Conceptual Architecture of the Linux Kernel Seite 1 von 13

Conceptual Architecture of the Linux Kernel

van Bowman
ibowman@sybase.com

January 1998

For Ric Holt
CS746G Assignment One

Available at: http://www.grad.math.uwaterloo.ca/~itbowman/CS746G/al/

Keywor ds: Software architecture, conceptua architecture, Linux

Abstract

This paper describes the abstract or conceptual software architecture of the Linux kernel. Thislevel of
architecture is concerned with the large-scal e subsystems within the kernel, but not with particular
procedures or variables. One of the purposes of such an abstract architecture isto form a mental model for
Linux developers and architects. The model may not reflect the as-built architecture perfectly, but it
provides a useful way to think about the overall structure. This model is most useful for entry-level
developers, but is also agood way for experienced devel opers to maintain a consistent and accurate system
vocabulary.

The architecture presented here is the result of reverse engineering an existing Linux implementation; the
primary sources of information used were the documentation and source code. Unfortunately, no devel oper
interviews were used to extract the live architecture of the system.

The Linux kernel is composed of five main subsystems that communicate using procedure calls. Four of
these five subsystems are discussed at the module interconnection level, and we discuss the architectural
style in the sense used by Garlan and Shaw. At all times the relation of particular subsystems to the overall
Linux system is considered.

The architecture of the kernel is one of the reasons that Linux has been successfully adopted by many users.
In particular, the Linux kernel architecture was designed to support alarge number of volunteer developers.
Further, the subsystems that are most likely to need enhancements were architected to easily support
extensibility. These two qualities are factors in the success of the overall system.

Contents

1. Introduction
1.1 Purpose

Conceptual Architecture of the Linux Kernel Seite 2 von 13

1.2 Challenges of this Paper
1.3 Organization
2. System Architecture
2.1 System Overview
2.2 Purpose of the Kernel
2.3 Overview of the Kernel Structure
2.4 Supporting Multiple Developers
2.5 System Data Structures
3. Subsystem Ar chitectures
3.1 Process Scheduler Architecture
3.2 Memory Manager Architecture
3.3 Virtual File System Architecture
3.4 Network Interface Architecture
3.5 Inter-Process Communication Architecture
4. Conclusions
Definition of Terms
References

List of Figures

Figure2.1: Decomposition of Linux System into Major Subsystems
Figure2.2: Kernel Subsystem Overview

Figure2.3: Division of Developer Responsibilities

Figure3.1: Process Scheduler Subsystem in Context

Figure3.2: Memory Manager subsystem in context

Figure3.3: Virtua File System in Context

Figure 3.4: Network Interface Subsystem in Context

1. Introduction

1.1 Purpose

The goal of this paper isto present the abstract architecture of the Linux kernel. Thisis described by Soni ([Soni 1995]) as being the
conceptual architecture. By concentrating on high-level design, this architecture is useful to entry-level developers that need to see the high
level architecture before understanding where their changesfit in. In addition, the conceptual architecture is a good way to create aformal
system vocabulary that is shared by experienced developers and system designers. This architectural description may not perfectly reflect the
actual implementation architecture, but can provide a useful mental model for all developersto share. Ideally, the conceptual architecture
should be created before the system is implemented, and should be updated to be an ongoing system conscience in the sense of [Monroe
1997], showing clearly the load-bearing walls as described in [Perry 1992].

1.2 Challenges of this Paper

This presentation is somewhat unusual, in that the conceptual architecture is usually formed before the as-built architecture is complete.
Since the author of this paper was not involved in either the design or implementation of the Linux system, this paper is the result of reverse
engineering the Slackware 2.0.27 kernel source and documentation. A few architectural descriptions were used (in particular, [Rusling 1997]
and [Wirzenius 1997] were quite helpful), but these descriptions were also based on the existing system implementation. By deriving the
conceptual architecture from an existing implementation, this paper probably presents some implementation details as conceptual
architecture.

In addition, the mechanisms used to derive the information in this paper omitted the best source of information -- the live knowledge of the
system architects and developers. For a proper abstraction of the system architecture, interviews with these individuals would be required.
Only in thisway can an accurate mental model of the system architecture be described.

