{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Equilibrium model B\n", "\n", "## Conserved dynamics\n", "\n", "Let us define $\\phi(\\mathbf{r},t)$ to be the rescaled density. \n", "The coarse-grained Hamiltonian can be written as:\n", "\\begin{equation}\n", "\\mathcal{H}[\\phi]=\\int_V d\\mathbf{r}\\left\\{\\frac{a}{2}\\phi^{2}+\\frac{b}{4}\\phi^{4}+\\frac{\\kappa}{2}|\\nabla\\phi|^{2}\\right\\},\n", "\\end{equation}\n", "where $b,\\kappa>0$ (otherwise the energy is not bounded from below). $a$ can be positive or negative.\n", "Note that $d\\mathbf{r}$ is the differential volume, which is sometimes also written as $dV$ or $d^dr$ (in $d$-dimension).\n", "The dynamics then follows the conservation law:\n", "\\begin{align}\n", "\\frac{\\partial\\phi}{\\partial t}+\\nabla\\cdot\\mathbf{J} =0 \\quad\\text{and}\\quad\n", "\\mathbf{J} =-\\lambda\\nabla\\frac{\\delta\\mathcal{H}}{\\delta\\phi}+\\boldsymbol{\\Lambda},\n", "\\end{align}\n", "where $\\lambda>0$ is the mobility.\n", "Correspondingly, the global density $\\phi_{0}=\\frac{1}{V}\\int\\phi\\,d\\mathbf{r}$ is constant with time. \n", "$\\boldsymbol{\\Lambda}(\\mathbf{r},t)$ in the equation above is a Gaussian white noise with zero mean and Dirac delta-correlation:\n", "\\begin{equation}\n", "\\left\\langle \\Lambda_{\\alpha}(\\mathbf{r},t)\\Lambda_{\\beta}(\\mathbf{r}',t')\\right\\rangle =2\\lambda T\\delta_{\\alpha\\beta}\\delta(\\mathbf{r}-\\mathbf{r}')\\delta(t-t').\n", "\\end{equation}\n", "The noise correlation above satisfies FDT, which guarantees that the system will be in thermal equilibrium with a heat bath of temperature $T$ at steady state $t\\rightarrow\\infty$.\n", "\n", "The equilibrium state of the system depends on the value of $a$ and $\\phi_0$:\n", "- $a>0$ or $a<0$ and $|\\phi_0|>\\sqrt{\\frac{-a}{b}}$: homogenous state\n", "- $a<0$ and $|\\phi_0|<\\sqrt{\\frac{-a}{b}}$: phase-separated state." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAASkAAAEaCAYAAABNd6GBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA5B0lEQVR4nO3dd3hUZfbA8e8JTZoUKVIURFwV0gglAgoJ2AEpq4AVFgVh5ecudtkFEXVXBdkVGzZEF1SkyooKggLqqkiNCCKCIEVpSiDUhJzfH+8kThqZ1DuTOZ/nmScz97733jMXcnLve98iqooxxgSrCK8DMMaYU7EkZYwJapakjDFBzZKUMSaoWZIyxgQ1S1LGmKBmScrkICJLROQ2r+Pw5x+TiNwoIgu9jsmUDktSYUpEtorIURFJEZHdIvKaiFTzOq5AqOo0Vb3c6zhM6bAkFd56qGo1IA5oC/zd43g8JSLlvY7B5GRJyqCqO4EPgEi/xU1E5HMROSQiC0WkTsYKEZkhIr+ISLKILBORln7rrhaR9b7tdorIPX7ruovIGhE5ICL/E5HovGISkctE5DvfMZ4FxG/dQBH5zO/z0yKyXUQOishKEbnEb11lEXldRH4TkQ0icp+I7PBbv1VE7heRJOCwiJQXkQdEZLPvO6wXkd7Zjv25iPzL9z22iEgH3/LtIrJHRAYU8J/AnIIlKYOInAVcDaz2W3wD8CegHlARuMdv3QfAeb51q4BpfuteBW5X1eq4pPex7xhxwGTgduAM4EVgnohUyiWeOsAs3JVdHWAz0PEUX+FrIBaoDbwJzBCR03zrHgKaAs2Ay4Cbctn+eqAbUFNV03zHuwSoATwMTBWRBn7l44Ek3/d4E3gbdyXa3Lf/Z0Pl1jkkqKq9wvAFbAVSgAPANuB5oLJv3RLg735l/wx8mMd+agIK1PB9/gmXiE7PVu4F4JFsyzYCnXPZ5y3Al36fBdgB3Ob7PBD47BTf7Tcgxvd+C3CF37rbgB3ZzsOgfM7VGqCn37E3+a2L8n3/+n7L9gOxXv8bl5WXXUmFt16qWlNVm6jqn1X1qN+6X/zeHwGqAYhIORF53Hc7dBD3Sw7uigfgj7irsm0islRE2vuWNwHu9t0iHRCRA8BZQMNc4moIbM/4oO43f3su5fDFdLfvVi7Zt98afvE0zLZtbvvJskxEbvG7LT2AuyKs41dkt9/7o74Ysy+zK6liYknKFNQNQE/gUlwyaOpbLgCq+rWq9sTdCs4F3vGt3w485kuKGa8qqvpWLsf4GZfA3I5FxP+zP1/90/1AX6CWqtYEkvm9DutnoLHfJrntJ3MoEBFpArwMDAfO8O1vnd/+TCmzJGUKqjpwHHdLUwX4R8YKEanoa8NUQ1VTgYPASd/ql4GhIhIvTlUR6SYi1XM5xnygpYj08T1xuxM48xTxpAF7gfIiMho43W/9O8CDIlJLRBrhks+pVMUlrb2+7/Qnsj5QMKXMkpQpqDdwdVg7gfXAl9nW3wxs9d0KDsVXUa2qK4DBwLO4OqMfcPU7OajqPuA64HFcMjwP+DyPeBbgKvK/98V1jKy3b2Nx9Vk/AouAmbgkmytVXQ88BXyBu62LOsWxTSkQX0WfMWFBRIYB/VW1s9exmMDYlZQp00SkgYh0FJEIETkfuBuY43VcJnCeJikRuVJENorIDyLyQC7r7/U9ZVkjIutE5KSI1Pat2yoi3/jWrSj96E2IqIhrk3UI12brXVxzCxMiPLvdE5FyuHqEy3B1Bl8D1/vqBHIr3wMYoapdfJ+3Am189RfGmDLKyyupdsAPqrpFVU/gWu32PEX564HcHlcbY8owLztUNiLrU5gduO4GOYhIFeBKsj4+VmChiCjwoqq+lMe2Q4AhAFWrVm19wQUXFEPoxpiCWLly5T5VrVuYbb1MUrk1jsvr3rMH8Lmq/uq3rKOq7hKResBHIvKdqi7LsUOXvF4CaNOmja5YYdVXxpQ2EdlW2G29vN3bQdbWv42BXXmU7U+2Wz1V3eX7uQf3tKZdCcRojPGYl0nqa+A8ETlHRCriEtG87IVEpAbQGfdUJmNZ1YyWyiJSFbgc13XBGFPGeHa7p6ppIjIc12K4HDBZVb8VkaG+9ZN8RXsDC1X1sN/m9YE5rksX5YE3VfXD0oveGFNawqrFudVJGeMNEVmpqm0Ks621ODfGBDVLUsaYoGZJyhgT1CxJGWOCmiUpY0xQsyRljAlqlqSMMUHNkpQxJqhZkjLGBDVLUsaYoGZJyhgT1CxJGWOCmiUpY0xQsyRljAlqlqSMMUHNkpQxJqhZkjLGBDVLUsaYoBbs06wniEiy31TrowPd1hhTNng2EYNvmvXn8JtmXUTm5TLN+qeq2r2Q2xpjQlwoTbNeXNsaY0KIl0kqt2nWG+VSrr2IrBWRD0SkZQG3NcaEuGCfZn0V0ERVU0TkamAucF6A27qDiAwBhgCcffbZhQ7WGOONoJ5mXVUPqmqK7/37QAURqRPItn77eElV26hqm7p16xZn/MaYUhDU06yLyJnim6ZYRNrh4t0fyLbGmLIh2KdZvxYYJiJpwFGgv7opl3Pd1pMvYowpUTbNujGmxNk068aYMsuSlDEmqFmSMsYENUtSxpigZknKGBPULEkZY4KaJSljTFCzJGWMCWqWpExIqVatWpbPU6ZMYfjw4R5FE5wOHDjA888/X2zlvGZJypgyxpKUMUFq27ZtdO3alejoaLp27cpPP/0EwMCBAxk2bBiJiYk0a9aMpUuXMmjQIC688EIGDhyYuf1bb71FVFQUkZGR3H///ZnLX331Vf7whz+QkJDA4MGDM6/c9u7dyx//+Efatm1L27Zt+fzzzwEYM2YMgwYNIiEhgWbNmjFx4sTMfU2YMIHIyEgiIyP597//DcDWrVuJjIzMLDN+/HjGjBkDwMSJE2nRogXR0dH0798/x3f+9ttvadeuHbGxsURHR7Np0yYeeOABNm/eTGxsLPfeey8pKSl07dqVuLg4oqKiePfddwFylAMYN24cbdu2JTo6moceeqiI/yLFRFXD5tW6dWs1oS0iIkJjYmIyX2eddZbecccdqqravXt3nTJliqqqvvrqq9qzZ09VVR0wYID269dP09PTde7cuVq9enVNSkrSkydPalxcnK5evVp37typZ511lu7Zs0dTU1M1MTFR58yZozt37tQmTZro/v379cSJE3rxxRdnHu/666/XTz/9VFVVt23bphdccIGqqj700EPavn17PXbsmO7du1dr166tJ06c0BUrVmhkZKSmpKTooUOHtEWLFrpq1Sr98ccftWXLlpnfcdy4cfrQQw+pqmqDBg302LFjqqr622+/5Tgfw4cP16lTp6qq6vHjx/XIkSM59peamqrJycmqqrp3714999xzNT09PUe5BQsW6ODBgzU9PV1Pnjyp3bp106VLlxbp3ysDsEIL+Xvr5aB3xhRY5cqVWbNmTebnKVOmkNFp/IsvvmD27NkA3Hzzzdx3332Z5Xr06IGIEBUVRf369YmKigKgZcuWbN26lW3btpGQkEDGmGM33ngjy5YtA6Bz587Url0bgOuuu47vv/8egEWLFrF+/e/D6h88eJBDhw4B0K1bNypVqkSlSpWoV68eu3fv5rPPPqN3795UrVoVgD59+vDpp59yzTXX5Pl9o6OjufHGG+nVqxe9evXKsb59+/Y89thj7Nixgz59+nDeeeflKKOqjBw5kmXLlhEREcHOnTvZvXt3jnILFy5k4cKFtGrVCoCUlBQ2bdpEp06d8oyvNFiSMmWWbygyACpVqgRARERE5vuMz2lpaZQvn/uvgp5ilJD09HS++OILKleunGOd/zHKlStHWlpanvsqX7486enpmZ+PHTuW+X7+/PksW7aMefPm8cgjj/Dtt99mifWGG24gPj6e+fPnc8UVV/DKK6/QrFmzLPufNm0ae/fuZeXKlVSoUIGmTZtmOYb/d33wwQe5/fbb8/zOXrA6KVNmdOjQgbfffhtwv5gXX3xxwNvGx8ezdOlS9u3bx8mTJ3nrrbfo3Lkz7dq1Y+nSpfz222+kpaUxa9aszG0uv/xynn322czP/ld4uenUqRNz587lyJEjHD58mDlz5nDJJZdQv3599uzZw/79+zl+/Djvvfce4JLg9u3bSUxM5Mknn+TAgQOkpKRk2eeWLVto1qwZd955J9dccw1JSUlUr14984oOIDk5mXr16lGhQgU++eQTtm3bBpCj3BVXXMHkyZMzj7Fz50727NkT8DksKXYlZcqMiRMnMmjQIMaNG0fdunV57bXXAt62QYMG/POf/yQxMRFV5eqrr6ZnTzcB0ciRI4mPj6dhw4a0aNGCGjVqZB7vjjvuIDo6mrS0NDp16sSkSZPyPEZcXBwDBw6kXbt2ANx2222Zt1ajR48mPj6ec845hwsuuACAkydPctNNN5GcnIyqMmLECGrWrJlln9OnT2fq1KlUqFCBM888k9GjR1O7dm06duxIZGQkV111Fffffz89evSgTZs2xMbGZu7/jDPOyFJu3LhxbNiwgfbt2wOuucfUqVOpV69ewOexJNigd8bkIyUlhWrVqpGWlkbv3r0ZNGgQvXv39jqskGKD3hlTgsaMGUNsbCyRkZGcc845uVZgm5Jjt3vG5GP8+PFehxDWPL2SEpErRWSjiPwgIg/ksv5GEUnyvf4nIjF+67aKyDciskZE7B7OmDLKsyQlIuWA54CrgBbA9SLSIluxH4HOqhoNPAK8lG19oqrGFvZe15jCmDRpEm+88QbgWrPPnDkTcBXhGe2msvcxDGRfJW3NmjW8//77xVautHh5u9cO+EFVtwCIyNtATyCzdZyq/s+v/Je4SUCN8dTQoUNzXf7KK68UaD9paWl57qskrFmzhhUrVnD11VcXS7nS4uXtXiNgu9/nHb5lebkV+MDvswILRWSlbyr1XInIEBFZISIr9u7dW6SATeg6fPgwgwYNom3btrRq1Sqz/9rRo0fp378/0dHR9OvXj/j4+MwW7P5XQzNnzszs5zdmzJhc66kSEhLwf3p89913ExcXR9euXcn4v5eQkMDIkSPp3LkzTz/9dJZ9+W+/b98+mjZtCrhW9b169aJHjx6cc845PPvss0yYMIFWrVpx0UUX8euvv+aIZcaMGURGRhITE0OnTp04ceIEo0ePZvr06cTGxjJ9+nSWL19Ohw4daNWqFR06dGDjxo25lsvr3JUWL6+kJJdlubaHEJFEXJLyb53XUVV3iUg94CMR+U5Vl+XYoepL+G4T27RpEz7tLcJAv3792LhxY47ld911F7fcckuWZY899hhdunRh8uTJHDhwgHbt2nHppZfy4osvUqVKFZKSkkhKSiIuLq5YYjt8+DBxcXE89dRTjB07locffjiz4eeBAwdYunQpQGZH4vysW7eO1atXc+zYMZo3b84TTzzB6tWrGTFiBG+88QZ//etfs5QfO3YsCxYsoFGjRhw4cICKFSsyduxYVqxYkRnHwYMHWbZsGeXLl2fRokWMHDmSWbNm5Sg3cuTIXM9dRveekuZlktoBnOX3uTGwK3shEYkGXgGuUtX9GctVdZfv5x4RmYO7fcyRpEzZNX369IDLLly4kHnz5mVetRw7doyffvqJZcuWceeddwKun1x0dHSxxBYREUG/fv0AuOmmm+jTp0/muozlBZGYmEj16tWpXr06NWrUoEePHgBERUWRlJSUo3zHjh0ZOHAgffv2zXJsf8nJyQwYMIBNmzYhIqSmpuZaLq9zd+GFFxb4exSGl0nqa+A8ETkH2An0B27wLyAiZwOzgZtV9Xu/5VWBCFU95Ht/OTC21CI3QaEgV1KqyqxZszj//PNzlPfv45fX8tz6uhWE/77yugLx78OX/XjZ+xv690VMS0vLsa9Jkybx1VdfMX/+fGJjY3PtsjNq1CgSExOZM2cOW7duJSEhIde4TnXuSoNndVKqmgYMBxYAG4B3VPVbERkqIhm1iaOBM4DnszU1qA98JiJrgeXAfFX9sJS/gvHY9OnTWbNmTY5X9gQFrl/aM888k9nJd/Xq1YDrTzdt2jTA3VL5X5XUr1+fDRs2kJ6ezpw5cwoUW3p6euZTvzfffDOgfoRNmzZl5cqVAJnbFtbmzZuJj49n7Nix1KlTh+3bt+fap69RI1cNPGXKlMzlufXpy+3clRZP20mp6vuq+gdVPVdVH/Mtm6Sqk3zvb1PVWr5mBplNDVR1i6rG+F4tM7Y1Ji+jRo0iNTWV6OhoIiMjGTVqFADDhg0jJSWF6Ohonnzyycx+dQCPP/443bt3p0uXLjRo0KBAx6tatSrffvstrVu35uOPP2b06NH5bnPPPffwwgsv0KFDB/bt21ewL5jNvffemzmAX6dOnYiJiSExMZH169dnVojfd999PPjgg3Ts2JGTJ09mbpu9XF7nrrRY3z1j/CQkJDB+/HjatLGmd8XJ+u4ZY8os67tnjJ8lS5Z4HYLJxq6kjDFBzZKUMSaoWZIyxgQ1S1LGmKBmScoYE9Ts6V6oOn4cTjutaPsIozZyJnRZkgpVzz8Phw9DlSpeR2JMibLbvVBlCcqECUtSoWj3bjjzTK+jMKZU2O1eKJo/H7p1y7/cww/Dr79CzZruvTEhyJJUXmbPhiVLYOJEryPJadcu8O+V/8038OCDWcs89xykproE9eWXpRqeMcXJklReVq+GYhpKNk9LlsCUKe4VqKNHIfugaVFR8N57WZcNGgRPPw1798L27RgTqixJZff993DHHe7q44wz4MAByDZ+tKcWLYKuXfMv17IljB8P+/dDq1YlH5cxJcSSlL/jx6FvX/jPf6BnT/jf/6BFCxg69NRtki65BPxGMsw0fjxcemnO5fHx7lgpKa7OKDbWLX/iCbjiit/LpaXBypWufIakJPCNb31Kd9+dfxljQoAlKX8ffQQxMdCwIZx+unuCdtpp4DdqYa4+/bRgx/nqK/czv9u9f/8bXn/d1TmBa3wZYQ9kTXgJ9mnWRUQm+tYniUhcoNsWypo1rn5n7VqIjoY9e6B6dbduwAAYPBh842Fncckl7moo+2vRoqLFc889ULs2bNniPn/9NeQ2YqRIwV7GhBDPhg/2TbP+PXAZbnqrr4HrVXW9X5mrgf8DrgbigadVNT6QbXOT7/DBEye626nISHertXkzXHgh1KrlnpL16AH9+kEBplIqsgkTXGIZMQLGjXP1YxUqlN7xjSkGRRk+OKinWfd9fkNdJv1SRGqKSAOgaQDbFtxNN0Hv3q75Qa1a0L8//N//weOPuyssgHLlinQI4Pc6qeyy10mBqxsbPNglqRMnAktQt90GBZzyOyiouj8Mq1a5q9otW+CXX1y9XYaaNd1teJMm7mq1VSv3h8SuEMssL5NUbtOsxwdQplGA2wJumnVgCMDZZ5996ohq14alS1291Mcfu6d7AI0bw44d7pfCNy9akWTUSQXi3HPdL+nq1eCbdvuUjh6F776DMWPcz7feCu5f4JMnYfFi94fhww9h2za3vHx5l4gaNIBmzVxdnCr89pu72p037/dEf+aZLrn37g1XX21XmmVMsE+znleZgKdoL/A068ePuyd1GQkKoE8fGD7ctfQO5MlacevWzV3RzZuXf9nVq+Haa91t4e23Q3Kyu/oINrt3uwanr73m/gBUq+aehD7wAFx0kbs68psQM4fUVNi4EZYvdw88/vtf95Chbl24+Wb4y18gvz9KJiQE+zTreZWpGMC2hVOp0u8V1RmqVnW/TF7p2RM+/9xd6eVn+XJX6Q9w5EjwJagdO9xt7SuvuD8IV17p6t2uuebUSSm7ChVc3WFkpGu4mpoKCxa4J6UTJ7rXjTfC3/8OzZuX2NcxpUBVPXnhEuQW4Bxc0lkLtMxWphvwAe7K6SJgeaDb5vZq3bq1hqT0dNVlywIre9ttqvffr3r77aqffFKiYRXIkSOqY8eqVqmiWqGC6q23qm7cWDLH2rZN9c47VStXdse6+27V334rmWOZgAArtLC5orAbFscL99Tue2Az8DffsqHAUN97AZ7zrf8GaHOqbfN7hWySCnULFqg2aeL+u117reqWLaVz3F27VAcNUhVRrVtXdcaM0jmuyaEoScpmMDYlJyUF7rsPXngBLrjA/UxIKP04Vq2CIUNc6/1+/eDZZ6FOndKPI4zZDMam0E6ePMmGDRuKf8fr1rkO2pMmwV13uUThRYICF8cXX8Cjj7qniLGx7rMJCZakwlBycjJvvfUWN/XuTf0aNYiJiuLrr78uvgNMn+7agh065JpyPPUUVK5cfPsvjAoV4G9/c80/KlWCTp3gmWdsnPcQYEkqDN1x6608NWgQF8+dy6rDh/mrCO/NnVv0Haenu3Gt+vd3jSy9vHrKS6tWsGIFXHUV3Hmnuw1MTfU6KnMKlqTCUPuEBFqKMBQ4G+iWlsb8GTOKttMTJ1z/xscfd+2zPv4468B8waRWLZg7111ZvfKKa/6QkuJ1VCYPlqTCULfu3flAlYy28x2ALT/9xM8//1y4HaakuEauU6e6ep8XXoCKFYsr3JIREeFiffFF1xi0c2fYt8/rqEwuLEmFoaZNm1KvXj0yaqEqAJeVL88H779f8J0dOuQaZC5eDK++6q5OgrkbTnZDhsC778L69W4wwb17vY7IZGNJKkx1++Mfec9vbKpuhw8zv6CjO6SkuC47X37p+ggOGlTMUZaSbt1ct5rvv4cuXdwQPSZoWJIKU9169WK+31jpVwGLPv2U48ePc/ToUT744APuv+ce9u/fn/sODh+G7t1dd51p0+C660on8JJy6aWub+bmze6K6rffvI7I+FiSClMdOnRg68mTmR0e6wIXVqxIYnw89WvV4p/9+zNhwgQO5TYsclqaaxT56aeuHqpfv9IMveR06fL7FVWPHq7vo/GcJakwJSK0bd0a/1qocQcP8n9r17L1+HFmHzxIlUqVaNKkSdYNVeHPf3ZXHc89B9dfX6pxl7iuXd2V4f/+55KvNU/wnCWpMHLy5EneeustbuzVi/o1arB7zZosQ0lcAlwP1MZ1lIxq3hzJXgn+yCPw8sswcqSboKIsuvZal4Dfe88lZGvw6SmbiCGM/Pjjjwy4+WZuP3mSNbjxbfKSBMS0bZt14dSp8NBDcMst7vF9WTZsmBtW5h//cMPB/OUvXkcUtuxKKow0b96cN998k1mVK5NfbUtSlSpE+0+ltWKFG5a4c2fXADKUmhkU1iOPQK9eru/hggVeRxO2LEmFmWv79uWRf/+byytXZscpyiWVL090xuB5e/a4oXnr14cZM8JneN6ICDcHY2Skq5/auNHriMKSJakwdOuQIQwfNYrLqlQhtzbWacD6o0eJjIx0FcfXXedmQp471w3PG06qVXPDNlesCH/8o2t6YUqVJakwdc+DD9J72DCuqlKFg9nW/QCcWasW1atXdxXky5a5W7xwna69SRP3xG/9ejfWvSlVlqTC2GPjxtGmb196VanCMb/lSUBMVBR88IGbKv7Pf4YbbvAqzOBw2WVuvPRTzThtSoQlqTAmIjz7yivU69qV/pUrk+ZbnhQRQXRUlBvVIDrajQdl3JPNxESXtNet8zqasOFJkhKR2iLykYhs8v2slUuZs0TkExHZICLfishf/NaNEZGdIrLG97q6dL9B2VGuXDnemDmT423acOtpp5EOJFWrRvSiRa7+5e234bTTvA4zOJQrB2++Caef7q4sc5vg1RQ7r66kHgAWq+p5wGLf5+zSgLtV9ULcTDF3iEgLv/X/UtVY36sQ3fdNhooVKzLrww/ZfMEFjKhYkbVHjxK9bp0bufLCC70OL7iceaYb7eGbb2DUKK+jCQv5JikROUNEhonIn0SknYgUxziwPYHXfe9fB3plL6CqP6vqKt/7Q8AG3MzFpgRUqVKF9z75hKVnnsm+1FSa9ekDf/qT12EFp27d3BAv48e7hwqmRAVyJTUH1//0H8A4IFlEviviceur6s/gkhFQ71SFRaQp0Arwn598uIgkicjk3G4X/bYdIiIrRGTFXhsr6JRqVq3Kgpo1ea5aNSImTQqPBpuF9dRTbvr3AQPgYPbno6Y4BZKkqqvqWGC3qnbGde/KdzpfEVkkIutyefUsSIAiUg2YBfxVVTP+N7wAnAvEAj8DedbsqupLqtpGVdvUDbc2PgX15JPUT0pi4JQp4dceqqCqVYM33oCffoK77/Y6mrItv4n5gC98P78CKvveLy3sRH++7TcCDXzvGwAb8yhXAVgA3HWKfTUF1gVyXJsc9BTWrnWz/fbr53UkoeW++9ykp8E0W3QQogiTgwZyJTVeRGoD04HJIvJ/FL1uaB4wwPd+APBu9gLiut+/CmxQ1QnZ1vmP8N8bsOfBRXHypBtVs1YtN3GmCdxDD7nbviFD4Nix/MubAss3SanqLFX91Zco3gfOwlV8F8XjwGUisgm4zPcZEWkoIhlP6joCNwNdcmlq8KSIfCMiSUAiMKKI8YS35593s/tOnGgz+xZUlSpuModNm8r+yBAesWnWw92uXW4K9Pbt4cMPrbK8sAYMcG2oVq2CqCivowk6Ns26KbwRI9ycec89ZwmqKJ56CmrWdLd96en5FjeBsyQVzj78EN55x/VJa97c62hCW506LlF9+SW8/nr+5U3A7HYvXB07Bi1burGh1q6FSpW8jij0pafDxRe7GWe+/x5q1PA6oqBht3um4P71L9iyxd3mWYIqHhER7uno3r3w8MNeR1NmWJIKRz//7Mbu7tXLzY5iik9cHAwe7Po9rl/vdTRlgiWpcPT3v7se/OPGeR1J2fTYY1C9Otx5p800UwwsSYWbVavgtdfc7CdWWV4y6tRxkzgsXuyGHjZFYhXn4UTVzfby3Xeu8aFV7Jac1FTXXkrEDetSPrxnj7OKcxOY2bPd1OiPPmoJqqRVqACPP+7+IEye7HU0Ic2upMJFWlrWJgflynkdUdmnCpdc4pokbNrkRk4IU3YlZfI3ZYpru/OPf1iCKi0i7uHEL7/AhAn5lze5siQVDo4ehTFjXP+8Hj28jia8tG/v5usbNw527/Y6mpBkSSocPPcc7NwJ//yn9c/zwj/+4f5QPPKI15GEJEtSZV1ysktOV17pnuyZ0veHP8Ctt8LLL7uRPE2BWJIq68aPh19/dX/NjXf+9jdXkW7/DgVmSaos27fP9dHr2zd8p0gPFmef7brLvPoqbN3qdTQhxZJUWfbUU3DkiKs0N94bOdI9WbW6qQKxJFVW7d/veuT37WsTfAaLRo1g6FA33tQPP3gdTcgI2mnWfeW2+sYyXyMiKwq6fVj7978hJcVm2Q02DzwAFSva1VQBBPM06xkS1U2l7t9atSDbh5/ffnOTKlx7rWtlboLHmWfCn/8MU6e6VugmX14lqXynWS/h7cu2p592s+raVVRwuvdedzX15JNeRxISvEpSgU6zrsBCEVkpIkMKsX34TbN+4IC71evdG6KjvY7G5KZ+fTfP4euvu0a25pRKLEkV0zTrHVU1DrgKuENEOhU0Dg23adafecY14LSrqOB2771uTPSnnvI6kqBXYklKVS9V1chcXu8CuzNmIfb93JPHPnb5fu4B5gDtfKsC2j7sHDni6qK6dbN2UcGuaVO48UY3sei+fV5HE9S8ut0LZJr1qiJSPeM9cDm/T6ee7/ZhacoU9x/+vvsCKl6uXDliY2Np2bIlMTExTJgwgfRimjNu69atREZG5lvmzTffLNB+/xFgi+1Ay3nq/vt//8Ni8qaqpf4CzsA9ldvk+1nbt7wh8L7vfTNgre/1LfC3/LbP79W6dWsts9LSVJs1U42PV01PD2iTqlWrZr7fvXu3du3aVUePHp2jXGpqaoHD+fHHH7Vly5anLPPJJ59ot27dCrRf/5iLo5znevdWrVlTNTnZ60hKFLBCC5svCrthKL7KdJJ65x33zzlrVsCbZP9F3rx5s9auXVvT09P1tdde02uvvVa7d++uiYmJun//fu3Zs6dGRUVpfHy8rl27VlVVH3roIb3ppps0MTFRmzdvri+99JKqZk1SaWlpes8992ibNm00KipKJ02apKqq8fHxevrpp2tMTIxOmDAhSyy7du3SSy65RGNiYrRly5a6bNkyvf/++zUiIkJjYmL0hhtuUFXVnj17alxcnLZo0UJffPFFVdVcy/3nP//Rtm3bakxMjA4ZMkTT0tIKeoZLxvLl7t/tiSe8jqREWZIK9ySVnq7aurXqeee5K6oA5Xa1UbNmTf3ll1/0tdde00aNGun+/ftVVXX48OE6ZswYVVVdvHixxsTEqKpLUtHR0XrkyBHdu3evNm7cWHfu3JklSb344ov6yCOPqKrqsWPHtHXr1rply5ZTXkmNHz9eH330UVV1Se7gwYO5xpwR35EjR7Rly5a6b9++HOXWr1+v3bt31xMnTqiq6rBhw/T1118P+DyVuK5dVRs2VD1+3OtISkxRklR4jw5fVixZAitXukrYIo666f4/OZdddhm1a9cG4LPPPmPWrFkAdOnShf3795OcnAxAz549qVy5MpUrVyYxMZHly5cTGxubuZ+FCxeSlJTEzJkzAUhOTmbTpk1UrFgxzzjatm3LoEGDSE1NpVevXln252/ixInMmTMHgO3bt7Np0ybOOOOMLGUWL17MypUradu2LQBHjx6lXr08W62Uvrvucg87ZsxwlekmC0tSZcGTT0K9enDLLUXazZYtWyhXrlzmL3DVqlUz1/knrwziG0BPsg2kl/2zqvLMM89wxRVXZFm+ZMmSPGPp1KkTy5YtY/78+dx8883ce++93JLt+y1ZsoRFixbxxRdfUKVKFRISEjh27FiOfakqAwYM4J///Geex/PUlVfCBRe4IYZvuMEGJszGOhiHuqQk+PBDNxHlaacVejd79+5l6NChDB8+PEeSAZc0pk2bBrjkUKdOHU4//XQA3n33XY4dO8b+/ftZsmRJ5hVLhiuuuIIXXniB1NRUAL7//nsOHz5M9erVOXToUK7xbNu2jXr16jF48GBuvfVWVq1aBUCFChUy95OcnEytWrWoUqUK3333HV9++WXm9v7lunbtysyZM9mzx7VU+fXXX9m2bVuhz1Wxi4iAESPcnIjLlnkdTdCxK6lQ9/TTULkyDBtW4E2PHj1KbGwsqamplC9fnptvvpm77ror17JjxozhT3/6E9HR0VSpUoXXX389c127du3o1q0bP/30E6NGjaJhw4Zs9Rsz6bbbbmPr1q3ExcWhqtStW5e5c+cSHR1N+fLliYmJYeDAgYwYMSJzmyVLljBu3DgqVKhAtWrVeOONNwAYMmQI0dHRxMXFMXnyZCZNmkR0dDTnn38+F110Ueb2/uWmTZvGo48+yuWXX056ejoVKlTgueeeo0mTJgU+ZyXm5pvdUC4TJtgIqtnYlFahbN8+aNwYBg6ESZM8CWHMmDFUq1aNe+65x5PjlymjR7s5Eb/7zg05XIbYlFbh6uWX4fhxd6tnQt+f/+zmRXz6aa8jCSp2JRWqUlPhnHPcgHYffeR1NKa4DBoEb78N27dDtqeUocyupMLRnDmuB71dRZUtI0a46a9savZMlqRC1cSJcO65rn1NCJs0aVJmpfjAgQMz21LddtttrF+/HoBqAU5P7r+vkrZmzRref//9YiuXKSoKOnWCF16AkyeLEGHZYU/3QtHKlfD5524mmIjQ/jszdOjQXJe/8sorBdpPWlpanvsqCWvWrGHFihVcffXVxVIuizvugH794IMPoHv3IkYa+kL7f3i4mjgRqlWDP/3Jk8MfPnyYQYMG0bZtW1q1asW777pBKI4ePUr//v2Jjo6mX79+xMfHk1EH6H81NHPmTAYOHAi4p4Pjx4/PcYyEhAT86w/vvvtu4uLi6Nq1KxmDFyYkJDBy5Eg6d+7M008/nWVf/tvv27ePpk2bAjBlyhR69epFjx49OOecc3j22WeZMGECrVq14qKLLuLXX3/NEcuMGTOIjIwkJiaGTp06ceLECUaPHs306dOJjY1l+vTpLF++nA4dOtCqVSs6dOjAxo0bcy2X17nLondvaNDAzTxt7Eoq5OzZ4ypWhwyBGjWKbbf9+vVj48aNOZbfddddOVp6P/bYY3Tp0oXJkydz4MAB2rVrx6WXXsqLL75IlSpVSEpKIikpibi4uGKJ7fDhw8TFxfHUU08xduxYHn74YZ599lkADhw4wNKlSwGX8AKxbt06Vq9ezbFjx2jevDlPPPEEq1evZsSIEbzxxhv89a9/zVJ+7NixLFiwgEaNGnHgwAEqVqzI2LFjWbFiRWYcBw8eZNmyZZQvX55FixYxcuRIZs2alaPcyJEjcz13/q37qVDB/fs+/LCbVaZ586KdwBBnSSrUTJ4MJ064W4JiNH369IDLLly4kHnz5mVetRw7doyffvqJZcuWcaevIj86OproYhq+OCIign79+gFw00030adPn8x1GcsLIjExkerVq1O9enVq1KhBjx49AIiKiiIpKSlH+Y4dOzJw4ED69u2b5dj+kpOTGTBgAJs2bUJEMlu7Z5fXubsw+7RjQ4bAY4+5uqkwH73TklQoSU+Hl16ChATX16sYFeRKSlWZNWsW559/fo7yuXWpyb48t/51BeG/ryxXIH7Kly+fOYBf9uNVqlQp831ERETm54iICNLS0nLsa9KkSXz11VfMnz+f2NhY1qxZk6PMqFGjSExMZM6cOWzdupWEhIRc4zrVucuiYUN32zd5spv+qkqVU5cvw6xOKpR89BH8+KObYLKYTZ8+nTVr1uR4ZU9Q4PriPfPMM5mdjlevXg1k7d+3bt26LFcl9evXZ8OGDaSnp2eOWhCo9PT0zKd+b775JhdffHG+2zRt2pSVK1cCZG5bWJs3byY+Pp6xY8dSp04dtm/fnqPfYXJyMo0aNQJcvVeG7OXyOne5uuMON7HGW28VKf5QZ0kqlLz4ItSt6/7CemjUqFGkpqYSHR1NZGQko3yTPgwbNoyUlBSio6N58sknadeuXeY2jz/+ON27d6dLly40aNCgQMerWrUq3377La1bt+bjjz9m9OjR+W5zzz338MILL9ChQwf2FXEM8XvvvZeoqCgiIyPp1KkTMTExJCYmsn79+swK8fvuu48HH3yQjh07ctKv6UD2cnmdu1x16uTmTXzuOQijRtc5FHYgqlB8hfSgdzt3qpYrp3r//V5HErDOnTvr119/7XUYoe3551VB9auvvI6kSCjCoHdBO826iJzvm14943VQRP7qWzdGRHb6rStAI5QQ9eqrrnHf4MFeR2JK0403uvqol1/2OhLPeNJ3T0SeBH5V1cdF5AGglqref4ry5YCdQLyqbhORMUCKquZsYHMKIdt37+TJ3/vpLVjgdTSmtA0aBO+8Az//DNWrex1NoYRi372CTpPeFdisqkE0Ulkp+uAD1+H09tu9jsR44bbb4PBhKEAzkbIk2KdZz9AfyP6IY7iIJInI5NxuFzOUiWnWJ01yLZB97XlMmGnfHlq0CNtbvmCfZh0RqQhcA8zwW/wCcC4QC/wM5NnaTUN9mvWffnJXUrfe6loim/Aj4uoily93w0WHmaCeZt3nKmCVqu722/duVT2pqunAy/w+/XrZ8/rrrhHnrbd6HYnx0k03QcWKUMCO12VB0E6z7ud6st3qZSQ4n978Pv162ZKe7qZO79IFfB1kTZiqUwf69IH//MeNNxVGvEpSjwOXicgm4DLfZ0SkoYhkDr4jIlV862dn2/5JEflGRJKARGAEZdGnn8KWLZ6NdmCCzODBrgX67Oy/DmWbDR8czAYMgLlz3aPnMO67ZXzS090EDY0buwlhQ0goNkEw+Tl0CGbOhP79LUEZJyLCtZlauhQ2b/Y6mlJjSSpYvfMOHDlit3omq1tucU/7/vMfryMpNZakgtXkya6FeXy815GYYNK4MXTtCm+84W7/woAlqWC0cSP873/uKiqP8ZlMGBswwA3Z89lnXkdSKixJBaMpU6BcOTf1tjHZ9e7txrj3m+q+LLMkFWzS0tx/vquugjPP9DoaE4yqVoVrr4UZM1y9ZRlnSSrYLF7smhxYhbk5lQED3BPgAo5yGoosSQWbqVOhZs2Qn/TTlLBOnaBJk7C45bMkFUxSUlxr4r59wW+yAGNyiIhwzREWLYIdO7yOpkRZkgom777r6hhuvNHrSEwouOUWN/b51KleR1KiLEkFk2nT4OyzIYDZUIyheXPo2NHd8pXh7m2WpILF7t2wcKG7ioqwfxYToFtuge++g1zmAiwr7LchWEyf7sYyv+kmryMxoeSPf4Ty5eHNN72OpMRYkgoWU6dCbKwbJtaYQJ1xBlx5Jbz9dpntJmNJKhh8/z18/bVdRZnCueEG94SvjHaTsSQVDKZNc330rr/e60hMKLrmGjecTxm95bMk5bWMR8hdukDDhl5HY0JR1arQs6frJnPihNfRFDtLUl778ks3RLDd6pmiuP56+PVX+OgjryMpdl5Ns36diHwrIukikueQoiJypYhsFJEffDMdZyzPd5r2kDF9umtd3ru315GYUHbFFVCrFryVfXrK0OfVldQ6oA+wLK8CvqnVn8NNadUCuF5EMh59PQAsVtXzgMW+z6EnPd1dol91FdSo4XU0JpRVrAjXXefGxC9jIyN4kqRUdYOqbsynWDvgB1XdoqongLdx07NDwadpD06ffQa7drm+esYU1fXXu+nY//tfryMpVsFcJ9UI2O73eYdvGRR8mvbg9M47cNppNn26KR6XXAKNGpW5p3zBPM16buPmFriDkogMEZEVIrJi7969Bd285Jw86WaD6dbNjbJoTFGVK+dmF/rgA/jtN6+jKTZeTbMeiB3AWX6fGwO7fO8DnqZdVV9S1Taq2qZu3bqF+SolY+lS11+vXz+vIzFlSd++kJoK8+Z5HUmxCebbva+B80TkHBGpCPTHTc8OBZumPTi9845rgGeD25ni1LatGwxvxgyvIyk2XjVB6C0iO4D2wHwRWeBbnjnNuqqmAcOBBcAG4B1V/da3i1ynaQ8ZaWkwa5ari7KJP01xEnHjny9c6KZkLwO8ero3R1Ubq2olVa2vqlf4lu9S1av9yr2vqn9Q1XNV9TG/5ftVtauqnuf7+asX36PQPvkE9u2zWz1TMq67rkzd8gXz7V7ZNX26qyy/6iqvIzFlUbt2cNZZZeaWz5JUaTtxwo1j3rOna35gTHHzv+VLTvY6miKzJFXaFi92j4ftVs+UpOuuc38Qy0DDTktSpW3GDNcF5vLLvY7ElGXx8dC4cZm45bMkVZrS0tyMMD162JRVpmRFRLihhRcsgIMHvY6mSCxJlaZly9xwGn36eB2JCQfXXQfHj4f8LZ8lqdI0ezZUruyG1TCmpLVv7/ryhfgtnyWp0pKeDnPmuGYH1oDTlIaMW74PPwzpWz5LUqVl+XI3LIvd6pnSdO217pbv/fe9jqTQLEmVltmz3fxo1lfPlKYOHaBuXffAJkRZkioNqi5Jde0KNWt6HY0JJ+XKuYbD8+e7K6oQZEmqNHzzDWzebLd6xhu9esGhQ67PaAiyJFUaZs92XRV6BjrenzHFqGtX11d07lyvIykUS1KlYfZsuPhiqF/f60hMODrtNPdU+d13Q3IqdktSJW3TJne7Z7d6xku9esEvv8BXX3kdSYFZkippc+a4nzavnvFSt25QoUJI3vJZkipps2dD69ZuSFdjvFKjBiQmuj+aWuD5TDxlSaok/fyzu7zu1cvrSIxx/w83bYING7yOpEAsSZWk995zP+2pngkGGf8PQ+yWz6uJGK4TkW9FJF1E2uRR5iwR+URENvjK/sVv3RgR2Skia3yvq3Pbh+f++193mxcZ6XUkxkDDhm6cqYx60hDh1ZXUOqAPsOwUZdKAu1X1QuAi4A4RaeG3/l+qGut7BV/HpCNH4KOP4JprXBspY4JB796wYgVs355/2SDh1WwxG1R1Yz5lflbVVb73h3DTWjU61TZBZfFiOHbMplA3wSWjfjSE+vKJeljTLyJLgHtUdUU+5ZrirroiVfWgiIwBBgIHgRW4K65c55UWkSHAEN/HSNxVXDCpA+zzOohsgjEmCM64LKbAnK+q1QuzYYklKRFZBJyZy6q/ZUy1HkiSEpFqwFLgMVWd7VtWH/ePoMAjQANVHRRATCtUNdc6MK9YTIELxrgspsAUJabyxR1MBlW9tKj7EJEKwCxgWkaC8u17t1+Zl4H3inosY0xwCtomCCIiwKvABlWdkG1dA7+PvQm+WzhjTDHxqglCbxHZAbQH5ovIAt/yhiKS8aSuI3Az0CWXpgZPisg3IpIEJAIjAjz0S8X4NYqLxRS4YIzLYgpMoWPytOLcGGPyE7S3e8YYA5akjDFBrkwnqUC63/jKbfXVca0RkVO22SrFmK4UkY0i8oOIPFDCMdUWkY9EZJPvZ608ypX4ecrve4sz0bc+SUTiSiKOAsaUICLJfnWno0shpskiskdEcn1o5NF5yi+mwp0nVS2zL+BC4HxgCdDmFOW2AnWCJSagHLAZaAZUBNYCLUowpieBB3zvHwCe8OI8BfK9gauBDwDBdZf6qoT/vQKJKQF4rzT+//gdsxMQB6zLY32pnqcAYyrUeSrTV1IaQPeb0hZgTO2AH1R1i6qeAN4GSnIohZ7A6773rwO9SvBYpxLI9+4JvKHOl0DNbE1SvIip1KnqMuDXUxQp7fMUSEyFUqaTVAEosFBEVvq60XitEeDfA3QHJdtvsb6q/gyuzyRQL49yJX2eAvnepX1uAj1eexFZKyIfiEjLEownUKV9ngJV4PNUYi3OS0sg3W8C0FFVd4lIPeAjEfnO91fBq5hyGzahSG1FThVTAXZTrOcpF4F872I/N/kI5HirgCaqmuJryzcXOK8EYwpEaZ+nQBTqPIV8ktJi6H6jqrt8P/eIyBzcJX6hf/mKIaYdwFl+nxsDu4qyw1PFJCK7RaSBqv7suyXYk8c+ivU85SKQ713s56aoManqQb/374vI8yJSR1W97ORb2ucpX4U9T2F/uyciVUWkesZ74HK872bzNXCeiJwjIhWB/sC8EjzePGCA7/0AIMfVXimdp0C+9zzgFt/Tq4uA5Ixb1RKSb0wicqaIGzRMRNrhfq/2l2BMgSjt85SvQp+n0nwiUdovXL++HcBxYDewwLe8IfC+730z3BObtcC3uFsyT2PS35/OfI97slTSMZ0BLAY2+X7W9uo85fa9gaHAUN97AZ7zrf+GUzy1LcWYhvvOyVrgS6BDKcT0FvAzkOr7/3RrEJyn/GIq1HmybjHGmKAW9rd7xpjgZknKGBPULEkZY4KaJSljTFCzJGWMCWqWpIwxQc2SlDEmqFmSMkFNRPqIyESv4zDesSRlgl0rXMdUE6ZCvoOxKZtE5A+4bh0XAftFpKaq/tvbqIwXrFuMCToiUgn4Cjel2btAB2A90FBVj3kZmyl9diVlgtFluE6ou4CDqvqLiBwDyonI68AJYImqTvMySFM6rE7KBKNYXM/9GCDJN8jeIaAPMFNVBwPXeBeeKU12JWWC0UEgGkgDkoCHcfVTjXHJC+CkN6GZ0mZXUiYYTcUNKzsaGIYb3P8Z3BhFjX1l7P9umLCKcxO0RGQt0EVV9/s+VwWeBY4Bn1mdVHiwJGWCku8J3wZVbeZ1LMZblqSMMUHN7uuNMUHNkpQxJqhZkjLGBDVLUsaYoGZJyhgT1CxJGWOCmiUpY0xQ+3+HA6LRn9yR6AAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "b, kappa = 1.0, 1.0\n", "phi = np.arange(-2.0, 2.0, 0.001)\n", "\n", "fig, ax = plt.subplots(figsize=(4,4)) \n", "\n", "ax.set_title('Phase diagram')\n", "ax.set_ylabel('$a$')\n", "ax.set_xlabel('$\\phi_0$')\n", "ax.set_xlim([-1.5, 1.5])\n", "ax.set_ylim([-1.25, 0.75])\n", "\n", "a = -b*phi**2\n", "ax.plot(phi, a, c='red') \n", "\n", "ax.annotate('Homogenous state \\n = equilibrium state', xy=(0.0,0.2))\n", "ax.annotate('Droplet state \\n = equilibrium state', xy=(-0.6,-0.7))\n", "ax.annotate('$\\phi_0=\\pm\\sqrt{\\\\frac{-a}{b}}$', c='red', xy=(-0.5,-0.25), xytext=(-1.4,0.0), arrowprops=dict(facecolor='red')) \n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Steady state statistics\n", "\n", "In the steady state $t\\rightarrow\\infty$, and for a fixed value of $a$, the probability of obtaining some configuration $\\phi(\\mathbf{r})$,\n", "for any time $t$, is given by the Boltzmann distribution:\n", "\\begin{equation}\n", "P_{s}[\\phi(\\mathbf{r})]=\\frac{1}{\\mathcal{Z}}e^{-\\mathcal{H}[\\phi(\\mathbf{r})]/T},\n", "\\end{equation}\n", "where $\\mathcal{Z}$ is the partition function:\n", "\\begin{equation}\n", "\\mathcal{Z}=\\int\\mathcal{D}\\phi\\,e^{-\\mathcal{H}[\\phi]/T}.\n", "\\end{equation}\n", "Note that the Hamiltonian $\\mathcal{H}[\\phi]$ is a fluctuating quantity since $\\phi$ is a fluctuating field. \n", "To get the thermodynamic energy, we then have to average $\\mathcal{H}[\\phi]$ over the stationary distribution $P_s[\\phi]$:\n", "\\begin{equation}\n", "\\left\\langle \\mathcal{H}\\right\\rangle _{s}=\\int\\mathcal{D}\\phi\\,\\mathcal{H}[\\phi]P_{s}[\\phi],\n", "\\end{equation}\n", "where in the above $\\left\\langle\\dots\\right\\rangle_s$ indicates averaging over stationary distribution $P_{s}[\\phi]$.\n", "Now the thermodynamic entropy of the system $\\mathcal{S}$ is defined to be:\n", "\\begin{align}\n", "\\mathcal{S} & =-\\left\\langle \\ln P_{s}\\right\\rangle _{s}.\n", "\\end{align}\n", "Substituting $P_s[\\phi]$ to the above equation, we then derive the _total_ free energy of the system:\n", "\\begin{equation}\n", "\\mathcal{F}=-T\\ln\\mathcal{Z}=\\left\\langle \\mathcal{H}\\right\\rangle _{s}-T\\mathcal{S}.\n", "\\end{equation}\n", "Note that in some literature $\\mathcal{H}$ is sometimes called the coarse-grained free energy and $\\mathcal{F}$ is the _total_ free energy.\n", "\n", "## Gaussian approximation\n", "\n", "Let us consider the equilibrium homogenous state. In steady state,\n", "we have an ensemble of different configurations $\\phi(\\mathbf{r})$'s\n", "from different time steps. Let us now write $\\phi(\\mathbf{r})$ as:\n", "\\begin{equation}\n", "\\phi(\\mathbf{r})=\\underbrace{\\phi_{0}}_{\\text{mean field}}+\\underbrace{\\delta\\phi(\\mathbf{r})}_{\\text{fluctuations around mean field}},\n", "\\end{equation}\n", "where $\\delta\\phi(\\mathbf{r})$ is assumed to be small. Substituting\n", "the above into the Hamiltonian $\\mathcal{H}[\\phi]$, we get:\n", "\\begin{align}\n", "\\mathcal{H}[\\phi] & =\\int_{V}d\\mathbf{r}\\left\\{ \\frac{a}{2}(\\phi_{0}+\\delta\\phi)^{2}+\\frac{b}{4}(\\phi_{0}+\\delta\\phi)^{4}+\\frac{\\kappa}{2}|\\nabla\\delta\\phi|^{2}\\right\\} \\\\\n", " & \\simeq\\int_{V}d\\mathbf{r}\\left\\{ \\frac{a}{2}(\\phi_{0}^{2}+2\\phi_{0}\\delta\\phi+\\delta\\phi^{2})+\\frac{b}{4}(\\phi_{0}^{4}+4\\phi_{0}^{3}\\delta\\phi+6\\phi_{0}^{2}\\delta\\phi^{2})+\\frac{\\kappa}{2}|\\nabla\\delta\\phi|^{2}\\right\\} ,\n", "\\end{align}\n", "where we have ignored higher order terms $\\sim\\delta\\phi^{3}$. Now\n", "since $\\phi$ is conserved, we must have $\\int_{V}\\delta\\phi\\,d\\mathbf{r}=0$,\n", "and thus:\n", "\\begin{equation}\n", "\\mathcal{H}[\\delta\\phi]\\simeq\\underbrace{V\\left(\\frac{a}{2}\\phi_{0}^{2}+\\frac{b}{4}\\phi_{0}^{4}\\right)}_{\\mathcal{H}_{0}}+\\int_{V}d\\mathbf{r}\\left\\{ \\left(\\frac{a}{2}+\\frac{3b\\phi_{0}^{2}}{2}\\right)\\delta\\phi^{2}+\\frac{\\kappa}{2}|\\nabla\\delta\\phi|^{2}\\right\\} .\n", "\\end{equation}\n", "The first term $\\mathcal{H}_{0}=$ constant is the mean field energy.\n", "Let us consider a $d$-dimenional box as our system. Now we can define\n", "the Fourier transform of $\\delta\\phi(\\mathbf{r})$:\n", "\\begin{align}\n", "\\delta\\phi(\\mathbf{r}) & =\\frac{1}{\\sqrt{V}}\\sum_{\\mathbf{q}}\\delta\\phi_{\\mathbf{q}}e^{i\\mathbf{q}\\cdot\\mathbf{r}}\\\\\n", "\\delta\\phi_{\\mathbf{q}} & =\\frac{1}{\\sqrt{V}}\\int_{V}d\\mathbf{r}\\,\\delta\\phi(\\mathbf{r})e^{-i\\mathbf{q}\\cdot\\mathbf{r}},\n", "\\end{align}\n", "where $V=L^{d}$ and \n", "\\begin{equation}\n", "q_{\\alpha}=0,\\pm\\frac{2\\pi}{L},\\pm\\frac{4\\pi}{L},\\pm\\frac{6\\pi}{L},\\dots\\quad\\text{, where }\\alpha=1,2,\\dots,d.\n", "\\end{equation}\n", "More succintly, we can write\n", "\\begin{equation}\n", "\\mathbf{q} = \\frac{2\\pi}{L}\\mathbf{n} \\quad\\text{, where } \\mathbf{n}\\in\\mathbb{Z}^d.\n", "\\end{equation}\n", "The Hamiltonian then becomes:\n", "\\begin{align}\n", "\\mathcal{H}\\{\\delta\\phi_{\\mathbf{q}}\\} & =\\mathcal{H}_{0}+\\int_{V}d\\mathbf{r}\\left\\{ \\left(\\frac{a}{2}+\\frac{3b\\phi_{0}^{2}}{2}\\right)\\frac{1}{V}\\sum_{\\mathbf{q},\\mathbf{q}'}\\delta\\phi_{\\mathbf{q}}\\delta\\phi_{\\mathbf{q}'}e^{i(\\mathbf{q}+\\mathbf{q})\\cdot\\mathbf{r}}+\\frac{\\kappa}{2}\\frac{1}{V}\\sum_{\\mathbf{q},\\mathbf{q}'}(i\\mathbf{q})\\cdot(i\\mathbf{q}')\\delta\\phi_{\\mathbf{q}}\\delta\\phi_{\\mathbf{q}'}e^{i(\\mathbf{q}+\\mathbf{q})\\cdot\\mathbf{r}}\\right\\} \\\\\n", " & =\\mathcal{H}_{0}+\\sum_{\\mathbf{q},\\mathbf{q}'}\\left(\\frac{a}{2}+\\frac{3b\\phi_{0}^{2}}{2}\\right)\\delta\\phi_{\\mathbf{q}}\\delta\\phi_{\\mathbf{q}'}\\underbrace{\\frac{1}{V}\\int_{V}d\\mathbf{r}e^{i(\\mathbf{q}+\\mathbf{q}')\\cdot\\mathbf{r}}}_{\\delta_{\\mathbf{q},-\\mathbf{q}'}}+\\sum_{\\mathbf{q},\\mathbf{q}'}\\frac{\\kappa}{2}(i\\mathbf{q})\\cdot(i\\mathbf{q}')\\delta\\phi_{\\mathbf{q}}\\delta\\phi_{\\mathbf{q}'}\\underbrace{\\frac{1}{V}\\int_{V}d\\mathbf{r}e^{i(\\mathbf{q}+\\mathbf{q}')\\cdot\\mathbf{r}}}_{\\delta_{\\mathbf{q},\\mathbf{q}'}}\\\\\n", " & =\\mathcal{H}_{0}+\\frac{1}{2}\\sum_{\\mathbf{q}}\\left(a+3b\\phi_{0}^{2}+\\kappa q^{2}\\right)|\\delta\\phi_{\\mathbf{q}}|^{2}\n", "\\end{align}\n", "\n", "To simplify the notation, let us define:\n", "\\begin{equation}\n", "G(\\mathbf{q})=\\frac{a+3b\\phi_{0}^{2}+\\kappa q^{2}}{T},\n", "\\end{equation}\n", "so that the stationary probability distribution becomes:\n", "\\begin{align}\n", "P_{s}\\{\\delta\\phi_{\\mathbf{q}}\\} & =\\frac{1}{\\mathcal{Z}}e^{-\\frac{1}{2}\\sum_{\\mathbf{q}}G(\\mathbf{q})|\\delta\\phi_{\\mathbf{q}}|^{2}}\\\\\n", "\\mathcal{Z} & =\\left(\\prod_{\\mathbf{q}}\\int d\\delta\\phi_{\\mathbf{q}}\\right)e^{-\\frac{1}{2}\\sum_{\\mathbf{q}}G(\\mathbf{q})|\\delta\\phi_{\\mathbf{q}}|^{2}}\n", "\\end{align}\n", "Note that since $\\mathcal{H}_{0}=$ constant, we can absorb it inside\n", "$\\mathcal{Z}$. Now we can compute $\\mathcal{Z}$:\n", "\\begin{align}\n", "\\mathcal{Z} & =\\left(\\prod_{\\mathbf{q}}\\int d\\delta\\phi_{\\mathbf{q}}\\right)e^{-\\frac{1}{2}\\sum_{\\mathbf{q}}G(\\mathbf{q})|\\delta\\phi_{\\mathbf{q}}|^{2}}\\\\\n", " & =\\prod_{\\mathbf{q}}\\left(\\int d\\delta\\phi_{\\mathbf{q}}\\,e^{-\\frac{1}{2}G(\\mathbf{q})|\\delta\\phi_{\\mathbf{q}}|^{2}}\\right).