
Graph Databases
will change

your (freakin') life

Elena Williams
PyCon(line)AU 2020

Hi,

Proudly help organise
Canberra Python User Group

Join us on Slack
github.com/canberra-python

10 - 12 September 2021
https://2021.pycon.org.au/

Please Volunteer

I’m Elena. I am a web developer and I love python.
github.com/elena
twitter.com/elequ

Why?
Ed Finkler (twitter.com/funkatron)
https://github.com/OSMIHelp

[CC BY-SA 3.0]

https://github.com
/elena
/graph-fun

Goal

Example Graph DB:

Actual “Paradise Papers” database
created by ICIJ
(International Consortium of Investigative Journalists)

Plan of Attack:

1. Graphs 101
2. DBs v. Graph DBs
3. Usage and Applications
4. Demos

Euler’s Seven Bridges of Königsberg (1736)
“A historically notable problem in mathematics which laid the foundations of graph
theory and prefigured the idea of topology.” [wikipedia]

Round Things: Edges/ “Nodes”
Connectory Line bits: Vectors/“Relationships”

[CC BY-SA 3.0]

Round Things: Edges/ “Nodes”
Connectory Line bits: Vectors/“Relationships”

[CC BY-SA 3.0]

:Person {
 name: Alice
 interests: ultra-marathons
}

:Person {
 name: Bob
 full_name: Robert Smith
 interests: volleyball
}

:Department {
 name: IT Department
}

:Person {
 name: Alice
 interests: ultra-marathons
}

:Person {
 name: Bob
 full_name: Robert Smith
 interests: volleyball
}

:Department {
 name: IT Department
}

{start_date: 2015
 role: SRE}

{start_date: 2018}

class Person (models.Model):
 name = models.CharField(max_length=100)
 full_name = models.CharField(max_length=200)
 interests = models.TextField()

class WorksAt (models.Model):
 start_date = models.DateField()
 person = models.ForeignKey(“Person”, ...)
 ...

:Person {
 name: Alice
 interests: ultra-marathons
}

:Person {
 name: Bob
 full_name: Robert Smith
 interests: volleyball
}

:Department {
 name: IT Department
}

{start_date: 2015
 role: SRE}

{start_date: 2018}

:Person:Engineer:Runner {
 name: Alice
 interests: ultra-marathons
}

:Person {
 name: Bob
 full_name: Robert Smith
 interests: volleyball
}

:Department:Group {
 name: IT Department
}

{start_date: 2015
 role: SRE}

{start_date: 2018}

Relational Databases (RDBMS) aka SQL

“Relational” Databases (RDBMS) aka SQL

 Are RDBMS (aka SQL) good with relationships?

● Can’t do complex models
Literally small-dimensional tables.

● Can’t scale joins that efficiently
B-Tree Index: O(n log(n)), data grows 10x = speed halves
more data → more slow

● SQL was built on SET theory
not graph theory, ie: relationships are really only by coincidence.

● Can’t easily change schema

Are RDBMS (aka SQL) good with relationships?

● Can’t do complex models
Literally small-dimensional tables.

● Can’t scale joins that efficiently
B-Tree Index: O(n log(n)), data grows 10x = speed halves
more data → more slow

● SQL was built on SET theory
not graph theory, ie: relationships are really only by coincidence.

● Can’t easily change schema

Are RDBMS (aka SQL) good with relationships?

● Can’t do complex models
Literally small-dimensional tables.

● Can’t scale joins that efficiently
B-Tree Index: O(n log(n)), data grows 10x = speed halves
more data → more slow

● SQL was built on SET theory
not graph theory, ie: relationships are really only by coincidence.

● Can’t easily change schema

Are RDBMS (aka SQL) good with relationships?

● Can’t do complex models
Literally small-dimensional tables.

● Can’t scale joins that efficiently
B-Tree Index: O(n log(n)), data grows 10x = speed halves
more data → more slow

● SQL was built on SET theory
not graph theory, ie: relationships are really only by coincidence.

● Can’t easily change schema

Are RDBMS (aka SQL) good with relationships?

NoSQL

SQL / Red

NoSQL / NotRed

NoSQL (some families)

*don’t even get me started on RDF

Are NoSQL DBs good with relationships?

Are NoSQL DBs good with relationships?