Despite these problems, this paper offers a useful conceptualization of the Linux kernel software, although it cannot be taken as an accurate
depiction of the system asimplemented.

1.3 Organization

The next section describes the overall objective and architecture of the Linux kernel as awhole. Next, each individual subsystem is

Conceptual Architecture of the Linux Kernel Seite 3von 13

elaborated to the module level, with a discussion of the relations between modules in a subsystem and to other subsystems. Finally, we
discuss how the architecture of the Linux kernel was useful in the implementation of the system and contributed to the overall success of the
system.

2. System Architecture

2.1 System Overview

The Linux kernel is uselessin isolation; it participates as one part in alarger system that, asawhole, is useful. As such, it makes senseto
discuss the kernel in the context of the entire system. Figure 2.1 shows a decomposition of the entire Linux operating system:

User Applications

oS Services

Linux Kernel

Hardware Controllers

Figure 2.1: Decomposition of Linux System into Major Subsystems

The Linux operating system is composed of four mgjor subsystems:

1. User Applications -- the set of applicationsin use on a particular Linux system will be different depending on what the computer
system is used for, but typical examples include a word-processing application and a web-browser.

2. O/S Services -- these are services that are typically considered part of the operating system (a windowing system, command shell,
etc.); also, the programming interface to the kernel (compiler tool and library) isincluded in this subsystem.

3. Linux Kernel -- thisisthe main area of interest in this paper; the kernel abstracts and mediates access to the hardware resources,
including the CPU.

4. Hardware Controllers -- this subsystem is comprised of all the possible physical devicesin aLinux installation; for example, the
CPU, memory hardware, hard disks, and network hardware are all members of this subsystem

This decomposition follows Garlan and Shaw's Layered style discussed in [Garlan 1994] ; each subsystem layer can only communicate with
the subsystem layers that are immediately adjacent to it. In addition, the dependencies between subsystems are from the top down: layers
pictured near the top depend on lower layers, but subsystems nearer the bottom do not depend on higher layers.

Since the primary interest of this paper isthe Linux kernel, we will completely ignore the User Applications subsystem, and only consider
the Hardware and O/S Services subsystems to the extent that they interface with the Linux kernel subsystem.

2.2 Purpose of the Kernel

The Linux kernel presents a virtual machine interface to user processes. Processes are written without needing any knowledge of what
physical hardware isinstalled on a computer -- the Linux kernel abstracts all hardware into a consistent virtual interface. In addition, Linux
supports multi-tasking in a manner that is transparent to user processes. each process can act as though it is the only process on the computer,
with exclusive use of main memory and other hardware resources. The kernel actually runs several processes concurrently, and is responsible
for mediating access to hardware resources so that each process has fair access while inter-process security is maintained.

2.3 Overview of the Kernel Structure
The Linux kernel is composed of five main subsystems:

1. TheProcess Scheduler (SCHED) isresponsible for controlling process access to the CPU. The scheduler enforces a policy that
ensures that processes will have fair access to the CPU, while ensuring that necessary hardware actions are performed by the kernel
ontime.

Conceptual Architecture of the Linux Kernel Seite 4 von 13

2. TheMemory Manager (MM) permits multiple process to securely share the machine's main memory system. In addition, the
memory manager supports virtual memory that allows Linux to support processes that use more memory than is available in the
system. Unused memory is swapped out to persistent storage using the file system then swapped back in when it is needed.

3. TheVirtual File System (VFS) abstracts the details of the variety of hardware devices by presenting a common file interface to all
devices. In addition, the VFS supports severa file system formats that are compatible with other operating systems.

4. The Network Interface (NET) provides access to several networking standards and a variety of network hardware.

5. TheInter-Process Communication (IPC) subsystem supports several mechanisms for process-to-process communication on a
single Linux system.

Figure 2.2 shows a high-level decomposition of the Linux kernel, where lines are drawn from dependent subsystems to the subsystems they
depend on:

Memaory Manager

Virtual File Frocess Inter-Process
EE— - .
System Scheduler Communication
F Y

Metwork [Interface

Figure 2.2: Kernel Subsystem Overview

This diagram emphasizes that the most central subsystem is the process scheduler: all other subsystems depend on the process scheduler
since all subsystems need to suspend and resume processes. Usually a subsystem will suspend a process that is waiting for a hardware
operation to complete, and resume the process when the operation is finished. For example, when a process attempts to send a message
across the network, the network interface may need to suspend the process until the hardware has completed sending the message
successfully. After the message has been sent (or the hardware returns a failure), the network interface then resumes the process with areturn
code indicating the success or failure of the operation. The other subsystems (memory manager, virtual file system, and inter-process
communication) all depend on the process scheduler for similar reasons.

