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Correctness-by-Construction
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- Programming methodology

- Idea: - Start with a (trivial) correct program and

         - Apply only correct transformations (refinements)

- Specification, code, and proof of correctness are constructed at the same time

- Follows the design-by-contract principle:

precondition postcondition

statement

CbC
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- FOP: Composition-based approach for building software product lines

- Idea: - Create total order of features

- Feature modules add new methods or call parent methods with original()

- Variability is encoded in non-deterministic original() calls

Feature-Oriented Programming SPLs

Features

Methods
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CbC

SPLs

- An FOP-inspired extension of traditional CbC that ...

- introduces a new refinement rule for method calls:

- introduces original calls (m = original) to invoke the parent method

- allows original to occur in contracts (contract composition):

(assuming that Φ and Ψ fit with the contract of m)

Software Product Lines
Correct-by-Construction SPLs [1]

[1] Tabea Bordis, Tobias Runge, and Ina Schaefer. 2020. Correctness-by-Construction for Feature-Oriented Software Product Lines. GPCE Proc’, ACM.
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Potential for reuse

1. avoid obvious

re-verification
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- A mathematical framework for proof reuse in compositional verification

- Proof repository: „Database“ (     ) of conducted proofs (at method-level)

- Intended to improve performance for verification-in-the-large

- Idea: - Separate method calls from called methods with abstract contracts (      )

PRs

[2] Richard Bubel et al. 2016. Proof Repositories for Compositional Verification of Evolving Software Systems. Trans. on Found. for Mastering Change I. Springer.
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- A mathematical framework for proof reuse in compositional verification

- Proof repository: „Database“ (     ) of conducted proofs (at method-level)

- Intended to improve performance for verification-in-the-large

- Idea: - Separate method calls from called methods with abstract contracts (      )

          - Then, conduct and reuse partial proofs

PRs

[2] Richard Bubel et al. 2016. Proof Repositories for Compositional Verification of Evolving Software Systems. Trans. on Found. for Mastering Change I. Springer.

f g1

g2  

instead of:



Master Thesis  |  Elias Kuiter  |  Proof Repositories for Correct-by-Construction Software Product Lines 

Reducing Methods to Proof Repositories

8

- Goal: Express CbC trees with the proof repository framework

- First solution: Translate CbC trees into whole methods

PRsSPLsCoarse-Grained Transformation
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- Goal: Express CbC trees with the proof repository framework

- First solution: Translate CbC trees into whole methods

PRsSPLsCoarse-Grained Transformation

List_Insert::
main

Pro
- simple
- suitable for classical FOP

Con
- requires finished methods
- no reuse for evolution
- hampers debugging
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- Goal: Express CbC trees with the proof repository framework

- Second solution: Translate into many small methods

CbC

PRs
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Reducing Methods to Proof Repositories

9

Fine-Grained Transformation

- Goal: Express CbC trees with the proof repository framework

- Second solution: Translate into many small methods

Pro
- suitable for CbC
- allows evolution/debugging
- correctness-preserving

Con
- implementation effort

CbC

PRs

List_Insert::
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CbC-SPL Transformation

- Goal: Express entire CbC-SPLs with the proof repository framework

- Solution: Bind calls to actual methods using abstract contracts

CbC

PRsSPLs
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Proof Reuse

CbC

PRsSPLs

Potential for reuse

1. avoid obvious re-verification

2. leverage overlaps

Solution

1.  structural reuse (SR)

2.  partial proof reuse (PPR)

... with proof repositories:
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Implementation
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KeYPR

- KeY for Proof Repositories

- implementation of proof repositories for CbC-SPLs developed with Java/JML

- CbC-SPLs are written in a Lisp-based DSL

- uses KeY with abstract contracts [3] for conducting proofs

- implements four query strategies

[3] Maria Pelevina. 2014. Realization and Extension of Abstract Operation Contracts for Program Logic. Bachelor‘s Thesis. Technische Universität Darmstadt.
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KeYPR: Query Strategies
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Research Questions

We measure proof nodes and verification time.

Proofs are cancelled after 10000 nodes or 5 minutes.
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Research Questions

- Product-based analysis 

- unoptimized: Apel/Benduhn/Bolle in FEATUREHOUSE

- optimized: Bordis/Runge/Kodetzki in VarCorC

- Family-based analysis (Thüm et al. 2012)

- Feature-family-based analysis (KeYPR)

tailored to CbC:

emulated as fine product-based

emulated as fine complete

N.A.

fine late-splitting
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