{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Checking that Kerr metric is a solution of Einstein's equation\n", "\n", "This Jupyter/SageMath notebook is relative to the lectures\n", "[Geometry and physics of black holes](https://relativite.obspm.fr/blackholes/).\n", "\n", "The computations make use of tools developed through the [SageManifolds project](https://sagemanifolds.obspm.fr).\n", "\n", "*NB:* a version of SageMath at least equal to 8.2 is required to run this notebook: " ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'SageMath version 9.8.beta2, Release Date: 2022-10-16'" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "version()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First we set up the notebook to display mathematical objects using LaTeX formatting:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "%display latex" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To speed up computations, we ask for running them in parallel on 8 threads:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "Parallelism().set(nproc=8)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Spacetime\n", "\n", "We declare the spacetime manifold $M$:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "4-dimensional Lorentzian manifold M\n" ] } ], "source": [ "M = Manifold(4, 'M', structure='Lorentzian')\n", "print(M)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and the Boyer-Lindquist coordinates $(t,r,\\theta,\\phi)$ as a chart on $M$:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\\(\\displaystyle \\left(M,(t, r, {\\theta}, {\\phi})\\right)\\)" ], "text/latex": [ "$\\displaystyle \\left(M,(t, r, {\\theta}, {\\phi})\\right)$" ], "text/plain": [ "Chart (M, (t, r, th, ph))" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "XBL. = M.chart(r't r th:(0,pi):\\theta ph:(0,2*pi):\\phi')\n", "XBL" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\\(\\displaystyle t :\\ \\left( -\\infty, +\\infty \\right) ;\\quad r :\\ \\left( -\\infty, +\\infty \\right) ;\\quad {\\theta} :\\ \\left( 0 , \\pi \\right) ;\\quad {\\phi} :\\ \\left( 0 , 2 \\, \\pi \\right)\\)" ], "text/latex": [ "$\\displaystyle t :\\ \\left( -\\infty, +\\infty \\right) ;\\quad r :\\ \\left( -\\infty, +\\infty \\right) ;\\quad {\\theta} :\\ \\left( 0 , \\pi \\right) ;\\quad {\\phi} :\\ \\left( 0 , 2 \\, \\pi \\right)$" ], "text/plain": [ "t: (-oo, +oo); r: (-oo, +oo); th: (0, pi); ph: (0, 2*pi)" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "XBL.coord_range()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Kerr metric" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We define the metric $g$ by its components w.r.t. the Boyer-Lindquist coordinates:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\\(\\displaystyle g = \\left( \\frac{2 \\, m r}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} - 1 \\right) \\mathrm{d} t\\otimes \\mathrm{d} t + \\left( -\\frac{2 \\, a m r \\sin\\left({\\theta}\\right)^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} t\\otimes \\mathrm{d} {\\phi} + \\left( \\frac{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}}{a^{2} - 2 \\, m r + r^{2}} \\right) \\mathrm{d} r\\otimes \\mathrm{d} r + \\left( a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2} \\right) \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\theta} + \\left( -\\frac{2 \\, a m r \\sin\\left({\\theta}\\right)^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} {\\phi}\\otimes \\mathrm{d} t + {\\left(\\frac{2 \\, a^{2} m r \\sin\\left({\\theta}\\right)^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} + a^{2} + r^{2}\\right)} \\sin\\left({\\theta}\\right)^{2} \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\phi}\\)" ], "text/latex": [ "$\\displaystyle g = \\left( \\frac{2 \\, m r}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} - 1 \\right) \\mathrm{d} t\\otimes \\mathrm{d} t + \\left( -\\frac{2 \\, a m r \\sin\\left({\\theta}\\right)^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} t\\otimes \\mathrm{d} {\\phi} + \\left( \\frac{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}}{a^{2} - 2 \\, m r + r^{2}} \\right) \\mathrm{d} r\\otimes \\mathrm{d} r + \\left( a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2} \\right) \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\theta} + \\left( -\\frac{2 \\, a m r \\sin\\left({\\theta}\\right)^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} {\\phi}\\otimes \\mathrm{d} t + {\\left(\\frac{2 \\, a^{2} m r \\sin\\left({\\theta}\\right)^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} + a^{2} + r^{2}\\right)} \\sin\\left({\\theta}\\right)^{2} \\mathrm{d} {\\phi}\\otimes \\mathrm{d} {\\phi}$" ], "text/plain": [ "g = (2*m*r/(a^2*cos(th)^2 + r^2) - 1) dt⊗dt - 2*a*m*r*sin(th)^2/(a^2*cos(th)^2 + r^2) dt⊗dph + (a^2*cos(th)^2 + r^2)/(a^2 - 2*m*r + r^2) dr⊗dr + (a^2*cos(th)^2 + r^2) dth⊗dth - 2*a*m*r*sin(th)^2/(a^2*cos(th)^2 + r^2) dph⊗dt + (2*a^2*m*r*sin(th)^2/(a^2*cos(th)^2 + r^2) + a^2 + r^2)*sin(th)^2 dph⊗dph" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "g = M.metric()\n", "m, a = var('m a')\n", "rho2 = r^2 + (a*cos(th))^2\n", "Delta = r^2 - 2*m*r + a^2\n", "g[0,0] = -(1 - 2*m*r/rho2)\n", "g[0,3] = -2*a*m*r*sin(th)^2/rho2\n", "g[1,1] = rho2/Delta\n", "g[2,2] = rho2\n", "g[3,3] = (r^2 + a^2 + 