

Getting Rid of Clone-And-Own: Moving to a Software Product Line for Temperature Monitoring

Elias Kuiter, Jacob Krüger, <u>Sebastian Krieter</u>, Thomas Leich, Gunter Saake University of Magdeburg, Harz University of Applied Sciences, METOP GmbH SPLC 2018 September 10 – 14 | Gothenburg, Sweden

- + Easy to implement
- + Fast to deploy

- + Easy to implement
- + Fast to deploy

- Hard to maintain
- Hard to extend

- + Easy to implement
- + Fast to deploy

- Hard to maintain
- Hard to extend

\Rightarrow Migrating to a software product line

Domain

- Heat Monitoring
 - 1. Technische Alternative
 - Heating control systems

Domain

- Heat Monitoring
 - 1. Technische Alternative
 - Heating control systems
 - 2. HCP-Technology
 - Coolers and temperature control solutions

Domain

- Heat Monitoring
 - 1. Technische Alternative
 - Heating control systems
 - 2. HCP-Technology
 - Coolers and temperature control solutions
 - 3. Dometic
 - Temperature control solutions

Cloned Systems

- First system: uvr2web
 - Reads temperature
 - Displays live feed and statistics

Cloned Systems

- Second system: TempLog
- Third system: TempLog Dometic
- More systems:
 - Different interfaces
 - New hardware
 - ...

Clone-and-Own: First Problems

- Arising problems with developing our systems
 - 1. Introducing new features
 - Which variants must be updated?

Clone-and-Own: First Problems

- Arising problems with developing our systems
 - 1. Introducing new features
 - Which variants must be updated?
 - 2. Fixing bugs
 - Which variants must be repaired?

Clone-and-Own: First Problems

- Arising problems with developing our systems
 - 1. Introducing new features
 - Which variants must be updated?
 - 2. Fixing bugs
 - Which variants must be repaired?
 - 3. Managing variability among different variants
 - How is variability implemented?

• Challenges during migration:

- Challenges during migration:
 - Deciding which behavior comprises a feature
 - Mismatch between the intended and actual variability

- Challenges during migration:
 - Deciding which behavior comprises a feature
 - Mismatch between the intended and actual variability
 - Extracting variable feature code
 - Managing the source code policies

Domain Implementation

- Challenges during migration:
 - Deciding which behavior comprises a feature
 - Mismatch between the intended and actual variability
 - Extracting variable feature code
 - Managing the source code policies
 - Initializing configuration management and product derivation

Domain Implementation

Application Engineering

Moving to a Software Product Line for Temperature Monitoring

• Main problem: tyranny of the dominant decomposition

- Main problem: tyranny of the dominant decomposition
- Sub-trees:

- Main problem: tyranny of the dominant decomposition
- Sub-trees:
 - Data capture
 - Data transfer

- Main problem: tyranny of the dominant decomposition
- Sub-trees:
 - Data capture
 - Data transfer
 - Data visualization

- Main problem: tyranny of the dominant decomposition
- Sub-trees:
 - $TA \land database \Rightarrow (compound \land sensor \land output)$ single sensor \Rightarrow (sensor $\land \neg$ output $\land \neg$ heat meter $\land \neg$ speedstep) $UVR1611 \land database \Rightarrow (heat meter \land speedstep)$ backup notification \Rightarrow backup *HCP* module \Leftrightarrow (*HCP* \lor *Dometic*) database \Leftrightarrow (personal \lor HCP database \lor Dometic database) Android \Leftrightarrow (HCP Android \lor Dometic Android) Data visualization website \Leftrightarrow (HCP website \lor Dometic website) website \Rightarrow (HCP module \land database \land Android \land Windows)
- Cross-tree constraints:

Data capture

Data transfer

Handling dependencies of legacy systems

. . .

Before feature extraction:

Variant	SLOC
uvr2web TempLog	5,148 6,837
Total	11,985

Before feature extraction:

Variant	SLOC
uvr2web TempLog	5,148 6,837
Total	11,985

- \Rightarrow Introducing variability:
 - Preprocessor
 - Runtime variability
 - Build system

Before feature extraction:

Variant	SLOC
uvr2web TempLog	5,148 6,837
Total	11,985

After feature extraction:

Feature	SLOC
Windows	1,533
Android	478, 1
website	1,013
database	890
devices	659
Arduino	623
Other features	4,388
Total	10,584

Application Engineering

- Own web-based tooling:
 - feature-configurator
 - Configuration
 - Uses decision propagation

Application Engineering

- Own web-based tooling:
 - feature-configurator
 - Configuration
 - Uses decision propagation
 - feature-php
 - Product derivation
 - Enables multiple variability mechanisms (preprocessor, runtime variability, ...)

```
√uvr2web
√data capture
      Zdata sources
           Т
                UVR1611
                - UVR31
                - UVR42
                - UVR64
                - HZR65
                - TEM66
           - HCP module
      Arduino
           √ data pin setting 1
           ✓ interrupt setting digitalPinToInterrupt(dataPin)
           ✓ additional bits setting 0
           web settings
                - mac address setting
                - server setting
                - script setting
                - password setting
                 - upload interval setting
           using PC setting
```


- Resulting product line
 - Mainly C++ and PHP
 - Using preprocessors, runtime variability, and build system
 - 10,584 lines of code
 - 69 features
 - 17 cross-tree constraints

Case Study

GitHub

https://github.com/ekuiter/uvr2web-spl/

- Why implemented new tools?
 - Closed source
 - Too heavy weight / too many dependencies

- Why implemented new tools?
 - Closed source
 - Too heavy weight / too many dependencies
- \Rightarrow Own modularized tool framework:
 - *feature-model-viz*: domain analysis / visualization
 - feature-php: domain implementation / product derivation
 - feature-configurator: configuration

- Integration of all tools:
 - feature-web
 - Web-based:
 - Feature model visualization
 - Configuration
 - Automatic product derivation & download
 - LGPLv3 license

Developed Variability Tools

https://github.com/ekuiter/feature-web/

Developed Variability Tools

feature-web in action: https://uvr2web.de/?p=download

Conclusion

SPL Case Study

Tools

GitHub

UVR1611

- UVR42 - UVR64 - HZR65 - TFM66

feature-php

feature-model-viz

feature-configurator

www.2web

data capture

data sources

V TA