DhK1y5eqFRI7bQV660Fu3DSqRaYZRq1LdQYMRULgECgKoVk0tJ3FjdXRt2HQUadhE+/lkRuXKoKcYbhDXbgYs3da7y7d0HXJmyOOV9gx0rYHd2J7vtiUmcXBKLgdg4LvE6t0u5xVTm9XRsxUm45M/0kmiZMiyeXKgQK9knhwiK5yqG4JhgNA1fg8BntzQPrZOhSBEmr8GDhd4ROWJiOJPt4WH4tpqQFnqkJoDq1sXYdW2x3v8kNrffjOG9V7BQy7p1PBUgOtraAZUMq2uvBwa7+d5+3PGk6GqOmQl4+zLBaHJBX70DTlwEpo5O3dgZEcc26/0PmPaHxlUkSUnY3qQbAp++QiUAzYsVQcFnF9UTU38vAB67syKWYodRYiLQbRTQqTWXa6UcWg+Jdu4MlC/Pc4YUFeglEqB/f3g1+xnOEWuQM0tO3BxwE465HJXPJzGR1eEVx4sYA6lU3o9vKoKDWUClZ0/hGqZpBCKSu/PtN2N4XGUmTtkE1kmTgEePuGX240d+6JQqlRndfGuM1FwwKgHlcp+V4ZdPZ3eXSFjZjTHjloO+AdkcBGXdNUIq1Ro/dJm/Bq7JKlPVSxTFby0awpaIa2mXKqgfPX3Fqk29VIhLKuXhga2dUzqbBA+qe/2aLZ8cCsMIJRLOKrduDa/GVeG8yxnlC5THzQEqVvWBA1wr+vYtULq0wbcEYWFMDuYkgufPOcxw9y7HbNMp1Ei05nAm/+hobrkViThUkpjINaaJiVwfe+4c0KpVZiNTK5GaEwaT6b6TwOEzwNH/5OOHP/gAkxYC25drLo86fgHYuBe4tEe4GHR0DFCwOrBtOdC3syGXxNn28tpJxv+JO7Y36QaSSCCyscHQ28dRtGY1YOtBvqZ+XVgAukYVdSKWSHj/lZTjgXpJtGxZbk1cu1bdCgwM5PZFBXiFekEsFaNSQQ2NCW/fci+9MViwgBXkAwMNbyXNwNBIooBcjDprVvWH/YsXwLRpnOXvzl5HJiJTa7LJnDA4Ztq3M3BmBxNOrKz+UARERvOPJpQuCVQuz3FHociZAzi1jefDG4KXb4FqLVkvVAts7e1QoLwTmgMYVrUiilYswx8M68UkGvQNaNEL2KJh7v2qbYBzdyA8MmWRIEvUx4d72lVrNvfsYVL0Vx7GVy5/OVQqWAnRidEYfHowAl3PcUwUMJ5EAeCvv7irx0qijKxZ+cfHB/jlF3kH1KtXbF3HxnLDw8uXwMGD313M1GqRGgiDLdPgEE4kzZsI9Owgf5onJcmFdtMCSUnARRegjbNO6zcpLh7eo/5BuUplYbP9MF+Hovt+5zFQp7p6bDcmFnjwLEVTVJAos0zVXlOoISoKOHpUa9LIO8wbjXY2Qq7QaNx4WAmOV+6nvxHJnp7A8OHsFqeVuLMW6CRRRYSEAEOGcNy6VHLv7oULnESzteXY6bVrwJMngJ1dZrBMrRapJWCwZfpDfmBwD7kmp0jEMaVf+7PVpglXb7FgtEQi7KTc3wCL1gu/CIDJs0NL3SEEiQT22bKiwq6VsPl7JFuijevyw2HPcV6nYW05iRLxNfkGcIeTUBJt0oStxz17ZB/IV7pyhd3rXLl0Zt5L5ysNl4EuiMqfE81+C0NgtJHdXkSAszNPHjU37O055mruGV4mQjCJAqxhcOoUk2hsLAtct23LJProEVdvvHvH8W2J5LuxTK1EagQMIlORiLPxxR3ZSnv6iomnbVP1OUYy5MzJZBIdK+yE3n7gQX2xcfrXBVhwedgUje2piTGxkMiSYz1GM0EHBvM/yuRRXDN7/Dwwc7m6oHVYBHdqXb+TskiQO1+4MDBrFk/4VDqZRGD0aO7z1odly1DOJ5LJVByDZnuaISbRiPbbuDie3WQJy6l0aS6nMib5ZSEYRKKqGDSIhwzKvNrTp5lMly/n+1e3LnDy5HdBplbX3gQY7OZPXQwcOQe8viFPQBGxgIejCeUwhmb6z1zluObZnWrbnR09HV/c36Dz1qUoeOUWEBXDGqz3TyknjoJDeNa8DDJ3PDqG47YQQKI1agB+fpz51QZ/f54EqqssLD6eC8T79QPGjoVXqBcue13GH3U0l3SlGcRiIDKS60hlDQxpCJNIFOBYdkyMfKggEf8tsmXj1/79WZ1r0CAAGTYBZc3apwYMItPoGK4zVZS+m7uaC/jdr8jJVYZ7bsCh08CauakS7/t4/S72thsAEYDshQpgnOct2BGx8MjQXsC8NRwPbdNUecNth7gO9uQW4eNBevTgWNuzZxxPU3Tn377ljqL//mPRYSFITGSXWeU+HXx5EM5Ozup1pprw+jX34/fubRn3Ox21iJpMooqQSjks07cvPyC+fePwSO7c/HPmDJd+1amTEcnUGiNNDRjk5ufMwSQqkfAE0KBvwJAewIoZ6iQKsKzdy3fco64P3UcB81brX++Dj0ZR6cToGJwdPR22AAYD6Nq8IexCwliEZVhvPmePd5pnTlUsA9SslmI1ChpUBwAbN3KGXTWx5O/PiRl9899jY9nq8faWjxZWQHRiNKZcm4Kmu5siMCpQy04UcOkShxgshdKlWUM1jV17s5IowOVPI0YArq78Pl8+Tj5t3gwcOwZs2MBex7dvmdbNt1qkZoJBlmlAENCoCwuaKGqS3nrIiveKhCDUbV+/CyhRlNswdaHnH0DAF+DWcaXFFyfOx6MNu2EDoFMJR1Rt2RiiSy7Aq2tM8jY26tn0l2/lbbApp6uHRH/5hecEbd/OnUuKiIlhC1Q2a13fdXt5AV26AAcPAlWqaF4l1AvOu5y1d0CpQuZ6Z1KYnURl8PPTPPsqPh64fJnrTHfv5sJ9ZCg332qRpiYMskyLFgbcr8pJlIhJqVUfIFkYJAUiEbeQbtit+wTGDNRPogDPrN+wUGmR790neJRMfDbZsqLYpX0QzZ/E6376DPyvDfDmvTKJ+gawyv++kymLBLnzdnaaxZWTkoAmTYC5c+XXrQ/lyrHLqIVEAa4zdRnogujEaN2W6efP/HewJIl++wZs22bcKGczwGIkCshJdOtWbmSQ4d9/uVC/UiUub1u2DLh+PdNZplYiNSMMIlOZMvzmfcDgSazA5HqUZz+pwuU+Z+V1jSaJjQPuP9UvfFIwv1KMVhyfgDMjpyELEYYD6N6hJfLnzwsUyAe0bQbkywvUqs7ZekWULAoc3wz0/A2AABJt2pRrQR0due5QVdzY3p5rLDt10n3+AMcaO3dmQRMB0ngyMq1QoAIc7DSEUGJjOVO/0gLjrRXh6wsMGyYfgZyKsCiJKsLXl4VNZJ7u338DV68CJ05wydT16/z3R+YSOrG69haAQW7+iYusZbpoipwUbt4HSjjKZxyJxexW68pc338KNO3OItE/aZisCQBD/gaa/qLUSuqyYC1cF6xFFgCdCxVAxXJOEDk4AKe3AQmJ6spSD54CHz7xJIBkCIqJNm7MQh3HlUMKEIuB+/c56y4ULi7AkiVcz2jERE/fCF/Y29jL3XyplAVOqlVLv+r1JiDVSJQPxq8iEffm58wpXz5/PvDmDQ/W8/TkBGGuXOndzbdm7dMSRgmdBH1j1fja7TlWumau8ue+Aawi1USDwntcfHJve1nNhCuVAmNn8/ykrjzvKOyjLzbU+BWShETY2NlhxKMzKJQ9O+up7jjMBH/rmHLP++SFwDMP4PI+wMZGuACJmxuLj6i2bW7bxiIkHz7olsMzE4gITXY1wdfYr7jR/4awbH4GRqqSqCKePwdatmSRk3r1uD63aVOga1duMZVIOL7t4gJUrZqeyVRYuQwRCf2xwkC8efOGChcuTFWrVKQg34dE8V7af9yvEOXITnRyK9HHu0TRb9XX6d2J6OfKRHHvde9L4M/DVbNoMUB+ALm3bEQU7iH//OkFooPr5e9j3vFr3Hui0JdE8V4kjXtPf47uT+CHbMqPjY0NHTp0iCgsjGjhQiKxWPtNkkiIHj0SdkN37yYaNIgoKcmkv8v7kPdUbEUxqrS+EgWc2E3UqxdRXJxJ+xR24PdEbdvyaypAKpXSmPNjCHNAm59sTpVjpiAhgWjWLKLoaPmyxET571+/ErVoQfT2bcoib29vKlWqFJUtW5b8/PxS8WR1QhA/WmOkFoRBMdPypYHFUwDn+pyMsrPjJNPmffJ1lk4Drh7QnojZdxJYu0PzZw+fqXU+1RnVH/2Ob4GkUEFUffYKWLCGjykWA5UryFX/vf2Amm15HIlIBGTPJswSvXOHBZk1xQS3buWaTRublEyuXtjYsCtvYjG7LGYalRCFZu/+QaBtnFEhAoNhY8NJtlQYeUJpZYnKkCULJw5z5OByNh8feW3uqVNArVqsY3rnDrv7T59m7JipUMZN1WdAJoNBlmm8F9E7V7YI50xgCzTytfLngW5E3vfUt/t7JNHAburLQ18SOWQhWjJV+zEfniH6cIeoYD6i6X8qf/b1Oe/30wNhlqiiBRoRoX5DxGKihg2J/vkn9f4IGvA+5D2VXl2aLr2/lKbnYW6kqSWqCU2bErVsKX//+TPRtGlEkZH8/rffiBo3JpJKiSjdWaaC+NEaI00lGBQz7TiE+/Iv72NJPcXJpERAvQ5AxXLAnlXCT8DzI5A3j7ytMz4B6PcXK9f36ii3ku65AVUrsEh0cAjHshTaV0mfJdqpE7cFdu8OjBypfh6y+tD4eLZahFhn69ezcMmCBebt8Dp6FAm/1IFDsVIgIkQkRCBv1rzm278qpNLkmVb2FrNKKa0tUU348IHbRosWVf/M3R24dYv/xnfvsigK0lWdqbWOND3BIDd/0yLgwHpO8mTLykmmsbM4yykScRJqyVTt22t6OFYoAxQqgLCPvnDbdggUHAJ8+QaMns7hgzNXebtfasqV9kdNA/qMTdmfXhLt0YPJ8ZdfgKpVVc+AXbhGjbh4O2tW4WSSkCC/dnMhOhoYPhwOx08DAOa6zkW9bfWEdUAZi+fP+bqfP7fI7tMliQJA2bJMolFRXG0hUzWTSPiB6+oK/PYbP2jatwfevct4br5Q0zXVDOlMDoPc/KBn7Ga7HCEq50TkcV35c1kCSPbz5DxR3txEj87Kl8V6EnVoSXR5H1G8F53o1ZHmALSl1k8U+uYm0Y3DRKe2EYlERPdOqYcY3C4Ic+fj44mePtV98e/eEXXowEmo9ICwMKKYGCKSJ6AqrqtIAZEBljleSAjR3r38amakO3deE65dI8qXj+j1a/myN2/k4Z/gYKJatYhcXVM+TgduviB+tBJpGkAwmV7ZT/RDfqIXl9Wz+G9uEpUpSXTnhHLsdP4kjnXKlvk/JmrfnOjGYQp+dpHmiER0BaCjObJTfNBT+XrPL/Fr9FuiBX+nZOYFkSgR0bx5RPnza46JRkVxFtdQLF5MtG6dSfdaI8RijZUEqUKmFkCGIFEZtD1EAwOJhg8nKluWaNgw/vt8+UJEaU6mViJNzxBMpt9eKJNi/9+JfO6zNTqqH5dNCSx3Oty5NS0CKAQgiY2IaOVsoqOblNd7fI4oTy6iqweEkygRlw/dv6/5Yjt0IOrc2fCbNGEC0ezZxtxe3bhyhahQIU56qEBGpuMvjTf/cUNCiA4cMKtFmqFIVAaxmGj0aL4XMty7R1S+PNHFi0Th4UQTJxJVqJDyAE5DMrUSaXqHYDKNfE00uAfR3jVElcsTXTuoO/uu6KJ7XCeKeUcB90/RHIDmALSyUAFK2r+WaO4EztIHPZPXiMZ7EX15Kjw7P3Ei0YcPui/U1ZXdOmOQnMk1Kzw92YLWsm/fcF9KFCcmH96Mx3dz4385Nzez7C5DkigR3/fBg4m2b1deLqsPTkoieviQqFWrlNALUZqRqZVIMwIEkWnMO6KOrYh2ruCYp+Jn1w4S/TNG/r5VY3blZW567pxE8yfR/l+daRdAGwB6sHKWnDg9b/Hvi6YQ/TkwhUwFWaLBwUQ//kh06pTmi3vyxDgiXLSI6MgR42+qmfDA7wHV2VrHfG6+WMwF6roaFAQiw5KoJigW6kul7MH06UNUsSI/pHfs4O8apQmZCuJHa9Y+jSEom29rCxzaIC9Tio0Dxs/l4vmPvsCVW1zOBABblvJoZoCz3Ce3IaBcaby/5IK2AIYDqBX8jYfWiUQsPgIAObJx8bRIpD873707Z9J/+IG1KDuqzLIHWCO0Xj2eL28IiFjY+c0bw7YTipcvgV27uAxJDwpkLwD/SH8029PMPNl8W1u+x6pjpg0EpdfsvDHYupW/J7HJY3VEIs7c9+vHE0rz5mUJvuTvUbrN5gtl3NSg/u8Zgt38hZOJurQlql2dXf1YT70to/taN6E5AC0CyK9LG6Lf2xHVqc7b+T9WWleQJTp/PlGjRsqWhCZcu2Z8O6clXHoiomXLiIoX59ZUAVBqJzXVMv3wgej33/WHQnQgU1miRETu7hwH1/T3kEo5DNKmDdHQofJllKqWqdW1z2gQRKYH1hHNGqde+uR+hSj4GZcz9evKJLlmDkWsnEXzAFoI0KqSxUgc9YZdft+HvE3unFz+ZEhi6f59otWrNV9EZCTR6dPG3YC3b4kuX7Ycicqg7wGgAhmZNtjewLSYqacnx/08PY3aPNORqCqSs/QpOHmSyMaGaPlyokuXOBHl7JzSEZVKZGol0owIg+tM50z4f3vXHRXF3UUvdhEbVvzsGls0liRqTLH3RI2xxxajxtiNJSb22BJ7wd57jb2Lgr3FgoiogAVBkC4gZWH3fX88hm2zu7ON5txz9sDO/Kbsstx99T6i64eJ8uQmWjyN6OgmoiafEUU9Ivq+LQU1+4KOAaQAKPizT7j1VDP2unAKUaSXNBK9ds20JbdyJVGhQixKYS7++IOoYkWziS494BvhSw+CH2TY9bM9iT58SOToyBUVApRK/mIVcPs2fxElJqZtSgcylYk0q0ISmR7fTFS6JFGlckRr5xNd2MvkKbI27NhmelOhLClrfUTUsQUTsEbRviQS9fcnypWLaOdO4zevUhH5+Vn2wlUqoqAgy46Vgv/+4+SYFa51vCKehh0flq51ptmeRIn4b79qlWEVroMHiVavZsq6dYvoxQui+HgisjuZykSalWGSTIPuEE36VV26pPvQze4n+hG98yZ6fYuz82VdiN55S3fniYiuXjVskd6+rdWRYhZUKu56sjd8fIh+/dUqybyXUS8tL9q/e5coZ06zyp8+CBLVRWCg9t9IqST64guiESPYK1IouHB/1Ki0JXYkU5lIszoku/mRD4m2LSUaP5Ro6mguqB/Uk6hKBU4sdWlL5HNRY70X0a1j0kjUw4NowwbTNztwIH/YLYkhnj3LLaoPMs51NgcWd0CFhhKtXZtWymMKHySJxscTubgQTZumvT06WvtLfOZMvTpUO5GpTKTZASbJ9PoRohLFmIj6dCaa/zvR/Mmk2rKYa0NrV2cJvYb1OFGVWjcq2RKdOJEFeE3FRlNSJBOEHhQKdt3snWS6eNFmff6aZPouUaQt1kp8kCQq4MQJovBw8X03b7K4d+/e/OUdFcWJT/tl82UizS4wSqZRj4jG/kx044jW9tsrZtH6T+uQx/Sx9O6/kyw+Urk80YSh0khUIDWVSiu4r4fr14m8vOz/JliLyEj+uO/YYbNT+kb40oKrC6Rn8qOiuKLBBJl/0CSqiagofUI9dYq1S8PC+Mv9wAHWeHj1Km2JjclUJtLsBElufoIvkZcb0Y7ldL3WR/Rvau1o8K1jvD/4LqliHpsm0ehooi+/JLpwwfSNtW9P1Lat5S9szBhu17Q3hCSYnZSnDj0+ZNrNl9AiKpNoKlQqVoLq1Ut8n/Dzzh1ep+MN2ZBMZSLNbjBKplcPEZUqQeTkSKqCBUjJPUKUApDqj5FEb/6T7s7HxrLr5O1t+qYSEvTr/8zBvHmcjc3CiFfEU/ml5U0X7SsU/A9voLxLJlEdXL1K9PKl+L6AAKL69YmOHSPq2pXVowYN0mpXthGZykSaHWGQTF/eIGrRhOjPkRS04i9aDZA7QC8rVyByLkKqg2ulkagw/sEU/P1F1ZMyLaZO5eF5doK1HVAyiRpBcrJ+jD4xkYnT05OfK5VE3bsT7dqltcwGZCoTaXaFKTf/yuwJaUpP99bOJ1XofWkkumULt09KKabv3p2obl3rEkSnTxtOKtgagwcTLV5s10uYJNMXL4gGDOCfGpBJ1AhiY4lq1SLautX4uoQEoho11H9jDf1bK8lUJtLsDINkumwmJebORckABQAUcvWQ9DrR16+lk010tDTX3xBUKqJixbiMJRvBN8KXWm9vTcGxwfo7nzzh2LPGCGKZRCVgyRJOaoohOJgH6z16ROTqyvXIS5cSNWxoqw4omUizO0TJtGljUgFpjz1fNzJNoomJ6TPXXRdv31peMpUF8CbmjVE3XyZRGyAhgahDB21R8Zs3iebM0QsHWEimMpF+CNAlU1XEQ5qTNw/NBGhBQSfKK8USXbSIqF49aUpNSiVR48Zc95mVUKxYuie1Wm1vZbBoXyZRM+HuTrRmjel1KSlETZqwQpnwXAMWkKkkfpT1SLM4dPVMA9+EIiVJAQB4GBuHJI21WtM+NdG8OTB4MJArl+kLRkUBDRsClStbd+ObNwNTplh3DnMwaxZPN01HrOm4BnGKODTf1pz1TB88AAoVAt2/n330RNML7u7Atm2G9/v6AgsXstbroEH8t961iz+rKSlpy+ymZyqVcaVQt4yMg2CZNqxSgZSpbv1QU5ZoRuKff7h3OptDq53U35NUixbRyIODZEvUXJhKau7axXO4NIcv3r1LNGUKJ6x0YIZlKrv2Hxq8vb2pQI4cFAmQEqBaUkh02TJtqTJTePmSa/iyEhISuCPGEmk/G8A3wpcqLK1Ahx4fkt15eyE5WZtsL1wg2rjR6CESyVQm0g8NzZo100ssAaCNxj5QvXqxIpJUDB3KhdBZCf7+/FG3dACfDfA+6T2NPDKUMBO0zP3vDLuPLAt/f6JKlbiTSQrGjGGNiGvXWD7RAJ4/f05OTk7UtWtXQ0tkIv3QcP78eXJwcNAj0vr161OErUYA+/jYRvKue3eizp2tP48UJCdz80CqfmV6QzOx1LUHqPrCCumqZ5ot8OYN0eTJXKInhuBgHt9865b29latuPNJBCqVisaPH08AaO3atYauLBPphwSlUklDBg+mwgDlFLFKjZJpYqJNJluahZMnub0vm0MrO3/TlXw93S3XM5VhGIGBRKNHM9GmpKgL8uPjRUM6miS6cuVKY2eWifRDgUCiDg4OtPHvP2gzQEWlkmlQEJcG/fuvtIsFBPBIEHsq2dsavr5EQ4ake0uroRIni/VMP2S8fCm9AWT/fu7Q0+kgE2AGiRLJRPphQJNEt25YQMq4J/QKoGcAlXGQSKaLFhl2mXQRFUVUvjzX9VmD8HCiPXvSx91+/Zro88+J7t2z/7VSIUqir14RDR9O9OpVGpn+esKM+PSHjHbtiJo2Fd8XHk60ebPaCn3yhHV0CxfmoXkaMJNEiWQizf7QJVFK9CNaPJ3CAUoC6Fie3FT2f6Wlu/lSRyfbQoD51i3++N2/b/25MhkMFts/fsyJusePiYjHliQkJ6QdI8MIYmIMzwLbtYuoQAHukhO6mRQK7m7SKH2ygESJZCLN3hAl0UQ/ovbNSJVa/nQboPsX90kj0xcviKpWlaZBSsSWqTWuskLBYsvpiXSIA1vSsXQ/+D412dREdvMNQcqXTGgoZ+hr1xbVe7WQRIlkIs2+MEiiqfOYHjdtTFcBOgZQfNWK5LtwimkyTUkhGjvWsP6jJlQqogYNiHr2tO8LtSX69LF7lYClbZ9yzNQI4uKIPvqIlcJ0kZionbB88oTn3hcsqFXrbAWJEslEmj1hkETjnxFtWkgU85gSalQlJUAKx/yUXKcGkdse8vV2k+7mx8YSvX9v/EauX+eSFGtw6RK7unFx1p1HCk6csGuVgCQS9fQkKl1araGpAZlMDSAmhuucxRJHu3cT5c7NBCooPcXGEq1fn7bEShIlkok0+8GoJeqxnwfgVatE9MuPRKe28fPh/dLGkPg+kkCmKhV/q/fpI+2mkpIsj5n6+fEgs2ARybksBMmW6Js3LKZh4AtIINOGGxrKMVOpePyY6JdfWDZPJ9RkAxIlkok0e8EoiQqPicOIWn9DtHI2UawP0bctiS7uJXpxnahrO6L5k6VZpmfPSksCRUYSVa7MGdPMjqgoLvF6Z9uJn7ZWcfKN8KVbgbdML8zuUKmI+vfnemNdvHyp3dZ87RrH9zUK721EokQykWYfmCTRi/t48J3wfMIvRN+34+mimxYSORXgmff71xAl+kl381NSxGNTmpg/33A2VdqLY0m+t28tP4cUeHnxx/3qVZud0mwSjY3lkIiIiIYuklKSaOzpsR+umx8XR9SliziRjh/PxHnnjtobCghI07a1IYkSyUSaPWCSRO+f5j/jwG5sffpdIWpQm6hPF0pZOIUim39B0eVciN4/1RrhLIlM9+4lypmTC9pNQaGQXj6liYgIIicnonV2FvFITmaytpHLbJElKmGKqICA6AA5ZmoIKSncP58nD49m1oix25hEiWQizfqQ5M4n+hHNmURUsABR7RpEPTulbV9bpwa9BygQoNiXN4jinhDN/I2o/sdEMY9Nk6lKRfTggekbVSiIGjWyfKxyVhqiR1a48/HxPBJDYhPCB5mASkxkF11XnESlYkk8zZDT8uVsmT5/nrrE5iRKJBNp1oZJEk3wJXLfr34efJco5B7Rs8tpWfzrg3rSUvAQvOedWhF9+TnRzaNEy2emHSfZzV++3Lhb7OoqXZnHEOw9CG/HDo67WYH0VrbXJNOohCi7Xy/D8fYtJzt1rfbYWJ5fP3s2ey+CZ5HqBdmJRIlkIs26kGSJHt3Ef77lM7n0Sdj+30misi5EZ3YQAbQ3lUj/K16UVGMGsVUqrL1zgrP5psg0OZk/3LNmmb75lBTLEjpLlhCVKmXf2VH79vEIX93RvhJhNYm+fk00YYL0dtxU+Eb40kz3mR9OJl/3dWp2K02dSlSoENFvv2kstxuJEslEmjUh2Z1P8CVaNYf/hMc2c1z04Foi/6tEk0cQvbpJdHYnbfusDp1P7XQKH9RTfazXeY5/7l4pzTLVmMhICoXhF/DTT0TNm5sfi/T15brATEoWNrFEHz1iqbdHjyy+j1PPTmVPN//ZM/7c6DaEuLuzToJQIqdSEa1YkaYta2cSJZKJNOtBEokG3iZy26N+fvMou/TD+hLdPq63/uG2pbQSoKMA7Wr9DdGaeUSdWrMVe3STVhJKkpt/8SKXPBnqgLp61XSm3xQsSVpJRXy8aEG8MWSWQXWJyYlUaVml7BkzffyYp4FGRWlvf/SIO+jq1uVpDhpIBxIlkok0a0GyJTrpV6LSJYguHxTf7+3GmfxEP6Jrh0k1rC8tLVeGZqa6+O8m/EL0az+imMfaZHx+tzQyDQlh3UcpLrglc+/nzuU55fayTKdOZdlAiX33mYVEBWS7BFRysriHExCg3h4Xx5NBc+dmBS1KNxIlkok060AyiSb6cYxz7yr+0x3fQnT3FNHmRerY56CenJVP9CM6tJ6obk26M3cSzQToIcDHHd2kbitN9GMLtdVXabWokhNQfn6G6z/37iXKlUta6ZQmzp7leKmFcUyTCAhggpdA1DYn0UePiKpUscq1J8pmZDpmDFH79tp/D4WCs/HDhqnjyUol0e3bRJSuJEokE2nWgGQS3b+GSVOIcR7bxEQ4ZyJRpXJqIn19i+OfGscmRTykf5yLkAdANwAK9zpPdGo7Ud2aHBYIvU8U8VDrGEmlUQ0a8MgQMSgUREePput7aUvYxRINDORxGTYo9/KN8KWmW5pSQHQWG0SoC3d38c44NzcugypeXKtaJJ1JlEgm0swPySQa/4yoYV2iwb3VZKr5CL1v3IqN9CKP6WNpJkB/5cpF99bOJ7pyiKjfD0ykwjr/q0Rd2nIcVgqZPn7Mrr4pnD/P4hPmYMkSDiHYAydPsrVjAJnNnTeF8PfhWc8yfflS3yuIimLBEWH7s2f8Zb1rFxFlCIkSyUSauWGWO5/oRxT2gGjfKhYiEcj08UX9dSMHateXzplIVK4MJYbep+ODe1PEfyeZQHPnJrp2mNcICadHbkSffcI/zUlARUcTjRwpTpYREURFivAce3Owdi2PNLFHrHTfPqKOHUVjc3YlUSHRZeOpAN/u/jZrufnh4fyZWLpUe/v27bx90qS0WKgQ4skgEiWSiTTzQjKJht4n6tOFRUcEwju8gX9/cZ0oT26ijQvV62Mes7u+d5V6261jRFsWq8ky4iFRuTJEP/dkYRPPs0RVKqgz/kLPfsxjoqhH0sj0/n2iihWJHj4Uf8E+PvaLedoQdrdEzWgRNQdZMmZ66JB4vfGlS0T58hGVK5eW0MxAEiWSiTRzwixL1PMsUa2PiG4c0S9tSvDluKkpt17skUqQlOhH9Pwa0U891GQtPLq0ZcUoqZapMC9HqTSc0b99m2jBAvPesE2biFatsuo9F4VKlZa84Kfp4M7HxfE17aC/miXINDqa6MgR7W0pKUR9+7KXIHgfDx6wdUoZTqJEMpFmPphVbC9k1OOfEf0xkqh4UXVCSFOARPc4se3XDnP9qMY2RbgnvW7XlFSO+dV1qeGebKUm+hEd38wJKXMSUEQ83K1tW3GXfOFCoi++IK3iflMYN47DBrbG2bP88b93L8vFRA3BN8KXyi0pR7sf7s7oWxHH4sVEzs7aI2YUCm7bbdeOC/I1voQzAYkSyUSauWCWJfrPH0QdW6gz8dHe2nWjXdoS/T5c/7hVc4gqltMn2jkTiapVTiNnvxNbaUvpkpQM0NtG9Zig3z/lsqkxg/TJ+fAG6aVRly7xdFAxqFRqy1Vq7NNec5ZSUojc3UmlVKYfib55QzRjhvWTBYwgLilO9PdMAZUqTWCEVCrtkd5z57Ka06FDqbszBYkSyUSaeWB2YunoJqJpY9iSfOKhT2zLZmjHQYXH1UNE837X3/7OW8tafX35IM0EaDFA8wsXpNhXN1n0ZPsydTG/8HDfzx+T1IJ9yZYpEZc/iVmfQUEsQHHzpvQ38fRpTkLYEOluiT58SPS//xmOJdsQK26uyDxu/qxZRFeuaG9bsYIbI86eVX+pppaFZSISJZKJNHPALBL1vaxNmE0+Y5V7c2Oghh4agiVH+v2Q1u10+4tPiYoVIdq1gvfH+hA9PKc+7s4JvXOZJNOAAKK8eYm2bNF/U+LjeZTJ06fS38iNG7mFULBorYQWiU7vaJNzZiZkmphpYiIL3qxYob09IoKHLQJEAwemkWkmI1EimUgzHmaR6KubRIWc2D0XtgXf5e3C87XzWZDEUCz0+BZOHontWzmbC/dTj417fYv+LlqYVqV2O71r15wo6A6vnfALUZlSHFLQPMe2pXwPUsnUx8e0C5+UxP9UpqBS2UeUeX63tMRGdkOGk6mgmaCpnbB5M1FYGP+uUhGNGsVTFihTkiiRTKQZC7PdeYGowh4Qrfub6M1/+vvnTyYa0kf82Fgfbslc+Zf4/htHiBZN1eqxv7NyNs0EaA1ArjWqUPI7by7Qf35VWxhFeAzrS9S/m3mWKRF3qQwYIC5G0qcPq5xLJcn//uNuKgst0wxNLHl7E9WpY5kGgYUQyHTQkUHpdk0iIjpzhqhGDe14cEQEUcmSPBZ7506t5ZmURIlkIs04mEWiwXe53VN4HnibqFhRtiDNcdsTfIle3tDuVDLxUL5/Shs+r5vm4t/t15Xoo0pEE4aqz3lgjdoCjn+mriaI9JJOpocPE333nXhZ1N273CYoFXfuEH39tbSOKh0YJNGgIG4YsLeEX0AAW2AB6dvW+TzyOcUmmZ4TZVO8eMGvVfjy1IyD1q7NjSWpKlyZmESJZCLNGJhtic4YR1TCmS1RTTdf032/eZRo6XRtUWZLHn5X2KrVEIIOvn2c/sqVi5YAlAJQXPeO6gTX1UP8gT+zQ/s8nmeJShUnOrdLOpkK/0hv3ohn4lUqbgWUIqFnAeEZtUQvXWKx4GfPzD5vVsLj0MfUbGsz+7r5Pj76nVubNhF166aWyEtMTKsnzeQkSiSRH3NAhs2gUqkw7JdfsHHTJmxZ/w8G9Otq+qDffwU8DgBx8cDv84DEJKBUccDBQb3m0k1g837j5zl8ho83hhevgbkrgecBaZtKf1ITX44fihgAWwHsefEaqnIuQFISUOF/wN2TQLMvtM9TuTwwsAdQt1bapqpVKsL93E6U/V9praX3799Hq1atEBkVBSQmAk2aADNm6N+blxcwYABw4YLx1wDwe/PqFdC2LRAYaHI5EWH06dFwveOKdd+uw9BPh2ov+PprICgI+Ogj09e2BomJgJ8f/8wA5M6ZG74Rvmi+rTmCY4Ntf4HkZKB9e2DSJO3tJUoAkZH8/rq7A3nzAp07g4gwceJELF68GCtXrsTIkSNtf0/pBamMm67fAVkQZlmiCb5cryn0uif6cclT5fL6HUbCQzfxo/tYOZuoWwfja+KfaXc1pT6So73JtXoVmpM/H13/5w9S3jhK1LYpUcsv1et2LNeyQLWs5yv/SrdMDx3Srh/UhL+/9Dc8PJwLuL28jC4zKyYaH2/fuVF2ahE1B3ZPQN26pX4PfXw0LuxLVKEC0fTpRJQlLFEBsmufXjDbnQ/3JGpcn3vgNbdrii0n+hEF3OKSJENZeksf77z1wgTBt45RhPcFDjEUKcS6pjePqom/xZcsCK17roHdiWpUMV9pPyaGFc/F3PQdO7hAWyoMuPpmkahKxYkgI6pQViMmhuPB5iph2RgCmTZY14CUKhtoILx9y5l3TT0Fn9Tk5+TJ6k6m+HgilSorkSiRTKTpA7NJ9F2qZSkQz+wJ3AIqtnbxNE48mUogJfhqJX+MPoRk1h5Xw2suHVDfZ/wzJtRIL3FCD3sgqkIlKQFVuLC4FTp7Ng+pkxILjY3lltSTJ7U2W5SdP33afCHqLArfCF+69PKSbU62dy+Ri4t+x9bmzVxL7OKSRqZZjESJZCK1P8wm0Y0LiWpW1SbGuZOIpo42fIz/VdPnfXqJKEcOotM7TK9N9CNaOIXI+4LJdbGXDxLNHEfkmJ8FoxP9uNOp9dd6QtAU7U00oBsnoqSSqeAC6taIaj6PNZFtViq5oDt1GBofnkl750NCWLTFgooDeyFFmUJ/uP1hmZuv+TcTrOzz57UFvc+d4/EuWc8SFSAnm+wJixJLDesCXdsDhQtyMgcAxg8Fpo7WXhcbB1y+xb/rJG9EUcgJWDUHqFNd2s2P+gmoUsHg7uSERJz57S8omnZHwj0v4OgmoEQx3umYD8iVC1Akax8UnwB4PwMC3qRtMpmAcnDgdoBhw4ApU9QLHBz48fQpUKmS8QRUjhzAli1Ay5YAEUihMJ5YMoWrV4Fvv+XEia0REgLMn88/MwlC4kKw3XO7+Qmo5GSgUyd+7wGgYEH+uX07MGsW8MMPnFRr3RqYPRsEZJ/EkghkIrUAZpPoQx9AoQCqVQamjQHCI4EGHYCj58TXb9kPfD8EiIyWdkNFCwM/9QCKO0t/EXuOAruPiO665boVt1Zvx0Ei7H0ZCGXj+rzjhBvwcTXg8Aa+ZmwcEyEAOBcBLh8EWn/N297FApCYza9ZE6gu8iVQpQowahTw+eeSXhKNGonRk2pbTqIAE4JKBUREmH+sKdSty9nrunVtf24L8b9C/4PHQA/EKeLMI9OcOYGqVYGyZfl5Sgr/3LyZSfTYMWDDBgDIXtl5Q5BquqavNZ15YVFiqXhRoj814qCxPlz0rtlbr/mIf0b030npyaP9awxPFTX06PcD0c+9RPclR3vTqppV0wr1r4z5mdtPc+Yk2rda/bqqVuQ4ru45/p7MYtEa7r9koRNDGe3gYNapNACVSkUjV7TPfO58FoFmNj8i3kjLrqaCk4B794iqVSPy8FBve/CASKnMqu68JuQYqa1hUdtnoh+Rx34mlfhn+mpOmo933kT3RGYymXrU/5hoxADzjtEoyhd7BF0/Qn/lykUzAfIFKLF+bX1lqCXTxcedPPEgcp2jt90kmQrlQWfO6L/5ffrwbHMRpX3RmKim5qW5UKl44Nrjx5afQwxPnhA1bsw/MyF8I3xp0rlJxjP5a9YQFSyoHecNCyPq0oWz9P36ZWYBEksgE6ktYTaJ+l5my0wz073gTyLnItwWKnbM4mmc2EkdPmcWKUrN2ms+EnyJfNwN7nefOppmArQCoM1VKpBCqEE9vEHbYo72NmxBH9ukpRtgkkw1ZdU0ERHBbYc6ECXRbdu4p9vSpI5SyWOTx4617HhDePmS6Oef+Wcmx8XnF8UTUHFxRAcO8O8+PuovLKWSqEcPol69soslKkAmUlvBIkt09VyiCmW1STP0vto1FnvEPNZvx7TnY/lMovz5DI4rSYn1oXUNaqe5+OeG/UjktpeoXi3tmtJxg8XVoiIeEpUuQTRllHmWKRG3bepKrxFxLeKIEUQhIYaz82FhRMuXW9c7/+pVlpgzZQ8oUhRUdUVV7aL9ffvUM+aJ+L2pXZuoRQuiU6fU27Nudt4QJPGjAwnJAgnhVOsjslkPZieWiNTtnbFxQEEn4PpdbqssXUL8mKQkICScWzLNxf4TwM5DwJGNnME2ByFhgJcP0OJLTh6IIMzHF+sad4YySYGWABoXKYRcd08BLiXV14uOAfxeAp99on+C5wH8unTO7+f/Es3b9EVgkHYGu379+nBzc4PzihWcQT97VvvYV6+Ali1BGzZgdMIh04klPz9OWmm23JqDhAQgf37LjtVFcjIQHg4ULw7kzm2bc9oJfpF+aLa1GZzyOMG95ym4NG4N9O3LGXkB3t68zcuLWz+//jo7JpYkfXDkrL0RmE2iSUlAl8HAgZP8vKAToFQCv/4JzFpq+LgVW4AvOgMxsebfZMECQMWy5pMowMTe+huDJAoAJWp+hFZzuXf6MoAduXMjPl9evt5/D4EVm4EihZhEVSpg7Q7gfbz6BJXL8/k9HwN9RwMJ3GduMps/ahRw6hQfG69xvgoVQI8fq0m0/WrjJFqrFnDwoPnvDQDs3AlUrAjExVl2vC68vIAyZfhnJkdV56rqbP6+Dgi+cJQ1El69An77jatQPv4Y8PAAFi0CGjfOjiQqGTKRGoBFdaI5cwJlXYCSxbS3ndgCLPjT8HG//AhsWggUKmj+jbZvDqz4y/zjBLwNB/qNBXx8DS5pNLw/qrT6CskAVFXKIzkmlkuhPG4A/57ifyoAeBkITFsEuF3VP0nse75WYlLaJqNk2ro1IuPi2IKrXRvYtQtAqgCJ23gmUVVHDJ15nAlcDFWr8nGdO5vzjqjxzTfAH39w3awtUKUKcOIE/8wCqOrzFh63aqJonsJ4Xygff3l6eQH//svlam5uQOHCwNixoFy5PlgSBSC79mKwyJ0PDAbKlVFvi08A5q8CJg8HCjiKH5eUxKpPxYpadqNEwBM/4KNKlv+zJyUB7QcAM8YCTRsbXBb75i0e7DyEL38bghzHzjP53j/N1nCePOqFYRHq4n2x+3VwAKLeAU6Oae6tUTf//Hk4r1kDDBgAKltWu9g+ugrg4wNI+ad99gzIlw8oX970WhkMDw9gyRLQ3r1wcHDAOwcFElISUPp1FNC8OdCiBbB7d3a3RCW59jKR6sAiS3TNdmD2CsDrvJoUbz8Auv0CnNwG1Kkhftzs5cC2g3xc/nzm32zAG6DaN8C/64COLc0/3lIQAU/9gRpV+fnzAGDqAmDtfLVVvWU/hyrG/Kx9rFIJfNUVaFQfWDYzbbOpmGnRokUx+vivcL2/Tjwmevcu0KCBeCyUiPdVrw7s3Wv+650zByhZEhhqQYG/JsLCgP37gR49WFousyIsjOO4wnsZFwc0boxuXVPwqATBfaAHXFSOQN68oLx5szOJAnKM1HxYRKIA0Od7YPksbcuyYT3giYdhEgWAwb2BhVMsI1GAQwjndgFfSuv8MYqgECZHKXBwAGpUhSLuPVS7D3Pc82UgW6MCXrwG/F+pO58E5MwJ/DkSGNZXa7OpmOnQ/UOZRN3yY2ilbtrn9PcHGjUC9u0zfL979wLr1kl7fboICeEQg7UIDOT4ogQN1QzD+/dAw4bcyiqgQAGgTx/8vS0IcQF+aL75GwTniP8QSFQyZIs0FRaR6PHzQKMG2jHRTXvZ3f7nT8MJoMQkjus52igbbAt88wNQpjSwd5Wk5UH/PcTFPqPwY1AIcuxeCXRqzYQluO/C58rBgbPVYllqhQLYfRQY0C3N+jFkmaI0sGTnIowr+614O+nFi0CzZqaTbqGhnGHu2VPS6/wgsWsX0LQpt8t6enKsGAD27oXfie1oVt8TTnkLotmrZli3aF12J1HZIpUKlUqFX34Zig3PNmLlmunSSDQ+ARj3F2epNaFUAkqV8XKbea7s3lorjLFhj+F+fXOx/h9g/d+SlsaFhGFLy154HhAEVyIElSnFrzc2DvjuJ+DsJbXwyO0HQO3WXB6li0s3gTEzgMfqRJchyxQhwI6JuxBZogST9NixwKFD6v0tWjCJ3r0LbN1q+OY3bWKr0NxMfHIyC3JkkLq93RETAxw/zr//+CP30C9YAHz/PYvKJCUBvXqh6s5TcB/ogaCwIKxzy/YkKhkfPJGmWaIHN6FgqwI4kPs0JFnpjvmBSweAKaP4uZCNHvojsGS6cSLt+z0wcZj1tYQXrgI37lp3DgE1qkquGnAqXQJfjud4YZRKhUM/jUfyvuNARDTgUgrIq5F8qlYZ6NCcx6foovU3gPcFFkLRQNUqFXHx7E44FddO0qWVRoWHs2UpJiyybx+LZSiV4jc/aRKTrZOTpNeahhcvgEGD2Jq1FL6+QKtW/DOzYcMGHvUSFaXeNmMG8Msv/OWTWj9KRFg3fx3i/onDyp9lEhXwQbv2uu58g7YfIz4lAY3K1DN80ANvrvtcPRfIl5e3RUSxhTnzN6Dnd4aPTU5mq8lI3WaG4sBJYP0ujruaKGBXJidjS4teCLrjiVwAxhVwhOO4wWpJQCJ+vZoZ/eBQlvwTq2KYswLIkxuY9CuXOJ3/C67nd6DovkKICo3RWpqWzS+WGlIJDgZcXPh3lYqtRkdH7eYIXbx/z0mkKVOkk2pgoFrtyBK8eAH8+Scwbx7LA2YmqFR8f2XKcFJt3DhO0AEsY9iwIcjJ6UOMicquvTGIxUTrlKyORmXqQaFU4Hf3BYhMiNY/MDQcCAjSdsuLFAJ+/B5o8qnxiy5aD7TsrZYcswbSvwClo0wp4JOaaUXzxpAzd258v2UxchdwRAqA1e/j8bRuTfWCMTOAQRPU96lUAh36AxPnip8wNa6aRqL3dmDdj3Nw2/2Q4TrTyEjg3DmgcmV1kXuOHEyiISGcNLl2Tfx6r19zCMDT0+RrTUPZsvx6LNUTrVQJ2LMn85CoSgWMGAFcv87vW5UqHPLw8mJ914EDeV3Llh8qiUrGB2mRmkos+Ue9QuPt3VCukAvcem2Hc/4iQNx7wKkALxAsHZWKS3+qVpR24Vv3gfuPgGH9rH8RWw8AC9cCD85kaLvhvc37cHw4izI7Fi+KEavnwbGgE/AuhsMdvTqpF1+6yYLSZV1Ez6VFou3mYGi9XgBMlEadOgXnY8eAwYO1E00JCWxZTZ0qnpwS1pjb/jltGnc8PXtm/vuuVLIlXKBA5vBK3r9nEetff+VYaEICUKgQf9F/+y2HT65f/9Cz83IdqRikZucfhT1D890/Mpl+vwHOLQYCvTtzbFPAqm3AzCWAj7txUWXNDLatcMcTuHgN+H247c4JsDV6+AzwXStucTUBIsK+Hr/i6XE3AMDgEsVQ5qvP4bDHVb0oIkq7NOx9PHc/dW6jdZ40Ej2VE0NnbgFaNEnbb7I339mZLSuFgrP3mlAogLdvgXLl9F+AUsndS61aAW3a6O/XxZMnwMuXPAra3L/nvXvAp5+qa14zEgKhq1T8BTRkCN/f8uXAV1/xmqQkUJ48HzKJArJrrw9zSpxql6gG9z678DomGK0OD0HcL925xEcTP/UAti01rUy/eR8r3ttyfMXndW1PogAQFgkMngRcuS1puYODA75bPRcFUpNJO8Ii8N/XGnWtOw8DdduwQIqAHf8CQyal1Z1qkWjb2Rg6aA7wTUOt65jszY+MBBYvBhYu1L/J335jojQUUnnyhOODUlCjBtCunWVfipUqcUF+Rrv2a9YA9epxpl6w4ocP5y/8li1ZKAaQSdQMfDAWqUV1ogoFHrmfwP78AZj19Rg4CP88tx+w+pFmS6gxnL0EXL0DzJ5g8f1rgQg4dRFo3MDy9lJjCAkzrFRlAL5nL2F355+RI3duNJ8xFl91bAHc9gS+bQkcPMnVDML7p1JxAX/l8gbdeQCpM6CCWE8gFUYt02PH4Fy0KFtamommwEAu2m/aVPzmNdcaS1AJSEkB+vUDOnTgn1kNL15w6di4ccC2bUD//hxqCA8HZs8Gpk8HOTvLJMqQXXsBFncsrd4OTF3IHUoli+Hciyv4tNTHKNZqEFClIrBjmR3v2giCQoAqXwEH1wLftrLfdQwV0hvAjRWbUaXlVyj5cTVg5lIm+2uH1OfwfcHx5FSiopQUjJ73A1zzeOuTKAAMnwJ4PeEyM434p0k3PyGBB7OtWcMJJwFE3N3Upw/HAnWxZg1w4waTiykyHTmSibl7d6lvD5drHT8OfPcdUMyAHoE9ceUKz7/Kl9pJd/s28OWXLAqzdGlaSCSb986bC5lIAStIFOD4macP0KA24pMT8NG6Vijp6Ay3VstRzMmZB74Zwwk34Mg5YNVsIG9eq16HFoiYTIsWNiyIYi06DADqfwykSuiZjeRkIDlF3b3l/wqo1w7YvAjo3pEt0ZNT4fpoH9Y5d8PQoSLNAAoFEJ/IVRE6lqJRMj1yBM5//AHMncsyeAJevwbq1GHC7N1b/3oHDgA3b3Ihuj2SQRkZI333jt+LSZM4JizAwwPo2hWoVg24cSPbT/u0ADKRWkyiSzcCzRoD9Wurt6WkwGv+TLQoeAZlC7nArfd2FMtvwq0+cBI4eQHYsti2iab0wJb9HLpo9ZVVp6HXb+Cw9xgw4Rfg2HmgQ3NQrlxqd771LAz99MfUxQbc6ogooMdwYM5E4As1AUlKQCUksIZmjVTNg9BQFiAxBYVCuwZWDG/fsvU6YYI0PVgi/nLOmTNjPg+envw+zJjBJWKTJ/NrjIgAkpNBpUrJJKqPDzvZZDGJJiUBh06r58oLePYcddafw8VafyIwNgSt9vRHREKU+DkEdO8IbF1i+3+apRuB5Ztse05d/NTDKhJNSUqC+6xluNl3NGjNDiA0Aujchkn0wAR1TFQg0Q27gV4jxDuS8ucDShVjEWsNSEpATZnC2fik1M4zgUT37uVOJTEt00uX2EJ7+dL4i/T356L+J08kvCPgz0GuXOlLog8fMnES8RjoPHmY9Fev5tcYEQEUKyaTqJXIlkRqMYkqleyCu+3Wl3+rVQ3wcUedNl1xsfdO5MuVF/HJCeLnuXkPmLJA/c9ra0RGA5Hv7HNuTdz1Aly3WnTork4/4/J8V5y79QBPZk8AShVPTSzNguvzo1j3tp52TLRcGa34qRYc8wO7XYHa1TnR8+J12i6TZDpyJGfKdUMrggUpRqR16rAYdHGRtlZNNGkCBAWxCr8U+Ptz7NZfosqWLXD7NotJx8ezZe7gwJ1Vf/0FODsDiYlyTNQGyHauvcUkevYSMGMxcGKrdjnTuUvAMTdg6XStxAsRwcHBAREJUXCAAxftC9h6ANhxCDi3M3MUXluKtTuANTuBO8dNu7k68P73FA7+yO2iBUoWw6/u+zF512hOLNUdhaFfDjLc2x8ZbTj+PG0RsPsw8OiClvygSTe/aFHuF+/VS+3mCxDmKIneSyRQtKhxKzIxkdeVMVHF4e/PmfKlS+2vkq+ZKFQoOMn144/AqFFMpLlzcycZ5JioCXx4rr1ViaWKZVlDtIhONjc8iusddWJgQilU76Nj0Wpvf+120oHdgfO77EOiCoX9LF1d/NyLO6fMJFEAqNW1PWqk1t3GhUag78r+TKK1fsXQ9mOYREPCgPOXtQ986ANUb6ofWhEwZhCw7h89DVeTlumrV1zyc/269vkCA9nF3b1b/1pRUZzRXrvW+Ivt2JHFPUyhShXg2DH7k2h0NCe19uzh53nycKdSv35M4sO5/lgmUdsh21ikFpPo8wCgbGl9skhJUY/vMFJbqNUB9dksOLvfB0YMsJ8levICJ178r5pd62kxNNtjzUDsm7dwrd8WR5rE4XYjYI5LH0wZoDFfasIcfj0Pz6mtJ6WSRWGG9TUteL1uJ9ChhVY9r1HL9ORJOAviJkJ7KBETZe/eQJEi+tdYv57d8dKl9fcJuH6dFe8/+sj4/aZXskmp5NjwTz9xhcDnn6vvbc8eHlRXsaJMotLw4WTtrUos1WkDfN+WhZgFKBQ8x+iH9sDw/iZPk0amirxw25cXzldOWq56bwoBb9iKG9QzfZIWJy8AfUYxcZvq4NIBEaH3in7Yl3AT3x4HWoaWwa83jiDv8s38ZVOwAA/FM/SF8CqIFaFcRLLsMbHA59+xharzNzLp5ru7c6b9xg1tggwN5R76r0SSbLGx7MJbMyLE3uVPSUnA8+dAzVTxGIWCE0yxsWyRplrWckzULHwYrr1V7nzevMDGBcB4Hbcsd27u825QW/w4HQjtpEF5k3Fx8xj7kSgAlC/DLnd6ZX4/rwcsmsqEZgaEjqV9CTcx8GllfHYXePf6Da5MXQjsP8HdYQUcmURj44Bdh3VPAPQeAYw3MCG1UEHg1jE1iWoYBCbd/OrV2c3VLYOaNYutOLFW0k6dWBjFEJ4+5XEnxsaIVKgAbNnCP+2BOXO4qP79e34/8uQBLl/m+tFDh4CoKJlE7YQsbZFaTKIxscD+k8DPIladBe2RePMWuHwL77o0Q+F8HGNNTElCvlw2LMIXsPMw0OBjriLIpNBt++xeqAnWfNYRyfEJgIMDfjq1HeWbf6E+YNdhYMxMwPMsoEl+3s94ImlJE11Apy6yROHRjVpCK5LqTO/eBUqVYom8+Hge/CZGdDducJbbkJJUbCy3Ws6bp7YI0xtxccD9+/xz3jxgyRJ26wEgIkJu+7QM2dsitcoSPeUOTPmHu4M0ceEaULM5JzzMwb+ngN/nobCC3/Oltzfji+3dTNeZmguVCpg4B/C4advzmkJQCE88laBTKtY7X7RyebSY9ZuwADfWbGerb9lG/hLq00WfRAFWzi9ZDIiO4QYBQ3ApCXxUUVuZHxIs0/BwriUVOn0cHZlEExNZWu61uswKX3zBJJqcDHh7699DwYLA4cPGSTQqirunomz8uVi3jsuwnJyAr7/mCoSwMA5RHD0KADKJ2hlZ0iK1ikQFvA3XH3+RlATsOAwM6iGtU8XA+bxCn6LFnr4oW7C0tA4oc6BUMgnZsuXUFJ74Ac16AGd2APU+NrjMmACJSqnEtjZ9UbFpI3z9+6/IFZ8IfNYBmDkeEP5+ycnAxj08XVWzx3/7v8Dv84D7Z0x7Cy9eA2VKar0/Ri3TLVvgXLkyE6GAkBBWQVq+nFWjNPHHHywI/fy5uJbpzZucyGreXH+fPWKk794Bn3wCjB/PqlRVq/Jn9+1blsabNw/08ccyiVqO7JlssopEpy/mou4e32pvj43jMqdKInqVxvAuFrj3CNB0U1NhVzJNbwjZZqGKQXSJERWnVKiUSuTQrGaIjdPWPH3gDTTvCRzbDHytIzYSGiE+90kTSUk8aO+H9sDff2jtMunmJyayEMnatRw71aza0KzJjIzkhFTjxuL30LEjk7jmYD4B9hJ2FizcSpW4XGvxYo7XQk4s2QDZz7W3ikRVKiAwmEeF6GLmUqBtX85ymoNtB4Duw4Ao/S6jOiWr42LvnQiMDcG0y0vNO68hHDkLdP5ZvBvHnhBaGxUK0WtLIVEA2iQKMIkScdw3KISt3aeXtElUuH6p4kyUk+ZyNl8MefMCG/7hvn4dmHTzAwM5URQbyzsEEp05kzPeQuuqszOTKBFw547+PWzfDhw8KH5/OXOy6pQtSNTDA+jShYm5aFF+LFsGPHgA9OgBKJUyiaYjsgyRWkWiiUns7mxaCIwcqL9/6mhWJTK38HzUT8CVg6zCJII6Javjat99WNh8snnnNYT8+YBSJcwPO9gCvi+Asg05264BqSQqhlDvZ3i0ZT8wbSGr8gMcEyXirqrgUO0D4uKBs5cBz8eGT9rsCy7TiowGlmyQns0fNgyRp09zsXxSEhe1AyyV17GjPvnt2sVxU91+/GLF+O+TINI+/OIF16tKFZE2BqEe1d+fa12Tk3nGko8PcPgwKEcOmUTTEVmCSK0i0Rv3gFotOM6nm6G/9wgIj2Qi/Opz8ePFQMSF/A4OQE3jRdjVi1VGgTyO8An3Q4f9P4sP1JOKtk0lz563OSqXZ0tPg4SsIdHL81dhXePOODJuFiL2uGp/wUW9A/5Zw9l4TRQrCvx3Qn9SgegFbgFLNwCvg7U2GyVTYaDe4MFc7kTEsc7RqZNRfTSSkL16ARcvasv0Cdi9Gyhfnq1FTaSkcBLImuGHUVFqJft//+Vk0u+/c79/ZCRQrhyofn2ZRNMZmZ5IrU4s1ajCs5Yql9c9MTB4IjBpnvk3deEaULsViw5LhJJUuBP8UL+d1BwEh5offrAVcuYEJv2a1kVkDYkCQOK7GKiSk6FMUuDYnwtAKhXrGgSHcp/9vdNcL6sLIVY5fxWwYrPhC3RpC3i5cd2tTh7ApJs/ZAgrJml+8T56xPHHEyf4ea5cwDff8O/Xr2tfo0kTHrqni48+AtzcTHdAGUJCAgtVz5unDrFMnQpMn84WtK+v7M5nEDJ1sskqEhX6442N4gh4w7PpTdUp6iIpiYVMunUwqzBeq51UmE5qDqo3A7p3AOZYKLZsLeLeAzv+BbVthtF+WywmUQBIjk/Amk87ICpVyem7pdPRYO5KYPQgJmwBB06yDsLndbVPMHUhF/T/McL4hVJSgJ8n8QwoHWKWJHSyaRMr6js6cnlTp07abv7t25zYuXABaNHC7PfBbGzbxiVWQ4YAPXuyNZozJ6BQgHLnlknU9sjaWXurLdHuw4CIaODCHn2y23OULRZLOpCkzPQxAoFMaxSrgss/7lHPgZIC9xuASwmgRlWLr28V4hNAlb7A6Bn14RpzxWISFfDC4wa2t+OZRwXLlMKoU9uQu3oV7dlOX//AVRHGvjyESZhiIOLSqcYNgK7t9XYbJdNNm+D8zTfcjdStm3rn/fsckxTGmFy6xNap5t8yOhpYsYI7qIRhd/fvc6Lq5k2gfn1jb402UlK4IeDrr/l5QgLL/J0/zz+PHJEtUfsh6xKpTepEX7zmWJtum+fzAKBBe2Dd30DP78w7JxHQug/QtysrPFmIR2HPEJEQhablG1l8jowAEWH0mRlw9dxtNYkK2NfjVzw5dh4A0Hr+ZDQZNxh46g9Uq8zEFBNrWG4PYBHuZRuBMzvVY02M4c1boEwprU1GyXTnTjgLeqPCl2i7dmwFnjypfe4nT9QSfe/fc03nunVsxQIcH92/n7Pq5vTsb90KDB3KGXknJ46/AjwxtXZtULt2MonaD1mz/MlqEj18hrP0lcqJ98pXLg88ctOvJZUChYItm6oVzT9WA7VLVEPT8o2QokrB9MvLpHVAvXjNw/ji3pteawekxUQ9d/PI5NrdTB8kAc1njEuz5K4uXIukO5482+mEGy8QSNTjBreM6qJaZaBBHSCnhI/y3mPAJ204pKMBozHTvn05AbVnD7v4KSmcTNqv02n14AEnfM6d4+cFCnA5lUCiAJPniBHmC5/07w9cvcqzpD7/nJWdAGDiRJlEMwkyFZFaTaKBwcCgCSyKoQsidulTUoCyLpa553nz8twgczL8RvA6Jhhr7u+SNrbE+ykweX7615BCJ7HUcgaG9lnPwtU2QMmPq+GT3p0BAAmR0bh+2h3Yvxpo10y9SKlkyb0NIpqhtasDy2by3yY52fjFvmsFLJ4GlHPR22UyAaVUsjXo4MC1pAUKcFvm4MHsatety1n0li3VB6fGLhEXx8/fvWMr9p3E6QanTnEYIEcODiPMmcPNAn//LSeWMhkyjWtvE3ceAPxfApUr6BPlfw+Bpt2B09uBbyxwqU+784x1zfnsNoBZHVDGYoF2gmh2ftlGoKnOcEArEPU8AK6ftIEqJQV5nApgtM9FFChRjHv7hTh2SBgnBQ29/v8estzfqW3SPIYL14BqlbS0TAGJQievXgHlynGr54ABrD6vKdb85g2r5atUHB8dMoSz6+a0iBIB7dszadety1apiwt/qTx+DKpdWybR9EHWce2tJtGwCGDxev6QVakoTnSffQJ4nbeMRAHg1gPgtIfN5es0O6Ba7emPmKRYw4szA4kCwNjBNiNRAChauTwa/NwTAFDQpSRiAoO5FKraNxzTBLjHPkcOdu/finSn1agCdGxhsDlCC8nJwJgZwDL9AYImLdMXL5gMly5lN9vLi0lUMEi8vIDKlQF3d77fBQuAH37gfXXqMMnWqWP6Hh0cgCNHOCv/119MyNu3AzlzyiSaCZHhFqlNLNF9xzkze+u4fj+2UgkcdwM6t7GeBDX7r20Mr9Cn2PboEBY0/x05HEQIc9R0fm1TR9vl+rowWif6Ph44eZFDHDqJG0sRGxwK3zMeqNevK3LkysWKTyu3AGN/VvfjJyYBH30NDOjOIRZDSEoyLeoSGMzvp6Y4igaMWqZjx8K5c2egcCppv3/PBfrDh3Miav16ztY7Okp9+WrEx7Mm6vz5TMgANwJ07QpMmgQaOFAm0fRF5rdIbebO9/yOx1WIiVqcv8Iun1iiQir8XrKbZicSBdgyXdTiD+RwyIHLAbf1i/YrltWXmbMTTBbbK5KB/mOBG3dtds2CLiXR4KceTKIAz86aNkZb1CRfXuD4FmD6GMMnCgoBPmnLrrsxlHVhEvV+BoyYqtdtZNQyXbaMY6Zv37LISf783OsujFr+5RcmUcFIWbeO60xfveKY6qtXhu8rNBTw9WXrs1MnFoyuWZPdeZlEMy0yjEhtQqJnPICNe/kDa6hEpl0z4P5pTkpYgoREoEkX7ttOBySlJKHvifH6HVDjh/KseTtDUsdS0cLAm/+AHzrY/X6wdgewfpf6eb2PWRMhNEKvYwkAa5N278hfPFLwJgS4/4gtYB2YdPN37WK3Ozqaia91a76npCROFNWty4monTtZqT4xkbVMEw3ouhJxy+nduxyDPX+ewwhRUfKgukyODHHtbWaJTl0A+PgBB9eJu+2PnlpOoAKIuF+/fBm2YtIBeh1QOfIDQW/5HuxoFVvb9mlLRPi9BCmVKL5hD5Arp7Ys3ovXwKcdgH2rgNbfGD6J1OYJIYknCIHowKibf+AAnDUTTRMmsJDIwoUcR507lxWfTMW33d259XPjRrVC//XrwL17oBEjZBLNOGTOgnybkagATa1ITXg+Bhp1Ylew9dfWXSMDoEWmdabC+as+wOWDPDLaDjCbRE+4Aet28ftrQ8QGh+LYsD/gd/YSanZpix57XPXJkIg9kS5teBSJGAKDgZ7DgVVzjIpRpyE6Bvh2IDBxGMfTdWCUTE+cgPOYMay+pFIB4eEc59SFsaqLq1d5NIiHBxfcu7kBxYvLJU4Zj8wXI7UZic5dyeVIgMFkAT6pCRzZyEPsLEVYBLea+r+0/BwWQhio5wAHRJcqCJzaDtS0T2uoRZZogQJAyVSNUBvCsVgRhKTK5D057oaE6Bi2FD1uqBc5OABDehsmUYDj5R9Vkl7pUMiJmy0q/E90t1E3v2NHRArW73ffqUk0MZG1SZctY5d9wQIuZ/L0VJ+AiB9ffcV1qN9+ywIprq4yiWYhpJtFajMSVak4efR5XY4bikGhMF9bVAxeTzhbfnCt2aOIbQUigoODA94lxiKFUmyutJ+Z3HkBZyfNxc0VbOl227UCHzvmB74fAtw9xXOcBGzYzRql44xM97QESiUQn6Cd6EqFpDrTsDAmxRUreFRJVBS3jjZqxP32/fvzwD2Ax5lcuwb89ptadd/XF1S5Mib+/rtMohmPzOPa29ydF77FxawNpRL48nugVyeud8wOeB6A7w4ORaBzTrj9uNNmZGo1ica957n0YnPnrYD/+SvY+R1bdfUGdEPn1XMBTx/9lt/pi7kUa/E0wyd79JRbQ2dPkF7+9vNE4G0Yhy1EjjFKpj16wHn5ctYJ9fAAxo0z7DUB3Grq6srx0AYNgBs3ZFHmzIXMQaQ2JdGtB4AqFfRHUWgiJQVYv5sL8K2JJ8bGceF35fIZo0iviXOX4DVmJFoMzYuyhV1sMgPKJpZosx78/mxeZNW96CIlMQn/uHyKlIREFCxTCuP8r5qnkqWJMx7A+NmA+37pcomXbnLIok1Tg0sMkmmdOnAbMgTOo0apNyqVbHUGBQGlSwOffaY9bC8xkUudYmJAHh6YOHWqTKKZBxlPpDYlUSKgwwCgXi1gvo1GdxjDkbNArxHAi+s2t7gsha0G6tnMnb/9gBWXrK2MEMHuLoPhe8YDADDszgmUKlIIGDoZWDhF+3pKJY+nbtFE3OIk4nCQpXOSdAf0acCkm+/lpc7gP9EQAb97l3vor1zhutLU/nxSqTBx0iSZRDMXMjbZZHN33sEBOLkVmDnO8JrAYB5kFx5p3bUAoHkTTvCYGv+bjhDaSYPi3uK0/yWLzmHTmGjDenYhUQCo0kZd1uR37jLHqAsW0B/TcfE60HGA3iypNDg4MIkGhfDnwxzMXg606GVQDMVoAqpZM0S2b89dSR07csz02TN+1KrF5O7mxjHUKVM4sSSTaJaFXSxSm5NoaAQQHgHUqmZ83YVrwE+/AQ/Pc2dMdsHJC8Ci9SxSnSMHIhOi09T1FUoF8uSUllizeWLpv4dczD6kj3XnEUGE30u41uaZ8hW/aYQB53aJL1SpAP9XHGIwZHWqVECtllwGt/Iv6Tfh+ZhjrH26GI2vGrRMq1eH29WrcC5uYIx0aCgwaBDon38wccsWmUQzJzLGIrU5iQLAup1sGSQY6AgR0PJL4OUN25Do1AXAHU/T69IDBZ1Y0Sg1ViuQ6PoHe9F4ezdJM6Dskp2/epsJ3g4oVrUiCpfnUqQ39x7xxpQUJjZN5MjBZU7GXPccOYCdy4G5RvrzxVC3FvDj90yiwjhmERi0TJ8+Ras2bRB56RLrkLq4cJlTv37AgQNAyZKg48dlEs0GsKlFahcSBbic6dEzcaFmAcnJHA+zRdlTfAKPuJg6Gvi+nfXnsxOkzoDKjCVOUrCtbV8EXL8Lp1LFMeqRG3Kdusilb8+vaYulnHDjMc3mWJvm4J/VbH0fWGt0mUHL1NERbgUKwDkmhsVUYrgdlW7exMQDB2QSzdxI32ST3UhUKk67s5DGw/OZJjlkM8TGsVCIyCA/U2SaVUkUABTv45HbMb86Yx8dwyIjn3+i/YW5/wSw75jhVmEBE+cAdWoC/X8w70aOnefwgYR6VYNkWrcu3C5e5DrTu3dBa9diYqFCWLxkiUyimRvp59rblURPuAEDfzPqWgHg+fIzxmWq5JDNsHIr95aLQOiAeh0TjEnu/2jtszuJ+vgCzbozydgBeQo4apc9FSkEfPmZvtfR41vg3/Wm60TjEy3rxOrUWnLRv0E339MTrb75BoEnToAaNMDEwoVlEs1GsNoitbslevgMDzjbsdy25zWGgyeB3+cDTz3sKhIiGb4vgJevjQp0+IT7wcWpJIrk4/hwuliir98Afy0H/hzJM7LSA8s3AbU+0n8vlErWKy1ggQaoFAQGs3hN946Slhu0TAHMrlYN3z57JpNo1oD9XfsMd+c1cf0ukKTg0b3W4oE3u3PTxthcEd/e8I96hbFuc1DaqQQ2eu7Pcu68SbTty9n3Cb9ob6/bFviupfGxzQBPJS3oZP7fdc12YMJcIMpLchzeEJkWBDBu+nTMmjXLvHuQkRGwP5Hu378fPXv2xMql0zHy1/7m3Jx0vIsF8uc1/eHtOxqIfMcze7IbrtxmARWRuey68Ap9iobbuiJRmYTFLf7Abw1/tt99JScDYZFACWfjbZAWIvplIG66bkXc2zBUbt4EDQb1NLz4tDvrpDY2MgvptDv37L+8YX4IKDkZSFGyuLQZJOzr9xKfftEFsbFxWtsdHR0RFhYGR0tU9GWkJ+wfI61duzaKFi2K7buOIFpEGNcm+KwjMGuZ6XUbFwKHbVSKExIGCCU3mQH/npIkLE1EWP9gLxKVSXDK7Ygdj45IG/VsKV68Bip/yfOs7IDQx89wy3UrvA+cRIyOVaeH9s2NkygANKoPbFkM5LWgsiN3bh7EZwaJEhG27zysR6IA0LFjR5lEsxGsItJatWrhwoUL8PN/jTbfDrQPma6aDUgJGeTLa3pOj1TsPw60tn2RucVYNhO4anz8sW5M9Hq/AwiMDcG3B4ZARXYa4exSEji8QVuRyYaIfROa9ntBodypeU/9scwpKcDuI6Y7l5yLAL07SxuQp4vN+4CRRsRRdEBEmD5rGeb8vUpvX6G8eeHj44PQ0FCRI2VkRVidta9fv759ybRNU6CGBB3ODbuBaTYSz+jThUWUswjEEktCO+mMr0aJD9OzBQo6sSVoCTFJQGzwW/Wl0oj0C6BSee2Fke+AQRO4y8oYTrgB7jeMrzEEpRJwkmZBGiPRnwGEVK2KsNBQtGzZUibTbAKb/IfZlUxDwtitjXpnfN37eNuJDBd3tpuVZRFmLwdmLBHdZSw7X6dkdbSr3BQqUmH+jTWSOqDMgv8rnqlkquPMQsS8URNpIYFIp48FWn2lvbBkMSDqEdDWsFoTAFbV3/GvZTczpI/2uBMDMEaiG0qUwMZPPkF+b2/cXLYMYWFhMplmE9jMVLEbmSYkAvNdgecBxteNHQwsmGK7a06ez90smQFOBUStIaklTkGxIVhye7P+QD1r4fUEmDhPX0jERogL1nDtXUpxQf4Db/Ga4vz5TCckD28AXGebfyPHz3O23wSMkmiXLhgcEQE8fAi4uKBi+/bw8PCQyTSbwKY+n13ItFI5zrJ+Wsf02sQkrrm0FnnzAOcum68WZC+MG8yzhDRgTp1ouUJl0or2bUqmXdoCsT4GZeasheDa58iVC47Fi/LfpHFnICJae+G0RQYt9jQIo0Ac85t3E9ExHDbYbtySNUqiP/6IwWPGsA7pjh3AsGFApUqoMXcuLp84IZNpNoDNg2d2IdMCjuy2v3htfN342cAPvxhfIwU5cgD3TjNRZAakpGiFNiwpttfsgGq1tz+iE+1UZWEjpCQlIcL3JQCOjzrkyAF814pj17oCzc5FgKImhGoG/AaMs6Bus0gh4P4ZnhFlAEZJtFMnDH7+nIm8dGmgTx9gyBCgXj1g715Uu3NHtkyzAeyShbALmf40Hhgw1viaMYOAva7WX0uA9Bpb++Lv1UADriG1pmNJINMv/lcfTnlsUHqz4xDw4yjT6yzAqyt3kByfAIBl9ACw+y429WDcYNNjZVp9BTT5zLybuHmPBXPKuhisCDFKohs2YPC+fUBEBOuQ5soF9OjBU0YjI3leU69eqFGjhkymWRx2E3a2OZlOHsG1osZQrbJpzVKp2LAHqPKV6R7/9MAP7YFVc2zS9lm7RDWsajMLuXLkws2g+9bVmRbID5Syj7aB71mPtN8/at+MFbkG/saiJZp49JRHwphC/x8kt3cC4EaQToOAZZsMLjFKok2bYnDp0hxO6NCBSfT5c8DXl2O5HTrwF3W5csAnn6DGmTMymWZh2H1m0/3799GyZUtUrVIO505sRRFrtUKTk/nDaagH/o4nD0X7d5358TBNeD1hvc1BPW1Xn2oFbN07r1AqUH19GxTJW9AmM6BsjfCn/nhy3A1+Zy+h14G1yBcZDfQZCWxbClSvol7Yrh8r5xuSuIuI4qqHKaOMj28Wg+dj1joV+RwZJdHVqzHYzQ3o1g3o3RuYMYMnir59q50Qi48HZs4Edu8GatcGTp/Gk6dP0axZM5QoUQIXLlxAyZLZTMks6yHjZzYJsBmZJidzQXbnNnrJlzQ8D+BYmOtsoFwZS285U4HehmP0nrFwTbxp0955QYLPohlQRByzrvA/y+ch2QIRUcCbt0CdGuL7r9wGhvwuHlsVAxFw3I3jsQa6mIyS6KpVGDx8OHsynTrx6OUuXYB794AvdHQgIiPZ1Z82jeOnpUsD+fPjyfPnMplmHmTszCZN2MzNz52bi+WbNzG8pnJ54Ogm25DoqyBg2cYMjZUSEUZf+ItJ9OPhNhUgEWKmgbEhaLWnv3lufmgEUKsFi7vYGxFR4uVvSiVrtBoiUYAnznq7SZ8gevsB0HM4cPWO6G6jJDpyJAbPmwcEBHCC0MWF59fnzQtMngz88APg7Ax4pk5eKFwYKFGCLdNGjYCaNYHSpVEjKkp287MYzLFIZciQIUOGCDJ4YLsMGTJkZH3IRCpDhgwZVkImUhkyZMiwEjKRypAhQ4aVkIlUhgwZMqyETKQyZMiQYSVkIpUhQ4YMKyETqQwZMmRYCZlIZciQIcNK/B8cFsXApoey8wAAAABJRU5ErkJggg==\n", "text/plain": [ "Graphics object consisting of 135 graphics primitives" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "graph = Graphics()\n", "for n in [-2..2]:\n", " graph += plot_I(n, r_values=r_val_I) + plot_III(n, r_values=r_val_III)\n", "show(graph, figsize=10, axes=False, ymin=-3*pi, ymax=3*pi)" ] }, { "cell_type": "code", "execution_count": 82, "metadata": {}, "outputs": [], "source": [ "graph.save('exk_CPdiag_maximal-raw.svg', figsize=10, axes=False,\n", " ymin=-3*pi, ymax=3*pi)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Near-horizon region" ] }, { "cell_type": "code", "execution_count": 83, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhEAAAILCAYAAABW087vAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVRUTx/H8ffSIYpB2ZjYhV0Y2IFdYGMhdncXNqhgNwYmNgb2z25FFLEFBGlp9vljzEcQbJR5nbNH2Hvv7O49B/kw8R2FUqlEkiRJkiTpW6n86TcgSZIkSdLfSYYISZIkSZK+iwwRkiRJkiR9FxkiJEmSJEn6LjJESJIkSZL0XWSIkCRJkiTpu8gQIUmSJEnSd5EhQpIkSZKk76L2p9/A1ygUCgWQHQj/0+9FkiRJktIZPeCl8itVKdN0iEAEiOd/+k1IkiRJUjqVE3iR3MG0HiLCAZ49e0bGjBn/9HuR/mHe3t40atSIbFkzsW+nC9myZfns+N6+Y6i+4yCZgURdbYiMYjEwMZn2HAYMoJeLC28bN2ZbjRrcvHULPT09IiIiqB0WxovISLyMjSlWrBgtWrQgSxbxepFv3nCmUydOm5kRrapK2bJlqV27NsbGxp+/wIgR4OYGd++CllbKH9DGBvz94ciRb743kiT9PZRKJePHj8fR0ZHZs2fTp0+f72onLCyMXLlyQQojAWk9RACQMWNGGSKkX8rc3JxTp05hYWFB8zb9OH5oPQYGWT8cj3n+ipyISUQxcfFcAKYk05bTtGnYLVmCb5UqrDYzI+zRI7S1tdHT06OcoSEXHj1CO3t2+nfpQqlSpVAoFDx//pxTp05x8dw5lEWLUq18eeq0akXWrFmTfpHjx6F9ezA0TPnDJSTA6dMwYADInyNJ+uctWrQITU1NRo4ciba2Nvb29r/stf6KECFJv4OZmRmenp5YWFhQu0Hnz4JE5KOnqAKJQGxsHDZAQhJtOC1aRJ+tWzloZsb+okVRf/uWuLg4zMzMePnyJRcDArAIDaXhokWoqatz+fJlTp06hY+PD5kyZaLekydUB/R69Ur+jQYGwoMHMGlS6j7Y1asQHAx1637T/ZAk6e+kUCiYM2cOAAMGDAD4ZUFChghJ+kRSQSJbtizkCAwGRE/EcOBZEtc6OTnR7MULZubMycusWSExEXV1dbS0tPDy8qKcoSFNN28meNMm3Hbs4Pr160RFRVGoUCFsbW0pqauLauHCsHPn19/kf/+JfytXTt2H8vCADBmgYsXU3gZJkv5yvytIyBAhSf/n/4PEoe1LyfducnI4sDKJa+bOnUsmYFZwMGTNioqKCpqamkRERFCyZEkKFy6M35o1LGzblpCDB8mWLRsWFhZUqFABIyMj0cjy5aCiArVrf/0Nnj8PRkaQN2/qPpCnJ9SsCerqqTtfkqR/wu8IEjJESFISPg0S5cybcv3d8wcRQxqf6ty5M48fP8YnPv7Dcwoga9asaGhocO/ePW7evEm2xETKGBlRrkcPTE1NESuYP3HuHJQpA5kyff3NnTsneiH+//rkREZC9uypO1eSpH/Krw4SMkRIUjLMzMwoWrQoJ06c4DZgCNj+3znVq1dHV1eXhIQEUChQAxIUChITEwkMDCRfvnw0btyYEomJGDdsiOLaNciXL+kXjIlJOUAAPHkC5uap/yDa2hAVlfrzJUn6p/zKICFDhCQlw9ramhMnTgBgmcTxypUrU7x4cUD0PGQJDSVHkSIYFy9Ojhw5MDAwQEVFFIWNO3aMZ9mygZoaPH2a9Auqq4OGRvLH3ytUCF69Svm89zJmhPh4jGNj0dDQSN01kiT9U94HifDwcAYMGICFhQUlSpT48Xa/Uojqj1MoFBmB0NDQULnEU/rtTp48SZ06dUQvQxIMDAxo2rQpmpqav/mdfZ9Ro0aRO3fuP/02JEn6Q548eUKtWrUAuHDhAgYGBsmeGxYWRibRM5pJqVSGJXee7ImQpGTUrFkTa2tr1q1bl+Tx169fc+jQIRo0aCCChFIphjTU1NDS0iIyMhKlUkmGDBkoYGJC/rVryTNoEBp16iT9ghMnwvPnsGrV19/YihWwbZtYdZEa79r9omCVJEnpxqcBwtPT86sB4lvIECFJyZg0aRLr1q2jZ7umrNnqnmRdiJcvX3Lt2jW6d+/O3bt3QakkISGBt2/folAoMDMzQ19fHx8fH65XrYr6pUuUSEigQoUKFC1aFDW1T34EM2cWKylS6i0oVAi8vSFrVtDVTfmDaGqKOhFyKEOS0qX/DxA/s0dS7uIpSUmYNGkSkydPZubUYSxZOp35QDK1I7l27Rrr1q1jQL9+5A8NRalUkpiYiKamJk+ePOHChQvky5ePAUDjW7fw9/PD2dmZ0aNH4+rqyvPn77aHqVYNHj8WhaS+xtRU/Pv4ceo+jJxYKUnp1q8MECBDhCR94dMAMWp4H9R1tNHV0uQSkNyP3+XLl7Hp1o3uXbpgffIkmkBcXBxv377FxMSEO3fusERFhYiEBIZkyMC4ceOoWrUqN2/eZMaMGcydO5eLhobEZc0q6kV8zfsQ4eubug+kpyeqXCb+/+JUSZL+Zb86QIAMEZL0mf8PECBmNUfnyUFewJOvB4l648ZRtEsXJq5bh6m2NiDmTiQkJFCyVClOlSrFpBs38L1xg2bNmjFt2jRsbW1RV1dn7ebNjGvblkP//cfb4ODk36SJiRiiePQodR+qTh0ICICLF1N5FyRJ+tv9jgABcnWGJH2QVIB4b2PTbrTxOI0G8MjYgNr+gTxN5mfH3Nwcj4IFybh7N4cXLsT9+nUyZMggqleamaF++DBX8uQhf/78dOzYERMTEwD8/Pw4sXs3569eRU1Tk2q1alG7dm309fW/fJEqVcQciv37U/5gCQmQIwd06gTz5n3jXZEk6W/zMwJEaldnyBAhSXw9QADss59A8ZWu5FUqUQKPsxtjERDI00+qVH7KvGxZPDQ00Pf25uHWraw8epT4+Hji4+PJBFgePszRxo15ExtLgwYNqFev3odJlqENG3JCTY1TBQsSHx9P5cqVadiw4edhYsUK6NNHzIsQ2/V+nZ0d7Nsnzk9tpUtJkv46P6sHQoYISUqllAIEQHRoOBq7DqHSZ7TY36J6BXyv3sYiLo6n0TFJXmNepgwe0dHoh4cTcvgwy/ft49mzZ2TKlImwoCCaXbtGRN++HL10CWNjY7p06UKuXLnErpvm5kTNncupYsU4evQosbGx1KhRg/r165MhQwYIDxfDGkOGwJTkNiX/hKcn1KolNu+SG3FJ0j/pZw5hyBAhSamQmgDxQWg4GJX55OIh+E5ZiIWONk8jIpO8xLxUKTzevEFfT4+448fZcuQI58+fJ6eJCc9fvcL8zRssJk/G1c0NPz8/mjVrRp06dVCxt4eNG8HLiyh9fY4dO8axY8cAqF27NnXr1kV77FhYuRIePgRDw6+/9/dDGtbWMHfut9wiSZL+Aj97DkSaCREKhSIHMBtoCGgD3kAPpVJ5JRXXyhAh/TLfFCDeK2kJ3r6QOaOo0WDfFd+RM7HInImnwaFJXmJevDgeL1+iX7gwSg8PTl66hJubGzn09fH398dQQ4Pu48dz7tw5jh07RoECBehiZUWWChWgfn0RJoCIiAiOHDnCyZMn0dTUpFnt2lTp0AEVa2twdEz5vffrBwcOiFUdckhDkv4Zv2ISZZoIEQqFIjNwDTgBLAMCgPzAY6VS6ZOK62WIkH6J7woQAI5rUQ6fhgJASxM6twINDXyd1mKRLTNPA5NeVWFepAgeT56gX7067NnDnYcPWblyJfqJicS9eUOMvj497OxQKBSsW7eOmJgYrHPkoMzQobBlC7Rr96Gt4OBg9uzZw8WLF8murk7r3bsxO3YMChT4+ns/cUJsM37hAlSokPrPLElSmvWrVmGklRAxC6iqVCqrf+f1MkRIP933BojHpy5wY9Eqmu0/DgoFijw54fEz2LMKNu3Gd+dB0SPxOijJ680LF8bj8WP069UDNzeeBwSwdOlSlMHBZPX3x9fYmBYtW1K5cmU2b97MtWvXsIiOpuXOnahdugQFC37+fh4/xm3bNh49fkyJ2FhaTp+OkZFR8h8gIUFsCW5jI4c0JOkf8CuXcaaVEHEXOAzkBGoCL4ClSqVyRTLnawKf7makBzyXIUL6Wb67BwK447YfN+uB2ACmiJ07KVUUXryC0ztg4CR8T1/EImMGnvoHJtmGecGCePj6om9lBa6uhEREsHTJEl4/e0axZ8+4micPVatWpV27dpw5c4adO3aQ480bej58SFZPT1F98hNKpZKr8+ez69o1QvX1qWtpScOGDZPfrXPYMLGyw8cHsmX7ps8vSVLa8avrQKSVEBH97sv5wHagArAQ6K1UKtcncf4kYOL/Py9DhPQz/EiAAIgMCGJu7oqYAp0BNDXA2BDi4iB3dti9Eqx64uvlg4W2Fk9fBSTZjnmBAiJItG8P69YRHRfHKhcX7nl5UenZMy7kzUuBggWxtbXl9evXrFy6lLeBgXRWV6eUs/OXDSYkEFu2LB6mphzOnZtMmTLRtm3bpLf5DQyEfPmgZ0+YP/+b74EkSX/e7ygkldoQ8asrVqoAV5VK5RilUnlNqVS6ACuAvsmcPxPI9Mkj5y9+f1I68aMBAkDXMCs5ypfCFwgGiImF56+gdhW4fAtmOMHOFZhmN8IzMZHc2ZMeWrj88CGWefIQsnkz9O6NloYGffr3p0qZMpzLnZtK/v48f/YMBwcHdHR0GD1xIoUMDXFRUWHnjBkk/n/5alVVNFxcaOzuzrgsWTA0NGTZsmU4OzsTFPR/QyvZssGIEbBkCTx58l33QZKkP+d3VaJMrV8dIl4Bd//vuXskUzlYqVTGKJXKsPcPIPwXvz8pHfgZAeK9wk3rAnAOUALoaMHmPWDfFRavgVMXwH0NplpaeGpqkjtH0ttvX370CMu8eQlZtQrs7VFVUaGDrS0NS5fmrIEBxf39SUxMZM6cObx8+ZJe06fTKiqK40+f4jRnDpGR/7ektFIlGD0aw+nT6V+lCj179uTJkydMnTqVI0eOkJDwyR6kgweLapcTJvzQvZAk6fdKawECfv1wxmYg16cTKxUKxQKgolKprJKK6+XESumH/MwAARB434clpeqjBgxVU0MrIQGMsoGxAeTNCcfPwbnd4uTa7fA1zIZFSChPn/sl2Z55njxi1cbgwaIktULBSRcXtl2/TqnYWCKKFuXxkydYW1tToWhR7ltasrJ4cbSMjOjdpw85c37SWRcbK8JETAxcuUI0sH//fk6cOIGJiQk2NjYf/9NZuhT694cbNyCpYQ9JktKU3x0g0sqciPKIP9omAtsQcyJWAL2USuWmVFwvQ4T03X52gHhvSen6BHr5UB5oqACFto7Yantsf9i6T9RgOLkdnr6A+tb4mubG4nUQT5+/SrI989y58Xj6FP3Ro2H6dFAouLpsGWuvXye/igoZK1Tg0qVLNG/enHrZs/PG0hKXpk0J0NXF2toac3Pzj43duQPlyoky1+/2yXj69CkbN27k5cuX1KlTh8aNG6OhUEDRolCoUOr235Ak6Y/5Ez0QaSJEACgUiiaIuQ4FAV9gfnKrM5K4VoYI6bv8qgABcHr2Uo5PnI8qMFxPF83oGCiUTxSh2rwYeo+GEmbgvhqu34XGXfAtUhCLl/7JB4mcOfF4/hz9KVNg/HgA7i9ahMutWxhoaVG4dm2OHj1KzZo1aaOtTXzr1mzq04dL8fFYWlrSvHlzVFTejU7OmwfDh8OxY6LUNZCQkICHhwcHDhwgS5YsdOzYkUI3bkDbtrBjB7Rs+VPvkSRJP8efGsJIMyHiR8gQIX2PXxkgAMJe+LGwYA2UiYlUyZwJy/eVKvPnAVVVmDsOWvWGjs3BeSacuwJNu+FbtjgWT57z9FkyQSJHDjxevEB/zhwRAoBnM2ey5P59tDJmpFKjRri7u1OyZEm6hYejPnw4x2fMYOfz55iZmdGjRw90dHQgMVFs/33/vtiHw/jjvAw/Pz82bdqEj48P1atVw8rNDe3Tp0UPRkqlsyVJ+q3+5ByItLI6Q5J+q18dIAAy5jCmQL0aADzKbkRCnhyQORPEJ8Czl7DzIDjPgHVuMG85VDWHHcsxvXwTz0L5yJ3LJMl2L794gaWJCSEjRsDixQDkGj2aoTlyoAwK4uTBg7Rt25a7d+/iCLy1taXOxInY16zJ06dPmTNnDgEBAWKDMFdX0WibNmIJ6jvGxsYMHjyYtm3bcvHSJaYWKsRtY2Po3RvS8B8UkpTepMVJlEmRPRHSP+N3BIj3Xl27jVIJJmWKodh5EDoNEL0QDWrC/uOwfiHcewgznWCzI7RsCEdOQqs++NapgsWdBzx99jLJts2NjPDw90ffyUnMbVAqCbW3x/H1a0KNjGjVsSM7d+4kg64udufOkfXiRQL272eZhwfh4eHY2tpSuHBhOHcOLCygb19YtOiL1wkKCsLV1ZW7d+9SycuL1jY26HTr9kvvmyRJKUsLAUIOZ0jpyu8MEF9QKqFRF7h2GyLfQu1qcOYinHKDWUvB3QM8NkP5UuLrDvb4NqqFxbU7KQeJJUvExlmJiUR27syS6Gj8smenvbU1+/btIy4mBrtTp8j58iVvjx9n5f79eHt70759e6pVqyZWYdjZwYYNYgfPL966kvPnz+O2YQNZQkIYM3s2Kmn0Lx5JSg/SQoAAGSKkdOSPBoj37vuAeWPIpCeqWCYkiOGNY1ugbR/wfQandkCeHOC2HzoPxrdlAywuXE85SCxbBn36QFwc0a1b46JQ8ChXLjrZ2HD8+HEC/Pzo5emJGZBw4gTbDx/m1KlT1K5dm5YtWqDSvTts3w7nz0OpUkm+1htfXwJatMDM0BAOH5a7fErSH5BWAgTIORFSOpEWAoRSqeRJQBAJfawhPFIEirLFwf812I+HbcvEnhfNu8ObEGjdGFbMxnTHQTxrVCB3ruxJtnvZ3x9LQ0NC+vYFFxdQV0dryxb6hYZS5PFj1q9fT82aNclXoABLq1Xjanw8qu3a0b5VK9q2bcuJEydY5uxM1MKFULiwWIERnPQuo1lMTTGbPRs8PCCp0tqSJP1SaSlAfAsZIqS/VloIEM/+u8qKqi1Ya9mRq9mNIVtmfMqVhk27oV9n2HME1u8Qyz0D30BLW3gbBZ1agNNUTDftxtOyevJBIiBABIk+fWD5ctDWRn3PHmz9/DD39WXjhg2UKlWKMuXKsapGDU77+UHPnljUrImdnR0+Pj7MdXIicPVqCAmBTp3E6o2k1K8vJlgOGyY26JIk6bf4WwMEyOEM6S+VFgIEgP8tL5zLNwEgU67sNB4zgAU3n2D+OoB2Z8+g26I+OG+EfWtBTxfqW4NFJdE7oaYGS9fDkCn49u2Mxb6jyQ9tGBriERCA/ooVYvOs169JrFGDbaamnMqblxYtWhAcHIynpyfNLlygft26KGbP5tWrVyxbtozo6Gj6li2LaceOMHIkzJyZ9AeKiICSJcWW4SdPismikiT9Mmk1QMjhDOmflVYCBIBRCTMKNhT/AYQ+e0loQhzdwl5zJ5M+0+o35M5TfxEaOg8Ew2ywxQmOnIZ+48SEzH6dYcZITJetx7NVw6/3SBgYEGJrC6tWgYEBKh4etLt3j/qPHrFr1y60tLRo0qQJeytWZMeZMyTOnYuJiQkjRozAyMiIhefPc23SJJg1C9asSfoDZcgA69aJlR0LFvyiuyZJEqTdAPEtZIiQ/ippKUC8V3NM/w9fn3VwoezUwYw/fJAc8bEsyZWP3aVKk6CnB616QeVysHwWrHeDCaIsNUNsYcIgTBeuwrNj8+SDxOvXIkj07AmrV0POnChOnKD53btYPXjAoUOHiIiIoF27dpwoVYr1Bw+SsGYNGTJkYMCAAZQoUYKV/v4c690bZa9ecOJE0h+oenUYMgTGjoVr13727ZIkiX8jQIAMEdJfJC0GCIAc5Ut9KD4V8uQ5Nw6fRH/mSOw2bqZFyGuOvk1gcdvWhAYEQdch0K4pzB4NDs6wZJ1oZLQdDO+D6exleHZulXKQ6NED1q6FvHnhxAnq3btHRy8vTnp68vjxY7p27cqVQoVwcXMjdtcu1NXV6d69O5aWluxQUWFbmzYktm4N3t5Jf6hp08TGXC1aQGDgz79pkpSO/SsBAmSIkP4SaTVAvFfjk96Ik9MdiWtcG0Xzelh6HGfg3RsEBAQzs30HHl7zgnEOMLAHDO4Jw6bB9v1iSeWUoTDEFtPpjnh2bZ1ykOjWTQw95M8PJ05QzcuLbvfucenSJW7cvEmvPn3wzp0bxw0beHv0KCoqKlhZWdGhQwdOZ8mCS506xDRtCkFBX76IlpbYUyMyEjp0gPj4X3XrJCld+ZcCBMgQIf0F0nqAAMhVqeyHuRFhz19xcdkGWDwFVBQUVCgZ7b4Ho6hIFjVvzrmDZ2Dtdpg+Ajo0h+7DwOO0CBLTR8DA7phOXYxn97ZfDxLZshHStSusXw8FC8Lx45jfu4ftnTvcvHGD02fPYte/P34GBixYtYrQc+cAqF69On379sXbxIQFZcoQ2qaN2D78/+XJA1u3wvHjYmhDkqQf8q8FCJAhQkrj/oYA8V7dacNRvNtJ84yDM1HqarB8Npy6QMb6NRmwai2Vs+mxsVYtdmzcT+Lpi+AyE+pWg3b94L+rIkjMGg39u2I6eSGePdonHyQCA0WQ6NIFNm4EMzM4doxSd+7Q5/Zt7nt5cfDYMfoPGkSkri7znJ15feUKAMWKFWPIsGGE5siBQ86cvExu74zatcHBAebMgW3bftm9k6R/3b8YIECGCCkN+5sCBIBhsUKUshZbakeHhPHgkCc0sIA+1rDjAKpN6tLBYRFtyxXiRPHiLF22nagHT2DTYihTHFrYwh1vESQcxkK/zphOmo+nbYeUg0TnzrBpExQrBkePUvTWLexu38b30SPcDhzAbtAgVBQK5i1dyvN3kyVz5crFiHHj0DYyYp6qKvfHjUv6gw0eLIY0unWDW7d+wZ2TpH/bvxogQNaJkNKovy1AvBf2/BXuduOoNWEQ2cuVEE9GRUPl5qCuDupqEBDEPRcHVu7yRD8mhn7jbMmqrwf1OkJAkCiVnS+36BkYPBlcNuE7dRgWLpuSryORLRseQUHob9wIHTvC9etQuza+pUvjVLo0hkZGdK1XjzUODrzW1cXOzo58pUuLtxcVxcoxY7j/9i3W+fNTacSIL1/g7VuoXFnMkbh0CTJn/jU3UJL+MX9rgJB7Z0h/rb81QHzVjbtQrRV0soKDJ6CgKf5TRuC0Zg/xmlr0G2ZDLm1NqNNe7LtxfCuYGIogMXAirHDFd/pILJatTz5IZM2Kx5s36G/aJHoOrlyBOnV4Zm6OY5kyZNLXp1edOmyYN4+nWbLQp3dvzMqWBSAhPp4t9vacVShoXKgQjQYORPH/+2c8egTm5lCpEri7y0JUkpSCvzVAgCw2Jf2l/skAAVCqKMwaJSZU9u8KF65jtH0vw1vXJlNICPMXbuZucDjsXwexsdC4CwQFi6GNhZOgeztMx87G065L8kMbQUFYZslCSKdOsGULlCsHhw+T6+JFBt+4QXhYGEsPH8a6Xz8K+vmxdPlyrl+8CICqmhodHR1pGhbGfm9vNi9aREJCwucvkC8fuLrCoUMwadIvvV2S9Lf7mwPEt0iTIUKhUNgpFIq7wMU//V6k3+dfDBCJ8fHc3LybxIQEUZ2yeT2YtxzGDYBlG8j4yp9BjatQ4Okzlrrs4Lx/MBxYD6+DoFl3CAsHFRVwnAJd22A6ehae9l1TDhIdO4qVFRUrwqFDmJw/z5Dr14mNicHpxAla9+lDyadPWblmDRfOngVAoaZGw+XLsXnyhPNeXrgsWEDM/6/aqF8fZswQdSR27/7Fd0+S/k7pJUCAHM6Q0oh/MUA8v3gd935jCbh9nyZO0yjXsz2EhPGofhc8ihTBRluBzqad4LGZhHOX2XrwPGeKFaNJgyo0NM6Eor41FCssNu/S0RYbZ/UdAxt24jtnDBaLVic/tJElCx4hIehv2QJt2sDp09CgAUE1a7K4XDniExOxL1uWo0uXcq5wYdq1aUPNd//pERjI3aZNWVGiBMZ58tBvwAD09PQ+Nq5UijaPHIGLF8WqEEmSgH8nQMjhDOmv8S8GCID46BgCbt8H4NjEeUS9CQH9jMSMG4C3TgZma+nzvGpFaG+HartmdChuSrOLF9l36BybvZ6TsGsFXL8jln/GxIgeiWUzoKMVpiNm4DmoZ/I9Em/eYKmvT0j79uDmJkpZ799PVk9PBl+7hqaGBgsvXaJW587UuXGDrdu3c+jgQZRKJWTLRtHNmxl86hTBjx8zd84cAgICPjauUIi9N3LlAisrCEv2/xdJSlf+lQDxLWSIkP6ofzVAAOStUZHibcQOn1FBwRyfLDa0KtK0FqMLGaP5OgiHIiW5mCs3dOyPYtowGuTORufTpzh/4TYr7z0nbusyOHUBugwRVSNVVERtifbNMB0xHc8htikHiXbtRPVJCwvYuxf9Y8cYfPUqGTNkYOHt25h37EiTixfZ6+7O7t27RZAwNSX35s0M27cPhZ8fc+fO5fHjxx8b19MTwxl+ftC5c/Lbi0tSOpEeAwTIECH9Qf9ygHjPcuZI1HW0Abi8fDPPL4gaDdkGdmNYfDhlH/mwtlx5tmnoET90KqyaSyU9LXqfOsndu49Ycv8FUesXwr5j0GuU+GWtqgorZkObxpgOm4bnsF6pCxI7d0LdurB7N3qHDjHo6lUMsmVj8aNHmLVtS+szZ/Dw8MDV1ZXExEQoW5Zs69YxzNUVg7AwFi5cyK1P60QULCiKXO3ZA9On/+pbKUlpVnoNECBDhPSHpIcAAZAxpwkW4weKb5RK9vYdQ0JsLCgUaDjPpPP9u7R/5M3p4sVwDIomYq0b7HChRFw09ufO8OyZHwsf+hPuMgtc94i6EUqlCBIr50CrRpgOnYbniD5fDxIZMxLSti3s2iUmR+7cic6+fdhfuUKO7NlxfPWKnFZW2Bw/ztkzZ1i3bp1YnVGvHhmWLGHgqlWYAS4uLpx9NxETgCZNYMoUmDBBrNyQpHQmPQcIkCFC+gPSS4B4r5J9V0zKFAPg9d0HnJ23QhzQz4hi61JqnDrLwMg3vMqRHYfLD3h1/jrsWUWBly8ZfPkioSERzHvyhqCFovAU4x1EkFBTg9UO0KI+poOn4Dmyb/JBIjhYBIk2bUTPQePG4OaG9q5d9L98GdO8eVkSGkrGJk3ocfgwVy9fxsXFhdjYWOjSBY3p0+m1eDFVM2Zk06ZN7N+/nw+TsseNE0MaXbvCyZO//oZKUhqR3gMEyBAh/WbpLUAAqKip0XTZDBTvijOdmulEoPcjcbBkEVgyjQLrtjLCNCtqmho4HDjP3UcvYPdKcl6/xdB7N0lMSGTeq3BeTh8Jc5fDnGXiejU1WDMPmluKIDHaLuUg0bo17N0LzZrBli1obN9O38uXMStcGOeYGFQaNaKPuzv3795l6dKlREdHw4gRqAwdSvuZM2mWJw/79+9n8+bNordCoYAVK8TkTSsruHfvN9xVSfqzZIAQZIiQfpv0GCDeMyldjMoDuwOQEBvHvn5jUb6fjNjRCvp1JtvYOQxrUpX8oSEs2XuaE/6hKDcvxuDQCYa+eoyujhbz38TiO3oATJwPS9aJ69XUYO18aFIb00GT8Bzb/+tBQk+PkFatRNXJVq1g0ybUN2+m16VLlCpZkpVKJW8bNsR+1y6e+viwePFiIiMjYfZsFF260GDcODqXLs358+dxcXERtSQ0NMTkzZw5oWFDMeFSkv5RMkB8JEOE9Fuk5wDxnsW4AWQ2zYVCVZUcFcuQGB//8eCsUWBeEm37cfTt15ba3vfZfug8W0JiSFgyjUyrtzA4NgwTo6wseqvk7gBbGDoV1rmJ69XVYf1CaGCB6YCJeI4fkHKQaNkS9u2Ddu1gwwZU16+n28WLlDc3Z62aGq/r12fQtm0EvnjBggULCA0PFz0ODRpQafBg+tWuzYMHD1i4cCHh4eGQKRMcOABxcWK4JCLi199USfrNZID4nCw2Jf1yMkB89Oz8VdS0NTEpXezLg68CxEZdBfLCmP6cHeGAa7VqFC2Wnx4Bz9GcuojYZTNYGa/OvfuP6R4bTpmVG2HDQmjVSLQRGwsd7cHjNL5OU7GYsij5glT6+nhERqK/a5f4pb9+PXTtSmKfPmypVo0zZ87QLiKCQocO4WhtjbqeHgMGDCCrtraYnHn3Lk937GDpoUNoampiZ2eHoaEh3LghhjZq1BDLQNXUftXtlKTfKj0FCLkBl5QmyADxjc5dgXqdoJ8NFDfj7lQnVjRtglFOI/r53Cfj2m0kuDqxLiSGK9e9sYl4Q6XNbrB9GTR8V3EyNhba28Gxs/gumY7F5AUpB4ndu6FRI1i9Gnr0QNm/P241anDixAlahYZS+sgRFnftSpy6Ovb29phoaUHNmhAcTOD+/Tjt3Mnbt2/p168fefPmFdUsGzUCW1tYulTMm5Ckv1h6ChAgK1ZKaYAMEKmTEBf38Zsq5WDOGFi8BtTVKNq+MUO2bSfUPwgH49z4WzVE1WYgXfNko0rF4qzXzczJNlYiNHieF21oaICrE9Sqgmn/cXhOHpr80EZICJa6uoRYWYmNtbp3B2dnFE5OtD5/nvr16rEjUyYu1qnDkDVr0FEqWbBgAU/Dw8X5ampka9uWYd26YWBg8LGWRL16sHw5ODvDnDm//B5K0q+U3gLEt5AhQvolZIBIWUJcHKfnLGNp6QbEhIV/PNDXBqxbin0ymlmSq4Y5wza7op6QwNy8BfCpUwOVNn3oWCg7dSzKsVXfgMNNG0Gr3nD+qmhDUxO2LIEaFTG1G4vnlFQEiebN4fBh6N0bnJxQLFhA8/PnadqkCe5ZsuBZuzaDVqwgq5YWCxcu5OHbt6LHITiYDG3aMLBHD8zMzD7WkujeXdSPGDVK1pCQ/loyQHydHM6QfjoZIFLn4JApXFy6HoCyPdrTdMm0jwejY6BeR3jhBx6u0HkQb1+/waVXD3z9guh27zZlbt5CeWwL+31eceDweeoHvKKZx1EUBzdAuRIf22ndG85extd5JhbjHJIf2siUCY+oKPT37hVzHhYuhMGDYexYPGrWZNeuXdR+/ZrGnp44DxjA48BAevfuTdGYGDG0UakSiXv3snXXLk6fPk2TJk1o2KABim7dxNbkR46I8yTpL5GeA4QczpD+CBkgUq/ygO6o6+oAcHXVFnw8Tn88qKUJW5eBEug+FDYuRichgf5ubpQuYsrKgkU4XqIkiibdaFIyPy2b1eSwoQnbLOuS2KQr3PL62M52Z6hSDtO+Y/CcPiL5HonQUCy1tQlp1kz8wh80CBwcYPp0LM+do127dhw3MGB3zZr0dXKicPbsODs7cw1E3YmTJ1Hp0oX2bdrQtGlT9u3bh+uWLSQ4O8saEtJfJz0HiG8hQ4T008gA8W308+bEcsaID9/v7TOa6JBPAr+JIWxbBtfuwAwn2Lkc9QeP6bp/P5a1zHErZMbOQoVRNu1G3VIF6NjGklOGJmysXZuExl3gvo9oR1tLBIkKpUWQmDkqdUHi6FEYNgxmzIBJk6h59izW1tacMTJiW7Vq9Fy0iFL58rFy5Ur+09KCrVvBzQ1Fv340bNAAGxsbzp07x/K1a4l1dZU1JKS/hgwQqSdDhPRTyADxfcxtO2JaqwoAYS/8ODz8/zayMi8ptv9e7yZ289y4CJVDJ7E6foI2LWpxtEAhNuQyJaGlLdVKFaCrdSMuGpmwukZN4ht1AZ8noh0dbdi5HMxLYtpnNJ6zx3w9SGhpEdKkCRw7BqNHw+TJMHYsVc6epWvXrlw0NmZDlSp0nj+fKiVKsH79ek5mzixWd6xYAaNGUblyZfr27Yu3tzeL1q4lws1N1pCQ0jwZIL6NDBHSD5MB4vspVFRo7jILDT1dAK5v2IH3geOfn9TRCgb3hJEzRVGpRZPBeSO1rlylm00jLubLj0u2HMR2tKd8ifzYdmvGLWMTXKpUI7ZRF3j6bg7E+yBRphimvUfi6ZBCkNDUFEHi+HExQXL8eBgxgvJnztCjZ0+uGxuzunx52jg4UKdCBbZu3cohIyMxl2LOHJg1i2LFijFw4EBev37NXFdXArdsgQcPoH17sbW5JKUhMkB8OxkipB8iA8SPy5Q7O/XnjP3wvXu/sUS9Cfn8pGnDoU5VsB4AtSrBiL4wehblfR7Rr1dLHuTNg6NOFt72HEmpYvnoZ9uSB8bGLKlYhejGXeClv2hHVwd2rYCSRTHtNQpPh7HJB4mwMCw1NAhp3BhOnBC9EaNGwZAhlDlzhl69e3Mne3aWlylDk9mzaVKzJnv37mV3njwoJ04UPRjLlpE3b16GDx+OUqlk7v79PFu5UiwPtbcXG4lJUhogA8T3kSFC+m4yQPw8Zbq2oWADCwAi/F5zcPCUz09QVRVlrbNmhtZ9YKgtdGgOPYZRNPA1A+zb45czB/PRJmTIVMwK5ca+XxuemxizuFwFIpt2h4Ag0VYGXdizEooVxrTXSDznjU85SDRqJHbonDEDhg6FAQMocfYs/ezseJg9O8uKF6f29Om0btCAI0eOsKVQIRIHDAA7O3B1xcDAgGHDhqGvr8/88+e55+Aga0hIaYYMEN9Phgjpu8gA8XMpFAqaLp2Olr5Yyvzy2u3PJ1kC6GeEHS5i2Wf3YbBsOlQuB236YBoVydBhNkQZGzI3PBH/yYvIb5qDQfbtCDQxZkGpsoRZ9YT3PRwZdGHvKihaCFPbEXjOn5C6IHHqlFixMXAg9O2L2Zkz9B8wgKfZs7PEzIzKU6fSqUULzpw9y7rSpUno0kVsE75vH3p6egwaNIgCBQqwxMeHCyNGyBoS0h8nA8SPkXUipG8mA8Svc9N1D6+u36H2pCGoa2slfdIhT2hhC8N6w9BeULsdREbBye0Ea2nhNH0F4eFv6VfIhLxDevDKP4jFi13R8nvNQB8v9PeshEx6oq2wcGjaDe4/wneVAxaDJidfRyJjRjzi4tA/dEgs2ezfH5Ytg9Wr8a1ZE6dFizDw88P+2TO8Zs9mzZYtFC9WjB4eHqgfPCiGMGrWJCEhgc2bN3P+/HmsYmOx3LABhawhIf0BMkAkT+6dIf0SMkCkEQtWwuhZsMoBqlcEizZgbABHNhGJgqUTlvAyNoFeJfJQpHcHAl4Hs3jRZlT8XjPwqQ9ZdzqL3giA0HBo0hUePsZ3tQMWAyYlHyT09PBISBBBompV6NtXrMZYv55nNWviuGABmV69YoCfH08cHFixYQP58ual98GDaP33n5ikaW6OUqlk3759HDx4EIvgYFofPozK2bNQpMjvu4dSuiYDxNfJECH9dDJApCFKJfQeDVv2wOFNoKMFdTpAtfLg5kxMXAIrR8zDS6FGl7IFMe/agqA3YSxasJEE/0AGvnqC4bYlooYEQEgYNO4Cvs9Ej8SAiSkHicOHoUoVscnW2rWwaRMva9Rg8bx56Lx6xYA3bwiYO5dlq1aR3dgYO3d3dLy8xJBI0aIAnD59mi1btlA6IICuV66gfu4cGBv/ppsopVcyQKTsr65YqVAo7BQKxV3g4p9+L5IgA8SfEej9iDV1OvD63oPPDygU4DQFKpSGtn0gU0ZwdQSP0zBwEppaGvSZO5Ry0ZGsue7DqQ3uZM2SkSFDbdAwzsaC7Hl5ZTMYYmJEe/oZYd9ayJMD054j8HSamvwcifBwLFVVCWnQAM6fFxttdeoE1tZkP3eOISNHEm1iwoJs2cg6diwD7ewICAxkYb16hOfJIzbnevwYgOrVq9OrVy9um5jgaG7O22bNZA0J6ZeSAeLnkj0RUopkgPgznpy5xMam3YiPisa4dFF6nnJDVUPj85MC30D1VqIGhOc22HkIeo+CKUNhRF8SI6Nw6zMRz2xGNDc3o36nxoSFR7LYYT1hAUEMCHtNznVzRf0JEBMvG3WG56/wXT0PC7txX++RSExE/8gRqFhRTKDctg3c3AisWpVFs2ahDAhgYHQ0cXPnsnjpUrTU1RmwcydZYmLgzJkPvQ4+Pj44OzmR0d8fu8hIsuzYAWpqv/DuSumRDBCp91f3REhphwwQf072ciXQz5MDAL/rdzkxZdGXJ2XLIgpIPXsJnQeDdQsYaw8T5oHrHlR0tWnjOI5Gzx6z57IXuzfsQy+DDoNGdiWLUVYWZjLkSa8xkJAg2suiD/vXQXZjTHsMw3PZ9K/3SCgUhNSvDxcvwrp10LIltGlDtv/+Y8jYsagZGTFfWxuVMWMYMmgQ8Uol85s2JUBFRfRIBAcDkD9/foaOHEmMiQlzM2XihawhIf1kMkD8GjJESMmSAeLPUtfWouXa+ai86yU4O285T85c+vLEIgVh4yI4fBLGzoFxA8CmFfQaBZ7nUehnpMmSibT2usuRq/dxXb8PHW1NBozqhpFhZhbpZMGn30RITBTtZc0MB9aBsSGmPYbj6Twj+SAREYElEFKvHly+DBs3QtOm0KoVmS9cYMj48egaGjJfXZ3YsWMZOngw6trazG/WjBeRkdCo0YfhC2NjY4aNH08GAwPmx8biPWVKkq8pSd9KBohfR4YIKUkyQKQNJqWLUWviIPGNUsmu7sOIDg3/8sR6NWHuOFi4CtZuh6XToEYFaNcP7nqDUTZqL5uMzbUrnL12nzWr96Chro796J7kypoJJ/UM3B809eNf/9myiCCRLYsIEi4zUxckrl4VdR/q1wcrKzJeuMCgiRPJnC0bi5RKwsaPZ8jgwWTMkoUFTZvi6+cnei/ezc3Q19dn8LRp5M6QAY+LF2UNCemHyQDxa8kQIX1BBoi0pcrgnuSuWh6A0KcvODQkmb/Q+9qAbUcS7ScQcuwcuDpB7hzQrIcoe503J5WXTKLn2dNcv/UQl5W7UFFRYDfOlnyZ9Viq1OLOiFkfg4RBVji4AbLoiyCxfNbXg4RSSYilJVy/Dtu3Q5060KwZGS5dYuDkyRhmzcqimBgCJk5k0MCBGOfMyeKmTbnv7Q0dO37YS0NbWxu7uXPpkS0bdO0qKmVK0neQAeLXkyFC+owMEGmPiqoqLVY5oJkxAwA3Nu3ijtv+L09UKGD+eI41b8yMPWd4dNMbdq8UoaBFTwiPgGKFKOM4kb7HjvLgni9Ozm4kJCTSZ2JvzDLp4BKjyo2x8z+2afguSGTSE0FixezUBYmbN2HHDqhRA5o0QefyZeynTiVn5sw4RUTwfOpU7O3tMS1QgCVNmnDr2jWxVPTdkIqaujpaK1aIolZWVnDv3s++rdI/TgaI30OGCOkDGSDSLv28OWm4YOKH7/fZTyDshd+XJ6qrU3nOCIyj3rJw2zEu+76CPavA9xl0tBdbcVcqS9H5Y7B3d+fFo+csXLqN6OhYbCf1o6SeFisiErgyafHHNo2ywaGNoJdBTLZcmUKQSEggpG5duH0bdu+GypWhUSO0rlyh/4wZmOrpseTNG3ymT6dv374UK1ECl4YNuXzmjNiX431PiIaGCCI5c0LDhuCXxOeVpCTIAPH7yBAhATJA/A1KdrSiWOtGAESHhOFz9EyS52XIYYT96O6UffaU1TuOc/BFEErXJeD5H9hPEL+k69Uk/8zhDHbbQchzf+Y7biUsPJJuU/pjrqPO6uAY/pu+7GOjxgZwaAPo6GDafTieqxySDxKRkSJI1KkDd+/C3r1gbg4NG6Jx9Sp9Z8/GTFcXZ39/7s6aRc+ePTEvX541lpacOXwYpk792FimTHDggAg/jRvLGhJSimSA+L1kiJBkgPhLKBQKGi+eQq5KZelyeCNlurRO9lz1wvnpYt+RJpcv437oPBv8w4lfOl1Mupy5RJzUrik5x/dn6GZX4gKDme+4haA3oXSePpAqGgrWB77lzOwVHxs1MYTDG0FbSwxtrJmXcpCoXRu8vGDfPihVCurXR/3GDWznzKGEpiYrnj/n2pw5dO7cmeo1arDZwoKjO3fCok+Ws+bKJYLEgwfQvv2HuROS9P9kgPj9ZLGpdE4GiL+PUqlEoVCk7uQVrlxavJ4NlnUxzZeTXqGv0Z26EFbMAZuW4pzpjgTPX8nint2J0tSgf+9W5DDJxvZhDngq1WidIwu1h3X72OYLP6jXCeLiRUGqbkOSL0ilq4uHmhr6x49DwYJi1ca9e3D8OAklSrBh0CAuxcdjkz8/FYcNY++ePRw+coRGly/TuF8/FF27fmzsyBGxJNTWFpYuFXNAJOkdGSB+LllsSkqRDBB/p1QHCADbDpSvX5UBu/fw8qkfDgodArq3h75j4NhZcc6Y/mTu0oohy1eSKTGRBUu28ejJK9rMHY5lQjRuL95weMG6j23mMBY9EqoqYo7E2vlf75GIjxc9Eg8fwsGDUKgQ1K2L6p07dF60iCoKBet9fTmzYAHNraxo3rw5B8zNcVu1isSdOz82Vq+eKLHt7Axz5nzHnZP+VTJA/DkyRKRTMkD8G5SJiZxfvJrjkxYkf9KsURQoXoDhO9wgNg6HzCY8bFQX2veDW17iL/q549BrZsmgpS7k0NbA0dmNe95PsVowisbR4ex5Gsi+hRv40HOZ00Rs/KVQYNpzOJ7rUggScXEiSPj6wuHDkDcv1K2Lyr17dHRywiIuDteHDzm+cCH169enXZs2nChRgk1LlpDo4fGxse7dYcIEGDVK1pCQABkg/jQ5nJEOyQDxb1Aqlbi2sOXBIU9QKOhyeCN5a1RM+uTQcLBoQ2SikuXdOuP7PABrrztUuHcPTrqJUBAXB637EHv+KiuGD8TLP5juNo0pUywfR/pOYneGzNQ1NaKFfaePvSFPXoihDVUVsftn58HJD23o6OChoYG+p6eY51C7Nrx6BZ6eKAsWZLetLR7a2jQzM6PBgAFcOHeODRs2UPrJE7qOHYta1arvP7ioH7FlixjiqFnzZ99a6S8hA8SvI4czpCTJAPHvUCgU5K1ZSXyjVLK7x/Ckq1kCZNKDHcvRDXqD/cGDmJcuzNqCRThYqAhKq54iZKirg6sTGsUK0XvRUkrnNWHlun2cv+pFvaUTaRMSwFFff7Y5biYx8d0fH3lyiKGNuHhMbUfiuWFh8j0Sb99iGRtLSK1a8Pw5HD0KRkZQuzaKR4+wcnGhcXg4e728cF+8mAqVK9OzWzdu5s6Ni4MDsVevvv/gIGtIpHsyQKQNMkSkIzJA/HsqD+z+ofch9NlLPMbMTv7kfLlhy1LUzl3B5txZmjSogrtZETab5CKhvR3ExordQHcuR83YgG4LHKlSzJQNroc5cf4WtZyn0DHgBacevcLVaTOJ7/fayJtTBInoGBEkNi3+epCIiRFB4tUrESSyZBFB4tkzGq9cidWbNxz08mKXoyOlypenb48ePDAywmnWLKLu3BENyRoS6ZoMEGmHDBHphAwQ/yaFigrNV8xBI4MuAFdXbeHR8XPJX1CtPCyZhmL1Vhrdv4dNh/qcL1gIZ93MRNu9qyGRORO4r0FFXYOOC5dSt2Ixtu86wYGTV6m6fBqdXzzhnM9L1jtuISHhXZDIl1sEibdRmPYcgedmx68HiehoQiwsICAAjh2DDBmgVi14+ZJ6a9bQxt+fo15ebHV0pHC5ctjb2vIiUyYWTZ9OxIMHoiFZQyJdkgEibZEhIh2QAeLfpp8nB3VnjPjwvXu/scRGRCZ/QedWMLQXjJpF5aDX9OvVEp88eVj4VknYjHc1JEwMYf8aFGHhtFjsTNPa5uw7eI6dRy9SYfVMuj/x4fKjF6xxciXh/Tbi+fPAkY0QEfkuSDh9PUhERYkgERQEx4+DpqYIEgEB1Fq/no7Pn3P63j02LV6MadmyDLK15Y22NgumTSPk0SPRkKwhka7IAJH2yBDxj5MBIn0w79mBPNXEJl0hj59xbOL8r18wZSg0qgWdB1E0IZbBQ6wJNTbE4dFr/FdvF+fkzwvua1D4PKGh0wraNKnOMc8rbD5wjjJrZmP70IubPi9Y4biFuPe/vPPnhSObICwc014j8HRdknyQiIrC8u1bESRCQkSQUFEREy6Dg6m2cSOdfX35z8uLdYsWkb1cOYbY2hKlUDB/2jQCHz8WDZUqBW5ucOgQ2Nt/LJst/VNkgEibZIj4h8kAkX4oVFRo5jITNW0tAC4uXc/Ts5eTv0BVFdbOB9Pc0LIXudRVGT62Jxq6Osy95I3PrnfLKksWgR3L4cI1armsoXM7S85duM0a99MUWzuH3vduc+/RC1wctxAbGyeuKZBXDG0Eh2LaeySeW1IIEpGRhNSsCeHhcOIEJCSIHomICCpu3kyPBw+4cv8+qxYtIpu5OUO7d0cRF8f86dN59T5IfFpDYvZX5oVIfyUZINIuGSL+UTJApD9Z8uel9qTB4hulkpPTHb9+QQZdcHOB6Gho148suloMndKX7InxLDpxjasHT4vzqpWHzY6w/ziV1rrSs0sTrt98gMuukxRc60C/m9d4+OgFSxy3EB0TK64plE8EicA3mPYehefWVAQJCwt4+1YEiZgY0SMRG0vZLVvodecOt+/fx2XhQjJWrsyQLl3QiYhgwcyZPH0/tPG+hsTo0bB584/fUClNkAEibZN1Iv5BMkCkX4kJCayp0x7jkkWoO204mhn1Ur7owjVR66F1Y1g5h7igEDYMmM4VQ2Na1q1AnSY1xHmbdkGP4TCsF3et2+Kyeg95cxvTp3EVXnYaxJJy5cme2wS7/u3R1tYU19x7APWtwdgQX5eZWLTtl3wdCW1tPDJkQP/UKVBTE/UfMmUCT09ISOCelRXOpUuTL39++gwcSNzhwyxZvx5/AwP6DRlCgYIFxVBGt24iRBw5AhYWP+W+Sn+GDBB/TmrrRMgQ8Y+RAUKKj4lBTVPz2y7ashe6DoGpw2B4HxIfP2ev3WSOFDKjdtVStGxZBxUVBTithWHTYMZIfKwasWTFTgwNMtO/URUCbQbhWLEKBrmMse/fDl1dbdH2HW9oYA3ZjfB1mYVFm75fDxJ6eiJIKBQiSBgYiPkSb9/ibWXFMnNzcuXLR9+BA1Hs2sWybdt4nD07vfv3p2jRomKpauPGcOkSnD0LxYr92A2V/ggZIP4sWWwqHZIBQgK+PUAAtG8Go/vD+Lmw5wgqeXNiNWUA7f47z4kz11m1bq+Y89C/K4yygzGzyX/qHIPt2vImOIwFu0+hv3I2g86c5M3TVyxc7Ep4+FvRdrFCcHADvPDDtO8YPN2cvz60ERYm5kgolSI8+PuDpSVkyEAhNzcGnD/Pi0ePcJw/n0QrK+waNaLw48c4Ozlx7dq1jzUk8uQRG3a9TDqwSGmXDBB/jzQZIhQKhZ1CobgLXPzT7+VvIQOElJzQpy+5tWVvyieOHwAtG0D3YWJPjXIlqDmmN70OH+b2zQc4OrsRERkFEweBbUfoN5ZcV28ypH87omJimLf3LNrLZzH4xDHCn/uxYLErIaHvajcULwwH1sPTl++ChEvyQSI6GsvQUBEkVFVFkHj+XEyezJIFUzc3Bp46xevHj1k4bx4xHTrQq1YtSj14wMoVK/jvv/8gY0ax9DMxUfRKhCdTyVNKc2SA+LvI4Yx/gAwQUnKurNrCkZEziY+Oodf53RiVMPv6BZFvoXY7CA6DszvBICssWYfvbBeWtW2DTpZM9O/dimz6GaDLYHA/CntWEVSyGIuXbSc2Lp4Btcui2mM4C+vVQ93YgIH925El87uf3xt3oWFnyJcb36UzsGjVK/mhDS0tPPT1xdDG27diomWBAmKuw7NnvGzWjMV16qCbIwcDBg9Gb/ZsXM+d42zRorRr146aNWvCrVtQrRpUrgzu7qK0t5RmyQCRdsjhjHRCBgjpa8Ke+xEbEUlifDx7eo0kMaViTLo6sN0FoqKgQ38xv8CuC6ZtGjJs4yaUEW+Zu2gzT18GwioHsXKjTR+yPn7KEPv26OpoMf/IRaKXTGfIgQMk+r1m/uItBAaGiPZLFYX9a8HnCab9x+K5c/nXeyRCQkSPhK4ueHiAt7coc50nD9nd3Bh86BBRL16wYN48QoYNo2PRotS5cYOtW7dy6NAhlMWLw86dojejb19ZQyINkwHi7yRDxF9MBggpJdVH9cWgaEEAXl27w7kFK1O+KHd22LIULlyHodPEc3PGYFitHMPWbyCzpjoLnLZy59FL2LoUzApAs25k8vNnsF1bDLLqs/D4VYIXTWHI3r2oBQQy33EL/gFvRFtlisP+deDti6n9eDx3rfh6kAgOFkEiUyYRJO7eFXMdChXCaPt2huzbR8KrVyyYP5+gSZNoaWpKkytX2Lt3Lzt27CCxVi1YtUo8pk37CXdV+tlkgPh7yRDxl5IBQkoNNU1NmrvMQqEiftQ9py3mtdfDlC+sag6LJ8OKzbB8k5ibsG4BenmyM2jtegrmNGDZyl2cv+MLu1dCtizQuCu6wSEM6NuGPLmNcTpzi5dzJzB45060A9+wwHErL18FivbLFod9a+HeQ0ztJ6QcJN68IaRGDcicGQ4fhhs3oGlTKFmSbFu3MnjXLlT9/Zm/YAEBs2bRyMiIdv/9x4njx1m3bh3xHTrA1KmijsS6dT/p7ko/gwwQfzcZIv5CMkBI3yJH+VJUHtQDgISYWPb2GU3i+/0uvqZbW+jXGYZMhZP/iaGOHcvRVCjovX4zVcoUZsOWwxy47IXSfY24pmk3tCIj6WfbArNCuVl28T4PZ41l0PbtZAwOZoHTVp499xfnmpcE9zVw5z6mAybiuTuFIBEUJHokDAzg4EGxhLNZMyhfnixbtjDYzQ3twEAWODrycuFCambKRPfTp7l65QrOzs7EDBsGPXuKx9GjP+PWSj9IBoi/n5xY+ZeRAUL6HnFR0TiXb8Kbh48BqO8wlkr23VK+MD4emnaHm/fgzE4wzQV3vaFWO5QVy3CoX0/cD5+naqUStC+dH9W6HcQ5B9aToK3F+s2HuHztPh0L56DM6Ok4dupAgJ4e/Xu3wjSPiXiNC9egSVcoVRTfxZOxaN4z+cmWmpp4GBiIyZbPnon5EdWqwZ49cPQo4R064NixI8EZM2Lfowe5bWzwiorCpU4dTHLkoF+vXmTo0EHUjzhzBkqW/Dk3WPpmMkCkbbLY1D9IBgjpRzw9e5k1dTuAUomathZ9L+8nS/48KV8YFAzVW4G2FnhuA70McPwcNOsOXVpzvnN7Nm3zoKhZXnqUNEWzSReoUBp2LidRXYOtO45x+twNWuU1pMqEWSztasMLbV369WpBgXw5xWucvwpNu0HZ4vgumoRFsx5fDxKGhiJI+PqKJZy1aokJlO7uvLWxwalLF/x1delvbY1pp048VVXFqX59dPX0sO/WjSxWVmIb8v/+g5w5f9o9llJHBoi0T67O+MfIACH9qNxVzanQ1waA+Kho3PuOIVV/RGTNDG7O8PSFKHudmAi1q8DS6bBqC5XPnKOfbQse+DxjwdnbhG9yhDOXoMdwVFDSvnUd6tUuz47HARwbM4R+q9aSOyYKJ5cdeHk/Ea9RuSzsWQVXbmE6eAqee1clP7QRE4NlQICYI5EvH+zdC8eOQdu20KwZOitWYL9mDdmjoli8fj0PVq4kd1gYwzw9iY+JYa6zMy/XrBGltRs1gtDQn3WLpVSQAeLfIkPEX0AGCOlnqTNlKPp5cqKX3YjKg3qgUChSd2HRQmLXT/ejMHWxeK5zK1G9cuwcit65y2C7doSEROBw0ZsA59mw8xAMnYoCsGpag+aNq3HAL4T9IwfRZ/kqCsTHsXTFLu7c8xXtVTUXQeLidUyHTsPTfXXKQaJ6dShYEHbvFluBd+gA7dqh7eRE/xUryBsXh9PWrdxbsQLDJ08YduoUutrazN+wAZ9Vq8SQSKtWYimr9MvJAPHvkcMZaZwMENLP5n/Li0y5sqOl/x0/Uw7OojT2psXQqpGou9B1KOw+BIc2ElQ4P04uO4iMjKavgS6mI6fC5CEwsh8AJ89cZ+uOY1TW06TtPEfW2PXmTqKCHl2aULqEWIrKyf/AqidUNcd37ngsmnb7+tCGkRH6p0/DzZvQsiW0aAGbNsHSpcQNGcKK/v3xSkykp4UFJbt0IapaNZbVrcuTp0/pWakSJbp2hfbtYe1asV+H9EvIAPF3kXMi/gEyQEhpjlIJXYaAuwec2Aqli4ltuxt3Ba+HcHI7EcZGOK/czbMXAfTQgpJzHMXQR/d2AFy4fJcNrocopaFCZ0dnNgzoy/WYBLpaN8K8zLuKmifOQ4ueULMSvnPGYNHkK0FCQwMPExMRJK5cgTZtxNDG+vUwdy7xY8awZtAgbsTE0L1CBcra2hLXogWrLSy4dfs21gUKUGnwYBg/HqZM+U03Mn2RAeLvI0PEX04GCOl3USqVhDx+TmbTXKm74G0U1O0AAUFwdhcYZYM3IWDRVsyXOLmdWL0MrNl4gJu3fWiX8JYaK9bDtqXQpC4A1289YPW6/RRSJNDDeSVbB9txKSIWm/b1qVTh3a6bx85Cq15Qqwq+s0alLkicOSMmS7ZvD506werVMGUKCVOnsn74cC5HRNC5aFEqDhhAYu/euFatytmzZ2mur0+9mTNRrFghloBKP40MEH8nObHyLyYDhPS7hD1/hWvLXiyv3Jzwl/6pu0hHG7Ytg7g4aG8n5hNk0YddKyAkFNr0RSMxEduuTalZrTRbVLTZ06ktSuuBcPYyAKVLFKRfrxb4qKizzLY7bRYupYq+NutdD3Hm3E3xOnWqwnZnOH4W0zGz8dy/Nvk5ErGxWL56JeZIVKokhjM2boRevWDCBFSHDqWLgwOVM2dm/d27nJ02DZVly+jo7U2jRo3YExKCa9++JPTtK2pQSD+FDBD/Phki0hgZIKTf6eQMJx4cPEF0SBj7B0xI3WoNgJwmouT1lZswcJIY5sifB9xc4Oot6DUKFaBNi1q0aFqDwxkys75Fc+Lb9IE73gCYFcqDfd/WvNDSZnH3rjRdsBQLw4xs3u7B8ZNXxetYVofty8DjNKbjHPA8sO7rQeLlS7Fqo1o1UZlyzRro1w9mzUKlXz86zphBDUNDNj17xokxY1BMmUITX1+sra05p6KCs7U10R07ivkV0g+RASJ9kCEiDZEBQvrd6kwdhq5hVgDu7zvGne37U39xpbKwZDqs2QbOGz4+t3oubHOHyQtRKBRY1i5PN+tGXM5iwNJ69YlqYQtPXgCQL292Btu1JURPjwWdrbGctwTLHFlx232Cw0cviDbr1RSB5aAnpuPnphwkXrwQPRK1aonhjBUrYOBAWLQIlW7daDtlCnVz52Z7cDBH7O1hwACqPHmCnZ0dPvr6LGjalNBWreDVq+++r+mdDBDphwwRaYQMENKfoJM1M40WTf7w/cEhk4l8HZT6BmxawsDuMGy6KEAF0LIhzBwFs5fC2u0AlC9XhP59WvHYyIgF1WsS0qoPBIoNuXLmMGSIfTtis2RmfscOVJ23hMb5jNmz/wz7Dp0TvSMNa8EWJ9h/HNNJ8/E8uP7rQeL5c1Eiu149WL4cliyBYcPAxQVF27a0mDCBRoUKsTs+nn09e6Ls3JkiT54wZOhQwk1McKhalZdt24otyKVvIgNE+iInVqYBMkBIf9r2jv25u/MQAMXaNKb1hkWpvzg+XizJvH4HLrhDDmMxvDFgouil2LNKzG8AXrx8zZKl21EJCMTusTcmu5aLPTmAN8FhLF62nRi/QOz37uX22MHsvvsEy9rlsWpSXdS0cPeADvbQoj6+Ewdj0bBz8pMt1dXxyJNHVLbcvVsMa4wYITbiat0aPDw4vGABe27epHZ4OC137EDl2DGCzcxYOm8eb/z86BURQeHNm0FF/r2VGjJA/Dvk6oy/hAwQUloQ4R/I0jINiHoTAkDbrUsp0rxe6hsIfAMVm0KeXHBko6gGGR8PrXrD+StwYhsUKwRAcEg4SxZtJsQ/iD6BLymwaQGoqwMQFh6J0zI3gp/7YXf4MI/GD8Htyn0sqpehTYtaIkjsPgydBkDrxvhOGIBFgxSCRN68Yvnnli0waJBYyjlmjCiXffEip5YsYeuFC5QPDsbm8GFUT54kKn9+Vs6YgXdAANYZMlBx3rwfub3pggwQ/xa5OuMvIAOElFZkMMpGg3njP3x/YODED4EiVbJlgY2OcPE6TJovnlNTg42LIG8uaN4DXgUAkFlfjyEjupAjuwGLjXJxzW6yWBoKZNTTZVD/dhjmzcGi+g3I6bCUDlVL4Hn6Gq7bj5KYqASr+rB+Abjtx3S6E56HvjK0EReH5ePHYmijfXuYM0f0RDg4iE27SpSgxqBBdKtblytZs+JiaUlso0Zo+/vTb9IkKujrsy4qiksODt9zW9MNGSDSr98WIhQKxWiFQqFUKBQLf9drpmUyQEhpTYn2zSjUSPwiiPB7zeERM76tgcplYeowmLscDhwXz+llEEs/lYnQ0hYiIgHQ0dai/6hulDbOzEodfY6PnPuhGR0dLezt2mJaMDdOFrXQn+tM5zrmnP3vFhtcD5GQkCiqZa6dD1v2YjprGZ6HN3w9SDx6RIiFBXTpAtOmwYQJYp7EgQOQJw/mffvSt3lzvI2McKxalbcNG6IaGIj1zJl0TEykxMSJcOLEN9/T9EAGiPTtt4QIhUJRHugFyHVTyAAhpU0KhYLGjlPRzJgBgISYWBLj47+tkUE9oHFtsVHXuxUY5DCGXSvhwWPoPAgSEgBQV1Oj62hb6mTWwS1elR2Tl4qeBkBLU4O+fVtTzCwvLhUrozbXhW6NqnDp6j3WbNxPQkICtGksVoJs2oXp7FQEiYcPRZB4VzuCUaPEEtDDhyFzZor26MHA9u3xMzFhQdmyhDZrhiI8nGqOjmhVqyZKat+//x139t8lA4T0y+dEKBSKDMBVoB8wDriuVCoHpfLaf25OhAwQUlp3e9s+1LQ0MWtm+X0NBIdCpeZglBWOuoKGhnj+yElo0Uus5pgx8rNLTgyfjVucKuWM9LEZ3hV1NTUAEhIS2bBqF5fu+tLh/l0yjO3Pqt0nKVbElB5dmojzNu8WoaVbW3yH9cKivk3ycyTU1PAoVAh9T0+YPx9mzQInJ2jeHKpXB3V1Xu3YgeP69aj5+WHv74+BuztERUGVKiIA/fcfZM78fffmHyIDxL8tLc2JWALsVyqVR3/Da6VpMkBIf4PibZt8f4AAyJxJbNB17S6MnfPx+Xo1YfZomL8CXPd8dkmt2cPpGRrA9ZdBODms421UNACqqip07tmSGiXys9msGK/nr6J3u3rc9XqMy6o9xMbGQUcrWD4b1mzDdMEqPI9sTL5HIj4eS29vQmrVgqFDYcgQ6N9fDGscPQoREZh06sTQPn1QyZ6dedmz87xbN8iYUWw5/vq12Cn0XW9KeiUDhPTeLw0RCoWiPVAWGJ3K8zUVCkXG9w9A71e+v99JBgjpb/bNPZbmJUVgcFwrVlO8Z9cFbFpB3zFw5dbH51VUKLNsKgN9vXnx3J/5czfwJjjs3SEFbbtb0aBUAXblycejBavpa9OIh4+es2zlbmJi4kS9imUzYMVmTBemIkjcvy+CxOjRIkT07g2nTokg8fIlWTt2ZOigQegbGbFAW5uHgwdD/vywbZs4Z+TIJNtOD2SAkD71y0KEQqHIBSwCrJVKZXQqLxsNhH7yeP6L3t5vJQOE9LdSKpXc3raPVTVbExv5jYWX+tpAywbQayT4PBHPKRTgOAVKmEHbvuD3+uP5WprkXzeXYZcuEP3Cj7kLNvHi5et3lylo1rU5LUrl55BRdm4tWEu/rs148tQPJxc3oqJjoGsbsVuoyyZMHdemHCS8vAipXRsmTRIhokcPuHoVjhwBLy/0OnZk4KhR5MqSBceoKK5PmQJ164phkHnzRFntdEYGCOn//bI5EQqFwgrYBXza76cKKIFEQFOpVCb83zWagOYnT+kBz//mOREyQEh/M8+pizg53RGAivZdaeAw7tsaCA2HKlaQMYOoFaH17sf7pT9UbQF5csLhDaD5yY+9zxNCG9iwtHZdXmfOTO8ezSlc8OMvq9Ord7Ll5iMqRkdQdWh3lq7Zi5FBZvr3boWOjhascAX78WDfFd9+nbGoZ/31ORJFi6J//DgMHy6Cgasr5Mghql1aWBC3bRvrxozhWmwsrfPnp9bQoWBrCxs2wMmTYsOvdEAGiPQlLcyJOAaUAEp/8rgMbAJK/3+AAFAqlTFKpTLs/QMI/4Xv75eTAUL625Xo0By1d7/4Lzit49n5q9/WQCY92OwIdx/AiOkfn89uBFuWiM26Bk8RFS7fy5+HTJsWM3jnTkzDQnBy2cGlq/c+HK7evSVdi+XmoqYuxxZvpL9tC14HhbBw6TbCI96CbQdYNAkc12LqsinlHok7dwipU0fUjujYUTwCAkSVy6NHUe/Wje5z5lAnPp7tjx6xY+FCEh0doXx5aNECnv8THaZfJQOElJxfFiKUSmW4Uqm8/ekDiASC3n39T5MBQvoXZC2Ql1qTBotvlEr29B5FXFRqRyffKVUU5k+A5Zthq/vH5yuWAcepsHorLN/0+TUVSqO1yoF+6zZSXhnHmg0H8Dh+6cPcjPK2belVODu3UcV98SbserYkLCyShU7bCA2LhN7WsGACLFyF6cotXw8SCQlY3r5NiKUlLFggSmK3awfR0bB1K+zciUqfPrR0cqJtYCDHvb1Z5eRE7JYtotKmlZVYvfGPkgFC+hpZsfIXkAFC+pdUsu9GjvKlAAjyfsTJ6Yu/vZHu7aB9M7AbB96PPj7fpbWYbDl0Gly68fk1zSxRnTMGmyXLaZhFh13up9i+6wSJ76pbluzXCTtTA3xjE3Bbspk+Pa2Iio5hgdNWMSmzb2eYOw7mLcd09baUg8TNm4TUry+WfDZtKsKElpYY4li3DkaMwGLVKno9eMDtBw9YvG4dEVu3wt270KfP570p/wgZIKSUyL0zfjIZIKR/UcBdb5ZXak5CbBwKFRV6nt5B9nIlvq2RiEio2hLU1eCUG+hoi+fj4qBOe/APggt7Qf//ftZHTAendZyeP4Ut3i8pVaIAXTs1REND7LfxeJoTTi9CyZJRl4792rNynTsKBQzs15ZsWTPBolUwciaM7o9v51ZY1OuU/BwJVVU8SpdG/9Ah6N5dTLLctw98fERQGDsW7O3xbdCAZeXKoWNigl2ePBjY2oKzs5ig+Y+QASJ9SwtzItIdGSCkf5Vh0ULUGGMPgDIxkWPj56ZwRRIy6IKrI/g8IXbwx+3HUVeH9YsgNAz6jP7yL/pZo6G5JdVHT6N3zdLcueeLo7MbEZFiCCHvuP4MyaxOWHAY65ZtpXvnxqioqDDfaQv+AW9gYA+YPgJmOmG6aReeRzZ9vUfi+nVCGjWCVaugVi1o1gzMzMScienTYeNGTF1dGX7kCLx6xZz797nfty8MGACXLn37fUmDZICQUkuGiJ9EBgjpX1d1qC2ZTXMB8Oj4WV78//BDahQtxNv5E5kSr8meuWuJj383vzpvTnCZJWpKuGz8/BoVFVg9D4oVouSQCQzuUA//gGDmLXYl6E0oANmnD2eIViJxgcGsdt5O544N0NLUYIHTNl75BcHQXjBlKExbjOmWvSkHiatXCWnSRAxjVKkCTZpAtWqirsSwYXDpEgYbNjB861ZyhYXhqKLCCUtLlK1bQ2Dgt9+XNEQGCOlbyBDxE8gAIaUHqurqVB32sbv+9Jxl39WOZudWVFPE4/HsNQ7zNohf8gDN60G/zjBiBly/8/lF2lqwdSkkJJB3yCSG9W1FYqISh4WuPHvuDwoFhgsnMDQhAnX/QFY4u9GuVR309HRY4LSVZy8CYERfmDgYJi/AdOfBlIPE5cuENGsGGzdC6dLQoAG0aiXqSXTvDm/fouvsjN2KFVhoa7M9d242FilCXKdOf21FSxkgpG8l50T8IBkgpPQkPiaGpaUbkNeiMtWG9SJL/rzf19CrAJ7W6sDa+vUI1NDEqkl1LKqXRSUuFizaQlgE/LdH7AL6qf+uQr1O0KkF4bPHsnTVbvz8g7Dt2oyiZnkhLo7wTgNx0tIn0NiIHt2bsffAWV4HhtDPtgX5TXPA5IUw0wkcxuLbpO7X50ioqOBRsSL6bm5iFcajR3DsGEycCB4e4uujR2H8eP6bN4/Njx6R6+VLehUtSqZp077v3vwhMkBIn0rtnAgZIn6ADBBSehQfE4Pap8WhvtcKV2IHTWLv7Ekc93lJ4YK5selQnyxv3ogNvBrWhnXzRZXLT61zg96jYNEkYrq2Y9X6fdz1ekyndpZUrlAcoqKJataTpUY5eG5iQreuTTl64jJPn/nRu3tzihTKA+McYN5yWDwZX8saKQeJSpXQ37JFDGv4+4sJl/37w507cPq0mC+xeTO+bm4sP3wYZUQE3WrVonCXLj9+n34DGSCk/ydDxC8mA4Qk/aDERKjTAYKC8dq8lPU7jhETHUfbVrWp4OODostgsR9Gt7ZfXjt0Krhsgv1rSahWga07jnHm/E2aNqxKA8uKKELDibXsyPJCRfE2MaGrdSPOX7zDfe+ndO/cmNIlCohVH45rYdkMfC0qpxwkKldGf8MGaNQIIiJg/36wtobgYDhxArp0AR8fwk6cYI2DA5n8/Oi6ciVkT3rIJK2QAUJKigwRv5AMEJL0kTIxEYXKd06vuvcAKjSD4b15O7wP23Yc5+KVe5QtVYj2Fy+QwXU3nNkJxQp9fl18PDTpBre84OwulHlycMjjAu4Hz1K5YnE6tK6Lmv9r4mq3Z235CtwwNMa6fX3uePly9bo3Nu3rU6l8URg0SRTBWjEH36rmKQeJKlXQX7sW6tcXIWj7dlFPQlsbduwQzxsYkLhjB/FVq6JRtCgcPiwmh6ZBMkBIyZFLPH8RGSAkSYiLiubC0vU4FqtD6NOkf/GmqEhBGN4bHFzQefyMrtaN6NG5CV4PnjI9Ww7ulCsN1gPg/zf/UlMT241nzABt+qCIfEvDepXo0rEhly7fE0tA9TOhvncV3T09qRgUwIYth8ifLwdVKhZnveshTpy+Bgsmio27eo3E9PLNr0+2TEzE8tw5Qrp1E7Uj4uOhUyfYtElsEd69u6hw6eWFyqhRaKxZI+ZLLFz4fffmF5MBQvoZZE/EN5ABQpI+OjVzCScmLwCgfF8bGi2Y+H0NRcdA+SaQLQsccwUVFUJCI9i45TB3vR5Tw+seLXJnQ9Nl1pfX3vGGGq2hXnXY7AQKBQ8fPWf56r1oa2vSt6cVxk+ekdjAhh0tm3NCLzNNG1blbVQ0xzyv0KRhFRrWqYDCdqQoyb1pMb6liqbcI1G9OvpOTmKTrmzZxK6eLVpAjRpiWKN9e5g6VQx1ODnBhQtihUcaIQOElBLZE/GTyQAhSZ8zt+2A+ruqk9fWbCPC/zvrI2hpwpJpcP4KrNoKgH6mDNj1akm7VnU4X6QoM2PV8V2+5ctrixWC1XNh12GYuQSAAvlyMmJQR9RUVXFY6IpXpsyouDrR2nU7TRKjcT94ltjYOJo2rMq+g+fYue80yuWzoGVDsBmE6V3vlHskTp8mZMAAMS/i1StRyXLTJtHzsH+/2F58/HioUAGKFBGber39xq3UfxEZIKSfSYaIVJABQpK+pJMtC+VsOwAQHx3D+cWrv7+xGhXFsMLY2WKbcEChUFCzWmnGjOqKTgYd5t55xu6th4mLi//82ub1YPxAmLIQDnkCkC2bPsMGdsA0rwlOy3dwKoM+CscpNHJZQ8cs2pw5f4unz/1p1bwmxzyvsMntGIkrZ0Pj2tChP6YPHqUcJDw9CRk5Etzd4f59WLwYVq4UdSXCw6FNGzHEMWEC+PqKrcb/MBkgpJ9NDmekQAYISUpe+Et/FplZkBAbh0YGXQZ5n0Q7i/73NfYmBErXh2rlxdDEJxICAvHoMIQDJUqS1SgrnTvUxzTvJ7/gExOhVW+4fAMu7QdjA3FdQiI79njiefoaFtXL0OraNVQdlnHLcQYrH7wid05DypctwrZdxyldoiBd29ZFzWYgHDsLO1fga5rr60MbCgUeDRuiP3QoNG4sClLVqAFDhogdQdetE4GiXz8YOhQOHICGDb/v/vwgGSCkbyGHM34CGSAk6ev0shtRuksbAGIjIrm4bMP3N5ZFH+aOh52HYN/Rzw6pGmajQcdGjNq6Fa24OOYu3sLOvSeJjY0TJ6ioiLLZCgX0GilCBaCqqkLblrVp16oOp85eZ1nOvES1a0aJ4ZMZVLMUfgFv8Dxzjfat63Lztg/OGw4Qu3a+6Blp3RvTF35f75FQKrE8eJCQhQthyxYx4fL6dbGPxtChYGcnymCfPi1WbtjaQmjo99+j7yQDhPSryBCRDBkgJCl1qg6x/bDE8+bm3fxQ72abxlC/JgycBOERnx/r1pbsBXIzzN2d5g2r4Hn6GjPmbsDH94U4bpgVVsyBI6fg/8JMzWqlsevVEt/Hr5hrVoLXlctj2mcEw6xqEhcXz/7D52nTqjY+j17guGYfUesWQMUyYNUT09dBKQcJd3dC1q+HNWtgwwYRYpo2hUGDxHDG7t1ifkRoKIwb9/335zvIACH9SjJEJEEGCElKvcymuchd1RyANz5PCPR6+P2NKRSwaDIEh8Ic58+PqajAosmo3vaintc9Rg+zQUdHi/mOW9ixx1P0StSvCXZdYMxsuH3/s8uLFM7L8EEdiE9MZHbpctzNlx+jboMZ1q0pGTPosGvvSaya1uClXyALVu0hdM18KFkEmvfANCLy60ECsNy5kxB3d3B0FCsyihUTkyrnzRNbhM+cCd26wdKlcPXq99+jbyADhPSryTkR/0cGCEn6ducXr+bIiBkA1Jk6jGo/+rMzehas2QYPT4stxD81cCJs3g03jpBobMCxk1fYd/Ac+pkyYN2+PgVzGEC1lqI34OwusXnXJ96+jWbNxgPc9fKl+bVrWOppEO3qxIr1+3no84Imjapw4tQ11FRVse/UAMNOdvDCD45twVdN7etzJACPjh3RL1pU9DhMmSImW2bNKgpSPXkCGTOKx7lzv7QIlQwQ0o+QcyK+gwwQkvR9zJrUBUBVU4Oo4J8w5t+vM0S8Fftk/L9JQ8Sy0FGzUFFRwbJWecYMs0Evg9ixc+NuTyJdZoPPE9Ej8X90dLTo29OKenUqsLt0GVYrNVGZ5kg/25aULV2I3e6nqVy+GGpqqsxds5cnLg6QNTM07IypikrKPRKbNxPi7S3mREyYIOZB3L8PmTNDZKQog33hAqxa9eP3KRkyQEi/i+yJeEcGCEn6MQ89TpG7cjk0/r/n4Ht1HQLnr8Kdo6JC5afW7xATKA9ugFqVAUhMVHL2v5vsdj+NqpoKrXXVKD9pDopdK6BhrSRf4up1bzasdyfb60B61y5Lli6t2XvgDEeOXaSieVH8X7/h1asgbJtVp2jPIWK45dgWfKNjUu6R6NEDfaVSrNAYORJmzBAlst3coHp1uH0bvL1FsaqfSAYI6Wf4q/fOUCgUdoAdoqek8K8OETJASFIadP2O2M1z4yJo3fjzY+837woOgYvuoKHx4VBoWCQ7dp/g8rX7mL2NoP35cxhe2PPFsMZ7L1++xnn2aqJi4+neuCpFmlhw/sJtNm3zoEC+7KiqqXHf+yk2dctTsf9IyJQRPDbjGxaRcpDo3Rt9Pz+xbbi1NaxYATVrwpUroFSKXor583/SDZMBQvp5/uoQ8d7v6ImQAUKS0rAGNhARCad3fLkl+C0vETIcxorhj/9z554vW1wPERocRsOsuliO64uammqSLxP5JpQ1Q+dwL1NmGtYpT6PG1Xng85wVa93JoKtNzuwGXL3hTYtKxbAcOh7y5ISD6/ENCkk5SPTrh/7Vq/DwIZQoISZV6uiAri48fSp6I/Lk+dE7JQOE9FPJEJEKMkBI0q+RECfqN6iqq/9YQ4c8waonHHUVRaj+n81AuOkF1w99GTKA2Ng4Dgyfw1E0yJZNn1Yt61CiWL4kXyrx3kMO9ZnA/jJlKVQoD91sGhEVFcPSFbt4+zaa4kXzceHyXeoUzUuLcdNQKVkE3Nfg+yog5SAxZAj67u6QkCAeqqrw6BFkyiSGOFau/IGbJAOE9PPJiZUpkAFCkn6+l1dusaPzYBxyVsB7//Efb7BeDShSABYlMwmxe3u47wNnLyd5WENDHatRtozZu4fMoWEsW7mLJct34h/w5otzVYoUoFH7Bgxwd+fVk5fMcNhAaFgkwwd1xMQkG1eu3aeieVGO33vM6hGDib16G7oMxjR39pQnW86fT4iVFUREiODw4gXkzy92Al2/Xnz/nWSAkP6kdBkiZICQpF8jMvANt7e5ExMazn33oylfkBIVFRjQHfYdgwe+Xx6vWRHy54HVW5Nvw8SQ7NZWDFi1hl5WNfHzD2LanHXs3HuSqOiYz8/tY0PhovkYvXsXxlkysmjpdk6fvYFdr5aYlzXjwuW7lCiWn1v+wSyy70vYsXMwYCKmeXOmHCQcHAjp0kUMX5QqBT4+EBcnPuN3zouQAUL609LdcIYMEJL068THxOCQowKxEZFoZ83MsCfnUfn/lRXfKjoGCteEVo1g/oQvj891gamLwPecKJ2dlJAwKFIL2jQmdu54jnle4fCxC2hpatC4QRWqVCyOquq7+RIv/cG8MYk1K7LfpgOHjl6gUIHcWLevx/WbD9nlfpKcOQwJDg5HPSaGfhs2kd2+C4zpj6/vs5SHNmxt0V+xQhSievYMoqLEHAk/P/FvKskAIf1KcjgjCTJASNKvpaapSYF61QGICgrm2fmfUJlRSxOaWsKJc0kft2kFCYnguif5NvQzwvA+sHobGs9e0LBeJSaM6kbhgrlx3X6UqbPXcfX6fVGyO7sROE1FZddhmr55jX2f1vgHvGGGwwYy6ulg36c1b96EoaKqgmomPeZ2aM/d1W6w4wCmprlS7pFYsYKQJk3Ay0vMj1BTE5t0uSVREyMZMkBIaUW6CREyQEjS75HfssaHr1/duPtzGq1SDu49hKDgL48ZZYOmdcSQxtd6VvvaiHMnLQQgS+aMdLNpzOhhNmTLmomV6/Yxe8EmvLyfQMuG0NEKBk/CTEudcSO6UKyoKWs2HuDs+ZsM6NuaTBl1CQ4JJ6uJAUubNOGkw2qUl2+mLkjs309I2bJiMmjMuyGVJUtSdStkgJDSknQRImSAkKTfRz93jg9fR/gF/JxGq4i9OTh/Jenj3dvDHW+4cC35NrS1YNwA2L4PPgk3uXIY0r93KwbZtUVFRYXFy9xYtHQ73gNtUWppgoMzOjpadLdpTDebRtzxesySFbuoV7s85cua8eLlawwNs7C1cmU2zFhB7OPnKQcJpRLL69cJ0dMDPT0RJi5eFMMbXyEDhJTW/PMhQgYISfq9MpgYfPg64tXrn9NonhyQwwjOJRMi6lQVtRtWb/t6OzYtxbyJJFaOFCqQi+EDO9CrWzMiI6NYuHYf8zu0587xCyj9AwEoX7YI40Z0IWd2A1au20dUdCxtrCwIDo1AT0eLyzlzMW/6SoKe+6UcJBISsAwKIiQ8/GMPyo4dyb51GSCktOifDhEyQEjS76dnbPjh6/Cf1ROhUECV8nAu6aWcqKiAdQvYfejrQxpqalC2OFy5mczLKChdsiCjh9nQt2cLEg2zsaRePWY5rOPS1XvExyeQWV+PfrYt6N65MY98X+B+8Bx1LMqhnyUjiWqqBKmpM3PuBu7c8005SMTHY6mmRsj7J9auTfI8GSCktOqfDREyQEjSn6GVOROqmqIMdYTfT+qJAKhaDq7chqjopI+bl4SwCHj26uvtlC0BV29/9RSFQkGJYvkYNtSGgYpodF74sWbDAcZNWcH+Q+cIC3+LeRkzJozqhnlZMw4c+Y/4+ARKlijIWy0tlLFxLFm+k207j5Mjh3HKQUJFRQSJ27dFSe9PyAAhpWX/ZIiQAUKS/hyFQkEGIzGkEf4zQ0QVc1FX4XLSvQgULST+vev99XbKlYBXAWIpZwoUCgWFB3Rh4N69jMudmVIlCuBx4hLjpixn9fp9+D55RbtWdRgxuBO6utpcv/mA3LmM0FJRoEhM5NSZ68yavwl1Dc2vB4nERCyBkIQEuHPnw/MyQEhp3T9XJ0IGCEn6825v2wcKBXomhuRJqlz190hIAJNyMLQXjOz35XGlEgxKw5j+MMQ2+XaevYSCNWD7MrF0NDXa28ErfzjpxtuoaP67eIcz52/i5/+GjHo6mJctQvmyZgSHhrNn32n8A4IxCAslMGNGVFRVSUxUUteiHEUK56J+k65frSOxd8AATBYtkgFC+qPS5d4ZMkBI0j+ubEMxidJhXNLHa7SCgvlglUPybSiVkLcydGsHkwan7nXnLYdZSyDg+oc9OpRKJc+eB3Dh8l0uXb1HREQU+voZKGaWDy0tde6cuoJfImhrqhMVE4cC0NHRokqFIgwaNinZIFFMocD51Ck6dxabiskAIf0JqQ0RP1hKLu2QAUKS0oGU/ugpXAC8Hn79HIXi3byIW6l/3aIFITxSzLfInf1dMwpy5zIidy4jWjarwYOHz7l5x4dbdx4R9CYUVRUFxm+CiDMxJApQApFvo/HwvEa9+g3Yu2cvAa8Dv3ipO0olNWrUIEeOHJw9e1YGCClN+ydChAwQkpROKJVJ7tb5gYb6FxMTk1S2ODhvTLm994oUFP/ee/AhRHxKVVUVs8J5MCuchzYtavHKLwgv7yf4uGzBJzoWFJ9PP1NX18SyXn327NlDRETEF+0plUqCgoJIyz3FkgT/QIiIjIxk8uTJWDWzlAFCktKI2IhIgh74Eu73msymuTAwK/Bz2lWo4KdUgWfJTIqMS4RM+skffy9PblCowo37kDVzKl44HrJlgyevUm77nQL5clIgNhLl6xf4De7FI9+XvHwVSMDrN4RHRJExY0aaN2+ebJCIiorCwsICX98kNh6TpDTir58ToVQqGThgAI5OTrg4TaNXz/a/901KkvSFG5t2sbvHcADqzx1Hpf5df0q7T6u2YlaFKj+lrbQiLCwsySChoaHBpUuXKFmy5B96Z1J6lm7mRCgUChYtXgxA7/5ispUMEpL0Z4U+/Thp8NMy2D/KOCKCURpx0L9b0ieMmgmxcUnv9vmpuc5w7Q5sckzdCx/yhMkL4JhrkjttKlESEPCGhz4vePDoOX7+bwDIFBGBQj8jIfGfD7Goqip48eIFly5dITo6GnV1dVRUVEj8ZCgmV65cGBsbp+79SdIf8teHCJBBQpLSmpAnzz98nSmJOQTfSyMhgdwqQC6jpE8ICxV7ZCR3/D2vB+KclM577+kz0FSDwqafPR0YFMrFK3e5ePkeAa+D0dLSoJiZKcWKmOJz9iqPM2RAS1UV3oUIdXU1alYtxfhJs7l770HSn1GhYOvOnfTp04c6depw7NgxDA0NkzxXkv60fyJEgAwSkpSWfNYTkSfnz2lUqYTQMNDRTvp4YiJcvwNd2qTcltdD6Nkh9a993weKiHkdcXHxXLl2n3MXbvHw0Qs0NdQpU6oQ7VrVRkWhYO+Bs1y5fp8sERGo6uoSExsPQJWKxalcoShNWvTE675Pki+TH9jZowclrawwMzPDwsJCBgkpTftnQgTIICFJacX7nggNPV209FNXKC5Fj57A6zdQoXTSx2/eE8ctq3+9naBg8A+E1E72jIqGk/8R0tuGUwfOcOb8TSIiojArlJuu1o0oVbwAwSFh7N53mpu3fTA2yoJhQhwBurqoqqqSSU+HrtaNyJhBi1r1rZMNEEWA44BxP1FIy8zMDE9PTxkkpDTtnwoRIIOEJP1pysREQt8VUtLPkxNFapZQpsbZK2I5ZsUySR8/egZ0daBSMsff83r3S7xI6kLEs/W7OFK+ItciQePUNSpVKEbNaqUxMsxCbGwcBz0ucPTEJfQzZaBs6UJcv+6NRnwiaCooV9aMdi1rExoa9vUAoVBwXKnEWEUFSpT48LwMElJalyZDhEKhsAPs+M69PWSQkKQ/J8LvNQmxcQDo/8T5EJy7DMULQ3I9G8fOQvUKoKn59Xa27gWDLFDI9Kun+T5+ycHD57nt9RKDvHlo1dyCShWKoa0l2r9zz5ctbscIDY3AonoZHj/159oNb3SjoojR0qRbp4aUNy+Kn9/rrwcIVVWOJyRgDFC8uNhp9BMySEhpWZoMEUqlcgmw5P0Sz+9pQwYJSfozQp68+PB1pp81HwLg3BWwqJT0sbdRcPYSzBj59Tb8XsM6N7G/hoZGkqc88HnOwSPn8fJ+irGGGl2PHaPchrmolioqXuptNFt3HufSlXsULpibenXK437gLImJiajHx6OjTGSQfXuy58+VcoBQURFDGO+faNs2yfNkkJDSqjQZIn4WGSQk6fcLefoxRPy05Z2vg8D7kfjln5QzF8XSzrrVvt6O0xpR1bK39ReHnr0IYM++09z1ekzO7Ab07FCf0m1tUalVBd4FiLtej9m45TAxMXFYt6vHS79AXLcfxTCbPgGBIZR68ZLO43uhnZoAoVBw3NAQ44gIiIwUE0c7dUr2rcsgIaVF/3SIABkkJOl3S4iJRdcoG5H+gejn+Ukh4r+r4t8q5kkfP3oGchhD4fzJtxESBi6boFenz4ZEAgNDcD94lktXvTA0yIxt16aULlkQxaQFEBQC4wcSExPHLveTnDp7A7NCuWnRrCZuuz3xefSC3DmNePrcnyaXL9NwfB8UpYulHCCA45UrY3zlCsTEiCfLloW8eb96G2SQkNKafz5EgAwSkvQ7le7citKdWxH3NgqFyndNa/rSmUuQ0yTJfSsAMR+ibrWv74PhslH0VryrnhkRGcWBw+c5fe4GGXS16djWksoViqOqqgIXr4ODM4wbwFN1TVbP20BwSDjtWtUmb24TnFfuJi4uHmPDLLx87k93Dw/Mh/eEejVTFyBatMB41y7IlEm855gY6JZMAa3/I4OElJakixABMkhI0u+mnlw9h28VFQ2bd0OLBkkfP30R7njD5CFfb8NpLdi0IsEwG2fOXMf9oJjH0LhBFWrXKIuGhro4920U9BiOsmxxTlatzM5FrmQ3ycaYYTY8fuLHfKetGGTTByAs8A2Ddu4kX8+20KV16gJE164Yr10LhQvDs2ciQGhrg41Nqm+JDBJSWpFuQgTIICFJf6UNO8SwwsDuXx5TKmHCPChTDBrVTr6NddshKATvNs3YNm8Dr/wCqVyhOM0aVyOjnu7n546fy1v/QDbaduP6bk8sqpeheZNquB84x/GTVyhqlpdHj1+SWU2VwRs3k61pHRg3IHUBok8fjNevF0MXV6+KlSRaWtCjh+iV+AYySEhpwV+/Adf3kJt2SdKvEf4qgAzGBj+vNkR8PJSwFFt3J7XPxcET0MIW3FeDZY2k24iL4025puysVpWrmjqY5jGhTcva5M2dxL4UJ87zuMtQVrVrw1t1dWza18escB5Wr9/PnXu+VDAvwsXL9zAzyUrPhU5oly0OO5fjFxSSugCxb58IC48eQa5c8Pw5REeDlxcULPhdt8jLywsLCwsMDAxkkJB+mnSzAdf3kD0SkvTzJSYksLyKFZoZdCll3YLqI/v9eKO7DoPvs6QDRGIiTJwP1cpD3aSrVCYkJHBs7hr217BAO2MGurSoTflyRVBR+TLkKJ++wHPKEna0bEnu7IYM6tIEFRUV5jtuITAwlCoVi3P2v1tUKpybTjPmoponB2x2TF2A6NwZ4wsXIC5OPLJmBW9v0NODLl2+O0CA7JGQ/qx0GSJABglJ+tmenL5IxKsAIoAXl278eINKJcxzgVpVRE/E/3M7IEpdH9+a5IRK38cv2bzpIC8DQqlFHE0m9EJLK+naELFhEWweu5iLpctQu0JRrNrU4+WrQJat3IWKqgqlShTg7H+3qF++CM3Gz0CRNTPsXY1fZFTKAcLGBuNnz8DHB8qXh//+A11dKFAAnj6FSZN+4CYJMkhIf0q6DREgg4Qk/Uy3t+378HXxtk1/vMFjZ+H6Xdi/7stjcXFia+6GtaBKuc8ORUXFsGf/aU6fu0HOqChGXjhP7uOukEyACAoKYflkZ/z0s9CteknKt7Tk+q0HrN14ABOjrGTOnJGLV+7Spm55ao2YDOrqsH8dfvEJqQsQb9/C+fNi4uSKFVCzJly7BlFR0K8f5M79o3cKkEFC+jPSdYgAGSQk6WdIiI3l7q5DgFiVUajxVyY5pta85WLCZO0qXx5bvwN8noCr04enlEol1248YPuu40RHx9LKRJ+aE5xR3bUi2VLZXt5PWOWyA63IKIZXKkKOFnU5euIyu9xPUrJ4AaKjY7h95xHdW9Si3ODxYpXHUVf8VFRSFyB0dGDTJhg3DqZOhTZtYPt2qF8fzp6FMWN+/D59QgYJ6XdL9yECZJCQpB/lc/QM0cGiQn3hJnXR0NX5sQav3oYT52Djoi+HKqKiYYYjtG0KJYsAEBwSjuv2o9y++4iSxfPTtnJxsli0BuuW0MDii+aVSiXHPK+wa+9JCj9/TvfcWdHp0ZZtO49z8sx1alUvw0PfF7x+HYJd50YU7j8aXgXA0c346WinHCCsrTE2NYUpU2DGDJgzB+rUAU9PqFULjh6FadPAwODH7lMSZJCQficZIt6RQUKSvt/trZ8MZbRr8uMNznOBfLmTrg2xfBP4BcKEgSiVSs5fvI3bbk80NdTp1a0ZpUsUAKuekEEX5nz5l35sbBwbtx7h8lUv6t2/R7P4KBKmzmDVun1cv/WQZg2rcv7SHWJiYhlsa0UuuzFw7yEc3oRfZv2UA0THjhhXqgT9+8PYsbBqlQgLSqV4hIaCmRkMHfrj9ykZMkhIv4sMEZ+QQUKSvl3c2yi89h0FQCtzJgpYJr1SItUePharMhZNAlXVz4+FhMEcZ+jahjdZs7B5+U7uej2mUoVitG5ugY6OlqhMefgk7FwOmT+vvRAcEo7zyt0EvH5Dj/t3KOf9gLfHt+K8ei9PnvrR2sqCw0cvoqmpzrA+rcjWa4SoXrl3NX7ZjVIOEB06YNy0KXTsCHZ2oschPBysrWHBAvGckxOcOSPmVvxCMkhIv4MMEf9HBglJ+jb39x8nLvItAEWs6qOazO6YqbZgJWTLLIYi/t/gySjj4jjbpAE7Z69DS0uDfrYtKF40nzh+9TYMnw59bb4oPvX4qR8uq3ajoqJg6IN75Lx8lTd717LE9QhhYZG0bVGLXftOk0Vfj/7dm5Gx53BRbnvXSvwK5E05QLRrh3G3btC4MbRvL6pR3roF8+eLCZSDBsHq1dCzJ1St+mP3KJVkkJB+NRkikiCDhCSl3u1t7h++LvGjqzLueIutuicPAW2tz4/tPEiQ+zE22fXC68gFKlcsTqvmNdF5f15IGHS0hxJmMGvUZ5deuXaf9a6HyJndgF73bpHJ4yQvNzridOgCKioqtGxek207j5PDxIB+3ZqiYzsCjp2BHS74FSmQcoBo2xZje3sxYbJ2bdDXh61bRWgYNQpq1BAFpjQ0YPbsH7tH30gGCelXkiEiGTJISFLKlEol2pn1UdfVQTNjBvLUqPD9jSUmgv0EyJ8H+nf5/HVe+nNmwVp2duqEtooqdr1aUqyI6advBHqPgpBQOLhelJN+9/4OHvmPfYfOUb6sGdaPH6K+bjsPFk3F+YIXWTNnpFaNMrhuP0rB/Dnp1bkxmr1HwYETsHUJfiWKpBwg2rTBeNgwqFsXypWD6tXFagxHR1i6FNTUoEkTGDYMdu2CLFm+/x59JxkkpF9FhoivkEFCkr5OoVDQfPksGi6YwJuHj1H5/zkM32L9Djh3GQ5v/BACAEKCw9gw2Zl75hWoWroQLdvWQ1tb8/NrndbCniOwfRmY5gLeTaDccpjL1+7TtGFVGrx4imK6I9dGD2TNQ3/ym+bAvExhNm3zoGTxAnTrWB/1vmNh5yFRibJsiZQDRKtWGI8dK1ZeFCkCXbtC9+4wejRcvAg3b4olnjY2YhjDyur7788PkkFC+hXS5d4Z30rutSFJv1jgGyhZTxSPWuXw4enL17zYsvEA6uERWFcvRTGb5l9ee/E61G4Pdp1htliNERoWicvqPbx4+ZouHRtQ9rU/WNni2d2a7eo6lCtdGNO82XHbfYKK5YvRqXVdVO3HiyCzbgF+1Sukbjvv6dPFkk0TE1EHolUraNsWSpaEESNg/XrRIxESIjbcypDh59+7byT32pBSQ+6d8RPJHglJ+sXGzBFDEjPFXIa3b6PZuuMYl656UfaxL+1zZCFDUgHiVQC0twPzEjBtOADPXwSwbOVuEhMTGdK/HXneBKHsYM/+ti05oKZDnZrl0NXRYvuuE1hUL0Pr5haoDJ4k5mKsckhdgLCywnjOHBEgsmQRQaFpUzGU0aYNtGgh5kLcvy+qU547lyYCBMgeCennkiEilWSQkKSPEuLiOOPgQvleHdHJ9oNj/Kcvwno3WDINDLPidf8J610PERMTS1ffB5T39kaxwf3L66JjoF1fUACuS0BdnVt3fFi9fj+Ghpnp28MK/dAwElvY4mZZB0/9bDRvXI2oqBj2HjhLo/qVaVyvEooRM2D5ZnCeiV/tqikHiGbNMF64UAQITU0xXGFlJXblnDVLzI1o1AgaNBCTLKdMEXtmpCEySEg/ixzO+EZyaEOS4PIKV/bbj0dDT5fGi6dQskMSvQSpERUNlZuDfkZiD29i9/7/sXfWYVFlfQB+ZyQFxEAFuxG7uxE7wQAERVEQCbFWxVbUXVsBEVtRFMXuQrC7u4sGQQGRmvn+uMa6H9auKMJ5n4fHnTv3nnvnfJ/M6zm/OEHQ8csYli+BdWwE+acvgsCN0KDWp9cplWA7CrbugyMboXZVjp+6ysaAI1SrUhabPh1QT0wkvbUF68sacrZYcXqZGRMaFs3xU1cx69oC4+a1YPxsqbz2oimEd2nzdYHo3Bl9b28pBiIpCfbuleIdIiPhwAEwNYVcuVDu34+ieXNyFSsmVan8L7EimYjY2hB8DrGdkUmIFQlBTic16S3HZko9K1LiE8lf5j80kJo4Bx4/59muNayat56Xsa/p0a0lLXRUkTebACPt/18gABauAL/tsGY+ylpV2LX3BPsPnaV5kxr07N4SedJbUk0HsbqMIVeLl8DavA237z7lwuW7WJm3oVH9qjBlgSQQc8Z/u0AsWwYmJvD6NRw6BEOHSt05g4Ol7IvISJKOHWPd1KnolC2L+YoVWVYgQKxICP47QiL+BUIkBDmZ80vWER8aAYBhJ2OK1a/57wYKPEW65xoOjh3Gnh0nKFpEjzHDrTDQ1oAmplClAox3/v/rDgZLMRQj7Unv0YH1Gw5w5vxNunVqikmrushSU0kxd2RpoeLcK16cAdYdOXvhJrfuPMG2b0dq1TCEmV4w0xNmjCa8R8evC0THjuivXAnt20NYGAQGwsSJUhOtAwdgzRo4eJDQTZtYumIFr5VK+nbvDiVL/ru5+YkIkRD8F7LkdoZMJnMEHAE5YJiVtjP+jtjaEOQ03r6KZ5FRS5JexoFMhsOFPRSqXOH7B4p7TWSznqxp2JgnWtq0bV2PDm0aopJLDn2c4eBxOLkVDMt+et29R9DUDBrX4a3vIpau3cP9h8/pa9GOurWNID2dJJvhLE5T40XRIvTv34XAoIs8fhqGXf8uUm2JecvA7S+YNIzw/r2+LhDt26O/fr1U6+HWLUkgvLxg9Wqp7sPjxzB0KFdnzmR1aCgFIiKw09en0MKF3z8vvxCxtSH4O7/1doZSqfQCvN7HRPzq5/kcYkVCkNM4vWCFJBBANfMu/0oglEolJ/6YxZbmrdDVy8uIfp0pU6qI9ObcpVKdBv/F/y8Qca/BzB4MCvHKwx0v781Ex7zCyd4Mw/IlQKkkfugUPJWaRBcrjP1AU/YcOMWL0Cic7c0oV7aYVE/C7S8Y4/htAtGuHfobNkixDteuSb0wNm6UmmqtWQPp6ShdXdnv4sKuZ8+oERJC39ev0Vi37rvn5VcjViQE/4YsKRG/E0IkBDmFxMgYTi9aCYBcRYXm413+3Tgbd7FLrkE9g/yYjuiHhvq7XhuHT8CEOfCHA3Rt8+lFKSlSKmdMLGE7VuK1YqeUwulsTrEiUjvt2AnzWJSgIMmgMIMH92DrzmNERsXi4tCT0iUNYJkfjHSHEXaE2/f5skDIZASamKC/eTP07g2nT8P+/VLsw6xZUjOtihVJMTbGt39/Lqam0iEigg4XLiC/eDHTm2tlFkIkBN+LkIgfgBAJQU7g+GzvD422ag3oRf6y/2K/PyQc7eFTmGjcBO2x40Amk44/eQF9XcG4MUxy/fQapRIcJ8CpCzxY68GS7cfRzaOFo50p+fNJ25yRc5ayKOw16OXH3qk3GzYdJvZVPK5DelK8WGFYvVkqqe1kQ7iTDS3bWX9ZIFq3Rn/bNinz4vBh2L0b7t+H0aOlktZduhDXogVLzMwI19FhYHo6tXbtkiRDX//75yULIURC8D0IifhBCJEQZGdePQvlgs96AFQ0NWg21un7B1EowG40aKijvXDyR4FIegvmQ0BXB9bM//9shr+8wXcLl+dOYdXJG5QuaYC9bdcPjbdCl/ix6F44Gro69He2YO2GAyS+SWKYY2+KGOiB71ZwcAM7S8JH2H1dIFq1Qn/7drCzg507YetWKRvDzg4GDwZXV0LbtMGzdWsoVIgRZcpQ3N5eipNo2PD75yULIkRC8K0IifiBCJEQZFdi7j9GXVeHN1Evqe/YFx2Df/GF8pc3BJ6CXaugQD7pmFIJjuPh7iMI3gz58356jf8umDyPoyOdCHgYTq0ahvS1bIeqivSr68m6HXhdfUw+TXWsXK1Y4buH1NQ0hjn1pnCh/FIaqN1o6N+L8DGO3yYQu3ZJqZsbNkg/cjlYWEjlrOfO5a6ZGUtr1qRA0aIMadeOvMbG0LcvODh8/5xkYYRICL6FLJmd8Z6sWGzqWxBZG4LsSHJ8AucWr6XOIEs0//ll/zUCT0HHfuDmBBOGfjy+eC0MnyqtQPT+RxvxkxdQtLdmu5UFh9W1MG5Rm+6dmyOXSysY9wL24x10maJKBb1HD2Dpmt0ADHXoiZ5eXti4EwaMhL5mhE90pWX7vl8WiJYt0d+9W6r34O0Nq1ZBsWLQsaNUfdLfn/N2dqzV0KB8sWIMGjgQzaZNQUdHKmutqfl9c/KbILI2cibfmp0hJCKTECIhELwjNAIadIEqFWHXyo/bFSfOQztrGGINs8Z9es2DJ6S26IVvGxMu5s2PWdeWtGr+sejU9Z2BLDt8gXJv39B97EC81+xBVVWFoUN6SnESm3aDzXCwMiV88rCvC0Tz5ujv3Sv1u1i0CJYtg4oVoW1baNYM5bZtHBo9mu2pqTQwMKDPmDHk6t5dkoeLF6F06QzHzi4Ikch5/NYpntkBsbUhEACpqWA1FFRUYPW8jwIREg6WTtCoNswY/ek1UTG8MbPHp7UJj/MXZKB1B2pW/5hKemFXEKuPXKTq6zjau9nhtWoXuXNrMNShJ7q62hCwB/qPAIuuhE/6hhWIZs0kgRg/XhKIJUugenWptHX9+igCAtg0ZQrHUlNpr6dHp/Hjkbm5SSWv9+zJ9gIBYmtD8Hnkv/oBsjPvRcLZyQl7p/EsXb7xVz+SQPDNpL5JYteQccQ9Dfn3g0yaB2cvw7pFUKiAdCw5GSwcpTTIdYskwXjPmyRemjsxt3Z9QvQL4zKkxycCcWJnEKuOXKBOVATtRvbHc+1edHS0GObYWxKIrfug33Do1YnwqSNo2aHflwWiSRNJICZPhnnzwNMTGjSQViCqVCFlyxaWzpzJidhYLDU16Tx1KrJ166RGW7NnSxUscwjvRSIqKgpjY2MiIyN/9SMJsgBCIjIZIRKC35XgGZ5cWunP4prtuLV13/cPsPuwVB1y+ihpxeE9w6fB1dtSQan3YgGQlkbIgFHMKWtEcpHCjBjWh3Jlin14+9C2I/gdvUiz589oPnIAi/wOkD9/HlyH9ERHJzfsOAh9h0GPjoS7j/q6QDRujP6+fTB9+sfaDy1bSl04y5Qhads2POfN43ZkJPapqTSZM0eqFzFwIPTvD8OHf/+c/OYIkRD8E7Gd8RMQWxuC342I63c4NX85AIq0tO+vTPn4OQz8A7qYwFDbj8dX+sOKjbBkJtSp9vG4UsldV3d8ChRFr4AujiP6SisLSPFFuwIOs//UNdrev0clNwc8Nh2hiIEejnamaGqqw65D0McFurcjfPo3CETDhugfOCDJw4wZMGeOVNa6WTPQ1+f1li14engQExaGS2wsZf394dkzqeV3vXpS4OX7FNUchtjaEPwdIRE/CSESgt8FRXo6u4aMQ5meDkDT0UPQ+2cJ6i/xNlmKd8inC0v/+vhle/oSuE6GQZZg0/OTS85P9mCtPDfl82oxyM0WTQ116VkUSgL8DxB07ibdrl+j5HhHvHYEU7KEAQ4Du0nVLvccAUsX6GpC+MzRtOxo82WBaNAA/YMHpe2LKVNg5kzo0UMSCB0dYgICWOTjQ0pYGMMfPaLo3r3SFkyXLpA7t1Q3Ql39u+c1OyFEQvAeIRE/ESESgt+B8z7rCTl/FQC9imVpPNLu+wYYNR1u3ZfqPuR9l1X16Bn0Ggx1a8Dc8R9OVSqVHJqziu2vU6mfWxWrSYPJ9S74Mj1dwfr1ezh76S4WF8+Tf5wzi/eeplyZotgP6IqamirsDQRzJ+jUivA/3b4sEHI5gfXro3/oEHh4wIQJMG2aVOOhWTPIlYuwjRvxWLkS1YgIRly+jN6RI1LqppkZPHokbWcULPjdc5odESIhACERPx0hEoKszKvnoQROnPvhdWev6ah8z7+6N+6UelR4ukONytKxuNfQfRDk0YFNi0FN6pWhUCjYvGg9waGxtEtPovMMN2RyKUwrNS2NVat3ce3GQ2xOHkfNzZklh89TqWIpBtp0lopN7Q+S+ml0aEn4rPG07PQVgahXTxKIJUtg7FiYNEmqQtm8OSQn89jfn8Xr1pE3Ohqn4GB0jx4FPT0ujxxJld27Ud22DapU+Vfzml0RIiEQEvELECIhyIoolUr2uk4mJSERgNoDLSjRuM63D3D7vlR90rIb2PaWjqWmgoUTREbDsYAPlSpTUlJZ5bmRa0/DsYiLpOmKmVJlSCA5OZWlK7Zz/94T7I4EkuLmxLIT16letRz9rTqgopILDh2D3kOgbXPCZ3+DQNSpIwnE8uVSMSk3N3B2ltI44+K47evL0k2bKBYbi8O+feQ+dAhFyZJsmzaNI2/e0NfNjQadOv3ruc3OCJHI2QiJ+EUIkRBkNW5vP8C9PYEAaOsXpLX7qG+/OCFRkoWSRcFjqhQHoVSCyySpqNSe1VC+9LtTk/D23MiLF5HYP75PNf+PaZ5vkt6y2GcrIY9DcNy/j9gxTviev0vdWhWxtmhHrlxyOHQcegyG1k0InzuRlp37f1kgatdG//BhqXW3qyv88QeMGgVt2sCLF1xasYJVO3ZQMSGBQVu3onbgAClGRqyeOZOrISH0TE+nweTJ/2Fmsz9CJHIuQiJ+IUIkBFmF1DdJ7Bs+9cPr9vMmopH3G6vEKhRgO0oqIHV8C2jllo7PXw6rNsGyWdCsPgDRMa/w9PLnTXg0rtevUHrbkg/nx8e/wWNJAC9fROCycychY5zwu/aYxg2qYtGzNXK5HI6chJ6DoVVjwudN+rpA1KqF/pEj4OcHTk5SWuaECVIZ63v3OOHtzYaDB6mTnExfPz9y7dxJQrVqeM+cSUhICIOjo6nq759jMzG+ByESORMhEb8YIRKCrIBqbk06e7mzx2US+tWNMOre7tsvnuEJOw9BwBKoWE46tv0AjJsFo4eAtSkAz55HsNhnC+rRMYw8dYJCu1eBXn4AXsa+xsM7gKTIGIZt2cK90U5svvOC5k1q0LN7K6lfxtHT0MMemjcgfP4kWnYZ8GWBqFFDEohNm6Tumy4uUiBl585w9SoH589n+/HjNAd6rlyJ3N+fqFq18PrzT5LCwnC9e5dS+/ZJRbEE34QQiZyH6J2RRRC9NgRZgZSERFLfvEXr70WgvsT2A1Jw4+ThMGaIdOzCNTCxhE7GUmMtuZybtx+zfPVO9OPiGHLwIDp7V4NReQAio2JZ5L0ZYl/h4reRK6Oc2B7yktYt69C9czNkMhkEn4FuA6FJXcI9ptGyq+2XBaJ6dfSPHoXt26XCUIMHS8WkTE1RHj3Krlmz2H/rFu01Nek0bx6ypUt5YmLCYi8vckdH43T6NHqBgVCkyH+f1ByI6LXx+5MlGnDJZLKxgClQEUgCTgGjlUrl3W+8PsdIBAiREPxm3LgLzXtCu+ZS+WqZDJ6FQjMzKTZi/zrQ1OD02Rus33SQSonx2G7djvqulVC/JgAhoVF4LAlAMyER5zW+nB7pyJ7IeDq0aUDHdo0kgTh+DrraQsNahHu507LrwC8LRLVq6AcFwa5dUvrmoEFSSqeFBcrdu9k6cyZHHjyge4ECmLi7w6xZXGvblhUrVlD89WsG79mD9tGjULnyT5zM7IcQid+brNKAqzngBZx/d6/pwEGZTFZJqVQmZvK9fzvE1obgZxN56x4FjcpLX9bfQ0ysFNxYtuTHglKv48F0kFSIadMSlBrq7Dtwmt37T9EkNYne6zeSa8uSDwLx+GkYXku3UiD5LY4rVxM4bAgHI+Pp0rEJ7VpLMRScvCCtQNSv+e0CcfQo7NsH/fpJqxCenmBjg2LnTvynTeP4gwf0KlGCFmPHwpgxBNerxyYfH2qkptLP3x+1vXuFQPwAxNZGziBTJUKpVH6ysSqTyfoDkUBt4Fhm3vt3RYiE4GcRefMeSxt2pXSLhnRcNJW8pYp9/SKQ0jb7uEBCAuz3lQIj09LA2hWehUDwZtL18rNx0yFOnrlOZ1UF7bxXI1s1F9o0B+Du/WcsWb6dYqQzeOkK9rgMJiguiR7dWtCq+bs+G6cvSSsQdaoRvnj6lwUiVy4Cq1SRBOLQIbCykn6WLIEhQ1D4+7N+4kTOPH9OHyMjGru6orC3Z0e9ehzy96eVhgam3t7I16+HFi3+++QKACESOYGf3YBL992fLzN6UyaTqctksjzvfwCdn/doWQfRtEuQ2aQlJ7O1/wjSU1J5cPAYF1d8x//HxvwppW36ecJ78Rg1HQ6fAD9PksuUwmflDk6fu4l1fk3aL/JBNmc8WHQF4NqNB3gt3UqZXDDEy4cdQwYSlJiKeQ/jjwJx9jJ06Q81KxPhPYOW3b4iEJUqSQJx9ChYWkLv3rBiBQwfTvqqVaweO5azkZH0q12bxiNHkt6zJ2vr1+fw4cOYFS1Kj/nzkc+cCRYW/2VaBRkgmnZlb35adoZMWi+dB5xQKpU3PnPaWGDSz3qmrIxYkRBkJkenLiTi2m0AClWuQPNxzt924erN4LUGFk35kLbJ4rXg7Que7ryuX5PFXv5ERL5kSJmCVBoxGf5wACcbAM5fvM0av31U01Kn39xF+DsM5GyKEmvztjSs/64a5Pmr0Lk/VKtEhM+ftOg+6MsCYWQkxUAcPw69ekklqlevBjc30hYvZsUff3A9Nhbbpk2paWtLcuvWLG/cmDuXLtG/Zk3qDB4MDg5S/QhBpiBWJLIvPy07QyaTeQEdgSZKpfLFZ85RB/5eY1cHeJFTAiszQgRbCn40T4+fY3WbPqBUIldVZdDJrehXM/r6hWcuQZs+YG0GntOkOIh9R8HMHoYOIGKYHV5Lt5KSksaQSsUoYTsC+prB4ukgk3Hs5FX8txymfn5tzP+cj++g/lyWq9KvT3vq1np3/wvXoGM/qFSBiOWzaGFq92WBqFgR/WPH4MwZqcNmly6wYQPMmEHKtGksGzaMu8nJDDIxoWq/fiRWq8bi9u0JDQ9nUMuWVLK0hFatpKZaKiLjPbMRwZa/D1klsBIAmUzmAXQBmn1OIACUSmUykPy3637C02VtxIqE4Efy9lU822xHSdUkgVaTh32bQLwIk8pM16kO8ydKAnHtNlgNhU7GPB5kxeJFG9DW0mRUkyoU6GUvpXi+q1558Mg5tu8+TguDfHSdOotVA/pxI5catn07UbOalOrJpRvQyQaMyhOx7K+vC4ShIfrBwXD+PJiaQseOkkDMn0+yuztLnJ15lJKCQ9euGFlZEVu+PJ4tWvA6OpqhvXpRytQUKlWSrhEC8VMQKxLZj0z9m/NuC8MD6A60UCqVjzPzftkVIRKCH8X+EdN49SwEgJJN6tLQ1fbrFyW9lQRCVRU2eEoNtEIjpKZahmW49ocTK5ZsoUSxQtg3qoJ2p35QtzqsmY8yVy527jnOgcPnaF+qMG0mzmSZjTX31DWxs+lC1cplpHtcuSmtQBiWIWLZLFqY2X9ZIMqXlwTi8mVpBcLEBPz9wceHpPHjWezgwAvAydyc8n36EFG4MB6tWqFMTWXEoEHod+smtfXevRu0tH7I3Aq+DSES2YvM1m8vwBLoCsTLZDL9d8dfKZXKpEy+d7ZCiITgv3Jr236urtsKgJqOFt2Wz0b+ru32Z1EqYcg4uHkPjvpDYT2IT4DuAwE4Nm4E/n4HqF61HDZNq6FmYinViAjwQaGmxuatgQSfuIJpxeI0HTuNJX0seJRbmyG23ahoWFK6x9Vb0KEflCtFxLLZtOjxDQJx7BjcuCFtX7RsCQEB4OvLmxEj8LSzI0JVFRdra0pbWfEkd24WGxujramJs709+Xr1gshIOHUKxJfXL0GIRPYhsyXC4d2fQf843h9Yncn3znYIkRD8W+LDItntOP7D6w7zJ39bSueCFbBhh1R5smaVD105lY+fs3PWFA4cPkeLpjXp0agq8tYWoKkBO1eRrq2F74b9nL94C8saZak9cjKevXvxQicPznamlCv77t7X70gCUbo4Ectn06Ln4C8LRLlykkDcuSNtXzRpIsUzBAQQ7+yMh60tsZqaDLW1pUS/ftxRKvFp3Zoi+vo42NujbWcH587BkSNQocKPmFrBv0SIRPYgs+tEiKCGH4wQCcG/QU1LkwodWnF13VYqmbajWp9uX79o31Gp/8VIO+jdWVqVcJxA2vHzrJs4mnNXH9C9SzNa1zJE1s5a6uQZ6E9q/rysXLOL6zcf0b9BJSoNnYCHmRkRefPiYm9G6VLvSknfvAftraFEESJWzqFFL4fPC4SKCoFlykgCce8etG8PDRrAjh2wZw+vBg9mUd++JOroMGzwYIoMGsTFxERWt2yJYfnyDBo0CPUJE6Q+GgEB0KjRj5tcwb9GiMTvj+id8ZsisjYE/4Y7Ow9RonEdchfI9+UTb96DFj2heQPwXwy5csG0hSTNWsKy4c7cT0ymr2U76lYuA10HwqXrcHgDbw3L4rNiB4+ehDKwSTVKOY7Bo2MnYgvkx3lwD0oULyyNf+setLWCIoWJWDOfFr0dvywQpUujf/w4PH4stfCuVQv27IGgIF5aWbGoVy9SChRgqKMjhZ2cOPb4Mf6NGlGnbl369u1LLm9vcHaGBQtg6NAfO6mC/4zI2sh6ZIneGf8VIRFfRoiEIFOIjIGmZqCrA4EbQVsLVm8mbvg0FtvaEKOiht2ALhiWKQrWQ2FPIOxezZva1fBatpXQsGgcWtWm8ODRLGrTlgS9Agx17EURAz1p/Nv3JYHQLyQJhPlXBKJUKUkgnj+H1q2hWjWprPXZs0T37s1CU1MoVIihLi4UGD2avTdvsqdOHVq2bImZmRnynTul7A1XV5g37+fNo+C7ECKRtchSKZ6CzEFsbQi+RHpqKokR0eQpZvDtFyUnS5kYSUlwyE8SiEPHCB0/l8V9rVFoaTHczpSiBnrgMgm2HwR/L17XqIyn1yZi4+IZ2rERugNHMr9NW5IL6THMsRf6hd91Bb37ENpZQyE9IlbP+7pAlCwpbWGEhkorEJUrw969cOUKEVZWLDQ1RVVfn6GuruSdOpXNDx4QVKcOXbp0oW3btsjOnpWqUJqZwZw5P2BWBZmF2Nr4PfnZZa8FPxhRIlvwOY7N8GJx7Q5c37iTb1pxVCphyHhpa2KTN5QoAlducs/VnblmpmgYFGSUqyVFixSESfNgmR8sns7LJvWZ5+FPfMIbhnVtis7gscxr2Zq0wgUZ7mLxUSDuPZJWIPTySysQFk5fFogSJaQViMhIaQWiQgVpBeLOHUItLJjfuTOaRYsyfMQIdD09WXftGsFVq2JhYUG7du2QPXwInTtD7drg6wty8esuqyNKZP9+iO2MbILY2hD8nRdnL7OyZW+UCgVyFRUcrx4gf9mSX75o7lIpkHLVXKnPxdMQLli6srZOPcqWK47dwO5oaqrDwhUweibMHENEH1MWeQcgl8tw6doMZV9XFjRsjKp+IYa6mJM/37u/tw+egIkl5M1DpO9Cmvdx+bJAFC+O/okTEBMjpXCWKgWHD8PTpzzv3p1FrVuTr3hxnF1d0Vi1itV79nC1bFn69e9P3bp1ISoKGjaUikidPAkFCvzQ+RVkLmJr49cjtjNyGGJrQ/CelIREtvYfgVKhAKD5OOevC8SuQzB+NoweAhZdUb6M45DzVLbXa0C9ymWwsumCikouWBMgCcRIe1707oqHhz9aWhq4dG9BktVQFjZsgmaRQgx1sSCvrrY09sMn0LYP6OoQufYrAqGqSmDRotIKRFwcGBtD8eJw8CCEhvK4d288W7emUKlSOLu6orJ5Mz4HD3KvbFns7O2pVr06vHkjrUDEx0vlsIVA/HaIrY3fByER2QghEgKAA6NnEvvoGQDFGtSkySj7L19w9RbYjIBubWCSK4qkJDa5zuRY2Qq0q2VIZ6uOUgn6nYfAwQ1szXlka4mXpz96BXRxMmtFnNVQPOo2IE+RQgwdaomOTm5p7EfPoI0VaGtLAmH1FYEoUkQSiPh4qaeFgYG0AvHyJfd792Zxs2YUK1uWIS4usHcvHtu386J4cYY4O1PRyAjS06UuntevQ3AwlC79I6dW8BMRIvF7ICQimyFEImdzd88RLr1r662qlZvuK+Yg/1JfiPAoqYFWhdKwfDYpKamsHDGH6/n0sKxdgSZWnaTzgk6DlQuYtuOOky0+S7ZQrGghhvRoRUSfoXhUr03BooVwGmqJtpamdM2jZ1LDrtyaRPouoLn10C8LhIGBJBBJSZJA6OlJApGQwJ1evfBu1Igy5cox2MWF1KAgPPz9iS5cGOfhwylTvrwU0+HqCrt2wc6dUKfOD5xZwa9AiETWR0hENkSIRM4kMTKGXQ5uH163mz3uy9sYb5Oh12DpX++blxCvBG83D0LlqgyuWoqqVp2l8y5ehx6DoVl9ro4YwooVO6hQvjh2pq14bjUUr8rVMShaCCfXPlLMBMCTF1IQpYY6kesW0tza9csCoa8vCURKihQDoasrVZVMTeV6794sq1sXwwoVGOTszJszZ/BYs4aEvHkZ9scfFCvzrv/G3Lng6Qk+PlI1S0G2QIhE1kZIRDZFiETOQqlUsmuIG4mRMQAYdjKmZv9eX7oA7MfCtTtweAOR6hp4TV3K28QkhpU3oOTAntJ5dx9C1wFQuTxnx7riu24v1auWp3+35jy0Hs6S8pUoUawQDq5WaGioSdc8DZEEQlVFEoi+w74sEIULSwKRni4JhJYWBAaCTMZlc3NW1qhBFUNDBjg58eriRRYuX0567twMHzOGwu8Fwt8fRo0CNzews/tR0yrIIgiRyLoIicjGCJHIOVxevZm7u48AkLtgfjovniHFMXyOv7zBfyesW8hjPT28Z68hd1QMo/Q00RspNdfiWajU16JwQYLHDcc/4AgN61ehT+em3LEegU+p8pQrVgj7YVaoqal+vKatFchlRK5bRPN+w79NIEDawlBXlwRCXZ3zvXqxplIlahkZ0c/JicjLl1nk44Narly4jh1LgfcCcewY9O0LVlbg7v4jplOQBREikTUREpHNESKRM9DWL4hWoQIkRsbQZclMtAp9ISNh6z6YPA8mDOWqoSErPf0pERqGvewt2n9Nkc6JjJFac6uqcmD8CHbsO02rZrUwbdeQ6/1Hs6JYaSoWLcig4daoqr77NfI8VMrCAEkg+o/4vECoqRFYsKBUSEpFBZo3B5lMEghtbU6Zm7O+fHnqGxlh5eTEi2vX8FyyhDxpaThPnIhu2bLSQLdvQ9euUiOuFSukMQTZFiESWQ9RJyKHIOpIZH8SI2O4veMAdQZZfv6kSzfA2Bw6tSbYrh+btgZS48Vz+sWEo7Z3DWiow+t4aGuFMjSCHe7jOHjpHh3aNqRjqzpcGjSOVXkLUb2IHv1H9JXSPgFCwqU6EOkKItcvorntqC8LhJ6etAKhoSEJRGqqlE2hp0ewpSX+RYvS1MiI3o6OPLp2jcWLF6P/+jWOEyagVbmyNFBYmFQLQkcHTpyQ4igEOQJRRyLzEb0zBP+HEIkcTmgENDFFUVSfba4OHDlxlVZPHmH68D7yo/5QIB8kvYUuA1Bcu43/VDeO33mGWdcWGDetwRn7Cfhq5aNO0QL0HWFDrlzvKkCGhEtbGMkpRPl50mzgVwSiQAGpkJSmJrRoIWVjBAeDvj6Hra3ZWqgQrSpVwszRkduXL+OzdCmloqJwGDcOjVq1pIESEiT5iIiA06elWhKCHIUQicxFFJsS/B9iayN78Sb6JZoF8n059uHDyUnQczDJKiqsMu/F9ZPX6PnsES0vXoDgAEkg0tLAeijpF6+zdsIfXLj7nD6929C4XmVOOE5hg3Z+Ghnkx2KkDfL3JaTDIqVeGG+TidrwDQKRP7+0AqGlJQVRJiZKAlG0KPtsbNhVqBDtKlWis6MjVy5cYOXKlRiFhjJw9GjU3gtEWhr06gX370srEEIgciRiayNrICQihyFEInuQ+iaJVcYW6FUsSyfPaWgV/EIMhEIBg/4g7kkISxwGEfEsgsFRL6h69JjUZKt0cekc+7GkHDrB8tHDuB0SjW3fTtSqXp6jrtPZrJGH5oV16TmqP3L5O2kJj5JWIN4kvROIP74sEPnySQKRJ48URBkXB0FBKEuUYKetLQfy5qVzpUq0d3LizKlT+Pr6UuvxY/qNGIFK48bSQEolODjAoUNSI65q1X7sxAp+K4RI/HqERORAhEj8/hwaN4vouw+JvvuQ9JRULLct+/zJ7ot4EXSOxdZWkKZgeHIcxbfshi0+ULuq9MU8egZJm/ewxNWJJ3GJOAzsTiXDkhwc+Rfb5Zq0LqhD99G2H1c9IqIlgUhMJGq9B80Gjf6yQOTNKwlEvnySQERFSQJRpgxb7O0J1NbGrGJFjJ2cCA4Kwn/TJhrfuYOFszNyE5O/fRZ3WL4cVq+Gvx8X5FiESPxahETkUIRI/L48OHSM896+AKhoatDmzzGfP9l/FzfW7WRF714U0suHgzKJvH+uBU93aN9SOufPxSQs24inoz1RqQqcB5tRtnRRdo+Zx16FKh0K5Kbj2EGfCkQ7K4hPkATCfuznBUJdnUBdXSkLQ09P6oURFgZBQSjKlcPf0ZHj6ur0rlCB5i4u7N+/n507d9Lq6lXMBg5EZmr6cbA1a2DiRJg6Ffr1+xFTKcgmCJH4dWRJiZDJZI6AI6JVeaYiROL3401MLDvsPkqDyczR6BmWzfjkc1cInr+aTR06ULVSWWx0cqHRbwr84QDv/3f2WUfcnKUsGjiABBVVXAf3oFiRgmwfv4hDKdBVV5224x0+jhkZA+2tIe61JBCDvyIQefKgHxwMhQtLKwfPnsHRoygMDVnn4sJZuRyrsmVpOHQo27dv5+DBg3Q8f54OlpbI+vf/ONihQzBwoPQzfvx/nUZBNkSIxK9BZGcIRNbGb4JSqSSgjzO3tu4HoKxJU/rsXJlhYKXi6QsCnNwJKleeVk2qY1ooD/KO/cC0vdTqWyYD/11EukzGw9IcRV5dXBx6UFAvHwGTPQmKT6GHVi5aubt+HDQqBtr3heiXRK1bRDPH8V8WCB0daQWiaFFo00YKhAwMJL1yZVYPH87llBT6lS5N7VGj8Pf35/jx45idPIlx167SasN7rl6Fpk2hcWOpJ4aq6o+cVkE2Q2Rt/BhEdobgmxErEr8H1/y2fxAIzfx56erzZ4YC8fblK1ZO9OJWmbKYt21AszIG0LwnNKgFPjMlgdgfRMjIGXiY90azYAGcHXqQV1eHDVO9ORmfgoW6kqbThn4cNPqlVL0yKkZagfiaQGhrSysQxYpB27Zw9y4cOUJqpUqsHDWKG8nJ2BYvTrWRI1m7di3nz52jT1AQjY2NYcqUj4M9fw4dOkC5crBpkxAIwVcRKxI/FyERAkCIRFYn7mkI+4Z9/HLt5DkNnSKF//9EhYKgkX/xQDsPDu3qU7mmoSQQ+gXBf7FUVvrkBR67TMGre3cKFNfHyb4HuXNrsNbdh/OxifTNlUaDmWM+Vn+MiZUEIiLq2wXi2DEoUQLat4ebN+HwYVKqVGHpmDHcS0zE3sAAw9GjWb58OdevXaP/kSPUqVcPFi78eN+4OEkgVFVhzx6pqJRA8A0Ikfh5CIkQfECIRNZEkZ7OdtuRJL9OAKB6n+5UMm2f8cmT5mHiv4Vaq+dTqFkdKYPi7Vs4sA7y6cK129xxmIBPu/YUK1uMIXZmqKmpsGrGMq7ExNNfkUSdBRM+fpG/jJPKX4dFEL1uEc2cJnxeIDQ0CNTSQj8oCEqWlDppXr0KBw/ytmpVlri58eT1a4YUKEBpNze8vb15cO8e9ocOUbViRVi5Et7Vn1C8fUu6mRmqL17AqVNgYPCDZ1WQ3REi8XMQEiH4BCESWY+0pLcfemHolihKu3kTMz5x/TaYvYRcf46hkGlb6D0Ebj+Aw35Qsig8fMIV+3GsbNmKChVKYjeoOzK5jGUzV3Az6hUDk19Tw3vqR4GIfSUJxIswotctoqnLpC8LRO7c6B89CmXKQOfOcPEiHDhAUvXqLJ4wgZC4OJx0dCgyYQIeHh6EPH+O48GDGBYpInXhfLdVkZqSwmpnZ1BTY9COHWBk9MPnVJAzECKR+QiJEPwfQiSyFmraWvRY78E1v+3kLVEUDd0MlvVPXwIHN+jXA1wGwPCpsC8Iti6FmlUgNIIzg8bjW78RNSuVxmZANxQKBUv+XMWDiFgGJ8ZQeemMDysBxL2WBOJZqCQQQyd/WSA0NSWBKF8eunSBM2dg/34Sq1fHc9IkIl++xFldHb0pU1iwcCEvo6IYeuAApfLkkYIlNTUBePPmDUvGjOGpTMaAjh2hWbNMmlVBTkGIROYisjMEn0VkbfwmPA2BJt3BsCzsXQOL18KYP6VaEAPN4WUcR/v9weZyhjSuUhaL/l1ISU3De/YanobH4BAXgeGqWR+DFl/FSwLx6BnRvgtpOnzqlwVCQ0PawqhYEbp1k8pY791LfO3aeEybRmx0NC4yGdqzZrHI05OkhASc9+2jaHo6HD8u1Y8AXr58iZe7O6/j4nAoU4YyIpVT8AMRWRvfh8jOEPxnxIrEryUl8Q1qWrm/fFJ8ApgOknpRbPSCXYclgRg1GAaao0x8w94hk9lTzhCT6uXo1q8Lb9+m4DlnLWHh0ThHvqDsunmfCkRnG3j49NsEQl1dWoGoWBHMzCAoCHbv5lXNmiycNo03kZEMS01Fde5c5s6fD+npDD9yhELx8XDy5AeBCAkJwWvuXORRUYzU1aXwuHE/biIFAsSKRGYhijkJvsh7kXB2csLeaTxLl2/81Y+UI3gSfIZFRi25s/PQ509KT4d+w+B5KGxbCvcew4CR0LsLTBmOIjmFzc7T2WNQnK7Vy9HdpiuJb96ycM4aIsKicHn+iLJr5kgZGyC1AO/SH+49JnrtApqOmPZ1gQgMhEqVoHdvOHwYduzgZc2azHN35214OMMSEmDmTOYtXIiKXM7w4GAKhYRI5xYrBsC9e/eYN3s22iEhjHrzhsJ/z9AQCH4g70UiKioKY2NjIiMjf/Uj/fYIiRB8FSESP5fk+AS2DxpNYmQM/r0ceHDoWMYnjp8N+4Nh3UJQUYEe9lCvBiydSVpaOquHzyI4Tz7Mq5SirU1X4uPfsGCuLy9Do3B9fJdSfgsgtxSLQHwCdLGFOw8lgRjp/nmB0NQkUE1NEoiqVcHCAvbtg61bia5Vi3kzZ6IID2d4bCxJM2cy38MDHS0thp88Sf5bt+DAASl2Arh48SKeHh6UfP6cYS9eoOvrC7ly/fhJFQjeIUTixyK2MwTfhNja+HkcHD2TV89CACjZtB5ljZv8/0mrN8P85TB3AtSoAs17QKECsMmbt0pYNnYB93OpYWtYlFq2ZsS9SmDhgvUkhUUx7P4tDLb6gLaWNNZ7gbh1T9rCGDX9ywKhqioJRLVq0KcP7NoFW7YQUbs2C/78E/XwcIZGRhI9bx7e3t4Y6OvjePIkuU+flspX16gBQGBgIFu2bKFOWBjWN26gcvIk5P7K9o1A8AMQWxs/DiERgm9GiETmc/9AMJdW+gOgqpWbrkv/Qib/x4Lh8XPgPBEGWoBNT2hnDUlvYf86ElRVWTxxMeHJaTiWLoihgwUxL1+zaJEfaWFRDL95lUI7lsH7DI+EROg2CG7cIWbtQpr+MePLAqGigv7hw5IIWFvD1q2weTMhtWqxaNYstMPCcAkJ4cXcuSxdtowypUtjf/EiGvv2SVkYjRujUCjYvn07hw8fxiQykq7HjyM/fRoKFszEmRUIPkWIxI9BSITguxAikXkkvYxj5+CxH163/cuNfKWLf3rS0xCwcIRGtWHOOLB2hZv34PAGXubRwcN9GYmvE3EtqEWJkQOJiHzJQo+NqEREM/zKBQrsXgUF8kljJb6B7oPg2i1iVs+nyZiZXxaIXLkkgahVC/r3l8pQ+/vzrFYtPObMIV94OC6PH3NvzhxWrVlD5UqVsL15E9X162HDBmjXjrS0NHx9fblw4QI9ExJouXcvBAZKZa0Fgp+MEIn/jpAIwXcjRCJz2Dd8Kglh0v5sWZOm1LLt/ekJb5Kg12DQ1ob1i8BtFuwJhC0+hBUxwOOv1eSKeslIDSWFpo7jRWgUHl6b0I6MwvncGfLuXS1tebwfq/sguHyTmDXzaOL215cFQi6XBKJOHbC1hfXrwc+PRzVr4jV/PoXDwnC6e5ers2axbsMG6tSpQ99Hj8jl5QU+PtC7N0lJSSxdupSHDx8yQEWF2uvWSSsZDRpk4qwKBF9GiMR/Q0iE4F8hROLHcmvbfq5v3AmARt48dFky89PmWkol2I+B+08geDP4bZfqQXhM45GRIYvnrSNfRCROqfHoLp3P42fheC4JQC8qGueTx9HeuwaK6ktjvUkCUzu4eJ2Y1fNo4jbr8wKROzeBMhn6hw5B3bpgbw9r14KvL/dq1sR70SKKh4XhcOMGp2fMIGDbNpo0aYJ5eDhyd3f480+wsyMuLo7FixcTExODk4EBFdzcwMNDqishEPxihEj8e4RECP41QiR+DImRMexxnvDhdft5E8nz/gv/PXOXwuY94OcB9x/D6Jkw0p6bTRqw1NOfkmFhDH4ZQe5tS7n7KIQly7ZRLCaGIUcD0dy/Ft5viyS9hR6D4fxVYlbNpcn42V8WCED/4EFptcDBAVasgNWruVWjBj6enpSNiMDu8mWOTpvGrgMHaN26Nd3j4pCNGAGjR8Po0YSHh+Pp6YlCoWBEtWoU6d8fRo4EJ6dMmlGB4PsRIvHvEBIh+E8IkfjvRN2+jyItHYCKXdtQ1aLrpyccCIYJc2D0EDAoDO2soGcnznbtgO/ybVQJCWHAs4eo7ffl+sMQlq/eSdmXMdgfPIj6vrVQoYw0TtJbKQ30zCViVs6hyYQ5XxYIpVJagWjYEJydpW2JlSu5VqMGy729qRgRwcCzZ9k9eTKHg4Pp3Lkz7ZKSkA0aBHZ2MHMmDx8+ZMmSJeTJkwfHBg3I36UL9OoFf/2VmVMqEPwrhEh8P6LsteCHIEpk/zdeh4Rz2G0WbWeP+9BsC5BWHZqYQpO6MHMMtOyNslJ5Do1yZvu+UzR88RzLW9fJFejPpbAYVvrupWpcDAP27EV1zxqoXVUa520y9BwMJ87zcsUcGk+Z/3WBOHgQGjeGYcOkFt1Ll3Kpdm1WrlxJ9ago+h0/TsCECZy4fp2ePXvSUqGQWnd36wZ+fly5fp1Vq1ZRsmRJBrdpQ+4WLaByZalOhIZGps+pQPBvESWyv73stZAIwQ9DiMQP5nU8NOsBSmDHcuhog0JFhU1/DOXYhdu0f/GUTufPIwv053TUa9b5H6TO61j6bttBrl2rpAwOgORk6DUEgs/wcuUcGk9Z8HmB0NIiUKFA/8ABaNIERo2CuXNh8WLO1qrF2rVrqRMdTZ+gINaPHcuF+/exsrKioYoKtGwpXbNzJ8fOnMHf358aNWpg06ULqu8baZ0+Dfnz/5z5Ewj+AzldJETvDMFPR2xt/EAUCug/AsIiIdAf7MaQEp/IypFDuXHpDpZhz2hy7Dgc3sDRF9Fs3naUJomvMN+8Bfm25Z8KhLmTJBDLZ32bQOzbJ8nA2LGSQCxaxMlq1fBbu5YGMTH0OnKEFSNHcuvhQ2xtbamVO7d0frVqKAMC2LV/P/v376dFixb06NIFefv2EB0NZ88KgRD8NoitjW9DSITghyJE4tu4vf0A9/cH0ebPsWjkzWCVbdoi2HtUauW9aCXxV27h7exAWEgUg2PCqLL/MOxezf7wV+zcewLjpHhMN2xGtmkxtGokjZGcDBZOEHiSl8tm0Xjaoi8LRHq6JBDNmsGECVLcwrx5BFWtyqb162kWG0uXAwfwHjaMx2FhDB48mMp58khbHvr6pO/Ygd+2bZw+fZru3bvT2thYio84eRKOHBG1IAS/HUIkvo6QCMEPR4jEl0mKfcVe18kkhEdxf38Qdqe2o1Ok8McTtu2HmZ4wbSTceUjk9kN4DbAhOTWdYYkvKbFpB0p/L3bEveXgkXN0Sk2k/Vo/ZOsWQvuW0hgpKdDHBY6c5OXSv2g83ePrArFnD7RoAVOmwPTpMHs2h6pUYdumTRi/ekXbffvwdHYmPC4OZ2dnyuXLB02bglzO2127WO7vz507d+jXrx/169eXJGTlSikltGnTzJ9YgSATECLxZYRECDIFIRKf5+CYmSSERwFQpHZVtA3+9gvpxl0Y+Af07AgVyvDYZQrefSzR0s3DqLdxFFi+DoX3DDanyAk+cQ4zkjFe4QvLZ4Fpe2mM1FSwGgoHj/HS5y8az/D8vEBoaxOYmioJRKtW4O4OkyejnDGDfZUqsXvbNtonJNB0zx4WDB7Mq7dvcXV1pUT+/GBsDNHRvD5wgMX+/kRGRuLo6IiRkREEBMCYMdKKhrV1Zk+pQJCpCJH4PFlSImQymSPgiOgy+lsjROL/eXTkJFfWBACgnkebjgunfCwqFRMr1XAoVxKG9OWyw0RWd+9GydJFsZcnozXFi/RpI1mrosWFk1ewVFPQZOFK8JgGfbpLY6SmSqWw9wUR6zOTxn96fV0gdu+WhOCvv2DCBJRTp7LDyIiDu3fTJTmZurt2MX/gQFJkMoYPH45B/vzQuTPcvk3Ejh14bt1Kamoqw4YNo3jx4nDunCQO5ubSqoZAkA0QIpExWVIilEqlF+D1PjvjVz+P4N8jROIjKYlv2DVk3IfXraePJk8xA+lFWpq0epCQgHLtfA5MXMTOlq2oXbUcfbXkqNpMIMVlAMvyFOTO1XsM0Fah9iwPmOUGgyykMVJTod8w2BNIrPd0Gv3l/WWBSElBf9cuaN1aCqAcMwbFhAkEGBoSdPAgPZRKKm/bxlwbG1Ry52aEiwt6+fJJnTuDg3m8fj2L9+5FW1sbV1dXChQoAM+eQZcuULMmrFoFf6+6KRD85giR+H+ypEQIshdCJCSOTplP3NMXgNTiu/bfe2NMng/HzpIa4MM6jw2cN6pMx8bV6JBfC1lXW95YdGVx0VKEPAphiJ4mRpPnwKRh4DJAuj4tTcrm2HmY2MXTaTTb5+sCsXMntGkj1YAYORLF2LFsqFCBU8HBWKipUWrdOuZaWaGTPz/Ozs7k1dUFFxfYvJlrixez4vhxSpQoweDBg9HS0oLXr6FTJ9DUhO3bRS0IQbZEiMSnCIkQ/BRyukiEX7vNWc81AKhoqNPZe8bHFt97A2GOD6+njsRn90le5M3PgOY1qFO2KBibE9eqMZ6GVXgVGcvQorqU+mMajLSHMUOk69PSoP9I2H6QWM9pNJq79MsCkZwsCUTbtuDlBa6upI8axdry5blw+jTWefJQcNUqFpibU7BIEZycnNDW1pb6YHh6cnz6dDZeu0b16tWxsbFBTU1NegZzc3j6VKoFkYN/qQqyP0IkPiIkQvDTyKkioVQq2ec6BaVCAUDTMY4UKFdKevPJC7AdxYvu7VkSnkBaajrDmlehVG0jaNGTyEoV8Khdj/S3yQwvVxiDIWNhSF8pc0Mmg/R0sP0Dtu4j1sudRvOXf14gdHQIfPsW/e3boV07WLoUnJxIGzaMVeXKcfXiRWwLF0Zz2TI8zMwoUaYMDg4OaGpqwpo1KMeOZfeIEex78YLmzZvTs2dP5O9FaNgwOHgQ9u2DSpUyf1IFgl+MEAkJIRGCn0pOFIm7uw/z7NQFAPKXK0WjYbbSG8nJYOXCBUND1huUpmBkJA7Vy5CvY0to1Zvn+fLj1aQ5mqoqDKtgQP6+rmBlCnPGfxSIgX9AwB5iPaZ+XSCSkiSB6NAB1qwBe3tSHR1ZVq4cd27cwK5UKRReXnh37oxhpUoMGjRIWmXYt4/0gQNZb2/PmTdv6NatGyYmJh8DQj08wNMTliwBE5PMn1CBIIsgREJkPwh+Ae9FwtnJCXun8SxdvvFXP1KmUqFDKzp5uqOZPy/t509ERV0dgPQxfxGgmYeVNWtT9cEDRmgoyOfcF3oO5n46zDduTd58ugyvVY78A0ZAl9bgPR3kckkgBo2GTbuJWziZRgtXfl0gtm6Fjh1hwwYYMIBkOzsWly/P3bt3cTA0JGnZMpa3b0+1WrWwt7eXBOLcOd6am+Ntbc15VVVsbGxo06bNR4E4fBhcXaWVCHv7nzSjAkHW4b1IREVFYWxsTGRk5K9+pJ+K6J0h+GXktF4byfEJqOtoA/Bqw05WbA/mUZEimF2/SovkRGQH1oH9GK5ducuKNm0pU7YY9tVLo9HVFhrUhC0+oK4ulcS2HwvrtxG3YDINvdZ8XSC2bJGyJrZsgd69SbKyYnGVKrwICWFItWqEzp+Pf5MmNG7UCAtLS2mb4v59XrVsyeLWrYnKlw87e3sqVqz4cfBHj6BuXelnzx7IletnTKNAkCXJbr02RO8MQZYnp21tvBeIR8cvsCzoKsrChXC9f4tyD+7DyW0wdQHHbj3Bv7UJNaqUxaZWeVTbWUHViuC/+KNAOLhJAjF/4pcFIk8eAhMT0Q8IkARi1y4wNyexVy88KlYkKiwMlwYNuDtnDjubNMG4ZUtMe/SQVhnCw4no3h1PExPSChViuLMzxYoV+zh4YqLUrTNfPmllQwiEIIeTU7c2hEQIfinZVSSUCgUR1++gX/0fQYZvkkiZsoBCxUoygCR0g0/BwfUodh5k5+kbHGzWjJbNamFWpRRyE0soUQS2LQOt3JJAOI6HtVuImzeRhot9vy4QmzdLX/YHDkCPHsR37cqiSpV49fIlQ5s149KcORysW5dO7drRvnNnSSDi43nUqxfe9eujU6TIxxoQHz6cEgYMkFYizpyRREIgEORIkRAxEYJfTnaMkbi6bhs+9buww34MiVExH99wnULFi1dwLV0Q3TWbYOFk0l7GsmbPKQ7WqoVZ1xb0rFsReUcbyKMDu1ZD3jzSF/fQybB6M3FzxtNwybovC0RCAvqbNkH37nD0KHTrRlz79syrUoX4hASGtmnDSQ8PDlatSo+uXenQpYskECkpXLW2ZmHFiuiXLMmIMWM+FQiAWbNg0yYpOLNKlcyaQoHgtySnxUgIiRBkCbKTSKQkvuHIpLkAXFkTQPjV29IbawJgbQC4DEA2xwfsLEmqYoiX7z4ulyuHrVUHjCuXgo42kjTsWQ2FCkj/PdIdlvnx6q+xNFzq93mB0NWVBMLfH0xN4cQJ6NSJmFatmFe1KimpqQzt0oWDCxZwonx5rHr0oFXbttLFCgXH7O1Zqq9PlVKlcBk7Vioi9Xf275dahI8bB2ZmmTJ/AsHvTk4SCbGdIcgyZJetjTMeq0kIk35pGHZuTdnWTeDBExg2BXp2gtWboF4NYgda4rXAj9iCBXEe2I3yxQtDOyuIewVHNkLxIpJAjP0TvNbwavofNFjh/2WBiI9Hf8MG6NEDzp6FDh2IbNKEhdWrk0smw6lHD3ZMm8bNYsWwNTenVvPmACgUCnYOH85BTU1aFC1KjzFjPtaAeM+DB2BhIaWIip4YAsEXySlbG0IiBFmK310kEiNjODnXBwBZrly0dh8l9bToPwIMCsHzUMiVi8dTR+HjsxUVVVVG2ptiUKYodOoPj5/DIT8oV0oSiAlzYMEKXk8eToO1W74sEK9fo79+PfTqBZcuQdu2hNWty8IaNdBUV8e+Z0/8pk3jacGCDLa0pHKzZgCkpqayZtIkLicnY1aoEK3c3D6mcL4nPl6KrShYENatE4GUAsE3kBNEQkiEIMvxO4tE8ExPUuITAajVvxd6hmVhygK4dAN6dwb/XZxbOod1m45Q4tUr7IZakcewlNS98+ot2LtGysYAcF8klcMe70L9DTs+LxB58xIYF4e+r6+0UnD9OpiY8LxGDTxq1UI3Tx769+zJyunTidHSwsXSkrLvBCIhIQGfP//kWXQ0A1VVqTl58v83zVIqwcZGaq519izkzZsZUycQZEuyu0gIiRBkSX5HkXj58AkXl20AQFUrNy3Gu8DpS/DXYujZEYXfdnaNduXAhXvUf/AAS5c+qNauDLajIPAUbF8O9WtKg/25GKZ7ED96CPU37/m8QOTLR2BsLPpr1oCVFdy+DcbGPK5cGc9atShYoAB9evbEZ+ZMqZW3pSVF321hREZGsnj+fN5EROAaG0vpzZsz7ro5YwZs3So11TIyyoypEwiyNdlZJIRECLIsv5tIHJk4F0VaGgANhw5AW0tT2saobsSbIydZa2PN9dfJdD99mtYDuiNr2wzGzISNO8F3ARg3lgaauxQmzyN++CDqbT/wdYFYuRL69oX798HYmHsVKuBdqxbFihale+fOLJ41C7W3bxlhZYVeq1YAPHz4kCWLF6MVFcWou3cpePgwqGTw6+DwYZgwASZOhK5dM2PaBIIcQXYVCSERgizN7yIS4VdvcWvLPgC0ChWg0bCBMMIdomN4Xqggyzt0IkFHh8F79lG1TSOw6wPzlsGCFTB/IvToKA3ksQrGzSLB2YZ6ewK/LhDLlkH//vD4MbRqxfUyZVheqxZlSpemrYkJi+fPJ39cHE7m5uRp1w6AS5cusXr1akrFxmJ/7BhaJ0+Cjs7/3yQqCqytwdgYJk3KlHkTCHIS2VEkhEQIsjy/g0hcWr35w383HT0E9eAzsDaAk1074F+oKAZ5tXHeuAm98qWkBlq+W8HtLxjjCA59pQuX+MKo6SQMtqbugWPcufcow3sZ5c9P4MuX6C9ZAgMHwvPn0KoVF0qWZHWNGlStXJmGDRqwxNOTEmFhOJiZodm9O0qlksOHD7Nt2zbqvH2L9fbtqAYFwd8rUb7nfRxEWhqsXSv16xAIBP+Z7CYSQiIEvwVZXSTazR5H8fo1ubRqE7V6dCSxeQ/8e5pxQa8QjXXU6LV7N6rqqrB+ERw6DoPHwoDeMMlVGmD5RnCdQqKtOXUDT35dILy8pIZXYWHQqhUnihVjQ9Wq1K1Th0qVKrHMx4dKT55g2749atbWpKens2nTJo4fP047NTU6LVmCfNs2qF074w+0aBHs3Sv1xDAwyJxJEwhyKNlJJEQDLsFvxe/QtOuW6zR8k5SkqKhi/iqaum8T4NhZOL4FXr6CDn3BpCn4eUhxCGsCwH4Mif16UOf0pc8LRIECBMbEoL9oETg7Q0wMNG/OoQIF2Fa5Ms2aNcPAwIBN/v7Uu3sXq/r1yTVjBm/fvmXFihXcvn0bi2LFaDx2LMybJ3XezIjLl6FBAxgyBObPz8SZEghyNlm5ade3NuASEiH47cjKIvFwVyBzAy9j9DIGq1MnyNezoxT7sHUplC4OrcyhcgXYvRo01MFvO9iO4o1FV2pfuPZ1gZg/X2q9HR+P0tiY3Vpa7DMyom3btqioqLBnzx5aXb+OadmyyFetIublS5YsWUJMTAwDGzemkoWF1PfC2zvjTIzERGl1QlNT6ovxrm25QCDIHLKqSAiJEGRrsopIJL+ORz3Pu6DE5GSUDbpyXUeXqucuIvvDAWYvgfEu0NcMWvSC/HmlYlJ588DmPdBvGG/M2lPn6m1uf04g9PQIjI5Gf84cGDECkpJQdOhAgFxOkKEhXbt25dWrVwQFBdHl8mXa6uoi27WLxy9esGTJEtTU1HDo0YMi7dtDmTIQGAhqahl/oIEDpa6cly6BoWHmTJpAIPiErCgSohW4IFuTFWIkkl7GscCwOWWNm1DfyYaSwWeQ3X9MNTU16N4OfNZBx1YwpC+0tpC2LnaulARi+wGwGU5StzbU/RaB+OsvSSBSU0nv1Yv1KiqcLV+enj178vDhQy5fvozFlSs0TU2FgADOX7mCr68vJUuWxM7GBp336ZkBAZ8XCH9/WLECVq4UAiEQ/ER+5xgJIRGC35ZfLRKX1waQEp/I7e0HKKyhTsmt+0C/EMhl8OwF5NUF7xnQxwVCwiFok1T6evdhsBpKUodW1Llxj1ufE4iCBQmMikJ/xgz44w9ITye1Xz9WpaVxrUIFLCwsOH/+PE8eP2bQtWvUCA9HceoUe44eZd++fdSvXx9LS0tUhw2Dc+cgOBj09TO8V8KtW0SPHUspc3MpK0MgEPxUfleRyJISIZPJHAFHRJdRwVf4VSKhSE/n/JL1H143DI0ArdzwIkwqb71lHxz2k3pfHD8Hu1ZCxXKwPwgsnHlr0pR6dx9+XSCmTpW6ZiqVJDs5sTQ+nvtly9KnTx+OHDlCXGwsLnfuUPbOHVKCg1mzaxdXrlyhW7dumJiYIFuzBry8YMkSaNgww3tdvXKFDYsXo9W4MeMWLUKeUayEQCDIdH5HkciSEqFUKr0Ar/cxEb/6eQRZm18hEvf3BxH35DkAjWtWQe3YWVDJJW1j+O+C6X9A8BlYvRmWz4YWDaXS1r2H8LZ5A+o9fMqNzwlEoUIERkaiP2mSVC0SeDNmDN7h4bwoWZLeFhbs3r0bGTDi2TMMTp4kbtculuzcSXh4OIMGDaJGjRpw4QIMHgy2tmBn93/3SUhIYPPmzZw/f55qz59jYW+PPF++zJoygUDwDfxuIpElJUIg+F5+tkhc8JFWIWRA05hYyKMN+XTh5Hlo3QSKFJZKXo9zBqvuUg+NHvYk169JvachXL//GYEoXJjAiAj0x4//UCUyzt0dzydPeFW0KKa9e7N161by58+P46tX5N26ladr1rDk0CFkMhkjRoygePHiUvqnqSlUqwaenp9kYiiVSi5evMimTZtQpqfT7/x56pUujaxbt0ybL4FA8O38TiIhJEKQbfhZIhEfGsHDwycAaJQ/H+rPQqQ3ypSEtxEw2BosncCym5SZcfkGdLMlpYohDcIiuX7/cYbjfhCIMWNg6lSQyYhYsACPO3dQFCxIu+7d2bx5M2XKlMFeVxfN8eM5M2kSfufOUaxYMezt7aVoaqVSWnlITIQtW0BD48M9YmNj2bhxI9evX6dWrVr0unSJPHfuSM21BAJBluF3EQkhEYJsxc8QiWsbd6JUKJADTVNSpHoPZUvClZuwcg44jIW6NcB7Otx5AJ37k1KqGI1evuLKg88IhL4+geHh6I8aJXXNlMl44u3N4qtX0dbVpU779mzdupXatWtjbWiI3NiYTYMGERQZScOGDTE3N0dVVVUabNUqqevmli1QvDgACoWCU6dOsXXrVtTV1bGzs6NGSookG/PnQ9GiP3SOBALBf+d3EAlRJ0KQLcnMOhLedToSeeMuNYEuAKqqoFCAUz8IOg1x8XBiC7xOgNYWpOrq0DQtnbMPnmQ4nlGRIgSGhqLv4gILFoBMxu1Vq1h66hQGuXJRvFkzjp84gbGxMd3r1iWxaVOWN2/Owzx56NmzJ82aNUP2frviwQOoUQN695bSNZFafq9fv5779+/TqFEjTE1Nya2mBvXqSasW589n3MFTIBBkCX5FHQlRJ0KQo8msFYmY+4+JvHEXGdBKTRVS00AvLxTID+HRcO8xHAuAt8nQvi9pmhq0TE3j7MOnGY5nVLSoJBCDBn0QiAt+fqw5c4byCgUqNWpw4uRJevXqRYu6dXnarh1LW7UiXU8PV3t7ypUr93Gw1FSwspLSOBcsIDU1lSNHjrBv3z7y5MmDi4sLFStWlM5dtAiuXIHTp4VACARZnKy8IiF+ewiyLZkhEolRLylczYhC126jnZIKuTUkeTDvCvOXw+p5UEgPWluQnp6OiYoKJz8nEMWKSQJhZSWlYMpkHPX3J+D4caonJBBtZETUgwc4ODhQpXJlzvTti1+lShQzMGDQ0KHk+2cmhbu7lJFx4gR3QkLw9/cnKiqKli1b0qlTJ9Tfl7B+/VoK2rSzg/r1/9N8CASCn0NWFQmxnSHI9vzwrQ2lknTD5sifhSJTUQGz9lJdCAcrGD8U2liSHhZFe63cHHr8LMMhjIoXJzAsDP3u3cHPD4Vczq4NGzhw8iT1IiK4U7YsuVRVcXBwoFChQmyaNIlTr17RsEgRzEeP/hj/8J6rV6FWLV6NG8eWUqW4cOECZcuWxcLCgiJFinx67l9/wcSJ8Pgx/PM9gUCQpflZWxuid4ZA8Dd+qEgcOwtt+oC6mpTWKZdDyWKwcwWY2aO4cotu+XXZ9eRFhpcblSghZWG0bQsBAaQCvqtWceHKFRo8fcqlsmXRL1IEBwcH3r59y7KFC4mKjsZcU5OGCxdm9OFIb9aMYxoa7KpaFRUVFUxNTalfv/7HWIn3JCVB6dLQpQssXfrv50AgEPwyfoZIiJgIgeBv/NCtjfnLpD+TU6BEEbj7CFbNgYF/oDx7GatCep8XiFKlJIFo3hw2bSIhOZmlPj48efCAuo8ecbZsWapVroyNjQ3Xrl3Db/168r58yegXLyhy4ECGY97x8mKLgQGheno0qVuXLl26oKWllfGzr1oFUVFSGW2BQPBbkpW2NsRKhCBH8V9WJFISElFLS4cidQAllCgKT17AukUQeBLlmgCG6BdkSUh4htcblS4tVaKsWxf27CH6zRs8PT1JjIqi6PPn3CtWjLZt29K2bVu2bt3KiRMnqKtUYrFhAxpXrkCpUp+MFxERwbZNm7h2+zZlUlPpMW4cpf5xziekpUH58tCggdSpUyAQ/NZk5oqEWIkQCDLgv6xIrGzZG8PIaFoqFNKBiGjo2wPuPoSV/ozVL/R5gShThsCYGPSrVYNdu3gcEYG3tzdqaWlox8TwtHhxBtraoqenx19//cXLly/pU7s2jQYORObl9YlAvHnzhr179xIUFERepRLboCBq7duHrGTJL3+AjRvhyRNRWEogyCZkhRUJIRGCHMe/EYnUpLdE3rpPt/R06UA+XVBThfo1wHE8C/Ty81d4ZIbXGpUrR2B8PPqlSsHevZy9eZP169dTUEeHV9HRyHV1GTFmDDdu3mTlypUULVqUMS4uGLRuDS1aSP0vgOTkZI4ePcqhQ4dQKBR0MjHBuF8/VIcMga8JBEjlr9u1g+rVv2WaBALBb8CvFgkhEYIcyfeKRMS126imp1P4/YHYVzDRFeWwKWzPo8Ow6JcZXmdUoQKB6eno586NYs8etgcGcvjwYYoZGPAiNBSj5GS6jhmD/6ZNPHr0iDZt2tCxY0dUXF0hMhKOHCE1PZ0TwcEcOHCAxMREmjRpQrt27dBduxYSEsDR8esfODZWage+fPl3zJJAIPgd+JUiISRCkGP5HpEIvXyDckgNtxSAvFFtFB6ruJArF71fx2d4jZGhIYGamuiHhPAmMJAVW7dy9+5dChYsyIvQUDpcu4a6szPzFi9GR0eH4cOHU7ZsWbh3DxYvJnX2bM6GhrJ/5UpiY2Np0KABHTp0oECBAlKFTA8P6NHj20pWBwZK1Slbt/4XMyUQCLI6v0okhEQIcjTfKhIx959Q8/01QGpENOEJibRPTSM1g3GNKlYk0MAA/fPneb5lC8s3b+b169eoqamR8uoVlsHBnOjQgefHj9OiRQs6d+6MxrtGWW9nz+Z448YERkXxesMGatasiZOTE/r6+h9vcPAg3L8vZVt8C4cPQ4UKUKLEN86MQCD43fgVIiEkQpDj+RaRiH30jOKAEkjT10Px6BldlEoy2sQwMjIisG5dCvv5EezpScCuXWhoaJCcnIxh6dIUPHyYjc2bo583L6OcnD5kVMTFxXF8zx6C09N5W7Uq9StXxsTE5FN5eM+iRVCrFjRq9G0f8tAhaNv2284VCAS/LT9bJIRECAR8XSRiHz5FDWkVQjU8msHAlQzGMTIyItDOjjyjR7N05EiuXr2Kuro6KSkp1KpVizuXLvGkRAk6t25N627dkMvl3Lt3j+DgYK5evYqqQkHjJ09otXo1+T+3avD6NezfD97e8M9iUhnx+DE8fAgmJt8zJQKB4DflZ4qEkAiB4B1fEgn1ZyEf4iGOAD4ZXG9kZESgtzfh9vbMHzCANwkJAOTLl4+0tDQuX7pEgzt36GJigqJVKwIDAzlz5gxhYWEULlyYHl27Ur93bzQdHL687XDlihTf8K2rEIcPS1U1W7T4tvMFAsFvz88SiZ8iETKZbAgwCjAAbgKuSqXy+M+4t0DwPWQkErZ9TSn9NhmQtjMcMrjOyMiILZs2sWPqVK62aoVcJkMlVy5y585NeHg4VapUwVIu5+WJE6xWU+Pe+PGoqKhQtWpVevXqRYUKFZAdOSJlUVhYfPkhL18GDQ0wMvq2D3XkCNStC3nzftv5AoEgW/AzRCLTJUImk/UGFgBDgJOAPbBPJpNVUiqVGXcnEgh+If8UiRf3HmLz7r0HwMN/nF+xYkWGDRuG1+LFKAoUkMaQy0lJSaFEiRLUrFmT58+f4xERAY0bU0FFBSsrK2rUqIGmpubHgY4cgcKFoXLlLz/gpUtQrdq3t/B+9Uo02hIIciiZLRLyHzbS5xkOrFAqlcuVSuVtpVLpCjwn43/QCQRZgvciYd67N38uWkXed8fd/3Gevr4+DRo04PLlyyiUSpDJUFFRQVdXFzU1NR48eMDZs2fRzZULq6NHmdmqFUOHDqVhw4afCgTAs2dQseLX4xwuXZKCKr8VHR2IzzgNVSAQZH/ei0RUVBTGxsZERmZcGO/fkKkrETKZTA2oDfz5j7cOAv+3oSuTydQB9b8d0sm8pxMIvsz169fZum0bqUAlYByw7m/v58uXj7Zt236UgXdf/rly5SJfvnxUq1aNYsWKoa+vj8r16xATQ1zhwsQ9+8wCnKoqqKtLMvEl0tKgQIGvn/ceHR2IjkY/JQU1NbVvu0YgEGQr/rkicezYMfLly/efx83UBlwymawIEAI0ViqVp/523A3op1QqDf9x/mRg0j/HEQ24BL8CU1NTtm3b9tn3mzZtSpUqVX7iE/03xowZQwlRJ0IgyNEMHz6c+fPnc+nSJWrWrPnZ87JaA65/moosg2MAM4F5f3utA2TcU1kgyGQCAgKoV68eFy9ezPD9EydOoKamRoUKFaQDSiW5ZDLeddcgT548FCtWjJIlS1L27Vu0hwyRume+P/+fTJkCT5/CypVffrC+fcHQEMaN+7YP4uUF+/ZlXG9CIBDkGGbOnMn8+fOZNGnSFwXie8hsiYgG0oF//vYqBET882SlUpkMJL9/LfuWHHiBIJN48eIF0dHRqKurkZyc8n/vK5VKjh49SokSJT5Um3wfF6GmpkbevHl59eoV+/fvR6lUUrJZM6qePk3tqlUpXLjw/42HXC5lZ3xttSBXLqlWxLeuKuTNC6GhILYyBIIcy8yZM3Fzc2PSpElMnjz5h42bqYGVSqUyBbgI/LPKjQlw6v+vEAiyBs+ePaNFixbIZQruXD1IowJ5MzxPoVCwZs0aqlevTtWSJVG+E1+lUkl4eDjh4eHUrVsXU1NTCmhocDgkhClTpvDXX39x9OhRXr/+2yphzZpw7RrExX354fT0pBWLb0VHR2rUJRAIciSZJRDwc7Iz5gEDZTLZAJlMZiSTyeYDJYAlP+HeAsF3814gUKYRdHA9pUoV4/iM0Yz8zPkKhYIhQ4agW6IErhoa5I+PJy0tjZSUFHR0dLhx4wbbt29Hq3x5xq9fz0BjY3R1ddm6dStubm4sW7aMu3fvouzUSQqa3L//yw/YoQOcOQPPn3/bB9LWhuRkSM2oy4dAIMjOZKZAQCYHVn64iVRs6g+kYlM3gGFKpfLYN1yXB3glAisFP4t/CkSJElJ9hdCjpzBo35dxSIE7GSGXy/FdsQIzDw92FS5MYKlSqKurk5qaiqGhIU8eP0aZkED76GhabNxISmoq58+f59ixY4SHh2NgYECzkyepr6uLhr//5x/y9WsoVAjc3WHk59Tmb2zZInX7fPkSfkA0tkAg+D34LwLxrYGVP0Ui/i1CIgQ/k88JBMDyZmYMOHcVgPGqKsxMTctwDLlcju/cuVhOncrtZs1YVb48KamppKamYmBgQBG5nEvPnqGnpYWlvT0VKlRAqVRy7949jh07xtXLl9F8+5bmxsa06NoVbW3tjB+2Rw+pJ8Zngj4/4dw5qF8fjh+HJk2+d1oEAsFvyH9dgfhWifgZ2xkCQZbnSwIBoFvMgHikvzBT1dVx+8w4CoUC6xEj8BsyBKN9+xgXEUHp0qVRKpXEx8dzNSKCDq9foxMSwoIFC/D19eXNmzcYGhoyaNAgpo4dS91nzzh08iQTJkwgICCAuIxiJCwtpaJTd+58/cPVqSNVwtyx4/smRSAQ/JZk9hbG3xESIcjxfE0gAApWqsDtd/+tkpCIe5tmXxaJmTPxs7dHd906nENCaN++PfHx8ejq6rI7b17yvnpFj7dvuXLlClOnTuXy5csA5C9enF7Nm+Pu50erGjU4ffo0EydOJCAggPi/V53s0AHy5JFSRr+GXA5dusC2bVLjLoFAkG35mQIBYjtDkMP5FoEAuL3jIEG9h+CAVOBEll8XZb2ajD9yghlf2tro0wdLX1+YP59LzZqxdu1atLW1SYyLI09sLBb163NMQ4MrV65Qr149evfujaZCAVWqQPnyJG3fztGgIA4fPoxSqaRVq1a0bt1aqpJpYwOnTsHdu18vlb13L3TsCDdufL03h0Ag+C35kQIhYiIEgq/wrQIB8PLhEzwqt8YNqbiKTFUFbHqivHid8fceMyMhMcPr5HI5vh06YLl7N2zYwIsmTfDx8SEpKQmthATiFAqsWrVCUbo0/v7+5M6dm759+1Lh4UNptWHdOujTh4SEBA4ePEhwcDCqqqq0bduWFmlpqHbo8G2xDm/fQsGCMHo0jB//r+dMIBBkTX70CoSQCIHgC3yPQAAoFQr+LFyTzvGJVAGUaqrIUlJhgyfKke6MT01lRmRMhtfK5XJ8GzXC8uxZ2L6dhGbNWLZsGY8ePqTk69c80tbGpGFDmrZvz9q1a3n48CHGxsZ02bQJlcBAKe4hf34A4uLi2LdvHydPniRfvnyYnjpFjdhYZOfOfb2rZ9++cOwY3L8v9ekQCATZgszYwhCBlQLBZ/hegQCptXfJxnU5+/5ASiqUKgajZyJb74H7myTcShfP8FqFQoH1qVP4VasGpqZonz2Lk5MTtevU4ZG2NlUiIjh86hQb1q1j0KBBdOvWjcDAQOZVrUqMigo4OX2IZcibNy8WFhaMGzcOfX19lhkasqBECZ7Pnv31Dz5ypFSkatOmb5sogUCQ5fnZMRD/REiEIEfxbwTiPaWaN+AF8Ob9gagYiImFVf7I/L1xfxGGm2HZDK9VKBRYX76Mn6EhdO6M6pkz9OvXjw4dOnCjcGEqv3jB0zt3mD17NlWqVGHEiBG8TkpiZo8eXDt9Gry9PxnPwMAAR0dHHB0deV2kCH8+e8Z6H59Pgy//SbVq0L49/PmnCLAUCLIBv1ogQEiEIAfxXwQCJIkAOPf+QHIK1KoCawIgMhrZukW433uEWzWjDK9XKBRY37iBX+nS0KEDsrNn6dSpE9bW1twqUYIiYWGoxMYyZ84ckpOTcXNzo1ylSixp354tGzaQdvr0/41ZuXJlxru70+P6dS5fvsyUKVM4ceIECoUi4w8xZowUXLl373d9doFAkLXICgIBIiZCkEP4rwIBoEhPZ27JBpSoUJZeZy4hUyikrIi2zeHYWTi+BS7dQDnoD8bXq86Md8Wp/olcLse3XDksIyIgMBBq1eLOnTss9fAgf3Q0WqVL8zAhAXNzcxo3bszRw4fZtmULJV69YtD06eQtU+b/B92yhXgrK7aNG8eZ0FBKly6Nubk5xYv/Y4tFqYTGjaX4iWNfLRorEAiyID9DIERgpUDwjh8hEO9JfZOEam5NsB0FG3aAjhaUKAoKhbQycXIbrNuKcsQ0xjetx4zj5zIcRy6X41uqFJavXsHRo1C1KqEhIXi6uyOPj6eMkREXQkJo3bo13bp149n58yzz9iZdTY2BI0ZQztDw0wGVSqkWxOXLPNi7lw07dhAeHk6LFi3o1KmTlBL6np07oWtXOHwYjI3/9VwIBIKfz89agRASIRDwYwXiE67dhnqdpZUImQycbGD1JmjZCDZ6wQxPlNMWMt6kCTMOnchwCLlcjm/x4lgmJUFwMFSsSExkJJ7jxpGYlkb9unUJvHmTatWqYWNjQ8qhQyxfvpyHRYrQo1cvmjdvjuzv9SGePYNKlWDgQNLnziUwMJA9e/agqalJr169qFmzpnSeUimlhL56BVeufD2rQyAQZAl+5haGyM4Q5HgyTSAAqhlB6ybSF3AxffBeC5OHw46DMMsb3JyQOdvgfugEbh0z/te+QqHA+vlz/FRVpRWBhw8pUKgQI6ZPp4BCwcnLl+nUoAF37txh/vz5KJo2xaVWLVpcu8amTZtYu3YtKSkpHwcsUQKmTgUPD3JdvoyJiQkTJ06kZMmSLFu2jGXLlvHq1StJejw84NYtWLz4x82JQCDINLJKDMQ/ESsRgmxJpgoEUnxEyBJfio9wlw4UKQxF9aWViFne4LsQzNrDYDeU67YyvlsbZmzNuMW3XC7Ht1AhLNXUpDiFkiV5GxLCshEjuK+rS2djYwIvX0ZFRQWnIUMoPHAg50JCWN+0KfpFimBvb0/+d3UkSEuDunWlP8+cAS0tlEolly9fxt/fn/T0dMzMzGjQoAEyBwfYuFGqG1Gw4A+dH4FA8OP4FQIhtjMEOZbMFoiYB0/w7dCPV89CGKhfkKKv4yGPDkS9BFdbeBEO2/fD/nVQtxpYDUW5N5Dxpu2ZsXFnhmPK5XJ8CxTAMk8eaWujaFHSnj9nrYsLF/X16dSqFedv3yY+Pp4hfftS2tyc56qq+HToQEpaGgMHDqRChQrSYDdvQr16YGoKa9d+KImdkJBAQEAA586dw8jICMt27ShQrx707AlLl/7QORIIBD+GX7UCISRCkCPJbIEAUKSlMb98MxLCItGXy7FTKqXYhKb1IPgMbPGBecvh7gMIDpC2O8zsUZ66yPhubZnhtz3DceVyOb5582JZqBAEBUHhwigePSLAwYGgsmVp3aQJj0JDef78ObadO1OtTx8SKlZkedeuPHj0CAsLCxo3biwN5ucHffpI9SUGD/7kPjdv3sTPz483b97QJV8+mk+ejDw4GJo2/eFzJRAI/j2/cgtDSIQgx/EzBOI9gZPmcfwvKZ7Ark41DK7fkapY1q0Oj5/BgfXQy0FaBQjeDBrq0G2g1GujW1tmrN+W4bhyuRzfPHmwLFZMSv8sWBDlzZscGDyYnVWr0qRePeKTk7l27RoW9evTxM6O9B498O/QgRMnTmBsbEz37t2Ry+VSpctly+DECWmL428kJSWxY8cOjh07RtnERKwuXqTw6dOgo5NpcyYQCL6dXx0DISRCkKP4mQIBEPv4OYsqtQKlksLFi2Cf+AYZQIF8EJ8AFcvBosnQ0hyMysGe1ZCWDl1tUV65KYnEui+IhLY2liVLSiKhpwcXL3LCzo4N9epRt04d1HPn5vjx43QoWZKOY8bAuHEEGRsTEBBApUqVGDBgAJpyOTRvDmFhcOkSFCjwf/e6f/8+61atIi46mi5AyyVLJAERCAS/jF8tECCyMwQ5iJ8tEAD5ShenbGupc2bE81Aie3eGl3Hw6Bk0q/9uW2M/bF4C56/CYDfIrQnblyOrVgn3HQdxszbNcGyFQoF1QgJ+T59KWRsxMVC7Nk0WLMDm2DEuXLjAq7g4OnfuzN6nT1k/ahSKGTNoee8ejo6OPHz4kDlz5hAdHy/1yUhMlLY20tP/717ly5fHbdIkGhsYcP/5c2S7dmXmtAkEgq+QFQTie8iSEiGTyRxlMtkt/lZhWCDIiF8hEO+pM8jyw38fuHkPaleFQgVg8x6wNoNpCyE1FZbPlgpTuS8CbS3YsRxZZUNJJPqaZTj2B5F4/PijSDRtSt1587A/eJBb165x//59LC0tOfPmDT6DB5Pi4kKlBw8YNWoUaWlpzJo1iwcpKVJ8xMGD4O6e4b3U1dXpNXkydioqyOzsICoqU+ZLIBB8md9NICCLSoRSqfRSKpWVgHq/+lkEWZdfKRAAFTq2okD50gA8PnaWqMFWEB4FxQzgzCVoXBesXKBBTZg6AqZ7wLptoKMNO1cgMyoniUS/HhmOr1AosE5MxO/RI2jdWhKJtm2pOmsWjrt38/j2bc6cOYOtrS331dTwsLbmTd++GDx5wqhRozAwMGDhwoWc1tGBKVOkn927M/4wMhnyZcuk1Qp7e9GgSyD4yfyOAgFZVCIEgq/xqwUCQJ4rFw1dbT+8Dj4QTIJNL7xq1iE0Nh4qlwcNDTB3BOf+YNMTHNwg6LSUErpzFbIKZSSRsOmZ4T0+iMSDB2BiAi9fgpkZhtOmMXTrVsIfPWLfvn0MsrMjPG9e5nXvTlzPnmiHhODs7EyDBg3w9fVlR9WqKLp0AXNzuJpxTw/09cHHB7Ztk1JDBQLBT+F3FQgQEiH4DckKAvGe6n26o1VYD4A7Ow8R1bcHMdra/GnancOnr6MYaQ837sLQybBoCjSvDz0Hw5WboKsDu1YhK1sS952HcOvfK8N7KBQKrN+8we/+/Y8iYWNDqXHjGO7vz+vQUDZv3oztwIG8KVyYuSYmRJqaohIVhaWlJaamphw4eJBV7duTamgInTpJwZYZYWYG1tbg7AxPn2bSrAkEgvf8zgIBIjtD8JuRlQTiPSfnLiXy5j2auTlRoFwpUjbuYpfPJgKrV6dcdDT961Uk7x/uMMsNBvSGdtbwLASO+kPZUhD7Cjr0RfkshPFd2zJjpX+G95HL5fjmzo2loSEcOgT58oG7O5GzZ7PIxgZ0dOjbty8b1q4lKTQUx1u3KL5vH+TLx6VLl1izZg0lChfGfulStAsWlIpa5c79/zd69QqqVoX32SGqqpk6fwJBTiUrC4RI8RRkO7KiQAAo3xeb+jtWLty7do/VDRuTrqZGfy0ZFRctlwpR1akGxhZS0OXRTaBfUMrsaG+NMiSc8V3bMGPFF0RCUxNLIyNJJHR14Y8/iPX2ZpGdHUlqagwYMICtfn5EvniBw7NnlN+2DbS0ePz4Md7e3uSWyxmyejWFmjSRsjcySuk8eRJatJBWJObN++FzJhDkdLKyQICQCEE2I6sKxGeJiYVa7YkvXZJVegbcLV6cTq+iabtrL/KgzVKWRqteUCA/HPKTtjZiYqGdNcqIKMZ3MWHG8o0ZDv1BJCpVkrIudHXBwYH4tWvxdHQkRqlk0KBB7N+0iUfPn2MbHU21jRtBTY2oqCi8vLxIjI1l8KZNlO3fH2bMyPgzLFwIrq7g7w+9Mt5qEQgE309WFwgQEiHIRvxuApGS+Ia3sa/Ic/UWmNmjaNuMvbFv2Ve7NlVeRtP//Dk0gjZBdIy0IlHFEHatkqpaRsVIIhH9kvGdTZixfEOG9/ggEpUrSyKhowODBvHGzw/voUN5kZzMwIEDObltG9devMAqKYkGq1aBXE5iYiI+Pj48efiQfgcOUHv8eLCx+f+bKJVgaQm7dsG5c1KbcYFA8J/4HQQChEQIsgm/k0AoFQqu+e3gyKQ56JUvg/W+tcjsx8K2fVCuNDeQs7Jpc/JHR+MQ8oQCO5fDpZvQoS+YNAU/D6m1eGQMtO2DMvaVJBLL/DK83weRqFIFDhyQRKJ/f5L9/fEZMYKHCQkMHDiQazt2cDI0FDPA2MsLZDJSU1NZ5+vL+QsX6HbuHCZz5iBr0eL/b5KQAA0aSF1Bz50D8fdQIPjX/C4CAaJipSAb8DsJBEB6airBMzyID4ngcdBp7u05ArPHQV5d0FCjSkgIo25fJ6WIPn+VNuSB8xSphoSfB+wJBIdxoFBIBav2r0Ommwf3PYdxs7PM8H4KhQLrpCT8rl+Hdu2kL/yVK1E3M8Nh7lwq5s3L0qVLqdSxI20LF2YLsH3kSJRKJaqqqtj070/7Nm3YXq8eG2bOJP3u3f+/ibY2bN0KoaEwYICoHyEQ/Et+J4H4HoRECLIkv5tAAKioq2MyY/SH1wfH/Em6pjos/QvOXIYuJhgEHucPRSIGhfKzUCMvp6d6QfuWsGI2rNsKo6ZLX9SF9WC/LzItLdx3H8HNrk+G91QoFFi/fYvftWuSSCQmwpo1qHbtit2ff1K9YEFWrFhBkQ4dMM2Xj4NJSfi5uaFQKJDJZHTu1g2r7t05Vbo03hMmkBQa+v83qVAB1qyBLVtEkKVA8C/IrgIBQiIEWZDfUSDeU7FrG0o0ljpmvnzwhAvLNkDLhjBiEKwOgMF90J63FOfqpWigkQvfuGR2zV+LsndnWDQVvNZI5bIBDArBgXXIcmvivjcQN3urDO/5QSSuXIH27SEpCdatI1fnzvSfMYO6RYqwevVqcnfogLWaGqdiY1k1aRJpaWkANDIxwalnTx7p6jJ/3DjiwsP//ybdu8Po0dJPcHBmTJ1AkC3JzgIBIiZCkMX4nQXiPaEXr7OscXcANPLp4nLzCJo6WmBsLsU7VDWEoDMojwVwaN4atmvno0Epffo4mZNrwQoYNwv+GgtD31XDDAkHE0uUqWmM79iKGUvWZXhfuVyOr7o6lrVqwb59oK4OvXqh2L8f/6lTOf7kCb179SLP+vWskssxLFyYQePHo6amJt1m/368NmxArq6O46RJGBQt+ukN0tKgTRu4eVPqCvrP9wUCwSf8zgIhYiIEvx3ZQSAAitSuSvU+kkS8jX1F8ExPqWDTmgVSPQgVVTAojMzciTburvR/9ojzD0NYvNCPt442MGowjJ4J74tOFdWXViRUcuG+Lwi3wdYZ3lehUGCdnIzfpUvQoQMkJ4O/P/LWrTGfNIlW5cvjv2kT0T164JCQwP2wMLymTSMpKUm6Tbt2jOzUCfXXr5k7fToP7t//9AYqKrBxo/RZevWClJTMmUCBIBvwOwvE9yAkQpAlyC4C8Z5WU4ajoqkBwHnvdcTcfwyli4PXdNJ2HOR5j84QHgmDx1LXZxpO1y/z+FEI8+av49VIexhsBY7jpY6gAMWLwIH1yAD3/Udxc/iKSFy4AB07SgWtAgKQNW+O2bhxtKtUiW07dvDY3Byn2FhehIay0N2dhIQEAPL37MmIFi0oGhLCovnzuXz58qc3KFQIAgLg/HmpEFUWXskUCH4VOUUgQEiEIAuQ3QQCIE8xAxoNGwiAIi2NQ25/SW/07EiwrTWzopM45joY5YFgWLAcwzVzGXE8mITn4cxe4EfYaEew6Ar9R8D+IOnaEkWkFYl0Be4Hgr8sEikp+J0/L4lEWhps24ascWO6jBlDl+rV2b1vHzfMzRkaGcnL0FDmT59OXFwcALkHD8apZk2qPXjA8mXLCAoK+vQGDRrAkiWwdCksWvTjJ08g+I3JSQIBIiZC8IvJjgLxnpTEN3hUaU1CWCTqujo4XjmAjkEh0hLesHXgOIIMitFAQ475oiWorZgNlSsQ22kAXh07EpdXF4cBXSjrNhMOHoOdK6FZfWngx8+lGAkNdca3acaMxRl33JTL5fiqqmLZoAHs2QMymdR86/x5AhcuJODCBVo0aUKTVavwLFIEFX19XEaNQk9PD5RKFPb2bLt1iyPVqmFiYkLXrl2R/71E9h9/wNy5UjGqDh1+wowKBFmb7CQQotiUIMuTnQXiPVd8t/Lo8Ana/DUWbf2CH9949IyzFq74NWhIYWU6dlu3o7djGbxO4E2PwSzpY85TjdzY9WlP5THucOEq7F8HtatK1z98Cm36oMytKYmE15oM7/9BJBo2hN27pYPt28PVqxz39GTD6dM0rluXtqtW4VGyJCmFC+MyYgQGBgbSCkb37hwJD2dr3brUqVsXa2trVFRUpHHS08HUFI4ehVOnoEqVTJxJgSBrk50EAoRECLI4OUEgvsquQ7ywH8cyS3MSklMZeP4MRtt8IPgMKbajWDHEjpsKOf3MWlLXbTrcfwKH/cCovHT9wydg0geljhbjTZoxw3N1hrf5IBKNGkkikZ4u1ZS4dYsz3t74Hj9OnerV6bZiBV7lyvGqcGGcXV0pUaKEVHfC2JiLKSmsadyYsuXKYWdnh6ampjR4QgI0aQJxcVJFy0KFfsLECQRZi+wmECCyMwRZGCEQ7+hsQrF+poxeuZoyhfLhVb8Rwc5ToXtb1KaOwM5zCXV11FkdcIRgt+FQpDB06AePnknXly0lxUi8TsD9yAncnGwyvI1CocA6NRW/U6egc2fIlUtKATU0pMGQIdgaG3Px2jUCrK1xvnWLgqGhLJg3j/v374OWFuzeTe2EBJzOnOHZ06fMmzfvQ/wE2tqwcye8fQvdukl/CgQ5iOwoEN+DkAjBTyWnC0TSyzhOLVjOhxXAqSPIXaMSDitX06K0Pv7FS7Nx+CzSXQaQa7AV1rMW0LJ4Qfz3nWLPGFeUWrklkQiNkK4vX1qqbPkyDvejp3Bztsnwvh9E4uRJ6NJFStM8cADKlqWWnR12bdty/d491llb43D9OiVDQ/H08ODmzZugpwcHDlAhJIQRZ86QmJDA7NmzCX1f3bJECdixAy5fhoEDRcaGIMeQ0wUChEQIfiI5XSBu7ziIZzUTDo35k2t+26WDqqrg54FcJqPH9l1YFs/PiVzqeE304s3Ukcg7t8Zs2my6VC/LnhNX2TTKBUVaGnTsB9EvpTEMy0oiERWDe9AZ3Jz7Z3j/DyJx/LgkEmpqUgfQEiWoZmuLQ4cO3Hv6lJX9+mF75QoVw8JY4u3NpUuXoHRpOHCAIrdv88f582hqaDB37lxptQKgfn1YvRrWr/98a3GBIBshBEJCSITgp5DTBQIgl5oqb6JjATgwajqJkTHSG/oFYYMnXLxOkyePcdbOxfO4BGb/uYrIORORVa9Eu/HTsWxRk2NX77NmuDPpL+Ogkw3EvpLGMCoP+3yRhUXgfuwMbi5fEIm0NPyOHYOuXUFDAw4dAgMDjGxscOrShSdhYfj064f1hQvUCgtjxYoVnDp1CqpWhd27yXvqFCMuXaJ4sWJ4eHhIkgHQuzdMngzjx8PmzZk6lwLBr0QIxEeERAgyHSEQEhXat6RyDykVMullHPtGTP34Zv2asGASLPXDsFwxRiVEQWgEszw38WDeZMifjyZj3bHt2oJLj0JY4jKElJAI6DoA4qVCUVSuIHX/fBGO+/FzuLkMyPA5PohEUJAUx6ClBYcPg54e5a2tcenendCXL/G0saHHuXM0CQtj3bp1BAYGQuPGsHkzmrt24XjjBjVq1GDFihXSewATJ4K5OfTrBxcuZNpcCgS/CiEQn5IlJUImkznKZLJbwLlf/SyC/4YQiE9pP28SmvnzAnBz8x7u7Dr08U1bc+nHdTKF7CwZ9fA2RUNDWbR+P5fmToE3SdQaN50h1h14EBmHxxA7kh49h26D4I1UupoqhrBvLbKnIbifPI/b0C+IRHo6fkePSiKhowNHjkDevJS2tMTVzIyXiYkssrGh49mzmISHExAQwO7du1F26ACrVqG6ciU2d+/SunVrAgIC2LJlCwqlElauhGrVpC2TFy8yd0IFgp+IEIj/R6R4CjINIRAZc81vO9sGjARA26AQjpf3o5H33f+/k5OhTR94EQbbVpBqZse6Bg25ULAQprUrYjzUDZrW4/GciXiu2EFBDTWclixDu0Yl2LoUNNSlca7chPZ9UZYryfjGdZmxYEWGzyKXy/HNlQtLY2PYtg1iY6FFC0hKInTLFhZt2UJuuRyXVas427AhO/T1adWqFWZmZsgWLIDhw2HOHI7WqkVAQAC1a9fG2toa1ZgYqFdPCso8flxa7RAIfmNymkCIFE/BL0UIxOepatGVcm2bA5AQFsnBsX9+fFNdHTZ4QboChk1BdaMn/fbuw+TVS7ZcuMPmCaNQHD5B6T89cXXowcvUNOYPHMCryzfBwuljU6walWHPGmT3n+B++iJurrYZPsuHFYkjR8DMDPLnh8BAUFOjSK9eDDM35y0wv29f6p48Se/ISAIDA1m3bh2KoUNh7FgYOZKWz59ja2vLlStX8PLyIklXV6pJce8eWFmBQpHJsyoQZB45TSC+ByERgh+OEIgvI5PJ6OQ5DTVt6V/nl1dt4lHgqY8nFCkMfp5w9jKs347cdwHdNmzGnGSCnkay/A9XUjbsoLjnSoY79iZJLmfeABtizl6BfsOkSpMAtarA7tXI7jzE/czlr4vEoUOSSOjpSVUoZTIKm5kx3NIShZoa86ytqXTsGP2iozl79iwrV64kbcoUKa1zwABqhYTg7OzM8+fPpVoSJUrAhg1S+ueYMZk8qwJB5iAE4ssIiRD8UIRAfBu6xYvQesYfH17vcnAj9X1cA0Cj2jBvAixeCzFxsHAyzbxXYl8wNzfj37LI2YEEHz/0fTcz3NkcpaYGc/taE3HsAgz8Q6pKCVCnGuxahezWPdzPXcXtXVOwf/JBJA4cgB49pMqTR49Cejp63bszvE8fVLS1mWdlRcmgIAa+fMm1q1fxWbqUlIULpfiHXr0oHxHBiBEjSExMZM6cOYTVqQPz5sHs2eDpmYkzKhD8eIRAfB0hEYIfhhCI76POQAtKNqmLuq4OLSe5fmgd/oFBltCvBziNh5pVYKQd1abOZVjl4kSqqDLHtj/Rs3zQ276P4c7maObNw7w+Frw4fAqcJnzcQqhXA3auRHbtNu7nvyISCgV++/dDz55gYCBtbSQnk69bN4ZZWZE7Xz7mW1pS8PBhHF6/5v79+3j5+JC0cqXU3bNTJ4pERjJq1Cg03tWSeNi5MwwbBi4usH17ps6pQPCjEALxbYjASsEPQQjEvyPuaQjyXHLyFDPI+IS3ydDGEp6HwbEAcJsFOw8SFbAMz3N3SI5+idPmLRRbNImENs3x8NlCdFg0TpsDKG3aBuZNlLp3Apy6CJ37o6xdlfF1qjFj3rIMbymXy/GVybDs2FGq9/DsGTRvDrq6JOzZw6ING4gND8fZ35/Url1ZrKNDwYIFcerXD+3OneH5czh+nDfFiuHj48OTJ0/ob2NDjZkzpY6fgYHQsGEmzahA8N8RAiEacAl+IkIgMpnwKGjcHQrrwZ7V0MMB7jzg9T5fvA6eJ/p5OA5791BuyXSSGtVh8bKtvHgahsO27VQw7wjT//goEifOQ1dblPVqML5m5a+LRKdOsGkTPHkiiUTBgrzZswfPDRuIeP4cx82bUe3ZEw9NTXR0dHCxskK3Qwd48wZOnCBVX581a9Zw+fJlepua0mzyZLh9W+r6WaHCz5pBgeCbEQIhIbIzBD8FIRA/ntBLNz49oF8QtvjAnYfgPBE2LYYC+chjPgRX89YUL18Cjw4duTZ8Bpo37uBk34PS5Yrj1a0rNwIOgPuij2M1qQvbliE7exn3q7dwG2GX4TMoFAqslUr8du+WikeVLi2tIEREkLtzZ5ytrChaujQePXqQtGULwxUKkpKSmLd6NTGbN0vSYmKCalwcAwYMoEWLFmzcsoUdTk4oCxaU2pFHRmbiLAoE348QiO9HSITgXyME4sfyNu41221HsaxRN27vOPjpmzUqw4rZELAXlqyDHSsgIRFNSyccrTtQpWo5fFq25NSw6ag/forDwO4YVS6LT8eOXNqwB+b4fByrWX3YuhTZqYu4X7/zdZHYuVMSiXLlJJEICUGzc2cc+/ShdIUKeHXvzkt/f0aoqAAw18+PcH9/qT14u3bI4+Pp0aMH3bt350BwML7OzqQnJUGnTlKrcYEgCyAE4t8hJELwrxAC8eO5fyCYq+u3AbDbaTyJUTGfntC9HUx0hWkL4dJ12LYcbtxD1W40tv060aSOEevq1ufA0OmohIQzyKYztWpVZEXbtpz23Qmeqz+O1aIhbFmK7NhZ3G/e+7pI7NgBFhbSFsSRI/DkCeqdO+NgaUmFSpVY0rkzIWvXMlxDA01NTeZt2cLz9evh0SPo0gXZ27eYmJjQv39/zt++jbeTE2/v3ZPk5H1KqkDwixAC8e8REiH4boRAZA5VenXCsHNrAN5EvWSPy0T+L2ZprCP07CSlccpk4LsAdh1GPvYvzPt0oEOjauyoVIUtI/5CFhNLvz7tadygKr6tWhG0ejss3/hxrFaNYPMSZEdP4X77Pm4jvyIS27eDpSUYGUm9Nu7fR7VzZ+wtLKhSowZLO3Tg4fLlDNPRoUCBAizYu5eHq1ZJPTR69oTUVOrWrYujoyOPoqNZ4ODA66AgcHIS7cMFvwwhEP8NIRGC70IIROYhFaFyR7NAPgBubzvAjU27/3kSLP1TarbV0x5qVYX5E8FzNTLP1XTqaULvZjU4Wrwka0bMRvkqHoteJhg3r82mpk05tDwA3q12AGDSFDb/r727Dssi68M4/h1SQETFxMLONVGxxe7AAhMLTOxdA1fdZe0CRdQVWxTFLuzuXDsRCRMVRFJg3j+O+YqAilLnc11c4DMzZ8Z5BG/OnPM7rij7j+N425uxI+3ivLYPQWLTJujSRazouW8f3LyJVqtW9O7UiYpmZrg1bsz1BQuwz5KFPHnyMO/wYW4uXCiWHO/RA2JjKVGiBMOGDSNIVZnZpw/P1q2DqVPjPK8k/UwyQPw4GSKkRJMB4ufLmDMbLeZ9XN1z15AJvPZ//PlOehlgvav4ukM/6N4ehveF3yfDlj3UaVufXhYVuZjFGNffZxMVEopl6zo0bVCVzdWqscvVA9Vz58f2GtUBjwUoXkdwvPsg/iABuG/cKEpZly8Pe/bAlStotmqFTYcOmJubs7JBAy7OncugbNkoWrQorufOcdnJCTw8PvQ65MuXj1GjRqGZOTMzu3TBZ+5cWLUqSe+lJMVHBoikIUOElCgyQPw6pSybUqZjS+DdYMu+f6D+/9oTJjlhwyK4fgdsR8PfI6FdU7AZDqcvUql1PQbWrcB9XT2cxzgRHhJKy+Y1admkOjsqV2aryzrUT1cQbWoB6+aj7DqEo/fDhIPEhg3QrRtUqgReXnDxIhpt2tDF0pKatWqxpm5dTs6ahV2OHJQtW5Yl169zZsoUcHUFBwcAjI2NGTFiBDkKFmSupSVXJ0wQ4y0k6SeTASLpyBAhJUgGiF+vmdNEDPPkBODBoZOccVnx5U4Vy8CS6bBhB8xYBEtmiMcb7ezgng8lLBsytGYZnsXC7PEuBAe/oWnjarRrUYu95cvj6eyOuvfIx/aa1wd3Z5Rt+3H08Us4SHh4QPfuYrXOXbvg9Gk0LC2xatOG+hYWrK9Rg0NTp9IrVy7Mzc1Z4ePDkfHjYfJkmDkTgIwZM2Jvb0+JsmVZ1LgxJ0aNgitXkvp2StIHMkAkLVlsSoqXDBDJx/vgSVY16w6Apq4OfU9sJmeZ4l/u6OgsPta5iOmbdTuKtTMOr4fsxjxeugHnUzfQMTTA3qEvxlmNOHrkAuu2HKbmrVtY/dELjbqfVJDcsge62KO2a4ZDgTxMnrEwzuvTUBRWAZ2trWHlSrHkd7NmUKcO6ubN7PDyYvfevbS4eJEmf//NpuBgDh48SGs9PRrPng3//isW70IEE4/Vqzl2+jQtbt2i6fLlKPnzJ/UtldI5GSASTxabkn6YDBDJq1C96pjb9wTAtHZV9N8NuPzC2EHiUUavkeAbAFuWQMgbaG8H4RHk7tWBEaXzQdBrZv7jxuMnL6hdpxLd2tXjRPHirJ61ktiTFz6216YxrJqLsnEXjn6PGDuqX5ynjVVV0SOxdq0YNFmrlihrffgwSocOtGzWjJbNmrGjYkW2/fUXltmz06xZM7aGh7Olf39UW1tRVhtRIdOqWzda1q3LjhIlWDtkCDEvXsR5Xkn6HjJA/ByyJ0KKkwwQKUN0RCTXPXdRtksblPelq+MSFg4NrOFpIJzYDP6PoWFnaFwH1jiDpibBE+cwz/s5wTmyM8jemgL5c3Hu1BVWeOylwsOH2Izri6ZZ2Y9tbtgJPYahWrfGwSRnwj0SXbvCsmVi+merVqJXYv16Dhw4wMZt27C4eZP2U6dy8M0bNm7cSO2oKDquXInGtm3QpMmH9k5t3Miaffso/+YNfdzcQFc3ie6mlF7JAPHt5NoZ0neTASKVCngCNS0hX27Y6w77j0HHATCoB0wfB6pK6NCJuDwP54lJbvr1a0+xIvm4dOYKS933UPrRI3o79EW7XKmPbXpsh54jULu2xSFn9oSDRLdusHSpmLXRpo0IE2vXcvTwYdZt3kzNu3exmj6dU2FhuLu7U/nNG7p5eqK5dy/UqPGhveseHkT9+ScVzMzErA0N2WkqfR8ZIL6PfJwhfRcZIFK+8FfBRATF8T2dJxdsWMiTh4/ZMXQysU3rwezx4LxMVKtUFAzmTMBe8y0FfP1wcfXk6vX7VKhaFtsuTblhYsKiqUuJun7nY5udWsKS6SirNuEY+DLhRxurVkHv3tC4MXh6wtat0K0btS0s6NauHSeKFGHVuHGYGxnRs2dPzhsasqRtW962bAmXL39or3SnTlRwdAR3dxg3Lknvn5R+yADx88kQIX0gA0TK533wJK5mzdhpPyHuHczK4j1qILszGOLm4ExULysY1gdG/QNb94KGBhncpjEgPIhSPg9Y5LaVcxdu8luVMgzo2pS72XOwYIobETfvf2yzcxv4dzrK8g04vgpm7O/94zz1hyCxciX07SvWxvDwEGHCxoZqdeti07Ej5woUYNnYsVQwNMTOzo4bWbPi2rQpkc2awZ1PAkyHDjB7tihEtWBBkt1DKX2QAeLXkI8zJEAGiNQgMuQNTsXrEv4yCADL5bP5zapVnPteHjeH5cGRmBhnwm5YN4wGjoWdB2HPaqhaAULDiGnWnTVZc3HGtCCd2tendo3y3Dt3DZeVO8n7OpgBDrboFTX92OgKT+g3BrWvNQ6ZjZg83TXOc394tNGzp5iBsXGjWHeja1dYupRLR4+ydN06Sj97Ru8ZM3gQE4PrggXkef6cAadPo3/4MOTL97HBYcPA2Rk2bYLWrZPkXkppmwwQP06OiZASTQaI1OPahp1s7DYEAF0jQ/qf24lRXO9XbCy+PUbgqp8VzexZGdCnLSY9h8FdbzjiCYULwMsgYhtYszFfQQ4VKkyr5jVpXL8KPuevMX/FDnKEhTFoXF8MCn8y1XLZeug/FrV/NxwMM8YfJFSVzr17w+LFokeia1fo2RMWL+basWMsdnen2MuX2M6YwSNgvrMzWZ8+ZfCVKxgePAjZs3/4u9Cxo6hFcfAgmJsn8V2V0hIZIJKGDBFSosgAkfpsshnO1XXbAChQqwrdvVahoan55Y6hYbxs2gPXoiV5kT0bfSwtKNV7uFjs6vB6yJYVAp6g1rNiV4mS7CxUhAYWZrRtWRv/s1dxXrGDLFGRDHawxdA0z8d2l6yDQQ6og3rgoK+fcJDo0wcWLYI1a8RUUFtbcHXl1tGjLFyzBtOQ2r33ygAAQLRJREFUEPpNn84LDQ3mzZmD3tOn2N+7RxYvLxA/xCA8HBo2hNu34dQpsSy5JP0fGSCSTqoeWKkoykBFUW4AZ5P7WtIyGSBSp2ZzJ2KUT7xXD4+d5ZTT0rh3NNAn6xonRhw+SOFnz1jgsY+jjmMh+DW07wfhEZAnF8rO5TS/dJH2D73Zf+g87uv3kadyGYZ1b8ZrbR3mTHEj+OGjj+32sQLnSSjzV+AYGRn/GAlFwX3JEujfXyzc5eYmAsXgwZSoXZtB1tb4ZszI/DFjyKooDP/9d97mzs2sokV53q4dhIWJxvT0xCBNY2MxHfT586S8pVIaIANE8pA9EemUDBCpm8/RM6xo3BVUFQ1tbfqe2ESusiXj3vnsZWIadcGzSyeO6BhQv3h+2o79C43GtWHNPDF98r8b0LAzpyzqsDpPASqUK4pNl2a8OPsfTit2oq2hMGR0b7IWyP2xXdeVMOwv1OF9cdDSSrhHws5ODJB0cxO9EUOGwJw5PDh0iPnu7mR/+5bBU6cSqauL8/TpRD55wuCgIEzWrwcdHdHYgwdQrRoUKACHDoG+fhLfWSk1kgEi6aXqngjp55IBIvUzrV2V6sP7AhD79i2bbIYTHREZ985VyqO5cAqd3FbSwUiXg3f8WDzCnsgdB2HMuyW4y5WCjYuptmc/fV4+5srV+yx020IWs98Y3rUJsdExzJ6+jEC/Jx/b7d8dZjqgzP4Xx9jYhHskFi0Sq3j26SPChJMT/P47BS0sGGplxQstLeaOHYt2VBQjxo3DMHdu5mTNik+vXqKMN0DBgrBzJ1y/DlZWEB2dVLdUSqVkgEheMkSkMzJApB0Wfw4hVznR+/D8xl32j5/x9Z2tWsHv/bGY5kS/sqbcfh3OnIH9CF68FhasFPvUqgJrnKmwYRsDwl9xz9uf+Ys2YmBWlmGdG6MVEcnsact46vvJ0uSDbGDaGJSZi3BUlISDhKurCBL9+okZFzNnwrhx5Ktfn2EdOxICzBk3jpjQUIaOH0+OnDlxzpCBOwMHirEcIFYO3bBBDLS0t//4upTuyACR/GSISEdkgEhbtHR1abtsFpq6Omgb6JOjZNH4D5g4DFo15LeRkxjezJzgDBmYadODJ3/Pg/fLgjevD4umUsJtDfYaUQQ8DmTugvXoVC7LsE4N0XsTypwZK3n06RiJIb1h8h8o0xbgqKWZcJBYsAAGDxZhYvZsmDIFJk7EpHFjhnXoQER0NHPGjyfi9WsGT5hAgWzZcImN5drIkR8ba9oUFi4US4tPn/6Dd1JKjWSASBnkmIh0QgaItOv6xl3kLl+KrIVNE975TSjUs4LgEF7uXIHLxkMEP3pGP689FFk1C6qUF/vNWwaj/sF/0ijmvYnFwCAD9v3ao3nyAvPW7eVV5swMHtaF/AU/mbUxYyGMn4k6fggOkVEJj5EYPFg80pgxA/74A/76C8aPJ3DrVpw8PVH19RkycSKZs2XDbexYrr1+Tc+cOan0118fG5swQRy3erUYuCmlCzJA/Hxyiqf0gQwQ0md8H0HNtlCkIGGbFrNo1S4e3PPD5swpKq6ZI2pIAEyYDdMW8NTpb5yfhKChoWDfvwMGJ84yb/0BnmXLxqAh1hQslPdj21MXwMTZqJOG4xAannCQsLeHuXNh8mRwcBCfx4zhlacnTps3E2loyJDx48meKxcrR47kfHg4XfLnp/rYsaIhVYVevcT0US8vqFfv5947KdnJAPFryIGVEiADRHr15kk8UyDzm8B6Vzj/H/q/T2ZQv3ZU+K0IS6rV4MDgv1Gfv1uCe+Iw6GNNzmETGFEyD5qamsyet46gKhWxb1Mbk6dPcXZey927vh/bHj0Axg9BmTAbx0wZE3604ewsKlKOHQsTJ4rPM2eSpX17hjVvjn5QEHMcHXny6BE9Zs6kppYWq/39OThzpmhIUUQxKwsLaNsWrl5NmhsopUgyQKQ8MkSkYTJApD9vw8LZaf8n88s2JMjH/+s7mlcE18mw0hNtlxX06NWGRhWLs7F4STYMm0psWLj4D9ppIrRtTNa+oxhesTCGGfWZM9+Dp1UrMahFDUwDHjHfZT23bvt8bHvcYBg7CMVhBo5ZMiUcJJycYMQIGD9eLLY1ahTMnYtR584MbdIEoxcvmDtlCv7+/lg5OdHw7Vs8vb3ZNXcuqqqCtrZYn6NQITFWwj+ev7eUaskAkTLJEJFGyQCRPh2ZPI/zi92JfP2Gzb1GEvt+amRcurSFkbYwZhoaew7TplsLrMyKc8Q4B/+OmEFUZBRoasLSmVCzMpm62TO05m/kyJEFpwXreWhuRv8mVSnm68uChWJF0A/GD4E/BqCMmYajceaEg8ScOSI8/PWXGB8xbBi4uGBoY8PQ+vXJ/vQpTtOm8cDHh7aurrR6/Zodd+6wydlZBAlDQzH1U1MTmjWD4OAkvrNScpIBIuWSISINkgEi/ar1e38yFxBjFHxPnufk7H/jP+CvkdC8HnQfCjfuULtLC+zKFeSGpg5OY5x48yYMdHXBYwGULIJ+B1sGNzCjYIHczF+0kdvmlbGtX4lSD3xYvGQLl6/cFe0qingcMtIO5Y8pOOYwTjhIzJ4tAsTkyTB8uJi9sWgR+nZ2DK5dG5PHj5k3axZ3vL1psmQJHZ8948Dt27g7OxMbGwsmJrB7N/j5gaUlREUl4Z2VkosMECmbDBFpjAwQ6ZtuJkPauM1A0RDf2ocmzeXxpWtfP0BDA5bNggJ5wdIOAl9Stld7hhXKzvOwSGb+tZjAwCDIaACbl0B2YzK06UP/ptUoXbIgi5Zu479qVelbqyzl795lybJtnLt4U7StKPD3SBjeF2WkI465syccJGbOhNGjxYwNe3tRT8LNDb0hQxhkbo6pvz8uTk7c8Pam7vLldPfx4eStWyxzciImJgZKlRLlsY8fFwMuU/DAcSlhMkCkfDJEpCEyQEgABWpWpsYIWwBio6PZZDOCt2HhXz/AMCNsXAyhoWA1EKKiMB3em1GGGvD8BTOmr8DH9wkYZ4Edy0FR0G7Tmz4ta2JWsQTLVu/kVDVzepqXovLt2yxftYtTZ98FF0WBf36HIb1Qhv2FY95cCQeJGTPEAMs5c8SaG337wooV6P7xB/0rVqSYjw8LXVy44u2N+erV9Ll5k8u3b7NozhyioqKgdm1YtUrM2Bg3LonvrvSryACROsgQkUbIACF9qu54e3JXKA1A4O377BuXQEGmAnnAwxXOXoYhE0FVyT5tNCMjg8gW8Ii5zmvFmIc8uWDncnjxCk1LW7q3rEXtGuVx37CPA9Wr0a1CUWpcv86qtXs4euI/0baiwNQxMMgGxX4CjvlMEg4S06aJADBvniiT3bMnrF6NzoQJ2JUuTen791m8cCEXfXyosHYt/S9e5Pbdu7jMmUNERIRYOnzWLFHIauHCJLuv0q8hA0TqIUNEGiADhPT/NHV0aLtsFloZdAE457qKe3uPxH9Q9Uow3xGWrYf5y0FDg4xuMxjy6AElfX1Z6LZFBIOiBWHbUrh1Dw3rgXRsXoMmDauyeftRdlSvhlXpgtS9coV1nvs5eOSCaFtRYMY46N8NZfB4HE3zJhwkpk4VMzZcXcHGRiwj7uGB1rRp9ClalIp37+K2ZAlnfH0p5eHB4JMn8bt/H+fZswkNDRWDM+3tYeBA2L496W6u9FPJAJG6yBCRyskAIX1N9hJFaDh19Ic/b7UdTVjgy/gP6t4OhvWBP6bAniOglwGdDQvpe/0KdXwfss5zP1t3HkctXxo8F8Hxcyi9R9GqcTXatqyN1/4zeNasTrsS+Wh06RKeWw7jtf+MaFtRYPafYNsZZaADjoULJBwkpkwRVSkXLxYVKbt2hY0b0XRywsbUFPNbt1i5YgUnHj2iiIcHQw8eJNDHhzmzZhH8+rUoq92mDXTqBGfPJtGdlX4WGSBSHxkiUjEZIKSEVLbrSpFGtQEwLmJKdGQiZiw4joImdaDbELh1D7JlRWObGx1On6LtIz/27D/DSncvomtUhtVOsHkP2E+goYUZ1h0acOTEZVZXr06LQrlofv4823YeZ8fuE2IqpqLA3InQqxNKvzE4Fi2YcJD45x+YNAmWLhWPKaytYds2NBYupIuJCTVv3GDNmjUcfvaM/GvXMmznTsL8/Zk1cybPXrwQJbErVIAWLeDevSS8u1JSkgEidZJlr1MpGSCkxAp5/Ixr67dTdZANGpqaiTvodQjU7QgRkXBsoxhUeeYSNO7KuXYtWZklJ0UL56Vvz1boeWwHu9Hwe3/4awTnLt5kxZrd/FaqEL0OHuCQzzO2VKlCAwsz2rasjaIoEBsLAx1g+QZUtxk43LqfcInsP/8Ujzc6d4YtW2DTJmjSBNXKik1Pn3Lgt99o27YtDbW1edGuHfPbtSMsSxYGDhxIfgMDqF5dnPfkSciePelusPTDZIBIeeTaGWmYDBDSL/HAD2pZQqliYjCltjZs3QtWA7lt35fFGvoYZ83EAFtLMi9bB6OnwrQxMKQ3V67dZ8mK7RQpaILdoYOcCHiBZ1Vz6taqQPs2FmhovAsS/cbC6k2oy2bhcP1OwkHifWlsKyvYsUOEifr1US0t2f7qFV7lytGiRQuaRkcTam2NS7duPNXXx87OjuI6OmBuLipbHjgA+vq/8m5KXyEDRMok185Io2SAkJLC27Bw1NjY+HcqmA/WLYBTF2HYX6LmQutGMGMcxZ0WMzyXAW9Cw5np5M5jq7Yw0k6MpVizmbJlCjPQ1pIHvk+YV6MW5tkMsT51ksPHLrF2wz5iY1VRo8L1H7BujdJrJI5lSyT8aGPiRDHjYu1aaNJErJdx+DCKpyet9PVpeekSO3bsYGtsLAaLFjFk6VIKRkbi4uLCxVevRFXLK1dEb0Z81TylX0IGiNTvp4UIRVFMFUVxUxTlgaIo4Yqi3FcUZZKiKDo/65xpnQwQUlLwPXGehZVbcHbh6oR3rlkZ5v0FS9aC6yrx2iAbGGxDnjFTGPVbfjJk0GWm81ru9bSCHu3Bbgx4HaZ40fwM6d+BJ8+DmFujNuUzG9D95HFOnrnKyrVexMTEijLVi6dCxxYoPYbjWL5UwkFiwgSYNg3Wr4f69aF1a/GIYssWmmpp0e7iRfbu3Yunri66c+bQf+FCymtp4ebmxtGwMNiwQfRi2NvLYlTJSAaItOGnPc5QFKUJ0AlYC9wDygD/AqtUVR2ZyDbk44x3ZICQksLL+w+Z/1tD1NhYtPQy0P/8DrIWNk34wD8mw7zlsNUNGtYSv8V3sYe9RwnbsZxFl+7zwOcRNtaNqTjFCfYfh90rwbwijx4H4uzqSQYdLeyPHMI7OIzlNWtRvmxRenZrhqampmiv50jYtBt1tRMOF68l/GjD0VEs3NWmDRw9KkpeV6gADRtyBPCoVImaNWti9eABODjgOXYsh1+9onnz5jQLCECxsxNh5Pffk/AOS4khA0TKlyLHRCiKMgror6pqoUTuL0MEMkBISWvnkAmcX7QGgHzVKmGz3z3hAZcxMWBpC6cvwlFPKF4YwiOgSVd44MfbAx6sOn2dC5du0a5ZTepNmQs37sCBtVCqGM8Dg3B23YAaE8vgI4d4HBaJW81alC5ViN49WqCtpQXR0dBzBGzeg7p2Hg7nriQcJP75R9SDaNUKTp0CLy8oXRrq1eOkjg5rKlWiStWqdL16FY1Zs9jzzz9s8/endu3adLx+HQ1HR1HZsnPnJL7L0tfIAJE6pNQxEUbAVyeqK4qiqyhKpvcfgOGvu7SUSQYIKak1/Od3shTMB4DfqQucnrcs4YM0NWHlXMidQ4SJl0Ggl0HUijDMiHY7W2yaVaeBRWU8dx5no21PYvPmhpY9wfcR2bNlZvhgK7R1dZhdoxbZdLXpd/wYN28+YJHbVqKi3oKWlljHo1UDlM72OFYtn/CjjXHjwMlJrJdRubJYCvzWLdi7l+ohIdhcuMC5s2dZVqIEsX360GT8eLqULMmxY8dYmj8/b3v0EIWsDh9OqtsrxUMGiLTnl4UIRVEKA4OB+GrQjgGCP/nw/wWXlmLJACH9DDoZDWj973RRswE4OGE2z28lon6CkaFYY+NVMHQeDG/fQnZj2OYGL16h0XEAbRtWpaNlPQ6eucrS3ja81c0ALWwg8CVZMhsyfHAnMmfJxJzqtdDX0mTAiePcu+eHy7+biYiMEkFixRxoXg/FehCO1SomHCTGjBHlsbdvF48zmjSBBw/gwAEqv3xJ74sX+e/yZf6tWJG37dpRY+RI+larxpWrV1lQvjwRdeuKAZq3biXdTZa+IANE2vTNIUJRlImKoqgJfJj93zEmgBewQVXVJfE0PwXRW/H+I++3Xl9aIQOE9DMVqFkZ88E2AMRERrGlz+/ERkcnfGDhArB2Phw/ByMd371mChsXwYUr0PcP6tYoRx+bVlz1DmBez+6EhYZBmz7wJhTDjPoMHdARE5PsONeohaooDDp1Aj/fJ8xfuJHw8EgxlXTlHGhcB8VqII41zRIOEqNHi/LYO3dCmTLQqBE8fgwHDlDh8WNsL17kxo0bLKpZk6g6dSg/YACDmzTB18+PObVr87pAAWjeHJ4/T5obLH1GBoi065vHRCiKkg3IlsBuPqqqRrzb3wQ4BJwBbFRVTWBe2WfnSpdjImSAkH6Ft+ERLKraihd3vAGo99cIan3lP+svuK0TxaKcJoJdV/HaZi/RQzHCFhxHcd87gIVuW8ikrcXAZSvIWqYobP4XdHSIinrL4mXbuHPHl96nTmCko8W8ajXInj0Lg+3aYWCgB1FRYD0I9h9H9VyEw7GzCY+RmDlTrPrZsKGoTnnwIGTMCLVrc6tgQVwrVaJg/vz0W7+eDD4++G/ZwvytW9FWFAZt2EDOHDlEDQk9vSS4wxLIAJFapYiBlYqi5EEEiAtAV1VVv2lidnoMETJASL+S/9nLLK3bETU2Fk1dHfpf2IVxEdPEHTzSUUz73L0SalcVrzm5iVoRi6dB93Y8efoCl8WbiA6LYODadeStVRlWzAYNDaKjY1i2ehf/XblLt9MnMTHIgHMVc7JkzsTg/u0xzKgPkZFgNQgOnUTduBiHI6cTDhKzZ4tVP+vXB19fOHRIPCapU4d7JUviUr48eXLmZOCqVehFRvJi504WbNhA8IsX9NuyhSJVqsC6daKOhfRDZIBIvZJ9YOW7HojDgB8wEsiuKEouRVFy/axzpnYyQEi/Wt4q5ak2tDcAaqxKwNnLiT946mioYSbW2Hj0VLxm3wt6dRK9FEfPkCunMSOHdCaTcWZmt2/PrdP/wYi/QVXR0tKkd/fmVK1SmhVVq+Ed/pZhF8/z+vUb5sz3IDj4DejqiscntauitLfD0aJawo82hg+HFStg3z7Ik0eECYC9eyny33/YX7/O48BA5nbqREhsLMZWVozo25e8pqY4N2/O+UuXRFVM6YfIAJE+/Mw6ETZAnMO+VVVVEtlGuumJkAFCSi5RoWHsGOhA7TEDyVa88Lcd/DQQqreGfHlg72rQ0REDLlv2gis34ZgnFDYlIiKKJSu2c/u2D1337aeqdXMYOwiA2FiVTVsPc/DoRVpdvECFLAY4lauEto42QwZ0IGuWTGINj3a2cOoi6pYlOOw/nnCPhJOTmLppYQEvXsCRI/DyJTRogH/t2swvU4YMmprYr1hB1iJFiN65k9Wenpw9e5Y2p07RsH9/FFvbH7296ZIMEKlfinic8aPSS4iQAUJK1U5fhIZdwLYzzBovXnsVDLXbixkgRzZAFiNiYmJwX7+PU2ev0/r0aRr1bY/SqxMAqqqya88pdu45RaMrV6iR3RDnUuVAgSEDOpLN2EjUpbC0hbOXUbe64bD3aMJBYt486NAB6taFN29EkPDzgyZNeNakCfNKlyYmIgL7NWvIZW6Oun49O3bvZreXF7Vu3KDj6NFoNmnyi25k2iADRNqQ7I8zpMSRAUJK9cwrwoyx4LICPLaL17IYiUGUgS8/TAfV1NSkq1VjmjUyZ6u5OevW7SF210EAFEWheZPqtG9Tl71ly7I/KIKh3rfR0NBg9rx1PH32UtSl2LgIzMqitOmDY5O6CT/aGDwYPD3FAEs9PdErYWoKmzeTY+dORty/j56REbM7deLhqVMoAwbQsmVLulhbc6JkSRYtWEDEpUu/6EamfjJApD8yRCQjGSCklCg6IpJDk+bie+J84g+y6wrWraH/WLh+R7xWxBTWuYjpoEMngaqiKAotmtagc/v6nChVisVuW4k6dfFDM/XqVKKrVSOOlyzJtsA3DPG7T4YMOsyZ78Gjx4GgrwebFkOF0iite+HYzCLhIDFokFjt8+BBMcDSwkJUtfTwIPOGDQx/8IBsJibMbd+e27t2gYMDNWrVYkDv3tzNnZs5M2cSdC8RdTTSORkg0icZIpKJDBBSShTs+whXs+YcnTKfHYMciImKStyBigIujqKORKcBEBwiXq9dFeb/LaaEflIZs2aN8tj1aMGtPHlwct3Am2u3P2yrXvU3evdowcViRfF4GsKgp/4YZtRnrst6/AKegYG+6OUoWwqlVS8cW9RPOEgMGCBqSBw8KJYgr1cPqlaF5csxWL4cez8/ChYrhkubNvzn7g5OTpQyM2NEnz6EamvjN3iwmCkixUkGiPRLhohkIAOElFIZ5slJBiNRbf75zXucnOuW+IP19WDdfHj+Avr+/nGFzB7tRe2IP6bAzgMfdv+tQgmG9m3Dc0NDZjqvI/D2gw/bKpYvTr++ltwqaMrKgFf0Cwkka9ZMzHVZj8/Dx5DRALb8C6WLo7TsiWOrhgkHiX79YO9eMeUzIkIEiYYNwdWVDPPn0//JE34rX55/mzbltKsrrFlD3sqV+bNPH347dAhsbeWqn3GQASJ9kyHiF5MBQkrJNDQ1aTH/b5R3NRKOTp7Py/sPE99AYVNwmwHb9sGsxR9f/3sktGwA3Yd9fNwBmP5WjFF9LVFVlRnz1vHwkyBRumRBBg/shG/ePLjdf0qfiGBy5zTG2dWTe97+YJgRti6BkkVQWtjg2KZRwkHC1lb0Rhw6BCEhIkhYWsKsWWhPmULvZ8+oVr06K+vV4+DMmeDlhU7NmrB0KaxcCTNmfNP9TOtkgJBkiPiFZICQUoPcFcpQZWB3QIyP2DV0It80i6tFA/hjAPw5Cw6eFK9paIjFtQrlh/Z2YgGvd7KXL8HIPq0xDgpm7gJPrl25+2FbkcJ5GTqsK89z5WThrQC6q+Hky5eT+Ys2cuvOQ8hkCFuXQtGCKM1tcLRsknCQ6NNHLB1+8KCY+tmgAfToAZMmoeHgQOcXL2jUoAGe1aqx/e+/UU+fFlNFHRxg9Gix2JckA4QEyCmev4wMEFJqEhnyhgXlm/A64AkA7VY5UaZD88Q3EBMDrXrBfzfg1FbI9+7f+wM/qGkJ5UqJhbu0tD4cErX3KG4LPbmePz/WnRpRo1rZD9sePw7EefpydIJf079KCTwVXe7c88OuV2tKlywIQa/FQl8P/FC9VuGwYWfC0z+XLYMqVcT0z7x5Yf9+mDpV9DYsWcLeXLnYsnMnte7do9OcOWiULAkdO4rlxk+cgHLlvvW2phkyQKR9copnCiIDhJTa6BpmpOmcCR/+7DXybyKCvvpz5EuammI1Tj09McXz/aDEgvlgtTMcOQ3jpn92iE6j2ti2s6D6jRusWb+PHV4nP/SA5M6djRHj+qBmyojzhbu00VEpVcKUhW5buHz1LmTOBNuXQb7cKM2642jVMuEeiZ494dw5sVaGr69Y/XPsWOjfH/r2pdHr13Rp25YThQuzePx4onx8RCXM4sWhZUt48uSb7mlaIQOE9CkZIn4yGSCk1KpEq4YUb9kAgNCngRz4c+a3NZAtqyhZ/d8NGPXPx9ctqsH0seC0FNZs/uwQzS5tsW5UlVanT7NrzylWe+wlJkYsuZMtW2aGT+iHnp4uzmdu0dhAm3JlirBk+XbOX7olalPsXAG5c6I07Y5j59YJBwkbG7h8WZTIvnsXmjWDKVOgWzfo1o0aYWH0s7bmVrZsOI0fz5uXL8XjjOhoMZYinc3YkAFC+n8yRPxEMkBIqV3T2X+ibaAPwPl/1xJw/sq3NWBWFmZPgMXusPaTsQQDukO3djBgHPxfm8oIW5qYl6HHoUOcOXsd1yVbiIgUU00zZ8nEsL8HYqyhMO/YFWob6WFWsSTLVu3i9NnrYJwFdi4H4ywiSHSzTDhIdO8O16+LIHH9OrRoAc7O0LYtdOxImZgYhnbtynNdXWZOnEigosCmTXDhAtjbf9v9SMVkgJDiIkPETyIDhJQWGOUzwWLCUDR1dag7fgg5fyv+7Y307gRWrWDIBHgYIF5TFJj3F5QtCZ36w5PnH/dXFJjpQFXTXAzcvw/v+/7Mnb+e1yGhAGQ0MmTIFHvyvY3E5eAFKmfRp3rVMqxc68Xxk1cguzHsXgVGhihNuuLYvV3igsSdO7BnD/z3nwgQixdDnTrQqhWm+vqMsraGiAhm/P03vrlygaur2GfRom+/J6mMDBDS18iBlT+BDBBSWhIbHU3QwwCyFi7w/Y0EvQaz5mJMhNcqMWYCxOqfNdpCgbywZ5VYtfO9kDdg0Qk/RYsFTRqjpaPDIDtLcubICkDUi1csGTGDm0ZZ6Nm0GndDIzly/DId2lpgUbsiPH4GjbpAeATq3jU4LN8Q/2BLoLO7uxhk2aQJVK8O7u6iZ+L+fTh2jJArV3D18OBxzpz0GTiQ0u+DxMGDULPm99+fFEwGiPRJDqxMJjJASGmNhpbWjwUIEAMf3WaIEthOSz++bpJTlMa+ePXzcRMg6kBs+pd8z54y8vQJtLU0mOm0lvsPRG+GjnEW7KYOo8Kzp7h5nSafgS4NLMzYsPkQew+chdw5RGDR0RaPNnpbxd8jAbh37gwBAaK65fHj0L27eHSRIwc0aoRhtWoMrVuX4g8e4OriwvEOHaBaNWjfHvz9f+wepUAyQEgJkSEiCckAIaUX39WDWccchvaGCbPFMuHvVa0As/4U4ybeL+D1Xn4T8FyE8bnLjLh1jdy5RLGpy+9qSWjmyo7NlKHUeOjD6j1nMNLSoFkjc7bsOMZOr5OoJjlhz2pQFPFoo691wkHC2hqePYNt20QPw+DBsGuXqHXRqBE61tb0LVOGmteu4e7hwYZevYjR0YF27dLUQEsZIKTEkCEiicgAIaUH4S+DOPDnLJZadESNjf32BiYOgxKFOTpmFq+fv/r4eh8r6NRKDLS8ff/zYyqXA7cZGHhsY3DQU8qUKsS/y7dx5LhYXVPDNC/WU4bS4NZNNu47i0Z0NK2a1WTnnlNs3XEMNW9uESRiYlGadMPRrkvCQaJTJwgOFiuAbtsmpn56eYniVE2bounggFWePHQ6eZIjZ8+ywM6OsBs3YOjQb78nKZAMEFJiyTERSUAGCCm9WNW8B94HTgDQbuVcynRs8c1tvDl/Fcd/txCrr0fnnq0pX7bouw2hohCVhgYc3yTW4vjU1AUwcTaxy2ezUdeQQ0cv0qheZVo1r4WGhoJ64Sp7RkxlW4WK1K9ZnszGmdm49TB1a1WgQ1sLlAd+0LAzGOij7lmNg+uq+MdIKAqdN2wQC3Z16gS9ekG/fqJUtpkZbN4MLVpw6+VLljRqhKGq0m/ZMnLOnw9du37zfUkpZICQQI6J+GVkgJDSk+rD+n74+rCjM7HR0d/cRkaz3xhXPBeFvR+weNk2Vq71IjwiUiyqtXY++PiD/YQvF7v6oz90aYuG3Wg65DKiXeu67D14jhXuu4mOjkGp9BtNJg2m46mTHDh+mcePn9OpXT0OH7vEGo+9xJrmhb2r4U2oKEg1sEf8PRKqinuHDu8KZ60ANzfxeds2OHkSevaE9espER7O70ePQqZMTLe25sbEiXDt2jffl5RABgjpW8kQ8QNkgJDSm0L1a5C/RmUAXtzx5uq67QkcETfDob2xjQim26ULXL58h3+mr+TufX8oWVRM/Vy9CVZ4fn6QosACRzArBx37Ub9ADnp3b8Gly3dwWbyJ8PBIqGNO3XH96H7oEKfOXOPufX+6WjXm9LnrLF21k+gC72aHvApGad4Dx8E2CQeJ9u3B0BAWLoR588T4iHXrRNEpBwfYvp0c9+4x6sIFCpUogUvDhuwaOZLYoKDvujfJRQYI6XukyMcZiqIMBAYiQk7xlPg4QwYIKb16eOwsyxt2BiBLwXwMvLIXTW3tb2/I7xGYNedF0/qsqGTG/QcB1K9rRstmNdC2nwDuW+Cop6gl8anAl1C7PejqwOEN3HkexKKlW8mS2ZCBtpZkyWwIqzZxebIrS5s0pnjJQlQ1K8VKdy+KF8tPX5uW6Hg/FNM/c+dA3bUSB6elX3+0AazS1KTzpk3g7Q3DhsGkSWBqKhbu+uMPqF8fmjYldsAAvCpXZufJk5hFR9Pz33+//b4kAxkgpP+Xqh9nqKrqoqpqKaBKcl9LXGSAkNKzArWqUKheDQBePfDj8sqN39dQPhNwmoTxui0Mza5Pmxa1OXz0EtNmr8F/1AAoXgi62ENo2OfHZcsKW5aIOhA9hlGsUB5GDLYiPDySGU7uPHocCN0sKd/fmv7bd3D31gOOnvyP3jYtuHvfj/mLNhJumk8UpAp4IpYRH9r76z0SQLeYGNwtLaFIEZg8GSZMEDM45syBadNE6ez589GYN49mISEMKlUKcy8vUWcihZMBQvoRKTJEpGQyQEgSWEwY+uHro1NciP7eqY1WraBDCzSGTKBh0Tz8PrwLANNdNrB3xCBiA57A2GlfHlesEKycA3uOwDRXTHJnY9QQawz09ZjlvI6bt33AvhclrZoxeOMmAnwesXvPafr2aEnA40CcXDbwpkBe2LUSHgagtOqF4/C+CQeJNm2gbFnxGGPUKNDRgXHj4PffQVsbhgwBe3tKFitGyVq1xGJePj7fd29+ARkgpB8lQ8Q3kAFCkoS8VStQtKkFAK/9H3Nxqcf3N+Y8CQz0YdQ/5DXJzh/Du2BRpyJbT19jbr++BLpvg71HvjyuUR0YOwj+mgv7j5M5syHDB3WioGluXBZv4sjxy/DXSApbVGWopycvn79k07aj9OnegldBIcye70FQ/rxirY17Piite+E4IhFBonVrUWBq2DAYOBAKFRKzNmxtRdXKxo3FkuH29pAli5ip8R0DUH82GSCkpJAix0S8l5KmeMoAIUmfe3zpGourtQEgY+4c2N84iLZehu9rzGM79BgmHjFYVAPg7n1/Vrrv5k3gKzpevoT5RheUbFk/Py4mBlr3hsvX4dRWyGdCTEwsG7ce5vCxS9SpWZ72zWqg2bYvT+/74typExq6Olh3aMAaj71oaCjY9+9A9od+0Kw7lCmBus0Nh2mu8Y+R0NKi8/btYnDlokWwapWYtbF1q/gYOVIUnnJ2hubNYeJEGD/+++7NTyADhJSQxI6JkCEiEWSAkKS4eXQagM/RM9QY3peqg2y+P0SoKtSzEutlnN4KWloAhEdE4rlmN6eu3adcZCjWU4eTKVPGz48NfAnmrSFPTtjnLh4xAEdP/Mf6TQcoXjQ/vdvURb9FD15GRjOvY3tCI9/StVMjNm0/SkREFPb922Py0Bea24B5BVTPRThMcYk/SGhr03nnTli9GtasgbVrYcECsYDXmjVgbQ1168Jvv4nlxY8fB3Pz77s/SUgGCCkxZIhIIjJASNLXvQ54gk5GAzIYGf54YxevicW4nCaCbZfPNl1etA73S/dQMxrQsXMTzCqUQFGUjzuc+0+EkL7WMPvPDy/fuvOQf5dvJ5OhAQNa1iB76168yZmdhe3b4f/0BdbtG3Lg8HleBYUw0NYSU5+HomejXnXUtfNx+Gd+wkFi926xCNfmzeDhIQZdBgfD33+L2RuOjrBjhxiIeekSJOMvRDJASIklQ0QSkAFCkn4x29Gw8wBc3QdZM3+2KcRmJBuCIzlvakrZMoWxbt8AI6NPeiUWrYYhE2HlXPikkubTZy9xXbKF0LBwbOtWpGiXAUSZlWNpm1Zcu+WDZes6XLh0m0ePA+nXuw3FfXygnR20bIC6fDYOfzvHHyR0dem8Zw9Mnw5HjogZGf36Qb58YGEBM2bA8uUwYABYWUEyTfuUAUL6FjJE/CAZICQpGTx5DmUaQPd2n/UoAPAqGMo35nLdWqwrUIjomFg6tLGgillJ0SuhqmAzAnbsh+MbReGqd0JDw/l3+XbuPwigc9lCVBs0mthOrfBo1IBjJ6/QpEFVfHyfcM/bnz49WlL2gTdYDQKrVqiLp+IwaW78QSJDBhEkxo2DGzfA1VVUtGzaFF6/Fj0Qw4eLNTj27xd1JX4hGSCkbyVDxA+QAUKSvt3rgCfc9TpMxV6dPn/U8K1mLYY/Z8G57VCq2OfbPHdC1yG8WTOPDeEq5y7cpEypQnTu0IDMmQ1FTYmalhCrwqktn62/ERMTg8fGgxw/dYX6OY1oM2kaGpN/Z0+ZsmzbdZxqVUoTGhbJtRvedLNuTFVvbzHYs7cVqvMkHCbOiT9I6OmJRxv29hAYKB5r9Osn/rx5M+TMCXp64OcH16+Lr38BGSCk7yFDxHeSAUKSvt2e3//h9LzloKrYnt5K7vKlv7+xyEio0BQK5oMdy0W56/dUVYxZ8PaFy15cueXD2g37iYqKpn2buphXKY1yxxuqtIQB3WHK6M+aVlWVQ0cvsWnbYYoRS6+lK8i4dh6nsmZjjcdeSpUwRV9fj7Pnb2DZqg4NfH3AbjQMtkGdNjbhIGFgQOetW8HOTlx3ly6iuuX48aIoVceOsH49jB4tXv/JZICQvleqrliZXGSAkKTvY1y04IcFs65t2PljjenqwvSxcOCEGB/xKUWBv0bAPR9Ys4WyZYow/g8byv1WhFXr9jB/0UaeGxuDgz04LRWDNT87XKFenYoM7tcefz19pnXtjN+QSVQz1KV/n7bcvefP02cvsahdgU3bjrAxczZi506AectRJs3FcdLw+OtIhIaKglTz50NoqJjuaWMjZmfY2YmZHJaWIlDcvx9nO0lFBgjpV5A9Ee/IACFJ3y8s8CUzC1RDjYnBKJ8JQ24fRtH4gd9RVBUad4XwCDgWR1ltq4Fw6Tpc3fthSue1G96s8zxAyJswmtavTIMJU9GKVeHEJlFN8v+8ePmaxUs288T/KV2vX6Hy+nk8DI1kwb+byZBBh0oVirNn/xnMKpak2/MAtMZMg0nDUX/vj8OE2fH3SGTKROdVq8TsjDJlRDA6fx7KlYPbt8X1lCsnZm38BDJASD9K9kR8AxkgJOnH6GfLSuH6Yj2NYL9H+J+5/GMNKgrY9xRTN8/99+X28UPANwBWfAwYZUoVYvwfNtSpWZ4de08ztWlz7j8PgrlucZ7COGsmRgztTIXShVhWtgIbh00lb86sjBpijYaGBkdP/EfThtW4ePk2rnpZiBg/BCbMRnFZkXCPxOvXuPfoIVb+vHBBhIYcOeDJE3j7FkxMYOdO2LPnx+5THGSAkH6ldB8iZICQpKRRpmPLD19fXf99S4R/pqkF5M8DC1d/ua10MWjfHKa6QMTHdTt0dbWxbFWHP4Z3RSdTRma1aYP7wfOEXb0d5yl0dLTpYduODmULcShLNuaPn49uBh1GDbUmf94ceO0/g0XtCjzwecxcvSyEDLeFkY4oa7cmHCSCgnAfMEAUoNq/X6y58egRFC8OZ8+KxbzGjoXY2B+/V+/IACH9auk6RMgAIUlJp0SrBmjqikcLNzbuIvZH14vQ1AS7LrBhBzx/8eX28fZiJc841u3IlycHI4dY06llLc4XKcJfizZz9tx14np8qygKFj3bYm+kTcDrMKZMXsqjx4EMtLWketUy7D90gXJli/AqKISZBsYE2nQE29Eoe48mHCRevsR91CgxBmLjRmjVCk6dAjMz0Stx8SJ4ev7YfXpHBggpOaTbECEDhCQlLd1MhhR7tyhX6LMX+Bw9++ON2nQADQ1Ytv7LbcUKQec2MN0VwsK/2KyhoUGdelX4s6k5RR4+ZLm7F7Oc1+Hr9zTOUxX7cxBj798gW8Aj5rqsZ/+h83RqV592retw9vwN8phkR1VVZmbPh2+rxmA1EOXMpYSDRGAg7tOmifU03N3FAl2XL4uQZGIipoL+YG+EDBBSckmXIUIGCEn6OUp3aP7h62tJ8UjDOAt0agmL3eNeCXPsIAh8BYvXfLWJzM3q0sfEiCH79xIRGs60OatZvW4PISFhn++opUXmRVMZsnsXDcNC2LbrOK5LNlPFrBR2vVrz4MEjdHV0MMxkwOy8hfivbi1o2xfl5t2Eg8SzZ7ivXSumfB44AMWKifVBHj2CW7dg+/ffKxkgpOSU7kKEDBCS9PMUa2qBTkYDAG7///TM79WvK/g/hp0Hv9xWKL+objlzEbwJ/Xobk/+geMAjxkS/pqNlPS5fvceEyW4cOHye6OiYz9rTnDOB1stWMbB4Hnz9nzJ55ir09DIw3N6KsPAIgoJDyJ8/F4tNi3CgShXUlj1R/B4nHCQCAnA/cQKqVoWnTyEsTBSgMjAQJbO/gwwQUnJLV1M8ZYCQpJ9v+4BxhAW+JLNpXhpO/gONdyty/pC6HUEvA+xe+eU230dQpj78ORRG2n29jaETYeMuuHOUN7EqO3af4NjJKxhnzUTLZjWoVL4EGhrvymf3GA5ehwg6uIFlhy9yzzuARvUrU7tGeVa6e3Hnni/FiuTn9l1favo+pNO922geWItqnCXh6Z9FitA5Kkqcx8/v48arV8V00ESSAUL6mWTFyv8jA4QkpWILV8HIf+D5ZREm/l+3IeDjH3dNiffu+0CZhuDiCL06AfDocSDbdh3nyrX75MuTg9YtalGyeAGU4BBR9TK/CbF7VrPn4Dl2ep3CJJcx3awbc+7iLfYfOo9p/lz4+j+l2OPH9H3xGL3tS1G1tRMOEsWK0dnPD4yM4NUrMe1z0CBwckrU7ZABQvrZZIj4hAwQkpTKXboG1drAofVQreKX25esgyET4PF5yBTPsuQd+8Mdb7jk9Vk57fveAWzZcYz7DwIoViQfrZrXpND9B9C8B6xzgTaN8fN/yvI1u3n+PIiWzWqQJXNG1njsw9BQnzfBbzAKfIGdPuSa/xcqJBwkSpSg861bYoBlTAwYGsKLF3EWxvqUDBDSryCLTb0jA4QkpQFlioseiLOX4t5e11z8R3zifPzt2PeCW/dh39HPXi5cKA/DB3eiX+82vAkNZ6bTWpxuP+J2y8aof86C6Gjy5c3J6OFdqVu7Alt2HOXQsUt079wEDQ0NYhSFiOzGTEOfS9OXoChKwmMkbt3C3dT0Y5gJCYFjx+K9fBkgpJQmTfdEyAAhSclHVVXehoZ9GGj5w+pbQ65ssGZeXCeDIjWhQwuYOia+ixKrfBplgl0r4twlNlblv6t32b3vNP4Bzyn0+DFNzMtQekiPD6uT3rvvz5r1+3geGESdmuUJC4vgzPkbZCaWIDRoVDQvLe06oKGhJNwjYWRE55AQMc2zWzdYGce4D2SAkH6tVP04Q1GUgcBAxPdY8e8JETJASFLyCH8VzNK6HQl66E+hetWx3vRv0jQ8dhqs3wH3vvLbes8RcOsenNoafzvLN0C/MRBwTkwh/QpVVbl24wFerut4oK1L7pxZqVOrAlXMSpFBV4fo6Bj2HzrP7n2nMcyoR4VyxThx6gpKaDgRmpoUKWhCj+4tyJLZMOEgAXQGyJpVPNL4PzJASL9aqn6coaqqi6qqpYAq33O8DBCSlHwyGBnyyseP6IhIXvn4J13DVcqLqZ4BT+LeXsccLt+AV8Hxt1O3mvh86kK8uymKwm+lCzHSqiFDt24lp5YGHhsPMm7iYjw3H+Llq9c0aViV8b/3IFdOYw4cvkDOHFnJbpIdVVF4+CCAf6av5MKl2wk/2gDcAV6+FI81PiEDhJSSpcgQ8SNkgJCk5KVoaJA5fx4Agh4GxFlq+rtUKS8+x7UgF4gQoapwPIFKmQXyQJ5cCY+feEepXolixGD7xI+/HPpQq3pZzpy/wcTJS5nptJabdx7Ss2szBtpa8jY6Bt9nr8ivpwNvo3kbFcXSVTtZtmoXf4zsl7gg4eX14XUZIKSULk2FCBkgJCllyGyaF4C3oWGEBb5MmkZNckLe3HD2ctzbTfNCPhM4cib+dhQFalSGE+cSd14NDWjTGDbtxjhzRtq0rM0/E2zp1a05enq6eGw8wJgJizh+6goWtSvS0bIeoXoZiNLRQe/d4mAXLt9mwj9uNGxYjzGj+sV5mvdBYu7YsYAMEFLqkARVYFIGGSAkKeXIbJrvw9dBPv4YZDdOmoZzGENwSNzbFAXKl4Lb9xNup6gpHEsgbHyqcR1YsFIUtjLNi46ONmYVS2BWsQTBr0M5f/EWFy/fxn39XgBM8+cmv7YG/nceEqKjg6aGBpFRb1m/6SCZMmWkR7cOrFi14YvTxAIj7t1jnbk5Z86ckQFCSvHSRIiQAUKSUpYs73oiAF75+JOncrmkafhtNOjEU0chNByyJGIQ9ptQMMyY+PPmyi4+v3glejw+YZTJgPp1K1G/biVeh4Ry7YY3V67d5+bTF0QYGaGBWKI8JjwGVYXXr0PRMzDGzMyM8+e/fKQSC5w5c4bKlSvLACGleKk+RERFRckAIUkpTKa8uT98/TrgcZK1GxUdwxMtbfjKSpxEx4JR5q9vfy8kHHLnSni/D+2qkC0bePtBjhzx7prXJAd5TXLQpEFVng/7G7/s2QkoXoCnz17x8pUY5K4oCmZmZsTGxnLx4sU42zl37hwDBw7ExcUlcdcoSckg1YcIVVUJCQkhj0l2DAz0kvtyJEkCYiKjPnytHVeZ6u/0REeXqdG6MHt13DuULi8+f237e7qZoVTmhPf7VIcOcPKm+EisAoXF59sPv9ikKApVqogJaF8LEgEBAYk/lyQlg1QfInR1dTl06BAWFhY0aNaD/btWYBzP3G9Jkn6+8KCP0yz1smROsnZzBQUxOqMCtl3i3qF5d+jQEmw6xN/Q0AmgrweTRyfuxI+fgqUtzP4TqlX66m7R0TE89HvCPW9/fP2e8uKl6HnQ0dEiOjqG2NjPZ6q8evUKTU1NDAwMCA39fBXSsmXLsmXLlsRdnyQlk1QfIgDKlCkjg4QkpSARrz7WpsmQmDEKiaQTGSmmT+bLGfcOPr6QLdPXt78XGAjFiyS833s3boljqpb74pioqLf8d+0el6/c48atB0RGviWbsRG5tTTQDQzkUbZsxMTEfggQOjraGBnqMHW6M1FRUXGdDVNTU65cucLixYuxtbVN3DVKUjJIEyECZJCQpJSkYs+OFKhVhYigYHKXK510Db+NBu2v/NiKiISot6KkdUKCQ8DoGwZWnrkEhgaQT4z1UFWVe94BnD53nUuX7xARGUWB/LloVK8Khob6nD57jWs+jzHMlAlFUYiNjUVDQ6GBhRm+vg8YMvzvr56qVc6cbPH2xt7eHjs7sbS5DBJSSpVmQgTIICFJKYVRfhOMknqQc3Q0hIbFvRQ4QNC73o/MiQgRr9/Ev9rnp6KiYNl66NSK8Mi3nDp7jSPHL/M8MAjjrJmoV7cSVc1KERkZheeWw9y550cOfV30IyJ4kyEDqqpSsEBuenRpyoaNO+INELOA4TNngqLg7OwMIIOElKKlqRABMkhIUpp19j/R21C1Qtzbg9+FiITCwdNA8fHJDJJ4bdnLk/AoDpctz5mJi3gbHUPF8sXo0qkRRQrlJTQ0nO27T3Di9FWyZ8tMcdPc3PZ5jK6ONpqaGrRpWZu6tSriung1g4ZO+uppZgHDAZo1A8TASxkkpJQuzYUIkEFCktKkfccga2aoWCbu7UfPgKYmFC0Yfzvrt4sqlK0aJnhKP/+neO06xWUrKwz9n1G/biVqVi9HZqOMqKrKyTNX2bT1KChQq3pZLl+5i/fTF2ipsRhly4JtX0tMcmfDZeGq+AOEojBcVcHISCzC9Y4MElJKlyZDBMggIUnJJTYmhsN/OZGveiXyV6uIbmIfGyRk31GoX1MEhbis3gSNakPObPG3474FmlnEu4Knt88jdu89zfWbD8imoYl18bxU7dsebS3xI/PZ81esWb+Pu/f8qFq5FBkN9Dh45AJGisJbDQ0q58yK9bBuZNDVSThAZMrE8DdvxLofFhZfbJdBQkrJUkWIeP36q6uQxit//vxs376d5s2bY9G4K9s8F5I1a+akvThJkj7z5MpN9k1bAECJlg1o6zbjxxt98QrOX4Fu7eB1HGWv7/nAmcvw77S4t7936z5cug72veLcz9f/Gbv2nOTOPX9yZM9C+6BnVDh2Es2ZwwkPCyc0VuXw8Ut47TtLJkN9OlpacOrMVbx9HpNZW5MXYZFYGmhh3r8DUZGRzHddyajRU796Of/kzk2fx4/58BOuSxf4ys87R0dHoqKisLOzIzw8nJ49e3797ylJPyix/+8qSbbC3k+gKEoeIAnXEpYkSZIk6RvkVVX1q1XPUnqIUAATIJ5fLb6bISKg5P1J7b93FqiSitv/2eeQ70PKOId8H1JG+7/ifUjt/1Z/RfvyfRAMgUdqPEEhRT/OeHfhP6Xuq8gnAISoqvp9z0sSd57Y1Nz+zz6HfB9Sxjnk+5Bi2n//5U97H1L7v9Vf1P77L9P7+5DgsRo/0LiUOD979ZxfsTpPWlgBSL4PKUNqfx/ke5AyziHfhxRyjhT9OONnUhQlExAMGP3sNCh9nXwfUgb5PqQM8n1IGeT7kHjpuSciEpj07rOUfOT7kDLI9yFlkO9DyiDfh0RKtz0RkiRJkiT9mPTcEyFJkiRJ0g+QIUKSJEmSpO8iQ4QkSZIkSd9FhghJkiRJkr6LDBGfUBSluaIoZxRFCVcUJVBRlE3JfU3pkaIouoqiXFYURVUUpXxyX096oiiKqaIoboqiPHj3fXBfUZRJiqLoJPe1pXWKogx4d98jFEW5oChKreS+pvREUZQxiqKcUxQlRFGUZ4qibFEUpXhyX1dKJ0PEO4qitANWAcuAckANwD1ZLyr9mg48Su6LSKdKIH4u2AGlgWFAP2Bycl5UWqcoSidgLvAPUAE4BuxWFCV/cl5XOlMHUZzJHGiIqOi8V1EUg2S9qhROTvEEFEXRAnyACaqquiXz5aRriqI0BWYD7YDrQAVVVS8n60Wlc4qijAL6q6paKLmvJa1SFOUMcFFV1f6fvHYT2KKq6pjku7L0S1GU7MAzoI6qqkeT+3pSKtkTIVQE8gCxiqJcUhTlsaIouxVFKZ3cF5aeKIqSE/gX6AaEJfPlSB8ZAS+T+yLSqnePiioBe/9v016g+q+/Iukdo3ef5b/9eMgQIbz/DWsi4Ai0AF4BRxRFyZpcF5WevFuxdTmwUFXV88l8OdI7iqIUBgYDC5P7WtKwbIAm8PT/Xn8K5Pr1lyO9+3k0Gziuquq15L6elCxNhwhFUSa+G5wX34cZH+/DP6qqblRV9QLQE1CBDsn2F0gDvuE9GAxkAqYk8yWnSd/wPnx6jAngBWxQVXVJ8lx5uvL/z5aVOF6Tfo35QFnAOrkvJKVL0UuBJ4H5wLoE9vFBrJkOcOP9i6qqRiqK4g3IgU0/JrHvgQNiQFPkJ8vwApxXFGWNqqo9fs7lpRuJfR+ADwHiEHAKsP15lyUBgUAMX/Y65ODL3gnpJ1MUZR7QCqitqqp/cl9PSpemQ4SqqoGIb9B4KYpyAbHQSnHg+LvXtAFT4OFPvMQ07xveA3tEkHjPBNgDdALO/JyrSz8S+z4AKIqSBxEgLgA9VVWN/ZnXlt6pqhr17mdQQ2DzJ5saAluT56rSn3ePMOYBbYG6qqo+SOZLShXSdIhILFVVXyuKshCYpCiKHyI4jHq3eUPyXVn6oaqq76d/VhTlzbsv78vfBn6ddz0QhwFfYCSQ/X3PkKqqT5LvytK82cAqRVHO87H3Jz9yLMqv5AJ0BloDIYqivO8ZClZVNTz5LitlkyHio1FANKJWhB7it996qqq+StarkqRfqxFQ5N3H/4c35cvdpaSgqqqHoijGwJ9AbuAa0ExVVdkT+uu8n157+P9e74kY9C3FQdaJkCRJkiTpu6Tp2RmSJEmSJP08MkRIkiRJkvRdZIiQJEmSJOm7yBAhSZIkSdJ3kSFCkiRJkqTvIkOEJEmSJEnfRYYISZIkSZK+iwwRkiRJkiR9FxkiJEmSJEn6LjJESJIkSZL0XWSIkCRJkiTpu8gQIUmSJEnSd/kfTzaYAk/13qoAAAAASUVORK5CYII=\n", "text/plain": [ "Graphics object consisting of 99 graphics primitives" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "r_val_I = [1.1, 1.2, 1.3, 1.4, 1.5]\n", "r_val_III = [0.9, 0.8, 0.7, 0.6, 0.5]\n", "t_val = [-8, -6, -4, -2, 0, 2, 4, 6, 8]\n", "graph = Graphics()\n", "for n in [-1..1]:\n", " graph += plot_I(n, t_values=t_val, r_max=1.5, \n", " r_values=r_val_I, linestyle_r='-', \n", " plot_null_geod=False, hor_thickness=4) \n", " graph += plot_III(n, t_values=t_val, r_min=0.5, \n", " r_values=r_val_III, linestyle_r='-', \n", " plot_null_geod=False)\n", "show(graph, figsize=8, axes=False, frame=True, ymin=-pi, ymax=2*pi)" ] }, { "cell_type": "code", "execution_count": 84, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl8AAAJOCAYAAACJNWIjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1xO7x/H8dfd0KBEsvfee+9NtpSVrGiHbL723tFOiBKRLZvI3nt87ZVVZkO7+/fHhfT7ohDC9Xw8enh0n3Ouc3dI767xuRRKpRJJkiRJkiTp51D51W9AkiRJkiTpbyLDlyRJkiRJ0k8kw5ckSZIkSdJPJMOXJEmSJEnSTyTDlyRJkiRJ0k8kw5ckSZIkSdJPJMOXJEmSJEnSTyTDlyRJkiRJ0k8kw5ckSZIkSdJP9LPDl1J+yI8/7WPy5MlKhUKhnDl1uJLY21/8CBpjp9yoUChRKJRJKipK9LMpmT1GiUKh3NS6sVKhUHzyQ1VVVenn56dkzhwlCoUSZ2dlVFSU0sXFRWlra6t0d3dX2tjYKB07dVK+trFR7t+/XzlkyBDluHHjlNeuXUt+vxcvKlFTUzJnjvL58+fKVatWKQcNGqQcOXKkcv/+/cr4+Pjkc4OCxL327v26Z+LoqERTU0l09C//u5Ef8kN+yI///zh//rxSX19fWaNGDeWrV6/Su/00Ufzk7YV+6s0k6WeZPHkykyZNYsaUYYwZaf3Z8/yNLakeuI/iiG8GhU1vlItXcbxSGeqeufTJa1RUVPDx8cE0Ph769YPx47lvbo6XlxfR0dEYGBjw4MEDWj98SPXQUFYbG3P77l0aNWpEx44d0dTUFA0lJUHDhjyLjmaXnR0nz5xBW1ubZs2a0ahRo+Tz3mvXDh48gAsXQKFI+8No2xbi4mDPnrRfI0mS9BOdP3+eZs2aUbRoUXbv3k22bNnSq+k0/Wepll53k6S/2cSJEwEYO2ESwGcD2Ku7Dynw/pPs2VBu3Mm9PDlpkFrwyp8fmjdHOXAgh5s3J2D+/A//Wbx+/ZqBWbJw/+VLZtaoQfbISBwcHChRokSKtu75+7NXW5tzFSuie+MGRkZG1K9fn0yZMv33xrdvw7Zt4O39dcErLg6Cg2H8+LRfI0mS9JNVrlyZffv20axZM1q2bJneASxVMnxJUjpJLYAplUre3H1IJt51AefQ4+3DJ9SPjiHxE+19CF61a0PNmkQ3bsya2rU56e9Prly5ePbsGZUrV6ZMzpys3biRt5UqYdimDc2bN/8QqBITEzl37hz79+/n7t275Mifn+7du1O7Th3U1dU//8Xs2wcqKmBs/HUP4fhxiIqCFi2+7jpJkqSf7FcGMBm+JCkdfSmAvX3+kpxvo1EASYDKjbt0BR5/op0PwcvICGrW5GaxYqyoUYOICxfQ0tLizZs3tG7dmhs3brD6/Hkqv3lDl2nT0C8g+tVevXrF8ePHOXToEK9fv6ZUgQJY7dhB+QkTUGnYMPUv5NgxqFgRsmT5ugewdy/o60Plyl93nSRJ0i/wqwKYDF+SlM4+F8Ainz2n7LtzlIAfsP0T138IXqamxNnYEKinx74KFdCKiyM+Pp6iRYuiVCrZuXMn+fX1sdu6lbJTphCfOzdnz57l6NGjXLt2DXV1dapXr06TJk3I5+4Ob95Ajx5p+yKOHYNmzb7+i9+zR1ynIhdSS5L0e/gVAUyGL0n6AT4VwKJfvqbwu+MJwNBPXPdx8Lq0fDn+ERG8rlABhYoKKioqFCxYkOvXr5MzZ0769+9PhRUruKGvj6+KChfGjOHt27cULVqUnj17Uq1ateRJ9Hv3QsuW8P+T6j/l5Uu4fh3Gjfu6L/rNGzh5Evr3/7rrJEmSfrGfHcBk+JKkH+T/A1jHEkXI+e7YZiD0/85/H7waNWqE86JFXLt+HUWWLKioqpI5c2bCw8PJmjUrJiYmaGlpcenCBVbFxBBTty45796lQYMG1KpVi9y5c6ds+M0bOHUq7aHo+HHxZ506X/cFX7woVlR+7XWSJEkZwM8MYDJ8SdIP9HEAW58zByfevb74/85TUVFhzpw5hIWFMWPGDAAUSUmgokJiYiK6uroUK1aM0NBQAgICAMiXNStNz5+n6qxZ5GnaFMXnViVeuSJCUe3aaXvTx46BgQEULfp1X+yXJvBLkiT9Bn5WAJPhS5J+sPHjx7N06VLOPHzISaAQsO+j4wqFgpYtW3L79u0U16krlSg0NIiNjSUkJISoqChKlixJ8+bNKV26NFn9/EQNrkaN0lYOIq3h6OlTKFDg60pMAGhpiT+jo7/uOkmSpAzkZwQwGb4k6Qdr0KABDx8+BKDuJ443bdqUIkWKpHhNJzYWAw0NclWtSp48ecibNy9ZPlp5+ObNG97cvg1ly8LjT62X/MirV5AjBzx7Bpkzp/6G8+SB8HBRYPVrhIdDjhzkjojgE5XDJEmSfhsfB7CePXuyY8eOdG1fhi9J+sFy5MjxxeOxsbH/eS1CQ4MI4M6xY19uvG5dmDUr9TdhYgJr16Z+3nstWqSt3U/cZ3RYGAW//kpJkqQMJSIigtjYWLS1tdO9bbm9kCT9YEqlkmJFi3L33r3PntO0aVNKlSqV4jXVxETUM2cmJiYGAHV1dQoUKEDhwoUpUqQIOfbvRzF/Phw4kDzk9ylXr4KZGaxeDSVLpv6GL14U2xj5+8P/Vcn/olevoHlzcnt6ksnIKO3XSZIkZTCHDh3C0NCQmjVrEhgY+DUBTG4vJEm/mlKpZPCgQdy9d4+KFUpz8dK/nzwvKCiIZs2akStXLs6cOQNAoooKirg4AHLmzEmBAgWIjIzk4MGDBAUFkTVzZiqVKEGVM2co3q0bqqqqn34Tz5+LDz09KJiGPqlMmcT5kZFpO/+97NnFde/esyRJ0u/oO4JXmslKiJL0g7wPXs4uLng4T+XCqUA6qn0mIAH//PMP0dHRTJ06lRrVq4NCQVJCAgqFgvj4eM6cOUNoaCht2rTB0tKSajVrcrlIERYdPsyYMWPw8/Pj9u3b/Kc3u1gxMXn+4sW0vfFcuURP2t27X/cFywn3kiT95n5G8ALZ8yVJP8T/By/LgT0Iu3YTL00NGkW+/WSBVQB7e3sA7OzsaGxgwCofHx4ZGBAeHo6mpibZsmUjMDCQLFmyYGhoyERNTR4dOMC5KVM4c/48R44cIWfOnNSuXZvatWujp6cHWbNClSqwfXvaan0pFFC48NeHL1VVsaJShi9Jkn5DPyt4gQxfkpTuPhW8AJISk7gd+RYHxN6Owz9z/ccBbPSBA+wLDmZLrVooFAru3LlD4cKFyZo1K2vXrmVvtmx0SEigU1gYHadM4ebNmxw9epQdO3awdetWKlSoQJMmTSjZuzeK4cPhyROxmjE1RYp8ffgCsRfkixdff50kSdIv9DODF8gJ95KUrj4XvACiX73BN081LBDfCAv59BZD7zk7O2NnaQlNmvDw5UtWdO3K0+fP0dbWJiYmhkaNGhEWFsbFixcpHhpK18mTyV+unLhXdDSnTp0iODiYJ0+ekC93bhqvX08NY2MyjR+f+hdiZwfBwXDp0tc9gM6dRcB7XyVfkiQpg0vn4JWmCfcyfElSOvlS8Hpvds7KjAyPBEBRriSOt+4xNPbzE9SdnZ2xMzKCatWIL1iQzUOGEHToEDlz5iQsLIzixYtTr0IFdnh7E6qrS6MmTWjXrt2H/zyUSiXXr19n//79XL54kcxxcTQxMqJRkyZf/g/GyQlGjoTQUNDVTftDWLUKTE3h/v2vm6wvSZL0C/yAHi8ZviTpZ0lL8ALwrNWe3heuoQUodTKjyGWAY2QUQ5+GfbZtZ2dn7OrWhYYNoVkzzk2YgK+fH5qamiQlJREfH4+Jnh6R69ezrWFDNLS16dGjB5UqVUrRTuj+/QRNnMjRihVRy5SJRo0a0bRpU3R0dP5700ePRHhydwcLi7Q/iIgIsTXRjBkw9Ev9epIkSb/WDxpqTFP4kqsdJek7pTV4AWQrUpD77z+JiALDxjiER7KgaoXPXmNvb4/L0aMQEADbtlHF25tRI0eira3N27dvyZMnDz5PnvCsZEnG7t1Lobx58fT0ZNmyZURERHxoJ2eTJnQHph45Qv26dTlw4ADjx49n/fr1Kc4DIF8+MDSEJUu+7mHo6EDr1uK9SpIkZVA/e47X/5PhS5K+w9cEL4Cc5Utx/v21CgUsWwszRuFw9hIL2jT97HX29va43L4Nbm7g6kouHx9GjhxJlSpVuHPnDuXLl+dk7tx4VapEl+Bg+vXrx7Vr15g6dSqnT59ObsjJiawXL2J0/z5Tp06lWbNmHDlyhAkTJhAYGEj0xysVBwyAU6fEx9cwMRFzvt5tqSRJkpSR/OrgBXLYUZK+2dcGL4DrgXtZb2zFmHefKzJrQcdWUCAvzHHHsZcRQ33Xf/Z6Z2dn7J49g2nTwNMT5cCB7N69my1btlCiRAlePnxI1OvXmBUqRDEHB9asWcPZs2epUaMG3bt3R0tLC+ztYflyuH4d8uYlMjKS3bt3ExwcTKZMmWjVqhUNGzYkk6oqVKwIuXPD3r1p32j7zRvImVNsT+TgkLZrJEmSfoKfELzknC9J+lG+JXgBvHnwmIUlG2IJ5AbQ1YHwCNjhA8vWQOA+HAf0YKiz92fbcHZywu7mTXBxAV9fMDXlwoULLF++HH19ffSePuVqUhLNy5Wjk7U1Z86cYfXq1Whra9OvXz+K6euLbYaaNxcT5N95/fo127dv5+jRo+jq6tKhQwdqhoai0rEj7NghhhPTqkMHUe3+6NG0XyNJkvQD/aQeLxm+JOlH+Nbg9f7aeQVqUvr5K9rx7ru0VFF4GwNHNkJXK7jzAMe+XRk6x/2z7Tg7OWF39qwIX+vXQ8eOPHr0CA8PD2JjYqh+9y7BBgaUKVaM/jY2REdHs3z5cu7cuYOhoSGGz5+j2q8fbN4sgtJHQkND2bJlC2fPnqVgwYKYHDhAsSdP4OxZUUg1LXx9oXdvePAAChRI8/ORJEn6EX7iUKMMX5KU3r4neL13dOESNIEqY+cAoMhtAG8ioEsbmD4CmvWAuHgce3Vm6DSnz7bjvHAhdocPw5YtEBgILVoQERGBh4cHj0JCaHHpEkHFi6OTOzfWtrbkyJGDXbt2sX37dgoVKkT/Y8fQP3AAzp2DQoX+0/6tW7dYt24dDx48oOqtW3Q2NkY/rSsf3w89zp4NQ4Z89TOSJElKLz95jpcMX5KUntIjeKXQti/sOyzmUnUxhHXbYZ0HVCwLTbpCtqw4Grdl6KQFn23C2dERu927RUHUXbugfn3i4uLw9vbm4sWLGJ47x9ly5Xijq0v//v0pV64cd+/eZdmyZbyNiqLP4cNUVFGBgwfFhtr/JykpiZMnT7LZ25sooFmrVrRq0wZNTc3Uv7727UXB1VOn0j5fTJIkKR39gsn1MnxJUnpJ9+AFsHUPmFiDloYIPjUqwYWrcHwLRESKHrASRXBs14yh4+Z+thnn+fOx27JF9GDt3w9Vq5KUlMSGDRsICgqi8cWLPK9UiStAp06daN68OdHR0fj4+HDx4kVaXLhAh5o1UXV0/Ow9Yi5fZs+AAeytVo0senqYmJhQqVIlFF8KVbt3Q6tWsGkTdOz47c9JkiTpG/yiVY0yfElSevghwQsgMRFKNITHz0BTA7p3hD3BUCAf7PGD81ehtRnUr4Fj49oMHTP7s005z52LXUAA3L4terHKlgUgKCiI9evWUeXmTbLXrs3eFy+oV68e3bt3R0VFhb1797J540aKPn6MeY8eZO3W7fPv19aW55s2sWboUK7cvk25cuXo1q0bOXLk+PT5SiW0aCF6vy5eTPt8MUmSpO/0C8tJyCKrkvS9flTwSkpM5P6xs/xbrKCo95VFG1YEwD+D4MwlGDNb9IStdYegozicv8aC2WM+2579iBG4GBlB3rxiFeOdOwA0bdqUAQMHcqlECe5dvky3cuU4fvw4rq6uxMTE0KJFC4Y4OBCWKxczdu3i+oEDn3/T06eTQ0UFm+3bsRg4kMePHzN16lS2b99OfHz8f89XKES5iatXwcfnO5+YJElS2mSEOl6pkT1fkvQZP6zHC7ixPYjVRhZoAsNVVVBNTIJC+UBbC/p3hREzwHcRmLSFDTvAdBBY9cKxcAGGjprx2Xadp0/HbvlyiIsT88DeTaS/c+sW7nPnkjU8HMNOnVh18iR6enrY2Nigr69PREgIy4YO5Ya+Pu3btaNVmzafHlLct0+Eu0WLiLW0ZMeOHezdu5ccOXLQrVs3ypQp899runaFY8fgxg3Q0kqfByhJkvQJGSB4yWFHSfpWPzJ4AcRHxzA3f03io97SXlODKklJKLJkETW/RlrB7QcQuBcOr4cyJWCJP9iNg3GDcNTNwtCRXwhgU6aIAKZUwoEDHza4fnL3Li7Tp6OIj6dHjx74HzlCfHw8VlZWFC5cmKSTJ9k2eDA7qlShatWqmJmZoaGh8d8bDB4MixeL0hNlyvDkyRP8/f25efMmNWvWxNjYmCxZsiSff/MmlCkjesGGD0/X5yhJkvReBgheIMOXJH2bHx283lvbw5ZrG3ehAzioq6FITIIGNeHIaQjyB6sxkJAIB9eBni7McYcJ82HOWBzhywFs8mQRwBQKEcDe1dp6efcuLpMmEammRt8+fdh24gQhISH069ePypUrg4sL5xYswKdNG/Rz58bKyuq/c7revoWqVcU+jkePgro6SqWSEydOsG7dOlRUVDAxMaF69erJvWfW1rBmjRgO1dNL/4cpSdJfLYMEL5BzviTp6/2s4AVQpmMrACKA28WLgJoqnL4ARfLDkEng5wxhL6CnPcTHwwgr8TFyBg6aGiyYM/azbdtPnIhL376QlASNG0NICADZixRh6LhxGLx9i9fKlRjWq0eFChXw8vJi3759YGtLlYYNGbFuHXHh4cyePZt///03ZePa2qKI6rlzMH06AAqFgtq1azNhwgRKliyJt7c37u7uvHz5UlwzYQLExoq6X5IkSekoAwWvNJM9X5L0zs8MXiCGHucXrkPsmwiyamkyWKEQvzLVqAiHT4ug1bSuqAdmZgSu08SFI6eD83LwmIljeMSXe8AmTcLO2xvU1MQcsHz5AIi9fBmv8eO5nisXfczMCAkLY/fu3TRt2hSjtm1RadWKqDt3WDZoEP/ev4+RkRFNmzZNOQ9s0iSxx+TRo1CzZor7XrhwAX9/f2JjY+nYsSMNGjRAZcoUmDEDTp6EypXT8UlKkvS3yoDBSw47SlJa/ezg9V6g/QTOeIn9FS1bNSL3/mNisnz3jrBmC+xaCfdCwGIUzBwNDgPEXK7BE8FrNXjPxzH0eeoBbNky0NAQdcDeBbDEEyfwmTiR00WK0NXEBFRVWbt2LdWqVcOsTRvU69UjSVubzePGsSc4mJo1a9KzZ08yvS/GGh8P9eqJPRxPn4bs2VPcNzo6mo0bN3L48GGKFSuGadeu5G7XTrz/U6fE+5EkSfpGGTB4gQxfkpQ2vyp4ATw+cwmvep0BKFq9AmY370FWXVEDrGA+ePAITgXCwqUw1wP8XaFjSzGcaDUW/DbCykU4Pnz85QA2caIIYJqaYg5Y3rwAJO3Zw4apUwkqX542hobky58fb29vihYtimWjRmg1bgz163N64kR8/fzIkycPVlZW6L2ft3XvHlSrBjVqwLZtn6zldePGDVatWsXLly9pV60azS0sUBk2TPSCSZIkfYMMGrxAhi9JSt2vDF7v7+9Rox2hl68DMNy2D5kX+4GKCvTsBJt2QcNasMoZ+jjAtiDYuxqqVRABrd9wUYpirRuOt+59OYBNmCACmLa2CGB58oj3sHEju6dNY3OtWjRs0ICq1arh6elJ9uzZsS1fHr0uXcDKiocjR+Lu4YFSqcTa2pqC71ZRsmcPtG4NY8fC1KmfvHdcXByBgYHs27ePQurqmPn6kicwEOrUSc/HKUnSXyADBy+QE+4l6ct+dfACMVG9Sl+TD5+fz5Ed8ueBAnlheQCMtIbNu8FjJXjNgQqloIsFPHgsepmWzYV2zaC7LQ5lSnx5Ev6UKbj07w9RUdCkCTx9Kt5D5860cnCgZ3Awhw4d4uiRIzg4OBAVFcW8U6d44ugIrq4U8Pdn1KhRZMuWjfnz53Pu3DnRcIsWYuL9tGlik+9PyJQpE0ZGRgwbNoy3enrMNDFh94QJJEZEpN/DlCTpj5fBg1eayZ4v6a+UEYLXe29fvGKrzT/UsulNoYa1UOw8AJ0HQsG8kF0P6tcU4WvXSiheGBoag05mUY5CV0fMEetmCweOwealOJ6/knoP2JIloKsr5oDlzi0OeHhwet48lrdsSfmKFenSpQseHh6Eh4djpaZGsVmzwM+POGNjfHx8OHv2LB06dKBVq1biV70uXUQR1lOnoGTJz94/Li6OQF9fjhw9yjhtbbI5O6fj05Qk6U/1mwQvOewoSZ+SkYLXZ3WxgFMX4PkrGG0DB0/ArXtwbDO8eg2Nu0KdarDeU6xkjIkV1xw/B4HLcTx1/ssBbPx4EcD09EQAy5VLHJgzh0uurixp146iJUtiZmbG8uXLuX//PuaRkVT09YWdO1E2acK2bdvYvn07NWvWxNTUFPXoaLHqUVUVTpyAjwutfkKUoyOZhw6FvXuhWbN0e3SSJP15fpPgBTJ8SdJ//RbBC+DuQ6jSGqqUg1MXYdMSseKxcAHY5QvBJ6CjOfQ1AZepopjq22jo0B8uXoMdvjgeOZW2AJYtmwhgOXOKA+PGcWPZMtyNjMhbqBAWFhasXbuW8+fP0+PZM+rv2QOHD0OFCpw+fRofHx8KFiyIpaUlOiEhIoC1aQP+/uJ9fU5Sktiq6PZtsfF21qzp/BAlSfoT/EbBC+ScL0lK6bcJXkBMdj0Ybony9CWUJQrD0CmwZC6cPC823W5eH9ymw1J/mOYkLtLWgo1eULYEtOuLQ+M6X54DNnUqLubm8PIlNG0KYWHiwNSplDQ2ZnBAAKEPH+Li4oKJiQkNGzZkVc6c7GjQAKWhIYSEUL16dRwcHHj+/Dlz5szhcdassHw5rF0LCxZ8+YtUUQFvb3j1Chwc0uGpSZL0p/nNgleayZ4v6a/wOwQvZVISVzfu5LjTMhLjExi4dzXHO1hypkABeu3Zi17rRlCtPDhMgRWO0K29KD8xfh44T4GBPUVDr8OhTW94+Bh2++G459CXe8DGjcPOywsMDCAoSPyZlAT9+/N42zace/VCI2tW7O3tOXnyJFu3bqXJ3bt0efgQlYMHIXt2Xr58iYeHB8+fP8fc3Jxyvr4wbx7s2pX6kOKyZWBuLibrt2+fjk9UkqTf2W8avOSwoyTB7xG8QLzPxXU68vT8VQB6blpCfEQMvrtPEKetTdegIGqOGohi3xGxAvLQetHLNXwauPmIchSdW4vGXryCVr3En3tW4bg96MsB7J9/xBBkzpwigOXIAQkJ0L07YQcO4NS3L0kaGgwaNIjr16+zxt+fGvfuYfbmDap79oC2NjExMXh7e3PlyhW6GhvTcOZMUc3++HEoVepLX7gIXadPw+XL4t6SJP3VftPgBTJ8SdLvE7ze+3fLHtZ0tQYgX41KmB9cx1uHyay5G8bpokWpcv8epmMGom0zFqLeigCWLauoAbZ5NwQuF3XBAEJfQIueEBkFe1fjuHXPlwPY2LEigOXOLQKYvr7Yj9HIiNcnTuA0YABRSiX29vY8ffqUFcuXU+bBAwYkJpJp0yZQVycpKYl169Zx4MABmjdoQKdp01CJjRUB7Euh6skTKF9ezAFbsyb9HqgkSb+d3zh4gQxf0t/udwteIIYePWt14NklsZm16dZlFK9TDaq15Wy5MvjlLYR2YgIDe7amYA9rKFsSAr1F71FnC7Ex997VULGMaPDxM2jeA5KUsMcPx407Uw9gXl5iC6K9e0UAi4mBdu2IPH8eFysrwqKjsbW1JSYmhsXu7hR49AhrbW20fXzEPC4gKCiI9evXU6VkSXrPnEmmEiVEe1/aUmjNGujeHZYuhf790+2ZSpL0+/jNgxfICffS3+x3DF4AChUVGo61+/B58HRnlJm1wWMmVbfvYYyeGpkjIpm34QAHp49DeewsDJkMmTLBGlcoVkiseLwXIhrImwt2rhRzuFqb4dClzZcn4c+YgcuAARASIoqnvnwptiTavJksZcsy2NOTfLq6ODs7o6KiwuChQ3mSPz+OcXG8cXAQIRBo2rQpAwcO5NKdOyyytCTi0iUYOPDD8U/q1k2cY2MjaoVJkvRX+QOCV5rJ8CX9cX7X4PVemY4tyVlOFCkNOX6OG9uDoEkdGNCDHO4+DCuVh3qXLuN//hbLRwwmbsU6cPYGnSywaalY9di+H4S9EA0WzCsKtMbFQ6teOBi3/XIAmzkTl4ED4eFDMQz48iVkzgyBgWgVK4adqyvFcubEzc2N8PBwho4eTWTu3Mx//pznU6Z8aKdy5cpiJWRMDPP69+fZli2iEv6XODtD5cpgZAShod/7KCVJ+k38TcEL5LCj9If53YPXe9c27WJtd1sADMoUx+pUICpvo6FmB8htADmycfpBKL6NGpEnKQHLFSvJ5usIhk3g9n1o0lVszL3DR4QygDsPxBywzNqwayWOAYFfHoIcPVoMQRYuLPZvzJZNlIVo2pSEx4/xHjWKC3fu0LdvX4oUKYLzpEnEhIdjV6UK+YcM+dDO8+fPcXV1JTI0FMsNGyju6CiGFz/n0SOxWXfp0uK+6urp8EQlScqo/rDgJYcdpb/LnxK8AEp3bEn+2lUACLt2i/O+G8RWQsvmiVpfpYtT/dULhl+5QISODrN79uCuwzS4ckMMPW5ZBjfugIm1qH4PULQg7PYTezu2NsOhW4cv94DNmiV6wO7ehZYt4fVrEcD27EHNwID+CxZQvXRpvL29uXHjBsOmTydr5sw4XrrELS+vD+3kyJGDESNGkLd4cZw6deL05Mlw7Njnv/h8+SAgAI4cgZEj0+FpSpKUUf1hwSvNZPiS/gh/UvACseF2i+mjPnwePN2ZpIQEqFtNbDfkuARG21Ag+Cij4t5gUCQ/jq1ac9xuiljlWLkcrF8Mx8+KlZAJCaKhYoVglx9ERELrXjh075i2AHb7dnIAy5ED9u1DNXNmes+dS71KlfD19eXsuXMMmTuX/KqqOJ86xSVf3w/taGtrY2dnR9Xq1VnWpAm7Ro5EeefO5x9Agwbg6AgLF4Kf33c+TUmSMqK/NXiBHHaU/gB/WvD6mL+JFYlx8TSfNoJcFUqLFxMSoGk3CHsJfY1hoiPxfk6seR3L0ct3aPn0MR2WTUdFSxO2B4neL9PO4Dkzebufm3ehpakoU7FrJY6rN395CHLkSDEEWaIE7N4ttgIKCYGGDVGqqLB+3DiCTp6kc+fONK5bl2U2NlzS0sKscWNqfTTEqFQq2RYQwPYDB6j3+DHdvbxQNTD49E2VSujXT1TLP3IEqlRJr8cqSdIv9gcHL1lqQvrz/cnBCyA+OgZ1Lc3/Hrh9H2p1AKPWYk/HncEoD60j6NQ1Npy9QbX4GMwcR6GeSR1Wb4Z+w2Bwf5g1JjmAXb8tCrHmyA47fXFctSn1ALZ4sSiYuns36OrCvXsigGXOzNYJE9h56BDt2rWjZb16rLaw4Ji+Pt0aNqTR/83xOrZpE347d1I6KooBTk5oZsv26ZtGR0P9+mLS/+nTovSFJEm/tT84eIGc8yX96f704AV8OniBGD6cPx581kOrRlAwL4rudjTr1IQBJfNyQUUdp3+ciYyKhh4dYcEEWLQM5rgnt1GqGOz0FasiDXvjYNr5y0OQc+aIIcjr16FVKwgPF5Px9+1D8eYNHWbOpEPz5gQGBrI1KIierq40ffyYNQcPsnPVqhRt1enUCbvWrbmjoYHjyJG8efny0zfV0oINGyAyUkzSfz98KknSb+kPD15pJsOX9Fv6G4LXpyTExhL57Ln4pHcXMGknNt2eMxaePAOL0VSx7sFgA22eRbxl3lQvwp6/BpveMG4QTFwAHslzsShdXASwp6HQpjcOvYy+HMDmzhV1wK5dg9atISJCDEXu3QtPn9J62jSM27Rhz549rNu3j87u7rS9c4cthw+zydeXj3vaS3fqxNAmTYiIjWXuuHE8ffLk0zctVEgUYA0Kgn/+SYenKEnSryCDVzI57Cj9dv7W4HVjexA7h08je9GCmG71RqFQQHgE1O0MmbVgpDWYDoLJQ2GkNaE243CLVeWtgT7W1iYUKZQHRs0AJ2/wmgNmRsmNX7kBrUwhfx7Y7oPjyg1fHoIcPlwMQVaoADt2gI4OXLwITZtCkSIcnj6d1Zs3U7t2bUwbNuRA796sK1eO+tWr071vX1RUkn/ve+niguvhw4TnyIGVgwPFihX79E0XLIBhw0QQ69o1vR6rJEk/wV8UvOScL+nP87cGr4TYWFzKt+DNw8cAdFvrTukOLcTBC1ehoTExfYzRNNCHGS6wzgNaNiTS2BrPLPo8yJOb/n3aU6l8MbD5B1asAz+n5I24AS5fF3PACuWDbStw9F3/5QA2bJiYhF+xoghgWbLAuXPQrBmULMmJ2bPxWbuWatWq0aduXU706YNf1apUr1yZ3gMGoKqq+qGtt+PG4XnpEvfy56ffwIFUrlz5vzdUKqFnT9iyRewVWaFCejxaSZJ+sL8oeIEMX9Kf5m8NXu9d3bCDgJ72AOgVyo/N+Z0f5oS9dFvJ7At3aVW2EE2OHkex7wgcDIACeYlvYcryQsU4ny8/Pbs2p16NctBvOGzcKUJaq0bJN7l4DVqbiZpggctx9Fn35QA2dKgIYJUrw/btIoCdOSMCWLlynJ0zh2WrV1OhQgX616zJpT598K5blzLlyjHA0pJMmTKJhpRK4s3NWfHoEeeKFcOka1caN2783xtGRUHduuLPU6dE3TFJkjKsvyx4gZxwL/1J/vbgBVCmc2uKNK4DwOv7IRxdkFzINKtFD2qRwLp7YSyrW5+YooXA2AriE1DfsBjzM6eo/zgEvzV72Bl0GuWS2dCyAXSzgYMnkm9SsYyoin/7PnToh0Mfky/PAVuwQEzCP38e2rYVoahaNbEa8vJlqo4Zg2Xfvly5cgXPI0co7+aGVVAQ169cwc3FhZiYGNGQQoG6pyf9VVVpcvUqa9euZdOmTSQlJaW8YebMsHGjWP1oagqJien1eCVJSmd/YfBKM9nzJWV4MnglC716A48a7VEmJqKmqYHt+V3oFc4vDoZHcLaTNb7lK5A9RzYsVvmTq2gB2LIUrt9B2aQr21u3ZJt+Lho3qIJx67qodLGA0xdghy9Ur5h8o3OXwbA3lCoKW71xXB7w5R4wBwfRA1a9OgQGipB07JgozFq9Ov8uXIiHtzeFCxfGqmxZQgYOxM3QkFyFC2NrZ0eWLO+2QIqMhMaN2aepyYaKFaleowZmZmaoqamlvOGuXWBoKCbgT52azk9ZkqTv9RcHL9nzJf3+ZPBKKWfZktSy7Q1AQkws2x0mJ68g1NWhquNYRm7aRNLL18xu34Fz95/C6FlQriSKNe603biV7nERBB8+x/J1e0lY7QLlSoqNuC9fT75RlfKw3Qf+vQ0dzHHo1/XLPWCOjqIH7NQpaN8e3r6FOnXEXLBTpyg9fDh2Awfy4MEDnC9cIO+CBQzZuJEX9++z0NGRN2/eiIayZIFt22j25An9L1/m3NmzuLq6Eh0dnfKGrVrBjBkwbRps2pSOT1iSpO/1FwevNJM9X9J3UyqVYuXdD2hXBq//inkTgVuV1kQ8fgZAF99FlDdpm3yC12pihk5h5YjBnH0VRZtTp2hjboRKv67gtxHMR3BuhC3e0QqKF8uPhVFjNDv0g6dhsM8fihdObuv0RWjTG8qXhi1LcVy25ss9YIMHY7dkCdSqBVu3grY2BAeLXqqGDbnn5ITL4sXo6+tjnzcvEQ4OOHfvjlqOHAwaNIgcOXKIhm7ehLp1uVG5Mp4VK5I9e3ZsbW3R09NLvplSCSYmohfs0CEx70ySpF9KBi854V5KZzExMRw5coTHjx+jra1N4cKFqVatGpD+AUwGry+7tnk3a7vZAJA5pz6253ehlV1PHFQqYcBIlBt2sMtpJlvO3qDqnTv0Ht6XTA1qwGw3mLiA67P+wfNpJDlzZsPWqAk6HfuLavn7/KFg3uSbnTwP7fpChTKweUnaA1jt2iKAaWmJGl1t20LTpoS4uODk7o6uri72enokjB2Lk5kZ8VmzYm9vT548ed7d9yQ0bcrj5s1xKVsWhUKBnZ1d8nEQc8waNYLHj8UKyIIF0/U5S5KUdjJ4ATJ8SekpKiqKnj17Urt2bbJly0Z0dDSRkZGEhITg6ekJpF8Ak8ErbdZ0s+HfzbtR09Kk2xpXirf8aNVidAw0NoHwSM57zmP5+n3kehOO1Yi+ZCtbDIZNBY+VPPScg+vNJ2hqamDfsQH6RgNBXQ32robcH+25ePwstOsHVcrBpiU4LvX/cgAbNEgEsHr1YPNmEcB274YOHaBVK566uLDIzQ0NDQ0Ga2ujMnkyzubmhGtqYmdnR8H3IWrPHmjbltfdu+NSsiSvXr3C2tqa4sWLJ9/s6VMxxJk5Mxw+DB/3jkmS9FPI4PWBDF9S+oiLi8PMzIyKFSvyz/9VGJ8/fz4vX75k+vTpwPcHMBm80i7i8TO2O0ymxYxRZC9W6L8n3H0IdTtBzco8nDISD/cAklRUsLTvTuFShaH3ENi6l7DVbjifvUVCQiL2beuSp6sl6GeD3X7wvjcN4OgZ6NAfqlWAjV44LlmdegDz8oIGDUQA09QUc8A6dYK2bQlzdWWRqysKhYLB6upozZiBq5UVT1VUsLGxSQ5Ya9ZAjx5EDx7M4kKFuH3nDn379qVq1arJN7t2TQS9KlXEPd6XsJAk6YeTwSsFGb6k9HHlyhUWL17MokWLAEh4t7/e+xVoLi4uPH/+nEmTJn3XfWTw+gH2HIQO5jDGlvA2zfBcuJIQ/Rz06tWGGhWLQ6eBcOYib7Yuxzn4AuHhUdi1qkHB7jai1tf2FaCTJbm9I6dFAKtZGTYsxtFr1ZcDmL296AFr2FBMjNfUFKshjYygUydeurri5OpKXFwcg4Gs8+bhMWgQd+PjsbCwoFy5cqIhNzewtSVhxgx8c+fm9OnTdOnShaZNmybf7OBBaNECunWDFSuSNxCXJOmHkcHrP+RqRyl9HDhwgLCwMEAEJDU1NdTU1D6ssrOzsyNXrly8evXqm+8hg9cP0qIhTHSAGS7ohoYxpJchVW/dwnvVTnYEn0Pp7wJFC5K1uw0OHeqTQz8rC7cf59bSBXD9NhhZiCHM9+pVh01L4MQ5MLbEYWDPL6+CdHbGxdxcTLrv3BliYqBdO1i7FjZuJPugQTjY26OlpYVjYiIvbW2xXbiQ0lpaeHh4cPbsWdGQjQ1MnIja2LH0SUigefPmrFu3jvXr1yfXAmvYUIQuX1+YOPEHPlRJkkAGr+8hw5eUqjdv3nzogUj8qKilQqH4EMDu3r3LzZs3v6l9GbzSR1zUW3aPnsnTC1dTHhhpBe2aQb9hqJcoTO8ODWh/4gRbdxzBb8cxEjcsAS1NMptYMcikGYUK5MY56CxX3OfAmUvQ3Rbi4pLba1ATNnqJYUgTKxwsTL8cwFxcRAA7cAC6dIHYWDH06O8PAQFkHTKEIfb26GbNiqOaGk8sLLCYN4+q2bKxdOlSjh49KhqaOBFsbFCxsqKzQoGJiQlBQUEsX76c+Ph4cU737jB7tqj9tXRpuj5fSZKSyeD1fWT4klJ4H6Y+Ho5+/fr1h56vj3u8gA+9DqVKlaJQoU/MO0rD/WTw+n4vbt7FvWobji1cylabf0j6uPK7igosnQcG+tDVBkUvIwzrVqRPUBAnTl7BbctBotcvhjfhaHa3waZHS8qUKoT70SucWTgN9h+FvkPh3XAzAI1qwwYvMQzZzQYHy1QCmKurCGD79iUHsC5dwM8PVq1Cx8GBIYMGYWBgwCItLR707Uuf6dOpnycPK1euJCgoSAwjOjmBsTF0704ThYIBAwZw/vx5XFxckmuBjRgB1tZgaSnKUEiSlK5k8Pp+MnxJKbyfLP/q1SuePHlCbGwshQsX/uQ5AKqqqly4cIF9+/YRFRX1VfeSwSv9ZC2YFzUtDQAen7nECdcV/3eCDqx1g3shYDUWZo2mVtG82O3eyb27j1gQeJRXq1zh39uo9x7CwJ6tqF6lFMvO3+LInImweQ9Y/wMfb/fTpA6sXwzBx6G7XdoD2N69IkDFxor5Wb6+4OODtoMD9ra25M2bFycdHW6bmtJ98mRaFinCunXr2LZtG0oVFfDxEZP4O3SgCjBo0CBCQkKYP38+r1+/Tg5phobiPufPp/vzlqS/lQxe6UNOuJc+iI6OZuXKlRw6dIjg4GDCw8NRV1fn5cuXZM2aFTMzMwoUKECxYsUoU6YMYWFhPHv2jJkzZzJ79myaNWuW5nvJ4JX+Hhw9g3fTbgCoa2thc3ZH8tZD763bBr0Gw8zRMKA7NO3O40Rwa9+OJIUCm0pFyd97EBi3IclrDgGbDxB8+DxGBfRp/s90sOoFCyaknMy+9zB0sYDm9WG1C44eK788Cd/aGrtly0SV+oAAsTLRxwf69gVLS2IdHfHw9OTOnTtYhYZSZsMGds6bx5Zr12jWrBlGRkYoIiPF5t3378ORIzzJnBkXFxeA5FpgsgaYJKUrGbzSRK52lNIuKiqKrl27kj17dqKiosiWLRuvXr3ixo0bJCYmcv369f9co6+vT7ly5Rg+fDjt2rVL871k8Ppxtg2eyGlPPwCKt2xIz81L/1v6Y9xcWOAFm7ygTAlo0IU3xQrj1tqQsBdvGFAsF2UH/QOD+6OcOZqtO46wc88JWufQof3UOSiGWcC0ESkD2J6DYiPvlg3BzyltAWzpUtE7tXatCGDLloG5OdjZET9/Pl5LlvDvtWsMfPKECtu2EezkxJpz56hXrx49evRA8fw5ioYNxXy0I0d4raWFi4tLylpgsgaYJKULGbzSTIYvKW0SEhKwsrKidOnSDB8+PMWxV69eoa6ujrW1NVeuXMHe3p6IiAiyZMlC/fr10dPTI2fOnGmu7yWD148VGx6Ba5XWRDwSWw91XjaPij07pTwpMVEEpaOn4dB6iIiC5j2IadecZQ0acvX6PUwNslBn0hzRQ+YwgD1Bp9i49SCNdDUwmb0QlX/sYfzglO3uCgYTKzBsAisX4eju++UAZmUlesDathW1vNTVYfFiMVdr8GAS5s5lmbc3Fy9epP+jR1Tds4fjHh74HjtG1apV6dOnD2qPHpFQty4q+vqoHDxItIYGHh4e3L17l379+lGlShVZA0ySvpMMXl9Fhi8pbSIiIvD09PwQvJKSklBREdMB34cqJycnXr16xcTvWMIvg9fP8e/WPawxsQZAU08Xm7M70MmbK+VJbyKgobHYiujQejGpvrstiaNtWVO2PIePXaRTJmixyB3F0rlg2pnDxy6yOmAPNTRVMXN0RXXqcBhumbLdHfuhqw20awo+C1MPYJaWIoC1by9WP6qrf6jpxfDhJM6ciY+vL6dPn6b3gwfUOniQc0uX4hUURKFChYiIiCBXUhL/LljA3GrV0N67l3g1NXx8fDh79ixdu3alUaNGsgaYJH0jGby+mqzzJaXNs2fPPtToUiqVH4LXx/T09AgNDf3me8jg9fOUbt+C8l3bAxDzOpytNv/wn1+ysurAek8IfS4q3bdvDtNGoDrLlR7xkbRpVYdNcbBuQB+SLMfArmDq16lIP7O2nI5VssTeivgJ88Flecp2DZuAvwsEBkHfoTjY9P7yJHxPT1z69RN7QPboAfHxoqbXokUwbx6q48fTp3dvateujU/BghypX58qFha0qViR/fv3c/v2bQZOmEBk06Y4nzoFJiaoA/369aNJkyasWbOGzZs3o2zQQNYAk6SvJIPXjyPDl0S2bNmIj48nPDw8uWDlO++HEm/dukVsbOw3tS+D189n6DiBLO/2Zry58wDXt+7970nFC4PvQthzCCbMh2EW0McYhdVY2mmp0N24OQcyabO8ZzfiTQfByfNUr1Iay/4duaJUxdN6IHGjZsIS/5Tttm0Gq5zECsl+w1IPYIsXiwC2ZQuYmoqSFoMGwfz5MGsWKpMnY2pqSsOGDfErVIgDtWrRdvx4XEaMIFeuXJibm3P95UsetWkDu3eTaGaGilKJsbExXbp0YdeuXfj4+JBoYiJrgElSGsng9WOp/eo3IP16+vr6lCxZkri4OHR1dVMMOyYmJqKqqkqWLFno2rXrV7ctg9evoa2fjXau01hnOoimk4dSsm3TT5/YoiHMGAmjZ0H5UuA8BR4+ga7WNNy/Bp2+HfD23UZkx45YmFijucePCuWKYjOwMx5LN+Fq0R/roVPQ1NSAXp2T223fAvycwHQQKFRwWDYX4LNDkPaLF8PAgdh5e4sA5ucHQ9/VFhs1ChU1NbqOH4+6ujpr9+4lLimJcj17cqVECQ6dPo1CoUBTU5OlAwbwr7s703R10fD0pFmzZmTNmpUVK1YQERHBAHt7NO/dE/PK8ucXKy4lSUpBBq8fT875kgDYuHEjBw4cYNq0aejo6ADJc79OnTrFkCFDcHNzo1KlSmluUwavXy/iSSg6eXJ++SSlEsxHwIYdsM8fShSGZj3gdTgEB3DjbRweSzZi8PwFtseOorvbF/Ll5vadR7h6bSDP2yhsV6xEe8lsMG6bsu2NO0VpC5O2sHQujq4rvjwHbMAA7JYvF/W5fH1BTQ2mT4dx42D6dJRjxrB48WK8vb25ce4cGgkJdOzZE3U9PbJnz86gQYNYYmlJ6Pr1zB45ErXZswG4fv06np6e5MyZExsLC3T79BEV9w8dgsqVv+cRS9IfRQav7yYn3EtfZ/ny5Rw/fhwTExP09PTInTs3T58+Zfjw4YwaNYrWrVunuS0ZvH4zMbHQoic8fgpHNokep0bGoir+nlWERETj6hZAptAw7K5cxGCbN+jpcv/BU1w815MtPBz71WvQ8Z4rer0+tn479HaAbu3Ba3bqAczcXASwrl1F/S81NZg8GSZNYr2ZGZPPn+fy5csUKVIESwMDBoWGErl1Kwv8/Lh+/Trnzp0jt1LJ1nv30J89G0aOBCAkJARXV1fU1NSwNzcnp7GxrAEmSR+RwStdyPAlpc3HZSL279/Py5cvCQwMJFcusUKuZcuWNG36mWGrz7Qng1fG9PDYWbLkykG2op8IG4+fQb3OUCgf7FoJN+9B025Quyqs9+RFxFucnVYT/ewFtg/vUDDAFbQ0efQ4DGf3dWR+/ZpBawPIunKhGM78WMA26OMApp3BcyaOLsu/HMD698duxQqxV+OKFSQBs5o3Z9yBA1QrUIB+o0dTunRp1q1bR+M7dzC+d4/wwEBsJkxg79699O3bl8mqqmjNmgWenmBhAcCLFy9wcXEhKioKm27dKGxsLGuASRIyeKUjGb6ktPv/Ol1v375FW1ubmJgYNDU1v6odGbwynoSYWIImO3Js4VIK1atOn91+KD6xqpWT50UPWPcO4DET9h+DDv3FfC73GURERePuuJInz15i+fIJpVfMA3V1noW+ZJFbAOrPXzJo40b0/RZB4zop2/bfAv2Hg5kRuM9IewDr0QOWL2d/cDB35s6l0c6dFHdyAnt7goODWbNmDfXu3qXHo0e8DQxkwfLlvHr1Cjs7O4otWgQuLrBqlQhyiILC7u7uhISEYN6yJRV69ZI1wKS/mgxe6UqGL+nbfBzEPp58n5brZPDKmGIjIvGo3o7X90MAaDl7DHUGm3/65JUbYcAImD8ebPskfz7RAcbYEhsbj9f8FVx/+pJ+MW+o6jEVVFR48fINC13WkhT6nMGBgeRc5QR1q6Vse9UmMb+srwm4Tks9gPXti52vL8oePVAsXy42CR8xAubPR+nqisLGhuPHj+Pr60v1O3foHRZGXGAg7qtWcf/+fawtLSk9e7YIX5s3Q5s2AMTFxeHt7c2lS5foUa0a9aysZA0w6a8kg1e6k+FLSul9qDp//jwaGhqUKVMmXduWwStjuxd8nBWtzUCpRDWTOgOPbCRXhdKfPnnUDHBeDpuXQosGMMMFpiyEJXOhV2cSExPxmbWM06Gv6aGaQP35o0Gh4PXrCBa5rSX6cRiDdu0gr78LVKuQsu2VG2HgSOjfDZynpC2A+fiAmZkoEaGiAg4OohbYu1WSZ86cwXvZMirdv0+/V69I2rIFL39/rl+/jpmpKTVmziRp505Udu+GhmJINCkpiTVr1nDo0CHaFSqE4ejRKMaPhylT0ueBS1IGJ4PXDyGLrErJ3gevoKAgBg4cmO5ty+CV8RVuVJs6g/sDkBgXz4Z+w0iI+UztthmjxD6Npvbw7y0YYyt6q6zGQNBRVFVV6TNmAA31s7BKmYnd450A0NPTYah9D3Ty58KxtSEPeznAxWsp2+7VGTxnwbI1MGQSDvb9vlwHbPlyXMzMxOrHgQPF6kxHR1GM1cICvL2pVq0aAy0suFS4MF76+iiMjbE0M6NEiRLYDx7Mhp49UalXj6R27eDsWQBUVFTo3r07HTp0IPD+fVaNGEHitGmyBpj0V5DB69eSPV9/gY+D1/Tp05k+fTq1a9dOt7Zl8Pp9JMTG4lXPiNDLYqP02oP702r2Z4JPeAQ07grRMXB4A+hmASMLOHEOgtZA+VIolUq2jXdie1QCLfQz0+kfSxQKBVFR0bi4BRD64Am2Bw9Q1N9JbOL9seUBIsxZ9QLHiTg6e3+5B6x3b+xWroS+fcHLS7xoYyN6v1asADMzrl69iqe7O8UfPMAyNha1DRsYMno069evZ+60afT08CDp9m1UDh+G0sm9fseOHcPPz49ySUmYL11Kpi1bZA0w6Y+V3sErISEBNTVZNvQdOewopQxe06ZNY8aMGdSuXTvNG2Gn1rYMXr+fZ5ev41W3E4lx8QD03uFLkSZ1Pn3y3YfQwAhKF4ftKyA2TkzID3sBwesgfx5QKgkaPot1SZmol1OXHqPMUVFRITomFne3AB7ee4T1sSOU9HeCYoVTtr9sDdj8Aza9Yf74tAUwX18wNxerGOFD7xe+vtCzJ9evX2fh/PmUDAvDOimJTGvWMGzMGNatW8eUsWPp5+pK0uvXqBw5AoUKfWj7ypUrLPHyIk9EBDabN5Nl715ZA0z646RH8HpffPu98PBwdHV1P3yeHj9ffmMyfP3tZPCSPueY0zJ2vws5uvlyY3V6G1rZsn765COnwdAMenQUKyCfhEIjE9DThX2rQVcHkpI4bjORlRq6VMqrT99hvVFXUyM2Nh5PjwBu3w7B4tQJyq1eBIXzp2x/iT/YjQO7vjD3n9QDWK9e2Pn5wYAB4OEhXuzfX4Sv1atJMDJi9OjRXLl4kaY6OtiqqqLl58foceNYtWoV/wwZgqWbG0qFQgSwXMmbjt+/fx9XFxe0X7zA7uBBcgQFyRpg0h8jPYLXx4uwZs2ahZqaGkePHqVRo0YolUqGDBkC/NUBTIavv5kMXtKXKJOS8G3bl7v7jwJQqZcRnZbM+fwF71c8zhoNQwbA1RvQpBtUqwibl4C6OsTHc7HfSJZkz03xvAZYOPRCUyMT8fEJLPFcx9WbDzE/f5bKqxwhX+6U7S/2g0ETYXB/mDUm7QHMwgLc3MQ8sD59wN8f1qzhcZ06dOvWjSyamjTU08NeU5Msy5czbuJEVqxYwXBLS+zd3MDAAJXg4BQ1vsLCwnBZuJDYp0+xuXKFgjt3yhpg0m8vvYcaBwwYgJaWFqNGjSImJgalUsnatWt5/vw5jo6OwF8bwGT4+tvJ4CV9SXjIE9yrtyVb0YIYLV9AjpJFv3zBuLkwfzGs94Q2TSH4OLTr96FyPQoFRMdwo/sgPAoUJXdeA2wH9yRzZi0SExNZvngD5/69R5+rl6mxcj7kypGyfQ9fGDIZhg6E6SNTD2CmptitWiX2aXRzg8RE6NWLpHXrUFm/nkfVq2NmZoaGqir1smdnkK4uuosXM3nKFJYsWYJ9nz4M8/BAUbIkKnv2iGKr70REROA6fz7PHj1i4NOnlF2/XtYAk35b6R28lixZwsmTJ1m8ePF/ji1atIhnz54xY8bnv3f/cDJ8/c1k8JLS4unFaxiUKY6qunrqJyclQXdbCDoK+9dAhdKicGrfoTDWDiYMEee9ieCBkSUupcqjk8cA+0E90MuahaSkJFZ6beDEtXv0vPkv9Xzmgn62lPdwXQHDpsJwC5g6IvUA1rOnCGA2NqKYamIi9OhB0qZNqGzcyKMqVTAzM0NLVZUaBgYM1tcnm5MTM2bOxMPDg4FduzLaywvVWrVQ2boVNDQ+tB0TE8PSuXO59ugRZnFx1Fq6VNYAk347P2JV44QJEyhXrhzdunX7MP/r4+FIFxcXNDQ0GDhw4N/Y+yVLTfyt9u/fz/Tp02XwklKVu2KZtAUvEPW1ls2DYgXFqsdnz0Ul/KnDRR2w5QHivKw6FFztzNDTJ4h59Iz5jn6EPX+NiooKvQZ2oUG5IviVLMMB87Fi8+6P2faBuf/AvMUwcUHqZShWrcKlRw/R8zVoEKiqwqpVqLRrR5KREfkuXcLX15eYpCTOhIWx4NUrXowcydgxY7C3t8dr7Vqm9ulD/NGjJJmaivD2jqamJlZjx1IrTx4uhYSgnDDhax+vJP1S6R28EhMTefXqFTt37vxQJ/L9xHsVFRWSkpIAMDIy+vAz5y8LXmkmw9cf5uLFi4wYMUIGL+mbxEfHcHf/sc+fkCUzrPOE+HjoZi025B5uCQN6gO042HNQnJdTn9wBbgw7fAC1J8+Yv2gVIY/DUFFR0G2AEc3KFWFtkeLsGfgPRESmvId9P5g9Bua4w+SFqQew1atx6d5d9HwNHiw24l6zBpXWrUnq2JF8V6/i4+NDtFLJxWfPmP/sGaHjxzNixAgcHBxYsXkzk3r1Imb7dpLe1xF7R1VVlV4TJtC3WTMUsgaY9Bv5ET1eqqqqZM2aFV1dXXR0dP5z/H3PV1xcHMePH0epVJL40S80UjIZvv4wJUqUwM/Pj1q1asngJX2Vpxeu4lW3Eys79Ofp/xdG/ViBvBDgweG3iaweOpvExCRYOFEUZe1hDxeuivMK5SN7gDtDd+8ia+hzHJ3XcPvuIxQKBUbmnWldvggb8xdmh8UEeBud8h6DzUWh11muMM0Jh0H9vxzA/P1x6dYNnJ1F9Xt1dQgIQKVZM5Latyff9eusWLGCt8DVx49Z8PAhT6ZOxcHBgeHDh7N6507G9+hB1OrVMHx4igCmUChQGzkSrK3F/LKdO7/jKUvSj5cewetzU5JUVFSIjo7m8ePH/zn2PmglJSVRvHhxFApFmren+9vIp/IHUSqVaGlpUapUKeD7u3tl8Pq7XA4IJOzaLZLi49nQd+jnq98D1KiEwsyII+pauP/jRHRCIvguhJJFoNMAePDuP+YyJdBZ48qQzZvJ/+olTu7ruPrvPRQKBR3MjWhfvghbc+dji9VElNExKe8xdCBMGwHTnWG6c+oBbM0aEcAWLYKhQ8UE+Q0bUGnYkKR27ch36xbLly8nSqHgRkgIjnfu8HD2bOzt7Rk2bBiHL19mvoUFrzw9Yfr0lI0rFODkBIaGYGIC585920OWpB8svep4vf/5ERUVxfHjxwkICMDDwwM3NzfU1NSIjIzk2bNnQHJQU1VV5cmTJwwfPpyiRcUCHjns+Glywr30STJ4/X0SYmNZ0sCYZ+96vWrZ96X13HFfvObfCY54PY8mW3ZdrIf2Rj8uVtQAy6wlquDrvSu8uPcw8cZWLDXtzhWtzPQ3a0uVSiUB2OO1jo1X79PszQuM3Cei+GjSOwCz3WDiApg0FEbb4Oi07MuT8E1MsAsIEAFs3jyIiYF27Ug6fhyVXbt4VKQI/fv3RychgUKFC2NfvjyFHRx4/Pgxbm5uKN68YZCPDwbTp4OdXcrGo6KgUSN4/BiOH5c1wKQMJb3reI0aNYpz586xd+/e/5ynpaWFgYEBpUqVInv27GTLlg11dXX279+PhYUFdv//vfP3kKsd/zTvvyl+9OoRGbz+XqFXb7C4TicSY+MA6BW4nGLN63/+gqQknvQbgZu6DvEG+lhZm1A4OkpsS1SxDGxZmryCcMMOEns74DOwL6cVmTDr3oraNcsBsH/xWgKuPaRR1BtMXMajkun/FgG839h7yjAYaZ16ADM2xm7dOjGEOGcOREdDmzYknT6Nyp49PCpYEHNzc3RiYihQvDg2lStT3M6Oly9f4uTkRGxoKPb+/uRdtEhs6P2xp0+hTh1RmuLwYVkDTMoQ0nuOl4WFBXFxcZiampI9e3bCw8N5/fo1586d486dO6xatQp9fX2io6NJSkoie/bsdOnShXr16tG1a1dA1vn64kkyfP0e3gevGzdusGTJEmbMmPFD9tKSwUs67rKcXcOnAaCTNxfWp7