2*m*r*(a*sin(th))^2/rho2)*sin(th)^2\n", "g.display()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\\(\\displaystyle \\begin{array}{lcl} g_{ \\, t \\, t }^{ \\phantom{\\, t}\\phantom{\\, t} } & = & \\frac{2 \\, m r}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} - 1 \\\\ g_{ \\, t \\, {\\phi} }^{ \\phantom{\\, t}\\phantom{\\, {\\phi}} } & = & -\\frac{2 \\, a m r \\sin\\left({\\theta}\\right)^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\ g_{ \\, r \\, r }^{ \\phantom{\\, r}\\phantom{\\, r} } & = & \\frac{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}}{a^{2} - 2 \\, m r + r^{2}} \\\\ g_{ \\, {\\theta} \\, {\\theta} }^{ \\phantom{\\, {\\theta}}\\phantom{\\, {\\theta}} } & = & a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2} \\\\ g_{ \\, {\\phi} \\, t }^{ \\phantom{\\, {\\phi}}\\phantom{\\, t} } & = & -\\frac{2 \\, a m r \\sin\\left({\\theta}\\right)^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\ g_{ \\, {\\phi} \\, {\\phi} }^{ \\phantom{\\, {\\phi}}\\phantom{\\, {\\phi}} } & = & {\\left(\\frac{2 \\, a^{2} m r \\sin\\left({\\theta}\\right)^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} + a^{2} + r^{2}\\right)} \\sin\\left({\\theta}\\right)^{2} \\end{array}\\)" ], "text/latex": [ "$\\displaystyle \\begin{array}{lcl} g_{ \\, t \\, t }^{ \\phantom{\\, t}\\phantom{\\, t} } & = & \\frac{2 \\, m r}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} - 1 \\\\ g_{ \\, t \\, {\\phi} }^{ \\phantom{\\, t}\\phantom{\\, {\\phi}} } & = & -\\frac{2 \\, a m r \\sin\\left({\\theta}\\right)^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\ g_{ \\, r \\, r }^{ \\phantom{\\, r}\\phantom{\\, r} } & = & \\frac{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}}{a^{2} - 2 \\, m r + r^{2}} \\\\ g_{ \\, {\\theta} \\, {\\theta} }^{ \\phantom{\\, {\\theta}}\\phantom{\\, {\\theta}} } & = & a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2} \\\\ g_{ \\, {\\phi} \\, t }^{ \\phantom{\\, {\\phi}}\\phantom{\\, t} } & = & -\\frac{2 \\, a m r \\sin\\left({\\theta}\\right)^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\ g_{ \\, {\\phi} \\, {\\phi} }^{ \\phantom{\\, {\\phi}}\\phantom{\\, {\\phi}} } & = & {\\left(\\frac{2 \\, a^{2} m r \\sin\\left({\\theta}\\right)^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} + a^{2} + r^{2}\\right)} \\sin\\left({\\theta}\\right)^{2} \\end{array}$" ], "text/plain": [ "g_t,t = 2*m*r/(a^2*cos(th)^2 + r^2) - 1 \n", "g_t,ph = -2*a*m*r*sin(th)^2/(a^2*cos(th)^2 + r^2) \n", "g_r,r = (a^2*cos(th)^2 + r^2)/(a^2 - 2*m*r + r^2) \n", "g_th,th = a^2*cos(th)^2 + r^2 \n", "g_ph,t = -2*a*m*r*sin(th)^2/(a^2*cos(th)^2 + r^2) \n", "g_ph,ph = (2*a^2*m*r*sin(th)^2/(a^2*cos(th)^2 + r^2) + a^2 + r^2)*sin(th)^2 " ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "g.display_comp()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The inverse metric:" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\\(\\displaystyle \\left(\\begin{array}{rrrr}\n", "-\\frac{2 \\, a^{2} m r \\sin\\left({\\theta}\\right)^{2} + a^{2} r^{2} + r^{4} + {\\left(a^{4} + a^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}}{a^{2} r^{2} - 2 \\, m r^{3} + r^{4} + {\\left(a^{4} - 2 \\, a^{2} m r + a^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}} & 0 & 0 & -\\frac{2 \\, a m r}{a^{2} r^{2} - 2 \\, m r^{3} + r^{4} + {\\left(a^{4} - 2 \\, a^{2} m r + a^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}} \\\\\n", "0 & \\frac{a^{2} - 2 \\, m r + r^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} & 0 & 0 \\\\\n", "0 & 0 & \\frac{1}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} & 0 \\\\\n", "-\\frac{2 \\, a m r}{a^{2} r^{2} - 2 \\, m r^{3} + r^{4} + {\\left(a^{4} - 2 \\, a^{2} m r + a^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}} & 0 & 0 & \\frac{a^{2} \\cos\\left({\\theta}\\right)^{2} - 2 \\, m r + r^{2}}{2 \\, a^{2} m r \\sin\\left({\\theta}\\right)^{4} - {\\left(2 \\, a^{2} m r - a^{2} r^{2} + 2 \\, m r^{3} - r^{4} - {\\left(a^{4} + a^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}\n", "\\end{array}\\right)\\)" ], "text/latex": [ "$\\displaystyle \\left(\\begin{array}{rrrr}\n", "-\\frac{2 \\, a^{2} m r \\sin\\left({\\theta}\\right)^{2} + a^{2} r^{2} + r^{4} + {\\left(a^{4} + a^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}}{a^{2} r^{2} - 2 \\, m r^{3} + r^{4} + {\\left(a^{4} - 2 \\, a^{2} m r + a^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}} & 0 & 0 & -\\frac{2 \\, a m r}{a^{2} r^{2} - 2 \\, m r^{3} + r^{4} + {\\left(a^{4} - 2 \\, a^{2} m r + a^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}} \\\\\n", "0 & \\frac{a^{2} - 2 \\, m r + r^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} & 0 & 0 \\\\\n", "0 & 0 & \\frac{1}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} & 0 \\\\\n", "-\\frac{2 \\, a m r}{a^{2} r^{2} - 2 \\, m r^{3} + r^{4} + {\\left(a^{4} - 2 \\, a^{2} m r + a^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}} & 0 & 0 & \\frac{a^{2} \\cos\\left({\\theta}\\right)^{2} - 2 \\, m r + r^{2}}{2 \\, a^{2} m r \\sin\\left({\\theta}\\right)^{4} - {\\left(2 \\, a^{2} m r - a^{2} r^{2} + 2 \\, m r^{3} - r^{4} - {\\left(a^{4} + a^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}\n", "\\end{array}\\right)$" ], "text/plain": [ "[-(2*a^2*m*r*sin(th)^2 + a^2*r^2 + r^4 + (a^4 + a^2*r^2)*cos(th)^2)/(a^2*r^2 - 2*m*r^3 + r^4 + (a^4 - 2*a^2*m*r + a^2*r^2)*cos(th)^2) 