The other dependencies are somewhat less obvious, but equally important:

o The process-scheduler subsystem uses the memory manager to adjust the hardware memory map for a specific process when that
processis resumed.

« Theinter-process communication subsystem depends on the memory manager to support a shared-memory communication
mechanism. This mechanism allows two processes to access an area of common memory in addition to their usual private memory.

o Thevirtual file system uses the network interface to support a network file system (NFS), and also uses the memory manager to
provide aramdisk device.

« The memory manager uses the virtual file system to support swapping; thisis the only reason that the memory manager depends on
the process scheduler. When a process accesses memory that is currently swapped out, the memory manager makes a request to the
file system to fetch the memory from persistent storage, and suspends the process.

In addition to the dependencies that are shown explicitly, al subsystemsin the kernel rely on some common resources that are not shown in
any subsystem. These include procedures that all kernel subsystems use to allocate and free memory for the kernel's use, procedures to print

Conceptual Architecture of the Linux Kernel

Seite 5von 13

warning or error messages, and system debugging routines. These resources will not be referred to explicitly since they are assumed
ubiquitously available and used within the kernel layer of Figure 2.1.

The architectural style at this level resembles the Data Abstraction style discussed by Garlan and Shaw in [Garlan 1994]. Each of the
depicted subsystems contains state information that is accessed using a procedural interface, and the subsystems are each responsible for
maintaining the integrity of their managed resources.

2.4 Supporting Multiple Developers

The Linux system was developed by alarge number of volunteers (the current CREDITS file lists 196 devel opers that have worked on the
Linux system). The large number of developers and the fact that they are volunteers has an impact on how the system should be architected.
With such alarge number of geographically dispersed developers, atightly coupled system would be quite difficult to develop -- developers
would be constantly treading on each others code. For this reason, the Linux system was architected to have the subsystems that were
anticipated to need the most modification -- the file systems, hardware interfaces, and network system -- designed to be highly modular. For
example, an implementation of Linux can be expected to support many hardware devices which each have distinct interfaces; anaive
architecture would put the implementation of all hardware devices into one subsystem. An approach that better supports multiple developers
isto separate the code for each hardware device into adevice driver that is a distinct module in the file system. Analyzing the creditsfile

gives Figure 2.3:

Jeremy Fitzharding

Stephen Tweedi{

r

Memory Manager

i

Bruno Haible
Simmule Turner
Stephen Tweedid

\ FProcess
Scheduler

Tarsten Dume
Tam Cwyas
Bjarn Elmall
Fhilip =ladstone
Cravid Hinds
Bas Laarhowen
hdike Shawer
Jon Tambs
Ted Tso
Ulrich Windl

| Developers |

|
|
| subsystem ||
|
|
|

——Implemented—s

Cranny ter Haar

Frederic Potter

Stuart Cheshire
Faul zorttmake

Feter Bauer
Canald Beder
Hamish Coleman

[roug Evans
Jacques Felinas
Walker Lendedke

“furi Per
Stefan Reinauer
zerard Roudier
Thoemas Sailer
Hannu Savalainen
Chris Smith
HansJoachim Midmaie

Frank xia
Michael O'Reilly

Crerek Atkins

Bill Bogstad

Cmitry 5. Garodechanin
Michael A. Griffith
zrant zuenther

reg Hankins

k.ai Harrehilde-FPetersen

Karl Keyte
Alain L. Knaff

Lea Spiekman
Tammy Tharn
GnnterWindau
Eriz *roungdale
Werner Zimmermann
Leanard N. Zubkaff
Marc Zyngier

