{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Problema 4 - Treinando para a função seno\n", "\n", "* Minicurso Machine Learning -- Hands on com Python\n", "* Samsung Ocean Manaus\n", "* Facilitadora: Elloá B. Guedes\n", "* Repositório: http://bit.ly/mlpython\n", "* Nome:\n", "* Email:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from sklearn.neural_network import MLPRegressor" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "x = np.linspace(0,2*np.pi,361)\n", "y = np.around(np.sin(x),3)\n", "\n", "for z,w in zip(x,y):\n", " print(z,w)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "plt.title(\"Função seno\")\n", "plt.plot(x, y, '--')\n", "plt.xlim([0, 2*np.pi])\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "rede = MLPRegressor(hidden_layer_sizes=, activation=, solver='lbfgs', alpha=0.001)\n", "x = x.reshape(-1,1)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 2 }