ehlV3v8xdExxBh2AePQsUIyZmTvr3aUCXiDbTpDUaG4D0/uUTDUn+S7MbjP9iaw7FKTDo3oUnDqgAc9vBn9b8h1I17S49FY1FR/79/39OcxMf0kTDMIu0BbMQImD1b9FoZGpJ04QIqe/fyME8eFi1aRJ7wcB4qlVhVq0ZpKyvCw8NxcXbmVUgItps2UdjDAzp2TNn4tWtQr57YfmjnTlkDTPql0jt47du3j7179zJz5szPntO6dWtGjRpFqVKlUFdXR1tbm8wf1cr7uAftLyNLTfwp3v8jvnXrFvb29lSuXFkGL+mHqWXTm6JN6wEQ8fgZgfbjPzv5FgAtTXRWOzP46CEqPnuK1/Kt7I5VolwyV9QBm7gg+Vzz7qhMGUaPhW4019MiYON+du45gVKppL5Vd8xK5uWouhY+w+aQGJ+Q8j7jBsEYO/hnDjguSX0O2Lp1uHTpAnPnwpgxoqdq+3ZUypcnqWVLCoSGMm/ePOwXLaK4QoHb2bNcXrIEXV1dhjg4kLNIEZw6duSwjQ23V64kLi4uufEyZWDTJjhyROwz+XN/iZWkD37Eqsa4uDiqV68OQHx8fIpjiYmJRERE8ODBAzQ1NcmbNy8GBgZkzpw5xf8Tf2nwSjP5dDK4j4OXjY0N/fv3p2fPnh+OJyQkfOHqtJPBS3pPoaJCR6/ZaL7b6/Hq+h1cXLXpyxflyUmmAA/6BW6jddRrNgUewi9JncQZo0TJiCX+yecOt0ThMIDOMxfQPn92tmw/zKbAQyiVSmrb9KRfsdycVqjjPXIeif//73vCYBhlA2NmgdOy1APY+vW4dO4ser7++QeyZIEdO1ApVQpatIDz58mkpYXlokWUS0zE89Qpzi1bhra2Nq1at+ZNXBwDtLVZMWwYPVu3Jjr6o1WZDRvCihWwciXIGmDSL5Dewet9eHry5MmH4UL1/6sDqKqqio6ODmXKlEFfXz/Fsb9wiPGbyfCVgf1/8DI3N6dbt24fjnt5eTFu3JcnRKeFDF7S/9PNl5t2LlM/fL59yCTePPzv0vIUKpdDZdk8Ovispre2ghOnr+KimZW3Vr1g8ETYeUCcp1DAjFEoehtjOGEWJqXysyfoFP7r9pGUpKT6IDMGFMrBhUQVvEY5pvzNW6GASQ6ittjIGeCyPPUAtnGjCGAzZ8L48aCrC7t2QdGi0Lw5XLqEupYWA1xcqBIby9KTJzm1YgWqqqqY9e7NAHNzwjp25N7Jkxz08UnZePfuIthNmwZLlnzlU5akb/cjerzeh6datWoRFRUF8KFw6seePHnC06dP0dTU/O57/q1k+MqgUgte3t7ebNq0CVtb2++6jwxe0ueU69KGij07oaKmRr2hFujkyZn6RZ1awZRh1J7vhn3JvDx8FMbcXAV53q4FmA6Cs5fFeQoFuE2Dtk1pMnoKZtVKcvjYRVas2kFiYiKVh/bDIn82rsYlsXisE3Fx/xfApg6HYRYwfBq4+6QtgHXqJEpITJgAWbPC7t1QoAA0awZXrqCqpUVfNzeqR0Sw/Phx3pw5Q+PGjalcvTrHT5zgQmwse2bNgjt3UvY4jxghaoBZWckaYNJP8SOC18e0tLS4ceMG4eHhqKiofKjf9f4XoYiICEqXLk327Nk/Gc6k1MkJ9xlQWoJXQEAAXl5e5MuX75snNsrgJaUm5k0EL2/dI2+1Cmm/SKkE8xGwfjvP1i/B7cQ1oqNjsTl9gsLXrkPwOiic/90NYqGjOZy/wtnF8/E+dIFyZYpg3rsd6upqXJvmisfTCIpm1sBqih0aGuop7zNmFixcCosmgWWv1Cfhd+yI3ebNMHEiTJoEL15A06ZiBeOBAySWLIkiOpo1AwYQqKqKamQka3buJEuWLBTMlw8NbW3qvXqFXocOjJg6Nfk3/4QE6NwZDhyAgwehSpWvfdSSlCY/Oni9t3r1ag4cOMD06dPJmjXrh+HHFy9e0K1bN0xMTLC0tPwh9/7NydWOv6O0BK+1a9eyZMkSGbykjCs2FlqZwd0HRO5ejfvOY4SEhGJ+4jgV37wSG3O/X0EZHgGtzeDRU654L2TxzhMUK5IXy/6d0NBQ58aEhbi/iKaArjY2E63R1PxoZaFSCaNmgJM3OE+BgT1TD2AdOmC3ZYsIXxMnQlgYNGkiglhwMJQsyfwZM3CZM4cHEREYNmrE6ClTqFevHuu9vdl78iQGp04RU7cuU+bMQUtLSzQsa4BJP9jPCF4fl4fw8fHh33//RaFQYGBggJ6eHlu2bKF169ZYWFj853wJkOHr9yODl/Q7CLt2k+zFC6e+IXfoC6hvBHq6xO1ayfJNwVy4dJOuZ07TSB3Ytjy5BljYC2jWA2LjuOnjhPvGYPLk0cfWwghtTQ3ujJmLS3gCefSyYDveAm2tj+aaKJUwYjq4LAeXaTCge+oBrH177LZuhcmTxTDks2coGzXiwsuXDC1WjGPnz1O4QAFMDQy4X7YsRvXrY9inDwkJCexdvZotx45xcuNGeg8dyqARI5IbljXApB/kZ/V4QcpA9eTJE8LCwjh8+DBFixZFW1ubhg0b/uc86QMZvn4nMnhJGV1iXByHZrtzaLY7jcYNouFom9QvunxdFFxtUoek1S5s2HqIoINnaXHpIh3zZENlxQJ4/+/4wWNo0hWy6nDfxwmX1bvJpqeDvZUxOlm0uD90Os4xCvSz6WL/zwCyZNZKvo9SCUOngLsvuM+Afl1TD2Dt2mEXGAhTp8K4cbz+91+aVK7My4QELAYPxnzECHKrq7O9Vy8CixShWdWqGJmbEx8fz+RBg/AICKBlgQL4HT2Kysc/CGUNMCmdfUvwSmsw+vi8j3+upHa9DF6fJcPX7+bOnTuYm5tjbW39oUIwyOAlZQxPL1xlcZ1OKJOSUM2kjsXxzeQsWzL1C7cHQRdLGDYQpo0kKPgM6zcdoNrNm5hVKYH61GHJ516/DU27Q/FCPPZ2xGn5NrS0MmFvZUz2rFkIsZuIU5IGuvp6DB7dHx2dj34IKZViVaXXavCYCX2MUw9gbdtit22bmIg/diwX9+yhgKUlOomJqB08SEK+fKi9eMG+Xr1YX6IEdcqVY/+ZM+zcuZOXL15QvHhxGufKRZXu3THt3Tt5DtjBg6KURdeu4OOTXGRWkr7S9/R4PX36lFu3blG//qd3qXj/s+Thw4eoq6uTO3fuz7Ylw1aaySKrv5P4+HhWr16NnZ2dDF5ShpS7UlnqDh0AQGJcPFusxpD0bhXUF7VpCrNGw7zF4LOepo2qMaBvey6ULIHzjce89fqoBlipYrBlGVy5Sd5B4xlqZUR8fCILnNcQ+uIN+Z0n4RAfQeTzVyyYtYzXbyKTr1UoYOEkMO8OVmPAd0PqqyC3bcOlTRtRA2zWLCq2aEG24GDUVFVJatwY1cePIVcuSs2YQbb9+7EbOxb/1aupX78+B4KDmWVmxqscOTi0ejWTJ01KrgMma4BJ6eB7hxpv3brF4MGDCQwM/M+x9z9Lbt++Tc+ePTmXymbxMnilL9nzlYGEh4ejq6v74fPly5ezdu1auapRyjDio2PwrNWBFzfuANBy9hjqDDZP/UKlEqzHgt8m2OkL9apz+84jPJxWofP6DbZGTdDv0Cz5/P3HoGN/6NiSVwsn47R4I9HRsQyyNiavgR6h/UewUEMP9Zz6DB7em+zZkr9vSEoCu/HgvRaWzAHTzqn3gBkaYrdjB8yaBaNGwf37YvK8mhp7p01j/ooV7N69mypZsmBQpw5GbdtibmuLiooKV93d8Tx7ln/PnSN/xYosWbo0+QfVnDmiPS8vGDDgG5649LdKrzleu3fvZtasWQwdOpR27doBKYOXtbX1f6a5SN9F9nxlVAkJCbx48eLDb8nvA/DHwWvlypX4+fnJ4CVlKOpamnTwmPlhGC1o4gJe3LqX+oUKBThNhtpVoJs13HlAsaL5GD6qLwlZMjN3+1EeHDiZfH6TOuC7CNbvINukBQy17YqurjaOLmu49/g5OZfOYeibUJKePcdxng/PX7xJvlZFBVymQh9jGDgKVm9OvQdsxw5cWreG0aPFdkSFCsH+/Sx++ZKWPXpw7fJlJk2axOkzZ5jy4gUXrl5liasriYmJlLW2pmeBAjyPieHUoUOEh4cnNyxrgEnfID0n17ds2ZJRo0Yxf/58tm7dCpAiePXv3/9D8PrJnTF/NRm+frLY2FhGjRpF+/btWbBgAYmJif/pzn39+jUPHz5kxYoVMnhJGU7ButWoadMbgISYWLZajUGZlkKLmTKBvyvo6kAXCwiPIFceA0b8M4DsCQk4rt/PlcNnk8/v2BLcpoPXKnTmezLEtiu5cmZnkdtabtx/Sg6fBTg8f4TK0zAWzPfhWejL5GtVVMS1pp1FzbE1W1MPYDt34tKqFYwcCfPnQ5EiFHdyYqauLmtVVRk/cCAUL06VZcsYcOwYl65cwcvNjcOHD+MbGsq5q1fJkjkzzhMn8ubNuzCoUICTExgagokJnD372ftLEvyYVY2tWrVi9OjRzJ8/n0OHDnH37t0Pwat79+6AnNP1s8lhx58oMTGR0aNHkyNHDpYsWULmzJk5cuRIip3g30tISEBNTU0GLylDiot6i3u1try+9xCANosmUcOyV9ouvn4bGhpD7aqw3hPU1Ii9G4L3GEcu585D906NqN+4RvL5jktEMdU5Y4m1NMNz2SZu333MwL7tKV84D2+MrViUqyBvc+dk0KAe5M2TI/naxESwGA2rN4OPIxi3TX0IsmVL7HbvRjl/PoqhQ+HmTTEEmS0bsTt3olGgAFy4wA5jY6bo6XHl+nUSEhJwcHDALj4ep6dPUc+encHjxyfvfRcVJWqJPXwIx45B4cJf+cSlv8GPLidx4sQJBg8eTGxsLGPGjPkwv1gGr3Qlhx0zGlVVVUqXLs2oUaOYM2cOkyZN+mTwAlBTUwO+bWd4GbykHy1TZm3au03/8PmesXN4fS8kbReXKgZ+zrD3sAhVgEaR/FiMNqfB9eus2nyQrdsOJQ+BOAyA4RYwcgYaAYFYD+hMmVKF8Fi6mTPXH5B1rRsOD2+R5ekzFi5aTcij0OR7qarC4lnQrT30GQobdqTeA7Z7Ny4tWqAYNgwWLoQSJWD/fpKeP0ejbVt4/hzbxYsZFBvLqdOnKZA3L6Y9ejB+/HjyzJ7NsMyZISyMBdOm8ezZM9Fo5swQGAja2qIX7OXLz95f+jv9yOD1fjus0qVLEx8fT1xcHHnz5gVk8PpVZPj6Cd6+fcvs2bMZNGgQq1evBqBNmzZ06tQJSN9xdhm8pJ+laNO6VDUXQxZ6BfMSGxmV9oub14f548B5OSwRqx1VKpel6xBTOh8/zo69J1mxagcJCe9WU04dAf27geVo1HcdYGDf9lSvUoplvts4euUOOusXM+T2v2R/8pSFzv7ce/A0+V6qqmLivXFbMBsCm3alHsD27MGleXNwcBDDhqVKobJ/Pzx7Rr+SJVkXEECdxo05u2IFm+Pi0FFXx8XJiai3b8nh4sJQQPPpU+bPnElIyLtQmjOnmPcVFgYdO0JMTNqfl/RH+5HBKykpCTU1NW7evImJiQnTp0/H29ub8ePHs2XLFhm8fhE57PiDJSUlYW9vT2RkJLdu3eLq1atcvnyZfPnypftvHDJ4ST9bzJsITnmupM7g/qi9r1b/NYZMEuEr0Bsa1xGvLfHntKM3Pi1bUrxkISz6dRBbCiUmQq9BsH0/bPUmqX5N1mzYx6EjFzDu1Jim5Yvytk1fXEuX40nuXNhaGVOsSL7keyUkQL/hsHEnrHKGDi1SH4Js1gy7ffvA2Rns7Ig7d45RdetSUF8fh0uXIFs27vn7c9/Bga0dOpCjcGHs7O3JoqFBZJcuuGhqEpY3L7aDBlG0aFHR6PHjYgiyXTtYsya5yKz0V/rRwevjyfX9+vWjRw/xc2Hnzp3Mnj2bYcOGfVgFKaULWWQ1I0hISMDd3R17e3vWrl2LpaUl5ubmTJ8+HY1v+WH1GTJ4Sb+lhAToIDbW5vAGKPpuP8R/5nDDfxuenTuRI3cObCyMyKqbWewZ2dkCTp2H3X4oK5djc+Ahdgedop1hXQwrlSDWsDdu5SvxMHdurC2MKFm8QMr79XGAzXvA3wXaNU89gDVtil1QELi4gK0t+5csYZ6NDU1y5eJN9+4kZcqEaaFC6E6ciFPHjujmz8/gwYPRUVMjuk0b3PX1eZg3L5Y2NpQuXVo0unkzGBnB4MGwYMGPe75ShvYztgy6desWtra2H1Y1KpVKlEolKioq7Nq1i9mzZzNkyBA6dOiQ7vf+S8nwlVFMnDiRwoUL07t3bzp37sypU6fYvHkzNWvW/OYJ9R+TwUvKSJISE1GoqKS9V/fla7EHpJYmHFgLOllErS6zwTw6eh7XHt1Q1dLAzrILuXJmh8goMOwN9x5C0BooUYSde0+wZdthmjepTudqpYhrbYZH5WrcyZ0bqwGdKFOqcPL94uOh9xAIDII1rtCmaeoBrEkT7PbvB1dXsLHhbmAgET17UqJ0aeI3bEA3f37YsoUn5uY4demCZp48DB48GD0VFeKaN2dx/vzcyJePAQMHUrFiRdGoqyvY2Ynw5eDwrY9b+k39jOD14sULrKys6NSpE6ampsB/53jt2rWLOXPmMH36dGrXrp3u7+EvJMPXr/b+H3lYWBh79+6lR48ePHr0iOrVq1OvXj3WrVuX4rxvvYcMXlJGEXr1BpstRlPbri8Vun/Fb9LXbooVkI3rwBo3MRQXHQOGZrx8EoZrL1PCY+OwGdCZIoXzwotX0Kw7REXD/jWQPw8HDp1j7YYg6tepSPcapUlobYZXzVpcz5Wbgf06UKFcseT7xcdDr8GwYz+sdYfWjVMPYI0bY3fgALi7i7pdp09D8+Yoy5ZFsWsX6OjA2rWEWlqyqHt31AwMGDR4MPpKJQkNG+JdqhQX8ualT9++1KjxbjXn6NGiEOuaNaIUhfRX+FmbZD9//pyHDx9SpUoV4PM/a44dO4aenh5lypT5Ie/jLyPDV0YRGxvL3bt3KVWqFACzZ89m7NixuLi4YGOThs2JP0MGLykjeXHrHm5VDEmKj0crux4253aSJVeO1C987/0ekKNsYNK7nqCwF9DIhLfaWniY9uT+k+eY925LxfLFIeQJNOkGmbVgnz/oZ+P4ySv4+u+iWpVS9KlVhiTD3iyrW4/LOXPTv087qlQskXy/uDgwHQS7gmGdB7RslHoAa9QIu+Bg8PQECws4eVLs4VipEuzYIVY1+vjwwt6eRaamJGXLxqDBg8kZF0digwasqlSJ4/nyYWxsTJMmTUQPX+/eEBAAe/aIbYmkP9rPCl7/T65q/GlkqYmMQkNDg9KlS6NQKFAoFHTp0oXy5cvj7e3NrVu3vqlNGbykjEa/eGHKdGoJQPTL1+wYOvnrGmjTFKYOh1muELBNvGagD5uXov34Gfa7dlKuVCE8l23h8NGLkD8PbF8hesE6DYCISGrXLMeAPu04d+EGiw9egM1LGRB8gEqhT1m6fCunz/6bfL9MmcDPCVo0ABNr2HMw9VWQwcG4NGwIlpZiy6CaNcUKxnPnxAT6t2+hd2/0585lqI8P6q9f4+joyBNVVVR378b0+HGaPn5MQEAAW7duRalQwLJlUL++WAF59erXPnbpN5LewevjzpOkVAody+CVscjw9QuUKFGCiRMncubMGYKDg7/6ehm8pIzKcMEEtHNkA+Dq+h1c3fiVW+oMs4BuHcBiFJy7LF4rUQTWuqN+9DQDjh6hYd2KrArYQ+COIyiLFxYbcf97C7rZQmwsVSqVxMq8E//eeIDbwYvEb1pKv6Agqj8PxXvldo6fvJJ8v0yZxMrHpvVEANt3JPUAdvAgLg0aiJ6vpUuhTh3R63XqFHToANHRYGGB3owZOHh7kzkyEkdHR0K0tFDZvZsuBw7Q+elTduzYwerVq0lSU4MNG6BAAVED7PHjr3zq0u8gvYPX+91RYmNjiYmJ+e65w9LPJf+2fpEuXbowbdq05OXnaSSDl5SRZTbQx3DBxA+fbx8yibcvXqW9AYUCPGZA2RIiDD17Ll6vXwO85qDit5Gu167QqV0Dtu8+jt+a3SRWLAvrF8ORU9BvGCQmUq5MEewtu3D/wVOcD14kdt1ieu/cSd0Xofis3il6zt7T0BArHxvVFtseBR1NPYAdOoRL/fowcGByz9X27aJ6fadOoobXoEHoTpzIEC8vssXGsnDhQu5nzQrbt9Ni1y7Mnj/n6NGjeHl5Ea+tLa5PTIS2bSEi4iufvJSR/Yjgpaqqytu3bzExMWHz5s3p9E6ln0XO+fqF3q90TOtYvAxe0u9AqVSypqs117fuBaBiz050Xjbv6xoJeSJWQBYuALt8RUACmO0GExfA0rmcKFkKX/9dlC1dGPPe7dDYEyx6v3p3Efs6KhTcf/AUl8Xr0cuqg331kmQxtiCgfVuCs+XApHMTmjSsmnzPmFgwsYLDp2CjFzSuk/ocsPr1sTtyRASwvn1h/34Rnho3ho0bxfueOJG3s2bhamfHE6USW1tbit25A+3acbFrV5Zmz07hwoWxsrJC69YtEeTq1oUtW0Bd/euem5Th/Mjg1adPH2rWrMmIESNSnJMeq+ilbybnfGV07785ZPCS/iQKhYK2iyajkVUHgIurNnFjx/6vayR/HrHq8ewlGDQR3v+SONIa+pqA1VhqvQ3HZmBnbt5+yCK3tUQ0rgues8B7LYwXYa9QwdwMtetOZORbFhy7yuuVznTdtIXmb14QsHE/u/edTL6npgYEeEDdamBkAQdPpN4DdvgwLnXqQP/+sGKFKJ66ZYsIYcbGYlL/pEloDx6MvZMTBdTUcHFx4XrBgrBqFRVXrWJQfDwhISE4OjrypmBBMQS5dy/Y2iZ/3dJv6UcHrxo1aqQIXufPn+ft27cyeP0G5N/Qb0AGL+l3o5M3F63m/PPh80C7ccS8+cqhtFpVwHU6rFgHbj7iNYUCnKdAg5rQzYayJOBg240XL8OZ7+TP89ZNYM5YmOcpNuQG8uTWZ5h9dxITE1lw6jph3gvoHLARw6jXbAo8xLadR5MnLmtqwDpPsel3pwFw+FTqAezoURHA+vUDX19o3hw2bYLdu6FbN1HYdfZsNC0tsV24kKKamri5uXGldGnw8KCYuzvDtLSIiIhg/vz5hFWsCEuWiAn9s2d/3TOTMoyfEbxGjhz54fiBAwewtrbm3r173/nOpZ9Bhq8MTgYv6XdVuXcXijWvD0DE41Bu7zn49Y2YGcEQcxg5A/YdEa+pq8NqF8ibCzoOoGAmVUYMFt8Xcxet5kHntqKHbMws8NsIQI4cegyz7466ujoLzt3hscds2vutpUNsJNt2HWNz4EcbeWtpitITNStDR3M4eiZtAax2bejTB1auhFatxLDjtm3Qo4cIYE5OZOrdG6t58yiTNSseHh6cr1EDZs4k7/TpDDcwQFVVlXnz5vGwaVOYOBHGjIF3+8FKv4+fHbz279/PlClTcHR0pGzZst/79qWfQM75ysBk8JJ+d6/vPyLA1J7Wc8dRoE7V1C/4lMRE6DwQTl2Aw+uhWGHx+oPH0LALFMgLu1YSkaTE3WsjT56+YGDf9pRdtBhWboT1ntCqEQARkW9x8VjPi1fh2BUxoLD9PwRZ9GWdiiaNG1TBpHOT5GkAUW/Ffc9eFntP1q6a+hywWrWwO3VK9ID17CmGILt0ER8rV4qeu969SQwIwHvcOM6HhtK3b1+qr14NCxYQuXw5rk+f8uzZMywtLSk1Ywb4+8saYL+RXxG8pk6dyvTp06lTp46s5/XrySKrvzMZvKQ/Rbr8MHgdDg26gKoKHFwHumI+GWcvQ/MeolbXKmdiE5JY6hPI1X/v0cukObXnuUDQUdjpK3qygLfRMbh7bSTkcRjWebNScuRUDg6ywD9eVVTHN26OispHAayDOVy8CttWQM3KaQ9gK1eKXq+NG0X1+m7dwMdHzOPq1o3EbdtYOXEiJ0NCMDM1pfbixeDnR8yGDXjdu8fNmzfp26sXVceMEXXEjh6F93tDShmSDF4SMnz9vmTwkqRPuHFHBLC61cWwoKqqeH3bPlGWwr4vzB5LYmIS/uv2cuT4JTq0rE2ruc4ort+GIH8oJbYYio2Nx3PZZm7ffcRAfS3KT5zDsZH2rIxMpEa1Mph1b4Wq6rtZGZFR0L4/XLkO232gesXUA1jNmtidPg2rVonQFRAggljPnuDt/a43rzNJ+/fjP3Uqh2/fpnvXrjRcsAD27iVh9258btzgzJkzdOvQgYbDhokCrseOQa5cP/hBS99CBi/pHbna8Xckg5f0J0tKTOSY0zIeHDn99ReXLAo+C8V2QBMXJL/ethnMHweLloGHL6qqKvTs2oK2reqwZfdx1g7oQ1KuHNCuHzx6CoCGhjrWAztRtnRhPEKjODN6EHXmONNPX4vTZ6/h7buNxMRE0X6WzLBlqag91q4vnL2c+hywkydxqVYNTE1h7VrR87VyJfj5idpgamqwbh0qderQY9IkGpcpg//atQTZ2kL16qh16EDfGjVo1KgR/ps3s3nkSJKio0UR17dvv/7ZST/Uj6hc/z549X23F6gMXn8W2fOVgcjgJf3JosJe4G9iRcjxc2QvXhirU4Goa2l+fUMLl8DoWbDCEbq1T359xDRw9RG9Ym2aAnD42EVWB+ylUvH89F3kRqYs2rB3NWTLCkBiYhK+q3dy6uy/mGZKou5CD85PH8vSJ28oV6YI5n3aoa6mJtoPjxDh6+Y92OEDlcul3gNWvTp2586JSfMmJiJ8mZnBgAHg4SGq4bdujfLyZTbPmsXuCxfo0LIlrSdNgrAwlIcPs+/2bTZs2ECNYsXoNXky6s2awbp1yT1/0i/1o/ZqjIuLo3///pQrV44xY8Z8eF0GrwxPDjv+TmTwkv50SYmJeDftRsiJ8wDUHTqQFjNGfX1DSiUMGAnrt4sNtatVEK8nJkIPO7Eqcu8qqFIegIuXb7PUJ5CC+lmxcl9M5qIFYdtysaoRSEpSsmbDPg4duYCxIo6m7su4PG8Si++FUbJ4ASz6dSBTpnfFTt9EQNs+cOeBmEdWsUzqAaxaNezOn4c1a8TE+xUrRFkKKytwdRXV7Js3R3nnDjvmzSPw5EkMGzSg3fjx4ofq4cOcCQlhxYoVFNHVxXL+fLStrMDR8eufnZSufuQm2Q8fPuTcuXN06NDhw2syeP0WZPj6XcjgJf0twv69hWfN9iTGxaNQUcE8OIB8NSp9fUMxsdCypxhGPLwR8uQUr7+Nhpam4vWD68RKSODuvce4LdmIjqoKdkuXk712ZfB3FcN/iO/BzYGH2B10inbxURguW8l1lxl4XH9EoYJ5sB7QCU2NTOIer95Am95iteWulVC+VNoC2IULIoAZGYmK+ObmYG8PixbBq1eiQOuzZ+xxdGTjoUM0q14do3/+QZEnD+zfz62wMDw8PMiamIjtkiVknzMHrK2//tlJ6SI9gtenKtF/LlAFBQUxffp0pk2bJoNXxibD1+9ABi/pb3NojjtBE+YDYFC2BBbHNqH2fvugr/H4mdiCKH9u2L1KFEgFsR9kQ2PQySwm2b9bGfks9CUunutJiIrG1m81+ds1+bAN0Xs7955gy7bDNIuOwMhvDbcXz8Xtwl3y5smBrYURWlrv7vHyNRiaifewayWULZl6AKtaFbuLF8UcsM6dYfFisLSEIUNgwQIICxPbEkVGcmDhQtbu3UvDcuXo+s8/qFSuDDt38vT1a1xdXUl48QKb9esp4OMjaopJP1V6B6/AwEBUVFSoV68eWbNm/c+5V65cYcSIEYwbN466devK4JWxyfCV0cngJf2NEuPjWdrQmCfnrgDQcIwdTSYO+bbGTl+EZt2ha3tYPCs5SF27CY27Qo1KYp/Gd3skvgmPwm3xBsKehGG5cROleneGSQ4pmjxw6BxrNwRRL/INPQLW82CZI86nb2CQQw97yy5kzqwlTnzxCgx7w9NQEcDKlEg9gFWpgt2lS2LOVseO4O4ONjYwfDjMmQOPH0ODBqCqyhEnJ1YFBlK7SBFMJ05EpWVLCAgg/O1b3NzceHbvHgMOHKDc+vVQrty3PT/pq6X3UKOTkxM+Pj5cv34df39/2rZt+59z7t69S0JCAiVKlJDBK+OTqx0zMhm8pL+Vqro6HTxnofJuyO/wXA+eXrz2bY1VrwjuM8B3vdjT8b0yJcDfDYJPpNgbMqtuZhzsulG4eEFcO3bkdMBOcPdJ0WTjBlXo3aM1R3X0WG5sRAGLEQypX4GXL8NZ6BZARMS71Yb62WD7CsiZA1qbwfXbqa+CPHcOlwoVxOT7LVvEsKGTE8ybB2PHQt68sG8fvH1LvZEj6dOlCyfu3WPpqFHEb9sGlpbo6ujg4OBAiXLlcG/ShCOWlvDs2bc9P+mrpFeP13vHjh0jIiKCRYsWoaWlxcuXLz95TZEiRShRogSQtr2ApYxP9nz9AjJ4SRLsn7KQgzNcAMhduSwDDq1H9V0P1VezGy8C2KH1ULFM8uu+G2DgSJg6HEZYfXg5ISGRlf67OHnmGl2OHqXZiP5gnLLH4dyFGyzz3UbZVy8ZsH07Yatccdp/Hm1tDQZZm6CXNYs4MewFtOol5oLt9oMSRVLvAatUCburV8Um2u3aicnzQ4fC+PEwZQpcuyYq2hcpwkUnJ5auXk1RbW0s589H08EBZs8mMTGRtcuWcejcOVo9fUp7X19UMmf+tucnpSq9hxpfvXrFwYMHyZQpE4aGhly6dIkKFSqk99uWfj457JgRyeAlSUJiXByL63Qi9MoNAFrNG0dtu77f1lhMLDQyhqhoOLoxuQI+wNRFMN1Z1Ajr2u7Dy0lJSjYHHmTP/tM0vXQJozEDUWlWL0WzV/+9h+eyTRR98QLLvXt5s9qVRXtOoa6mxmAbE7Jn0xUnPnsOrUwhPFIEsOKFUw9gFSti9++/IoC1bQtz58LIkTB5MkyYIKraN2kClSpx08UFd29vcgJ27u5kmTIFRoxAqVSy19ubjadPUzU2lr7u7qhlyvRtz1D6rPQearS2tubx48cEBQUxbdo0Bg8e/CGYfWoSvvRbkcOOGY0MXpKUTDVTpg/DjzWszaja1+TbG9PUgFXO8CwMrMd+GGYEYNwg6NlJ9IB9VNxVRUVB5w6N6NqxIfvLl2eZiz/xpy+kaLZs6cLYWxpz38AA5+Yt0OkzhKEd6pOUpGSB8xrCnr8WJ+bKATtXgk4WEcJu3099CPLiRVxKlxarH7dvhxEjYMYMsaH2jBlQpYp4/fRpSowciYOdHa/U1Zlvbs7LKVNg2TIUCgUt+vdnYMWKaNy5g+qUKd/+DKVPSu/gdebMGXLnzo29vT0GBgb4+/sTGRn5IXDJ4PV3kH/LP4kMXpL0X/mqV8T+yj7aOE4kU5bvHDIrVhg8Z8H6HeC5Mvl1hQI8ZkCtKmBiBbfupbisceMaDOzZmksFC+C8cBVvr95Kcbx4sfwMse1GaK6cODZqSqZeQxhq1Bg1NVUWuKzh6bMX4sTcBqL2l7a2GIa8+zBtAaxUKbH6cedOGDNGDDv+84+YgF+3LmzeDEFBFBg5kmFDhpCQLRvzevXiyYgRsGkTAFWsrDBr3RrF9Oli/0gpXfyIOl6JiYloamrSvHlz+vfvz9WrV1m5cmXyjgrSX0EOO/4EMnhJ0k80bCosXgUH1iYXYAUxJ6txV0hIgOAAyJE9xWW3z13DY8kmdOLjsB3VH/1iBVIcf/L0BU4ua9B4FsagsydR9XfDacN+IiOjGWRtTL68BuLER09FrbH4BDEEWTh/6kOQ5ctjd/OmCFqtWonerylTYP58MRdsyxbRQ9arF68XLMDF1ZU3jx5hGxhI4ZUrRYkKpVJUzvf1FZP2GzRIryf6V/qRBVSnTp1Kq1atqFKlCjVq1ECpVBIUFIS+vr4cdvz9yTlfGYEMXpL0dV7dfQhAtiIFUjnzM+LioFkPCH0Bxzd/2EoIgLsPoWEXKFsSAr0/lKB479npS7h4biBBIxM2Q80oUDR/iuPPn79mkbM/yqdhDLp8Du3VLjit3curVxHYWxlTsMC7Ta9DnogAlpgEe1ZBwbypB7By5bC7dUsErRYtRO/XzJng4gK2tmKLIlNTsLUlauZM3NzceHznDpZBQZReuxYqVxZfe6tWcOUKnDoFhQp92zP8y/2o4PW+TMT58+dJTEykWrVqBAcHY2hoiLm5Oc7OzinOk35Lcs7XryaDlySlnTIpiRNuPrhXa8Nmi1EoP1qS/1UyZQLfRfAmHCxGpZz/VaQArHIRc79Gz/rPpbmqV2CEaSuyvgnHcdFqrl27m+J4jhx6DHMwRT1vThZUrMqbvsMYYmqIgUE2FrkFcOfeY3Fi/jyi9pdCIeaAPXyc+hDklSu4FC8u6n/t3QvTp4teLzs7WLoUevQAT09wcSHzjBkMGjyYYmXK4Na0KWcHDIB798TXHhAAmTOLdqKivu0Z/sV+ZI/X+0BVunRpKleuDECFChXo0aMHq1atYvPmzSnOk/5cMnz9IDJ4SdLXiY+O4biTN/Fvo7l/6CSnl6z+9sYK54clc2DrXnBalvJYg5qwYDy4roAV6/5zqW7j2gzp1IBiISG4Ll7P8VNXUhzX09Nh6DAzsubLhWPpCoSaj8TerA158+TA2WMdN2+HiBML5BUBLEkp5oA9epq2AFa0KHToAEFBov6XjQ0MHAgrV4o/58+HmTPRWLAAK1tbKlesyNIaNTjcvz+8eAE5cojes1u3oE8f+NYQ+xf6kcHrY5qamqiqqqJUKsmePTuWlpYolUr8/PxISEj4IfeUMhY57PgDyOAlSd/mTtBRfNv0BiBTlsxYn9mOXqF8397g2Nng5C022q5dNfl1pTK5NtieVWIy/v9JdFqG/7YjHClblvZt6tG6ea0UPRJvo2Nwd1xJyOPnWD97SKFls/Hw3cGde4+xMu9ImVKFxYn3QqBFT9DIJOaA5c2V+hBkmTLY3bsHgYFiPpeFBXh7g7+/KNA6eTJMmgQuLiRZWxOwZAnB58/T7skTDP38UGhri8n4nTsnl66QvuhnBa/PcXJyYvjw4fz7778ULVr0p95bSldyztevIIOXJH2frbbjOLvUH4BizetjutX724dh4uOhZS948AhObEk5yT4uDlqZwb2HcGQj5M31n8uVw6ax48RlAmvUoH6dinTr0gxV1eQBg9jYeDznr+D2kxcMiHhOaY9pLPbZxvUbDxjYrz0VyhUTJ955IAJYZm3RG5YnZ+oBrHRp7O7fF+UmGjSAvn1F+Fq3TvSMDR8u9oRcvhxl797sXLKErefOUTcqih6LF6OqoQHTponCrevXiwn70if96uAFkJCQwPnz56levfpPv7eUrmT4+tlk8JKk7xfzJgL3qoaEP3oKQAfPWVTpY/ztDYY8gdodoFpFsc/jxyvJnj2Hup1E8Nrz0ebc7yUmQk97jt19gl/9BpQtUwTz3u3Q0EieqB+fkMCy2d5cCn1N34RIKi8cz7KV27l4+Tb9zdpStXJJceLte2ISfpYsogcsV47UA1ipUtg9fAg7doiyEz17ih6tzZuhdWuxMffSpWKz7i5dOL54MSvPnqW0QsGABQvQ1NSEbt1g2zY4dgwqVvz25/iHygjB6//JFY+/NRm+fiYZvCQp/dzceYBVnQYAoJFVB9tzO9H5RM9Umu0Oho4DYPJQGGmd8tiZS2JzbuO24DU7eXPu995Gg6EZV9/G4dWkGXny5MB6QGd0dJJ/SCcmJuE7w4tTLyLoqZ5I7ZnDWbF6J2fOXaePqSE1q73b8ujWPdEDpqcLu/wgp37qAaxkSewePRIBrHZtMey4c6cIVI0bg5mZ6A3bvBkMDbnm6IjXlSsYZM6MzZQpZFVTEz1nL1+KFZAGBt/+HP8wGTF4Sb89udrxZ5HBS5LSV4nWjalk2hmA2DcRBNqP57t+UWzZCEbZwCRHOHgi5bFqFcBtOqzcICbh/z9tLVjnSdmoSByOHOLlizfMc1pNaNirD6eoqqrQ+x8LGuhp4ZegRvAUV/qaGlK7RllW+G3nyPFL4sTihcWw46s30KY3PH+Z+iT8GzdwyZMH2rSBkydhzRqx7VD79nDkCKxYAYaGYlgxOJgyDg4MzZuX8FevmDdxIk8jIkRvWXQ0GBuL4VZJBi/pl5I9X99JBi9J+jGiX77GtUprop49B8BohSMVurX/9gYTE6FNH7hxB45vEVsCfWzMLDE5f9dKqF/jv9ffvAuNu/KiYllcGjQk6m0s1gM7U6RQng+nKJVKNv+zkN3RSbTLkYVWoweydmMQh45coFuXpjSq/25i/7+3xArInDlEVXz9bKn3gBUrhl1oKOzeDZUqiQ25T56EPXtEja/3n+/bB9Wr89LaGtfXr3mTKxdW9vYUf/ZMhDYLC1E77C8mg5f0A8merx9NBi9J+nG0suvR1knsVaibPw/a+tm+r0FVVVjhKEov9B0qwtjHpg4XKyL7DIHnL/97fYkisM4T/aOnGP7vFXIZZGOh61ouXk7ejkihUNBp+hA6KOIJfB7JxnnedO3clGaNq7FmfRB79p8SJ5YuLkLX01DRA/bydeo9YLdv42JgIIqoXrokyklUrizmfl25Inq3KlQQxy9fJruLC8NiYsj38CFOixZxWkMDnJzA1RX8/L7vWf7GZPCSMgLZ8/WNZPCSpJ/j7LI1lDNug4auTvo0eOCY6AEbYwvjB6c8FvIEanWAmpVhw+L/zv8C2LADTAcRN3QgK4qX5vylW3Tr0oyG9Soln5OUxEHbKazRyEKNvNnpNbQ3O3afYMee47QzrIthi9piBeeVG6IIa4G8sN0HsmVNvQesaFHsXrwQhVhLlhTV8G/dgv37oWBB0bv15AkcPgx58hDfpAkrc+XiVIECtDE0pM26daisWwcnTkD58unzTH8TMnhJP4GccP+jyOAlSb+5ma5EznYnxmchOTo0T3ls5wHoNABmj4HB5p++fuESGD2LpMWzWZclGwcOnaNV85p0aFM/uSxGQgKnzcewIqsBZfLlYICDGfuCz7B1+xFaNK1Bp3YNxLmX/oXWZqIw7LYVoKebegArXBi716/FEGORItCsGYSEQHCwKLLaoIGY23XkCCgUKGvXZleZMmwpUoQqFSrQe/FiNKKixAT8rFk/e58/iQxe0k8iw9ePIIOXJP0BkpJYY/4PxzNnxbhLM+o2rp6yltj74qxB/qIX7P8plWA1BlZvRrlnFUHRiazfHEyNamXo1b0l6mpq4ryYWK72GsriPAUomDcnVkN6cvzkVdZt2k+DupXo1qUZKioKuHAVDHtDsUKwbTno6qQewAoVwi48XASwAgVEj9eLFyKAZcoE9eqJIBYcDI8eQd26nG/ShBWFCpFTTw9LT0+y16kjaoD94dvZyOAl/UQyfKU3Gbwk6dd6efseR+Z70WisHbr586R+wRdE37rPOoeZHCtegorli2HatWVy+Yj4eGjeA56EieKs2T7ROxQbKybN338ERzZy5tlrVqzaQeGCubHo35EsmbXEeZFR3DWxwbVoKbLnMcB2UE+uXLuD35o9VK9amt49WqGqqgrnLosAVrq42PQ7S+bUA1jBgthFRoqtiHLnhkaNxH6OBw+KPxs0EJPzd+6Eo0ehdWtC+vTBI2dOEqKisPT3p8iwYTBixHc9y4xMBi/pJ5PhKz3J4CVJv9blgG1s6OOAMimJWnZ9aT1v3Pc36ubDeWdfVnVsj0JdHdNuLahYvrg4di9EFGdtXAdWu3y6d+hpGNTrBHlzw55V3H7yHM+lm9HW1sRmYGdyGrxbJPDyNY87DMC5fGUy5TbA3q4b9x8+w3vldsqXFYVb1dXV4NQFMQG/SnnYtAS0tVIPYPnzYxcdLeZ8Zc8uAlhSkujxevAAmjcXpSgCAsRE+z59iJgyhcXa2ty7fRuTQ4do4OSEokmT73+eGYwMXtIvIMNXepHBS5J+vaiwFyws2YiE6BjUtDQZcj2YzDn1v6/RxERo3JXwuARWmvfm8rV71KtdgS4dG6OpmQk274ZuNrBwIliZfbqN90Vau7SBJXMIe/EGN68NREZFY9m/I8WL5hfnPX7Gi9a9ca5Tj5icObCzNuH16wi8lm+lWJG8WPbvJCrnHzsL7fpC7SqwfjFoaqQewPLlwy4uTgQwHR1o2FAMPQYHw5kz0KkT9O8Pnp5ir8fJk0kICGBDQgIHDh6k5v379HBxQaNIke97nhmIDF7SLyJLTaQHGbwkKWPIbKBPNfPuACREx3Dc2fv7G1VVBbfp6F65jvWLp5h2a8Hps/8yY54Pt+88go4twaY3jJwB5698uo1qFcB9BvhtBGdvDHLoMWJwT/LmMcDJbR2nzl4T5+XNhX6AG8P27CZr6HMcndegpamBrYURd+8/wdljHW+jY6BOVbEN0tEz0N0WYmNTL0Px6BEumTJB06YQGSnmgb19Kybi16wJS5aAl5fYYHviROjaFbU+fehaujT9unThfL58eE6YAAkJ3/9MMwAZvKSMTvZ8fYEMXpKUsYSHPGFRmaYkxcejoZuFITcOoqmn+/0Nj5sDzsvh9DZC9fRYsWoH9+4/pWWzmrRtXBW15j0gPBKObwadLJ9uY+xsWLgUNi/lf+ydZVhVSxRAFw0SFoqd2N3dXWBjISoGIoLd+YxnBwIGBrYiYoKFLSYiNga2KCohIM2978coyjNARUWd9X18wL1z5px7FO5iz569aVKHhIRENrke4uyF67RpUYvmTaqJpP7zfkS36cOy9u14oG9Av15t0NPVwWGFO1ky6zN4QEeRe3bYG9r3g6Z1YdMS0NBIOQKWMyc2CgUcOyaWSevVAyMjERFbuRJGjxa1viwtRT7Yq1dw4QKB588T3b8/hQcOFI24f2OkeEl+MXLZ8XuQ4iWRpE/2WI/Hd/VWABpMHkrdsYO+f9KoaKjUUtTbOrCBRIWSQ0cusHf/aXLnNMSibjlytTKHFg1h7YJP538lJkK7fnDeD7zdoXABlEol+w+dY88+b6pXKUW3zk1QV1eDA8eJ7zSQ1b16cFVDh57dmpMnVzbsl7qho6OJ7cBOZM6kDweOQycraN0I1i0CdfWUBSxHDmxUVISAxceL/o/584u6YNOmwcKFsHmzaNRdpQoYG4tI2YwZMHMmnDwJNWp8/z39BUjxkqQDpHx9K1K8JJL0S0jAQxzKNEGpUKCTNTNDbh1DU0/3+yf2OiVyrZbPAouOADx6HITLRk9eBb+mbZ4s1B/9D6pLZ0Lvzp+eIywcarcHdTU44QZvC8NeuHiT9ZsPULBgLgb0NiFDBm3YsIPEfqPYNNiKM/HQqV0DSpUoiP1SNwBsB3YUCft7vaCLjcgpWz0X1NRSFjAjI2zU1ISAvXkjylCUKCGac9vYiP6Qnp6gpyeiYz16wNKlIlfsxQvw8wODNIgo/kSkeEnSCVK+vgUpXhJJ+se91zCubtkNQNPZY6nxuWKoX0ufEbDvKFw+CG+T+ePi4tnlcYqjJ3wppojH3G0HWQ6uh1JFPz3HrQCo0wHqVIVty0BVpNbevfeE5at3oaerw6B+7TE0zAQLnFGOm82OccPwCo2mRdPq1KpWBvtlbsTExGE7sCO5chqKqvrmQ6BbW1j+L6iqpk7A1NVF0n1IiMj/qlQJdu2CLl1EhOvoUbhxAywsRESsTRvRsqhDB3BxSZt7+hOQ4iVJR0j5+lqkeEkkvwcvbtxmacWWAOjlzI7dzaOoa2t9/8Qvg6F8c2hcRywvfoD/rYes27SP2JAwOt+5RVU3B1Q+F3HbdxTa94fR1jBl6PvrfhmKk/MOoqJiGGBpSuECuWD0TFjiwsHZk9l5P4g6tcrRskl1HFe4ExoWwaABHSiQLwds2S3ksHdncJgGKiopC1i2bNhoa4sI2NOnou9jo0awfr0oPxEQIKrgr1gBCxaIaNjz59CrF2zZAmZm339PfzBSvCTpDLnb8WuQ4iWR/D5kL1mU4qZNAdDQ1iL0weO0mThbVpg9DrbuhoPHkz1VvFh+JozuReniBVlbojTLJizh9evIT8/TogH8MxxmOcJ2z/fXnS0zI+y6ksMoC4sdt3HW5wbMGgsdWtB00r90r1qCU6evsNX9iKgTlj0z9k7buBPwBLqYiCXR1Vth2D+gVKa8C/LlSxyio8WyY9684O4OBw6AtbWIgBkaQtOmYGsrGnSbmUG1auLzgAGiTlg6RoqX5HdFRr6Q4iWR/I4EXfXnxfXblOrYEtV37XzSAqVSNN6+9wh8PUH34zd0v9kr2HIviIRMBnTq1ISqlUokb0/0bp6eQ0SvyHN7oFC+pKfiExLY4naYM+eu0aRhFUwbVUG1pQUEPOCKiz2rDpwjXx4jevdoyfotB7j3IJD+vU0oVaIgrNoCgyaAXR8hbqmJgBkaYqOnJyJgFy4IuerbF8aPF22IsmaFvXuFiCUmwsGDYjdkgQJiaVJNLU1ubVoixUuSTpHLjqlBipdEIvmIgAdQqRUMNId/x3z8fEICkXU74WpcFJ+s2SlbujBdOzYmY8b/laEIj4CqJpDDELw2wweSqFQqOXrCl+27jlOqREF6t6yBTtPuoKbG/Y0OOG09hL5eBgZYmrJj9wmu37xPr+4tqVShGCxbD0OmwkgrEWFLjYBlzYqNgYHIAfPyEkVXR44Ec3OoXVvsflywQES+mjeHQYNExGzhQrCzS6MbmzZI8ZKkY6R8pYQUL4lE8lnmLIUpC0XZiAqlP37+jC806IzfjHFsDoslUaGgc/uGVKlYPHkU7KwvNOoKowfCpCEfTXP95n1WrdtL5oz6DGxSGUOT3lCyCEFrFuCwZi8JiYlY9THlyAlffHxvYtahEXVrlQf71aL46wRb8QEpC1iWLNhkziwiYNu3w5AhosRElSrQsqWIhjVsCJ07i3pgt27BmjVw/bqIgqUDpHhJ0jlSvr6EFC+J5M/izctgQFTCTxPi46G6KWhpirIRn1ra7D8G9hwi8uxuXI9fwufSLREF69SEjAYfJOPPWCI+vDZDzUofTfMsKJhlK3cSFR1Dv8rFKGphC+2aE27/D47OO3j5Moz+fUy4ev0eR0/40qpZDVo2q4HKvOUwcR5MHwkjBgCpELDMmbExNBQCtnKlqHi/ZAno6Aj5mjsXnjwBJyfRkLtXLyheXOSKfaq+2U9EipfkN0DK1+eQ4iWR/Dk8v3ITT7spPD7rS92xg2jwiejSN3PuEtTvDAsnfbq344tgKNsE2jaDZf9y6codtmzzQvE2Clb5XRQsIQGadIenz+HCXsio/9FUb95Es3LtXu4EPKFLgezUHjkZxtkQM8qalWv3cOvOI8y7NiMkNILdHqeoW6scnds3RHW6Pcx0gMVTYEAPIBUClikTNtmzi3yuefPE0uLateDvD//+C5s2icjX06cwZw507SpKT1hYpNGN/XqkeEl+E6R8ffICpHhJJH8UEYFBLChUCwCjsiWwOr8nbU/Qa5jos3jj8KejXys2gu1kOOYK1SsSGRnFVvcjXLx0i9IlC9GlYyOyZDaAB0+gauv3VfI/QWJiItt2HOWE92XqZVCn40JH1NYvIrFtMzZsOcg5nxu0N6mHtrYmm7d5UaFcESy6NUdj/BywXwMr50KPdkAqBCxjRmxy5hQRsPHjxfKiu7soMbFzJ2zbJqJe1apBpkyiQOutW5At23ff0q9FipfkN0LK10cnl+IlkfyRONduT6DPFQDs/I+RqUCetJvc77pYfly/GDq1+vj5xESo21FEt7x3JAma35U7bHU/QkxMLCYta1OvdnlUXfcKmVs9TxRM/QwnvP1wdT9K4dgoLN13YrBvLcqyJdjt6c0Br3M0qFsR40K5WbPBE+NCuenfywTtYVNhrZvoA9m2GZAKAdPXx6ZAAZGAP3CgqPPl6Qljxoio1+zZovr9zJni665dRSX8n4gUL8lvhpSvZCeW4iWR/LGc+NeRo1MXAtB8/kSqDUrj5bEWPSEiEk5u/3Tek88VUdV+/kSw7pn0cHR0LLs8TnLy9GXy581BN7Om5Bn3L3gchvN7oWDez57ybsATVrrsRjU4jH4+5yjosRqyZeWEtx9btx+hXBljalUvw6q1ezEyyoJ1HxP0bSbAzoPgvhya1AVSIWC6utgULy5KTZiZwdWrIgLWvTvkyQMVK4olxyFDxBKkry+UK/etd/KrkOIl+Q2R8pV0UileEskfTdC1WyyrLKJSBevXoOf+9Wl7ggPHwdQSDm0SbYM+xaAJsG0vXPUCI8NkTwXcf8qmrYcIehlK45plaTlhBppGWT8qP/F/wl5H4rx8O4+fBNH5+RNqbZiHiqYmV64FsGa9B0ZGWTBtWRuXjfvIkEELG0tTslqNgaNnYM8aqF0FSIWA6ehgU7686PnYqhWEhooIV6dO0K4dXLokEvKjoiBHDpEr9oOT76V4SX5TpHyBFC+J5G9AqVRiX6IhYQ8eo6Kmxsgn59HJnDEtTwAVW0Dh/OC2/NNjgkOhbFNoVk8sK/6PhIREDh25wL6DZ8mso0nXTVspPsYKUvidlJCQiNsyV04EBFKTeMzmjEBDQ53HT4JYunInKioqmHVoiNvOYyQkJGLTqzW5BowG36uwfwNUKgOkQsC0tbGpVg1WrRItiDJkENGuAQNg9GiYPx86dhQ5Ydu3Q/v2qb59X4sUL8lvjGwvJMVLIvk7UFFRoVibRgAoExO5s/9YWp8AhvSFvYfh9r1Pj8maWZR82LRT1Pb6H+rqarRoWp3xo3qS0Sgr9iYmrD54jrBnL794anV1NbrYdMU8pwHnE1SYP30FIaHh5M1jxKgh3dDT1WHNBk9aNa+Jnq4OC5x3cmf+ZChZBEz6wI3bACm3IoqJweHMGZH7tXs3vHghlhsHDhTFVy0twdVVJOBPmiRy3X4AUrwkfwN/bORLipdE8nfx4PhZ1jYTpRZKdmhBp41L0vYEsbFQrD60biwaW38KhUI05i5fCtYt/OxUCoWS854n2LHnBHG6GWjZui4N6lZEXf0LbXyUSh51HcwKg+zEGWahV8/WlCxegJjYOFw2eHL1+j1MW9fhpv8DAu49xdy0LlWGTRLNwo9sTWpvlGIETF0dm+bNRdJ906biIyhI9HnMkgWio+HuXdi4Ebp1S82dSzVSvCR/AH/vsqMUL4nk70ORkMC8fNWJDglDU1+XkU/Oo66llbYnme0E/zrC7ROQ/TPFXBethEnz4Z43GGb54nRRQ6aw9/ZTjhcvQfZsmTHr0JDiRfN//oCgV0TWbItLk6bc0NGlaaOqtGlRExUVFXbsOcHhYxepW6sc0TFxXLh4E9N6FWk6YQYqCgUcdU3KRUtRwNTUsGnbViTdd+ggol9ublCoEJw/D8WKid2dN258MWfta5DiJflD+DuXHaV4SSR/J6rq6hRpXh8VVVVylClB5PNXaX+Sft1AVRWWb/j8mO7txJ+Zm3amOF2GsTZ0PneOsVoJ6OnqYL/UjZUuewgJDf/0AUaG6C2ajLXLOtrmyIjX0QssdHAl7HUkHUzr07VTY06duUJ4eCSNG1Rm13FfNg8dRGJ0DJj2Eb0mScUSZGIiDjt2COGaM0dUu+/eHc6eFT0gHz6EO3dgx44UX2NqkOIl+dv4oyJfUrwkkr+bsAdP0NDVSbsWQ59i6FSxq/HOSdDR/vQYczu44g9++1PeFThlISxaifKaF+efh7Jj9wmiY2JpVL8STRtWRVtb8+NjrMbCNg/u7XJh9REfYmPjMe/anLKlC3PrziNWrd2LlpYm1auUZN+hcxTPmZW+C5egXaY47FoJbyOCKUbAVFSw6dULNDRg9Wpo2xZ27QI9PdDUBGNjOHUqdfftM0jxkvxh/F3LjlK8JOmFO3cfsMrFFe/TvoSEhrF1gz2lSxVNNiY4OJRlzps5cOgkkW/ecPrYNrS103iJTPJjCHgIpRvDitlg/pkdf0dOQ8uecHgL1Kr85fnCI6BEQzBtCk4ziI6J5eDhCxw5fhFtLU1at6hJzWplUFP7YKEiIhKqtgEjQ97sXsP6bV5cuRZAw7oVMW1dh/CIKFas3kXQyxAa1q3EsVOXMNTSwHrZSjI1qwsu85OkMEUBA2zs7MQS44ULotTE69fw7JkYcP68aMz9DUjxkvyB/D3yJcVLkh6IiYll0j+LOH/hMhGRb/C9dJ1qVcvhfdQVNTWRSK1UKlns4ILz6q3Exydw5+4DBvTtyrLPJXBL0ifVTaBMCXCe/ennFQohaNUrfrLsxEfYr4axs+HSPihaCICQ0HB2e3pz3ucGOY2y0s6kLqVKFBS9IgHO+EKjLjBpCMrRAzl64hI795wgm2EmLLq3IIdRFjZuPcgFX39qVC3FzVsPIToGq42byTfIHMYOSjp9qgRswgSxDBkfL5Yd9fQgLk6Un1i7NrV3LgkpXpI/lL9DvqR4SdIDL18GY9rJikb1a5IzZzYG2U1BW1sLv/N7KPb2zTQy8g1dzIeQPVtWupm1oYWpJVmzZsL/8kEyZTL4xa9A8lUM+0cUXr1++PNj5i6DGUvg/mlIqeZYTKyQtarlYJNDsqcePQ5i++7j3Ln7mCLGeWnToibGhd62T5q8AOavgBNuULE0gc9e4bLRk8BnwbRqVoMmDatw7OQlduw5gXGh3ETHxBH09AU9Dh2iylRb6NAy6TypErBJk0S9r4IFRSRMoRDFV1++BF3dlO5aElK8JH8wf758SfGSpAeePXtBg2Y9GDq4N1WrlKVGvU7ExsaxYM44htr2ASA09DUtTPvQukVDBlv3pHzVNjx4+ISNLgvo1sXkF7+CP4sX12+zf8R0Ip+/oLSZCXXHWKf9Sdw8oIcdPDgDOT7TaPr5SzCuA3PGJWs59FnWbYf+o+GUO1Qum+wppVLJ1ev32LvPmyeBLylRLD+tm9ekYC5D0VdSUwOOu4GKCgkJiXgePMMBr/Pkz5cDi27NCQ2NYPUGD1RVVcmd05Cbtx7S9OoVTP4djmqV9+dK9RLk4sWiwXZ4uCjB8RVlJ6R4Sf5w/mz5kuIlSQ9ERERSp1FXepm3p18fMypWN+X2nfvUqVWFY4c2oqqqSlxcHE1b9aJenapMnTSELuZ2bN3mQaMGNfHat+5Xv4Q/jhfXb7O0kojolOvRnrYr56T9SZ4+h8K1YbMDtGv++XFdB8Ht++DjkXLifWIiVGoJZYqLJt6fQKFQcvnqHfbuP82z58GUKlGQNhm1yGdh91Hro/sPAlm7aT+hYRG0alaDyhWKsXbzAe7cfUzJIvm4efshJYOC6DNjMDpva4BBKstQmJrCnj1iCRKgcWM4dOjLrw8pXpK/gj9XvqR4SdIDSqWSdp0HkjuXEY6Lp2JlM5HlKzejra3FtYueFC4s6jVZDhhDfHwC61bPY+PmXfToPRwNDQ0uX9hDieLGv/hV/HlEBYcyN7dIAC/cpA499qz5MScq3gDaNIK5Ez4/5tAJaNMHjrmK/K+UGDcb3Dzh9vEvDlMoFPj63cbjwGmCXoRSMiSYxvFvKLZx0fucMCA2Np49+7w5esKXXDkN6dKhITdvPWTfobPkzpaZV09foJ+QQN8RPclr/BUCpqODTY4cogp+VJTYDRkRIXZAfgYpXpK/hD+zzpcUL0l6Yfa85URFRWO/YBL7Dx5n+crNAIwfbZ0kXus27MDH9xrLHafz9OlzbIZOBWDI4F5SvH4QOlkyoaapAUDk8y+37vkualYCb58vj2lUW7QdOnQydXNWLA2Pnoqq9F9AVVWVyhWLM3F0L3r3aEl47pzYG+Vj1sxV+Pj6k5ioAEBLS4OObeszemh31FRVWeCwlcg30fTvY0p4dBwqujooEhKY6+DK8VN+vPtjPMU6YNHROISEQEyM6HsZFwcnP/8apXhJJMn5rSJfUrwk6YVz5/1o23kgl87uRkdHm1IVm/P0aRDFihbiis9eNDU1uRvwgBr1OnHqyFaKFS1Es9a9OOh1ily5jLh15SB6eqlPUJZ8HYuK1OX140AyZMvCyMfnf8xJVm4B20kQ5Av6ep8f17Q7GGb+KJH+k9x7BCUbwq5VokF3KlHGxuJfrwuHqlTFX12TrFkMqFOzHDWqlUZfT4iOQqHg+Ck/dnueQl1djUb1KvMk8AW+frcxfP2aVxkzUqFcUXqYNUVHJ5V1wDJmxOb1a/HNgAGwbNlHY6R4Sf4y/qzIlxQvSXohKioa8z4jcFo8lRw5sjF89EyePg0CwGnxVDQ1NUlMTKSn5UgmjrWhWNFCrHbZxkEvUYxy1rQRUrx+MHo5RRJ81MsQEt/lJaU1tSqJ3X7nL395XKmicP1O6uYsmBeyZIKLV7/qUlS0tChh1gpbl3WMNW+BcaE87N1/mvFTVrB6vQd3A56goqJCg7oVmTK2D+VKG7Nn3ymePH1J4waVidHTRTs+nmvXA5gxdx3+tx4CqYiAvX6Ng+rbt5FP5HxJ8ZJIPs1vIV9SvCTpiTET5lKtSjnamTbF67A3q1y2AdC9iwkNG9QAYNGSNWhqaDDYuidBQa8YMXYWAFWrlKNHt7a/6tL/GvRzZE/6+k3QD2gzBFCssBCl0yksPZYsAncfiF2BKaGiIpYeL175+uuxNAMdLfJ6HMKiewtmThmASavaPHz0nAUOW5n67xr27j9NbFw8Pbo0Y+yInmTNYoDXUR8y5jAkT0gw8QmJREXFYL/MjY1bDxIdE5uygCkUOICo/fUBUrwkks+TNh1RfyBSvCTpiVPePmzauocbl/YTHR3DABuRbG1goMf82eIN6tGjQGbOWYb30a2oqKhgN2IaoaFiaWbxvAnJEqIlPwa9D8o/RDx/iUGenGl/ElVVKF8Krt/+8riSRcVOxjsPoHSxlOetWAbWb//66zHQhxqVwPcaAHq6OjRuUJmG9Spx++4jzvvc5Mixi3geOEP+fDmoXKEYZh0aERIazr5D57hjlIOs4eEk5jIiJhbOnL/OlesBtDeph51Nb4DPLkEOBkhMxCYqCjJkkOIlkaRAuo58SfGSpCfi4uLoP2g8M6cOJ3v2rEyZbs+9+48BmDjWBiMjQwCGjZ6BjVUPihcrzPET59i6zQOAzh1bUr1ahU/O7bHvKJVrtkXfsBwq2saoaBujlqEoJco1w9p2UqrGpGaOvwW9DyJfkc9f/LgTaWqIpccvUbKI+JySpL2jUhl49gICg77+ekoWgRvJlzhVVVUoXjQ/Pbs1Z9Y/Vlj2bE1GA112eZxiyszVbHE7TL482enYogbZIyMIi4xGU1MdNTVVIiKiWLtxHzPmrqVFs0ZJf2B8isFA3+bNpXhJJKkg3SbcS/GSpDem/+uIx/6jnD62jZv+dylXpQ0JCQkYF87P9Uv70NTU5Njxs/TuP4ablw+goaFOpRptuXzlJhoaGtzw24dx4QJfPMebN1HkK1KXkJAwNq9bRJfOrb96TGrm+NPxXb2VPdbjAWi1ZBqVf9TvD1NL0NaCrU5fHpe7CgzuDakp+PrkmSjOum0ptGnyddfzrlBr8BXQ/bL0xMbGc+vOQ65ev8e1G/d4Hf4GNaWSnNFvUC1WmOdBIcTFxaOiopK0CzJLZn1eh77AYanLZ+dVU1Ojbt26UrwkfyupWtpIl8uOUrwk6Y379x8zZ8EKTh7egoqKCrbDppGQkADAnJmjk5Ls7UZMZ/7ssWhra7FmrRuXr9wEoL+lWYriBaCrmwF9PV1CQsLI8TaS9rVjUjPHn07uquWpN8EW/RzZyV/n25o+pwqlMuXiqe/GqaVyoSF3DjAyhIvXvl6+3kXZ/ANEBO0LaGlpULa0MWVLG6NUKgl89oq7Lu4EnL3HnRxGxMW926jw/m/mkNAIQIeaNWty+vTpT86bmJhIpkyZpHhJJF8gXcrX2bNnWeLgwPjR1lK8JOmCwcP+oV8fM8qVLYHHvqMcPireeGrVqEQ706YALF+5GcOsmWnfthnx8fFM+9cRgAwZdJgwZtBn55akPUali2GUmvyq7yQOeK6uCY9TWCLU1QMVtZTHvaNKRSFQqR3/DhU1MDSEOw8he/aUx/+PgoXzUNBpDY2mDOKNTgaCXobw6HEQTwJfERoaTnRMLEollCtXDuCzArZjxw4mTpzItGmyYbxE8inSpXyVKFGC8uXLs3zVFrp0bk3pUkV/9SVJ/mLcdx7g6rVbbN2wGKVSyYQpC5KemzV9JAAhIWFMnbEEL0/RLmjTlj3cfyDywawHdCfH5/r/SX5rnmtoMitbHliw4csDW7eBp+Epj3tH3sLic2rHf0inTnDulvj4Fjp1gvX7Uxz2JQHLnj07I0eO/LbzSyR/AelSvjJlyoSXlxeNGzemQbMeHD2wQQqY5JcQHh7BkBHTWeYwDV3dDOz1PILfZbGU2KxJHWrXqgzA+MkL6NiuOWXeRlsclq0HQFtbixFD+v6ai5f8cHLExjAm+CnMGP35QQoF1GoH4wZDm8apmFUJjbuBRUcw7/B1F7TdAxatFu2M1NRSHB6fkMCDh88JuPeE+w+f8Tr8DQD6+hlQVVEhPOIN/08LzmSgy7ETJwkIuI9CoUBXV5c3b94kPa+iooKVlRUGBgZfd+0SyV9EupQvgKxZs0oBk/xyRo6dTd3aVWjZvD4AS5zeN8KeNG4wAD4Xr+K+6wA3/Q4AcP3GbXzeFsnsZd4haRfkO5RKJTf971KyRJGf8Ar+TsIePuXNy2Ay5ctNhmxZflh5D02lknyJ8ZDX6PODoqLh1SvIrPflce94+hwePoKyRVM3/kPuP4Qs+lAg1xcuJwa/K3fwu3KXW3ceER+fQDbDTJQrXZjELXu4kyc3LyKi0NbWTBIvFRUVqlctRd5cWWjXeQBhYeGfnDu7gQG9Bw7kn3/+QVtbm7Fjx37d9UskfwnpVr5ACpjkx5OQkMCCxau5G/CQUcP7JUuK99h3FI/9R7lyQZSKCAp6hdeR97leNWtUJCEhIan8RJYsmd4edyxpjsHW5h+dc+TYWcTHJ7B4/sQf9rr+di5v3MGxfxYBYOa6lOImX5m4nlqUpJxwHx4pPmfQSd2c/gHic4lv6P3pH/DJ4+ITErh+4z4XLt7k6o17JCYmUrhQHlq3qEnxIvnxv/2Qw/u8iciTl2wZ9VCJjE5KuC9Xxpj2JvV49OgJjVv2/Kx4VQYOX7yIgbEx2trajBsnylJIAZNIPiZdyxdIAZP8WGbNXc7EqQsB8PW7js/pnQA8ePCEftbjcd1gnyRVJ70voHhb08n8bZX6WXOXk9FAnz69OiXN+W5Zskrlsh9FtyZNXUTAvUe4bU5Fnz/JNxP28EnS15ny5/5xJ3r+QrQE+hKn3vaWTGH3YRL+d0FLEwqkMO/njrXskvRt0IsQTnpf5qzPDaKiYsibOzsmLWtTuUIx9PUzcML7MkuWuREVHUvhF0EoMmcmOCoGFRUVMmXUw7xrM4oVycdF32tfFK/WgBugVVjkqk2ZMgVACphE8hnSvXyBFDDJj+Pseb+kr6OiogF4/vwlLdtaMm6UVVJOF0BwcFjS1zVrVOTwkdMsdnThwqkdyZa1Yt62kalXp2rSY4mJiQwZMZ3HT57hutEetVTk40i+ndcPnyZ9nTHfD5Kv0NeioOmw/l8e53VKRKNSW2X/5l0oWihVOVvJuHQNgl6RWLkcl/1uc/L0ZW7deYSurjY1q5WmRtXS5MyRFaVSydXr93DffZyXr0KpVL44kddu4W+YDV1tTRJj4qhfpwKmreqgpaWRsnipquKmUKCVLVuyKKAUMInk8/wW8gVSwCQ/hsoVS+O5/xjD7PrQy7wDO3YdZPjofxnYvxs2A3smG1uxQqmkr7tZDOVVcCi7ti2nQIE8ycY1alCDHbsOcuPmXaKiovG7fJMRY/+lRrUKbN/iKMXrJxD2SMiXloEe2pl+UOL3WV/xuWalz49RKoV8tWuW+nn970Lxr19yjF3jyplaNTjsc5fgUF8KF8xFrx4tqVC2CBoa4lf9s6BgXLcf4dadRxQrko8aVUvhdegsisgYtLU0UdfSZIhlW4oai6hbiuKlro5bQgJaADVrfvS8FDCJ5NP8NvIFUsAkac/oEQPwv30Pp+UbcVq+kSqVyrBhzXxq1qj40dgqlcuy3GE6HvuPUrK4MYOte5Ir18cJ0QP7d+f581esXudGtjxVqVenKnNmjE4WRZP8OJQKBa8fPwMgU/48P66XprcP5Mz+5WXH2/dExfrGdVI35+sI8LsBTeum+jIiIqM4vs+b4/FaRJctT8WCuejfx4S8ed7/34yPT+CA1zkOHD5PlswG9DFvhe/l2+zyOEWOiHCe6xtQslh+LHq0RF9PFEdNVcRLRwetiAjxQMeOnxwnBUwi+ZjfSr5ACpgkbdHR0WbL+sXExMSiqqqCpqbmF8f379uF/n27fHGMqqoq06YMZdqUoWl5qZJUEvHsBYp4kSyeMd/nd/19N6cvQo2KX064P+wt+j/WTmWV/eUbID4+VSUmIiKiOHjkPCe8L6MSF0/NRw9p6DAJw4LJI7G37jxi8zYvgkNe07RRVYoVyce6TfuIjokjR2wML3T1aFunHI3bNkJVVbyWVOV4VamClu/b6J+KCrRq9dlrlQImkSTnt5MvkAImSXu0tbV+9SVI0oiwD/K9MuXP84WR30FsLFy8AjNGfXmc10moUSnFPosARMeAg4sQr5yfr04fGRnFoaM+HD91CVVVVZqUL0L9wWPRG28DH4hXTGwcO3af4OTpyxQumJt+vUy4fvMe9ku3kTOHIYlhEUQqlAypUQLj9u/rj6VKvFq1QsvD4714li4NmTN/8eVJAZNI3vNbyhdIAZNIJJ/m9aMPk+1/UOTL9zrExkHNLywlx8XB8XOpa6YNsHYbvAqFoZ8uyhsVFYPXMR+OnhDRpob1KtGoXiV0rcZCJj0Y+L6sScD9p6zbtJ/X4ZF06diI8mWLsn7zfq7fvE+50sbcuH6XHC9eMqBYbrJ0ed94PVXi1bkzWnv3Qp488PKliNR165aqlygFTCIR/LbyBVLAJH8ekZFviIgU1cKfPX/5TWNSM8efTPIyEz8o8nXaR0Szyhb//Jizl+BNFDSunfJ88fGwYCV0aAmF8yd7KiEhkRPefngePEtCQgL1a1egcYPK6OllgFMXYNtecJoBOtrEJyTgsf8Mh45coED+HAzq3564uHjmLtpITEwcVSoW54KvP5UCAjDPlRHNCTZJ50lRvFRUcGvXDi1/fxHlevL2PquogPnH9ew+hxQwiQRUlP/vHfFj+SEnCw4OpnHjxjx58kgKmOS3xGPfUaZMt8f/1j0i34qTqqoqxYoWpH7dajjZ/5PimFYtGqQ4x9/AgdEzObt4NQD9vHeQK7X1tb6GDv0hOhY8135+zKT5sHoLPDoHqqpfnm/jDrAcCef3QNkSgOiEcOnyHXZ5nORV8GtqVS9Dq+Y1yWigK46JfANVWkNOIzi0kcAXoazZ4MnzoGBaN69Jk4ZV8PW7zfotBzDKlpmMBrrc8H9Am0u+NNPXRMV9BWhoAKkQLzU13Bo2REtPDw4cgAwZhHRFREDduuKxr2TKlClMnTqVmTNnSgGT/EmkaofPHyFfIAVMIpG8JyEmltePA8mYNxfqaZ3PFxwKReqK5cRRAz9zAQlQvjlUKgtrF3x6zDsUCqjUEvLngZ0rAbj3IJDtu45x/8EzSpUoSLs2dcmVM3mbKmwmwuZdKM/t5kxwBFu3H8Ewa0Z69WhJrhyG7PI4iddRHyqUK0pISDjPnr2kj/cpyiri4NAm0NcDUiFeGhq4VaqEVqNGMGMG1K8PFy7Au36OmzZB166pvXvJkAIm+QNJlXz91suOHyKXICUSyTvUtbXIWqTgj5l86XpRv6uP2efHbNgBdx/A+kUpz+d5RBRWdZhO2OtI3Hcfx8fXnzy5s2E7sCPFi+b/+JiDx2HlZmIWTWHz2RtcuHiTWtXL0KldA+LiE3BcsZ3bdx/TrFFVLvrdIi4mjqHnz5D/5Qs44ZZ68dLWxq1QIbSsrKBXLzAzg61boUAB0NEBbW3o8JXNvz9ALkFK/lb+GPkCKWASieQH8yZKyFevTmCY5dNjYmNhuj10aAEVSn95PqUS5i4joWZljsYq8fx3NZoaGph3aUa1KqWSSj8kI/Q1WI3jcasmrAqJ5fWDu/Tu0ZIqlUrwPCiYpSt3EhUdQwfT+ngeOIO+ng52fj5kvXUHjrkm7aRMUbx0dHDLlQut+fOFYLVoAZ6eULky+PiAujrMng0plGdJCSlgkr+RP0q+QAqYRPK3olQqiYuIRMtA/8edZK0bhIWDneXnxzhvhsAgmJyKOm8nzuH/5CVbu3bixd6T1KtdntYtapJBR/vT45VKlLaTOZErD9sLFiWHpgZjh5uTPVtm/G8/xNllD5kM9GjVtCbue45TMH9OBlw4R4YTZ8BjbVLl/BTFK0MG3LJlQ2vNGlE8tVQpePoUDA3hzp333/frl/JrTAVSwCR/G3+cfIEUMInkbyToyk1W1u1Ikeb1qWbdkwL1qqftCeLjYeFK6NgKCnxmF2XkG5jtBObtRX/GLxAS/Bp3lz34mphgbGSIZYdG5MmV7YvHxC5xYWNoDD5VqlKvRlnam9RDQ0Md77NX2LztMMWK5KVwwdy47jhClYrF6XHhHBrb9orlz7e9RlMUL11d3DJlQsvNTeRyZcwIJUqAqys0bAhnzsD9+zBkCOinnehKAZP8TfyR8gVSwCSSv42rW/eQGBuH/66DFG5cO+3la5sHPA6EEV9opL3ERbQIGm/72SGJiQqOnvBl757jaGto0atiEar0aJNiG6SXnkdZ7nOH4CLG9OnZisoViqNQKHHffRyvoz7UqVkOFVUV9u4/TfMm1Whz9hwqKzaJMhQdWgKpEC99fdwyZEDL0xP694fwcBgzBoYNAzs7WLxYCJivLwwfnuIt+1qkgEn+Fv5Y+QIpYBLJ34JSoeCa614AVNXVKdmueRqfQAkLnKFZPSjzmdpeIWGw0Bn6d4fPFHd99DiIjVsP8uTpC+rduEGb4nnQMTdJ8fTXjvuwxuMsevp6jBzeg1x5chAbG4/LRk+uXLtLe5N6PHz8HF+/W3Tp2Ji65y/AnKXw75ikjQEpipeBAW4aGmgdPAgTJsC1a+DiIhLtO3eGbdtE8+wTJ8SuxyyfyXn7TqSASf4G/mj5AilgEsnfwOMzvoQ/Ec20CzWqRYbPJcN/KweOw7VbsGDS58fMXwGJik+Wn4iNjWfvfm+OHPcld05DRgb4U+BBAGy3/+JpFQol+/edwuPQOUqFhtBrzjAy5MlB2OtIlq3cSdCLEPqYt+bM+WvcvvMYy55tqHj2HIydBaOtk6rlpyhemTLhBmh5eYGjo0is37RJRL3y5xelM6KjhXDlyAGDB6f61n0LUsAkfzp/vHyBFDCJ5E/nquuepK9Ld279hZHfyLzlULVcUt7URwQGgdM6kYifPWuyp67fvM/mbV5EREZh2qo2je7cQu3gUdi3HvR0P3vK6OhYXDZ6cvX6PVr5+dFi0VhU8+Qk8NkrHFe4o0TJwH7t2Ln3JM+ev8K6fzuKnz4PQ6aCbW9429g9RfHKkgW3+Hi0jhyBvXthxQpwdgYnJ3j9GsaNE8uOEyfCtGkiGqaj80238WuQAib5k/kr5AukgEkkfyqKhARuuO8DRH2v4iZN0vYE5y6JNj5bnd43kv4/sxxBWwuGvN8FGRERxbadR/Hx9ad40XzYWXciW0QEdO4L