Greg Wettstein Lrawvid Dravies
Michael Hipp
Fred M. wan Kempen
Bjern Ehnall — ¥
Michael K. Johnsor] File Device _
Blas Laarhowen * Bl Metwark Device
Rick 5ladkey = Drivers
[}
Lagical File
S}'STEMS Arindam Banerji Kewvin Lentin Wrishna Balasubramaniad
John Aoyreock mla Lard
[rario Ballabio Tuomas J. Lukka
Randolph Bentson Kai MSkizara »
Hennus Bergman Fat Madkinlay
Thomas Bogendoerfar Dik Melchers |HTEF-PFQEE$S
Fhilip Blundell Ridd hliller Communication
John Boyd Corey Minyard
Todd J. Darr Eberhard Moenkebarg Alan Co
Crreve Edkchardt Jdohan hhyreen
Heiko Eissfeldt Michael Heuffer
Fritz Elfert [rawid C. Miemi .
Werner Almesberger Rik F aith Ken Pizzini Eric Schenk
Ray Burr Jnrgen Fischer Alessandro Rubini
Remy Card Lawrence Foard Fetar De Schrijwer
Gordon Chaffes Bob Frey Simon Shapiro Rosz Biro
Wayne Davizan Higel amble Jaohn Shifflett Fred Baumgarten
Faal-kristian Engstad [ravid Gentzel Scolt Snyder hichael Callahan

hlike Jagdi=
Zaro Kuhlman
Jon Tambs

Logical Metwork
Interface

Chih-den Chang
Juan Jose Ciarlant
Laurence Culhane1
Willy Kanynenberg
Migel Metheringhan

Jonathan Maylor

reg Page

Flarian La Roche

Mike Shawer

Andrew Tridgell

T=u-S5heng T=ao

M atthias Urlichs

JozWos
Miibe “rutaka

Conceptual Architecture of the Linux Kernel Seite 6 von 13

Figure 2.3: Division of Developer Responsibilities

Figure 2.3 shows most of the developers who have worked on the Linux kernel, and the areas that they appeared to have implemented. A few
developers modified many parts of the kernel; for clarity, these devel opers were not included. For example, Linus Torvalds was the original
implementor of most of the kernel subsystems, although subsequent development was done by others. This diagram can't be considered
accurate because developer signatures were not maintained consistently during the development of the kernel, but it gives a general idea of
what systems devel opers spent most of their effort implementing.

This diagram confirms the large-scale structure of the kernel as outlined earlier. It isinteresting to note that very few devel opers worked on
more than one system; where this did occur, it occurred mainly where there is a subsystem dependency. The organization supports the well-
known rule of thumb stated by Melvin Conway (see [Raymond 1993]) that system organization often reflects developer organization. Most
of the developers worked on hardware device drivers, logical file system modules, network device drivers, and network protocol modules.
It's not surprising that these four areas of the kernel have been architected to support extensibility the most.

2.5 System Data Structures

251Task List

The process scheduler maintains a block of datafor each process that is active. These blocks of data are stored in alinked list called the task
list; the process scheduler always maintainsacur r ent pointer that indicates the current process that is active.

2.5.2Memory Map

The memory manager stores a mapping of virtual to physical addresses on a per-process basis, and also stores additional information on how
to fetch and replace particular pages. This information is stored in a memory-map data structure that is stored in the process scheduler's task
list.

2.5.31-nodes

The Virtua File System uses index-nodes (i-nodes) to represent files on alogical file system. The i-node data structure stores the mapping of
file block numbers to physical device addresses. |-node data structures can be shared across processes if two processes have the samefile
open. This sharing is accomplished by both task data blocks pointing to the same i-node.

2.5.4 Data Connection

All of the data structures are rooted at the task list of the process scheduler. Each process on the system has a data structure containing a
pointer to its memory mapping information, and also pointers to the i-nodes representing all of the opened files. Finally, the task data
structure also contains pointers to data structures representing all of the opened network connections associated with each task.

3. Subsystem Architectures

3.1 Process Scheduler Architecture

3.1.1 Goals

The process scheduler is the most important subsystem in the Linux kernel. Its purposeis to control access to the computer's CPU(s). This
includes not only access by user processes, but also access for other kernel subsystems.

3.1.2Modules
The scheduler is divided into four main modules:

1. The scheduling policy moduleis responsible for judging which process will have access to the CPU; the policy is designed so that
processes will have fair access to the CPU.

