{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Vaidya spacetime\n", "\n", "This Jupyter/SageMath notebook is relative to the lectures\n", "[Geometry and physics of black holes](https://luth.obspm.fr/~luthier/gourgoulhon/bh16/).\n", "\n", "The computations make use of tools developed through the [SageManifolds project](https://sagemanifolds.obspm.fr)." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'SageMath version 9.6.rc2, Release Date: 2022-04-25'" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "version()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First we set up the notebook to display mathematical objects using LaTeX formatting:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "tags": [] }, "outputs": [], "source": [ "%display latex" ] }, { "cell_type": "markdown", "metadata": { "tags": [] }, "source": [ "## Spacetime\n", "\n", "We declare the spacetime manifold $M$:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "4-dimensional Lorentzian manifold M\n" ] } ], "source": [ "M = Manifold(4, 'M', structure='Lorentzian')\n", "print(M)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We introduce coordinates $(v,r,\\theta,\\varphi)$ analogous to the **ingoing null Eddington-Finkelstein coordinates** in Schwarzschild spacetime, i.e. such that $v$ is constant along ingoing radial null geodesics:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle \\left(M,(v, r, {\\theta}, {\\varphi})\\right)\$$" ], "text/latex": [ "$\\displaystyle \\left(M,(v, r, {\\theta}, {\\varphi})\\right)$" ], "text/plain": [ "Chart (M, (v, r, th, ph))" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "XN. = M.chart(r'v r:(0,+oo) th:(0,pi):\\theta ph:(0,2*pi):\\varphi:periodic')\n", "XN" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle v :\\ \\left( -\\infty, +\\infty \\right) ;\\quad r :\\ \\left( 0 , +\\infty \\right) ;\\quad {\\theta} :\\ \\left( 0 , \\pi \\right) ;\\quad {\\varphi} :\\ \\left[ 0 , 2 \\, \\pi \\right] \\mbox{(periodic)}\$$" ], "text/latex": [ "$\\displaystyle v :\\ \\left( -\\infty, +\\infty \\right) ;\\quad r :\\ \\left( 0 , +\\infty \\right) ;\\quad {\\theta} :\\ \\left( 0 , \\pi \\right) ;\\quad {\\varphi} :\\ \\left[ 0 , 2 \\, \\pi \\right] \\mbox{(periodic)}$" ], "text/plain": [ "v: (-oo, +oo); r: (0, +oo); th: (0, pi); ph: [0, 2*pi] (periodic)" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "XN.coord_range()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Metric tensor\n", "\n", "The metric tensor corresponding to the Vaidya solution is:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle g = \\left( \\frac{2 \\, m\\left(v\\right)}{r} - 1 \\right) \\mathrm{d} v\\otimes \\mathrm{d} v +\\mathrm{d} v\\otimes \\mathrm{d} r +\\mathrm{d} r\\otimes \\mathrm{d} v + r^{2} \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\theta} + r^{2} \\sin\\left({\\theta}\\right)^{2} \\mathrm{d} {\\varphi}\\otimes \\mathrm{d} {\\varphi}\$$" ], "text/latex": [ "$\\displaystyle g = \\left( \\frac{2 \\, m\\left(v\\right)}{r} - 1 \\right) \\mathrm{d} v\\otimes \\mathrm{d} v +\\mathrm{d} v\\otimes \\mathrm{d} r +\\mathrm{d} r\\otimes \\mathrm{d} v + r^{2} \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\theta} + r^{2} \\sin\\left({\\theta}\\right)^{2} \\mathrm{d} {\\varphi}\\otimes \\mathrm{d} {\\varphi}$" ], "text/plain": [ "g = (2*m(v)/r - 1) dv⊗dv + dv⊗dr + dr⊗dv + r^2 dth⊗dth + r^2*sin(th)^2 dph⊗dph" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "m = function('m')\n", "g = M.metric()\n", "g[0,0] = -(1 - 2*m(v)/r)\n", "g[0,1] = 1\n", "g[2,2] = r^2\n", "g[3,3] = (r*sin(th))^2\n", "g.display()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle g^{-1} = \\frac{\\partial}{\\partial v }\\otimes \\frac{\\partial}{\\partial r }+\\frac{\\partial}{\\partial r }\\otimes \\frac{\\partial}{\\partial v } + \\left( \\frac{r - 2 \\, m\\left(v\\right)}{r} \\right) \\frac{\\partial}{\\partial r }\\otimes \\frac{\\partial}{\\partial r } + \\frac{1}{r^{2}} \\frac{\\partial}{\\partial {\\theta} }\\otimes \\frac{\\partial}{\\partial {\\theta} } + \\frac{1}{r^{2} \\sin\\left({\\theta}\\right)^{2}} \\frac{\\partial}{\\partial {\\varphi} }\\otimes \\frac{\\partial}{\\partial {\\varphi} }\$$" ], "text/latex": [ "$\\displaystyle g^{-1} = \\frac{\\partial}{\\partial v }\\otimes \\frac{\\partial}{\\partial r }+\\frac{\\partial}{\\partial r }\\otimes \\frac{\\partial}{\\partial v } + \\left( \\frac{r - 2 \\, m\\left(v\\right)}{r} \\right) \\frac{\\partial}{\\partial r }\\otimes \\frac{\\partial}{\\partial r } + \\frac{1}{r^{2}} \\frac{\\partial}{\\partial {\\theta} }\\otimes \\frac{\\partial}{\\partial {\\theta} } + \\frac{1}{r^{2} \\sin\\left({\\theta}\\right)^{2}} \\frac{\\partial}{\\partial {\\varphi} }\\otimes \\frac{\\partial}{\\partial {\\varphi} }$" ], "text/plain": [ "inv_g = ∂/∂v⊗∂/∂r + ∂/∂r⊗∂/∂v + (r - 2*m(v))/r ∂/∂r⊗∂/∂r + r^(-2) ∂/∂th⊗∂/∂th + 1/(r^2*sin(th)^2) ∂/∂ph⊗∂/∂ph" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "g.inverse().display()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle \\left(\\begin{array}{rrrr}\n", "0 & 1 & 0 & 0 \\\\\n", "1 & \\frac{r - 2 \\, m\\left(v\\right)}{r} & 0 & 0 \\\\\n", "0 & 0 & \\frac{1}{r^{2}} & 0 \\\\\n", "0 & 0 & 0 & \\frac{1}{r^{2} \\sin\\left({\\theta}\\right)^{2}}\n", "\\end{array}\\right)\$$" ], "text/latex": [ "$\\displaystyle \\left(\\begin{array}{rrrr}\n", "0 & 1 & 0 & 0 \\\\\n", "1 & \\frac{r - 2 \\, m\\left(v\\right)}{r} & 0 & 0 \\\\\n", "0 & 0 & \\frac{1}{r^{2}} & 0 \\\\\n", "0 & 0 & 0 & \\frac{1}{r^{2} \\sin\\left({\\theta}\\right)^{2}}\n", "\\end{array}\\right)$" ], "text/plain": [ "[ 0 1 0 0]\n", "[ 1 (r - 2*m(v))/r 0 0]\n", "[ 0 0 r^(-2) 0]\n", "[ 0 0 0 1/(r^2*sin(th)^2)]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "g.inverse()[:]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Curvature" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The Ricci tensor is" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle \\mathrm{Ric}\\left(g\\right) = \\frac{2 \\, \\frac{\\partial\\,m}{\\partial v}}{r^{2}} \\mathrm{d} v\\otimes \\mathrm{d} v\$$" ], "text/latex": [ "$\\displaystyle \\mathrm{Ric}\\left(g\\right) = \\frac{2 \\, \\frac{\\partial\\,m}{\\partial v}}{r^{2}} \\mathrm{d} v\\otimes \\mathrm{d} v$" ], "text/plain": [ "Ric(g) = 2*d(m)/dv/r^2 dv⊗dv" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Ric = g.ricci()\n", "Ric.display()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It has zero trace, i.e. the Ricci scalar vanishes:" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle 0\$$" ], "text/latex": [ "$\\displaystyle 0$" ], "text/plain": [ "0" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "g.ricci_scalar().expr()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The Riemann tensor:" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle \\begin{array}{lcl} \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, v} \\, v \\, v \\, r }^{ \\, v \\phantom{\\, v} \\phantom{\\, v} \\phantom{\\, r} } & = & \\frac{2 \\, m\\left(v\\right)}{r^{3}} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, v} \\, {\\theta} \\, v \\, {\\theta} }^{ \\, v \\phantom{\\, {\\theta}} \\phantom{\\, v} \\phantom{\\, {\\theta}} } & = & -\\frac{m\\left(v\\right)}{r} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, v} \\, {\\varphi} \\, v \\, {\\varphi} }^{ \\, v \\phantom{\\, {\\varphi}} \\phantom{\\, v} \\phantom{\\, {\\varphi}} } & = & -\\frac{m\\left(v\\right) \\sin\\left({\\theta}\\right)^{2}}{r} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, r} \\, v \\, v \\, r }^{ \\, r \\phantom{\\, v} \\phantom{\\, v} \\phantom{\\, r} } & = & \\frac{2 \\, {\\left(r m\\left(v\\right) - 2 \\, m\\left(v\\right)^{2}\\right)}}{r^{4}} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, r} \\, r \\, v \\, r }^{ \\, r \\phantom{\\, r} \\phantom{\\, v} \\phantom{\\, r} } & = & -\\frac{2 \\, m\\left(v\\right)}{r^{3}} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, r} \\, {\\theta} \\, v \\, {\\theta} }^{ \\, r \\phantom{\\, {\\theta}} \\phantom{\\, v} \\phantom{\\, {\\theta}} } & = & \\frac{\\partial\\,m}{\\partial v} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, r} \\, {\\theta} \\, r \\, {\\theta} }^{ \\, r \\phantom{\\, {\\theta}} \\phantom{\\, r} \\phantom{\\, {\\theta}} } & = & -\\frac{m\\left(v\\right)}{r} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, r} \\, {\\varphi} \\, v \\, {\\varphi} }^{ \\, r \\phantom{\\, {\\varphi}} \\phantom{\\, v} \\phantom{\\, {\\varphi}} } & = & \\sin\\left({\\theta}\\right)^{2} \\frac{\\partial\\,m}{\\partial v} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, r} \\, {\\varphi} \\, r \\, {\\varphi} }^{ \\, r \\phantom{\\, {\\varphi}} \\phantom{\\, r} \\phantom{\\, {\\varphi}} } & = & -\\frac{m\\left(v\\right) \\sin\\left({\\theta}\\right)^{2}}{r} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\theta}} \\, v \\, v \\, {\\theta} }^{ \\, {\\theta} \\phantom{\\, v} \\phantom{\\, v} \\phantom{\\, {\\theta}} } & = & -\\frac{r^{2} \\frac{\\partial\\,m}{\\partial v} + r m\\left(v\\right) - 2 \\, m\\left(v\\right)^{2}}{r^{4}} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\theta}} \\, v \\, r \\, {\\theta} }^{ \\, {\\theta} \\phantom{\\, v} \\phantom{\\, r} \\phantom{\\, {\\theta}} } & = & \\frac{m\\left(v\\right)}{r^{3}} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\theta}} \\, r \\, v \\, {\\theta} }^{ \\, {\\theta} \\phantom{\\, r} \\phantom{\\, v} \\phantom{\\, {\\theta}} } & = & \\frac{m\\left(v\\right)}{r^{3}} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\theta}} \\, {\\varphi} \\, {\\theta} \\, {\\varphi} }^{ \\, {\\theta} \\phantom{\\, {\\varphi}} \\phantom{\\, {\\theta}} \\phantom{\\, {\\varphi}} } & = & \\frac{2 \\, m\\left(v\\right) \\sin\\left({\\theta}\\right)^{2}}{r} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\varphi}} \\, v \\, v \\, {\\varphi} }^{ \\, {\\varphi} \\phantom{\\, v} \\phantom{\\, v} \\phantom{\\, {\\varphi}} } & = & -\\frac{r^{2} \\frac{\\partial\\,m}{\\partial v} + r m\\left(v\\right) - 2 \\, m\\left(v\\right)^{2}}{r^{4}} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\varphi}} \\, v \\, r \\, {\\varphi} }^{ \\, {\\varphi} \\phantom{\\, v} \\phantom{\\, r} \\phantom{\\, {\\varphi}} } & = & \\frac{m\\left(v\\right)}{r^{3}} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\varphi}} \\, r \\, v \\, {\\varphi} }^{ \\, {\\varphi} \\phantom{\\, r} \\phantom{\\, v} \\phantom{\\, {\\varphi}} } & = & \\frac{m\\left(v\\right)}{r^{3}} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\varphi}} \\, {\\theta} \\, {\\theta} \\, {\\varphi} }^{ \\, {\\varphi} \\phantom{\\, {\\theta}} \\phantom{\\, {\\theta}} \\phantom{\\, {\\varphi}} } & = & -\\frac{2 \\, m\\left(v\\right)}{r} \\end{array}\$$" ], "text/latex": [ "$\\displaystyle \\begin{array}{lcl} \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, v} \\, v \\, v \\, r }^{ \\, v \\phantom{\\, v} \\phantom{\\, v} \\phantom{\\, r} } & = & \\frac{2 \\, m\\left(v\\right)}{r^{3}} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, v} \\, {\\theta} \\, v \\, {\\theta} }^{ \\, v \\phantom{\\, {\\theta}} \\phantom{\\, v} \\phantom{\\, {\\theta}} } & = & -\\frac{m\\left(v\\right)}{r} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, v} \\, {\\varphi} \\, v \\, {\\varphi} }^{ \\, v \\phantom{\\, {\\varphi}} \\phantom{\\, v} \\phantom{\\, {\\varphi}} } & = & -\\frac{m\\left(v\\right) \\sin\\left({\\theta}\\right)^{2}}{r} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, r} \\, v \\, v \\, r }^{ \\, r \\phantom{\\, v} \\phantom{\\, v} \\phantom{\\, r} } & = & \\frac{2 \\, {\\left(r m\\left(v\\right) - 2 \\, m\\left(v\\right)^{2}\\right)}}{r^{4}} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, r} \\, r \\, v \\, r }^{ \\, r \\phantom{\\, r} \\phantom{\\, v} \\phantom{\\, r} } & = & -\\frac{2 \\, m\\left(v\\right)}{r^{3}} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, r} \\, {\\theta} \\, v \\, {\\theta} }^{ \\, r \\phantom{\\, {\\theta}} \\phantom{\\, v} \\phantom{\\, {\\theta}} } & = & \\frac{\\partial\\,m}{\\partial v} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, r} \\, {\\theta} \\, r \\, {\\theta} }^{ \\, r \\phantom{\\, {\\theta}} \\phantom{\\, r} \\phantom{\\, {\\theta}} } & = & -\\frac{m\\left(v\\right)}{r} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, r} \\, {\\varphi} \\, v \\, {\\varphi} }^{ \\, r \\phantom{\\, {\\varphi}} \\phantom{\\, v} \\phantom{\\, {\\varphi}} } & = & \\sin\\left({\\theta}\\right)^{2} \\frac{\\partial\\,m}{\\partial v} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, r} \\, {\\varphi} \\, r \\, {\\varphi} }^{ \\, r \\phantom{\\, {\\varphi}} \\phantom{\\, r} \\phantom{\\, {\\varphi}} } & = & -\\frac{m\\left(v\\right) \\sin\\left({\\theta}\\right)^{2}}{r} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\theta}} \\, v \\, v \\, {\\theta} }^{ \\, {\\theta} \\phantom{\\, v} \\phantom{\\, v} \\phantom{\\, {\\theta}} } & = & -\\frac{r^{2} \\frac{\\partial\\,m}{\\partial v} + r m\\left(v\\right) - 2 \\, m\\left(v\\right)^{2}}{r^{4}} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\theta}} \\, v \\, r \\, {\\theta} }^{ \\, {\\theta} \\phantom{\\, v} \\phantom{\\, r} \\phantom{\\, {\\theta}} } & = & \\frac{m\\left(v\\right)}{r^{3}} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\theta}} \\, r \\, v \\, {\\theta} }^{ \\, {\\theta} \\phantom{\\, r} \\phantom{\\, v} \\phantom{\\, {\\theta}} } & = & \\frac{m\\left(v\\right)}{r^{3}} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\theta}} \\, {\\varphi} \\, {\\theta} \\, {\\varphi} }^{ \\, {\\theta} \\phantom{\\, {\\varphi}} \\phantom{\\, {\\theta}} \\phantom{\\, {\\varphi}} } & = & \\frac{2 \\, m\\left(v\\right) \\sin\\left({\\theta}\\right)^{2}}{r} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\varphi}} \\, v \\, v \\, {\\varphi} }^{ \\, {\\varphi} \\phantom{\\, v} \\phantom{\\, v} \\phantom{\\, {\\varphi}} } & = & -\\frac{r^{2} \\frac{\\partial\\,m}{\\partial v} + r m\\left(v\\right) - 2 \\, m\\left(v\\right)^{2}}{r^{4}} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\varphi}} \\, v \\, r \\, {\\varphi} }^{ \\, {\\varphi} \\phantom{\\, v} \\phantom{\\, r} \\phantom{\\, {\\varphi}} } & = & \\frac{m\\left(v\\right)}{r^{3}} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\varphi}} \\, r \\, v \\, {\\varphi} }^{ \\, {\\varphi} \\phantom{\\, r} \\phantom{\\, v} \\phantom{\\, {\\varphi}} } & = & \\frac{m\\left(v\\right)}{r^{3}} \\\\ \\mathrm{Riem}\\left(g\\right)_{ \\phantom{\\, {\\varphi}} \\, {\\theta} \\, {\\theta} \\, {\\varphi} }^{ \\, {\\varphi} \\phantom{\\, {\\theta}} \\phantom{\\, {\\theta}} \\phantom{\\, {\\varphi}} } & = & -\\frac{2 \\, m\\left(v\\right)}{r} \\end{array}$" ], "text/plain": [ "Riem(g)^v_v,v,r = 2*m(v)/r^3 \n", "Riem(g)^v_th,v,th = -m(v)/r \n", "Riem(g)^v_ph,v,ph = -m(v)*sin(th)^2/r \n", "Riem(g)^r_v,v,r = 2*(r*m(v) - 2*m(v)^2)/r^4 \n", "Riem(g)^r_r,v,r = -2*m(v)/r^3 \n", "Riem(g)^r_th,v,th = d(m)/dv \n", "Riem(g)^r_th,r,th = -m(v)/r \n", "Riem(g)^r_ph,v,ph = sin(th)^2*d(m)/dv \n", "Riem(g)^r_ph,r,ph = -m(v)*sin(th)^2/r \n", "Riem(g)^th_v,v,th = -(r^2*d(m)/dv + r*m(v) - 2*m(v)^2)/r^4 \n", "Riem(g)^th_v,r,th = m(v)/r^3 \n", "Riem(g)^th_r,v,th = m(v)/r^3 \n", "Riem(g)^th_ph,th,ph = 2*m(v)*sin(th)^2/r \n", "Riem(g)^ph_v,v,ph = -(r^2*d(m)/dv + r*m(v) - 2*m(v)^2)/r^4 \n", "Riem(g)^ph_v,r,ph = m(v)/r^3 \n", "Riem(g)^ph_r,v,ph = m(v)/r^3 \n", "Riem(g)^ph_th,th,ph = -2*m(v)/r " ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Riem = g.riemann()\n", "Riem.display_comp(only_nonredundant=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The Kretschmann scalar $K = R_{abcd} R^{abcd}$:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle \\frac{48 \\, m\\left(v\\right)^{2}}{r^{6}}\$$" ], "text/latex": [ "$\\displaystyle \\frac{48 \\, m\\left(v\\right)^{2}}{r^{6}}$" ], "text/plain": [ "48*m(v)^2/r^6" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "K = Riem.down(g)['_{abcd}'] * Riem.up(g)['^{abcd}']\n", "K.expr()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Wave vector $k$" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle \\left(M, \\left(\\mathrm{d} v,\\mathrm{d} r,\\mathrm{d} {\\theta},\\mathrm{d} {\\varphi}\\right)\\right)\$$" ], "text/latex": [ "$\\displaystyle \\left(M, \\left(\\mathrm{d} v,\\mathrm{d} r,\\mathrm{d} {\\theta},\\mathrm{d} {\\varphi}\\right)\\right)$" ], "text/plain": [ "Coordinate coframe (M, (dv,dr,dth,dph))" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "XN.coframe()" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle \\mathrm{d} v = \\mathrm{d} v\$$" ], "text/latex": [ "$\\displaystyle \\mathrm{d} v = \\mathrm{d} v$" ], "text/plain": [ "dv = dv" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dv = XN.coframe()[0]\n", "dv.display()" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle k = -\\frac{\\partial}{\\partial r }\$$" ], "text/latex": [ "$\\displaystyle k = -\\frac{\\partial}{\\partial r }$" ], "text/plain": [ "k = -∂/∂r" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "k = - dv.up(g)\n", "k.set_name('k')\n", "k.display()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Check that 𝑘 is a null vector:" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle 0\$$" ], "text/latex": [ "$\\displaystyle 0$" ], "text/plain": [ "0" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "g(k, k).expr()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Check that $k$ is a geodesic vector field, i.e. fulfils $\\nabla_k k = 0$:" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle 0\$$" ], "text/latex": [ "$\\displaystyle 0$" ], "text/plain": [ "0" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "nabla = g.connection()\n", "acc = nabla(k).contract(k)\n", "acc.display()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Homethetic Killing vector for $m(v) = (m_0/v_0) v$:" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle \\xi = v \\frac{\\partial}{\\partial v } + r \\frac{\\partial}{\\partial r }\$$" ], "text/latex": [ "$\\displaystyle \\xi = v \\frac{\\partial}{\\partial v } + r \\frac{\\partial}{\\partial r }$" ], "text/plain": [ "xi = v ∂/∂v + r ∂/∂r" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xi = M.vector_field(v, r, 0, 0, name='xi', \n", " latex_name=r'\\xi')\n", "xi.display()" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle \\frac{2 \\, {\\left(v \\frac{\\partial\\,m}{\\partial v} - m\\left(v\\right)\\right)}}{r} \\mathrm{d} v\\otimes \\mathrm{d} v\$$" ], "text/latex": [ "$\\displaystyle \\frac{2 \\, {\\left(v \\frac{\\partial\\,m}{\\partial v} - m\\left(v\\right)\\right)}}{r} \\mathrm{d} v\\otimes \\mathrm{d} v$" ], "text/plain": [ "2*(v*d(m)/dv - m(v))/r dv⊗dv" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Lg = g.lie_derivative(xi) - 2*g\n", "Lg.display()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If $m(v)$ is a linear function, the above result is identically zero, showing that \n", "$\\mathcal{L}_{\\xi} g = 2 g$ in that case, i.e. that $\\xi$ is a homethetic Killing vector. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Ingoing Eddington-Finkelstein coordinates $(t,r,\\theta,\\varphi)$ \n", "\n", "Let us introduce a new chart $(t,r,\\theta,\\varphi)$ such that the advanced time $t+r$ is $v$: $v = t + r$; this is the \n", "analog of **ingoing Eddington-Finkelstein (IEF) coordinates** in Schwarzschild spacetime." ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle \\left(M,(t, r, {\\theta}, {\\varphi})\\right)\$$" ], "text/latex": [ "$\\displaystyle \\left(M,(t, r, {\\theta}, {\\varphi})\\right)$" ], "text/plain": [ "Chart (M, (t, r, th, ph))" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X. = M.chart(r't r:(0,+oo) th:(0,pi):\\theta ph:(0,2*pi):\\varphi:periodic')\n", "X" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle t :\\ \\left( -\\infty, +\\infty \\right) ;\\quad r :\\ \\left( 0 , +\\infty \\right) ;\\quad {\\theta} :\\ \\left( 0 , \\pi \\right) ;\\quad {\\varphi} :\\ \\left[ 0 , 2 \\, \\pi \\right] \\mbox{(periodic)}\$$" ], "text/latex": [ "$\\displaystyle t :\\ \\left( -\\infty, +\\infty \\right) ;\\quad r :\\ \\left( 0 , +\\infty \\right) ;\\quad {\\theta} :\\ \\left( 0 , \\pi \\right) ;\\quad {\\varphi} :\\ \\left[ 0 , 2 \\, \\pi \\right] \\mbox{(periodic)}$" ], "text/plain": [ "t: (-oo, +oo); r: (0, +oo); th: (0, pi); ph: [0, 2*pi] (periodic)" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X.coord_range()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We declare the transition map between the $(t,r,\\theta,\\varphi)$ and $(v,r,\\theta,\\varphi)$ coordinates:" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle \\left\\{\\begin{array}{lcl} v & = & r + t \\\\ r & = & r \\\\ {\\theta} & = & {\\theta} \\\\ {\\varphi} & = & {\\varphi} \\end{array}\\right.\$$" ], "text/latex": [ "$\\displaystyle \\left\\{\\begin{array}{lcl} v & = & r + t \\\\ r & = & r \\\\ {\\theta} & = & {\\theta} \\\\ {\\varphi} & = & {\\varphi} \\end{array}\\right.$" ], "text/plain": [ "v = r + t\n", "r = r\n", "th = th\n", "ph = ph" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X_to_XN = X.transition_map(XN, (t + r, r, th, ph))\n", "X_to_XN.display()" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle \\left\\{\\begin{array}{lcl} t & = & -r + v \\\\ r & = & r \\\\ {\\theta} & = & {\\theta} \\\\ {\\varphi} & = & {\\varphi} \\end{array}\\right.\$$" ], "text/latex": [ "$\\displaystyle \\left\\{\\begin{array}{lcl} t & = & -r + v \\\\ r & = & r \\\\ {\\theta} & = & {\\theta} \\\\ {\\varphi} & = & {\\varphi} \\end{array}\\right.$" ], "text/plain": [ "t = -r + v\n", "r = r\n", "th = th\n", "ph = ph" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X_to_XN.inverse().display()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Expression of the metric tensor in the IEF coordinates:" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle g = \\left( -\\frac{r - 2 \\, m\\left(r + t\\right)}{r} \\right) \\mathrm{d} t\\otimes \\mathrm{d} t + \\frac{2 \\, m\\left(r + t\\right)}{r} \\mathrm{d} t\\otimes \\mathrm{d} r + \\frac{2 \\, m\\left(r + t\\right)}{r} \\mathrm{d} r\\otimes \\mathrm{d} t + \\left( \\frac{r + 2 \\, m\\left(r + t\\right)}{r} \\right) \\mathrm{d} r\\otimes \\mathrm{d} r + r^{2} \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\theta} + r^{2} \\sin\\left({\\theta}\\right)^{2} \\mathrm{d} {\\varphi}\\otimes \\mathrm{d} {\\varphi}\$$" ], "text/latex": [ "$\\displaystyle g = \\left( -\\frac{r - 2 \\, m\\left(r + t\\right)}{r} \\right) \\mathrm{d} t\\otimes \\mathrm{d} t + \\frac{2 \\, m\\left(r + t\\right)}{r} \\mathrm{d} t\\otimes \\mathrm{d} r + \\frac{2 \\, m\\left(r + t\\right)}{r} \\mathrm{d} r\\otimes \\mathrm{d} t + \\left( \\frac{r + 2 \\, m\\left(r + t\\right)}{r} \\right) \\mathrm{d} r\\otimes \\mathrm{d} r + r^{2} \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\theta} + r^{2} \\sin\\left({\\theta}\\right)^{2} \\mathrm{d} {\\varphi}\\otimes \\mathrm{d} {\\varphi}$" ], "text/plain": [ "g = -(r - 2*m(r + t))/r dt⊗dt + 2*m(r + t)/r dt⊗dr + 2*m(r + t)/r dr⊗dt + (r + 2*m(r + t))/r dr⊗dr + r^2 dth⊗dth + r^2*sin(th)^2 dph⊗dph" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "g.display(X)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "From now on, we set the IEF chart X to be the default one on $M$:" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "M.set_default_chart(X)\n", "M.set_default_frame(X.frame())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then g.display(X) can be substituted by g.display():" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle g = \\left( -\\frac{r - 2 \\, m\\left(r + t\\right)}{r} \\right) \\mathrm{d} t\\otimes \\mathrm{d} t + \\frac{2 \\, m\\left(r + t\\right)}{r} \\mathrm{d} t\\otimes \\mathrm{d} r + \\frac{2 \\, m\\left(r + t\\right)}{r} \\mathrm{d} r\\otimes \\mathrm{d} t + \\left( \\frac{r + 2 \\, m\\left(r + t\\right)}{r} \\right) \\mathrm{d} r\\otimes \\mathrm{d} r + r^{2} \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\theta} + r^{2} \\sin\\left({\\theta}\\right)^{2} \\mathrm{d} {\\varphi}\\otimes \\mathrm{d} {\\varphi}\$$" ], "text/latex": [ "$\\displaystyle g = \\left( -\\frac{r - 2 \\, m\\left(r + t\\right)}{r} \\right) \\mathrm{d} t\\otimes \\mathrm{d} t + \\frac{2 \\, m\\left(r + t\\right)}{r} \\mathrm{d} t\\otimes \\mathrm{d} r + \\frac{2 \\, m\\left(r + t\\right)}{r} \\mathrm{d} r\\otimes \\mathrm{d} t + \\left( \\frac{r + 2 \\, m\\left(r + t\\right)}{r} \\right) \\mathrm{d} r\\otimes \\mathrm{d} r + r^{2} \\mathrm{d} {\\theta}\\otimes \\mathrm{d} {\\theta} + r^{2} \\sin\\left({\\theta}\\right)^{2} \\mathrm{d} {\\varphi}\\otimes \\mathrm{d} {\\varphi}$" ], "text/plain": [ "g = -(r - 2*m(r + t))/r dt⊗dt + 2*m(r + t)/r dt⊗dr + 2*m(r + t)/r dr⊗dt + (r + 2*m(r + t))/r dr⊗dr + r^2 dth⊗dth + r^2*sin(th)^2 dph⊗dph" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "g.display()" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle \\left(\\begin{array}{rrrr}\n", "-\\frac{r + 2 \\, m\\left(r + t\\right)}{r} & \\frac{2 \\, m\\left(r + t\\right)}{r} & 0 & 0 \\\\\n", "\\frac{2 \\, m\\left(r + t\\right)}{r} & \\frac{r - 2 \\, m\\left(r + t\\right)}{r} & 0 & 0 \\\\\n", "0 & 0 & \\frac{1}{r^{2}} & 0 \\\\\n", "0 & 0 & 0 & \\frac{1}{r^{2} \\sin\\left({\\theta}\\right)^{2}}\n", "\\end{array}\\right)\$$" ], "text/latex": [ "$\\displaystyle \\left(\\begin{array}{rrrr}\n", "-\\frac{r + 2 \\, m\\left(r + t\\right)}{r} & \\frac{2 \\, m\\left(r + t\\right)}{r} & 0 & 0 \\\\\n", "\\frac{2 \\, m\\left(r + t\\right)}{r} & \\frac{r - 2 \\, m\\left(r + t\\right)}{r} & 0 & 0 \\\\\n", "0 & 0 & \\frac{1}{r^{2}} & 0 \\\\\n", "0 & 0 & 0 & \\frac{1}{r^{2} \\sin\\left({\\theta}\\right)^{2}}\n", "\\end{array}\\right)$" ], "text/plain": [ "[-(r + 2*m(r + t))/r 2*m(r + t)/r 0 0]\n", "[ 2*m(r + t)/r (r - 2*m(r + t))/r 0 0]\n", "[ 0 0 r^(-2) 0]\n", "[ 0 0 0 1/(r^2*sin(th)^2)]" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "g.inverse()[:]" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle \\xi = t \\frac{\\partial}{\\partial t } + r \\frac{\\partial}{\\partial r }\$$" ], "text/latex": [ "$\\displaystyle \\xi = t \\frac{\\partial}{\\partial t } + r \\frac{\\partial}{\\partial r }$" ], "text/plain": [ "xi = t ∂/∂t + r ∂/∂r" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xi.display()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Einstein equation\n", "\n", "The Ricci tensor in terms of the IEF coordinates:" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle \\mathrm{Ric}\\left(g\\right) = \\frac{2 \\, \\frac{\\partial\\,m}{\\partial \\left( r + t \\right)}}{r^{2}} \\mathrm{d} t\\otimes \\mathrm{d} t + \\frac{2 \\, \\frac{\\partial\\,m}{\\partial \\left( r + t \\right)}}{r^{2}} \\mathrm{d} t\\otimes \\mathrm{d} r + \\frac{2 \\, \\frac{\\partial\\,m}{\\partial \\left( r + t \\right)}}{r^{2}} \\mathrm{d} r\\otimes \\mathrm{d} t + \\frac{2 \\, \\frac{\\partial\\,m}{\\partial \\left( r + t \\right)}}{r^{2}} \\mathrm{d} r\\otimes \\mathrm{d} r\$$" ], "text/latex": [ "$\\displaystyle \\mathrm{Ric}\\left(g\\right) = \\frac{2 \\, \\frac{\\partial\\,m}{\\partial \\left( r + t \\right)}}{r^{2}} \\mathrm{d} t\\otimes \\mathrm{d} t + \\frac{2 \\, \\frac{\\partial\\,m}{\\partial \\left( r + t \\right)}}{r^{2}} \\mathrm{d} t\\otimes \\mathrm{d} r + \\frac{2 \\, \\frac{\\partial\\,m}{\\partial \\left( r + t \\right)}}{r^{2}} \\mathrm{d} r\\otimes \\mathrm{d} t + \\frac{2 \\, \\frac{\\partial\\,m}{\\partial \\left( r + t \\right)}}{r^{2}} \\mathrm{d} r\\otimes \\mathrm{d} r$" ], "text/plain": [ "Ric(g) = 2*d(m)/d(r + t)/r^2 dt⊗dt + 2*d(m)/d(r + t)/r^2 dt⊗dr + 2*d(m)/d(r + t)/r^2 dr⊗dt + 2*d(m)/d(r + t)/r^2 dr⊗dr" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Ric.display()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The notation $\\frac{\\partial m}{\\partial(r+t)}$ to denote $\\frac{\\mathrm{d}m}{\\mathrm{d}v}$ is quite unfortunate (this shall be improved in a future version). The display of the corresponding symbolic expression is slightly better, $\\mathrm{D}_0(m)$ standing for the derivative of function $m$ with respect to its first (index $0$) and unique argument, i.e. $\\mathrm{D}_0(m) = \\frac{\\mathrm{d}m}{\\mathrm{d}v}$:" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle \\frac{2 \\, \\mathrm{D}_{0}\\left(m\\right)\\left(r + t\\right)}{r^{2}}\$$" ], "text/latex": [ "$\\displaystyle \\frac{2 \\, \\mathrm{D}_{0}\\left(m\\right)\\left(r + t\\right)}{r^{2}}$" ], "text/plain": [ "2*D[0](m)(r + t)/r^2" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Ric[0,0].expr()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The Ricci scalar is vanishing:" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle \\begin{array}{llcl} \\mathrm{r}\\left(g\\right):& M & \\longrightarrow & \\mathbb{R} \\\\ & \\left(v, r, {\\theta}, {\\varphi}\\right) & \\longmapsto & 0 \\\\ & \\left(t, r, {\\theta}, {\\varphi}\\right) & \\longmapsto & 0 \\end{array}\$$" ], "text/latex": [ "$\\displaystyle \\begin{array}{llcl} \\mathrm{r}\\left(g\\right):& M & \\longrightarrow & \\mathbb{R} \\\\ & \\left(v, r, {\\theta}, {\\varphi}\\right) & \\longmapsto & 0 \\\\ & \\left(t, r, {\\theta}, {\\varphi}\\right) & \\longmapsto & 0 \\end{array}$" ], "text/plain": [ "r(g): M → ℝ\n", " (v, r, th, ph) ↦ 0\n", " (t, r, th, ph) ↦ 0" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "g.ricci_scalar().display()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The energy-momentum vector ensuring that the Einstein equation is fulfilled is then:" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle T = \\frac{\\frac{\\partial\\,m}{\\partial \\left( r + t \\right)}}{4 \\, \\pi r^{2}} \\mathrm{d} t\\otimes \\mathrm{d} t + \\frac{\\frac{\\partial\\,m}{\\partial \\left( r + t \\right)}}{4 \\, \\pi r^{2}} \\mathrm{d} t\\otimes \\mathrm{d} r + \\frac{\\frac{\\partial\\,m}{\\partial \\left( r + t \\right)}}{4 \\, \\pi r^{2}} \\mathrm{d} r\\otimes \\mathrm{d} t + \\frac{\\frac{\\partial\\,m}{\\partial \\left( r + t \\right)}}{4 \\, \\pi r^{2}} \\mathrm{d} r\\otimes \\mathrm{d} r\$$" ], "text/latex": [ "$\\displaystyle T = \\frac{\\frac{\\partial\\,m}{\\partial \\left( r + t \\right)}}{4 \\, \\pi r^{2}} \\mathrm{d} t\\otimes \\mathrm{d} t + \\frac{\\frac{\\partial\\,m}{\\partial \\left( r + t \\right)}}{4 \\, \\pi r^{2}} \\mathrm{d} t\\otimes \\mathrm{d} r + \\frac{\\frac{\\partial\\,m}{\\partial \\left( r + t \\right)}}{4 \\, \\pi r^{2}} \\mathrm{d} r\\otimes \\mathrm{d} t + \\frac{\\frac{\\partial\\,m}{\\partial \\left( r + t \\right)}}{4 \\, \\pi r^{2}} \\mathrm{d} r\\otimes \\mathrm{d} r$" ], "text/plain": [ "T = 1/4*d(m)/d(r + t)/(pi*r^2) dt⊗dt + 1/4*d(m)/d(r + t)/(pi*r^2) dt⊗dr + 1/4*d(m)/d(r + t)/(pi*r^2) dr⊗dt + 1/4*d(m)/d(r + t)/(pi*r^2) dr⊗dr" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "T = 1/(8*pi)*Ric\n", "T.set_name('T')\n", "T.display()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Since $v=t+r$, we have $\\mathrm{d}v = \\mathrm{d}t + \\mathrm{d}r$:" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle \\mathrm{d} v = \\mathrm{d} t+\\mathrm{d} r\$$" ], "text/latex": [ "$\\displaystyle \\mathrm{d} v = \\mathrm{d} t+\\mathrm{d} r$" ], "text/plain": [ "dv = dt + dr" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dv.display()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The derivative of the function $m(v)$:" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle \\frac{\\partial}{\\partial v}m\\left(v\\right)\$$" ], "text/latex": [ "$\\displaystyle \\frac{\\partial}{\\partial v}m\\left(v\\right)$" ], "text/plain": [ "diff(m(v), v)" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mp(v) = diff(m(v), v)\n", "mp(v)" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle \\mathrm{True}\$$" ], "text/latex": [ "$\\displaystyle \\mathrm{True}$" ], "text/plain": [ "True" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "T == 1/(4*pi)*mp(t+r)/r^2 * dv*dv" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The future-directed null vector along the ingoing null geodesics:" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle k = \\frac{\\partial}{\\partial t }-\\frac{\\partial}{\\partial r }\$$" ], "text/latex": [ "$\\displaystyle k = \\frac{\\partial}{\\partial t }-\\frac{\\partial}{\\partial r }$" ], "text/plain": [ "k = ∂/∂t - ∂/∂r" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "k.display()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Outgoing radial null geodesics\n", "\n", "Let us consider the vector field:" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle \\ell = \\frac{\\partial}{\\partial t } + \\left( \\frac{r - 2 \\, m\\left(r + t\\right)}{r + 2 \\, m\\left(r + t\\right)} \\right) \\frac{\\partial}{\\partial r }\$$" ], "text/latex": [ "$\\displaystyle \\ell = \\frac{\\partial}{\\partial t } + \\left( \\frac{r - 2 \\, m\\left(r + t\\right)}{r + 2 \\, m\\left(r + t\\right)} \\right) \\frac{\\partial}{\\partial r }$" ], "text/plain": [ "l = ∂/∂t + (r - 2*m(r + t))/(r + 2*m(r + t)) ∂/∂r" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "l = M.vector_field(1, (r - 2*m(t+r))/(r+2*m(t+r)), 0, 0, \n", " name='l', latex_name=r'\\ell')\n", "l.display()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It is a null vector:" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle \\begin{array}{llcl} g\\left(\\ell,\\ell\\right):& M & \\longrightarrow & \\mathbb{R} \\\\ & \\left(v, r, {\\theta}, {\\varphi}\\right) & \\longmapsto & 0 \\\\ & \\left(t, r, {\\theta}, {\\varphi}\\right) & \\longmapsto & 0 \\end{array}\$$" ], "text/latex": [ "$\\displaystyle \\begin{array}{llcl} g\\left(\\ell,\\ell\\right):& M & \\longrightarrow & \\mathbb{R} \\\\ & \\left(v, r, {\\theta}, {\\varphi}\\right) & \\longmapsto & 0 \\\\ & \\left(t, r, {\\theta}, {\\varphi}\\right) & \\longmapsto & 0 \\end{array}$" ], "text/plain": [ "g(l,l): M → ℝ\n", " (v, r, th, ph) ↦ 0\n", " (t, r, th, ph) ↦ 0" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "g(l,l).display()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Moreover $\\ell$ is a pregeodesic vector field, i.e. it obeys $\\nabla_\\ell \\ell = \\kappa \\ell$:" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle \\left( -\\frac{4 \\, {\\left(r \\frac{\\partial\\,m}{\\partial \\left( r + t \\right)} - m\\left(r + t\\right)\\right)}}{r^{2} + 4 \\, r m\\left(r + t\\right) + 4 \\, m\\left(r + t\\right)^{2}} \\right) \\frac{\\partial}{\\partial t } + \\left( \\frac{4 \\, {\\left(r {\\left(2 \\, \\frac{\\partial\\,m}{\\partial \\left( r + t \\right)} + 1\\right)} m\\left(r + t\\right) - r^{2} \\frac{\\partial\\,m}{\\partial \\left( r + t \\right)} - 2 \\, m\\left(r + t\\right)^{2}\\right)}}{r^{3} + 6 \\, r^{2} m\\left(r + t\\right) + 12 \\, r m\\left(r + t\\right)^{2} + 8 \\, m\\left(r + t\\right)^{3}} \\right) \\frac{\\partial}{\\partial r }\$$" ], "text/latex": [ "$\\displaystyle \\left( -\\frac{4 \\, {\\left(r \\frac{\\partial\\,m}{\\partial \\left( r + t \\right)} - m\\left(r + t\\right)\\right)}}{r^{2} + 4 \\, r m\\left(r + t\\right) + 4 \\, m\\left(r + t\\right)^{2}} \\right) \\frac{\\partial}{\\partial t } + \\left( \\frac{4 \\, {\\left(r {\\left(2 \\, \\frac{\\partial\\,m}{\\partial \\left( r + t \\right)} + 1\\right)} m\\left(r + t\\right) - r^{2} \\frac{\\partial\\,m}{\\partial \\left( r + t \\right)} - 2 \\, m\\left(r + t\\right)^{2}\\right)}}{r^{3} + 6 \\, r^{2} m\\left(r + t\\right) + 12 \\, r m\\left(r + t\\right)^{2} + 8 \\, m\\left(r + t\\right)^{3}} \\right) \\frac{\\partial}{\\partial r }$" ], "text/plain": [ "-4*(r*d(m)/d(r + t) - m(r + t))/(r^2 + 4*r*m(r + t) + 4*m(r + t)^2) ∂/∂t + 4*(r*(2*d(m)/d(r + t) + 1)*m(r + t) - r^2*d(m)/d(r + t) - 2*m(r + t)^2)/(r^3 + 6*r^2*m(r + t) + 12*r*m(r + t)^2 + 8*m(r + t)^3) ∂/∂r" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "acc = nabla(l).contract(l)\n", "acc.display()" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle -\\frac{4 \\, {\\left(r \\frac{\\partial\\,m}{\\partial \\left( r + t \\right)} - m\\left(r + t\\right)\\right)}}{r^{2} + 4 \\, r m\\left(r + t\\right) + 4 \\, m\\left(r + t\\right)^{2}}\$$" ], "text/latex": [ "$\\displaystyle -\\frac{4 \\, {\\left(r \\frac{\\partial\\,m}{\\partial \\left( r + t \\right)} - m\\left(r + t\\right)\\right)}}{r^{2} + 4 \\, r m\\left(r + t\\right) + 4 \\, m\\left(r + t\\right)^{2}}$" ], "text/plain": [ "-4*(r*d(m)/d(r + t) - m(r + t))/(r^2 + 4*r*m(r + t) + 4*m(r + t)^2)" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "kappa = acc[0]/l[0]\n", "kappa " ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle \\mathrm{True}\$$" ], "text/latex": [ "$\\displaystyle \\mathrm{True}$" ], "text/plain": [ "True" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ "acc == kappa*l" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "local/var/lib/sage/venv-python3.8/lib/python3.8/site-packages/scipy/integrate/## Integration of the outgoing radial null geodesics\n", "\n", "The outgoing radial null geodesics are the field lines of $\\ell$; they thus obey to\n", "$$\\frac{\\mathrm{d}r}{\\mathrm{d}t} = \\frac{\\ell^r}{\\ell^t}$$.\n", "Hence the value of $\\frac{\\mathrm{d}r}{\\mathrm{d}t}$:" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle \\frac{r - 2 \\, m\\left(r + t\\right)}{r + 2 \\, m\\left(r + t\\right)}\$$" ], "text/latex": [ "$\\displaystyle \\frac{r - 2 \\, m\\left(r + t\\right)}{r + 2 \\, m\\left(r + t\\right)}$" ], "text/plain": [ "(r - 2*m(r + t))/(r + 2*m(r + t))" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "drdt = (l[1] / l[0]).expr()\n", "drdt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Choice of function $m(v)$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let us choose a simple function $m(v)$, based on one of the following smoothstep functions:" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [], "source": [ "S0(x) = x\n", "S1(x) = -2*x^3 + 3*x^2\n", "S2(x) = 6*x^5 - 15*x^4 + 10*x^3\n", "\n", "S(x) = S0(x)\n", "#S(x) = S2(x)" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle \\frac{1}{4} \\, {\\left(\\frac{v {\\left(\\mathrm{sgn}\\left(v\\right) + 1\\right)} {\\left(\\mathrm{sgn}\\left(-v + v_{0}\\right) + 1\\right)}}{v_{0}} + 2 \\, \\mathrm{sgn}\\left(v - v_{0}\\right) + 2\\right)} m_{0}\$$" ], "text/latex": [ "$\\displaystyle \\frac{1}{4} \\, {\\left(\\frac{v {\\left(\\mathrm{sgn}\\left(v\\right) + 1\\right)} {\\left(\\mathrm{sgn}\\left(-v + v_{0}\\right) + 1\\right)}}{v_{0}} + 2 \\, \\mathrm{sgn}\\left(v - v_{0}\\right) + 2\\right)} m_{0}$" ], "text/plain": [ "1/4*(v*(sgn(v) + 1)*(sgn(-v + v_0) + 1)/v_0 + 2*sgn(v - v_0) + 2)*m_0" ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ "m_0 = var('m_0')\n", "v_0 = var('v_0')\n", "\n", "h(v) = (1+sgn(v))/2 # the Heaviside function\n", "\n", "mS(v) = m_0*(h(v)*h(v_0 - v)*S(v/v_0) + h(v - v_0))\n", "mS(v)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "*NB:* we don't use Sage's predefined heaviside function, since it is incompatible with SciPy numerical integrators. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Case of singularity entirely hidden under the event horizon\n", "\n", "The singularity is entirely hidden under the event horizon for large energy densities of the radiation shell, i.e. for small values of the \n", "shell width $v_0$. The precise criterion is $v_0 < 16 m$ for $S(x) = S_0(x)$. We select here $v_0 = 3m$:" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [], "source": [ "v0 = 3" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle \\frac{1}{12} \\, v {\\left(\\mathrm{sgn}\\left(v\\right) + 1\\right)} {\\left(\\mathrm{sgn}\\left(-v + 3\\right) + 1\\right)} + \\frac{1}{2} \\, \\mathrm{sgn}\\left(v - 3\\right) + \\frac{1}{2}\$$" ], "text/latex": [ "$\\displaystyle \\frac{1}{12} \\, v {\\left(\\mathrm{sgn}\\left(v\\right) + 1\\right)} {\\left(\\mathrm{sgn}\\left(-v + 3\\right) + 1\\right)} + \\frac{1}{2} \\, \\mathrm{sgn}\\left(v - 3\\right) + \\frac{1}{2}$" ], "text/plain": [ "1/12*v*(sgn(v) + 1)*(sgn(-v + 3) + 1) + 1/2*sgn(v - 3) + 1/2" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "m_num(v) = mS(v).subs({m_0: 1, v_0: v0})\n", "m_num(v)" ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAGFCAYAAADgqcccAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9PUlEQVR4nO3dd3gVVf7H8fehFwGlg9jFwtpR145lrWsva+9rQVd/9hUr7gZDMYCBSJOyFGlSpBMEIx0iGAOGYAwtIRBSIIUUUs7vj0ngzk1I7s2dZO5Mvq/nySP33LkzX/0w15MzM+corTVCCCGEEKJqDewuQAghhBDCCaTTJIQQQgjhA+k0CSGEEEL4QDpNQgghhBA+kE6TEEIIIYQPpNMkhBBCCOED6TQJIYQQQvhAOk1CCCGEED5oZHcBTqCUUkBXIMfuWoQQQghhuVZAiq5mxm/pNPmmK5BsdxFCCCGEqDXdgL1VbSCdJt/kACQlJdG6dWu7a7FFYmIiZ511lt1lCB9JXs4ieTmL5OUcvmSVnZ3NKaecAj5cTXJcp0kpdQPwPtAT6AI8oLWeW81negGDgb8AKcBArfVIf4/dunXrettp2r59O5deeqndZQgfSV7OInk5i+TlHFZn5bhOE9AS+A0YD8yqbmOl1BnAImAM8BRwLfCNUipNa13t54Whc+fOdpcg/CB5OYsj8yoogL17ISUFsrON12U/eYdL2fa7Ju+w5vBJ3Ui66O92V2up7dsvJUfucHWE8qwuuwx69gx8f47rNGmtFwOLAYz7s6v1KrBHa/1W2ettSqnLgffwodMlDI0aOe6vSr0meTlL0OeVnQ0//QQrV0JMDGzZAmlpx928BcalAIBl/I2XcVenCc61uwDhMyOrzz6zptNUH6YcuBqI9GpbClyulGpc2QeUUk2VUq3LfzDuqq/Xdu7caXcJwg+Sl7MEZV55eTBxItx0E7RrB/ffD4MHw4oVVXaYhHCz+tBp6gykerWlYoyytT/OZ/oAWR4/yQA7duxg4MCBFBYWEhISAkBISAhJSUl89913REdH8+OPP7JgwQK2bt3K2LFjOXDgAOHh4eTl5REeHs6+ffsYP348v/32G4sXL2bp0qVs2rSJSZMmsXfvXtO2GRkZjBo1iri4OObOnUtUVBTr1q1j2rRp7Nixw7RtTk4Ow4cPJzExkZkzZ7JmzRpWrlzJnDlziI+PZ8SIERw8eND0mT179jB58mRT3bGxsYwbN47U1FTTthdddNHRuhcuXEhkZOTRupOSkkzbZmZmMmrUKOLj44/WvXbtWmbMmEFiYiLDhg0jNzeX8PBwcnNzGTZsGImJicyYMYO1a9cSFRXF3LlziY+PZ9SoUWRmZpr2n5SUxKRJk9i0aRORkZEsXLiQ3377jfHjx1eoOzU1lXHjxhEbG8uCBQv48ccfiY6OZvLkyezZs8e07cGDBxkxYgTx8fHMmTOHlStXsmbNGmbOnEliYiLDhw8nJyfH9JkdO3Ywbdo01q1bd7TuuLg4Ro0aRUZGhmnbvXv3Hq176dKlLF68+Gjd+/btM2174MABxo4dy9atW011f/fdd+zevdu07aFDhxgxYgTbt29n9uzZrFy5ktatW/P999/z559/EhERQXZ2tukzO3fuZNq0aaxfv54VK1bwww8/EBcXx5AhQ8jNzTX9/U5PT2fkyJHExMSwYMEC5s+fT0xMDCNGjCAjI8O0bU5ODkOHDiUuLo5Zs2YRGRnJhg0bGDduHCkpKaZti4qKGDBgADt27GDKlCmsXLmSlStXMmXKFHbs2MGAAQMoKioyfSYlJYVx48axYcMGIiMjmTVrFnFxcQwdOpScnBzTthkZGYwYMYKYmBjmz5/PggULiImJYeTIkaSnp5u2zc3NZciQIcTHxzNz5kyWLVvG+vXrGT9+PMnJyaZti4uL6d+/P7t27WLy5MmsWrWKqKgopk6dSmJiYqXfESkpKYwdO5bo6GiWLl3K7NmziYuLIzw8nOzsbH777bej22ZmZhIREUFsbCzz5s1j4cKFbN68mVGjRpGWlmbab15eHmFhYWzfvp0ZM2awfPly1q5dy4QJE0hKSjJtW1JSQmhoKLt372bSpEmsXr2aqKgopk2bRkJCAoMGDaKgoIDw99+HN9+koF07ePZZiIqC4mL/v3nLKKp8gluIOrF+/frjfkfExsb6vB9VzZQEQU0ppanmRnCl1B/AeK11qEfbtcBqoIvWen8ln2kKNPVoagUkZ2VlVbgR/MiRI/z++++UlpYG9O8ihN0aNGjAX/7yF5o0aWJ3KfVOaGgoffr0sbeIzEwICYFvvoHCQt8/17IltG0LzZuzJ60Z+w42o4SGlDZQFDdrTOpJFxN+2te1V7cNkpOT6datm91lCB+UZ/X88/DPf1a+TXZ2Nm3atAFoo7XOrmp/QX4h3RL7MUabPHUEioGMyj6gtS4Ejn5rVHXvVHFxMaWlpZx++uk0b9488GqFsEF+fj67du0iIyODpk2b0rRpU1q2bGl3WfXGBx98YN/BtYZZs+D11+HAgeNv16QJXHcdXH89XHIJnHMOnHwytG4NSrFlC1x8MUfHlbp02scrr4zm5Zdf5tEudfEvUndKSrrQsKHdVQhfWJ1Vfeg0rQPu8Wq7DfhFa11k1UGaN29OixYtrNqdELZYsGABhw8fpnXr1jz66KPScaojoaGhfPLJJ3V/4Kws49fv77+v/H2l4LbbjG3uvNMYVTqOjz4y+l/l3Pw7pG15Cb9ZnZXjOk1KqROAsz2azlBKXQJkaq33KKVCgZO11s+UvT8S+JdSajDGtANXAy8Cj9dh2UI4QsuWLSkqKiI7O5vCwkLpNNURW/4H/Pvv8MADkJBQ8b3GjeHll+G99+D006vd1cqVsGCBue2ZZyrf1g2kw+QcVmflxBvBLwd+LfsBY9LKX4H/lL3uApxavrHWeidwF3AjEAN8CrwpczQJUVH5pTlRt8pvTq0z8+bBX/9aeYfpnntg+3YYPtynDpPW8O9/m9s6doSnnrKm1GBU53mJGrM6K8eNNGmto4Dj3mSktX6ukrafgctqryohhKi5Z599tu4ONmkSPP88lJSY29u1g4gI+Mc/jMtyPvrhB1i/3tz22Wfg5rsV6jQvERCrs3LiSJMQQrjK8uXL6+ZAERHGdTPvDtPll8PmzfDoo351mIqLwfuhv7POgpdegk6dOvHhhx/SqVMnCwoPLnWWlwiY1VlJp0kIIWx2zjnn1P5BxoyBf/2rYvuzz8KqVXDqqRXfq8aECRAfb27r18940K5BgwY0bdqUBg3c97+ZOslLWMLqrNz3t1kIIRwmPz+/dg8weza8+mrF9vfeg/HjoVkzv3eZlwd9+5rbLrsMHnnE+HNGRgaTJ08mI6PSmV0crdbzEpaxOivpNAkhhM1qtWOxciU8/jh4T8D73//CwIF+XY7zNGyYsV6vpwEDoHxg6ciRIyQmJnLkyJEa7T+YubEj6FZWZyWdJofatm2b3SUIISxy8cUX186O9+yBhx8G747LJ58YPzXsMGVmQmioue3WW+Fvf6thnQ5Ta3kJy1mdlXSaHGjo0KE+PRaelpbGV199VQcVCSECscB7kiMr5OfDgw9WXFz35ZfhP/+p/DM+6t/fmBfTu62+qJW8RK2wOivHTTkQzEpLwd+RwHbtjg1nl9u7dy/Dhg2jY8eOaK058cQTiY6OZuTIkURGRtKhQwfOPPPMavfdoUMHbrjhBiIiInj99df9K0wIUWd69+5t7Q61Nu5h2rTJ3H7XXcbacjUcYQJISoLwcHPbY48Z9zPVF5bnJWqN1VnJSJOFMjKMSd38+fHuZB06dIgnn3ySt99+m3feeYd3332XNm3aUFi2gGZ4eDiPPfaYzzVdeeWVbNy4kfT0dCv/VYUQFho8eLC1O5w40fjx1L07TJlCoAtx9e1rXs+3USPj9ihvrVu35s4776ywyLkbWJ6XqDVWZyWdpioopV5XSsUBG+vqmN999x1du3Y1zW1ywQUXcMcddxAbG0u3bt1o6OeX3r333suECRMsrlQIYRVLl3rYuRPeeMPcdsIJMHcunHhiQLv+/XdjmgFPr7wCZ59dcduWLVty5ZVXunIpHllGxTmszkouz1VBax0BRCilWgNZ1W1vhTZt2vDDDz8QEhLC7bffzqWXXso555xD9+7dCQ8P54orrjBtv27dOuLj49m4cSN33HEHqampzJ8/nzFjxtC5c2cAevXqRUREBO+9957ps5mZmQwaNAjtucqml+bNm/P555/7fUwhhO9CQkKs+XIvKYGnn4acHHP7+PHQo0fAu//oI/NDeC1bwqefVr5tfn4+CQkJdO/eneYuW73XsrxErbM6K+k0BZnHH3+cvXv3MnXqVPr27Uu3bt1YsGABF1xwAcnJydx4441Ht83KyiIhIYHnn3+eE044gSFDhrB8+XJWrFhBM495V9q3b09iYmKFY7Vt25ZQ70dgquHrMYUQvnvllVes2dGAAbBmjbnthReMJ+gCtGaNsWSdp3ffheNN+H3o0CHmzJnDyy+/7LpOk2V5iVpndVZyec5C7drBgQP+/bRrd+zzhYWFNGjQgA8++IBff/2V1NRUunfvTlhYGAC5ubmmL5/GjRvz+OOPA7Bx40buv/9+GjZsyLRp0zjRaxheBXDjpyd/jimE8M3s2bMD38n27fDFF+a2M8+EoUMD3nVli/J26GB0muojS/ISdcLqrGSkyUINGhhfJDU1ePBg+ngs5NSuXTvuvPNOdu3aBRgjRgcPHjz6fguPFTGXLVvGpEmTAGM0qE2bNqZ9N2pUMeqMjAy++uorvy7P+XNMIYRvvC+7+01reO0183xMDRrA5MnQqlVg+wbmz684gPXpp+DCe7x9EnBeos5YnZV0moLIjBkzePLJJzm1bA2ow4cPs2DBAiZPngzA+eefz549e45uv3jxYuLj47n33ntJSEjgggsuoLS0lIkTJ/KGx42gRUVFtKrki7Ndu3Z+X57z9ZhCCN/t27cvsB189x2sWGFue+cduPrqwPaLcZuU96K8Z5xh3ABeXwWcl6gzVmclnaYgkZqaym233cbMmTMpLS0lPz+fgwcP8u2339K1a1cA7rjjDl566SXeLRsT379/Pzt27GDp0qV89NFHhIeH06hRI5588knTvqOjo7n55pstqdPXYwohfFdSUlLzDx88aHSQPJ16asWF4Wpo4kSIizO3hYQYi/JWpXHjxnTr1o3GjRtbUkcwCSgvUaeszko6TUGiU6dODBgwoMpt2rdvT4cOHdi/fz+dO3fm+eef5/nnn69234sWLeLRRx+1pE5fjymE8N3pp59e8w9/9JFxg6SnYcOMR9sClJ8Pn31mbrvkEmMyy+q0b9+eF198MeAaglFAeYk6ZXVWciO4w3z22WcMHz7c5+2zs7NJS0vjyiuvrMWqhBCBWLVqVc0+uGkTjBplbrv3XuPHAhERkJxsbuvfv+IqBvVNjfMSdc7qrOr5X33n6datGw888ACLFi2qdlutNUOGDCEkJKQOKhNC1FT5E6l+0Rref9/4Z7kWLSqucVJDhw7Bl1+a226+GW67zbfP79u3jy+++MKV9//UKC9hC6uzkk6TA/Xs2ZO77rqr2u0yMjLo3bs3HQJ5pE8IUeu++eYb/z+0aBH89JO57ZNP4LTTLKlpwADjdilP/fsHtGyda9QoL2ELq7OSe5pcrH379naXIITwgd8zFhcXwwcfmNtOOQXeesuSevburTi90yOPgDxpb5DZwJ3D6qxkpEkIIWzm9yX0CRMqf6TNopm3+/aFgoJjrxs2hH79LNm1K8gtD85hdVbSaRJ1Ljs7G4Ac7/WxhKin3nzzTd83LigAr/UgufhieOopS2qJj4dx48xtL70E3btbsntX8CsvYSurs5JOk0Nt27bN7hJq7NJLL+W+++5j5syZdpfis+Tk5KPzYwWzvLw8xo0bx/z583nxxRcp9VxdVQStCRMm+L7xt99CSoq5bdAgyx5p816Ut0WLitMO+KJDhw688cYbrryn0q+8hK2szko6TVVQSr2ulIoDNtpdi6ehQ4fStGnTardLS0vjq6++qoOK/PPFF1/www8/8MILL9TJ8TZs2MCePXsoKSlh7969rF+/3q/Pa6354YcfyMjIqKUKrbNt2zYSExO5++672bJlC4WFhXaXJHzwt7/9zbcNCwuNu7E93XQT3HqrJXWsWwdz5pjb3nkHunTxf1+NGjWibdu2lS7h5HQ+5yVsZ3VW0mmqgtY6QmvdA6jTSY727t3Lhx9+yODBgwkLC2Ps2LG8+uqrAERGRtKhQwfOPPPMavfToUMHbrjhBiIiIiyv8dtvvyUkJIT//e9/jPMey6/Gb7/9xooVKxg0aFCV697VRG5uLg899JBpuZkRI0Zw2mmn0ahRI+6//37atm3r1z6XLVtm2Yzq3iqrF4xZ3N966y3+97//8fLLL7Nz506f9tezZ0/eeustIiIiePPNN123urxbxcfH+7bhuHHGXdqevC/V1VBli/K2a2fMalATBw8eZPbs2ab1Mt3C57yE7azOSjpNQebQoUM8+eSTvP3227zzzju8++67tGnT5uiIQXh4OI/5Mh1vmSuvvJKNGzeSnp5uWY2jRo0iISGBTz75hGuuuYa3337br87PwIEDufnmmzly5AhRUVGW1TVu3DgGDRrE7NmzTZelTj/9dJKTk0lKSiI6OppzzjnH530mJibSqVMnvzofvl52PF69hYWFPPLII/Tp04dnn33W71nYO3TowL/+9S+mTJkiX+4O0dKX2bsLC8F7rchevYwfCyxaBN7zAH7ySc0X5S0oKGDLli0UeN5R7hI+5SWCgtVZuW/c1E6lpeDvJZx27Uz3Inz33Xd07dqVTp06HW274IILKCkpITY2lm7dutGwYUO/DnHvvfcyYcIE3nvvPf9qq0RhYSF9+vTh119/BeDss8/mt99+Q/k4ecvEiRNp0qQJjz32GFlZWZaONJVf7vvPf/5T4b2TTz65RvuMiYmhYcOGHDhwgD179hAbG8tFF11U5Wd+//13HnnkkRrXu3LlSlq3bn3078CVV17J+vXrSU1NNf29qExERASNGjXilVdeoVGjRiQmJnLeeedVW4uwl0+jnxMmQFKSuc2iUaaSEvjwQ3PbaadB796W7N51/B2tFvaxOivpNFkpIwM6dvTvMwcOgMeNkm3atOGHH34gJCSE22+/nUsvvZRzzjmH7t27Ex4ezhVeE6WsW7eO+Ph4Nm7cyB133EFqairz589nzJgxdO7cGYBevXoRERFRodOUmZlZ7SWy5s2b87nHF/PatWs5ePAgCQkJrF+/nvj4eG6//faj6/tUV8+tt97Kxo0bmTt3LqeeemqtXfbydPjwYcaPH0/Tpk358ccfef/99zn//PN9qvehhx6iqKiIb775hsLCQssvJ1Zm165dphO9YcOGtGrVit9//50dO3ZUWe9NN91ETEwMP/zwAxdeeCF33HFHrdcrAhcbG1vh3DY5cqTi9NzXXw833mjJ8adMga1bzW3//S/4cOtkvVRtXiJoWJ2VdJqCzOOPP87evXuZOnUqffv2pVu3bixYsIALLriA5ORkbvT4kszKyiIhIYHnn3+eE044gSFDhrB8+XJWrFhBs2bNjm7Xvn17EhMTKxyrbdu2hHoP91ejfEmEJk2a8Oijj5Kens7FF1/Mtm3b0FpXW0+XLl247777avBfpuYefvhh/vrXvwLQsWNHHnjgAeLi4sjJyfHpv1/jxo35v//7P/7v//6vTupNT083HR+gWbNmJCUloZSqst4ePXrQo0cPgDr/7yxq7s4776x6g+++A6/73vj8c0um5y4ogE8/NbdddBE88UTAu3atavMSQcPqrKTTFEQKCwtp2rQpH3zwAR988AEZGRk89thjhIWFMX78eHJzc0331jRu3PjoujobN27k/vvvp2HDhkybNq3Cvn29fFadNm3aABztubdv357S0lJWr17NjTfe6HM9Vfn666+rvPG5V69ePPDAAz7vr2fPnkf/fPbZZ7N9+3ZiY2M555xzAq43PT2dAQMGmEag1q5dS25u7tHXbdu25aOPPvJ5n23atKkwopWbm8sZZ5zB1VdfHVC9IjiNGzfu+DMXaw2DB5vbrr3WWAjOAiNGVOyPhYYaE1oG4oQTTqBXr16ccMIJge0oCFWZlwgqVmclnaYgMnjwYPr06XP0dbt27bjzzjvZtWsXYHRQPJ9EadGixdE/L1u2jEmTJgHGCFR556ZcZY/9ZmRk8NVXX/l1ee7SSy9FKUVJScnRtvLX/tRTFStHdNavX8/f/va3o6M35RNqNmnSxJJ627dvz6BBg0xtffv2pW/fvjWu+bzzzmPMmDFHXxcWFpKTk8Npp51G48aNA6pXBKcqv9R//BG2bDG39eljyShTVpYxkbinXr3Ail/OW7VqZRoZdxPpMDmH1VlJp8lK7doZ9yj5+5kyM2bM4Mknn+TUU08FjHtxFixYwOTJkwE4//zzTY+mL168mPj4eO69914SEhK44IILKC0tZeLEibzxxhtHtysqKqJVq1aVHLqd35fnunbtSq9evVizZg233347aWlpKKW4+eabfa6nLnXr1o0PPvjg6OWrNWvWcM0119CjR4+grBfghhtu4MCBAyQnJ9OtWzd+/vlnrrjiCuLi4pg9e3bQ1SsCFxIScvwv97Aw8+tzz7WmVwMMHAiZmea2AQOsWZS3sLCQpKQkTjnlFJ/mlXOSKvMSQcXqrFRd3NjqdEqp1kBWVlYWrb2ev83Ly2Pbtm2cf/75ppELf6WmpjJ48GA6duxIaWkp+fn5HDx4kDfeeOPonEzp6em89NJLzCmbfW78+PFs3ryZ888/n4MHD3LCCSfQqFEjHn/8cdONxGvXrmXWrFmEeX/51tCePXv4/PPPueiii0hMTOSFF17gsssu87me2jJ16lRWrlzJyJEjefTRR7nhhht47bXX+Omnn9i0aRMlJSX88ccfhIaG0rFjx1qr19eRpuPVC/Djjz8ya9YsrrrqKn7++Wc++eQTfv7551r771v+93jXrl0cOnSInJwcnnnmGXlKqI6UX5qvYOtWuPBCc9vIkfDKKwEfc98+OOssyM8/1vbggzBrVsC7Ltv/PkaPHs3LL79Ml5rMjhnEjpuXCDq+ZJWdnV0+Wt9Ga51d5cZaa/mp5gdoDeisrCzt7fDhw/qXX37Rhw8frvBebXjppZf0vn37/PrMxx9/rDds2FBLFQlv3333nd0l+K387/H333+vv/32Wz1kyBCdkZFhd1n1xoABAyp/48UXtTbuajJ+2rXTOi/PkmO+8op51w0bah0fb8mutdZap6Sk6L59++qUlBTrdhokjpuXCDq+ZJWVlaUBDbTW1fQHZHJLh/nss88YPny4z9tnZ2eTlpbGlVfW6aTm9Vr5zeVC+Oqhhx6q2JiaCmX3rR312mtgwSzv27cbS9h5evFF48qfqF6leYmgZHVW0mlymG7duvHAAw+waNGiarfVWjNkyBBCvO/0FEIElY0bK1ne8ptvjPmZyjVpAq+/bsnxPvnEmNCyXPPmls2TWS9UmpcISlZnJTeCO5DnI/RVycjIoHfv3q5cZVwIN6lwz09BgdFp8vTUU1DNjPC+2LABvv/e3PbWW9C1a8C7NmnYsCEnnXSS3ysYOIHb7tFyM6uzkk6Ti7Vv397uEoQQPqjQsfj+e/BeL/LttwM+jtYVl0tp2xY++CDgXVfQsWNH3nzzTet3HATc2BF0K6uzkstzVVBKva6UigNkLFYIUWt2795tbvAeZbrlFrjggoCPs3QpeK+R/dFHcOKJAe+6XqmQlwhaVmclnaYqaK0jtNY9ALmLWghRa6677rpjL379FdatM29QNhVFIEpLK44ynXKKZbdJVZCamsqgQYNITU2tnQPYyJSXCGpWZyWdJiGEsJlpKZwRI8xvdu0K994b8DGmToXffjO3/ec/4LXMoWVKS0vJy8ujtLS0dg5gI1m6yDmszko6TUIIYbP33nvP+MOhQzBlivnNV16BSpZB8kdhofHEnKe//AWefjqg3dZbR/MSQc/qrKTTJIQQNuvfv7/xh+++g7y8Y280agT//GfA+x85EsqWsPQ4ZuCL8tZXR/MSQc/qrKTTJIQQNju6NtbYseY37rsv4LkAsrMrLsp73XXw978HtNt6Tdadcw6rs5JOkxBC2CwkJARiYmDzZvMbFowyffVVxdkLrFqUtyrt2rXjhRdeoJ3HouRuIRMGO4fVWUmnSQghbPbcc89VHGU65RS49daA9rt/P3iv033//XDNNQHt1idNmjThlFNOoUmTJrV/sDr23HPP2V2C8JHVWcnklhbJ91wqXAiHkb+/9lqxaBHPeN8A/txzAd909N//mm+RatAAvvwyoF36LDs7m3Xr1nH11VfTunXrujloHVm2bBnPP/+83WUIH1idlXSaAtSoUSMaNGjALu+7LIVwGK01JZ4Lkok6c3VqKhw8aG4M8DfkhAQYPdrc9vzzcP75Ae3WZ4cPH2b9+vVcdNFFrus0nV9X/xFFwKzOSjpNAWrSpAl/+ctfKC4uJisriwULFtCyZUuaNm1qd2mW2rt3LyeffLLdZQgf1SSvkpISiouLa6kiUZW2c+aYG26+Gc48M6B9fvIJeMbZrBn07RvQLkWZnJwcu0sQPrI6K0d2mpRSrwHvA12A34G3tNarqtj+SeADoDuQBSwB3tNaZ1hRT5MmTWjSpAkFBQUcPnyYoqIiV3aaWrZsaXcZwkeB5FVYWGhxNaJKu3bR7tdfzW0vvhjQLn/5BWbMMLe9+SZ06xbQbkWZQ4cO2V2C8JHVWTmu06SUehQYCrwGrAFeARYrpXporfdUsv11wETgbWA+cDIwEvgWeMDK2po2bUrr1q3Jzs7myJEjVu7adi1atJDfrhwk0Lxat27tuo5/0Bo/3vz6xBPhgZp/NWkN//53xV16L6Eiau7CCy+0uwThI6uzclynCXgHGKu1/rbs9VtKqduB3kCfSra/CtiltQ4ve71TKTUKY+TJUi1btuTRRx915W/qo0eP5plnnrG7DOGjQPNq2rSpjCzWhZISmDDB3Pbkk9C8eY13uWwZrFhhbuvTB046qca7rJEWLVpw+eWX06JFi7o9cB1YvHgx5513nt1lCB9YnZXSWlu2s9qmlGoC5AGPaK3neLR/DVyite5VyWeuAX7CGFVaDHQEZgDbtNavHuc4TQHPX7NbAclZWVmuu6HRV7m5uZxwwgl2lyF8JHk5xIoVcMst5rZNm+Cyy2q0u9JSuPxyY83fciefbNwUHkA/THiR88s5fMkqOzubNm3aALTRWmdXta3T5mlqDzQEvJfNTgU6V/YBrfVa4ElgOnAE2A8cAt6o4jh9MO59Kv9JBtixYwcDBw6ksLDw6IRZISEhpKSkMHbsWKKjo1m6dCmzZ88mLi6O8PBwsrOzTdtmZmYSERFBbGws8+bNY+HChWzevJlRo0aRlpZm2jYvL4+wsDC2b9/OjBkzWL58OWvXrmXChAkkJSWZti0pKSE0NJTdu3czadIkVq9eTVRUFNOmTSMhIYFBgwZRUFBg+sz+/fsZM2YM0dHRLFmyhDlz5rB161aGDRtGVlaWadvQ0FCGDx/Oli1bmDt3LosWLWLTpk2MHj2a1NRU07b5+fmEhYWRkJDA9OnTWbFiBWvWrGHixIns2bOHfv36UVpaSkhICKWlpfTr1489e/YwceJE1qxZw4oVK5g+fToJCQmEhYWRn59v2n9qaiqjR49m06ZNLFq0iLlz57JlyxaGDx/OoUOHTNtmZWUxbNgwtm7dypw5c1iyZAnR0dGMGTOG/fv3m7YtKChg0KBBJCQkMG3aNKKioli9ejWTJk1i9+7dhIaGUlJSYvpMUlISEyZMYO3atSxfvpwZM2awfft2wsLCyMvLM22blpbGqFGj2Lx5MwsXLmTevHnExsYSERFBZmamadvs7GzCw8OJi4tj9uzZLF26lOjoaMaOHUtKSopp28LCQgYOHEhiYiJTp04lKiqKt956i8mTJ7Nr1y769+9PcXGx6TPJycmMHz+e9evXs2zZMmbOnEl8fDxDhgwhNzfXtG16ejojR44kJiaGBQsWMH/+fGJiYhgxYgQZGRmmbXNychg6dChxcXHMmjWLyMhINmzYwLhx4yrUXVRUxIABA9ixYwdTpkxh5cqVrFy5kilTprBjxw4GDBhAUVFRhXNt3LhxbNiwgcjISGbNmkVcXBxDhw4lJyfHtG1GRgYjRowgJiaG+fPns2DBAmJiYhg5ciTp6emmbXNzcxkyZAjx8fHMnDmTZcuWsX79esaPH09ycrJp2+LiYvr378+uXbuYPHkyq1atIioqiqlTp5KYmOjXd8TvH31k+uJJ7dSJzNNPr/F3xKefbsX79qj//AfCwmr/O+LQoUOm74j58+ezYsUKRo0a5brviE8//dTx3xGrVq2qF98RL730UrXfEbGxsfjKaSNNXYG9wDVa63Ue7R8DT2utK4zBKaV6AD8CQ4ClGDePDwKitdaV3m0pI01CiFpXUACdOhnrnJQbNAhquMDokSPGdAI7dhxrO/98iI0NeL3fGtm3bx+jR4/m5ZdfpkuXLnVfgBA+cvNIUzpQQsVRpY5UHH0q1wdYo7UepLWO1VovxbiJ/AWlVKVnsta6UGudXf4D1Ps7oGXZAGeRvBxgwQJzh0kpePzxGu9u9GhzhwkgNNSeDpPbyfnlHPV6GRWt9RFgE+C9tsCtwNrjfKwFUOrVVj6DXy2vvuQer75a6e1fIkhJXg4webL59U03GTcg1UBOjnEZztM118C999awNlElOb+cw+qsHNVpKjMY+KdS6gWl1PlKqSHAqRjTCKCUClVKTfTYfj7woFKqt1LqTKXUtUA4sFFrnVLn1TvU999/b3cJwg+SV5DLzIRFi8xtTz5Z490NHgxpaea2uliUt76S88s5rM7KcQO3WuvpSql2wGcY9ydtBe7SWu8u26QLRieqfPsJSqlWwL+AMIybwFcAXjOZiKpcddVVdpcg/CB5BbmZM6Go6OjL0iZNaPDQQzXaVWoqfPWVue2ee+C66wIpMHBKKZo0aYJyYc9Nzi/nsDorJ440obX+Rmt9uta6qda6p9Z6pcd7z2mtb/TafpjW+i9a6xZa665a66e01nvrvHAHS05OtrsE4QfJK8h5Lc67/4orwLgR1W8hIZCbe+x1XS7KW5XOnTvTp08fOneu9MFmR5PzyzmszsqRnSZR95z0lKWQvILa7t2wyrzqU3KvClPM+SQxEUaNMrc98wxccEFNixO+kPPLOazOSjpNwiennHKK3SUIP0heQey778yvTzqJpvffX6Ndffqp6SofTZvCF1/UvDQrpaWl8c0335DmfbOVC8j55RxWZyWdJuGTdevWVb+RCBqSV5DSuuJTc//4B2t/+cXvXW3eDFOnmtv+9S849dTKt69rxcXFpKWlUVxcbHcplpPzyzmszspxN4ILe/zjH/+wuwThB8krSMXGQlycue3JJ/lHjx5+76qP10qbbdpUbBO1Q84v57A6KxlpEj4ZMWKE3SUIP0heQWrGDPPrU0+Fa6/1O6/lyyEy0tz24YfQrl2A9QmfyPnlHFZn5ahlVOyilGoNZMkyKkKIGtMazjkH/vzzWNv778PAgX7tprQUrrzSWNe3XNeuxqK8LVpYVKsFZBkV4RRuXkZF2ESWDXAWySsIxcSYO0wAZZcO/Mnr++/NHSaAvn2Dq8MEcNJJJ/HYY49x0kkn2V2K5eT8cg6rs5KRJh/ISBPk5OTQqlUru8sQPpK8glCfPtC//7HXZ5xhzBmglM95FRVBjx7mvte558LWrbLGXF2S88s5fMlKRposopR6XSkVB2y0uxa7jR071u4ShB8kryCjNUyfbm77xz+OrnPia17ffltxsOrLL4Ozw5Sbm8uqVavI9Zx50yXk/HIOq7OSTlMVtNYRWusewJV212K32267ze4ShB8kryCzaRPs3Glu83iqx5e8cnMrzsH017/CAw9YUaD1cnJyWLFiBTk5OXaXYjk5v5zD6qyk0yR8sm3bNrtLEH6QvIKM91NzZ50Fl1569KUveQ0ZYqwz50kW5bWHnF/OYXVW0mkSPpHr984ieQURrSt2mjwuzUH1eaWlwaBB5ra77oIarr4iAiTnl3NYnZV0moRP2tRwMVFhD8kriERHG+vNeXr0UdPL6vLq1w88r3IpBaGhVhUo/CXnl3NYnZV0moRPfv/9d7tLEH6QvILIzJnm1+ecAxddZGqqKq+dO+Gbb8xtTz1VYRdBp1mzZvTo0YNmzZrZXYrl5PxyDquzkikHfCBTDkBKSgpdu3a1uwzhI8krSGgNZ58NO3Yca/v4Y/CaO6aqvJ5+2rxcXZMmsH07nH56LdQrfCLnl3P4kpVMOSAsN27cOLtLEH6QvIJEbKy5wwTw0EMVNjteXr/9BlOmmNtef90ZHaaSkhKys7MpKSmxuxTLyfnlHFZnJSNNPpCRJiFEjfTta54n4LTTjOttPj7ydtddsHjxsdetWxvzYbZvb22ZtUGWURFOISNNwnKybICzSF5BYvZs8+sHH6y0w1RZXj/9ZO4wAXzwgTM6TG4n55dzyDIqNpCRJigqKqJx48Z2lyF8JHkFgT//hO7dzW0rV8L111fY1DsvreGqq2Cjx1oEnTsbu2zZsrYKtpabR5rk/HIOX7KSkSZhucGDB9tdgvCD5BUE5swxv+7YEa65ptJNvfOaPdvcYQL4/HPndJjcTs4v57A6K+k0CZ888sgjdpcg/CB5BQHvTtN990HDhpVu6plXURF89JH5/e7d4cUXrS5Q1JScX85hdVbSaRI+Wbdund0lCD9IXjZLSQHvDB588Libe+Y1bhz88Yf5/S+/BKddDercuTMff/wxnTt3trsUy8n55RxWZxWEa2OLYHTKKafYXYLwg+Rlsx9+ML9u3Rpuvvm4m5fndfhwxUV5r7ii0lkKgp5SikaN3Pm/GDm/nMPqrGSkqQpKqdeVUnHAxmo3FkKIct5Pzd19tzErZTW+/hr27TO3OXVR3oyMDCZMmEBGRobdpQhhGek0VUFrHaG17gFcaXctdktKSrK7BOEHyctGmZkQFWVuq+LSHBh5ZWQYHSRPt98ON91kbXl15ciRI+zevZsjR47YXYrl5PxyDquzkk6T8MnVV19tdwnCD5KXjRYsgOLiY6+bNYM77qjyI1dffTVffgnZXg879+9fC/WJgMn55RxWZyWdJuGTmd6LjoqgJnnZyPupudtvr3augNGjlzJ8uLntySfhkkusLU1YQ84v57A6K5nc0gcyuaVM5uY0kpdNDh82puwuKDjWNmECPPtslR975plSJk069jts48bGorxnnFFLddYBmdxSBAOZ3FLYYoD3zRYiqEleNlm61NxhatgQ7rmnyo9s2QKTJ5vv9O7d29kdJoA2bdpwzz33lP/PyFXk/HIOq7OSkSYfyEiTEMInzz0H//vfsde33AI//ljlR+6+GxYuPPa6VStjUd4OHWqnRCGEmYw0CcvJApXOInnZoKTE3PsBYxbwKqxcWfEj773njg5TXl4emzdvJi8vz+5SLCfnl3NYnZV0moRPXnjhBbtLEH6QvGywfj2kp5vbqrg0pzX8+9/mto4d4Z13aqE2G2RlZTF//nyysrLsLsVycn45h9VZSadJ+GTJkiV2lyD8IHnZYN488+sLL4TTTz/u5nPnGv0sT59/DiecYHllwmJyfjmH1VlJp0n45C9/+YvdJQg/SF42mD/f/LqKUabi4oqL8p51Frz0Ui3UJSwn55dzWJ2VdJqET9w4xO5mklcd+/NP2LbN3HbvvcfdfMIEiI83t/Xr57xFeesrOb+cw+qspNMkfJKTk2N3CcIPklcd8x5l6tTJWGm3Enl5xmU4T2eeeZBHHqml2mzSpEkTTjvtNJr4sOae08j55RxWZ+XOJaiF5c4//3y7SxB+kLzqmHen6e67oUHlv5MOGwYpKea2jz7KpkGDk2qpOHu0a9eO5557zu4yaoWcX85hdVYy0iR8EhkZaXcJwg+SVx06eNCYO8DTce5nysyE0FBz2623Qk7OnEq3dzKtNcXFxbhxLkA5v5zD6qxkcssqKKVeB17H6FyeW58nt8zJyaFVq1Z2lyF8JHnVoalT4Yknjr1u2hQyMipdb+6DD2DQIHPbpk3Qvbv78nLzMipyfjmHL1nJ5JYW0VpHaK17AFfaXYvdvv76a7tLEH6QvOqQ91QDf/tbpR2mpCQIDze3PfYYXHaZ5OU0kpdzWJ2VjDT5QJZREUJUqqjImL7b8wmdkSPhlVcqbPrCCzB+/LHXjRoZT9CddVYd1GkDN480CXeRkSZhOVk2wFkkrzqyapW5wwTGTeBefv/dvCQdGP2q8g6T5OUskpdzyDIqwha9e/e2uwThB8mrjng/NdezJ5x8coXNPvoISkuPvW7ZEj799NhryctZJC/nsDor6TQJn8yYMcPuEoQfJK86oLVPs4CvXl3xtqf33jOmcirnxrw6duzI22+/TceOHe0uxXJuzMutrM5K5mkSPrn66qvtLkH4QfKqA9u2QWKiuc1rFnCt4cMPzZt06ADvvmtuc2NeDRs2dO09oG7My62szqrWR5qUUi8opT5VSrlr5rZ6Jikpye4ShB8krzrgPcrUrRtcckmFTdasMW/26afg/QS0G/M6ePAgM2fO5ODBg3aXYjk35uVWVmdleadJKdVBKXV0v1rrccAcIFwpdZPVxxN1QylldwnCD5JXHfC+5nbPPeDx372kBPr0MW9yxhmVPljnyrwKCgqIi4ujoKDA7lIs58a83MrqrCzrNCmlblJKpQP7gWyl1OKyUaY2WuutwDPAq1YdT9Stbt262V2C8IPkVcvS02HdOnOb1/1MEydCXJx5k5AQqGwpNsnLWSQv57A6KytHmv4DRABvABOAM4FvgX1KqakYHab2Fh5P1KH169fbXYLwg+RVy5YuNW5YKteiBdx0bCA9Px8++8z8kUsuMSazrIzk5SySl3NYnZWVnaYtWuvPtdbfaK3/pbU+F7gY+Bq4FPgvRicqYEqp15RSO5VSBUqpTUqp66vZvqlSqp9SardSqlAplaiUesGKWuqLhx9+2O4ShB8kr1q2cKH59S23QLNmR19GREBysnmT/v2Pu4av5OUwkpdzWJ1Vrd4IrrXeorXuo7U+T2vdXms9NdB9KqUeBYYC/TA6Y6uAxUqpU6v42AzgFuBF4FzgcSA+0Frqk5EjR9pdgvCD5FWLSkpgyRJz29//fvSPBw/Cl1+a3775ZrjttuPv0o15tWrViptvvtmVa7S5MS+3sjory5ZRUUo9DuRrredassPjH2cDsFlr3dujbRswV2vdp5Lt7wCmAWdqrTNreExZRkUIYVi7Fq691ty2ezecavze9uGHMGCA+e2NG+GKK+qoPiGEX2xZRqVsFOkCpdQ/rdqnN6VUE6AnEOn1ViRwzXE+di/wC/CBUmqvUuoPpdRXSqnmVRynqVKqdfkP4L5flfwkywY4i+RVi7wvzV1wwdEO09694L0+6COPVN9hcmNeBQUFbN++3ZVPz7kxL7cK2mVUlFJXAs8Do5RSfyqlvlVKPaWUsvLW9fZAQyDVqz0V6Hycz5wJXAdcADwAvAU8jHHT+vH0AbI8fpIBduzYwcCBAyksLDwaREhICCkpKYwdO5bo6GiWLl3K7NmziYuLIzw8nOzsbNO2mZmZREREEBsby7x581i4cCGbN29m1KhRpKWlmbbNy8sjLCyM7du3M2PGDJYvX87atWuZMGECSUlJpm1LSkoIDQ1l9+7dTJo0idWrVxMVFcW0adNISEhg0KBBFBQUmD6zf/9+xowZQ3R0NEuWLGHOnDls3bqVYcOGkZWVZdr2ueeeY/jw4WzZsoW5c+eyaNEiNm3axOjRo0lNTTVtm5+fT1hYGAkJCUyfPp0VK1awZs0aJk6cyJ49e+jXrx+lpaWEhIRQWlpKv3792LNnDxMnTmTNmjWsWLGC6dOnk5CQQFhYGPn5+ab9p6amMnr0aDZt2sSiRYuYO3cuW7ZsYfjw4Rw6dMi0bVZWFsOGDWPr1q3MmTOHJUuWEB0dzZgxY9i/f79p24KCAgYNGkRCQgLTpk0jKiqK1atXM2nSJHbv3k1oaCglJSWmzyQlJTFhwgTWrl3L8uXLmTFjBtu3bycsLIy8vDzTtmlpaYwaNYrNmzezcOFC5s2bR2xsLBEREWRmZpq2zc7OJjw8nLi4OGbPns3SpUuJjo5m7NixpKSkmLYtLCxk4MCBJCYmMnXqVKKiorjiiiuYPHkyu3bton///hQXF5s+k5yczPjx41m/fj3Lli1j5syZxMfHM2TIEHJzc03bpqenM3LkSGJiYliwYAHz588nJiaGESNGkJGRYdo2JyeHoUOHEhcXx6xZs4iMjGTDhg2MGzeuQt1FRUUMGDCAHTt2MGXKFFauXMnKlSuZMmUKO3bsYMCAARQVFVU418aNG8eGDRuIjIxk1qxZxMXFMXToUHJyckzbZmRkMGLECGJiYpg/fz4LFiwgJiaGkSNHkp6ebto2NzeXIUOGEB8fz8yZM1m2bBnr169n/PjxJCcnm7bVXp2mpIsuIioqiqlTp/LOO9l49hEaNoSTT46o9jviyJEjjv+OOHTokOk7Yv78+UybNo2xY8e67jvi7rvvdvx3xKpVq+rFd8QZZ5xR7XdEbGwsPtNaW/KDcW/RSGAgsATIBkqBEiABGA3cEOAxugIauNqr/WMg/jifiQTyMYbdytseLKut+XE+0xRo7fFzMqCzsrJ0fTV48GC7SxB+kLxqSXKy1sZzc8d+fv5Za611XJzWDRqY3+rd27fdujGvlJQU3bdvX52SkmJ3KZZzY15u5UtWWVlZuqxv0VpX0w+xchmVrdp8n1FD4ArgJuBGjJuv7wG6BHCMdIxOmPeoUkcqjj6V2wfs1Vp7LkW+DVBAN4wOnYnWuhAoLH8tE5nBnXfeaXcJwg+SVy1ZvNj8uk0bKFum4eOPzYvytmhRcdqB45G8nEXycg6rs7Ly6bkjni+01iVa6/Va61Ct9e3AScCFgRxAa30E2ATc6vXWrcDa43xsDdBVKXWCR9s5GCNNyZV/RHjbsmWL3SUIP0hetWTRIvPr22+Hxo1Ztw7mzDG/9c470Pl4Nw14kbycRfJyDquzsrLTtF0p1et4b2qti7XW6RYcZzDwz7LZxs9XSg0BTsW4NIhSKlQpNdFj+++ADGC8UqqHUuoGYBAwTmudb0E99cKJJ55odwnCD5JXLThyBJYtM7fddRdaw7//bW5u1w7ef9/3Xbsxr0aNGtGhQwcaNXLfuvBuzMutrM7Kyr/NI4ChSqkmWutl1W5dQ1rr6UqpdsBnGJf6tgJ3aa13l23SBaMTVb59rlLqVmAYxlN0GRjzNn1SWzW6kRvnWnEzyasWrFoFubnmtjvuYNEi4y1Pn3wC/sxO4sa8OnTowGuvvWZ3GbXCjXm5ldVZWTnSdAfwGLBEKbVIKfW2UupSC/d/lDZmHT9da91Ua91Ta73S473ntNY3em0fr7W+VWvdQmt9itb6XRll8s+2bdvsLkH4QfKqBd6X5q64gpL2nfjwQ3PzaadB7974RfJyFsnLOazOyspO06fARGA6xuP9YcAvSqkMpdQcpdSbSqlTLDyeqEO33up9G5kIZpJXLfDuNN11F1OmwNat5ub//heaNvVv127Ma//+/YSGhrJ//367S7GcG/NyK6uzsrLTlKC1fl9r/YTW+lSgO9AbWAr8FWPpk+PdrC2C3IQJE+wuQfhB8rLYjh0Qb155qfCWu/j0U/NmF10ETzzh/+7dmJfWmiNHjpRP4+IqbszLrazOysplVK4FXgY2A3O01nu83j8PaKe1XmPJAeuQLKMiRD03fDi88cax1x06MPiD/bz7vvn3zkWLQJ5GN+zbt4/Ro0fz8ssv06VLIDPNCFG77FpGZQ3wHLAOjxuxPd6Pd2KHSRhk2QBnkbws5nVp7sgtd9Iv1Pz12asX3HFHzXYveTmL5OUcVmdl2UiTm8lIExQXF7vy0WG3krwslJdnzCHgsT7KtPun8fjcR02brV8Pf/1rzQ7hxrzcPNLkxrzcypesam2kSSn1sFJqnlLqUaVUM38+K5ztq6++srsE4QfJy0I//WTqMOmGDXlnyW2mTR56qOYdJnBnXu3bt+fll1+mffv2dpdiOTfm5VZWZ+VXp0lr/T0QClwPxCml/qeUuk0pZeUN5SIIPfbYY3aXIPwgeVnI69Lcnx2uYV/BSUdfN2wI/foFdgg35tW4cWO6dOlC48aN7S7Fcm7My62szsrvzo7Wep3W+l8YT8fNwLiPKUEpNVQpdYWl1YmgsXr1artLEH6QvCyiNSxcaGoan3qX6fWLL8K55wZ2GDfmlZWVxcKFC8nKyqp+Y4dxY15uZXVWNR4hKltbbqHW+gngIow14f6rlIpTSn2ulOpuWZU2UUq9rpSKAzbaXYvdTjvtNLtLEH6QvCyybRvs3m1qWqCPdZqaN4fPPw/8MG7MKy8vj19++YW8vDy7S7GcG/NyK6uzsuSymtb6sNZ6ktb6DuBG4CAwWSm1oWxSy45WHKeuaa0jtNY9gCvtrsVuJSUldpcg/CB5WcTr0lwS3djise74W29B166BH0bychbJyzmszsrye5G01ge01uFa678CTwFtgZ+VUkuUUk8rpVpafUxR+/bt22d3CcIPkpdFvC7NLeIuQAHQti188IE1h5G8nEXycg6rs6rVG7i11gla675a6/OBz4ErgK1KqalKqbuVUg1r8/jCOldeWe8H2xxF8rJAVhZ43Q9hdJoMH30EVi2gLnk5i+TlHFZnVWdPvWmtN2it3wTOxlij7jHgT6VUhFIqgId1RV2YNWuW3SUIP0heFvjxRyguPvqykCYs5xYATjkFXn/dukO5Ma+WLVty1VVX0bKl+y4uuDEvt7I6K1snt1RKtQAeAG7QWr9iWyHVkMktobCwkKb+rkIqbCN5WeCFF2D8+KMvI7mV24kEYMIEePZZ6w4leTmL5OUcvmRlyzIqNaG1ztNaTwnmDpMwDBo0yO4ShB8krwCVlsLixaam8ktzF1wATz1l7eHcmNeRI0dISkriyJEjdpdiOTfm5VZWZyXLqPhARpqEqGc2b4aePU1N3fmDP+nO/Plw99021eUgbl5GRbiLY0aahHPIApXOInkFyGuqgQTO5k+6c/318Pe/W384yctZJC/nsDory1YcVEp1AC4GTgfaAE2BXGAvsF1rvdWqY4m698ILL9hdgvCD5BUgr05T+aW5AQNAKesPJ3k5i+TlHFZnFdBIk1LqTKVUv7JZs/cDkcAIoA/wOjAAmAnEKqUOKqWmKKVuD7RoUfcWe93fIYKb5BWA9HT0+vWmpkXcxf33w9VX184hJS9nkbycw+qsatRpUkp1UEr9D/gFOBcYCfQE2mqtG2ut22utT9ZaNwdOAM7C6ETlAN8opX5TSvWy5l9B1IWLLrrI7hKEHySvAERGojzu9cyjOatUL778svYO6ca8GjRoQIsWLWjQwH13gbgxL7eyOiu/L8+VjRSFAVOBM7XWh6raXmudB+ws+/lOKaWAR4DBSqnlwL+13I0e9DIzM+0uQfhB8qq57OmL8HzcYzm38MQLzTj//No7phvz6tSpE++//77dZdQKN+blVlZn5devAEqpvwNvANdrrftV12GqjDbM0Fr3BDKBsf7uQ9S9w4cP212C8IPkVUMlJbB0qalpWaO76Nu3dg8reTmL5OUcVmfl77jp+cC9WuuDVhxca90fmKaUusCK/Ynac95559ldgvCD5FUz2yb9QuvCdFNb1xfvpFu32j2uG/M6cOAA4eHhHDhwwO5SLOfGvNzK6qz86jRprb/SWpdW9p5SqqtS6iGl1B1Kqc5+7DMyWJ+sU0q9XnaT+0a7a7Hbjz/+aHcJwg+Sl/+0hugvzE/NxTc4n1dCT6/1Y7sxr5KSEg4ePGj5KvPBwI15uZXVWVk25QAQA7QD9gBrlFK5QDowWWsdb+Fx6ozWOgKIKJ/c0u567PTcc8/ZXYLwg+Tlv2XL4Lxd5idtcq67i/NOqv1jS17OInk5h9VZWflYQygQDvxFa/2U1vrVstf3KaWGKaU6WXgsUcfCw8PtLkH4QfLyT2kpDHw3lSuJNrVf9O876+T4kpezSF7OYXVWdbKMilKqHTAI+FJr/WetH9BisoyKEO42dSosfmIiEzm2Cm9R0xNonJUOsjBrjcgyKsIpgm4ZFa11BvAa8EFdHE9YT5YNcBbJy3dHjsAnn8BdmO9nanjH3+qsw+TGvNq2bcuTTz5J27Zt7S7Fcm7My62szsqykSal1AnAs8ABYL7WuqCSbUZorXtbcsA6JCNNxlwXbvzycyvJy3fDh8NbbxRzgI60xePB4NGj4aWX6qQGyctZJC/n8CUru0aa5gDDgOnAXqXU10qp65VSjQGUUl2Asy08nqhDU6dOtbsE4QfJyzc5OfCf/8Bf2WDuMAHcWTf3M4E788rJySEqKoqcnBy7S7GcG/NyK6uzsrLTdABjyZS7gEXAi0AUkKeUSgF2A/MtPJ6oQ9dff73dJQg/SF6+CQuDtLSKl+a48EJqfXImD27MKzc3l59//pnc3Fy7S7GcG/NyK6uzsrLTdAjopLVeorV+GugMPAEMAb4HHtVayyMHDrVr1y67SxB+kLyql5pqdJqgkk7TXXfVaS2Sl7NIXs5hdVZWztP0PtBXKaWBsVrrPzAu1U238BjCJg0bNrS7BOEHyat6ISGQmwtdSOFSYsxv1nGnSfJyFsnLOazOyrJOU9nCvB8opboCXa3arwgO8siws0heVUtMhJEjjT/fwRLzm61bw9VX12k9kpezSF7OYXVWlk85oLVO0Vr/YvV+hb2io6Or30gEDcmrap9+CsXFxp8rXJq77TZo3LhO63FjXs2aNePCCy+kWbNmdpdiOTfm5VZWZ+XXlANls3rnaq0tXTZYKXWu1nq7lfu0kkw5AGlpaXTo0MHuMoSPJK/j27wZevY0/tyIItJpTxs8njIeNw6ef75Oa5K8nEXycg5fsqrNKQdKgXFl0wdYQin1NPCmVfsTtWPUqFF2lyD8IHkdX58+x/58DWvNHSaAO+6o24JwZ17FxcVkZmZSXD6k5yJuzMutrM7K78ktlVKnA5OA8cAErXVpjQ6s1GnAZxgdt39qrYN2KWwZaRLCHX78EW699djr/vybfzPwWMOllxpDUSJgsoyKcIpandxSa70LuBO4CohXSvVRSl2slFLVfVYp1VopdZdSahIQDWzQWj8frB0mpdTrSqk4YKPdtdhNlg1wFsmrotJS+PBDc9u9jeydaqCc5OUskpdzBNUyKkqpSzGmGrgfKMboCO3FmLMpC2gCtC37OQO4EEgDxgJfa63Ta1563ZGRJsjLy6NFixZ2lyF8JHlVNGMGPProsdfdSCKJU80brVkD11xTt4XhzrzcPNLkxrzcypesan0ZFaXUmQBa61+11k8AnYDngM0YHaTrgceA+zA6SkUYE1zeBJystf7UKR0mYRgxYoTdJQg/SF5mRUXw0Ufmtuc7LTY3tG0Lf/1r3RXlQfJyFsnLOazOqqbzNH0PXFb+QmudA8wu+xEudPfdd9tdgvCD5GU2ZowxN5OnV09bBKkeDbfdBjZNWih5OYvk5RxWZ1XTeZraWVqFCHq//fab3SUIP0hex+TmGovyerr+ykK6xC03N9p0PxO4M68uXbrw+eefu+7SHLgzL7eyOquadppOUUrNVUq9opQ6x9KKRFBq1076yU4ieR0zZIixzpynYY+uRnkuJKsU3H573RbmQfJyFsnLOazOqqadpiLgHmAEsE0playUmqSUeqFsSoJKKaXeruHxhM2aN29udwnCD5KXIS0NBg40t911F1y81+upucsvh44d664wL27MKz09nbFjx5Ke7r7bV92Yl1tZnVVNO02PA1OAd8r+WQo8CYwBEpVSO5VS45RSTymlTvb43HOBFCvs88cff9hdgvCD5GXo18+4PFdOKQgNBRYFx1QD5dyYV1FREcnJyRQVFdldiuXcmJdbWZ1VjTpNWuvZwFtAR2Cm1vpUoDvwKjAdY6qB54D/AXuUUtuVUmOBMy2oWdjglltusbsE4QfJC3buhG++Mbc9/TRc1GonxMeb37C50yR5OYvk5RxWZ1XjBXu11pla64+AQqXUACBHaz1Ga/2E1vpk4DzgNYwn7VoDzwMysYVD/e9//7O7BOEHyQs++8yYaqBckyZlN4Qv9ppqoEMH4/KcjSQvZ5G8nMPqrAKa3PLoTpRqAbwH7NRaTzrONpcBK7XWJwR8wDomk1sK4SwxMXDZZeD59fb22zB4MHD33bBw4bE3nnoKJlX6tSUC4ObJLYW71Prklt601nla6/8A25VSQ5RSZ1SyzWZglxXHU0q9VnbfVIFSapNS6nofP3etUqpYKRVjRR31iSwb4Cz1Pa8+fcwdptatyya3zMuD5cEz1UA5N+Z14okn8sADD3DiiSfaXYrl3JiXWwXVMiqV7lCpxsD/AQVAhPY4gFJqgNb63wHu/1GMBYNfA9YArwD/BHporfdU8bk2GDOW/wl00lpf4scx6/1IU0lJCQ1tmvhP+K8+5/XTT3Dzzea2kBD4+GOMESbPye4aNDAesWvbtk5r9Faf83Iiycs5fMmqzkeaPGmti7TWXwHLga+VUhd5vBdQh6nMO8BYrfW3WuttWuu3gCSgdzWfGwV8B6yzoIZ6Z6D3c9siqNXXvLSGf3t9y3TuDG+9VfZiwQLzm9dea3uHCdyZ1+HDh9m4cSOHDx+2uxTLuTEvt7I6K8s7TeW01tswRpyuVUr1UUo1CXSfZfvoCUR6vRUJHHeVTaXU88BZwBc+HqepUqp1+Q/QqoYlu8YTTzxhdwnCD/U1r1mzIDra3Na3L7RsidGj8u40BclyGG7MKzs7m8WLF5OdXeUv7o7kxrzcyuqsLO80KaUaKKXOUErdinHp7EzgASBWKXVdgLtvDzTEvGIUZa87H6ee7kB/4EmtdbGPx+kDZHn8JAPs2LGDgQMHUlhYePQ6aUhICCkpKYwdO5bo6GiWLl3K7NmziYuLIzw8nOzsbNO2mZmZREREEBsby7x581i4cCGbN29m1KhRpKWlmbbNy8sjLCyM7du3M2PGDJYvX87atWuZMGECSUlJpm1LSkoIDQ1l9+7dTJo0idWrVxMVFcW0adNISEhg0KBBFBQUmD6zf/9+xowZQ3R0NEuWLGHOnDls3bqVYcOGkZWVZdp28eLFDB8+nC1btjB37lwWLVrEpk2bGD16NKmpqaZt8/PzCQsLIyEhgenTp7NixQrWrFnDxIkT2bNnD/369aO0tJSQkBBKS0vp168fe/bsYeLEiaxZs4YVK1Ywffp0EhISCAsLIz8/37T/1NRURo8ezaZNm1i0aBFz585ly5YtDB8+nEOHDpm2zcrKYtiwYWzdupU5c+awZMkSoqOjGTNmDPv37zdtW1BQwKBBg0hISGDatGlERUWxevVqJk2axO7duwkNDaWkpMT0maSkJCZMmMDatWtZvnw5M2bMYPv27YSFhZGXl2faNi0tjVGjRrF582YWLlzIvHnziI2NJSIigszMTNO22dnZhIeHExcXx+zZs1m6dCnR0dGMHTuWlJQU07aFhYUMHDiQxMREpk6dSlRUFGPGjGHy5Mns2rWL/v37U1xcbPpMcnIy48ePZ/369SxbtoyZM2cSHx/PkCFDyM3NNW2bnp7OyJEjiYmJYcGCBcyfP5+YmBhGjBhBRkaGaducnByGDh1KXFwcs2bNIjIykg0bNjBu3LgKdRcVFTFgwAB27NjBlClTWLlyJStXrmTKlCns2LGDAQMGUFRUVOFcGzduHBs2bCAyMpJZs2YRFxfH0KFDyczM4dVXM0wncseOh7jsshjmz5/Pz8OHQ3Ky+Uy/+25CQkLIzc1lyJAhxMfHM3PmTJYtW8b69esZP348ycnJphqKi4vp378/u3btYvLkyaxatYqoqCimTp1KYmJijb4j3n33Xcd/Rxw6dMj0HbF69WoAZs+e7brviBkzZjj+O2LVqlX14jsiLCzs6HdETk6OaduMjAxGjBhBbGwsvqrRPU1KqWYYnaGzgLPL/ln+51M5thCwKvtnMbAb2Ki1ftLvAx47bldgL3CN1nqdR/vHwNNa6/O8tm8IrMe4nDeyrK0vcH9V9zQppZoCTT2aWgHJ9fmeptWrV3PddYH2eUVdqY95jRoFr75qbps5Ex5+uOxFv37wySfH3jzjDGMVX6WwmxvzcvPTc27My618ycqfe5oaVfVmFTKAZmV/Lv/GOQzsABYCiV4/u7XWJTU8lqd0oISKo0odqTj6BEZn53LgUqXU8LK2BoBSShUDt2mtV3h/SGtdCBSWv1ZB8KVqt+JiXwfpRDCob3kdPmxchvN0xRXw0EMeDZVdmguSc7u+5eV0kpdzWJ1VTTtNzYGNGDN+/wYkaq0r67RYSmt9RCm1CbgVmOPx1q3AD5V8JBu40KvtNeBm4GFgZ23U6Ub79++3uwThh/qW19dfg/e/8oABHn2iAwdgwwbzBkFyPxO4M68mTZpw1lln0aRJwLezBh035uVWVmdV005TLkYn5VbgbmCzUuonYK3WuuB4H1JKna21/rOGxyw3GJiklPoF40m4lzEuCZZffgsFTtZaP6O1LgW2etVwACjQWm9F+Kxnz552lyD8UJ/yysgwOkie7rgDbrrJo2HxYvPETS1bQq9edVKfL9yYV7t27XjqqafsLqNWuDEvt7I6q5reCL5Dax2qtX4QuAeYh/FU2zSl1Hyl1OdKqRsqeWJuSSDFAmitp2Ose/cZEAPcANyltd5dtkkXjE6UsNDcuXPtLkH4oT7l9eWX4P2AVmio10aeM4AD3HYbNG1KsHBjXqWlpRQWFlJaWmp3KZZzY15uZXVWNb0R/CGt9azjvNcQuAK4Ebi6rDka4z6ocK1145qVah+Z3BIKCgpo1qxZ9RuKoFBf8tq9G845B44cOdb25JMwebLHRkeOGOvLefasxo6FF16oszqr48a83HwjuBvzcitfsqr1yS2P12Eqe69Ea71ea91fa30f8BDwE/D3mh5P2O+rr76yuwThh/qS12efmTtMjRvDf//rtdHq1RWHooJg6RRP9SUvt5C8nMPqrCxfRuW4B1KqJbBfa+24iSJlpEmI4LNlC1x8sflWpTffNG4KN3nnHRgy5Njryy+vOAOmsJybR5qEu9i6jMrxaK0PA3/U1fGEtWSBSmepD3l5L8rbqpV5GqajgnQWcE/1IS83kbycw+qs6vpy2XGXOhHB7Z///KfdJQg/uD2vlSsr3tv9/vvGrUsmf/wBCQnmtiDsNLk9L7eRvJzD6qzqtNNUNmmkcKD58+fbXYLwg5vzqmxR3k6d4O23K9nYe5SpSxe49NJaq62m3JhXx44dee+99+jYsaPdpVjOjXm5ldVZ1XSeJlHPXHLJJXaXIPzg5rzmzoX1681tn30GJ5xQycbenaa//x0aBN/zKG7Mq2HDhrRs2dLuMmqFG/NyK6uzCr5vDxGUMjIyqt9IBA235lVcbNzL5Omss+CllyrZ+NAhWLXK3BaEl+bAnXllZmYydepUMjMz7S7Fcm7My62szko6TcIn+fn5dpcg/ODWvCZMgO3bzW39+hlTDVQQGWn0sso1bQq33FKb5dWYG/MqLCzkjz/+oLDQfXdluDEvt7I6K+k0VUEp9bpSKg5jnb16rXv37naXIPzgxrzy8uDzz81tPXvCI48c5wPz5plf33TTca7h2c+NebmZ5OUcVmclnaYqaK0jtNY9gCvtrsVuP/30k90lCD+4Ma9hwyAlxdzWv/9xblEqKqr4eF2QXpoDd+blZpKXc1idVZ1NbulkMrklZGVllU/+JRzAbXllZsKZZ0JW1rG2W281rsBVavly+NvfzG179sApp9RajYFwW17g7skt3ZiXW/mSVVBObimcbdiwYXaXIPzgtrxCQ80dJjBGmY7rhx/Mr3v2DNoOE7gvL4BWrVpx22230aqV4xaBqJYb83Irq7OSkSYfyEiTEPZJSoLu3cHzfuLHHoOpU4/zAa3h9NONkaVy//3vcaYLF0LUdzLSJCwnywY4i5vy+vxzc4epUSOo8l8vJsbcYQK4777aKM0ybsqrXH5+Pr///rsrnzRzY15uZXVWMtLkAxlpgkOHDnHiiSfaXYbwkVvy+v13uOgiKC091vavfxk3hR9X377wxRfHXp95Jvz5JyhVW2UGzC15eXLzPU1uzMutfMlKRpqE5SZPnmx3CcIPbsnro4/MHaaWLX24yjZ3rvn1ffcFdYcJ3JNXfSF5OYfVWUmnSfikV69edpcg/OCGvFavrjjV0nvvGevMHdeuXfDbb+a2IL80B+7Iqz6RvJzD6qyk0yR8kpiYaHcJwg9Oz6uyRXk7dIB3363mg969rHbt4NprLa2tNjg9r/pG8nIOq7OSTpPwSZMmTewuQfjB6XnNnw9r15rbPv0Uqn163fvS3N13G3eOBzmn51WZRo0a0blzZxo54L+/v9yYl1tZnZX7/jaLWtGpymsiItg4Oa+SkoqL8p5xBrzySjUfzMyElSvNbfffb2VptcbJeR1Phw4deKXa0JzJjXm5ldVZyUiT8MmmTZvsLkH4wcl5TZwIcXHmtpAQqPYXxkWLjB5XuWbNjGnDHcDJedVHkpdzWJ2VdJqET+5zwM204hin5pWfD599Zm675BJjMstqeV+au+0243E7B3BqXlXZt28fISEh7Nu3z+5SLOfGvNzK6qyk0yR8MmbMGLtLEH5wal7Dh0NysrltwIDjLMrrqaAAliwxtznof2xOzas6JZ4jfy7i1rzcyOqsZHLLKiilXgdex+hcnlufJ7cUorYdPAhnnWX8s9zNN8OPP/owzdLChcZN3+WUgv37oWPHWqlVVM/Nk1sKd5HJLS2itY7QWvcArrS7FrvJsgHO4sS8Bgwwd5jAWJTXp3kpvRfovfZaR3WYnJhXfSZ5OYcso2IDWUbFWEeqefPmdpchfOS0vJKTjUV5CwqOtf3jHzB9ug8fLi6Grl0hLe1Y26BBxkyYDuG0vHzh5pEmN+blVr5kJSNNwnLffPON3SUIPzgtry++MHeYql2U19OqVeYOE8ADD1hWW11wWl6+aN++Pb1796Z9+/Z2l2I5N+blVlZnJfM0CZ/ce++9dpcg/OCkvLZtg3HjzG0vvWSMPPlk1izz60svNW6OchAn5eWrxo0b09FBl0j94ca83MrqrGSkSfhk8+bNdpcg/OCkvLwX5W3RouK0A8dVWlqx0/Tww5bVVleclJevDh06xLx58zh06JDdpVjOjXm5ldVZSadJ+KRDhw52lyD84JS81q2rOL3SO+9A584+7mDtWuMpOU8O7DQ5JS9/5Ofn8+uvv5Kfn293KZZzY15uZXVW0mkSPmnatKndJQg/OCGvyhblbdcO3n/fj518/7359YUXwjnnBFxbXXNCXuIYycs5rM5KOk3CJ7Kqt7M4Ia9Fi4x7uD198gn4/ICqSy7NgTPyEsdIXs5hdVbSaRI+ufHGG+0uQfgh2PMqKYEPPzS3nXYa9O7tx06ioytOH+7QTlOw5yXMJC/nsDor6TQJn0yaNMnuEoQfgj2vyZNh61ZzW0gI+DWS7n1p7rzzoEePgGuzQ7DnVRMtW7bk2muvpaVD1v/zhxvzciurs5LJLX0gk1tCaWkpDapdAEwEi2DOq6AAzj0X9uw51nbRRfDrrz6sMVdOazjzTNi161jbJ5/Af/9rZal1JpjzEhVJXs7hS1YyuaWw3Jdffml3CcIPwZzXN9+YO0xgLJfi1/+DNm82d5jAsZfmILjzqqnCwkJ27dpFYWGh3aVYzo15uZXVWclIkw9kpEl+s3KaYM0rK8sYIMrMPNZ2442wYoWPa8yV69PH6GmVO/ts+OMPP3cSPII1r0C4eRkVN+blVjLSJGwRGhpqdwnCD8Ga18CB5g4T+LEobzmtK97P9PDDju0wQfDmJSoneTmH1VlJp6kKSqnXlVJxwEa7a7Hb008/bXcJwg/BmFdKCgwZYm576CH461/93NGmTfDnnxV35GDBmJc4PsnLOazOSjpNVdBaR2itewBX2l2L3aKiouwuQfghGPP64gvwnBy6YUPo168GO5o61fz6rLOgZ8+AarNbMOYljk/ycg6rs5JOk/DJWQ5bALW+C7a8tm+HsWPNbS++aDxF55fSUpg+3dz2+OOOvjQHwZeXFRo0aECrVq1cee+PG/NyK6uzamTp3oRrufEJGDcLtrw+/tiY0LJc8+bw+ec12NGqVbB3r7nt8ccDqi0YBFteVujUqRPvvPOO3WXUCjfm5VZWZ+W+XwFErUhLS7O7BOGHYMprw4aKq5289RZ07VqDnXlfmrvwQsdOaOkpmPIS1ZO8nMPqrKTTJHxy2WWX2V2C8EOw5FXZorxt28IHH9RgZ0VFFZ+ac8EoEwRPXlZKTU1l8ODBpKam2l2K5dyYl1tZnZV0moRP5s2bZ3cJwg/BkteSJfDzz+a2jz+GE0+swc6WLYOMDHPbY4/VtLSgEix5Wam0tJScnBxKS0vtLsVybszLrazOSia39IFMbgn5+fk0b97c7jKEj4Ihr9JSuPRSiI091nbKKcYclM2a1WCHTz9tLFpX7qqrYN26gOsMBsGQl9XcPLmlG/NyK1+yksktheXCwsLsLkH4IRjy+u47c4cJjKXhatRhysuDuXPNbS65NAfBkZfwneTlHFZnJSNNPpCRJiH8U1hoTCewe/extgsugJgYY34mv82cCf/4x7HXDRoYT9F17hxoqaKWuHmkSbiLjDQJy4WEhNhdgvCD3XmNHGnuMAGEhtawwwQwaZL59U03uarDZHdetaFt27Y8++yztG3b1u5SLOfGvNzK6qwcOdKklHoNeB/oAvwOvKW1XnWcbR8EegOXAE3Ltu+rtV7qx/Hq/UhTamoqnTp1srsM4SM788rKMibp9rxn+/rrjRvCazQH5YEDcPLJUFx8rG3sWHjhhYBrDRZyfjmL5OUcvmTl6pEmpdSjwFCgH3ApsApYrJQ69TgfuQFYBtwF9AR+AuYrpS6t/Wrd44cffrC7BOEHO/P66quKD7kNGBDApN3ffWfuMDVvbizQ6yJuPL+ys7P58ccfyc6u8v9BjuTGvNzK6qwc12kC3gHGaq2/1Vpv01q/BSRhjCZVoLV+S2s9UGsdrbVO0Fp/BCQA99Rdyc7X0+Fre9U3duW1fz8MHmxuu/9+uPrqAHY6caL59YMPgstGfN14fh0+fJg1a9Zw+PBhu0uxnBvzciurs3JUp0kp1QRjtCjS661I4Bof99EAaAVkVrFNU6VU6/Kfsu3rNTdOUOdmduX1n/8YD7qVa9AAvvwygB1u2QK//mpue/bZAHYYnOT8chbJyzmszspRnSagPdAQ8P6vkAr4elfou0BLYEYV2/QBsjx+kgF27NjBwIEDKSwsPHpzWUhICCkpKYwdO5bo6GiWLl3K7NmziYuLIzw8nOzsbNO2mZmZREREEBsby7x581i4cCGbN29m1KhRpKWlmbbNy8sjLCyM7du3M2PGDJYvX87atWuZMGECSUlJpm1LSkoIDQ1l9+7dTJo0idWrVxMVFcW0adNISEhg0KBBFBQUmD6zf/9+xowZQ3R0NEuWLGHOnDls3bqVYcOGkZWVZdr24MGDDB8+nC1btjB37lwWLVrEpk2bGD16NKmpqaZt8/PzCQsLIyEhgenTp7NixQrWrFnDxIkT2bNnD/369aO0tJSQkBBKS0vp168fe/bsYeLEiaxZs4YVK1Ywffp0EhISCAsLIz8/37T/1NRURo8ezaZNm1i0aBFz585ly5YtDB8+nEOHDpm2zcrKYtiwYWzdupU5c+awZMkSoqOjGTNmDPv37zdtW1BQwKBBg0hISGDatGlERUWxevVqJk2axO7duwkNDaWkpMT0maSkJCZMmMDatWtZvnw5M2bMYPv27YSFhZGXl2faNi0tjVGjRrF582YWLlzIvHnziI2NJSIigszMTNO22dnZhIeHExcXx+zZs1m6dCnR0dGMHTuWlJQU07aFhYUMHDiQxMREpk6dSlRUFDExMUyePJldu3bRv39/iouLTZ9JTk5m/PjxrF+/nmXLljFz5kzi4+MZMmQIubm5pm3T09MZOXIkMTExLFiwgPnz5xMTE8OIESPIyMg4uu3bb0cwerT5HsnbbksmO3sD48aNq1B3UVERAwYMYMeOHUyZMoWVK1eycuVKpkyZwo4dOxgwYAAl48eb9lfSuTPjd+9mw4YNREZGMmvWLOLi4hg6dCg5OTmm/WdkZDBixAhiYmKYP38+CxYsICYmhpEjR5Kenm7aNjc3lyFDhhAfH8/MmTNZtmwZ69evZ/z48SQnJ5u2LS4upn///uzatYvJkyezatUqoqKimDp1KomJiTX6jpgyZYrjvyMOHTpk+o5YvXo1ALNnz3bdd8SuXbsc/x2xatWqOv+OCAkJIScnh6FDhxIXF8esWbOIjIxkw4aaf0cUFRVVONfGjRt39Dvi559/rvY7ItZ7bpQqOOpGcKVUV2AvcI3Wep1H+8fA01rr86r5/OPAt8B9Wusfq9iuKcZN4+VaAcn1+UbwLVu2cOGFF9pdhvCRHXk9+ijM8PhVpFkzSEiAbt1quMPiYuPDnr8pfvih8Riey7jx/HLzlANuzMutfMnKzTeCpwMlVBxV6kjF0SeTshvIxwL/qKrDBKC1LtRaZ5f/ADkB1OwKP3uvhSGCWl3n9csv5g4TwP/9XwAdJoDISHOHCeCZZwLYYfBy4/nVvHlzLr30UlfOnO3GvNzK6qwcNdIEoJTaAGzSWr/m0RYH/KC17nOczzwOjAMe11rPrcEx6/2UA4cOHeLEGi0YJuxQl3lpDX/7G6xYcaztxBNhxw446aQAduw9dHXFFbBxYwA7DF5yfjmL5OUcvmTl5pEmgMHAP5VSLyilzldKDQFOBUYCKKVClVJHH7cp6zBNxLiXab1SqnPZTxs7ineq4cOH212C8ENd5rVsmbnDBPDRRwF2mA4dAu9HhV14A3g5N55fRUVFHDhwgKKiIrtLsZwb83Irq7Ny3EgTHJ3c8gOMyS23Am9rrVeWvTcBOF1rfWPZ6yigVyW7+Z/W+jkfj1fvR5qEqExpKfTsaSyPUq5bN2NR3oCuygwfDm+8cex148awbx+0axfATkVdcvM9TcJd3D7ShNb6G6316VrrplrrnuUdprL3nivvMJW9vlFrrSr5ec6O2p1Klg1wlrrKa/p0c4cJ4IsvAuwwaQ2jR5vb7rvP1R0mOb+cRfJyDllGxQYy0gRZWVnlPXHhAHWR15EjcN55sHPnsbYePeC336BRowB2vGEDXHWVuS0yEm69NYCdBjc3nl9uHmlyY15u5UtWrh9pEnVvoveszCKo1UVeo0aZO0xgTGQZUIcJKo4ynXEG3HJLgDsNbnJ+OYvk5RxWZyWdJuGTm266ye4ShB9qO6+cHPjvf81t11wD994b4I6zs2HaNHPbSy8ZU4u7mFvPr4YNG9pdQq1wa15uZHVW7v4mEpZJSEiwuwThh9rOKywM0tLMbQEtylvuu+/M67A0bAjPPRfgToOfG8+vLl268Mknn7ju0hy4My+3sjor6TQJn7hxgjo3q828UlPhq6/MbffcA9ddZ8HOvS/N3XsvuPB/ut7k/HIWycs5rM5KOk3CJ+1c/OSSG9VmXiEh4LlwfcCL8pbbsKHi4rwvv2zBjoOfG8+v8nXU0ryHJF3AjXm5ldVZSadJ+CTG+7lyEdRqK6/ERBg50tz27LNwwQUW7Dw83Pz6tNNc/cScJzeeX8XFxezfv5/i4mK7S7GcG/NyK6uzkk6T8Mk999xjdwnCD7WV16efGuvolmva1JiXKWApKRUXr3vtNeOepnpAzi9nkbycw+qspNMkfPLtt9/aXYLwQ23ktXkzTJ1qbnvjDTjlFAt2PmqUuTfWvDn8858W7NgZ5PxyFsnLOazOSia3rIJS6nXgdYzO5bn1eXJLIW67zVhnrlybNsaivG3bBrjjwkI49VQ4cOBY20svVbwpXDiKmye3FO4ik1taRGsdobXuAVxpdy12k2UDnMXqvH780dxhAvjwQws6TGBclvPsMIF53bl6wI3n14knnsjDDz9c7QrzTuTGvNxKllGxgSyjAgUFBTRr1szuMoSPrMyrtBSuvBI2bTrW1rUrJCRAixYB7lxruOIK885vuglWrAhwx84i55ezSF7O4UtWMtIkLDds2DC7SxB+sDKvmTPNfRqAvn0t6DABrFtXcedvvmnBjp3FjedXbm4u69atIzc31+5SLOfGvNzK6qyk0yR8cv/999tdgvCDVXkVFcHHH5vbzj0Xnn/ekt3DkCHm16edZsyUWc+48fzKyckhMjKSnJwcu0uxnBvzciurs5JOk/DJJu/RABHUrMprzBhjbiZPoaEWLMoLxvW9WbPMba+/Xm+mGfAk55ezSF7OYXVW0mkSPuncubPdJQg/WJFXbm7FOZiuugos+8Xtq6+Me5rKtWplPDVXD8n55SySl3NYnZV0moRPGlkytCDqihV5DRlS8aG2/v0tWJQXYN8+mDDB3Pbqq+DCJ618IeeXs0hezmF1VtJpEj7ZuXOn3SUIPwSaV1oaDBxobvv736FXr4B2e8zXX8ORI8deN2kCb71l0c6dx43nV9OmTTnnnHNo2rSp3aVYzo15uZXVWUl3WfjkhhtusLsE4YdA8+rXz7g8V04p414mSxw8CCNGmNueecaYx6CecuP51bZtWx5//HG7y6gVbszLrazOSkaahE++++47u0sQfggkr5074ZtvzG1PPw0XXhhgUeWGDIFsj6lQlIL337do587kxvOrpKSEw4cPU1JSYncplnNjXm5ldVYyuaUPZHJL4wuwYT18qsmpAsnrqadgypRjr5s0gT/+MGYDCFhmJpx+Ong+hv6Pf8D06Rbs3LnceH65eRkVN+blVr5kJZNbCsuFWnZtRtSFmuYVEwPev5i9/rpFHSaAsDBzh0kp+Pxzi3buXHJ+OYvk5RxWZyUjTT6QkSZRX9x5JyxZcux169bGPE3t21uw8/R0OOMM881Sjz9esZcmXMHNI03CXWSkSVhOFqh0lprk9dNP5g4TwAcfWNRhAmNeJs8OU4MG8NlnFu3c2eT8chbJyzmszko6TVVQSr2ulIoDNtpdi92effZZu0sQfvA3L63h3/82t3XubOEsAElJxjQDnp54As47z6IDOJucX84ieTmH1VlJp6kKWusIrXUP4Eq7a7Hb8uXL7S5B+MHfvGbNguhoc1vfvtCypUUFffIJFBQce92wIXz6qUU7dz43nl+dOnXiww8/pFOnTnaXYjk35uVWVmcl8zQJn5xzzjl2lyD84E9eRUXw0Ufmtu7d4YUXLCpm82aYNMnc9sorIH+njnLj+dWgQQNXTmwJ7szLrazOSkaahE/y8/PtLkH4wZ+8xo0z1s719OWX0LixBYVoDe+9V3GNOXlizsSN51dGRgaTJ08mIyPD7lIs58a83MrqrKTTJHzixi8+N/M1r8OHjctwnq68Eh56yKJC5s837jD31KcPdOxo0QHcwY3n15EjR0hMTOSI53I5LuHGvNzK6qyk0yR8cvHFF9tdgvCDr3l9/TXs329us2xR3sOH4c03zW3dutXrNeaOR84vZ5G8nMPqrKTTJHyyYMECu0sQfvAlr/R0GDDA3HbHHXDTTRYV0a8f7N5tbgsNhebNLTqAe8j55SySl3NYnZVMbukDmdwS8vLyaNGihd1lCB/5ktc77xjLwJVTCn79FSz5xWzbNmNHRUXH2nr1Mi7VWTKM5S5uPL/cPLmlG/NyK1+yksktheUGDx5sdwnCD9XltXs3RESY2554wqIOU2kp9O5t7jA1amSsAiwdpkq58fxq3bo1d955pyt/0XRjXm5ldVYy0uQDGWkSbvPsszBx4rHXjRvD9u3GKicB+/rrivctffihcWlOCCGCjIw0CcvJsgHOUlVesbEVp03q3duiDtO2bUYHydNpp8lEltVw4/mVn59PbGysKx/Pd2NebmV1VjLS5AMZaYK0tDQ6dOhgdxnCR1XldffdsHDhsdetWhmL8gYcb1ERXHMN/PKLuX35crj55gB37m5uPL/cfE+TG/NyK1+ykpEmYbnZs2fbXYLww/Hy+vlnc4cJ4P33LegwAfznPxU7TP/3f9Jh8oGcX84ieTmH1VlJp0n45IorrrC7BOGHyvKqbFHeTp3g7bctOOCiReA9DH7eeXIfk4/k/HIWycs5rM5KOk3CJ/v27bO7BOGHyvKaOxc2bDC3ffYZnHBCgAfbtQueesrc1rChceOUzMnkEzm/nEXycg6rs5JOUxWUUq8rpeKAjXbXYreSkhK7SxB+8M6ruNhYvcTT2WfDSy8FeKCcHLj/fjh40Nw+aBBcfnmAO68/3Hh+NW7cmG7dutHYkkUMg4sb83Irq7NqZOneXEZrHQFElN8Ibnc9djr99NPtLkH4wTuvCROMKQU8hYQEuChvURE8/DD89pu5/eGHZakUP7nx/Grfvj0vvvii3WXUCjfm5VZWZyUjTcInq1atsrsE4QfPvPLy4PPPze/37AmPPBLAAbSGl1+GyEhz+3nnwbhxMomln+T8chbJyzmszkqmHPCBTDkAmZmZtG3b1u4yhI888+rfv+KluR9/hFtuqeHOtYY33qg4pXiHDrBuHZx1Vg13XH+58fxy85QDbszLrXzJSqYcEJb75ptv7C5B+KE8r8xMo9Pk6dZbA+gwlZbCa69V7DA1bw4LFkiHqYbk/HIWycs5rM5KRpp8ICNNwqnefx+++srctmkTXHZZDXaWlwfPPw8zZpjbGzSAOXPg3ntrXKdwHzePNAl3kZEmYTlZNsBZQkJC2LMHhg0ztz/2WA07THv3Qq9eFTtMDRvC1KnSYQqQnF/OInk5hyyjYgMZaTJ64vX1392JsrOzeeut1owff6ytUSOIj6/BFbQlS4wRpv37ze2NGsG0afDQQwHXW9+58fxy80iTG/NyK1+ykpEmYbkJEybYXYLww5dfzuN//zO3vfqqnx2mgweNlXzvvLNih6l1a5g/XzpMFnHj+dWhQwfeeOMNV67R5sa83MrqrGSeJuGTv/3tb3aXIPywYcN9lJYee92yJXzyiY8fPnwYxoyBfv0gPb3i+2edZXSYzj/fklqFO8+vRo0aufYJMzfm5VZWZyUjTcIn8fHxdpcgfLR6NURFtTK1vfeesc5clXbtMhbdPf10Y0G6yjpMd9xhrMUiHSZLufH8OnjwILNnz+ag92zxLuDGvNzK6qwc2WlSSr2mlNqplCpQSm1SSl1fzfa9yrYrUErtUEq9Wle1ukXLli3tLkH4QGv44ANzW4cO8O67lWxcWGjMqxQaCtddB2ecYcyCWVlnqUULGDHCWJi3Xbtaqb0+c+P5VVBQwJYtWygoKLC7FMu5MS+3sjorx12eU0o9CgwFXgPWAK8Ai5VSPbTWeyrZ/gxgETAGeAq4FvhGKZWmtZ5lVV0TJmC6HOI2O3eew969dlchqtIs+wBqWSTnriviAopoXPbz8DVFtBpWBLm5kJpq3J+UmAh//gm+rMv04IPGvAVnnFH7/xL1lFsvY7mV5OUcVmfluE4T8A4wVmv9bdnrt5RStwO9gT6VbP8qsEdr/VbZ621KqcuB9wDLOk2vvAJHjli1t2Ak/8MMdtfyB6t5mse93/ih7Mdfd90FH30E114beHGiSrGxsVxxxRV2lyF8JHk5h9VZOarTpJRqAvQEvOY4JhK45jgfu7rsfU9LgReVUo211kWVHKcp0NSjqZX3NkIEmyIsWE3+pJOMRel694ZLLgl8f8Ind955p90lCD9IXs5hdVZOu6epPdAQSPVqTwU6H+cznY+zfaOy/VWmD5Dl8ZMMsGPHDgYOHEhhYeHRCbNCQkJISUmhtNSHyxxC1KKadppyTj+dhDvuIPmbb/i6Tx9yw8IIWbAAMP5+p6enM3LkSGJiYliwYAHz588nJiaGESNGkJGRYToXcnJyGDp0KHFxccyaNYvIyEg2bNjAuHHjSElJMW1bVFTEgAED2LFjB1OmTGHlypWsXLmSKVOmsGPHDgYMGEBRUVGFc23cuHFs2LCByMhIZs2aRVxcHEOHDiUnJ8e0bUZGBiNGjCAmJob58+ezYMECYmJiGDlyJOnp6aZtc3NzGTJkCPHx8cycOZNly5axfv16xo8fT3Jysmnb4uJi+vfvz65du5g8eTKrVq0iKiqKqVOnkpiYeNzviLFjxxIdHc3SpUuZPXs2cXFxhIeHk52dzTPPPHN028zMTCIiIoiNjWXevHksXLiQzZs3M2rUKNLS0kz7zcvLIywsjO3btzNjxgyWL1/O2rVrmTBhAklJSaZtS0pKCA0NZffu3UyaNInVq1cTFRXFtGnTSEhIYNCgQRQUFJg+s3//fsaMGUN0dDRLlixhzpw5bN26lWHDhpGVlWXa9tChQwwfPpwtW7Ywd+5cNmzYQPfu3Zk7dy6pqammbfPz8wkLCyMhIYHp06ezYsUK1qxZw8SJE9mzZw/9+vWjtLSUkJAQSktL6devH3v27GHixImsWbOGFStWMH36dBISEggLCyM/P9+0/9TUVEaPHs2mTZtYtGgRc+fOZcuWLQwfPpxDhw6Zts3KymLYsGFs3bqVOXPmsGTJEqKjoxkzZgz79+83bVtQUMCgQYMYNGgQ06ZNIyoqitWrVzNp0iR2795NaGgoJSUlps8kJSUxYcIE1q5dy/Lly5kxYwbbt28nLCyMvLw807ZpaWmMGjWKzZs3s3DhQubNm0dsbCwRERFkZmaats3OziY8PJy4uDhmz57N0qVLiY6OZuzYsRXOtcLCQgYOHEhiYiJTp04lKiqKVatWMXnyZHbt2kX//v0pLi42fSY5OZnx48ezfv16li1bxsyZM4mPj2fIkCHk5uaatg3m74h333232u+I2NhYn78vHTW5pVKqK7AXuEZrvc6j/WPgaa31eZV85g9gvNY61KPtWmA10EVrvb+Sz1Q20pRc1eSW110HRRXGrISoO6cUJPDln49QrBrTvFVjTj2rMQ2bNYbGZT/NmkHnzsZPly7Qo4fx00oGUoUQ9Zc/k1s66vIckA6UUHFUqSMVR5PK7T/O9sVARmUf0FoXAoXlr5VS1Ra2enW1mzhaSEgIn/g80Y+wR3cgBpC8nEbychbJyzmszspRI00ASqkNwCat9WsebXHAD1rrCjeCK6UGAPdorXt4tI0ALtFaX+3jMev9MiqFhYU0bdq0+g1FUJC8nEXychbJyzl8ycrty6gMBv6plHpBKXW+UmoIcCowEkApFaqUmuix/UjgNKXU4LLtXwBeBL6qsGdxXF9//bXdJQg/SF7OInk5i+TlHFZn5bTLc2itpyul2gGfAV2ArcBdWuvdZZt0wehElW+/Uyl1FzAEeB1IAd6syRxN2dlVdkBd7bbbbqvX//5OI3k5i+TlLJKXc/iSlT9ZOu7ynB2UUidT9gSdEEIIIVypm9a6ymmcpdPkA2XcCd4VyPFh843AlbVbUZ0fqxVGp7Ebvv03CJQb/xvW5bEkL2cdS/Jy1rHcmld9z6oVkKKr6RQ57vKcHcr+I/q0iIhSqrS6G8msUlfH8nh6MKeOjue6/4Z1eSzJy1nHkrycdSy35iVZ4VM9TrwRPNhFuPRYdcmt/w0lLzlWMHDrf0PJyxnHqetjWUouz4lqlU+5gA+PYwr7SV7OInk5i+TlHLWRlYw0CV8UAl/gMeGnCGqSl7NIXs4ieTmH5VnJSJMQQgghhA9kpEkIIYQQwgfSaRJCCCGE8IF0moQQQgghfCCdJiGEEEIIH0inSfhMKXW6UmqsUmqnUipfKZWolPpCKdXE7tqEQSn1Wlk+BUqpTUqp6+2uSVSklOqjlIpWSuUopQ4opeYqpc61uy7hm7L8tFJqqN21iMoppU5WSk1WSmUopfKUUjFKqZ6B7lc6TcIf52H8nXkF+AvwNvAq8KWdRQmDUupRYCjQD7gUWAUsVkqdWtXnhC16YUzwdxVwK8bqDJFKqZa2ViWqpZS6AngZiLW7FlE5pdRJwBqgCLgT6AG8CxwKeN8y5YAIhFLqfaC31vpMu2up75RSG4DNWuveHm3bgLla6z72VSaqo5TqABwAemmtV9pdj6icUuoEYDPwGvAJEKO1fsvWokQFSqn+wLVaa8tH2mWkSQSqDZBpdxH1Xdkl0p5ApNdbkcA1dV+R8FObsn866lxSSrVUSn2jlPpOKfVj2QzM5e+9rZRKU0p1s7NGi0UAC7XWP9pdiKjSvcAvSqmZZZe/f1VKvWTFjqXTJGpMKXUW8AYw0u5aBO2BhkCqV3sq0LnuyxG+UsaqooOB1VrrrXbX46e+QBjwEnAL8KzHe6dh/L28uu7Lsp5S6jHgMkBGbYPfmUBvIAG4HeP/UeFKqWcC3XGjQHcgnE8p1Rf4vJrNrtBa/+Lxma7AEmCm1vrbWixP+Mf7eruqpE0El+HARcB1dhfiD6XUyQBa60Sl1B1lzQc8NvkYeAA4rJRqDgwEdmF04lO11l/VYbkBUUqdAnwN3Ka1LrC7HlGtBsAvWuuPyl7/qpT6C0ZHamIgO5ZOkwDjS3taNdvsKv9DWYfpJ2Adxg2Rwn7pQAkVR5U6UnH0SQQJpdQwjEsJN2itk+2ux09dgbFlf34S4ybb+eVvaq0PK6XWADFAKJChtQ4DUEpFKaV2a61n1mnFNdcT41zaZAwMAsbI7g1KqX8BTbXWJXYVJyrYB8R5tW0DHgp0x9JpEmit0zH+p1utst8ufwI2Ac9rrUtrszbhG631EaXUJownseZ4vHUr8IM9VYnjKbskNwxjJOZGrfVOm0vym9Y6GkAp1Qp4EBivtc7z2iwXOIhx+c7zMt0cjEt5Tuk0LQcu9GobD8QDA6TDFHTWAN5TeJwD7A50x9JpEj4rG2GKAvYA7wEdyn/r0lrvt68yUWYwMEkp9QvHRgFPRe45C0YRwBPAfUCOUqp8hDBLa51vX1k1chfQAq8OkFKqE8YvY+eVve/5P6zdQC+llNIOeIRba50DmO43U0odxhg9c9p9aPXBEGCtUuojYAZwJcb3YcBXRqTTJPxxG3B22Y/3pQRVcXNRl7TW05VS7YDPgC4YX/J3aa0D/u1KWK58Wogor/bngQl1WkngLgdKgfVe7c8DkzE67gCHPd47DJwAtAKya7tAUb9oraOVUg9gXBb+DNgJvKW1nhLovqXTJHymtZ6A877Q6xWt9TfAN3bXIaqmtXbTLxnNgDStdWF5g1KqPXCK1jpOKXUJUKK1Lvb4zJGyf56AQztNWusb7a5BHJ/WegGwwOr9ypQDQgghAvET0L78abqyJ+UGASFl7+dU8pkTyv7pqHmphJCRJiGEEDWmtZ6tlHoPmKiU+hPjqbJQrfW+sk32AQ2VUs097tdqBRySx/eF08gyKkIIIWqNUqoRxg3h12qtfy9r+xS4RS5xCaeRy3NCCCFqTdm9TLOAp+HodAsPYjxBKISjyEiTEEKIWqWUOhEIB37HmIA1RWs9yNaihKgB6TQJIYQQQvhALs8JIYQQQvhAOk1CCCGEED6QTpMQQgghhA+k0ySEEB6UUo/YXYMQIjhJp0kIIcoopa4BnrW7DiFEcJJOkxBCHPMkEPCinkIId5IpB4QQgqMzVycAf9Fa59ldjxAi+MhIkxBCGO4AVkuHSQhxPNJpEkIIg1yaE0JUSS7PCSHqPaXUCcAWoHvZWmlCCFGBjDQJIVxBKdVSKfWNUuo7pdSPSqnWHu+9rZRKU0p1O87HHwTme3eYlFLXKaUmKqXWKaX+rpRqoJR6XSk1TCk1Uim1Wil1Vdm2TyilRpT9rFZK3Vx7/7ZCCDtIp0kI4RZ9gTDgJeAWzFMHnAa0B64+zmcrXJpTSjUAXi7bzxpgPPA1EKe1fkNr/SrGArTfKaU+Awq01r211r2BFcDMsn0IIVxCTmghhOMppU4G0FonAteXNR/w2ORjYA9wuJLPdgJO01pv8HrrCuBXbdzD0BXoACzUWv/ksU02cAaQqrWe7dGeCrQt+4wQwiWk0ySEcIOuwNiyPz8JHALml7+ptT6MMVoUU8lnHwOmV9LeFJhT9ufrgaVa6yVe21wE7ARGe7WfD+QDGb7+Cwghgl8juwsQQohAaa2jAZRSrTDuTxpfydQBuVrrlEo+/iTwdCX7XFm2z7OBbsBQz/fL5nW6BpipKz5RcxuwSm4qF8JdZKRJCOEmdwEtgJmejWWX4NK9N1ZKnYPxFPH2KvZZfkN3lFf7FcAJ3u1KqQuB7sD3ftQthHAA6TQJIdzkcqAUWO/V/jwwuZLtfZmb6SaMy32/erXfWPbPKK/2J4BCyjpNSqkXq9m/EMIh5PKcEMJNmgFpWuvC8galVHvgFK11XCXbP8qxzs/x3Ais1FqXerXfBOzQWu/xan8QmKe1Plg26nS8aQ6EEA4jI01CCDf5CWhf/jSdUqo5MAgI8d6wbH6lPVrr/cfbmVLqfKAzFS/BNca4nymq4qdoD/xcNt3Av4HhNfkXEUIEHxlpEkK4htZ6tlLqPWCiUupPoCEQqrXeV8nmvlyaawekALO92k/EmL6gskt+bwL/xBihGqm1lifohHAJWUZFCFHvlD359idwodY6x+56hBDOIJfnhBD10W3ABukwCSH8IZ0mIUR95MulOSGEMJHLc0KIekUp1RKIA87WWhfZXY8QwjlkpEkIUd88ACySDpMQwl/SaRJC1De9gIl2FyGEcB65PCeEEEII4QMZaRJCCCGE8IF0moQQQgghfCCdJiGEEEIIH0inSQghhBDCB9JpEkIIIYTwgXSahBBCCCF8IJ0mIYQQQggfSKdJCCGEEMIH0mkSQgghhPCBdJqEEEIIIXwgnSYhhBBCCB/8P1KAxtes/ALpAAAAAElFTkSuQmCC\n", "text/plain": [ "Graphics object consisting of 4 graphics primitives" ] }, "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ "graph = plot(m_num(v), (v, -v0, 2*v0), color='blue', \n", " legend_label=r'$S(x) = x$', thickness=3,\n", " axes_labels=[r'$v/m$', r'$M(v)/m$'],\n", " frame=True, axes=False, gridlines=True)\n", "graph += plot(S2(v/v0) , (v, 0, v0), color='red',\n", " legend_label=r'$S(x) = 6x^5 - 15x^4 + 10x^3$', \n", " thickness=3) \n", "graph += line([(v0, 0), (v0, 1)], linestyle='--', color='grey')\n", "graph += text(r'$v_0$', (v0, -0.08), color='black', fontsize=16)\n", "graph.set_axes_range(ymin=0)\n", "graph.save(\"vai_mass_function.pdf\")\n", "graph" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Numerical integration of the outgoing radial null geodesics" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We plug the function $m(v)$ into the expression of $\\frac{\\mathrm{d}r}{\\mathrm{d}t}$ along\n", "the outgoing radial null geodesics found above:" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle -\\frac{{\\left(r + t\\right)} {\\left(\\mathrm{sgn}\\left(r + t\\right) + 1\\right)} {\\left(\\mathrm{sgn}\\left(-r - t + 3\\right) + 1\\right)} - 6 \\, r + 6 \\, \\mathrm{sgn}\\left(r + t - 3\\right) + 6}{{\\left(r + t\\right)} {\\left(\\mathrm{sgn}\\left(r + t\\right) + 1\\right)} {\\left(\\mathrm{sgn}\\left(-r - t + 3\\right) + 1\\right)} + 6 \\, r + 6 \\, \\mathrm{sgn}\\left(r + t - 3\\right) + 6}\$$" ], "text/latex": [ "$\\displaystyle -\\frac{{\\left(r + t\\right)} {\\left(\\mathrm{sgn}\\left(r + t\\right) + 1\\right)} {\\left(\\mathrm{sgn}\\left(-r - t + 3\\right) + 1\\right)} - 6 \\, r + 6 \\, \\mathrm{sgn}\\left(r + t - 3\\right) + 6}{{\\left(r + t\\right)} {\\left(\\mathrm{sgn}\\left(r + t\\right) + 1\\right)} {\\left(\\mathrm{sgn}\\left(-r - t + 3\\right) + 1\\right)} + 6 \\, r + 6 \\, \\mathrm{sgn}\\left(r + t - 3\\right) + 6}$" ], "text/plain": [ "-((r + t)*(sgn(r + t) + 1)*(sgn(-r - t + 3) + 1) - 6*r + 6*sgn(r + t - 3) + 6)/((r + t)*(sgn(r + t) + 1)*(sgn(-r - t + 3) + 1) + 6*r + 6*sgn(r + t - 3) + 6)" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" } ], "source": [ "drdt1 = drdt.substitute_function(m, m_num)\n", "drdt1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and we perform a numerical integration: " ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [], "source": [ "fdrdt = fast_callable(drdt1, vars=[t, r])" ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [], "source": [ "from scipy.integrate import ode\n", "\n", "def solve_ode(t0, t1, r0=0.001, dt=0.02):\n", " t0 = RDF(t0)\n", " t1 = RDF(t1)\n", " r0 = RDF(r0)\n", " dt = RDF(dt)\n", " forward = 1 if t1 > t0 else -1\n", " rd = ode(solve_ode.rhs)\n", " rd.set_initial_value(r0, t0)\n", " rd.set_integrator('dopri5')\n", " sol = []\n", " ts = t0\n", " rs = r0\n", " while rd.successful() and forward*ts < forward*t1 and rs > 0:\n", " sol.append((ts, rs))\n", " ts = rd.t + forward*dt\n", " rs = RDF(rd.integrate(ts)[0])\n", " return sol\n", "\n", "solve_ode.rhs = fdrdt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Plot parameters:" ] }, { "cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [], "source": [ "tmax = v0 + 1.5\n", "ymin = -4\n", "ymax = tmax - 0.5\n", "rmax = 6" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Outgoing radial null geodesics from the Minkowski region:" ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [], "source": [ "def geod_line(sol):\n", " return line([(s[1], s[0]) for s in sol], color='green')\n", "\n", "def outgeods_from_Mink(t0, tmax, dt0, t0_max=0):\n", " geods = []\n", " print('t0 : ', end='')\n", " while t0 < t0_max:\n", " sol = solve_ode(t0, tmax, r0=1e-8, dt=0.05)\n", " print(t0, end=', ')\n", " geods.append(geod_line(sol))\n", " t0 += dt0\n", " return geods" ] }, { "cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "t0 : -10.0000000000000, -9.00000000000000, -8.00000000000000, -7.00000000000000, -6.00000000000000, -5.00000000000000, -4.00000000000000, " ] } ], "source": [ "outgeods = outgeods_from_Mink(-10., tmax, 1., t0_max=-3.)" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "t0 : -3.00000000000000, -2.50000000000000, -2.00000000000000, -1.50000000000000, -1.00000000000000, -0.500000000000000, " ] } ], "source": [ "dt0 = 0.5 if S == S0 else 0.49\n", "outgeods += outgeods_from_Mink(-3., tmax, dt0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Drawing of the radiation region (yellow rays):" ] }, { "cell_type": "code", "execution_count": 55, "metadata": {}, "outputs": [], "source": [ "def draw_radiation_region(v0, rmax, nl):\n", " graph = Graphics()\n", " for i in range(nl+1):\n", " t0 = float(i)/float(nl)*v0\n", " graph += line([(0, t0), (rmax, t0 - rmax)], color='yellow')\n", " return graph" ] }, { "cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [], "source": [ "graph = draw_radiation_region(v0, rmax, 20)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Adding the outgoing radial null geodesics:" ] }, { "cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAKdCAYAAAAJCpJDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3iTZduHz6d70VJK2WXvvQrIUFFBXCjgxIWKgta98dX3Q14VHCgoKEORIbgAWSKKosimjLJ32bSlg+7d3N8fSaCUposk9/Mk93kcPVrSK09+hNKcudelCSFQKBQKhUKh0BMesgMoFAqFQqFQlEQJikKhUCgUCt2hBEWhUCgUCoXuUIKiUCgUCoVCdyhBUSgUCoVCoTuUoCgUCoVCodAdSlAUCoVCoVDoDiUoCoVCoVAodIcSFIVCoVAoFLpDCYpCoVAoFArdoQRFoVAoFAqF7tCtoGiado/sDAqFQqFQKOSgS0HRNK038KjsHAqFQqFQKOTgFEHRNK2XpmnXVeIuDwLzHZVHoVAoFAqFvtGEEI5/EE2LB9YKIe6rQK0XcARoJ4TIdng4hUKhUCgUusPhIyiaprUBagMbK3iXQcB6JScKhUKhULgvzpji6Wv5/G8F69X0jkKhUCgUbo4zBKUfkAbsKq9Q07QgoBfwp6NDKRQKhUKh0C8OERRN0+7XNG2bpmnbgIeAAmCr5baeZdx1KLBcCFFY4np9NU2bq2naJk3TbtM0zUPTtChN077QNG2apmnrNU3rZakdrmnaV5aP9Zqm3eCIv6NCoVAoFArH4dBFspqmRQCngDeFEB9WoP534L9CiC3FbvMAZmPedvwx8AjwI7BYCPG3pWY6MMBSt1cIsdhy+zggCggXQpjs9zdTKBQKhULhSBw9xdPf8nlteYWaptUGGhWXEwuRwE5hNql6QDjwq1VOLKQDTYAEq5xYSABqWO6jUCgUCoXCIDhaUK4HsoBtFai9H/PISEl8gV8sX/cDfhdCrCpR0xE4DswocXsbIAdIrmBehUKhUCgUOsAZgrKh5JoSGzwILCh5oxDiXyHECU3TmgMNgNXFv285N6U38I+4cr5qILCugo+vUCgUCoVCJzhMUCzrT5pQsemdlpjXwxwqo8y62PWfErdHAkElb9c0rQPQAlhYscQKhUKhUCj0giNHUK5Yf6Jp2kuapmml1Fbk7JP+QCqws8Tt11s+/1Pi9uFAHhZB0TTtifICKxQKhUKh0AdeDrx2JFAERANomtYUaFzKNAzAfVwSDVtcD/xbym6c/kCsEOJUiduHAsuEEBcsoykNKhdfoVAoFAqFLBw5gpICpAoh8jVNCwbGA2NLFlnOLzklhIi3dSHLcfl1uHIaxxvL+pNS7lYTWGvZpvwGMKVKfwuFQqFQKBROx5EjKJOB3pqm/YD5oLZ3hBAXSqmryPROGHAOWFzi9uqYdwl9V8p9ngdGYh55mSaEUDt5FAqFQqEwCE7pZmzzwc07cI4CHYQQGdKCKBQKhUKh0BXO6MVTFgOBLUpOFAqFQqFQFEe2oKjOxQqFQqFQKK5A2hSPpmmBwH6guRCiQEoIhUKhUCgUukTmCMoQYKWSE4VCoVAoFCWRKSjXAXMlPr5CoVAoFAqdInUXj0KhUCgUCkVpyF4kq1AoFAqFQnEFSlAUCoVCoVDoDiUoCoVCoVAodIcSFIVCoVAoFLpDCYpCoVAoFArdoQRFoVAoFAqF7lCColAoFAqFQncoQVEoFAqFQqE7lKAoFAqFQqHQHUpQFAqFQqFQ6A4lKAqFQqFQKHSHrgVFMxOsaZomO4tCoVAoFArnIVtQRFkfaWlpJiDN8rnMWlf46Durr7h+9vXSc+j947NNn4mgD4Kk53DGR2puqtDe1cQPe3+QnkV9mD8KTYWi1se1xOurX5eexdU/xv4zVgR+EChSclKkZ5H84ZbIFhRFMaIio1h7ci0HEg/IjqJrAn0CyS7Ixh06ccdeiAWgWWgzyUkUVtaeWEtidiL3trtXdhSXJqcgh6nRU3ms82PU8K8hO45CAkpQdMTQNkOpGVCT6duny46iawK9AxEIcgtzZUdxOMdSjgHQrIYSFL3w076faFy9Md3qdpMdxaX5bvd3JGcn82KvF2VHUUhCCYqO8PXy5fHOjzNn1xxyCnJkx9EtgT6BAGQVZElO4nhiL8QS4htCqF+o7CgKoNBUyOKDi7m37b2opXGOwyRMfLr5U+5sfSfNazSXHUchCSUoOuOpbk+RmpvKT/t+kh1FtwR6WwQl3/UF5diFYzSr0Uy9GOqEf078Q1J2kprecTCrjq7iYNJBXrnmFdlRFBJRgqIzmtVoxoCmA5i2fZrsKLolwDsAcJ8RlKahTWXHUFj4ed/PNKnehK51u8qO4tJM3DSRHvV70Ceij+woCokoQdEho7uPZvOZzeyK3yU7ii65OMXjLiMoaoGsLrg4vdNOTe84kpj4GNYcX8PLvV5Wz7Ob4zRB0TRtjKZpQtO0Sc56TKNyR8s7qBtUVy2WtcHFKR4XH0EpKCrgVNopNYKiE6zTO/e0vUd2FJfm002f0jCkIcPaDpMdRSEZpwiKpmmRwFPAbmc8ntHx9vRmZNeRzNs9j4y8DNlxdIe7jKCcTDuJSZjUCIpO+GnfTzQNbaqmdxzI2fSzfL/3e17o+QJeHl6y4ygk43BB0TQtCJgPPAlccPTjuQoju44kuyCb7/d+LzuK7nCXERTrGShqBEU+BUUFLD6gdu84milbpxDgHcDIriNlR1HoAGeMoEwFfhVC/OmEx3IZGoY05NYWtzJt2zS3OJCsMrjLCMqxlGN4eXgRERIhO4rb88+Jf0jOSeaedmp6x1Fk5mcybfs0nuz6JMG+wbLjKHSAQwVF07T7ga7AmIrU5+XlkZ6eftmHOzO622h2xu9k27ltsqPoCi8PL3w8fdxiBKVRSCM11K0DrNM7Xep0kR3FZZkdM5uMvAye7/m87CgKneAwQdE0LQKYDDwkhKjQkZ/jx48nJCTk4kdEhHu/cxzUfBD1q9Xn25hvZUfRHYHega4/gmI5A0Uhl0JTIUsOLeGetveo6R0HYRImJm+ZzLC2w2gY0lB2HIVOcOQISjegFrBd07RCTdMKgeuA5y1/9ix5hzFjxpCWlnbx4/Tp0w6Mp388PTx5pNMjfL/3e7c41r0yBPoEusUIStPqav2JbNadXEdSdhLD2qhdJY5i5ZGVHE05yku9XpIdRaEjHCkofwEdgM7FPrZhXjDbWQhRVPIOvr6+BAcHX/bh7ozoPILU3FSWHlwqO4qucPURFCGEGkHRCYsPLCYiOILu9brLjuKyTNo8iZ71e9KrQS/ZURQ6wmGCIoTIEELsLf4BZAHJlq8VFaBlWEt6R/RW0zwlcPURlKTsJDLzM9UOHsmYhInFBxcztM1QNb3jIPYk7OGv43+ppoCKK1AnyRqAxzo/xurY1ZxNPys7im4I9HZtQbFuMVZnoMhly5ktnMs4p6Z3HMjkLZOpX62+eo4VV+BUQRFCXC+EeNGZj+kK3NvuXnw9fZm7a67sKLoh0Me1p3iOXTgGqDNQZLPowCJqB9amd0Rv2VFcksSsRL7b/R1RkVF4e3rLjqPQGWoExQAE+wYzrO0wZu+arc5EsRDgHUB2QbbsGA4j9kIs4QHhVPOtJjuK2yKEYPGBxdzV+i48Pa5Y06+wA9O3T0fTNJ7q9pTsKAodogTFIIzoNILDyYfZdGaT7Ci6wB2meJqENpEdw62JiY/heOpxNfXgIPKL8pkaPZVHOj5CWECY7DgKHaIExSD0b9KfhiENmR0zW3YUXeDqu3hOpJ6gSXUlKDJZdGARoX6hXN/4etlRXJKf9v1EfGY8L/R6QXYUhU5RgmIQPDQPHu30KD/s/cGlpzYqiqvv4jmReoLG1RvLjuHWLDqwiDtb36nWRjgAIQSTNk9iYLOBtA1vKzuOQqcoQTEQj3Z6lIz8DH458IvsKNJx5RGUQlMhp9JOKUGRyIHEAxxMOqimdxzExtMb2R63nRd7vig7ikLHKEExEM1qNKNvw77M3zNfdhTpuPIIytn0sxSJIjXFI5FFBxYR5BPETU1vkh3FJZm0ZRKtwlpxc/ObZUdR6BglKAZjePvh/HHsDxKzEmVHkYorj6CcSD0BoEZQJLLowCJub3k7fl5+sqO4HCdTT7L4wGJe6PkCHpp6CVLYRv10GIx72pkblv28/2fZUaQS6BNIgamAgqIC2VHsjlVQGlVvJDeImxJ7IZaY+Bg1veMgpmydQrBvMI90ekR2FIXO0aWgTJ06lbZt2xIZGSk7iu6oGVCTgc0GsmDPAtlRpBLoHQjgktM8x1OPUzeornr3LonFBxbj5+XHLc1vkR3F5cjMz2Tmjpk81fUpAn0CZcdR6BxdCkpUVBT79+8nOjpadhRdMrz9cDac3nDxnbY7Yv3l5orTPGoHj1wWHVjEoOaD1AuoA5gTM4fM/EyiekTJjqIwALoUFEXZ3Nn6Tvy9/Plh7w+yo0jDlUdQlKDI40z6GTaf2aymdxyASZiYvGUyw9oOo2FIQ9lxFAZACYoBCfIJ4s7Wd7r1NI8rj6AcTz2uBEUSvxz4BW8Pb25vebvsKC7Hb0d+40jKEbW1WFFhlKAYlOHth7Pn/B72JOyRHUUKAd4BgOuNoBQUFXAm/YzaYiyJRQcWcVPTm6juV112FJdj0pZJ9Kjfg14NesmOojAISlAMys3NbybUL5Tv934vO4oULk7xuNgIypn0M5iESY2gSOB81nnWnVqnpnccwN7ze/kz9k9e6PkCmqbJjqMwCEpQDIqPpw/3tL2HBXsWuGWH44tTPC42gnI89TigzkCRwdKDSwEY3Gqw5CSux+TNk6lXrR53t71bdhSFgVCCYmCGdxjOybSTbtnh2FVHUE6knkBDU4sIJbD44GKua3Qd4YHhsqO4FEnZSXy35zuiIqPw8fSRHUdhIJSgGJh+jfpRN6guP+9zv0Pb/Lz80NBcbgTlROoJ6lWrh6+Xr+wobkVabhp/xf7FkNZDZEdxOWZun4kQgqe6PSU7isJgKEExMB6aB0PbDGXhgYWYhEl2HKeiaZq5H48LjqCo6R3n89vR3ygwFXBX67tkR3EpCk2FfLXtK4Z3GE7NgJqy4ygMhhIUg3N327s5k36G6LPud6hdoLfrNQxUW4zlsOTgErrV7UZESITsKC7F0oNLOZ1+mud6PCc7isKAKEExOP0a9iM8IJyF+xfKjuJ01AiKwh7kFeax8shKNXriAD7f+jl9G/alS90usqMoDIgSFIPj6eF5cZrH3XbzBHgHkFOYIzuG3cgvyuds+ll1BoqT+fvE32TkZyhBsTO7E3bz78l/1ejJVZJdkC07gjSUoLgA97S9hxOpJ9gRt0N2FKfi7+VPToHrCMqptFMIhBpBcTJLDy6laWhT2oW3kx3FpfhiyxfUr1ZfLTy+SqZunSo7gjSUoLgA1zW+jjD/MH7e7167eQK8A8gudJ13F9bmj0pQnIdJmFh6aCl3tbpLHSBmR5Kzk5m/Zz6ju4/G29NbdhzDkpGXwYcbPpQdQxq6FJSpU6fStm1bIiMjZUcxBF4eXgxpPYSF+91rmsff27VGUKxnoKiFms4j+mw0cZlxanrHznyz8xuKRJHaWnyVTNk6hYz8DNkxpKFLQYmKimL//v1ER7vfzpSqcnfbuzl24Ri7EnbJjuI0ArwDXGp+9kTqCRoEN1CHWTmRJQeXUDOgJr0jesuO4jIUmYr4MvpL7m9/P7UCa8mOY1jS89L5ZNMnjOwyUnYUaehSUBSV54YmNxDqF+pWu3n8vfxdapGs2mLsfJYcWsLgloPx9PCUHcVlWH54OSfTTqrFsVfJlK1TyMzPZEy/MbKjSEMJiovg7enNna3vdCtBccURFCUozuNg0kEOJh1U0zt25vMtn3NNg2voXq+77CiGJT0vnU82fsKTXZ+kQXAD2XGkoQTFhRjaeiiHkg9xMOmg7ChOwdV28ZxMPUmjkEayY7gNSw8uJcA7gJua3iQ7isuw9/xe/j7xtxo9uUq+2PIFWQVZjOnrvqMnoATFpbip6U34e/lf7Mrq6rjSCEpBUQHnMs7RqLoSFGex5NASBjUfhL+3v+woLsOUrVOoE1SHYW2HyY5iWNLz0pm4aSJPdX2K+sH1ZceRihIUF8Lf25+BzQay7PAy2VGcgr+366xBOZtxFoFQXYydRFxGHJvPbOauVnfJjuIyXMi5wLzd8xjdbbRa6H0VfL7lc7ILsnmz75uyo0hHCYqLcWerO9l0ehMJmQmyozgcfy9/lxlBOZV2CkAJipNYdmgZnpont7W8TXYUl2HWzlkUFBUwqvso2VEMS1puGp9u+pSnuqnRE1CC4nLc3vJ2NE1jxeEVsqM4nADvAJdZg2IVlIhgdQaKM1hyaAnXNb6OGv41ZEdxCYpMRUyNnsq97e6lTlAd2XEMixo9uRwlKC5GeGA4vSN6s/SQ669D8ff2p8BUQKGpUHaUq+Zk6knC/MMI9AmUHcXlSc9L56/Yv7iz1Z2yo7gMK4+s5HjqcbU49ipIy03j082fMqrbKOpVqyc7ji4whKCM+XMMBUUFsmMYhjtb3cnq2NUu1+m3JAHeAQAuMYpyKu2UWiDrJH478hsFpgIlKHbki61fEFkvkp4NesqOYlgmb5lMbmEub/R9Q3YU3WAIQZmxfQYP//IwRaYi2VEMweBWg8ktzOXP2D9lR3Eo/l7m3ReusFD2VPoptf7ESSw5tIQudbooIbQTBxIPsDp2Nc/3fF52FMOSmpvKZ5s/U6MnJTCEoMy+azYL9y9k5PKRmIRJdhzd0zKsJa1rtnb5aR7rCIorLJQ9lXaKhsFKUBxNXmEevx7+VR3OZkembJ1CrcBa3NP2HtlRDMvkzZbRkz5q9KQ4hhCUO1rdwbwh85gTM4dnVz7rVg3xqsqdre5kxeEVLj3qZD2/wuhTPEIIs6CoERSH88+Jf8jIz1CCYifSctOYs2sOo7qNwtfLV3YcQ2IdPRndbTR1q9WVHUdXGEJQAB7o8ABfD/6ar7Z9xeurX5cdR/fc2epOErMT2XRmk+woDsNVRlBSc1PJzM9UguIElhxcQpPqTehQq4PsKC7B7JjZ5BXlMbr7aNlRDMukzZPIK8rj9T7qda0kuhSUqVOn0rZtWyIjIy+7/fEuj/P5oM/5ZNMnfLzhY0npjEHPBj0JDwhn5ZGVsqM4DFdZg3Iy7SSAWhPhYIQQLD+8nMGtBqNpmuw4hsckTEyNnsrQNkPVuokqkpqbyqTNk3i6+9Nq9KQUdCkoUVFR7N+/n+jo6Cu+91zP53jn2nd4/c/X+XbntxLSGQMPzYNBzQe5tKC4ygiKOqTNOeyM38nZjLPc0fIO2VFcgr9i/+JIyhGiIqNkRzEsn236jPyifDV6YgNdCkp5vHv9u4zuNpqRy0e6Td+ZqnBri1vZlbCLs+lnZUdxCK6yBuVU2il8PH2oFVhLdhSXZvmh5QT7BtOvUT/ZUVyCL7d9Sfta7enXUD2fVeFCzgUmbTGPnqjD7UrHkIKiaRpTbp3CsDbDuG/hfWw8vVF2JF0ysNlAPDQPfjv6m+woDsGVRlAigiPw0Az539EwLD+8nFua36L6xNiBU2mnWHZoGVGRUWq6rIp8tvkzCooK1OhJGRj2N6KnhyfzhsyjV4NeDP5+MIeTD8uOpDtq+NfgmgbXuOw0j6usQVE7eBzPuYxzbI/brqZ37MSM7TMI9A7kwQ4Pyo5iSFJyUpi8ZTLPRD5D7aDasuPoFsMKCoCvly+/3PcLtQJrccv8WzifdV52JN1xa4tbWR27mvyifNlR7I6nhyc+nj6GH0E5mXZSLZB1MCsOr8BT8+SWFrfIjmJ48grzmLljJo92epRqvtVkxzEkn20yj5681vs12VF0jaEFBSDUP5SVD64kuyCbO76/w/AvVvbm1ha3kpmfyfpT62VHcQj+Xv4usQZFHdLmWJYfXk6fhn1Uc0A7sPjAYs5nnefpyKdlRzEk1tGTqMgoNXpSDoYXFIDG1Ruz4oEV7D2/lxFLRqjTZovRqXYn6gbVddlpngDvAENLaX5RPnEZcWqKx4FkF2TzZ+yfanrHTkyNnkr/xv1pG95WdhRD8ummTykSRbzWR42elIdLCApAt3rd+G7Id/y8/2fG/jNWdhzdoGkat7a41WUFxd/b39BrUM6mn0UglKA4kD9j/yS3MFcJih3YFb+LDac38EzkM7KjGJLk7GQ+3/I5UZFRatdeBXAZQQEY0mYI428cz//+/R8L9iyQHUc33NriVg4kHeD4heOyo9gdo4+gqDNQHM/yQ8tpUaMFrWq2kh3F8HwZ/SX1qtVTnaCriHX05NXer8qOYghcSlAA3ujzBo92epTHlz7OljNbZMfRBTc1vQlvD2+XHEUx+hoUJSiOxSRMrDiyQo2e2IHU3FS+2/Mdo7qNwtvTW3Ycw5GcncznW9XoSWVwOUHRNI3pt0+nW71uDP1pKHEZcbIjSSfYN5jeEb35I/YP2VHsToB3ANmFxh1BOZl2kvCA8IuHzinsy/Zz24nPjOeOVkpQrpa5u+aSX5TPk12flB3FkEzaPAmTMKnRk0rgcoIC5u3HC+9ZCMCwn4aRV5gnOZF8BjYbyN/H/6agqEB2FLvi7238ERQ1euI4lh9eTnW/6vSJ6CM7iqERQvBl9JcMbTNU9YypAqm5qXy+9XOe7v60Gj2pBC4pKAB1q9Vl8b2L2R63ned/e152HOkMaDqAjPwMtpx1rWkvV1iDogTFcSw/vJxbW9yqpiSukjXH13Ao+RDPdFeLY6vC51s+J78oX42eVBKXFRQwd/Sddts0ZuyYwcztM2XHkUrXul2p4V+DP4651jSPv5exd/FYj7lX2J/TaaeJiY9R60/swNToqbQLb8e1ja6VHcVwpOel89nmz3iq61Oq504l0aWgTJ06lbZt2xIZGXnV13qsy2OM7jaa5357ju3nttshnTHx9PDkxiY3sjp2tewodsXoIyhn0s+oERQHseLwCrw8vBjUfJDsKIbmTPoZlh5ayjORz6i+O1VgytYpZBdkq547VUCXghIVFcX+/fuJjo62y/UmDZpEh9oduPvnu0nJSbHLNY3IwGYD2Xp2KxdyLsiOYjeMvIsnPS+djPwMGgQ3kB3FJVl+eDn9Gvajul912VEMzfRt0wn0DuThjg/LjmI4MvMz+XTTpzzR5QnqB9eXHcdw6FJQ7I110Wx6XjoP//Kw2540O6DpAEzCxN8n/pYdxW4YeQTlTPoZACUoDiArP4s1x9eo6Z2rJL8on5k7ZvJIp0dU350q8FX0V6TnpfNm3zdlRzEkbiEoAI2qN2L+0PmsPLKSjzd8LDuOFBpVb0TLsJYutQ7FyCfJKkFxHKtjV5NXlKe2F18liw8sJiErgae7q747lSW7IJtPNn3CiM4j1DRuFXEbQQEY1HwQY/qO4T9r/sOGUxtkx5HCgKYDXGoditFHUDQ0tW3TASw7tIzWNVvTvEZz2VEMzZfRX3J94+tpV6ud7CiGY8b2GSRnJ6vRk6vArQQFYFz/cfRq0IsHFj1Acnay7DhOZ2CzgcReiOVYyjHZUeyCkdegnEk/Q+2g2vh4+siO4lKYhIlfj/yqpneukj0Je1h3ap3aWlwFcgtz+WjDRzzc6WGahjaVHcewuJ2geHl48f2w78kqyOKxpY8hhJAdyalc3/h6vDy8XGaax9/bnwJTAYWmQtlRKs2Z9DNqescBRJ+N5nzWeSUoV8mX0V9SN6gud7W+S3YUw/HNjm9IyErgrb5vyY5iaNxOUAAiQiKYfedslh9ezlfbvpIdx6kE+wbTo34P1pxYIzuKXfD3Mh8Rn1uYKzlJ5VGC4hh+PfIroX6hXBNxjewohiUjL4Pv9nzHk12fVIfcVZK8wjwmbJjAA+0foEVYC9lxDI1bCgrAHa3u4Jnuz/DKH6+w7/w+2XGcSv/G/fnnxD8uMXpk7WFjWEGppgTF3qw8spJBzQfh5eElO4phWbBnAdkF2TzZTfXdqSyzY2ZzNv0s/+n3H9lRDI/bCgrAJwM/oWloUx5Y9IAhX+CqSv/G/UnKTmJfovHFzM/LDzCmoJxOP61GUOxMXEYc2+O2c2uLW2VHMSxCCL7a9hW3t7xd/XxWkoKiAsavH8897e6hTXgb2XEMj0MFRdO0pzVN261pWrrlY5Omabc48jErg7+3P98P+57DyYcZ8+cY2XGcxjUR1+Dj6cPfx41/HopRBSUzP5PU3FT1AmBnVh1dhYbGzc1ulh3FsGw9u5VdCbsY3W207CiGY97ueZxMO8nb/d6WHcUlcPQIyhngTaC75WMNsFTTNN3sWetYuyMf3PgBk7ZMYs1x11iXUR4B3gH0rN/TJQ5sM6qgnE0/C6gzUOzNyqMr6dmgJ+GB4bKjGJZp26fRuHpjBjYbKDuKoSg0FfL+uvcZ2mYoHWp3kB3HJXCooAghlgshVgohDls+/gNkAr0c+biV5cVeL9K/cX9GLBlBam6q7DhOoX/j/qw9udbwp+paBcVoW43VIW32p6CogD+O/cGtzdX0TlW5kHOBH/b+wFNdn8LTw1N2HEPx/Z7vib0Qq0ZP7IjT1qBomuapadr9QCCwqbSavLw80tPTL35kZu50SjYPzYPZd80mLS+N53973imPKZv+TfqTkpPC7oTdsqNcFUYdQbEKiurPYT82nN5Ael66Wn9yFczbPY9CUyGPd3lcdhRDUWQq4r1173FHyzvoUreL7Dgug8MFRdO0DpqmZQJ5wDRgiBBif2m148ePJyQk5OLHuHHXW7/j6Jg0DGnIF7d8wbzd81h6cKnDH082vRr0wtfT1/DrUIwsKDUDal7Mr7h6Vh5ZSZ2gOuoFoooIIZi2bRpDWg+hdlBt2XEMxU/7fuJw8mHeufYd2VFcCmeMoBwCOmOe1vkKmKNpWtvSCseMGUNaWtrFj7ffPm35zgTgXYcHfbjjw9ze8nZGrRjl8qfM+nn50Tuit+HXoRhZUNT0jn1ZeWQltzS/BQ/NrTcnVpl1p9ZxIOkAo7urxbGVwSRMvLfuPQY1H0Rk/UjZcVwKh/9PFkLkCyGOCiG2CSHGALuAF0qr9fX1JTg4+LIPM+8AY3G0pGiaxvTbp5NXlMcLq0qN6FL0b9yff0/+S5GpSHaUKmPUg9rOZJwhIjhCdgyX4WTqSfYl7lPTO1fBtG3TaBnWkv6N+8uOYigWH1jM/sT9/Pfa/8qO4nLIeKuhAb6Vu8urwPs4Q1LqVavH54M+Z/6e+S4/1dO/SX/S8tLYGe+ctT6OQI2gKMA8euLl4cWApgNkRzEk57POs3D/QkZ1G4WmabLjGAaTMPG/f//HTU1vUicXOwBHn4PygaZp/TRNa2xZi/I+cD0wv/JXewtnScpDHR/itha38czKZ0jLTXPoY8mkR/0eBHgHGHodirXRnhIU92bl0ZX0bdiXEL8Q2VEMyeyY2XhoHjza6VHZUQzF8kPL2Z2wW609cRCOHkGpDczDvA7lL6AnMEgIsbpql3OOpGiaxle3fUVGXgavr37dYY8jGx9PH/pE9DH0OhRN0/Dz8jOUoOQW5pKUnaQExU7kFOTwV+xfantxFTEJEzO2z+DedvcSFhAmO45hEEIw7t9xXNfoOq5tdK3sOC6Jo89BeUII0VgI4SuEqCWEuKnqcmLFOZISERLBhJsmMGPHDNaeWOuwx5FN/8b9WXdqHQVFBbKjVBk/Lz9yCo1zDoo6pM2+rD25lpzCHLX+pIr8FfsXxy4cU4tjK8lvR39jR9wO/nudWnviKAy63N05kjK6+2j6NuzLk8ufNNQ79MrQv0l/MvMz2RG3Q3aUKmO0ERR1SJt9WXlkJY1CGtE2vNTNgYpymLZ9Gu1rteeaBmoNRUURQjBu7Th6R/RWi4odiEEFBZwhKR6aBzNun8GJ1BOMX+f4s1hk0LVuV/y9/Fl/ar3sKFXGqIJSv5o6pO1qEULw65FfubXFrWpxZxU4l3GOpQeXMrrbaPX8VYI1x9ew5ewW3u73tnreHIiBBQWcISltwtvwZt83Gb9+PAeTDjrkMWTi4+lDrwa9WH9aCYqzOJN+hlC/UAJ9AmVHMTyHkw8TeyFWTe9UkW92fIOvly8PdXxIdhRD8f669+latyuDmg+SHcWl0bmgHKtAjeMl5a1+b9GoeiNGrRiFEMIhjyGTvg37sv7UesP+3fy9/A0nKGp6xz6sPLISX09fNcxeBYpMRczcMZPh7Yer3U+VYNPpTfx94m/e6vuWGj1xMDoXlN8tnz8up86xkuLn5cdXt33Fvyf/5bvd39n9+rLp27AvSdlJHE4+LDtKlTDcCEqGEhR7sfLoSvo36a9Go6rAb0d/43T6abU4tpK8v+592tRsw5A2Q2RHcXl0LijPWD6/h1lAysKxknJT05u4r919vLr6VZfreNyrQS88NA/DrkMxnKCoERS7kJGXwdoTa9X24ioybds0utfrTrd63WRHMQwx8TH8euRXxvQdo1oqOAGDPMNjgLeRLSkTB04kuyCbd9a41qE8wb7BdKrdiXWn1smOUiWUoLgnfx3/iwJTgVp/UgVOpp5k5ZGVjOo2SnYUQ/HBug9oUr0JD3R4QHYUt8AggvImZuGQKyn1g+sz9rqxfLntS3bGGfd4+NKwrkMxIkY6ByW/KJ+EzAS1g8cOrDyyklZhrWhWo5nsKIZj5o6ZVPOtxv3t75cdxTAcTDrIwv0LeaPPG3h5eMmO4xboUlCmTp1K27ZtiYws3hnyv+hBUp7v+Tytwlrx/KrnDbuotDT6NuzLsQvHiMuIkx2l0hhpBCU+Mx6BUCMoV4kQglVHV6ldFFWg0FTIrJ2zeKjDQwT5BMmOYxgmrJ9AnaA6jOg8QnYUt0GXghIVFcX+/fuJjo4u8R35kuLt6c3kQZNZf2o9P+z9wW7XlU2fiD4AbDi9QXKSymMkQTmXcQ4wN6VUVJ0DSQc4nX5aCUoV+PXwr8RlxvFktydlRzEMJ1JP8N3u73i196v4elWy162iyuhSUMpGvqQMaDaAIa2H8Nrq18jKz7LbdWVSP7g+Tao3MeQ0jxIU9+P3o7/j5+XHdY2ukx3FcMzcMZPu9brTuU5n2VEMw0cbPqK6X3W1ZsfJGFBQQA+SMnHgRJKyk5iwfoLdrikbo65DMdI5KOcyzuHj6UMN/xqyoxiaVcdWcW2ja/H39pcdxVCcST/Db0d/48muavSkosRlxDFr5yxe7PWi2s7uZAwqKCBbUpqENuGVa17hk02fcCrtlF2uKZu+DfuyM34nGXkZsqNUCqONoNSrVk8d8HQV5BTk8O/JfxnUTE3vVJZZO2fh7+XPA+3VLpSKMnHTRHy9fHm2x7Oyo7gdBhYUkC0pb/Z9k+p+1Rnz1xi7XE82/Rr2wyRMbDm7RXaUSmE0QakbVFd2DEOz9uRacgtzubn5zbKjGIoiUxHf7PyG+9vfTzXfarLjGILk7GSmbZtGVGQU1f2qy47jduhcUGIrUCNPUqr5VuO9/u+xYM8CNp/ZfNXXk03rmq0J8w8z3DSPkQQlLjNOrT+5SlYdXUVEcARtaraRHcVQrI5dzam0U2p6pxJM3jIZkzDxUq+XZEdxS3QuKCstnz8rp06epIzoPIJOtTvxyh+vGH7bsaZp9I7obbidPH5efuQUGOMcFOsUj6Lq/H7sd25udrOaJqskM3fMpEOtDvSo30N2FEOQnpfOF1u/4KluTxEeGC47jluic0GJsnweC3xYTq0cSfH08OTjAR+z8fRGfjn4y1VdSw/0atCLrWe3YhIm2VEqjJ+XH3lFeYYQRCUoV8fJ1JMcTDqothdXkoTMBJYdWsaTXZ9UYldBvoz+kqz8LF7t/arsKG6LzgXF+h/pDcynyepTUgY0G8DNzW7mzT/fpKCo4KquJZteDXqRnpfOwaSDsqNUGD8vPwDyivIkJymb3MJcUnJSlKBcBb8f+x1PzZMbm94oO4qhmB0zGy8PLx7q+JDsKIYguyCbTzd9yojOI9ShihLRuaBYGYNZPvQrKR8N+IijKUeZvn36VV1HNt3rdUdDM9SaGqug6H0divWUXiUoVWfV0VX0atBLLVisBCZh4uudX3NP23sI9Q+VHccQfLPjG5Jzknmjzxuyo7g1BhEUDbNE6FdSOtbuyKOdH+V///6PzPzMKl9HNsG+wbSr1Y4tZ4yzk8d6FobeBUUd0nZ1FBQV8Nfxv7i5mdq9Uxn+OfEPR1OOqsWxFSS/KJ+PNn7EA+0fUH2eJGMQQQEjSMq7179Lam4qn20qb1GvvulVvxebz6oRFHujBOXq2HxmM+l56Wr9SSWZuWMmrWu2pm/DvrKjGIJ5u+ZxJv0MY/q6xvERRsZAggJ6l5SGIQ2Jiozi440fk5iVWKVr6IFeDXqx9/xewxzYZiRB8ffyJ8Q3RHYUQ/L7sd8J8w+ja92usqMYhqTsJBYfWMzILiPV4tgKUGgqZMKGCQxpPYR2tdrJjuP2GExQQO+S8la/t9A0jfHrx1fp/nqgZ4OemISJbee2yY5SIYwkKHWr1VUvFFVk1dFVDGw2EE8PT9lRDMO8XfMQQvBIp0dkRzEEP+/7maMpR3mr31uyoyjQqaBMnTqVtm3bEhkZaaNCv5JSM6AmL/d6mS+jv+RM+plK318PtKnZhmo+1QxzoqxVUPR+Fsq5TLXFuKqczzrP9rjtav1JJRBCMHPHTIa0GaLO8agAQggmbJjAwGYD6V6vu+w4CnQqKFFRUezfv5/o6OgyqvQrKS9d8xJBPkG8/295j6NPPD086VG/h2F28hhpBEUJStVYfWw1AAObDZScxDhsPL2RA0kH1OLYCrLq6Cp2J+zmzT5vyo6isKBLQbnEiXK+r09JCfYN5o0+b/D1zq+JvVCR4/r1R68Gvdh8ZrMhDj8ziqDEZcRRL0gJSlX4/djvdKrdibrVVB+jijJzx0yaVG/CDU1ukB3FEIxfP56e9XtyfePrZUdRWNC5oCyzfP6ijBp9SkpUjyhqBtTkf//+r1L30ws96/ckISuBk2knZUcpF6MIihpBqRomYeL3Y7+r3TuVIDU3lZ/2/cTIriPx0HT+a14HbDi1gXWn1vFm3zfVGjEdofOf3Ocsn98GJpZRpz9JCfAO4M0+bzJv1zyOphyt8P30Qs8GPQEMcR6Kv5f+z0HJys8iLS9NCUoV2BW/i/NZ59X6k0qwYM8C8ovyeazzY7KjGIIJGybQpmYbBrcaLDuKohg6FxSryb4CvIrRJOWpbk9RK7CWIUdRagXWomloU0OsQ/H18gX0LShxmeoU2aqy6ugqAr0D6dOwj+wohsC6OPb2lrerKbEKsCdhDysOr+CNPm+o0Sad4SU7QMV4B/DFLClgFpbSsEoKmCUFzH18bPFfy+e3LZ//U0btWyVq/q+MWjP+3v6M6TuGF39/kf/0+w8tw1qWex890auBMQ5s8/LwwsvDi5xC/e7iUYe0VZ3fj/3ODU1uwMfTR3YUQ7A9bjsx8TG81/892VEMwYcbPiQiOILhHYbLjqIogUF0UQPewywJxhpJebLbk9QJqsMH6z6oUL2e6FGvBzvjdhqiAaKvpy95hfptFmgVFPWOtnJk5mey8fRGtXunEnyz4xvqV6uv1uxUgOMXjvPD3h94tfereHt6y46jKIFBBAWMKil+Xn683vt1vtv9neF29HSr1428ojz2J+6XHaVcfL18dd3N+FzGOQK9A6nmU012FEPx78l/KTAVMKDpANlRDEF2QTYL9i5gROcR6kC7CvDJxk8I9Q9lZNeRsqMoSsFAggJGlZQnuz1JWEAY49cZ63TZznU646F5GOJEWSOMoNSrVk/tEKgkq4+tJiI4wnDTo7L45cAvpOelq8WxFSAhM4FZMbN4vsfzBHgHyI6jKAWDCQoYUVICvAN4rfdrzN41m1Npp8q5rn4I8gmiTc02xhAUA4ygqPUnlWd17GoGNB2gxK6CzIqZxfWNr1ddeCvA51s+x8vDi6geUbKjKGxgQEEBI0rK6O6jqeZTjYkby8qqP7rX6862OP0Lio+njyFGUBQVJy4jjn2J+xjQTE3vVITYC7GsOb6Gxzs/LjuK7knPS2dq9FRGdRtFDf8asuMobGBQQQGjSUqQTxAv9HyBmTtmcj7rfDnX1A/d6nZjd8Ju8ovyZUcpE19PX11njMuMU4JSSf6M/RNAnYRaQWbHzKaaTzWGtR0mO4rumbZtGtkF2bzU6yXZURRloHNBKW86xFiS8lzP5/DQPJi0eVI519MP3et1J78on73n98qOUiZqisf1WB27ms51OlMrsJbsKLqnyFTE7JjZPND+AbWeohxyC3P5bPNnPNrpUeoH15cdR1EGuhQUazfjzz/vb7nlyzKqjSMpNfxr8HT3p/ky+kvS89LLuZ4+6FSnE56ap+7Xofh66ldQMvIyyMzPpE5QHdlRDIMQgj9j/1S7dyrIn7F/cjr9NE90fUJ2FN0zJ2YOCZkJvNbnNdlRFOWgS0GxdjN+/nnrEfFjgEll3MM4kvJirxfJLshm+rbp5VxLHwR4B9CuVjv9C4qXfnfxxGfGA1A3SJ2BUlH2J+4nLjOOm5reJDuKIZgVM4t24e2IrBcpO4quKTQV8tHGj7i77d1qZ5gB0PlJstaV+y8A1rnCF8uotZ6cqN8TZ+sH1+fhjg/z2ebPeL7n8xePadcz3et217+g6HgEJSErAUCNoFSC1bGr8fX0pV/DfrKj6J7k7GSWHFzC+BvHq91O5bBw/0JiL8Ty8z0/y46iqAA6FxQr72I+6t41JOW1Pq/xbcy3fLf7O0MMyXar1415u+eRW5h7sXOw3jDCCIoSlIqzOnY1fRv2xd/bX3YU3bNgzwJMwsRDHR+SHUXXCCGYsH4CA5sNpGvdrrLjKCqAQQRFAyZYvja+pLSu2ZrBrQYzcdNEHuvymO4bVHWv150CUwF7EvYQWV+fQ8i+nr66XdcTnxmPj6cP1f2qy45iCPKL8ll7Yi1vX/t2+cVujhCCb3Z+w+BWg9Vi4nJYdXQVuxJ2sebmNbKjKCqIQQQFXE1SXu39Kv2+7ceqo6u4tcWtZVxDPh1rd8TLw4tt57bpV1B0PoJSJ6iOGn6vIJvPbCarIEstkK0AO+N3sithF+/fUN76OMWEDRPoWb8n1ze+XnYURQUxkKCAK0lKn4g+9Kzfk082fqJ7QfHz8qNDrQ66Xofi4+Gj2zUo8Znx1A6sLTuGYVh9bDVh/mF0qdtFdhTdM2vnLOoG1eXm5jfLjqJrNp7eyL8n/+WX+35RbxQMhMEEBVxFUjRN45VrXuHehfeyI26H7udEu9XtxtZzW2XHsIkRRlAUFWN17GpubHqj7qc+ZZNTkMP8PfMZ3W00Xh4G/FXuRCasn0Cbmm0Y3Gqw7CiKSmDQn2rXkJQhbYbQKKQRkzZPYu6QuWXcVz5d63Zl9q7Z5BXm6XLnkZ5Pko3PjNe9gOqF1NxUos9F80QX/S8el82Sg0tIzU3l8S7qaPuy2J+4n+WHl/Ptnd8q6TUYBhUUcAVJ8fL4P57v+Txv/vkmH970IXWr6fecjM51OlNoKmR/4n5dDr3r+STZhKwENYJSQf4+/jcmYVL9dyrArJhZ9GvYjxZhLWRH0TWfbPyEetXqMbzDcNlRFJVE5zp5GjCvVP9iyxek5qaW+L5VUl7HLCmTyriWPg9ze6LLE/h6+fJldFmn5cqnQ+0OaGjExMfIjlIqvp76nOIxCRMJmUpQKsrq2NU0r9GcxtUby46ia06knuCv2L/U6Ek5nMs4x3e7v+OlXi/h4+kjO46ikuh8BMV8mE5cxseMXfsVP+77kT8e/qNErwljj6SE+MHjnR9n2vZp/Ofa/+j2nJEgnyBahLXQr6DodATlQs4FCkwFSlAqyJ+xf3JTE3V6bHnMjplNoE8g97S9R3YUXTN582T8vf15qttTsqMoqoDOR1DMwlEv+H1WDn+MmPgY7v7p7lLWGhh7JOXZHoKk7CR+2PtDOfeRS5c6XdgZv1N2jFLR6wiKOqSt4pxMPcmRlCNqeqccTMLEtzHfcn+7+wn0CZQdR7ek5aYxbfs0nu7+NMG+wbLjKKqAzgXFuh3sWXo2mMiS+0fw1/G/eHTJoxSZikqpNaaktAj7gltbtODzLZ8jhCjnPvLoXKczMfExmIRJdpQr0OsIihKUirM6djUemgf9G/cvv9iNWXN8DafSTqnpnXKYsX0GuYW5PN/zedlRFFVE51M8Vt4DfLmp6US+H/YE9/z8LTX8ajDl1ikl9rQbd7rn+R7/YdB8WH9qPf0a6bP/SOc6ncnIz+BE6gmahjaVHecyfD19KTQVYhImXa3UtwqKOgelfP6M/ZPu9boT6h8qO4qumbVzFq1rtqZXg16yo+iWvMI8Jm2ZxMMdH6ZetXqy4yiqiC4FZerUqUydOpWiIusoiQZ8DMDQNhOZfvsDPLn8SxpVb8TrfV4vcW9jSsqAZiZahr3D1Oin6ddobxm18uhcpzMAMfExuhMU6wK4vMI8XfVvic+MJ8gnSA3Fl4NJmFhzfA0ju46UHUXXpOamsvjAYsb1H6cOHCuDBXsWcC7jHK9cY+v3ucII6FJQoqKiiIqKIj09nZCQEMutlyRlZNeJnEy9mTf+fIOGIQ25v/39Ja5gPEnx0N7mme6beXX1r8RnvkqdoE/KuK4c6gTVoU5QHXbG7WRom6Gy41yG9WyWvCJ9CYraYlwx9p3fR2J2Ijc2uVF2FF3z076fKDAV8HDHh2VH0S0mYeLjjR8zuNVg2oS3kR1HcRXoUlBsc0lSxvWfyMm0SB5d8ij1qtXj2kbXllJrLEl5tPN3vLWmFjO3T+Sd66pRsguyHuhcpzMxCTGyY1yBr6dZUPR2WJs6RbZirDm+Bh9PH3pH9JYdRdfMjpnNzc1u1vWZSbL59fCvHEg6wMw7ZsqOorhK9DNZX2HMkqJpr/D14Gj6RDTirh/u4kjyERu1xlk4W92vOg92GMH07cEUmsZa7qMvOtfurMutxhdHUHS2k0cJSsVYc2INvSN662r0S28cTj7MpjObeLTTo7Kj6JqPN35M74je9GnYR3YUxVViQEEBq6T4eL7ConuPEB7ozeAfBpOWm2aj1jiS8nT3pzmbkc6vhx/EepibnuhcpzNn0s+QlJ0kO8plWEdQ9LaTJz4znjqBSlDKotBUyD8n/uGGxjfIjqJr5sTMIcQ3hDtb3yk7im7ZdHoT606t4/XeJdcmKoyIQQUFrJIS6v8Kyx84T3zmSe5fdH8p24+ttcaQlC51uxBZL5Lp21MofuKsXii+UFZPqBEU47Izbifpeenc0EQJii2KTEXM3T2X+9vfr9vDHPXAxxs/plVYK+5odYfsKAo7oHNBOVvO982S0jLsFX68O4c/jv3OG3/aWg9iHEkZ3X00q46u4kTqcPQmKc1rNCfQO1B/gqLDEZSCogKSspOUoJTDmuNrCPQOJLJ+pOwouuXvE39zJv0MIzqPkB1FtxxKOsSSg0t4rfdrujpqQFF1dP6vaD1Z9esyasySMrDZK3w6UDBx00S+3/N9GbX6l5T72t1HNd9qfL3ja0r27pGNp4cnHWp3YFfCLtlRLkOPIyiJ2YkIBLWD1BkoZbHmxBr6NeqneqWUwZxdc2gZ1pKe9XvKjqJbJm6aSO2g2jzU8SHZURR2QueC8rLl8yvAV2XUmSXl+Z4v81BHGLl8BHvP2zpLRP+SEugTyPD2w5kdM9syZaUvSelQqwN7EvbIjnEZehxBSchMANQpsmWRX5TPupPr1PqTMkjPS2fR/kWM6DRCnX1ig/jMeObsmsOLPV+8+GZFYXx0LijW/4yjgWcoT1I07ROm3/48zWvkM/THG2wsmrVeV9+SMrLrSM5mnOX3Y79bbtGPpHSo1YEDSQcoNBVKzVEcPY6gqGPuy2fLmS3kFOao9SdlsHD/QnILc3m4kzr7xBafb/kcX09fRnUfJTuKwo44VFA0TRujaVq0pmkZmqad1zRtiaZprSp/pQnAC1REUgK8J7Ho3sc5n5XIiKXXltHbRt+S0rVuVzrV7sTMHcX38utDUtrXak9+Ub6Nrd1yuHiSrI5GUKyCUiuwluQk+mXN8TVU96t+cfG14kpmx8zmxqY30iC4gewouiQjL4Mvo79kVLdRVPerLjuOwo44+qC264CpQLTlsd4H/tA0ra0QIqvil9GAzyxfP2P5/LTN2uY1vmbekBQG/7CEz7fcwwu9FpZxXX0e5qZpGk90eYKX/3iZxKxEwgPDLd9762KNGecf5ta+VnsA9p7fq5uTGvV4UFt8Zjxh/mFqbUUZrDmxhusbX4+nh6fsKLrkWMox1p1ax3dDvpMdRbd8veNrsguyeaHXC7KjKOyMQ0dQhBCDhBCzhRD7hBC7gMeAhkC3yl/NKikVG0m5o9ViXurVjddWL2LbubL2xOt3JOWBDg+gobFgz4IStXJHUsIDw6kdWJs95/WzDkWvUzxqesc22QXZbDq9Sa0/KYO5u+ZSzacaQ9oMkR1FlxQUFfDp5k8Z3mG4GmFyQZx91L21sU5K1e5euZGUCTdtYN2pRty38GN2PBVOiN9rZVxXfyMpNQP+wx2t7mD2rtmlvDuQO5LSoXYHfQmKDhfJxmcpQSmLDac2UGAqUOtPbGASJubunsu97e4lwDtAdhxd8sPeHziTfoZXe79afrHCcDhNUDTz8vNPgfVCiFK32OTl5ZGXd+kFJj09vbQrUVFJ8fH05ce7N9Blelue/vV1FgzzB561lRA9SsqITiMY/MNgdsXvolOdTiVq5UlKh1odWH54udMerzw8PTzx1Dx1N4Ki3tXZZs3xNdQKrEXb8Layo+iSf0/+y4nUE+poexsIIfh448fc2uLWi9POCtfCmbt4pgAdgQdsFYwfP56QkJCLHxERETYqKz7d0zS0GdNu+5bv98KCPc9ZYthCf9M9g5rvJDwgnO9225qDljPd075We46lHCMrvxJLiRyMr5evrkZQzmedp3agOgPFFmtOrOGGJjeorbM2mLNrDk1Dm9K3YV/ZUXTJ6tjV7Dm/h9d62xoZVxgdpwiKpmlfAIOB/kKIM7bqxowZQ1pa2sWP06dPl3VVKiopD3QYzoMdHuTpX304mWosSfH2/D/ub9+MBXsX2DjGH2RISodaHRAIDiQdcMrjVQRfT19djaCczzqvdvDYIC03jW3ntqn1JzbIzM/k530/82inR5XA2eCTjZ/QrW43rmt0newoCgfh0Ckey7TOF8AQ4HohxPGy6n19ffH1LX7ITlx5j0BFp3um3DqFdafW8cgSE2seeQ5PDzDKdM9DHf+PL7aah8QHNBtgo9a50z1tw9uiobEnYQ/d63V36GNVFD2NoBQUFZCSk6IExQbrTq3DJExq/YkNFh9YTFZBFo90ekR2FF2yO2E3q2NXs2DoAiVwLoyj16BMBYYDdwIZmqZZVwymCSFyyr+7dVpjNvC8jZqKSUp1v+rMvWsu/ef0Z/KW63j5mucs39G/pETWE7QMG8v8PW+UISjgTEkJ9AmkaWhT3S2U1csIirXbsxKU0llzfA0NQxrSNLSp7Ci6ZM6uOVzf+HoaV28sO4ou+XTTp0QER3B327tlR1E4EEdP8TyNeefOP5iHQ6wf91Xs7tYX+xeAmWXUVWy657rG1/Firxf5z5otHEp6DDDGdI+m/R8PtL+eXw7uJLdwbJm1zpzu6VC7QxktBZyPj6ePbkZQErMTASUotlhzXK0/scXJ1JOsOb6GEZ1GyI6iS85lnGPBngW82OtFvD29ZcdROBBHn4Oi2fiYXbErWH95PQk8hT0k5b0b3iMiOILHlh6kyPQSRpGUB9pPIz0PVh55F1tdkC/hHElpH95eXyMoXr66OajtfNZ5QAlKaSRlJ7ErYZdaf2KDebvnEegdyLC2w2RH0SVfbPkCf29/RnYdKTuKwsE4+xyUKvIx4INZUsAsLKVR/nRPgHcAs++aTd9Zffls8xBe7f0KZkkBPU/3tKrZii51uvD93jyGtrl04qxtHD/d06F2B+Iz40nKTqJmQE27X7+y6GmKxyoo4QHh5VS6H/+c+AeA/k36yw2iQ4QQzNk1h7vb3k2QT5DsOLojMz+Tadun8WTXJwn2DZYdR+FgDCIo1rW2YA9J6R3Rm5d6vcR///4/hrbZQ9NQMIKkPND+Af77z3/JzH+LIB/5klL8yPvrG19v12tXBT0tkj2fdZ5A70ACfQJlR9Edfx//m+Y1mqszYkph85nNHE05yvTbp8uOoktm7ZxFZn4mL/RUx9q7AzrvZlwcq6REYY/pnnH9x1ErsBajVoxGiI8wC4S+p3vubns3uYW5/Hq4I7a6IF+J46Z7WtRogY+nD3sS9DHN4+upL0FR0zuls/bkWq5vdL3sGLpk3u55NAhuoAvh1xtFpiImbZ7Eve3uJSLE1hlZClfCICMoVuw3khLoE8i026dxy/xbmLtrHo92/tjyHf2OpDQJbUJkvUh+2v8T97VfZLlV3kiKt6c3rWu21s1CWV8vfU3xKEG5ksSsRPYl7uPNvm+WX+xm5Bfl8+O+H3my65N4aAZ67+gkfjn4C8dTj7PwXlvNXxWuhsEEBewpKYOaD2J4h+G8/MfL3NbyNmoG6F9S7m13L+/8/Q6Z+ZkE+VzZBdk2jpGUDrX005NHjaDon39P/gugDtcqhd+O/EZKTgoPdXxIdhTdIYTgk42f0L9xf7rW7So7jsJJGFTT7Tfd89nNn1FkKmLMn2MstR+j5+meYW2GkVuYy29HfrPccmUXZNvYf7qnbXhbDiQdQAhhl+tdDT6ePrraxaMWyF7J2pNraRraVA3Rl8K83fPoXKez6itTChtPb2TL2S28co2tN3cKV8SAIyhW7DOSUiuwFh/c+AFRK6N4ousT9GrQC7OkgB5HUpqENqFLnS4sPriYe9rdY/mevJGUNjXbkJqbSkJWgvTOvT6ePhQUFUjNYOV81nn6N1a7VEqy9uRaNXpSCqm5qSw/vJzxN46XHUWXTNw0kdY1W3NLi1tkR1E4EZ0LSkI537ePpIzqNopZO2fxzK/PsPXJrXh5eKFnSRnaZigfbviQ3MJc/Lz8LN+TIyltwtsAcCDxgC4ERU8jKGqK53JSclLYk7CHl3u9LDuK7vh5388Umgp5oL3NXqpuy9GUoyw5uIQZd8xQa3PcDF3+a0+dOpW2bdvy1VfXWG6ZV0b11U/3eHp48uVtX7Izfidf7/i6WK0+p3uGthlKZn4mf8X+VaLe+dM9zUKb4eXhpYumgd4e3roQlKz8LLIKspSglODfk/8iEFzXWI2glGTe7nnc1PQm6larKzuK7vhs02eEB4artTluiC5HUKKiooiKiiI9PZU33wzFPHrhDzxu4x5XP5LSo34PHuv8GG+veZv72t1HqH8olyQF9DSS0qbm6zSv0Zylh5ZyW8vbStQ7dyTF29ObFjVacCBRvqD4ePpQYJI/xaOOuS+dtSfW0iikkeovU4ITqSdYd2odc++aKzuK7kjOTubbmG95s++bxUaLFe6CLgXlEtYBnseBkcW+Lo2rl5QPbvyAn/f/zLtr32XSoEnFavUlKZoGd7a6k/l75mMSplKGPZ0rKW3C2+hiBEUvUzzqmPvSWXtyrRo9KYX5u+cT4B3AkDZDZEfRHdO2TUMgeCbymfKLFS6HzgXFykTMR907VlLqBD3NO9e+w3/W/IdR3UZdXF+hR0m5s9UoJm6KZ+vZrZaFvSVxnqS0qdmGb2O+rdR9HIESFP2SmptKTHwMz/aw9f/GPRFCMG/3PIa2GaqOti9BbmEuX2z9ghGdRuiilYbC+RhEUDyAqZavHSspL/R8gWnbpvHGn2+w7IFlJWr1Iym9I8YR5h/AisMrbAgKOEtS2tRsw7mMc6TlphHiF1Lh+9kbb099rEGxCor6pXqJdSfXmdefqB08l7E9bjuHkg8xedBk2VF0x4I9CzifdZ6Xrnmp/GKFS2IQQQFnSYqvF4y/cTz3L7qftSdKDknrR1I8PeCWFuNYcXgW793wno1acIakWEeaDiYdpGeDnhW6jyPQyzbj81nnqeFfQ7WCL8bak2tpENyApqFNZUfRFfN2zaNOUB1ubHqj7Ci6QgjBxE0TGdxqMC3DWsqOo5CEgQQFnCUp97abysRNkby6+lW2jNxSYo2HfiTl9hb7+G73Ik6njSEipKzzExwrKa3CWgH6EBS9jKCo6Z3LsZ5/omma7Ci6oaCogO/3fs9DHR+yHG2gsLLq6Cr2J+5n2m3TZEdRSMSA/yscLymaFsUnA1/iutmf8fO+n7mv/X2l1MqXlJubz8RTW8yvRyYwunt1bHVBNuM4SQn0CaRRSCPpC2X1ss1YCcrlpOWmsSNuB091far8YjdidexqErMTebjjw7Kj6I6JmyYSWS+Svg37yo6ikIgBBQWcISnXNvqM21q0552/32FY22GlvMORLynV/ULpHdGXVUfPM7p76b17LsdxkqKHnTxqBEWfbDi9AZMwqR08JZi3ex7twtvRuU5n2VF0xZ6EPfx1/C++H/a9GnFzcwwqKOAMSXnvhsl0mQ5zYubwRNcnbNTKlZRbmt/CB+s/IL/oP/h4ypOUNjXbsOLwijKu5Xis56AIIaT+YjufdZ4WNVpIe3y9sfbEWuoG1VXPSTHS89JZcnAJ/3fd/6kX4RJM2jyJBsENGNZmmOwoCsnoXFASy/m+YyWlcx24r91k3l37Gg92fNDGQUFyJWVQ80G8teYtNpy6gf5NPLHVBfly7C8prWu2ZvKWyeQV5uHr5VvG9RyHj6cPAIWmQqkLVNUIyuVYzz9RL8SXWHxgMXmFeTzY4UHZUXTF+azzzN8zn3H9x6lF5gq9C8o3ls/fA6Ns1DhWUt69/gJtv5zLzO2P8FzPn8qolSMpnet0pk5QHX4/9gf9m1gXyjpfUtrUbINJmDiSckRaN1brL7T8onxpv9yEECRmJypBsZCRl8G2c9sY0XmE7Ci6Yt7ueVzf+HrV1bkEX0V/haeHJ092tfV7WeFO6FxQXgfGA6MxH3X/iI06x0lKq5qzebDDViZs+Jknu32On9fzZVzX+ZKiaRo3Nb2J1bGrmcAEbDUYLB37SUrxpoGyBMU6gpJflE8ggVIypOamUmgqVIJiYePpjRSJInX+STHOpJ/h7+N/8/Xgr8svdiPyCvP4ctuXjOg0wtJqROHu6FxQrNt7HwFGFPvaVq1jJOXta5cwf08bvt7xAs/28MbaBbn06zpfUgY0HcB3u78jMSuR8MBwZEhKzYCa1AyoKXWhrFVQZPbjUafIXs7ak2upFViL1jVby46iGxbsWYCvl69aY1GC7/d+z/ms87zQ6wXZURQ6QeeCYmUy5qPuR1j+7FxJaRnWiuEdHmTC+iWM7PoMfl6gJ0m5qelNAPx1/C/ub38/pTUYdIaktKkpdydP8REUWShBuRx1/smVfLf7Owa3Giz11GW9IYTgs82fcVuL29TBbCU4lnKMZjWayY4hhZJd5nTB1KlTadu2LZGRkZZbPIDpwBOYJaWsrp9WSRmFWVJmlVFrlZQozJIy02bl2/3e5lxGFnN33YD5WPyvyrnux5gF4jlgSjm1EzBPZ70ETCqn9j3MkvAq5h5FUK9aPdqGt+Wv2L9K1I7FLB9vAh+WcV0sde9ilpT3y6l9y1Iz1nIfM61rtuZQ0qFy7us4vD0urUGRhbWTsTrmHnIKcog+G821ja6VHUU37EnYw57ze3iow0Oyo+iKv0/8ze6E3bzUSx1rX5Jx/46THUEauhxBiYqKIioqivT0dEJCrO8yrJICMkZSWtVsxbC2w/how04e7/IcXh6XuiDbvq7zRlJubHIjvx75tZTasZavHT+S0jKsJd/v/V7aNl89jKAkZSfhoXmoOXRg69mtFJgK6Newn+woumHBngWE+oVyc/ObZUfRFZM2T6JDrQ7c0OQG2VF0xcGkg3y3+zvm3DVHdhQp6FJQbCNXUsb0HUO3Gd34eV8vHujggbXBoB4k5YYmN/DF1i84kXqCxtUbl6gda/nasZLSMqwLmfmZxGfGU7da3TLu5xgurkGR2I8nMSuRMP+wEu0R3JN1p9YR4hsibdG03hBC8P3e77mn7T0Xf1YVcCT5CCsOr+DrwV+rqcASvLv2XepVqyc7hjQMJiggU1K61u3KwGYDmbDhQ+5vvxPz/yV9SMp1jcahofH38b95rMtjpdSOtXztOElpGRYFwOHkw1IFRfYIipreMbPu1Dp6R/TG08NTdhRdsOnMJk6mnWR4h+Gyo+iKyVsmEx4Yrp6XEuw7v48f9/7ItNvdtx+RAQUFZErKG33e4Ma5N/Jn7F8MaHapwaAZeZIS6v9fOtWpx9qTa0sRFGvtWMvXjpGUpqH/wUPTOJx8WMqx5sXPQZFFUo4SFDAflrfx9Ebe6vtW+cVuwoI9C6hfrT79GqkpLysXci7wbcy3vNb7NRsHYbov4/4dR6Pqjdz6DCGDCgrIkpT+jfvTpU4XPtn0CQOaDaB4F2Qz8iTlukYfsPTQMht11tqxlq/tLyk+ntC4+n84kjIb29u2HYcethmrERQzuxN2k5mfqZq9WSgoKuCnfT/xaKdH1fRfMb7e8TWFpkKe7m7r96Z7svf8Xn7e9zMz7pjh1tOBOheUpHK+73xJ0TSNV655hYd+eYjdCbvpWLsjepGU6xodYvKWRZxKe5uGIe+VUTvW8rX9JaVl2GwOJ2/EvLun7AaD9kYvUzxd6nSR9vh6Yf2p9fh4+hBZP7L8Yjfgr+N/kZidyAMdHpAdRTcUmgr5YusXDO8wnNpBtWXH0RXj1ppHTx7t9KjsKFLRuaBYt/3+iO135M6XlHvb3cubf73JpM2TmHXnLIo3GJQpKf0afQUs4t+T7/NQx1BsNRh0pKS0qDGIP2NTi13feZKiF0FRIyjm9Sc96vdQw/YWvt/7Pa3CWil5Lcai/Ys4nX6aF3u+KDuKrth7fi8/7/+Zr+/42u37EelcUN7A/AI9CggAbDXWcq6keHt6ExUZxdh/xvLRgI8sL0jyJaVmQDita7Zmwyl/HupYdhdkR0lKy7CWTN+eRpHpf3h6vGO51TmSoodzUJKykwgPCJf2+HpACMH6U+sZ0WmE7Ci6IKcgh8UHFvNa79fULpViTNoyiRua3ECnOp1kR9EV49aOo3H1xjzSydZrmPugc0GxztUO55Jw6ENSRnYdybtr32Xm9pmM6TemWK1cSekb0ZcNp7dw6TA3cKaktAxrSX5RPqfSHqRJqAfldUG2J7K3GecW5pKZn+n2IyjHLhwjPjNeLQa1sOLwCjLzM3mgvZresbL5zGY2n9nMsvvLWjPnfuxJ2KNGT4qhc0GxMgXzUff6kZSaAU8yvP1wvtz2Ja/1eQ0vD69itfIkpU/DPnyz8xsu5PxDqD84W1Ksx1QfSj5Ek9DyuyDbE9lTPMnZyYA6RXbdyXVoaPSO6C07ii5YsHcBkfUiaRHWQnYU3fDZ5s9oUaMFt7W8TXYUXTHu33E0qd5EjZ5YMIigeADWzp/6kZRnezzLrJhZrDi8grta31WiVo6k9Inog0Cw9Ww0Nze33WDwyuuOtXx9dZISERyBl4cXxy8ct9ziPEmRvc04Kdu8qNvdBWX9qfV0qN2B6n7VZUeRTmpuKiuPrGTCjRPKL3YTTqWdYtH+RUweNFntaCrGnoQ9LNy/kG8Gf6NGTywYRFBAj5LSpe4MetbvybRt00oIirXW+ZLSvEZzwvzD2HRmk+U4bedKiqeHJxHBEZxMO1ms1jmS4ql5oqEpQZHMulPrGNhsoOwYumDxgcUUFBVwX/v7ZEfRDVO2TqGabzUe7ezeO1RKYh09ebjjw7Kj6AYDCQroUVJGdx/BY0tn2+g46XxJ0TSNXg16sfnM5mK1zpWURtUbcSL1RIlax0uKpmn4ePpIOwdFNQqEhMwEjqQcYVx/921wVpwFexbQv0l/tz6uvDiZ+ZnM2D6Dp7o9RZBPkOw4umF3wm41elIKBhMU0Juk3NtuKi/9HsCM7TP4cEBpHYOdLym9GvRi4qaJmITJMoTqXElpFNKIQ8mldTV2vKT4ePpIHUHx8fRx61+860+tB1ANAoG4jDjWHF/DzDtsd0l3N+bEzCEzP5Nne9j6veaejFs7jqahTdXoSQl0KShTp05l6tSpFBUV2ajQj6QEeMNDHaYyZ9c03rvhPRv261xJ6Vm/J6m5qRxNOXpx0aozJaVRSCP+OPaHjVrHSoq3p7dUQakZUNOtt5KuP7WeJtWbUD+4vuwo0vlx3494e3oztM1Q2VF0gUmY+GLrFwxtM5SGIQ1lx9ENuxN2s+jAImYNnqVGT0qgS0GJiooiKiqK9PR0QkJCbFTpR1Ke6JrIlOif+O3oiwxuNbWMWudISvd65rnd6LPRxQTFWut4SWlcfQhxmXHkFebh6+VbSq3jJEX2CIo7T++Aef2JOt7ezII9C7i1xa2E+ofKjqILVh9bzaHkQ3w9+Ovyi90I6+jJQx0fkh1Fd+hSUC6RUs739SEpnev8QNe6fzNr55cMbtUZ26feOkdSQv3Ni2Wjz0XzYMeSz4fjJaVRdbNwnE4/TfMazW3UOkZSfDx9pJ2D4u6CkpGXwc74nYzqNkp2FOkcTTlK9LloXu39avnFbsLnWz+nS50u9InoIzuKbtgVv0uNnpSBzgXFKhQLsS0I+pCUxzv/lxdWPc/5rKeoFQiyJSWyXleiz0WXUes4SWkUkgJM5kTq+zSv8W0ZtfaXFDWCIo/NZzZjEiY1ggJ8v+d7gnyCuL3l7bKj6IIjyUdYeWQl3975rVtPgZZk3L/jaBbajIc7qbUnpaFzQXkd84vuSMxH3d9vo06+pNzf/gFe+v1lvt/Tkxd6XdkF+XIcLynd6n7EskM+FJmK8PTwtFHrGEmJCPkIjc85mTobaE55DQbN2EdSvD3krkFpFdZKymPrgXWn1lEzoCata7aWHUUqQgjm75nPkNZDCPAOkB1HF0zZOoWaATW5v72t3+Hux674XSw+sJhv7/y22EGfiuLo/FmxvrDeyyXh0KekhAWEcVvL25i3+zQv9IqiZIPBK3GspHSte5Ksgh85kvI2rWuOL6PW/pLi4+lD3Wp1OZnWgop2Qb68puqSokZQ5LH+1Hr6Nuzr9u+QY+JjOJR8iEmDJsmOogvS89L5NuZbnu/5vGoeWQzr6Ilae2IbnQuKla8wH3Wvb0l5uOPDDPtpGPvOz6ZdLZApKV3qfgX8yPZzE2hdszZldUF2hKQ0rt6Yk2mNgHdxpqTIOgdFCOHWglJQVMDmM5v5X///yY4ine/3fk94QDg3NrlRdhRdMCdmDtkF2Tzd3dbvNvcjJj5GjZ5UAIM8M56AdS2DfiXltha3Ud2vOt/v/YH3briywWDpOEZSqvuF0rh6Y2Liw3mwY9kNBh0hKQ2CG3A2/Swwx3KLcyRF1ghKVkEWeUV5bisoO+N3klOYQ5+G7r0A0iRM/LD3B+5ue7da9MilrcV3t71bbT0vxri1avSkIhhEUMAIkuLr5cvQ1kP5Ye8P/K///9A0uZLSqXYndiVkY17L41xJqRNYh33n91n+VH4X5EtcnaTIOgfFesx9eGC40x9bD2w8vRFfT1+61u0qO4pUNp/ZzOn009zXTh1tD/D70d85knKE2XfNlh1FN8TEx/DLwV+YfedsNXpSDgZ7dvQvKfe3v59ZMbPYHred7vW6U7LBoDMlpVPtTkzbPg343XKL8ySlTlAd4jPji9U7R1JkTfEkZrn3MfcbT28ksn7kxY7S7sqPe3+kblBdtZPJwudbP6db3W5c0+Aa2VF0g3X05MojIBQlMZiggN4lpX+T/tQKrMUPe3+wCMqVXZCdJSmd6nTifNZ54jMTqBNUdhfky6979ZJSJ6gOyTnJFBQVFBvqdrykyJricedGgUIINpzewEMd3Hu4ushUxM/7f+aetvfY2DnnXhxKOsSqo6uYc9cct184bUWNnlQOgz5D+pUULw8vhrYeysL9C/l4wMeW/5hyJKVDrQ4A7D2/lzpBdSirC/KV1706STE/HpzPOl9i7tmxkuLj6UN2QXa5dfbGKihh/mFOf2zZnE4/zbmMc/SO6C07ilTWn1pPXGac6lxsYcrWKdQKrKWmu4rx7tp3aV6juRo9qSAGFRTQs6QMazuMadunsSNuB93qdbPc7nxJaRraFD8vP/ae38tNTW+irAaDpV+36pJSJ2ggAPGZ8aUsjnOcpMg6ByUpO4lA70D8vf2d/tiy2Xh6IwDXRLj3MP6P+34kIjiCXg16yY4inbTcNGbvms1LvV6y0e7C/dgZt5MlB5cw5645avSkguj8WSrvqHt9Ssp1jR6mhn8NFh1YVExQwNmS4unhSZuabYotVrXWOl5SagelA5RYh1Icx0iKrKPu3XmL8cbTG2leozm1AmvJjiKNQlMhC/cv5JFOj1g6iLs3s2Nmk1uYy+juo2VH0Q3j/h1H8xrNGd5huOwohkGXgmLtZvzEEwmWW34BHrVRrT9J8faEO1vdyeIDi/ngxg9K1DpXUtrXas/exL2l1DpWUsIDxqGhlSEo4AhJkbkGxZ0Fxd2nd/458Q+J2YlqOoNLW4vvaXsP9arVkx1HF8TEx6jRkyqgy2fqUjfjFF59NQzzAtQA4B4b99CfpNzV+lm+jTnE4eTDJToKgzMlpU3NNiw/vBwhRImFao6VFG9PqBkwjvjMn4AnbNSCvSVFmqDkuKegZOVnERMfw5Ndbf38ugc/7v2RpqFNLQvj3ZvfjvzGsQvHmD90vuwouuG9f9+jWWgzNXpSSXQpKJewxhsGPGD52hiSclPTL/Dz8mbZoWU2Opo6R1Ja1xxJam4qCVkJFxeuXl7rOEmpEzSN+Mw/gA+pSBdke0iKzDUoEcERTn9c2USfi6ZIFLn1CEpBUQGLDy7mqa5Pqd0qmLcW96jfg54NesqOogv2nt/LogOL+GbwN2r0pJIY5NmaBnhjJEkJ8IYBTaex9NCMMlquO15SWtecCMCBxAOlCIq11jGSUieoEwlZZ6loF2QzVycpss5BScpOokudLk5/XNlsPL2RYN9g2oa3lR1FGn/G/klKToravYP598wfx/7guyHfyY6iG95f9z6NQhrxcEfVsbiyGERQvLh0ZLpxJOWOlvsZ/eu/XMj5glD/52zUOlZSmtUowlObxOHk6fRv0r+MWvtLSnhgOOcyCoC7cZakyFyD4o5bjDee3kivBr3c+tyPH/f9SMuwlnSq3Ul2FOlM2TqFOkF1uKedrd/P7sXBpIP8uPdHvrztS9X6oAoYRFDAiJJyS4t5mEQj/jj2PPe1D6S0BoNmHCcpPp6f0rj6bI6k/Aj0pbwuyGbsIynVfauzP3E/FW0waObqJEXGUfdCCFJyUggLcC9BMQkTm85s4vkez8uOIo28wjyWHFzC8z2fd/vpndTcVObsmsNrvV9z+xOFrXyw7gPqVavHY50fkx3FkBhGUIQQpOdlEeJnHElpENyQ9rXa89vRfO5rb7sLshnHSUqLsF4cSTlCRbog21NSqvtVJzU3lcp0QTZTdUmRMYKSmZ9JoamQGv41nPq4sjmcfJiUnBS3Xn/y+7HfSctLU7t3gG93fkt+UT6juo+SHUUXHE05yoI9C/js5s/UWTBVxDCC8uafb/JH7B+se2wdQT7GkZRbmt/C3F1zEeIpNE2OpLSs0ZI/Yk9gFgjnSUp1v+pcyLlQrHas5WvHSYqP5wCnC0pKjvm8HncTlI2nN6KhufViyB/3/Ui78Ha0q9VOdhSpFJmKmBI9hfva32djrZv7MX7deMIDwxnZdWT5xYpSMYygPNTxIb7a9hXDFw3nl/t+wdPDGJJyc7Ob+Xjjx+w5P5qOtTVKazB4OfaXlGY1mnF8+3FM4kM8NHCWpIT6h5Kel45JmCyHVzleUjy1/1Bkcu5cb3JOMuCegtKhdgeCfYNlR5FCTkEOyw4t4/Xer8uOIp1VR1cReyGWBUMXyI6iC06knmDu7rl8eNOHbnm6tL0wjKB0qN2BH+/+kdu/v53XVr/Gpzd/ihHWpPRp2Ac/Lz/+jF1Dx9q2uyBfjn0lpWloU/KK8ojLiKd+cPldkC9d9+okpbpfdQSC9Lx0qvtVL1Y71vK1/SXF02MjReJX4F0q0wX5arCOoLjbItmNpzdyXaPrZMeQxsojK8nMz1S7d4Cp0VPpVrcbPer3kB1FF0xYP4FQv1BGdVPTXVeDzgXlwmV/uqXFLXw+6HOe/e1ZWtRowdORT6N3SfHz8qNfw378GfsnL1/zMra6IF+J/SSlaWhTAGIvxFr64jhHUqr7mXc1XMi5UExQrLVjLV/bV1I8tVswiVXFru94SXHHKZ6UnBQOJB1gTN8xsqNI48d9P9K5TudSDmJ0L46mHOW3o7/x7Z3fuv1CYYDTaaeZtXMW/+v/PwJ9AmXHMTQOFRRN064FXgO6AXWBIUKIJRW/wleWz8sAcyv3qB5RHEo+xHO/PUfH2h3p07APepeUm5rexLtr3yW/KN+yut25ktK4emPALCj9GvWjvC7IV163apIS6meuMy+ULa12rOVr+0mKh+ZBkQngfSrTBflqSMlJwVPzdKupjs1nNgO47QLZzPxMVhxewX+v+2/5xS7OV9FfUcO/hloobOGjDR9Rzbcaz0Q+U36xokwcPYISCOzCbAWLKn/31zGfQjoC81H3QwGYOHAiO+N3ct/C+9g5aifhgeHoWVKub3w9b/z5BtvPbbd0fC29C3LpXL2kBHgHEB4Qzqm0UyVqHSsp1f3MfYhKFxRr7VjL1/aRFE8PT4pEEZXtgnw1JGcnE+of6lbvHjee3kitwFoXR+fcjRWHV5BTmMO97e6VHUUq2QXZzIqZxZNdn1RrLYC4jDhm7pjJ29e+TTXfarLjGB6HCooQ4jfgN6CKv7yt8e4E7gN+BIbi7enND8N+oMv0Ljy4+EF+e/A3PD30e05K17pdCfIJ4p8T/xRrSe9cSWlUvREn006WUus4Sanulw1MIjV3DlDWIXFjLV9fvaR4auYDw8wLc50jKSk5KW65/qR3RG+3krLi/LjvRyLrRbqtoFlZsGcBablpPN3d1jEH7sXHGz/Gz8uP53rYOphTURl0tQYlLy+PvLy8i39OT0+3fDUT81H3lySlfnB9FgxbwMB5A3l/3fuWoVZ9SoqXxyP0bdiXf07+w5h+Y0rUOkdSGoWUJijWWsdISojfR8AkLuTOATpQkS7IVysp1hNNL+0ccrykpOSmuNX6k0JTIVvObmHsdWNlR5FCel46vx35jfdveF92FKkIIZgaPZXbWt5Gk9AmsuNI53zWeaZtm8ZrvV8jxC9EdhyXQFeCMn78eN59991SvuMFWHs7XJKUm5rexDvXvsO4teMY1HyQZQW5PiXl2obXMn79eIpMRSWOBXeOpDQMuYGVR86WUWt/SfHy8CbAO4D0vN5UtMGgmapLillKzOcyXGrM5VhJSclxL0HZe34v2QXZxUYD3YsVh1eQV5Tn9se5bzqziZj4GMbfOF52FF3w6aZP8fTw5IVeL8iO4jLoSlDGjBnDyy+/fPHP6enpRERYO8SWLilvX/s2K4+u5JFfHmHHqB0EeAegR0np0/BNMvIz2HN+D53rdC6l1rGSUr/aZM6k+yKEsDEs7xhJCfAOIKegP9ADZ0iKdYrHvA6lOI6TlJScFJpUd593kJvPbMbLw4uudbvKjiKFn/f/TM/6PWkY0lB2FKlM2TqF5jWaM7DZQNlRpJOcncyUrVN4vufzbvVmxdHoSlB8fX3x9S3rSOArJcXbcyhz75pL1xldGfPnGCbfMrlYrX4kJbLeeLw8PNlwakMpgmKtdZykNAg+TFbBb6TnfUaI38tl1NpXUvy9/MkuyKEyXZCvRlI8PZoB5imeK3GMpCRnJ9O9bne7XMsIbDm7hY61O1reDLgXGXkZ/HbkN9674b3yi12YhMwEFu5fyIc3fXhx1NKdmbR5EgLBS71eKr9YUWF0JSgV40pJaRM+lAk3TuDF319kaJuhXNf4umK1+pAUf2/oWvdrNpz+jqgeUWXUOkZS6gePAX7jTPorhPj5U14XZDNXLykB3gHkFOZQmS7IVyMpHpp5q2ORqeQIihX7S4q7TfFsPrOZ/o1tLXp2bVYeWUleUR7D2gyTHUUqM3fMxMvDixGdR8iOIp3U3FQ+3/o5z3R/xrKjVGEvHH0OShDQvNhNTTRN6wykCCFOlX6vinClpDzX8zl+3v8zo1aMYtfoXcWaM+lHUq5psIkVhzcDcymrC7IjJKVetfoAxGcOoV2t8hsM2ktSArwDyC7ILlbrWEkRwiwcZb+rs5+kWDsZu4ugpOamcjDpoNse0LbwwEK61+vu1otCC02FTNs2jYc6PkSof6jsONL5fMvn5Bfl80pvW7/LFFXF0SMo3YG/i/35U8vnOVzah1tFLpcUD+1Hpt8+nc7TO/PRho9457p3StTKl5Qe9d9k8paHSc5+lLCA4vcp7br2lZTagbUBiMscAjSkIl2Q7SEplwuKtdZxklJo2g0swstjYrH7loZ9JCWrIIsCU4HbCEr02WgAetZ3vwaBWflZrDyykv9e696Hsy09uJSzGWeJirQ1Euw+pOel89nmz3iq61OqSaIDcPQ5KP9gfpWpImnlfP9ySWlX60deveZV3l/3Pve3v58WYS1K1MqVlB71ewEQfe5mBjUfUeI+pV3XfpIS6BNINZ9qxGcmUNEuyPaQFH9v/xKCYq11jKQUmu7ALCjvYt6aXrEuyGYqLynJ2eZGgWEB7nEOyuYzmwn1Cy3xf8s9WHV0FdkF2Qxr697TO1Ojp9Inog+d6nSSHUU6U7dOJbsgm9f7qIaRjkDna1CmWD7/yiWpKMnlkvLOdXP5YV9dXvz9RX4d/msptfIkpVloM0L9Qtl69hoGNY+grC7Il65rP0mpE1SH+Mx4KtoF+dJ1qy4p/l7+ljUopdXaX1IKTYUAeHr8H5XpglxVSXG3Pjxbzm6hR/0ebrkwcuGBhXSu05nmNZqXX+yi7Du/j79P/M33w76XHUU6mfmZTNw0kSe6PGHpcaawNzoXlNeBjzC/gAdgPlG2NC5JSoD3I3wy4EXu/vkT/jj2Rylb4ORJiqZpdKnbhZ3xMVw6+X9EifuUdl37SEp4YDiJ2YnFah0vKd6eHckuqFdGrX0lpdBUiIfmgYc2FvNz51hJcSdBEUKw+cxmtxzazynIYcXhFbzZ583yi12YL6O/pHZgbYa2GSo7inSmbZtGel46b/Z1758JR6JzQfG2fL4Ns0T8TEUkZWibz+jbsA2v/PEKMaNiShyMZq2VIyld63Tl5/0/U16DwSuve/WSEh4QTmJWYolax0qKt8dHFBSVNoJSvNZ+klJoKix2QFvFuyBXVVLcSVBiL8SSnJNMrwa9ZEdxOr8f+53M/Ezubnu37CjSSM9LZ+7uubzU6yVL01P3Jbsgm483fsyjnR51+/NwHInOBcXKN8BoKiopmgafDlxIj6+L+GbnNzzV7Skbtc6XlC51u/DJpk+K7fxwnqSEB4QTkxBTSq3jJMXLYwWFpv3AJCraBdlM1SSlSBQ/QRYcLSnJOcl4ap6E+Lr+0dbWDsbmE5vdi4X7F9K+Vnta1WwlO4o05u6aS05BDqO6jZIdRTozt88kOTu5ROsShb0xiKB4AwuA4VRUUiLrw/AOPzFu7Rge6fQIfl5+NmqdKynWQ9r2JOyxnNfivJGUmgE1Ly7qvLLWMZLi7dmDQlMalemCfDWScvkIihXHSUpKTorbdDLecnYLzWs0d5sFwVbyCvNYdmgZr1zjvttIhRB8Gf0lQ9oMcfv1FnmFeXy08SMe7Pig2zeLdDQGERSoiqSMvS6DNntXMn3bM7zQa1YZtc6TlBY1WuDt4c2e83uKHSjnHEmp4T+MC7kXyqi1v6R4aV4UmOpjfr4cLymlCwo4SlLc6QyULWe3uOX0zurY1WTkZ7j19M7fJ/7mQNIBvrztS9lRpDN311ziMuLc9iwgZ2IgQYHKSkqLsKU80qkl49d/y5PdBhDgXdZOIOdIirfng7QJb8Pe83tLqXWspIT6TyU1l1IaFhavta+keHt6W3bWVLwL8tVISqGp6GI/niuxv6S4i6DkFuayM24nD3d8WHYUp7Nw/0Ja12xN2/C2sqNIY8rWKbQLb8d1ja4rv9iFKTQVMmHDBIa1HUbrmq1lx3F5DCYoUFlJeefa35m3uxVfRT/EK719AVurz50nKe1rtWfP+T02ah0nKTX8jwGrSM39nLAAWz0j7CspXh5eFBQVUJkGg1cjKYWmm2yMoFixr6Qk5yQT5u/6Ux4x8TEUmArcbgQlvyifpYeW8mzks24xjVcaZ9LPsPTQUqbcMsVtnwMrP+79kdgLsSy8Z6HsKG6BLgVl6tSpTJ06laIiW/1UKi4pTUJb8HDHR/h080882+NefL1+QraktK05jN+OHLDRWdhxkhLi+wqwirS8lwkLCKIiXZCddeJs6bWVl5ScgnH4e5c3omE/SXGXTsabz2zG19OXjrU7yo7iVNYcX0Nqbir3tLP1e8D1mbl9JgHeATzU8SHZUaRiEiY+WP8Bt7a4lS51u8iO4xboUlCioqKIiooiPT2dkBBbuyMqLimv9X6Db2PmsGBPJI91MffukSkprWvO5kKuICk7yUZzKcdISrBlp0l63r1UtAuymapLypUS5lhJySpYRaD3VuBDKtMFuaqSkpKTQre63cq4r2uw5ewWutbt6nbbSxfuX0iLGi3oUKuD7ChSKCgqYOaOmTzc8WGq+VaTHUcqyw4tY3/ifmbcPkN2FLdBl4JyifRyvl8xSWkT3obBrQbz0cbDPNp5qKXjrTxJaVXzArCEQ8lfEB44roxa+0pKiJ9VUJ4BwnGGpAgE2hXdDhwnKVn57Qj0OUtluyCbqbykuMsalC1ntnBX67tkx3AqBUUF/HLwF0Z1G+W2UxvLDi0jLjOO0d1Hy44iFSEE7697n+saXUefhn1kx3EbdC4o1h0oq4B7bdRUTFJe7/06fb/ty6qjH3FrCw1rF2QZktK8xnw0AjmU9B59G7aivC7IZkZYPlddUqr5mN8BpedlUNEuyFcrKaVPY1lr7S8pWQXZBHi3Ap7A0ZIixH9Jznb9NSjns85zPPW42zUI/OfEP6TkpLj17p1p26fRO6K3203tlWR17Gq2ndvGHw/9ITuKW6FzQXkN81H3D2E+6v52G3XlS0rviN50rduVqdHTuLXFUsutciTFzyuAiJCGHLtQnYp0QbaXpAT6BAJYmvdVrAuymapLiqBvKSMoxWvtKylZBVkEegdS2S7IZionKVkFeW7RyXjLmS0AbrdAduH+hTSp3oQuddxzvcGR5CP8Gfsn84bMkx1FOu+ve5/IepHc1PQm2VHcCp0LinW++2ZgGOb+NVWTFE3TeKb7Mzy5/EliL5yiaeilBoMyJKVZaDOOXagJdMNZkhLgHQCY28abcbykCDERaGCjzlprP0nJys+idlBtKtsFuSqSkpJjrnF1Qdl8ZjO1A2u71ZHehaZCfjn4CyM6j3Db6Z3p26cT5h/m1iNIAOtPreffk/+y5L4lbvuzIAudC4qVbzG/gF6dpDzQ4QFeW/0aX0V/xccDP6Z4F2RnS0qz0GbsjN8JbLXc4nhJ8fLwwsfTh6yCrGK1jpUUwWo0bTfmztSO391zaQTFWjvW8rX9JSUl5xwwlRr+izBLtGuy5ewWejbo6Va/nNedXEdidqLbvjjnFOTwbcy3PN75cRuncLsPH6z7gHbh7bij1R2yo7gdBhEUH+AHzC/0VZeUAO8AHu30KHN2zeGDGz/A29MbWZLSJLQJiw8upiINBi9x9ZIS4B1ATkHJ5n2Ok5RCU3c8tfM4awtyVn5xQbHWjrV8bV9JScq+C5hKWMBMoD6V6YJsFEzCRPS5aN7oU9Zz5nosOrCIiOAIIutFyo4ihYX7F5KSk2Kjj5n7sCNuB78d/Y35Q+fjoXnIjuN2GERQwF6S8liXx5i0ZRIrj6zkztZ3UrwLsjMlpWFIQ1JyUswvqD6BOEtSfD19ySvKK6XWMZKSX1SAr1dzzH8fx0tKdkH2xbU2l9eOtXxtP0mxdoYOD/hvseu7lqQcST5Cel66W71Qm4SJJQeXMKzNMLcaNSrOV9u+YkDTAbQIayE7ilQ+WPcBzUKbcW87W5s0FI7EQIIC9pCUjrU70rVuV2bvmm0RFJAhKdb5/NPppy1HJjtnJMXXK5S8wtIEBRwhKXlFefh6+uKsw9wun+IpWTvW8rV9JCUxOxFfT1+CfMYCvlSmC7JRiD4XDUD3et0lJ3Ee285t42zGWYa0GSI7ihR2xe9i05lNLLp3kewoUjmQeIDFBxYz444Z5ZxOrXAUBnzWr15SRnQawct/vExSdhI1A2paap0rKVZBOZl6slhPB8dLiq/nNPKKttmoA3tLSl5hHr5evjjrxNmsfJ9SRlCK1461fH31kpKYlUh4YLjlXXbluiAbheiz0TSv0ZxQ/1DZUZzG4gOLCfMPo2/DvrKjSGHatmnUq1aPwa0Gy44ilQkbJlCvWj237D+lFwwoKHC1knJf+/t48fcX+eXALzzZrfiLr/MkpW6Q+d3ZuYxzJWodKynenj9SaFoFzKKiXZDNVE1S8ovyiy2yc6ykFBQVkVXwIdX9Ntuos9aOtXx9dZKSmJ1IeEDxk4BdT1Kiz0W71eiJEIJfDv7Cna3udMt3zRl5GXy35zteueYVt/z7Wzl+4Tjzd89n4sCJljdYChkY+Cew6pJSK/Bn+jfuz0/7fyohKOAsSfH1mk8N/xrEZcaVUus4SfHUGlBoqk9luiBfjaTkFeVdPMH2Uq1jJCUl50XgQ2r4/whEUpkuyFWRlMTsxFJaFbiOpBQUFbAzfqdb7WQ5kHSAw8mHmThwouwoUpi/Zz45BTmM7Dqy/GIX5qMNH1HDv0Yprw8KZ6JzQcko5/tVl5R7243k6V+nXxymvxznSEq9avWJyyhNUMBRkuLl4UWRqRfQF2dISl5hXin9WxwjKSk5FwCo4f8wle2CbKZykpKYlWjjbBDXkJT9ifvJLcx1qwWyvxz4hSCfILc8kEsIwVfbvuKOVnfQILiss4tcm3MZ55gVM4ux1429eHaUQg66FBRrN+ORI+Mtt6zGLCClUTVJGdJ6Jk//CksPLbXxbsHxklInaB7xWdE26sARkuLp4UmhqQj4ynKLYyUlrygPP8/SzlGwv6Sk5KQAUMP/DSACR0tKYnZiGY0CjS8p0eei8dA86Fq3q+woTmPxwcXc2uJWtzz7Y9OZTexO2M1HN30kO4pUPt30Kf5e/jwT+Uz5xQqHoktBudTNOIlXXgnHPOqxFBhk4x6Vl5TwwOH0jljEisMzyxjOdKykhAesIy5zS7HspeHcc1JKp+qSkplfmyCfa8uotZ+kXBKUMCrbBdlM5SQlKTvARjdqK8aWlOiz0bQNb1vGomPX4mTqSXbE7eC13q/JjiKFadum0TS0KQOaDZAdRRrJ2clM2zaNF3u9WGJqWiEDXQrKJaxTAzcAdwFLsKek3NaiK+/9u5Xcwp/x87IlE46TlPCAO9hzfh4V7YJsxliSkpE3mWq+B23UWWvtIylWQQn1C6WyXZArKylFJhPJ2e8SHrC1jDowsqREn4t2q+mdJQeX4OPpw60tbpUdxekkZyfz076fGNd/nFsfSDZ5y2QEghd7vSg7igLzK5QBmAcMxCwpq8qos0rKbZglZUUZtd7c3nIuWQXwz4kHMI/Q2MIqKcMwS8ricmrnWOoewLy1uXRqBoSTlO2HWTYetGS3hVVSHsUsHPPLqZ2OuaPvCGBuObVTgVGYJWVWGbVWSYnCLCkzy6n9jIx8H4J8VnJpSslW7ceYBeI5zMfil1U7AXgds6RMuvid5JxkAr0Di626t0rKW5glpayFj1ZJ+S9mSfmwjFpIyYlCAOGBS4H3y6w1P/77luu/W06tPsgtzGXP+T1uJSiLDy7mpqY3EewbLDuK05kdMxuB4LHOj8mOIo30vHS+2PoFo7qNKnb8hEImOh9BseIDLATuxp4jKe3COxMRHMHqY34Mal56F+RL2H8kpYZ/DZKzkxFiFuYDKx0/kmISplJOx3TMSIoQkJlfSDWfG6hsF2QzlRtJSclJISwgrJRa+4+kxGea10fVCnyCynZBNqPvkZSY+BgKTYVus8U4MSuR9afWM/326eUXuxgmYWLa9mnc3fbucqYsXZvp26aTlZ/FK9fY+v2gcDYGERRwhKRomsYNTW5gzYkYzGLiXEkJ8QuhwFRAbmEB/t4V64J8tZJSaCrE28PbRq19JSWnMAeTMFHN93GgA46WlJScFBudhe0vKWczzgLQIPi/QENcTVKiz0bj7eFNx9odZUdxCssOLQNwy8PJ/or9i6MpR/n2zm/LL3ZRcgtz+XTzpzza6VHqB9eXHUdhwUCCAo6QlBua3MCcXXNIzl5FWAA4U1KsQ8lpeWn4e9ehIl2QzVRdUgpNdfH08Cyj1n6SkpFn3iYe5FONynZBNlM5SUnJ6WJDUKy19pOUM+ln0NCoG1SXynZBvrxGn5KyLW4bnep0cptDqn45+At9G/alVmAt2VGczrTt02hfqz19IvrIjiKNubvmkpCZwGt93HOBtF4xmKCAvSXlhiY3APDPiQ0Ma1t6g8ErsY+khPiaV4mn5aZRJ6gOFemCfImqSUqh6Ws8tUM26qy19pGUjHyzoFTzqUZluyBXRVKScz4i1K+sd/z2k5Sz6WepHVTb0hEbXE1Sos9Gc33j62XHcArpeemsjl3NhzeVve7IFTmXcY6lB5cyedBkt22MWGQq4qMNHzGs7TBahrWUHUdRDAMKCthTUhoEN6Bx9cZsPL2RYW2HYasL8pVcvaQE+QQB5gZ3l3CspOQX/YCf1yrMC2cdu7vnguXgtEt9XBwrKeezvqVljd2YF86+WEbt1UvKmfQzpRxm5RqSkpGXwcGkg26z3fa3I7+RX5TPXa3vkh3F6Xy781t8vXx5qONDsqNIY9GBRRy7cIwf7/5RdhRFCQwqKGBPSenVoBebz1r7t5TeYLB0rk5SArzbA5BdkF2i1nGSklsYhJ9XK5yxBTk5JxmgxLSL4yQlLgPqVutLVbogV1ZSzmacpX610uaqjS8p2+O2IxBE1nePHTy/HPyFrnW70rh6Y9lRnIpJmJi5Yyb3t7vfbc/8EEIwfv14BjQdQLd6tg5dVMhC54KSVc737SMpver34pcDv5BflG85lt05khLg/TkAOQU5pdQ6RlLyCvPw87oX6IKjJSU523xMdJh/aTtr7CspBUUFJGYnUifofaA3jpaUM+lnuLaRrQPojC0p0WejCfAOoE3NNrKjOJzcwlx+PfIrb/Qp69wb12T1sdWcTDvp1v1m/jj2BzHxMfz1yF+yoyhKQeeCYn0R+wsYYqPm6iWlZ4Oe5BXlsSt+V7F3jY6XFH9v8wvulSMoVuwvKTmFOfh6+eGMw9xScu7H19PXRj8L+0rK+azzANQNqlcsp+Mk5WxGAPWrPWCjFowsKdHnoulat2sZi6ldh79i/yIzP5MhrW39fnFdZuyYQYdaHehZv6fsKNKYsGECkfUi6d+4v+woilLQuaC8hvmF6QFgGebD2krj6iSlY+0b8NA82JWwq8SwtmMlxdsjH1hIoenfMq5rP0kpMhWRW5hrWfvi+BNnk3OmEhZQvYzFd/aTFGtXaPNi48p1Qa6spOQUFJCSM576wTtt1FkxpqREn4t2mxfsXw7+QsuwlrQNbys7ilOJy4hj2aFlfHbzZ267OHbzmc38c+IfFt27yG2fA72jc0GxbnG8FvML+FIcISkB3otoUaMFuxN2l1LrOEnx8pgBLKTA9BnQi4p2QTZTeUmxLsa1Ls51tKQkZ/9LDf89mE+crVwXZNu1pUuK9eC0utXqFqt1jKSczXgMGE+D4J8xnzhbuS7ItpEvKUnZSZxIPeEWJ8gWmYpYemgpT3R5wu1eoGbHzMbLw8utF8dOWD+BVmGt3HJxtFHQuaBYmY/5BdRxktKpTg92JeyyUesYSfHyMHdMLTT1ojJdkKsqKZn5mQAEegeWqHWMpCTntCfMP5mqdEGurKTEZcShoZU4x8IxknI2/RwA9as9Q1W6IOtZUrad2wbgFgtk159aT1J2ktuMFlkxCRNf7/ya+9rdR3W/6rLjSGF/4n6WHlrKrMGz3Lr3kN7RpaBMnTqVqVOnUlRUZLnFF3P/m6E4SlLahy/jr9jS1kpYsb+kWOf4i0wjgSY4WlIy8szHllfzrVZKrf0lJTE7kfDA3kBtHC0pZzOSqBVYCy+Pkj/S9peUk2knAWgQ/CFQE1eSlG3ntlHdrzrNQps57TFlsfTQUupVq+cWMlacNcfXEHshlnlD5smOIo2PNnxE/Wr1ebCjrR2PCj2gS0GJiooiKiqK9PR0QkKs298cKyktw/qSnBPNhZwfCPW39aJvX0kRQgDgoXlTmS7IVZWUtDzzC13p75rsLynnMs5ZdoJMttziOEk5ldaLRtUblVFrP0mJvRBLnaA6BPoEUdkuyGb0Kyk74nbQtW5Xl5/yEEKw9NBSBrcc7HbvoGdsn0Hb8LZc0+Aa2VGkcCrtFPP3zOejmz6y7NpU6BVdCoptHCcpLcK+AHpxJOVhetQPwlaDQXtKisAsKOYXg4o1GDRTNUlJzR0LXDrBtvRa+0lKXEac5Sj4ijcYrKqknEqbSMOQzjbqrLX2kZRjF44VG2GoeINBM/qWlO1x27m37b0OfxzZ7E/cT+yFWLfrvZOQmcAvB3/hkwGfuLyE2mLixokE+wa79fZqo2AwQQFHSUqLGuZV/EeSO9OjftldkO0lKdYRFA2tWK3jJCU19zjwDyF+v3NJFEqrvXpJyS3M5ULuBepVq2e53bGSciptFp1qxwBTqGwXZNu1pUtK7IXYElMgriEpSdlJnEo75RYHVi09tJRA70D6N3Gv7aVzds3BU/Pk4U4Py44ihaTsJGbumMnrfV4vtllAoVcMKCjgCEmp5luNGv41OJV2JxBBWQ0GzVy9pBSYCsxXutjPxVrrGElJybkHT20twb6jgUAq0wW5spJy5a4acJSkCAGn0rJpGNKfqnRBrqykHEs5xsCmJX/ejC8pO+PM26a71u3qkOvriWWHljGo+SD8vPxkR3EaQghm7pjJPe3uKaOppmvzxZYv0DSNZ3vY+v2g0BMGFRRwhKTUr1afM+lxVKQLspmrk5S8wn7mdFfMgzpGUpKyUwgLCMdDu43KdkE2U3FJOZfRGsAyxVMc+0tKYnYieUV5NAx5FuiKIyUlKz+PhKwEmoY2tVE71vK18SRle9x2qvlUo3mN5na/tp6Iy4hjy9ktPBP5TPnFLsQ/J/7haMpRZg2eJTuKFDLyMvhi6xc82fVJagbUlB1HUQF0Lii2Tli1Yl9JaRDcgLMZZ6lIF+RLVF1S8ou+NP8tPEtraW9/SUnKTiI8IJyqdEGurKTEZYwGSo6gWLGvpJxKOwVAw5BGXDpx2DGSEnvBLAjNatja5WJcSdkRt4Mudbu4/KLRFYdX4KF5cFuL22RHcSozdsygdc3W9G3YV3YUKczcMZOM/AxevuZl2VEUFUTngvKp5fM/gK3FbPaTlHrV6hU7C8XxkpJbaH6h9fUqTVCstfaTlMTsRMs7h8p3QTYzosR9Sqs1S8q5jK/w8fQqpQ+PFftJyslU87bfhiENqUoXZDMVk5TYC4eBhTQN/R1zzx9btWMtXxtHUrbHbefOVrZ+bl2HZYeX0bdhX8ICbP1suh6JWYksPrCY8TeOd8vFsXmFeUzcNJGHOj5k+T2hMAI6F5RXMb/Y3AesAG60UWcfSQnzDyMlJ6VEreMkJTP/AvAH1Xy2ATeUUWsfSUnITLAcBQ+OlpQTqRtpFLIbTfuWynZBtl1buqQcu3CMaj7Vig3bOk5Sjl3oRaD3UmoHjgOCqWwXZNvIlZQLOReIvRDr8utPsvKz+DP2T96/4X3ZUZzK3F1zAXikk63/t67N/D3zOZdxjtd7vy47iqIS6FxQrAvY+gB3AMtxpKTU8K/BhZwLpdQ6RlIy898C/iDI5y2gORXtgmym8pISnxlP+1rti9U6TlJOpDWjcfUUqtIFubKScjTlKM1rNC/xztAxkhJ74ThNQ1ujaXdQlS7IepWUnfHusUB2dexqcgtzuaPlHbKjOA0hBDN2zGBYm2FuufaiyFTEhxs+5K7Wd9Em3PU7dLsSOhcUKwswvxg6VlJC/UNJzU3FJEwl5uEdIykZ+TkAVPO9lcp0Qa6qpMRnxhcbQbHiGEk5kXqSbnUHWXI7VlKOXThmY2Gn/SXl2IVjlgWyVeuCbEZ/krIjbgcB3gG0CmtV5WsYgaWHltKmZhtahLWQHcVp/HvyXw4nH2b67dPLL3ZBlhxcwuHkw8y5a075xQpdYRBB8cM8ynEXjpSUYN8XEQgy8zMJ9g0upda+kpKWmwZAsO9szC+2jpOU3MJ8knOSS9lVA46QlBOpJxjWZhiXXpQdJylHU2rQo72tc13sKylHko9YmotVrsGg3iVlR9wOOtfpfLH9gitSZCpixeEVjOwysvxiF2LGjhm0qNGC6xpdJzuK0xFC8OGGD7mu0XX0atBLdhxFJTGIoIAzJMXXcyJgXlBFqetW7SspyTnJeHl4Uc0nlMp0Qa6KpJxNHwFAREiEjVr7SUp6XjopOSk0rt6YqnRBNlMxSckrLOR02lSa1zhto85ae/WSklOQQ+yFWNqGty1W6xqSsj1uOzc3u7nS9zMSm85sIik7ya1Oj03OTmbR/kX8r///3HJx7L8n/yX6XDQrh6+UHUVRBQwkKOBoSfHz6gdsJa9oFWDrpEX7SUpydjJh/mHFjrp3nKScTo8HVtMgeBe2F+TaR1Ksu2qaVG9SrNYxknI8NQrBVJrVmI95rVLluiDbrr1SUg4lH0IgigmKtdbYkpKel87h5MOM6TumwvcxIssOLaNWYC16NugpO4rTmLd7HiZh4tHOj8qOIoWPNn5E+1rtGdTcVpsTRXlomnaPEOJnGY9tMEEBR0qKr9c4YBB5hSOBcCrSBflqJCU5J7nEVkfHScrptAcxC8orQF0q0wW5spJyPPU4QInmfY6RlKMpxwBoFvo4VemCXBlJ2Z9YC8DSALFkrXElJSY+BoBudV37iPulh5ZyR8s7XP6cFytCCGZsn8GQNkOoFVhLdhyns/f8XlYeWcmcu+a45eiRPdA0rTfwKOYXLqejS0GZOnUqU6dOpaioyEaFoyTFfOS8pvWlol2Qr0ZSErISqB1Yu0StYyTlROopwgPCCfAeRGW7IJupuKQcSU4k0DuwlPUu9peUg0kHCfQOpH7wDKAajpSU/YkDqF+tPiF+pTVbNK6k7IjbgZ+Xn0vvcDiUdIjDyYf5eMDH5Re7CJvObOJA0gEmD5osO4oUPtn4CQ2CG3B/e1u/5xQV4EFgvqwH16WgREVFERUVRXp6OiEhtjrv2l9SCk2FAHh5TAdextGSci7jHA2CG5RSa39JOZ56nCahTahKF+TKSsqh5GtpGdbSxrsW+0rK/sT9tAlvg4fmSVW6IFdGUvYnfkTb8JY26qy1xpOU7XHb6VS7E14euvx1YBeWHlqKv5c/NzW9SXYUp/HNjm9oFNKIG5va+r3oupxJP8P8PfP58KYPS2kloqgImqZ5AbcCr8nKoPPfSDnlfN++knJJUAKoaBfkq5GUuIxwIutF2qi1r6TEXoi1bI+tfBdkMxWXlINJX9OqZlnz/PaTlANJB0osWnWcpOxP/JpBzQ8Dk6hKF+TSa8davpYnKTvidrj8Do9lh5YxoNkAArwDZEdxChl5Gfy470de7/O620xpFWfS5kkEegfyZFdb69cUFWAQsF4IUV7PGYehc0GZaPm8DrDVN8N+kpJflA+At4c3FW0waKbykiLEA5zLWETdoGQbdWBPSYm9EEvvCOvR7I6VlEPJ33Fjky3AXCrbBbl0SpcUIQT7E/eXOJ7dMZKSV5jP0ZQ02oYPpKpdkG3XjrV87XxJycrP4mDSQV7q9dIV33MVzmedZ+PpjXw9+Ovyi12En/b9RHZBNiM6j5Adxemk5qYyY/sMoiKjqOZbTXYcI/Mgl15UpKBzQXkF8wvI3cBvwPU26uwjKel56QDFzkBxnKSk5Ewhq2ARjavPs1y74l2QKyspOQU5nE4/Tcuw4tMTjpGUCzlpnM/KpVXN/lSlC3JlJOVcxq2k56WX2FVjrbWvpBxJOUKRKKJt+NtAZ1xFUnYl7MIkTC69QPbXw78CuFVzwG92fsPAZgPdsu/M9G3TySvK4/mez8uOYlg0TQsCemF7O6tT0Lmg+Fs+98I8FbYSR0pKWm4afl5+JZr3OUZSjqeeAaBx9eupbBfkykrK0ZTWACUEBRwhKYeSDwHQKuxjYBqOlJQDSS8ClCIo1lr7Scr+xP0AtKnZFrB2gzW+pOyI24GPpw/tarUr4/7GZtnhZVwTcQ21g0ouSHdNDiQeYNOZTfx090+yozidvMI8Jm2ZxCMdH7HRSd190DStE+ZfPE0wL6TbgPk/vy9QB3hXCBFj4+5DgeVCiMIS1+yL+R1iC8y/3H7D/Iu1NebpgfbAq0KIzZqmDQf6We7aAfivEGJNpf4SQgiZH2WSlpYmAJGWFi+EuEkI4S+E+Luce+UIIW621P5ZTm2uEOJWIYSfEOJ3Me6fcaLOJ3Vs1OYJIe4QQvgKIX4r57p5QoghQggfIcTyUit+3vezYCwiKStOCHG3EMJbCLGknOsWCCHuE0J4CSEWVaB2uBDCUyzc97JgLCIxK9FGbaEQ4mEhhIcQ4vtyrlskhHjMUvvdFd+dvXO2YCwiMy/TUjtSCKEJIeZU4LqjLbXflFNrEkJEicmbEb7/8xKFRYXl1L4gzD9uX1bguq9Yar+47Dtj/x4ran1cq0Tt65bazypw3bcstZ9UoPa/ltoJ5dQKIcS7ltr3KlD7vqV27MVbRiwZIbpN71aB+xqT7PxsEfB+gJiwriLPpWvwyu+viLAPw0RuQa7sKE7nmx3fCMYiDiQekB3F3lT69RWYhfkd69vAeczvtOsD/YF84Isy7vs70LPEbR6Y5+014BPLNb8A+hermQ7EYn4HNbTY7eOAZMCjMn8HnY+gWPEHlgGDceRISmL2zYT522rBbt+RlKMpRwn2DaaGf20q2wXZTMVHUg4kfUYN/6Ay/m72G0nZl7iPhiENCfQJtNxSuS7IZio2krL3/N+0rrkfT49ZVKULcum1pY+k7Dm/h3bh7UrUVrwLsl5HUnbE7aBnfdc9uGzN8TVkF2RzRyv3aA6YX5TP3F1zebjjwyVGgl0fkzDx8caPubPVnbSu2Vp2HKlomtYMOCeEKNQ0rR5QA/hACHFW07RrgEzML46l3bc20EgIsaXEtyKBnUIIYblmOPCrEOLvYjXpmEdsEoQQi4vdnmDJEG75ukIYRFDAGZJyOn05ESFldXO1n6QcSj5Eq7BWlq24leuCXFlJ2Ze4gXbhJ9G0hVSlC/KV2JaUXQm76FS7U4lax0hKTHwgneu0pqpdkG3XXikpO+N3cleru0qpNa6k5BQUsO/8Pp7p/kwZ9cZmxeEVNA1tWsrheq7JisMrSMxO5ImuT8iO4nRWHF7BwaSDfDP4G9lR9EBtzC86YJ6TXi+E2AEghFiI+YXMFvdjfmEpiS/wi+XrfsDvQohVJWo6AseBGSVub4N5W25Zu0KupCpDR3b8KJNLUzxpxW7NFo6a7uk+I0SMXOophPi9nNqrn+655utrxMOLHy5Rmy8cMd3T4cv2YvTy5kIITyHET+Vc9+qme2p/XFu8/dfbNmrtN91TUFQg/N7zE59t+lQIESXMP04zyrlu1aZ7UnM+EoxFzI2ZW0at8aZ7tpxBMBax9czWCtQbD5PJJCI+jRDPrXxOdhSncev8W0WPmT1kx5BC31l9Re9vesuO4Siq9BoL1ARMwNhK3Gcr0KqM7zcHBPBKidu9gAxgVin3OWwRmkrlN9AIihXHjaScTvPj9ha1qGwX5MqOpAhxG4eSD5Wyq8D+IykFRQUcSj7MU90+wvxzV7kuyGYqNpKSkJlGQlYCnet0tlFrv5GUw8mHyS3MpXOdLlwatXDMSMquhNcB6FK3Sxm1xhtJ2RG3BS+PZXSovRTz6K1rsef8Hk6nn+b2lrZ207kWZ9PPsuroKr667SvZUZzOxtMbWX9qPUvuWyI7it7oj/kXyT8VKdY0rSWgCSEOlVFmbeZW8pqRQFDJ2zVN64B5UW2lj3E2oKCAIyQlNTeVhKwEWoZ9hPnF3nGSEpc5g5ScFNrXal9KrX0l5VDyIfKL8ulYuwsQZbnVMZKyK8G8XqNTnU5l1NpHUqz9Y8zTSZXvgmymYpISE78DX8+/aRX2F+ZF6rZqjSUp28/Vol14Hfy83sf8c1f5Lsh65tfDvxLoHejyh9BZmR0zGz8vP7c82v3jjR/TKqyV26w1qgT9gTxgcwXrK3K0fX8gFdhZ4vbrLZ//KXH7cEuGhQCapj0hhKjQPJxBBQXsLSn7zu8DoF2tzphf7CveBbmykrIr3vyCa/uF3H6SsjPO/DNkfiGvfBdkMxWTlF3xewjy2UbT0E2YRwFt1V69pMTEx9AopBGh/qGW2x0nKTvjG9G+Vm28PV/E/LxUrguy7Vq5krIjfgdd696C+d+q8l2Q9c6KIysY0GyAWywWNQkT3+z8hnva3lPsHCf34FDSIZYeXMqMO2a45am55dAf2CyEyK1g/X3YfiG1cj3wrxDCVMpjxQohTpW4fSiwTAhxwTKaUlp/l1LRuaCU95zaT1L2Je7DU/OkVVgrKtsFubKSEhPfhRDf/TQK2QM0tlFrH0mJiY+haWjTYg3uHCcpMQkt6FDrJB7aCMxyUbkuyLZrr5SUXQm7ShE8x0hKTHwM3eveDlSnKl2Q9SgpeYV57EnYw+OdH+fSyJrrSEpSdhKbTm9i5h0zZUdxCv+c+IfjqceZc5fUgz+lMHHTRGoH1eahjg/JjqIrNE2rg/l8ktIWvJZW3ws4JYSIL6OmDeYzVP4pcbs30NvGY9UE1mqa5oH5l9YLFckDEgVF0zQtLS3tstvy8vLIy8u7+Of8fPMv7/T01cCAMq72HeYXzlswy0K/MmrnYn7Rvx3zc3k9ANuOb6NpQFPysvPIw5phNuYX2cHA99hevwLmLecPY5aIBWXmjT7egrbBcWRkDLNktyU0YD7srACzAM3F9pH/AF9aau+1ZB/M1uNbaRfcjvT09BK1X1hq7weygSFlXHcy5m3zwy21d5datf34DvpE3E56ej7m5yIbszDZ4mPLdR/FvMD7gTJqx1tqn0CIbLYf387ILiNL+XsBvG+pfcpy3RFlXPddzKOPz1hqR1723bzCPPae2suDLR4kPf1JS+1zltpRZVz3LUvtS5hFu6ydMq9bal+11D5XRu3Llto3LbVlHVH/oqXmbcvnSz2/YuJjKMguoFVQK8tz+KylZqzl85gyrqt/ftn7CyJX0K92Pxs/I67FtA3TaBbQjI7VO7rF39dKQmYCs7fM5q1+b5GfnU8++bIjOYSQkJBgIENYVpxWkNqYt/RW9MS+ikzvhAHnML+DL051IItL75SL8zzmX6zXA9OEEBXeyaNV7u9rPzRNCwbSyi1UKBQKhUIRIoRwiH1aOhcfBToIITIc8RhVQeYUT0Z5IyhxcXH06NGD48cjqVFjH+bRkT5lXDIH84jAZmAhkZEvEx0dbaM2F/OIwAbScmfRaNKDfHHLFzzcydx6IDIysth98zDL5b+UN5LSu3d3Nm5sBqyhtJGUhMwEWn7RkjlD5nBX61uBxzAf2vcdkZHvlJG3AHgC+JWSIynp6elERERw+vRpgoODgULgSQ4mLaHnTBPLH1jOtY2vLfWqvXp1Z/Pmzpi3zM+i7JGUIszTID8BXxMZ+eHFvP8c/4c7f7iTrU9upVXNVph3tj1reQ6mU3Ik5fLn14R51G8u5hEj2yMpPXp05/XZ9Xli6T8ce34CNQNtrR0B806414CZ5OR8SJ06bxR7jkqrfdPy+BOxjqRM3zad/6z5D40WNWL7lu3Fat8GpgAfUdZISmRkd6Kjb8U8CjWeskdSBPA/y+O/R2Tk3DJ+HoTleh9iHvW4fCTl8ucXzNNO4y25X+OlVS+x8fRGtjx5+VlM6enpfPZZBP/3f2B+Pio+knLlY1Yce963oKiAppOb8kzkM4zpZzt/VR/zyv9vV5f3au83Y9sM3vjzDQ4+e9Dmcf7O/rdxxnOUkZdBuy/b8VCHh/jgpg+uKu/V3O9q7lvR5ykkJCQE8xZeRzEQ2KInOQGJglKZoSovr/kEB4/CvFZiJVD6iy0EW74/GLiHXr3Cy/hHDwZWAHex6fwIhK9gQNsBF+s9PT1L3Hc55nUdwylrTYrJ5EVw8FLM0yAPUnJNyt/n/gY/6N+qP8HBNTGLwf3Aw9xwQ61y/jP/bHn8RyltTUpwcHCx+//IvmO90fyiubZVahkL57wIDl5gueYTQAC216SAeQTQB3iS22+vc/Hx9qTtISQkhG5NuhVbqDbXUjvact1La1KufH6/tdQ+jXltUelrUjw8vNib1pkmdbbTtO4YzAcT2jrMDcxy5ENw8BuMHFnyOSrJl5jXH71iyfA0e9L20KVxFzK0jBL3+9xS+7qltvQ1KZ6eXgQHf2apHYN5LdSLZeT92FL7Nk88Ud7Pw3hL7VjLdS+tSbny+f3AUvN/gB970/fSo1mPUq//6afw/vvv4Of3v2L3KZ8rH7Pi2PO+a0+sJV1LZ1iXYWVe82oeE8r7WbJNVR/X1v0WHFnAHR3voEW9FnZ/zKu9ryOfo282fUOWRxZv3PjGZbX2fn4dfV8o/3ly1MhJMSoyveN8qnoAjJ0+yuT06dMCEKdPnxZCZAkh+gshAoUQa8u5p/kwt/x8b1GRw9xeWtVI1P0EYTKtvnjrlClTSqm9vHdPaVy6X+mHub36+6ui/sT6wmQyFbuX+TC3wkIvYat3zyWuPMyt9APthHhq2UjRbmqwKOswt0t5L/XuqehhbkVFmrAe5nbHgjvEgLkDSqktvXdP6c9v+Ye5TZkyRfT+pre47+d7RWV69+TlPSmEQGRnTy63tvhhbq2+aCWe/fVZG3lt9+4pnvdSrfMOcys9rxBCvCtyC8w9jCZvvvK5uPxn6crePWVh+zGde99Xf39V1P64tigyFTnkMW39f6soVX3c0u6349wOwVjEsoPLHPKYVb2vo5+jgqIC0fCzhqUcdmnf59fR963E8+Sw12EgEDgJeDvycaqUTXKAMrlcUISoiqSUd+KsyWQSTSY1FqOXR4iqNBgsmyslpdv0buKhxQ/ZqC27weAlLpcUWz/kbae2FaOWPymq0mCwMifOmkwLRPhH4eKdNe/YqC27weCVtbYlJb8wX/i95yc+3fipqEyDwbS0VPHFF9Yfu4qdOHshh3JOkLXWli0pl9fKP3F28+knLSfIjr7ie1f+LFVOUvRA6ymtxeNLHnfY9a/2xdeeRP0aJep+UlcUFBXIjnIZjn6Ovt/zvWAsIiYuxiHXdxY6EZSHgK8c+RhVziY5QJmcP39eAOL8+fPFbrWvpMTExQjGIlYdWSaq2gW5bC5JyoWcn4XHux7imx22XkyrJin5+T+L//u//xO5uZe6lyZlJQnGIubtmieq2gW5opISm6IJxiJWHFpRRq19JGX7ue2CsYgNpzYUqy1fUnJzc8X//d9/RWHhaFFRSVl9bIhgLOJg4v+VW2skSfls02fC7z0vkVeIKHksvvl5uvxnyUiScjT5qGAsYtH+8n7Oq07pz5Hzyc7PFtUnVBdvrn5Tao7ScORzZDKZRPcZ3cWNc260+7WdTSWeJ0cKykzgGkc+RpWzSQ5QJrbt0n6S8t81/xXB44NFXmGeqGzvnspKytKDXoKxiGMpx8qprdpISnGWHlwqGIs4fuG45RbHScqC3X0FYxGJWdPLqb16Sfly65fCa5yXyM7PLlFb8emeivbueW/t/0TIeB9RZEJUpneP3iXl3p/vFX2+6SMq27vHCJIyefNk4T3OW6TnpsuO4nDm754vGIs4nHRYdhSnsvbEWsFYxG9HyuuD5lLIfq1WglKSsoe/rl5SCooKRINPG4iRS0cWq3WcpDy9opFoOhlhMq0st/ZqJeWlVS+JiE8jSqx1cYykjFr+lGj1RbCoaoPBsmsvl5Thi4aLyBmRNmrtKym3zr9VDJw3UFSlwaCeJaXhZw3Fq7+/avmTa0nKwHkDbayFcj0GzB0g+s3qJzuG07ljwR2i3dR2JX63uTyyX6uVoJSk/Pm5q5OURfsXCcYidsbtLFFrf0kxmUyi4WcNxXMrm4ir6YJcOldKSqevOokRS0aUUmt/SWn1RSsxevkocTVdkMuuNUuKyTRb1J9Yv9iLa2m19pGUIlORCBkfIv639n+iql2Q9SgpZ9PPCsYiFu5bWOxW15CU9Nx04fM/HzFp0yTZURzOydSTQhuriVk7ZsmO4lQOJh4UjKWMaXKXRfZrtRKUklRsAVHVJeXGOTeKa76+xkatfSXl/9u77/Aoyq6P42fTSehdQCkCAipgrxTF3hW7oti7qI+8iI1Jp9fQe++9Sg0d6b33TgrpfXd+7x/ZMZvJ7s4mO7P3zOT+XtdePk88mYwKmQ+b3TmHbhyyv9ZlKZy9u8d5ZUNKYtYUhRd3qocU6YI3+/BsOL5wVguknL1JHrxjQR2kHLx+ECQQNpzb4DDbDUZHyrwj80AC4Ur6Fdm88ZGy4OgCkEA4nXya9aloXtTGKIRGh5aLH2U59tXSr1CnXx3kFrB9/Q+DWF+rOVDkef4K59IjZfeVYJBAmHbA3cVRPaTEbIpBaHQocgpy4OotyM5zjZSNGzfipZdewi233AIiwqJFcwG8idmH/UEC4VLaJSfHk1IHKdLPwW9k3rB/RDukTN7fASQQkrOHe3DcQqQsW/YG7r//flSsWBG1atXCq6++iuPHjzvMOkeK9FqXrPws2Ww3GBkpv/7zK24bdFuxqREjRuDuu+9GVFQQAMLIkbdixQqlH0PqDymfLf4MLeJa+ORrxcTEgIjQrVs3n3w9x0RRRNOhTfHRwo98/rWV6tWrF6jwLoL/PerUqaPKsRMyExASFWJ/VtPYXb58GR988AGqV6+OChUqoE2bNti9e7e7T2F9rWby0PmyQE8LpcKbrr1ERUsDXd3MrQIBi+l/q+tTq1r59M5ddd0cV3kLclHuFwzOPTqXXmr+EoUEhNg/UvotyESdqfDGbi8REVFWVha1adOGPvnkE+rcuTMBAUQ0g1aebkZ31b5ADSrvIdeLI91vQS4563zB4IZzG6hVrVZUO6y2/eOl34JcmHRjNtcLBjdduJ3urn2Qqlf4nogqkicLBp9/fhRVqfIJVas2iaxWK/3xxx/0zDPP0NGjRyksLIxcLRjccmkL3XfLfRQaGOpw3NJtQS686RqRnhYMbr+8nR5u8HCxqQYNGlDv3r2padOmlJQUR19/PYz+/vsluu22g3TnnXe6OPbv9r/qY8GgCJGWn1pOH9zt6tePeu3atYvGjBlDrVu31vxrOWvbpW10+uZpGvPSGCZfX6k777yT1q5d+9//9/f3V+W4I3ePJAtZ6Jv73d09Wv+lpKTQY489Rk888QStXLmSateuTWfOnKGqVauyPjX9xVhIbiv9e+k9eyZl4bGF9leBt4XSfVIK8+6ZlJNJJ5383B9Q65kUACAiLFy4EDbRhrr966L76uZw9u6eknn3TErToU3x3fLvnMyq/0xKs6HN8N3yb6F0M7fixy3+4x7presbN8p/fRR/JuW2Qbfhf//8z8VxjflMSp6VEBIVgEHblY5d+OOeXbteU5gD9PJMyq4ru2Q/ktOmjIwMNGvWDGvWrEGHDh2YPIPy2eLP0GhwI8Ub0bGoV69eaNOmjerHzSnIQe1+tfHNsm9UP7av69GjBx5//PHSfhrrazWTB+sTcFvZbvbjHim5BbloNrSZ/d0Znt3MrbCyIyVqYxTCosNkb42VUgcpElCkO0uuO/sPXL0FuWRlQ8qltJEu4CWlHlKupl91eK2L8h1nix+3CCmnTp0CEeHQoUNOZguRcjG18LUuC44ucHNc4yFl5+XPQAJh+6VvXU5ZrVbMnDkTguBvP64xXpMibBBQJbYK8q35mn6djz76CD/99BMAMAFKZl4mKsVUQq8NvXz6dT2tV69eCA0NxS233IJGjRrhnXfewZkz7m6r4Flj94yFRbCY4i3VLVu2xE8//YQ333wTtWrVQtu2bTFmjNJ9mdhjgcWD9Qk4LS4uDi1btkTz5s3LeDdC10j5csmXCIoMwqEb0gVKW6SIYjDuGNYA789/382s90iRgBIeH45KMZXs93VxfZ+UkpUeKeP3WmARLEjKSnIzqw5SpNe6XMu45jBbOqSIogVDhrRR+NOLiGkHngIJhITMAQrHNRZSBm4bgJCoAOQWEOTv7jl48CDCwsLg7++PKlWqYPny5TDSC2cfGPMA3przlqZfY+bMmbjrrruQk5MDgA1Qph6Y6sG9lNi1YsUKzJs3DwcPHvzvWaY6deogKcnd9wj32UQbWsa1xKszX1XvRBkWHByM4OBg9OzZE3v37sWoUaMQEhKCyZOdfx9Lzk4GdIAFFg/WJ+A2726XXBIpI3cV/om/5FvztEPKlgsPgwTC2jNKtyD3DikSUO4ZdQ/enfeuw6x2SHlj9q14ZByhNLfFLytSui7qirtH3O1k1nOkbNp0J2w2QnJyP7eTnyzqirtH1EDhL1HPbotvBKS8OvNVPDHpCTh7d09eXh5OnTqFXbt24bfffkPNmjVx5MgRGAEpCZkJsAgWTNw3UbOvcfHiRdSuXRv79+//72MsgNJpcid0mNjBp1/TmzIzM1GnTh0MGKCEfdctP7kcJBA2nd+k4pmxKzAwEI88Uvzdoz/88AMefvhhp/M91/YEdIAFFg/WJ+A27/c5FCFl0/mhCIgIwPfLv3cxqw1SPln0ERoPrgCbGIyy7O5xP1uEFCLC6NmjQQJh1qFZsln1kZJnzUOlmEqI3Ngapd3dU1qkiKKIegPquXhNiGdI+f7773HrrfWRlvY+3L0FWbpfzU8ru8HTO84aASk20YZqvatB2CDAk5u5derUCV9++aX9/+kbKdMOTAMJhKvpVzX7GgsXLgQRwd/f/78HEcFiscDf3x9Wq1Wzry11PuU8LIIFk/ZN0vxrqdlTTz2Fr78uuffJ056c/CQeHPugaW7Mdtttt+Gzzz4r9rERI0agXr16JWYTMhMQFh0G6AALLB4meRePqwrf3XMq+Ul6c+6P9OitbWjgswNdzFYgoiVE9AoVvROoo4tZz97dk5abRnOOzKffHv8/8rPsImfv7ileEJX13T0vvkj0b9q/FOQfRM83e142G0hEM4jofSp8981c+7k4y7N392y5uIUy8jPoxWbjiGgwyd/dU7Kyv7vnWNIVuppxlZ653dm/Nz8iGm3/313/+xwpAPTDDz/QwoULKT4+nipXvp2IKhPR5/aJT4sd7VzqObqYdpGebNyJpHdLOb67x3n6f3fPoRuHKCU3hTo26kjO3t1D1KPY0QBQXl6e/f/9bf/rn/a//kGu8/27e1aeXklt67alWyrdotnX6NSpEx06dKjYxz755BNq0aIF9ejRQ7V3qrhryoEpFBoYSp1bddb8a6lVXl4eHTt2jNq1a1emz993bR+tP7eeZr85mywWi8pnx6bHHnuMTpw4UexjJ0+epIYNG5aY7bO1D/lZ/Hx1avqLsZDcpsZGzJNJJ1F/QD20iAvFjcxQqLUFuTD3z6QM2DYAgRGB9ptiebcF2VkZGRnYv38nUlKeRG4uoUXf2mg/sj0uXLjg4jPUeybll1W/oN6AevY/1ZRtC7Knz6QM2m5BcGSgixcZO86WfCblm2++QZUqVRAfH49r167ZH1dQUCDNFn8mZczuMfAL90NqTqr9I57v7tHzMymDtw9GcGSw/T48jrOFz6ScPfsVzp07h4MHD+L333+Hn58fVq9eLTu2/p5JsYk21OxbU3oa3Kf58kc8oiiiyZAmLu4OrZ/+97//IT4+HmfPnsWOHTvw0ksvoVKlSjh//nyZjvfB/A/QcFBD3W1r9qadO3ciICAA0dHROHXqFKZPn47Q0FBMm1b8dXdX068iJCpE2hLP+lrN5MH6BNzmLVAKcVIfLeJa4Gr6aai5Bbko50gpsBXgtkG3yW6mpC5SNmzYACJCYCBh5MzCd5607UL4+OOP3RxXHaTcMewO2Q4j7ZDy/LT6eGoKoSy7e0h20yjpMXHieDi74+y7897FQ2Mfkh3X+Eh5fdbraD+xvdPZxYvbAiD07OmPWrVqoVOnTk5wIqUvpPx7+V9mr0/wJVA2nd8EEgjx5+J98vXK2jvvvINbbrkFgYGBqFevHt544w37a5lK36W0SwiI8ORt8cZr6dKluOuuuxAcHIwWLVo4fRfPDyt+QNXeVZGSkwLoAAssHqxPwG3eAKU4TqSfTau3Bbl4JZEy+/BsF3t+1H8mBQD6bolBhSh/ZOQFwpstyCUriRRppX3Jt+Gqj5TcglyERoeiz5b74c0WZNezRUgRRRG1+9V28adx4yLFJvZF9T7V8ff6v93MKm9BLko/SJHeXmymP2E765NFn6DJkCa6vPeJVnVf3R1VYquUu9v5A4U4C4oMcrxrLutrNQeKvLIC5VTyKSc4kdIeKaK4BveOvhdPTn7Sxaz6SGk7qi3enPMGvN2C7LziSBm0fRCCIoNcfONQFylrz6wFCYS9V3fDmy3I7mcLkXLwejhIIKw5s8bFrDGRcvA62e+Ns05h1nhIeXjcw3hzzpuqH1dPZeRlICw6DOHx4axPxWel56ajSmwVdF/dnfWpMOmbZd+gep/qjt9jWV+rOVDklQUo7nEipS1SFhwN8uDpWPWQsu/aPpBAWHpiKbzdguy6IqQ8Ov4OvDzjZYVZdZDSbWU31B9Q3/5al7JtQfYUKX22EEKjg2Sv05BnPKQM3fE0giIJWfkxHhzXOEhJykqCRbBg3J5xqh1Tj03ePxkkEM6lnGN9Kj5r0PZBCIgIUNgnZs4upl5EYEQgYjfHOn6Y9bWaA0VeaYHiGU6ktEGK1ZaJO4dXxFNT/KDGFuSiXCPlxxU/ok6/Og5Pc2uHlIupL4MEwtQDPyrOeosUURTReHBj2e2ttUNKx0n18OJ0gjdbkJ3PdgNLpHSe3RmPT2hgny3bFmTXsUPKjIMzQALhctplVY6n156Y9ISbZ2PNV4GtAA0HNcQH8z9gfSpM+mbZN6jRp4b8GWrW12oOFHmlAUrpcCKlPlKkb5rbLz0ENbYgF68kUvKseajRpwZ+/edXJ7PqI2Xgtn4IjvRDWq4/vNmCXLKSSDl045B9Z5L8WSP1kZKWm4aAiADE/fs43N0npShjIEUURdTsWxN/rvsD3mxBdh8bpHRZ0AWtR7b2+jh67uzNsyCBMGX/FNan4rOk1+/tvbqX9an4PBfPngA6wAKLB+sTcJunQCkbTqTUQ0pmXiZuHXgrXpn5CrxdMOi64kiZdWgWSCAcSXD2Snn1kfLwuIfx6sxX4M2CQdcVR0r0pmhUjKmI3IJcJ7PqImXB0QX2W4ifgrN39zhP/0jZf22//U7Ga1GWBYN6RYpNtKFW31rosaZHmY9hhIQNAirGVERmXibrU/FZD4972H7H4/KXi2dPAB1ggcWD9Qm4zROgeIcTKXWQ8tua3xAcGYzTyaftH9EeKe0n3qVw62v1kHI+5TxIIEw/OB3ebkF2XRFSHhrbFJ1nd3Yzqx5SvljyBZoPa+4waw6k9N3SFxWiKjggzxxI2X1ltyHedutNNtGGxoMb49NFn7I+FZ+1/dJ2kEBYcnwJ61PxeW6ePQF0gAUWD9Yn4DYloKiDEynvkHIs8RgCIwLttxJ3TDukHLzeASQQ5hz+XXFWDaT039ofIVEhDrrXDinXMt4ECYTJ+5XWq3uPFFEU0WBgA3Rb2U02a3ykdJrcCc9Pe97JrLGRErkxEpViKmm+vZhl8efiQQJh84XNrE/FZ70z9x00Hdq0XL2dWsrNsyeADrDA4sH6BNzmDijO73PibWVDik1chycmPYHbh9zu4h0g2iDl66VfoG7/YORbg1DWLcjOc46UB8Y8gDdmvyGb1QYpY3aPgl+4BYlZFnizBdn5bHGkSK91WXVqlZNZ4yIlMy8TQZFBGLx9sItZ4yLl0fGP4vVZr5fqc4zWxws/xu1DbjfNDhqlLqRegH+4P4b9q/Tr3HwpPHsC6AALLB6sT8BpcXFxaNmyJZo3b+4UKBJO7hh2hwYLwkqPlH5bAxx+zu8qdZGSmJWIClEVEB7/N7zZguy64kg5fOMwSCDMOzLPyaz6SHl6ytN4YlJHeLsF2fVsEVKiNkahYkxFF7g0LlKWn/wCJBCOJR5zM2s8pCRnJ8Mv3A9jdiv9OzZumXmZ5e7eJ/+3+v9QJbYKMvIyWJ+Kz1N49gTQARZYPFifgNucPYOiLU6kPEfK7itbEBhhQffVAVBzC7ISUoQNAipEVUBiViK82YLsviKk/LzqFdTqWwt51jwXs+ohJSEzAf7h/hi1axS82YKsPFuIlPvHNMZbc95SmDUeUn5cQbhtUDWFP4EbDynSC8PNfI8MaUPz2ZtnWZ+KT8rIy0DV3lWdvBvR/F1MvYigyCB3z54AOsACiwfrE3CbHCi+wYmUMlIy8jLQbGgz3Df6HuRZn4QaCwaL5xwp2fnZqNm3Jr5b/p3DrHZIybO+gZp9Cb+sekVhVh2kjNw1Ev7h/nZ8AVoi5WLqu/YX/iqtgzceUlrEVcfniwllXTDoepYtUrou6oq7RtzlwfGM2zNTn0G7Ce1Yn4bPGr5zOPzC/XA+5TzrU/F53y77VunZE0AHWGDxYH0CbnMEim9xIuUaKVabFZ1nd0ZYdBhOJJ2AmluQi1cSKXH/xsEv3A9nbp6RzWqDlLlHZtrfyhwAb7cgl5wtiZQOEzvg2anPyma1Qcqwf4ciIMKClBxCaXf3uI8tUi6kXgAJhLlHXrXPDvLguPpHik20oW7/uqa+BfrV9Kum/xGWYzbRhmZDmyk8i2nOPHz2BNABFlg8WJ+A2ySg7D23lwFOpEoiRRRF/LDiB/iF+2HRMccLtvZIySlYinoD6qHLgi4uZtVHyrNTn8XD4x6CGluQnc8WIeVK+hVYBAsm7J3gZFZ9pHSa3AnPTH0aZV0w6D52SBmzewz8wv1wMzsZ3mxBdj/re6TsvbrXg71Cxq7/1v4IjgyWttiavmUnloEEwtaLW1mfis/z8NkTQAdYYPFgfQJuk4ByS/QtjHAiVRwpfbf0BQlkf42EPG2RMnRHAPzC/ezP2rhKPaRcSL0Ai2DB2D1j4e0WZPezhUgZsqMrAiMCcTP7potZ9ZByM/sm/MP9MWLnCHizBdl9bJDSeXZnPDLuEYdZcyBFunmf69dCGb/WI1uXq2cTOk3uhAfHPlhu3q0kVYpnTwAdYIHFg/UJuG3vub0gIjTt25QhTqQKkTL9YDBIIPyx7g83s9ogJTs/Bbf0D8ZHC/2g1hbkolnnSAmPD0dYdJiD8LVFyiPjCC/PuE9hVh2kTD0wVbbLxRxIKbAVoEpsFdk9ecyBlMcnPI5XZ77qwecaM+nOv4WLP83fwesHQQJhxsEZrE/F55Xi2RNAB1hg8WB9Am6LWRMDIsKJy+6eLfBdcw5PhX+4BV0XBUAU4xWm1UdK7829ERARgFPJHaDGFuSSs8WRkmfNQ70B9fDZ4s9ks9og5VTyMfsLVi3wdgty8Zwj5dWZr+KhsQ85mTU2UjZf2GzfB7XdyaxxkZKSk+Lw7i5z9r9//odafWuZ+gZ0jn22+DPUH1C/3PzzSpXy2RNAB1hg8WB9Am4r7TZjLZtzeA78w/3x/vy3YbV1hNpbkJWQkpCZgMqxlfHDih+g1hZk57NFSJHe6njoxiEns+oj5Y91f6BKbBVk578Nb7YgO684UlJyUhAUGYRB2we5mDUuUrqv7o7a/Wq7uBuncZEy98hbIIFM+06PAlsB6vava/89bv5uZN5AcGRwaS7SpqmUz54AOsACiwfrE3CbXoBShJP3YbVZocUW5MJcI+W75d+hSmwVh7feaosUUQzEvaNvxzNTn3Ezqx5SrDYrGgxsgK+Xfg1vtyC7rggpE/d9CYtgcfjxjrNZYyKlRVwdhf0txkTKp4sILeNqejBrzFadWgUSCLuu7GJ9Kj4pIj4CFaIqIDk7mfWp+LQyPHsC6AALLB6sT8BtegBKSZxI+Q4pRxOOwj/cH/229pPNaoeU+HPt7Ld/V7qTpTpIkb45/3v5X4dZ7ZDy7FRCh4ktPJg1FlJOJH0CEggLj33uwXGNgxRRFFFvQCX8sorgzRZkPffB/A/QIq5FuXixaG5BLur0q2P/A0n5qgzPngA6wAKLB+sTcBtroLjGiZT2SBHFNegwsQOaDW3m4lbs2iDllZkv4c7hlSCKgfB2C3LxnCPl7blv487hd8q+OWuDlITM6/APt2DULgu83YJccpYtUvpv7YfgSH9k5hG82YLsfJYdUqQXj64584l91lxISc9NR2h0KGI2xbA+FZ80ef9khTUM5qyMz54AOsACiwfrE3AbS6Ao40RKW6RM3Bdo/8a8xs2sukg5kXQCFsGC8XtHQ40tyCUrjpTk7GQERQah/1ZnFz71kTJi5wj7nWrfgzdbkF3PskNKh4kd8ML0F+DtFmTXs2yQErs5FmHRYcgtyIU3W5D12qR9k0AC4ULqBdanonmiKKLtqLZOtmybvzI+ewLoAAssHqxPwG2sgOI5TqS0QUpi1iXU6BOID+b7Q80tyEpI+XbZt6jdr7b9GRvvtyA7rwgpw/79DAERAbiecd3NrHpIaT+xPZ6b9hy83YLsftb3SEnOTnZ4l0vZtyArz/oeKe0ntsfLM152+Ii5kNJpcic8MekJ1qfhk+LPxYMEwj+nlb5PmSsvnj0BdIAFFg/WJ+A2FkApPU6k1EfKB/M/QNXeVXE9oyPU2oJclHOk3Mi8gQpRFWT30NAOKaL4NlqPJLw68wHFWTWQcjH1IiyCBZP2TbJ/xDxIKXlfF3MgJTUn1eGGeo6ZAymX0i65uXuy+Xp15qtoNbxVuXitjWNePHsC6AALLB6sT8BpcXFxaNmyJZo3b+5ToJQdJ1LqIUXa2Dr1wFSouQW5eCWR0n11d1SKqeTklfXaIGXj+fX2P035wdstyMVzjpSojVEIjQ6VfZMwB1Jem/Wak/u6GB8p84/Od7PZ1/hI6b25NypEVUBaLvvbKWjd6eTTsAiWcrNnSMrLZ08AHWCBxYP1CbjNl8+geI8TKe+RcjntMqr1roa3577t8KcM7ZGSkDkTodGh+H3t725m1UXKm3PexB3D7oBNfBvebkEuWXGkiKKIpkOb4uOFHzuZNTZSMvIyEBIVgr5b+rqYNS5SPl/8Oe4YdoebWeMiRRRFtBreCu/Ne4/1qfikH1f8iBp9aiA7P5v1qfg0L589AXSABRYP1ifgNl8BRT2cSJUdKTbRhqenPI16A+o5eRZDW6T832p/VIypgKSsJIVZdZByMfUi/MP9EfdvHNTYguy8IqRsvtALJBA2nNvgYta4SJlz+HOQQE42XDvOGg8pokioP6Ayflr5k8KsMZGy5+oekEBYcXIF61PRvNScVFSMqaiwJsR8XUq75O2zJ4AOsMDiwfoE3OYLoKiPE6myIUXY0BUWwYLVp1e7mNUGKVfTz6NClB96rvWHWluQC3ONlN/X/o5KMZUc/lShLVI+XURoPNjVHValjImUd+YS2o5q4MGssZCy79rXIIGw+nRXxVkjIuWnlT+hTr86KLAVsD4VzRu0fRACIgJwJf0K61Pxad8v/x7V+1T35tkTQAdYYPFgfQJu0xoo2uFEqnRIWXqiDUggRG50dxdQQAukfL30a1TrXQ0pOc9BjS3IxSuJlJyCHNTsWxM/rvhRNqsNUjLz0lAxJgDh8RZ4uwW55CxbpGTnZyEsOhCRGwnebkEuOcsWKcIGAZVjg5FnJXizBVmPFdgKULtfbfy86mfWp6J5VpsVTYY0wfvz32d9Kj7tavpVBEcGI3JjpLeHYn2t5kCRpyVQtMeJlGdIOZF0ApVjK+PVmbVgE0Og5hZkJaScTDoJ/3B/++sX1NmCXLLiSJm4byJIIJxMOulkVn2kSPeZOJfyOrzdgux8lh1SFh1bZL/pVRf7rHmQcs+oe/DuvHfh7RZkPbb85HKQQNh3bR/rU9G8pSeWulhgae5+XvUzqsRWQWpOqreHYn2t5kCRpxVQfIcTKfdIuZl9E62Gt8Idw+5AWu51qL0FuTDXSHlrzltoMLCBwwvXtEWKKAbgnlFNFG7UpC5SOkzsgCcnPwk1tiC7nmWDlC4LuqDV8Fbwdguy+1nfI+VC6gWQQJh5SPrvZC6kvDP3Hdw14q5y8XbbZ6Y+gwfGPFAu/lmlpFs2/L3+bzUOx/pazYEiTwug+B4nUs6RkpWfhcfGP4bqfao73PZZvS3IxSuJlE3nN4EEwsR9E2Wz2iHln9OP219XoHTxUAcpRxOOggTCjIMz7B8xD1Ky87NRKaYSem3o5TDbDWZAytAdQxEYESj706c5kJKem44KURXQe7MnLxY2dtLvv8JbJpSfeqzpgYoxFdVahsj6Ws2BIk9toLDDiVRxpORb8/HC9BcQFh2GHZd2yGa1R4rVtgL3jLoHD4x5wMULR7VBSvuJ7fDAmGoQxQB4uwW55GxJpPyw4gfU7lfbfpt0KXMgZd6ReSCBcDzxuGy2G4yOlE6TO+HpKU87mTc+UqSb6pWHW9t/u+xb1OlXR/b7z9wlZSWhYkxF/LbmN7UOyfpazYEiT02gsMeJVCFSbGIoPpj/NAIjAt3c8llbpIzdE+DBz4XVRcrmC5tBAmHRsXlQYwuy89kipGTkZaBybGUXb200PlI6z+6Me0ff62K2G4yKlJScFAREBNjfgu4sYyPl+WnPo92EdqxPQ/NSclIQFh3m8Axf+eiv9X8hNDoUCZkJah2S9bWaA0WeWkDRD04Ks4kZ+GppPVgEwuzDvRSmtUFKUtYV1OobhA8X+EHNLchKSHl+2vO4c/id9mdsvN+C7Hq2ECmjd38Jv3A/N39SNS5S0nKHIDgyGP229nMz2w1GRMr0g++CBMLF1Itu5o2JlITMBPiH+2PkrpGsT0XzBm4biICIAFxNv8r6VHxWSk4KKsdWxi+rflHzsKyv1Rwo8tQAiv5wYsPXS7+2bwtuAa22ICsh5ZNFn6Bq76q4ltEJam1BLj5bEinSTammH5zuMKsdUkTxPfuen/sVZo2JlMn7yYOLuDGR8vZcwn2j6yvMAkZEyvCdwxEQEYDErESm56F15fWtxRHxEQiODFYbZayv1Rwo8rwFir5xMh5abUFWQsqGcxtAAmH07tFQcwtyydniSOk8uzOaDGni5KZU2iBly4V4hz0/3m9BLkofSHlu2m1oN4Hg7RbkkrNskZJbkINKMUGIiCd4uwW5ZOyR8tj4x/Di9BeZfX1fJb21uOTr68xbem46qvepju+Xf6/2oVlfqzlQ5HkDFP3jRMq3SMkpyEHzYc3x2PjHHF4Yqz1SjiaMUFgSpj5S3p//PpoObQqb+B683YJcMrZIkX5MMGJnBxT+VjIPUlaeWgkSCAeuf2WfNQ9SzqWcc/Isojl7esrTeHDsg6xPw6f13twbgRGBCs9qlinW12oOFClvtxkbBydSvkNK99XdERQZhMM3DstmtUXK23P90GBgTYVX8quHlMtplxEYEYiB2wZCjS3IzmOHlGH/DkNARAASMm/A2y3IrmfZIOWLJV+g8eDGEEUbvNmC7D42SIndHIvQ6FBk5GX49Ov6uiMJR0ACYdoBpd8X5ikzLxO1+tbCV0u/0uLwrK/VHCjyyvIMivFwIqU9UjadHwSLYEGfLX1czGqDlJ2Xt4IEwoS9/lBrC3JhrpHSfXV3VI6t7LDC3lxIuW/0fXh15qv2/1f2LcjKs75FSoGtADX61ECPNT0cZs2DlLtH3F0uNhd/s+wb1OlXB3nWPNan4rOkFwSfSzmnxeFZX6s5UOSVFijGxYmUdkhJz+2ExoMteGz8nQr/btRFiiiK6DipI+4c3gpW22tQYwty8UoiJS03DZVjK+P/Vv+fk1njI+XQjUMggbDw2EKHWXMgZfXp1SCBsOfqHtms8ZFy8PpBkEBYekLp17+xS8lJQWh0aLl6a3F2fjbq9q+LTxZ9otWXYH2t5kCRVxqgGB8nUtog5bPFXREW7Y/TycFQcwuyElKk1xMUflNWZwtyyYojpd/WfgiMCHSxNdX4SPn1n19Ro08NJ386NT5SPl/8OW4fcruTW6IbHyk91/ZE9T7VTf+swsBtAxEYEViu3lo87N9h8Av3w6nkU1p9CdbXag4UeZ4CRc84mbB3QhmOoC5Sph2YBhII4/aMhNpbkAtzjhSrzYrWI1uj3YR2DhccbZGSZ/VH/QHV0XVRV4VZYyKlwDYGdfrVcbIFWsq4SMm39kH1PtXRc21PN7PGRIooimg4qKFWr0/QTdJbiz+Y/wHrU/FZuQW5aDCwgdb/zKyv1Rwo8jwBivlwIqUOUo4lHkNYdBi6LOhiR4J6W5CLVxIpU/ZPcXGnWu2QMnn/gyCBcPjGIMVZIyJl+Uly8iMQecZEyqpT5MF2X2MiZevFwtdhbTyv9HvZ2C05vqTcvbV49O7RsAgWHE04quWXYX2t5kCRpwQU8+JEyjukZOVn4a4Rd6FlXEtk5mU6zGqPlJyCxbht0G14Y/YbbmbVRYooirh7xF14YfotUGsLclH6QMpbc5rg7hEEURynMGs8pHy6qA2aDSWIoqs74zoe11hI+W75d2gwsIGLnVfm6akpT5WrtxbnW/PRaHAjvDXnLa2/FOtrNQeKPHdAMT9OpMqGFFFcj/fnv4/Q6FAcSTjiZFZbpPTZ4g//cD/ZEjtns+ohZfnJ5SCBsOHcWqixBblkbJGSlJWEoMgg9N/6CLzdgux8thtYISXPmodqvavhj3WP2mfLvgXZeeyQkm/NR62+tdB9dXdVjqfXyuNbiyfsnWC/Z88Brb8U62s1B4o8V0ApPziRKj1SojYWLgKcfXi2m1ltkHI57Swqxvij20p/qLkF2R1SRFHE/WPux2PjH7P/KMv7LcjOY4cU6cWHNzKvwdstyK5nu4EFUlacXAESCAevH4C3W5BdxwYp0gvF3f/oyvh9vfRr1O1f1/QvApYqsBWg6dCmDm/31zTW12oOFHnOgFL+cCLlOVLmHZkBEgjh8QHQYguyElLen/8+avWthZSc56DWFuSinCNFuq32mjNrHGbNgxRRFHHHsDvwztx3HGbNg5Sui7qiRVwLOy7LvgVZOd8jpcuCLmgZ19LJO5PMk/TWYmGD96AzStKbD3Zf2e2LL8f6Ws2BIk8OlPKLEyllpOy+shsVoirg3XlvQRQ7Qe0tyEpI2Xh+o/2mbBOg5hbk4hVHiiiKuG/0fXh8wuNOLgLmQIr073Xd2XWyWeMjJc+ahyqxVfD3+r9ls8ZHSlZ+FirGVETkxsgyfb5RGrBtAAIjAnEt4xrrU/FJNtGGlnEt8cL0F3z1JVlfq80HFCL6g4i2EVE2EaU6mXGbI1A4TqRcI+VE0gnU6lsLD459ENn52dBiC3JhzpGSW5CLVsNb4eFxDzu8GFB7pCw5/ruTi7djxkfKB/M/QNOhTZ0AzPhIWXRskf2dV/L1C8ZHyuzDs0EC4XTy6VJ/rlGyibZyt7V4zuE5Lt6hqFnMscDioTVQwonoZyIa4A1QJu2YxHFSrJJIuZB6AbcOvBWthreSrXH3HVLC48MREBGAg9cPyma1Q4oodsa9owntJ96p8BS6cZGSlDUcwZHB6Lulr5tZ4yLljdlv4J5R97iZNS5SXp35Kh4a+1CpPsdoSS9O33ZxG+tT8Uk20YbWI1vjqSlP+fLLMscCi4dvvghRV2+A4tfTj+OkREVIuZ6xEM2GNkPjwY1d3D1Ve6QcSxyLoMgg/L72dxez2iBl0bF59nfu+EOtLchFs/pAysBthMAIfyRkJijMGg8pydmEoEh/DNo+SGHWeEi5mX0TgRGBGLJjiEfzRu2F6S/gnlH3mPo1No4tPLaQxT1tmGOBxUNXQMnNzUVaWtp/j1EbRoGI8NbUtzhOnJaFpKzH0XqkH27pXwNnbp5xM6sdUmzi82g3wYKmQ+vZf7TkKnWRYhNtaDuqLTpMbA+1tiCXnGWLFFG0okVcFbwzl6DGFmSHI0MPSBm562n4hxOuZ0R4cFxjIWXM7jHwC/cz9esyztw8A4tgwbg9SvflMUfS693aT2zv6y/NHAssHroCSq9evUBERY/bCv96M+Wm6/9sPkp/OCm8L0bbUa1Rs28gDt+oAK22ICshZdD2fiCBEH8uCGpuQVZCytQDU0ECYfOFzVBrC7LzWXZIWXNmjf0Zohegxhbk4rFHyiPjHsEL05vYZwd5cFzjIKXjpI54esrTHhzPuP36z6+o1rsasvKzWJ+KT1p1ahVIIKw+vdrXX5o5Flg8yoINoRginD/ul31OmZ5BuXTpUqm2GWuVfnHSFjX71sShGzuh1RZkJaQcSzyGkKgQ/LTyB6i5Bbn4bEmkZOdn49aBt8ruVGs+pLw842W0HtkaomiFt1uQnccOKaeST4EEwqxDM+HtFmTXs2yQcintEiyCBRP3TfTgWMYsKz8L1XpXw//++R/rU/FZ7Sa0wwNjHmDx4yzmWGDxKAtQahJRC4VHiOxzvHoNCkug6B8nh+wf1WYLsjukFNgK8ODYB3HHsDvsP9pRbwtyydniSIneFI3AiEAn20PNg5TTyadlT597twXZdWyQ8vf6v1E5trL9107ZFgzqFSn9t/ZHcGQwUnNSPTiOMRu/dzwsgsXU71BybNP5TSCBsOiY0vcVTWKOBRYP33wRgwLFODiR8i1ShA0C/ML9ZIvBtEfK9YwpqBhTET+t/MnFrDmQ8tPKn1C9T3XZ63rMgRRRFNF4cGN8tvgz2aw5kHLv6HvReXZnDz7fmImiiHtH34vnpz3P+lR81nPTnsOdw+9ktU+JORZYPLSGyW1E1JaI/iaiDPv/bktEFaFzoBgPJ1K+QcrG8xvhF+7n4s6R2iLl66V+qNo7DMnZyW5mjY2U9Nx0VI6tjN/W/OZi1thI2Xxhs4t3QhgfKccSj4EEwvyjSr+WjNv2S9tBAmHZiWWsT8Un7bm6ByQQph+czuoUmGOBxUNroExy8RqVjtAxUIyLEyltkZKUFYL6A2qiw8QObt5dpQ1SjiTsh184YcA2f6i1BbkwfSEl7t+P4R/ujwupF9zMGhcpXyz5Ag0HNXTxp1FjI0X60VVOQY4Hn2fMPlzwIRoPbqyLd1f6os6zO6PJkCYosBWwOgXmWGDxYH0CbmMBFOPjREobpIhiNl6ZWQvV+xAupSldcNVHyovTX0STIY2RW/AK1NqCXJQ+kGITu+KOYYQ35yitrTcmUnIKCFViK+DPdX8qzBoPKaJIaDq0Oj5Z9IkH88bsRuYNBEUGublxoLk6mnAUFsGCMbuVfi9oGutrNQeKPF8DxTw4kVIfKb039wYJhCXH74HaW5CVkCItBJx7ZC7U2oJcMvZIWXZiCUggbDpvgRpbkIvPskfKzEMvggTCiaS/PDiusZCy8/I39qWVXTw4rjGL2RSDkKgQJGUlsT4Vn/TRwo9Qf0B95BbksjwN1tdqDhR5vgSK+XAipR5SVp9eDb9wP/vdYtXfglyYc6Rk5mXitkG34dmpzzq8xc+cSGk/sT0eHvcwRLErvN2C7HyWLVKenPwk2k9sYJ/1bgtyyVm2SPlp5U+o068irDaCt1uQ9ZjVZsVtg25D10VdWZ+KTzqXcg7+4Up3OvZJrK/VHCjyfAUU8+JEynuknL15FtX7VMezU591+Lmz75DSfXV3hESFOLlbrrmQIr34cMHRBVBjC7LrWTZIOZ18GiQQpuyfDG+3ILueZYMUq82Kuv3rotvKbvB2C7JekxY77r6ym/Wp+KRvl32Lmn1rIjMvk/WpsL5Wc6DI8wVQzI8TqbIjJSMvA21HtUWTIU2cvHNGe6QcuD4C/uH+iN4U7WbWHEh5Y/YbaD6sucOLR82FlJ5re6JKbBX7nUfLvmBQedb3SFl7Zi1IIPx7+V/7R8yHlKenPG365YdSV9OvIjgyGFEbPXn9keaxvlZzoMjTGijlBydSpUeK1RaCl2c8iooxFXHg+gEXs9ohxSa+hIfHWdBq+G3Is+a5nTU6Uk4knYBFsGDsnrGyWXMgpcBWgLr96+K75d/JZs2BlI8Xfozbh9wuu8uoeZByIumE/dmvKaxPxSd1X90dlWMrIyUnhfWpADrAAosH6xNwm5ZAKX84kSodUn5YcSv8wwkrTip949YGKaN2xdlfMBoINbcg6xEpXyz5AnX713Xx9lTjI2Xx8cUggbDv2j4ns8ZGSmZeJirGVER4fLiTWXMgpdvKbqjZt6ap3z4tlZydjIoxFdFzbU/WpyLF+lrNgSJPK6CUX5xIeYaUwdsHgwTCqF0toMUWZCWkXMu4hqq9q+LTRV2h5hbkovSDlGsZFgRFBqD3ZncXR2Mj5aUZL+G+0fe5mTUuUqYdmAYSyM1GcWMjJSMvA1Viq7i4caD5EjYIqBBVATcyb7A+FSnW12oOFHlaAIXjRMo9UmYdmgWLYEH31d2h1RZkJaS8Pfdt1Oxb0/52RvW2IBdPH0jpseZOVIohpOQora03JlIupRH8wi0YuWukwqwxkfLs1GZ4fMLjCrPGRcqoXaPgF+6H8ynnWZ+K5qXnpqNa72r4ccWPrE/FMdbXag4Uqbi4OLRs2RLNmzdXFSgcJ/KcI2XJ8SUIiAhAlwVdHF6s6VukzD48GyQQZhyc4TBrTqQkZiUiLDoMPdfeBbW2IBefZY+Uv9Y/iIoxhPTcgR4c11hIuZr+K/zCCaN3v6o4a0SkiKKIu0fcjVdmvsL6VHxSv639EBgRiIupF1mfimOsr9UcKPLUfAaF48RVxZGy9sxaBEcG443Zbzi5rbNvkHI94zpq9KmBN+e86WStufmQ0nNtT4RFhyEx6zrU2ILsfJYdUvKseajbvy6+XdbaPuvdFuSSs2yRUri5OAA3swnebkHWY9IW339OK72o3fjlFOSgbv+6siWWuoj1tZoDRZ5aQOE4UaoQKVsvhiA0OgTPTXvOzV0TtUWKKAbj1ZmPoFbfWkjITHAxax6kJGUloWJMRfRY08P+Ee+3ILueZYMU6dmwQzcOwtstyK5n2SGlzcg2eHPOm1BjC7Iee2fuO2g2tBmrLb4+bcTOEfAL98PJpJOsT0Ue62s1B4o8NYDCceJZ2y6uR6UYf7Sf6IesfKU/KWmHlHF77rbfqOxvhVlzIOX3tb8jNDpUhjFzIaXDxA5oP7G9w2w3mAUpB64fAAmExccX2z9iLqRcz7iOgIgAPdxJVfPyrfloNLgR3p33LutTcRbrazUHijxvgcJx4lnbLm5DpZhKeHzCo8jIawettiArIeVY4jGERofi88W3Qu0tyHpESnJ2MirFVML/rf4/J7PmQMrhG4dBAmHWoVmy2W4wA1J+/edX1OxbU3aPHvMgJXpTNCpEVcDN7JusT0XzJu+fDBLIzf2emMb6Ws2BIs8boHCceFYRTh5HRl4GtNqCrISU3IJc3DPqHjQf1hyZeclQewty0ax+kPLnujecPHvimPGR8t3y71C3f10nN9kzPlKsNitu6X8Lvl/+vZN54yPFarOi4aCGpt7MLGUTbWgR1wIvz3iZ9am4ivW1mgNFXlmBwnHiWSVxIuV7pPyy6hcERgRiz9U99o+otwW55Cx7pCRnd0blWMKv/yh9QzQuUtJzh6JSTCX8td7V1mJjI+Wf0/+ABMLOyztdzBsbKctPLpfdut+8zTsyDyQQtl/azvpUXMX6Ws2BIq8sQOE48SzXOJHyHVIWHF0AEggDt8nfgmpepHRf/T+ERQfgRqYf1NqCXJh+kDJkByEgwg+X0i4pzHaDEZHyztzWaBnX0sk7zRwzLlJemvES7hl1j8I/n/ETRRH3j7kfHSd1ZH0q7mJ9reZAkVdaoHCceJYyTqS0R8rp5CmoHFsZb8x+w8U3QvMh5WLqRQRHBuPv9X9CrS3IxWOPFKutALcPqYz35hHU2IJcfJY9UhKzfkVQJGHAthcVZgEjIuV8ynlYBAvG7Fb6b2f8pCWPOn8bNetrNQeKvNIAhePEszzHiZR2SMnOfwptRlrQdGh9pOakupk1F1I+XfQpavatibTcNKi1BblkbJGy6Ngi+48H3kThb3VzIWXQ9oEIjPBDYhbB2y3IJWOPlD/X/YlKMZU8/B5h7J6a8pQRnilifa3mQJHnKVA4Tjyr9DiRUh8poiji44UfIiTKD/uvBUPtLch6RcqRhCPwC/fD4O2DZbPmQkrHSR3x6PhHocYWZNezbJAiiiLuHH4n3p77NtTYguw8dkjJt+Y72TptznZd2QUSCLMPz2Z9KkqxvlZzoMjzBCgcJ55VdpxIqYuUAdsGgATC1AMToMUWZL0i5bVZr6HR4EZOboRnHqTsu7YPJBDmHJb+OcyFlG0Xt4EEwurTq+HtFmT3sUHK3CNzQQLh4PWDPv26LHpzzpu4fcjtsNqsrE9FKdbXag4UeUpA4TjxLO9xIqUOUlaeWgm/cD+H+3+ouwW5KH0hZdvFGDvKprqZNT5SPl74MW4bdJtsVYJ5kPLpok/RcFBDhzurmgspT05+Eo+Nf8xnX49VJ5JOwCJYMHr3aNan4kmsr9UcKPLcAYXjxLPUw4mUd0g5nngcVWKr4MXpL8r+1GJupIji22g/kdB6ZEOFW4YbGynXMq4hKDII/bb2czJrfKSk5aYhNDoUEfERTmaNj5TjicdBAmHaAaVfI8bv88Wfo27/usgpyGF9Kp7E+lrNgSKltM2Y48Sz1MeJVNmQcj1jPhoPboyWcS1dvCjWvEhZeKzwPgvLT/pBrS3IhekLKX+sexFh0WFu7jxqbKSM2T0GfuGu3jptfKT8suoX1OhTwygX7TJ3Jf0KgiKD0GdLH9an4mmsr9UcKPKcPYPiiJPxe5Xux+CbyhdOpEqHlMy8J3D/GAvq9q+Ocynn3MyaDyk5BTloPLgxnpv2LETxbai1BbkofSAlPfdTVO1N+HnV0wqzxkXKg2NvxYvT3b212LhIyc7PRrXe1fDrP79qcnw91X11d1SJrWJ/J50hYn2t5kCRJwcKx4lnaY8TKc+QUmArwIvTn0PFGH/svRoMLbYg6xkpMZtiEBARgGOJx6DWFuSSsUdK/639EBDhh4upBDW2IBef7QbWSDlw/XOQQFh4rKsHxzUeUqRdNKeST6l+bD11M/smKsZUxG9rfmN9KqWJ9bWaA0WeI1Bsog1fLf2K40Qh3+FEyj1SbKINny3+DAERAfjn9BJotQVZr0i5nHYZYdFh+HnVzw6z5kNKnjUP9QfUx8cLP4JaW5BLznYDS6T8sOJ71OkXhnwrwdstyCVjj5RHxj2Cp6coPftl/KI3RSM4MhjXMq6xPpXSxPpazYEiTwJKSmoKx4kH+R4nUs6R4viM15T9U+wfVX8LcmH6REqXBV1Qq28tpOSkyGbNhZQJeyeABMKRhCNQYwuy69luYIGUjLwMVImtgp5rf4MaW5Cdxw4p+6/tBwmEBUcXqHI8vZadn41afWvh66Vfsz6V0sb6Ws2BIk8CyiezP+E4UYgdTqSKI8X9C5nLB1K2X+oDEsjN7cLNgRTnm2DNhZRRu0bBL9wPF1IvwNstyO5jg5Svl36NegPqId+a7/Wx9NzwncPhF+6H08mnWZ9KaWN9reZAkZeSmgIiAv1GHCduYo8TqUKk2MRQfL30FYV3WZkbKTaxMx4YY8E9o5oo3ATK+EiRbmu/9eJWJ7PGR4ooirh7xN14dearsllzICU9Nx0VYyri7/V/l/kYRqjAVoBGgxvh3Xnvsj6VssT6Ws2BIu/35b+DiBC3KU5p1CdxnChnEzPwzbJ6sAiECXt7KEybFynj9owGCYRN5/2h5hZkvSFFFCfh4XEP4/EJj7uZNTZSNp7fCBIIa86scTJrfKSM3DXSzVunzdP0g9NBAmHftX2sT6Ussb5Wc6DIO3nlZKm2GWsZx4lyNtGGb5Z9Y/9xXAtouQVZz0i5kXkD1XpXQ5cFH0DNLcjFZ/WBlNWnCSQQVp5y9+/N2Eh5e+7buGPYHS6WyRkbKaIoos3INrJnh8yX9CzYc9OeY30qZY31tZoDRV5pthlrGceJcqIoOuBkPLTcgqx3pLw//33U6FMDCZkJUHMLcslZtkgRRSseG18HD4whiOIkD45rPKRcSScERPhh6I6hCrPGRMr2S9s9AKbxW35yOUggxJ+LZ30qZY31tZoDRZ4egMJxolxJnEiVP6SsOrUKJBAm7pvoMGtOpKw/ux4kEJaeeAZqbUEuSh9I6bXhUYRFE1JzYjw4rvGQ8tHCj9B4cGOF9QvGr92Ednh43MMungUzRKyv1Rwo8lgDheNEOdc4kSo/SMnKz0LjwY3xxKQnnHwjNB9SOk7qiHtH3wtRtEKNLcglY4uUPGse6vavi2+WtbXPDvLguMZBSnJ2MkKiQhC7OdaDYxq3LRe2gATComNKv+90HetrNQeKPJZA4ThRThknUuUDKT3WdEZwZDBOJJ1wMWsepEgvHC36pu/9FmTnsUPKrEOzQALh8I1DUGMLsvNZdkgZtH0QAiMCcSPzhgfHM24vz3gZLeNaGv1ZItbXag4UeayAwnGinCiK+HbZtyDB07eAmxspB64/Cf9wQkT8Bwqz5kBKp8md0GZkG9kzReZCSrsJ7dBhYgeHWfMgRRRFtIhrgXfmvuPBcYzboRuHQAJh0r5JrE/F21hfqzlQ5LEACseJco44GbdnXCk+05xIsdqseGjsg2g1vBLyrIFQcwuyHpEiPWU+78g8F7PGR4p0Z9W5R+bKZs2BlPhz8SCBsP7seg+OYdy6LOiCBgMbIM+ax/pUvI31tZoDRSouLg4tW7ZE8+bNfQoUjhPlyo4TKfMhpffm3rAIFmy9GA81tyAXpR+kiKIFHSe1xN0j7nbzlLnxkfLxwo/RYGADJ3dWNQdS3pv3HpoPa27kF40qdjH1IgIiAjBw20DWp6JGrK/VHCjyfPkMCseJcqIo4rvl33mBEynzIOXA9QMIjAhEjzU9HGbNi5TVp58BCYQlx39RnDUqUq6kRyEwIhD9tvZzM2tcpCRkJiAoMgj9tyqdj7H7ZdUvqNq7qi6+d6oQ62s1B4o8XwGF40Q5R5yM3TNWhSMaHym5BbloPbI17h5xN3ILcmWz5kOKKIq4f8z9eHhcLYiiBWpsQS4+qw+k/LaGUCkmBKk5qQqzxkRK3y1PIzgyGIlZiR58jjFLyUlBxZiK6Lm2J+tTUSvW12oOFHm+AArHiXLq40TK2Ej5bc1vCIwIxP5r+13MmgspC44usL9uYS3U2oJccpYtUjLy0lG1dzB+WUVQYwty8Vn2SLGJkWg6lPDB/Ls9OK5xi90ci6DIIFzLuMb6VNSK9bWaA0We1kDhOFFOFEV8v/x7DXAiZUykbL0YCL9wP8RscncDL/MgxWqzotXwVnhqylP2j3i/Bdn1LDukDN0xFP7h/riQ+oV91lxIWXtmrX1HFEGNLch6LLcgF3X718Xniz9nfSpqxvpazYEiT0ugcJwo54iTMbuVLgDeZCykZOQl4/YhoXhknAUFtmUKxzUHUqbsnwISCDsv73SYNRdSrDYrGg9ujPfmvQc1tiC7nmWHlDfnvImWcS0hilH2WfMhZdyecbAIFhxPPM76VNSM9bWaA0WeVkDhOFHOdziRMg5Svln2DUKjQ3Ey6QmovQVZj0jJs+ah8eDGeH3W605mzYOUuUfmggTC7iu7HWbNg5RrGdcQEBGAITuG2D/i3RZkPWYTbWgR18KMyw9ZX6s5UORpARSOE+VEUcQPK37wIU6k9I8U6XUYI3aOgNpbkIvSF1KG7PgYfuF+OHzjsItZ4yNFFEU8NPYhdJzU0cmsOZASsykGIVEhuJl90+Gj5kLKkuNLQAJh68WtrE9F7VhfqzlQ5KkNFI4T5RxxMnr3aAZnoF+knLl5BlViq6Dz7M4O948wN1JuZr+N6n0Iny9+QmHW2EiRbj639ISz/y7GR4pNtKHR4Eb4eOHHTmbNg5THJzyOR8c/yvo0tIj1tZoDRZ6aQOE4UY49TqT0h5TcglzcN/o+NBnSxMnbT82LlF//+QVh0QG4mm6BWluQi2b1g5TXZrVBi7gWbm4+Z2ykrDy1EiQQtl3c5mLW+EjZfmk7SCAsPLaQ9aloEetrNQeKPLWAwnGinCiK+HHFjyCBMGrXKNanA70h5bvlLyMoMgh7ru5xMWs+pJy9eRZBkUEIj+8FNbcgF59lj5STSR/BIhDG7H7fg+MaEymvzWqJ1iNbK9w51thIeWP2G2g+rLnRlwK6ivW1mgNFnhpA4ThRTn84kdIHUmYfvsf+upPvFWbNhZS3576NegPqITMvE2ptQXY+yxYpny/+DHX6hSI7n6DGFuTis+yRcj7lZ/iFE0bsfFlx1qhIOZF0AhbB4uPXzPk01tdqDhR53gKF40Q5/eJEii1STiadRKWYSnhn7i0QxWCovQVZr0jZdnEbSCBM2DvBYdZ8SLmUdgmBEYHos6U31NqCXHKWLVJ6rOmBKrEhyMgjeLsFWa99tfQr1OlXBzkFOaxPRatYX6s5UOR5AxSOE+VEUUS3ld1AAmHkrpGsT8dNbJCSU5CDtqPaotnQZkjLTYDaW5CLZvWFFFEU8ci4R9BmZBtYbVbZrLmQ0m1lN1TrXQ3puelQYwuy61k2SMnOz0b1PtXx86qfocYWZD12PeM6giODEb0pmvWpaBnrazUHiryyAoXjRDnj4ETKt0gRRRGfLf4MIVEhDreyV3cLcvFZ/SBl1qGfQAJh7RlXzyyZAykJmQmoEFUBvTb0ks12g1mQIt207HTyaftHzIeUP9f9ibDoMNnbp00X62s1B4pUXFwcWrZsiebNm5caKBwnyhkPJ1K+Q8qwf4eBBMKkfZNks+ZGSkbeW2gwkPDKzPsVZo2PlN/X/o6w6DAkZSU5me0GoyNFFEW0HtkaL814STZvHqRk5mWiep/q+GnlT6xPRetYX6s5UOSV9hkUjhPlRFHETyt/crjZmNHSHinrz/aHf7i//WlxZ5kXKT3X9kBwpB/O3vSDWluQC9MXUlJzBqNybGX8+s+vbma7wchI2Xh+I0ggrD692sm8OZAi7U46n3Ke9aloHetrNQeKvNIAheNEOePjREo7pJy92Q41+hCemnIvCmwFbmbNh5QTSScQGBGIXhv+gppbkIvSD1KiNxGCIwNwNf2qwmw3GBUpnWd3Rou4Fm7eWmxspBTYCtBocCN8MP8D1qfii1hfqzlQ5HkKFI4T5cyDEyn1kZKSk4JWw1vi9iEVkJwdAi22IOsVKaIo4rlpz6HR4EbIzs+GWluQS8YeKRl56ajZNwTfLCOotQW5aFYfSLmQSvAP98PwncMV5o2LlJmHZoIEcniNmKljfa3mQJHnCVA4TpQTRRE/r/oZJJAH37CMlHpIybfmo9PkTqjWuxqOJx6AFluQ9YyUxccXO7kLpzmRErs5FkGRQbiY+hEKvw2ZDym/rXkMlWMJGXnhCrOAEZEiiiLuHX0vnpn6DNPz8GGsr9UcKPKUgMJxopx5cSLlPVKkd+wERgRiwznp4+pvQS5Mf0jJzs9G48GN8czUZ5z8OMBcSEnPTUf1PtXx7bJvodYWZOez7JCSnZ+NGn1q4KeVD9lnvduCXDL2SFl7Zi1IIKw5s4bZOfgq+7uTWF+rOVDkuQMKx4ly5seJlHdIidkUAxIIk/fLL37lAynChncQGBGI44nH3cyaAynRm6IRFBmES2mX7B8xH1LG7x0Pi2DBqeSTUGMLsvPYIuXZqc+i7ai2CrfuN0d/rvsT0AEWWDxYn4DbXAGF40Q5URTxy6pfQAIh7t841qfjg8qGlAl7/w8kkOxeGI6ZGynHE59HUCThtzWvK84aHSlpuWmo1rsavlv+nWzWPEgRRRF3Dr/T4a3F3m1Bdh8bpBy8fhAkEKYfnO7Tr8uipKwkVIypCOgACywerE/Abc6AwnGiXPnDiVTpkLLkeBv4hxO+XPKSwp/EzIkUm2hD+4ntcPuQisjO94eaW5D1iJTIjZEIjgzG5bTLTmbNgZQVJ1eABMLG8xtls+ZByieLPkGDgQ2Qb8332ddkVY81PRAWHQboAAssHqxPwG1yoHCcKFd+cSLlGVI2X9iMkKgQvDG7Fqy2EGi1BVnPSBm7Z6z95/iroOYW5KL0g5TUHELV3qH4YcUPbmaNj5QnJz+JB8Y84ATc5kDKtYxrCIoMQr+t/TT/Wqy7kXkDodGh+H3t74AOsMDiod2BiRoR0XgiOkdEOUR0hojCiSjIYc5tjkDhOFFOFEX875//lWOcSLlHyp6re1C1d1V0nNQROQU3odUWZD0j5VrGNVTtXRUfL/zY/hH1tiAXTx9IETbcj5AowpV0T96ma0yk7LlaeBuBOYdd/TcxPlL+WPcHKsZURGpOqqZfRw/9suoXVIqphOTsZEAHWGDx0BIozxHRRCJ6hoiaENErRHSDiPo7zLlNAsq5a+c4ThTiOJHnHCl7ru5Btd7V8ODYBx2+yam/Bbkw/SLl7blvo2bfmkjMSnSYNSdSErMSUSmmEn5Z1RpqbUEuPtsNekDKe/MIjQdXV7jBoHGRUo5ua4+r6VcREhWCv9f/LX2IORZYPHz7xYi6E9FZh4+5TQLK3YPu5jhxE8eJq4ojxTlOpMoPUpaeWAoSCNMOOAOA+ZAi/Uk0MesG1NqCXHK2G1gi5XzKOfiHWzB0B0GNLcjF0wdShu8cDr9wP5xLOaf6sfXWDyt+QNXeVZGSkyJ9iDkWWDx8DZQoItrt8LFi5ebmIi0t7b/HwVMHQUSoHlGd48RFoiji139+BQmEYf8qfcMrjxUiZc/VEFTrXckFTqTMj5SMvADcOrAmnp36rJsXBpsHKRdTLyI4Mhjh8eEOs+ZDyk8rf0K13tWQmferfdZcSLGJNjQd2hRvz31btWPqtUtplxAUGYTIjZGOH2aOBRYPX+LkdiJKI6LPHT5erF69eoGIih6PF/51++ntJf4jsojjxJjtuboF1XoH4MGxfkjNWa4wbW6kfLOsCUKjCWdvjlaYNQdSPlv8GWr1rYX03HTZrHmQcjP7JsKiw/DHuj+gxhZk17FDyqJji0AC4d/L/6pyPD337bJvUb1PddmvWfZYYPEoCzSEYohw/rhf9jn1iOgUEY2THa9Y8mdQzl84X6ptxlrGcWLMin6scz9Sc9pByy3IekfKP6f/sf8YsC3U3oKsR6QcTzwOv3A/DNo+yMWsOZAi3br/esZ1h1lzIaXdhHZ4bPxjXh9H711Ou4ygyCBEb4qW/y3mWGDxKAtQahJRC4VHiMN8PSI6QURTiMhPdjy3lWabsZbpESfdV3cHCYShO4ayPh3dVvI1J9ptQdY7UlJyUtBgYAM8NeUp2MRcqLkFufisfpDy1pwHcNug25BTkONm1thIyS3IxS39b8Hniz93MmsOpOy8vBMkEBYcXVDmYxilH1f8iKq9qyItt8Q1jzkWWDy0PThRfSI6SUQzicjfyYzb9AAUjhNj5ogThxeaobwi5eOFH6NybGVcSL1g/4g6W5Cdz7JHyu4rr4EEwoS9n3lwXOMiZcLeCSCBcCzxmItZ4yPlnbnv4PYht8Nqs5bp842S9M6dotdLFYs5Flg8tMSJ9GOddXao1JUeDnNuYw0UjhNj5honUuULKdLP7yfumyibNSdSRFFEx0kd0Wp4VRTYCGptQbYfHXpBitVGuGNYbbwy8xWFWeMi5XzKefiH+5eLdyf+suoXVImt4uJ7FnsssHhoCZSurl6j4jDnNpZA0SNO/m914d6YITuGsD4d3aaME6nygZSEzGmo3a82Xp7xsot37ZgPKYuPLwYJhOUnl0KtLcjF0wdSZh9+xf7C0Z88OK4xkfLLql/s707K9PhzjNiNzBuoEFXB8b4n8phjgcWD9Qm4jRVQOE6Mmec4kTI3UkTxNXSebUGNPpVwLeOam1nzICXfmo87ht2Bp6Y8ZQeZOluQS8YWKTbRhrtH3I1npjayzw7y4LjGQkpqTioqxVRCz7U9PTiuseu+urvjXWOdxfpazYEijwVQOE6M2d6re1GtdzU8MOYBD3EiZV6kTD0w0X7r8wCovQVZr0iJ+zcOFsGC/df2y2bNhRTpWaJN5zdCjS3IzmfZIqX/1v4IjAjElfQrHhzTuCVkJjju3HEV62s1B4o8XwNFjzjpsaYHSCAM3j6Y9enotrLjRMp8SDmZdBIVYyriwwXvQ+0tyIXpDympOamo2bcmPln0iYtZcyBFFEU8MOYBtJ/Y3mHWXEjJt+bj1oG34qOFH3lwLGPXc21PhEWHydZOlIj1tZoDRZ4vgcJxYsy8x4mUeZCSW5CLe0ffi6ZDm9pv9qTuFuSi9IWU/1v9EkKjQ3E57bKbWeMjRbqfzT+n/5HNmgcpMw7OAAkkeybMfCVnJ6NiTEX83+r/Uxplfa3mQJHnK6BwnBgz9XAiZQ6k/LzqZwRGBGLP1T2yWfMi5VzKmwiOJPy9/nXFWaMjpf3E9nhgzANOXvRsDqSIooj7x9yPp6Y85cHnG7u/1v+FClEVcCPzhtIo62s1B4o8XwBFjzj5bc1vIIFc3AGTB2iBEyljI2XZiWVuYGtepLw99y3U7V8BGXkWqLUFuWhWP0jZeL4bSCAsPr7YzayxkbLx/EaQQFh5SumF4MYuJScFlWMr45dVv3gyzvpazYEiT2ugcJwYs71X96J6n+oa4ETKmEi5kh6Emn0r46UZL7lZBGg+pGw4twEkECbvnwg1tyAXn9UHUp6ZSmg9sh5sok1h1rhIeWXmK2g1vJWbX8PmSNggICQqROEddv/F+lrNgSJPS6BwnBgzCSf3j7lfI5xIGQspVls2nphUA/UGEBKzZikc1zxIKbAV4O4Rd+ORcY/YL9rqbEF2PssWKf9e3gESCLMPE9Taglw0qw+knEgiWATCuD3jPJg3bqk5qajauyq6rezm6aewvlZzoMjTCih6xEnPtT1BAmHgtoGsT0e3+Q4nUsZBSkR8BPzC/RB/7hFosQVZr0gZ9u8wWAQLdl3Z5TBrTqS8MvMV3DHsDlhtP9tnzYeUr5c+iNr9CDkFf3hwXOMWtTEKwZHBpXkLNetrNQeKVFxcHFq2bInmzZurDhSOE2Pme5xI6R8pK0+thEWwQNggQIstyIXpDymJWYmo2ruqk0V5gNmQsuvKLpBAmLJ/CtTagux8lh1SEjITEBIVgoj4TvZZwYPjGq/03HRU71Md3y3/rjSfxvpazYEiT+1nUDhOjBk7nEjpFylnbp5Btd7V8OL0Fx1el1A+kPLlkk6oElvFzTsgzIOU56Y9hxZxLRwW5pkPKb029EJodCiSspKgxhZkvdZ7c28ERgTiYurF0nwa62s1B4o8NYGiR5z8vvZ3kEAYsG0A69PRbfuu7WOMEyn9ISUzLxOtR7ZG06FNnfy7MTdS9lx9ARaBMGTHxwqzxkfK5gub7XcElv97MQ9SsvKzUKNPDXy//HuHj5oPKZl5majZtya+WvpVaT+V9bWaA0WeWkDhODFmjji5mX2T9elAT0gRxWC8N68jwqLDcOjGIRez5kSKTbThkXEP487hVZBvtUCtLchFs/pBiigOR4eJHdBmZBsX79wxB1Li/o2DX7gfzt48K5s1F1L6b+2PgIgAnE85X9pPZX2t5kCRpwZQOE6Mmf5wIqUPpAzc1tL+jg63+ztgRqSM2T0GJBA2nFsLNbcgF5/VB1LWniGQQFhyfInCrHGRYrVZ0WRIE7wz9x0Xs+ZASlZ+Fmr3q+3iNVOKsb5Wc6DI8xYoesTJH+v+AAmE/luVfsOX3/SLEym2SFl/dj38w/3RfXUTaLEFWc9IuZF5A9V6V8PHCz+2f0SdLcjOZ9kiRRRteHhcXTw4tvCZFOXjGhMpcw6/CxIIu6/sdjNrfKQM2j4I/uH+OHPzTFk+nfW1mgNFnjdA4TgxZvrHiRQbpFxIvYCafWui0+ROKLBlQostyHpGyocLPkT1PtVli9XMiRTprsCrT79mn/V+C3LxWfZIEUUBD4whPDGpseKskZGSnZ+Nuv3rouuirmU9BOtrNQeKvLIChePEmEk4uW/0fTrHiZRvkZKem442I9ug4aCGDhdodbcgF5/VF1LWnlkLEgjj9zoDgLmQYhNtuGfUPWg/sT1E0QY1tiA7n2WLlPhz8SCBsOIkQY0tyHpt2L/D4Bfuh5NJJ8t6CNbXag4UeWUBih5x8ue6P0ECod/WfqxPR7ftv7bfYDiR8g1SCmwFeG7ac6gcWxkHrx+UzZofKTkFfmg29Ba0m9DOzS3QzYOUeUfmgQTCxvMbHWa7wWxIeWH6C7hrxF0QRcE+az6k5Bbkov6A+vhwwYfeHIb1tZoDRV5pgcJxYsyMixMpbZEiiiH4eulLCIgIwOrTq13MmhspvTbchcAIwpEEpfsFGR8pVpsVrYa3wjNTn3Ey2w1mQcrhG4ftO5Skf59lXzCo50buGgmLYMGxxGPeHIb1tZoDRV5pgKJnnPTd0pf16eg24+NESjuk9NvaHCQQxu35n8KsOZFyIukEgiKD8PvaO6H2FmQ9ImXqgakggfDv5X9dzHaDGZDSdVFX1B9QH3nWPIePmgspedY83DboNrw37z1vD8X6Ws2BIs9ToOgRJ3+t/4vjRCHz4ERKfaTMPTIXJBB+X9sEWm1B1jNSbKINj094HLcPuR3Z+elQcwuyw1eBXpCSW0BoNLgGXp35qsJsNxgZKedTziMgIsDFa/LMg5Qxu8fAIlhw+MZhbw/F+lrNgSLPE6BwnBgz8+FESj2kbL+0HSFRIXh33ruwiVnQYguy3pEy7N9hIIEQfy7eYda8SBm47TH4hROOJoQrzhoZKd8t/w41+tRw8z3b+EjJt+aj0eBGeGvOW2ocjvW1mgNFnhJQ9IyTPlv6sD4d3bb/2n7U6FMD946+12Q4kfIeKaeTT6NW31p4fMLjyCnIsX9U/S3IhekTKWdvnkVYdBi+Xfatk1nzISUlJwXV+1THl0taofDbozpbkItm9YGUq+mE4MgARG1UwoexkTJh7wSQQDhw/YAah2N9reZAkecOKHrEyd/r/+Y4Ucj8OJEqO1ISMhPQfFhzNBvazL44zbHygRRRnIdOkzuh4aCGSM9NdzFrLqT8tuY3hEaH4mr6Fai1BbnkLHuk/O+fh1E5lpCS00thFjAqUgpsBbh9yO14fdbrah2S9bWaA0UqLi4OLVu2RPPmzZ0ChePEmJUfnEiVHilpuSG4d3Qz1OlXB6eTT7uYNT9Sxuz2s9+kzNW7lqRZcyDlYupFhESF4K/1f9k/os4WZOez7JCSmJWI0OhQ/LHucfus91uQi6cPpEzZPwUkEPZe3avWIVlfqzlQ5Dl7BkVvOAHwH056b/bkN1v5rPzhRMpzpGTnJ6PDxKqoEks4cH2cwnHNi5SLqWdRKSYAny22QO0tyHpFyieLPkGtvrVkzxaZDyl/rvsTodGhSMxKgBpbkJ3HFilWmxXNhzXHKzNfUfOwrK/VHCjy5EDRI056bejFcaJQ+cWJlDJSCmwFeGXmK6gQVQFbLtwPrbYg6x0poijihekvoN6AekjJeR1qbkEuTH9IOXj9ICyCBXH/xjmZNQ9SUnJSUDm2Mn5Z9YvDrPmQMuPgDJBA2HVll5qHZX2t5kCR5wgUjhNjduD6gf9wkpydzPp0GOYaKQW2Arw9920ERARg+cnl0HILst6RMn7veIftvepuQS5KX0h5btpdaDq0KfKt+S5mzYGUqI1RCI4MxpX0K7JZ8yDFarOiZVxLvDD9BbUPzfpazYEiTwLKmiNrdIuT2M2xrE9Ft3GcyCuJFEeczD/qeBEuf0g5c/MMKsZUxKeLPnWYNTdSVpx8ASQQFh37XmHW2EjJzMtEjT418M2yb1zMmgMpsw/PBgmE7Ze2q31o1tdqDhR5ElAq/l2R48RgcZy4qggpBbZ1LnAiVX6QYrVZ8ej4R9F4cGMn79oxJ1LyrfloEdcCT0yqB1EkqLUFuWi2G/SClAHbXkZARADOpZxzM2tspNhEG+4acZeTFQWqxPpazYEib82RNSAiPDz8YY4TA8VxolQWCmwd8PZcfwRE+LvAiVT5QErMpg/hF+6HLRe2uJg1H1KG7hgKi2DB/mt7odYW5JKz3cAaKTkF/4e6/QmfLHrAg+MaFynzj84HCeTm17BXsb5Wc6DIG71lNIgIVxKvKI36JGGDABIIMZtiWJ+KbpNwcs+oezhOXFT4Y53OCIiwYP7RYGi5Bdl9+kDKnqudEBBB6Lm2s8KseZCSnJ2Mar2r4YslXzjMmhMpg7cPgl+4BSeSCGptQS5KH0gRRRFtRrbBk5OfVP3Y9lhfqzlQ5JV2m7GWcZwod+D6AdTsW5PjxE3FX3MyA1puQTYCUrLzs9EyrgXuGVUVedYAqL0FWa9I+XHFj6gUUwnXM67LZs2FlKz8LNTpVwddF3WFWluQS8YeKYuPLwYJhI3nlX4flznW12oOFHl6AQrHiXIcJ8oV2Arwztx3ZK850W4LshGQ8uOKHxESFYIjCfuh9hbkoll9IeVowlH4h/u7uKmjuZDSb2s/BEQE4MzNM1BrC7Lz2CFFFEXcN/o+dJjYQZXjuYj1tZoDRZ4egBIeHw4SCNGbopmdg97jOFHOESfzjsyT/d3yiZRVp1aBBMKQHUPsH1FvC3LJWX0gRRQJz09rjSZDmiC3INfNrPGRkp6bjpp9azr8GEuaNRdSlp1YBhII686u8/pYbmJ9reZAkccaKBwnynGcKOceJ1LlCylX0q+gVt9aeG7ac7CJNodZcyNl8fGnQQJh4bEfPTiusZESvSkaQZFBuJB6wcmsOZAiiiIeHPsgHhv/GERRLPNxPIj1tZoDRR5LoHCcKMdxopxnOJEqH0ix2hah46SOqDegHhIyE5zMmhMp2fnZaDS4EZ6b1sD+tmJ1tiAXpi+kpObEoFrvavhu+XduZo2PFOlZwH9OK/1e8TrW12oOFHmsgBIRHwESyIN14OW3g9cPcpwoVDqcSJkfKcIGf/iF+yH+XLybWfMhpdeGXgiMCMSJpGNQcwtyUfpBirCBEBIVKLtrrLNZ4yJFFEU8Mu4RPDT2Ia2fPQF0gAUWD9Yn4DSlbcZaxnGiHMeJcgW2Arw7791S4kTKvEhZf/YfWARCeLw/tNiCrFeknLl5BsGRwei5tqfDrDmRkpydhMqxQfh5FUGtLchFs/pBytoza0ECYcXJFR5/jhexvlZzoMjz9TMoHCfKcZwoJ+HEP9y/DDiRMh9SbmTewC39b8ETkzrCansNam9B1jNSXpn5ChoMbIDMvEzZrPmQ8vva3xEaHYobmdI5DPLguMZDSvuJ7XH/mPt98ewJoAMssHiwPgG3+RIokRsjQQIhcmOk5l/LqHGcKKcOTqTMgxSbaMOzU59Frb617E/7q7sFuSj9IWX5yeUggTDnsLOvYS6kJGQmICw6DD3W9IBaW5Cdz7JFSvy5eIellj6J9bWaA0Wer4DCcaKchJO2o9pynLhIXZxImQMpsZtjQQJh1alVsllzIyWnwIKmQ+ug0+RObv6kbR6k/PrPr6gYUxGJWYkOs+ZDyhOTnkDbUW199ewJoAMssHiwPgG3+QIoHCfKOeIkKSuJ9enoMm1wImVspKw5swZ+4X4Or7+Qz5oXKb02tEVgBOFogrObshWfNTpSLqZeREhUCP5a/5eTWfMgZdP5TSCBsODoAg+Oo1qsr9UcKPK0BkrUxiiQQIiIj9Dk+Gbo0I1DHCcKaYsTKWMi5VxKEGr0qYynpzwNq83qZtZ8SDmWeAxBkUH4c10bqLkFuWhWX0j5dNGnqNm3JtJynX2/Ng9Snp7yNO4ecbfs/j2ax/pazYEiT0ugcJwox3GiXIGtAO/Ne09jnEgZCynZ+am4Z1RlNBpMSMqarXBccyFFFEV0mNgBTYc2RXZ+JtTcglx8Vh9IOXyD4BduwdAdQxVmjY2UbRe3uXk9kaaxvlZzoMjTCigcJ8pxnCjniJO5R+b66KsaAymiKOKjhR+hQlQF7LvWHlpsQdYzUibsnQASCGvPSP8u1dmC7HyWPVJentEETYYQ8qyDPDiucZHy/LTn0Wp4K18/ewLoAAssHqxPwG1aACV6UzRIIITHh6t2TLPFcaIcG5xI6R8pw/4dBhII0w5MgxZbkAvTJ1ISMhNQvU91dFnQRTZrTqRIr8mYeehF+6z3W5CLz+oDKTsvk/2fU+m1R5rE+lrNgSJPbaBwnCgn4aTNyDYcJy5iixMp/SJl0/lNCIgIQLeV3Rxmyw9SPlr4Ear3qe7iNv7mQoooinh43MO4b/R9sIlWqLUFueQse6S8PKMF7hhGsNr+9uC4qsf6Ws2BIk9NoHCcKHfoxiHU6luL48RN+sCJlP6QcjntMur0q4MOEzsg35ovmzU/UtadtYAEwvi97pBgHqTMPzpf9qMs77cgu55lh5Q9V/eABMLUA2/ZZwUPjqtqrK/VHCjy1AJKzKYYkEAQNvj8F5Vh4jhRrsBWgPfnv68TnEjpBylZ+cG4f0xz1B9QH9czrruYNS9SsvLTcfuQSmg/kSCKMxSOa3yk5Fvz0XxYczw79Vkns+ZCymuzXkPToU1RYCuAGluQyxDrazUHijw1gMJxohzHiXL6xIkUe6TYxGy8MbsOQqMJe68OVziuOZHyy6pfEBIVghNJr0LNLchFs/pCyqhdo2ARLNh3bZ+LWXMgZf+1/SCBMHHfRIeP+hwprK/VHCjyvAUKx4lyHCfKOeKEwdsLPYwtUnqs6QGLYMHi4/dBqy3IekbK9kvbYREs6Le1H9Teglx8Vh9Iycwj1O1fGR8u+FBh1vhIeXPOm2gypImTH1n6FCmsr9UcKPK8AYp0a+1eG3qV+nPLS444Kbo1Nc8xY+BEig1Sxu0ZBxIIA7cNhFZbkPWMlJyCHLSMa4kHxz7ocDM6cyMlcuMjCIoknEtRugO3sZFy+MZhkEAYt2eci1mfIYX1tZoDRSouLg4tW7ZE8+bNywQUjhPlDt84zHGikLFwIuVbpKw7uw4BEQH4eunXDntJyhdSfl/7OwIjAnH4xmHZrDmRciX9CsKiw/Dzqnvss+psQS6a1Q9S3ppzFxoOaog8a56bWZ8ghfW1mgNFXlmeQeE4UY7jRDlj4kTKN0g5lngMVXtXxTNTn3Hy9Hf5QMqeq73hH+7vZpeX+ZDy8cKPUaNPDaTk3IRaW5BLzrJHyoHr39ifPXlNcdYHSGF9reZAkVdaoPTe3JvjRCGOE+WsNquBcSKlLVISs0LQZMgtaDW8FVJzUl3MmhspedZ30Hokoe2oRk6A5ph5kLLz8k6QQBixc4TDbDeYESmvz3odTYZUQ76VoNYWZC9ifa3mQJFXGqBwnCgn4aT1yNYcJy4yB06ktEFKVn4yHhtfFbX6Es7enKpwXPMiRdjwNwIiLNh3zQ9qb0HWI1JEUcSj4x/FXSPusr/d1nG2G8yEFOm+J5P2TYJaW5C9jPW1mgNFnqdAkXDy93omd/gzRBwnyjniZPZhpeV2RkldpORb8/Hi9BcRGh2KHZceglZbkPWOlF1XdsE/3B9/r/8Tam9BLkx/SJl5aKbspmzy2W4wC1JenvEymg1t5gAx5khhfa3mQJHnCVD6bOnzH06KXqTHc+zwjcOo3a82x4mbzIkTKXWQYhNt+HDBhwiMCMSqU6ug1RZkvSMlOz8bLeJa4P4x99t/tKPeFuTi6QcpWfmEWwdWw6szX1WY7QajI0X6MVbhHinHmCKF9bWaA0WeElA4TpTjOFHO3DiR8g4poijip5U/wSJYMOvQLIfZ8oeUH1f8iJCoEBxLPCabNS9SwuMfRGAE4VSy0sXZ+Eh5ftrzaBHXwuEt444xQwrrazUHijx3QJFw8tf6vzhOXMRxopzVZsUH8z8wOU6kyo4UaZdV0YsjHSs/SFlzZg1IIAzZMcTFrPmQcintEkKjQ9F9tfS2YnW2IBfN6gcp2y5+48HGYiZIYX2t5kCR5woofbf05ThRiONEufKFE6nSI2X07kAPFm2aHykpOf5oMLAGOk3uBJtoczNrLqR8MP8D1O5XG2m5qVBrC3LJWX0g5ZmphDuH13Hx7IljPkcK62s1B4o8Z0CRcPLnuj85Tlwk4eTuEXdznLiofOJEynOkzD0yHRaB8MMKf4jieoXjmhspH8xviCqxhIupoxVnzYKU7Ze2gwTC2D1j7R9RZwuy81m2SNl8YRNIIMw9QlBrC3JRXiOF9bXafEAhoiVEdJGIconoGhFNJaJ6DjNukwOF40S5IwlHOE4UcsRJ8ddTlKeUkbLmzBoERQbh/fnvwCZ2glZbkI2AlDmH54AEwtQDD0HtLch6RYpNtOHBsQ+i7ai2smcUzImUJyY9gdYjW8Mm/mWf1RVSmGOBxUNroPxMRA8TUUMiepSIthHRNocZtzkCpd/WfhwnCnGcKMdx4phrpKw9sxYVoirghekv2G/zrc0WZCMg5XzKeVTtXRVvzXkLopgPtbcgF6Y/pIzfOx4kEDaedwZYcyFFem3RwmMLodYWZOeVGSnMscDi4dsvRvQKEYlEFIhSACVydSRIIPyx7g+OExdxnCjHceKskkiRcPLctOeQU5DjMFv+kFJgK8Bj4x/DbYNuw83sm9JHYXakJGcTavatiA/mf+Bm1hxIEUUR942+Dw+Pe9jh+qI7pDDHAouHL3FSnYhmE9EWh4+7TQIK/cZx4i6OE+WsNis+XPAhx4nTipCy9sxAFziRKl9I+Wv9X/AP98fWi1tls+ZGytdLW6FyLOFaxkCFWeMjRfrxXfy5eCezukEKcyywePgCJn2IKIuIQETbiaiGw98vVm5uLtLS0v57RK2IAhHh1yW/cpy4yBEnCZkJrE9Hl3GceFIW1p5pgwpRhOemPegCJ1LlAykbzkXCIljcLAI0J1J2XdkFi2DBkB2PQc0tyEWz3aAXpORb+6DZ0GZ4ftrzbma1RkofD2bZY4HFoyzgEOzYcPe432G+JhE1J6KniWgLES0nIgucAKVXr17Fj1Oj8K+pqame/Acsd3GcKCfhxC/cj+PETevOrrM/c1IdOQWh0HILsvv0gZTErJdRbwCh46S7FN5yai6k2EQbHhjzANqMbIMCWx7U3IJcfLYb9ICU0bsJJBD2XdunMKsVUgYC2OPBHHsssHiUBSg1iaiFwiPExec2sOPjETgBivwZlEuXLpVqm3F56kjCEdTpV4fjxE0cJ55VhJPnkFOQDC23IBsBKaIo4uUZL6JGnyBcTguA2luQ9YyU0btHgwTClgtbHGbNiZSs/EzUG1AR788nqLkFubDSIMWjmGOBxcO3X4zoVjtQOsIJUOSVZptxeYrjRDmOE8+ScPLs1GcdfqyjzRZkoyBl2L/DQAJhyfEF0GILsl6RkpiViOp9qqProq5OZs2HlN6beyMgIgCnk7+xz+oaKcyxwOKhJUYeJKLviait/W3GTxDRZiI6TUTB4EApUxwnylltVnRZ0IXjRCHnOJEqn0jZdWUXgiKD8MOKH+wfUXcLcvFZfSHl00WfomrvqriRecPFrHmQcjP7Jqr2rorvln8HNbcgl0w1pDDHAouHlkC5m4jWE1Gy/UZt54hoJBHVd5hzGwdKx81UUQAAG4ZJREFU8SSc3DXiLo4TF3GceJZ7nEiVL6QkZyej4aCGeGDMA8gtyHWYNT9SNpwrfC3G6N3u7pJrHqT0WNMDYdFhuJ5x3WFW10hhjgUWD9Yn4DYOlKKOJhzlOFGI48SzPMOJVPlAik1cjBemv4DqfarjfMp5J7PmRUpOQRaaD6uCx8YTbOJED45rbKRcTruMkKgQ/LnuTyezukUK62s1B4o8DpTCOE6Uc8SJ+02k5bv1Z9eXAidS5kdK1EZ/WAQLVp5yN29OpPy9/m8ERgTiSEJnqLkFuTD9IeXLJV+iRp8aSM1JdTGrS6SwvlZzoMjjQOE48SSOE88qG06kzIuUNWdWwC+c8Pd6P2ixBVnPSDmacBSBEYH2ZxPU3YJclH6QcvgGwS/cgoHb3N2ATpdIYX2t5kCRV96BwnGiHMeJZ3mHEynzIeVS2iXU7FsTz0x9Clbba9BiC7JekWITbWg3oR2aDW3m8GvC3Eh5floT3D6EkGft58FxdYUU1tdqDhR55Rkojjhx/qp6ntVmxUcLP+I4UUgdnEiZByl51jw8Mu4R3DrwVvuKCPW3IBemT6SM3TMWJBDWnV3nZNZ8SFl1ahVIIMw/+pp9dpAHx9UNUlhfqzlQ5JVXoHCcKMdx4lnq4kTKHEj5YcUPCIwIxI5LO2Sz5kfKtYw4VOtdDR8v/NjNrHmQUmArwJ3D70S7Ce0gijaotQW55GxZkKJ0XAA6wAKLB+sTcFt5BMqxxGMcJwpxnHjWhnMbUCGqAp6Z+oyKOJEyNlLG7RkHEggjdjq78JkbKaLYFa/PItTuV1lhuah5kCLdIXfXlV0Os3pASl8AOz2YY48FFg/WJ+C28gYUjhPlHHEy4+AM1qej2xxxkp2frdFXMSZStlwIRGBEAL5a+pXCrDmRMufwLJBAmHvEArW3IOsRKWm5aajdrza6LOjiZFYPSPEo1tdqDhR55QkoEk7uHH4nx4mLOE48yzc4kTIWUi6mnkbtfkFoN8GCPOsSheOaDymJWYmo1bcWOs9+A2pvQS6a1RdSeq7tiQpRFXAx9aKLWUMghfW1mgNFXnkBCseJclabFR8v/JjjRCHf4kTKGEjJys/CvaPvxW2DbsONzGegxRZkvSPl/fnvo3qf6riWcQ1qbkEuOasPpJxPIQRHBuCv9X8pzOoeKayv1RwoUnFxcWjZsiWaN29ueqBwnCjHceJZbHAipW+kiKKId+e9i9DoUOy7tg9abEEuTL9IWXx8MUggTD0w1WHW3Eh5b14L1O1PyMjzBBO6RgrrazUHijyzP4NyLPEY6vavy3HiJo4Tz9pwbgNCo0Px9JSnGeBESr9Iid0cCxIIcw47XtzLD1JuZt/ELf1vwUszXoIoirJZcyJlx6UdIIEwbs8z9ll1tiAXzfoUKayv1Rwo8swMFI4T5RxxMv3gdNano9v0gRMp/SFl6YmlsAgWF0/zlw+kfLKoAyrHVsbltMsuZs2FFFEU8ej4R9F6ZGtYbQVQawtyyVmfIYX1tZoDRZ5ZgcJxohzHiWfpCydS+kHKnqtBCIsOwWuzXoNNtLmYNTdSlhzvaH8m4UuFWfMgZdqBaSCBsPbMWodZQyOF9bWaA0WeGYEi4aTV8FYcJy7iOPEsfeJEij1SLqSexC39g/HAGAsy8xYrHNecSEnMSkSdfnXw4vT6EEUL1NyCrFekpOem45b+t+DNOW86mTUsUlhfqzlQ5JkNKBwnylltVnRd1JXjRKH4c/E6xokUO6Sk5qTirhF3odHghrie0QlabUHWM1JEUUTn2Z1Ro08NXMu4DLW3IBfN6gsp3Vd3R4WoCriQesHFrCGRwvpazYEiz0xA4ThRjuPEs4yBEynfIyXPmodOkzuhau+qOJpwFFptQdY7UqQfc8w9Mtf+EfW2IJec1QdSjiUSAiL8ELkxUmFWT0hxt1n5v1hfqzlQ5JkFKMcTj3OcKMRx4lkSTp6a8pQBcCLlO6SIooiui7oiMCIQ8efiHWbLF1IupV1Cldgq+GD+B7JZ8yJFFG14esptaDKEkFMwxIPjskYKAMQA2O7BHHsssHiwPgG3mQEoHCfKOeJk2gGlb4TlN2PiRMo3SAmPDwcJ5OLXUflAiijOxtNTnkb9AfVxM/umk1lzImXB0QUggbDk+Mv2WXW2IBfNaoUUj2J9reZAkWd0oDji5HrGddano8s4TjzL2DiR0hYpk/cHggRC1EZ3K+zNj5ThOy0ggfDPaXf/fOZCSlZ+FhoOaogXpr9g31bcDSZDCutrNQeKPCMDheNEOZtowyeLPuE4UcgcOJHSBikrTy1GYIQFny7yhyiuUTiueZFyLPEQKkT545tlFqi9BVnPSPl7/d8IigzCyaSTDrPdYCKksL5Wc6DIMypQOE6U4zjxrI3nN5oIJ1LqImXLhS2oEFUBL894EfnWp6HVFmS9IyW3IBdtR7VFi7gWyMp/G2pvQdYrUs7cPIPgyGD8vvZ3J7PdYBKksL5Wc6DIMyJQjicexy39b+E4cRPHiWc54iQrP4v16aicOkjZf20/qsRWQYeJHeyA02YLshGQ8suqXxAUGWTfNaTuFuSi9IeUV2e+igYDGyAzL9PFbDeYACmsr9UcKPKMBhSOE+U4TjzL3DiR8g4pJ5NOok6/Orhv9H1Iy3X8HlH+kLLq1CqQQBi4baBs1txIWXmKQAJh9uHZCrPdYHCksL5Wc6BIGXGbsYSTlnEtOU5c5IiT4htVeY6VD5xIlQ0pl9LmoOGghmgR1wIJmQlOZssPUm5k3kCdfnXw7NRnndzO37xIyc7PQpMhlfHkZIIojlY4ruGRwvpazYEizyjPoHCcKMdx4lkSTjpN7lQOcCJVOqQkZrVHyzgLbhtUBxdTL7qZNT9SRNEfz0+7B7X61sK1jGtuZs2HlJ5reyIoMggnkj5A4eVEnS3IRbO6QgrrazUHijwjAIXjRDmOE8/aeH4jwqLDyhlOpDxDSnpuOu4fcy9q9Q3EiaRgaLkF2X36QMqQHfeABMLyk/IXiJacNRNSDt04hICIAITHh0PNLcglZ3WDFNbXag4UeXoHyomkExwnCnGceFb5xomUe6Rk5Weh46SOqBxbGXuvboOWW5CNgJR91/YhKDIIP65oBi22IOsVKTbRhkfHP4oWcS2QW5Br/6iRkeL+rrcZeRmADrDA4sH6BNymZ6BwnCjHceJZHCeOOUdKVn4Wnpj0BMKiw7D5wmb7R7XZgmwEpKTlpqHp0KZoO6otcgoyoPYW5ML0iZRRu0aBBMLG83LEGhEpEQC2up0SNgiADrDA4sH6BNymV6A44sT1z33LdxJOLIKF48RNHCfOKo4UR5xsOr9JNlv+kCKKIt6e+zYqxVTCqeRT9o+qtwW5ePpCyrWMgagSWwWfLvrUxazRkOK+q+lXERodCugACywerE/AbXoECseJchwnnrXp/CaERYfhyclPcpyUqBApWfmheGLSPS5wIlW+kDJ853CQQJhzWI4L8yPl3XmEmn0rIikryc2seZDyxZIvUL1PdUAHWGDxYH0CbtMbUDhOlLOJNny66FOOE4U4TpTLyk/Ek5OrIiyasOn8UIXp8oGU3Vf6IygyCN8t/87FrHmRsvLUcpBAmHqAoOYWZL0i5fCNw/AL98Pg7YMBHWCBxYP1CbhNT0A5kXQC9QbU4zhxE8eJZ3GcKJeVn4UnJz+JsOgwbDx/D7Teguw+fSAlNedVNBlCuG/07Q4vDnWW+ZCSlZ+FRoMbodPkThDFr6DmFuSi2W7QE1JemP4Cbh9yO/KseYAOsMDiwfoE3KYXoEg4aRHXguPERRwnnsVxolxxnGyE1luQjYAUURTxxuzXUCU2EGdvBkCLLch6RkqPNT0QHBlsXwao3hbkkrPdoAekrD2zFiQQ5h6ZK32I9bWaA0WeHoDCcaIcx4lncZwoVxIn//0dlGekDNkxBCQQFhydAy22IOsZKQeuH0BARACiNkbJZs2JFJtoQ9tRbfHIuEcgiqL0YdbXag4UeayBwnGinCNOpuyfwvp0dBvHiXJZ+VnoNLmTE5z8N4HyiJTNFzYjICIAP6/62f4RdbcgF5/VF1IKbAW4f8z9aDW8lfSjDtms+ZAyfu94kEDYerHY249ZX6s5UOSxBArHiXIcJ561+cJmhEWH4YlJT3CcuEjCSWh0qAuc/DeJ8oSUK+lXULd/XXSY2AH51nyH2fKBlD5b3oZfuB92XNrhZtY8SEnLTUPtfrXx/vz35X+L9bWaA0UeK6CcTDrJcaKQTbThs8WfcZwoxHGinOc4+e8zUB6QkmddgEfGPYL6A+q7uBmkuZFyLPFNBEcSfv3neQ+Oaw6k/PrPrwiNDsWltEvyT2J9reZAkccCKBwnynGceBbHiXJZ+Vl4aspTpcDJf58JsyPl66V+CIoMcPPsAWBWpFhtVjwy7hE0G1oZ2fkENbcg6w8phbMnkk4gMCIQkRsjnX0C62s1B4pUXFwcWrZsiebNm/sUKBwnynGceBbHiXKOOIk/F1+WI8CsSBm/dzRIIIzZ7Q8ttiDrHSmDtw8GCYRN5+Oh9hbkwvSClL8BFK5ueGnGS2g0uBGy87OdDbO+VnOgyPPlMyiOOLmaflXzr2fEOE48i+NEOe9x8t+RYDak7Ly8E0GRQfhiyafQaguynpFyOvk0KkRVwPfLv3eYNStSClt5aiVIIMw7Ms/VCOtrNQeKPF8BheNEOUecTN6v9E2i/Lb5wmZUjKmIJyY9gcy8TNano8uy87NVwomUeZByI/MGGgxsgIfGPmS/GZv6W5AL0ydSbKINHSd1RKPBjaQtvg6z5kRKvjUfdwy7Ax0ndXR8W7E81tdqDhR5vgAKx4lyNtGGzxd/znGiEMeJcurjRMr4SMmz5qHdhHao3a+27EWS5Qcp0p6hNWfWuJg1H1IGbR8Ev3A/HLh+wN3BWF+rOVDkaQ2Uk0knUX9AfY4TN3GceBbHiXKOONlwboMGX8G4SBHFFfhk0ScIigzClgtbXMyaGymnki0IjQ7G10u/Vpg1D1ISMhNQJbYKvln2jcJx2GOBxYP1CbhNS6BIOLlj2B0cJy7iOPEsjhPltMeJlDGR0n+rP0gghd9n5kWK1ZaPR8fXRpMhhIy8cQrHNQ9SvlzyJar2rorErESFY7DHAosH6xNwm1ZA4ThRjuPEs7Zc2IKKMRXRcVJHjhMXZedn4+kpT/sAJ1LGQsrSEwtgEQi/rfGHVluQ9Y6U3pt7wyJYsPnCC1B7C7JekbLv2j5YBAuG7lDa1A1AB1hg8WB9Am7TAigcJ8o54mTSvkmsT0e3cZwoJ+GkQlQFH+FEyhhIOXj9ICrGVMRrs16BTXwJWmxB1jtSDl4/iKDIIHRf3R1qb0EuPqsfpNjEIXh0/KO4c/idsjsEu4z1tZoDRZ7aQDmVfIrjRCGOE8/iOFGOHU6k9I2UG5k30HBQQ7QZ2cb+jhX1tyAXpl+k5Fnz0HZUW9w5/E7kFOTYP2p+pIzfSyCBSnNzQtbXag4UeWoCheNEOZtowxdLvuA4UYjjRDn2OJHSJ1JyC3Lx6PhHUadfHVxIveAwW76Q8ue6PxEQEYA9V/fIZs2LlKSsRNToE4IuCwie3icFOsACiwfrE3CbWkDhOFGO48SzOE6Uy87PxjNTn9EBTqT0hRRRXIUuC7ogODIY2y9tdzJbPpCy41Ik/MP9ER4f7mLWnEj5YskXqBJbBdczvlacdYj1tZoDRZ4aQJFw0nxYc44TF3GceBbHiXKOOFl/dj3r03FIP0j5Y13hO3ZmHnL3zhZzIyUj713cPoTw4NjbFV6DYS6kbL+0HRbBguE7h9tnfwcQr3BMADrAAosH6xNwm7dA4ThRjuPEs7Ze3IqKMRXRYWIHjhMX6RcnUuyRMmrXMJBA6LslAFptQTYCUj5d9AnCogNwKtkCtbcg6xUpBbYC3DPqHtw3+j5YbVaFY5SI9bWaA0WeN0DhOFHOEScT901kfTq6jeNEuZyCHDw79Vkd40SKHVKWnlgKv3A/fL/8G4ji89BqC7LekTL3yFyQQJiwdxzU3oJcNKs/pAzdMRQWwYKdl3cqfK7TWF+rOVDklRUop5JPocHABhwnbrKJNny55EuOE4U4TpRzxMm6s+tYn44H+R4p/17+F6HRoXh91uv2Pz1rswVZ70i5mHoR1XpXw5tz3rTvnVF3C3LxWf0g5Wp6LCrHVla4S67bWF+rOVCk4uLi0LJlSzRv3rzUQOE4UY7jxLM4TpQzHk6kfIeU08mnUatvLTw6/lFk52c7zJYvpFhtVnSc1BENBjZAcnayw6z5kfL+fEKtvhVxM/umwrzLWF+rOVDklfYZFEecXEm/4tHnlLc4TjyL40Q54+JESnukJGTOQ9OhTdF8WHMkZSU5mS0/SOmzpQ8sgsXFjwDNi5R1Z9eCBMKkfQQP37HjLNbXag4UeaUBCseJchwnnrX14lZUiqmE9hPbc5y4yBEna88ovXtFz2mHlKz8p/DwOAtq96uKszfPupk1P1L2XPVDYIQ/eqzp4WbWfEjJs+ahRVwLtJvQDqL4o322TEhhfa3mQJHnKVBOJ5/mOFGI48SzOE6UMw9OpNRHSp41D89OfRph0f7YdSUYWm1BNgJS0nNvounQirhvNCHPOkPhuOZCSkR8BAIiAnDw+kGU7o6zJWJ9reZAkecJUDhOlHPEyYS9E1ifjm7jOFHOfDiRUg8pVpsVb855E8GRwVh/dhW03IKsd6SIooj35r2HSjGVcCr5Zai9BVnPSDmacBRBkUH4Y90fstluKANSWF+rOVDkKQGF40Q5m2jDV0u/4jhRiONEuZyCHDw37TmERIWYDCdS3iPFJtrw6aJP4R/uj8XHF9s/qs0WZCMgZdyecQ43pVN/C3Jh+kOKTbThsfGPofmw5g47hhxnu6GUSGF9reZAkecOKBJOmg1txnHiIo4Tz9p2cRvHiULmx4lU2ZEiiiJ+WvkTLIIF0w7IL5TlDymHbhxChagK+HLJl7JZ8yNlxM73QQIh/ly8m9luKLwMjlY4LgAdYIHFg/UJuM0VUDhOlOM48SxHnBRulOXJKz84kSobUsLju4IEst/G3FnlBymZeZloNbwV7hpxl+yt1dKseZFyKe1jVIohfLmkneIs8H8APHoHHOtrNQeKPGdA4ThRjuPEszhOlCt/OJEqHVIGb28OEggxmz5XmC0fSPl00ZMIjQ7F0YSjbmbNhxRRFPHKzFdwS/9QpOQQlO+T4nGsr9UcKPLkQOE4Uc4RJ+P3Kmm//MZxolxOQQ6en/Y8QqJCsObMGtanwyDPkDJh7wSQQPi/1Q0hiiHQaguyUZAy9cBD9vt+fK84azakSLfxX3B0Pjy/mZtHsb5WmxcoRBRMRPuJCETU1uHvuc0RKKeTT+PWgbdynLjJJtrw9dKvOU4U4jhRjuNEyj1SZhycAb9wP3y55EuIYha03IJsBKQcTTiKsOgwdFnQEFpsQdYzUm5m30SdfnXw+qzX7R8pzR1nFWOOBRYPXwFlCBGtKCtQ9p3b9x9OLqddVvq0chnHiWdJOGk3oR3HiYs4TuQ5R4qEk48XfuywnVabLchGQEp6bjpaxLVAq+GtkJGXAi22IOsZKZ8t/gyVYyvL/gCtGlKYY4HFwxc4eZ6IjhFRq7ICpX5MfY4TN3GceNb2S9s5ThTKKcjBC9Nf4DgpUXGkzDw0E37hfvho4UcOOJEqf0gRRRFvz30bFWMq4njicftH1d2CXJT+kLLu7DqQQBi929k7clRBCnMssHhojZM6RHSZiO4nokZKQMnNzUVaWtp/j82HN4OI0KRPE44TF3GceBbHiXKOOFl9ejXr09FhhUiZeSjYDU6kyhdSBm8fDBIIc4/Mlc2aHynZ+YTbh9RG+4ntYRNtLma9RgpzLLB4aIkTCxGtJKI/7f9fESi9evWCfabw8WDhX49dOub+P105jePEszhOlOM48axZhybDL5zQZUEArDZnS+8cKx9I2XIhFgERAfjfP/9zMWtupPyyqjWCIwnHE6MVZr1CCnMssHiUBR5CMUQ4f9xPRD8S0VYi8oeHQJE/g3Lx4sVSbTMuT3GceBbHiXK5BbkcJx4069As+IX7ocuC92C1dYSWW5CNgpTrGS/hlv6EdhNaId+a72bWnEjZdH4TLIIF/bc+ArW3IMtijgUWj7IApSYRtVB4hBDRIiKyEZHV4QH7XyfDCVDklWabcXnKJtrwzbJvOE4U4jhRzhEn/5xWutCV32YdmgX/cH90WdDF/mMd7bYgGwUpBbYCdJzUAXX7h+BqegC02IKsZ6Rk5mXi9iG347Hxj8Fqy4eaW5CdxBwLLB7aHZjoNiK6y+HxjB0onYmoAThQyhTHiWdtv7QdlWMr4/EJj3OcuIjjxLNmH54N/3B/fLjgQ9lrTso3Un7951f4h/tj4/l10GILst6R8v3y71EhqgJOJp10mC0LUsYqzALQARZYPHz3hTz4EY88DpTicZx4FseJchwnnjXn8BwXOJEqn0iZfnA6SCAM2DbA/hF1tyAXn9UfUqR37QzdMdTJbGmQ8gsAj36syhwLLB4cKAaJ48SzOE6Uyy3IxYvTX0RwZDDHiZsknHww/wM379YByhtSdl/ZjZCoEHRZ0AWiKDrMlg+kpOWOQsNBDdFxUkcX79opDVI8jjkWWDxYn4DbOFAKE0UR3yz7BiQQx4mbOE6U4zjxLM9xIlU+kHI9YwoaDGyAB8Y84GQJIFAekPLlEkJYdDDO3jyrMKsqUlhfqzlQ5HGgFMfJuD3jWJ+ObttxaQfHiUIcJ54198hc+If74/3573uIEylzIyXP+ioeG29B3f7VFO5LZV6krDq1AiQQRu4iqLsFWTHW12oOFHnlHSgcJ57liJP03HTWp6PLOE48q+w4kTIvUr5a+jkCIyzYejEAWm1B1jNSUnJSUH9AfTw1pRNE8TOouQXZg1hfqzlQ5JVnoHCceBbHiXK5Bbl4acZLCI4MxqpTq1ifjm6bd2TefzgpsBV4cSTzIWXkrpH270WjoNUWZL0jpeuirqgcWxkXUi9A7S3IHsT6Ws2BIq+8AoXjxLM4TpTjOPEsCSfvzXvPS5xImQcpG89vREBEAL5f/r3DbPlCytITS528BtCnSGF9reZAkVcegcJx4lkSTh4b/xjHiYs4Tjxr/tH5CIgIwLvz3lUJJ1JZAJ6E50h5Gp4j5Tl4jpQXUVaknEo+hRp9aqDjpI6yO8UaESkfoSxIuZF5A7X71cYL01+QvWtJmv0CPkAK62s1k4cFAOk1i8VSmYjSiKgKgHTW58Pj8Xg8Hs836R0oFiKqREQZ0POJ8ng8Ho/HUzVdA4XH4/F4PF75zI/1CfB4PB6Px+PJ40Dh8Xg8Ho+nuzhQeDwej8fj6S4OFB6Px+PxeLqLA4XH4/F4PJ7u4kDh8Xg8Ho+nuzhQeDwej8fj6a7/B7EPqPi0uJDBAAAAAElFTkSuQmCC\n", "text/plain": [ "Graphics object consisting of 34 graphics primitives" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for geod in outgeods:\n", " graph += geod\n", "show(graph, aspect_ratio=1, xmax=rmax, ymin=ymin, ymax=ymax, \n", " axes_labels=[r'$r/m$', r'$t/m$'], figsize=10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The ingoing null geodesics:" ] }, { "cell_type": "code", "execution_count": 58, "metadata": { "tags": [] }, "outputs": [], "source": [ "def ingoing_geods(tmin, tmax, rmax, v0, dt_out, dt_in):\n", " geods = []\n", " t0 = tmin\n", " while t0 < 0:\n", " geods.append(line([(0, t0), (rmax, t0 - rmax)], color='green',\n", " linestyle='--'))\n", " t0 += dt_out\n", " t0 = 0\n", " while t0 <= v0:\n", " geods.append(line([(0, t0), (rmax, t0 - rmax)], color='green',\n", " linestyle='--'))\n", " t0 += dt_in\n", " t0 = v0 + dt_out\n", " while t0 < tmax + rmax:\n", " geods.append(line([(0, t0), (rmax, t0 - rmax)], color='green',\n", " linestyle='--'))\n", " t0 += dt_out\n", " return geods" ] }, { "cell_type": "code", "execution_count": 59, "metadata": {}, "outputs": [], "source": [ "ingeods = ingoing_geods(-6., tmax, rmax, v0, 1., 0.5)\n", "for geod in ingeods:\n", " graph += geod" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### The curvature singularity (in orange):" ] }, { "cell_type": "code", "execution_count": 60, "metadata": {}, "outputs": [], "source": [ "def curvature_sing(tmax, nb):\n", " h = tmax/(nb - 1)\n", " return line([(0, h*i) for i in range(nb)], \n", " thickness=3, color='darkorange', \n", " marker='D', markersize=8)" ] }, { "cell_type": "code", "execution_count": 61, "metadata": {}, "outputs": [], "source": [ "graph += curvature_sing(tmax, 21)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### The event horizon (in black):" ] }, { "cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [], "source": [ "def event_hor(tmax, tmin=-4.):\n", " sol = solve_ode(tmax, tmin, r0=2.)