/bpBgxqfPeWz58EsX72LiOAwBnp6UmaqHZQvxZ2AJyxbtZMsmQ3o3rkJ6zbvJ/JNNEMHmZHP+xwMHCfmnj0OVFRSFi9DQ9yiokTE6/x5IVj//APnzsHp07Bxo9jR2KWLqO9Vu/ZXtRL6XqSASf5U/hr5AilgEsmfyL2jp4l6GQJA0ZYN0HpbQDTNmL9C7Fxs0/gzF/AIVrvC1GGQyQClUonPJX9ctx8BFbDo1oKqlUuIstc9BkOWTDBz1GdPd/X6Pdas9yCzphqjN20me8920MUEX7/buGzwpHCh3Ji0qs0Kl92oqqgyfHAXjE5fEO2JureDxVNSJ17Zs+MWHo7W/v1w9y4MGgRDh4rWQStXio/588Vux4IFwc0N3N1TbpWUxkgBk/yJ/FXyBVLAJJI/jWtb9yZ9Xbpzm7Sd/FYA7PESOwY/Jx3TFkO2LDDQnPCIN2ze5sXlq3epVKEYnds3RF8vgxhnvxqOnYG9LkkV5j9EqVRy+NhFduw5Tun8Oei9wAHtcsVhxiiOnvDFbedRKlcoTp1a5XBa4U7GjHrYDOhApjM+YD4E2jeH5f+CqmrK4mVkhFtoKFoeHhASAr17g6UlNGgApqYwejRcvy52NW7cKKJdI0eK+l6/AClgkj+NP6a349cie0FKJL8/CTGxzMtXjdjwSLQM9Bjx6Fza9nIcMAYOnYSbR0DrE/MeOgFt+qB0mIZPxfK4bj+CiqoKXTs2pkK5D36nnLsEjbqCjQXM+lgc4hMS2LLNizPnr9O0emlMpsxCVVMTxZEt7PS+gtdRHxo3qEyxIvlwdtlN3tzZGdi3HRnO+kK7vtC0LmxaAhoaKYtXjhy4vXqF1s6dojp969bQti2MHQt16kDjxkK2OnSAhQtFHti9e2L3Y4YMaXNfvxHZC1LyG/B39Xb8WmQETCL5/Xn95BmZCuQl6MpNSpg2S1vxuvsANu2Cf4Z/WryCQ6H/GMKb1WezagYur/ekYvmimHVo9D7a9W5cDzuoXAamjfhomoiIKFas2c3DR8+x6NCQamOmQXQMCXtdWO95Gp9L/nRs2wB9fR2WrtxJyeIF6GvRGs3zftBxANStBhsWp068cubE7eVLtNzdIXNmaNIEGjWCuXOhbl0oXFgk1deuDe3bi92Nhw/Dvn2/XLxARsAkfw5/beTrHTICJpH8/ry8eQdVdfW0a6atVELrXhDwCHw9IYPOR88rze24eOcJWxs1REVNlS4dGlOx/P9+fygU0GEAnPeDs7sgb/L6X08CX7Js5U7i4xMYYNGaQqOnwbGzRHuuZcXFuwTcf0qv7i15ExXNFjcvqlYqSY8uTVHzvQYte4rekTtXQgad1InXixdobd8uykfUrw/lyolE+pYtIShIiJaZGURGwo4dQshatRJLj+kIGQGTpGNk5Cs1yAiYRPL7k61EkbSd0HUvHPZOEpv/E75hB1siEvGrWYuKxfJ/HO16x8KVsO8o7Fr1kXhdvnoXlw2eZMuWCas+nckyZT7sP07YJgccT1wlJDScwVYdefDwGTv2nKB+nQp0bNsA1as3oU1vKFUU3FekTrxy5cItKAitbdugWDEhVUWKwPbtooVQQIAonjphglhiPHUKbGxEsr2jY5rc0rRERsAkvzt/vXyBFDCJRPIBYeEwaga0awbN63/09MXDZ9ly5iYqBfLT16LNx9Gud5y6AJPmw0grURn/LUqlkoOHz7Pb8xRlSxvTq3tLtJashhWbeL5gCg6X76NQKhk22AzfS7fZd+gsLZpUp3WLmqj434VWFlAoH+xaDXq6qROv58+FeFWsKJYUs2UThVSHDhXSdeAA7NwpZGznTvHcqVNw7BhkyvS9d/SHIAVM8jvz1y87fohcgpRIfg+USiW3PY9QtEUDVNK69IHdZNi4E/z2Q56cSQ9HRcew1e0wF3z9qRD4hC7zR6OfJ8en53gRDNVNhCTtXw/q4u/chIRENm49yDmfG7RoUp1WzWui6roHeg3jwQhrHNHCQF8X637tOXzMh2MnL9G2dR2aNqoqctAadwXDLHBgA2TNnLJ45c6N27NnaL2r0VWnjlgKPXlS9GmcM0csO6qriwT7adOgeXOoUUPsbpw5M23v7Q9ALkFK0hly2fFrkREwieT3wH/XQVy7DCJ76WK0mD8x7ZpoX7gMKzbBnHHJxMv/9kPWbd5PbPgbenl5UWXBOFQ+J17x8dB9sGjJs25RknhFRcWwfM1u7t8PpHePllSpVAKOn4V+o/HvacbyBHVy5ciMVd+27NxzgrMXros+jbXKwYMn0NwcDPTBY+3XidfmzaIZdr16okXQyZNEbNjAvTlz0Bk7liLFiqFSsyZ06gRDhkClSiIX7G1k6Uvcu3cPVVVVChQo8HX3OQ2RETDJ74iUr/8hBUwiSd8oEhM5MmUBAC+u3SIuKjptJk5IgMEToWxxGCiquMfFxbPb4xRHTvhSLLch5itWkcWsNTSp8/l5hk+Ds5dExCuXEQCvXoXh6OxOZGQ0ttYdMS6UB27chs4DudSiMWsMDClaMDe9zVux2fUQflfvYNG9JVUrlYCnz6GFOWiow751YGSYsnjlyYPb06dobdoELVqI8hHPn/Nq1y7sevZk26lTxAP8+y955sxhQLZs2CxcSKbhw+HJE1HfS1MTgBMnTnD58mUGf9DP0dfXF1tbWxQKBS9fvmTmzJl06tQpTf4ZvgUpYJLfjZ9bqvg34Z2A5cmTjwbNenDt+u1ffUkSieQtVzbu5JV/AAB5a1SiyCfysr6JZRvg8k1YMg3U1Xn8JIjZCzZy4vRlOrapw+AdO8mSNRNMH/n5OZw3icjZ4ilQqzIA9x8EMmfxJhQKJSOHdBPiFRgEJpacqlKZlXkKUr5cUfqYt8JlgydXrgXQr5eJEK9nL6BFT4hPEL0gc+dIWbzy5hXitWGDKJhqagr+/gRv3UpNMzP8vL1ZVq0aB/fuZV6hQugBE58/J3/RooxYsQL/0aOJypuXCxcuYGVlxc6dO7GxsUmaf9GiRVSvXp1GjRpx+vRprK2tuXfvXtr8G3wHU6ZMYfLkyYwbN45///33V1+ORPJFpHx9BilgEkn6IyE2lmPTFid932jaCFQ+12/xawh4IJLj+3UlsVJZ9h86x+yFm1BTV2XMsB409D6Dqt8NWD3vk7sfAThxDob+A9Y9oY8ZAL5+t1jktA2jbJkZadeV7NkyQ1g4yrZ92V+4CJuKFKdurXKYdWjEslU7uRPwGOt+7ShXxhievxRLjZFv4MB6KJAndeL15Ala69dDx47QuTOcPQseHoxftoyMz57hW78+fU6coImHB8MfP+bG0aNsc3amcHw884ESkyejq6tL1apV0dPTY8GCBaioqJCYmIiVlRVDhw7F1taWqVOnAuDp6UnTpk2//98gDZACJvldkAn3KSCT8CWS9MM5x7XsHz4NAOOmdem+e/X3T5qQAI26wItgXh7YiMuOYzx4+JymjarQqllN1C9dg/qdYewgmGD76TkePIHa7aB0cdizGqW6OoeOXGDn3pNUrlgc8y7N0NBQh6hoFK17466lz5HixWnVrAZ1a5fHcYU7L1+GYd2/HYUL5oagV9C8h9h5eWgTGBdIWbzy5cPt0SO01q0T5SPMzER1+t27oUgRshUpgkv+/LTy84NNm2DgQFixgpC2bXEePRqd169pYGvLHm9vJk+eTLNmzdi9ezeqqqooFAosLCzYsGEDzZs3x8PDA1VVVZYsWcKdO3ewt7f//n+HNEQm4Ut+Ian6a1DKVyqQAiaR/HriIt9gX7Ihb14EA9D/7C5ylk+DXoOznFD+swjvFQvYfvUe+voZsOjWgsKFckN4BNRsB5kzwpEtoKHx8fGRb6CBmfh8yp3ETAZs3X6EU2eu0LxJNVo3r4WqqgrEx5PY2ZoNieqcL2xM5w4NKV+mCPbL3IiIjGLwgA7kzWMkdko27wEhYXBwIxQtlHrxcnGBHj3Ex7tG2FWqQO3aZLx/nxOHDlFOoRB5YFZW+A8axKzJk9GKjGR8r17EVahAw4YNUVNT4/LlyxgYGIh73b8/zs7OFC5cGB8fHzJmzMjMmTN5/vw5ixYtQk1N7fv/HdIYKWCSX4Tc7ZhWyCR8ieTXc9ZhbZJ4lerYMm3Ey/ca4fOd2WA9gGsXb1Grehk6mNZHW1tTlGToOwpeBotiq58Sr3dj7j+GE9uI1s3ASucd3LrzGPMuzahRrXTSuLi+o1mlosN14wL06tGCQgVyscBhK/EJCQyzMSOHUVZxrpY9RUui1IpX/vy4PXyI1urVoidjnz6wbZsoIVGnjqhkHx1N2YoV8Tl5knILFqBs1AivVq3YNn8+F44d42jfvsTXrEnjWrV4/PgxBw8eTBKvadOm4ezsjLq6Ops2beLFixeMHDkSExMTxo8f//3/Bj8ImYQvSc9I+UolUsAkkl9HdEgYpxc6A6CipkaDyUPTYNIY/EbNYpNZZ1R0dLAya0bZ0oXfPz9nGew+JKrIGxf49BwzHWDXQdi2lJCcOXCy30JoaAQ2A9pTvGh+MUapJGr4NJbFqPCwYAEG9m1H1iwGzLffgoaGOsMHdyFrlozwKgRaWsCLV6KOV7HCKYtXgQK4PXiA1sqV0KsXWFnBunWiHVCLFtC0KTx+DCdOMO3mTcy7dCF3wYIEtGjBsVWruHP4MMuKFEFv7Fhq163Lw4cP6d27N02aNAHA3d2dyZMnAyL65enpiYGBAY6Ojmi+3Q2ZnpECJkmvSPn6CqSASSS/hoDD3sSGRwJQvmeHNOnh6DF+ER5lKlA2fw66W7ZDX/+D9kAHjsPUhSLHq2XDT0/g5gHT7WHqMB6VK8PSRZtQU1NjhF1XcubImjTs9T+LcXwVQ0je3NjZdEFDXY0FDlvR18uArVVHMmbUE0uMrSzg+QshXiWKpF68VqwQ0S47O1ixAtasEcn2bduCn5/o15gvH/V79MDByIhhamoEz5xJZXV1NmlpUdLDA0s7Oy5duoSurm5SovrNmzexsLBAqVRStGhRSpcuTc+ePdHV1f3ue/8zkQImSY9I+fpKpIBJJD+f0p1akb1UEY5Pt6feOJuUD0iJw96Ucd1J5oG9qGHXLfmOyYCHYDEUWjaAz53rjC9YjoQuJlxr3YyVDlvImcOQgX3bYqD/Xk5eLVrNkochxGXPxrDhPYmJjWOR4zayZcuEzYAO6OnqCPFq2VPU89q/AUoWTVm8ChbE7f59tJYvh759YdQoWLIEli+Hnj3F8uOhQ+DhIYqmmpryKDSUs1270l5bm4FhYeResQJOnGCXtzerV4uNC0OHDiV79ux4e3vTr18/IiMjqV+/PocPH0Y1rTsJ/ESkgEnSGzLh/huRSfgSyW9K6Guo3AqKFATPtfChVLyJgnqdICYWvHdARv2Pjw94CPU6QjFjvKeMZPPOY5QuWYg+5q3Q1HyfF/Z05VaWnL+Fll4GbMf3JTg0gqXOO8ibJzsD+7VDR1tLXEsrC3j4VBRQLVsi9eLl5CR2LE6YADNmgL29aIZtayuaYW/dKiJgAwfi5+XFmhYtyJ03LwMyZSLjgAHg5EREjx6ULFmSJ0+eoKqqSu/evfH29ubRo0dERUWhr6/P1atXyZ8/f1r/K/wSZBK+5CcgE+5/JDICJpH8hiiVYDtJ7ExcMTu5eCmVYDVWJM+fdPu0eIWEQbt+KDNlxGNQXzzdj1KnVjnM2jdMFhm6v3kPDr4BZNXRxGaKFU8CX7F89S4KF8yFlWVbIWlh4dCmtyhTkVrxKlQIt3v30HJwEOI1fboQr7lzYfBgmDwZHBxEBKxTJ5SzZuF17hw7mzalQrly9CxVCs0GDcDSkqiePRlia8uTJ08AqFWrFvXr16dr165JOV+zZ8/+Y8QLZARMkn6Q8vUdSAGT/O0olcq0KXL6Ge4dOU3+OlVQ+9ROw2/BeRNs8xA9F/PlSv7c4lXiuU1LoOQnfo5jY6HzQBJDwtg0aRRnTvph2qo2TRtVTXYPbrkfZJn3dfKgwHq6HXcePmOly16KF8tPv15tRL2v1xFg0ls0y963DsqVTFm8ChfGLSAALXt7GDRICNfEiULARoyA2bPhn3/g33+hf38SN21iy/79eNeoQbNmzWhTrRqqVaoQWro0C7JlwylfPkJCQgAoVqwYhw4dQl1dnYoVK6JUKqlZsyZWVlZpc9/TEVLAJOmB33cRP50gK+FL/haUCgWRz18SfOc+rx8HkhgX90PFK+jaLda3ssCpfHP8dx/6/gkvXoUR08GqB3Runfy5o2dg3BwY0R/at/j4WKUSBo4n5tJ1lg4eyLlbj7Ho1oJmjasluwdX9xzF8ZgfhWKjsZk1hJsBT1ixZg9lShWif28TIV7hb8Xr9n3wXAcVSqdevBYtEhEue3uR5zVhAowfL/K9xowRMjZmDDFHjrB0yxbOliiBeY8emLZsiaJzZxa8fk2FoCA0M2QgZ873jcOXLl2KlpYWmzdv5sqVK6ipqbF06dIf+u/7K5GV8CW/Ghn5SgNkBEzypxN67xEn5y7j4cnzRAQGoZ3JgKzGBahu25tirRv/kHMenbIAlEpCAh4Scu/h900W+hq6DYayJWD2/yIdjwLB3BYa1ICpwz99/IwlhO84gNOgAbwIjcSmf3uKF0u+HOez7yQuXj6UCQ+jz8LR+N5+xLpN+6lcoRg9u7VATU0VIiLBxBL8A8BjLVRMhXgZG+N29y5aCxaIHY3Ll4vPI0eKSNfKlSLPa/hwmDqViIsXcVyxgqCcORlkbU3xMmV4YGGB2alTVDAxwXf1anbt2sX169cBsLS0pEGDBgBJItK7d2/Kli37HTc8/SMjYJJfiUy4T0NkEr7kT2VLJysKNapFxrxiqe6i82buHDgOQKkOLag1YgDZSxVNs+XBh6cu4NK4KwD6uY0YfO0wGjra3zaZQgGdrOD0RTizCwrkef9cdIxoLRQcBqd3QNbMHx+/cQdBw2fg0KMbCboZsO7fnry5sycb4u15kk0Hz1El6Bnmi8dyJiCQzdsOUb1qabp3biLywSLfCPG65g97XaBq+ZTFq0gR3O7cQWvePCFXa9aIshK2trBokWgTZG4u8r8cHHh1/TpL5s4lVkODQcOGkbdkSa5Pn077iRNZNGgQLRwcCAoKomTJkoSEhFC1alWOHz+OtrY2vr6+VKpUCQ0NDe7evUu+fPmSriM8PBxdXd10Wcn+e5FJ+JI0Ribc/2xkBEzyJ3J8xhJ0MmeiqpV50mPFWjXCf/chvOcv5/r2fTw8dYF6420p37M96lpaKBUKVL6xNEFCbCx7bSYkfV9v7OBvFy+AhSvB44golvqheCmVYDsZbtyBY66fFq+jZ7g3aRFLu5ihb5iZoQM6kCWzQbIhh/eeYPvhC9R9+IDO9uM4cesxru5HqFurHJ3bNxKthd5EQdu+cPVm6sWraFHcbt9Ga84cIV6bNoGlJQwYIMTL3R0sLERx1SVLeHTjBo6LFqGjVDJiyBAMS5Yk5vBhukycyPq2bam6ZAlKpZI+ffoQEhJC7ty52blzJ9ra4t56eXkB0LZt22TiFRISQteuXVm2bBkFC35/fbX0hoyASX4FUr7SGClgkj+JxLg4Qu8/pmhLsSylVChQKhSoqqtT3KQJuSqV4fzS9fg4b8LDdhKvbgXQfN4EVFRVvzkZ33veCl75BwCQq3JZKvTu9O0v4OR5mDQfRgz4uFjqio2wfjusngefalV05SZ+w2eypnVr8hfKg1XfdmTI8F4ClUolHjuP4nniEk1v+WNqPw6vO0/ZsecEjepXor1JPfH630RBu37gdwP2rIFqFVIvXrNmieVFNzdRv8vCApycwNNTNM/u1AmcnfG/do3ljo7kiIjAevRo9EuXhvv32d62LbVy5qSqqyuoqDB1yhQ8PT3JkycPhw8fTpb39W7Xo4mJSdJjT58+pWfPnixcuPCPFK93SAGT/Gxkwv0PQCbhS/4U1DQ1UdVQ57zTOmIjIlFRVU2KaCkVCgxy56Dx9JG0XDiZzAXycM5xLW7mdsSEhX+TeL26FcDJ2U6AaCPUxmkGqt+61BX0CnoOgZqVYMr/2hF5+8Dw6TDIArq1/fjYR4EcHzIT57r1KFPGmMEDO30kXtvdvPA8cQnTy36YzhnBvoDn7NhzghZNqr8Xr6hoaN9fJPvvWgU1KqZevGbOhNGjYfduIVpmZiK/68gR6NABWrWCdeu44OOD49KlGD97xpBBg9CvWBHCw8HEhAANDYpYWaFUV+fff/9l6tSp1K1bl/Pnz1O0aPI/Co2NjQGSSmbs2rWLnj17snz58j8+/wt+TRL+p9J+FArFTzm35Ncic75+IDIHTPI78y5y5bt6K3sGTaC1wzQqWXYBQJGYiKqaWrLlxeeXb7DHejyBvtdouWgyVQb0+LrzKRS4NOnOI+8LANQa0Z/G00d928UnJkKrXnDzDpzdDTk/yNEKDIKabUW/xn3rPmqYrQgOZXe/iRzMX5CGlUvQvmsLsXT47nmFgs1bDuB94QZm589Rd9F4dgWFc/DweUxa1qZ5k2piYHQMdBgAZ32FeNWpmrJ4FSuG261baE2fLnYx7t8PpqZgYgKbN8OZM9C8OdStCzt3cvjkSba7u1P91i2629qiZmoqXrupKZw8id+aNZgMGYKmpiZ6enoMGTIECwuLT4pxbGwslpaWHDx4EGNjY1q0aMGwYcN+u3ZC38uvyAE7f/48ampqVKpUCRD/x37njgJ/Oan6q1PK1w9GCpjkdyc+KpqtnQcScNib+hNsqTd+MCBkiQ/exFVUVIh5HcGG1r2IjYjE8rgbWgZ6qY6A+a7eyh7r8QBkLpiXgRc90cig820XPWUhzFkq5Kpe9fePx8ZCsx7wOBBO7wIjw2SHJURGscFmOuczZ6VDzTI06tQ0+fMJiazd4IGv323MT52k2oJxuAVHcfSELx1M69OovnjzJDoGOg4QSf47V0K96imLV/HiuPn7o/XPP6JkxOHD0Lq1aI7t5gaXLkHjxlC5Msq9e9mxfz9eXl40u3gRk379UOnbV0w0ciQsWCBaCzVvTnx8PLGxsejp6X3bvfwL+RkCFhMTg7+/P3v27EFTU5OYmBiePXvGsmXLfsj5JD+NVP3Ck2r9g5FLkJLfHY0MOlS364Nu9qwcm26Pa5dBhN5/LJYgVVRE9EtFBUVCAtoZ9ancvzvhT57z5sWrr1p6jI+OQU1LE4BWS6Z9u3gdOA6zHMVS44fipVSC9QTwvQabHT8Sr+g3UTiNWoCvQSYsa5T6SLzi4uJZsXoXfn636Xv4MFVnDGXz83COnvClS8dG78UrRhRj5fRFcHdOnXiVKCHEa/JkIV7Hj0ObNlC/Pri6wvXr0KwZlC6NYudONrq74+XlRadTpzBt0+a9eK1ZA/PmCflq3hwADQ0NKV5fyc9YgtTQ0CAxMZFmzZoxevRoatWqxbNnzwgNDU0aI5cg/1xk5OsnISNgkt+dZ37X2W4+hOC7D8hWwpj6E2wp+bYgqSIxMUnGAFbV60ijaSMpULfaV50j+O4Dbu3xoubQvt92kY8CoboJVC0vdjd+uHQzywmmLACXBdDFJNlhYWEROE5dRkhsPAOql6Boz3bJno+JiWPpyh08uPuYAZ6eFJ81kg0xKpzzuU4Ps2bUqFZaDIyNBbNBcOyMEK+GNVMnXjdvojVxIkydCqdOQYsWULMm7NoF9+9DvXqQPz/xBw7g4u7OZT8/zA8fplqjRqKdkIoKnDwJjRpB796wbFmyqKTk2/hREbAPN6PEx8cze/ZsVq9ezcuXL1m/fj3Zs2enZs2agFyC/A2Ry47pDSlgkt8RpVIJSiUqqqpEh4Sxf/g0rmzZjYqKCpX7d6Pe+MHoZsuaNN5/zyG85y3H8rjbz73QuDho3BWevYSzu5KXjtjmAeZ2MNEO3i6bvuPZ82Ac5q2FsHAGlStIrsEWyZ5/8yYaxxXuPH/0DOsdOyn4z1Bc0OLS5dtYdG9BlYolxMDYWOhiA0e8YfsKaFw7ZfEqWRK3GzfQGj8epk0TOV3NmkHVqrBnDwQGivwuQ0NiDxxghZsbd27dwvLQIcqVLi2iYmpqhF65woOePamQOTMcPPhRHpvk2/lRAhYSEsLVq1exs7Pj/v37lCxZkq5du1KkSBEuXbqErq4udnZ2aXY+yU9Dyld6RAqY5Hflw+T6mzsPcGDkDF4/eYZ2JgMqWZqhnysHOpkMOGO/GpOlM8lZoXRSYv5PYcR0WL4RjmyBKuXeP37WV+R5tW8hykp8EBG6E/CEZUu3kSXoBYMKGJJpWvIK96/D37BkmRuvn79isOs2co6zZpWWAddv3qdPz9ZUKFtEDIyLg6424HUK3JZBk7qpF6+xY0Vz7PPnoUkTqFhR5Gu9eiXES0eHqP37cXJz4+njx1jt20exPHlEuQltbR7duMHS+fPRTExkwuzZaBgZpfmt/dtJawE7f/48y5cvZ/PmzRQpUoSBAwfSo0ePpOVhb29v7OzsmDJlCq1bt05hNkk6QxZZTY/IOmCS35UPi6aWaNuMwk3q4OO8icCLV/Fb705ibBwF6laj2qBe5KxQGqVSmaJ4HRo/B4D64wd/e44XgPs+cHCBhZOSi9f9x6K6faWysGxmMvHy9buFy3oPCj9+Qn8DDXT+GZZsypDQcOyXuhEbHMqwzVvIOqI/y9V0ue3/gAF9TCldspAYGB8PPezg0EnYlkrxKlUKt+vX0Ro9WoiXj49IrC9XDvbuhbAwaNgQ1NUJ37WLJRs3EhYcjN2hQxTQ14edO0Fbm8sXL7LG2ZmckZFYjRwpxesHkVZ1wBISEnBycmLKlCmoqKhgaWnJlClTyJQpE2pqaigUCq5fv067du2Ijo7+Y3trSmTk65chI2CS35kPI1rx0TEoExOJeP6SrMYFksakVGQ10PcaK2u3R6lQkK2EMVYX9qKq/g1/D16/DfU6QYv6sG7Re8EKC4f6nSAuHk64gWGWpEOOHL/I9p3HqHwvAHOVONS3LU22VBf0IgT7pW6oRr7BzmUdena9WZY5B/cfPmOgZdv3fR3j48F8iKig7+oELRqkLF6lS+N27RpaI0bAnDliF2OjRlCiBBw4ANHRIscrMpLgvXuxd3cnLiaGwfv2kSs2VuR2Zc/OsaNH2ebqSvkHD7AYPhzNxj+mx6bkPd8bAfPx8aFmzZq0bduW7t27Y2pq+slxGzZsIEuWLNSqVYuMGTN+72VLfi5y2TG9IwVM8rvwKZH6nFylprK9IiEB59rtee53A4BG00ZQe6TV119YcCjUag/6uqJFkG4G8Xh8PJj2Bd+rQryKiiiVQqHEffcxjhz3penNG5jERKDquRY+iLo9CXzJkqVu6MbFYbtyNVpWPXAyysOTwJcM6tce48J53p/DYijsOQxbHKBVo9SL17BhYlfi5csiwlW0qMjVSkiABg3gxQue7djBkt27UVdVxfbgQQwDA8HbG0XevOzcuRMvLy8aXr5M+0GDUO3W7evvneSb+F4Bu3fvHvny5UP97R8aHybUfyq5/ls7RUh+GXLZMb0jlyAl6ZkPc7w+9cv/c28IqXmjOOvgkiRe2UsXo8YQy6+/wIQEsdwXEQn7178XL6US7KbAiXOwdw0ULYRSqSQmNpbNrl5cvHSLzteuUD/4BXhtTiZe9x8E4rDCHUOUDF7ujIplF+yz5uTF82BsB3aiYP6c78/dezjs9oLNS1InXmXK4Hb1KlpDhgjxunZN1O0qXFgUU1UqRbJ9YCCPXF1xcHfHQE+PwUePkvHuXTh5kvhcuVjv4sJFHx86envTsFs3kOL1U/nWJch3YlWoUKGkx5RKZTLZ+tSuxg9/nqSI/TlI+frFSAGTpEfeiVf4k2fc3HWQaoMsUj4olYTef8yxfxaLb1RUaOM0A7Vv2Z03ZpYQLM+1yRtmL1oFq7fC8llQvwbR0TEMGjIF30v+aGrpsFxbgwoPHqA4sgXVLJmSDrt15xHLVu4kj5Y61vZOJHRvh32OfISGvGaIdSfy5nmbT5WQAL1HwM6DsNEe2jRJvXjZ2ooaXDduiKXGfPne705s1gzu3uX2xo0s27OHnDlyYO3tje7583D4MFEFC7LcwYH7AQH0PXSICk2awKhv7AAg+S6+RcBSEqsv8fjxY4yMjNDU1CQxMRG1n7WJRfLDkMVD0gGyEKskPaF8W1YC4PDEeaiqp90veqVSiafdZOKjogGoOtCcPFXLf/1Ea91Egv38CckLqe46CONmw0grsOhITEwsE6cu4v7DINTVNfC5cAE3H1/wcEE1b66kw65cC8BxhTuFdLUYvMiBuA4tWZi3EOERbxg6yOy9eCUmguUokeC/fhGYNk1ZvMqWFeJlYwOLFoG/v1hqzJULDh0CbW3RPujyZa46O+N44AAF8udn8LVr6O7bB+7uBBcpwvz58wl89Ag7Dw8qlCgB9vayltcv5Gf2gvTz86NPnz68efMGNTU1EhMTf+j5JD8eKV/pBClgkvTG+aXrUNXQSNaj8f7RM9815zXXvdw9eAIAg9w5aDh1WApHfIJzl2DwROhjBh/2j/S9Br2GQfvm8Hbepc6buXPvGTWqV2dN1oxYa6izUKHAI+AhAAEBD3HdfpAVa3ZTOqs+VvPtiTRtyoJCRYmJiWOojRm5cr6thJ+YCP1Gg5sHrFsI7ZqnLF7lyuF25Qpa1tZClm7fFuJlZAReXqCvDx07wpkzXHByYvmxY5QqVYqBDx6gvWEDrFvH45IlmTdvHnFRUYzYu5fC2bKJPo/fsjlBkqb8LAFr06YNpUuXplevXlLA/hCkfKUjpIBJfjWKxERUVFR4fuUm/rsO0XjGyKTn7h46wck5S0VPx28gKjiU/SOmJX3fcvEUtPS/su1NYBB0GSRKRyya/D7y8zgQOvSHMsVg5VxQVeXuvSccO3mZ/PnyMvLRXcoc86bHrLEYZDJg+44DAPheucPs+SspnUWPPrMW8Lp5AxYWKYVCoWSYjRlG2d/ukExMhAFjYctuUSG/Q8vUidfly2hZWcGSJRAQIMQrSxYhXpkyQZcu4OXF6cWLcTl7lqpVq2L56hUaixaBgwM3ypZlwYIFZNTVZcS+fRgpFKIUxV/W7Do986ME7P79+1y/fj3p+zFjxlC1alUsLCykgP0BSPlKZ0gBk/wqPqzLdWzaYqoMNE+qXB8bHsGZRatoOGUoKqqq3yRg5xzXEvUyBICS7ZtTrPVXlkaIiQUza9EyaIsjaIo+kEREQvv+Im9q23KigdHj59Gr3zhevQzCKvwlmTfvhDXzqD7IgkEDerBu4w6cV2/n6InL5M+ij/m8xQQ3qMWC4qVRVVNlqI0ZhoaZxPwKBQwcD5t2iiKtnVqlLF7lywvx6t8fHB3hwQOxi9HAAI4cgaxZwcIC9uzh+Pz5bLh0idq1a9MjOhq18eNhyhTOVqyIk5MTxoUKMcTLi4xPnsC+fZA9+1ffe8mP5UcIWEJCAiNHjuTw4cNJj40cOZJq1apJAfsDkKUm0imyDIXkV3H0n0XEvYmi2exxSY952E4iY77c1B4x4Jt3XCkSEzm9wJlzTuvof3on+jm/QiKUSrAcKXKtjmyFim97KSYkQEcrOO0DR12JKZyf3v3HceacHwnxcYS8fMmR+ASqL55CgmUX1NXVuXP3AfWadEdfPyNzbC25PXwiFSqUwatOPXR1M2A7sCMZM76NyCkUMGgCuGyDVXOhW9vUiZefH1p9+8Ly5fDokajbpa0Nx46JJcf+/WHNGg7PmcP2gAAaNmxIB6USlS5dwNqaQyYm7Nixg5o1atB1717Udu+Gw4dFv0dJuiWtK+GfOXOGCRMmMH78eBo2bJj0+Ny5czl37hxr165FV1dXJuGnL1L1y1FGvtIpMgIm+Zm8i2TdO+xNoM8VGk8bkfTclU07iQoOpfaIAd91DlU1NWqPtML2+uGvEy+AJWtE5GnZv+/FC2DUTFFZfqM98UUL0sdqAmHhscybNYGZTWqRKT6BhSWMiTLvgLq6OkqlksvXHpAliyEvngVyb+Rk9uvqsrV0OQwM9Bhi0zm5eA2eJMTLec7XiVefPkK8njwRES8NDRHxypED7Oxg9Wr2TZ/O9oAAmjVrRoeMGVHp0QOlmRnuDRqwY8cOmjVrRvfLl1Hbtg02bpTi9RuQlhEwpVJJjRo1mDFjBtOnT+fIkSNJz8kI2O+PlK90jBQwyc/gXVmJuDdReC9YQZ3R1qi9XdILe/iUS2vdaDh1+Pux37nD7qvbCB06KcpKDO8PXUzeP+60TnwsnERiw1pscvUi8FkIQ2x60lEtgS7rttOiWCH2P33OgUMnUSgUrN+8nyPHL+I4dhBt4+K4mjkzWRo0wLhwfuysO6Gv979aYau3CuHr0S5l8apQQSw19u4Nzs6iKXaDBiIv7ehRsbtx9GiUDg7snjyZPY8f06ZNG0yNjFBp147ERo1Y37QpXl5edOzYEdPHj1GZP1/skGzf/pvuteTnk1YCpqKiglKppHr16sycOVMK2B+GXHb8DZBLkJKfgeeQKejnzE6d0dZJj23vOZRCDWtSoVenZEVXU8ultW5kK16YPNUqfNtFBTwQFeyrVQD3FfBuaWX/MZHnZWNB6NjBTJjqwPWbdylVvACL2zZGxdQStTaNiXSaQbnqpuTPl5vu3btw6fJtzOqUpc7QSdwtWAD7ipXJny8n1v3bo6OtJeZWKmHIFNGke+lM6N05deLl54eWhQWsWgXPn4ulxvh4OH4c8ueHKVNQTp2K+7hxHA4NpX379jQ2MoK6dYkrW5aVHTty49YtevbsSdXAQCFcQ4fC/Pnfdu8kv5S0WoJ8t8x/9uxZxo0bx4QJE+QSZPpGthf6k5ACJvkRvBOqq1v3cHPnfjpvdkx67uySNby4cQeTpTO/ae6gq/4412qHIiGRumMHUX+i3ddNEB4BdTtCogJObodMBuLxKzehYReoX51XTjNp0KIXYWHhvAp+RcOKZfC45g+VyhK/zQkNPT3WrHXD0mosVatWZdkkW8pbjeRGrlysqFaDAvlzYtW3Ldpab5P3lUoYPk1E1Byng2WX1ItXz55CvF68gPr1RY/G48ehYEGYPRvFmDG4jhzJichIzMzMqJc7N9SpQ1SePCzt1InHgYH069ePUhERImLWpg1s2SI2GEh+S36VgH2qTZHkpyFzvv4k5BKkJK15J16vHwdyaY0rDae8r7kV6HuN255HaTJjVNLYryEhJhb33sNJjItHqVAQHx3zdRenUIj2PYFB4LbsvXg9fQ7t+oFxfl7Mn8TkWavJnTsPx7w20aR6Rc6eucipHNnAVYhXTEwcDx6HkC9fXh4/uEdcv6Fcy5GTZVWqYVw4D9b92iUXr5EzhHgtmZY68apYUYiXubkQr1evROX6N2/EUmPBgrBkCYqxY9k4ZAgn37yhe/fu1DM2hiZNCDM0ZEGrVjx/+RI7OztKaWkJ6apcGdatk+L1m/MzlyCrV69Oly5diI2NleL1GyCr9P1GyFZEkrTk3RLisen2lOzQAsNihZOeOz7Dnmo2FuhkyfRNy41Hpi7kxbVbABiVKU6DyUO+7uL+WQyeR8VS47vrCo+Atn1BRYUHDjNxct6FtrYm+nrqZIyOYuitAA6gZEPV8lRUU0MRGYWT8w4i3sQydYglvYdOZmPuXCiqVqdUiYJYWrRG412hUqUSxvwrquYvngL9uqZOvC5dQqtHD1i9GkJChHiFhYmIV+HCsHIliXZ2rBs0iIvx8VhYWFC1UCGoV48gbW0cWrcmMS6OYcOGkVNdHWrUEGUodu0SuyMlvz3f2gvy//xfwN7N9y4CNmLECPLmzctPXs2SfCNSvn4y39sYVQqYJC2JCg6lYL3qlO3WNumxI1MWYljcmGKtGgF8tXg9OH6WM4tWAaCmqUG7NfNR19JK/QTbPWGWI0wbAS0aiMfi4qCLDTx6ytW19qzadpg8ubJj1bctXrsP4d/JigYqKoyyMmf2yi20at+Sy9ceERYWgV23ZuTvPZRb+fNxo1x5Wpc1pnePlu/zYpRKGD8HFq+GhZNgQI/UR7x69IA1ayA0VIjXq1dCvIoUgY0bSbCyYrWVFVeUSiwtLalQuDA0asSj+Hgc2rRBV1uboYMHk0VbWxRgjYyEM2dEIVbJH8OPFDAVFRUaNBA/J2ZmZgBy2fE3QOZ8/SISEhJQVVX95h8QmQMm+REEeJ3i9EJnuu9ejaqa2ldHvWJeR7CscitePw4EoMmsMdQc0jf1F3DxKjTuCm2awNoFYqegUgl9R8G2vXgvmcXmKwGULlmIPuat0FQouNWoCwm371Hq2DbuamvSvvMgnj1/RdeunRk7oCNGPW05r6bF+qrVqFKpJD3MmqKu/oF4TZwL81bAvAlg0yv14tWtG7i4wOvXQrwCA8VSY8mSsH078d264dyrF/5aWvTt25eyRYpAy5bcCgxkWfPm5MydG2tra/R0dKBDB9Hn8fhxseQo+SNJ6xywc+fOMXToUBwdHalQ4Rs3tUjSmlRFV2Tk6ycSGxtLeHg4Dg4OGBoa4u/vz9y5c8mQIcNXzyUjYJKv4VMR1/8/plQoeHbpGo2mjURVTQ1FYmJSxfvUsm/o1CTxKlC3GjVs+6T+4KfPoZMVlC4Gy/993zron8UoN+5g34wJ7PW7S52a5TDr0BBVhQJ6DKHYjTvgsRZKFUX/RQjZc+Ti5q0A9DQSyNZ3OKfVtNhcpRo1q5Wha6cmqKqqvLsBMHmBEK85475OvLp2FeIVHg5Nmoh6Xu/Ey8ODWHNzlvfsSYC2NlYDBlCySBHo0AHf589xadKEokWK0LdvX7S1tMDWFvbsgd27pXj94aR1BKxatWqsWrWK/Pnzp9UlSn4SMvL1E/H39+fSpUvExMTQu3dvLCwsKFmyJKNHj/7mOWUETJIS7yQr7k0Utz2OEPcmitKdWqGp93F/wPio6K+vw/WW69s9cetuC4CWgR4DfTzJmC9X6g6OihYRr6BXcMod3hVhXbWFRJuJbB1mw6moBNq0rEXzxtXEn5bW42HddpGQ36IBjx4/x3HFDvR0dTh0YB8Pfa+ypEQJ9teoSb3a5enUruF78QKYugj+dYB/x8DQvimLV6VKIserSxeRDB8ZKcQrIECIV9my4OVFTNu2OJmZ8Vhfn4HW1hQ1NoaePTl55QpbatemUuXK9OzZE3V1dZg3D0aOFAVZ+/f/pvsu+f1I60r4IJca0xEy8pXeKFasGMWLFycxMRFXV1fu3r1LxowZAb65NouMgElS4l1068LyjVxy2UbovUdkNS5A/jpVPxr7reKVEBvLgZEzkr5vuWhK6sVLoYC+I8E/AI5seS9eB44TN/QfVg2w5Fp0AuZdmlG9ainxeibNhzWuool2iwbcfxCIwwp3smY2wNbShDb79tJRTY2NRYvRuX4l2pvUSx75m24vxGvGqNSLl58fWmZmsHat2M3YvDncvSva/pQtCydPEtWxIw6dO/M8Y0YG29hQqGBBsLHh4I0b7Kxdm3r16tGpUyfxJrl1qxCvceOkeP1lpFUE7EPSQry+NydZknqkfP1knj59ysCBAzl58iQAOjo6rFq1Cn9/f6ZPn47W1yQmv0UKmCQlHp2+SNSrEEyXz2Lf8H9Q09RI0/nVtbTovns1O3oPJ2vRgpTpapr6g6fZg/t+2OoE5UuJx3yvEdl7BEt7dOOJhjbWfUzRUIfR4+cw0zAL6nOWwqwx0KMdt+48YtnKneTJnR3rXq3R6TOcp0oN6nXpStvW9WjdombyN5SZDkK+/hkOw/unLF6VK4uIV6dOIuIVHQ0tWsDNm0K8KlSA8+eJbN+eJe3bE5IlC0NsbcmXLx/K8ePZ4+PD/urVadGiBa1btxbXcuIE9OwJPXrA9Onfceclvys/QsD+z6tXrwAwNDT8YmTs1KlTGBsbkyNHjjS/BsmnkTHKn8SdO3eYPXs2lStX5sKFC1haWnLt2jW8vLywtLTE0NCQcePGkZCQ8E3zyzpgkv/zYW2ubMULk6tiafLWqEgX16XkqVYhzbekG5UuRt9T2zFZOjP1fz1v2S0iUNNGgGlT8diDJ7zqbss8U1NeZM7E0MFd0NJUYfDQqZR/HYH6uNkw0gqG9OXKtQAcV7hTuFBuBvc1Rdt6HLuCo/CoVJmObRvSpmWt5Ncyywn+WQRThsGogakXr44dYf16iI2FVq3g2jU4eBAqVQI/P8JNTVnUujVhhobYDRlCvnz5UMybx7bjx9lfqRLt2rWjTZs24lpu3gRTU6hdW9QGk5GGv5a07AX5KZ48ecLAgQO5c+cOqqqqKD5Rr+/gwYPY2dlx9+7dND+/5PPInK+fwPbt25k6dSrXrl2jffv2jBo1inLlyqGlpUVsbCyenp6MGjWKbNmysWfPHrJmzfrN55I5YJL/c3nDDgIOneTNq2DMPdYC6WR54bwfNOkGHVrCqrlCQkLCeGTSF6eyFdDMbojNoM6Eh7/G2nYylmWKY2a/BvqYwZJ/OHPhOhu3HqRcaWN6dW+OutU43B++5HDZsrQ3qUfjBv9LXp+7DCbOg4l2MH5w6sWrQwfR2DouTojXxYtCvKpXhxs3CGvWjMWNGxNjZITdkCHkyJGDxJUr2bhpE+eKF6dL167UqVNHTPrsmajlpa8Pp07B27QDyd/Nj8gBe8fmzZtxcXHB0dERY2NjEhISRL4hcODAAWbPns2wYcNo3bp1mp73L0ZWuP/VKBQKZs6cSadOndDS0sLBwQE3NzeqVq2KlpYWSqUSLS0tVFRU0NXVpVWrVt+08/FDZARM8iFn7FdzZdNOokJCuXfkNJc37gBIE/FKjI/nnONaEuPivv7gx4FiZ2OF0rB0hhCvmFiu9R7NwvKVyZgnByOHm78Xr6rlMXNaB+2bw+IpjBq/gEF2U6lauSR9zFuhNvQftj4J4XDZsph1aPixeC1wFuI1zubrxKt9eyFe8fFgYgIXLsC+fUK87t4l2MSEBY0bE58jB8OGDydHjhzEb93Kajc3zhcvTq9evd6LV2QktG4NCQng6SnFS5LEj4iAvQusdO3aFUtLS6ytrbl9+3Yy8Zo1a5YUr1+EjHz9YI4ePcq9e/eoV68exsbGwKd3pbx58wZtbe00a4gqI2ASEI2ti5s0ITokFDfzIcRHRdNiwWQKNaz5TZXrP+To1EWc+NcBo7Il6LB2AdlKFEndgZFvRG/GsHCxszF7VlAoONV/Alt0M1MyVzYsh3Tn8ZOnQrzqVsds7jKoLpprj5hsz7btnoweaY1Vn/Ywaiabrj/gTIkSdO3chNo1yiY/36KVMGYWjBkEk4dw8dL1L4tXlSpCvNq2hU2bIDFRLBOeOiXEq25dePiQF82bs7hGDdRz5sR22DCyZs1K3N69rFi+nNt58tB3wADKli8vJk1IEPJ26pT4KFv2k+eW/N2kdQTswwj3li1bWLVqFdu2bePWrVuMHj2a4cOH06ZNm+8+jyQZsrH2ryZVtZVS+P57kAImueG+j4fePjSaOoyga7fY3L4/WYzz083dmQyGWb75/9uTc5dY3cAMpUKBqro6lse3katSmZQPVCjAzBqOnoFjrlC6GEqlkt0j53IgUY06OTJjNrIX9+4/EuLVtK4Qr8L5UXqsZegUe3bsPsSUiUPp1b0VCRPmsdHvLheKFaNntxZUq1Iy+fnsV8OomSJH7J/hqRcvU1PYvFlcb7t2cOyYiFbVrw9Pn/KsRQvsK1dGO3du7IYPJ1OmTEQfPYqTgwNPsmVjgI0NxUuXFpMqlWI3o4uLmKNJk6++35K/hx8hYCCi3QcOHGDcuHFoaGgwd+7c91FZSVoilx1/NZ96U/v/Y5/7Pj4+HuCTCZKpRS5BSkq2b0GButV4duk6eatXpPMWR0LvP2Zj2768fhT4TeIVF/mGHX1GJCX01xs/OHXiBaJExN7DsG4hlC5GQkIiLpMdOZCohmnWDHQZ1fu9eLVuLHK8jLKhcHdm0PiFuO86yL/TRtHbvA0JMx1Ye/U+PsWK0adn64/Fy3GtEK8R/b9NvJRK6NhR1PDas0eI14sXPDE1ZWGVKujmzcuwUaPIlCkTkWfPsmj5cgINDbEdMuS9eAHMmAErV4oPKV6SFEjrJch3BVkBMmfOTExMDLGxseTOnRv4vvcYybcj5SsdEh4ezpw5c7h3795nd6ikFilgkjxVymGQW2whz1O1PHXHDCLk7gMOT5rHm5fBXz3fgdH/EhLwUMxXrTy1Rw5I3YEbdsC85fDvaGjZkKjoGBxmOHMpLIpeavE0mzCQgHsPhXi1ayFyvDQ0UOxaxYBJi/HYd5iFcyfQzaw5sfNWsMrnNpeNjenbx4RKFYolP9ey9TB8GgztC9NGpl68TEyEeAF07ixa/uzaJdoHhYTwoF07FpUvT5a8eRkyciT6+vqE+fqy0MGBMH19hg4dSsHixd9PvHYtTJwI//wDFhZfe6slfylpLWCqqqrs37+f0aNHs3z5csaNG4eVlRV379797vcYybch63ylQwwMDChevDiWlpY4OztjbGz8XdWLZR2wvxv9XEZJX6tra1FtkAXhT59zeuFK8lQrT9WBPVM9123PI/iu2gKIgqztVs9DVT0Vv0a8fcB6HFh0BDtLQkLDcVy0ibCXIQyKCqHY6jncDXggxMusDWZL10NEJAkHN9HvH0eOHDuNo/00WjevTYzDWlaeuc7tggUZ0K8dpUsWSn6uFRthyFSw7Q0zR6csXlWrCvFq0wa2iNdG164iv2vHDmjaFF6/JqBDBxxLliRn3rwMGjGCDBky8OrKFRYvXoxCU5Nhw4dj9KF4HToEffuKjwkTUn2PJRJI2zpg73Y1Dh06lNq1awMi4mVtbY2Tk9N3v8dIvh4pX+mIsLAwMmXKBECHDh1ITExMsx8OKWASICnJvsnM0ahraX1Vjak3L4PZbfX+DaDZnPFkKVwg5QMfPAGzgVC1PCz5h8eBL3Faug21F8GMeHKfnO7LuPfgCf0Gjmdgr050XuMK9x8Tt289fWat4OSpczgvnUnTRtWJdt7EiuN+3MuXF2urjhQv9r+ediu3gO1ksOkFs8elXrxathTipaIC3buLPovbt0PLlvDmDbc7d2apsTH58uVj4MiRaGtr8+zaNewXL0YTGDpiBFk+FK/Ll0Wz7MaNwclJ1vKSfBNpIWDvxGv48OG0bt06Kc/TzMwMINl7TLooQfOXIBPu0wkJCQnMnTuXvHnz0qNHj6THt27dyqpVq9LsrxOZhC959wv2w1+0Kf3SVSqVuJpZ47/7EABFWzagy/YVKf+iDo+ABmaid+PJ7dx4FY7zml1kf/kK66t+ZDywnnh9XebMd6a4cX46bNkNh72J3rmKPqu2c+acD2ud51CvbmXerNvOMs8zPMmRA2sbM4oY501+rtVbRb9H654wf+LXiZerK6ipgbk5bNsmPtq2hehobnTuzPKcOTHOl48Bo0ahqanJoxs3WLJwIRmjohg8ahQZy5V7P/Hjx6IUhZERHD8uanpJJN/BtybhnzlzhgkTJmBnZ4eJiUnS4x/+vLu6urJkyRI2btxIvnz50vza/0LkbsffjcDAQCwsLOjevTu9evVKelwKmORXc2PHfrZ1tQEgg2FmBl7ch56R4ZcPSkyEjlbgfQGOb+NMeCwbXQ9RIiQYyxPH0D68BQrkASA8LByD4dNg6x4itzjSe8s+fHz82OAyj1rVyxO5ZQ9Oe04RlM0QG7tuFCyYO/m5XLaB1VgY0B0WTUmdePn5odW8uRAtNTXo3VuUlti6VUSt4uK43K0bq7JmpUTevPQdPRoNDQ3uXruG05Il5AgNZdCIEehW/aBHZlgY1KkDERFw5gzkzPmtt1wiSca3CJi/vz9hYWFUr179o+c+FLD9+/dTvnx52V4obZDy9TvxTqiePn1Kv3796NSpE7179056XgqY5FeSGBfH8ZmOnJq7jM6bHShukopde6NnwhIXlDtW4KHUxPPAGWqEh9Bs5x70965Bp0Yl8QYAMGoGOKzltfNcLD1P4nPxEts22lOlcmnCdxzA0f0YIVkyM3hYD/Ll/1/D7nXbYcAY6NsVFk/hot+NL4tXtWoi4tWsGbi5gbo6WFqKvo2bN4tE+4QEfM3NWZ0xI+Xy5KH3mDGoq6tz4/Jlli9dSsGgIKyGDUP7w636cXGi2falS3D6NJQo8c33WyL5FD+yDhh8ugblp8ZJvogsNfE78W7HSe7cuXF2dsbV1ZU1a9YkPW9mZpZUpTgtdqjIXZCSr0FNU5OGU4Zic+Vg6sRr9VZYvJqEueNZHxKD54EzNI9/w6VNrrTNk5MFx8+RmJgofqHPcoIlLgTPncDMW095FRzCzm1OVKlcmrC9h7HfeYLQzJmxG27+sXht2CHEq3fnrxOvpk1FxEtdHQYMEOK1fr0Qr8REzvXty6qMGamUJw99xo5FXV2dSxcvsnTZMoo9eYK1lVVy8VIqhcB5e4vdkVK8JD+AH1GG4kPeidf/gzL/Hyd3R34/MvKVzvgwAta3b186d+4sI2CS34vjZ6FVL970NmNFsZLcf/CMrnqquM+yx7BtM1Ze9UdXNwPeR7eiu3EH2E4maLwdixWaaKirY92vLUbZsxKy/zhLXL2I0dXFdpQFOfP+bwlv8y7oM0LsoHSakXrxatJEJNNrasLAgbBihSgJYW4uKu1bWbFZTY2auXLRdfx4VFVVOXvmDOvXraNSQAAW/fuj1rFj8snHj4eZM0XkrEuXH3RjJRLBj+wF+WGUKyAggOjoaM6dO0fOnDnR0tKiUaNGACQmJqZZR5Y/DLns+LsiBUySHgi66o9SoSBHuZIpD35HwEOo04EXlcrhVL0mb6JjGJDPEGPb8axq2RBL9xXs2HUQFRUV2kbHQK9hPB7UiyU6mdHXy4CtVUcyZtQj+OgZ7DfsJ0FHG7sxvcme53+5KFv3QO/h0KM9LJuZOvHy80OrceP34jV4sNiJuHo19OoFSiVHbWzYplRSz8iIThMnoqqqyrFjx3B1daXWjRt0tbBA9YOfRUDI24ABMGcOjBz5dTdZIvlGfoSAfShemzdv5saNGxQtWhRdXV2USiUXL17k5cuXODs7fzRekoSUr9+Z1OSArV69miVLllC06PfLkhQwyYfER8fgXLMtwXcf0mDyEGoO7YtqSn/lvo6Auh25q2/A8rr10NXLQK/iudjaw5anRQpyI5cRXvvWERsbi9axs9BhAHe7tmepYS6yZcuEzYAO6Onq8PLEBRZv2IeKuhpDxlmS9f/itc0DLIZCV1NYMYuLl29+WbyqVxcRr0aNwN1diNfQobB4MTg7izpcSiUHhw5lZ1wcjbNlo93bLf4HDhxg9+7dNPLzo32nTqgMHZp8cg8P0bNx4EBYskSWlJD8VH5UBGzdunV4e3szd+5cDAwMkj3Xu3dvsmXLxpw5c9LsfH8YMufrdyY1OWAWFhasXLnyo/X5b0HmgEk+5PCkeby8eRdFfDzXt+1FmZj45QMSEqD7YM5r62JfrSa5cmdneNPKzO01lBvZs3IxkwEXL13j6dPnaF28htLMGn/TFjhkNiJ37mzYWXdCT1eHoNO+LNy4H3U1VYaN7fOxeG33hF7DwKzN14lXw4bvI14jRgjxWrYM+vZFqVTiMWoUO+PiaJk1a5J47dy5k927d9P6/HnaN2nysXj5+IgcsTZtxHxSvCQ/mbTOAQN49uwZ/v7+zJgxAwMDg6T8rnct77p3746fnx9v3rxJk/P9rUj5Ssd8KGArV65k27ZtyQSsW7duzJw5M83CvlLAJAD3DntzbokLAGpamrRbMx81Tc0vHqMcOZO94XG41KxF5UolGGxSGx0za4pnzczaKwexG9wLgIWT5hHb1pIrDevilDMfRYzzYtO/PTraWgSe9WPh+n3ooGTomD5k/n+O14790HModGwFK+ekTrz8/NBq0EBEvLS0YMwYWLAAHBxgwACUSiW7xo7F480bTDJmpPW0aSiVSrZs2cKhQ4fo6O1Ny1q1UHkrZEncvw+tWkGZMqI8hcx9kfwi0lrAXr58iYqKChkzZiQxMTEppUVDQwN4/z5x5cqV7z7X34yUr3TO/yNgbm5uSevtAOqpae3yFUgB+7uJDgljZ/9RSd83njGK7CW/vAQdv2wDLref4lmpEiYta2PeqibqHQagDrzq2Io1Ow7QoV1z6pQvxcbNu9hUrBjOBYtQumQhBvQxRVNTg8fnrrBwnScG8XEMGWtJxv/vatx1EMyHQPsWsOorxKtePdEiSEtLtPiZMwcWLYJBg1AqlWybMIGD4eF01NWl+b//kpiYyNq1azl18iQ9jh+nYYUKsHBh8qhWcDC0aAEGBqLhdoYM33azJZI0Ii0E7N0Kire3N4aGhmhoaHwyoT48XPzMPXr06NsvWCLl63fgQwFbtmwZAQEBJCQk/LDzSQH7O1EqlXjYTiLiaRAAhRrWopr1l/s+Rngew/74ZS4VLYJlz9Y0r18RlW6DUT54DLtXYzPKCm1tLdSCXrH0zgPi1DWYHhxKtcol6durDWpqqjzwucai9R5kjYnGblxf9Av8r4DqnkPQ3RZMm8CaeVy84p868apbF3buBG1tmDpV7EacPx/s7FAoFGyePJljoaF00dCg4Zw5xMfH4+zszEUfH/ocPUrNokVh5Ur4cDNLTAyYmgoB27cPsmX7nlsukaQZ3ytg71ZQChYsSObMmYH3S40fEhoamuwziJ2Pkq9DytdvwjsBy5s3L7NmzUrziNf/kQL293F18y6uu3kCoJ05I6bOs1H5wi7a5+cuM9f9GEGGhgy1MaNS+aJgPQFOnEfFdSmUKoqBgR4VCuRF0cqCK8bGFKlQgfv37xMe9gpVVVXuXbyB/VoPckRGYjfWEt1C/2sZ5HEYutlCm0bgsiBl8apRQ4hXnTrvxWvaNCFfs2fDsGEkJiayfupUvF+8wByou2gRMbGxODk5cfP6dawOH6ZS7tyibMSHP2cKBfTsCb6+IuJlbPydd1wiSVvSIgKmq6vL7t27efXqVdJSI7wXrEuXLiX7PjExMSka9g5ZByxlZGPt34if3XFeNuP+ewh7+BTPIVOSvm/tMA2D3F9oNRISxuF5q1HPnIVRw3tgWCA3TFsM67fDmvlQvwYAWgmJFBs1HfeceTlcrDiW5QoR9SYMlw3bKZIzB/uOXCRfWCgDx/VFu0iB5OfYfwy62kDLBrBuERev3kq9eO3aBTo68O+/MGkSzJgBo0aRmJjImmnT8AsKondCApVXrCAqOhpHR0cCnzxhkJcXRTNlei9uHzJypKiI7+4uejdKJOmQ723GXadOHfz9/TEzM8PJyQkDAwNy5sxJVFQU+vr6BAQEAGLH/aZNm9DR0SE8PJxmzZqRP39++vbti6qqqqwDlgKy1MQfxI+quSLLUPz5rG9pwb0j3gCU7daWdqvnfX5wfDy06UPc9dskHNhAhpJF3vdW/Gc4jBooxsXGkthhAJtUdDhjbEzn9g2pX6cC23fsp1O3wTSsUwcTw6xYjeuLZuliyc9x8LjoC9msHmy05+K126kTr1q1YPduIV5z58KoUSLqNWkS8fHxrJo5k+uBgVhGR1N+zRoioqJYsmQJoa9eMejgQQqoqIhm2FmyJD+BvT3Y2YlyEjY233qbJZKfxreUofjwPcTZ2ZmzZ8/i7++PkZERN2/eJH/+/Bw8eBAdHR3c3d3R19cnV65cREREcOPGDY4cOUJCQgKrVq36kS8tvSPrfP2NREdHc+fOHcqWLZum80oB+7MJvHgV997DSYiJxerCXrQz6n96oFIJgycJ2fJcC3WrwaET0LYf9DED+6kiOT0xkfieQ1kdpeRqwQL07N6SqpVEy50rF64xYNgMqmloMHfBGDTK/6+I66ETQrwa14bNDqkXr5o1hXhlyCCS5IcNE0n206YRFxfHin//5fbTp/QPD6f0+vWERESwZMkSot+8wfbgQXJFRMCpUx81w760bBlvliyhdsuWQugkkt+E7xWwyMhIQkNDiYmJITg4mJiYGDp16kSGDBk4f/48RkZGHx1va2tLrly5GDNmTJq+lt8IKV9/I7du3aJ79+7MnTuXBg0apOncUsD+bOKjogl79JRsxb+Qy+S4FoZPg6UzRT9Fv+vQuBvUrQquS0WOlFJJjM1Elr+M4l7ePPTtY0qZUoUBuHj2Cmu2HKD0o8f0HdsXtcplkkdrD3tDh/7QoCZsceDi9TtfFq+aNYV4Va/+fuehg4OoXj9mDMycSUxsLMtmzeLB06dYvXpF8S1bePH6Nfb29qBQYHvkCNkfPRJ9GQsWTDb/8TVrcD1/nspxcfRasQIVuYwi+c34HgH7f/eUwMBAihYtSq1atThw4ECyY94tMz59+pRNmzYx8u/t9pAq+ZI5X38YxYoVw9HRkXHjxqFUKmnYsGGaLUfKHLA/G40MOl8Wr4PHYeQMGGIpxOvhU2jbF4oXhvWLk5LTIyfOxzE0jqC8ebCx7kyRwnkAOOvtx/ptXlS+f5+eo/ugVuV/0dkjp4V41av+deJVrdp78Vq6VIjXiBEwcybRMTE4zZ7N0ydPsHn2DGM3NwKDg7G3t0dHSwvbkyfJfOcOnDiRTLyUSiW7XVw4cOECDYODae/iIsVL8lvyLTlg794v/p9nrKGhgVKpJHPmzB+9r7zL74qJieHMmTOEh4eTIUOGH7457HdF3pU/DKVSSbVq1ZgxY0bSD5sUMMmnuHvwOIUa1kI1Nb8cb96BHnYiB2vGKAh9DaZ9RFL69hWgK2pdhc5bwZLHoUTmzMHQod3Jm0csS5w4fpEtO49R6/Ztuo7qjWrNysnnP3ZGiFedqrDVKXXidfkyWlWrvhcvZ2ewtoYhQ2DOHN5EReEwZw4vnj5l8IMHFNy5kwdBQTg6OpI5UyYGe3uj7+sLR45AqVJJcycmJrJh5UrOXb5Mh7t3abRli6zlJfmt+d4k/HdkyJCBLFmykDlzZlRUVJK9r7yLkimVSurVq/dRWyJJcqR8/WG8+4GoXr06M2fOlAIm+SQBXqfYaGJJ7qrlaL9mPlkKF/j84Fch0L4/5M0FaxeIVkKdB8KLYDjmCkaGALxY6Yr9zaeQNTPDR/fCKLtIWvc6fB73vSdpcO0aHUf2RuXtTsgkTpwT89esBK5LuXgjleJVpQrs3Qu6uqI5dv/+Ihl+wQIiIiNZMncuoU+fMuTOHfLu2cPtwECWLl1K7ly5sL5wgQxHjohaXVWqJM0dExOD87Jl3Pb3p4+PD5Xd3D5OvpdIfkO+V8CUSiW6urp06NAhqSCrQqFATU0t2fLk1q1bySD/WEkRWefrD+T/AjZ9+nSOHDmS9HhaIOuA/b5Eh75mV//RADw9f5k7B058fnBcHHQZBJFvRIRLTxf6joYLl8X3RQsB8HirB/Mv3EJDLwPDJ/bHKHsWlEolnvu8cd97kmaXLtHRrjsqTesmn//UBWjXD6pVALflXLx598viVauWEK/Kld+L17p1ojm2lRXY2/M6PJyFs2cT/uQJQ69fJ++OHVx7/BhHR0cKFizI4Fu3yODuDq6u8EFe5OvXr1m4YAH3/f2x8fKi8ooVUKDAd91riSQ98T11wN794V6rVi2OHj1KYGBg0lLjO/FavHgxr169Yuj/+6BKPkJGvv5QZARM8jn2DZ1KRODbKvaNalHVqsenByqVYDMJzvvB/g1QIA+MnwNuHrDZAWpUBODu7sM4nbhCdnVVbP6xRi+jPkqlkp17TnDoqA8m58/TfJgFtG6cfP7TF8HUEiqXhe1fIV6VKoGHhxCvTZugVy+wtARHR0JCQ1k8fz7xgYEM9fPDaP9+fO7fx8XFhTJlytDn1i00Vq2C9evBxCRp7qCgIBwcHEgIDmaYuzt51q6FihW/91ZLJOmO742AderUiRcvXmBjY8O8efNQVVVFU1MTd3d3goKCWLhwIfDjSh/9KUj5+oORAib5Pzd27Ofqlt0AaGcywHTFF6rYL14F69xg5VyxJOi8CeavgLnjoW0zAK7tP4nzIR8KxsVgNW8E2hn1USiUbHM/zHHvy3T09qahnTl0aJl87jO+YNIHKpUB9xVc9A9InXhVqPBevLZuBXNzsLCA5ct5FRLC4vnz4dkzhvn4YHjgAN5377Jp0yaqVKmC+ePHqC1cKHZD9ngvnPfv32fp0qXoxcYyZP16si5cKHo3SiR/KN8qYO+WFwcNGkS2bNlwdXUlICCAatWqoa2tzcyZMwEpXqlBlpr4C3j3g3D27FnGjx/P+PHjadiwYZqeQ5ahSP+8eRGMU8XmRL0SPdnarZlP2a6mnx7seQQ6DIDh/WH6SFFtvn1/GGgO8ycCcOHAadZ6elM6NATLBaPQMMyMQqFg49aDnD1/ja7HjlN7UHfo2yX53OcuQeteULYk7F7FxVv3Ui9enp6gpwfbt4OZGXTrBmvWEPTqFYsXLEAzKAhbb2+yHDrEkXv3cHNzo06dOpi9eoWqra1oNTRhQtLcV69eZeXKleTT0cFq0SJ0R44UYySSv4DvrQOWmu//QmSdL8l7PhSwwYMH4+zsTPny5dP0HFLA0i9KpRJXM2v8dx8CoLhpUzpvcfz0L8lrt6B+Z2hYE7Y4wpWb0Kjr++/V1DjqeQq3g2ep9vQJ3RePRS2XEYmJibhs3MelS7fo6eVF1QFmYNMr+dwXLkMrCyhdXIjX7fspi9eVK2iVKyeS4/X0ROufTp3Ex/r1BAYFYb9oEbovXvzH3nnHc7m+AfiyR0KE0h6S9t6npaHSkkp7Gklb63Ra53faQ1OIdppaImnvqb0lpSIRRfb4/v54i5wKnXRO8Vyfz/kU7/s+z/f7nHC5n/u5b0afPImmvz++gYH4+PjQrl07usbGIjdwoFR0dfFiqQgscO7cOTw9PalhaMiQv/5CuVcv2LAh47pAUBD4JwL2EZlMlpF0L6QrAyFfgqx8/OK4f/8+ACYmJnk+hxCwn5NbnvvYO9QRAPWiRbC/5kchfd3Pb4yMgqYWoFUYjm+XSko0t4QSxeDwFmTqahzYe5zDZ27Q5tFDui3/HfmKZUlJScVj00Hu3gliqJ8ftYdYZLYZ+kjAbeg4EEyMwHsdAYFPsxevZs2kiFeNGpJ4FS4slZXo0QO6dQNPT56HhbFi+XKKREYy6sgRNA4fZs/Dhxw7dowuXbpglpwMFhbS1qS7O3zYivf19cXHx4fm1arRa9o05OvVk7YzlZXzeOUFgp+f7xEwwWcI+RL8NwgB+7mIefkK5zodSHoXC0Cv7asx+ZCzlYWUFOg0WKrpdXYvaGtC697wPh5O7yatqA6e2/y4EHCfHgFXMV3xB9SqSnJyCi4e+wkKfIbNQR+q9jGH2eOzjn39DnQYCMblwXs9AY+f5Sxet26hUq0a+PlJ4nXokCRd5uawfTvBL16watUq9N+8weHQIdR8fdn24AHnzp2jd+/etEhPl3K3OneG7dtBQYG0tDS2b9/OuXPn6NKyJe0dHZHT1oYzZ0BLK0/XXSD4lRAClmeICveC/waRhP9zoaajTa2BPbi0cgPVrbp8WbxAql5/PgD8NoOhvlS9/uUrOLmT5CJauHvs4969Jww+dYoGy6ZBraokJCaxZu1enj8NxX7ffowt28Osvx0zv3EXOg4Co3Jw4BvEq2rVzIiXvz907y7J1LZtPH72jNWrV1MyOhr7AwdQ9vFh/Y0bXLt2jYEDB9JIXh5MTaFFC9iyBRQUSE5OxsPDg7t37zKgZ08ajx8P6elSHpkQL0EBJ68KsQpyh4h8CT7bq3/z5g3R0dEYGBigpqb2j9tDiAjYz8WzM5fRr2aMWpEviIb77mbnOQAA0D1JREFUdnD4A1b9BcN6g91U8NwP3ut4X78Wa9z3EhocirWvL1UWTYGu7YiLS2C12x7CX75mpNceyndqCSv/zJozdes+mA2AcqXAZyMBT0JyL15+fqCpCceOSdGuNm3Ay4sHT57g4uJC2ZgY7HbvRn7fPtwfPOD+/fsMHTqU2srK0Lw5VK4sSVuhQrx//x5nZ2fCwsIYPmQIVSdOhIsXpUba1av/mAUXCH5BRATsuxHbjoKc+VS89u7dy5s3b3j06BFKSkoUKVKEhw8fsmzZMgoVKvSPxhcC9gtw9ookSMN6w/LZMN8ZZi0Fj0VEdTRlpYsXcRFR2O/aTdlZY2CYFbGx8ax02U10RBSjduyitGljcF8In5atuP1AGrdMCUm8gp9nL16//SaJl4kJHD4sidfJk9CxoxTB2rePO4GBuLm5USkuDptt20jfvZs1Dx/y9OlTbG1tqaKmBs2aQdGi0rNFihAZGcmqVatISEjAfsQIyvz5pxQNO3RIio4JBIIsCAH7LoR8CXLPhg0buH79On/88QcqKioZfbkWL17MiRMn2L17N2pqav9obCFg/z6y9HTePntJkXKlsr/x2Uto1l1KgvfZALt9YcgEmDGW0CFWrHL1QiE+AYeNmzEYPwwm2/P2bSzL1+wm4V0soz23YdisLmxaltFYG4C7j6B9PyhZHHw3EfD0Re7Eq3JlSby0tKQ8LDMzaNoU9u/nxsOHeHh4UDUxkWGbNpHs6cnqoCBevXqFvb09FQsVksRLXl6KaBkYEBISgrOzMyoqKjg4OKDn7AyzZklV8QcMyKvlFgjyHULA/jG5ki/RXkjAiRMnuHjxIn/99Rd6enoUKlQoow2Ro6Mjurq6bNmyBeAftScSrYj+fS6u2oBznQ5cWr0RWXr6l2+Ki4eedlLTaM+VUuFT2ykwoAePe3djycrtaKSm4OixHoP+3WDSCN5EvWPpqh0kx8Yx3nM7hnWrwYalWcXr3iMw6w+GxaSIV27E6/btrOJ17pyU39WoEezbx5U7d3B3d6dWcjLWGzYQ7+GB0/37REZGMnbsWCrq6EC7dlI7pKNHwcCAe/fu4eTkRJEiRXB0dETPz08Sr7/+EuIlEOTA97QiEuSMiHwVYD5uOXp5eaGtrY2pqWmWBqkf/96jRw/U1dXZvHnzd80nImD/Dm8eP8WlXidSE5MAsD6/D8M61bLeJJNB/9HgdwpO7QJVFamkRA0Tbs6bxrpthymrqY6d00rUOpnChiWEvY5mhctulNPSGL1pC7omFWCfu/TsRx48hnb9wEAPDm0iICQ0d+JVqZKUn6WlJeVitWsntffx8eHCrVts2bKFBsAAFxeiXV1Z8fw5ycnJjB49muKamlI+WGCgFPGqXJlLly6xefNmTExMGD58OCqXLkn3DBiQUXJCIBDkjIiAfTMi8iXIHjk5OeLj4zl48CDa2tpAZoPUT/+ura3N6dOniYqK+q7G3CIC9uORpafjPeL3DPFq6DD4c/ECWLAGvA7BusVgaCA1ty6qw6nx9rht9qVacV0cVjij1qQuuC/g2YvXLF21nULycozfvAXdciVht0tW8XoYBO37g54u+G7MvXgZGWVGvK5cgfbtoWZNOHiQ0wEBbN68maYKCgxwdibCyYmlwcHIZDImTJhAcV1dsLSEO3fg0CFkxsb4+/uzceNGGjZsiJ2dHSrPn0snJZs1gzVrhHgJBN+AiID9GESpiQKOuro6BgYGFC9ePEvU61Oio6OJiYkhKSnpuysYizIUP5YAjx08O3MZAO2ypWj993pbILUKmu0EvztAx1ZgPoT0qLfsmzeDo4fO07pmRSymz0XeuDxsW8WjkHBc3PdRXKsQI9d6oG6oD/s9QOOTQxiBwVJyvY42HNpMwPOw7MWrefNM8fL3B21tuHZNinhVrQq+vhy7dAkvLy9aqalhuXQpL+fPZ8WLFxQuXJhRo0ahrakp9Wg8fhx8fUmvW5ddO3dy6tQpOnTogLm5OXLR0dCpE+jpSS2JRBFVgeCbEWUo8h4hXwWY9PR0kpOTkclkvHr1CkNDQ9LS0jJaRQC8ffs24/Sjjo5OnswrBOzHEPMijCO/z8/4uLPzHJQLqWe9KegpDBoHHVrCtFHgMJ2USzfY+MdErt94RM/W9WjlOFOSqL1ruf0sHPeN3pQ30MHWZS2qRbTAe71UAf8jj59KES+twuC3hYAXuRSvChUyxevGDWlbsFIlOHQIv3PnOHDgAO00Nem6YAHBs2ax+vVr9PT0cHBwQKNQIRgzRiqeunMnKc2bs8HDgxs3btCnTx9+++03Kf+rRw9480bayixSJG8XXCAoQAgBy1uEfBVg5OXlUVVVpX379kyYMIGFCxdSv359gIwIl5KSEmlpaURFReHh4cHTp0/R1tZGS0uLli1bYmRkhPI/iCYIActbZDIZPqNnkBwbB0CtQZaUb90k602x76HnCNAvCuuXwqoNvN92ABcHO56/fot1r7bUcpgKqang7cmVkHA2bvWjejlDhq5yQUlVBXw3ge4nEhP0VDrVWFhDEq+Xr3IWrzt3UClfPlO8bt+WxKt8eWR+fhw8fZpDhw5hXrQoHf73Px5Onozr27eUKlWKESNGSKdu//c/WLkSXF2J79gRl5UrefbsGTY2NtSsWVPKabOzg/PnpQT8ihV/zMILBAUIIWB5h5AvAa1btyY5OZmxY8fStWtX3r9/T8WKFXn79i1Xrlzh4cOHFClShEePpBwtmUzGuXPnePToEa9evWLdunX/qA6YELC84+4uHx75ngBAo5ge7eb/7ZuiTAY2kyEkFM7shrOXiZjrzOqhg4mXk2fscHPK2U2B0HA4to0zLyLYvvsoDaqWp/8yZxRkMji0CQyKZo75JATa9ZdOS/ptJiA0PHfiVbYsHDkiRaLu3ZNqbZUujezwYfYcP86xY8foZmhIu+nTuTlmDB7x8RgbG2NtbS2J/po1MGMG/PUXUZaWrF6yhJiYGMaMGUP58uWlyRYsgPXrYfNm+O23H7DiAkHBRAhY3iDkSwCAmZkZxYsXJzw8nJ07d/LmzRv09fW5e/cuAAMGDGDZsmWfPTdnzhz69u3Ljh07UFVV/eZ5hYB9P/GRURya8GfGxx2Xzfq8iv1iV9h7GHY4Q0oqwePnsKZ3b9SL6jBpWFeK2k+V2gAd2oR/aDT7Dp6hZT0TLJesRD4+Ho5sk2p2feTpC2mrUU0VDm8hIOx1zuJ19y4qZcpkiteDB9C6NRQvTvrhw+w8coTTp0/Tq0IFWk6cyKURI9icmkqtWrUYPHiw1Glh504YORLGjuXloEGsXrwYeXl5HB0dMTAwkCbbvRumTpUErX//vF5ugaDAIwTs+xHyJcigZs2aALRr1y7jc6VLl2bYsGGUKpVZrDM1NRUFBQXk5OSYNm0a8+bN49y5c5j+w2rhQsC+j3cvwlD6IL4m3dt/3rvR/xTMWAJTRkKDWlzrNYqNZmaULlcC2+Hd0Rj/Jxw+jWy3C/sj3uN/7DIdm9eh08JlyEW8gaPboHzpzPGevZTES0lREq9XEbkTr9KlpS1AHR149EgSr6JFSff3Z8uhQ1y6dIl+VavSdMwYTg0dyg6gSaNG9O3bVzoI4u8vyVS/fjyytcXVyQldXV1GjhyJ1sfejJcvS+Uk+vSRanoJBIIfghCw70PIlyBbYmNjAahQoQIgbTl+7PWYmpqKoqIiRYoUITQ09LvmEQL2zyleqyojrvlyau4qmowZlvXi0xcwaDy0b4FsgjW+w6bhU68B9SqXYcDQbij9uQw27SZ93WJ2xKZy5nwAPTo0xnSuk/Ss/1YwrpA53vNQSbzk5CTxCo/MXrxatJC2GkuVyhSvx4+hVSvQ1ibN358NBw