2. Architecture-specific modules are designed with a common interface to abstract the details of any particular computer architecture.
These modules are responsible for communicating with a CPU to suspend and resume a process. These operations involve knowing
what registers and state information need to be preserved for each process and executing the assembly code to effect a suspend or
resume operation.

3. The architecture-independent module communicates with the policy module to determine which process will execute next, then calls

Conceptual Architecture of the Linux Kernel Seite 7 von 13

the architecture-specific module to resume the appropriate process. In addition, this module calls the memory manager to ensure that
the memory hardware is restored properly for the resumed process.

The system call interface module permits user processes access to only those resources that are explicitly exported by the kernel. This limits
the dependency of user processes on the kernel to awell-defined interface that rarely changes, despite changes in the implementation of other
kernel modules.

Programmatic Scheduler Interface Legend
+ iS5 Services
Hon-Kemel
Layer
Procegs Scheduler
Memory h— :

Manager |o | | | System Call Interface | IPC Kernel Sub-

: Systemn

¥ ¢

Architecture Independent

I
I
I
I
I
I
I
. |
’ |
Scheduler :—| | Module
I
I
I
|
I
I
I
I
|

TYYY

F 3 : 3 i
File System Architecture Specific Scheduling Policy
Schedulers

F 3

- . | Hetwork
hultiple
Modules

——

Kernel —Depends or—w l
v ¥ Dat= FIDH'
CPU Hardware [} . Cartrol Flawes |

[— |

Figure 3.1: Process Scheduler Subsystem in Context

3.1.3 Data Representation

The scheduler maintains a data structure, the task list, with one entry for each active process. This data structure contains enough information
to suspend and resume the processes, but also contains additional accounting and state information. This data structure is publicly available
throughout the kernel layer

3.1.4 Dependencies, Data Flow, and Control Flow

The process scheduler calls the memory manager subsystem as mentioned earlier; because of this, the process scheduler subsystem depends
on the memory manager subsystem. In addition, all of the other kernel subsystems depend on the process scheduler to suspend and resume
processes while waiting for hardware requests to complete. These dependencies are expressed through function calls and access to the shared
task list data structure. All kernel subsystems read and write the data structure representing the current task, leading to bi-directional data
flow throughout the system.

In addition to the data and control flow within the kernel layer, the O/S services layer provides an interface for user processes to register for
timer notification. This corresponds to the implicit execution architectural style described in [Garlan 1994]. This leadsto aflow of control
from the scheduler to the user processes. The usual case of resuming a dormant process is not considered a flow of control in the normal
sense because the user process cannot detect this operation. Finally, the scheduler communicates with the CPU to suspend and resume
processes; this leads to a data flow, and aflow of control. The CPU isresponsible for interrupting the currently executing process and
allowing the kernel to schedule another process.

3.2Memory Manager Architecture

3.2.1Goals

The memory manager subsystem is responsible for controlling process access to the hardware memory resources. This is accomplished
through a hardware memory-management system that provides a mapping between process memory references and the machine's physical
memory. The memory manager subsystem maintains this mapping on a per process basis, so that two processes can access the same virtual
memory address and actually use different physical memory locations. In addition, the memory manager subsystem supports swapping; it
moves unused memory pages to persistent storage to allow the computer to support more virtual memory than there is physical memory.

3.2.2Modules

Conceptual Architecture of the Linux Kernel Seite 8 von 13

The memory manager subsystem is composed of three modules:

1. Thearchitecture specific module presents a virtual interface to the memory management hardware

2. The architecture independent manager performs all of the per-process mapping and virtual memory swapping. This moduleis
responsible for determining which memory pages will be evicted when there is a page fault -- there is no separate policy module
sinceit is not expected that this policy will need to change.

3. A systemcal interfaceis provided to provide restricted access to user processes. This interface allows user processes to allocate and
free storage, and also to perform memory mapped file I/O.