● Can’t do complex models

● Can’t scale joins efficiently

● “joins” are not easy to query

● Not ACID
(“eventually consistent” == “eventually corrupt”)

Are NoSQL DBs good with relationships?

● Can’t do complex models

● Can’t scale joins efficiently

● “joins” are not easy to query

● Not ACID
(“eventually consistent” == “eventually corrupt”)

Are NoSQL DBs good with relationships?

● Can’t do complex models

● Can’t scale joins efficiently

● “joins” are not easy to query

● Not ACID
(“eventually consistent” == “eventually corrupt”)

Are NoSQL DBs good with relationships?

● Can’t do complex models

● Can’t scale joins efficiently

● “joins” are not easy to query

● Not ACID
(“eventually consistent” == “eventually corrupt”)

What Graph Databases do NOT do well

Accounting? Averages? … No!

Use postgres. Or a spreadsheet.
Graphs are the incorrect tool.

Operations on properties over lots of records.

Nicholas A. Christakis is an
American sociologist and physician
known for his research on social
networks.

h-index: 102

https://en.wikipedia.org/wiki/Sociologist
https://en.wikipedia.org/wiki/Physician

You get an email requesting a customer report …

● who bought a widget ...
● who clicked on the “buy widget” link in

yesterday’s email out ...
● who live in Canberra ...
● who are interested in books ...
● who’s friends …

○ … have friends …
○ … who are from Sydney …
○ who are also interested in books ...

ALL THE

INDEXS

ALL THE

INDICES

 https://xkcd.com/303/ [CC BY-NC 2.5]

Query is running

DBA

“ … literally 1000s of times faster than our
prior MySQL solution, with queries that require
10 to 100 times less code, providing functionality
that was previous impossible.”

Volker Pacher
Senior Engineer

SELECT name FROM Person
LEFT JOIN Person_Department
 ON Person.Id = Person_Department.PersonId
LEFT JOIN Department
 ON Department.Id =
Person_Department.DepartmentId
WHERE Department.name = "IT Department"

 SQL Query

Totally Important

Absolutely Necessary

JOI
N Table!

MATCH
 (people:Person)
 -[:WORKS_AT]->
 (dept:Dept {name: "IT Department"})

RETURN people.name

GQL (cypher) Query

MATCH
 (people:Person)
 -[:WORKS_AT]->
 (dept:Dept)

WHERE dept.name = "IT Department"
RETURN people.name

GQL (cypher) Query

 SQL Query

SELECT name FROM Person
LEFT JOIN Person_Department
 ON Person.Id =
Person_Department.PersonId
LEFT JOIN Department
 ON Department.Id =
Person_Department.DepartmentId
WHERE Department.name =
"IT Department"

GQL (cypher) Query

MATCH
 (people:Person)
 -[:WORKS_AT]->
 (dept:Dept {name:"IT Department"})

RETURN people.name

 Django Query

Person.objects.filter(department__name="IT Department")

 Django Query

Person.objects.filter(department__name="IT Department").query

SELECT "staff_person"."id" FROM "staff_person"
INNER JOIN "staff_person_staff" ON ("staff_person"."id" =
"staff_person_staff"."person_id") INNER JOIN "staff_department" ON
("staff_person_staff"."department_id" = "staff_department"."id")
WHERE "staff_department"."name" = IT Department

 GQL (cypher) Query

MATCH (people:Person)-[:WORKS_AT]->(dept:Department)
WHERE dept.name = "IT Department"
RETURN people.name

:Person {
 name: Bob
 full_name: Robert Perry Smith
 interests: volleyball
}

:Person {
● name: Alice
● interests: [ultra-marathons, LARPing]
● best_100km: 18:47:19
● preferred_larp_system: L5r
● l5r_main_char: A-Bomb the Mighty
● l5r_character_type: Seeker of Enlightenment
● l5r_main_skill_group: Scholar Skills
● l5r_preferred_weapon: Kusarigama
● l5r_preferred_clan: Phoenix Clan
}

:Person {
● name: Alice
● interests: [ultra-marathons, LARPing]