0 0 -2*a*m*r/(a^2*r^2 - 2*m*r^3 + r^4 + (a^4 - 2*a^2*m*r + a^2*r^2)*cos(th)^2)]\n", "[ 0 (a^2 - 2*m*r + r^2)/(a^2*cos(th)^2 + r^2) 0 0]\n", "[ 0 0 1/(a^2*cos(th)^2 + r^2) 0]\n", "[ -2*a*m*r/(a^2*r^2 - 2*m*r^3 + r^4 + (a^4 - 2*a^2*m*r + a^2*r^2)*cos(th)^2) 0 0 (a^2*cos(th)^2 - 2*m*r + r^2)/(2*a^2*m*r*sin(th)^4 - (2*a^2*m*r - a^2*r^2 + 2*m*r^3 - r^4 - (a^4 + a^2*r^2)*cos(th)^2)*sin(th)^2)]" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "g.inverse()[:]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The Christoffel symbols:" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\\(\\displaystyle \\begin{array}{lcl} \\Gamma_{ \\phantom{\\, t} \\, t \\, r }^{ \\, t \\phantom{\\, t} \\phantom{\\, r} } & = & -\\frac{a^{4} m - m r^{4} - {\\left(a^{4} m + a^{2} m r^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{2} r^{4} - 2 \\, m r^{5} + r^{6} + {\\left(a^{6} - 2 \\, a^{4} m r + a^{4} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{4} + 2 \\, {\\left(a^{4} r^{2} - 2 \\, a^{2} m r^{3} + a^{2} r^{4}\\right)} \\cos\\left({\\theta}\\right)^{2}} \\\\ \\Gamma_{ \\phantom{\\, t} \\, t \\, {\\theta} }^{ \\, t \\phantom{\\, t} \\phantom{\\, {\\theta}} } & = & -\\frac{2 \\, a^{2} m r \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\\\ \\Gamma_{ \\phantom{\\, t} \\, r \\, {\\phi} }^{ \\, t \\phantom{\\, r} \\phantom{\\, {\\phi}} } & = & -\\frac{{\\left(a^{3} m r^{2} + 3 \\, a m r^{4} - {\\left(a^{5} m - a^{3} m r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{2} r^{4} - 2 \\, m r^{5} + r^{6} + {\\left(a^{6} - 2 \\, a^{4} m r + a^{4} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{4} + 2 \\, {\\left(a^{4} r^{2} - 2 \\, a^{2} m r^{3} + a^{2} r^{4}\\right)} \\cos\\left({\\theta}\\right)^{2}} \\\\ \\Gamma_{ \\phantom{\\, t} \\, {\\theta} \\, {\\phi} }^{ \\, t \\phantom{\\, {\\theta}} \\phantom{\\, {\\phi}} } & = & -\\frac{2 \\, {\\left(a^{5} m r \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)^{5} - {\\left(a^{5} m r + a^{3} m r^{3}\\right)} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)^{3}\\right)}}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} \\\\ \\Gamma_{ \\phantom{\\, r} \\, t \\, t }^{ \\, r \\phantom{\\, t} \\phantom{\\, t} } & = & \\frac{a^{2} m r^{2} - 2 \\, m^{2} r^{3} + m r^{4} - {\\left(a^{4} m - 2 \\, a^{2} m^{2} r + a^{2} m r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} \\\\ \\Gamma_{ \\phantom{\\, r} \\, t \\, {\\phi} }^{ \\, r \\phantom{\\, t} \\phantom{\\, {\\phi}} } & = & -\\frac{{\\left(a^{3} m r^{2} - 2 \\, a m^{2} r^{3} + a m r^{4} - {\\left(a^{5} m - 2 \\, a^{3} m^{2} r + a^{3} m r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} \\\\ \\Gamma_{ \\phantom{\\, r} \\, r \\, r }^{ \\, r \\phantom{\\, r} \\phantom{\\, r} } & = & \\frac{a^{2} r - m r^{2} + {\\left(a^{2} m - a^{2} r\\right)} \\cos\\left({\\theta}\\right)^{2}}{a^{2} r^{2} - 2 \\, m r^{3} + r^{4} + {\\left(a^{4} - 2 \\, a^{2} m r + a^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}} \\\\ \\Gamma_{ \\phantom{\\, r} \\, r \\, {\\theta} }^{ \\, r \\phantom{\\, r} \\phantom{\\, {\\theta}} } & = & -\\frac{a^{2} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\ \\Gamma_{ \\phantom{\\, r} \\, {\\theta} \\, {\\theta} }^{ \\, r \\phantom{\\, {\\theta}} \\phantom{\\, {\\theta}} } & = & -\\frac{a^{2} r - 2 \\, m r^{2} + r^{3}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\ \\Gamma_{ \\phantom{\\, r} \\, {\\phi} \\, {\\phi} }^{ \\, r \\phantom{\\, {\\phi}} \\phantom{\\, {\\phi}} } & = & \\frac{{\\left(a^{4} m r^{2} - 2 \\, a^{2} m^{2} r^{3} + a^{2} m r^{4} - {\\left(a^{6} m - 2 \\, a^{4} m^{2} r + a^{4} m r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}\\right)} \\sin\\left({\\theta}\\right)^{4} - {\\left(a^{2} r^{5} - 2 \\, m r^{6} + r^{7} + {\\left(a^{6} r - 2 \\, a^{4} m r^{2} + a^{4} r^{3}\\right)} \\cos\\left({\\theta}\\right)^{4} + 2 \\, {\\left(a^{4} r^{3} - 2 \\, a^{2} m r^{4} + a^{2} r^{5}\\right)} \\cos\\left({\\theta}\\right)^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} \\\\ \\Gamma_{ \\phantom{\\, {\\theta}} \\, t \\, t }^{ \\, {\\theta} \\phantom{\\, t} \\phantom{\\, t} } & = & -\\frac{2 \\, a^{2} m r \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} \\\\ \\Gamma_{ \\phantom{\\, {\\theta}} \\, t \\, {\\phi} }^{ \\, {\\theta} \\phantom{\\, t} \\phantom{\\, {\\phi}} } & = & \\frac{2 \\, {\\left(a^{3} m r + a m r^{3}\\right)} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} \\\\ \\Gamma_{ \\phantom{\\, {\\theta}} \\, r \\, r }^{ \\, {\\theta} \\phantom{\\, r} \\phantom{\\, r} } & = & \\frac{a^{2} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{2} r^{2} - 2 \\, m r^{3} + r^{4} + {\\left(a^{4} - 2 \\, a^{2} m r + a^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}} \\\\ \\Gamma_{ \\phantom{\\, {\\theta}} \\, r \\, {\\theta} }^{ \\, {\\theta} \\phantom{\\, r} \\phantom{\\, {\\theta}} } & = & \\frac{r}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\ \\Gamma_{ \\phantom{\\, {\\theta}} \\, {\\theta} \\, {\\theta} }^{ \\, {\\theta} \\phantom{\\, {\\theta}} \\phantom{\\, {\\theta}} } & = & -\\frac{a^{2} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\ \\Gamma_{ \\phantom{\\, {\\theta}} \\, {\\phi} \\, {\\phi} }^{ \\, {\\theta} \\phantom{\\, {\\phi}} \\phantom{\\, {\\phi}} } & = & -\\frac{{\\left({\\left(a^{6} - 2 \\, a^{4} m r + a^{4} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{5} + 