3.2.3 Data Representation

The memory manager stores a per-process mapping of physical addresses to virtual addresses. This mapping is stored as areference in the
process scheduler's task list data structure. In addition to this mapping, additional detailsin the data block tell the memory manager how to
fetch and store pages. For example, executable code can use the executable image as a backing store, but dynamically allocated data must be
backed to the system paging file. Finally, the memory manager stores permissions and accounting information in this data structure to ensure
system security.

| Legend: |
Programmatic Memory Interfac+ | |
A 0Q/S Services : Nonkermal ||
| Layer |
¢ Memory Manage | l
y | v | | Kernel Sub I
System Call Interface | ESr;::temu) |
F | |
h J ‘w' I :
. i Architecture) "1 Process
File System [B Independent Manager . ™1 Scheduler I Module |
................. :5, {'...:33 I
h J "-\;-" I
' | Multiple |
Architecture Specific Managers | | hModules |
Fy | |
Kernel : __Depends on—+ |
* ¥ | Data Fluw—p:
Memory Hardware
| Hardware| | - ControlFlow > |

Figure 3.2: Memory Manager subsystemin context

3.2.4 Data Flow, Control Flow, and Dependencies

The memory manager controls the memory hardware, and receives a notification from the hardware when a page fault occurs -- this means
that there is bi-directional data and control flow between the memory manager modules and the memory manager hardware. Also, the
memory manager uses the file system to support swapping and memory mapped 1/0. This requirement means that the memory manager
needs to make procedure calls to the file system to store and fetch memory pages from persistent storage. Because the file system requests
cannot be completed immediately, the memory manager needs to suspend a process until the memory is swapped back in; this requirement
causes the memory manager to make procedure calls into the process scheduler. Also, since the memory mapping for each processis stored
in the process scheduler's data structures, there is abi-directional data flow between the memory manager and the process scheduler. User
processes can set up new memory mappings within the process address space, and can register themselves for notification of page faults
within the newly mapped areas. This introduces a control flow from the memory manager, through the system call interface module, to the
user processes. Thereis no data flow from user processes in the traditional sense, but user processes can retrieve some information from the
memory manager using select system calls in the system call interface module.

3.3 Virtual File System Architecture

Conceptual Architecture of the Linux Kernel

Programmatic File System Interface |

F

OfS Services

* ¥

Memory

Manager

L T]

Network

E] Systemn Call Interface |

F 3 I .-‘3‘\
i

Systemn Independent

Virtual
File
System

Process

r 3

Wy

Interface

Scheduler

F ¢ .ﬁ.
W

Logical Systems

i

Device Independent
Interface

nI.@
e

Device Drivers

P

Kernel

* ¥

Device Hardware

Hardware

3.3.1 Goals

Figure 3.3: Virtual File Systemin Context

Seite 9 von 13

Maon-Kernel
Lawer

Kernel Suhb-
System

Module

—

Multiple
hModules

——Depends on—p
wenee S ONEr Ol FlOW... . i |
=——Data Flow ——p- |

e e e

The virtual file system is designed to present a consistent view of data as stored on hardware devices. AlImost all hardware devicesin a

computer are represented using a generic device driver interface. The virtual file system goes further, and allows the system administrator to

mount any of a set of logical file systems on any physical device. Logical file systems promote compatibility with other operating system
standards, and permit devel opers to implement file systems with different policies. The virtual file system abstracts the details of both

physical device and logical file system, and allows user processes to access files using a common interface, without necessarily knowing
what physical or logical system the file resides on.

In addition to traditional file-system goals, the virtual file system is also responsible for loading new executable programs. This
responsibility is accomplished by the logical file system module, and this allows Linux to support several executable formats.

3.3.2Modules

1. Thereisone device driver module for each supported hardware controller. Since there are alarge number of incompatible hardware

devices, there are alarge number of device drivers. The most common extension of a Linux system is the addition of a new device

driver.

AW

The Device Independent I nterface module provides a consistent view of all devices.
Thereisonelogical file system module for each supported file system.
The system independent interface presents a hardware and | ogical -file-system independent view of the hardware resources. This

module presents all resources using either a block-oriented or character-oriented file interface.

5. Finaly, the system call interface provides controlled access to the file system for user processes. The virtua file system exports only

specific functionality to user processes.

3.3.3 Data Representation

All files are represented using i-nodes. Each i-node structure contains location information for specifying where on the physical device the
file blocks are. In addition, the i-node stores pointers to routines in the logical file system module and device driver that will perform
required read and write operations. By storing function pointersin this fashion, logical file systems and device drivers can register

themselves with the kernel without having the kernel depend on any specific module.

