
Public

SMART CONTRACT AUDIT REPORT

for

ELEMENT FINANCE

Prepared By: Shuxiao Wang

PeckShield
April 14, 2021

1/21 PeckShield Audit Report #: 2021-084

sxwang@peckshield.com

Public

Document Properties

Client Element Finance
Title Smart Contract Audit Report
Target Element Finance
Version 1.0
Author Xuxian Jiang
Auditors Yiqun Chen, Jeff Liu, Xuxian Jiang
Reviewed by Jeff Liu
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 April 14, 2021 Xuxian Jiang Final Release
1.0-rc April 12, 2021 Xuxian Jiang Release Candidate
0.2 April 6, 2021 Xuxian Jiang Additional Findings
0.1 April 1, 2021 Xuxian Jiang Initial Draft

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Shuxiao Wang
Phone +86 173 6454 5338
Email contact@peckshield.com

2/21 PeckShield Audit Report #: 2021-084

Public

Contents

1 Introduction 4
1.1 About Element Finance . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 6

2 Findings 10
2.1 Summary . 10
2.2 Key Findings . 11

3 Detailed Results 12
3.1 safeTransfer()/safeTransferFrom()/safeApprove() Replacement 12
3.2 Non-Compliant ERC20 Implementation Of Tranche And InterestToken 14
3.3 Improved mint() Logic in UserProxy . 16
3.4 Suggested Addition of recoverERC20() in UserProxy 17
3.5 Suggested Use of Differentiating Event Names . 18

4 Conclusion 20

References 21

3/21 PeckShield Audit Report #: 2021-084

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of the
Element Finance protocol, we outline in this report our systematic approach to evaluate poten-
tial security issues in the smart contract implementation, expose possible semantic inconsistencies
between smart contract code and design document, and provide additional suggestions or recommen-
dations for improvement. Our results show that the given version of smart contract can be further
improved due to the presence of several issues. This document outlines our audit results.

1.1 About Element Finance

Element Finance aims to bring high fixed yield rates to the DeFi market with a focus on BTC, ETH, and
USDC. The fixed yield is collateralized by variable yield positions and the higher rates offered as fixed
yield are driven and maintained by various market forces. Specifically, Element takes a novel approach
to fixed yield, splitting the principal and interest of existing yield positions into separate, fungible
tokens which are designed to be traded or staked in various AMMs. It also improves capital efficiency
by allowing users to sell their principal as a fixed yield position, further leveraging or increasing
exposure to interest without liquidation risk. In other words, users can gain more by simply staking
their unused LP tokens or principal and then realizing trading fees as additional revenue.

The basic information of Element Finance is as follows:

Table 1.1: Basic Information of Element Finance

Item Description
Issuer Element Finance

Website https://element.fi/
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report April 14, 2021

4/21 PeckShield Audit Report #: 2021-084

Public

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit. Note the audited repository contains a number of sub-directories (e.g., balancer-core-v2)
and this audit relies on the correctness and safety of the associated balancer-core-v2 protocol, which
is not part of this audit.

• https://github.com/element-fi/elf-contracts.git (eed3695)

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/element-fi/elf-contracts.git (39194a5)

1.2 About PeckShield

PeckShield Inc. [9] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [8]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

5/21 PeckShield Audit Report #: 2021-084

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [7], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug

6/21 PeckShield Audit Report #: 2021-084

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

7/21 PeckShield Audit Report #: 2021-084

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/21 PeckShield Audit Report #: 2021-084

Public

bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

9/21 PeckShield Audit Report #: 2021-084

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the Element Finance implementation. During the
first phase of our audit, we study the smart contract source code and run our in-house static code
analyzer through the codebase. The purpose here is to statically identify known coding bugs, and
then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logics, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 1

Low 2

Informational 2

Total 5

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

10/21 PeckShield Audit Report #: 2021-084

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 1 medium-severity
vulnerability, 2 low-severity vulnerabilities, and 2 informational recommendations.

