/*** * This code is a part of EvoApproxLib library (ehw.fit.vutbr.cz/approxlib) distributed under The MIT License. * When used, please cite the following article(s): V. Mrazek, Z. Vasicek, L. Sekanina, H. Jiang and J. Han, "Scalable Construction of Approximate Multipliers With Formally Guaranteed Worst Case Error" in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 11, pp. 2572-2576, Nov. 2018. doi: 10.1109/TVLSI.2018.2856362 * This file contains a circuit from a sub-set of pareto optimal circuits with respect to the pwr and wce parameters ***/ // MAE% = 0.23 % // MAE = 150 // WCE% = 1.16 % // WCE = 759 // WCRE% = 1500.00 % // EP% = 93.16 % // MRE% = 12.26 % // MSE = 38236 // PDK45_PWR = 0.200 mW // PDK45_AREA = 411.6 um2 // PDK45_DELAY = 1.14 ns #include #include uint16_t mul8s_1L2L(uint8_t A, uint8_t B) { uint16_t O; uint8_t n38,n39,n88,O10,n95,O5,n36,n37,n209,O2,n132,n133,n130,n131,n136,n137,n134,n100,n222,n208,n138,n139,n226,n227,n224,n235,n234,n236,O12,n231,O4,n230,n85,n84,n237,n86,n81,n80,n83,n82,n118,n232,n239,n119,n129,n128,n125,n124,n127,n126,n121,n120,n123,n122,n89,n92,n238,n240,n98,n99,n245,n246,n247,n248,n249,n90,n91,n96,n97,n94,O0,n158,n159,n210,n150,n152,n153,n154,n155,n203,n157,n67,n66,n65,n64,n63,n62,n60,n189,n69,n68,n156,n173,n252,n250,n93,O15,O3,n233,n161,n149,n148,n143,n142,n141,n140,n147,n146,n145,n144,n74,n75,n76,n77,n70,n71,n72,n73,O9,n78,n79,n176,n177,n174,n175,n172,O6,n170,n171,n228,n178,n179,n229,n49,n48,n40,n43,n42,n45,n44,n47,O14,O8,n220,O1,n160,n163,n162,n165,n164,n167,n166,n169,n168,n194,n225,O11,n58,n59,n56,n57,n54,n55,n52,n53,n50,n51,n223,n198,n199,n195,n196,n197,n190,n191,n192,n193,n114,n115,n117,n110,n111,n112,n113,n204,n205,n206,n207,n200,n201,n202,n102,O13,n135,n242,n221,n243,n244,O7,n188,n186,n185,n184,n183,n182,n181,n180,n107,n106,n105,n104,n103,n211,n101,n218,n217,n216,n215,n214,n213,n212,n109,n108; O0=0; O1=0; O2=0; O3=0; O4=((B >> 2)&1)&((A >> 2)&1); n111=((B >> 5)&1)&((A >> 4)&1); n113=((B >> 7)&1)&((A >> 2)&1); n114=((B >> 4)&1)&((A >> 5)&1); n115=((B >> 3)&1)&((A >> 6)&1); n129=((B >> 3)&1)&((A >> 7)&1); n147=((B >> 6)&1)&((A >> 4)&1); n148=((B >> 7)&1)&((A >> 3)&1); n149=((B >> 5)&1)&((A >> 5)&1); n150=((B >> 4)&1)&((A >> 6)&1); n166=((B >> 4)&1)&((A >> 7)&1); n174=((B >> 5)&1)&((A >> 6)&1); n182=((B >> 6)&1)&((A >> 5)&1); n185=~(((A >> 4)&1)|((A >> 3)&1)); n206=((B >> 5)&1)&((A >> 7)&1); n216=((B >> 7)&1)&((A >> 5)&1); n218=((B >> 6)&1)&((A >> 6)&1); n239=((B >> 7)&1)&((A >> 6)&1); n240=((B >> 6)&1)&((A >> 7)&1); n250=((B >> 7)&1)&((A >> 7)&1); n37=((B >> 3)&1)&((A >> 3)&1); n39=((B >> 2)&1)&((A >> 3)&1); n40=((B >> 3)&1)&((A >> 2)&1); n43=((B >> 2)&1)&((A >> 4)&1); n45=((B >> 4)&1)&((A >> 2)&1); n56=((B >> 3)&1)&((A >> 4)&1); n58=((B >> 5)&1)&((A >> 2)&1); n59=((B >> 4)&1)&((A >> 3)&1); n60=((B >> 2)&1)&((A >> 5)&1); n78=((B >> 6)&1)&((A >> 3)&1); n80=((B >> 5)&1)&((A >> 3)&1); n81=((B >> 6)&1)&((A >> 2)&1); n84=((B >> 4)&1)&((A >> 4)&1); n85=((B >> 3)&1)&((A >> 5)&1); n86=((B >> 2)&1)&((A >> 6)&1); n94=((B >> 2)&1)&((A >> 7)&1); n112=~(n113^n78); n146=~n113&n78; n180=n147&n148; n184=((B >> 7)&1)&~n185; n186=((A >> 