Conceptual Architecture of the Linux Kernel Seite 10 von 13
3.3.4 Data Flow, Control Flow, and Dependencies

One specific device driver is aramdisk; this device allocates an area of main memory and treats it as a persistent-storage device. This device
driver uses the memory manager to accomplish its tasks, and thus there is a dependency, control flow, and data flow between the file system
device drivers and the memory manager.

One of the specific logical file systemsthat is supported is the network file system (as aclient only). This file system accesses files on
another machine as if they were part of the local machine. To accomplish this, one of the logical file system modules uses the network
subsystem to compl ete its tasks. This introduces a dependency, control flow, and data flow between the two subsystems.

As mentioned in section 3.2, the memory manager uses the virtual file system to accomplish memory swapping and memory-mapped 1/0.
Also, the virtual file system uses the process scheduler to disable processes while waiting for hardware requests to complete, and resume
them once the request has been completed. Finally, the system call interface allows user processes to call in to the virtual file system to store
or retrieve data. Unlike the previous subsystems, there is no mechanism for users to register for implicit invocation, so thereis no control
flow from the virtual file system towards user processes (resuming processes is not considered control flow).

3.4 Network Interface Architecture
3.4.1 Goals

The network subsystem allows Linux systems to connect to other systems over anetwork. There are a number of possible hardware devices
that are supported, and a number of network protocols that can be used. The network subsystem abstracts both of these implementation
details so that user processes and other kernel subsystems can access the network without necessarily knowing what physical devices or
protocol is being used.

3.4.2 Modules

1. Network device drivers communicate with the hardware devices. There is one device driver module for each possible hardware
device.

2. Thedevice independent interface module provides a consistent view of all of the hardware devices so that higher levelsin the
subsystem don't need specific knowledge of the hardware in use.

3. The network protocol modules are responsible for implementing each of the possible network transport protocols.

4. The protocol independent interface module provides an interface that is independent of hardware devices and network protocol. This
isthe interface module that is used by other kernel subsystems to access the network without having a dependency on particular
protocols or hardware.

Finally, the system calls interface module restricts the exported routines that user processes can access.

Conceptual Architecture of the Linux Kernel Seite 11 von 13

| Legend: |
| Programmatic Network Interface | | |
+ OIS SEI"’H"iCES : Maon-Kernel :
Lawer
Network | :
Interface |
Virtual File}— T Kernel Sub| |
System [5 Bysjtem CalLInteﬁace : System |
i | '
N
Protocal Independent | o Process | l
Interface [™" ccheduler | Module |
F B3
i [—
L Metwark Protocols | Multiple |
Modules
h 4 ¢ I i I
|
Device Independent |
Interface I —Depends on—a :
F 3 =
I : wenee S ONEr Ol FlOW... . i |
L - 1 | e [t FIOW s |
Metwork Device Drivers
L - - S . _I
FYy ,-'\
Kernel
* ¥
Device Hardware |
Hardware

Figure 3.4: Network Interface Subsystemin Context

3.4.3 Data Representation

Each network object is represented as a socket. Sockets are associated with processes in the same way that i-nodes are associated; sockets
can be share amongst processes by having both of the task data structures pointing to the same socket data structure.

3.4.4 Data Flow, Control Flow, and Dependencies

The network subsystem uses the process schedul er to suspend and resume processes while waiting for hardware requests to complete
(leading to a subsystem dependency and control and data flow). In addition, the network subsystem supplies the virtua file system with the
implementation of alogical file system (NFS) leading to the virtual file system depending on the network interface and having data and
control flow with it.

3.5 Inter-Process Communication Architecture

The architecture of the inter-process communication subsystem is omitted for brevity sinceit is not as interesting as the other subsystems.

4. Conclusions

The Linux kernel is one layer in the architecture of the entire Linux system. The kernel is conceptually composed of five major subsystems:
the process scheduler, the memory manager, the virtual file system, the network interface, and the inter-process communication interface.
These subsystems interact with each other using function calls and shared data structures.

At the highest level, the architectural style of the Linux kernel is closes to Garlan and Shaw's Data Abstraction style ([Garlan1994]); the

Conceptual Architecture of the Linux Kernel Seite 12 von 13

kernel is composed of subsystems that maintain internal representation consistency by using a specific procedural interface. As each of the
subsystems is elaborated, we see an architectural style that is similar to the layered style presented by Garlan and Shaw. Each of the
subsystems is composed of modules that communicate only with adjacent layers.