Table 2.1: Key Element Finance Audit Findings

ID Severity Title Category Status
PVE-001 Medium safeTransfer()/safeApprove() Replace-

ment
Coding Practices Resolved

PVE-002 Low Non-Compliant ERC20 Implementation
Of Tranche And InterestToken

Business Logic Fixed

PVE-003 Low Improved mint() Logic in UserProxy Business Logic Fixed
PVE-004 Informational Suggested Addition of recoverERC20()

in UserProxy
Business Logic Resolved

PVE-005 Informational Suggested Use of Differentiating Event
Names

Error Conditions, Return
Values, Status Codes

Resolved

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

11/21 PeckShield Audit Report #: 2021-084

Public

3 | Detailed Results

3.1 safeTransfer()/safeTransferFrom()/safeApprove()
Replacement

• ID: PVE-001

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: Multiple Contracts

• Category: Coding Practices [4]

• CWE subcategory: CWE-1126 [1]

Description

Though there is a standardized ERC-20 specification, many token contracts may not strictly follow the
specification or have additional functionalities beyond the specification. In this section, we examine
the transferFrom() routine and possible idiosyncrasies from current widely-used token contracts.

In particular, we use the popular stablecoin, i.e., USDT, as our example. We show the related
code snippet below. Specifically, the transferFrom() routine does not have a return value defined
and implemented. However, the IERC20 interface has defined the transferFrom() interface with a bool

return value. As a result, the call to transferFrom() may expect a return value. With the lack of
return value of USDT’s transferFrom(), the call will be unfortunately reverted.

171 f unc t i on t r a n s f e rF r om (address _from , address _to , u in t _value) pub l i c
on l yPay l o adS i z e (3 ∗ 32) {

172 var _al lowance = a l l owed [_from] [msg . sender] ;

174 // Check is not needed because sub(_allowance , _value) will already throw if
this condition is not met

175 // if (_value > _allowance) throw;

177 u in t f e e = (_value . mul (b a s i s P o i n t sR a t e)) . d i v (10000) ;
178 i f (f e e > maximumFee) {
179 f e e = maximumFee ;
180 }
181 i f (_al lowance < MAX_UINT) {

12/21 PeckShield Audit Report #: 2021-084

Public

182 a l l owed [_from] [msg . sender] = _al lowance . sub (_value) ;
183 }
184 u in t sendAmount = _value . sub (f e e) ;
185 ba l a n c e s [_from] = ba l a n c e s [_from] . sub (_value) ;
186 ba l a n c e s [_to] = ba l a n c e s [_to] . add (sendAmount) ;
187 i f (f e e > 0) {
188 ba l a n c e s [owner] = ba l a n c e s [owner] . add (f e e) ;
189 Transfer (_from , owner , f e e) ;
190 }
191 Transfer (_from , _to , sendAmount) ;
192 }

Listing 3.1: USDT::transferFrom()

Because of that, a normal call to transferFrom() is suggested to use the safe version, i.e.,
safeTransferFrom(), In essence, it is a wrapper around ERC20 operations that may either throw
on failure or return false without reverts. Moreover, the safe version also supports tokens that return
no value (and instead revert or throw on failure). Note that non-reverting calls are assumed to
be successful. Similarly, there is a safe version of approve()/transfer() as well, i.e., safeApprove()/
safeTransfer().

In current implementation, if we examine the WrappedPosition::deposit() routine that is designed
to deposit tokens into the Wrapped Position contract from the participating user. To accommodate
the specific idiosyncrasy, there is a need to user safeTransferFrom(), instead of transferFrom() (line
86).

74 /// @notice Entry point to deposit tokens into the Wrapped Position contract
75 /// Transfers tokens on behalf of caller so the caller must set
76 /// allowance on the contract prior to call.
77 /// @param _amount The amount of underlying tokens to deposit
78 /// @param _destination The address to mint to
79 /// @return Returns the number of Wrapped Position tokens minted
80 f unc t i on d e p o s i t (address _des t i na t i on , uint256 _amount)
81 ex te rna l
82 o v e r r i d e
83 r e tu rn s (uint256)
84 {
85 // Send tokens to the proxy
86 token . t r a n s f e rF r om (msg . sender , address (t h i s) , _amount) ;
87 // Calls our internal deposit function
88 (uint256 sha r e s ,) = _depos i t () ;
89 // Mint them internal ERC20 tokens corresponding to the deposit
90 _mint (_de s t i na t i on , s h a r e s) ;
91 re tu rn s h a r e s ;
92 }

Listing 3.2: WrappedPosition::deposit ()

In the meantime, we also suggest to use the safe-version of transfer()/transferFrom() in other
related routines, including Tranche::deposit(), UserProxy::mint(), YVaultAssetProxy::reserveDeposit

13/21 PeckShield Audit Report #: 2021-084

Public

(), and reserveWithdraw().