2 \\, {\\left(a^{4} r^{2} - 2 \\, a^{2} m r^{3} + a^{2} r^{4}\\right)} \\cos\\left({\\theta}\\right)^{3} + {\\left(2 \\, a^{4} m r + 4 \\, a^{2} m r^{3} + a^{2} r^{4} + r^{6}\\right)} \\cos\\left({\\theta}\\right)\\right)} \\sin\\left({\\theta}\\right)}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} \\\\ \\Gamma_{ \\phantom{\\, {\\phi}} \\, t \\, r }^{ \\, {\\phi} \\phantom{\\, t} \\phantom{\\, r} } & = & -\\frac{a^{3} m \\cos\\left({\\theta}\\right)^{2} - a m r^{2}}{a^{2} r^{4} - 2 \\, m r^{5} + r^{6} + {\\left(a^{6} - 2 \\, a^{4} m r + a^{4} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{4} + 2 \\, {\\left(a^{4} r^{2} - 2 \\, a^{2} m r^{3} + a^{2} r^{4}\\right)} \\cos\\left({\\theta}\\right)^{2}} \\\\ \\Gamma_{ \\phantom{\\, {\\phi}} \\, t \\, {\\theta} }^{ \\, {\\phi} \\phantom{\\, t} \\phantom{\\, {\\theta}} } & = & -\\frac{2 \\, a m r \\cos\\left({\\theta}\\right)}{{\\left(a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}\\right)} \\sin\\left({\\theta}\\right)} \\\\ \\Gamma_{ \\phantom{\\, {\\phi}} \\, r \\, {\\phi} }^{ \\, {\\phi} \\phantom{\\, r} \\phantom{\\, {\\phi}} } & = & -\\frac{a^{2} m r^{2} + 2 \\, m r^{4} - r^{5} + {\\left(a^{4} m - a^{4} r\\right)} \\cos\\left({\\theta}\\right)^{4} - {\\left(a^{4} m - a^{2} m r^{2} + 2 \\, a^{2} r^{3}\\right)} \\cos\\left({\\theta}\\right)^{2}}{a^{2} r^{4} - 2 \\, m r^{5} + r^{6} + {\\left(a^{6} - 2 \\, a^{4} m r + a^{4} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{4} + 2 \\, {\\left(a^{4} r^{2} - 2 \\, a^{2} m r^{3} + a^{2} r^{4}\\right)} \\cos\\left({\\theta}\\right)^{2}} \\\\ \\Gamma_{ \\phantom{\\, {\\phi}} \\, {\\theta} \\, {\\phi} }^{ \\, {\\phi} \\phantom{\\, {\\theta}} \\phantom{\\, {\\phi}} } & = & \\frac{a^{4} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)^{4} - 2 \\, {\\left(a^{4} - a^{2} m r + a^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)^{2} + {\\left(a^{4} + 2 \\, a^{2} r^{2} + r^{4}\\right)} \\cos\\left({\\theta}\\right)}{{\\left(a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}\\right)} \\sin\\left({\\theta}\\right)} \\end{array}\\)" ], "text/latex": [ "$\\displaystyle \\begin{array}{lcl} \\Gamma_{ \\phantom{\\, t} \\, t \\, r }^{ \\, t \\phantom{\\, t} \\phantom{\\, r} } & = & -\\frac{a^{4} m - m r^{4} - {\\left(a^{4} m + a^{2} m r^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{2} r^{4} - 2 \\, m r^{5} + r^{6} + {\\left(a^{6} - 2 \\, a^{4} m r + a^{4} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{4} + 2 \\, {\\left(a^{4} r^{2} - 2 \\, a^{2} m r^{3} + a^{2} r^{4}\\right)} \\cos\\left({\\theta}\\right)^{2}} \\\\ \\Gamma_{ \\phantom{\\, t} \\, t \\, {\\theta} }^{ \\, t \\phantom{\\, t} \\phantom{\\, {\\theta}} } & = & -\\frac{2 \\, a^{2} m r \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\\\ \\Gamma_{ \\phantom{\\, t} \\, r \\, {\\phi} }^{ \\, t \\phantom{\\, r} \\phantom{\\, {\\phi}} } & = & -\\frac{{\\left(a^{3} m r^{2} + 3 \\, a m r^{4} - {\\left(a^{5} m - a^{3} m r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{2} r^{4} - 2 \\, m r^{5} + r^{6} + {\\left(a^{6} - 2 \\, a^{4} m r + a^{4} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{4} + 2 \\, {\\left(a^{4} r^{2} - 2 \\, a^{2} m r^{3} + a^{2} r^{4}\\right)} \\cos\\left({\\theta}\\right)^{2}} \\\\ \\Gamma_{ \\phantom{\\, t} \\, {\\theta} \\, {\\phi} }^{ \\, t \\phantom{\\, {\\theta}} \\phantom{\\, {\\phi}} } & = & -\\frac{2 \\, {\\left(a^{5} m r \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)^{5} - {\\left(a^{5} m r + a^{3} m r^{3}\\right)} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)^{3}\\right)}}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} \\\\ \\Gamma_{ \\phantom{\\, r} \\, t \\, t }^{ \\, r \\phantom{\\, t} \\phantom{\\, t} } & = & \\frac{a^{2} m r^{2} - 2 \\, m^{2} r^{3} + m r^{4} - {\\left(a^{4} m - 2 \\, a^{2} m^{2} r + a^{2} m r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} \\\\ \\Gamma_{ \\phantom{\\, r} \\, t \\, {\\phi} }^{ \\, r \\phantom{\\, t} \\phantom{\\, {\\phi}} } & = & -\\frac{{\\left(a^{3} m r^{2} - 2 \\, a m^{2} r^{3} + a m r^{4} - {\\left(a^{5} m - 2 \\, a^{3} m^{2} r + a^{3} m r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} \\\\ \\Gamma_{ \\phantom{\\, r} \\, r \\, r }^{ \\, r \\phantom{\\, r} \\phantom{\\, r} } & = & \\frac{a^{2} r - m r^{2} + {\\left(a^{2} m - a^{2} r\\right)} \\cos\\left({\\theta}\\right)^{2}}{a^{2} r^{2} - 2 \\, m r^{3} + r^{4} + {\\left(a^{4} - 2 \\, a^{2} m r + a^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}} \\\\ \\Gamma_{ \\phantom{\\, r} \\, r \\, {\\theta} }^{ \\, r \\phantom{\\, r} \\phantom{\\, {\\theta}} } & = & -\\frac{a^{2} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\ \\Gamma_{ \\phantom{\\, r} \\, {\\theta} \\, {\\theta} }^{ \\, r \\phantom{\\, {\\theta}} \\phantom{\\, {\\theta}} } & = & -\\frac{a^{2} r - 2 \\, m r^{2} + r^{3}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\ \\Gamma_{ \\phantom{\\, r} \\, {\\phi} \\, {\\phi} }^{ \\, r \\phantom{\\, {\\phi}} \\phantom{\\, {\\phi}} } & = & \\frac{{\\left(a^{4} m r^{2} - 2 \\, a^{2} m^{2} r^{3} + a^{2} m r^{4} - {\\left(a^{6} m - 2 \\, a^{4} m^{2} r + a^{4} m r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}\\right)} \\sin\\left({\\theta}\\right)^{4} - {\\left(a^{2} r^{5} - 2 \\, m r^{6} + r^{7} + {\\left(a^{6} r - 2 \\, a^{4} m