/*** * This code is a part of EvoApproxLib library (ehw.fit.vutbr.cz/approxlib) distributed under The MIT License. * When used, please cite the following article(s): V. Mrazek, S. S. Sarwar, L. Sekanina, Z. Vasicek and K. Roy, "Design of power-efficient approximate multipliers for approximate artificial neural networks," 2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Austin, TX, 2016, pp. 1-7. doi: 10.1145/2966986.2967021 * This file contains a circuit from a sub-set of pareto optimal circuits with respect to the pwr and mae parameters ***/ // MAE% = 2.27 % // MAE = 373 // WCE% = 9.87 % // WCE = 1617 // WCRE% = 100.00 % // EP% = 98.31 % // MRE% = 28.23 % // MSE = 215095 // PDK45_PWR = 0.034 mW // PDK45_AREA = 114.0 um2 // PDK45_DELAY = 0.53 ns #include #include uint64_t mul7u_0BT(uint64_t a, uint64_t b) { int wa[7]; int wb[7]; uint64_t y = 0; wa[0] = (a >> 0) & 0x01; wb[0] = (b >> 0) & 0x01; wa[1] = (a >> 1) & 0x01; wb[1] = (b >> 1) & 0x01; wa[2] = (a >> 2) & 0x01; wb[2] = (b >> 2) & 0x01; wa[3] = (a >> 3) & 0x01; wb[3] = (b >> 3) & 0x01; wa[4] = (a >> 4) & 0x01; wb[4] = (b >> 4) & 0x01; wa[5] = (a >> 5) & 0x01; wb[5] = (b >> 5) & 0x01; wa[6] = (a >> 6) & 0x01; wb[6] = (b >> 6) & 0x01; int sig_169 = wa[5] ^ wa[6]; int sig_170 = wa[6] & wb[4]; int sig_172 = sig_169 & wb[4]; int sig_173 = sig_170 & wa[5]; int sig_179 = wa[5] & wb[5]; int sig_180 = wa[6] & wb[5]; int sig_198 = wa[6] & wb[3]; int sig_202 = wa[4] & wb[5]; int sig_203 = sig_172 ^ sig_179; int sig_204 = sig_172 & sig_179; int sig_205 = sig_203 & sig_202; int sig_206 = sig_203 ^ sig_202; int sig_207 = sig_204 ^ sig_205; int sig_208 = sig_173 ^ sig_180; int sig_209 = sig_173 & wb[5]; int sig_210 = wa[6] & sig_207; int sig_211 = sig_208 ^ sig_207; int sig_212 = sig_209 | sig_210; int sig_217 = wa[4] & wb[6]; int sig_218 = wa[5] & wb[6]; int sig_219 = wa[6] & wb[6]; int sig_236 = wb[6] & wa[3]; int sig_237 = sig_206 ^ sig_217; int sig_238 = sig_206 & sig_217; int sig_239 = sig_237 & sig_236; int sig_240 = sig_237 ^ sig_236; int sig_241 = sig_238 | sig_239; int sig_242 = sig_211 ^ sig_218; int sig_243 = sig_211 & sig_218; int sig_244 = sig_242 & sig_241; int sig_245 = sig_242 ^ sig_241; int sig_246 = sig_243 | sig_244; int sig_247 = sig_212 ^ sig_219; int sig_248 = sig_212 & wb[6]; int sig_249 = wa[6] & sig_246; int sig_250 = sig_247 ^ sig_246; int sig_251 = sig_248 | sig_249; y |= (sig_210 & 0x01) << 0; // default output y |= (sig_241 & 0x01) << 1; // default output y |= (sig_248 & 0x01) << 2; // default output y |= (sig_210 & 0x01) << 3; // default output y |= (sig_208 & 0x01) << 4; // default output y |= (sig_170 & 0x01) << 5; // default output y |= (sig_250 & 0x01) << 6; // default output y |= (sig_218 & 0x01) << 7; // default output y |= (sig_210 & 0x01) << 8; // default output y |= (sig_198 & 0x01) << 9; // default output y |= (sig_240 & 0x01) << 10; // default output y |= (sig_245 & 0x01) << 11; // default output y |= (sig_250 & 0x01) << 12; // default output y |= (sig_251 & 0x01) << 13; // default output return y; }