
Proof Repositories for Correct-by-Construction Software
Product Lines

Master Thesis | Elias Kuiter | January 8, 2021
Advisors: Ina Schaefer, Tabea Bordis, Tobias Runge, Gunter Saake

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Introduction

1

Background & Problem

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Introduction

1

Correctness-by-
Construction

Background & Problem

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Introduction

1

Software
Product Lines

Correctness-by-
Construction

Background & Problem

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Introduction

1

Software
Product Lines

Correctness-by-
Construction

CbC-
SPLs

[1]

[1] Tabea Bordis, Tobias Runge, and Ina Schaefer. 2020. Correctness-by-Construction for Feature-Oriented Software Product Lines. GPCE Proc’, ACM.

Background & Problem

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Introduction

1

Software
Product Lines

Proof
Repositories [2]

Correctness-by-
Construction

CbC-
SPLs

[2] Richard Bubel et al. 2016. Proof Repositories for Compositional Verification of Evolving Software Systems. Trans. on Found. for Mastering Change I. Springer.

Background & Problem

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Introduction

1

Software
Product Lines

Proof
Repositories

Correctness-by-
Construction

CbC-
SPLs

Goal & Contributions

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Introduction

1

CbC

PRsSPLs

Software
Product Lines

Proof
Repositories

Correctness-by-
Construction

CbC-
SPLs

Goal & Contributions

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Correctness-by-Construction

2

- Programming methodology

- Idea: - Start with a (trivial) correct program and

 - Apply only correct transformations (refinements)

- Specification, code, and proof of correctness are constructed at the same time

- Follows the design-by-contract principle:

precondition postcondition

statement

CbC

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Correctness-by-Construction: Example

3

CbC

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Correctness-by-Construction: Example

3

CbC

side conditions

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Correctness-by-Construction: Example

3

CbC

side conditions

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Correctness-by-Construction: Example

3

CbC

side conditions

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Correctness-by-Construction: Example

3

CbC

side conditions

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Software Product Lines

4

- FOP: Composition-based approach for building software product lines

- Idea: - Create total order of features

- Feature modules add new methods or call parent methods with original()

- Variability is encoded in non-deterministic original() calls

Feature-Oriented Programming SPLs

Features

Methods

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Software Product Lines

4

- FOP: Composition-based approach for building software product lines

- Idea: - Create total order of features

- Feature modules add new methods or call parent methods with original()

- Variability is encoded in non-deterministic original() calls

Feature-Oriented Programming SPLs

Features

Methods

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Software Product Lines

4

- FOP: Composition-based approach for building software product lines

- Idea: - Create total order of features

- Feature modules add new methods or call parent methods with original()

- Variability is encoded in non-deterministic original() calls

Feature-Oriented Programming SPLs

Features

Methods

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines 5

CbC

SPLs

- An FOP-inspired extension of traditional CbC that ...

- introduces a new refinement rule for method calls:

- introduces original calls (m = original) to invoke the parent method

- allows original to occur in contracts (contract composition):

(assuming that Φ and Ψ fit with the contract of m)

Software Product Lines
Correct-by-Construction SPLs [1]

[1] Tabea Bordis, Tobias Runge, and Ina Schaefer. 2020. Correctness-by-Construction for Feature-Oriented Software Product Lines. GPCE Proc’, ACM.

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines 6

CbC

SPLs

Software Product Lines
Correct-by-Construction SPLs: Example

Features

Methods

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines 6

CbC

SPLs

Software Product Lines
Correct-by-Construction SPLs: Example

Features

Methods

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines 6

CbC

SPLs

Software Product Lines
Correct-by-Construction SPLs: Example

Features

Methods

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines 6

CbC

SPLs

Software Product Lines
Correct-by-Construction SPLs: Example

Features

Methods

...

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines 6

CbC

SPLs

Software Product Lines
Correct-by-Construction SPLs: Example

Features

Methods

product
derivation

Potential for reuse

1. avoid obvious

re-verification

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines 6

CbC

SPLs

Software Product Lines
Correct-by-Construction SPLs: Example

Features

Methods

product
derivation

Potential for reuse

1. avoid obvious

re-verification

2. leverage overlaps

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Proof Repositories [2]

7

- A mathematical framework for proof reuse in compositional verification

- Proof repository: „Database“ () of conducted proofs (at method-level)

- Intended to improve performance for verification-in-the-large

- Idea: - Separate method calls from called methods with abstract contracts ()

PRs

[2] Richard Bubel et al. 2016. Proof Repositories for Compositional Verification of Evolving Software Systems. Trans. on Found. for Mastering Change I. Springer.