:Engineer:Runner:AllRoundLegend {
 name: Alice
 interests: [ultra-marathons, LARPing]
 best_100km: 18:47:19
 preferred_larp_system: L5r
 l5r_main_char: A-Bomb the Mighty
 l5r_character_type: Seeker of Enlightenment
 l5r_main_skill_group: Scholar Skills
 l5r_preferred_weapon: Kusarigama
 l5r_preferred_clan: Phoenix Clan
}

:Person {
 name: Bob
 full_name: Robert Perry Smith
 interests: volleyball
}

CREATE (i)
CREATE (j)
CREATE (k)
CREATE (l)

CREATE
(i)-[:DERP]->
(j)-[:DERP]->
(k)-[:DERP]->(l)

RETURN i, j, k, l

CREATE (i)
CREATE (j)
CREATE (k)
CREATE (l)

CREATE
(i)-[:HERP]->
(j)-[:DERP]->
(k)-[:HERP]->
(l)-[:DERP]->(i)

RETURN i, j, k, l

CREATE (i)
CREATE (j)
CREATE (k)
CREATE (l)

CREATE
(i)-[:HERP]->(j)-[:DERP]->
(k)-[:HERP]->(l)-[:DERP]->(i)
CREATE (i)-[:HERPDERP]->(k)
CREATE (j)-[:HERPDERP]->(l)

RETURN i, j, k, l

What Graph Databases DO, er, do well

What Graph Databases DO, er, do well

BRAWN / DATA VOLUME

B
R

A
IN

S
 /

IN
TE

LL
IG

E
N

C
E

Content
Management

Social
Networks

Decision
Trees

Knowledge
Graphs

Natural Language Processing

Master Data
Management

IoT

Risk
Management

AI

ML

Contextual
Learning

Fraud
Detection

Graph Databases DO, er, do well (vaguely)

IAMNetwork
Operations

Recommendation
Engines

Configuration
Management

DATA VOLUME

IN
TE

LL
IG

E
N

C
E

Content
Management

Social
Networks

Decision
Trees

Knowledge
Graphs

Natural Language Processing

Master Data
Management

IoT

Risk
Management

AI

ML

Contextual
Learning

Fraud
Detection

Graph Databases DO, er, do well (vaguely)

IAMNetwork
Operations

Recommendation
Engines

Configuration
Management

DATA VOLUME

IN
TE

LL
IG

E
N

C
E

Content
Management

Social
Networks

Decision
Trees

Knowledge
Graphs

Natural Language Processing

Master Data
Management

IoT

Risk
Management

AI

ML

Contextual
Learning

Fraud
Detection

Graph Databases DO, er, do well (vaguely)

IAMNetwork
Operations

Recommendation
Engines

Configuration
Management

DATA VOLUME

IN
TE

LL
IG

E
N

C
E

Content
Management

Social
Networks

Decision
Trees

Knowledge
Graphs

Natural Language Processing

Master Data
Management

IoT

Risk
Management

AI

ML

Contextual
Learning

Fraud
Detection

Graph Databases DO, er, do well (vaguely)

IAMNetwork
Operations

Recommendation
Engines

Configuration
Management

DATA VOLUME

IN
TE

LL
IG

E
N

C
E

Content
Management

Social
Networks

Decision
Trees

Knowledge
Graphs

Natural Language Processing

Master Data
Management

IoT

Risk
Management

AI

ML

Contextual
Learning

Fraud
Detection

Graph Databases DO, er, do well (vaguely)

IAMNetwork
Operations

Recommendation
Engines

Configuration
Management

DATA VOLUME

IN
TE

LL
IG

E
N

C
E

Content
Management

Social
Networks

Decision
Trees

Knowledge
Graphs

Natural Language
Processing

Master Data
Management

IoT

Risk
Management

AI

ML

Contextual
Learning

Fraud
Detection

Graph Databases DO, er, do well (vaguely)

IAMNetwork
Operations

Recommendation
Engines

Configuration
Management

Open Source Graph DBs

Labelled Property Graph Databases
In active development.

There are many proprietary ones also.
There are new Graph DBs being created.

vs. Persistent data

Great. Enough talking about code ...

DEMO

Great. Enough talking about code ...

Let’s make a ...
Recommendations Engine

http://localhost:7474/browser/

alt-tab dawg ...

http://127.0.0.1:7474/browser/

Plan of Attack:

1. Connect to our DB
2. Load in our presentation data
3. Query
4. make Flask app

alt-tab dawg ...