Recommendation Accommodate the above-mentioned idiosyncrasy about ERC20-related
approve()/transfer()/transferFrom().

Status The team has confirmed that the Element protocol is designed not to support ERC20
tokens that are non-standard and do not revert on transfer from.

3.2 Non-Compliant ERC20 Implementation Of Tranche And
InterestToken

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Multiple Contracts

• Category: Business Logic [5]

• CWE subcategory: CWE-841 [3]

Description

The Element protocol takes a novel approach to meet the fixed yield goal by splitting the principal
and interest of existing yield positions into separate, fungible tokens. These fungible tokens can then
be traded or staked in various AMMs. Naturally, we examine the list of API functions defined by
the ERC20 specification and validate whether there exist any inconsistency or incompatibility in the
implementation or the inherent business logic of both principal and interest tokens.

Our analysis shows that the current implementation does not strictly follow the ERC20 spec-
ification and may cause unnecessary incompatibility issue. Both principal and interest tokens are
inherited from the ERC20Permit contract, which somehow does not define or maintain the totalSupply

of respective tokens. To elaborate, we show below the code snippet from ERC20Permit.

171 a b s t r a c t cont ract ERC20Permit i s IERC20Permit {
172 // --- ERC20 Data ---
173 s t r i n g pub l i c name ;
174 s t r i n g pub l i c o v e r r i d e symbol ;
175 u int8 pub l i c o v e r r i d e d e c ima l s ;

177 mapping (address => uint256) pub l i c o v e r r i d e ba lanceOf ;
178 mapping (address => mapping (address => uint256)) pub l i c o v e r r i d e a l l owance ;
179 mapping (address => uint256) pub l i c o v e r r i d e nonces ;

181 // --- EIP712 niceties ---
182 // solhint -disable -next -line var -name -mixedcase
183 bytes32 pub l i c o v e r r i d e DOMAIN_SEPARATOR;
184 // bytes32 public constant PERMIT_TYPEHASH = keccak256 (" Permit(address owner ,address

spender ,uint256 value ,uint256 nonce ,uint256 deadline)");

14/21 PeckShield Audit Report #: 2021-084

Public

Table 3.1: Basic View-Only Functions Defined in The ERC20 Specification

Item Description Status

name() Is declared as a public view function ✓

Returns a string, for example “Tether USD” ✓

symbol() Is declared as a public view function ✓

Returns the symbol by which the token contract should be known, for
example “USDT”. It is usually 3 or 4 characters in length

✓

decimals() Is declared as a public view function ✓

Returns decimals, which refers to how divisible a token can be, from 0
(not at all divisible) to 18 (pretty much continuous) and even higher if
required

✓

totalSupply() Is declared as a public view function X
Returns the number of total supplied tokens, including the total minted
tokens (minus the total burned tokens) ever since the deployment

X

balanceOf() Is declared as a public view function ✓

Anyone can query any address’ balance, as all data on the blockchain is
public

✓

allowance() Is declared as a public view function ✓

Returns the amount which the spender is still allowed to withdraw from
the owner

✓

185 bytes32
186 pub l i c constant PERMIT_TYPEHASH = 0

x6e71edae12b1b97 f4d1 f60370 fe f10105 fa2 faae0126114a169c64845d6126c9 ;

188 cons t ruc to r (s t r i n g memory name_ , s t r i n g memory symbol_) {
189 name = name_ ;
190 symbol = symbol_ ;
191 de c ima l s = 18 ;

193 ba lanceOf [address (0)] = type (uint256) . max ;
194 ba lanceOf [address (t h i s)] = type (uint256) . max ;

196 DOMAIN_SEPARATOR = keccak256 (
197 ab i . encode (
198 keccak256 (
199 "EIP712Domain(string name ,string version ,uint256 chainId ,address

verifyingContract)"
200) ,
201 keccak256 (bytes (name)) ,
202 keccak256 (bytes ("1")) ,
203 _getChain Id () ,
204 address (t h i s)
205)
206) ;

15/21 PeckShield Audit Report #: 2021-084

Public

207 }

Listing 3.3: USDT::transferFrom()

Moreover, it comes to our attention that the constructor() routine has two special addresses
initialized with the type(uint256).max balance (lines 193 − 194). It is suggested to better clarify the
purpose of these two addresses as they cause unnecessary inconsistency, i.e., the balance sum of all
possible accounts is not the same as the commonly-conceived totalSupply.

Recommendation Be consistent with the widely adopted ERC20 specification in both principal
and interest token contracts.