4)&1)&n148; n36=n37&O4; n38=~(n40|n39); n44=n45^n37; n55=n45&n37; n57=n59^n58; n77=n78&n58; n79=~(n81|n80); n83=n59&n58; O5=~(n38|n36); n107=n84&n83; n110=~(n111^n77); n141=n111&n77; n142=n111&n112; n143=n112&n77; n145=~(n147^n146); n179=n147&n146; n181=n148&n146; n183=~n186&n184; n215=~(n216|n184); n217=((A >> 5)&1)&n184; n42=~(n43^n36); n50=n43&n36; n51=n43&n44; n52=n44&n36; n54=~(n56^n55); n72=n56&n55; n73=n56&n57; n74=n57&n55; n76=~(n79|n77); n82=~(n84^n83); O6=~(n44^n42); n106=n84&n76; n108=n83&n76; n109=n112^n110; n140=~(n142|n141); n144=n148^n145; n178=~(n180|n179); n212=n182&n183; n214=~(n217|n215); n238=~(n239^n215); n249=~n239&n215; n49=~(n51|n50); n53=n57^n54; n71=~(n73|n72); n75=n82^n76; n100=n85&~n75; n105=~(n107|n106); n135=n114&~n109; n139=~n143&n140; n172=n149&~n144; n177=~n181&n178; n236=n218&n214; n248=~(n250^n249); n48=~n52&n49; n66=n60&~n53; n70=~n74&n71; n101=n85&~n70; n104=~n108&n105; n138=~(n144^n139); n171=~(n144|n139); n173=n149&~n139; n176=n182^n177; n211=n182&~n177; n213=n183&~n177; n47=~(n53^n48); n65=~(n53|n48); n67=n60&~n48; n69=~(n75^n70); n99=~(n75|n70); O7=~(n60^n47); n103=~(n109^n104); n134=~(n109|n104); n136=n114&~n104; n137=n149^n138; n170=~(n172|n171); n175=n183^n176; n210=~(n212|n211); n64=~(n66|n65); n68=n85^n69; n98=~(n100|n99); n102=n114^n103; n133=~(n135|n134); n165=n150&~n137; n169=~n173&n170; n204=n174&~n175; n209=~n213&n210; n63=~n67&n64; n93=n86&~n68; n97=~n101&n98; n126=~(n102|n97); n127=n115&~n97; n128=n115&~n102; n132=~n136&n133; n168=n174^n169; n203=n174&~n169; n205=~(n175|n169); n208=n214^n209; n235=n214&~n209; n237=n218&~n209; n62=~(n68^n63); n91=~(n68|n63); n92=n86&~n63; n96=~(n102^n97); O8=~(n86^n62); n125=~(n127|n126); n131=~(n137^n132); n163=~(n137|n132); n164=n150&~n132; n167=~(n175^n168); n202=~(n204|n203); n207=n218^n208; n234=~(n236|n235); n90=~(n92|n91); n95=n115^n96; n120=~(n94|n95); n124=~n128&n125; n130=n150^n131; n162=~(n164|n163); n197=~(n166|n167); n201=~n205&n202; n229=~(n206|n207); n233=~n237&n234; n89=~n93&n90; n119=~(n94|n89); n121=~(n95|n89); n123=~(n129^n124); n156=~(n129|n124); n157=~(n129|n130); n158=~(n124|n130); n161=~n165&n162; n200=~(n206^n201); n228=~(n206|n201); n230=~(n207|n201); n232=~(n238^n233); n88=~(n94^n89); O9=n95^n88; n118=~(n120|n119); n122=~(n130^n123); n155=~(n157|n156); n160=~(n166^n161); n196=~(n166|n161); n198=~(n167|n161); n199=~(n207^n200); n227=~(n229|n228); n231=~(n240^n232); n117=~n121&n118; n154=~n158&n155; n159=~(n167^n160); n195=~(n197|n196); n226=~n230&n227; O10=n122^n117; n152=~(n122|n117); n153=~(n159^n154); n192=~(n159|n154); n194=~n198&n195; O11=~(n153^n152); n191=~n159&n152; n193=~n154&n152; n224=~(n199|n194); n190=~(n192|n191); n189=~n193&n190; n188=~(n194^n189); n223=~(n194|n189); n225=~(n199|n189); O12=n199^n188; n222=~(n224|n223); n221=~n225&n222; n220=n226^n221; n245=n226&n221; O13=n231^n220; n244=n233&n245; n247=~(n233|n245); n243=~(n240|n244); n246=~(n238|n247); n242=n246&~n243; O14=n248^n242; n252=n249&~n242; O15=~(n250|n252); O = (O0 << 0)|(O1 << 1)|(O2 << 2)|(O3 << 3)|(O4 << 4)|(O5 << 5)|(O6 << 6)|(O7 << 7)|(O8 << 8)|(O9 << 9)|(O10 << 10)|(O11 << 11)|(O12 << 12)|(O13 << 13)|(O14 << 14)|(O15 << 15); return O; }