

Consistency Maintenance for Collaborative Real-Time Feature Modeling

Elias Kuiter

April 23, 2019

Bachelor Thesis Advisors: Gunter Saake, Sebastian Krieter, Jacob Krüger

- State of the Art: Single-User Feature Modeling
- No dedicated support for collaboration
- Asynchronous Collaboration with VCS **But:** not real-time; divergence

Why Real-Time?

- Engineers can discuss the feature model with domain experts
 - $\Rightarrow \mathsf{Real-time} \ \mathsf{feedback}$

Why Real-Time?

- Engineers can discuss the feature model with domain experts \Rightarrow Real-time feedback
- Domain knowledge is spread across different collaborators \Rightarrow Leverage group synergies for problem solving

Why Real-Time?

- Engineers can discuss the feature model with domain experts \Rightarrow Real-time feedback
- Domain knowledge is spread across different collaborators
 ⇒ Leverage group synergies for problem solving
- VCS does not allow tight collaboration (e.g., pair programming) \Rightarrow Complements a VCS for short-term evolution

Our Contribution:

- The Foundations of Collaborative Real-Time Feature Modeling, focusing on
 - Consistency Maintenance
 - Conflict Detection & Resolution

Our Contribution:

- The Foundations of Collaborative Real-Time Feature Modeling, focusing on
 - Consistency Maintenance
 - Conflict Detection & Resolution
- Open-Source Research Prototype

Concurrent Operation Chains

Immediate Operation Execution

Additional Model Representations & Operations

Decompose into Primitive Operations.

Decompose into Primitive Operations.

Decompose into Primitive Operations. $O_X \otimes O_B$ because: Based on O_A ,

Decompose into Primitive Operations. $O_X \otimes O_B$ because: Based on O_A , apply O_B .

Decompose into Primitive Operations. $O_X \otimes O_B$ because: Based on O_A , apply O_B .

Decompose into Primitive Operations. $O_X \otimes O_B$ because: Based on O_A , apply O_B . Now apply $O_X \dots$

Decompose into Primitive Operations. $O_X \otimes O_B$ because: Based on O_A , apply O_B . Now apply $O_X \dots$... but a conflict rule applies.

• No writes to removed features.

- No writes to removed features.
- No writes to the same feature attribute.

- No writes to removed features.
- No writes to the same feature attribute.
- May not introduce cycles.

- No writes to removed features.
- No writes to the same feature attribute.
- May not introduce cycles.
- No mandatory/optional writes to group children.

- No writes to removed features.
- No writes to the same feature attribute.
- May not introduce cycles.
- No mandatory/optional writes to group children.
- ... (cross-tree constraints, semantic properties)

Consistency Maintenance for Collaborative Real-Time Feature Modeling

Correctness

- Convergence
- Causality Preservation
- Intention Preservation

Evaluation

Correctness

- Convergence
- Causality Preservation
- Intention Preservation

Prototype + Tests

Conclusion

Conflict Detection

Conflict Resolution

CCI Model

- <u>C</u>onvergence
- Causality Preservation
- Intention Preservation

Concurrency Control

Architecture (Demo)