\n", " hor = line([(s[1], s[0]) for s in sol], color='black', thickness=4)\n", " # Refinement near the horizon birth point:\n", " t0, r0 = sol[-2][0], sol[-2][1]\n", " sol = solve_ode(t0, tmin, r0=r0, dt=0.001)\n", " hor += line([(s[1], s[0]) for s in sol], color='black', thickness=4)\n", " thb = sol[-1][0]\n", " dthb = sol[-2][0] - thb \n", " print(\"Coordinate t at the event horizon birth [unit: m]: \")\n", " print(thb, \" +/- \", dthb)\n", " return hor" ] }, { "cell_type": "code", "execution_count": 63, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Coordinate t at the event horizon birth [unit: m]: \n", "-2.600999999999992 +/- 0.0009999999999998899\n" ] } ], "source": [ "graph += event_hor(tmax)\n", "pA = (2., v0 - 2.) # point A" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Check of the determination of $t_{\\rm hb}$ by comparison with the analytic formula for $S(x) = S_0(x) := x$:" ] }, { "cell_type": "code", "execution_count": 64, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Analytic value of coordinate t at the event horizon birth [unit: m]:\n", "-2.60135096372454\n" ] } ], "source": [ "if S == S0:\n", " aa = 1/sqrt(16/v0 - 1)\n", " thb = numerical_approx(-4*exp(-2*aa*atan\n", " (aa)))\n", " print(\"Analytic value of coordinate t at the event horizon birth [unit: m]:\")\n", " print(thb)\n", " pB = (-thb/2, thb/2) # point B\n", " pC = (0, thb) # point C" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### The trapping horizon (in red):" ] }, { "cell_type": "code", "execution_count": 65, "metadata": {}, "outputs": [], "source": [ "def trapping_hor(mv, tmax):\n", " return parametric_plot((2*mv, v - 2*mv), (v, 0, tmax + 2),\n", " color='red', thickness=2) " ] }, { "cell_type": "code", "execution_count": 66, "metadata": {}, "outputs": [], "source": [ "graph += trapping_hor(m_num(v), tmax)" ] }, { "cell_type": "code", "execution_count": 67, "metadata": {}, "outputs": [], "source": [ "graph_wo_vectors = copy(graph)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The vectors $k$ and $\\ell$ at some point $p$:" ] }, { "cell_type": "code", "execution_count": 68, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle \\ell = \\frac{\\partial}{\\partial t } + \\left( -\\frac{m\\left(5\\right) - 2}{m\\left(5\\right) + 2} \\right) \\frac{\\partial}{\\partial r }\$$" ], "text/latex": [ "$\\displaystyle \\ell = \\frac{\\partial}{\\partial t } + \\left( -\\frac{m\\left(5\\right) - 2}{m\\left(5\\right) + 2} \\right) \\frac{\\partial}{\\partial r }$" ], "text/plain": [ "l = ∂/∂t - (m(5) - 2)/(m(5) + 2) ∂/∂r" ] }, "execution_count": 68, "metadata": {}, "output_type": "execute_result" } ], "source": [ "p = M((1, 4, pi/2, 0), chart=X)\n", "l.at(p).display()" ] }, { "cell_type": "code", "execution_count": 69, "metadata": {}, "outputs": [], "source": [ "graph += k.at(p).plot(ambient_coords=(r, t), color='green', fontsize=16)\n", "graph += l.at(p).plot(ambient_coords=(r, t), color='green', fontsize=16,\n", " parameters={m(5): 1}, label_offset=0.15)" ] }, { "cell_type": "code", "execution_count": 70, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAKdCAYAAAAJCpJDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd1hTZxvG75MECFO2gOIEVByooGDce2sVrVvco7a1rf3q6BCtrbbVOmut1lmr1oF7orjBLU4UFQVBAVH2hpzvj3gwhCRknJNzEs7vurz6fcl73vcpRbjzPM97PwRJkuDh4eHh4eHh4RICtgPg4eHh4eHh4VGEFyg8PDw8PDw8nIMXKDw8PDw8PDycgxcoPDw8PDw8PJyDFyg8PDw8PDw8nIMXKDw8PDw8PDycgxcoPDw8PDw8PJyDFyg8PDw8PDw8nIMXKDw8PDw8PDycgxcoPDw8PDw8PJyDFyg8PDw8PDw8nIOzAoUgiKFsx8DDw8PDw8PDDpwUKARBSACEsB0HDw8PDw8PDzsYRKAQBBFEEERHLR4ZBeBfpuLh4eHh4eHh4TYESZLMH0IQyQDOkyQ5TIO1IgBPADQmSTKP8eB4eHh4eHh4OAfjGRSCIBoBqA4gUsNHegG4xIsTHh4eHh6eqoshSjzt3v/zgobr+fIODw8PDw9PFccQAqU9gEwAdypbSBCEDYAgAKeZDoqHh4eHh4eHuzAiUAiCGE4QxA2CIG4AGA2gGMC1968Fqnl0MIDDJEmWKOzXjiCIbQRBRBEE0ZcgCAFBEDMIglhNEMQ6giAuEQQR9H7tSIIg/nz/5xJBEF2Y+Hfk4eHh4eHhYQ5Gm2QJgvAEkABgDkmSv2iw/iSAH0iSvCr3mgDAFsiuHf8GYCyA/wCEkSR59v2avwB0f7/uPkmSYe9fXwhgBgAXkiSl9P2b8fDw8PDw8DAJ0yWezu//eb6yhQRBVAdQW16cvKcVgNukTEl5AHABcJQSJ+/JAlAXQAolTt6TAsDx/TM8PDw8PDw8RgLTAqUTgFwANzRYOxyyzIgiFgD2v//f7QGcJEnyhMKaZgCeA1iv8HojAPkA3moYLw8PDw8PDw8HMIRAuazYU6KCUQB2KL5IkuQFkiRfEAThBaAmgHD599/7pkgAnCMr1qt6ALio4fk8PDw8PDw8HIExgfK+/6QuNCvv+EDWD/NYzTKq2fWcwuutANgovk4QRFMA3gD2ahYxDw8PDw8PD1dgMoNSof+EIIgvCYIglKzVxPukM4AMALcVXu/0/p/nFF4fCaAQ7wUKQRATKwuYh4eHh4eHhxuIGNy7FYBSANcBgCCIegDqKCnDAMAwfBAaqugE4IKS2zidAcSRJJmg8PpgAIdIkkx/n02pqV34PDw8PDw8PGzBZAblHYAMkiSLCIKwA7AYQKjiovf+JQkkSSar2ui9Xb4bKpZxzPC+/0TJY84Azr+/pjwbwBqd/i14eHh4eHh4DA6TGZSVACQEQeyCzKjte5Ik05Ws06S84wTgFYAwhdftIbsltF3JM58DmARZ5mUdSZL8TR4eHh4eHh4jwSDTjFUeLruB8xRAU5Iks1kLhIeHh4eHh4dTGGIWjzp6ALjKixMeHh4eHh4eedgWKPzkYh4eHh4eHp4KsFbiIQjCGsBDAF4kSRazEgQPDw8PDw8PJ2EzgzIIwDFenPDw8PDw8PAowqZA6QhgG4vn8/Dw8PDw8HAUVm/x8PDw8PDw8PAog+0mWR4eHh4eHh6eCvAChYeHh4eHh4dz8AKFh4eHh4eHh3PwAoWHh4eHh4eHc/AChYeHh4eHh4dz8AKFh4eHh4eHh3PwAoWHh4eHh4eHc/AChYeHh4eHh4dz8AKFh4eHh4eHh3PwAoWHh4eHh4eHc/AChYeHh4eHh4dzcFqgEDLsCIIg2I6Fh4eHh4eHx3AYSqCQWv3Je0NiGUFmLoIUQGbmIkiR90a7PYzwT7tN7ciOmzuSUw9PJQULBOSW6C2sx8TFP8ujlpOWiyxJu8V2ZMctHcmcohyVa/v370/2IwgS7/98SxCkl5cX6/8Omv7JKMggiQUEuev+Lq2fLSgpIPvu6Eta/mRJhj8LZ/3fhat/9j3cR5r9aEaO2DeCLJGWVLq+RFpCuv7mSn4T/g3rsRvqz7v8d6T/en/S+Vdn8m7KXYOdG3oulLT+2Zp8l/+O9a+BJn9WXFlBEgsIcs7pOSQpm8RL158qCaczKOW4sYztCBhnRqsZuJBwAZ8Hfo5pAdNgLjRnOyROYm1ujcLSQhwfdRxOlk4QENp9GxtTQi4uPQ4AUN+hvtbPikVi7Pt4H/r79IeZ0Izu0EyGYN9g/DfkP1iJrECg8u+N8y/O403eG3zc+GMDRMcNHC0dET4mHK1rtIaQEBrkzPzifPxx/Q+Mbz4ejpaOBjlTX74I+gLLey7nf3bThIjtAJSiTIxc/wUwswbafG/4eAzE4EaD4WzljA23NmBt37UAAJIkcTv5Nlq6t2Q5Ou5gbWYNEiRaurdE2LAwAMDjtMeoYVcDNuY2LEdHL8/ePQMA1HfUXqAAMpGye+huAECptBT3U+/Dz82PtvhMhcGNBmNwo8EAgDvJd9DYtTFEAuU/Hnc/2I069nXg7+5vyBBZx9HSEcdGHQMA5Bbl4mXWSzR0bsjYedvvbsfbvLf4IugLxs5gAvl4b72+hRZuLYzqQxGX4F4GJepHmRhRRuQPsvdNFAuRBSY0n4Ctd7YivzgfAHDw8UEErA/A1uitLEfHHazNrQEAucW5AIDi0mL03dEXfXf0RW5RLpuh0U5cehyqWVSDg9hB771WXV2FoI1BOB13mobITJN3+e/QYUsHjN0/FiXSkgrvl0hLEPYoDB/7flylf+nMOT0H7Ta1w92Uu4zsLyWl+P3K7xjYcCC8HL0YOYNpHqU9QqsNrTD3zFzIqj082sItgRL1o0yEqMPERcoU/ynIKMjA7geyT70DGgzApJaTMP7geF6kvMfa7L1AeS9GzIRm2DZoG26/vo0+O/qYlEh5lv4M9R3r0/LLcHqr6ehStwv67+zPixQVOFo6YtOATdjzcI9SkXLuxTmk5aVVqfKOMhZ0XoDa9rXRZWsXRkTKiacn8CjtEWa1mUX73oaioXNDLOuxDL9c/oUXKTrCHYGiiTihMGGRUt+xPrrX6451N9cBAASEAOv6reNFihxWZlYAPmRQAEDiKcGJ0SdMTqTEpcehnkM9WvaielJ4kaKeYN9g7ArepVSk7HmwB3Xt61b5kivVk8KUSFkWtQyta7RGW8+2tO5raKieFF6k6AY3BIo24oTChEXKtIBpuJJ4BXeS7wAoL1L+e/Bflf8mLyvxKIgQSqQ8efsEj9IesREa7TxLf6ZTg6wq5EXK/pj9tO1ralAi5VLCJbzKfgVArrzTuGqXdyjkRUr4s3Da9o1OjkbE8wh8FfSVSXydKZFyOPYwcopy2A7HqDCYQFm8eDEIgsAXX3xR/g1dxAmFiYqU/j794W7jjr9u/lX2GiVS9g/bD4IgkFmQyWKE7FJW4imumCWReEoQNzMO/h7+KJGWoFRaaujwaKO4tBgJmQm0ZVAoxCIxwj4Ow+o+qwGgSn8vqSPYNxixn8WiVrVayC3KxZm4M0jLS8NQ36Fsh8YZHC0dcXnCZcySyEoxdHwv/R71O2pVq4Vg32C99+IKXwR9gZtTbsLWwhZZhVlV/kOmphhEoFy/fh3r169Hs2bNKr4ZOV+/zfV9noOYCc0wqeUk/HP3H2QXZpe9LiAEsBBZ4EXGC3iv9q6y5R5VGRQKsUgMAJh6eCquJl01WFx0E58ZDykppTWDQmEhsoCAEOBq4lXUWVmH1k/ApoRYJAZJkui/sz9mHJvBl3eUQP19C4sJg/dqb73KPUlZSdh5fydmBs5UeYvKWBGLxMgvzkfg34F8uUdDGBcoBEHYjBo1Chs2bICDg5KbCJIF+h2g7/McZVLLScgrzsPO+zsrvFerWi0MajioyvakqMugyDOx5URkFhpvdoDyQKE7gyKPn5sfJJ4SDNg1gBcpKiAIAlP9p+JZ+jOIRWKUksablWOSTnU6wbOap149KWuurYGVmRUmtZxEc3TcwNLMElP9p/I9KRpiiAzKH3379kW3bt2Uv9vme0CyULedJQtN1helVrVa6OPdB+turKvwTSwgBPiz35+Y3HJylRQplWVQKCSeEgTVCDJESIzw7N0ziAQieFbzZOwM+Z4UXqSohjIKi30bizH7xyi9glzV0bdxNqcoB+tursPklpNhZ2HHUJTswzfOag6jAoUgiOEAWi5evFj9Ql1EigmLE4pp/tNwO/k2bry6UeE9eZHyxckv8C7/HQsRsoNIIIK50LzSDAoA2IvtmQ+IIeLS41C7Wm3GU93yImXGsRkoLi1m9DxjZPeD3ajnUA+7huzC3od7cezJMbZD4iTyIuXLk19q9eyW6C3ILszG54GfMxQdd6BEyt+3/sbrnNdsh8NZGPvJRxCEJ4CVAHqIxeLoSh9o8z0izkagi8W5yjevAuIEAHp59UIN2xrYHL0ZrWq0qvA+JVL+1/Z/cLR0BEmSJtH1rgnWZtY6XyU2lq8R5YFiCCiRkpqbCjOhWZX6XqqMEmkJDjw+gIktJmKI7xD4VfeDt5M3APBfJyVQIkVKSgFo9jWSklKsvLoSwb7BqFWtliHCZJ0vgr7AmGZj4GTlxHYonIXJDIo/AFcAN0UiEUQiEc6fP49Vq1ZBJBKhtLRiHbftrBMo8P9W/a5VRJwAgFAgxFi/sdh5fycKSgqUrhEQAng5eqG4tBhD9wytMuUea3NrjTIoykjKTjIKn5S49DjUs2eu/0QRsUiMWtVqIaswC123deV9Ut5zMf4i0vLSENxIdquEEid/3fgLo/eP5ss9SnC0dISzlTOSspIg2SSptNxz7MkxPH33FF8GaZd1MXZ4caIeJgXKGQBNATSPjo5GdHQ0AgICMGrUKERHR0MorDhwysLCAuJOi4BWs5VuuErkjNRmUxkMmXuMaz4OGQUZOPjooNp1QoEQjpaOVaYnRZ8MSn5xPufN3EiSNGgGRR5zoTkszSx5M7f3hMWEwdPOEwEeAeVed7Zyxu4Hu1Xa4vPImkKLSosq7UlZcWUFAmsEIqim8faM8dAPYwKFJMlskiTvkyR5v0mTJmjSpAmsra3h5OSEJk2aqH84oKK98bsmk3G9Vi+TGwZXGT5OPpB4SrA5erPadVXNcVafDEpNu5qcd5xNy0tDTlEOozd4VME7zn5ASkoR9igMgxsNrlCmUOc4yyNDk8bZeyn3cOb5GaMbCsjDPNxwktUAx/Y/4Z9B/8DKzAoPUh8gOSeZ7ZAMxvjm4xEeF46krCS16xRFytVE4/UAqQxrM90FilgkLrPFn3qEmxk56ooxEx4omlDuds/OAXiZ+ZKVONjmauJVvMp+VVbeUURepCw8r+NtRBNHXqT03N6zwoeClVdXooZtDZVfY56qi0GdcM6dO6f3HiRJYvT+0SgsKURESATcbNz0D4zjfNz4Y3x+/HNsu7MNc9vPVbuWEind6nVD6xqtDRSh4bE2173EA8iuIJ8acwrVravTGBV9PEt/BoBZD5TKoETK8SfHGb3qzGX2xexDdevqkHhKVK4J9g3GEfMjShvZeWRQIuV60vUymwAAeJP7Btvvbsf8jvNhJjRjMUIeLmI0GRTcWAZAdgNj95DdyCzMRJetXapEJsXOwg7BvsHYcmeLRnfmBYSgbF7IgUcHTLLcY2VmhbziPL32CKoZhLoOdZGen47Pjn3GqXJPXHocXKxcYGthy2ocYpEYgxoNAgD8ce2PKuWTQpIkwmLC8FHDjyAUVOyZk6enV084WjoiPiMes07O4ss9SnC0dERPr54gSRLzz87H3ZS7+OvmXyAIAlP8p7AdHg8H4aZAeS9GynH9l7K5O95O3jgXcq5KiZRxfuMQ+zYWUYlRWj13Ou60Sfak6FPiUSQuPQ5b72zlVE9KXHoc6jrUZTuMMqSkFMeeHqtSZm7RydF4nvFcq9LDvdR7WHVtFW/mpobc4lwceXIEXbZ2wYorKzC22Vj+NguPUrgnUKJ+lIkRZcgNB6RECgkS8RnxBgyQHTrX7Yxa1WphS/QWrZ5b1XuVSTrO6nOLRxF/D/+ynhSuiJQXGS9Q1547AkVACKqc4+y+mH1wEDugU51OGj/Tz6cfdgXLzNx4kaIcG3MbhI8Jh62FLd7mv0Uvr15sh8TDUbglUDSZbKwgUu5Pv4/AmoEoLi1GWl6aAYJkBwEhQIhfCHbd36VVaUPRFn/3g90MRmk49LnFowyJp6RMpPTd0Zf1KcgvMl6gjn0dVmNQRNEW/3LCZbZDYpR9MfswsOFArXsjqMbZvQ/3YuKhiQxFZ9w4iB1QzaIabM1tMfnwZDx5+4TtkHg4CHcEiibihEJOpFC14S9PfokOmzuYdLknxC8E2UXZ2B+zX6vnKJHyfYfvTcZnQNMMijZzLiiRMqLJiEp7DpikRFqChMwEzgkU4INI+az1Z2js2pjtcBgj5k0MHqU90vlmSbBvMP4b8h8GNxxMc2SmQeTLSNxJuYO/+/+NiS0morZ9bbZD4uEg3BAo2ogTCjmRAgCfB35u8j0p9R3ro12tdvj33r9aPysgBFjQeQFqVauFt3lvtRY5XEOfDIo6222JpwRTA2RXj3fd34WcohydztCHpKwklJKlnCrxyCMWifFr919hL7ZHXHoczj4/y3ZItLMvZh9szG3QrZ6KIacaMLjRYAxsOBAkSWJr9Fa+3CPHiqsr0MCpAYY0HoJfuv8Cc6E5riVd03kKMo9pwr5A0UWcUMiJFB8nH5wNOWvyImVkk5E49ewU3uS+0XmPv27+heDdwUbdk0JnD4oyknOSMeXwFPTd0dfgPSkvMl4AACczKIosvrgYfXb0MTkzt30x+9DPpx/EIrHee0UnR2PS4Um8mdt74jPiERYThpmBMyEgZL+CSJLE3DNzdZqCzGO6sC9QIufT9ry8SNl4a6OegXGToY2HgiAI7Hm4R+c95rSbY/SOs9bm1iiWFjM2edfNxo21xllKoBhD2nt1n9Um5zgblx6H6ORo2ozDWri34B1n5VhzbQ3sLOww1m9s2WsEQWDP0D1qHWd5qh7sCxTJAlqf93HywY3JNzCv/TwAYL3ZkW6crZzRo34P7Li3Q+c9TMEW39pMZvZEZ6OsIvKNs4YUKc8znsPdxp2WT+9MY4q2+GExYRCLxOjt1Zu2PXlbfBk5RTnYcGsDprScUs6wDdDMFp+nasG+QGnzvWxCsS6omGzsbusOgiBw/MlxBGwIMLlyz8gmI3H55eWyT9q6QImUKf5TUFhaSF9wBoL64ca0aKBEiqXIEqWkYcQuF2/wqIMSKb29eqOotIjtcPRmX8w+9PLqVeEXqL5QIkVKSrVq3jYltkZvRU5RDma0nqH0fUqktHBvwVh2lMd4YF+gALqJFBXiRB4vRy+k5qaaXE/KwIYDYSmyxK77u/TaR16kAMD91Pt0hGcQDJFBoaBEip2FHZ6nP2dcFBmbQAFkIiVsWBj6ePeBlJTiQeoDtkPSicSsRFxJvMLYXJhg32DsGrILZkIzxLyJqVKZFCkpxcqrKxHsG4xa1WqpXEeJFH8PfxSUFCD2bawBo+ThEtwQKIB2IkUDcQKYruOsjbkNBjYcqFeZR5ETT0+g2Z/NjKbcY6gMijyl0lL02dGH8XLP84znRidQ5Fl3Yx0CNgQYpZnb/pj9MBOYoZ9PP0bPySzIRLvN7aqUmdvxJ8fx5N0TfBH4hcbPfBfxHSQbJXy5p4rCHYECaCZSNBQnFPIiZcLBCXoGyB1GNhmJe6n3cC/lHi379ajfw6gcZ63MrAAYJoNCIRQIsXHARkZ7UopLi5GYlcjZK8aaMKHFBKN1nN0Xsw/d6nWDvdie0XOqiathfb/1VcpxdsXVFWhdo7VWXkzz2s/je1KqMNwSKIBMfLSarfw9LcUJBSVS1vZdq2dw3KGnV084iB2w8/5OWvZTdJzlukgpK/EY+Aow042ziVmJkJJSo86gKDrOGotISc1NxcWEi4yVdxSRd5w1dZFyP/U+TsedxszAmWp9iBThG2erNtwTKAAQMKvia61m6yROKLydvFHHvg7S89MxKmyU0Zd7zIXmGOo7FDvu7aCt4U5epGy5swVSUkrLvkxQVuIxYAaFghIpj9Ie0f4D83nGcwDG4YGiDnmRsuM+faVIJjn46CAAYECDAQY7kxIp516cM+mZYiuvrISHrQeG+A7R+ll5kUL9N+KpGojYDkBjlIkWHXib/xbnXpxDl61dEBESATcbN1r2ZYORTUdi/a31iEqMgsRTQsuelEgpLCmEgBAgpygHNuY2tOxNJ2xlUCgknhLEfR4Ha3NrSEkpCkoKyspO+vAi4wUIEGqbCI0FsUiMsI/DysYGcPV7iSLsURg61u4IF2sXg54b7BtcdmuooKQAIoEIIoHx/GiujLS8NGy/tx3fd/ge5kJznfZwtHTEhXEXyv6Ocf17iYceuJlBUcaNZbRs4+XoZTKOs+1rt4e7jTv2PNDdtE0ZAkIASzNLJGUlocGaBpws94hFYhAgKs2gMHmdk8rizDw+E73/7U2LWHqR8QIeth6wEFnovRcXsBBZQCQQITo5GnVX1uWsT0pmQSbOxJ3BoIaDWDnf2twaJEkieHewyfmkbLi5ASRJlt0W1BVrc2sQBIFjT47Ba5UXX+6pAnBToCgTI9d/KTd7Rx/kHWe7buuKgpICWvY1NAJCgMGNBmNvzF5GyjHutu7o692Xkz0pBEHI5vHoIAq0qYFrwoimI2jrSTHGK8aa0NC5IVrXaM1ZM7fjT4+jWFqMjxp+xFoMBEFgQvMJJmXmViItwZ83/sTIpiPhbOVMy55BNYNQw64G35NSBeCeQIn6USZGlKEwIFAfKJHydZuvjcKxUxVDfIcgMSsR15Ou07431x1nrc10HxhIJ3Q2zhr7FWNVcN1x9sCjA/B394dnNU9W4zA1x9mDjw7iZdZLfNb6M9r25Btnqw7cEiiaDA6kWaSMbzEeALDp9iajLPe0r9UeLlYu2PtwLyP7y4uUT49/qteQQrrRNYPCBPIiZc21NTrvY6oZFKC8SJl0aBJnXGcLSwpx7MkxVrMn8siLFGOfOr7q2iq0q9UOLdxb0LqvvEj55OgnVdaZ19ThTieWNlONqXV63OqRJ6MgA9+f/R5LI5caXeOsUCAsK/P82v1X2ssXwAeR8mXQl3CxdgFJkoycoy1WZlbIL8lnO4wyJJ4SXJt8Dd6O3gCg9depqLQISVlJRu2BUhmUSEnMSoS50JwT30tnX5xFdlE2ZwQKIBMp0c7R8HXxBaD99xIXuJtyFxfiL+C/If8xsj8lUgpLCkEQhFF+jTQhrziPlgZ8Y4QbGRRtxAkFjZkUe7G9UTvODvUdihcZL3Dr9S3GzhAQAjRyaYRSaSnGHRzHiXKPpcgS+cXcESiArNdCKBAi4nkE+u7oq1WGJyEzASRIk82gUIhFYng5eiGvOA/9dvZj3Sfl4KODqOdQD41dGrMahyKNXRuDIAhsv7vdKH1SVl9djRq2NRhtPHa0dIS7rTtSc1PReWtnkyz3/HHtD7ZDYA32BYou4oSCRpGiaIufkpNCy76GoGOdjnCydMKeh/Te5lEGQRCwEFpwoifFyswKeSV5rMagCrFIjIsJF7XqSaGGP5q6QKEQEAKQJMmqmZuUlOLg44P4qMFHnP30bSmyxH8P/jMqkfI27y3+vfcvpgVMg5nQjPHzRAIRsouyTa4nJbswG79cVtGTWQVgX6BEzmf3eTkokdLEtYlRpdREAhEGNRyEvQ/3Ml6L5VLjrKUZ9zIoFBJPCU6OPolbr29pLFIoDxS2GzUNBTVgsHOdzqyJlOtJ1/E65zWnyjuKGKPj7MbbG1FKlup9tVhTTLVxds21NcguymY7DNZgX6BIFrD7vALeTt7YPXQ3bC1s8eTtE6Mp9wzxHYJn6c9wJ+UO42cpipSL8RcZP1MZVmZWyCvmZgYFKC9SJhyqfA7Ui4wXqGlXU2czK2NEUaTEpccZ9PwDjw7A2cqZNqNDppAXKd9H0NN7xxSl0lKsvb4Ww5sMh6u1q8HOlRcp3f/pjqzCLIOdzQRZhVlYGrUUk1pMYjsU1mC/SZZqdNWlzKPjbB5NIEkSo8JGIacoxygaZ7vU7QIHsQP2PtyL5m7NGT+PEinta7VH21ptGT9PGZYiS6TlpbFytqZIPCU4NfoUHCwdKl1rqleMK4MSKWExYajnUM+gZx94fAADfAaUud1ymWDfYBwyO4SW7i3ZDkUth2MPIz4zntarxZpCiZSL8RdhZ2Fn8PPpZM21NcgpysHc9nPZDoU12M+gAJpNMVaEQXECyHottg/ebjSNs2ZCMwxsOJCx68bKEBACjPEbAwEhwKlnp7DtzjaDnQ1wP4NC0cazDRo6N0ROUQ5mnZyFnKIcpetM+YpxZYhFYoxsOhIAsCV6i0F8Uh6lPcKjtEecLu8o0tu7N6rbVMfr7NeYHT6bk+WeVVdXoU3NNgjwCGDlfEdLRwxsOBAkSeKXS78YZbknqzALSyOXYnLLyahpV5PtcFiDGwIF0E6kMCxOKOQdZ41BpAxuOBiP3z7Go7RHBj/78OPDGHfAsLd7NLnFwyV/hCdvn2DDrQ0qb/fEZ8SjdrXaLETGHUiSxL6YfQYxczv46CCszKzQrV43Rs9hgtvJt/H7ld8515NyP/U+zr44y0r2RJGCkgLsfrjbKHtSVl9djdziXMxtV3WzJwCXBAqgmUgxkDihoERKUWkRHqc9Nti5utCtXjdYiixZmfi5svdKgzfO6ppBYeu2Rgv3FiodZ4tLi/Eq+xVq21dtgUIQBPYM3WMQx9kDjw+gl1cvWJpZMnYGU/Tx7sPJxtk119bAzcYNwb7BbIcCSzNLo2yczSrMwrKoZZjScgpq2NVgOxxW4ZZAAWTio9Vs5e8ZWJxQ+Dj5IGZGDDrW6YhSaSne5b8zeAyaYGlmiR71e+BQ7CGDn63YOLvr/i7Gz7Q0s+SUUZsmyDvO9t3RF8WlxQCApOwkkCBNYoqxvija4jPRhP06+zWuJF7BRw0+on1vQyHfODvuwDi2w0F6fjr+ufsPpvlP40yjt+LtHq5/yARkJbK84jzMaTeH7VBYh3sCBQACZlV8rdVsVsQJBXWXf87pOWi3qR1nyz0DGwxE1MsoVnxcKJEyp90c+Lv7M36epcjSKHpQFKFEyoAGA8q+rxIyEwCAFyjvoUTKVP+paOjckPb9Dz0+BCEhRF+fvrTvbUgokdLXm/1/j023N6G4tBhTA6ayHUo5KJEyqukozl/hzyzIxO9Rv2OKP589AbgqUJShTLSwwBT/KZzuSenn0w8EQeBI7BFWzhcQAvzc9Wd4O3kjqzALhx8fZuwsKzMrzvqgVIbEU4Kv2nwFQHbVNfZtLADA047bP0ANiVgkxopeK+Bi7YLErESce3GOtr0PPD6AjnU6wtHSkbY92SLYNxgjmo4ASZLYdX8XK+WeUmkp/rj+Bz5u/DEnbzw6WjpiZe+VsDKzwt2Uu5wt9/DZk/IYj0DhCIqOs1wTKS7WLpB4SnDwseH7UBT568ZfGLhrIGM9KZZmliiWFnOm/q4Lb3LfIORACH668BMcxY6wNrdmOyRO8tOFn9D73960mLllFWbhTNwZDGwwkIbIuMODNw8wZv8YVnpSjj05hucZzznRHFsZ34R/w8melMyCTPx+5XdM9Z8KD1sPtsPhBEYjUEqv/8p2CGXIixQuzkkY2GAgwuPCWZ/0O0syi9HGWcrt11izKIBMUB4fdRxJ2Ukokhax/t+MqyzvtZw2x9njT46jWFpscgKliWsT1hpnV19bjVYerRBYM9BgZ+rKjuAdnGycXXl1JQpKCjC7nYoezCoINwXKjWUVXhLeWAppJL2usfrg7eSNa5OuIbRTKADZTA+uMKDBABSUFBjES0IdTNviW4pkty+MrVFWEYmnBC3dW6KgpECr2T1VCTpt8Q88PoAWbi1M8sYUG7b4MW9iEB4Xjs8DP2f8LDrgoi1+RkEGll9ZzmdPFOCeQIn6EbiufDiSICoU0igtDd0YpIZdDQgFQpx9fhatN7TmTLnHx8kHDZ0bcqLMIy9S3ua/pXVvKoNijI2yimQXZWNQA9nU18LSQpaj4SaUSOlerzsyCzN12qOwpBBHY48alTmbtlAiJbco1yACZc21NXC1dsVQ36GMn0UXlEhp4toE2YXsz7pZeeV99qQtnz2Rh1sCRYPJxoLI+SA5JFIAmVB5nfOaUz0pAxsMxJHYIyiVlrIdCgSEAH/1+6usKZSuq36Uf4Uxl3gAmTlZQmYCAmsG4lzIOThaOiIxK1Gl42xVRiwS4+DwgxjiOwQkSWr9vXTuxTlkF2WbtEABZCLl4PCDEIvEePruKWNCJbMgE1vvbMVU/6mwEFkwcgZTOFo64mzIWbSt1RbFpcV49u4ZK3FQ2ZNp/tPgbuvOSgxchTsCRQNxQkFEzpet5whcdJwd2GAg3uS9QVRiFNuhAPhgjhbxPAK+a31pKfeYSgYloyADOUU5qFWtFgiCgJSUot+OfiodZ6s61PfSptub0Pyv5lqVMg88OoC69nXR1LUpU+FxBoIgkFOUg7ab2jJW7tkSvQWFpYWYFjCN9r0NAfW9FHouFIF/B7JS7llxZQUKSwvxTdtvDH421+GGQNFCnJQR+QNnRcrosNFsh4PAmoFwsXLBsSfH2A6lHJ3qdMLEFhNp6UkxlR6U+Mx4ACjriRAQAqztu1ap4yzPB0Y1G6WV4yxJkjgcexgDGgxgzU3Y0NiY22Btn7WM9KRISSn+uP4HBjcabPR9E7Mks1jpSckoyMCKKyswPWA6nz1RAvsCRRdxQsFRkfJHH/Zv9ggIAXp59eKcQKGzcVaTDAqXZvGoQplJm7zjLC9SlKPoOFuZSLmdfBtJ2Uno79PfQBFyA6YaZ8/EncGTd08wo9UMWvZjE7YaZ5dHLUdRaRGfPVEB+wIlcr5ej5N6Pk83Pk4+aODcANmF2ZhwcAKr5Z4+3n1wJ+UOkrKSWItBGfIi5c8bf+rcJ6NrDwrXPj0nZCbAXGgOV2vXcq9TIuVB6gNcf3Wdpei4jbxI2XBrg9q1hx8fhp2FHdrXbm+g6LgDJVLCn4Xj6buntOy59sZaNHFtgva1TOPrKS9Sdtzbwfh56fnpWHFVlj3horkdFxCxHQAkC3TPoABYWCxA95eRkHhKaAxKf97kvcHJZydxJfEKIkIiWPkG7FG/BwSEAMefHseklpMMfr46KJGSV5wHoUCI/OJ8rYe2mUoPSkJmAjztPCEgKn5ekHhKEDczDnYWdiBJEoWlhRCLxCxEyV0okUJAJjxVfS8djj2M3l69OTMnxtAE+waje/3usLOwQ1FpEQSEACKBbr8CEjITcOjxIfzR5w/OCX59cLR0xLmQc7AxtwGg+nuJDpZfWY7i0mI+e6IG9jMomkwwVkFJ0A8469YOA3YOKLMK5wr1HOqx7jjraOmINjXbcK7MQyEgBLAxt0FKTopOjbOm0oOSkJmgdgaPnYUdANkcqJ7be/LlHiWIRWJYiCzwIPUB6q2qV8En5VX2K9x8fbPKlXcUoYTuqLBRepV71t9cD2sza4xqOormCNnH1sIWBEEg4nkEvFZ7MVLueZf/DiuvrsQnrT5BdZvqtO9vKrAvUADdRIpkIURtF2D/sP1wtXZF7397IzU3lZn4dETRFp+NT/p9vPsgPC4cRaVFBj9bU1ysXdC9Xnete1KEAiHMheZGn0GJz4zXyDRsYMOBuPX6Ft+Toob6jvXRwq1FBTO3I7FHICSE6O3dm8XouAFBEBjeeLjOPSmFJYXYcGsDQvxCYGthy1CU7NPcrTncbNwY6UlZHiXLnvxP8j9a9zU1uCFQAO1EimRh2WRjB0sHHBt1DHnFeei/sz/nfllRIuXT1p+WlSQMSR/vPsgpysGlhEsGP1tT9GmctRRZGr0PSkJmAmrZVT7FWOIpwcnRJ3mRogZVjrOHYw+jba22JjEckA70aZwNiwlDam4qpreazmCE7MNU4yyVPZnRagafPakE7ggUQDORIidOKOrY18GREUdwP/U+xh0YxynbeUAmUj5p9QkAYMe9HQYt9/hV94O7jTtnyzwU8iJl2tFpeJ39WqPnrMysOCdKtaGotAivs1+rLfHIIy9SlkYuZTg640RepIQcCMHbvLc4HXe6ypd3FJEXKTvv7dT4uT+u/4HOdTrD18WXwei4gbxImXhoIi23An+P+h2lZCn+15bPnlQG+02yirT5HijOVW53r0ScUPh7+GP7oO0YvHswGp5riIWdueU2CwDZhdn4Jvwb2FnYGaxxliAI9PHug2NPjmFpD27/QqNEyoxWMzT2BLA0szTqHpSkrCSQIDUWKIBMpERNjEIDpwYMRmbcUCLlefpzXH55GQUlBbxAUUKwbzCuO16HX3U/jdbfSb6Dyy8vY8/QPQxHxh0okZJdmK13Q/DbvLdYdXUVZrSaUeHWHk9FuJVBoQiYVfG1VrNVihOKQY0GYXHXxfjxwo8GuSamLbYWtogIiTB442wf7z6ISYvB8/TnBjlPHwSEAH5ufpCSUnxy9JNKyz3GnkFR5oGiCU1cm8BMaIaol1Hov7M/b4uvBLFIjEYujXAg5gBszGzwMusl2yFxkuZuzUEQBMJiwjB2/1i15Z6119fCw9bD5CZBV4ajpSNq29dGen46em3vpXO5h8qefC35muYITRNuChRlKBMtSpjddjZC/EIw4eAEXE28ynBQ2qNoi5+Sk8L4md3qdYOZwIzzZR5FSqQllfakGHsPiq4ChYIEifMvzvO2+CqQklIce3oMLtYuGjvOVlVIksTO+ztV9qRkFGRg+73tmOo/FWZCMxYiZB8SJN7kvdGpJ+Vt3lususZnT7TBeATKjWUaLSMIAn/1+wv+Hv4YvHuwxr0MhoQSKfUd6xvkL7qdhR0knhKcijvF+Fl0oWnjrJWZFfJKjDeDEp8ZDxcrF529FnjHWfXcfHUTKbkpWNdvnVa2+FWRyhpnt93ZhqLSIkxuOZmlCNlHn8bZFVdWQEpK+eyJFnBToCgTI9d/0djW3kJkgb1D9wIAgncHo7CEe+PrfZx8cHjEYThaOiI+I57xck+P+j1w9vlZFJcWM3oOnSiKlLPPz1ZYY2mmPoPCdav7yjxQNEFepIw9MJamyEyDw7GHYS+2R+c6ncvZ4nPNN4kryIuUOafnlL1OkiTWXl+LwY0GV/mZMfIipeu2rkjPT6/0mYyCDKy6tgrTA6bz2RMt4J5AifpReYMsoNXsHXdbd4R9HIabr2/i8+Of0xggvZAkidH7RzPek9K9XndkF2XjahL3yl7qoETKhv4blFqU69KDwiXnSzoECvDhds8PHXR3ZTZFDsceRh/vPjATmpU5zq7tsxbejt5sh8ZZgn2DsX/YfswMnFn2WsTzCDx++xifBHzCYmTcgRIpa3qvgYOlQ6XrV11dhaLSIj57oiXcEiiaDA7UQqQE1gzEur7rsP7Wemy4qX5OB1sQBIFNAzYx3jjb0r0lHC0dceqZ8ZR5KASEABNbToRIIMLF+Iv4584/Ze9Zioz7Fg9lc08HbTzbwM/ND/nF+Zh3Zl6VL/e8zHyJ6OTocrd3xCIxxrcYD4IgsPvB7gqOszwy+vn0g2c1T6TlpeG7iO+w+tpqNHZpjA61O7AdGmdwtHTEsCbDAABrrq1RWe7JKszC8ivLMaXlFH7mjpZwR6BoM9VYC5EyvsV4TPOfhs+Of4abr27qESBzKDrOMiFShAIhutbtivA44/6BvC9mH0IOhJT1pBj7LZ7ErERaMijyxL6Nxeprq6t8T8qR2CMQCUTo5dWrwnskSWL73e0VHGd5ynPj1Q38cvkXHHx8EFP9p3Iq+8gVCksKsTl6s8qelDXX1iCvOI+fuaMD3BAo2ogTCi1EyopeK9C0elMM2TME7/Lf6RAg81AipaCkgLFR3z3q98C1pGsa1Uy5yu89fy/XOGvMt3iyCrOQXZSNmnY1ad3Xz82Pd5yFrLzTvlZ72IvtK7xHEAR2D91dwXGWpzy9vHqVXSk+H39e59k9poyFyEJl42xOUQ5+j/odE1tMRA27GixGaZywL1B0EScUGooUqmk2qzALY/aP4ZzTLIW3kzdiZsSgR/0eIEkSGQUZtO7fvV53SEkpzr6o2GxqLCg2zj5Pf260GZTErEQAoF2gABVt8bnYKM4kuUW5iHgeodacTdEW/9yLc4YL0EgoKi3CpYRL6FW/Fw4+PoiQAyGcbzxnA8XbPTFvYgAAf17/E1mFWZjTbk4lO/Aog32BEjnfIM/Xtq+Nfwf/i2NPjuG3y7/pdyaDWIgsAADzz82HZKOE1nJPbfva8HHyMco+FHkokfK15Gt4VvM02h4UJgUK8EGkdKvbDeZCc0bO4CrhceEoLC1E/wbq3WMpkTK++Xj4OPkYKDrjISwmDCm5KVjaYyl2Be9C5zqd+TKPCiiRMsR3CGra1URecR6WRi3FuObjaC/jVhXYFyiSBQZ7vpdXL8xtNxffRnyLywmX9TuXYUY3G81IT0r3et2Nvg8FkImUX7v/iroOdZFblGt0JnSATKAQIBi9tinxlOD7jt+DIAiceHqiyjjOHnp8CA2dG8LL0avStWKRGGv7yhxSU3NTcSH+ggEiNA7WXl+LTnU6obFrYwT7BmNSy0kAgAOPDvDlHiU4WjpiXb91sLWwxaILi5CWm8ZnT/SAfYGizRRjRdTM5lHFws4LEVQzCCP2jcDbvLe6nWsAFB1n6RIpPer3QFx6HJ69e0bLfmxjKbJEbnEu+u3op9UUZC6QmJWI6jbVDZLdSM9Px4h9I6qE46yUlOLok6M6zd756cJP6Lm9J2/mBuBeyj1cTLhY4Wrx47THGLpnqNZTkKsSBSUF+D3qd5gJzarMhwImYF+gALqJFB3ECQCIBCLsDN6J3OJcjD84ntP1VHmRQtfk2k51OkEkEBl9mYfC0swSUlKKCS0mVGqLzzUSsxIZK+8o4mDpgKMjj1YJx9nrSdeRmpuqk0D5pfsvvOPse9ZeXwt3G3d81PCjcq83cG6g1nGWB9h4ayOKSovg5eilky0+jwxuCBRAO5Giozih8KzmiS0Dt+Bw7GH8eeNPnfcxBD5OPoiaGIXFXRcD0N8Z1c7CDq1rtEbEiwg6wmMdS5HMIl7xdo8xYEiBAlQdW/yjT47CQeyANp5ttH6WMnOr6iIluzAb2+9tx+SWk5WO46jMFr8qU1hSiCWXl2Bk05G4MP6CTrb4PDK4I1AAzUSKnuKEon+D/vgk4BPMOjULD1If6L0fk9SqVgtmQjNcSbyCNhvb6F3u6VynM869OMfp7JGmUDNsikqLym73UAP4uE5iViJq2hpOoAAfREphSaHJpp6PPTmGXl69IBKIdHqeEind6nXDq+xXNEdnHOy4twN5xXmY7K967g4lUtLy0qrcLTF1bInegqSsJHzb/tuyxtmGzg3xJvcN26EZHdwSKIBMfLSarfw9msQJxdIeS1HPoR5G7BuBgpIC2vZlCidLJ7zMeql3T0rnOp2RlpeGB2+4Lcw0QSwSA5DVfAWEAH/1+wvfd5R9j8Slx3FahL3MemnQDAqFxFOCqIlRqG5THSk5KSaVSXmd/Ro3X99EH+8+eu0jFolxaPghjPWTzTaKS4+jIzyjgCRJ/HnjT/Tz6Vfp92ewbzBOjT4Fa3NrxGfEV/lMSnFpMRZfWoyhjYeikUsjALLG2YvjL6Jrva4olZbiRcYLdoM0IhgVKARBTCcI4q6dnR3s7OzQpk0bHD9+vPIHA2ZVfK3VbFrFCSD79L0zeCdi38Zi7um5tO7NBHQ5zrbxbANzobnS4XvGhrxAAT7M2bmccBk+q32UfgLmwjXJnKIcZBRksCJQANnXgCRJDNg1wKTKPSeengABAj3r99R7L+r75N+7/6Lx2sZVxsztWtI13Em5g2n+0zRaTxAE8ovz0W5zuypf7vnn7j+Iz4zHd+2/K/c69b20+NJiBKwP4Ms9GsJ0BiURwJwbN27gxo0b6NKlCwYOHIgHD3T45K5MtNBAs+rN8HPXn7Hi6gpEPOd+X4a8SPl4z8c6ZQiszKwQWCPQqA3bKBQFCkUbzzaY0GICZ8t3SVlJAJjzQNEEgiCwvOdyk3KcPfb0GAJrBsLF2oW2PYN9g6uU4+y6m+tQx74OetTvofEzlmaWWNFzRZXuSSmRluCniz9hcKPBaFq9qdI1n7T6hO9J0QJGBQpJkodJkjzm4+MDHx8f/PTTT7CxscGVK1eYPFZrvgj6Ap3rdMa4A+Nod29lAkqkrOmzRudsQOc6nXE+/jxnXXU1hRIoinb3lJkbV+2lmTZp0xRFx1ljFinFpcU49ewU+njpV95RRNFx1pRFSnp+Onbd34UpLadAKBBq9WxVb5zdeW8n4tLjKmRP5FF0nOVFinoM1oNSWlqKXbt2ITc3F23aKO+uLywsRFZWFrKzsyu+eWMZY7EJCAG2fLQFmYWZ+Pz454ydQyfeTt5oVr0Z8ovzMf3IdK3LPZ3rdsa7/HdG/xdEVQYFkP13perAXIMSKFwQUJRIuZtyF5cSLrEdjs5cfnkZWYVZevefKENepKy6tor2/bnCP3f/QYm0BBNaTNDpeUqkHH9yvMzuvSpQKi3FoouL0N+nP1q4t1C7Vl6kbLy10UARGie6tblrAUEQTa2trVFQUAAbGxvs378fvr6+StcuXrwYCxYswM99gLldFN68/gtgZk17HwpFrWq1sLr3aoQcCEFwo2AMbDiQkXPoJjknGYdiD+F8/HlEhERoPM47qGYQLIQWOPv8LJq7NWc2SAZRJ1AAgAD7/SbKSMxKhLOVc1n8bCPxlCDu8zg4WDqAJEkUlRaVjV0wFo49OQY3G7dKf0HoCiVSqKxjYUmh0X2N1EGSJNbdWIdBDQehuk11nfcJ9g1Gl7pd4GDpUJZF0fVGlbGw+8FuxL6NxfZB2zVa72jpiLMhZ2FtZs1wZMaNITIoj6Ojo3HlyhVMnz4dISEhePjwodKFc+fORf7ZbyuKEwotJhjrwphmY9DPpx+mHpnKaZdZeeo61NXJcVYsEkPiKTH6PpTKBIoyuFDGM7QHiiY4WDoAAH688CN6bO9hdOWeY0+OobdXbwgI5n6siUViWJlZ4cnbJ/BZ42NSPikXEy4iJi0G0wI0a45VB/W9NOnQJJMv90hJKRZdXIReXr3QqkYrjZ+zs7DTuoxW1WBcoJAkWeTl5YWAgAAsXrwYfn5+WLlypdK1Frd+hfjmT+o3ZFCkEASBv/r9hcLSQsw8MZORM5hA0RY/u1BJiUwJnet0xoX4CyiVljIcIXNQRm3aCJSkrCTWzdwSsxPhaefJagyq6Favm9GZucVnxOPBmweMlHeU4VnNE01cm5iUmdu6G+vg4+SDznU607Znf5/+Jt+TEhYThodvHuKHDj+wHYrJYXAfFJIkUVioxNQn6keZ+NAEBkWKh60HVvVahX/v/YuDjw4ycgYTUCJlQosJsDG30eiZznU7I7MwE7eTbzMcHXPokkFxsHRg3XGWixkUCmN0nD325BhEAhG61+tukPNMzXE2NTcVex/uxVT/qbRewzf1xlkpKcWPF35Et3rddHIu5lEP0z4oPxME0f7Fixe4d+8evv32W5w7dw6jRo0qv1AbcULBoEgZ3Ww0+nr3xSfHPkFmQSYjZzCBj5MPvpZ8DYIgsD9mf6XlntY1WsPKzMqo/VCoQXvaCBQPWw9MajkJU45MwcvMl0yFphYuCxSgvEj5+eLPbIdTKceeHkO7Wu1QTVzNYGfKi5SR+0YahZBTxZboLRAQAoT4hdC+t7xI2RK9hfb92eTw48O4m3IX33dgpjeyqsN0BqU6gH8aNGiArl274urVqzhx4gS6d5f7lKOLOKFgSKQQBIE/+/6J7MJsfBP+De37M01ecR5mnphZaU+KudAcbT3bGnUfCkEQEIvEWjsBr+u3DpfGX4JnNcOXWQpKCpCWl8ZpgQLIRMqlCZfKnHm5Sn5xPs7EnaH9erEmUCIlfEw4rM2Ns+FRSkqx/uZ6fNz4YzhZOTFyRrBvMKImRul8O4iLkCSJhRcWomPtjuhQuwPb4ZgkTPugTCRJsk5hYSFSU1Nx+vTp8uIEACLn63eIvs+rwLOaJ5Z0W4L1t9bj/IvzjJzBFFZmVjgz9oxGjbOd63TGxYSLKC4tNmCE9CIWiZFfkq/0PVVGdgJCgFY1WoEkSXwT/o1Byz1cMGnTlGbVm0EsEuP269sY/N9gTs7vOR9/Hvkl+QbrP1FELBLDz80PxaXFCDkQYnQ+KWfizuBZ+jNammPVEeARAAEhwImnJzD+4HijL/ccf3oct17fwg8d+d4TpmB/Fo9kgV6Pn/WoTVMgFZkWMA3tarXD5MOTjWJWjzya2uJ3rtsZOUU5uPX6loEjpA9tMyjyNXYSJDIKMgzak8IVkzZtKCgpQHhcOPru6Ms5kXLsyTHUrlYbvi7K7QsMhZSU4k3uG6Mzc1t3cx2auDZBm5qG6aHIK87D9rvbjbonhSRJLDy/EBJPCa1NxTzlYV+gaDLBWAXna9RHl9gXOPx4JM1ByRAQAqzvtx4vMl5g8cXFjJzBJJRIqWlXU6UfSEv3lrAUWRq1QZcuJR4KynF2UstJBhMpZSZttuybtGlKG882ZY6zXBIpJEni6JOj6OPdh/UZSxYiC6NznH2V/QoHHx3ENP9pBvv6DW402OgbZyOeR+Bq0lV81/471r/vTBn2BQqgm0iRLETH4U9xdORY9PXZCUC/TIwqGrk0wpx2c7D40mI8SnvEyBlM4u3kjVNjTqG6TXW8zn5dIZNiLjRHUM0gXHpZNQUKUFGknHp2isboKpKYlQgHsYPR9SzI2+KP3MfMhwJtiX0bi7j0ONbKO4oo2uJzdRYUxcZbG2EhssDoZqMNeq584+zXp7426Nl08NPFn9DSvSV6efViOxSThjv2fpRDrCYNs5KFZev7eG8F0AAnnn6Lm68u4NsOZ2gPbV77edh5fyemHpmKcyHnjFYxj94/Gq+zX1dwnG1Xqx3+vPEnSJI0yn83S5Gl3iU4SqQ0d2uOjrU70hSZcrh+g0cdlEhh0gxNG449OQYLoQWn0uyUSNl8ezNnRy0AMnv2Dbc2YGSTkQa9/UQR7BuMfcJ9rJfmtCXqZRTOvjiLvUP3GuXPS2OCGz9lKDTJpMiJkw/Mw92UnvjubAQWnKP/B5VYJMafff/EhfgL2H5XMytjLvJn3z+V9qS0q9UOaXlpiH0by2J0uqNvBoVCQAjwSatPYCGywI1XNxj7b52YbbwCBZCJlKCaQSgqLULouVBWyz3Hnh5D57qdOZeNEovEmN5qOgSEAEdij3DSJ+X40+N4mfWS8eZYdQxoMABejl7ILMjEgnMLjKLc89PFn9DIuREGNRrEdigmD7cECiATH61mK39PqTiR8U3bE/ipS3eEnj/HiEjpVq8bhjUehq/Dv+aEVbouKDrOUiIlqGYQBITAaPtQ6BIo8uy8txNj949lpCfFmDMo8sS+jcXvUb+j746+rHiAZBdm4/yL86xcL9aGjbc3ctLMbd2NdQjwCIC/hz/boeBa0jUsuriI8z0p0cnROPrkKOa2m8uZLKIpw82vcMCsiq+1AtBGfbjz2p8qEykrrtBfG1zWYxnyivPwfQS3fSHUQYmUnKIcXEu6BkA2E8Kvuh8uJlxkOTrdYEKg/NbjN8YaZ01FoDRxbcKq4+yZ52dQLC3mTP+JKnYG7+Sc42x8RjyOPTmGqf5T2Q4FANC9fnejaJz9+eLPqGtfFyOajmA7lCoBNwWKMgK+AfAdAPWzeua1P4XVvfuhv89J0N04W8OuBkI7hmLtjbW4/dp47eF9nHzw+NPHGNBgAEiSRFZhFtrVamfUGRRVPii6otg4S1e5p6i0CCk5KUZ1g0cdirb4hryOf+zJMTRwaoD6jvUNdqYuKNric8G5ecOtDbC1sMXwJsPZDqUM+cbZsfvHqvQwYotHaY+w9+FezG472+SnM3MFTgqUjZs2VnzxBgGZ4KhcpHza+jDqO/6EzIJQbLw1kNbYPg/8HA2cGuDzE59z7i+QNliayYbs/XL5FwT9HYQmrk3wLP0ZXme/Zjky7WEigwJ8EClftfkKDZ0b0rJnck4ySJAmkUGhoESKpKYEFkILg5xJkiROPD1hNLcoKJEyptkY1HWoy2osJdISbLq9CaObjtZ4bpehoERKYI1AzjWgLrm0BG42bhjXfBzboVQZOClQJjbLqPji9V+AKM1FCjAPBx4FY9LhQ7T2pJgJzbCy10pcSriEXfd30bYvWwQ3CkZmYSaWRi4FAFx+eZnliLSHKYECyETK0h5LEeARgMKSQr29LV5lvwIgmwdkSkg8JVjcbTEIgsDZ52cZb5yNSYvBy6yXRiNQANn36fr+61HHvg7S89NZy1gejT2K1zmvMdl/MivnV0awbzBmBsmmyR9/cpwT5Z4XGS+w/e52fC35GhYiw4hwHi4KlKgfZWJEGZE/aCVSQprvZaRxtnv97hjUcBD+F/4/ox4QBnwwc8stzoWZwAwnn55kOyStYVKgyLPx9kb03N5Tr54UUxUoFFmFWRiyZwjjZm4nn56EWCRm/Eo4U/x08Sd0/6c7K2ZuG25tQIBHAJq7NTf42doQlx6HAbsGcKIn5dfLv8JebM+Znp2qArcEiiaDA7UUKfKNswvP0ydSlvVYhrS8NCy5tIS2PdmCEikigQgHHx9kOxytUeeDQmcZblrANL0bZ19lv4K50ByOlo60xcUl7CzscHjEYcYdZ088O4EOtTuUlSqNjUVdFrHiOJuYlYjjT49jcktuZk/kqedQjxONs6+zX2PT7U34IugLzl1nN3W4I1C0mWqsg0j5uUsPVLM4B7oaZ+s61MWsNrOwNGopEjITaNmTTbydvPFdh++QlpeG7MJso+qv0WcWjzbQYYv/KvsVPGw9OFdfpxN5x1kmREp+cT4uxF9Ar/rGU95RRNFx1lAiZdPtTbAUWWJEE+O4hSLfOMuWSFkWtQwWIgt82vpTg59d1eGGQNFGnFBoKVLmtj+JmUE/AQjF1UR6Pj3MaTcH9mJ7zD0zl5b92GZQw0EgQeLfe/+i/eb2aqcgcwlDlXiA8iLl4ZuHWj//KvsV3G3cGYiMW1AiJbMgk3bfoPPx51FQUoCeXj1p3dfQUCKlS90ueJb+jPHzSqWl2Hh7I4Y3GQ5bC1vGz6MLSqS8zHyJvOI8g579Nu8t1t1YhxmtZsBebG/Qs3m4IFB0EScUWooUYB5uvJqOoI1/09KTYmthi0WdF2HHvR24knhF7/3YpqFzQzhZOuFB6gM8z3iudgoylzCkQAE+iJQl3WTlPW0yaK9zXpts/4kiEk8Jbk29hZp2NfE27y1tmZQTT0/A084TjZy5ayOvKWKRGIdHHC5zc2UyGxseF46EzASjKO8oEuwbjAvjL8DOwg5JWUkGy6SsvLoSUlKKL4O+NMh5POVhX6BEzqfh+R+gqUgJ8FhLa+PsuObj4FfdD7NOzTKqsogyCIKAxFOCR28fKXWc5SpikRj5xfT6oFSGgBCAIAhcT7oOr1VeGpd7qBJPVUFACECSJAb9N4g2x9mTz06iZ/2eJlMmoxxJ9z3chwZrGjBm5rbh1gY0dW2K1jVaM7I/0wgIAQpLCtFhSweDlHuyCrOw+tpqTPGfAhdrF0bP4lEO+wJFomdPSNnzmosU+cZZfUWKUCDEb91/Q+TLSOx/tF+vvbhAUM0gXEu6Bi9HrzKRMvi/wZwWX2KRGIWlhazE6O/hj3HNx2nck1LVBAogE75Lui2hxXE2PiMej9IeGdX1Yk3p69OXMcfZlJwUHHp8CJNbTjZqYWchssCv3X41SE/K2utrkVuUi68lxjdt2VRgX6BoMiBQFRVm82gvUo49PYeCku90O/893et3R8/6PTHn9BwUlxbrtRfbBNUMQlZhFh6lPSqzxV/RawWnf6iJRWIAQGFpocHP1qZxtqCkAO/y31U5gQJUdJzVVaScfHYSQkKIrvW60hwh+yg6ztIpUrZEb4FIIMLoZqNp25MtDNE4m1ech9+jfse45uNMylTR2GBfoAC6iRSVgwO1EykXxi2AWPQT0vPnaHe+Ar92/xVP3z3FXzf/0msftgnwCAABoqynxsfJB61rtEZRaRG+OvkVJ8s9lEAxZB+KPPIiZfGlxSgsUS6UKJfeqihQgA8iJTo5WudfvieenkBQzSCTbViUFylLLi2hJSsoJaX4+/bfGOo7FA6WDjREyT6USDn8+DDuJN+hff+Ntzbibf5bzG6rYnAtj0HghkABtBMpku4qpxrL0FykWIh+QEbBd/Bb94te5Z5m1ZshpHkIfrzwI6vj5/XFzsIOjV0b42ri1XKvJ+ck478H/3GyJ4XywmBLoAAfRMrlCZdhIbJQmkkzdZM2TZB4SvDs82cY2FA2gkKbjGNxaTHOPD+DnvWN+/ZOZVAiZf+w/SAIQu+s7LkX5/D03VOjbI5VR7BvMF588QL+Hv6QklLaMilFpUX4NfJXjGgygvNznkwd7ggUQDORIukEtAkHoMJttgzNRYq9+EdMC9C/J2VBpwXIKMjA8qjlOu/BBYJqBOFKUvlbSbWq1cK5kHOcbJxlO4NCISAEcLJyQkZBBgI2BFQo9/ACRYazlTMAYGnkUnT7p5vGgv5K4hVkFWaZZP+JImKRGLYWtniR8QKN/mikl0/Khlsb0NC5IdrVakdjhNyA+l769NintJV7/rnzDxKzEjG3nWnYRxgz3BIogEyktFKRVpMsBNpEQCY+5oBOkUJH42ytarUwo9UM/Bb5G97kvtFpDy4QVDMI91PvI7swu9zrlOMsJVIyCzJZirA8XBEoFHYWdgisEVihJ+VV9itYiixRzaIai9FxB4mnRCszt5PPTsLJ0gkt3VsaIDpu4GbjBh8nH53N3NLy0hAWE4ZJLSZxuo9MX7rW7UpLT0qJtARLLi/BoIaD0Ni1MY0R8ugC9wQKAATMqvhaq9nvyzoEgFAwKVIWXzqHp+8+1zps2R7zQBAEFl9arNPzXCCwZiCkpBQ3Xt2o8B4lUoY3GQ47CzsWoquIOoHCxs0eVY2zr7Jfwd3W3aR/UWiDto6zJ56eQI/6PSAUCA0UIfvo6zj7z51/QJIkxvqNZShCbkBX4+yeB3vw9N1TzGs/j+YIeXSBkwJl46aNFV8sJ1qYFSkPZ8yCl+NqkGSopiGX4WzljK+CvsLa62uRmJWo9fNcoJFzI9ia2+Jq0lWl73s7eeOHjj+AIAgcf3Kc9XIPJVA09UIxhECQFykTD01EXHocXuVUvSvGlSEvUkLPhapcl5qbipuvb5p8/4ky5EXKsL3DkFWYpdFzJEliw60NGNRoUJXw8ZAXKetvrtf6eZIkseTyEvSo3wMBHgEMRMijLZwUKBMnTNRgFXMipZ7DUpDkIkw9skCncs+Xbb6EjbkNfrpQmbMtNxEKhGhdo3Wl7rgFJQWYfnQ66z0pXCvxUFAi5fy486jnUK9KeqBogsRTggvjLiC0U6jKNVTmoEf9HgaKiltQIuXk6JMaZy4jX0YiJi3G5Jpj1RHsG4wL4y5giv8UrZ898fQE7qbcxZy2+t3o5KEPTgoUpdxYpuRF5kQKQXyLOva69aTYWdhhdtvZ+Pv234hLj9PqWa4QVDMIVxKvqC2RiEVinBpzivXGWa4KFEAmUtrWagsAuJtyFxn5GewGxFFauLeAjbkNYt7E4OM9H1co95x8dhJ+1f3gbmv6c4xUIRaJ0apGK5RKSzH9yPRKr2pvuLUBde3rokvdLgaKkBu08WwDkUCEC/EXMOnQJI3LPYsvLUZgjUB0qtOJ2QB5NIabAkWZGLn+i2xuTwWY70nRRaTMaD0DzlbO+PGCspi5T2CNQKTkpiA+M17tOsrMjU2RwmWBQkGSJDILMhEeF67TFOSqQkZBBk48PVHOFl9KSnHy2ckqcXtHE0qkJUjISlBr5pZRkIHdD3ZjUstJZVb6VY20vDRsvbNVo56UywmXcTHhIua0m8P3iHEI7n3nRv0oEyPKiPyBVZESFjOskn0/YGVmhTlt5+CfO//g6bunGj/HFQJrBgJABT8UZVAixcXahRUnXUsR+z4olZFXnIdiaTE61emksS1+VaSNZ5sKjrN3ku8gNTe1SvafKMNCZFGp4+yOeztQVFqE8c3HsxAhNxjcaLDGjbNLLi9BI+dGGNBggAEj5KkMbgkUTSYbsyRSDgwbhQENdr9/RjOm+E+Bq7WrUWZRXK1dUc+hnsZTmn2cfHAu5Bw8q3kiLS/NoJkUC5EFAG4LlNc5MhfZb9t/W3a75/iT4yxHxU3kbfGH7hmKE09PwNrMuqxUxlPRFv9uyt2y96jm2H4+/ap0SQwo3zj7xYkvlK65l3IPR2KPYHbb2VU228RVRGwHUIYm4oSCWlfBTZYSKYBMpACAOqti6jxqFs+3KlcObLgdgC8uxH+LywkXMbd95VbdlmaWmNtuLr44+QW+bf8tfJx8Kn2GSwTVrGjYpg4qNRpyIATP058jIiQCbjZuTIVXhkgggkggQn6JYScaawNl0lbTribW9VuHxi6N0bFOR5aj4i6USCkqLULouVB0qdsF5kJztsPiFJRIWXdD9v1EcfP1TUQnR2NR50UsRscdgn2DsVewF16OXkrf/+XyL/C088TIpiMNHBlPZXBDLmojTihYyKQA83AtqRfmRZzRuCdlsv9kuNm44eeLP2u0nku09miN269va122WdFzhcF7UiyEFipn4HABSqC427pDQAgwM2gmrMyscD/1Pnbc28FydNxE4ilBgEcALidcBgCjHiHBFGKRGF8EfQGhQIgzcWcQ/iwcG29tRA3bGnzPjhwDGw5EY9fGyC3KxeKLi8vKPc/Tn2PX/V34WvI1zIRmLEfJowj7AkUXcULBgkj5WnJcq8ZZsUiMbyTfYPvd7UZ3o8ffwx+FpYV4+OahVs8pOs4aQqRYiCxYmWasKa+yX8HazBq25rblXt92ZxtGh43me1JUcCH+AkrIEpx5fkZjx9mqyp83/sSAXQOw7e42jGs+rkoZ2mnK1aSr+OHcD2U9KUsjl8LB0gGTWk5iOzQeJbAvUCLnM/S8YRpnl0VW3rg32X8ynKycsPiicbnLNndrDgEhUOooWxmUSMkuysaF+AsMRFceY8igeNh6VLghsKTbkgqOszwfCH8WDk87T5wafUorW/yqyPbB29HAqQHyivPg7ejNdjicpEvdLmU9KUN3D8XG2xvxeevPYWVmxXZoPEpgX6BING86Vf68OuMmZkXKip590dv7FCprnLUys8L/JP/DljtbkJCZUEkM3MHG3AaNnBvpJFAAmUh5NOMRPm78MQCUXRtlAmPIoCgzaVO0xd92ZxsL0XGX8LhwdK/XHW1rtS1ni59XnMd2aJxDLBLDXmwPR0tHTDs6DWfizrAdEiehGmcPxR5CKVmK6a2msx0SjwrYFyiaTDBWhaQD0OYkAGUmbhTMiZSZQUfg6/ITcotCsTV6kNq10wKmwdbcFssi1cXKPQI8AnDjtW4CBQCsza0BAKuurkKrDa0YK/eYC82VZlDYmMWjDHUuspRI+Tzwc9RzqGfgyLjL6+zXePDmAbrX7w7ggy2+X3W/Mu8bng/EpcfhfPx5/NrtVwxvMhw17WqyHRJn6V6/O8RCMQJrBJZNRObhHuwLFEAnkbLZqi7yAo4BmAfga7AlUoB5OPBoKMYdPKC2J8XG3AYzA2diw60NSM1NrWRP7uDv7o+7KXdRVFqk1z69vHox2pNiIbTQOEY2jJhe57xWa3MvIARY0WsF2tVqhxJpCc4+P2vA6LgJ5e8h74Qq8ZRgVe9VEBACRL6M5Ms9cmyJ3gJbc1uMaDoCmwduRgPnBsguzEbUyyi2Q+Mc626sQ7G0GP8N+Q8AEPE8Qq8pyDzMwA2BAmglUl74TsRn6anov3MA8orngW2RMqrZbo0aZz8L/Ez2i+jKikrO5g4BHgEoKi3C/dT7eu3DtOOssZZ4lLElegu6buta5XtSwuPC0dytOVytXSu8l1uUi492fVTOcbYqUyotxZboLRjRZES5fooll5agy7YuldriVyUKSgqw/MpyhPiFoIZdDSRkJqD3v731moLMwwzcESiAZiJFshB1ev+N46OO42riVc6IFE1s8R0tHTE9YDrWXl+r8URStvFz84OQEOrchyKPvEj5PkLRw0Y/LITcFSjZhdnIKcrR2BNmQosJVb5xliRJnI47je71uit939rcGgeGHyjnOFuVOR13Gi+zXmJiy/KDVr/v+L1ax9mqyNborUjJScH/2v4PAFCrWi3sGLxDI8dZHsPCLYECyERKKxXmapKFZeZs7Wu3x/FRx3Hz1U1cTogEsAhcESlCwTmoapz9IugL5BXn4a8bf1VyLjewMrNCY9fGtAgUQCZSLo6/iBW9VtCyH4WFiLu3eKhskbuNZq6eio2zVVGkPHzzEK9zXqNbvW4q18g7zlZ1kbIpehMauzRGK49W5V5XdJyt6iKlRFqCXyN/xRDfIeWMM+UdZ3mRwh24J1AAIGBWxddaAWhT3kOife32iJsZh+71u4MkgaLSH8AFkfJdh58AhOL262kV3q9hVwNjmo3B8ivLOfsLVZEA9wDaBAoA1HOoB2tzazx885C2cg+XMygpuSkAoJWrrrxIuZZ0janQOEt4XDgshBZoX6u92nWUSHmT+8aoervo5G3eWxx4dAATWkxQ2l8lL1LuJN9hIULusPfhXsSlx2FOuzkV3qNEypO3T5BdmM1CdDyKcFOgKCPgUwBfAlhR7mVHS0cAQOi5UPTa3psT5R5gHu6mfAb/9X8pLff8r+3/kJyTjO13t1eyDzfw9/DH/dT7tM+6MROY4fHbx7SIFGPIoGhr+0+JlNV9VgOQ3WqpKoTHhaNdrXawNLOsdK3EU4J70++hrkNdZBVmVbnG2R33dkBKSjG62WiVa8QiMQ4NP4RZEtmHP8rZuCpBkiSWXFqCHvV7oKV7S6Vrgn2DcXXSVThYOiA1N5XPpLCM8QiUG9YAvoEykQIAXet1xbWka+i3oz8nREqz6quwSEVPSkPnhhjQYACWRS2DlJRWcib7BHgEoFhajHsp92jdl07HWS5nUJJzkmEuNIe92F7rZwWEAAJCgDvJd1BvVb0qUe4pKi3C+Rfn1ZZ3FKFcU4fuGVqlzNxIksTG2xsxoMEApc3E8lBfoyOxR+C1ygvhz8INESJnOPH0BO6k3MGcthWzJ/IIBUIUlxaj45aOfLmHZbgpUG4oERXXfwGiVIuUDrU74NioY5wSKeoaZ7+WfI2YtBiceHqikvPYp1n1ZhAJRLSWeSjkRUr/nf119i3hegbFzcZNr+vNTas3xZhmY6pET8qVxCvILc5V2SCrjvkd51cpx9nbybdxJ+UOJjSfoPEz3ep1Q+e6nTFg14AqJVKWXF6CwBqB6FSnU6VrzYRmWNR5Ed+TwjLcEyhRP8rEiDIi52ssUpZc+gVcapwNe3QOecUfpiW39WyLwBqBWBq5tJKz2EcsEqOpa1NGBArwQaT83uN3nX+JmwvMOZ1BqW5dXa89qlLjbPizcDhZOqGFewutn6XM3KqKSNl0exPcbdzR06vykRsU8j0pVUWkRL6MxIX4C5jTbo7GP2P4xln24ZZA0WRwoAYi5eL4i5jXfh5kwoMbIuXKxFBYmf2MrMK5stMIArPazMLZF2dx6/WtSs5iH393f70cZSvD28kb7Wu3R4m0BHNPz9W63GMMGRR9kRcpoedDkV+cT0N03CM8Lhxd63WFgNDtxxMlUm6/vo2jsUdpjo475Bfn4997/yLELwQigUirZ+VFSuj5UM44LjPFkktL0Mi5EQY0GKDVc5RIOfDoAK4nXWcoOh5VcEegaDPVuBKR0sK9BcQiMW69voUhu4dyotxjaTYf2YU/oOVfS8rKPYMaDULtarWNwritpXtLPHzzkHERkJyTjG13t2ndk6LKSZYLP3jpEijAB5FyZeIVWJpZmtynuoyCDFx/dR3d6mref6IMiacEsZ/FYliTYQBgcl8nADjw6AAyCjIwoYXm5R15KJFyZMQREARhkl8jQHZl/XDsYXzT9hudRG+wbzCez3yONp5tQJIkSqWlDETJowxuCBRtxAlFJSIFkLlNnnh6gjNmbrYWCzChxYeeFJFAhM8DP8eu+7s4f0OjuVtzlEhL8PDNQ0bPqWlXUyfHWW2cZA1tdZ+Sm0KbQAFkIqW6TXVkF2aj7aa2JlXuOfv8LKSktGz+jj5QX/M/r/+Jbtu6mZxPyqboTWhfqz28nWSTi9deX4txB8YhLCZM4z3EIjEcLB2QlJUEv3V+JumTsjRyKTxsPTCy6Uid96C+l2afno3R+0ebrJjjGuwLFF3ECUUlIoUyc+Oy4+zEFhNhIbLA2utrKzmDXZpWbwoCBKKToxk/S9EWPz0/vdJnLITcLPFISSlScugVKBTW5tbwq+5nUj0p4XHh8HL0Qh37OrTt6efmh1uvb5mUmduLjBc4E3emLHvy142/8PDNQ2z5aAsOPT6k9X5OVk6oY1/H5MzcXmW/wva72/Fl0JcwF5rrvV9gjUC+J8WAsC9QIufr+XwogCXQRKSM2T8WXOlJ+alLdyy6eA6vsr/FhOYTsO7mOtp9RujExtwG3k7eBhEogEyknAs5hwENBqCauFql67k6iyc9Px3F0mJGBIopNs6ejjutd3lHEVN0nN0SvQXW5tYY6jsULzNfYuGFhfipi+znji4/R0zVcXbllZWwNLPEFP8ptOzHN84aFvYFikS5Jbx2zxPQRKTMbjsbXGqcvT/9CzRy+QMzWkmRlpeGXfd3VbI/u7Rwa4HbybcNdp63kzeWdFsCASHA2edn1ZZ7uJpB0dWkTVPkRcqEQxPwOO0xI+cAsn4eJn174jPi8eTdE1rKO4rIi5S5Z+bSvr8hkZJSbI7ejOGNh8Pa3Brzz81HP+9+qCauhqLSIpgJzXTaV16kBO8O1ihzyWUyCzKx7uY6TA+YDjsLO9r2lRcpq6+upm1fnopo1/rNBO9n6+hU5pGbzfNBpAAykQIAX5QtbV9bZpldVFqEJZeW4GvJPFiZATKRAgBK7PXL9g19/78pgx8Vs4IAyEQKIBMpAPCtqoVo4LwcJOmMdTe/g7ejI1ZdXYUQvxCD90hoSnO35jj25BikpFTnGxa6UFRahEmHJ8FCaIGIkAilv+y5mkFhWqAAH0TKiCYj0MC5Aa175xTloN2mdkjOSUZaXhr+HfxvWeMp3YTHhUNACNC5juqJ4Pog8ZTgbMhZ1Hesz8j+hiLieQQSMhMwocUExGfEY9udbbg4/iIA4NSzU5DUlOi8NyVSbr66CQdLB7pCZoX1N9ejoKQAnwd+Tvvewb7BiLCOQGDNQNr35vkA+xkUQLMpxgocdm4NMug7hVfVZ1IA4FHaI/x6+VfOmLkRxLdwtuqOJ+/e4XbybVxKuFTJ3uzR3K05souy8SLjhUHPNRea4/io42obZy2EFiiRlnDOmZeKVV8flMoQEAJ0riv7xf571O+0lXtszG1wffJ1fNz4Y5SSpYz+QD4ddxoBHgGM/mL09/CHvdgecelxGBU2yih9Ujbd3oSGzg0RVDMI62+uh6u1K4JqBgEA/r71t94CUiwSo22ttiBJEl+f+toofVIKSwqx4uoKjGk2Bh62Hoyc0b52e5gLzXEt6RqmHp7Kl3sYgBsCBdBKpNyo2xQDXlzDb5G/KXlXvUhpVr0ZJx1nF3WW1d2nHw2uZF/2aO7WHAAM1ocij2LjrKJIoRrguFbmSc5Jho25DazNrQ1yHkmSeJz2mNaeFDOhGRIyE1DDtgatzavySEkpIp5HoGvdrozsr0hqbioOPT5kdGZuGQUZCIsJw/jm40EQBHY92IV+Pv1AEAQinkfAx8mnbD6ZvhRLixGTFmOUZm477u3Aq+xXmNVGVWacPpKykrApehPfk8IA3BEogGYiRSJBwOB7+K59T8w+PVtF34Z6kaJoi19Y8j3YFinfdghHX+8GePDmDf660a+SfdnBzcYNbjZuuP3acH0o8lAixc7CDnnFeeXesxBZAADnyjx0XzGuDIIg8Ge/P2ltnCVJEpcSLqFdrXY0RKicB6kP8CbvjcEESlDNIKN0nN39YDeKpcUY02wM7qbcRVx6HLrV64b84nwsOL8A33VQzCrrjrnQ3CgdZ6WkFL9F/oYBDQagkUsjxs8b1GgQ3zjLENwSKIBMpLRS0eMhWQi0uQRgFhZ2PokxzVoh5EAILsRfULJYM5ESWCMQ5kILcKFxdvvgKzAXCvEq++j7Z7hHc7fmiE6JZu18HycfRE2MQj2HesgsyERKTgoAWYkHgFKzNjah06RNUxRv9xx+fFiv/e6n3sfb/LdoX6s9TRFWJOJ5BMyF5pB46t4/oS3ytviD/xvMCVO/ytgSvQU96/eEu6172U2bjrU7YvLhyZjTdg6tzaBARVt8Y3C9Php7FDFpMfhG8o3BzpRvnP302KcGO9fUYb9JVhkBsyrO42k1W64h9jcQBPD3gGVIzPLGR7s+wtVJV8sMiz6gvnG2Q+0O6FC7AwDg3ItzaF2D3cZZe7E9QvwmYOPt/9DTKxQX4y9hdjtufWppXr05tt/bzmoMVBPx+IPj8SjtESJCIj5kUDhY4jG0QAE+iBQfJx90rNNRr73Ox58HAEYzKBEvIiDxlMDSzJKxM5RBiZSMggzONqdTxL6NRVRiFHYFy7LG119dh5ejFzbd3gQPWw/09u7NyLmUSFl5ZSWaujZl5Aw6+S3yN0g8JWhbq61Bzw32DcZuYjdq29c26LmmDPcyKKoIkBcLBIDfYC6chX0fP4GLtRkG7BqAzIJMJQ9W3jibUZCBQf8N4oSZ2/SA6UjKzsKGmy0x58zpClOQ2aa5W3MkZiUiLS+N7VCwpNuSsp4UytuCayWe5JxkuFkbXqAAMpHyteRr2FnY4cnbJ9h5b6dO+1yIv4BqFtXQtLrsl1NqbiqmH5mOT499imF7h+ktCkukJTj34hy61Omi1z66IvGUoI93H0hJKZZHLedsuWdr9FZUs6iGgQ0HAgAepz1GblEuIhMjsbjrYkbPFovEmN1uNsyEZoh8GclZn5Sol1G4mHDRoNkTeQY1GoSW7i1RUFKAZZHL+HKPnhiPQKmATKQ4WM7C4RGpSM6Jx/B9w1XMSVAvUuzF9jg0/BAnHGdbuLdAK49WSMmtXs5xliuw2SiriHzj7NfhsqyX4i9LttP2bGVQFNl0exNGhY3SqSflQvwFtPFsAwEhkJmCnV+Ixd0WI784H7sf7MaDNw/0iu3269vIKsxCl7rsCBSKZ++eYf65+ei7oy/nzNxKpaXYdncbhjcZDrFIDAB4m/8WNexqYFfwLggFQoPFsurqKs6auf0W+RsaODVA/wb9WY3jWtI1zDkzh+9J0RPjESg3lAkFmUjxcZqF/4bk49Szk5h9WlWpRTMzNy6IlGkB03Di6QmMbLq+TKT8epl+8ypd8HL0grWZNScECvBBpGiTQTFUKr+4tBhpeWmcECg/df1Jp8bZR2mPkJKbgnae7ZCQmYDlV5bj956/w15sj/SCdLSp2QaNXRrrFVvE8whYm1mjVY1Weu2jL95O3px1nD374iwSsxIxrvk4AMDLzJd4k/sG4/zGGeyGGMWWj7Zw0nH2cdpjHHh0AP+T/M+gPk3K6FC7A984SwPcFCjKxMj1X2RzeyogEyk96s/C7z1ILItapiaVrZlIeZv3FhkFmWCrcXZY42GwtbDF37f+xrz2p7CsR290q3caXGicFQqEaFq9Ke6k3GE7lDJ8nHxwcPhBALIMCldGBrzJewMSJKrbMOuBogmKjbPb7mzT6DmqAV1ACLAschmWdFtSdqU7bFgYIidGlvX/6ErEi4gyTwm2UbTFV7wtxhZb72yFj5MPAmsEIiEzAdOPToeHrUdZNsWQKNrin4k7Y/AYlLEsahmq21TH6Gaj2Q4FQEVbfH4KsvZwT6BE/VixQZYi8ge1IuXzwK8wuhkw6fA43E+9r+KAykXKram34GHrgbd571jJpFibW2Nkk5HYEr0FpdJSfNXmGFq6/4SCklDsuMe+T0pT16a4l3KP7TDK4WzlDADYF7MPLf9qqfEUZCahbhhxIYMCfBApn7b+VOOYzsefh0ggwuprqyElpYh8GUlrTEWlRbgYf5G1/hNlUCLFx9GHE6IpqzAL+x7uwzi/cSAIAieensCWj7agU51OFXrBFl1YhKzCLMZjokTKEN8hZX/32CQ5Jxlb72zFF4Ff6C2Y6YQSKXXt67Ke1TFGuPUV02SysRqRQhBL8Ve/z+HlWITB/3VR0TQrW6tOpAgIAUiSxIBdA1gzc5vUchKSspNw8tnJ96/Mw6HHwzEqLIz1npSmrk0RkxbDqbQl9UOpkXMjtY6zhsQQNvfaIiAEWNV7FXrU7wEpKcXF+Itq11+Iv4D2tdoj6askdKrTCX139MVXJ7+iLZ6riVeRX5LPev+JIhJPCTYM2ACRQISbr26y2ji79+FeFJQUYIzfGADAFP8pcLZyRohfCI4+OQqSJJFRkIEph6fAr7of7VeNVSEWifHPoH/g5+aH/OJ8XEu6ZpBzlbHq6ipYCC0wNWAqazGoItg3GD93/RkEQeBywmVO/dzkOowKFIIg5hIEcd3W1haurq746KOP8PiximFmmogTCjUixcpsBfZ9PAGpuW8w7mAHNU2S6kUKQRBY3HUxa46zLd1bwq+6Hzbc2lD22seNd3KicbaJaxMUlRbhydsnrMWgCPVJ18XapZzjLJu+KJRAcbV2ZS0GdWy/ux0dt3RU2ZPy7N0zJGYlonOdziAIAsG+wehZvyc23t5YtmbHvR16xRDxPAL2Yvuy5muukV+cj/47+7Nq5rYlegu61uuKmnY1y73evnZ7fNTwIwzbOwxzT8/FrDazWGsO/fXyr+i4pSMrZm7ZhdlYe30tpvpPhb3Y3uDna8rr7Nfo9k83vidFC5jOoHQE8MeVK1cQHh6OkpIS9OjRA7m5Cs1n2ogTCjUixcvxb/wz6CMceHQXq64OVbOJdo6zhhQpBEFgYouJOBJ7BG9y35StnNf+FOsipYlrEwBQU0YzPPJGbfK3e+LS41iLKTknGU6WTpwoEyhjdLPRahtnqf4T+exGYWlhmeAqLCnEuRfn9Ioh4kUEOtXpZNBbKNpgaWaJvR/vZc1x9tm7Z7iYcBHj/MYpff+rNl9h99Dd+LPfn7QPitSG2e1ms+Y4+/etv5FXnIeZQTMNeq62uNu6Y/ug7XzjrBYwKlBIkuxFkuSWxo0bw8/PD5s3b0ZCQgJu3rz5YZEu4oRCjUjp3yAMXwb543/h+3Djlbo78ZqJlBuvbiDi+VkYsnF2RNMRIEBU+JRKiZT8knMgydBK9qUfF2sXVLeujnup3OlDUTRq83HywYVxF+Dl6MVaTFy5YqwKxcZZRZFyPv48rM2s0bpG67LXPO08yz6l/nP3H4xqOkrn8/OK8xD1MopT/SfKkHecNbRI2XZnG2zNbTGo0SCDnakLio6zhhIpxaXF+P3K7xjZdGSFDBMXUWyc5UWKegzag5KZKesJcXSUG2YVOV+/TVU+T2BJt8vwc6uOYXt/Q2aBssGCH9ZWJlKeff4M/Xz6ASBQIg2FIUSKs5Uz+jfojy13tlRYOa/9KSzuuggEsQAPUmdUsi/9NK3elFsCRVhxFk99x/oQCdgzS07O5bZAAcqLlLMvzpYrieYW52Jc83EwE5qVvfZDxx9gJjDDuAPjkF2YrZdL7eWEyyiWFnOu/0QZlEhJykrCq+xXBjlTSkqx7e42fNz4Y1iZWRnkTH2QFylRiVEGOXPX/V1IzErE15KvK1/MESiRci/lHtLz09kOh9MY7Kc3SZL46quv0K5dOzRp0uTDG5IFumdQAEDSV+Vb5kIL/DfkMlr85YvpR7/BjmBLAKrmJKi3xXexdgEA/Hb5N5x4dgKHRxwyiC3+OL9xGLBrAO4k34Gfm1/5nYlvEfPmDfzWrcT3HR5ifqezavall6auTXE4Vr8ZL3QiFAghJIScsrpPzkk2ik91lEghSRIEQSA1NxWu1q7YM3RPhbUeth6InEjPTZ6I5xFwtXaFr4svLfsxjcRTgkefPoJIIEJuUS5IkLAxt2HsvAvxF/Ai4wVC/EIYO4NuxCIxDg4/CCEhK9lR30tMQJIkfov8DX28+5SVnY2FYN9gDGw4kNUPUMaAwTIon376Ke7evYudOxU8SjSZYKwKSRDQ5giAP1UuqedQH+v6bsbO+8COe58BWKNmw8pt8YNqBhnUzK2X1224WLlg+13l828auazAws6G70lp4toEz94945SZlYXIQiOjtmJpsQGikf1wrm7NvgeKJggIAYQCIR6+eYg6y+sgYH0AQs+GIqMgg7EzI15EoEvdLpyfgSMP9QtlVNgoxh1nt97ZinoO9RidgcQEIoEIBEHgdNxp1FtZjzEzt/C4cNxLvYf/Sf7HyP5Mw4uTyjGIQPnss89w6NAhnD17FjVrKvlEqYtIkSwE2kQCmAngE6gTKSOajsSopqMw/ag54jP0EymGdpw1E87H8Cb1seP+DpVGP2w0zjZ1bQoSJGLSYgxyniZYCC00srp/9u6ZQUyTmPz0yBQNnRvC1sIWN1/fxIILC+Dymwv67+yPbXe20SpWMgsycePVDc73n6jim7bfMOI4+79T/0P1pdXx2+XfsOfBHoT4hRiVgJOnXa126FinI2OOs0sjl8Lf3R8da+s3DJOHuzB9zZggCGJNWFgYIiIiULduXdWLtREpkoXvJxsTAJZDE5Gyps8a2IvdMPZATZRK6RMpC8//CKYbZ0c3u4JX2a8Q8TxC5UpKpOy8fw7ZhfMq2Vd/fF18QYDglGGbphmUGnY1GL81UlxajHf574xOoAgIAQJqBJT9/xJpCY7EHkHIgRBUX1qdNrFyMeEipKTUKPpPlKHoOEuHSPk96ncsjVqK1NxUfH/2e+QW52Ks31gaomUHRcdZOkXK3ZS7CI8Lx6w2s4xWwPFUDtMZlD8AjN6xYwdsbW2RnJyM5ORk5OfnK1+tgUiRtgl9L04oNBMp9mJ7bPtoGy7GJ2Hl1Y4A9Bcp58edx/cdKKHEnEhp5REKHyfg33vqeldkIuXmlPmwtViM3KJvK9lXP6zNrVHPoR7nGmU16UGxs7CDlJRi4fmFjJm5UQ6fxiZQAGBhJ+V/B4tKi2gTKxHPI1CrWi3Uc6inZ7TsIS9S9j7cq9dea66twaxTH/rYCksL0bF2R9Sxr6NnlOwiL1LmnJ4DKSmlZd/fo36Hp50nhvgOoWU/Hm7CtECZDqBap06d4O7uXvbnv//+U/1Em++BVip+EUsWQiCZj4jnEXiU9kjuDc1ESsc6HfFF0Bf4NuIqHqeNh74ixd/DH9bm1nj45iFG7BvJWLmHIOZjRJNO2P/oNgpKQtWutTYPRV7xfAT+/TPj5Z6m1ZtyygvFXGiuUQYFkNnQ/3XzL8YcZ9/kybxrjFGgtHRvifoO9dWu0VesRDw3vv4TZUg8JXg44yFCmssaWXX5Bbzm2hp8dvyzCq/38+6nd3xcgBIpx0cdh4AQ6C1SXmW/wo57O/BF0BflbpjxmB5M+6AQ7/9A/s+4cePUPxig5EZMKwBt3ECSJOaemYtOWzrpJFIWdVkETztPjD/4CKXSL6GvSAGAd/nvcPjxYUbN3EY0WYesQuDYkwVQNQWZwsosFCObMt+T0sSlCbcyKCILjZ1j3W3dyznO0i1SUnNTARinQCEIAkN91RkclkdRrAzYOQCP01Q4RkOWXbqTcsdo+08UoW5qbY3eiq7bumrlk6JKnACy6cqmglgkhou1C1JzU+G/3l8vn5TVV1fD0swSk1pOojFCHi7CrVk86giYAGAKCOJvHB5xGC7WLjqJFCszK2z5aAuuJF7B8ivukF0P1k+ktKvVjnHH2QbODdDCrQV23veFqinI8hiicbZp9aZIzkmuMLCMLTQt8VDIO8522doFb/Pe0hYLJVBcrFxo29OQDG2suUCRp6i0CIdjD+OTY5+oXEO5z3auy+5MKbrxdvLGjVc3NDZzUydOACApO4nO8DiBnYUdPGw9dDZzyynKwbqb6zC55WSDzRziYQ/jESg3XADMADAFrtYHcWbsGZ1FisRTgi+DvsQPZ+cjLn066BAp8rb4w/eOABM9KSOajMCR2DjkFM2DNiJlwflzuJsyXe1aXeCa5b2mTbLyUCKle73uqCauRlssqbmpsDazhrW5NW17GpIWbi0qLfOoo5VHK5XvnX1+Fl6OXkbhEaMN2jjOViZOAHBq1hVd6Os4u+n2JuQU5WBmILdt7XnogZsC5YaSX+jXfwGiXKEoUvzc/JSMsa5cpCzsvBCu1q6YemQaSPJX0ClSZrWZBSYaZ4f4DkFBSQGOxjaDqinIisxrfwp3p3+OZtXXvX+GPrwdvWEuNOfMTR4LofYCBZCJlJW9V0IkECHyZSQt5R5jvGIsj7ZlHnmGNR6GRV0WqXz/fPx5dKrdScfIuI28SJl1Url5oybiBACepj+lOzxOIC9SBv03qNysMXWUSkux4soKfNz4Y3hW82Q4Sh4uwD2nmKgfZWJEGZHzASwA2lAiBTg5+iQA2UTL5JxkubotJVIAmUgBZD27MqzNrbGu3zr0/rc3tt35ByHNKSt86geHbo6zHWp3ACC7nrkschk+C5xHm+NsXYe6aOXRCrsf7sawJvvev/rd+3+qvrXTxHUlgOqYf/ZbCIhztDnOmgnN0NC5IbcyKHo4yZZISzD+4HgICSEiQiL0sqk3doECyMo8Sy4vqXyhHMMaD8P2wdtVmlC9yX2DB28eYE67OUrfNwUknhJEjI1QegNHU3ECmGYGhYISKZcTLpe5dFfG/kf78TzjOfZ+rN+NKR7jgVsZFE0GB0bOL5dJATYAAL48+SXab26vVbmnl1cvjGw6El+d+gppeW8B/AY6MikA8DjtMX688CPtZm4fN/4Yx54ce58+rjhgUDXzYCGivyelqSt3ZvLomkGhEAlEODziMC2Ns6YgULQt81QmToAPE5JN3VyrVY1WcLF2QWJWIsYdGIecohytxAkAxKXHmfQwObFIjK71uoIkSfxw9ge1PikkSWJp5FJ0rtMZLd1bGjBKHjbhjkDRZqqxEpHyc9efdepJWd5zOUqlpZh7eu77tfSIlMaujRlxnA1uFIyCkgIcf3L8/SuaixQmGmd9XXwRkxaj1LHV0JgLzTW+xaMKxcZZXUVKam6q0TbIUmhT5gmsEVipOAFk5Z16DvWqTIo+KSsJYTFhaL6uuVbiBJCNZHiZ+ZKhyLhDibQEN1/fVGvmFvkyEleTrr4vn/NUFbghULQRJxQKIkXXxllXa1f83PVn/H37b1xJvAI6RYqiLX5ByXfQV6TUdaiLFm4tEPYoTG69biLlnzuD1a7VhEbOjZBRkIGU3BS999IXc6E5ikv1n7NDiRSxSKzztFFTyKAAmt/muZp0Fbvu76p03fn48yafPZEnsGYgPmv9GZ6lP9Pp+SfvTLfMQ2EmNKvUcXZZ1DI0dG6I3t69WYiQhy3YFyi6iBMKNSLlTNwZhcWqRcpU/6nwd/fHJ0c/eZ9SpV+kNHFpAnOhBehonB3caDCOxB5BQUmB3HrtRMqOwR9jiO9+6Ns428ilEQAg5g37M3mUZVB0zez4OPng5pSbaOTSCLlFuWXXhjXFVARKZWUe+fdCDoSoHGoJyPyC7qXcq1ICBQAOPj6o87NP35lmo6wiirb415Oul7339N1THHh0ALPazFJyIYLHlGH/v3bkfD2fDwWwGvIi5dqka5jRegYAIKswS26xcpEiFAixtu9a3E6+jb9v/S23lj6RsrL3SggIASJfRuld7hncaDByinKUiDDNRcqIpv/B0uwn3E0JxdLIHmrXqqO+Q32IBCJODA00E5hpVOLR1L2UWjf58GR02tJJ43JPblEucotzTUKgqCvzDGs8DDEzYjAtYBoAmYuqOpFyIf4CSJDoWKdqCZSp/lN1nlxryo2yilAiZV67eWhavWnZ68ujlsPF2gWjm41mMToeNmBfoEj0vPoqWQDZL/IPIsXSTPYDcue9nWi4pqFG5Z7WNVpjfPPx+C7iO7m0Pn0iBZDdNBqwc4DeZm6NnBvBy9FLxScz7RpnI573wf/Cw3XuSTETmsHb0ZszGZRiqf4lHkVCO4Vq1ZNizDb3ylBW5qEaYs2EZljbZy2mB8huyElJKcbuH6tUpJx/cR61q9U2+vky2vJZ4GdI+ToFmwZsQm+v3lqJlapQ4pFHLBLj+47fQywS4/br2wh7GIbN0Zsxo9UMiEVitsPjMTDsCxRtphgrUjbVGFAUKcAGdK3XFU5WThr3pPzc9WcUlhZiwfkFCmvpESm2FrYIGxamt+MsQfyKgQ0G4nDsYRVzLTQXKV8EHdW7cbaRSyNOZFDoaJJVhraNs8Zsc68MxTKP4m0dgiDwR58/ykQKCVKpSDkff77KZU8oHC0dMb7FeJmZ46RrsBBawFxgXulzVaXEo4xlUcswbN8wlEhL8Ekr1c7EPKYL+wIF0E2klBMnFOVFiraNs242bvi+w/f44/ofChkB+kSKvOOsPiJlYIMcJOck41rSNRXrdWucXXKpm9q1ymjkbNoCBSgvUg48OqB2rakJFIIgsKzHMtSxr4PPWn+m9LYOJVKoco+iSMkoyEB0cnSV6z9RRgv3Fjg+6jiKpLLvVQIE3G3clWZW4tLjaJsAbGys6bOmbLjg7de32Q6HhwW4Y9RGiQ1NGmYlHykRJxSUSAEoM7czY8+g67au+PrU1zgy8ojC2vJmbjMDZ2LdjXWYfXo2Do04pLCWPjO3Y6OOYeqRqXiTm4ba9pTrpuZmbhLPhXCytMKR2CMIqhmkYj31tazczG1e+1MwF/aGxPMEZMJG896gRs6N8Cr7FTILMmm1i9cWM6FmPSi64uPkg3vT78HR0hGAbO6MubDip2BKoDhbOTMWi6EZ2HAgBjYcqHYNQRBY22ctAGDdjXVlIgUAqllUk/Wf8AIFAMpNfSZB4s++f6J97fY4+Ogg9jzcg/C4cJRIS9DAuUGVbQwNiwlDUWkROtbuiAG7BuDwiMPoVk/7D1A8xgt3BAqgmUiRtALaHASwCcAEFYuUixQzgWw0N0mSco2S5UWKhQhY3HUxhu8bjvMvFFPS9IqU+9PvQygQIrMgE2ZC7RxnhQKgt/dCHIndpNZWXBuR8rXkOICfUVz6LQ48eoChjXer2fcD1E2eR2mPEFgzUKNnmICua8bqoMTJv3f/xeJLi3F67OkKjrOpualwtHSskqPglYmUkAMh6Fm/J2ra1UQ9h3osR8gN9jzcU/a/zQRm6FavG6zNrTG+xXiMbzEe7/Lf4earm2jh3oLFKNmDJEksi1qGgQ0GYteQXRh/cDxszW3ZDovHwHBPmrf5Hmg1W/l7koVAmysApgKYBJlIUUXFco+DpQPiM+Ih2SRRW+75uPFbtPJoha/Dv1aSXqWv3CMUCEGSJIJ3B+tk5tbPOxh3Ul7jZeZcNWsBbRtnD8eOxMd792jck9LAqQEAKHxNDQ+TJR5FWtVohfSCdKU9KaZyxVhXKJEi3zh7/Olx1LKrpfENKlMmvzgfh2MPA5CVd6YHTIe1uTXupdwrGzDoaOmI7vW7m1QWThtOPD2Bh28eYlabWRCLxNgZvBOBNQNRVFqEm69ush0ej4HgnkABgAAl2YNWs99nWAQA/oAuIgXYAEszS+QU5ajtSSGIGVjaox1uvLqBPQ/2qNiXHpFCEATmd5yvk+NsT68NEBIEjj5ZAnVTkGVoLlIGN/pXq8ZZa3Nr1K5Wm/U+FE2vGdOBusbZqi5QgIqNswAQlRil1ielqnDi6YkyIUKCxLjm41BYUoi+O/qi746+yC3KZTlC9lkWtQytPFqhXa125V+PXIZ2m9uptcXnMR24KVCUUU606C5SNG2c7VB7Ofp6N8H3Z79XMQ+DOcdZTUWKvdgBEs92OPG0AdRNQf4Ac7b4XLjJY8gMClBepMw88WH8Oy9QZFAipbeXzP1T1e2eqoZ8eaeWXS00d2sOC5EFdg3Zhduvb6PPjj5VWqTcS7mHM8/P4Ks2X1XIuH3Z5ku1jrM8poXxCJQK0CNSem7vqeDI+kGkLOpyH0/ePcHW6K1q9qVXpFxLuoZjT45DU8fZ3l69ceZ5EopKvwVTIiU19xxIMlTt2kbOjVj3QqF8UAw5F8jHyQfnx53HH33+KHstNTcVrla8QAFkIqWJSxNYiiwB8CJFvrwDAJP9J5f9EpZ4SnBi9IkqL1JWXFmBmnY1EdwouMJ7io6zvEgxbYxHoNxQ9ktaf5GyccBGJQZAMpHS3G0mhjUGFpz/n4KIUVxLn0iJ/TQWQ3yHACBQKl2AykRKL69eyCnKweWELlA3Bbk82omUNX0WgSAWIPat6mFnDZ0b4ln6MxSW6D5NWF+oGzXyGS9DiBUvRy84WzkjMSsRA3YOwOvs13wGRY4LCRcwoMGAcleQK7PFN1XkyzsAEOIXUu59SqS8yHiB5xnPDR0e66TmpuLfe//is9afqWwylxcp4c/CDRwhjyHh1i0eCmVi5PovgJm1kuvFlEgBZCIF0OZ2T7d6k0GSJL4/+z1GNxuNhs4N5dYux4JO6fBduw0bbo7FZ4GqbrXQd7vH3dYdAPDHtT8Q9igMh0ccUnu7p7lbc7jZuOHks1PoXHfx+1fnvP+nimZjANrc7iGIb/H03Ts0Wfs7vm1/H/M7na2wppFzI0hJKZ68e4Imrk3UnMsc1A+0otIitTdomGrUzC/Ox83XN5GalwoLkQUjZxgb2YXZuPHqBsY1H4ep/lMByG73ULb4AKqUhbl8eaeZazOlU50lnhI8+ewJzIXmKCwpRIm0BNbm1oYMkzX+vP4nhAIhJrecrHadWCTG/mH7y25mvst/V3bDjsd04F4GJepHmRhRRuQPsvcroF/jbFZhFg4+Pqi0J6WB8xaMatoQSy7vQUHJqkr2pc8Wv2n1priaeLVSMzeCINCtXjeEx4VD3YBB5WieSfFyXIbQTqp7UrgwNJDKoBiyD0UebydvHBh2AIBMYGo6u8eUiXwZiVKyFB1rd1R6u6cqlXsUyzvUvDBlUN/L4w6OQ58dfcplXUyVwpJCrL2xFuP8xsHB0qHS9eZCcxAEgQvxF1BnRR0+m2KCcEugaDLZmAGRUk28W23j7HcdDiA5h8Dft2ZCfgqy8n0N7zjbvV533Hp9C29y34BJkaKucdbZyhnOVs6sNspSP9SZmMejKXYWdgCAgtIC9NzeU0WDddXhfPx5uFq7lmUmK3OcNWXkyztCQohhjYdV+sxnrT/Drde30HdHX5MXKTvv70RqbipmBs2sfLEcrWu0Rvva7TFg1wBepJgY3BEomogTCgZEiuLtnviM+LKVPk4NMLLpKCy5ZIOCkg+ze1TvS79I+fbMd1DVOEu5K555Tk03Zl6kbLlzDhkFc8q9x7blPdsZFOCDi+w/g/7Bwk4LdZ5iayqcjz9flj2hoDIpVU2kyJd3JJ4SjVyXJZ4SnBx90uRFCkmSWH5lOfp694WPk49Wz8r3pJiiSHn27hnbIbAGNwSKNuKEgkGREuIXAg9bj3Irv2v/HV5l52LbnS6QHzCoel/6REpESARCO4W+X1tRpHjYesDXxRdn4s7IPcmsSLkz7XvYi39BfvF3Za83dG6Ix2mPKzmHOah6NJsChZpk3MqjFQY2HAiSJPHb5d+qZLknvzgf15Ouo0PtDhXeUyZSTLlxVrG880XgFxo/Ky9S/r37LwPRsc/ZF2dxN+Uuvgz6svLFSpAXKV+e/BKl0lKaI2SPhRd0HKZrArD/8U4XcUJBPUdz4+wv3WW/zKNeRsHB0gENnRuigXMDBPsG49fLtzGhxWcQCajpmtOVbQo6G2db12gNQKakF5xfgHX9/qzQONu1blccfXJUyb6h7/83vY2zdhYLUVAiRLvNoRjgcxnzO52Fj5MPdt7fqTBKwHBwIYOSlpcGASEoq6Gn5qZixdUV2By9GREhERVs8U2Za0nXUCwtRvta7ZW+r2iLb8qNs/LlHXOhOfo16KfV8xJPCe5Ou4s69nUAKI7rMH5WXFmBpq5N0aVuF533oETKu/x3ZS7dxv41epT2CNvvbsfWj1RZXZg27GdQIjUfSqfd8/o1zpIkiVmnZpXrSZnbbi6epT/DngdBkJ+CrH5f+hpnk3OSERYTptTMrUvdLohLj8OLjBdK9g0FE5kUsWg+ght96EnxcfJBTlEOa9mCsh4UhufxqONN7hs4WTqVDXirblNdpeOsqXMx4SKqWVRTe6urqjTOypd3utTponTIZGXUdagLgiCw58EedP+nu8n4pDx5+wRHYo/gi6Av9BYUYpEYHrYeeJf/DpJNEqP3SVlwfkGFbH5Vgn2BIlmg5/OD1Lypu0ghiL9xYPiBco2zLd1bokf9Hlhy+ReQ5O8wtEhpW6utSsfZjrXvgQCBs88rXgE2VONs+DPZ0MLYt7GV7M8MXMmgKM5PUbTFlzUzmz4XEy5C4imBUCBUu87UG2cVyzuz2qgaBKoZNexq4FrSNZMxc1t5dSVcrF0wsulI2va0MrOCo6WjUZu5PUh9gP/u/4fvOyhWCKoO7AuUNt/LhgDqgsQfaLMfwDY1i+i1xZ/ddjbuptzF6bgzkB8waCiRIm+LP3TPxyDJHwHMg4PlD/Bzc8f5+PNq9g0FkyJlzfXrIMCeQJH3QWGLtPyKAgWQiZRzIefQrlY7jZojjZ0SaQkiX0aqLO8oYsqNs/LlHSuRFbrU072MAZiW42x6fjo2R2/G9IDpSgwzdccUHGcXXliI2va1Ma75OLZDYQ32BQqgm0iRLATaXAMwEcA4MC1SfF18UVRahM51OqOFWwssjVoKxSnIhhYpn7X+DAQhANU427H2K5yPP1TJvqFgSqTcmjIDdR2AJ++2VLIvM3DhmrGyDAqFt5M31vdfD3OhOW6+umnS5Z67KXeRU5RTYdibOky1cVa+vNPLq1dZ+U8f5EXKZ8dVOzxznb9v/Y0SaUm5oZJ0IS9SBu4aaFR/3+6n3seeB3vwbftvdSoHmgrsN8lSUI2umjTMShbKNcb+9f6f497/c6yKh/RrnI0IiQAgS9eObjoas8Jn4W7KXTSr3gwykQLIRApgiMbZ9rVln0ylpBSrrq7CFP956Fj7MVZe3YeEzO9Qq9oiNfuGvv/f9DbOtnBfAx+nUzj6JBI25p3xQ0dl5SbmUFbiMeRcHkAmUFq4tVC7plRairEHxoIkSZNtnL2UcAnmQnO0qtFKq+dMrXFWsbzzTdtvaNtb4ilB+JhwpW60xkCJtASrr63GyKYjUd2mOiNnUCLl7POzRvX3bOF5WfZEcRRCVYMbGRQKTTIp5cQJIPtX+AtMZ1KADQCA/4X/D79G/orq1tWx4soKubWGz6QAsnLKdxHfod+O/vD3kF07vhD/E9QNGGQyk+Lt2Atvcq0x/5xmU5DphKs9KIoIBULsH7bfpBtnLyZcROsarXVK25tS46x8ecfOwq7sRh5dBNYMhIetB1JzUzHl8BSj8knZ93AfXma91OrKtS6IRWL09pZN1P718q+c90m5n3ofex7uwXftv1M7sqMqwC2BAsjERysVn+griBMKw4mUHzr+ABdrF+QW52L73e1Iy0uTW2t4kdLQuWGZmdu4A+Ph4+SDywktUNkUZKZEio+TDzILi/Fj524qbfGZQlMfFCavHqblpcHFyqXSdYqNs6YkUkiSxKWES2jnqXl5RxGqcZYSKcbakyJf3hngM4Cx7734jHjsvL/TqMzcVlxdgS51u8DPzc8g55VKS3E+/jznzdwWnl+IOvZ1MNZPVTWg6sA9gQIAARW73JcUAdutX6l5yDAihepJ8bTzRLG0GD9d+ElhreFFirzjbHZhNi4mFKGyKcgf9g0FnSLFx8kHRaVFGNV0fdntns23P6pkX3pg+5pxQUkBcopyKs2gUFAiRSgQIiUnheHoDMez9GdIzkkuK0PqirHf7lEs78xpN0fNav1oVaOVUTnOXkm8giuJVxjPnsgjFAg57zh7L+Uenz2Rg5sCRQmvG9TF+IPrEJ+xUs0qw4mUc+POwUHsgM3RmxXmrbArUrydvPHgzQOk588CGyKFsql+/PYx5rU/ha0fDcEQ34Pvn2EWtks8b/PeAoDGAgWQfb3uTLsDPzc/FJQUlFnlGzMX4y+CAAGJp0TvvYz5do98ecfZ0hmNXRszep6842z/nf0hJaWMnqcPy68sh7ejN/r69DXouYq2+FEvowx6fmUsvLAQde3r8tmT93CnSbYSljsPwdCQB6ht/xUAZwCjVKykRArAdOPskRFH0HZzWxyJPYLu9brLjUSnRApgyMbZDrU74O/+f8NnjQ/+vbsDE1rOq+A4q3rf0Pf/W7/GWU87T4gEIjxPfw4AGOu3B8DPiH37LY7ERuKrNifV7KsfbF8zpsp92ggUAGW3Oj45+gmuJF4x+sbZSwmX0LR6U9iL7WnZT7FxlrrdA3C7cVa+vDOooTq/JvqgRMqzd89ouS3EBAmZCdj3cB9W9lrJSoyUSFl0YdH7Sw7c4F7KPex9uBcbB2zksyfv4eZ38I2Kn/gF139Du6RAkORYhJ4bjX/vfqLkwbLVMEQmRVLrAQJrBGLBuQXwWeNTYQoyG5kUL0cvOIodMefMHKWOs+r3DYW+mRShQAhPO0/EZ8bLrZ2HE0/7YtapU4z2pAgJIQgQRidQKOa0m2MSPSkXEy5q7H+iKcbWOKtY3pnXYZ7BzpZ4SjDGbwwAYPPtzZwr96y5tga2FrYIac7eDRWxSIxFXRbB2twaD988VJhjxg5U9mRMszFsh8IZuCdQon4Erqv45Rg5H7hSBwmZ3hh74E9OiJRpAY0QnRING3Obcrb4H9YaVqQQBIE2nm3Q2KWxUsdZQ4iU2va1K1jufx54pKwnhSmRQhAEzIXmrPmgUIMCdRUoptA4m5KTgifvnmjlf6IpxtQ4K1/ecbdxL5uhY0heZr7EzBMz0XdHX86YueUU5WD9zfWY3HIybMxt2A4HgOxmT7+d/Vg1c7ubchd7H+7Fdx343hN5uCVQNBgcSESG4m/XUQjx44ZI+bjxFtiLrdC9bvdyjrPl1xpWpATVDELsu1gcHXmUFZFSu1pthQyKDHlb/J8vdq1kX90wF5qzmkExF5rr9YNXXqTsuLeDxugMw6WESwBAewaFwlgaZ+XLOx/7fsxKDJ7VPDnnOLs1eityinLwaWtVZWzDs67fOtYdZxeeX4h6DvX47IkC3BEoWkw1FiiIlPBn6rrjmRUpVmYzMLppHvbG/IMTo07AxdoFnx5T/MtnWJESWCMQGQUZcLd1x/FRxxGfEY9X2a9BOc4yLVJqV6uN+IyKAgWQiZRfuvVEYI0IMNE4ayY0Y1WgOFs5632V1MfJB9FTo8tGz5dvwuY2lxIuoa59XdSwq8HYGVxvnFUs78xtP5e1WLhkiy8lpVh9bTUGNxqMWtVqsRaHImzb4t9NuYt9Mfv4mztK4EaTrBbihEIQGYq/JaFo1uMY2tX6FUBTsNU4O7HlG6y5vhs3X/+MM2NV1TIN1zgb4CGr7V5Puo5RzUYhZkYMzIRmyC3KBUEw3zhbx34QXue8RmFJISxEFhVWftP2BICfUSr9FkdiH2Fgw51q9tUOtjMoupZ3FHGxlnmphMWEIfRcKE6NOWUUjbMXEy4yUt5RhMuNs/LlnVrVajHmkqoplEhZGrmUUQ+gygh/Fo7Hbx/j7wF/sxaDKiiRMnb/WIgEhv21SGVP2P6+5SLsZ1B0ECcUgshQfEH2haXZONxNGYNd99WlDZnLpDR324WW7i7YdHstXK0PwtXaFa+zX7NW7nGw3AovRy9cf3UdwIfbLcP3DUe/Hf0ZL/fUtt8PAHiZ9VLN2nk4/nQMPvpvF609KeZCc9Z8UOgUKBRNXJvgbf5bo+hJyS7Mxu3k24yVdxRR1jjLhdk98uWdkU3om9CrDxJPCcKGhcHKzAqP0x6z0ji76toqtHBrgbaebQ1+tiaIRWLsHrobnep0Qom0BNHJ0YyfeSf5Dp89UQP7AiVyvp7PhwL4G1uifTEq7A9sv6tu6BRzImVC8x9wJJZAaq7McVYoEOJt/lvWREorD7sygULxP8n/cC3pGuMipXa1mQCAFxnqbfH7+WyjvXFWMYNiyFk8TAgUY2qcvZJ4BVJSapAMCoVi4yzbt3sUyzuz26nLOhqe4tJi9NnRx+Bmbk/ePsGxJ8fweeDnrGZxNGXV1VVos7EN42ZuCy8sRH2H+mW3rnjKw75AkejZhyBZAECApT2iEeLnjZAD61gRKcObjICAEGHnvXaQd5xlq3HW3/0W7iTfQKm0tOxdecdZJkWKZ7VfQYBAfMYWaDIFmU6RYiaovAeFqR+QaXlpcLakV6AA5UXK9KP0T32li4sJF+Fs5YyGzg0Nei6XGmflyzv1HerT5gVDF2ZCM/wz6B+DO86uubYGzlbOGN5kuEHO05dPWn3CuOPsneQ7CIsJw3cdvjN4WclYYF+gaDIgUBVys3kEhAh/D3hYJlJ23Juh5kH6RYqTlRP6+vTFP3fzoWiL72Ltgm7buiGvOE/uCWZFSkv3YcgtLsKTd9+Ve1depITF7AcTjbPmQnO427ojPrMjNBkwSImU5xnnQJKhatdWhqn0oCji4+SDcyHnyvouuMilhEtoV6sdK5+QudI4K1/e4eokWnnHWUOIlKzCLGyO3oyp/lN1Gh7JBoqOs0yIFCp7wveeqIYbso0aAKhNL4qSwYGUSLE2a4Y69n8CkMCQjbNjmo1B8O5gPEjdgsauAOU4e2bsGVxNvAorMyuFJ5hrnG3h/ieA/3Dz1RI0dK4ORcfZmBkxZWPapeRCCAiAzsbZOvZ1EJ9ZGx9u9wDyjrOKzGt/CiT5EwjiOzxPz0BdhxUq16qDLR8UkiQZFSgA4O3kDQBIzU3FJ0c/wZo+azjTOFtcWowriVfwY+cfWYuB7cZZ+fIOAQJftfmK8TN1hRIpQ3YPQezbWLR0b8nYWVujtyKvOK+sDGcsUCIleHcwDj4+iO71u9O2d3RyNMJiwrB54GY+e6IG7nxltBEpkqEqphrLRMrqPvcBTEJx6RhEvoxBxzqLVGxEr0jp690X9mJ77Ly/C4u6lLfF799gMkiSxOJLizG40WC5NDgzIsVe7IA69nUQneyCUc0q2uJT4mRL9Bb8e+9fHBx+gNbbPTXtaiIpKwnA1vevVC5SCOJbxGdkwHftUsxpewfzO51VuVYVbGVQcotzUVhayKhAocgsyERUYhS6bO3CGVv828m3kV+Sj7a12G2AVBQpVOMswLxIkS/vNHBqIDf6gptIPCWImxkHsUiM4tJiFJUW0R4zdbV4iO8QRq+eM4VYJEbYx2FlDayZBZmoJq6m974Lz/PZE01gv8QjjyblHokf0GYfgF1qFgkA/I1Nt4PQZdtPBjNzsxBZYHDDwdh1fxdkvZkfHGeBDcgpysHO+zsN1pPiV90Pd1LsocoWH5DVyaNeRtFu5uZm7SbX0Fn5FGSK2va/4fsOuveksOWDQtncU9eDmcTbyZtzjbORLyNhIbRg9JO4prBliy9f3hnffDyjZ9EFVXKZdmQaIz4pJ5+exJN3T/B54Oe07mtILEQWEBACXE28ijor6+jtkxKdHI39j/bj+w7f89mTSuCWQAFkIqWVis53yUKgzU3IyjajUJlImex/weCOs8ObDMez9Ge4+fomFG3xbS12GbRxViZQ7kDd7J72tdvj+KjjtDvOutm4Kfzi1Fyk6NM4y1aJ502ufjb32iLfONttWzfW+m4oIl9GolWNVmUTpdnG0I2ziuWdzwI/q+QJbjGx5URGzNxWXVsFf3d/tKnZhrY92cLPzQ8ST4neZm5U9mRUM1XtBzxlkCRpiD/akZtKkktBZi4CCcj+SZ6fLbeghCTJMSRJCkiS3Kl2q1JpMTn+gDcpWABy+53plRxcSpLkJJIkCZIkt2qwdtr7tRvLXi0uLSZdf3MlZ52cJbdWSpLkDFL2pVhPpuSkkE3WNiGr/1adfPbumcK+UpIkZ75fu7aSGKQkSc56v3Z1hXf3PdxHIhTk6+zX79d+837t8gprL7y4QFr/ZE1+cuST92vnvV+7VIMYfni/dknZq5tubSIRCrKopEhh/YL3axdVsi9J/nShO+m+FGRa7jeVrqXot6MfOWDngLL/L5FIyL4ASb7/Mw8gW7durfF+mnIs9hiJUJAvM1/Svrc6YtNiyZ331P8dYBqpVEp6LPMgvzml+X8nQyGVSslpR6aRCAWJUJBEKEH+c+cf2s8JexhWdobvGl/a9zcElxMuk7Y/25IdNncgcwpz9N7v0ZtHJEJBbo2u7Gep8ZBfnE/2+bcPKV4kJsOfhWv9/O3Xt0mEgtxye4u2jxrqdzWn/hiPQMlNVVikvUj57BhIktxeyeH6i5Rph6eRtZfXJqVSqdzaiiLl82Ofk/nF+Ur2pUekxKbFkgiF3F8k9SLlyssr5JvcN3JrdRcp1C/sxMxEJes1Fylv874lSRJkYcl3la4lSZIc/N9gstf2XmX/31ACZVv0NhKhIPOK8mjfWxOkUim5+urq92LUsMRnxJMIBXkg5oDBz9YERZEiWCCgXaSM2DuibP+llyv7+8JdKJGyImqF3nt9evRT0vU3V7KguICGyLgDJVK8V3mTxaXFWj370a6PSK9VXlo/R3JALLDxx4gFCklqK1Kk0nEkSQrIV1kVsw0Kq0l9REr4s3ASoSBvJN1QWFtepFDcfHWTjHkTo2TtTFIfkVJSWkKKF4nJ5VHLFdaqFikkSZIJGQnkhAMTyNyiHFJXkXLr1S0VXwMKzUVKYckCsu1GkKFnO1W6dtieYWSXrV3K/j8TAuXff/8lg4KCyr32e+TvpPVP1nrtqw9puWmkxzIPstGaRgYXKTvv7SQRCjIlJ8Wg52oDkyIlryiPtPnZRrZvqEDFhw7j4cnbJ2SptJQkSVLhQ5bmZORnkDY/25DfR3xPZ2icIb84n4zPiCdJUvOvEfUzUceMEutigY0/3OtBUcUNZf0QQgCboUlPioAQgSA24tbrvqi36jNGzdw61u4IR0tH7IvZp7C2fE8KsAEkSeLLk18y0pMiFAjRyLkRHqQ+UFiruicFkFnU//fgP73M3Krb7AUANQ2cmvekmAt/QB9vzXpSmLa6z8rKwldffYX4+PLDEJm+YlwZTlZOrDXORr6MhJejF1ytXQ12prYw2Tgrf3unkUsjo/H6UIWXoxcEhABHYo+g5/aeOvmkbInegoKSgrIeIFNDLBKjVrVayCrMQpdtXTTySVl4YSG8HL0wsik3xh8YA5wUKDfXK/kPeP0X2dyeCmguUgABmruFYUQTZh1nzYT/YGCDgQiLCVOytrxIIYi/sWfoHsYaZ5u4NsH9N/eVrFUtUiSeEr0dZ12sfgYBopJflPQ3zjJtdR8aGoqUlBS8efOm3N5sCxSgoi1+am6qQc6NfBkJiafEIGfpA1ONs/K3dya3nKzXXlzC0dIRUYlRWpu5UVeLh/oOhYetB4MRso+50BxWZlaVmrlFJ0fjwKMD/M0dLeGeQIn6Ef6lKjqkI3/QW6QoOs4yJVI+amiDx28fI/ZtrJK15UUKk7b4jZwb4VHaIyW/qNWLFHnH2UH/DQZJ/ghtRIqZ8Ac4W5FIztmtZi2gq0iJfDlR6RpNfFB0dTp9+PAhkpKS4O7ujpKSEqSlpZW9l5bPvkABPoiUAI8A2JrbMn5eblEuopOjIanJfYEC0O84K397R0AITCpjoKvj7PEnx/Es/RlmBs5kOEL20dRxdtGFRajvUJ/PnmgJtwSKJpONaRYpoefWoaBks5oDdRMp3eqthlhkhkOPD6lYq1ykeDt5I7swW8la3URKQ+c4ZBRkICU3RcXaykXKVP+pIAgBtLXFd7NxRXLOKWg6BVlTkRI1cSoknpveP1MeTWbx6MqcOXPw66+/onr16gCA5OQP2SEuZFAofJx8sG3QNliaWeJ+6n1Gyz3XX11HKVlqFBkUCmUiRdcpyPLlncYujWEhsqA1VraRFynTjmgmvlZdW4XWNVojsGYgw9FxA0WR8jKz/BT3+6n3sS9mH+a1n8dnT7SEO18tTcQJBbWugpssJVKADxb3yodTUSLlTe4YiEWTUCoVQShQNVFSe8dZKzOge711OPh4Pb6WfK1iLSVSAMpx9sK4CyAIAkWlRUjKSkJdh7pya7V3nG3oLBMSMW9iVDiOUiIFkIkUQNEWH5CVStbfXI8xfvM0dpx1s/FDSm4SKrPFl0H9t6/ccTao5joAtfDn9W/xJu8cfuj4wXGWKR+Uffv2ISAgALVr14abm+zrmJycjKZNmwKQCZQWbi1oP1cfpKQUo8NGo6i0iDHH2ciXkbCzsIOviy/tezMJXY6z8uWdKf5T6A2SI0g8JQgfE67R90/MmxicenYK2wexM02aLSiRcvzJ8TKXboqfLv6E2tVqY0wzfmKxtnAjg6KNOKGgKZNS3eZfZBWOgGTTWNrN3Pr7dEDkyydIz1+tZm3FnhQAmHt6LtpsbKN3uae+4xcQEkDs278qWau+cTYuPQ6zTs3SyszNxdoFb/JcoekUZG0yKcA8ZBT0wPxz5XtSmLC6z8/Pxx9//IFvvvkGAFRmUJwsnWg9V18EhAC7h+5mtHE28mUkgmoGQSgQ0r430+jbOKtY3jGl/hNFgmoGoY59HaTnp+PTY5+qLPesuSabDzW08VADR8g+YpEYgxoNAiD7OpyOO41HaY/w3/3/MKfdnDK7fB7NYV+g6CJOKGgQKYAANuZb0NiFfsfZ3t7/QEoCp559DlVTkGVUvN0zu91sWnpSzIW/o469PZ68+w+aTEFWJVLqO9bX2nHW3sIeGQUZ0HQKsgzNRcrc9icrNM4yYXW/ZMkSfPnllxCLZbczFAUKSZJ4l/8OTlbcEihAxcZZOkWKlJQiKjHKaPpPlEE1zlIiRZueFPnyTlPXpiZX3lFGXHoctt3Zhr47+lZwnM0oyMDWO1sxzX8aZxyF2UBKSnH86XH039kfnx37DB62HkYz+oBrsC9QIucz9LxuPSl0ipSadrXQxLUJjj/1gTJb/PIw1zjr7RSEJ+/qo7LZPZWJFG1t8e3FlECpfHZPeXRrnF1/sz/tGZTnz5/jwYMH6N+/f9lrigIlpygHJdISOFo60nYunVAiRUpKEZ8RX/kDGhL7Nhbv8t8ZVf+JMnS93SNf3pnmbzrNserw9/DHidEnlNrib769GUWlRZgaMJXFCNlHQAiw7+N9CKwRiNPPT+OjBh9VCfHKBOwLFEnFRkftnleXStT1ds+fePpOXROo5iKlt1dvnHiaCZKcAn1Eyn/3/1OyVjOR4uPog9i3ZtBkwKCmIsXNxg0igRnUNc7ai+2Rnp8ut28omBIpGwcMwhDfIzAXnqNVoMydOxdLliwp9xrVg5KSIms8fpf/DgA4K1AAmUh58MkDBNYMRHFpcdlwQ32IfBkJAoRJNENqe7tHvrwjJISY0HKC0nWmiMRTUiZS+u3sh1JpKUqlpVhzfQ2GNRnGienabCMWiVG7Wm1YCC2wMXojLidcZjsko4T9Jlmq0VWXMo+k6fvJxnsAqBIq2jfOjm7WD16O3wBwk3umwmpo0jjbs35P/Bb5G+6lTkOz6gRkIgUAVP1Aq9g4e3nC5bIro/nF+bA0s5RbW3njbH3H+nh+8zmk5C8QEIBMpADAp2piUN042752e7T/P3tnHd/U9YbxJ6m30GLFYbgPZ8gGDBhsgwFjY8YEGGMb2xhM+DGYkBaKu7u7u7u7W9HiUAHqkuY+vz+StGly43KTbs/ncz5bk/e+97S0yTfnvOd5X2kKALj07BLKFxAvnM0fkB8J6QkQKEAukyMbUgBHF85+XWctgKGIT/sTacps7iaJaKhLhlUArgIQBMHEPbO1c+dOHDp0CF98kbNoMiEhAUD2CkpcahwA9wYUAFl1In2398W+qH12F84efXAUrxZ5FcF+wY6aoqTSL5zVnu4BDAtndbd3ahap+a/b0tBCyqVnl+Al98KWG1tw58UdLP1gqdRTcwtFvYzC0stLMaTFEMSlxqF64epST8kz5SLLWvM6Gk6ORo6Rw+pe7zkeDSepJNmFpBfJlWZuYLktvtq+vjtHHZFx0YXvLYg1boufqkyl/xB/jjk6hsZ694jL0BZ/281tLDW2lNW2+JsiN+n0xTHdYNAwr3Fb/FRlKkuMKcEW81uI2uKvurKKUIAvUl+I5DVsMGhcltvid15ZnVCAg/Y256RJk+jr60sA9ALoDfXvk5eXFwcMGMC0NOM9QjIyMvjmm28yISHB4LnIyEgCYPXq1Ulmtza48/yOBd+L9IqMjXSILX7VyVX5/SZzfx+eJ0EQ2GtzL5O2+Lq9d2aemWkk079HtabVYu1ptW22xs9t+m7TdwwdGZqj6eKtuFvcc2ePrSklt52XYki/xaNV47+BJuEWhf6dDkzzLgT1AtACAJ8A+AzqlRRjsq5wlpyFqzEV7DZz8/f2R9PSTTXtuQ1t8Y3LsHC2brG6CPEPsbompVz+cgDUBW7GHGeNz8H4do+/tz+WfrjUqONsPv98AKCzzaObVwFnbPe8+UovyAGE9TuA3r17IyNDvd2jApCpiVGpVBgxYgTatGmDtLQ00Tzjx4/H119/jbx5Dc3OdI8ZA56xxaMrRxTOPk99jmux1zy+/kRM+oWz+qd79Ld3utbqKtlc3UFHHxzFhWcXkJqZimRlsvkLcrkexD/A3HNz8Vvj3xDkG5T1+PDDw9FuaTuLbPH/k1pOBRSZTNZMJpNtKl68OGQyGdavX2/6AksgpUk44uv0Ru9tvTX7es6BFJnMy2GOs2+VewsH7h3Q1EbYDim2Fs6WyVcGgBZQtLGOgRRdx1l9SMnvvwUANIWyYnkVcDSkyGVy8JQMOGM6myAIOHz4MH7++WeD5x4+fIjdu3cbbO1oFRwcjICAADx//hxKpRLPU5/DS+blUVsdupAy95yp30FxHX94HAByJaAApgtndbd3ahet/a/b3tHXmqtrkNc3Lx4lPrLaFj83auSRkcjrlxc/NMh52GJS20lmHWf/k56cuTwD4F0AQ9asWUMAXLdunWWLWQf6i2/xHA0nSWZkZvCNuW+wxJgSjE7Sdjl2znaPSlCy+/qKlIeBW278biav+HbPiYcnCAV49P5RvVjbtnueJT1jjak1+MbcN0SWVMW3e0JHhjJ8f7hIrGO2ew5EHWCpsaV4JfqKJnYgb8Wpl8D33tlrJq/jtnumnZxGBKt/bywZ3t7ejI7O7pQdFRXFunXrcsSIEUZnkJGRwdDQUALg3bt3OeTAEBYaWciCubufniQ+yfodylRlWnzdn3v+ZOFRhXP9kr5+F2SZQsbGsxtnfT3nrLm/3dyt5Ixk5huej/129uOR+0eYZ2geNpvXjInpiVJPTRI9TnhMv8F+HHxgsOjzqcpUtl3Slv5D/Lnz1k5rUku+3SLFcNWNrAOU5GhDQDkgI7kmK+Rh/EOGjgxl64WtdV5YnQcpIw7XZ0KajORiM3kNIUWpUjLP0DwcenCoSKztkPIg/oGJ2D7UhZT6M+uzx4YeRmIdAylpSnVNR6oylckZSYxN7ksowLVXu1qQ1zGQ0ndSX4vhBADlcjlHjhzJmJgYVqtWjV5eXll1Kt98841B/qZNm7JAgQJZ1xcsWJBFKhVhxTEVLZi3+2rLjS2sNa2WxTUpLea34PvL33fyrNxD+pCiHV5hXkzPTJd6epJq1plZlClkWfVXR+4f4duL3mZ8WrzEM5NGv2z/hSHDQvgy9aXRmFRlKjst78StN7Zak1pyWJBiuBWgpKWlMT4+nglPbxsCSnJHkt7UhZRdt3dRppAxbH+YThbnFs5Gxsq48nJvC2JzQso7i99hm0VtjMTaXjgbkxzDtxe9bbZw9sMVH/KthW+ZyOsYSCHJj1d9zJYLWjI+7aXmUyaoLZw1ndd+SPn0108JmXUrKN26dbPgfsbVbX03Np7d2K4cUsuawlmlSsnAiECOPDzSRbOTXvqFs1CANafWlHpakkoQBNaeXpvvLX1P9Pnbz2//q1ZSniU9Y8CQAP6z9x+LrxEEwdJVSMlhQYrhPkWyAIYNG4aQkBCUK1/e4DnhdEUAH0Jda7IWgLq24+9mfyP8QDhOPjqpiXRe4SwwG7PPVsenayZZbebWrHQzHHtwDCpBJRJre+GsQAGPEh+ZrUkpHfLCoIlVzljH1KQAwE8NfsKJhyfQacUHCPAOQEL6W7C0waC9NSmkftdm0yIJlUr/38Q6PU997jEFssZkTeHs5ejLSFGmoHGpxi6cobTS1qR0qNQh6zFP6z/kaB17eAznn57Hjw1+NHhOJajQbmk7UcfZ3Kqxx8bCS+6FPo0s7+JM0Obu6v8GuRWgDBgwAPHx8Xi4rq/Bc/JToyEcqwJ9SPmr2V+oU6wOvlr3FVKUKZpo50HK8LfO2eQ4+3rpRCRmJOJS9CUjsc4tnC2Rdy8eJkSZeAN3HKToOs5mCpmIT3sd1nRBtgdSysvk6rURK1SmTBnrLtBTbgAUICekfL3BuPHY8YfH4S33Rt1idV04O+klk8mw/tP1qFKoCvL45MGKKyuw4PwCqaclmSafnIwKBSqgTfk2Bs95yb0wp8McUcfZ3Ki4lDhMPjkZvV/rbdVrgdof6j8ZlYuWaiyvQdHxQxHzQVEdHUTyE+pu91yNvkr/If78eevPesmcXzi75OIPZvKqt3tSMkDvcC9OPjHZTKx9hbPFRhdjQpq+d4fA5ZfeJRTgy9QxFuR1zHbPwaiDlClkbLekHbWFs+pYJ2z3nAPZqRrTAOa3ogZFJpPxzh37/EuqTq7Kvtv62pXDnXQj9gbvvrhr9Plu67ux7oy6rpuQGykhLYF+g/044vAIfrvxW8oUMs4/N1/qablcTxOf0ifch2OPjjUZd+T+EeYdmpfN5jXL4QmS2/TXnr8YGBGoc2jD4ZJ8u0WK4V74ZkHjQPnRMOBYVeiupFQNrYrhrYZj4smJOBB1QCfaOSspWsfZ7+tVQZGgaQCWmJoxgBkI8PkGdYupcOSBqf4e9q+kTHx3IvL66Xt3yFAieAAA4GHCb7CkC7KjVlLK5CuDygUrA5CBHAyHr6ScPw98cB6oA2DdVfhB7Y9ryS+2l5cM7733HsqWLWtBtHHllhUUrSoWrJjVufbztZ8bbPccf3gcDUt4vr29Ldp6cyvSVen4qNpHmPbeNPSs2xPzL8yHQMvciXOLZp2dBW+5N7rV7mYyTus4ez32Oi4+u+iayblYL9NeYuLJifih/g8IDQqVejq5Ss72Qckjk8lqnz9/HoC68dr58+dx//59w2BruhofVRhs9/Ru2Buvl3od323+DumZ6TrBzoOUKe2uoFW5blAJX+LIfVNND9WQ0rhkdZx8dBzmuiDbAymdq3UGAIw/Pj7Hdk/xvCUAAE+TOsGSBoOOgpR8/vmQmpmKFZdX4O3F71jUBTk7rwJGIeX8eeCDD4A6dYB167IeTg0FYt8GmjVvCrnc+K+3l5cMQghR5es4E3MwL5K5DlC0ep76HPuj9ueoSXmZ9hLXY6+jUclGEs9OGq2+thr1i9dH2fxlIZfJMe29adjaZSvkMvm/xv8jU8jE9NPT8UXNL5A/IL/Z+CalmuDOz3fQuFRjqASVzlZ87tDEExORocrAb01+k3oquU7OXkGpD+BcnTp1AAC//vor6tSpg3/+0QMRa+BEI/nRsByQIpetx4z3ZuD2i9sYeWSkXrRzC2cXXngdzeaHmzVze63EH7j9AohL6QpnQQowCynKFMw5NydHTUqRIHUH3idJnWBpF2RHQEqgTyBSlCkolrcYjj44Kuo4azqvAjkgxQiYoFgxYOJErN/yPqY1BtZtbobvv//eaAFau3btMWB+c4y6cBRh+1uYmINpJSuToRSUuRJQyhcob1A4e+rRKQD4V66gJGckY+vNrehctXPWY3KZHAE+AXiY8BCVJ1f+V9SkbLi+AY8SH4kWxxqT1lG1z/Y+eHfJu7kG5hLSEzDu+Dh8W/fb/5okOkMu2ksyLpEePBb14jFSk/LHrj/oN9iPN2JviNzM+TUppnr33Iy7SSjAbTffprHePXqZaW9NSpFRRbKOIOcdmpejjoyiud49hnltr0l5a+Fb/GjlRyTVZm5BEUFGe/eYzHvuW7ITSOiNYsXIiRPJ1FSS5Pxz8wkFmJEJkkNYr149g7qT2rVrZ2WOONiaUICKfW+amYO4ol5EEQpwx60dNl3vCdIeQa42pRr/2fsP8w/PT5WgknpaLtfqK6sJBXgz7qbBcypBxZ4be/4ralJazG/B1+e8btO1uc3MbejBofQd7Kvpc+ZUSV4PIsWQvpvxUVNbI+YlOxoGoVG6pkvvJ/i7+UIsv1IMfXf0xZYuW/SitSspgHolBXBkF2SgGrqunw4A+KKm4epE+fzlkd8/P04+aox3KpSCqS7ImsxQr6QAtnRB3vPVHrRa2Apvzn8Th78+jKJ5imqW6i3rgpydd5Tm/63vghzgHYDUzFQA2bb4bZe0RZ9tfTGrw0xNbM4uyDl0/jwQHp5ztQRQr5gMGAD07An4+2c9nCmoO+54yQcB+As+PqUMUvrrxA9suhNAG4w7vgu9GvRD4aBRBvGm5Gl9eGyR9nTPkftHsObaGrxW4rV/5emD1ddWo3bR2qhQoILBc3KZHNPfU//td9/QHQDQtXbu69FzJfoK9kXtw7IPl9l0fZNSTbDjix14e/HbaLe0HbZ02YI8vnkcPEvXKCkjCWOOjUGPOj1QIriE1NPJlZL+VaZJmF2XD8qQYevNnQAWA/gQgT5fYXTrzth6cyt23t4pcoVzC2e71qqIfXenQ6xwViaToU6xOjj39DxM9e7Rywx7C2ffr/I+iuUphtCgUMSkxOjEGm8waJjXtu0eH697WdAAqCFl55c7Ed4iXBM7BKLbPUa3cvIAEwHc+QHo3TsHnABqQJHL5JDLFADCQBrzfsnWwKY7cfWHgSgcNBpKlXVbjf8GQAHUkNKtdjccf3gcvnJfmxoMerJSlanYfGNzju0dfWkh5Zu63+CnbT8hJjnGaKynauqpqSgSVAQfVP3A5hxaSDn75CymnJxi/gI31fTT05GQnoA/3vhD6qnkWkm/gtL4b/V/raxBAQA0Cccn5T9A9cLVNQ+oT8h8UHUc3ihdFb/t/A3nvzsPL7mX3oXOXUkhvwHwFWKSExAalHNlom7Rulh1dRWyfVIAZ6+kaD/Z+Xn54e6Lu3qxzl1J8ZGPhFKVmuNZbYO56ORoDNo3CGPeHo1AHwD4HTj/CAiPMrFi8g3gPxzA3wB8APTPEZYpZMJbrv21/gdK5XQAT3LE+Pj4GMw4NCgCmYI/2i79B2+UOoRBb+4z8r3l1L8FUAB1s8m41DgcfXgULRe0xN6ue/81++47bu9AUkZSVhG6MWkh5ZdGvyA0KBRk7jHiSkhPwMKLC/FLo1/sbpDYpFQTnOp5ChULVAQAj/s5pShTMOroKHSt1RWlQ0pLPZ1cK+lXUADLuhjrq0k40PjvLDiZc3YOemz4DgIXQibrjLFtbuBy9GXMOTfHSALnraR4yeficnQHlJv4g4GZW51idXAv/p7mjc10F2S9zLCncBYAImMjcezhMYu7IIvntW4lxVteDZnCTYg5zt55cQeLLi5C+2UdkHrqPeCDSkCdcaLFr7hzR7NiEgBTp3tUVOkACpCWZnjKwF9v1UUrb/nfaFGmNRQH9ltcOBuXGgcvmRdC/EIsivdkaTsYb+myxSLH2dyk1VdXo0bhGqhcqLLZWLlMjqqhVaESVOi6vmuuKZxdeGEhUpWp+K7edw7JV6VQFXjJvbD37l6Pc5yddWYW4lLiMKDpAKmnkqvlHoACWAcpTT7LXnnRyN/bH/MvzMc3G7+HwIVoUKIzurwqQ/iBAUjLTDOSyHmne6qFrsJH1QwdZ2sXrQ0AuPTsUlasqyDlw6ofQgaZWVt8R0KKj9dryBRKQOwIcqOSjXCw9kT0GXEAAa81AdbdyH6yWLAemPjnyGsMUnKuoACpqTlXbwAgICDA6IwHNt2JiJaWQ8rz1OfIH5Dfoz792aoTj06gQoEKaFiyYY7TPc+Snkk9NacqPTMdGyM3mtzeEZNMJkOAdwC6b+ju8ZBCElNPTUWnqp0cXm/h7+2Pw/cPe4zjbHpmOkYeHYnPa36OcvnLST2dXC3pt3h0Zcl2T5NqQOPVUENFx6yHP6+p3n75ar16m2R2h4VQNE9E1ctbMeP0D+jTyNibufMLZ79aP00zx6moWKAifOQ+uBR9Cc3LNNdGwxXbPaVCPkSAT0CWLf7+bvtRpVAVnVjHb/d4y7yhFEpA/fP6RfNo36zi17rr1kHXMJ3FikE2oAbQcxfgnwFAfLUjG1IANaQAQH8DQElLM4RTf/87RnKqpS2c/XPvLjQv0w1vlplvNDa3eqCI6cSjE1n+J5UKVsL+rvvx594/EegTKPHMnKtdd3YhMSPR7PaOvrQ+KYDnF87ui9qHa7HXMLXdVIfn1pq5vbP4HbRd2hZbu2zNOpbsjlp4YSGeJD7BgDf+Wz1xulx0XMg6Hegvfsz4aDjJDJKdSfqQXG9w6eILiykPk2s6HCvZfX1ZFhkFJmcsNXNT5x5BLjUWTM5QHxWuOa0mv9v0nVg09bsgm8hMa48gzzqj7sL6OOExG81uxINRB43E9qGjjiD32txLY4uuOYJ8DmSnVw2OC6cVLsiT/b/UHBe23RY/4mAEQ0eGZj2bP39+g2PGX32lPoJsTgeivqEggKTCaEz39d3ZaHYjs7k8XanKVPqE+3DSCfF/5xuxN8x2QfZUdV3XlVUmV7G066yBVIIqyxb/0L1DDp6da9RpeSdWn1Ld5p+BJdLa4n+y6hOn3cNeKVVKlptQjp1Xdnb1rSU/8ivFcE9ASY42BJQD/XUCTEPKhusbGJMcQ5K88/wGvcNlHH1ETm3vHuNyHqQ8jP+YpJwqYSG7rOnCJnOaGIumsyBlzdV3CAUYmzw264VGqVLy3st7BrGOgpTeW3vz1amvkufOkZ06GYCJvo+JIAicd26e9T4pGkgJ2/8Wi40ulvWMv7+/AaB89119TV7zkEJGcOF5MHx/C9FnOyzroOk1lLt17MExQgGeenTK4DlBENhgZgNWnVw110FKemY68w3Px7/2/GVXHpWg4qILizzSP+ZB/APKw+ScetLca4H9Onr/KK/HXHf6fWzV4guLCQV49vFZV99acliQYrgloMyeNMwQUJL1mzCZhhSSvP/yPgfuHshu675i8TEBTFN6USpIIVVMSv+CzeaBnVe8xvzD85v4NOIcSNl9exehAG8/B8mZJMmBuwfmMHPLlmMgZfikT7mrVrAImICc2CkLTLSKehFlu5kb/+Efu8ByEwqoHxEE0QaBffr0IRlGSyFl2KE2Rs3c3pj7Br9c+6XZHJ6uccfG0W+wH9Mz00Wf15q55TZI2XZzG6EALzy94LCc229u54Lz5v6u3Uf/7P2HeYbmEWlC6jwlpCXwl+2/uJWZm0pQsdqUamy7pK0Ut5ccFqQYbgkooisoBoBCmoOUNVfXUB4mZ6flnQgFOPdsA+p2QTYuJzvOKtRbLaY7XzoeUk4+PEkowHNPPqb6n0XccTZbdkCKyRWTCWTqr5rYcQaZDkYdtBlSem99ja9OBcnhTEtLEwWU/v21q3GWQ4oxx9lqU6qxz7Y+Zq/3dH26+lM2nt3YZExuhJQeG3qw4sSKDt3a+GnLTx7jOJuRmcFio4ux1+ZeLr3v2cdn3c5xdt21dYQCPHzvsBS3lxwWpBieAyg5tnh0ZVlNSqmxpVh5UmWqhI8pNaS8v7w0oQD/2tvRTF7HQkpkbCShAA9E7ac5W/xsWQkp5760yJJezBZfV7ZCytfru7PR7BIkwRcvBokCyqBBg3SusB5Spp7M3tIpOrqopt4pd6vs+LL8ZfsvZuMiYyNZYWIFHog64IJZOVcZmRksMKIAB+we4NC8nmSLr7X3d+QKkqVyJ1t8QRBYf2Z9Np/XXKopSA4LUgz3BBSTRbJisgxSoAC33NhI3d49puUcSEnOSCQUoEwBXo0eYSav4yDlccJjQgFuitxEY717+u8SA0ELIMXIismLAoEc/kkJg62c7LymIeX95e8zJSOFlhbOfrLqE7Zc0JLkP3zyxBBOAHD48OF6V1kOKTNOd+SzJJBUUBAE+oT7cPKJyWav82Q9S3pGKMDll5ZbFJ+RmUGSzFRlMi4lzplTc6p23tpJKMAzj884PLcupCy9aK6AXzq9tfAtE/VyzpcupGh/r6TQjls7CAW489ZOqaYgOSxIMdzrmDGg7mx8aoT4c9rjx3oeKGpH0aUAukB9RHgV9I8gE8Q/+/7BlFPT0bbiBs0znwBYAcCYbbNzjiAH+uRBqeBSaFzSC1VDBwAooXONvhx3BFl7dE/d7tzQcfZQ90MI9gsGoD7r7+ftp3nexBFko71ygoAByfinZG0cjk5Ff1FzNMPePUDfrGebvtIUTV9pCkBtMlcqZGC24ywAsd49ycpkBPkEAVAgOfk5xHxaDH1QtMfa/9L890+Ruar1bb31AIbiSeKfWHb5aK7tZKyrEw9PAEDWEWNz8vFSO/X2390fW29u9VjH2dVXV6NsvrKoU7SOw3NrHWcLBRZCgxINHJ7fEboZdxO77+zGok6LJJuD1hb/xMMTWb9XUijiUAQaFG+At8q9Jdkc/o1yH6M2QA0n5izvj/6jjjOQFlI6Qg0RG3I8+0XNL/Bn0z+x9eZWTDwxFQIXAvgQakhZa+KGzjFzq1CgAiBrAKArpp/+0sBxNqccY+am9avINkPKaeaWz38V5DI59t3dh8qTK5s2czs/0EivHK3zawzQ+zcofY4CMNWTJGfvHjHH2QxVBt5Z8g7aL+uAFOVAiPbu0Sg5I1kDYjIkJHQXvWNIiJjr6z8AwqCGlAgT8wWAgdgQ2QG/7VT3esrtgHL84XEUCSpitaX3t/W+9VjH2UwhE+uur0Pnap2dZsInl8kxtNVQVChQAfFp8dgYudEp97FVM87MQMGAglb7vzhaTUo1wS+N1R9g1l1bh6SMJJfe//D9wzh47yD+bPrnv8KQ0Z3kPoBiCZxoZSOkfPbqZ8jrmxd9t/fNcpyVClLK5y+P28/vgJyF048rGDjOGsp+SPGWe8PXyxfJSl23RkPH2eqFqyOvX15xx9nzXYEPygN1hllgST8KRE3IZA9hTYNBfUjx9fLFwvcX4sTDE2YhJXsFBYiPTxC9W3BwsJF5WA4p39ffgJ8aNAQArLk20GSsp+vEoxNoWLKh1S/O2i7Inggph+4dQkxKjMvenGednYX3l7/vNo6zqcpUzDs/D91rd4e/tzGzRNcqJjkG3TZ0c7kt/tBDQ1E9tDraV27vsnv+J7XcA1CsgROtbICUQJ9A9KjTA3l882DBhQWSQkrZ/GVx9+VdyGRemNle3QXZFZAS6BOIVKW+/bt4F2St4+z12Os63YXrAutuZ19aLMSkJX2mUB9esqKwtguyPqQ0faUptn2+zSykJGdkA0pCgrWAAlgDKR2rDAEAzDp7FoMPtDQZ66kSKODU41NoWKKhTdfrQoonda5dc20NSgWXQoPirtl++bXxr+hZt6fb2OKvvroaz1Of49t630o9lSyFBoVi2+fbcO7JOZfZ4p99chbbbm3DwKYDIZe5x9vlv0nS16DYAida2VCT0r1Od4w/MR6/NPwFE05OAKC2xZfLAFfWpJQOKY3nqc+ztiR0bfFD/APxXqXRRvLaV5Pi5+WHdFW6SKxhTcqer/bgh4gmeNKmMaqce5kzvFgxYEAloOcBwN8bxizpM1RK+HlXgPpnYHkXZGM1Kds+34ZPVn+CG3E3UbvoEM0z2TUpKcqUrFob44CyDkArI3MALK1JiUlWb10pmrdExYJ7oQabQSbyep5uxt1EQnqCXW/UlQpWwslvTmbVoQgU3PrFXqCA9dfXq3tXuWhJ391s8aednobW5VqjYsGKks1BTK62xR96aCjK5y+Pj6t/7LR7/Cfjkh5Qjtr5gn50kAigAMYgpWaRmqhbrC7uxt/FwvcXYu31tcgUAF+vxZrrXAMp2v38BwkPUKVQlazePeXzN8TrpcYCqANnFM76eedHeqYYoAA5IOX8tygcPg2rdVdLAA2YDAB69gT8/aAGCeO9e9JV6fDz8oOlvXssgZTbP99GgE8AlCollELOwlndLR5jgBISMgVAKQD9jcwBsARSYlJi4Oflh3+a74ZMNgzkn9h79w5alZP+E7CjdOrxKQBA/eL17cqjbTC37+4+9NvVD5u7bHbbwtnTj0/jUeIjdKrayaX31YUUdbdzaXTh6QUce3gMaz5eI9kcTEkLKQP3DES6Kh1BcA6gXIu5hrXX1mJm+5k5+nv9J9dJ+p96kzDbV1AAoEkXE0+KQ0q3Wt3w685fMav9LHR5tQtkMhluxt1E+QKuW0nRAsq9l/eyGvbJZd74s9kpAN8g6uWXOP34JDpXm2Akr22Q4uc1Hemq00biAJy/AIQ/BtYBwLmsh4WiRTHn7VA0G7IIlUvW0rnAdIPB7NNAljcYNAcpAT7qUzg9N/XE/fj72NxlUxakJGf4Zn2iio+PF80eHPwrdBsMGpdpSIlJjkFoUKjmU/ZAHLh3B28tmgNF8/sY9OY+E3k9R6cenUKFAhWQPyC/Q/KVCC6BJ0lP0HJBS7c93bP22loUDCiIN0q/4fJ7a0/3aFdursde12no6RpNPz0dxfMWR4fKHVx6X2vUpFQT7Ou6DzKZDA8THiKffz7k8c3j0HsMPzIcxfMWx5c1v3Ro3v9kuaRfZ238N9Ak3LZrm1QFGq8CsNlEkGFNyic1PoFAAeuurYNMJsPLtJdoNKeRS2tSiuUpBgB4nPhYL1YOYDZmnK6BT1ZPxOKLxjoKa2Otq0nx8cqPTGE7dE/3ANCpMdE/lQNg4qeIu3wSExsSzZe/bfp0D6blSJuhytCsoGhjR0F9PNi+mhQA6FGnB04+Oon3lrZHinIglKr+SFZmIJ//cQCmtnjCoYaPPwAYOdKeJeM1KTEpMQgNDM36+s0ysxHRsjUUB/YjbH8LM3k9Q6cen7J79URX7l44SxLrrq9Dx8odJfvUrIWTvXf3ovrU6i6tSUlMT8TiS4vRs25Pt181kMlkECig3dJ2aLe0nUNP99x9cRdLLi5Bvyb9dOwW/pOrJT2gALZBSpNwoPF5AO2gBgrLIaVw0DG0KNMCK6+uBADk88+Hie9MdGnhrJ/3OhQIKIAnSU9EYuWIaHUWXWtVRNf10x0KKV6yksgUaiCrcNYomBQDJk4A7nwH9F6O0ILbDQtns2QcUtJV6Xp/4I6DFG1NihZSHiaoC/oKBKwAMEYUULy9vREQEAhAAXshJSZFvYKiq4FNd+YaSFGqlDj39JzDC0V1IeWLtV84NLe9uhZ7DTfibrh8e0dMb5Z5Ez3q9HBp4eySS0uQqkzFN3W/MR/sBpLL5JjWbhrOPjnrUEgZeWQkCgQUQM96PR2S7z/ZJvdBZG0diSXbPU3CdepOlkNd1/EhgDUA3jNyUc7tno+rf4NeW2ZkLdN/XlO9/fLVevU2iSsKZ4vnLYEniWKAgqyaFKAauq6fDhlk+LzmVCN5Ld/u8ZZ7QyU0As5XAcJ7aLZydJSjxsQfavNVb+gWzrZa2AotFrTAtR+vIZ9/Ps2F4mZu6Znp8PXy1buJ47Z7tJDy7pJ3MeecelWoQMCXAH7H8+e1DbKFhIToFD4qNP+1bbsnJjlG1BtkYNOdANrgyINdyBT+gbfcxhVCiXU15irSMtOccpJFCykkHZ7bHq27tg55fPO4hSGXdrsHcE3hLElMOz0N7Su3R8ngkk67j6OlNXN7e/HbaLe0HbZ02WLXds/jxMeYe34uFM0VWd5R/0kiuciy1nIdDVfb2otZ3Ru1u08n2YmkL8lNZm6gtsWPTvKmPEzOWWdm5Xh28YXFDB0ZytvPb1Ntde88W/y3FoKdVzY0GakSlPx2YyVuvC4judhMXvO2+F3+rsazjcoYWNIb9srRlaEt/sLzC43MIactfv2Z9fntxm9NxIp3QRaPNW6LHxkbyUNRhwgFePnZJZID2aqVoc19lSpVRPL+o8mrb4Evpmxb/CqTq7Dvtr5GIzNVg0mCTxJ/syCv+2nWmVmUh8mZlJ7k1PskpCWw2/pubtFgsO6Muvx41cdSTyOHtLb4DWc1ZKYq02n3OXL/CKEAt9/c7rR7OFNH7h9hgREFuO/uPrvy/LbjN4YMC+HL1JeOmZhjJLntvBTD/QCFtKEXD2kLpLwxV8aOy14zeDY+LZ4kmaZMo0pIp7Mg5bPVZfjmfNBc7x41eHSnIMh44qG5xnRGIMVod+FAciLI1Olm8uaEFK1mnJ5hssFglclF+Ov2X83kdQykbLy+kVCALRe0ZHJGEmvVKmwAKG+88YaRvNZDSqGRgYw4GGEy8mniAOYfbtgF2RP07cZvWWNqDaff5/bz227RBTnqRRShAJddMvf36HqpBFVWwzx1byrH68u1X7LchHJUCSqn5HeFtK/dgiDY9HOKTY5lUEQQ/9zzp6OnZq8khwUphnvUoOirvmGPFTTwAhqbWmr2hXq7x/KalHYVq2P3nZNIy8xZOxLsFwyS6Lyqs1NrUkID2yM2JR/M2eJrC2eXXW6KxnMGWWfmdn6wBZb03wP+vWBQOJtDho6zaZlpmHRyksmalMT0Z8jrd10kn26sY2pStEcztWZuMbGGO5iFChUyklcBa2pSVMIgxKWkIDTwpMnIInmG4vcmnlmTcurxKZcYlZXLX84tCmfXX18PXy9ftK3YVpL7m5JcJkce3zx4lvQM1aZWc3hNSlxKHFZeWYnv6n3n1h415qTtJfbH7j/wzpJ3rDZzm3BiAgiib6O+Tpjdf7JaLiIh65QcbbiCktyGpB/JbWYutnwl5dKzs4QC3HbTi6a6IHdf390pKynh+8NZdHRRWtoFWSUo2X19RcrDwMUXepmewrkzZKdXDFZMokN8uOzbJnpbOaa7IOeUeBfkIqOKiK6kBA/z5agjoNEuyDny2reSMuboGAZFBPFg1EEGDgmk3EdusILyzTffmMlr2UpKdFI0oQDXXQMt6YIccbA1ofCclZRUZSq9w7059aS5fzfHKTI2MmslJTkj2WX31arZvGZsu6Sty+9rjVSCit9u/JYyhYzzz813WN7RR0bTd7Avo5OiHZZTSh25f4R5h+Zls3nNLN6ijE+LZ77h+fjL9l+cPDubJPlqhhTDcwDlwO8k29ORkCIIAkuNLcVft1ck6UNXQ8rkE5PpE+5DQVDSYZBidCsnHzlxIhtNrs3vNn0nlpmOgJQbsTeyowSB8jA5p59qqYl1LqT8uedPlh5XmiS5/cp2AzgBwD/+aGlBXvOQcvHpRUIBHrnfQxNrGaQEDwMfxpva8nIPHXtwjFCAJx+edOl9b8Te4JSTU1x6T1INnGI1ae4oR0OKSlCxwsQK7LKmiwNm5z6yFlJGHh5Jn3AfPox/6ILZWS3JYUGK4Z6AYrQGZRAdDSld13Vl7em1SHamOUhZdWUVHVk4u+jCIkIBzV6punDWGkj5ZBUoCIvUDxoFk2LkxMZkKkguYM1pNfnTlp+MZaY9kNJtfbcchWXJGcmEAlxycTF1C2fN57UNUnpt7sXa02uTJO/evSsKKKNHg+RoC/KahpRtN7cRCvDey3vULZw1p8cJ/UmCmap/zMZKqYnHJ9In3IdpyjTJ5rDk4hKX1aTMPjOb8jA5nyU9c8n97JUWUgKGBPBxwmO7cu28tZNQgIfuHXLQ7NxHWkgJ22+6di9Vmcqio4vymw2mVlglleSwIMVwP0Axe4pnEB0JKQvOLyAUYGzyE5qClLOPz1IQBM1XjoGUDdc3EArovAhbBykZmV3JczKmd6htBEy0p3KyC2erTSnOPtv6mMpMWyFFq1txt3gt5hqfJj4lFOCG6xuof7rHfF7rIeWTVXXYcoF6heTUqVOigDJ//nuavPZByqwzsyhTyJiRmaF5xHJIyVQNZodl7r3d89W6r1h/Zn3J7p+QlsASY0q4rHC23ZJ2bDavmdPv40ipBBUvPL1gd54PVnzAGlNr6Ly+5S5dfnZZ5+9UXDNOz6BMIWNkbKSLZmW1JIcFKYZ7VUNZ0jjwaBhwrC6ANgDeB7DdRLD5wtmWZdVdaPdHHYGxLsgAUKdYHchkMiy/vBw9N/ZySOFsiF8IACA+TWvJbr4LslbyC5fh81E8UIfw3Xg++4ms4lfd7sLZhbOZwmN4ySJNzFe8C7K4DAtnAaD3tt54c/6bOP9UPa+8vnlhznHWMK/1hbNxqeeQ3z8WABAbGysanTdfN4h1QRbPq4CxwtlHCY9QJE8R+Hj5aB6xvAuyl/wvNCzh3oWzpx65pkDWmPL65cXerntdUjibkJ6AXXd2oVMV6c3ZrJFcJkfNIjUhUECvzb1sKpx9nPgYG65vwPf1vndZY0RXq3rh6vDx8sHRB0fRfll7AzM3laDCyCMj8WG1D1GpYCWJZvmfxOQ+gGJNV2MHQkrJ4JIok68Mjj44CjFbfH2pBBXmnp/rkNM9WjOhZKVupbkZSMnh/Lo+6+HHeYFT/V/XAxNdqSElQ5UH/t7bYYktvq2QMv/9+QgNCkWXteo+Sdl9XJwLKdHJoSgSdBHAeDx5Im6AN/TsMKQoB8JeSHmY8FDEzMpySHFnx9nE9ERcj70uKaAAOR1nWyxo4TRI2XZzGzJUGXi/yvtOye8KqaiyyXF23rl58PP2wxc13cvR11naH7XfwHF2zbU1uP3iNv54/Q8TV/4nKeQeTrLWwIlWRzWt7RsDakhZD+AdI8FaSBF3nG1UshGOPzqu+Uq8waBWjnScDfSpAQBIUaboxYo0GDxfBQgPz3lUGACKFYPwx/+gKDYZc64dwYIbv+CLmsbe+OVIy8wDf+/KsLYLslpfG4nV6YKs4zjbcFZDPE99rteZVdxx1nheyx1nnyQCxfK+AeAXPH4sflT0atpVdFjWETu+2A4vOaDtgqwGIWNzUGj+P9tx9lHiI5TIW0Ik3nwXZK20jrN/7t2FxqW+RJvyi4zGulJnnpwBQTQoIS2gANmQ8tvO30QciR2jddfXoW6xuiiTr4xT8jtbtjrOChQw6+wsfFr9U4T4hzh1ju4gMcfZIJ8gDDs8DK3LtUa94vWknuJ/0pP0gGILnGjlIEhpVKIR1l1bhwxVhuZF0HJIKRlcEuEtFmuesQ5SAn0mAgBSlakisRpIOf8cCP/MpCW93N8f0/kTMjdWw+87p6Nj5XrI6yfeSyM9Mx3+3h8DqANnQ0q/1/vhx60/Iildvz+G4yFFqVIiJiUGRfNEAGiCR49GGn43cjm2fLsFN1/ehJfcG8AQzTPWQ8rDhIdo9kozI/HWQcprJb5Gq7LzAFQAMMhorKt06tEpBPoEomqhqlJPBYAaUjZ9tgmAuvu3n7efw7ogp2WmYcvNLej/uqk2B+4vfUgpHVIaLcqaXpnbdXsX7sXf+1f1m9GFlK/WfYXv6n2H80/PY89Xe6Se2n8SkfSActTOF+Sj4UDjNACdYSukNCzZEOmqdFx4ekHnU6N5SAn0CUSjko2g/jFaDykBPuo3XMMVFKi3csLDgXVbcj5u0CtHLW3vnvvxnyGv33cg/SGTGS7bpmamws/bH5b27rEHUlTCp/CV+6J95fYQKOBJ4hOUCC6hE+s4SIlOjgYAFMtTHMA3ePx4LYBbOWKKFCmCFuVboAXUL9wrLq9E+8oDEegDWAspjxIDUSLvZ0ZiAWsg5a1ycwFUwJqrf+Ja7AH81WyvibzO16nHp1C3WF14yb0knYe+SOLztZ/jeepz7O261yGQsufOHiRlJHlc/YmYtJDSsERDNH2lqdn4mWdn4tXCr6JhiYYumJ37SAspQT5B6LujLxoUb4AWZdxrm/U/qSV9DUqTMAdc7wtgNWytSalZpCbkMjkuPLugF2u6JqVT1U4olrcYniU9g2L/EKtrUnzkaojJFA5mP2W0u3AAMFEG3BlupMZEDSll8q1AWubnaLv0SwPHWZWgQlpmmqb2xbouyLbUpMSlLkehoEDIZDJEHIxAvZn1LO6CLJ7XeE2Ktiu0+k1LhseP80NfxYsXz/r/RwmP0GNjD7Rf1sHqmpRU5QA8T01BieBzJmIBa2pSgIG4+bwN/t63T/KaFFc5yFormUyGuR3nOrRwdt31dahUsBKqhVZzwAyll1wmR4+6PeAt98ahe4ew6IL4tuGTxCfYGLkR39b7NtcWx5pSk1JNkJqZiv1R+1EquJT4h8T/JLmkB5TGf6u7E9ugpAb9dboa2w4pgT57UbFARVx8dlEk1nzh7PGHxzH44GCrC2e95TMBAEphHHB+lAWW9F8A/t1hzhbf12suiuWpiK/WT8sBKdpi3OxOn86FlLiUV1Eg4CWAWfiu/ncIDQo1aYtvD6Ro36yK5S0GAHj8+LHB1bqAUiK4BLZ9vi3LFt8aSHmUqN7nLxm8CpbY4lsKKX+8sUPywtnYlFhEvYxyS0ABchbO2gspKkGFDZEb0KlKp1z5Jr3m2hp0Xd9VtHB2/vn58JZ7/2uKY8U0/PBwvBLyCnbd2YW2S9tabYv/n1wgF51nNi8d/xOTPiiaMWJ0HtaYWkPEWCmdtvikfLzqDTM+COoGg450nE3JSGGt78B7LQuY8THRynozN13H2UcJjwgFuDlys340zXVBzhlrmU/KZ6s/Y/N5xan1STFni2+PT8rM0zMpU8ioVCmZmZlJLy8vAw+U775rbJDpYNRBBkUEZTUYJAfSnE/K/rv7CQV4PeYHGvNJMZTlPilaW/yJx9+1IK9jpTWguxl30+X3tkaRsZEsM74Md9zaYXMO7b/j8QfHHTgz95Exx1mVoGK5CeXYdV1X6SYnsa5EXyEU4Nyzc22yxZdAknuSSDHcB1BIA0gxCihHv+K1mGssOrqowyAlfL8XC47IaybWMkjpsaEHzZq5nTtH1fsdRcAkvwiY6Mo2SLnwdCivx1wnFOCBqANi0XQ0pLy18C12XtmZYrb4vbf2FrnCdkgZtG8Qi4wqQpJ88uSJqElbWBgo1gX5YNRBvrP4HSakJWjymoYUrblfUnoibemCbAmkTD3ZgfdfgqTCgryO0+ADg5lveD6PMO3SutwKgsAXqS+svv6X7b+w+JjiHt2915x0IWXJxSUkyV23d2naNByReHbSqeu6riwxpgTTM9NJ5rTF1z7mZpIcFqQY7gUopAVOshVJ+pPcwWsx11hhYgUevX9UJJF1kLL8UgNCAT5PMddq3TykLLqgsZ8XgxSTlvT1yFQ5TTUYVMs6SFl3rSUFQcYTD8MIBUy4TzoWUqpNqaYBkZyOs3EpcVSqlCQp4vBoG6R0X9+Ir816jaRxF9lZs97W5B1nNOPt57fNrqQM2jdI0+RROwfnQAoZwZhkcPqp9yyIdYw6Le+U5cbrKfp7799WO84KgsByE8rx+03fO3Fm7iGVoOL/dv6Pl59dJkl+tPIjVptSzSMg1Bm69/IevcO9Ofbo2ByPH7l/hIMPDHbXn4vksCDFcD9AIU304gknmUayLbWQon2jU6qUjEuJ00tkOaSceXycUIAnHnrTXBdkc5BCql8A115dm73dc86L7NTQAEwe5QFP9v9Ss2JiWRdktSyHFDVMdGe/nSAUYNSLKDOxjoGU/MPzc+jBoZqvDG3xj94/yvITyjtku6fVArDzytokyVWrVokCyo4d2ynWBVkrpUrJihMrssX8FiYh5Yu1X/D1Oa/rzcE5kDL7TCeXdkEuPa40f9/xu0vu5SjpdkG2FFIuP7tMKMCtN7Y6eXbupdvPb1MeJuf4Y+Olnopk+nnrzywwogAT0xONxmy9sdXk8xJIcliQYkhfJCum+iJHPbMKYv2gLj5tCaAjvOXqI5m/7vgVzec3zzpuqpblhbMVC6ir+G/G1YYxW/xsmS+cvRR9CZ1XdUbY+I/AD9KAOipg3YnsgGLFkDFuDMr1AW50eVtzKse4Lb6hLLfFVxe4zsbpx+pjmdtvmzo55ZjC2bTMNLxIe4HiebWFqYaOs+ULlEeAT4BDCmfvx+dH6eDzACYjKipKNLJMmbLQ2uIDvwAYn+N5b7k3ZneYjZOPTuK9pe2NFs7eeXEH5fKX05uDAsZs8Q1leeFsj7prXVY4G5sSi/vx9z3OsMqWwtkNkRsQ5BNk1iskt6nP9j4QKMDbS3qHCSkUmxKLWWdnofdrvXUOC+TU89Tn+GzNZwaOs/9JArmIhKxTcrThCkpytF5QzpWUazHXWGRUEbtqUgqMKMChBwfTki7IaplYSTl3jvda1jdYMWExkBN7kKmpjE+LJxTgissr9PI6ZyVlyslJlClAeRi46IK5pW37VlLuvrhLKCBSxGjYBdnewllBEOg32I/jj7UgCf74Y1PRFZS0NG1n3pxdkPV1IOoAgyKCjK6kFBlVhIp9CrGZ0FkrKdrC2bD9zltJ0Xa1deOGaSalXUn5bcdvZmMbzmrID1d86IJZuY8EQWD5CeVZYWIFg8LZf4v+2fsPAyMCGZMcYzLuyP0jzDM0D5vNa+YuKymSr2ZIMTwYUEhHQ8qrU1/lD5t/oCVdkLOlBylGakxe5A+gasJYMrUztTUp0UnRhAJcd22dSF7HQ8rgA4MZOjI0q3B23bW+ZvLaDilH7h8hFODFpxdFYsUhpfb02iL7v+Yh5VnSM0IBrr26huRvbNvWEE6KFy8uktc0pISODNWc8MgunE1KjyAU4MLzC438HJwHKUMPtuGcs6CzCmeHHRrGvEPzenTR6L2X97LqmozVEjxOeEwowAXnzf1O5y7tvbOXUID77+5nz409/3WQkpCWwPzD85vp5p4tN4MUyWFBiuE5gHKgv5FgcUgJ3x8uEmsaUt5d/C47LuuoE2sFpJx7i+wkMwATFivGk/2/Yvu5rZmq1NaZqAtnH8bPNLMP7lhI6bOtD6tPqU6VoOSgfbX5LElGcrGZvLZByuorvQgFTHxSMYQUwxUU3dg+NAYppx6dIhTg6UenSQqsVq2gAaA0adLESF7jkKI9cpipymRKRjLJgbz4FBacgHBu4SwJHozqbkGsdfpo5Udmjtp7jo7eP8rXZr0mWpMy8/RMysPkjE2OlWBm0unT1Z+yyuQqFASBKkHFnht7cvCBwVJPy2Uac3QMvcO9ee/lPYuvOXL/CBvOaijygdflkhwWpBjuCSgmi2TFlBNSHsY/zPoUaPhp0Dik9NjQg/Vn1teLNQMpJk/lZB8X1n6au/viblbh7K04L0IB7rmzx8QPw3GQ0mVNFzaf11zzlbpw9nGCjGuv9jGT13pImXgc9B3sbaYi3rBwNik9iZ+s+sSq7Z7VV1YTCjA6KZqCIDAwMNAAUD7//HMTczAOKSTZa3OvLJ+U9dc6EwrwSeI/Jr4vbV7nQMrhe986pXC23IRy/GX7Lw7NKZVMFc6+t/S9XANilio6KZq+g3055uiYrMd0/zZvP78txbRcpjRlGouPKc5u67tZfa325/Q08amUPimSw4IUw/2KZI8NBk4ZKTI8+o/6eQPlLJwtEXwFcpkcO2/vRMPZDS0unC0YUFCv866hLX6WjFrS+wMT5cCdCTks6WUyGRLTE9FodqMsx9mkjFYAgLy+p038QBxXOPss6ZlO/xJ14ey00zXRedUEA1v8nLK+cDbqZU28EpIJmWyeiVjDwtkUZQquxFyxqnD29ovbyOubF4UCCyEmJgYpKYa21WXKlDExB+OFswDwWY3Pshxnr8XWRZCPD4oEhcMSW3xnFM6+XnqGwwtnX6S+wJ0Xd1C3WF2H5JNaxgpnkzOSsfvObnSs3NFMhtylhRfUf7Nf1cruuaV1zz1y/wgqTaok6jibW7Tk0hI8TnyM/zX5n9XXymQykESH5R3+c5x1tVxEQpbJYqM2y1ZSrDVzG35oOPMPzy+SV2cl5dwEMysmCbTUcfZglHpP+Gq0F005zqpl/0pK9SnVDfZfxRxnjcvylZQPVnRi64UlaYnjrL2Fsz039mSd6XVIkidOnDDigfKZBXMwvpKidZwtMaYEq0+pTkscZ7PzOrdw1hErKXvu7CEU4JXoK3bncidpV1Kazm1KQRC47to6QgHeiL0h9dRcJkEQWGlSJX62WvxvwJjjbG5RpiqTlSZV4vvL37crj8SOs5KvZkgx3AdQrLS6dwakzDg9gzKFTLxI8NxJslMxE2Ci6/xqmeNs64XqN5gH8e1pzhZfLfsgpeCIghx2aJhBpDMgpe6Muuy58RtaaotvClIMawVyQkrLBS350cqPSJJLliwRBZRdu0CtLb7pOZiGFK8wLw2gmHeczZnXeZDSfB6YnvmXBXmNa9SRUQyMCGSmKtOuPO6oG7E3sswJu63vxqqTq0o8I9dKa+m/7+4+ozG5GVK0W8DHHhyzO5eEkCI5LEgx3ANQRODELKDYACnvLhbrbZINKcsu9ScUYHxafPbTRmtMCpixpDcPKUERQZr7xdGS3j1q2QYpqUq1PbuxFx+VoGTPjZW4/JJjCmcLjCjAiIMRtKZ3jz6kRCdFc8bpGSZi+5AES48rwD92/UGS/Oeff0QBJSqqpyavfZBSamwpnToN94CUjMxwkmB0Uj8L8orrs9WfsckcsULi3KPEtET6D/HnT1t+knoqLlWXNV1YcWJFsw6pWkipNa2WiMOzZ0oQBDaY2UCn9s5+Hbl/hPmG5+P2m9sdltMCSQ4LUgzpAcUInFgEKFZCyq24W0Zi1ZCy9qp3VrGl6eLXmmSqD+11nB11ZBS9w72Zrky3uMGgWtZDyq04mQUFuerCWUGQ8exjc2+MxiFF6++i7f1hD6RotfD8QtHtnjTlj5QpwNln1EWwn3zyiQGcBAQEUKXKpH6DQdNzMISUlIwUyhQyzjk7h7tv72a7Je0sbjCYndc5kBKb/CcLj7J9u6fSpEpG+iPlHq28vJJQgGXGl7HKFt+TFZscS7/Bfhx5eKRF8SpBxZepL0lm9zryZGlXjxztGKzt/SQIgqt+TpLDghRD+iLZo4OcdH3Owtkqhe6jfIHyiE+LR7f13UQLZ/2966LWEyDPp++KFL8WAyZOBO7cAXqfAvzfg72Os6nKVBTwL4Av13+ZVTirzvmJZu7GZH3h7IOEtwAAJYMvmIhVF86uufYm6s/6C4sv9jITK144e+/lPQBA2XxldWLFHWcNZVg4m6HKwOhjo0ULZ+++/BEEUL7AEgDTEBkZaZCxYsWKkMu9AIwC8BuA3gAmm5mDYeFsZFwkCKJaaDX4ePlgf9R+k46z4nkVcEbhbMHAIejT0LbC2YT0BNyIu5FrCmSN6dTjUygQUAAZqgyLHWc9XYsuLoJAAV1rd7UoXi6TI8Q/BLEpsag5vabHF86OPDoSNQrXwDsV3nFo3nz++QAA4QfC0WZxm1ztOCuTyT6S6t7SA0oTU7brllxv6g8vJ6QAOxGdHI3tt7aj1cJWOSHl/FXU+8kb52cAAZvPZD+eA0y0p3JMnO4xkHFIiUuNQ6GgQuhQqQMWXFjgVEh5EP85AKBk8G8wZ4v/QdWd6FqrIrqun24TpNx9eRcA8Eq+V/RibYMUX68F2PXlLoQGhRpAyq3ntwEA5fN/DUH4ATduXDXIVrlyZZ28tkPK1Rh17qqFqqLZK82w9fOtZm3xxfMq4AxIGdh0p02ne84/PQ8AqFfMsyzurdWGyA3oVKVT1umeFgtaIDE9UeppOU0kMfPMTHSq2gmFgwpbdW2BgAJo/kpzdN/Q3WMh5XL0ZWy9uRX9mvTLOrHkaLUu3xpnn5zNtbb4MpmsCQDL6NYZctFSjWnZXINSgWQAyd1mbmDccTbu6B4jWzkgJ35vosaEtMtxlmrjpBbzW5DMebrHGds94fvDGToylNZ0QdYWzlpriz/6yGgGRQQZ2fO2fbtHt3D2esx1kuptsqCIIKqETN6//7Vo/clff+kXkGZ3QbZmu+fPPa1ZYkyJHM9qbfG7rOlCd6lJiTjYmoERYNSLvhbkJccdG0f/If5ZjTdzo67HXCcU4IbrG0iqT/eMOjLKXTvXOkRaN+edt3badL3WzM1TC2e7ruvKkmNLMj0z3an3cZHjrCRbLFB/qvxMsvu76EbmZdMpnlSSb9MWSLmzdy031/AzAJNHecC4EX+TqW1pSRdkeyCl2bxmmjc2tbSQoq7dyHacdQSkdF/fna/Neo3W9O7RQkr7paAgLDIzh2xI6bmxedaxX+OxtkPKZ6s/y3Ko7b6+e5a53q5dO0UBZfFisaJf6yGl03Kw9cJKBs8eundIp3+Ne0DK/Zf9SIIqwZyhnLo7c8NZDS24v+dqxOERDBgSwOSMZIPn1lxdkytrUr5e/zVfGfeKXa0LtJDiO9iX91/ed+DsnKsH8Q/oHe6dw5jOmdJCysDdA511CyngxBvAXQCBUtyfbgUopI0+KFZCyrk3yE5yAzBhsWK8/Nd39PsTfJTwiJY2GFTLNkipONGwsdmJhyd0PtU5DlKaz2vOT1d/qvnKOkhJU35FUs74tJkmY7WQ0nQu+Olqc2949hfO3n95n7Wm1eJX674iSU6ePFkUUE6dOmUir+WQUnlSAfbZBhpznE1IS+DvO353m8JZlTCYn602XzhbbUo19tps7ni5Z+v1Oa+zw7IOBo8nZySz1NhSoo6znqyEtAQGRQQxbH+Y3blUgoonH550wKxcp992/MaQYSFMSEtw2T0vPL2gaWfiFEkBKO8BWCTFvbVD+hoUXTX+G2gSbjqmSbg6Lkv+ANYDaAagPYA94tedPw988BlQ5zCwTsh+XFNjsnh9OE592AjpPoCP3AemHGcNZX1NCtkBjxMfo1ieuBzPvlbiNchkMmyM3IjvNv3osJqUOy/u6BStmnac1ZVc5g0/73m48+IDlJ/4rUWOs5Fx/qhS8AQscZy1tXAWAHpv642Lzy6iYEBBABAtkAWASpUqmchrWU1KemYGbj2PR7XQNjDmOBsZF4lpp6eh/bIOblGTIpf9hRqFTdekJGck43rs9VxdIBudHI2jD46KuscG+gRi91e7DRxnPV0rr6xEijIF3Wp3szuXXCZHgxINQBL/2/U/t69JeZn2EjPPzESv+r2Q1y+vy+5bs0hN+Hv749yTc/hgxQe5wXH2cwBLJJ2Bi0jIOlndi4c0upJi9LiwHznRm0zdxBepL1hsdDGWHFuSUEDv2JhzVlJik58QCnD1FS+ac5y1tyYlJSOFUIDzzs3Ti7V+u8ecmdvzlOeEAlx2qQVt6YJsWjlXUs4/OU8owHzD8/FazDW2aNHCYPWkWDHQWBfknHlNr6RcenaJUICH7h2kJY6z2t497rCSYspxVluncPbxWQvu6Zmae3YuZQoZnyY+NRpjqnePJ6rx7MZ8e9HbDs3pKWZuww8Np+9gXz5OeCzJ/Y/eP+oMMzdXr57kgXp7x9vV984xDxfdyDqJdjP2JrnPzIU6kHJuuhlL+pfUL5wNHhZMmUJmkS2+cVkGKdkdeFvRElt8eyDl4tOLJjrwOhZSjj04pnnDO01buiBbAym7bvclFGClSZVYeGRh5iuQzwBQ2rQpTfWvoH2QsuLyCkIBjautZbb4LRe0pFKVQXeClI3Xc9qdTzoxib6DfZ1eSCil3l/+vkUmdDdib7D1wtYmQcYTdDX6KqEAV14255FkvdwdUtKUaSw6uii/2fCNpPNwguOsLZBRC8AiAIeh3q7JD/XS7zQA6wDUNnHtVwAmijz+BtRL48eg3jKQQ720PQnAdM29Gmliu2juNU3zeEurvwdbvnEbhnUSA5TkZlSvjuwzfe2542SnwibARHePMGfhbO8tvSkPk7PG1Bpqs7YcciykrLqySvOG94SW2OKrnVJtq0lZfeVXQoGswlJDWQ8pBUaAL1INXV7nn5tPKKD5o7S+C7I1kDLhOOg32JuPEx6z+rDqovUnv//+G411QRbPKw4pin0KFh5VWC/WNKSMOzZOJ1Z6SNly4yuqBJBUZD3WbX031ptRz4L7eKZSMlIYGBHI4Ycs+Vlm63HCY49dSfltx28sOKKg0wzEdCHF1hNCztKcs3MIBURMHV0vLaSI1T7ZIFsAZS7Ue/9/AYiGumahBIAWADIATDJx7Q4ADfUek2vgRAZgtCbnJAAtdGJmALgD9V70BzqPhwOIAyC36nuw5Ru3YVgnUUC5R/ItGoUUo1s5Bc1Y0mdDSu+tHVlhQgW+v/z9LDfFnHIcpAw7NIzBw4I1BbGmHWdXX1nNqBdRmq+sh5TBB2QsMCKPmSOV1kHKzbgPScoNTvf029mPpceV1o2msyCl58ZqrDUNJGdy0+ZNooCycOFCijUYNJVXDFI+XPFh1pHwnLHGIUWrddfWuc12DxnBbTfBIQdakiRrTqvJnht7WnCdZ2pz5GabmiC2XNDSI7d70jPTGToylH239XXqfVSCilNPTnUrt1mVoGKVyVXYcVlHqaeSpSP3j/D4g+OOSGUtnJQHMETz/1MBZAKoq/m6M4DnANoYubYIgOsijzcE8Ivm/5dqXmPf0YsZpXn8O73Hf9Q8XsSq78Pab9zGYZ1Et3j6k0yhAaQYBZOi5MQqZKo/LT2C/P5yOd9ZXD/r0dvPbzttu6fb+m5sMLOBziOmIYUk41LiOPjAYKu3ez5d/QqbzgVt7YIsLhXTM79ip+U5fVLaLGrD9kvbG8Q6A1IazGzAruuqkASHD/9AFFAuXLigibYPUspNKMdft/9qJNY4pDxNfMo8Q/OwxfwWbgMpIw6/TSjAP/c0pVeYF6efmm5Bfs/U95u+Z7kJ5az2O/HUmpQ1V9cQCvDSs0suu+fJhye56II5GwLna8P1DSa2sqVVemY6B+0bZI9PirWA0gRAHc3/XwSw34pr+wAIE3m8GYAymv9/AGC7SMwOzQqKTO/xyQBSYGVNi3sCiskiWQ2knPMjOzUVARPdrRzrjiDXnxnCbzZ4kdyR1WTKki7IpiUOKY1nN+aXa7/UizUNKZsiN9lUk/Lq1Br8flMF2toF2ZjEzNyKjCrCv/aIddZ1LKQoVUr6D/HnuGNjSf7ILl0M4cTb25vp6bq1FbZBysvUkYQCXHh+oYlY45CiNXNzJ0jR1qRAAY87QmqpBEFgqbGlbO4x5ImQ0nZJW43fkev06/Zf3aIm5Y25b7htw8tLzy7Za+Zm03svgEIABAAKK645CaCyiecraF5jf9N73BtAIoC5ItfcALDD6vnb+o1bOSyXjheKqA/K/F5kpw5mwERXlkNKkVFFqNhXkWKOs46EFEEQWGBEAQ45IPZGYr4LsjWQkpGZQd/Bvpx0Yjxt6YJsDaRMPtFVczJptbFoOgpSrkRf0WkhL7B69QKGgFLUW7TBoLWQciAKFnwq9TxI6bCsCqEARx5pbUFez9OFpxcIBbjj1g6bc0TGRrLU2FJZDrTurIfxDykPk5voAO4cuYPjrPY02vprhq+Z7iI7HWdtBZSPNK+Hb1oYXwnAKTMx32py1tN7vLHm8a/0Hn9V83hPS+edda2t37iVwzKZMmr7BWQNPSgBNJb0vc1Y0puHlBepLwgFuPTiAhqzxXcUpDxKmG/mj8kySPl6/dcUhAyaghTt8dgDUQdoSxdkayEFCvBm3E1T0XQEpCy5uIRQgM9TnjMtLY1eXl4GgBLSIMRINb91kDLheAv6DQYzMsebjTUHKc3nNefzlOd0h8LZbzZ8wxJj8vJWHKhbOJtbNPTgUAZFBNldJ5GSkUJSvSITnxbviKk5RUMODGFgRKAkc9SFFCm2e95f/j4rT6psl2uuK6QLKVaautkKKFMBpAHwtzA+DEBfMzHLALzQL3gFMEDz2lta7/Fhmjnk13zdw+L52/qNWznMy5TVfVURMCmUl5w4hkxtQYtO95iBlMP3DhMK8MLTCxTr3VNmfBnuvbNXJK/1kLL1hjehAO++uGsi1jykTDs1TfOV8cLZhecXEgroFP06D1K6rC7HoAhQJRjbCsmKpr2Q0m9nP74y7hWS5NmzZ0XrTwYNGZR1fDZTlamX13JIUZ900dZ2Wd67RwxStLUQD+IfSL6SUndGXXZf351kBF+mgrPPOOS0gduoyZwmfH/5+w7LN/TgULfd7lEJKpYdX5Zd13WVdA6/bv+Vpx+ddul9r8dcp0wh46wzs1x6X1t15P4R/rHrD2vromwFlGtW1p9cB1DUTMwTABtEHt8J4LbI45EAVmr+/1UAgyyej63fuJXDtMSaBf6mBhMAjNcFk2CQ74Mchpw1KXZCyozTM+gV5qXzaSsnpGjf6FSCii9SX+jltQ5Shh6sxpBhoCBsNBNrvnCWJLfe2Gp0u+fX7b+y3IRyelc4B1K6rPmMjWeHcvUVmUkzN7Xsg5Q2i9pkHd+bMWOGKKBs396HJHn60WlWnlTZ5u2e2tNr85sNPWhLg0ExSMlUZbLG1BqSmrmlKdPoE+7DyScmkyTnnfvQqJmbJyomOYYyhYyzz8x2WE53rknZc2cPoQAPRh2Ueiok1b9frjqC3HNjTxYdXdSZNvNO0947ey31SbEFTopqXgsVFsY3ArDTTExVTc5f9B73AZAEYI7INXFQn+KRA1gMoKCl34M3nCyZTCaLj483HnByBHBiqOHjD4CEa+r/TQCAvFDXENeH+kehArD3HyA5DXhtMYBPAbwL9VHvpiZmtBBq/5j3AKwA8CYA4PTd0ygXWA7pKelIR7omdj7Ubr8dACxDGlrhn73/YOedndj02SaEBoXq5J0L4EsAHaE+gdXa6AxO3a2IasFPkJj4IdT/Xu+YmO90AEqoT4YthNobJ1uRsZFoN68durzaBZPbToZcpgTwsWbuHXDy7klUD66OhIQEvbyTNHk/hbq4upOJOUyA+th8F01sZ9GoM3fP4vVS72HzpYNYcGEaUpIy8EmNsSbyjtLk7QogFWqLfmMapontATIFZ+6ewTd1vkFCQgIOHz4sekXlyhOQkFAO+WTtIM+Qo9n0Ztj6+VZUKqhrfR8GIB3AD5o5fJMjR3pmOi7fv4zPK36OhISemtjemtjvTMx3oCb2F6hXN3O2CBjVdBQ+XPkh3p3bFis6L0egTzrUtvhpmvzG9Ksm7x+a2F9MxPbVxPyl+W+/rGfOPz0PZYoSlfNURkJCAj4oNxd3Gj6HYsc+pCU3xYCmW0zkdX+tu7wOTCOaFmkq8rtvm4r6FMWmDzah3dJ2aD69OTZ32YwieYo4JLe9mn5kOsoHlkfNfDUd9v3ao9lnZuO3nb9hWrtp6FKzi9Pu8yzpGeafmI+BTQciIyUDGchw2r0crYT0BAzbMwxzOsyByl9lMjYkJCQYQCI17/gWqgiAZwBWWhhvibV9QQCPYdh3JR+AZKjf0PT1M9QvrG8CmE4yTiRGVDLrvl/rJZPJggGYIJT/9J/+03/6T//pP5lRCEmn0KdMJvMGcAvAqyQTnXEPW+T0FRQAifHx8WjQoAFOnTpl+KyxFRQACY+AUtOAB38Bwf5GsjccCLzWX/NFKtQrAscBrEaDBr+K3xOA+hNlFwBHEJ82F6+M/xyT3p2EL2t9CQB6802HGi4PAliGG3Gl0G5pOxQMKGiwktKkSX0cPVoewF6IraQ8S3qGSpMqYUGnBXi/SlsA3aE+Or4YDRr8bWK+SgA9AGyB/kpKQkICSr1dCrKOMs1KynjIZd/heux6NJwlYNNnm9CsTDPRrI0a1cfx47UBrIF6FcjUSooKQC+ogXw2GjQYkTXf/Xf3o+PyjjjZ8yQqF6oMgZn4aWsDLL10Bws7fY8OlXM2wcv58xWgPnq/EOoVI+MrKa+9Vh//m18CPTbsx+2fhyMAX6FEiRLQB+0PP/wQc+fOgXrVYBZSU0egaLn+qKyoDMiBYz2OwUvupXMFoV6VmA51cz/1SsqM0zPw594/8cqaV3DmxBmd2L+gPto/EqZWUho0qI9Tp9pCvQo1DPorKUfvH0WXtV2w9IOlaFK6MYDBmvsPQYMGC038PlCTbwTUzQZzrqQY/r0N18T/BaAfftn+C44+OIoTPU/kuC4hIQGfTiyF9m8DvRr8AXXdm2Uy+jfu4muVKiXKTSiHHxr8gAFNjc/f1nsmJCSgVI1SuHX+FkILhIIkZDKZzfO197qZp2ei/+7+uP7TdaMrOq7+t0lISECpUqXQZVEXLL2y1OqVFEvumZieiOpTq+OLV7/A0Ley30Mc/fN15rXan9ODBw8QHBxsNC4kJCQE6iO8zlIbACfcCU4AFwCKdknKy8tL/B/grQggyB84+o/hcyXU/wn2NwIoBp2NgwFshXpL5iM0ahRq4h89GOquw+/jWHQ30I9oXa11VrzhfDcB+ABAF9QP3oAD3x1AiwUtMO/aPAxpOSQrShC8ERy8AeptkM+h7rScvYWz7/E+wB9oUbkFgoMLQQ0GnwL4Ei1bFjb5S6ruUNwF6i2RVVBvJ2l0FZg5dyYWX1sMn4AABPmuwJXbTSDzP4VmlV8i2M9YXm8EBy/V5OwBIBDqk2nGtATq7s098d57RbPmeyn+EkJCQlCvbD3IZeom2Qs/jUSZIvXwZuUZCA5+Q/PzUMvw5ztPk7cXgACoW0EYSi73xuX42ihb9AzKFRuAQ4deGMAJALz++usIDg6B2nnZF8HB/fFNF2DAl1uRiETkz5dfJPtUAH5QdzcOANALl+IvoU6ZOkiUJerNd6Im9n+a2J9E5+vl5Y3g4HGa2AFQd9/um/X8OzXeQVTFKAT7BYMk0lWD4e/tB+Av9Ohh7vdhmCavQpO3f9Yzhj/foZqYQQD8cTnhMl4r/5po/iOjgN3hf8PffzBOPIxFw5KzTMxB93s18jfu4msPRB1AgiwBH9b50GROe+6JeCC0QChuJ99G7229sfrj1Siap6hN87VUxq5benMp2tdsj4rFKzr8nvZeO6X9FOQJyYOotCirclhyzznH5iBZnoz+rfrniHX0z9fZ1wJAcHCwyeudtXKiI+k7F4vJluIbGwYnT55sugTI1CmeITAsojXZ2VhdOJuR4UNLCmd/2f4Ki40GBWFX1qPi881ZOHvv5T0qVUqS2aczsq8TL5z9fcfvLDGmhF4Ft/p0T2amN811QRYrnI2Pj1f/nOLjs47ZPYx/yJ4berD6lGCa8knJnq/1hbMqlYzawtn2S9uz9UIxPw0Vye6MSZZxw/VfRO6rH2u6cHby5MlsMqcJP1n1McnvOXq0YXEsAB4+fFjnKoHp6eoj+CkpE0iSqcpUdl3X1WzhbOVJlfnTlp+MzNd8F+Ts68zb4v+24zeH+aQY/3sLY5pS3cNowvEJBs/q/i6detTLqsJZs3/jLrr29x2/s8ioImaPnNp6T92fkS2Fs7beV+y6s4/PappAmi64d/W/jf5rkvb17t7Lew65p1KlZOlxpUXMLh3783X2tbo/JzNy2vszgCAA9wD4OPM+Ns3NRTeyTKZ8UHQeP7/OiwejJppJZtnpHkEQWHZ8GX6/qRQtdZzVhRRS7W/RcFZDi3xS6s2oxy/WfiGS17IuyGrlhBT9X/LkjGSWHFuS+Ybn47cbv6GtXZBNK/t0jyAsZejIUP69928jsSqG7a+Tw3HWuExDSkZmBv2H+HPs0bEkVfz44/IGcOLl5cXk5OQc18XHv+SkSdpfx5mMSY5hjak1WGRUEaOQ8iIVZhxktbGOOd3jKjO34w96ahxkDf8t9H+XtI6znnS6p8rkKvx6/ddOy6//M5LydM+PW35ksdHFsj4ouYvE3nhPPDxBn3Afzjs3z+78yy4tIxTg+Sfn7c4lpdwEUL4AMM2Z97B5bi66keUy4ySrOvoXWy/Mz6AIOARSzj85TyjA7Tc30hpbfFvM3F6krqI8TM45Z431mLENUjIyVnHQoEFMS8s2pJp2ahqhAJvNbWZ17x5rIeXOcxmhADdHbjYaKWaLb1zGIeXM4zM5+m2ULVvWAFBq165tkDEtLY2DBv3DzMzvqYWUZ0nPTELKrtudCAV4PWaQmfl6FqSMOzaO/kO8mZ4J6h9BVv+ccv4ueRKk3Iq7RSjANVfN/Z7bLrGfkRZSGs1uZHXfH1uVkpHCfMPzaTqdu5fEfka6Zm72QIogCKw/sz5bLWjlgJlKK7GfkxE5E1BmAWjszHvYPDcX3cg6aSBFvBcPmZwRw5YL8jkEUv7Z+w+DhwVrfE6s691jLaRsuK42aLv9/LaJvLavpOhK2zjLlt491kLK0otvEAowJtm0xbYjIGXqyan0DvdmSkYKnz59Krq907Onqe68AskfKQYp+v9uQw4MZsgwX6oE0NYuyMZjzUOKuhWC4x1nP171MV+f8zqt7d3TcBaYphTrs+Q+mnB8An3CfZiQluDye0fGRvLEwxMuu5/WTflG7A2X3dNeOQJSDkQdIBTgtpvmPKdylSSHBSmGewIKSR4NzwkoejUnupBy7IG5Nw9xSFGqlCw5tqSeHbr9kCJO9unstfkVlpsACsJWM3nth5Rftv/CUmNLcdGFRcwzNI+mj4xxx1lDWQ4p3236lpUnBdNSx9keGypyzlkZycVm5mAIKV3WdMnqAr1q1SpRQJk1q6uZvIaQMv7YeINPvm2XtGWbRW1oTxdk07HGIeXi04vMyMzQiXUcpJQeV5q/7/hd85XlkJKmVMc+T+lvNlYqtVnUxkgtlOuUnpnOvtv6On27p/XC1mw6t6lT7+EMaSGlyuQqNrUhaL+0PatPqe6ylSo3keSwIMVwX0AhGb9roBpQdg0UfT45I4bfbyrOZ0mBJA+YyWYIKdrW5OeenNOLtQ9SrkRfMYgSBIGlx5Vm761laU8XZHEZQkqtabXYbX03kmR0UjRJtYOpM1ZSKk+qzO83fUdLHWe1hbOknJeeDbMgVg0pgjCfJcaUyHpz/fnnn0UBJTISNNYFOVs5IUWr1VdW81rMNaoEFUOGhXDwgcG0tQuyvZBCqm2x31/+vsO2ex4lPBJp6Gg5pLxI/Yslx7rndk9CWgJ9B/ty/LHxks4j6kWU02tS7r28R5lCxrln5zolv7OlElSMTY4lSR0QN6/rMdcJBUxsk+daSQ4LUgz3BhSLCoiSSbbgo4QAHrk/xUzGnJDSakErNp7d2Eis7ZBCkknpSfx247dZ2wbapn3bb26irV2QTSsbUmKSF4oWd3Zf393h2z3aN7wVl1fQGlt8UsVNkW9RHgaLbfHvPEeOEwt16tQxgJPChQtTEL6jsS7IOZUTUpQqJWtNq8Uio4pww7UNOt2StbF96GpIORh1kEERQQ6zxV99ZTWhAB8lPNKLt267xx1rUtZeXUsowFtxt6SeitMLZ7WNAaXYynKkXqS+YM1pNS3ugvzdpu9YZFQRuxtAeqAkhwUpRi4AFJJM5jcbijEoAjxgYU3K6Ud+hAJcfMHUNoPtkHIr7haLji6aVZMy9OBQBkYEavpF2NYFWR9SDhw4wPfee4/FihUjAK5fv4pkZ6647EUowAfxD3LEa7sgOxJStPvg2fUbtnVBtgRSFpxvTijAuJQpfPnyJWUymQGgdO7cmbq9ezZv/oD169dnnjx5GBoayo4dO/L69es6ecVrUoKHBtMrzIvJGcl6sX3oyZDy+47fWXpc6RxRU6dO5auvvsohQ3xJgtOmleLWraa3Id0RUnps6MEqk6u45F5Dhw4lAPbp08dojC6kZDfrtF+CILDCxAr8at1XDsvpKA0aNMjgb7JIkSJG41WCit9u/JYyhcwspEQnRdN/iL9mVdOz9fDhQ37++ecsUKAAAwICWKtWLZ4+bbLJouSwIMXIJYCi3u5pMT+fRZAiCMlsPi8fq02RUakyBx72bfdoIaXGlBr8eNXHOrH2Q8rWrVv5559/cs2aNQTAdevWkcxgt/WvsMZU0FgXZEdCyjcbvmG1KdX0Yp0DKT02fM1Xp+YnKePWrb+Kbu9MmKD19lBDikoFHjrUnZcvX+b58+fZrl07li5dmklJug26DCElZFgIfcJ9bG4wmB3rWEhR/w7ZXpPy+pzX9X4PyY0bN3LLli2MjIxkTExvkuDff8t5+fJlk5kjDram32DwZlxvM3NwvlSCikVHF+VvO35z+r1OnjzJMmXKsGbNmiYBhSRvxN5g2P4wh9ZLaDuvi3dXl1aDBg1i9erV+eTJk6wRHR1t8hpLISVsfxgDhgRkbQ15qp4/f85XXnmF3bp144kTJ3j37l3u3r2bt26ZXPmTHBakGLkGUEjLIWXdtXWaKvDatLcLsqEMISV0ZCihAJdcWKIX65iVFJJZgKJ9oe63sxKNdUHWQop6/9q+wtkKEyvwxy0/isRaDymtFoCCsMhoXMWJFfnjlh9IfsM//hA3aDt37pxuZup3QY6OjiYAHjigX7OUE1JKjCnBihMr8nHCY5GZSAMph+4d4oWnF3RirYOU9EzQf4g3xx0zzJ1T6u2eU6feNxNH3n6u/t4EYZDZWGfq1KNTeltyzlFiYiIrVqzIXbt2sXnz5mYBRVdbbmxxyHZPjw09WGZ8GbNGdFJo0KBBrFWrltXXaSHFO9xb9JRjqjKVhUcVZq/N5lZa3V/9+/fnG2+8Ye1lksOCFCNXAQqphpTWC/NzxWU/ihXOpinTWHFiRc3pDMvM3NSyHVL6bO1D33BfpmSkiMQ6BlK0gKJ1ltxzZweNHUEm1cWXmapMzVe2QcqD+GkiBZe6sg5SUjLUsUnpsw2ef5zwWKfWRcUmTQobwElwcDAzMzP1M1MXUm7evEkAvHTpksgs1JBy/6W61mXt1bUkyaeJT3k95rpIbB+6GlJItf/FwN0Drd7uOfmwB6EAjz34wWhUZmYmly1bRoXCS5PXfE2KIAzhNxuk3e5R7FMwZFiIVQWXtuirr75i3759SdIqQElVpvKVca/YXZOSlJ7EvEPzctC+QTbncKYGDRrEwMBAFitWjGXKlOEnn3zC27dN2SpkSyWosvyN9DXrzCzKFDKPOlJtTFWrVmXfvn3ZuXNnhoaGsnbt2pw5c6a5yySHBSmGWwLK5MmTWbVqVVaqVMlqQCFJQUgi2YKCEMjbz3O+MX678Vv6DvbVHLslnQ0pguDHypNKssuaLiTJlZdXWuQ4a1zikKIFlLD9Ycw7NK/G18W4T4pWu27vYq/NvWza7plzVkaZQmZmydW6wtn7Lz9isdGGPinaWpcniU8YHx9PLy8vA0B59913jeYlv6cgyDhhQi0zn14ELr7wFqEAo5PGkCQ/WvmRScdZV0PKmcdnbDJzG3t0DP2HeDNNCeqf7rl48SKDgoLo5eXFkJAQbtmyhZ5UONtgZgN+tPIjp95j2bJlrFGjBlNTU0laByikYwpnF11YZIGXknTaunUrV69ezYsXL2atMhUpUoSxsdZtyyj2KbJ8UlSCilUnV2XHZR0dP2EJ5OfnRz8/Pw4YMIBnz57l9OnT6e/vzwULxNt7xKXEkW4AC1IMtwQUrWxZQclWMmedqZzDzE3rrmp4NM95kHL4XiNCAe6+PZwJaQksNrqYWcdZWyBFCyh1ptfhp6s/1Yk1DSlLLi6xuSblgxWl2Hg2aI0tvjU1KbqQ0m19N7469VWS6poJse2dUaNGmcrMgwerU6UC4+JMxZHd13fjq1MLUv2ra95xVgpIscVxtuOyjmwxvwXFTvekp6fz5s2bPHXqFP/44w8WKlSIV65coSdASnRStN3upOZ0//59Fi5cmOfPn896NATrUwAAv4JJREFUzFpAIe2HlFYLWrH5vOZWXyeVkpKSWKRIEY4ZM8biawRByGHmtuXGFkIBHow66MSZuk4+Pj5s3Djn6dHevXuzUaNGovEDdg8g3QAWpBi5GFBymrlNOtGH3uHe/GnLT0ainQMp3dd/xbLjA6gS/GiNLb61kAKAM1bMIBTg8kvL9WJNQ4othbPpmenMOzQvBx+oSWt791gLKYIgsPiY4lkFkL179xYFlPPnjVf3//TTTyxVqgTj47vQ1BFkrV9N3219aMxx1h0hJT0zjaYgRSWomH94fir2KWiJmVurVq347bffar6yHlLWXP3YbKyjtPjCYkIBI/VCjtG6deuy+jxpBwDKZDJ6eXmJbC0aV2RsJJvNa8b7L+9bNYeoF1EWnXZxN7311lv8/ntzztE5pes4W3VyVb4267VcY8xWunRp9ujRI8djU6dOZfHixQ1io5OiGRQRRLoBLEgxcjWgkGpIaTQ7mDIFWGtaeTN71I6FlJepLxkUEcTBBwbRlt491kBKu3bg1zO/pu9gX8anif28LIMUtQma+ZqUPXf2EArw7OOTtKXBoKWQEjwMPHL/H0IB7ril9pipUqWKiP+JP1UqUL93jyAI/PHHH1m8eHHeuHGDYoWzurr9/LaO14rh6Z5a02qJACAp5emewQcGa168jRfOantO7b+7XyevcUhp2bIlu3btqvOI5ZCy/trnVKpAUmE21hH6fM3nrD29tlPvkZCQwEuXLuUY9evX5xdffGGknsm0tG+2MckxFq+khO8PZ1BEEBPTE62+n1RKS0tjiRIlGBYWZvW1KkHFTsvV/bDcsd+Qrfrss88Mtpn79u1rsKpCqjuc5x2al3QDWJBi5HpAuRF7g8VGF2VghJwdlnnRFsdZ4zINKWOOjqFPuI/GFMvwdM/bi95mTHKMSF7LICUxMZHnz5/kixctmZYGVhlZmM2mNeO9e8ZampuGlJWXVzIyNlLzlWlI+XX7ryw+prjmhda2LsiWQMrV6E4cd0xGv8E+TMlI4YMHD0RXT7p0+YxivXt69erFkJAQ7t+/X+fo4yMqldrYnJAy8/RMysPkOr4VOSFFC7iCIGQ59GZLusJZktx2c5vR7Z7xx8bTb7CfxodHN68aUu7c+Y53797lxYsXOXDgQMrlcu7cuVPvDpZDChnB/XfBoQed29BNJahYaGQh7TK4S2XLFo++3l38rkXbPYIgsNyEclnu0O6q3377jfv37+edO3d4/Phxvvfee8ybNy+joqJsytdldRfmH57fyIcuz9TJkyfp7e3NiIgI3rx5k0uWLGFgYCAXL87pyfU44TH9h/hru8RLDgtSjFwNKDdib7DEmBKsMrkKb8VdYqqyGckgpil3mbnSfkhRqpQsPa60npmSoeMsST6If2DTSsq+ffsIgD4+4LRl6pMntb+E3idffZkvnE1IS+CIwyNMbvdUnlRZr4eRcyCFVPHtRcVZdLTaJ2XevHmigDJ37lyK9e4RiwXAefPmUGwl5dPVn7LhrIZ6czC0xZ98YrJbbffEJscyeFiwUTO3Tss7sdm8ZqJ5N2yoTRIcMMCLoaGhbNWqlQicaGU5pIw8/I7Ta1JOPDwhWX2CIwDF0pqUg1EH9VbA3FOffPIJixUrRh8fHxYvXpwffPCBppbJej2If0Dv8Oxj8ZeeXeKSi/pWDZ6pTZs2sUaNGvTz82OVKlVET/H03tqb+Ybn44vUF6QbwIIUI9cCii6cZO9NJ/Pys9dYaqzMYsdZWyFlxeUVRvr85IQUQRD4xtw37N7uGXl4KAOGeDEx3Yf2dEEmya03tpqsSdG2tNcew82W4yElTZnGgCEBrD+jIOVhYJO2FUWB48EDrWuueBdkceXc7hEEgYVHFTbyadx4F2R3gRRjjrMqYSQLjCjAf/b+YyKv+S7I2XKfwlnt8WKlSumU/K6QJZDSfX13lptQzi29T5ylfjv7MWRYSJad//92/s8ja3Bs0YP4B/Qd7Kvrmis5LEgxciWg3Iy7KQInalnjOGsrpAjCLtadUZctF7Q0EmvccdZWSKk9vTY7r/yA9nZB1spU4ey4Y+PoO9jXSB8Qx0LK7tu7CQV4+tFJdl1TgQgwhJMqVfTtzW2DlItPwwgFuOu2sRU2z4SUi0+h8cbZYyavcyFl9JE2FuS1To1mN2LnlZ0dntfVioyNZMmxJTU+PzmVmJ7IoIgghu23vo7DU5WQlsCQYSHst7Nf1mPW2OJ7unpt7sUCIwrovsZKDgtSjFwHKKbgRCtnQ8raq74WLMc6DlLOPTlHKMBNkZtobxdkXelCiiBkUAspTeZUZvul7U3kdRyk9NnWhyXGlKAgCNx/YJ/o6snPP/8sktd6SBlxGAyM8NWr09CXOKR8vuZzI7F9KAWkNJzVUFMjI3Di8db0HQwmZwy1IK9zIGX8sXa8Eg06snA2NjmWMoWMs88YGvt5onSLX5PSs1sxLDi/gFCAd1/clWBW0mjcsXH0Dvc26CemCyn6zVBzi+6/vE+fcB8OO5Sj07vksCDFyFWAYgmcaKWFlBJjZExVGttv18pySMlUJbH6lDx8a6Gcttjilxpbittuiq2UGIeUn7f+zCKjiugsczsWUkYf0RZbKnn/ZXtCAS66IAYFurIfUgRBYNnxZbPsrfv16ycKKLt2GVvxsA5S3pxfnO2WgNZ2QY5JjslyCTZcgpcGUrSnRJ4kPmHHZR35xtySmljbuiAbl3WFs0np4Pxz71sQa15LLy4lFODD+IcOyecuGn9sfI7tnhbzW5hYjc19UqqUfGXcK0agX/031ndbXx66d8jFM3ONem3uxYIjCuqvUEsOC1KMXAMo1sCJVskZMbz4tAHJIDrqdI/2RfPYg4a0xRZf++ldEASRynVDSEnPTGfBEQU1x4P1Yx0DKVrtvr2bo4+MoN9gOePTvGhPF2RDGULKpWeXND2T1N9r1apVDeDEP8iH6enpJvJaBinxafH0Dvfm5BNv0JRPSrYMC2cvPbvEGlNruM12j0pQsd6MevQJ92H/nf+jPV2QTctySFl84SOH1aR8ufZL1pxW0+487ibdmpQTD9RFwLl1tUBM2vq9s4/Pmo3NyMwws3XpWTKyekK6ASxIMXIFoNgCJ9lKZnpmc3622ivLcda4TENKUnoSS40txQ7LOtCe3j2kuvjPku2e5ZeWEwrwSrRYpbzjIOVm3E16hXkxdGQoOyxtT3u7IIsrJ6REHIxgnqF5mKZM461bt8RP5FQztMU3lHlIWXt1rcZC/CZN+aTklPvXpMw5M0d9umtabat797hz4axKUDF0ZCj77+pvcw53lhZSCo0sxMCIwBxbPrldjWY30jgem5e2R48zXYRdKSOrJ6QbwIIUw+MBxT44UUvXcdYeSPlj1x/0G+zHW3Hattn2dUG2xMyt2bwaZqyvHQcp44+NJxRg83nNberdYy2kNJxVgR+u+JAkOW7cOFFAadqniIEtvrhMQ0rPjT1ZaVIlndjcASkjD4+k72Bfm3r3uAJSwvbbBimnH532iGO39uhazDV6hXmx0sRK5oNziY49OKZjlGheuo6zng4pJlZPSDeABSmGRwOKI+BEK3sh5VrMNfqE+2isxHXlPEi5+LQ5oQBXXh5oJq9jIGX0kdH0CfexuXePNZDyJLEzoQAXnFfXn7Rs2dIATuRyOZ9FP8myxV95ubeZvOKQIggCS44tyT7b+ujF2gcplSZVEjn+6lpIabWgFd9d/C4PRB1gyLAQzQkl446z4nmdBylDDoC2FM4OPjCYeYfmdXr3Yim1/+5+QgHuvGWuRi736JNVn7DCxApWHafOLZBiYvWEdANYkGJ4LKCI+5zYJ11IuRW31Ex0NqSohD1sMb8Fy08ob+QEiP2Q8uv2Xw0iv9/Uk0VH+zEj05e2dkEWlzikNJjZgB+s+ICLLyzma7Ne09TImLfFz5blkDLz9HTKw2SMSZYxNnYmvb29DQDl9ddfJ6l2nO2/61XeipORXGwyrxikaGtdtt/cLhJrO6ScfHjSRGwfOhtSktKT6DvYl+OPjSeZ1RWVgiCY7d1jmNd5hbMkePbxdxbEZqvJnCbstLyTVdd4mrqu68ryE8pTEAReib7CN+e/aXMXZE/QvZf36BXmxUknzP2eG0oLKT9u+dEJM3O+zKyekG4AC1IMtwSUyZMns2rVqqxUqZIooGjhpPKkyg5vEJacEcPppypREAJpaeHsqCPemo7FpuDDdki58/wO0zPVhaC6PTwChgQwbP8/tKcLsnHlhJTLzy4TCnD1ldUkyUyVujna08SnTllJab2wNVvMf5Pkl5w9Wya6vTN8uO6bpYpkd75MlXFz5G9m5pATUoYcGMI8Q/MYgUvbIYVUF/F9v+l7SbZ7ttzoSShgcO9/9v5j1HHWdF7nQMr5Jz9ZVZMSlxJHeZicM08bum/mFiWlJ+XwPrG3C7In6H87/8eQYSE29xpSCaqslRdnNo50hsysnpBuAAtSDLcEFK3EVlCcCSfZSibZgmuu+pn1STn96DB9wmXst9ObjuyCLFY4e+LhCb4+53U+S3pGxT4FA4YEaHr52N4F2bSyIeWX7R0YOjI0C5RIMlWZynITyjl8uyc6KZpeYV6cfmo6yUy2aVNMFFBu3rypd6WKww7VozxMbYtvWtmQUn9mWX608iMzsbZBSmxyrGQ1KT9vBUuPy2/QBdaY46zU2z2WQoq2MFzfIyM3Sduh+c7zO1mP5WZISUxPZL7h+UROI1qv80/O03+Iv8eYud1/eZ++g31NrZ6QbgALUgyPAhTXwIlagpDEtxcVMGnmlpieyIoTK7LejDpMz2xJR3VBzpa4mVv1KdVZYEQBveVM50FKeuYHLDQS/HV7B4NnTTnOmpZxSJl2ahq9wrwYkxzDmJiYrNb2uqNOnTqiWbVdkC2FlPsvPyUU4JKLlhTZelbhbJXJBfjNBtAaW3xPgJRu67uxxtQaFtzbc9VmURs2ndvU4HEtpNSfWd8APD1ZU05OoTxMzqgXUXbn8jTH2R82/2Bu9YR0A1iQYngMoLgSTrQy5Tibqcrkhys+ZFBEkKYDsOO6IOeUIaQEDwsmFOCJhyf0Yp0DKauuLNMcZfamtbb4piUOKc3nNefbi94mSc6aNUt09WTYMOOfNqyBlEknJtI7XMYXqaC1vXtMyzikqLtb68f2oSMh5d7Le4QCXHWloyZ2nEGMFlLUPXrcp3C25jQwOUO88FslqFh0dNEcFui5TY8THpvcwroRe0OS5ojOkkpQseLEimZWMa3P6QmQYuHqCekGsCDF8AhAOXv3rMvhRCtdSDlyfwpJdR1I7629KQ+Tc/013Tds50NKqnITQ0eGMmBIAJvNaybyKcrxkPL2orfZaHZDmnOcDRgSwDOPz9CewtlHCY8oU8g49+xckmTr1q1FAeXWrfEms6oEJb9eX5ETjpsunG21oBXbLGpNWxsMmlZOSIlOiuawQ8OMfPJ1LKTMPD2T8jA5n6fE0ZRPyrkn53Rqb9wDUlIyFCTB+LQ/DJ47+/isBX2FPFujj4ym32A/bRdbo1KqlPxj1x8ev92zOXIzoQCP3D/i0LxaSCk7vmyW07O7ycLVE9INYEGK4RGAUiyimCRwolVyRgy/Xl+MD+IDSB7gyMMjCQU0NRL6ci6kTDzuTXmYnFtvbjXhtOg4SLn38h5lChlnnZlFcz4p2hdKQRBsXkmZcLwbfcJ9+DzludHtnbp1C9BcF2T1PDJJdicp5/WYkQbPP095Tq8wL049OZX2dEE2LcPCWVL9ouzM7Z4PV3zIxrMb68QahxSSPPP4DD9c8aHbbPckpP3D8hMMt3u05n26tVC5TTWn1bRoNeFB/INcUZPSakErvjbrNadsWakEVZZFg7t1vLZi9YR0A1iQYrg1oJy9e5YAWGFkBTeoylYXzk4/pW4E+OeeP03EOgdSUjJesNhoP361Tk5t4WyqMpW9t/a2uQtydqw4pITtD2NQRJAO4Zu3xe+9tbfN2z2NZ4Ptl9YjSU6bNs3I6Z2hNNcFOVsq7rjVRtTMbdGFRXq9XFwDKZmqTNadUddpNSlKlZIhw0L0PHks64LsjmZuupDyxtw32HFZRwvu45k6/+S8TuNP8/L0wtmLTy8SCnDpRXO2DvYpIS2BDWY2cCufFCtWT0g3gAUphlsDytBdQwmAkQ8jbU3hUK28vIgyBegdDh646/guyOYgZfih4fQO9+bNuObU1qTcfn7bIsdZWyAlPTOdxccUZ48NPfRiLe+CbA2k3Iy7pilYlZFcyUaNGokCyu3bt2muC7KudGtSdCGl47KObDiroX40XQEpziycPXTvkKYf1DGRWOOQciDqgFtDyovUFzqnu3KnftvxG0NHhlplQKeFlCqTq2R53XiKemzowRJjSjjdcM/dzNysXD0h3QAWpBhuDSjWdjN2plZeXkmvMC9+vOqDrJoUe3v35JRpSIlOimbwsGD23tqbttriWwsp2qOOl55dEol1PKT8uedPhgwLYUrGx7x+XS4KJ6+99prOFbZDyovUF/Qd7Mtxx8aJRdOTIaXfzn4sPKqwETdOyyBFbYLmHjUpEQdb0zscHHfsbUIBh5z0cEcpVUoWHV1U8zdunSJjI9l/V3+rHFil1rOkZ/Qb7GfNm7RdcidIsXL1hHQDWJBi/AcoFkgLJ13WdGGmKtNhvXsMZRxSftzyI0OGhWh8T0hTkGL4S289pAiCD+vOKM82i9qYiLUMUtSfeE0XzmaqMllybEl+v+l7kkoOHFhdFFCmTJmifyWthZQmc8A5Z7+hTCHT2d4xiKarIOW9pe8ZedO1DVKqTC7Cr9d/bSbW9HZP9gkx94CU6zF9+fV6sMqkghbk9Uxtv7mdUICnHp2yK8+eO3s8YrsnfH84A4YEuHTVRwsp8jA5r8dcd9l9dWXD6gnpBrAgxfgPUMxIH060Ss6I4VsL83PeOV9a6jhrK6Rcjb5KrzAvjjoySi/WEFKGHhxqpNjMOkjZf7epxv49zEysaUjZf3e/zvKtcUjRvjifeHiCmZmZLFmypAGc+Pr6Mi5O7MXMOkhJTP+Cby8C35hjrgmbawtn41LiNEfW9WP70FJIiYztTijAdde+sWAOpgtn0zPTGbY/zC22ewRBYLHReVh3un1dkN1Zn6/5nFUmV7GrWDQ9M53lJpRz+5qUNGUai4wqovlA4lqpBBX33tnr8vtqZcPqCekGsCDF+A9QTMgYnGilEhJJtiAZxHsvzTXAsw1SBGEXm89rzooTKxqxYjd0nCXJjdc32rXd02HZe6w+JS8FwYf2dkEmycP3DvOnLT8Z3e75eNXHrD6lOgVB4K5du0RXTzp37mxiDpZDSnTSU8oVYIER1jnOOhtSvlj7hd3bPaOPjKLfYC8mpYP2dEEmyQtPL7iNmZu2eLT7+rpW2eJ7ihLSEhgYEcihB4fancsTCmcXnF8g2obB1RpzdIxLfVJsXD0h3QAWpBj/AYoRmYOTbCVz0YWqJh1ns2U9pMw750MooOlCa0w5ISU5I5klx5a0uSYlMjaSMoWMc87OoCO6IJPk0otLjdakxKXE0XewL0cfUb/xffHFF6KAsnmzoS9GTlkGKVNPTqVcIednq8tabYvv7jUpzec1Z9slbWlvF2St3MVxdtihYQyKCGKaMs0qW3xP0fxz8wkFeO/lPYfkc2dIEQSBtafX5ruL35V8Hq42c7Nx9YR0A1iQYvwHKCKyHE7UMuU4ayjLISUm+QELjvDh52u8aKstvi2Q8sPmH1h4VGHNio39XZC1MlY4O+lED3qHe/Np4lPGx8czMDDQAE6KFPGnUimnuS7IlkBKs3nN+M7id6y2xXd3SIlLidM55WJ7F2R96UJKmjKVUkBKs3nN2H5p+6yvtZCy/JKpVTXPUasFrdhifguH5oyMjWTDWQ15+/lth+a1V/vv7icU4I5bO8wHO1mudJy1Y/WEdANYkGL8Byh6shZOtHIGpHy+5nPmG56PTxPfpD29e6yBlGdJzxgwJEDPQ8PxkPLL9l9IKikIH7PmNLDjsgYkySlTpoiunvz22y+0pAuyWsYh5f7L+zlejLSQEhgBPkvSL8DVl+sg5dWpr2a56RrG9qEYpBj6ujgWUgbsHqCpj3Bt4ezL1Jc6hnrZWnXlM6ZngqSCnqwH8Q9yuCc7Utp6lpepL/k08anD89uijss6stqUam7TS0gXUiz1n7FFdqyekG4AC1IMtwSUyZMns2rVqqxUqZJLAcVWONFKCynvLfWivYWz2o6tiy4sor29e96c/6YRoztDSOm3sx/zDs0rUlnvOEhZfmk5Lz69SJI8ELVX82lKTkFYzerVxU/vXLx4kea6IOeUOKQMOTCEgRGBOV4kVIKS55901MQat8XXRNMVkJKmTMt6xvDfQhxS3l/+voivi+MgRau9d/a6dLtnzdU1Bp19sxXBEw/B4YfesiCve2r4oeEMGBLA+DTnvc51Wt7JLbZ7bsXdokwhM9pnSCqpBBVHHxnttH8DO1dPSDeABSmGWwKKVq5cQbEXTrRKzohhUnozkkHMyDTXL0QcUh7GP2T+4fn58aqPdT5l2A4pWj1NfGpyJSU6aRkDIwI5cLd4ozZHQgpJJmcks+a0mqw0sRJVwsc8eNDQ1h4AmzRponOV7ZAiCAIrTKzAruu6isSqqBK68btNho6zYrGuKpydc3YOi44uana7JzE9kf5D/DnysKGlvyMh5UXqC+Ybns+lZm7fbPiGlSdVNho5+si7HluTIggCq02pxs9Wf+bU+7hLTcrPW39mwREF3bY3Dqn+WTna2dbO1RPSDWBBivEfoNBxcJKtZN6IbchyE2RW+6SoBBVbL2zN4mOKi3xytg9SWi1oZXK75387vZhnaABjk2NN5HXsdg8UYKNZjagS0vnZZ6VFAWXRokV6V9oGKYfuDSIU4L67+0QjjTnOisu9alJWXv6GUMBEvYHjIMWVjrOCAJYYE8y+2/qajPTUwtkzj88QCnDrja1Ov5fUkPIy9SXzDM1jpk2I9Ppj1x8ONXN7EP/A3tUT0g1gQYrxrwcUx8OJWraauSn2daNMIePOWzuNxNq33WPMcfZxQhQDhsg5YLcXHdUFWS3jkDJw90D6D/anPEzOT+d/Sh8fHwM4KViwIFNTxY5XWw8pX68Hy4435rCqlqdCyierwNrTS1qQ17Mg5dyT7wkFuPNWN7OxWkjxpO2evtv6ssioIi5rZKeFFFcerdVq3LFx9A735qOERy6/tzVytOPsT1t+YoERBexZPSHdABakGP9qQHEWnGhlLaRsiqxFKMDBB0y5gJLOgJTvN33P/MPz80XqO3REF+ScMoSUVGUqC40sxJ+3/szFFxZT1komunrSr18/E3kth5Sk9HjmGerNsP0yWmOLfzDqLzPfm2shpfNKw1MrKRnJDIrw4eADoL1dkA1jTUNKrWm1NG84zimcVexTMHiYn6YY1rzj7Jij7/LMY9ATCmeVKiULjyqsKRh3nV6mvsz6f1dttWSqMlluQjl2WdPFJfezV7qQYg/MPU54TL/Bfhx8YLC9U5IcFqQY/1pAcTacaKWFlCKjZEzOMH6sLjI2ksHDgtlxWShVgj8d2QVZDFKKjynOddfWkSRvxN6gV5iXpn7BMV2QDZUTUuadm0cowBuxN5iens58oflEAeXWLXMnayyDFK3PxN0XnWip4+ysM69TqZLRXQpno5Oisz6F6Z6AWH9tvcb06ktNrOsgRbsaFZsc65SVlDrT6/DT1Z/SGlt8MoKpSnDJxQ8siJVOW25sIRTguSfnJLn/zNMzXbbdsylyk5EGlu4rlaBi7629Taxmm9cv239hyLCQHFBooySHBSnGvxJQXAUnWiVnxPD0o/okgyh2uud5ynNWm1KNlSdVZnzaUzq6C7JaOSElKT2JpPqNrtPyTiw5tqTOpynnQoogeLPO9HJZRk3z588XhZO33y5KS7ogWwIpzec1Z8sFLWmN46waJrpz/10Zl1z8wYJY1xTORsZGsu6MulnbPV+u/ZLVplSjvV2QTccahxRBEPj6nNcdbuZ27+U9QgEuu6T9d7IcUpZf+sTta1I+WfUJa0ytIdlxW1fWpLRZ1IYNZjZwm6PF1kolqHgw6qBV12gtG/7Z+48jpiA5LEgx/nWA4mo4yVYylarm7LHBO4dPSnJGMl+f8zoLjCigU1/guC7IOWVYONtrcy9CAU44PkEv1nmQsuPWG5q6AgUFQeCrr74qCijbtm+mJV2Q1TIOKVejrxIK6FTmWwcpP26p4rZmbucen2PeoXk5aN8gndg+dDWkOMNxduLxifQJ99H79GldF2R3hZSEtAQGDAng8EOWFAs7T66AFO3fn9oywTO18PxCq7d7+u/qzzxD8ziqGaLksCDF+FcBinRwolZKRmxWTcqBqInMyMxg2yVtGRQRxOMPjutH09mQkqnayqqTq9In3MdmW/ycsZZBSrN5TdlgZn4Kgjd37QoThRMUBrut62a0d4+4xCGl99beLDyqcA5vEVu6ILsjpOQblo9QQK8za+6AlFYLWrH1wtYi8Z4PKVpTPUdZ29sjLaR8ufZLp+T/YfMPLDKqiN7fn2fJWsfZ2ORY5hmah3/sMteew2JJDgtSjH8NoEgNJ1rpOs6+tbA+fcJ9TFg+OxdSZp3xzlpCt9UW3zDWNKQcuneIUIDrr60m2ZnvvCNeHNszrKfR3j2mlRNSEtMTGTws2MjRRtsgZcXln8zMwXWQEjwsmL6DfZmemS4S24dSQEreoXm5OXIz7SmcfZH6gt7h3px8YrKReMshZejBNuy/CxSEQWZjXaV3F7/LpnObSj2NLN2Ku+WIOgkDvUh9waCIIJ0VPs+VNZDy996/GRgRyOikaEfdXnJYkGL8KwDFXeBEq8T0Zyw+xpdQgGOP/mgm2jmQEpv8iKEjffnFWjl1bfF/3CI2H8dByruL32X1KdWpElQ8f/6UKJwULVqUaWlpXHxhMWtOq8nnKc+pBg/rIWXG6W8pD5Ob+KRqHaT8tqM6r0S7R+FsfNoE+ob7stdmY6s60kCK7otyRmY6bYGUJRc/JRTg/Zf3TcRbVzhLgpeemVsBc76ik6LpFebFaaemST0VA92Ku8U2i9o4bLtn7NGx9A73NuJk7XnSQkq39d2MxrxIfcHgYcH8dfuvjry15LAgxcj1gOJucKISVPx+k9rb4dNVhakSAmmvLX5OWQYp3dd3Z77h+fgksRW1NSm3n9/OKpQ1LGazH1K0plRLLi4hSXbu3FkUUIYMyX7DycjMIKleMrV2JUUQPtP0+alvJtb6wtmkdBm33TR1BFob6zxIWXAeWW/imapM/rL9F5u7IGfHOs4Wf8ThETb7pHy8Cqw3o4SZWNIaSLka3YfyMOm3e6acnELvcG/GJMdIOg8x3Yi94bCaFE87WmypVIIq673EcMWZDN8fTr/Bfo6GMslhQYqRqwHFXeFEppBxztk5JJNJtuDWG35WO86almlI2Xd3H6EAZ5yeQbHC2QtPL/DN+W86fLvnwxUfstyEclSqlLxy5QplMsPtncBAP8bG5nSyTc9MZ9XJVa3e7jl8T9s11TFdkLOl4qgj9SU3c3tncWk2nQuSM/k85bnNXZANY6U1c0tTpjLvUF+G7wft7YKsL3eoSXl9zutst6SdZPc3J0cVzmqPFhvW1+UOXYm+wqCIoBxmbglpCSwwogB/2mJuG9hqSQ4LUoxcCyjuDydqCUIS2y4pYLXjrK2QkqpMZaVJlfj6nNd1HFUtd5y1FVKuRk/N0SSsS5cuoqsnv/8up6kuyNZASpc1XVhhYgWqhM9obxdkfUntOKvdJph6sjnVf2KW2+K7O6Rsu7mNUIAXnn6nic09kHL3xd0cq4juKi2k1J5e2+bXz9YLW/O1Wa85eGbuIzHH2eGHhtMn3MfM1qRNkhwWpBhuCSj2djP2FDjRylZbfFsgpd/OfvQd7MvLzy7rxToXUj5eJWfJsYWYpkxjZGQk5XK5AZz4+/vzyZP3aKp3j6WQ8jD+IX3CfTj26Fg6oguymKSElEknJtE73JvRSc9o7Aiy4YuktJDSf1d/WlI423NjT5YdX5aCoKI9XZBNKeJga1aeBCakDbAgr+M07NAwBkYEMjE90aX3tUWRsZEmCvhN60r0FUIBLr5grlbLs6ULKdNPTWfoyFB+t+k7Z9xKcliQYrgloGhlywqKp8GJVrqQcviesZMLWtkGKQejxlGmkHHE4RFGYsUhpcmcJnbVpJx8eIRQgHPPepHcxK5du4qunvz888+0pMGg72BfjSOl8cLZfjv7MXhYsE77dOdCytCDri2crTejHjsu66j5yvB0z6B9g4z8/ksDKacfnc4yBzQFKUqVkgVHFNTAjDbWOZCSlD6IJJiUbqx7t+P16tRXnd652NFSCSqG7Q+zarun1+ZeLDKqiMjpstwnLaSEDAuhV5gX776464zbSA4LUoxcBSieCidaJWfE8Mu1RXgrLoCOLpxNSGvFsuNlfH1OdTM/G0NIOXr/qJFY85AiCALfnP8mq0+pxkzV+7x2zUd09cTX15cPHz7UXGUaUrQrA4IgiK6kxKfFM3hYMP+38396VzoHUgQhk2R3knLefj7WTF77IeXSs0uEAlmtCjSzoL7jLEnuubPHbbZ7SPUn609Xf2p0u2fnrZ2EAjzz+IxeXudASnLGIFab4prtnotPLxIKcFOkOTND99KjhEdW1aS8SH3BwIjAXHG02FIlpScxdGSoZnXXeDNSOyQ5LEgxcg2geDqcZEtdOPsiNZAnHk43E2s5pPTY0I1BEV68FedHWxxnMzIz+L+d/7N6u0dbT6B+UU5np07FRFdPevXSP/5pGlJIdVt0se2eUUdG0Sfcx0jXVOdACqni/rvv0jvc+WZuv+/4nQVHFDTifZINKSpBxQYzG7hVTcqhe4dMmrl9s+Eblp9QXmTFznmQ4qqalAG7B7DAiAIeuapgTeHs2KNj6RPuk2uOFluiSScmUR4m58WnF9l8XnNndIuWHBakGLkCUNwZTuaenWtDhmT23VYyy3HWtMxDyuILiwkFOPvMNNpqix/1IspqM7dMVSZrTqvJpnObUhAEHjt2TBROfH19GRUVJTIH89s9+jUp6ZleLDGmgEmfAlfUpDgLUpSqmSwyqgh/3vqzkVjjtvjuAinGHGczMkewwIgCHLDbWF2I50KKIAh8ZdwrzqpPcIl0ISU2OVY0Rnu0+PM1n7t4dtIpTZnGkmNL8vM1n1vtOGuFJIcFKYbHA0rugxO1dB1n7YGUazHXGBQRxC/Xfqn5VGpfF2RrIGXh+YVZHUwFQWDTpk1FAaVv374m5mAdpCw4/xqhAC8/G2fme/NMSNlyAyJbIPryHEjpsKwDtTUp22/Cgu6+zoUUmQK88NRcwbP1OnJfXYd1IMrc1q1760bsDfbZ1odKlVL0+Y3XN+bqo8VimnF6BmUKGa9GXyVpvS2+hZIcFqQYHg0ouRVOtLIXUpIzklljag1WnVxVp0CRdBSkGFpjZ0NKqnIDS48rzQ9WqFveb968WRRO8uYFY2LMFZdaBinjj43nq1NrsO2SYnRUF+RsWQ8pdWeASpUl4GE5pHy0shxfnQoKwmwzsTkhJTopmm8vepuRsZFGYvtQCkjJfsMW+PX6Wqw4ERSEURbkdQ6kXHr2syZWYUFey/Xjlh9ZcmxJZ9UnSKIj948YbPe8tfCtXH20WF8ZmRksM74MP1r5UY7HdSHl0rNLjriV5LAgxfBYQMntcKKV9nTP5BO+tKZwVhD2ssuaLgyMCOSV6CsisfZByl97/jLSOl0NKSMOe9ErTM7rMdeZmZlptGPxkCHVaGkXZFOQsvv2bq67to5QgPvu7qYjuiAbyjpIeZn6OUk505TzzOS1DFJik2PpO9iXo480pi29e7RKSEvgjdgbIrF96GpIIdUnd4YcGMJ8w/Lxzz1NNLG2d0EWl3W2+H/vddx2T0ZmBkNHhrLfTnPOw54jpUrJSpMq5ahJ+bccLdbV3LNzNZ49FwyeUwkqbr+53VG3khwWpBgeCSj/FjjRKlOVQLIFySA+TlhrJloNKUMOqBsBrri8wkSs7ZCi1c5bOw22ex7G32GeoV7ss82L5DZOnz7daM+dpKTntLQLsilIEQSB9WfWZ61ptfjztp8d0gVZXNYVzkYnfcZKkxzjk6ItPnyW9IS2NhgkyR4berjVds+lZ5foP8SfUIAnHhynvV2QjUuamhRtobjprSvPk37h7PebvmfR0UU9sgjYFilVSlaYWEHnuL9xTT81PYfjrA2SHBakGB4HKP82OMlWMlddqc48Q82bua2+spRQgGH7vemMLshaSElVprL0uNIGNSld1nRh6MhQvkh9h3FxvixYMFgUUKZN0zZLM98FOVvikKK11R64e6BDuiCbluvN3ARBYOVJlfnJqk90Ym3vguxuNSnvLH6HMoXM5t497gwpX679klUnVzWy4ujZ0kJK5UmVGTAkgIp9Cqmn5DJpDx+cfnTabOx3m77L4ThrgySHBSmGRwHKvxdO1LLEcfb0o9MMGBLAT1d/REFoRUd3QTbnOHsg6oDGlG0uyXT+9FMZUTipVKkSMzIydPLaDimCILDejHp8Y+4bFATBJlt8tdwXUrQ/1z139ujFej6kpGemM2RYCLuu7Zpli5+qTKE7QcrC850syGuo5Ixk5hmah4MPDLbpek9QZGwkS4wpQe8wb4d1QXZ3qQQVq06uyrZL2locr2+Lb6UkhwUphnOTA38COBoQEMCQkBCr/jXInIDyb4cTrUxBSmRsJENHhvK1Wa9puhI7vguyWuKQUn1KdVaaVImNZjeiSlDx4sWL9PLyEgWUbdvEjN1sg5SN1wcavHlrIUV9HNe446yhnAspfoPBh/HmCp4NIeXzNZ+zwsQKIp/C7YeUKSenGIntQ1dAyvpr6zUnry7zYNRB/rz1Z00xqXlb/Jx5nQMpSy9+zJQM0JbC2RWXVxAK8FbcLauv9RSpBBXLji/LLmu6MCk9SbTDb27Tyssrs04oWipdSMlpsmiRJIcFKYazASUMwC+//vqrXYAy//j8/+BER1pIabVATkHYT5K89/IeS40txWpTqum1cXcdpJQaW4peYV68+PQiVSoV33jjDVE4ad++vYm81kGKIHzIujPAZvOqG7x5L7u0jCcentB85R6QcvLhe5pYy23xY5On0G+wH0ceHmki1jZIUYOsWtltAXRj+9DZkPLBig9YZ3odg6gj94+4zXYPGcELT8FRR1pbEJutjss6suGshlZd42nacmMLoQCP3j/Kz1Z/ZncXZHeXSlCx5rSafGvhWzZdO/TgUMalxFl7qeSwIMVwyU3mzZtnF6DIB8j/gxM9JWfE8GVqU5JBfBS/mhUnVmTZ8WWNuKc6H1KuxcyiT7gPB+4eyLiUOI6eNNqIKRt486a5N1HLIWX9tdWakzteNOY4m56ZzsknJrvFdg+poiB04287LPdJGXsU9An3YnRStJlY2wtnl1xcwmKji7l8uycuBfQd7MVxx8bleDYhLYEFRxQ06jhrOq9zIGXs0bZW1aQ8T3lOn3AfTjg+waJ4T1XbJW1ZZ3odCoJgleOsp0p7WtBeT5uoF1FmDjHkkOSwIMVwK0BJS0tjfHx81pi+T336o9OCTv/BiaiSefZxffoNBguMCObt57dNxDoPUlTCu2w6V8YKE4szJSOFraa0ojzAsN8OAPbvX4HWdEE2BSkqQcXa02uz+bxmNHUEec+dPW5bk2IOUgQhk1Umh/CTVaAjuiDrZKY71KRMO9WaXmHg08Rwg2eNOc66Q02KJZAy8/RMysPkufaNmiRvP79NmULG2WeyfXlyM6Ro692azWtmd66/9/5N/yH+Rj5UGkhyWJBiuBWgDBo0KOcbWgX1f9+c8WaOpWgp5H5wovbFqDmtBn3CZQwY4hhb/GxZDinjjo0iFOD+u74kd/Dd998VhZNXXnlFc6zYsi7I5iBl0YVFhAI8dO8QbbHF9wRI2XV7l2aFqC0d0QU5p6SHlMazG7PtknKa2HEGz7szpAw71Mpk3Jvz32TrhdZtCXmaft/xO/MPz8/kjOQcj2shZdqpaUau9Extv7mdUIA7b+20O5dKUFlz9FxyWJBiWH8BoBB789Eb9XWvsXUF5cGDBwRA/7/82Xpha8kgxV3hpPb02iw0shBPPjzoEFt8Q5mHlGsx1+g/xJ99t/Um2ZYbN/oY/b3YunWr5irzXZCzJQ4pKRkpLDW2VJZTrVqeCyl77wwUjWm/tD1rTqup6ZhsXxdkcYlDSrsl7YzE9qGjIOVm3E1CAS6/tIzmHGerTq7KqBdRdJfC2dFH3uWR+6CxwtkH8Q/sPVbq9krOSGb+4fn5247fRJ/XrbPILd4oTec2ZYOZDaQ4Mi45LEgxbAGUQgCqmBn+utfYW4Oy6cImBgwJkARS3B1OtDbKWlv8giPAhDRzb/qOgRSlSsnXZr3GypMqMyUjhTExD1mkiK8onHz66ad6ee2DlIiDEfQJ9+HNuJt6saYhZcnFJfx9x++aFxj3KJydcrIR0zNl1C+cvRV3S2/53L4uyMZlaIv/POW5+hnRrsJ96AhI+WfvPwweFqz5mzbtk6Ld4n2Z+tJtVlLICGZkgisvf2TwzOgjo+k32E+kHUTu0ZyzcyhTyMyeUFp0YRGrT6nu8ds9B6MOEgpw/TXD1xUXSHJYkGK45Cb2Akp8fDz33tnLujPq8mniU6vz2CpPgROtkjNieOR+XZJBtMYW31ZIUexTUB4m5/EHxykIAj/66CNROMmXLx+fPn0qApe2QcrTxIXMMzQP+27rayTWNKRodeLhCbdYSVHDRHeeeCjj0os/ZD3ad1tfFhhRQO/n5hpIIdVFfI1mN3LKdo8gCCw7vix7bOihF2scUgRBYMsFLd3KzG3N1S6iNSl1Z9Tlhys+tOBenilBEFh3Rl2+u/hds7G5pSblncXvsPqU6lL1U5IcFqQYzk0OlAZQOywsjHny5OG5c+d47tw5JiYmWvQvom/Upv3FeJb0zOkrKZ4GJ9lKpkp4k723ept1nLUHUg5EHaA8TJ7lHLl06VKjWztz5szhpBOTLO6CbFxqSPl+k5z5hgeZOapnGlIexj+k32A/t9nuIVXsvbVqlplbQloCg4cF849df4jGunK7xxk1KYfuHTJyEsI0pByIOpBl5uYukKJfOHst5hqhANdcNfe75Lk69uAYoQA3R262KN7TIeXM4zOEAlxycYlUU5AcFqQYzgaU+WJvWPv27bPoX0TM6l4lqFh/Zn22WdTGaZDiuXCiVqoyzqzjbLash5TYZH+WGFOIzec1Z6Yqkw8fPmT+/PlF4aRdOzkFYbuB42xOWQ4pV6LPUx4GjjnqRXsbDLpzTcpXa9+gV5gX7728ZyyangwpPTf25CvjXjHyadSzIUW7dZWqTLXgHp6pL9Z+wbLjy1p1ulILKR+v+tiJM3OOPlzxIctNKEelSinVFCSHBSmGq25kk4w1C9x3dx8DhgQ4BVI8HU60ssQWP1uWQ4ogpLDDslAWGAE+iF9GpVLJZs2aicJJgQIF+PhxSxqzxc8pyyCl3ZJ2LDehLNOUHeiILsjuCCnd1lcgFGDDWeXN5HUtpJQeV5ppyjSR2D60BlJSlWDIsAD+tecvM7HmIWX1ldV0l8LZiIOt2WszWH5CfnZf392C3J6pZ0nP6DvY14RxoHHdjLupZyTp/roafZUyhYwzT880H+w8SQ4LUgyPBBTSOZCSW+BEK11IufxsvployyBl+KHhhALceL0OyQD+9dfnRrd2VqxYQWO2+DlrD7QyDSnahoCrrqyiIxoMarX4wmJWmlRJY4QmfeHsxutq6/fZZ0BrHGedDSm7bu8yEduHlkLKskvtCAUYGfu3BXMwDimPEx5n/X+mSkl3gJQTD74nFOC8cx0tyOuZGnpwKP2H+DM2OdbmHPdf3ud7S9/ziO2er9Z9xRJjSojAuUslOSxIMTwWUEg1pOQZmoc7bu2w9RZZym1wolVyRgyHHypHpSqQ9hbO7ry1k/IwOQfuHkgylbt21adMJg4nOU/t5ISUm3E3mZCWYGQO4pCSlJ7E0uNK8+1Fb+ucLHEcpGiPQb5IfSH5Skqzec3YaHYjCkI3pipl3HVbrA5FV64rnBUEgX/u+dOu7Z6WC1qy2bySmlj7uiCT5OQTk9lqQSu32O7pu60vC44IpE+4/V2Q3VGZqkyWHlea3dZ3syvPjdgbHlGTcvfFXXqFGTodSyDJYUGK4dGAQjJruVAQBGZkZhiNM6XcCifZSibZgvvv+tvsk3Ln+R0WGFGAby96m5mqTD558oRFihQRhZMyZcrwxYsXenlzQgpJXo+5zjaL2li03dNvZz/6D/EXcct1HKQoVUrWmV5H0u0ebfHh2qtrSao44XhDixxnXQUpL1Nf2lWTcivulqY78ALa2wVZK3cxc8tUZbLo6KLss62PVY6zniRtY8fTj07bncsTCmd/2PwDC40sxKT0JKmnIjksSDE8HlC0CtsfZpNPSu6HE62S2X5pQZvM3BLTE1l7em2Wm1COcSlxTE9PN9oI0MfHhydOnDCS13C7p+joomZrUi48nUqvMC9GHIwwktex2z1S1qR8sOIDVppUKat41BpbfE8onB2wewBDhoVonEft64KsK3eAlN23dxMKZDWozI2Q0npha4c2P9RCSs1pNaUsQBXV44TH9BvsxyEHLPHEcbokhwUpRq4BlL139lpt5vbvgRO1tGZu1kBKpsqf7Zc2YZ6heXjh6QUKgsCePXsarTsZO/Z7M3nFa1KMQYpKeI+NZstYbUppM26Ung8pkbGRlClknHVmVo5Id4cUtcOrfmwf6kOKUqVk0dFF+eOWH/ViHQspan8c1xfOdl3XleUnlM9hbhdxsDXLjAdfpPa3IK97KzI2UrP6tdCheW/E3uCG6xscmtMR6rezH4OHBfNF6gupp0K6ASxIMXINoJDWQcq/DU600oUUS0739N5ail5h4NYb6hfuyZMnG4WTDh1CKQj+tKYLsi6kvDbrNQPn0umnJhMK8GCUDx3RYDBb5iHFO9xb49PhmsLZnht7sujooqLHU7WQMnA36C6Fs9FJ0ey/q7+RrVVDSNlwfQOhgEj/EcdBysmHJ3XcW10HKUnpScwzNA/D9ocZRMan/U0STMn404K87qs+2/qw0MhCTjs+LQgCRxwe4RbbPXEpccwzNA8H7B4g9VS0khwWpBi5ClDIbEj5e6/xEwL/VjjRKjkjhp+uLswr0QE0VTg7/th4QgFOP1WFZAD37BlDLy8vUTgpW7Ys4+Ie0ZouyPqQsvfO3hwRTxKfMN/wfPx6fTc6qsFgTpmGlDvP72T9vyBk0JmQ8iRRRt/B3hx+yPibo0pQUhC6kZTz/ssJZvK6rnCWJI/cP2J2u+e9pe+x3ox6JvI6BlJIda3LF2u/cNl2z+ILiwkFjHYUT1UqWHeG5273JKYnMmRYiBHjQMfoaeJTt6lJUexTMGBIgMiqrmSSHBakGLkOUEjy1KNTRldQ/u1wki114WxSeiBPPzI837/80nLKFDL229mPZAqvXWvMAgXEV06CgoJ48eJFzZVqM7c5c3z46qtlGRQURAAMCQlh3bp1Wa9ePdarV4+1atXiK6+UZocOhbl3rw+1hbOZqkz+vfdvPkt6xo9XfcxCIwtpjjPa32BQXOZt8YccGOL07Z7+u6oz71DwRepsM7EqHr3fjj7hasdZc7GugBRBENh4dmOTNSkP4kF5mMxMd1vHQcqhe4dcaub29qKKfGPuGyYjPbkmZfqp6ZSHyUW28xwrdyicTUhLYP7h+fnz1p8lub8RSQ4LUgy3BJTJkyezatWqrFSpkk2AotWFpxf42erPsmDlPzjRVzL/t7O0wXbP/IPzKX9XzuofVOegQYO4ZMkSlixZwujWzrp16/TyZtvi//77R3qdjLP15MkTVq9ejQC4Zo0aUu6/vM8io4qw1NhShAJcenGpzhXSQIqza1JikmMYFBHEAbtr0FrHWXeBFHOFs3/vfY15hoIJaWMtyOsYSHGV4+zjhN8pDwNnnO5oNtYTIUUQBL469VV2WNbBJffTQkqVyVU03kSu1agjo+gT7sP7L++7/N4mJDksSDHcElC0snUFRStdM7ek9KT/4EREumZua08MZrN3mxEyEDL1iRxvb2+jYAKA4eHhRjKrIaVhQxkDA/2ZliZucjR+/HiNJX4otds9h6IOUaaQMXhYsEhzyNwHKQN2D2BQRBBjkp/SFlt8d4eU9Mx0Fh1dlD9srqmJta8LsmGseUhpu6QtBUFFZ0CKunOxN5+ngNbY4p961NNsrDtI28XXEX5TlioyNpI9N/Y0UxjveKUqU1l0dFEjRpKSSnJYkGLkakAhsyGl5NiShAL/wYmIkjNi2GRsMJEXhNw4jOiPzp2bGxS16ioxMYbe3jK2ayensZqU33//nQD4ww/fkWxLQfBjx2WNmX94foaODGWNqTX4POW53lXSQsroI6PpqMLZ2ORY5hmah/13aU95WN+7p9oUMD1zvpk5uA5SWsxvwYv/b++8w5sq2zD+ppuWvUVUhlaGCCooiMpSRBQ/J+JAhhMXiltR0s2eZe+995DZUvaeZbSltBQKnXSmI8k59/dHetrTNMk5Sc7Je5Lmvq73+j7bJ28OHcmv57nf+0m7VF6xNnYtiJrgcvol2DsF2Xyt5dM9/yX8x6uVFlI6zu6I99a9B2sSZ8/d5b5masFa2vpg/Qd4bPpjtKb44kzqGYe1e2admgWPIA/EZ8U75PmsEHVYoLFcHlAYlsGAVQNA1MSCQc+xUhKcAIZbuK3atLQKTl54oS6KivxgKRZ/165dIIQgMrItTBlnr127hlq1aqF58+ZITU0FUIIFZzuUBZX9i2uZ1zBq9ygzA8noQMruhN280Cb7IeWv/X/BP8zf6Fa2dZCSpfkQgAe0CoEUThqtBjeyb6DH4h54afFLvNqRcDSkAIbXginHp0ja7rmYdhFETXjHZMVDChCGcUcIgg72FFFLR2kFafAK9qKWpKpn9Gg3s51DPClavRYtprbAoA2DhIsdL+qwQGO5NKDwPSe/7f0NR1OO2nopkklpcAIAM9fNFA0mnCn2/v1UCM3u+e2330AIQWLiVfBP95SUlGDp0qV44IEHMHToUNy9a5ipci3zGvzD/PH51ofAT5wFDLfq7ZmCLLVxNjY9FqN2j7Kr3ZNdlI1a4bXw297fTNSKhxSAwf2ij9BhlnJyUgBDCmeDcQ1A1ARrLq8xqh0JR0PKtcxrkoe5/bLnFzQc39CoFWHbFGQlKuxQGGqE1jBxF9NxcpRxdumFpSBqgotpF2V7DjtEHRZoLJcFFHOGWK1ei/BD4ZJPQRYjJcLJsZRj8HrSy6q7J4QQJCUlQWh2T5cuXVC7dm189dVX+Oqrz/HVV80xdKgnOnRoibZt2yImpuKIc4muBE/NeQqBMwJRWJoN/hHkUn0pWk5tadcU5IpaaSBlbexauz0pow+8Y+LuCV/Wt3uUFuZWf1x9eAR5mHjRpwMpUibO6hk9Hpj4AL7b+Z2JeueHFD2jxyNTHlHEZGa5IYVhGbSJbIMBqwZIvrdEog4LNJZLAoql0zoX7l2wOnFWCikVTmqF14L/g/5WwQkhBHv2cHc3TENKXl4ePD09MXz4cN4zVpzumTv3R3h7e2P2bMOx01G7R8E72Btn754tq7UucdbZjLPZRe+idgTBL3uEXhCdF1LyS6YjICwAjcY3snl2T+Va6SGlSKuBrZCy58YeEDXBqTunzNRbDymLzv1PsNZR2hm/s1J0P23FZcXhiVlP4MK9C5LvveHKBhA1wfHbxyXfWyJRhwUay+UARcxRYlti8e2RkuHkhUUvoG27tlYDyu7du3m7VYWUHTt2gBCChQuN39AqIOWppx6Fl5cXpmydAqImmHzM+Aiq80DKNzu+gTWelF/3/oyAMC+kF3pAqinIQAWkeAcTJOdMFdhXXkiZdoLAK9gD5++dxxOznsD4I+PN1I4EDUj5YtsXZfNfbDPOfrD+SbSNbGvRKG4NpCy78B7ySwiUYpx9Y9UbeGrOUwL/PseKM+oW64olO4LMsiw6z+uMnkt6SrKfTKIOCzSWSwGKNTknfEgp0Zk+AiuFlA4nBaUFeOedd6BSqawClISEBKNdK0MKdzonLi7OxBUYIGXQIEMqre9rvnhn7TtmXgirQsozc58x47KnAymrLq0qi8QHxEBKSm4KfEN88W/UaEg1BZkvhtXhyK3+ZbV0YvH1jA6tp9XGhxsIgHkoLC0s//5WnQxLzzgLGIIdrW33ZGp+gU8IwaRjrwvUAtYaZ69nEkw61ldErXxKzkmGSq3CvDNVQxyVoGFbhknW7uGGPDryGLUNog4LNJbLAIotIWxRN6Pw856fZfsLwRngRKfT4aWXXhINJp6enujRo4eZ3Ssg5ZlnAtGoUSMLV1KMbs/XASEEjT+qy5ufYkqVIYX7fuWX5Jv4K4qecVbH6DDvzDzBds/wLcPRcHxD5JXkQaopyFXFgGWH4t8oOu2eLde2lLUH3oPhJcDwRrfp6iY0m9RMMe0ejVaDxhMaWx3mNuX4ZHgHeyBTQ2DvFGRjTTvxOnVPyugDo1ErvBYKSguoXYMlSelJeXnZy4q7U2RC1GGBxnIJQJEiIfbwrcOStnucBU4++OADq9s7W7damjxahNzcnvD0JHjrLfPR34mJiVB5qEC8CHaf8YG1s3sA4J217yiq3XMo+ZCgJ+VKxhV4BHlg6vGpvEfKAyk0PSk9l/TE8wufh7WJszQgxdrEWZZl0X5mewxcPxBSTEE2JZrGWa1ea2LqtPIkBaScTj0NoiZYG7tW4quTXNRhgcZyekCRAk5yinNQd2xd9F3eVxJIcRY4GTRokNVw4t1DeArytm3rQQjBhAleMHW6R6fT4bEuj4EQgkE/vQ97Bgwq1ZNiDlLeWvMWWkxtYaKt6DqQcv7eeRA1wbpY7t/hWpByLOUYiJpg7429sHcKsiVxkBIa01vEvtJp/ZX1IGpSKWxPqeIgpap/TZzeW/ceWk9rbSZrSVGiDgs0llMDipSzdfix+PZAiqvAiYeHB7y9veHt7Q1CCBo1aoQp08eh15I6VWb3GGvEiBEghODw4c4wPt1z7do1dHq+E4gnQY/PepR9tMI468qQciwlHERNsPzicjP7yg8pe2/8brFWCkgZsnkIHp7ycJkBlZNpSHl52csm9qUHKa2ntUZCdgIsGWeHbxmOR6Y8wktWlQ9Sxh15FfsTCRxpnO29tDe6L+zusOezVxmFGeXtGa1eK/pxcVlxUKlVmHtmrlyXJqWowwKN5bSAIsfgP3shxRXgJCAgAKtWrUJwcDC+/fZb/Pzzz1i/fj20WsMvPje7p+5YgpziHeXPk5WVhQ4dOqB169blhtvmzR9E+/YBaN9ehfbtW6BFixZ4qMVD8Onqgx4Tehj91WIfpDSd2BQLz5lqN9CDlK+3f132JqYDyw7ES4sJnpzNf2MzJfkgZcrxZ1GkVUFO4+y9gnvwCfHBhKMTTNRWhRTz4+zpQAr3BldYWmjyTkpeSR78w/wRfNB4BpV8kAKEQc8QbLkmf8Lp9czrIGqCFReFfkaUpw1XNuCJWU+Ibvd8vvVzNJ3YFMW6YpmvTBJRhwUaS5GAIjTNWM6pxNFJ0Wg/sz1u59226nGuAif88DRz0mgzEZ3UCUAAAKH6CuNsWsFGtJzaEm0j25oxxdoOKfyky6rtE3rGWcDQ8th4dR2ImmBnvAekmoJskHXGWWAYLqapsOayqXAx41rrIeXvA68jICzAQvJo1cTZ1PxU9FjcQzHtHsBwxNZUmNu8M/PgEeRh5vVBPkjZdv0Th3hSRu0ehQbjGjjLm3YlWeNJSc1PhU+ID8YdGeegq7Nb1GGBxlIkoHAydQeFDyem/2K2X9xf9veL7ou6k1Kd4KRCGrBsT/yxzxsxAp4UoAiFpb3QeZ4KTSfWR1JOkoVa2yEFABaeW4gOszoopt2TVpAG/zB/1AyviVeX9wXLDoRUU5ArZB2k/LS7vSyelPyS4ag7luCn3a8I1Crfk2IucfbZ+Q/h9ZWWjhbL70mRC1KKtEWoN7Yeftnziyz7O0JiIeXXvb+iTkSdspN0TiHqsEBjORWgOAJOOLEsixcWvSAY5lY94cSgEt199F5aFwFhxCKk6BgdXl/ZDzXDPXHuri8sDRg0yLU8KQPXDQRRE7yz5h27ZvdYFn3j7MSjE+AV7IGUXAJbYvGVDikX0z4HURNsvjZUxL7OByncLBqDB8d5xUHKW2veMvn5+0X3UTO8Jv7Y94eDr8wuUYcFGstpAIVhGXy1/SuHwAknocTZ6gwnnDTaTPRaYh5SGJbBZ1s/g1ewF/bc2AahAYMVcg1IuZN3