9y/fp1BtetS/0RI/Dr25cDysq0bt2aHj16SPmHV66AhQW0a0fAqFFsdHamYsWKWFtbZ3ZeePYMunSB2rVh3TpRUkIg+MEIAfvnCPkSZIuGhgYAJiYmAF8sNZGQkICent53zyUE7J+jUliDdvOmZP1kUpJUSFWzMMku89g0aSnXSpSmc62KmA3sgpzbVljkQtq8yWxKU+Lq1Vv0t2hFk7+WSu2BDm2G6pUzx3v5ShKv9HQ44klARFTO4nX3blbxevJEEq/ChUnx92edtzd37txhWJMm1LK2Zp+lJf4aGpibm9OhQwfp31tgoFQuonp1jjs44LVxI/Xq1WPAgAGZTd9jYqTm2+rqsH8//IMtcIFA8O0IAftnCPkSZEuzZs3Q1dUlIiICY2PjjM9/GgF7//49ZcuWzZP5hIDlIVPmw637vPXZhMviTbxSUMa6WhlqD+oKB47A2NkkOQzGXV2HBzcfMaxve+rMWQaXb0jlJOrVyBwr7LUkXimp4L+VgDfRuROvEiUk8dLVlSJTrVqBmhrJhw/jtm8fjx49wqZ1a6oOHsz2zp05o6WFpaUlrVu3lgZ69QratyddR4c9I0dy/MAB2rVrR5cuXTJr0qWmgpUVPH8unW7Mg18EBAJB7hEC9u2ICveCbNHW1qZq1aqEh4cDkJaWltGWCGDJkiW8ePGCunXr5tmcohJ+zrx5/JRdfR14+/TFl2/Y5QNrNvP0z0ks8D5H7NtYJpTQovYwS6mH48CxvO/RkeUlyvE4+CUjh3WjznI3OHYWdq6BZvUzx3oVIRVQTUiUTjVGv8tZvO7dQ8XQMFO8XryQcrwUFUn088N5714eP36MfadOVLGxYaOZGWd1denfv3+meMXGQqdOpCQns27ECE5cuEDv3r3p1q1b1mLA48ZJ+WC7d0OVKnm0wgKB4FsQlfC/DdHbUZAjBw8eZNasWXh4eGQk5QOsWrWKsLAw5syZA5BFyvIC0Qvyy8hkMrZ2GUrQkTMoqqrQd6875Vo1zrzh0RNo0p2L3TqxTVuPkmFh2GgooOUyV6pE37IXUTWrsvK3FsQlJDLSujtl5q+CDbukBtufJuy/fiPV8XoXK0W8Yt5nL14tW0riZWAgVZ4vWhTCwqBlS0hMJOHIEVYfOEBoaCj2XbtSpl8/3Js1456eHkOGDKFOnTrSQMnJYG5O3PXruI4ezbPISIYMGUKtWrWyTrhyJYweDW5uYG2dp+ssEAi+HdELMne9HcW2oyBbZDIZ5ubmqKmpsWDBAkxNTXn48CHlypUjMjLyh4kXiC3Ir/HgwBGCjpwBQL2oDiUaZAox8Qmk9B3F7lYtOVNYl0bBwfSJCkfp8GYIj4TOQwktV4ZV9RuhkJaG4ygr9J3cYN0OWLswq3hFRkGHARD97tvF69gxSbwiIqQCqnFxvPfzY9WePURGRjLayopiffqwulkzgvX1sbO1pWrVqtJA6ekwdChvAgJYPXw4sTExjB49OuPQRwZHjsDYsTBhghAvgeAnQWxB5g4R+RLkmidPnlCoUCGePXuGkZERRT60a/kR4vUpIgKWSXJcPM61zHj3XDpd2nPbKqp0N8u4Hm37O2vj0nhhYECv4Mc0vXETufP7oJAatOtHUHI6a9q2o4iuFg42Fmit2QSzlsLSGWA/MHOiN9HQYSC8ei2JV3xi7sRLX1+KeOnpQVSUtNX46hUxvr6s8PUlJiaG0f37U6RvX1ZXr86rYsWwHzmSip9WoJ84kecbNuDcrx+KhQvj4OCQWcPrI0+eQL160LAhHDwICgp5tcQCgSAPKMARMBH5EuQtH6uHf/qD8EeLF4gI2KecWbAmQ7wqtGmWpabXw1Vb8JBTR8lQg/Gxbyh77KRUo0tXGyxsuJ2QgnubtpQtqY/dsG6ord8hidfMcVnFK/oddBoEoa9yL17376OipydFvPT04N07qUn2y5e8PXiQ5d7eJCYmMm7YMNT798epZk1iihVj7JgxlC79SQ0xJyfub9+OW+/eGBQrhr29PZqamlknjIuDbt2k05OenkK8BIKfEBEByx4hX4Lv4keL10eEgMGbwGDOO7kDIK+kRAenmRnr/+b8NVYGhmGkrMDQ0kUo7LhK2kasVwPspnLh5Ru2tjalepXyDB3QCaUd3jD+Txg7DKbYZ07yNgbMB8PzMCm5PjE5d+JVtKgU8dLXlxLlzczgyRPe7N/Pch8f0tPTGWdjg8KgQSytXJmUYsUYN348xYt/UjV/+3YuuriwpXNnTExMGDZs2OddE2QyGDpUinxduiSaZQsEPzFCwL6OkC/BL0NBFjCZTMahcbNJT0kBoMm44egalZMuxsSiazOJkYaGGDsOR97CBhwGwwALZPNW43f7Cd4tWtCsUQ2sLE2R9z4q9Xkc0gvmTcksRvouFjoPkXo2+m0mICU1Z/F68AAVXd1M8YqLk2py3bvHay8vlvv5oaioyLgRI0gZOpRl5cqhVKwYEyZNQldXN/P9HT2K39KleJua0qRJE/r06YPClyJaCxdKLYa8vOBjjphAIPhpEQL2ZUTOl+CXoyDmgN3b68euPg4AaJUyxP6GH8qF1KVIUP/RcOQMeLlBXweoagwH15O2yxfPjQe4YGKCeYcmdGjbCLlj58DCGrq2gw1LM7fsYt9L4vUgCA5tIkBG9uLVqpUU8dLRkcTLwAASEqBzZ7h4kbCdO1l++jRqamqMGTmSWGtrVmprU7hYMUZPmZLZDghIu3aNHZMmcbZSJcw7dKCDufmXI6p+ftCxI0ybBv/7X56vsUAg+HEUoBywXG0HCfkS/JIUJAFLS05mdc32RAc/B6DXDmdMun7ov7lmE4z7EzY6gdNaiI6Bc3tIuPOItc47CTQ0pH+/DjSsXxUuXoOOg6B5Q9jpDMrK0hjv46DLMLjzAHw3ESAvn7N4PXiAirY2nDghiVdSEnTvDidP8tzTk5Xnz6OlpcVoBwfCR43CWVkZA319Rv7+e0bXBICkhw/xmDKFe8WK0a9XLxq3avXlRXj8GOrXh2bNpAr2n9b5EggEvwQFRMCEfAnyNwVFwGQyGff3+nFs+mI0SxZnoN9mKTJ0+wE07Q7WfSEyGryPwMmdRKXLcF6+jejCGtjaWVKpSgW4dR/a9YNqxnBgHah/6IcYFw9dh8HNe3BwAwFKSjmL18OHqGhqSuJVrBikpEDPnuDnR/CmTay6dAk9PT1GOTjwbPJkXJOTKaunx4gZM7LkcMU+fcqaadMIK1SI4YMGUbVp0y8vQGwsNG4szXP5MnwSNRMIBL8WBUDAhHwJ8j8FRcAA0lJSSHjzFo1iepCYJImXnBwMtgTHObB5Oc+rGOO8agcKMhkjx/WjuHE5qbCqqRWULA5+m0GzsDRgfAJ0t4aA2+C9ngAV5ezFq3Vrdj96hIq6Opw8CcWLS619+vaFffsI9PDA+do1SpYsib29PfdnzWL927eYFCnC8D//RPljpA14/eIFq2fOJEkmw374cEo3afLlNy2TgaWlVNPr0iX40GNUIBD8uuRzAROlJgT5n4KUhK+gpCSJF8CMxfD4KbjOB+vJMHIQNyuUZ4PrHgzi4xgxYRBaxuUgJFSq16VbRIp4fRSvhESwtIOrt+DAutyJ1+PHqKiqSjlexYtDWhoMHgx79/LAxYU1V69Svnx57OzsuDxvHttjYqinqcnAOXOyJM8HP3nCmoULKZSQgOPgwRT9mngBzJ0Le/ZIW41CvASCfIFIwhfyJcgH5FcBS0tJQUFJ6fMLR8/CivUwezzMWIKsdhX82rTGe7MvtUNCGDhhECo1jKUK9eaDQVERDm6AojrS84lJ0GsEXAiA/R4EqKlmL16mppJ4KSpKW40lSkhV6G1sYNs2bq9cydqbNzE2Nmb48OGcWLqUA69f01JZGcsFC7L0Ybx+/Tob1q6ldHg4tj16oNGu3dcX4OBBmD4dZs2CLl3+8ToKBIKfj4IuYGLbUZBvyG9bkAfsphL3OhLTvyaiX+XDe3kTDfXNoXIFUFYmKeA2m3935NqjEMwvX8Zs7ADke5pLSfQdBsKzF3BiB1QoKz2flAS9R8LJC7DXnQCtwjmL15MnqIC01Vi6tLQVOHIkuLhwdelSNjx+TI0aNRg8eDAHnJw4/uwZ5mlpdFizBrkP4iWTyTh69Cj79u6lbmAgA1q2RGnatK+/+YcPoUEDaNVKinyJBHuBIF+SD7cgRc6XoOCRXwTs9b1HuNQzR5aejpqONuOCzqKkqiKVkjh1CYb2IsrFE9eRtrx+n8hAX19q9+sMf4yWEtMtbKTTjf5boXY1adDkZOjjIEXOvNwI0NHOXrzatGF3cDAqqalw6hSUKSOJ17hxsHw5Z+fNY9vz5zRs2BArKyu2OTlx+elTer1/T4sNGzLKWKSlpbFz507OnDlD+xs36GxsjPy6dZn1xf5OQoLUNiglRcrz+nuFe4FAkK/IZwImcr4EBY/8sgV58s/lyNLTAWgy3holNVXY5AV7D8Mfo7m7eT8bBw5AOU3GhH17KdmoJvzuIG0HWk+GUxdh/7pM8UpJgf5jpHpgu11yJ15Pn6KSkiJFvD6K19SpsHw5x2bPxiskhBYtWtC1a1c8lizh7rNnDHn9mnrbtmWIV2JiIh4eHty/f59+ly/TVFMTXF2/Ll4AEydCYCBcuSLESyAoABTELUgR+RLkS37lCNjru49YU7cjABrF9Rl97zhK4ZFQrxNpZi3weRPHYWMTqpQvwSAXdzS0NODYdlBThclzYeUG2LIcekhjkJICA8fCweOw05kAA73sxattW0m8EhIk8apQQbowaxay2bPxmTYN36go2rdvT9u2bXFZupSQkBCsnz6l6p498KGOV3R0NGvWrCEyIgKbCxeo/PYtXLiQfUug/fulvo3OzjBiRF4sp0Ag+EXIJxEwEfkSFFx+5QjYmfnOGX9vOt5a2m4cNZ13+kVZp1aEx8al6dy0Bu1Wr0U+Ph78t0h1u5a4SYn4y2dlildqKgx1BO9jsH1V7sQrJASVuDhpq/GjeM2bh2z2bLwmTeJ4VBTdunWjUaNGLFu0iKjnzxl99y7lfXwyxOv58+c4OzujIC+P4507GAYFwcWL2YvXixdS38Zu3cDOLg9WUiAQ/EoUpAiYkC9BvuVXFLDIR0+4s9sHgEL6utQdZgXbD3D1SSg72pqhmJDAmKZVqXT0OFy/C0c8pfpdm7xg2kKY6gC2/aXB0tKkLcg9frB1BQGGxbIXr3bt2P38OSoxMVLEq2JF6YKTE+nTpuE5bhznY2Pp3bs3VatWZcmiRSSHhTH+/HkM/f1BRzpNeefOHTw8PDAwMGDEvXtonTkDx45lityXSEuD/v1BXR08PLLflhQIBPmWgiJgQr4E+ZpfTcDOLlgj5VYBjccMIykymk27jxHQrh11goKwqlEejXfvYONuWLsQGtQC3+Mw4ncYZgUzxkgDpaeDw3TY4Q0bnQgoXSJn8Xr5EpWoKEm8Kn1Yo7VrSXV0ZIODAzeSkxk0aBClSpViyeLFKEdGMsHPj6KHD0PJkgCcPn2aHTt2UL16dYZERKCyeTNs2wZfq17/kXnz4MwZqYbYB4kTCAQFk4IgYEK+BPmeX0XAooKecWv7AQDUdLSpZ9MX38lLuG9QjKHXrlJPlgydhkH7/mDTFwZYwIVr0G80dG4DK2ZLESOZDCb8DzbsgrULCahQJmfxCgtDJSJCEq/KlaULnp4k29uz1taWh8Dw4cPR1NRk6dKl6MTE4LB7N5re3lC1Kunp6ezdu5djx47RqlUreqirI29vDzNngpVV9m/83Dmplte0adCiRZ6tp0Ag+HXJ7wImEu4FBYafPQnfZ/QMrrp5AtBq5jia169JUrfhJLRshPb5APDbBH1Hg6G+tN0Y9AxM+0j9Gr3Xg6rKhxOJ82GZB6z6i4A61bIXr/bt2f3qFSovX0riVbWqdGH/fhKtrFgzcCBPVVWxtbVFJpOxdu1aSqemMsLdHbUtW8DSksTERDZs2MDt27extLSkValSUK8eNG8O+/ZlX6Pr7VuoWVOKnJ06JRWEFQgEgg/8gkn4IuFeIPiUnz0CVrppfV5euUnko2AaDLIEUytUqhihcvQsLJkOM52kIqmeq+DNW+gyDEoZwm5XSbwAZi+TxGvpjNyJ1+vXqLx4IVWu/yheR44Q178/q/v351WhQoyytyciIoKtW7dSTU2NoatWoezkBJaWvHnzBhcXF968eYOdnR3Vy5WDRo1AXx82b85evGQyqUr+u3dw+rQQL4FA8Bn5NQImvtsJChQ/s4BV792Zar3MeffsJaqrNkBoOBRJghaNIOy1VLvLdyNoa0KbPpK87HMHrQ/9Guc7w/zVMHcyAY3q5CxekZGoPHsm5VlVry5dOHuWd1ZWrOzdmxhtbcY4OHDv3j28vb1pVrw4vWfORGHiRBg1iidPnuDq6oqysjKOjo4YFi8ubTE+eyYVR9XSyv4Ne3jArl2wc6dUR0wgEAi+QH4UMCFfggLHzyxgcnJyaCckwPJ1UNMEAoOhpzk4/AFzJ0Oz+tBzhLTleHwHGBpIDy5zh1lLYcZYAlo2zl68zMzYHRWFypMn0inEmjWlCwEBvOnVixXdu5NctChjR4/m9OnTnD59GvOqVekwfjxyffvCvHlcunSJrVu3UrZsWaytrSlcuDAsWiSJ1O7dUKVKtu/z0fHjHN2/H2tra5R69szLJRQIBPmQ/CZgQr4EBZKfWcCYukBqgn3tDswaD7/Ph27tYewwGP8n+J+GfWuh+ofEeJfNMGU+TLQjoH2LnMXr7VtUHj2Co0ehdm3pwr17hPbsycqOHVEqVoxR9vYcPHiQmzdv0q9FC5ra2sJvv5Hu7s6BAwfw9/encePGWFlZoaSkBEeOwJQp0n89enz1rSUlJbFv3z5OnTpFBQ0N4mfPJof4mEAgEAD5S8BEwr2gQPMzJOGfW+JG6ab1KNmwNnJHz0LnIVBEC+rVkBppv4uFC/uk04uT5sLqv6SyEgDrd0plJkYPIaB3F9p0GpS9eMXEoHLnjiRe9etLF549I8jcnDWNGqFTqhRDbWzYunUrISEhDOvWjRoDBkDRoiQeOcLGPXu4desW3bp1o02bNsjJycHTp1C3rpRk7+ub0Vro7zx69IgtW7bwLiqKrqdP03LBAuQ7dMj7BRUIBPmanzwJXzTWFghyw38pYFFBz1hZ1RSAKl3a0vPxU4h+JwlXfwtYtwNO7oSXr8BqJEywhr8mSQ977oNhE8G6DwGDemYvXh06sDs2FpWbN6UoVcOG0oXwcO5264ZbjRqUKVeO3gMGsG7dOmJiYrAfOpRyAwbA69dEHT6My969REREMHToUKp/zBFLTIQmTaRTi1evfrFGV0JCAvv27ePMmTNUKFOGAW5u6NetK21RCgQCwT/gJxYwcdpRIMgN/+UW5K1t+zP+XktODu4FSh9Y94W1nvA/RymxfvB46NEB/nSUrnv5wvBJMLAHAQMtcxav+HhUbtyAw4czxevdO67078/GmjWpamRER0tLVq9ejby8PI4TJmAwZgzcv0/grl24b9iAkpISjo6OlChRInPwKVPg7l0pwf4L4nX79m22bdtGQkICPXv2pMWuXchHRICTU14sn0AgKKD86luQIvIlEHzg346AyWQyVlY1JfpJCIrA1KI6yKenQzF9KZJkVB7WLYbfekCp4uC3RWqeffAoWDlAj44EOAyiTechXxevjh3ZnZiIyqVL4OcHzZpJFxISONGnD7sMDWlkbEyD9u1Zu3Yturq6jBw5Eq3ly5HNnMkpJyd2P35MhQoVGD58uJRY/xF/f2jfHpYuhXHjsswbGxvLrl27uHr1KlWqVKFPnz7oBgVJZSicnGDMmB+zqAKBoEDxE0bAxLajQPCt/JsC9uLSdTxaSCf9OlUoQ72nzyEtHZo3gNsP4dweGDIBnofBub1QXB+OngULa+jUmoBxNrTpkoN4paejcuoUHDqUUT1elpzMwSFDOKSlhWmVKhjWrYunpydGRkZYW1uj5uNDipUV28aM4WJCAq1atcLCwgKFT3O5IiOhRg2pNtjhwxn1vGQyGVeuXGHXrl0AWFpa0qBBA+TS0qBBA+nZy5dFTS+BQJBn/GQCJrYdBYJv5d/cgvy45agE1AyPlAqlmhjB6cuwdQUsdJGaZx/dJonXhWvQawS0asK1scOzF69OnditpISKry94e2eIV3paGjtGjuSMlhbdTExILluWzZs306RJE/r06YPCrVtE2dnhNnQoYampDBo0iIYftyk/8rE4alISbNyYIV5RUVFs27aNu3fvUq9ePXr27JkZKVu9Gm7cgIsXhXgJBII85VfcghTfBQWCv/FvCJgsPZ17e/0AqKuoiGJcPCjIw5NnYGEGEW+k041uC6Tm2TfvQbdhUKca1ybbY9p1WPbipaGBipcX7NkD7doBkJKSwkZHR64rKGBVsSJBGhpc8fWlW7dutG3bFrnwcB4NGYJ79+4o6+kxwdaW0qVLfz7BunWwdy94eYGhIWlpaZw4cQIfHx/U1NSws7OjRo0amfeHhsL06WBnlxn9EggEgjzkVxMwIV8CwRf40QIWGnCbuPBI5ICmSorIIZNyvEJfSUVVB4yFkYNgYA949ATMB0PFslyfOQ5TC+vsxUtPD5VNm2D7dujcGYC4uDhcZ87kWUICAwwNOQ88vX6d4cOHU6dOHWRJSZywscGrUSMqlivHMHv7rPldH3n8WMrXGjoULCwICgpi27ZthIWF0aJFCzp37oyamlrWZ/78E1RUYO7cPFs/gUAg+Du/koCJnC+BIBt+VA7YidnLOD1vFZWB3gBqKpCQBPOmSNXqjSuAzwYIi4DWvaFwIW4snUGrPg5fFy9zc3aXLImKq6u0HThgQMZ7WD1/PrFv3tBbQ4ODOjrEx8djZ2dH+fLlSUhIwHPiRALS02ltYkJ3e/us+V0fkcmkZtlhYbw/d469/v5cuHCBsmXLYmVl9eUoWVgYlC0Ls2bBT/yNUCAQ5B/+4xwwkfMlEHwvPyoC9ujQcQCaAjI5OeTU1KBOdfA7Kd2waRnEvJciXoqK3Jr/e87iVbEiKsuWgZtbhng9f/6c1U5OKEVEYAnsUFFBQ06OSZMmUbRoUV68eIG7kxMxiYkML1eOOqNGff1Fb91K+tmzXHB3Z9/ixaSnp2NlZUWzZs2Q/1oDbScnUFUFe/t/sEoCgUDw7fwKETAR+RIIckFeR8AeHDjCq81etPQ+KiWgp6WBTT+ptpfvRinPq8MAeBLCndVz+M1mcvbiVaMGKnPnwvLlMHo0APfu3WOtmxsGr15RJzmZA4aGVKxYERsbG9TU1Dh37hy7du7E4PVrhgP627aB3Fd+aYuJIbhRI3Y1bcpTJSUaNGiAhYUFmpqaX3+T0dFQujSMGiW2HAUCwb/OfxQBE5EvgSCvyOsIWOUubal85LQkO/Jy0KkteGyHyfZS8+xeI+DOI+6v+DNn8WrYEJXp02H+/AzxunDhAlu3bqXymzdox8Wxr1QpWvz2G5aWllLi/caNXL58mWZv3tDz2jWUAgK+Kl7R0dHsmzGDKy1bUtLAgHF9+2JkZJTzm1y1ClJTYezYf7pMAoFA8I/5mSNgIvIlEHwDeRYBS06G4vUgLh7UVcHQAAprwKldMGoGbN1H4MJpNPjTKXvxatkSFUdHmDkTZs0iPT0dX19ffH19aRAfz5vYWJ4WL45Vnz40bdqUkJAQ1q9fz9u3b+mjo0ODGTPg5MmMUhRZX2IyR44cwf/wYVRjYuhSogSN//e/r28xfkpcHJQpA1ZWkoQJBALBf8S/HAETkS+BIK/JswjY4dOSeMnLQVVjuHVfap49dzVs3E3w9DE5i5e5OSp2djBxIsycSXJyMps2beLatWu0UFXlVmwsqaVKMcbBgfLly3P48GG8vb0pUaIEk/v0oVjLluDg8Jl4paenc+XKFQ4cOEBMTAytIiPpcP06ajdvZtT0yhF3d6lKv6Pjt6+N4JclMDAQDw8Pzp07R1RUFDt27KBatWpZ7nnz5g0uLi4cPnyY9+/fc/78eVRVVf+jVywoCPyMETAhXwLBN/I9ApYcF8/z8wGUcd4kffEpKMKVmzB/Cpy5DPNX82LkIOqsXJ+9eA0ejEqvXmBrCwsW8PbdO1xcXHj16hUtSpTg/NOnFNPRwXbGDACWL1/O48ePadu2LeYdO6LYrh0UKwbz5mWMK5PJuHPnDvv37yc0NJSaNWvSvUoV9Js3l8pWqKjkfpFWroQ+faSTjoJ8T2JiIjNmzODy5cvExsZy7do1GjZsiImJScY9MpmM5cuXs3btWlJSUggMDMTW1laIl+Bf4WcTMLHtKBD8Q/7JFuTT05fY1K4fvwMKgFzRIlDKEGaOAwsbwi07UvnwKd6+i/3i8+bm5uwePx6Vjh2hY0fYuZOQly9Zs2YNAGV1dLgZHEyj5GR6r1rFzVu32LFjB6qqqgwaNIhKlSpJ1eYdHODYMWjdGoDHjx+zf/9+goKCMDIyomvXrpQvXx6sraXWRMHBoKSUu4UJCoKKFWH/fujSJXfPCH5ZIiIi6Nq1K6amphQvXpyRI0eiqqrKjRs3MDY2BuD9+/dYWVmhr69P37596dChA7q6ujx48ABtbe3/9g0IChT/whak2HYUCH4k/yQCFnbjLiWRvvBkAJHR4DQTBo3jbaM6VMlJvGbPRsXUFBo2hK1buXr9Ops3b0ZfX5/0tDTuBQXR/9EjTLZswWPdOu7cuUO9evWwsrJCXV0dIiJg8mSp2nzr1jx9+hQfHx/u3r1LqVKlcHBwwMTEBDk5OXjzBrZuhWnTci9eAEePgoICtGyZ+2cEvyRhYWG0atWKcePG0aBBAxo3bgzA3LlzM8QrOjqaDh06YG5uzqhRo6hVqxapqaksXbpUiJfgX+dniYAJ+RIIvoNvFbDwWw/IaLyjIA/dzGCWEwk6Rahx9yFR2YnXkiWotGoFZcqQtmcPe7y9OXHiBBUqVODFixdopqTguHcvz5yc+N/ixaioqGBra0vNmjUzB1qxAoDH1tb4rljBgwcPMDAwYOjQodSpUydrMr2HB6SnS30cv4UjRyQ5zK4MheCXJzY2lg4dOmBnZ0f//v2pU6cOSUlJ/Pbbb4wZMwaQDm10796d9u3b88cff2BlZcXTp08xNTWlb9++//E7EBRUfgYBE9uOAkEekNstyHWtemNxIQBtPhRXNW1K6sVr1JeT50bs+y8+Y25uzm53d1RatoSkJN76+eHh7U1wcDAlS5YkJCSEOqVLY+rkxP6+fXmUlETjxo3p0aOHFO36gOzdO+43aoSfqSmP09MpUaIEHTp0oFatWp+fYExNhQoVpG3J9etzvxBpaaCnJ5W8+PANTpD/kMlkdO/enRIlSrB69Wrs7OxwdXVFVVWVO3fuUKFCBQCGDRtGSkoKmzZtYuvWrfTv3x8lJSVu3ryZJR9MIPgv+EFbkGLbUSDIlpndpIT3Gbu/e6jcRsCig0PQQvotRK5ONTh6lsHqatyIz0a8duxApUcPePWKB7t2sd7DA5lMRqFChXj9+jV9e/bk1cKFLLGwQLdwYUbZ2GT5wZacnMzly5c5sWsXYa1aUcbAALuuXalWrdrXy0Z4e0NIiFQg9Vu4dk0qrtqmzbc9J/ilWLBgAfHx8axYsQI/Pz9cXV0BmDZtWoZ4bdq0iatXr3Lx4kVevnyJg4MDAGPHjhXiJfgp+C8jYCLyJSi47JW24Og++tueWzMORjh98VJ2EbCUhERWF6nG2A8fpysq4iYvz4jk5C+OZW5uzu7du1GZOZOUpUvZP28ex4OC0NbW5u3bt1SsWJHq1atzbP9+EpOSMGveHFMrK5Q+5GdFR0dz+vRpzp49S3x8PNVDQ2lVtCiV3NyknK7sGDgQ7tyRZOpbmDdPqmYfFfVteWKCX4ZLly7RrVs3rl+/jpqaGlWrVuXly5cYGxtz69YtlJWVefz4MY0bN+bs2bMYGxvTvn17/P39MTQ05OHDh2hoaPzXb0MgyCCPI2Ai8iUQZMu3ShdAXAw8f/DVy9lFwGJehFH5w32pQEh6GuNTU784ToZ4HTzIi7Vr2WBvz6vgYFRVVYmPj6dx48Y8efKEvXv3UvfpU7pXrIjOgAGkpKRw7do1zp8/z/3791FRUaFJkya0jIig6Jo1cP/+11sIfcq1a1IT7W/lyBEp0V6IV74kPj6eAQMG4OzsTLFixRg+fDgvX74EwNnZGWVlZdLS0hg4cCDTp0/H2NiYdevW4e/vD8D8+fOFeAl+Ov6LCJiIfAkKJu8i4cVDkJOHKo1z90zcO3CbCC8fweKT2d76pQjY84vXSGnZi/If7jEFjn/h2Y/iJff6NYcGDuRI5cooqaqSlJREmTJlSElJITQ0FBMTEzoDpceO5cmZMwQ8f87Vq1eJi4ujXLlyNGnShLp160p1lCwsIDISTp/O+X3Gx0PhwuDqCsOH525tPj5XpAgsXAgfEq4F+YvRo0cTHR3N5s2bOXr0KG3btgWgX79+bNmyBYAlS5bg/eEwyOvXrzExMSE6OpoGDRpw8eLFnKOuAsF/RB5FwETkSyAAICEO1Apl/VzYE1j3uxQFWnwSTu6ArX9CxTpQzwziYyDoBpSpAt0/iMTFgxDxHEKDwM0RFJRg2Ly/zwZ8OQKm8jYGgw/Xb/F18dq1axf37t1jt6srbytXRiYnh5KSEioqKjx79oyKFSsyatQoFBQUuDRjBi7DhhGzZQva2to0btyYxo0bU7x48cxB09LgxInc91i8dUs65Vi7du7u/0hQkNQ2qX79b3tO8Etw9uxZPD09uXfvHgkJCdja2gKgqanJkiVLAAgJCWHu3LmcO3cOOTk5xowZQ3R0NCAV+hXiJfiZ+TcjYEK+BPmbHQtg/e+w8DjU+KSNTuUG0G4wHNkofdyyN8S8ge3zwGqqJF1vI8CqOHS0ARU1MO0HaSngnwA2i3Oc+u8CNqZlI6Z8uLb2C/ebm5vz559/snDhQl69egVycijKySFTUCAuLo4qVapQvHhxwsPDcXNzIykpiSJKStQrWZLa/fpRrly5LyfQ370rtfpp1Sp3a3btGigqwt/awuTIx5OVSUnf9pzgpyc5ORkbGxvmzp2Lvr4+kydP5smTJwBMnz4dAwPp14rx48fj4OBA5cqVOXXqFDt27ACgV69eNGrU6Itj+/j4MHPmTB4+fMj799LBE3l5eSpVqkSrVq1wdnb+F96hQCDxbwmYkC9B/ibmDeiXgeIVPr/299/CVdVBW18SLwBtPUhPg7evwaDMP5r+o4DVqVOH6bt9mYBU2d7jb/fVrVuXChUqsHbtJ1omJ4eSmhqFChUiNjaWu3fv8uDBAypUqICZmRkmQUGUHDkS+Xfvsq+pFR8v/amjk7sXff06VK36be2EAD7m8rz/8slNwa/LwoUL0dLSwtramnv37rF06VIAKlasyOjRUu7kyZMnCQgIYMuWLaSlpWXU+lJSUmLOnDlfHbtTp0506tSJuLg4SpcuTVRUFFu3bsXKyurHvzGB4Av8GwIm5EuQv7FeKP2XW9QLf/65r+VFpqVJfyooZDukr68vISEh0vCABpDwyfUyZcpQt25dkr9y6lFbW5sqVapgaGiIoaEhysrK0oVr13hRqpQU1Xr79usvIDoaihaF8PDcFT5NSgIDA6nUxLeQkABFi1Ls3TuUv+1JwU9McHAwCxcu5MyZM8jJyTF69GhSPxwUWbhwYUaS/ZgxY1iyZAmqqqqsX7+emzdvAmBjY0PFihVznKdQoUIULlyYqKgoihUr9kPfk0CQE58KmIKCApMmTcrT8UXCvaDg4r9B+u9j8vzfPwZoJwebgqFY2Q/3bAT/9dI9N09K0bNPtzO/gL6+PhEREV+8pqCggKWlJTq5jUr9AkypVInSuc0vE/z0mJubY2xszJIlS/Dx8cHc3ByApk2bcvbsWUA66ejl5cWxY8dISUnB2NiY4OBg1NXVCQoKyrVMlS1blmfPnnHixAlaivZUgv+Y9+/fU7VqVYoUKcKNGzdy+5hIuBcI8hxdQynpHiD8KVTPuRzDtWvXqFSpEgkJCZ9dS0tL4+DBg3Tp0iVLnzs5mUz6TUVODnl5efT19TE0NKR06dKULVtWOsG4YQOsWwenTmVfPuLhQ+jbV+rTWLny1+/7yMqVUsmIAwdyvvfvNG9OsfLlc75P8EuwZ88ebt++zY4dO5DJZPzxxx8Z1+bPnw9AVFQUs2fP5ujRowB4enoSHBwMgL29vYhiCX5J3r9/T8eOHYmOjs7IXcxLhHwJ8h8JcbB2IsS9lfK1ZuyBQn/bbrtwAPYsg1dPYO0kqFQP9q2A0MewciRYOkqJ+gCrR8GgP6FibahtCtV+g/XTQLMoFM9ZND7+IFKQlyctPf2z63FxcZw8eZLx48cTEhJCamqq1HooPR2ZnBza2tqoqqoSEhLCtWvXkJOTo0yZMpgULkzNuDhKyWTIlckmJy06WiozoaMDpUvnvH5FikBoaO7u/TvJyZk5ZoJfmpiYGMaOHYuLiwuFChXi4MGDGb/9t2/fnmbNmgFSVXtLS0uqV68OwKpVqwBQVVXF0dHxP3ntAsH38FG8bty4gb+//1cPi3wPYttRkP9wmwidbEDHELpqgP0K6PaNbXLyiDNnztChQwca1KvOxE6m9Jo0h6+lo5coUQI/Pz9CQkLwP3yY5KQkkJdHQ0ODuLg41NXVqV+/Prq6ugQHB/Pg3j3iExPRVVamdvPm1KlThzJlynx+nD8kBMqUgT17oHv3nF/0ypXg6PjPTi0aG0OXLrBo0bc/K/ipsLW1JS4uLqN+18cq9QDnzp2jSZMmXL16lU6dOnH//n10dHS4e/cu1T6ckrWzs2PNmjVZxpTJZNy/f58qVap8cU6x7Sj4r8kD8crVtuNXGrsJBL8oUa+kE4oljOD2h4KiWnr/yUv5VLwO7l1LJZOKnAe+9qX88uVLzMzMMDIy4q85c2hSuDDIZCTGxyOTydDU1OT8+fPs378fTU1N/pgxg9EvX2Ly6hUXL15k4cKFzJ49G39/f969e5c5cOnS0nbjwYO5e+EVKkgRrNu3v/1Na2iI046/CKmpqSxcuBAbGxseP36c5ZqPjw8+Pj6sWCG14AoPD8/YVmzatClNmjQhNTU1o/zEx5xFHx+fjDFGfaEv6MSJEzP6QAoEPxv/RsTrI2LbUZC/eBMKHT5UZT+6CdQ1oVHnf/1l/F281NXVUNPRJh44DJgBF77w3MuXL2nVqhUnTpyg/7x5NDMzY3Px4oRrahIZGYmioiJVqlTh4sWLXLhwAdOmTbH44w96+/kRaGjIhQsX8PHx4cCBA1SrVo0mTZpIDbS7dJFyxNLT4WvNtD/Spo209bhtG3zYSso1GhoQG/ttzwj+E+bPn8/06dMBKS/x6tWrADx9+hRra2t27tyZIVVnzpwh/cOW+YABAzKe19LSYujQoRljftyWrF+//mfRrRkzZhAUFMTu3d/fyF4gyGv+TfECIV+C/IZRHenPuHdwYT+0HfR5dfsfzJfEC6CQni7ngeqAD9BJXp4LX8gB+1TAjNauZUrt2nh368ZRdXVUVFS4ceMGFStWxMDAAP9Llzg9aBDd58+noY8PlStXJj4+nitXrnD+/HlcXFwoWrQoLStVokl0NKoXL0KTJtm/AWVlsLSE7dthzpzc9YL8SOHCIvL1i3Dx4sWMv8d/yNN79eoVHTt25Pfff8/I6QKpXdZHmjRpwrFjx1i+fDlXrlzJss2dmJgIQIsWmSeA09LSGDt2LM+fP2fnzp0o5FCaRSD4t/m3xQvEtqMgv3JiOyQlQAfrf3Xar4kXQOESBgR9iDoVAfyKFqFxIfUvjvNRwAJTU1HasAGLTZsYX7gwysrKqKioEB4eTkBAAF27dsXE2JjNFSuyZOpUQkJCUFdXp0WLFkydOpXJkydTrlw59ly/zu+DBuHl7p7lB+lX6dMHgoPh0qVvWwB9ffhQ+Vzwc1OvXj3k5OSYMGECO3fuZO/evTRp0oQhQ4bg4OCQ5d46depk/L1v377079+f/fv3U7Zs2Sz3mZqaAnDv3j3i4+M5f/48v/32G8rKynh5eWXWqBMIfhL+C/ECkXAvyK+MaQwpyeAcAO/fwo3j0Mzih06ZnXh9ZEWV1tg/CUEBkKtSkZgHTzAz0ONCWPgXxyxRooQUAdu/HyZO5P3atWxMSuLu3bsYGhoSGhpK7dq1aXT+PPuTkwnT1qZ58+Z06dIFNbXM+d++fctJJyfOPn9OopoaDRo2pH379hltYT4jLU3KFevRAz7k/eSKnTuhd29J3P72g1nwc5GQkMCQIUM48KGkSP369Zk3bx5NvhIZdXNzw8fHhypVqjBq1CgMDQ0/uyc9PZ2ZM2eybt063r59S4sWLT6LomWHSLgX/Jv8IPHK1VaBkC9B/iPiBfQrBQ6roYs9HPIA/dJQt+0PmzI34gUQFfQULcsRKNwPlD4xuCcxG3ZhZlSWC4FPv/hMiRIlOHH8OEaLFsHGjaT7++OfmIi3tzfFixcnOjoaFUVFBnl58aJFCw5qaqKurk6/fv2y5t0kJpJUsSLnOnbkiK4uMTEx1KtXDzMzs6yNuD8yfjx4esKLF1Kvx9wQEwN6erBwIXxoLyP4uUlMTEReXv6niEoJ+RL8W/zAiJc47SgooLyPlv6s0QJiouDmiZ9CvAB0KpRFoU8X6QMlRQi4hWZPc/yeh9G4mvEXn3n58iWtWrcmcNw4aN4c+W7dMCtWjDFjxhATE4OKigqaRYqwsl070gMCmGZigoGBAatWrWLz5s0Z+TyoqqIyaRKt3d35s0sXevXqxePHj/nrr7/w8PDg9evXWSfu21dqSXTiRO4XQ1NTStjfty/3zwj+U1RVVX8K8RII/i3+q63GTxGRL0H+ZM1YeBUMyqowbEFme6A85lvEK4OgZ1DVNPPjZbNgyx5iXr7CrLg+F67d+eJjJUqU4IS3N0Y2NvDsGZw5w5uiRXFxcSEiIoKqVaty/fp1aoaE0H/OHG68f4+XlxeqqqoMGDAAExMTSE2FBg2kfpVXrpCKlHjt6+tLTEwMTZs2pWPHjmhpaUn3VKoEv/0mVdLPLWvXgp0dvH4Nurq5f05Q4BGRL8GP5l8QL7HtKBD8SP6ReIEkNaUaQGQ0FNODhEQ4tBl62BBTTA8zRUUuXLn5xUdLlCjBCS8vjIYOlUo6nD1Lor4+Gzdu5NatWzSoXZtbly5RKDUV64kTKVSsGFu2bOHBgweYmprSpUsXlG7ehIYNYcECqZgqkJyczKlTpzh8+DApKSm0bt2atm3boj5/vpTzFRKSu6bcAK9egaEhrF8Pgwbl7hlBgef9+/eUKVOGqKgoPD096dOnz3/9kgT5jH8p4iXkSyD4Ufxj8QKurd9JkZUbKHvvkfRVqqMNzRvCpBHQrh8xDWthFhvHhcs3vvh8iRIlOLF9O0YDB0q5WGfOkK6nh4+PD4cOHaJG+fJEXb1KuLY2A4YMoU79+pw4cYL9+/dTrFgxhgwZQvEFC6QI1d27WRLj4+PjOXLkCMePH0dJSYlOTZvSfOBAFIYM+bbE+5YtpSjbh8bLAsHX8PHxYdasWTx48ID3H8qUyMvLY2xsTMuWLXF2dv6PX6EgP/AvbjUK+RIIfgTfI14AHi17knLxOnaATFEBuVpV4eot2L4aNApBd2tiupth9uwFFy5d/+IYJUqU4MTGjRgNGCAluJ88CUWKcPXqVTZt2kQZLS20Ll/mWoUKtG/fns6dO/Py5UvWr1/Pmzdv6NGpE78NG4ZctWrg6/tZLa93795x8OBBzp8/TzElJXrs2UMVLy+oXz93b9LbW2ozdOYM5PKkm0AgEPwI/uUcLyFfAkFe873iBXB85lLOLHBmLKD18ZPN6sODx3DJG85chsHjiRk1BLMrN7hwMRsBc3OTImBGRnDkCGhoEBQUhIuLCxopKdS6cAH/unWpVr06gwcPRkFBAS8vL86cOUPtYsXoP2cOan/9BRMnfnGO58+fs2vnTh4HBVE9KooeS5ei/4USA5+Rng41akC5cpKICQQCwX/Af5BcL+RLIMhL8kK8AJ4cP8/mjgNpDLQF5DQKgVE5CH8NFcvBoU2wagNMnkfMnEmYeR/JXsBWrMBo8GApkf7gQVBVJTw8nNWrV5McGUn78+fxbt6cInp62NnZoaenx40bN9i0aROFk5MZvnMnpXbtgk+qkn+KTCbj2q5d7PX25l3hwrQ0NaVjx45Z6oh9kc2bYeBAuHXr29sUCQQCwXfyH51qFPIlEOQVeSVeACkJiSwwqI1ycgqOfFLvZYo9LHSB3x3gj9EwdT4s8yDGdT5m67ZnL2ALFmA0fDiYmcGuXaCoSGxsLGucnQkLDsbi6lWOtW/P+6QkbGxsqFSpEhEREbivXUtYSAi9b9ygyZ49yGUT1UoePZpjV65wuEED1NTV6dmzJ7Vr187SXibrG02BihWheXNJxAQCgeBf4j8sJyHkSyDIC/JSvD6ysX1/np66iAVQTVEBOZ0ioKgA/bvDYjfw2yxtRQ6bCLt8iNm4FLOV67MXsBkzMBo5EqyspCbaCgokJyezztWV2/fuYfHwIXc7diTw2TP69+9Pw4YNSUlJYdemTZwNCKBhdDRWa9eioqHx5RcdEwNVqvCmXj12mZlx69YtqlSpQu/evdHT0/vyMytWSMVag4KgTJnvXjeBQCDIif+4jpeQL4Hge/kR4gVwafVG/Cb8D0Mgo/ukmir07QqBT+HREzi/D/R0oN9oOHyKmK2rMFu8JnsBmzgRo/HjpRIP7u4gL096ejq7PTw4ef067V+8ILZbN85fvUrHjh3p1KkTcnJyXNq0iW1nzqCrrIztzJno6+t/+YXv3QsWFuDlxa2KFdm5cyexsbG0b9+etm3boqSklPX+uDhJunr0AFfXPFk7gUAg+Bo/QQFVIV8Cwffwo8QLIOZFGE4VfwNgWCF1SqamQvnScP8xbFsNjn9CiWJwxFN6oIctXLhGzA5nzP5anr2AjR2L0aRJYG0Na9aAvDwymYwjmzax79IlmkZHo9O3L96HDtGgQQP69euHkpISYfPn43bzJjF6egy1taVq1aqfTyCTQbducPUq3LtHkqoqhw4d4ujRoxQtWhQrKysqV66c9Zlly2DCBAgIgFq18mwNBQKB4FN+AvECIV8CwT/nR4rXR9yb9+Dl5ZuUAwZ+/GSVSpCQAG4LwHwwWHUBl3lSIdYuQ+HWfWL2uGH2x6LsBczBAaPff4cRI2DVqoxSEuc3bGDrxYvUSk6mhrU1W7dto2zZstja2lJIXZ2EXr1Yn5TE3ZIl6dylC+3bt/88p+v5czAxgSFDYOVKAEJDQ9m+fTuPHz+mcePG9OjRA3V1den+lBSoWROKFoVTpz4rayEQCATfy08iXiDkSyD4Z/wb4gVw3smdI1PnAzChVHE03sWCbhEIDQfbflDdBKwnwfJZYNsfYt9Dx0HwJISYvWsxmzQnewGzs8No+nSpwbWTU4b03HJ3x+PyZcorKNB21Cg2bNiAuro69vb26Kuqkl6vHr6VKuFbujS1a9dmwIABqKqqZp1g2TIpl+vCBalaPtKpyPPnz+Pl5YWysjK9e/emdu3a0v1HjkC7drBtm5STJhAIBHnETyReIORLIPh2/i3xAnj79AVX3LZi0q09JV6/Qc7SVhKkjq3B97iUdH/gCLhuhYProWVjiHoL7ftDxBti9rtjNmZW9gI2fDhGs2dLdbwWLMgQsMAVK3C5eZOi6ur0mTCBDRs2EBcXx4gRIygfFwdNmnCjY0c2Ghqiq6uLra1t1qT61FRo3Biio6UtSG3tzPf19i3bt2/n1q1b1K5dm169ekm9Ii0s4PJlePgQChX6YesqEAgKDj+ZeIGQL4Hg2/g3xeszZDJo1w/uPJTEplplePoczu2Vol9Xb8HJnWBiBK/fQJs+kJBIzD53zEZOy17ABg/GaM4c+P13+OuvDAF78ddfrAoMREVbm2ETJrBr1y5CQkIYPnw41UNCoEsXwkaPxlVLi9jYWIYOHZo1D+zJE6hbV6oPtndvlu1EmUzGtWvX2LFjB2lpaVhaWtKoWDHkqlSRImZz5vzQ5RQIBPmfn1C8QMiXQJB7/lPx+siVm/BbDyikBq2bwcUAqFMdNiyVZCs2Dk7vlppxv3wFpn1AQZ6Yve6Y2UzKXsD698dowQKYORNmzcq4FjlhAitfvSKpaFFsx47F39+fW7du0bdvX5peuwajRxO/ahXrgXv37mFhYUHr1q0z88A+thFasAAmTfps7vfv37N7924uX75M5cqV6fv6NUUXLZKS76tV+wGLKBAICgI/qXiBkC+BIHf8FOKFFC2i/xjkjp+D6HcwdSTMWw3zpoBlR2huCYYG4L8VCqlD8HNoYwWahaUk/CETshcwKyuMliyRol/Tpn2clJihQ1kdF0dksWLYOjgQEBDAmTNnMDc3p4OvL3IuLqT7+LD/Q9Ptpk2b0rt3bxQVFaUxfv9dkq9jx6SG2l/g7t27bNu2jbj37+l29y6/RUYif+kSKCv/gJUUCAT5mZ9YvEDIl0CQMz+DeCW+i+WW516urdtJI3NTai12gwqlpfyuHp1grScc2wYqylK0q1Vj2OEMCgpSPbA2fcDQgJhdLpgNGJO9gPXogdGKFbBwYWY/x9RUEiwscFFQ4GnJkljb2vL8+XO8vb1p1rQpVp6eyJ89C+fOcSE2Fk9PT8qXL4+1tTUaGhrSNmn79nD3Lly7Bl+pkp+YmMjevXs5c+YMlUJD6V+5MkXnz/9BqyoQCPIjP7l4gZAvgSB7fgbxAnh97xFr6nQEQL9qJexaN0XOYzsoKUGbpvAiDF5FwqUDcPEaWNjAiAGwZLo0wO0HUr6YcQVitq3ErI9D9gLWtStGzs6wdCmMGyddSEggxcwMdy0t7pUuzZChQ0lMTMTT05PqJiYM8fBAOSICLlzgcWIirq6uqKurM2LECIoVKwavX0Pt2lC+PBw/Lr32r/DgwQO2rF5NXGIif/TsiW67dnm6ngKBIH/yC4gX5FK+5HO+RSDIf/ws4gWgX6USpRrVAeD13Uc8a9kYtApDxTLgdQj6dIN3MTBiKrRvIZWeWL1Rar4NUL0yeK+Huw/RHOKI3441NG5U+4tzvXz5klb79xNobS0lvq9eLV1QU0PJ2xub8HDqBAfj4eEBgK2tLfcePWKlpSVxKirQoQMVixZl8uTJKCoqsmjRIu7fvw/6+rBzJ1y8CFOmZPt+K1euzB/z5mEZFoauvT28f58HqygQCPIzv4h45RohX4ICx88kXh9pYJ9RZpVzrltg0TQIuA2NasOcFbDwd9h7WJIu674w3homzoH9/tJD9WrAnrVw6TqatlPw2+2avYD5+hI4ZAg4OICbm3RBUxOFQ4cY9OIFzYKC2LJlCxEREYwdO5ZX0dEs6d2bqOho6NaNooUL4+joSPny5Vm9ejWnTp2Cpk1h8WIporZ7d7bvV1VDg6ZOThAWlrn9KRAIBF8gv4kXiG1HQQHjZxQvgPTUVFZWbcPbZy8AsLvsjcHvC+BBEMQnSHleJYvDqo1wcAO0aAgDxoDvCTi8BRrUkgY6cgZ62ED7FsSsmYuZpW32W5CtW2O0eTN4eMDQodKF16+RtWjBvlKlOFKxIp06daJu3bqsXr2atPh4HDw9MWzeHLZtIx3Ys2cPx48fp3nz5vS0tEShXz84dEgqwPqlFkWfsmYN2NuDry906JAnaykQCPIPv6B4iZwvgeBTflbx+sgl5034jf8TgBp9u9F9mgPhLfvwolVT6u7cBxudYNNuuHEPzu6RSk50GAhBT+HUbqk3JIDfSeg1Ajq0IsZ5DmY9bLIXsN9+w2jHDtiwAQZ+iMCFhkLz5hwuW5b9lSrRunVr2rRpg7OzM29evcJ+1y4q9OkjRbmAs2fPsn37dipVqoS1lRVqbdpAbCxcuiRtSX4NmQw6doQbN+DOHdDVzYulFAgE+YBfULxAyJdAkMnPLl4AyXHxLDNqTkLUW+QVFRl97zhnXHbgm5BOvZhoeh0/gcbB9WBpCxqFpKKrCYnQoqc0wImdoP9BXnyPQ++RYN6amFV/5SxgTZpgtHs3bNoE/ftLF549g99+45SRETuMjWncuDEWFha4urryLCgIG29vqo4ZIzXNBh4+fIibmxtFihTBvmtXdNq2zUzA/3t7ok8JDYXq1cHUFHbsEL0fBQLBrypeIBLuBQKJX0G8AJQLqVPfThKf9NRUzi11o9OMEQx5cJd7ahr8ZdaBO9OdpDITT0LAZrLUC9J7PcTFQ9ehEBMrDdaxNWxbCQePozl6Bn571mafA3b+PIEWFjBoEGzdKl0oUwaOHaPFvXsMeviQS5cusW3bNuzs7KhcrRprzM256uICmzcDYGxsjKOjI4mJiSzy9CRk/Xq4fl3azszulzxDQ2n7cdcu8PTMs/UUCAS/Jr+weOUaEfkS5Gt+FfH6SHxkFMuMW5ISF4+CshKj7h5DK/odb9v2Z0tPC+4pqdJGVZ6u9U1Q6OsAs8fDZHu4dV+q91WnOux3BxUVacADR6DvKOhuRszyWZhZWGcfAWvYEKN9+ySh6ttXunDvHrRowY1atVhXuTLGlSszdOhQdu7cyeWLF+l17hwt5syBzp0BePfuHS4uLrx69YqhlSpR3d7+s8r6X6R/f9i/H65cgcqV82ZBBQLBL0U+EC8R+RIUbH418QJQL6pDgxEDkFdUpGZ/C+QVFaGGCdrjhzFy3UZ6pLzneFwKTndDiJ48EmY5waETUMMEvNzgQgAMmQBpadKAXdrC5mWw5xCa4/7Eb6979hGwS5cI7NoVBgyA7dulC1WqgL8/ta5exT4wkMBHj1izZg2Wlpa0atWKHc2a4TtnDrJTpwDQ0tJi3LhxVK5cGZc7dzg5dSrMnp1zVMvFBUqVkhpwx8bm0YoKBIJfhXwgXrlGRL4E+ZJfUbw+khD1lsR3sRQpVyrzk6mp0Ko3vH1HUNmyeJQoQ6pOEQY/C6LKkRNwxguMK0iRLquRMMwKVszOzJ/y8oWB46CXOTFLZ2DWfXj2EbD69TE6cEASpt69pQuXLkGbNjxp3pzVlSujp6fHyJEjOXfqFAd8fWn54AGWixcjX0eqWZaenp5xErJ1SgoWmzcjf/w4NGny9Tf/4AHUry+dfBT5XwJBgSEfiZdIuBcUTH5l8cqWh0HQsAtYdeG9/2k2tG3H/UKFsQh8QOunwcid2gU62rBuB9hPg2mjYPqYzOd3+cCgcdC3GzGLpuUsYHXrYuTjA9u2Qc8PSf2nT4OZGS/atWNlpUpoFC7M6NGjuXX5Mtv37KHe8+cMXLwYhU+2DU+dOsXOnTup8e4dQ44dQ/n8eShX7uvv08sLLC2zVuAXCAT5lnwkXiDkS1AQybfi9ZGV66Xiqn9NJH3GEvaPG8mR+FQaBQfTJz4aJe91Ur7XwjUwY4lUDd+2f+bzO7ylbcn+FsQs/B2zbsOyF7A6dTDy9ZW2IC0tpQtHjoC5OeFdu7K8QgWUVVQYPXo0wbdusWH7dkwiIxm+eDHKZctmjHX79m083N0pHhnJiDt30Dx1CrS1v/4+J02S5Ov4cWje/LuXTSAQ/JzkM/ECIV+CgkZ+FK/UpCQur9lMyLmr9N65BjmZDNr3h2cvoZc5LHHj0pqFbL0dTKlXr7BRBS33BdLDk+ZIRVk3Okn3fsRzHwybCIMsiZk/NWcBq10bo0OHpG3AHj2kC97eYGFBpJUVy8uUQQaMGTOGiHv3cNu6lVJxcYxYuBD1EiUyxgoJCWHNypUohodj/+YNxfft+3oPyNRUaNtW2oa8dg2KF//utRQIBD8X+VC8QMiXoCCRH8ULYGuXoTz2Pw1Arx3OmHRtB8HPob45dDeD8AgIuM3TPR64eh1HLvoddiW0KT1rDKSnw/BJsPMg7FoDHVplDrxlL1hPgqG9iZkzKWcBq1ULo8OHJQGzsJAu7NwJffoQNXQoK0qUICkpiTFjxpDw4AHOmzejnZaGw7x5aH0iTlFRUTgvXEh0RAQ2ysoYOzt/Pa8rPBzq1JG2KE+cyLZZt0Ag+LXIp+IF4rSjoKCQX8ULoK51n4y/H5k6n7TkZChXCpZMh81e0K09aBSi7PiZTHYcgKZ2YZwiE7jtvBXk5cFtPnRsBX0c4PSlzIH7dwfX+bBuB5ozFuO33yP7U5A3bhDYrp2UfL9vn3ShVy9Yvx4dd3fGRUVRqFAhli5dilLFiozr04f3wJIZM4gMDc0YS0dHhwkzZ1KmaFFWpadz5c8/v/7mDQykHpGXL4v+jwJBPiIfi1euEfIl+KXJz+IFYGzehrLNGwIQ/SSEy2ukgqYM7AE9zWHyXFjyB9x5iPZsJ8b9zwFjuXRcHoZyesM+UFSUSk00qQcWNnD1VubgA3vAmrng5onmzKU5C9jNmwS2aSMl3+/f/2GMgeDigtbKlYyNiaFIkSIsW7aM5IoVcbS0RD4+niV//knoixcZY6mpqTFy7lzqq6qyPjwc/0WL+GoEvnFjKfdr+fLM0hcCgeCXRYiXhNh2FPyy5Hfx+kjYjbu4Ne4GMhkqWoUZffcY6kV14F2sdPpRTwcG94SRf4DrfNKtOrPbZiYndfRoW8uIrgM6Ix8fD+aD4VEwHPWEKpUyJ/DYLj07chAxM8Zg1jWHLchq1TA6flyKSnXpIl1wcoLx44mfOZPVhQoRFhaGvb09+gEBrPLyIlpXl5GTJ1P2kyR8WVoaB21sOKSiQosKFeg5bhzy8l/4fVAmk+qO7d0rRcFyatYtEAh+SgqIeIltR0H+paCIF0DxWlWpNUBKdE96F8upuaukC1qFpajW9btSu6EhvWDMTOTvPKLX8t+xfPyQo9cfsd59DykqKrDXHUoWh06Dpfs/MswKVv4Jqzei+deKnCNgd+4Q2KqVdPrx4EHpwrhxMGcO6rNnMyo5mdKlS7Nq1SpCa9ZkbPv26IeHs3zhQh49fJgxlpyCAp3XrKHv69ecDgxk7ZIlJCcnfz6pnBy4ukp9Ii0sICYmD1ZVIBD8mxQQ8co1IvIl+OUoSOL1kdjQcFZWa0NKfAJyCgrYX/OlqHEF6eISN5i2EPa4wfzV8PIVnNsHiUlctxrNhoaNKV2uBLbW3dF4HwemVpCaBse2QYlimZO4boExs2DsMGKmjsw5AlalCkanTsGePdCpk3Rh9myYNYvk+fNxK1SIR48eYW1tjdGJE7gdOUJQqVIMHzGC6tWrf/LmYrndtSseFStSokwZRowZg4aGxueTBgZCvXrQurVUC+xLUTKBQPDTUcDES0S+BPmPgiheAIUNDWg6wQaQtuuOTJ2feXHccNLa/sZO5x1E/m+S9CuOlT0U16P2ypmM9fUhPPgFS1duJ0pZGXw3SaUcOg2CyKjMcWz7g9MMWOaB5kKXnCNg9+4R2Ly5FI3y9ZUuzJgB06ahPGUKtklJVK1aFVdXV+41a8aIxo2p8uQJrmvWcPXq1U/eXGGqe3oy9vJlIoKDWbxwIZGRkZ9PamQEW7ZI+WbTp3/nigoEgn+DAiZeuUbIl+CXoaCK10eajBtO4RIGADzyPcGTY+ekC/LyvFs2mzuGhszffZK7S2ZJW5EOM6BeDcot/h3HHTtJef2GxSu2EaasAoc2QdRb6DIUYj7pozhiICz+A5a4obnINWcBu3+fwN9+g+7dwc9P2iL83/9g8mSUHB0ZnpxMnTp18PDw4JqpKcNr16bew4esX7eOs2fPZg5WrBhld+zA8ehRZC9fsmjhQkJCQj6ftHNnWLAA5s6Vmn8LBIKfFiFeX0fIl+CXoKCLF4CSuhqmfzqioKxEU0cbDOvVyLimU6E0U/qZUT40FOfTN/Gd7kj6Zi9YtQG6tkN/6ggmbNhEocRElqzczhMlFTi4AYKeSacg4xMyJ3IYDAumwmJXNJe65yxgDx4Q2LQpdOsGhw9LAjZvHkyYgMLo0QxOTKRx48Zs2rSJCx07MtDEhOZ37uDp6cnRo0czBzM2Rn/7dhz37EE3OhqnpUu5e/fu55M6OsLQoTB8OHwqcAKB4KdBiFf2iJwvwU+PEK9MZOnpxLx4hVZpwy9eT1/ugd9Of3waNKCqfDqDPTaivmsNtGkGY2cRv2kPLuMcePY+keGDOlM95q20/fhbA6kQq7Jy5mBO7jB1PvzuQMzYYZh1GZp9DpiREUYXLsCBA9CunXRKcdw4WL6cdFdXdmtrc/LkSSx79KDVli0cePCAw7Vr06FDB8zNzZH7WGzV25tkS0s8hg3jrrw8ffr0oWnTplknTE6W5rh7V2r4Xb58HqyuQCDICwq4eIkK94J/B5lMlvmDM48R4vWNyGTQx4G7D4JZb2aG+vs47I74Y+izHsqWBKuRJJ+6xPop47kdGkl/q/Y0inkL3YdDl7ZSKyIFhczxFrvCH4tg+hhiRg3OnYBdvCgJWNu20usZNQpWr0bm7s5+XV38/f3pYm6O2fr1+AcHs69BA1q2bImlpWVmqYm1a0mztWWHoyNnP3wj79SpU9Z/Z2/eQMOGUi/L8+dBS+vHratAIMgVBVy8QMiXIK9JTEzk3LlzhIaGoq6uTtmyZalbty7wYwRMiFfuiHn5isKGBpnr/y4WGnclsqgurmYdeBMWwZB7t6i+xwWUFKHjQNKCnrF9+mTO3X9K987NaRsbDX1HSYVXnedkbfmzwBlmLoWZ44gZOTBnAatYEaNLl6T+j23aSAJmbw+ursjWr+eQnh4HDx7ErG1bOq9dy5mwMHY0bkzDRo3o168fCh/lb9YsZLNnc3jOHA68eEGTJk3o06dP5nWQej82aiQVY/X2lorKCgSC/wQhXoA47SjIS+Li4ujduzeXL18mLi6OkJAQfH19sbW1BUBOTu7rVcr/AUK8ciY1KYlTc1ayokprHuz3z7ygVRi2raLozbtMCAnE2KgULtVrc2T0X8iUlcDLDQWdIvRduooOjauz1/s0XiiT7jIP1u+EKfMkYfrIZHuYMRZmO6HpsgW/A+uyzwELDCSwQQMpOf7YMUnkVq+GYcOQGzqUjm/f0r17d/yOHMFr4EB+09Ji8LlzXL50iXXr1pGSkiINNnMmcsOHYzZjBgNr1ODixYu4uLiQmJiYOWHlylKx1yNHYMKEvF9kgUCQK4R4fRsi8iXIkeTkZAYMGECNGjWYNm1almtLliwhKiqKOXPmAHkTARPilTse+hxjew9JfguXMGDkjcOoFP6kPtbG3WA7hfSV/8M7ScbhoDAaK6RjNX8cSi/DoVUv0NflxP9+Z/ehczSsV5V+716jMO5PSbZ+d8g64f+Ww5yVMGcSMdZ9so+AGRpyonx5jAICpEKsrVtLjb6HDYNNm8DTk1PFirFjxw6aNWiA1Zo13ImPx71lS4wqVcLGxgYVFRWpJEavXnDoEPc3bWLthQvo6+tjb2+PpqZm5oQuLjBiBDg7S38KBIJ/DSFeWRCRL0HeEBgYSLFixTLEKzU1ldTUVAAmTJhA8eLFmTVrFoAQr3+RSh1bU7F9CwBiX4ZzYvayrDcMsgSbvsiP/5Ou9SozWE+dK0nprJjlQqxOEdjvAU9CaOW0hsFW7bkccB93FS1SZo2DP5dJJyU/5Y/RMNUBpi1Ec92O7CNgoaG0evKEwDp1wNwcTp6UiqK6u0PfvtCvHy0iIxkwYADnrlxh07BhVJWTY+Tp0zx5/JhVq1aRkJAgbSN6ekKjRpjY2DCuc2fevXvHokWLCA8Pz5zQzg5Gj5byy44cyaslFggEOSDE658h5EuQIydPniQiIgKQIluKioooKipmbDM6ODhgYGBAdHT0d80jxOvbkJOTo6PTTBRVVQC4tHojLy79LRK1+A+oVwP6ONBgsAXjZPFERESzYP46wvT0YOcaOHuZ+s7rsB3Smbv3g1mjZUDSBBtw/Avct386IcwYA5NGwJT5aG7YlbOABQcTWLu2VAH/1CkpmX/DBimaZWVF4/BwhgwZwtVbt1hvY0PFxERGnzpF2MuXLFu2jNjYWFBVlQqrlitHqX79cOzdG0VFRZYsWUJwcHDmhEuWSEn+PXtKuWACgeCHIsTrnyPkS5Aj7969o+qHZsZpaWkZn/80zys4OJjAwMB/PIcQr39GkfKlaTljrPSBTMZ+2ymkJiVl3qCsDNtWSeLUdxTlFkxi0stg1EJfsdhpKw9LlIB1i2GHN9U9vXCw7UHws1BW6JckfsRAGDUdtuzNHE9ODmaPB0cbmDQXzc17chawp08JrFULOnaE06clAdu0SSrM2qsX9V69Yvjw4dx8+JC1traUfPeOcadO8S4qiqVLl0pSr6kJhw5BoULo9uyJ46BB6Ovrs3z5cm7fvi1NpqgI27dDyZJStO3Nmx+y5gKBQIjX9yLkS5CFjzL1aS7g27dvMyJfn0a8ANLT0wEwNjamTJky/2hOIV7fR+PRQzCsK/VKjHwQxJn5a7LeUExPErCA2zB1ATqbnRh//SplwsJY5eLFpbLlYNE0WLqWSoeOMsa+F69fR+NUvAwxg3uBzWTY7ZM5npwc/G8ijBsOE/6H5ta9uROwGjUkATtzRhKlrVulpPwePagVFoadnR33nz3Dxc4OvfBwxp8+TUpSEkuWLOH169dgYAD+/hAXRyELC0YPGYKJiQmurq6cO/eh2r+WlnTq8d07qe3Rlxp1CwSC70KI1/cj5EuQhY85W9HR0YSFhZGUlETZsmW/eA+AgoICN2/e5NixY8TFxX3zfEK8vh95RUW6uMxD/kOZhbOLXAi//bdtt4a1YdlMcPOEfYdR2+3CyGNHaRAVycathzhUqTKycdYwcQ5lLwUwzqE37+MSWFqyPG+susHgCeD9SS6VnBzMnQxjhsK4P9HcfiBnAQsJIbBaNejQQapMr6QE27aBmRl0707Vly+xt7cnKCyM1XZ2aD57xvhTp1BSUGDp0qW8fPkSypWTqugHB6NsaYn1gAE0bdqUrVu34uvrK/1iUK4c7NsHFy9Kyff/7qEigSBfI8QrbxCnHQUZJCQksGXLFs6cOcOpU6eIiYlBSUmJqKgotLS0GDBgAKVKlaJChQqYmJgQERFBeHg48+bNY8GCBZiamn7TfEK88pYTfy7j9NxVABSvU43hp3dnCFkGI/+AzV5wdBskJiHrNJhDg/txUFGNJg2q0efwYRT2HIL964isbsLyNbtJT09j9OMHGOz3Ay9XaNs8czyZDCbOkZLzV/1FTK9OOZ+CLFkSo3v3pF6QTZtCUhL06CGVpTh4kKCyZVm9ejXFNTVxcHYm1cSElW3bEvX2LQ4ODtIvA2fPSvldHTog27GDw8eOceDAAZo2bYqVlZVUC2zzZhg4EBYuhIkTf8yiCwQFCCFeuUIUWRXknri4OHr16oWOjg5xcXEUKVKE6OhoHj16RFpaGg8fPvzsGV1dXapWrYqjoyPm5ubfNJ8Qr7wnNSkJt0Zdibj/GN1K5RlwcMPnbYiSkqB9f3geCuf2weFTYDuFS7+PY0tMMpXKl2S43yHUzgeA/1beVijLyjW7iX0fz6jH9ynld1w6Jdnik2+6MhlM+B84bwLnOcRYdsxZwEqUwOj+fSmK1aQJJCZKOWCnToGvL0/LlmXVqlUUVVPDYc0a5GvVwrldO16GhTFixAgqVaqEzNsbue7dYcgQcHPjwsWLbN26lapVqzJs2DCUlZVh2jSpz+S+fdClyw9be4EgvyPEK9cI+RLkjtTUVOzs7KhcuTKOjo5ZrkVHR6OkpMSIESO4e/cuo0aNIjY2Fg0NDZo1a4a2tjb6+vrfVN9LiNeP48XlGzz0PkqLaaMyTkF+Rmg4NOkG5cuA3yaY5wzzVvFw5RzcnkSgo6XBSP/DaAcGwfEdvDcsxipXLyIiorF/dI8KJ8+BzwZoVCdzTJkMxs4C163gMo8YC7PcCdiDB5KANW4MCQnQtSucOwd+frwoV44VK1agqaDAaDc3VBo0wLV9e4KCgxk+fDjVq1eHTZtIHTQI+SlTkJ83j7t37+Lu7k7x4sWxt7dHQ11dOlnp5yeJ3YeODAKBIPcI8fomhHwJckdsbCyurq4Z4pWenp7RY++jVK1YsYLo6Ghmzpz5XXMJ8fpJOB8gRcCGW8HSGTBsIuz2IXSbM6uvBiKXno6D/2GKvYmCkztJ0NHGxX0fT0NeYfvoHlXOXwK/LVCnWuaY6ekweiZ4bAe3BcR0bZuzgBkaYvTwoZRI36gRxMdLSfiXLoG/P2EfBEw1LY0x7u4Uat6cdWZm3Lh5EwsLC86ePUvRW7d4sG8fi+bPR33yZJ49e4azszNqamo4ODhQVF0dWrWCkBC4cAH+lsMoEAi+jhCvb0YUWRXkjvDw8IwaXTKZLLO58Sdoa2tLJ86+AyFePxFN6sLS6bBmM2zeAy5zoUk9DIdNwLFTY1TUVVnSsjXBmprQeQhqCYmMtLHA2Kg0aypW5nrjBmA+GD5N7JeXhxWzYYh0QlLT+2jOSfihoQRWqgTt28Ply6CuLjXlrlsXzMwoHhLCuHHjSFFWZunQocScPs3wEycoXaoUixYtIiUlhVF79/K+WjVWTpkCmzdTpkwZHB0dkclkLF68mJDISOkEpLq6dNryO+vRCQQFBSFePw4hXwKKFClCSkoKMTExGaUjPvJxK/Hx48ckfVo/6hsR4vXfEPHgMRva9CHiwePPLw7vI4mSwx9w7Q5sXw2GBhTpN4oJVm0pVlyPZa1MuY0iWNignJqK7dAu1K5hhHuFylysUxs6DYKHQZljysvDqv9J1fWtJ6PpczxnAQsLI7BCBWjXDq5cgUKFwMcHatSAdu3Qf/aMcePGgbo6SwcP5s2RI0y6f5+hQ4YQFRXF9OnTeaypycsqVWDIENL27EFPTw9HR0eKFCmCk5MT9yIjpTph4eFSbtl3/FsWCAoCQrx+LEK+BOjq6lKpUiWSk5NRUFDIImAfi6pqaGjQq1evfzS+EK//hqenLuLasAvPzl5h3/BJpH9oCZWBnJxUfqJeTeg1AmLewz4PSE5Gva8DowZ2pIpJOVxbtORCXDL0G41CejqD+3ekcYOqbDKqzJkaNaDDQAh6ljmuvDw4z4F+3WHYRDQPncxZwMLDCSxXTjrBePUqaGhIslS1KrRrh+6zZ4wfPx5lLS2cBg4k3MeHZj4+XLt2jYULF3Lz5k3uFSuGR61aTOnVi6TDhylcuDBjx46lYsWKODs7cyk6WoqqXbwoJen/7RcNgUAgIcTrxyPkSwBIAva///2P2NjYjG3H9PR0FBQUuHLlCvv378fAwOCbxxXi9d9RokEttMuUBCD06i3OLnb7/CYVFdixGtTUwNIWdLRg71p4+ATloRMY3q8DTRpVZ3PTZhx+HYPMdiryQN9e7Wj5W222GVXmmIkJmA2AkNDMceXlpa1Mqy4wZAKa/qdzFrDXrwksW1YSsIAAKFxYErBKlaBNG7SfPmXcuHEkysnRp3Jl6np68vzuXTp37oyFhQV2I0Yw9OxZipYvz++dO5N6/jwqKirY2dnRsGFDNm7ciH9cHLLNm6VK+H9rEi8QCIR4/VuIhHtBBhs2bODixYv07NkTbW1tihUrxqtXr3B0dGTy5MmYmZl903hCvP57Xly+wbqWvZClpyOvpIT1WS+K1azy+Y13H0GLntC6ibT9ePQMdLeBYb2RLZuFj/9FfA9foOXt21jWqYT8gqnIgP0+Z/E/dpnOjx5gFhyE3NFtYPiJpKelScn8u3xg8zJi2jTLOQlfTw+jkBA4ehTq1IG3b6FNG3j6FK/ff2fmunXcu3ePiuXLs/DNGzoMG8bFzp3x9PRETU0NH29v9CIi8FZQQPfsWahaFZlMxsGDBzl06BAtW7bE8vlz5B0dYc0aqSm3QCAQ4pU3iNOOgtzxaZmIEydOEBUVxcGDBzMiXe3ataN169bfNKYQr5+HYzOWcHah1HLIoHplhp/1QlHlC2UofI6BpR1MtIM/J8C6HWA/TapkP96a0+dusmP3UeoEBjKwZW2UHG2RyWT4HbmE96FztAt8SNcXz5Dz9wR93cxx09JgiCPsOQRbVxDTqnHOAla0KEbPn0uFV2vXJj0ykvk1avBHWBh1q1al3/DhpKSkEPbsGfZeXlSwteVyhw7Mnj2bO3fuYN2/P47e3qhFRUkFWcuVA6R/l9u3b6dWrVoMvn0bpdWrpabd31inTiDIbwjxyjOEfAlyz9/rdMXHx6Ourk5iYiKqqqrfNJYQr5+L1KQk3Jv1yGg51GzSCEz/nPDlm5e4wbSFsH4J9OkKs5xg/mrYvBx6duL6rUDWrz9AhRcvsDFrhNqw3gAcOxmA1/6TtHwciOWrF8gf3gI62p+8iFQYMgH2HoZtK4lp0ShnAdPVxejlS0nAatXixL59PBk1ihYJCVQ8e5bED5Xwnz95woj9+zEePZob7drh6upKlSpVsO3eHeVWraTcrrNnoXhxAG7evMm6desoU7o0dufOoX74sFQDrF69PFtzgeBXQohXniLkS/DP+FTEPq35lRuEeP2cvLp1n7VNLUhPSUFOXp6hJ3dSskGtz2+UyWD4JKmR9hFPqF8ThjqCly/4boJm9XkUGILr6p0UjYzEoVsLClt2AOD0uZts332Upk+C6BMZhrzvJtAqnDl2aioMHAvex2D7KmJ+a5CzgOnoYBQaiuzYMeRq1YKICKlmV1QUshMnSClXDjc3Nx7du4fNwYNUc3Tkftu2uLq6Urp0aezNzVFt3RqKFJEES0cHgCdPnrBmzRo0NTQYefQoOo8eSYn4HyJkAkFBQYhXniPkS5CVj1J148YNVFRUMDExydPxhXj93Jye78yJWUsB0DUqh+2lAyh96f9RUhK0HwBPn8MZLzAoCp2Hwq37cGoXVCrPi+evWLVoI6rv3zOqd1t020v9Hi9eucvmbX7UCw5m4NtIFLw9QKNQ5tgpKTBgLPgch53OxDStl72AFS8uCdirV3D8uFR+IjxcErB37+DUKVLKlMHDw4O7t24xzM+PWlOmEGRqyurVqzEwMMCmZUuKmJuTXr488seOSScpkerbrVy5kvTUVEb6+VEiKUmqrv9B0ASC/I4Qrx+CKLIqyOSjeB0/fhxra+s8H1+I189PM0cbDOvVAODN46c8OX7uyzeqqMDONaCkBD3tICUVdjhDMT3oMgzCIylZqhiOU4aQrqbGEq+ThJ2+AkCj+lUZNtCcgHLlcdfRJ6XnCEhIzBxbSQk2OUGHltDbHs0L17I/BRkWRquoKAINDMDUFG7fBgMDScQKF4bWrVF68QJra2tq1qmDu5kZVxctosL584wbN47Q0FB6TpvGzVWrkL9/n/SuXTNqfBkYGDBx4kQ0NDVZ2qoVj0DUABMUGIR4/bcI+SoAfCpec+bMYeXKlXka9RLi9Wsgr6hId49F6FUxYsjRbRibt/n6zfq6sMcNAp/C8ImgqQH710li0sMG4uIpaqjPhGnDUJeDpduP8Oy8FL2qU8sY22FduVu2LK4auiT3ccgqNMrKsGU5tGsOvUageel6zgIWHU2gnh60bg137kCxYpKAqapCq1YovHjBkCFDqN+gAevbtOHCvHmUuniRKVOmoKmpSdfJk7mydCny58+TbmUlbYECWlpajBs3jjLlyrHK1JSA169h0CBRA0yQr8lr8Ur9ew1BQY6Ibcd8zqfi9ddffzF37lwaNWr0TY2ws0OI16+HLD0d