The conceptual architecture of the Linux kernel has proved its success; essential factors for this success were the provision for the
organization of developers, and the provision for system extensibility. The Linux kernel architecture was required to support alarge number
of independent volunteer developers. This requirement suggested that the system portions that require the most devel opment -- the hardware
device drivers and the file and network protocols -- be implemented in an extensible fashion. The Linux architect chose to make these
systems be extensible using a data abstraction technique: each hardware device driver isimplemented as a separate module that supports a
common interface. In thisway, asingle developer can add anew device driver, with minimal interaction required with other devel opers of
the Linux kernel. The success of the kernel implementation by alarge number of volunteer developers proves the correctness of this strategy.

Another important extension to the Linux kernel is the addition of more supported hardware platforms. The architecture of the system
supports this extensibility by separating all hardware-specific code into distinct modules within each subsystem. In thisway, a small group of
developers can effect a port of the Linux kernel to a new hardware architecture by re-implementing only the machine-specific portions of the
kernel.

Definition of Terms

Device Driver
A devicedriver isall of the code that is required to interface with a particular hardware device. Device drivers are properly part of
the kernel, but the Linux kernel has a mechanism that permits dynamic loading of device drivers.

I-Node
I-nodes, or index nodes, are used by the file system to keep track of which hardware addresses correspond to which file system data
blocks. Each i-node stores a mapping of file block to physical block, plus additional information for security and accounting
purposes.

Network File System (NFS)
The Network File System is afile system interface that presentsfiles that are stored on a remote computer as afile system on the
local machine.

Process
A process (also called atask) is aprogram in execution; it consists of executable code and dynamic data. The kernel associates
enough information with each process to stop and resumeit.

Ramdisk
A ramdisk is adevice drive that uses an area of main memory as afile system device. This allows frequently accessed files to be
placed in an areathat provides reliably efficient access at all times; this can be especially useful when using Linux to support hard
real-time requirements. For usual cases, the normal file system caching will make the most efficient use of memory to provide
reasonably efficient accessto files.

Swapping
Linux supports processes that use memory that exceeds the amount of physical memory on the computer. Thisis accomplished by
the memory manager swapping unused pages of memory to a persistent store; when the memory is later accessed, it is swapped back
into the main memory (possibly causing other pages to be swapped out).

Task
See Process

References

[Garlan 1994]
David Garlan and Mary Shaw, An Introduction to Software Architecture, Advances in Software Engineering and Knowledge
Engineering, Volume I, World Scientific Publishing Company, 1993.
[Monroe 1997]
Robert T. Monroe, Andrew Kompanek, Ralph Melton, and David Garlan, Architectural Styles, Design Patterns, and Objects, IEEE
Software, January 1997, pp 43-52.
[Parker 1997]
Sackware Linux Unleashed, by Timothy Parker, et al, Sams Publishing, 201 West 103rd Street, Indianapolis.
[Perry 1992]
Dewayne E. Perry and Alexander L. Wolf, Foundations for the Study of Software Architecture, ACM SIGSOFT Software
Engineering Notes, 17:4, October 1992 pp 40-52.
[Raymond 1993]
The New Hackers Dictionary, Second Edition, compiled by Eric S. Raymond. The MIT Press, Cambridge Massachusetts, 1993.
[Rusling 1997]
The Linux Kernel, by David A. Rusling, draft, version 0.1-13(19), ftp://sunsite.unc.edu/pub/Linux/docs/linux-doc-project/linux-
kernel/ or http://www.linuxhg.com/guides/TLK/index.html.
[Soni 1995]

Conceptual Architecture of the Linux Kernel Seite 13von 13

Soni, D.; Nord, R. L.; Hofmeister, C., Software Architecturein Industrial Applications, |[EEE ICSE 1995, pp. 196-210.
[Tanenbaum 1992]
Modern Operating Systems, by Andrew S. Tanenbaum, Prentice Hall, 1992.
[Wirzenius 1997]
Linux System Administrators' Guide 0.6, by Lars Wirzenius, http://www.iki.fi/liw/linux/sag/ or
http://www.linuxhg.com/L DP/L DP/sag/index.html.