Status This issue has been fixed in this commit: 3c93d9a.

3.3 Improved mint() Logic in UserProxy

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: UserProxy

• Category: Business Logic [5]

• CWE subcategory: CWE-841 [3]

Description

To facilitate user on-boarding, the Element Finance protocol has a convenience UserProxy to consoli-
date actions needed to create interest or principal tokens to one call and further hold user allowances
for asset transfers. While examining the UserProxy contract, we notice a possible improvement on
current implementation.

To elaborate, we show below its mint() function. This function is designed to mint a principal
and interest token pair from either underlying token or ETH and then return the tokens to the caller. It
comes to our attention that if the underlying token is not ETH (in the else-branch at lines 136−141),
we need to add the following requirement to ensure that the calling user will not accidentally send
ETH: require(msg.value ==0, "Incorrect amount provided"). Note the accidentally sent ETH may be
locked in the UserProxy contract. The only way to uncover is to perform the selfdestruct operation
via deprecate(), which seems an overkill.

119 f unc t i on mint (
120 uint256 _amount ,
121 IERC20 _under ly ing ,
122 uint256 _exp i r a t i on ,
123 address _pos i t i on ,
124 PermitData [] c a l l d a t a _permitCa l lData
125) ex te rna l payable notFrozen () p r eApp rova l (_permi tCa l lData) {

16/21 PeckShield Audit Report #: 2021-084

https://github.com/element-fi/elf-contracts/commit/3c93d9a

Public

126 // If the underlying token matches this predefined ’ETH token’
127 // then we create weth for the user and go from there
128 i f (address (_unde r l y i ng) == _ETH_CONSTANT) {
129 // Check that the amount matches the amount provided
130 r equ i r e (msg . va lue == _amount , "Incorrect amount provided") ;
131 // Create weth from the provided eth
132 weth . d e p o s i t { va lue : msg . va lue }() ;
133 weth . t r a n s f e r (address (_po s i t i on) , _amount) ;
134 // Proceed to internal minting steps
135 _mint (_exp i r a t i on , _po s i t i o n) ;
136 } e l s e {
137 // Move the user’s funds to the wrapped position contract
138 _unde r l y i ng . t r an s f e rF r om (msg . sender , address (_po s i t i on) , _amount) ;
139 // Proceed to internal minting steps
140 _mint (_exp i r a t i on , _po s i t i o n) ;
141 }
142 }

Listing 3.4: UserProxy::mint()

Recommendation Improve the mint() logic to prevent accidentally sent assets from being
locked in the UserProxy contract.

Status This issue has been fixed in this commit: 3c93d9a.

3.4 Suggested Addition of recoverERC20() in UserProxy

• ID: PVE-004

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: UserProxy

• Category: Business Logic [5]

• CWE subcategory: CWE-841 [3]

Description

By design, the Element Finance protocol has developed a number of contracts that hold various
types of assets. From past experience with current popular DeFi protocols, e.g., YFI/Curve, we notice
that there is always non-trivial possibilities that non-related tokens may be accidentally sent to the
pool contract(s). To avoid unnecessary loss of Element users, we suggest to add necessary support of
rescuing tokens accidentally sent to the contract. This is a design choice for the benefit of protocol
users.

Recommendation Add the support of rescuing tokens accidentally sent to the contract. An
example addition is shown below:

17/21 PeckShield Audit Report #: 2021-084

https://github.com/element-fi/elf-contracts/commit/3c93d9a

Public

f unc t i on recoverERC20 (address _token , uint256 _amount) ex te rna l onlyOwner {
IERC20 (_token) . s a f eT r a n s f e r (owner () , _amount) ;
emit Recovered (_token , _amount) ;

}

Listing 3.5: UserProxy::recoverERC20()

Status The team is aware of this issue and considers the expectation that the governance will
rescue funds “both exposes it to liability and is un-scalable.”

3.5 Suggested Use of Differentiating Event Names

• ID: PVE-005

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: ConvergentPoolFactory

• Category: Status Codes [6]

• CWE subcategory: CWE-391 [2]

Description

In Ethereum, the event is an indispensable part of a contract and is mainly used to record a variety
of runtime dynamics. In particular, when an event is emitted, it stores the arguments passed in
transaction logs and these logs are made accessible to external analytics and reporting tools. Events

can be emitted in a number of scenarios. One particular case is when system-wide parameters or
settings are being changed. Another case is when tokens are being minted, transferred, or burned.