BwFhAei3op/ds3vkgpRVl74R2FcYUkr1pXhw0oMYsvlT2DO754lZT+DBSQ9Co9WYqB0JWpCy4uIKfL/rOzSZEACtnsDeKchVZR2kDNlMwLJjROwrXt0WdMMry4TufjmH4rPicTf/rsnPhR0Kg2+Ir+zTkSUWdVigsZwCUHJycxwOJ5zMQYobTirEh5QL9yq+P/w7XssuLCv7qOUBg5VlP6QM3jTYRK3jIGXwpsFoNL4RcopzsOLiCrSY2qLshVN8LL6ckPL9rrY4mmK/cXbRuUUgaoIrGVdgz4DBjMIMbI8z93WmAykpuSkoKC1AnYg6+GPf75BiCrJpiYcUlg0FQJB4/wcR+wrrwr0LIGqCTVc3SbKfUpRWkIZ3175bDiNF2iI0Gt8IX2//mvKVWS3qsEBjOQWgDFs7jAqccIq6GYWAsABsvW4IKHPDSVVptJkIOtgCpXp/ADECRmbHQEpcVpwFs6b8kHL89jgQNakUF86ZD/NL8hVxJ4Uzzmr1KkQn/SWitiqkmJ4EazukAIYWa2hMqGLaPXNOz4FKrUL3hd3tnoJsWeIhJSnnF/iFStPu+Xr712g2qZlVx3SdQQnZCZU8KTNPzYRHkAduZN+gfWnWijos0FiKBpSc3BzDG+ofhBqccOIIPEuThY6zO7rhxKQ0AHrhWIov/requ8ApK8dACgAk5STh9ZWvO7Tdw7Dvoss8FZ6a06pKCJSe0aPbgm6KafcADGaf7mazJ4WLtT+actRErW2Qkl+SrxhPCsuy6DCrA7ov7G5V4mzlfZXrSckvyUfN8Jr4N+pfm/dQsvjG2eaTm2PQBvmPa8sg6rBAYykaUP7a+RcIIYg8FGnrFpIqS5OFZpOawTvYG6dTT9O+HABKghODGLYALaf6gagJ/tj3kUC1Y9s9jvSkLDg7F0RNcCjZE7YkzpqXsoyzLLsEXRd0xQuLzI01sB1SlGKcjUmOAVET7EvcZ3UsfuV9lQkps0/PtnB02jUUlxWHemPrgagJTt05RftybBF1WKCxFA0o8anxoocFyi2urVM7ojb8Qv0ki8W3R8qDEwYjdowAURO0ifQXTJw1yPUgJb0wHfXG1sPgTR/Dnlh881IOpOy9QUDUBP8lWPq6SQMpifcTTdSOhNyQMnD9QDw+4/HytFIOUr7Z8Q0sJc6a3lc+SHlgIkGW5jcR+/KuiGXRcXZH/G/1/6x6nLOJZVkETg9Ex9kdaV+KraIOCzSWogHFmmnGcsrYcyJVLL49UhqcsCyLETtGlHuFuMRZJULK03OfNjF7QzpI+WjjR2gwrkHZpGVxsfiGuS7KMM4O2/IYvt9FIGScZVk9ui9sgi7zCFh2icA12AcpP+z6wUx4mLyQkppP4BXsgeknKv8MH799HJmaTF4tfUjJLvobAEGJbrSIfQ06fvu4CMB0fu2M3wmiJjiYdBAsy2LGyRnuUzxOsNyAIiBzhlgOUn7fJzTbRHopHU44abSZeG9dI5y76wdrEmflhpSd8TvN1NoPKbsTdoOoCRafX8yrtQwpcVlx5f+fZbVQAqSw7FAAHribb/6NPOpmFIiaYHtcX0g1BblCVY2zAHD27lmHtnvGRD+PgDCC3OJwkxUpuSkYvmW4Yto9pfogPL9QfLvn082fouXUlgLjF5xfLy56EV0XdAXLssjUZNo9BZmCqMMCjeUGFAsSOq1z8s5J5JfkO/SanAVOKmQwzhbr/HHu7nyB3RxnnGVZFuGHwiVt92i0GrSc2hK9lvQqbwdUSDgWf8rxKYpp9wAMzt4dAL9Q8+2enkt64um5T4Nl9ZBiCnJVVYYUlmXx0uKXHOZJKdWXounEphixo1NZ7ZQqNUdTjppMnKXd7hHjSckuyoZfqB8iDkeIeH7n1ZFbR0DUBFuuVfzeWROLrxBRhwUayw0oZmTNUeLrmdcxeNNg2ds9zgcnnDQYfeARwcRZgxwDKan5qWg6samknpTf970L3xDfSndEKsu2Kci02z2mPCmccbTiRd/+KcimRc84u+byGhA1QWz6ZdgSi690SJlyfAq8g70tDGx0DQ1YNQBtI9tWuUvEhxQn+BpQhwUayw0oJmRtzsnBpIMWE2elkBLh5Jsd34CoxR0BF0qcrSznM85eTOsNzyCC4IMfC9S6BqT0WdoHHWd3NLpT5FqQ8uKiF9FjcQ9erTCkvLr8VbAsAyVBytGU4VWflWXRJrINPlj/gYjndF5dTr8MoiZYcn6Jyc/HZ8U75I9LCUQdFmgsN6AYydYQNqFYfHukZDhZcHaB6McpHVKyi7KNasVBip7R47n5z6LdzFoo1XvD3tk9HKSEHwqHkoyzracRlOgWl98y33Blg6lqOApSXlj0gpkjo/ZDCpesuv7KeqNay5BSkcSqDOPsidtfl9WqK338YNJBEDVB1M0oEc/nvBq8aTCaT26OUn2pYO3l9MtKbvdQhwUaS5GAEhkZibZt2yIwMNChgGJvQiwHKVIe2XMVOOHEQcqYaG8oyTg7YscIMymawpAy9vBYqNQqHE05CKkGDO6M34nc4tyy/1IGpKQXDgLLqtBjcRt0mNXBgrHSMZDC3b0p1Zfi5v2bJmpHwlZIGbJ5CJpPbm7iZ8IypACG35HZp2crpt0DhGHmKYKggz3LP/Lhhg8ROCPQhFfKdZSSmwKvYC9MPjZZsJZhGXSc3VHJnhTqsEBjKRJQODnyDopU8fVRN6OwP1HoDVKclAgn3+781mY44VSqzwHL9gQQgOwioTdyxxlnAYPx2Zp2z8W0i/AO9uad5pJuCjJgiOr+be9vimj3AAw2X+0NoiYYtfs1wVpHQAoAjNo9StJ2T2p+KLyDvTHh6AQLteYhJSE7QXFhbuGH+pZ7UjIKM+AT4oOJR4Wux7k1avco1B1bFwWlBaLqFW6cpQ4LNJYbUCDPbB09o8ekY5NsbvcoGU7mnxU6jSNGGuy90RF1IpSTk6JjdHhs+mOiPSkluhI8OftJdJjVASW6EqNaaSBl/ZX1ivGksCyLZ+Y+g0bj/WyOxbdcqwxPyh/7CGqF+/HuYJmrNQ8pSk6cfWVZK/iG+PJyXFxPOcU5qBleE3/u/9OqxykYUqjDAo1V7QFFrsF/l9Mv2xzm5vpwYpCSw9zEQMof+/6Ad7A3Lty7YGJf6SBFKcbZTVc3gagJ9ifutSkW3xkgpaA0H3XH+mLUbgJ7BwwqEVJCY14GURM8O/9BEfs6ryIOR8AnxMcmyIjLisPjMx7HyTsnZbgym0UdFmisag0ock8ltiVxVolw8t3O7ySHE07OCilHU7x5RlZzkh5SRuwYARqeFD2jR7uZ7fDyspcBVBhnPYMIErKF3nAdCynqaLWZ2pEQgpTpJ6bDM8gTt3K/KKu1D1IOJR/CRxs/KjNp0jfO7k/cD6Im2BlHYGycdRWV6ErQdGJTfL71c5v34JKmtXqtUu40UYcFGqvaAorccMKJDymmo7orpGQ4mXdmnvADbBQHKZ3neYBlDwpUOw5SOszqgNj02CqVBaXZaD3NH90WqKBjdgjsKx2krLy0khdJ7lhIWXZhWZVBawyrw4Gbr5bVWo7FdxSk5JXklRs/q/5RYBlS9IweLae2xIcbPoQUU5CNdSntEvU7Ke+tew9tI9uCZUORlEMw9Xg/Efs6lxacXQCVWoXrmdft3mvEjhFKafdQhwUaq1oCiqPghFN0UjRG7BhhYv5LhaornHDSaDORVtAdQIBiIIU7paLRair9FTVixwj4h/kjPqsXpJ6CLMY4y7AMlpxf4rB2T6m+FC2ntsTba942dTUAhmH8EZVi2j0AsCt+F5pPbm5Vu2f9lfUgaoIzqWd4tdJASrGuGA9OepBqmNu9gnvwCvbCtBPTAACRJwfYNQVZiWJYBm0i20h2klJBnhTqsEBjVTtAcTScGOvknZNV/rJTIpx8v+t7h8FJhTRIL+yOLvM8FJOTAgAfb/y4vN3D+TBmnZoFqacgV8gypBxLOeZQT8q0E0PgEeRh8m4SYBgaONzJPSksy+K5+c+h5xLjN2vpIIV24mz4oXD4hfrhftH98o+JjcV3Fm27vq0snO6oZHsqBFKowwKNVa0AhTac5Jfko8G4BpXC3JQMJ3PPzJXtecyJ70lRCqRwnpTAGYGoFV4L7659l5cfQQdSHGWcvV80EPXHEXy+tZfFSkux+CaqoTRI4cLntseZ+r44P6QwLIMWU1tgyOYhVSo5SAmN6S1iX2XrhUUv4PmFz0u+LwcpYYfCJN9bpKjDAo1VbQCFNpxw4ifORt+MdsOJCSkRUi7euwivYC94B3sjISvBqNZ1IeWXPaMQEOaFu/kqWBOLvyv+V4FrcCykvLDoBROhZBWQ8taajmgT2cZC+Jy0kPLwlIdxJeMKHGWc/S/hPxA1wbGUYyYrxx5+FduuEzizcfb47eMgaoLN1zbLsv+9gnvlP0OW2vUyiTos0FjVAlCUAiecom5GwTfEF55Bnui2oJti4OSHXT+AqAnmnJ4j2/OIFQcptSMIsjTbBKrlh5Rvdw6Ad7A3GoxrgJmnZpqopQMpKy+txOBNg6FjdJDaOHvz/k34hPgg6OAYWJM4O/5IZ+SXqKAU42xGYQZu5902Wxuf9SlUaoJ5Zz4Ssa80kMJFrxfrih1yJ+WtNW3x5OwnBZJjw8CyBDvjhb4OytQ7a99B4IxAC5ApjXbG70TH2R0d3e6hDgs0lssDitLgBDC0dWqE1oBfqB8up192w4kZabSZ+C/hSQABoBmLvzb2qTLfyXfIKMwo/0zVGHQ6kMLpSsYVSe+kDFw/EM0mNUNhaSGsTZwFhuF6pgprY78TUesY42ymJhN9l/et0u75fOtnaDLBH0VaAimmIFeutXy65/1178uek5Kc8xM8gghmnRogWLs7YahTelLisuKgUqsc4pmj5EmhDgs0lksDilLhhGvr5BTnQKfT4d3333XDiVlpwLI9EXzQm0pOSnxWPGqF18IH6x8Ay/qCM86uurQKT85+0u4pyFJBSpYmC7XCa0nW7jmWcgxETbDo3CJerXWQ8sueJxTvSbmddxvewd4Yd2QspJqCXLWWbpjb7/t+R50IPxSUEliTOOtMkPLV9q/QZEITwSgHqUQBUqjDAo3lsoCidDhRSltn5H8jQdQEs0/Plu157FWpPodKmFuxrhid5nTCY9MfQ15JBmxNnBX410FpnhSWZdFtQTd0nN3RRK/d+inISoaUkf+NRL2x9ZBfkg8ppiCbr6UDKUXaItQfVx8/7f4JtsTiOwOkpBWkwTfE1+EGVg5SXlshNJdKElGHBRrLJQHFDSfCchY44eToxFmWZfHZ1s/gF+rHi7K3PRbfspQFKWsu/1gWaW/uzpJtkLLy0jcC1+B4SPEL8cOY6DFGtSNBC1IMQzilM85yoWU3sm+UfcQ6SHlvHYGe+VewlqZGHxiNgLCASsenHaW4rDgk5SQ54qmowwKNpUhAiYyMRNu2bREYGGg1oLjhRFjOBiec+JBy7q5Q7L59kDLj5AwQNcGS80uMak1DysD1A03sSw9Smk1qhpTcFFhrnC0ofR/NJxO8ubqzQK11kPLNjjbYn6gc42x6YTreXvM2AsICkKXJMlE7Eo6GlJv3b5abWFmWgb2QwrIsnpz9JN5Y9YZRvXhIYdgQAAQpuT8J1tJQYWkh6o+rjx//+5HqdWQXZePDDR/K2e6hDgs0liIBhZO1d1BcAU6ID4F6iVq262FZFj/+9yMvbMy5pNFm4u8Dj6BI6w+5jLNRNyfCM8iz7La4KVWGlOuZ103cQeFEB1IMxlZDCq41d1L+3P87fEM8cPO+B6SagmyQwTirZ1Q4ckvoL3L5ISW3eCpqR9TGL3t+weRjkyWZgiwFpADAmstr0Hd5X7vbPTHJMSBqgr039pqoFw8pd/J+Q81wZbZ7uNlJyTnJVK8jITtBbk8KdVigsVwGUFwBTgICArB+1/ryx0t9XM7Z4aRCGgC9cOGen+Ttnpv3X0SDcQQvL3u67OiuOVVNnE3NT8U7a99RTLuHYRn0XtpbdLsnLisO3sHeGBP9D6Scgsy7Iiw694IiPClhhwh8Q7xwI/uGJFOQlRjm9u7ad9Emso2Fo8XO7UnRMTq0mNoCH2/8mPalAJDdOEsdFmgslwAUV4ETfltn9unZVk1BFpLrwAknDd5f10jSMLec4hy0m9kWrafVQHaRH6wNc7ueeR1NJzZ1Sk8Ky7Lot6IfWkxtUfYzJ80UZGMpwThbUJqPhuP9MGIHgS2x+OalHEi5lUvgGeRhJrOHL+eFlNWXV4OoCc8jRl8cpLSb2Q4luhIpt6YOCzSW0wOKK8IJUDlx1l5IYVkWP+3+CURNRLxgOY+kTJzV6rXos7QP6o2th+uZF2FvLL6zQcrW61tNpHC6JqREHI6AT4gPUnI/heHlqTKkJGQbJwXThZQvtn0Ba42zf+zrjtoRBAWlQQK1gLWQ0nA8QXrhLyL2lU8sy+LpuU+j7/K+VK/DlOKz4rH4/GKpt6UOCzSWUwOKq8IJJykgxVXhhJMUkMKd2PEO9kZ0Evdx+2f3dJrTyUSbiC6kGGbNVDbOFmmL0HJqS/Rd3tdEO0BeSPlsK4EjjbP5JfmoP64+vtnxDUwlzn61/aty/05l0YGUYynHcDf/Lq9WGFKKtEVoMK4BfvzvubJa+6YgGyuj0HANWv0/IvaVR/sT94OoCfYl7qN2DWI0/+x8u9s9ZaeTqMMCjeW0gOLqcMKJgxRbXOquDiecNNpMvLWmIY6m+MEW42z4oXAQNcHSC8ZvfvZByoYrG8zU0oEU/jRiltWCgxR19AfwDvbG9czrZvaVD1L0zBAAHsgoFHrTlwZSwg6FwSfEhxd9XzVxFjB8rZTS7gEMWR9fbf9KVLtn4bmFUKlVSMiOhxRTkE1JxwTj5WX02j2vLn8VneZ0Eojup6uc4hxJPCmjD4wGFAALNJZTAkp1gRP+3tae8WdZFqN2jwJRE0SejLTln+RkMhhntXp/XEpbJFBbASmLzv0GoiZGWRh82Q4pgOH7MOX4FMW0ewDDX3Wfbf0MDFuK65mvwSeE4I99bwvsKw+kAAwupf0PAWHyt3vySvJQb2w9fLvzW6PaqpDSZ2kfRXlSjqUcExXmxrIs2s9szztabN8UZEui5Um5lHYJRE2w8tJKhz6vLbLXOJulyULN8JqAAmCBxnI6QKlucMJXUk4Shm8ZLtjuqX5wwkmD0JiWosPctl3vCM8ggi+3vSHwl5jtkJJWkKZYT8rQLUPx4qIX0HpaTRRpPSHlFGQlelJCYkLgG+KLO3l3TNQKx+JXrh0JR0OKmMTZXfG7QNQEMcn81xfXgpRhW4ah+eTmJmZhKVMcpLSJbIO0gjSrHvv7vt8REBYAKAAWaCynApTqDCeA4QWqRmgNi6d7qi+cGCQ2cfbwrcPwC/XDO2sbQc/4Qa4pyEo2zqrUKhA1wZ4buyDlFOQKKQdScosJ6o71x/e7vrdQ6zyQ8vKyl02GufVe2htd5nUxAdzyQ0p00hAR+9qnewX34BPigwlHJ8j+XFIqLisO7697v2ykgjilF6bDP8wff+3/C1AALNBY8m1MSAtCyEJCSJKfnx9atWqFf//9F6WlpaK/QXxAqe5wwik6KdospLAsi5/3/Fxt4YSTEKScvXsWdcfWRc8lPVGsuw+5piCbg5RMTaZRreMh5V7BPfiH+UOlViH4YDCsTZyVE1Iemkyg0QrlmVgHKerozvALJUjNF3NMtzKkdF3QFYeSD5mpHQlHQ8qh5ENYcXEFr9YAKWfvGmIE1sWa+57IBykxyZ+DZQkAtYh9bdffB/5GzfCayC3OlfV55FRcVpyods+o3aNQK7wWsouyAQXAAo0lJ6D0I4QsJoT0TUxMxNatW9G4cWP8/PPPgt8YThygJN1LcsMJTxykDFg1gBeN7YYTvjhI+WWPN/jG2bN3z6Le2Hp4dv6zvBc56acgG1QVUoZuGWpm4qpjIWXg+oFoOL4hll9czgMmZUDKnbyBADzAsMsE9hUHKZmaTNQKr4VRu5+ELbH43O+YjtHhVu4tE7Uj4WhIAQy/84vPLy5v93y4gaDl1PoCAYPyQQoQhqUXCIIP9hJRa72UEmtvj1iWRed5nQU9KXfz78Iv1A//RpWnLlOHBRrLUU8EABg/fjxatmxp9ptiLA5QOkzp4IYTI0UnRZcdGXXDiTkV67LBsj0BBCC3eKcZOOHkGEjhdOHeBWrtnu1x20HUhPdXOJCSm4K/9v9l1xRky7LOOFtY+gleWixNu4f7SzRTkw5bZ/cAwJ/7/1RUuyc5J7k8zO1axlV4Bqkw/QSBFFOQK0s8pIQf6iubJ2XmqZnwCPJw1HA+2STGOPv9ru9Rd2xd5BTncB+iDgs0lkMB5e+//8Yzzzxj8hsCACUlJcjLyytflxIugRCC+sH13XBiRnpGjz5L+4CoCWacFHrBq47SICb5KdSOIKgZXsMMnHByDKToGT3azWxHxZNSUOqFhyY3xKvLX63kU9h4daPdU5CV6ElJyU2Bb4gvgg4G8Wrtn4KsFEjhwtwemvwQ6kbURWHpL2W19CBFDuMswzJ4dPqjZoZyOp/4kJJRmFHpc7fzbsMnxAchMSH8D1OHBRrLYYBy48YN1K5dG/Pnm59CO2bMmMpv8D0N/xuyN8TsYxwppcEJy7IYtmUYiJqgzYw2ksXiu5qOpOyHV7AKHkEEO+PHCVQ7rt1Dwzg7Ykcr+IcR3Lw/t8pnxcbiV5VyIeWzrZ+h0fhGRuZE14KUnXE7QdQELaa0sHvAoGVZDymzTr0uYl9hbbm2BURNcPLOSUn2U4LisuLw5bYvUaqv7Mv8Zsc3qD+uvrGhljos0FjWP4AQtdlJvBWrM/8xqampePTRR/HZZ59Z/IYZ30G5mXQThBCo/lRhzeU1Fh8rt5QIJ7/s+QVETfD9ru8li8V3NXFtnWfmPoWXFteRdHaPQc4DKXtu7ClrA3aC0BFkQ7y6MjwpHKRczRCCy8qQcj3zOjyCPDDl+BQztfZByu/7fjdTOxKOhJSIwxHwCvZC/xX9y37/rYvFlwtS5p15C+mFBFIYZ19c9CK6L+xu9z5K1528O/AJ8UHYoTDjT1GHBRrLFkBpSAhpI7D8ePXNAgMDMXjwYDCMddN5OQ/KwBUD4RHkQQ1SlAgnv+79FURNMP2E4c1Wytk9riJjzwlnnH1ilgp6Jkrg0Y6DlDaRbXD27lkTtdJBSk5xDppPbo6Xl70Mhi2B0BHkjVc5IFEGpPyX8EpZrfhY/PfXdcHDUx42Y0rmam2DlJzinPJp41WHwjkOUkp0JXhg4gP4fOvn5VXXMq8p5k4KEIbUfILIk/1F1JrWqTunQNQEm65usnkPZ9EPu35A3bF1kVdSJT2dOizQWPJuTsiDhJD4QYMGQa/XC31vqogDlPs59/HJpk/gHeyN5Jxkq/exR84AJ5yibkZhyOYhThNgJKf4cMIzmkGjzcTtvG4AAsCyBwV2cZwnBQBK9aXI0mQZ1UoDKUM2D0HtiNq8UyjCibMsy2L15dWKaPcYYGIYZp1SiWr3nEl9C0RNsOic5bu29kAKYPide2TKI9TaPYvOLQJRk/LnL9WX4pEpjwgmzpreVx5ImX36Tbs8KR+s/wCtp7Uu/z1xVXEndyr8UpVEHRZoLDnhpBkhJIEQcuDOnTu4d+9e+RIrfg6KntHzBrk5Rs4EJ8Y6f+98tb2TYg5OKqTB/aIX8NJiD1GJs4463fPZ1s9kafdw/fuqE1YtQ8rp1NOK8qSwrB7DRXhSWJZFzyU90W5mXegYAqmmIJftDqV4UvQMweMzGuPN1W9W+qyYxFnz+yrLOJuckwzPIM9qcTpx1O5RqBNRx8xrFn1YoLHkBJSh5t7IxcrcLJ7QmFDZ2z1KhJPf9hrmxkw7Mc1irUarQZMJTSwmzrqqhOHEILGJswY5ryclo3AFGk9oXCkzp7LExeIrBVLEGGe3Xt8KoibYGb8dUk1BrixlQMra2DfLjKM/VvmskiEl6KB4SBm1exTqja1nZsK06yi9MB01Qmvwc0+MRR0WaCxHPZFNMgUoLMti8KbB8AzylA1SnBlOOFlKnHVViYUTTq4OKSz7Ft5dq0KDcbUEkiudF1K2x1UOftTqtXh8xuNlUfAspJqCXFWmIcV8zPxISAkpDMugw6wO6Lu8RVntlCo1MckxeGDiAzh/7zyUYpyNONwXay4TiDHO5hbnolZ4Lfy5/08R1+Dc+nXvr/zUWFOiDgs0ltMBCmDI/pALUlwBTjhVJ0g5d/cc6o2thy7zuoiCE04cpNQMJ0gvrPrmXFmOhRTT80bEQ8ryi4vLos+9IMXsnnfWvlN2JFIZxtnQmKdxv0gFvnE28mQkVGoVLty7wK+GoyAl8X6ihdqRkApSuLtEh5JjYOkIMvd7r9VrFXMnBQgDyxLsSxxssWri0YnwDvZGan6qiD2dVxmFGfyZO+ZEHRZoLKcEFKAypOxL3GfrU1SSEuHk932/g6gJph6fatMe0UnReGTKI4jLipP46pQjW+GEk0abiS3XngAQAH4svmk5BlLuFdwr/0u8qjlQGFLis+JRM7wmPtn0EaQaMMhdT3xWvCLupHDG2aQcFTZc+QG5xbloOL4hhm0ZZqZWfkgBDCem3lz9pmztHpZl0WVeF7y0+CVereVY/CGbh6D30t6KgZSom59Z9KRo9Vo8NPkhfLr5UxHP69z6c/+fCAgLMDGjq5KowwKN5bSAAhheuMcfGS9Jf9IV4YQTFwSk0Wpc7k6KvXBSIQ2AXph0zEcxOSmAweD61JynrGr3lOhK8PTcp/Ho9EfLwp6km4KcU5yDemPrKabdAzD4c/+T8AgieH1lJ/iH+eNO3h2ztY6AlIzCDFk9KVyezZ4be4xqhRNnlQQployzqy6tAlETozthrqfsomzUDK+J3/b+JlRKHRZoLKcGFL5i02Ox4coGm57HleGErzdXv+lSOSnSwYlBOiav3JOiFEixxZPy0+6f4B3sbZStIh2kKNGT8v66FiBqgrdXdxbY17GeFDkg5aXFL1nwujg/pHAD9V5e9rKI53Ju/RP1D2qE1jDxu11F1GGBxnIZQPlh1w82hbkpEU7+2PcHiJqYScC0Xa4U5iY1nHDiG2edEVJ2xO2wALauCynvr3sPNUI97Z7dY7rWPkhpOrGpiZ9R2yAlJnkkiJpg6/WtFmqFIcUwt0sZxtmwQ6+g/0oCHfMPAIO5l6gJ/ksQMoI7t3KKc1A7ojZG7R4lppw6LNBYLgMoekaPTzZ9YhWkVCc44eQKkHLu7jnUH1dfcjjhxIeU06lVZ9ZUlmMh5a01b5moNUBKar4PGo6vjTdWvWHmSDFXKx2kNBrfqMwYSs84G50UXZbzshBfbX8c2+MqG2dNy3HtnmUXllmoHQlrIKXvcoInZzcrT7E1X2seUuKz4st/PliWgRIgRc+EACC4m/8z3lz9JtrNbGfhZ9g1pI5Wwy/UT+CEXbmowwKN5TKAAlSGlLWxay3WVkc44cRBivkXTuWKg5PO8zrLAiecNNpM/LLnIeSX+EMpxtlrmddwO++2yUo9U4ReSxqg2SSCTI0QoEsHKVwkd4muhMqdFB2jQ4dZHdBtQbeyN22DcZZlVThxWy2wr+OMswAw5/Qcu9o9J++cAFETrI0lsHfAIABsu74N/Vb0U0y7J63gT9SJICBqggVnF4jY23mVW5yLumPrYuR/I8U+hDos0FguBSiAAVK+2v4VYpLNv6koEU7+3P8niJpg8rHJsj0PXzfv36z0/M4gR8FJhQzG2euZNXD4ltAbguOMs5maTAzaMKhSuyf4YDA8gjxwMKkb5JiCLHS65/WVr1Np98w4OQMqtQqnU0/zahmsuPiSoto9xbpiuz0pb65+E4/PeBx65qeyWvsgRYlhbs/Oaw6iJhh94EUR+zqvQmNC4Rvia80RauqwQGMpElAiIyPRtm1bBAYGWg0ofOkYHY7cOlLpY244qaxlF5ah34p+im/3OB5OOGnw0cYmigpzu555vZIn5b+E/6BSq6COVkOOKcgGKc+TkqnJRN2xdSsNyuMkJnGWVw2lG2dPp54GUZOyu57STEEGlAUpGYUZ8Av1Q5+lre2a3aN05Zfko/64+vh257fWPIw6LNBYigQUTrbcQeFrzuk5lcLc3HBSVc4Q5kYPTgxScuJs4IxA1Imog9dXvs7zJVQPSPlyWx/Uiahj9gSE0iGlajaReUjpt6If2kS24WXiSA8pQzYPAU3j7JjoMfAP80eWJgthh15BnQiCO3miDKROpbGHx8I72BspuSnWPIw6LNBYLg0o/DC34IPBioOTv/b/BaImmHRskmzPI0ZKhpTz985ThRNOSoSUs3fPwivYCz4hPpIPGDQvcZBiOPIvn3H27N3+UKkJpp0YYrGSg5QP1hOw7HKBfR0HKUO3DEVuca6Z2pHgQ8rhW4fLEoGNvy7SQcqRW0d4k+IdDykarQYNxjXAdzu/K//Y3fzfARDoGbPzaZxOhaWFaDi+Ib7a/pW1D6UOCzSWSwMKYICUfsv7gagJHp/xuBtOzIiDFCtvO8oqPpzcL7pP+3Kg0WbijVUNsD/RD7SNsyzriw839ESN0BoIPxxuppYOpJy7e47na5IeUhiWQbcFXdF+Zh1o9SqIyUnR6ocA8EB20RyBa3CscTYhO8Fiu4dlZ6LH4h7oOLujmZM70kEKYAgO+37X9w5v90SejIRHkEclbxxgON3z5mrXafdMPDoRXsFePBgULeqwQGO5PKAcSzmGmmE10Wh8I3yx7Qs3nFjQkVtHxAQGOURKg5MKGYyzesYfVzKE3sDkg5TJx9qWneiomN8x5/QcxdxJAQxpoJ9v/Vzyds+8M/NA1ATRSfthTeLs9cx3UCdCOe0ewNC6seRJ2Z9oONWy7fo2gX2lgZSTd046PMxNz+jRalorfLD+A5OVlhJnnUkarQaNJzQ26ZkSIeqwQGO5NKDwPSe5xbko1ZZSh5O/D/wNoiaYeFToF56eUvNT8dX2r6i1e5QLJ5w0mHC0NbUwt6ibUfAM8sSve1uBa/dkabLQdGJTSaYgK9mTkl6Yjnpj65X5JQBbpyArBVIsGWdZlkHXBU3x7HzDnRThfaWBFEcnzq6LHQSiJjiTesZspStAypTjU+AZ5GlhoKRFUYcFGstlAUWJhlhngBPA0POmFeamfDgxiFbi7K3cW2g4viH6LO0DHVMIe2PxTUu5kPLJpk9Qf1x9o8FqrgkpXCrw3htvldXaPwW5cq0wpPRZ2gd6Rge5IIVl1egyj6DXkpaCtRyk7LnxiWCt0lSkLULTiU0xdMtQW7egDgs0lksCihtO7BeNxFkOTp6Z+4yi4YSToyElvyQfHWd3xCNTHuG9QZuPxc8ozDDaly6k/BP1D+zxpOxP3A+iJlh4zhQAWA8pTSYQ5JfMF7gGx0FK53mdywcAMiyDp+Y8hZcWv1SW9joSNCBl3pl5vFrpIeVg0kEQNcGueAIxOSn7E4eDZQkAtWCtkjTj5Ax4BHkgPive1i2owwKN5XKAYi2c+NbwlR1ORh8YDaImmHB0gmzPI4c4SHltxWuyh7lduHfBqeCEEwcp3+zwgpzGWR2jQ78V/VA7ojYupV0yqq0KKYM2DDIz5ZsOpGy6ugl38++W/Zf1kFKs88Bj0x/Ai4tetPCzaB2kJOe8D8BDMad7OBMswzKYe3ouiJrwAiftn4JsvtaycRYAVl9eLUu7p//K/nhi1hNgWXVZrTCkAGHYcIUgJKaXiFr6KtGV4MFJD+KTTXbd+aEOCzSWSwGKtXDi5eeFpt83RbGu2NZLtChnhhNOUTejBMcG2CtnhRNORdos6JmeAAJQUCr0pm89pLCsH77e/ga8gr2w98ZeM7VVE2cB4GrGVcW0ewAgrSAN/0b9a3W7Z0z0E/AOJriSIZQXJB5SAAbFusF4dbly2j2AYUaLZ5Anui/sbqJ2JBwNKXfy7sgS5habHguiJlh6gft6ik+cjTjc12k8KbNPz4ZKrTJhhLZK1GGBxnIZQLGlrRMVHVX+V53l4VvWiw8n44+Ml3RvGmJZFgvPLZS83ePscFIhDU7cfhoNx0ufkzLhaGDZfJKfBWorQwrDMug4u6OiPClbrm2x2pMSlxUHnxAf/LW/PaSegqxET0rkqUgQNUH9cfXtmt2j9MTZoVuG4sFJD6JUX8r7qHVTkJUOKaX6Ujw85WF8uOFDe7eiDgs0lksAir2ek/ySfDy/8HnRU5CFxLIs/on6x2XgBDDkNUgd5uY6cGKQHGFu66+sB1ET/LW/FexJnFUSpFhjnGVYBi8segGtp7VGkTYfUk5BrngO5UBKiY6gxdQG6Le8n92zeypqlQcpyTnJ8Ar2MuPJsx5Spp94TbCWhuadmQeVWoXY9Fh7t6IOCzSW0wOKFIZYfuKsvZDiinDCScrEWVeDE05SQsrx28fhF+qHQRsGgWE1sDcWX4mQYsiEMO9JmXFyBoia4GDSwbKPSDMF2Vh8SLmYZi74rrwackHK5GPd4RFEcDUjqPx0z/e7vjdZS8s4229FP+SX5MMe4+y3O79Fg3ENUFBaYKZePKTMOvUmbucRKM04q9Vr0WJqC7y/7n0ptqMOCzSWUwOKlKd1pIAUPpyMOzLOpj2ULikg5cK9C2gwrgGenvu0S8EJJw5SAmeooGMOCFSbhpQb2TfQaHwjvLDoBZ5Hyr7ZPa2ntcaxlGMmaulByvKLnEG1KqTcvH8TAWEB+GbHN0aPlA9SNl/rDZZVAVghsK/0kJJTnIP64+rjy23tYHjZnIfsomzoGB0AwxteZdE1zibeT7TpTsrdfALfEC+ExgjBh3hIAcKQqSGYc/oNEbWO0aJzi0DUBBfTLkqxHXVYoLGcFlDkOErMh5SE7ASrrpVlWfwb9a9Lwwmn6KRovL/ufZToSqx+rKvDCSeNNhM373cFEACWPShQXRlSMgozEDgjEI9NfwxZmiyjWtshhXuD0zE6ZBdlG9XSM86yLItNVzdVavew7Ab0WdoHj0x5pOyvdWPJAykGmBiGpRdUDm/3/LHvD/iH+eNufiqMjbNHU46i9bTWimn36BgdHpv+mE1hbj/v6YraEQQ5xWMEagFrIGX+2bcU40nRMTq0ntYab695W6otqcMCjaVIQImMjETbtm0RGBhoElDkzDnRM/ryLAKxqk5wYqwrGVdE30mpLnBSIQ3yS15E3+WeonNS8kr88PTcx9BkQhPcyL5hptZ2SAGA73Z+p6h2z4V7F6p4Uuad8SgLKTN3agmQE1I+3xroUE9KSm4K/EL9yrJiAGsSZ2m2e6xNnM3UZMI/zB9/H3ihrNb+Kch8KcU4u+zCMhA1wbm756Takjos0FiKBBROpu6gODKEberxqaLaPRycjD0s5pfNdVSsK8aDkx4UFeZW/eDEIGvC3Iq02eixuC7qRBBcTFsgsLN97R6lelKGbRmG5JwbqBXuhc+2qiD1FGSlGmeHbRmGRuMbGd0tcj1IGX1gNPzD/JGpyYAUU5BNiYOUoIN0IEXP6BE4IxBvrn5Tym2pwwKN5VSA4kg4YVkWgzcNhkeQh0VIGRM9plrCCScxibPVFU44iYEUHaPDm6vfRI3QGjhyqzPkmoLsDJDSfHJzPDDxAeQUvw0ppyAbZBukbL72o8C+tkPKpbRLUKlViDwZaaLWNKR0mtPJRGAdPUhpNL4RTt45CUvG2ZziHNSOqI1Ru0fx9pUHUsIP9cXCcwQ0jLOrLq0CUROcTj0t5bbUYYHGchpAoRFfr2f0+GTTJ2YhpbrDCSdLkHIx7WI5nFT1PVQf8SHlTt6GSp/TMToMXD8QXsFe2Bm/E3JOQTYFKSExISZq6UDKF9u+AFETbLiyAfbE4luWdZCiju6E9EL5jLP9VjyBR6c/asIEy6kypGQUZlgI/aIDKVxqsZ7Ro0irgSlICY0JhW+IL1LzU432lQdSgDAABDHJQ0XUSiM9o0fbyLbov7K/1FtThwUayykAZd+VfdRm6/Ah5b+EihdqDk4iDkdI8jzOrqibUWg2qRkup18u/5gbTipLo83EmsvtAASAi8Xnw8nGq/w3YcdAyp28O5Ui1ivLsZCSeD8RNcNrYtjmYQCApJwkyaYgV5X1xtnUfBU2XR0polY8pOyK7w+iJthy7TuB2qqJs4WlhRi4fqBi2j0A8PX2r03mpBSWFqLBuAYYscNUu0w+SDly60uHelLWxq4FURMcv31c6q2pwwKN5RSAUvPfmrLDiUajMfs5PaNHaEwocotzAbjhxJy447Cl+lKcvHPSDScmpQHQC3NO+yA6aYoZOOHkGEgBgN0Ju/HM3GeotXv0jB7PL3weLae2RH5JPvJL8tF4QmPJpiCblnWQMvpAR0k9KVq9Fm0i26DXkmZlA/CsS5zNKMxQnCfFXJjbpGMD4BXshaScJAv7yutJkRtSGJbBE7OeQN/lfeXYnjos0FiKBpR9V/aBEIKuM7vaBScnTpzAjz/+iI4dO6Jdu3Z4/vnnMWDAgPLaK1eu4O23xR0H+37X9244EVC/Ff3gHeyNTnM6ueHEhPRMPnovrQuvYALPIA8zcMLJse0eWp6U8EOGu5RHbh0p/6w1ibOV5RzG2eknpkOlVuHCvXOwZwqy0iGlWPcbmk4kGLali4h9nRdSNl7dCKImlX6GJRR1WKCxFA0ocw7PASEEqZmpNsHJtWvX8Nprr6FZs2aYNm0a7t+vMGhmZ2dj8ODBmDFjBh566CEEBwcLXo86Wg2iJoLG2eqsi2kXUTu8NlRqFXot6SX57B5XkI7R4Z21/4NKTeAXKv3sHmeDlLN3+8ArmODP/e9W+ayrQkp2UTbqja2HL7Z9wau1D1KaTmxqIjeHLqRMPDoRU49PgUeQCnFZBFJNQa6QdZDScwlBqX60iH2tE8uy6Di7I3ov7S353mWiDgs0luIApbi4GMuWLUOXLl3g6ekJQgjq1auHxx9/3Co4Wb9+PWrWrIkBAwZUAhO+9Ho92rVrB0IIjh+33DPk4CQ0JlSyWHxX08W0i2g4viGemvMUtl7fKvnsHlcQ33Oy6tLicuPsyTtzBB7pWEh5bYWp2SbSQ0qRtghtI9vgqTl1Uar3grnTPXXH1sX1zOtQinH2i22BWHPZduPsD7t+QK3wWkgrSDOqtR1S5p6Za6F2JBwNKVczriK/JB9NJjTB0C1DIdUU5KoSDylafTAAgozCX0XsK15br28FURPEJEvjfTQh6rBAYykKUBITE9GqVSsQQuDh4WEWSITgZN26dfDw8MBrr70GrdacM96giIgI1KlTB3q93mwNByfhhwwzOviJs2tj14r957m0+HDCtXW4WPx5Z+ZRvjplSMfo8MH6Dyp5TjTaTPywqznuF/mDM86al+MgxXxInLSQ8sOuH+AX6ocrGRdg6XQPdzxdq9cq4k4KZ5xlWRXO3RV6Y6wMKVczrsIzyNNMqKPtkMJp2YVlimn3TDg6AR5BHui9xPrEWbkgJVPzFxpPkK7dw7Isnpn7DHos7iHJfmZEHRZoLMUASlpaGpo3bw4vLy9RYGIOTi5cuABfX180atQIWVnGtzurau3atfjf//5n9vNBB4NA1ARhh8IqfVzP6PHFti+wO2G3mH+eS8sUnHCKz4ovz2uomttQfcSHE8MRWr4MxtmknBo4cstUFgZfjjPO5hTnYMjmIbK1e3Yn7AZRE0w7Ma3sI5aPILMsi/fXva+Ydg/AYP2VXla1e1iW4LUVT6LVtFYWRkXYDiml+lJ0mNVBEZ6U/JJ8NBzfEG+sesPqxNmKfZXvSdkRtwNETXDgptDcLbtEHRZoLMUAyqhRo8pbOmKWv79/FThhWRZdu3YFIQSzZ88W87RYv3495s+fb/Jz5uDEWAzL4MTtE6Kez9VkCU74Wn9lPfqv7F8t2z2W4YSTBkM2NxWVOOsoSInPikfTiU1l8aSk5qei0fhG6Lein9HxZvGJs0qAFGs9KVuvG94YN1/7QbDW2Y2zYYfC4BPig1u5t2yKxa/YV7mQwrIsnp3/LLov7C73H2DUYYHGUgSgaDQa1K5dWzScEELw888/V9nnwIED5Z4VS8eGxUgsnACGqZXV0TgrFk4AcYmzrihxcGKQNbH4zmyc1TNb0HNJTzSb1AwZhRkmal0TUoq0RWgxtQX6rWhedqxYminIBpmHFIN3x7h2JOSElNzicNQbWw/f7vy2/LMcpHy88WNYSpw1va98kOIfRpCc86OIfauKuwto7fw2G0QdFmgsRQDKnj17rIITQgj69q161vzzzz8HIQQfffSR0FNaVPDB4HJDrBgJJc66oi6lXRINJ5yqG6RYAyeclA4pVdsS1kOKOtoTHkEeOJh00EKtOEhZeWkllGKcHbblMby5moBll5usGRM9Bt7B3ojLugYppyBXqGpOykcbP0KmJtNM7UjIBSnqaAK/UG+j1Fjg8K3DiMuK49XSh5SU3F8BEDDsvyL25V0Ry6Lbgm54bv5zjmhfU4cFGksRgLJu3TqrAaVz585V9unWrZtV7R1TshZOOFUnSLEFTjhxkFJxvNI1pWN0GLRhkFVwwkmjzcRrK+pje5wvlGScNW92Fg8pUTf3QKUmCDroCXtj8U/eOcl7Y1AGpJToPgXggbySyl+rxPuJ8A3xxZ/7/+Sq4QhI4ZSSm+Kwdk92URZqR/jgp90E5hJn80vy8fOenxXT7mHYEAzaYF27Z3/ifhA1wa74XaIfY4eowwKNpQhA2bVrl9WA0qdPnyr7tGnTBoQQbN8u9MJnUExMDC5dulT+37bCCScOUj7d/KlNj3cG2QMnnA4lH8LtvNsSX5lyxMGJZ5Cn1XDCiWULAfQCw/ojLkvoKKvjjLMAsOT8EpvaPemF6Xhg4gPotaQn9MxbkGJ2DwBsubYFX277UhHtHoBB4v330HB85XbPm6vfRPPJzctn1nC1joKU/63+n8M8KX/t/wv+Yf5IL+SuYUqVmlN3TplMnKXd7rHGk/LS4pfQeV5nR5n/qcMCjaUIQMnLy0ONGjVEw4lKpcKUKVOq7PPyyy9bBSiDBg1CSYnhlnVITAiImpgZnCZeekYPPWM4suxqKapSwAlfmZpMfL/re5dq90gBJxXSYPqJxxAQppwwt5ziHJuMswzL4NXlr6LR+EZlt/2ln4KsVE/KzvidIGqCdbGmnsMxkOIo42xGYQYCwgLw+77fYWssvjNAysGkgyBqgm3Xt4l4fklEHRZoLEUACgCMGDFC9BFjX19fk+Fr06ZNAyEEQUFBgs+3fPny8tM7UsEJX5fTL6N2RG2XafdwcCJlfP3RlKMuFeYmLZwYxPekKAVSbDHORhyOAFETo2P51QNSmkyojT5L+1j4S9t1IOWXPb+gZnhNnu9FHKT0XtobOkYLJUHKtusfmq3ptaQXOs3p5MjoBOqwQGMpBlBu3bqFBg0aiDpqPG6cqYAjID8/H48++iiaNm2KjAxTpwMM2rRpE77//nsA8sAJUDnMzdkhhQ8nVaO07RMX5ubskCIHnHBSOqRUPYlTGVL2Je6DR5AHz39hXCstpPyx7w8oxZPSaU59EDXBidtqgX0dBylc0rPp2pGwFVJSclPgF+qHf6L+MVFrHlIOJR/ClONTeLX0IWVX/KdgWAKg6vftUPIhEDXBpqubRDynZKIOCzSWYgAFAC5duoQmTZpApVJBpVJVghLu7so///xjkVqvXbuGRx99FO3bt8eRI5WHNsXGxuLrr79GaKjhBzQ0JhRETRB8UHgOjy1yBUi5nH5ZNjjhxEFKvxX9nDLMTU444cRBytAtXlCScfatNW+VT/muLAOkJOX4oMG42nhl2SvlrU/TtdJAyoYrG5Cck1z2X3Qh5VrmNXgHe+ObHW0AeJg93VMhx0AK931gWRZ38++aqB0JWyBl+JbhaDi+IfJK8szUmocUTpuvbVZMuwcIw654gtCYyvN1Xln2CjrM6mCU3yO7qMMCjaUoQAGA+/fvY/LkyWjRokU5nHh7e+PTTz/FyZMnRe1RUFCACRMmoEuXLggMDETXrl3Ru3dv/P7770hMTAQgP5xw4iDlwUkPQqO1L5vF0XIEnHCKTorG4vOLZX0OOaRjdPhww4eywgknjTYTWn0PAAEo0u4VqHascfZG9o0q7Z4ibS6emlMbLaYSZGmERkJIBymAwf8VEhNCrd3Dsix6LO6BR6c/iiJtIUr1n+LtNdJMQa5ca7txdvyR8ZK1e2LTCTyCVJh+wtIdPsuQklaQhprhNRUV5jb28KuVPCnHUo5Z8BPJKuqwQGMpDlA4sSyLW7dugRCCzExT5/htl6PghJOe0eNW7i0AzhP37kg4MdaKiyucot3Dh5P1V9Y76Fk1OHe3M5pOVCkmJ4VlWXSZ16WSJ4VlWXy6+VPUCK2B8/deghxTkC1Byrbr26h6UhadWwSiJtifaPhaSjUF2XQtfU/KgFWt0GoaQal+iohrsNzuUXLi7GsrXkO7me0cffcEUAAs0FiKBRTAcLqHEIK8PFO3DG1T2KEwEDVB0EFhI63U0mg16L20t+LbPTThJDknGf5h/ooPc6MDJwYpPcwtvTAdM07OAFETrLi4AnJMQTZImcbZjMIM1B9XH4M3Da5U6aqQwnkyVl9+vazWvgGDSoYUw79T6Ki5LKIOCzRWtQIUmnACOEeYGwcnHWd3dDiccOI8KUqFFJpwwknJkNJyakt4Bnli5H8jebV0IWX4luFgWS0cASmfbv4U9cfVNxnjz4eU06lCd3AdCymfb/3cTO1ImIMUlmXRdUFXPDP3GTCsHlJNQT6UfAg9l/Qsm2KtDOPsEzOboOVUAj1jXeKsRKIOCzRWtQEU2nDCScmQcjn9MhqNb0QVTjgpFVKUACecOEhpMVWFUr0QTDgGUg4mHYRHkAc6zu4IrV5rVEsPUmaf5tKl5TXOHripAlETLDxnHhIYVoe1sT3BsioAQiF8joGULE0WSvWlhn9JFTOzeUjZeHVjpVaWFFOQyz9b1g5PyU2hfifl7N2zIGqC5RffR04xwfyzA0TsK6mowwKNVS0AJfxQeFkPUW3XPlKJgxTPIE9czbhK+3IAKAtOOEUnReP1la8bpW/Sk47R4aONHykCTjhptJm4nvkcgADQPt2j0fqi87xANJvYDGkFaWBYBjnFOUa1dCCF0874nbK1ezTafLSeVgsvLSZg2VUC+zIAhmHDFZVi2j0AcCb1DB6f8biodo9Wr0XgjEC8uvxVE7XSQIqe0aP9zPbUw9zeWvMWHp3+KHSMDovPv2v3FGQbRB0WaCyXBxSlwQknPaM3k0XgeCkRToyVkJ1A9U6KEuGkQhpotC/hf6s9qeWkMGwR3lnbBP5hBOfuzgQA/Lr3V0mnINsLKVczrsrqSRm1exT8Qv0Ql/U/iI3F/2JboNN6UuacngOVWoXz986b2VcaSKGdOHvh3gUQNal0ytDaWHwJRB0WaCyXBhSlwomx5p+dT63d4wxwUqovRcupLamFufHhhMLxQlGiHeb2+77foVKrsPX6M7Ancda0lG+cPX77OFRqFSYcnQB7YvEtSzmQUlhK0HRibXyy6ROBfZ0fUt5b9x5aTWtVpWXpYEihDgs0lssCChetPSZ6jK1P7xCxLIshm4dQCXPjw4npkezKEa3EWWeAE060IGXB2QUgaoLJxyZDilh801IupBTritE2si2enf8sz79hG6RsvDpS4BocCyntZrYz6UkJiekGnxCCpByhBG5pIaXe2Ho4lHwIjjLOxqbHgqgJFpxdYLIy/FBfTDtBYCpxVmJRhwUaS5GAEhkZibZt2yIwMNAmQHEWOOFEI3E2Nj3WaeCEk6MhxZnghBMfUpJzhMLR7IeUAzcPwCvYC19v/5qX8WMaUv4+8LeJfelBSo/FPcr8TfYZZ//a/xe8g70Rmx5rVGsdpPx94EnczlOOcTa9MB0X0y5WqUrNT0VAWAB+2v1UWa00U5Aras1DCpdSy7IsinVFkBtS3l/3BB6Z8ki5gdi0wgAQnLht6hSUZKIOCzSWIgGFky13UJwNTjjxIWVn/E5Zn8sZ4YRTdFI0Gk9ojHN3z8n6PM4IJ5w02kwsOd8Gchtnr2VeQ92xddF3eV8TJ3YqQ8qt3FvQMToApsIK6UAKF7Z1O++2zXdSzt4dC88gTwuzvMRDCmeczdSosPX6TyJqHWOcLdYVY8jmIeXtniGbh6DBuAbIKb4PqaYgV621HIv/856fZc9JuZg2ouzuyVuCtafujJC73UMdFmgslwKUsYfHOiWccNIzeoyJHiOrF8SZ4YQTd6pHx+hQrCuWfH89o3daOKmQBkAvLLvgI0tOSqbGD62mPYB2M9uZmcUDmIrFj0mOwXPzn1NMu0ej1aD55OY2tXtK9R/gydkEnea0MAFofFkHKUEHn1KUJyVTk1nuSVkXuw5ETTDr1Cxe7Ug4GlIcEeb29pq30WpaPWj1BNYmzsog6rBAY7kMoDg7nBgrJTcFm69tlnRPDk6enP2k08IJX8O2DJM8J8U14MQghi3AK8vqSR7mptFmo/vCumg0nuDmfaEBeK7rSVFH/wuvYBXO3/OA1FOQlWqc9Q72xmPTHyu/G1ZROxKuBClc7smS80tgayy+xKIOCzSWSwAKByf/RlFJ+JNFv+39TdIwN1eDE0D6MDc+nKyNFfJvOIekTpzV6rV4feXr8A/zx4nbz0GKWPzKcg5IOZ16Gp5Bnvg3ajSknoIMKBNS5pyeA6ImqDe2nonvG11ICTsUBimNswNWDTACMesg5bn5BCW60YK1Vog6LNBYTg8o446MK4cTZxnEJ0ZSJs7Gpsei8YTGLgUnnKSCFFeEE058SDmWMlOg2jykMCyDTzZ9Au9gb+xO2A0pYvFfXvayiVp6kFIzvCYup1+GJeNskbYIbSLboPO8zmWtHemmIPPFsDp8vjUQC8/RN85qtAQPTa6Hfsv7YdqJaWZea+lAyuX0y7wWm/2QcurOKd4cKb7EQ0qJzlCbXfSbYK1IUYcFGsupAcVV4YSTFJDiynDCiYMUy6PezcuV4YSTRpuJr7c3Q3qhP2wxzrIsix//+xEqtcroZ9E+SDGfpEwHUrj5OXpGb/ZOyg+7foBfqJ9RRog8kMIZZwEPXE6PEFErD6QEHXwW3sEECdkVb87rr6y3ewqylMbZI7eO4H+r/2d3u+e1Fa+hTWQbE8erAWsgJad4NJpPlqzdQx0WaCynBRQOTv6J+scl4YSTntFj2JZh2HR1k9WPrQ5wwulqxtXyUxnW/DzoGT0+3vixS8NJhQzG2dT8Gjhq5Z0UbpZVhTmSL9shBTCYnr/Y9oVi2j2Awd9kqt2zL3EfiJpg2olpJh4lH6Rsu96HWrvndt5t+If549e93LHiedAxOnSc3dGuKcgVtcoJczuWMkLExGIqnhTqsEBjOSWgjD8yvlrAibFYlsXZu2dF1VYnOOFrV/wuvLn6TVHtnuoFJ5w0+HzrA1aFuc094y1i0KbtkJKQneAUnpScYk80n9wAfZb2KYfhqpKv3UPLk/Lxxo/ReEJj5JXkwtZYfMtSDqT0XU7QfmYTM3dP+HI4pFCHBRrL6QCFg5PRB0ZXKzgBgJWXVooKc+PgpMOsDtUKTgDxYW7VE04MsiZxdv2VlVCpCb7f5QmWjRLY2X5PipIh5eONj6BOBEFK7lyBfV0HUo7fPg6iJph/dn7ZR2yf3WNZ0kPKwPUDYY0n5fCtQyBqgvVXCKSagswp7NAr8A0hSMj+XsS+JkUdFmgseTcnZBshJMXX1xdNmzbFJ598gtTUVNHfEWNAqc5wAohLnL2ScaXawgknIUjhwwmtGUi0JQZS9iXug0+IDz7a+AEYtg/kmoJsClI0Wo1RLV1IGbHDcOt/+cXnIPUUZFsgpc9SApYVOuJtH6QwLINn5z+LTnM6Gd1RqAop7659F3fz75rYl97pnktpl3i1wpDSa0kvPDn7STDsP2W10kJK4n3Dv41lx4jYt4qowwKNJTeg/EQI6ZqcnIyjR4+iW7du6Natm+jvCB9QJhydUK3hhJMlSHHDSYU4SBm2ZVilj7vhpEIabSb6Lq+HtbG+MDbO7k/cjxqhNdB/Zf+ymG95piCbgpSpx6eaqaUDKRuvbESdiDp4f937YFktpJ6CbJB1kFKkNdQWlpqeEcOrhq2QsvDcQhA1QUyyKVN11cRZAEgrSMP1zOsmakfC0ZACGIL4/tr/l2C7h/MWGbKnpJmCbPKK2VB8ttWmdg91WKCxHPVEAICtW7dCpVJBq7WUulghDlBC9oaAqAn+PvB3tYYTThykvLfuvfKvhxtOqiomOQaJ9xPL/9sNJ1XFsoUAeoFl/ZF43/DGyMFJvxX9jJJ6HQMpnNbGrqXe7tExOnRf2B0PT3kYG69uxIgdIySdglxZ1hlnb+W+jwcmytPuyS4iaDi+Jj7e+LGF2qqQ8v669xXV7jl796xgmBvLsnhm7jPouqAr7/1FPkix0ZNCHRZoLIcBSnZ2NgYOHIju3buL/o5wgEL+cMOJsfSMvnyA1YnbJ9xwYkE5xTn4cfePGLRhkBtOTEqDeWceR0AYweRj35qBE06OgZT8knw8MPEB6p6Uf6L+gWeQJ46mHMXKSyslnYJsWsrwpHy9vR1qRxDcK5gsUKt8T4pQ4iwX338w6aCJfRUDKdRhgcaS/wkIGefv7w9CCLp27YqsLPNzZkpKSpCXl1e+QneFghCCbzZ+44YTM9oZvxMqtQoPTX6oPMPBrco6fOswPIM8QdQEyy4so305ipRGm4mn5tQEURM8O7+NwIwjx7V7aBpno5NCoFKrKg0CtDUW35kg5XTqaajUKkw70R32xOIrFVK0+lJwkKLVj8Nj0x/Daytes7CvfJBSJ4IgNd/UlO8qog4LNJYtwKEmhEBgdebVN4yLi8PevXvRvXt39O/f3yxsjBkzpvI+zQz/+8TkJ9x3BkzoSsYVNBrfCHUj6koai+9K4sLuVGoVfEJ8JJ/d4yo6cPMA/EL8UH+cl+Sze6SAlPYz2zsUUjI1A9BsEkHPJU9UOXLKQcove36BpcTZqpIXUmpHEGRpZgvsaxlSGJZBl3ld0HF2R+iYUtgzu6fj7I5mXpPoQYohEp+r/QtzzxAQNcH5e+cF9pUHUu7mqwGIio6gDgs0li2A0pAQ0kZg+Rk9DgBw+/ZtEEJw7Ngxk98B4zsoXH2D4AZOPX1XDl3JuIImE5qgw6wOuJd/T7JYfFeScRJv1M2o8tM9wjkH1UcHbh4ob+tkF91G76V1MXC9J2xJnDUv+yDl1eWvmvn9lx5SWJbFgFWvo8E4H9zJ84Ip4+y62HWIy4or+y9lQMqVjLcBeNh1umfumbkgaoIjt47wam2DFC5+nmVZE3d36RlnAUNeUqYmA80m1cRHGwmknIJskHhIESnqsEBjOeqJAAApKSkghCA6OlrUd4TzoJy4cQKNxjdCx9kdkaUx3yKqLuLDCT+a+5NNn6DxhMbIL8mnfIX0ZW5MQNTNKESejKR4ZcoSByevLn+1vK2j0WaiRNcDQABKdPsEdnCscTYlN0X2OykzTs4AURNsu74JQomzeSV5GHt4rCLaPQADHTMEH2+0rd2TqclE/XH1MXTLUBO1tkEKYPh6Kqndk6nJRK3wWmg1rRU8gzxxI3tEWa2iIYU6LNBY8m1MyLOEkO8IIZ2Sk5MRFRWFF154Aa1bt0ZJSYmo7wj/mHFseizeWfsOCkoLRD3WVWUKTjjpGT1uZN8AYF3cu6uJO+UkdEdp49WN1brdYwpOKqRBbPqzeGiySnTirNyQwrIsui/sLqsn5XTqafiE+OD7XVygluUjyLvid7mMJ2X4luGoO7auia8tV2t7u0dpnpQdcTtA1AQPTnrQ7tk9liUZpFCHBRpLTkDpQAiJIoRk+/r6okWLFvj6669x584d0d8Rc1H3cVlx1bLdw8HJE7OesGiILdGV4I1Vb1TLdo9YOLmTdwf+Yf6CibOuKstwYpA1ibOuYJzNLsrGI1MeQZd5XVCi4/8RZX0svrNBSnSSwYsx94yllFzXgZTf9/0OvxA/+If52zW7x4GQQh0WaCxHPZFNMgUoLMui05xO1c6TcjXjqig4AcQlzrqixMIJJ7Gx+K4mMXDCqbpACsNuRf+V/VF/XH0k5ySbqBUPKUoJc+Mg5fhttcXaYp0GgTPqoPtCAoZdLHAN9kOK6WwVx0HKnbw78Av1w+gDoxGTHIPn5j9X9poqPhafAqRQhwUay+kABaiYNVNdIMUaOOFU3SCFDyeWJ5FWVnWDFM4oLAZOOHGQ0nyySjGelGuZ1/DQ5IfwX4IpCLEeUkJjPKFSq8zsx0kYUiYe5d7YlGGcXXbhRTCsCsAKs3X/Rv0L72BvXMl4F1JOQTaoMqRkajLLf8+qDlx0DKR8ue1LNBjXALnFuYbPlrXD7xXcU/KdFOqwQGM5JaAA1QdSbIETTnxIuZh2UaYrpC9b4YRTdFI0+iztg7ySqj9nriRb4ISTRpuJy+ldAARAKad7uH8Dy7ImvnfiIWVf4i54BBH8G+UBe2PxOe1P3K+Ido8BJoZhV7wKKy99U+WzVzOuwjvYG6MPjIbUU5ArVNU4ezn9Mp6Y9YTD2z2x6QQeQSpMPlY5gI5hGTw992mLibPm93UIpFCHBRrLaQEFMEBKi6kteEfiXEv2wAknPaPHuth1LmuatRdOOHFfn+ScZJe8k2IPnFRIgxJdD3y4wVMxOSkAMCZ6jM3tntt5t9FwfEP0Xf4y9MxbkGJ2T0J2AjyDPBXjSTEkwz5exZPCsAxeXPQiHpv+GO9nwjGQQsuT8tqKVmg9jaBUP6HKZ4USZy1fg+yQQh0WaCynBhQA5XHvekaPnOIcW59KceLDiWlXvfVadWmVS7V79Iwen27+1G444aRjdAicEehyYW7SwIlBfE+KUiDFVk9Kqb4U3RZ0w0OTHyq7Cyv9FGSlQIop4+z8s/NB1AQHbh4wroYrQsruhN0gaoKNV98qq51SpUbBkEIdFmgspwcUTiP/G+ky7R454AQAhm4Z6jJhblLDCSfuzdxVIEVKOOHkKpDy/a7v4R3sjRO3TxjVuj6kzDszHPXG1sOQzUPMVcORkBI4IxA6RmeidiSkgBQdo0P7me3x4qIXwbIMhBJn60TUwb7EfXCMcVZoXwAKgAUay2UAJTY9tjzMzZkhxfILrX0yF17mbJILTji5CqTwDcBSwQknPqTcyF4lUO1YSBm1e5SJ2sqQsuDsAhA1waxTpt74pIWUZ+c/W+aRUYZx9te9T+CVZQSNJ9QWeK10DKRkFGbg1J1TFmpHwl5I4RJyT6ee5tWah5T7RfcNVSyLEl0x5IOU8QDM/dsriTos0FguAyiA80OKnHDCiQ8pW69vleU55BQfTlZdEnpjtF1RN6NQf1x9HL99XLbnkFOOOJ2k0WZizulAsKw/lGKcvXn/Znnbt6rvygApR255wzvYC19t/8rCvtJBCjdWIa0gTRF3UtbFrgFREyw5T7Aj7meBfR1nnNXqtfhq+1eSt3vySvLQeEJjDN402ESt5Vj8f6L+cUBOiihRhwUay6UABaiAlKCDQbY+LRVZHoomrfSMHn/t/wt38+/K+jxSy1Fwwok7GcKwjFFwl7Ll2KPTGgC9sOGKr2JyUgDg5J2T6L6we5XfpZTcG2g8wQcvLlKhVL9NYF/pIKVYV4xW01pRb/dkajLRaHwjvLv2HYQfekbSKcgVtbZBSpYmSxZPyp/7/0SN0BpIyU0xU2seUmKSYxAQFqAESKEOCzSWywEKANzKvVV+xt4ZTq84Ek6MlVaQhu1xQi++9KVn9BiyeYjD4ISv73Z+5zQ5KTRyXVi2EK8ur6/4MDeNVoOn5z6Nh6c8jPTCvpBjCrLSPSkfbfwI9cfVx72Ce3bF4gvXKsM4m5xD4BvihX+i/hGoVTykUIcFGkuRgBIZGYm2bdsiMDDQJkDhtD9xP7ou6Krodg9NOAGA0QdGKz7MjSacAM4T5kbzOpWeOJtWkIZBGwbBP8wf5++dhxxTkA1SLqRsvb4VRE2w/GLFtGOlQ0pqfqqJ2pEQCykfbmiDphMJCkrFwIQwpPwb9S/kNc6aFXVYoLEUCSicbL2DwknpYW7XMq+h6cSm1OAEUH7iLG044aR0SIlOioZ/mD9VYy8fUo6mzBSodiyktJzaEkRNsC6W/+ZOD1JqhNbA2btn4Sjj7P2i+3hg4gN4Y9UbVe4qc5Ay7YTlxNmyajgKUiIOR5i5Ay4OUk7cPgGiJlhwtm9ZrX0DBs/fO89r9TocUqjDAo3l0oACKBdSlAAnnJQKKXw4WXlpJe3LKYeUCUerhjzRlBLghJNGm4nPtj6A23k1oBTj7KzTs0DUxMxtfjqQcq/gHgCDv8kRd1KGbemB2hG1cSfP9LBWltUDGAbAA9czxwvs6zjjLGCYPGxtu4dlWTy/8Hk8OftJ6BkdpJqCDABn757Fu2vfdXS7hzos0FguDyhABaT0X9nfrn2kkpLghJOe0WPolqGVbv/SlNLghNOltEvlpzKUICXBSYUMxtmMQn8cvy10G15eSDl71wcBYX54a81b0Gg1+H7X95JPQTYv4Vj873Z+J3u7Z9v1nmV3Er4UqGWw50ZfRbV79IweT8992mpPyoqLK0DUBPsT9/NqpYEUx4W5VRJ1WKCxqgWgAAZIic+Kt3sfe8XBSbuZ7RQDJ8ZiWRaX0i5Re36lwglf0UnReGvNW1ShQJlwwkmDb3Y8SDXM7VZuPB6Y6Isu81QoLN2KxPuJaDqxqaRTkJXuScnUZKLJhCZ4feWDYFkVbEmctVANJRpn80vy8cDEB/DeuvdM1DotpFCHBRqr2gBK+Z4lefh86+dU2j3OACcAsOHKBmphbtydHCXDCUA/zO1g0kEFw4lBNBNnc4tz8cSsJ9Bi6iNIK+gDe2Pxq0r5kMKyLN5d+y4ajGuAewV3YE8svoVqKA1Sft37K2qE1sCt3Ftm9pUWUt5Z+w4c4EmhDgs0VrUDlOuZ16mEuTkLnAD0EmedBU440YIUZ4ATTjQgpVRfij5L+6Du2Lq4mnEV5oyz7We2R35JvtG+dCFlzuk5kMo4y7U51l9ZX/YR62Pxn19IoGeWCVyD4xJnB6wagOScZDO1I3Etk8Ar2AMhMSEC+0oHKRUpuLZCymSBWgAKgAUaq9oBCuD4xNnrmdedBk44ORpSnA1OOHGQ8vHGjx3yfBycvLzsZcXDCSeNNhMvL6uHxed9ILdxlmVZDN0yFN7B3jiYdJBXWxVSwg+FmzklQgdSDiYdhFavLfsv+yDldt5t1ImoY+Ln0jpIKSj9BIAHirSLBK7BscbZ7KJsxGXFVa5kGbyy7GG0mkZQrJsmYl/pjLOl+lKoo9VWtnsAIByAqLRq6rBAY1VLQAEqQ4rUc0r4ckY44cRBSv+V/WUNvOPDyYqLQscclafopOiyv9TllTPCCSeGLQDQC0AAUnLXC1TbDilBB4NA1MTMz1HVxFnAkA+ilHYPABy+dRjf7vzW5nYPy67FK8tewYOTHiyfKVNZ4iEFYHA3/wM8MkU57R4A+Hjjx1XaPZuubgJRE2y7PqCsVpopyBW15iHlwr0LNnpSRIs6LNBY1RZQAAOkzDwllNdgu/hwklaQJtvzyCk9oy8HuILSAln2d2Y44auwtBB/7v9TFnhwZjipkAbLL7aVLcxt6QVvEDVBaIylEfaVIUWj1eDBSQ8qypOy6tIquzwpM0+pQNQEe27ssVBr2xRkpUCKsSdFo9XgkSmPlP0xxUCqKchVa4XD3GSCFOqwQGNVa0Dha9WlVZK2e1wBTvi6ef8mmkxoImm7h2EZDNsyzCXgBDDMf5EjzM014MQguRJn/0vYCu9gFYZv8QTL7hPYVzgWv0LOZZy9lnkZNUI9MWKHClJPQVYypHyz4xv4hPjwTmpKMwXZdK04SLFuCrKgqMMCjeUGFAA5xTloMqGJZJ4UV4MTQPowN1eDE05SJ87GJMe4DJxwkhpSjtw6ghqhNTBg1evQ6l+BVLN7KkQXUn7a/RPEeFJKdCXoNKcT2kS2gUY7EFJPQeYgxT+MIL1Q6M6z4yDl8RmPwyvIC3/t/8tE7Ug4GlIOJR/Cn/v/LGuLW2OctSjqsEBjuQGlTFIlzl7PvI4HJj7gUnDCSSpIcVU44cSHFB2js3kfPpxotBoJr5C+OEgZsMoT9hhnL9y7gDoRddBjcY8ygLMvFr/nkp5mpnzTgZQ1l9fwMoksQ8qo3aPgE+JTNmtI2inInBhWhwv3/ldWq4xY/AGrBqD55OYoLC1EdlG2idqRcDSkcIq6GSVVu4c6LNBYbkDhyV5IcWU44cRBSr2x9ZBTnGP1410dTjhFJ0Vj/BGhyHDzcmU44aTRZqKw9CUAAdDqDwhUV4WU+Kx4NJnQBM/MfQZ5JfzXCNshhVNaQZpi7qQAhknMk49NNtvu2Z2wG0RNMPkY/8iqPJACMGDYofhyG/12z38JBERNsDZ2LRacXYCmE5tKMgVZCkjJKc5B3bF1pfKkUIcFGkuRgCLVNGNbFJsei9dXvm7G/W5eHJy0jWzrsnDCSc/ocT3zOgBYdbqHDydKidR3hHbE7bCqPVMd4KRCGsRnPYeWU1VW5aTczluHR6Y8gjaRbZBRmGGi1j5I6b20t6LaPXtu7DHrSUkvTEeTCU3w6vJXwbCM0SPlu5NC25NSpNWg1bTa6L2UgGXnWp04a15KSJytIuqwQGMpElA4OfoOirGScpJE3UmpTnDCl1avxcD1A0W1e6ornKQVpCEgLEB0qBoHJ32W9qkGcGKQtWFumZqX0DZShYenNEFKboqFWvunICsJUkwZZ1nWE6+teAqNxjcqH0BYVa4JKX/u/xM+IT6Iy/oYhrcZ62PxzUtxkEIdFmgsN6CYEcuy6DKvi2C7p7rCCSA+zK26wgknsYmz3AmA6gQnnMRCSn5JPjrPexqNxnsjLssXck5BVjqksKwW0048BaIm2BlvbBA1lvyQcih5tMC+0kHK5fTL8Ar2QtDBIJg73VN1Fg9AE1I6zemE1PxU2GicpQ4LNJYbUCxIKHE2Liuu2sIJJyFIqe5wwkkIUqoznHDiIKXJBBU02qoZHhqtBj2X9ETtiNo4d/cY5JyCzIeUZpOaYfO1zSZq6UGKOlqN8/fOwyfEBz/segxyTEG2BlLmn+0OHaOCI4yzDMvg+YXPo01kG5ToSso+WjUWnxtjULUNTQdSuPZbpibT6E6K5dTbsvwp6rBAY7kBRUDmIMUNJxXiQ8qZ1DPlH3fDSWVF3YzC8wufr3LSwA0nFdJoM3EmtTOAAPBP92i0GvRa0gsBYQE4fOtw2UflmYJsDCmFpYUADG90VcMK6UBKXkkeHp3+KB6d/ig02jxIPQXZIOuMs8AwRCepsPLSNyJqbYeUOafngKgJYpKNT39VTZyNy4rDU3OeUky7h2VZPL/weV67JxjAUYs7qqPVgAJggcZyA4oIxabHovnk5tifaHhh48OJ+b5v9ZKe0WP5xeXlf61wcKJSq9xwwhP39UnNT0WRtsgNJyalgY7pgc+2euFQ8vRKcHIo+ZBRrWMgBQDGHRmniHYPy7IYuH4gAsIC4BXsJfkU5MqyDlK+2dFGVk/KvYLJqBNRB8O3DDdTa/sUZMuSK3HW8u/83fy78A/zBxQACzSWG1BEiot75/rSbjgxr03XNqHH4h5uODEjPaNHh1kd0GVeF/iH+ot6oapuKtJmlXtSnprzmBk4Ka+Go9o9SvCkzDw1E0RNsC52nc2Js85qnB20gaDh+JrI0mRZqHUdSPli2xeoP64+oABYoLHcgGKF4rLiEBAWAN8QX8Smx9K+HEWKYRkETg8EURN8u/Nb2pejWE07Pg1ETVB/XH2BF9vqq0zNLdQb6wWiJphxcqRAdfWAlDOpE+ET4lPpd0vJkLI29juBfcVDyn8JO0HUBMsvEtgai99qWivexGh+7UjQgJQei3uYjbSITY+FR5AHph6fCigAFmgsN6CIVFxWHJpNaoZWU1uh4fiGksXiu5IYlsHwLcNB1ATdF3aXLBbf1cQdO3xqzlOyzO5xBWm0GvRe2hv+of54em5NBIQRXMtcJvAox0KKaQCXD1Jyi/+HVtMInpnbmmcONWjFxRV4cvaTZW92wrH4FZIPUn7e0x5XMqQxzmq0GrSY2gJ9lvYBy34FW2PxK/xLpmpHwtGQYilHqv/K/mg9rTVK9aWAAmCBxnIDighxcNImsg3uFdyTLBbflcTBCdfW4cfib7m2hfblKUaVMxE0iE6KRp2IOiYMf9VXHJwEhAUgJjkGGm0mph5/FAzrD3ti8avKdkhJvJ9YDpVV32SkhxSWZfHO2rdQJ8IbN+97wZRxlhurkKXJUsSdFM44W1iqwn8Jv4qoNQ8pv+/7Hb4hvmXDAG2PxQcMLdafdv+kmHaPKe1P3A+iJlh/ZT33IeqwQGO5AUVAxnDCiYOUP/f/Se3alCJjOOGkZ/T4be9vSM5Jpnh1ypExnHDiRgawLFvlL+PqJmM44X0GQC/sive1KnFWbuPshXsX0HNJT9nbPdNOGFqCm66ug6XTPaX6UrSNbKuYdg/AYMLRznZ5Ui6mXYRXsBdCY0KNam2DlPtF9xXnSeGLYRl0mtMJ3RZ048MvdVigsdyAYkHm4ITTzfs3y/9qsSby3ZXEh5NlF8zfgs8uysbO+J0OvDJlyRyc8PXb3t9EJ866ojRaDfos7WMCTgxi2UL0X1lfdOKsq3hSDt86DK9gr7KpxoAtibO02z22Gmd1jA6d53VGu5ntuFaHUa3tU5CVCikLzy0EURMcTal0/Jg6LNBYbkAxIyE44evIrSN4YdEL1a7dIxZOAMNZfqHEWVfV4VuHERAWgF5Lell07ItNnHVFcXDiH+Zvsd1lbSy+s0NKan4qmk5sih6LexiZO6sHpIw7MhAeQR44cfuEhVr7IaXqyAQ6kJJXkofGExrjo40fGX+KOizQWG5AMaH4rHjRcAIIJ866ohiWwWdbPxMFJ4D4WHxXk1g44VQdIUUsnFTUV0DK4VtCbwiOhRSj2/Jlsg1SSvWb0G1BNzw46UEzYZDCkOIT4oPjt49DKcbZYVseQ/ghccbZa5nvwTeE4Jc9rwnW2gopGYUZGBM9BnpGb6Z2JBwJKb/s+QX+Yf64nXfb+EHUYYHGcgOKkayFE07VCVKshRNO1Q1SrIUTThykVO65u6Y0Wg1eXvayaDipeFwmBm9qgsT7NaAU4+y1zGs4lnLMTK31kPL1dg/4hHhZuHsACEEKd2eAZVlF3ElhWT2AYQA8kHh/svkdGT26LeiGx6bXRpGWQMopyKaMs4DBmEqn3WOojcuKg3ewN0JiQkw9gDos0FiKBJTIyEi0bdsWgYGBDgUUW+GEEwcpLy97WYarU4ZshRNOekaPTzd/ijmn58hwdcqRrXDC6dzdcyZ67q4lPpwcTDpoyw4AeiGn2B+n7gj9PDnOOKvVa/Hr3l/tavcsPDcXRE0w74wn7I3FBwynYJTS7gEYRCf1g1ew+XbP1ONTQdQEh5IPQuopyAZVhhSGZdBlXhcKnpR/ARiOPr+x6g20mNrC3J1T6rBAYykSUDg58g4KH07u5t+1eZ/Y9FhcTr8s4ZUpR/bCCSf+LfCqLwbOL3vhhK8Tt0/g/XXvu1y7x344Kd8JP/7XHAFhBIcU4klJykmyy5Ny6s4p+IT44IttwyHHFGQlQIolT8qN7BuoEVoD3+3kQt6km4JcWUowzhr0X8J/IGqCDVc2mCuhDgs0lhtQIB2c8KXRavDtzm9dpt3Dh5OlF4ReJMRpe9x2lwtzO3zrMGqG10SvJb3Kh8zZo+ikaJcLcyvSFkkEJwbxPSlKgRRbjbPpheloPrk5npv/XNmRc2mnICsdUhiWQc8lPdFiagujwYyuCylavRaPz3gcPZf0tHQalDos0FjVHlDkgBNuX1cJc2NYBp9v/VxSOAFQKczNFSBFajjh5EqQIjWccFI6pOQW5xrVVoWUUn0pXlz0IhpPaGxkkpQeUqadmAYlGWefnkugY5aWzxnal7jPVDUcBSmvLn8VcVlxZmpHQkpImXJ8CjyCPHAx7aKlzajDAo1VrQElPiseD056UHI44eQKibNywQknV4EUueCEEwcpgzYMknxvR4kPJ9FJ0ZLvr9Fmos/Seph5ygdKMs6OPjDazF/GFZDCsrswbMsw+IT44MitI2ZqpYGU/Yn7eYGAyoCU3OKPkZCtQo1QH3y9/WtL1XAEpHDKK8krS681rh0JKSAlozADdSLqYMQOoaPX9GGBxqq2gMLByeMzHpcFTjjxIcXZJtbKDSecOEjptaSXUwbeyQ0nnKKTonHu7jnZ9pdTcsMJJz2TD6AXgACk5gu94TrOOAsAe27sMdvumXjUE0RNBH7PpIMUADiTegY/7PpBEe0ePaNFl3kN4R1MsODs5wL7Og5Shm8ZLmu758ttX6Lu2Lpi/oClDgs0VrUEFEfBCafY9FhMODpB9ueRUo6CE056Rl/+5u5MbYwjt46gZnhN9FzSU1Y44atYV4wx0WOc5utUpC3CK8tekR1OKqTButj2igpzK9YV4+EpD5v0pGyP2wSVmuCPfZ6QawqyKUhZfXm1YjwpYw+PBVET9F/Z3K5YfPO1yvOknL93Hiq1CtNPCP2MAlAALNBY1Q5QHA0nxtp0dZPi2z18OFlyfolDnzslNwXNJzd3inYPDTgBDH/5OkuYGwcnNUJrOAhODHKWxNlLaZdQM7wm3lrzJhj2DcgxBVnpxtlLaZfgE+KDX/f+alcsvnCtciCFYafh+YXPo/3M9kYJwWZFHRZorGoFKAnZCVThJL8kH00nNlW0J4UmnADOE+ZGC044OUPiLC044aR0SIlNj8UjUx5Bx9kdy06sSD8F2SBxkPLDrh/gaE9Kqb4UneZ0QvuZ7VGsKwZQYZz1DSG4kyf0fXMspMw8NdNM7UhYAykLzxEQNbEmnJA6LNBY1QZQaMMJJyUnzjIsgy+2fUENTjgpHVJowwknPqSI/CvMYaINJ5w4SHl5mQdY9qBAteMgpev8rnh67tNoMqEJbuXe4tXSgZTVl1fj1J1TZf/lOEgZfWA0vIK9cPbu2UqVDKvDqTtvlNUKx+I7AlI4gAJg4lSWeEjJ0mSiwTg/DN5EIDYnBQqABRqrWgCKUuCEkxIhRSlwwomDlFrhtZClyaJ9OeVSCpxwiroZhX+j/lWUubhIW4S+y/tShxNOGm0mcotfBBAAPRMlUC0/pLDsbnyy8RP4hvhi943dsk1Briph42yJrgQzTs5wSLvnxO0QeAZ5IuhgkJlaBiw7FKN2K6fdAwArL61E04lNbW73fLHtC9SJqIO0gq8Fa3miDgs0lssDCgcngTMCFQEnnGLTY9F7aW8TL06Ol9LghJOe0eNS2iXal1EupcGJsfYl7qPe7uHDSdRNIRhwpDRIyumKNpEq6jkpfx8wnNhZfXk1+q/sL8sUZPOyDCkHbh5wiCeloHQQWk8jeHZ+a4t3/1zNk3L89nGo1KqyVhEL4C8ABwWeH4ACYIHGcmlAUSqcGCs1P5XanRSlwglfekaPYVuGUW33HE05iprhNdFjcQ9FwkmWJgu1wmtRDXNTLpwYpIQwtzmnZ4CoCcYf8YI9ibNV5VzG2eFbhiEgzAsJ2SrYE4tvohpKhRQdo8NTc57CM3OfMTM92aKowwKN5bKA4ixwwrIsXlz0IpV2Dx9OFp9f7NDntka0w9yUDiecaCbOFuuK8eryVxULJ5xoQsr2uO3wCPLAdztHgGVfg72x+FXlHJCy/sp6EDXBonMLYEssftTNvwSuwbGQ8vrK183UjgQfUqafmA6VWsXz+lgl6rBAY7kkoCRkJ6D55OaKhxNONBJnGZbBl9u+VDyccKIFKc4CJ5xoQAofTg7cPOCQ57RHHKQ0GEeQXyL0pi8NpJy8cxL+Yf54e83bZX89VzXOPjDxAay+bOqNmh6k/LLnlzJ/kzTG2ZTcFNQbWw/vrXuvbF/rEmdnnuqKUr0KSjHOZhRm4H7RfcNnqvjAKiDlbn4EakfUFkjJtSjqsEBjKRJQIiMj0bZtWwQGBloNKM4GJ5wcCSnOBiec+JBy/PZx2Z/P2eCEU3RSNJ6Z+4xD/E3OBiecNNpMHEt5GkAA5I7Fv5F9A43GN8LzC583gsbKkJJXUvE6VxUu6RlnAQNg2XsnRc/o0XNJTzSf3BzZRdm8WvGQYoCJYThxW4VVl74RUesY42xSThKem/+c2XbPRxsJGo2vWQ4zNog6LNBYigQUTtbeQeHDSWp+qq1PS02x6bFoNqkZdsbvlO05nBVOOOkZPRaeWwiGZWR9HmeFE07c1ye9MF22OynOCicV0oBhe+K7nV6y5aRkFG7Ao9MfReCMQDOn0arG4s84OUNR7Z47eXfgE+Jjd7tn3JFxUKlVZlqA1kHK97vaOo0n5cDN/SBqgiXnCUSe2DEl6rBAY7kMoDg7nHDi5vWwLGs0btx+OTucGGvvjb2ytHuOphxFrfBaeGnxS04JJ5wYlkHneZ1lCXPjw8n+RKHTK8pVkTZLtjA3jfZldF2gQuMJdXHz/k0LtcKJsxVyTk/K2bse8A72xO/7frdQa/0UZKVDSqm+FG0i2+DFRS+CZX8oq7UJUqjDAo3lEoByI/uGS8AJX8EHgyVt97ganADA51s/lzzMzVXghJMcibOuAiec5EicLdWX4tXlryAgzBOnU30hRSw+b3c4E6Tkl9zHo9Nr4pm5BKX6VQLXYBukrL78rcC+joWUh6c8jBJdCYIPBsMr2KssLsGaxNkqog4LNJbTA4orwgkgbZgbH04WnVsk0RXSl9SJs64GJ5ykhBRXgxNOfEiJTV8iUG0ZUvSMHu+tew++Ib6Iurkb9sbif7b1MxO19CDl8RmPl70mCRtnWZbFhxs+RK3wWkjIHgCppyAzrA4j/2uHc3eVZZzdl7gPVzOuwifEB38f+NuodiRsgBTqsEBjOTWguCqccJICUhiWwVfbv3I5OOHEh5SNV4VuN5uXq8IJp6ibUagZXhN7buyxeY9iXTH6regHv1A/l4ITThptJsYdaQU94w9bjbMMy2D4luHwDPLE1utbyz5qeyx+QnYC8kvyzdTSgZRSfSkAIKc4R/BOyoKzC8pD6eSYgmyQwThbrFNhX+IfImrlhxSGZfD8gudRf1x9XLh3wUTtSFgJKdRhgcZyWkDh4OSx6Y+5JJxw4iDlp90/Wf1YV4cTTnpGj1G7RyE+K96mxx9LOebScMKJg1yWZa2e3ePqcFIhDYBeiE7yszonhWVZ/Pjfj1CpVVhx0fivedshBQCuZ17HK8teUUy7R8fo0GlOJ4vtnsvpl1EjtAa+3PYl/5GQC1KmHn9WMZ6UWac+AlETtJzaUkSY21yBfQEoABZoLKcElOoCJ5xuZN9Aia4EgKmz9qZVXeDEWHkledidsFt0PR9OpDYlK1VBB4OsykmpPnDCSYMBqxpYHeYWdHAoiJqYmXgLSDUFWSmQYsmTUlhaiHYz2+GJWU+Y+DmTB1KUYpy9nTcEtcIJvtz2oojE2d8AiDoBRx0WaCynA5TqBid8nUk9g55Legq2e6ornABA+KFw0WFu1RFOAOvC3KofnBhkbeLs1OOBIGqC8EOfC9RWD0gZvqU3/MP8cTXjqpl9XRNSWJbFm6vfxAMT/ZFTTGB8uic5J1ngecyKOizQWE4FKNUZTgBxYW58OFl4Toj2XU9iE2erK5xwEgMpxbpivLbiNfiF+mFf4j4HXyF9iYWURecWgagJftv7CFjWD3JNQeZDyrPznzVxN5UepHgFeyEmOQaADssvPleW+/GdwL7yQspf+wkcbZzlYvw3Xd0I49M9v+/73erWKk/UYYHGcsiTlJSUoGPHjiCE4Pz586K/I3xAuZF9Aw9NfqjawgknS5DCsAy+3v51tYUTTkKQUt3hhBMHKf9G/Vvlc9UdTjhptJn4cENjXM2oAVPG2VWXVsEjyANfbvsSLKuBnFOQ+ZBift4RHUjhcl6uZlyFf6g/Bm96BHJMQbYGUlh2KAAPpOROE9hXGki5X3QfTSY0wdtr3i77SNXEWcBgyK/a7hEUdVigsRzyJD/88ANee+01mwHlfNL5cji5k3dH9ONdVRyk9FzSs/yvKDecVBYHKZOOTar0cQ5OXlz0YrWGE05nUs9UuYPihhNjGYyzBaX+OJ1aYWjk4GTI5iG86bTyTEE2ZZzVM3r8E/WPYto9+SX5aDi+IeqOrYu8kmzIMQXZWuPssZTX4R3smHbPZ1s/Q+2I2kZ/QFeGFJZl0W1BNzOeFIuiDgs0lvxPQMhrbdq0wZUrV2wGlAfDH3TDiZFi02NxOvU0ADecmBP/FviN7Bs4fvu4G07M6MK9Cxi0YRDuF91H/5X93XBSRRr8tvfh8jC31ZdXwyPIA59u/pQHJ5wcAykpuSloOrGpIjwpLMti4PqB8A3xlW0KcoWU50k5cPMAiJpg7hlTJ3LEx+JbEHVYoLHkhpMmhJA7p0+fRlJSkiCglJSUIC8vr3wdjj0MQghajWvlhhMzKtIW4clZT4KoiRtOzGjvjb3wDPKEX4ifG07MiGv3NBzfEL4hvth7Yy/tS1KcOE+KbwiBSq0yAyecHAMpSjHOTj0+FURNsP7Kertj8Z0NUoq0BK2nNcZLi1+yMCPMPKSIHGpLHRZoLDnhREUI+Y8QMhqAKEAZM2YMCCEVq7vhf3/Z9ovZx1RnMSyDDzd8CKImeGjyQ7JPQXZWHbl1BF7BXmXGvSW0L0eRKtYV47n5BnPj03Oflm3AoLNr6fl5IGoCr2CCqJtTBKodCyntZ7Y3MS1Xfkg5cisCXsFe+HnPz+Wf5SBl4tGJEJM4WyF5IaXdTIJSvdBrgHWQMmr3k/ANIbieGSZQWxVSxh4eKzY6gjos0Fi2gIe6EkSYXp0JIT8QQo4SQjwBcYBifAfl1q1bhv3+IBh/ZLzA9696id/WCT4YLFksvquJa+u8sPAFDFo/SPLZPa6gEl1JeVtn/JHxqBFaA++ufZf2ZSlOay6vgUeQBz7c8D56LamL8Ue8YWvirGnZBymjdo8yc0dHPkhJK3gDD0wkeHFRuyonVHYn7OYFHyoDUrI0HwLwgFYiSDmUfAgqtQoTj3aDLYmzVog6LNBYtgBKQ0JIG4HlRwjZQghhCCF6T09PeHp6ghACT09PfPrpp6K+I5wH5ddtv4Ko3ZDCiWEZjNgxopLnhB+L725hGGTsOeFi8bsu6Grh1nz1Eh9OuBj8qJtROJZyjPKVKUtrLq+BZ5AnBm8aDD2jh47JA9ALQAAyCrcKPNpxxlkAiEmOcUi7R8fo0HNJDzSd6Ie7+V4wZZwFDK9No3aPUkS7B2CQXfQROsyyv91TWFqI1tNao/vC7tAzWtgaiy9S1GGBxpJvY0IeJoQ8QQh54vLly9izZw8IIdiwYQNu374t6jvCAUpubi5GHxgNv1A/e4JuXEKm4IRTbHosgg4GiU6bdWUdv30ctSNq44VFL1QCNj2jR16JIVeHS+etrjIFJ3xp9VqEHwqv9u2etbFr4RnkiU82fWIEthpsj+uAWuHWJc7KCSml+lK0nNrSIZ6UX/b8As8gT8QkH4Cl0z1rY9e6pCflu53foUZoDd6IDVtn98wXqAWgAFigsRz1RKJaPMbi56CwLIuE7AQA4uPeXU2W4MRYu+J3Vdt2jzk44etewT20nta62rZ7hOAEMJzsEZs466paF7vODJwYZG3irKsYZ1deWgmiJrxj/LbH4luWMiGFO7Uz/YTx99xaSBkFQJQhnTos0FhOAyicGJbBZ1s/q3btHmvgRKPVoNmkZtXSkyIGTgDxibOuqBJdCV5f+Tp8Q3wFpxtbE4vvauLg5OONH1tsCVY3SDmTegZ+oX4YvGmw0R+L4iDlmx3fQCmelGFbHoN3MEFyzlSBfSsgJa9kDh6Z8gh6Lulp5tSONZAiWtRhgcZyGKDYIlOAwrIsRh8YXa08KSzLYsSOEVYdJRYTi+9qEgsnnKojpFgDJ5z4kFJd2mJi4YQTBykvLPIAyx4UqHYcpDwz9xkzU75tg5S0gmVoPrk5uszrYgZYLUPKqkuryiLxAaVAypFb/ctqxcXif7mNICDMtzw913ytpJBCHRZoLKcDFKB6QQofThacXWDVY6sTpJy4fcIqOOHEQYp/mL+JvzRdS7bACafopGj8sueXatFeXX9lPTyDPPHRxo+sMlNrtJnILnoBQAAYNlqg2jGQwn2/8krykFGYYVRrHaSU6v+H7gtVaDqxnkAulWVIAQwG27ln5iqi3QMwYNmh+CdKuN2zO2EXiJpg9mkCaacgC4o6LNBYTgkoQGVI2RG3w9anULTsgRNOsemx6L6wu0sH3fHhJL8k3+rH6xk9zqSekeHKlCN74MRYh5IPuWy7x1Y4qZAGd/Kex5OzPRCjkHYPALyz9h272z1fbf8c3sEqHE3xgr2x+DHJMU7nSckpzsGDkx7Ey8v6gGU/g5RTkEWIOizQWE4LKIDhDXz9lfUueWRUCjjh7wUAGYUZLncnxV444YthGXy38zuXa/eU6Erwxqo34Bvii90Ju+3aK6c4B3Ui6uCVZa+4HKRsuLKhHE50jM7mffieFKVAir2elNmnZ5e9Fs2BlFOQnQlShm4ZitoRtXEr9xaknoIsQtRhgcZyakDhKzopGpOPTbb1qRQlKeGEr5eXvexS7R4p4QRAeU6KK3lSpIQTTlE3o1AjtIZLQQoHJx9u+NAuOOHkSpASkxwDr2AvfLfzO16t60PKnhu/l398e9x2Ex5Ah0IKdVigsVwGUIIOBrmEJ0UuOAEqh7k5O6RwcNJ9YXdJ4ISTKxln5YATTq4EKRuvboRXsBcGbRgkCZxwMkBKPdQdS5BTLNSGLgLwCsRDSj+Ih5TXwYeUphObYtG5RSZqq0JKQnYCGoxrgJ5LeholxUoLKV9v/7rsRIycxtlPIRZSphx/FkVaFYAVSC9MR+MJjdF/ZX8THiwGwBdwAKRQhwUaSwWAKFUqlao2ISSPEFIHQD7t63HLLbfccssttxwjpQOKihBSixBSACVfqFtuueWWW265JakUDShuueWWW2655Vb1lAftC3DLLbfccsstt9wylhtQ3HLLLbfccsstxckNKG655ZZbbrnlluLkBhS33HLLLbfccktxcgOKW2655ZZbbrmlOLkBxS233HLLLbfcUpzcgOKWW2655ZZbbilO/we6s4EW5aepQgAAAABJRU5ErkJggg==\n", "text/plain": [ "Graphics object consisting of 68 graphics primitives" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "if S == S0:\n", " graph += circle(pA, 0.08, fill=True, color='black') \\\n", " + text(r\"$A$\", (pA[0]+0.2, pA[1]+0.1), fontsize=16, color='black')\n", " graph += circle(pB, 0.08, fill=True, color='black') \\\n", " + text(r\"$B$\", (pB[0]+0.25, pB[1]), fontsize=16, color='black')\n", " graph += circle(pC, 0.08, fill=True, color='black') \\\n", " + text(r\"$C$\", (pC[0]+0.25, pC[1]), fontsize=16, color='black')\n", "show(graph, aspect_ratio=1, xmax=rmax, ymin=ymin, ymax=ymax, \n", " axes_labels=[r'$r/m$', r'$t/m$'], figsize=10)" ] }, { "cell_type": "code", "execution_count": 71, "metadata": {}, "outputs": [], "source": [ "filename = \"vai_diag_S0.pdf\" if S == S0 else \"vai_diag_S2.pdf\"\n", "graph.save(filename, aspect_ratio=1, xmax=rmax, ymin=ymin, \n", " ymax=ymax, axes_labels=[r'$r/m$', r'$t/m$'], figsize=10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A zoom on the trapping horizon in its dynamical part: notice that the \"outgoing\" null geodesics cross it with a vertical tangent, in agreement with the cross-sections of the trapping horizon being marginally trapped surfaces." ] }, { "cell_type": "code", "execution_count": 72, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhoAAAGSCAYAAAClsmgOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADW9ElEQVR4nOydd5gT1feHP5Nke1+W3tvSURCQogIK2FBREKwgYEFs/L4WsEEAAREUFRGVIgIqSu9KkQ5K7313gV1g2d5rkvP7Yza72WSSKZlsZsK8zzOPMnNn7iSbzbx777nnMEQEDQ0NDQ0NDQ1PoPP2DWhoaGhoaGj4LppoaGhoaGhoaHgMTTQ0NDQ0NDQ0PIYmGhoaGhoaGhoeQxMNDQ0NDQ0NDY+hiYaGhoaGhoaGx9BEQ0NDQ0NDQ8NjaKKhoaGhoaGh4TE00dDQ0NDQ0NDwGJpoaGhoaGhoaHgMTTQ0NDQ0NDQ0PIbPiQbDME97+x40NDQ0NDQ0WHxKNBiG6Q5gmLfvQ0NDQ0NDQ4NF0aLBMExXhmF6ijjleQC/eup+NDQ0NDQ0NMTBKLlMPMMwyQB2EdEQAW0NAC4BaENEBR6/OQ0NDQ0NDQ1eFDuiwTBMKwA1AewXeMpDAPZqkqGhoaGhoaEcFCsaAO4p++9uge21aRMNDQ0NDQ2FoWTRuBdANoATfA0ZhgkF0BXANk/flIaGhoaGhoZwFCUaDMM8wzDMYYZhDgN4AUApgINl++52cepTANYTkcnuevcwDLOYYZgDDMM8yjCMjmGYNxiGmc0wzA8Mw+xlGKZrWdvnGIaZW7btZRjmfo+9UA0NDQ0NjdsERQaDMgxTH8A1AOOIaLqA9n8DGE9E/9ns0wFYBHa56wwAQwH8AWAVEe0oa/MjgL5l7U4T0aqy/ZMAvAGgOhFZ5HtlGhoaGhoatxeKGtGwoXfZf3fxNWQYpiaAhraSUUZnAMeINak6AKoD2GiVjDJyADQGcMsqGWXcAhBddo6GhoaGhoaGRJQqGr0A5AM4LKDtM2BHKuwJALC67P/vBfA3Ef1l16Y9gAQAP9ntbwWgEEC6wPvV0NDQ0NDQ4EDJorHPPubCCc8D+M1+JxHtJqIrDMM0A1APwFbb42V5N7oD2EmO80f9AOwR2L+GhoaGhoaGExQnGmXxGY0hbNokFmycyQUXzaxBnTvt9ncGEGq/n2GYdgCaA1gh7I41NDQ0NDQ0nKE40QBHfAbDMP/HMAzD0VZI7ozeALIAHLPb36vsvzvt9j8HoBhlosEwzEi+G9bQ0NDQ0NDgxuDtG+CgMwAzgEMAwDBMEwCNOKY3AGAIKoTBGb0A7OZYPdIbQDwRXbPb/xSAdUSUWTa6UU/c7WtoaGhoaGhYUeKIRgaALCIqYRgmHMA0AEb7RmX5L64RUbKzC5WlMa8Fx+kRP5TFZ3CcFgNgV9ny2LEAvpP0KjQ0NDQ0NDQUOaLxDYDuDMMsA5uw61MiyuRoJ2TapBqAGwBW2e2PBLuqZSnHOW8DeBnsSMgPRKStPNHQ0NDQ0JCIIhN28VG2YuQygHZElOvt+9HQ0NDQ0NDgRolTJ0LoB+A/TTI0NDQ0NDSUjVpFQ6vUqqGhoaGhoQJUN3XCMEwIgLMAmhFRqbfvR0NDQ0NDQ8M5ahzReBLAJk0yNDQ0NDQ0lI8aRaMngMXevgkNDQ0NDQ0NflQ3daKhoaGhoaGhHtQ4oqGhoaGhoaGhEjTR0NDQ0NDQ0PAYmmhoaGhoaGhoeAxNNDQ0NDQ0NDQ8hiYaGhoaGhoaGh5DEw0NDQ0NDQ0Nj6GJhoaGhoaGhobH0ERDQ0NDQ0NDw2NooqGhoaGhoaHhMTTR0NDQ0NDQ0PAYmmhoaGhoaGhoeAyfEw2GJZxhGMbb96KhoaGhoXG7o1bRIIetIJXwJUPZn8ECIDv7M1hQkOrYTtRmJIAhYJqb1+HeTJYiemZFA/KbzNCqcx94pA8gm4CuBEQRcMRDfcQT0JCA5gRcd9n2k38+oejp0VRqLhXZxz4CwgjoRUC+w/HU/FRqP7c91ZpZi86lnpP4OpYSoCNgJAEWD7xPRMAnxH6mvhR8XpGpiPST9DTvyDwB7UsJGESAPwHrJN3n4RuHKWp6FHVb0I1yinM42mQS0ImAagSc8MD7BAIuE1CPgJYE3ORsM3P/TIr4PMKNPnYREEJAXwIKPPI6fj42gnQTGXp9QxuykMlD7xWow48daPTG0YLabtq0iRiGoUsMQ2AYSmcYYhiGtm7d6rH7q+pt9MbR1OHHDl6/D47ttkStolFFGAFMAPARgGmyX92gC8TSpy5iYKv6eHndDGQXLZG9DyACwN8AWgDoA+CIB/poAmAHgBIAvQBcd9pyYKuByCzKxI4rO0T20QPAX2Dv/1EA+ZWOVg+pju1Dt6ND7Q7Q6/Qir23lBQCLAfwM4BUAFonXcQYDYDKAjwG8B+BLQWcFGgLRLLoZzqSeEdDaD8DvAB4HMAjAOtF32alOJ2x9cSuqB1eHjuH6iogCsBVAYwD3Azghug9+mgHYCSAPQG8ANx1a1AipgZziHBSZiiT20RPAJgD7ATwBoEDidZwzvMNCLHh8OAIMZ8HgTcj/mWLx1/uj1Fzq1jV8aRA4rSAN1YKqefs2NMrQRIMXI6pCNvaOeAgRgSMArJK9DyXJxp217kTjyMZYeXalhD74ZWPz85sRWy0WucW5uJR+SUIfypSNtjXa4nTKaYF9yCMb655dh1D/UFzOuIyc4hy7Ft6XjZohNQEAKfkpbvRRNbLx9UMLwTA/4djNIbCQSfY+/HR+KLW4Jxq+RHphOqoFa6KhFDTREIQRnpaN1tXXo9T8JJ5fNQirzn0gex9KkQ2GYTCw1UCsubAGZotZQh+uZcPK//39f7j353txLvWchD6UJxttqrcRIRqAHLIBAGaLGY///jgeXPqg4mSjRkgNAMCtvFtu9uF52QCGIylnBrotWIE3Nt4hu2z46/1RYi6R9ZpqJr0gXRvRUBCaaAjGCE/KBmAAwyyGhepjyIoZPi0bA1sPREp+CvZe2yuxD37ZmPbANFQPqY7ev/T2CdloW6MtbuXfQlpBmog+3JcNvU6PxU8uxrnUc4qTjZqh7IjGrXx3RQOoCtmoF/4uvn90OH48clZ22fDTCx/RIPL9UIH0Qk00lIQmGqIwwtMjG0uevIBBrRv4tGx0qdsFdcPqYsXZFW70wT+N8s/Qf3xGNtrWaAsAOJMiJE7DFnmmUbYN3aY42ageXB2Au1MntnheNkZ0WIj5j8svG3KMaPhSjEZ6gTZ1oiR8RjQWLFzAsVfK0DwfRlSlbBy7OVP2PrwtGzpGh6daPYU1F9a4+deVMNmoEVID/yT8I7EPZchG8+jm8NP5CQwItUc+2biWfc2J7FS9bPjp0xAdFC3D1IktVScbW+PPIr3gZcjxmfLT+bkdDOorFJYWotBUiJjgGG/fikYZPiMaI0eM5Nj7DtQsG/Me64I7a42DLwaIPtHiCSTlJOFY8jE3++CXjYOvHMQbXd4AAGQXZUvow/uy4af3Q7PoZjifdl5iH/LIRtzbcehWvxvMFjPySvLsWlS9bNQMqSbT1IktVSMbp0f/iOohi5Fb/IrbIxtajEYF6YXpAKBNnSgInxENbpYDGAG1ysZLd+4DwwzChotP+9w0yn0N70NEQATWXZAWpFgZ17IRaAgEAPx+6ne0nNNStdMoLWNa4lyalHu34r5sWN/Ld/56B32X9PX6NEqNkCSk5F/1QB+el41Aw6swWX5C718Wuj2NosVoVGCNY9KmTpSDj4vGDwCWQq2yARgALMXys74Xs+Gn98PDzR+WSTQAIQGifZr0QfVg9cZstIpp5caIhhV5VqO8dOdLOJ923usxGzVDgVv5W8CVZ8N9PC8bBt3LeKOz+zEb/jotRsNKeoE2oqE0fFw0ngTwK9QuGwseP4eBrXxvNcoTLZ7AseRjSMxOlKkPYUm9aoTUUKVstIxpiaScJOQW57rZh3xJvbwtGzWCByElvwTOknq5T9Ul9XJHNvz0WoyGlfKpE21EQzH4uGgAwDNQu2zYZhAdsmIGNlz8SPY+vCEbDzVrD4POgPUX18vYh3DZeH/r+xL78I5stKreCgBwIf2CDH3IKxvfH/qeo4XnZaNmaCxu5YXDVQZR96k62fjp6FnsuzYIYj9TWoxGBekF6dAzekQERHj7VjTK8G3ROGz9a9B3ZOPNzrFoW+ML+EKAaGTgE+jZsKuM0ydWhMnGkifZlO/S5qyrXjZaVGsBADJMn1iRRzYOv3IYH/RgR9oc30vPykbNkJpIK8iEybINviAb59+YhnsbrgPwBoiEf09pmUErSC9MR3RQtM9MBfkCviMahzmWBR6aDhyYXPYP35CNWQ+dQaPIQcgsHIwtceNl76OqZePxFufxT8I/HEPv7sIvG1FBUbiadRXdF3ZXxTRKWMBPqBdeT+K9OsN92Wga3RQ6Rodt8dvQZ0mfKp1GqRFSAwRCekEU+GqjuI/nZaN5tXEAFmD63h8wemN7wdMoYkY0fD0YNL0gXVvaqjB8QzQOTGalgov9431KNqwBol//2xKP/jZZ9TEbj7fwR6mlFH9f/t0DffAHiAb7BSOvJE81MRstY4JwPl2uEQ0r8gSIRgZG4siNI1Uas1E5Oyh/ITb3qZp05dVDxMVsyBGj4SsjAFqdE+WhftE4MJmVCVf4oGx82vOwT2QQbRS5B62r+2Hz5ffhquqrdHwrg2hs9CVcTN8v8/UBtWYQjQ6KBgBkFGaU7fEN2RCbQVSL0ahASz+uPNQtGkIkw4qPyYYvpSt/uNlQ/HW5AEQ94W3ZeOjXhySWHa8a2WherS8uZyTDQjNkvj4gt2wMXzuco4W8smEVjczCTJu9vicb3/x7H1x9prQYjQq0EvHKQ72iIUYyrPiobDzdugFu5X0JtQaIPtL8OdzMM+PErXy4KjHvHsJkY8HjC8qTUonH87IRW+0dFJmA6zkfQGiJeXHIIxvbh27HtAecfeblk43IwEgAtiMaVnxHNtY+8zZeuesAgDfg7DPlr/cXPHVyO8RoaFMnykKdoiFFMqz4oGz8+tRlvN75aQBDcDljjux9eFo27mlwD0L9Q7Hp0vNwVfXVffhlo0+TPiAifLz9Y0VOozSPjgUAXMp4HkJLzIvHfdm4q85diK0Wi5ziHLy16S2PTaMYdAaEB4QjsyiT46hvyMZjLb5BqP9CnE/7AR9t78Q5jeKn99MSdpWhTZ0oD3WKxv4JMp6vftlgGD8AS7H+Qle0mvOm6qZR/PX+eKDxA9h8+T/wlZh3H/4A0ZziHKy/uF6RMRuNIhtBz+hxMb0HhJaYl4Y8AaJXsq5g6amlHo3ZiAqM4hjRsOIbsgEMx5Ebr+Dzvcc4Yzb89f7a1AkAk8WErKIsbdWJwlCnaHSfKPP56pcNwICHm29VbQbRh5s9jAOJB5BVFA1vy0ZEYIRiM4j66f3QOKoxLqVfhtAS8270Bndlo33N9h7PIBodFG0Xo2GPb8jG8+1/cppB1E/nBwtZYLZ44rtLPVg/B9rUibJQp2h0+xToPknSqeZuRvZ8B9QvG/YZRNUkGw83fxhmMmNr3Fa4qvoqH+LSlV/JuiKhD8/IRmy1WFzKuAShJebdQ94Mog8tfYgjlsA92YgKikJGkbMRDSu+IRu26crf/bsjrJ8pf70/AAga1fDlGA2tcqsyUadoAJJk4++aPfDCzfMuftF8SzZmH5wJopWy9+EJ2WgQ0QCtq7fG5suby/YoRzaG3zkcdcPqSuxDftloHt0cF9Mvlv1LXbLxbNtn4af342ghXTb4RzSs+I5s/PzESDze4hSsAaLW99SdOA1fiNEoL6imjWgoCvWKBiBONrpPQm7HMVh2ehmMO40uGvqObKx/9kkwzDMoMi2TvQ9PyMZDTR/ClrgtNiKoDNmY1mca/PR+2J+4XxHTKM2imyEhKwEWsl5HPbLx1t1vAQCWn1ku2zSK6xgNe3xDNobdOR+9Gy+E2fIDfjneB/oySTBZpJea9wW0EQ1lom7RAITJRvdJQLdPMaj1IEx7YBom7Z6EpSeXujjBN2Qj1P8PJGY/jJbfPauKaZQ+Tfrgeu51u6Jh3pcNgB1ufn/r+4qI2WgS1QQl5hLcyL1hs1cdsgGweQ5e3fCqbDEb0UHRTladOMM3ZAMYjj3XPsDwtTsw/9i7ADTRSCtIA1CRX0VDGahfNABWNjqP5T5WJhlWxvYYi+F3DsfIdSOx99peFxdVv2wABtQO+xPd6qsjqdd9De+Dn84P2+K32R3xvmwwDIM1Q9YoIoNok6gmAID4zHi7I+qQjZjgGGx9catsGUSjg6JFjGhY8Q3Z6NVoOuY/Phx/X04EAJSYpSSb8x3SC9IRHhDuZHpOw1v4hmgAQKd3Hfd1HusQ+MkwDH7o/wO61euGAcsGIC4jzsVF1S8basogGuIfgu71u2Nr/FaOo96XDaWkK28U2QgAl2gAapENOdOVRwVGIbsoW8KKC9+QjREdFuL/uvYDAHy4rQ9vunJfDwbVlrYqD98RDS645ANshPaqIasQHRSNR397lCeQzLdk46U1M5BR+IvsfcglG32b9MWOhB1OhoCVIxttarRxI2+Be7IRaAhE3bC6TkQDUJtshPqHOpEEYbIRHRQNAiG7OFv0PfiKbDway47olpgvAXgTUgTWV4JBtfgM5eHbouGC6KBobHxuI1ILUjFo+SCe9L2+Ixu7h/dDdNDLUGq68j5N+iC3JBcHrx900kIZsrF96Ha0r9keBaUFPKNiznBPNppENXEhGoCaZGPri1sRFRSFq1lXJY1sRAVFAbCvdyIG9cuGQWcAAHx2/zTomJ9wJuVZwSXmfQmtcqsyuW1FAwCaV2uOVYNXYc/VPXh94+s8Q4q+IRt31toIs+VJvLJukCKnUTrV6YSIgAiOOA1bvC8bVj7Y+gF6LOxR5dMo/KIBqEU2AMBCFgz4Y4CkaRTHCq5SULdsWEXDZHkCyXlfocv8PwWXmPcltPTjyuS2Fg0A6NmoJ+Y9Ng8Lji3Alwf4vojVLxuAAYTFyC2pp8iYDb1Oj/sb3+8kTsMWZcjGhJ4TvJJBtElUE8RlChlJUYds6Bgd5j02T1IG0ajAshENUStPuFCvbOgZPQB21Umt0DH47mHnJeZ9OkZDmzpRJD4uGnmCWg27cxjG9RiHsdvGYkfCDp7W6pcNpWcQ7dOkD/5L+g/5JdyjCBV4XzbsM4hWlWw0jmyMlPwUAe8RoBbZsM0gKkY2rBVcs4qypN16JdQpG9YRDTOx30e2GUSFjmz4RIyGNnWiSHxcNJ4FkCuo5Wf3f4ZejXrh2ZXP4mYu35eL78nGwevTZe9Dqmz0bNgTpZZSHEg6IKC1smRj46WNEvsQJxsNIxsCABJzEgVeX12ykZCZgGM3j3G0cJSNUP9QAEBeibA/LPhRn2xUTJ1UCIVVNjZeOouU/JGQu5Kw0iAipBWkaatOFIiPi8YZAI9AiGzodXr89tRv0DE6PLvyWQGJb3xHNr57+C7cVftjKCVAtHX11ogJjsGuK7sE9qEM2Tgw8gDe6/4eAKkPPeGy0TCCFY2rWVdFXF89shH3dhx6NuoJC1k4Rm0qy4ZedxpBhiAZRQNQm2xwiQbAysa5N+aiVugS5Je86tMxG7kluTBZTNrUiQLxcdH4E8BJCJWNmqE1sWzQMuy9thfjd4wXcH3fkI3XOv0LvW4Qtsc/jdXnnCQ+cwtxssEwDHo27ImdV3eK6MP7shHiHwIAWH1uNVp818Kj0yh1wupAx+hwNVuMaABqkQ3rezlu2zj0WdKHdxol1D8QucXCRi+Fox7ZcCYaABDiPwpmyzw8uHRB2TSKb1Z41eqcKBePigbDMPcxDLOeYZgbDMMQwzADBJzTk2GYIwzDFDEME88wzCjpd9AJ7ANOuGzc1/A+TLl/CqbtnYaNF4UMg6tfNgADgKX49VRDDF7xhSJiNno16oX/kv5DQamYL17vywYA3NPgHkQHRXs0ZsNP74e6YXVFjmhYUYdsAMDgNoMFJfUKC8hGXgnfKhwpqEM29LqKYFDu4yMxogMbs/HT4f+TfKdKRqtzolw8PaIRAjZi600hjRmGaQz2N24PgA4ApgL4lmGYgdJvoSvEysb7Pd5H/9j+eHH1iwK/yH1DNn567KxiMoha4zT+TfpXZB/el42qyiDaMLKhhBENK+qQDaEZREP9A5Bb8ivElpgXhvJlozwY1EV21BEdFmL+48OxJS6J87jag0G1EQ3l4lHRIKLNRPQJEQmd/B8F4BoRjSGic0Q0H8BCsN+EbiBONnSMDr8M+AXhAeEYvGKwwNLL6pcN+3Tl6y58KHsfQmWjTY02qBZUDTuv7JTQh7Jk463Nb0nsw7VsNIxwRzQANcrGVwe+4mgRhTD/9sgrCYXYEvPCUbZsuJo6sWVEh4UY3bm35DtUMtqIhnJRWoxGNwBb7Pb9DaATwzCcVXKKi4uRk5OD3Fy+kQpxshEdFI3lTy/H8eTjeG+LUM/xHdl4vVNztKg2A94KENUxOvRs1BO7rgoNCLVHObLx28DfAEjNX+BcNhpENJA4dWKLemTjv5f/w8f3fgzA8b0M9Y9Ebkk3iC0xLw7lyoZQ0QCAB5q8icYAmku9RYWSXpCOAH0Agv2CvX0rGnYoTTRqAbhlt+8W2CACzjVL06ZNQ0REBJo0bepwzPGLXZxsdK7bGV/1+wqzD87G+gvrBb0AX5GNbx8+ixYxg5BbPBjb442y9yFENno27Il/k/5FkUlqRUplyEaNkBq4kXsDvX7pJes0SsOIhriee12G0uDqkI0WMS3gp/fD3mt7HaZRQv1DkVdSArEl5sWjTNmwTdjlkvh4dJgzBxdtdmVJu0nFYc2hofYpIF9EaaIBAPZ2wDjZDwD48MMPkZ2djfg4xyyJn+35zG3ZGN15NB5t/iheWf8K0grSBNw+4AuyYQ0Q/ea/Vnjo14leidnoUb8HSswlOHJDeul5JcgGAPjp/JBRmCFrzEa98HqwkAXJecnSb70cdcgGwBaVO3j9YCXZCAsIK1t1Iq7EvDSUKRuAiziL+Hhg5EggNhaN//kHhrLdmQDGlf0/eeR7qurIKMzQpk0UitJEIxnsqIYtNQCYAKRznRAQEIDw8HCEhYU5HPv2v9n4cPuHbskGwzCY99g8lFpKMWrDKBHD374hG+PuOeS1DKJ31LoDIX4h2J+4380+vC8bnggQrRteGwBwPUeu16MO2eAKEA31C7XJo3H7yQZx/x1WSTCwcCFgZr+HMgGMB/sOrShr+uX+l1SdZyOjMKO87o2GslCaaBwA0NduXz8Ah4lIdE3uz+6fjOn7puOPM39wHBUuG7XDauOHR3/AynMr8dup30Tcgfplw5vpyg06A+6udzf2Je6ToQ9lyUbfJX1FLt21UiEb9cJZEUjK4V5FIA31ycaLq19EWECYXcKu2082AICxDgA7EQxERuLMkCFoDPannG1z7toLV/Dl/nuh1gyimmgoGCLy2AYgFMCdZRsB+L+y/29QdnwagMU27RuD/Xb+CkArsE/nEgAD7a7tSH4K0UxQ9mcggP0v5afQxosbqdRcynkKywEiCieie4gox0U7oudWPkcR0yIoMTvRZTtHficiHRENJSKTyHOFMoHYt2aqR65eai6kIcvr0xd7dUS00iN9EGUR0d1EFElEh4mI6JPtn1D1L6qTxWKRqY84ImpARM2IKEmma9qzl4hCiagnEeU5HE3JS6H1F9a72ccSslhAAZP19M2/X7t5LS4sRPQxsZ+pmR64PhFRCRENJCI/Ilor6QqHrh+iU7dO0ZTdUyjmixiOFhlEdBcRRRPRcak3ysMlIqpLRC2I6IaH+thJRMFE1IeI8h2OJucmE4ygbVt/IhoxgkivJwIqtshIookTiTIzafny5VT2fVxpm/rrQMosBBGNIiKzh16H57h73t00cu1Ib98GHx595ip187Ro9OL6QANYVHZ8EYCdduf0BHAUQDGABACjOK7tiBPRsLLryi4a/894Jw8sYbKRUZBBdb6sQ30W9yGzRewvovplw2IpIaIhRGSgK5lzPdKHvWxsvrSZYARdSLsgYx/elw0iIovFQp/t+ozOppyV2McSavIN6P0t7cgzDwZ1yAYR0Yx9M0g/UU/ZRdkcR31fNlJO/kvzO4DMep1TwbDiTDT27dtHRAspPgP0yfaOZLa4+gNNeTT/tjm9v+V9b98GH15/6Htj83QejZ1ExHBsL5Udf4mIetmds4uIOhJRABE1JqIf5LiXk7dOYtLuSW7FbEQFReHnJ37GtvhtmHtorsg7UP80CrvCeCm2xvVA89mvV8k0Srd6QWDAyBCnYYv3p1EAth7KsjPL3IrZqBfeAtdzT0FMiXnhqGMaBQAKSwthJjP6LeknqsS8fHhpGqVsiiSmQw+MPAbozGWfgchIYOJEICEBGD+e/bcghuPfpFcxZc9RwVVflYI2daJclBaj4THe7PImvn7wa0zfN90t2ejXtB9GdxqN97e+j0vpl0TehfplAzCgd+O/8FQVxWxEBA5A2xpNse+aHHEatnhfNsICwtwOEK0b1hFJOS0gpsS8ONQhGy1jWgIAzqXxpyv3CdmI3wuMbF4eg8GUxWCUhodIFIwKnm33I+aLLDHvbSxkQWZRpiYaCuW2EQ0AeKfrO+WyMXXPVI4WwmTji75foG54XQxbMwwWEvvFrn7ZqOoA0R71r2Ff4nYP9OF92bBfjRKfKa5eR73wekjKKYWYEvPiUb5sWEvF//rUr+WrUYpNxXatfEA24uOBkYuB2BJg4Y3yIE9LZATG9wL+2b5AsmDYYk1X/uORsxjzVwcoPUA0pzgHFrIgKjDK27eiwcFtJRoAKxs/PPoDnmz1pJMW/LIR4h+CBY8vwIGkA5h3ZJ6Eu/At2fhi3wxYaAX/SaJhZaNrvXo4n5aA7CKpWUJdoRzZeKbtM6gTVkfUlWuH1kZyXjKInsftLBtBfkEAgBbVWmDb0G14osUTCDAEcLRUqWw4rCKxTpEAmNgEt07uwORegDnCcZm/PY6judyM6LAQCx4fjn5NTwN4A0qWjczCTADQRjSUireDRCRujnAFg+4ay9nUSl5xHv10+CfJAaLD1wynyM8jKTk32WU/zlF/gGipuZCyCp8kIgMVm5Z5pI+zKf8RjKDt8SFkXY0iP8oIECUiOnLjiOAA0d9O/kYwgnKKrJ/RJcSGQY2g2ylAdP+1/QQj6NStU5X2rzu/Tt0BonFxPKtI1hNRMF3PuZdgBG28uJH3kn/++SdnMOj+/fudnLGQzBbQ76f6KDZA9PD1wwQj6OiNo96+FT68/ez0vWDQKuUwx19Yh6YDByY7PWXTpU14dcOrkmM2ZvSdAYPOgP9t+Z/Em/aNkY2IwD+RnPcI2n7/jEemUVrEdEKYfxgOXo+GkBLz0vD+yAbAiv///v6f4JiN2mFs0q6K7KD8VV/dQ5kjG9bRC9vpkqyiLLy09iV1xmy4yINROQajP4BNIDoEAGBgP10kB8Pxb9JHeG7lNsXGbGQUZgDQRjSUim+IxoHJrFRwsX+8U9l4us3TmPXgLMkBotWCq2Fm35n47dRv2Bq3VeLNq182AANigv9Ax9qeidnQMTp0rtsZB6/fASEl5qXjfdlgGAbLn14uOEC0ViibSPdmnu1D7PaTjQB9mWiYKx60kYGR+PuFv3lLzCtKNgQLRqTNST0BLCn7/0kQW2JeCN3rT1F0gKgmGspG/aJxYDIrE65wIRtjuo5xSzaG3jEUvRr1wuhNo90o/qV+2fB0gGiXOl1w8PoxCCkx7x7elw0x6cqtouFY7+T2kg2uEQ2AO115ZRQiG5IEowJCVwAAw5wDb7pygTEa9tgGiCpNNjIKM2DQGcqDgjWUhbpFQ4hkWBEgG2H+YU6KEjmXDYZhMPfRubiaddXJShah+JZsvLh6BlLyf5bt2p3rdsb13Ou4npOH20k2YqvF2qXWrkxEQAQCDYFOCqvdPrLBNaJhxSobfjo/jpUogFdlw03BcGQS+NKVm0zcgmAwGDj322KVjazis7CQcgJErTk0tMqtykS9oiFGMqzwyMbH930MADh0/ZCokY2WMS0x7p5x+Hzv5xITL1nxHdnYMawPaoS8CmCVLNftUrcLAODQjUMQUmLefZQhG7te2oXOdTujxFyChMwEhyswDINaobVcVHC9PWTDOqLhbFSxU51O2PXSLlQPqY6buTe9P7IR3wMY+axsgmH9vmJwB/hqo5SUlHBew8/PT1BfIzosxG9PLYBBNw8X059XxMiGlqxL2ahTNKRIhhUXsgEAZ1PP4u75d4ueRvno3o/QMLIhXt/4uuShSRbfkI0udTeD6Cn831+DZJlGqRtWF7VDa+O/pP/K9twesmH9C+3DbR+i24JunCJbK7SWXYyGPb4vG4GGQACOUyeV7pJhQEQY8McA702jxOuAkd2A2ARg4TIZRjBYqFL1VteF2EpLuetT+vv7C+6PYUYgreBrdPppmSKmUTKKNNFQMuoUjf0TPHZ+6+qtJcVsBBoC8d3D32HX1V1YfX61e/fnA7IBGGChxUjOlydmg2EYdKrTCUdu2grF7SEbADDunnFOYzZqhtRESn4KTx++LRuupk4q3SXDYM4jc6o+ZqPSFMmKil/pSB0w8T23MnkCgNnCXlCv05ftcS4bzkRD6IiGlZjgt/H1Q8qI2dBGNJSNOkWj+0SPnm+bQVSMbDzY7EE83OxhvL/1fZd/WQlD/bKh1wVgyZMXZAsQ7VCrA44lH7P7edwesuEqQLR6cHWk5qcK6MN3ZcNfz/41LuT3rkoDRF3GYLwNJNQExq8HIgul9wGg1MLKg5/OVha4ZUMu0QCUEyCqiYayUadodPsU6D5J2rndJ7Hn82CVjb8u/4X8Use/MJ3Jxsx+M3E16yq+O/idtPurhPplw341yv5E6QGzHWt3RFpBGq7n2j/obz/Z+PPMn5X2pxYIEQ3AV2WDYRj46/15RzSsWGXjcsZlHEg8wNHCTdkQFOT5DRC5G3JkEC01l4mG3l4WHGXD3RgNe6yysfr8WVzPGQ5vBIhmFGYgOlATDcXi7YxhEjeW/ZOIZqLSVikzqN0x2j+JxFJUWkRERJmFmYIziI7eMJoipkVQan6q6P648Y0Mot/824FKTHoiWinpGlezrhKMoHXn1zlpkUW2JeY9g/cziOYU5ZR/FgtKCuir/V9RyJQQkX34XgbRsKlhNHOfuL6sWUMtFgsVlBRwtBCZQZQ3k2cmx0nuZxA9fvM4wQg6mHTQSYudZC0xP2WKkTMz6K1btyT1bSW7aA4RMVRY+nKVZxCtNbMWTdop/vvdC3j72emVTZ0jGlbEjGx0jwS6DRPdRYAhAPkl+eg8r7PgaRRjLyMIhIk73ZziKcc3Rjbevvsg/PSDsD9xMFafGyv6GvXD6yM6KBrHko85aXF7jGyEBbDLsDdf2ozY72JRbC5Gfmk+CkvFDL/73shGgIERPKJhJTwgHAAwcddE3L/4funTKG4tU3W/Nkr51InDiIaVipGN0tLFnC3EBINyER4wGhaah8d+n1+l0yhEpE2dKBx1iwYgTDa6/w/oFgn2wXBNdBch/iF4o/MbgmM2qocE4pN7P8Hcw3NxPu286P64Ub9sAAYAS/HzsYYYvOIL0TEbDMOgQ60OOHrzqItWt4dsAOzwf2RgJL7Y9wUAiJg+seJbshGgz0Gx6aSkq/SP7S8tZkO2PBjuyUb51InO1fQHKxulpdzfgVKnTmzRMSPxbNuqjdkoKC1AiblEEw0l4+0hFYmbI7vGck+dlE+XXCGiRkTUmIiucl6Cj1kHZhGMoLFbx/JOoxSWplDjrxvTo78+Kqkv5/jGNMqQ5fXJMAm08uz7os59f8v71GBWAwEtb49plJS8FGr6TVOCEbTizAqJffjGNEqTb0Logy06ElqIzZ5D1w9RxLQI6jq/K38htrgNEqZIhCBtGmXXlV0EI+hC2gXeth988Czn1ElxcbHEe3ZkwdHhxBhBo9a39vg0yrWsawQj6K9Lf3m0H5nw9rPTK5vXb0Di5oig6q3yyIZhkoFOJp900qJCNv48/QvBCNpyeYukvpzjW7Kx5pzrKru2WKuVpuWnCWh9e8jG0RtHCUZQmzltnAiwENQvG63ntKJ3NjcjMVVf7bHKxrit47gbxB0lGlGNSG8jF7IIhi3iZWNb3DaCERSfEc/bdsyYMZyiIf2zw41VNtZfeJg885li4Y9PURTefnZqoiFic4RLNPJTOBq6LxuX0y8TERtA5mpkw2LpQd0X3E13/XiX7L/EviIbo9Y3pRPJwgNEz6acLSsZv11gL74vGwUlBQQj6Jt/v3GzD3XLxp0/3Emvb3iNxJaYt+dMypnyIPBynAZ5hskoGLaIk43NlzYTjKDE7ETetm+88YaDZOj1erfvmIujNyYQ+5kaRZ6SjX/i/yEYUf69rHC8/ez0yqb+GA3RNAQ7F0qQGrPRNLopAOC9Le+5jNlgmFP4rHc+jtw8gnUXXFefFI/6YzYMukDM7X8e7WsOQmHpYOy64jxjq5Xm1ZojQB+A0ymnBfbi+zEbQX5BCNAHgAGDtII09FvST2IqfHXHbOgYHYgYiC0xb0/r6q0RYAjAkRtHMGJWL5S89CJHDEYEMLE2kKAHxj8hOdGWc8TFbAiL0Shry5FHw8+P4Imqrx1qGwEswKLjP2D0xnYeidmwVm6NCoqS/doa8nAbigYgh2wAQIOIBrwBor0bX0PvRhEYv/MTWEjuL271y4Y1QHT2wTbos2Q8b4CoQWdAq+qtRIgGcDvIRnRQNDKLMkFEuJl3U1CJeW7UKxsMmLJU3OJKzHMSH48G707CT+/tgv8vSzmCPK8A488AkU2hhBLz/KtOKigqcqwHExhoAV/VV+kMh4WG44fDngkQzSjMAAMGEQERsl5XQz5uU9EA5JANoRlEJ/cuxclbp7Hy7FI375kL35CN/3X7T3AG0bY12uJUyimRffi2bEQFRSGjMENUiXnnqFM2dIzORuYlyobNKpLqy9bBUHa5nGA9ij79yG4ViUJKzEPciAa3aESDr+qrO3gyg2hGYQYiAyNt0q9rKI3bWDQAuWVj6UkukeiKHg2248GmekzYOQpmS5Yb9+sM9cuGfQZRV7LRrkY7nE45zSF2fPiubFhHNIDKGUQfWPwAcotzXVzLGeqTjcqiAYiSDRfLVK+/9yravReCp1oc45giUYZsiBnRKCx0zLcSFBQBvqqv7mIrG5/v7QG5PlNaDg3lc5uLBiCXbKx9Zi2GtB3ipEVXTOr9I86lFWLZ6bthW/VVPnxLNk7emglnJebb1miLvJI8XMuWMuXlm7IRFRhePlcNVMjGtw9/i7CAMIl9qEs2HEUD4JUNAXkw6s74EStf246JvZwl4PO+bIgZ0eAWjSDwVX2VgxEdFmL506PxcseDAN6AHJ8pTTSUjyYaAOSQjcdbPA5/vT8OXj8I406jw1/bXeqORP/YHpi46zJMloehyQY3Bl0gfn3qEib0fBrAEFzPmefQpl2NdgAgYfrEiu/JRnTQEWQUplU6Wj2kOga1HgQAmHVgls9PozCMNUbDHg7ZEJloq1OdTuhctzOKTcX4aPtH3ikx70I2Si2lYMAImj5wLhpAVcjGwNZzUCNkIa7n/IBJu+52expFKxGvfDTRKEeeANFD1w9h4q6JnDEbk3rNxqUMC5aePALbQmzyon7Z0OsCwDC/YteVe9H021cdplHqhddDRECEyIBQe3xLNqICM5BZeBJcGUQLSgvw8/GffT5mg3tEw0qZbMTfD4wcAMQ2l5TJMz4zHnMPz63aEvOV4JaNUnOpoGkTwFmMRqDNvzwvG8Bw7EscBePOw27HbGgjGspHE41KuC8bb3R5A7MenMUZINqhdgc81eopTN5dDSbLCWiy4QoDejTYhAEtHWM2GIZB2xpt3RQNwJdkIzpoGDIKC8GVrjzYLxjbh273+QBRl6IRHw+MHAXEbgMWEmAuaycyVXir6q2w9cWtVVNi3imOslFqKRU0bQLwjWhY8bxsDG4zV5YAUU00lI/PiMaChQtkupL7sjGm65hy2Zi8u3JuiI/u+QjxmdfLHpyVS8zLi/plw1WAaMuYljLVkfEN2YgIbIecYn8IKTHf+5feuJxxWUIvypYNNo+G3dSJ0ykSP2CiDkiYI7AWSQXWEvNW2XAsZlf1slFYmoJgv2BBZwoTDaCqYjassvH25jsh5TOliYby8RnRGDlipIxXk0c25jwyB/1j+1faf1edu/BA4wcwfd9qEP0FTTZcYysbk3bNgMmyHAArGhfSL0hYecKF+mUjPCAchaZilJo3gE82nmz5JGqH1pbYk3JlgwFTMaLBG4NxHRj/JBD5EqTk2bDKRt8mfRFoCORoUbWyUVD6E4L8hFVf5Zo64RYNoKpkY8Hjw3FfwzOQEiCqiYYK8HZqUombI4JTkIvhCrmbrpyIqLC0kH4+9nN5GvK/L/9NMIK2xW0j29ooRDlu3q8zfCNdeVr+ACIyUKn5T1p3fh3BCErKljPldxapNV35yrMrCUZQekE68dVGsXL61mk6m3JWYo/KS1f+wC8P0FvfPSqi2FkJuZuu3Mrfl//mL8RGx93qwzmX6H9/hVLL7/xJSLryyMhIhxTkQ4cO5TlrJxEFE1EfIsp3/5Y5WUgWC2jl2X6CC7EVlRYRjKBfjv/ioXuSHW8/O72y+cyIhmeQJ0D0r8t/Yfja4eUxG32b9MWdte7E9H3TYV9iXhvZ4MagC0S14OVIK+iPDj8OxtXstQAg0/SJFfWObIQHhANAWcwAf4l5AHjnr3d8J2YjPh7vLTiHWW9vEhHkKUMGUQC5xbl4ftXzXo3ZKDQ9jmA/gpB05cKnTmypmgDRQzc+waA/twiO2bDmjtFGNJSNJhq8uC8bA1oOqBQgCgAfdP8AW+O34tjNY9BkQygGRAb+jjbV6+P//l4APaOTWTQAtcpGZdEAhMjG7wN/V3+AqM0UyUO7b0BvKZtKExzk6b5shAWEYfPzm70aIFpQ6ocgQ3vwZRAlIhQXFzvs5xcNoCpko0vdyaICRK25YzTRUDaaaAhC3gDRD7d/iEGtB6FRZCN8sf+LshaabAjBNmbDTBZsvLRQ9j7UKBtW0cguyrbZ61o2VJ2u3EkMRl6In6hVJCzuy4Z9gGhVy0ZBaQGC/aLBl0GUKz4DsF/e6oqqDRDlkw1NNNSBJhqCkU82ALY42Lvd3sWfZ/5EQmZCWQtNNoRglY26YUH4O+4obubKteLIFnXJhuOIhhVhstE4qjHSCtIgjSqUjfj3gJF3cwZ5Lh3YHKO+7Sd6FQmLfLJhtpidpH33nGwUmgoR5BcEvgyiBQXcYhAcLGzFCkvVycb13LMwWUbD2WdKEw11oImGKOSRjc/7fA6GYXBXnbsQGRCJrw58ZdNCkw0hGHSBeL7dG4gJCkDtsFFwlq7cPdQjG9bKlY6iAQiRjf0j9uPehvfCZDHhatZVCXfgYdmITwBG3gBiGWDhQc4YjD8GtkBusDuFteSRjf9e/g91w+siNT+1ykY22BENqyw4l43cXO7vk7AwsWnqq0Y21j6zAP76+UjIfJFzZKO8RHygViJeyfi4aBz1wDXlCRC9lH4J9y68Fy1iWmDR8UV2fwFpsiGEFjGtkFpQgsLSJ/DJP4N4q75KQx2ywf41C+SV5Dlp4Vo2GIYBAEzYMQF3z79bOdMolaZIfgbM1hgMABP7VZoisZAFesbdCp7uywbDMCAiDFo+qMqmUQpKCxBssB2V4JaNvDzuz0doaKiEXj0vGwwzAllFs9Fp3m+c0ygZhRkI8w8TnBVVwzv4uGgMAnDQA9d1XzaaV2uOmf1m4kDSAeSV5mHxicV2LTTZ4KNpVFMQCHEZn+ByRj1BJealoXzZ0DE6BPsFo6DU1Zc9f4DomK5jlBGz4TIPhhFIeBcYvwWIrJg2M1lMMOgM0vqrhDyy8WW/L6ssZqOwtLBcNitwlA1nIxrSRAOoCtmIDHwDM/pyx2xkFGYgKkgbzVA6Pi4arQD0hVJlwzZmY8LOCbBY7L+UNdlwRdPopgCAq9nXBZeYl47yZSPYLxj5pdxLWStQeICooGJnE4DIGbAPEJVPNAC1BYhWnjqxpbJs5OVxT4uJnzqxxXsBolqyLnXg46LxB4C2ULpsvN7pdaQXpmPT5U0cLTTZcEadsDoI0AcgLjPOIV357quT+S8gGmXLRohfCM+IhhXhsvHLiV8E918ZkbIhspoq12oUeUUDkFM2LqZfxM4rOzlayCMbzkUDsJWN3Nx3OVtIH9GwUnWy8efZs7iSNQyARRMNleDjohEK9gtV2bIx55E5iK0Wi19O/ILc4lyOtNqabHChY3RoEtUEcRlxACpWo0x74A50qTsRt1uAaIh/CPJL+EY0rPDLxp7hezD1gakAgGKTY+4FfgTIhmjBsKWybJgs12QWDUAu2bj81mU83uJxAFzvpfuyUWgqRJDBVS4MVjby8hyTdQHujmhYqRrZuPzWbDSJ+h0l5lFIL0jTREMF+LZoHP4SQBiULhsMw+DNzm9i1dlV6DyvM2eJeU02uGka3RRxmXHl/zboAvFe98MINAzCsZuDseb8WLf7cESZsiFs6sQW17IRGRgJHaPDjoQdaPFdC3mnUdwSDFsqZMNkuQI9c1bCPfLhvmxY4wi+2PcFev3SS/ZpFNcjGlaaIS/vHc4j7o9oWPG8bEQFvQmi+Xh6+Twcv7UPUQGRsvehIS++IxqHObIGHpoOHJgMNcjGsDuHIdg/GI0iG3GWmGfRZMOeplGVRYPFAGApfjzSCE8v/+K2idkQPnViC3+AaNsabREWECZPzEb8EGDkCBkEwxZWNsyWWjDo/oOUEvP8yJOu/P7G98ses2EhC4pMRYKqt+bmcifmkmdEw0rVrEZ5osVwpBUU4fDNNZJLzGtUDb4hGgcms1LBxf7xqpCN8IBwvNj+RZy4dQIz+87UZEMgTaOaIiEzoaJqZzkGfPfI6dsqQDTEP0TkiIaVKggQje8OjLwXiF1RtkxVDsGwhYHJUhMGXSdIKTEvDGUGiBaZ2GyfjqtOHJF3easrqmYaJcjgh+PJaYJro2h4B/WLxoHJrEy4QiWyMarTKCTnJaNZdDPMenAWZuyfgWPJxzhaarJhpXFUYxSbi5Gcl+xwzD5A1NenUYIMQSgs5Z6D50e4bAxbM4xDgJ1QaYpkd8XHKNK/bJmqu4JRARsM2gNSSswLR17ZMO40crQQJxvW3CkhfiG8fTtb3hoSwpXozV08Kxul5lIUmkox7I4e+PHIWaw5/yjkz0qrIQfqFg0hkmFFBbLRvmZ7dKzdEYtOLMKYrmNwZvQZdKzdsbzUbmU02QCABhENAADXsrnfY6tsDL+zCeqEfQlfDhANMASg2CwlaNOKMNlYNmhZeYIvp7iMwXgKSCgBxl8DIsPduN/KsKLhB1FVXyUhj2zsHbEXk3s7Wx0lXDas9W0iAiN4++Ua0QgJYaDTPQC+qq/S8JxsWLOCPtnqA/z78id4suUWAG9Akw3loV7RECMZVlQgGy/d8RI2XNyA1PxUtIxpCQAw7jRq0yhO4BMNgJWNnx67gC51B6HEPBh7r02RfKfO8b5sBOgDJK4OsYVfNppENUFWURaeWPaE4zSKoCDPlUDkEsidrrxieavIEvOScF822tZoixD/EJxJOYMBywZInkaxnmdNQ+8KrhGN0NBq4Kv66h6ekQ1rbZ5qQdXQpe5kMMxCLD/zA97apE2jKA11ioYUybCicNl4tt2zYMDgt1O/le+LCorSYjacEBEQgTD/MJeiwcIGiH5/qB16//KJT8ZsBOjdHdGwwh8gWmouRUJmQkXMhuhVJPKnK6+cR0MdsgGwS1N3Xd0lOWYju5gd0bAW1nMFl2iEhUWCr+qr+8gvG+mF6QCAmOCYsj3DkVcyHHMOndZiNhSGOkVj/wSZzleebMQEx+DxFo9j0YlF5fvsS8xrslEBwzBoENFAgGgAgAFvdjngswGiAYaA8sBA9+Ef2dg+dDs6FEbg2KMdQZJWkcgrGyaLCXqdba0TdchGpzqdsPXFrZIDRMtHNARMnWRlZTnsi4yMBF/VV3mQVzasIxoVogEMF1FiXqPqUKdodJ8o4/nKk42X7nwJx5OP43jy8fJ9trKx8NhCjrNuX9kQLhqOAaK+JBuBhkAZpk5scSEb8fGo/vY4bJoYh+cOFYGRvIpEPtngzgyqHtmwBogO+nMQxx8TzmXDGqMR5s+/RNW5aABqk420gjToGB0iAyMr7bdNVz55VzdoMRveR52i0e1ToPskaed2n8SeXwllycaDTR9EzZCa+OV45fTPY7qOwYqnV+C5ds85OfP2lA0xogFUlo39iTPhKwGiAfpimaZObLGTjfjTlaZIrIJRHBbsxjJVeWTDTGYnmUHVJRuf3vepk2BbbtnIKc5BgD4AAYYA3j5ciwagJtlIK8sKWnkUi2VEh4X4feAovNzxMLQAUe+jTtEApMkGp2RYUY5s+On98EL7F7D01FKUmEsqHRvYeiCC/IJw8tZJfLb7M20aBeJFA2Bl49enLmFG36cBDMGtPK5RInepWtkIMCxGsUnq8lZX9ADiFwAj9wGx7TinSAKuXQfGj8ePl//wWtVX17VO1CMb9za8FyaLCRN3ThQ0jZJTnCNo2gQAMjMzHfZFOkihOmQjrSCt0rSJPUPazkXd8IVIzf8BU3Z31aZRvIh6RQMQJxsuJcOKcmRj2B3DkFaQhi1xWziP70/cj093fKrFbACoH14f6YXporNi6nUBYJhf8W9STzT+ZqTqp1EC9BYUmzMhtuqrS8qDPJ8DFpps8mBEOoxgFJmKMOfQHK+VmC8xl8BP5+eihTpkAwDiM+Mx699ZgmI2sosvCQoELSoqQlGRYwxPVBRXmXXly0Z6YbpL0WAZjl1XR+PTHYe0mA0vom7RAITJhiDJsKIM2WhXsx1axbTCn2f+5LzCqE6jtADRMuqE1QEAzqRd/BjQqc4GPN5C/TEbet2bMFusnyk3ZcPpKpJQYKI/kNAGGP9upSmSQEMgtg/d7pUS80SEwtJCAdkx1SEbsdViBWcQzSlehogAf95rZmdnc+53HNGwomzZ4BvRsDKo9RwtQNTLqF80AFYiOjvJ+ihKMqwoQzYGtxmMtRfWOg3wsw0QnbiLK0D29pCN2mG1AQA3cm9IurqvBIgadDVhJn9IKTFfDu8y1URg/D9A5AkISVd+Mf2ihFciXjaKzcUgkKB6H2qRDft05Y6VeVnZyC4ORnjARfBlEOWKzwBciQagZNlIK0hDtaBqgtraBoi+telOaDEbVYtviAYAdHrXcV/nsRIkw4r3ZePp1k8jpzjH6fQJwMrG7Idno1/Tfk5a+L5s1A5lReNmrvQvQVvZ+PifGSg1c48kuYdnZUPP6GGymCGlxLy4PBjCMog+0vwR1AypKfHViJMNa+p1YaIBqE02etTv4WS0Jgo5xZ0QERgKvgyiXPEZAJ9oAEqVDaEjGlZGdFiIBY8PR6c6Z6AFiFYx1vTWKtscyU8hmgnK/gwEsP+l/BTOpuLIIaLuRBRORP/JcD0urhBRIyJqTERXKx1pPac1vbDqBUFXKTGV0NITS8lisXAcPUDsa7iH2NfkCX4nIh0RDSUik4f6mEDsR2Bq+R6LxUIBkwPom3+/cfvqpeZCSs59gogMZDL/6fb1uMkioruJKJKIDst21Z8O/0SMkSn7VxwRNSCiZkSU5PykuDiiESOI9HoioGKLjCSaOJEoM9NFj3uJKJSIehJRntNWl9Iv0dmUs6JeSwVLiIghohFEZHbaKik7iWAEbbq4SeT1LUT0MbGfqZkS75GPEiIaSER+RLTWrSvturKLsouyK+3rsaAHDV39DBHdRUTRRHSc89zNmzcT2L9qKm0bN24U2PslIqpLRC2I6Ibk1+CanUQUTER9iCjfZcvwaeE0Y98MCX0sJCKGNlx4mMyWUgnnu4W3n51e2XxnRMNjeHdkY3DrwVh7fq2gREx/x/2NF1a/cNvFbDAMg9phtd0a0bBi0AWiZugKZBY+hq4LBqtqGkWv04NAZZVseWqjiM7kyQV/BlEAeHvz2x6P2bAGAgsf0bCijpENgH2Ng5cPdojZyCnOQbh/DPgyiEqbOrFFOSMbJeYS5BTniBrRqGA4jidPwGO/b9ZiNqoITTQE4T3ZeLrN08gtyXU5fWKlf2z/2zZAtHZobdzMk+uLz4CwgN/QNEpdMRvWpZ1mi/U955ANWQTDFn7Z+GXALx4PEC0sW9YrpFS6I+qQjWC/YGx4boNDgGh2cXbZ8lbXGUSdiQb3qhNnKEM2rAXVpIkGcGetCVqAaBWiiYZgvCMbrau3RpvqbZyuPrHndk1XXjtMTtFQZ4ConmETF5kstl+aZbIRXwCMbCWjYNgivMS8p2RD+oiGFXXIhn2AaE5xDjuiUb681blsuD+iYcX7ssGVflwsI7R05VWGJhqi8I5s8K0+sccqG3kljiWhWXxPNmqH3pBl6sQWW9l4duUMXMv+Udbrs8gnG9YMiWayea/j44GRU4DYW8DCXJkFwxZhstEgogGScpIk9uFcNtwXDUBtslFQWoD0gnQ2YVelyq3csuEsGDQiQliyr8p4VzZS81MBQPCqE2dYZeNSxlmUmF+HFiDqIbwdJCJxc2D+7GkcwaA/cTWVgaoNED1+czPBCNpyeYuoK1iDQs+knPH5ANGJO0G1Z4Z55Oql5kLaFteLiAxEtNIjfcgRILrs1DKCEZRbnOsiyJMhmhhNlHlGzpu3wXWAqNliLv9vYnaixD4cA0Q3XNhAMIJu5MgRpKiOAFGzxUyZhZkEI2jRsUUcLTLINkB0xIgRDoGgQUFBUl9AGd4JEP391O8EIyinSJ7vLbNlPhExdC3rBU8HiHr72akFg7rDyBEjOfaOAvCHB3qr2pGN9jVfR73w2thwcYOoKzAMgytZV9Dhxw4+P40SE/wI0gpyQTRV9qsbdIF4oMlWAAMxbc/Tip5GaZwBBLw22sUUyVFgfCgQ+QRkzSBajuuRDR3DfuVM2T0FnX7qJNs0ijwjGlbUMbKhY3TlUwhf7PuCN4NoWlq8wzViYqRPPbB4Z2QjOS8ZwX7BCPUPlaUHHTMSOcXfofO8pdo0igfwGdHg5ikAz0PtssEwwKPN87Dh0hoOWXBNo8hGmN5nus/HbMQED0OpBcgt+RhCq76KwwALLcbJlHrKjNmIj0fn8T/g4mzAb9ESF1Mkd0JSng1R8AeIjuo0StaYjYJSdppQHtEA1CIb6QXpAIDEnETeDKJpaXsdzndfNABvyEZyXiJqhdZyUnxOGuEBozH1AS1mwyN4e0hF4uYIZx6Nm0T0AhHpiWgZ52nuUzXTKOsv1CAYQedSt0u6wqwDswhG0NitY31yGmV7/HaCERSX8TaxH5GpfKdIotRcSEOW1yfDJNDKs+97pA9R0yiS82AIzLPhFq6nUVLyUqjt922p5oyabufZmHuoO+kn6iXfqXOUPY1inTLaeGEjRUyLoK7zuzrk2WDJoNjYAIepk759+8pw/1aqbhpl6Ora1H1BV4/0sODocGKMoFHrW3tiGsXbz05t6kR+9AAWAXgWah/ZuL/xLgQaGGy4+DRclZh3hjVA9I8zfyCziCsoTN0jG9bo87SC5yGmxLxY7Fej7EjgSv3uLgJGNpwsU80MBIrHfywgyJMnz4YsCF+NMvfwXIl9sCMbBaX7Eeyng/zBfMoe2UgvZEc07m9yP7YN3Ybzaeex+dJmjpZRSEtzHO2RZ0TDStWNbCTn3UKt0DhILTHvCmuA6K+nzuJyxovQAkRlwNumI3FzxGVmUBP5wsjGo7/eT70WBRJXBlGh5BbnEhFRXnGeT41sXM+5zv5ld9Ga5XACeXpkY8rudpRXrKcqDRB1MYJxcvTTFDEW5T9jYXh/ZCOjIINKzexfjiWmEkk9TN41kGrOAPFlEJWOMkc2vtz/JYVMCSn/d2p+asXVbN7L0tJSYhjGYUTjrbfekunebfH8yEb7uU3pjY0GEpJBVCqp+d8QEUOl5lflHNnw9rNTG9HwHL4xsvFo80HYc7UUWUUmuCox74pQ/1CUmEvQc1FPn4rZsC5zswbHCS0xLxWDLhAf3XsUIf6DcDZ1MNaeHyd7H5VGNuJ7AyOfcJkH4+zrA5EtOl+V90c2ooKiYNAZsD9xP1rOaSkpZqOwtAWC/GIgtcQ8P8oc2UgvqFwq3fr/cw7OQc9FPctjNjIzMzl+14GYGE/EIXh+ZCM5Lxe1QodCaol5IcQEvw2i+Xhx9U9azIab3CaiAfiCbDwa+yjMZMbflz+Aq6qvfPjr/fFC+xd8KkA0wBCAMP+w8vX1LEZ4UjYAA4Cl+P5QYwxaPt0zAaLx6cDI5kBsLrBwncs8GARxgcIVeF82AKB5dHME+wVLChAtKC1AkKE6pJSYF47yZCOtIA3Vgh1zSdxd726cTT1bHiCalpbGcTYQE/ML+Kq+SsNzsmGymJCan4paod0gtcS8UBhmBPo20QJE3eU2Eg1A7bLRIKIBWldvjW3xJ8BXYp4PX8wgGhUUxRF/YoSnZePrh07Jn0G0UgzG0oq3JpIBJr7GGYPB1jipyBAqDu/LhjsZRHNLcsuyY4ovMS8OZclGemE6Z3ZM+wyiV29c5Tw/JqYm+Kq+SsczspGanwoCoVZoLUgtMS8GLYOo+9xmogGoXTbub3Q//rnyD/hKzAvBVjb+u/4fRwt1yUZEQASyi7I5jhhRlQGiq8+NlX4xl7VIPgQSOgLj/wAi4xxOtaYet9Y8EY+yZOO5Vc9xDvdzkVWUhcjAyLJ/3T6ykVaQ5jQ7pq1sfPPPN5xtYmJmwVUhNveRXzaspQZY0QCqWjb+OP0QtABRcdyGogGoWTbub3w/4jPjcSXrCuSSjZOjTqJrva5OWqhHNiICI5BdzCUaQFXJxtD2jREVNBPAKnEXEFTsbCoQuR3OVqNYRcOailwaypGN3wf+LjhPQlZRVllhMSu3h2w4G9Gw0qlOJ+wevhsP132Y83hMTGPwVX11H3llIzkvGYCtaABVJRt7hn+IIW23A3gDmmwI5zYVDUCtstGzUU8wYLAjYUfZHvdlo13NdgCAGftmYNy2caqdRokIcCUaQFXIxoInLqJXo6dhsgzGv0mf858kupqq86WvZosZDJjy7JvSUYZstIxpifySfAxePph3GiWrKAuRAZF2e31fNlyNaFhpX7M98rMdY2IA6/JW11Vf5UE+2bCKRs2QmnZHPC8bPRpMhY5ZiI0Xf8Dbm7VpFKFUiWgwDDOaYZgEhmGKGIY5wjDMvS7a9mIYhji2lvLfmfpkIzooGh1qdyibPrHivmwAgJ/eT9UxGxGBzqZObDGiKgJEfzpyB+79+UPnMRtulWvnlg2TxeTGtIk93pcNgC3/fi7tHG/MRnZxts3UiS2+KxtEhPSCdM5gUHucBYNWq2Y9Vz2ykZyXjJjgGPjp/TiOel42gOFIyR+O7w6e1mI2BOJx0WAYZgiArwFMAdABwB4AmxmGacBzagsAtW22S565Q/XJxv2N7sc/Cf/YyYC8MRtqlA3+EQ0rRnhaNl69ax93gKhbgmGLo2zIKxqAEmQjJjhGUIBo5RgNe3xTNnJLclFqKRVUKv3WrVsO+8LDwxEQEGCzRx2ykZyXbDdtYo/nZWO4FiAqiqoY0fgfgAVENJ+IzhHRGACJAF7nOS+FiJJtNk9U4ypDXbJxf+P7cSP3Bi6mX7Q7Iq9s/HTkJ44WypWN8IBwASMaVoyoygDRv7a8KpNg2FJZNkyWBJlFA1CCbNivRrHW97BCRBwxGvb4nmykF7DfU0JKpScnJzvsMwWbOP6YUL5s8IsGUNUBohN23A0tZsMFnswGBsAfgAnAk3b7vwGwy8k5vcA+KRPAfgK3A+ht166coqIiys7OppzkOBeZQYWijgyiucW5ZJhkoO8Pfu+kxRWylpiXmkH091O/85RgVl4G0am7p1L09GiRfUwgj2YQvXSW/ukdQiadTRZPQbVIxMBmEP1ibyBFfR4uw/W48H4G0ZS8FPrp8E8O+/OK8whG0K8nfxXQh2OJeXmpugyiB5P0BCPo6I2jvGe0adPGISto+y7tXZxRucS8Z5CWQfSehffQC6teENh6J9mXmJeb306+SnEZIKJRJOAz5fUsnd7YPD2iEQN2uMB+3O4WAGdKehPAqwAGgi2/egHAdoZh7uNqPG3aNERERKBJ06YOx6ylo4WjjpGNUP9QNpr82m4nLdwf2Xim7TMICwjDxfSLmLpnqiqmUcIDwjmqV/JhhEdGNsqmSAwt26H3jnzoy/7YsUQGuzGC4Qx2ZKPUEgODLhdSS8y7RhkjG6/c9QoAYPGJxeXTKNbpMudTJ7b4zshGasHdAICY4KO8Z3CNaLRq3AoWsmD63um8JeaVNLJxI/cGaofWFtiH50c2nm33I5pELURW0Q+Ysa+HNo3CQVWtOrF/SjEc+9iGRBeIaB4RHSX2z+bRADaC/a114MMPP0R2djbi4xzzCqz7rafPyka3et3wb9K/LlrIEyC688pOfPzPx6qI2Qj2C4bJYkKpuVRkH0bIJhsuYjBuvNcEDd4qwKqn82QSDFsiUGR6FoEGP4guMS8Y78sGAJSYS/DlgS/LYzayirIAsDE6wvAN2biZOwwAUDN0FFwl9SopKUF6errD/lq1aiEhMwGf7/uct8S8UmSDiJCUk4T64fVF9FE1AaI7r7yJsdv+1WI2OPC0aKSBfTLYj17UgOMohyv+BdCc60BAQADCw8MRdsExnuCZgqv4c0E7n5SNbvW64UrWlfKlXty4Lxuv3vWqagJEg/3Y6pSFpkIJfRjhlmwICPKsMf0M7mkvcwZRG4pMQKChPlxWfXUb78uGv94f217cVh6zcTz5OAChIxpW1C8byXmpiAmOgb/+CbhK6pWSksK5v1atWmga3RRbX9xankFU6bKRWpCKEnMJ6oXXE9mH52VjQMvZWoCoEzwqGkRUAvbboq/dob5gf+JC6QBXn74Dk4FD0zkPvZQfj4TNI0R0ZUXZsmFNsPVfEldGT1vkDRCdsHMC191ACbJRLhqlUkQDkCQbIlaR2AeIyi0bxaZiBBqCwVti3m28Lxu2AaJvbnoTgFjRANQuGzfzbpYFRbpO6sU1bQKwogE4pivPLbb//VWObCRmJwIA6keIGdGwUvXpyj26hkFFVMXUyVcAXmYYZgTDMK0YhpkFoAGAHwCAYZhpDMMstjZmGGYMwzADGIZpzjBMG4ZhpoGN1/iO8+oHJgP7x7u8gTaX/gAOTIbZIvaHrlzZqBdeD3XC6uBA0gEBreWRjW8f+hY9G/Z00sL7shHkx5YuFT+CZYsRgmRD4jJVW9l4b8sMFJvk+0wVmYoQaAiEq6Re8qEc2WhVvRUA8Kw6cYZ6ZSM5L7ksVsF1Ui8+0QAqZKNDrQ7lwl4ZZchGUk4SAIicOrGl6mSjTY2zYJg3oa1GgWdXnVg3AKMBXAFQDPZb4z6bY4sA7LT59wcALgMoBJABNu/GI3bXZNk/iWgmKm2VVp3YHft5bhPKL5ESeazM1SgD/xhIPX/uKaIP91ejEBGZzCb68/SfZLFYOI56bzXKvmv7CEbQ6VunZehjAnGuRomLIxoxgkivd2sVSam5kJKyHyMiA5kty2W4X6Khq4fSPQvvsdnDrkYhiiSiw7L04Yj3V6N8f/B70k/U09XMq3Q25azEPtS3GqX7gu40dPVQmz3sahQiPyJaW7533rx5DitOANCxY8ecXvvfxH8puyib44h3V6PM/m82+U3yI7PF3Z+R51ejEC0kIoa2xvUns6XUutPrK0C8sVVJMCgRfU/sEy6A2E/pbptjLxFRL5t/f0Hst1YQsZ/me4lok8NFBYxk2PNSfrxPxWx0rdcVh24cKq9xwY88AaLbE7Zj8IrBiovZsP4l5t6IhhUjKo1syJZoi8WgC0Td8FXILX4cPRc9Lcs0SsWIhpXbY2TDmqzr7b/ellRinkV9Ixs3c2+iVoht+Bv3yIaQEQ1bikxFeOrPpxQZs5GUk4R64fVkSLNfNQGiZ1Imod+SDbd9zIY6a51IkAwrviQbXet1RUFpAU7dOiWiD/dlo1/TfooMEHUvGJQLIxD/NjDyIyC2uYyJtqwYEOT3K+qGyROzwcZoBNrt9X3ZyC7ORkRgBOY9Nk9SifkK1CMbRMROnYTZL/N0lA0u0dDpdKhevTrntQMNgVj7zFpFBogm5iRKCAR1hudlo02NTyrFbNyuqFM09nMFJApnaF48Pv3nUwlnKks27qp9F/SM3kmJd1f4ZrryIIM/AJlGNMpHMOYACwGYyx46sghGBXIGiBaaChGgD+A44tuykVmYicjASIcMor4sGznFOSg0FTrJkFlZNpKTHfNsVK9eHXq98yq/9gGiSpGNxOxEiYGgzqjaANHbFXWKRveJbp1+vd2rGN9T2oiIkmQjyC8ILWNa4kSylF9y+WQjOS8ZxJkWpWplw0/PPqSFTyVx4HSKJBCYCCDhLRkTbbHYy0Z85veSrpNfko9Q/1AnR31XNlILUlEjpAaAigDRuuF1cSlDankk5cuGdVm788RVFbJx86Zjvh1n0ya2WGUjqygLt/K4shFUvWwk5Vx1IxDUGVUjGwseHy77ddWCOkWj26dA90nSzu0+CfUf/BERgRGIy4jDsDXDVD2NcketO3DiltRfcHlk4+cnfoaO0eFS+iWvjmwYdCsAAKXmYvGX4I3BuAmMnwBEToYna6OsfeZeNIl6B8Aq0dfIK8lzIRqAr8pGSn5yuWgArGwcfPkgHm/xOIgIN3OlVAlVtmzczGNfk+PUiS2sbNy4EeRwRIhoAKxsnH79NJpXa468kjyvjmxYKBdJOddQLzzMA314XjaGd1go+zXVgjpFA5AmG90nseeVcSP3BlacXYEnlj2hWtm4o+YdOHnrJCwk9YvQfdlgGAZJOUm444c7vDqN4qebDwAwWb6F4KqvooI8jfB0IbZHmv8DYCBm/yc+QDS/NB8hfiE8rXxPNlLyj6NGcFSlo3odOy3w5YEv0eHHDj43jWKVJ77iYhaLHtevO2bKrVdPeJyD9b18YdULXp1GSc1fiVILUD/8e0gtMe+aqggQvT1Rr2gA4mSje+9KkgEA9za8F5ue24T9iftVKxt31LwD+aX5SMhMcKMP92WjXng9TH1gqldjNgy6IQAAk2UPeGujSF5FYoSnS8wTLcH+pHqiYzb4RzSs+JZspOQXokbIenClKx92xzCfjNlIzktGsF8wwvxd/3WfmpqK0lL3RMPKJ/d94tWYjcQctjJxvfBSSC0xz48mG55A3aIBCJON7g8A3XYAcGzXs1HPctkYsmIIxwOSD+/Kxh212Ehm6dMnVtQfIOqn9wMAlFpGwWkGUVmWqRrhSdlgGD8sefKC6ADR/JJ8hPjzjWhY8Q3ZKDZ1QnYxUCPkOoSUmPcV2biZdxO1Q2uDYRiX7ZKSkjj316/vWPuED28HiFZkBV0PqSXmhaHJhtyoXzQAVjY6j+U+1n0S0G0bgM/APhycy8Ybnd/g/cXlxnuyUSu0FmqE1JAYEGqPfLKx5OQSpBakcrTwnGwYdOxfPCZLJzjk2ZA5D0ZVTKPYBohujXO90oqIRIxoWFG/bFg/YzVCPoOQdOWz/p0lsSdlyUZyXjLvtAkAJCYmcu6vV28uXBVic4atbKw+t5qjhedkIyknCf56f1QP7gIpVV/FocmGrHg7Y5jEzZH8FMfMoLvG2jX6rOz0iZyXICIyW8z09YGvVZVBtO/ivvTE70/I2McVcjeDaFZhFhERFZYWVmkGUd1EHf14+Meyf/1OFMcQjWjmdiZP50wgzgyiMlFqLiTjjjaUWagnopVO2+WX5BOMoKUnlkroJYvUmkH0yI0jBCPo8PXDxJdBNC0/jYpNxUREVGoudTguDGVkEO2zuA8N+nMQ79Vmz57NmRX09Om+ZJ9BVAw3c2+W/z/3eyl/BtH3t7xPTb5pYrPHeQZR+dhJMmcQ9faz0yubb4xoOKPTu3Y7PoarkQ0AuJh+ER/985GqYjasAaHy4f7IRkRgBEwWE/ou6Vul0ygGnYEtEx8fD4zcCsQywMLLMifassUIT49sTOh1HJGBgxCXMRjrL3zI2S6/hP0rXvjUiS3qHdlIyWcrk7KrTlxnEK0WXA3+en8cuXEEbb5vo+ppFMesoNw4mzqpV+83uCrExod1NOXnYz+j56KeVTKNkpiTaLe0VVyJeWloIxty4DOisWDhAoEtXctGy5iWqgsQbRkTgCtZV1BkKpKxD/dlw6AzYGCrgVUas9E4g9D7s19tpkisibYATLwDSLgsex6MqggQBZZi9sEmeOrPzzljNrKLswFIqWBqRZ2yYRWN6iHWLJeuZQMAGkQ0gL/eX9UxG0k5SYISV3GJRmhoKMLDq4Gv6qsQ2tVshzMpZ6okZuNK1hU0imxkt1eTDVXg7SEViZsjXFMn+SmcTVlcT6PsTNhJwVOCqc/iPlRQUuDiOs6oummU3VeCZSwmZo/70yizDswiGEFjt4713DRKWbGzUp3N9EilKZL5xFWITV4mkKenUYYsr0+GSaCVZ9+vdOzQ9UMEI+jojaNu9qKuaZQZ+2ZQ+LRwjiOup1FS8lKo7fdtqeaMmqorxJZVmEUwgn4/9TvvFXr27OkwbdKyZUubFtyF2MRw6PohipgWQV3nd/VoIbaaM2qScYfRyVHVTKN4+9nplc3rNyBxc0S0aBAJkY2Ra0e6MZ9bNbJxM7cTwQhafe4LD/Uhn2zsurLLSQuJsiGqmip31Vd5mUDekI2tcVsJRlB8RrwMvahHNt7f8j41+7aZk6PCZKP1nNZkMkv9PFS9bJy6dYpgBO27to/37KZNmzqIRt++fe1ayScbL6992UkL92TDGoP0y/FfXLRShWx4+9mpiYaIzRFJokEkJECUiOjw9cOKDRC1WLIpdKqOvtgbQEJLzIvHfdlgA/ZcIUI2nAhGRiDo4Kv9XQR5+oZsDFvdiDZf0pE1QHTFmRUEIyijIEOmXtQhG8NWD6PuC7q7aMEvGyeST0jqu4KqlY2NFzcSjKDE7ETXZ1ksFBAQ4CAaw4cP52jtvmwcu3mM0vLTXLSQLhunb50mGEG7r+zmaal42fD2s9Mrm8/EaEiHP0A0vyQfj/z2iGJjNhgmHLHV2uNSRiSElpgXj/sxG3fVuQsAMPfQXIzbNo413UoIiNngWabadAyDo6/0dxGDwV1iXl6M8HSA6KIBl/BQs6dhocE4cmMGsoqyAADhAeEy9aKOmI2U/JRK6ccdcR2zUT2kOtrXbI8iUxGGrRmmipiNa9kLoGf0LuqcsKSnp6O42DEdP3eyLu4S82K4s9adqBZcDdeyr+G5lc/JGrORkMUmJGwS1YSnpRazoUQ00QDAJxsh/iH4c9Cfig4QbR7dApcyYiG0xLw03JcNACg2F4sPEBWYByMrEAJyoahfNqwBoj8f64iuCz7AnqtLEeYfVp4uWh6ULxsp+SmoGVKTpxV/gGh+ST6O3TymigDRa9mrUC88nPdn7TyHhrOsoO7LBgCkFaRh8+XNsgaIJmQmIEAfwFPbxYomG0pDE41yXMuGbQZRJcpG8+jmuJgeB6El5qVTxRlE4+8HRg4VnGiLQGAgJOmab8jGsDt3Y2Cr+lhyaif85XSMcpQtG/wjGlb4l75uH7pdFRlEr2W3RYOITPAl9bp2jft303X6cfdlo2Ptjtj64lZZM4gmZCWgYWRD6BihjyxNNpSEJhqVECYb8ZnxuJF7Q8L1PScbsdVicSP3BvJLdFCbbMw5NMexQXwNYOR9QOxhYOESUXkwhGd3Vb9sWDOINo0KRXphruhCbMJQpmwQkQjRAIRMo9imK7cunRWH52XjWnYUGkS0BV8G0StXrnDub9SoEU8f7suGbQbR/r/15/hjQpxsxGfGo3FkY5F3ocmGYvB2kIjEzRHJwaBcuA4QLTGVEBFRXnGeYgJE91zdQzDCZqmeYwZR+XE/QHTpiaWVAxidriLRE038yGUmz1JzKcEIWnh0oci7UH+A6LMrhlDMFwH04iqGXGUQdQ9lBYimF6QTjKDlZ5aL7IM/QPSbf79xshRbKJ4LEG04qyF9uG0c8WUQHTNmDGdW0Lw8x9fMjTyrUdacW+OihbAA0fZz29PrG16XdA8KCxD19rNTCwZVDq5HNqzFu4asGKKYaZR64exwaFKONUEPf4l593F/ZOP59s8jKigKScd342T/ziDOKZKXgYRgYPxuINL5/ECxiQ18CzAEiLwL9Y9sZBRm4Z4GD2HhE4MADEFW0RLZ+1DayIb1s145W6QQ+Ec23r77bTAMg+VnlitqGsVsMSMpJwkNIhqCL6lXQkKCw77q1asjJERo9lh5RjaeaPkEiAjf/PuNpGkUIkJCZoKEEQ0r2siGt9FEwyn8q1He7/6+YmI26oTVAWArGoAqZKMsyLNOp95ov/EwGM4pknlA5BbwZRAtMZcAAAL0YkUDULtspBWkoUZwTRh0v+F0ygNo/M1Qn59GsVbztEq2OPgDRE0WE6bunaqomI2beTdhJjMaRDQAXwZRrqmTxo3FPqzlCRC9mn0VE3ZOkBSzkVGYgdySXDSOkioagCYb3kUTDZeoJ0DUX++PGiE1cD3X/ktZobJht4pEV5YqPDMQ2Dr0HlB8vF0MBv/S12Kz1BENK+qVjbSCNFQLrgbAgJYxa/BgU3El5sWhDNlIzEmEntELqmLKjWvZMOgM2PLCFkUFiF7LZn+3WNEAXMkGl2jwx2dw4b5sNIpsJLnEfHxmPAC4MaJhRZMNb6GJBi/CZWPN+TUSri+fbNQNq2s3omFFQbLBs0x12bqp6NdkLz49xhXk5lo2rFMn/np/N16HOmUjvTAdMcExABxLzPuqbCTlJKFOWB03l/SKCxA9n3ZeQh/yyYajaABcspGZmYns7GyH86WJBiB3gOiDSx9EbrH9HwvcsiE8h4YQNNnwBgZv34A6+Ljsv5+U/Xd8paM9G/XEuTfOlf/yW8giYhkWUCEbACsbADBE9F3WC6/HMaJhxSobD4GVja0AuojuwzVW2ehVtu0EUPaFGB8PTJkC/PJLhVwArGD83/8Bb78NREbidQCl4SEu/nqxysaDYGVjE9jX5u7UiS3PlP3X+rNYCPZnJCfGsv9+VPZf7qqsQigyFSGvJK9cNIAK2cCqWLy9eQYebtYBQX7PSu6DG6tsPAhWNrYBuEvmPqyy0RsVn6m6AMqqeQooLMaPVTYeAisbGwFUxDFYZWP0ptGICIiQ2McLZf8dWvbfeZDyd9617GuICIjgSMxmlQ0AeA9XrnB/D4ifOrHFKhvPgpWNFWDFQzhW2fju4HdORh6tstEXrGz8g4TMBEQERCAqKMqNe7fFKhu9wH6udgAQkp9DDFbZeASsbKwFECxzHyrC29GoEjdHZF114gz+dOULjy6kvov7emU1yqj1o+jOH+7kaVXFq1Hi9oioRVIZi8VCa86tEVyIzVoD4kDiAZlehzpWoyRlJxGMoI0XNzocKzUXUkJmfyIykMWyQnIfrvHOapTei3rTkOVDZOzD9WoUK8m5yXQu9ZzEPtxbjfLGxjeo3fftXLRg05WvXOm42gQAbd68WdptV8L91ShWjt44yluI7bX1gwR8r0nBK6tRvP3s1FadKB/+ANEmUU2wL3GfV2I26oXXw/UcvvwDVTSNEr8YGJkKxN4rKNEWFzuu7MCAPwYIziBavurE7RENK+qYRkkrSAMAVAuq5nDMoAtEo8jVKCh9Ag8ufdqnplGScpIkBoI6gz9AFADe2vwWei3q5ZWYjWvZ1+ymTexhRzauXOnDeVT61Ikt8gSIlphL8OQfT/LGbMRnrkGTKMfPtvt4Yxrl9sRnRGPBwgUce00e6Em5AaK1w2ojtSAVpeZSnpYelI3yGIzewMK8imdzZLhgwbByf+P7hWcQxSMoMmUAcCcYlAvly0ZqQSoAVJo6qYwB/vqliA6q5zMxG0Q9kZhzTcLSVj74ZWPOI3O8FiB6JesKj2gAAIMrV1pyHmnYsKHgvlzjvmz46/2xYvAK3gDR+Ew9Gkfug5jaKMKpatm4TfH2kIrEzRHOqZMniUhqiXc++EvMB08Jpjc3vinx+uKnUVafW00wglLyhE4ZyTiN4jTRVjjRxEiizAbkbon5sVvHupxG2XypDcEIupZ1zZ1X4gTlTqMsObGEYATlFbtOxOSsxLy8VM00Smp+XYIRtOLMjx7qQ1iJ+ZozatokyROLuGkUi8VCwVOC6cv9X/K27d+/v8O0Sa1atSTepyvkKzHfdX5Xh2mUYlMx6Sbq6KfDDUhqiXlhVNU0itefndrUifysBRt85Z2RjW0vbsOEXhMkXl/8yEZ0UDQAdt25MGQY2eAtdnYVGH8ciNTB3XTlcZlxsBDXX3/syEZeCbsMLkzOAY1ylDuykZyXjDD/MIT4u07EZL8a5Xzat+7crBOqZmQjKecHAED9iMmQUvWVH2GrUWqF1sLJWycl9iFuZCM5LxkFpQVoFt2M98rcOTQ88Ysh32qU1PzU8lU1VuIz42EhC2KrzYGUqq/CqaqRjdsUb5uOxM0RzhGNBcSOCDxL3hrZICK6lnWNRq4d6fEA0ZPJJyUGQ0oY2XA6ghHpJMjzCrmbrtw6mpGQmcA5srHw6McEI6jU3IOsAaLyo7yRjXf/fpdiZ8cKvnqpuZBWne1BRAZSa7rydefXEYygGzl1SUi6cum4HtkoNbPfKxaLhW7l3ZLYh7CRjd1XdhOMoDMpZ1xezWKxUEhIiMOIxjPPgJylK3cf90c2rO9lYWlh+cjGmnNryn7ON0hounL38PjIhrefndqIhvw8BnYk4E94a2QDYAO4fj/9u8djNsSPaFgRMbIhsFy7YwyG++nKGYZBcl4y2s9tzxmzkVtSA4EGfxh0p+Aqg6h7KG9kIzkvWVTSKoMuEE+22glgIBYeU2eAaGJOIgw6A2qEiCvEJh7+pF4AMOfQHLSf296jMRuXMy4D4E9clZycjPx8x9iSpk17gK8Qm3TcH9mwvpcvrXmpPGbjYvpFhPqHln2+pZWYF0dVjGzcfvi4aADAQHhbNno06FElAaLWdeaZhZkirw/wyoZkwbDFfdmoFVoLk3pP4gwQzSvJQ5i/9QHnOl25eyhLNsSKBosBREuwPUGdAaJJOUmoG1YXel1zSC0xLxz+ANEhbYZ4PEA0LjMO9cLrIcgvyOWVLl26xLm/efOX4ao2ivvIsxrlve7vlQeInk45jdhqsTYVmTXZUCO+LRqHrb9M3pcN29Uog/4c5PDXOD/8shFkCIK/3l/CiIYVDtmQRTBscV82bEvM28pGbnEuQv1DISRdufsoRzaS85JRK0R8Gm6G8cMvAy6oMoNo5WRd4kvMi0dcBlFPyMbljMuC4jOci0Ys+AqxuY+8GURXn1/NMYKjyYba8B3ROMzxS3NoOnDAmi1PObLxcseXbQxdDK5lg2EYRAdFI7NIyoiGlTLZiG8GjLxHRsGwRT7ZWHBsAZLzkgEAuSW5CAsIK2tx+8hGcl4yaodJy2xoHyD69+VPpd6oC+SXjcTsRLscGsqSjSl7pkjsw7lsxGXGoWlUU94rOBeN5uArxCYP8slGXkkeCksLOVposqEqvB0kInGrzP5JRDPhGAxato/2T7JpvIKUECBqsVho7qG5sgeItvquFY3ZPEbCNcsQHeTpDlfI3QDR9IJ0ImKXwb246kXqsaCHXQvHDKLy470A0aLSIoIR9POxn926eqm5kD7a1opS8/WkhgDRJt80ofe3cC3RdcwgKj+uA0RT81OpoKSAiIjMFvHZP1kqB4haLBaKmBZB0/ZM4z1z4MCBDoGg4eHhdgHUbAZR9jOlzADR7KJsghG05PgSInL2XqouQNTbz06vbOof0TgwGdg/3nWb/eMVNbIBsMOg7255V/aYjUBDIApNXH8B8OB0ikQPTAwAEla4MYLhDPdHNqKDomG2mNH/t/7Yn7gfUYH29RB8e2TDWtvG3QyZBl0gpjxwEjHBg5CUMxgbL37Mf5Jo5BnZMFlMuJZ9zUlQpPdHNmKCYxDkF4TTKadlCxDNKExDdnG25KmT5s2b242iKn9k41I6+zpaxLTAH6f/QM9FPUWXmJcHbWTDXdQtGkIkw4rCZKN5teYeCRANNASWl0sXhKAYjLuAyKegmBLzduh1ejzS/BHEZcbhSvYVjvgX35UNa7VeeVJxGwAsxdf/NsOAP6YqNmYjKScJJovJRTVP78sGANQMqQmGYWSJ2YjLHAkAvFMnRITLly877GenTexRtmxcSL8AAIitFoum0U1x6tYp0SXm5UOTDXdQr2iIkQwrCpMN+3Tl3HORrnCUjQBDQHnND5cIDvKsD8WUmHfBmK5jUD24Ok6nnBZcG0V+ql42ErMTAUDGVNwGfN7nuKIDROMz2cRsrsuGe1825AwQvZyxHgDQNNr10tYbN26goMDxj5ZmzZyNhChXNi6mX0TNkJqICIxwKDGvyYa6UKdoSJEMKwqVjRohNaDXSSlFXlk2AvSZrkc0JK0iqaJCbG7KBoHwSPNHMH3fdGyL38bRwvdkIzFnCaICo3izgorBPkBUabIRnxkPBgwaRvLV7VCWbDyx7AmYLFK+Y17A5YynUCMECA94F64yiHKNZgDORjSsKFM2LqZfRGy12PJ/28rGm5ve5DhDkw2lok7R2C81rTfX+cqQjV+f+hX+en+cunXKrWmUAMMJFJsSHJu4vUxV2bJhIQsyCjPweOzj2D9iP/o04a5e6WuykZTzN+qFy59a2iobz7ZtCKIvAaySvQ+pspGQmYD6EfXhr/cX0Fo5svHrU7+WJ6USS1xmKJpGNQNfUi/XK05coTzZsBcNgJWNf4b9g+l9pjs5S5MNJaJO0eg+UebzvS8bAFBkKsJDvz7kVsxGgL4Bis3HUB4gKmseDOXKRnZRNixkQbXgauhWvxsYhsGSE0vw0faPfHoaJTGnBepHJENqiXlXGHSBWPzkZQxs/TSIBuNE8ley9yFFNuKz4nmmTexRhmx0rtsZpeZSjNowSvQ0CptDoxv4knpJFw1ASbJBRJyiAQAda3dE7bDaSM5LxrA1w7RpFBWgTtHo9inQnfthzUv3Sez5DnhfNgINgfjtqd/cChANMNyLYlMNIP45YGRvD+TBUKZspBemAwCqBVUr35dRmIFpe6f5dMxGYnYw6oV1hNQS8/ywAaK/nuqETvPeVcQ0SnxmPJpEihENQAmyAbC5XvYl7hMdsxGXEVe24sR1Ui8u0YiIiEC1atUc9nOjDNm4lX8LuSW5nKJh5UbuDaw9v1aL2VAB6hQNQJpsOJUMK96XDfsAUbGyUTe1BO8tsACxBCzcKXOiLSvKk430AlY0rPVeAOCdru9wZhCtQP2ykZSThPoRT0JK1VfhGPBM252KidmIz4xH4yjXQZHceF82ooOiRQeI5hbn4lb+LZsVJ85lQ9jSVj68LxsX0tgVJ82jnY/EdKzdUQsQVQveTuQhcavAJlmX04RdDkm7+PB+Uq+dCTup/lf16WzKWWGXK0u0ZdIxdom2QDTxaZkTbVmRUPVVNFdISFKvtefXEoygm7k3HY7NOjCLYATNOjDLydnqTOqVV5xHMIIWH19ctmcCcSX1kotScyENWV6fDJNAK89yJcuSgyxyldQrszCTYAT9fup3N/rwflKvlLwUavt9W6o5oyZdz7nu8kqHrh8iGEGHrh+yO1I5qVdpaSn5+/s7JOt67rnnJL4G7yX1+v7g92SYZKBiUzHvFQ5dP0QR0yKox4Ieakjq5e1np1c2r9+AxK0yojKDCsX7slFUWkREbNlkpxlEXWbynECUOZiElJiXjjJk44dDP5B+op5MZu6H+KJji3jKeKtPNk7dOkUwgvZc3WOzdwJVhWwM/IMhi2WFR/pwJRsHkw4SjKDD190tPa8M2fh8z+d2GTsd+eX4LwQjKLc4l+NohWxcvHjeQTIA0OTJk914Dd6RjTc2vkGtvmsl+AqHrh+i307+5qKFYmTD289OTTREbI7sGsstGpIkw4r3ZYOIaNCfg6jP4j6VZcOJYOSF+NOCAQ1tRjCcpyuXD+/LxoQdE6jOl3V4r3Ij5wbN3DfTyZe7umRj3fl1BCM4/iKeQJ6WjWLTICIyUE7RUo/04Uw2lp5YSjCCsouyZejD+7JhZf2F9U5HL8duHUsNZjVw0QcrG2vWPMApGitXuptSvuplo9eiXjToz0Gir2KxWOjHwz86+XwoQja8/ez0yqbeGA17Or3ruK/zWJ6YDD68H7MBAG92frMiqdeFMy5Xkbz9fX/8+mRTmxgMYSXm3cP7MRs3cm+gdih/YbG/Lv+F97a+5xMxGwlZCQjQB3CUiDfCkzEbBl0g/PW/40JaXzT59oUqjdm4lHEJNUNqIjwgXIY+vB+zAQBmixnGnUanMRvn0s6hdfXWLvpgYzbOndvOebRVq1YS7tuWqo/ZOJNyDG2qtxF9lRu5NzB221gtZkNh+I5ocMElH6Lxvmz0bNQT/9wzHy98swP+rdu5XEWSE6TjWKvv+7JxM++moAqmwzsM95kA0YTMBDSKbAQdw/VrbISnA0SbRq/CA42rNkD0UsYllysRxON92dDr9Nj8/GanAaJnU8+idYwr0QCAF3D2bA+HvQaDwUVWUDFUnWyk5j+I1IJstKkuvmZT3fC62PriVi1AVGH4tmjIhhdloywPxt33v4hhR8zQW8oejE5WkZgtZidJgXxbNm7m3kSd0DqCrmAtMT9933R8/A9X8TB1yAZ/PgkjPD2yUdUZRC+mH3e5EkEa3pcNZ+nKi0xFiM+MR6vq/KMS5845ZgRu3rw5/Pz83L99AFUlG2dS3wEAtKnxFdwpMa/JhnLQREMwVSwb8WM4p0jMEeEgoxFISAB9+qnDMlWTxeQi+6DvysaN3BuCRjSsjOk6Bl8/+DXa12zvpIXyZSMhM8FJBVNbjKgq2Xh94wzklfwqex9W2SCKxaX0s2heLdgDfShHNrrU7YJgP/Y1Xky/CAtZeKZO2Fi7c+ccp11atWopz62X43nZOJNyAX46PzSPfgxSqr4CFbLRIKIB/HRcoqXJRpXi7SARiZsj+SmOwaD5KZxN3cPDAaJxcUQjOhLpKwI8K1aRTCwP8lx2ahk9uORBh9UoDy99mJ764ymeTnwrQNRkbkS6iTr64dAPkq5isVho86XNqgoQtVgsFDo1lGbsmyGwjwnk6QDRi2mPEJHBY6tRUvIuE4yglWeDiWvpqzwoJ0A0vSCdvtz/JcEIyijIcHnFq1evcgaCfvLJHUTEteTTXTwXIDpq/Shq+31bcrb0VQqnb51WSICo15+dWjCo/NgPmcmBh0Y2KqUKP1rxx21kIOcUSa3QWthzbY9DUq9CUyEC9Hy1L3xrZCM5zwQLWVA3XEjtC0f2J+7Hw78+rKqYjZT8FOSV5IlIxW2Ep0c2mldbi2LTADz5x9MemUY5n3YDABBbrSmklpjnx/sjG1be+esdjN8xHjHBMYgKinJ5Ra7RDABo1eoEXNVGkY7nRjbOpJ4pCwSVXmLeFpPFhCeWPaGQaZTbEx8XjSEAsj1wXRllw2UtkvuBhCJgPBymSJxlEM0qykJkYOW23PiObFzJ+hoA0DjyU0ip+tqjQQ/VBYheTL8IAGhRrYWIPozwdICoXrcEgYZ6HonZOJd2DnpGj+bR2yC1xLwwlCEbX/X7CnqdHjlFObwZRM+ePcu5v1WryeArxCYd+WWDiGxEA5BDNgw6A5YNWqaQmI3bFG8PqUjcHOGcOgkjoq7Ersn3BG5Mo7hMtDXRJg8GfwbR4CnB9Oq6V4mIqNHXjejDbR+KuBH1T6NYcyvkFjcgvgyirrBmEB27dazip1HmH5lPjJGhwtJCCX1MIE9Po3gig+iYzWModnZs2b+yyFUGUXnw/jRK7OxYip4eTTVn1HSZJfiVV15xmDZhGIby8/PJPoOo/Mg3jXIz92bZ9Jh97g/3p1GsGUS7zu/qxWkUrz87takT+VkJ4ByAh6CYkQ3R1VT5l75ueWELjL2MANgqpsJGNKyof2TjStYVxATHINR/N6SUmLdiXY1yKuUUTBaun6VyRjYupl9Ew8iGCDQESujDiKpcjXI65WtZrnsu7RxaxVhXX0grMS8O745slJpLkZCZgA+6f4CaoTXxb9K/Tq/CNXXSqFEjBAcHg68Qm/vIN7JxJuUMAHDk0HB/ZMMaIHoj9wYuZ1zmaFEVIxu3Kd42HYmbI06DQQ8RUQR5fWRD8AiGM/gziN7IuUEwgr7991sJr0G9Ixsvr32ZOv3UqexfV0hIbRRXWOslJGYnKnZkY8CyAdRvST83+5hAnh7Z+O1kV7JY9ETkbnZKovpf1adxW8fZ7fXdkY1zqecIRtA/8f9UqvmRXpBe6UyLxULR0dEOIxqPPPKIXR/KH9n45t9vyH+yP5WanY0Quz+yYX0vS0wllFPE9fvr0ZENbz87tRENz9AJwDZ4bWRD9AiGM/gziJ5OOQ0AmHd0nqQS82od2UjIYhNXsYgvMW+PjtEhrSAN7ee2V2zMxsX0i4iNdjdxlRGeHtl4tt0eMMwg/HHavQDRvJI8JOYkcizz9N2RjbOpbNxF6+qt4a9nA50XHF2A1nNaV4rZuHnzJjIyMhyu2Lq1/Xul/JGNMyln0CqmlYsl+u6PbFjfy9c2vIZ+S/t5KWbj9uI2EA3AK7IRf1EmwbDFtWy0iGEDAy+mX5RUYl6tsnEl6woaRTSy2eO+bMQEx2B8z/GKDBA1W8y4nHFZpgyZRng6QBRYivUX3UvqdT7tPAA4SVzlm7JxLvUEogKjUCOkRnmLx1s87pDU6+TJk5xXa9+eK0eMsmXjTOoZtKnBl3pcntUoozuP9nKA6G2Et4dUJG6OCMqjUQXTKHFziEYwRHr7cu1Cp0iEwD2NcjL5JMEImnNwDgVPCaYHlzzIWxmSG/VMo5jMJvKb5EdzDs7hOOr+NIoSA0TjM+IJRtBfl/6SsY8J5OlpFHcCRBcfX+yigqkV35pGeW5lDeqxoJvDUdsS82dTztL06dM5c2gcP+5q2F950ygWi4UiP4+kKbunCOxDlQGi3n52emXz+g1I3ByYP3uawIRdHpINt2MwxOIoGzsSdhCMoPOp52lnwk5aesKdyprqkI2rWVcJRtDGixudtJBHNiKmRdDVLGfnV61sbLq4nmAExWfEy9zHBKoq2dh48SNR547dOpbqf1VfQEvfkY32c3X0yrra5KzEfNvv29LAPwbSc8895yAZBoOBioqKePpQlmwkZicSjKA159aI6EM+2Zh1YJaTFrLKhvce9sDTXuvbmy/cjc0RUZlBZZQNp4IRQjSRIcocSFVVYn7JiSUEIyivuOKLyWKx0KJjixwyiApD+bKx5fIWghF0Of2yi1buy8atvFtERFRqLvX6yMaMfXdR8JTg8qBVeZlAnpaND7a0pOs54gJEH/n1EXrkV/vgRmeoXzaKTcXkN8lA3/3nT86WvqbkpVBOUQ61bdvWQTTatm0rsCflyMb6C6xAOxd6Z7gvGwmZCeW/19y/37LJhrckozuADd7q/zaJ0bBHhpgN3iDPJGD8ciByDaqqEFtidiKiAqMQ4h9S3uJq9lWM3jTaZ2M2LqRfgL/e3yYYlAv3YzZqhNSAhSwY9Ocgr8dsnEk9gtbVg6Bj7O9BDozwdIDo9L6nUCdsEFLyB+Ovy58KOu/UrVNoV6OdwF7UH7NxNvUsSi0m3Fnra7iqjeIPf5w/f97h/DvuuENgT8qJ2Th28xiiAqNQP7y+yD7cj9loFNkIDMNg3YV16PVLL1+M2XgebMCXV7hNRQOQLBuiVpFUbSG2pJzVqB9R+Ze0UWQjzgyiwlG2bJxPO49m0c2g1+l5WsqzGqVXo15eDxA9k9IUbaqnw50S864xoioCRGcdiMVjv3/GGyCaVZSFxJxEEaIBqF02jicfBwC0r/kCXGUQPX/+PEwmx+8V7kBQZyhDNo7fOo4OtTuAYRgJfcgTIFonrA5OJJ/wqQBRhmEMYL+Q1nrtJrw1lOLm5ojkomoCp1HcisHwcCE2IiL6jB77DfTIr805j1oziPZZ3MenplH6LO5DTy57UkQf7k+jeDNA1GwxU8iUEPpi73MkthCbeCaQp6dRhASI7rm6h2AEnUg+IaEXdU6jvLP5HWr2bTObPdwZRBcvXswZCLp582YJvXp3GqXx143pf3/9z80+FB8g6o1pk/4Alnij7/J78GbnbmyOuFW91YVsyBbk6XnZuPOH2vTaepCrdOUDlg2ggpICiT0oTzbqf1VfZMp1IjllY8OFDU5aeEY2EjITCEbQpoubSErVV/FMIG/LxvcHvyfDJEOlpFXiUJ9s9Py5Jw36c5DdXkfZeO+99zhFI+FagsSevSMbmYWZBCNo8fHFMvQhn2w8s+IZJy0ky4Y3RON3AA95o+/ye/Bm525sjrhdJt5ONjyyisSzshHzRQx9tqsPsW+R8wyiRETnU8+rfmQjrziPYAQtOrZIQh/uy8bOhJ08y4fll40NFzbYBcz5hmw8t7IBLT6uI64A0dc3vE5t5rRxsxf1yIZ1mednuz7jOFpZNvr27esgGRFRERKXtVupetnYdWUXwQg6deuUTH24LxuHrx+mK5lXXLSQJBtVLRmhABIAGKq670r34c3O3dgccVs0iIgOEcWFEY2o7sFlqp6RjYKSAoIR9MvxX4gvXXmxqZgazmqo+mmUozeOEoygA4kHJPbhvmwQEa04s4I+3PZhlUyjfL7ncwqbGmbXl/plw2IpIaIhZLHo6UzK15WO9VjQw8VflmJQh2xcybzCM1pWIRs1a9ZwEI3777+fTGYTjdk8xmUhNtdUrWx8feBrCpgcQCWmEhn7cF82iNiU76+se0WuaRQpsnAHgCUA9pZNg0QB+BrAXACrAdzp4tyhAL7l2H8P2MCcA2CDf3QA3gAwG8APZX11LWv7XFlfc8v23y/6NUh54QrYHHFXNKo0D4b8snEh7QLBCNoev71sj7Cqr2qWjd9O/kYwgjIKMtzow33Z+PrA11UWs/Hiqhfp7nl3cxxRv2wQldKfp7tXmkaxWCwUMS1CRBInPpQvG2vOrSEYQUnZrs7dS8nJwZzTJmPGjKGMggxq93073qqvrqk62XhpTSebekVy4r5sHLt5jCI/j5QrZkOKaCwEG0H9CYAUACsA1AXQG2wk8mwX5/4N4G67fboyyWAAzCy75mwAvW3a/AggHsB4AE/Z7J8EIB2ATtRrkPLCFbA5IlU0nAoGiCbWI3I5dOYO8soG95eTb8vGuK3jqO6XdWXow33ZqKoA0Xbft6NX173q5Kj6ZcM+ZiMuI84mJkUulC0bxh1Givkihnf6Y+vWWZyisXDhQiJyzCAqjaqRjTvmgl5eyyXQcqCoAFGxktEUwGdl//892KWLHcv+PQhABoB+Ts6tCeA8x/67Afxf2f//Vva5eciuzYyy/a/Z7X+jbH9NUa9D7AtXyOYIl2jsGuv8x807gvEPKaLqq0Cm7J5CkZ9Hcnw58ctGrZm16PhNl78cLvCebDy89GF69NdHZepDPtmYsW+GkxbuyUZhaSEZJhlo7qG5Llr5lmy89/fjBCPoZu5NmXtRrmwMWDaA+izuw9vOWerxQ4cOlbexlY1rWdfEvwQi8rRsFJuKyG+SjuYcBEmt+sqPfLLRbX43J9VlBcmGWNHoDqBD2f+fBLBTxLnvAJjIsf8+AI3K/j8RwF8cbf4uG9Fg7PZ/B6AAImM+vC0M8onGrrGOojETRPsnVW4naopEISXmBfDcyueox4IeTo66lg3rKpQSU4nEFSnekY06X9ahj7aJS2XtGvdlY8HRBTxf6NJl4/D1wwJjUnxHNpp+A6o5I8IjfShVNhp93Yje+/s93naDBw92kAyDwUCFhYWV2qXkpdCEHRPIZHbns+A52bDGWu27NozYz5SyZWP+kfkuWvDKhqRnHoAYsAlOjCLOOQighYvjzco+N+/a7TeATQK0kOOciwD+Fn3/Ul+4l7fK7J/ESgWXaFhlQ3IMhjpk4465d7gYUifikw0ioqGrh6pmGiUl7y+CEfTH6T9k7sN92SAiSs1PpW/+/UbWaZT5R+aTbqJO4M/HN2TjwSW16OGlDOWX/OaRPpQmG9ZlnkLqFDVp0sRBNDp0CCWudOVWtsVtU9w0ysKjC4kxMpRbnENiC7GJR54AUSKiX47/ImUaRapoPF32M+4lsH0sgEM8bV4tu+Zddvu7le0fare/Xdn+V0Tfv9QX7uWtAhvJ4BSND0HUBUR6nUjBsEXZslFqLiX/yf70zb/f8LT0nZiNrXHB5QXk5Md92bBWG5UzZuONjW9Qy+9airgL9ctG7Zm16fUNTan2TGlVX4WhHNnYmbBT0DLPjIwMzmmTl182kLPaKGaLmbrM66K4mI23Nr1FsbNjy/4lvuqreNyXjZu5N6UGiEoVje8BFAEIFNh+IoAxPG1+B5BpH9gJ4MOyz1MDu/3Tyu4hquzfIwXfv9QX7uWNxU4yKonG/8oEQ2cjF26tIlGubJxPPU8wgrbFbRPQ2jdkY+a+hhT0Gchk3u+hPtyXDbkDRHss6EHPrnhW5F2oVzaSc5PZUatTv7lVYl4YypANocs8t23bxikac+e+R1wZRK0oMUD03oX30pDlQ2z2qEM2JAaIShWNcyLjM84DqMXT5iaAtRz7twCI49h/AcCfZf/fDsAEwfcj9YV7eeOUDJrJCgYAymbsBCMIRP1A9LfYLJK2KFM2Vp5dKTJgTphszDk4R+D17PG8bLy46hnqMi+U3Ckxz498sjFu6zgnLYTJhtliptCpoTR973QJd6FO2dh8aTPBCIrLiBOcrtw9vC8bw9cMp7t+vIv3Ks4CQQ8ePEjO0pVbUZJsmC1mCpsaRtP2TLM74rOyIUUyapX9fI0C23cFsIWnTauya/6f3X4/AHkAFnCckw521YkOwFIA1YS+BgNUBsMwTPbWj4D/pjoevAHkfM/+bw6V7QsEG7fbDUAQgEPTAB0DdBkrofdYAGsAPAG2UNMqsMWb5KQv2OJGLwEoBbuc2fWP6UjCEUQxUQgyByEnx74QEBdvgR0Bm1D233GVjnaI7oDdz+5Gs+hmyMnJARFJKHT0Ldgl3s+BDVIeKPJ81xy9cgqd6jyOnJzLYH8Wa8AWypOTKADrweazuQ/ARgDiKkuOaD0CRflFCPMPc/KzaQ32c/QkgH5gl8iHObSKy4hDXk4eYkNiBf6MbXkEwDwAL4P9mXwPtlienPwPQDHYQmxFAN51+4oHLh9AOIWjmq4aCvJK8H2fwygt6IiXl89A51HNEBH4jNt9VIYBsBzsz+IBsDWoOsjcRwzYgl/9UfGZqlN+9HDCYdxZ607en/GBAwcc9un1ejRs2BA5OYEAVgJ4CsCDYF9TRUXnAARg7YC1eG3DayjML0ROgNjPE8AWL/sR7DR/Cdg0DOJrdMZnxCM3J9fJ5/p9sJ+p98B+pt6ScJ98/Aj2e3Yg2JxYj4g6OzY0FmueXIPpe6cjLzePvd1K6MH+LAYA6I2IiMxwALlU9uQWSE0At8BW5xSCkEqt1QDcAPvlY0sk2Mp9SznOeRvsl0gvAD8QUbrA+2GXrqgJhmHCIamuu4aGhoaGhteJICIpdsdLWaXWywDaEZEnykdLQnUjGgBynY5oAMg5BdT/A0h8DwiPdHKFuz/iHdHo3LkzDh065KLFUbAjG7FwNrLBfw3XfPBBS3zxxS2wf5lwj2xYyIJGXzfC6M6jMe6ecQ7H+e9hBtgy8x/CfmQjJycH9bvXR9CwINxd/278PvB3BPsFi3wVZmza1BCPPJIPYD6kjGzYv4b91/bj4V8fxt4Re9GuZjuwK7GeAjuNuQZcIxvu/iwef7wD1q0zgf2rV/zIRk5ODup3qQ8MA8Z0HQNjLyPHKNEhsH9Nt4H9yMa4rePwV9xf8Fvg59br+OijFpg69RaAIZA6ssH/Xk4D8DnYpIKOIxtCfxat5rTC062exqT7J1Xan5OTgc1/N8YWf+CJlm/j8RaTRd2/sHvIBvuzuAxnIxvufqYGDLgTa9aUAvAHsBH/JSWi35J+2PnSTnSo7XwkJTMzE40aNXLYP3ToUMyePdtu779gfzfuhP3IBlD2uXy1PmK6xWDT85vQIqaF6NcxfnwLTJqUDLbcvLiRjY+2fYQNlzYgYGGAi/eSwH5HzSz7r+PIhrs/C6AU27Y1Qp8+RZAyspGTk4P69euj2fRmiAyOxOohqxEeEG7XKhMREY0iwH5heYp+AP5TkmQA8MEYDa7lrbabfV4NJ7Rq1UpAK9cxG8KuwXcPrmM2Tt06ZZd6XMo9cMdsZGdnEwDaeGajWwGibdq0JHdiNuxfwxd7v6DgKcF2SXNcpyuX52chPWbD+l5O2zFNUoBo9wXd6dkVz8r0OtyL2RB2DxPIWcyGkPNv5t4kGEErzqxwOJadnU06A+jpP+pJjtkQ9hpcx2zI87OoiNmYdcDoZiCos0RuzmM2srOzCcGg1rNbS47ZYF+HtJiNexbeQ0OWDxHwXrqO2XD3Z0FE1K5dS5Ias2H9/d5xYQdPzIZnn41gp0we93Q/Yjfxk2pKodunQPdJ/O1s6T6JPU8Ab7zxhoBWnQBsA/uX9EOwn9ERdg2+exgI4A+w03NDwWagrWDvtb0w6Ay4u+7dLq7Bx8dg/1KYADaVfWXuqXcPNj23CfsT9+PNTW+KeQkAgNdffxPAIgDPgp0+/EPU+fav4b/r/6Fznc4w6GxHeMIA/AWgLdg4l4MuryEW9vyGAHaibDk7gGuirzO642jMenAWpu+bjg+3f2j9crChK9ikfCfB/lWVi1JzKY7ePIoudbvI9DqeAft9tBTACABmCdfgwwj28/QR2BEOcecfus7+ddq5bmfO4xYT8EO/IxjYqj6GrJiBVec+EHBP4u6BHaX8G0ALsHFARyRcg+8emgDYAaAE/12fiY6128JP7+fyvMOHD3Puv+uuu5yc0QPs78YRsPFG+ZUPFwDrB61H9ZDq6P1Lb5xLPSfmZZS9jhfAls/4GcArYHNLucZkMeHIjSMCP9cMgMlgv6veA/Alxz24x2uvvQl2xefjYLN7rxN9jY61OmLb0G04l3oODy59EDnFHpkh4YRhmBCwxdI2V1mnQvG26UjcKuDLo1G2mfZF0I0cT61O8N5qlOdXPk9d5nWRqY/KIxtWS8/OZs18z9U9PGWT+ZBnNUrdL+vSB1s+cHJUWIl59xA/smH/Xs46MIt6LepFRaVFTs6oGNk4emNPWebEfe7feiWUuxrlk+2fUI0ZNThHfWzfS9vVKEdvOEv97i6uRzbkIY4af62nMZsjiC+p19NPPy0oI6gjjiMbtu9lSl4Ktfu+nRurzYjEjGwcv3mcYATtubpHxPWVuRrF/vf70PVDVOfLOlxZfD05mvECgLme7EPyvXn7BiRuleHNDPouvfd3BDWcpaeETDEfajF4RzYazmpI//vrfzL2USEbRUVFNGHCBCoqqvwwTC9Ip7c3ve2VPBuJ2YkEI2jV2VUuWilPNrjeS+vUz83cmy6nUX441JT0E/US08PzoUzZeHDJg9T/t/6cx+zfy1JzIf18rAtZLHoiWun23XLjWdlIyUshGEG/n6pGfEm9uDOCdhDYU2XZsH8vC0srZCWrUOr3mDDZ+OnwT6SfqKe8YueZTLlRnmxw/X5b30uT2US5xbnW3Z4UjXkAunmyD8n35u0bkLg5UiYbzmqdJGYfpKbfGHxKNq5lxQt46ErBdZ6NfxP/9VpSrxVnVhCMoOs513laKk82uMgszKSaM2q6jNkYscaPOvwQQu6WmHeOsmTDYrFQ9PRomrjTebp8R0qJaAitO69TZZ6NDRc2lOUM2UGu8mykpqY6yQj6sojeXOfZICL69eSvVGtmLY/m2Xh57ct0x9w7JF5febLhjNEbRtvGbHj72amJhoiNm/2TKouGXeCnr8nGbye7EYygW3m3PNCHMjOIvr/lfar/VX2BrdUhG3wZRNt+34ReW+9H7paYd41yZONy+mWJpeFLaejqRqpM6jX+n/E2peGdJ/XasGEDp2j8+OOPInv0flKv9nPb0yvrXpF4bSK1yIZtUi/y/rNTEw0Rm1Oyt37EisZW7qqeVtn4ZHsEESW4upQbVI1sDF/DUOs54eRuiXnnCJONvov7ktkiJTugeNnoNr8bDV4+WEQf6paNrMIsYowMLTj6EblTYl4YypCNX0/+SjCCUvNTRV9drRlEH1zyID3666M2e7hl4+OPP+YUjZMnT0ro1XuykVecR7qJOpp3ZJ7E61pRl2yQ95+dmmiI2JxiH5TDRWr+CTJbmhBRQyoxXXR1OTfwrGyUmkup2vQw+nAbQ+6WmHcNv2z8eFjsX1O2CJeN3OJcMkwy0PcHvxfZh3pkI2RKCMVlxJXvs6bhvpB2gdwpMS8c78vGmxvftCmyJR5b2Vh33lnqd3eRTzYsFgtFfR7FMVXkKBsPPPCAg2SEhYWRyST1ZyVMNipLkFgcZWP3ld0EI+hE8gk3rmtFPbJB3n92aqIhYnOKENFgSaStcbUpdrZBldMo1iqP/yVNI3dLzPPDX2KeiGjZqWUenUb56xJbGv5c6jkJfahDNqyxJyaziSwWC328/WOq/kV1m1EO35eNjj92pJfWvOTW1UvNhTRmcywlZCo/QPRi2kWCEfTXpb84jlbIhsl0lUJDQx1E44EHHpDcNwu/bGQUZBAROYkjEkJl2Zi5byZHLhx3UIdskPefnZpoiNicIlw01B2zMWbzGKrzZZ2yKQvpJebnzJlDjRo1ooCAAOrYsSPt3r3bSUtWNj791HHY9ty5c5SYnejxmI2xW8dSrZm13Piy85xs7Nq1i/r370+dOlWn+HhQXl5N4pONnTt3UseOHSkgIIAaN25cnnDJYrHQsyuepbFbx9J9C++jJ5c9aXem78rG5u2biZnAUMT9EQSAVq9e7fIKO3bs4JxKOHfuHFkDRDMK9PT35U899Brcl40lJ5YQjKD0gnQnLVjZOHmyPudr/fjjjx3OmDp1KnXq1IlCQ0OpevXq9MQTT9D58+dd3AUrG5mZd1D37nc4fCaJiBIyE+jueXfLMo0yePnTdO/CeyVexxmekQ3b97J27Rjat682WSyuZcPZ5xJAS/L+81MTDYGbU8SIBpE6ZcNisVDDWQ1p9IbRNnvFy8ayZcvIz8+P5s2bR2fPnqV33nmHQkJC6OpV7gdkXNxIIgKlpr5FN2/eLN+sw7aeDhC9e97d9MyKZyRc1xbPyMamTZvo448/ppUrV1KDBqC8vBrkamQjPj6egoOD6Z133qGzZ8/SvHnzyM/Pj1asYDNhWmM2DBMNNHMf15emb8rGtGVs5tRZv84SJRoXLlzg/EwSldKn/7RWdMzGW5veoubfNudpFUc//hjN+fDasGGDQ+sHH3yQfv75Zzp9+jQdP36cHn30UWrQoAHl5TlfSnr9+p+UkwO6dKkunTt32OEzKWfMRqOvQ+ndv+Vclm9Fftmwfy8ff/xh2rgxyKVsOPtcAtCT95+fmmgI3JwiVjSIKmTj3oUBZLHECz5PHPLJxrGbxwhG0JbLW+yOiJONLl260KhRoyrta9myJY0bxz2vvWPHDvroI+uPoGpXo+QU5ZB+ot7NeJDyq5Enp1EA0F9//UiuplE++OADatmyZaV9r732GnXt2rX832M2jyEYQUNXDRWVrlxeqlY2puyeQuHTwslsMYsSjczMTKdtlB4g2mVeF3ph1Qu87YYPH8QpGqmp/EGzKSkpBIB27drltM0HH3xAzz7bgGynUew/k3LIxq287whG0B+ne5E7Jead49lplJSUFDIYQCkpPcnZNIqLz6W3n51e2dSbglxG6oV3xs6X9mPRgJpgmN4ArnigF9fpysWw5vwaRAREoGejnnZHXKcrt6WkpARHjhxBv379Ku3v168f9u/f7/S8qVOBmTMjAUzAokVNsGPHjkrHezbqiU3PbYKe0cNsEZfamkUPrnTle67tgZnM6N2ot4Rr2uM6XbkcFBbWgKt05QcOHHB47x988EEcPnwYpaWlAIB64fXgp/PD4pOLsfr8ao5eHNOVy4976cqFYYQ1Xfn+xMXoWq8rdIy4r6YOHTqgdu3aeOCBBxw+kwZdIJY+dVFyunJhuE5X7oxiUzGOJx9HlzpdeNseOHDaYV+zZs0QExPDe252Nvt9Ex0d7eL6B1C9+gDYpit/5JGelT6T1UOq45+h/6B6SHU89OtDKDIV8fZtz6HrjQAAXeruhNB05eJwna7cXbKzs2EyAbduzQJfunJXn8vbCU00yqgX3hlNovYhq4jB08vb4ErWXg/0Io9srD6/Gv1j+8Nf789xVJhspKWlwWw2o2bNmpX216xZE8nJyZzn1K5dGz/99BPuv387rl17FS+9lICdO+/H7t27K7Xr2agnNj+/GWEBYYjPjEdBaYHIV+goGzsSdqBOWB00i24m8lrO8LxsuKqNkpyczPnem0wmpKWlAQD2Ju7FPQ3uwdYXt2JAywFO+vAd2SAajwNJF9C9nvDrWz+TK1euxKpVq9CiRQs88MADDp9Jq2wMat0At/K+BFtxWW7Ey8aJWydQYi7B3fW4axVZyczMxPnz5x32d+t2B28fRIT//e9/uOeee9C2bVun7So+kxW1UXr2nAF//4rPJFAhGwseX4BAQyBv//YcvH4Q1YOro2GEuNoo4vCMbFR+LzvAWW0UZ59LhmHuk+VG1Ia3h1Qkbk6RMnViS5LCYzbOpZ4jGEHLzyznael6GuX69esEgPbv319p/2effUYtWrQQeDdsgOjSpdztS82l1Pzb5rJMo3T8sTE9v/J5CdfgQ/5pFDgM+V8h+2mU5s2b09SplVdc7N27lwDQzZs3yWwxU8wXMfTpPxVBjJsvbaZPtn/is9Mo1s/235fZaRTH91EY/fv3p8cee4zzmMVSQkRDiMhAl9K/c+d2XSB8GuWbf78h/8n+LmresGzevJlz2mTOnOrEVxtl9OjR1LBhQ0pMTHTZzvEzuZdMpiDasQOUnBzHeY7ZYqYPt30oahql35J+NstlpVV9FY680yjc76Ww1Sj9+/cnAOvI+89PbepEKnPmzEHr1q3RuTN3tUeh1C2bRjHoGPRa1EtxIxvfH/oeNUJq4LHYx3hauh7ZiImJgV6vdxi9SElJcfhL2zkfY+fOPnj++Qvgqvpq0Bkw77F52J+4H08se0LyyMbN3Cdw9GYCHm4WJfJ8IXhnZKNWrVqc773BYEC1atVw6tYppBWkVZoqupR+CZ/t+Uxw1Vf58ezIxu6ru6Fn9OhWbxyAjzBunLTrdO3aFZcuXeI8xjB+AJZi/YWuaDXnTa9Po+xL3IfOdTojwBDg8or//vsv5/5u3fRgP1PXOY+/9dZbWLduHXbs2IF69eq57MPxM9kDe/d+grvuAqpXHw6Hqq8Acotzsf7iesFVX80WMw4kHkCP+j3K9oiv+ioO+UY2nL+XfhBS9bVr164A0FzyDagZb5uOxM0p7o5oWLFdjZJbfNqtazlH3MhGbnEuhU8Lp4+2cWc95cb5yEaXLl3o9ddfr7SvVatWToNBuRg4cCDNn9+Y2B+LZwJE5x/5iRgjKC1fR+5UfXWNfCMbcPqXeMXIxtSpo6hVq1aVjo4aNao88O6r/V9R4GeBlYpcEfGnK1fzyMZzK5+zqUQ8gYhAp0/zB0naM3DgQOrdu7fLNkoIELVYLFTnyzo0dutY3iv169fPYTQjODiYSksvEFcGUYvFQm+88QbVqVOHLl4UlpTwgw8+4PxMvvpqG5Irg6g1kH33Fftl9Mod2RD+Xroe2Rg4cCAB+Ie8//ys8s3rNyBxc4pcokHEysbPx6oTUUNSQrryHw79QLqJOrqaJTYZFLdsWJe3LliwgM6ePUtjxoyhkJAQunLlChERjRs3jl588cXy9rNmzaLVq1fTxYsX6fTp0zRu3DgCQCtXriQhGURjvoihg0kHRd470VN/PEXd5nclOUrMu0a6bOTm5tKxY8fo2LFjBIC++uorOnbsWPlS4Yr3kpWNkpL6FBsbSP/3f/9HZ8+epQULFlRaStj/t/70wC/ciZissvH5ns+d3I36ZMNisVDdL+vS2xveLn8fJ0xgf92vX3+T431kcf2ZdI23ZSM+gy2KuP7CepdXMJlMFB4e7iAaPXv2LGvhmEH09ddfp4iICNq5c2el5ZUFBRUVgO3fS+uSa+7PpPB05QmZCU5fy+z/ZpP/ZH8HgWZRpmyIey9Z2TCZ9HTgwIcOn0sAT5H3n5+aaAjcnCKnaLAkElFTmnckmuIznCWzchd+2bBYLNTu+3b0xO9PSOyDWzbmzJlDDRs2JH9/f+rYsWOl5W/Dhg2z+TIjmj59OjVt2pQCAwMpKiqK7rnnHtq4caNNH65lw1oq2WQ2CS55XmwqprCpYfTZrs/I3RLzwpAmG84S9AwbNoyI7N9LVjYKCmrTww+3IX9/f2rUqFF5cqRScymFTQ2jKbunOO3vp8M/0eX0yy7uSF2yYX3oTlk+pdL7Z5WNP//sSERSPpOuscpGz59BFssKt16Dc7hlY/HxxTyJuliOHj3K+dmqPPJYWTa42gOgn3/+ufwM+/eSiE0i16FDB4fPJAu/bIzbOo5KTCVOX8uQ5UOo+4LuLl6t8mRD/HtZQufPt6XiYtDAgX72n0tvPzs10RCxOUV+0SDKK75Azb7182qA6J6re5zkzhCD9AyiwuFPVz5q/SjB0yjb4rYRjKBjN4+V7VGubIiDlQ2uPBsHEg8QjKB/E//lvUpWYRZ99993qp9G+fnYz8QYmfJU15WZQOxnir/EvBRKzYWUW/wUERmosPR3j/TBJRuvrnuV2sxpw3vm119/zfmg27TJvrqt86qv8sFfYp6IaO/VvQ7TKNapog+2fMDTh/JkQzxOp1G8/ezUREPE5hRPiAaR9zOIPrPiGWr+bXOJVVJt8b5siInZ+L+//o/qflnX7kHq27IxZfcUCpsaJqgOhLXSqdpjNoavGU53zL3DRYsJ5EnZICqla1mPUcNZVTeN0npOa3pt/Wu8Zz311FMOkqHT6Sgry/EPEiXIhsVioe4LujvEbCRkJhCMoHXn1wnow2dlw9vPTk00RGxO8ZRoEFWWjStVKBs3c2+S3yQ/mnVglkx9qEc2YmfH0ivrXuE44ruycf8v91P/3/oLvoIvBIg2/aYpvbXpLZ5WE8iTslGVMRtp+eEEI2jJiSUuW1ssFoqJiXEQjY4dO7o4y/uywRUgaq3pkpafJrAPn5QNbz87NdEQsTnFk6JBxMrGcytDKauwPlVVgOj4f8ZT0GdBlFmYKWMfypGNL/d/yXn8UvolghG0+txqJ9f3PdkoKLlAAZMD6Kv9X4m6gq1scKNc2UjKTiIYQX+e/lNA6wnkC7Kx9nwswQiKz3BdBfTs2bOc0yZjxozh6UN5svHa+teo9ZzWIvvwNdnw+rNTEw0Rm1M8LRosbIDopfQ6Hp9GuZHTkUKmhNC7f7/rgT68LxtnUs6Qycz9UJq2ZxoFTwmmvGLnc8G+JhubL9UkGEGnb4lfUj3rwCz6+sDXLlooUzasQZEpeSkC+5hAVSEbYVNB6QWLPNLH//56g+p/5U8WSwS5Sur1ww8/cIqGsERmypCN+3+5n04mn6Q2c9rQq+teldCHL8mG15+dmmiI2JxSNaJBRJRIvRYFejxmY+RaP6o23UCZhVc81If3ZYOIaGvcVnrst8cqTaN0+KEDDV4+WMD1fUc23t4URvW/0pPF4t7Pe+/VvaqZRhm2ehhPfAYXE8jTsnHsZj8iMhAR/1JZsdz14130wqrBxJdB9LnnnpNcSI3F+7JBRJRekE4wgmbsnSGxD1+RDa8/OzXRELE5pepEw/MBosdvHifGyNDs/wJJrhLz3HhfNuxjNi6mXSQYQSvOCF1y6Buy0fzbxvTqulByVWKeD2tSJDXEbFgsFqr3VT36319SSoZPIE/KBlEpmcxP08trGVmnUTILM0k3UUfzj8wnV3k2LBYL1a1b10Ey2rThX6lSGe/LxvoL6wlGUMwXMW6XmFe3bHj92amJhojNKVUpGkSekw2LxUIP/PIAtZjdgkpMB0iuEvPOUZZsTNgxgUKmhIjMJKpu2bicfrksJsV1iXkhqCVA9ELaBYIRtPGi8NwXlZlAnpSNUnMhPbOigawxG9aHbkUeFG7ZiIuL4xzNsM/mKwzvysbYrWOp5oyabpeY9wHZ8PazUxMNEZtTqlo0iFjZaPu9P22Lq0FyBYhuuLDBbimY9EJswlGObER9HkXPrnhWwvXVKxuz/5tNfpP8KKcoh1zl2RCKGmRjzsE5ZJhkKE/mJo0J5GnZkDNA9L2/36N6X9Wz+5k4ysbPP//MKRq//y4114f3ZKPHgh40ePlgUenKnaNq2fD2s1MTDRGbU7whGkREJvMVImpKZksDSs4Vn2bblhJTCbX8riX1XtTb7svo9pCNpSeW8qw24UOdsvHIr49Q70W2NTrkkY2u87u6yMTqXdl46o+nqMeCHjL0MYGqSjb+S3KW+l0YnX7q5KQScWXZGD58OKdoJCW5IwlVLxuFpYXkP9mfvv33WyKqWI0yY5/UeA0iFcuGt5+dmmiI2JziLdFgSaRPtke5PY0y5+AcYowMHb1xlOOo78vGpJ2TKHRqKKXkpdB7f7/ndol5NchGYWkhBX0WRF/s/cLuiPuyYU0JnZqfqqiRDZPZRFGfR9H4f8bL1McE8rRs/HDoLjKZ9SQ1QDS7KJt0E3U078g8Jy0qZKNp03oOktG0aVOJd29L1crGnqtbCEZU+j6zXUkmfTRLlbLh7WenJhoiNqd4VzTcj9lIy0+jmC9i6KU1L7lo5duy0fb7tvT8yufpv6T/3Kr6qibZ+OvSXwQj6NStUxxH3ZeN7KJsqv9VfUVNoxy+fphgBO26sovnPDFMIE/KBvu7MIS2xekkTaNsvLiRYARdSr/kolUWJSV14BzNGD58uOQ7r0zVyca0PY2dZrpdeXYl1fmyzu00jeLtZ6cmGiI2B7777jtq1aoVxcbGelU0iKTLRqm5lPou7kvR06Ppes51nta+KRtHbhypVNHS3RLzapGNNza+QQ1mNXAiAUS+GLMxbc8UCpkSQsWmYpn7mECelo2X1jSSFLPx7t/vcqTUd+SXX+byFvJyn6qRjQeX6OnBJVHkbol556hKNrz97NREQ8TmFG+PaFixysb//gojoQGi7/39Hukm6mhb3DaBvfiebIzeMJpqz6xd6a8fW9kQUv/DEWXLRnmJ9E1v87T0Ldm47+ea9Pjvj3mojwnkSdmQGiB6x9w7aNjqYbztXnzxRU7RuHpV2s/dOZ6VjWJTMQVPCaQv9vqTmHTl4lGNbHj72amJhojNKUoRDSKiW3nHyGRuQkQNyWS+7LKttTiW2NTTviQbBSWgiGmB9OG2Dx2O7kzY6WatF+XKxsGkgwQj6J/4fwS0lkc2AiYH0PnU805aeF42sgoXkGES6PuDd5O7JeadM4GqSjbWnh/H2z4lL0VwfZM6deo4SEbz5g3kunU7PCcb1qrTh6/PJyHpyh/45QE3elOFbHj72amJhojNKUoSDZZE2nO1DrWe4+d0GuXojaMU+FkgvbDqBd4hVW58QzaWnhhUNn/t+i/7NefW+NQ0ykfbPqLo6dEiRmvcl42rWex5ZovZKyMbq86uKqv1wZC7JeZdM4E8LRtvbWpO51P5A0SXnVpGMIJ3WvTcuXOcoxmjRvmTq3Tl7uEZ2TDuMFLk55FlZQb405XfyrtFRCTxe5BIBbLh7WenJhoiNqcoTzRcx2yk5KVQg1kNqOOPHV0sQRSC+mWj96Le1GtRY2J/xNxLX2/m3qSQKSE+FbPRek5rQcPplXFfNiwWC72y7hWvTKO8uu5VajG7BclRYp6fCeRJ2bAGiOYU6Wlb3ASnrV5e+7KgomLfffcdp2gsX96MXKUrdx/5ZeO+n++jJ5c9abOHP1359ZzrdN/P9/nqNIq3n52aaIjYnKJE0SDilo0SUwn1XtSbqn9RvfwvTPdQr2xYs2Kyw8rylJh3jnJkw5oZU1rOEPdlwxsxGxaLhRrMakDvbH6nbI9vyMbkXW1dxmw0/roxvbXpLd4rDRgwwEEyGIahtLR44quN4j7yyUZ+ST75TfKj2f/NtjsivsS8eBQrG95+dmqiIWJzilJFg6hCNu6e508WSzy9s/kdMkwyyLy8T52y8fH2jyliWoTNqM7tIRvT906noM+CJL4GIjXKxtmUswQjaPOlzTZ71S8brgJE4zLiCEbQ2vOuy8KbTCaKjIx0EI0OHTqUtcgitcjGlsts/owzKWc4jt62suHtZ6cmGiI2pyhZNIhY2TibUp8WHatGMIK+++87D/SiLtkoNZdS3S/r0usb7Gs48MtGz597UmZhpsSevS8b3eZ3owHLBrjZh3yysezU/7d33uFRVOsfP6lAaBFQkC4BBFEQL2i8ior1KoKKDdu9V71e9Ye9IV5xNwmE3mLokY4ovXdJaAFCl5KYQCAsBBJISC+72fn+/tgM2WRndsrO7Mzsns/znOd6Z8+eM6vZvJ+c8855+f49KCcbk5Inof7I+hxbhb4rG7MOz0JgVCAKyt1/H1NSUji3Tb791llcjCEbw7YPQ6sJrdzkW4iTjTYT23gg4rqTDa1jJxUNCY0XvYsGAKw6MxtBUQQRU4NxLk/J1QxnjCMbbGLgkewjHK+6lw32l9jFgouGW9m4VHgJAeYAzD82X4E5PJeNjekbBRJSlZGNJxY8gWcWPcPzqu/Ixvh9gWATRF9Z9goiEyIF3xsbG8spGlu2bKnTU/+y0Xd2X7y58k2BXsKyseGvDZLnro2uZEPr2ElFQ0LjRe+iserMKgRHB+P5JU+qWmLegTFk4+G5D6Pf3H5ueriXjSp7FXpM62G4bZRJyZMQGhMq+FeueDyXDcCxUjRi5whVtlEKygsQHB0ssJJnfNlgGCuA1wEEIyMvHuFjwmFKNAm+7/HHH3eRjJCQEJSUcCVO6lc2bpTfQGBUIBKOJIjoLZwgyjAMYnbF+MI2itaxk4qGhMaLnkWDlYxXl70Km92mWon52uhbNg5eOigyGdL3cjbun3O/AtsmdfFcNuIOxKmWs/H7qd9BzERE8rPxZQOwYevZRxEcTUDMBPst+932Li4uRkhIiItoPPLII27epU/ZWJO6pvrx5UyRc7iXjaKKItwz/R5fyNnQOnZS0ZDQeNGraNSVDBZn2SgoP6HS7PqVjSErhiBiakT1c/ZC+I5snMtvJJAT4Qmey4ZaCaJvrXwLvWb0Etnb+LJhs5ejx7QmIGaC5ae+dtt33bp1nNsmsbFC96Y/2fhs02foOKWjxDn8IkFU69hJRUNC40WPosEnGSyWwhRMT2kBoAPEHlcuHf3JRlZBFoKigjgef3OHsGzcMuYW7L6wW8KYznhHNmJ3t0fYKIKSyiSV5lBONkbuGsnTQ5ps2Ow23DLmFozYOULCXRhfNvrO7oN2kxoIHlc+dOhQTtE4epSrinNd9CUbd0+/G++vfV/GHOJl41z+ORnjAxrLhtaxk4qGhMaL3kRDSDJqsACIwOITzf1mG+Wbrd8gfEy4jDLR7mWDzXlgGAYVtgqJYwPekI2eM+7GkBUtoESJeX48l42Zh2byPJ7IIl42ks4ngZgJUi6lSLwL48rGtdJrCDAHYM7hmXh9eTs8MIfAzizn7BsREeEiGS1btoTdLjYY6kM2rhZfBTETLPlzicw5hGXj882fy/xus2gmG1rHTioaEhovehIN8ZLhoNyWgS5xIX6Rs1FYUYgmo5tg2PZhMudwLxsA8NWWr3S5jXI69zSImWBN6lIoUWLePZ7LBgCUVJZg9uHZHm2jfL31a9w+4XbYGTm/2I0pG0tPLgUxE1wqvASbvRwF5S8BCEZlVe2fqYyMDM7VjHfeeUfijNrLBvuZs4uyPZhDOEEUAA5fPmy0bRStYycVDQmNF72IhlTJYPGXBNHJ+ycjODoYlkKLB3MYM2fjp50/oenoptV/kXleYl4Yz2Vj2allHudsdInrgg/WfSBrfgfGk41/rf4X7pl+j9MVG7KLBqFLXO1tlJ9//plTNJYskbMqoK1sfLDuA3SP767AHO5lg2EYPDLvEaPlbGgdO6loSGi86EE05EoGi6/LRmVVJdpPbi/iGXsxGEs2GIZB57jO+PeafztdNYZseJIgmnotFcRMsC5tnay5azCObNgZO1pNaIVvtn5T6zrXoV4DBgzgPHY8NzdX5uzayAbDMOg0tROGbhyq0By+liCqeeykoiGhuRAfH4/u3buja9eumooGKxmvLX9NlmSwWApTMPj3hrhe2ha+liA6LWUaAswBAnv/UhAnG7G75QYO5WRjb9ZenpLwvi0bI3eNRKPYRh4WDmQxhmwcvnwYxEyQeD7R5TVn2Vh67EuEhYW5iEbfvn1lz+3A+7LB1u7xXCid8SXZ0Dx2UtGQ0HjRckVDKcmowZEgerGgDTLz5T5FIYR3ZaPMWoTbJ9yOt1e9rfAc7mXjxNUTsFZZPRhfGdl4f+376DilI0+egnFkg/9JFIBLNnrP7I3Xl78uaz5u9C8b5kQzmo5uyvtzx8pGvXddt0wIIRgxQsrTOXx4Vzam7DcjNCYUJZX8eRXyEJaNfnP7yUg0dsYbsqF57KSiIaHxopVoKC8ZLBY8s6iBz2yjTEzujaCoIGTkZagwh3CC6N6svXjxtxc12UYpqSxBo9hGMCea3fQyhmywHLx0UHBl41z+CRAzwbJTyzyayxV9y0af2X0E5cpmL8cbH7TnFI19+/bJumNXvCcbzywKw5ML3Z3y6wnCORsAUGGrkHBQWF3Ulg3NYycVDQmNFy1EQz3JcOArORvFlYvQYhzBB+sioGSJ+droN2djwfEFIk9LNIZsnMo5hQBzgOA2yvh9HVF/ZH0ZjzGLQZ+ykV2UDWImWHh8odt+DMOgc+fOLpIRHh4Om03J74j6slFqPYV6MQQTk5vD0xLz/Ag/jfLlli/1vI2ideykoiGh8eJt0VBbMlh8QTZG7R6F0JhgZBUEQskS867oUzYem/8Y+s/vL7K3MWRDTM5GZEIQXvytGZQoMc+N/mQj4UgCAswBuFZ6zW2/tLQ0ztWMN954w+M7dkVd2diYvhHETHAm93Z4WmLePYbO2dA6dlLRkNB48aZoeEsyWCyFKegeH4L1f90KoyWI3ii/gfAx4fh006dQssQ8P+JkQ37egDTZyMzPFPUXbm2MLxuWQguImWDRifpQosQ8P/qSjRd/exF//+Xvgv3Gjx/PKRpfjBvg8d1yo55sfLLxE3SY3AEMcxaelpgXxrCyoXXspKIhofHiLdHwtmSwWKsyAUSAYdrjWilXWXUlUF42fvzjRzQY2QBXiq9UX9FeNnZd2IUTVz2pLyNeNkyJJjSObSwjSc44stFrRi+X7ZGpB6YiJDoEN8q3QYkS8+7Rh2xU2CrQcFRDUU85PfLII66PtQYSBA0n2HdxlGJ3XRt1ZCNiagQ+Wv9R9f/zrMS8OMTJRlQSf86WMIrLhtaxk4qGhMaLN0RjdepqTSSjBgtidzczzDbK1eKraBTbCN9t+67OK9rLBgCUWkvxvz/+p9o2ip2xo8PkDjJrPwBGkQ32SOgb5Tdurmw8Mu8RPLv42eoenpWYF4f2srElYwuImQhKbF5eHoKCglyrtT7aD3EHesNaFQRgpdI3X42yspF+PR3ETLA2ba3TVe1lo6ii6ObPovxHqxWVDa1jJxUNCY0XtUVDe8lwYKScjX+u/ieaj22O66XXOV7VXjYOXz6sas4Gu3edfDFZxtgsxpCNksoSREyNwLDtw2ApsCDAHIB5x+Y59fB92fh4w8fVWwhcOSs1LF68mHPbZMKECXB8F17HvotBWHWmrqArhXKyMfXAVITGhHIk/GovG4DjO9h2Uls9bKNoHTupaEhovKgpGnqRDBYjyMbuC7tBzARzjsxx00t72VAzQXTAkgHoPbO3YOARxhiyweZs9J/fH6HRoTeL3NXgu7JhZ+xoPbE1Pt/8ueC7hwwZwikaaWlp1T1s+M/aToJVXz1DGdn4x+J/4IkFT/C8qr1s6ChnQ+vYSUVDQuNFLdHQm2SwsLLxfxsaQW8JotYqK+6efjcemPOAiEJa+pINeYd7ucpGZn4mAswBSDiSIO+WXTCWbHSJ6+JRITbP8L5sHLx0EMRMkHQ+ye27rFYrmjZt6iIZXbp0qdWP67hy5fFMNsqsZag/sj4m7HMpie4ElY1qtI6dVDQkNF7UEA29SgbLleIjqKzqBKAD7Mw5lWaRLhuTkichMCoQR7LFJq3qQzbcn3opRG3ZGLZ9GJqObipzlYQP/csGu2cfFBWEkzkneXr5nmwM3zEczcc2F/w9sXPnTs7VjK+++sqlr7NsrE7V3zbKpvRNIGYioqSAfmTj4bkPe7DC6JFsaB07qWhIaLwoLRp6l4waLEi51AY9Z4ToYhvlctFlNI5tLKO4kvaywbI5Y7NH2yjltkA0H9sYX2z+QsYYQuhbNqKTotEothFO5ZwC4DiYyh9WNrrF31qnYB43n3/+OadoJCYmcva32cvx0foInLiqvwTRTzd9ivaT24sM3PqQjUuFns4tWza0jp1UNCQ0XpQUDeNIhgM95WwMWTEEt467Ffll+TLm0F42rpVeQ+PYxh7lbCw8/ncQM8Ff1yd5cqNu0KdsMAyDbvHdatWz+XLLlx6VmPcc9WUj9dpQEDPBmlT3dXwYhkG7du04TwO1Wt1t2TkSRMusQUg878kjm+6QLhud4zrjw/UfSphDe9kAHMLx1MKnvL2NonXspKIhofGilGgYTTJY9CAbO87tADETzD8234M5tJcNTxNEIxMewFMLb4dSJea50Z9sHLtyDMRMsCl9081rnpSYVw51ZWPMnjEIGxWCMiuBu3M2Dh06xLma8c4774iYxYYxe3rqJmcjIy+jWq7WSJxDe9nILcnFPdPv8XbOhtaxk4qGhMaLEqJhVMlgYWXjvlmhYBi5xYWE4JaNClsFusV383APlMW4snEk+wiImWB16kooVWKeH33JxnfbvkPzsc1dEmp9XTYiEyLx0m8vQeicjeHDh3OKxurVq0XNo6cE0bgDcQiJDkFRhZz/XvqQDS8niGodO6loSGguxMfHo3v37ujatatHomF0yWCxFKbg+JW2ADrAm0+jfL31a4REh3h44qYz+pCN++fcj9ySXNEjvrPqHbSf3L76Z0iZEvPu0YdsVNmr0HZSW3y84WPO11nZ4D+K3ZiywR61vuD4guorJnDJBsMwN39HObewsDCUlooXWb3IxjOLnnHzWKsY9CMbt0+4XaYwARJkQ+vYSUVDQuPFkxUNX5GMGiwot92B/6xt5JVtlC0ZK0HMROAxNzloLxvsX+BXiq8IrmxcLLiI4OhgTEp2zs3wD9nYdnYbiJnggOUA7whr09aisqrSzRzGk40p+6dUH7V+w+mqCXVl4/Tp05yrGS+//LLkOVnZMCUGQIsE0cKKQoREh2DqgakezqEP2Vh+ermHc4iSDa1jJxUNCY0XuaLhe5LhILvosFdyNnJKGqPl+BA8vehxEWdmyEF72bAzdtw36z7BbZSvt36NpqObcvx15Puy8dbKt9AtvpuobbODlw7CnGj2iW2Uh355CAOWcBVCM8FZNmJiYjhFY8mSJbLmtTOVYJjXAATjUuFsmXcvBLdsLDu1DMRMcP7GeQXm0F42WCYmT1RzG0Xr2ElFQ0LjRY5o+KpksKidIMowDJ5b8hBuHReAK8X3QY0S8w60lw2hnI2C8gI0jm2M77d/zzO+78pGQXkBGoxsgNF7RosaYVrKNJ/I2bhUeEkg+dkEVjZ69+7tIhkhISEoKPDkO2ND0vn+qBfj3W2Ut1a+hZ4zeio4h/ayUWotVTtnQ+vYSUVDQuNFqmj4umSwOMtGXtkxRceeemAqiJlgY/oUqFFivjb6lo2xe8ciJDoE2UXZbsb3TdmYc2QOAqMCJZ1R4AsJojUVam+46WVCZqbrSgYhBM8++6yb94nD2zkb1qoDCB8TjhE7Ryg8h/ayoXKCqNaxk4qGhMaLFNHwF8lgsRSmYMK+5mCY9lAqQfT4leMIjQl1qu2gfIl5V/QhG01GN8GOcztuXqusqkTria3x7pp3RYzve7Lx8Ny+eHrR05JHYGWDv5y3vmWj39x+eG7Jc4L9Jk58mlM05sxxVwdIPN6UjcTzDUHMBIcuH1JhDn3JRkZehsw5OGVD69hJRUNC40WsaPibZNRgARCBlWduRWb+bo9GKrWWolt8N/Sa0etmiXAH/iEbeWV5ABxbR5VVlZh/bL7Io5hZfEc2MvLagJgJfv0zTtYI01Km4Wj2UTc99Ckb2UXZHBVquYmMjHSRjMDAQOTk5Hhy07VgZaPXDAKbfZli49amAF9sboXWEwPAMGqIBqAX2fho/UcoqeTP5xDGRTa0jp1UNCQ0XsSIhv9KhoPKqnO48+cQj3M2Plz/IRqMbMCzvOgfsgEAI3aOwJMLnsRd0+7iSQh0h2/Ixo9/fIomowNQZu0AuYXYAKDcVo65R+caZhvl54M/IyQ6RPAE3PPnz3OuZjz66KNK3HQtbPZyXC99EUCwKrLBMAzumNIBH62/DUqUmOdHe9lgOZVzSqFtFM1jJxUNCY0XIdFYdWaVX0sGi6cJorMOzwIxE8w6PMtNL/+QjaTzSagXUw/ETLAlY4uM8Y0tG1X2KrSb1A4frHsDnlZ9XXVmlaFyNvrN7YdnFwvnWIwdO5ZTNKZPH6TIHbtiQ27JC7h7uvLbKH9e/bP65NflUKLEvHv0IRtPLHhCoZwNzWMnFQ0JjRd3okElozZyZWNd2joERgXik42fiHiM0fdlg2EYdInrgsCoQDy5QH5tFKPKxoa/NoCYCVIupUDJEvN6l42sgiyBw8dquO+++zi2TQKQk0Pg7rhyT1ArZyMqKQpNRjep3i4tgD/IhnIJoprHTioaEhovfKJBJYMbS2EKnv81DNlFbSAmQfSA5QAajGyAl357CVV2sUlzvi0ba1LXgJgJJu+fjLBRYTAlmmSOb0zZGLR0EHrP7O0kBf4hG+P2jkP9kfUFT5NMT0/nXM146qmnIHRcuaeoIRs9Z/TEmyvfdLpCZUMCWsdOKhoSGi9cokElQwhHgujV4rZuVzbSr6ejxbgWeOiXh1BmLZM4h2/KBsMwuHfmvXhs/mMAgKPZR1FuK/dgfGPJhqXQgsCoQMw4NKPOK8rIBr9oAFrLxr0z78Vry18THIHvkK6EhITqHiZ4QzbqjyTILkoQfoMb2CJqK06vqPOK/8hGZEIkdl+QnUivdeykoiGh8VJXNKhkiMWCgb+G8W6jXC2+ik5TO6FbfLebT1tIx/dkY3XqahAzQdL5pFo9jmQfwavLXvX5bZSopCg0HNUQhRVcOVGeywbLsSvHdLWycTr3tOiqpT169HCRjODgYOTlOX+PTFBbNvZkPQ4gGJ4cV86u4nA/ieEfssH+HNrsNly4cUHq4FrHTt8TDULILYSQRYSQwuq2iBASLvCe+Rz2f6BOP16cRYNKhjT4cjaKK4vRZ3YftJrQSoHjhn1HNuwMQa8ZrdB/fn+XV3dd2OVRiXkjyEZNEugHbnp5Lhvp19MRFBWkq22UH//4EeFjwus81u3KyZMnOVczBgwQPq5ceWxgmNfww44A2dsokQmRePG3F9308A/ZAIDhO4bL2UbRPOhr0dQWjc2EkJOEkAer20lCyHqB98yvfl8rp9asTj9eWNFYnLKYSoYM6sqGtcqKZxc/i8axjXHsyjGFZvEN2Vh55g0QM8HuC+9xvi63xHwN+paN9X+tF3lok+eyoaecDYZ5BxFTI/D+2vcF3/Hjjz9yisbChXwJpCaoKRtV9goMWdFeVs4Ge9S6cPKrf8iGzJwNzYO+Fk1Nyehe/aV6wOlaZPW1O928bz4hZI3A+LywohH0QxCVDJlYClPQ9ecQLDvVAu+teQ3B0cHYdnabwrMYWzbsjB33TL8HTyzoBMePpPvjyl9Z9orMmfQrGwN/HYj7Zt0nsrfvyMbBSwEgZoI/Mt1/JxiGQZcuXVwko169egIHCpqgpmzITRCNPxiP4OhgwTNDHFDZ4EHzoK9FU1M03iOEFHBcLyCEvOvmffOr++QSQtIJIXMIIbfV6XeTiooKFBYW3mwrDq4AIQQvLXiJSoYHlFszMGx7OIiZYEZKjEqzGFc2fj/1O4iZYG/WXog5Z8Px6Kdc9CcbFwsuIjAqEDMPzZQwhzKy0S2+G09OCOAN2fhs0z9w+wSCKvvbcHfOxsGDBzlXM1566SURs5jgLdnYdSFa1Hv6z+8v8Yh5/5KNYduHiRlM86CvRVNTNH4ghKRzXE8nhAx3877XCSEDCCF3E0IGEkKOE0JOEULqOfW7iclkqv1FDnT8b94NuQmLFIZh8P3270HMBC8u5U8QVQbjyUaFrQJ3TLmjzimgwieIVlZVIiopyie2Ub7f/j2ajG6C4spiiXN4LhvsE09FFUVeX9mwVllx67hb8fXWARA6Z+OTTz7hFI3ffhP7388EtWVj/L5eKLcFQShB9GrxVQRGBWLOEal1WfxDNgrKC2BnHPVMBPJ2NA/6WjQ5AmHm+vLUaX2qReMvjvdnEEK+lzDf7YQQKyFksNP1m9Rd0bBYLJKqt1Jq4ywZk5InqV5i3oGxZGNi8kQERQVxLJW6l41jV475RM5GmbUMzcY2w5dbvpQ5h+eyUW4rx13T7vL6NsratLUgZoI/r/4Jd4++Wq1WtGjRwuV3Y5MmTVBWJuXRcBPUlA3Hd+F1HMkOwurU73h7TUuZhqCoIFwvvS5jDv+QDQD4I/MPdJjcwd02iuZBX4smRzRaEEK6CbT6crdOeObMIIQMc7rGi9Qy8ZQa6koGC5WNGq6XXkf4mHB8vOFjnh7yS8yLQ3vZSDiSgABzAM7mnfVgDs9lQ4ucjcG/D0bvmb2drnDLxrp16zj/CHvvPe7EYfeYoLZsfLg+wm3OxqPzHsUzi57xYA7/kA0RORuaB30tmnoD1ySD3u907QGhZFCOcZoTQioIIf90us4LFQ158EkGCysb761pCKVKzLuif9n4fPPnaBzbGDkl7ipuipcNoccjudFONhiGQc8ZPTHw14EKzGEs2bheeh0h0SGYvH9ynVdcZeOVV17hFI3ExESZs5ugpmy4SxBlK9T+cvQXD2ehsgEdBH0tmrqDOx5TPUEcT5tEEkL+JHUebyWEpBFCXqr+50aEkAnE8ShsR0LIY4SQZELIJUJIY6f38UJFQzpCksGSXXQYZdY7AHQAw2SqdDf6lY306+kIjg5G7G4xv+yFZWP4juEiasXwoY1sJJ1PAjETbD+3XaE5lJGNwKhAHMk+wtNDGdlgn7rglswa2bhx4zrq1avnIhnt27eH3W6XPb83ZcN5G0VshVpx+Jds9J3dt+53XPOgr0VTWzSaEUIWE0KKqttiUufAruov4b+r/7kBIWQrcTxxYiWEZBHHUyjt6ozNCxUNaYiVjBosOHG1Lf42K9TvtlEG/z4Y7Se3l3D8unCCKADszNxpmG2Uwb8PRvf47h4IEheey0bqtVQAjp9ntVY2+s7uK7CS45CN2bMjOVczfvjhB1nz1sYEtWXjv+s64eClmgTRfnP74bklzyk4i//IRma+yx9kmgd9LZrmNyCz8UJFQzzSJcOBP+Zs7L6wG8RMsPjEYolzuJeNG+U30HR0U0PkbFy40YinrokSeC4bADBi5whVtlHO5J7hqfFRl6Xo1487ST41NVXSnPyYoKZssAmilVVBWHXmWwSYAzD/2HyF5/AP2QAc3/GBvw5kt1G0jp1UNCQ0XqhoiEOuZLD4k2zYGTv6zu6LPrP73HyETRq+kSD63bbWaDqaoKQySaU5PJcNtXI2hm0fhlvG3CKYU5OZmckpGX369JHyMURggtqyMSn5XgRGEQRFBeJG+Q0V5vAP2XDO2YD2sZOKhoTGCxUNYTyVDBZWNu6ZHgI7c07BO3RGe9mYeWgmiJlgT5YnQmVs2SisKETT0U3xzdbWULLEvCv6kw1rlRWtJrTC0I1DBftGR0dzikZcXJzUjyECE9SUDZu9HM3HhiLArFyJeVf8SzagfeykoiGh8UJFwz1KSQaLpTAFByxtAHSALz6NcrX4KsLHhOO9NXIeS6yLsGz0mtEL2UXZMsdXTzbG7xuPkOgQXCpMg1Il5vlRTjYSjvCVRRcvG2tS14CYCY5fOe62n91uxx133OEiGcHBAcjNvSLnY4jABLVk42zeWRAzwYMJzWXVRhGP/8gGtI+dVDQkNF6oaPCjtGTUYIG1qhM+2dgYmfm7FRzXGW1k482Vb6LFuBYyDyriwr1ssFsz10uv62Zlo7KqEq0ntsa7a96tvqJMiXn3eC4bK06vEEjcFScbA5YMQJ/ZwlsfO3bs4FzNeP55AncniHqOCWrIRsyuGDQc1RCFFXl4fXk7fLM1AJ6UmHePf8gGtI+dVDQkNF6oaHCjnmQ4uFp81OdyNrad3QxiJiokwrmXDYZh8GDCg7rZRpl3bB6ImdQ5E8AYsgEAJ66eQHRStKxtFEuhBYFRgZh1eJbgPG+88QanaKxe/RWEjiv3HBOUlA2GYdAtvhveXvU2AEfVV4Z5DUAwrhZ7ep4GH34hG1rHTioaEhovVDRcUVsyWHwpQbTcFojOcY3w2PxHFX6Uk8UYORt2xo67pt2FQUsHcbxqDNmYnjJdds5GzK4YhI0Kc1PEzUFeXh7n2RktW7aE1WqFu+PKlcMEpWTj2JVjIGaCTembnK7akHzxCTQYSbdRhOGVDa1jJxUNCY0XKhq18ZZksDjLRm6JWr8o1JeNETtfQUg0Qeq1AVC6xHwN+peN9X+td6pSy4UxZENOgqidsaPjlI6i8nPi4uI4VzO++865fohxZOPbbd+ixbgWsFZZa12XW2JeGj4tG1rHTioaEhovVDRq8LZksFgKUxCzqxkYpj2MmCCaei0VIdEh+PGPl6FGifnaCMtGo9hG2PDXBpnjeyYbD899GH//5e8CvYwlG6ZEE0+P2rKx7ew2EDNB8sVkt+MyDIOePXtyikZaWlqd3vqXDTtjR9tJbfF/G/6P83UqG1JwkQ2tYycVDQmNFyoaDrSSjBosACKwMf02Q22jMAyDx+Y/hoipEdWJhMqWmOfGvWxUZ6sDAGx2OfcgTzaSLyaDmAnWpK4R0dsYshF/MB77Lu5z06NGNl5bPhg9pvUQ3Do7dOgQp2T069eP5x36lo1dF3aBmInbf0+sbHSLJ7BW/S77Lt3ji7KheeykoiGhuRAfH4/u3buja9eufi8aDMNg+I7hGkqGA5v9PO6aFmKonI34g/EgZoJtZ7c5XdVeNgBgzJ4xXt1GGbBkALrHd5dwSJkxZANwnI2x+MRi3m2Uq8WNEBIdgMn7RwuO9eGHH3KKxoIFC9y8S7+y8Z+1/0HHKR0FBctmL8fV4hcABKPKvkzmPQrha7KheeykoiGh8eLvKxp6kQwWIyWIpl5LRYORDXiWjLWXDW/mbBy6fAjETLDkzyUS5zCGbLC5J3w5GyN3fYgGIwnyyyLh7tHXkpISNG7c2EUymjRpgtJSof9G+pONMmsZmoxughE7R4gc34b8spfwt1l0G0WYvYD2sZOKhoTGiz+Lht4kg8UIsmGtsqLP7D7o+nNXN0Hcf2Tj+V+fx50/34kqu5wAaAzZ4EsQtdltaDepHd5fOxBC52zMmzePczXjo48+EnkX+pKNpSeXgpgJMvIyRI9OczYkoXXspKIhofHir6KhV8lgsRSm4KmFDXDhRhvoMUF0xM4RCI4ORsqlFIGe+pGN4TuGyxzfvWwcvnwYxEyw6MQimeMDRpYN9iRQR9l59+ds3H///ZyicejQIQl3oR/ZeHbxsyKSf12hsiEarWMnFQ0JjRd/FA29S0YNjgTRvLK2ulrZSL6YjMCoQEQnRYucQ3vZOHT5EEoquatFioNfNgYtHYSuP3eVmXjqjHFkY+jGoTdF4+lFTyMyIdKpB7ds8CWB9urVS8bZK9rLxpXiK6IPJ+OClY3QGIKsgpmy79I9hpcNrWMnFQ0JjRd/Ew3jSAaLBa8sa6ibbZTiymJETI1AZEKkxMCqvWwAwKmcUxiyYohi2yhHs4+CmAkWHl8oYzwujCEbrBhsTN/I8/ldZeO9997jFI2ZM+UGWW1lY8K+CagXU8+jSq02ezl2nHsMQDDoceWcaB07qWhIaLz4k2gYTzIc6Cln44N1H6DhqIaS9qRr0F42dl3YpWjOxgtLX0DnuM4KrGY4YwzZyMzPRGBUIOqPrM9TI6VGNvLzs1C/fn3OJNDi4mLZn0JL2eg5oydeW/6aAuPbALyO2N2BdBvFFa1jJxUNCY0XfxENo0oGix5kY23aWhAzwezDsz2YQ3vZUCpB9NiVQJVquwBGkI1Saynqj6wv6gTRSZNcq7QSQvDpp5969hEAaCEb7JHj8g+Gq42dqaQ5G9xoHTupaEhovPiDaGh/GJcyWApT0CUuBAuPN4e3E0SzCrLQYlwLPP/r8wrUMtGPbLyw9AWZ41dh0NK2iJhKYLNLfaRVLPqWjTlH5iDAHIAf//jRrWzY7fvQpUsgp2icOXOGY2Q5eFc2vtj8BW4bf5uiK1k0QZQTrWMnFQ0JjRdfFw1fkQyWMms6gAgAHVBY8adKs9SWjTJrGf4262/oMLmDguXf9SEbuy7skjXy3qy91edmPAQlS8y7ok/ZYBgGPab1uClqk/dPRscpHZFXlufSd9u2bZyS0b9/f8U+gQPvyEaFjaD52DB8s/UbxUd3lo2dmWbFx3dgKNnQOnZS0ZDQePFl0fA1yajBgpmHWnhlG4VhHsC/17yJ+iPr42j2UYXn0F42AMc5EGP2jBG9jcIwDB6e+zDunXkv7IwVSpaY50Z/ssHWNUk8n3jzWnGlI9eipLKk1srGCy+8wCkay5cvV/YjAPCGbCw79QqImSD12heqjG+zlyN29z0oqQwCTRDVPHZS0ZDQePFV0fBdyXDgrZyNaSn1q58qUOvxO+1l42TOSUk5G+wpmZszNldfUabEvHv0JRvPLXkOvWa4PpZaWVWJ+2bdd3MbJSsrC4GBrtsmt98eCqvVdfVDGdSVjWcWPYO//9IOjp8pz0vMc+NIED2dG4S1ad+rNIchZEPr2ElFQ0LjxRdFw9clg0Vt2diTtQfB0UH4bFMo1CwxrwfZEJsgWmWvQo9pPfDY/MfqBFn/kY3Ua6luk2CdD/UaPnw452qGyRQKdyeIeo46spFVkIUAcwB+OfoLlCoxz48NQzd29vecDa1jJxUNCY0XXxMNf5EMFlY23lwZBiUTRC8XXUarCa3wyLxHYK3aD7VKzNegL9kot5Vz9pl/bD6ImeDgJa5A7x+y8fGGj9FyfEtU2Cp4R5i8fzLIDwT1G7s+0hoUFITLl9dB6Lhyz1FeNqKSotAottHNbSK1ZYMmiGoeO6loSGi8+JJo+JtksFwqTEFx5R0AOoBhMj0er7KqEg8mPIg2E9vgavHV6qvKl5h3RR+y8dmmzzgrsJbbytF+cnu8/PvLbsb3bdnIK8tD2KgwRCXx57ywvPrdq5yrGa+88kp1D/fHlSuDcrJhZ+zoOKUj3l/7fp1XTKCyIQZZsqF17KSiIaHx4iui4a+SUYMFadfaITIh1ONtlI/Wf4TQmFAcsByo84p/yAbLvov7am2jTEqehKCoIKRdSxMY33dlY8yeMQiNCUVOSY7bd9rtdtx5552corF3716nnsaRje3ntoOYCZIvJnO8aoLasvHemjuQdN7vEkS1jp1UNCQ0XnxBNKhkOFAiZ2N6ynQQM8GcI3N4eviHbBRWFKLZ2GY3czZulN9A87HN8cG6D0SO73uyYa06i7aT2uLdNe8Kvmvjxo2cktG3b1+OszaMIRtDVgxBt/hubs6RMUFN2WATRG32IOy3jFZpDt3Jhtaxk4qGhOZCfHw8unfvjq5duxpaNKhk1MYT2Vh2ahkCzAH4fPPnAj39QzacczaGbhiKhqMa4nLRZQnj+5ZsLDjeAsRMcDLnpOA7nnjiCU7RGDh8oNsTRPUqGzklOQiJDsHE5IkCPU1QWzampdznT9soWsdOKhoSGi9GXtGgksENKxvd40Ngs4urSbLt7DaERIfgrZVvceYnuOI/stFgZAMEmANE5SW44huyYWcy0WNaCAYsaQChR19PnDjBKRnht4WDjBA+rlyPsjF271jUi6nHeSCZKyaoKRt+lrOhdeykoiGh8WJU0aCS4R5LYQp2XWgNoAOEnkY5YDmAhqMaYsCSAbBWWSXM4vuywTAM+s7ui5DoEKRdF8rN4MP4ssGeHbL7QisInbPx7rvvcorG2LFjbz76OvMQ37ks+pMNO2NHp6md8M6qdyTMYQKVDTEIyobWsZOKhoTGixFFg0qGWCyosnfCt9ua8G6jnM49jWZjm+GhXx6SWWDMt2WDDbArTzsS8ArKCxQrMa886snGw3MfxoMJD4JhzsPdo69XrlxBaGioi2SEhYUhPz8fAPDbyd9QVOFOIvQlG1vPbgUxE+y7uE/iHCZ4QzY+3hAAH04Q1Tp2UtGQ0HgxmmhQyZBGbslx3pyNCzcuoM3ENug5oydulN/wYBbflI0KWwU6x3XGkwufBMMwYBgG/ef3V6zEvDooLxv7Lu4DMROsSV1TfeUC+GTjp59+4lzNGDp0qMu4adfSELs7VvfbKIN/H4y7p98ts5igCWrLhp15DUAwrpXOU2UOjWVD69hJRUNC48VIokElQx5cCaK5Jbno+nNXdJraCdlF2QrM4nuyMW7vOARFBeFUzqmbrypVYt5IsjFo6SB0j+9eJ3fHVTZKS0vRokULF8kICAhAenq6y7izDs8SVWJeS9m4XHQZQVFBiD8Y78EcJqgpG4ANhy8/hUaxPrmNonXspKIhofFiFNGgkuEZzrKRkZeIv836G1qOb4mzeWcVnMV3ZONKMUHj2Hr4dNOnLq/6k2yczj0NYiaYd2wex6u1ZWPq1KmcqxmDBg3iHd/5uHI9ykZ0UjTCRoWhoNzTn2cT1JQNH87Z0Dp2UtGQ0HgxgmhQyVAGS2EKvt3WFI/NC0XT0Y1x/MpxFWbxDdl4d819aD6WIL+Mu6BV0vkkNBzVECvPyN0bN4Zs/HvNv9F2UltUVlXy9HDIRmVlR7Rr15pTNBITE93OwcrGj3/8yNNDG9mosleh3aR2HCeBysUEKhticJYNzWMnFQ0JjRe9iwaVDOUos5bhyYX9EDYqAFP234LM/N0qzWRs2dh9YTeImWDGoUFwfH24H2t13nKqsss5BErfspGZn4ng6GAR37sLmDevOadkREZGisptiDsQhx3ndrjp4X3ZWJ26GsRMcOjyIQXnMMEbsnHHFIIKm1o/U96UDc1jJxUNCY0XPYsGlQzlcEjGkwgbFYYd537D3dNDVS8xb0TZqLBVoFt8NzyY8GB1ToLwceVxB+J8chvlv+v+i9vG3yb4uex2O7p1i+AUjbVr10q60yp7FZadWqaLbZTHF/RHZEKkCnOYoLZsXCocCCAYdma5KnN4TzY0j51UNCQ0XvQqGlQylMNZMhLPJwJQv8S8A+PJRlRSFIKjg+ucfqlMiXl+9CcbWQVZCIkOwbi94wT7rly5klMyevToAbtdzOFvNWzJ2KKLnI3TuQEgZoIlfy5SaQ4T1JQNwIaiisF4eK7Rt1E0j51UNCQ0XvQoGlQylINLMliobNQm7VoaQmNC8cOOHzhe9S/Z+HjDx2gxroVTOXRuGIZBnz59OEVj0aLJsu5SDwmiH294Ei3HE1RWvQWlSsy7YoKasuEjORtax04qGhIaL3oTDSoZyuFOMlgshSl4dF59/HW9NYROEJWP/mWDYRg8Ou9RdI7rjDJrGU8vcbLx1ZavJM/vQB+yYSm0IDQmFKP3CBfu2r59O6dkdOwYDJutI4SOK+dDS9koKC9Aw1EN8dPOwVCqxDw/JlDZcIvWsZOKhoTGi55Eg0qGcoiRjBosACJQWNEOWQV7BfrKRd+y8cvRX0DMRCAhERCSjYOXDnr4KKT2svHJxk/QbGwzgdM7HTz++OOcojF9egzcnSAqhsn7J+Nfq//lpvaOOrIxZf8UBEcHVxfQU6bEvHtM8JZsnMufpsocKsqG1rGTioaExoteRINKhnJIkwwWC95e1cgvt1FySnJwy5hbJNSyEE4QzcjLwD9X/9Nw2yiXiy6jXkw9xOyKERzhwIEDnJLRsmVLlJeXw90JomJhVzPSr6d7ZWXDztjROa4zhqwY4nTVN2RjY3o/AMEw2HHlWsdOKhoSGi96EA0qGcohTzIc+GvOxlsr30Lzsc2RW5IrYQ73srEna48hczY+3/w5wseEi1qVGThwIKdojBkzxqmX57JhKbSgwcgGXtlG2ZyxGcRMsDer7sqe8WXD8V14HVMPBBppG0Xr2ElFQ0JzIT4+Ht27d0fXrl01FQ0qGcrhiWSw+JtsrEtb5+bkSyF8K0H0UuF61B9ZH+ZEs+C7UlJSOCWjadOmHL9LPJcNb+Vs/GPxP9B7Zm+eOYwvGwxjxZAV7Y2Us6F17KSiIaHxouWKBpUM5WAlo8HIBrIlg8VSmILOcSGYdbgZfDlBNLckF7eNvw0DlgyQWTALECsbz//6vMw5vCcbH60PQbOxTUStZjz77LOcovG///2P5x36l41TOadAzASLTrh7pNX4smGwBFGtYycVDQmNF61Eg0qGcigpGSwllX8BiADQASWVpxUZ0xXtZINhGLz8+8toPrY5rhRf8XAOYdnYkrHFg/HVl42zeccRHB2AcXvrQejR1+TkZE7JaNy4MfLy8ty8UxnZaD2xNXJKcnh6yJeN/6z9D1pPbO3muHUW35KNbWd/UmUOhWRD69hJRUNC40UL0aCSoRxqSEYNFiw4fhs6TvG9bZTFJxaDmAmWn1bq5EThBFE7Y8eU/VN0uY3y9qq3cfuEVii1PgChczaefvppTtEYMWKEiJk8lw12xaXcVq7YykZOSQ7qxdQT9UivA9+QDVNiDxSUB0HHCaJax04qGhIaL94WDSoZyqGuZDjwxZwNS+F5NB3dFG+tfEvhOdzLxpncM7rM2TiZcxIB5gBMT5kOoUdf9+zZw5ubkZ+fL3JGz2XDZrfhoV8eUmwbxZxoRtioMOSVuVuRqYvxZYNNED2bF4R1adwFBD3HI9nQOnZS0ZDQePGmaFDJUA5vSAaLL8mGnQnEkwtbos3ENsgvExsYpWC8BNEXf3sRd0y5w2nLgF82+M7NiIriX8nhxnPZUCpno9xWjlvH3YqhG4fKuAvfkI3PNnXRa86G1rGTioaExou3RINKhnJ4UzJYWNkY/HsY1E0QDYeashF/8H0QM8HWs49BrRLzwCiIlQ3+U0jdoZxsHLx0EMRMsPD4wjqvuMpGUlISp2SEh4ejoEDOf68LcIiGtrKRcCQBAeYApF9Pl3UPviAbOk4Q1Tp2atICABBfIiAgoAkhpJAQ0hRAkdb3Q6FQKBSKP+OLohFACGlMCCmGr304CoVCoVAMhs+JBoVCoVAoFP0QqPUNUCgUCoVC8V2oaFAoFAqFQlENKhoUCoVCoVBUg4oGhUKhUCgU1aCiQaFQKBQKRTWoaFAoFAqFQlENKhoUCoVCoVBU4/8Bzkuk9JkWKpQAAAAASUVORK5CYII=\n", "text/plain": [ "Graphics object consisting of 58 graphics primitives" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show(graph_wo_vectors, aspect_ratio=1, ymin=-0.8, ymax=1.2, xmax=2.5, \n", " axes_labels=[r'$r/m$', r'$t/m$'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Case of a naked singularity\n", "\n", "The naked singularity is obtained for small energy densities of the radiation shell, i.e. for large values of the \n", "shell width $v_0$. The precise criterion is $v_0 > 16 m$ for $S(x) = S_0(x)$. We select here $v_0 = 18m$:" ] }, { "cell_type": "code", "execution_count": 73, "metadata": {}, "outputs": [], "source": [ "v0 = 18" ] }, { "cell_type": "code", "execution_count": 74, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\$$\\displaystyle \\frac{1}{72} \\, v {\\left(\\mathrm{sgn}\\left(v\\right) + 1\\right)} {\\left(\\mathrm{sgn}\\left(-v + 18\\right) + 1\\right)} + \\frac{1}{2} \\, \\mathrm{sgn}\\left(v - 18\\right) + \\frac{1}{2}\$$" ], "text/latex": [ "$\\displaystyle \\frac{1}{72} \\, v {\\left(\\mathrm{sgn}\\left(v\\right) + 1\\right)} {\\left(\\mathrm{sgn}\\left(-v + 18\\right) + 1\\right)} + \\frac{1}{2} \\, \\mathrm{sgn}\\left(v - 18\\right) + \\frac{1}{2}$" ], "text/plain": [ "1/72*v*(sgn(v) + 1)*(sgn(-v + 18) + 1) + 1/2*sgn(v - 18) + 1/2" ] }, "execution_count": 74, "metadata": {}, "output_type": "execute_result" } ], "source": [ "m_num(v) = mS(v).subs({m_0: 1, v_0: v0})\n", "m_num(v)" ] }, { "cell_type": "code", "execution_count": 75, "metadata": {}, "outputs": [], "source": [ "drdt1 = drdt.substitute_function(m, m_num)\n", "\n", "fdrdt = fast_callable(drdt1, vars=[t, r])\n", "\n", "solve_ode.rhs = fdrdt" ] }, { "cell_type": "code", "execution_count": 76, "metadata": {}, "outputs": [], "source": [ "#tmax = v0 + 4.5\n", "tmax = v0 + 3.5\n", "ymax = tmax - 0.5\n", "rmax = 16" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Outgoing radial null geodesics from the Minkowski region:" ] }, { "cell_type": "code", "execution_count": 77, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "t0 : -19, -17.0000000000000, -15.0000000000000, -13.0000000000000, -11.0000000000000, -9.00000000000000, -7.00000000000000, -5.00000000000000, -3.00000000000000, -1.00000000000000, " ] } ], "source": [ "outgeods = outgeods_from_Mink(-rmax - 3, tmax, 2.)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Outgoing radial null geodesics in the black hole region:" ] }, { "cell_type": "code", "execution_count": 78, "metadata": {}, "outputs": [], "source": [ "def outgeods_in_BH(tmax):\n", " geods = []\n", " sol = solve_ode(tmax, -1, r0=1)\n", " geods.append(geod_line(sol))\n", "\n", " sol = solve_ode(2/3*tmax, -1, r0=1)\n", " geods.append(geod_line(sol))\n", " sol = solve_ode(2/3*tmax, tmax, r0=1)\n", " geods.append(geod_line(sol))\n", "\n", " sol = solve_ode(1/3*tmax, -1, r0=0.5)\n", " geods.append(geod_line(sol))\n", " sol = solve_ode(1/3*tmax, tmax, r0=0.5)\n", " geods.append(geod_line(sol))\n", " \n", " return geods" ] }, { "cell_type": "code", "execution_count": 79, "metadata": {}, "outputs": [], "source": [ "outgeods += outgeods_in_BH(tmax)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### The Cauchy horizon (in blue):" ] }, { "cell_type": "code", "execution_count": 80, "metadata": {}, "outputs": [], "source": [ "if S == S0:\n", " a0 = 2 / v0\n", " rC = n(4/(1 - sqrt(1 - 8*a0)))\n", " tC = v0 - rC\n", " pC = (rC, tC) # point C\n", " sol = solve_ode(tC, -1, r0=rC)\n", " cauchy_hor = line([(s[1], s[0]) for s in sol], \n", " color='blue', thickness=2)\n", " sol = solve_ode(tC, tmax, r0=rC)\n", " cauchy_hor += line([(s[1], s[0]) for s in sol], \n", " color='blue', thickness=2)\n", "else:\n", " print(\"approximate CH\")\n", " sol = solve_ode(-1.e-3, tmax, r0=1e-8)\n", " cauchy_hor = line([(s[1], s[0]) for s in sol], \n", " color='blue', thickness=2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Outgoing radial null geodesics emerging from the initial singularity:" ] }, { "cell_type": "code", "execution_count": 81, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "r0 : 3.00000000000000, 3.75000000000000, 4.50000000000000, 5.25000000000000, 6.00000000000000, " ] } ], "source": [ "if S == S0:\n", " rB = n(4/(1 + sqrt(1 - 8*a0)))\n", " pB = (rB, v0 - rB) # point B\n", "else:\n", " rB = 2.5\n", " rC = 6.5\n", "nl = 5\n", "dr = (rC - rB)/(nl - 1)\n", "print(\"r0 : \", end='')\n", "for i in range(nl):\n", " rr = rB + i*dr\n", " print(rr, end=', ')\n", " tt = v0 - rr\n", " sol = solve_ode(tt, -1, r0=rr)\n", " outgeods.append(geod_line(sol))\n", " sol = solve_ode(tt, tmax, r0=rr)\n", " outgeods.append(geod_line(sol))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Drawing of the radiation region (yellow rays):" ] }, { "cell_type": "code", "execution_count": 82, "metadata": {}, "outputs": [], "source": [ "graph = draw_radiation_region(v0, rmax, 40)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Adding the outgoing radial null geodesics:" ] }, { "cell_type": "code", "execution_count": 83, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAKdCAYAAADyaxptAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddVhUWxfG30OLomB3d3d/drfX7vbandcawA6wsAO7uxsTEbATkxAQFOmaWN8fMyMhDDVz9hk4v+fZDzLuOfsFZs47a8daHBFBREREREREhC0GrAWIiIiIiIiIiIYsIiIiIiIiCERDFhEREREREQCiIYuIiIiIiAgA0ZBFREREREQEgGjIIiIiIiIiAkA0ZBEREREREQEgGrKIiIiIiIgAEA1ZREREREREAIiGLCIiIiIiIgBEQxYREREREREAgjNkjuP6sNYgIiIiIiLCN4IyZI7jGgMYxlqHiIiIiIgI3+jUkDmOa8hxXPM0PGUQgEO60iMiIiIiIiJUOF2WX+Q4zh/AXSLql4q+RgA+AqhCRJE6EyUiIiIiIiJAdBYhcxxXCUABAI9S+ZQOAB6IZiwiIiIikhXR5ZR1U9XXe6nsL05Xi4iIiIhkWXRpyP8DEALgRUodOY7LAaAhgJs61CMiIiIiIiJYtGrIHMf15zjOjeM4NwCDAUgBPFE91kDDU/8BcIGIZImu15TjuP0cxzlzHNeZ4zgDjuMmchy3ieO4bRzHPeA4rqGq70CO47aq2gOO41pp82cTERERERHRJTrZ1MVxXDEAXgDmEdGqVPS/BmAxEbnEe8wAgCOUx6DWABgK4BiA00R0R9VnO4C2qn6viei06nEbABMB5CMihfZ+MhEREREREd2gqynrlqqvd1PqyHFcAQAl4puxinoAnpHyE0NhAPkAXFKbsYpQAKUA/FCbsYofAHKrniMiIiIiIiJ4dGXILQBEAHBLRd/+UEa+iTEFcEb17/8BuEZEVxP1qQ7gK4AdiR6vBCAKwK9U6hUREREREWGKLg35YeI14WQYBOBw4geJ6B4RfeM4riyAogBuxP9/1bnlxgCc6O9593YA7qdyfBEREREREeZo3ZBV68elkLrp6vJQrmN/0NBNvTnLKdHj9QDkSPw4x3HVAJQDcDJ1ikVERERERNijiwj5r/VjjuOmcxzHJdE3NWePWwIIBvAs0eMtVF+dEj0+EEAMVIbMcdyolASLiIiIiIiwxkgH16wHQA7AFQA4jisNoGQS08oA0A9xxpocLQDcS2K3dEsAX4jIK9Hj/wA4T0S/VdFy0bTJFxERERER4R9dRMhBAIKJKJbjuJwAVgCQJO6kOj/sRUT+yV1IlX6zIP6eljaGav04iaflBXBXdWxqLoDN6fopREREREREeEQXEfIGAI05jjsKZWKQRUT0O4l+qZmuzgPAF8DpRI9bQrmL+2ASz5kCYDSUkfU2IhJ3WouIiIiICB6dVntKdlDlDulPAKoRURjvAkRERERERASGTusha6AdABfRjEVERERERJSwMmSxspOIiIiIiEg8eJ+y5jguO4C3AMoSkZTXwUVERERERAQKiwi5J4DLohmLiIiIiIjEwcKQmwPYz2BcERERERERwcJkl7WIiIiIiIhIQlht6hIRERERERGJh2jIIiIiIiIiAkA0ZBEREREREQEgGrKIiIiIiIgAEA1ZREREREREAIiGLCIiIiIiIgBEQxYREREREREAoiGLiIiIiIgIANGQRUREREREBIBoyCIiIiIiIgJANGQREREREREBIDhD5pTk5DiOY61FRERERESEL1gaMiXVQkJCFABCVF+T7JORNvr8aCq/qTyRsqqG2HhqsfJYKri2IE24NIG5ltS0f479QyXWl6BoWTRzLUm1Cx8uEGfN0fE3x5lrSdzsne3JwNqA7nveZ65F3Q4fBnGcsuXIKSNPT/aahNoeeD2gPc/2sNSQZRFchKxrelTsgY9BH/Hu5zvWUrIUJ96cwI+IH5hUfxJrKSny0Oshzrw/g2WtlsHMyIy1nL+IiI3ApCuT0KFsB/Sp3Ie1nAR8+PkB/93+D1MaTMH/SvyPtRwAgKcnMHac7M/3O7YZoUQJhoIEzI/wH+h7oi/2vdgHuULOWk6WI8sZcpvSbZDdODvOvDvDWkqWYuOTjWhbui0q56vMWopGiAizb8xGzYI1MbDaQNZyksT6rjUCIgLg0MkBQlrZkSvkGH5uOIrmLIrlrZezlgMAkMuBgYNkiAgzAgAMGKjAQGH+WZkjV8gx8PRAKEiBo72OwtDAkLWkLEeWM2QzIzN0LNcRZz+cZS0ly+Di44In359gcv3JrKWkyNn3Z+Hs44zVbVbDgBPe2+Plj5ewc7bDomaLUNqqNGs5CbBztoOLjwscuzvC3NictRwAwKpVwKOHSjMuUkyKrVuE9zcVCtZ3reH0zQlHeh1BIYtCrOVkSbLkq7NnxZ5w83WDd4g3aylZgk1PNqG0VWl0KteJtRSNyBQyzL81H21Lt0XbMm1Zy/kLBSnw78V/UT5PecxqPIu1nAS8C3yHRXcWYUajGWhSvAlrOQAANzdg8RIFAIAzUODIIWPkysVYlEC58vEKbO/ZwralLVqWaslaTpYlSxpy53KdYWxgjLPvz7KWkukJiAjAibcnMKHuBMFPgTk+d8SHXx+wss1K1lKSZNfTXXjs8xjbumyDiaEJazl/kClkGH5uOEpaloRtS1vWcgAAERFA3/5SyGXKW9z8eRz+J4wlbcHhHeKNwWcGo1O5TpjXdB5rOVmaLGnIucxyoXnJ5rj08RJrKZme3U93w4AzwIhaI1hL0UikNBJLnJagf9X+qF2oNms5fxEQEYC5N+diRM0RaFaiGWs5CVj7aC3cfN3g2MMR2YyzsZYDAJg2TYGvn40BALXqyCCRCGetXUjEymPR92Rf5DDJgf099gtymSYrkWV/+x3LdsRdz7uIkkaxlpJpkSvk2Oa+DQOqDkDubLlZy9HIRpeNCIgIwNKWS1lLSZLZN2bDgDPA6rarWUtJwJuAN1jitASzGs1Cw6INWcsBAJw9C+zapby1mZnLcOyIEYyN2WoSKvNvzoebrxuO9T6GPOZ5WMvJ8mRZQ+5QtgOiZdG463mXtZRMy6WPl+AV4oUJ9SawlqKRoKggrHywEuPqjEOZ3GVYy/mLe573sP/Ffqxqswp5zfOylvMH9VR1GasysG5pzVoOAMDPDxg+Mu6I0+aNRihXjqEgAXPm3RnYPbbDmrZrBPNhKquTZQ25Ut5KKJazGK5+uspaSqZli+sW1C9SH3UL12UtRSMr7q+AnORY1HwRayl/IZVLMeHSBDQs2hAja41kLScB6x6tw1O/p9jbfa8gzmsTAUOHyxHyW7mrunsPOUYK61cmGL78/oIR50agZ8WemNpgKms5IiqMWAtgBcdx6FC2g2jIOuLjr4+49vkaHLs7spaiEa8QL2x6sgnzms5D/uz5Wcv5iw0uG/Du5zu4j3UX1Pre+5/vscRpCWY0nIEGRRuwlgMAcHAAbl5XbhzMV0CK3buMIaBj2oIhRhaDvif6Io95HuzpvkdQZ9mzOsJ5hzOgQ9kO+PDrA77+/spaSqZjm9s25M6WG/2q9mMtRSMSJwlymubEzEYzWUv5C+8Qb0icJJhcfzJqFqzJWs4f5Ao5RpwbgRKWJWDT0oa1HADAu3fAzFlxmaUO7jdGHnFJNElmXp+JVwGvcKLPCViaWbKWIxIPwRiyg4MDKleujHr16vE2ZutSrWHIGeLa52u8jZkViJRGYu/zvRhVa5QgpjKT43XAa+x7sQ+Lmy+GhakFazl/Mf3adFiYWsC6hTDWZ9VscNkAFx8X7Om2RxC7qmNjgf4DZYiNUUbHkyYR2rVjLEqgHHt9DA6uDtjQYYMgTxNkeYiIVUuSkJAQAkAhISHJddEqDXc1pH4n+vEyVlZh99PdxEk4+hz0mbUUjXQ93JVKbyhNMbIY1lL+4srHKwQJ6PDLw6ylJMDjpweZLTWjqVemspbyh/nzFaRcQSYqVyGWIiNZKxImH35+oBzLc9CAkwNIoVCwlqMJlr7EtAkmQmZFixIt4PTNCURZusiI1iAiOLg6oGO5joJL7RifB14PcMHjApa2XCqoJBsAEC2LxqTLk9CqVCv0r9qftZw/KEiBUedHobBFYSxrtYy1HADAw4fAylXK966hkQJHDxsjG/ugXXBESaPQ+3hvFLYojO1dtovrxgJFNOSSLfAj4gc+/PrAWkqmwNXXFU/9nmJCXeEedSIizL05F7UK1hLkGveqB6vgFeIluOIRDk8ccN/rPnZ3243sJtlZy0FoKDBgkBSkUN7GbG0MUFuchU2SyVcm42PQR5zsc1KQyzMiSrK8ITcp3gSGnCGcvjmxlpIpcHB1QCnLUuhQtgNrKcly/sN5PPJ+hFVtVglq5zIAfAr6hBUPVmBW41momLciazl/+PL7C+bdmocJdSegRckWrOUAAKZOVcDbU5nxo2EjGebMYSxIoOx/sR+7n+3Glk5bUK1ANdZyRDQgrLsRA3KY5EC9IvVEQ9YCQVFBOPb6GP6t869g81bLFXIsuL0ArUq1ElwBCSLC5CuTUTBHQSxstpC1nD+op6rzmefDqrarWMsBAJw5Azg6Km9f2bLLcPiQEQyF+ZJjypuANxh/aTyG1xwu+PS1Iln4HHJ8mpdoDsfnjiAiQU0R6hsHXhyAghSCfuMffX0UbwLfYHe33ayl/MWZ92dw9dNVnOt/TjDlCwFgu9t2OH1zwo0hN5DDJAdrOfD3B0aOlgJQRscOm4xQqhRbTUIkPDYcfU70QWmr0nDo5MBajkgqyPIRMiCuI2sDIsKOpzvQo2IPQSbYAJRZr5Y4LUHX8l0Fk8xCTXhsOKZenYqu5buiW4VurOX8wTPYE3NuzsGY2mPQpnQb1nJABAwbIUdwkNKMu/dQYPhwtpqECBFh3MVx8Arxwok+JwT1AU8keURDBtCkWBMYcAa473mftRS9xdnHGW8D32JsnbGspSSL43NHfP79WTAlAuNjc9cGPyN/YkOHDayl/IGIMObCGFiaWWJN2zWs5QAAtm0Drl9Vzk3nzS/Frp0GYjauJNj1dBcOvTqEHV13CGovgohmREMGYGFqgWr5q+Gxz2PWUvSWHe47UMqyFFqVasVaSpJEy6Jhc88G/av2R42CNVjLScDrgNewf2yPhf9biFJWwpl73f1sN258uYGdXXcil1ku1nLw4QMwfUZcNq79jsbIK5xaG4Lhuf9zTL4yGf/W+RcDqw1kLUckDYiGrKJh0YZ4/F005PQQHB2M42+OY0ztMYLbtaxmm9s2+IX5CS7rFRFh4uWJKG1VGrMaz2It5w8+oT6YeX0mhtccLogd81KpMhtXTLQyOh4/ntCxI2NRAiQ0JhR9TvRBpXyVsL7DetZyRNKIMO+eDGhUtBHeBr5FcHQwayl6x6GXhyBVSAW7mSs8NhzL7y/HsBrDUD5PedZyEnDk9RHc87yHzR03w9TIlLUcAMoPCWMvjEV24+ywa2fHWg4AwMaG8Pypcg9qmXJSrF0rzlMnhogw+vxoBEQE4ESfE4JOWyuSNKIhq1DXA33y/QljJfqFejNX1/JdUTBHQdZykmSjy0YERwdjcfPFrKUkICwmDLOuz0KvSr0EdQRr/4v9uPLpCrZ32Q6rbFas5cDZGVi2PGE2LnNxj9JfOLg64MTbE9jTbQ/K5i7LWo5IOhANWUW5POVgZWYlriOnEVdfV7z88VKwm7mCo4Ox5tEa/FvnX5SwLMFaTgKW3luK4OhgrGu3jrWUP/iF+WHatWkYVG0QulboyloOwsMTZuOSLDFAXWGX12aC63dXzLg2A1MbTEWvyr1YyxFJJ6IhqzDgDJTryKIhp4kd7jtQPFdxtC0tnAgvPmsfrUWMLAYLmi1gLSUB73++h/1je8xvOl9QHxQmXp4IE0MTwez2njZNAc+vyiNO9RrIMG8eY0EC5HfUb/Q50Qe1CtXC6rarWcsRyQCiIcdDbcgKUrCWoheExoTi6OujGF1rtCAzcwVEBGD94/WYXH+yoKbTiQhTr05FsVzFMLvJbNZy/nDq7SmceX8GmztuRh5z9sWEz58Hdu+Oy8Z15JARjMRURgkgIgw7OwyhMaE43vu44AqliKQN0ZDj0aBIA/yO/o3PQZ9ZS9ELjrw6gihZlGA3c624vwKGBoaY00RYSY7PfTiH65+vY3379YLZeBMUFYSJlyeie4Xu6F25N2s5+PEDGD5S+uf7TRuMUKYMQ0ECZZ3zOlzwuID9PfcLaqZFJH2IhhwPdcHuZ/7PGCvRD3Y924VO5TqhaM6irKX8hU+oD7a6bcXMRjMFEe2piZJGYdrVaehYtiO6lO/CWs4fZl2fhShZlCAqTBEBo0bL8fuXcqq6S1c5Ro5kKkmQOHs7Y97NeZjdeLagXksi6Uc05Hjky54PRSyK4JmfaMgp8erHK7j5umFUrVGspSSJ7V1b5DDJgWkNp7GWkoBVD1fBL9wPGzpsYG58am5+uYm9z/dibdu1KJKzCGs5cHQELl1ULoHkzivF7l2GYjauRARFBaH/qf5oULSBYGpTi2ScNBkyx3HzOY5z5TgujOO4AI7jznIcVyFRH47jOAnHcb4cx0VxHOfEcVwV7crWHbUL1RYj5FTg+NwR+czzoXO5zqyl/MXX31+x5/kezG0yFzlNc7KW84evv79i1cNVmNFwBsrlKcdaDgAgIjYCYy+MRYuSLTC69mjWcuDpCUyaIvvz/Z5dxsgvzNTozCAijDg3AuGx4Tja6yiMDY1ZSxLREmmNkJsDcADQEEBbKKtFXec4Ln618jkAZgCYBKAeAH8ANziO04uq2LUK1sJTv6cgItZSBItULsXBVwcxuPpgQd4Mlt1fhtzZcmNCvQmspSRgxvUZyJMtj6B2fC+6swh+4X7Y2XUn84hdoQCGDJMhMly5c2vYMAW6d2cqSZCsf7we5z+ch2N3RxTLVYy1HBEtkqY9i0SUIIcex3EjAAQAqAPgHqd8R08DsIyITqv6DAPwA8BAANu1oFmn1C5UG4GRgfAN8xXE9J0QufzxMgIiAjC85nDWUv7iy+8vcHzuiNVtVyO7SfaUn8AT1z5dw9n3Z3G011FBlDAElElwNrhswIrWKwSRSGLTJuD+XeUtqXBRKTZsEN6HPdY8+f4Ec2/OxYyGMwRxTlxEu2R0DVmdcT5I9bUUgIIArqs7EFEMgLsAGid1gZiYGISGhiZoLKlVqBYA4KnfU6Y6hIzjC0fULlQb1QtUZy3lL5bdW4a85nkxru441lL+ECuPxZSrU9CiZAv0rdKXtRwASk2jzo9CzYI1MaPRDNZy8P49MGduXOGIg/uNkYt9PQtBERwdjH4n+6FWoVpY0WYFazkiOiDdhqyKhu0APCCi16qH1Yc9fyTq/iPe/yVgxYoVyJUr159WrBjbKZhiOYshd7bc4jpyMgREBOCix0WMqCm8o06fgz5j34t9mNtkrqDqv65/vB6fgz5jY4eNzKeF1ax6sArvAt9hd7fdMDJge7hXKgUGDJIhNka5kWvKFELLlkwlCQ4iwshzIxEcHYxjvY+J540zKRmJkDcDqA5gQBL/l3gBlkviMQDA/PnzERIS8qd5e3tnQFLG4TgOtQvVFiPkZDj08hAMOAMMqJrUn50tS+8vRb7s+QQVHX8P/Q6buzaYVH8SqhWoxloOAOBt4Fssvb8Uc5rMQc2CNVnLwYoVSFA4YuVKYXxoERIOrg448/4M9nbfi5KWJVnLEdER6fpozHHcJgDdADQjIp94/+Wv+loQgF+8x/Pj76gZAGBqagpTU2FUuVFTs0BNnHp3irUMwUFE2Pt8L7pV6Caos70A8CnoEw68OIC17dYim3E21nL+MOfmHJgbm0PSQsJaCgBArpBj9PnRKGlZUhDFNtzdARtbBQADGBgqcPigMbIJ588nCJ76PcXM6zMxpf4U9KjYg7UcER2S1mNPHMdxmwH8A6AVEX1N1OUrlKbcNt5zTKDcnf0og1p5o0r+Kvga/BURsRGspQiKZ/7P8CrglSCnq5feW4r82fPj3zr/spbyhwdeD3D41WGsbLMSlmaWrOUAALa4boGzjzN2dd3FPEtYdDQwcLAUcpnyNvTffA716zOVJDhCY0LR90RfVMtfTcxTnQVI65S1A4DBUO6YDuM4rqCqZQMAUp4VWg/gP47jenIcVxWAI4BIAIe1plrHVMmnPDb97uc7xkqExd5ne1EoRyG0K9OOtZQEfAr6hIMvD2Je03mCiY7lCjmmXJmCeoXrCWY3umewJ+bfmo/xdcfjfyX+x1oOFiwgeLxX7qSuVkOGRYvEqer4EBHGXBiDwMhAHO9zXDD1skV0R1qnrMervjolenwElMYLAKsBZAOwBYAVABcA7YgoLH0S+adSvkoAgDcBb1C3sFjrDQBiZDE4/PowxtQew3wTUGJs79kif/b8GFN7DGspf3B87ohn/s/waOQjGHDsE+IREcZdGgerbFZY2WYlazm4exewt1f+29hEjiOHjGAi7lNKwHb37Tj+5jiO9z6O0lalWcsR4YG0nkNO8SOsKkqWqJpeksMkB0palsTrgNcpd84iXPC4gKCoIMFEe2o+/vqIgy8PYn379YKJjkNjQvHf7f8wsNpANCrWiLUcAMDBlwdx9dNVXBxwkXn2srAwYPBQKYiU0fHyZYaooje5/Pjhuf9zTLs6DePrjkefKn1YyxHhCfYf3QVKlXxV8CbwDWsZguHAywOoX6Q+KuatyFpKAmzv2aJgjoIYU0c40fHSe0sRHhuOVW1WsZYCQHlUbdq1aRhQdQA6l2ef6nT6dAV8vJRm3LiJDNOnMxYkMMJiwtD3RF9UylcJdu3tWMsR4RHRkJOhav6qoiGr+BX5C5c/XsbgaoNZS0nAh58fcOjVIcxvOp/5BiU1H399xPrH6zG3yVzBVMGadnUaOHDY0GEDaym4dCmuxrGZuRwH9hvBUHiltJmhXlrwC/fD8d7HBfO6FuEHYS0GCogq+arAK8QLYTFhsDDVizTcOuPE2xMgIvSr2o+1lAQsvb8UhXIUEkRRBDWzbsxCIYtCmNV4FmspAICrn67iyOsj2NdjH/Jlz8dUy69f6hrHyuh443pDlBaXRhOw59keHH51GIf/OSyYAiQi/CFGyMlQJb9yUett4FvGSthz8OVBtC/bHvmzC6fszuegzzj86jDmNpkrmCjixucbOP/hPFa3WS2ITGERsREYf2k8WpdqjSHVhzDVQgT8O06BnwFKM27XQY7RwvkcJQheB7zG5CuTMab2GAyoJrzEOyK6RzTkZKiUtxI4cFl+2vrL7y946P1QcNPVKx+sRD7zfIKJjmUKGaZfm46mxZsKJl+19V1r+If7Y1uXbcxTdh49Cpw6qbzd5LKUwXGPWOM4PhGxEeh7oi/K5i4riKUFETaIU9bJkM04G4rnKo6Pvz6ylsKUw68OI4dJDnSvKJw6eF4hXtj3Yh+Wt14umJ3V2922423gW7iNdWNufoByl66dsx1sWtowr+T0/TswbrwM6tvN9m1GKFSIqSTBMfHyRHiGeMJ9rLtgXtMi/CMasgbK5SkHjyAP1jKYQUQ4+PIgelbsKYgpWDVrHq6BhamFYHJWB0UFYbHTYoysNRK1C9VmLQdyhRxjL4xFpXyVmK9lEwEjR8sRGqK81fTtp0C/fuLEXHz2Pd+HfS/2YV+PfYI7xSDCL+I7QwPlc5fP0hGyu587Pvz6gMHVhTNd7R/uj51Pd2J6w+mCqSsscZJAKpdiWatlrKUAUBYicPN1w44uO5hXBdq7F7h+VbmNOm9+KbZuEW858Xkb+BYTLk/A8JrDMbTGUNZyRBgjvjs0UC5POXwM+ggFKVhLYcLBlwdRMEdBtCrVirWUP6x7tA6mRqaYVH8SaykAlDfULa5bsKjZIhTIUYC1HHiHeGPB7QUYX3c886QkXl7AlGmyP9/v3W2M3LkZChIYkdJI9DvZDyUtS2Jzx82s5YgIANGQNVA+T3lEy6LxPfQ7aym8I1PIcOT1EQyoOkAwqTJ/Rv7EVretmFx/siCKNRARpl+bjpKWJTGlwRTWckBEmHRlEixMLLC89XLGWoARo+SICFO+doYNU6BLF6aSBMfUK1PxOegzjvc+juwm2VnLEREAwrjTCpRyuZXnAD1+eaBYrmKM1fDLzS83ERARIKjp6g2PN4BAmNZwGmspAIBLHy/h+ufrONvvrCAS/595fwbnP5zHqb6nkMssF1Mtu3YBt28qp6oLFJJi/XpjpnqExuFXh7Hr2S7s7rb7zxFLERExQtZAScuSMOQM8TEo660jH3x5EJXyVkKtgrVYSwEABEcHY+OTjRhfdzzymudlLQex8ljMuDYDbUq3QbcK3VjLQUh0CCZfmYxuFbqhZ8WeTLV4egJTpyecqra0ZKdHaHwK+oR/L/6LQdUGCbKUKUveBWbtCnuiIWvA2NAYpa1Kw+NX1tppHSmNxNn3ZzGw2kBBHOEBAIcnDoiRxWBmo5mspQAAtrltw+ffn2HXzk4Qv6P/bv2H0JhQbO64makehQIYNlyOqAjl5NvIkQp07MhMjuCIlcei/8n+KJijILZ23iqI145QCI0JRc9jbD9Mskacsk4B9caurMTlj5cRIY1AvyrCSJUZHhsO+8f2GF17NApZsD/A+jvqN6zvWmNkzZGoVqAaazlw9nbGVretWN9hPfOlle3bgbtOyqnqQkWksLMTp6rjM//mfLz88RLOo5yzfEre+BARRp4bCd8wX9ZSmCJGyClQPnf5LBchH39zHLUK1hJMLt3tbtsREhOCOU3msJYCQFnNKUYWA9tWtqylQCqXYuzFsahbuC4m1pvIVMuXL8CMWXFT1fv2GiMX26VsQXH542XYPbbD6rarUadwHdZyBMXaR2tx6t0p7Ouxj7UUpoiGnAJlcpfBt+BvWeboU3hsOC56XBRMdBwti8Za57UYVmMYiucqzloOPgd9xqYnmzCv6TwUzFGQtRysfbQW7wLfYUfXHTA0YFc2SaEAho2QIzpSOek2diyhbVtmcgSHb5gvhp0dhs7lOmNqg6ms5QiK219vY96teZjXZB56VsraU9aiIadAScuSiJXHwi/Mj7UUXrjocRFRsijB5GN2fO6IgIgAzG0yl7UUAMC8W/OQP3t+zGg0g7UUfA76DJt7NpjRaAZqFqzJVIuDA/DgnvIDQZFiUqxdK66NqpEr5Bh8ejBMDE2wt/tecd04Hj6hPuh/sj9alWqFpa2WspbDHMEYsoODAypXrox69eqxlpKAUpalAADfgr+xFcITx94cQ/0i9VHKqhRrKZAr5Fj7aC16VeoliOnzh14PcfLtSSxvvZx5KlF13dxCOQphSfMlTLV8+gTMniP/8/2+vcawEJdH/7DiwQo4fXPCoX8OMS+BKSRiZDHofbw3zIzMcPifw0xneISCYAx54sSJePv2LVxdXVlLSUAJyxIAsoYhh8aE4srHK4KZrj717hQ+//4siOiYiDDz+kzULlRbEGezD786jJtfbmJL5y1Mk0ooFMDQYTLERCtvpuPHE1q3ZiZHcDzwegCJkwSLmi1Ci5ItWMsRFDOuzcAz/2c42fek+EFFhbjLOgVymORAXvO8+Br8lbUUnXPu/TnEyGPQp3If1lJARFj1cBXalG4jiA0wx94cg8t3F9wZdgcGHNvPsb+jfmPG9RnoV6UfOpTtwFTLxo2A8yPlbaRYCSlWrxZ3VasJigrCwFMD0bhYYyxqvoi1HEGx/8V+bHHbgu1dtqN+kfqs5QgG0ZBTQUnLklkiQj725hgaF2vM/OgMoMwU9tTvKW4MucFaCqJl0Zh3cx66V+guiChnwe0FiJJGwa69HVMdHh7A3HlyAMro+MA+Y+QQRr0P5hARRp0fhfDYcBz655Bg0s8Kgef+z/HvxX8xouYIjKk9hrUcQSG+SlJBKctSmd6Qf0f9xvXP17G23VrWUgAAqx6uQu1CtdG6FPv5zw2PN+B72HdcH3KdtRQ8+f4E29y2YX2H9ShsUZiZDrkcGDJUhtgY5S1k8mRC8+biZiU1W1y34Oz7szjb76wgPuAKhd9Rv/HPsX9QOV9lOHRyEDe4JUI05FRQ0rIk3P3cWcvQKWfen4FMIUPvyr1ZS4Gbrxtufb2FY72PMX/DBkYEYvmD5RhfdzzK5ynPVItMIcO4i+NQq1AtTKg3gakWe3vgiYvy9lGilBQrVohT1Wpe+L/AzOszManeJHSv2J21HMGgIAUGnxmMkJgQ3B52G9mMs7GWJDhEQ04FJS1LwivEC3KFPNPuBDz25hialWjGNOpSs+rhKpSxKoNelXqxlgKJkwQcOCxuvpi1FGxx3YLn/s/hMtqF6RTou3fAfwuUU9UcRziwzxjZxWJFAICI2Aj0O9kPFfNWxJp2a1jLERS2d21x5eMVXB50GSUtS7KWI0gEs8tayJSyLAWZQpZp07oFRQXh1pdbgjh7/PHXR5x6ewqzG89m/uHnXeA7bHffjkXNFjEvaOEb5ouFtxdiXN1xqFeE3dFAuRwYMkwGaazybzN1KvC//zGTIzgmX5kMn1AfHOt9DGZGZqzlCIYrH6/A+q41rFtYM9+IKGREQ04F6k9zmXUd+cKHC1CQgnmVIECZeSp/9vwYVnMYaymYc3MOSliWwKT6k1hLwfRr05HNOBvzOsf29oC7qzI6L11WimXLxDVANYdfHcbe53vh0MkBFfJWYC1HMHwL/oZBpwehU7lOWNBsAWs5gkY05FSQ2c8in35/Go2LNWZeuMEvzA+OLxwxtcFU5tGF0zcnXPS4iBWtVzCvdXzt0zUcf3Mcdu3sYGlmyUyHhwewYKEyAQjHEfY7GsOcbX4UwfAp6BPGXRyHQdUGYWiNoazlCIYYWQz6nOiDXGa5cKDnAeZHBoWO+NtJBebG5rAys8L3sO+spWid8NhwXPt0Df9U+oe1FGxw2QBTQ1OMrzeeqQ4iwtybc1G/SH3mZ7KjpFGYeHkiWpVqhYHVBjLToVAAw0fIEBujnKqePBlo0oSZHEERK4/FgFMDUCBHAbGkYiKmXZ2GVz9e4WSfk7DKZsVajuARN3WlkqI5i+J7aOYz5CsfryBGHsN8ujokOgRb3bZiXN1xTKNAADj59iSefH+CO8PuML+5rnywEl4hXrg48CJTLVu2JEwAsny5uKtazX+3/sML/xdiScVEHHhxANvct2FHlx2CSO6jD4iGnEqK5CwCnzAf1jK0zun3p1GrYC3muat3Pt2JKGkUpjWcxlSHVC7Ff7f/Q6dynZgnAfH45YGVD1dibpO5qJi3IjMdX78Cs+fKoL5d7Nsr7qpWc/njZaxzXgf79vai6cTj1Y9X+PfivxheczhG1x7NWo7eIE5Zp5KiFkXhE5q5DDlaFo2LHheZT1dL5VJsdNmIgdUGMj92tcN9Bz4HfcbK1iuZ6iAiTLg0AUVzFsV///uPoQ5g5Ki4sor//kto2ZKZHEEhllRMmpDoEPQ6riwIIyb/SBuiIaeSzDhlfevLLYTHhjM35JNvT8I71BvTG05nqiMsJgw292wwrOYwVCtQjamWo6+P4tbXW9jccTPTBAq7dgFOd5TrxoWKSLF6tXhzBcSSislBRBh5fiR+RPzAqb6nmFdF0zfEKetUUiRnEfiH+0Mql8LYMHOsn51+dxoV8lRApbyVmGkgItg9tkOb0m1Qo2ANZjoAYJ3zOoREh8C6hTVTHcHRwZh+bTp6V+6NjuU6MtPh7Q1MmxE3Vb1nlzFy5mQmR1CsfLASTt+ccHvYbbFSUTzsnO1w+t1pnOl3BmVzl2UtR+8QI+RUUjRnURAIfuF+rKVoBZlChnMfzuGfSv8w/XR/3+s+3HzdMKPhDGYaAMA/3B9rH63FlAZTUDxXcaZaFt5eiAhpBNa3X89MAxEw5l85IsOVZjxsmAIdxHwOAABnb2cscVqChc0WMt9nICTue97H3JtzMbvxbPSo2IO1HL1ENORUUjRnUQDINOvI9z3v41fUL+bT1XbOdqicrzLz7D02d21gbGiM+U3nM9Xh5uuGLa5bYNPCBkVyFmGm4+BB4NoV5VR1vgJS2NuLtwpAuT468PRANCjaQBDpVIWCf7g/+p3shybFmzBPXqPPiFPWqaSIhfLmmFnWkU+/O41iOYuhTiF2O0M//vqI8x/OY0fXHUyjdI9fHtjhvgMrWq9gelZSQQpMvDwRVfNXxeQGk5np8PcHJk2Om6retcMYVuIRUhARxl0ah6CoINwZdkcsqahCppCh/8n+IBCO9T4m/l4ygPibSyWWZpYwNzbPFBEyEeHM+zPoVakXUyNc/3g98prnxeDqg5lpAJT1hQtbFGZqggCw59kePPn+BPeG32N2UyMCxo1XIDREOX6//gp06yZGxwCw/8V+HH19FEd6HRGLI8Rj4e2FeOD1ALeH3UbBHAVZy9FrRENOJRzHoWjOzHH06Zn/M3wP+45uFbox0/Ar8hf2Pt+LuU3mMk2T6eLjgpNvT8KxuyNTHUFRQZh3cx6GVB+C/5VgV63h5Eng3FmlAVvlkWLzpsyxgTGjfAr6hImXJ2J4zeHoX7U/azmC4dz7c1j1cBXWtF2DZiWasZaj94gffdNAEYsimSJ95oUPF5DTNCfTG/929+1QkIJpXV8iwpybc1AtfzXmUfrC2wshVUixuu1qZhoCA4F/x0v/fL9tizHysi1yJQjUqTELWRTCxg4bWcsRDJ+CPmHY2WHoWbEnZjaayVpOpkCAEXK06qtUYy8WFMhRAP7h/qxlZJgLHhfQoWwHmBiaMBk/RhaDTU82YWiNoUyPjFz+eBn3PO/h0sBLTEs9uvu6Y5vbNti1t2M65Td5igK/fykj4u49FOjTR/y8DgCL7yzGc//nYmrMeERJo9D7eG/ky55PPIetRQTzjnNwcEDlypUxZkxd1SOjITRTLpi9oN4bsm+YL9z93NG1fFdmGo6+Pgr/cH+miUDkCjnm3ZqHFiVboGNZdmd91Ru5quSvwrTM47lzwLGjyttBTksZtm01gHiPVSbPWf1wNZa1Woa6heum/IQsABFhwuUJ8PjlgVN9TyGXWS7WkjINgjHkiRMn4u3bt9i587XqkQsABkFIplwgRwH8CP/BWkaGuOhxEQacATMTUicC6VSuEyrlY5eQ5MjrI3gd8BorW69k+une8bkjXL67wKGTA7ONXL9/A2P+jXufbd5ohILi3hz8jPyJIWeGoHXp1pjVeBZrOYJh97PdcHzuiG1dtqF6geqs5WQqBGPIf3MAwBkIyZQL5iiI39G/ESOLYS0l3VzwuICmxZsij3keJuPf9byLlz9eMo2OY+WxWOK0BN0rdEeDog2Y6fgd9Rtzb87FoGqDmG6ImTFDgcAfyqnq9h3lGMx2OV0QEBFGnhsJqUKK/T32i3V8VTz1e4pJlydhbO2xYt1nHSDgV1lnACchJFMukL0AACAgIoCxkvQRKY3EzS83mU5Xb3TZiEp5K6F1qdbMNOx5tgdff3/F0lZLmWkAgEV3FiFGFoM1bdcw03DzJuDoqLwNZLeQYdcOQ3GqGsAW1y244HEBe7rtQSGLQqzlCILfUb/R+3hvVMlfBRs6bmAtJ1MiYEMGgO4QkimrN9z8iNDPaetbX24hWhbNzJA9gz1x7sM5TGkwhdk0caQ0EjZ3bTCo+iBUzV+ViQYAeOb3DFvdtkLSQsLshh8ZCYwaE/eeWrfGCEWLMpEiKF4HvMbM6zMxqd4kdK3A7sOrkFCQAkPPDkVwdDBO9jnJ9IhgZkbghgwIyZQL5FBGyPq6seuCxwWUy10OFfJWYDL+FtctsDCxwJDqQ5iMDwAOTxwQGBkISXMJMw3qjVyV8lbC5PrskpEsXkzw+qacqm7SVIYxY5hJEQxR0ij0P9kf5fKUY3oETWiserAKFz0u4kDPA8xrp2dm9MCQAaGYcj5z5REdfdzYpSAFLnpcZBYdR0ojsfPpToyuPRrZTdhUtw+JDsHKhysxutZolMldhokGQJnxydnHGZs7bWZWOczdHbCzJwCAsYkcu3cZwUBP7ga6ZPaN2fj8+zOO9DrCtOylkLj15RYW3lmIhf9biM7lO7OWk6nRo7cge1M2NjRGXvO8ejll/dTvKfzC/ZhNwR16eQjB0cGYWG8ik/EBZXnFSGkkFjVfxExDcHQw5tyYgwFVBzCrFCSVAsNHSkEK5dtfssQQFdhMmgiK8x/Ow8HVAevarWO6nCEkvod+x4BTA9CqVCtIWkhYy8n06JEhA0Iw5QLZ9TM5yEWPi7A0s0STYk14H5uIsPHJRnSt0JXZdFdARADsnO0wuf5kFLYozEQDoEwyESWLwtp2a5lpWLcOeP1SGZlXrirF7NnMpAgG3zBfjDw3Et0qdMP4uuNZyxEEUrkUfU/2hYmhCQ7/c5hp8pysgp4ZMsDalAvmKKiXEfKVT1fQvkx7JlOkdz3v4nXAa0ypP4X3sdWsfLAShgaGmNtkLjMNL/xfwMHVAUuaL2H2oeDjR2DxEjkAgDNQwHGPMYyzeLpqBSkw9MxQmBqZYne33WLWKRVzbszBk+9PcKLPCaYZ9bISAjTkZ6qvrzT0YWfK+pg+82fkT7h+d2VWc3ijy0ZUzlcZrUq1YjK+d4g3trhuwaxGs5idvyYiTLoyCRXyVMDUBlOZaFAogJGjZJDGKiOdaVM51KvHRIqgWPNwDW5/vY39PfYjr7mYvBsATr49ifUu67Gu3To0KtaItZwsgwANuaTqa1cALzT0Y2PKBbMX1LtNXdc/XweB0L5Me97H/hb8TXnUqT67o042d21gYWqBaQ2nMRkfUGYGe+D1AJs6bmK2kWv3buDBfWU2sGIlpLC1FSNB1++uWHhnIeY0mYPWpdmdjRcSHr88MPLcSPSt0pfpKYCsiAANWV0JvQSAVhCaKefLng+BkYE6H0ebXP10FTUK1GBy3nWL6xbkNM3JrJqSxy8P7H2+F/81/Y9ZYYCI2AjMuTEHPSv2ZHbT9/UFZsyS/fl+905jZGez2V0whMWEYcCpAahVsBZsW9qyliMIoqRR6HOiDwpZFMKurrvE6XueEaAhqzkLoBSEZsp5zfPid9RvyBVynY6jLRSkwLXP15jkro6URmLX010YVWsUs6NOS5yWoJBFIYyvx26jzsoHK/Ez8ifWtVvHTMPESQqEhyqj46FDFWjblpkUwTD5ymT8iPiBw70OM5u1EBqTr0yGxy8PnOhzQqxsxQABG7IVgBsQminnNc8LAuF39G+djaFNnvs/R0BEAJP148OvDjM96vTC/wWOvj6KJc2XMMss9PX3V6x5tAazGs9itsP89Gng7BnlWz13Xins7AT8tueJY6+PYd+LfdjccTPK5i7LWo4g2Pd8H3Y/240tnbaIRSMYIfB3pvBMOU825aagn5E/dXJ9bXPl4xVYmFjwvjGDiLDFdQs6l+/MzIgkdyUoY1UGw2oMYzI+AMy6MQt5zfNiftP5TMYPDgb+HR/3Xtiy2Rh52OxrEwxeIV4Yd2kc+lXpJxZIUPE64DXGXxqP4TWHY0StEazlZFkEbsiA0ExZvQtTXwz56ueraF26NUwMTXgd19XXFc/8n2FcnXG8jqvmqd9TnH1/FoubL2Y2HXn7622cfncaq9uuZjZlP3s24WeA8ufv1FmOvn2ZyBAMcoUcQ88MhYWJBbZ23iqukQIIjw1H7+O9USZ3GTh0cmAtJ0ujB4YMCMmU1cdmfkX+0up1dUFwdDCcvZ2ZrB9vdduKErlKMDtqJXGSoHye8hhYbSCT8WUKGaZenYomxZpgQNUBTDQ4OQG7dikNxzyHDNu3iZWc1j5ai3ue97C/535YZbNK+QmZHCLC2Atj8T3sO072OQlzY3PWkrI0emLIgFBMOXe23AD0I0K++eUm5CTn/bhTUFQQjr4+in/r/Msku4/rd1dc8LiAxc0Ww8jAiPfxAWCb2za8CXiDjR03MonCoqKAEaPiXvdrVomVnJ76PcWiO4swp8kcZmlLhcZ29+048voIdnXdxazojEgcemTIgBBM2cjACJZmlvgVJfwI+eqnq6iUtxJKWJbgddx9z/dBrpBjVO1RvI6rZonTElTMWxH9q/ZnMv6vyF9YfGcxRtUahdqFajPRYG1N+PZFOVXdsJEM49isHAiGSGkkBp4aiGoFqsGmpQ1rOYLA3dcdU69OxYS6E9Cvaj/WckQgSENWqL5SMv/P3pTzmucVfIRMRLj66SrvU8ZEhG3u29Crci/kz56f17EB4LHPY1z5dAWS5hJmuXcX3VkEBSmwrPUyJuO/fAmsWat8/xgZy7Fnt1jJaea1mfAK8cKhfw7xvp9CiARHB6PPiT6olr8a7NrbsZYjokKAb9N7qq8SCNWU9cGQ3/98j+9h39GuTDtex73z7Q48fnkw28y1xGkJquSrgj5V+jAZ/4X/C2x3344lzZcw+UCiUAAjR8ugkCvf2osWGqJSJd5lCIoLHy5gm/s2rGu3DhXzVmQthzlEhBHnRuB39G+c6HMCpkamrCWJqBCgIbdQfV0PYD6EaMp5suUR/JT1ra+3YGxgjP8V/x+v425124rK+SqjWYlmvI4LAA+9HuL65+uQtJDAgOP/pU1EmHp1KsrnKY9J9SfxPj4AbNsGuLsq183LlpdiLrtaGoLgR/gPjDo/Cl3Kd8G4ull83l6F/WN7nH1/Fvt67GN2JFEkaQRoyGpWAFgFIZqyPkTIN7/cRONijXk9buMX5oez789iXJ1xTDYyLXFaguoFquOfSv/wPjagTMh/1/Mu1rdfz+Sola8vMGdewvSYplk4+CEijDw/EhzHiVWcVDzyfoS5N+diVqNZ6FahG2s5IokQjCE7ODigcuXKqPen/MwEAPYQoinnyZZH0MeeZAoZnL45oXUpfvMm73q6CyaGJkySLdzzvIdbX29B0pxNdBwpjcSsG7PQtXxXtC/LfxEPAJgyVY6IMGV0PGKEAs34n6QQFFtct+Dyx8vY230vk+UDoREYEYi+J/qiQZEGWN56OWs5IkkgGEOeOHEi3r59C1dX13iPToMQTVnoEbK7rztCYkJ4LWQgU8iw4+kODKw6ELnMcvE2rpolTktQq2At9KjYg/exAWUJP/9wf2YbZC5dAk6dVG5is8ojxdq1gnlrM+Ft4FvMujELE+tNRKdynVjLYY6CFBhyZghi5DE42vuomLtboLA5pJkmpqm+Tld9XQEgqakntSm3hdKUbwOokcw11abcG0pTPgQg9S/QPOZ5EBQVBLlCzmwnryZufb0FCxML1CvMX7Hbyx8vwyfUh8k63Z2vd+D0zQnn+59nMi3pE+qDVQ9XYVqDaUzyIkdEAGPHSaF+DW9cb4zcuXmXIRhiZDEYeGogSlmWwpq2a1jLEQTL7y/H9c/XcXXwVRTNmcUPpAsYPfkYPQ1CipTzZMsDAiEkJiTVz+GTW19voXnJ5rx+Ct7uvh11C9dFncJ1eBsTUK4TLnZajLqF66JL+S68jq3mv1vK0o4Lmi1gMv7ixQRfH+XfukVLOQYNYiJDMCy8vRBvA9/icK/DyGacjbUc5tz+ehtLnJZgUbNFvJ+6EEkbemLIgJBM2dLMEgAQEi08Q46SRuGh10O0KdWGtzG9Q7xx9dNVjK09lrcx1dz+ehsPvB5A0lzCJDp2/e6KAy8PwLalLXKa5uR9/GfPgPUblO8FYxM5du7I2ukxb325hbXOa7G89XLULFiTtRzm+IX5YcCpAWhZsiUWN1/MWo5ICuiRIQNCMWW1IQuxBOND74eIkcfwun7s+NwR2YyyMcmMZXvPFnUL12WyTkhEmH5tOqrlr4ZRtfjPSiaXA6PGxJ05XrLYEGWzcCXBoKggDDs7DK1KtcKMRjNYy2GOTCFD/1P9YcgZ4tA/hwS5vCaSED1YQ07MNNVXdmvKakMOjg5OvWyeuPXlFgpkL4Aq+arwMp6CFNj9bDf6VenHe0Hz+573cdfzLs72O8skOj717hQeej/E9cHXmdzstmwBnrkr38LlK0oxe3bW3ahDRPj34r+IlEZiX499THbaC43FdxbjoddD3B52GwVyFGAtRyQVCPBV+0X11VdDn2lgGSkL2ZBvfr2J1qVb82ZQt77cgmeIJ0bXHs3LePGxvWeL6gWqMzlPGS2Lxpwbc9C5XGe0LdOW9/F9fIB5/yU8c2yShTNC7nuxDyffnsSOrjvETUsALnlcwooHK7Cs1TImSXpE0ocADVltJJ0BfNfQbxpYmbL6WI/QDPl31G+4+7rzev5417NdqJyvMhoWbcjbmADg4uOCG19uYOH/FjKJjje6bIRXiBfWtlvL+9gAMGmyHJHhyuh49GhC06ZMZAiCz0GfMfnKZAyvORy9K/dmLYc5nsGeGHJmCLqU74LZTWazliOSBgRoyOpUbrFQptEUnikbGRjBwsRCcIZ8z/MeCIRWpVrxMt7PyJ848+4MRtcazbsp2t6zRaW8ldCrci9exwWAgIgALLu/DOPrjmeSG/ncOeDcWeUUee68UqxenXV3cckUMgw+Mxj5s+fHxg4bWcthTqw8Fv1O9kNO05zi1L0eIuC/1kUI2ZQtzSwFZ8h3Pe+iRK4SKGlZkpfxDrw4AAAYUmMIL+Opeer3FJc+XsKC/y1gcsNZcmcJDDgDSFpIeB87LAwYNyHu9bh5ozGsrHiXIRiW318O1++uONjzIO97GITInBtz8NTvKY73Of6ndruI/iBgQy4F4A6EaspCNWS+1ouICLue7ULPSj2R1zwvL2OqWXpvKcrmLsukhuvrgNfY8XQHFjVbhDzmeXgff9Eigr+vcvNW67Zy9GdT8lkQuH53hc1dGyz43wI0KtaItRzmnH53GhtcNmBdu3WoX6Q+azki6UDAhgwApSFUU7Y0sxTUsaeQ6BA893+O5iWa8zLeY5/HeBv4FqNr8buZ69WPVzjz/gz+a/ofjAz4PyQw6/oslLYqzaSak7s7sHGT8nVtYirH9q1Z98xxpDQSQ84MQa1CtbCw2ULWcpjz5fcXjDw3Er0r92ZWaUwk4wjckAGhmrLQIuSH3g+hIAWal+THkHc93YUSuUrwet4ZAJbdX4YSuUpgcPXBvI4LAFc+XsG1z9ewpu0a3ovcy+XAmH9lIIXyLWstMUSZMrxKEBRzb8yFZ4gnDvQ8kOXzMsfKY9H/ZH/kMc+DXV13iVWt9Bg9MGRAiKYsNEO+++0uCuUohDJWur9Lh8aE4uiboxhVaxSva7jvf77H8TfHMa/pPN5vwlK5FDOvz0TzEs3RvUJ3XscGgJ07E545npGF815c+3QNm103Y03bNUw21QmNOTfm4Ln/cxzrfYxJYRcR7SE4QyZSGqhMIUv0P8IyZUuznIIy5Hte99C8ZHNePh0ff3McUdIoDK85XOdjxWf5/eUobFEYI2qO4HVcANj5dCfe/3wP+/b2vEcgP34krHO8c3vWPXP8K/IXRpwbgXZl2mFCvQms5TDn7Puzf9aN6xauy1qOSAYRnCG///keADD2wljIFfJE/yscU7YyuyMYQ46IjYCbrxtv68f7XuxD2zJtUSxXMV7GA5RnTQ+/Oow5TebA1MiUt3EB5XnzxXcWY3jN4ahVqBavYwPArNkKhIUoo+PBQ7JunWMiwvhL4xEti8aebnuy/JGeb8HfMOLcCPxT6R9x3TiTILhXdKV8lQAAZ96dwbiL4/5EzHEIw5Qtzd4jONof6amnrG0eeT+CTCHjZYf156DPeOD1AMNqDNP5WPFZ8WAF8prnxZjaY3gdFwBW3F+BKFkUlrZayvvYd+8CBw8o36YWuWRYl4XrHB9+dRgn3p7Ati7bUCRnEdZymKI+b2xpZond3XaL68aZBAG+u50AAFs7D8SuZ7uw8HZSOyjZm7Kl2USEx8ogUwwAa1O+53kP+czzoVLeSjofa/+L/bAwsUCPij10PpYan1Af7H+xHzMbzeS9nJ5nsCc2uGzA7MazUdiiMK9jx8aq6xwrWb3SCPnz8ypBMHiHeGPi5YkYVG0Q+lbpy1oOc+bdnIdnfs9wvPfxP6l8RfQfARqyctq1f7WDWN2mN5Y/WI5dT3cl0Y+tKVuatQQABEefRVrrKWsb9fljXX9KVpAC+17sQ98qfWFubK7TseJj52yH7CbZMa7uON7GVLPoziJYmlliZqOZvI+9fj3g8V65ea12HRnG8D85IAgUpMDwc8NhYWqBzZ02s5bDnHPvz8H+sT3WtF2DekXqsZYjokUEaMhqUxmNWY1PYnzdFhh/aTzufrubRF92pqyufRsWswVpraesTaKkUXD57sLLdPU9z3vwDPHkdbr6V+Qv7HDfgUn1JvGeiemZ3zMcfHkQkhYS3sf28gKWSJR7KDgDBXZsN4JhFq2et9FlI25/vQ3H7o5ZPhr0DPbE8HPD0aNiD0xpMIW1HBEtI0BDVrMWHDcBGzo4oVmJsuh9oje8Q7yT6MfGlLObZAcAhMc2QlrrKWsTV19XxMpjeTHkfS/2obRVaTQtzl8lAwdXByhIweTmM/fmXJTPU55JrePJU+SIjlI68ITxHOrU4V2CIHgT8Abzbs7DtAbTeD/zLjTU68a5THNhT7c94rpxJkTAhswB2Axjwwk41vs9zI0V6HOiD2LlsUn05d+Uc5jkAABESCOQltKN2uaR9yNYmFigWv5qOh0nIjYCJ9+exLAaw3i7EUTERmCjy0aMqjUK+bLn42VMNdc/X8eNLzewss1K3s88X7wInD+nNOM8+aRYujRr3nhj5bEYfGYwyuQug+Wtl7OWw5z/bv0Hdz93HOt9DFbZMmcC82ufrrGWwBTBGLKDgwMqV66MevXir4koTTmv+QSc6BOEp35umH9zfjJX4NeUsxurI+Rw1SNsTPmR9yM0LNoQhga6nc88/e40wmPDMbTGUJ2OE59dT3chODoYsxrP4m1MAJAr5JhzYw6aFm/KexKQyEhg/MS4187G9cawtORVgmCQOEnwJuANDvY8yPtmPqFx4cMFrHNeh9VtVqNB0Qas5eiEr7+/YsCpAaxlsIWIWLUkCQkJIQAUEhIS71EFEU0gu0cgSEBXP15N7ulE9JmIihNRWSLy0dCPiMheJWWuaozkCCKiOkSUm4ieExFRQHgAQQI6++5sor5niciIiPoQUWwK42cMhUJBeVbloSV3luh0HCKi1vtaU/O9zXU+jpoYWQwVsytGQ04P4W1MNfue7yNIQM7ezryP/d9/CgKIAKLmLaSk0PSyzMTc97xPBtYGtPzectZSmOMZ7ElWK62o25FupMikL4jI2Eiqta0Wld5QmoidJzFvgomQNaOMlKc2HI92ZYAR5/ohKCoomb78RMrqKeu4CFkNf5Hyx6CP+BX1C42LNdbZGADgFeKF219v87qZ6/Crw/AO9cbcJnN5GxNQbpJbeHshelfujYZFG/I69ocPwOo1ytegkZEC27YaZcniEWExYRh6ZigaFm2IOU3msJbDFKlciv4n+8PC1AJ7u+/NlOvGRIQJlyfg3c93ON33NGs5TNETQwYADgacA/Z0G4ooWQimXOmkoa/uTdnM6AM4cKo15MTwY8qPvB+BA4cGRXQ7hXXgxQFkM86G3pV763QcNQpSYNXDVehWoRuq5K/Cy5hqNrpshF+4H5a34nfNkggYN14OmVT5lpw9m0PFLJqmefq16QiMDMSBngd0vhQjdBbcXgBXX1cc630s09Y33vl0JxyfO2J7l+2oUbAGazlsYRieJ0nSU9bxUdC+560IEtDFD5OTu4wK3U5fWyzPTuserdPQV7fT12POj6FqW6pp/brxUSgUVH5TeRp8erBOx4nPmXdnCBLQI69HvI1JRBQYEUg5V+SkSZcm8TouEdHhw/Rnqrpo8ViKiOBdgiA49/4cQQLa5b6LtRTmXPxwkSABrX24lrUUneHi40ImtiY04eKE+A8znzpm1QQYIatrDIcl8/8chlS/gfZlimHC5U0Ij9WUKEC3kXJ2k0hExH7WcE3dRsqPvB/pfLra3c8dHr88MKT6EJ2Oo4aIsOLBCjQr0Yz3ovPL7i0DEWFR80W8jhsSAkyZFvfa2OpgDHP+8q4IhoCIAIw+Pxpdy3fFyFojWcthineIN4aeHYou5btgRqPMWdorMCIQvY73Qu1CtWHfwZ61HEEgQEP+pvraG8mZMscZYEvnOwiIMITt3ckAksrkpUZ3ppzDxAThsXuQnnrKGSU4OhhvAt/o3JAPvzqM/Nnzo1WpVjodR43TNyc8+f4E85smt5teN3z5/QUOrg6Y22Qu8mfnNz+lREL4GaA8WtW1mxxduvA6vCAgIoy5oExFtrPrzky5VppapHIp+p/qj+zG2eHY3TFT/i5kChn6n+qPWHksTvQ5wXt9caEiQENWV9N5DaATkjPl0lZl8F/TxbB7bIAPP8eAhSlnNy6HCKkF0lNPOaM89nkMADo1ZLlCjqOvj6J/lf4wMjDS2TjxWflwJWoUqIH2ZdrzMp6aBbcXIF/2fJjeaDqv4755A2zcpHyNmZjKsXFD1lwzdXzuiPMfzmNn150okKMAazlMWXRnEVx8XHC091HkMc/DWo5OWHh7Ie5+u4tjvY+haM6irOUIBgEaspqzUJpc8qY8u8kcFMtZAjOuFwfAvymbG1sgQtoG6amnnFFTfuT9CPnM86GMVZkMXUcTdz3vwi/cDwOrDdTZGPF57v8c1z9fx9wmc3mNCly/u+Lo66OwbWnLa45uImD8RBkUcuXbcOECQ5QsydvwgsEz2BNTr07F8JrD0b0iv+e+hcaVj1ew6uEqrGi9QuezX6w4/e40Vj1chVVtVqFFyRas5QgKARtyPQDXocmUzYzMsLrtalz+6IWbX7qCb1M2NTJFrJxDeuopZ9SU1evHujSuQy8PobRVadQvUl9nY8THztkOxXMVR58qfXgZT838W/NROV9l3ktKHj8O3L+rnHkoXlKK2bN5HV4QKEiBkedHwtLMEuvbr2cthyk+oT4YcmYIOpXrhJmN+S9mwgfvf77H8LPD0bty70y7Np4RBGzIANAQKZlyr0q90KhoI8y9+R0KGg8+TdnU0BQxshikp55yRkxZppDB5buLTj9BR8uicerdKQysOpCXaNUn1AdHXh/BtAbTeJseB4CbX27i1tdbWN5qOa9HbMLDganT4/72DpuMYWbG2/CCYYvrFtz+eht7uu9BLrNcrOUwQ6aQYcCpAchmnA37euyDASfwW3M6CI8NR6/jvVA0Z1ExF3cy6MFfXbMpcxyHVW1W4anfU5x82xzABPBlyqZGpoiRx6i+48+U3wa+RXhsuE4TV1z5eAUhMSG8TVdvctmE7MbZMbr2aF7GA5Qbiebfmo+GRRuiW4VuvI0LAEuXEn74KTdydeyUNTdyffz1EXNuzMHEehPRpnQb1nKYsvjOYjh7O+Nor6PIa56XtRyto9605xXihVN9T/FePU1vYHjmKkmSP4fsTEQWRNSUiEL/el6Hgx2o4uaKJJNLiWiCaoidyQ2jImPnlPsc70Nt97dN1O/vNJvJk75zyjvdd5KBtQGFx4Sn+jlppffx3lRrWy2dXT8+odGhlGtFLpp9fTYv46k5+eYkQQK68/UOr+O+f09kZCQngMjIWEYfP/I6vCCQyWXUaFcjKruxrE5fx/rA9U/XiZNwtOL+CtZSdMYml00ECejY62Op6c78PDCrpgcRshrNkbJNCxu8//kex9+cALAZfETKCSNkNbqPlF2/u6Jyvsp/SkBqm9CYUFz4cIG36Hj3s92IkEbwWmJRppBhwe0FaF+mPa8bS4iAiZPlkMmUb725cwxRtixvwwuGtY/WwuW7C/b12Kez17E+4B/uj8FnBqNtmbaZNk2os7czZlybgakNpqJvlb6s5QgaPTJkQJMp1ytSDx3KdsCy+8ugIAIfpmxiYJxMOUjdmrKrryvqF9bdRqsz784gVh6L/lX762wMNTKFDOsfr0f/qv15Pf6w/8V+fPj1gfeyfufOAbduKNeqCxeV4r//eB1eELz68QqLnRZjVqNZmXYncWpQkAJDzwwFBw77e+zPlOvGgRGB6HuyL+oVqYfVbVezliN49PAVkLwpL/jfArwJfIOLHhehLkihS1M2NXqu2tSVFLox5ShpFF7+eIl6Reol2yejHHp1CM1LNufFIE+9PQXPEE/MbMTfrtJoWTSWOC1Bvyr9ULtQbd7GjYwEJk1JWFoxq2XkipXHYujZoSiXuxysW1qzlsOU1Q9X4+aXmzj4z8FMefZarpBj4OmBiJHF4Hjv42Lyj1QgQEN+pPp6S0OfpE25afGmaFKsCVY/VH8S060pmxo+Q4zcC+mpp/w3qTPl5/7PISe5zo4i/Qj/gVtfb2FgVd1PVxMR1jmvQ+tSrVGzYE2dj6dmi+sW+IX5wbalLW9jAsCqVcB3b+VGrpat5PjnH16HFwRL7y3F64DX2N9zP8yMsuC2chXO3s5YeHsh5jedn2k3tEmcJLj99TaO9j6KIjmLsJajHzBcwE6SkJAfqk1dpkR0LbluKv7e6KUuTODi4xKvn7KesrY3es290YrKbEi40StptLfRa73zejK1NaVYmW5qLTs8cSAjGyP6FflLJ9ePz91vdwkS0GWPyzofS01IdAjlWZWHxp4fy9uYRESfPxMZm8gIIDI0ktO7d7wOLwie+DwhQ2tDsnayZi2FKUGRQVTcvjg13t1YZ+9j1qgLY6SznjXzzVWsmgAjZPWn5mZQRo3XNfT9O1LuWr4ryliVwfrH6+P1002kbGrYFDFyS6SnnnLyaI6UXX1dUatQLRgbGmu4Rvo5/uY42pRuw0upt3XO61A5X2V0KNtB52P9GfPROkRII7C4+WLexgSAqdPkkMYq146nT8t6pRWjpFEYenYoahasyXueciFBRBh9YTRCY0Jx+J/DOnsfs+Tr768YcmYIupbvirlN+a1nru+k2ZA5jmvGcdwFjuN8OY4jjuN6JPp/R9Xj8dvjtEs7CKV5pc2UDQ0iMan+JJx4ewJ+YX7xlUHbpmxiaIJYuQnSU085vab85PsT1Cusm/Vj/3B/3PO8hz6VdZ8p68PPD7jw4QJmNprJW4KAgIgArHNehyn1p/A6hXb5MnDxgtKM8xWQYvHirJcQYeHthfj6+yv299yfKU0otWx124rT705jT7c9KGFZgrUcrRMti0bvE71haWaZaROc6JL0/LayQ+kmkzT0uQqgULzWKe3DmAE4hfSY8vCavWBiaIJdTxObrnZN2dRInalrGvgw5d9Rv/Ex6KPODPn0u9MwNDBEj4o9dHL9+Ng/tkf+7PkxqNognY+lZtm9ZTAyMOL1U3t0NDBhUtwHqvV2xrDIYjkR7nneg/1jeyxrtQyV81VmLYcZL/xfYMa1GZhYbyJ6VurJWo5OmHplKt4EvMGpvqdglc2KtRz9IyPz3VA6T49EjzkCOJuK5yfJ34lBooioExGZUVrWlEefG0bF7IqRTC5Lop921pTtHtmRxXKLeI/Yq66pmzXl658uEySg94HvU3hO+mi+tzm1P9BeJ9eOz8+In2S21Ixs79rqfCw1X39/JWMbY1p2bxlvYxIRLV9OpDx9TNSkqZQUml4WmZDQ6FAqtb4U/W/P/5J5L2YNwmLCqMKmClRjaw2KkkaxlqMT9j7bS5CAdj/dndFLMV/LZdV0NZ/QguO4AI7jPDiO28lxXAYKzKYvUh5b5zm8Q71x7fO1JPppJ1I24AygIEW8vtOgy0j5yffZyGmaE+XylNPQP32op6v5OLi/8+lOEBH+rfOvzsdSI3GSIHe23JjaYCpvY/r6AjZLZQAAzkCBLQ5GyGrpe2ffmI2AiADs7b6X11zhQmPylcnwCfXBsd7HMuXu8hf+LzD+0niMrDkSI2uNZC1Hb9GFIV+Bco61FYCZUJZtus1xnGlSnWNiYhAaGpqg/U3aTblu4c+olt8ce5/vTKZfxk35b0MGdGnKDq5vkN04FgacXEPf9MHXdLVULoWDqwMGVRuEfNnz6XQsNe9/vseBlwewsNlCXrNCzZ2nQHSkslDG+HEcqlfnbWhBcO3TNWx334617daiTG7dlQkVOgdfHoTjc0ds6bwFFfJWYC1H6wRHB6PX8V6omLciNnfazFqOfpOR8BpJTFkn0acQlE72T6L/IyKiJUuWkOo6CdrfuayJ0jp9bffIlIxtOPoV+U1Dv/RPX2922UymtqbJ9LUnbU9f516Vg3oeBaU193VqaOHYgpfp6uOvjxMkoOd+KU3Va49+J/pRMbtiFC2N5m3Mx4/jpqpz5pLSz5+8DS0IgiKDqMi6ItTuQDtSZLV5+nh8+PmBsi/LTkNOD2EtRScoFArqfqQ7Wa60pM9Bn7V1WeZTx6yazrfAEZEfAE8ASc6zzp8/HyEhIX+at7e3hqulLVIeVP00FEQ4+ro1kirdqCT9kbIBFwo5JRetToM2I+WAiAAERYVjYLU50EY95fj4h/vj7re7vOyu3uCyAc1LNEeNgjV0PhYAvPzxEsfeHMOiZotgapTkJI3WUSiAiZNlf75fttQIefLwMrRgmHJ1CsJjw7G72+4sW2YvRhaD/if7o7BFYTh0cmAtRyesebQG5z6cw/4e+1HaqjRrOfpPRtwcqYuQ8wCIBjA00f8lSUhIoCpC1pSYIvWRcqdDjanxbgNKrkpUHGmPlLe55iMDa4MU+tqTNiLlyx7KDV1fgr5QeqtEJYc6GcjPCN2GcW7f3QgS0Om3p3U6Tnx6HO1BpTeU5jUBw/79cdFxhUqxJJXyNrQgOPvuLEEC2vd8H2spTJlyeQqZ2JrQU9+nrKXohDtf75CBtQHNvzlf25dmHqmyaukx4RwAaqoaAZiu+ndx1f+tBdAIQEkoF1wfAfABYJHoWkkSEnJZZci9iUjTnSx1pnzwxUGCBPTtd3bStinvcMtNkIDSU7oxaZI3ZRsnG7JaaRVv+k97pszXdPXQM0OphH0J3nbbqj8A8GkMoaFE+QrE/jHkGzd4G1oQ/Ir8RQXWFKCuh7tm6alq9YeSjY83spaiE3xDfanAmgLU0rElSeVa/8TJ3BhZtfQYcgskseYL5XGnbACuAQiAcl7XU/V4sSSulSRxx54MiGgAZdSUQ6NDyWypGa15OIk01VOOI/WmvMt9BUECUijKkK5NufuR7tRmf5tEfTNuyn5hfsRJONrlvitdz08t/mH+ZGJrQmsertHpOPHpdKgTVdhUgdfjNvPmKf6YcdduWe+Yz6BTg8hypSV9D/3OWgozvIK9yGqlFXU/0j1TfiiJlcVS0z1NqfC6wuQf5q+LIZgbI6vGcvAkiTPkfURkSNow5Z5He1K9HfUoqdzXSZM6U1afu5PKi1Fqcl9nxJSL2hWluTfmJtE3Y6a8zXUbGVob6ny6WnJHQubLzCkoMkin46h55PWIIAEdeXWEl/GIlPmqjYyV+aqNjGX08SNvQwsCdVS4//l+1lKYIZVLqemeplTMrhgv+eBZMPPaTDKyMaIHng90NQRzY2TVBJzXrAeAowCOAxgKQJZMv5Q3evWu3Buuvq7wDimC5Eo3JiR1G73UaeEUdB3pqaec2o1eARF34BPqg7qF6ybRN+31lONz9sNZNCvRDHnMdbfrKFYei61uWzG0+lDesvcsurMIVfNX5bUg+oyZcsikyrO2M6YboGxZ3oZmTlBUEP69+C+6lu+KwdUHs5bDDGsnazh7O+NIryO85IPnm1NvT2Gd8zqsabsGTYo3YS0n88Hw00CS/J2p6wRlNFIOjgomYxvjeOs52omUD7w4QJBAlXkn9VWi0hopX/bIEW9DV3KkPVL++/eiG9S/pzcBb3Q6jhqnr068bx67eZP+TFXnzR9LoZpeVpkQcaqa6NaXW8RJOFp6dylrKTrhw88PZLHcgvoc76PrqXjmkSqrJuAIWU1vZDRSzmWWC61KtcK5D+dUjyRdT/lvNEfKcRGyAumpp5zaSNnNNyeszDiUtAzRcM20R8pXPl2BVCFF94rdU+ybXogIG1w2oG3ptrzkMSYiLLqzCLUL1eYlJzcAyGTApClxv++1q7NWvupz78/h0KtD2NhhIwpbFGYthwkBEQEYdHoQWpVqhXlN57GWo3UiYiPQ63gvFLYonKWPsukaPTBkQBum3K1CN9z1vIuQaLWpZdyUOShflHHZunRjyu5+NVGncA5wXGtkpHRjYs68P4M6heqgeK7iGvtlhMc+j+Hm68ZbysqbX27ivtd92LSw4e2msWMH8P6tsoJRrToyDBnCy7CCQJyqVr7/h50dBrlCjgM9D2S6FKFEhHGXxuHL7y841fcULEyz0KdNntETQwYyaspdyneBTCHD9c/x15gzZspqIzbk4r8BtW/K7n4vUafQSGijnrKaGFkMLn+8rPMo0sHVAWWsyqBjuY46HQdQ3jgW3lmIBkUaoFO5dBQYSwdBQcB/C+Jeiw6bjGCgR++qjDLlyhTEyGOwrcu2LBs12Tvb4+qnq9jfcz8KWRRiLUfrbHffjoMvD2Jn152okr8KazmZG4bz5Uny9xpyYtK/plzFoQoNPzs8ib7pW1Pe/3w/QYJkUjJqZ035R/gPggR04s0JSm+VqKTWlNWJRl79eJXCddLPj/AfZGJrQmsfrtXZGPG58OECQQK6/uk6L+MREU2cGHfMaeAgOW/jCgFxV7XyrLuxjTHNvDaTtRSd8MTnCZnYmtCkS5P4HJb5Wi6rpoeGTJReU551bRYVXFswmQ0JaTdlx2cjVMeektOQcVNOmKGLSFumPOb8GCq7saxON2esuL+CzJaa6fxIFZEyp26tbbXof3v+x9vZzzdviAwM5QQQmWWTkU9Kf+JMxM+In1k+AUhYTBiV21iO6myvQzGyGNZytM7PiJ9U3L44NdjZgO+fj7kxsmoCnFxTT8e+1dAnfdPX7crkhn+4P14HvE6ib9qnrxW0F0Dc5q6/yfj0tZuvG6zMrFDSsqSqX/pKN8afvpYr5Dj34Rx6VOihs2lGuUKObW7b0K9KP50eqVJz0eMinvk/g3ULa96mTmfMkkMhV/7tF/xniCJFeBlWEEy9OhUx8hhs77I9y05VT74yGb5hvjjS6whMDE1Yy9EqClJg6NmhCI8Nx/E+xzPdzydYGH4aSJKQkK+qCDk3EaU0nZq2SDky1pRMbY1pxrUZGvqmPlLe5d5ClalrRwo60x8pJ52hiygjkfIDzwcECeih18MUnpd+Ln64SJCAXHxcdDaGGoVCQXW21+E1Or52jf5MVRcqEkuRkbwMKwjEqWqiI6+OECSgvc/2spaiE5bfW06QgC57XGYxPPNIlVUToCGrp6yrElFe0rYp514Fyr/GMoVrps6Ut7ttI06i/nHSVrpRM/akNuXkM3QRpdeUZ12bQQXWFNBpSslOhzpRne11eDFItfnf/HxT52MREclkRBUrx+WrPniQl2EFgThVTfQl6AvlXJGTBpwckCl/B05fncjA2oAW3FrASgJzY2TVBDhlreYCgCIAWgJIaopZTdqmr4dVL4loaTDkiisarpm66WsFEQw4Q6SndGNqpq8DIlapMnTVSaZf2qevFYpTOPDSAe3LtNXZ8Ywvv7/gyscrmFBvgs6nM4kINvds0LhYY7Qq1UqnY6nZsyfhMacBA3gZVhBk9alqqVyKgacHIne23NjaeWum+x34h/uj/6n+aF6iOaxbWLOWk+UQsCHnBnAL2jbl7hV3IDQWeB3QAynVU07JlBWkUK0fp6+eckqm7O47FgBQp9AtZLSespLuuPZ5AX5ExKBM7qfQVj3lxGx3245cZrnQv2p/nVw/Ptc+X8OT70+wpPkSXm6OYWHAvP/ifm8b12edY07xE4BkxuM9qcH6rjVcv7viSK8jyGWWi7UcrSJXyDHw1EAAwOFehzPdeWp9QOC3kjzQtinXL9IUJoYmuOdZFsnlvo5DsynHGXLqcl8rSb0pu/kWhZWZOUpabkdacl9rMuUXP8yRzcgU0xq+R3pyX6dEtCwae57vwfAaw2FubK7VayeGiGB91xoNizZE29JtdTqWmhUrCEE/ldHxP70UaNqUl2GZ8yvyV5ZPAOL0zQnL7y+HdQvlay6zscRpCe563sWRXkdQMEdB1nKyJAI3ZEDbppzNOBvqF6mPe14VoKkgRRzJm3KcIQO6MGV3P3fUKdwYHJf2ghTJmfIFjwtoX7YjcpqeRnoLUmji5NuT+Bn5E+PqjtPaNZPj5pebeOzzGIubLeYlOvbyAtbZKZPBGBnLsXqVHrx9tERWn6r+FfkLg08PRvOSzTNlaswrH69g2f1lWNpyKVqUbMFaTpZFT+4o2jXlZsWb4Z7nQxCdREZMWUGKRNM62jVldz931ClUB+mtEpXYlAMjAuHs7Yyu5bsio1WikmOL6xa0Kd0GFfJW0Mr1kkMdHdcrXA8dynbQ6Vhq5s1XIDZG+feeMtkAZcrwMixzsvpUNRFh1PlRiJJF4WDPg5luKtc7xBtDzgxBp3KdMLfpXNZysjR6YsiANk25WYlmCIgIwMcgb6RUujGOv005YYSsRjumHBARkKjk4jRk1JQvf7wMAOhcrrPqEe2a8nP/53D2ccaEuhMydJ3UcOfbHTz0fsjb2vGTJ8CRw8q/dS4rGRYtyhpRYnB0MMZfGo8u5btk2anqbW7bcO7DOezptgdFcmauw+ax8lj0PdkX2U2yY3+P/RpyKojwgZ799rVjyvWL1AcAPPn+BKmppxxHQlOWKyKTeQFn3JTdfd0BQBUhq5mGjJjyBY8LqF+kPgrkKBCvr/ZMeavrVhSxKIKuFbqm+xqpxfquNeoUqsNLzmoiYOq0uNfPUhsjWFrqfFhBMPPaTERII7Ctc9bMVf064DVmXJ+BCXUn6LQqGivm3pgLd193HO99nJcEPiIpwPDMVQI2b95MlSpVovLly6nOIQcndT5NxU8iqkEZOadcbmM5mnJ5Srx+yddT/hvlOeWld0tQgTX5NfTTXE85IQnPKds42ZDVSqtkzjnak/qccmrqKRPlpmjpE8qxPActu7csmb5x55RTW085PmExYZRjeQ5afHtxmp+bVu58vUOQgM69P6fzsYiITpygP2eOy5SLpdi0/3r0kuufrhMkoB1uKSW+yZxExkZSFYcqVHVLVYqMzXyZX069PUWQgDY83sBaSmKYnwdm1QRjyGpCQs6pDHk2aTabjJnywFMDqeGuhon6pc2UF982oWJ2ppSWghSaiTPl7kfaJ5OhS409pcWUr32yIEhAL/1fauibflPe6b6TOAlH335/S9Pz0kNLx5ZUc1tNXpIyREcTFS8ZlwTkwgWdDykIwmLCqIR9CWq1r1WmTH6RGiZcnEBmS810WoCFFR9/faScK3JS7+O9hfj3ZW6MrJoAp6xbqL6uAbAYyU/LZmz6un7h+njm9wxSefwp2rRNX8fK+8HEMBbpraf8N3HT1+5+t1CnUHkNfachLdPX5z+YoUQuA1TNL9dwzfRPX+98uhPty7ZHCcsSqX5OerjveR93vt3hbWf15s2A1zflMacWLWXo3DmFJ2QS/rv1HwIjA7Gz684sOVV97v05bHHbArt2dqiavyprOVolShqFPif6IH/2/NjVdVeW/PsKFoafBpIkLnWmtarbQtJFpPzQ6y5BAnL3dU+iX+oi5RlXZ1ClzSUpPaUbNfEj3EVVcrEgZaR045+RFQoqbl+UJl3KR9oo3ZiYF/4vCBLQqbenUuybUdodaEfVtlQjuUL3pQ4DA4ly5JQSQMRxCnqe0q8tk/DA8wFxEo7sne1ZS2GCT4gP5V6Vm3oc7SHE6DHDjDk/hsyWmtFzP8G+oJlHqqyaACNkNdOgjP6WQheRcq2Cm2HIGao2diUmdZFyjDwGJoa5kNYqUSlFyu6+vwAAdQoZIL1VouLzKuAVvEJ80LXCVmSkSlRy7Hq6CwWyF1Adp9Idbr5uuP75Ohb8bwEvu0GtrQnhoUYAgOHDCTVq6HxI5kTLojHq/Cg0KNoAk+tPZi2Hd+QKOQafGYxsRtkyZfR44MUB7Hy6E5s7bkaNglngBa1nCNiQAWAOdGXK2YxPo0p+Czzzc0+mX8qmHCuPVZUlS3vpRk2mHFdy8R4yUrpRzYUPF5DDJAeal+iCjJZuTEyUNAoHXh7A8JrDYWxorOF6GWfFgxUom7sselfurdNxAODTJ2DrNuXv0SybHEuXCvytoiWsnazxNfgrdnfbnenO26aGVQ9X4e63uzjQ80Cm23X8JuANxl0ah6E1hmJkrZGs5YgkgR7cZXRnytULhOBVwFmktp5yYlOOlcfC1MhU9Z32TFmZoasOOK4MMlpPGVBl5yrTXqU14/WU43Pq3SkERwdjdO3RGq6Tcd4GvsXpd6cxt8lcXoxi/n8KyGXKt8ec2YYoXFjnQzLnqd9TrHm0BouaLULlfJVZy+Gdxz6PsfjOYvz3v//QslRL1nK0SnhsOPqc6INSlqWwpdOWTBf5ZxoYzpcnSdwackii/1lF2l5TXvVgMFksB8kV/Sk1pRsTrykPODmAWu1rlahv6uspJ7em/HfJxfTXU/YP8ydOwpHjM8dE/dJfTzk+zfY2o5aOLVN4fsYZemYoFVlXhKKl0Tof68kT+rOrOnfeWArV9GfMJMTKYqnmtppUY2sNipVlkXNd8QiOCqaS60tSw10NM93Pr1AoaOCpgZRjeQ56F/iOtZzUwHwtl1XTgwhZjfYj5Wr5ByIsFvAMTl3pxsSRctyUdXwyFin/naELSE/pRnWkfOnjRQBIIoFGxiPlDz8/4J7nPZ1Hx9+Cv+HQy0OY1XhWvBkJ3UAEzJgZ9zqwkRjDwkKnQwqC1Q9X49WPV9jTfY/Olx6EyMTLExEUFYTD/xzOdD//dvftOPzqMHZ02YGKeSuyliOiCYafBpIk+QhZjfYiZZ8QH1WCiTmUVPKQv0kYKXc93JW6HemWTN/0RcqXPS4TJKAvQV+S6Jv2SLnH0XLUeHdjDf3SHynPvj6bcq/KTVHSqBSelzEmXJxAeVblofCYcJ2OQ0R08WJcdFyqTNZIAvIm4A2Z2JrQvBvzWEthwsEXBwkS0KGXh1hL0Truvu5kYmtC4y+OZy0lLTCPVFk1PYqQ1WgvUi5sURhWZlZ4+cMCqa2nHD9SjpH7JhEhq0lfpOzmu121oatkEn3TFilHy1bj+ueP6FreGNqqp6yOlGPlA+D43BFDqg+BmZGZhudkDP9wf+x+thvTGk5DdpPsOhsHAORyYNacuHXy1SuNYZy5gqW/kCvkGHV+FEpalsTi5otZy+Gdb8HfMOHyBAyqNggDqw1kLUerBEcHo/fx3qiWvxrs29uzliOSCgRoyJ6qr/4a+mjHlDmOQ7UC1fAq4BVSW085vinHyp/BxPCXBp1pN2V3v3OoU7ighk0XqTflO1+rIlIKdKtwF9qqp6w25UV3TiMwMhDDa+q24IC9sz1MDE0wsd5EnY4DAPv3A+/fKh24Tj0ZevXS+ZDM2fRkE1x8XLC7225kM87GWg6vyBQyDD49GFZmVnDo5MBajlYhIow4NwJBUUE40eeEzpd6RLSDAA1ZbYRdAPhp6KcdU66aryreBLxRfZc2U46V54Kp4T2kt55yQpSm7O6XHXUKvYM26imf/3Aepa1Ko1JeO2irnrKS7rj+qQTyZANqFlwNbdZTjs/vqN/Y6rYVE+pNgFU2K52MoSYyEpi/IO7nsFtrhMy+EfXL7y9YcHsBJtabiKbFm7KWwzsrH6yEs48zDv5zELnMcrGWo1XsnO1w9v1Z7OuxD6WsSrGWI5JKBGjI6iKz4VAag25NuXye8vgU9AkKUqgeSb0px8hKwcSwMNJbTzkxARGB8AmNQN3C7ZHRespEhIsfL6Jr+a7guOnQRj1lNT6hPngZ4IUVrSdA2/WU4+Pg6gCpQorpDadr/dqJ2bgR+OGnjI47d5GjWTOdD8kUIsKYC2OQzzwfVrRZwVoO77j4uEDiJMGC/y3IdB9GHnk/wtybczGr0axMWaEqU8NwATtJ4jZ1PSWiIkRUkYh8k+uuIv0bvdSbqP4uipB0laj4VNpciaZfnUxprRKV3EavuA1dnym9VaLUPPV9SpCAbn6+Ga+vveqaqa8SldRGr2X3llG2pdkoJDqEMlolKjnCY8Ipz6o8NPHSRK1dMzkCA4myW6hSZBrI6c0bnQ/JnJ3uOwkS0LVPKb1mMx+h0aFUZkMZarCzQaY74hQYEUhF7YpSk91N9PlnY765ilUTYISsRp0UIwy6jJTL51EWcPgY9DFR35Qj5UhpJMyNcyK99ZQTR8pxGbpKIaP1lC94XEBO05z4X4n/xes7DRmNlIkIe5/vRZ8qfZDTNCe0WU85Pjuf7kRITAhmN56tletpYulSQkSYMkXmiOEcKmfynBi+Yb6YdX0WhtccjnZl2rGWwztTr07Fj4gfOPTPoUx1xElBCgw7OwxR0igc7X00U/1sWQUBGzIAlIOuTbmEZRiMDIzg8csjib6aTVlpyOZIa5Wo5Ew5LkMXh/RWiVKb8gWPC+hQtkMSu8CnISOm/MDrAT4FfcKImiPi9dWuKcfKY7H20VoMrDZQ59Wjvn4FHLYofwemZnLY2GTyhWMAk69MhqmRKda1W8daCu+ceHMCe5/vxaaOm1Amd5mUn6BHrH20Fpc/XsaBngdQNGdR1nJE0oHADRnQtSkbGbRFGauiyRgyoMmU4wwZ0IYpu/u5o06hOvH6pc+UfcOaws3XTUOxh2lIrynveb4Hpa1Ko1mJxIus2jPlo6+P4nvYd8xpPCfd10gt/y1QQCZVvg1mzjBEkSI6H5IpZ9+fxel3p7Gxw0bkzpabtRxe8Q7xxtiLY9Gnch8MqzGMtRyt8tDrIf679R/mNpmLjuU6spYjkl4YzpcnSfKJQTxIV2vKXQ+bUMeDTVO4ZsI1ZYVCQZyEo+1u2xP1S13pRiVxa8o/wj+rSi6eSKJf6ks3En2mHW65ycAa9DMipXKU9pSWNeXQaCvKviwb2d611dA3Y2vKCoWCqm6pSp0OdUrzc9OKuzv9SQJiaSWl4GCdD8mU4KhgKryuMHU+1DlTlhXUhEwuoxaOLaioXVH6FfmLtRyt8jPiZ2ZYN44P87VcVk0PImQ1uouUy+XOBY9fj5Da0o3AUMTII0CgeBGymvRFyu6+ymg2YYSsJm2R8gWPWmhSzBR5zHsio6UblSgj5RNvcyJSGoVhNeppuGbGIuWrn67idcBrXtaO58yNm+2QLDFCrsx18uUv5t+aj9CYUGzpnPWKC6xzXoe73+5if4/9mWpmIP668ZFeR/R+3ThKGsVaAlsYfhpIkpRTZ2o/Ut7kspKMbTiSK/JQSgUp1JHyr8h/CBLQ6benk+mXtkjZxsmErFYakUKR3M9NlJpIOSI2grItzUarH8yl9BakSI4muxtQuwM5KaMFKTTR0rEl1dtRT+cR3J07cdFx0eKxFK37mhVMeeD5gCABbXi8gbUU3nH77kbGNsaJCrZkDlY/WE2QgC55XGItRSuMPDuSSACRKqumh4ZMpG1TPv/+PEEC+h5amVJTJYroBHmHGBAkoKsfNb0RUm/K3Y80ozb7DSkjVaKI4n4WZVWX9FeJSsyHnx8IEtDRV7tIG1WiksLtuxtBAjr++niKfTOCQkFUr770jyHv26fT4ZgTLY2mSpsrUYOdDUgml7GWwyvhMeFUYVMFqr29NsXIYljL0SoPvR6SobUhzbk+h7UUraA+ikcCMEZWTYCGfF5lyFuT66JCe6b8wv8FQQJ65HWFUlu68cPPDQQJ6N631pSe0o2JUZZcHEIZLd045vwYKrexXLwIUzumPO/GPLJcaakqJKGd0o2J6XeiH5XeUFrnpnHuHP0x4wqVYkmWyT1KckdCRjZG9NL/JWspvPPvhX8p29Js9D7wPWspWuVnxE8qZleMGu9unCnWjV2/u5KJrQmNuzCOSADGyKoJ0JB/qwwZROSYXDcV2jHl4KhgggR05NURSm095Wd+zwgSkNt3A0prlajE/Aj/EW9DV/rrKcsVciq0thDNuDojUd+MmbJULqVCawslStKhXVP+EvSFDKwNaLPL5hSulTFkMqKKlWP/GPKZMzodjjlvA96Sia0J/XfzP9ZSeOfsu7MECZLYeKnfyBVy6nyoM+VelZu8gr1Yy8kwgRGBVNy+ONXfWV9d75y5MbJqgjHkzZs3U6VKlah8+fIqQx5GRBzxZco5V+SkVQ9Wqb5L2ZTVa3JvA+wpPaUb4/N3ycX0mbLrd1eCBHTn650k+qbflC95XCJIQO6+7on6ac+UJ1+eTHlW5aGI2IgUrpMxDhygP2Zcu66UMvNmY7lCTk12N6FyG8vpvESm0PAN9aU8q/JQ9yPdM92O8jUP1xAkoIsfLrKWkmFkchm1O9CO8q7OS57BnuqHmRsjqyYYQ1YTt4b8m4jGEF+mXG1LNZpwcUK8fppN+fqn6/FSbqacZlNJ0qZs42RDViutEt040m7Ki293IcuVlhqmsNJnyr2O9aLqW6snc2PLuCn/jPhJ5svMacmdJSk8P2PExBAVLxkXHd+8mfJz9Jmtrls1fEDLvMgVcmp3oB0VXFuQAiMCWcvRKo+8HpGhtSHNvj6btRStsOj2IjKwNqAbn2/Ef5i5MbJqAjbkECKSE1+m3OVwF+p8qHOifsmbsno6LCA8QPVI+k25+5Hu1GZ/myT6ps2Ua20DDThZX0M/orSacmAEyNjGgNY722volzFTtnGyIbOlZvF+l7phyxb6Y8YtWmbuhWOfEB/KuSInjTo3irUU3rF3ts+Uebp/Rf6iYnbFqNGuRpli3fjChwsECWj5veWJ/4u5MbJqAjdkIr5MeeKliVRtS7Uk+iVtyodfHiZIQOEx4fH6ps+UlRu6kjuSkTpT9g7xIkhAh1+C0luQIinWO/cgYxtQYMRkykhBioTEmXJkbAjlW52Pxl8cn8JzMkZEBFG+AnHRsYuLTodjTs+jPanAmgIUFBnEWgqvvPB/QSa2JjT96nTWUrSKQqGgLoe7UO5VueNP7eotn359IsuVltTtSDeSK+SJ/5u5MbJqepAYxADANgCjAYwAsE9D3/QnDylsUQh+4Un1T7p0Y3hsODhwiYq6p62eMtAKARHd4BPqg7qF6ybTN3WlGy96XIIhZ4gOZUcio6Ub1RARdj/7jG4VqiOv+SZos56yOnnIxidN8TPyJ2Y0mqGhf8bZtAkI/KFMmtC9hwL16+t0OKaceXcGZ96fwcaOG3VeR1pIREmjMPDUQFTMWxHLWy9nLUer2Dnb4aLHRezrsQ/FcxVnLSdDREoj0et4L+Q1z4t9PfbBgNMDG+ILhp8GkiT5c8i6jZT3PO1CkEDDWcWEkfLah2sp54qcyfRNfaR82aOuakNXSodhNUfKnQ51ohaOLSitaTY1Rcrqc8HKpAP2qmtmrHRjfKTyk2RsAyq3MQdps3RjYn7/JsqZK2uUVwyOCqZCawtRl8NdMt1mppSYfHkymS01o9c/XrOWolWcvZ3JyMaIZl2bxVpKhlEoFDT0zFDKtjQbvfB/kVw35pEqq6ZHH010GykXzHERABAQ8SOZfgkj5dCYT7AwsUimb+ojZTffTrAyM0ZJy7FIb5WoiNgI3PpyS1VMImNVouKz9/leFMpRSFWibxoyWroxMZc8jCBVAJIWkdBm6cbErFkDhIYoyysOGYxMXV5x3s15CIsNw5ZOWSs95vXP17HpySasbL0SVfJXYS1HawRFBaHfyX6oW7hupoj6t7tvx/4X+7Gj6w5UL1CdtRzhwfDTQJKknKlLN5HyU98pBAnI9ftISk1BiulXzajS5tIpjJ9ypKzc0NWK0lOQQh0pn3t/jiABefz0iNcvY5FylDSKLFda0rwb8xL1tSdtRcrN9zanRrsaUUYLUmjCz4/ILJuMACIjYzl9/arVywuK+573CRLQxscbWUvhlV+Rv6jwusLUZn+bpNYj9RaFQkFdD3clq5VWmWLd+LH3YzK2MU6UzyBJmEeqrJoADdlTZciaDFT7puwb6kuQgM6/B6WmStSoc7mpwU4jSm3u6+RMOW5DV/qqRBGF/snO9TfpN+Ujr44QJKAPPz8k0deeMmrK6unwuOpWujHlSZMUfzZyTZyYeadws2p6TIVCQX2O9yGrlVbkE5LSqQH9Yt2jdap70nnWUjJMQHgAFbUrSg13NUxNClPmxsiqCdCQ76gMuSkRhSfXjbRtylK5lDgJRzvc/lHJ02zKfY53p7b7c1Bqc18nZcoJM3QRpceUFYomVHhdIQ27StNnyu0ONKcmu5to6GtPGTHlQacGUan1pRKZh3ZN2dOTyMhYGR2bZZORv3+GLylYbJxssmR6zAMvDhAkoGOvj7GWolUy07qxTC6j1vtaU77V+cg7xDs1T2FujKyaAA1ZPWWdnYhaEJ+mnH9NfrJxsqHUFKRof6A99TrWlVKb+zopU/47QxdRWk35qa85QQK6+VnTp+i0mbJncGHiJKDdT9em0Nee0mPK3iHeZGRjROud1yfRV3umPGZMXHQ8f36GLiVoPH56kKmtaaasZqQJz2BPyrkiJw06NYi1FK3yK/IXlbAvQQ13NcwU543n35xPBtYGdPvL7dQ+hbkxsmoCNuSrRJSD+DTl6lurx8vWpdmUG+1qRMPPDqfU5r5WktCUk87QRZQWU7a9O5YsloNiZI0pI1Wi4mPjNI2yL+MoNLo0aat0Y3xTnnN9OOVckZNCo5PTm3FT/vKFyNBITgCReQ4p/cpcNen/oFAoqO3+tlRyfUmdpx0VEnKFnFo4tqBidsXod9Rv1nK0hkKhoG5HupHVSitVFkD9Rp1AKS4tcapgboysmoB3WTcCcAWAG4AuACKS6ae93dcFshfAjz+7rBOeU068qzgsNgw5TXIiuXPKSZNw97W7nxvqFK6TxG7YuHPKyjO7ye++vvTxJdqVaQkTw1fQdE45tbuvFaSA44vz6FPlH1iYyqDpnLKSaUjL7uvw2OLY7r4PY2v3gIVpcrvU484pp3f3tY2NAnKZ8uU9a4YRcmeemvQJOPr6KG58uQGHTg4wNzZnLYc37J3tcffbXezrsQ+WZpas5WiN9Y/X4/yH89jXYx9KWJZgLSdDfPz1EUPPDkXPij0xu/Fs1nL0A4afBpLk713W94mvSLnfiX7Ual+rRH2TjpSL2xenhbcWxuuX9ki5qJ05zb2hKSet5kg5IDyAOAlHe57uoYxUiYrPna93VGUl75E26ymr2fh4JRlagzyDc5G26ymr8fAgMjBURscWuaT0+3eqn6pX/I76TQXWFKDex3uzlsIr6mxcM6/NZC1Fq7j4uJCRjVGm+LnCY8Kp6paqVH5TeQqJ1lTbPkmYR6qsmh4YMhFfpjz+4niqua1mEn3/NmXLlZa0+sHqRP1Sb8o/wnepNnQ1ofRWidr3fB9BAvIPU+9WyrgpDzk9hMpuLKv1espEys0dpTeUpv4n/yFd1FNWM2iw/M/asa1tqp6il4y7MI4slltkut3FmoiSRlG1LdWo2pZqmaqC1e+o31RyfUmqv7N+anYhCxqFQkGDTg0i82Xm6U3SwtwYWTU9MWQiPkx5wa0FVNy+eDJ940xZoZCTgbUBbXPdlkS/1Jly3Iau9NdT7nO8D9XbUS9R3/Sbckh0CGVbmo2W3VuWqK92TPn029Oqs96upO16ymrevVNm4wKIcllKKdnj7HqOs7czcRKONjzewFoKr8y6NotMbE00ZXnSO9RHt3KtyJVog6d+4vDEQZVX/3B6L8HcGFk1PTJkIl2b8rpHSyjH8hwa+ipNOTxmDkECOvTyUDL9UjbluA1dxyk9BSliZbGUc0VOsnayTqJv+kx5h9sOMrA2SOZoQsZNuemepvS/Pf+L10/7ptyvX1x0vGJFCpfUU2JlsVR9a3Wqs71OljpzfOfrHeIkHK15uIa1FK2yzXVbouOP+ouLjwsZ2xjTpEuTMnIZ5sbIqumZIRPp0pT3PiuYQj5rIqJV5BcGggR04YOmo0aaTTlhycW0V4m6/WUVQQJy++6WTN+0m3LDXaWp48GOGvqm35RdfFwIEtCZd2cS9dOeKb96RcRxyqNOVnliKSwshcvpKWseriEDawMNf/vMR3BUMBWzK0bN9zbPVB9CXvq/JLOlZjTuwjjWUjLMz4ifVNy+ODXY2SCj0+7MjZFV00NDJtKVKZ97n1u1Jqt5OuzDz1kECejutyGUmjSbSZny3yUX02bKM68ZUsG1uVNIFZh6U34b0J8gAR1//a+GfkTpNeV+J/pRmQ1lkrmZaseU/+kVFx2vTekItZ7y7fc3Ml9mTlMuT2EthVcGnx5MOVfkzBRHgdSEx4RTpc2VqNqWahQZG8laToaQK+TU8WBHyrMqjzbSfDI3RlZNgIZ8TWXIF5LrokL7pnzfU1nj+G1AKdKUZvOJzxOCBPTUF5SaNJuJTfnvDF1qUm/KFTdnp1HnDCk9ua+TYvb1WZR7lSlFS0HarKdMZE/ffoMMrTna5KIpx3LGTPnZM/pjxnnyxVJEJjySq85tXHhd4fTsXNVbjr0+RpCA9j/fz1qKVhl5diSZLzOntwFvWUvJMDZONsRJOLr68ao2LsfcGFk1ARqyv8qQzYgopcwu2jXlNwFvCBLQA8+8pCmj17VP1wgS0Lff81Q/StpMOekMXWpSNuVPvz4RJKDTb2tTegtSxCdWFksF1hSgKZcnk7ZKN8Zn5rUWZLkSFBYznbRVujGxKXftJvtjyOvXp/BUPUW9Ke7km5OspfCGT4gPWa20oj7H+2SqcpKHXh4iSKA6sqjfXP90nTgJR0vuLNHWJZkbI6smQENWT1m3IqJsxKcpqwtMXPiwnTRl9Dr66ihBAlWUknKaTSVxpmzjNDGZDF1qNJvyhscbyMTWhEKjAygjVaLUnH9/niABPfN7Rtqsp0yk3Lmdc0VOmnujleqa2qunrDblI0fs/phx/oKxFJV5TsP8ITQ6lIraFaXOhzpnKmPShFwhp7b721KhtYXoV2TmSbXm8dODcizPQQNPDdT7v6VXsBflXZ2X2h1op821febGyKoJ2JD9iagd8WnKYTFhBAnoyKsjpCnN5lbXrWRobRjvzZQ2U+5+xITa7G+Yws+UvCm33d+W2u5vq/ou/VWi1PQ42oNqbasVr5/2TNne2Z6MbIxUZ2XtSRemnDffjz+GvHRpCt31lOlXp1O2pdno6++vrKXwxsbHGwkS0LVPKb2u9YdoaTTV3l6bym4sqyF1rH4QI4uhhrsaUjG7YhQYEajNSzM3RlZNMIa8efNmqlSpEpUvXz7epq5I4tOU5Qo5QQLa6a42oaRNedm9ZZR3dd5E1029KRe1M6a5N7JRegpShMWEkYmtSaLCDOk35R/hP8jIxog2uWxK1C/jpiyVS6nk+pI0+PTgeH3tSZumvG8f/TFjAwMZhYbqfzL+xDz1fUoG1gZpzQes17wNeEtmS81o8uXJrKVolalXppKxjTG5+7qzlpJh1D/LY+/H2r40c2Nk1QRjyGr+3mXNrylnX5ad7J3t4z3ytynPujYrmfrDKZty3IauEpSeghRn3p0hSECffn1K1C99przu0XIysTVJZkowY6Z84s0JggRJ3HzsSVum3K5D3NrxoEEHSdv1lFkjk8uo3o56VG1LtUxR+Sc1xMhiqPb22lRxc8VMVTDj3PtzBAmSqXKmX6g32v39QV4rMDdGVk0PDJmIT1MusKYA2d5NnG8xoSmPOjeKGuxskMx1NZty3IYud0pPlahR50ZQhU0VkumXNlNWKHJQFQdz6nviHw390m/KDXc1pBaOLZLpa08ZNWUXF/pjxgULx1JExHnSZj1lIaDOevTQ6yFrKbyx8NZCMrIxylTnrL2CvSj3qtzU7Ug3vV83fhf4jnIsz0H9T/bX1c/C3BhZNT0xZCK+TLnMhjLJ1JWNM+WeRztSh4MdNFw3eVNOWHIxbQUp5AoDKrQ2G828Nl1Dv9Sbsuv3PQQJ6MrHKqSt0o1qU37kVYQgAZ1/ryl5ij1lxJTbd4yLjrf9yWJ6ljKLKf8I/0GWKy1p9LnRrKXwxmPvx2RgbaCqS545kMql1HRPUypqV5R+RvxkLSdDhMeEUxWHKlRpcyUKi9FZ5h3mxsiq6ZEhE/FhyjW21qCJlyYm01dpyi0czWnAyR4pjJ+0KSfM0EWUFlN2+76SIAHd/tKK0luQIj4TL02kwuvykkyegzJaJSohn6n38WxUbqMxyRVeKfS1p/SYcvzouFCRWIpJkBgoc5jysDPDKPeq3NreMCNYImIjqPym8lR/Z32SyjW9vvWLhbcWkoG1Ad33vM9aSoZQF43Iviw7vQl4o8uhmBsjq6Znhkyka1NusrscDTszTENfD6q+1YgmXrIkTclDlPxtyn9n6CJKrSlbO1lTzhXZKFaW/oIUaqKl0WS10orm3ZhH2irdqOZL0BcysDagLU+sSJulG+ObcvuOQUlEx/HRb1O+73mfIAFtd9vOWgpvTLk8hcyWmtG7wHespWiNm59vEifhklgG0z+2PNmS0aIRqYW5MbJqAjTknypDDkquC+nSlNsfAPU6VlfjFYvZFaKFtyxIU/KQOOJM+Ue4v4Yk8imbcr0d9ajP8T6UntzXiU1ZveEq7uanPVOedmUa5V6VmyJiX5O26ykTBZGLy1AN0XF89NOUpXIpVd9anervrJ9CatTMw60vtzLNhic1P8J/UMG1BanVvlZ6n3/7ic8TMrE10TB7qFWYGyOrJkBDvqQy5P5EpOlFrBtT7nWsFLU/ANKU0SvH8hxk92g+aUoekhClKV/26K8hQxeRJlP2D1OaueMzta6MmXLnQ52T2JiWcVMOjgqmHMtz0IJbC1SPaK+espr2HaPiRccpTYnrnynbO9sTJ+Ey1aYmTQRHBVNx++LU0rFlpvkAIlfIqf2B9pRvdT7yDU3p/iBsfkb8pBL2Jaj+zvoULY3mY0jmxsiqCdCQ1VPWHBENJb5NeeiZIdR0TwFKLnlIrCyWIAHtfbaXNCUP+ZtVZOMEslppRgqNN52kTXnvs73ESTj6Ef4jXt/0mbJvqC8ZWhvSVtetSfTNmCmvfbiWjG2ME92EtGfKCdeOfSkmpgBps54ya76HfieL5RY0/uJ41lJ4Y8TZEWSx3CJTFY5Y9WCVasPkFdZSMoSWi0akFubGyKoJ2JB3E5EB8W3KY86PoXo76lFy55TV54jPvjureiT1ptz9SGVqsx+UnoIUvY71SuaoVdpNec3D0WRqa0pBkcktC6TPlGNlsVTMrlgya/DaMeWEO6vDSdv1lFkz4OQAyrc6n4a/TeZCnbZ199PdrKVoDWdvZzKyMaI51+ewlpJhbO/aarNoRGphboysmoANOYSIjhDfpjzx0kSqsbUGJXdO+X3ge4IEdO/bvXjPSp0pKzd0tSDlj596U46RPSWL5RYajoKk3pQVio5UxYGjfieaa+hHlB5TPvJqDEECeu6XnDlmzJST3lmtvXrKrFGvoypnXzI/gRGBVGBNAepyuIven81V8zvqN5WwL0ENdzXU+0QuNz7f0HbRiNTC3BhZNYEbMhHfpjzj6gyquLmi6ru/TfmR1yOCBPTqR+KNV5pNOWHJxbTlvr75Oaeq3ONTDX1TZ8qu3x+optKMSVulG4kUpFCMp7o7QK33VUrhmuk35aTPHRNlBlOOkcVQpc2VqMnuJplmHVUTCoWCeh/vTXlW5SG/MD/WcrSCQqGgXsd6Ua4VufQ+57h3iLcuikakFubGyKrpgSET8WnK827Mo9IbSsfrl9CUL3lcIkigKpaQmORN+e+Si6k35elX81LhdQakULxM4WdK2ZSVZ48LkUzekbRRulHNfc97BAnokgdI2/WUiUAuLptS2Fmt36a86sEqMrQ2pBf+L1hL4QV1+cHjr4+zlqI11MeC9L08ZowshhrtakRF7YqyOgPP3BhZNT0xZCK+THnJnSVU1K5oon5xpuz4bDRBAg27DZM25YQZutSkzpTLbypDo8/lpvTkvo6P+uyx8hx0xqtExafn0Z5UaXMlkivGq34m7Zpy+44XUzh3TKSvpuwV7EXmy8xp6pWpTHXwhU+ID1mutKQBJwewlqI1Xvq/JFNbUxp3YRxrKRlm2pVpZGxjTM7ezqwkMDdGVk2PDJmID1Nedm8Z5VudL4l+SlNe8xCUc0W2FK75tyn/naFLjWZT9vjpodpEtp/Sk/s6vimrzx6/DXirekQ7pvzp1yfiJBztcNtB2q6nTJR47fgXxcRot54ya1PudawXFVxbkIKjgplp4AuFQkEdDnbIVDWOI2MjqYpDFariUIUiYyNZy8kQx18fJ0hAGx9vZCmDuTGyanpmyES6NuU1D5dRrhW5kuknp7k3alDpDSBN55SVJDTlpDN0qUnelO2d7cnE1kSVNzZtua8Tm3LSZ48zbsqTL0+mvKvzxrsZadeUE64djyVt11NmacpXP14lSECHXh7ifWwWbHPdRpCALntcZi1Fa4y/OJ7Mlpolsa9Ev3gf+F7XRSNSC3NjZNX00JCJdGnKGx+XpWxLk4+AR54dQQ125qfkziknRGnKP8LLasjQpSZpU269rzW1P9A+Xr/0mbJvqJeGs8fpN+WgyCDKviw7Lb69OFE/7Zjy3zurN6iuqf+mHCWNorIby1JLx5asb4C88OnXJ8q+LDuNPT+WtRStcfrtaYIEtOXJFtZSMkREbARV3VKVKm6uqMuiEamFuTGyagI05AcqQ36SXBcVujHlba6mZGANSu6cctfDXanL4c6U3Dnlv/Ggyx55VBu6UirkndCUQ6NDydjGOInpo7Sb8pqHNVM4e5w+U15535pMbE3IP8w/iX4ZN+Wkd1bbU2YwZdu7tmRkY6TrRP2CQCaXUdM9TanU+lIUGq1px77+4BXsRVYrrajH0R56/4Fq+NnhZL7MnF7/eM1aCpEAjJFVE6Ahf1YZcj4ieptcNxXaN+W9z+YTJCCpvBklZcqNdjWi4WeHU3LnlJPCxmkqWa3kSKGoQGnJfX3q7UmCBPQ56HMS/VJvygrFcariAOp3ojhpo0qUEmeKkeWgwutMaOTZIZpGp/SasuaKTvakz6b8JegLmS01o9nXZ+t0HKGw+sFq4iRcovP7+otMLqPme5tTUbuier8Wvuepsgzr/uf7WUtRw9wYWTUBGrJ6yroSERUgvk153/N9BAkoRpadkjqnXHZj2Xg30dSZsnJDV2NKa+7rUedqUoVNFTT0S50pu353VZ09zniVqPgcfCFRncmuRdqup0xUltp3DE9hZ7U96asp9zzak4qsKyKE6UGd8+rHKzKxNaFZ12axlqI11BmsnL46sZaSIV74vyCzpWZCq7nN3BhZNQEb8mciqkp8m/L+5/tVx5puUVLnlHOtyEWrH6yO94yUTTluQ1fq02wqFCup0FrQjKsNKK1pNhOjPHtcmGTyo5TRKlFx+hRUe3ttan+gAWmzdKOSz+Ti0jWVFZ3sSd9M+cbnG3yVsWNOjCyGam2rRVUcqlCUNIq1HK3w0OshGVob0qLbi1hLyRCh0aFUflN5qr61utB2hzM3RlZNwIYcQkQBxLcpH3hxgCCB6uaR8EiUurDEnqd7Ej0reVNOmKGLKLWm/MzvGUECuvEZlJ7c12qipdGUe1XueDu8M166kYjI6asTQQK69ukaabueMhFR+46h8aLjlPI625O+mHKsLJYqO1Smpnua6v26Y2pYcmcJGdkYZZrKVerUmI13NyapXNP7R9goFArqf7I/WSy3oA8/P7CWkxjmxsiqCdyQifg25YMvDhIkoIjYCNUjcabsG/qJIAFd+HAhiWsmbcp/Z+giSo0pL7+3nLIvy07R0mWk/HWlz5RPvjmZ6OwxkTZMuduRblTFoUo8U9GeKSdcO/ahmJhKpM16yixNeb3zeuIkXAppUDMHT32fkpGNURI78PUThUJBfU/0zRSpMdVZxY69PsZaSlIwN0ZWTQ8MmYhPUz788jBBAgqPib92rDTlF/51CRLQY+/kdkv/bcpJZ+giSsmUm+5pSt2PdFd9l7bc1/FNucvhLlqrEqU25Q8/PxAn4ZKo0KMdU064szqAtF1PmZUpB4QHUK4VuejfC/9m6Dr6QIwshqpvrU41ttagGFmy6w16xe6nuzNFuk+3725kYmtCky5NYi0lOZgbI6smGEPevHkzVapUicqXL5/MOWR+TPnIqyMECZLYbHOfbn42I0hAn35pyimd0JSTz9BFlJwpB0UGkaG1IW1zjb+TKe2m7Bd2R8PZY6L0mvL4i+Mp/5r8yawJZsyUk95Zrb16ynHwb8pjzo8hy5WWrPID88qi24vIyMaInvk9Yy1FK7wLfEfmy8xp1LlRrKVkiN9Rv6nU+lJUd0ddDel/mcPcGFk1wRiyGs2JQXRvykdfHSVIkORZyaOvlLuKQ6KbUnLnlJXEmXJRu9waMnQRJWXKx14fI0iQREHwtJny2ofmZGprkkJt3bSZ8s8IU8q21JSsnaw19E2/KSdf0Um/TdntuxtxEo51SkJecPd1J0NrwxReI/pDtDSaam5TnnhIOHOmXygUCupxtAdZrrRMtIQmOJgbI6umZ4ZMpGtTPvZ6scp0/x5/k8smMrE1JoUi6SNRCZHTj/DBqg1dE1PQmdCUh50ZRlW3VE2mb+pMWaEIpKpbzKjfCRPKSEGKhETRsnvlyWwpKCA8pbWntJuyi8vZFHZW66cpKxQKary7MVVxqKLXG4FSQ7Q0mqpuqUq1ttXS+3rAaqZdmUYmtiZ6H+3bPbIjSEDn3p9jLSUlmBsjqyZAQw5ORepM3Zny8dcmBAnod9Tvv3osvr2YiqwrQprqKcfnssdF1YYuUGrTbMoVFajAmnwpJIxI2ZTdvrupcgaXooxWiVITLY2mgmsL0tjzxUibpRvVppy6ik76Z8rqjYK3vtxKVX99ZsGtBWRsY5xpykiqy62ud17PWkqGeOT1iIxsjPTlLDhzY2TVBGjI51SGPD+5Lip0Y8on3lQnSEBBkX9/ipxwcQLV2FpD9V3Kphy3oWs0pTbNptv3fAQJ6M7XlGqqajblSZcmUaG1hUgq96eMVolSo06a8jbgGWmzdCMRkYuLIl50HKzh3DGRPplyaHQoFVpbiHod65XCNfUf1++uZGhtSLZ3bVlL0Qq+ob6Ub3U+6nyos14fUQuMCKSidkWp8e7G+jJrwdwYWTUBGrJ6yhpElNIalPZN+eQb5S7rX5FmlPhIVO/jvRNt0NJsynEbutKWZtNiOUexsrSl2YxvNuqzx3Ouz1E9krEqUUTKadcaW2tQp0OdVI9ot57y3xWdtFtPmZUpz7sxj8yWmun9MZmUiJZGU2WHylR7e219uelrRK6QU9v9bang2oIUEB7AWk66kSvk1PFgR8qzKg95h3izlpNamBsjqyZgQ16o6savKavP7f6KbEmJj0T9b8//aPDpwYmekbwpJyy5mDpTbrSrEf1zrB2lNc1mfFNW/wwJixZkzJRvfblFkIBufr4Zr592TPnvndWTVT+Tfpvyx18fycTWhJbcWZLCdfSfeTfmkbGNsd6XIFSjzr194/MN1lIyxPJ7y4mTcHTl4xXWUtICc2Nk1QRsyCFEtJT4NuW4XdY/KPGRqHIbyyWzBvO3Kf+doYsoJVMOjAgkTsLRLvddlJY0m4lNucvhLlR/Z/0k+qXflDsd6kTVt1ZPYuou46b8985q7dZTjsOe+DTlroe7UnH74vGSzGROXHxcyMDagJbdW8ZailZ44vOEjGyMUjgdIXycvjqRgbUBLby1kLWUtMLcGFk1gRsyEd+mrN6Ao8ztmvBIlMVyC1r7cG0y10xoykln6CLSZMqHXh4iSEDfQ7+rHkm7KfuFTSNDa0MN9VnTbspvAzoRJCDHZ39/iFCSflNOvqKTfpvylY9XMkUSiZSIkkZRpc2VqO6OupliB3lodCiV2VCG6u2op9dT7/5h/lRwbUFq6diSZHJN+2YECXNjZNX0wJCJ+DRlx2eOBAnivRmVphweo0wKcvDFQQ3XjDNlG6eFyWToIkrOlAefHhxv05iatJny2ocgE1tDCtJYEi5tpjz2PEcF15pRtFTTMa/0mXL7jtEadlbrpynHyMKpwqYK1MKxhV5vBkoNc67PIRNbE6HU0c0wQ04PIYvlFvTp1yfWUtKNTC6jVvtaUYE1BcgvzI+1nPTA3BhZNT0xZCK+TFmdHk+ukMfrF0mfg5qq1lCTi5DVKE25+5E81GZ/Sw39EpqyTC6jvKvz0vybSe0uT50pKxQKqrqlIPU9AcpIQYr4BEYEktlSY1p6lyNtlm4kciYXlxapqOikf6a89mF1MrA2oJf+mjK66T/O3s5kYG1AK+6vYC1FK6hnqA68OMBaSoZYfHsxGVgb0O0vmmu/Cxjmxsiq6ZEhE/FhytvdthMn4f7q9dDrNkECev3DlDTVU1Zyn4racTT3RjFKbUavx96LCBLQfc/7yfRN2ZTjzh6PIOXvKeOmvPTuUjJbakaBEbtJW6Ub1bTv+DNedKypNJ/+mLJf2F6yWA6aeKkM6bKeMmsiYyOpwqYKVH9n/UwxVf3191fKuSInDTo1iLWUDHHt0zXiJBwtvbuUtZSMwNwYWTU9M2QiXZuyw5NNZGxj/FePU29PESSgnxEtSFM9ZaL4G7rMKDUZvYjG0JI7IMuV5inc3DSbctzZYyllpCCFmhhZDBVaW4jGnh+rekQ7pRuJEu+s9qKYmBakzXrKrEx5xNkRlHuVBf2KNCRd1VMWArOuzSJTW9NEO/n1E6lcSk12N6ES9iUoOCqYtZx04xPiQ3lX56X2B9onmuHTH1QBCXNjZNX00JCJdGnKGx7Xo2xLs/31vw5PHMjYxpjkinDSVE+ZKH7JxWOUmoxeRHKqtyOfaqrZMQWdSZvy32ePiTJqyvuf79dJ6UaixDurP5O26ymzMGUXHxeCBKpiHmdJF/WUhcBDr4fESTha9WAVaylawfauLRlYG9ADzwespaSbWFksNd3TlIqsK6K3xUt8Q32p4NqCRAIwRlZNgIb8RmXIKW2q0I0p2z3iyGK5MSXefb3o9iIqaldU9V3y9ZSJEpdcTDmj14/wH8RJOHJ81pxSm9ErsSmrI/i/I5b0mbJCoaBa22pRh4MdkuibMVNOeme19uopx8GfKcsVcqq/sz7V2Foj3q7WzGfKkbGRVH5TeWq4q6E+7t79C2dvZzK0NtT7ms1zrs8hIxsjeuj1kLWUdKH+QFFobSEiARgjqyZAQ3ZTGXIFIvqRXDcV2jfl1Q8GktVKUOLd12POj6G6O+rG65m8Kf9dclGzKasjUf8wX0ptRq/Eptz9SPdE+uKTdlN2+rqHIAFd/Xg1mb7pN+XkKzrprymrd+ff/XY3Ud/MZcozrs4gU1tTehf4jrWUDBMaHUqlN5Smhrsa6vU6+Pn35wkSaDiSKXymXZkW/wMFc2Nk1QRoyOop6/xEVJn4NuXl95ZT3tUWlHj3ddfDXanL4S6JeidtygkzdKlJ3pT7n+xPdbbXUX2X+jSbalMOjChLRjZGKZT2S5spdz9iQpUdyqRwbCftpuzi4pzCzmr9M+WQ6AdUYE0B6n+yfzJ9M4cpO3s7EyfhaPWD1aylaIXhZ4dTjuU59PqI07ff38hqpRV1P9Jdb4/YqWvQx7t/MTdGVk3AhuxGRAWJb1O2cbKhAmsKUOLd1/V21KPR50Yn8YyEppx0hi41f5uyTC4jq5VWtOj2onj90mbKm1xykZENKCA8pTPFqTPlT79ciZOAdrjlIG2WbiTqRO07Xk5FRSf9MuVZ18zIfJkZeQV7aeir36YcI4uhKg5VMk0CEHXN8eST3QifGFkM1d9Zn0quL5lCzXPh8vrHazJfZk4DTw2M/4GCuTGyagI25BAiek98m/KCWwuohH0J1XdxplzMrpiGFHRxpnzZY0UyGbrUJDTlh14PCRLQI69Hifql3pTr7ahG3Y+YUXpzXydmyuUplHd1HoqMrUbaKt1IROTiEh0vOg5LoaKTfpjy+0AXMrbhyPZuNtJVPWUhILkjISMbo0xRVtEz2JMsV1pSvxP99DaqJFIuHxjbGJOLjwtrKekiOCqYym8qT1W3VKXwmASzhsyNkVVL+xOAZgAuAPAFQAB6JPp/DoBE9f9RAJwAVEniWkny9y5rfk155rWZVHFzxXiPHCGFgiNjGwPa7KJpSlhpyjZORmS10iKFN3qcKS+4NZtyr8qdzAaZlE35bcBbggR06u0mykhBCjXBUcGUY3kO1YePjFeJik/CteOJpO16ynybskKhoA4HO1Cp9SUoSlqLdFVPmTWvf7wmYxtjWnBrAWspGUYml1Hzvc3/z915RzdtvW/82tkDQoCw996lUApllFFG6aKU7paWTjq+3XvQyNkJJCEk7L333jNsCHvvDYEkJGQPJ7ae3x+WE9mWZDuxrOvfc849p5VfS8JJ9LF03/s8aBzX2GXvKoGKeeO4w3FKn0qlxLIsRi4bieqR1XEt85r5y4qDUalRGSAPJ4SEEULeEAHyH4SQPO71ToSQZRycq5ntS1DCy56cB+VvNn2DrtO6mlRmFc0EYQhWXewPa3nKI5YGYfACNWwxDwH80W26P95f/bZEnTSU/9r1FwKjAlFSVoKqBFIYNeHQBHiEeOBhnvH9joGyaWe1Flrta3BknrISUN54dSMIQ7D28lrIlaestHR6HXrN6oV2Se1QXCZl3uIaMqYf7b29V+lTqbTu5dxDzeiaeG3pay57hx99MBqEIVh3eZ3Qy4qDUalRtTebAZm7O35ECPmDt82LEJJDCBlr9n5Bia9Ddg6UP133KXrN6mVSdTHjIghDcPCuCtbylBvFNcQfO5vBmnkIADzMW8tZ9bWDrY5efCjrWT0axTXC15u+5tVWHspl+jI0iW+C0WtGm9VVHcqWndWOzVM2yHlQLikrQatJrTB4wWDeRfH/H5QTjiZAxahceo2uUcYUJ2F7WtdQqa4UvWf3RpP4JsiS9KunV7tv7YZao8bfu/4WK1EcjEoNRwO5BbftabO69YSQ+WbvBwCUlJQgNze3fNy/f1/CGER+KL+36j0MnGfqQW3MAr6eFQ+p6MaKhq7FsGYeAgBzTs2BilEho8APtjp68aG86+YuEIbgyP0jZrWVg/LKiytAGIJTD08J1FUeyuKJTq4L5agDUXDTuAms+/7/A+Xb2bfhG+6Lbzd/q/SpVFn52ny0ntQaz8x4xqVTnP7Y+QfcQ9wFek5cQ/dy7iEoJgiDFwyWWseuOBiVGo4Gcm9uWwOzuhmEkO1m7wcABAcHg3uPyRB36pIXyiOXDcbwRcNNXjVGMuZr8yEV3WgauShtHgIAb614Cz1n9oQt5iEGmUL5o7UfofWk1iKPreyHcu/ZjdB/bn+JuspBedjwMonOateD8sO8b+Ef4Y8ftv4gUuf6UGZZFkMXDkXjuMbIK5H6rF1Dn63/DL7hvkLzlS4j4/XFVZedlZSVoOfMnmgS38Sam5jiYFRqyAXk+mZ1Mwkh28zeb/gh2XWHbJR8UH5xkSfeWD7E5JXog9EIiAzgbRGGsqlDFyAF5VJdKQIiA8AkM9wW+6CcryXwC/dC6L5QiVrboZzy4H/cnM5bcERKlEErkZLSy4ZEJ9eC8kdrCWrH+CC7WKopyLWhPP/MfBCGYPO1zUqfSpW16uIqEIZg1slZSp9KpWX0qX5p8Usu61P99aav4RnqiWMPjlkrVRyMSg1HA9nuR9bmys3dyAF5hlgJJ3mgPGCeH95f7Q1+o9f3W75Hh8kdzGotoWzp0AWIQXnfnX0gDDH75bQdygvODABhCG5nj7fyb7INyu+uehctEmpCpydwVHQjAAwb/oB3dyzVEOcaUD5y/wgIQzDjBIFcecpKQzm9IB01o2vi/dXvK3oejtD93PsIjArEqOWjXLYBqkxfhn5z+rm0T7XRyW7GCWvXdQAUgFGp4WggG5u6fudt87SvqesJB2QVgEViZZwcD+Ves7rjs/WB4Dd6jVo+CkMWDBGoNoWysEMXIATlP3f+iaCYIIFvu7ZBefCCF9B/bn1U1vuar3s59+CmcUPC0QQ4IiXKKNO547vQaj+EI/OUnQ1lPavHMzOewdPTnoZOH8vt8/8flN9Z+Q5qx9RGRkGGYufgCOlZPQbNH4SGsQ1dtgEKMHgjuGncJKJZ6dbpR6fhHeaNT9Z9YuuXIsXBqNSoDIT9CSFduQFCyE/cfzfhXv+DA/BIbtnTksote3ofBtg5F8pPTX0K327+FPxGr54ze2LMujEi7zBAOb3gLQmHLsAcyl2mdhHoZjZKGsr3c+9Dxagw+9RMVNb7mq8/dv6B6pHVeXOFjoGyaWf1CTg6T9nZUJ59ajbXbW/sOI7H/zcoG9e3Lj632OnHdrRiDsZAxaiw+9ZupU+l0tpxYwdUjAoR+yOUPpVK6UnRE7RIaIGnpz2NotIiW9+mOBiVGpUB8gChJixCyDzudaMxyCNCSAkhZB8hpJPAvgRVAeQnAMbA2VBum9gWv2z/BfxGr0Zx9ayYIizFlmsqrqHrukSdAcqped4gDMGSc0skasWhHHUgCj5hPsgtyUVlvK/5UC7QFiAwKpD7N/NVNSgLd1Y7Lk+5Qs6Bck5xDuqMryPwGDce/1+gnFOcg4axDfHS4pdc9vGuUScfnoRHiAd+2/Gb0qdSaT3Me4igmCCXzTfWs3q8uuRVBEYFSjgXCkpxMCo1lDy4oEzXIevgbCg3iW/Cs8jMgE7fEW4aginHpOPZQva+hcAoApYdDWvmIXNPd4SKIXhcuNbKeVpCmWVZdJjcwQwMlYfy5GOTodaocSf7jkBt5aEsnujkmlD+Zfsv8A33xf3c+wK18fj/AOWxG8fCP8Ifd3PuOuV4cqlAW4C2iW3RbXo3aHWS/qzUSqfXYeC8gag/oT7SC6xdz+hUxP4IEIZg09VN9r5VcTAqNSgHMuBsKNeKrmXyeOhh3nkQhmD9lQBIpUQZGro6QWqdslHvrHwTPWZUhy3mIeZQPpF6QiQW0X4o69m2aD2pBd5c8aZErf1QTkm5YaWz2rWgfPlxE7iHuCN8f7hEbTxcGcp7b+8FYQiSUpJkPY4zNHbjWPiE+bh0RCSTzECtUbuso9ieW3ug1qgra7eqOBiVGi4AZMCZUPYK9UJiSmL5/x9PPQ7CEJxIbQmplKiKhi7xdcoAP93pT9hiHmJQBZS/3/I16k+oL5K4Yx+UN16tCcIQHLq33kqtfVAeNnyHDYlOrgFllr2BYQu90SLBHcVl1mL64uGKUC4qLULrSa3RZ3Yfl3w0ypdxDnzq8alKn0qltefWHqgYFTR7ra0KoVMPch+gzvg6eGH+C1LmH1JSHIxKDRcBMuAMKJfqSi0i2dZdXgfCEDzKPw+xQArLyEVxKBuXzRiCuK2bh1ToALQ6P9SO8cCv23+QqLMdyi/Mfw7PzvQAy7aFI1KiACAlJYd3d1xkJdGJfigbL/DrLteGXHnKSkP5z51/wjPU06XvKAEgLT8NQTFBeGXJKy47B56Wn4Z6E+ph0PxBlYWZoirVlaLP7D5oGNuwKo/aFQejUsOFgAzIDeWsoj+4EIlV5a9MPjYZ7iHu3J2DcCCFqUOXUcJQZpIZ1IiqwbvDtR3K668Yoh3PpT2Dynhf83U27SwIQ7D0fBwckRJllOnc8c9wdJ6yM6FcUlaClgktMWTBELDsDciVp6wklE89PAU3jRvC9oU5bJ9KiGVZvLLkFQTFBCEtP03p06mU9KweQxYMQd3xdfEo/5HSp1Mp/bztZ7iHuHM3HJWW4mBUargYkAE5oXwnm4AwBNtvVFzw/971NxrHNebVWULZ0qHLKEso95rVC2+teMuszjYoj1o+Cl2ntUZlbDbN9cm6T9AorhHn61v1lCjAvLO6BFptdzgyT9nZUI46EAX3EHdcyjB++XJ8nrKSUC7Tl+HpaU+jy9QuLu3vDADTT0wHYQg2XNmg9KlUWmH7wqBiVNh1c5fSp1Iprby4EoQhmHhkYlV3pTgYlRoUAtlonSn1DVEeKJ9P/w6EITh87/PybR+v/dgi/ckcysIOXUZVQDmzMB1qjVrEwk8ayllFWfAM9eTyTyvnfW1UWn4aPEM9EXUgildbdShbdlY7Nk/ZIOdAOTUvFX7hfvhx649mtf9/oBx1IApqjRrHU49XaT9K61rmNfiG++KLDV8ofSqV1r47+6DWqDFuzzilT6VSupp5FdUiquHtlW87YrpAcTAqNSgE8m4OyAMAFIqVQQ4oG+d3z6cTGBu9Bi8YjFHLRwlUm65TFnboMsoA5WXn+4EwRGTpDCAF5anHp8JN48Z7lFV5KAcnB8M33FcgoL3yUBZPdHJNKI9eMxpBMUHILs4WqHV9KF/LvAbvMG+B9eeupTJ9GXrO7ImWCS258BfXU0ZBBhrENkD/uf1dct64QFuATlM6oW1iW0cFkSgORqUGhUA2PrL2ATAYzoTyjhs7OH/oX7hT1KB9Unt8v+V7kX1mIL2gHdfQFW/l+EvxyTqCTlNqwNo6ZSEoPzfrOby0+CWzWvuhXFw2A3XG18E3m74Rqa0clMXXHQOuBuXD9wxTFzNPSnVguy6U9awe/ef2R4uEFigslfr7ol/G5UGuGkeoZ/V4cdGLCIoJQmpeqtKnY7dYlsXoNaPhG+6LC+kXHLVbxcGo1KAYyJsA+MKZUF59aTUIQ5BZmAljo1f1SC9EH4wW3eOWa0u5hq7akFqnzLIs6k+ogV+3E1hbp2wO5WuZ10AYguUXlgvU2gflOacMsLmaeVWi1j4op6T0sCHRyTWgrGd1eGZGELpNJ9Dpp1vZp2tC2Tjf6qpzlUalPEiBm8bNZR/zAoZpA2FfAdfQtOPTQBiCRWetXXvtkuJgVGpQDORcAMlwJpSNiSRGd5+8knGcr6/QI2uDDA1dNcCyHSG1TtnY1bzr5j+wxTyED+Vxe0YjIDJAwgvWNiizrA6dp9TEK0sIqhpIwdew4dd5d8eOi25UAsoVftUjYfg1dXyespJQfpD7ANUjq+Oz9Z9ZraVZBdoCtJ7UGj1m9HDZhrSDdw/CTeOGv3b9pfSpVErHU4/DM9RT4mlbpaU4GJUalAMZcCaUk1KS4BnqWf7/lx9fBmEI9t4mEPO+rmjoEl4SZVT0wWj4hvuipKwE1sxDKlQEPTsEzSaq8MWGl638m6xDedfNXSAMwe5bL8ERKVGAUKJTMByZp+xMKBv9qj9Y/QHkzFNWCsosy2LE0hGoN6GeQP+Aa+mrjV/BJ8wHVx5fUfpUKqWsoiw0jmuMvnP6ipj80K3Mwkw0jW+KZ2c+y13THCrFwajUcAEgA86CcuSBSNSMrlleYQTY9ayfuFO2hLJp5KI4lAfNH4SXF/OhahuU990xzGsfuOsJe202zfXy4pfRZWoXsKwOjkiJAsw7q7fB8Dk5Lk/ZmVD+edvP8Av3w4NcI1T/f0F5xYUVIAzB6kurreyLbm26ugmEIZhybIrSp1IpGb8Y1YyuKdHgSa/0rB7DFw1HzeiaIh74VZbiYFRquAiQAWdA+e9df6NpfNPyV42PsA2Pii1tNi0dugAhKOdr8+ER4mFiyWmQdSh/uu5TNJ/YDCw7BJXxvjbqauZVEIZgzqk53JaqpUQBYolOjstTrpD8UL6UcQnuIe4CMXf/P6CcWZiJOuPr4I3lb1jZB93KKMhA3fF1XTqRKjEl0aXXTIfuC4WKUWHr9a1yHUJxMCo1XAjIgNxQ/t/mT9F5SufyV0L2hiAoJohXawplYYcuwBzKRvvF61lC0YziUC4sLUS1iGoITg6GvTab5lD+ZtM3qDO+DorLinl1VYOyeGe1a0GZZftg2MIX0CKhhdnnY5TrQ/njtR+jRlQNPMyz1qRHr4x3lrVjarusk9XpR6fhGeopsXKDbhnzmf/bI51+V0UpDkalhosBGZATyh+sDsDzc58r3/r5+s/RfXp3s9oKKIs7dAF8KH+z6T20TGgpcXxhKC85twSEIbiRZQw1qByUs4ruwTfcF0wyI1BXOSinpDy20lntOlDecMWHS/RaJlHnulDefmM7CENEDGlcR7NOzgJhCNZcWqP0qVRK+dp8tE1si6enPS3HvKvsupdzD7VjamPowqFyr5dWHIxKDRcEMiAXlF9a7IURS6vBOKc8dOFQjFw2UqDWAOURS9tJOHQBRii3THDDN5ves3J8Syi/uOhF9Jndx6zOfihHHWgBz1BPCbN3+6E8bHiyDYlO9EPZ4FfdEEMXuoFl+0CuPGVpxUMuKOdrR6LZxGYYNH+Qyz7iBYAbWTfgF+6HT9Z9ovSpVFpj1o2BX7iflSWHdEqr06LXrF5oHNcYjwsfy304xcGo1KAQyDs4IG8RK+GUDEdD+blZXTFmnQ+Mc8rtktrhh60/iFSHoVEcwR87+0ru83rWUW6+qAak1ikbVAHlh3n3odaoMf2E0FpY26FcqktGw1gVPllXD1UNpDAqJeWumWe1VDXdUI48EMn5VS+FXHnKSkL5x60q+IS54eYT1+xGBgxuXM/Neg7NJzZ3lBOU07Xw7EIQhmDBmQVKn0ql9P2W7+ER4oGj948643CKg1GpQQ2Qk5KS0L59e3Tp0ooDsi+AfSI/L6OS4Ugot0tqh5+2fQygHli2PXzDfRB7OFawtqKhi0BsSRRgaODwCPFAvrY9pNYpV8gA5bjDz8Az1FNieYptUF56fimXEOWDqgZSGGU6d/wfHBXd6GwoP8h9AL9wP/y07Sdui+PzlJWE8pH7R6BiVJhwSA0585TlVti+MKg1ahy8e1DpU6mUrmVeg3+EP0avGa30qVRKy84vA2GIQFOqbFIcjEoNaoBsVMUj634A/OBMKNcdXxche0MAXEFmYR0OuMLzbhUNXT9z/xxhKL+8+GUMmj8I1tYpm2opuk0nGLW8CSpjs2kUy7J4duazeGH+C6hqIIVRpp3VxdBqm8FR0Y0GOQ/KH675UMCv+v8HlLU6LTpO7ohnZjyDMv1qyJmnLKeOpx6He4g7/t71t9KnUimVlJWg2/RuaD2ptUve3V/KuAT/CH+8u+pdZ055KA5GpQbFQH4EYCCcBWWWZeEZ6ln+LfDUwzUgDMGxB80hZLNp2tBluSQKMPwx+ob7IuZgDLfFNihfzLgIwhCsvayCvTabfB26dwiEIdh0dRO3pepQtuysdkx0o6nkh7LxsxFudHJ9KDPJDNxD3HE27Sy3ZR1cDcqFpYVom9gW3aZ3K3fPczX9tO0neIZ64uTDk0qfit3K1+ajfVJ7tE9q7+zgDsXBqNSgGMi5MMDVOVAuLC008WRdd3kdCEOQlh8EIZtNy8hFSygbjUUqLoqALVD+e9ffCIwKREnZAthrs8mH8psr3kSbxDbQs3pebeWhLJ7o5FpQ1rNe6D69NbpP72722fDlulC+kH4BHiEe+Gf3P2a1rgXlbzd/C+8wb14etWtp49WNIAxBwtEEpU/FbrEsi/dWvQe/cD8lPn/FwajUoBzIgLOg/CD3AQhDsPnaZgDApKOT4BXqBT17CUI2m6YOXUaZQvnX7b+i/oT6Ao96xKGsZ/VoGt8UYzeO5bbYbrPJh/Lt7NtQa9SYfGyyQG3loCyd6OQ6UJ51sjMIQ3DoXpyVfboelHX6k+g1qxfaJbUTWVPtGlA2LtVy4rylQ/Ug9wFqRdfCq0tedcnu9qSUJBCGYNl5qaWAsklxMCo1XADIgDOgfD79PAhDymPcft3+K1pNasXVmjp6CTt0GVUB5U5TOkks0xCG8v47+zmrzAO8Wvuh/Mv2txAYFYgCrRhw7YNySsqzNiQ60Q/l7OJsBMUE4cM1DSBnnrK05INywlFfqBiVlQYouqGcXZyNhrENMXjBYIknGPRKp9eh/9z+aBjb0BlLhByuo/ePwiPEA99t+U6pU1AcjEoNFwEyIDeU99/5F4Qh5Y9n3l75NteMZVQFlLdcWyLi0GVUGB7kEonIRKMsofzlhi/RbGIzgQuR7VDOKxmE6pEEf+x8V6IOsAfKw4afsWHdMUA7lH/a9hP8wv2QmncTcuUpKwXl29ln4BeuxrebvSBnnrLc+mjtR6geWR33cu4pfSqVUsjeEKg1auy9vVfpU7FbmYWZaBzXGL1m9VJy3l5xMCo1XAjIgJxQXn9FBcKQcku+XrN6Ycy6MWa1BiiH7A3iIhfFL46zT42EWkOQVWT+WNtcFVAuKTuDGlE1BOb+jLINyglHJ8A9RIX7ud6oaiAFIJToZG0tJZ1QNvpVRx6I5LY4Pk9ZKSizLIuhC4eicVxD5JV0hZx5ynJq7eW1IAzBvNPzlD6VSmn/nf1Qa9Qirnh0yxgaUSu6ltJfhhQHo1LDxYAMyAXleaf7gjAEJWVzAQANYhuI+LVewYilXhi8wA9C3ddGvbXiLfSa1RiGf6r4OmWDDFBecynA5C5dWNJQ1ul1aJnQEu+uegtV8b7my3TueCEcFd1YIfmhbARWy4SWZraF/z+gPP/MfF4PhGNTopyljIIM1BlfB68tfc0l510zCzPRKK4R+s/tL7e1pCyK2B8hd2iErVIcjEoNCoGcxQE5W6wEckA5/kgsfMLcAKih1c2DilGJev82iquHP3b6Qaj7GjA4C9WIqsF9SxZeEmWpDIxcVh3dp7vDHkcvcygbgyyO3D+CqgZSAEKd1VVPiRKWvFBef2WNRMKOa0M5vSAdNaNr4v3V7/PqXAvKLMti1PJRqBVdyyWDI1iWxWtLX3PZSMXk28lQa9T4d/e/Sp8KQAEYlRoUAnkTB+QPYWgoEpNjoTxuzzg0jG0IYAxuPTE8vt5xY4dFXUVD10QIdV8DwOF7h0EYwrOZsw7lrKIseIZ6Iv5IPdjj6GUO5Rfmv4CeM3vy6qoGZeHOateCcnGZGi0S/DFs4VCJOy/XhfI7K99B7ZjayCjIMKtzHSgvPrcYhCFYcWGF04/tCE06OsllIxUf5T9CvQn1MHDeQFru7BUHo1KDQiAbH1kTAJ/CWVD+auNX6DqtKwAd9t5+EYQhuPI4xqLONHLRtPvaqP/2/Iea0TXNfrmloTz9xHSoNWo8yj8Pexy9+FA2doovObfErK5yUE5JKZLorHYdKIfvfw/uIQSXH78MufKUxSUvlDdcGQXCECw+t1ikjn4op+alokZUDby3yloAC50yRiqK+97TK51eh4HzBqLu+Lo0PZlQHIxKDYqBPB2Gi71zoDxq+SgMWTAEALDgzDwQhqCwVAVzRy/LyEVLKPec2RNvr3xb4PjiUO43px+GLRzG/Z99NptGKH++/jM0iG2AUp3QxdR+KA8bfthKZzX9UL6XY4ie/GX7q5ArT1kpKOcUR6BhLMFLi1uAlVweRC+UWZbF8EXDUW9CPWQVZcl+PEcrX5uPNoltXDZScdyecVBr1Ei+naz0qfClOBiVGhQDORfAAjgLys/Pfb58Di5sXxhqx9SGkKOXpUMXwIdyVtEVqDVqzD41W+T4llC+nX0bhCFYeHYhr84+KD8uVME7zA1h+0Ik6myHckrKad7dsVYi0YluKL+z8h3Um1APuSW5kCtPWSkof7XxK/hHeOFuDoGcecpyasaJGWb2rq6lj9d+7LKRituub4OKUSF8f7jSp2IuxcGo1KAcyICzoNw+qX35I6cvNnyBbtO7QcjRS9ihCzBCeeXFRiAMsbJswBTK4fvD4RvuK+AXazuUI/a/A+8wgoyCt1GVQAqjTOeOY+Go6EZnQjn5djIIQzD/zHxe7f8PKO+9vReEIUhKSYKcecpyQvnWk1vwj/DHZ+s/k2X/cmvBmQUuG6l4L+ceakXXwouLXqTRfEVxMCo1XADIgDOgHBQThLB9YQCAwQsGY9TyUVxdBZTTCyZLOHQBwBV8scEH7ZM8IbUkyiADlFmWQbukdvhg9QciddahXKorRcPYhvhs/UBUxfvaKNPO6gJotYFwVHSjQfJDuUxfhk5TOuG5Wc8JXHBcG8pFpUVoPak1+szuw/u3xcOVoKxn9eg/tz+axjflnl64lq5lXoNfuB8+WvuR0qdit0p1peg9uzcaxTWi1UlMcTAqNVwEyICcUNazL0CtUWPaccNEacuElvhl+y+8OgOUt1xTSTp0sSyLpvEN8P0WX4gtiTJVGE4+NDh6Sa/9k4ayMa/0XNo5VNb7mi/LzmrHRDeaSl4oJxz9EypGJZGy47pQ/nPnn/AM9cTlx5fNauPhKlCeeGQiCEOw55a1fgb6pNVp8cyMZ9B6UmtnpyA5RL9u/xXuIe7lNsEUSnEwKjVcCMiAXFB+XOgDwhCsvrQEOr0OHiEe3KNAvnQI2fs0AqMIWHah4J6uZV7j5sOmQWxJlLl+2tYbdcYTlOmFTEj4Eodyr1m9MHDeQN6WykNZPNHJdaCcXtABAZEqjN34lpV9uh6UTz3cBjeNW/nTHEvFg3YoX358Gd5h3vh+y/dV3pcS+mvXX3APccfx1ONKn4rdMqbYxR22FqyiqBQHo1LDxYAMyAHlSxmGrur9d7rjXs5Vk9QnvkYsfQ2DF9SHUJ4yYEhI8Qjx4L41Cy+J4qtMX4Z6E+rhh63PwfCR2OboxYdyyoMUEIZg/ZX1ZrWVg7J0opNrQPmz9R8gMMoNmYU1IVeesrTkgXKZvjG6TfdCl6ntRTrpjYoHrVAu05fh2ZnPok1iGxSWSrnn0am9t/dCxah49quuo5tPbiIgMgCvL3uddic0xcGo1KAOyIeuHwIhBNsvSF30HAvlfXf2gTAElx97Y9+d7qL2lYaGrt8g1H0NAK8tfQ0D5g3gbZGGsjFizvBN23ZHLz6U31/9PloktBBZ0G8flFNS+tmQ6EQ3lFMepEDFqDD5WAzkylNWCsrRB3+HWkNwPLUR5MxTFlfVoRy+PxxqjZpzknMtPSl64rLWmCVlJeg+vTuaT2yO7OJspU/HmhQHo1KDOiA/ytwDQgiqBfvhzCOpC4TjoLzq4ioQhiCzcB3mnfYEYQiKSjNNakwjFy27r0t1pfCP8EfE/gizvYtDefSa0Wib2Jb3bdU+KKfm1YZ7iDvij8RL1NoO5WHDj9qY6EQnlPWsHj1m9MBTU5/iLpjy5CkrAeVrmdfgHeaNX7Z/BjnzlOWE8plHZ+AR4oG/dv1l1/toEMuyeGvFW6gRVUPp4IVK6dvN38Iz1BMnUk8ofSq2SHEwKjWoA3Ju7jUQQvDURHc0jK2Lh3lSF2fHQHnq8alw07hBz+oRnPwx6k0gMF+nbOrQBZhD2ZhjLPwLbwnlAm0B/ML9ELov1KzWdij/szsI/hEq5BSnWKm1DmXTueN70GqTreyTPijPPjVbIEva9aFs7EhukdCCe8wrX56yXFAuKStBl6ld0HlKZ5c00Jh3ep7LWnsamz6nHp+q9KnYKsXBqNSgEMiGOeQrD1qgQawafWZ3szJfVnUoh+wNQZ3xdQAYslifm9UR5uuULR26AD6Ux+15HbWia0ms6TOFstG7V7hj2zqUi8uKUTumFr7fUgtV8b42ynTueCIckRJVIfmhnF38BEExQSLLx1wbytNPTAdhCHbd3MWrdS0o/73rb3iEeOD0o9NWa2nTjawb8I/wF4hjpV9XHl+Bf4Q/3lv1Hu3zxnwpDkalBjVATkpKQvv27dGmTRuuqesaDt9rCvcQgj93fin2g+NUNSh/v+V7dJzcEYDBwtLgqZsMPpSFHboAI5R7ziR4Z2UvK+dZAeXhi15A3zl9JWqloTz71GyoGBWuZx1FZb2vjbLsrK56SpSl5IXyD1ufhX+EP1LzUkXqXBPKD3IfoHpkdRHzDNeA8tH7R6HWqCU6w+lVqa4UPWf2RIuEFsgrkfq50afC0kJ0ntIZbRPbutq5Kw5GpQY1QDbKtMv6ESIPBEHFEBy8ax6YYK7KQ/m9Ve+VN2M1jmuMv3f9zdUmwwjlRnENRRy6gKyiDKg1Ksw+Zel9bakrSMsPgpuGYNrx8VZqhaHMsiy6TO2CV5a8wm2pnPe1EcrCndWuA+Xz6T/BTUMQfXAQ5MpTFpd8UGZZghFLu6LehHp4UvREpJZuKBeWFqJNYhv0mNEDZXqpz5FOjdszDm4aN15ym+vo03WfwifMB+fTrf2uUyfFwajUoBzIgE7/AM/N8kHbRHeUlFn7xaoclAfOG4h3Vr4DrU4LFaPCzJP8ObxkpBf4cA1dwrBdeXElZ5f5FsSWRPGVcPRveIQQZBW1ha2OXnwo77m1B4Qh2HlzJ6+uclBOSdFJdFbTD2WWZTFg3gC0SawNrY5ArjxlJaC8/MJQEIZgzaWvreyTXij/sPUHeId5C5iY0K8Ddw9ArVEL9HnQr7mn54IwBPNOW/sbo1KKg1GpQT2QAeBC+l64hxCE7asGwJqJu/1Qbp/UFD9u/RHXs64LzNUBW65FcfO9fSAU3fjFhi/QPqk9hLqvhdRjRg+8vmwwbDUPMYfyiKUj0HFyR4E5IfuhPGz4KSud1XRDefmF5TynM3nylJWAcmZhJoJigvDmipYw/Jvky1MWV9WgbPziSLkJhaCyi7PRNL4p+s7p63JLnM6lnYNPmA8+Xfep0qdit5aeXwpQAEalhksAGQB+2f4VfMNVSM2rC0dDuUYUQdSBsdhxYwcIQ3DzyU2TKkNDVzWwrA/Mu68NdplNea5D0lC+8vgKCEOw6uIq2GIeUiEDlG8++QEqRoUZJ2aI1NkO5ZSU7TasOwZohXKBtgCN4hphxNIRvNr/H1AevWY0AqMC8Sj/IeTMU5YLynklWWga3xT95/anMbzAqt5f/T6qR1bH7ezbSp+KXcoryUPbxLboPKWzyxmvXEi/AN9wX4ACMCo1XAbI2cXZqBUdiC831ADQAI6CclFpJpcI5InpJ36BWqO26OquaOhKhnn3dYVdJj8+ThzK/+7+FwGRASguK+a22Afln7YR1Iz2sfLHZhuUTeeO58ARKVEGOQfK/+z+B16hXhZfoFwdyluvbwVhCOaensttkSdPWU4of7GhOfzC/UR932nWorOLQBiCJees9a3QJZZl8e6qd+Ef4e9ycZC5Jblok9gGnaZ0AigAo1LDZYAMAOMPjYd7iDtuPWkJR0HZmEW848ZT+GuXB5rE17WoMY1cTAYfyqZ2mXxZQpllWTSf2FygY9Y2KOeV5KF6pBf+3ElQGZtNvkw7q3Oh1XqhqilRppIXytezDsEz1BPj9owTqXVNKOeV5KFJfBMMWTDEbErCdaC8+dq/IAzB9BPdIXeesqN168ktVI+sjg/XfKj0qditKcemgDAEy84vU/pU7BLLshi5bCSqR1bHtcxrAAVgVGpQCOQcUSAXlhpiEsduHA2gPRwB5cP3DnNJSSl4d1Ud9J+rBn9JlKlDl1HJMEL5taUvm9ll8mUK5SP3j0gk3FiH8qSjk+CmccP93N9g+AgrD2XLzuqqp0RZSj4ov7LED03iG1p5UuB6UP7f5i/hF+4n8qiUfihnFWWh/oT6eHFRN7CsG+TMU3a0yvRl6D27N5pNbIac4hylT8cunUg9Ac9QT3y7+VulT8VuRR+MBmEI1l1eZ9ykOBiVGhQCeT0H5GDB18P3h8Mr1Atp+efgCCivvrQahCF4XPgYPWf2wJh19cBfEmXp0GVUMkp1PvCPcEPEfkbi2BVQ/m7LUDSIbSDRJCIOZT2rR+tJrfHOyne4LZXzvgakEp1cA8qbr83gviQ1gFx5ytKSB8oH7vpAxRBMPBIlUUc3lN9f/T5qRNXAg9wHkDNPWQ5p9mqg1qhx8O5BpU/FLuUU56BFQgt0n97d5VzQdt/aDbVGbW6nqjgYlRoUAtn4yJoAsExUySrKgm+4LzR7NQAeoapQnnxsMtxD3KFn9agzvg40e/8Ff0mUsEOXQfvvJHB2mc9CqPu6QjqU6T9C3fEEP28bbuU8haG86eomEIaYZZhWDsrSiU50Q7mkrAStJrXCC/OfA8s2gFx5ys6GcnFZMdomNkGvWWro9H0gZ56yuOJRFSgbl/8tOsvvm3ANKB++dxhuGjcEJwcrfSp2iWVZvLniTQREBgj0UtCt+7n3ERQThMELBpvfpCgORqUGxUD+kyuzhPIXG75Ag9gGnNFA1aD87+5/0SiuEQq0BSAMwYIzC8BfEjViaV8Rhy7De2tFV4deoPvaXDtubOWSnWwzDzGH8pAFQ9BjRg+BLwb2QTkl5UUbOqvphXLkgUi4h7jjYsZFyJWnrASU/9n9DzxDPXExYwnkzFOWC8pp+WmoFV0Lbyx/Q+B3lG4o55bkovnE5ug1q5fLmZckpSRxWe6rlT4Vu6TVadFrVi80jmuMjIIM85cVB6NSg2Ig5wIIhhCUTz48CcIQbLiygdtSeSh/tv4z9JjRAxfSL5gFExig3ChOhT92vi+4p54ze3KPkJNh3n1trjHrxqD1pNZg2Y9hi3kIH8oX0g3xkIvPLRaptR3Kw4bvtTHRiT4o38+9D99wX/y07SderetD+fSj03APcUfI3hBuizx5ynJBmWUD8drSAQiKCRK6uHKiF8ofrf0I/hH+LneHefLhSXiGeuJ/m/+n9KnYLWP6VMoDwWAcxcGo1KAcyIAYlJ+a+hTeWP4Gb0vloPzy4pfw6pJXsf7KehCGmKRLpRfc5uYqvWAeSJFVlAW1Ro3Zp2ZzW5IhBuWi0iJUi6jGPQ6zzTzEIAOUv9xQA/Un1IVWJ7pQGLZA2XTu+D602qoFUlTIOVB+d9W7qDu+rkDDjetCuUxfhm7Tu6HzlM5mP1/XgfL8M81AGIK1l60ZgNAH5aXnl3LLHucrfSp2KbckFy0TWqLb9G4uN2+84MwCEIZg2nHROwLFwajUcAEgA0JQjj0cC89QT7Owbfuh3G16LXy54QvEHo6Fb7ivyeO2ioauXjAPpKiwy+RnoyZDCMrGvOUrj69wW2yHclbRUfiEEYTuC0JlbDb5Mp071sARKVEVkhfKe2//abY211yuCeXog9FQa9Q49uCYQC39UL6Xcw8BkdUxek1NyJ2n7Gjdyb6DgMgAvLvqXVdKQgLLsnhn5TuoHlkdN7JuKH06duls2ln4hPlgzLoxUp+54mBUargIkAFzKD/IfQAVoxLwarUPyvUnEAQnd8U3m75G5ymdTV6taOgqgHkgRYVdprmSYQ7lN5a/ge7Tu5vV2QblqANR8Ar1REZBHVTGZtMoy87qqgVSCEseKJfpP0PnKQS9ZrW04vrkWlC+lukJ7zBP/LL9F4laeqHMsiyGLBiChrEN8aToFuTMU3a0dHod+s3phybxTcy+1NOvqcenumQ2c3ZxNlomtETXaV1RVFokVao4GJUaLgRkwBzKfWb3watLXhWosw3KOr0Obho1ph4nGLqwIUYue93kddPIxYpGL5bda2aXaa5kGKGcXZwKr1AvxB6OFToDSEG5VFeKRnGNOE9a+202+VAW7qx2DSgnpkyCiiE4kUogV56ys6GsZwvRf25NtEhQobB0vZV90glloxHFtuvbuC2Oj26US+H7w6HWqLHvzj7rxRTp9KPT8Ar1wtebrAWO0CU9q8erS15FjagatszVKw5GpYaLARngQ3nCoQnwDvNGgVboYm4dymn5adyC9B/QMoHg1+2dwF8SZerQBRihfDXTR8Au01zJAHwx51QHqBgVty5TSOJQNgYnnE07y22pHJTF1x0DtEM5oyADNaJq4IsNn0POPGVnQ3na8WmcSUxPyJmnLK3KQ/lG1g34hvviq41fmdXRD+WUBylwD3HHP7v/cdoxHaG8kjy0ntQaXad15VnvuobC9oWBMASbr222pVxxMCo1XBDIgBHKVx7/bNZtbS5pKJ9+dBqEITh49yDcNGpMO05g7L4WdugCDHaZreERQpCv3SpxjgCQjCEL1BgwLxDW1ikLQbn37N4CLmD2Q3nY8CtWOqvphfLn6z9HjagaXPeuPHnKzoby/dz7qBZRDZ+v/xxy5inLBWWd/jf0ndMXzSc2F7CMBWiGcr42H60mtUKPGT0sPOtpFsuyeG/Ve/CP8DfaS7qMtt/YDhWjsmeNt+JgVGpQCOQrHJCtmdIHg2UJWiTUxDebvpGoE4fyxqsbQRiCQ3cPcfnCv8PYfb3l2iYRhy5wdpk1YN7oZXHk/EdQa9SYccIT1tYpm0P5eOpxrnN1rUCt7VBOSZljY6ITfVA+nnocKkaFxJREXp1rQ5llWby8+GXUn1CfN3fpWlAef4hAxRDsu7NXoo5OKH+67lP4hfu5HNRmnDC403HxhC6jO9l3UCu6Fl5c9KI9qV+Kg1GpQSGQUzggdwTwWKyMUzD6zSHwDnW3UicM5anHp8I9xB2br24GYQjnH2zovg7Z203QoatMX4ZqEdUQti8Y5o1e5ko4mgCPEA9kFa2HtXXKBlVA+cM1fdB8YvNK2WzyZTp3vFHi2ABNUNazeeg5sye6TO0iYNbgulBecm6JuW8vJ9eA8oX0C/AMdcMv2wnkzlN2tIwrIyqWKrqGzqadhXeYN77c8KXSp2KXisuK8cyMZ9BsYjNkFWXZ81bFwajUoBDIxkfWtQF0gTUo/7fneRCGIDX3T8k6ISj/vetvNIlvUp7YVAG/BRixlGDwggYw9742hlEcvX8U/EYvISj3nNkTry19jfu/ZNgK5Yd5b8MjhCDu8AdW/k3SUDadO34CrdYDVU2JMpV8UJ57ui0IQySablwPyo8L30DtmNp4e+XbInV0Q7lUV4pu07uhfVJ7FJfFcPt0DSjfy7mHwKhAvLniTZda4pSvzUfbxLboMrWLtc5k6vTlhi/hFeqFkw9P2vtWxcGo1KAYyEcB1IE1KN/Pvc9ZxxEI2WyayhTKH639CL1n98ZP235Cm8Q2JpWN4mrij50E5t7XIXtDEBAZwLtrE4byjawbAlFoybAFyuP2/AP/CHfkFFfOZtMoy87qygdSiMvxUM4u3oI641V4b1UdyJmnLC55oPzBahVqRnsiLV/qsTC9UA5ODoabxg3HU49zW+LhClDW6XUYMG8AGsY2tPdOTVGxLIvRa0bDL9yP52HgGpp7em5VnkYoDkalBsVAzgVwAbZAuWl8U/y0rRe3W9uhPGh+L7y98m28uuRVvLT4pfKKioau/8Hc+/r5uc/jdbPlUUJQDt0XCr9wP4F4wGRIQbm4rBhBMUH43+ZvYa+jFx/K4p3V9EP5uy3fwT/CBw9yfSFXnrKzoWwMB5l/RgU585TFVTUoH089LhK+EA/aoRx9MBoqRiUSe0qv5pyaIxDWQb/OPDoD7zBvgdx3m6U4GJUalAMZsAXKH6z+AM/OfBZiNpuWMkC5TaIbft72CTpM7oDvtnxX/qpp5GKFzWaBNg8eIR5ISkkS2KfpOuV2Se0kQs6TIQZl4zfLq5lXURmbTSOUpROd6IXymUdnoNaoMf7QeMiZp+xMKOeW5KJRXCMMWzgMLLsCcuYpywHl4rIbaJ/UHt2mdxPpTI4HrVA+kXoCHiEe+H3H75XehxK6kH4BPmE+VYGaIsopzkGrSa1sMf+QkuJgVGpQA+SkpCS0b98ebdq0EVj2JA3lKcemwD3EnfsFCIYtUGbZh/ANVyH2cDV4hXoi4WhC+WuWkYsGKG+9PhSEIbj8+LLIXg1QPv3I24Y1d8kwhzLLsnh62tMmd+uVgXJKyjs2dFbTB2WWZdF3Tl+0T2rPu/C7PpS/3vQ1/ML9cCf7DrdFnjxluaD8y/Ya8Ar1woX0CxK18aANygXaArRJbINu07tZ8YGnSwXaArRPao9OUzoJPGGjVyzL4vVlrzsiClJxMCo1qAGyUeLrkMWhnPIghYs2NM5tBcMalJ8UPQFhCKYer8eZfEwvf83UocuoBfhlO0HDWF+wrBRsCvH7jiaoFU1QqtstUQeYQ/ng3YMgDMHW6+brm+2D8rDhO21MdKILykbT+d23zD8314XyvjuGpC7TpVuAq0B5352lUDEE4w/Vgtx5ysKqPJS/3PAlfMJ8XG7+dcy6MfAN98WlDGt/a3Rp/KHxIAzB+ivWnOesSnEwKjVcCMiAGJQLSwuh1qgx6+QsXm0wpKB8Nu0sCEMw+VgkF/xQB8bua0uHLoOemtoEH68lMG/04kvP6tE4rhG+3tQA1tYpG5QMI5TfWfkmWk9qLbJezzYom84dp0KrrVogRYXkhXJO8QbUHV+Xi7MUkutBuaj0OFpPao0+s/uI/EzphnK+Nh/NJzZH3znPQKdvDDnzlKVlP5TXXl4LwhBMPzHdejFFmnd6nkumT+27sw9uGjdHTQ0oDkalhosBGRCDctvEtibzwAYFQwzKm68Z1h4bGz5KytoCaID0gsOCDl3GRq+FZ8fCvNGLr/139nO5yjthbZ1yhZLxINcb7iEqTDo6QaLOOpRN545/Q1UCKSwlH5R/2OoGv3Bv3M+9L1HrWlD+c6cPPEM9JKY4AJqhPHbjWPiF+3GJQvLlKTsayql5qagVXQuvL3vdpZY4Xcy4CN9wX4xZN0bpU7FLj/Ifod6Eeug/t7+AZ0ClpDgYlRouCGRACMpvr3wb/eb0E6gNhhCUp5+YDrVGjd93/I6m8U1hbPTacq2moEPXsvPLDOud81LBb/Qyh/JXG79Ck/gm3B2R9Dplvv7dPRr+EQS5JQNQGZtNQKizumqBFMJyPJTPpR2Dm0aF6IPukDNPWVyOh/LJh7vhpiEI2+cLOfOUxVU1KG+9vpWb0pnKq6UfynpWj8ELBqP+hPp4XGjNWIgeFZYWouPkjugwuYOINz+dKtOXYcC8Aag3oR4e5T9y1G4VB6NSg0Igb+SAPFeshJMplMP3hyMgMkDkG3EwzKE8bs84NIxtiDdXvIlB8wdxWx8hZG9tBEapwLKm806fr/8cHSZ34G2xhLJWp0XN6JqCgRRSUC4pK0FQTBC+2zIS9jp68aEs3FlNN5RZlkW/Of3QLqkttLrBkCtP2ZlQLtWVouu0rugytSNKdV0gZ56ytCoH5SdFT9AgtgGGLhwq8PdEN5RjD8eCMAQ7buywsh+69Nn6z+AT5mOlcY4+/bnzT7hp3BydmqU4GJUaFAL5CQdkNYDlYmWcKqC85pJh7iW9QAw6weBD+ZN1n6DnzJ54etrTJpZ0I5YOw+AFfuA7erEsKxK3aApl41rTinQmo6ShPP/MfN5Sp2RUBsrSiU70Qnnh2YWcj/hOyJWn7Gwoh+4LhZvGDSdST0DOPGW5oPzB6p4IiAyQmD6gE8qnH52GZ6gnft72s5X30yXj38CcU3OUPhW7tP7KehCGIOZgjKN3rTgYlRoUAtn4yPptGC5OtkH5XFprQ1DEvUMStcEwQnnIgiF4c/mbqBZRDdEHo8srDA1d/wPf0cvouiWcKlUB5fdXv4eOkzuK3KULQ5llWXSf3h3DFg7j1SbDXigPG37PSmc1fVDOLclFvQn18NaKt3h1rg3lC+kX4BHigb92/cWrcx0or7o4jOuVsLb+lS4oF5YWon1Sezw19SmUlJVYeS89uvL4CvzC/TB6zWiXmu+++eQmAiID5JqnVxyMSg2KgfwEwAewFcoF2iCuO1HItIOvYAAE7ZKC8OXGL0EYglUXVwGAWeRihaPXtOMauGnckFsiNq+9AAVaAt9wd4TtC5U4tiWUjd7YlmuWk2ErlFNSNDYmOtEF5Z+2/QTfcF/cy7lnVueaUC7Tl6LHjB6c17N5Xi39UE7LT0PtmNp4Y3kLsCyBnHnK4qoclL/Z9BW8w7xxMeOilffQo+KyYnSd1hVtE9uKxFjSqeKyYjw97Wm0TGjJSyxzqBQHo1KDYiDnwnAnZTuUG8SqMW5PHVgLpGDZ/+AfQfDNpl4gDMH5dMMF0tShCzBC+a0V3nhu1tOS+1x2/hsQhuBG1psQWxJlkCmU31v1HlpNaiWyLCYZtkB52PAy3t3xUcnzpAXK59NfhZvGDZEHxNaKux6Uxx96ASpGhSP3j4jU0QtllmUxYukIBMUEIaMgHXLmKTsayhuvqrkljJOs1NKl77Z8B69QL5x+dFrpU7FLn6//HN5h3jjzyNrPptJSHIxKDcqBDNgD5efnPoP3VnnBmvd1VlEWCEPw9SYCFaMqt3izdOgC9Gwqaka7Ydwef5jnKfP1+rLX0WNGC0gtiaqQAcqpeT5wD3HDxCMTJWqTIQVl07njDGi1XqhKIIWlHA9lll2C5+cStE2sDq1Oyl7PdaB8NfNXeIcR/LytJ+TMUxZW1aFsXP9akb/tuJQoU8XDkVB+lP8ItWOq45UlKrDsm5A7T9lRMs6/WhrG0C2jta/M892Kg1Gp4QJABmyF8ph1Y9BzZhdY874+9fAUCEPw8ZouaBpPYGz0EnLoOvnwJBcD2BTmecpG5RTnwCvUC7GHYyG1JMpUhfhvTzP4hRPkFEtZbAJSUDbtrNajKoEU4nIslBefW8x1wqogV56yM6GsZ/XoM7sPWibUQmEpgZx5yuKqPJTv5dxD9cjq+GjtR2Z1dENZz+oxbOEw1B1fF+kF8yB3nrKjdD/3PmpG18SIpSNcat7YAaERtkpxMCo1XATIgC1Q/mf3P2gc1xjWvK/XXFoDwhC8tOglDFnQgjudSEGHruiD0fAN94VWdxfmecpGGbukK+ZCrUO5pKwEdcfXwTebGsJeRy8jlIU7qysfSCEtx0A5tyQX9SfUx6jloyBnnrIzoTzp6CQQhmDv7b2QM09ZDijr2T4YvGAgGsU1EpkPpBfKCUcTzKxm14F2KOv0Ojw/93k0imuEzMJMpU/HZjkoNMJWKQ5GpYYLARmwBuXJxybDPcSdm48Vh3Lc4Tj4hPmgQ1IHfLv5WwDBSC8ggg5dQxYMwYuLXuT+zzRP2aiXFr+EvnP6mp2NNJSNSx0uZZyEPY5efCiLJzrRC+Vftv8C33Bf3M25y21xbSjfenILvuG+3O+RUa4D5aQUL+5pxTqJOvqgfC7tHLxCvQSWItINZSaZgVqjxv47+5U+FZvFD40wuLbJLsXBqNRwMSADUlA2+tdWrEUWhvIPW39Au8R28Ar1Kk952nLtfa6h67fyuuKyYviE+WDCIb6dpSmUMwsz4R7iLjIXJA7lZ2c+iyELhnD/Z7ujlxHKKSnfWumspg/KF9IvwD3EHeH7w81qXRPKLMti0PxBaBrfFHkl5p3L9EP5WuY1+IZ745tNHpA7T1lc8bAXykWlR9FpSid0mtJJoJsdoBXK++7sg1qjBpPMKH0qdskYGrHustSXNodKcTAqNSgEcioHZCkwCEP52INjIAwx61q0hPKIpSPQf25/k8ddhoYub265h2FOec+tPSAMEegmrIDyzJNhUGvUErZxllA+ev8oCEOw8epGXp19UB42fKsNiU70QJllL2LAvAFoPam1yDpR14Py9BMxVlyh6IWyTq9D79m90TKhJQq0eyBnnrKjofz9Fi94hXriXNo5iVq6oJxZmImGsQ3Rf25/6PRSv990ycGhEbZKcTAqNSgE8i4OyINhuKiIyRLKD3IfiKzpNYVy12ld8fLil0EYUp7bWdHQFcydXiT+3vU3asfUFlmSZIDyC/M9MWh+L4nzBMyh/MHqD9AioYXAH6ZtUDadO34ErbZy3teWkg/KS88HgDAE265vk6h1HSjfy6mLahFqfLb+PSu1dEI56kAUVIwKB+8e5LbIl6fsSChvubYchCFIOOoLufOUHSWWZfHa0tdQM7qmlfAUuiRDaIStUhyMSg0KgWx8ZO0F4EXYA+UyfRkIQ8xiGI2qgHKNqAC8uuRVeIR4lEPRtKErGADBszMbScQBAmn556DWEMw4EQCpJVEGGaD8KP9deIR4cB3ZQrIOZdO54/+hst7XwnI8lPNKbqFBrDtGLvOCnHnK4nIslFmWxfBFz6NhrBo5xa0hZ56yuCoP5XNp5+AZ6ilw10M3lNML0lF3fF28uOgFsGw3yJ2n7CglpiQ6KifYaSrTl6H/3P6ODo2wVYqDUalBMZDXw3ARsQ/KAZEBEt6qF5BTXBuEIRi2cCDaJ7UHYO7QZVB28R9QawhmnnxD9MjGJrLMwtYQWxJlqgVgkg2OXtnFWRJ14lC27Kzei6oEUgjLsVD+bcdv8AnzwZ3sNpArT9mZUDau2d14dTrkzFOWA8pa3SZ0ndYVHSd3FJl/pRPKLMvi5cUvIygmiAOEY1Oi5JLRX9uy+Yxu/bHzDzlCI2yV4mBUalAM5FwAu2AvlJtNDDLzETbV2bTVIAxBz5k+eH3ZSwCEHLoqGsRuZxMI5SkDQL85/TB80XCIdV+bS6vTot6EAHy1kcBW8xBzKAt3VieDVihfzLgI9xB3hO0Lg5x5ys6C8sO8h6gRVQMfrvmQ2yJfnrIcUP53txvcQ9xw6uEpiVr6oDz52GSBvgu6oVygLUDbxLboOq2rS/lryxgaYasUB6NSg3IgA/ZCues0gq83DRGtMv6yNYpT4fcdQQAeCzp0fbv5W7RIaAGxPOX7ufehYlSYd9p4wbYOZaMhxoX0CNjj6GWEsnSiUzJog7KxC7nVpFa8C5LrQtloL1l3fF2zNaSuAeWUB/vhplEhZK875M5TFlbloHwh/Ty8w7zxzaZvBOrohfIn6z6BX7gfrjy+Yr2YEt3IuiFnaIStUhyMSg0XADJgD5QHzquLd1epIGYeMunoJHiGenJzzdUAdMGIpcMtHLraJrblxTIGwxzKcYfj4BnqiZziHN67pKHca1YvvDD/Be7/bHf0MkJ52PAMK53VyaAJyssvGBpwtlzbYlbnmlBedn4ZCEOw+tJqgVq6oVxYWog2iW3QY0Z3lOpehJx5ytKyD8olZQRdpgahfVJ7FJaK/U7TB2Xjl++KL+z0ywmhEbZKcTAqNVwEyICtUH5j+UgMW1gfYuYhP2/7GU3jm4IwBPvvzAdQB43iPPDHzu/Ka+7n3gdhCFZcWMF7ZzD4UO45sydGLB0hcAbCUDYuyTJdy2c7lFNSvrYx0SkZNEA5X/s3GsY2FPmMAFeDckYBQe2YamZRkeaiF8rfbv4WPmE+3N2avHnKjoTyz9sGwDOU4PSjMZA7T9lRupF1A9UiquGD1R+4lDXm2I1jaQm7UByMSg1qgJyUlIT27dujTZs2EsYg1qH82frP8OzMHhAzDxm1fBS6TO0CwhCk5achvWAf19DVBMZ1ykYrzMeF5rabwQAM5iGEIVhybongOQhBefSa0Wg2sZnAUifboDxsuJZ3d3xNtM6gZCgN5d93EHiHueN29m2JOteB8jsrW6BWNEFafoKVfdIH5W3XtwkEGdAP5R03doAwBLGHR3D7lC9P2VHS6rR4ZsYzaJnQUsAshl4tObcEhCGYfmK60qcCUABGpQY1QDbKulOXNJR/2vYT1z0tbB7SfXp39JjRA9Ujq4NlWV5DVy0Y1yl/vPZjdJnaReT4wYg6QOAT5mElw7QCymn5h+AR4oHxh8aL1EpD2XLdcQ1UxvtaWI6H8uXHl+EeokbIXgI585TF5VgoG73PF58bCDnzlOWAclZROupPqI+hC4cKrKenF8qPCx+j/oT6GLJgCHfe8XAFKP+y/Rd4hHjgeOpxh+zPGbry+Ar8I/zx/ur3abmjVxyMSg0XBDIgBeW/d/2NZhObcf9nCeXaMbXRbVo3PDPjGQD8yMXzAOqAZTujSXwj/Lj1R9Gjd51WD2+tIBDrvq6QAcohe6vBJ8wbWUVSS53EoWzaWa1FZb2vxeU4KLMsi8ELBqNlQksUlwXD8KN2XShnFWWh3oR6eHXJq2BZHeTMU5YDyu+sbILAqEA8yBV7NEwflI3Nc7WiayE1L5VXGw+aoWz8ci/uMUCfikqL0GVqF7RNbGvlBsOpUhyMSg0KgWx06hKzIzRKGMqh+0JRZ3wdXl0FlPO1hkfRbRLb4P3V7wMwj1y8gBtZNUEYgg1XhMF05fEVrrHnbe6fIQ3lUt091J/gji83+MJW8xA+lIU7q+33vnYWlFdcWAHCEGy6uonb4piUKFM5D8ofr/0YAZEBPDDIk6csB5SXnPsBhCFYer435M5TtlTloTz9xHSzbGa+4kEjlB/mPURQTBCGLxou4uxHpz5f/zm8w7xxNu2s0qfCl+JgVGpQCGSjl7U/gENiZZwsoTzh0ARUi6hmVmeA8vl0NQhDUCOqRrnBu3nk4owTDNQagpzijhCKbtTs1cA/wp+LIAuGNSgvPb8UhCE4l9YctpqH8KEsnuhEH5TzSvLQMLYhXlv6mlmta0LZeMdjGcZOP5Tv595HjagaeG9VH8idpywu+6F8+XET+IR581Y4CCkeNEFZz+rxwvwXUH9CfV6wDf0yJs4JOxsqKsXBqNSgEMjGR9a9Yfijtw/KRvcsS+mw7vLzIAzh7hqWCjp0vbfqPfSY0QlCKVEsy6J9UnueKQRgDcq9Z/fGwHkDYat5iEEGKKekhFrprKYLyr9u/5Vz5LojUOtaUM4p7otGcQ0xdOFQkXk1eqFsBETD2IZ4UvQEcuYpOxLKWt1lPD3NA20TPVCgtda4GA9aoByxPwIqRoXdt3bb/B6ldfnxZfiF+2H0mtG0zBvzpTgYlRoUAzkVwPOwF8pzThkedwmZocceHg/vMDcQhuDkw0gLhy6WZVF3fF3ujtkyJepc2jkBtyBADMonUk+AMARrLq3httgH5WHDN9mQ6EQHlM+nt4Cbxg0R+yMkal0Hyl9ucId/hBvu5lyWqKMTyglHEwRSqOiH8u87fodHiAdOPqwHufOUxWUflA/fOww3jRv+3vW31VpaVFhaiE5TOqFdUjua5o35UhyMSg2KgZwLIB/2Qnnp+adAGCK45OCbTd+gUVwj7nU1Qva+beLQdTHjolkikSmU/9n9D2pE1YBWJ7QIOBjmUP547cdoEt/E7MuBbVA2nTt+DK3WfptNYSXD0VBm2cvoN8cDbRM9odVZS7OhH8q7bu4CYQimHveCnHnK0qoclC9lXIJ3mDe+2/KdQC29UN59azdUjArRB6Mhd56yo6CcXZyNpvFN0Xt2b5TqlI94tFWfrvsUPmE+OJ9urTFQMSkORqUG5UAG7IXy6kseIAxBZqHlH/KLi15Em8Q2aBDbAMAHGLGUYPCCzuWvJ6UkwT3EHQVa/gXYAGWW7YxWk5rj03WfShw/GEYopxekwzPUk7vAmMs6lE3njseist7XwkqGI6FsXLe962Yg5MpTdhaU87X5aDaxGQbMGwA9uw9y5ik7GsqlulroPr0D2ia2lXC1og/KxqzggfMG8tbp0w1llmXx5oo3USOqhsgUDZ0y/q3OPT1X6VORkuJgVGq4AJABe6C85hLDmXoMgvmSqNaTWqPVpFacfaUOjeJ88cfOCpvNN5a/gb5z+grs9QJOpAZyjwFXCrzOVzAAgrB9Q+Ed5m3mecyXOJQtO6sXoTLe19JKhiOg/KToCeqMr4N3V70LOfOUnQXlrzd9Db9wv/KcbLnylOWA8rg9deGmITj2YKmVfdIDZZZlMXLZSARGBQpkBdMLZWMn+KqLq6zsgx5dzLgI33BffLz2Y6VPxZoUB6NSw0WADNgKZWNKU0aBaZ6yTq+DR4gH6k2oh283f8tr6OoHwA16dilqRtfEuD3jBPf7245PEBSjQpm+M4S6r/kq049DoziCT9c9I1knBmXhzmr7va+dAeVvNn2DahHVeMuCXBfKu2/tBmEIklKSzGrph/LR+0fhpnGDZm9dyJ2nLC77oTzjxGgJf3CARiif58Iuvtr4lZX30qMCbQE6TO6ADpM7mD0BpFKKg1Gp4UJABmyBsjHNKS1/Jfjd17ezb4MwBG4aNySlJPEauq4D+ACnHxmWRCXfTrbYJ8uyaDaxGcZufAtC3dfmWn3JEPF46iGBreYhRihLJzrRBeUTqSegYlSIPxJvVut6UM4r2YSm8U25R9VCny29UC7QFqD1pNZ4duazKNOnQc48ZUdC+crj9+AbTvD5+n5W9kkPlAtLc9Bxckd0mtKJW/roGvp47cfwDffFxYyLSp+KLVIcjEoNFwMyYA3KG65sAGEIF2Je0X296+aW8iVPu2/tNotc1CH2cDd4hxEUly202Ofx1OPcHOkuCHVfm2vQ/EF4btZzsGWdskEVUB42PNdKZzUdUNbpF6DHjB7oMrWLYEe7q0H5q41u8Av35j2qFhKdUP5609fwCfPB1UzjUxbHRzc6GspanRbdpndDm8QaKNASyJ2nLCz7oTx2Ywv4hPngQvoFK/X0aM6pOSAMwfwz85U+FVulOBiVGhQC+QkH5GyxEkhBedPVTSAMwcM848XNAOXpJzpCrVGBMASpealmDl3AK0texqD5dSEUSPH7jt9RO6Y2DzziUL6UcYnzPV7MbQmGrVBOSXnbxkQn5aE89bjhszx0T2pO3zWgvOvmZu5RtQfkzFMWV+WhvPX6VpHH7HRD+bcdv8EjxAMnUo9D7jxlR0F5xQVDqMyME93hjDxlR+h8+nn4hPlYaUalToqDUalBIZA3ckC2BhthKG++Zri4mnr37sIfO90QGOVeHirBd+gq05ehWkQ1hO0Lgbn3NcuyaJHQAl9s+MLs+MJQ/nbzt6gzvg5Kykp4tcGwBcrDhhfy7o7TJGuVhHJ6wUMERnni03UEcuYpi8txUM4ryeMeVT8PPTsEcuYpS8t+KGcW/oz6E+pj2MJhIuYOdEJ5582dIAxBzMEYbotjAiksFQ9HQfl29m0ERAbgrRW9wbJukDtP2RHK1+ajXVI7dJrSSaLrnkopDkalBoVANj6yJgC+gr1QNs4Nm3dsvrniedSbQNBzZgDSC+6aOHSlPEjh3e2ZBlKcfHhSwGTBKFMo55XkoVpENfyz+x+B2mBIQdl07jgVWm1TVMb7WliOhfKYdWNQM7omHhe+C7nylJ0F5bEbx8Iv3I8zh5EvT9nRUGbZKLy1giAwyhupeVJgogvKxhSnF+a/YDZXTy+US3WleG7Wc2ga3xTZxdmQO0/ZEWJZFh+u+RB+4X64/FjK3IYucY/VFQejUoNiICfBcBGzD8rCd8jA09OeRlBMAD5eq8aWa91NHLoiD0TCL9yPt7i/Asp/7jSkzgjPkwJ8KE8+Fg03jRvu5dwTqQ2GGJRNO6tzYK/NprOgfODuAV5uqnx5ys6AsvFObfKxybw614DyorOLQBiCZecJ5M5TFpb9UGbZPhix9GXUjK4pkj5FJ5T/2vUX3DRuOHzvMK+WbijPOjkLhCFYdNba3yU9Ov3oNLzDvAEKwKjUoBjIuQBmw14or70cyS17yih/lWVZVI+sDs9QT0Qd+Bwhe90RGOUBljV0SQ5ZMATDFw0326cOLPs+WiYQfL5+kMSxAeACWDYI7ZO88Mbyl63UBsMcysKd1fZ7X8sN5TJ9GTpP6YxnZz7Lu7txTSjnljxBk/gmGDhvoEBXNd1QvpdzDwGRAVximbx5yo6E8rTjXlyK0xKJOrqgvOvmLqgYFSIPCD3ZohPKZ9POwjvMW2CajV49KXqC5hOb4+lpTwMUgFGpQTmQAXuhvOKCNwhDkFOcU/7K48LH5R3W6y6vw4ilvTF4gRrAi9DqcuET5sObz6rQqYfHOStNNcwbvcy159YcroO7BaytUzaHsniiE11QjjscB7VGjZMPT5rVuR6Uv9zQmveoWkh0QlnP6jFo/iBecATgClC+lHEJPmFeGLvRA3LnKYsrHvZAOb2gBupNqI3BCwZLRCrSBeW8kjy0SWyDLlO7uMyyLD2rx0uLX0LN6Jq4nX0boACMSg3H75AQhhACs5EmUCso4WVPtkN58bl2IAxBYWlF8srR+0fLgXw18yrX0PUOAG/sv/MsCENwIvWExd7+2vUXakbXRKnuPQh1X/M1avkotE9qAZYNgrV1ygYFAyBISZlnpbOaDig/yO0L/wh//G/z/0TqXAfKO278BcIQTDnWE3LnKVuqalCeeGQiCEOw8+ZOs1p6oVxSVoKu07qiXVI7FJYmQ+48ZWnFwxYo69lMvLioOoJiVHiYZ/5Zm4sOKLMsi/dWvQf/CH/eEjj6xSQzUDEqbL2+1bhJcTAqNeQC8gVCSD3eCBKoFZT4OmTboDz39FQu7akiT3nJuSUgDIG7xh2peam8hq5dYJLdUSPKHTq96UWUZVm0mtSKWy5g2uhlrvu598sNR2xZp1yhYBsTnZSH8jsr3VB3vCeyi1Ml6uiHcm5JLhrHNcag+R2hZ1WQM09ZXJWD8sWMvfAK9cL3W74XqaUTyr9s/wUeIR449fAUt0W+PGVHQXnCoQkgDMHW660gd56yo2S081x63pp1Kj3afG0zVIwKIXtD+JsVB6NSQy4gn7GhVlDSxiDWoTzjxAwQhoBl+8HY6BW6LxTeYd7oMLmDReRi/7ldMGKp4fE13/v6zKMz3B+k8VubOJT/3f0v/CP8kVtiPGfboGw6d/xEYt0xoCSUjc1PC896Qs48ZWk5BspfbPgC/hH+3KMx+fKUHQ1lra4Buk33QrukVlYeRdIF5e03toMwBBMOTTCrpRfKxx4cg0eIB37d/iuckafsCJ1+dBpeoV4uZed588lN1IiqgZcXv2w+JaA4GJUacgG5kBDykBBymxCyjBDSQqBWUNaduqShnJSSBM9QT/AbvcasewnVI6tj1PJRJg5dRaVF8Az1RMLRb8G32QSAf3b/g8CoQLNYNUsoa3Va1B1fF99s+sbsTKxD2XTu+EvYa7MpLcdAuaSsBG0S26D/3P5g2T2QK0/ZGVA2