r^{2} + a^{4} r^{3}\\right)} \\cos\\left({\\theta}\\right)^{4} + 2 \\, {\\left(a^{4} r^{3} - 2 \\, a^{2} m r^{4} + a^{2} r^{5}\\right)} \\cos\\left({\\theta}\\right)^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} \\\\ \\Gamma_{ \\phantom{\\, {\\theta}} \\, t \\, t }^{ \\, {\\theta} \\phantom{\\, t} \\phantom{\\, t} } & = & -\\frac{2 \\, a^{2} m r \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} \\\\ \\Gamma_{ \\phantom{\\, {\\theta}} \\, t \\, {\\phi} }^{ \\, {\\theta} \\phantom{\\, t} \\phantom{\\, {\\phi}} } & = & \\frac{2 \\, {\\left(a^{3} m r + a m r^{3}\\right)} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} \\\\ \\Gamma_{ \\phantom{\\, {\\theta}} \\, r \\, r }^{ \\, {\\theta} \\phantom{\\, r} \\phantom{\\, r} } & = & \\frac{a^{2} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{2} r^{2} - 2 \\, m r^{3} + r^{4} + {\\left(a^{4} - 2 \\, a^{2} m r + a^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{2}} \\\\ \\Gamma_{ \\phantom{\\, {\\theta}} \\, r \\, {\\theta} }^{ \\, {\\theta} \\phantom{\\, r} \\phantom{\\, {\\theta}} } & = & \\frac{r}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\ \\Gamma_{ \\phantom{\\, {\\theta}} \\, {\\theta} \\, {\\theta} }^{ \\, {\\theta} \\phantom{\\, {\\theta}} \\phantom{\\, {\\theta}} } & = & -\\frac{a^{2} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\\\ \\Gamma_{ \\phantom{\\, {\\theta}} \\, {\\phi} \\, {\\phi} }^{ \\, {\\theta} \\phantom{\\, {\\phi}} \\phantom{\\, {\\phi}} } & = & -\\frac{{\\left({\\left(a^{6} - 2 \\, a^{4} m r + a^{4} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{5} + 2 \\, {\\left(a^{4} r^{2} - 2 \\, a^{2} m r^{3} + a^{2} r^{4}\\right)} \\cos\\left({\\theta}\\right)^{3} + {\\left(2 \\, a^{4} m r + 4 \\, a^{2} m r^{3} + a^{2} r^{4} + r^{6}\\right)} \\cos\\left({\\theta}\\right)\\right)} \\sin\\left({\\theta}\\right)}{a^{6} \\cos\\left({\\theta}\\right)^{6} + 3 \\, a^{4} r^{2} \\cos\\left({\\theta}\\right)^{4} + 3 \\, a^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} + r^{6}} \\\\ \\Gamma_{ \\phantom{\\, {\\phi}} \\, t \\, r }^{ \\, {\\phi} \\phantom{\\, t} \\phantom{\\, r} } & = & -\\frac{a^{3} m \\cos\\left({\\theta}\\right)^{2} - a m r^{2}}{a^{2} r^{4} - 2 \\, m r^{5} + r^{6} + {\\left(a^{6} - 2 \\, a^{4} m r + a^{4} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{4} + 2 \\, {\\left(a^{4} r^{2} - 2 \\, a^{2} m r^{3} + a^{2} r^{4}\\right)} \\cos\\left({\\theta}\\right)^{2}} \\\\ \\Gamma_{ \\phantom{\\, {\\phi}} \\, t \\, {\\theta} }^{ \\, {\\phi} \\phantom{\\, t} \\phantom{\\, {\\theta}} } & = & -\\frac{2 \\, a m r \\cos\\left({\\theta}\\right)}{{\\left(a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}\\right)} \\sin\\left({\\theta}\\right)} \\\\ \\Gamma_{ \\phantom{\\, {\\phi}} \\, r \\, {\\phi} }^{ \\, {\\phi} \\phantom{\\, r} \\phantom{\\, {\\phi}} } & = & -\\frac{a^{2} m r^{2} + 2 \\, m r^{4} - r^{5} + {\\left(a^{4} m - a^{4} r\\right)} \\cos\\left({\\theta}\\right)^{4} - {\\left(a^{4} m - a^{2} m r^{2} + 2 \\, a^{2} r^{3}\\right)} \\cos\\left({\\theta}\\right)^{2}}{a^{2} r^{4} - 2 \\, m r^{5} + r^{6} + {\\left(a^{6} - 2 \\, a^{4} m r + a^{4} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{4} + 2 \\, {\\left(a^{4} r^{2} - 2 \\, a^{2} m r^{3} + a^{2} r^{4}\\right)} \\cos\\left({\\theta}\\right)^{2}} \\\\ \\Gamma_{ \\phantom{\\, {\\phi}} \\, {\\theta} \\, {\\phi} }^{ \\, {\\phi} \\phantom{\\, {\\theta}} \\phantom{\\, {\\phi}} } & = & \\frac{a^{4} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)^{4} - 2 \\, {\\left(a^{4} - a^{2} m r + a^{2} r^{2}\\right)} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)^{2} + {\\left(a^{4} + 2 \\, a^{2} r^{2} + r^{4}\\right)} \\cos\\left({\\theta}\\right)}{{\\left(a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}\\right)} \\sin\\left({\\theta}\\right)} \\end{array}$" ], "text/plain": [ "Gam^t_t,r = -(a^4*m - m*r^4 - (a^4*m + a^2*m*r^2)*sin(th)^2)/(a^2*r^4 - 2*m*r^5 + r^6 + (a^6 - 2*a^4*m*r + a^4*r^2)*cos(th)^4 + 2*(a^4*r^2 - 2*a^2*m*r^3 + a^2*r^4)*cos(th)^2) \n", "Gam^t_t,th = -2*a^2*m*r*cos(th)*sin(th)/(a^4*cos(th)^4 + 2*a^2*r^2*cos(th)^2 + r^4) \n", "Gam^t_r,ph = -(a^3*m*r^2 + 3*a*m*r^4 - (a^5*m - a^3*m*r^2)*cos(th)^2)*sin(th)^2/(a^2*r^4 - 2*m*r^5 + r^6 + (a^6 - 2*a^4*m*r + a^4*r^2)*cos(th)^4 + 2*(a^4*r^2 - 2*a^2*m*r^3 + a^2*r^4)*cos(th)^2) \n", "Gam^t_th,ph = -2*(a^5*m*r*cos(th)*sin(th)^5 - (a^5*m*r + a^3*m*r^3)*cos(th)*sin(th)^3)/(a^6*cos(th)^6 + 3*a^4*r^2*cos(th)^4 + 3*a^2*r^4*cos(th)^2 + r^6) \n", "Gam^r_t,t = (a^2*m*r^2 - 2*m^2*r^3 + m*r^4 - (a^4*m - 2*a^2*m^2*r + a^2*m*r^2)*cos(th)^2)/(a^6*cos(th)^6 + 3*a^4*r^2*cos(th)^4 + 3*a^2*r^4*cos(th)^2 + r^6) \n", "Gam^r_t,ph = -(a^3*m*r^2 - 2*a*m^2*r^3 + a*m*r^4 - (a^5*m - 2*a^3*m^2*r + a^3*m*r^2)*cos(th)^2)*sin(th)^2/(a^6*cos(th)^6 + 3*a^4*r^2*cos(th)^4 + 3*a^2*r^4*cos(th)^2 + r^6) \n", "Gam^r_r,r = (a^2*r - m*r^2 + (a^2*m - a^2*r)*cos(th)^2)/(a^2*r^2 - 2*m*r^3 + r^4 + (a^4 - 2*a^2*m*r + a^2*r^2)*cos(th)^2) \n", "Gam^r_r,th = -a^2*cos(th)*sin(th)/(a^2*cos(th)^2 + r^2) \n", "Gam^r_th,th = -(a^2*r - 2*m*r^2 + r^3)/(a^2*cos(th)^2 + r^2) \n", "Gam^r_ph,ph = ((a^4*m*r^2 - 2*a^2*m^2*r^3 + a^2*m*r^4 - (a^6*m - 2*a^4*m^2*r + a^4*m*r^2)*cos(th)^2)*sin(th)^4 - (a^2*r^5 - 2*m*r^6 + r^7 + (a^6*r - 2*a^4*m*r^2 + a^4*r^3)*cos(th)^4 + 2*(a^4*r^3 - 2*a^2*m*r^4 + a^2*r^5)*cos(th)^2)*sin(th)^2)/(a^6*cos(th)^6 + 3*a^4*r^2*cos(th)^4 + 3*a^2*r^4*cos(th)^2 + r^6) \n", "Gam^th_t,t = -2*a^2*m*r*cos(th)*sin(th)/(a^6*cos(th)^6 + 3*a^4*r^2*cos(th)^4 + 3*a^2*r^4*cos(th)^2 + r^6) \n", "Gam^th_t,ph = 2*(a^3*m*r + a*m*r^3)*cos(th)*sin(th)/(a^6*cos(th)^6 + 3*a^4*r^2*cos(th)^4 + 3*a^2*r^4*cos(th)^2 + r^6) \n", "Gam^th_r,r = a^2*cos(th)*sin(th)/(a^2*r^2 - 2*m*r^3 + r^4 + (a^4 - 2*a^2*m*r + a^2*r^2)*cos(th)^2) \n", "Gam^th_r,th = r/(a^2*cos(th)^2 + r^2) \n", "Gam^th_th,th = -a^2*cos(th)*sin(th)/(a^2*cos(th)^2 + r^2) \n", "Gam^th_ph,ph = -((a^6 - 2*a^4*m*r + a^4*r^2)*cos(th)^5 + 2*(a^4*r^2 - 2*a^2*m*r^3 + a^2*r^4)*cos(th)^3 + (2*a^4*m*r + 4*a^2*m*r^3 + a^2*r^4 + r^6)*cos(th))*sin(th)/(a^6*cos(th)^6 + 3*a^4*r^2*cos(th)^4 + 3*a^2*r^4*cos(th)^2 + r^6) \n", "Gam^ph_t,r = -(a^3*m*cos(th)^2 - a*m*r^2)/(a^2*r^4 - 2*m*r^5 + r^6 + (a^6 - 2*a^4*m*r + a^4*r^2)*cos(th)^4 + 2*(a^4*r^2 - 2*a^2*m*r^3 + a^2*r^4)*cos(th)^2) \n", "Gam^ph_t,th = -2*a*m*r*cos(th)/((a^4*cos(th)^4 + 2*a^2*r^2*cos(th)^2 + r^4)*sin(th)) \n", "Gam^ph_r,ph = -(a^2*m*r^2 + 2*m*r^4 - r^5 + (a^4*m - a^4*r)*cos(th)^4 - (a^4*m - a^2*m*r^2 + 2*a^2*r^3)*cos(th)^2)/(a^2*r^4 - 2*m*r^5 + r^6 + (a^6 - 2*a^4*m*r + a^4*r^2)*cos(th)^4 + 2*(a^4*r^2 - 2*a^2*m*r^3 + a^2*r^4)*cos(th)^2) \n", "Gam^ph_th,ph = (a^4*cos(th)*sin(th)^4 - 2*(a^4 - a^2*m*r + a^2*r^2)*cos(th)*sin(th)^2 + (a^4 + 2*a^2*r^2 + r^4)*cos(th))/((a^4*cos(th)^4 + 2*a^2*r^2*cos(th)^2 + r^4)*sin(th)) " ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "g.christoffel_symbols_display()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Einstein's equation\n", "\n", "Let us check that the Ricci tensor of $g$ vanishes identically, which is equivalent to Einstein's equation in vacuum:" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\\(\\displaystyle \\mathrm{Ric}\\left(g\\right) = 0\\)" ], "text/latex": [ "$\\displaystyle \\mathrm{Ric}\\left(g\\right) = 0$" ], "text/plain": [ "Ric(g) = 0" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "g.ricci().display()" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "On the contrary, the Riemann tensor is not zero:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tensor field Riem(g) of type (1,3) on the 4-dimensional Lorentzian manifold M\n" ] } ], "source": [ "R = g.riemann()\n", "print(R)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\\(\\displaystyle -\\frac{{\\left({\\left(a^{7} m - 2 \\, a^{5} m^{2} r + a^{5} m r^{2}\\right)} \\cos\\left({\\theta}\\right)^{5} - {\\left(3 \\, a^{7} m - 2 \\, a^{5} m^{2} r + 8 \\, a^{5} m r^{2} - 6 \\, a^{3} m^{2} r^{3} + 5 \\, a^{3} m r^{4}\\right)} \\cos\\left({\\theta}\\right)^{3} + 3 \\, {\\left(3 \\, a^{5} m r^{2} - 2 \\, a^{3} m^{2} r^{3} + 5 \\, a^{3} m r^{4} + 2 \\, a m r^{6}\\right)} \\cos\\left({\\theta}\\right)\\right)} \\sin\\left({\\theta}\\right)}{a^{2} r^{6} - 2 \\, m r^{7} + r^{8} + {\\left(a^{8} - 2 \\, a^{6} m r + a^{6} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{6} + 3 \\, {\\left(a^{6} r^{2} - 2 \\, a^{4} m r^{3} + a^{4} r^{4}\\right)} \\cos\\left({\\theta}\\right)^{4} + 3 \\, {\\left(a^{4} r^{4} - 2 \\, a^{2} m r^{5} + a^{2} r^{6}\\right)} \\cos\\left({\\theta}\\right)^{2}}\\)" ], "text/latex": [ "$\\displaystyle -\\frac{{\\left({\\left(a^{7} m - 2 \\, a^{5} m^{2} r + a^{5} m r^{2}\\right)} \\cos\\left({\\theta}\\right)^{5} - {\\left(3 \\, a^{7} m - 2 \\, a^{5} m^{2} r + 8 \\, a^{5} m r^{2} - 6 \\, a^{3} m^{2} r^{3} + 5 \\, a^{3} m r^{4}\\right)} \\cos\\left({\\theta}\\right)^{3} + 3 \\, {\\left(3 \\, a^{5} m r^{2} - 2 \\, a^{3} m^{2} r^{3} + 5 \\, a^{3} m r^{4} + 2 \\, a m r^{6}\\right)} \\cos\\left({\\theta}\\right)\\right)} \\sin\\left({\\theta}\\right)}{a^{2} r^{6} - 2 \\, m r^{7} + r^{8} + {\\left(a^{8} - 2 \\, a^{6} m r + a^{6} r^{2}\\right)} \\cos\\left({\\theta}\\right)^{6} + 3 \\, {\\left(a^{6} r^{2} - 2 \\, a^{4} m r^{3} + a^{4} r^{4}\\right)} \\cos\\left({\\theta}\\right)^{4} + 3 \\, {\\left(a^{4} r^{4} - 2 \\, a^{2} m r^{5} + a^{2} r^{6}\\right)} \\cos\\left({\\theta}\\right)^{2}}$" ], "text/plain": [ "-((a^7*m - 2*a^5*m^2*r + a^5*m*r^2)*cos(th)^5 - (3*a^7*m - 2*a^5*m^2*r + 8*a^5*m*r^2 - 6*a^3*m^2*r^3 + 5*a^3*m*r^4)*cos(th)^3 + 3*(3*a^5*m*r^2 - 2*a^3*m^2*r^3 + 5*a^3*m*r^4 + 2*a*m*r^6)*cos(th))*sin(th)/(a^2*r^6 - 2*m*r^7 + r^8 + (a^8 - 2*a^6*m*r + a^6*r^2)*cos(th)^6 + 3*(a^6*r^2 - 2*a^4*m*r^3 + a^4*r^4)*cos(th)^4 + 3*(a^4*r^4 - 2*a^2*m*r^5 + a^2*r^6)*cos(th)^2)" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "R[0,1,2,3]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The Kretschmann scalar\n", "\n", "The Kretschmann scalar is the following square of the Riemann tensor:\n", "$$ K = R_{abcd} R^{abcd} $$\n", "We compute first the tensors $R_{abcd}$ and $R^{abcd}$ by respectively lowering and raising the indices of $R$ with the metric $g$:" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tensor field of type (0,4) on the 4-dimensional Lorentzian manifold M\n" ] } ], "source": [ "dR = R.down(g)\n", "print(dR)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tensor field of type (4,0) on the 4-dimensional Lorentzian manifold M\n" ] } ], "source": [ "uR = R.up(g)\n", "print(uR)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then we perform the contraction:" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Scalar field on the 4-dimensional Lorentzian manifold M\n" ] }, { "data": { "text/html": [ "\\(\\displaystyle \\begin{array}{llcl} & M & \\longrightarrow & \\mathbb{R} \\\\ & \\left(t, r, {\\theta}, {\\phi}\\right) & \\longmapsto & -\\frac{48 \\, {\\left(a^{6} m^{2} \\cos\\left({\\theta}\\right)^{6} - 15 \\, a^{4} m^{2} r^{2} \\cos\\left({\\theta}\\right)^{4} + 15 \\, a^{2} m^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} - m^{2} r^{6}\\right)}}{a^{12} \\cos\\left({\\theta}\\right)^{12} + 6 \\, a^{10} r^{2} \\cos\\left({\\theta}\\right)^{10} + 15 \\, a^{8} r^{4} \\cos\\left({\\theta}\\right)^{8} + 20 \\, a^{6} r^{6} \\cos\\left({\\theta}\\right)^{6} + 15 \\, a^{4} r^{8} \\cos\\left({\\theta}\\right)^{4} + 6 \\, a^{2} r^{10} \\cos\\left({\\theta}\\right)^{2} + r^{12}} \\end{array}\\)" ], "text/latex": [ "$\\displaystyle \\begin{array}{llcl} & M & \\longrightarrow & \\mathbb{R} \\\\ & \\left(t, r, {\\theta}, {\\phi}\\right) & \\longmapsto & -\\frac{48 \\, {\\left(a^{6} m^{2} \\cos\\left({\\theta}\\right)^{6} - 15 \\, a^{4} m^{2} r^{2} \\cos\\left({\\theta}\\right)^{4} + 15 \\, a^{2} m^{2} r^{4} \\cos\\left({\\theta}\\right)^{2} - m^{2} r^{6}\\right)}}{a^{12} \\cos\\left({\\theta}\\right)^{12} + 6 \\, a^{10} r^{2} \\cos\\left({\\theta}\\right)^{10} + 15 \\, a^{8} r^{4} \\cos\\left({\\theta}\\right)^{8} + 20 \\, a^{6} r^{6} \\cos\\left({\\theta}\\right)^{6} + 15 \\, a^{4} r^{8} \\cos\\left({\\theta}\\right)^{4} + 6 \\, a^{2} r^{10} \\cos\\left({\\theta}\\right)^{2} + r^{12}} \\end{array}$" ], "text/plain": [ "M → ℝ\n", "(t, r, th, ph) ↦ -48*(a^6*m^2*cos(th)^6 - 15*a^4*m^2*r^2*cos(th)^4 + 15*a^2*m^2*r^4*cos(th)^2 - m^2*r^6)/(a^12*cos(th)^12 + 6*a^10*r^2*cos(th)^10 + 15*a^8*r^4*cos(th)^8 + 20*a^6*r^6*cos(th)^6 + 15*a^4*r^8*cos(th)^4 + 6*a^2*r^10*cos(th)^2 + r^12)" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "K = dR['_{abcd}']*uR['^{abcd}']\n", "print(K)\n", "K.display()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A variant of this expression can be obtained by invoking the `factor()` method on the coordinate function representing the scalar field in the manifold's default chart:" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\\(\\displaystyle -\\frac{48 \\, {\\left(a^{2} \\cos\\left({\\theta}\\right)^{2} + 4 \\, a r \\cos\\left({\\theta}\\right) + r^{2}\\right)} {\\left(a^{2} \\cos\\left({\\theta}\\right)^{2} - 4 \\, a r \\cos\\left({\\theta}\\right) + r^{2}\\right)} {\\left(a \\cos\\left({\\theta}\\right) + r\\right)} {\\left(a \\cos\\left({\\theta}\\right) - r\\right)} m^{2}}{{\\left(a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}\\right)}^{6}}\\)" ], "text/latex": [ "$\\displaystyle -\\frac{48 \\, {\\left(a^{2} \\cos\\left({\\theta}\\right)^{2} + 4 \\, a r \\cos\\left({\\theta}\\right) + r^{2}\\right)} {\\left(a^{2} \\cos\\left({\\theta}\\right)^{2} - 4 \\, a r \\cos\\left({\\theta}\\right) + r^{2}\\right)} {\\left(a \\cos\\left({\\theta}\\right) + r\\right)} {\\left(a \\cos\\left({\\theta}\\right) - r\\right)} m^{2}}{{\\left(a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}\\right)}^{6}}$" ], "text/plain": [ "-48*(a^2*cos(th)^2 + 4*a*r*cos(th) + r^2)*(a^2*cos(th)^2 - 4*a*r*cos(th) + r^2)*(a*cos(th) + r)*(a*cos(th) - r)*m^2/(a^2*cos(th)^2 + r^2)^6" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Kr = K.expr().factor()\n", "Kr" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The Schwarzschild value of the Kretschmann scalar is recovered for $a=0$" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\\(\\displaystyle \\frac{48 \\, m^{2}}{r^{6}}\\)" ], "text/latex": [ "$\\displaystyle \\frac{48 \\, m^{2}}{r^{6}}$" ], "text/plain": [ "48*m^2/r^6" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Kr.subs(a=0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The twist 3-form" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The stationary Killing vector $\\xi$:" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\\(\\displaystyle \\frac{\\partial}{\\partial t }\\)" ], "text/latex": [ "$\\displaystyle \\frac{\\partial}{\\partial t }$" ], "text/plain": [ "Vector field ∂/∂t on the 4-dimensional Lorentzian manifold M" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xi = XBL.frame()[0]\n", "xi" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The 1-form $\\underline{\\xi}$ metric-dual to $\\xi$:" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\\(\\displaystyle \\underline{\\xi} = \\left( \\frac{2 \\, m r}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} - 1 \\right) \\mathrm{d} t + \\left( -\\frac{2 \\, a m r \\sin\\left({\\theta}\\right)^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} {\\phi}\\)" ], "text/latex": [ "$\\displaystyle \\underline{\\xi} = \\left( \\frac{2 \\, m r}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} - 1 \\right) \\mathrm{d} t + \\left( -\\frac{2 \\, a m r \\sin\\left({\\theta}\\right)^{2}}{a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}} \\right) \\mathrm{d} {\\phi}$" ], "text/plain": [ "fxi = (2*m*r/(a^2*cos(th)^2 + r^2) - 1) dt - 2*a*m*r*sin(th)^2/(a^2*cos(th)^2 + r^2) dph" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "fxi = xi.down(g)\n", "fxi.set_name('fxi', latex_name=r'\\underline{\\xi}')\n", "fxi.display()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The twist 3-form:" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\\(\\displaystyle \\underline{\\xi}\\wedge \\mathrm{d}\\underline{\\xi} = \\left( \\frac{2 \\, {\\left(a^{3} m \\cos\\left({\\theta}\\right)^{2} - a