In the following, we show the create() routine from the ConvergentPoolFactory contract. This
routine is designed to deploy a new ConvergentPool instance and then register the new instance. It
comes to our attention that the _register() call (line 63) in essence emits an event of PoolRegistered
(pool) where the pool is the new deployed instance address. Interestingly, the constructor of
ConvergentCurvePool automatically registers the new pool via the vault.registerPool(IVault.PoolSpecialization
.TWO_TOKEN), which emits another event in the following form: emit PoolRegistered(poolId), where
poolId denotes the assigned pool ID in byte32. These two events come with the same name, but
with different parameters. To avoid unnecessary confusion, it is suggested to use self-differentiating
event names.

40 f unc t i on c r e a t e (
41 address _under ly ing ,
42 address _bond ,
43 uint256 _exp i r a t i on ,
44 uint256 _unitSeconds ,
45 uint256 _percentFee ,
46 s t r i n g memory _name ,

18/21 PeckShield Audit Report #: 2021-084

Public

47 s t r i n g memory _symbol
48) ex te rna l r e tu rn s (address) {
49 address poo l = address (
50 new ConvergentCurvePoo l (
51 IERC20 (_unde r l y i ng) ,
52 IERC20 (_bond) ,
53 _exp i r a t i on ,
54 _unitSeconds ,
55 vau l t ,
56 _percentFee ,
57 percentFeeGov ,
58 governance ,
59 _name ,
60 _symbol
61)
62) ;
63 _r e g i s t e r (poo l) ;
64 re tu rn poo l ;
65 }

Listing 3.6: ConvergentPoolFactory:: create ()

118 f unc t i on r e g i s t e r P o o l (P o o l S p e c i a l i z a t i o n s p e c i a l i z a t i o n)
119 ex te rna l
120 o v e r r i d e
121 nonReent rant
122 noEmergencyPer iod
123 r e tu rn s (bytes32)
124 {
125 // Use _totalPools as the Pool ID nonce. uint80 assumes there will never be more

than than 2**80 Pools.
126 bytes32 poo l I d = _toPool Id (msg . sender , s p e c i a l i z a t i o n , uint80 (_poolNonce . c u r r e n t

())) ;
127 r equ i r e (! _ i sPoo lR eg i s t e r e d [p o o l I d] , "INVALID_POOL_ID") ; // Should never happen
128
129 _poolNonce . i n c r ement () ;
130 _i sPoo lR eg i s t e r e d [p o o l I d] = t rue ;
131
132 emit Poo lR eg i s t e r e d (p o o l I d) ;
133 re tu rn poo l I d ;
134 }

Listing 3.7: PoolRegistry :: registerPool ()

Recommendation Revise the above events by properly choosing different names as they encode
different information.

Status Since these events are emitted by different contract addresses in different contexts, the
team considers that they are still distinguishable and plans to leave it as is.

19/21 PeckShield Audit Report #: 2021-084

Public

4 | Conclusion

In this audit, we have analyzed the Element Finance design and implementation. The system presents
a unique offering in bringing high fixed yield rates to the DeFi market. Specifically, it enables fixed
yield by splitting the principal and interest of existing yield positions into separate, fungible tokens
which are designed to be traded or staked in various AMMs. The current code base is well organized
and those identified issues are promptly confirmed and addressed.

Meanwhile, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

20/21 PeckShield Audit Report #: 2021-084

Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.mitre.

org/data/definitions/1126.html.

[2] MITRE. CWE-391: Unchecked Error Condition. https://cwe.mitre.org/data/definitions/391.

html.

[3] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/data/

definitions/841.html.

[4] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[5] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/840.

html.

[6] MITRE. CWE CATEGORY: Error Conditions, Return Values, Status Codes. https://cwe.mitre.

org/data/definitions/389.html.

[7] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[8] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[9] PeckShield. PeckShield Inc. https://www.peckshield.com.

21/21 PeckShield Audit Report #: 2021-084

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/391.html
https://cwe.mitre.org/data/definitions/391.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/389.html
https://cwe.mitre.org/data/definitions/389.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About Element Finance
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	safeTransfer()/safeTransferFrom()/safeApprove() Replacement
	Non-Compliant ERC20 Implementation Of Tranche And InterestToken
	Improved mint() Logic in UserProxy
	Suggested Addition of recoverERC20() in UserProxy
	Suggested Use of Differentiating Event Names

	Conclusion
	References