wmHq8am8WteA8j+7v4abhuB4alPInacsLPuhnFGwHPUm1MOQBUNE5mDpg3JuSS5aJLRAjxk9eDGrdEM5tyQXrSe1RtdpXVFcVmz9DRSoqLQIXad1RYuEFrxeiHIpDkalhhxAHk4IGUUI6UwIGUwI2UsISSOE1DKrBQCUlJQgNze3fNy/f98KkAEpKMcfiYdfuB/3fwYo956thk+YF/7d/a+JQ5cx99aQC1phs8myRWiT2AafrPtE4NimUDY+Dhf2iBWHsmVndQj3sdAF5bB9YXAPcedZBSbDFaGcU5yDxnGN8cL8FwRMNOiG8oG7B6DWqBG670fInacsLduhzLLD8eoSNWrHBPBc84RED5RZVo93V72L6pHVBSxU6YQyy7J4Z+U7qBZRDdezrst6LEeJZVl8vPZj+IT54Mwjwc9ScTAqNeQ/ACF+HJB/NnsNABAcHGzSANamDeGAfFroB8WTMJSjD0YjMCqQV5ePWtHu3Jq8/0wcuv7e9TeCYoJ4F2gDlM+m9QFhCDZf2yxy7Aoo95ndFgPnDZQ4T2EoC3dWB4MmKN96cgveYd74bcdvZrXJcDUof77+TfhH+Etk19IJ5dySXDSb2Ay9Z/fm1sLLl6fsSChPOZYAwhCsv+IBufOUhWU/lGefGs6t7V4mUkcflKccmwLCECy/IL0KhCZNOz6NmwKzzA3gpDgYlRrOOQghOwkhU822A7C8Q37w4AQH5AYAboj9wDhZQvm/PQboGvWk6El5h/XOmz4mDl29ZvXC2yvfNtvnLozb44YaUe7Q6qTu0nU4/Wg4l4n6s5XzNIWydKJTMGiB8qtLXkWjuEbI1+YL1CbDVaC8/UZTEIZg2vFgK7X0QfnjtR+jWkQ1s+VZdEP5YsZFeId54+tNX0LuPGVp2Q7lSxl/wieM4LP1XeCMPGVH6NTDU/AM9RSYLqNXR+8fhUeIB77d/K1UmeJgVGo4A8ZehJAHhJD/zF4TVMUccksAjWAvlH/e9jPaJbUrf9Voi0kYgjWXOnANXSuRV5IHN42b2Xyi4XFKu6Qm+HitZaOXuT5f/xkaxfmiTG99nTIfysOGF1nprA6G0lBef8XLhgD2ZNAOZcOj6oYYvMAPLFsHcuYpi6tyUF5xYQUIQzDv9DyBWjqhXFxWjKemPoX2Se05/2R585QdAeWi0iJ0mdoF7ZPqcslT8uYpO0I5xTlomdAS3aZ3M/PNp1cZBRloFNcIvWb14s3PC0pxMCo15ADwBEJIf0JIc0JIT0LIRkJIHiGkqVmtoCqAfAVAG9gL5S83fIFnZjxT/srCswtBGIJGcY0QsvdfBEa5g2X9sfV6LAhDcOXxFZM9nU8/D8IQbLoaBvNGL76eFD2BT5gPQvdpILUkylQXkJIyzMZEp2AoBeXC0sdoGu+NFxe5gWX3WtlnMmiG8ufrP0e1iGq4k30ScuYpOxrKD3IJAqP88OaKN0WCIwAaofzj1h/hGeppNjdIN5S/2fQNvEK9cC7tHOTOU3YElFmWxZsr3kT1yOq4kWXt2kiHyvRlGDR/EOqMr2ORMyAgxcGo1JADyMu4DutSQkgqIWQ1IaSDQK2gTLusU2EvlN9f3QoD5g0o3zpuzzh4h3lj2MJhXEPXQADP48+dnqg7vqbFxe6/Pf8hIDKA+9ZZ0ehlDuW4w3HwCPFAWn4arK1T5mvY8Bze3bHQo2C+gqEElP/Z/Q+8Qr1wPasn5MpTdgaUt13fxvPdBuTMU3YklPVsGQYvaIgGsQSZhUlW9kkPlLdeN0Sfxh+JF6ijE8qrL60W6LyPB81QTkpJsuHpFV36c+efcNO4Ifl2si3lioNRqaHkwQVluezJPii/tpTglSVNYYTNOyvfgU+YD37Y+gOvoSsfvWZVw9sr3WGep9w+qT1GrxnN22IJZT2rR8uElpyXsFHWoWw6d3wfWm032GuzKS7HQPny48vwCPFAcHIw5MxTlhvKOcU5aBTXCEMWDDH70kU/lOMOx3EJY8Mhd56yuOyDcnqBGnXHe2PYwqESNpN0QflO9h3UiKqBUctHCTyFiAeNUD6RegKeoZ74bst3lXq/Elp7ea3IWnRRKQ5GpYYLABmwB8qD5rfDu6sIjHPKXad1hYpRIeZgTHlDV4G2AO4h7phyrBX40Y0X0i+AMAQbrmww26splI2h8Ia4Rr6koWzaWZ0Kexy9nAFllmUxYN4AtExoyVvP6JpQ/mz9Z6gWUQ13c+4K1NEL5XNp5+AZ6okft/4IufOUHQVllmXxypLuCIoheJT/OuTOUxY4A9gL5TJ9S/Se/QyaxDcRWgfLKR40QTm7OBvNJzbHMzOecZl54xtZN1A9sjreWP6GxNSLhRQHo1LDRYAM2ArlZ2c+i8/X9wOgAsuOhU+YT3kYutGha8eNHdza4ePgRzcyyQyqR1YX+WWvgPIrS15C12ldRX7BhKEs3Fltn82m3FBecGaBSPaza0F563VDE9+MEzMk6uiDcnFZMTpP6YyOkzvyvhDRD2XjI9RNV/+E3HnK4rIPyv/srg43DcGhe+us1MaDBiizLIs3lr+BgMgAiUAUulRUWoSnpj6FVpNamYT92CDFwajUcCEgA7ZAuePkjvhh6w8AZuNhHinvsP5r11/lDl2m648rHL06Tm6OD9d8KHZqAHbh1hNPqBiCmSenSNRZQlk80YkOKGcVfYCgmCC8t+o9kTrXgPKToidoEFsNQxcSsCxjZZ90QfnnbT/DM9QTZ9POmtXRC+UL6RfgHebNCx2RL0/ZUVA2RipG7A+AM/KUhWUflBOOJnArRdZYraVFn63/DN5h3gK/z1alOBiVGi4GZMAalJvEN8E/u/8BAOy9/TsIQ1A7xhsjlr5W7tDVZ3YfvLniTd678nH58TNcPGOU2KkBAH7b8TZqRBEUlg6B1JIoPpRTUnZa6axWHspfbCAIiPTEo3yp8Aj6oTx6zWgERAbgfu5vMHxO8uQpOxrKu24+BcIQxB6OFamjD8pFpUXoNKUTOk7uaOavTS+U0wvSUW9CPS5S8TrkzlOWlm1QTnmQAo8QD24awzU055Qhjnbu6bmVebviYFRqUAjkHBusM8WhXC2iWvlFzRg0MXAeQaM4P/yx83cUlhbCI8QDiSmJJu+L2B8Mv3A1ikr9Yd7oZVRRaRFqRtfEz9vehNSSqAoZoDxs+GYbEp2Ug/Khe4dAGILJxwjkzFMWl2OgvObSGhCGYMGZBdwWx6VEVcjxUM4q2oyGsSoMml8DelYKNnRB+ZtN38A7zJuznjUXfVDWs3q8uOhF1BlfB4/yH3Fb5ctTdgSUnxQ9QbOJzfDszGetrd2lRmcenYF3mDc+X/95ZXehOBiVGhQCeT0H5DCxEk6WUC7VlYIwBHNOzQEA/Lr9V3iEeODz9f24hq4h2H3LkFxkWHNYoWdmPIO3VowEf07ZXHNPzwVhCOcZK74kiq+UFB3v7jjPSqKT86FcqitF5ymd0WNGD+j08yBXnrLcUM4oyEBQTBBeX/a62dw+3VBmWRZvrXgLNaL8cT/XF3LnKYvLPiivuVRNYLmQueiCsjFScdv1bWa1dEKZZVmMWDoCNaJqcOlk9CunOAetJrVC12ldraSSSUpxMCo1KASy8Q6ZALDWJm8K5fSCdO6x8zoAwCuLXwFhCL7b8h3X0EUwbk931IyuabI0427OXRCGYMm5JeDPKfOhzLIsuk/vjuGLhvOObx3KpnPHX8EeRy9nQHn8ofFQa9Q4+fAkt0WePGU5ocyyaXhj+RuoHVObWxduLnqhbGykM3gRy5un7Cgo38s5i8AoN4xc5gmWPSdaZxAdUD724G+4h7gL+LIbRR+Ujcvf1l9Zb+W9dIjfeFZFwxLFwajUoBDIxjnkX7gy26F85bGhe3rfHQMgmk9sDsIQfL7+c66haxaen0swcllz8GEz8chEeIZ68vKMLaF89P5RrpN0k9nxxaFs2Vn9EWx19HIGlO9k34FvuK/A3JRrQXnxuYYmHuXCog/Kt7Nvo1pENbN173RDWafXod+cfmgU1wBZRR0hd56yuGyHck7xZ2iRQPDszOZWHvvSA+Wj9w/CPcQdP2+z5pNPj2IPx5rcEFVBioNRqUExkHMA/A17oHz4XlB5nGKZvgxuGjcQhuClxS9h8ILBKC4rhleoOyYeIeAHUjw/93m8tPgls32aQvnjtR+j+cTm0OmFLrzCULbsrLbd0csZUH5t6WtoGNsQeSVCFzTXgHJq3j7UiFLh/dXVIXeesrAqB2WdXoe+c/qiaXxTgSUh9EJZs1cDtUbNfemtuve1pRwLZWM8YfVIT9x8QiB3nrKw7INyVpEbmsT7otesnmZ57PTqwN0DcNO44fcdvztid4qDUalBMZBzYfgltx3Km681AGEIUvMO4eaTmyAMQc3omuUOXcm3k0EYgtOPgmH0vk4veAS1Ro1ZJ2cJ7NMA5awif3iHeSLqgFQHtimUxROd6IDyusuBNtjv0Q1llmUxfNFw1J8QhKyiOpAzT1la9kM5fP9nUGvU2H9nv0gtfVA25jIbXNyMohvKs07O4iIVl0LuPGVHQJllWby6pAdqRhPczXkZcucpO0Jp+WmoP6E+np/7PBcRWmUpDkalBuVABuyB8sKzk0AYgqLShth6fTYIQ9BjRo/yx5lMMoPAqEBu/tjgfT3zZH+oNWpkFGSI7DUfsYdbwCOEIL3A/HG1uSqgPGx4qURntbJQztfeQOM4d7y02Asse0WylmYozzw5k5dbLW+esiOhfDy1J9xDCP7e9YGVfdID5SdFWWgc1xj95vQTuOjSCeVLGZfgE+bD6/atuve1sOLhKCgbG882Xv0HzshTrqp0eh0GzR+EuuPr4mGetd8nm6U4GJUaLgBkwFYoTzo6Cd5h3gDaIOFoAFQMwWtLXit36Bo4byBeW/oa7x2zMXwRwYB5DSAGGz2rR+tJLfHeqiCIdV+bahdSUvrakOikHJR/2f4LfMK8cetJS8iZpyytZFQFyrezb8M/wt9saQX9UC7QFqBNYmt0n14dWp035M5TFpZ9UGZZglHL2yEwKlDEihSgDcpFpUXoPKUzLwbSKHqhfPjeYbPGs3WgHcr/7P4Hao3a1tAIW6U4GJUaLgJkwBYoM8kM6k+oDyAVX2yoDsIQvLbkBQRGBaK4tBjeYd4mxgs5xTnwCHHDpKME/Dllvnbd3AXCEOy/sw1SS6L4GjY8nXd3LPWH5Hwon3l0Bm4aN0QeiIScecpyQlnP6jFg3gA0jW/Ka8Qzim4of73pa/iE+eDy49OQO09ZWrZDefqJN0AYgtWX3oTcecqWqhyUv95kcIkyX95oEH1QzizMROO4xug9u7fZvDG9UN501ZDuJT2VVykpDkalhgsBGbAG5e+2fIeOkzsCALpP7wLCEPSb44nBC/pg/539IAzBidQT5fWLzy0GYQju5YyHcU7ZHDajlo9Cx8kdLWw2xaBsOnd8F1rtK7DV0UtuKOtZPXrN6oUOkzvwuk1dD8oJR0eDMAR7bomBjE4oGy9gU44ZbVfly1N2FJSN1phfbewFw+fkmEAKg+SB8qqL3iAMwbTjEyXq6IGynj2Flxe/jFrRtXAv555ALX1Qvp19G4FRgXh1yasS6V6VluJgVGq4GJABKSi/vfJtDJo/CAAQEBkAwhA0iHXDHzurIXTfT6geWd2kS3rU8lF4duaz3P8Z5pT5UE7NS4Wbxs3M1Usayqad1Zdhj6OX3FCednyaybKwCrkOlK88HgnvMILvtwy1sk+6oJxekI464+vgpcUvmRmX0Atl42PfCmtMefOUHQFlQ6RiNby5wh0s2wdy5ykLKx72QDn6oCEAZ8u1LRK19EC5pKwEz8x4Bs0nNpdIyqqSFAejUoNCIF/jgHxbrARiUO4/tz/eX/0+nhQ9AWFIOZRXXqyPwQu88PLigeW1haWF8A33NXvcYgplzV4NfMN9BZalCENZuLPaNkcvuaGclv83akTVwCfrPhGpox/KZfoy9JrVE60nVUdhqQpy5imLy34os+xovLR4OOqMryNiXEInlL/d/K2ANSa9UC7VlaL37N5oGt8U2cU7IHeesrTiYQuUD9zdAjcNwZ87veGMPGVH6OtNX8Mr1ItnJuRwKQ5GpQaFQD7CAbkLgCyxMghBuV1SO/y07adyb+Z2ie1AGIIrj/fDJ0yFmIMBMNpsGkOzr2aaw8cA5TL9l2gY2xBfbPhC5PiWUBZPdFIeyh+uIagV7YvHhVK1dEM58kAk1Bo1Dt87ALnzlKVlH5QnHVVx3eDmOdt80QXldZfXmT1e54tOKP+x8w+4h7jj8L3D3Bb58pQdAeXHhY/RMLYh+s7phTJ9N8idp+wILTq7CIQhmH5iupyHURyMSg1qgJyUlIT27dujTZs2HJADATwNe6AcGBWIqANR5WsPe87sicCoQBy8exCEITj2oAmMNpuj14xGpymdRPY7G+suG2IbTz08IVID8KGcknLWSme1clDefWs35/FNIGeesriqDuVzaefgEeKBP3f+yW1xTCCFpRwL5XNp5+AV6oHvthDInacsLPuhfD+3JWpGBwr4gvNFF5S3Xt9anntuKjqhbAy6qB1TGw9yH0DuPGVH6EL6BfiG++KjtR9J/F44RIqDUalBDZCNqphDPgSgFmyFckkZKY/7+n7r9yAMQdepXTF4wWBE7I9AtYhqKNPfBdAGWl1D1IiqjnF7xonuddjCTnh2JoFY93WFDFAeNnybDYlOzodySVkJ2iS2Qb85/aBn/4Pho3ctKGt1WnSd1hWdpnRCSVkJr45uKBvjCTtN6YTisvmQO09ZXLZDWae/jP5zPdEozh1ZRRetHJ8OKD/IXYzaMbUxfNFwkQYj+qAcsT8CKkZlFnRBL5TzSvLQNrEtOk3pZLaMTBYpDkalBsVAzgVwFrZC+V7O/7jGiM/QZ3YfEIagzvg6+GPnHxi6cCheXPQiV5uK7Tcaco5dwo8Qb2Td4OD+CcS6r/lKSSnk3R0XWEl0ci6UNXs1cA9xx4X0C9yWYLgalMft+RPuIe449fCUQB29UP7f5v/BK9SLNwcrX56yo6AcsjcEao0ae2/Xhtx5yuKyHcpl+hfx/FwVGsTWsjIdQw+U99/ZB7VGXZ7bbir6oMyyLN5e+TaqRVQTmOKTRYqDUalBOZABW6F8PPUYCENw8iFBnRh/EMZwx7z0/FL4hftx624NGrvxQzSf6AGWbQjzPGUA+G3HbwiMCuQ6Sy27r81lOnf8PWwxD3EGlK9lXoNXqBfvMa9RwXAVKB974AU3jQohe8WfZtAIZeMSJ/PcbZqhfPDuQag1avy35z84I09ZWrZBedyev6DWEOy74wm585SFZR+U0wsIGsT6o//c/hI2k3RBedLRSTaEtzhUioNRUDVWCgAAiTdJREFUqeECQAZsgbLxAng96ysQhsA/3BOEIeWh9UfuHwFgsHqrO74uftk+FuZ5ygBQXFaMWtG18NO2n3h7F4eyaWe1FlrtINjq6CUnlFk2A4MXDEazic1EHjEFg3YoF5UWoX1SUzwzQ41S3SDImacsLvuh/Ch/H4JigvDy4pdF5trog/KToidoEt8EfWb34YGCbijvvLkTKkaFsH0MnJGnLC7boKxn9Ri6sC2CYghS876B3HnKjtCR+0fgEeIhkAgnqxQHo1LDRYAMWIPy7FMG7+rjDwx3yo1iCQKjfBB9MBq+4b7l7jfGBq9D9w7BPE8ZqOgivPLY3ONZGMqWndXWzUMqJB+UF55tzPN5FlMwaIbyz9t+hleoFy5mzIWcecqOhLKe7YhhCz1Rd3wtpBdI7ZceKLMsi1HLR6FGVA3cyb5jVksnlB/lP0Ld8XUxZMEQbt5Y3jxlR0A5dF8oVIwKO258xe1T3jzlqupx4WM0jmuM52Y9ZyW20uFSHIxKDRcCMiAF5Yj9EagZXRNLzy8FYQiaTwzA4AUEry7pgBfmv1Be9/O2n1FvQj1e84cplPvM7lNuLmIpUyiLJzopC+XMwoOoHaPC2ysDIGeesriqDuXk28lQMSqMPzTeuAWuAOX4I6EgDMG26zUgd56ysOyH8owTY6w8kqQLyjq9Di/MfwH1JtQzW9dNL5T33NoDtUbNaySNB81Q1ul1GLpwKGrH1Mb93PtV2lclpDgYlRouBmRADMrfbfkOHSZ3wJ87/wRhCAKjAvH7jl4IjCIITh4CwNCc0DKhJb7c8KXZPg1QPpdW14a5kgooDxteJtFZrRyUP1n3CQIiq+FRfi3ImacsrcpDOac4B03im6D/3P5m+dPJoBnKZx6dgWeoJ37cOhZy5ylLy3YoX8x4Ez5hBF9uGGBln/RAOWQvAxWjwu5buwXq6IPyo/xHqDehHgbOG2j2+xwPWqHMJDPc3fyOSu+jClIcjEoNFwQyIATlkctGYtjCYXhh/gvlDV2xhw1RZrtuEgATcDHjIghDsOnqJoF9puLrTQGoP0GNUt1liWMDwGykpDxrQ6KT86G859Ye3sJ9x6ZEGSQ/lD9e+zGqRVQTeHwK0ArlwtJCdJjcAV2mdkFxWTHkzlN2BJSLy4q5RKQaKCwlkDtPWVj2QXnvbTXUGhX+2/OvRB09UNbp72LgvIGoO74uHuU/EqiNB21Q3n5jO1SMCiF7Q+x+r4OkOBiVGhQCeRMH5IViJZxModxjRg98tv4zNIxtWA7kkL0hcA9xR4H2VwAEEfuHwy/cj7tgmiqvJA/+EX4Yt6cmzBu9hDRs+B3e3bH1dcrOgHJxWTFaT2qNPrP78B7JuxaU11zyKl9PLq5k0Ablrzd9De8wb1zM4K/dpRvK327+Fl6hXjibdhpy5yk7AsoZBRloEBuIAfMIdPp3IHeesqXsh/J/ewKh1qglglAAmqB8L+ceakXXwouLXpQjNMJWKQ5GpQaFQM7igOwGYLVYGacKKNefUBfj9oyDm8YNvuG+CIwKxHur3uPCIwzmIb1mEbyxvLPgnqYdnwa1Ro17Occg1H3Nl2Wi07ewxTxEbiiP2zMOHiEeZlAAXAXKj/JvonaMB15f5gaW3Wtln8mgBcrrr6yXsJmkE8qrL60GYQgmH5vMbZEvT9kRUNazegxbOAxBMUFIzZsOufOUxWU7lLffmAcVQxC6ryackadsKfugrNVp0WtWLzSOa4zMwkyr9TJKcTAqNSgEsvGR9UgYfpmsQ7lUVxMqhiBi/78gDEHN6Jp4Yf4LaBTXCL9s/wUA8Cj/IVQMwfwzBOYpUSzL4qmpT+G1pa9xWyy7r/ky7aw+CFvMQ+SG8sWMWHiEeEi4j9ENZZZl8fLil1FnfBAyCvpAzjxladkH5Yd5BLVjfPHa0tck7ATpgvLt7NsIiAzAqOWjzM6ZXihHHYjimuWMzlby5ilXFcoPch8gKCYIwxb2g55tDLnzlMVlO5S/3/I9PEI8kPIgxco+ZZfiYFRqUAzkLABvwxYo383ZBsIQBO8xNGX5R/jjq42G9cjrLq8DAMw4MQNqjRqPC3/kDl8B5cP3DoMwBFuvb+XtVRjKwp3V1s1DDJIHynr2ffSZTdAmsb7g4/gK0QvlGSdmgDAEG69uhNx5yo6Csp7VY8iClqg/geBx4e9W9kkHlEt1z6PXrGfRbGIzZBdnC9TRB+WDdw/CTeOGv3b9ZVZLJ5TL9GXoN6cfGsY2REZBBuTOU3YElJdfWA7CECSlJFnZl1OkOBiVGhQDOReGPzLrUDauLR67wat8/vh/WwxWmsZHL68seQXPz30eQilRo9eMRvOJzQXmTCyhLJ7opByUp5+YCsIQJN9WQ848ZXFVDco3sm7AL9wPn6//nFdHP5QnHDI0De64MQaGz0m+PGVx2Qfl33d4wD1EhaP3kyXq6IFyZuEBNI5rbGZYwhd9UP5z559w07jhwN0DvFp6oXz58WX4R/jj3VXvyh0aYasUB6NSg3IgA7ZAedn5ZSAMwYB5PcqB/O7KkegwuQMAoEBbAO8wb8QejuXeUQHlrKIQeIV6meUi81UB5ZSU+1Y6q50P5Yd5DxEQGYBP1o2BnHnKckFZpzdk2LZIaIG8EvOLH71QPvXwFDxCPMqnROTMU3YUlCsSkTzhjDxlYdkOZZbtgleXeKJmdADu5dyTqKUHykbHQMvUKYBGKBdoC9Bxcke0T2qPfG2+lfc7TYqDUanhAkAGrEF5wqEJ8I/wR6PYRlAxKgRGqdAuyQtjN44BgHL7zOtZ13nvMkB54hECjxA3K65KBigPG77LhkQn50L57ZVvIygmiHsSUDXva3EFQy4oR+zvDrVGjYN3D4rU0QflwtJCtEtqh67TupqlT9EL5dS8VF4i0j7InacsLdugHHs4hFumWB3OyFO2lH1QvptDUDPaD68seUWiQ5keKLOsFh+u+RC+4b4CjaCKSnEwKjVcBMiAFJR/3Poj2iW1g3uIO7zDvPH83O4gDMGis00BZGHMujHld8t8saweHSbXxlsrCMwbvcyVkpLBuzsutpLo5Bwob762mft38qHiOlA+9TAEHiEEf+7sArnzlC1VeSiP3TgWPmE+uPxYaL06fVDW6XUYOG8gGsQ24OY0ATnzlB0B5ZQHKXAPcccv27+BM/KUxWUblLW6EvSaVRdN4gmyiiZa2ScdUJ52vBsIQ7D43GIr9U6X4mBUargQkAExKL+54s3yyEWvUC+MXDYShCG4m1MDOn1X1I6pJdAQUjH3vPPme9wpiUPZdO74D1hbpyw3lPO1j9E0vimGLhwqMO9DP5SLy4rRYXIHPDW1CbQ6AjnzlMVlP5TXXGrEM14RE11Q1uzVQK1RI/l2slktnVDOLs5Gs4nN0HNmT85Duere15ZyLJR/3vYzPEI8cPT+KO7fJG+esrBsh/Lx1AnwDCX4ZlNLOCNP2U4pDkalhosBGRCCcs+ZPTFo3qDy+eNXlryCJvFNAJzF/jvVQRiCo/ct/+g+WvsRWiS0gJ7VwbzRiy/TzuoSaLUdYYt5iJxQ/nlbM/iE+eDmk5sidXRD+edtP8Mz1JPLCpY3T9lRUH6Quw81o1UYuawaWDZNspYWKO+9HQ+1Ro3g5GCRWrqgzLIsRi4biRpRNXA7+zavjl4or728FoQhmHhkIpyRp1xVKGcVZaFpfFP0mNEaJWVukDtPuRJSHIxKDQqB/IgDcoZYCcyhXGd8HTw367lyIHeZ2gUfrP4AAPDr9o9Rb4IKerYr+N7XT4qewDvMGxH7I7gtlt3XRll2VkuvUzaV46F88uFUqDUEUQfaQM48ZXEFoypQNgZHTDjE/5zphrJOr8OAeQPQILYOMgvrQO48ZXHZDuWMggFoEEswYF5XMw9lc9ED5cQUQ/bu2strBerog/LNJzcREBmAN5a/wXtSRS+U9aweLy9+GYFRgZw17TrInadcCSkORqUGhUDewQF5GIASsTIYoVxY6gbCELSZ1AaEIQiIDICbxg3Tjk8Dy7JoPak1vtgwCube14kpiXAPcTfzl7WEsniikzJQLtOXofv07ugytQVKdV6QK09ZLijzgyMsG1/ohbIxOs/w2FfePGVHQFnP6vHS4mGoHeOB1DxvyJ2nLCz7oHzyIYFnqBu+3/KdRB09UC4pe4zu07ujRUILgTXddEI5Yn+EQCwrdVBWHIxKDQqBbHxk7QngFViD8sWMYQZ3rih/qDVqPD3taRCG4GLGRVzKuMQLk6iw2WTZTHSe0hlvLH9DYJ+mUBZfdwwoAeX4I/FQMSrOTadq3tfCkhfKH619XSI4AqARykZjClMXNLqhbFwjveXaWsidpywt26CcW5KLlgm10H06QUnZn5A7T9lS9kP5f5vrwzPUEycfnhSpowvKxgjIf3f/K1BLFZQVB6NSg2IgrwLgBWtQ3nTV4COsYgjcQ9ToPbs3akbXhJ7VI+pAFHzDfVFUWsRVG6B85H4bMxs+cxmgnJLSw4ZEJ+dB+W7OXfiF++E7kzsI14Hy6kuG4I95p8XWfBtFD5SfFD1Bk/gmIsYUdELZ2KH86/ZfuS3y5ilXFcosy+LtlW+jWkQ13Mj6HYbPqWre16ZyPJSXXwjl/Mtbwhl5ypaKhz1QTs2rgTrjDZbC4tMX1EBZcTAqNSgGci6ArbAG5cSURHiEuJfPH3ec3Ljck/q5Wc9h5LKRZu84i0/XeaFpvCf0rBRsWAwbfsmGdceAM6DMsixeWfIKGsY2RG6JecMb/VB+lP8ItaIDuYao+pAzT1lcybAHyiyrwqjlPVAjqobEHT1dUM4uzkbzic15HcpG0QvlpJQkEIZgxYUV3BZ5ohsdBeVrmddQLaIa3lk5GCzrD7nzlMUVD1ugXKpLR985/mgQq0J6gbWfPRVQVhyMSg1qgJyUlIT27dujTZs2Zl3W0lD+ZfsvqDu+bjmQvcMIxh/6CGn5aVAxKosYv5ziHPiGeyN0nw/4c8rmskx0ihOsq5C8UF55MUyi2QWgGcrG4Ii64+sio+A85M5TllYybIXy9BOGRsFVF7+3sk86oMyyo/HmilEIiAww61A2ij4oH089Ds9QT7OnPgCtUC4qLcJTU59Cm8Q2nLOcfNGNjoLyr9t/hXuIOw7ebQtn5Ck7QIqDUalBDZCNEl72JA7lN5a/UZ6B7Bvuyy1xcsPc099Cxah4RggGTTk2BW4aNzzI3QHzRi++TOeO13KnLG0eIheUs4qeQ93xKoxc9ryVfdIJ5cnHJvPm8gE585QdBeUL6RfgHeaNsRvbwBl5ysKyD8pTj6u4LxArJOrogfKToktoNrEZeszoYeZ4ZhR9UP5yw5fwDvPG2bSzvFp6oWx0KYw7HAdn5ClXVYWlhQAFYFRquAiQATEoPz3tadSOqQ3CELRKaAXfcF+U6t7EmytU6DmztckeWJZF12ldMWLpCG5LRaMXH8qWndXiS6Is5Xgof7LuQwREuiE1zw9y5imLq/JQvpRxCd5h3vhm0zdmdfRCuai0CB0nd0THyR1RVJoPufOUpWUblM+mnYVXqAe+3kTgjDxlS9kHZZZtgBFL/VEjSuxu3ih6oLzo7CIQhmDWyVkCtfRB+VrmNVSPrG62JIteKLMsiw/XfAhQAEalhgsBGRCCco2oGvAJ84GKUaHVpFYYNH8QtLpCVI/0QMheNfiOXsdTj5vdqQFCUBburFYGyjtv7gRhCGaeTIScecpyQFmrC8XT055Gu6R2xm++ZqITyl9v+hreYd6caQkgZ56yI6BcoC1Au6R26DK1C4rL5kPuPGVx2Q7l2MN/gjAE6680hDPylC1lH5QvZXjCL9wbo9eMlkhEogfKhaUF6DK1C1pPai3Qc0InlI1P0kABGJUaLgZkgA/l7OK08rljYw5ycHIwdt/aDcIQnHo4BHxHry82fIFGcY0EugwroJySkiPRWe1cKBdoC9B8YnMMnDeQuwjIk6csF5R/32EI7jj18JREHV1QXn1pNQhDMPX4VLM6eqE8Zt0Y+IX74crjK9wWeaIbHQXlw/cOc13gn8EZecrisg3KBdpMdJzsjw6TVSjQrreyT+WhzLIEY9Z1gk+YD86lnROpowvKh+8dhkeIB77f8j1AARiVGi4IZMAI5dOP+pkA2eBLvRM/b/sZDWIbgGVLYXT0yitZBL9wPzDJjMg+DVAeNny/lc5q50H5520/wzvM2yylyjWgbHDjIog+SCB3nrKw7Ify3Zy+qBFVw+wRH1/0QXnBmQUgDMH8M/PNaumE8uPCx2gU1wi9Z/dGqa4UcucpOwLKY9aN4RKR+sEZecrCsh3KM0++w/1OvAxn5ClXVWn5aWgQ2wB9ZvcxrgxQHIxKDQqBvJsD8m6xEk5bseZSxXInz1BPqDVq5JXkoW1iW17YvcHRa/oJNdQatWSuakrKNTPParFK+aF87MFRqDVqkVxVuqH8pOgJGsU1woB5A6DTj4Phc6IbymX6Xeg7R43GcV7IKrovUUkPlK883gy/cD98tPYjkVq6oKxn9Ri+aDhqRdfC/Vz+Z0wvlOecmgPCECw4swDOyFOWlnUon3x4El6hXhi78Tlun/JENzoKymX6MvSf2x/1JtTDw7zyn73iYFRqUAjk+xyQqwFIESsDAEQf/BTuIQYg1xkfhKenPY0bWTcElgeV4ZkZgXh5sQpCecpGmc4dh0FsSZRB8kFZqyPoPKUmuk/vLmBGYRSdUGZZFu+sfAc1omrwvvwEg3Yo/7fnP6g1ahy46wW585TFZTuUC0s7oPMUd7RLamElWJ4eKBttG7de3ypQSx+Uzzw6A+8wb3y2/jNeHb1QflL0BM0mNkP36d1RXFYMufOUHQHlX7b/AjeNG/bf2c/frDgYlRoUAtn4yPpZANUhBeXP138O7zBPEIYgMMoD327+CglHE+AZ6mlykTr58CTXQNIHQnnKgHlndRG02nqQWqdskDxQDt33Otw0BKcfvQk585SFVTUoGx+hLju/zKw2GLRCee/tvVBr1AjZGwJn5ClLyzYof77+Q/iEqXA+vRbkzlMWln1Q3nubQK1R4Z/d/0jU0gPlnOJMtJrUCl2ndeU5/RlFH5T1rB6vLHkFgVGBZl3r8aAVyisurABhCOKPxJu/pDgYlRoUA/k+gN6QgnL/uf3hpnErf2y9+NzTGLpwMIYsGGJS99XGr9AgtgHK9MUQylMGhDqrhZdEWcqxUL6UcQmeoZ74a9dLkDNPWQ4o33pyAtUiqmH0mtEitcGgDcqZhZloGNsQ/ef25zX7JYNmKC88uxCEIZhzKgHOyFMWl21QTst/iPoTfDFgHkGZfraVfSoPZZZVY+SyRgiIDMCNLLEvz3RB2fj0wXQFiVHxoA3KFzMuwi/cD++ueleoX0NxMCo1KAZyLoBcSEG5/oT6Jg1dF9M94BmqxsQjFWAsLC1E9cjqPEN1yzxl8UQn50JZz+rRZ3YftJ7UmvtW7riUqArJA+UyfRD6zPZFs4lNBJZZ8BUMWqDMsixeW/oaakbXNJvTBGiF8qWMS/AN98VHaz/iLmTyRDc6Cso6vQ4vzH8BdcfXxcO8DyB3nrK4bIfyhEMfgTAE6y73gzPylE1lP5T33GoAtUZt5elDPGiBcm5JLtomtkXHyR3FplsUB6NSg3IgA2JQLtAWlIPYTeOGBrENsObSvyAMwfWsgTCuUzY+Qr355CbvKKZQlk50ch6UjZ6+++7wH6u6BpRD930HtYbg4N2WkDtPWVj2Qzkx5QfuwrtOpDYZNEG5sLQQnaZ0Qvuk9ijQ8uFHL5SDk4OhYlTYfWs3nJGnXFUoH7h7AG4aN/y+YwSckacsLNuh/CD3EOqMV+OF+T7Q6e9aOX48lIYyy7J4Y/kbqB5ZHVczRf+mFQejUsMFgAwIQfnMozPlQPYL98NbK97C5+s/R9vERuCbhwyYNwAD5w0UOJIByikpz9mQ6CQ/lO/m3IV/hD/GbhwrUEs3lFMepMBN44Z/d4+F3HnK0rIdymce9YBXKMH/NpuHj5grGbRA+dN1n8I33BcX0i8I1NEH5R03dkDFqLi5eaPohXJafhrqT6iP5+c+zzVTypunXFUol+pK0Wd2HzSMrYf0goZwRp6ysGyHcvTBaCtfggFQAEalhosAGTCHsrEhwHiHHHc4Dg1iG+DnbT/DuE75RtZAEIZg4dmFIkcrw7DhJ2xMdJIPyizbEC8tHoAGsQ2QU5wjUksnlPO1+Wg1qRWenfkst67UsSlRBjkWygZnq7boMtUPxWW+kDtPWVj2QXn+GcJFV0pBjB4op+ZdR1BMEIYuHAo9a/5zoA/KOr0OA+cN5B6t849DL5R/2vYT3EPccejeITgjT1la1qG86+YuqDVq/LXrLyv7Uh6MSg0XAjLAh3L4/q9N5o+Nj6YNj8YAYCv+3e2GgEh3FJVmCx7LMtFpjdhpcZIHyovP1eO6wCW/EYBGKH+2/jP4hfvhWuY1Xi3dUDYaPVzKOAm585SlZRuUL2ZchG+4B8asI3BGnrKl7INymd4P/eYEoEFsfYtwlwrRBeW/d/0NtUaN5NvJArX0QXnlxZUgDMHEIxN5tfRC+V7OPdSOqY3BCwZL5DGXS3EwKjVcDMiAEcpj1nnwIhe9wSQzqBZRrTwDVqfXoVFcbXy1UQ2x6EbTueMZEFsSZSrHQvlx4WPUjqmJt1f6Q848ZWlVDsrGJJmZJ4UeqdEJ5fln5ps5W8mXp+wIKBdoC9Bhcgd0nNwRhaX/wfA50Q3lP3d+ADcNwf47XeGMPGVL2QflTVergzAEUQeiJGrpgfLVzKuoFlENb698W6BDmT4ol5SV4NmZz6JJfBM8LrR2LQBAARiVGhQC+QkH5ByxEgC56DHDD4QhUDEqPD/nefSc2ROjlo8qr9h6fSsIQ3DswUQIpURZdlZbdl+Ly3FQ/mD1BwiMCkRa/hnImafsaCin5qlRM9ofry97XcJsny4oX358Gb7hvvh47cdmdfRC+eO1H3O2jRe5LY5NiTLIcVDedHUTCEMQffArOCNPWVy2Qfl29ikERrnh1SWe0LNnrexTeSgXaAk6TWmItoltuTxmIdEF5bEbx8Iz1BPHU49beV+5FAejUoNCIG/kgDwWUr8g1SOrcfPHBD9sfQcqRoXZpyrWOL614i10mtKJg4VlSpRwZ7VzoWy8eFXMC8qTp+xoKOvZUgxZUA/1JxA8LrS2NIMOKBeVfoTOUzqjXVI7kaUW9EF57um5PNtGvuiE8t2cu6gZXROvLHmFmzeWN0+5qlAuKStB9+nd0XxiUzwp6ghn5CkLyzYos6weo9e0gW84wYV0xso+6YDynFPPSDxFE5XiYFRqUAhk4yNrAuA7CP2C5Jbkmswf/7bD8Pj6Qa7hF+9x4WN4hHhwodxGVUA5JUUr0VntHChnF2ejQWwDDF803OwOk34oxx2OA2EItt8YBLnzlMVlH5S/3EDgHeaGc2lSFxJ6oHw+fS98wnzMbBv5ogvKWp0WvWb1QpP4Jsgq4v8t0Avlrzd9Da9QL5x8eBLOyFOWlnUoTzs+DYQhWHR2MAz/JnnzlIVlO5RPPoyFVyjB5+ubw07zEMXBqNSgGMjxXJkllE+knjAB8nuraqPTFDWMS6ISjibAPcRdoKHEAOVhw1OsdFbLD+VP132KahHVRMIu6IXyyYcn4RHiwXWzV87Ry9lQXnp+KQhDMOMEgTPylC1lH5TztXXQLskTnaaI5UgbRQ+Uf9r2EzxCPHD0/lGBWvqgvOjsIu53Ygavjl4oH089Ds9QT3yz6Rs4I0+5qlDOLMzkfLVborjMDXaahygORqUGxUDOBTANQlA2WgcShqDFxBZoEFsfv2xvAKA6WPYoukztgjeWvyG4/5SUwzasOwbkhPK260TgYmAu+qCcr81Hm8Q2eHra0ygpM87H0w3l61nXUS2iGmfRNx9y5ymLyzYosyyL0WtGwC9chcuPW8IZecqWsg/Kay55CnT8moseKF9IP2/mdsYXfVDOLMxE0/imeHbms7y/O3qhrNPrMGzhMNSKroU72XdQCUcvxcGo1KAcyIAQlP/Y+Uc5kEcsHQHCEOy4sRZAb5x86Cfh6Wo+d5wEoe7rCjkeyrklOWgcVx2DFxCw7Hgr+6QLyp+u+xR+4X4CDjt0QrmkrATdpndDq0mteHae8uUpOwLKs0/N5h5Ljocz8pTFZRuUr2WeQ/VId7yxXA2W3S1aZ5DyUM4rIWibWAudp3SWePpAD5T1bA6GLxqOmtE1ObjxRSeUx+0ZBxWjwo4bO3i1dkFZcTAqNVwAyIA5lPvP7V8O5LdWvAWfMB8ubiwX326uhwaxKpTpLWFj2lmdD63WH2JLoirkWCiP3TgW/hH+uJ1t/EOqnM2msOSD8rLzT3GBBnNE6uiD8ndbvoNnqCdOPTxlVksnlM+lnYN3mDe+2PAFt0XePOWqQrmwtBBdpnZB60mtkFsyCHLnKYvLNiizLIu3V3ZBtQiCq5lfwxl5yqayH8qh+5pAxahEIisB2qC88epGEIYgfH+4QK3NUFYcjEoNaoCclJSE9u3bo02bNiLrkCugXDu6VjmQe83qheGLhgMAisuKUSMqAH/tagihQArLzmrL7mthOQbKu27uAmEIphybAjnzlB0N5dvZi1A9kuCdlfXAsuZRdHzRA+U1lwy+4EkpSSK1dEE5X5uPtolt0WVqF7O4PzqhzLIsxqwbA58wH5xLOwdn5ClLyzqUJx2dBMIQrLz4AQyfU+VtNi3leCjvvJkAFUPw357GcEaesqXiYQ+Ur2cFICDSHyOWjhBwZzNqHYAaAM5JHVhxMCo1qAGyUdLGINNQqqto5vIL94NnqGf53NWSc0tAGIJrmadg7n0tnujkHCjna/PRbGIzDJg3gPfLSj+Uy/RleG7Wc2gaXxfZxV6QO09ZXMGwFcq3s1uiRpQKbywfKrFGGqAFyiy7EB+s/gD+Ef648viKQC19UJ55cqaZwQpAM5SP3D8CjxAP/Lj1R26LPNGNjoLy/dz7qB1TG0MX9oRO7w+585TFFQ9boFxY+gCdp/ig9SQ1cooPWNlnjpXXlQejUsPFgAxcygguB3KXKV1AGILLjy8DAAYvGIx+c/oZ9wQ+lKUTneSH8rebv4VvuK9Z6hRAO5TH7RkHN40b55dbNZtNYTkWylqdFs/OfBrNJnogu7ge5M5TFlYy7IHyjBMqEIZgybklErX0QPnkw2PwCvXClxu+FKijD8qPCx+jcVxj9J7dm/NbN4pOKGt1Wjw36zk0jmvMOVs5PiXKkVBmWRYfrvkQvuG+OJ/eAbatU5aU4mBUargckFddXFUO5Odm1UPT+KZgWRZ3su9Axagw9/Rc/t4A9EZKygAbOqvlg/Le261AGIKEowkidXRCee/tvVBr1AjdF8qrpRvKv27/Fe4h7kh5sAVy5ylLKxm2QPnMo5PwDnPD2I0EzshTtpR9UH5SpELzif7oNr0b17chJHqgrNPfx9CFQ1E7prZA5jVAI5S/3/K9wBIyeqGcmJLI+0Jpj3mIqBQHo1KDQiCf4IAsPMfA77BuHEfw5YaOAFiE7QuDb7ivgAtTLoYNP2hjopPjoVxYehQtE9ToO8cPelYKNnRBOasoC43iGqH/3P4CZvB0QtnofBZ7OJbb4tiUKIMcB+Wc4hy0mtQKXad1RVHph5A7T1lctkFZz+rx6pJuCIwiuPVkJJyRp2x2BrAXykxybagYFXbe3ClRSw+UF59bDMIQJKYkCtTSB+VD9w7BPcQdP2z9gVdXZSgrDkalBoVAvsgBuTGA2xav95rVy8QUZPUlApb9H9omtsXoNaMt6k3nju9Bqz0mdmhOjoXyj1t/hHeYF65l1oCcecrSsg/KLOuPkcueR2BUoIhxCUAblO/n3i+3bTSdN6YTyizLYuSykQiIDMCNrBtwRp6ytKxDOfJAJLek8Dc4I09ZWLZDefuNOVAxBCF7a8MZecqWsg/K59I84RvuhQ/XfCjR+0APlB/lP0T9CfXRd05fs6kAoIpQVhyMSg0KgWx8ZN0cQFOYQ7lGZA0QhiAwKhBuGjfkFMcj5QHh1iJbNkiYzh1HQ6j72lKOgfLBuwehYlTcHZtjU6IMkgfK044bHrGvuRRhZZ90QLlMH4a+c/qiUVwjZBZmCtTRB+XYw7ECQe30QnnPrT1Qa9T4e9ff3BbHp0Q5Esp3su+gVnQtvLioH/RsA8idpywu26CcU5yGVpN80WWqCoWl663sU3kol+oInp/bGPUm1DPLj+ar0lBWHIxKDYqBfBFAS/ChrGf1vMfVjdF3Tl8AwLeb+6NBLIFO/y34f0iWndWmjV7SqhqUi0qL0CaxDZ6b9RzvkS/9UL6QfgHeYd74amN9OCNPWVj2QfnvXQRuGjUO3JXq7qQHygfu7oSbxg2/7fhNoI4+KKfmpaLO+DoYNH+Q2fQFnVAuLivGMzOeQbOJzThfbfmiGx0BZT2rx4ilI7inJf3hjDxlYdkO5Z+29Yd7CMGBux/AcYEU5VIcjEoNioGcC+Ae+FC+nX27HMg+YT4I3RcKrU6LWtG18NuOIdxuKxy9hDurnQPlX7b/Aq9Qr/IO8ArRC+XismJ0ntIZHSZ3QGFpOuTOU5aWbVDedn0bVAxBxH4CZ+QpW8o+KKfl+6D+BE88P7cvyvRid0z0QLlUdxZ95/RFg9gGSC8Q2j99UP5yw5e80Aij6IVyxP4IEIZg49WNcEaesrSsQ3nZ+WVck+pIbp+OTIkCQAEYlRqUAxngQ3nDlZkm88dH7h/BusvrQBiC8+nnwTcPSUlhJTqr5YXy/juhUDEqTDgkBlI6ofy/zf+DV6gXZ/QAyJmn7Ago38u5h1rRtTB80XDo2f9g+JzohbJOr8Og+U+j7niCh3n94Iw8ZUvZB+VftvvCPcQdB+8elKilB8pzTs0BYYhJFGuF6IPyjhs7oNaoMW7POF4dvVA+z/mAv7/6fW6eOx4yQFlxMCo1XADIgBHK327yB2EI1Bo1qkdWR5m+DKOWj8LT057m1RqgPGz4eSud1fJAOV87Ei0SCPrOaS/QncwXXVBef2W9iLMVnVAu1ZWWr9WsmDcOBs1Q/mf3P1Br1Ei+HQ9n5CmLyzYor75kgFvcYX84I0/ZUvZB+eRDAq9Qd571qJDogfKd7BuoFV0LwxYOE7hW0Afl7OJstJ7UGp2ndEaBlv/ziIf9UDZ/cmgixcGo1HARIAPAPbRP8uAeV3vj1SWvIqsoC56hnma5x0BKymobE50cD+WvN42Fb7gbbmS5Qc48ZXHZD+W7OR8gMCoQI5aOEOnupA/KP2/7Ge4h7jh877BZbTBohLJxSVbkAeN5JYNmKF/LvIbqkdXx5opXwbIdIXeesrhsg3JW0WM0m+iP7tMJisukUtQAGqBcXKbGMzNqoml8U5FGRIAmKOvZe3h1yauoEVWDWxVgrnjYDuUfIP07rzwYlRouBGTAK9QQ8+amIZh45D9MPT4Vbho3PMp/ZFJnOne8FNK/II6D8vYb2zmv6kTInacsLduhXKqbjt6zCZrE+yOrSKqBih4or7k0D4QhiD8SL1IbDJqgfCf7DgKjAvHKklfMPH6TQSOUC0sL0XlKZ7RJbMOlZMkX3egIKOtZPS8R6V04I09ZWLZD+YsNL8ArlODkw2FwRp6yqeyHcui+mpIpegbFwzYoW5XiYFRquAyQdXqdyfzx+fT66D27O15a/JJJnWlndQ60Wg+Y5ykLHBVVhXJ2cTYaxjbEkAVDuLtMx0c3ygHlP3f+CTeNGofvEcidpyws+6B880ktBESq8cbyl634VAeDBiiXlO1Ejxk9eB2/5koGTVBmWRYfr/2Ys0HkQ4VeKDPJDFSMCttvbIcz8pSrCuVZJ2dxyWnfwBl5ysKyHcpbrxvWczPJNeG4QApJKQ5GpYbLAPnq46vlMA6KqYlrmY1BGIKl5yeZ1Fl2VptGN4qralD+aO1HqB5Z3cxIg24ob7u+DYQhiD4YDWfkKYvLNigXlxWj2/QOaJnghpzijpA7T1lY9kH5m03u8Az1wPHU4xK1yaAFyjNOzABhCBaeXShQRx+Ut1zbAhWjMrN3pRfKJ1JPmPmAy5unXFUo33xyE4FRgXh58UDo2cZwbEqUqBQHo1KDQiCv54AcbbLdGJ2mYlR4d9W7+G/PD6geqUZRaYWjl3iik7xQXnt5BQhDMO+00B8/nVBOzUtFUEwQXlz0Iu8xKt1Q/mrjV/AK9cKphyvhjDxlcdkG5cXnDE1R0457whl5ypayD8rGpqivNn4lUUcPlG89uSAyFQDQCOXMwkw0jW+KHjN6oKSMP+VFJ5QLSwvRdVpXtEhogSdFTyBPdKOgFAejUoNCIOdwQCYAKu5+n5/zfPkd8owTM9AioQU+XfcO+OuUpROd5IFyRoEn6oz3xGtLzS0b+aILyjq9DgPmDUCD2AbIKMgwq6UTykaP3+knpnNb5IludBSUL2ZchF+4Hz5c8y5YdgDkzlMWl21QflL0BM0nBuKZGQQlZeNE6wxSHspFpX54epo/WiQ052AhJHqgrNOfwdCFQ1Eruhbu5twVqKULyizLYvSa0fAJ88HZtLO8WqdAWXEwKjUoBLLxkfV3XJkBykbLTIOl4xoQhmD3rd0wLolKSXnNhs5qx0KZZVmMWt4HtaIJHuUPhpx5yiJngMpAmUn+HmqNGntv7xWppQvKlzIucXAz9/ilE8r52ny0T2qPjpM7cstD5M1TriqUDaERryIwKhC3s3+B4XNybEqUI6HMsiw+WfcSvMMIzjx6Bs7IU7aUfVD+d7cP1Bq1lZALeqCclJIEwhAsPrdYoFZ2KCsORqUGxUDOAfArjFBWMYbM2IaxDfHD1h9Qf0J93tq9exg2fI+NiU6Og/KSc0tAGIIVF/6G3HnK4rIPyntuNYKKIdDs/cFKLR1QLtDOR4fJHdA+qb1AkhdAG5RZlsW7q96Ff4Q/rjy+wqujF8qh+wxGNpuvbea2yBPd6CgoG+e555/5B87IUxaXbVDecGURt+TNF87IU7aUfVA+dI/APcTNLMHJXLJCWXEwKjUoBnIuDD+8X1FUWtFdPWbtGNSfUN/kl8V07vgBtNrbYrvnVHUop+alIjAqEO+uepfb4phAClM5FsrpBemoP6EuBs7zgU7fEHLnKQvLdiiz7PsYvUYF33AvXMy4KFFLD5QnHzPcWSw7v0ygjj4ob72+FSpGBSaZMaulE8rHHhyDZ6gnvt70NbdF3jzlqkL5etZ1BEQG4PVlL4Flu8AZecrCsg3KhgQnX/SbQ1Cqm2pln7JBWXEwKjUoBzIAsNh+481yII/bM67cNtMo07njfyCUEmWpykNZz+oxdOFQ1JtQz2xRP71Q1rN6DFs4DEExQXiYdwpy5ylLyzYozzw5nev4VcEZecqWsg/KKQ8IPELU+G7L/yTq6IHyrSfHEBgViJcWvyTQFAXQBuXHhY/RJL4Jnp35rFlTFJ1QNq7nbj2pNXKKc+CMPGVpSUO5VFeKvnP6ov6E+niUP4b7N8mbpywixcGo1HABIANvrXirHMgfremBpvFNy+cSLTurTQMppFU5KBs7vrdd3yZQSyeUow5EgTCEW6sJyJmn7Agon350mlse8gWckacsLtugnFmYiSbxtdBzJoFW9zHkzlO2lH1QLiqti6eneaNFQlOJpiiAFijr9DsxZMEQ1I6pLZLRTReUWZbFh2s+FFjPTS+Uv9/yPTxCPHDo3iHIm6esBnBKqkhxMCo1XALI9WLqgTAEdWJ8UCua4I+dg8tfE+6slg/KF9L94B3mhe+2fCdRSxeUD907BDeNG/7a9ZdZLZ1QzinOQatJrdB1WlcUlxVD7jzlqkJZp9fhxUUvch20cXBGnrKwbIMyy7IYs24k1xTVAs7IU7aUfVD+d7c71Bo1dt3cJVFLD5QTUwxf2pecWyJQRx+UjasYTL3s5YLyFSuvKw9GpYZLANlN4wbCEAyaPwiEITj9iACYJLHuGJADyiVlGeg6zQ/tk9QoKrV2EaUDyllFIWgc1xh9ZvcRifujC8qGzvVRqB5Z3cwzl14o/7fnP55TFCB3nnJVoTzt+DQQhmDBmWg4I09ZXLZBecOVlVxTlDuckadsKfugbGiKUuOHrd9L1NED5bNph+ET5oOP1n4ksHRTLihLSnEwKjWoAXJSUhLat2+PNm3aWADZ+Li635x+aJvYFixrWJoxbPhNK53VjoXy7zt+h0eIB0497AK585TFZTuUWfYvvLaUoGa0r8hjPqPogfLEI+NBGILVl4Q+B/qgvPHqRhCGIGxfmFktnVA+ev8oPEI88O3mb7ktjk+JciSUjU1RI5a+ApYdAmfkKQvLNig/yn+EBrHV0XcOQanuLzgjT9lU9kH5SZE/WiR4o+u0LigqLRKpczqUFQejUoMaIBuVm3uDA7Jh8fyd7DvlQPaP8EdwcjAAFikpCTYmOjkGysm3k6FiVJzNpONTouSAcszBaC74nMAZecqWsg/KB+96wj1EhZ+2SU0H0APlG1k7USOqBl5b+ppIUxRdUE4vSEejuEZ4btZz0Or4fzB0QrmwtBBdpnZBq0mtuKYo+fOUpSUN5VJdKZ6f+zzqTaiHh3n/wPA5Vd5m01KOhbKe1eOlxb0RGEVw68kzcEaeso1SHIxKDQqBfIgDcjcA2fh+y/cgDIG7xh2EIbiUYfjjNp073i22O05Vg3J2cTYaxzVG/7n9eWuf6Yby/jv74aZxwx87f4cz8pTFZRuUH+U/Qv0JtdB3jgqluqGQO09ZWMGwFcqFpW3RZao7Wk1qiuzibIlaOqBcpp+PgfMGos74OniQK3SRpAvKRqco33BfnEs7x6ujF8q/bP8F7iHuOHD3ALfFcYEUFXIclIOTg6FiVNh2PR7OyFO2Q4qDUalBIZCNc8g1APRAk7hGIAxBreha6DK1CwDzzupMLtFpktguOVUeyu+vfh8BkQEClnd0QjktPw31J9TH83Of5+aNK2+zKS3HQLlMX4b+c/tzdxbL4Yw8ZXEFwxqUDR20o+AbrsK5tCA4I0/ZUsmwB8q/7yBwk3RnA2iCcmJKgoRTFH1QXnp+KQhDMPHIRLNaOqFszOeuCOVwfEpUFaCsOBiVGhQDeT+AQLhxj6u9Q73LzQtM744N5iGGXToeyovPDZW4MAC0QVmn12HQ/EGoO74uHubxv8HTC+Vft/8KN40b9t/Zz22x39HLmVA22gouOTcFzshTFlcybIHyqouG8JPYwyo4I0/ZUvZBef8dFdxDVFaaouiB8tm0XfAN98UHqz8Q8bOnC8rXs66LTLVQA2XFwajUoBjIuQBOmWQgn0s7J9JZLQ+U7+ZEICCS4L1VbSB3nrKlKgflf3f/ArVGjT23hC5S9EF51cVVHCxizWrphPKhe4fgHuKO77cYYeH4lChHQvlSxiX4R/jjnZVvg2U/htx5yuKyDcoPch+g7vgA9J9LUKr7EM7IUzaVfVDOKqqPFgke6DqtIwpLpZ5U0AHlAu16M7MSc1EBZcXBqNSgGsh5JXnlMG6Z4AWWfSKR6ORYKOv0OvSf2x+N4wKRXUwgd56ysOyD8pZr1UAYgvD9/0jU0QPlK4+XoFpENby14i2ROwu6oGzooG2APrP7oFRXyqujE8p5JXlol9QOHSZ34HzAK+fo5Swol5SVoNesXmgY2xBp+VPhjDxlYdkGZcP6836oGa3CrSct4Iw8ZUvZDmWWHY73V6vhF+5tZlZiLsWhrBwQCXlL0eMreHBB8YEckhzCZSAT/LrdCykpH1vprHYclDV7NbxEJHmiGx0J5bs5d1EzOgAvLfaAnu0KufOUhWU7lPO1fdBhshrtkpoir0Tqj54OKJfqwngdtEIXXrqgbFzPXS2imlnIBb1QHrtxLDxDPZHywPi3I090o6Og/M/uf6DWqLHjxlw4I09ZXLZB2bikcPkFDzgjT9lSNkNZKRj3JoRsUur4oB3ILRNalt8hH7o3F8OGb7ch0anqUN5/Zz/UGjW3xMooeqGs1WnRc2ZPNIlvgszCfZA7T1la1qFsSER6E/4RbriU4Qtn5Clbyj4o/7zNYPZQMc8tJHqgHHMwrDyq1FL0QXnWyVkgDMHMk+YXdTqhbIyAjToQxW2RL7rREVDef2c/3EPc8fO27+GMPGVx3QIwHECaVJFSQJ5MCHlPqeODdiAblzrViq6FI0f1vLvjh9Bqs8V2gapAObMwE43iGvE6lPmiE8pGD9qKOwvHpkQZ5DgoJxxN4GIrF8AZecrisg3Kyy8s5zpoCZyRp2wp+6C8+5YX1BqCP3f+IlFHD5RTHiyDZ6gnvtzwpUgtXVA2zsu/ueJNs6kWOqF8P/c+6oyvgwHzBnDXNPmiG22DslUpAWN3QshtQoivEscvPw8FDy4oPpCNd8djN441mzv+EUAPANliu0FloMyyTTBi6RDUjK6J+7n3RWrpgvKKC4YO2sSURLNaOqF88O5BuIe446dtP3Fb5M1TriqUL2ZchF+4H95d9S5Y9j8YPid6oXwv5x6CYmpg8AI1dPoX4Iw8ZUvZDuX0gnZoFKdGr1lPmSU4mYsOKOcUT0HbxLboOLmjSD43XVAuLivGszOfReO4xkgv4P/c6IQy15uhBJBfIYQsVOLYJueh4MEFZQRyZlZmOZATVh8xmzs+DSAQjoZyYkptEIZg/ZUZVmrpgPLVzERUi6iGt1e+LdIURReUjU1Rfef0NWuKohPKuSW5aJPYBp2mdEKB1njBDgatUC4pK0HPmT3ROK4xMgrWwhl5yuKyDuVSXSn6z+2NuuPd8SC3NpyRp2wp26GsZz/Ha0sJAiJ9cC3zmkQtHVBm2Xfx6box8Ar1wonUEwJ19EGZ+6KuBJCXEkJeVOLYJueh4MEFlZu7GYQQRO38qBzIQ18sFZg7PgVHQvn0o9PwDPXE91sCIHeesrhsh3KB9g10nkLQNrGBlaYoOqBcpv+SZ/4hdJGiC8osy2LkspGoHlkdVzPNgRoMGqFsbIo69uAYtyUZNEP5x60/wj3EHfvvbIAz8pTFZRuUQ/ZqeFa086zsU3koTzmmAmEI5p+ZI1FHD5SNiVNwPoz9ucfV7s4+tsW5KHhwQeXmZoIQgubRBhjX+eEVic5qx0C5QFuAtolt0XVaV5SUXYfcecrSsg5llmXx3qp34RfujvPpbnBGnrKl7IPyr9sJ3DQq7L+zV6KOHihHHRgHwhCsu7xOpDYYNEF5xokZIAzBrJOzzGqTQSOUjRffSUeNf4/yRTc6Asqbrm6CilFBs5eBM/KUxWUblA/cPQD3EDd8t0UFZ+Upm8o+KJ95dAY+YT74cM2HQOWg+hQhZCEh5CD3+DmQEDKREDKVELKWENJV4r0fEUImCWzvSwhZQAg5Qgh5mRCiJoR8SwhJJIRM447Vi6t9nzvWVG77oEr9O/6vvfMOj6Jc+/CzLR1CJxTp1Q9EkKIgYkEUsYEFFARFREE81mPDYzabQu81QEKHAAmEKj10lBYIoUhvIQRCSE822Z3f98fuki0zW8LuzBvd+7re63iGJ7O7k929MzPv+/zK80NuGryYLlnLfzYIuXmXEw5mVj+6lD9O/BiBkYFmy0M8l6fsDilPPTzVuHxhBcTIUxbGOSmbmn9MPkQQI0/ZFtekvPNyFcjDCL/u/MZBbShYkPLhm7PhE+6DEZtGCNQmgSUpJ6cnwz/CHx+t/cjqVgubUr6QeQHBY4LNOlu5L5DCEvdI2dBcpTaeW/gcSnQrIUaeMj/OSfl+4X00ntoYT8590tRcpTxCjjVOzPqNiO4SUTwR1SOiF4iohIhm2PnZbUTUxWqb3ChjGRFNNO5zBhG9YFYTTURXiOh3Iupntl1DRPeJSO7y6yjPi3fT4MUkZPqZQMM6OZnoVH4px5yIMWbDLrGqZVPKe6/thSJMge+3mWbQejZP+VGlnJqRisDIQON97gXwdJ6yMM5J+eqDq6g+rgpeXqKCTt8WYuQp2+K8lG/ndkWdiTJ0jWljleBkTRJYkPL9wp/QeGpjtJ/bXiDujy0p52nz8H+z/g8tZrSw6mzFppRN8wjqT65vNonLs3nKjyJlQ3OVV1FtXDVcybpi2uyqjJsSUYTxv2cTkY6IOhj//7tElEVEvQR+tjYRnefZ3oWIvjX+9woigvU9ZiKaYNz+udX2L43ba7v8Wlz9ATcOXiyE3HyT2dnxKaEfMeK6lJPTf4RfhJ+d5RZsSdn0l2/Z8gUTbEr5QdEDNJ/eHG1ntzWbFOWeQApL3CPlgpICPDn3STSe2hj3Cw9CjDxlYRxLWavTolvMM6g7yQe3c/0hRp6yLc5LWafXoNdSQvVxAbj64KqdSjakzHE98N7qvgiKCsKZu2d46tiSMsdxGLZ+GHzDfc3mEZhgU8qm5irbLlk8lqtC7kpE7Y3/nUJEe1z42a+JKIxn+3NE1Mj43zeJaCtPzTbjGbLMavtMIioszz1pdoU8uIPZ2XEGtNoAABuEfsyI81J+UDQKTaYROkTXR1GpvS9xNqSs1b2Gpxd0Qb1J9ayWL5hgS8p6To8+y/ugytgquHTf+syZPSlznCHVyz/CHyfTTxq3eia60V1SHrFpBFQaFQ7fTIIYecrCOCflX3b+AnmYDDsuE8TIU7bFNSmPO+ADUhMSzgoFywAsSXnuUcO8h4XJCwVq2ZJywtkEkJowZr/NZ6ZcTiGiGkTEEZHahZ85QkQt7fx7M+PZ7vdW25VElEdEsTw/c4GItpXrNZT3xbth8PJQyE1Wm50d6wD0A6CCO6TMcRzeWvkWqoz1xZUsgiejG4VxTcojN8nhEy7HnzftdYpiR8q/7x4FmVqGPy7+IVDLlpQnH5oMUhNWnl5pVcumlE2dreYdMy3R82ye8qNK2fTlO+7AOIiRpyyMc1Lefmk75GFy/LJTBbHylG1xXsoHrjeDSkP4cvMAB/tkQ8qpGWsEmqsAKL+Q3zPK83kn61sQ0VEHNcON+3zKavszxu2Drba3NW7/rFyvobwv3g2Dl4dCphyre8clcJeUxx8YD1ITNpxfD09GN7pLyouSF4HUhOhjSoiRp2yLa1Jed64uSE2I2mevUxTAipR3XfkfFGEK/Hf7fwVq2ZLynzf/FOhsxaaUz9w9g6CoIKsQEXalfCXrCqqNq4ZXlr4CnX4PxMhTFsaxlNNy0xAysRa6xwaiRFcdYuQp2+K8lLMK49BsejO0nd1WoLlKuYU8m4iKicjPyfowIvrGQc1KInpgPUGLiH4xireB1fYxxudQ1fj/P3XpNZT3xbth8GItZMuZ1Y8uZdOkqJ93/Gzc4npHLzGlfPz2cfhF+GFo4lBw3BZ4Ok9ZGOekfPbuWVSKCsI7q4LAcfUgRp6yLc5L+eqDt1B9HKHnkrY8rVLNYUPK6XkDUG9SPTyz4BmBzlZsSTm7KBstZrQQ6GzFnpRN8wiaTGuC+4Wmz4Nn85QfRcrFpcV4ZsEzxoSssxAjT1kYx1LW6XXovaw3qo6tynMr6yHlFfI5F+8fnyeiEAc16US0nmf7diK6zLP9byJabfzvtkQU6tJrKO+Ld8PgZdeuMiHzz6wuv5Rv595GyMQQvLDoBasvXzalnFmQiYZTGqLjvI5m97ndmxJlwD1Szi7KRssZLfH4rMeRW/w3xMhTFsaxlMsmcQUhs0AOMfKUbXFeylpdLJ6NJYRM9EdarlBrV4AVKeu51nhz5SsIHhNsp7MVO1LmOA4DEwZazSMwwaaUh28YbpWQ5XpHLzGlbJhHYDOJy5ryyDjEeMaqdrL+aSLa7qCmtXGf31ptVxFRPhHF8PzMfeMsazkRLSOi6q68DiVJgEwmk+Xk5BARkVarJa1W+/DfPvn2gvG/cunHH4iKi4uouNh6D/OI6BMi6keG19xb4JGaEtF6InqTinUv0Jsr5ERaouiXo6kwv9Cq9jci0hLRf4ioiIi+ENhnMBFtIMPa8+eIaDMRNRSo/cC4r2/JsBRuHBmWtfGxiojeIaKeRJRIeq49vb/mfcrNzaVN/TZRSWEJlVAJGSYULifDOvS3yLAW3ldgn3OIqJSI3ieiRUT0pkBdI7PX9AIZjlk1gdofyXCcfiDDlZmviIiIA0cfJnxI6ZnptOfjPQRtCOVqN5BhPb3pODUR2Oe7ZDhOo8hwnCaR4f3Mx0oy3Cp6hYjWkmF1Ah+dyHBM3yeiN8hwzPwe/isAGr5xOJ2/dZ52Dt5GKt0sys39gAyTI/sJ7PMxKjtOzxPRRiKqLlD7HRmO0y9kOE7fCdQFkOF4v05EPchwnJrxVv6w/TD9eUlOWwYWURB+odzcGSR8nFaQ4bX3JsOSzG4CdR2IaDUZjmkfMhzfAIHayWT4/XxEhuPUX6CuDhFtonEHetCGU+do1XvzqLaqNuXm5vLUfkWG4xNq/N+fBfbpS7bHqaVA7WtENJ+Ihhmf72wiUgjULiHDZ+k1mnP0I1p+dDkteHMBNQ5obPV8nyDDcXyHiF4lwzELFNjneOPjfkyG9/WHAnW1yfAe6mN8TZvI4BU+vqCy46QlotG0MHkRzTs0j2a+NpNaVWplfL4qIkokw3vedJweF9hnLzIs3/2EDN8T0USCSlhIRIPI8B2ykoheEqh7nAx9ON427j+eiCoREdG6c+tozM4xpHlBQ0/XfFrg/UAUHBxcmYjyYDSck9Qmogwy/GKcYSAZvhTsUZ2IbpPhi8acKkRUQAb5WPMfMrzxnieiuQDuO/l8iMg4XVtsZDJZZSLKEf2BvXjx4sVLRSAYAL+xHxGZTKYkoktE1BZAniceo7xIcoZMRHl8Z8gcRxQXl0U//dSOIiM/olGjHpDhLzMfgd2UEtEnVFq6kVSqOBI6U559dDb9svMXmveGP/Vv05pefDGHdu8+IbBPENH/yNCUZRwRfUGdOnWio0eP8tTeIsNf7Doi2ky5uVXpscceo5s3b1LlypWtamPJcKb8OZmfKdvuO5dWpfag4RuvUNRLI+jLzmMt9mJZv4MMf32/QEJnyob6w2T4o20DCZ0p5+bm0mOPPUZpadspKKg/Gc4G7Z0pg2JjG9PQoQ9o66VB1H/NMvq1+6/007M/8dSmE1EfunPnGoWEHCPhM2Uyvo5RRDSUOnfeT0eOHBOoyyfDWV0KFRQspbp1+wocdyKiPWQ4W+xORMtp77W/6M0Vb9JXXb6iiJcizOr0ZDgTiSeiGDI/U7b9PZ0jw+/edJZjeaZsWT+GiMaS4ezG8kzZdNwNz73IuM9cMj9TPn77OL267FUa0GYATe89nTp37kxHj35PhvfSIDK8V4XOlAvp6NEm1KmTjOyfKRMR7Sei9+ivv2TUpctlEj5T1hPRKAJW0mefgSZPtjzuF+5foBcWvUA9GvWgZf1CSS4zdTLcTJ06vSbwWSIy9FmIIMNVBcOZMv9nL5MMxymTrM+UbevjyfDe70/mZ8rmxz0HOdRjUQ96vKaeEgcUkVIeT4arOpaU7fswGc6U25O9M+XOnTvSkSNdiWgxGa5WCZ0pExFdpoyMTlS7dhOyf6ZMdO3+b9RrxQxqEFyHtgw8RT4KoStkWWQ4U75N/ftXolWrUuw8fiKVXXWMpk6dnhH4PRWT4T23j8zPlPl/T0eJ6G3KKmpJzy+6R5V8KlNC3wRq2bilnc8qUXBwcDAZlhR5il5E9BdrMiYi9u4h37x5E0SEmzcXAfAB0BeAvQ5EJdi2rRKE7ilvu7QN8jC5cQat4Z7yqVN+cKWjV+vWre3Ult1Tzs1NARmjI/mxvadsve+jaUfhF+GHwetqguMqwXqil+1zsX9Puaze/j1l89hLZ+8pt27dCn9nfo7KYwhvx7UxthUUIg1XrvjAlXvKK1dWgTP3lDmuEp55xt5xB0z3lK896IEa42sg4IsAgUlc/OuU+d8DwveUbetDwXdP2fK4A9b3lO/k3UG9SfXQZX6Xh5O4yvbtXEev9u1bwpV7ygUFMjhzT1mrHQidjlBQUNbs4UHRA7SY0cI4j8B0D7Fsole3bs0dPL7lPWXhzx7/PWX+ett7yqbjnp6Zjg7RHdBwSkPczb8Oe7OvLfft+J6yod75e8qvvtoUju4pa3VadInugqDfCel5tveUbTHcU75/XwFX7im3adPKTp3tPWWh31Opfj9eXqJAtXFKXMlK4Xm/8+JR95DhUvWbnn6ccj03CR+clzIh3wSwEc5IefbsaeCb6HUh8wKqjK2C3st6Q6c3Te44gaKiALjS0Wvv3nft1AEmKev1DdCwoaM3m6WUZ86c+fBf0vPSUX9yfXSe3xlFpRngm+hlXl+GsJQt64WlbPtBcSzlidMnovXM1mg1szpyigmOlkTFxkbAlYleHOfcRK/S0m7IySHk52+3u8eCkk1oP1eGRlP9MWFWhJ1KWynzH3dASMr89aGwljL/F5RByiW6OnhuYSeETAzBrZxbAvt2LGVDvfMTvdau/Q+cmeiVk5OF2FgCxxkmeun0Ory2/DVUGVuFZxKXQcr374fAld7Xwscd4JOycL2llE3H/f249+Ef4Y/k9GRjnfCSKNt925dyWb1zUjbU25/o9cXGL+AT7gOqTygqMjWYcizle/fqwZWJXn///RRcmegldNz/u/2/kIfJsfOyP4BnkZNzS1Ihk+FyxnUiUnnyccr9/CR8cF4shQw4K2Xr2dcPih6g9czWaDmjJR4UPbCqdU9KlCU3oNc3xtWrhNzcFAe1tmfKxaXF6BrTFXUm1kFabpqxzr0pUQb4pcwvBmEp6zk9+sb1RaWoSjh/7xzEyFMWIicnDXv2kPGKAv/s67IZtL5ITveBGHnK/ITCXMrCZwzp+GpLVSg1hAPXVzjYp3vylC1JgiMp5+TkQC4naLUDAcjx6843IQ+T22kG4948ZQPlm32dk5MFesYQYBN3Os6qzjN5yo86+3r+8fmGhKwD083eM56JbnTH7OuVp1eC1IRJhybBNPu6tPQZBAVJKuRBRDTHk4/xSM9Pwgfn5e7duyAi3L1712yra1IuLlWix8I2qDq2qlmCkzXul3Jx8UXcv18VHNcAriyJ4jg9hq0fBp9wHxy+ediqThwpFxcXIzQ0FMXF1j/HL+XQpFDI1DKsP7/euMX9KVEGHEu5uLgYkZG/QK9/FkJLoqYcngJSE1akrIAYecr2CYVJykLH3dQMZvaREIiVp2xLEuxJuey5F2B16vPGTlyOOkWxIeUtf78ImVqGH7b+IFDHlpQP3zwMn3AffL7xc573DHtSNiV6DUwYaNYM5jA4rhKuXWuA4mK7nxFPCnk+ET3jycd4pOcn4YPzInzG4JyU9VwxBsTXh2844cD1sYJ1BjxzpuzqOuWZf/UAqQmLkoU+pOKdKfNjKeU1Z9aA1ITIfZFWddJJ2QD/OuXdV3ZbJWQBLEnZmmNpx+Ab7mtsBnMbYuQpC5MER2fKp+6cQkBkAAbENzbeZvB8nrItzkv50v2pqDqW8OqyutDp7f2Bz4aU0/Oaoe6kEHSN6Won0YsdKd8ruIeGUxqiQ3QHnkSvwwCaw/DaBJFcjFKNCiRkwBkp/7DtB8jUMsSf6QJ39b424BkpJ139Foowwjd/PAmx8pTLcF3KyektERAZgP5r+vP1oAVrUr6SdQXVx1XHS4tf4pnExZ6ULecRmJ6TZ/OUH0XKmQWZZlm2uRAjT1kYx1LO0+ahzew2aDY9BFmFMoiRp2yL81LW6lLRLcYHdSYqcTs32cHjSy/lUr0vXlz8JGqMr4Hr2dcFau3tBwADYpRqVDAhA/akPO3PaSA1Ydqf0+DO3tdluFfKJln0XNIKpXqCGHnKtjgv5Yz83WgwRY4O0f4oKLHXKYoNKedpg9B2dlM0mdYEmQWZArXsSNl8HoH5JC4D7Em5VF+KFxe/iBrja+Dag2vGOs9EN7pDynpOj36r+pnFKXo+T1kY56T8xcYvoNKocOhGDYiRp8yP81L+dmsjKMIISVfHO9inXSQXo1SjAgoZ4JPyslPLDPeEtpnfE2JXyrnFuWg7u61Zz1zP5ykL41jKWp0W3WO7o/aE6riRXQVi5Cnz45yU9VwO+sZVR1AUITVjqYN9Si9ljiMMW99JYB6BCbak/O3Wb6EIUyDpapJVHZtSDt8bDlITEs8lmtWyK+W5R+eaJXp5Pk/ZPo6lvPTUUuMJ0eNwrs2mIJKLUapRQYUMmEt5ecpiyMPkGJo4lGctLHtS1ul16LO8DyqPqWwVfM6mlDmOw/ANw6HSqHDwxkGIkadsH8dSLpt09n8QI0+ZH+elPOOv3sZ5BI6W2LEh5cUnHzfM+P1T6P3PlpQ3nN8AUhPUSWqeWvakvP/6fig1Sny5+UuzWnalbArBGbJuCDiuEM73vuZFcjFKNSqwkAFgI1akKCAPI3ycONhOYwrPSnnbttfRsWNHBAUFoWbNmnjrrbdw/rz57G5LKX/zxzdQhCmw9eJWnv1KK+UzZ9qipIQQE9Pn4dZZR2aB1ISYEzFmtWxIOS/vIwwa9CGqVasGf39/tGvXDuM2jgOpCRF7IyBWnrIw/FIuLS3F6NGj0ahRI6haqEC/E95dUB+G4+T5PGVbhKW8d+9evP7666hTpw6ICPM2fw7fcMIniXXAcfngOA6hoaGoU6cO/Pz80KNHD6SmpoIFKefnN8bhSyoofpOB+hMS1pb9sVlSUoIff/wRbdq0weDBPtDpCPv3N0Fa2g07+/S8lG9k30CtCbXw5NQn8dobrz087uvWrYOQlIcPHw4iwpQpU8z2K46UM/Iz8NjkxyxCcPbt244jR2qhsJDw8sum527J2bNn8cYbb6By5coICgpCly5dcP36dYABMUo1KrSQ407HQR4mx5B1cuj0b8OVdcr2cV3Khw8PRGpqKk6ePIk+ffqgQYMGyM83/xAapDznaDWQmjDryCw7+5VGykeOHEHTpg2xdWswdDo5gATsurILijAFvv7ja56fkFbK+fnTodcTdu1qib/+OoyrV68iOjEa/uH+VpPO2JNyREQEqlevjgUJC1B1TFU8MeEJBFYKxOHDr4A1KW/ZsgWjR49GQkICKJBQPbI6Os9vhaJSfwA9MXGiBpUqVUJCQgJOnz6N/v37o06dOsjNzYXUUk7cugBNpijQeoYczdtYiiE7Oxs9e/bEqlWrcP78eVy4oIFOR9i4sRqkOlMuLCF0iG6IBlMaYOX6lWXHncyfu6WU161bh3bt2qFu3bpWQgY8LeUSXSF6LOyBWhNq4UZ22R8yW7ZsQWjoT0hP74DCQsKBA6EWe7h06RKqVauG//73vzhx4gQuX76MTZs2ISMjA2BAjFKNCivkVamroAhTYPC6wdDpE1Ge5iH2Kf/la9Na6r17Lc80tl1aBkUY4T9bKkGsPGVLhKWcl5eH5s2bY8eOHXjxxedw4kRzXM5SoNq4IPRc0tNOVrB0Uv7pp58QFdUMpsvXd/PvoOGUhmg/tz0KSqyX6LAl5T59+uCjTz9C29lt0XRaU9wvvI9+/fph0KBB8GSe8qOcKWt1WtBQQtWIqsbmNUnguADs2eODiRM1D+uKi4sRHByMuQ/DzKWRclnnsGBcvN8c6emEHTvs32K6dCkCOh0hL+8diC1ljtNhYEIz+EcQktMtX5OlkAGTlEtKmqF9+xCkpqaiYcOGPEIGPCnl/2xpAaVGiX3X9gnUFWHTJoJO5wPzy9f9+/c3vtd5kVyMUo0KKeTVqauhCFNg0NpBZi0xy9fRyz7lk/LFixdBRDh9uuxNfebuGVQeUxm9l72AUn0TiJGnzA+/lAcPHoxvvvkGANCjRw98+e3naDM7GM2mE+4XLnKwT2mk3Lp1a3zzzTeYNespFJUQWo9XopKmkp3lFuxIefKU0fD/xB8BEQFIzTBcWalVqxZWrDB15QoFa1L+fOPnoP8Rxiwre05pacuRn0/IyekC8yVRb775JgYPHmy2T/GlbMreNdwauouUFEJRURXYW6e8Y8cODBhgagcq7j3lCQcnGDuHvQjre8q2Qgb0+vO4e9cX9+/XAnDbjpABT0h5YfJI49W+jrA3+9rXl5Ce/hRM95T1ej2CgoKg0WjQq1cv1KxZE507dzZ/fZKLUapR4YS85swaKMIUGJgw0EzGJtiQ8ty5bfDss88+/Je7+XfReGpjtJndBjnFOShP8xBPSnnlypVo06YNiooM4nmux3No8msTVIqqhLN3X0V5mocI4z4p+/r6wtfXF7/88gsGrnwKKg3hvzPkWLx4oZ19siHl0KTakKkJ1JKgVCohk8kQFRVlVRsKVqRsmvFLHSzFcPDgQfToQdDrDZevTVL+7LPP0KtXL6t9iiflVamrQGrC+ANly29q1CBkZzeA0DrloqIiPPXUUxg4cCDEnui19eJWyMPk+HnHz+Cb6MUn5KioKAwZ0hUcZ7h83bFjPTtCBtwp5SO3jhib17xg/ONFePY1EWH9+lUwTfS6f38liAgBAQGYPHkykpOTMWbMGMhkMuzZswdgQIxSjQol5Pgz8VCEKfBhwoc8MjYhrZR37HgSACEry3AJr7i0GN1iuqHWhFpmazUBVqRcWPgS6teviZMnTz78lwYfNwCFEjb9vQmP0tFLGPdIWaVS4ZlnnsHsI7NBasL840Og1xMSEmqhPB29+HG/lBPOTgGpCf+JlyMhIRopKSlYsmQJqlWrhkWLFllVh0JqKR+47geVRomRm0baiOHgwYMgImRmxsN8SdSwYcPwyiuv8OzT81I+mX4SAZEB+CD+A4vmNUSEzZsXgW9JVElJCd566y20b9/e7LtHHCmbQnBeW/6a2feapZStj/uxY8dQu3ZtpKWlwXT5+uJFJaKj1Q4e/9GlbJ5AZpjEZX9JVNlzNzQP4Tg/PPEE4YMPPrCoe+ONNzBgwACAATFKNSqMkNeeXQulRokB8QPs3M80IY2UR40ahfr16+HBg88AEDhuGgatHQTfcF+BtaXSS1mnU2HDBoK/vxwKhQKyJ2WGM6FuBIVCAZ1OB1al3KBBA7w28jUoNUp8teUrAMDu3YOg1xPK22aTH/dJOeVOCgIjA1HrS1/k5wfBfKJXeHg4WrZsyfNToZBKyjdzLqD2BB90j5VDq9tpI4bLly+DiHDixAmYr1N+993XrC5Zm+M5Kd8rIDSaWoV3HkHZc7dcElVSUoK3334bTzzxBDIzrRvIeFbKOcW3H4bgZBdlW9WVSXnwYMvjPmXKFMhkMigUCigUCrRsKcfNm4SzZwkdO9Zz8Pjll7JWp8Wzsc/aJJDZk7Lle6YYpaUT4OOjQHh4uEXdjz/+iK5duwIMiFGqUSGEvO7cOig1SvRf098JGZsQT8ocx+HLL79E3bp1ceHCBZguX/+6UyhNxhxppVxQkAC93gc5OT2wZM8CqDQq1BhaAwMHDbS4B86ilN8Y/AaUvyrx4uIXUaIrAQB88803iIhoikfpfc3Po0v5XsE9NJ7aGO3mtEPVWlWxcuVvMJ/oFRUVhebNhfKCQyG2lAtLCtFxXkc8Nrk+MvK7AQhE9+6WYuA4DiEhIRg3bpxxi2Gi1+7dSixYYG8ClfulbOgc1gQ1xhOuPfjW5t8txWCQMsfVxqhRL+H//u//rAJtzPGMlPVcIN5cWR2Vx1S2E4JjkLJeTzh27KuHWzMzM3H69GmL0a1bLWRnB6G4uAk8sU6Z41Ie9iM4cP0ATy2/lPkutz/zzDM2k7refvtt01mz5GKUajAv5MRziVBqlHhv9XsuyNiEOFIeMWIEgoODsWfPHqSnpyM9PR1jd40FqQkTDxI8EUjh7jPly1k+qDHeBz0Wdkf357vj66+/5qljR8p52lNoNqkZ6GvC6IjRuHjxIpYvX46AgAAsW7YMjxpIwU/5pVyiK8ELi1542GZyyJAhqFevHvbsmQWdrjqysxuiRYtq+PHHH+3sNxRiSZnjOHyY8CH8I/yx79I+nDx5CLm5nZCXR1i16kskJyeb1oxi7NixCA4Oxtq1a3H69GloNC+ioECG0tIXYC9P2d1SNq3v33P1UxiOUxjy8vKQnJyM5ORkENHDe5bXr19HaeltXL1aCRkZcpw7t/bhZzc9PR1arfX3hful/L/dQyBTEzb93RZ8E73KnvtxREcTOE6Ga9fCHh53axo2bIiFC3+Fp5qHzD4SCFITFhxfYKfWIOWSkveQnHyU97gDwNq1a6FSqTBv3jxcvHgRM2bMgEKhwP79+wEGxCjVYFrIG85vgEqjwrur3314BuQ6npcyEVmOFgT6ndBzUk9w3PcwvFx2pZxdlI3WMx9Ds+kyZBb0Qs+eQkIGWJCynmuOfqv8ERQViJmrZ6JNmzbw9fVFq1atMG/ePLNadqT81ZavoNQosfeaYdZybm4uvv76azRo0ADt2/vg3j0Fbt+uBa02zc4+AbGkPHb/2IdXd5KSkkBE8Pcn7NpFyMsjdO9OGDJkCAA8bAwSEhICX19fPPfcc7hyJRaOUqIMuEfKi08uBqkJM/6aYdxiuKd85crHtp9PMjz3q1evokYNQkoKIT2d0KpV2b8nJSXxPL77pBx/Jh6kJkTtGw6hiV6m405EkMkI0dEEvZ4wb1433n2WzbJ2f0evPVfXQ6khfLXFD84sieI4OZYvJygUtsfdRExMDJo1awY/Pz+0a9cOiYmJpn+SXIxSDWaFvOr4Kqg0Kryz6p1HkLEJ8S5f/3XrL/hH+KPfqn7GCRru6X1ti3ukXKovRa+lvVBlbBWcvzcfno5uFMZ5Kf+262tjT+Lq8HR0Iz+uSXnBccN9+TlH59ipdU90oyXlk/KG84mQqWUYvWs0T517oxsNPJqU/7z5p1lcpflnwXN5yo8i5VN3TiEwMtCseY3n85TtY1/KVx9cRY3xNfDComdRonsC7g2k4EVyMUo1mBWyarQKfeP6ukHGJjwv5Yv3L6Lm+JroGtPVKgeUXSl/uflLKDVK7Ly807jF83nKwjiW8vKU5SA1Ycz+XyBWnjI/zkn54I19UGnk+HyjDGLlKVvimpRTMwhBUUq8HfeWnVa07Ej5Vs5J1JlYB11juqK4lO/9ypaUzeMq87Xm8mVTyvnafDwx5wk0ntrYmJhWvo5eLkpZcjFKNZgT8rbUbSAi9IntYyeMu7x4Tsp3859Es+lN0GJGC4GoP/akPOOvGWZpMuawKeVDNw7BN9wXg9cNNp5ZeD5P2T72pXwj+wZqT6iN7rHPQqsbADHylPlxTsqZBZloMq0W2s4m5Gk/ghh5ypa4JuXCktroOM8P9SfXxZ28O3Zq2ZByqX4HT1ylOWxJmeM4vLv6XQRGBiLlTopZncelLLkYpRrMCHnmzJlo3bo1mrVuBiLCvSxHX0blxf1SztceRJf5CtSaoMSVrJN2KtmR8h8Xp0IeJsd3W78TqGVLytceXEOtCbXwbOyzVmdCbEo5X5uPJ+c+iYZTGiIjPwNi5Cnbx76UzSedXcmaBDHylPlxTsqGSWevwz+CcPx2Y4iRp2yLa1L++g8FlBoF9lzdY6eWHSmH79WA1IS1Z9fy1HlUypKLUarBjJBNuJb2VF7cJ2WtToteS3shKCoAx9IqQaw8ZVucl/LpjHaoFEV4fcWzdhqsAKxIObc4Am1nt0WjqY1wN59vaQpbUtZzevSN64ugqCCrMwt2pTxy00goNUozWXguutEdUjZNOluVOgVi5Snz45yUFyZHg9SEmX+pIFaesiWuSTnxHBnjKkPt1HlMypKLUarxLxUy4A4p6/Q6vL/mffiG+2L3ld0QK09ZGMdSzsjPQKOpDfDEnADkFleCGHnKtjgvZZ3+Z7y+glApyhepGal2atmR8q87f4RMLcOG83x/xLEn5TlH54DUhOhj0Va1bEp5498bIVPL8Nuu34xbPJ+nbB/7Uv7z5p/wCffBsPUfg+Nehhh5yvw4J+XUjFQERfmgbxxBz42GGHnKVkguRqnGv1jIwKNImeM4fL7xc8jD5Fh3bp1ZLbtSLigpQJf5XVB7Qm1cz06FJ/KU3S3lH7Z9D3mYDFsuEDyRp+xuKS87pTL2UI60U8eOlJOuLoFSo8SozaMEatmScmpGKipFVcLbcW9bTTpjU8ppuWlWk848n6dsH/tSvl94H02nNUXb2W2Rp9XAcJzK32bTljUwfOecslckuRilGv9yIQPllfIvO38BqQmxJ2J5atmTsk6vQ9+4vgiIDMDRtKPGOtd7X4sp5QXHF4DUhKmHp8ATecrulvLhm4fhG67CkHVycNwr8GSesjChcFbKl7Oaovo4OV5c/LSD1QxsSDmzYA6aTGtilEUeTy1bUi4qLUKX+V1Qb1I9pOelm9WxKeVSfSl6LumJauOq4UrWFeNWT0Q32rsqBoABMUo1vEIG4KqUJx6UG7tw2ZMDW1L+5o9vIA+T81xGZVPKe67ugVKjxOcbPzfOqH703tf8uEfK17Ovo/aE2ugW0w3FpVvg6Txl+4TCkZRzi3PRZnYrNJ2mwv3CEIiRp2xLEpyVcoluMF5cTKg+LshMFnywIWWO+wgfJw6Bb7gvjtw6wlPHnpRNnc52XdllVesJKdtFcjFKNbxCfohzUp53zHC/7ZedcngqT9k+rkt52p/PGSeUzBSoY0vKl+5fQrVx1Sx6VBtgU8q2M6oBT+cpP4qU9Zweb618C5WiKuHM3T0QK0+ZnyQ4I+WvtoyCUiPDnqsyiJWnbIlrUp50yNAMZumpxXbq2JHywuQpVp3OrBFVypKLUarhFbIF9qU8//h8kJrw5eYR4Li+8FSesjulvO7cF5CpCd9vaw9P5SkL47qUHxS1RauZzdF8enPcL+S7tMWWlIVnVAOsSvnXnb9CppYZ4zUBMfKU7ZMEe1Ked2weSE2Ye3Q2xMpT5sc5KW+5sAXyMBl+3E4QK0/ZEtekfPhmTfiEy/Dp+g+sOp1ZI5qUJRejVMMrZBv4pWy6nzly00jjm9YzecrulLKpjee7qztAzxE8kafsTimX6o+j11IVqo5V4O9Me4/PjpR/3TnYzoxqgDUpr0hZAVITxh0YZ1XHppT3XtsLpTGL2cCjtdkUxj1SPnfvHCqPqYw+y/tAp18OMfKU+XFOyrdybiFkYk10jfFBcWkLeCIlqhxSllyMUg2vkHmxlHLMiRjI1DKM2DTC6i9IdqV8Oesyao6viWcWPGNs4+mZlCh3StnUxnPXlcoQI0+ZH+elvOxUS+OM6pF26gBWpHw07Uv4Rfjho7UfCZwJsSXlaw+uocb4Gnh+0fNWty7YlHJWYRaaT2+Ox2c9jpxi0/eXZ/OUH0XKhSWF6DSvE+pPro87eYfgqZSockhZcjFKNbxCFsQg5ZgT7R/KmL+3L3tSzizIRIsZLdBsejPcKzD/smZXytP+nGa8LDkXYuUpC+NYyqZAgyHraoPjgiBGnrItzkv5du53qDeJ0GX+Yygqtff4bEg5T/s8npjTBo2nNrZ6D5tgS8rmM5Qv3bd+f7EnZY7jMGjtIPhF+OFY2jHjVvenRJVTypKLUarhFbIdYk98DZma8MXGxtBz9r7E2JFyUel5PBv7LKqPq46L9y/y1LIn5fXn10OmluGHbT+Y1bIrZVOPasOM6kyIkacsjGMpm5bf1J1UCbdzCWLkKdvivJT13C70W6VAUJQCpzP4ZiibYEfK/9kySGCGsgm2pDzx4ESQmrAiZYVVLRNSllyMUg2vkAVYmLwQMrUMn298FXpOBTGiG21xTcp6rgneXxMA33AfHLxhTw7sSPlY2jEERAag36p+PFcg2JMy/4xqz+cp20dYyuZnQob156EwHCd2pRyaFAqZWob1530gVp6yLc5Lef7xuiA1YdaR/zmoZUPKWy9+D3mYHD/t+EmgVnIpSy5GqYZXyDwsSl4EmVqG4RuGGyUhXp6yLc5JmeM4fLXlY8jUhISzNSFWnrIlrkn5erYCIROroPP8zigoEfrSZUfKeq704YzqU3esOw2xKeXIfZEgNWHl6ZVmtaFgVcprzqwBqQmR+yIhVp6yMI6lvP/6fqg0KnyxsRrEylPmeRZwVsoXMt9HlbGE15Y/4aCPvaelfN7eDiUXo1TDK2QrTDL+bMNnVmdsbEt5zP4xIDVhztFIiJmnbItzUs4pvo+2s4PRaCrhTl6Mg32yIeVfd7Z3MKOaLSnHn4kHqQmhvAEBoWBNysnpyQiIDMCA+AFmk86SwKqUrz24hprjaxonnaVBjDxlYRxLObsoG61mtkLLGcHILiKIkadsSyaAEYLP0YjkYpRqeIVshrCMTbAp5YXJC0Fqwu+7fzduESdPWRj7Ui7RlaDX0l4IHhOMM3dfgVh5yrY4L+VFyUONM6qfhlh5ymW4LuVjac3gH+GP/mv621lbGgpWpJyRn4EGUxrgqeineK6WJIE1Kedp8/DEnCesJp15Nk/5UaSs0+vw+orXETwmGOfvnYUYecqPgORilGp4hWxk8cnFkKllGLZ+mICMTbAl5U1/b4IiTIHhG4ZbffGyKWWO4/DZhs+g1Cix8/JOiJWnLIxjKSddTYJKo8Kw9d3BcQQx8pRtcV7Kt3J2oe4kOTrP90dhyQ0Hjx8KqaVcVBqArjFtEDIxBDdzbgrUJoEVKZs3g7FNIGNTyj/t+AnyMDm2XNhi3OL+lCgDbpGy5GKUaniFDGDJySVOytgEG1I+fPNb+Ef4462Vb6FUzxdnxp6Uxx0YxxPKwa6U/878G1XHVsVLi18yroX1TEqUu6RcUFKAp6KfQv3JtXE7tzrEylO2xTkpc1w+PlpbG34RhL9uzXWwzySwIOX/7e7h4NYFW1JecnIJSE2YdGiSVR2zUpZcjFKNf72Ql55aCplahk/Xf+qkjE1IK+Vz9z5BtXGEZ2ObGBt/CMGOlNecMXSJGr1rNE8de1K+V3APzaY3Q6uZrfCg6IFZLZtS1nN6vLPqHQRGBiI5PRli5SkL41jKprkPK08/DrHylG1xXsqrUvuD1IQx+3s62CcbUj58sz18wn3wSeInArcu2JLyuXvnAAbEKNX4Vwt56amlkIfJMTRxqIsyNiGNlNNy09BgSgP836zqyCokiJWnbIlrUj58UwW/CDk+iH/fzj1NdqRcXHoG3WO7o8b4GricdZmnlj0pj941GjK1DInnEs1q2ZXy2rNrzeY+iJOnLIxjKR+/fRz+Ef4YmNDOeOvCPb2vDbhfyjey41F7ggzdYiqjuNTeZ4QNKZs6nYEBMUo1/rVCXnZqGeRhcnyS+Ek5ZWxCXClnFWah7ey2eGzyY7iZcwNi5Snz45yUDW08g9EtRoai0t4QK0+5DNekzHHNMWitM+u52ZHy0lNLBXpUAyxK+cTtEwiIDMB7q98z+/yxK+X0vHTUn1wfneZ1Ml6R8nyesjCOpZyvzUf7ue3RYEptZOQHQIw8ZX6ck3KpvhQvL3kZVcdWBRgQo1TjXynk5SnL3SRjE+JIOU+bh6cXPI3q46rjzN0zxrpHa7MpjHukfL/wPlrOaGls4xkHsfKUbXFeypo9Pxi7GFWDWHnKlrgm5YM35PAJV9q5LAmwJOXbubdQf3J9gRnV7Em5qLQITy94GnUn1UVabppZLZtSNr91cTL9JMTKUxbGsZS/3fotFGEK40RP6cUo1fjXCdkk448TP3aTjE14VspFpel4afFLqBRVydhxyRw2pVxUWvSwjeffmaYvbM/nKQvjWMqmNCTNnh8gVp4yP85J+eqDS6g53hfdYwla3XIH+5ReyoUlhM7za6DupLq4lXNLoI4dKXPcHQxeNxh+EX44couvjSd7Ug5NCgWpCWvPrjWrZVfKsSdirbOYJRejVIMZIc+cOROtW7dGixYtPCbkFSkrIA+TY8i6IQ661JQXz0i5VF8Fb8dVgV+EH/Zc3SNQx5aUdXod3ln1Dvwi/HDoxiGrWjalfPDGQfiG+5qlIXk+T9k+9qWcU5yDNrPboMm0JrhX8A7EylO2xTkpcxyHAfFPwz+CcCztTYiVp1yG61KecLAWSE1YnmLvjx12pLw6dTVITYjYG8FTy56UD944CJ9wH3y24TPzqzuSi1GqwYyQTXjqDNkk48HrBntIxibcK2U9p8dHa/tAqSFsvtAcYuYpl+GalDmuEv6z5X3Iw+RWE4zMYUvKl7Muo8b4Guge2x3FpebPh00p6/Q69FneB5XHVDbevnBP72tbQuEuKWv2aEBqwpozoyBWnrItzkt584VoyNSEX3ZWh1h5ypa4JuXjt33hH+Fr1enMGhakLANw4mFIy7Oxz0Krs/iulFyMUo1/hZBXnl4pkoxNuEfKHMdh1OZRkKlliDs9BmLmKdvivJQnHGwIUhNmH/nRwT7ZkHJWoQatZrZCs+nNkFmQyVPLnpS/3fot5GFybL241ayOXSmbztzC94Ybt3g+T1kYx1I+c/cMKo+pjDdXvgg9Vxti5Cnz45yUb+deRv3Jvug4T4bCkj8c7FNqKZ9GQUkBOkR3QIMpDcxCWh4iuRilGv94IcedjoM8TI6P1n4kkoxNPLqUf9v1G0hNmHdsnnHLo7fZtMW9Ujbdg/1lZz2ImadsifNSLtH9hBcXE6qO9Te7z80HO1Ked2yW9T03M9iT8tG0o/CP8McH8R9YnbmxKeV7BffQeGpjtJ3dFrnFuRAjT9k+9qVcFq9ZB2m5z0GMPGV+nJMyx3Hov6Y/AiIDjOvlbZBcjFKNf7SQV6WugiJMIYGMTZRfyhMOTgCpCRMOTrCqZVfKu6/shkqjMt6DzYZYecr8OJYyx3H4dP1QqDRy7LlKECtP2RLXpLz7igpKjQwjN31up44dKd/K2Ye6k+qiy/wuAg1s2JJycWkxusd2R60JtXDtwTWzWjalbB6vaZh0Jk6esjCOpWxKIFudulpoJ5KLUarxjxWyScaD1g6SSMYmXJdy9LGRIDXht12/CdSyJ+WUOymoPKYyei7paXY/6NHabPLjPimP3T8WpCYsTI6FWHnK/DgnZUMbz0p4eYkcpfpeECNP2ZZQOCvlgpKW6BCtwmOT6yA9L91OLRtS5ril+DjxY/iE+/BMRARYlLLpPWwZr8mulBPPJVoF4fAiuRilGv9IIa9OXQ1FmAIDEwZKLGMTzkt5wfEOIDXhqy2v25mYAbAk5RvZ11FvUj08OfdJ5BRb/97YlHLc6TiQmvDrzl+NW9zT+9oW90jZso1nIsTKU+YnFI6krOf0eHf16wiIlCE5vSbEylO2JAmuSHn8ARlITVh2yt5kL3akvP78OsjUMoE/3NmT8umM0wiKCkLfuL6OlpxKLkapxj9OyOzJ2IRjKS84vgCkJozc1AQcp4SYecpluCblB0WE/5tVDQ2mNLBqmmAOW1Led20ffMJ98GHCh1Z/9LAp5aLSInSL6Yaa42uatfF89N7XtrhPyv/b/T/I1DKsOxcLsfKU+UmCM1I2yI0wehdBrDxlS1yTcsodGYKilOgb97YdubEj5bv5px/el8/T5jn4OenFKNX4Rwl5zZk1UIQp8GHCh4zJ2ISwlGNOxECmlmHkppHgOC3EzFO2xTkpF5cWo8fC5qg6lnD27kCIladchutSPnevNaqOrYLnFz1vtbzJBFtS5jgOHyZ8CL8IPxy+ediqlk0pL09ZDlITxu4fa9zi+Txl+yTBnpST05MRGBmId1b1g54bAjHylPlxTsp38++i0dSaaDeHkKf9AGLkKVvimpS1urroHuuPmuOrW92XF0RyMUo1/jFCjj8TD0WYAh/EfyAQRcgKtlI2yXjEphFmZ2zi5CkLY1/KOr0O7695H77hvth/3bRP9wZSuFvKd/J2o9FUOR6f5YesQr7ACBPsSPn33Z84mADDlpT/vPknfMN9MXjdYKurD2xKOT0vHY9NfgwdojsgX5sPMfKU7WNfylqd1mzS2XSIladsi3NS5jgOQxPfhU844cD1BnC8JAoAA2KUavwjhBx/Jh5KjRID4gcwLmMTZVKOORHNI2MTbEqZ4ziM3DQS8jA5Es6aJChOnjI/jqWcr81Hx3kdETKxBq49qAKx8pRtcV7Ki0+2NJ5pjnCwTzakfD37J9SeUBvdYroJXH1gS8qFJYXoMr8L6kysY9XGk00pG1YFfAofi9ATz+cpC+NYypMOTQKpCYuSx8L5dcrSi1GqUeGFnHA2oYLJ2MRGxJxQQKYmjNg03M59IPakrE5SW62PNsGmlEv1pXh9xesIjAzE8dvHIVaesjCOpZx0NQkqjQrD1oeA44IgRp6yLc5LOaf4Z7SdTWg0tSpfowcz2JAyx72ED+Lfg3+EP09veIBFKU89PNW4KmChVS2bUt58YTPkYXL8uN3UIMjp5iGSi1GqUaGFvPbs2goqY0NDdZlahi82yqHn3oaYecoGyiflWUcM7Q8j90UK1LIlZY7jMGLTCCjCFNhyYYtZLbtSPnfvHKqMrYKeS3qiRJcFsfKU+XEs5VJ9KV5d9ioqj/HFmbsEsfKULXFNypo9KuOtgKV26tiR8taL8yAPk+OHbT8I1LIl5dSMVFSKqoQ3VrxhNZ/nIoCX4BXyP0zIJhn3X9O/Asv4C+i59RAzT9kS16S8KrU2ZGrCN38MdbAkix0pjz8wXuBsHmBRynfz76LJtCZ4fNbjeFD0wFjn+Txl+whL2XT7QhGmwPZL2yFWnjI/zkl5VeoqY6KXCmLlKdvivJTP32uO4DEyvLb8OQeTVdmQ8r2CGVadzlxGcjFKNSqkkNedWwelRon317xf4WS8MHkhZGoZPt/4udllanHylPlxTso7Lu+ASqPCwIQg6LkGECtP2RLXpBx3Wg5SE0bvGm2nlh0pF5UWoGtMV9SaUAtXH1y1qmNTytP+nMbzB08oWJXykVtH4BfhZ2zjuRti5CkL41jKmQWZaDa9MVrP9EVOcU2Ikadsi/NS1uqG4rmFhJrjK/G8h51GcjFKNSqckBPPJUKpUeK91e/9Q2Rsgl0pH7l1BIGRgei9rDdKdJchVp4yP85Jed+1JPiEyzForQwcF+9gn9JLWc8R+q9pCr8IP/x1S+gYsCXljX9vtHMZNRSsSflmzk3UmVjHqo1nEliVslanxfOLnkf1cdVxOesIxMpT5sexlM1b0e6/TnC8JEoQycUo1ahQQjaXcYmuRGgXTLIoeRFkahmGb7A3gYs9KZ+/dx41xtfA0wueNi4LAcTIU7aPfSmfu3cOVcdWxQuLnodW9w7EylO2xXkpj97VBzI1If5ML4iVp1yG61I+md4cgZEBeDvubTuXUUPBipTztfloP7c9Hpv8GE8bzySwJmXTjGqVRoV91/YZt3o+T9k+9qU8+dBk46SzGDi/TpkXycUo1agwQl5/fj1UGhXeXf3uP1TGJtiR8q2cW2gwpQEen/U47hdaS4pNKd/Ju4PGUxub3YMVJ09ZGMdSjj0RawwSeQ9i5Snb4ryU03J3o/5kOZ6K9ke+9pqDxw+F1FLWcwHot+o5BEYG4mT6SYHaJLAk5YkHJxqXC1kLjU0pb7mwBfIwOf67/b/GLa40D7FBcjFKNSqEkDec3wCVRoV3Vr1TYWX82YbPnJCxCemlnFlA+L9ZddBgSgPczLkpUMuWlPO1+eg0rxPqTKyD69nXzerYlfKuK7ug1Cjx+cbPjRPlPBvd+KhSztfmo0N0B9SfXBtpudUhVp6yLc5L+dedDSFTE9afj3KwzySwIOUN5z+ETC3Dzzt+FqhjS8qmGdWvr3jd6mpJuaUsuRilGswLuSLLePHJxeWQsQnppJxTnI1O80JQYzzh3D17E6IAVqRconsNvZe9gqCoIONaY2vYk/LZu2cRPCYYryx9xWo+BJtS1ul1eGvlWwiKCjKeaYqTpyyMYykvObkEpCaMP9AUYuUp2+K8lE+mf4nASELfuNYOvjPYkPK9gq5oPLUR2sxuIzCjulxSllyMUg2mhbzx741QaVTot6pfhZXxsPXDyiFjE+JLuaCkAM8tfA7BY4Jx4vZHMPyqxMlTtsR5KXPcFgxZJ4dKI8P2S5vsVLIj5Yz8v9DI+EVmm5AFsCjlH7b9AHmYHJv+Nj/G7Er54I2D8An3wSeJn4Dj8iFGnrIwjqVsauPZfm4d5GsJYuQp2+K8lLW63XhuoRw1x6tw9cEZO5UuS1lyMUo1mBXyquOroNKo0Deub4WT8ZKTS9wgYxPiSVmr06L3st4IjAw0tuZzX+9rS9wr5V92/gJSE5anKCFmnnIZrkk5X9sMneerEDKxptWldWvYkXL0sWiQmjDtz2k8texJ+XLWZdQcXxPdY7ubtfH0bJ7yo0i5sKQQned3NmvjKU6eMj+OpcxxHIatHwaVRon91/3h3kAK6cUo1WBWyKrRXhmX4Xkpl+pL8c6qd+AT7oOdl3ea1bEt5el/TgepCZMOTYKYecq2OCdlnV6HN1f2QmCkDMdv14JYecqWuCbl7ZfkUITJMWrzKDu17Ej5QdF9tJrZCk2nNcW9Auvnwp6UOY5D/zX9edp4sivlKYenmLXxLE9HrxP2nqTkYpRqMCfkbanbQEToE9sHWp09+bDH0lNLIVPL8On6T90oYxOek7Ke64gh6z6AIkyB9efX89SxKeXVqashU8vw/bbvzWrZlbJ5V6stF5ZCrDxlfpyT8pm7Kag8RoXeywil+hUO9im9lEt0hJcW10HVsVVx/t55gTq2pByaFApSE9acWcNTy56UTTOqLdefuyLlRNj/vEsvRqkGM0KeOXMmWrdujWatm4GIcC/L0QeaLTwrYxPulzLHHceozb6QqQkrUubbqwRLUt59ZTd8wn3wYcKHPMebTSmPOzAOpCbMP246zp7PU7aPfSln5Geg0dRGaDu7LXKK34dYecq2OCdlw2XUHlBqCElXe0OsPOUyXJfyytP1QGpCxN4IO7XsSPnM3TOoPKYyz4xqwHkpO0RyMUo1mBGyifLmIUvJ0lNLIQ+TY2jiUA/K2IR7pfzrzl+NrQ8DIGaesiWuSflkeiAqjwlEzyU97VxFYUvKK1JWgNSE33b9ZlXLppQLSwrx9IKnETIxxHif272BFGWEwl1SNvUtX5hsuizq+TxlW5yX8uGbcfANJwxaGwyOu+Pg8aWX8r0CPzSZVsfOjGrATVKWXIxSDa+QH5Flp5aJKGMT7pHymP1jzO6/eiaQwt1SvvogBXUmqtAhWo7cYkdLM9iQ8p6rI+AT7oPB6wYLhHKwJWU9p394T/PIrSNmdexKOeFsAmRqGX7d+atxi+fzlIVxLOXr2ddRe0JtdI1pj+LS2hAjT5kf56Ss1WWjx8KqqDGecPWBo1sXjyxlycUo1fAK+REwyfiTxE9ElLGJR5PyzL9mgtQEdZLarJZtKd8ruIeWM1qiybRGuJPXEWLlKdvivJTP3P0MVcYSei5p7mBOBDtS/mXnfyFTy5Bwlu84sCflI7eOwD/CH++tfs/qc8imlHOLc/HEnCfQaGojY3a0OHnKwtiXMsdx+GzDZ1BpVNh/vRPcG0jBi+RilGp4hVxOpJWxifJJed6xeSA14but3/GcsbEp5XxtPrrM74Ka42viQuYFiJWnLIxjKaflpqHBlAZoO7smsosIYuUpW+KalKOPKY1XTcbaqWNHytezkxAyMcQqMMIctqSs0+vw+orXUSmqElIzUs1q2ZXy1MNTQWpC7IlYeCYlygbJxSjV8Aq5HCxPWc6AjE24JuV5xxQgNWHU5lF2Mo3ZknKpvhR9lvdBYGSg1SVUdqWcW5yLJ+c+iXqT6uFmzg2IlafMj3NS3nJhCxRhcny5WQGOewVi5CnbEgpnpZxT3AJtZyvRaGo93Mmzdw+WHSl/v+17yMPk2HJhC08te1Lmn1HtcSlLLkaphlfILmKS8ceJHzMgYxPOSXn+8blGGcvBcXzLm8xhQ8ocNwqfJH4MpUaJPy7+wVPHnpRLdCV4ZekrqDymMlLupBjr3BtIUYZ7pJycnoygqCC8seIN6PTbIFaeMj+hcCTlUn0pei97EZXHyJGaURNi5SlbkgRXpDz/uMxOcxUT7Ej5dMZJgR7VgIelLLkYpRpeIbuAuYyFI+ekwr6UFxxfAFITvtw8AhzXF2LmKVvivJQ5bg6+30YgNWHpqSV2KtmRMsdlYmjiUCg1SqsGKwCrUr6RfQN1J9VFx3kdzSI23RdIUYb7pDxq8ygowhTYfikOYuUp85MEZ6S8+8oOKDUyfLGRwHFLHexTeinfyZOh4ZRAtJvTDnnaPIE6j0lZcjFKNbxCdpIVKSsgD5NjyLohDMrYBL+UY07EQKaWYeSmkcbL1OLlKfPjnJRNs8Cn/UkQM0+5DNelHLYnBKQmLD65WKCOLSlnF2Wj7ey2aDilIU9OMJtSnvbnNJCaEH0s2rjF83nK9kmCPSn/nfk3qo6tip5LXkKJbjDEyFPmxzkpG5a8NUfIRMKN7HcgVp6yGZKLUarhFbITVAwZm7CUsknGIzaNsLpnzLaUTb2Tf9/9O8TMU7bFeSkvTNaA1ITwvXUgZp5yGa5JuUQXhJeXdELwmGCcuSsUDsCWlDf+vRHyMLlVdzaAVSlnFWahxYwWaDmjpTGf272BFGW4R8ocx2FA/ADjkrcIeCYlqjEMr00QycUo1fAK2QErT6+EPEyOwesGVwAZmzBIOfZEh4cy5r/fzaaUTS0xLSeesS3lbZe2QalRYtj6fuC4ahArT9kW56TMcbn4JLE2VBrC7iuOfk9sSDk5/SsERgbi7bi3BT6LbElZq9Pi+UXPo9q4arh4/6JZHbtStm3j6YnoRof5BJKLUarhFbIdKqaMDSxM/hoyNeGLjY2h5+x9ibIl5W2XtkGlUQm0xGRTyidun0ClqErovay3MdfYPb2vLXGvlMP3hhvvzbeEWHnKtjgv5bTc71BvEuGp6Hpm97n5YEPKHPcSPk4cBJVGhb3X+H6GPSkvT1kOUhOi9kVZ1XpCynaRXIxSDa+QBYg7HQd5mBwfrf2oAsp4IWRqGT7f+Cr0nApi5imX4bqUD98MQUCkP15b/pqdlC+2pHw56zJqT6iNTvM6WU1+YVfKS08tNV5aD4eYecr8OJZyvjYfHaI7oP7kykjLJYiVp2yJa1KO3Kcy/sGzwE4dO1I+eGM5fMJ9MGTdEIHlkKJKWXIxSjW8QuahIst4UfIiyNQyDN8w3HiGKV6esi3OSzk1YweqjpWjW4wvCkoczQJlQ8oZ+bFoNr0Zmk9vjrv5d3lq2ZPy7iu7odKoMDRxqNkXL7tSNsRVvomgqCCcTD8JsfKU+XFOynGn40BqQmiSEmLlKdvivJSvZLVAzfEydI99yiw7mg/RpCy5GKUaXiFbEXc6DoowRYWW8WcbPrO63Mu2lK8+uIq6k+riiTmt8aCoEcTMU7bEeSnnafui4zxCyMQquJJ1xU4tO1I+c/c0gscE4+UlL/NcgWBTyt9t/Q7yMDk2X9hsVhsKVqV86MYh+Ib7YmDCQHDcboiRpyyMYylnF2Xj8Vkt0XSaD+4V1IRYecoOkFyMUg2vkM1YlboKijAFBq0dVOFkvPjkYgEZm2BTynfy7qDZ9GZoOq2pcdmNeHnK/DiWslanRa+lL6NSlBInbisgVp6yJa5JOT2P0HBKkDFKUeizxZaUTf3WZ/w1g6c2FKxJ+XLWZdQYXwPPxj5rdqaZBFalXKovRa+lvVBlbBWcu3cQYuUpO4HkYpRqeIVspCLLeMnJJZCpZRi2fpiD7mFsSflB0QO0m9MOdSbWsTrLZFfKek6PgQkDodKosOvKdoiZp2yLc1LO1+bjqeiGqDuJcCN7EMTKUy7DdSlvON8I8jA5vt36rZ3aULAi5azCLLSa2QpNpzXFvQLre+FJYFHKX27+0qqBjefzlJ1EcjFKNbxChmGZjSJMgYEJAyucjJeeWuqkjE2wIeV87QR0jemKqmOr4nTGaZ5aNqX8w7YfIFPLEHc6zrhFnDxlYexLWafX4Y0VbyAoKgjJ6aEQK0/ZFuelfDQtDgGRhH6rKkPPOZJNKKSWslYXgBcXd0DVsVXxd6bQvpPAkpSn/zndmIM+z6qOCSlLLkapxr9eyP8EGX+6/lMX+2pLK+Wi0m/w0mJCUJQv/rplT4xsSXnSoUkCvYjZlDLHcRi5aSQUYQqzPuCez1MWxrGUrz64itoTauPpBe1QWFITYuUp2+KclDkuH0MT60ClIey95mg1QRJYkPLmCwMhD5Pju63fCdRJLmXJxSjV+FcL2STjDxM+rHAyNsU/Dk0cWs6QC2mkXKIrwesrXod/hBJ7rxHEzFMuw3UpL09pD1ITftrxk0Ade1KO2hcFUhPmH59vVcumlLMKs9B6Zms0mdbEmBMsTp6yMI6lbGrvuvhka4iVp2yL81JOuTMKlaIIb65s6eA7z9NSPmVvh5KLUarxrxVyRZax++IfxZWyTq/D+2veh0qjwtaLf0DMPGVbnJfy9kuRUGkIQ9bVB2e3yQo7Ul58cgJITVAnqQVq2ZJycWnxw65Wlpd92ZXy6tTVIDXhf7v/B7HylIVxLOU7eXfQcEpDtJsTgjwtQaw8ZUsKAYyH4bMiiORilGr8K4W85syahzI2dFaqOLg/i1kcKes5PT5O/BiKMAXWnl1rrHN/IIUB90n5WNoxBEUFofeyjijR+UCsPGVLXJPytkv1oNQQhq1/307mNcCKlDkuDoPWDoJPuA/2X9/PU8uelA/fPAy/CD98EP+B2TFmV8qFJYXoMr8L6kysgxvZNyBWnnI5kVyMUo1/nZBNMv4g/oMKK2P3ZzF7Vsocl4VRm0dBppZh2SnrLxV2pXzp/iXUmlALned3NrZrFCdPmR/npHzi9gkERQXiteWBKNXXg1h5ypa4JuX/7TbkBJdNlOODHSlfyTK8L7rFdENRqfXrY0/KHMeh/5r+8I/wx9G0o2a1zEpZcjFKNZgR8syZM9G6dWu0aNHCY0KOPxNfYWXs+cQpz0iZ46rgpx0hAjM6TbAn5Tt5d9B0WlO0mNHCahkLu1K++uAqQiaGoNO8TsjXXoRYecr8OCflmBPzQWrC2P0yiJmnXIZrUn5QRGg9s4rA8iYTbEn5992/g9SE+DPxPLVMSllyMUo1mBGyCU+dIZtkPCB+QIWTsXghF+6XcsTekSA1YcrhxyB2nrIB16WcXbQL7ee2R8jEEIEuXOxJObMgEy1ntETTaU2NE6IAMfKU7WNfytsvbYdSo8TnG4eD4z6EWHnKtjgn5RJdCV5a/DiqjiWcv/cOxMpTLsN1KS87VU8gMMIc5qQsuRilGv8KIcefiYdSo6yQMjb11RYvccp9Up5yeIoxxGAkxM5TtsR5KReWdMFzCxWoMrYSTt2xNxOUHSkXlhTimQXPoOb4mlYxfwCrUk65k2KVkOXeQIoyQuEOKXMch2Hrh0GlUSHp6i8QK0/ZFuelfOD6CviEE4asCwbH3XHw+ExJWXIxSjX+8UJOOJtQoWUsTV/tR5fy3KNzHy4TMkx6cX8ghbulXKIrwRsresM/Qo4D1wMgZp5yGa5JWacnvB3XBgGRAXbWdLMl5Vs5t1B/cn20n9seucW5ZnXsSnncgXEgNWFR8iLjFs/nKQvjWMqXsy6j5viaeG5hR2h1tSFWnrIt5ZKy5GKUavyjhWyScf81/SucjE2tPKULuSi/lKOPRYPUhP9s+Y/VLF92pazn9Pho7UdQapT442ICxMxTtsU5KXOcHiM3dYAijLDp76EO9smGlHOLe6LdnCfw2OTHkJabxlPHnpTjz8SD1ITfdv1mVcumlE1tPJtNb2a8zy1OnrIwLktZcjFKNf6xQl57dm2FlbFpjbT0fbVdl/L846NAasKozaMEltywJ2WO4/D1H19DppZhRcoKY517el9b4l4pm5pSzD/+mvE1uTeQwt1SLtFtxavL5Kg8RomUO0ftVLIj5b9urYFfhB8GxA8QeD+zJWWtTvtwPfeFzAtmtRVKypKLUarxjxSyScbvr3m/wsqYnVaezks55kQHkJrw5ebXHKx/ZUvK4XvDQWrCrCOzrOrYlfKSk0tAasLvu3+HmHnK/DiWMsdx+GzDZ1BqFNhxWQWx8pRtCYWzUr6c1RQ1x8vRNaY9z/Imc9iQMsctxZB1Q+AT7oN91/bx1FYYKUsuRqnGP07IFVnG5g1L2JCxCcdSjj0RC5lahhGbGoPjlBAzT7kM16U8+8jzIDVBs0cjUMeelE2zk4cmDjX7w4dtKZvO5hcmL4SYecr8hMKRlO8X3kfLGU3RfLoP7hXUhlh5ypYkwRUph+81rOdenrLcTi0LUg4EcNJekeRilGr8o4S87tw6KDVKvLf6Pa+M3Y6wlBclL4JMLcMXG7+AniuGmHnKtjgv5ZWnP4VMTfj6j3bg7DZaYUfKJ24nGTuH9UaJrsSqjk0pL09ZbtZi0gS7Ui4qLUL32O6oMb4GLt4/BLHylPlJgjNSXp6y1LiiQQax8pQtcUXKdx38u/RilGr8Y4RckWVccRqW2Ep58cnFkKllGL5huFn3MHHylIVxLOU/Lv4BpUaJQWu7QM8RxMpTtsQ1KV/JqoKQiUp0nPck8rR5AnVsSXnn5Z1QaVT4OPFjntsY7ElZz+kxIH4A/CL8cOjGIeNWz+cp2ycJ9qS879o++IT7YMi6weC4IRArT9kWV6RsF8nFKNX4Rwg58VziQxnbnjWwTcVbllUm5aWnFtrJYmZXygdvHIR/hD/eWPGG8f0iXp6yLc5JOSM/A82mN0Cz6XJk5LeBWHnKlrgm5VN3AlB5TCBeWfqKnc8lW1L+ecfPkKllPF2t2JTyhcwLqDauGp5f9Dy0Oi3EylMWxi1SllyMUo0KL2STjN9d/W6Fk7HpfnfFkbGJjVh2SgF5GGGo3b7aUkv5JqylnHInBVXGVkH32O4oLCk0q42Gc1LOhfNS3grnpdwfQlLOLc7FU9FPGTuHbQZQA2LkKfPjnJRvZJ9D3Uk+aD9Xjtzi7Q72yYaUo4/1BakJkw5NEqi7A89I+UU4J+U9MJdyZkEmmk1vhpYzWiKrMMusTgfgE1RgKUsuRqmGDACxhEwmq0xEOUQUDCBX6ufjxYsXL168iAGLQpYRUSUiygNrT86LFy9evHjxEMwJ2YsXL168ePk3Ipf6CXjx4sWLFy9evEL24sWLFy9emMArZC9evHjx4oUBvEL24sWLFy9eGMArZC9evHjx4oUBvEL24sWLFy9eGMArZC9evHjx4oUB/h84Fl1zxtFvJQAAAABJRU5ErkJggg==\n", "text/plain": [ "Graphics object consisting of 68 graphics primitives" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for geod in outgeods:\n", " graph += geod\n", "graph += cauchy_hor\n", "show(graph, aspect_ratio=1, xmax=rmax, ymin=-4, ymax=ymax, \n", " axes_labels=[r'$r/m$', r'$t/m$'], figsize=10)" ] }, { "cell_type": "code", "execution_count": 84, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAU0AAAGSCAYAAABnmJM+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABUQElEQVR4nO29eXhU93mwfT/aQSCxChBI7PtisABjwDY23uskNt7tXImb5m2TOO2bpmlaf28TJ/makLRp0rR1XqdNmtSfg22MsQnYBJt9NcYsWtjEIgkhtIAQEkK75vf9cUbDSJqRZp8z0nNf17l05sxZnhmkm+e3izEGRVEUxTfioh2AoihKLKHSVBRF8QOVpqIoih+oNBVFUfxApakoiuIHKk1FURQ/UGkqiqL4gUpTURTFD1SaiqIofqDSVBRF8QOVpqIoih/YXpoi8mS0Y1AURenA1tIUkaXAF6Mdh6IoSgcRlaaILBGRu/y45Hng9+GKR1EUxV8kklPDiUgFsMsY87QP5yYAZ4DZxpiGsAenKIriAxHLNEVkJjAK2O/jJQ8Ce1WYiqLYiUgWz5c7f+728XwtmiuKYjsiKc07gFogt7cTRWQQsATYGu6gFEVR/CGs0hSRZ0TkUxH5FPg80Ap84jx2Ww+XrgI2GmPautxvuYi8JiIHRORPRCRORF4UkX8XkVdFZK+ILHGe+5yI/F/ntldE7gnbB1UUpd8QkYYgEckCLgB/b4z5iQ/nbwG+a4w56HYsDvgdVhekfwa+ALwFrDfG7HCe8yvgPud5BcaY9c7jPwBeBEYaYxyh+2SKovQ3IlU8v9v5c1dvJ4rIKGC8uzCdLAKOGsvymcBI4P0OYTqpAyYClR3CdFIJDHNeoyiKEjCRkuYK4AbwqQ/nPoOVQXYlGXjXuX8HsMUY88cu58wDioD/7HJ8JtAIVPsYr6IoikciKc19XesovfA8sKbrQWPMbmNMsYhMAcYBH7m/7+zXuRTYabrXOdwP7PHx+YqiKF4JuzSd9ZkT8a1oPg2rnvV0D6d1NOjs7HJ8ETCo63ERmQtMBdb5FrGiKIp3IpFpdqvPFJG/FhHxcK4vfTPvBq4BR7scX+H8ubPL8eeAZpzSFJE/6y1gRVEUbyRE4BmLgHbgEICITAImeChCAzzNTfl5YwWw20Mr+N3AeWPMhS7HVwF/MMbUOLPOcf6FryiKcpNIZJpXgWvGmBYRSQNWA9/repKzf+UFY0yFtxs5h2KOpnsRPBFnfaaHy0YAu5xdlv4O+I+APoWiKAqRyTR/ASwVkTexOrd/xxhT4+E8X4rmw4FLwPoux4dgtc6/7uGavwK+jJWhvmqM0RZ0RVECJqKzHHkNwmr5PgvMNcZcj3Y8iqIo3rDLJMT3AwdVmIqi2B27SFNnNFIUJSaIevFcRFKBE8AUY0xrVINRFEXpBTtkmo8BH6gwFUWJBewgzbuA16IdhKIoii9EvXiuKIoSS9gh01QURYkZVJqKoih+oNJUFEXxA5WmoiiKH6g0FUVR/EClqSiK4gcqTUVRFD9QaSqKoviBSlNRFMUPVJqKoih+oNJUFEXxg5iQplikeVnBUlEUJWLYVZrGfautrXUAtc6fpi9vbx9/28j3xRRfKzZx348zA/5xgBn909Hmuzu+awAz/T+mm69/8HWv13/rw2+ZrJ9nGedqnx62TQaSDKwy0Op3fMv/e7l5+PcPR/17isTmcGDmzGs1IhgRzAcfhOtZ/2MgzsCfG3BE/XP7sfVL7CrNfktBVQGjUkdRUV+BwTB1+FQqb1SSMyaH6oZqCqsLuX3c7V6v33p+KysnrsR7Uv4I1rp0m7BWTPZ9GtPzNefZV7qPz8/7vB+fKHbZsAGO5ycCsCCnjYceCteTvgj8Fvg18BWg6+rUip3wW5oicqeIbBSRSyJiRORRP65dJiJtInLM3+f2FwouFzAnYw7HKo4BkJ2eDUBOZg6flH0CwJJxSzxee/nGZXIrc1k5cWUvTwlMnGvy15CamMrnpn/Op/NjGYcDvvPyze/lH3+QQHgrh1ScsUIgmWYqkAt83Z+LRCQda7LhbQE8s99QUGVJ81DZIQAS4hLISM1g7OCxfHzxY0YMHMGkoZM8XrujeAcAKyf1Jk3wV5zGGF7Pe51VM1eRmpTq8+eJVSKXZbqj4owF/JamMWazMeYfjDFd1x7vjV8Ba4AD/j6zv9DY2sjZq2eZkzGHj8s+BuBq41VyxuQgInxc9jFLxi3xWvTedn4bM0bMIHNwpo9P9F2ch8sPc7r6dL8omkc+y3RHxWl3IlKnKSJ/CkwGvu/L+c3NzdTV1XXa+gOnrpzCYRzMHDGTs1fPEkcchdWFLMxciMM4OHjxIEvGei6aA2wr2uZD0bwrvonz9bzXGT1oNPdMvMfP+8ce0cky3VFx2pmwS1NEpgI/Bp43xrT5cs3q1atJT093bVlZWeEN0iYUVBUAMCBxAC3tLWQPyXY1Ap26cora5lpuz/LcCFR8rZhzNecCkCb0Js42RxtvFLzBs3OeJSEuIYD7xw7RzTLdUXHalbBKU0TisYrkLxtjCn297qWXXqK2tta1lZaWhi9IG5Fflc+EIRM4e/UsANlpNxuBPr74MYKwKHORx2u3nd9GnMSxYsKKAJ/uXZxbz2+l6kZVvyiaRz/LdEfFaUfCnTYMBhYCC0TkP5zH4rD6q7cB9xtjtne9KDk5meTk5DCHZj86GoGOlB8BIDUptVMj0JyMOQxOHuzx2m1F28gZk8PQAUODiKBDnKuwxPkWkMjrea8zc8RMFoxeEMS97c/NLNOSZvSyTHe+6Pz5p86fr6I9BaNLuL/9OmAuMN9texU47dw/GObnxxQFVQXMGTmHfRf2AXCt6drNRqCLH3vtamSMYXvR9gCL5l3pnHHWt9Tw7ql3+fy8z/fQ97NvYK8s0x3NOO1EIP00B4nIfBGZ7zw00fk62/n+ahF5DcAY4zDGFLhvQBXQ5Hx9I1QfJNapbaqltK6UORlzOH75OADnas6xMHMh15uvU1BV4FWaxy8fp/JGpY9djXzhpjjfO3UfDa0NPDf3uRDd257Ypy7TGypOuxBI8XwhsMPt9c+cP/8HeAEYA2QHF1b/o0OUmYMzqWmqIWNgBlU3qsgZk8OhS4cwGK8jgbad30ZyfDLLspaFMCJLnK/nfZY7soczYcjYEN7bfnTPMu3Y4KVFdTsQSD/NncYY8bC94Hz/BWPMih6u/54xZn7AEfdRCqoKiJd4GtsaARiXNg6wGoEOlB4gPTmd6SOme7x2a9FWlmYtZUDigJDGVFG/kI/OC5+fdw1/h1zGEvbPMt3RjDPa6H9TNqGgqoCpw6dy4vIJANJT0m82ApV9zG3jbiNOuv9ztTna2FW8K0T1mZ15s+BNEuISeHLW6wQyVj1WsG9dpjdUnNFEpWkT8qvymZsxl70X9gJQ31JPzpgcAKsRyEun9kNlh7jecj2E9Zk3eT3vdf5k6p8wdMAzBDrJh92JrSzTHRVntFBp2gBjDPmV+czJmMPRiqOA1Vl9YeZCztec50rDFa+NQNuKtpGWnMbCzIUhjenk5ZMcLj/s1jcz8NmR7EzsZZnuqDijgR1ruz1wJtoBhJWqG1VUN1Yzbfg0LtZdZHDSYC43XCZnjNWpHeC2cbd5vHZb0TZWTFgR8pE6v8//PUNShvDw1Ifdjnruxxmr2LNfpr9o41CkiYFvtxV43LnfN3sodQyfTI5PxmEcrgk3OkYCTRs+jWEDhnW7rqG1gf2l+0Nen+kwDn6f/3uenPUkKQkpXd7tOxlnbGeZ7mjGGUlsLc1XXnmFWbNu4X/9r45fgqfoi+IsqCogOT6Zq41XARg2YFinRiBvRfO9F/bS0t4ScmnuL91P8bXiHoZNxr44Y7cu0xsqzkhha2m++OKLnDhxgv/6rwLnkSNYf7B9S5wFVQXMGjnLVRRvamsiZ0wOze3N5FbkcttYL0Xz89sYPWg0s0bOCmk8r+e9TnZ6Nsuzl/dwVmyLs+9kme6oOCOBraXZnfXAIfqaOAsuFzB31FwOllmjSkvrSlmYuZCj5UdpdbR6l2bRNu6ZeE9Ihzc2tzWz9vhanp/7vMcuTp2JTXH2vSzTHRVnuIkxad4O/JG+JE6HcVBQVcDskbM5c/UMSXFJXGm4Qs6YHA6WHSQlIYV5o+Z1u+5q41WOlB8JedF889nN1DTV+DGjUeyJs29mme6oOMNJjEkTYDl9SZwXai9Q31LPyIEjaWprYtSgUcDNRqCcMTkkxndvod5ZvBODCbk0X897nQWjF/hZ5I8dcfbtLNMdFWe4iEFpQl8SZ0fLeZvDmp95+IDhrkagg2UHvRbNt57fyuShkxk/ZHzIYqlprGFj4cYA582MDXH2/SzTHRVnOIhRaUJfEWdBVQFpyWmuiYcdxkHOmBwuN1ym+Fpxj/0zQ51lrjuxjjZHG8/MeSbAO9hbnP0ny3RHxRlqYlia0BfE2THx8L5Saw7NsutlLMxcyMGLVqOQp0zzYt1FCqsLuXfSvSGN5fX811k5caUfC7N5wr7i7F9ZpjsqzlAS49KEWBdnx8TDJy6fQBCqG6tdI4FGDxrtWvfcnW3nrVWQ7554d8jiuFB7gd0lu0O0pIX9xNk/s0x3VJyhog9IE2JVnG2ONk5eOcmkoZOoaaphxMARgNUI1FGf6ak70baibcwfPd91fih4I/8NUhJSeGzGYyG6o73E2X+zTHdUnKGgj0gTYlGcZ6rP0NLe4ho33jESaMygMRy6dMhj0dwYE5b6zDUFa/js9M96XYMoMOwhTs0y3VFxBoutpWkNo5zFokWeV2DsTmyJs6Pl/FrTNQDiJZ6cMTmcrj5NXXOdx0agwupCLl2/FNL1xwuqCsirzOP5uc+H7J43ib44NcvsioozGGwtzY5hlIcOHfLjqtgRZ0FVAaNSR3Gkwlp9sqK+goWZC13L9Xqa7m170XbiJZ47su8IWRxr8tcwNGUoD055MGT37Ez0xKlZpjdUnIFia2kGTmyIs+Cy1XKeW5ELwNWmq9ZIoIsHmZ0xm7TktG7X7CjeweKxi0NWjDbGsCZ/DU/MeoKk+KSQ3NMz0RGnZpk9oeIMhD4qTYgFcRZUFTBjxAwuXb9EWpIlSPdGoK44jIMdxTu4e0LoWs0PXDxASW1JhFabjKw4Ncv0BRWnv/RhaYKdxdnY2sjZq2cZkjIEg2HYQKsRaEjyEPKr8j1K83jVca40XAlpfeaa/DWMHTyWO8ffGbJ79kzkxKlZpq+oOP2hj0sT7CrOU1dO4TAO2tqt4ZOJcYnkjMnhSMURHMbhsRFoe9F2kuKTWJq1NCQxtLa38tbxt3h2zrM+zGgUSsIvTs0y/UXF6Sv9QJpgR3F2tJwXXSsC4ErDFVcjUGpiKrNHzu52zfbi7dw+7vaQLdW79fxWrjRciVDRvCvhFadmmYGg4vSFfiJNsJs486vymTBkAscqjwFQ01Tjmg5u0dhFxMfFdzq/3dHOruJdoS2aF6xh5oiZzB89P2T39I/wiFOzzGBQcfZGP5Im2EmceZV5zBk5h6KaItc6PDmZVsu5p/rMoxVHqW2uDZk0b7Tc4N2T7/Lc3OdCOomx/4RenJplBouKsyf6mTTBLuLMr8pnXNo4Wh2trungjDGUXS/zKM0dRTsYmDiQxWMXh+T5Gws3cqP1Bs/OeTYk9wuO0IlTs8xQoeL0Rj+UJkRbnNUN1Vy6fsnVLzIpPomcMTl8UvYJ4Hm53u3F21mevTxkfSnX5K/htrG3MXnY5JDcL3hCI07NMkOJitMTtpam/8Mo/SF64syvygfgcsNlwKrPXJi5kINlB8lKy+o2NVtreyt7SvaErH9mdUM1m89uDtOwyWAITpyaZYYDFWdXbC3NwIZR+kN0xJlfmU9SfBKnrpwCrLHnHY1AnrLMQ5cOcaP1RsjqM9edWIfDOHhq9lMhuV9oCVycmmWGCxWnO7aWZmSIvDjzKvOYNXIWhdWFJMZZf+S3jL6FTy996rE+c3vRdtKS07h1zK0hef6agjXcO+le13pE9sN/cWqWGW5UnB2oNIFIizO/Kp8pQ6dwo/UGQ1KGkJGaQU1jDQ2tDV6leef4O11TyAVDaW0pu0t227Bo3hX/xKlZZiToKs7+iUrTRWTE2bFkb1qKNdY8OSHZ1QgUL/HkZOZ0Or+prYn9pfu5Z0JoiuZvFFiTDT8649GQ3C+8+CZOzTIjibs4+ycqzU6EX5xFNUXcaL1BY2sjANebr7sageaNmsfAxIGdzj9QeoDm9uaQ1WeuyV/DZ6Z9xuMMSvakd3FqlhlpOsTZP1FpdiO84uxoOS+qsYZP1jbX3mwE8tQ/s3gHwwcMZ+6ouUE/+3jVcXIrc6M0bDIYvItTs8xo8cVoBxA1/JamiNwpIhtF5JKIGBF5tJfzV4nIRyJyWUTqROSAiDwQcMQRIXzizK/MZ/iA4Zy5eoY459c/dfhUTl4+6XWSjhUTVoRkQo03Ct5gSMoQHpoSi6mYZ3FqlqlEmkD+ElOBXODrPp5/J/AR8DCQA+wANorIggCeHUHCI868KqvlvLqxmrSUNDJSMyirK8NgumWa9S31HCw7GJKiuWuy4ZlPkJyQHPT9okNncTocrZplKhHHb2kaYzYbY/7BGLPex/O/YYz5J2PMIWPMGWPM/wOcAT7j77MjT+jFmV+Zz6hUq6tPSkKKqxEoPTmd6SOmdzp334V9tDnaQtKp/eOLH1N0rSgGi+ZduSnODRt+plmmEnEiXqcpInHAYOCqt3Oam5upq6vrtEWP0ImzsbWRM1fPuCbIaGhpcDUCLR67uFsRfHvRdkYPGs2METMCfmYHkZ9sOJw8gsOxnu+8fHNNI80ylUgRjYagv8Eq4q/1dsLq1atJT093bVlZWZGLziOhEeeJyydwGAfl18sBqGup49bRt/bYCHT3hLuDnoWozdHGW8ff4pk5z3Sbci5W2bDhEY7n3wLAgpxCHnoouuuqK/2HiEpTRJ4Fvgc8bYyp8nbeSy+9RG1trWsrLS2NWIzeCV6c+VX5COKaeBggY1AGVTequjUCXWu6xuHywyGpz9x6fiuXGy73gaK5RfcW828hEr111ZX+RcSkKdZv9W+Ap4wxW3s6Nzk5mbS0tE6bPQhOnHmVeUwaOony+nIGJQ0iIzWDkmslAN0yzd0lu3EYR0ikuSZ/DdOHT2fBaJu3vflI9xbzPyea66or/YuISNOZYf4OeM4Y834knhk+AhdnflU+2enZOIyDAQkDXI1Ak4ZOYmTqyE7n7ijaQXZ6NhOHTAwq2obWBt499S7Pz30+ypMNhwbP/TKjt6660v8IpJ/mIBGZLyLznYcmOl9nO99fLSKvuZ3/LPAaVl3mxyIy2rmlhyD+KBGYOPMr8xmUNAiAxrZGVyOQx/Hmxdu5Z+I9QYtu4+mN1LfU8+xcO0w2HDze+2WqOJXIEEimuRA46twAfubc/4Hz9Rgg2+38vwASgFeAcrftFwE820b4J86qG1VU3qjkWtM1wOqDOS9jHkfKj3ST5uUbl8mrzAvJePM1BWtYPHYxU4ZNCfpe0ab30T8qTiX8+D1tjjFmJ+A1/THGvNDl9Qp/nxE7dIjzQaw/2E1YHQO6k19pDZ+8WHfRdSwlMYXm9uZujUC7SnYBcPfE4PpnXm28yuYzm/np/T8N6j52oXuW6enXt0Ocq7DE+RaQGLEYlb6Pjj0PGt8yzvyqfFISUiirKyMlIYWM1AyKaopIik/q1kCzvWg7U4dNZVzauKAie+fEO7SbdptONuwf/o0x14xTCR8qzZDQuzjzKvOYOmwqLY6Wm41Alz5h/uj53YY17ijeEZJW89/n/56VE1cyetDooO8VbfwfY67iVMKDSjNk9CzO/Kp8Rg60Wshb2ltYmLmQjy9+3K0+89L1S5y6cirooZMdkw33hb6Zgc9kpOJUQo9KM6R4Fme7o52CqgJaHC0A3Gi9wdRhUzl79Ww3ae4o2gHAigkrgorkreNvkRSfxKqZq4K6jx0IbiYjFacSWmwtzfCuRhkuuovzXM05mtqaqKrvPghqybglnV7vKN7B7JGzg16/Z03+Gh6Z9kgMTTbsmdDMl6niVEKHraUZ/tUow0VnceZXWvFfqr9EYlwiGakZnL16lhEDRzBp6KROV24v2h50febpK6c5WnG0TxTNQzdfpopTCQ22lmZsc1OceZX/h5EDR1DfUs+AxJuNQIvHLu7Ueb34WjFF14qCluabBW8yOGlwjE42fJPQz8qu4lSCR6UZVixx5lddZFxaEwCt7a3W8hYXu48E2lG0A0G4a/xdAT/RGMObx9/k0RmPMiBxQDDBR53wzMqu4lSCQ6UZdpaTXzWGpHirUaixrZExg8dQ01TTTZrbi7ezYMwChg4YGvDTcitzOXXlFM/Oie1hk+Fd+0fFqQSOSjPM3Gi5wbmrZVxrujknaGt7PQCLxy52HTPGsKNoR9BDJ98seJPhA4Zz76R7g7pPtAn/2j8qTiUwVJph5vjl4xgMVTeuEydxZKRC4dVfMH341E4Z5ZmrZyi7XhbU0EljDG8WvMkTs54gMT52hw5GboVJFafiPyrNMJNfmU+cxFHTVOMcCbSEgxcruG1cHe4d4HcU7SBe4rkj+46An/XxxY8pqS3hmTnPhCDy6BHZFSZVnIp/qDTDTF5lnmsMebtp55ZRK8itFG4bW4N7B/idJTtZmLmQwcmDA37WmwVvMmbQmKDEG22is465ilPxHZVmmMmvymdoilUMb2prYkjKENoc7SwZ90s6+nEaU8/O4p1BjQJqd7Sz9sRanp79dEyvAxS9dcxVnIpvqDTDiDGGvMo8mtqaXMca2hpISUhhbsYX6OjHWVi9kor6iqCkuatkFxX1FTFdNI9OlumOilPpHZVmGKmor6C6sZqrjVcRhIzUDE5dPkXOmBxnQ43Vj3Nn8THiBZZlzQ/4WW/kv8HEIRM7tcjHGtHLMt1RcSo9Y2tpxubY85vkV1kTD19tvEpyQrLVqb3b8hbL2VlyBwsz4xic/CyBrHLZ0t7COyff4Zk5z8TsOkDRzzLdUXEq3rG1NGN37LlFXmUeAxMH0m7aMcYwY8QMSmpLOs3UboxhZ/FxVkx4lkBXufzo3EfUNNXEdNHcHlmmOypOxTO2lmask1+V75oAuLm9mQEJ1rBG95mNCqsLnfWZnyfQVS7fKHiDWSNnMTdjbuiCjyD2yjLdUXEq3VFphpGOPpod1DbXMnrQaLLSbo4O2lm8k3iJZ1nWMgJZ5bKhtYENpzfwzOzYLZrbL8t0R8WpdEalGSbaHG2cuHyC683XAchIzeDk5ZPcNva2TnLr3j/TP3G+X/g+9S31MVs0t2+W6Y6KU7mJSjNMnKk+Q3N7MzWNNSTFJ3Hr6Fs5dOlQp0Ygqz5zp4elLXwX55vH3yRnTA5Th08Nw6cIP/bOMt1RcSoWKs0w0dFy3uJoAQPjh4znest1L/WZKzzcoXdx1jXX8X7h+5plRgwVp6LSDBt5lXkMGzAMsMSZGJeIICzMXOg6x1Wfmb3My116Fud7p96jub2Zp2c/HY6PEHZiJ8t0R8XZ31Fphon8qnwGJQ5yvb7aeJXZGbM7jS3fWbKTRWMXMShpkKdbOPEuzjcL3mR59nKy0rO8XGtfYi/LdEfF2Z9RaYaJvMo8Wtqt1SdHDhxJweWCbvWZO4p2sGL8Ch/u1l2cVxqu8NH5j2J2suHYzDLdUXH2V1SaYeB683WKrxVT11xHQlwC80fPp6CqszRPV5+m8kalH+PNO4vznRNrcBgHT8x6IvQfIMzEdpbpjoqzP2JracbqMMqCqgLAmpwDYMygMTiMo9NIoN7rMz1xU5xvFHyXlRNXkJGaEbK4I0XsZ5nuqDj7G7aWZqwOo8ytzCVerOnZ2hxtiAipianMHjnbdc7OYl/qMz2xnLK6/4/dJbU8O6eMQMaqR5O+k2W6o+LsT9hamrGKe8s5wJWGK+Rk5rjmuezon+lbfWZ33j5RQmJ8Io/NLCWQserRpG9lme6oOPsLKs0wkFuZ6xo+OXLgSPKr8lmceXPKNv/rMzvzRsEbPDTlYYakbCHQST6iQd/MMt1RcfYHVJohxmEc5FXmcaPlBnESx9yMuVyovRCC+kyL8zXn+aTsE2eHdv/HqkeTvptluqPi7OuoNENM8bVi6lvqqW+tJ07iGJE6Aui8XG/g9ZlW38yBiQP5zLTPOI/Ehjj7fpbpjoqzL6PSDDG5Fbmu/TZHG8YYRqWOcs1s5H28uW+8WfAmn53+WVKTUt2O2l+c/SPLdEfF2VfxW5oicqeIbBSRSyJiRORRH665S0QOi0iTiJwXka8EFG0MkFeZR2riTaFV1Fdw27ibMxsFU595vOo4+VX5PDPb01hz+4qzf2WZ7qg4+yKBZJqpQC7wdV9OFpGJwAfAHmAB8CPg30Tk8QCebXtyK3MZkGhNNjx8wHDyKvM6NQLtLN5JQlwCS7OW+n3vNwveJD05nQenPOjlDHuKs/9lme6oOPsafkvTGLPZGPMPxpj1Pl7yFeCCMeYbxpiTxphfA/8NfMvfZ8cCeZV5tLS1IAizRs6itrm2e31mpv/1mcYY1p5Yy2MzHyM5IbmHM+0lzv6bZbqj4uxLRKJO83bgwy7HtgALRSTR0wXNzc3U1dV12mKB683XOVdzjvoWqxFo6ABrvfNFY60RTa7+mQEUzXMrcymsLvRxRiP7iLN/Z5nuqDj7CpGQ5migssuxSiABGOHpgtWrV5Oenu7asrJiYxafjjk0HThoN+20tbcxffh0hqQMAYKrz1x7fC1DU4aycuJKH6+Ivjg1y+yKirMvEKnWc9PltXg5DsBLL71EbW2taystLQ1vdCEirzLPNXwSoOx6Waei+Y6iHQHVZxpjWHt8LatmrnKul+4r0RWnZpmeUHHGOpGQZgVWtulOBtAGVHu6IDk5mbS0tE5bLJBbkeuqqxyWMowTl090rs8sCaw+80j5Ec7VnAtwsuHoiFOzzJ5QccYykZDmAeC+LsfuBz41xvSp35a8qjyMsZLnaSOm0epodU0HF0x95trjaxk+YDh3Twysb2c0xKlZZm+oOGOVQPppDhKR+SIy33loovN1tvP91SLymtslrwLjReRnIjJTRL4E/Bnw02CDtxOu4ZOt1vDJ9OR0kuKTmDdqHgCnrpyi6kaV39LsaDV/fObjJMQlBBFh5MSpWaavqDhjkUAyzYXAUecG8DPn/g+cr8cA2R0nG2OKgIeBFcAx4DvAXxlj3gkoYpvSMXyy3bTjMA6a2pqYP3q+q3tQoP0zD106RPG1Yp6eE4p1gCIjTs0y/UHFGWv4nboYY3ZysyHH0/sveDi2C7jV32fFEu7DJwEu1F7gkWmPuF4HWp+59vhaMlIzuHP8nSGJ86Y4H8T6g92ENV4hNNzMMi1papbpCx3iXIUlzrfo+P4U+6Fjz0NEbmUuKQkpAAxJGULRtSJXI1Cg480dxsHa42t5YuYTQRbNuxK+jFOzzEDRjDNWUGmGiLzKPJfYJg+dDNyc2SjQ+syDFw9SWlfKU7OfCmmsFqEXp9ZlBouKMxZQaYaI3MpcmlqbEIRBSYMYkjKEqcOmArCrZBcJcQncnnW7X/dce3wtoweNZnn28nCETKjFqVlmKFBx2h2VZgi43nyd8zXnaTNtGAw3Wm+weOxi18xGu0p2kTMmx6/6TIdx8PaJt3ly1pOuZTLCQ2jEqVlmKFFx2hlbSzNWVqPsGD7ZQfG1YtfMRsYYdpfs5q7xd/l1z/2l+ym7XhamonlXghenZpmhRsVpV2wtzVhZjTKvMs+1JlBaUhpXGq64lrc4V3OOS9cv+d36/VbBW4wdPDagKeQCI3BxapYZLlScdsTW0owVcitySYm3Ws4nDJkAwKJMKzveXbIbQfyql2x3tLPu5DqenPWkS8aRITBxapYZTlScdkOlGQLyqvJodbQiCAOTBjI+fTyjBo0CrPrM+aPnk56S7vP99l7YS0V9RYSK5l3xT5yaZUYCFaedUGkGScfwyVZHKwZDXXNdp5UnA6nPfOv4W2SnZ7Nk3JJQh+sjvotTs8xIoeK0CyrNICmqKaK+pb7T645GoAu1Fyi+VuxXfWabo413Tr7Dk7OedLW+R4fexalZZqRRcdoBlWaQ5FXmufYHJw6msa3R1al9d8luAO4Yf4fP99tdspuqG1VRKpp3pWdxapYZDVSc0UalGSS5lbkkxlniGJc2jniJ59Yx1jD7XcW7mD1yNiMGepyg3iNvFbzFhCETXA1J0cezODXLjCYqzmii0gwS90wzOTGZORlzXGuS777gX31mR9H8qVlPRblo3pXu4tQsM9qoOKOFSjNIcitzaXVYv7A1jTWuonn59XIKqwv9qs/cXrSd6sZqmxTNu3JTnA7HZ/jOy82udzTLjBYqzmgQI9L8NNoBeKRj+GQHpXWlLmnuubAHwC9prj2+lslDJ7uK9/bDEueGDaM4nm/NE6pZZrRRcUYaW0vzlVdeYd68mVy8+IDzyNWoxtMV9+GTAxMH4jAO1/IWu4p3MXXYVMYMHuPTvVrbW1l/cj1PzbZb0bwzDsdyvvPyq67X//iDNs0yo46KM5LYWpovvvgieXknGTdul/PI57CTOHMrchHnfMxjBo0hNTGVWSNnAf7XZ249v5WappoAF0+LHFZdptVRf0HOpzz00ENEc111pQMVZ6SwtTRvMsf58yJwL3YRp/uSvUnxSeRk5hAfF8+VhisUVBX4VzQ/sZZpw6e51hSyI91bzAcgEr111ZWuqDgjQYxIs4ONQCl2EWduZS5tpg2Ayw2XXUXzvRf2AnDXBN8yzZb2Ft49+a4NW807073FfDbRXFdd8YSKM9zEmDTnANuwgzg7hk92cKXhiqsRaFfxLsanjyc7Pdvb5Z348NyH1DbXhmjxtPDgvV9mdNZVV3pCxRlOYkyaAPOwgziLaoq40WoJYkDCAODm8ha7L+z2OcsEq9V85oiZzB45O/SBhoie+2WqOO2HijNcxKA0wQ7idM8yRw4cyehBo8lKy6K2qZZjFce4M9u3+symtiY2nN5g61Zz30b/qDjth4ozHMSoNCHa4sytzCXO+fXFx8W7lrfYV7oPh3H4nGl+eO5D6prrbNqh3cL30T8qTvuh4gw1MSxNiKY4cytzMRgAKm9UumY22lW8izGDxrhWpOyNdSfWMWvkLFdXJbvh/xhzFaf9UHGGkhiXJkRLnEfLj7qk2dDa4JpDs6M+05eidnNbM384/QeemPlEWGMNhsDGmKs47YeKM1T0AWlCpMVZ11xHSW0JAMnx1nDChZkLudFyg08vfepzfea2om3UNtfyxCx7SjO4mYxUnPZDxRkK+og0IZLiLKgqcO0PGzCM6cOnMyRlCAcuHqDN0eZzfea6E+uYNnwaczLm9H5yFAh+JiMVp/1QcQaLraXp/xK+kRFnbkWua1+QTv0zRwwcwcwRM3u9R2t7K++des8GM7R7JnTzZao47YeKMxhsLc3AlvANvzjzKvNcY86rGqpcI4F2X9jNnePv9EmC24u2U9NUY9uieWjny1Rx2g8VZ6DYWpqBE15xHqk44moEanO0sXjsYpramjh48aDP9ZnrTqxj8tDJ3DLqlpDGFgrCMyu7itN+qDgDoY9KE8IlTodxkF9pTQmXFJdEUnwS80bN4+DFgzS3N/tUn9nmaOPdU+/yxKwnbFk0D9+s7CpO+6Hi9Jc+LE0IhziLaopobGsEID0lnQWjF5CckMzukt2kJ6czN2Nur/fYVbyL6sZqWxbNw7/2j4rTfqg4/aGPSxNCLc7cypuNQO2m/WYjUMku7hh/B/Fx8b3eY92JdUwYMoGcMTlBxRIOIrP2j4rTfqg4fSUgaYrI10SkSESaROSwiPS4Rq2IPC8iuSLSICLlIvJbERkeWMiBEDpxHqs45tq/2niVxWMX09Lewv7S/T7VZ7Y72ll/aj1PzLRf0TyyK0yqOO2HitMX/JamiDwN/CvwQ2ABsAfYLCIe50ETkeXAa8BvgNnAk8Ai4NeBhRwooRHnkfIjnV7fNvY2Dl86TGNbo0/1mXsv7KXqRpUti+aRX2FSxWk/VJy9EUim+U3gN8aYXxtjThpjvoFloq96OX8JUGyM+TdjTJExZi/wK2BhQBEHRfDiPHTJ6v6UGJfIkJQhTBk2hd0lu0lNTGXB6AW9Xv/2ibfJSstyFevtQvTWMVdx2g8VZ0/4JU0RSQJygA+7vPUhsNTLZfuBcSLysFiMAp4A3vc32NAQuDivNl6l6kYVAKlJqa6ZjXaV7GJZ9jIS4xN7vN5hHLxz8h0en/m47Yrm0V3HXMVpP1Sc3vA30xwBxAOVXY5XAqM9XWCM2Q88D7wFtAAVwDXgL709pLm5mbq6uk5baAlMnO4jgVraW7ht7G20O9rZV7rPp/rM/aX7qaivsF3RPHpZpjsqTvuh4vREoK3npstr8XDMekNkFvBvwA+wstQHgYnAq57OB1i9ejXp6emuLSsrK8Awe8J/cbo3AjW0NrB47GLyKvOoa67zaRG1dSfWkTk4k9uzbg806LAQ3SzTHRWn/VBxdsVfaV4B2umeVWbQPfvs4CVgnzHmn40xecaYLcDXgC+JiMdFwV966SVqa2tdW2lpqZ9h+op/4nSXJljLW+y5sIek+CQWje15fLx70TxO7NPTyx5ZpjsqTvuh4nTHr79eY0wLcBi4r8tb92HVXXpiIODocqzd+dPjn2dycjJpaWmdtvDhuzg/LvsYgARJYMKQCWSkZrDnwh4Wj11MSkJKj0/5pOwTLtZdtF3R3D5ZpjsqTvuh4uwgkJTnZ8CXReRLIjJTRH4OZOMsbovIahF5ze38jcAqEfmqiEwSkWVYxfVPjDGXgv0AoaF3cba0t3Du6jkAUhJTWDx2McYY9pTsYXnW8l6f8PbxtxmVOoplWctCGnkw2C/LdEfFaT+6irN/4rc0jTFvAd8AvgscA+4EHjbGlDhPGYMl0Y7zf4fVTenrQAHwNnAaWBV42OGgZ3GeuHyCdmMlyE1tTSzOXMzZq2epvFHJHeN77NuPMYZ1J9exauYqn0YMRQp7ZpnuqDjth7s4+ycJgVxkjPkl8Esv773g4di/A/8eyLMiS4c4V2KJcyswDOjcct4xs9GeC3sQhKVZ3npbWXx66VMu1F6wVdH8ZpZpSdNeWaY7HeJ8EOsPdhOQGtWIlA5x9k/s0yJhGzxnnEcrjrrOiJM4bh1zK3sv7GXeqHkMSRnS4x3XnVjHyIEjfWphjxT2zzLd0YzTfjwS7QCihkrTI93F+fFFqxEoXuKZkzGH1KRU9lzYwx3ZvhXNH5vxGAlxASX2IcfedZneUHEq9kCl6ZWb4jRmJXnO2Y2S4pNYnLmYivoKzl49y/LsnhuBjlUc43zNeVsVzWMry3RHxalEH5Vmj1jiLK0robGtCbAagRaNXcSekj0AvTYCvX3ibYYNGMaKCSvCHKtvxGaW6Y6KU4kuKs1emcexiu+5XhkMizIXsefCHiYNnUTm4EyvVxpjWHdiHY9Of7TXcemRInazTHdUnEr0sLU0/V+NMjwcq7jm2k+OF+ZkZPpUn3n88nHOXD3D47MeD3OEvhH7WaY7Kk4lOthamoGtRhl6OhqBrFbzeBpa7yevMq9Xaa4/uZ605DRWTlwZiTB7pW9kme6oOJXIY2tp2oVPL30KQEJcAovHPs2Bi8U4jIM7xve8HtD6k+t5ZNojJCckRyLMHulbWaY7Kk4lsqg0e6G2qZbLDZcBayjlosyH2FPyFBmpwtRhf4G3sernrp4jtzKXVTPsMfCp72WZ7qg4lcih0uyFvMq8Tq8XjV3EngunWZ59DyIX8TZW/d1T75KSkMKDUx6MTKA90HezTHdUnEpkUGn2gvt0cOnJ6WSlZfFJ2Sfckf0IPY1Vf/fUuzww+QFSk6I/5K9vZ5nuqDiV8KPS7IWONYHiiGNR5iIOlx+mub3Z2Qjkechl+fVy9pfuZ9XM6BfN+0eW6Y6KUwkvKs1e2Fe6D7Bazjs6tQ9KGsQto29xntFdnO+deo+EuAQemRb98bn9J8t0R8WphA+VZg+0Odoorim29o01s9He0r0szVraZRx5Z3GuP/UWd0+4m2EDhkU+aDf6X5bpjopTCQ8qzR44feU0DrdJ528dfSv7LuzzMumwJc6rjSXsKNrFYzPuj1ic3uifWaY7Kk4l9Kg0e8C9EWhU6ihqmmqoba7tYbz5PDae/mscBh6d8T8Esq56qOjfWaY7Kk4ltNhamtEeRnm4/DAAgrBk3BL2XNhDYlwit429zes17576lNuz5jNmcAX+rqseSjTLdEfFqYQOW0sz2sModxbvBEBEXJN0LMxcyIDEAR7Pr2+pZ8u5Laya8XkCWVc9VGiW6QkVpxIabC3NaGKM4eTlk4C1/O6iTKvlvKfx5n88+0ea2pp4bOZjBLKueqjQLNMbKk4leFSaXiivL6epvcn1emTqSMrry3ucdHj9yfXcMuoWJg2d5DwSeXFqltkbKk4lOFSaXnBvBJo4ZKJrOOWybM9L8Da3NbOpcJOHDu2RFadmmb6g4lQCR6XphSPlRwCrEej2cbez58Ie5mTM8dr3cnvRdq63XPcyCigy4tQs0x9UnEpgqDS9sKNoh2vfmqSj5/rM9SfXM3XYVGaPnO3ljPCLU7NMf1FxKv6j0vRCR6ZpMEwZNoXC6kKv0mx3tPPe6fdYNXMV0mNqFz5xapYZKCpOxT9Umh6ob6nnWvM1wBpzXtdcB3hfRG3vhb1cabji4wQd4RGnZpnBoOJUfEel6YH8ynzX/owRMzhUdojx6eMZlzbO4/nrT65n7OCxLMxc6OMTQitOzTJDgYpT8Q2VpgeOVhx17S/NWmrVZ3rJMo0xvHvqXR6b8Rhx4s/XGTpxapYZKlScSu+oND2wvWi7a39exjyOVhz1Wp95uPwwpXWlAc6dGbw4NcsMNSpOpWdsLc1ojT0/UHrAtZ8Ql2AtouZFmutPrmf4gOE9TOLRG8GJU7PMcKDiVLxja2lGY+x5u6Od8vpyAJLikyi7XsbwAcOZMWJGt3ONMbxz8h0+N/1zXebX9JfAxKlZZjhRcSqesbU0o8HZq2cxGMAqmu8v3c+y7GUeuxKdvHKSwupC51jzYPFfnJplhhsVp9IdlWYX3BuBloxbwsGyg14mHbaK5oOSBnHvpHtD9HTfxalZZqRQcSqdUWl2Ydv5ba79UYNG0dDa4HW8+Xun3uPhqQ+TkpASwgh8E6dmmZFExancRKXZhV0lu1z7TW1NJMcnkzMmp9t5F+sucrj8MJ+b/rkwRNGzODXLjAYqTsUiIGmKyNdEpEhEmkTksIj02HQsIski8kMRKRGRZhE5JyJfCizk8FJyrQSA1MRUCqsLWZi5kOSE5G7n/eH0H0iIS+DhqQ+HKRLv4tQsM1qoOJUApCkiTwP/CvwQWADsATaLSHYPl60FVgJ/BkwHngVO+fvscFNZX0mLowWABaMXsPfCXpZleS+ar5iwgiEpQ8IYUXdxapYZbVSc/Z1AMs1vAr8xxvzaGHPSGPMNrL/qr3o6WUQeBO4CHjbGbDXGFBtjPjHG7A846jCRW5nr2p83ah7l9eUe6zNrm2rZWbwzTEXzrnQW54YN1zXLjDoqzv6MX9IUkSQgB/iwy1sfAku9XPZZ4FPg2yJSJiKFIvJTEfG80E4UcR8JlBSfBFjDKLuy+exmWh2tfHb6ZyMUmSVOh+Mi33m5zHVUs8xoouLsr/jbI3sEEA9UdjleCYz2cs0krN+wJuAx5z1+CQwDPNZrNjc309zc7HpdV1fnZ5iBseXsFtd+dWM104dPZ8TAEd3O23B6A7eOuZXs9J5qJELNPDZs+ITj+RMAWJDTxEMPhbLVXvGfDnE+iCXOTUBqVCNSwk+greemy2vxcMz9GQZ43lks/wCriP+Ct2xz9erVpKenu7asrKwAw/SPwquFAAwbMIxjFcc8rgfU0t7CB2c+iFDR/CZWXeZY1+t//MHfIhK9ddWVDjTj7G/4K80rQDvds8oMumefHZQDZcaYWrdjJ7FE63GutZdeeona2lrXVlpa6meY/lPfUk9DawMA80fNp6CqwGMj0M7indQ110Vcmp1bzK/z0ENvEs111RV3VJz9Cb+kaYxpAQ4D93V56z7AW8POPiBTRAa5HZsGOICLni5ITk4mLS2t0xZuOhZOA8hKz8JgPDYCbTi1gfHp45k3al7YY+qge4v5YESit6664gkVZ38hkOL5z4Avi8iXRGSmiPwcyAZeBRCR1SLymtv5a4Bq4LciMktE7gT+GfhvY0xjkPGHjN0lu137bY42Rg4cydRhUzudY4xhw+kNPDrj0V6WtQgtnvtlRm9ddcUbKs7+gN/SNMa8BXwD+C5wDLgTqztRifOUMVgS7Ti/HisTHYLViv57YCPwV4GHHXo2nd7k2r9Qe4GlWUu7ifFw+WHKrpdFtGjec79MFaf9UHH2dQJqCDLG/NIYM8EYk2yMyTHG7HZ77wVjzIou558yxtxnjBlojMkyxvyNnbJMgILLBQCMTh3Np5c+9VifueHUBoamDA1i7kz/6X30j4rTfqg4+zI69hxobW+lttlqp5oxYgaNbY2e6zNPb+CRaY8EOXem7/g++kfFaT9UnH0VlSbWvJgdDEkZ4nGSjvM158mvyo9o0dy/MeYqTvuh4uyLqDSxluDtoLa5lkVjF3WbpGPDqQ0kxyfzwJQHIhJTYGPMVZz2Q8XZ11BpYgmxg5NXTnquzzy9gZWTVjIoaVC398ISU8AzGak47YeKsy+h0gSOlB8BIHNwJhX1Fd2kWd1QzZ4Le3h0+qMRiSf4mYxUnPZDxdlXsLU0I7EapTGG6sZqACakTwC6T9KxqXATxhg+M/0zYYvDndDMl6nitB8qzr6AraUZidUoi64VuRZSS4xPZMaIGQwfOLzTORtOb+C2cbcxepC3OUlCR2jny1Rx2g8VZ6xja2lGggMXbq5xfun6pW5F88bWRrac2xKxVvPQz8qu4rQfKs5Ypt9Lc/2p9QAIwtmrZ7tJc1vRNhpaG3h0xqNhjyV8s7KrOO2HijNW6ffSPHDRyjRHDxrtcZKODac2MHXYVGaMmBH2WMK79o+K036oOGORfi/NyhvWjHajBo3qNkmHwzh4/8z7EZmhPTJr/6g47YeKM9bo19KsrK/EYRwANLc1syx7WadJOo6UH6G8vpxHpj0S9lgit8KkitN+qDhjiX4tzU/KPnHtF10r6lafualwE0NShnhdkTJURH6FSRWn/VBxxgr9WprrT1iNQPEST1NbUzc5bizcyENTHiIxPjGscURnHXMVp/1QccYC/VqaO0t2AjBi4AiS45O5dcytrvfK6so4Un4k7EXz6K5jruK0HypOu9OvpVlaZ609NDhpcLdJOt4/8z7xEs+DUx4MawzRyTLdUXHaDxWnnbG1NMM5jPJ683XaTTsAV5uueiyaL8texrABw0L+7A6im2W6o+K0HypOu2JraYZzGOXh8sOu/auNVzuNN29obWDr+a18Zlp4x5pHP8t0R8VpP1ScdsTW0gwn75x4B7AagQCWjFviem970Xaa2prCWp9pnyzTHRWn/VBx2o1+K80Pz30IWDO1Tx46mYzUDNd7mwo3MWXYFKYPnx6259sry3RHxWk/VJx2ot9Ks+haEQCJcYmdiubGGDYVbuKRqY+EbZlee2aZ7qg47YeK0y70S2m2tLfQ6rCkdbnhMrePu9313rGKY5RdLwvr3Jn2zTLdUXHaDxWnHeiX0iyoKnDtt5v2TpnmxsKNpCWnsTx7eViebf8s0x0Vp/1QcUabfinNdcfXAVYj0KCkQczJmON6b1PhJh6c8iBJ8UlheXZsZJnuqDjth4ozmvRLaW46swmA1KRUFo9dTHyc1YJefr2cQ5cOha2rUWxlme6oOO2HijNa9Etpnqk+A0Cbo42l424Wzd8/8z5xEsdDU8KT/sVelumOitN+qDijQYxIc1vI7uQwDpramwCrE/vtWTcbgTYVbmJp1tJuawSF5Lkxm2W6o+K0HyrOSGNrab7yyivMmzeTkpKnnUfKgr7nuavnOr3u6NTe1NbER+c/4pGp4enQHttZpjsqTvuh4owktpbmiy++SF7eScaP/9R55BHgYlD3XH/y5nRwM0bMcI0t31G0g4bWhrB0NeobWaY7Kk77oeKMFLaW5k0mOH+2AHcTjDjXnbBazpPikzr1z9xYuJGJQyYyc8TMgO/tjb6TZbqj4rQfKs5IECPS7OB9ghXnySsnAas43tE/s2MU0GemfSbko4D6XpbpjorTfqg4w02MSXMCsJNgxHmj1folMhhXpplXmUdpXWlYJujom1mmOypO+6HiDCcxJk2AiQQqzvLr5a799OR0Zo60iuIfnPmAQUmDuHP8naEMtI9nme6oOO2HijNcxKA0IVBxbji5AYA4iWPJuCXEifXxN5/dzMqJKzvN3B4K+n6W6Y6K036oOMNBQNIUka+JSJGINInIYRG5w8frlolIm4gcC+S5nfFfnL8v+L0VB+Iqmtc01rC/dD8PT304+JDc6D9ZpjsqTvuh4gw1fktTRJ4G/hX4IbAA2ANsFpHsXq5LB14jlD3V/RRnXmUe0HmSjo/Of0S7aQ/5KKD+lWW6o+K0HyrOUBJIpvlN4DfGmF8bY04aY76B9Rfy1V6u+xWwBjgQwDN7wHdx1rXUAVamedu42wCraD4nYw5Z6Vkhi6h/ZpnuqDjth4ozVPglTRFJAnKAD7u89SGwtPsVruv+FJgMfN/fAH2jd3HWNtW69mdnzCYtOQ2HcbD5zGYenhLaonn/zTLdUXHaDxVnKPA30xwBxAOVXY5XAqM9XSAiU4EfA88bY9p8eUhzczN1dXWdtt7pWZybCzdb8SCuSTqOlh+l8kZlSOszNct0R8VpP1ScwRJo67np8lo8HENE4rGK5C8bYwp9vfnq1atJT093bVlZvhadvYvzt7m/dQZuXPWZH5z5gLTktE6TEAeLZpldUXHaDxVnMPgrzStAO92zygy6Z58Ag4GFwH84W83bgO8Ctzhf3+PpIS+99BK1tbWurbS01I8QPYvzUNnNZYA7ZjbafHYz9026j8T4RD/u7x3NMr2h4rQfKs5A8UuaxpgW4DBwX5e37gP2e7ikDpgLzHfbXgVOO/cPenpOcnIyaWlpnTb/6C7Oa83XAGv1yanDpnKl4QofX/w4pEVzzTJ7QsVpP1ScgRBI8fxnwJdF5EsiMlNEfg5kY8kQEVktIq8BGGMcxpgC9w2oApqcr8P4r3RTnE1td2GctQfLspYhInx47kMMhgenPBiSp2mW6QsqTvuh4vQXv6VpjHkL+AZWMfsYcCfwsDGmxHnKGCyJ2gBLnFvP3Ww576i/3Hx2M/NHzydzcGZInqRZpq+oOO2HitMfAmoIMsb80hgzwRiTbIzJMcbsdnvvBWPMih6u/Z4xZn4gzw2Mifzn4Vtcr5ZmTaXd0c4fz/4xZF2NNMv0FxWn/VBx+kqMjj33jwMXrZFAcQKLMv+eTy99wJWGKzw0NTTpoGaZgaDitB8qTl/oF9KsbqwGYMbwKaQmtbH57BcZkpLuWuoiGDTLDAYVp/1QcfZGn5dma3urqxHorgn3ATv54MwNHpjcTkJcRdD31ywzWFSc9kPF2RN9Xpp7ive49pdmLaXqRiqHLrXw0JQkgl06Q7PMUKHitB8qTm/0eWm+8ukrrv3bxt7GlrNbAHhwymaCXTpDs8xQouK0HypOT9hamq+88gqzZs1i0aJFAd9jT4mVaQ5MHMiUYVPYcm4Lt465lVGDFhPM0hmaZYYDFaf9UHF2xdbSfPHFFzlx4gSHDh3q/WQvdDQCLcpchMHw4bkPuX/S/c53A186Q7PMcKHitB8qTndsLc1gcRgHDhwA3D3hbnIrcrnccJkHpjzgdpb/4tQsM9yoOO2HirODPi3Ng6U3h7YvGbeELee2kJqY6mFWI//EqVlmJFBx2o+u4uyf9Glp/uLgL1z7i8cuZsu5Ldw98W6S4pM8nO2bODXLjCQqTvvhLs7+SZ+W5s6SnQCMSh1FYnwi+y7s44HJD/RwRe/i1Cwz0qg47UeHOPsnfVqal29cBuDO8Xeys3gnrY7WXqQJPYlTs8xooeK0H8ujHUDU6LPSNMZ0agT68NyHTBgygSnDpvhwtWdxapYZTVScij3os9I8Wn7Utd/RCPTA5AcQn1PDzuJ0OC5qlhl1VJxK9Omz0vz5gZ8D1kJqg5MHU1hdyP2T7+/lqq7cFOeGDT/SLNMWqDiV6NJnpbmtaBsAk4dNZnvRduIlnpUTVwZwp4k4HDv5zssvuo5olhltVJxK9LC1NIMZRlnZYK3z9sDkB9hybgtLxi0hPSU9oDg2bJjI8fzZACzIyeWhhwKf5EMJFSpOJTrYWpqBDqM0xuAwViPQndl3su38tgCK5hbdW8x/jkhwsyMpoULFqUQeW0szUE5ePunaT05Ipra51oeuRp7p3mL+MsHOjqSEEhWnEln6pDR/uv+nACTGJXK04ihDU4ayMHOh3/fx3C8z8Ek+lHCh4lQiR5+U5h/PWaMV5o6ay5ZzW7h30r3Ex8X7fR/v/TJVnPZDxalEhj4pzcp6qxHo/on380nZJwEVzXsf/aPitB8qTiX89ElpdowEGpg0EIdxcN/k+/y+h2+jf1Sc9kPFqYSXPifN89XnXfsltSVMHz6d7PRsv+7h3xhzFaf9UHEq4aPPSfMn+38CwICEAewq2RVQh3b/x5irOO2HilMJD31OmpsKNwFwy6hbOHv1LCsn+SfNwGcyUnHaDxWnEnr6nDQr6q21zKcNn4YgrJiwwq/rg5vJSMVpP1ScSmixtTQDGUbZ0QhU01TDrWNuZdiAYb5fG5L5MlWc9kPFqYQOW0vT32GUF2tvCurQpUN+12eGbr5MFaf9UHEqocHW0vSXH+/7MWCtcV5RX+FXfWboZ2VXcdoPFacSPH1Kmu+dfA+AyUMnkxSfxPJs36fkD8+s7CpO+6HiVIKjT0mzoxFoQMIAbh93OwMTB/p0XXjX/lFx2g8VpxI4fUqa7bQDcKr6lF/1meFf+0fFaT9UnEpg9BlpXqm/4tqva67zuT4zcitMqjjth4pT8Z+ApCkiXxORIhFpEpHDInJHD+euEpGPROSyiNSJyAERCWxyyx740d4fAZCSkMKgpEEsyvStm1JkV5hUcdoPFafiH35LU0SeBv4V+CGwANgDbBYRbwO87wQ+Ah4GcoAdwEYRWRBIwN54+8TbAKQnp3PX+LtIjE/s9ZrorGOu4rQfKk7FdwLJNL8J/MYY82tjzEljzDewftu+6ulkY8w3jDH/ZIw5ZIw5Y4z5f4AzwGcCjtoD5dfLAahprPG5PjN665irOO2HilPxDb+kKSJJWNnih13e+hBY6uM94oDB9PBb2dzcTF1dXaetNzoagVocLT7VZ0Yny3RHxWk/VJxK7/ibaY4A4oHKLscrgdE+3uNvgFRgrbcTVq9eTXp6umvLysrq8Ya1TbWu/ZEDRzInY06vQUQvy3RHxWk/VJxKzwTaem66vBYPx7ohIs8C3wOeNsZUeTvvpZdeora21rWVlpb2eN8f7vkhAPESzz0T7yFOev5Y0c8y3VFx2g8Vp+Idf6V5BWine1aZQffssxPOBqTfAE8ZY7b2dG5ycjJpaWmdtp54s+BNABzG4VN9pj2yTHdUnPZDxal4xi9pGmNagMNA1/Uj7gP2e7vOmWH+DnjOGPO+nzH2yqXrl6z4MNw98e4ez7VXlumOitN+qDiV7gRSPP8Z8GUR+ZKIzBSRnwPZwKsAIrJaRF7rONkpzNew6jI/FpHRzi09BPED0G6sRqDMwZlMHjq5x3Ptl2W6o+K0HypOpTN+S9MY8xbwDeC7wDGsfpgPG2NKnKeMwZJoB38BJACvAOVu2y8CDdqdG803XPt3jb8L6SFttG+W6Y6K036oOJWbJARykTHml8Avvbz3QpfXKwJ5hq/8eO+PXfu9zdLePcsM6ONHgA5xrsAS5w5gXBTjUW6KcyWWOLcCvk9wrfQdYn7s+Wt5rpoA7hp/l9fzYiPLdEczTvuhGafSB6RZdr0MgBEDRjBt+DSv59m7LtMbKk77oeLs78S8NDsage6ZeI/X+szYyzLdUXHaDxVnfyampdnU0uTa76k+MzazTHdUnPZDxdlfiWlp/mTfT1z7d03wXJ8Z21mmOypO+6Hi7I/YWpq9LeH726O/Baw5NGeOmOnxnNjPMt1RcdoPFWd/Q4zpdch4NOgUVF1dHenp6dTW1nYaUpnwgwTaTTuPTH2Ejc9t7HYThwPmzW91SfP99+Hhh8MceUQowuqOlIR2R7ILeVjdkbLoR92RYrLMFiy2zjR7o6MR6IEpnieC71tZpjuacdoPzTj7CzErzZa2Fte+p/6Zfacu0xsqTvuh4uwPxKw0f7zPGgkkCLMzZnd7v+9mme6oOO2HirOvE7PS/K8j/wXAhCETus2f2fezTHdUnPZDxdmXiVlpXqqzpoP74i1f7PZe/8gy3VFx2g8VZ18lZqXpwAHQbT2g/pVluqPitB8qzr5ITEqzra3Ntb8wc2Gn9/pflumOitN+9E1x/vHsH6MdQtSISWn+cK+1JlBiXCIpCSmu4/03y3RHxWk/+pY4i2qKeO6d56IdRtSISWl2NALNHz2/0/H+nWW6o+K0H31DnI2tjTy+9nGGDhga7VCihq2l6W0YZfn1cgC+vfTbrmOaZXZFxWk/Ylucxhi+9sHXOHnlJOufWh/tcKJGTA6jlO9bNrz8t5cZMXAEAO++C6tWWecvyGnj8KH+Ls0OdMil/YjNIZe/+vRXfOX9r/A/j/4PX7jlC6DDKGMD90agDmFqltkTmnHaj9jLOA9ePMhfbv5Lvrbwax3C7LfEnDR/uMdqBBqQMMB1TOsye0PFaT9iR5xVN6p44u0nyMnM4ecP/jza4USdmJPmr478CoCVE6z+mZpl+oqK037YX5xtjjaeWfcMLe0trHtyHUnxSdEOKerEnDQr6ysB+Kf7/wnQLNM/VJz2w97i/D/b/g+7S3bz1hNvMTZtbLTDcSEiT0br2TEnzY6RQDNGzNAsMyBUnPbDnuJ858Q7/NP+f+In9/6k1+WxI4mILAW6j5+OEDElTfdGIBHRLDNgVJz2w17iPHXlFC9seIEnZz3JN2//ZlRj8cDzwO+j9fCYkuZP9lprAg1OGqxZZtCoOO2HPcR5vfk6q95aRVZaFr/57G+8rvIaDUQkAXgY2BCtGGJKmv+d+98APDLtEc0yQ4KK035EV5zGGL70hy9xse4i659ez+DkwRF9vg88COw1xjREK4CYkuaVhisA/OK+f9csM2SoOO1H9MT5Lwf+hXUn1vG7R3/HjBEzIvZcP4hq0RxsLk1vwyj3bhuuWWZIUXHaj8iLc+v5rfzd1r/j20u/zaqZq8L+PH8RkUHAEqxhVNGLI5aGUfL3QJIw+93mPrjCpB3QIZf2IzJDLotqilj4XwtZmLmQD577gPi4eF8u87t8JyK3AN/C+p/6x8A+4GUgGRgNfN8Yc8zLtV8AFhpj/qrL8eXAnwNTgX8ENgNfBWYAicAc4FvGmI9F5DngDuelc4HvGmO2+/UhjDF23DpRW1trAMPfYwZ+/nkDxoAxC3JajcPR9WwlOM4bY7KNMVOMMaVRjkWxyDXGjDDGLDDGVIf87jdabpj5r843E/91oqlu8Ov+fv9tA/8NJAD/AFQB64CxWEWcFuDfe7h2C3Bbl2NxwGtYAv+p857/Dtztds6vgPPAd4FVbsd/AFQDcf58BlsXz7thIMk5jBK0LjM8aFHdfoSvqG6M4ct/+DKF1YW898x7DBsQvslDRGQycMkY0wZkYqXNPzLGlAHDgXpgo5drRwHjjTEHu7y1CDhqLAtmAiOB940xO9zOqcP6xa40xrhPz1TpjGGkP58jtqR55k+4VjIe0LrM8KLitB/hEefPDvyMNwre4Lef+y3zRs0LyT17YBTwjnN/OVYr+BEAY8w6Y8wwY8yHXq59BnjLw/Fk4F3n/h3AFmNM12nl52HVPf1nl+MzgUasbNNnYkuae/7etatZZrhRcdqP0Ipz6/mtfHvrt/n20m/z1OynQhBfzxhj9htjjorICKx6xp1+XP48sMbDPXcbY4pFZApWJfxH7u87+3UuBXY6s1F37gf2ODNfn4kJaba0tFg7l63/CTXLjBQqTvsRGnEW1RTx9LqnuXfSvfxo5Y9CGJ9P3I1VB7nTl5NFZBpWo/XpHk67x/mz6z0XAYO6HheRuVgNR+t8icGdmJDmT/f9S6fXmmVGEhWn/QhOnA2tDaxau4r05HTeePwNX1vKQ8ndQDPwsY/n+9I3827gGnC0y/EVzp87uxx/zhnDOgAR+TMfY4kNaf7n2kuufc0yo4GK034EJs5INvz0wN3Ax8aYJh/Pfxp4s5dzVgC7jTEOD886b4y50OX4KuAPxpgaZ9bpc/8620vT4YBrW//C9VqzzGih4rQf/oszwg0/3RCR0Vj9J3f6eP4S4IIxpqKHc2Zi9fHc2eV4Is76TA+XjQB2iUgc8HfAf/gSD1j9pWyFiEhVVRXNzc0AbN6cgKnKBmD23KssWwZ1ddGMsD8zHKtHyJ8AdwGbsLrYKdFjAtbcFZ/B+s9sA946wO8o2sHfbvpb/vfi/82DWQ9SF+QfUnp6ehpw3UMDS0+Mwurqs9bH830pmg8HLgFdV3sbAtwAXvdwzV8BX8bKUF81xvjcgm67EUEikgbURjsORVF8It0YE5Y0xtnyfRaYa4y5Ho5nBILtMk3gunumWVgYx49WV7Nt6zyKi4czdOgWrEYv7yxatIhDhw759LBwnVtXV0dWVhalpaWkpaVFLY7wxVxMefmtjBkzHl8yznDE7O93HK44/Dk3nL8XUMDVq3cwbNgc3DPOhtYG7nvtPq63XGfnCztd9ZjBxpyenp4OhFNm9wMH7SRMsKE0u6b648bBtGkOsrIgLW0YaWmPYFVRTPd6j/j4eJ//iMJ1bgdpaWk+XRN7Mc/j8ccn8NFHrcBn6W2sejhj9vU7Dmcc4YrZv/su5QtfGM97713CaufYijFD+cr6r3C+8TwH/uwAE0ZNCFnM4cow3Yj6jEaesH1DkDsNDWux/vdcAXjvsvXiiy/6fM9wnesvsRjzo4/+Nb42Dtkl5lj7nv297333/Q3ujUM/O/CPXht+wvk9B4uIpGKNGtoc7Vi6Yrs6TSedgrp48aKreDBuXBLWH+hVess4o0nHzEy1tbV+Z3rRIvCYozM7Uv/6jv0lj63n7+CB1+v41u1/yU/u+7eA79RDzGHrxyIinweWGWO+Gq5nBEpMZJrJycluPzOw/jB7zzijSXJyMi+//LIr9lgg8Jij0x2pf33H/lFUM5in1wn3TkrkRyv3EMyQyyh9z3dhzV5kO2Ii0/T8P10VsZBx9i90Pk470NDawNLfLKWuuY5P//w1hg14jDDNx9kve0zbVZqdcOuGFLbuDYqiKL4QK9IUYDD+d6RVFEUJKTEhTUVRFLsQEw1BiqIodkGlGQQi8jURKRKRJhE5LCJ39HDuKhH5SEQui0idiBwQkQfsGm+X65aJSJuIHAtziJ6e7VfMIpIsIj8UkRIRaRaRcyLypUjF64zB35ifF5FcEWkQkXIR+a2IDI9gvHeKyEYRuSQiRkQe9eGau5yfrUlEzovIVyIQqi1QaQaIiDwN/CvwQ2ABsAfYLCLZXi65E2tW6YeBHKzm5Y0isiD80QYUb8d16VhdP7aFO0YPzw4k5rVYyzf+GVaXimeBU+GN9Cb+xuxcSfE14DfAbOBJrIlzfx2JeJ2kArnA1305WUQmAh9gfbYFwI+AfxORx8MWoZ0IZEU53QzAQeD/djl2Eljtxz2OYy0hatt4seYx/H+B7wHH7PwdAw9iTUQ7LFZ+L7CWsz3X5dhfAqVRit8Aj/Zyzk+Ak12OvQociNb3HslNM80AEJEkrGyx6yJQH2LN3+fLPeKwegSEbmlB788KKF4R+VNgMvD98EXn9dmBxPxZ4FPg2yJSJiKFIvJTERkQxlBdBBjzfmCciDwsFqOAJ4D3wxdp0NxO98+4BVjonMOyT2O7CTtihBFAPNa8gO5UYk2G6gt/g1Us8nVewWDwO14RmQr8GLjDGNMmkZ/5OZDveBLWeOUm4DHnPX6J1aM7EvWafsdsjNkvIs9jrbSYgvU3+QesbNOujMbzZ0zA+g7KIx5RBNFMMzi69tcSD8e6ISLPYhV3nzbGVIUhLm/4FK+IxGOt/PeyMaYwEoH1gD/fcZzzveeNMZ8YYz4Avgm8EKls04nPMYvILODfgB9gZakPYo1LfTWcAYYAT5/R0/E+h2aagXEFaKd79pBB9/+BO+FsKPgN8KQxZmt4wuuGv/EOBhYCC0SkYxmAOKxxBm3A/caY7eEK1kkg33E5UGaMcZ/E+iTWH/Q44Eyog+xCIDG/BOwzxvyz83WeiNwA9ojIPxhj7Ji1VeD5M7bh5xrisYhmmgFgjGkBDgP3dXnrPqw6Ko84M8zfAc8ZYyJWZxVAvHXAXGC+2/Yq1uwo87EaO8JKgN/xPiBTRAa5HZsGOIjALCIBxjwQKz532p0/7Tq2+wDdP+P9wKfGmNYoxBNZot0SFasb1gp5LVh1ZTOBnwP1wHjn+6uB19zOfxZoBb6G9b90x5Zux3g9XP89It967u93PAhrIsm3gVlY3bwKgf+yccwvOH8vvopVJ7sMOIQ1Y3mkYh7Ezf8cDfDXzv1sLzFPxFp752fOz/gl52d+PJK/H9Haoh5ALG9OARZjrZ98GLjT7b3fATvdXu90/kJ23X5nx3g9XBtxaQYSM9ZKhx8BDU6B/gswwOYx/yVW97MGrAXCXgfGRjDeFT39bnqJ+S7giPMzFgFfifTvRrQ2HXuuKIriB1qnqSiK4gcqTUVRFD9QaSqKoviBSlNRFMUPVJqKoih+oNJUFEXxA5WmoiiKH6g0FUVR/EClqSiK4gcqTUVRFD9QaSqKoviBSlNRFMUP/n+Op1BB62F1bwAAAABJRU5ErkJggg==\n", "text/plain": [ "Graphics object consisting of 68 graphics primitives" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show(graph, aspect_ratio=1, ymin=0, ymax=1.4, xmax=1, \n", " axes_labels=[r'$r/m$', r'$t/m$'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The ingoing null geodesics:" ] }, { "cell_type": "code", "execution_count": 85, "metadata": {}, "outputs": [], "source": [ "ingeods = ingoing_geods(-6., tmax, rmax, v0, 2., 2.)\n", "for geod in ingeods:\n", " graph += geod" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### The curvature singularity (in orange):" ] }, { "cell_type": "code", "execution_count": 86, "metadata": {}, "outputs": [], "source": [ "graph += curvature_sing(tmax, 21)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### The event horizon (in black):" ] }, { "cell_type": "code", "execution_count": 87, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Coordinate t at the event horizon birth [unit: m]: \n", "0.001000000000369725 +/- 0.001\n" ] } ], "source": [ "graph += event_hor(tmax)\n", "pA = (2, v0 - 2) # point A" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### The trapping horizon (in red):" ] }, { "cell_type": "code", "execution_count": 88, "metadata": {}, "outputs": [], "source": [ "graph += trapping_hor(m_num(v), tmax)" ] }, { "cell_type": "code", "execution_count": 89, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAKdCAYAAADyaxptAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd1gTWRfG36FLs/fe+65lXbtrW13dVbD3spZdd9V1i2WbGsDee++KolR7L9gVFCug2FAUUUFAOknO90eYECBlksxkwrf5Pc88YnLnzsuQ5M2999xzGCKCBQsWLFiwYEFcrMQWYMGCBQsWLFiwGLIFCxYsWLBgFlgM2YIFCxYsWDADLIZswYIFCxYsmAEWQ7ZgwYIFCxbMAIshW7BgwYIFC2aAxZAtWLBgwYIFM8BiyBYsWLBgwYIZYDFkCxYsWLBgwQywGLIFCxYsWLBgBlgM2YIFCxYsWDADzM6QGYYZILYGCxYsWLBgwdSYlSEzDNMGwCixdViwYMGCBQumRlBDZhimFcMwX+lxyjAA3kLpsWDBggULFswVRsjyiwzDvAUQTESDOLS1ARAFoCERpQkmyoIFCxYsWDBDBBshMwxTH0BZAFc5nvINgMsWM7ZgwYIFC/9FhJyybpfz70WO7S3T1RYsWLBg4T+LkIbcHkASgLu6GjIM4wygFYAzAuqxYMGCBQsWzBZeDZlhmMEMw4QyDBMKYDiAbAA3cx5rqeXUvgAOE5E0X3/tGIbZxTDMNYZhvmUYxophmIkMw6xmGGYDwzCXGYZpldN2KMMw63OOywzDdObzd7NgwYIFCxaERJCgLoZhKgN4CeBPIlrIof1JALOI6IbKY1YAdkCxDWoxgJEA9gMIIKLzOW02Avg6p90DIgrIedwTwEQApYlIzt9vZsGCBQsWLAiDUFPWnXL+DdbVkGGYsgCqqppxDi0AhJHiG0MFAKUBHGXNOIdkANUBxLFmnEMcgBI551iwYMGCBQtmj1CG3BFAKoBQDm0HQzHyzY89gMCcn9sDOElEJ/K1+QzAcwCb8j1eH0A6gHiOei1YsGDBggVREdKQr+RfE9bAMAB78z9IRBeJ6AXDMLUAVAJwWvX5nH3LbQBcoILz7t0AXOJ4fQsWLFiwYEF0eDfknPXj6uA2XV0HinXsR1qascFZF/I93gKAc/7HGYZpDKA2AD9uii1YsGDBggXxEWKEXGD9mGGY3xiGYdS05bL3uBOARABh+R7vmPPvhXyPDwWQiRxDZhhmrC7BFixYsGDBgtjYCNBnCwAyACEAwDBMDQDV1EwrA8Ag5BqrJjoCuKgmWroTgGdE9DLf430BHCKijzmj5Ur6ybdgwYIFCxZMjxAj5AQAiUSUxTCMK4D5ACT5G+XsH35JRG81dZSTfrMcCk5L2yJn/VjNaaUABOdsm5oBYI1Bv4UFCxYsWLBgQoQYIa8E0IZhGB8oEoPMJKKPatpxma4uCeANgIB8jxeDIop7j5pzfgEwDoqR9QYiskRaW7BgwYIFs0fQak8aL6qIkH4CoDERfTK5AAsWLFiwYMHMELQesha6AbhhMWMLFixYsGBBgViGbKnsZMGCBQsWLKhg8ilrhmGcAIQDqEVE2Sa9uAULFixYsGCmiDFC7gPgmMWMLViwYMGChVzEMOSvAOwS4boWLFiwYMGC2SJKlLUFCxYsWLBgIS9iBXVZsGDBggULFlSwGLIFCxYsWLBgBlgM2YIFCxYsWDADLIZswYIFCxYsmAEWQ7ZgwYIFCxbMAIshW7BgwYIFC2aAxZAtWLBgwYIFM8BiyBYsWLBgwYIZYDFkCxYsWLBgwQywGLIFCxYsWLBgBlgM2YIFCxYsWDADzM6QGQWuDMMwYmuxYMGCBQsWTIWpDJnyHEutCEsZtUfSHMgBJCXNgVxTGyy1UvYVFBlEtl62NNB3IEnlUipwrXzHuEPjqM7qOkSKqhq8HEFBQcQwDL1nGALD0BOGIYZhKDg4WPt5emo3pyMwIpBsvWxpkN8gTtqzZFlUbkk5+vnoz2ajfbDfYI3a++7vS1VXVKUMaYboelWPgIgAsvWypQ7bOxDjwdCBhwdE15T/WH5tOVl5WNGl6Et5HvcP9ydbL1sa4j/E5K/3vXtBDKM4nF2lFB2t3/liajf28A/3JxtPGxrqP5ST9ssvL9O2sG1iav7PIs4IuY0Hb+e713OH7wBfBEYGYmTgSOiqXuVezx1RCVGI+BBhnAYO6Brks9qd7ZzBoHBNCPSp3wcH+h+Ak60TJ+2+D30RlxqHSV9OMoE67bDaHW0d1Wq/8vIKAiMDMbfzXDjYOIigUDN96/fFLvdduB17G91rdseABgPElpSHRx8e4e9zf+OXlr+gfdX2eZ7r16Af9vffD0cb9fddKKKjgR8mSJX/37TBBlWr6tdHvwb94NPPh/Pr3ZxQ3ncNr3dV4lLiMNB3IHbe3QmZXGYihRZYTFV+seBFrnkBV2cVeDg5Ayj6L5A0B3BV91nYxhNoPbPAw0GRQUjLTsPQxkO1CsmQZqDUolL4q91f+KfDP5x/AW0EBQWhT58+eAegNIAnAGoDCA4ORocOHTj3cy/uHhqUbgAbKxtedJmSu2/vomGZhhq1t9zSEkXti+LUiFMmVqYbVe1EhLbb2iJdmo5bP9yCFWN2qzqYfno6Vt9cjYc/P8SnzE9a77spkcllaLe9HT6kfcDdCXfhaOuotb2u1wwvmmRAh6+kuHpFcY0hQ+XY623839QU2oVCk3aZXIZue7rh4buHCPsxDOVdyouksJB94+ER8T5tWs9UmKs+aDBjQDHaHNp4KIgIPg98IJVL1bZzsHFAj9o9EPQoSE/BwpKYkYgO2ztgWMAwjdrNlY/pH/HVjq80ar8RcwM3X9/E5C8ni6BOOx/TP6LDjg4YHjAcUrkUQZFBuBZzDYu6LjJLM74Xdw/Lri3DzA4zUdyhODrs6IARgSPM4jWz7Noy3Ii5gR1uO3SacUJ6gkm0L1wIpRlXrJyN9euM/5uy2kcGjjSL+64P2rR7BHvgwosL2Ndvn5hm/N+GiExxaOaqJ9ESKI+kOYp1hKQ5yPM4XfXU2g3Lw3cPycbThgYcGEDZsmy1bbzveRMkoJeJLzn1qYvAwEACQO8AIoCictZCgoOD9eonIDyAbDxtaKDvQI3azRVt2of5D6MaK2uQVCYVSZ122DW2gQcGUp1VdejrXV+LLUktMrmMWm1pRfXX1KdMaSYR5Wof7DdY1NdM+Ltwsveypz9O/sH5HL+HfoJqDwkhsraREUDEWMno4kX++ma1D/EbUujeq34P/cjawzqP9mOPjxEkoLkX54qsjohM40lmeYhvyER5TFmtIXM0Y5bAiECtppyYnki2nra06voqvfrVREBAAC+GTPT/Z8pxKXFk52VHS64sEVmddvzD/cnaw5ogAd2IuSG2HLVsDN1IkICCX+R9XYltytmybPpy85dUd3VdSstK0+tcoUw5JYWoes0synlL0t9/y3nrm+X/xZSfJTyjEgtLUE/vniSTy8SWRmQGxijWYR6GTEQUPEO9Ietpxiy6TLnrrq7UfXd3g/rOjyZDvmjgV/KA8ACqtKwSvfj4ghd9piQgPIAqL6us1D7v4jxymONA8WnxIivTTmpWKhVfUJwc5zqa5X2PS4mjYguK0fdB36t93j/cnyovq0zRidEmVkY0/9J8svKwomuvrhl0vt9DP961jxsnU5px0+bZlJXFW9d5EEK7qfB76EdVllWhphuaUpXlVehD6gexJbGIboxiHeZjyKnvChpy8AxOp2oiMCKQeu3tRenZ6QWeW3p1KTnMcdD7G706+DZkIlJqTslMKXTfvlntSelJVHlZZY0mYk7MvzSfbDxt6GHcQyIyv/s+MnAklVhYgt6nvtfYRozXzIO4B2TnZUfTT003qh8+tQcGktKMHRyz6fFjo7rTSWF+r/5y7Bey8bShc8/OmZN20Y1RrMP8olZU+eIPo053r+eOg4MPwsHGAU8SnuQJYvim1jfIkGYgODrYWJWC4GDjACKCm49boQv0YrW339Eer5Jf4YfmP4gtSSsJ6QlYcHkBJjSfgAZlGijvOxvoJTYXoy9i191dWNh1IUo5ltLYjr3vvX16m0S7VC7F6IOjUbN4TXh0Mm4ro6p2YwK9YmOB0WNyz12zyga1axslTSes9l77eplNgB0XAiMCsermKizqugheF70KZZDa/xvmbcg8wDAMUrNS0X57ewz1H6p8wdUvVR+VXSvjxJMTIivUDMMwmPTlJAREBBQ6U2YYBlawAgMGy68vN2vt8y/Nh4xkmPmVIoKfYRhMbDER/hH+optytiwbPx/9Ga0qtcKYpmN0tjel9qVXl+J27G1sd9vOy35tVrtfuJ9BxkYEjBwtQ9JHRVS1m7sMY3TfMl4wVrupefbxGb4/+D361OuDX1v9ioktJsI33NdiymJjoqG4btRNWae+43QqF9StKY8/NJ7qrq5rdN/+/v68T1mrwmovTIFejz88JkhAk49ONmvt0YnRZO9lT7PPzy7wHBukNsh3kGjaF19ZTFYeVhQWG6bXeWygl1DaI95HkL2XPU09OZX3vg0NUlu9OnequnTZLPogwpKo0JHjfJCRnUHNNzanGitr0Mf0j8rHzShITfSpY7GO/4whExU0Zf9wf4IE9CzhmVH9ajLkS5cu8aQ8V3tgRCBvfQrJ7yd+pxILS1B6drrS2MxR+/dB31PpRaUpOSNZ7fOs9qCIIBMrI3qZ+JKc5jrRlONTDDqfNTa+tUtlUmq1pRXVWV2HlxgMdbDaD0Ye5NQ+PJzIzl6qNOSTJwWRxQnW2LhqNzUTj04kOy87uvXmVoHnWO2HIg+JoEyJ6MYo1mE2hrxl9XzBDZlIYWwlF5ak8HfhlJieSNYe1rQ+ZL1RfZrCkIkUo04WuZz/bRx8wUYsTzs1TfmYOWq/H3efrDysaPWN1VrbiaW93/5+VG5JOUpMTzS4DyG0L726lBgJQ5ejL/PSnya4as/MJPqsSbbSjCdNEv/1ZY6vdyIin/s+BAm0fuaZgXbRjVGsw2zWkMeOGWuS67jXc8fzKc9Rv3R9FLEtgi8qfIELLy6Y5NrGUrukIjpl863NGBow1GzXenwe+CAxIxETvpigfMwctf999m9UK1ZNZ9CZqnZTreWfeHIC/hH+WNZtGYo6FDW4H1b7plubeNEeFR+Ff879g19a/oK2Vdoa1ZcuuGqXSAj37ijWjWvXzcaiReJnXmS1bwzdiOGB5hEc+Dj+McYdHochjYbgx+Y/amxnjtr/KxS+RKw84GLvAgAYETgCSRlJOP/8PIhIZzEIc6GUYyn4hftBTnJ49/U2q3y6RIS1IWvRo3YP1Cheo8Dz5qL98svLOPz4MPb23Qs7aztO55R0LAnfcF/ISY49ffcIpj1DmoFJxyahc/XOGNxoMC99lnIsBd9wXxAIu/vsNki7nOQYe2gsKrhUwNzOc3nRxYWSRUpq1H7lCrBgIQFgYG0jh89eWxQpYjJpOinlWAoHHh4AEWFXn12ivd7Ts9PR/0B/VHCpgI3fbeT0WVfKsRT2P9gvuvb/FCYaiuvGBGvI+QmMCFRmZ7ofd9/gfvz8/EwyZa2KuWb0uhFzgyABHXl0RGMbsbXL5XJqs7UNNd3QVO/MREIHSxERSc5LyNbTliLeR/Dar7EZvVZdX0WQgM4/P8+rLi6oC5ZKSiKqXDU3G9e8eSaXxQlzCJYae3AsOcxxoHtv7+l1nro0myZA9KljsY7/tCETEe29v5cgATXb2MzgF5wmQ758Wdg1NtbY/j7zt6DX0YeRgSOp+orqOvNWs9r/OfuPiZTlEhQRRJCATj05ZdD5rLEJoT0qPorsvezprzN/8d43Ua72f8/+q9d5TxOekuNcR/r5yM+C6OICa2wzz80kIqLRo3OzcbVqnU1S80yVTkQFtZuSnXd2EiSgbbe3GXQ+a8qzzs3iWZlGRDdGsY7/vCETEdVZXYcYCUM7wnYYdL5YhkxEdPLJSbNJeRefFk/2Xva04NICTu3F0C6VSanh2obUeWdno/oRQrtcLqdv9nxDVZdXpdSsVF77VuXkk5N6pTKVyWXUcUdHqrq8Kn3K/CSYLi6ciDpB8WnxFBBASjMu4pRNz4zbKGESWO2m5EHcA3Kc60ijg0Yb1Y+JtYtujGIdZhPUpZbQpSa5TJ96fVDcoThGfDbCJNfjk241u6GkY0m8THqJ30/+LmoAxu67uyEnOb5v+j2n9mJo93ngg4fvH2Je53lG9aOq/Y+Tf/CiPTAyECeenMCqHqt0li80hm41u6FEkRKITozmpH1j6EZceHEBW3pvgbOds2C6uNC9VndkJZXA6N+eAN3+AKykWLvaBtWriyqLE91rddfrvhtLSlYKBvgOQI3iNbC251qj+jK19v8q5mPI6sw3ZCFwzUvwS3es1hEJGQl4nPAYQZFBomdnMoQH7x5g9c3VomX0IiJsur0J7vXcUcapjF7n3o+7bxLt2bJszL4wG73q9ELLSi156fN+3H2surnK6NdMSlYKppyYgl51eqF33d68aNPF/Xe6tUcnRmP6mekY32w8utboahJd2iACRn0vQ7J9JNByFSpOHo7hIwvXe5W970Jm9CIiTDgyAS+TXsJ3gC9vX/BY7ZaMXgJhoqG4dnguv6gvyRnJZOVhRZtCN+msEqUOMaesVREzo9eVl1cIEtDpp6cNOt8UgV6bQjcRJKA7sXd47ZePjF7TTk0jhzkORiep0RdtQWpyuZy+3vU1VVpWyai90Hyybl3uVLVLq/1mnxVLE0Jn9GJf6973vHnv2wRBaqJPHYt1iG/IKmas0ZBNYMqfr/+cxgSNISLdpRvz4+vraxaGTJSrfZj/MJNed1TgKKq+orpR9VRZYxseMJxHZQrSs9Op0rJKNNhvMO99E+VqHxEwQu9z78fdJxtPG5oTPEcAZbphTTm/9s23NhMkoONRx0XRlZ/ISCJ7h9xsXMeO5WofGThSbHl6wxob39rDYsPI3suefjz8I6/9qsJqHxU4SojuRTdGsQ5xN5Zd8wKuzuLWlm3XeqYgUlpVaoVLLy8BUCQP8R3giwG+AzD99HQs677MoD7F2NfMajcliRmJOPDwAGZ2mAkrxvBVkD71++BA/wOC3LcNoRsQ+ykWHh2Nq0qkCVa7vr8/EWHisYmoUbwGpraZKog2XfSt37eA9pjkGPxx6g+MbjIa39T6RhRdqmRnA4OHSpGZofjI+uknQo8eDIC+2N9/P6wZa3EFGkC/Bv3gAx/YWtvy1mdyZjIG+A5A/dL1seKbFbz1mx8htFuAiCPkfCNjnSNkgUfKO8J2ECTIk2z96OOjnAqPaxohX7lyRRCtXJHL5bQjbIfg03lrbqwhG08biv0Uy1uffGr/lPmJSi8qrZwBERp9tHvf8zZqCxbfyOVy2h62nbrv7k7ll5SnhLQEsSUREdG//8qVI+OatbMoVU0Quqle70LAh3a5XE4DDgwg1/muFBUfxaM63dfl+b6LPlIV6xAnqEufkXF+rs4SJNCrVaVWAICbr28qH+tZuyeqFK2C+LR4/HP2n0IXxHAv7h7GHR4naLAUkSKYq1edXijnXI63fvnUvurGKiRmJGLWVwa+5vTkbtxdjDs8Tmeg16fMT5h6air61e+Hr2t+bRJturgbdxfjDo3Dyacnsa7nOhQvUlxsSbh2DZg7jwBAmY3LUU2M0p23dzDu8LhCUf4wP6x2Y4Kl1oashW+4L7b13oZaJWrxrFAzYW/DMPbQWEugFw+IY8hXZ4t7vhpql6yN4g7FcT3meoHnbsfexqKri/LUUy4MfF7ucxzof0DQesohb0JwL+6eznzQ+sKX9sSMRCy+uhg/Nv8RVYtV5VWjJpqUa4L9/ffrrEk85+IcJGYkYmk302zv40JZp7Kwt7EHAwb7w/eL/npPSQGGDMsGyRUfVZLZVvjiC/Vtm5ZvCp9+PoWmJrEqrHZDaxKHvA7B7yd/x5SWU9CvQT+BVKqnWflm2N9/Pw48PGAxZSMRx5DbGLmOZ+z5arBirNCqUiu1hvx1za/hO8AXgZGBak2ZiHjXwxfs2qZQprzp1iZUKVoFX9fgf4THh/YlV5cgU5qJfzr8w7s+bfSt31erKUd+iMTy68vxV7u/TPZFgQsTj02Es50ztrttNwtj+/VXOaKfK9YpW7SU4s8/tbfv16BfoTVlVru+pvwx/SMG+A5A0/JNsejrRQKrVE+/Bv0spswD4hhy65lAG0/Dzm3jKWhg1/WY65CTvMBzbLBUYGQghgcM52TC5lKsgjU2IlL7uxlKcmYyfB74YFzTcbC2EiaohtUOQG/t71LfYcX1FZj85WRep9O5wgZLEfLedyLClBNTULloZUxrO83kujThH+6PwMhArOmxBqOajML+/vuVa1ticOgQsHWr4iOqiJMU+7xtYMMhDJU1NjG1GwqrXU5yTtqJCKOCRiE5MxkH+h/gXChFCFhTJhS++242mGixWj1qAru0BnUJvPXpRNQJggR56oHmJzAikDaFbsrz2IEDB9QGdV29elVQvYYS/i6clwCMDSEbyMrDil4lveJBFTf00f7r8V/Jdb6r2aQWZbUHRgQSJBC7CHwe4tPiqezisuS2z01tDVy+XjNcefuWqHjJ3MIRW7YY3peptfOJLu2LrywmSECHHx02oSpuGHHfRQ+uEusQN1OXPiNlAUfGLM3KNwOgCFLQhHs9d4xvPh4AEBQZVOimZj5lfkL77e15mb7eErYFPWv3RCXXSjyp005yZjJn7THJMVgfuh5/tP4DJR1LmkSfNljtQ/yGYMrxKehRqwe+q/Od2LKUTD01FenSdKztubbAzE5yZjLabW9nsgx2RMDYcTJ8jFdMVX/XS4YxYwzri9Ve2KavASApI0mr9muvruHPM39iWptpZvVaAnK1W6av9UP81JlcTNkEZgwApZ1Ko6JLRYTFajZklqj4KAzwHYCh/kMhk8sE18YXLvYu2NJ7i9Fryvfj7iP0TSjGNh3Ls0LNuNq7YnOvzZy0ewV7wdnOGb+2+tVk+rSh1B4ZgJhPMVjabanZLGmceXYG2+9sx5Kvl6Cia8UCz7PadQWp8cWOHcDRI4olkBKlsrF1izUMvVWs9sK4plzUoSg2fbdJrfaE9AQM9h+MlpVamrQ2NVdY7YYGqf1n0Wc4DeAvACEAPgF4ByAIQN18bRgAEgBvAKQDuPDgwQPdkxTBM9RPWQs8TZ2fXnt7Uffd3Tm1ZbNitfq1VaGasiYyPs3m7yd+p9KLSlOWNEsAddrRlWbzWcIzsvG0oUWXF5lcmzaeJTwjW09bsvKwErSesj6kZKZQ9RXVqeOOjmqnqlUxRS3oFy+IHJ2zlVPVQUH89GtsLWgxyZ9mUy6XU+99vanEwhL0MvGl2PK0YmCaTdGnjsU69DXkEwBGA2gI4HMARwBEA3BSaTMDQDKAvgAaAfApX748JScna/8TqCu/GDxD+zkCMOvcLCq9qLTODyeWwIhAshpopdaQr127JrBa4wiMCKRyS8rpnUQgS5pFZRaXod9O/CaQMt0EhAdo1D724Fgqs7gMpWSmiKBMM+4+7lRxaUXyvudN5ZaUoyfxT8SWRL+d+I0c5jhwfg34h/sLpl0mI2r/Va4ZjxpleBpWdQipXWj8HvpRuSXl6GnCU1p2dZnZxSBoQ1U7R0Q3RrEO404GSkNhPh1y/s8AiAUwQ6WNfdGiRWnDhg3a/wQi1kNWhS1eH5MUw/mcqcumFkpDJiKlaaVnp3P+Bsveo7tv7wopTSfqtD9NeErWHta09OpSMaUVgA0Y9LnvQ0SG3Xe+uRFzg6w8rGjh5YV6nSeU9hUrSGnGFSplUWIib10rMYf7bigpmSl0I+YG2XjY0K/HfxVbjl7oed9FN0axDmPXkIvm/JuQ8291AOUAnFKZEs/86quvcPXqVbUdZGZmIjk5GZ8+fTJSCj80Ld8UgCIZCFdaVGwhlBzBcbJzAhFhoO9AzmvKO+7uQLPyzfBZ2c9MoFAzrPYBvgOU2udenItSjqUw4YsJompTJUuWhV9O/IKO1TpiYMOBAPJqF6PcZ5YsC2MPjUWTck3we+vf9TqX1d7/QH/e1mUjI4HpM3JjMfbsskXRolpOMBAhtJuKbHk2BvoOhJOdE2JTYguVdva+9zvQDz8c5jeJ0P8TBhsyo4hIWQbgMhE9yHmY3ewZp9q2bNmyePv2rdp+5s+fj6JFi6JGzZoFnsuWZRsqz2Aqu1ZGiSIltEZa/7/BMAy+b/I9p2Cpd6nvcOTxEXzf5HsTKtQMwzAY02QMAiIC4LbPDTvu7MCMtjN4q//KByuur8DThKdY9c2qPIFc7H03VbCUKgsvL0TE+whs7b0VNlb615hhGAZjmo7hJVgqOxsYMkyKrExFINcvvxA6dTK4O52w970wBXoREcYcHIOkzCTM7zIf/hH+hS5Yin2vDmk0RGwp5ouhQ2sAawG8AFBJ5bE2UEzXlldtO27cOOreXX2gVEZGBiUlJVHy26cFpqzH7OstStBQ111dyW2fG+f2+/fvVztlfenKJeFECgCXmsTLri4jOy87s9nbyxIQHkCMhCGHOQ6UnKEjXsGExCTFkNNcJ5pyfIrGNqYIllLl4buHZOdlR3+d+cvovvgIlvLwyJ2qrlk7i9LSjJbFCaFrEvPJ6hurCRJQYEQgEZmkJrGYiD51LNZh0AiZYZjVAHoD6EREMSpPscPgPGmR3r17h7Jly6rty97eHq6urnBxcSnw3LGooxgWMMzkI+UmZZvgXtw9zu2J1GelmX1+dqH6BquaqtIv3K/A80SE7Xe2o3fd3maxt1eVxmUbgwGDLFkWjkYdFVuOkulnpsPR1hGSjhKNbVTTbPqH+wuqRyaXYdyhcahWrBovxTZY7X7hfgiICND7/Fu3AE8vRRYzK2s59u6xRZEiRsvihGqaTUO0m4rbsbfxx6k/8MuXv8C9njuAvGk2AyMCxRVogT/0cW8ogrbWAHgNoLaG52MBTFd5zM7QoK6jd3aQjacN7bu/T/u5PLM9bDtBAs5Ruj4+PmpHyE4/OYke+GQID+IeKKPMVaPNb725RZCAjj4+KpY0jYwKHEXll5Sn0NeharWLwaXoSwQJaOvtrZzaa7rvfLLq+iqCBHTxxUVe+zVEe3o6UZ16udm4/v1XnL+XKe67oSRlJFHNlTWp+cbmlJGdUeB5c9ZuBKKPVMU69DXkdQASAXwFxSiYPYqotJmR06YPFNue9hq87Sn1HT1899DkL7ibMTcJElDI6xBO7TUZ8ung00REJJVJC+W0kvc9bxrqP1SpfdLRSVR+SXmz+12i4qPI2sOaVl5fqXxsz909ebSbGqlMSk03NKUWm1qQTK7f9h2htL/4+IKc5jrRT0d+4rVfVfTR/vvvuTWOG3+eTZmZgsnixJ67e2iY/zCzeX3L5XIa6DuQXOe76twytPvubrPSbiSiG6NYh75T1j9BEVl9IWckzB6DVNosArAix7xDAVQ8deqU2ilpLjQo3QAMw8D7nregdX1VqV+6PgDg4buHRvXjYq/4nccfHl/oSjcCQBGbIjjw8ACGBQxDalYq9j7Yi5GfjzQoCEhIvC56oYxTGYxvNl75mKOto1K7GPd9x50dCHsbhpXfrIQVo9/brIit4r7zGehFRJhwdAKKFymOBV0X8NKnOrhqDw4Gli9X/GxrJ8M+bxvYiVcXAQDgYOOA/Q/3m02g18ZbG3Hg4QFs6bUFNYrX0Nq2iE0R+DzwMRvtFgzERM6vGx37kIMigsjG04YGHBhgkm+B1VZUo6knp3Jqq2mEfP36dSLKzYplKu18wgZ6td7SmiABRbyPEFtSHh5/eExWHla06vqqAs9xCVITgqSMJCqzuAwN9R9qcB98B3rturOLIAEdeXTE6L50oUt7cjJRpSq5U9WLFwsuiTPmEugVFhtG9l72es1m+D30I2sPa9G184DoI1WxjkJjyESmNeVvvb+lHnt6cGq7b98+rYZMVPhNmZEwVG5JObGlFGBEwAiqsLQCpWenq32eNeXpp6abTNO0U9PIca6j0VWwWGMzVntcShyVWFiChvgNMaoffWC1zzhdMNve2LEypRm3aZtNUqnJZHGCNeU/T/8pyvWTM5Kp9qra1GRDE42va02wpiyWdp4Q3RjFOgqVIRPlmrLQH7AzTs+gKsurcGqryZBv3LiRpx1ryhtDNwohWTA+pH4gKw8r8rrgJbaUPES+jyQrDytafWO11nbHHh+j2E+xJtH0+MNjsvW0JY8LHrz0x4f2IX5DqOTCkvQuxbSZ79RpP3KElGbs4Cilp5yzKZqWY4+P0dtPb01+XblcTkP9h5LzPGetZWC1cfTxUVG084joxijWYd6GrCGX9YmoE4J/wLJTfFz2tHI1ZCKi0Nehegf5iM36kPVk7WFNcSlxFPsplqafmm4Wo/zhAcOp4tKKnEcRptDee19vqrK8CqVmpfLar6Haj0cdJ0hAO+/s5FWPPrxJfkPTT02nt++yqVSZ3KnqTZt0nys2rHZTvd633NpCkID23ttrdF+m1s4johujWIf45RdZQpcWfCxkIXDNq8DD3Wt1Rznncoj9FItpp6YJsk+5YZmGAIDw9+G89tu8QnNYMVY49fQURgWNKhQBGHvu7UH3Wt1RxqkM7ry9g2XXl4kWLMXyNOEp9t7fixltZ8DBxoHTOUJrP/30NA49OoRFXRfxniksLDYMy64v0yvQKzUrFT8d/QldqnfBiM9G8KpHH9j7/sW84fjwQZGprNs3MowbJ5okzoS9Vdx3UwRLPXj3AJOPT8b4ZuMxpLHx2axY7YUto9d/GfMw5GteCvNVx9VZak0ZAO7F3cOKGysESR5Sv1R9MGDw8L1xkdaaSM9Ox977e80++vrZx2e48uoKhjceDgD4ptY3yuQhYprygssLUNqxNMY14/6pLqR2qVyK307+hnZV2inzVfNJj9o9lMlDuJqyR7AH3qa8xYbvNohae7lH7R6YVHY/Ylz8gT4j4Fo8Azu2GV7j2JT0rN1TmTxESFNOzUrFQN+BqFWiFlZ+s5KXPlntlprEhQgTDcU1c9VTUfc45yhQD5k9NNRFVg2W4jvNZtXlVTkFR+zdu5fzlLUqhSHQyyvYi5znOReYgmWDpYb4DTF5QoLoxGiy9bSlxVcMC89ltQ/1H8qb9jU31hAjYejWm1u89KcJNlhKl/aw2DCy9rCmuRfnCqqHCzExRK5Fswn1/QkzbajdsmFiS9IbNtBrmL8w2kcFjiLHuY6C7GJgtQ8PGM573wIh+tSxWIe4G0qveSlGwFxg27Wemedh93ru8B3giwG+AzAyaCT29t3L22igdsnaeJzw2ODzdelQ1f7bid+wuudqg68lBESEPff2oE+9PgWmYNk0m2nZaSYffS2+shgu9i4GV3TiW3tCegJmXZiFMU3HoFn5Zkb3p42+9fvq1C6Ty/DD4R9Qv3R9TG0zVVA9uiACxoyTITnJBkjqizax+/DTgCxRNRlCvwb94AMfZMn4177zzk7svLsTO913ol6perz3L6R2CzxjIucvSL6Rsc4RMoeRsvc9b7XPGcrPR36mxusa62ynaYR88+ZNTtc5/Ogw5wLxpiTkdQhBAjr55KTWdnK5nHzu+5hklB/7KZbsvezJK5ifiG8+tE8+Nplc5rmYPLJVk/aV11cSI2Ho6surJtWjjq1bSRnEVapMFsXHKx435WuGb/jU/vDdQ3Kc60ijg0bzoEw3crmc9t3fZ+73XfSRqliHOGvI+oyM86NhTdm9njuGNh4KIoLPAx9e1ktql6yNqIQoyEludF/a+K7Od6hVohaSM5PhccHDbNZ69tzbg3LO5dC5emet7SI+RGB44HCTrCkvvboU9jb2mPTlJF76C38fbpT28PfhWBeyDjM7zERZZ/UFVISC1a66pvwq6RX+OfcPfvriJ7Su3NqkevLz8iXwy6+593T7VluUKKH4WZ32wgKr3dg15bTsNAzyG4RqxaphTY81PCrUzMP3DzE8wHjtFoRBHEO+Oluw8yM+RGBE4AhegqXqlKyDDGkGXie/NqofroS8DsGcS3PMItBLKpdi34N9GNJoiM5UmQ1KNzBJoNeHtA9YH7oek7+cjGIOxXjps2GZhgZrJyL8dvI3VCtWDb+0/IUXPfrQsEzDPIFe2bJsTDo+CS52LpjXZZ7J9ahCBHw/VobUT4rXzqhRcnz3Xe7z+bWL/XrXh4ZlGvIS6DXl+BQ8TXiKA/0PwMnOiWeV6mlUphH2998P34e+FlM2Q8Qx5DYegp3foHQD+A3wQ2BkoNHGVrtEbQDA43jt68hE6ssv6kuXGl3gO8CXF+3GcubZGbxLfYfhnw3n1F61dKNQprzy+koQCL+2+pXXfg3VfjTqKE49PYWl3RSjdjFQLd3YaWcnHHp0CGt6rkFRh6Ki6GHZsgU4d8YaAFC2fDZWrCj4UaOqvbCZsmrpRkOMbe/9vdgStgVreq5RbrE0Ff0a9LOYspkijiG3ngm08TTs3DaeBQK78uNWz40XU65WrBqsGWtEJUQZdL4hAUNsoFdgZCCGBQzjzez1Zc+9Pahfqj6almvK+RzW2FKzUnl/kydmJGLVzVX46YufUMqxFK99A3kDvbhoz5Jl4feTv6Nrja7oXbc373r0oW/9vtjWextC34Ti29rfok+9PqLqiY4GpvyWd6q6WDH1bVlT5nrfzQnWlPV9vT9JeIIfj/yIYY2H4fsm3wuoUDOsKQvxXjWGiPcRYksQFfH2IRtiyhzMmIU15QxphsEvOFtrW9QoXkPnCJlvWFNuXam1KPtH07LTEBQZhKGNh+p9/T71++DwkMNwsHHAk4QnvL3Z195ci0xpJv5o/Qcv/amjT/0+ODT4ECftG0I34OnHp1jWbZmoe3xZrsdch42VDdZ/ux5PPz4V7UNWLgdGjZYhPVUxVT1mjBw9emg/p2/9vjg4+CDvrxlT0K9BP720Z8myMNhvMMo5l8P6b9eL+trRV7vQJGcmo89+cb9Mio24iUH0MWU9zJjFrZ5bnhecIclD2MAuU+Nez105NXs86rhJ3yzHoo4hNTsVgxoO0t1YDQzDIDUrFe23t+dl+jolKwXLry/HuGbjUN6lvFF96YKL9o/pH+ER7IExTcagcdnGgurhwrVX17A+dD3mdZmHEkVKoN22dqJNAW/cCARfUExVl6+YjWXLuH3EsPe93bZ2hW4aVR/tf535C/fi7sGnn4+yPKuYMAyDlKwUtN3WVtTkIUSEMQfH4M2nN6Jc31wQP1MXF1M2wIxZVN8shmT0qlOijslHyKq8SHwBNx83k64pH3h4AE3LNUXtkrUN7sPJzgnreq7jZU15Y+hGJGUmYXrb6Qb3oQ+6tM+5OAeZ0kx4dVafQc6UZMuy8cORH/BFhS8wscVEhfZv14myLvvsGfD71Nzr7dxui6J6LGWz2oXOiiUETnZOWNtzrVbtx6KOYdn1ZVj09SI0r9BcBJXqcbZzxrqe60TN6LXk6hL4R/hjp/tOk1/brDDR/irdBM9Qvw9Zw75jfTE0o9fqG6vJzstOa0EIb29vtfuQQ0JC+JBu0oxenzI/UZE5RWjBpQW89GdsTeL07HQqt6QcjT04lhc9+qBO+5P4J2TracvbPmhjmXdxHll7WFNYbFiex/mup6wLmYyoXQepcs/xDz8YngGN1V4Y6/pqqqf8Ovk1lVpUir71/tbkme24wmof4jfEpPf97LOzZOVhpZoVUfT9wGId5mPIelR7