/*** * This code is a part of EvoApproxLib library (ehw.fit.vutbr.cz/approxlib) distributed under The MIT License. * When used, please cite the following article(s): V. Mrazek, Z. Vasicek and R. Hrbacek, "Role of circuit representation in evolutionary design of energy-efficient approximate circuits" in IET Computers & Digital Techniques, vol. 12, no. 4, pp. 139-149, 7 2018. doi: 10.1049/iet-cdt.2017.0188 * This file contains a circuit from a sub-set of pareto optimal circuits with respect to the pwr and mre parameters ***/ // MAE% = 0.073 % // MAE = 6.0 // WCE% = 0.22 % // WCE = 18 // WCRE% = 1600.00 % // EP% = 94.92 % // MRE% = 0.20 % // MSE = 54 // PDK45_PWR = 0.032 mW // PDK45_AREA = 68.5 um2 // PDK45_DELAY = 0.63 ns #include #include uint64_t add12u_3L3(uint64_t a, uint64_t b) { uint64_t o = 0; int n_352=0, n_198=0, n_413=0, n_259=0, n_377=0, n_234=0, n_193=0, n_23=0, n_22=0, n_21=0; int n_20=0, n_25=0, n_341=0, n_418=0, n_249=0, n_80=0, n_382=0, n_85=0, n_326=0, n_280=0; int n_388=0, n_65=0, n_285=0, n_141=0, n_244=0, n_203=0, n_126=0, n_300=0, n_208=0, n_100=0; int n_121=0, n_106=0, n_403=0, n_182=0, n_347=0, n_188=0, n_8=0, n_9=0, n_4=0, n_5=0; int n_6=0, n_7=0, n_0=0, n_1=0, n_2=0, n_3=0, n_218=0, n_408=0, n_18=0, n_19=0; int n_16=0, n_17=0, n_14=0, n_15=0, n_12=0, n_13=0, n_10=0, n_11=0, n_393=0, n_116=0; int n_95=0, n_111=0, n_90=0, n_367=0, n_75=0, n_295=0, n_70=0, n_290=0, n_331=0, n_213=0; int n_336=0, n_136=0, n_177=0, n_398=0, n_131=0; n_0 = (a >> 0) & 0x1; n_1 = (a >> 1) & 0x1; n_2 = (a >> 2) & 0x1; n_3 = (a >> 3) & 0x1; n_4 = (a >> 4) & 0x1; n_5 = (a >> 5) & 0x1; n_6 = (a >> 6) & 0x1; n_7 = (a >> 7) & 0x1; n_8 = (a >> 8) & 0x1; n_9 = (a >> 9) & 0x1; n_10 = (a >> 10) & 0x1; n_11 = (a >> 11) & 0x1; n_12 = (b >> 0) & 0x1; n_13 = (b >> 1) & 0x1; n_14 = (b >> 2) & 0x1; n_15 = (b >> 3) & 0x1; n_16 = (b >> 4) & 0x1; n_17 = (b >> 5) & 0x1; n_18 = (b >> 6) & 0x1; n_19 = (b >> 7) & 0x1; n_20 = (b >> 8) & 0x1; n_21 = (b >> 9) & 0x1; n_22 = (b >> 10) & 0x1; n_23 = (b >> 11) & 0x1; n_25 = ~(n_4 | n_16); n_65 = ~(n_4 & n_16); n_70 = n_4 & n_16; n_75 = n_5 ^ n_17; n_80 = n_5 & n_17; n_85 = n_6 ^ n_18; n_90 = n_6 & n_18; n_95 = n_7 ^ n_19; n_100 = n_7 & n_19; n_106 = n_8 ^ n_20; n_111 = n_8 & n_20; n_116 = n_9 ^ n_21; n_121 = n_9 & n_21; n_126 = n_10 ^ n_22; n_131 = n_10 & n_22; n_136 = n_11 ^ n_23; n_141 = n_11 & n_23; n_177 = n_85 & n_80; n_182 = n_85 & n_75; n_188 = n_90 | n_177; n_193 = n_106 & n_100; n_198 = n_106 & n_95; n_203 = n_111 | n_193; n_208 = n_126 & n_121; n_213 = n_126 & n_116; n_218 = n_131 | n_208; n_234 = n_182 & n_70; n_244 = n_188 | n_234; n_249 = n_213 & n_203; n_259 = n_218 | n_249; n_280 = n_244; n_285 = n_198 & n_280; n_290 = n_203 | n_285; n_295 = n_213 & n_285; n_300 = n_259 | n_295; n_326 = n_75 & n_70; n_331 = n_80 | n_326; n_336 = n_95 & n_280; n_341 = n_100 | n_336; n_347 = n_116 & n_290; n_352 = n_121 | n_347; n_367 = ~n_25; n_377 = n_75 ^ n_70; n_382 = n_85 ^ n_331; n_388 = n_95 ^ n_280; n_393 = n_106 ^ n_341; n_398 = n_116 ^ n_290; n_403 = n_126 ^ n_352; n_408 = n_136 ^ n_300; n_413 = n_136 & n_300; n_418 = n_141 | n_413; o |= (n_12 & 0x01) << 0; o |= (n_8 & 0x01) << 1; o |= (n_2 & 0x01) << 2; o |= (n_367 & 0x01) << 3; o |= (n_65 & 0x01) << 4; o |= (n_377 & 0x01) << 5; o |= (n_382 & 0x01) << 6; o |= (n_388 & 0x01) << 7; o |= (n_393 & 0x01) << 8; o |= (n_398 & 0x01) << 9; o |= (n_403 & 0x01) << 10; o |= (n_408 & 0x01) << 11; o |= (n_418 & 0x01) << 12; return o; }