Recommendations Engine recap

Many Algorithms:

● Shared Identifiers (Connected Components)

● Influence/Volumes (Page Rank)

● Community Interactions (say 6 hops) (Louvain)

● Known Troublemaker (Jaccard)

Recommendations Engine recap

Many Algorithms:

● Shared Identifiers (Connected Components)

● Influence/Volumes (Page Rank)

● Community Interactions (say 6 hops) (Louvain)

● Known Troublemaker (Jaccard)

Recommendations Engine recap

Many Algorithms:

● Shared Identifiers (Connected Components)

● Influence/Volumes (Page Rank)

● Community Interactions (say 6 hops) (Louvain)

● Known Troublemaker (Jaccard)

Fraud Detection

Many Algorithms:

● Shared identifiers (Connected Components)

● Influence/Volumes (Page Rank)

● Community Interactions (say 6 hops) (Louvain)

● Known Troublemaker (Jaccard)

Fraud Detection

Many Algorithms:

● Shared identifiers (Connected Components)

● Influence/Volumes (Page Rank)

● Community Interactions (say 6 hops) (Louvain)

● Known Troublemaker (Jaccard)

Recommendations Engine

Many Algorithms:

● Shared identifiers (Connected Components)

● Influence/Volumes (Page Rank)

● Community Interactions (say 6 hops) (Louvain)

● Known Influencer (Jaccard)

So many more ...

DEMOS
“graphgists”

Please:
Write more introductory materials!

Document your progress!

Share and enjoy Graph DB fun.

github.com
/elena
/graph-fun

Join us on Slack
links at:
github.com
/canberra-python

Actual “Paradise Papers” database
created by ICIJ
(International Consortium of Investigative Journalists)

Proudly help organise
Canberra Python User Group

Join us on Slack
github.com/canberra-python

10 - 12 September 2021
https://2021.pycon.org.au/

Please Volunteer

Hi, I’m Elena. I am a web developer and I love python.
github.com/elena/graph-fun

twitter.com/elequ

Hi,

Proudly help organise
Canberra Python User Group

with: Jonah Sullivan, Mike Leonard,
Zac Hatfield-Dodds

Check us out on Meetup
Join our Online Hacktoberfest

I’m Elena.
github.com/elena
twitter.com/elequ

tl&dr;
Graph Databases are vastly more efficient (O(n) v. O(n log(n))) than other
database architectures for getting relations in massive datasets where
you’d need to do query-time index lookups through many joins.

As a trade-off: they are less efficient at aggregation.

This useful for application in: financial systems, telecommunication
networks, logistics and distribution, retail and data science generally.

SQL statement

SELECT name FROM Person
LEFT JOIN Address
 ON Person.Id = Person_Address.PersonId
 WHERE Address.city = 'canberra' COLLATE
SQL_Latin1_General_CP1_CI_A
LEFT JOIN Person_Sale
 ON Person.Id = Person_Basket.PersonId
LEFT JOIN Basket
 ON Basket.Id = Person_Basket.BasketId
LEFT JOIN Item
 ON Item.Id = Item_Basket.ItemId
 WHERE Item.name = "Widget"
LEFT JOIN PersonInterest
 ON Person.Id = Person_Interest.PersonId
 WHERE Interest.name = "books" COLLATE
SQL_Latin1_General_CP1_CI_A
LEFT JOIN Friend
 ON Person.Id = Person_Friend.PersonId
LEFT JOIN Address
 ON PersonFriend.Id = Person_Address.PersonFriendId
LEFT JOIN Address
 ON Person.Id = Person_Address.PersonId
 WHERE Address.city = "sydney" COLLATE
SQL_Latin1_General_CP1_CI_A

GQL (cypher) statement

MATCH (p:Person) WHERE p.city = "(?i)canberra"
MATCH (f:Person) WHERE f.city = "(?i)sydney"
MATCH (f)-[:LIKES]-(:Book)
MATCH (p)-[:LIKES]-(:Book)
WITH f, p
MATCH (f)-[:FRIENDS]-(p) WITH p
MATCH (p)-[:BOUGHT]-(s:Sale)-[]-(:Widget)
WHERE s.date = $yesterday, s.promo_code = $code
RETURN p

DMahalko [CC BY-SA 3.0]

0|1