MhRDTPnwo8MECSgmKUZjmz179ghqyESmM+V99/cRJKBnCc946zMgPIBKLCxB4e/C9T53fch6svKwMrgUnbEEhAdQyYUlldr7H+hPFZdW5L2akyE8iX9CDnMcaNqpaWqf9w/3z6NdSFatIqUZV6ycRcm6i6RphdUuRCpJofF76JdHu1QmpU47OlGFpRVMXgJTX1jtke8jTXK9V0mvqPSi0tR1V1eSypSFsUU3RrEOszHkLavnc6qHbCyBEYF6fUg9iHtAkIAuR1/W2EaTIYeGhvIlm4gU2ttubUtJGUm89quKu487fbn5S977ZTVnSbM4f6GQyqRUc2VNGnBgAO969IHVfuH5BdFLGbLI5XLquqsrVV9RnVIyUzS2Y7VnSjMF+yIXFUVk75A7Oj5zhp9+TaFdKFS1S85LiJEwdP75eXFFccRU9z0jO4Nabm5JlZdVzv9FRXRjFOsQfw05h7FjxprkOu713PF8ynPUL10fWbIsneslVYtVBaBYyxUb93ruuPj9Rbjau+LNpze8r/UkZybjeNRxg4O5tOFq7woAGBE4gvOasn+EP55+fIoZbWfwrkcfXO1dQUToe6AvijkUw+BGg0XVAyj2sZ55dgbrvl2nNamE6n0XYk1ZLgdGjpIiM0MRyPXTT4QuXfjpm9U+PKDwZfRitX+z5xt4BHvgn/b/oGO1juKK4gj7eh8WMEzQtfzfT/6OsLdh8Bvoh9JOpQW5RmHDbAzZlLDRjVwyejnbOaOUYyk8T3xuKnlasWKskCXLQoftHXgP9DoYeRCZskwMaDCAtz7zM6jhIE6BXkSEhVcWomuNrmYRALP/4X4kpCfgU+Yn0QOOPqZ/xO+nfseghoPwTa1vOJ0zqOEgQQK9Vq0Crl1VbHGqXDUbixbxv41ncKPBhTJ5SEJ6Au7F3QMARCVEFSrtDMNgcMPBgiUP2XV3F9aFrsPqHqvxZcUvee27MPOfNGSWoY2GckoeUq1YNbMYIbPYWdthSbclvGf02v9wP9pUboPKRSvz0p86uGbFOvPsDG7H3hZ9dAwAGdIM/HnmT7jVdYPvAF/Ra0H/c+4fpGenY1n3ZZzPESIr1uPHwIw/Zcr/795pC2dno7stQGHM6EVEGHtoLOQkx/pv18M/wl/0L3L6IlRGrztv7+DHIz/i+ybfY3yz8bz0+X+DiebGdaMuqEuANeT8BEUE6QyWGnBgAHXZ2UVjH7t37zbJGnJ++Az0SkhLIFtPW1p5fSVP6rTDRjBvD9uu9vkuO7tQs43NzCIidcGlBWTjaUOPPjwiolztO8J2mFzLjZgbxEgYg/9ObASzsdqlUqIvW2Yr140nTxb+78RqN4c1fF2subGGIAEFRQQRUW4E8647u0RWpj9+D/3I2sOaF+0JaQlUfUV1araxGaVlpWlqJvparljHf96QiXJNWdOH1LRT06jGyhoaz9dkyLduCVusnkhhys7znOlmDLdSj5rYensrMRKGXie/5kmZbsJiw9QaLlv2cf+D/SbTool3Ke/Idb4rTT42Oc/jmrQLSbYsm5puaErNNjYz6gsYH9oXLyalGVetnkUpmuPKeEWM+64vd2LvkL2XPU06OinP44VBuyb40C6Ty6ind08qsbAEPf/4XFtT0Y1RrOM/PWXN4lbPDbd+uIWRn49U+3y1YtXwMuklZHKZ2ufFhA1Sa1GxBeQkN3haaf/D/ehQtQMquFTgWaFmmpRrAoZhcDDyYJ6pyIVXFqJm8ZroV7+fybRoQnJBAgYMZn2Vt1woqz0oMshkU5HrQtbhzts72PDtBp0VuLRhrPaICODvfxTvBYYh7N5pCyfTFCtSag+MCBQ1s5QmUrNSMchvEOqVqofF3Rbnec7ctWuD1R4QEWCwdq9gLxyPOg7vvt6oVqwa/yL/D7AYcg6flf1M+WbJn9GrerHqkMqlZpvWjS22MOX4FIPWlBPSE3D22VkMbDhQCHk6kZMc+x/ux7CAYYh4HwH/cH9MazMN1lbWouhhiXgfgY23NmJmh5kaC1oQKepvC72m/ObTG/x77l9M+GICWlRswUufcpLD54GPXuuyMhkwYpQU2VmKv82UKUD79rzI0QsCYd+DfWa3Ljv5+GTEJMdgf//9cLBxUNtGTnKz1M4FIsV919eUj0cdh0ewBzw6enAORPxPYqKhuG5EnLJWRV3ykPB34QQJ6OKLi2rPEXPKWhVD15R3hO0gRsLQm+Q3AqrTDrsuW2NFDSqzqAylZ6eLpoXlu73fUY2VNSgjO0NrO2OzkXFhoO9AKrO4DH1M/8hrv/pm9FKdqq5RK4tSRcyPYm4ZvbzveRMk4LQ+rymjV2FA34xezz8+p+ILitO33t9qzXioguhTx2IdFkNWQ35TTs1KJUigMahh165dZmHIRIaZcu99vant1rYCK9PN1ltbCRKYhZbzz8/rtY7NmvJvJ37jXcuJqBMECWjP3T28902Ua2y/n/hda7tHj4js7BUJQBhGTpc158oxGaz2P07+IaqOqPgocpnnQsP8h3Fea2WNTWzthsBqn3pyqtZ2GdkZ9MWmL6jaimqUkJbAtXvRjVGsw7wNmefUmfrAGtuvx38lIqLiC4rT/Evz1bbVZMi3b982pWQlrPbVN1brbPsp8xPZe9nT0qtLTaBMOzNOz6Aic4rQ3bd3RdUhl8vpy81f0pebv9QrkOXIoyMUnRjNq5a0rDSqubImdd7ZWdCAIF3aZTKi1m1yo6p/+cV8gpOEuO/6kCnNpC82fUG1VtWi5Az9coYefnRYVO3GcPjRYXqZ+FJrmwmHJ5C9lz2FvtZrx4noxijWYT6GLHBxCUM4+vio8s3SeF3jAlGTLOZmyERE115d4zRCPvDgAO+5qw0hMT2RXOe7KvMyx6fF0z9n/xFlOo+9J4amOvyQ+oE37bPOzSJbT1uT5XTWpH31alKaceWqpouq1gc+77s+/HHyD7L1tNXXdPLwIfUD/Xv230I3fU1E9D71vdr7vuvOLoIEtCl0k75dim6MYh3mEdR1zQsIWaj+uauzFM+LQM/aPVGlaBXEp8UjNTsVL5NfiqLDEFpVagUbKxtcir6EMQfHaAzACIgMQNNyTVG9eHUTK8zL5tubkZ6drqwBfevNLSy8stDkCTiyZdn4+9zf6Fm7p8GpDm/F8qP9cfxjLLiyADPazkC9UvUM7kcfWO2qgV7PnwPTZuQtq2iqqGp9CH0TWkC70ByLOoal15YaXVIx9E0oFlxZUCgDvULfhGLB5bza78fdx49HfsToJqMxrtk4kRUWIkzk/Jq56qkYCeccBUbI7CHiSPnUk1PESBgqvqC42m+w5jhCZtG2ppyenU7O85xFLyWYJc2iyssq06jAUXkeN0WwVH7W3FhDjIShe2/vGdWPsdrlcjl12dmFaqysoS2BgiCoBnplSbOpY6fcwhE//mg+U9XqMGXZSb5LKhb2QC9rD2sa7DeYPqR+oNqratNn6z8ztCqa6CNVsQ5xDTmfGWs1ZJFNebDvYIIEao3NnA2ZSLMpH3l0hCABPXz3UER1RHvv7SVIQHdi7xR4jjW2Qb6DBE+qkJyRTGUWl6HRQaN56Y/VPthvsN7a2Xty7PExXrToC2tsLRYOJkBOAFH5ilmUJFyhMd5gtQ/xGyLYa0aokoqsKQ/1H1rokoiwplx5WWVymedCUfFRhnYlujGKdYg3ZX3NSzEdrQ8iTl93qaEoYRMYGYjhAcMV32ZyUP3ZHHGv5w7fAb4IjAzE5GOTlY8HRASgbsm6qF+qvmjaiAjLri9D1xpd8Xm5zws8z+a+7ly9MxiG/8IFqiy9thRJGUnw6OjBS3+s9k7VOumlPTEjEb+d/A39G/RHj9o9eNGiL33r98XajvtxN+grAArt27bYwtVVFDl6wea+1ve+68OCywtw4cUFePf15rVSUb8G/eDTz0dQ7ULRr0E/DGs8DK+SX2FXn12oVaKW2JIKHYan+zEGQ8yYhT2v9Uz+9HCgkmslAMD6b9cDAKc3izm9odzruSNgYABqFK8BAJDKpTj46CB+aP6DqDovvbyE0DehODb0mMY2fer3Uf4cFBmE7+p8Z1SmKnW8TXmLJVeX4JeWv6BK0Sq89WuI9n/P/YvU7FSs6L6CNx36QgQEzHdD1jVFApBOPwWga7feEOsjQ1/61u+r/Jnv18y1V9cw+8Js/NvhX0FKKvZrkJuhTqjXuxBcir4E7/vemNZmGtzruRcq7eaCOCPkq7PFPd8AWENuULqBMkghMCIwT0Yvc6dX3V5oWKYh0rLTMOHIBMSnx+f54BKDZdeWoUHpBpyy90TFR2GA7wBBAr08gz1ha22Lv9r9xWu/LFy1h74JxbqQdfDs6ImKrhUF0cKFPXuAk8cVZly8zkNcKj+o0FRaUuVx/GMM8B3AW7BUUkYShgYMRctKLQukU+WbRx8e8apdSN6mvMUgv0FoW6Ut5nWZp9Re2FKEio04htzGyClBY883gIouig/H18mvASg+YAf6DRS1DJ+hhLwOwfY721HEpgg+L1twmthURMVH4dCjQ/it1W+cRum1S9bmVLpRXx7HP8amW5vwd7u/UbxIcV76zA8X7XKSY+KxiWhUphEmt5ysphfT8PYtMGlyrr4dixsWuvKHLHVK1sH+/vvhF+5ntLERESYcnYCE9AR49/UWfORXt1Rd+PTz4UW7kEjlUgz2GwwCYX///bCxslFq9w33tZiyPphosbogagK6dAZ1iRjYJZfLyXGuIy27ukz5GBss1WJiC7VBXWFhYaJo1YVcLqcSC0qQlYcVL6UbDeXnIz9T6UWl9U6TyXf0df8D/anyssomSdepTfvmW5u1pmg1BXI5kZu7TBlVPWhwbqpDU0Yw8w0faTZ3hO0gSED77u/jWZ12zD36esbpGWTtYU3BL4ILPKdvms0cRA+uEusQL6ir9Uygjad+57TxNPnaMQvDMKjkWgkxyTHKx9hgqVtvbomiyVDC3oYhISMBszvMRmBkIIb6D4Wc5CbVEJ8Wj+13tmNii4kak/Brgg2W+pD2AZnSTKN03Ii5Ab9wP3h18tJbhyGw2uPT4vNoT0hPwJ9n/sSIz0agfVURqjXk4OcHHAxSfCwUL5mNNatzPyLYYKn3ae+Nvu+mRqk91TDtTxKeYOKxiRjdZDQGNxosgELNsIFehmoXkoORB7HwykIs6LoAHap2KPC8Unvae2TJskRQWMgwkfNrphDsQ2bptKMTDfIdVODxyfMnqx0h37lzRwSVupGcl5DrfFfKlGZSYEQgzQmeY3INcy/OJXsve6O2jLDbQl58fGHwXt8O2ztQ43WNSSqTGqzDEPJr/+nIT+Q635ViP8WaVIcq794RFS+ZpRwd79eQxtvY+y4mhmg3JjUmn5jbfY+Kj6Ki84tSH58+Ordo6ald9JGqWIf4mbq4jJRFHBmrUta5LOJS4wo83ry84Rl6xODw48P4ptY3sLO2g3s9d/zT4R8AwLnn50yy1pMpzcTqm6sx8vORRm0ZYRgGGdIMtN/e3qA15WNRx3Ax+iIWdF1g8lKPqtp7evfE+tD18OjogXLO5UyqQ5XJv8jxMd4WAODmLseAAerbqWovbGvKDMMgPTsd7ba346x91vlZuPP2Dvb12wcXexcTqFSPqnax15TTs9PR/0B/lHYqje1u23XGgKhq/+HwDyZSWfgQ35ABoPVM3LLuqv45MzFjACjnVA5vU96KLcMo3nx6g1uxt9CrTq88j8ckx6CHdw+D6inri88DH7xNeYvfWv1mdF8ONg5Y+c1KvQO9ZHIZ/jz7JzpW64getcTZ6+tg44Dl3yzHmWdn4GrviglfTBBFBwAcPAjs91F8HLgWk2LDeito+4x1sHHAim9WFMpAryK2RbDym5WctJ99dhaLrizC3M5z8UWFL0yoUj1FbItgRfcVogZ6ERF+PvYzHsc/hv9AfxR1KMrpPPa+D208VGCFhRfzMGQAzX/YW+CxQBdnZH/5hwhq1FPWuSziUgqOkDVhjh9SRx4fgRVjVcCEKrlWwv7++5VrykJpJ1IkAulZuyfql+YnIQm7LquPKe97sA8P3j3Agi4LRN2HnZSRBAIhNSsVo4JGifKa+fgRGP9j7va9NatsUI7DQJ1dly2MpsxF+4e0DxgROAJdanTB1DZTRVCpHnZdVixT3hq2FTvu7MCG7zbgs7Kf6XVu3/p90bWGhsGXBfMxZHX8HJeCYQF1kS1LE1sKAKCcczl8zPhYILCCSH2mrr/O/GV2H1KHHx9GuyrtUNKxZIHnVDN6CWXKwdHBuBd3j5fRsSqsKZ94cgIP3z3U2jZLloXZF2bDra4bWlZqyasOffiY/hEzzszAsMbD4DvAFyefnNSpXQh+/12O93GKqeruPWQYPpz7uayxHX9yHOHvwwVSKAys9hNPThTQTkQYc3AMsuXZ2OW+C1aMeX1UsqZ8POo4It5HmOy6t2NvY9KxSfih2Q8Y+flIk133P4OJFqt1o6Ye8rE7U8jGE+RzvxURZXHqRkiOPT5GkKBADdDt27erDepy/sVZ9Nq+qqRmpZLDHAdafGWx1naBEYHUfGNzik+L511DH58+VH9NfcHy9LJF0KUyqcbgkfUh64mRMHQ/7r4gGrgy8ehEcpnnQm+S3xARN+18c/o0KYO4nFyy6dUrw/oRQztfqNO+5sYaggR0KPKQmNJ0Ysr7npCWQNVXVKdmG5sJvUVQ9OAqsQ7z+tqXjx61/8G9CasxsGEIgGEgEjdsng24URfYpY7jw4/js7KfQSaXmUVGr7PPziJDmlFg/Tg/7vXccWPcDZQoUgLvUt/xNlKOTozGwUcH8UvLXwSbJmYTe4w/PF7t9HVadho8gz0x7LNhaFSmkSAauBAWG4b1oesh6ShBeZfyAHRr55u0NGDs+NzX5dLFNqhUybC+WO3jDo8rdNPXqtpHBI7Anbd38MepPzCpxST0qqv9vSI2rPaxh8YKOn0tJzlGBo1EYkYi/Ab4mWSL4H8RszZkAKhfehIYxh/e9/wxNKCWqNPXZZ3LAgDnwC5Xe0Um/nGHx2FYwDDRTfnw48OoXaI26paqq7OttZU1pHIpOu3sxNv09bqQdXCxc8GIz0YY3ZcuetXppXZNee3NtXif9h6SrySCa9AEm5Grfqn6mPxlwYxcmrTzzaxZhJcvFFPVbdtJMX688X32qtOrUK4pAwrtfuF++GrHV6hVohYWfb1IbEmcYbULZcoLLy/EkcdHsLvPbtFrp/8/Y/aGrMANznYz4Bf+StQ15dKOii06+gR2AYBbXTcERgaKaspykuPI4yM6R8eq2FjZYG7nubysKadlp2Hz7c0Y12wcnOyEr26vLtArKSMJC64swLim41CzRE3BNWhi191duBZzDWt6roGttW2B5w0JUtOXW7eAZcsVsQ+2djJs3WIDKx4+DQp7oFfX6l2RnJmMKkWrqP3bmCtCBnqdfXYW/57/F/+2/xff1vmWt34tqMFEc+O6UbOGTKl5k0YERfxFNp6gAQcqUZbUoMLXRlNqUSmae3Funse2bdumdg357t3c9WPVmsRZUtOvh4e8DiFIQOefn9f7XE31lPVhU+gmYiQMPUt4ZtD5hsKmqtwYupFmnptJDnMc6HXya5NqUOVj+kcqvag0DfEborOtqnY+ycoiavRZbgKQuXN1n6MvbKrKTaGb+O9cIA5GHiRIQOMPjScbTxvafGuz2JL0hk1VyZf2mKQYKr2oNHXd1dWUyXNEX8sV6yhUhkyUa8rTTtUlMQK9Gq5tSJOPTc7zmCZDvnfvXp52rLHx/QHLhdnnZ1OxBcUM/jIQGBFIReYUocvRl/U+Vy6XU6N1jaj3vt4GXdtYQl6HUOynWHKa60TTTk0TRQPL5GOTyXmeM+cvBSGvQ0gml+luqAfz55PSjBs0yqIsgd5GQmgXitfJr6nkwpLUe19vksvlhUp7fvjSniXNojZb21DFpRWNyqhnAKIbo1hHIZmyzsWt3jwcGTIbf7R+AmAYANNOAZdzLsc5qCs/7vXccX3sdWX5RlNy/MlxdK/Z3eBpOPd67ng25RnaVmkLIoJMLuN8bnB0MB68e4BfvvzFoGsbyxcVvsCiK4tAILxKeiXaNOrdt3exNmQtZn81GxVcKnA654sKX8CKscKpp6cwOmi00dqjooBZsxV/O8ZKjh3bbGEr0Mws39qFQk5yjAwcCXsbe2ztvRUMwyi1n3xy0qy1q0NV+/cHvzdY+/TT03Hz9U34DvA1KqOeBe4UOkMGgO61JCjr7I/YTwGYdqqRSdeUyzqXNSpbV/MKzZUfUqZKBPEh7QNCXodwqjmsDTbK/K+zf2GI/xDO2lfdWIUGpRugc/XORl3fUF4lvcK6kHVwq+MGvwg/UUpmEhEmHZ+EuiXrYkrLKXqfn5qVCu/73kZpl8uBMWOlyM5SpAn9dQqDFi0M6kovWO3muqa8+MpinHt+Drvcd6GUY6k8z6Vmm7d2baRmp2LPvT0GrSn7hfthxY0VWNptKVpXbi2QQgv5MXNDfqDlOTfci/sXK248NmmgVzmncnoHdakjPTsde+/vNUmqylNPT4FA6F6zOy/9tarUinOg14vEF4qtTl8Kt9VJF57BnnCxd8HGXhsFD5bSxL4H+3D55WWs7rHaoFkKPgK9tm4FLl9S1PCtXDUbXl6m+Xv0qd/HbAO9Ql6H4N/z/2J62+noUqNLgecLe5CaIYFej+MfY8zBMRjYcKDaXQAWBMREc+O6UbeGHOxARHe0nmbqQK/5l+ZTiYUl8jzGdQ05P0ERQUYHS3FhRMAI+nz957z2yTXQa9qpaVRsQTFKyUzh9fpcefThEVl7WOepY80GS006OskkGlIyU6ji0orUx6eP0X2x2vPHMeji9WsiZ9ds5drxqVNGS9EbNtBLX+1CkZyRTDVX1qQWm1rojK1gtf9y7BcTqeMPNtBryvEpOtumZaXRZ+s/ozqr64hZ2Ur0tVyxDvMx5OAZ6ssvXi1CXE15sF9lksszOV3OUDbf2kyMhMkTcbh161aDDJko15SFMgeZXEZlFpehP0//yXvfrCkvubJE7fOpWalUfEFx+uPkH7xfmyuD/QZTpWWVCmQWOhR5iB5/eGwSDf+e/Zfsvex5izA3RLt7H5nSjEeOFC9YyZT3XRejAkeR8zxnioqP4tT+UOQhzm3NjYORBzlpH3twLDnMcRA7w6DoxijWYR6GrFITWW09ZI6mvPeeFRENICGjrwMjAgkS0PvU98rHNBny/fvcUjMeeXREsDf6rTe3CBLQhecXBOn/cvRlysjOUPsc++XF1FudWO7E3iFIoHULSFJGEknOSwSboXiW8Izsvezpn7P/8N43V+3+/qQ04xKlsujDB96l6I3Q910XPvd9CBLQjrAdep+bmJ4oqnZj0KZ9R9gOggS07fY2EZTlQXRjFOsQfw35mhdwdZb2NlfTgWutAdzV2MSt3jwMaRwAogDsu99esDXlkkUURRk+pH3grc9v63yLWiVqISkjCZILEl6ThxyPOg4XOxfBAjPaVmkLext7hL4JxfhD45XrVESEdSHr8G2db0XL7CMJlqBm8ZoY9fkojW1CXodgzqU5gq0pTz09FaUcS+Gvdn/x3jcX7YmJwI8/5b6e1q2xRcmCdUVMzs3XNzHn0hxR1mVfJr3EhKMTMKjhIIMKJIS8Udx3sWsSGwJ73/Nrf/DuAX46+hNGNxmN75t+L6LC/zbiGjIXM2bhYMqAGyI+rMCooBuCBXqxUZh8GjLLrdhbmHtpLq8ZvU48PYEuNbrAztqOl/408Tr5NXbc3aEM9Ap5E4Kwt2GY0FycGr+3Y28jKDIIs76apTWIqkuNLoIFep17fg4BEQFY9PUiQbKTcdE+bRrhwzvF79/zWxkGDuRdhkF0rdFVlGApmVyGkYEj4WLngvXfrjco0JDVLmZNYkP5uubXBQK9UrJS0P9Af9QsURNre64VW+J/GxMNxQuiMk2teqidslY99FhTFiLQKy4ljiABBUUEKR8zdspaFT4zen1M/0jWHtYmS0Siqn1k4EiquryqKbP75KHX3l5UZ3UdztOKbLDUIN9BvFSiypZlU6N1jajt1raCVbZi0aT9/PncqWpHZ8MrOQkJGyw12G+w4PeJiGjBpQXESBiDMtblx9Ta+YQN9BrsO5gG+w4m53nOFPk+UmxZLKJPHYt1iDNC1mdknB+O09d+A/5CYGQM7yPlEkVKAMg7QiZSXw/ZEFRrEg8LGGZU32eenYGMZLxtd9KFqnbve974sfmPsLayNsm1VQl5HYLDjw9jVodZsLGy4XQOu62oZcWWvGzP2hC6AQ/fPcSqHqsE3+6lTnt6OvD92NxZlsULDa/kJCR96/fFgf4H8GWFLwW/T7djb2Pm+ZmY3nY6OlbraHR/7JYovl4zpqRfg37Y338/pCSFz0MfbOm1hVPRGQvCwu3Tim+uzjby/HSgdWcA5wB8rraJwpSBbXcWQEYjYAsfAManJLKxskExh2KIT4/X2dbQNylrbC8SXxj1Rj/x5ATql6qPqsWqGtyHvrjXc8fIz0Zi191dGNtsrMmuq8rsC7NRr1Q9DG40WK/z+tTvo/z5xJMT6FqjK2dDVyU+LR6zzs/C2KZj0ax8M73PN4T82s9t6YIXzxSv91atpZgwQZy3Ohf4uu/aSMtOw1D/oWhctjE8O3ny1m/f+n2VPx+POo6va37Nu3ahqFq0Kg49OoSfv/gZrvaukMqlhUb7/yvijJDbeBh5/l8AqgPoDF0j5aBBAXCwOYSo+N68jZRLOZYSZA1ZFfd67vi11a8AFG90fdepiAgnnpwwOjuXvhARLr+6jP4N+6OofVEsubrEpGts12Ou4/iT45B8JTF4dP4i8QV67+tt8JryzPMzISc55naZa9D1jeH5x+fotbc3Fj8bBlhJYWMrw7at/FRyEprnH5+j977egqwp/3HyD7xMegnvvt6CxFM8+/gMbj5uhSZ5SGJGIgb4DkDjMo0x6ctJ6O3Tu9Cth/8/Is7btPVMoI2B31LbeAKt5wE4DS6mzDDuSM3agw47TvA2fW0KQ2Z5kfgCbj5uemf0ivwQidefXqNbzW4CqivI+Rfn8Tj+MSY0n4CQNyH46+xfJslGxjL7wmw0LN0QAxoOMLiPasWqYX///QYFet19excbb23E7K9mo4xTGYM1GErVotVRJWQvUC8Q6DsMf/9DqF/f5DIMonrx6vDp78N7oNfhR4ex4dYGLO22FPVK1eOlz/zUKF5DEO1CQET4/uD3+JjxEb4DfFG/dH3BSjda0A/xvjcbYsptPBXnAQCKg6spO9kNwoZv+VtTLlmkJKcpaz6oVqyacl1WH2M7+/wsbK1s0b5Ke4EV5mV96Ho0KN0AHap2QLsq7QzSbihXXl7BqaenIOkogRVj3EvbkFSVRIQpJ6agTsk6mPTlJKOubygbNgDPjvQHfA8ADQIQXs/0ebuNge9UlXEpcRh7aCy+q/MdJnwhbMR/YUmzufz6cgRFBmGn+07llkQh6ylb4I64E1n6mHIeM2bhbsp8BnrlHyHzGdSlDrd6bvAb4KeXsZ15dgZtKrcRZLuNJmI/xSIoMggTmk9Qrn2rBnoN9R+qV5UofZl9YTY+K/tZnnU9Y2BN+VXSK6Rmpeps7xfuh+DoYKzovkKU4vZv3gDT/8x5bUT2gddnB/AmNQZp2aYrvsIHrLG9Sn5llHYiwphDY8AwjLKKk9DwpV0orr66ihlnZmBq66noXbd3nudYU36VZJ7a/xOYKJxbOzozdbUjIm3bChKIqDkRlSAuW6JKLQKFv+tOhmb0+v3E71R3dV3l/zdv3qx229PDhw8N6l8Vb29vatWqVY72IGq7tS0lZSRpPSdblk1F5xclzwueRl9fHzwveJLjXEdKTE8s8FxgRCD9deYvwbaHBL8IJkhAAeEBvPfN1pZ9nfxa4zaq1KxUqrK8CvXa24v363OlX3+pcpvT998rNHPRbq4Yq33NjTUECejo46N8S9OJOd73dynvqOLSitR2a1utWyrNQLvo24/EOszDkIm05LLukdPFDOLLlJMz9hGRDWVK+xm0T3nexXlUcmFJ5f+FMuSkpCQqW7YslS9fXvkY+2aJSYrR+Ka6/uo6QQK68vKKUdfXh2xZNlVaVonGHRyns+2l6Eu8v9E77uhITTc0FczwM6WZVHNlTRroO1Ctdsl5Cdl52YmW6/jIEVKacfGSWRQfn/ucLu3mDKt9kO8gvbQ/fPeQHOY40MSjEwVUp52M7AyqsbKG3tqFQCaXUffd3anUolL0Kkn3hnRW+2C/wWJoF90YxTrMx5DVVnuakfPkcuLblImCaKAvY1DykI2hG/MUmBDKkH/77TcCQDY2NnmMhv2Q0pQ8ZO7FueQyz8XoxCL6cDDyIEECCn0dqrVd7KdYKjKnCK8Vrs49O0eQgA5FHuKlP02wCTjyG9urpFdUZE4Rmn5quqDX10RKClGFSllKQ969u2AbTdoLA2wCDq7GlpGdQZ+v/5zqr6lPaVlpJlCoGX21C4VXsBcxEoZOPjnJ+Rxl8hDTm7LoxijWYd6GnPpOpcFy4tuUDc3o5ffQjyABxacphiFCGPLDhw9p4MCBVL58eUXf797leV5bRq/OOzvTd3u/M/jahtDTuyd9sekLTm25lm7kglwup3bb2tEXm74wSbYkdcY2ImAElVlcRudSglD8/rtcacYdO0lJ0234r5jy1JNTydbTlsJiw0wjTgdim/LZZ2fJysOKZp2bpfe5Ipmy6MYo1lGIDJnIXEz5zNMzBAmUVYyEMORevXrRixcvqEmTJhpLOaoz5bSsNLL3sqcV11YYfG19eZn4kqw8rGhT6CbO5/Blyuzf4sijIwb3oS8B4QHkNNeJbsbcpJsxNwkSmCw9aX5u3yayslaUVrS1k1KUjhlzVe2FDf9wf3Ka60Qhr0M0tmFfD4uvLDahMt1w0S4Eb5LfUJnFZajLzi4Gp7H1e+hHTnOddM5+8YjoxijWUcgMmUhIU94R1oK4BHqFvg4lSEC33twiIqJNmzbxash+fn7k4eFBRETffPMNAaBTGirKB0YEkvM8Z+UH7OmnpwkS0P04/fNoG4rnBU9ymuukd0HzwIhAari2IcWlxBl87a+2f2Wy0bEq71Pfk1wupzZb2lCjtY1EydktlRI1bZ6tHB3PmcPtPLZ0qEwuK3QjZW3a49PiqeLSitR5Z2dlrIU5Yer7ni3Lpg7bO1D5JeXp7ae3RvVlYu2iG6NYRyHMk/Zrzr+/5fw7H4C67QzslqivodgSpT3N5q0fyqJxmT8ADAPgDW1pNos5FAOgyHajDUO2WaSnp2Pt2rU4duwYAKBs2bIAgLdv36pt717PHc+nPEcpx1KQkxynn55GWaeyaFi6od7XNgQ5ybE1bCsGNRwEF3sXvc51r+eO7+p8BxsrGySkJ8DV3lWv1H2Xoi8hODoYQYOCTJ5LuJRjKfiF++FqzFV8VfUrEITd+qaOdeuAsFuK+1WnXjamTeO21YqtWPbL8V/wPu09vPt6F5qUiaraP6R9wJ6+e2BjZQMiwo9HfkRadhp2uu80eh+6ELDaJx+bjPj0eKV2oZh1fhauvLyCc6POoaxzWaP6UtWekJGA3X12F5rXTGHC/F61nPgVwHIACwH8BWj8MOS+T/mzslPAMP4IjPDHUP+aWvcpczVkQ1iwYAF+++03ODg4ANBtyEDum2XK8SnYfHszOlXvZDKDOvvsLKKTojGu2TiDzrexsoFMLkPXXV31Th7iddELn5X9rMB+SlOQIc3A9NPT0bx8c1x5dUWwesqaiIkB/vw793pbN9vCTs+MkF2qdxGk7KQp6Fy9c54EHDvv7oRfuB829dqESq5mWEVDhS41ugiePOTo46OYf3k+5naeiw5VO/DWb+fqnS3JQwTEzA05Vstzv4JvUwbcYMXMgG/4K63JQ4o6FAXAvyE/f/4cDx8+RK9evZSPcTFkllaVWuFjxkc8SXhisjfLlrAtaFC6AVpVamVwH9ZW1pj11Sy9Ep/ciLmB089O49/2/4pSaWfVjVV4mfQSe/ruEayesjYmTZYhLUUxQhk3jtCunf59GJKNzFxQzYrl7uOOSccmYXST0ejfoL/Y0nQidEav6MRojAgcge/qfIdpbafx2rclo5fAmGhuXDdq15CrE1GMjhOXk1BrytoCvVzmudDSq0uJSPMacnh4uA7teRk0aBBF5YvK8fb2JgA0bNgwnecHRQQRJOAtglkX71Pfk62nLS27uoyX/vQJ9PrW+1uqv6a+KGuFcSlx5DrflSYdnaR8jI1gXnV9leDXDwoi5bpxiVJZlJBgXH+s9tU3VvMj0IQceHCAGAlDJReW1DuGQWzY6Os1N9bw1memNJNabm5JVZdXVe4CEQI2+nrtzbVCdC/6Wq5Yh5kbckUiqkVimvKvx2uTukCvyssq08xzM4mIaOPGjUYb8smTJ6lChQrUsmXLPEf9+vUJAHXp0kVnH7+d+I2qLq9KQRFBJvmAXXZ1Gdl62ioDPvggMCKQ7L3s6eyzsxrb3HpziyAB7bm7h7fr6sOEwxOo2IJi9CH1Q57Hr768KviXoORkonIVcvcc793LT7/XXl0rdAFeREQeFzzISmJFF19cFFuKQfD9mplyfArZetrSjZgbvPWpCQFf76Ibo1iHmRvyTSKqQmKZ8rHHM+llojURDaD8ptx4XWOafGwyEWk25IiICB2aFWRlZVHHjh0pObngN/xHjx4RAGrYsKHOfpptbEYjAkYQkSJbl5AfsHK5nBqsbUADfQfy3rdqJiF1I+A+Pn2o1qpaohjI/bj7ZOVhpZwdUcel6Ev0fdD3guibMiV3z3GXrzXvOTaUiy8u0pigMYXCnG/G3CRrD2vl/trCpD0/wS+CjdbuH+5PkMAkszSq8KE9H6Ibo1iHma8hVwNwHkAWgI4AXmtp+yv4XlPuUdsTlYv6Iz4tAH+f/SzPmnIxh2L4mPGR4++hnRUrVmDMmDFwcSkYpVyuXDkAuteQkzKScOftHXxV9SsAQMtKLWFjZYOL0Rfx/cHvkS3L5kUry/WY6wh/H45xTQ0L5tIGG5Qz5+IcDPYbnGed6n7cfQRGBuLvdn+LEuU59dRU1CheQ2s1pw9pH7D73m7e12Vv3QJWrVa8ru3sZdi43hp8L5/Hp8dj171dZr+mnJadhhGBI9C0fFP82+FfAIr7vuveLrOutKSJ+LR4o7Q/+/gMYw6OQf8G/U1eaYy975Y1ZR4wkfPrRmvqzKck5kj59FMPss23ptxrby9lNixjRsivXr2ibt26ad1HW6RIEWIYhrKyNO+RPvr4KEGCArmU2elrTWk2DWVM0BiquryqoGu46taUB/kOoqrLq5o0LSjLscfHCBJQYESgzrZ8Z8XKv+d4/nyju9RIYcjoNenoJHKY40AR7/O+x8TOimUMhmrPlGZSi00tqMbKGmoLu5gCnjN6iT5SFeswH0PWWFyCrVgkrinnD/QaETCC2m1rR0SGG/KLFy+oWbNmtHDhQo1tsrKyqHTp0gSAnj9/rrHd9FPTqfyS8mqNXVuaTUNIykgix7mOJqkmpar9ftx9YiQMrQ9ZL/h185MlzaL6a+rTV9u/4pyEhDW2CYcnGH399etJacZ16mVRZqbRXWqF1f7TkZ+EvZABnIg6QZBAY4wEa2zmqF0XrPafj/zM+Rx23djUWcDyw5qyPto1ILoxinWYhyHrLL9oXqY80LcSTTr6MzVa14iIiDZs2KCXIb9//54aNGhA1tbWBICsra1p3LiCVZLat29PJUqUIOT0V7JkSWrRogWlpRVMmN9qSysa7DdYo3bW2Pgwh823NhMjYehl4kuj++ICq73JhiZUcWlFysjOMMl1VVl7cy0xEoZuv7mt13kHIw8anTXt7Vsil6K5o+PgYKO64wwf2vnmQ+oHKr+kPHXb3U3r7Iw5audKUEQQPYh7wKltYESgKOvGmtBHuxZEN0axDvENWcWMNRqymZny5ltWNOtcA6q0rBIRaTbkyMhIHfr4ISUzhWw8bXSOHA9FHuLjzULttrWjbru7Gd2PPnjf8yYriRWtvL7SpNclIvqY/pFKLixJ3wd9b3AfqVmpNO/iPIOm84aPkCnNePgI02/zMkY7n8jlchpwYAAVX1CcYpJ0vfcVmIt2Q0jJTNGq/fnH51RsQTHqu7+vyVPH6kKXdh2IboxiHeIGdV3zAq7O4tb26ixFe9SAmIFebvXmYVyzABRziMSHtDd5Ar1SAMQA0JzjSxiuvroKqVyqMyNPr7q90LBMQ6Rlp2HepXkGBWA8TXiKyy8vY9TnowyVaxDnnp9DaafSaFOpDX468pNJg0fmX5qPdGk65nSeY3AfIa9DMOvCLL2DpYKDgT27FW9Tl6JSLF1i+rfszdc3DdLON3vv74VvuC82fLcBFV0rcjqH1V4YA720ac+SZWGQ3yAUcyiGrb23ipIcRxusdkugl36IZ8j6mDGLmZgy4IZM6TBkSOUY6l8Hjx5HAABqAqgMoGlOq/v37+v+nXjgYvRFlHYsjfql6nNqH/I6BLMvzNY7VSUA7Lq7Cy52LnCv526AUsOISY7Brru78EfrP/Am5Q22hG0xSLshRCdGY+WNlZjWZhoquFQwuJ+vqn2ld1asrCzghwm50fGLFtigTBmDJRhMx2odRc/o9SrpFSYem4hhjYdhYMOBnM/rWK2joFmxhKRT9U4atf955k+ExYbhQP8DylS+5kSn6p0sGb0MwURD8bzkm6bmNGVtZtPXAeEBBAnIqg+Ua7z5D2tra/L399ehy3jab2tP/fb30+sc1ehrrtNKMrmMqi6vSmMPjjVEpsH8duI3KragmDITE5/1lHUxImAElV1clrcsUKoRzLoi1BcuJOVUdbPm2SQ1fUGpPOijnU9kchl13tmZKi2rRB/TPxrUh2oEszlWgtJGfu1sRj5Tllg1FNXoaz3uu+hTx2Id4oyQr87m6XzxRsqu9q7Ae4AOap4qksvlGDx4MF69eqVFl3GkZ6fjxusbeieQd6vnBr8Bfsr80XKS6zznYvRFRCdFm3S6Oj4tHptubcKkFpOU1aTc67nDd4AvAiMD8cPhHwS7dlhsGPbc2wNJR4nelaw0weaPblS6kdaKRC9fArMlMgAAYyXHpo02sLbmRYLBsNobl2ls0mpKq26swrnn57DDbYfBo0E2f3SjMtrvuzmiqv1V0iuMPjga7vXc8UvLX8SWphM297Wu17uFHEzk/HnhbYTMYvqR8rVX1whfQhkpremwtrammTNn6tBkOMEvggkSUFhsmEHnB0UE0ZxgboV0RweNphora5g0gMTjggcVmVOE3qUUrI0dFBFEl6IvCXbtr3d9TXVX1xV0z/PZZ2fVjvJ7u0mVo+OJE80rYIdFk3Y+eRD3gOy97OnX47/y2q8ptPMNm6e6zOIyat8PhQGO9130kapYhzhfWVrPBNp4GnSqtPVsxfl5MP1I2dnOGYgAZDKZVr0ymQwBAQFa2xjD1VdX4WLngsZlGht0vls9N/zT4R8AilKKmjJ6pWalwi/cD6M+H2WyAJLUrFSsurEKY5uORWmn0gWed6vnhnZV2kEql2L1jdW8rlOdenoKp5+dxoKuC2Brza3OsL7EJMegp3fPAuuyR44Ahw4qhsMlS2djzhzzCtgBFNp7ePcQdE05S5aF4YHDUbNETczrMo+3fl8lvUIP7x6Fbk3577N/I/RNKD6mf8Tk45MLlXYg975rm9U6+eSkCRWZH+LNIRhgypIsBjM+fdLwrGlN2cnWCeCYjTItTbi466uvrqJVpVawtjJuPjMmOQY99yrMQZ0pB0QEICUrBSM/H2nUdfRhy+0tSMxIxNQ2U7W2C30Tit9P/c5boJdMLsP009PRrko7uNV1M7o/TVRyrQSf/j55gqXS0oCfJube/1UrbFGsmGASDKaSayX49PMRNNBLckGCh+8eYk+fPShiW4S3fisXrYx9/fYVqkCvw48OY+m1pVj89WL49PcpVNpZ2Ps+tPFQtc8///gcQ/yHmFiVmWGiobhmOO9D/pKWXQVBAjoRdUJLh6aZvn6X8o5QAcRYMTqnrL/++msdOgxDLpdTyYUlafb52bz0py2jV5edXeir7V/xch0uZEozqfKyyspiGbrgM9Br552dBAno2qtrRvXDFVb7QN+B9OffuZWcvuqYzXvxCL4RKs3mpehLZOVhRfMuzuOtz/wUljSb0YnRVHxBceq9r7dyuaiwaOdKWlYaNd3QlGqsrEFkBlPHYh3iGzKRzkxd0iuziUhOMvlP1G03qPySojpqfQpvymlZaYTemo1Y9RAq0vrRh0cECejkk5O89anOlKMTo4mRMLTt9jberqOL7WHbCRLolciED1NOy0qjyssqU/8D/Q0631ACIwKpwcqmZO3yngAiGxsZcSwWJjoB4QHUbGMz3urvJmckU/UV1anN1jYklQkbWu4f7s+rdr7JkmZR6y2tqcryKgU0mrt2rsjlchodNJoc5jjQndg7RGZgjGId5mHIRBpzWc+aZ0X77u/LaSSnmKSRVGwBaJh/Sx0dCmvKcnkY4R9QhZoVyMrKSr0ZM6DGzVwpO7tgqks+2B62nRgJw3tC+cCIQGq+sbnyjT4neA45znU0WQF4mVxG9dbUo977eut9bmBEIE0+NtngrS0LLi0gG08bevzhsUHnG4pcTvRVp0zF6Ngpjmb8ZfriGcbAGmdcSpzRI7axB8eS8zxneprwlA9pOuFTO99MOzWNbDxtNM7WmLN2rmwM3UiQgHbe2ck+JLoxinWYjyFrqPYU/i5cOU2j+FdOO+90JkhARx5N1tGpsKbsMs+JJEckVL16dQJANgBZAcTkGHKLL2tRQoI1SWX9lVWi+GT8ofHUeF1j3vslyn2jv/30lmqvqk3DA4YLch11sPl5r768alQ/N2Nu6vUh9T71PbnOd6VJRycZdV1D2LtX8W6EVTbZTKlP/faZb6UlTWTLspU1sg3VfjDyIEEC2nJrC8/qtMNqN6cp4COPjhAkoCVXlmhtxxY+MSftXLkRc4PsvOzyF6QQ3RjFOszbkFNzQ/t3391Ng/0GU5Y0i+RyGXXfXZmqLAd9ylRf8SUX4Uy53BKGPC/8TGvXrqXpAE0EaDBApXMM+fHjx0QURKODmDylG/mi4dqG9OPhH3ntU5VsWTZVX1GdIAEde3xMsOuoIpfL6cvNX1KH7R2M6ud96ntymuuk1/T1r8d/JZd5LhSXEmfUtfUlMZGoVJncteO/d5l/+UNNGLOmHJcSR6UXlaZee3uJkpvZnNZlXya+pBILS9B3e7/jdC/MSTtX3qW8o0rLKlGrLa0oU5qnfJnoxijWYeY7tVOUP7nYucA/3D8nolOGdd+ex7tUa3gFTwawRUsfwkVfO9vZISVrGxjmNboAWANgH4C8cY9ucK/7JwIjYzAsoG6e3NfGkJiRiIfvH6JN5Ta89KcOGysb5XaqbWHbTBLReeHFBdx8fRN/tfvLqH5KOZbCnr57lIlPdGl/9vEZ1oasxYy2M1DGybT5KSUSwod3iq1VvXrLMHdEH9FTVRoKmzxEX+1EhPGHxwMANvfaLEpuZjYBh9gRzNmybAz2HwwnWyfscNvB6V6Yi3auSOVSDPYfjCxZFnwH+MLO2k5sSeaBiZxfN2pHyC2JKHfdMigiiGw9bZUBR54XPMjG04oi34OINuu4AP8j5c/XN6KJR0vTunWO9ChneJOksoasGCGz2vPWUzaW41HHCRJQVHyU0X1pQiqTUvkl5elb729Nlqqy2+5u9Pn6z3kbIXEN9BrsN5gqLK1AqVn8Ly1o48EDIitrRTUnO3spqZa8DggPIIc5DnQ5+rJJNfGBvtq33d5GkICCIoIEVqYb/3B/Ue/7jNMzyNrDmq68vKL3uax2Q841JezveP75eXVPiz5SFeswc0N2IqJ2pM6Up52aRunZ6VR9RXXq6V0l5zKmNeXWW1rT6KAhtHZ1JcrIMeS7GgxZoV1hyhtDmxORcUE7M8/NpNKLSgs6tXf22VmCBHT91XUKigiiInOKCPohFRYbRpCA9t7by2u/gRGBVGtVLXqd/Frt8zdjbhIkoK23t/J6XV3I5UTtv8qtc+yZPwEdEcV+is1pKxc84phvuGp/8fEFucxzodFBo00lTSdi3fdjj48RJKBFlxcZ3Ie5v2b8w/11rY2LboxiHWZuyMeIyIXym/LJJyfp7ae3RETk+9CXIAGdftqLTG3KHXd0pKH+Q2n73H+J/VQ9pGLIUVEFR6+hr5eQTG5NRAPIGFPusrMLue1zM/h8LowJGpMnVSZ7z+VyuSAj5REBI6jK8iqC9M2uUSWmJxbov8vOLtRgbQOTf3j5+ChfNlSlWhalp2tu++fpPwvlmjKRYjSkSTtbOKLyssq87xbggxmnZ5hsXfZV0isqubAk9fTuyUsBjOmnppvdmnLE+whymedC/Q/01zaYEN0YxTrMfA35CwCnoMiQ1ROAIktXt5rdUNa5LGI/xeLaq2toWbElZpx5DTn9BGA8TLWmbG9tj0xpJlwT0pWPvdDxGzWv8AesGH+cfOKPkYG1DVpTlsqluPH6hqDrxxnSDPhH+GNoo6HKNayyzmUBKEq/DfUfqjHNpiHEJMdg34N9+LXlr7CxsuGtXxY7azvISY4e3j3yrCmfeXYGZ5+fxbzO84zOdqYPKSnAlN9y79/a1bZwcNDcvmWlloVyTRkAWlbUrH1dyDqce34O29y2oahDUZEUaubLil+aZF1WKpdiiP8QFLEtgp3uO3kpxNCyUkuzWlNOyUpBvwP9UMm1Erb13mZ2NZzNATM3ZABoBXWmDAD34u5h9c3VKGJTBLdjb8Mv/CsAP8NUpmxvY49MWSZc4uOVj73g9Du5IUM6Az4Pog0K9Ap/H46UrBS0qtSK8znbwrbhs/WfwXmeMxgPBsUWFEPzTc3xxaYv8MWmL9BkQxNUW1ENbj5uOP/8PI5HHUdSZpLaNHetK7dGYGSgxjSbhrD6xmo42TphXLNxvPSnDivGCtPbTlcGemXLsvHX2b/QqlIr9K7bW7DrqmPOHEJcrCKQq0dPGb77Tnt7tsJVYTRlTYFeUfFRmH56Oia2mIiuNbqKrFI9pgqWmnV+Fq69ugaffj4o5ViKlz7NKdCLSBG09zLpJfwH+vNWPe3/DhMNxXWjY9sT0TVSN33N1vUtu7gs1V1dl6SybCL6mUwxfT3gwAD6etfXdK1XL+XcY988U9aHtPZoaKDX5lubycrDilIyUzifwzL15FSN25hiP8VSw7UNCRJQ6y2tqemGphr70ZZmU1+SM5Kp6PyiNO3UNKP64QqrvfWW1gQJNAWWCEZkpCITF0BkYyslNSsbGmG169qbao6wW6KWXFlCUpmUWm9pTbVW1TLodWxq2G1FS68u5b3vU09OESNhaP6l+bz3TSSsdq6svrGaIAHtf7CfS3PRp47FOgqRIRNpM2VrD2uCBOR915sUhim8KQ8PGE4dtnegB23aKA25WR5DLkrqSjeqwprypKO1iOua8g+HfqBG6xpxapuflptbkuNcR8rIzlD7/IprKwgSkJXEihZfWay1L77MYfm15WTjaUOvkl4Z1Y8++D30I0hAzTY2M9k1iRSBXF2+zi2t+M8/+vdxKfqSxr+fucNqX3BpAVl5WJl9NLAqQtz32E+xVGZxGeq2uxsv68aaEPM1c/XlVbL1tKUpx6dwPUV0YxTrKGSGTKTNlD9b/xk1XNsw54UtvCmPCfqeWm1pRdF16yoNuYSKIT9/3og01VNW5cijfykqnnugV9MNTWlM0Bid7fLzKfMT2Xja0Lfe32psw46gIQEng7wcfdmoN3q2LJuqLq9q0kxgRERbb28lSEC33twiIjJZIorAQOVLhSpUyqJUI3ZZhbwOofGHxptV0A4X7r29RzaeNvTZ+s8KnXYixX3/4dAPRmuXyWX09a6vqezissqASaG5GXPTpK8ZNvlHm61t8if/0IboxijWUQjWkPOjfk3ZrZ4b1vZci4fvH2LaqWnIlkmhSNUh3Jqyvc0dZEoz4ZyzhvwJQIJKSzu7/dBUT1mVb+t4oVYJfyRlBGD2+SZa15TTs9NxL+4eWlRsoUWjei5FX4JULkWPWj3UPh/5IRIbb22EvbU9WldqjUqulXT22bZKW9jb2CP0TSjGHxqv9zqVf7g/opOi8UfrP/Q6zxgypBmYfWE2BjUchGblm2H5teUY7D9Y8DW2tDRg0i95Sys6Ohre3+vk19h+Z3uhWlPOkmVhZNBIlHcuj/D34YVKO8vr5NfYdmeb0euyi64swplnZ7Cn7x5lwKTQvP6keM2YYk1ZJpdhaMBQZEozcaD/AUvyDy6YyPl1oyGXtWbUj5SbbmhKjIRRWdsUbqT863FQw9UlKNvamgige/mKS7x//57UlW7UxNlnnjrXlK++vJpnZKcP009NJ0hQIGl/RnYG7byzk8ovKU+DfAcRI2FoU+gmvfo+GHlQ7+QhcrmcWmxqQV12dtHrWsay9OpSsvawVhaQ4LN0ozZmzcodHXfqLOWltKJQ5Q+FYua5mWTjaUO33twqdNpVMTZV5dWXV8naw5r+PvO3AOq0Y6o0m/+e/ZesPKzo7LOz+p4q+khVrMN8DFlDtSe6qiZbgpKCpswWJsgbcCSMKc843Zlae0L5KXsonyEnJibmtORuyroCvVZcW0H2XvYGBVK12NSCXOe70o+Hf1Qeo4NGU+N1jan+mvoU/CKY1t5cSzaeNgaVdGMD7LgaW/CLYJPmySYiSspIopILS9IPh37I87jQpvz0KZGtnWLt2Jrn0oqssY07OI6/TgXgZsxNsvawJo8LHsrHWO3jD40XUZlhsMamr/aEtASqsrwKtdnaxuiASENhted/H/AFWxjDwHrWohujWId5GLKOesj6mLJUJqWaK2tS+23t86TZFMKUZ52bRW6TnZWGvCqfIaelqZZdNMyU5fJMSslMoU2hm+iHQz9QrVW1qObKmpSWpV9Jx6SMJLL2sNa49rwxdCPZetpS7VW16Zs93+jVd17tQZw/pHrv600N1jYwaSGBWedmkcMcB4pJKvh3ZU1Zcl7C+3W/65UbyDV1Kv+/b1BEEIW8DuG9X75Iy0qjemvqUfONzQuYkLlr10ZgRKBe2uVyOfXd35eKLShGLz6+EFCZbgIjAin0dSjv/T5LeEbFFxSnXnt7GRqoJroxinXofwLQAcBhAG9yjMc93/M7kM+YWrbUUrtYxYw1GrKepsxG7W67vY167+tN6dlsCiR+TXlO8ByaMNRVaci/5/u9pdL8mZ/0M+UV16zI+15LcprrRIyEIVtPW2XAVdH5RfXK+8t+Y9WWHrLRukYECfKMYAzhYORBnW/0yPeRxEgYk6arjEuJI6e5TjT91HSNbc4+O0tJGUm8XvfoUeVLhEqXzaJkActKZ2Rn0JIrS8xuCvj3E7+TvZc9PXz3UGMbc9XOBa7a195cS5CAAsIDTKRMN3ze9/TsdGq2sRlVX1GdEtISDO1GdGMU6zAkqMsJigilSVranABQnj2OHTumvtU1L+DqLG5XvTpL0V4teQO9RjfpBztrO8QkxyBoUBAcbBwQFR/Fe6CXvY09yn/IVP7/hcpzVlZWsLbOn/lJUSWKS6CXW715qFx0GoYF3EBqdioIhGx5bkBQcmYy+h7oi9NPT2v5HXK58OICAKBdlXYa29hb2wMA+8XKYHrX7Y3mFZojU5qJxVcWq00esvz6cpRxKoNhjYcZdS19mHtxLmysbDCj3QyNbTpX7wxXe1dExUdh8rHJRge+ZGQAP0/K/f1XLLOFi4A5EULehODPs3+aVbDUxeiLWH59OeZ2nosGpRtobGeO2rly8/VN/Hn2T63BUnff3sXvJ3/HxBYT0ad+HxMr1AwX7VyZcnwKHr57CP+B/ihepDhPCv876G3IRHSciP4logAtzTKJ6C17lChRomALfcyYhaMpF3MYiqGNBmDz7c2QkxypWalov709hgYM5dWUrRlrVP4oV/7/hcpzdnaaIgq5mbKc5Pjt5D6NygiKb1R/nPqDk4Gef3EepR1Lo07JOhrbRCVEAQCqFK2isz8uhLwJwd/n/i6Q0Ss+LR477+7EpC8nwd7Gnpdr6eJF4gusD12P6W2no0QRNa/HfDyKf4QNtzZwKt2ojeXLgejnioxcbdtJMWSIwV1xol2VdmaV0etT5ieMDhqNdlXa4ddWv2pt265Ku0JbdrJ91fZas2KlZKVgkN8g1CtVD0u6LRFJpXp0aefKjjs7sOn2Jqz7dh2alm/Ks8r/BkJte+rIMMw7hmEeMwyz+d27d3mfNcSMWTia8g/N7+BV8iucfHoSTnZO2PjdRgRFBvFqylaMFap8lCn//0LlLDs7OfLnvs5Ftymfe34OL5NeatGlMOX77+7jduxtre2SMpJw5+0dtK3SVmObm69vIjkzGbZWtrylMWTNIX+azc23N4OI8GPzH3m5DhckFyQoUaQEprScwqn9d3W+U2o31JTfvAE85yjOY6zkWLfWBqZI35s/zaZMLtN9kkBMOz0N71LfYbvbdk65wvOn2RRTu77kT1Wpqn3y8cmISY7B/v774WCjJWm5SGjTzoW7b+/ip6M/YUyTMRjTdIxAKv//EcKQjwMYBoXT/AGgRefOnZGZmTu1i6uzjbuC1vMVpvxFhadoXMYR2+9sBqDYp+w3wI9XU1YYssJ0C+5BzoK6ghS5aDflqPgoMOD26c2ObDVxMfoiZCRD28rqDVkql2JU4CgAwD/t/0HlopU5XZcLrDmwppyRnYG1IWsxrPEwlHYqzdt1tBH5IRK77+3Gvx3+hZOdE+fzVLWPPTRW7+vO+FOOjDRFoYyfJjD47DO9uzAYVnv1YtV5KVRgCCefnMTGWxuxpNsS1CxRk/N5rCnXKFZDNO2G0rd+XxzofyDPfd9zbw923NmBdd+uQ91SdUVWqBnWlPV9zSRmJKLfgX6oV6oe1vRcI6DC/394f7UT0X4iOkpED4joMIAejx8/xtGjR3MbtfEw7iJtrKEYCWuiFRjmNL5vIsPByINISI8GkGvKF15cwJOEJwAYGGPKVgRUSVQY7ot8re3sikJTlahcNJuyg40DSON5edH1jfv4k+MAoLYYReSHSHyz5xs8in+E2iVqY3ZHI78sqYE1h1olauHQo0OISY7BLy1/4f06mpBckKCiS0WMbzZe73NZ7cMbD9frvBs3gD27FW8v16JSeHqavrKNez13LOi6AAzD4MrLKyadAv6Y/hFjD41Ft5rdDJoJ6VO/D+Z3nS+KdmNR1b7vwT78ePhHjPhsBEZ+PlJsaTrpW7+vXvediDA6aDTi0+PhP9AfRWyLmEjp/yf817nLBxHF1q5dG1FRKqO41jMV/xoybd1mFtA6FIAbgIMAumlo2ArDPgvAtNPfwudBF/zcIgyAC9zquaFz9c5wsXdBliwLDBjYWrPf6tgPbE0Vh1hT7gSgI5wT+sM+Z2bnRb6WtrbFAEgA/JbzyHxA7YiXNeWvoTDlcwA+x9c1v4YVYwU5ydWck4u9tT2+qvpVgcfj0+LRaWcnpGWn4dnHZwCAIf5DUNQ+t8RdanYqrBgrdKjSAQTCjLaag52Mxb2eO9zruaPdtnZoUrYJGpZpKNi1VLkXdw/7H+7Hpu82Gbxe7V7PHYBiXX/zrc0Y22ys1hKRcjkwcbIU7Ntr7hwblCxp0KV54W3KW3y9+2v0qtsL3n29BSlvmZ9fTvyClKwUbO291agye29T3qLr7q7oXbe3ybTzRXRiNIb5D4OTnRNWfrNSbDl6EfspFl13d4VbXTfs6btH431ffHUxDj46iEODD6FG8RomVvl/iDEh2lCz7UlNm5L29va0c+fOgsHt+bY8ad32lGfrUzoR9SQiByI6WbBfFXp6t6E2W60of0YvIkW1JmP2KQduKabcz5J/D3Lt2rVz2i7P6TO3SpR6Cm6J6ru/r7JohrqDkYDGBI3WoVU3bDKQD6kfjO5LG6GvQwkSkJ2XneBZsVjcfdypxsoavCRgCHkdwil5yK5duduc6tbPomwz2MVjyqxYQRFBBAlo5x0173kDKKwZvX459gvZeNqQjYfwWbGEQFdGr/PPz5OVhxX9deYvvi8t+vYjsQ5DTNgZQJOcg6AYAjYBUCXnuSUAWgOoBsXc7tWKFStSsqbNlwbvQ+Zmynvu7iFIQC8+OpG6ghTGJA85O8dJ+cmbfw9yw4YNVdouJ0NM+X3qe6q7uq5aU7aSMAQJyH1fBb1KN6qj446O1H13d6P64MLIwJFUdXlV5Qes0KbMfgHgyxiIdGf0Sk5W7DVmDfn0ad4ubTSmMLb4tHgqu7gs9drbi9eEL4XNlNkvJauurzJZqkoh0KT9TfIbKru4LHXa0UmI30l0YxTrMMSQOyKf+eQcOwAUAXASwDsoFlujAex4+fKl9ttvcKYu3aacnJFMDnMcaPGVSaSpSpShphwysZvSkPvmux9Nm+avJbycDDHlj+kf6e8zf+dJClJmcRmafX42+dz/w6B6yqrEfoolRsLQlltbDDqfK28/vSU7LztlSUd902waQk/vnjk1svMnaDEObab8559ypRn36s3vdfkgIDyAGqxtQHEpcYL0P8x/GBVbUIxeJ7/mvW+htfPFy8SXVHxBcXLb56b8UuIf7l8otKvDP9yfGq5tSO9SFNX3sqRZ1G5bO6qwtIJQVapEN0axDlNdSDcac1k3JiJtH9i6TbmPTx9qsakFaSvdaOtpSzvCduQ8ws2UI/t+pTTkZvkMuU2bNmrOWE6GmDIRUcWlFemHQz/Q04SneaZfgyL+Iud5oJDXXYhrPWVVNoRsIGsPa8GnqyXnJeQ41zFP9p6giCBquLahIB9SbBGOfff38d43kcKUxwSNyWP2T58S2dgqUmTa2EopKkqQSxsN+yUiPi2e1y9D7Khw151dvPWZH6G080W2LJvabWtHlZdVLpAP3ty1a0NV+28nfiMbTxu6HH1ZqMuJboxiHeZjyGqrPbkRkTURDSFjTNn7njdBAnqZ+JI0mfLdt3fzTbHpNuXXrRoqDblEPkPu2rWrBq3LSV9Tjks5R5CAfB/6qm35IXUXEdmQTN6fsmX65bj+Zs831GlHJ73O0ZdMaSaVXVyWJhyeUOA51Tc6n4n2u+zsQo3WNRK06DvLndg7lC3LJjf33HzV06ebLj+3IUhlUmq2sRlvU8BCTVWrQyqTUtMNTc1y+vrfs/+StYe1RrNitRfG6WupTErVVlQjSEBLriwR8lKiG6NYh3kbcuo7IvIlY005MT2RbD1tadX1VTmPqDdlIsX0zBC/IZymr5OqlCMC6BPDFJjC7927txaty0kfUz722JkgAT1LeKalbRBNPMroNX1d8L4Iw+67uwkSaMxjzH5I5S4bGMeF5xdMli84IS2Bis4vSh3WDCBYZRNAVKqMsPmq+YKdeufD2IScqlaHOa4pn312lhgJQ3OC52htV1jXlB99eEQOcxyIkTBCaxfdGMU6CoEhE/Fhyt13d89Xd1fz9LWNpw31P9BfuynLZCS1tSECKNzGuoAhDxqkzZCJ9DFlzwsVqPgChuTyMK096irdmJ999/cRJKDoxGidbQ1FLpfTF5u+oK93fa21neqasjGmLJfLqf229tRsYzOTVZHyexBImGVDGKAw5R07THJZXuDDlE0xVa0OczLluJQ4KrekHHXZ2YVTzEJhM+WUzBRqtK4R1V1dl/bc3SO0dtGNUayjkBgykbGmzG7tSUxPVGlrhCm/fk3s/OQxG5sChvz99y6kq54yV1N229eTuu5yIT7qKasy0HcgNd/YXIdG42DXco88OqKzLR+mfOrJKc7X44u1a4lQL5Aw04aK/dCfMs1hn5MeBEYEkp2XnSGF5E06Va2OgPAAg7XzhUwuo2/2fEOlF5WmN8lvOJ/nH+5Pdl52dO7ZOQHVGY9cLqfhAcPJca4jPYh7QESCaxfdGMU6CpEhExljytGJ0QQJ6MCDA/naajflX4//mvNIPlO+ckVpyGvUTFlPnOhMuuopK1hOuky50rJKNOP0FNK3nvLqG01JU6BXRnYGOc9zJq9gLx36jGOY/zCqubIm57XcoIggsveyN+iNLpfL6cvNX1LLzS1NZg7x8URFiymmqlEvkMouqCLojINQvEp6pfxZn3V3U09Vq8NQ7Xyx5MoSggR0POq43ueKrZ0L60PWEyQg73veeR4XULvoxijWUcgMmcgYU264tiGNVptIQ70pH3t8LCcQjEXFlPeOUxpy/j3IAGjq1HGkq55yLstJkynHpcSpBHRxr6d8/dUiypZZE9EAUmfKxx4fI0hA9+Pu69BmOHEpcWTnZad3AEhMUu790ueNfvjRYYIEdOrJKb2uZwwTJ+Zucxo6TKasvZ2SmVIopiLz4xXsxXkKWKypak14XvA0+fR16OtQsvW0pT9O/mFUP54XPM1y+vpmzE2y87KjSUcnaWzjccGDb+2iG6NYRyE0ZCJDTXnqyalUbkk5DaMnzYFe71Pf05+n/8w7fT0PSkPOvwcZAM2aNYvYjF7GmDJrnLkBXdxNmSiIgl9Y0+igagWmr8cfGk+1VtUSdCQ5/9J8cpjjYPCWKs8Lnpz3Kcvlcmq6oSm139beZKPjhw+JrKxlBBA5FJFSTEyuls47O5ssGxmfcF2X/ZD6QdSpanWYek35U+Ynqr2qNjXf2JwypZlG9WWOa8ofUj9QleVVqOXmllp/PwG0i26MYh2F1JCJDDHlU0/mESSge2/vaWir3pRPPTlVMHnIDw2Uhpx/DzIAWrBgQc7Zxpmy5wVPKr6geL4PPe6mrG5NWSqTUpnFZWjqyak69BiOVCalqsur0qjAUQb3oU/ykEORhwgSmHQ9rnuP3G1OXvlm/nVl9DJnuBgbO1Wtz5qpKTClKY8OGk1Oc53o8YfHvPRnTqYsk8uop3dPKrGwBKclGJ61i26MYh1mbsjBOk7Sz5TTsuzJ3suWfj/5u5a22pOHKE25W26Wrvx7kAHQypUrVfo03JTd9rlR113q9jQbbsqXoy8TJKArL6/o0GI4Rx4dIUhAN2JuGNUPF1OWy+XUfGNzk46OT55U/vmpfMUsSlOz/fv/wZTnXpxb4Dlzm6rOD6t93sV5gl2D3aGwPWw7r/2yxiakdi7Mu6gYvBx7fIzzOaz2+ZfmG3t50Y1RrMPMDbkEEela49TPlEssBJVZXExHn9pNeaDvQJLXqUMEULKt2jSitHlz/n3LhpmyIqBrhoZ2+pvyhMM1aOrJ36ns4rK8p5RUpad3T2q+sTkvBsmasqYPKdb8zzw9Y/S1uCCVEtVrkJuves8ezW1ZUw6MCDSJNj45//w8pWblXeowx6lqdajTzhfPEp6R63xXGuI3RJB7IKR2Llx4foGsPKzon7P/6H0uT9pFN0axDjM35IZEVIr4NOXfjlcj13kgqUzXNz/Nprw5ZCORvT0RQPeKqzdkb29vNX3qZ8pxKcgJ6MofGa4Kd1M+FPk33YtlqOxiexoZMFzH9Q3nacJTYiQMbb29lbc+g18Eq32js5HVbba2MZlBbNpESjNu2jybZDrizlSnNM3ZxDRxP+4+TTg8gbJl2WY7Va0JVe18kCXNolZbWlG1FdXybaHkH761cyH2UyyVW1KOOu3oZNQX9ntv79FPR34yVLvoxijWYVWwIKMZEdoFQEUo6g8/0NKwPwAfAAcAjASgqai2A9zqbUJyFvDgnTuAU1r6bJXz/F0APQF8AgC41XPDuIq9gMxMAEC0s/qzixRRV6ibraecBUWNjtdarv8rbr35AQDQvPxZKHxeHWw95epQ1FO+q7HHXnXnIubTv4hLzUTMp5PIlqVpub7hbAzdiKIORTG40WDe+uxQtQMcbR1xP+4+JhyZgGxZNgDg5NOTuPn6JmZ/Nduourtc+fQJ+PPvbOX/V62wgZWOd1HtkrUBAJtubcIQ/yE6i76bG88/PseWsC3ouKMjvO97Y9U3q1DepbzYsjjx7OMzbAnbgmEBw3i57x7BHgh5HYJ9/fahqENRHhRq5mnCU2wJ24LhAcNN8pqRyWUY6j8UALC3315YW1kb3Nezj8+w+fZmk2n/f8F8DDl0acHHQlYB13qAT1P+smI72Fnb4WJ0LQBuMMSU8eKFssULdb4LwNHRUUOf3E059E0lFHdwRLViGwH8BT5M+W6cI+ysbXEp+j2GBdTl3ZQzpBnYdmcbRn8+Go62mu6B4bxIfIGtYVsxLGAYsqRZ8Aj2QKtKrfB1ja95v5Y65s8nJHywBQD07SdHu3bczy3jVAb+Ef4Y6j+0UH1I9arbC9t6b8OVV1dQwbkCr1+0hKZ33d440P8AAiICjDblCy8uYN6lefDoqHjNCY1bPTfs778f/hH+JjG22RdmIzg6GPv67UM553JG9WVq7f83mGgorh2d5Rf/JKLPia/p63bb2lH/A32ISz1lBfmmr/fuVc5Z/v65+inr4OBpOvrUPX2dG9C1nBS3Uf8qUflps7UNufu4651mkyts3urI95G89Zkfdk25w7YOegeeGEN0NJGdfW41pydP9O+jsAZ6DfMfRo5zHcnG04bGBI0RW47esIFehmr/kPqBKi6tSB13dBQ09kIdbLDU2INjBbsGu72S72AyA7WLPnUs1iG+IauYsUZD5tmU/z7zN5VZXIbk8jQyyJTnzVYa8sBWBfNYA6DQUJCuesq6TDlvQNdyMtaU36W8y7O2q2rKMnmGDq3caL2ltYaocH4JjAgkRsJQqYWlTLYuO2SoTLl2/Pvvhl+TNWVDgmbEQDWqOjAikC6+uCi2JIMIjAikS9GX9D5PLlfsdiixsESepDWmJCA8wCDtXHiZ+JJKLixJPb17CpItzADtohujWIe4hpzPjLUaMo+mfCLqBEECevThEXGpp5xLjin/UE5pyK3b26k15MePh+b86oaZct4MXSzLyRhT3hG2gxgJk6eoeFDEXzT3ohVpyuilD2GxYSarsnT22VmCBLTw8kLBr0VEdOOG8k9ORYtn08ePxvV36smpAvVyzZGP6R+p/JLy9N3e7/J88cmWZdPqG6sL1SifJVuWTauur+Ksfd3NdQQJKCgiSGBluuH7vmdKM6nVllZUZXkVwWuiZ0mzuN530Y1RrEM8Q1ZjxjoNmSdTTkhLIEhAu+/uznlET1PuZq38dK7QyV6tIcfGviFd9ZRzKWjKBTN0sSwnQ0253/5+1HJzSzVtg4jIhs487WDU9PUPh36giksrmuRDusP2DsptVfp+wOqLXE7UqnW20pBXr+av7xcfX9Cvx381W2MbEzSGXOe7FhgZXnt1zWwqLenL1ZdXOWu/H3efHOY40M9HfjaROu2w2vlKHvLr8V/J1tOWrr+6zoM67bDa1acvzoPoxijWIY4hazBjTobMkynXXlWbfjn2i0o7PUy5ThUigDKKMOTYqYhaQ/6Y9JF01VPOS15TVp+hi2U56WvKGdk3yXmes9pED0REr5K2kL2X4WvKnzI/kfM8Z5p1bpbe5+rL+efnCRLQwciDRJRrDkKty/r6Kr9/Uc3aWZRlfMlmJUcfHzXbNWW2ctam0E1qnzen8of6wkV7WlYaNVzbkBqta0RpWWoyv4gEX1mx/MP9CRLQyusrdTfmiYDwAC75AkQ3RrEOcQx5CWOcIS9hiOgDGWPKQ/2HUqstrfK142DKMplyD/Lb6gw5t7MqaMgMqP9+HfWU1ZJrym77uutYi11O+pjyyScuOtKG6l9PWZXNtzYTI2HoxccXep1nCJ12dKImG5rk+bKiT5pNfcjIIKpSLTcJyOHDvHWtxBwDvT5lfqKqy6tS552dta7R/z+b8s9HfiaHOQ6CFmAxFGNNOSo+ilznu1L/A/3NcW+86MYo1iHOtqc2HjycXxLAWRi6JerLCl8iLDZMuZ9VgQMAfyi2DmnYEhUXp9yDnFC2ApApL9DE0dkRBx8dxLCAYciWSQGsAfAzgPEAtmjRmbsl6lbsWTQvX0dL218BLAewEFy2RB165ICqRa3QqIxMY49u9ebBb8BfCIyM0XtL1Obbm9G9VndULVaV8zmGcCn6Es6/OI9ZHWbl2XfsVs8NfgP8EBgZyOu2ojVrgJcvFNucOnaS4ttveek2D+713OE7wBeBkYEYHTSa/wsYwN9n/8b7tPfY3Guz1v3dfer3wYH+B1DasTSsGPPZRckFVnsZxzIFtB+MPIh1oeuwrNsyNCrTSCSFmulbvy/2999v0H1Pz07HAN8BKONUBlt6bTHJ/n0LHDGR8xfE4DVkz3wdGTZSvvIymCAB3XpzS007LSPlq1eJHS5d6t2EXD53LDBCrlSpEgVFBFGxBcXo7tu7OSdyHynHpdzICegqR3zUU5bL5VRleSWadLQ0cU2z2XwjKD7NjbgEet19e5cgAfmH++tsayzddnejxusaa4wGDYoIosnHJvMSLfr+PZGzq2LtmGHkdEf7bTOawIhAswgcuhx9mRgJQ8uvLdf73JsxNwvdSJmF1R6TFEMlFpYgdx93cxw9qkWf+z7+0HhymONAd2IFfkEbjugjVbEO8QyZSO8oa/lVDw0d6W/KaVkDyNrDmtaHrNfQToMpq+xB9h/bhpzrORcw5Pr16xORIkKVSBEZqc/0dW5AVwUytp4yUa5hnnziR1zTbEpl/kRkQ28/9dI5fT352GQqu7hszu8oHCGvQwgSkM99H07tb8TcMErTpEm5tY6//950xePlcjltD9suirGlZ6dT3dV1qdWWVnrvt32f+p6c5joVyulrVvuAAwOow/YOVHFpRcGjjvniXco7cprrxGn6etedXQQJaMutLSZSZxCiG6NYh7hzTK1nAm08OTW9W7MehrwOzzfFzKL/9HUR2wA0LOOCsNhbGtppmL5WydL1rrQjKLPgVLGLiyJDVTGHYgCAcYfGYWjAUM7T16FvQlHcoTiqFbsIrmk2tU1fH350GM52zviq6nfgmtHL2qovpPL96LzrsNbp6/TsdOy+txujm4yGrbWtFo3GM//yfNQqUQv9G/TX2fZD2gd03tk5Z9lA3WtGO0+eAOs3KO6jQxEZ5swx3VvlXtw9jD88XpSMXh4XPPA88Tm29t6qd+rEUo6lsKfvHl6yYpmaUo6lsLvPbvhH+ONi9EXscNuBko4lxZbFidJOpbGrzy6dWbEevnuICUcnYOTnIzGm6RgTq7TABfEXfbiYcpuv8aJeJAIifHOMjR9T/qxsEu6/C4K23NcFTFnFkGNLOUCeUXAN2cXlCZRpNgH0qdcHQZFBnE35VuwtNK/QHAxTE/rkvtZkyocfH0b3mt1hb2MPfdJs2lj1xbzO2teU/SP8kZiRiHHNxmnRZjzh78MREBGAGW1ncDIK1hwCIwMNMuW//pZDJlW8PaZPs0aFCgbJNojPy32uXFM2pSnfjr2NxVcXY2aHmWhQuoFBfbDr4YXRlMu7lAcIsGKssDlsc6HSzq4pazLllKwUDPAdgOrFqmNdz3WWdWNzxURDcd0Ez1A/Za1cM15IQREgW08r6n+gv5apSO7T1wsvDyeXeSCZfDBxKd1I5EDUrblyynr89r5kX6LgPuQ+fWxIXZUoG08bFe2ap68Lllw0vJ7y209viZEwtCNsR752htdTVqXD9g7UaUcnHZqMZ2TgSKq4tCJlZOuXUUw1gpnr9PXNm8o/MZUolUXJybrPEQJTRl9nSbOoyYYm9Pn6z3lZegiMCKSaK2vS6+TXPKgTnsT0RKq2ohq12tKKDjw4UKi0q+If7l9Au1wup6H+Q8l5njNFvI8QUR1nRJ86FuswH0NWV34xOH8d4FxTnnZqqpbOuJly7lqtFXGtp0x1GMVtc3amfj59ycbRpoAhjxzZgzSVbrTxtKGNoRtzHiloyuozdBEZaspbb28hRsLQu5R3atrpZ8pF5oCuvOxEbKBX5PtIggTkfU9dqUn+eP7xOVl7WBsUZESkMIdaq2px+oCVy4natc9NArJmjUGX5I3AiEAa5DtI8PX5OcFzyNrDWkOQo2FkSjOJiCgpI8ns15SH+Q8j1/muykQ8hUl7fvJrXx+yniAB7b23V2RlnBHdGMU6zNuQU9WZyEI6+QT09tOvpH3/rW5TjkmKyUkwMZ041VOWpRLZWyluW6Nq9J33dwSmYFKQiRMnkqZ6yqGvQ/NFAOc1Zc0ZuogMMWV3n9rUZmsbLe24m/LbTzuIyIbk8v6ULUujaaemUYmFJSg9O12HFuP4+cjPVHJhSUrJTDG4D/ZDKjE9UesH7JEjpDTj6jX5TQJiLOHvwgUxh4fvHpKdlx39efpP3vuWyWXUZmsbsw702nN3j9ovljK5jFpvaW3W2jXBau+2qxvZetrST0d+EluSPohujGId4q8h6810dKu5EGWdVyD202+YeuoPg9eUK7hUQHGH4rgX5wJO9ZTjknL3HVd7ifT012q3/7q4uEBT6cbmFZrDirHCiScnMCJwRIE15dA3G3MCuqqpEaBfPeUM6SKcehqFXnVsoWufMpc15bLOowD44c8z/hjsVxvbw7ZjxGcj4GDjoEWHcbxNeYutYVvxa6tf4WTnZHA/dtZ2kJMcPff21LguK5MBU6fnvpYWLbCFrbBxapxJzkxG++3teV9TlsllGHtoLKoVq4ZZX83irV8WK8YKU1tPNds15ReJL/DzsZ8xrPEwDG08NM9zVowVprWZZrbatWHFWOGnL37CqWen4GznjMVfLxZbkgUOFEJDBoDpABbiXtxKrLqxwuBAL4Zh0LhsY9x/dx+c6imrBHShWmWkpdxRq87V1TXnJw31lAFkSjOx/8H+AslDbsUeRPMK5bQEXXA35fPPGyEtG+hdNxh81VMG3NCm8p8IjHyND+kfMKyxsLVxl19bDjtrO0xsMdHovqwYK0xvM11jsNSuXUBkuMKBm7eQol8/oy/JG672rtjSewvvgV6rb67GjZgb2Np7K4rYaijubSRsAg5zMzapXIrhAcNR3KE41vZcq7aNuWrXBREhIDIAjjaO+JT1CWMPjS002v/TmGgorhu1U9a69hQbH+j185GfqeHahiqPaCndqLIHmZbMp6bzXNXmsV5doPqA+unroIggsvW0VQk4klOlZU4047Ri+lo7uqevJxyeQDVW1iC5fBkp/gzG11Nmqb68DEHCfz3lPGrSEshlnku+ADfjUZdmMzWVqGz53BSZwcG8XpI3+Az0eprwlBznOtKko5N4UqedgPAAsvW0NVn9al14BXuRlYcVp9KArPbjUcdNoMx4llxZoqxQ5R/uX6i0kxlMHYt1mLkh1yKiNzpOzDXlwX6DtWTWUW/KK66tIHsv+3zruhpMed68XEP286N6f9VVa8g7d+5Uc33tpjzp6CSVgK7upLhthpuyXC6nSssq0ZTjU3IeWU58mfKrpFdk5WFFPx/pQTaeoCVXPiNjSzeqwyvYixzmOOQpF8kX7H1nP6Tmz8/90377nWkL0OtLYEQglVtSjqLiowzuQy6XU+ednanq8qr0KfMTj+q0oxobIWYWrOuvrpO1hzXNPDeT8znmol0XV15eIWsPa5p6MjfwtbBoz0F0YxTrMHNDLkdE9YirKe+734f0DfRig6gKFkVQY8o//JD7qR0aSpUnVlZryIcOHdJwffWmfPTxUYqKj1IJ6HpKxpRuJCK6/eY2QYJ8lVWWEx+mPPfiXCoypwglZSTR5ej5lCm1Jj7qKauSkplCJReWpIlHJ/LWZ37Yv/n790SOLorRMWMlo4cPBbskb6RmKWYl0rPTDRopb761OSd7m65yo8Kw/Npy3koI6ktyRjLVXFmTWm5uaVD0+rKry0TTrov3qe+p0rJK1HZrW7W/mzlrV0F0YxTrMPM15CAo1l07A4jV0m463OotxOBGgSCaib33vTmvKdcpqSjgEJUQla+tmjXlPGvI1ZD+KV2tmuLFi2vQqX5NuWftnqhVohYuv7wMB2sHVHSpBEMKUqiuKR9+fBiu9q5oX7W9SttfoU9BCnVrykSE7Xe2Y0DDAXC1d0XbKn/CztofIa8DMO6QfgUptLH59mYkZSZhWptpvPSnDrYQRt/Fy5D2zTDAKhvfj2bQwLCcGCbF0dYRRIT+B/rrvab85tMbTD01FaObjEa3mt0EVKmZasWqwT/CX5R12SknpiAuNQ7efb0Nyi4npnZtyEmOUUGjkJ6dDp/+Pmp/t6rFqurM6GVBREzk/LrRuO3pMRFVJK4j5Yfv9FtTzpaFkY2nDa29uVZDW5WRcp06xO5BJrmcnPsWzGMNgB482KihLxb1I+U2W9oQI2E4JQ8pSN6R8hebvqCBvgM1tF1Oho6UL764SJCAzj8/n6floci/ydbA0o35yZRmUsWlFWlk4Eij+uHCs2dEVg39CTNtyGpQf3r+0oz2OXHAkDXlvvv7UpnFZSg+LV5gddphtZtyW9GBBwcIEtD2sO1G9WOOZScXXl5IkEDnGj1f9ZQFRPSRqlhHITBkIn1NWd9Ar7qrq6mstarDl0hmpbIHuREREdl2t1VryDEx9qSxnrKSgqZcaVkl6uvTl3NGr4IoTPl1cjWCBLT77m4tbZeTIaY8Omg01VhZQ201JWPqKauy885OggT0IO6BwX1wZfAQmWIVol4gWc3WL6OXuaCPKQdGBOpVoENoWO2S8xLBr/Uy8SUVW1CMBhwYwMs6KmvKptCui8vRl8naw5pzACRryh4XNBXsERXRjVGso5AYMpGQptxrrx312NNOe5dvNpFy/fi7b0kulxPaFjRjAJSa2p3Ulm4sQK4px6U8VWboUk2zqfjg0M+UN4WWICsP0AedUerLSR9TTs4oTk5zi5BXsJfGlqwpjztYnQxZU5bL5dRoXSPq6d1T73P15dat3D9pseLZtCfUdObAN6yxaTPaxPREqrC0An3r/a1ZBfaceXqGkjKSBL2GVCaljjs6UqVllXidGTCFdl18SP2gdd1YE+agXQOiG6NYh3kbcoHUmfqbstu+OpSenaal3Qf6/URpqrnSirTmvlapg0yTalN69idC84JmbGdnR3J5Gmmsp1wAhSkfe9wgT4auoIggWnFthUo77qbca28Xar/Nnvgo3ZhLAm29XZUYCehl4gmtPR6M/JtuvTEs0IsNbMs/JS4EXbrmpshckXOrzz47a64fUjp5+O6h0mjVGe5PR34i53nOFJ0YbWppnHj84TFNPjZZkGnUhZcXEiNh6Nyzc7z3TSSsdm3I5DL61vtbKrmwJL1MfGlQH2JpV0daVhqRGRijWIf5GLLO4hIs+pmyXA4i+pcef3ik8dvj6hsLyNaTIZm8JGk05Tx7kBmKT+tLaFjQkMuUKZNzgoZ6ymq5Rp4X7Kj4AhuSywuawZFHRzhPX6dmpVKROUVo0eUZZGhBCk203dqSuu12JS77lImCKCPbmhZd/kyv6etOOzpRi00tBB/BnT+f++esVCWLMvLVrHj84TFNOjrJLD6k9GXP3T00xG9IHu2Xoy8TJKCV11eKqEw7hx8dFmRdNvR1KNl62vK+n10VobTrYtHlRQQJ6Ojjowb3cSjykNmsKY8JGkNkBsYo1mEehnzVU2G+6gyZB1NOyQSVXeykcfr6UOQhggT0OrkBacx9nWcP8h/0KsmKUKOgIdetW1flJO6m7LavA3XdZU35A72ef3xeIHmINlNmfxdFVRfDq0Tl59GHRzlrj1uIa/KQS9Hz9FpTDn0dSpCADjw4oLOtMcjlRC2+zB0dq9s2fuTREZNVWuKb/GvKGdkZVH9NfWq5uSVJZea9x5rvYKmUzBSqu7ouNdvYTJnPXChMHejF7jeefmq60X2ZQ6AXuxWPzMAYxTrEN2QVM9ZoyDyYsrY15btv7xIkoKsvj5PGghT59iA/+rCSUKGgIbdq1SrftbmZsqLk4gjimtFLkymPPzSeaq+qrTLC5MeU/zz9JxVbUCynkAQ/pRvzM8h3ENVYWUNw0zh4MPdPWbd+Fkk1XE5dRq/Cgqopzzw3k2w8beje23tiy+IEa2x8RNn/ePhHKjKnCEW+j+RBmW5Y7aMCRwl6nQ+pH6jyssrUZmsb3oIQWVMWWrs6/kfeeUY3cX1d/0juNr13EnoPBEKAkD89BEggCS1AQkiFQHonQJC7DQbTe2+m2qZ3TAfTu43p1dgY3Issafb7QRprJI1GbaQRz7vXuitBvhpdG6Of5t5z9j775Cy8g70xZvsYwA3AKNWQFshGMBYEshOhnFWYBVIQYq7GwKzN5nvv6d/FMzJwMfUiqIIpkN9//32e1xaGsmHkovU2m8ZQ1jAaVI+qjt/2/Gb0Co5BWaVRoXpUdSOTDvugrNbwJ0PdfXkX8kA55iQ6N+9QrQaaNNNbZMbFCc9noeyKFiyxxUJZHijHvwf+lXo5Nin2RqzDpiXxSfEgBXHiTl0jMdYuJPbcuEJkBbvPjc1py40tLjeLeZ7/HHWi66D94vZs3rnkYJRqSAdkHhhbBLJIUK40xR830g3tmMqEl0Hk8Ujdn3igbNSDfPzBcZCfKZCHDRtm5rXNQ9k0ctE8lDsv68wpOjKE8tknZwUKouyH8s6UnSAF8WTl2gblfw/IwDCDwFfo9eOuH1ExsmKJA5WztHq1/nPVm+1UsOaoOj4pHvtu73PqupwhDaNBsznN8PqM150ekeksaRgNFp5baPMOxdOcp6gYWREDYgZIVlFu79otaeqJqSAFYcfNHaJelytnrd1Yao0a761+D5WmVOIWG0oORqmGNEA2A2OrgCwClHOVBGAilOqikjvllvNaYuyOsZx5HChrLgM+PuD2IO+9tZc3C3ns2DECr80P5aDDQSgfUd7ojYMfyuycx9mPTe6U/zv0AcpFlBPYwrIPygM3DESr+a3MvLFZD2UgHoAnjj3oZrB9nZGfAf9Qf0xOmGzh+Y5JqQTqvKa/Oz5wwPJzuNIwGiw4u+CV6VNmg+kT7iXgac5T/Lnvz1du6/3ck3M2n8tqGA3eW/0eqkVVw/P8505eoXmdfXJW9DPlkw9PwiPQA3/u+1OU65nTmcdnXHKmPOnQJMgD5dh/Zz/3YcnBKNWQxjrz5GSRn9+QtPaR1tlslvKOJKIQ+iy2TUl0Y91ydelB9gPOPI7NZlo3IqVS+/BrrxER0cvsl7zOk+XKHSWzecrkS0RbdGscQFobTaLzqeepbY22RpGL/DabMpmMijXF1GVFF93a9dGN21N2UJ8GjQTsAG3LUyaKpoyCSNp2M46+av2lmUhI26Ibn+UtpvdWJ9CIWL3N5ryz84gBI0rEopCWLiV6eF/7s+naTUM9etj2/AupF+iH3T/oIjP5rFndR09yntDfB/6mr9t8TV1f60qX0y5T9Olo0fOUna22NdrSpsGbbIo/nJU4i/bd2UcrP1pJlfwruWCV/GpXo52o0Y0vC1/S0M1DqX3N9hTaPVSkVfLrrZpv0YZBG5xqs7kjZQcFHw2mkG4h1LNeT9Gv/ypKGiB3CnTC822DMlEkjWiZRFuTY2l47HCqVboWPcx+aDRPB+X7FfQP6YD8/MVz3iuXL59EZvOUiYgPyudTz1Pb6m155vJD2dvDm6a9N43ik+NLoPw45x+6+Izow0ZnyB7va379QmuvfEREDI1odZfs8b42VrVSoyhm4HiKS35MI2IbU07RC5p9ZjZ92fpLqhxQWWAtjqmggGhyoB6ikREeNl+jXY12tGnwJopLjnN7KP+4+0fy8/QrCaZ/v8H7JWt/1aD8UZOPrIbylbQr9PeBv+nXDr9K5tPNlVh5ygDoi/gvKF+Vb9anWmx90vQTp0H5zss79Hnc59S/cX/6u/Pfol33VZc0QO44iahTkH3P7fSx9vm8sg3KA5pE0qbBDG1NjqXjD4/R09ynPPMqEt3nBBy85ktERBkvM3ivWr78aDIIpOCVHsrp+f3pcc5jalejnZm5/FAe0GQAbR68uQTKW5O3kYfMg95v8BXZG0hhLAC09OId6t+4FVXyn032BlIYa0CTMNo8WAvlzsvr0/OC5/Rbx98E1uu4Zs8mep6mfRMb8BFD7dvbdx0WDu4M5bikOIpLjqNZfWZReT990Al37SPjRmrPrF4RsWsP8AogGfHt1BAVqgpp+Jbh1KRSEwrrEebiFZoXC2WhtVvS9FPTaUfKDlr50UqqU7aOyCs0r0+afkIbB20kfy9/u9durAJVAQ3cOJAq+VeilR+tJLnMzTOOXCkX7Y3zy+Yq67YAZABWmL2kVrYXenkEykAK4u9VNOhBLg3gKr6f8z2vbeaWLVtgNk/ZRIXYldJOV9DFl6HMlflCr1JhpdBpaSd0XdEVjgRSGIvtC9aaDkSDPVN2NE+Z1ZYbf4EUhNdnBMAZecqsMjOBMmVVosYrxiXF4av4r9yurzerMAvVo6rjg3UfmC1mikuKw7or61y8MnF1KfWSydnmj7t+hG+Ir0s80B0R39qFdOrRKXgGeRrkG0slW9duLIZhMDJuJPxC/HD52WVz0yQ/y5VqSAtkwMY+ZA2Ab+EMKM89QyAF4VE2TxuBQQ9yQwCVMFjxHi+QDx1irfmsg3LQ4f9QPsILDGNfIAUAPMh8AJ9gH0w9MVX3j0UcKI/bOQ7Vo6pz/gFGQ0wos20pa6/I8aJggMMpUeb077/6v76RI01DMRyVo29SYmrM9jEoFVbKqnYYhmEQczXGbdZurTILM1E2vKxBsdTe23tBCjKym3U/8a1dSC8KXqBOdB10WNJB8mLClwUvUSa8jEOFXmyhoXDwjfRglGpID2TARqcu50D5wtOfQApC5PHu+HTzp4a//AY9yCkA3kCPnzx5gXz1KtdQxDKUB8QMQM9V3WGr9zUXyluTt4IUhBFbRljt6GUoUygXqgpRLqIc/tn/j9HcaIgF5S7Lu6Djko5Qa7agzQJxohuNlZoK+PqpQQR4emlw756oly95g3UH85BjD46BFIRZp2dZNf9a2rVX1viE64qVlpeGGtNqoOeqnrwpZO4max29GIbBh+s+RPmI8m7jP+6Io9fpR6fhFeRl5GfAK8nBKNVwDyADNnhZA86A8tOcpyAF4d8DPOYhRj3IQAbafubHC+TU1FSjKwtDWevQ9Tds9b7mQpl157LF0ctUhlCOuRoDUhBuZtzkmRsNR6HMbodrzVDEi2401g8/MCWfpcaNc04/qjs4etlrj2lPnrK7iAVbrem1UC68HB5nW2rlcx9ZA+VpJ6eBFIRtydtcvDph2QPl9Lx01JpeCx2WdLDGwlRyMEo13AfIvGlPvwo8QVwoqzQqyBQyLDr3iaGjV3GRSQ8yADTsV58XyMXFfNtK/FA2dOgC7IEyw7yDGtOq49c92p+VWFB+b3UXvLP0HYG50XAEyiO2jMDrM143gIfYUH7wAPD00t4d+/qp8eyZw5cEAOTzLE1qKAcdDrLbHvNVhvLPu38GKcjpDm/OUOyNWNSeXhv3M++bfM2dzo35tOXGFtSeXtuqO3e1Ro0eK3ug8pTKeJT9yJrLSw5GqYZ7Azm/E4A8gSeJC+UqU6sg6HAQuDab/639BiW3WB98UDK3xjs1TGBctmxZgdc3hbKpQxdgK5QvPPUHKQgH7ug/RbNQnp04W/eIbVB+kFUDMgVh6YUoC3OjYQ+UH2U/gmeQJ+95X3zSePgEEw7d7QJHC72+/VZ/dzx+vHXPOX0a+OUX4I03gGbNgE6dgA8/BI4c0X79+nXg44/5nxufFI860XVcvr2YkpECn2Afh9KM4pLi8OG6D18pR68HWQ9QJrwMPt30KQBtkMSr9oGC/Xlz1/6i4AXqRtd1i3NjIfGtnU/jD4yHPFBuS/Sl5GCUarg5kAMAdIWroNxqfiuOW1ckdt8iPNs3SA/kH34omVuuRTkTINerV8vC6xtCmd+hC7AFysFHvkPpMIJS3QncQq/Ex4lG/0ish3LQ4V8QECpDTlE9iJmnzEL5r32jUCa8DHKKcnhnPs5eCsATwGCz3teWdPcu4OGpARHgX0qFFxYy6ZOSgD59gBo1gJkzgZcv9V978QL4/HNg9mygdm0giO8URSfum5Qr3kwZhkGvVb3w2ozXHLYdZX8Pb7245fZg0zAadF3RFbWn10ZmYSYYhkGPlT1cHn8ohhiGQfeV3TFk0xAUq4vRP6Y/ykeU571zdjexaze3fc0Wbuptia2S5GCUarg5kLcBKAVXQbnXql4YuGEg55FIYB2VAFk9Rf9L5VfX9Ay5fXtPmM1TLpEeygNi+qPnqp5m5lkH5Q5LOmDghm7gq74GgCP3j+CLuC+s3r7WMBrUm1kPo+IHQuw8ZeAlcpWtUTZchj/2WgpriEfQYbnd29ejRmlKPkf995/w3E2btOUBH35oCGKu1GrtHTMRcOqU8PXYNyn9sYHztO7KOofzcLnKU+ah6tSqbr99HXUiCjKFzOCui916fxWhzJ4pt57f2i3PjYVk7kw5JSMFZcLL4OP1H9vqJy45GKUabg7kdADH4CooD900FN1XdjecGvZ+CZCn/qbfQvKsaFpl3bdvaZjNUzaQFsq1pvvj7/1CnrTCUE7PS4dMIcOyC8tgriVqa/JWeAV5cYrUhKGccC8BpCAcvX8UYuYps5p1OgIegYQHWWUhZnQjVykpgNxDC+TSZVXIzDQ/d+NGQC7X3h3zHv9zFB4OlC0Ls3GNXHHPZZ0F5czCTFSdWhWDNg4S9brufqZ8+dlleAd74/e9v5t87VWGcuTxSJCC0Gh2o1du7cZQzlPmocW8Fmg0uxEnDMdqSQ5GqcYrAGTAVVD+fsf3aL2gteE0Tg9y+zGyErCRj2lB18iRQ2E2T9lIaXlLdAVd78CSeYg5KK+8tBKkIDzLZauVzJuHeAZ5WgXlz2M/R4NZDUTPUwa0xR31ZtbDp5s/gTPylFmN+Ex/dxwcbH7epUvaer3KlYGMDMvX3bABGDDAqiUAcD6Ux2wfg9JhpZ1SXeyuUC5UFaLlvJZoOa+l2fNudu1xSXGuXZwDyizMxGszXkODWQ1eubWzYqEclxSHEVtGwD/U316TFsnBKNV4RYAMuALKEw5OQJ3oOoZTOD3IO09qC70GrhvIW2H922+/wWyespH0BV1yWOPoxQflwRsH461FbxnNFYby6O2jdY+YQjm7KBt+IX4IPRpqdE1xoBx7IxakIJx9chb25CmHHW0BS4VeSUlaNy4ioGw5FbLNfDhnGKBDB+1f7fz5Fr4lnTZtAhZbqokzkrPgcOrRKcgUMsw8PVPU63IVlxSHSlMqIel5ktNew1b9sfcPeAd7C7k8AdBul7KSKn7RWjEMg8EbB6NseFncfXn3lVq7sVIyUjD3zFyt4c/ltfZeRnIwSjVeISADzobytJOTUSqslOGX2R7kgACAiUB8EiFsV1deIIeFhemeZBnK+oKujbDWZpML5WJ1McqEl0Hg4UCeufxQ3pa8zegTqyGUF51bBHmg3ExrguNQ7rysM95d9i5nnvVQPnI/FPnFHgAGQwjKQ4fq747Dw81f7+BB7Zzy5fnbmMTUrRe3Sv5fjDfYYnUxWs1vhbYL2zrdupMtvFOqlZLfKSfcS4BMIcPUE1Otfs6ic4vw6eZPJV+7kBacXWDU/qjVq7B2YyU+ToRXkBe6Lu+KYZuH2bt2ycEo1XjFgAw4E8rLL1Yz9LPWaPQ9yM2b6+ZG4tBpUxgTERYtWsS5pjCUtQ5dbEGX9d7XLJQP3dWeN517cs7MXH4oA9rCneAjwSbb1x2W1EOfNX0EXt9+KCc+TgQpiOdO0bY85SvPPDB6ez2D7evsbODhQyAxEZDJtK1O5SsWIzfX/JW+0XWzDR9u4SVF1MJzC0XJl516YirkgXKBv3vxNXjjYEm3r7MKs1B7em10Wd7Fpg8h1rpiSaUrz67AN8QXY7ab5qi7+9qNlZGfgTrRdfD24rex4doGR/KUJQejVOMVBDLgLChvTa6gO5PVbYc9fYqS261+/Upmrowbwgvk2NhYo2uah7LeoYuVbVD+fa8HqkVVsGAVyA/lw/cOm5iH3Ej/FKQgbLw22sy1WNkH5aGbhqL+zPpm3kyth/K25H9LzpQPJRTigw+0RVlEehgTAVEWWqg7doRN29ViSAzzkPuZ9+Ef6o+fdv0k8uqEJfWZ8mexn6FMeBm7WoHcFWx5yjw0ndMULee1REFxAe8cd127sTSMBn3W9EHFyIolffgO2GxKDkapxisKZMAZUD72QNtCciP9dQBPgZMn9UAep/dfDVsQxgvko0eP8lzVFMqmDl2srIdykzkB+HqrB+wNpDB29Ppz3x+oEOmDIhXB0ZQoQ0XjfqY2TWt2opDHsm1nyvKPRoFkGnh46CGsHwzWWQgzatJEO3f7dgvL1+nIEeCK7SZYPGu3H8qst3GNaTXsqVx1WFJBecO1DSAFYdWlVXZfgwXbvwf+FXFljumr+K/gH+qPG+k3BOexa59wcIKLVma7gg4HQaaQYc+tPQaPs1C2ce2Sg1Gq4d5APvKphSeJC+Xr6ddBCsLxB5UANAHWzdW/y0/Vn1v9EPgDL5AvXzVXaGIIZX6HLlaWoXz7xW2QghB7403YG0gB6KE8cMNAVJlSBT/t+hFiRTdy9fverigXQchV/goxUqJu3GALt/hgrB1eXsAjAZe+nj1tA/KnnwJFRdbNtSQWyra+wbJFcZuvbxZnIXaIhfKKi8IfbsXS4+zHKB9RHoM3Dnb4/H3v7b3IyLeinN4FWntlLUhBupZFy9p7ey9eFFhwt5FI+27vg0whw+SEybxft2PtkoNRquE+QDYbLvGlhSeKB2U2YGL7zYUAagJhlfXv8Jv0d7ODxw3mBfK9x3yAZaWHctDhcWYculgJQ3nm6ZnwDvZGTlE6HEmJArRw+GzLZyAF4WLqRYiZpwxoK7fLhJfB3/u7667peErUDz8Anp78IGaHh4ewIcjMmdp5gXw1cUZavdr26mpL2n9nv01vUjlFOag1vRb6re0neeXtpdRLLlmDhtGg16peqB5VXVQYPch6gF92/yLZFnBKRgpKhZXC8C3Dbf453s+8j1/3/Oo229cPsx6i0pRKeG/1exbP9m1Yu+RglGq4B5Atxi+6Bsq5ylyQghBzNQZACvCdv/4d/uzZknndhnYzgbFMRlCp/sW9zLsCPadaKA+I8UbPVR0sfE/modxrVS/0WtVL9yf7U6JYfbT+I7RZ0Ab77+wXJbqRq+hT0fAM8tT1ykZDDCjXqCEMY3ZwskBMlJMDNGgAVKsGpAucjMTGAj/+KLBUB3U/8z5+3v2zxT7lX/f8Cr8QP9zLvOe8xdio2BuxGLFlhNPgMOv0LJCCsPe2pd9r27QzZadk57JFqiK8ufBNNJjVwKx1rJB23NzhNmfKSrUSHZZ0QO3ptfE8/7nF+dtvbodnkCdGxY+yNFVyMEo1pAcyB8ZmgewiKGsYDUhBWHxeB6H3Ouvf3Z/ri7Ja9WhlAuTy5f1QqCLUnl7GMLrRRBmoNd0Lf+/3gy02myyUc5W58A72NgpmsB/KaXlp8AzyRNDhIPgE+1jt6GUofiirNCq8NuM1fBb7GWduNByFcvny1gG5Xj3hVSclaaHcvDlw/Ljh165dA8aMAUJChK/hqFg4CJmHXHh6AfJAua1+wE6XM8+Ub6TfgG+IL37c5ZxPQ1I5ev28+2d4BXnh/NPzdl/DXQq92O/l9KPTVj8n9kYsDtw5YGma5GCUakgLZCMYCwLZRVAOCA1A9Klo7R9KepBlANMYrKNX7TdqmwC5SZMm4KZEmYOyvqCrLmyx2WShHJcUB1IQbr+4bTTPPihPOxkG72BvvCh4YZOjl6lMobzp+iaQgnjefKLhCJTbtdNXVgttWb//voUlA8jN1ZYHvPWW9q+7Qwege3fg77+BO3csP18MCTl6qTVqvLXoLbSc19Itk3+cAWWlWok3F76JJnOaOByYISR27YYfGJ2nrclbQQriTTmzVSyUXbV2Y7GFdvpEOVElORilGtIBmQfGFoHsAihXnVoVwUeCjXqQG4Lr6FWutmnSU5cuXXRXEIayvqDrPKy12eRC+eutX6Lx7MZm5tkGZYYpheZz/TFk0yclj4oJ5Q5LOqDriq5m5kbDXigvXSoMY3bExVlYrhuJhcOILSMMHmddj048PCHRyiyLXTubye2oJh6cCM8gT5f0WcclxbnEpvJh1kNUiKyA/jH9RTt/j70Ri/ikeFGuZYuSniehVFgpfLr5U2fVEkgORqmGNEA2A2OrgOxkKNefWV/bH2zSg6x39PIu7WUC5CFDhnCuq4VyuQhfXH52yeAVDSMXrbPZ1GoTNIwc1aP88PteoTc+66F89skykIKw+1ZzGBd6tV3YllNIYzuUTz6saUVqTTTsgXJBgfZ8mNt3zB0yuQodOyZDpXK/O0ohxSXFGbzBpuWloVxEOXyz9RsJV2WddqbsxMOshw5f5/Sj05AHynW55K4TwzBYcXGFU7aAVRoVOi/rjFrTazmlytuZazdWnjIPzec2R9M5TZGrFHDecUySg1GqIScpdHKyg89fTkQJAhM6E9FuIjpHRB8QUb6ZeXIiWkBE3xDRl0S0kkp5l6K84jyi+/f10157jYgaElECqVQ5VJyrMrlS1apVOX/6iwY0iaT7PxdRq6qbSc2oSKXRPud86nlqW6MtyWQyIqpIRAeJqCYRdSOiawLf0yC6mBpGqXmF1K/hZSJSm5nnS0RbiKg7EQ0gon1mr7ji0nmqUboS9ar3gIj6ElEuERENaDKAEr9JpAp+FSgtL41UGjURzSGisUT0LREtEVhnPSJKoOmnX1LDCl7Ur1Frgbm/EFE0EUUS0XjSfrbhU3ki2k9ErxNRd/Lzu0xTpxIBMt3XQXI5kaen9k89ur+kXbveoQtpfUilKRB4fffSR00+ogFNBhAAWnFpBf2x7w+Sy+QU3jNc6qVZVN+Gfal22dr0ouAFTTg4gdSMud9P8ypQFdDI+JHUrkY7Gv/ueCes0ryupF2hb7Z/QyNiR9i1diEFHg6kk49OUszAGKroX1HUaxM5d+1cAaDRO0bT/az7tHnIZirlXcppr/X/q6QBcqdAB59fn4j6kTOgXMq7wAyQiYga0vPnG3ivYghkIqK/qKxvJBGF0Lfb29Hw2OGk0qi0QK7eljPPeijvvKWkMj5+1LnOYSIaSY5AWalW0rqr62hkq2/IQ76fiC4TF8oecg9SM2rqtrIbjYgdYROU72XKKDZJSb92KEVyWXciemJ2rr1QnjErs+QrXbvKaOhQoh9+IDp3jmj//iqk9o6m7isP0ojYxq8UlIl0b7DbvqHVV1ZTSLcQquRfSeolWa3zqedpyskpNHzLcJvhMP7AeHqY/ZBWfrSSPOWeTlohv96o9gZtHLSRYpNiRQXbwbsHKfRYKAV2DaTOdTqLck1jOWvtxlpwbgGtvbqWFn+4mJpVbuaU1/j/Xi66FTeVnWfIMYuboVidDeA9AH4ADvFeXi/btq97ryYM3NAOCAvT74FyepAvXLjA24O82Gyjqv5M+cN1H5hx6AKs2b5+a9FbGLxxMOzxvjbevmYLrvRJPtY5elmzff3L7l9QIbIC8ouvQew8ZeAlEhNHlvzVVK9ZDKWSf6a9ecpSS6VRoW50XcgU2rhPqdtbbJU9hV4H7x4UreDJEYlZwZyWl4ZqUdXQfWV3p4eAAM6tvj7z+Ay8g70xbuc4y5Mdl+Rbx1IN6YAM2FxlnbRtOLyCvHQFR86B8sANr6P3agK+66oHMqcHeffu3bxA3rZN6KxUC2XPIDlIQbj5/KaZeeah/Cz3GUhBHIckx6Dcb20/vL34baO5jkM5qzALpcJKcVyoxMtTZtW7T2HJX82CBcLnlq8ilKNPRUOmkCHqRJRbZhJbIxbKQzcNtVj4k1WYhTrRddBtRTcL3uyuUeyNWAzZNEQfMmOHNIwGvVf3RuUplfE056mIqxMWu3YxK/Iz8jNQN7ou2i9ujyKVSHZ1wpIcjFINaYEM2NCHrC3y2Jq8FV5BXvhz358ACiA2lEfGfY7Oy6oC75EeyM/1Te9Lli3hBXJi4k4Lrx+JYZsJpCAsOCuUaMAP5eUXl0OmkCEtL40z1z4oP815Co9AD8znXYd5KPuH+nOqffmhHHUiCl5BXkZvQuJBOTERnLvjp1Aqq8Ia7+sGswhPcj6ApTxlqfUk5wlKh5XG9zu+B6D9uX+6+VO3bHmypLikOH1Pv4C+jP8SpcNK2xUc4WzdSL9h14ehyOORuoLJ3U5YlXWyd+1c8YVGuECSg1GqIT2QASucuhQG0/fe3otnuc90fxIXyt9u+xZvLXoLaFRW++MJ8NGm2es0KXgSL5Dv368Ptk/ZnAbENEP7xQQNMwHC27KmUB64YSDPHS1gD5SnnvgGPsE+eFnw0sxcfiizHwYYhtH9QzeEcrG6GLWn18YXcV/wXFMcKPfuo+bcHefB2kAKpXoTAE9kFX7k1nfKwzYPQ+UplXn/bq6nX38lwQxo79z44LAteRtIQVh6YakEqxJWTlEOKkZWtHkL+NSjU/AM8sRf+/5y4uqElV2UjQqRFRzevg4+EswbGuFkSQ5GqYZ7ABkQ8LKWARgJwPQM5mnOU/y25zdRt6/H7RyH1nNbcXqQCdw+5VHfj+IFcmFhDbB9yuakjVzsCoCw+9YwfBb7mUWbTaASlOoLKB1WWqAVxHooM0wfNJ8rw9BNXQTmAUJ5yn/u+5O3Tznm6rcgBeFSqjk4OgZlw7tj9uzY+pQoDROLjkvcd/uaPUddfnG5ydeyi7JRMbKioKOXuyolI4V36/15/nNUnVoVH6z7QHJ/bnOy1dErszATdaProsOSDpL/PTl6prz/zn7B0AgnSnIwSjXcB8i8aU9/A4gBIAcflPfc2lOSViQWlH/b8xveDW2gf+fvVxvcPuX3Pn7PBMZlypQBt0+ZD8qGkYuR2Jos7OillRbKB+6UASkIF55eEPierIPy2SfHdVtpXnAkkMLYPIRhvke7RYQeK5tauKb9UDa8O+bOsy260R3PlJVqJZrOaYp3lr5j9hxVyNHL3WVc6MUwDAZtHISKkRWRmpsq9fIEZS2UGYbBwA0DUTa8rNt4jtsL5UfZj6wOjXCCJAejVMO9gVySh2weyuyZslhQ/mf/Pxj4Cye9YNxYcM1DWndqbQLkhg0b6p5tHsqmkYuWbTa1ysCveyqhxjQ5GMZSIK9lKI/bOQ41plWHWtMHjqZEcaF87MFRkIKwM4Ugdp4yQEhMnG2hsvrVhnLk8Uh4BHrg8jNzEZ5a/V+B8qpLq0AKwsZrG6VellWKS4pDtahquPXiltk5887Mkzwek0+xN2Itrp0rpVqJjks6otb0WlaFRjhBkoNRqvGKABmwBsrais58OALlyQmTMe6zCnogT50KrqNXrQblTYDcuXNnzjX5oWzo0MVKD+UfBNoJGs2uj2+2VoA93tdcFamKUD6ivNaJTISUKBbKUSei8PH6j9F0TlNomO+h/SsXF8q9++wwc3fMlW1Q9g4m7L71LqQu9HqY9RD+of74effPVs2PS4pD9ajqPH7m7q+4pDi8u+xdlA0vi2Gbh0m9HJuUp9S+RxSqCk3uNq88uwKfYB+M2T5GiqVZlNDajfXL7l/gFeSFU49OuWJpfJIcjFKNVwjIgCUor7+6Xvcn+wu9Qo+GIvj9AD2QS3qQtVAOKGd6fjxo0CCja5pCeUDMAPRc1ZPn9SOxM4Vw+8VY8BV6pWSkgBSE+KRVsMf7mgtltvf4RvoN3SOOQ/n4g+O4kX4DMoUMi84tgth5yoDx2fELKJWO5Smzup+5CIAngMHQMC5p5+DVwA0DUS2qGrIKs6x+Dhu6YM0brDuJYRj0Xt0b1aOq41LqpVdq7YB2/R+s+8BgC7iguADN5zZH87nNUVBcIPEKzYtv7cbaeG0jSEGYdXqWi1dnIMnBKNV4xYAMCEEZ0P7Srbm8xu7t66knQrGsvbeeAJweZJVKCZKZAnncOL67W0Moawu6/jbz+pEACFmFf2DSoYkGW5HRp6LhHeyt8421zfvaGMr8vceOQ/nHXT+ibHhZjIwbKXqeMmBcWf0dHM1TNlQ8pp2US7Z9vefWHpCCsPbKWpufy77Bvkp9ygvOLtB9wIxH7em1X6m1szI+l/1+x/fwDfHF1TRL/yall9CZcvLzZGeHRlgrycEo1XgFgQwIQfl6+nWHzENmnW6AfQ042X6cHuTU1FTeCuugIHPVz1oop+U1EHDoYhWJg3dNz5R7rOyB3qt7c+bZB+WnOQ8Feo/th/LLgpcICA3A0E1DbXb00ss8lE0rq2fqrikelKU6Uy5UFaLBrAbotqKb3W+A7LHBqwC22y9uIyA0AN9t+w6Ac/OUnS0WbJ2WdgIpCPPOzJN6SVaLD8r5xfloMa8Fmsxp4szQCGslORilGq8okAFrzpTtgfKCsz5IrqgjQECAQQ/ypUuXeIG8cOFCgWumYFdKRV1Bl6Ugb8NCrxf5L+AV5MWzfWQ7lKeeaG2h99g+KEccC4R3sDee5T6zy2ZTL34o81dWR+P/ApSDjwTDM8gT19OvO3SdVwHKao0anZd1xuszXkdOkX535VWG8qJzi0AKQrtF7aS+o7RZLJTZY75R8aPgH+qPa2nXJF4ZADcAo1TDzYF83MKTxIfy8vP/oNBDR4Dmhi08e/fu5QVyfPxPgtcMOvwzykfIwDCNYck8hAvljks6gBSEOy/v8MyzHsoMsxHN5xKGbqoDe72vTXUKSnUp1Jjmja/iPy95lIWyPjLQfijz9x2zioazoKxIaAZnF3rdfXkXviG+Osc5x8VCWV9H4V6acnwKZAoZjt4/avK1uKQ4lA0va7HC3J2k1qjRZXkXVJ1atSRS8VWD8rW0a2AYBssuaGNYV11aJfWSWEkORqmGmwO5MoAbFp4oDOUBMQNQqCqEtYVeG/fP1FOgXwVwW6KWL19uxjaTwDUPMZa2oKsThPqUDaWFcofFNdF4dmOBedZB+eyTs7reYzkcCaQw1prLCpCCcDWtDbhnytuSt+H80/OcmfZBuXefPAuV1dEQG8qH7gYju8gDwGA4E8ofr/8YNafVFHV78Eb6jRIouBMcrqZdhXewN/7Y+4fZOZmFmQC0oHsV7pRZB6vD9w4DANZeWYvhW4a/Emvn6vKzy/AK8kL9mfXdae2Sg1Gq4eZAbgKgKhyBMvvGdDPjplV3yrtWTtIDeZwXuC1RoaGhvEB+9GgYuOYhxtIXdAmbhxiuOwLVowi/7XkbO25ut8rRyxyUtb3HNaDWrIejKVH69TF4c+Gb6L36bZhz9CpUFSLyeKRd29eJiR9a6DtmFQ2xoQzE42aGB8btrO+U7ev9d/aDFIR1V9aJfm0AWHN5jdv4XyvVSrRZ0AbN5zbXfTAW1qj4UW6/fX3i4Ql4BHpg0qFJJY/Z6ujlDsopykGj2Y1QN7quu61dcjBKNdwcyDcAtICjUM5T5qHq1KpWmYccixirB/LUseC2RH0/9nsTGMtkMhQXF4FrHsKVoUMXYC2UL6ZeBCkIqy9b7+jFB+UiVREqRFbgVHg7Ht0IAIfvHQYpCHtv74VQS5T+2MA2KPfuk8O5OzZ37s0qGmJDecfNifBywplysboYzeY2Q+dlnZ12F+tO5iGTEybDM8gT556cs2q+u58ps9aYnZZ2MlnfqwRlhmHw6eZPUTqsNG5m3HRqdKMdkhyMUg03B3I6gHSIAWVrHb0u/jRED+RNm8BtierzoaltZtWqVXXP1JuHcKFs6tAFWAPlsKNhCAgNQJEq1GpHLz4ob76+2aj3GBADyv1j+qP53OYcqFhvs2kJyoZnx4+hVDaFmHnKUhZ6zTg1AzKFzIINquNyByhfeHoBnkGe+O/QfzY9z12hzDAMhmwaImiNya5dymAJa8S6im24tqHkMRbKbrB2ycEo1XBvIB9h7+pcB+Vbg7rraVDSg6yFcss3A0yA3KZNG84rmEKZ36ELsATlzss6Y0DMAN2frLfZNIbyB+s+EC0lioXyzYybkClkPAk9lqGs9cUVhrJhZXU6xM5TtgfKI+PqwtEz5fS8dJQNL4vR20c7dB1rxcJBrMIxW6RUK9Fqfiu8Mf8Nu3KF2bUvPCfUweBaLb2w1Cq7z923dru1P/e5J+fgHeyNH3b+YPI1N1m75GCUargNkM9F9zST9sT2+IoH5cpTKuvuGE0LvZ52aqUHMqcHGTiGytVNz4/79etn9NqGUDbv0AWYg/LLgpfwCPTAgrPcSiYtlDsvq43soiyB710P5dTcBIHeY8BeKH+/43tUmVrFzJmgeSj/e+BfzgcTfijzV1aLl6esl21Q3n9HDkcLvb7d9i3KRZRzqT/wnlt7OFGlrtOkQ5PgGeSJi6kX7b7GuSfnzAZtuFpJz5PgH+qPr7d+bfVzUnNT8de+v9zqLj+zMBOvz3gd7Ra1Q5HKvDudxGuXHIxSDfcAssU8ZHGhzFa2KtVKkzvl7NeqA0RgjHqQNRoNPDzlJkD+9ttveV6b4309vYKAQxfAB+UN1zaAFMQTCB4JhiEAE/Eo+6HFO+WoE/7wCfYW6D0GbIVyRr4P/EJ8EHg4UGCu+ehGADh6/6jZ7WvziU7SQhmIh1rjgfln37Rr+/rck3OQKWSSWRI+zXmKP/f96ZI32PNPz8Mj0MPC74j12nNrD0bGjZQMbEWqIrRe0BqNZzcu8YS2Rrtv7Xanc1kwDIOP1n+EchHljI7QTCXx2iUHo1RDeiBzYGwWyE6AMgAM3jjYsE9Z4wu1twdABHUzwx7ktLQ03grryZMnm3ltDdLyPtMVdJkPjtDKEMpfxH2BFvNamJkbCaWaUH9mecHta4Z5jhbzfDF0kzccCaQwVCFCjzaCbwghPW+DwDzAHJRTc1PhF+LHax6SmBhvobJaWiiffRJl15kywzDotLQTms9tLtkb855be1xyLlukKkKLeS3QZkEb0c6upT5T/mX3L/AO9rbrbt+diqWmn5wOUhC2Jm+1ar6Ea5ccjFINaYFsBGNBIDtp+9rAPORpF7BEKO7znsHcixcv8gJ50aLZZl95V8oOXUEXQahPWSstlDVMY1SdWtnCuZ/lM+VzT86BFIRdKa/D0ZQoVkWqIlSLqobvttWGoylRfI5e1iU6Sb99bSuU11xeA1IQDt49aNV8Z8kVjl4TDk6AV5CX6CYfUkF5Z8pOkIIw49QMu6/Bgm3Y5mGS9YeffHgSnkGegr3gfGLXPnzLcFeuXXIwSjWkAzIPjC0C2clQVh3bXwLkwtF9Debt3LmTF8g7drQE1zyEK31B1zcQ6lPWKwXnnlQGKQgJ9yxlqgpD+YedP6B6VHWoNM/gaEoUq5WXVuoqti9CjOhGLpQTExnO3XGWQN8x8CpBOacoB9WjqmPghoEW1ukasVB2BhzOPjkLj0APBB8JFvW6rFgo8xUjOUNPc56i8pTK6Le2n8M/q9gbsVhzeY1IK7NNz/Ofo9b0Wui0tJNduxaxN2LtCj9xQJKDUaohDZDNwNgqIDsRykfCx5QAOT/ME9zq68WLF/MC+cIFP3DNQ7jSF3Txt0TxKejwzygdJkOx2nqbzdJh3jj75EzJo2zvsb59wbGUKEC77frG/DfQdy37QUWcPOUW81ogPS+dJ9FJ3DxlZ0D5660yqDWDIFTo9c/+f+Ab4mu2TUYKxSfFi25KUqQqQrO5zfDmwjed2ma14+YO3Hpxy2nXZ6VhNOi1qheqRVVDep6Qp75tYhgGMVdjXHaXr2E06LOmDypGVsSj7EcOXcuFa5ccjFINaYAcJXMMyFEyzsXEgfKVZ1fAhIaWADlnbXNwq68DAwN5gfzs2VZwzUO4MoxctA7KHZd0xCcb3oMtNpsZ+QRgIjSM1naQ7T02DC1wDMoH7x4EKQgH7hzgzHMcyiqNSltZ7ZcBkhfrzo5/hPbXxr2hDMQD8MTF1F68d8q3XtyCd7A3JidMtnAdacQwDNZdWScKQP/Z/w+8grxcFkGYVZiFyQmTnQYH1nt7/539ol73evp1l57Lhh0Ng0whw+5bux2+1rW0a65au+RglGpIA2TR7pBZiVTo9d13JUDOOrYT3Orr0aNHm8DYw8MDGo0GXPMQFsqmDl2AJSg/z38OmUKGJeeXwBabTTZPeeyOthi0cRD6ru2L9ovb88yzH8p91/ZFq/mteLbuHIfye32UoNFtQIMHYe588fOU9YqG2FDOLFyDsuH829cfrvsQdaLrIL/Y9TnL1oh9g3XUPCTxcSLkgXKEHg0VcXXCOnDngNPOlM88PgPPIE8L3RH2y1WOXofvHYY8UI6JByeKdk0XFXpJDkaphjRABkQ4QzaWCFDu3bsEyJ8v7GPQEvXhhx1NgFyrVi3ONQ2hzO/QBQhBee2VtSAF4UnOE90jtkGZPVMmBWH2aXPFZrZD+UZ6X5CCsOKi6YcIreyHcknfceN40CQvfLLedptNqaHMd6a8+9Zuq0wkpJajjl6FqkI0ndMU7Ra1c3kVsTMKvXKKclB/Zn28tegtp269OxvKz3KfoVpUNXRb0U1nxiOeXABlycEo1ZAOyIAdVdbdzF5KKweh3LgxQIRcL4JXoKeBo1frNjITILdvb3wXqody0OGJZhy6AHNQ/iz2M7wx/w2jubZBeVQcgRSE/jH9HQqk0GsTvtsmQ7UoXxSphHow7YNy7z5FJWfHY2bE2+197U5QzlNmovHsxui6oqtbpS6ZkyNQ/mvfX/AO9pYsR5cLNjF+1p/Hfo7SYaVx+8VtEVYnrLikOHyw7gOrQjdskVqjRveV3VF1alWnuW7F3ojFh+s+FH3tOkkORqmGtEAGbOhD7qG7lCWzATuhzKgAX1+ACFcrE+KS4uAV5IVfdv8CoACVq3qZAPmjjz7iuaYWygNiKqLnKqEPEIZQVmvUqDSlEsYfGM8z1zooMwyDFvOq4Z2l2jvl2YlCJhTWQfl5/nP4hngh5IgMYkY3AqeQmNjVpO84PikePsE+OHSXLah7taBcN5ow4UATyAPluPLsioU1uI/ikuLQP6a/TW+wpx6dgjxQjvBj4U5cmWXFJcUh+lS0w9dhd6hWX17t+KKsFPsh4taLW6Ldbf536D/IA+Wcf0POkTPWrpPkYJRqSA9kwAanrhA4Dcqpg8HSYXtD7ZJ339qNR9mPoFKpIJOZ3iGPHTvWzDWPodZ0Gf7eXxvmWqK00kP59KNJIAXh2INjZuZahrK+9/hLJD4mqDT/Qhg2lqEcciQEviG+eJ6/FGJFN7Lq3SeDU1mtB8HjbC1MGYaxyvvaUNJC+V7mIpQOI3y77XWnRDc6U7a8wRYUF6Dx7MZov7i95IYXXO1K2WXXeu5l3kOZ8DIYsWWEE1YlrDxlHqpFVRNl633v7b2QKWQIORIi0uqExa5d5O1rycEo1XAPIAPaIAlBL2tWToLyKVkJkOe2lxt89cqtK7wV1iEh/L/0+oIuX5hridJLC+XJCYRyEf4WfqmFoazvPVaBLfQ6cv9zjIwbadf2tVKtRPWo6vhu23e6R8SJbgSMPasfQqnsCmObzcDDgbyOXu4M5S/jv0T5iFJ4d5n40Y2ukLVw+GPvH/AJ9jGq5JdWd1/eLelttwUOKo0K7yx9B3Wj6yKrMMuJKzQv9lzWESg/zn6MSlMqoffq3i71ABfzTFl3QyI5GKUa7gNkwbQnYzkByjE/lhDin/c9Db40J24OL5CXLeN309IXdG2AuZYoQ2nw1qLKGLKJYK2jlzGUTXuPASASW5Ptj25cdWmVU6IbAWPP6juwxdHLXaGc+DgRpCDMPzvfKdGNrpIlR68TD09AppAh8nikBKsTlj2FXsFHgiEPlOP4g+NOXp2wHIFysboYnZd1Rs1pNV0aXsJKDCg/zXmKalHVADcAo1TDvYGcL9SQLzKUw8NLgPzZMA9wq6+3bNnCC+S9e71hnKcMGEcumrZEGSstLw0yhQwrLnaBtY5exlDecmMLT+8xYG90I8MwaLOgDd5f8z7PXMegzJ/oZJvNprtBWcNo0H5xe7wx/42Sqtb/i1AuKC5Ao9mN0GFJB9Grd8WSLVA+9egUPAI9bM5sdpZib8SiYmRFow/BlvXXvr/gGeSJEw9POGlllmXv2gH9B4rqUdUBNwCjVMPNgWxpO0xEKI8eXUKJbj8QuNXXM2bM4AXyjRudYJynDIAnclEYyuyd6LPcp7DW0csYygNiBqDdonZm5uqhPHr7d2bmAFwoH763DKQg7Lm1x8xc+6FsPtFJGMphR8N0j7gflFdcXAFSEI7cP2IwMz5pPLyCCHFJneBonrKrFZ8Uj0pTKiHpeVLJY7/t+Q0+wT4Gj7mj4pLi8M7Sd5BdlG12Tk5RDurNrIcOSzq41Tk4u2alWmnVurYlbwMpCFEnopy9NIuyde2sftn9C/cDheRglGq4OZAbAUiz8ESRoMzpQW40OQDclqjff/+dF8i5uekwzlMGjB26WJmH8qebP0XbhW11f7LeZpOF8vP8BvAM8rQQ7ReJ7TcJ19NHw5pCrwEx3mg2t76FVhLboZyYeIrn7pgrfigfuX/EyGDDfaCcXXQcVadWxaebP+WdeevFfACeAAaDYQRNut1OOUXavwOlWoljD45BppBhyvEpEq/KOrHnqI+zH/PCYVT8KJQKK+WSFid7NHTTUItbwPcz76N8RHkMiBngVi12QzYNsXr7OuZqDEhB3PcvycEo1XBzIFcB0AwugbKuB1np642qU6qA2xI1ZMhgExiXK1cOm69vNslT5nfoYmUKZbVGjfIR5THp0CTOPNugPDuxLDyDCOl5lnqKtYVeecq/EHwkyOz29e0XZyFTEBadKwUxoxuBvujdZ5eZu2OuzOcpX352Gd9t+86ttq//2OsL/1BfPMx6KDA3HgvOyjFk06u3fQ0AAzcMRJnwMnhz4ZtudTdpSUq1EvVn1jfZvmYzx82b3UgvS+YhSrUS7Re3x2szXrOQee56WXumfC3tGvxD/Y3TpCQHo1TDzYF8EkA1OB3KDFPSg/zstcqoG11XN1cL5Y4dK5sAuXGzxvAK8jIwDwH8sCsl3IxDFytDKJ94eAKkIJx8eNJonvVQfmtRSwyI8YW15iFH7gufKf+06ydUmlIRBcUtIVZ0IwAkJhZx7o5zLSQ68UN5+83tbmUekvw8EV5BMgQf8YMzohvdRUM3DQUpCO+tes+pDlbOkPGZ8oOsBygXUQ5DNw11q7tKPglB+bc9v8EryAuJjxMlWp2wLEE5qzALjWY3Qot5LZCnNNg1lByMUg3bn0D0PyLaTkRPdXD6yOjrMiJS6L5eSESHr12zwsXHbFFXMpwO5dRUsKS43r4emsxpwpkbg1q1TLer+/btW5ISxYVy0GFPlI8obeEfuh7KEw7+iQqRFcwUyFiG8o30GyAFYcuN2bDHZtMYylmFWSgVVkrnf+t4ShRXhmfH4+BodKPUUGYYBu+veR+vz6iLQlUbOCtPWWpdS7um/XlvGCSK97UUYsE2aMMg/G/Z/1B7em23u6s0J3bt3Lt59tx4+snpEq7MslgoG+9EMAyDj9d/jDLhZZCSkWL8NMnBKNWwB8h9iCiEiD4xA+S/iShH9/UWRLS+evXqyMkx3Ho0kWCVtZOhfCqmBMiH+7VA6wWtS2apVCrI5aamIN99py2OMobygJjK6LlKDr7qa0NpofzmwlIYvmWIwDxhKI8/MB7lI8qjSFUEe72vB20cVHLeFnUiCl5BXniawz5fHCgbVlYroVT2hxh5yqPiR+kecT2Ut9/cDlJoXd3ssdmccLAp3L3QS61Ro8OSDmgypwkKVYW8cHhVFJcUB+9gb5CCcPjeYamXY5MupV4q+ZD/MOshKkRWQP+Y/m5/hw8Yrp1V5PFIkIIQnxTP9xTJwSjVcOzJRkDW3R2nEtHfnMd8ypYtiwXmDwy1stj25EQox5QtocWGUW+hw5IOJTMePXrEW9AVHKwPYd+avBXvrX4P+cX5qDW9Jv7e/xr4qq+N9TQnTmfV1wTWOnpxoaxhNKg1vRa+3/E9Z67tUA472g0AA5VGhTrRdfB57OdG8xyHsmllteMpUVuTtxr1jroOykWqIjSY1QA9V/XkvNlYD+X9dwLxosADwGC4M5Rnnp4JmUJm8HO+/OzyKwECY515fAYegR4Yf2A8NIzmlToLZ7Xp+iZUmlIJtafXxouCF1IvxybFJcXhs9jPsO/2PsgD5fj3wL/mpkoORqmG2ECup3usDXde//79MXLkSN6ffFFREbKzs5Hz7I4VfchOgnJ41RIgR//+Drqt0HtQnzx5khfIK1YsM7gKwzAlBV0xV1eCr/raWMsuLINMIUN6XgCsdfTiQvnAnQMgBeHUo1NGc22PbgQmYtKhiSAF4cLTCzzz7Icyf98xIAaUAW0P44xTM1y6fR1xLAIegR48fd+25Snfz/TAz7sbuuX29b3Me/AP9ce4neN4vx57IxYjtox4JcCWq8xFw1kN0W5ROxSrizFu5zinRDc6Wx+v/xikIHRf0f2VWzu7u+IT7IOeq3oK9bFLDkaphpzEVTXdf9O4D1atWpWePXvG+4Tw8HAqW7Ys1atf3+RrKo3K6JHGRHSYiF4SUTciShdYygTS7qxPJqIggXmVie73LvnTkwoq8vX0Lfnzo0ePeJ9Vu3YMEWlK/iyTyejUo1NERLTq8npSaTYR0btE1I+IEnivsfv2bmpfsz1VDthDROeI6AMiyjezTjkRLSCib4joSyJaSauurKKGFRrS2zXfNprbUPeauUTUnbSbFub0FxFF0uOcEAo5GkKV/CtRiyoteOZVJKKDRFSTtD/7awLXHERE64loIxGNpP8U6pKvTJ7kRd7e7J98iWiLbo0DiGifwDU76L5+mYj66r43rc6nnqc/9/9JI2JHkEqjJqI5RDSWiL4loiUC16xH2p9TMRF1JaInAnN/IaJoIoqk1NwfKeRYCP3Q/gdqVrmZ0bzyRLSfiF7XfV+XBa45gK4/H09zz96iEbGNSaUpEJjrWgGg0TtGU0W/ihTeI5x3jlwmpw3XN9DwLcNJzah557iLftnzCz3JfULrPllHXh5e1LNeT4pLjnsl1s5q963dFJccRyNbjaSjD4++UmsnIurToA+9Xu51KutblmIGxpCH3EPqJbmfHKE5md4hd9I9Vp0775tvvkHv3r15PwoJ3SFvWdjITPGIyHfKnB7kIfO98MmGXiVfioqK4r1DTkmRwThPOehwEAJCAzgFR4YtUVwVq4tRNrwsFAkK3SOWHb200t4p5yoJAaE+CD4SLDDX+jvlxMc/gBQEzyCZXTab/NqExMQOFvqOATHulF3p6DUyjlBpih8yC4WKghzLU5ZaKy+tBCkIO1N2Cs6zZLPpDtp8fTNIQVhyfonB487IU3aWWJ/qvmv7QsNoSoqltGl0r4a+3/E9vIO9cebxGUtTJb9TlWqIDWSbt6xLZCZcYt2ips6Hsq4HGQH+6LrcH8O3+IJtifr55595gVxQsBLGecqsQxdb6CUE5SP3j4AUZPTLaT2UV13qClIQ7mVOtfC9WwflTzd/inozKyD2hv3e13zq3ecx5+xYyGpRXChr32DFh/KpR6dACsKicwRn5CmP2FIHUp8pp+WloUJkBQzfMtyq+SyUf93zq5NXZrseZT9C+YjyGLhhIO+5Nwvl2YmzJViddVJpVHh32bsmPtU7bu7Ag6wHEq7MerFOdovOLbJmuuRglGqIDWS2qOsvzmPeFou6LMQvXokfbOaJIkCZ04OM5s3RYUlbfL21PNiWqE8++cQExpUqVdI9mZOnDLWBQ9fW5K0oF1EOl59dBlAAYyj/s/8fVJ5SmSeVxToo91zVA12WV4e93tdcPcx6CI9AD8w8PRNsoVe7RdXxUrBoxDKUDc+OH0Cp/Axi5imbg/JPu37ivPmKB2UNo0G7Re3QZkEbqDXTdNcUF8rxSXJIXeg1dNNQVJpSCel5Ql7yhtqVssuCMYrrpWE06L6yO2pOqylYAHX60Wm3vkOecHACPAI9zEazvih4gQkHJ7jt93Ax9SJ8Q3zxZfyX1hYDSg5GqYY9EC5FRK11A0T0q+7/6+i+/jcRZRHRx6Rte1on2PbEgbHZPGRdDCP/X6aDUOb0IKNfP7wx/w2M2/kV2Jaot95qaQLkNm3acK6phXJa3mAThy42yk2lUZncKbea34qnmpmVMJQfZT+CTCHD0guLYa/3NVd/7/8bZcLLlNgkApHQMARgIp7lptp9p2xYWX0OYucpCxV6Ado3WjG3r5deWApSEKfiOBpiQxmIB8N4YNmFdpJsX7P9rWuvrLXr+Rn5GRh/YLxb9ClPOT4FMoUMB+8etGr+kftH8GX8l24Ftn2390GmkHF83PnniBV/KLZeFrxEvZn10GZBGxQUF1j7NMnBKNWwB8hd+bZwiWiF7uusMUgqERUR0ZGrV81saxrBWBDIUYT1i5uLv3196pQeyOPGofHsxvh97+9gW6KqVZObfK/9+/c3umYMdqXIdA5dt0xe8Yu4LwzMQ57k+IIUhHVX1gms0zyUI45FwC/ET2fkbrv3NRfKeco8lI8or/ueuYqESkNoOqeSXdvX/JXV4uUp68UP5ef5zxEQGiCaeUhWYRaqTK3Cs40bDbGhfCk1Gl4SnClnFWah5rSa6Lu2r91tTXtv73UL85DzT8/DK8gLf+7jj0jlk7udKT/NeYrKUypblW9syWZTCmkYDT5c9yHKR5QXcC7kleRglGq46oVMxQNjS0BGFCFmUTNxoRyjNwXB1KmoE11H51IFKJWPIZOZfvgYN860DSTo8GCUjyAwzOfgFnoBpuYhyy82h0xBeJ4fZ2GdplBmGAbN5jYzAoP9UJ57Zi7kgXLcz7zPM9e+6EZAKNHJdVAW09Hr972/wz/UH4+yH/HMjYbYUJai0Gv09tEoFVbK4XNJLtikgHKeMg+NZzfGmwvfhFJtW5iHu0BZrVGj24puqB5VHWl5lt7PtGLX/unmT92iTzzsaBhIQdhxc4etT5UcjFINaYBsBsbWAFl0KIf31AN50yZUjKxYsj109+5d3oKuiIgIk6tpC7pawLjQixUXyoM3foK3FpWBNeYhxlA+9+ScmVhE26GsYRqj4ax6GLRxkMBc26GcmHjbQmX1qwXlpOd14BnkidCjoQJzo/EqQ/nwvcMgBWFO4hxRrse9Y3M1HEZvHw2/ED+7IyLZtY/ZPkbklVkvRYIC8kC5zY5icUlx1hZOOVWH7h6CPFCOCQcn2PN0ycEo1ZAGyFEyh4CsmUoCW1E2Qnk06YF89ix8gn1KKi6PHDnCC+S1a03P1/QFXYaFXlyxUPYP8cekQ//AGvMQrfRQ/mnX96geVd3Mp3fboLz9ZgWQgnDi4VYLc7VQ9g/1womHxwXmaaHcu88+M3fHXLkWyg1nNcSTnCe6R6yHMsPcRu/Vvqg30xOFKksxfdFwBpQ/3SxDsXognFXoVVBcgIazGuKdpe9Y3Bq1RXFJcVh83tKHHnHFnoHPPzvf4etcS7PCg98JOnT3EGQKGQIPWzI1ElZcUpwkd/mPsx+jytQq6LGyh5D5h5AkB6NUQxogO3iHfGtHZwvbODZAuXfDEiAXP3tqEMm2Zs0aXiAfPbrK4BKmkYvmocyW/2uDuE2rr83rGJTqAFSa4oU/9v4sMM96KPdY2RHtF3uBYRrDGkevtDwCMBGMgO1gYmIW5+64wEKik+ugzN7ZZxVm2XSnzL7BxydVgrPylK0p9AI8cT29t1PulP/Z/w+8g73tvqO0RrE3Yp0Oh2e5z1B5SmV8sO4D0e7K85R5CD0a6jKwPct9hmpR1dB9ZXd7YQYASMlIkWTrvVhdjHeWvoOa02pavdXOI8nBKNUQ26nLOnWcRNRJyD1LQJ3aUIN+J6lKwH5KzU2l3/f+7pij133djyCAKLf0DCIiKuVdioiEXLp+I6Kkkj+ff3qeiIjaVm+re+RTIlpLRGuI6CviOnrdz7pP5XzLUWZhJn0W+61Vjl5adaY9tydSRoGKRr5xgmxx9OLTlbQrdPDeKfq1QyTJZHlkjaNXlYBIIgqhvw90pmFbhvH83In+U5Qq+f/JkyaSt7f1jl5E5lyHHHf08vLwIgYM9Vnbx2pHL6VaSb/u/ZV61etF/RufJlsdvYjGk/YzHJ9sc/TKUa6i/y3fK7qj18XUizT15FT673//UZNKTUS7Lle3XtyioZuHOtVZCgB9s/0bIiJa8uESkslkolz37NOzNPnwZJe4YjFg6PO4zwkArf1krUNOVg0rNqSNgza63I3snwP/UOKTRNo4eCNVCajiktf8PyUXkZ9fNlZZ42QQtHecowDIsefWX5xiKTvOlA16kKvgfiaBFIS9t7V3Yd9//73J3bFMJoNS2QzcPOWgw0EoH1Ge51O56Z1yhyUdMHjjYKvMQ4w1cMNAtF7QELY4epm7U/4y/kvUml5L93OzPyWK+3M3rKwuglLZFmLmKbva0SviWAQ8gzxxI12Xm+2EPGUpz5RVGhXaLGiDVvNbOb34ytmOXgvPLQQpCNuSt4l+bVcVeoUcCYFMIcOBOwdEuybr6OWKO+VN1zeBFIQZp2Y4einJ71SlGtICGbCpD1kvPZS3Jv9qP5SNepCvpv0IUhBOPvwGANCnTx8TINeqVQvGecqsQxe/9FDOyE+DPFBeYuFnC5RfFLyAd7C3Lv/UNptNYyg/y30G72BvRBzjFqc5DmXTympx85S1cg2Un+Q8QUBoAI814f8dKEcci4A8UI6zT846dB1r5Swop2SkwD/UH99u+1a0axqLC2Uxz9lZHbl/BPJAOSYdmiT6tWNvxKLHyh7IUwq9Vzimmxk3UTqstFhFfJKDUaohPZABi05dhjBmZQrloZuG2mYeYtSDzNoiXk0jAIFo2rSpCZA7d+6se7IeyrWmVytx6OKXFsrrr74LUpBB6wwL5R92/gChM+X5Z+fDI9ADqbmpukfsh/LkhMnwD/XnCWi3D8pRJ6YKJDq5L5S9g72x+9Zu3SOGUP489nNUnlIZmYWZPNeUHsrVowi3X/SBvYVeKRkp8A3x5ek/d67ik+LRc1VP0eCg0qjw9uK3UX9mfeQqc0W5pjnFJcUh5EiI6NdNz0tHjWk10GV5F4fOjYXEvi/ez7wv+p1ynjIPLea1QOPZjTnmQg5JcjBKNdwDyIBZL2ucFPrEaAjl9VfXC8zlgbJRD/K+2/t0/tC/g2EIfn5eJkAeMWIE55rpSMtroivoirbwDcbgy3hCi3nlYFzotTNlJ26/YCt4+aHccUlH9F3b1+iatkO5ULUIVaZWwdgdY83MtQ3KJx4SlOrxAn3HgLtCmdt7rb3r0UL55EPt0YVwhbC0UM4v3gDAEwXFn9h8p6xhNOiyvAvqzayH/GLXu4GxcLiXec/hrXK2Pejkw5NiLM1qHbhzQBSwaRgN3l/zPipPqczpAnCOClWFqBNdR1TzEIZh8Hns5/AP9RezKl1yMEo13AfI+emmQD7iCaAnAKE3DT2UgTVgGAZrLq+xbvs6PFwP5E2bsOXGFpCCkJGfgfT08bwV1hMmGPbV7UqJ0Tl0VQJ7pswnhmFQPaoc/thL4Ku+BrQVwJMOTTLZvk7JSAEpCBuubeC5sm1QXnZBC5ubGTcF5toG5cTEt0A1E0H9v0K1WvlmKqvdE8oAEHUiqmTrXcOo0W5RZby5kKDWLLRwTWmhzDBx6LdWZvP2NXveKuZZpa0qVBWi9vTaDpmHJD5OhEegh1O2eYX0KPsRvIO9Rdl6jzgWYcZXwDkS29FrwdkFIAVhzeU1IqyuRJKDUarh3kDOjwPgD1ugfD090voz5dEj9UA+e7akJUmpVuLMmTO8QF682PCuSVvQVQ4M0xzcQi9jXX52WfcmOAHmWqIO3j1o4OjFQnnSoc9RNrysgBesdVBmGDVazquAD9YRHA2k4Kp3n1ugRttAk7zwZrh40Y1SmIewsDr+4GNof3XFjW4UG8q2nik/zn6MMuFl8PXWry3OdbYccfTKU+ah4ayGeGvRW5K4gYlR6HX8wXF4BHpg/IHxIq9OWGJB+eyTs/AO9hbYbbNbkoNRquHmQE4HkABbobwt+TfroNw7QA/k588xJ3EOvIO9AQAbN27kBfL+/fsNrqQv6DIs9DJW5PFI+If6o0hVBKE+ZRYOLJQ1TC+8NkOGb7f1s/ADtAzlA3cOgBSEg3f7QoyUKMCwsrp8p8WiRjdKAWWfYB8M2zwMzsxTlgrKDMNgQMwAVIuqxlM/II3shfKY7WPgF+KH5OfJTlydsByB8ouCF6g9vTY6L+ssiXlHXFIcyoaXxaVU4d8tc8rIz0Dd6Lpov7i97j1NVEkORqnGKwBkwGlQbuyh/REE+AMMg/Bj4agQWQEAMGXKFF4gp6SkGFyFG7koBOXuK7uj31ouVC1DedDGQTh8by9IQTj2wBu22mwaq9/afmg1vxUYRg0xUqIA48rqPSWFXt8I3oG5J5T7r+sPUhB+2/Ob7pFXD8rrr3aAuUKvjdc2ghSELTe2WFifa8XCQRtValk7bu4AKQjzzsxz8sosKy4pDm0XthWMdzQW+8GoQmQFM97orhFbsKjWqG36UKBhNOizpg8qRFYw44HvsCQHo1TjFQEyYC+UP1r/Ef8nOIYBfH20P4LmPgDS8O+Bf1E3ui4AYNy4cbxALirSn1eZOnQBfFDOVebCK8iLJwRdGMozT8/EV/Ff4fUZr4FhesEe72tWNzNughSEZReW6R5xLCUKMJfoFIltyYTzT7+GMGzcC8o30m/AM8gTX2/92qhS9NWB8o302WAYDwCDwTCGB/kZ+RmoMrUKPtnwiYV1SSNr4ZCel46qU6s6lEglttjK6LS8NKvANjtxttN6pu3Rl/Ff2nSXH3wkGDKFjNOhILokB6NU4xUCMmAPlBlmNQAtkAzulA16kH0ANMMPO79Cy3ktAQD9+vUzgXGNGqV1347WY3ZXyi5dQZdxtJghlFn7xVsvTKMZhaCcX5yP0mGlMWzzMKvNQ7QyhfLYHWNRZWoVFKoKOfMcg7L5yupIAIRC1T+IPB7h9tvXDPMOeq/ugXoz65X8fG5m3MS4neNEzVM2VTTEhjIQj9WX5fh0c22D7esv4r5AuYhyeJpjqUhPWo2KH2UWDuydZaUplTjtf+4hlUaFpnOaWgTbxdSL8A72xk+7fnLh6oRli3kIm8/836H/nLkkycEo1XjFgAzYA+U85RJUnVrVcPvaoAd5OIBqGLGlLP63vCMAoHnz5iZA7tixI7jRjeYdugAulMfuGIb6M+sLrJUfyuuurAMpyGZHL630UH5R8BD+of5QJCh45tkH5cTE52b6jllF4vgD+6Ibzcs5UN6W7AdSELYm69vmdtzcYbWjl6ncY/uaPVPee1t77MEa0rizhMxDlpxfAlIQYm/ESrQ6YVk6U85V5qLx7MZos6CNM85dHZI1UH6Y9RCVplTCe6vfc1q/tE6Sg1Gq8QoCGbAHyiaOXkY9yEAy+q71wYCY0mCYZyhVqpQJkIcNG6a7rhbKA2KaCDh0ASyU68/0wNgdwwTmAXxQfn/N+3hn6Tt22WxqpYVyxLF68A72FjB7tx3KvfskCPQds7I/T9m8xIVykaoI9WfWxHurPcAw78Bem01TuQeUP15fE3Wj66L7yu5us8VrSXxQvv3iNgJCA/Bl/JcSr05YQlAeFT8KAaEBFloOpRML5YXnTNv9lGolOizpgNrTa+N5/nNnL0VyMEo1XlEgA45CWR0aogfyxo0AgI5LWmNUvB8yMhrxnh+PH89tTwhBremEv/d35nvREt16cVp3XlQOQn3KWumh/DTnEeSB8pJ/HPZCuVidgJrTZPgyvhoc8b7mKjHxgZFntdBsQyib/2QtDZTDj4Xr/KpjIFR9PTJupO6RVwvK8kCCZ6AMd15KV41sj1goLzy3ECqNCh2XdMTrM14XywnKqYpLioNfiB+OP9BHla6+vBqkIKy6tErgmdLr7JOzvNagP+36CV5BXjj96LQrliE5GKUabgPkJbPDeYBsKac3AfZAufKUyng5cogeyGfOAACazGmCX/d8gXPnKvICeQHnVlBf0EVgz5T5NDtxNryCvJCrbAqhPmW9tFCefrIdvIO9DdpTtiZvxbvL3kV2UTasjW6Muao1LrnyzA+OBlKwMjw7/g/W2mxOOPgOGEEfYNdC+XH2YwSEBuDXPb/qHuGvvt6avBX773Db3V4NKLNWsJMPyQAMhrPylJ2lc0/OQcNoEHIkBPJAuQHg3F3Pcp8B0J57J6UnoVRYKXwe+7nEq7Jee2/vxRdxX0ClUWH91fUgBfEUpTpNkoNRquE2QOa/Q/YHcMTCExNgK5RzlUuA3r31QE7X3olXnVoVQYeDsHnzTF4g79mjd9PRF3T9pvsW+aHcb20/dF/ZHZb6lA0VgzcXEgZuqAPjQi922/FR9iOLd8oMw6D94vbosbIHHA2kYGVYWV0IpfI1WOvopf05TcTR+0fcYvv6s9jPePyqzTt6qTVqzDsz75XYvlaqlWg+tznaLWoHlWYLnuZ44I+9jZySp+xMnX1yFvJAOVrMbSGJAYij+n3v7ygXUQ4NZjZ4Je7uWbFb7++vfh8BoQH4dPOnrjzykByMUg33BvKROgAC4Awoo3F1gAiFPh4oVinBMAy8g70xO3E2pk2bxgvk5GT9tp9hQZe+0IurIlUR/EP9MeX4FN0j1kH5evp1kIIQlyQDX/W1Uq1EvZn1TBy9jKF84uEJkIKw4+YO3SOOQ9m0sto2m83UXIJfiKfkZ8rsz4a/0IkfymefnOUcG7g3lBUJCngGeZb09u6+9Z+o0Y2uUH5xPhrPbox6M+vZ7egltT5c9yFIQei5qqckBiCOaN1VbVFp6bDSZkJWnCbJwSjVcB8gmw2XeB2iQ5n5AvDVUuV6ZcLADQORVZhV4sn6448/8gK5oEBvXWkauWgKZdYZy9DwwDKU/z3wL8pHlEeRahWsdfTig/KgjYPQaHYjozMh+6FsPtHJ8ehGUzkPyhrGB20XNkTbhW0FovQs22y6K5SvpV2DV5AXJhw09F0XO0/Z2Rq3cxx8Q3xxI/2GQzabUmn7ze0gBeHrrV+7LJNYLDEMg2Gbh8En2AeeQZ74cdePrnx5ycEo1XAPIFuMXxQZyqmPS8jyrMvr8AryQt81fUEKws6Unfjwww9NYFy1qge40Y2GDl2sDKH8x94/UD2qOs9Wj3koaxgN6kbXxejto3WPWG+zyYXyvcx7kAfKMffMXJ4fgH1QFk50enWgvOR8S5CCcOLhdAvXfPWgrNacR4clHdBkThOjnnN27Voof7q5tol5iDuJbdXinluyUNZGlbq3Hmc/RsXIivhw3YdgGKZk7VEnoqRemlWakzgHpCCsv7oe229uR0pGiuUniSfJwSjVkB7IHBibBbLYUOb2II8lbEv+DZ5BniAF4eTDk2jZsqUJkN9+2wtsShS/QxcrPZRbzGsh0KbBD+Wj94/qrDKPceYKQ7l0WGldyLy+0Ov3vYNRPqK8QO6sbVBOTGxvoe8YsAfKLedVQbrZdixAbChnFmai8pTK+Cy2Bhz1vv5669ecqnH3gPLM0/6QKWSCBVDxSeOx7ooc7lrolVmYiZrTaqLnqp4mOxg7bu4wY7DjPlJr1OiyvAtqTqtp0CJ0/MFxt+s/5tPpR6fhFeRlclecXZQNRYLCFXf5koNRqiEtkI1gLAhkMaHM7UGe0g6AHCsufgdSEK6nXUeZMmVMgDxkSB+wKVG7UtaZcehiFYLH2SQQmcjKFMrfbfsOr814jWcr1TyUM/IzAGjvrovV2cgp6o4y4YS/938q8NqALVDu3eeSFX3HgK1QVmkIwERk5D93yZ3yr3t+RUBoAJ7k3IEY0Y2A1n3JHe6U72VeQkCoHON2+sAaRy+G8cC6K2+73fb1yLiRKBNeBg+zHpqdk1WYhckJk91yCzjocBDkgXIcvneY9+tnHp/BN1u/ccu1Z+RnoPb02uiwpAOUasNP3QfuHHDV1rvkYJRqSAdkHhhbBLJYUObmIG9cD2AUtibLQArCjIQZvOfHf/31F9iUqKDDlXWRi+bfHJde+BjyQMKLAuNtbWPpoVykuoRyEeVMzv70Mg9lQGuPOWjjIEw/GQnPIBkeZfvC0UAKwPjs+AGUSku9lLZBWa0htFlQzenb16xfdfixcN0jjgdSZBZmomx4WcnNQxiGwXur30Pt6TWRU9Qa1vQpX0ub5XZnynFJcSAFYcXFFYLzDt496JbnskfvH4U8UG7GFU8rITcyKcWGRlSMrGj2w5AtNpsOSHIwSjWkAbIZGFsFZDGgPHq0njBnzgBQY8XFziAFYcqmT3mBPHcuexabjAExPui5KgDcM2VjDd44GB2W1NZ9++b7lLXSQjn2RlmQgnAjXagtyjyUWfOQgNAADNk0EI54X3NleHa8GmJFN+rl/DNlFlj1Z9Y32jYUL7pRSiivvLSypAbCmXnKzlR6XjqqTK2C/jH9rWqxcTewZeRnoNb0WuiyvItFa0kx8pTFVtjRMKtCI1goD9k0xFmtUJKDUaohDZCjZI4BOUoGoBvshjJPD3L0qWnwC/HAxo0yiz3ItaZXw9/7A8CeKRtLpVGhXEQ53adk/pYoU6Xj4/Vl0HahJ2xx9DKG8oSDE0AKQrcV3RwOpAD4KqsdT4nil3OhvDU5ViBh59WGclpeGipEVsDwLcM5814tKDMMg4EbBqJiZEWbgiNYKDsRDlaJYRj0j+lvU6QiC+Vvt33r5NVZVsK9BMgD5Zh4cKJV82NvxGL6SUtFkXZLcjBKNaQBssN3yEHQwtVOKDdurP3W/f21MYwAJh2ahJrTaiIioi0vkNkcZH1B1wywZ8rGUD758CRIQRybOctQflHwAt7B3og+VQ22OHoZQ7nHyh5oNKsRJ+7ROkcvrUyhzF9Z7Vwo+wR74NDdgwLzbINyoUqOejNLoffq9wTetMWBct3ouniQ9UD3iGugPHTTUFSaUgnpecZWs7ZBuX+MDIWqTyBFodfaK2tBCsLGaxttfm58UjxmnJrhhFVZr1mnZ9kVqbg1eSvOPTnnpFVZp9TcVFSLqoZuK7rZFRqx+9Zuse/yJQejVEMaIAMOnCEHcS5iB5SZHoCvr/Zbb9as5Ktjto9B6wWt8e2335jAWC6XQ6krKzaMXNSeKRtD+b9D/6FCZAWjX25hKC88txDyQDlSc6/CFkcvLpSvpl0FKQjrrqzDmcdnOP9I7INyYmKBQGW186D8JIcATATDaETxvg49OgyeQYSk5/3grDxlVux2eK4y1yV3ytuSB4IUhLVX1pqZZz2UGSYOgCdSMt536Z3yk5wnKBdRDsM2WwpgsaydKTtd3qfMRir+vPtnu69RpCrC1BNTXb59rdao0W1FN1SdWtWuSMt7mffgFeSFIZuGiLl2ycEo1ZAOyIAdVdZBPBexEcqpfiihTN++JV8ZuGEgeq3qhR49epgAuXad2vh7/98oVhfzRC6aQvntxW9jyKYhPK9vHsrvLnsXvVf31v3JNptNFsrfbP0aNabVMHhDOnzvMEbGjbRr+7p3n5MWKqudB2WAEHj4fw5vXz/M0kZP/r73QzgrT9kYygzDoNuKbk7vU84qDEPNaYS+a+tZ8Ai3Hsp5yvWoOtV129cMw6DPmj6oFlUNLwpeOHStuy/vGh0bOF+5ylw0mt3I4UjFYw+OSXKmPOnQJMgD5Ui4l2D3NditdxGhLDkYpRrSAhmwoQ9Z6AzWBiifmqsH8tjvSh7+3/L/YfiW4Xj99ddNgNy6Y90SA44P133IE7moh/KLgmTIA+VYemGpmQWYQvle5j2QgrD68mrOPNug/DxfBt8QD4QcMfzQsi15m0VHLz4lJl7k3B0rBRKd3PtMeeimoagWVU0XyOGcPGWpzEPGbB+DUmE+eJBFcGaesjO16NwiI3tXx+RqR68v4r4QLVLR1YVee27tgUwhQ+jRUIevJTKUJQejVEN6IANWOHURgK+gffM3JyuhbNCD3ABsoVfTOU3xw/Yf4OHhYQLkb77Rmod4BXnBL8QPf+z9g+fCWihvul4LpCDBHkpjKIceDYV/qD9ylblG86yHctjRofANIaTnDYE9NpvGMjw7ngaxohtdCeWEewkgBWHlpZWcuf83oHz43mGQgjAncQ6cmafsTCjffXkXpcJK4eutX4t6XVdBedWlVaJHKnLXbs95rrV6mPUQFSMr4v017wvYx9qmuKQ4dFraSffh1yFJDkaphnsAGRDwsg4CsAraN3sRoGzQg+wNttCr8pTK+HXdr7wFXWFhbwKQY9XlMSAFoeOSjmaKg5Lx7TY/NJ3jDaGWKK20UGYYBZrMaYIRW0aYmWcZysXqYtScVhNfb+0GSzabWktO4TNlw8rqPCiV5SFWdKNW9kE5TPCTvCGUVRoVWsxrgY5LOvK84bgeyvFJ8bpHHIdyQXEBGs5qiHeWvsP53qLhDChXmkJIet4bYhd6aRgNuizvgrrRdcV4AzdRXFIc3ln6jlOuDQApGSkICA3g5GSLp7ikOIw/MN5pVePF6mJ0WtoJtabXMnASE0Ps7+OTnCeO3ClLDkaphvsAmTftiWuqIRKUDXqQ5wPwh4bpAXmgHD/N/okXyBs2xAAYhV0pWvOQiGMRvK/MMAzqRtfAT7v8Ya4lylAhOP9U6+gl3PsnDGU2r/TKsysQaonafnM7rqdf1/3JPJRNK6vFiW40lG1QPnqfUFBsCTZ6KM88/Q9kChnOPz1vZq7roMy1etS+yToG5X/2/wPvYG8kPU8ymhsNsaGcUxQDwBNK9UBR75RnnJoBUhAO3bVUz2C/WDg8zn4s6hawUq1Eu0Xt0HBWQ55dLXF17MEx0bev/9j7BzyDPHHy4UlRr8tKqVai/sz6jmy9Sw5GqYZ7AznfuI1DBCib9CAn4Hm+H0hB+O6/r3iBfPbsWQBqBB1ug/IRBIbRnvVuur7JYEssJSNFdx62AOZaooz1655OqDKVoNL8Z+EHZB7KHZZ0QLcV3TiPCDt65SnzEHQ4iHf72nyik/RQBgiXn32Lb7d9I7h9nZbXDGXDZRi9fbCFa7oOygCw4OwCDNk0xKHt6wtP98Aj0AMhR0LMzI2G2FAG4jF4o0y07euk50nwDfHFT7t+cvhaliQCHEw0/sB4eAZ56vzjnafU3FT4hviKuvb4pHiQgpzZQwzAYUcvycEo1XjFgAw4DGWeHuQb6StACsKw0VV5gfzy5UsAwICY/ui5qjoAOVIyojjnslo4zEmcA68gL92nZv6WKK5UGhWqRVXDz7s76n5M1jl6caGc+DgRpCBsTd5qNNc8lI/cP8I52zSEsnCik/RQ3n7T8pny11tHoHyEBzLyK8BZecrCco55iEpTG28u9EGr+U0tnI1GQ2woi3WmrNKo0H5xezSa3Qj5xa5prRLT0evwvcOQKWQc+1XnSsxCrzsv76BseFl8tP4jl5ioOABlycEo1XgFgQzYDWWG4e1BPnL/CEhB6NVPbgLjcuXKlczTRi7+CWAUADm2Jv9qAOX+Mf3RdUVXzusLQ5mNmNN+0rbe0YsL5eFbhqPezHpmCkAs22xyoZyY+K5A3zEr6aEsVOiV+DgRMoUMc89MgbPylKWCcuTxvyAPJJx9UgvOzFM2JzGgHHo0FPJAOU49OmXX8+2VGFB+WfDSamtMMSUGlItURWi7sC1en/E6MgszxV2ggGJvxCIgNABnHp+x5WmSg1Gq4dZAvnpP6HzJDiinxoKvB3nz9c0gBaFlK9OWpzfffBMAjCIX1TCG8sfrP0ZAaADCjoYZvb55KH8e+zkaz27M+bRqG5Sf5FSCZ5Anok9FC8y1DsoaJg+9+5y20HfMyn2gPCp+lP7VGA3eWvQW3pj/hu4N0zl5ymJBWR8iYhnKKRkp8A3xxe97v4Yz85SthfKKi2/B1kKvS6mX4BXkhfEHxtv0PLEUnxSPUmGl7NpqZhgGgzcORrmIchY6KJyjuKQ4NJ/bHGmCUaXmNW7nOHgHe0viCsYWjmkYjbUfKCQHo1TDrYHcMqoynuYIvTnbCOVTvnogjx1b8tX5Z+dDrpCjdOnSJkAePFh7Dmno0AUYQ/mtRW+BFGTmF94UynnKPASEBiD4SLDRXOuhPOFgZZQKkyGrMNHCXGEohx0NMzo7fgilMsHCNaWH8tZkwvEHX4CFzdILS3mypN0Tyvvv7DcywjAPZbYiWpaftQABAABJREFUud7MerptXuflKVsD5cvPZoBhPGBLnnKRqgit5rdCy3ktJc0E5kaV2nK3ueLiCrutPcUSu96M/Ayb1s4Wfc4/O99ZS7NKP+z8wdo+ZcnBKNVwayC3iJLhnaVvWjgvswHKMc301JkypeQrQYeDUElRiff8+O+/fyuZY+jQBXChPPHgAFSMrIjbL26bWa8hlFnvXv5MZctQLlQVotKUivhpV0U44n3NqncfNajePpC8GAsWzIAYKVF6ObfQq1g9HuHHwlApspKZ9jH3hDKgNYX5addPgtvXC88tBCkIB+4c4DxTWigD8Yi9IcfwLXWs2r7+98C/8ArywsXUixbnukLjdo6zuk/59ovbKBVWymA3RiqpNWq0WdDG6u3r5OfJKBVWCsM2D5M0fAPQb71b8XOUHIxSDbcB8pLZ4SZAPnWzJjyDCP/s/87Cs62EcnigHsgbFSUP/7TrJ7z+h+l2NRFh0aKmAPIxIGYAj0MXwEL57cWEQRvao/b02gaFXobSQ7nPmh7ovKyzwPckDOWlF5ZCppDh1ovTsNf7mlViIkBlHoEm+sB35MfIK3A8JcpUzoPy6UcEeaAMHoEeuJ9538w894TyrpRdguYhj7Mfo0x4GTPmGdJC2doz5dOPTkMeKBeoDHe9rDUPKVYX4+3Fb6PezHrIKcoxO8+VsvZMOb84Hy3ntUTj2Y3dau2GHyx5JTkYpRpuA2S+O+RR63og5EglyBSE4w/WWbiAFVA26EH2BVt9PWzzMDQd05QXyAcO+ADoiVrTa+Lv/X/zXvZFQTrkgTIsvSArcfQSgvKz3MrwCCQsODvVwvfED2WGYdBqfit8sO4D3SP2eV+zUC6prG4cDw+F7TabUkP5atqvkCsIHoEyp+Upm5fzHL0YhjAgpjWqRVXDy4KXZq7p3lDOL85Ho9mN8Nait9wm95eVNVCedGgSPAI9OMlt7iFroPxV/FfwC/HD1TRLv+tuJ8nBKNVwayBXD/LEx+v74O3Fvmg82xNFKku/WBagbNCD/A7Y6utuK7qh5acteYF8714M0vL8dAVda3hfddP1TTq7zMEA5BahPPP0v/AKIrwoaAxrHb24UD509xBIQdh/Zz9nnn1QTkzUtzlVr1mMTVdtt9nUShooMwyDriu6otHsSth0XV99bf7N372hrM80ZrDh2nsgBSH2xvcWrukeUP51T0MYnyn/vPtn+Ib48piYuIdYsGmjSg117MExyAPlPHUe7qG4pDj4BPvwmqssv7gcpCCsuGjp35hbSnIwSjXcGsh7Lq+GV5AXpp74D55BhJAjpQFYMnEXgLJBD3Ie2OrrpnPqolmvZiYw9vT0hEqlwq6UCN157ztgva+5+nbbt2g6pym4Z8rbkn9D+YjyuPzsssn8txa9hY/W94S15iHGUB4QMwDN5zbnOROyHcq9+1wwqayOT4pHu0XtdHdljuUp80s8KG+4toHjdKatvv55d3sL6UfuC2W2nzwjPwOVp1TGoI31of27d16esnlZD+VdKZPwMMuw0Iv94OhsEwpHdfrRaZMPcJmFmagbXRedl3V2aYuTrXqcrf+7Zp3Jrjy7Ar8QP3wV/5VUy7JbMVdjADcAo1TDrYGMI38j+XkyAOD3vWPgF0J4klMVdkGZtwdZW31dLoLweuvqJkCuX78+ALagqzQYxg+s9zUrrV1mXY7rkB7KWYWLAGirI9k75eTnySAFYfP1zbDGPEQvLZTvvPwZMoUMi84tMjPPeignJu4123fM/uNOzU112zvlPGUeak2vhQExAzhztYVewEScfnTqldu+BrS/Ux2XdES58HJIzX0KZ+Ypi13o9TzfA+MPNMGL/GeoG10XXZZ3ES28wNk6cv8Ivoz/EiqNCsO3DEeZ8DK4l3lP6mVZpcDDgRi8cTBeFrxE49mN0XJeS5cZr4ila2nX4B/qD7gBGKUa7gNkwXAJbWuSd7AXvtlaFkAN2Azl1FTw9SAXFGeAFIQKVU23q9977z0A4BR0JQDwBxfKertMbnycHsrAGnwR90XJ9vXEgxNRNrwsClWFurm2QfnXPYQKkX4W/rFZB2VDV65lMK6+VmlUaDqnKa+jl7BcA+UJByfAJ9gHd17eMZobief5hIBQr1fyTHnumbkgBeGtRW85NU/ZGVDed1sBzyDC6zMC4B/ib6aLwD3Fmoe0X9wepCCsu2KpbsV9xG69155eW7Q4SFcquygbjWY3Qot5LQA3AKNUwz2AbDF+MQjbkrfBI9ADMoUMN5/Xg81QPnVCD2ROD/K9zHugiQSZzBTIY8aMAcA6dLEFXQngQtnQLpMrU/OQgRsG4rXo13gqZq2Dck5RDsqE++Cf/QR7bDa5Muw7zoZS6QNrHb3cAcq3XpyAd7A3Jh2aZGauOHnKhnI+lHOKclAnug7emP+GQzabUkJ54qHBIAWh7cLyTs9TFlsLz2pbzOpE13G7IjRL+m7bdyAFocPiDq/U2hmGwcfrP0aZ8DJIyUgB3ACMUg3pgcyBsVkg66DMFk+9PqMOitVNYBOUY7rqCcTpQT758CRonCmMiQhTpkwxcuhilQAWyv1j+hnZZXJlCGXPIE+QgrDv9j6euZahPOv0LHgEeuBR9p/Q/ljth7KpZ7VtNptSQ/mDdQGoE13Twk7BqwflH3Z+h4DQANzLvOew97UUUH5R8ALVo6qjzYJ68AwiDNlUCwzD68HqdlJpVOi0tBOqTK0CzyBPjNk+RuolWa1zT87BO9gbfdb0gWeQJ49joPsq8ngkSEGciFLpwSjVkBbIRjAWBLIOyp/FfgZSEMbuGAWgKayGcjjpgbxR77az5cYW0Kf8QI6Li+Nx6GKVgGK1H0qFeSDsqELgtfVQ7re2tQXHHPNQ1jAaNJzVEEM3DdU9Yp/3NSCU6CQMZf9Qf5x4eAJSF3rtTFmk+5BUA9babDacVQFPcoTAJD2Ujz3wg0xBmHFKH+8ZnxSPYZuHcT5MuDeUh28ZjnIR5fA4+zHik8Zj8Xk5bHH0klKBhwMhD5Tj+IPj2Ja8DdfSrkm9JKuUVZiFejProe3CtihSFeHwvcOvzPnxwbsHIQ+UG9upSg5GqYZ0QOaBsUUgRxHyj46HT7AP/tz3J4BUWA3l0d30FDqj7ymce2Yu5L1NQyWICNeurTDj0KXV0fszdXaZ7cFXfa2XGirNSFSdSvhsSycLRS78UN5xcwdIQUYZpvZBWTjRyTyUWR9dhmGg0uRACigXqYrQYFYD9FjZEQxTA9aahxSrCcBEZBVmuuWdcqGqEI1n10GHJXKoNe/AuNAL0Ba9uPOdMruDteYytz0wHoAnttzo6Nbb1ycfnoRHoAcmJ0w2eDxPmYeQIyFWOXpJIYZhMGjjIJQNL2tSS3Hl2RWM3j7abbevH2U/QuUpldFzVU/jSnbJwSjVkAbIZmBsDZARRYhf3hY1ptXAg6wH+HXPd9ZtXxv0IA8DW3098eBEBHQMMIGxTEYoLPTHgJjOZhy6tM+tGFkGGp7qa2Ptu71bl+wkA7AGu2/txogtI6yy2QSAXqt64a1Fb/F8MLANyomJ75utrNZL2Gbzj71/SNanHH4sHJ5Bnriefh22OnppGELHJbXccvt6wsEJ8A72xvX0deAr9MouykaFyApmHb2E5XwoP8t9hoqRFfHJhk9MfkdTMuaJEt3oLGUXZeP1Ga+jwxLTs9eEewlWOXpJpTmJc0AKwpYbW0y+tjV5q2jRjWJLqVaiw5IOqD29NtLz0o2/LDkYpRrSADlK5hCQmSgZSEEITAiEV5AXPtnQ1zKUS3qQvQGGwFZff731a5RuYhoqUadObQDdUGu6DH/vH857ybcXv63bQk6AcfW1sUbFj0LDWQ3BMF/AGvMQLpSvpWnjIddeWcv/vdkA5d59DgvcHXNlHsrs2aarofwo+xH8Q/3x655fOXPtS4lyJyhfTL0IzyBPBB0O0j1im6OX1FBmmPLoH9MVladU5ntz1a1dnDxlZ2hk3EiUCivFU62vlbU2m67W+afn4R3sjR92/mB2jph5ymKKTZ9KfMwbjCM5GKUa0gDZwTtknAzCG/PfwCcbPsG25G2WoWzSg6yvvu63ti98K/qaALlHjx5Iy7unO6v0AWuzyepFwQvIA+VYemGp7pEEmINyQXEBSoeV1m2HGZqHWAPl77aVQ/WoqlCqhYpjLEPZ8Oz4EZRK+wMppIDyp5s/RdWpVZFVmGU099WFskqjwpsL30TLeS2N/n5fHSivvPQaSEGISxI2AHFHKMdcjQEpCCsvrRScxwWbO/RVZxdlo/7M+nhz4ZsW07PYtX8Z/6WLViesVZdWgRSEBWfN3hFIDkaphjRABuw+Q2b7kqednAbvYG9kFmaWQHnIpv5gGB4o8/Yga6HcenYF3vPjMWPGcAq6OoC12WSlt8vkZqMmgA/KbN4ya3LCB+VxO8fx/pheFJyGXwgh+Ehl2GOzyZXh2XEgHE2JYuEQdSIKzi70OnzvH5CCsPzicjNzbYeyd7AHdt/aJTDP+VCOPB4JeaDcTIC7eShXj6qO2y9u6x6RDsoPsx6ibHgZfB5bAdbabPZaJUN+8ceQutDrfuZ9lA0vi083f2pVElJcUhxCj4a6YGXCYhgGQzcNRZnwMpzfAWHFJ8UbxZJKo8vPLsMvxA+j4kcJ/cwlB6NUQzogA3ZUWROAcABayziZQlbi1boteRs2XNsA3kKvU6f0QOb0IAOrUOl3/grrqKgoTkGX3maThbLeLtNYCTCG8icbPkHbhW2N5umhvCvlT7P/sCKORcAn2BvpeVVgj80mK9PKascCKVideHiCc2fnHCirNF+j5TxChyX1Ldyd2Abl+5kEYCIARuC6zoNySoY3fEO88fve3wXm8kOZraItKC6Q7E6ZYRj0WtULNafVxMuCu7C2T5lh4gB44l5mX8nulNUaNd5d9i7qRNdBZmGmzc8/cOeAZFvA88/OtzubuVhdjJmnZ0qy9szCTNSfWR+tF7RGQXGB0FTJwSjVkBbIgE19yMBk3eW0UH5n6Tv4cN2HBpdjGAarL8823L6OidHTiNODrNaoIf9UxgvkrVu3GkUuam02gQAwzGEju0xjJYCFcmbhE/gE+2DayWk88wwdvbIKszDx4MSSbdRidTFqTa+l86S13WaTC2X+ympxoAwAiY8T8WX8l07Zvp6dOAsyBeHcE4Iz8pSjTvR0+fa1hslHl+UVUG+mDPnFWy1ckx/KDMOg39p+kvUpzzszD6Qg7Lm1R/eI9eYhhaqNqDVduu3r0KOhkAfKceT+EcuTjfQo+xF8gn0kOZe9mHoRPsE++H6HpcARfp16dEqSM2UNo8GH6z5EuYhyZs/qOZIcjFIN6YEMWOXUpddksFCOOhEF3xBf5Cn1b+bX06+bnimH/64HMqcH+VnuM1BP/jvkGzduGDl0ASyUb2b48dhlGisBgD+WXWgGmUJmYAJvKD2UD94db3CmzAYn6AMq7IOy+b5jQCwos8cGYpuHpOelo1xEOXy77Rs4K09ZijPlBWcXgBSEQ3ffhhgpUa6G8u0Xt+Ef6s9jniF+nrLYSnycCM8gT0w4OMHua7A2m64EW05RDhrOaojWC1pzrHdtlxSFXiFHQkAKws6UndZMlxyMUg33ADJg0cvaUJMBEJKf/wZSELYlbzP4qkmh12h/PZHO6M/qLqZeBL1pCmO5XI6HLx7yOHQBWrvMhvAKIuQqd1v4phLQa5UcXVeUh6U+ZT6bzQ5LOvC4gNkO5d59ki1UVosDZWc4en2z9RuUiyinq951Tp6yq6H8KPsRSoeVxjdbv4GY0Y2ugrJa8yc6L+uM12e8zmMZC7gzlHOVuWgwqwHHJ9x+uRLKDMNg2OZhKBVWirWXdEiuhPLe23shU8hMerwFJDkYpRruA2QzaU/mNRkMQ6g3swLG7hhr8lUulDXvBeiBnK5vy9h+czuorimQX3utFHal7DDj0AWdXWY5GBd6GSs1NxXyQDkWnfOGpT5lczabsTdieeZaD+XExGVW9B0DYkNZCxvHzpTPPjkLmUJmlFXrfCgrBN84HIMyu81cPao65+xSPCivv7pe94jzoDz1BEGmIBy5f1hgnm1QLhdBuPysF5xd6PVV/FcICA0QBWqA9ufedmFbvCh4Icr1zGnROa07nS6eUBTFJcXhx10/OrVq/H7mfVSMrIj317xvy+tIDkaphnsDOd9SqPlkvLuM4BvsyfvVbcnb8PH6j6FpXE/7rfrLACa55Ovzz84HlTEFcq9ehKDDb/I6dKk0KpQOK42QI5NhXOhlrJmnZ8IryAsvCrbCUp+yVnood1neBBUiKwhksVoHZcOz4+0Crw2IBeXtN7fj/NPzuj/ZB2UNk4O3F7+NVvNb8XyCdx6UD90l5BT9CeFWH/uhvO7KOmPfXp0ch3LS86SS31ftf8WH8rW0a/AO9sDvewliBlJkFq4B4AmVZqDT7pTZzgh9q6I4Yv+NPst95pQ+5cvPLsM3xBffbftO9GuzSnycKPqdcqGqEO0WtcNrM16z9QOL5GCUarg5kJsBeC74tP8O/Q+kIDzJ/of364xGU9KDzDTzBrf6+s8df/KeH48d2wMDYgg9V9VASZ6yTicfngQpCKcfnQa30IsPym8vfhv9Y/rr/pQAa6H8NGcIvIII00+OAKAFnLWOXlwZnh2/hFLpBUdTogwlXOhVqCpExLEIu7avl19sDFKQQNGN86AMEG5mfI+xO74Xdfv6ef4nqDSlEoZsGmJmnjh5yqsurcLQTUNF374uVhfjzYVvoumcpihUTdFdU9w85VHxMqdsXz/MeojyEeUxaOMgq1qcbBUbVSq2eUiuMheNZzdGq/mtLFUm263n+c8REBog+vb1d9u+g0+wD+fDudWSHIxSDTcHciUArSAE5UfZj3TWcQS2+tpAnB7kc20qG1Rffxj9IS+Qo6OjUWt6Bfy9n1CSp6xT0OEglA0vy/nF5Yfy7Re3QQribCEC1kJ50qEJKBXmiaxCGe5lRsM72NsqRy9jKJtWVtsfSGFe5qF8/MFxu8xDMgt3ocpUGYZtrgJn5imbVyR2poh/pjxiiwwVIr3xLFdoW1i87WuxzUMmJ0yGR6AHzj45q3skGmJD2RlnymqNGl1XdEXNaTWdurUstqMXwzD4PPZzBIQGcDwMnCOxz5SXX1zuyG6E5GCUarg5kI8CqAJLUK4bXRe/7umgeykjKHN6kOe1lxtUX7f4oSEvkNdsXqMr6PoBJXnKOij/b/n/8NH6j4wXD2MoBx8JRkBoAE/qSgKEoFyoKkTlKZXxw85xsNXRiwtl85XVroWyPY5eP+76EaXC/PA42x/OylN2daEXGw6y8pIMzsxTZiU2lM8+OcsbvvAqQDnyeCRkChkO3bW0O+O4xITysgvLeMI6nCexoHwp9RJ8Q3x5ct+tluRglGq4OZDTAVyDJSiP2DIC7Re3h3GfMgCDHuTrf44yqL6u9CF/D/KivYs4BV16m808ZQ68grwwJ3EO3zcAbp9ykzlN8FnsZ2a+2QSYgzL7yfJmxk3YY7PJQlk40Uk6KKs1uRCC8qXUS5AHyjH1xFQ4M0/ZVih/Hvu5wDxhKGcXZaPW9Frovbo3GGYjnJmnzAdlbTIaYC+UC1W30XROU7y58E0zv3vRcBaUF55rC0cKvc49OQevIC/8te8vu69hq+KS4uAX4qeLKrVP19KuwS/EzxGo2aW4pDg0mNUAT3Ke2PX8rMIsNJjVwBrzDyFJDkaphtsAecnscDNABixBed6ZefAM8tT9AkyGAZTDw0uAjI0bsS15G6pMrYIb6Ufg0dYUxh4eHph8YLJRQZcWyrtvvQdSEJKemys200L5YqqvFT13CTCGMsMwaLOgDfqu7cuZZwjl/y3/H7KLss1cUwvlxMShVlRWux7KEw5O0P1M+Qu9GIZB52Wd0XROU84bv/RQ3ppMOHBnBOwt9Pp+x/cICA3A/cz7ukeck6fMB+W9t/fiWe4zzjzbofz73nLwCfaxkA8cDbGhfO5JFDSMB+zNU85T5qHR7EZ4c+GbFnzgxRf7M2cYRqAwk195yjw0ndMULea1kCTXmP1ZZRVm2XSnzDAMPlr/EW8UpI2SHIxSDbcBsvk7ZFbmoZz4OFEXbciebU1GCZRHj9YDWdeDnKfMw8uCl6A6pkCuX7++kUMXq1X4fS+h5jR/MIzQP7B8/LWvDipGEorVBy180wngQvn4g+MgBWH3LeP+Zj2UGWY1AO3Zubk75d599lvoO2blWiizOnL/CO/2NWs6f/Cu8c9NeigDBLXmX8w7M9em7esj97VJXYatW4AroQwAT3Oe4o+9f9i8fX3kfgxkCsLUExXh7DxlfsVj9y05Po+ta/P29XfbvoNfiJ/Tz1+F9Ne+v2zeAh4VPwr+of64kW7p35rzpGE06Liko01rn3piKkhB2JpsyXnOoiQHo1TjFQIyYA7K+cX5kAfKseT8Es7cydqX7t1QD2ROD/LlZ5dBpUyB/P777/M4dGn1xvw6+CKOYFzoxZWG0aD29Fr4fkcNWOpT1ioBLJSHbhqEhrMamunX00NZqV6BejPr8W5fG54dP4FS6VgghV7iQDk1NxV+IX4m5iFZhdtQdWpVXZwln6SH8tkntp0pFxSfRcNZDfHO0nfM/J26Dsp7bu2x2TwkV5mL12e8js7L2kGtqQ1n5ikLyZ4z5bikOJCCsPDcQqvmO0u2moesuLjCqvQpV8iWM+Uj94/AI9BDrKMBycEo1XjFgAyYg3Lj2Y3x464fjeZOBhrr6OTvr41h1GnThU2858dfjxnE69CVlpcGUhBWXx4N40Ivro7ePwpSEI492A9Lfcp6JeBxti88g2SYdTpKYB6/oxcXDoZnx3/CkUAKUznP0evn3R4ICPXFo+xHAteUHsq2FHr9s98P3sFeAkccgCuhbKuj1+jtoxEQGqALPnFenrLYUH6S8wQVIyvio/UfOaXFyVZZC+Xr6dfhH+qPUfGjXLg6YVkD5dTcVFSLqoYuy7uI1TYlORilGq8gkAE+KA/ZNATvLnvXcBrDAL6e2m+zWRWDL01YM4EXyGMm+vM6dK2/ul7b75zzBNxCL2Moj9k+BnWi6+juiIT7lLmaePBzlAojZBd1hT02m8XqYp7KascCKfglPpTPPzkJj0AZIo97wpl5yuYlPpTPPz0Ij0BCyBF/ODNP2byEoayPHOSH8u5bu0EKwvyz8znXdA8o/7CzAcydKWsYDXqu6onqUdXxPF/Yw8CVYqGsjSo1VX5xPprPbY5mc5sZePO7g+KS4uAV5MVzlKbtv+66oiuqRVVDam6qWC8pORilGq8okAFjKIceDUXZ8LKGn4gNcpAJ3OrrT/77hBfIn0eWQfkIGRjG8Nzpm63foNncZpxHTKGsVCtRIbICbyCFEJSLVEWoPKUyftz1MWx19Nqa/CtKh5XG2SdnzVRWuzeUW85ribcXv40mcxpDqe4JZ+UpO6PQ65utraHmuSMoVhej9YLWaDW/OYrVreDMPGVhmYeyoQWjIZRfFrxEjWk18N7q93juMKWF8o6bE3HrhflCr2knp4EUhH2391lYm+t1/MFxs8VlX2/9Gn4hfhYK56TTvcx7Jf/P/Z34Z/8/8Aj0sCs1S0CSg1Gq4d5APjLAwpP0UI69oT17ScvjQOf0aT2Qx7bTLUUL5TbD2/ACueeMd9FzVQC4jl4Mw5iJWzSEMttrqk9nKvnmIATllZdWclqdEmArlF8ULNDeHcs0IHkxT2W1+0KZPTPbcmOLU6IbnV3oBUzEhafnDe6Ug48EwyPQA+eenIMz85QdLfRiGAZrr6w12b4eseVtlA0vK3B8IC2UgXhkFXrgv0PNDLavL6ZehHewN37b85uF50urM4/P4OutX5f8zqy+vBqkICy7sEzilVnWtJPTMGTTEKg0KmxN3gpSEKYcnyL2y0gORqmG+wDZbNqTOZtBVlooX3nWEKQgw96/9ev1QJ4yBdzq62qdqpnA2NvbG+XDyqPJnIYGjl6s65ZxqpRWeigP3zIMzec2N3NuxQ9lhmHQdmFb9F7dmzM3AbZCuXefh6C+Y0FDBmLufNttNg3lGihnF2WjWlQ1DNowCK0XtLbZ0csdoJxZSCgb7lOyfX0t7Rq8grww/sB4zjz3hDK7Vq55yObrvXW1Epb6X6WF8sG7QQZnyvnF+Wg6pynemP8GilRFFtYjrbhnylefXUVAaAA+j/3cLc67LYk9U+67pi/KhJVx1jm95GCUargHkC3mIVuGcp6ysq46kWPaERGhB3JJDvJkAATfOp4mQG7cROuf7BHoYeDoteBsIDwCPQT6f1chT0nwD/VEyJFggXWaQpn1xjbtWU6AtVBOTAzUfpuNtoEmeeHjGNttNk3lfCj/uudX+If642HWw5Iz5VcRyuyZ8sANn6DtwrY6r2fjvFr3hDLX0etR1iNUmlIJn2yoB4YhODNP2bzsK/Qave1b+Ib44nr6dQvrcA+xYCsXUQ6NZjUyE2PpnmJz2gNCA5x1Ti85GKUa0gOZA2OzQLYSyjWmyTHpUBWUVF+PGaMHMicHWaOZBPIx3a7u1KsTSEFYfG6xgaPX4I2+6LikjeCrr786FqQg3H4xCOZaorQyhPKwzcPQYFYDM20xCbAGyr37qPQ78zOm2myzaV7Og/LVtA/hEeiB8GP6c/1XHcoegTJdhf0xM/PcG8o1omqgUmQlpOelwZl5ymJD2SOQQArCnMSZFl7fvdR3bV+QgvDx+o+lXopN+mbrN/AK8oJnkCcUCQpnvITkYJRqSAtkIxgLAtkKKP9veTsM2+yDkurr99/XA5nTg3zt9jXe8+N3R7xb4tDF5in/tPtrVIj0wKRDpcCeKfPpo/Uf4a1F9SDUEqWXFspPcvzgGeSBGadmCMxNgBCUDSur06FU+pTYbJqaUbCSFsoMsw7/W05oPLsMlGpDe72tyVvhG+Kr8x12LE+ZX86B8s2MP+AVRCgT5o0HWfcFZronlH/a9RNIQdhwbYPuEfGjG7WKhphQTs1NRekwPzSbS2CYQXB2nrJYYs9fv9v2nT1pSJKJtfZddmEZDt49KLBr6JAkB6NUQzog88DYIpAtQHlU/Ci8vbgVSqqvm+hMQYx6kBduWsgL5DZj2hg4dO25tQe7UnbpYgDrglvoxVVWYRZ8gn0w7eQ0CLVEGSof/x16DQGhhKxCIYtNQAjKhpXVGrBnymceB1roCZQOymuvrNVVwsrAV+jF+uhqbQeFva8NJQ2UNYwG7yx9B/VnVsTLAgIwEbnKHFGjG50J5YdZD1EmvEyJX3dKRoro0Y2GioYYUNYwGvRe3RtVp1ZFWt4KAJ7YmdLZaXnKYulR9iNUiKyAATEDSs5fi1RFmHpiquiZxGLKXGjEzYyb+GHnD2KuXXIwSjWkAbIZGFsFZAEoTzg4AbWn1wZwDWAqA74y7bfYrJnBvNH/jeYFcuWfK5s4dEUej4RfiB9+3zvGoNCLK7ZK+mHWQ90jlqFcpCpC1alVMHZHTdjq6MVCmT/RSV/oBazB4XuH8Xns526zfZ1dlI3qUdUxcMNAWLLZVCQoTBy93BHKs07PAikIh+8dBhAJhiF0W1FX1OhGZ0FZw7yDnqu6odb0WsgszESeMg9Vp1a1ydFLL9dCeebpmQZWs3dfLoSXyNGNYkutUeN/y/+HWtNrISM/o+TxYw+OiRp/KLaEQiO239wu9tolB6NUQxogR8kcA3IUAdhgctm5Z+bCM8hTex777LCeVn0NfanfHfIuL5Dpb1OHrl6reqHdonYGZ8rGUO67ti86L+tstBphKLOtDjfSz8MWRy8ulM0nOtmfEiUsx6H8+97f4R/qjwdZD3SP2Obo5W5QvvvyLvxD/TFu5zjOXHGjG7VyDpTnJProdiviSx611dHLUK6B8pVnV+AT7GPSiuiMPGUxpUhQQB4ox9H7R02+ZqvNpqvEDY3QuraZSuQ8ZcnBKNWQBsgO3yG3gvbNyRDKrH9tWl6aUQ9yRXBtNuu2q2sC43IVfXUOXX+WzCtUFcIvxA9RJ6JKzpSNoZyRnwHPIE8z57Xmodx+cXv0WtVL9yfrHb1YKCcmjuO5O+bKss2mXq6B8rW0a/AM8kTo0VCjua8mlBmGQfeV3VE3ui5yinKM5ro/lFMyUuAf6ouxO7zgqM2moZwL5YLi02gxrwVazGvBU83uvlA+cv8I5IFywUIoLpRtTYlyltjQiPikeMF5LJRHxo109CUlB6NUQxogAw6cIQdB+6Y9AsZQPvP4DEhBuJh60agHOQBcm03/yv4mQK77Rl2Uj/DVtXtoK38P3T0EUhAupV4CgBIoD9r4ARhGC+XF50MgD5QL2MaZQvn0o9MgBWH7ze2cebZBuXef3WbujrkyhfLo7aPNzHUulBnmOrqu6IqGsxqa6RO1DOWwo2Fwp0KvheemWHCF0kM5PilO4Jquh7Jao0anpZ1Qf2Z95CkPwVz1daUplThe3O4B5Z92+cAn2BtXnl0xOzM+aTw6LyNkF30Edyj0ysjPQM1pNdFleReLoI1Pise/B/51i75kW0Mj4pLixHBJkxyMUg3pgAzYUWUdxHmyKZQfZz/W9/Qa9CBPA1voVVDwECQz3a6u272urqBrsm7J4fj3wL+oNKWSQUvStuRtOkedVABN0WOlN7qv7GD2W9TKEMojtoxAvZn1eP5hWgdlw7PjVCiV1pmH7Lj5u4U+TedBOeZqWZCCsOfWHoG55qF89P5RztmV9FB+mFUVpcPk+HrrMAtzI3H7BQGYCIAReJN1LZQjjkVAppDh+IPjukf4q6/Z/lilWukWd8q7UrQ9sDNP+8NSS5SGiQXgicfZH0h6p8wwDPrH9EeFyAoWwlNMdezBMYHdFefKkdAItUaNBWcX2Lt9LTkYpRrSAhmwoQ85iOfJhlBWaVQgBWljGE16kHWOXlca8p4fl+1fllPQNRkAof3iWgJxgMDi81GQKQiLzpWFUEuUVloop+Z+Cq8gL11FNp8sQ9nw7PgH2OLoBaxBnjIPQYeDXLZ9nVN0FzWmeeLj9T5wNE/58rPL+Hbbt5JuXzMMgz5r/oea0+TIKmwIa20255/tw9kC5pNroHzl2RV4B3vz3PWYt9kctHGQgaOXFFBOy0tD1alV8f6aHmCYN2FNn7JSvQn1Zkq7fT07cbZdOcGpuanwDfG18DvjHKk0KnRZ3sXu0IizT846cqYsORilGtIDGbDCqes/gScbQrlseFmttypvD/I1rFhTmr+ga7hhQVdm4d+QBxIWn/+E91VTMlLgEegBmUKG1JwGMNcSZahVUCRoHb0yC18IzDMPZdPK6sOw1WbzyP2JLj1T/nPfn/AL8cP9zEZw1Pt6+83tkpuHsP7b228uhLOiG50FZaV6B1ovaI3mc5vznr9a4+glBZQZhkG/tf1QeUplHSCcE90otlh/bVMffOvELZZyJZT/3v+3w6ERDhR6SQ5GqYZ7ABkQ8LL2BPA+tG8q5qSH8mszKmt9hJs0AV8P8ri/h/ED+UfDyEW2QOxeJoGbEsVVsznNIFPIzFZfG0upVqJaVFmM2U6w1jzEGMr8ldUJsBXKrqq+vp5+HZ5Bngg5EgKxoxulgPLTnKcoF1EOn8V+pnvEPptNqaA88aAHPIM8cOHpBYG57gfluWfm8tRduDeU85R5aDy7MVovaO2Qv7aroSxmaISdUJYcjFIN9wEyb9rT3wAOQLvdZh2UWy8gfL+9J+DrC74e5C4fdjGBsYeXB8qFljM43xu3cxzqzawH7pkyV4+yH0GmkOHn3T8LtkRxxRpiXEsLgy2OXiyU+fuOWSXAESjzW3c6BmW2CrnBrAacNyRxoawNc3fNmTLDMBgQMwBVp1Y16CG1F8oTDv4rME98KCc+PgqPQBmCDnvCUZvNlZdW6h5xPpSvpV2Fb4gvxu4YyzPPNiiXCiOcfdIDrij0+jL+SwSEBiD5ebLlyRYUlxSHFvNaID0v3fJkB3T7xW2UDS8ramhEXFIcvor/ypaqccnBKNVwbyCX5CFbD+VuK6pi9BLSk6tvX4MZdZrWMQFy6ZqlDBy6AKDx7Mb4btt3uj9NhjGUp5+cDu9gb2QVZmFb8jb0Xt0b+cV3ADSFOSh3WNIBPVb20P3JekcvFsq9+6RbqKxOgD1Q5vpJm8p+KLMm9LtSdhnNEwfK25K3cdK9nA/l9VfXl0RFmso2KO+/Q3hZ8DuEq4rFg3J+cT4azW6Etxa1RbH6fThis3nl2RWjN2vnQblIRWg1vzKazmmK/GJzv9PWQzkjfxUAT2iYQVBpCgTnOiL2w/eKiytEuyZ7h5mRn+GUPuVCVSHaLGiD+jPrI7MwU/TrA9otfCvWLjkYpRqvCJABa6H8yYaP8dPkinogj9V/qmYYBt7+3iZA9m0pw9/7fyyZ9yj7EUhB2HhtI+fKk8GF8tuL38aAmAEG1waAuy8Tee+U2ZYsw14+66GcmPi9hb5jVgmwFcrAGgDAvtv7RNu+zlX+i5rTahr8jAwlDpQBoFhdjOhT0U7dvk7PI1SaUhqDNw4WmGsblAHCvcwf8OOuH5y+fT1u5zj4hfjp7tbEyVPecmMLhm8Z7tTt69/2dIV3MOFi6iiImac8dofMadvXt1/cRumw0hixZYTorUtqjRptFrRxinnI6O2j4RPso20bdYJeFrxEmfAy+CLuC0tTJQejVMNtgLxkdrgJkIt1nsZ6WYby11u/xr/f1dMDecqIkq89efKE//y4M2HT9Tpg+5RZK0zTaLHJALTmIaQgrLuyzuCrhapC1Jpei3f7+vPYz/HajNd4tm2sg3LvPkrO3XGK2XlaJcBWKD/KngmfYB/RzpT/2kfwDfHEvcx7AvPEgfLpR6edbh4ydFM9VIwkPMu1lChkG5R3pTj/THnPrT0gBRmZ14iXEuUs85B9t/eBFIRpJwforumc6EYxoaxUK9FuUTvUn1mfxyxGHDnD0WvdlXUgBWHhuYWiXM+c4pLicPDuQUvTJAejVMNtgMx3h/zF2r48b1LCUP51z6+IGlBZD+SNcrB9yocOHeIH8keEuy8rgjUP+SLuC7Sa38rMQicj4hjBL8SLN8OUz9HrWe4JeAV5YeqJqWauKQxl077jcrDH+5pf4jt6JT1PgmeQHEGHCc7MU+bKmY5esTdiQQrC2ivd4Mw8ZWdA+UVBGqpHVcd7q9/jqRNwXyg/z3+O6lHV0WtVL926o/EqQPn3vb/DK8gLZ5+cFeV65iQmlJOfJ6NUWCkM3zLcLcxI4AZglGq4NZCrB3ni4/Uf2wTlfw/8i9WdSusJduZ9sC1R8+fP5wVy6bGlwTBXAVQBw7REneha+GX3L2aX2npBNQzeSDBXfW0M5aDDpeEX4osXBUKtTuahbFhZrYS93tfmJR6UGYZBz1U9UX9mfRSqJkP71+96KKs0ORADyi8KXqBaVDV8uO5DMIwazsxT9gqSY/iW4QLzbIfy0E11UD6iPB5nm9saFg/Kv+75VfeIY1Bmi+cqRlYsSf7SKhrOgvLsxDZwtNCLTYYz7zEgruKT4uET7KOLKrVPBcUFaDW/FRrPbsx7gyGRJAejVMOtgbzn8mp4BXlh/dX1PE/gh3LwkWAcaOytB3J6KtiWqLE/vMcL5C7zu+iefQ23X1QAKQjbktfwLjP5ebKusGeI7lszD+XyEeVx7sleVI/yxHfb/GGteQgXyvyV1bZ7X9sK5bcWvYWXBS/NzDUP5Y3XNoIUhB03d+geET9P2RKUf979s+6TvuOFXl/EfYGy4WU5YHBOnjIQia3JhK3JQyBWode6Kz+DFISYq53g7Dzl3bd2c9LOAEegvPDcQpCCEMdrNxoNsaGc+HgKVBoPAINhL5Sf5jxF5SmV0WdNHzMdC84R94OWPd7X32z9Br4hvrj87LKYy3JUkoNRquHWQEb+DoOWAdPtFFMoR52IQnJlOQx7kLUtUe90N4WxvJTcIHJx0TkF5IGErMLm4AZSsAo8HIhSYaV0No6TIQTl7KJsxFyNASkI55+8BmvNQ7hQNp/o5Fwoa5hVALRuQdbeKecU5aDmtJroH9PfaK5roczq9KPTDm1fs3c8WqtUrpwHZYDAMBOw9MISh7avH2U/QrmIchi2+R04O0+Zq+f5z/HP/n/s3r5Oel4HfiG+nA4HPkVDbCgD8Thy3wOj4l+zeftaw2jQY2UPVI+qrg22kUCBhwNt7lNmE+eWnF/ixJXZJcnBKNVwcyAHANC2tay8tNLML5whlOcmzkGBp45gBj3IalSp6WN6h1zX0KFr2OZheGtRC7De11woMwyDpnOackwhAEtQ7rS0E6pNrWa1eYhWWignJgZbqKx2LpRVmpVoOqep1dvXf+z9Q+fIdZ9nrmuh/Dz/OQJCA+w2D8kq7Ixa02vivdXvmTlXcx6UL6U6dqbMAqLmtJq6XQ7n5SkbQ3nf7X12m4co1Ulos8ALjWd7IU9pqXAxGmJD2d4z5bCjYZApZNYUKzlNtpqHJD1PQkBoAD6P/dxdzo25khyMUg03B3IHaP/RnyixTPxkwyeCUF63fyr4epALCgogk8lMgfym3qGLYRhUnVpVd8es9b7mQvnKsys8bkGAOSife3IOpCCMPzDeavMQvVahd58dFvqOAWdD2VpHr6tp9eAR6KFLZDIn129f2+vo9d02T5QK88CDrCSBec6DsiOFXjNPz+RJoXIdlO119Ppr31/wCvLC+afV4Ow8ZXOyFconH56ER6AH/j0gZPLiGlkL5fzifLSY1wJN5jRxp3NjriQHo1TDzYF8F8D/YAuU965toAfy99+XfPXSpUu858d+ff1KPiFeT79ulEhkCOUJByegXEQ5KNV8TcCTYQzlL+K+QJ3oOlBpVGbzlM3J8Oz4OZRK2202+ZUAsaHMMEl4d5kXGs/2hlJtKc3G/aF84M4BkIIw/6wPnJmnLCz7oHwj/QZ8Q3zx464feea6HspDNg3R/fsShvLBuwchU8gQeTwSzs5TthbKY7bXg9CZcmZhJupG10WnpZ0kS2QyFgtloQ/GX8V/Bb8QP1xNs1QYKJkkB6NUw72BfORvALngg/Kf+/7kucgBnJ7moSdZZGTJV2JiYniB3Pr310rmzEmcA88gT+QpuW/AWigzTEs0mPU6vor/SuCbmAwWyml5afAO9ta9wWjFQnnhuSkQcvQCjCurR8Ne72t+JcAeKPuH+nOcsfRi+7YP3CkPZ+UpOwrlRrMb6QqzhAu9cpW5eG3Ga+i6ois0zBE4M0/ZWigP29wcxbwfAllpoVysroi2C5uh8ezGAq5WroWy4fkkP5TZrOBuK7pxCpOkhfK25H9xLc18oRfDMBi0cRDKRZQzc0QjnQ7fO2z275/9t7r84nLXLso2SQ5GqYb7ANlsuEQQjKG8/85+s8UTV3/rqQfyhtUlj0+aNIkXyGPWENg+5U82fILOyzrzXPUazj0pr9sG3MTzda4mAyCEHHkPviG+Rp7HWus4bRWmNk+ZD8qmldVrYI/3tbASYCuU0/PmAdC+GbG9jy8LXqLK1Cr4dPOncGaesqNQZu9gMgszBe+Uv9/xPQJCA3Dn5R3dI87JU7a10AuYiGtpVwXvlCcdqgqPQMKZxzEWruk6KLPacmML7/Y1wzD4eP3HKB9RnicrWFooA/HIU3og5EgLk+1rthJ88/XNFq4hna48u4LR20eX/Fu9nn4d/qH+1jhlSS3JwSjVcA8gW4xfNIUyADzJeYJf9/xq8CZ1d2hvPc0SO4Ctvv7kk09MgexF2HC1MwAPaJgYVIisgEmHJvEu8c99X6LyFBlUmpbgq77mSqWZhFrTCV/FtzM7Z1fKLgzf8jHv9jV/ZbXt3tfOgDKwBn/u+7Nk+3rsjrEoHVaa0xbkvlDWMBp0WNLBrHnIwbsHQQrCnMQ5RteUHsrZRYQKkX5mt69PPzoNj0APBB6uCmfnKZsXP5RTMlLMmocsOve5gD84IDWUD98LMTlTvqoLuxizfYyF9UirbcnbSs6Uswqz0GxuMzSb28xoB9AtJTkYpRrSA5kDY7NANgPlvbf3wivIy8A85Nm7b+qBnOYDtvq6QeMGpkCuTrj78haAEbiYKgcpCAn3EkyWyDAMXpvxGkZvHwy+6mtjbbmxBaQgXHhKsNY8hIWycKKTe0CZNQ/pvrI7SEGIPhVtNNd9oWzO0SunaAfqRtfVbVXz/Wylh7K5M+U8ZR4azmqI9ovbQ6V5BmfmKYvp6JX8fBj8QwnfbH3XwjXd40x58MZayCp8juZzm6PFvBa61kf3FuvoVTe6LvxC/HA9/brUS7JGkoNRqiEtkI1gLAhkM1BmwcZCOadeLYAIjJ8vwOwH4Ivi4vfg4elhAmTvNt66ghM1pp18E74hhELVapNlnn1yVndGegB81dfG6r6yOzou6QhLLVF8UO7dJ9tCZbV7QDnuxi+QKWQoG17WzBvTqwXlMds9EBDqy9mq5pN7Qvn7Hd/DL8QPNzPYXRbn5SmLBeU8ZR7eXPgmGs0uhzwlwdl5yvyyHcr1ZgbAN9gX19KuWViD++jHnT+CFIR3l1n64OM2khyMUg3pgMwDY4tAtgDlIRsHQ+2jdekqbtxQ90IHcOOGacITEaHB4AYly/lgXT90X1kVrM0mV3/t+wuVplTieMaah/KN9Bs63+O1ukcmwxooj9v5JRITh1joO2YlPZTnn5WBFATPIE9EnYgyM9e9oewd7I3dt3bjwJ2duq1qLzgzT9m8bIdy9ahSuP3iFnbf2m1mm919odxrVS/8svsXeAV54dyTs3B2nrJYUP5z30cgBWHRubZwRZ6yGLqadhV+IX7osbIHjj84LvVyrJXkYJRqSANkMzC2CsgCUI4/vBAs0Qp7dSt5uc2b/+MF8ieBnwDQ5oyWDiuNkCNBYG02WSgzDIN6M+vh223fGn0T/FAet3McqkytgiJVEWfuZAhBeVfKLtx5eQe9++Rz7o6f8c7VSzoop+U9RfkIb3wVTzj5cLKZNjBW7gvlB1kPkFOUg7rRddFl+bvQML3gzDxlYdkG5fxiQkb+b6g2tRp6replxtzBPaHMpjg54ujlaijfy7yHsuFlMXhjJzCMB/bf+Z9TohvFVK4yF03mNEGLeS1Kqq6L1cWYeXqm27RpmZHkYJRqSAPkKJljQI6S6S5kVOh1+nQJkLO/0scuBgUF8QJ51q5ZAIDEx4kgBelaerQ2myyUzz89z2OywMoQyjlFOSgdVhoTDk7gmTsZQlBOTATINxPUbSKq1boPpbIu7PG+5pe4UB4VPwoVIivgef6nYAu9Eh8n4sv4L0XLU3YVlEdvHw3vIG+8v/p9p+Ypiw1lhonAoA3a7et+a/s5PU/ZUPZDmU1x6rq8K2pNr2WXo5eroVysLkbHJR1RN7ouMgsz8Sh7CbyDxY9uFFMMw+Cz2M8QEBqApOd6c5tTj07Z5Ojlaq28tBJwAzBKNaQBsih3yKw4UF4fWALkpZ82LvmFGzZsmCmQPQgp6Vp7vvBj4QgIDeD8guqh/M9+beqM+YgzPZTnnomER6CHkck+V5NhDsq9+6hBrx0CTfJCm/APbbbZdBWUjz04xslN1Z8pb7/5uyjRjVq5Bsr77+wHKQijt4+229FLKiivubwGpCD8sdf5ecr8sh3KDPMOBsT0Q4XICnic/dhuRy+tXAfl8QfGwyPQAycfnix5zFl5ymJpyfklIAVhzWXTkBxbbTZdpYupF+Eb4gu4ARilGtIAGXDwDNlYOihH6FOehg3xKHH0euONN0yA7FGNwDDaYqReq3qhz5o+RtdUg2GGo/5Mwjdbu/N+C3pdA8NURtM5PvhkQz8LcyfDGMrcyuryHWPtstl0BZRVGhVazmuJ9ovbcyqRbbfZdAcoZxe9RJ3oOui2ohs0jMYhm01XQ/lh1kOUDS+ri2p0bp6ymFBecNZHl+K0ruRRd4fygTsHIFPIEH7M9EO0u0L58rPL8A3x5Tlm04sLZUfzlMXQy4KXeH3G62izoA3gBmCUakgHZMCOKmuhN+dcYEz1ErLtWxeirb6O+Rg+PqahElU7EID3oVRnwy/ED1OOTzG54oWnZ3VWmnIYF3oZ69DdZSAF4eDderDUp2wMZeO+Y7bQa+CGfmAY94Hy9JPTIQ+U4/zT80bzTKH89davzVzTPaD83baGCAgNKPExB/TV14oEBcSIbjSV41DWMBp0X9mdExwBcKG84RpfVCkr6aB8I/0G/EJ8MHq7F/gKvcpFlONEALoHlNPyyqFaVCX0XNXTbKRifNJ4tF1IeFEwAO5Q6JVTlINGsxuh1fxWFtuy4pLi8NOunyQPl9AwGvRd2xcVIivgXuY9wA3AKNUQ/4JEChP4Va1q/m/D6j5kAjAGgrB5v1cJkPMfb8b2m9vRa0Yv3vPjzl+0AOCLo/fbgxSEc0/OmVxu/IHxqBBZAcXqYeCrvuZq4IaBaDqnHhimMiz1KWs1GQAhMXEFb2X1tuRtmJ04G0KOXqZyHpQfZ3dGqbBS+GHnD2bmGW5fX3h6QeCa0kJ53+3xIAVh3pm3YXymnHAvATlFLCzcD8ozTs0AKQj77+w3mhuJpOfa6EaAEXiTdT2Ui1RFaL2gNZrMaYL84gTwFXplFWYB0O7CuMOdsobJwPtryqDyFBme5hj/rA2l1mwB4IlnuR9KeqfMMAyGbR6GUmGlOC1w1inxcaJkd8qKBAVkChl239rNPiQ5GKUazgLyNSKqxo709HThvxGrnLqWQvsmJgDlJk20MPYkqNTa6MZt27bxAvm36b8BOABFgifKRXhCrTF8E2UYBg1mNdB5VxsWehnrUfYjeAR66FpPLPcp6zXZqkSnbckrJd++HrrJA1WneiOz8InAPENHr0JVISKORbjV9nV2UTZqT6+N7iubQ8PIYC5POfl5Mr7f8b1bbV9fTz8Mn2Af/LTrJzNztTabqy71x9BNQ91m+/r3vdr6Av2HNPM2m6PiR/E6erkaylEnokAKwu5bDWBNS5RKswVN50i7fc3aecZctWSdaig2qlSK7eudKTshU8gQdNjgKFJyMEo1nAXkS0aPW5aglzUrASgzDODrCxDheiUCw7wLoDQiIr7nBfLek9o3jS7LW2FAjBysoxerS6mXdP8g2U9t5qE88eBElAorheyibN0j1kHZ0JXrJW/f8b3Me/AO9pb0TJktflp92Ru2mIccf/Cf250pf7vtW5QKK6XbGjNffb0zZSevo5dUUFaqa+DNhT5oMqeBha1I9zpT3nt7L0hBPL3q1jt6uRrKZx6fgVeQF/7Y+wdckacshi6mXoRPsI/ddp6so5croXzn5R2UiyiHfmv7GR8JSA5GqYazgJxPRE+J6B4Rrb9zR8j9SCezaU/GMgPlZ89K6La7oQxsodfIkZ6mQJYTioqKUFBcAO9gb8w8PQ5snjIL5QkHJ6B8RHmjNzRTKCvVSlSdWhVjd4w1WqdlKBueHX8HW202hSUOlItURWg0uxG6LO8ChjkEe2023QHKLBzmn53PmWu7zaYUUJ5w8Ht4BBLOPqkLZ+cp88t2KKfnbUC1KG2fNP8ZrPtBObsoG/Vm1sNbi97i9Ne7N5Szi7LRcFZDtF7QGoWqQstPMCNXQrmguACtF7RGvZn1OLUQJZIcjFINZwC5DxENJKKWRNSTiA5XrVoVGRmGqUesioqKkJ2djZxnd3jykM1tdfNAmdODvKi9p25eLtq1K2VaYV3FA8Xq4pLcW20uqDZPGXgfDFOARrMb4cv4L3le2xDK666sAynIjEeseSibelYH6X6E7gXlkCMh8Azy5FgFJsARKOvj9bhyPpSzCrNQe3pt9FjZg+d81TKUP4/9HFKdKR97cAzyQDmCj/wCe2w2//x/7J11eBRX+/6flXhwdylavC1QrFDaQqGClEIFqVAope5Im40Qwd3dgyYEt+AQ3CFYCBACSYh7duf+/TG7WZtZndnZ/r7vfV3nevsuJzObTbKfPed5zn3v/93CPHGgzDB98MF6OSpPLoen2Zaeq2Uos8frAFdAmWE0+GTLJygbVpbDQtU+KPuEEE4+ehNiN3oxDIMhm4egTGgZ3H1x1+nrRd2KQuPZjQ3CYoQXwzAYsX0EfEJ8cDmZ87WUHIxSDfFvQORXrVo1TJs2jfOHExAQACJCZT+yA8iAGZQ3biwl3L99fACwP3g/Pz9zILdQ4FbqLYw/OB5VJlcxeINmoXzlWReQirDrzi6ee+uh3GVZU7y58k2eeQAflLkTnQJgDcpvrHgD2YV34YpGrwfpD+Ad4s2RPR0LR6A88dBEC81G4kJ5ZPQg+If6W8iutQxl1scccDWUswqzUH9mfXRe1lm7arHP0WvfPcKznJ9huatYeCjPPzsLpCJE3/aAo45eF55eMFlZiwvlZRf7gFSEjdf4OtVth/KznJUAlGCYQSjRiBdCMf/sfJCKEHnd8ikQe6TbGcgsyBTlnPLCcwu1JTDz3ACtJAejVMMlN3n77bfx7bfctQ3LK+Q4vh+YVgZQDg8rBfK3wysCABITEznrx/2+6QcA6LCkAwZtGmRyzYP457AC5cOVKFJngV9qXEruo81E/dXK8zSGsuVEpwBYgrIOaI+zLoi+Uv5g/QeoPb02copyOObGwpHoRgA4+vCoS7ev992rB1IRFp4LsDKXH8oAoNaoMe/sPJduX4/YPgJlQssYHc9yJE/5afZP+G3fry7Zvr6RcgPeId4Ys3MUhMhT3nN3D4ZuGyrq9vXNlL/hE0L4Oro1hMxT/nO/TLTt64tPL8Iz2JOjXOa8NIwGnZZ2Etw85MzjM1rv/rGWpkkORqmG+Dcg8qpVqxYCA628cXLVkPNqALhn+et0UP725VLKffx7PQDAnj17OIE8c8lPyC7MBqkIbRe2NfqFYxgGzebWxYjt5o1ephoZ/TVqT/dFicb6OWVDKPfuk2+lszoAlqBcpC5Cw1kNRd2+jr7tZUMAeyzshXJyzlz4hPi4rKbMblXXwtur/cAwVeGMzea5pHMuNQ/ZdH0TSEVYeWklx1z7oLz3rmtqygUlBWizoA2az22u9U8WLiVKLPOQ/OJ8tF7QGs3nVtMmT4kT3SgklDMLMvHSrJfwyqJXTHzzhZPQjl4puSmoPb02Xl/6uhX/e+nBKNUQA8BTiag7ETUgoo5EFFOmTBk8fPjQ0g+AB8gNAdSGTVB+l0qB/M7UNgCAadOmcQL50iUf7Lk7DaQibV12YOkv3LXn10Aqws74EJg2ehkqPT8dPiE+CD4aCEtHoox1HXFxvS2sjg0VAEtQFrOmnFecinozvPHuWgUY5oiVa8bCXii70tFrZPRIlAktg4cZFyBkdKPYUH6SRagQ7odBmwZZ2Oa3D8quaPT6ec/P8Az2NKkNujeUv9v5HbyCvXD12VWInacsBJQZhsGgTYNQNqws7r2w9t7onISCcommBD1X9UTVKVXxOOuxtemSg1GqIQaQN2o7rIuJKImItt64YUMoNieQrwJoApug3Ix16Sr0lKHHiu4AgJEjR5oDWUbIz++Cvw94otqUigZgY6H87+F/US6snPZTp77RyxTK009Nh0eQB57lPIO1c8qG6t0n02B1zLUVbKgASAHlCYcmwCvYC3dfdIRYecqugPLeu3sNfLcBofOUxYKyhinB26troeY0QlqeaayiqRyD8idbPhHcPGTP3Z0gFWHG6Rkc84SDst6cxnkob725laPzfgbEgvLUk63hbKPX3Li5NuxeCaftt7bDI8jD0LjDbv194G8oAhWITYi1ZbrkYJRquOpG1sUJ5BQASbAKZYMzyI9qEd5fXw+ABp07dzYDcoWaFQDk4PWlZTB4sxLAScTEx8AjyAOrLq9C87nNtR21OplDWcNo8NKsl7RewjpZh7Jx7fgxiopegb02m6bacXsHyoaVxbmkPRCi0etW6i14BHkgIDYAYuYp66DcekFrpOTyNe85DuXMgkzUnl6bI5pQOCiPjB6p7RoXttFr+qnp2oSxPhArT3nDtQEQstHrea4c1aZ4o/eaXrw2k0JAededXSarQseh/DDjIcqHl8dHkR9xfDiZAaGhfCIxDEVqBYCP4SiUzyedh2ewJ37Y/YNDX++oDJsh7bXa3H5rO89ZdF5JDkapxn8AyIBVKBucQT7T2g+fbCEwzGiUL1/eDMiv9ngVuUW5UAYpMf9sI+iiG68/v45rz9jt6h23d5jcwBjKulB4Nq7RUJahbNxZnQR7HL0sQflF/gsAgIZJcmqlzDAMeqzsgZdmvWRwnlFcKKs1qwGwbkFCrpS/jv4aZULLIDEzkWOeMFDW6eLTi4KtlK8+uwrPYE/8vOdniJmnDLA2m2uvrHF6+5phGLy//lVUmUxIzukPsfOUAfYD17+H/3V4+7pE8xI6L3sNdWfU5ToHq9UMCA1lIApxTxT4OrqB3dvXGQUZaDCzAV5b/JpodWNrmnZqGgZvHmzzOeV7L+6hbFhZDIwcaA/IJQejVOM/AmTAIpQNziBv7lEVI6O74elT89oxEWH0T6NLA9JvpJyDYZ6yKlYFnxAfDIrkqrHpofz++r5ou7Atzy8YN5S5O6vts9m0BGUAGLNzDD6KfM9hKK++vJon+1l8KLdd2Faw7es9dwmkIiw+v9jCPGGgnJ6fjrJhZQUxDykoKUCr+a3QYl4Lgw9E4kH5+nNhasq6LdSd8X9D7DxlnQ49OOSUeciEQ2WhCCScfBRlZe4MCA3l6Nvj7a4pMwyDgZEDUS6snEnHvWtlj3lIfnE+2ixog0azG5V6ldsoycEo1fgPARnghbLBGeSp/avhpz0/4cCB3ziBvGLFCpPzx/o85RbzGqDHyh5sStTGAZxQfpDuCZmKsOTCfAvfjDmUuc8dA0JC2TAlyl4ov8j/HFUmV8GnWz7lmSculIVy9ErPT0fNaWXQaw2BYVRWnqewNWVnofzr3l/hGexpkHqkk3hQdrbR6/rz6/AO8Tao64qXpyyUo5cuUjH0WDm4Ik+ZS/Y2es06w57r3nZzm9W5YstWKH8d/TW8Q7w5fp+tSnIwSjXcG8ic1pkcUA4PLwXymOGVMOHQBMyYMYMTyBcuXECXZV1Mzh/n4FbqayAVIepWeCnYuKD8x/7BKB9OyCt+B5aORBlCOS7ugJXOaumh/M0OQrkwTyTnWHLocX8oD9s2DOXCyuFx1h9gXydx8pSFhvLB+21AKsK0U9wGOu4I5fzifLSc3xIt5rUw8deWBsrsB2zLUH6e+xzVp1bXRirehdh5ypakg/LI6AawVFOOexIHjyAPbRnDPaSDMhtVaq7lF9k42hWXVjhyecnBKNVwHyDbFC6hkwmUv/22FMg9xvhi2qlp+Prrrzk7rNOy0uAR5KGNNtQr9FgA/CbJkV/sD+BkKdh+2vNT6Zz84nxUjKiIX/cOgqUjUXqxUO7dZ5eVc8eAGFCeEzcJtjR6nXx0EqQizDtLEDNPmV/GUPYO8cbhB3wg44fytpvbQCrC6surtY+Il6fMB+X6M+tr69a2N3q9yN+FWtNk6LmqPDRMtoWZ4kK534YmKCix5CplDOXvdn4H7xBvrfWsqVwL5VlnZhnM44ayhtHg3bXvouqUqkjOSdY+Kl6esi1Q3nF7PC485W/0Ss9PR/2Z9dFhSQdrZ3ddrsMPDhtElep1OfkyvEO8MTJ6pKOXlhyMUg33ALJN8YumMoDyu2+UArnK74TlF5ejY8eOZkCuUc8Xhx6wyUXsmUO9Xlv8Gj7eNACGNeW9d/canZlbcWkFSEVaz1j+I1GGiotTG6yOsy2cOwaEhPLZJ2e120mW85SL1cVoNb8V2i9uD7VmJcTKU7YHyknZ7IclhmFs9r5OyU1BlclV0H9jf5PavmuhrGu2ySnKsWmlzDAMPt70McqH++Nxli/EzlPmVwQYhgBMRHzabasr5W03y3AcFzKV66Cs0874nbzb17pIxb1395p8lbRQBqJQUKLA5BOtjbavGYZBvw39UD68vDadzD0VnxaPsbvGolhdjMyCTDSa3QhtF7a1kkpmUZKDUaohPZANYMwLZGtQbqYEiMD4+IACCNtubIO/v3moRK/3Cf8cfhUVIyoaHc1IzEwEqQjrr66HYU0ZYLuoU/NS8cf+P/DKwlfQZ20fg/tbh7Jx7fhb2OPoJUSjV2xCLIZtG8S7fT3l5BTIA+W48PSC9hFx8pQdsdlUxaps2r5mmGcYGDkQlSdX1p4LN5VrocwwDN5c+aZN55R1jXSsF7G4ecq2QDm3iFBtip/F7etHmVdQIVyBARs9wTBXOefo5TooP0h/wGsecvbJeCiDlBy+7DpJC+XjiaFmNWXd8bfo29FWno+0iomPKa0p99/YH+XCyjlrWCI5GKUa0gLZBMYWgcwHZeYJ4C0DiFDYpC5rDn98I2f9eOLE9/HGCsKAjQ1gCJuZp2fCM9jTIM/YGMoH7x+EMkiprTFHmTwBfiibd1YPh62OXkJvX3OZhzzMeAjfSb4ctSn3gLKt5iHrrtYCqQibb2y2cF3Xb19bMw9JyEhAmdAyJufepYeypZqyWqNGt+XdUHt6TbzIbwGx85T5ZbujV2bB12g4i9BhSQMr277SQtmw0etE4hEog5T4da81n3z30PZb2yEPlAtlWCI5GKUa0gGZA8ZWgcwFZYMzyOlveoJUhLlr5nICec36NfAKVmLmaYJhdOMbK95A33V9TZ6gMZR7ruoJUhFv9zUXlM07q2139HIFlD/c8CFqTavFWQf6r0A5KfsoyofL8NnWshA7T5lbjkFZrVGj6/KuqDejHseREPeFcuCRQMgD5Tj68CjEzlMWAspFJUUYsnkIyoZ54n46Qew8ZW7ZD2WfEAU6LukgStqSGDqeeBxylRzyQDmGbx/u7OUkB6NUQxog88DYJiCbQtngDPLDz3xBKsI41bfcR572rwCpCJeSA6BLiXqemwx5oBxLLyw1e5o6KL/I94d3iCdGbB9R+odufgbZGMr8iU7SQnl0zDAAzRF1q4INn2bdC8qhx0KNZjAMgz5r+6DG1Cp4kV8VYuYpW5Z1KLM7K/pGr0nHvoY8UI5jD4/xXNM9oFxlsi9upbLfvy6XmXVx08l9odx1eVfMOTNHG6m4AWLnKQsBZYZh0H5xI3iHEB5m9IXYecpC6FnOM9SYWgNvrHgDW25swYH7B5y9pORglGpIA+SpMueAPFWmv5bBGeQLP38IUhE++dTHDMYKpQL/HPgHFcIraOvHbErUkgvdIQ+UW7BvzMG0Uw3hEUR4nrsTMfExWH5xOc9cPZR79ym20FktDZR33dmFmyk3kVN0D3WmK9F3nRcY5raVa7oHlI8n/mPWJLLkwhKD3Gpx85SdgbJhPY1h8nAuqSOUQYTxBz+3ck3poZxTRAAm4llOMmpPq41uy7txnD11TyjfeH4DPiE++HTzp6JGNwoJZV3jWUz8BABKHHvYQ5ToRqGk1qjRc1VPVJtSDU+znxo9vvDcQpsdvUwkORilGtIAWcgVssEZ5N0hX8A7xBtt2niZAblJ8yZ4c+Wb+HDDhwZPZBn6rCX0WFkTfLDRMBo0nv0SPt1SBYaNXgCw6fomzu3ruLiuVs4dA1JBGQB+3P0jlEFKxKc2hJh5ypYVC0cava48u4KR0SNxJ+0O/EP9TY5WuC+UAWDBuQUYsHEAGs9uhFcXlUWR2hti5ylzy/7u61rTysAjyMNCs457QTm/OB+t5rdCsznN0HBWQ4cdvVwJ5VOPThk1niXnrIB3iPDRjUJqwqEJkAfKzUIjziWds9nRi0OSg1GqIQ2QASdqyATAwKTc4Azy4vkjUT2iOjw9Pc2A/PHgj+Ed4m1kvJBZkAmPIAVmnyEY1pQNdfD+QZCKcOzhXhjWlO+k3eE1D+nd57nB6tjSlpProXw5+TLkKjkUgQqnbDb5JS6UY+J/g0eQBypProy60+saNOLp5L5Qjr4dDXkgW2e7+uwsxM5Ttizbobzo/ECQiqAMkomep2wux6A8ZifrEnX12VWHHb1YuQbKaXlpqDO9Djov62z0+oqVpyyEdsaz6V7hx8M5/90em00TSQ5GqYZ0QAYc6LIOBDBee0ktlN99txTI49Z/jUb/NOKsH4/8fSRIRTifdL709uuurgOpCI8yp0BXUzaFzUeRH6HFvBZmNpuG5iGGUDauHSeiqOh92OroJTaUNYwGry99HS/Pexlbb2512GZTaiiP3NEDpCK8sfwN0fOU9XIeyro3MEWgQhDva24JC2WdNea3Ma+7JE+ZW/ZBecsNb5CKsPDczNJH3RnKGuYi3lv3HipFVMKjzEdmM90RygkZCagQXgEfrP/AQrqXMZTtaFCTHIxSDWmBDDhwDpmBEZSbNWO/DR8fDN70MVp+35ITyJ9N+hBlw8oaGU18FPkROizpoP1/bE3ZEMpJ2UlQBCpMXL0sQ9m4s/oW7HH0EhvKC88tBKlI2yFrbLOpYf4bUL6dOgDeIYT317WFR5AHvoj6gmeue0H5ee5zVJ1SFX3X9S2Fw4RDEyB0dCMrYaCs2/bVW2Pqu69XXbZ0XemgzEYqlsGgTUowTBeYNnqVCS2Dc0nntI+4B5QjTviAVITdd3bzzoy6NQ4t5xNScj+E1I1ehSWFeG3xa2gws4GFpCy9om5F4evor3lMfjglORilGtIDGXDAqUsLZYYAb9YUBM2bo/uK7mg5mBvInad44r11b5ZeIa84D76TfE22W4yhHHgkEL6TfDmOpZhDufea3jh6Ko+jdmybo5fYUH6WMx7lw8vjy6gvjf51x+0dCDseBmuOXsaSBsolmhK8vrQjGs8ui7xiGXbc/pUjAtNQ7gFlhhmGvuv6oOqUqqXGJQfvHzR