m r^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\right) \\mathrm{d} t\\wedge \\mathrm{d} r\\wedge \\mathrm{d} {\\phi} + \\left( \\frac{4 \\, {\\left(a^{3} m r - 2 \\, a m^{2} r^{2} + a m r^{3}\\right)} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\right) \\mathrm{d} t\\wedge \\mathrm{d} {\\theta}\\wedge \\mathrm{d} {\\phi}\\)" ], "text/latex": [ "$\\displaystyle \\underline{\\xi}\\wedge \\mathrm{d}\\underline{\\xi} = \\left( \\frac{2 \\, {\\left(a^{3} m \\cos\\left({\\theta}\\right)^{2} - a m r^{2}\\right)} \\sin\\left({\\theta}\\right)^{2}}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\right) \\mathrm{d} t\\wedge \\mathrm{d} r\\wedge \\mathrm{d} {\\phi} + \\left( \\frac{4 \\, {\\left(a^{3} m r - 2 \\, a m^{2} r^{2} + a m r^{3}\\right)} \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{a^{4} \\cos\\left({\\theta}\\right)^{4} + 2 \\, a^{2} r^{2} \\cos\\left({\\theta}\\right)^{2} + r^{4}} \\right) \\mathrm{d} t\\wedge \\mathrm{d} {\\theta}\\wedge \\mathrm{d} {\\phi}$" ], "text/plain": [ "fxi∧dfxi = 2*(a^3*m*cos(th)^2 - a*m*r^2)*sin(th)^2/(a^4*cos(th)^4 + 2*a^2*r^2*cos(th)^2 + r^4) dt∧dr∧dph + 4*(a^3*m*r - 2*a*m^2*r^2 + a*m*r^3)*cos(th)*sin(th)/(a^4*cos(th)^4 + 2*a^2*r^2*cos(th)^2 + r^4) dt∧dth∧dph" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "omega = fxi.wedge(diff(fxi))\n", "omega.display()" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\\(\\displaystyle \\underline{\\xi}\\wedge \\mathrm{d}\\underline{\\xi} = \\frac{2 \\, {\\left(a \\cos\\left({\\theta}\\right) + r\\right)} {\\left(a \\cos\\left({\\theta}\\right) - r\\right)} a m \\sin\\left({\\theta}\\right)^{2}}{{\\left(a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}\\right)}^{2}} \\mathrm{d} t\\wedge \\mathrm{d} r\\wedge \\mathrm{d} {\\phi} + \\frac{4 \\, {\\left(a^{2} - 2 \\, m r + r^{2}\\right)} a m r \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{{\\left(a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}\\right)}^{2}} \\mathrm{d} t\\wedge \\mathrm{d} {\\theta}\\wedge \\mathrm{d} {\\phi}\\)" ], "text/latex": [ "$\\displaystyle \\underline{\\xi}\\wedge \\mathrm{d}\\underline{\\xi} = \\frac{2 \\, {\\left(a \\cos\\left({\\theta}\\right) + r\\right)} {\\left(a \\cos\\left({\\theta}\\right) - r\\right)} a m \\sin\\left({\\theta}\\right)^{2}}{{\\left(a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}\\right)}^{2}} \\mathrm{d} t\\wedge \\mathrm{d} r\\wedge \\mathrm{d} {\\phi} + \\frac{4 \\, {\\left(a^{2} - 2 \\, m r + r^{2}\\right)} a m r \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{{\\left(a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}\\right)}^{2}} \\mathrm{d} t\\wedge \\mathrm{d} {\\theta}\\wedge \\mathrm{d} {\\phi}$" ], "text/plain": [ "fxi∧dfxi = 2*(a*cos(th) + r)*(a*cos(th) - r)*a*m*sin(th)^2/(a^2*cos(th)^2 + r^2)^2 dt∧dr∧dph + 4*(a^2 - 2*m*r + r^2)*a*m*r*cos(th)*sin(th)/(a^2*cos(th)^2 + r^2)^2 dt∧dth∧dph" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "omega.apply_map(factor)\n", "omega.display()" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tensor field fxi⊗nabla_g(fxi) of type (0,3) on the 4-dimensional Lorentzian manifold M\n" ] } ], "source": [ "nabla = g.connection()\n", "om = fxi*nabla(fxi)\n", "print(om)" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3-form on the 4-dimensional Lorentzian manifold M\n" ] } ], "source": [ "om2 = om.antisymmetrize()\n", "print(om2)" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\\(\\displaystyle -\\frac{{\\left(a \\cos\\left({\\theta}\\right) + r\\right)} {\\left(a \\cos\\left({\\theta}\\right) - r\\right)} a m \\sin\\left({\\theta}\\right)^{2}}{3 \\, {\\left(a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}\\right)}^{2}} \\mathrm{d} t\\wedge \\mathrm{d} r\\wedge \\mathrm{d} {\\phi} -\\frac{2 \\, {\\left(a^{2} - 2 \\, m r + r^{2}\\right)} a m r \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{3 \\, {\\left(a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}\\right)}^{2}} \\mathrm{d} t\\wedge \\mathrm{d} {\\theta}\\wedge \\mathrm{d} {\\phi}\\)" ], "text/latex": [ "$\\displaystyle -\\frac{{\\left(a \\cos\\left({\\theta}\\right) + r\\right)} {\\left(a \\cos\\left({\\theta}\\right) - r\\right)} a m \\sin\\left({\\theta}\\right)^{2}}{3 \\, {\\left(a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}\\right)}^{2}} \\mathrm{d} t\\wedge \\mathrm{d} r\\wedge \\mathrm{d} {\\phi} -\\frac{2 \\, {\\left(a^{2} - 2 \\, m r + r^{2}\\right)} a m r \\cos\\left({\\theta}\\right) \\sin\\left({\\theta}\\right)}{3 \\, {\\left(a^{2} \\cos\\left({\\theta}\\right)^{2} + r^{2}\\right)}^{2}} \\mathrm{d} t\\wedge \\mathrm{d} {\\theta}\\wedge \\mathrm{d} {\\phi}$" ], "text/plain": [ "-1/3*(a*cos(th) + r)*(a*cos(th) - r)*a*m*sin(th)^2/(a^2*cos(th)^2 + r^2)^2 dt∧dr∧dph - 2/3*(a^2 - 2*m*r + r^2)*a*m*r*cos(th)*sin(th)/(a^2*cos(th)^2 + r^2)^2 dt∧dth∧dph" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "om2.apply_map(factor)\n", "om2.display()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For a more detailed Kerr notebook (Killing vectors, Bianchi identity, etc.) see [here](https://nbviewer.jupyter.org/github/sagemanifolds/SageManifolds/blob/master/Notebooks/SM_Kerr.ipynb)." ] } ], "metadata": { "kernelspec": { "display_name": "SageMath 9.8.beta2", "language": "sage", "name": "sagemath" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 1 }