f

gf

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Proof Repositories [2]

7

- A mathematical framework for proof reuse in compositional verification

- Proof repository: „Database“ () of conducted proofs (at method-level)

- Intended to improve performance for verification-in-the-large

- Idea: - Separate method calls from called methods with abstract contracts ()

PRs

[2] Richard Bubel et al. 2016. Proof Repositories for Compositional Verification of Evolving Software Systems. Trans. on Found. for Mastering Change I. Springer.

f

gf g1f

g2

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Proof Repositories [2]

7

- A mathematical framework for proof reuse in compositional verification

- Proof repository: „Database“ () of conducted proofs (at method-level)

- Intended to improve performance for verification-in-the-large

- Idea: - Separate method calls from called methods with abstract contracts ()

 - Then, conduct and reuse partial proofs

PRs

[2] Richard Bubel et al. 2016. Proof Repositories for Compositional Verification of Evolving Software Systems. Trans. on Found. for Mastering Change I. Springer.

f g1

g2

instead of:

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Reducing Methods to Proof Repositories

8

- Goal: Express CbC trees with the proof repository framework

- First solution: Translate CbC trees into whole methods

PRsSPLsCoarse-Grained Transformation

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Reducing Methods to Proof Repositories

8

- Goal: Express CbC trees with the proof repository framework

- First solution: Translate CbC trees into whole methods

PRsSPLsCoarse-Grained Transformation

List_Insert::
main

Pro
- simple
- suitable for classical FOP

Con
- requires finished methods
- no reuse for evolution
- hampers debugging

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Reducing Methods to Proof Repositories

9

Fine-Grained Transformation

- Goal: Express CbC trees with the proof repository framework

- Second solution: Translate into many small methods

CbC

PRs

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Reducing Methods to Proof Repositories

9

Fine-Grained Transformation

- Goal: Express CbC trees with the proof repository framework

- Second solution: Translate into many small methods

side conditions

CbC

PRs

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

3
4_init
4_use
5

Reducing Methods to Proof Repositories

9

Fine-Grained Transformation

- Goal: Express CbC trees with the proof repository framework

- Second solution: Translate into many small methods

Pro
- suitable for CbC
- allows evolution/debugging
- correctness-preserving

Con
- implementation effort

CbC

PRs

List_Insert::

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Reducing CbC-SPLs to Proof Repositories

10

CbC-SPL Transformation

- Goal: Express entire CbC-SPLs with the proof repository framework

- Solution: Bind calls to actual methods using abstract contracts

CbC

PRsSPLs

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Reducing CbC-SPLs to Proof Repositories

10

CbC-SPL Transformation

- Goal: Express entire CbC-SPLs with the proof repository framework

- Solution: Bind calls to actual methods using abstract contracts

CbC

PRsSPLs

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Reducing CbC-SPLs to Proof Repositories

11

Proof Reuse

CbC

PRsSPLs

Potential for reuse

1. avoid obvious re-verification

2. leverage overlaps

Solution

1. structural reuse (SR)

2. partial proof reuse (PPR)

... with proof repositories:

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Implementation

12

KeYPR

- KeY for Proof Repositories

- implementation of proof repositories for CbC-SPLs developed with Java/JML

- CbC-SPLs are written in a Lisp-based DSL

- uses KeY with abstract contracts [3] for conducting proofs

- implements four query strategies

[3] Maria Pelevina. 2014. Realization and Extension of Abstract Operation Contracts for Program Logic. Bachelor‘s Thesis. Technische Universität Darmstadt.

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Implementation

13

KeYPR: DSL

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Implementation

14

KeYPR: Query Strategies

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Evaluation

15

Research Questions

We measure proof nodes and verification time.

Proofs are cancelled after 10000 nodes or 5 minutes.

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Evaluation

16

Research Questions

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Evaluation

17

Research Questions

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Evaluation

17

Research Questions

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Evaluation

17

Research Questions

- Product-based analysis

- unoptimized: Apel/Benduhn/Bolle in FEATUREHOUSE

- optimized: Bordis/Runge/Kodetzki in VarCorC

- Family-based analysis (Thüm et al. 2012)

- Feature-family-based analysis (KeYPR)

tailored to CbC:

emulated as fine product-based

emulated as fine complete

N.A.

fine late-splitting

Master Thesis | Elias Kuiter | Proof Repositories for Correct-by-Construction Software Product Lines

Conclusion

1

Software
Product Lines

Proof
Repositories

Correctness-by-
Construction

CbC-
SPLs

fine
trans.

coarse
trans.

PL
trans.

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44