4M3NPKI/dNZbDGjMCV5+x0Y1C5ikLAeVidTE6L+uMejPqIaNgP7gavdLy0gCwu0XsNqq0UD6euBuKQMLfB7xh7UhUiWYrACXS8j6UdKU8ZucYeAV7GZgJ2a5LyZdsWSlLDkaphnsAGbDTyxoAGODZjyglYJ8+aDa3GRp1Nd+y9vbxgncQYfKJctAFUuhCs+PTTOHDQrlEMwq1ptXCNzu+4bm/MZQZhmFXx+UfgOTFJp3V0kN56DZCpQhfpObxz91/b6Nbb1+HHQ+DPFCOU4+Ow7DRq1hdjBmnZ7jt9vXsMzJtN7hpzja79ffD7h/cbvs66lYUSEWYf5Yr1YzNU95y4yN8uuVTt9m+/uvAX1AGKXHq0SntI/w2m9/t/I7T0cuVUE7NS0WtabXQdfnrKNG8AlvOKas1W9F2oXTb12uvrAWpCIvOL7L7a3VRpSO2j7A2VXIwSjXcBshL54SZAVl9pCqAF/xfdOa0HshjOqFCeAVUqVvFDMjNWjcDqQhnn9SFLpBi2LZhaDm/Jc+FlyHqFpupe/HpeZ45gCGU4+KugJQFoF/qwHtEf+Tm22YeYi7hoXzowSGQirD8IoGv+/px1mN4BXtxOnrxy3VQvvrsKjyCPPD3gb+1j+hrymceqwSJbmQlLJSvPrsKr2AP/LCbwNXotfvObquOXtwSD8qPs15CxYgKHL7ghnI+utFcjkN5z909IBVh8onJJnP5zykrg5SSQVkXdFF5cmU8yXoCMaMbhdL159fhO8kXw7cPt/B7YVlRt6Jw6MEha9MkB6NUw22AzBW/OGKdB4rVbcELZYMzyCVhBJpAkMllZkB+pc8rKBNaBiWaRABNUKSuhfLhZfHP4X94n07vNS3RYQmBr/taLxbKvfvsZZ9KkxgoVB4YGDnQZkcvcwkH5cKSQjSZ0wTdlneDhvkX7I/DfptNfokP5SJ1EdoubIuW81uWhjewEja6US9hoKyLJ2w5vyUKSlbBGZtNbgkPZbXmFrqv8ETt6Uq8yL9h5f7uAeUnWetQeXJl9Fnbh6fByP2gHHosFDKVzCTown2hnF2YjaZzmqLl/JbIKxb9fpKDUarh1kCuEcQa2PNC2eAMcuqK3qDR5rVjIkKTT5vg3bXvar8oCfvu1dI6dplvIQKskQOb5fkl+LqvDRUXZ1g7zsW26zFasEkP5cAjgVAGKXH9+XXtIwH4r0H5n8N/QxmkxMWnFznmcUOZ+5iFa6H8/a7v4RXsZVCDte7o9emWTyFlTTnoSBDkgXIcSagMe202f9n7s4V54kC5RPMu3lghQ81plSyWY6xBWd+4KT6Ujz08CnmgXNvUZyr7oOwVTDj8oDvEbPRiGAaDNw9GmdAyHCU+USQ5GKUabg3kfVfXwiNIiY3X/AG0gxmUDc4g39y5AjSAG8heX3hpG5dYjY4ZigYzPcAwtaCrKRvqj/1/oEJ4BW1nqXn3tamMO6t/BHASMfExqBBeAVeeXeH4CtdA+U7aHXgFexls8+oUAGtQ7rCkA9Lzb0HqRq+zT7ygCJQh6Aj/boYplH/e87OFLTXXQFl3xMk0d9salHfc1n1IdD2UTySegDxQjn8P/wt7zUP23CU8zvoRrm70+ufwOMgDCUcfesJRR6+4J3EmH+DEg/LzXELNaf7ovqK7hbO5tkP5SdYyAEowzCCoNZbeSxzX7DOzbQhvEVSSg1Gq4dZARl6K9hPZFQCVwDBtYQRlgzPI+0+tBXXhBjL9Sjj9+DQA1tKt2pRq+G3faJTmKRtAuaCkAJUiKuGXvb8YPDl+KBufOy5CUVFP6Bq9dKYVJZoSl6+UGSYFb69+G/Vn1ufZYgqAJSjrtv6Sc65ItlLOL85H87n18NpiOYrVPWGPoxcAnH58WpLt6+Sco6gyuQreW/cezwcDy45eDMNg6YWlLt2+Ts9PR90ZddFlWRcDUNgHZYCQmvcr/j7wl0u2rw/cPwCZSoaQoyoIkad89OFRfBH1hWjb1xpGg15rmqLKZEJS9ncQMk858IhclO3r049PwyPIgyMRTlRJDkaphtsDWadVl0MwaJPJ9rXBGeRlF5aCGpvD2MffBz4hPqVvECcST4BUpD0uo81TNoCyrovwdqqpxzM3lM0TnczzlIdvH25XSpS57Ifymit1DHye+RQAS1Au0ZSg+dzmkpmH/Lr3V3gFe+FGygrYax6SmrcAfpP8XF5T1jAt0HuNJ6pNqYTnuZauyw/ly8mXDSIExYcywzD4KPIjlA8vj4cZD03m2gfl/fdcU1NOzklGtSnV8M7qd7QfHp33vtaVDcQyDwk+GgyZSob9977VXlOc6EahoJyal4o60+ug09JOVmIrBZfkYJRq/GeAHBMfA48gpb6mzKQB3t7QnUEOPRYKeXm5GZArNvXBW6veKr3Or3t/RfWp1Q2aP4yh3GVZF/Rc1ZPnSRpDmT/Rybqjl17CQzkt7wQqT5Zh8OZyEColytVQjk2IhUwlw5STU3SPwF4oS9HoNeN0MEhF2Hu3PIRIiXIFlBef/8LKlqR9UBa70UutUeOtVW+h+tTqpee6WQkX3Sg0lA8/OAx5oNygkXQG3BnKao0avdb0QuXJlfE467FT13JAkoNRqvGfATJgAuWkFnoa9umD0VtGc25Xe3YkBMS+A4DdCnxp1ksYtWOUyc1ZKF99Vs2GWokeyr37lJisjg0lHZS/jPoS5cLKIDmnEoSMbnQVlDMLMlF3Rl10X9HdxN0nFu4M5cvJl+EZ7Imf94yGkNGNYkL5Rsog+IQQRu3oYeWajkF58ObBFur5jkE56IgKMpWM5/iMcFD+NuZb7SPOQTk5JxnVp1bHmyvfNPl9ngGxoBx6rCWcafRSxaq0q/n9Dl/DCUkORqnGfwrIgB7Ks2Z56oE8ZgzeCHqDu37cl3DwPgGYihspN0Aqws74nRxPIAljdpZDjalyFKtvWXmyyxAX14FndWwobihzH6oXBsqHHxw2OLgvbJ6y7yRfnHy0A2I3eo3YPgJlQstwbJ8CjkK5yZwmSMpO4pnrPJTzivPw8ryX0XpBaxSUFEDIQIrPtn6m/TAhbKNXQUkBWs1vheZzyyOvmCB0SlT0bcLSC+9ByEavIwlyyANl+PfwRAvznIdyTHwMbqQYHvtyDMpqTSLeXPkmqk2phuScZI65MyA0lI8+nIS8YgWAj+EIlPfd2weZSoagI3ymTKJLcjBKNf5zQAbYZo7Mlf/ogRwRgPrD6nMCWfGlArlFvwMghB7rA79Jfto3TGNlF2bDP9QP/xyuCNNGLy717vPQYHVs/ZyyDsqXki9ZMGN3DsoFJQVoPLsxuizrYnAP4aCsy4xmmKco0YizUt5200t75GyFhbmxsBfKxWoWNhkFGaKslMfsHAPvEG+TN3FhoKzT9efXBV0pj901Fl7BXrjy7BLEim5kX6eJ2HJjs9Pb1ym5Kag5rQJ6rCSoNUMgdp4yAOQW5SL4aLDD29f/Hq4AeaAchx9Y+lnNgNBQBqJw5ZkCo3Y0tGv7+lHmI1SKqIR3175rMTRCZEkORqmGmwN5Of98gzPIJRvqwberDyeQ201vB5339etLCQMjW3FebuG5hZAHyvEo8yy4uq8NZZ7oNBa2mIcYNnrtvrPbYOVjKMeh/M/hf+AR5GECBUDoPOXf9/0uyjnl5Jz7qDzZA/03KsAwR6xcMxb2QlnDrMbrS18XfPs6+na0BZtJYaCcVZiFihEVBTMP2XpzK0hFmHd2nvYRcaIbgQjcSXO+pqxhNOi9pjeqTK6CpOxFEDtPWacjCUccNg/Zd28lZCpC8NGKcEWesql23B5vV025SF2E15e+jjrT65R6fkskycEo1XBvIB+VAdjKPd/gDPLvwQpQfXMYy8vI8du+3wAAyTlPIVMRVl0mGOUpg60tt1nQBh9u+FD7iHn3taGMO6tPwBbzEFMos1vvwpmH3EiZBo8gDwvuY8JuXwttHsIwDN5b9x6qTqmClNwuECu6Ueia8tNsQuXJvvhww4cWaqXCbV8L4eiVkJGAcmHl8FHkRybPWTwoO9voFX48XNssp3O2EjdP2VlHrydZT1BlchX0XtMNGqYOxM5T5pM9jV4/7v4RHkEeiHsSZ+V5ii7JwSjVcB8g84ZLyMEJZYMzyDX+kIN8OOrHLxGibkUBABafXwx5oBypeT9rn5IeyqcenQKpCHvu7jG4ATeUuTurrZuHsBIHyhrmM3RZRmgypwbndrxe7gvlxecXg1SEmPgYiJ2nLBSUNYwG76x+CTWmElLz/rTyPN0DysXqN/D60g6oP7M+MgoyuL4ruBuUTySegCJQgXEHx5nMlQbK7FYuP5RLNCXotrwbak2rpS3ziBfdaA+Uv4iqD76acuT1SJCKMDdurpXn5xJJDkaphnsA2Wr8IgeUDc4gj982jruhqzOVbr28v/59vLHiDZjlKQMYtm0YGsxswFEzMYey+bljnZyD8thdYznm2gblRecXgFSE2AQ5xMxTNpUOylNPBsCZRq97L+7Bb5IfRkaPNJgnPpQ9gz1NvIQNZR3KU09OBakI++99AfZ1Ei9P2VDRt6NRc1pN3HtxD/Y2ev253wPKIBnOPI61ME9cKPda0xB5xZa6v/VQTss7jjrT65gYlhjKtVAOPRZqMI8byn8f+BuKQAWOJx43mCs9lE8kcjd63Uq9Bf9Qf3yy5ROHQyMEluRglGpID2QDGPMC2RTKDGN0Bvmv+X9xArnmiJoA2MYM7xBvTDs1TXtTPZRf5AfBK9jLJBfZUHoox8U9ttJZ7RiU99zdg/vp93nmWoby0+ynKBdWDl9GfQEx85T5oHz68WmtaYBjecpqDZth23BWQ2QXZpvMExfKiZkzSx/lbmDhh/LFpxfhEeRRWhIRM0+ZC8qsrSv7v7aulPWJSJ5wRZ4ytyLAMARgIhIyHlhcKTNMa3yw3hMVI8rhUeYjC9d0HZR1OnD/AOf2tc4y1Tx1CpAaykAUitUKzDzdtnT7OrcoFy3mtUDzuc2RU5Rj5etdJsnBKNWQFsgmMLYIZEMoP3sGwzPIfcf05QTyoNlsTXjbzW0gFeHui7sGN2ehPPM0wSNIYcVViYVy7z4HLZw71skxKANsB/CEQxPs2r4evHkwqkyuot0JECaQwlwBsARlADjz+Ay+iBpi9/Z16LFXIQ+U40TiCZ554kIZWIspJ6fYtX2dV5yHZnOboe3CtibpU66FMsMw6Luur03nlJOykwwSkY5C7Dxly4pAQQmh9vQyFrevp50K0h5TLAtX5CmbixvKuqhSU/OQxExCxQg/vL/+fQsdytJC+fTjiNKaclFJLoZuGwrfSb4cjaCSSnIwSjWkAzIHjK0CWQflM2F6II8Zg6Y9mpoDWU5YerYOgBf4IuoLvDzvZbOnwDAavDyvMj7eRDBt9DJVXFyKweq4gOfcsU6OQfnwg8N2mYfsurMLpCKsvbLWYJ40UNZtvdtjHnLxaRA8ggh/H2gNsfOUzeV4TXl0zGj4hPjgVirXeXXXQtkW8xC1Ro03V76JmtNqlh5dEzNPWYiactyTOCiDlPht33dwRZ4yv2xz9CpSF+L1pdVQdwbhRf5MK9eUfvtaGUR4ZVF5kIqw7uo6K8/B5ZIcjFINaYDMA2ObgDyVgCCZHsgREShbp6w5kKsSeq/xQEFxG1SeXImjIUTva33g/qfap8kPZePa8V+wdk7ZUSjb6uiVU5SKejPqodeaXhx1H2mgbI+jV0FJAV6e9zLaLKiLIjVBzDxlftkP5W03axsYr/DJvaAceCQQ8kA5YhNiTa7pnlDOKMhA/Zn10XFJR205RLhACr2EhfJPu3+CR5AHzjz+COzPXtw8ZW7ZDuWpJ1m71Jdm+aFEk2/l/i6X5GCUakgD5Kky54Dcl0qBXLx2LUjOEbn4ihc8gpTotlwJUhHOPDb/oxu+fTgazmoIDaOGaaOXoYw7qwtRVNQCtpiHOAvlgZEDOWDLQvnXvfXhE+JjofYsLZS/jv4MlmrKv+79FZ7BntqsYHHzlO2FsipWxTnzSdZRVIyQYcDGMmCYZ5xz9JIGypHXI2HY6HUkYQbkgXIExAbwXNM9oFw+3BtXnl0GwzAYsHEAyoeXR0JGgsE894Vyo1mNQCrCzNMz4Yo8ZWeh/CL/BerNqIdGs2pg7C4ZGGYQxMxTdkCSg1GqIQ2QnV0hD3itlJDxa37kNgQZ1g4x8TFoPLsuqk0haEyiG9Pz0+Ed4m3QNWnefa2TeWe15XPKxnIcyuZZuqwuPF0AeSAh/HgTiJmnzK8AWIJyTHwMLj69CL5GL11wxNSThq+ze0A5NmE8R3MZu+3bY2UP1JxWFWl5VSF2njK/+KF8K/VW6Qc4hslDSm4P1JxG6LGyrYmHsqmkh3JmAQGYiJmnZ4BUhO23tnPMcz8o30+/j7KhZTEwciCSs5NFi25kNQPOQlnDaPDeuvdQIbyC1po2CoASZx73FDy60QlJDkaphjRABpyoIQcZnUFePYM7A/mH2T+AYRg0nt0Y3+z4CLdTyxtFN86JmwNlkNLEX9YcyvyJTuJDWacdt3eUbueVaErw6qJX0XpBQxSrvSBWnrIQjV4FJQUIOz7eaPvaMDjCvPHFPaAMrMXt1NsYs3NM6euui85jt33FiW4UymZz1eVV+HjTx3h37TuoPNkDSdneEDtPmVv2QfnCU4I8UIZGsxq5JE9ZL8egXFiSilcXvYqGsxoiNS8Vzec2d8jRy5VQDj0WahbLmpq3Gn6ThI1udFKSg1GqIR2QAQe6rLVm5wZnkEeMrssJ5CPXjuBmyk2QirDlxhZUm1KpNLqRYdLQan4rDIwcyPGkjKHMf+4YcAWUEzIS4BnsWWoeMuP0DMhUMq2bjjCBFMYSDsonEk+YmYcM397fQnAE4C5Q3nXn99Ka8pGEI1AEKkxc0NwXytG3o6EIVIBUhB23N0PsPGXLsg3KWYVZeGlWJbw0yzV5yuayH8rf76oBz2BPXHh6AYBjjl56iQ9lXQTkxEPmwRxi5Ck7IcnBKNWQFsiAHeeQtTA2OYPctnMbMxjL/GRQa9QIPx4O30m+yC/ON4puPJ7Y2MSGz1QslOPi2ls5dwy4Asq6DuZ3174L3xBf/LD7B4O57g1lQ0evyOs1QSrCykt8Z751cg8o62rKPiE+6LS0E4cxhXtCOe5JHOSBcsgD5YJ5X5tLOCgzDIPBmwejTGgZ3Hvxp+h5yvyyHcqR14O1/uUvwVmbTb3Eg3JSdnlUnVIRb616i7d84UZQlhyMUg3pgQzY4NTVBID2vKfJGeQyFcqYAblyy8oAgE5LO2HAxgGlt9FBud4MOepO94CGsQQbBr373LTh3DHgqpqyTCWDd4g3h/H7fwPKnkEe6L/BHwxTA2LmKfMrFvZAmWFk6LSUbdgZuJFrNwVwNyhnFGSgwcwG6LikI7bc3AKPIA/8sf8PCB3dyEoYKM+NmwtSETZd36R9RN99vei8pT88aaB8J+0OyoSWwZDNb4Nh/MHV6OUT4oOTj3RlJ2mhXKx+jq7L/VFzmgzPcy3/7KNujUPj2YSk7PchYaOX5GCUargHkAGcn/E2j5f1MABeAN4HUAicOVMK5LwRIzi3q7sNaY5nOc8gU8nMYvw2XtsIUhF+3O0FoB0MG70MZZ7oNN3KdyAulDffCAGpCC/Pe5mz6cidocwwDF5b9Br8Jvnhec5ViJ2nbFmxsBXKi853AqkIfx14HwfvH7Qw1z2gzDDDMGjTRygXVq60Q3n/vf0GpjfuB+VzSefgGexpsusD6GrKGmYChMxTdhbK+cX5aLOgDZrMaaL9O+Tuvta95gzDaHdWpIPy7/t+hzJIiROJTWHLkagi9WYASmQW9JdqpSw5GKUabgNk7rSnv7T/uAelUN64ppSU8SNHcgJ54jQZVlwaC5lKZmCEwGr+2fmQq+R4krUfhSUVjRq9DGVcO96u/TYsm4eIBeUX+Z1QbYoMAza+UdpF+yjzkaDRjfxyHsrzzs7TOi7tBAAcSdgqeHSj0FC+/vw6vEO8MTqmCXSNXmqNGvPOzhMlT5lb9kF5wTmZtmdik9m/JmUn4de9v7rV9nV6/k3Un1kf7Re3N3E804nNU95z91MM3TbULbavR+0YBe8Qb1x5dsVgLr/N5h/7/zBz9HIllHUuhdNPTYc955Q1zDa8vtT129d5xXmAG4BRquHeQM4zhKkWyuHNSoG8Y+hQTiDHnX0LgzbJ0HFJY6NbMAyDtgvbot+GfgCAQZveKW30MoSyeWc1/5EocwkP5S+jhqJcmAJJ2X4ATqJIXYSGsxra7OjFLddA+WbKTXiHeOO7nd8BAJJzkuET4mOXo5eroZxfnI8W81qgxbwWyC/Oga6mfC4pSNDoRiGhfOXZFXgFe2DMTgJXo9feu3utOnpxSxwoM0xN9Nvgj/Lh5UzOG5vK+ehGczkG5bVX1oJUhKUXlnLMtc3Ry5VQvpN2B2XDypr4Gdjv6OUqKDMMg6HbhgJuAEapxn8IyACwBxgjL6VlQJ8+5g1dchmycl+gbJgHgo4Yp0SdSzpntFIzbPQyhDJ3Z7U0UD5w/wBIRVhyYQ4ccfSSEspF6mC0W9gOzeY2033yBWCfo5deroPymJ1j4B3irTUtAcTMUxYCyrlFuWg2txlaL2iNgpJVcMZmk1vCQ3naqb9BKkL07VpwRZ6yueyD8s0UT/hN8sawbcMsJCK5D5TzinPRekFrNJ7dGFmFWSbz3BPKup00uAEYpRr/MSAD6KM3BXnjZXMP6yr1quDQg0MgFeHi03cAKKGD8jc7vkHt6bWNugxNoRwXl2mhs9q1UM4tykWDmQ3w5so3tW8CjtlsSgXlP/ezwR2sSYix3BXKW29uBakIC84tMJnnvlD+IuoL+E3yw+3U29pHrDt6sVF7eZACyqcenYIySInf930NR2w2v+eMKtVJeCjnFqWhxTx/vDxPhtyiaCvXtAxlvRmOeFBmGMIXUS3hE+KDq8+u8syzD8qewYQ9d7tBrEavU49OwSPIAz/u/hFwAzBKNf57QG7eHCAC40NQKs23q3u83wO/7v0VNafVBMMUAxgMQInswrXwm+THaYuog/Kqy/7o3eeYlc5q10H5172/wjvE2ySlyhzKZcPK4lzSOY5rSgdl1o2LEHGCYKn7uvWC1kjJvQZ3aPRKzOyK8uHleSxLAUMo77j9K77Z8Y0FByzXQHn15dUgFWHV5VUmcy1DeeO1jdr/59pGr9S8VNSeXhudl3XWfpixzzxk1x3CvRffwZWNXl9EfaFNROoGZ2w2Tz46qfXm1kkcKC+5MET7O/EehPK+fpixGOzi5mNoGK56v+N6lvMMNafVRJdlXXSvj+RglGr8t4DMMICPD0CEgobVOevHAUEBaDqnqUHYfQmAwVh0nj2XyZerev35dZw5E2/iWc33ZMWH8tknZyAPlPPkqhpD+UU+u9WuYTRusVJOz09H7em10WNlD6g1/4B9nbihrANaat51SVfKJZqD6LpcjjrTvfAi/7GFmcaOXgCbjSzFSvl26i74TfLD8O3DeeZadvRiGAZrr6x12fa1htGgz9o+qBRRCY+zDF9j+6AMEDILfsc/hyeKvn29/OJykIqw+vJqCJWnHPckDl9FfSXK9vWFpxfgFeyF0TGdtNcUNk956km5oNvXJZoSdF/RHdWnVsfT7NKfveRglGq4OZBNjDueP4eOmElt2nACecmGJRxeuCV4bXEFvLdOBsOasql691GDXt4MGjQY8xYEgu9IFCvxoFykJrSaXxGvLnqVw4xCJ3ObzTE7x5Q6ehnLdVBmGAZDNg9B+fDyBh9+AmANym0XtjVy9HI1lP89/C/kgXIcT/SCPeYhGQWLUC6snMu3r/OKX0ar+Uo0m9vQSrA8P5SvP79usPUuPpR1to177u7hmGsflA89EL+mfDn5MrxDvPF19NcG85yHcvTtaFHMQ9Lz01F/Zn28uuhVFJQUQMzoRqGg/Nu+36AIVODYw2OGD0sORqmGmwPZH0Ccfo5B+/Opdu04gRy4IxCewZ5Gb1IXnl7QNpB0gWFN2VCll24SA/rHA/3We/EeidJLHCgHH+0PRSDhUvIgOOLoJSWUdVuo+i1RnQJgCcqGjl6uhvKRhCOQB8oRdCQIrshTtizboDwyeih8QmS49rwShEiJEhvKRxJYn+oJhyZYmGsflMVs9MosSEOj2Y3QdmFb5BebxhMKkxIlJJQ1jAbvr38fFcIrmHStz4C7QnnT9U0gFWHG6Rmm/yQ5GKUabg7k9gDKohTKkZGlQF7apIkZjP3KKvDO6rfwzup3jC79bcy3qDmtJko0BdDVlE2hbNhZ/d1M7u5rbgkL5ZspN+EZ7IlxB/vCGZtNKaD8IP08yoSWwbBtw3jmBsDdoJyWl4Za02qh+4ruBvXgWLgzlNdcWQNSEZZfnAUhoxvFgvKznKeoMdUXPVYSSjTLrFzTcSjzdz/bB2WGkWPAxtooF1YO917wfXgWDsr68prjUNbtPuhOkBhrBsSCsir2ZTjS6HUj5Qb8JvlpmwvNnpPkYJRquDmQ7wPojFIoR0SUAnl0hQpmQG7fWQbPYDlmntaDMa84D2XDyhoYqrM1ZUMocyU66Rq9ftrjDUuOXqyEgbKG0aDLsi5oPLux9lO5c97X3PGN4kC5RFMFXZb5ov7MuhzHLAwVAGtQ9g7xxuEHWyB2oxfDMPhww4eoGFHRpKYJOArl+jPrIzEzkWeu81C+mXITvpN8MXz7cO0bmf2OXnxQ7r+xv9agQ7hGL7VGjbdWvYVqU6rhafbnECtPedaZXhCq0WvqyeEgFSHqVjeInae84/aO0nAKVvZD+fCDmpAHyq3sPsyA0FA+/CAY2YUKAB/DHihnFWah6ZymaDGvBV+5RXIwSjXcHMgpALJQCuUxH5WSsz3HdnXfz9uDVIS7L96Ezvtat4V6P/2+wc2MocyX6LTv3j48ydoPoBJcAWWdp+/Rh4bbqo5B+VzSOQsdwMJDOfjoD5AHEk4kvgRnva91zR0M8xRqjXgr5TlxP2nfeKN45sbCXigXlqwAAOQU5Qi+Us4rzkPL+S3RfG5z5BYZwk8YKOtWKvFp8YKtlANiAyBTyXDowSGIGd3Ivk4TsTM+xqnt6+OJx6EIVODP/f3gijzl0quUFGDyicl2b18/yTqJqlPkeGuVD9Qavg+COs2A0FAGohCfpsDYXS/ZtH3NMAwGRg5E2bCyiE/j/ZuWHIxSjf8AkIFSKPdRlgK5CgeQu47tiqZzasPQ+7rHyh54c+WbHDdkoRwX18nCuWNWKbmx+GO/t6jb14mZifAP9cfomNEccx2DMsAeP+K2HRQOynFP4qAIVGDiodEQMk9ZFasS7Zzy5eT28AomfL9rgIV5gCNQZpg1eHPlm4JvX38V9RV8J/ni+vPrHPOEgXJuUS6qTakmiHnI/nv7IVPJtLV5ncSD8oN052rKz3KeocbUGnhjxRvaZkpx85QNoayLKrXHPKRYXYwuy7qg1rTqeJ5bC67IU+ZSTPwEm2vKEScirHwIBuAGYJRquDeQS72sASALaM4eeSr2UHI2dFX+qTJ+3fsrdDab9168CVIR1lxZw3PTEvTuc97KuWPg4P2DotaUGaYW+q7rgZrTaiKzIJNnruMpUWKah+QU5aDR7EbosKSD9vrCp0QJDWXW2aopWi/wQ0GJL8SMbhQKyqsukza60hLEhNu+dtbRKyn7LqpMroJea3pBw5j+HMSDsqONXmqNGm+ufFO7tW54H9dB2V5Hr1/2/gJlkFKbKiVsIAUrYRu9Dt4/CHmgHOMOjrPy/KQHo1TDfYB89C+etCeDHGTtGeSkcuYwlslkoPGk3RoDgD2YeEiBcmFK5BdncN7SPNFpG+/T47PZ5JZ9UF53tbq2C9xixiPcEcpfR38Nv0l+uJN2x2Cue0NZZ/RwM+UCXJGn7CyUb6TcgO8kD3wRRXBFnjLgHJRLNH7otrwcak6rYRbuopd7QXn8wfGQB8oRmxDLMdf1UB60aZC25MQN5c03NoNUhJmnZxpc0z2gPHx7PZjWlB9lPkLlyZXx9uq3LZTSSiU5GKUa7gFkq3nIQUZnkI+XkZuvjutWRpnQMqVOOGqNGrWnV8a3MXKURjeayLh2rHOi4T+nrIPyoE2eYBhhoJyal4rKkyti8GZ/iJ2n7BHkgVE7RnHMdQzKuiSZJRe4ttSEh3LosXFwttFr1eVVJs5W4uUpG0KZf4vOMpRzi3Lx8ryX0WJeC+QV/wv2dXIdlKtMroJbqbdgT6PX3wc+hyKQcOxhW7giT9lcLJS7Lq+DrMJMC/NYKO+MLwtSEcKPh1uY61ooTzg0waD72BjK8WnxKBNaBoM3D+boUJYeygfuy2HY6FVYUogOSzqg7oy6SM2z9l4AwA3AKNWQHsgGMOYF8lQClo4qBfJCuTmQK3WohI8iPyq97J67e0AqwtknM2GUp6yVeWe1efc1l2LiY7D8YiCEavT6fOvnqBBeAc9yLkPMPGXgJHbd2YWbKXxv0PZBOSlbjooR/ui/sb+F4ybCQfl44nFt53kyHIXyrdRb8J3kixHbR5jMExfK99Onlz7K/VrxQ3nE9hFa28Yb2kfEy1PmgrKuC7ZIXWTTSnln/E6QihBx4lu4Ik+ZXxFgGAIwEY+zuKJKWSVkXESFcAU+WO8JDXOFc45eroOyTsceHjPavs4tIrScXwtN5zTlyUUHpIYyEAW1RoEF515BsToPo2NGwzPYk8fel1OSg1GqIS2QTWBsEchDqZSgf3LUj+ltwrKL+jOOH2/6GC3nt9S+ARrkKWuhzN1ZbRuUWV3Bpuv+Tm1f69689HVBcfKUTRu9cotyEXgk0OHtaw1TjHdWV0eNqYTUPGtHM4SDMsC6J42M/szu7ev84uFoNb8Vms1txnPUQlwoA2sx/+x8C9uo5lBecWmFgW2joVwLZQAYtGmQ1XPKiZmJqBhREe+vf19bNxY3T9kWKBepCQ1nled83QtLCvHqolfRYGY9pOe3gCvylLnFDeXknGR4h3iXPneG0WDYtibwnUS4/lxl5ZrSQvlc0lQogwivLa5gYReNV5KDUaohHZA5YGwRyO/pgTyYC8hDCU+y2F+81LxUeAR5aEO5ddJDOS6uyEJntW1QvpN2x6mackZBBmpOq4k+a/uYrJrEh/LRh0edMg+Zfmo6SEXYd68nxM5TNtXO+J0OmYeM2kHwDlHg6jNLbySu2b62paZ87fkR+IT4mNg2Gsq1ULZmHlKkLsLrS19H3Rl1S73VWUkPZb6a8pidY+AV7KU9B+yczSa3hHX0mhfHxhOuvfI22J+9uHnK3LIdytNOfQlSERrM9LPX0UtyMEo1pAEyD4wtArmTHsgdOIDcLFwGnaPXrDOzoAxScjSUsFDu3SfOSme17dvXjkL5q6ivUCa0DE/YhfhQdtTR68LTC/AI8tB2sztns8mvAFiCsr2OXhuubQCpCIvPE1yRp2wu+6CcU1QVzeZ6ouV84xxpc7kPlH/Zy35fZx6f4bim+0F57ZW12t+JxQbz3BfKikAFZCoZRu8YDVfkKTsL5bS8NNSfWR8vzaoOZRBhkH02m5KDUaohDZCnyuwHcjM9kKuawFheVo7f9tUEUBYMcwatF7TGwMiBnD/puLhTVs8dsxIPynvvEsebgalcC2XzoynmUM4pykGTOU3QbmE7raMTIDWUR2wfDEs15bsv7qJMaBmtRd8qiJ2nzC9zKI8/ON5sFsMwGLatH/wmyXAr9SW4Ik/ZXNahzDbFsY1e2256cnT8mso9oFwm1BMbr200cTszlPtBOS0vDVUmV4FPiA8eZ+oc5dwXymqNGr3X9EaliEp4mPEQUbfG4etoGdSaQbDR0UtyMEo1pAGyIyvkqixF87m2qxsT9t/bDqAzLjz1s+Dpalo7nguu7mu9bIfyu2u7IK+4Iqw1emUVZqLO9LJ4ezWBYaZYuDfgKijzd5caQ/mrqK/gN8mPw2FHGijHxMdoz2ByN3oVlhTilUWvoNHsRgZ2nuLlKdsD5YP3/0Z6frrZjGUXl2m3JafAFXnK/OKH8tVnV0tBdiftKsqGKTEwUg6GOWR2FWNJD+WEDELTOZXQcl5LCxav7gNlDZOJPmv7oGJExVJf7bS8NFGiG/WaAWeg/M/hfyBTybD/3n6DuVEAlLiU/I4tK2XJwSjVkAbIgH015CkEeLAUvckBZGV3pTZuLAtjd1VHzWkylGhOmt3SuLM6B0VF/uA7EqWXbVBm36Cu4H56eYsr5dExo+Ef6o+EDN0fkmM2m9xyvNELYK1C+bavN15row00WM5zTWmgDLCORdNPqcy2r3/Y/QM8gz1x8elFk69wDygDa5GQkYDvd32PYnUxrj67Cu8Qb3yz4xvtXHGiG4Vq9Fp3dR3KhZVDo1kvIauwJ8TOU+aXbVBmGAaDN7dGmVDCp1taiBrdyC37oRx8tC5kKllpZKVao0a7he3scvTSS3wox8THgFSESccmmc/MX4uyYYQRHOeUTSQ5GKUa0gEZsL3LOoBKSbqbA8htf2gLgPWDLR9eDuMO1oJRSpRW5p3V5t3X3LINygUlBag9vRrv9vXB+wdBKsL8s/MhZp6yI1B+nPUYXsFenOYhCRnsH9KQzdXBMKZRdIaSBspnHp8xMw/ZdpP1BZ8bN5fnmu4B5d13/oBHkAf6beiHJrOboPWC1iZxf+4JZYZh0HNVT5CK8M7qd1ySp2xZ1qE8+8xskIqw+cbnokY3CgXlA/dnQaYi/Hu4Dpxx9DKWeFC++6IcyoX5o9+GfhwlMN1zH4fDD/wAXLV0Y8nBKNWQFsiAbeeQf9QDeT4HkCdsYlNO1l9dD1IR7qRdhFFKFLgTnVgJC2W+mnJOUQ7qz6yPHit7GPyyuheUuRy9SjQl6LS0E+rNqIaMAi+InafMrwBYgrKho9edtIYoHy7DwMheFs5IA+4C5ahbv0AeKIciUIFrz7je+N0PyksuLAGpCD/t+clpm01XQPn049PwCPLAz3t+1j4ibp6ys1B+nPUYlSdXRq81HaHW+MNZm01jCQ/lvOInaDXfB41ny5FZcNzKNTOt/Lv0YJRqSA9kwKpTlzpoUClNzc4gexJuPGdNE95e/Ta6Le+mvahBShTieBOdWIkP5bG7xsJ3kq9J6hTg7lD+5/A/UAQqtLVa52w2uSU8lCuEl0e9GUpkFFSH2HnK3IqFPVBefF4GUhEUgQp8uuVTnrnuA+ULT8/CK9ir1PVN1+j1y95fIGR0o17OQTk1LxV1ptdB52WdTcCrh/KcuNkWrulaKBepi9BpaSfUmV5H62zF333tFeyFww90r7M0UGYYBkO3DYXvJF9ce/4ybDMPsSjJwSjVcA8gA7xe1gGhclz+5bNSIJueQfZq4AWGYfAw4yFkKhlWXFphcFEWynFxPWzorBYeyhUjyuHqs3I4ktAIpCLMOjOLZ7b7QbnDkg6IuR0DeaAcwUeDDea6N5QHbBgAmUqGM493Qew8ZcuKhS1Qvpx8Ad4hCoyOIey4/St23N5h4ZrSQzk9X4YGM/3xyqJXtH0brPbc3WOQKe0+UFZrHqPXml6oPLkyR+Y1AEQg7gmhRDMeQuUpOwvlH3f/yHGEjBvKSdlJAFgoWvK+5pYwUJ4TNwekIqy/uh72OXrxSnIwSjXcB8g8aU/xafHAmDGlQDY9g/xy34oAGIQcDYHvJF8OF6Ys9O5zwsq5Y52EhXJWYRbyis+g4UwZOi/zhYaxBBv3gnJqXipqT6+NTks7oaDYFLzuCWWd89m0U9MAAKcf7xQlulEoKGcWZKLR7EZou7At8ouHQtfoxTAMll5YKnieMr9sg7KG0eCD9a+gQjjhQfoAcDV6peal4q8Df7nN9rUqtjJkKhkO3D9gYS6bp3wkYRhGbB8h6fb1uqvrQCrCnLg5HHP5bTYDjwQabL27DsonH52EMkiJn/b8ZDDPaShLDkaphnsDOe88+299+pQC2fQM8pggAsN8j6ZzmmLYtmFmlzWuHT9CUdFZK09EWCj/vOdnyAPleGe1h6h5ypZlH5QZxh8DNr6B8mHl0Wh2I4cdvVi5BsqPsx6X2jYyDIPUvFT4TfKz29HLVVBmGAYDNg5AubBy2uMs+pry5eRJgkY3CgXlsONh2iOFf4Cv+/rA/QMWHb34JTyU991bDpmKEHSkMmw5ErXjtrQ15avPPOE7yQtDtw210Ptg3dHLVVBOznmKGlNroOvyrhyvl1NQlhyMUg03B3JtAAlA8+bgO4Mce+IXxD1hjTb23zNvkDCuHUeAq/vaXMJA+UTiCchUMnwd/bWoecpCQ3nhOXaLfdvNUIcdvYwlLpRLNCHourwrak+vjbS8tNJ/tdfRi5VroDzt1DSOoHbHbDZdAeXDDw5DHig3MDNx3GaTX8JB+WHGQ1SKqIR313aDhqkJsfOU+WUblDMLnqHRbF+0XiBDXnG0lWtKD+ViNeGNFXVQfWp1k/xoQzkMZcnBKNVwcyDXB5i6gI83OM8gywkFBQUYu6s7ak4jqDVjYVjfMO+sNm70siznoJxfnI8mc5qg09JOUGvUouYpCwnl68+vwzvEG9/G1ICzNpvGEg/K4w8SFIFyHE807+50RygfTzwARaACf+z/g2Oe+0E5KTsJVadURc9VPU2ybK1D+eNNH4Nh8uBKKBeUFOC1xa+h/sz6Wl9tx2w2R8dwRZXqJByUNYwG/Tb00+6WdIcQ3tehx0K1j4gD5V/2docyiHA88XMIlxJVKsnBKNVwcyBfAp7XK6Wq6Rnkqg2qokhdhEoRlfDH/ne0t/oBul8Q7s5q10D5t32/wSvYS5sly0oH5UXn/SBEdKNewkC5oKQArea3wsvzXkZe8XOYOnr5TfLTdlubSjoo7727FzIVIfQYwVL3ddM5TfE0+zKkbvR6luODGlM98caKrijR8K2YjKH82dbPLKzWxIVysfoKui7viprTauJ5Ltf1LUNZn8DmukavUTtGGYRG6GQflGPiCTdSdL7RfBIGyqHHQkEqQkx8DITwvj768KjJWXZhobzx2kZtk+oA7TWFjG4E4AZglGq4OZBTgLgdpUA2PYP87sB3EXUrCqQiXHt+DcBC6KAcF8dY6KwWF8rHHgZDppJh6klzkF5OvgwNcwlC5Snr5TyUv9/1PbyCvXD1me7QvnGjly6sg2EYDpi4HsqPMh+hUkQl9FnbBxrmX7CvEzeUdUDLKLgt2UpZrVGj56p2qDaF8DS7G+xx9AKAa8+vuXyl/Ns+XyiDlDiReMLCXMuOXgCw+cZml2xfL7+4HKQyjmLVyz4oA4Tcoj8RfDRItO3r/ff2Qx4oxz+H/zGY5zyUAeDKsysYtWOUoNvX155fg+8kX3y29TNtnXsGRICy5GCUarg/kCMjS4FsegZ5QvAENJrVCG0WtDG4EAvl3n2uWemsFgfKOUUD0HAWoevy5ibbe8badWcuPt3iPtvX0bejeZytzG02f9/3O6ejlyuhXKwuLj2rqa8bB8ASlDWMBq8vfd3I0cuVUJ5waALkgXLEJsyAveYhWYWLUTGioku3r7feZOE2/ZQ/nLHZZKNKxTcPufCU4BWsNLAe5ZJ9UD6SIF5N+WHGPVSKqITea3pzvFc4D2VdqUko85CMggw0nt0Yrea3Qm6R4c9jBuyH8i0L86QHo1TD/YEcEVEKZNMzyP8u+xekIrSa3wpFav0SOC5uq42JTsJDeczO0fCdpMC9FwqIFd1oWfZDOTHzc1QIr4B+G/rxdHdad/TSyzVQ/nXvr1AGKXHq0SmTuQGwBGVDRy9XQll3JCvsuO55xULMPGVnoXwn7Q7KhpXFoE0fgGFaQKiUKLGg/CI/FfVn+uPVRYSCksVWrulYTVlIKBeUyPHa4oqoN6OeUSOisYSJbhQCyhrmET5Y/wHKh5cvDbkw1gzYDuWfYPl3XnowSjXcH8gWziBPOTAFcpW8FA46KBvXjjfA8i+IcFDed2+f1qt6DsTOU7Ys26FcrF6EzssIdWf440W+pQYq94HytpsrQSrCjNMzeOYGwJ2g/DDjISqEV8D769838fiNhTtCOa84D63mt0KTOU20iUiOOXq5CsoaRlOaiPQw4xOInafM59NsD5S/2fEWvIIJF572hivylD2CPPBl1JfaR+yHcvDRihZT9FjNgG1QtirJwSjVcH8g85xBrl5Ljs7LXkXfdX2NtmbOnDGsHWeiqMgDho1e3HIeyhkFGag1rRbeWf2OdpVpn83m2F1ekKKm/PeBv6EIlOPUI4KjNptctXKxoHw/vRLKhckxMPI9Kz7VAbAGZc9gT+y9ux5iNnoVlhxA+8XtDTp+TRULR6Bcc1pNnpUK4AyUGYbBiO0jtDaIhlARDsq91vRCXnEehGr0UsWqIFPJsO/ePogZ3Rh9mxB67E042+i19MJSbXLad3BFnjLAvu7GDZm2Q3nPXfY8tyq2IoQLpLAoycEo1XB7IDM8Z5B79vYGqQgbrrEetDHxMYi8HsnRWa1v9BITysO3D0fZsLJ4lPnIYJ5tUN5zdw/up++Cqxu99t7dC1IRIk5EwFFHr9OPTxuVC4wlLJQLSgrwyqKX8dIsBTILWsBZm039zyoZGkaclfJ3O5XwDPbAuaRzFubGwl4o5xcvB8AerxNypbz4/GKQirDmyhqOecJAWfdB6kH6A6dXyrvv7IZMJTOxdxUPyuzrNBEH7u93aPv6fNJ5Ix9wsfOUTRu9itXFmHl6ps3b1/fT76NCeAW8t+5NaJg6EDYlileSg1Gq4d5APvInNN7cZ5C7DeuAsmFy5BfXAZAAQHfumAG1Xo3qtfMMasfiQnn7rU0gFWHlJa4/ftugDAAZBccx4ZCPS7avk7KTUGVyFby79l2DLTjHoAywEYhfRH0h6vb1tzHfwivYCxefboaQecpTTk4R5ZzyuqtsU9TCc54QIyWKYdag77q+gm1f65qivo351sI8YaDMRpXWdso85EH6dZ5SACAmlB9nEbyCFXbXlNPy0lBvRj20X9wehSWGJS/XQfn049M2m4fkFeeh7cK2aDirIdLz0yFOdCOnJAejVMN9gMwVLhFA4DuDXO2ravgqagiAlwDUA5DAro6r3ABN9ETbMNPapjhQTsn1RNUpnvhww/sWtlBtg/LhB4ddUlNWa9TosbIHak6rWXqUSS/HoLwzfqeo5iE6j99F5xdpHxE+JUpIKN9IuQG/SX4Yuu0TMEwPiBXdKFRNOT0/HQ1mVsBriwmFJf/wzmMlbE3ZESjnF/uh3UJ/NJzVQAsLLokHZXsbvdSay+i1phcqRVRCYmYix1zXQdkWRy+GYTBs2zD4hPjgyrMrBtd0CZQlB6NUwz2AzBe/aCkH+SfCoQeHADwC8BLi4j4s3aqu0Gk7PIM9ORqOhIUywzD4KLILKkUQknPehph5yjzPAI5AWRX7I+SBchxJOMIz1zEoi+XodTPlphZuph6/7gnlnKIcNJ/bHC3mtdAeDxE3T9lZKLOhER+gQngFJGT8BvZ1EjdPWSdHoMwwDL6M6gvvEMLl5Nfgijxlc9kH5YmHfCAPlFsJuZAGyqyngDGU58bNBakI666u47im6FCWHIxSDemBbABjMyAP1QPZ8Ayyp68nqk+pbnB27xF69zlsVDuOiY8RHcrrr64HqQibro+HGHnKAyM9wTDCQvnwg9qQqQiBR36yMtc5KH8d/TXHXPuhnFu0Ci/PexnN5zbnSPICxIByQOxvcLTRi2EYfLLlE/iH+uN26m2Dea6BcuR1vho8P5SDj7JGNrvu7NI+Im6eMheUK4RX0K7ErDd66ercqy5PgCvylPnFQvm1xTWQztmwx2rH7bXaI2++cEWesrn4ofzTnp8MPuSyUD75iKAMUpgkOJlKVChLDkaphrRANoGxKZCZvnogG55B9mzoafTLYuxZ/QRFRQkAWLANjBxoUq8BhIByUnYSKoRXwCdbPtE+ImxKVEx8DObGjYOQjV7Pc5+jxtRqeHOlD9SaWhArunFn/E5cfHqRZ67tUGaYzzBsmwy+k7xwI+WGhbnCQflIwhFkF2YDSIYjUJ53ll1ZbLy2kWOeuFC+nTq59FHu8ok5lPfc3QOZSgZVrMpkrmuhnFmQCQAo0ZRYXCmffXIWnsGeGLNzjPYRcfOUbYGyhiEAE/EsJ9lspXz3xV2UCyuH/hv7gmFawxV5ytzib/QC2B6QYnWxNsHJF92WE4rVC6xcUzQoSw5GqYZ0QOaAsSmQc17VA9noDPLrhNOPT5deyrizegJ0NWVD3Uq9ZdIN7DiUNYwGvdb0QvWp1U0O9QsLZVZXEH27jNPb1xpGg95reqPK5Cp4mn0RYucpA2zjTtjxMIe3r5dcWKTt+JXBFXnKhrqdehvfxgy3a/s67gm7hfnD7u8tzBMXysBarLq8CoM3D7a6ff0g/SwqhFdA33V9ec7WuhbKAHtagW/7OjUvFXVn1EWHJR1MPmRLD+USDaH53MpG29e689yNZzfWfuBwzmaTW85DWRdV+lHkR+i8rDNqTK2B5JwvwP7sxc1T5pHkYJRqSANkHhibAvlZLT2QDc8gf/qZT+kKwDzRia0pG0I5tygX1aZUMzIPYeUYlGefmQ1SEfbe3csxV1goJ2QkwDPYw+macvjxcJCKtGc1ATHzlHVQPpF4wmHzkEvJl7THQ76BK/KUTbXrzi67zEPS8tJQd0YldFxCKFKPgNh5yuayr6acX1wN7RZ6o+GsehaaogAptq+5aspqzQG8s/odVJ5c2eRooU7SQ9mwplxUUoSh24ZynOd2TyhH3YqCPFAOmUqGow+PQtw8ZTkAvh00AG4ARqmGNECeKrMJyM/9WNKankG+8Yf+ktyJTuZQ1tU2nYXy9ed+8A7xwg+7f7AwV/jta2cavU4+OglFoALjDo4zmSs+lB1x9MosyESj2Y3QdmFbFJQUQOw8ZWcdvdQaNd5d+662g3Y6XJGnzC3boMwwDL6IGqBtimoIV+Qpm8s+KE88pIQ8UI6D9w9auKb7QLntwrYgFWH91fUc89wPyrpTDIpAhWDe1/y6beXfpQejVEMaINuyQg4mFMpY0hqeQfb1IDzeQwBmc6yODW8iPJQLS1LQdqEfms+VI7/Y2puoe0D5RX4Q6kyvgy7LuvDE/bkWyuYm+sZQZjvXP0LZsLImTlTSQnnYtkHgqyn/e/hfA6coQOw8ZXuhbJq7vPDcQpCKsPpyBFyRp8wv61BedH4RdtzerG2KUsIVecrmsg/K4ccJpCJ8vOljC/PcB8pXnp2CT4gPhm8fju23tqPJnCZIyk7SzhMLyhYlORilGtIAGbBeQ/6bSmlreAa5QX0lGIY9mtG7z30riU7cUK46papRTjEr61D+c/+f8AjywMWnrSF2njKXYuJj0H3Fa8gurAhbGr0YZhw+3ECoGOHLs82nk2ug/M/hf3iajfRQnnl6CkhF2HqT63WQDsrsysy80SsmPgakIoQcDTH5KveA8v57fxnlGJ95fAYeQR4Yu2us9hHnva/NJQyULz69iPi0eJQLK4d+G94Hw7wDV+Qpc8s2KCfnJKPmtLLosIRQrB4HhtFYyL2WHsrp+f5oOMsbbRe2Ls1Q1u2oZBZkirxS5pXkYJRqSAdkwGKXdcIwPZANzyC3H9AeAIO4uFk2Jjpx15QBoLCk0OYjUbEJsZCpZFqbSXHzlC1BmQXaFTzKLG91pTz5RIQ2+Jzgijxlc5k3egFsJzPX9vWJRE8og2T4Za+lcoA0UAbYrem5caGl29f3XhxA+fDy+HDDhzxNUe4BZWAtkrKT8G3Mt6g1rRY6Le1kskPknlDOK85D6wWtUWNqDQzeNNglecqWZRnKxepivLHiDVSfWh1PsycAIPy+73VRohuFgLKG0aDvus6oEE54kP4aDGvKuqhSWxy9zOU0lCUHo1RDWiADvOeQj3XTA9nwDPKk2ZMAmNaOD1m8BReUAWDQpkE2nVPOKMhAnel10H1Fd4MtV+mgXKQuQsNZtS1uXx97eAyKQAX+OvAnXJGnzC9jKCfnJMMnxMfMPCQ5Jxk1plZC1+UyFKt7Qew8ZW4FwBKUzyedLzUPySxogtYLlGg0ux4yCjIsXNM9oLz7zu+QqWTwCvZCQnoCx1z3grLOKcp3ki9mnZnlsKOXK6H8277foAxS4njice0j4kQ3CgXlgNgAyFQy7L07A446evHLKShLDkaphvRABjiduqJf0gPZ8AzylStXTGrHadpEp9lWbsK9fW2LechnWz9DubByHJZ30kHZUk35Wc4z1JhaA2+seMPAhcd9oGzq6FWiKUH3Fd21K4tIuCJPmV8BsARlXU25zvSa8AkhXH1WBa7IUzZXLOyB8p/7CXKVDMogpUvylPVyDMpz4mYZOUU5Y7PpCihvuLYBpCLMPD3TZK57QlmXz60P5XDcZpNfDkNZcjBKNdwDyICZl/WWCnog684gKzwUKC4uNlkdMwB+195GeCivu9rLgoUc4G5QVmvU6LmqJ6pNqYan2Yaf4N0Xyr/s+QWKQAWOPTymneu4zSa/hIPy6B2jQSpC+8VtXZKnzK9Y2ALlLTfY8JNpp2SljV5DNg+x2TyEX+JA+dhDGZRBMvy050ejf9FBma1/CxPdaCzHoHzl2UH4TvLF51s/53lN9VCeenKKhWu6Bsp3X9zlKbXwQ9kz2BN77u7RPiI6lCUHo1TDfYBskvYUo9ADWXcGuWXbljyd1cJAedXlVUYzEzNDUS6M8OmWJhA7T9lctkO5bJg/ziWVA9AOEw/9BnmgHIcfcL1JuR+U682op4XFNJO57gnlk49OQhmkxPvr3seoHaOg1jyBmHnKzkL5ZspN+If6Y8jmwWCYEdB1X3M7iekkHZSfZD1BtSnl0H0FoVg9FKaNXrvu7DLovpceyi/ya6DhLA+0XdhCm/HMpwicfEQoUo+Ds3nKetkP5dyiaBOzElNxQ/lhxsPS/2YhLiqUJQejVMNtgRynpa7hGeTRo7/kOXcMOAvlGyk3Sj/dMgwDtUaN7iu6o870CsgoIIidp8wt26DMGjtcwc54f5CKMOnYBAvXdB8o305dD/9J/vh408dIyU0RNbpRL8ehzHbQ1kSXZV2MnuuFp/vccqWcXZiNZnOb4eV5L2t9wI0bvRiGwZora9xm+7qwpBCvL30dtabVwrOcBbDk6JVRkIGJhyZKun3Nnj/vhooRMjxIbwhb85TjnnyJr6K+dPn2NcP0wWdb5fCb5G1iVmIqfpvNqSenuuCcsoRAJPpY0vu76EbWZQLkZC11Dc8gjxvXyUpntXNQBoDNNzbj400f45/D/xgkIgmbEsVKWCgnZibCK9gT1abIUFjSBmLnKXPLdijnFHXBy/PkaDa3HjLyM9B2YVuHHL30EhfKxeoQgw5a/Rtven46yoaVtdnRi5X4UNad5y4TWsYk5EIP5evPwwWJbmTlPJRHx4yGZ7An4p7o/nb4j0QdenBI8pryhEMTIA+UY/+9FbDnnPKO29LUlHVHCiOve8AZRy+PIA+xoSwVjDsT0U6p7g93BnIWxxnk1zvPtXLuGBBi+1oZpASpCBMPTTSY675QLlIXoeOSjqgyuYpL8pQtyzqU2USkQfAPVeBmii8cdfQyl3hQ/nUvQRkkN6hz62Wro5exxIXy5BMhIBVh281tHPNsc/Ri5RooL72wFKQiLLlg+qYuTp6ys1DednMbSEUIPx6ufcRxm01XQPnYw2NQBinx694fIYTNpuNQfgCgD4BnliZJBeR5RPSpVPfHfwHIujPICoUSRIXa1fFTFBVlWLiY41BOy0tDpYhKkKlk6L+hv2CBFPxyHso/7v4RHkEeiHsS55I8ZWehPOvMLG1s5Wo4a7NpLuGhHHk9UttBS3DWZtNY4kD50AMvyAMJfx/4zcI894Fy3JON8Az2xKgdo3jmWofyoE2DwDB5cAWUdXV59p6G7wOOQXkkZ1SpTs5D+XHWY1SdUhU9VvbQnroQxvvaI8jDICXMHihblRQwVhJRAhH5SnH/0ufhohtZFw+QdWeQy5Rpa7A6/hlAewAZFi5oP5QZpi76bXgHFSMqYsWlFfAI8uDIBHUvKG+6znbQzombUzpLB+U5cb4QKrqRlfNQPpF4AsogJX7Z+4v2EXNHL+8Qb56mNNdD+UbKDfhN8sMnWz4Bw/wL9nXih3L9mfWRmHkOUjV6Pcp8hCqTy+Pt1XKoNW/BHpvN/hv7c0SV6iQOlJ/nNkPt6XK8vrSNhXsD1qA8+4zub1zcRq/MgvloOqcpWsxrwZPPbR+Ud9wmXHj6NcRq9CooKUCHJR1QZ3odI8c2IaB8+MFhbVSpTs5DWfuBUAogv09Ea6S4t9HzcNGNrEsL5EcTjIGsP4P8tUHt+BKAChAaynPiKoNUhOjbiwEA++7tw5MsrlqHe0A5Pm0OyoSWweDNg82OW5xLOge15iKEzFNm5TiUdU1RXZd3NVmJGUNZV6PVNdcZy3VQzirMQpM5TdByfstSdzdrR6J0UMkpuufylXJhSSE6LumIOtPrICV3O+w1D2GYNQCA+LR4l6yUi9XF6L6iM6pNUeJJVmU4G90IsB9Gxdq+1jAj8eEGQrkwH9xJu2Nhrn1QBggFJX8j4kS4oNvXDPMJvor6Al7BXjifdJ5jnjB5yvFp8fhu53cObF+bS/tBXQogbyCid6W4t9HzcNGNrEsL5J1fGQNZn4M8z6R2fBFCQvlS8iV4Bnvix93lYNrolZKbgj/2/2GzzaaxxIFybtFAtJpPaDqnpsmnVGPFJizF0G3Sb1+XaEYZmH9wvUmZ22wGxAaYOXqxEh/KDMNgwMYBKBtWFvFppkANgCUoMwyDHit7YGBkX5dCWdcUdfbJWe0jsbAXyrlFS1FtSjWXbF//vOdnKIOUOPZwB4Twvn6Q/kDUmnLQkUADK9qVVq5pH5RPJApfU55/VgZSEVZdXm5hnvNQ1vXdOGYeopcucQquh7G/drta6ep7mz0XF93IurRAnvSuMZD1OcinOTqrhYFyblEums5pirYL26Kw5C5MG70O3j9ok6MXv4SFMsMw+HTLJ/CbpMS15wqIGd3IL/ug/Ps+giJQhmMPj1iYZ9nRy1jiQjn8+D8gFSHqVhTP3ABYgrKupuwqKC8+vxikIiy9sNRkbizEyFN2Fsq6N1/9VrNjjl6uavTaGb8TMpUMgUdUcEWesrNQPp54HMogBX7YLYOr8pSdgfLl5MvwCfHB0G1DAceg2oaI1hDRCe32cwUimklEC4hoOxG1tfC1w4loNsfjXYloNRGdJqL3iEhORGOJaA4RLdTe63Xt3M+091qgfbynQ9+HI1/kwLAuLZAHt9EDWX8GWQ6iPJ7Oaueh/EXUF/Cb5GdwPMRxm01+CQflmadnao8vrIcr8pT5ZRuUt9zYAlIRpp8iOGuzaSxxoHzwfnnIAwnjD/5sZW4A3AHKpx/Ph2ewJ8bsHMMzNxbuBOVLyZfgE+KDYduGmZRa3BPKd9LuoFxYOQNnK+ECKYylh/JHkR9xlGt0sgxl1lylGt5Y8QaK1RvgijxlQA/lYduGaR+xDcov8l+gwcwGaLuwrc5cxREgL9c2Zk0kohQi2kJEtYjoTSIqJqI5Fr52HxF1NHlMroWxjIimaq85h4jeNJiziIgeENG/RDTQ4PEgInpBRHK7vw9HvnkHhnVpgdy4kh7I+jPILa0kOjkO5WUXl2mzYVebzOWHsnl3peugfPThUSgCFfhtn66D1j6bzVE7vODKmvL159fhN8lPW+deCmdsNkOPhXLMFRbKCRkJqBRRHu+s9oBa0wpCeV9H3VoBMRq9nmZ3Ro2pMnRe1tLkRICpYuEIlKtMrsIRVaqT/VB+kf8XGsxsgHYL25XG/RlLOCh3W94NWYVZcKbRK6coBy3mtUCTOU1MnK3EhfKEQ13AcCaI6cQNZV0fQe3ptQ2auMTNUzaFMhtVqpNlKLPmKu+iYkRFPEh/oHvYXhi/REQh2v+eT0RqInpF+/8HEVE6EfXi+dpqRHSb4/GORPSL9r/Xa4/evmsyZ4r28dEmj4/VPl7N7u/F3i9wcFhXXgpyJhEqkx7I+jPIw7Fw4RUrF7AfypeS/4R3iLeF4xbcUF5xaQXHXPGhrPvkqz++oJNtUN59ZzdupUbBVY1eGQUZaDy7MVrNb2XQFOWYzeaJxBM8b+CAUFDOK85D24Vt0WBmA7zIPwmhvK/vp9/X/lcyGEa4lXKRughdlnVCzWmeeJrtAzFSonKKlpbey9mVsloThF5rCJUifJGQkWBhpjBQ1n1ofpz12KGVMsN0x8ebBsA/1B83Um5wzBMPyuzv00Qce3jU5u1rhmEwMnokvIK9DPoIdHIdlAEWtAvOLbC6fa0zV9l3z+he9gK5MxG10/73VSI6YsfX/kREgRyPv0FE9bX//ZiI9nLM2addIctMHp9LRPmO1KTdB8hH/8KJsYTWWgg/MjiDXLZcMIqKfAHssHIR26GcUfA9Gs4ivLKoNgpKLL2Jczt6Aez5VFedUy5S98XrSzui1rRaJscXdLINygCQU3QaqlgfUbevNYwG7617D+XDyxt4D+vkGJQBttb0dfTXgm9fMwyb6uUT4oPLyZe1jwqbpzz/7HwM2vS+YNvXY3aOgUeQB04/joXYecqDNg1yevt63MFxkAfKcOA+wRV5yoAuqrShQ9vXESc8QSrC1pt8wTKAmFBOziF4hyhtrikvPMf2PXAvGABXQvlc0jmr5iFbb24FqQhhx83+ZhziDBFVJiKGiFR2fM1ZImpq4d8baVe7v5k8riSiHCJazvE1d4hon0Pfg6PfvJ3Dsk4FIfZbQvOqelcuGREaaf970U9fAhgIwANCQJlhGPTb0A/lw73wIJ3giKPXnbQ7pSYWroDydzvl8AyW48xjc6covWyD8tGHR0WvKf97+HvIVDKDhBhTOQblnfE7RTEPmX5qOkhF2HBtg8lc4aMbhTAP0TlbLT6/WPuIuHnKztaUdW++ESci4Io8ZUM5UlPef28/5IFyjDvoAVflKZvL9kavE4mN4BFEGLvrEyvXdO32NR+Urz/fzGOuAsBxIH+s5UcPG+c3IaJzVuaM0l7zVZPHO2kfH27yeCvt49849D04+s3bOfh1KghLP2YBTCZD99iKIQScCoBQUJ58YjJIRdhxOxrO2my6AsorL60EqQiLzivhijxlc9kH5e23aoJUhNBjlpyiAEehLLSj16EH/0ARqMAf+//gmeteUD7z+AyPs5V7QvlGyg34h7IhIvo3X/eF8oP0B6gYURG91/SGWnMErshT5pd1KCdlJ6H61KrottwPxepKcEWesrksQ9mw+zo9fyMazW6EVvNb8ZirOAzk+URUSETeNs4PJKKfrczZQEQZpg1aRDROy6m6Jo+HaZ9DBe3//9qu78HRb97Owa1TQbjxO0EuM4ex4fCQEx6OFwbKuqaovw/8rX3EcZtNQHwoX3h6Ad4h3vgq6iswzG6Ikac8MNITGkYYKN9MuYkyof74KNIfDFMLYkU36sA2YvsIjrm2Qzkhox8qRRDeXt3KpC5vKuGhPP7gj7C30Ss55xPUmlYLnZZ24nG2cg2UTaNK9TKGcmZBJprMacLjbOV6KJcJLYNzSefA1+il6yNoOKshXuTr/h7EzVO2Fcqt5ldFikm5qrCkEJ2WdtImZN2EK/KU+cUP5ZHRI6HWqKHWqNFnbR9UCK/AUcoqlaNAvmVn/fg2EVW3MieZiKI5Ht9PRPc5Ho8nok3a/25FRAF2fQ+OfvN2DnOdCgKmEsZ2JijlloGskBHGv0XAVOeg/DT7KapPrY43V75p8ubrPJTfXfsuRx6qc1BOy0tDvRn18Nri1wzq3MLnKYcf/wlCNHplFmSi6ZymeHney8gujIcr8pRPPTrFM9c6lPVNXP5Iy5PDFXnKOh16cEgbm5kMW6FcpF6OrssJ1af6ICn7sYWZ4kL52vMwrm1GA7FQ1jDN8eGG3igXVs6Cs5VroayDrIbRmK2UGYbB51s/N+kj0El6KJdoCMBEpOWllq6UR+0YZZKQ5bjNJr+EafQCgC+jvoRMJTNt4jKVIzCuruWFysb5rxPRfitzmmuv+YvJ4x5ElEtEyzi+5gWxXdZyIlpLRJXs+T5k2ouIJplMJsvKymKMHjwbQRQXSkREzScTPc22fp1mVYniftT+n45/E3W4QUR7iP2e+1j4yitE9CEVquvTe+vl9CT7KR374hhV869mMg9E9A+xR80iiOhbC9d8QuzZczUR7SKieuyLKZNRQkYC1S5bmzwUHtq5y4noFyIarb2ujOea2UT0EbEf8qJIw7SjQZsH0aXkS3Tsi2NUt3xdg7kHiD2H/iaxZ+G9eK6pJqKRRLSDiFYS0YcWvqfrdOhBb3qjXgPyUOwgooo880BEwUQ0jYhCiOgHIiJiwNBnWz+jk49O0pEvjtBLFV8i9sPle0RUQOzr1NDC/dcQ0fdE9JX22nKeebnEloquEtE2IupIJZoSWnxhMY16dZTB605EdISIBhNRNyJaR0Te+u8CoFExo2hH/A46OHwftao2j9iji8uIaKCF53mL2J99NSKKIaJKFuaGEVE4EQUQ0a+cMxIzE2nu2ckU+lYceShyiH2dGnHO/X3/77Ti0jLa/TlDHWsPJfZ3le91yif2e7+g/b66WHiex4l9TTsSu0PnyzNPQ+zPaAMRLaLo294UHR9Ni95fZPK6ExHdpYgT3Sn0eB5FfryY3m00xML9pxD7uzSOiP62MC+N2Nc+jdjXqamFuVuI/d0fQuxOpsLoX3/d9yul5qXS8n7zyEMxgohO0YJzw+jvg0to6YdL6eMWH3Nc8zSxf6PtiGgTEfnx3Jshop+JaBWxPhGfWXie94n9G/Enop3EcoVPM0nDBFD3lVWoYYXO9EbdN+i3/b/R3L5zaVibYQbz0onoAyJ6Suzr9LKFa0YR0ZfE/s4vIrZXiUuFRDSUiI4R+/N/y8I1zxFRfyJqSezPoQwREa29spbG7h5Lbau3paNfHuX96nLlypUjohzYASeZTNaG2K7nngBu2jB/DhGdB7DKwpyuRBRJRJ0BJBo8XoWIrhPRJwBiTb7mc2J/8dKIaCGAQ7Z+D0TkEiCXJaIsUW/yP/1P/9P/9D/9/6RyAGxYqtkvmUymJKJ7RNQKQI4Y93BUfB+HhFROVlYWtW/fns6dO8c+YrBC7rmQ6FISEWPhc4FCRtT9JaLtX2gf6DieqMNfRFRCRF9SSUkMeXhsJL6V8vxz82ncwXG0+AMfGtKyOfXsmUWHD1/kuZv5StnouRvJeKWcnV2B6vSoQx6feFDvl3rTyv4rra6Uza+dTZHXu9OomAcU+tYYGtsh3OiOxvOtr5TZ+afJ2ko5Ozub6vSoQ8ohCnq3kZxW9m9mdaW8fHkD+uqrDNp7bygN2byWxncbT391/YtjLrtSfvbsIVWvfp5sXSl36HCczp49zzNPv1LOy1tDNbsNIOUQJfVp3IdW9FthcaV89GEcfbj+Q/qh4w8U8laIwTwNsTsj5itl85+T5ZWy8Xz+lbL+dVdSn8Zv0op+D81WyheeXqB3175Ln7T8hGb3mU0dOnSgc+d+I/Z3yfpK+dy5htS+vYxsXSnHxcmoY8f7ZG2lDGygvj+BztZSUt/GfWl5v+XkofCgOy/u0Jsr36Tu9bvT2oEBJJfpnAx3Ufv2fXn+loi4Vsrcf3v8K2Xz+dwr5ezsbKrzZh1SDlZSj/o96GLyRWpRlaGoTwpIKd9C7DFUY+mvbdtKuUOH1+js2c5k60r5+fP2VK1aQ7K2Un74YiJ1Xz2HMguJPmj6Acfvu076lfKQIWUoMvKqhftHkeFKuX37Tjw/J+6VMvfPiV0ppxc0pR4rU6mMZ1naOmArNW3QlB4/fkxly5blfCa6FbKFJ+usehFRnLvBmIhcV0Nu3ry5cZVAW0NeMcRy/Vg3to3Q1ZCDTMoNxdi3rwz4asr77u2DPFCu7aBla8pXrnjDHkcvs+duJH1NOTv7KogIkZcibbbZNL32uaRz8A7xxvDtVcAwZWDa6GX+XCzXlPXzLdeUs7KySp+7rd3XzZs3Q3zaaJQNI/Tf2FJrK8inJDx44Al7asobNpSHLTVlhimDTp10z5212TRv0GJryg8zuqPy5Mrw/daXp4mL+5wy9+8Af03ZfH4AuGrKutd948WN8AjywKdbBsCwpvws5xlqTauFjks6ljZx6a9tm6NXu3ZNYU9NOS9PBltqykVFn0OtJmy6MhYeQR74ec/PyCjIQJM5TbR9BLoaor7Rq0uXxlbub1xT5v/b464pc883rynrXveV51ZCppKhQngFpOQmwlL3tfG1rdeU2fm215TfffclWKspF6mL0HFRR/j/S1hxieAVrMDhB4csXJWtKb94oYA9NeWWLZtZmGdeU+b7OZVojuOd1QpUjFDiQfrV0tc9KyvL0hMRlUfE1q8+FPs+Dj03F90Ic+fONX/ZTwWhIIzQpgZ/Y5dCRuhUj1ASwQVjVvPnzwJXo9edtDsoH14efdb2MfCFvYiCAl/Y4+h19OggC/MAHZQ1mrqoV4/9ZYuJj0HFiIq4+uyqyVxjKBu+Lsk5yag9vTY6LOmAgpLn4Gr04nwdLUDZeD4/lA3/UGLiY9BxSSuk51eApUavqbOnovnc5mg2txKyCgnWjkQtXx4Cexq9GMa2Rq+Ski7IyiLk5u5HTHwMftn7C2fTUV7xTrRbKEP9mT6YMi/EwjXNocz9ugN8UOaeHwBTKBu+7jtu70BMfAx0jV7F6hp4Y0V7VJ9a3SgG1Pja1qHMzre90Wvbth9hS6NXVlY6li8nMIwce+7+gYcZD9F3XV+UDy/P0cTFQvnFi+qwx/ua/3UHuKDMP98YyrrXffDGwfAK9tJ2XgOWbDbNr20Zyvr5tkGZnW+50evbmG/hGewJqk0oKAhEUjYBmAiG0Vj0vk5NrQV7Gr3i41+FPY1efK/7H/v/gDxQjoP3fQB0RVbWE0mBTOx2RiIReYh5H4efn4tuxK9TQUgNJHStzwJYB2bd//ZqQsgMJuBUczCMpa7iYhhCOaMgA83nNkfTOU2RUZBhMlfY6EZWj6DRNEBCAiE7m4Uw66MLlGhKrB6JKiwpROdlnVFjag0kZSdp54mbp2wIZdNPruxq9wqeZlfgXClrGA0GbByAMqFlcDv1FlyRp8ynrKwkHDlC2h2Fk6WPn3p0qnSHQt9B64VLyZ5wRZ4ytwJgCGWuFYOG0WDJhan4bmd5KIMIJxLXW7mmMHnKxoqFNShnZWVBLicUFX0OQI7xBz+ETCWzYGIhXHSjXo51X2dlpYM6EUhF2HhtIwAgNiEWw7cPFy1P2dnu6yUXlrAJWSdmG/zOsDabqtg3BI1uFKL7esO1DSAVYdqpadB1X5eUdIK/v6RAHkpEC8S8h1PPz0U3sqxTQWCmEOJ+JIzpxIL4+y6Ei7+Qdpv6c6y8pMBHkTVRpOY8SK4VC+XCEiW6r2iJCuEVDBKcTCU8lAsL7+LFiwpgmLowtNkcvn24xXPKDKPByOiR8Az2xOnHp02u6hooFxYWIiAgAIWF+q8r0ZSg2dwGnNvXAbEBkKlkiL4drX1EvOhGa1AuLCzEpEnjoNF0he5IVGpeKvwm+ZWWDWacngFSEdZfXQ9X5ClbVgB0UOZ63S8nX4YiUAFSEeacqQZX5SmbKxaWoKx/7nnYdL0HSEUYGd1D9OhGc9kP5d3xPSFTyfD73t9L/0Vv2iJOnrIzUD79+DQ8gz0xOmY0x++MsNGNrJyDsi7R6/OtnxvsVp0Gw5TBw4d1UVho8W9ETCAvIaJOYt7DqefnohtZl7amnBWiDZcIIaOacUz8P/AMJgzYWKMUygzDIDo6GkOGDEHfvn0xcOBAvNPrbVRr7QXlx4TjD/l9hVmJs1K21zxkblx3kIqw8hLfH6nrVsqm4nL02nxjM0hFmHRsksls6aDMits8pOvyrpCr5AYJWYA7QdlU55POQxmkhDxQLojNprmEXSlfeXYFvpN88cmWBmAYmUvylM1lO5TvvZiJCuGEd9fWhFpjnJAlVp6yXvZDOTmnEWpOq47OyzpbSPRyHyin5qWi3ox6eGXRKxyBMKcBNNZ+b7ySHIxSDfcBMgCcCjIGsknN2BDKl66cRbt27dC/f3/cvq1fBf++73fQGEK1Ol4YOFCGkpLtVm4qLZRjE36BIpDw8562cFWesl72Q/nskybwneSLIZuH8JhDuBeUl5xnt/mqTK7C8ebgflA27CPYcmOLYN7X5hIGyml5aQZZttkwdfQytss0lDRQzinKQcv5LdFodnWk58tgyWZzdMxoOBPdyC/boVykvo4uyzxRY6oST7MvWbm/HsqhZh+WDSUelEs0Xui5qi0qT66MxMxEnrmWrgPADcAo1XAvIAPIOjCeBfKB8Zz/HhP/D5SfEDx8ZJgyxXh1MevMLJCKMOvMLJw7dxpEhHHj5BAyJUoIKC86vwgA65lbKaIS3l7dTOvCI150I79sh7LvJG9UmyLDK4t8kFdsySnKPaCcU+SPVvNfQrUp1dBodiM8zebqXHUfKBv2EeiauHbc3oHPt36OYvUjiJGn7AyUSzQl6LmqJypProyHGQ+18/SOXjtu/4plF5dZuKZroaxhNBgYOdAgTpHf0Wtn/E6DyEXpoPxtzLfwCPLAqUeVYauj17GHhPziv2D5vUQcKP+ytz4UgYTYhMlWrmlRkoNRquF+QLbSFh8dHQ2ZTIYffpUDGACAXW2uvbKWrQnt09eE2rVrCx8fBXJzlXAXKF9OvgwNo0F2YTZazW9l4Jkrfp4yv6xDuUhdhI5LOqLalEpIzCiHEk1biJ2nzC3boKxhsjBgYyX4hxKuP19TuoWXUZAheHQjt+yDMsMQRka35+kjYHXteaxbrZR/2fsLFIEKxCbEmswzjm4EgM03Nku+fR18NBikIkTdijKYyw9lAMgtykXQkSBJtq8XnltokOhln80mQLjy7Bt8s2Oky7av11xZo10QvQzbbDZ5JTkYpRr/KSDfuXMH5cqVQ4sWLVBcvB1Psjzw056XsOryMsgD5fgq6iujs7BDhgwBEeHAga4QKrqRlXNQVmvUaL+4PZRBShPPXPeEMsMwGLVjFDyCPHDy0Un8tm+4qNGNQkBZ33TWArrtaw2jwetLX8fAyIFuB+U5cX20fQTcR+yyCrNQMaIiBkb2dQsor7r8Mtvxe4bv918P5TtpUyWvKe+4vQOkIqhiVRxz+aF8JOGIJDXl44nHoQxSYuyusQZz7YNyTLzrasq6EJwR20eAYfJhu/c1pyQHo1TjPwXkbt26gYiwZcsWAMD+e0FQBrFHF4Zt+9zMmOLDDz8EEWH9+tUQMk+ZlR7K+/a9j9deew3+/v6oUqUK+vXrZ1TXNoXyz3t+hlwl54kQlBbKN260QnExYdmy90ofnXd2HkhFpduPYkY32gvlnJxhGDr0M1SsWBE+Pj5o06YNImIiQCpCyNEQcAVS6MxDpIRySUkJJkyYgPr168OjiQfoX8KgpbXBvk6WU6JcDeWjR4/i/fffR40aNUBEWLxrNLyCCV9G1QDD5IJhGAQEBKBGjRrw9vZG9+7dcf36dQiZp2ws26Gcm9sAp+95QDFRBhpC2LpN/2GzuLgYf/75J1q2bInhwz2hVhOOH2+IpKRHRldxdaPXo8xHqDqlKtrObIu+H/Qtfd23b98OPiiPGjUKRIQZM2YYXNc1jV7Pc5+jzvQ6RiE4x47tx9mzVZGfT3jnHd1zN9bNmzfxwQcfoGzZsvD390fHjh2RmJgIuAEYpRr/GSAfO3YMRITq1atDo2HfWDZe2wiZSgZ5IKH/hhpmR6JatGgBIsLBgwdhek7ZsuyH8unTn+P69eu4fPky3nvvPdStWxe5uYZ/hCyUF5yrCFIR5p2dh5j4GJsdvbglLJTPnj2Ll16qh717y0GtlgPYikMPDkERqMBPe34ymusOUM7NnQ2NhnDoUFPExZ1GQkICFkUtgk+wj0nTmftBOSQkBJUqVcLSrUtRIawCWk9pDb8yfjh9ujfcDcq7d+/GhAkTsHXrVpAfodKkSuiwpBkKSnwAvI2pU4NQpkwZbN26FdeuXcOQIUNQo0YNZGdnQ2ooR+1dioYzFGg+R47GLY3BkJmZibfffhuRkZG4ffs27twJglpNiImpCEt5yhomF2JBOb+Y8Mqieqg7oy42RG/Qv+5k+NyNobx9+3a0adMGNWvWNAEyYAjlL6K+sHB/x6BcrM5H9xXdUXVKVTzK1H+Q2b17NwIC/kJy8ivIzyecOBFgdIV79+6hYsWK+OOPP3Dx4kXcv38fO3fuxPPnzwE3AKNU4z8D5O+++w5EhG+++QYAEHk9EopABYZvH46oWxPgGUz4eFOtUvOQlJQUyGQyyOVyJCcna68iLpR129cpKSkgIhw9arzS2HdvLRSBhB93l4Fho5dnsKfJ1hTgaijn5OSgcePGOHDgAHr2fAMXLzbG/XQFKkb44+3Vb3PaTOqgPPWkL5yNbjSWbVD+66+/EBraCLrt65TcZ6g3ox7aLWzHEYVpDmWvYC/svbuX48riQ/m9997DsK+HodX8Vnhp1kt4kf8CAwcOxNChQ2FLnnKtabVw78VpuLLRq0hdBPqKUCGkgta8JhYM44sjRzwxdar+RERhYSHKlSuHhQsXah8xhnLvNb05fj46CQdltUatdQ4rh7svGiM5mXDggOUS0717IVCrCTk5H4ELymHHdT8T4Ru9GEaNz7c2gk8I4VKy8fdkDGRAB+Xi4kZo1646rl+/jnr16nEAGQAiEH2bcPLRCAjd6PXj7iZQBilx7OExnnkF2LmToFZ7wnD7esiQIdrfdU5JDkapxn8GyO3bt2e3yxYvxqbrm6AIVGDotqGldnEx8f9g03UldI1es2bNAhGhR48eJncQH8p3794FEeHaNf0v9Y2UGygbVhZ91r6JEk1DGNaU997di/vp9zmu6zooDx8+HD///DMAoHv37hj7y2i0nF8OjWYTXuSv5L3amcdnUKQ+DyHylI1lHcrNmzfHzz//jHnzXkVBMaH5ZCXKBJWxcNzCGMqGn+jNfbjFhfL0GRPg86UPfEN8cf05u7NStWpVrF+vc+UKgCUo645w5Rc/cNlKeXTMaNA/hLC1+ueUlLQOubmErKyOMDwS9eGHH2L48OEG19RDmWHWAGBPGYi5Uh53cBzkgXLth64UXL1KKCgoD0vnlA8cOIBPPmHtQPkavQDgwP0Dgm9fTzk5Resc1hOmNWVzIAMazW2kpHjhxYuqAJ5aADKga/QqVo/DjNPTBdm+XnHpO+1u32uw1H3t5UVITn4VupqyRqOBv78/goKC0KtXL1SpUgUdOnQw/P4kB6NU4z8D5MaNG7PHmBaMgyJQgc+3fs7h3RoDhvHAiguvoGmzJiAi7NvH1VQgLpQXLmyJrl27lv5LSm4KGsxsgJbzW2rtNM0bvQC2A3j8wfFWbTa55TiUN2zYgJYtW6KggAXPG93fQMPxDVEmtAxuprwLa0eiAOD04zUYsd3LpdvXXl5e8PLywrhx4/D5hlfhEUT4Y44cq1atsHBNYygD7Buhq7evA2KrQaYiUFOCUqmETCZDaGioydwAWIIywzDos7aPS84p6zp+6RVjMJw8eRLduxM0Gnb7Wgflb775Br169TK5ph7KBSXLUXt6bdG2ryOvR4JUhMkn9MdvKlcmZGbWBd855YKCArz66qv4/PPPYanR63HWY3gFe2nrssJAee/dvZAHyvH3gb/B1ejFBeTQ0FCMGNEZDMNuX7/2Wi0LQAaACJx+LExN+eyTs/AK9sJXUW9qP7zwd18TEaKjI6Fr9HrxYgOICL6+vpg+fTouXbqEsLAwyGQyHDlyBHADMEo1/jNA1jV0yT+V47Otn/Eaqd9ImQfFB6y5yMCP+lu4kzhQPnCgLQBCejq7hVdYUoguy7qg6pSqBmc1AS4oH35w2KKjlxhQzs9/C7VrV8Hly5dL/6XuF3VBAYSd8Tth6znlnfE7XV5T9vDwQKdOnTD/7HyQirDkwghoNIStW6vCEUcvV0F5680ZIBXhxy1ybN26CFevXsXq1atRsWJFrFy50mR2ACxBWW/3KB6UTyR6wyNIie92fmcGhpMnT4KIkJa2BYZHokaOHInevXtzXFP8mvLl5MvwneSLT7d8amRKQkTYtWsluI5EFRcXo1+/fmjXrp3Bew8/lHU1ZSGgrAvB6buur8H7mjGUTV/38+fPo1q1akhKSoJu+/ruXSUWLVJZub/zjV6GCWRsE5flI1H6586ahzCMN1q3Jnz66adG8z744AN88skngBuAUarxnwHy4O8Gg4jQ+vPWPLF5rG7cuAEfP0/IqhE+WFnNJu9roaD8/fffo3btWsjI+AYAgWFmYei2ofAK9uI5W2q/zabQUFarPbBjB8HHRw6FQgFZWxm7EupCUCgUUKvVcMZmk1/OQ7lu3bro+11fKIOU+GH3DwCAw4eHQqMhOGqzKTaUrz67Cr9Jfqg61gu5uf4wbPQKDg5G06ZNOb4qAFJB+XHWHVSb4oluy+UoUh80A8P9+/dBRLh48SIMzykPGtTXZMvaUOJBOTWPUH9mec4+Av1zNz4SVVxcjP79+6N169ZIS0szuaa4UM4qfFoagpNZkGkyTw/l4cONX/cZM2ZAJpNBoVBAoVCgaVM5Hj8m3LxJeO21Wlbubwxl/vdTcygXqYvQdXlXswQyS1A2/p0pREnJFHh6KhAcHGw0788//0Tnzp0BNwCjVOM/AeTtt7ZD8YcCnv6eaNCgAUpKuH+B7ty5g4YNG6JTp05Yc+pXM+9rbjkPZYZhMHbsWNSsWRN37tyBbvt6/EHjNBluWYayse2g8FDOy9sKjcYTWVndsfrIUngEeaDyV5Xx+dDPjWrg9kL5qygviF1T/mD4B1COV6Lnqp6lb+Y///wzQkJegjPe1wGxARxznYdyal4qGsxsgDYL2qBC1QrYsGEiDBu9QkND0bgxX15wAGyBcuT1RRCq0Su/OB+vLX4NdabXxvPcLgD80K2bMRgYhkH16tURERGhfYRt9Dp8WImlSy01UBlDuUJ4BVx5doVnrm1QZp3DGqLyZMLDjF/M/t0YDCyUGaYavv/+LbRo0QIpKSk8V7YM5faL2yM9Px32NnppGD98uKESyoaVtRCCw0JZoyGcP/9D6aNpaWm4du2a0ejSpSoyM/1RWNgQtpxTjr5N+GlPBzAWc8z1UGaYq6V+BCcST3DM5YYy13Z7p06dzJq6+vfvr1s1Sw5GqYbbAznqVhSUQUp8vOlj7N23F+XKlcM333xjlI5TVFSExYsXo3r16vj7779L/y0m/h8MjJShsORD6By9uOUclMeMGYNy5crhyJEjSE5ORnJyMsIPhYNUhKknCY7abM6N48oYFWelfD/dE5Une6L7im7o1qMbfvrpJ455tm9fX0qOhJiNXjlFV9BoWiPQT4QJIRNw9+5drFu3Dr6+vli7di0c9b4+knAE2YXZPHMdh3Kxuhhvrnyz1GZyxIgRqFWrFo4cmQe1uhIyM+uhSZOK+PPPPy1cNwCWoKx/U08Gwzi3UmYYBp9t/Qw+IT44du8YLl8+hezs9sjJIURGjsWlS5d0Z0YRHh6OcuXKYdu2bbh27RqCgnoiL0+GkpI3YSlP2RDKmQWLAbBQdXSl/POen6EIVOBIwtdgX6dA5OTk4NKlS7h06RKIqLRmmZiYiJKSp0hIKIPnz+W4dWtb6d9ucnIyiopM3y/4oaxrCEzOSbZrpfzP4RGQqQg741uBq9FL/9wvYNEiAsPI8PBhYOnrbqp69ephxYrxsNfRC5iIM49PW92+nn/WD6QiLL2w1MI1WSgXF3+MS5fOcb7uALBt2zZ4eHhg8eLFuHv3LubMmQOFQoHjx48DbgBGqYZbA1n3qd+w1pGQkIAff/wRnTp1wsCBAzFw4EC8++67CAoKQkJCAscVYwB44lbq26KtlInIeDQh0L+Et6e9DYb5TfsS2A9lnaJvR4t6TjmzIBPN59ZBo9kypOX1wttv8wEZsBXKAFBQchahx3wF377WMI0xMNIH/qF+mLtpLlq2bAkvLy80a9YMixcvNpjrGJQBFm7fxnwr2Pb1D7t/gDJIiaMP2a7l7Oxs/PTTT6hbty7atfNEaqoCT59WRVFRkoVrAtagDAArL63Ex5s+cGr7Ovx4eOnuTmxsLIgIPj6EQ4cIOTmEbt0II0aMAIBSY5Dq1avDy8sLb7zxBh48WA5rKVGsjG02h28f7tD29arLq9i4yrg52kfYmvKDB1+Y/30S+9wTEhJQuTLh6lVCcjKhWTP9v8fGxnLcnx/KbFRpM5vNQ7bc2AJSEUKPjQJfo5fudSciyGSERYsIGg1h8eIunNfUd1nb5+iVmkfwm+RhsaZ8JCEayiDCD7u9YcuRKIaRY906gkJh/rrrtGzZMjRq1Aje3t5o06YNoqKidP8kORilGm4L5MgLkVZqS7Yrt2gzqk1xzfZ13JM4+IT4YGDkQG2DhnM2mwkZCaKah5RoStBrTS+UDy+P26lLIGQgxYnEE6LUlCce+knrSVwJYqVE7b6zW7Ca8tILbF1+wbkFFuYKE90IOG8esuN2FGQqGSYcmsAxT9joRlbO1ZTPPD6j7fj9yqTEI16esqWasjUoX3l2BX6T/AzMa8TPU7Ysy41eCRkJqDy5Mt5c2RXF6tYQNpCCU5KDUarhtkD2mMBlK+m4uPKUueU4lO++uIsqk6ug87LOJlF/zkFZTEevsbvGQhmkxMH7B7WPiJ+nzC/rUF53dR1IRQg7Pg5iRzcK4eh18tExeATJMTpGBlflKQOOQ/n6c4J/qBL9N/bjOJutk/tA+UnWZdSYWgOdl3VGYQnX76t7QdkwrjK3yBC+7gnl3KJctF7QGg1mNkBaXhrESYkyk+RglGq4HZD3Xd8HIsJ7y9+zEMbtmMSEckpuWzSa3RBN5jTR/uKayv2gPCdujkGajKHEg7LaiZSoU49OwSvYC8O3D9euLMTPU9ZBeeg2Llchy1B+lPkI1aZUQ7flXVGk/gSuyFM2lA7Kf+z/DrY0eqXlpaHhrKpoNZ+QUzQMrshTNpY5lHVRpea6jfzianhtsTdqT6+JZznPLFzX9VD2neSLk49OwrDRq0RzgCOu0lDuAeUmcyriaXYSGIbBoE2D4DfJD1efXTWYJzqUJQejVMNtgDx37lw0b94cjZo3AhEhNd3am5Fjion/B9WmEG6lvg2hGr1yi06i4xIFqk5R4kH6ZQsznYdy9xXdOZqO7IfynrszIQ+U49e9v/LMFR7K/x4eDYapCEcavR5mPETVKVXRdXlXk5WQa6B86MEhnrncUM4tykXbhW1Rb0Y9PM99DlfkKXNp/7392vsnwxKUDZvOHqRPgyvylLmlh/LFpyG8q3S26ex9+IQQLjxtAFfkKZuLH8rsa84+zxJNNoBe+GmPAsogBY4kHLFwTemhXKwmABMx4dB4kIqw7eY2jnmiQllyMEo13AbIOlnLQxZCuUWbAXiisORDp1fKReoi9FrTC/6hvjifVAZiRzfqamSPMh85fE752vM2KBNKeH99V16DFVbCQpnVFcQmlLVr+zq7MASt5rdC/Zn1kZLLdTRFfCgDrDfy3Li5VrevNYwGAzYOgH+ov8nKQhooA0BSdhJ+2TuKd/v6u53fQRmkNICF+HnK/DJu9Np9Zzc+2/qZ0euuazqLvD4DrspT5pblPOU/9v+BQZsGYckF1rxmbpwHXJWnbCz7oLztJntk8+W5L7ssT9lAkoNRqvF/EsisYvBRpMyp7Wu1Ro3BmwfDK9gLhx8chqvylIvURWg4q6FD5iHPc5+j/sy6aL3AF9mFZeCKPGVDJeckwyfE2+aaslrzN95fTygT6oXrz69bmCs+lM8nnbeppjz+4J+QqWTYcZvrQ5w0UN53bx+veciCcwtAKuLYHnYPKJvWlGPiYyBTyTDx0ETtXHGiG4XavlYGKSFTyfBV1HAwzDtwRZ4yt2yD8vXn1+Ef6omOS1yXp2wiycEo1fg/DGTnasoMw2B0zGjIA+XYfmu7wVzXQNkRR6+84jx0XNIR1aZUQ2LmdYiRpyx0o9fv+36DPFCG3XcIYuQpC+3otfaKh9ZDeZKFa0oDZS5Hr9iE1VAGKfH9ru95ruleUH5n9Tvwn+SP/hv7m2xnuyeUk7KTUCG8AmQqGQZuHOiSPGXLsgzlF/kv8NKsl9BqfivkFAWJlKdcFgCfCQwANwCjVOP/NJABx6E87uA4kIqw/OJyjrnuB2W1Ro0BGwfAd5IvziWd084TJrrRWMJBeemFpSAVYebpGRAjT1loKJ9+fBpewR4YsV0OhukNMfOU+RUAW6A8ZHM/3HvREJUi5Oi56nUrpxncA8prrnwLUhEqRlREThHX36p7QbmgpAAdl3RErWm1sPLSSngEeWDqyakQI7pRCCiXaErw9uq3UTGiIh6kP9A+yjZ6eQYrsOfubgvXtAfKlnbFALgBGKUa/+eBDOihvOryq7Cl0WvqSbnWhcsSHFwH5bJhZQ0gq5MxlH/e8zPkgXKObVRpodxmQVOk5FaAaaPXkYQjUAYpMTpmtLZu7rz3Nbcch/KoHaNKa/CJmYmoNqUauizrgsKS3RA7T9myAmANyisvrUTL+c3w0iwPvMivDlfkKZsrFrZCuVg9HD1XEcqEeiP2QayFue4BZYYZhi+iRsAr2Atnn5wFwJ4S0H9wdj8o65zOzBsYI5CYSQAmAmAsHIezB8oWJTkYpRr/A7JWN1LmgWE8AAwAw/DDZvF5tt427qAcYuUpW5Y5lFkfXdbCj+tI1Kwzb2gbSrisOAEpocwC7QpS8yqUrpTvvbiHihEVjTyqWbkXlHU6kXgCbRa0MeioBsTOU3YGyhpGg34b+sF/kj/Cj493WZ4yt2JhC5R/2P09lEEyHEmQAViLjIIMTDw0UdQ8ZWPZB+Vpp1gzmDVXVpn965nHZ/Bl1JdutX294tIME6czU7E2m1NPvi3g9jWvJAejVON/QDZSDDZdV+LjTbU4t6+XXFgCUhHG7hoDhhkAsfKUHbXZ/DbmW7NzyttvfQuZivDbvnYQK0+ZX7ZDue3Cphiw0RMpuS3RbG5jNJ7dGC/yuba23AvKL/JfwCPIA4pABS4kXTCZ655QHn9wPGQqGeadneeUo5eroLz4/GKQirDw3Hzotq8PPxgvSnSjZdkG5d13dkMeKMOf+wlcjV76Wr5tNpt6iQPl04+rwDNYhq+jPzVxOjOV89GNNkpyMEo1/gdkE/HVlHX1zO92fqf9pXXeZtNcwpqH6Gw8B216BRqGIEaestA15apTZCgfJkd8mqX7uw+Uxx8cDlIRlEFKl+UpOwPl9VfXg1SEiBNsOpOzNptiQ/now6NQarOYWTlns8kvYaB8K/UWyoaVxXvr3oNasw7O2myaS1goP8l6gupTq6DzMk8UljSBszabejkFZcnBKNX4H5A5ZArlZReXQaaSYczOMSafIN0Xyr3W9ELliMrotLST1sZTnJQoIaH83rr3QCpC1+VKl+Qpc8t2KK+90lTbUf2dIDabYkP5XNJYeId4Y9i2YUa/x+4K5YcZD1F5cmX0WNnD5DXlhjL36s51UE7PT0fj2Y3x8ryXkVWoe/+ybrP5dfTXkKKmnF+cj/aL26P29Np4lnMKjthsqmIDLMxzGMqSg1Gq8T8g80gH5bdXVymFMXczg/tBed3VdZCpZKg8uTJS8wzfrN0XyrPOzCrdgfAO8cLhB2Uhdp4yv6xDWRdoMGJ7NTCMP3SOXg1mNkBiZiLHV0gL5afZv6LWNELHJXVQUGJ+/x23d2DAxgEoLHkIofKU9bIfyjlFPdB6QUs0mNnA5HdYJ2Mozz5j6e9EfCgbdijfe2H6+8UP5Zj4GFx8elH7/1wHZYZhMHTbUHiHeON80nnto/aZhxx+QMgu/AOW30scgrLkYJRq/A/IFvTb3v4gFeHbmAbQMJbeRN0HygUlt9F1eVeUCyvHE3ruflCOvh0NmUqG3/f9DoA1DwGugGEqOuV9bS5hoKzzqGY7qtNgWFPWddFmF2a7zUpZd/ym5rQyeJpN4Ou+1q0wb6cel3SlrGEOYWCkAv6hClx7ftbCTGNHL4D9YCHF9vWPu4fydCjrZNnRq6CkABEnIly2fT315FSQirD+6nqTufZBGSDcTh2D73aOEXL7WnIwSjX+B2Qerbi0AjKVDKNj3sWzHCV+39dI9OhGc9kHZQ3TEIM3+8Ir2FNrbA/EJsTi862fO2yzKTaUzyedh+8kXwyMHGi2AxEQ+63g0Y3OQtncoxowbfRiGAY9VvZwi+1rw5UQezQuAOzrxA3l3KJcVJtSjdPRi1/CQjkgNgAylQzRtz1hzznlB+nTJakpL7lQE6QizDv7j5W5/FBmo0p1mcTiQnnv3d8gD5TjrwN/8cy1D8o74wWvKUsORqnG/4DMoZWXVkKmkmHUjlHQMBocvB8ienQjv2yDMsMw+GH3F5CpCFtvVoEzjl7GEg/KiZkKVJ9aHh2WdEBesfmbrtDRjXo5BmUNU1LqUX3lmanTkH2OXq6C8qRjk0AqwoZrGwzmBsASlLkcvVwF5c03NoNUhEnHJsFVecr8sg7l44nH4RHkgW9jKkKo6EYxoXwnbTDKhxP6rmttxcfe/pQo+6DMtXtXKsnBKNX4H5BNpIPxNzu+MVqxuSJPmV/WoRx2PAykIiw4NwlC2GwaS3goZxW+QKv55VB/JuFZzjLeee4E5fEH21nwqAbcDcpbbmwBqQgBnI03AXA3KF9KvgTfSb74ZMsnBg1asXBXKD/MeIgqk6tom86SIHSeslqTAyGhnFmQiWZzm6HpnHLILCCIlac8bNswC/PSAIzhfY5aSQ5Gqcb/gGwgPhjrpIPyR5E1LZqHuBrKKy6tAKkI/x7+V/sIv83mqB2jTK7reigXq4vRa00vlAsrhxspvWHrkajQY76QqtFr5aWvtB3Vr8MRm82oW1Ecc8WD8vmkRvAJ8cGQzUMsnC0NgDUoV51SFbdSj0HsRq/nuc9Rd0ZdvLroVY7dklg4AuVuy7sZdDubyjko5xTloPWC1iZNZ8IFUkw8NFH7cxOm0UutUeP99e9re0tuQqyUqOjbhIP3P4fl9xKrkhyMUo3/AVmrVZdXQaaSYWT0SAvWcCyUV1xSABgAofKUnYHyzvidUAQqMGrHKJM3XnMo776zG7dSb3Fc13VQZhgG3+z4BsogJQ7ePwhbj0SdSDyBgpKzACrB1VCOTYiFR5AHRkZ3A8MQ7DUPuZ9+X//MzOAoPJSfZB1CzWlydFjig/ziRxbn2lJTBoAidaJoK+WCEl90XtYS1adWx+OsxzxzY2EvlBlmDQDgcdZjQVfKhvGa5glkwkBZp6MPjwqyff3Xgb8gD5Rj9x2dH7XwKVGs2EYvtWY85p+dZ8UjnVeSg1Gq8T8gA1h9ebVNMNYrBoAnIq+3l3T7+vTjX+AT4oN+G/qhRMMVZ8bt6JVTlANVrIrTZlNsKEeciOAI5bA9T/ly8iZ8He3lsu3r+LR4VAivgLdWvaV9vRy32Zx/dj7PNqpwUM4rzsOri15F7enV8DS7EoTKU/4o8iNRzikzTC6GbasG7xBC3JOFVq4ZC3uhXKReiYazGgq6ff3P4e5WShfCQDk5JxneId5Om4esvrwapCJMOzXNZJ54UD6XZEtNmVeSg1Gq8X8eyGuurIFMJcPX0V/bCGNWd9IWSVpTvpX6JSpGELoub6g1/uCTOZSPPTxm5Oill7hQ3nyDdYmacGgCxzzboLwzfqfLasqpealoNLsRms1thoyCDIO5jkFZbPMQDaPBR5EfwW+SHy4lX4IYKVFCQ1nX+7Dh2stwVZ6yuWyHcuT1ISAVIez421aep3Db1844ep1+3A6ewZ74MupLntKFeFC2rdHLWNodPMnBKNX4Pw3kNVfWQB4ox1dRX9kFY52kavRKyk5C3Rl10WJeJaTnE4Sw2dRLHCiffuwB7xA5Pt0y2EJNU/g8ZUehXFhyA92Wd0PlyZWNtpz1cj8oTzg0ATKVzKRe7b5Q3nZzm0Hvg2vylJ2B8oWnF+AT4oPPt7bRli6EDaQQGsqPMreg2hQZuiwri8ISS38j4kOZ/3XXS+d0BjcAo1Tj/yyQ115ZC3mgHF9GfekQjHVyNZTT89PRan4r1JleB4+zHkEIm03zM8DCQvl++n1UmVwOXZbJUFDSB0J6X4/Y7gWha8oM0xhDtxmf5+aWc1Aef3A8x1zHoLzmyhojj2pjCQ/lVZdnwZlGr4tPL8J3ki8+3vSxwe+e+FAuE1qGI6pUJ34oJ+cko/b02mi/uL12R0r8PGVDRd+ORqv5rZCSmwJbGr1yi3LRbmE71J1RDc9zfeGKPGVusVAeGd0Was6yGqsSTQneWf0OKoRXANwAjFKN/5NAXnd1nSAw1ikm/h/0WStDXvEHELPRK6coB68vfR2VIirhRsoN7TznbDZj4mN43sSFgfKL/BdoOqcpGs1uhNS8jRDS+3pn/E6cerQaQjd6BR35XetiVBFipUQdfnC4NDbTXPZB+eQjOTyDlRa2JQEhoXzt+TXtfZLhCJSfZj9B7em1eTqqxYXyi3y2Tm0eVaqTOZQLSgrw+tLXUXNaTSRlJxnMdS2UdX0iaXlpFlfKhqWLy8mX4ao8ZX6xjV7ARFx8eoHzdf9l7y9QBCq0jZ7Sg1Gq4bZATk239qbhmHQw/iLqC0FgrBPD7ADgifvpvURZKReUJOOtVW/xfMJ3Dso67b27V9BzygUlBei6vCsqRVRCfJruDVvYQAoAKFafx7RTvoJsX+vSkIKO/A5X5CknZCRg7K6xDm9fJ2TcQ5XJXui2nFCkXmfleQoHZYA18RiyuZ9d29f5xYQOSyqj5rSaeJL1hGeeuFAG1mLMzjE2bV8zzDMM3z4c3iHeOPuEy8bTtVBmo0rbWjQPCYgNAKkI225uM/hK6aGcnk8oG+aF4duHG/3L8ovLTbOYJQejVMNtgDx37lw0b94cjZs0BhHhveXvmcDBea2/uh7yQDlGbB9hxaXGMRWUbEXt6cJvX5doyqP/xvLwDvHGkYQjPPOcg/LjrMfwCvYSzDxErVHjo8iP4B3ijVOPTpnMFRbKZx6fEaSmfPLRSXgFexmkIYmfp7zn7h6Ha8pZhVloOb8lGs5qiNS8j+CqPGWd7DUPYRgGn2x5HT4hhPNJH8JVecp62V9TnnKyKkhFWHfV0ocd129f8zl6bbq+CaQihBwN4bim9FCOvk2ITRgK3XvJyUcn4RnsiW92fGO4uyM5GKUabgNknXQrZI8JHui/sb9gUNbBePj24aLAWCeha8oaRoNh296DMoiw605jiB3dKISjF8OUwY+7B0MeKOcxxADEylN2FMr30++j8uTK6La8GwpLDJ+P+FB2xNFLrVHjvXXvoWxYWW35QthACr0CIBSUg44EgVSEzTe+h6vylM1lO5R33VkEmYow7mAluCpP2Vj2QfnCUy/4hHiZOJ2ZSnoos9e8WBrS0nV5V9P3ecnBKNVwWyBHXoiEZ7CnIFDecG2DS2Csk1BQZhgG3+/6HjKVDBuvhcFVecrOQnnKyXogFWH+2T+t3F88KJfYkRKVnh+EZnObodHsRkjLS+OY6zoof7rlU4655lD+Ze8vkAfKsffuXoN50kL55z3fgK+mrFu5BR8N1j4ifp4yv8yhbLBdCgC4kXIDZcPK4sMNPaFhqsEVecrcsgxl7xBvHH5wGE+z76P2dC+8tliG/OI9Vq4pNZSvIa84D68segV1Z9Q1CGkpleRglGq4LZCzsrJKu4A3XttozyWMtPHaRsgDWX9VV8BYp5j4f1AxgnD1WU842ug18dBEkIqw+Pxi7SPO22yaixvKHZd05Gg6sg5lXQ123MFacGWesk4x8TH4de8wMExF2NLoVaz+Cz1XESqE+xjUubnkGijHxMfwzNVDefH5eaY1NwNJA+W9d/dqXbbMG73OJZ2DT4gPPt3yqcnKzT2gfPZJoJGxTmpeKhrMbIBW81shuzAbrshTtix+KD/NfoqCkgJ0WNwBNaZWR1L2G3BFnjK3bIMywzAYsnkIfCf5as/Lm0lyMEo13BrIAHAn7U7pv/Fvw3Ar8nokFIEKl8NYp6zCSACeKNH0s3ulPOXkFJCKMOXkFJO5roGyruHtafZTm88pH35wGB5BHtoabCZclafMrSs49aisxe1rhmHwdfRX8AiS40gCwVV5ysYyb/TSMBosubCEc/v68AMPKINk+G7naAvXlAbKAJCSm4I/948t3b5+knUMNafVRMclHXkMbNwDysDa0qjSLsu6oOqUqniY8dBgrntCWRevqQhUoOfKni7LU+aXdSjrEsg2Xd/EdxHJwSjVcHsg67Ti0gp8FPmRzdvXOhgP3TZUEhjrFYNh2+R2bV8vOv8dSEWYeGgiz1zXQLlEU4Lmc5vbZB5y9dlVlA0ri7dXv23wMxI+JcpWKKfmpcJvko/FmnL48XCQirDi0nK4Kk+ZW8ZQvpx8mbOmzNp4lsE7q+Uo0fSCK/KUzRUAS1A+cP9AqXlIZkETvLLIA3Wm10ByTrKFa7oHlKNvsWUAmUqGYw+Pccx1Pyjrfod/2/ebU45eroJy1K0okyAcTkkORqnGfwbIO+N3ljpLWYPypuuboAhU4POtn0sMY1b21JSXXngFpCL8sPt9KzsCrtu+tubo9SgzEbWm1ULbhW050nWkg7KlRq+N1zaCVGRgziGM97W5hHH0MrbxjIKr8pS5FQBLUNbVlGtNqw6fEMKl5CpwVZ6ysWJhD5Qnn5CBVARFoMJlecqsHINy9O3tkKlkpR/cnbXZFBvK155fg3+oPwZsHGDtyKnkYJRq/GeADNgGZXeDsU62QHnphaUgFeG7nQ3BMEq4Mk9ZL/ugnFFAaDGvIurOqGtimmAo94Kyzsv7s62fmXzocU8o99vQD52WdkKVyVUMbDyFC6TQSzgoD9nMej53WvoaGEaclCghoczCjTDhEJU2eo2O4SsLSA/lq89k8A9VYsDG/kZw00E59FgohIpuNJZjUE7JvVZal88psrQoAeAGYJRq/KeADOih/Pu+383+bfONzVAEKvDZ1s/cCsY66aC86HxbmDZ6Lbu4DDKVDN/t/A4MUwRX5imbixvKfpP8jKwkC0sK0X1FY1QIJ9xMsZaBKi2Um86pj6fZFXArtTkqhJdHj5U9TI436eReUN5xewfqz6wPr2AvnH582mSue0J53dV1IBVh+Lbh2lQvxxy9XAXlS8mX4DfJDx9FDoSGGQFAjp3xvxm44XFJOiin5Kag/swqaLOAkFP0KUwbvY49PGZQr5ceykXqmui23AdVJlcyqcvzSnIwSjX+c0AGgIP3D2o9XfXacmMLFIEKfLrlU54oQvfQ5eTZ0DAeMMxT1sF4zM4xBis2YQMpWDkHZV0QO8MwKCwpxODNg+EV7IXjibprChtIISSUi9XFeJZzGHWmy9B8rhfS87kCI3RyHyj/e/jL0gaYq8+uihrdqJfjUD7z+Ay8glk3JsPdh03XF4uWp+wMlJNzklFneh28sugVbfazcaNXblEuAo8E/r/2zjS+qWrdwytpEoYyI5YKKpMMnuNBVMTrwOVePSKg54CooIxWQEGuRxHvcYLupgOljGWSMpWZFkppm5aZFgQBEWgpQwcolbGFYkvnpk32/35IdpsmO/Oeet3P77e+wGKTpkme7LXe9f4ls3ytN+jx2obXzEVny+AoT/lC4QVMTZoq6vI1TdMISHgPmmCCEzeegPMjUQAkIEaxRpMUMsPt0tv4Yu8X2HFxB1RaFcbGjZW0jBvQITlHhbFxXRF1diWLjBmkJ2UAmLV/Frov7Q4FpcDuK4wEhclTZse5lCv0FXg+6nmotSoM3aIWLE/ZFtelvCmjDwhFEH58OkprStFhfgfeohttcV/KNx7+G34L/PDK+lcarT7kPsh1q6OXCf6lXFVbhUFrB8F/ob9VG88GKR/N/4Gz6EZvpWw6FfAJNI1CT+wfiWK2PBy12WSHOykvOrkIhCLYmB4O188piy9GsUaTFvLBaweh0qqgoBR4f+f7TUTGJpJz5kKlJSAUwbQkR1nM0pPyh3EfglAEA1YP4LT3NTveS7nOWIe3t78N31BfLDm1RLA8Zfs4l3JafhrUWjWmJHYGTbeCpx29bOFHyqU13+KZVQTdlrZna/TgdptNE/xJmaZfx4dx76NFSAs76U/ut9nkW8pLTy01nwqItprrWZtNx3gv5ZTcFCiDlPjfg0yDIJebh4guRrFGkxZy/JV4KIOUUAYp8c8d/+S89zWfMA3VlUEEIwXOUzbhmZRXnjG1P5wQP4GTNpt8S5mmaUxPng6fIB/szd0LQJg8ZW+knFWUhXbh7fDG5jdQayiGt202beFWynXGOry19S20mdcMl+8TcNX72gQ/UtYeVZu3ArY4mMcuZfYvz/xKef/VNVAGKVlrZ0w4l/LkhMkQak/50r1LaB3WGu9sf8eqnucqgNchC/n/mZDjr8RDpVVhzK4xSMhKgCZYg/d2vud28xAx2HB+AxSUAp/pPkNi9o/QBBPMSO4OPqMb2XFPyrGX/KCgCL7cFwCapuuXxBb+Yi0q6Ug54kSEVbczE7ocHZoFa7D/amtwnafsjZTvV9xHj8geeHrl0yipLjHPsy306rKoC679wXZ9YaVM0zRmJM+AT5APDl47CFeORA3dMhSVtXkQq9Ar9lKsOdFLDXfOKSdlz8K84/abovAl5eyip9B2ngLDtw12UqxqX8pJ2UkWy9z8SrmocrlVpzO3EV2MYo0mKeQ9WXug0qrwwa4P6pepdTk6R51fJEN0ejQUlAKf6j6t/6a9/2oQrhc3LvRiRzwpMw0fxu1uBSP9BJjl69O3TttZmRBfyjEXlSAUwQ9HfmCddfPhTQAXAHSEkX4WYku5uq4SL69/GY8ueBT5JflW8xpLmamiraqtEvVOOfJ0JMsXnkA4kjLzpTmv+LTgd8pnbp9B85Dm5jaeqfCkoxdg2i4TYvn6QeUD9FrWHf1WNENpTSd402YTMBU3Lj65mLfla70hAIOjCTpFtGZ5DbuM6GIUazQ5ISdkJUClVdndM6ZpGhvTN0py+ZpNxg3oUFKtxveHe0tu+frM7TPwDfXFsK3DUGvIA1uh16lbpzBpzySX22w2hnsp//x7GjTBSoyPV4Cm4xxeMeLEV3g3VtzlayNNMGZXTzQPaY5fb9t7DhpLmaZpDN82XLTla12OzsEyaiAcSbm6rhpdF3fFu7HDBZPyrdJb8F/ob9XGMw3uSvlWaSSaBTfjfU9Zb9BjyMYh6Di/I/KKz4CL3tenbp3irXmIZSva4zcInB+JsovoYhRrNCkhW8qY/Y1gSmlxtaOXkGxM3wgFpcC0pGl2C7hSr4dyGt1owjspZxdl45GIR/DSupfMx0IAtkIvy6YtYks5qygL7cPb4782DoHeMBp8Rzfax3Up/3BkBBQUQdzlN+FNR6/G8CfljIKn4BvaEiNjRjpYRg2EIyk37IfzL+UKfQUGrB6Axxc/ztLGMw185Sl7KmWmolqtVVu08eQuJYoPKS8+udhcdLYerp9TZkV0MYo1moyQG1cLssuYwZ02m0LgiowZuM5TNuGZlG+X3sYTS57A0yufxh9V1pLyrM0m31IuLC9E96XdLfZghclTto9zKTMFfgt+eR9ctNlsDPdSvlOWiq6LlXg+qgUq9L87nCsFKRvplng3djB8Q32RUZBhZ24apCTlhb8sNB8XshYa91KuM5bBWynvzd0LZZAS3xz8xvwn7jQPsUF0MYo1moSQG6oz7b3wbZGKlBkZT02a6lTGDIyU3419DDTtaK+UPyk/qCT4y0p/PLHkCXOsHhv2pRyQEGA1l38pV+grMHDNQPgv9MeNhzcs5rkn5cC0FhCq0OvI9SNQaVX4VPepeW/VuzabsZfYZMqdlCv0FXgu6jl0XeyHO2UdwVXv6/bh7XGh8Aj4KPT6/vCTUFAEidlhTq6ZBk+kPHDNQJaoUgb3pZyU/REUlALfHvrWzjzupPzlvi/NrzvPC72Yiuq3t79ttVrisZRFF6NYQ/JC9kTGDMk5yRgdO9pOi0T+2ZSxyW0ZM+hy5mDlGR+IUehVWvMQA9d0xiMRBFlF7AVRDdhKOSU3xU7OKX9SrjUMx7CtQ9EqrBXO3T3HMs81KR/7/RjK9acAdATfUr5y/wrazmuLoVuGWtVDeCZlyzxn29MG3kvZYDTgnzv+iVZhrcx3mtz1vmZCSeqMtzi9U96csRmEIog40RN8pUQZ6c0ATF2/vL1Tzij4HL6hBKNi+jn5zOBGygynb532aPm6qPJldF/aDX9d9Vc7FdUeSVl0MYo1JC1kx0tx7pFVlCXonTIj4ymJU9yWcQM6ABokZA0SbPm6srYSg6MHo+28tjh/dwJMvz7POnpV11Uj7Ocw3s8p0/ReTNqjhFqrwMFryQ5mup6nnFWUgE91zXhbvr5X8Su6mT/IbBOyAG/ylDemb7RTZ+GdlGcfmA1lkBLJOZbPMbd5yhP3TORs+fqXm79AE6zBxwkfg6YrwGd0Y51xE/qu6OvV8jXTxnPAan9U6AmEyFMGmKhSX7ebh+gNqRgcrUSnCDXySxz1/XZbyqKLUawhWSHHnoutbzzhrYwr9BXwW+CHkTEjBZHy5ozNHMjYRH7JOsH2lPUGPYZtHWYRIuFdR68TN04I0jzku8PfgVAE2zJV4Kr39d7cvbztKVfoe+HFtWp0XtjJamndGs8DKbjeU446GwVCEUSejmSZy310o7dSzivOQ6eITnhtw2sWK2Q85yl7sadcVVuFF9e+aNHGU5g8ZQZ3O3rRNI0piVOg1qpw/EYLcBtIIb4YxRqSFbL6B25kzMDsbfItZS5lzCBEoVedsQ6jY0dDE6zB4bzDFvO8kzKzysGXlJedXgZCESw6uQhC5inb4pqUDUYD/rHjTfiGKnDu7qPgMyWKKykfvKaET5ASM1NmOpgrHSmXVP+Bviv6omdkz/pAlAakJ2WapjFm1xiWNp7SlfKSU0ss2nh60tHrvKMHKboYxRqSE/KBSwdACMGIDSM4FyffUt5yYQsUlAKfJDrqTe0ZfErZSL+ASXs+hE+QDxKzE1nmcSflxnul3kl556WdUFAKfH3ga4u5/Eh5fLwG3u4pW3a12pu7BUJEN6q1aovKV0tck/Ll+5loM0+NYVsJ6ozbnTxO7qUcdTYC7hR61RoIXt/kj/bh7ZFdlG1nHv9SbhnaslFUaWMaSzkwLRCEIth1eRfLXOGl3Ht5b9wtuwt7hV5MRXXj8+fuSDkBjt/v4otRrCEZIa9YsQL9+vVDr369QAhBUbGzN7Rn6HJ08Fvgh6yiLE6vy6eMGXQ5czBkowJlNW+Dq0Ivmj6HmSnNoKAItmeudTQT3kp5bupclmIjz6Scej0VmmANPtr9Ecvzzb2UU6+vhbeFXvNPzAehCNaeY55n/vOUD+UdYg17MOFYyvcq7qHb0m54ZtUzKK35AELlKTOkF6Sbf7eu5SmbllH/EyotQVr+MAiVp9xAg5TvV6yqf0zsoTcmKe+42AWEIgg5FuLgusJKmbmzL6kusblTvnz/MtrMa8NSUQ24LmWniC5GsYZkhMzgTriEpzANLmrqaji5U95yYQuUQUoEJATwJmMGmk4CoMHNh0M5uVP+/vD35taHLSFEdCNgSjLy5pxyRoEv2szzxRub33Dw++NWygBgMJ7H8l9berR8vT1zOwhF8OORH63m8i9lALhTdgdf7f/K5eXrqtoqvLTuJXRe2Nm8z81tIEUDgXAkZcBUtf/R7lFOl6+ZvuXR6cyyKP95yrY0brM5+8Bsu8vXp27FoFkwwfj4tqDpQif/v7BSNtJGDFo7qFHzkKLK5ugR6e+gohrgSMqii1Gs8acUMsPo2NFen1PeemGrYDJm0Bvi0SPS++XrecfnWey/ctv72oStlAvKC9AipIXHzUPySzLhv1CN56KUKKtxdjSDWymfvXPWoz3lo/nToQnWYOKeiXbCT/iX8oFrB1zeUzbSxvo9zTO3z1jME0fKruwp776yGwpKge8Pf2/+E/7zlO3jfE/5xsMb8Fvgh5fXD0BNnR+EyFNmx7XmIRX6IvxndHs8EkGQX+Js68JrKYsuRrHGn1rI3jYPYWT8ccLHgsmYwds95RW/rgChCKg0ymKuMFL2tKNXUWUR+izvgx6R3VBY/gKEylO2xN1Cr8v3p6JdOMEbm59y8hrjX8qudvT67vA3UFAK7L7C9jxIT8pnbp9Bi5AWeH/n+1bvQ2lKuaymDH/76W/otrSbeTtBmDxl+ziXcvel3aEKUuH4jYHgNpCCFdHFKNb4UwsZ8FzKYsqYwVMprzm7BoQimLV/FssdmzSlXKGvwKC1g9ApohNyH+RCqDxlNlyV8p2yO3hiyRN4ZlUnPKwmECpPuTHsUh6zawxr85Cosyrzqkm4g2uKK+XPUz4Gs6d842EaOi/sbBUYYYm0pBxxIgJvb38brcNa49K9SxZzpSvlKYlT6j8v+IlutEF0MYo1/vRCBhqkvCljk0vzt2VuE13GDLqcOWg7j+DsnSFwpdBrzVkfEIpgZspMB9nRwkm5/0/9cb/ivtXcxlKuM9ZhxLYR8A31tVpCFVfKn+reg5HuALZCr7KaMjy7+ll0WdQFt0pvQqg8ZXZspczWYnNv7l74BCnxeYoPaHoohMhTtiUQjqS8N3cv8orzABSgtKY3nlmlQrelXVBY7mgPVhpSPnkzEF/u+xLKICX25u5lmSs9KTMV1dOSptXPMtIV4FnKootRrCEL2czl+5frBWVfVA0ynpwwWXQZM5RU7wCggZEeiVqD/Rf92nOrzTJWgqbZjjdZIoyUmUrNosoi1nPKND0THydMhkqrwr6r+1iuKZ6UTVzA2TttG90p1xpqMXTLULSZ1waZhZnmedz0vrbF80IvmqaxOWMzag21SC9IR6uwVnhn+zswGA9AqDxldgLhSMqA6fXSM/JJtA5T4NK9ThAqT7kxaXBHymvPKUAogq/2f4XJCZMFyVM24ZmUL97LsOlRveCXBW539PJAyqKLUawhC9mK2EuxeG/ne6zL15Yyth85JxY6fKZT2l2+XnduHQhF8HnKdND0KAiZp9wYdik/u/pZm20Dmv4JXx8gIBTBlgubHVxTPCkXVxWjzbxW9cvXNP0AAQkBUGlVVg1WAKlJ+dK9S1Br1Ri2dRj8F/rjhTUvWERschdI0QB3Uh65YyQIRfDq+hcFy1NmJw2uSDn1+iGotAp8piNIzOI3upEd96RcWK7Ak0t80f+n/ijXN3yeuNvRqwG3pCy6GMUaspCtsNc8ZHvmdiiDlJi0Z5IEZWzC3p7y+vProaAUmJE8w3z3z390o2Nc6+jFVIFHniYQMk+5Aff3lOem+oFQxMH2h7SkvOPiDigoBVqGtMTNhzet5kpTypGnI0EoghkpMwTLU3ZMGhxJOedBDtqHt8cbm19HrWEihMhTZsc1KZuOvD2FzgsJbj4cDW/bbDbgspRFF6NYQxYyC9ZSbgoyZrCWMiPj6cnTrZbipS3llWdWglAEc1PnQsg8ZVtcl7JPkI+5cr0zhMxTbsA9KdcaWuHvmweiZUhLqLQqwfKUvZGyLkcHZZCyvjtbQxrcCNC09KRcXFWM3st7o8/yPuZ8bttCr08SP7FzTeGlTNM0xsaNNR95C4Gz6mvTKQ13C726w/Sz2UV0MYo1ZCHbgZHyW1vfgjJIiYl7JkpexgyMlMft7lovY/b9bmlKWROsYSk8k7aUD1w7AGWQEq3DWuJGSVsIladsi2tSpukyfJzgB7WWIPX6MiRlJ2FUzCg7UaXSkHJ6wf/AN9QXI2NGNnovJmUnYfmvy+FqRy8T/EtZb9BjyMYh6DC/A67+cdViXoOUdTlf4/xdR32dhZWybRtP+9XXaflpFg1C3JGy03wC0cUo1pCF7IDvDn8HBaVoUjJmCEwbC0IRfKbrDiPt6ENUWlI+cO0AVEEqfLT7IxiMBqvnXZpSPn/3PFqHtcawrcNQWVsJ4ALKajrwFt3IhZSDjwWb9+b7wLLQCwCyi7Ild6d8p2wWuiwieD6qi8U+ty1J2ZsksXxN069jcsJ4qLVqHPud7d807uhVXVeN8OPhoi5fb8vcBkIRhP0cZjXXcZ5ydlE2pidPd3P52iGii1GsIQvZDjEXY6AMUmJC/AQUlBVg9oHZguYpe0N0ejQUlAKf6t7C4TwfjNv9uGB5yg24L+VTtzqjZWgLDN82HLWGWgSmBXrc0UsoKecV58FvgR8GrhlYX/xC0zSGbHyBl+hGLqS85cIWEIog+FgwrPeUmahSKS1fV+gr8FzUc+i6uA3ulBHYK/S6XnwdmmCNJPaUQ39Wm7/wrHMwr0HKJ27MFXVP+Zeb26AJ1mDSnkl2TpnYl3JyTrLFY+dEyqKLUawhC5kFSxkbjAYczjvsVUcvIdmYvhEKSoFpSdNgpI1IzpkrWJ6yLa5L+dK9Q2gfrsQr65uhstb0jd3Tjl4N8CvlexUb0GtZLzy17Cmbs9R8RDea8E7KqddTodaqEZAQYPHB61lHLyGkbIqr/AdahbVCRkEGhMpTZsc1KcdcjAGhCALTVBAqT9kW16V8vbg3OkUo8NqG5+1sWTC41maTAymLLkaxhixkK2IuxsAnyKdexgzettkUAkbGU5OmNtozFiJP2T7OpZxfko/HFj2Gv/3UDyXV3cBFm80G+JFyuX4UXlhD0HlhO1wvvs46S2pSvnz/ItrOa4u/b/47ywe+NKU8a/8sKIOUSMlNsZgbCKlK+eTNk2gW3Azjdo8DTafCmzab7Ntk3Er5YfVDPL2yD3pGalBU2QlctNmcED8B7u0p2yC6GMUaspAtiL0UC58gH4yPH8/6ZmCkPDp2tMPmIWKwKWMTq4wZGClPS+oGrqIbuZByYXkhei3rhZ6RPVFQXgBHhV62e1viSFlv0OPNLX9H6zAVzt/1gbPqa02wGglZrSFmoVdBOcGTS1qZoxTtvbdspfzogkftRJXyL2Wm37qpYMuaQDiT8uDowSiruQqhCr3yivPwSMQjeHXDqxZ3mmnwRMo/HvnRwWcMN1KuM9bhzS1vol14O2QV/QKuel83nL/3WMqii1GsIQvZjDMZMyTnJGNj+kYBH5lzNmdshoJSYEriFIfdw/bmBiKrSA1gFKQg5ZLqEvT/qT/8F/pb3WXaSvnEjROormP74BdWykbaiHG7x0GtVePI9YNw5UiU6We7AKAjaPpZCC3lCn0Fno96Eo8tIrj5cDzcOadsGVUq5J1yUnY3KIOU+Gr/Vw7mBsKRlBmh3Xx4lvc75eKqYvRd0Rc9I3uiqNJ6LzwNnkQ3AsDR/KO8LV9/nvK5VQMbbnpfA6athlVnVnm6fC26GMUaspAB7Ly0Ez5BPhi3e5xb1dQxF2NEX77ecmGLSzJuQIdyvRqBaX1FXb6u0C/Ay+tfRvvw9rh47yLLXPY85YyCDAQkBLC22RRCyrMPzIaCUiDmYoz5T1xvs7nyzPd4N1bY5WuD0YB3tr+DVmGtkF4QCE/bbI6OHS3Y8vVvd2LQMpTg3dg2MNLOZBMIR1LWG/ToEdmD1+VrvaEl/nvTc2gf3h45D+xdOw3uSrmgfAWahzTnZU952ell5hz0NVbzuJHyb3d+87B5CAAJiFGs8acXsqcyzn2Qy9rRS0gYGX+S+IlbfbV//j1c1D3l6rov8fomglZhzfDrbUditJUyU9Fpu5fPv5QXnVxk7hwWaTWPn+hGb6VM0zRmJM+AT5CPRR9wzzp6NezL8ivl/JJ8+C3ww0vr+qOqthOEylO2xTUp03QFAhL8odYSHPvd2WmCNHCVp9yA+1JOyR0HZZDSnN7EBrfRjR5IWXQxijX+1EJmZMyceXUXe202hYCJfwxICPAo5EKsQq9aQy3e3v42WoSocOx3Aq7abJrgT8rbMgeAUAT/PvRvO/OkJ+Wwn8NAKIK159ZazZWmlIuritFvRT/0iOxhzgkWJk/ZPs6lzLR33ZTRD0LlKdviupQzC2eidRjBP3b0cfKZx62UbauvLzi6oOhiFGv8aYXsrYwZxJAyV/GPllIWonmIwWjAB7s+gFqrxv6r+8BFm82JeyZazeVeygevhUKtJZi0pytoh8+Te1L+/nAL8FXotSljgbmNJ2VnrndSZu/V7bmUa+pq6rtaNV725VbKbea1wW939oGLQq+dl3aCUARzUudAiDzlZ1Y9wxJVyuBcyoXlhXhyyZPo/1NnlOsJhMpTTsxOxNSkqebP2SoAETC9V+wiuhjFGn9KIe+6vKtexnVGhy8Ml9Dl6Cy6NPEL11nMupw5mH/CB3wXehlpIyYnTIZPkA/ir8Sb53nXZjM5Jxmnbp1imcudlM/eOYtWYa0wbOsLqDVowFXv69TrqSipPg6gI7iW8oFrXaDSEkxJ/MDJaQDPU6LsX9d9KdN0DMbHj4cmWIPjN46zzOVOyn9UmZ5nI33HqzvlU7dOoXlIc3wY96HFc8GvlA1GU+JZUWWR23fKVbVVGLR2EPwX+ptDRITJU7bm3N1zdh57I0QXo1hDskIuKnb2xvMMRsYfxn3IiYwZmDdlXnEeb3fK/GUx6wBosP/qy7wsX9N0MWamzISCUmDrha1W87yTMmBaBl90chHn55Sv/XENjy54FC+ufdFcbcx9nvL14hR8ntKMs+Xr83fPo1WYL4Zv80WdsQv4zFPedXkXxuwa4/Xy9ZxUU05wQ6EcG9zmKX+m+8zj5evrxabXxSvrX2Gp/Odfys+uftat5WuapjFm1xi0CGmB3+78ZjFXWCmbokrbsKxq2SC6GMUakhHyihUr0K9fPzzV+ykQQjBiwwjOxRZ3OY4XGTNU11Wj6+KuvDQP4Ttx6lZpNJrxsKdM0+3w70Od7VR0Mngn5dO3TnPePKSwvBA9I3ui9/LeVsdYuJXyvqv7ONtTzi/JR+eFnTFwzUBU6K+C7+hGLpqHrD+/FoQiCD+ugJB5yp7uKZdUE/Rb0c7O8SYG/pev3dlTnps6F4QiiLscxzJXWCknZiciLT/Nyb8XX4xiDckImYG5Q1b/oOZ0X5aR8di4sbzImIGPjl47Lu4QJHGKj0KvkGMzQCiCJacehxApUVxI+WH1EQxYPQCdF3a204WLvzxlT6X8oPIB+izvg56RPc0FUYAQecreSPngtYNQaVX4VDcNNP0RhMpTZnBXyrWGWry+6Wm0DyfILhoNofKUG3BfylsvdLETGGGJOMvXDhBdjGINyQp557mdnBVLxV2Og0qr4l3GDFxKmemrLVTiFJdSXnJqiTnEYAaEjG4cFTPK6vfsupSragdhcLQP2oW3xoVCR5Wg/Eh5bJwG7u4pV9VW4T/W/Qc6RXSyivkDhJTyl/u+ZJnLLuXMwsz6hCzT74rbQIoGAuGKlJf/GgpHhV40TWNK4hSotWqk5X8HofKUbWks5eYhzZF6nf0Y0Ykb26EJJpi0py1outDJ/y8pKYsuRrGGZIVcWlpaL7bYS87eoPbZfWW3oDJmSM5JRsf5HZFZmOnxNez11eYbXc4cvLROgeKqEfC00Gv1b6vrjwmZ9te5633dALuUZ+2fxVJ05FzKtYZavLN9GFqEKHHiRksImafMPHZdzjK4U+hlMBKMjPkrWoa2dHCmm38pH7h2ALdLb9uZ21jKt0tvo+virhiweoBFni4glpTP3D5jfn/Zz1Oef2I+CEUsuvTxn6dsnwYp3y0ztRWlabrRZ0RecR46RXTC4OgXoDf4Qag8ZVs8krLoYhRrSFrIABp943e3fzQj4zG7xggqYwbmw6bOWOf2nTLTylNoGTMY6UQAGtwtG+b2nXLU2SgQiuCLvV9Y/c6EkTLDyZsnXT6nbKSNmBA/ASqtCvuu7oaQecrWGOl0rDnr63T5mqaNmJH8HHyCCJJzApw8Tv6lDAD3K+7jm4Pf2F2+Lqt5A/1/+hseX/w47pTdYbmmOFIGgLT8NEyIf89m+TruchwIRfDjkR+t/oU0pAxsRWBaYP3yNdPGs9eyXuZ9bmHylO3jtpRFF6NYQ/JCZohOj8a7se+6LLb4K/GiytiS8fHj3Vp6Z85IO+urzTd1xgT0XeHe8vXaczNBKIKZKTPtfIESRspFlUXwDfV1qXkITdP4175/QUEpsD1zu3meMHnKbGQUZLi0p8w0pVh7brj5Z+I2kMITKR/KO2R3T7nWsB9vbVWizTwVMgt/Y7uYGXGXry33lH+9vQvNQ5pjbNxYO69naUiZ2VMeFTMKg6MHo8P8Dsh9kGsxt0lJWXQxijWajJCZ5WtXxMbI+INdH4guY8C95iGetvLkC3f2lNeffw6EIvg8ZbiT1Qzhlq9d6egVfCwYhCJYeWal1TXFk7KzQq/NGZtBKIK5qXMhZJ4yO847etE0jalJU6HS+uBQnhpC5SnbEghXpZxd1AOdIpR4ef0AO8EmDNKQckLWV1AGKaGgFHb2lZuMlEUXo1ijyQgZcE3KUpMxgytStmxYIgUZM7gi5Q3nN0BBKTA9uTtoWgUh85QbcF/Kq84MAaEItEe1dq4pPSkz1ckBCQEWX3ykKeX3dr4Hmqbr7+aj06MhZJ4yO4FwRcpt57XBU8s0KKr0g1B5yo1JgztSDj5mOs/tE+TjoKpaClL2BZDhaJLoYhRrNCkhAw1Snn1gts3f7cnaA5VWhfd3vi8pGTMwUo46G2Xzd1KVMYMuZw58QwlO3hwM60KvjekboaAU+Ez3GYx0DYTMU7aFXcp9V/TF3bK7jWbuuPgJFBTBv/b1B+2w0Yq4Uh4fPwJ1xg4ABuD83TRz57BhLPu00pPyhvMbsC1zm0WLSQbpSrm6rhp/WfkXtAtvh6t/nIRQecrspMEVKW/L3GI+0aDA8RtzUFVb5eCaYkvZXvvPekQXo1ijyQkZAI5cP2LT01XqMmbIKMiw6bLFdx1tmMYAAAKESURBVMMSriiq3ApAA5oeiTqj6cNhU8YmKCgFpiVNs/i5+I1u9ETKzPNaUl2CWkMt9l3dB5VWhfHxg2CkCYTKU26M64VewAXszW0NvwU+eGHNsyjX29s+kJaUD+cdhlqrxpCNQ6Cvs14Zkp6UjbQRY+PGonlIc5y8eRLl+nIEHf2G9zxlx6TBkZR//v1naII1mLRnImh6EphCr4yCDExJnMJbnrIt7kjZIaKLUazRJIXMcLv0Nr7Y+wV2XdpVL2MX+qRKguScZIyNG4uYizGiHMvyHB1m7VdiVIw/otPXOshilp6UjbQRL617CYOjB6N5cHO8s/0d8+tFuDxlW1yT8rU/rkEZpIRvKMHt0r9AqDzlxrgn5QuFLdFmni9eXf+qINGNDXgu5W8PfQsFpajvanU0/yhv0Y1cSDn3QS46zO9g+sJj0MNyTzk552vOoxsFkrLoYhRrNGkhM3tpCkph580uXZJzkusfu9Tv6q3R5cyBSktAKIJJ8RMc9NUWW8q3YC3l5b8uB6EIOs7viIfVDy3mRsE1KZfBdSnvh+tSHgN7Ui6rKcPzUc+jXXg7QfOU2XFNyjcfZuGxRRoMWK1EWc1BTtps8i3lqLOjQCiCRScXNfrbhkKvETxJ+b/hmpSPwlLKDyofoNeyXuizvA+Kq4ot5hkAfAxAiaTsWU1RyqKLUayhAECkhEKhaEMIKSWEtAVQJvbjkZGRkZGREQIpCllBCGlNCCmH1B6cjIyMjIwMT0hOyDIyMjIyMn9GlGI/ABkZGRkZGRlZyDIyMjIyMpJAFrKMjIyMjIwEkIUsIyMjIyMjAWQhy8jIyMjISABZyDIyMjIyMhJAFrKMjIyMjIwE+D9e5p5ZBIb7iwAAAABJRU5ErkJggg==\n", "text/plain": [ "Graphics object consisting of 102 graphics primitives" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "graph_wo_points = copy(graph)\n", "if S == S0:\n", " graph += circle((0,0), 0.2, fill=True, color='black') \\\n", " + text(r\"$O$\", (0.5, -0.6), fontsize=16, color='black')\n", " graph += circle(pA, 0.2, fill=True, color='black') \\\n", " + text(r\"$A$\", (pA[0]+0.7, pA[1]+0.6), fontsize=16, color='black')\n", " graph += circle(pB, 0.2, fill=True, color='green') \\\n", " + text(r\"$B$\", (pB[0]+0.8, pB[1]+0.2), fontsize=16, color='green')\n", " graph += circle(pC, 0.2, fill=True, color='blue') \\\n", " + text(r\"$C$\", (pC[0]+0.8, pC[1]+0.2), fontsize=16)\n", "show(graph, aspect_ratio=1, xmax=rmax, ymin=ymin, ymax=ymax, \n", " axes_labels=[r'$r/m$', r'$t/m$'], figsize=10)" ] }, { "cell_type": "code", "execution_count": 90, "metadata": {}, "outputs": [], "source": [ "filename = \"vai_diag_naked_S0.pdf\" if S == S0 else \"vai_diag_naked_S2.pdf\"\n", "graph.save(filename, aspect_ratio=1, xmax=rmax, ymin=ymin, \n", " ymax=ymax, axes_labels=[r'$r/m$', r'$t/m$'], figsize=10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A zoom on the initial singularity:" ] }, { "cell_type": "code", "execution_count": 91, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWUAAAGSCAYAAAA7EtAaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABxlUlEQVR4nO2dd3gU1frHvye9kdBCQgkkhE5ooUgnoYlKkaAE6chVrnIVvffnVfRaUBG9NryKikgJEECRLkongBKqoQRCICSBUEMIKaQne35/7G6y2Z3Zndmd2Z3ZnM/zzJPkzJkzZ7K737x5z/u+h1BKwWAwGAxl4OLoCTAYDAajBibKDAaDoSCYKDMYDIaCYKLMYDAYCoKJMoPBYCgIJsoMBoOhIJgoMxgMhoJgosxgMBgKgokyg8FgKAgmygwGg6EgmCgzGAyGgnA6USaEPO3oOTAYDIa1OJUoE0L6A5jh6HkwGAyGtShalAkhfQkhQ0RcMgVAvFzzYTAYDLkhSi7dSQi5A+AQpTRWQF83AFcAdKaUFss+OQaDwZABxVrKhJCOAIIAHBV4ySgAfzBBZjAYakaxogxgoO7rYYH9meuCwWCoHiWL8iAA+QDOWupICPED0BfAPrknxWAwGHKiKFEmhEwihJwihJwCMBVABYATurZHzFwaA2AHpbTSaLyBhJDVhJBEQsgThBAXQshcQsjXhJDvCSF/EEL66vpOJoR8pzv+IIQMle1BGQwGgwdFLvQRQkIAXAfwBqX0EwH9dwN4h1J63KDNBcAqaEPkPgUwHcBPADZTSg/q+iwFMELXL5lSulnX/j6AuQACKaUa6Z6MwWAwzKMoS9mAaN3XQ5Y6EkKCALQyFGQdvQEkUe1fnWYAAgHs1AuyjgIAYQDu6gVZx10ADXXXMBgMht1QqihHASgCcEpA30nQWsDGeALYovt+EIDdlNJdRn26AsgA8INRe0cAJQDuC5wvg8FgSIKSRflPYx8xD1MArDNupJQeppRmEkLaAGgBYK/heV1cc38ACdTUhzMSwBGB92cwGAzJUJwo6/zJYRDmumgHrV881Uw3/YJdglF7bwB+xu2EkC4A2gL4RdiMGQwGQzoUJ8rg8CcTQl4lhBCOvkJik6MB5AFIMmqP0n1NMGqfDKAMOlEmhMy2NGEGg8GQCjdHT4CD3gCqAJwEAEJIawChHC4GAIhFjbjyEQXgMEcURTSAdErpdaP2GADbKaUPdFZzC3HTZzAYDOtRoqWcCyCPUlpOCPEHsAjAe8addPHF1ymld/gG0qVqB8PUReEOnT+Z47LGAA7pQupeB/CNVU/BYDAYVqBES/krAP0JIRugTR55m1L6gKOfENdFIwC3AGw2aq8PbXTHWo5rXgbwN2gt7O8ppSwCg8Fg2A1FJo9YQhc5kQagC6W00NHzYTAYDKlQovtCCCMBHGeCzGAwnA21ijKrCMdgMJwS1bkvCCG+AC4CaEMprXD0fBgMBkNK1GgpjwfwGxNkBoPhjKhRlIcAWO3oSTAYDIYcqM59wWAwGM6MGi1lBoPBcFqYKDMYDIaCYKLMYDAYCoKJMoPBYCgIJsoMBoOhIJgoMxgMhoJgosxgMBgKgokyg8FgKAgmygwGg6EgmCgzGAyGgmCizGAwGArC6USZaPHn2f2awWAwFI3aRJnyHsX3KD4nNP9DaADk538IDYrv8fe36iimwAgK+FLgUO1zU6ZQEKI9Ll0SPGaPpT1o35l9KSHE5Dh79ix9dderNOyrMN7rFx9bTL0+9KLFFcVWPhOlwKsUIBT4lk7ZPIV2XNKR6nYPV9xRUgIaGFRBCQElBPT8eb6+ayjgQoHnKKBx+LylOU5QIIACAyhQqID5CD/ySvNo72W9aaP/NqJJt5MMzt2mQHsKhFAgzfi6OonaRNnB+ADYBu1G2I8DOFRzKjOz5vtWrQSNpqEapOakovxmuck5VzdXdOzYEYk3EtE/pD/vGLvSdmFI6BD4uPsIuqcpBMAXAF5BXulcbE7ZiFndZ0Gp/2gsXQrkZLsDAGImaNClC1/PaQDiACwHMAeAxi7zk5c+APYCSAYwCoB6dkOr71Ufe6ftRd8WfeHu6m5wpim0m8r7AIiGduvNuo2sokwImU8IOUkIKSSEZBNCthJC2gu4bggh5DQhpJQQkk4I+buc8xQHjzDrRTkoCPD2FjRSVn4WSipLkJOeY3IurG0YNC4a/HX7L/Rr0Y/z+pKKEhy6dgijwkeJfQgjtMK8IXkoKqoqMK1rlY3jyUNJCbBwUc3eBu+9a+nty4RZSdT3qo+dk3ciokkEiiuKkXIvRXeGCbMhclvKQwAsAdAXwAgAbgD26LZ04oQQEgbgNwBHAPQA8BGA/xFCJsg8VxEYCXPZXuDWLe2p0FDBo6TeTwXKgZuZN03O9e7ZG6dvnUaFpoJXlA9dO4TSylKMamOrKAMAwcozDzGqTRia1nsTwLcSjCktwq1kQ5gwK5G39r+FgSsH4sydM7oWJsx6ZBVlSukoSukqSukFSulZALMAtATQ08xlfwdwnVL6CqU0hVL6I4AVAP5PzrmKx0CYr4+taRYhypdyLsH9vjs0GlOh6B3ZG4k3EuHt5o2uQV05r9+VtgstA1qiQ+MO4qbOwcV7F3Hi5gnM6v5fAK8AmAslCbN4K9kQJsxK492od9G6QWsMWz3MjDDXTeztUw7Qfc0106cfgD1GbbsB9KqoMN2Wr6ysDAUFBSgsdMSbUifMmR1rmsRYyjmpCCwM5DzXrVs3JN5IRJ/mfYx8cDXsStuFUeGjJPH/rkxaiUbejTCm/VjofcxKEmbrrGRDmDArCb2P2bww103sJsq6ELUvAPxBKU020zUYwF2jtrsA3HJyTH2vixYtQkBAAFqHh5ucq9LYwzfqA2TOrvkx1HTRjo9L9y/BO4fb/9y1a1ckZiXyui4y8zKRej9VEtdFRVUF1pxbgyldpsDD1QOGi39KEGbbrGRDmDArCUNh3p222+CMXpjrJva0lL8B0BXAMwL6GofDEACcFuH8+fORn5+P9KtXTc69vOtl+whz5q2a70O/Ra2oDDOk5qSi7GaZSXtg00AUuRXh9sPb6BfCLcq703bDlbhiaNhQa2Zci11pu3C36C5m9Zhl0KocYbbdSjaECbOSqO9VH0dmHcHrA18HAOSX5uvONHXcpByMXUSZEPI1gLEAoimlNyx0vwOttWxIEwCVjRo1Muns6ekJf39/1KtXz+TcLxd/waxts+QXZsNwuNBImITLcVBYVoib+TeRk2Fq/ffs0ROJNxIBAH1b9OW8ftfVXegf0h8BXgGc58Ww8sxKdA/uju7B3Y3OOF6YpbOSDWHCrCS83LwAANsubUObr9sg6XaSg2fkWOQOiSOEkG8AxAAYSinNEHBZIrSRGoaMBHDK3Z3bt8rH96O/R/z5ePx84WdR14mmVozyDnDGMRtx+f5l4AFQWlxqcq5nj544mnUU4Q3C0cS3icn58qpy7E/fL4nr4l7RPey4vAOzus/i6eFYYZbWSjaECbPSGBI6BKH1QzF8zfA6LcxyW8pLAEwFMBlAISEkWHdUO1IJIYsIIasNrvkeQCtCyBeEkI6EkGcBzAbwmdibj+8wHiefO4lJEZNsfAwL1IpRbgTeBBMDLuVcMvWc6+jevTsSbyTyui4SsxJRWF4oiSjHn48HAcHkLpPN9HKMMMtjJRvChFlJGPqYh68Z7ujpOAy5RfkFaCMuEgDcNjhiDfo0hTZMDgCgs6YfBxAF4AyAtwG8TCndZM0EIptGghCCTRc34W/b/ya9K6OsjCNG2Uzmn46L9y6iXq6pywUA2ndqjzN3zvAu8u1K24Umvk043A3ioJRi5ZmVGNt+LBr7NLbQ2/7CLJ+VbAgTZiVhKMx1FTc5B6eUWozVopTO5Gg7BCBSyrlUaiqx8sxKVGgqsGLsCri6uEoz8PXrNd/XCofTC/M4aIX5N2hzabSk5KTA854nCo0+MN6+3sj1zkWlppJflK/uwqPhj8KF2PY3NelOEs7dPYePhn4k8Aq9MANaYQaAF22aAx81VrJWlKW3kg2Zpvs6Q/d1KdRfgUAvzCOgFeZdALiNAKWhF+a6iqyirCRiI7TG+eTN2n/TJRPmWot8oUYn+YU5JScFJTdKTIbr1q0bjt86Dl93X3QJMjUN7zy8gzN3zuC1/q/ZPPWVSSvR1K8pHm3zqIir7CPMplay3CLJhFlJ1Peq7+gpOIw6I8pAbWFu5tcMi4Yvsn1Qs6IMcAlzeVU/XL52GZr7pv8q94rsVZ004uZi+vLsuboHBAQjWhuvhYqjrLIM65LX4W89/sZ5H/PIK8z2tZINYcLMcDx1SpQBrTB7uXmhZzNzmd4isCjKgLEwp+V+C81tbt9lt27dsDFrI2b3mM15flfaLvRs1hOBvtyZgELZnroduSW5RrHJYpBPmO1vJRvChJnhWNT+brOKcR3GoYV/C+QU5+C9hPdsW/wTJMqA4eJfyr3ntdHYHDRp0wR3i+5yRl5Uaaqw5+oeCarCaWOT+7boa2PdDOkX/+SPuBACW/xjOI46Kcp6jt04hg8Of2BbgomoOspaYU7JaQEP05wRuLq5ItdPWxaEK2nk9O3TuF9y3+ZQuJsFN7H76m4zsclikFaY7RNxIQQmzAzH4DSivHzFctHXjG43GvEx8Yg/H2+9MIuuo+yDi/d6wvWu6a++Y8eOOJV9Cm0btuUMUdudthsBngF4pMUj4udpwJpza+Dp6onYzrGWOwtCGmFWhpVsCBNmhv1xGp/y7GdnA9/NF32dPrFkyuYpcCEuWDlupfCqa5wxypZJvnkJJXdMP+CRPSLNJo3sSd+DYa2HWbEwV4M+NjmmY4wkKdo12O5jdqwvmQ/mY2bYF6cRZVvQC3NxRbG4Mpi8Mcr8VGmqkHoxlXMHss5dOiP+Tjyej3ze5FxBWQESsxKx5PElwufHQeKNRFy+fxnfPi5H8of1wuy4iAshMGFm2A8myjoMU7G3p27HE22fsBzHLHiRr4Zr+ddQfoO7vKdHi+uoSq3itJQPZhxEFa3CyPCRgu7Dx6ozq9AqoBWiw+QqIm6dMCvTSjaECTPDPqj9XSU5F+9dRMxPMXh2+7OWfcxWiHLKvRTeyIsHAUtRz8MHnQM7m5zbc3UP2jRsg7AGYYLuw0VJRQl+uvATpnebbnM2oHnE+ZiV50vmg/mYGfLDLGUjOgV2QnxMvLDMP2tEOScFLnddoDH6QLdqFYKkvBL0aZ4LV5c/YJiSDWj9ySNb22Ylb720FQVlBZjebbpN4whDuMWsfCvZEGYxM+SFiTIHglOyrRDl5DvJoHdNHcqRkb1w5MYR/L1nKxinZKc/SEdabho+GyG6UF4t4s7GYUDIALRp2MamcYRjWZiV7UvmgwkzQz6YKPOgF+Yfk35EeVU5vF04wt1ExShrSbqQBFphKsoh7UOQU5yDfiFLAXwHQ2Hee3UvXImrTX7gW4W3sDd9L5aOXmr1GNZhXpjVZSUbwoSZIQ9MlM0QGxGLiZ0nghCC6/nX0bxe89oWs8gYZUopriRf4TznEuwC5AF9W0RB+4GoqZWxJ30P+oX0g7+nv9XPsvbcWni4euDpTk9bPYb1cAuzOq1kQ5gwM6RH7e8g2SGEoKi8CP2W96udYGJFjPKdh3c4K8MBwP2A+2jfqD0aejeEYUp2peYx7E/fbZM/mVKKuLNxGN9hvMSxyWIwXfxTTvaeLbDFP4a0MFEWgK+HLz4f+XntzD8rYpQv3ruoLfFvRIOGDXCu9Bz6h/Q3aNUK88mbnZFfVoSR4ZaK0PNz+vZpXLx3ETO6zbDcWVZqhLmk5F9YuKjmw64+K9kQJswM6WDuC4EYZv4BwEqfyah2ZIgRZY4toLp164bD2Ycxt/dcozM+2HP1UdT3OoNezf4FoBOMozKEEHcmDs3qNcPw1krYYkcrzEuXDkZOtvbfYnX5kvlgrgyGNKj9XVMNd+2L6xxt1jMpYhLiY+KxLXUb7iYfrzkhUJRPppwEik3bA8MDoaEazqSRPekHMbz1GLi6DICQXbKN0ddNntplqnS7rdhISQnBwkWjq39+712ZN7a1G8xiZtiO04jy7Ge56g+PB5Ap6X0mRUxCxrwMNMs1yMoTKMpJZ7h36KXBFP6e/ugU2KlWe15pHo7fOI6RrR+DkM1Yudh5ZSdyS3Ixo7ujXRc11PYlJ6FLl2dg712y5YMJM8M2nEaUuXEBEA2phbmhd8Na4XBVLUMEXZeRksHZnl0vG480f8Qky06fWj0ifASEbMbKRdzZOPRq1stE8B2FafZed9h7l2z5YcLMsB4nF+UtkEuYDUV5zvmPLKZk55bkouh6kUm7l5cXkquSOTdJ3XN1D9o1aofQ+qG6FnHCfK/oHn678psCFvhqMI24sP8u2faBCTPDOpxclFsAOAhZhFknyiWNArAydYPFWhl8NS/admyL3PJcHn8yV2q1cGFed34dCAieiXjG0tPYBf4aF0yY1QMTZrlxclEGgJaQXJgNYpS923TAuph1WHtuLdaeW8t7yemM00CeaXuj1o0AAI80r124/mruVaQ/SOepCidMmOPOxmF0u9Fo5NPI4iPZA/NxyUyY1QMTZjmpIyFxemGO1h0HAYRaP5xRjHJsRCzCGoShV7NevJf8ceIPzvbKJpXoFNgJDbwb1Grfc3UP3FzcEBUaxTOi6S7ZhuFy5++eR9KdJLwX9Z7l57EDwrL35N0l23GwcDmGcNT+zhCBhBYzRyGiPs37wIW4YFfaLjy3/TkTV8b5c+c5h7rtd5vbn5y+B/1D+qOep7k3Or/FHHc2DoE+gXiszWNCnkh2hGfvMYtZPTCLWQ7qkCgDkgmzmepweaV5WHFmhcmef1mpWSbDEEJw1f2qiShXVFXgQMYBganVpsJcqanE2nNrMbnLZLi7ugt8KPkQXy+ZCbN6YMIsNXXEfWGIBK4MM6Jskvk3biVKK0s5Iy9atG6BLI8sk0W+EzdPoKCsQMQuI7VdGXuuvoO7RXcVE3VhXSU45spQD8yVISV1UJQBm4XZQh1lQ2EO8g3ChHYTgHumw9RvVR+FXoXo0LhDrfY9V/egoXdDRDaNFD4nA2GOO/sWujRpje7B3UVcLw+2VYJjwqwemDBLRR0VZcAmYRZQR3lSxCR4uHqgW1A3rN+7nvM/1bLAMs6kkT3pezC89XAr0qJ98KBkFbZeCsFHQ7NAyGFYUytDSmyvl8yEWT0wYZYCtb8LquGufWEJK33MAusox3SMQXjDcBw5foTz/C3fWyb+5AclD3Di5gmrS3X+dGEHqjQumNK1L6yplSEl0u29x3zM6oH5mG3FaUSZu/aFEEQKsxV1lM+dPcfZ/rDhQxN/8oGMA9BQjS61WjxxZ+PwaJtHEey3C9bUypASaeslM2FWD0yYbcFpRNk2RAizFXWU8zLzTNrqB9YH8SMmSSN7ru5Bh8Yd0DKgpaCxDUnNScWxG8d0C3zW1cqQCnl2qGbCrB6YMFsLE+VqBAqzyM1Si8uLUXqz1KTdr6UfOjfpXGsnEEopdl+1fpeR1WdXo75XfYxtP1bX4jhhlm9XESbM6oEJszUwUa6FAGEWKcr7Tu8DykzbSwNLTfzJV3Kv4Fr+NRGhcDVoqAZrzq3BpM6T4OXmZXDG/sIsj5VsCBNm9cCEWSxMlE2wIMwiRXn/0f2c7Tn1clDPo16tBJM9V/fA3cUdQ0LFR0wczDiIrIIsnrrJ9hVm++y9x4RZPTBhFgMTZU7MCLNIUT711ynuE02Br45/VSvzb8/VPRjQcgD8PPxEzzjubBzaNWpn4qOuwT7CLL+VbAgTZvXAhFkoTJR54RFmATHKhqRdTDNp8/DxQP3g+lg9fnX1ZqylFaVIyEzA8DDx++gVlhViU8omzOg2A4QQMz3lF2b771DNhFk9MGEWQh1OHhECR4KJwBhlPffT75u0+Yb44pGWj2Byl8lwIS6YsnkK7hXdQ2F5oVWhcJtSNqGkogTTuk6z3NlCdTlbsC17zxZYgol6YAkmlmCibBEDYS6LEhWjnHEjA1UFpoXvixsVVy/y6VOyX9/7OgI8A9CzaU/RM1x1ZhWGhg1FSICwbankEmbbs/dsgQmzemDCbA61v7p2QifM1w3+hRQgyjuP7ORsLwssQ98Wfat/nhQxCS0DWmJY62G4W3TX4tZShlzLu4ZD1w5ZUXxIWleGfX3JfDBXhnpgrgw+mCgLpiWQuajmx9AG/F118KVXI1hbf1lPYVkhjt08hiEth2DAigEWt5YyZO25tfBx98H4juMF9a+NdMJsf18yH0yY1QMTZi6cxn2xfMVyWJtoLZjM4prvQ38G8DrMFTE6d8Y0vdrFzQXtOrZDfa/61W2Hrx1GpaYSj7V9DEF+QZi8eTIAYMXYFWaLElFKsebcGsR0jLEqYkOL7a4Mx/mS+WCuDPXAXBnGOI0oz352NvDdfHlvUisczgOWqstlXTYtbO8R7IF+obWTRval70PLgJZo07AN2jZqCwCChPnUrVNIvZ+K/z32P5EPYoxtwuxYXzIfTJjVAxNmQ9T+atqXWqIcD3OZfw8fPkTRHdPC9qWNS2v5kwFgX8Y+DA8bXh3OFhsRi3Ux67Dp4iacz+beRgoA1pxbg6Z+TTEsbJj4ZzHBOleGMnzJfDBXhnpgrgw9SvoEKZ9aMcr9YC7z7/hfxwHKMUYwaonynYd3kJydjOGta8cnx0bEImNeBroHd4eGakx8zBVVFdiQvAGTu0y2ou4yH+KFWTm+ZD6YMKsHY2GumzBRFoNJjDJ/5t+eP/ZwDuHVwgudAztX/7w/XZuGPTRsqEnfQN9AAMDcnXNN9vzbfXU37hXfExibLAbhwqxsK9kQJszqwVCY6yZK/RQpD946ytzCfPz0cc5hekf2rmXZ7svYh65BXRHkF8R76yGhQ6oz//TCvObcGnRp0gXdgrtZ+0RmECbMyreSDWHCrB70wlw3cZqFPtkxW0fZNPMvNTnVZAjXhq4Y2G5g9c+UUuxL34eJnSaavbXxZqyLH12MbZe24YPoD0Q/hnDML/4pL+JCCGzxTy0cyizBkFBHz8IxyCrKhJDBAF4D0BNAUwDjKaVbzfSPglbdjOlIKb0kwxSFY7EQUY0wV1ZGITsj26RHVVBVLX/y5fuXcaPghok/mQtjYS6vKsfkLpOFz98q+IVZmREXQmDCrHQKywoxa9sspM9Ld/RUHILcr5ovgLMA/iHyuvbQirj+uCLxvMQjqDqcVphTU6ugqeD4NzIYtaq47UvfB3cXdwxuNVjQFCZFTMLhmYdxLe8ahrUehub+zYXO3gZMXRnq8SXzwVwZSua1va8hu8jUqKkryPppopT+Tin9D6V0s8hLsymldwwO4XnHciG4ZGdLHD3B/TcoqE1QLd/x3vS96B/SH74evoKn0cK/BQ5fP4zezXrjhV9fEJWSbT21hXnp0jQV+ZL5YMKsRHan7cbS00vx2cjPHD0Vh6FUEyeJEHKbELKfEBJtrmNZWRkKCgpQWChzXKOIOsoJx7g3Sn2kV42VXKmpxMHMg4JcF4bEn4+Hj7sPOjTugB/++kFUSrZtaIW5pCQKCxfV/BFRn5VsCBNmJZFXmofZ22djROsRmNNzjqOn4zCU9om6DeB5ABMAxABIBbBf55vmZNGiRQgICEDr8HB5ZyaijvJfSX+ZNvoA0V1q/r6cunUKBWUFokRZn1Y9vsN4TO82Heti1mHtubV2FealS7cgJ7spACBmwl2VWsmGMGFWCvN2zUNheSGWj11uoS64k0MptcsBbSrFk1ZctwPAdt3PJpSWltL8/HxacOcqpZ+B5n8ICmi/0qJsrkuso1kzSgFKg4LMdtNoNNSrnhfVPW/N0Rr0WNbm6n4fHPqA+i/ypxVVFYKncPLmSYr3QHdd2VXdtuH8BuqywIW+8vsr4p9JJMXFlDZuUk4B7a/i3LnelNIE2e9rHzSU0leo9m22xMFzkZLVlFJCKf0bpbTKwXPhZ2vKVor3QFclrTJstps+KelQQ0jcMQBT+U56enrC09MTcOPYnVQqeGOUTcnKykJpoenu1S7NgO7BrwLoASAU+9L3ITo0Gm4uwl+CNWfXINgvGMNa16RVx0bEws3FDR0DOwoex1pqR1yUo0uXAEhdKN9xsKgMR5FTnIPnf30eY9uPxfRu0x09HYejrFeHmx7QujUch9kY5dqcOXOGs711x1bwdHMFEI2i8os4mnVUlOuioqoC65PXY3LEZBMhn9BpAjoFdkJReRH+++d/ZXFlmEZceMDeu2TLD3Nl2BtKKV7Y+QIqNZVYOnpp3XZb6JA7TtkPQBuDpjBCSHcAuZTS64SQRQCaU0qn6/q/Am1K3AUAHtBayBN0h+MQsciXeDKRs71/ryEAPgAQjSPXo1GhqRAlynuu7tGmVXfjT6v+M+tPzN8/H8nZyVg5bqWENTH44pLl21rKcTCL2Z78dOEn/HLxF/z01E8I9gt29HQUgdzui16onQyif7fHAZgJbQxyS4PzHgA+A9AcQAm04vwEpfQ3medpHhGifPTkUdNGN2DUI6Ogj2Pel94Vzeu5on0jT8FTWHNuDSKaRKBbEH9a9cjwkYiPia9OMJFKmM1n7zFhVg/KEubbhbfx4s4XEds5FhM7m89qrUvIKsqU0gRo3+F852ca/fxfAP+Vc05WIUKUL5y7YNoYBPRv1V/3Q0vsS2+O4a2vg5ChMFePWU9+aT62pW7DgqgFFv+9M878i3syzuZ/CS1n7zFhVg/KEGZKKZ7/9Xl4uHpgyeNL7H5/JaOGhT7HI1CUHzx4gPu3TXev9g7xRssA7T8Edx/exdm7F/Fa/8UA/gdLhfIB7W7VZZVlgtOq9cKc8SDDZkEWXuOCCbN6cLwwrzqzCr9e/hXbJm1DI59Gdr230mGiLASBMcp8i3ztOrerFscDGQcAAMNaxwIYD8MiRnzCvObcGgwNG4oW/i0ET1kvzACQkJmAQS0HWeXKEFfjggmzenCcMF/Pv455u+ZhZveZGNt+rF3uqSYc7+lXAyZ1lLnhE+UBvQdUf78vfR8imkToFjX46zHruZ5/HQmZCVbXTc7My8SINSOsSjCxrsaFtLtkKwMWlSEVGqrB7O2zEeAVgMWPLpb9fmqEibIlRMQoHzt5zLSRAGMHa60BSin2pu/F8DDDqAvzwhx/Lh7ebt6I6Rhj1fRD64di7fi1VmX+WV8vmQmzerCvMH9/6nvsS9+H5WOXI8ArQNZ7qRXmvrCEiBjlk6dPmjY2BgaGa2sop+WmIasgiyMUzrQeMxBak1bdcTzqeVq/kWRsRCwAYZux6rG9XjJzZagH+7gy0nLT8Nre1/BCrxcwMnyk5OM7C05jKS9fsVyegQUu8hUXFyMzLdOkvUFYg+oqcPvS98HNxY2nVKepxfzX7b+QkpMiyZZP+s1YL2RfQGG55eJN0uwqwixm9SCvxVylqcLMrTMR7BeM/45QXoCVknAaUZ797Gx5BhYoyufPnwfVmO6U2iGiQ/X3+zL2oW+Lvmas3trCvPbctwjyDRJdSY6P2IhYHP/bcdT3qo/somxeV4a09ZKZMKsH+YR58bHFOJp1FKvGrYKfh59k4zojTiPKsiFQlJOSkjjbB/UdBEBrKRzIOIBhYcM4+9WgFeZKDcH65FWY3GW0qPoYlnB1cUV5VTkGrRxkshmrHun33mPCrB6kF+aL9y7irQNv4dW+r2JQq0E2j+fsMFG2hEBR/usvjnKdAGKitQt0Z+6cQV5pnkCrtyX2Xn0Xd4s0mNb1N3BFZdiCh6sHFkQtMNmMFZBzh2omzOpBOmGu1FRixtYZCGsQhg+HfijR/JwbttBnCYExysdPme5e7dLQBb3DewPQxif7uPugT/M+gm4bf34vOgW2RffgSghJMBGLceafPiVb3r332OKfepBm8e/jPz7GX7f/QuLsRHi784eTMmpglrIlBMQoV1RUIOVCikl749aN4UK0v+IDmQcwqOUgeLh6WLxlUXkRtl7aiildZoKQBJiLY7aFSRGTEB8Tj40XN+L07dN22nuPWczqwTaL+cydM1hwaAHmD5wv2BhhOL0oF9l2ucAY5UuXLqGivMKkvXPXzgC0O08fuXYEQ8OGCrrt9tTtKKoowjMRz0BIgoktTIqYhPSX09GneR98/z1Fzj3tW0LevfeYMKsH64S5rLIM07dMR6fATnhnyDsyzs/5cHJRngKbhFlgjDKfPzmqXxQA4OTNkyiqKBIsyvHn49E/pD/CGoTpWuQV5qb1mqKkBHjr8L+Acc8CpMoOe+8xYVYP4oV5waEFuJRzCaufXC3ov0NGDU4uymcBjIbVwmxj5MVTQ58CAOzP2I8AzwD0CO5h8ZY5xTnYfXU3JkcYFx+SV5iXLgVKrjwCdF2Lli/PQqfO9t8lmwmzkhEuzMdvHMcnf36Cd4e8i27B/KVmGdw4uSivB3AKVguz0MgLjo1SXeu5olPrTgC0i3xRoVGCCgJtvLARlFKe+rLyCHO1L/lCLLBpHW40iLf7LtlMmNWAZWEurijG9K3T0bNpT7w+8HU7z885cHJR7gvgd1gtzAJEWaPRcLovgttqd1EorihG4o1EUa6LkeEjEegbyNNDemGuFXHR4Wmsm6DdJfu7U9/ZPLYwmDCrB/PC/Nb+t3A9/zpWj18taXx9XaIO/NYGQivMj0ErzL8C8BV2qQBRTk9PR9FDU7Hv0k27SnY06yjKq8oFiXJmXib+zPoTa8evtdCTu1aGNXDVuOgSEYtgv2D0C+ln1ZjWwcLl1AN3uNyhzEP46vhX+GzkZ+jQuAPPtQxLOI2lbL72hV6YRVrMAmKU+Rb5hvbXivCBjAMI9AlE58DOFm+3/vx6+Lj7YFyHcQImJ43FzJe9NyR0CDxcPXDi5gnM3TmXuTKspm5YzAVleZi5bSYGthyIeY/Mc/Dc1I3TiLLl2hdWCLOAGGW+Rb5xUVphPZBxAEPDhlrcAYRSivjz8RjXfpyI2gC2CbOQuOTMvEx8f/p73pRs6WHCrB5qhPmfux9BTnEO4p6Mk3TD3rqI04iyMEQIs8AYZS5RdvV2RdvwtsgvzcfJWycFuS7OZ5/HhXsXMKXLFIt9a2O9MAupcTGx80TEx8RzpmTLBxNm9TAN21PnYXnSZSx+tAfCGvBnvTKEUcdEGRAszAJilCmlOP3XaZP25u2agxCCI9ePQEM1gkQ5/lw8Gnk3srLOrHhhFpO9p8/8iz8fj1d2vWLF/KyBCbMauFd0D8/tWIfR7brj2R5HYK8dTJyZOrDQx4WAxT8Bi3y3bt1Czr0ck/Zu3bWxmQcyDiDEPwThDcLNzkZDNVifvB4TO0+Eu6u7wGcwRtzin9gaF5MiJsGVuKJNwzZWzs8a2OKfkqGUYs6vc1ClqcKyMb+DkL1w9C7ZzkAd/q1ZsJgFiDKfP3lE/xEAtKI8rPUwi/7kP67/gayCLCtcF8YIs5itrXHxdOen0aNpD5RWlmLxscXMlWE1zmExrz23FlsubcHS0Ut1e07af88/Z6QOizJgVpgFiDJv5MWAocgpzsHZu2cxNFSY66JVQCuJQtAsC7Ot9ZITsxLxrz3/YgkmNqFuYb6efx3/+P0fmNZ1GiZ0mmBwhgmzrdRxUQZ4hdlKS9nV3RXt27dHQmYCACA6LNrs3curyrHx4kZM7jK5uqKc7fALsxSV4KLDorEuZp1Vm7FaDxNmpaChGszaNgv+nv7432P/4+jBhNkW6qhP2RgOH7OAGGUuUW7etjnc3NxwIOMA2jVqhxb+LczeeVfaLjwofYDJXYxrXdgKt49ZqnrJxpuxrhy3UsI/KnwwH7MS+ObENziQcQD7pu1Dfa/6PL3ssxmrM8JEuRojYc7M0DbzxCjfv38f165dM2mPjIwEoItPFuK6OB+PrkFdEdEkwoa581FbmEtKErBwUTNYv0N1bfTCfO7uORCY95tLBxNmR5JyLwWv73sdL/d5GcNaW9rajAmzNbDfUC10wlx2Erh1W9vE47o4c+YMZ/uw/sNws+AmUu+nWgyFKywrxPbU7RIs8JmjxpWxdGmcxHvvaYV54bCFIITgaNZR5sqwGuW7MiqqKjB963S0CmiFRcMXCbyKuTLEwkTZhIHA9WU1P4Zyux/4Ii8e6fUIDmYeBABEhUaZvdOWS1tQWllavTWTfLTUWclzqlukrpd8o+AGouOiWYKJTShbmD868hGSbidh9fjV8HH3EXElE2YxOI0om699IZLMxjXfh54AV4IJV+QFcSHo0qULDmQcQNegrmYqvWmJPx+Pwa0Go2VAS1tnbJGlS0OQkx0EAIiZsBNdumRKOn4L/xaIezKOZf7ZjDKF+dStU/jg8Ad4a9BbVm7txIRZKE4jypZrX4igVuRFNrjimDkX+cKbw9PTE/sz9lv0J999eBf70vdxFLOXHtOIi28g555/TJhtRVnCXFJRgmlbpqF7cHf8Z/B/bBiJCbMQnEaUJaWWKC+Ecbjcw4cPkZqaanJZzx49kf4gHdfzr1v0J/904Se4Elc81ekpyabNh2nEhX7BRT5h/uv2X8grzZN0bH6YMMvJ/P3zkfEgA2vGr7Eh41QPE2ZLMFHmopYoPwHjOOZz586BUmpyWVS/KBzIOAAX4oLBrQabvcW68+swqs0oNPJpJOHETeGOS5Z/M9akOUlo5NMIuSW5zGK2GscL84GMA/jq+Ff4ePjH6BjYUaJRmTCbg4kyFyYxyrUTTJKSjnFeFhkZiQOZB9CrWS8EeAXwDp+Wm4bjN4/LHHWhhT97T15hdnd1R6WmEtFx0SzBxCYcJ8z5pfmYuXUmokOj8fIjL0s8OhNmPpgoc8FZR7lGmP/661POy7p16yYoPnn9+fXw8/DDmPZjpJoxJ5az9+QVZjcXN7w58E2W+WczjhHml3e9jPyyfKx6cpVMiUFMmLlgySPGmK2jrBXmpCTTZIWmrZriRtkNZBdlm/UnU0qxLnkdxrUfJzKsSDzCsvek21qKC+PMvxVjV9ihCDpLMLGVzSmbsfrsaqwat0rm6CCWYGJM3X56LizUUS4v74PkZNNfW6/IXkjITIC7izv6h/TnHf589nlcyrmEZyKekWK2vIircSGvxRwbEYt1Meuw/vx6JN5IlHRsfpjFbC13H97FnF/n4MkOT2J6t+my3KM2zGI2xLlF+dTn4q+xUIjowoULqKioNGnv36c/Eq4loE/zPvD14N+YdUPyBjTwaoAR4SPEz00E4ivByS/MV1++ioEtB4JSCg21xwePCbNYKKV4bsdzcCEuWDp6qcWys9LBhFmP84gylwCf/ARI/EDcOBZEmS+Tr3v3DkjITDCbxUcpxYbkDZjQcQI8XD3EzUsE1leCk1eYQwJCAAALDi3AzK0zmY/ZauQT5pVnVmLH5R34YfQPaOLbRLJxhWEszHUT5xDlxA+0AszF0XfECbOVouwTsgA5xTlmRfnkrZPIyMuQPa3atnrJ8gozAHRo3IElmNiM9MKc8SAD83bNw6zuswTuqC4HhsJcN1H/Ql/iB1rhNYf+fL+3LY9nQZS50qsDg+vjfNFFuLsQ9GvRlXfoDckbEOQbZLEmhi3UWMm2VIKTd/FP/0dpymZtSODKcSvZ4p9VSLf4V6WpwsxtM9HIuxEWj1oswdxsYZrlLk6Mui1lIYKsR6jFbKaOclVVFc6ePWtySa/Ifki41h99mhP4esSCq1aGhmrw84Wf8XSnp2UVIFt3FalB/gQTfUr24mOLJR2bH2Yx8/F54uc4cu0I4p6Mg7+nv3TTs5q6K8zqFWUxgqxHiDBzxihrSUtLQ1GRqeD2jOyJhMxkRIVOBd+ef39e/xM3C2/K6rqQYleR2sgvzHum7sGLve1ZO5gJszFn7pzBfw78B//X//8wJFTt/z2oH3WKsjWCrMecMJuNUebfky8wPFDnT54Gvj3/NiRvQIh/iET78HEjnZVsiLzCPKz1MHi7e+Pc3XOY9/s85mO2GuuEubSyFFM3T0WnwE74IFrkojhDFtQpykffled6CzHKfIt8+Q3z4e7ijn4t+oFrz79KTSU2XtyI2M6xsm2ZJL2VbIj8i3+X71/GNye/YZl/NiFemN/c/ybSctOwNmYtPN085Z0eQxDqFOX+C+S53opFPv/6/jhXes4oPrm2MB/M+B33iu/J6rqQx0o2RF5hfqrTU2wzVkkQLsz70/fjy2NfYtGwRTJtR8awBnWKcr+3gf7vW3dt//f5ozDMiDKllNNS7hXZC4euHcKQVsa+uBph3pD8PNo0DEdk00jr5mwBea1kQ+yT+bf23Fq8/LvUBXD4qJvC/KDkAWZsnYGhYUMxr+88+06PYRb1hsTphVWMb9mcIANmRTkrKwu5ubkml7Tq0AoHig/whLkNRFnlNmy+NAz/6N0KhBQD4M/2sxapdqgWhvy1MgghFncBl5a6Fy734m8voqiiCKvGyVVsiGEtsr4ahJDBhJAdhJBbhBBKCHlSwDVDCCGnCSGlhJB0QsjfeTuLsZgtCTJgVpT5FvnQVFsNja/exZ6rRcgrBSZFcO9gYiv2s5INkddinth5IvqH9EdFVQW+Pfktc2VYDbfFvO78OmxI3oBvH/+2OsuSoRzk/gT7AjgL4B9COhNCwqA1U44A6AHgIwD/I4RM4L1IiDALEWTAbIwy3yLfLb9bZutdbLiwARFNItC5yR7whcvZgvy+ZD7kX/xLvJGIl35/iWX+2URtYb6e/yFe3Pkinol4Bs90kbcoFsNKKKV2OQBQAE9a6PMJgBSjtu8BJOp+5ufQ65R+Bpr/ISig/Uo/A6VH3zd7WS2aNaMUoDQoyOTUmDFjqO4Zqg9vH2/a+OPG9M19b3IOV1ReRH0X+tIPD32oazlCKfWjlEZRSh8KnxcPxcWUNm5STgHttM+ds3lIK7hGKW1NKQ2llGZIPvr68+upywIXOm3zNFpZVSn5+NwUUUqHU0p9KKUJdrqn3GholWYejV4F2uKL+jS3ONfRExKC3fRJSYfSnEn9AOwxatsNoBchxPzmYL3+ZdrW+3VhFjJgVYxy+87tkVPKX+9i5+WdKKooqq4pzBUuZwuOs5INsV/mH7OYbYFg8bEQHMwE4p7MQwPv9Y6eEIMHpYlyMIC7Rm13oV2QbMx1QVlZGQoKClBYWGh6kkuo+TATo3zv3j3cvHnT5BL/UH+z/uQNFzagV7NeaNOwjUGrNMLsGF8yH/YR5obeDe24KOVcwnz+7nnM3/8m/tn3VQwNewWO3oyVwY/SRBnQugYMITztAIBFixYhICAArcPDbburmUU+Pn9ycaNiXn9yQVkBdl7eiUmduWKTbRdmZVjJhsgvzItHLQYhBKdunWIWswjKKsswZfMUtG/UHguHfQRHb8bKMI/SRPkOtNayIU0AVAK4z3XB/PnzkZ+fj/SrV227sxWRF1e9riKqVRTnuW2XtqGsqgwTO0/kuaH1wqwsK9kQ+Rf/7jy8g8ErB7MEExH858B/kHo/FWtj1sLLzQtK2CWbwY9SPs16EgEYb8kxEsApSmkFR394enrC398f9erVs+3OIi1lN3c3PPB7wOtP3nBhAwa2HGgh5Mg6YVaelWyIvMIc7BeMleNWssw/gSRkJuDzxM+xcOhCdA0yLCvLhFmpyB2n7EcI6U4I6a5rCtP93FJ3fhEhZLXBJd8DaEUI+YIQ0pEQ8iyA2QA+k3OeAERbysFhwXDz4PYn3y++jz1X9/C4LowRJ8zKtZINsV/mHxNmfvJK8zB9y3QMbjUYr/Z9laMHE2YlIvcnuheAJN0BaN8BSQD0gcVNof0EAwAopRnQvuOjAJwB8DaAlymlm2SeJ2+MckFBAdLS0ky6uzd3R+9mvTn9yZtTNkNDNXiq01MCby5cmJVtJRtiH2E+mnUUOcU5ko7Nj7qE+R+//QP5ZfmIezLOTA1vJsyKw9ExeSIPfoqyTeOUi7LNXlILnhjlw4cPm8QnA6B+T/rR+fvmcw41NG4oHRY3TPi9qzEfx6yMuGSxyBvHXFpRSimlNL80n8UxG7Dh/AaK90DXnF0j8AoNpfQVqv2YLZFvYuJwtN6wOGWHYSZGmW+R72HDh5z+5OyibCRkJphZ4DOHeYtZPVayIfJazJ5unqjSVGHEmhEsjlnHzYKbeGHnC5jYeSKmdJki8CpmMSsFJsqA2RhlrkU+Qghcm7py+pO3pGwBAcH4DuOtnAy3MKvDl8yHvMLs6uKKV/u+yhJMoN12bOa2mfBx98F3T3wHQojli6phwqwE1FslTkpERl74NfVDRFgE/Dz8TM5tvLgRUaFRCPQNtGFCemF+DFph/hVLl/rasRKcHLDNWO3B18e/xr70fdg7bS8aeje0YgTpNmNlWIfaPtnywCPKpaWluHDhgkn3iiYVnK6Le0X3cDDzIJ7u9LQEk6qxmEtKYrBwUXn1GXVZyYbYJ/NvffJ6JGQmSDo2P8qxmC9kX8Dr+17HvEfmYXjr4TaMxCxmR6LWT7e08IhycnIyqqpM/xUuDSzlFOUtl7YAAGI6xkg0Ma0wL13aHTnZHtqxVeNL5kN+YU79RyqGtR4GQLuQLT+OF+byqnJM3TIV4Q3DsWjYIglGZMLsKJxGlJevWM7RKvADySPKfOnVLk1dOP3JGy9uRHRotI2ui9qUlAzEwkU1ewq+926pZGM7DnmFuXWD1gCAT//8FDO3zawTPua3D7yNC9kXsHb8Wni7e1u+QBBMmB2B04jy7Gdnc7TOhyBh5olR5ou86Najm4k/Oac4BwczpHJd1KCNuPABAMRM2IIuXZ6A1IXyHYP8KdktA1rWiQSTAxkH8OnRT7Fw6EL0aNpD4tGZMNsbJ1/oWwHAG8DXqKlrxIFelIOCAO8aK4PLUnZt4IphnYaZtG9J2QIKivEdrY26MKUm4kK7wPfeu61QE5XxK+TYWsq+yL+1FABM3jwZALBi7AqnW/zLLcnF9C3TER0WjX/1F1EVURRs8c+eOI2lzM3nAJYAeAm8FjNPjHJlZSXOnj1r0r2qSRUGtRpk0v7zxZ8RFRqFJr5NbJ61HtO45EhIWY9ZGdgvJfvTo59KOjY/9rGYKaV4fsfzKK4oRtyTcTKXNWUWs71wckt5GoB6AJ7X/cxhMfPEKKekpKC0lMN/2wwY2HJgrSa96+Kbx7+RYM5aTK1k/QfONFyOWczmiY2IRQPvBujXop9kY1pGfot51ZlV2JSyCb88/YudNpplFrM9cHJLGQCeA/ADeC1mnkU+Pn9yqw6tTOI/9a4L6aIuLGXvSbuDiTKQ12IeGT4S9TzrITUnFf/c/U/V+5jTctPw0u8v4dnuz2JCJ/4tLKWHWcxyUwdEGTArzCJFObp/tEnbxosbMaTVEMlcF8Ky95gwW0NydjK+Ov6VqjP/KqoqMGXzFDSt1xRfPfaVzeOJhwmznNQRUQZ4hZlHlE+fPm06hB8wqvuoWk05xTk4kHFA0qgL4TUumDCLZUKnCarf8+/9Q+/j9K3TiI+J58wqtQ9MmGXD0RWRRB78CK4S94NuqLmUUg2lkyfT6rJrKSmUUkorKyupr6+vaXW4tqA3C27WGm3Z6WXUZYELvVN4x+z0hGJdJThpd8lWBvbZJfv57c9LPjY/tleXO5x5mLoscDHYId3RyFpdztF645DDyRf6uHhO91W3+McRo3zlyhUUFZlanQ1aN0Czes1qtW28uBGDWw1GkF+QJLMztZKF/DPDFv/EMiliEggIGvtw7scrE7Yt/uWV5mHqlqnoH9Ifbwx8Q54pioYt/klNHXJfGGLgysjUhb0ZxCjz+ZN7RNYOzL9ffB/70/dL5rqwrRIcc2WIJTYiFsNaD0OVpgrL/1queFfG3N/mIq80D2vHr7VDvLUYmCtDSuqoKAPAc0DZEuCWTrws+ZMBPD7o8Vo/b720FRqqkSzqwvZ6yUyYreHEzRN4/tfnFZ35F38uHuvOr8P3T3yPVvVbWexvf5gwS4XTiDJ37QsLXDfYozX0PvSLf5yWsg8wts/YWk0bL27EkNAhCPYz3oBbPNLVS2bCLJZ+If0UvedfxoMMvPjbi5jadSqe6fKMHeZmLUyYpcBpRJm79oUFakVepAF4CRpNFacoe7TwQJuGbap/zi3Jxf4M6VwX0u4qwoRZLErdjLVSU4lpW6ahoXdDfPOYdMlJ8sGE2Vbq4EKfAbVEeQqAJcjIyEdBQYFJ1/DO4bV2cdh6aSuqNFWSuC74s/dsgS3+iUVfK2Nv+l7JxrSM+cW/RUcWIfFGIg7PPIwArwA7zssW2OKfLTiNpWwVtUR5KoAfcPr0Ws6u/XvXLtWpj7qQwnUh3957zGIWS2xELH4c+yNcXVxx7u45h1rMx24cw4JDC/CfQf/BgJYD7DAPKWEWs7UwUdYTGgrgOfz11yjOrhOG1aSy5pXmYX/6fjzV6SmbpyD/3ntMmK0hpzgHA1YMcFiCSWHZ75iyeQp6N++Nt4e8bYf7ywETZmtgoqxHF6P811+mH0DiRTCy18jqn3de3okKTQWe7PCkzVOwzw7VTJjF0tinMZaNWeawzL+Xd41BdtFtrB2/Fm4uavYyMmEWi5pfbdsxqqNMKeVc5GsU3qhWXOiWS1vQp3kfmytzyeNL5oP5mMXiqM1Yf74wHavO7MPKcVUIb3gDQLjM95Qb5mMWQ921lDnqKF+/fh3379836dqpqzv04XLFFcX4Pe13xHSwfYHPPlayIcxiFot+M9aEzATcfnhb0rG5yMrPwpxfX8bTnWIwo9sgOHozVulgFrNQ6q4oc9RR5svkG97/NvRFjPZc3YPiimKbdxiR35fMBxNmseg3Y23h3wJF5UWyuTKqNFWYtmUa/Dz88P3oZSBkO5SwS7Z0MGEWQt0VZY7qcHyiHDPsXeiry21O2YyIJhFo16idTbe3v5VsCBNmsXi7e0NDNXh83eOyxTF/dvQzHL52GKufXK2r2e34XbKlhwmzJZgoA9WizJVe7erlio7t3wHwAyqqlmDH5Z8x3sYFPsdZyYYwYRaLC3HBi71elCXB5PSt0/jPwf/g3wP+jegww5rdTJjrGkyUASA0FJRSTlFu0a4FXFxcADyHhMxXkFdahpiOlyFol2weHGslG8KEWSxyZP4VlRdh8ubJ6BrUFe9Hv8/RgwlzXcJpRFl07QsjUb59+zays7NNuvWM7Fn9/eaUUoTVb4xuQT/D7GasZlCGlWwIE2ax6IU5/lw8dl/dbfN483bNw42CG1gXsw4erh48vZgw1xUcrQiSIbr2hVGMMp8/+bHBjwHQLsJsubQFMR1ngBAze/5ZQDlWsiFMmMUSGxGLCy9ewONttZUDKbXuP6efL/yM5UnL8b9R/0P7xu0t9GbCXBdwGlEWjVGMMl+5zn59tDsgH7txDHeL7upqXVjYjJUH5VnJhjBhFoteRL87+R1mbpsp2pWRmZeJ53c8j4mdJ+LZHs8KvIoJs7OjJFWwHxwxylyWspunG9q3137wNqdsRrBfMPq26Ks7K16YlWklG8KE2RoaeDfA2nNrRWX+VWoqMWXzFNT3qo+lo5fWKnZlGSbMzkzdzOgTGKMc3jEcbm5uoJRiy6UteLL9k3Ahhn/HjLaWwtfQvrlMsW/2ni2wzD+xWJP59/6h93HsxjEcnnkY9b3qW3FX27aWUibGmX91M+uvboqy0SJfdnY2bty4YdJtQB9tZa6zd88iIy+Dp0ynMGG2bu89R8GEWSyGwty2YVuzRYQOXzuMhUcW4r0h79lY/c3ZhbluwkQ5NJR3kW/AI9oPzOaUzajvVR9RoVE8A5oXZvVYyYYwYRbLpIhJ8Pf0R78W/Xj75JbkYsrmKRjYciDeHPSmBHdlwuxsqEEdpEegKEdGRgLQivLY9mPh7upuZlB+H7Pyfcl8MB+zWB5v+zgaeDdAZl4mXt/7ei0fM6UUz+14DkXlRRJvfuqsPua6CRNlHlF2c3dD586dcfn+ZVy4dwHjOwipdWEqzMqOuBACE2ZrSLqdhM8SP6uVYPLD6R+wOWUzfhz7I0ICQiS+ozMKc91EbQohDUYxylzhcB06d4C7uzu2pGyBj7sPRoaPNOnDTW1hXrqUqtRKNoQJs1jGdxxfK/Pv/N3zeHX3q5jTc45ku5+bwoTZGajbohwUhNySEmQairSOfr21fsHNlzZjVJtR8HH3EXEDrTCXlCzHwkV51a3qs5INYcIsFsOU7CGrhiCsQRi+eFRuXykTZrWjZpWwDqMY5aSkJM5uPXv2xO3C2zhx84RA14Uxz2Hp0gPIyW4AAIiZUKVSK9kQJsxiiY2IxYjWI1BYXoj1E9aL/ONuLUyY1YzTiLLg2hdGMcp8i3w9e/bEr5d/hStxrU6lFYPWl9yr+uf33v0EthQxUg5MmMWwI3UHdl/djS8f/RJdmnTBmrNrHLoZK0P5OI0oC659YbTIx1mu080VERER2Ja6DQNbDtTVthVH7YiLq+jS5S1YW8RIeTBhFsKtwluYtW0WxrQbg7m95+LUrVOYuW2mwzZjZcKsDpxGlAUjIPKic6fOqHKpwr70fRjbfqzoW5hGXITDmloZyoYJszn0u4h4uHpgxbgVIISgd/PeiI+Jd9hmrEyY1UHdSx4xEOWiJk1w5coVky69evXC3vS9KKsqw5h2Y0Tfgjt7T3hKtnpgCSZ8fHr0UxzMOIi90/aisU/j6nZHbcbqfAkmzkudtpQvFnFbd5GRkdieuh0dG3dE20ZtRQ1vPi7ZuupyyoZZzMacuHkCbx98G68PeB3DWg8zOa/fjLVCUwEN1UgwXyEwi1kt1GlRTtRHYRjRrXs3/Hr5V6tcF5az95gwqwPrhDm/NB/PbHoGkU0jeXYR0TIpYhLWxayDu6s7LuVcYq4MRjV1V5SDgnAyOdnktIuLC8oDy3Gv+B7GtR8namjh2XtMmNWBOGGmlGLOr3Nwr+heteCagxCCvNI89FveT7bNWE1hwqx06pYoG8Uocy3ydezYEbuv7UYT3ybo07yPqOHF1bhgwqwOhAvz8qTl+OnCT1g2ZhnCG4YLGr2+V318/8T3smzGyg8TZiVjF1EmhLxICMkghJQSQk4TQgaZ6RtFCKEcRwebJ2IQo1zZogUuXbpk0iUyMhLbL2/H6LajRS3AWFfjggmzOrAszBeyL+Dl31/Gc5HPITYiVtTocmzGahkmzEpFdlEmhMQCWAxgIYAeAI4A+J0Q0tLCpe0BNDU4TMMkxGLgT77j7Q2NxnSRpUX7FriUc0m0P9n6SnBMmNUBvzAXVxQj9pdYtG7QGotHLbZqdL0w77m6B1kFWbZPVxBMmJWIPSzlfwJYTin9kVKaQil9BUAWgBcsXJdNKb1jcNhuPhiI8pWKCs4ueQ3y4OXmheGthwse1vZKcEyY1QG3ML+y6xWkP0jHT0/9ZFMadWxELNJeSkNo/VCUVJQwi7mOIqsoE0I8APQEsMfo1B5o3wXmSCKE3CaE7CeERPN1KisrQ0FBAQoLCy1PyECUk3JzObucJWcxvPVw+HoIj7eVpl4yE2Z1UFuYf0r+Bsv+Wob/PfY/dG7S2ebRfT18QSnF+J/GswSTOorclnJjAK4A7hq13wUQzHPNbWgzLCYAiAGQCmA/IWQwV+dFixYhICAArcMFLKwYiPKha9dMToe3Dcexe8cwtp1w14W09ZKZMKsDrTCnP6jC87++jNjOozG7h8A0fwEQQjCz+0yW+VdHsVf0hbG6EI42bUdKUymlyyilf1FKEymlLwLYCeD/uPrPnz8f+fn5SL961fIsDER5f1qayenG4Y2hoRqMaS88i0/6XUWYMKuB8qpgTPqlIRr7uOKHMedAiOkfeVvQJ5gwYa57yC3KOQCqYGoVN4Gp9WyOYwA4U+s8PT3h7++PevXqWR5FJ8oVDRuiiGORr7hxMR5p/giC/fiM+NrIt6sIE2al8+b+N3HmzkX89NQW+Hu6QY6yn4bCvD11u6Rj88OE2dHIKsqU0nIApwGMMDo1AsBREUP1gNatYT0GMcq5AQGcXa54XhFV60LevfeYMCuVnZd34vPEz/Hx8I/Rq9loyFmPeVLEJJz9+1mM72hNTW9rYcLsSOzhvvgCwN8IIc8SQjoSQr6E1in3PQAQQhYRQlbrOxNCXiGEPEkIaUsI6UwIWQStf/kbm2ZhEKN8nXAXAiptXIon2j0haDj77L3HhFlp3Cy4iZnbZuKJtk/g1b6v6lrlLZQf0SQCALD67Go8u43FMTs7sleJo5T+RAhpBOAdaOONkwE8TinVO+GaQvuu1uMB4DMAzQGUALgA4AlK6W82TcTAn3yBoxBRQHAAfAJ90C2om6DhuCvByQGrLqcUqjRVmLplKjxcPbDqyVUgtf64S1Ndzhyerp6IOxuHKlqFFWNXsOpyzgqlVE0HP0XZlH4Gmv8hKKD9SosW15z/4QdKAUoBOtfVlUJrdlYf9XrUo7O3zTZ7Cz3FxZQ2blKuH46eOyfoMhv5gWp/BXMppRp73NAOHKGU+lFKoyilDx08F8ssSFhAXRa40ISMBDO9rlFKW1NKQymlGZLPYcP5DdRlgQudvmU6rayqlHx8booopcMppT6UUnPPLjmO1huHHE5e++IVACu03xpYymlVpv/+FTYsxBNthbku5PUl88FcGY7kUOYhLDi0AG8PfhtDQs1Zi/bbjHXBoQWSjs0Pc2XYEycvcj8DwN+03xqIciZHT9dmroKy+Gp8yVpRtu8O1cyV4QhyinMwefNkDGo5CG8PflvAFfK6MmIjYuHr4Su6YJZtMFeGvXByS/kTAHMA/A3IPFHdyhVR2r9Pf9TztBxW5xgr2RBmMdsTSilmbp2JssoyxMfEi/Djymsxj243Gk18m+BW4S28uf9NtvjnRDi5KLtAK15zgExtssh9d3eUGncLAJ7s+aTF0ewTcSEEJsz2YvGxxdh5ZSfinoxDc//mIq+WV5gB4OTNk/jkz09YgokT4TSivHzFcp4zLkDZF4CujPLVykrTLsHA420ft3gPx1vJhjBhlpsTN0/g9X2v49W+rwoOlTRFXmEe12Ecy/xzNhy90ijy4Icz+iJbe+7y5erIi/VGURcAaIPHGlCNxnxEg2MiLoTAojLkILc4l7b6shXts6wPLassk2BEeaMy1p9fT10WuNBZW2dJPjY/skdlOFpvHHI4+UKfDguLfAP6DDCKOTXFfnHJYmGLf1JDKcWsbbOQX5aPhJkJ8HD1kGBUeRf/9LtkE7u+9mzxTw6UoizyYkGUJ42YZPZy5fiS+WCuDClZfGwxtqVuQ9yTcQitHyrhyPK6MiZFTEJsRCwopfj5ws/MlaFSlKYu8mBOlP2AmD4xZi9Xli+ZDybMUnD8xnH8e9+/8c++/7RqN3PLyL/4d/buWTyz6Rm2tZRKqfOiHNgG8HZfz3up8q1kQ5gw20JuSS4m/jIRvZr1wsfDP5btPnILc/fg7mzPPxVT53zKxjHKPSNDUJ1ggmdNLlWuL5kP5mO2BqqLRy4sK8SGmRvg7uou6fimyJ9gAgCTN08GAFYrQ0UoXWGkQSfKdwCTGOVxUW+gOsFEn5KtQ11WsiHMYhbLF4lfYMflHVg9fjVa1W8l6dj82CclO680D5UajlBQWWAWs804OvxD5MEPX0hcaWl1OFwiRzjctWvXKKVVlNK/U0oJpXR59ZBffll9KY2ZUGX29sqEhcsJ4ej1o9TtfTf62p7XJBlPPPKGy+nDPdPup6mtiJGj9cYhh1pMP+sxqKOcaXTKq54XQkJCUCvzT2cxq9dKNoRZzJa4X3wfsb/Eok/zPlg4dKEE87MGeS1mQggKygrQd3lflmCiAtSoNOIws8jXvkt7g/jk2sK8dOkxFURcCIEJMx8aqsGMrTNQVFGEDRPs4Uc2h7zC7O/pj68f+5pl/qkA51/oMyPK0f2jjVq0wlxS4o6Fi2r8iuq0kg1hi39cfH70c+y8shM7J+9ESECI9FMUjX0STKZsngIAWDluJVv8UyBqV5tqeGtfmBHlAY8M4LjABUuXLkZOdlMAQMyEdBVbyYYwi9mQP6//ifn75+P1Aa8LqntiP+RPMImPicdvV35D+oN0Scfmh1nMonC0U1vkwQ/fQt/kydWrde2NFvnS09NNhjGtcdGFGi7+qR+2+Hev6B5t8UULOmD5AFpeWS735KxE3sW/vJI8SimlZZVlSl78c7TesIU+WeCJUa4XUA+hoaEm3WvHJVehS5cB4AqXUy9122LWUA2mb5mOkooSbHjK0X5kc8hrMQd4BYBSikm/TGIJJgrD6UWZ8sQo9+nVx6QIkWnEhSuMozKcg7orzJ/++Sl+T/sda8avQQv/FnacnzXIH5UR2zmWZf4pDOde6CsrA7mlLaScaXSqV69eJt25s/f0URmAucw/9VH3Fv/+uP4H3jrwFuYPnI/H2j7mmCmKhmX+1TWc21LOuln9babRqZ49e9b62Xxcsmkcs3NQdyzme0X3MOmXSegf0h/vR7/vwPlZg/02Y914caOkY/PDLGY+nNtSvsafOGIsypZrXDCLWT3UtpirNNswZfMUlFWVYf2E9XBzUePbXn6LuV2jduge3F2yMS3DLGYunNtSvp5V/W2mQXODBg0QFhZW/bPw7D1mMauHGot5waGu2J+xHxsmbLBinz0lIa/F3KNpDxBCsOniJszeNpv5mB2EU4syzeS2lCMjI2st8omrl8yEWT0MxG9X3sEHh6/h/ahWGNa6r6MnJAHy12Ou0FRg1dlVLPPPQajx/zjBFKVcgp/u+0yDdkPXRY2VrBVlYdl7zJWhBjLzMjF18yI80bYf5g86B0dsLSUPLPPPmXFqUS69fLValA1jlCMjI6u/t75eMhNmJVNaWYqnfn4KAV4BWDN+J1zIBThqzz95sJ8wN6/XHIuGL5JsbH6Mhdmxu5k7CqcWZffbtwGYxijrLWXrrGRDmDArlVd2vYLk7GT8+eyfaODdAI7ejFUe5Bdmbzdv9GzW03JnyTAU5rqJ0/iUTWpfVAIBD7V/aTMNmgMCAhAeHg5Aqr33mI9Zaaw5uwZLTy/F1499bSQojtuMVT7k9TGP6zAOLfxbIKc4B+8lvGdnH3MdxdF53iIPfoxqX+TNQ3XNi/UG9S6io6MppVw1LsyOLgDuQvnqR121Ms7dOUe9P/SmM7fOrC7ubor0hfIdj7y1Mnak7qAuC1zo9C3T7Vgrw+F6w2pfSEl2Td4I5yKf9DtUM4vZ0eSX5mPCzxPQtlFbLHl8iUkafQ3MYhbL6HajHbAZa93EaX3KtzKBtrrvMw3ae/bsKYEvmQ/mY3YUlFI8u/1Z3C26i9PPn4aPu4+FK5iPWSyGKdkuxAUrxq4w84ePYS1OK8qFd2u+zzRo79mzp8w7VDNhdgRfJH6BzSmbsSV2C9o0bCPwKibMYtELc3FFMRNkuXC0/0TkwY+RT3m7X41PWV9H2d/fnz58WCWxL5kP5mO2F4czD1PXBa7033v+beUIzMdsLVtTtsrpY3a03jCfspT4GrgJ9THKkZGRWLbMxU577zEfsz248/AOJv4yEQNbDsTCYdZufMp8zNZwIfsCYn6OsWPmX93AaUW5mU4rDGOUu3Xraecdqpkwy0mlphKTftEmOWx4aoONhYaYMIulc5POiI+Jt/NmrPaBEPK0o+7ttD7lZrqvmQZtubk9ZfQl88F8zHLx1v638Mf1P3BwxkEE+wVLMCLzMYvFMSnZ8kII6Q9gBgB71TGthdOKsp5Mg+9/3dm1+nv77lDNhFlqtl7aiv8e/S8+G/EZBrUaJOHITJjFohfm5UnLUV5VDm8Xb8nGdhBTAMQ77O6OdmqLPPgx3jhVt5K3SLfI5+lZjwJVFKA0ZkKV2aHkgy3+ScGV+1eo/yJ/GvNTjJkEEVthi39i0b8W1/KuSbX4Z3eNgdZQzQDg44j7U2dc6KNG7s1M3dcqTXfoXej2tZINYT5mWymuKMZTPz+FIN8gmeNkmY9ZLIQQFJUXod/yfmpOMBkF4A9KabGjJuA0oqyvfXGzoHZ7pu5rZYV2Tz55Iy6EwITZWiileH7H87iSewWbJm5CgFeA5PeoDRNmsfh6+OKLkV+oOfPPsa4LwPncF/GTa7sv2lfXvVgrc1yyWJgrQyxfHfuK4j3Q9efXSzquZZgrQywbzm+QolaGvV0XftC6LtzsfW/Dw+kW+s7cqv1zTR3lnnaMuBACW/wTw+Frh/GvPf/CP/v+s3phyX6wxT+x6DP/5vw6B6kDUtEpsJNkY5uDENINwP8BCAPwMYA/AbwLwBNAMIAFlNIzPJfHANhBKa00GnMgtG/otgA+hPbN8AKADtDWaogA8H+U0mOEkMkA9CvPXQC8Qyk9IOohHPkXwYqDH52lPCisxlK+XW0l+1GgSkFWsiHMYrbEjfwbtMmnTWjUqihaUVUhxeSshFnMYrlffJ9SSmlFVYU1FrM11u4KaBfr/gMgG8AvAJpD+5enHMDXZq7dDeARozYXAKuhtSw+0435NYBogz5LAaQDeAdAjEH7+wDuA3AR8wxKMRslQaMBTmTU/JxZ/V0HxEyAg33JfDAfsznKKsvw1Man4OHqgZ+e+snBO1EzH7NYGno3BADM2jZLdh8zISQcwC2qtXSbAWgI4CNK6U0AjQA8BLCD59ogAK0opceNTvUGkES1KtsMQCCAnZTSgwZ9CqC1zO9SSjcbtN/VzSFQ1INY89fIgQcv2ZkX6dz+oJ4667g/QKdVW8rdFWolG8IsZi7m7JhDPT7woMdvHJd6YjbALGaxrD+/3hofs1gruT+AHrrvzwFIEHHtPGhdG8btgwGE6r7PArCLo89uaC1lYtT+DYBiiPRRO1pkbRZljUZD33//ferm6kKJQTF7w6Nhw74yxrNKCRNmQ348/SPFe6A/nv5RronZABNmsVghzFbpBIDGADQA3hNxzQkA7c2cb6PTk38ZtbsBKASwguOaywB2i56/tQ/uoMOEf//735xCbHwsXLiQ81VXHkyYKaX0xI0T1OMDD/r89uflnpgNMGEWi16YVyWtEtLdWlF+Wve5jxLYvx2Akxb6PK8bs6dRez9d+3Sj9i669udEz9/aB3fQUYvDhw8LEmT9cfbsWf6XX1HUbWG++/AubfFFC/rIskdoaUWpvSZnJUyYxXIs6xit0gjKqrVWlL+Ftg6Zl8D+CwC8YqHPegAPYLRoB2C+Tl9aGrUv0s2hge7n2YLnb+2DO+ioReywCOrmIkyQ3VxA5zzZy8zrrzTqpjBXVFXQqFVRtMmnTWhWfpa9J2clTJit4bfLv9Hntj9nzpVhrSiniPQnXwIQbKHPbQDbONr3ALjK0Z4K4Gfd910AvCt0PqqNvig++DY2HUxGpUZY/0oNsHrnKWj+XCDvxCSjbkZlvL73dRy5dgQ/P/UzWvi3cMD8rIFFZVhDQVkBlictlzQqgxASDG38cILA/n0BXKeU3jHTpyO0Mc4JRu3u0C4uct2rMYBDhBAXAK9Du+gnCNUkjxBCSH5+vvaHE58ga/dHggVZT0kFcHPXewgoKQf6vC79JGVhEbThlbMBlACY5tjpSEIstM8yD9pn+xQAwcYLG/FFwhf4ePjH6NGwBwoKCsyOoiy6QhsSOwHa8gk/Q/0JJvUBbIf2D80QaJNmWkk2+mMtH8OPI3/E7O2zUV5cjm8f/7ZW2c+AgAB/AIVUZ24KJAjaULSfBfYXklbdCMAtAJuN2utD+xd4Lcc1L0NrTUUB+J5Sel/gfLQhHGqAEOIPIN/R82AwGHYlgFIqy19nQogbgDQAXSilhXLcwxpUYykDKDS0lKsSP0KnT4E7An+VBEB4I+D0qwAeebOWpdy7d2+cPHlS8EQc018D4F/QujG+gd5iLigoQEhICLKysuDv72+nuUjXf+HCtnj+lWwMWeWLJr7t8PuU3+Htzl2PV+yzip2PdM+aCK3F3AOGFrOY8ZX2rGPG9MCOHRpo34eWLWbRzzo0BH9s+QNdQmoyvAICAgKgDTeTi5EAjitJkAEViXKtf2GGLwR8vfBS4jt4exegEWjsvzIY8B/6PtDv7Vrtrq6ugt/4ju2/DIAHtL5YbxjWyvD39xd0D6U96/ZfG+JYxwBUul/B9pldEeTfBJZqZQh9VrHzke5ZHwWwC9paGZOhr5UhdnxAOc96754n/P13QetfHgtLtTJEP+sVoEtIF2g8NPjmxDeYP3A+5LKQDXB8RTgOVLvQh35v429z/436XoCrhXo3ri5AsD8w7cU3TQQZAObOnSvq1o7rb/vin9KeNXB6IBKzMrFp4r/Rwj8OUpf9FDMfaZ/VdPFP7Phikf9ZhS/+WfusiVmJeDfhXTy7Xd7iXIQQX9S8SMrC2rATBx0mnFw+hwZ4gTc0ztUFtLEv6Kk4N3r61kquIVRITbhccfE32gJM+fmOnpRofjj1A8V7oD+c+kHfQs2Fy+Xn56vwWa0Ll1P2s0obLmf8rPoEEyqjlgCYCuA7Oe9h9dwcPQGRByeXf5pHp/UEdXetLcierqCz+4BmbvoHffm3ZrTeR6BHry/lG0ZlaIVZoyF069axtLRU6UkWtfnj2h/U/X13+sKvLxid4Rfm0tJS+u6776ruWa0RZuU/q3TCzPWsuprZcoryMgD95LyH1XNz9AREHvwcfZ/eWwAaN0kryKufAX3wASg9+j6llNLCstt00Ap/pxRmtSWYZOVn0aBPg+jglYNpWWUZRw/77vlnH1iCiRU4Wm8ccqgmJE6H+ckmfoCCA+8g4D9A/oemi3oPy+/g8fj2OHOnALunLkW/kOerz50/fx5r167F0aNHUVVVBVdXV+Tn56NZs2aYOHEipk+fDjc3Ja6LagDMhbak649QeqH8kooSDF41GHcf3sWp50+hiW8Tnp7LoC03MBf23CVbXv6AdvGvF5yjUD4AXIfWv6yB1IXy4Rwvungc/VdB5GGR/L1vav1Te9/kPF9YdpsOXulPvz7uSSk9SlNSUugTTzxBGzVqRL/44gt679696r4ajYZu376dNm3alEZERND09HQhU3AA6rCYNRoNnbp5KvX+0JuevnVawBXMYlYHslnMjtYbhxwOn4DIwyJCFkgqqh5QSgfRb7/1pF5eHnTEiBE0JyeHt39aWhr18/OjLVu2rCXaykL5wvz50c8p3gNdd26diKuYMKsDWYTZ0XrDRFnAYRGhq9avvjpXW6ioE+iRjO8sjvvOO+9QAHTmzJlCpuEglCvMe9L2UJcFLvT1va9bcTUTZnUguTA7Wm+YKAs4LCJElN9++20KgHbo2I72/66eoMW/M2fOaEXczc2u1vKSJUtoaGgo9fT0pJGRkfTw4cO8fQ8ePEgJAf32W9CqKtBZs7SLnikpKXabLxeXcy7TBh83oI+tfYy3ItihQ4fo6NGjadOmTSkAumXLFqMepsKckJBAIyMjqaenJw0LC6PffWf5j6sS0D/ruHGNaEEBaHZ2BDUnzAcPHuQM93T068pNbWH+6KOPaK9evaifnx8NDAyk48aNo5cuXbI4SkJCAgVwGtryl+kA/k4drz9MlDkOXr755hvasWNH2q5dO7Oi/Ouvv1IA1MXFhR49elRwVMbDhw+rPww///yzualIxoYNG6i7uztdtmwZvXjxIp03bx719fWl165d4+yv//CmpqbQoqLpVKMhNC/vC1pZafUW7zaTW5xL233djrb/uj19UPKAt99vv/1G33rrLbpp0yYeUabUUJjT069SHx8fOm/ePHrx4kW6bNky6u7uTn/55Rd5HkRCDJ91wADQ8nIvas5irnldU+nt27erD0e+ruapEebp0wfTlStX0uTkZHrmzBn6xBNP0JYtW9KHD/n/CKWnp1MfHx8KYDGAjtBmSpUDmEAdr0FMlI0Oi5izlAsKCmhwcDAFQCdMmFDdrhfmYXGuVKP5k3PcwsLCalH+9NNPhUzFZvr06UP//ve/12rr0KEDfeONNzj76z+8Dx48oEpwZVRUVdDhq4fTBh83oFfuXxF8Hb8oU6oX5j//7EE7dGhf68ycOXNo3759rZ6vIwBADx1aSM25Mmq/rmqB25WRnZ2te+ZDvFf++9//ph06dKDUUKiA7wEkUvk1xuGHetOsreCLL77AnTvasqmvvfZadbufRzB+m5KKXyb2ASGjoKF/mlybnZ1d/b2rq6vJeakpLy/H6dOnMXLkyFrtI0eOxNGjR81e26NHDzRt2hzDh6fi5s3RcFQ95ld3vYqEzARsmrgJbRq2kWhUbT3m/v2TsHSpJwyjJB999FGcOnUKFRUVEt3LPuTmdoKQesza17Uphg0bhoMHD9pxhtbAnZKtLyrWsGFD3isTExNN3vfQbk7aS1fD2KmpM6JcWVmJ7777DgDQunVrPPLII7XO+3kEo77XHlzL64Bu3w9GYtYPtc6fPXu2+vuQkBDZ55uTk4OqqioEBQXVag8KCqr+w2JM06ZN8cMPP2DTpk3YvHkz2rXrgJYtd+DWrTGwtzB/d/I7fHPyG3zz2DeIDouWePTn8J//NMHgwedgWCsjKCgIlZWVyMnJkfh+9oC/UL7x69q+fXsMGzYMhw8fdtBchVJbmCnNwD//+U8MHDgQERERvFfduXPH5H0PbY1kN2iLxzs1SsyGkIXDhw/j7t27AIAxY8bw9PJDI5/taODVHo+unYPdU1GdYGL4AejevbvMs62BkNrx85RSkzY97du3R/v27at/7tevH7KysvDCCxps26YvYgTInWCyL30fXvr9Jbzc52XM6TVHlnv8/HMA+vcfgMcfX6Jr+Vr/by7v70f56IX5MWiFWZtgwve6fvbZZxg8eLBjpioYvTBH4/79bsjN9ceGDccsXsXxGuobVJXtZg11xlJOTEys/r5Xr168/fSujO7B/nh07RwkZv0AjUaDzZu1mw707NkTbdpI9a84P40bN4arq6uJVZydnc1lRfDSt29fXL6cBnttLXX5/mU8vfFpDG89HJ8/+rls9wkODsbu3SEw3FoqO/su3Nzc0KhRI9nuKz/Ctpbq27cvrly5Ysd52UJLvPPOIBQVFePgQYIWLSrN9g4ODub6b7AJgEoAgnfwUCt1RpRv3rxZ/X3btm3N9jUU5rEb/o7tv/0X169fBwA899xzss5Tj4eHB3r27Im9e/fWat+7dy/69+8veJykpCQ0bdoU9tjz70HJA4xZPwbBfsH46amf4OYi3z9i/fr10/1uavb8a9DgHfTq1RPu7mp3O1oW5prXVdlQSvGPf/wDy5fvhUazH+7uHrBU9rPmta3FSACnKKXqWjCwBkevNIo8LMIXffHSSy9VR09cvnxZyFC0sOw2PZzZlQ4a5EoB0E6dOtGKigpB10qBPiRu+fLl9OLFi/SVV16hvr6+NDMzk1JK6RtvvEGnTZtW3f/LL7+kW7ZsoZcvX6bJycn0jTfeoADopk2bDEaVJyqjvLKcDl89nDb8pKGoSAs9hYWFNCkpiSYlJVEA9IsvvqBJSUnV4X/Gz6oPm3r11VfpxYsX6ZEj0ymloGlpo6jSE0yEP6s2weT69TZ0+/b1Fl5XZfLCCy/QgIAAmpCQQG/fvk3v3j1JKypa0aqqVlQflcH32gL4AtqQuGfBQuIUe1iET5Q//fTTalFOTk4WMhSllNItW9Zp45pdQZds/Jfg66RiyZIltFWrVtTDw4NGRkbWCiWaMWMGHTJkSPXPn3zyCQ0PD6deXl60QYMGdODAgXTnzp0co0ovzHN3zqVu77vRgxkHrbqeL0FixowZlFLTZ6VUm2DQo0cP6uHhQUNDQ2lCwhSqfZsoO/NP3LMeoWVlHjQx0Ys2bOhp4XVVHlzPGRICmp8fSPXhcnyvLYC/AJQByABLHlHsYRE+UT579mz1m2Ljxo1ChqK3b9+uzjALn+bFyn7ysOTEEqNi9Y6EpWSrA0Ep2Y7WGybKAg6LmEseGTBgAAVAJ06caHGcoqIiOnDgQEoIoR9++CGrx8zD3qt7qesCVzrv93kSzstWmDCrA4vC7Gi9YaIs4OBFSJr1lStXaL169apTrPm4ffs27dWrF/Xx8aHr16+vbjcU5ovZYiqdKRnrhflC9gUasCiAjlo7ilZU2c/XLgwmzOrArDA7Wm+YKAs4LGKpINGpU6doWFgYDQwMpDt27KAaTc0HtrCwkH777bc0KCiIxsbG0qysLJPrC8tu0w8PtaIVVX6UUn5hVxfihfl24W3a6stWtMu3XWh+qRL3kaOUCbNa4BVmR+uNQw7n2nkEQEFBAQICApCfn8+7xXlhYSHi4+OxYcMGPHz4EL6+viCEQKPRYMCAAZg2bRo6depk5i4PATyOI9dOwc1lca0dTNSL8B1MiiuKEbUqCjcKbuD4344jJED+DEfrYTuYqAPOHUyc4cUSTZ0UZWl4iCfWtcSRaw9MtpZSL5aFuUpThac2PoW9V/fi8KzDiGwaaec5WgMTZnVgIszO8EKJps4kj0iPH3566mKtzD/1YznB5LW9r2F76nZseGqDSgQZMEwwMayVoW6EZf6pC+MiRnUTJso2YJySfezGMkdPSQL4hXnJiSX48tiX+N+o/2F0u9EOmp+1MGFWB4bCXDepMwWJ5EIvzDO3RqCexysAIgD0c/CsbEUvzIC+iNGvl5vg5V0v49W+r2Jun7kOm5lt6FPk9a4mZ3BlcBcxUjctASQ4ehIOg/mUJUO7+FdckYTL979B9+AZdry3XGh9zH/d/h6DVnrg0fAnsPHpjXB1kb+etLwwH7NKcIYXRjR1938EyfED8BveS6iPwStnOo2POSv/DYxe54POgeVYGzPCCQQZYK4MhpJhoiwpfnhnyEmnWfwrKCvAE+vGwNOtCXY8Mx0+7nPhiB1M5IEJM0OZMFGWGK56zGqkoqoCT298Gtfzr2Pn5J0I8lsJe9Rjti9MmBnKg4myDBgK8+FrLwFItHiNkqCUYu5vc3Eg4wA2x25Gp8BOsEc9ZsfAhJmhLJwm+mLJkiVYsmQJqqqqHD0VAFph3jc9Ax6uTwJ4FPeLf0Yjn1GOnpYg3j/0Ppb9tQyrxq3C0LChBmdMozLk3lrKPrCoDIaCcHSet8jDIpZqX9ifQrojtRMNWKSO6nLfn/ye4j3Qjw5/ZKaXPIXyHQ+rlaEwHK03DjmY+0J2/BAVuh9dg5TvY96SsgUv/vYiXu7zMt4Y+IaZnsyVoR6YK0NtMFG2A2pY/Dt87TCe2fQMnu70NL4c9aWAHaGZMKsHJsxqgiWP2JGH5XfweHx7aGgRjsw6DEKEb4AqJ+fvnseglYPQq1kv7Jy8E55uniKuFl5dTl2wBBMF4Ay/dNE4zUKfGtBbzKWV40HIKFC6y+HCnJmXiUfXPorWDVpjc+xmkYIMsMU/NcEW/9QAc1/YGT+PYDT22YtbhR3Re9kgh7oycopz8OjaR+Hj7oPfp/wOf09r/7Ngrgz1wFwZSoeJskPwg7/nNvi4+znMx1xUXoQn1j2BvNI87J66G0F+QTaOyIRZPTBhVjJMlB2EIxf/9Nl6F+9dxO9Tfkd4w3CJRmbCrB6YMCsVJsoOxFCYR6+fg/zSvbLfU0M1mL19Nval78OW2C0yFKpnwqwemDArEbbQ52D0wnzsxggEeE0AsBty1mN+Y98bWHtuLdZPWI/hrYfLdBe2+Kce2OKf0mCWsgLw8wjG8NaJoLQb3j4QJZsr4/Ojn+PTo59i8ajFiI2IleUeNTCLWT0wi1lJOI0oL1myBJ06dULv3r0dPRUr8UNZ1RYcuuYli4/5x79+xP/t/T/MHzgfLz/ysqRj88OEWT0wYVYKLHlEYegTTM7cKZBsl+yfkn/CM5uewQu9XsA3j38jIFtPaliCiXpQVIKJM/xCReM0lrKzYByVkZy91qbxfr38K6ZumYqpXafi68e/doAgA8xiVhPMYnY0bKFPgeiF+ZM/+qBtwxcAhMOaxb+DGQfx1M9PYUy7MVgxbgVciCP/BrPFP/XAFv8cCbOUFYqfRzA+GHoRnm49cOrWcNE+5mM3jmHM+jEYEjoE6yesh5uLEv7+MotZPTCL2VEwUVY02s1YPzgsbvHvzJ0zeCz+MXQP7o7NE62pZyEnTJjVAxNmR8BEWfH4IT7mguDMv7N3zmLY6mEIbxCOnZN3wtdDif92MmFWD0yY7Q0TZRUgNCX77J2zGLp6KMLqh2HvtL0I8Aqw80zFwIRZPTBhtieyijIhpAEhZA0hJF93rCGE1LdwzSpCCDU6jsk5TzWgF+bosIbwcH0Vxpux6i1kvSA38G7gmImKggmzemDCbC/kXv1ZB6AFAP2OoT8AWANgjIXrdgGYZfBzufRTUx9+HsHYNukagMdRVjkSl+9/hy5BU6sFuVX9VioSZD0sKkM9sKgMeyCbKBNCOkIrxn0ppcd1bc8BSCSEtKeUppq5vIxSekeuuakb7eLfh4c74avj07Dk8ct4dfe3aFW/FfZN26cyQdbDhFk9MGGWGzndF/0A5OsFGQAopccA5AOwtN1GFCEkmxBymRCyjBDShK9jWVkZCgoKah3Ojx9eH3gCbRv5YcbWD9DIx1eFFrIxzJWhHpgrQ07kFOVgANkc7dm6c3z8DmAKgKEA/gWgN4ADhBDOuK5FixYhICCg+ggJCbFx2uog48E9XMvzgI+7C24VXkdqzi+OnpIEMGFWD0yY5UK0KBNC3uNYiDM+eum6c737CE+79gJKf6KU7qSUJlNKd0D7f1I7AE9w9Z8/fz7y8/Orj6ysLLGPpDrO3z2PoauHomVAK1ycm4wewf7YlfYSjBf/1AkTZvXAhFkOrPEpfwNgg4U+mQC6AuDaYygQwF2hN6OU3iaEXAPQluu8p6cnPD2VlBwhL3pBDvEPwb7p+9DQuyH2TLsKT9fxAB5FfukmBHiNcPQ0bYT5mNUD8zFLjWhRppTmAMix1I8QkggggBDSh1J6Qtf2CIAAAEeF3o8Q0ghACIDbYufqbCRnJ2Po6qFo4d+iWpABwMutMYDfsfdqP8T+MhI7J0tTXc6xMGFWD0yYpUQ2nzKlNAXa0LZlhJC+hJC+0NY6/NUw8oIQcokQMl73vR8h5DNCSD9CSCghJArADmj/CGyRa65qIDk7GdFx0VpBnlYjyDX4oV/IXkQ0sf+ef/LBXBnqgbkypELujL4pAM4D2KM7zgGYZtSnPbTWMwBUAegCYBuAywDidF/7UUoLZZ6rYknOTsbQuKHVgtzIpxFnP0duxiofTJjVAxNmKWBF7hWOXpCb1WuG/dP38wqyIfpC+SWVD3Hib0dAiKUIRDXACuWrB8kK5TvDL0M0SqjnyODhQvYF0YIM1FjMhWVPgpBRoHSXEwgz8zGrB+ZjtgVWkEihXMi+gOi4aDSr1wz7pvO7LPjw8whG03r7cK+oEwauHMRcGYqGuTIYNTBRViAXsi9g6OqhaFqvKfZN34fGPo2tHMkP3u5b4Ur8mI9Z8TBhZmhhoqwwLt67iKGrhyLYLxj7p++3QZC1sMU/NcGEmcFEWVFcvHcR0XHRkgmyHkNhfix+DnJLdksyrmNhwqwemDCLwWkW+pYsWYIlS5agqqrK0VOxCr0gB/kGSSrIevTCfChzOBp6Pw1gN6zZjFVZsMU/9cAW/4TCQuIUwMV7FzE0biia+DbBgRkHJBfk2jwE8DgWHTmOqNCvnSDzD2DhcmpCVLicMzywaJj7wsGk3EupFmQ5LGRT/FBetRW/p4nbjFXZMFeGemCuDEswUXYgKfdSEB0XXS3Igb6Bdrmvh2tDtvinGpgw1zWYKDuISzmXEB0XjUDfQLsKsh7jqIyzd1bb9f7ywIRZPTBh5sNpFvrUxKWcS4haFYVA30AcmH7A7oKsRy/MHxzqjbaN5kJbHZUt/ikTtvhXV2CWsp1xtIVsjJ9HMD4ZkQIf9x5Izh7OXBmKhlnMdQEmynZEL8iNvBth//T9aOLLu/WgndFuxvpegjfzMSseJszODhNlO5Gak1otyAdmHFCQIOvxw6onk9ninypgwuzMMFG2A6k5qYiKi1KwIGthKdlqoi4Ic92ELfTJjN5CbujdUNGCrEcvzLG/dEIVfQXaPQfY4p8ycfbFv7oJE2UZ0QtyA+8GODBd+YKsx88jGDsnXwfwOCo1I3H5/lJ0Cpzs6GnZCBNm9aAX5rqJ07gvlixZgk6dOqF3796OngoA4PL9y7UEOciPa2NvJaNd/Pv4j0bo++MU5spQNM7qyqibsNoXMnD5/mVErYpCfa/6ODjjoAoFuQb91lJn7hRg91Rn2CUbYLUyVIPqH8AanMZSVgp6C9kZBBlgi3/qwhkt5roHE2UJuXL/CqLjohHgGYADM9TosuDGUJg3pfwDQKKjpyQBTJgZyoQt9EnElftXEBUXBX9PfxyYcQDBfsGOnpKk+HkEY/fUNHi6xQB4FA/Lt8DPY5ijp2UjbPGPoTyYpSwBegvZ39MfB2ccdDpB1uPtHggX8jsOXwtD2FcjmCtD0TCLWa0wS9lG0nLTEB0XjXqe9ZxakGvwQ2TT3ejYuD0eXTsHu6fCCRb/mMXMUA7MUraBtNw0RK2KQj3Pejgw3flcFnywxT81wSxmtcFE2Ur0guzn4YcD0w+gab2mjp6SXTEU5jm/vgAN/dPRU5IAJswMx8PcF1agd1n4efjh4IyDdU6Q9eiFObdkLFzIY6B0Fwjp7+hp2QhzZTAcC7OURXI19yqi46Lh6+5bpwVZj59HMFoGHEBeaQSGrxnMXBmKhlnMasBpRNkeadZXc68iKi4KPu4+TJBr4Qc3l82oqPJlPmbFw4RZ6bA0a4EYCnLCjAQmyBywlGw1oYqUbEVOSm6cxlKWE73LglnI5jFc/BsVPwfZRTsdPSUJYBYzw76whT4LpD9IR3RcNLzdvXFwxkE0q9fM0VNSNHph3p02FE18nwGwG6wes1Jhi39KhFnKZkh/kI6oVVHwcvNigiwCP49gTOh0AkB3/O94NPMxKxpmMSsNJso8GApywswEJsii8UOlZjs2pXiyxT/Fw4RZSTBR5iDjQQai46KZhWwjbi71sXMyy/xTB0yYlYLaoi8sQgjxB5APIIBSWuDo+TAYDIYYnFGUCYB6AAqpsz0cg8FwepxOlBkMBkPNMJ8yg8FgKAgmygwGg6EgmCgzGAyGgmCizGAwGAqCiTKDwWAoCCbKDAaDoSCYKDMYDIaC+H+GeQjkNY0kOgAAAABJRU5ErkJggg==\n", "text/plain": [ "Graphics object consisting of 96 graphics primitives" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "graph = graph_wo_points\n", "graph += circle((0,0), 0.05, fill=True, color='black') \\\n", " + text(r\"$O$\", (0.12, -0.15), fontsize=20, color='black')\n", "show(graph, aspect_ratio=1, ymin=-0.8, ymax=2, xmax=2, \n", "#show(graph, aspect_ratio=0.05, ymin=0.5, ymax=3, xmax=0.2, \n", " axes_labels=[r'$r/m$', r'$t/m$'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "SageMath 9.6.rc2", "language": "sage", "name": "sagemath" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" }, "toc-autonumbering": false, "toc-showcode": false, "toc-showmarkdowntxt": false }, "nbformat": 4, "nbformat_minor": 4 }