\n", "\\end{align}\n", "The integral inside the round bracket is a Gaussian integral over\n", "the two random variables: $\\text{Re}(\\delta\\phi_{\\mathbf{q}})$ and\n", "$\\text{Im}(\\delta\\phi_{\\mathbf{q}})$. However these two variables\n", "are not independent since $\\delta\\phi_{\\mathbf{q}}=\\delta\\phi_{-\\mathbf{q}}^{*}$,\n", "and effectively, this is just a one-dimensional Gaussian integral.\n", "Thus,\n", "\\begin{equation}\n", "\\mathcal{Z}=\\prod_{\\mathbf{q}}\\sqrt{\\frac{2\\pi}{G(\\mathbf{q})}}.\n", "\\end{equation}\n", "In particular, we can calculate the total free energy:\n", "\\begin{align}\n", "\\mathcal{F} & =-T\\ln\\mathcal{Z}\\\\\n", " & =-\\frac{T}{2}\\sum_{\\mathbf{q}}\\Delta\\mathbf{n} \\ln\\left(\\frac{2\\pi}{G(\\mathbf{q})}\\right)\\\\\n", " & \\simeq-T\\frac{V}{(2\\pi)^{d}}\\int_{0}^{q_{\\text{max}}}dq\\,\\Omega_{d}q^{d-1}\\ln\\left(\\frac{2\\pi}{G(\\mathbf{q})}\\right),\n", "\\end{align}\n", "Note that $\\mathbf{1}=\\Delta\\mathbf{n}=\\frac{L}{2\\pi}\\Delta\\mathbf{q}$.\n", "In the equation above, $\\Omega_{d}$ is the solid angle in $d$-dimension:\n", "\\begin{equation}\n", "\\Omega_{d}=\\frac{2\\pi^{d/2}}{\\Gamma(d/2)},\n", "\\end{equation}\n", "and $q_{\\text{max}}$ is the cutoff wavevector. Typically $q_{\\text{max}}\\simeq\\pi/\\Delta x$,\n", "where $\\Delta x$ is the lattice size.\n", "\n", "## Spatial correlation\n", "\n", "The spatial correlation function is defined to be:\n", "\\begin{equation}\n", "C(\\mathbf{r},\\mathbf{r}')=\\left\\langle \\delta\\phi(\\mathbf{r})\\delta\\phi(\\mathbf{r}')\\right\\rangle _{s}.\n", "\\end{equation}\n", "This measures the correlation of the density field at $\\mathbf{r}$\n", "and $\\mathbf{r}'$. Substituting the definition of Fourier transform,\n", "we get:\n", "\\begin{equation}\n", "C(\\mathbf{r},\\mathbf{r}')=\\frac{1}{V}\\sum_{\\mathbf{q},\\mathbf{q}'}\\left\\langle \\delta\\phi_{\\mathbf{q}}\\delta\\phi_{\\mathbf{q}'}\\right\\rangle _{s}e^{i\\mathbf{q}\\cdot\\mathbf{r}}e^{i\\mathbf{q}'\\cdot\\mathbf{r}'}.\n", "\\end{equation}\n", "However, since we have translational symmetry, we must $C(\\mathbf{r},\\mathbf{r}')$\n", "only depends on $\\mathbf{r}-\\mathbf{r}'$, _i.e._, $C(\\mathbf{r},\\mathbf{r}')=C(\\mathbf{r}-\\mathbf{r}')$.\n", "Thus, $\\left\\langle \\delta\\phi_{\\mathbf{q}}\\delta\\phi_{\\mathbf{q}'}\\right\\rangle _{s}$\n", "must have the following form:\n", "\\begin{equation}\n", "\\left\\langle \\delta\\phi_{\\mathbf{q}}\\delta\\phi_{\\mathbf{q}'}\\right\\rangle _{s}=\\left\\langle |\\delta\\phi_{\\mathbf{q}}|^{2}\\right\\rangle _{s}\\delta_{\\mathbf{q},-\\mathbf{q}'}\n", "\\end{equation}\n", "so that\n", "\\begin{equation}\n", "C(\\mathbf{r}-\\mathbf{r}')=\\frac{1}{V}\\sum_{\\mathbf{q}}\\underbrace{\\left\\langle |\\delta\\phi_{\\mathbf{q}}|^{2}\\right\\rangle _{s}}_{S(\\mathbf{q})}e^{i\\mathbf{q}\\cdot(\\mathbf{r}-\\mathbf{r}')}\n", "\\end{equation}\n", "is a function of $\\mathbf{r}-\\mathbf{r}'$ only. $S(\\mathbf{q})=\\left\\langle |\\delta\\phi_{\\mathbf{q}}|^{2}\\right\\rangle _{s}$,\n", "which is the Fourier transform of $C(\\mathbf{r})$, is called the\n", "structure factor. \n", "\n", "For Gaussian statistics, the partition function can be written as:\n", "\\begin{equation}\n", "\\mathcal{Z}=\\left(\\prod_{\\mathbf{q}}\\int d\\delta\\phi_{\\mathbf{q}}\\right)e^{-\\frac{1}{2}\\sum_{\\mathbf{q}}G(\\mathbf{q})|\\delta\\phi_{\\mathbf{q}}|^{2}}\n", "\\end{equation}\n", "Now consider:\n", "\\begin{align}\n", "\\frac{1}{\\mathcal{Z}}\\frac{\\partial\\mathcal{Z}}{\\partial G(\\mathbf{q})} & =-\\frac{1}{2}\\left(\\prod_{\\mathbf{q}}\\int d\\delta\\phi_{\\mathbf{q}}\\right)|\\delta\\phi_{\\mathbf{q}}|^{2}\\frac{1}{\\mathcal{Z}}e^{-\\frac{1}{2}\\sum_{\\mathbf{q}}G(\\mathbf{q})|\\delta\\phi_{\\mathbf{q}}|^{2}}\\\\\n", " & =-\\frac{1}{2}\\left(\\prod_{\\mathbf{q}}\\int d\\delta\\phi_{\\mathbf{q}}\\right)|\\delta\\phi_{\\mathbf{q}}|^{2}P_{s}\\{\\delta\\phi_{\\mathbf{q}}\\}\\\\\n", " & =-\\frac{1}{2}\\left\\langle |\\delta\\phi_{\\mathbf{q}}|^{2}\\right\\rangle .\n", "\\end{align}\n", "Thus we obtain the formula for the structure factor from the partition\n", "function:\n", "\\begin{equation}\n", "S(\\mathbf{q})=\\left\\langle |\\delta\\phi_{\\mathbf{q}}|^{2}\\right\\rangle _{s}=-2\\frac{\\partial\\ln\\mathcal{Z}}{\\partial G(\\mathbf{q})}.\n", "\\end{equation}\n", "Using the expression for $\\ln\\mathcal{Z}$, we compute above, we can\n", "find:\n", "\\begin{align}\n", "S(\\mathbf{q}) & =\\frac{\\partial}{\\partial G(\\mathbf{q})}\\sum_{\\mathbf{q}'}\\ln\\left(\\frac{G(\\mathbf{q}')}{2\\pi}\\right)\\\\\n", " & =\\frac{1}{G(\\mathbf{q})}\\\\\n", " & =\\frac{T}{a+3b\\phi_{0}^{2}+\\kappa q^{2}}.\n", "\\end{align}\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Numerical simulation\n", "\n", "Let's consider $d=1$ system for now. The generalization to higher\n", "dimension is straightforward. The equation we are solving is:\n", "\\begin{equation}\n", "\\frac{\\partial\\phi}{\\partial t}=M\\frac{\\partial^{2}}{\\partial x^{2}}\\left(\\frac{\\delta\\mathcal{H}}{\\delta\\phi}\\right)+\\sqrt{2MT}\\frac{\\partial}{\\partial x}\\Lambda(x,t),\n", "\\end{equation}\n", "where $\\Lambda(x,t)$ is Gaussian white noise with mean and variance:\n", "\\begin{align}\n", "\\left\\langle \\Lambda(x,t)\\right\\rangle & =0\\\\\n", "\\left\\langle \\Lambda(x,t)\\Lambda(x',t')\\right\\rangle & =\\delta(x-x')\\delta(t-t').\n", "\\end{align}\n", "In computer simulations, the space $x$ is discretized into lattice\n", "with step size $\\Delta x$:\n", "\\begin{equation}\n", "x\\rightarrow i\\Delta x\\text{, where }i=0,1,2,\\dots N_{x}-1,\n", "\\end{equation}\n", "where $N_{x}$ is the total number of lattice sites. The system size\n", "is then $L=N_{x}\\Delta x$. Similarly, time is also discretized into:\n", "\\begin{equation}\n", "t\\rightarrow n\\Delta t\\text{, where }n=0,1,2,\\dots,N_{t}-1,\n", "\\end{equation}\n", "where $N_{t}$ is the total number of timesteps we are running the\n", "simulation for. Consequently, the density field and the noise current\n", "become:\n", "\\begin{align}\n", "\\phi(x,t) & \\rightarrow\\phi_{i}^{n}\\\\\n", "\\Lambda(x,t) & \\rightarrow\\Lambda_{i}^{n}\n", "\\end{align}\n", "Next we need to regularize the Dirac delta function:\n", "\\begin{align}\n", "\\delta(x-x') & \\rightarrow\\frac{\\delta_{i,i'}}{\\Delta x}\\\\\n", "\\delta(t-t') & \\rightarrow\\frac{\\delta_{n,n'}}{\\Delta t}.\n", "\\end{align}\n", "Thus we need to define a new noise:\n", "\\begin{equation}\n", "\\tilde{\\Lambda}_{i}^{n}=\\sqrt{\\Delta x\\Delta t}\\Lambda_{i}^{n},\n", "\\end{equation}\n", "so that the correlation for this new noise is just a Kronecker delta:\n", "\\begin{equation}\n", "\\left\\langle \\tilde{\\Lambda}_{i}^{n}\\tilde{\\Lambda}_{j}^{m}\\right\\rangle =\\delta_{mn}\\delta_{ij}.\n", "\\end{equation}\n", "\n", "Recall the Hamiltonian functional:\n", "\\begin{equation}\n", "\\mathcal{H}[\\phi]=\\int_{0}^{L}dx\\left\\{ f(\\phi)+\\frac{\\kappa}{2}\\left(\\frac{\\partial\\phi}{\\partial x}\\right)^{2}\\right\\} ,\n", "\\end{equation}\n", "where $f(\\phi)=\\frac{a}{2}\\phi^{2}+\\frac{b}{4}\\phi^{4}$. In discrete\n", "space, the gradient operator becomes:\n", "\\begin{equation}\n", "\\frac{\\partial\\phi}{\\partial x}\\rightarrow\\frac{\\phi_{i+1}-\\phi_{i-1}}{2\\Delta x}+\\mathcal{O}(\\Delta x^{2}).\n", "\\end{equation}\n", "Therefore, the Hamiltonian functional becomes:\n", "\\begin{align}\n", "\\mathcal{H}[\\phi] & \\rightarrow\\mathcal{H}\\{\\phi_{i}\\}\\\\\n", " & =\\sum_{i=1}^{N_{x}-1}\\Delta x\\left\\{ f(\\phi_{i})+\\frac{\\kappa}{2}\\left(\\frac{\\phi_{i+1}-\\phi_{i-1}}{2\\Delta x}\\right)^{2}\\right\\} \\\\\n", " & =\\sum_{i=1}^{N_{x}-1}\\Delta x\\left\\{ f(\\phi_{i})+\\frac{\\kappa}{8\\Delta x^{2}}\\left(\\phi_{i+1}^{2}-2\\phi_{i+1}\\phi_{i-1}+\\phi_{i-1}^{2}\\right)\\right\\} \n", "\\end{align}\n", "The functional derivative in discrete space is defined to be (for\n", "$d=1$):\n", "\\begin{align}\n", "\\frac{\\delta\\mathcal{H}}{\\delta\\phi} & \\rightarrow\\frac{1}{\\Delta x}\\frac{\\partial\\mathcal{H}}{\\partial\\phi_{i}}\\\\\n", " & =\\frac{\\partial}{\\partial\\phi_{i}}\\sum_{j=1}^{N_{x}-1}\\left\\{ f(\\phi_{j})+\\frac{\\kappa}{8\\Delta x^{2}}\\left(\\phi_{j+1}^{2}-2\\phi_{j+1}\\phi_{j-1}+\\phi_{j-1}^{2}\\right)\\right\\} \\\\\n", " & =\\sum_{j=1}^{N_{x}-1}\\left\\{ f'(\\phi_{j})\\delta_{ij}+\\frac{\\kappa}{8\\Delta x^{2}}\\left(2\\phi_{j+1}\\delta_{i,j+1}-2\\phi_{j+1}\\delta_{i,j-1}-2\\phi_{j-1}\\delta_{i,j+1}+2\\phi_{j-1}\\delta_{i,j-1}\\right)\\right\\} \\\\\n", " & =f'(\\phi_{i})+\\frac{\\kappa}{4\\Delta x^{2}}(\\phi_{i}-\\phi_{i+2}-\\phi_{i-2}+\\phi_{i})\\\\\n", " & =f'(\\phi_{i})-\\kappa\\left(\\frac{\\phi_{i+2}-2\\phi_{i}+\\phi_{i-2}}{4\\Delta x^{2}}\\right).\n", "\\end{align}\n", "Now if we recall the continuum version of functional derivative,\n", "\\begin{equation}\n", "\\frac{\\delta\\mathcal{H}}{\\delta\\phi}=f'(\\phi)-\\kappa\\frac{\\partial^{2}\\phi}{\\partial x^{2}},\n", "\\end{equation}\n", "the Laplacian operator should then be equal to:\n", "\\begin{equation}\n", "\\frac{\\partial^{2}\\phi}{\\partial x^{2}}\\rightarrow\\frac{\\phi_{i+2}-2\\phi_{i}+\\phi_{i-2}}{4\\Delta x^{2}}+\\mathcal{O}(\\Delta x).\n", "\\end{equation}\n", "Notice that the second derivative skips a lattice site, compared to\n", "the first derivative.\n", "\n", "Now putting everything together, the discretized dynamics has become:\n", "\\begin{align}\n", "\\phi_{i}^{n+1} & =\\phi_{i}^{n}+\\Delta t\\,\\frac{M}{\\Delta x}\n", "\\left(\\frac{\\partial\\mathcal{H}/\\partial\\phi_{i+2}^{n} - \\partial\\mathcal{H}/\\partial\\phi_{i}^{n}+\\partial\\mathcal{H}/\\partial\\phi_{i-2}^n}{4\\Delta x^2}\\right)\n", "\\ + \\sqrt{\\Delta t}\\sqrt{\\frac{2MT}{\\Delta x}}\\left(\\frac{\\tilde{\\Lambda}_{i+1}^{n}-\\tilde{\\Lambda}_{i-1}^{n}}{2\\Delta x}\\right)\n", "\\end{align}\n", "where $\\{\\tilde{\\Lambda}_{i}^{n}\\}$ are a set of independent Gaussian\n", "random variables with zero mean and unit variance. Taking the limit\n", "of continuous time, we can write the above equation as:\n", "\\begin{equation}\n", "\\frac{\\partial\\phi_{i}}{\\partial t}=-\\Gamma_{ij}\\frac{\\partial\\mathcal{H}}{\\partial\\phi_{j}^{n}}+g_{ij}\\tilde{\\Lambda}_{j},\n", "\\end{equation}\n", "where\n", "\\begin{align}\n", "\\Gamma_{ij} & =\\frac{M}{4\\Delta x^{3}}(2\\delta_{i,j}-\\delta_{i,j-2}-\\delta_{i,j+2})\\\\\n", "g_{ij} & =\\sqrt{\\frac{MT}{2\\Delta x^{3}}}(\\delta_{i,j-1}-\\delta_{i,j+1}).\n", "\\end{align}\n", "Now we can verify FDT\n", "\\begin{align}\n", "g_{ik}g_{jk} & =\\frac{MT}{2\\Delta x^{3}}(\\delta_{i,k-1}-\\delta_{i,k+1})(\\delta_{j,k-1}-\\delta_{j,k+1})\\\\\n", " & =\\frac{MT}{2\\Delta x^{3}}(\\delta_{i,j}+\\delta_{i,j}-\\delta_{i,j+2}-\\delta_{i,j-2})\\\\\n", " & =2\\Gamma_{ij}T,\n", "\\end{align}\n", "or $gg^{T}=g^{T}g=2\\Gamma T$.\n", "\n", "For $d=2$ dimension, the spatial coordinates are:\n", "\\begin{align}\n", "x & \\rightarrow i\\Delta x\\text{, where }i=0,1,2,\\dots,N_{x}-1\\\\\n", "y & \\rightarrow j\\Delta y\\text{, where }j=0,1,2,\\dots,N_{y}-1,\n", "\\end{align}\n", "The discretized Langevin equation is:\n", "\\begin{equation}\n", "\\phi_{ij}^{n+1}=\\phi_{ij}+\\Delta tM\\nabla^{2}\\mu_{ij}^{n}+\\sqrt{\\Delta t}\\sqrt{\\frac{2MT}{\\Delta x\\Delta y}}\\nabla\\cdot\\boldsymbol{\\Lambda}_{ij}^{n},\n", "\\end{equation}\n", "where the gradient and Laplacian operator are:\n", "\\begin{align}\n", "\\frac{\\partial\\phi_{ij}}{\\partial x} & =\\frac{\\phi_{i+1,j}-\\phi_{i-1,j}}{2\\Delta x}+\\mathcal{O}(\\Delta x^{2})\\\\\n", "\\frac{\\partial\\phi_{ij}}{\\partial y} & =\\frac{\\phi_{i,j+1}-\\phi_{i,j-1}}{2\\Delta y}+\\mathcal{O}(\\Delta y^{2})\\\\\n", "\\nabla^{2}\\phi_{ij} & =\\frac{\\phi_{i+2,j}-2\\phi_{ij}+\\phi_{i-2,j}}{4\\Delta x^{2}}+\\frac{\\phi_{i,j+2}-2\\phi_{ij}+\\phi_{i,j-2}}{4\\Delta y^{2}}+\\mathcal{O}(\\Delta x).\n", "\\end{align}\n", "In Numpy, $\\phi$ is represented as an array:\n", "\\begin{align}\n", "\\phi &=\n", "\\begin{pmatrix}\n", "\\phi_{00} & \\phi_{01} & \\ldots & \\phi_{0,N_y-1} \\\\\n", "\\phi_{10} & \\phi_{11} & & \\phi_{1,N_y-1} \\\\\n", "\\vdots & & \\ddots & \\vdots \\\\\n", "\\phi_{N_x-1,0} & \\phi_{N_x-1,1} & \\ldots & \\phi_{N_x-1,N_y-1} \\\\\n", "\\end{pmatrix} \\downarrow x\\text{-direction} \\\\\n", "&\\quad\\quad\\quad\\quad\\quad\\longrightarrow y\\text{-direction}\n", "\\end{align}\n", "Notice that the $x$ and the $y$ axis are transposed." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "dx = 0.25 # lattice step size dx = dy\n", "dt = 0.001 # time discretization\n", "Nx, Ny = 256, 256 # system size Lx = Nx.dx and Ly = Ny.dy\n", "Nt = 100000 # total number of timesteps\n", "\n", "M = 1.0\n", "a, b, kappa = 0.5, 1.0, 1.0\n", "T = 0.1\n", "phi0 = 0.5\n", "\n", "# array of cartesian coordinates (needed for plotting)\n", "x = np.arange(0, Nx)*dx\n", "y = np.arange(0, Ny)*dx\n", "y, x = np.meshgrid(y, x) \n", "\n", "# method to calculate the laplacian\n", "def laplacian(phi):\n", " # axis=0 --> roll along x-direction\n", " # axis=1 --> roll along y-direction\n", " laplacianphi = (np.roll(phi,+2,axis=0) - 2.0*phi + np.roll(phi,-2,axis=0))/(4*dx*dx) \\\n", " + (np.roll(phi,+2,axis=1) - 2.0*phi + np.roll(phi,-2,axis=1))/(4*dx*dx)\n", " return laplacianphi\n", "\n", "# method to calculate the gradient\n", "def diff_x(phi):\n", " diff_x_phi = (np.roll(phi,+1,axis=0) - np.roll(phi,-1,axis=0))/(2*dx) \n", " return diff_x_phi\n", "\n", "def diff_y(phi):\n", " diff_y_phi = (np.roll(phi,+1,axis=1) - np.roll(phi,-1,axis=1))/(2*dx) \n", " return diff_y_phi\n", "\n", "# update phi\n", "def update(phi):\n", " # calculate noise: create an Nx by Ny matrix of random numberes\n", " Lambda_x = np.random.normal(0, 1, size=(Nx, Ny)) \n", " Lambda_y = np.random.normal(0, 1, size=(Nx, Ny))\n", "\n", " # calculate mu\n", " mu = a*phi + b*phi*phi*phi - kappa*laplacian(phi)\n", " divLambda = diff_x(Lambda_x) + diff_y(Lambda_y)\n", "\n", " # update phi\n", " phi = phi + dt*M*laplacian(mu) + np.sqrt(2*M*T*dt/dx**2)*divLambda\n", " \n", " return phi\n", "\n", "# plot phi\n", "def plot(phi):\n", " # initialize figure and movie objects\n", " fig, ax = plt.subplots(figsize=(6,6)) \n", "\n", " ax.set_title('$\\phi(\\mathbf{r})$', fontsize=14)\n", " ax.set_aspect('equal')\n", " ax.set_xlabel('$x$', fontsize=14)\n", " ax.set_ylabel('$y$', fontsize=14)\n", " ax.set_xlim(0, Nx*dx)\n", " ax.set_ylim(0, Ny*dx)\n", " ax.tick_params(axis='both', which='major', labelsize=12)\n", "\n", " colormap = ax.pcolormesh(x, y, phi, shading='auto', vmin = -1, vmax = 1)\n", " colorbar = plt.colorbar(colormap)\n", " colorbar.ax.tick_params(labelsize=12)\n", "\n", " plt.show()\n", " \n", "# plot A(t)\n", "def plot_A(dt, A):\n", " Nt = len(A)\n", " t = np.arange(0, Nt, 1)*dt\n", "\n", " fig, ax = plt.subplots(figsize=(6,4)) \n", "\n", " ax.set_title('global average of $\\delta\\phi^2$', fontsize=14)\n", " ax.set_xlabel('$t$', fontsize=14)\n", " ax.set_ylabel('$A(t)$', fontsize=14)\n", " ax.tick_params(axis='both', which='major', labelsize=12)\n", "\n", " ax.plot(t, A)\n", "\n", " plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In simulation it might be useful to track some macroscopic quantity to check whether the simulation has reached a steady state or not.\n", "For instance, we may track the global fluctuations squared:\n", "\\begin{equation}\n", "A(t) = \\frac{1}{V}\\int_V\\delta\\phi(\\mathbf{r},t)^2\\,d\\mathbf{r}.\n", "\\end{equation}" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "t = 0.0\n", "t = 10.0\n", "t = 20.0\n", "t = 30.0\n", "t = 40.0\n", "t = 50.0\n", "t = 60.0\n", "t = 70.0\n", "t = 80.0\n", "t = 90.0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAFiCAYAAADY5Y7eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9dXhU1764/+6xTGTi7k4SAkmAACEEd9fiFLeW0gLVU29PvdCW4sXd3R2KBEIgCSFuxN2Tydj+/TE9vb33d7Sn93tve+d9nv1kZu291qzZ2bM+a62PCaIoYsKECRMmTPyrSP6nO2DChAkTJn6fmASICRMmTJj4VZgEiAkTJkyY+FWYBIgJEyZMmPhVmASICRMmTJj4VZgEiAkTJkyY+FWYBIgJEyZMmPhVmASICRMmTPwvQxCEFwVBSBAEoU0QhO3/4NpXBEEoEwShXhCErYIgmP3inL0gCMcEQWgWBKFAEISpv2U/TQLEhAkTJv73UQJ8DGz9excJgjAYeAPoD/gC/sAHv7hkLaABXIBpwHpBENr/Vp0UTJ7oJkyYMPG/E0EQPgY8RVGc9TfO7wXyRVF866f3/YE9oii6CoJgCdQC4aIoZv50fhdQLIriG79F/0wrEBMmTJj4/dIeSPrF+yTARRAEByAY0P9FePzi/G+2ApH9Vg2ZMGHCxP8FBve1FKtr9L+6/sPktlRA/YuiTaIobvqVzVkB9b94/5fXqr9y7i/nVb/ys/5/mASICRMmTPwLVNXoib/g+avry91y1KIodvmNutMEWP/i/V9eN/6Vc3853/gbfbZpC8uECRMm/jVE9KLhVx+/MalAxC/eRwDloihWA5mATBCEoP9yPvW3+nCTADFhwoSJ/2UIgiATBEEJSAGpIAhKQRD+2o7RTmCuIAhhgiDYAW8D2wFEUWwGjgIfCoJgKQhCLDAa2PVb9dMkQEyYMGHiX0AEDIi/+vgneRtoxWiiO/2n128LguAtCEKTIAjeAKIonge+AK4BBT8d7/2inSWAOVAB7AMWi6L4m61ATGa8JkyYMPEv0CnCTLx13vVX17dyf/bwN9SB/I9iUqKbMGHCxL+AiIjeNPEGTALEhAkTJv5l/oWtqD80Jh2ICRMmTJj4VZhWICZMmDDxLyACetMKBDAJEBMmTJj4lzFtYRkxCRATJkyY+BcQwaRE/wmTDsTE7xJBEB4KgrDir5TbCYJQLghCwD/RxmFBEJb/9/TQhIk/PiYBYuJ3x08eue2Bx3/l9FvAWVEUc/6Jpj7A6Jxl8xt2z8T/AQz/xvFHwiRATPweCQHM+C8CRBAEC2AesOXvVRYEQQEgimIKkIvR09eEiX8KERH9v3H8kTAJEBO/GwRB6CgIwiUg4aeiTEEQ3v3FJcMwTvJu/6JOviAIoiAIuwRB+FoQhCog/hd1TgJT/rv7buIPhAj6f+P4I2FSopv4XSAIgh9wE/gOY1wfe+A08L0gCHdEUbwMxAEPxb8en+e5n/5mYgxz/RfuY9zGMhdFsfW/7QuY+MNgjIVlAkwrEBO/H9Zh1G28C3gCd0VRXAsUYhQcAD5A6d9pI1oUxQ5An1+UlQBywP0377EJE39wTCsQE//rEQTBCRgI9BMEQcCY0+Crn07rAM1Pr82B8r/RzDVRFJMBRFH8ZTq5v6w6zH/TTpv4AyOgR/if7sT/CkwCxMTvge4Y8yI8AvwBG+DxT3mfvfkPnUcVYPc32ij7G+X2P/2t/G26auKPjggY/mC6jF+LaQvLxO8Bs5/+KoBIoFoUxUJgPsYtqJs/nX8EhP2LbYcDJaIo/q2ViwkT/z/0P61Cfs3xR8K0AjHxeyAe41bVe4AAZAmCMA9j0p2RovhzntALwOeCIDj8lNLznyEOOP9bd9jEHxdjLKw/liD4tZgEiIn/9YiiWCgIwmzgc4zKbj3GVcl4URSv/eK6FEEQ7gOTgbX/qN2fUoaOBQb/t3TchIk/OKYtLBO/C0RR3C2KogdGXcZ0URQ7iaJ44a9c+gHwkiAI0p/q+YqiKIiiOOuvXDsXiBdF8d5/W8dN/CExiMKvPv5ImFYgJn43CILgCLgCKX/rGlEUzwuCsBajqW/BP2hSCyz97Xpo4v8Cpi2s/8AkQEz8nuiA0WQ34+9dJIrid/9MY6IobvotOmXi/xYiAnrT5g1gEiAmfkf8pO8w+4cXmjBh4v8JJgFiwoQJE/8ifzRdxq/FJEBMmDBh4l/ApAP5D373AkRqbSkqXawRAalExEyiw1fRRFaWPW12UkQpIBURNAIIIPkp6IWbSw3FLbbYKVswE3TIBD2FzfbYmbfQopOjlOrwljeTUuuEg6oJEfCQtZLTZo1eFDCXapEJBqylrVTprGjUKLGQGxtvbjHD0lxDa70ZcmsN+hoFBhs9kjopoR6VlOnNkGGgRmuBpllBkH0Z+W0OWMnaqK21wsGuETeZmvRWO3QGCTKJMfKGoV6OQWVAbJNgZ92MFANuMjXZbdY4ypvQilIAVJI2KnQqpIIBD1kr+RorzKVaLCVqanWWeMlbSGuxw9O8lvxmBwCENglmVhrUGhmSFgkSHVg4t+Iia0ApSHimtcRa2kqrQUGV2hI383pkggG5oCe33hkL8zY0eilBFtXIkJDVZkyx4WtWS5HGhqY2M/ysKqnUWhvvv7ye7GYnwq2qSWl0JNCqgrxWR2wUrbQZZEgFAz7yZgq1FjRqzZBLDSgkeqSCgdpWY9SRdlYVtIhyGvVKFBIdAlBeb0OYfTmtokCTQYlBlKAVJTjKmtCLEtpEGbVaC5wUTRTV26OybKVVJyfUohaAAq0VAHJBj720GQNQprHFVVFHrd6SZp0CH7MasqpdsbVtxlPWQqlOSYNOiUYrxcuylga9Oc06BaHmtTzTWuIka6SwzeggH6ysJ6XGCQ/bGsrK7ZHaaTFUyXF0q6O8xhZ5i4jO0YDBIGBlZnyeWrRyRLUUT7tqSiocsHFswkKiwUaio0xnjrtMDRgHtgKNFQYEWjQKPCzqKGq2xc+qirw6Z1ys6ylvtsbGvJX6RgvC7MtJq3bB0baBmkprwlwrSS13or1LJSl1TjipGgCobFLhb11JXpUz7g41VOfa4BpQQ36jI4JExF7ZQk2dFUEO5WQ2OeFpWUerQYFC0GItbUOBlLQWO6wVatxlLQgI5GuM99lD0UCu2h6ZYMBB3kS5xhp7eTP1OnMCzRp+/p2nVjjRzrmcgjZb2vQyBEEEEXRtMjrYVZLeaovOIIUWCR4ONQAU19gjsdCh10jxtakiv84JTWFRlSiKTv/eqCOgF006EPgDCBC5sy1h3z2PXpRgo2zF26qObd63GDZ4ErkT7dHYGUClxazADL1SxOqZcebw5rK9vP1oNOPbPSZQWY6TrJGX705ifPhjkmrdCbKu5Hv3+/gfWciMXj+iFaV84pzM+JyBNGjM6GhXgp2shcGqFLZV9eRaQRCRbiUAxKcEEB2eS+rpYNwGFlK3z4uWoQ1YnlZx/88b+KomAHtZE/uKoylI8OTElC+ZlTGdHk55HD8Wy9Tx13jbMZ3Y5HHUNFngqGoGoOm0K+rejejyrBg/4C5W0jbedkxndNZg5nncokxrgx4J/S0y+L6yL9ayVj5yfsLsZ3F0UBXRwyKLQ7Vd+do1kehHE/ky9DDz42cCIBRY0K57HmnFrlgkmmNeLRKxJJnlLpcIkVuyrCSaAbapPGn1ZOuTGP4UdQ4HWRPusjomnnmRzhG55NfbcTFiB3YSC0ZmDgFgS8BhVhQN506WP1vjNrO2rD8Af3I/y5j4RdzvuYuAK7PZ32stM5JnM8QrjbxmR+wUzazziOeV0s7cKg3AzaoBD4t6rOVqjqZGAHCy1xoS21y50RCCr7IauaBj1bkRXJu0mqdaOTeaQ2jRm1GpsWK244/UGczJ1zhxuLQT8zx/5M2zk+kd84TkKnfuRx0CYFFRDAAuZg1Msb2PWpTyadFw3vQ8w5G6Ltyr9mVz0D6GblvO6FF3+MwliY+rQrhc3o6iCju+7naQC3XhJFR4cy/yMMtKopnneJOVuRMAuBByhsB9i/h45AG+XD0Z2/FFtGzz4Pm3T/Hd/lG4JOiomtdMa7OC2IBcDAgklniizbLmi/E7+WDNTIbOuU2URQEjLCv4sjqSdx3TADBgYH5hHC06Mx4WevLnTid48/5Ytsb+wPQTL7Bs0DlWPxjAsPZPuHC1E9emriZ6x3LmjL7E/g0Duf/WeiK+Wsz9levxP7GAhXFXAdgY34ed/dcxY+sy3p2+nx2ThvD6kf3MuTEHuYWWySEPOXCiF0dnfcngWy/wWdcjJLd442dWyUDLHDykKro9msAgj3TedXqMXJAxtzAWgE/dLzAlYwr2ylZmut7h67yBTPO8z+mKjpwI+g8r7fDvFnPlxa9ZkD+KrGpHlHIdogiVuQ7cH7+RuJSxVDVaIiSp+GDGXgDe3TcVy87V1BTZsGnQZmadXkj+0pX/yDLvH2KMxmsSIPAHECDhltUE2lXRpDVDIogMsEtlYu4AOu9KRVvtS06hC7mDtvJORThz7e/iITXOXu+3SZjf/ja3qgN5VOtJXqUD5qlKrtoFkdDpIACf1wSSO34jKZpWzjZ1YEZBb44EXML/wlzmet1mR3EMe472RRvUSnbf7bSKbQCY+5lxqsWC7wcpuRByhrnzY6lSW/HJ+5uZlj+M773PYiex4M/3nXg0bTXWEhXPeTykk3k+BYPtGaB6QpZWTX2LkvWd9jDnwnwADiz/ji+Kh6Jw13F1TQzVfdqw6dJCZqUTxc52fP14AFm9d3CoyYMqjSVlamt2mZfhqaxluV0eHeJnotVK+do1keoqFWU6W2yuWQDQ6AM1agssE8yZOvcSmxLjSKp0Z2jSMl6NPc+ppAiiYgvYebQ/708+wOHyLtibNXPtaQh9u6Ry81YHRJlI56oXmRyRwMtelwDoveVVTs7+kgOWXZib+DwW56x58OF6gnavoGNMDnsa7XFxbODdZ6PR3rTnk1eSCf9uMU9eWk/ciwtgYSWyg/ZkBziQ16Eee6sWBrUzDpj9bi0lu+92dpXZ84HLj3S9swCJDqJvL2RG6H0qNSq+dX/A1gYXlIKO7eU9ST4WSuS4p5TpbJjQ+x6Paj1Ra+QEXp2F3TVzBi41htXafb0ne52imdPhDjVve/PtZwP51OMcj+s88ZWpMIQ085lLEv4n53Nh6Gr2HOtL9vz1tIptPGmt4/vI+5xvVRBjnc3oK0sZ0tFoeTw6azBT+v/IWxcn4je+iCthpwjusBhLSRvn537B5MyVJHbdycdVERw42QurqGpGB6RwVhbG+09H0hCqx1HeyJv3xxIWt45DOVE8Z2NMjzLl65VIB1UTYFuNtsGMT9KHICkyZ/aOpTh2rWRrdgw+B6UUvGqPeYXAtvpQQnrmkljnw/wlpwjZupiLL39BVMI8gl9MYO+RaAAEuZ5380ejM4fJVrXs+6aGPkpjMKiOHiWcyO9A+rz1TMsfwQ8xO1hwfwaTQhLxVRjDiy0rieZUx+38ubwvn1Z3AOBaejsAVhhkFJQ74OhTyPJjMwmOLmBjThzVpdYElTxPiFs5zuaNNPvriL6+hOx+2wl4uBBtpYRXpx8hJKyEB20i/tbVlFbasPr5HTxp9TTe61F3CFBWMLdTMRIk5EzYiNRktP2bIvz11Am/H5QBHmLHtc/zWcgR1hQP4FGWN7RJsXgmpcfYJK7d6MhrI07wze4xzJxyic0XBgAQ0TWHjHOBtB+WSZXagu+CDjB53Qo+m7+NjDY3Uho9qVBbkZbnzr0B3xJzbSnne6/h3aJR2CmaqWxTYSHVkNdozzsBp1lwZTbv9ToBwIbcXlSU2mJp34LjRgvqA+RMX3KeK7388LvQRN5QFdbHRe6l+fNyzGVOlnbgStgp3iiP4DOXJAC+qglgS3oMmhJLunbOAiBUVUqURQEJzX5cKw/iw8AT9FGKXGmV8kLiVNJjdzEtvw+ZtU5UldrwYdxxVmf2p7HRnEM9NhCpULKq1o+NJ4bw7vgDHCyLpl6jBMDNopHsOgfM5VrkEj3lVz35fM42ll6YSWynDO7dCmXVuJ3oRYE1Bf2QCCJDXVOZbZNKQps1DQZz1AY501Q1PF/Qix0+xvBUm+vdmG9TytjsQUx1jWeiVT3F+kY8pCo+rAplrt19EttcqNSpmGNdTo6uiT110RSp7biUFIYgE3mt+3m+uDmMS0NX83LuBE4FGyOPNBhauaW2435zAJlNLjwq9sBntcCUbef58MZockdu5rXyKD5wvsc3NR0IVpYy3rKRtyo6Mtf+DiPuLyKtx27iUsailGn5MuAwxTpbAJbemsaLXa9yqzqI9Apn3G3rKayyQ6HQMcwvjco2K26kBTOgfRpPqt14JeAy3+X1w9WykZ1+Z+j6zcv4j8glziGb/fmdiXAqBiDWJpsDJV0Isq7kWkEQ+qfWOD3SUxklZcDQh9ze2RnZ4CqszdS86neBlw7NZfqw6+w71ocug56SUOxFpFsJD+4F8/2YrWws7sOxwIs/3+sgszK2lcf9fP+Drs8iq892ot9dzIa3v2XS7QV8330vS+9PIav3DvwvzmFNz71Em1VRoDPjRnMInooartaFEmJpjIxfprHlC5dH9FqyAL/X07nzYxj2YVXUPnFE56rBybGBprtOqJ0MiFIRVDoCPCtoZ1PB9+736ZL4HF+FHaLZYMYg8ybeKO/Ko2rjIO9hVU8X6wK+vTmIzYO20GhQsr6wDxdCznClVcoTtRd3agN4zfMcnRUK5hbG4qBoIaXOjdITPkj615DY+QDf1vpysTIUgyjQyzEbgB3H+qNx0SGoJYhmBmI6ZrE/ZvNDURS7/DtjTruOSnH9SZ9fXb+/X+a/3Yf/LfzuBYiZv6fo+eJyOnXPorLVkmepbmQ/t5FdjY5crGnPDp9rvF0RiZ9ZJd887YfK3LhKeM7nIf6KCsZYNlNraGFtTSeiLPI5XBXN7Xw/MnvtBMDv9Hwk5jqmdnjAjYpAboYfJ+L+FBoqrPA+DTEf3OfqdzH8+e0fKNYaA7uqRTkDLTO41eJPuc6admalvJU0llNdN5CuceSdtNHEueXypM4VT8t6Hpxtz44533GjOQS5oMdTUY1C0HOhLpzv3e8TvGsRAAYZRHfPJD7Dj4Vdb3ChNIxGjRn1jeZk9trJ8wW9cDRrQiqI3K3wxSAKDHV/io9ZFccroihrVlF724Wni9fT68kYJIJIcaVxb97Coo2WLBteGX6aZ20OvO50l5cKhyJBJL7Ihw2dd+Mla+Tl3Ak4mzfS0aqY788MQe7fhERiQN2ioJ1nOelJ3mwYsQWNaFzcfpgxgup0R8b1i+fY5W4sHHqJ3FZHkqo9cDRvZpXfEe61ejNNVcNDjYbOCgXvVITTJso5drkbUp9mbE9bopxRyniPR+z9ZBi2c58BkJ7lwd2hq+m/8VVSl6wncP8iQjvl8+y4H7dWrqLbvfmk9dhNyNbFXHn+C3rfXIpMocfHoYbsFE9yJm6kyaDmWLMnelFCgKICd5kx19S+ui6cLgpne/sdjLyzhK4+BQxzSGZDfm/eDzxJf3M9n1YH86ZDJvfadLhLWxmXPJehnk85mNGJWWH3+OFaX66N+Yq+x1ayf9T3AEy6sIRlcZdYc34IBnMDWOjpFpTH48vtmDnuCofX9qc+rhXRIODvXskUjwdU6lTcqQ4gJc8DX48q4pxz2JXYnb5h6dy43YGgKOP9UEp1JBd48HzEPW5X+fOV/2FGX3iJmA5ZJJ0O5eriLxn85as8emM9t9UG3sgaj0KqY47XbTYW9OJV/4u8lTIGd5t6rOQakuMDjO0GNHCq80YGHHmV7EkbCLk9g9mhd7leGcyBoCOU6/UcbYzkdftsFhXFcP18JB9N3oseCR+lDCOh+1baX16MVG4g3LOEhR7XKdEan7vPHg9mUkgiY2wTmflwNupiK3ImbGRFWSce13iQX+KIVKHHwlzD9IAHDFWlsL6yDxZSLVmNTgx2SuVGTTu62+byrM2eOFUG72wybsumvLL+P40VqdoWOnoX/9uDd3AHc3HtSd9fXX+Qf/ofRoD87rewMICkTSClzA1H6yZkjRKGZgwjs9CFnT23kKppQyVVM9+mFK/IQyw9MgeASR2SGbjpNVa2a8U8xZzY8Y+5Xe3PtsCDvCsZxPDMoeRWOWBWJsM9ppyLq3vS++V4/C/NQa7UMTjyCURCk94Mrzk5LLk/DQtzzc/dumDfnuJt/jR5CyjqYeD0BN4uHEWkzTNc/yRwvX8XFA0w5a0LyEbocZep2bVlEIsXnORgeVd62OUQZlHCgGlzEIcb25Q3CdS0mRMdnM/GW/1QOLQy2D+dFIUbjzVqettlYC9tYldZD2Z632OgZSa+MhULinrwKNOHJd2usbdrF0J+WMy8cRcJNy/kM4YCUJDnTL9eKXyX2hcn6yZWaqwIsyqlUa/kVNezBMmt6Jc6lQj7Yla7PSQuZSxZ0zcAsKbOm6nWaciRYB1szvDMoXzjZ9Qp9HDNI8jvHtdqQrg06Ut8ZSogh0ViDO7KOgJkVqRLWwDorFBwqMkGb7NqJqhy+GDqPWISnmfwilvsvRTH2lprlBPrKC9wBeCLPgfpdXsJq2dtI/DgQp7rd4cz+e25vXI1Xe4sIMi5kg31HmicdFxv8cHdqY5WrZysZ64M6fGYxxo1466+gKVdK+YnranqrWVj3A4ADudFsidyK8POvsKgzincPhJJu2nlVMa7QiAsKe7GGy6Xea28Fx853ydZo6SfRxYfOT/hUFYUEsHApF53eb1wNKIEos3kAAQFlzBWlcLW4qFcX/4N49Mm425eR0HXCup15mis4VjseiZvXs6W3vvoe3wlORM2Ep7ZlWHhT+hpncUIi1JueQawzvM6x0Y8pVKnAiC1yYNJHR6y1P4hJ9b1Ye2cflgUyNgz8jrDd5jj/KIVhn51BF6bxZB2TylLdqFv72TeezCKQe3SeKp2Z2LAI/amd2F6yAMeWfkCYGvRypqq3sgaBVK1LXRwK6WszYaFnjeYnTeK9ApndDopJ2064m9TjSy8ngEWpYxKncb04Af0eTyNt7udIbPVlT7Wafw5eziHwnYZn4+Y9bxTOJppWXPRNCvInbCRakMzjvImvgg8QqGPHcMt6hn4dDwr7XO40qrCQd7MWJuH3FCE0GaQs87nNEOSZlJRYou0i4hZb2MczVW1fvS2zGBF1kR6OOVxNCsC+GUG5H9n2DFZYcEfQIB0sKmi08DHbPC8S6q2hfn6GZxrd5Y1Lt58XDCCnHgf3hl7iFdKO3MytSOYGVdc09Kn83TxekI3L+aNOQc4XRXJV/6H+bCsPwnlXlgqNGiKLZGHNGFAoKqziNYgwdmpAQ9VPfVac7JqHdndYRuH6zsTZVPI247pAMwtjKWPbQZ1r6az1PYZ/VJHMd3hDlsqe7E7qytDd6RR8qwd6jt2DDHX8NUb7Xj3M3AYVswXd4egsNKw2P0q5+s7EvtNPGX7egHQEqTFx6qWhO0RtJtYQKtOzii7RE7dncdjL2/mWJdzqVWGziAhziKbNVW9CTEvRSHR4eZRw7r7fbB2aCZhzmo67XoF0acVBOP9kFpo8TOvZmDEU45VdOJaWgiJ9p4sDb6Ot8yMyAeTeRy9n9fKoxifM5ARHin4n5rPt/33kFDvy/Xqdjy9GsiwkfGUN6kIkhutbM7nhXJRCMHwxJrbk33wVdWwps6bOwciSV6xnq0NLnwcPxx1j0PU6KxIb3XjYbUXOw3dqbzvikUZnKIXUjcQ0qyQFYH1CKPF1NuHpqJz13CrsR0q/zrOF4byQ8ROIq4uZkx4EufzQrkiC0XSKiGhyY/vgvdzozkE+8AmPngwgqsXOjF5xG1S693wfzGD3CZH1hX3A+Bx9H6eLxhC7uhNNBhasV52l1MtFng/dwQHqVHBH35vIQN9Mmh/YCl6ax3r++5kT6M9ZFhx0S6UOV63OZbdEYlGIODybOMDW6sgw8eOZk8RORKczJv52jWRsOPdeNBLw6qFmxl94wVsutXQ5+oy+nZ7QsT9KfT0zOPMo46cVYTzWaIZDaE6+m59kenvnOH7lD4ADAlI41Z5AAvsb9PQu4UxDg8ZOecRZ1qURJwpJlXbgp1lC0ld99EjaTxdY9PJrnfEz62KC+lhiAYBG7tmvNbKuGjfi+ASY66t7EkuRA6/xUnzrqhFGVnVjhyKvsz4nIHoDBJivfJo1Cq5lxrAgG4Z3GnyZ2b2OGKc8+lqkcObUZlsbXBhoPUTFj+YhkQq4io1Ph+xRxfyzuBjJOZ54eDUwOxncdy62x6c1exN6o+mczOXA9J5VuLAeX8Fd5uCuFzaDqVEy+bEnhzotZE5uWPo75FJs4sZlW1WyCTG4MzR5nlMPvQSA/s8Qi7okct+mUfs12M04zUp0eEPEEwxT6Pi4oMOhK9ZzJ2WAGqbzemXOoptOTGs9L7Awcmr2V4YQ3ajE2KjnMAORQR2KKJBreSdinAMIc28fXMco50e4SQxEGOdg49NLWfa70W01fJOxBlqzrtzZNS3JFR5ozvhhKd5He1VJaxvvweVxMAztT1vO6azpLgbS4q7kdPgyAxVFauvD2FNnTdFDz2Ycmc+Dys9aXmm4na5H27WDUh71LK9wZkmLwVznG5RlOCB3FKLlUUb771iVJzvetSdiFFpRIxKA63ApcftaQgUyXjihblMy5KEaZwdtYpxVgWU6ZsYaK5jf+BJyvRWHHscxXybUi7lhDDWMwlBZqAp25bOtxdgH1HJvI4/YqhUYqhUMjosmd3H+3KgLJqMw8EMC0+hVa1gT1FX1tYF8zh6PwBxqgz+7H2cH5J7cmjwWur0FjRolez1P0vq/LV87ZqIg0UzK8o6saKsE/NDb6PJVSHtUI8BCf4X5jLbOhPVwHI+rgqhn0U2cqWOtxLHopKq+do1kQ3Be/kk6Bju3Ytp8haJmPEEr5hCJOENNA5opjnDluYMW27N/JK9fTbysMaL+lpL1An2zHgwh/EdHnM0sRPjApJo0JgRHZ3FRy63UQp6elhk8f758Uzr8IA1UzZjEAVKdvrz6L1OZFY6scTjKks8rhK4fxH2imaCdy0i8uKLfFodzLLz06nSqdhQ0ZetDS7wwIYzWe1p16kAQSryxpq5fLVmEhoHPR3tSuhoVoydZSvZUzbwcpcrvNzlCiNiExloriOuRyrvlMeywfcUUQmTUPu38YbfOfZWxrA1bht1FSqWdLmBn3k1CrmOx99HMDgiFZplXFz5Je3aFeP1QjZf3hlCD588evjkcSq5I7LvHBmXNA+xxJwtpb34KHMEVxvCOHg9BgUGfKyMwtfJoompzvdo08uY6XmPeZG3Mbdq4+3Qs1RGKXnrq+1kzjInc5Y50d0yadQrsQyuQ22Q4WbdgP/FuTzK8aZRY8ajSg+y6xyQW7cx3TYeRZ6SWR63OZISyYI7xu2kL58MpKdSjfyJJemxu5hbGMvcwlie73uTG3Xt8HWrQiHVs837FkGRz3ir8zn2v/A1TofM6WmdhaiVMMRcw/EdvWhoVZLd4sRzHR/yVu5YomwLkWLgVHJHpjrdRWWmRmWmRi7oGNjnEV+43eBEfgcudTFFrvmt+d0LED9FI4paKcufP8r67F6MDUzmeOgBAN7NGs3ruePZELSPT3yP0btzGrGOucQ65uJk2YSHmfHHtDz2IpOtanGWWlHQ5kjSE1/W1kYYpxqAOrqZqQnzqIx3pba9gZecr7Hlfk+izeR8W9ULP/MqPq0OZp1HPOs84im76869Nh0SGw2TVE/RqfRMC3+A7oIjY+Ie8LL/FXo5ZtPy1I5MtSvtFj81fpAAs8LuMcf/DjWzmjhXEAZNUu4mBnM3MZi4iAy6t89B1iKQO34jtgo1N3qsY/jx5VhLzBmRNIfPawLJ0IqsLhyEokRByI8z0LbIGapKYUvP7Xh2LMXqmiV+NjXU6yzAVgO2Go7Fd+HunK+Z6hpPQ0cNaXUuONs2UtGoYrldHh9WhQKw7Mcp3GoJxMqqlXfzRzPYIp+kJ74sK+5FxLcvcEsNzuZNnM8L5XxeKFszYhjV/z69vHJY+/EEcgdv4fOqLuwL24GjvJEDDVF09S6gp28O8Y3+PF/Qi6XZk5h1eiHlDSoMcriRHkR2risbovbQ0aMEZaWAslKg+9lXmL9uKdEOz7BQqRk6Op6JwY/4wuURecN+YM/tHhTX2TDd5Q47GwJZVT6QKXeMgtlG1sK7780jp9mJ+iC4vmkzvb1z+DR3GJ/mDqNz1yw6WBaROWMDg8KfEmWRz97h67hdE8AKl0scKu1M1KinnIlZR3+ndHIHb6HDpKfozUCUikRYFrKrtgd195xJ1zaz1PYZS22fYSlr41CTDTcSQulgWcTyosF8H74PMysNLyZM5e6lcN7NHk2PsGzW3uvL247paK44IplSycVH4Yzu9pBu517hh8ADlH4dgFSpI/FgOIkHw3F1q2PeqiPU11rQu2cKh/wvcy/yMF+7JvL58L0Eya1Ir3HmjfIIUpJ92V7Wk/oWJZ+mDKFFr8DmiIo3j0xHL4eX98zFNkWKbYqUmjZzVj8ewJfhh9lVFcty74s8HLCGZdFXGOGeQrhDGXvDtxHhWcJLuc8xetQd1hX04eUuV9gZu4VJuf250HU9kXdno+vQzNzCWLZ43WaL120ul7Vjm/ct3vc/xcH2O2gwtKIzSLhQFU57uQUVnSW892gk0noZZfomHIcVMTUwgWDLcg4mdWGASzrbb/TCQqrh7R6n+aZwIM0aM5o1ZnQ1k2Am0WElUfI4ej9ZP/n4/PsY/UB+7fFPfYIg2AuCcEwQhGZBEAoEQZj6N67bIAhC0y+ONkEQGn9x/rogCOpfnP+7ceT+VX73SnRloIcY8PV8bC1aiXAo5uE3nZDPLKOzQyESQWS+wy2utwSzJbcHFhttKe5rdLZbPXInX+QMprTKhqtxa/CWqQi5PYP0WOPe7C012EtbqNFbEKVQYyVR4n9xDoPC0kiududUh538qWQA6fXO1LWY837YKT7LMuoTKipsQBCRlZjh07WQ3GIncgZso0vic0gFA1N9E9iV15WETgcJvTMdF5tGAqyr8DGvoUmv5ExuGE7WTTzLdMHWu54BnpkA3K/y5lm6Kw7+NYz0ekJBqz3XM4IBsLNvpqnVjG6eBdRpzNkfeJIVJb14XOXJxQ57mJs/nCadgpIGa+qrrEAU6Buexv3DHQFYMfcIX+wZj0PPMmKc8zn0oAvhwYVMdrvP+4kj0bfJGNvxEU/rXdkYcIB3ioeT12hPUaEjoyMf4WpWz5mScG6GHyf60US++UmIG5BwoymEPUf7krZgPZ9WB+Mmr+NcVQceFngxpN1Thtom015RSZbWjoHmOsLuTCfCrYSE28FkTd/AM10je+o7462oIsSsjI0VfQCY4XiHXVU9uL83gnYTMom0KWTznd64etdQk+CMQSEyafCPBJuXMUNVxYqyTky1v8fmit7Md77BK5nPUZzugsqnnpZWBe1cK5jlYTTjvdMYxFLHGzz3/qvsfO9rhl5cRt7wH5iYO4Dxzg8JkFeQo3Xm/aQRSCUGlJesjcrvKjPCIgpITffC0qWZ5lIrNg7eSmKrLwBbnvRgW9ft7KmOoVZjiY9FNWfy2zPAO4PVbg/5qiYAM4mWHbndmeF3n28f9CfUt4Ru9vnsOd2HHVPW4CRV827RCO5mBhAV8IzHj/wBkKgF9I5aBJmBMO9SRrkk8endYWzsvYOFl2bzYtxlJqiSmfz6Su58vfHngdz/4hxejL7GptSedPYsZI/vdfqljuJq+5MAXGqV8UrSc/T3zuLUgyg6hBUwwCmN1CYPzKUabpUGUFNkg29AOZWXPBgz9Rb7UrvwafQx/pw2lNmB99h4cChPF67/eSv0l1xXCyxLnsypTptQCAL31C4Mt6hHLsjo9WQMC31uYi1V811BP8oarIn1yCN5dUfufL2RWkMLBToJGyr68r7bJVI0tgw01wGwod6D5CZP1nnE0yNpPK8Fnmd84ON/W4Ed2MFC/PpE8K+uPyYg6R/2QRCEfRgn+HMxZuE8A/QQRTH1H9TbDhhEUZzz0/vrwG5RFH/41R3+O/zuVyCBFpV42tZhr2zhfEYYYUtTKHniymq3h9wt9+OB2gcHaRP+NjWsXLUHhVcTCq8mNKKUijoVslxz5mZNAeBMt/UMTh9OwKGFzN+7mFlPnufV9AlE7XuZ7m8swsGpkawGR46H7yD6+Cs8rXPhzwHHWBFymc+yhnIv8jD3Ig9j69DEid5r0dnouRR6GvM0JXsa7Wm76cC77U5zfOUAVOttCN6xGE2rnGfFjiSUerPjei/+7PwAC6WGmV73UJZLqau04vjFbhy/2I1R7slYFEsItK3mdYdkatoscXFqQJGn5PXgC6T02IaLspG0e35E3JpPV1UeZTkOZOugSaegr2MmTZl2jOyYzJe9DpBZ50zkuKdEjnvK6g3j+fz5Hfha19DJMh9372rszVp4pnFELDPnRJ/vGWjzhMp9PnjLVMQX+dDQqiR36A+cuNcZpaCjsMCRakMzvja1xColxColLE+bSHyNL47JRqulzTf6sLOwO594nyC1z2ZWOl/htaTxrK7ox5HqaJ7pGtncaSdZtY6Ed8+l3a2ZTE6dxd7sLqzOGsDECy9Q2GxLYbMtC7ct5vqVCPS960mvcqanZSa5Izcz2/cO6XPXM3vYVezkzcxQVfF5TSDJte5MvLKEWycjsRY0+KlqkDdIeBy9n0GB6WgMUlJbPUlt9eQzl/s0GmSI46v507MxbOq3ncCrs/A0r+XPWyYz6eZC/nTuOdq7liGX6RFGVDOzQzxdOmfzNNkHZ+9arM3VDOqSQnxzIO7yOtzldYhFFnRQtHHpWhQdrYsYY/uQGI98/M0rOd5sSYxFFuuf9uL79ntZe2oow8JTyL3uy/7MzmgcdYTJtQw+tJKaNgukCj1KqZYunbLp0imbXr1TONv/O0a1T2at/yE+uTWCjMEbudkYwtEha7hW2Q4tArPfPUng/kX0sc1gc70bozskYSHR4LbVjKdVLkS/uxhBEAk4tJCAQwtZeGsmbdnWuJrV0z70Gd/6HcZW2oJWlLDM6TpvtjuHuVMLr/hdRtW3gpl293B3quNBsz8vBN8gXFmIolMtk3L781K7a/RIGv/z7/dem473c0bxYrvrnG4KxVVqhVaU0e7CQrY2uFDyxBWpILIiYQKd7QtprjPHxayBxucaSdW2YCNRMj91BlduRnC+2Z+tZb3o/3Qk/Z+OpFRjS6POaKb+QfAJtOJvp/LVi8KvPv4RgiBYAuOBd0RRbBJF8UfgJDDjn6y34zf4iv8Uv3sBokPCQOc0ou0KeL3TBbZ43Wb1qJ2E/DiDUx128t7t0UgEAwqpjs+yhyCmqhBTVRRoHAEYOuw+L3hfI0vbxOqKfszz/JHu0Rm0OeuQSwxsab+TgX0e4bcwE0uFhmMhB3GWWvHl4H0cDN3NoqTpRCsLGO2VzMdVIXxcFUKQXRXpGlescqWE/DgDBBhnVYrn0AJaDGZUhcuJ+XM8QTH5nOy1liVdrmNtrubm2K+YmjeE1tuOrHran6Nzv8KsUIFBZjTh3ZTakw/m7uZzrxMka6C+TcmdiCOo3bVMtKqnTdTxhcsjImKz2dR1F5aSNmI6ZTL5wXzOBJ+jUG3P+P53SW9w5mhlZ251OMbthBBuJ4QwZvZNdpfFsMvnBgHyCga7p3H3Rns2xffCvX0Zo6+/iF6U8MNbqznfquCdjmd4HL0f/6MLkLZIuF/vy6Z+27ESFKRcD6Lbowl0ezSBplYz6jVKyrtJ8DOrRDQzsNjnBtPeXokBAxuqe5Ias4fLBcF0tc5FKQj8UNGb0xFbecvrDP7OVQzxeMrmyJ0sC7rKsp6XkAgiEkFk1Lg7GBQibZnWSCQG5h5YzLo6T77dMYZJuf150yETL7kxrMUE68cALOl2jUnPXUciQG+7DGIHJrOsJJq8JgfyHnj9vM3wWCMSIpfjbtXAWt9jvJU+ln2xm6nSWJGybD25A7ciVQuk/BhIc4YtrW1yzheHkXY8mE3Df6Ay24ENIXsAOP6sI7bSFmylLbwy7DQSBEK65tPTMpMZh17EUtrG1aoQtKKMH1uCCXKqZOrNBcRP/5pXnK/Sd3giT3vsZmBkKrPzRmGw0jPR7SEeTrUsd79IUok7SSXu3D3bkaXZkziREsl7JcNw8awl+oulPGu1589FI3jJ6zKWAnyWMIQJfe/yVdpAwsyKOZESwZbcHlQuaMHKTMPAF29TUObAh0MO8eGQQ5ir2tCrDBzMi6LoqB9zM6fyuNmbzDpnsrR2vHZ3At72tbjL6tAcdSZIbsVQt6eczA7nyxNjWFfSj4ZaCxa4Xee7DeO4E3GEwGuzCLw2i29LBrEnZDfzbUrpZpHL+JyBfJoxhGmd4tGIMtzDy4hv9Ce+5wbmO9wmd/AWStts0OqkzE2dSZuopbFZiVmVgIOsiY7WRufMK2GnGKBKZZfPDbSijrN1EfQwL/ofGaN+BcGAXhTFzF+UJQHt/0G98UAlcPO/lH8qCEKVIAi3BUHo85v1kj/AFpZTmKOYf8WSydmjmOl+h/GWjZxpUbL0/EwwNyA0SZnYy+hxbKtQ8+hH49JTGthIWo/d3FLDgZquTLB/QB+lyKTc/hzwv0LggUVkT9rAgqIevOpykSC5FYuKYpAIBm48C8RB1UxZjTVnYtYx5MZS/D0qcbUwbj1+7XmG2B9fQF9jhqDSkjNgG7OfxTHV6S6LTs/l1UGn+frUSHR2On7ot40Fd2byWbejZKjd2JoYy97eG2k0KJEg0tdc+/N37Zo4GTvzFsJsyomxzqbFoKBOb8FS2yym5g1BgkhSiTvpPXfhf2IBe4esY/rteXTzzyez1okHUYcIX7OYJ0vXs6KsE+kNLgSrKgA4fTWarGkbuKWGz54NpVFjxs3w46wo68QY20QAVBI1k+IXcKvHOnrHL6KLRyHxBT4k9NzIypL+dLfOYY51Od0eTSA+6jAAAVdm82qXiyyyKWZPoz1bC2NR6+SUFNkjCODtXYneIMHTqp7ONgW8YPeUTnfn8mr4JeZYl/NiSVfsZC20tyhmS2EsnwUcZcl7LwGgmFqOhVyDRBD5zv8g6VpnqnVWWEraGGNZjVyQ8XlNID6KarYV9aBJY8b1DgcZkjaWtUH7GXV3McsjrqAUtFyqCWOP73Xydcb/oYtUQcSul8mcuZ5TLRbcb/LnVEE4QQ5V5O0MIuH99QTdeB4vx1oMCFjKNdSpzWk76oLaHr6dv4lvCgdS3WpJc5sCV2tjXKfCGjt6eueSVutCea2KWN88gi3LedMhEwMGgq/OYXhIKt+6PyDkh8X8adIh8tqc2HWhN/IGAYkWPpi7m1cvTCGmUyZxdlk8azPGM/vEOZnZz+K4X+xNaswesrRNfF/ZF4BAi3KqtCp2PeyOVKlHr5VAk4wHo1czasVybq/eiP/FOcS1yyaj1pnmNgUp3YwhQYZnDuVppicpw9bQ/+2Xee1Pe9g8fQy+a7K5uzcS66FldHF8hp28BTtZMwZRwr06f0JVpexI6o6LYwNTfB7QSZlPB0Ub39VE/fxMH93Ql7b+DbwcdpXVe8cwZ9JFVtrnEHBlNpt67OT1zxZg/VwxDuYtKCQ67mYE4OZWi7NFE2llLqztvJf5t2YxpP0T7uzuxMkVX9DnyssArOu1i6/zB3Ep9DQLinqwyv0qNh6F//YWVkAHS/Gz4yG/uv5zgYkFQNUvijb9MjeNIAhxwCFRFF1/UTYfmCaKYp+/1a4gCFeAW6Iovv+Lsm7AU4x5dCYD3wORoijm/Oov8MvP/J8QIIIgTAbeA7wxpiidJYriLUEQ+mPMZe0NxP9U/ndj13i0txULrzizvcGZWdbGwXBXoyNXa0MZbP+ED5OHE+pSzkinJG7VB3EjOwgAhZkO4ZGKVi8dolTEyrGFAd4ZHE+MwsK+lUlBiXgrqvk0aQgjgp7wtatxEF1T580wq6dsro7lM5ckFhXFYC7VcOJBJ/5iGt4uuJi8H31oc9Uis9IiybXgwowvGJGwkBNdNjFs96t075tK0oH2HFn+Je8WjeBTz1P0Ob0Cz8AK5BI9V8JOEf1oIvFRB+jzZBwAS3xvcLUulAdlXrhbN3Am+BzAzw54i4pieNnlMiFySwAm5fZnqGMKH9wcjY1LI4cif2B53gRyqx14I/wCzQYzvnliNFt9qf01DhZ3JtyulKwGJy6EnKFVbGNTXTvu1AaQeSCYug46BBHk1TLkTdBheAYP7gXjGFpFbaMF8iRLFDE12K6xYsU64+z7qxen0/Oze+y524Pc0Zt4r9I4iXra6Ia1vJW7hX6MCUymTmvOK85XmP5kFuva76WzQkHQ7kU8P+Q6PmZVfHR8AuMG3SWtwZXFnsY06FIM/FDamwP+V6g1tJDYpmL++bnkjt3Eqlo/ltvl8VCj4VBtNNPs7jH/6QxGeD6hi2UunRQ1HGgMY/X9AXwQc5JKnYrMZleu5hqfj24+BezyuUH/pyO5EnYK//NzOdB3A5NvLWBe1G3u1/rSoDGjolGFTKrH3bqBtHRPPPyq6OL4jBMpEeQO2kqDoZUXCodQ12YMoXMq+DwBV2YjVJkRP/FrvqzsgVzQcyC9E4MC0+lrk8Z4y0b8L83hVJ/veb9wFH6W1Xzh8oiJuQNY5HYNZ2kTEkFkUfo0Brqls+1eTwC2DfiB2ZfncW3IKj4oGUZv2ww+PTKeHv2fEGJVyvXKYIrP+NBmD/0HJnLhbiTj4+5z+E40s+JuGZ1Ga3xp1iooqralg4fRE72owYajHbex8tloFBIdD86256WpJ6nQWjPK+hGTd71CtwGp3M7xx6CTIJEb2BGzlY8LRnCu3Vm6vL+Y+++vZXuDG3Osy//T7/e22kCS2pthVmkszpnEoaCjjM8cz46gAwx9NJeDEVv4pHQo0dZ5fBU/mAN9NjDp6mIEuZ6cAdsI3rmYzJnr2dNozzRVzX9q+y/PAMD2Bmc25/fk3uDPfxMB8smxsF9df3JQwt/tgyAIUcBtURQtflG2AugjiuLIv1HHC8gDgkVRzP07bZ8HzoiiuOZXf4Fftvf/WoAIgjAQ+AGYBNwH3H461QbkAPOAU8BHQJwoit3/XnshHc3EjSd9WJY66eeQBoFmZQy3UPN8QS9ecrtMpd6KL3KHUFpv/bP7j59jNYOc0phk/QQLQUqSxpxN5b3xNa9mvG0CE+8uZEXkZTZl9+SloGvsK4nmQsgZZj+L42ZWINQosPar41GXAxxvtqTZYMa7FyYC0DM6jZupweQN+4HPawLpbZnO1BsLEeplJI3/ltn5I8ipdWBewG3KtTZcKw9iie8N9pV2pbxZxTDPVBbYPSBdq2J9ST8O+F8BjD82LVLuNgcRrCzlZFUU9opm2lmU8d3eUUydeI29mV0wGATWdt7LnzLGcjB8G42ilFVlA9nidZuvagJYaZ9D5BeL6To1ifJWoxNae5tSzheGotVJcbep51mNHVKJAWdVE3tD9jI5fRqnQw/Q/f4cenjmk1rjiqdVPQFWldjLmhmtSqJBVNBZoeC22kCs0rg76n90AbnjNrGuzpMqnQq1Qc7+x12gTYqgluCUIDB45S3ec0rhpZLuWEi1rHS8Rb0BrrcEcb4qnEMBF1hb58s3Cf253XcNsdeNAY2u9f6O/vtfJWv6BvY32fHp0yHsjtyKu8zAa8WD2OJ1mw7xU3+eSR9pVjHQvII+j2axMXw3z299iTenH+Ljx8Po5FnEt94n+bzS6HPztWsin9cE8rp9NkuKu9HLJpMNBb2ob1UiCFBXaUXukC34H1lIdFQ2I5ySWJ3Zn0Ge6dRoLbmcFgJqKbkjN+N/cQ65g7YCxnAjttIWTldH8JHHGf5UPAIPZR3HszvioGqmRSNHo5WxNmovH+WOoKbFgrdCznOwIpqHmT5EB+fjaVHLl64JbKn34GBJZ9Q6o5Oiv3U1r7mfZ1dNDBcKQzgW+QP9rr5MXLssnta4oNVJMZPpCLGvQK2X8+hWMPg1o21S4ONTiaVcw5ngc4RsWcyGaRs4X280sAhQVpDU7MW5p+2RP1NiEVFD01M7zKoEtF2bEFKtmDn+Cp6KGj46NhGdSg+WepZ0uc4Aq1Q+LRqOWi+jt2MmTXoltVoL0htcAGj63os/fbGNxVdnYp0qp7GjhtwhW+j0cBJdXZ7xuMqDwR5p7Erszqqe+3n/6UhCHSsItKwgud6DtFIXAlyqqFcbBbSfTTXPGo1e7rc6HPv5WXyxpCs3CgN5OuaDf1uA+HewFD8+Fv6r608Luv+PBIglUAu0F0Ux66eynUCJKIpv/I06fwIGi6LY6+99tiAI54Bz/2zWzn/E/4QO5APgQ1EU74miaBBFsVgUxWJgHJAqiuIhURTVwPtAhCAIf3etmNfkSBezNhqblCwo6sHhoijezxhJ5IPJdLHJZ3d1DE/VHrzkewU3mwZCXcoJdSnnTPA51h8biqvUiq7bl7OqaBAJF8IoUtsx8fDLdPEu5MuLI3g35DSfpQzGUdlMwKGF3Cvywca2he7RGUz2f0jQ9VlktLnxaeoQenV9Sq+uT7mVFoRCpeH5gl6cKQln5oGl0CZh7YhtPNIo0eilJHY+gL2smQ+cUpnjfYfJVrVklDsz1+82WoOUU01BrHw6kd72GbxRHsEb5RE8f2cOjQZz8lod+SZ3ALcSQziV1gEHaRNBA3JJavCkn28mz4fGc6khnH7umXxR0Z9KvSVbvIzWRRVaa6OzW99aNnneoXiPP8V7/JltdwcPVT2L290kJ8mLtB67mRyYiJdVHaeaggixqaDj5Rf4vONRNnneoaJWRZXagjtvd2P9lQHcV3sz+eBL7G+yY+7eF37WB5m5tuB/YS7u8lpuVQaw/05342CqFciZuBHptAoc5Y1IkJBU7YGDvJFpmZP5snwQ36b1pbjRhsFpo3CV1fNO1zN8Wt6XnbFb2Bm7hSSNCwP7PuJUiwXvJo7kxXbX6aAw58WCkWzxuk2ZvonXwi4SlzKWj6tCiFWWsvjZUMb4JPNQ7cvTxevZ9qwHzraN7PO7iqPUgqtFQVwtCqLXkzEcWTWA0DvTCbUsJbnFi/cDTvJ26Fl2dNiOVGl0SvNsV46fZRVx5nncjNrBvSpfzCVaNvfcQVBQCV/VBJA7aCth6xcTtn4x821Kef3CZOa53OS9kmH0tUvnwMNoyLDCTKrjROQPtFRbkNjqS7PGjE0ddqMW5XzmfZxl3a7gY1nDGNtE9KKBpy3uXAo9Td1VV+quurLJ+wojzy8jTpVBXYUKrSgg1MvY4XMTf5sabnbeRkWxHT9mBfDoVjAjB8eja5UjyA2U3XMnLdWLr2oC0Hhp+Ch3BJUaKyo1VpyvCqdcbY28QIlfbAG2a6yIjktHFlfDxW7r0Ic0E25exJ+Th9I5LgOJRsLKrheo0FqjkuhIrXDhW7/DXKtsx/Y7PRlgk8owlycMc3nCa5/vYoi5hg97HcdzTD52DxSka5tpyLTjK/drKGQ69j7twoD2aXyWNZSmHFsmOcdzKDMKC5kWiVSkq30BR8N3sL/9dpLL3WlvV0Z7uzI217uxrqwf/ufnstrtzs8TiX8XkV+vQP9nlOiiKDYDR4EPBUGwFAQhFhgN7Po71WYC239ZIAiCrSAIgwVBUAqCIBMEYRrQC7jw1xr4Nfw/XYEIgiAFWjHGE5gHKIHjwKvAZ4BCFMXFv7j+CfCeKIpH/labykAP0WPxCtaM28rS+KmYKTXMCo7HQtLGxsw4wpzKSSp151b3jThILOmTOhqAyZ4JLLIp5sOqUIrUdlxOC8HMUsP80NvIBT2bMnryfFA8N6qC+Mj3OIlqHyp1Kvb9MJCISancv9ie+RPO088yjXHXlyBIRHzcjCEUujgW4qqoY7BVKgoM3GoN4EJVON3schmnSqbRIGPiruU4RJfTppMx1e8B6c1uLHO5TJlORYC87qeQH0b2NxlnVK6yOpykzaRrXGivKGPGk1l8FnKU03WRnDvXlej+T3nX/Qwr88fz9L4ftmHVfBl6mEKtA+/dGU3u4C0EHFrIxbFfc6EphPw2J75weQTAiyVdyWtyQGeQ4G7RwI2HobzZ7xRPmj351v0BqdoWbjQH89WtocyK+ZGT3/dhyfKjzLEux+/sPBzd6unhks+DSm90h5zostjYbl+bdB40+2Mu0SAX9GxP6c767rtZfHwediHVVJfZsDLmPJ3M85l6bgmrBu5h+YVpmLm2cKPbBpYWjOZBti9vdz/NvYYA7pd6Iz1vvB8P3zFGEtC3a4Y8S7yiiyi/4onYpYFgp0qOBV7E/9w8cof+wMC0EYxySybIrIwXTs/GK6yMsnh3JBpQRtdwM2oHq2qi6G9ltJKsM1hgQMLushjGOify6frJJL36H7GVJuX2RydKWO1zlK8r+vGt+wO6JD6HmUxHRbIzlyZ/yb76zsRYZpHU6sMyu3yA/2QqDuB/YgGWrk10cSvkRnoQsjIz5I3wwrRTqEU5Z0rDKayyw8uxlprjnoyaf5MnDe70d0hDLui5WRdMfztjdOJ6vQV6BPpZpnGvNQApBvYXdyGv0JmF0TfYGN+H3KE/sKwkmqRad+rOuDN93kU2JMWR3Xc77W7NpKNHCY/vBrJm3FaG/BSa5/mCXjTpzJAJBh5k+bKy2wW+ThiIZZKSpfOOs/PtUaz4bDenaiJZ5HwdF6maV5+NIbHQkxWRl9n1/gi6v/6Aowmd+aLPQV6/NInnesQDcPx0D+y7VFBeac07Xc9woLQLGXluCDIDt/uuocfxFXw5ZC8lWjvGqVLpu+c1UmesoVjfiq9MxYyC3tjLWxhkm8KJmk5s8rzz/xsjAi7Pxt2lDoMo/CZbWH4drMQPj/76FcjM4Ph/xozXHtgKDASqgTdEUdwrCII3Rp1GmCiKz366Nga4DLiKovhLHxAn4CwQAuiBdIyWXZd+def/C/+vVyAugByYAMRhtG+OAt4GrID6/3J9PaD6L2UIgrBAEIQEQRASxMYmRBkcr+7Mqq4HGeufzPrEXsy3yac514Z9fldxtWngk4o4OsRP5VmhI88KHVnztA8Dp8zmTYcUrl+J4JOYY+izVHQyz6dWZ8nEgEfs2DGIN7zPMu3hXD5NHMqBvM40tNOTWu2KXbqBM6XhTN75ClKFgZwB2yitt6a03povXB4RX+uPAgPzM6fhJGukqMmGlEZjKPCJ9xfwznMH2B66k97u2TjJGtEapGyt7skTtRf9Tq5gYu4AowUXMNiimMEWxWwu683pxo6sfmsqExPn09RqxqIj8/E3r0ReD/3t0pAIUFBnx4Zxm2m75kgfpch7d0ZzqO96hmYMw6xKQrrGkU0bR9Kml+F3dh5+Z+fxiesNiupsuRByhpQqN5JHf8cnPw4nwuoZfVJH81zCfPYXdWHdgB1sf9iDlSv3o5KoiUqYhO1jOUqZjjM3O9PHLYsP/7SVi5mhXMwMxUtejYO8kQ+cUplkk4ChTcr5+o7IvJoZ5vmU3KE/8LTFHZVEw7Cujxlj2YygF2irV+IsteKA/xVyB21hglU+y10usSLkMg/fWc/Dd9bT7tZMgvvkMigwnYQZq7CQaflhwRrWRu3lWOBF0rXNrIw5j/+p+RRW29FiULCltBf+4cX0ds5m8dhzaENbaGlVML9gGDnNTuyo6smOqp44Sxt5+cwMQlRlnKqKIGR8JrsaHX9+Bg/4X2Gyy30+KB3Ct+4PAPCyrgPAtn01/a4uo7jNllfTJrDMLp+4lLHEpYwlPXYXH1aFsqfRnrmFsSiqpMhlep412UKjnEUjz5P6wnoilM/Yl9+FK2GnEA0SFFI9K5ceQCoYWO5hnEB2Mi9gh881NuT2YkNuL9SijCuVIcxJeZ6120aRo3amVatgTdweVBI1uUN/YEO9B1eOdqHiljstLnDm1b74uFQTlzIWmwsWVLZaMnXQLQo1Dj8/Gw+KvVnkfo3kK8GsidvDxsw4cgZsY8Lz17lZF0xZjECIooKiZlvSNW6MTFxAsFU58zrc5qvEgZSN0NCoUyJtlhJmVspHAw5zvTSI66VBaG0MVNSokCr05LU54W5Rz5pee3g+8h6rquJ4c8BJVuUMZKntM/rcWsr0YdfZUO/PzPQZPNM18uOTIEbZJZKm9mCT5x2utEpZVevHqlo/DjXZcEsNK7pcoiTdmfFej36rcQwDkl99/DOIolgjiuIYURQtRVH0FkVx70/lz0RRtPqL8Pip7O5P1zX+lzYqRVGMFkVRJYqirSiK3X9L4QH/71cgdkANRuX4jp/KxmMUIDcBuSiKS35xfQrw/t9bgQR3MBf9ZK+RNdOGiK45FOwMpLaXmvHhj/FXVnC7LpAYmxxUUjXuslpO10X+XNdcquVBtTdDXVNZ+7APX8QcxiBKmGhVz1c1AXSxyOXDnJG84neZkRYtPGjT8lnRMNR6GWkZnuSO3AxAuraZJZlTCLQxGlZcTgtBaalBLtOzI3IboXIpEbfnYMix4p1xh3g/fiQne6/l5RlLkH1QgbOyiZVuF+igMOeZrhFvmYpWsQ1zwew/fdfnC3oRYFmJhURDlHk+L+xZgMZBj6t/NVWPnRk35A528mYOrB/IxEVX8DOrZLJVLUuKu2EQJZhLNeQ3O/Ct7xEqDWZ0VigYmz0IgGOBF7mlBrUo+9kRq1VsI+7RDE5EbOGD0sFMdbyLr6yBV5+NJTHXiz93P86uku4/K/MD9y1C1iJgXgn1YcY2ekemk9doz1j3JHbldaUx2QECmtGqZUQHFFDQYEdFgT2SVgkbR2/mTxljqX/ghL5dM9pGBWM6PSK70Ql/q2qymxw5GnSSTvdmAZAaswf/Iwtx8K+h8aEjohTWTd7E/OuzMbdtRWXeRlWtFVQokTcIzBx3hZtVgVjItKQUu3Etdi1D1rzGn+bt50GTH/cqfJnhY5wZL7Ip5nizJa8+mEjfwEyuZLQjp/82/I8sZPOwH3ii9mKS9RN+qO3C1jtxnBjyHZ8UDyfldDten3WIx83e1Ggs2eZ9iw7xU5kUYDTC2HOsL8F9cknJ8eTtHqf5+PooRkcnciarPW9FnufDy2PoHJlLkFUFM+3uMuLoCtzCyol1zuX46R6smHCcXYXdaGozQyox8H67U3yZN9jYZ5+bvH9gMtNHXyOtyZXUSlcinEtIqnBH3Sbn+dB47tf6opDo/5Ol4eD04Uz3iCdb7cIHTsYV2KpaP+JrjQ6KL7lf4m5LECdLOlBUas+g0DQSKrzo5FzEtx7XmJ47gq99jrI4ZxKtOjlxTjkEm5dRqVPRojdjx8U+zBtymf25nRnhncq+qz3x7GBU0BfkOzGm0yPSG1xo1ckpq7Umvecuvq31ZX1qHFNDEnjXMY1LrcbncllJNKeedMSsQIEiog6zkzaMePkGB/f1of/4BB7VeHA4dDcAWkSut/iw8fUJ1IRIaWmnoWDWG//2CsQ33Ep892jkP7zubzG33W1TNN5fgyiKtYIgFPFzkJD/RCrw/F/e/KRICvip/G9SUO+IxXoDUXbZ9HdIw+v1W7z9dDRWUjXfpvYlrcduPq0OpkqnIrPVlR/LjD+KmhorhGoFXw3fzXvrZ5Kz8j+2J0J+nMH1mPXsbTAmvxlp0UJUwiTMZHqarzuhjmxlRvc7jMwcQsY9PwxmIuP6xHPirFHf7xxVyRtB59hTHsOk+AVkxO3Ez6macz13cV0tkDNgG2vqQli1cz0THyzgXOxZXivvga9ZJV9dHQYWeixsW/GwrccgCoxySwZgh89N3qtsz/rEXtztm4RVEegiGrBRtlJmZSDYvIzVW8fRGiAiF/R8tnYyk19fT6BFBU16Je86pvFtrS8GYNruZbw07hTlzcYFXoqmlR+bI2jUKxlonsz+JjvePTKZ1RO30fvQq8wacJ0lOxbxdOF6atTmiA1y3js8mVszvmRJcX8c5M0sH3qa7570xbd3OR1tjPkvFtjfw0Nq/IzcVidO11iSE7eTXk/GoBMlrAi8xBvV49g9ZDN/LhjBvcjDBGQv5OvOR1hx7zkadEqGOj9hia3Rhn9k5khSY4wWXouKYn5O+HXBJ5yV9jlcVwsgFXkr/BzOsgZyNC50MCvk5bRJvOmQyZsORtP6VO8WHqhdmf38eT59OoQQxwrk3zuwZXEPAL4ossXNp5qJYYnMtLvLW64XuK225N2Bx+hvrud0nQM55hZsv9KH14acYsyJl5E1S/h23haGmGt47+J4Vg3ZzYM2LbejtxATPw+AVycd5UBJF2wTFKx36YXQJqFMbYO2SYGDrImA0BK62Oaz7WkMLu0biO3+lKw6J/pbp/LZ3CSytE24+xtD8PjKa1AKBkqqjemDj5h3RtmxlqQGT3QGo4PkspJoXmp3jRKNHW86ZBJwrS+CfRtBz2Yxoc9dgncuRqqG76KNBj8nf+iF67gCMvLdkCqNk4AXDr3AlPmXaNEomBN1h0O5USjkOtI+70DNNxeoa1Oyu86YfKqs1hozFx1yQc/65F7o22RYVgi0GeSYy3VkNzsj82xmqJvxZ725oifpDS7k3vVh4+QNLDi4iH52o+jiWMjwwFRed0jmq5oQVtrncKRZxWKn63w76AEvlnRltuOPvKEax7uOaWSMdGGKw13OZs3laqsXAD2Uz0ht9UT+YinNua683PUKy//eYPJPI5ii8f7E/0Q03m3A0p/MybTAy8Bp4Bjw5U8rkjMY9STJoiim/73GrK1aabtnj8PoZ6w6PgrzclAVGzg+syOvh19EK+p40yGTWkMLdhILSn7K1R3tn8/O/O48afWiIUT3sxlwq9jG9JAHZGmt2J3blbp8Wz50CaUxy45Px2zluGNnulvn8OG9kbi61JE5cz3vVbbncZ0nD55f9XO/PqvqRoR1EWXNKrokPoebVQNB12cxIzyeOWfjkDq08U3FUPzDi+n2aAIfhJxEL0owd2tG0ybnRlfj6sZBYsm9NuMPOV3bRqXGioR+azncGMSyFYdYldGfAFUVPt1q+TRxKGLHVhRKHQcKOuEwsohFRTFcfBSOKBE57tqRdvaVHCsxpoRdYltEo8HoqVust+FNh0xik8eBczKbCuLIfH49k3L7kz15A29VdOTbmZvp9WQMB0N387ldb1a7PeS9ym6s8zDO2j+uCkGvl+BtUcuu28aUpbeCAvgg4CRB8iZOJXdkVpc7+J+fy/zoW5wo7EiunROCRGT2w1nos1VsdXVheu8fWX51KmZlMiq8VJSa2RK4fwQO7aqof+jERJkxKdjDDF/8H3bAxqOe5qf2REzczLId81E1QUIHP67s60qrs4jorkbfIif0wWKGjYrnY5e7THs8hz+3P8765F5civ2eF3KfY8/6VbxdPAwAjV0lKlkbp/LCibHK5qnanY0JvcgdtBX/C3NZ12sX35UMZNHASxS32SE4tDGj7z1WPJ7IDtdSVvY/g0qiJlPjwpE6LzZFGfUer2ZMZJ7fj3zq78U8n0eUudrwY5k/kmYpH2YM50HUIW6rDSyPTSdVq2NHbjcm+j7ipV3zaXPUE9c5nSnO9xhirmFB0QASKzw5FmMMq5+lcaK7Tznvlw5EIhhoMqi5XhTImab2RPkWEZIeTc6EjQxMG8FH/sfRijKCx5RRp7dguV0eV1ql9IxUYybIoR0/xz87ahFBcoMn7R3KyGlxQptoy5jxNzk4JYqh375GwKgcdp3qi21kJXYnLSnxs8GAgDzdAq+exdTam5Pa4I6loo0Rjo95UuHKdBvjdtIhm0586neUe64B6EUJRyavYszNJcileiLsSgi/OY+s3juIfDCZCX6PSWv14HBeJOJ1Oy73aIe21IIN7h48OhfKyzGO6KuUNOqNz/Tqyj4873CbGo0lvbtnc706GPj3d3BEMOVE/4n/CQHyEeAIZAJq4CDwZ1EU1T8Jj++B3Rj9QCb/o8Ya28ywi2wiudodr+giSups2Nt1Pd4yFc90jcQlzeZe5GHsJMYZVkKpNwBvuV3grm0Ava3Suegb8rMPiblgxjO1PVhByyN7JAGtpDa4Y1AaGGKuYUl8RzJDnPBwq+GzoCO0ilp23e2BmWMrkfkvAPBcx4dc+yaGD97dypTQBAYdW0G1uQ2Jw74loc2avC6ObPO+Rb/UUXhb1XLzUQfqgiz5cPdkho6Jx0yiI/rYciRaAXmjgC6o9efvuyLqEv0fzSah8z46J0wh1j0PM4mOSrWKqe0fcKfKj5xCZwxpKjx75zDf+QbuMXV4Kmr4+MYo/LzSCLYq506Mnl2Njmx8aLT6iwvO5rhUS3fnfAKvzSK1z2bmFvbhgP8V/M/P5eGgNQx8PIuETgeJfudVdr37FX5nlyG30rDrTixS2zYUCh26Zjmn7kdh6WZMzHS1/Ul6JI3nUPh2lAUKckKdkCr1LLdPJaHOB39FJZIiJWkzNuBfuYBmgxk7H8TQq2MGBf52aAxSultl02d0GgYEGoLNMfz04z3kf5mQ2zPY2XE7G917I0Fk8eQzzLPJYlbeMHpOSuTy5U7odVJGdXqMvpPAhcPd+PrFRBrqLNhb0Z2efrkMOLoSZZmEIfrXsB1QBoCtWSte5rWEO5eR1OJNmcaaVbEH8L8wl1U99xMiryb1TDCu4xu4V+5Ddr/tgDFPRC+rdJJafajRWzFNVYPfjfGMH2hMO2ujbGWGqpgDnQp50uiBl3kts/3ucsI8ggshZwi7M52X2l/jRL0zX7g84nn/eEo1NiybdJKsVhfecr5Fs8HALbWKhHIvEjsfIPqRceFeXWDHrJ63yGuyx92igWFPJ5PUdR+hd6bjbVFDttLocJjzzIWoEJGwIwuxzpTQGGjge5mIpUcT3LVBGluL8rAtfouMqzV1ih2qQQWkfxhO/YIG1O46Rlg/5oDYiYvLvqTXnlexiayi+bYTT75Yz5VWKdYSNbvadSPKoYjb33SlZJqGygYr2geUoNdLuNRsTFZVW2vJmvL+XHscRu7IzRxvdmRoWCrfu99nUm5/VkUfIuqzxfiMz6VBb05WoxNfhx+if7TRCq7/05F0N8/h67AWKkptsfBo5LOLowA4M2YVIXJLMuud6KzK51Tjr1d8m/jr/O490W1CXMQXD8Zy6FQc1nkild31jOr0mHOXuzB7+BUe13txwP8Kp1os2F0WQydbo19iodqeH4v9mR14j3KtNX1VTzlSHW0Mua5WkBqzh3RtM5ur41jqeAMXqYIdDf4EKcrob67nQZuWGQ/mEOVRzNuep3khcwpdHY16rdE2DzlVH0V5mzWJZZ4kdd0HQI6uiRKdFfuqu/GwwovaRgt2dtvKR71Hc+beGQIOL+T86K/ZUhNLH+s0Xn44ic+ijqIWFQAMsyihd+IsZgTcJ7PZlYtpochKzJg+/DpvOqQwImM04balP/swqCRqvnvSl48iT/LOgalofdSYP1USMDSXlFxPJkQm4mVmtBzbmN6Tnp55XL0WQer075ELMvY32REgr2BBynREUeB41GZut/ow0rIYa4k5QbsXcXzSKqYnzWZTh91sqOjD3UI/tnbejqVg9KBvMJixqbwPEkHkPfez9D++EomTGr1Giq97FX1csoym0w73eXnbfFz7FDHRI5FFNsUE71zMwcmrea9gNN3t89h5tD/agFYEqfGZlWVaYN+tnNJyW2zjzVix7ACfb5pEh/FppO0JZerii6x/1AtBEJE+M0eigdcnH6FIY8+R/AjORW1h3JPnuRNhVLE9aNNyodG4bdnX6il1BgtaDGa8lTAWB9smKnIcmN/nGluSe6Aw09HTOxdvZQ379/clYkQaKUdCSV6xnnRtM6/mjSf1iTe54zYR8sNi7s75GoDOp5fxWu+zbP52FJ3nJNGql5NW7YJaI2OYXxqnc9pzu/smut5cwiuRlzlSEsW24L38qXgEWbVOrAi8RHKLFx85P2FGQW+Km2x+Dno4NGMY59qd5ZYacjTGFfXg9OF8G3AQd6kEa4k5Bgw8bNMTKtdjJVEyJa8fDws9+TF2HcOS5pDQ6SAGDEiQ/Gz9l6124W3HdF4rj6JUbY0EkUH2T/h88yRenX+ITflxWMg1HG93lE8qO/Oc7QM8ZSItop4Z6dNo0Sq4F3mY18qjuF3ux8v+V5hoZbSX8b84F6VVG5s77WTGhUWcGvYNY+8u4mD3TWyriuNPLtdwllqxvcGZUq0tmxN78mbXc3yWMASrR0oMMmgK0iI113Gj9xp21nXGSqoGwFbawgxVFbHJ42hoVbK43U2Whl77t/UPPuEq8fUjv76JF0Kum3QgJkyYMPF/EREBwz/hz/F/gd+9AFFr5GhFKaG9c8iPsEOosaTNIGPQgIdYSdUc8L/C0IxhfOV/mO1+Z/+TZdOLwDK7fEZnDcZG1sIGz7vkuDYRIDPOeIo09hxLjuR4fTRDYx+RUe9MQaU9lncsUQyupK3eDBvfVt7KH8v19icI2mPMXZ7R1ZkRzskMsUlmm7dIp4eT+DzsCIvuLCWn/zY26ZTERx0m4MpsupvJePqOG50+Xoy5LYza/ip9hyWyLGEyUqmBb/IH0MPJGI6hUa/kUZcDP4fhXmVZRpNeyaXSECSIFNbYkfXUgytewZjJdFRWWhv37M/Nwz6qmql+D1g+IA+/0/OJH7qa7leWIakxejFvG7OB2XdmkT1jA+HfL2Xh9DOkNbtxQR+OTGqgOs+OYYmvgQjfdKuir3s2slYBBQaamsxZsOolmt3B4N3K8/uWMmeUca95y6mBACwfc5LRiQsYHPOYiz9GIUhEtvfdw7rqnlx+GM5lMZzcJcb4UrcsgjhU3InOcRlEKpTknPPng0UneHN+JsE3Z/JW5HkAZvWu4LFGTWRHJftj7JALOpoj1NzN8sd5eCU/HBuES5cK3g0+xaspc5k47Tp5bU4ANLeY8WrRcMrKbfiwKpRTheF8E3qAwaoUAD5+NoLkDG/Mi2QMHvWQsXYPeeLjhY20BcqUqC0M3EmIYNL8TZzL7c0b7udYNsSaT6uDedrkxp7AY+xwbkevJ2PYMH0Dfyo1xqT6oO8xwsxK+HZAIwqJDlt5K7s63WBw+nDsZM1YnlNh18OCFVGXWLNnFFpLIBiczRox2Ap8lTWQu1EH8T+6iLE9Enhc5kHEV0bXqYmzjCFebCWt1OgtCTi8kDOjV7EocyoFec6YlclYMfE4Wz8ejW5qNYbTjhiG1hDnl0PsgZWsGbuVwH2LcAsvx9WykQaN8bcy/Scd19EbXREFGNzjMY0Gc1qiWpmhqmLDVmcGv3uR6O9fRjBA7IJMxtycxmfdj5Jf6ITCSsOMgt4UfRzMolXHeP3uePQxxwBo51PKuXZn+bQ6BHQC7eUWRHkWc681gJOPI6hpb0FZi4oRrk+wkbbg6lzPfJtSQmK3sSGgD6kHQ8kb/gP+5+Yx/OvXkA2opvmhcasubf56djU6Ut1gyWD/dL66ORS49puMO6aMhEZ+/3dBK3AgIZon9/zp5FKEyyUFF+M7ktPoiEGUsKKsE8GqSkYfXv6fhEenh5M4mxpOt0cTSMnz4HX7bIr1jWhFgXV1nsyyrmB3ejSdA5+RM3EjBU32lF3woo9/NnYZWs5H7ERZLKfNIGOEczLvVITzdOr3PJ36PU+SfJmkyuXrZ4OZmDuAuhpLstpcyelvDKq4y+cGgddmochV8ml1MPaJclYsO4AowJAR97m/uRMZcTt52mM3871v8YlzMp84J5Peaoz68qTKjRRNK2UaW25X+WNr1srujGgMooBgreVx9H6uROxmZHgKWlGHeZ6c14Mv8H1CX+616bByaqb7mVd4MfoqBjMDBjMDH+cPR2am56uaADqPTGWqdRqNOiU9bLIJdygjtnMGI8bco+eIJGqz7DGXaNDYGZAIkNVnO/WhetrF5HGu5/fMGXWJHend2ZHenZGD43GMrGDVyZEkdd1HvdYcg50GlW89G2pikQgiB4as5aP+h/G/NIcnvX5gmEMyo9xSaNIat+4uv/AlMx7NodeTMbwVeZ4ctTM5amfeq2zPuFPL2NNoz7tHJ3O2piPzom4zKDSNjo4lrJm6meoGS144PRvvofnsz+zM8W29+MApFbNES152u4S9YxN6UcKDqEOsSH+OaDM50WZy2tuUYuHQwsJJ57CQagmQ19HNIptVP4wnpkcazj41SNWwvaInvd+4S7HehlinXCwkGgoa7UjUWBBkVsbN8OOsL+nH5SuduHylE6ktHryfPwqP9QoWOt7g5JnufFgVirtFA8kNngxZeoug67PYlhuD0KkeRbt6Btx5gdtl/ix3v8g4n8e8V9GRx2O+5WG1F7KrNgydcYehM+6wwiGJoRnDUEl0BJmVM7XXbULklpjLtOSN2Ez6vPXMtymlvLvIj5F7kY2oZKh3Gj/mB3B90pf0V7aQPWUDDa1KPvI6QVahC1mFLoywfMaZFiUx3dJReDSTWOnFpuyeZPfdTtDuRSz96CC9LTPwGlSAOrKFC3UdEKQi/opKZnS+R1LsVp5UuvLWd9t43OxN7sCtTLaqZbJVLY7KZh5qNMZJYIdnfFgVyufex1lgU8imvtuRCQZ2Be/nTm0AX90fTH+3DPxPzSdF7cke3+t0nZrEoSYbcof+wNdLN9HbPZu0+etJm7+eqM8WM0NVhabcgnOXu/BB32P/I0PUH5nf/QpEptShypDTa/JDLp/tzIK3zrNv1RAyRS+yDF5sHPkDWRpXvp3ygENNNpytMcb3+TzsCM0GM77IHoKbax0An5b3J7HSix1hO/A/tpy4TunEF/qwy8mRtMc+tBuWT2KFJ3UzdPyodqTNW8Ny14uM/XExn3c7Qs/HRp1/zoSNRH26nPr2OuQ1MlRhdUSb59Fh9UsIBhg9ygJDnQJEsJM109i7mY+ShxMxNJM6rQXVXbUEXp3Fc+GJPKj25v0K44xqb/cfONTkSHWtFY/bvIxe5C6PGJ45lFGBT3CWN7DSPof+T0fyvv8pLpzrws0If9pCW8luc0EiNTDjyIvoVXow13OypCO7hhoteHZU9cTVvJFQZTGOskaij7/C1VFfM/zBIlqbzGjnXcYunxt0iJ+KzKOFU8/C2T/ye5bnjae3YybeQeXk19oztXk2tspWtBrjo6UzSBnn9RgzHy1r6rzZ43udZYpmLhcEU6c1Z51HPFEJ0xnqncacqDusqmnPmw6Z3Gur4Nv8fiyziubimS6kzV/PWxUd+fDeCMxVbYDRDyS/iwMOsiYiembxntt5BsUvgTQr5o27SDt5LSpLNTpfDWk5Hlwa+A0jU17lUJMNYvd6UtSeNDQpmW13D/8TKxClIrESY+DKNwLPk+bkyvqjQ/GJfcbEkjmM9kqhMUSLv0UVt5ODUQEKiY7zm2IZujKZI0fi+HbWZlrcFCS0+LPuQR88PapZ6nuNRxijQEdb5dLZMp93e03lcZsXN5//Emep1c9JuP700kICVxRTrzbnSfe9tL87DUm2JSNG3aezQsHC7wbSblYaM3LGUFZnzdT51zmQ1QmAw9diODZuNQOOvEr2pA2MtHjCoSYbprrfZ/azOG4khOLdrhypQxuTc4ZjqdBwvTSI3n7ZfFXRh9VuD9lc74beIHCrJZCxHR4DkNBmTa7GGYVER5hLOUcCLv2c06NjTA5SDKwr70t5k4quPgVcLQyGMiUrXnyBZ2NFdsm6YW3bwgsH5yMPbiB9rDvNPxgTu11vfwJQMC29C/PC7pDd4szIhwtJ6baX+OZAvvW8yFOtkgfZPkQH5jPf/i4HauO4VBXGNydH4hNdiL1DEwGXZ/NS52uczQ3DUW404Jiz6AxxKWOx9q7nUOQPzEmfAdz9t8ccEX425Pi/zu/+Ltgo1Git4Gx8JGunbWLN3f64z8ylT7cnxE9YxUe5I+iszKf7G4toNpgRX+RDfJEPYYpalv84meoGS3yta1hQ1IOhtsm4WDYy+NoyFE6tvOZ+Hne7ek5WRrJj1HpKjvoyxjsZK5UajSjF6aacYw2deNBnHWqDnDeDz/Fm8Dn8Ts/n4Mov+aTfYdyiS2issWBF1kQ2L1lD8or1FO33B6UBgwIeNPgikYikx+7CQqZhm/ctHFwbMLTJKG9TUdVsyZzwu8wJv8vzD2ezOmcAh3tuYIaqiil5/VhQ1IO8Kgdm2N3BRtrCK6WdWepzlQq9ipiBTwhzLMfKSs2h/CgkMgNh0Xm0b1dI7sCthNhUsODRDBY8msFaj5vcSmqHraSFWdYVLOlzhTVVvYl0K4ZmGSUnfQi7M53mYis0NUqEs/ZMvTePeo2SC+VhrA3ex3DfVKoLbXnX7zTeztV4O1cbhcSN/thKW/BXVBjNhIEJgY8paLZn9rM4HnbZR16zIxNsHnK/1peHGg07q2KJa5dNlFUBH0/dzcTcAcRYZfN29zMsDbvO0rDrfFwVwt0CX95OG0PuniC+rujH1HYJWETV4CavZVzyXNysGpgZGE9cWCZDfnwRtaue5BYvmqst6KAsIrHnJnxlKvyCSkEQORm+i5Phu1j24xSSsrzZMm0tComeNWH7eKY2hqCPscpC6dDKjHkXadGZ0eoCy75ajLRTPV8VDMZComGubQqopRwL24OTrAGdiwadi4b3Ukby1vEpmFfAe3dH0yd+Ee9UhCMcdmDBoxlsXruaDralnOqwk29rfYnvtgW9UiSj2YXtDc5oh9VxNymYKW730RVacqk0BB5ZwyNrbkz8kust7RClIuNzBtLt0QReuzkRuaDnRkYQynIp5jItjmeU7A04RWGVHU4WTRQ02RFmUYL/qfn4KiqR/mjDfJtSLj9rx+Vn7ViZMpF6nQVSQaRJq2BVrR/lVdasqvUj+W4AQYpybl3vwNnILcxwucPH4SdQNAhc37QZW+dGZkXdRSIR+WLCTuK7baH4OytGuD1hhNsT8nWNzH4Wx6igJ4xQJeNnUYlOL2F7gzMu8nqGpEznYmMHcgdtpbLVkqstAbTvkYOTsomZw66xIWg/LyRO5Y3o83xzdwCJMVtIqPMhoc6HHzJjWeF/kYYyFakaFzyt/mugi1+LgP7fOP5I/O5XIHbSZixzRUaPv87XkTEMv5ZMQoU3WVf8mdPfis8Cj7D4s5eY8fo5BlrmUB5yD4AHale8Pat42fcyl+vb8737fXY1OuJmXo/BT8BK3sbIK0vp1i6PfX5XmZQ7kEdvrCfg0EIkbQLjoxt5K1ggVFnC2WZPLtaEs8PHmMdludzAyB2vooyoRZ1ih2+3YmZ63WP+uqVI9MDgOpYE3mfd7X7cL/FBeGrFFI9+xGf60b7YmzPRGyjTmzNn21KEiAa2nekPwM5Ja/hzwYiffTfKW6z4KuQEJ6xCmZI4l1H+T+imyuXPn89k69urKPxTEGbvlNJQZ0HuwK0MHTmNeQdusezWFD51COZCcnv8fY3hteWCjDk9bpGlcWXGmbFMizPaz0dZF/Ly0Etc6NmBy+XteKHjKSZa1RPhMoWsrvu41Cqjm1kjg5JnEuOSx6r+e4lTQl/nrJ//R2WhKt4/P56nE77nc4mBMrU137o/oOu3cZz5eANvlEexz+8qgVdfoJ1nOevK+/KW2wUO1nfiUk0Y/hZV5NQ6MNK/hTfKg3jbybgnn6aVUuRvR5xNBtplMj68NxLaJHj7V9AmynGybOJo0GmWFschk+jxdalC6yQlQFmBpFVKZ4WCkZlDGOCUTke7Et7xP83LhUY/kDmdbmMja/nZgmzp0yk8iDpEp3IvXk6cxPCAVI4VRbAzbCcbR8WxxOEmzaKURoMCB4maTyvj+KjfYRwklhyr6cJzkUYz3mOZEXTqkcVjXTC5g7bwaXUwbzpk4riyCR9FJTNSZ7EnfDvfVHXnSYM7N2uCyJi6jmutchoNSl4LvYBteAsKQYdBLtLQqkTWbLzPiW0uLLV9xrf2bZQ2WRMfdZhY6TikGHi322k+bBhLaYM1nV9KoeO+ZRhc2qhqtaTpvAvfxNmyMPYaA811hE9I49PqYLq4Ga0Kt3jdxoCBk80q9HYSxls28r22H8vt8tj1TGDcjSV065lJzyMrMNhqcbqmQN1VT/j3i9F3amTPqT7oVAZ6R1XS69FserjnoRWNKxBfmYo1npe4prYnRG5JiH027h3qmKGqol/qKM532E2jqOOZDga6ptPdPA8PjxoGmuvY02hPgMyK9NhdfFUTwOCOqRxtcuND7xPGG+IN7eUW5Pa8zBjLZv5U5sZvgWkF8h/87s143dvbiXafLCPcuYx9flfplzqK/GInIvwLadIqKL7phV/ffF71Ps+uyh5ce2J0jprR5S4778fQJTT/53wLH1eFsDUxltxBW+iTOhqNTkbNA2dEKajyoc0epD1qUSnbmOl9j405cQzwyOB4Vkfau5X93KfH+Z70CMzlXr4vL3a8QWqzO5cet2doVDJJ1R6U5jhi7dmA7p4dNrkGnF/IIynbixe7XWXPmiH4TstGKdWSUOiNLNkSn5PGPAdZz9sR0iWfYOsKptrfI0imx1pizuiswZwIusCZFiUesjq8ZHpeKx6Ep7KO/BYHvvQ8i7PUisgHk9FoZbRzrmCwUyodzAqZcd6o+J8fd516nTmFrXZ0tcln13dDCZiRSUa1Ew1F1kjUErKnbCDkxxnMDrvL6eIOPOf1kKnWaahFAwcaOnKsKJKX/K6yvqA3A12N/p9vOmQSeG0Wq7sdJNqsAlepFRvqPdiQGccwn6d84pxM4NVZZPfbTrG+EaUgIVer4HRDJOHmRdhKm0lvc0cu6DlSEsWl0NM/3+eHGg0Try3mVL81jDrxCvP6XqNCo6JZb8ZA21Q2FcaxPXgfhTpzlIKOSfEL0NYo+XLAPl69MplhXZKIL/ehusgWpUMrz4fc43X7bADmFsaS1+DA1fYnMWAg8usXUA0sR7bekZJJGjycavks8Ai7q3ugM0j51uMmYYdfJGfiRvY32THZqpbjzZakqT3YltodRxvjKO9g3oy9WQtrvS6yvKQfxS02bAs4xLTMyXR3yOfi6p5EL03kSn4waT12E/HlYuT9q4lzy8HfvBIveTWnaiKxlbfS3SqHAo0jN6qMOUx6OORyqSyEompbojyLeZDjw9a4bRyuiSbCshCVVM2nT4cw2CednCZHHmV7s7fPRt7LG012kTMAOQO20SXxORI6HSR8jVE5r4ytpqtLAefjI5DYani7y1kuVIfzqMSDfr6ZnE9tj0WmGfZ9SmnRKLAya2OwaxpRFvm8tn4uPZ57zAZP49bR8WZLPkwfQWLnAz//H6fl92GP73Xa351GpFsxn3qeovf55cQPXc3cnAnM8riNVpSR2uLBR85PWFPnzfmK9riaN7DF6zbBN2fS2auIhAJvng+/x47UbgD09Mvl7uVwrjz/BW8XDyNSVcjysEv/tgmtZ7iN+MLB2F9d/6325/4wZry/ezHqJmulLd2GOa43Cf9uMVfbn0RSJyOrypGq417smPUdWWVOdFK0YCtvRVotQ1oto05rwVs9z2Ah1fCFyyOutEpJafDgy9iDTMwdwNrgfUQ6FhHQK5+M2et587XdjJlyi94eORSX2PNZwhDqsu0wk+jQaaUs97iAi7IBF2UDOf23UddmzorIy5yvCCPYopz3ep1ALhi43fEoCudWpgQkMHDCfVqm1WFv1oynZzW1WksevruevH2B7PG9jv8nWmJHJ5G+yIb0RTaEd82lotmKkbaPMIgC1hJzdjU6opDqCTi8kMNV0UxNmEe3AyuY7BjPqU29uHu9PbH7VvJKaWeES3aMD3xMUpoPX9wYxrxdL5A7ZhO5YzYxQpXE4asx7PG9TmKDNxFzkilosEMiEfEIrESUi6yr80RXbMnVinbM9blNRosrRxsDea1wJJuODmFryC6u1IWhUrQRrCwlWFnKe5XtWRJ5g73l3Xnl2SiWlURT3GbH+2GnOL8plg31HgS4V3K+VcHkpzOZmT2BSTcX8oFTKg+bfXknYwzFbXZ8cXU4YTblDM0Y9vP/Pl/rgJNzPS0GORKNwOaHcZy+Ek1CuRcWkjYKb3sx+elMpIjsqI4lI24nEpWGfublCG0Svne/b2xIqedU1w1sedLj57avJocy3Sve2L8zC7jzympm+MSz7rtv8Nwjx0yqw1+mJrHSC09lLWaCnJyJG6nQN3GzPpjQzYsJUVRQ1mbDyx2v0tM1l56uxjw/O3xusrhwMJs87zDD/R4zsiZRWGPHR85PqB6k/o9+Ac1eIlP9HmAm0aGSqMlocyPWJpuvXRP5oagnlypCMPwUWmPzjT6s8LuILNWSOo2SJZ1vUKaz5Wx8JOerwsn8/9j7z/CmzjXvG/5Jsmy5995777hgML0T08H03hNSCCFlp+wkJCSBQAgJvffeewdjjBvGuHfj3rsl2bKk54MyzLxz3DP3PZn9zP3s/e7zONYHL6/r0tKy19nP/19ugzLFhJQmJzLT3EGo5ovSSfSphIh1+3g3XNOhtMH3EtNLRxAcl0dwXB5L3ROZZZ7M6fG/83m/G6R1ufA8x52MmH0UtFvh71JDX0gXAaa1iAQqKgqtubR5GOv2LuHee5s0fOUybW7JtImQ1LHd/ySLKmJZVBELwIsaBwCuR+wit8manxuGsSj6KR9WjaetR5dPLs9hpkErZ6/EEpM5lZwuez5xuolIoOauTItfI04hV2pRNOQQn1vkUzT4MEWDD3PQKYH3p14hVW7DFIt0Jv7RYfdP+dvJ330EIrF3VN9N1KFRaUi3SodDVTGU1VmgUgiRGPQy2jWPq/mBzPJPQ0/Uy5GCSABCbGt4z+4Ox5pjKOm0oPyJMzvn7WJ5yjxORu9jdc5skkPP4XliJYNis3hU6IV2qYRxccmUd5uTe98Dl8Gv2ex2jntdfrT06VPYpSHJqZUast3zFFOfr8DRohVPoybmWSTypNsHa3E7hyr603HDlu5IGfMCklGqhVx5HcDz8GMEPF7GQLcSDjol4P/7KqSuCiaEZAJwq8QXZZ8QlUJEuMdrzrrdY3huHBKtPmbbJlOrMMVXUs2ax3O5PHw7kxNX8XTQbwxJWoWNaQdioRIH/XYOOiWwq92eM1XhlJVp7vnkyJ18Xa6Z4N3qdpYJpz5E5SBHJ1cXs0F1tDyxwWVkOXpaCrLrbNDWUjLCqQB/vWp+zhmBWi3A1EDKT17n+LVmJAPNNCmsFx3OqNQCdEUKdjkkkdqjYG7KEm7030GpwoS7HYFUy4w57vKIIkUXTlo6CBFwS2aEjagdZ60eou+/i4NdCzMd0lhtUsWSSo33Z63TyRzT58Rd+YDQkFKOuV0j9OD7jBiTTqPckFqpIbVNJvjZ11J9wo2WmB60anXQaQbxoBYuBO8jq9eaoh5r1pqWcaDD+g1jXrWyE3uRIY/kAnbXDsVUu5uxpln8XDaSaItyrpYG8EPwRS40heNjUMssowyG3P0AZEJKp+wh4PlsIuwqaenRw0DcQ2Grpn24s1vCz2Fn+Sp/AmlhZ4jNmoyXSQPJ1c6InhgzYn4yt89FoRXVirtZM96G9bT06pNU48I73o849Lo/iUEXGJQ9iXO+x/ilOYbMNnsArnvdJPzbVTz8yxZ+bu6HSKDi0usghtoXcSk7GKFYxdHo/extGEyc2UsypC50KXW4dzQKlRhip78gv82avt9tOLd9C299uQ6AlO92EfjLKvpNyaZPLcRQS84O+2RWV0dxKycAgUiFqFqCwqwPgUjN5eHbWV0wm+89L/K0W5Oi8z64ioJFOxmeG8cnrjf5plhDrDfR/hU70oZgZdXOUf9DLMybT/dNa75dc5j3EjVNKQUj9vBKoSJcW9OVlyCHdXnTCLeqpFZmzKsMV3Kn/UZo0iK+DrqKiUgT7a1IWMDMkFS+t3rFyLy3mGOf8jcBMrT3N1GvPjPwT6//POD6P0wE8ndfA1HrqFhwaTVfjT/H1sLhtDXrI2zRxukPtE8XSTOSbF0u6QVhadCFga6mg8fLoJ5jzTH8ZpdCVMY0PAaX8d6rmZgZSd9MUQM8it9EuUKf6Rap1ESY4ixuolTXihcOzhr48KZY7p2KxHxUDda6mu6PyXaZBGrrIhZrFPZ3dvfof2wdd2b/xPz8edQ0mOA/uVSDCtthz1m3e9zYPohf3HyJdCkn7UIAK6f1odu/mZywM3zWoOkcU0jFCDq0WDH8PrvTBlHn3EVZvi2lU/awvc2JC5UheJvagUzIutJpjPHOZWTacuK9X3D8XiymPpqpc9cbSxF2ixD2CvhpomZKPlpHi1aZHneCjjI+Zy5zxz7maHYUT1f9zOS8Wexfup3qPlOuNYfwccAdABYaNXCqyxQzAylOhq0EGVXxfcV47PXaidDVeNuzjfIwF+rzYV0Y5X2dROgY8k7gI76pHsfTFF9M3VvpzDRn44QaThT3I841m++tXvHpgQWExuUy1DSfDyLvIVVpc646jOxue1x1Nd/DQ1LPxfYwlg15SKXclH7PF2Mc2oiNdgcjjHNoURpwUhTBGY9rjJgyg9LAi0wvHcFZt3tclerhomXIjmZvpEoxmJaxdf8UHk/RgPyl1WjwqzJlbmTe8WbetPt8nj2Rz/1u8LrXgji3bNa/nMIsr3SmGL7kdrcXD0ZupbpPny8aguhu0sfdo5Fn94eidu9mZ4QGAHLZzSWE6DQilWuUoUotoKzDHF0dBanrd/JNky8DJ73k6cUQJi28R1KHO1/Y3sHeQQNI+WOzEUc7LVjs9IzNTbGsME9gP5rI6bpUwtr3T1OjVOElqSVHpkFVWGPxmOsSfwRCNauz59CVY0ZafRBh8dk8vxVA5Iwc3rG5z+bqMTzwv4Jn/AKWlEwjZNWrN+9ByORcMo8GoBjRztmwvbjfe4exfjnoFWrjOaaE4mx3+owFfDnoMguyFhJoUcvqzNl8G3CZqSUjMQxuZmOzF/f9rjK9dATdvZrvv86shIZgDQWCf9IK+tlVktTfgA0F49DP0aHbUYX/kTXEjU5m+qtQrO6Lef+L09gYdDLeNJN9skFMik1FRyBGR1vBJP1mfM5pIIUOx+3mUlsY/V7MwNGojf2vBwCJfwOt808srH+Rv/unIJQJWTf2Kru+nEp7qQnmlp3sm7QbUx0Za1wesOvsWJbNvYnyhTGG2j00NxjR3GBEfY8R90q9+bHFAx+zBpY7PEEoVKGv3YOPWJ/OFEuiMqYx/OB63MVS1mVO49eCobx9cjlVvWZITORU73UnxrCYxPe28Mj/Mj6GdfgY1vGeaTlXpXq8iD5EfosVRQod+g/OoU0lpqrAGne7RrLynEgpcaa4xRy3u4v59tP9GArlHHK+h86gZuZZJNJSZcyg7Em0KXRpU+iyLuo2fx1znrPlYeyOPcLc+e8ysX86Wb0yiqXWrHJ7TFW3MRIbKcGmNQw0KkKthhtVfkT1z8fFuJXydAccnZrImPoLwwdncqo+klP1kcjUPbRmWPJ1wwCqXltQ12OEvWUrA54vJ9ayhNmPl1OvMKag1Yq7LX5sPjQVz2Mr2V85ALFQSW23EYfOj6T+pAt7HJ5xqS2cS23hnOjwxfPRQn62ecGtbh98EucRo1fMYecnBIWWMd4xB/vIaj41L+SXoNM8qPGiVSWlL7SLpFJXFhvVk9dtS6tCHw/jJnbYJ7PINJVFpqnUKEwI0K1EKFAxyiSbeM8XmOlJedzoQZhOHXKVmMpmU8QCEdV1GliOin0exJcORyzoY2VVf5p79fjtjzbXrA928rTYnafF7ryIPsSnxVOwFrejHdaKrbgNN7Nmfioaxa7MWK6WBrAx+CJnS0L5smoCqZ2uNColLElfgJV2B0KZkFPFYQg8u6BMnxSpOylSd74fdZYLnf5sDz3J8U4zpjpmUF5qTWro2TetsU+rXMles5O9rwfyrMaVzQ1D6FEr2Nbqwu3Y39icN5LNR6Zy7VI0Ix++y5UzA7hyZgBbykeS0unOgZaBHFn4FpON0+lp12H4xXV8G3KFfvaVvAg/zcmZ27i7dhNPn/jzcMkmqrqNmZe6mNe7PUmQg7JNhyMeF0g7HEza4WB8964i+bUz0sFdyMqM8BHrkz98L59bP0BmrSLIuBphD8yLSSRWr5SrIfsYZZZNVtQJIiR1nHe/i0CgZpRhNj+2eLDE9gm9ChG9ChH5im6+tEzibJcxH/rfo6jNEmWvCCv9LhLf3cK64dexDqvjaa0bvi41GC+qJLnTjaxye374eAFxVplcfBUCgIFOL80qOfGDk4gfnMSO2mFcvxZFP6tKpH1inAxb/yY6Rw1v0oZ/5vhHkr/7FJauh506avdsZjik88v5CQwalcn9pEA+GXWFX3KHEWRTS3KRC/rGcox05ZhINMCEVpIuxEIlexye4XZxORfG/4qvWISOQEydsostTbHMM33G7IwlZEWdYFbZME66PuCrRn++sszig5oo3rF8SFzyKkLtq9ntfJ1jHZpipp6wl9vNARS1WuBt1kB1tzFzHFI4VxtGWaojIvcu+nq1uD9wOzOyF7HcLYHzI8LpPSykrNYCrVJdes2V6Nl2Mc8rhbcMNZ5gVo89G3PHcDlsD/FffETyxl24XVpO6aQ9rK6O4gfbR8wqnsI3LpeZee5dhg/K5G6+D4O8itlgf4ORe9djFVvDKZ/jDDyzjtgBOUyxSAdArhJzoyUIH4Nadj0byqDAAkzEMhLrXJnu8oJ9WQMoGnwY1+tLOTdyB+bCHppVOnhqKVlSHkfOHU9yV+5kZVV/7pd4YWyoec5pYWcACE2Lp73KGJFJL1rafZoCccosxjrnciYpilcTfuWbxv5cuhPFlFFJ3NsVQ9iSTO7l+vBo2DaWFM3iru81llfFvGGd80+aQ6R9BaPNsnlLr5age29zY+ivVPcZ8W3pW3/MGPyrHO8041x9P75xukxOrx0zDVqZXjoCO0k7X9o8YkP9IEzFUgCmGqezqmA2t/1P83NzMEtN097gZq2vD+Un6wzW14fyg3U6UV+8TdtwGU5WzbRI9ejq0mW4RwFGYjlGIhnnykJ4GXEKgNisySx3SWCaQTUjsmYRbVVOYp0bw+wK+cIylfeqhyJTikm/4ccHszXcH63deuwIPsFvNcMx1+niTqEvxUMPEVc4hha5Hr1KTUdTaujZNw0LCZ3e1MsNkSvFvGt3l0Wn38Y9+jVlTebEe73gRE4ERUMO4bN/Fd/NPIZEoCBG0kK7Ssndbi8idMs436bJsthqt/Gqy5F7hd4sCX7Gp+aFfFAbzuW0MEL9yuno1UGpEhJtWc6HFknUKQXE3XsXI4suwm0q2e+YyI8tHrhpNxIlqSKr15LELs1cTH2PIb85PEBXoIP7vUWUjDgIwFWpHu/dnMd7w24zyyibI+3BCAUqfn8xhMQh26ns0+FaRwhPG92473eVT+qDMdaS4aDdwmBdDXJDj1qAp9iADpWMkZnzaKww4/XKj/7b6SM7fxP18tOD//T6rwOv/MOksP7uIxBRs4gPXO+x57cJjB6Txv18bz4adY0f7kxglmc6TXI9hC3a9OYa09hmgL1eO/Z67ZiIpbxnfY+97bZ4+1UxPWkFOgIxg7InsaUplgu5wRgK++hu0GdLqyvZV7yJ+GIVMpU2s0pHUiM35mpXIGKxkia5HmsqRxOlV0qUXinmWl2EG78mLewMLT163PQ7w+6SWIZZFWCWDRuCL6Nu0GFu/jxmOadx8HUM11Nu0CbXJcK1Au/BpaDfh5FuDxcrQliWO49lufM4WBWDtriPVLkD+77eis+BVfQPKWR0/nhuZgSRqxAz1eYFM8+8y8wRT3ndbYqLXRNlnWbE3liL3K2HD13vMqdgFnNGJGAraSdOT0qcnpQMqTNPS9352KwYsxdaFLVZss0uFVeTFqYYvkRPtxevJ/OxdWhl1ul3eS53YvHLBXxVP5D8RivEnfBhXRgp9U5oa/fRnmtGe64ZMZlT+awhiM5iUwaH5WHwXBeJtgLPRwtRPzVhjPEr0FFxpsuZNoUuAhcpp1Mj6ZNAvHkypaMO4KRlyIcud/isIYgww9d0qGR0qGT4WDVw0CmBmQatSNV9nB68iyn71/Fr1QgCTGs51WWK260lLK+KIb23lzmGLWSluTHx4Tt8fjWe5z19VHcas80ulcm5c2jqNcBVpxFXnUYWZC2ktsmEg+3u5HXZ0KwS0inXQaHu48rVaAK2r+LK1Wg8z63Ca0kes/1TMdGR82vAabZEnuFOaiATjdPJ6bTDTE9Kj1pBj1qBWKjkXF04gQ9X8JZ9NrntNnTJtblwdQCxGfP43OY26Tf9yF21k215Q7nodxxZtzaX2sI47XafO09CifPJwv3+InJe2yESqmjLMactxxy3O4vRKtPFU9zI1SvRBBpWk1bmxGcfrEStpaY0yZm94Ue5dHAQX4Zfw+/ZXPKX7OTLQ3M50xhJ1NEPGb97PRuTx5LTY8f587GcPx+Lo3YLD0o9OTlgL/seDH3z7umYyzjvfhcDcS+T7V/SpxZhLtTncMsA1vW/RY9Ci63299jR5kCwbgV+OrUMf7qGGEkLp7PCOZ0VzjizV2T3CglNi8fZtpnV1VEaNk5xA9MGpvCeaTlWIgOSWt2IN3pF5tCd2IgMiNARc6/WmxCzavIV3Yw0ymZP8iAS2r3Y1jSYbU2DGXXnfdzvLWJJeRxNLYYcHb3rb6R1BCjVwj99/CPJ330E4hmop/76YiCbCzWYS5963+SX0hEc8j3KtE0foTWmiVDLalZbPWBHwzDWWN0HYOLtd9Gp1UJur8DUppNY21KcdTWMgmtNy9jVbo9EoKCq14xpxulMOPUhO6ft5bvS8Uyzf8HjFm+MtWVEG5Xww8vRFA468oZvfYZ9Oj+njcTCvJNwq0qS94fhtyCXb+2vMfL0R8wc+RQlQiYYv2Br9Wg+sL/N4vSFHO13gA8KZ1CXbkvE4Dzc9Jr41iqbqSWa7zbb5jmXmsLwM6hl79MhPHtrC5OyFvI85ByTi0dx0eMOl7r1cRE3M/Xye7j41+BupKkXuOs1cGL/SFwmlTLCMo9dJ8aj17+Jb300XnqmzAmVWohUqc3xZzF4+1Zx0/sGANvbnNiaNIrPB1ylWG6Nr24NO/86FdvVpbxKdmfX5L2suLyMNaNv8XvWID4KvstofQ0U+JmOEBoURly8G8XMUU85lRdOkEMNXzheZWvtKHREfayxus+XFRMJMKrBVdLIYqN6Yj5cwYkfNzM9azGpoWeZXDyKU+7XCXi8jKIhhwANeu6Gircw0Zax1PoJx5v6I1OKOez8hM8agvCS1PFb8RDSws4Q8tMq5i+7RY9KzJGCSEz1ZTwLPs+hDiuedXgwzCSPkXpVnO7wBqClzwCFWkRtjzGF7ZZUFFgjMu8hwL72DaNfnbKLX5tjaOo1YI/DM0r6NDhqAI/kAoZI1HxSH8xai0SeyTXNCiN0mzEQSlCo+3ivZgA77JN52SvnZmcQDb2GJNW7IhEr6JBLOBu8n/hXi1nt8RhP7XosRd2IUDMhdSVaIhWDHYtZZfmI2RlLAAiwqqVXpUU/k3J2Px3K5TG/MvX5ClQ1eviGlSNXalGe7oDFK6iPVrFu2A1+uRJH/JgE7td6M9y2gG+tssnqlWEo7ONGl6blPUqvlCCxkDsyAx50+FHcaYlcqUVFghMbZh+jXanHYqP6N/WlLxoCOJ7cn4X9n1LXY8R3tg8RISCrV4eiXhsMRTKetPsAcDU7iBX9HjPN6CXuWgZ80+TLctNUhjxfha91PQtsE8mQunAktT9l4/bheWwlv0w5xJp78/h26HmSOj1Ia3Dieci5N2yeXk/mA1A46AgBz2fT1yfiaMQBetUiBrmW/Le9f1t/U/Xik0P/9xf+B/J98MV/mAjk776IXtliTo3ChC6pDmcj9zDpyWq09RR8UjEJr/hCsuttuJfrwxTzNOLNk9lSp6FwtXdp4tS4I2ysH85Q4zzutgZgqdXJ/ooBZHU6cNApAd9nc/k44A5vXfgQp7Aalj+bj6lpN3eb/MjMcsHWvYmECjfEWfocDzXDUlfT/eGpUwet2iSPOAeA/0gNre4DqQfYyxlimEdujz1LM+YT41COi5acYNsaNlePYaf3CVYxm0kWGXz3+2yO+8QwIKQAAHNRF4mF7hwYcZ9DZtFc7fLE16yeIkUXpS3m/NjiwasOB75zuIpPcAUGWr009+iz1fkCqT12ZH60UwM+qC1hzeqdjM4fT6ZMw4/ysVkxV6V6yFVi7ji34GXYyH2ZCAUijpVFIugWsef7yXz31V62DB/PwIspnEuMwMS7lfd3LUdsAAf2jkXLENoD9Ji4aT0AHRFyRvrkUzR3FwlyuKoXwDG3a4zKnkU/iwoGG+Uz4e4azozYSfyd1cQGFfD9zcnYLqxnfv48noQco99f36d1oJwZ6rcwNpIS/XIaAMPsCrnseZsDHdbc6/Rnl0PSGyN+q9KXCQEvaK4xxidjFcYjG/ktbSjIRLh71lKSZ8cg0SRs9To57Xaf61IJCTIrkts1jJVPsr34IvYqKS3OTLbLJMy9nCy5A546dax4vIDgplk4mLRhJenicaYP0U12LHdL4NcuJ7bZpbKzZhilFtm4SJoQC4TsrtKkPG7otxFjVMzzP4rjgb+s59I7m7hX7819v6scNyjjiwfTkFhKSZU7IhKo6FVrsaN2GFpCJal3/biz8CcWrPiA+r8Ysb1+OF4WjQDMtErhZmsgMXrFpAW4cLkjFEWHDr9OOMLWshGc8DnBsCcfoZrViLtEzo78QRTO30lUxjQuBx1iaPJK6nuNeFblglymjeteTb4++MB+ZpaOZo39PX62eUFwxSwyI0+yxdqVqfqdQCfb25yQiDTNJ99aZWM6sJu1pmUc6rCi/7MV+NtqaiELn4+jaMghkrs0JGkJw39h7etJ2Inb2C+zo7tPBxuRZjjwXyRakszX4zTNDT9MPs54PTkXQnOZYlBLj1qM3h+f+3XtGADszDUT5/dlInqLjNg45Tgz7q/i1yEn/hYqB/gnmOK/yN99BOIaaKC2+fkdrPS6sJZ0IhSouJ3nB4CBkZxJrq84XRiGlXEnjR0G9Fbrv1k7OuYl5uJuPrJIxUioS78XM7A26KSh24BwyyruFvgQ4lLFefe7HOqwwlyrix2VQ2iX61JXb0LpqP2AZhDqVb0dcpmmsyTAoYaLHnfwObCKt6dcfzN1m9XpgLVOB5eKgxC+MuDTuWdpU+phIpKy4fx0jIKbkPWIET4zxvGtcq56XaesT8qi/LkAPAm4xLzXg5lqkca65OmM98khv8OKdc63+Tx/EvEu6fyWPIzSMfvf8KDPs0jkqdSLj82K8dm/il7HHkzMu1HdM6M3tpNQOw1VrK9BHZcqguhRaDHFLZOxRpnMebqMS7E7MBT2YSEUYyCUMLFoNCq1gNbfnakZBOP6Z1AvN6KwyZIQ6+o30/huNzUUrv19i3lx1xdhL8jslRgVivCcVsQo8xxG6heysGAuj/wv82FdGCq1gG6lDsssH3OzMwi5SkyQXiUXG8LY5nwZG5EBm1vc2fVSMz8wzT+Di4XBFMQe4WyXMYN1q4m+spbSyXuYVTaMd2zvsTJzLqu8n/Db6Tg+nX2WH7JH8zRqL3+pHcoO++Q3Q3MdKhligZBGZS8ATlqGHO20wEXchFjQR7SOFu/URL6Z0XC7tYQPou8iQoVQoGalcTUJcoiVwC2ZNo86fPnBOhO/Z3P5wP8+P5+bBMBfZpxlnmETPWoFGxpDMRV3E2/0ilEpK3nb9zGrTaqIzZqMk2ErY8yz2ft6IJUVFiyKTORLizyAN/WuZeVvkZLrhnajxg8cMzqNHpUW480ySery4HRWOIZGMg0filDNx163+Tp7PNJqQ3SahcRNfM65p5EITXtQqwTo6ClQ5xiSt2wnzapuzIX/+q78W+lQyTjc4Y2juJlJ+t28UxNJSacFN71v8FlDEKF6r3nda0FmpwMzLZMZrycnRyHFX6z3Zo/UHo3Sz+pxIK3ThXq5Ef1MXnO7zpcH/heZWDiOqTYv+PrJRNYMuMel6mCaO/VxMW8hyqyc9FYnJlq/JEdqz8eWT7ASaSK/HrWCQoXGOK3Mn/OGe6RB2cUHlW9xqv/e/7b3b+Nvpp5/YvifXr8p5Nw/I5D/r0hNpwk0GuPl2chCywROt0RRMuIgRzstuNUcwNGMKCI8XvOWZSZZUkdWR2oU3NA7H9DZJ+FWehDfTsjG89FCioYcImjLKl6t3YlM3cM1k1wK5LaMLRjHAPNSsqQO3PS+gd+zuWjViznaacGWguFsDTjD198u4eH+fYCmUPq8pw+ltpo1JhVsbnFnnVkJ/ifH4DaijOmeGZwXhHClMYQP7W8RraNF26TrdCklfGpeiL96DuOtsoh5OYPuHm3iXLPffN+hpvn8XjEUZ5tm7pZ7k95/PzHp8wmzriK93RmRrubluZMQSkRUIWkyN9LaXJja6kr+kp1c6tbn4xdTERlBb6UBSQ2aYmaDtwHTXV7wsVkxKlTUKmUIRWoctNREnFvH6pF3+O3xSC6M+5XpZ94nYctmYk+tw16njesZQQj6hCS0euJb7cRgpxKQazw0e912MgPbOR2+j6nJK+hAl7Nu9whJncnGurcYE6ZpEHhc48Ew+yLquwyZfX4N68dfRk/Yw9WmYKJMS7ERGbCkcgC/OTxg9EDN8zAW9uETrGnXnm7QzsteLRw8G0jtUSAUqPDRlhFgVcdqkyo22/ZRKLPBz7qetVWjyW62wbvUm7v9f+euzJRMWQDVPSZcTg7X/A1D85lmmcaO2mGklDgzNfAlm2wTiMqYQ7hVJa5ODRwri2SV+xNO1/bjdqM/7znc5WinOfMMm6js1eB+vev/kKdtnuCjafFO63RlnmETXzREUis3IrvDDqlShwGOZdT2muB54i0S4zez5vVE5hk28WW5JVdG/crMfWu5EeNPzy1Lnn38C4Fn30dlqMQsQ4v0L3YCMLVkJOfd75Kv6KZUbMXUgJd0KCQ8rnAnL+aY5jlFn6Ckr4uxz1bzrVUKP03NIK5wDFUdxnTnmjFkbCZh6fHIesTM8dLAr5w6NZQVc69zoz6Am943+KUljMMPB2Hp2cyGy5Z0OoNhGUyeNwpb3XaO1UZTecaNBatv8l3ReLz8DqMvUOOfNIeP/O+iL+zhVL1mHiunzoZNoeeJ05Pi92wui32SSO9REmVWTrjkNXdGb8VBS8xa0zL6vZhBlFk5X1rksV4pwVncxCzrCrJ7dbASab7/Jw43uNiumUSf6ZTGZ+mTmD74MAOPfcSIES/+prrnn/IPYEBEYhVLQxIJ1SunW6XD4xoPPhMpWGmWyIbKcVwYsoMrHaF8dWcqAhVckkYD0C+2iMb3nYj9pYCzXcaEOVXinzQHl7fKGZQ9iaHWRVwuD2SWexq1HUYcThsCDjKGGeVioi9DEdBDcqcbvclmDOmnZvEEIQq1Rnk3ptrQ6SFBpaNGoe7jVHk4Ew0zUWmBlW4n31pl862VRgl+Uh9OqFUal2qCsdPvwC09FkvLdn7NHsr6oDtcb9R4dKBhnGuR6pEceo5Hck16oVOlIKPfacI2rGLRO9eJNinF7coyxsRm8PC1JwdcbrIzN5afQ89S0tdFQY8Hw90K8AhoQISaY+URAAgFavK7bAksiiQr6gRjt61n6IxMTIV6vJj2C/2eriAh7mcSZE5MHpnM6PRlHJi6i1gJHDSMRqSlIi/mGNelEr4peIv+oZoayNnUfgR4VRJ38z2M7TowfaZPgM1spNWGWD8XUOZlzqVufVLCTjEydyJlVZaYeLdypCKatgc2dHspyDB2IMnGHVNtKZ/VxeAo0UC7NCkMUakFfCa3wULcyWyjLGQKDRx7coo3X2lLSS5yYbupE4jViIVKBpkVYibq4tlrVzaEXubr2jF46dfzsVkxXSo5N8z9AXDRa6ZNqYe/YQ3JUneiDIpZWDaO04EHMRNq8YM4igEGhWwqG40QNVNsMthdO5QQ4wrGF0bQ0G2Aj1kDZ6vDqGg0w/SOLgBXI0O5qhPE2WE7ud4RTFG3FZ9b5HO004KyHkuez/yZnS39yK63odVFyp7hB3nQ7UvSyi286NVjSIgahVqEwz0VlaNEdA/rIipDk9JTXbQkcLwlNkYdSBXaLHROws6wlVjjAs53G7IhbxwuJq3MtU0iM3YvUWkL+NDnHrZ6HeTXWmP3rI+HTl583+8iHz+biq9uNQAzZ2om1ANNalldHcUc8yTmT07hbrcXl2aFsML6JUcqoplrm4S7uJEpj1fjP72MfrqlzA/MJbdXDyuRlJz+x4n6dCXRa9JZa38bgHkly9hROYRRXpeZ552CUKCiQWmInXYrd7v92HljNAberUxwzmax2zOEAjV1yi4uFwayLiaB7xujcZc00K1u5Lz7Xe7LJHxvpXFKhuRM5EL/XYAu/YfkMMCoiN1/I72j+mcKC/gHMCD2klaOnRrO81Gl+BvXsiPgOIuOrOHDJUn01euypmAWvqb1lE7dzfTSEYy10MAZbC8cQsbFo7hdXcY7o+6TmulO6eQ99PvrKtL+upOA57N5FX0Mj6srKI7bTbz5KPa4XGF+8RQG2RTzrNGV3+xSuLX4JW53FqNtLmNvuwsAIt8ORur2odMs5JP6SNqKTfEMM6DHqZeidktC6+PJ6Hcaz8cLEOfpkTHEgft+V3G/v4jSUfsZXziW5iJzoqLK+K58HJGmmrZEK0kXV7yu8LK3j0qFA3KVmHMtEVx/EYyOnUahFndbglrAT7aPWasWoSvQQakQYSKU8mPdKMo6zfAzrmf7s+EsikrkepCmbfLHxkHcKvPlTuQuNreE8GrtThLlKha8HoK9bhuFg47wQa0G8vvLCzNJnvszA5OX8TL6MKpqPQy8WulSyXn32SLG+uXQrtAoTD+vKspazNCp1+K3USf5VDIFf71Oao4ZcPSXzXSqtPi+ejwJum2UlllTNn4fXzQEoFCLcFqQilSlg1wlxkyrC2ftJsbrydncouHT/t7qFQp1H3dkBqy5uYCkUHdEAjWu15ZhUiIkwcWd0lEHeN7Tx/qYmyjUIn65OxadFiFeQ8v4Jmc86/3u8H3WGPb1DmRx4DMo0aRtjkqjmRbygvPZIWiZ9PDRk3iej/oFK5EhXzX6Uys3xty4i7t+54lMn4NYoCSvyQoP/Qaue93kw7owfrZ5wZZWV9b6lZGgcYp53OXDfJNUetQCTlwawtIpd9jS6soi4xzebfFn7C8f8tEnJ5G16WIq1OP9A8vYtWQn71WNQq4U851cj1n2qbS7aSFug7+OucbPRSM0/3dTGskKOfcmXeR2awkzw1Jp6jXAXa+BxR5J7CscgI9zPZ0qFcn9jpLRK+CCPAylTAvt92rRaTdCiRCRtopLTRqY+AEmxRws7U+MTRm3XgShG6FApRbwk00yP96cyEZzW+xtWvk4eSrjfXLQ0umjRa7Hysy52Bh1UPLamoLRu9nVbs+Cj69hJ27F5A/a2dJR+3G/twjfspWYWXWy0/84Cw6+S4+5CrVxH5/HXcRRrGkEye+x436TNy86nTkQcYgPq8YjV4ppVugzxfY1m1sCGGqQx5Cc6QAsc0pgwr01BHlW0tmrg9TkX/mA/juiVoPyn4yEwD9AG2+13BSVNuRW22Ih7mTus6X0usqJuLcGtbGC5S4J5LdZ4ftsLo0yfTZem8zGa5PZE3iMRRWxxAYVEP94JeuHXaekr4sRq56R3tvLaJd8lGoVxXG7Se9RklNnw7uVY3nf8S7nHvan74/e+01lo3k1Ygd6ur10qiR0qiT09ogZnhuH3EZJbrsNWp1Cvmr0R6tBG2NtOVoiFc97+hjtmUfuyp1IRH18UBtOgFMNrjeWMsiiCCvvJq50hDA3KIVTpeGcKg3nsPMTfM69jQg1XyVNYEfRIBZZPEXQI6TXTMnXljk8L3Hlg8G3ONflRGqdIxOLRvNDxHm2VI+mstuEhQ7PGGWShbhZjIN2C1YiA6xEBjytdeNmxC6+rR3FOrMS3G4tIVJHhb1uGx6SekJ/WMVW23QivlhF4fydRCas4mHkbl72qsmZuZ27oQcwEEooGXEQEWpmWiYz0zKZ/AobjoUdQGGkZoBEiKF2DxkJXmivruX7utGIBSrqpQYabKdhGmNWKrXARdLE5vvjWWKSxY1qf1abVPHOI00taKB+AQP1C3C7uZSSvh78tRtx96vmr45XkOw0peytvcgHdzLbIxUVKmbfWs3lumBuNfij3SbENraKnBwnvvS/zr0WP/QlvajVGuBHoQKECljWL4GrJf4Ym0hZ5P+c1VEPGZ62nKxeGcZaUpLuBBCto8WGpmC68k3J7HYk2KqG0/lhxJcOp0elRVTGNB43eRGTOZUFTxaz4MlirlYGMCt3AQdbY7i18CcSW9zpUYlZWzWaAMNqFn90lc/SJmN7V4Tvs7nIbJV88tkKku4EkJriRbhZJVndDkia1eydu5OtRcMJMK8jwLyOhj/YFX+oGcvk4lGUjtnPUMNcQgwqiDfKYIphDka6ckSo2dwUi0KtZG7iUi563GHH4KNIFdrsDDnB0w5PBrkXcdT5MUedH2MvbiU59BxXEvsxMyoZA1EPMYbFLHw9gq0TjlA68gBfelzF0EjGLPMkvgu7zCcet8iKOkFxqQ0vR/1G+NY1rDSuZuvLEXxyej7x6UuJT19KVq8MD4cGZoalMsK+gG61Nrkrd2Lg3IG/SzVylZg1L2YhRI2fTjV7XC+xx+EZS1/Mx0W3meIWc3SEfexsC6RUZsH0R6tY6fyElc5PuNfqz5LIp5Rec6O7V5tphiV/M72jUgv+9PGPJH/3RXT3QH218MtPiXYq50WdA1lRJ3C7vYRNA8/w0a3ZOPnUUZVtS2z/HCKMythTpMGw6agwJiqsiLRELzwiKih/7EyPcy+GplIyI0+yocmHoQa5nGmJYr31A76rG0GkYRlpXS7cyAqkdPR+4kuHYynpxEDUw5mn0aCnBEDYroWpdzNNtcYsikzk5k+DaQoBkVTA+LeSufisH7YeTQSa1XKv0Jut0WeI05MSmDybvSFHsBTJmbbpIzI+3YnbnSUsDNMMzq00TeVkRwDVvab46NZQ02uKt6SWE3VRrLZ/QLPSkDyZHV6SWu61+vO01B19fTl9SiEWht2sdH7C+YZwMtLc2Tz+GJP0u+lRa4qZtUo5bSoxhsI+DrVo0gLRumXc6ArgzOtwzPW6ed/xLhJBH81KfT7JmEL+wKP0qBV83RhOS68+uxyS8Hi4kDHeuYw20aTobrcFvCk8D8uZgLGOnHibVA5X92eu3XPKeqw4WxqqmW8JPfsmj+96YykfxdxiW9YwPg2+RbtSjwBJJXK1mB9KxgJQ02CCtq6CENsaTro+oEslJ/TJSpSdYoyztbj40U98Uf0WR50fs7KqPyWd5oSbVfJaak5KqTM6ugoUpQaodNRYezXR+dDqzf+V1F6FhUczzUXmqERQOnU34wvHEmZSyfHn/Vk/+AabX4xkln8ax19G4elUR/UdJwRR7WRFneCuTIsXMhc+NismrnAMv7hpOvLctQzetPh+1hDEqcRoiifvYljOZHS1FBRWWVMy/CADXk0hMegCbheW4+lXzVz7ZL65Og2hoxRRjj7uw8oobTbH3LCbu/5nAVhfG6OZ3bm+lGujfiXu/hq0DXr5Oews99r92WqbTnzpcN6xu8+SlPn8FH6etbfmol8hROqgIii0jFjzIs5XhtKSbM24OA1s/sWMMPzdq3h91ZWL721i7Ml1WAQ10tKpR/7AoyyqiMVSp4v0ZgdapHp0FpmyMe4kGVJnTmX2Y05wCgZaciSCPkYb5OCspfWGHfRslzH7qgbSccCRnvhWgi1reFrmxjz/FEYZZvF+3kyeh5xjZVV/ijosqO8wJDv6BKe6TPm9bAj1rYYIC/X568xTHK2J5oLnFR7KNVFkea8lF2tD0BKqKGmwwFhfRtq4jf/tAraVn7k6/tiYP73+t/AT/zBF9L97A6Lj5Ki23fAORqbddHdLMDSUEWldwUjTbB62+/KbXQqhafGMdCzkJ+uMN0B8Cy0TWZc3jVXuT8iV2ZPTboNE1EdZmxlSmTZmhlLqGozR1lPgadnIZJsMNl6djFNoNa/rzLG1bMdCt5usNDcWjnhETqcdIcYa/oQ7HwxGvb6RsnIrBL1CwoNLGWWew+aLk5g89hnh+uVcaQ7BUbeV/gbFfLp/AdlrduKzbxXDxr5gvGkmX+VPYLBdMX0qEXVyIwD0tHrp6tMh65EnKo9u+uRarO73mHVmJXg9mU9fmw4mr7R48bmGt2RIdDYRRuWcqurHSucnvOx2wkq7g7WmZUwtGUk/k9fsz9TgKKl6tIjyKSW50JXS0ftxu7WEwX6F/Gh/k+gbH2CUp0WHTx/a5nI2hZ7nvaez2DbwJHF6Usr7OvmoYjLVncZ4mzaQ+CiAPst/xRPbPvgYf/ltEW+vuMSmzJHEeWXzs80L3G4upXTsPiK+XMWtv24mOmE1YY5VDDQrYqR+HmZCNcc6AvktbSiGxjI+8LmPCgF6Qk2n1F+eT6JkxEHcz60gc8o2vmqIobjTEjeDJqpkpuQ3WmFu0E27TEJ/23JWWT7CVUvA9KIpjLHK5V6jDwbiXux023i2JZKx6x9zKE3zPEYF5PKyyR5HozbK2szQEqpoqDQl2FdTjwo3qeBsaSgf+NzncZs3ZtrdGIh6uFXly1K3RB60+DLSPIeHrT5I+7SR9mm457sV2sgUYv7qfZUQnUZm5s7HwaCdrU5XWFYyjYEWxexOGYzlEzEqkQDZ+HZ6esSIxUr6+oQMcCkjqdIF5Wt97s/YxO1uL5YZ17551me7jFEi5HKjhmPlQIc1cwyruCczxEgoJ1YCBzqsOVsb/gcXuRcTjF6yIGshwZbVOEjaqJCZ4WNQS6tCo4jP3+vPh29dZXvuEO5E7mLw+XX0j8rnqPNjrkr1WHdmAdkLtrOxOZD++kUEa7fRqBKyuXY0yVXOyNslIBUxNDIbc20pUqX4jYPx+W8LUEpAHNNCRr/TLKkcQJ9KRD/jco6XR3Iv6Bj3ZOasTZzJo2G/sKN5IPeqvbE16CCv2gZTk27inV8ww+glTlqG+OxfxaX5mwEYd/0DxOaaVJmyT4iqV8TrhZ/804D8DeXvPoUllvSh81qbOOdsVI06vAg/zZ1cXx62+/K9zWM8T6xks/85CjqsuC8TkXIhiJQLQSxJmU9TsTlZUgfu74mmttMIF/1m2poMyB94lPpGI0pHHmCRbxK/u53lcas36bO2MtYml9MD9wDwnsNdXszYip6oh9nWz7leE8D1mgAqRompSrfH2KoLSb2I350vsS1vKCGDCslpt+WzK7PoZ/SaUy/7ca6xH97jijnfbYjAr5MA/WrG68k1qK02L7iaEsoGx8tscLxMV58OPzhdwrxfPUKRmgfDttGplOCdMJ+vQq+BWoDvXE2r50/jTrDfMZE9xQOJsSzjfEM488yS2PlqEO73F7HW/jYTjF5SPOwQxcMOUTp2H14G9XwbcxHX60sR6ih5fjuA6MtrGRycz6Y1e5kcmc4I1wLONEYQ4VHOifpollQOYF7efHqVIr73voClThcP5/zEpzHX+TTmOqVj96FCiHaHmvlGFWwMv0iF1IzNLe5MDn2B2/kV7PjLr/Q//iGRzq8x1ZZSKrNk3IN3Se6x4lxFGM+H/UqQdQ1zDGtI63ThSbsXT9q9ULdrc7zTjPypv/N25Si+t04m2qyMKMNSzrrdIyvqBJW1ZhwLPsit1GACtXWJ2P8BADvPjyXEpIrkVx483BdFfX8VZ48OgV4h9ApJ2xdCfZUpWQ89ac81Y7lbAhH+pVz0uIOWUMXnFvl0VhkiVWnzON8LK+0OzhSF4mPWwDTDEgpaLGnpM+Co82OsJR1Msclgik0GTwIukRp6lvF6ctZVTMTDuAl/wxrGvVxCjHkpu54N5eiQvSimtiId10F29AkEFbr0VOvjatWMraQddZEBBbN3cLEzkIwupzfvwnWphOkG7TT2GXLS9QGfNQSx2KieQS9ncaYxkn31g5Cpe6hXGGOmo4l4lWoh2+pH4GteT5BBNUdS+7PH8SFny8NwlzTgLmlAr0aARKBArRYgQoDAWo6VTicbm72I05MyeEQmIc8X0NBryNnmSMQCIS1KPYrbLbAy7uTrgZdYNuQh+x0TCdSrJLneWQNMmT0Rq7hKZsx+RIhVDTvaHNAR9nHY+Qk7T47necg5hn35PpP0u9kde5gh1z8kpcmZ1R6Pqe40xtWmiVOBB1lnVkKBwhTvhPnMnfiQaTvXMW3nOvz9Koh2Kufj4Nt42jWgXaX9N9M7/2Qk1MjffRH9n/JP+af8U/4nRcNI+I9lCP6s/N2nsHRtHdWBB+fR9sKS9dMu0NJnQLHUiscV7kzzeMnXVq+IyoinuckQgUCNo62mBXSEdQGHXkXjattEVasJHhZNGIh7sZG0M9okizqFCb8VD2Gz31mWnV/B0rH3OHpsJGotUGnBnvk7Wbl/FTIHJWqxCg/XOqqeOgIgaQa1EGLmvOBWehC6llJ65GLUTTqY5Amxin9Nfokdoi4RUZEFPC9xxdGmhYoia0on7WF0/nhUagGvUxwZNTIdEZq/UYB+FT+9HIWVaSetidaotcBuQBVrXe7y0ZFF2A6qQqESYawtJ7vIgbLxmrmUzxqC+N7qFaFp8QRZ1vLioj89Yd1c7L8Lc6EKgImvFnIr+AiDUpfiYtpCTrkdAqEarUoJCmMlejUiZNYqtNuEbJh9jI9uz+K9oXfI6bbjK9vbxF75EF//SlTvmVDwnh4mlpq5B1mPmBDbGjoUOqxxvM8n2VMY5VSAi04j2y7FcWzWr+xtHMweh2dsbnFHiYCPzYpxP7uCD0dex1gk5cvkibwd/gipUofPLfKpU2r2Pt0RwHum5XzWEMS5WwMQeXQSYFPHHpcrbGgYiEwpJqXemcOBh1iSo4G3EArUvO32kDmGLayvD6Ws25wvHa7ye8Mw/A2q3/xfxRnkMPrYeoRenYiTDHn14U68jqwiPLaA5znuLIlOQIWAEwX9UPYJeTf4IfuLYt7QB7vdWoKtXSuJQReILx3O6w4NGrCsV4yPRQOZNXYY3dInZOUr7icF8s2Ys+wqH0x9qyF9ci02DTjLxylTOT1gD+Ha2owvHEugcQ3TTVN52u1FRY8Zd177MN4lh2q5CQAW2l1cehHK6OAcvrO7R02fkEBtXa5K9YjTk+KfNAdjPTkSLQUV9WasDn3M4yYvjrtf5vumSE4lRmPm3MZYh1zKZeaY/QEseeNROCvG3GV31kCUrTqsG3KDql4zzuaF4mjRSs1zexQucmjRRm2iwNyiE12xgpYuPcRaSqTZZnjFlFHeakZ3lSFCJVh4aTqr1GrQEqloS7Dm/bmX2Pggjgvjf+Xn2tEEG1bRX6+IX2tGMtisgOMVkSQGXWBHmwMnKyNo7tRHIFCzP+wwHxbMoEuug7l+N+a6mvvOrLKD13q4R1ag/siMzg1Sno/+8b+dPrL0s1BPPjL+T6/fG3Hknyms/6+Io0UTz0PO8WjBJjZnj2RH2mDuFXpzMWI31yv9uS/TpuehBYI2MR4ODZjqyDDVkXGv3pvf+p8g1rKEe1E7mWyjYfkTCtR0q3S43BBCWtgZFj1Ywqpxt5li+JLUNb8wa8ZDYsa+IlYCOW/vZGJkOpIqMXd9r9FrqqLXVMXat8/iOa0IA61enNwbyOl/HFuLdjKnbsNpdgl9KiH9fMo5N2kbH9ndomT4QcwlUqxcWtjS6soG10uMts7Du38ZMqWYHpUWPSotnrZ5siLwKR7GTeSu2kmvm5xRNnnI1WKmT31ChHkF1XWmeBk1MDBAQ+jkcWYF31u9IjhlFkeCDgGQ9f5OCgcdwUtLm8PtIRxuD+FYwCFWv36LE6H7sZB0szAsiSMD9xMzPBsb92ak7gq0bGTI7RWIUHF03C5+SRqBl149E75bz9Gxu2g46sLNmyc5PXQXZ4P3czZ4P8Z6cux028grsSdXbo/gvikpTU5cbwhE1AM76oexx+EZERnT2f0qlrQ2F3a0OWDg3MHvx+P46toMdA162J40nA/NMwn+aRU2IgNsRAbcavBjQ5MP31u94v0JV3kavRtTbSnJPSb8bPMCS+0u0sLO4C/WQyxSMtHxFY6GbcwxbCEsPR5PSR0V7SbMzljCLockHjT5sDV1BFtTRzDxxXIUhiqmebxEe2gzMZlTCRxQjKFYTtq4X/jcIp8yqQU/h57lUNRBxAIlRrpyYr00lLiSMm2O+B0hOGUW823+lYPiWMgBAPIHHqXXSEDKiWCM3dr44t40GtoMGe+Zg5lFF1P1Oykeeog2pS7Dc+Po7NXhB+tMfqsbzp58TR3vVNg+rp6P4Tv7a3xnfw1dkYL4fqnsckjCXKiPnZbGOTAUylCo+7gfuZtZzqmscn7MKO881pqWUdxkQbtawfdWrzB3aaU9zwyhQE12ow3b7FLZZpdK0exdVPeY4GNbz/O4LdxsCOBBjRcqhZBh1oVkLv6VpSGJDO+fhVjSxydet5CdtqW7WY8Vnk8JiC3miMcFLA26QKhm2Yj7NJSa0VBqRnLoOURCFctn32SZcS2hQWV8XDqVpGQflptks/rVHNp6JZypDicx6AJ+z+ZysyEAgUDNhYjd9JYaarhsnlkzwL6Umuf2uOo346rfzFeh11A7yVhsn0jHtzISgy78T6ml/7+Rv3sDUl9qyoEOawY/W01uzDFQC3gxZCfjL68l0KKWHdXDCJ6aS/zgJD51uUFmqQOZpQ7Utxvy9rVFnD80BKUadvw8hdJ2MyzEXbT0GZBZ5sClbn1+GnSWPRfHMDd7IYGPVnDowWAepvnjdnUZXodXkd9hjdxBwd52W7RbhWi3CsmR2vOywoGz6eHUtRkRu2YFbfdtiNj/Aa9euiJVaFPXbYhEoOTn2tFsaXVliHkBIRbVROmW8E7uLIQCFYWJrhS2WVErM6JWZsRS6yfseDqM5xUueB9axYfhd9nzIpYahSmv2u0xFXejVgv43OopL+vsyeqVkTxtC94J81nve5s6pSFPizUzFCPz3mJc/iTKpJaUSS3Z3zIAuVKLT8bMY4X1Q25U+TP/2ipGmOagJVJid0tEjHMZLhcFyNXaLElbwPKoJ+zOGojJtCreyZ7FwNUpxBWOYdbFNYxLWs24pNW0ZFpS3GnJzPAU1pqWoRrWRnWjKXk5jog74EmyHx4PF3Io4DDvBD9CiBprcTvrfW+jCu1kzOAXSBv0GR/yil9b/fny7WP0ezGDfi9mEGxSzcmicBTqPrbcfgtzoT5KtYAnnT54J8zna8scllfFMLFoNAmBFzlSEMlJt7vEZk3masg+th2exJOQkxwIOazpTrK/j1BLhVBLxWjnfFyuKbHXaUV93ZxnwecRCtR8bnObZ3JLBq9azssGO/Lk9vTTUXJoYxxPAi6R2WBHTOZUPph9CTFq+tlWMEq3i+ch53geco71ZVN53WHKjjYHhMNb0B9TD7fMiA3LR1Wph6OkBT3tXtbXh+J2fgUnmqJp7tbnrv9Z7stEHHRK4Ifgi3xk+YTF2fMZMCGT98qn8l75VBaZPuPM02gOdVjhdnk5G+oH8VWjP++8nEV6r+Zlv1YXSKdKQkKVO4sqYsnpf5yN9cOZXDyKA/5H2DL5CA7aLVjod795xyK+XMXNEj/m2yURdft9Gve70Fhkzvv97nOuLAS/8+9wu86XtHpHbM3a2VM5iKHvPCfGv5i92yaQkeOCQq3ida05vv6VHCuKRGjSi9Ckl8BfVtEp1+FRsxeejxbyqsqOH93OszNuP9HPl7Et6BSFpbY88r/MjjYHXC2aya+1xlhbzrjrH2Di14zHg4XInTVNG44xlXhK6vCU1LHhVDxFgw/z46bZNHfo43Fmxd9M7/y/zQciEAjMBALBRYFA0C0QCF4LBILZ/8F1CwUCgVIgEHT9m2PIf3WfPyt/9wbE06OF5x3uLPZ/xod1YbwT+YBfW0IZFJnLkxwvLCVdvKq343GdB7/XDKd01AFKRx3gWuQuwsJL6HJW8UzuhP3cUlpKzLhcGUSR3IbB3kUYCuXsqYwlf/FOwq0qcbBqJbxfMYPD85gckc6e+F0UlNnyTewliuQ2jBqfxqjxacQZZ9DPuQJ9MylH+x3A4r0yli64SY91HwHB5SQGXaAh3YZNdaMIMKxGLFCy9flI7mQE0Kg0pKHGhGBJBW4xr/nS4yq2uh3Y6nZgIpQhNFCwo99xtLw7WG1Shb1NK47iZra6nCfeKIPSkQf4a91gdgSfoERhwfrqUYxxz+OvL+IQC5T80v80FX2dOOi3Y6Tdwy6HJHY5JDHAsAhvw3p+un0EEWqUagHTY5/jIm4iyKyGmuEqnt0PoGqOgr/cnMFcn1TOlIWina2Hi2ELWwPOkFDrzmCLIoxKBBTEHqEg9gg/Tz9MZ68OHpJ6fJ/NpatTgpddPf7+FWxbs4vlw++zLPgpdiLYmRvLBsfLbNw8F3+dGnpq9Xn42pPJkenkttrQ3qfHy25nhtkXMcy+iDv7YpjrlYr3pdWYezWxsdmL/Y6JZLXZcTjyAP1ezOBjmzvkprhyvlvD6PdJfTgfut0h7of1rFt4ntml4/i1bgSWkk6+LX0Lb/t6vO3rEaJCtL6On6/HMXL5Mwa8moK2sI+THaHE6UlpnCdlpls6R4sj+bE5CJmFgLsyLUQ3TbkfdILt+yYxLm0FmfuCeCSX8E2TL980+VJca0XDazNmGRUiFKiJtiqnNUSBiViGbq0AsUBJjGUZP1lnYOXeTEqNM5sCzvFBzUB8tNsY8GoK7z2ZRa9azSj7fNZY3aeoyYKiJgvGn/iIyQNSsRG3MTkqjdIuC762zCHK/jWLD6xBBTgbtLLYqJ7eXi0OOiWwsqo/I4xzyG+wYsLdNXyYNo07zf6Em1VquG8a/RFObiR/4FE+fjaNkUG57N+whZLpu/k9ZzDdUh1Oxf3GXq/jdHRohkcVShGLzZ6iLVSS/uVOQv01kOw/RF/ARreDRxF7MTSSYWgkI+v9ncxzTyHUpBKxdh8iLRUnWvvzef4kHM1a+bJ4IgEeVXicXomlViete5wpGnwYoUDNsthHNNUaY2XeifsRJXeLfah66sjB8hgOlsfwzawThKXH0zZYhoN5K1pdfxt19y+DhH/2+D+U34FewBqYA+wUCAT+/8G1SWq12uDfHI/+5D7/Zfm7L6IXVFji2qvL3mfDKZ6xm7ANq5DENSC9ZcX0hc+5eiUa/Dtp7tCnS65Dv8OrALj85U8Un/ZEa2A3D9p8yX7pQsn03dyXiRiuqyQiYzqJel6UZtvj3aTJnyv7hFR0WmHp2MpguxKGSNQs7pdIcqcbNtodTDTNACC/14YmuR6httXMTVmCj00921KH4+tTRf5TNxrculCL1DhI2iiRWtHaq4ehmZTdwUeJ1tFiXacW72TMoqdWH0e3dp5cCwHAN76WOYGpfFk0EXPDbna0OTDCpoBJ+t181jAAM61uEpo9WOXwkHud/pw/OYhx8c8ZaZTFLaEvpb1WnK7pR4tMDy9TDfSD+1mNVxYSVkpWtS1nWqOICCzhRMBBNtSM45wqgtEm2dxtDmfdlEv8eGsiJfG7eNkr51BHNCpbJQ/zvEm6HsS2BXv5tuQt+iTgc0DznKe8lYiXcSPbf59C3qc7cT+3AivPLlKvBPDjyLGUJDvj2K+KO3W+GOvJ2NE0mJboXkK0JTyauBknLUPcLi3nxxGnKe6xZn9mDJ/308DM+605zzfP4lg39AYPW3xo7dPH/ewKQsJKmfd8Cbsij1HXp8fd+E2c6wjByayVc5mh3MyJZsvavWwsHUerTJd9QUdJlbnyrc0jZhTMAEChFuFnXM+O6acYe2Ed5yb/wpRHqzk+6hFeR1ahMOtjllEGJx+N5MvIPE7pD2FXzVCcZpegK9Dhp9X7GaPbyw4fB550+nA8U4P9tG3AKXzEDQxMXkFO/+OML9TMtPzF+iFXvEMollpzPd+fH6wz2eRzjlgJxJcOp6bbiMEFa1CrBMT6FvFD/QjulXij59/LZDcNdMcrc3tetthzr8KbzYFnSdbyACCxwo2ocTmc6AjEVqeduMIxfB16lfsyEfeLvRF6qrgduRNDoYjTnZ6sNK7+/yHuWmL6nB1tvgS7VQKwOHs+O/xPYHJVn0++OMrMp8uJ8ShF3aRDvY4hvdX62PkKOeiUQIdKRm2Xpg39k+QpZAzdwc/NkfQmmwFw3teQ7c+GE+lbxgT3LPz1qonVLSOv3RoVAuY5JvNTxmiK43dxtNOCCz9u5ouGaCZav2TD87eI9CnjtNt9hn0+AWWhDX12CtZ73NI801eT+CH4Ip//voCOERJ0Atr+ZnpH9f8ir4dAINAHpgIBarW6C3gqEAiuAPOAT/6n9/nP5O8+AvF2auRzh2sUz9jNV43+dA6U8a77A95fdZ47Fd6ofLqJtK8gwrGCd7wf0WMGPWYwMXMJGZ/upCD2CPfSAyiZvpvjnWaIBCpcry8l3vkFR28PZu6Qp0h0FJgaSikeeghv72pEQjXnkiKIyZzKtaoAZpk9J6PdkZNtUZxsiyJGt4qFDs/QFSmY45vKBudLpI/YzkDzEpyiK3nRa0afkYqjz2N4dimYl5X2AMx+shwAi5ewMfgiho4dNCr1mTolgalTErATtzLIIJ/Vro+w1uvCTKubW9Ua5OGcdlvWmZXwpfNVxuj28onFC46t3MpIoyxWJs7jcOQB9IS9SESagb3jLo9oVUkpmb6bkum7sZZ08EXoDV7F/cp258sIBfCt/XVul/nywZX56NWBjbgd39ByBryawrSnK7Ew6wIB5IzcicxRwcprS4iwqMA5roz8xTvJX7yTBzVevGq2wyu+EO+E+dh5N/A4zZe18y/QItXj1+n7KS235hePM/iZ17PVNh11n8ZL+7p2DG63l+DqVcvHSVO5UBGMoE7CML0ShumVsOnYVFZHPiKh1Ys+lRBHnWaCQst4We7AX8OusuzxQq62hzIlU4MMXFpvwZfR17AcVc3G0nEIBGrWeD3i3fyZZHfbE3FmLQqVCIVKxOW8IMq7zZjyYjkCGxligYooz3JWV0cRNTgXoUzIjOxFdDmrOd5phiCkg0aZPu853GVIzkTWHlnCrnZ79hQN5FurbNwdGnB3aCBXbse40+sQJRmxpHIABS+cKRu/jwXFM5jSL51vbZ6g6tBmVtkwNpSP51CHFflNVrR265I6ZAeG6RJmWKaQ3uDImqBHDNQv5EJJMBdKgokwfc1Jb01KbuX1JdT0GFOk6OJ4xH6SXruw1rSMoYa5XPW6RaBONcN1lZibdLHDPpkhN9bybuVYsrvtcbuwnECDKmTqHmTqHmbmLORIeTShJpXcfx7IcPtC9jfGEvTOK07WR7Mq9AmJBe5MH/SccxF7ODXhN4yEuswqG4aRUJdx9jnkKKTcGbydkEvvMc04DcI6IKwDuUpM1tjfWG77iIR6TXr1ZY8NeS+dkfdp6n4hTlW4n13BaL1yJn22jsZeQ/Z8P5kDgw7wosKRLa2uvM6zZUZMMkaW3Xz8Yiofv5iKSi1ALOhj1fIrpIaeZbpbxt9E56j581Pof3RvWQgEgrR/cyz/dx/hBSjVanXhvzmXCfxHkUOoQCBoEggEhQKB4AuBQPAvgcF/dZ//svzdG5DsJktOtkXh+XgBX1vmoGzTZn/lAA1vubgPe7M2clusSb3nx57Sgei0gU4bqK9ruMh/bPFgy4jjeCfMR6rSYXnKPI4M30d/vSKK5uziRG4/vg+4SEOlKYHJsykosMfesB0Tx3bqKszoZ1VBTZ8pr6rs+N7qFd9bvWJb0yA25oxhmEkeJy8OobzPnNgdH3Kv3puSIlsqe81BoqQ0bi8iKdiat9P12gj6hOQrutn+9XbW3p2D4KEJcrUWKS3OpLQ406w04EmXD188m8welytcbQrmhP8hACZav2Rk3lusyZvFtlYXdAU6TH+2kuG6vah6REgEfXyVEcdlz9u8VxNBj1rBzMLpvFMTyTs1keywT8ZSq4P+qYuJuv0+WxuG8da29UQ5vGbikBR0xjYSpyflF7dzNLyywty0i4YKU0RmPSyvGIVQJkKgEnD7XBR/cb72hoHvecg5dvseI63MCRMDKXXNGs72n49NofWVJasezkfUrsXEx2/TqxLxTZMvJeM1czYrrR6xaeAZyqosCXSppqXYjPszNjHl2/VM+XY9Oat3olCLKG0zw0ynm9peE+JtUlHJtPghdwypo34lzjiDTX7ncNBugSpdbjYFUplhx2jbXFouO/Dd7UmIRUpu5vqj5dBNU6c+TZ36FA89RKx5MVlRJ9gReZx1pdNYbfuAHfbJlHeYMTAyjzMBBxHKBSS0ezPUuYgYyzIW313KRd+T+I8s4kxV+BsqW4moD4mojytVQRTN3YXzW2Xsd0zk6fTNpPf2UvbUma+tnjGreAoJcT+jLewj1LSKjRemYiDpITv6BMN+/JDe2E4+PrCIYwGH+PXaOB52+SKr1UdWq8+hu0NYVjqVe11+6Dl2ssM+GU+xAY+7vREK1QQmz2aIRE1UxjT8xXrElw7HVFeK26XlLBvwmKQSV5p7DCidsoffswdToFBToFDzLPg89obtDDfI4ZvRZ3HQbsFbr549Ds9ILXKhQWEEUi3O3+tPVo89i/a8y48tHhiK5QQmz+Zzi3z2NA7mt8bBmDi3E6ityyzPdGZ5auiUf2zqx7KbSxhgXcb+igFM0u+meMZu7vtdZbBpAWl5LtyZ/DMTshbSNFrO625T1PFN/FwxGmWrNgeOj8HrYAdCgRppsTFhDlWEOVTR063Nk04fbjYEMDp/PB+bZ/8vNMj/FWlSq9X9/s2x59/93gBo/3fn2gHD/8VeT4AAwApNtDEL+OhP7POn5O8+heVhXo9MKWZv1BFaVVLE5nJiLUuokJvRpxIiFinplEr4edZBfq0YTmGEptgWH55KSbclXX0S9HV7mOr9knvNfvwecYI2lR5jdDtYWTWA6b4ZjNeTkxiVjIN2C5b+nURIqvhBexThHuVsfBjHb5NS+KRBw5UBkP/UDYEKviiO58uZZ/mheAwzZz7k4MPBYNzHxuSxjPLPxe3uYkbMzsRWp535PscY+eA9fqwdQ2GbJXGRGWR62jFSt48wLw2veE2fkBk5y5gTmkz/gx8SMSKXmdmLmOWcRpHMiru+17gr02LkH5Du3/a7TI9aQZjPa76tjCPaqZxhORNQqETo2IkJMKnlZxsNxLVC3Ye9SMYwxyK2RaUyLGcCtuMriDIupUcl5lpnAGHp8XTmmzJyaAbOus2onIQcyo0m44ofFgMbac22QOqoZGHaIlTFGn6GPtteDE2kiHX6MNGV0Z1oScykTKIDSgjUqUIsUDLj+XJ0xEqSCt1J13PENbiRpA53PrS+z8IXExBX62DkLWdgZB6zP1xH2jYNfLnnsZV8OuEiCpWI/Y6JuN1ewobRL7keWEjSM1/2eQbzqNGL2XYpJHW4o7RQYCnpJHJgPvFGGewfEEPJoCO43V5C6ej9hH6/CqHm0XEpUJ+EZg+GGuRxoG4YC+yT2Fc/CInNfQQCNQmvvBme6IdKX8WdFwEgUVE6aj9XqmKI/f1DVGJQ+ncT+ZeVtI6SUTT4MAB+z+YyLGcCzoatbG5xZ2fGILwc6lk6+Q4/NvXjutdNfJ6u5mjEAWZdfocZ4xK5eHkABMHq1Zf4+ewkct/ZSY9ah/szN6FAwCE0/Cj7Ju9m8e1lFFlakhtzjNA0DWgnwJP+O2lXwX2ZMcmhGliV0273uSXTptNel81FI1GrBTzPcwPXB+QPPEp86fg31zXK9DES9vD546m8P+Aued22YFrOUL98zqaHUzZpD+HfriJWtwJ1vw78JDW8bHfi24DLyNQ9fGj1AABdkYJqZScHng4CoHTSHhLELZxrjmWkURbm4k7Se3uZ8WQFE/xfkdzggkAI45JWUxB7hMDk2dR1GiLPMCN8XCV7J5yjRKHH6sg5fGX8gsiJJUz6owHA4/lKvrd6xZBGV4y15cwsHQvs+Jvonf/TYviflC7A6N+dMwI6//2FarW69N/8mCUQCL5BY0A2/lf2+bPyP25ABALBIyAa+ONVpVqtVnv/8bvhaIo+TkAysFCtVr/+z/ar7DElvdmRjj4JG7tN0Nfr4XRRGGq1AJ0nhnjOL6fykRNrWuZhlKfFsFmafHGXUgd3/UY6+nTJ77HDWEtKeqonKfpuWNm3sq5LD5VKgLpWl6C3Krl5YADCXmgN6eP5+K1ss39CvVJO2LjfWF41hJLpu9neppkKHj05h1lGhVT1Cfi9YRj1TUZUmZlimSbAc3UxDTID/mp7l6IOC/LbrCgTmdHfoIjJQRkYa8lIfBRAcq4V7ivz2dtuS0WPOQBrLVKIdSrFS7cOm+gaBpgUU95hRkq7C8ddHuHxcCEvBu+kWaXCXKiPVKWNrkCHNfb3GCJR06Ds4pv6Ybxn+YAtrYHEmfxrSC8WaKEnlLPVLpmJRWMZZ5tDYos7ye1udCgkKFp1aO3UJiCinIJ2K8q6zLHTa0fRLEEY3smX3tfQ9ulj9cWl5E88ynqPUAB+sE7HL3EBfVX6ND42wHdWEU+vBfNYEsyyCXdIanVjZWDCGxrhpDZ3vs8aw3CXQlqUOuT0P45H5Qo+tL3NlMer2bbx6Ju6jYV/ExuS3mJb7EmWVA5Az1jG4Kyp7PI5zmSFH+19ergbNuGjXcu396ZjH1ZHvdyIin0efLxUhNEDfc6GGaNWChiUPYmRS57ztE7DSPhK5sQwiwI+KZnCu84P+KF4DP0sKlmUsYB7EXuIfbmOTZOPcq/dn+xWWwZbFfNOTST+o4vQFvax1fEa418t4va3u5CqlaT3arCfNoWcY7yenLsyLd5/Gc/0gBeceR7FTe8bTC4exchmFy5F7eKjsqmcnrSd/Y2x9FhrwDbvnY5EENmJd8J8RLn66FdDy2A5IjMNtMsn+VMxLBKROfEY3odWcXr2VoK2fIDW4BZKbS1p7dWjTyViuNt9ppeO4OVzD4yLBBDXTI9Ci5LhB3G7ugzQcGt85ngdgA9q+zPCpoAtdaPQM5eiRMAuhyQAHhV4UTZOM2/kNbeABJkTPRWGjIhuJc71AW5XllEQt5OsXkvG68k5kx1GeFQZpZM0Tndg8mx2BR9jXFwyI3X7GKlbTKJci5IRB4nImM67Hg/5UTYKbbGSS936ZEWdYEnlAJ766GCg1cuI3z8i+92ddLbr0qg0Yt21eUyK13Cf356+GY8H7zDMq5A9Ds8YlD3p/1RN/afyPzBIWAhoCQQCT7VaXfTHuWAg5/9grRreWLf/zj7/R/I/Pkj4hwE5plar9/278xZACbAUuAp8C8Sq1ero/2y/0GBtde+4H8l6bycbm7341LyQwSuX8fnWgyy/v4gNg8/z7el4Zk96xKGkgXh61gDwpctVkmXu/J4+BC/Hem563+Blr5yNVeM55nobsUCLamUn75RpcqmvCpxwdGlkoVMSYoGSDS/HcSJqHx8UzuCgzzF2N8dy+abmVgePyCT1WDAeM4o463aP9fWhXLwbxacTLnLwdQzVZRZMjHjB19ZPCX2wmmiPMpz1Wjj9KpyRPvmkNzqwyDUJoUDNxdoQIs00NvTstViihudw2PkJ8aXD6erT5rrXTb5p8kUs0AA5mmp1c74mlLu+1zjUYcWmnJHI2nRxcGxCLFRyxufUG6a5HW0OrDbRMBKW93XSphKzrW4k2x3uIhaI0BGI8XoyH1erZi55X2BG0USuet3iUrc+k/S7GVswDoCePi1qWo1xtmihrMGccMcqClosAbA26MRRv40ww9cc2BTHyb9u5khrFEcTBoCWmttjt7K/ZQBdSh0SqtzZEniGleeXcWL6dlZtfJeDn21h7q9rWbr0OluejmZQYAEv6zU1oyDrGrz16ynotsZbv54quSm7HJKIKxzDdrezuGgZsqgiltxma0RCNfVNRpQMP4jHqZUE9islr86a/IFHuSXTZoxuL8EpszCQ9ABgJpHSqdBBLFTSLNWHW2Z028GcuEecPjMEk4H12Oh3IhEpKG61YIV7AouN6nG/t4jZQamcLQplud9Tdl4fTdHcXbhd1qS5d486wLXWUJ7t6od4agOH/Q4z+uYHTItK42x6OI5OTdjqdZJa5IKwRYxarEagAlvfBmobjUkdsoPbUnsetflwJ8uf0rH7uPUHE6a9qJ1vquIYaFrMztxYBAI1MzwzeFDnRULgRRLlKvrpKNERiDneaUa7Uo/VJlVMLh5FVpobhTN3cLHbmBqFKQdL+vMiXBO9FCm6mJSmKfpHZUwjOfQcbreW8PWAy0gECr7InIC5YfebQb4H/lc40GHNYqN63K4sY2LEC6487UdkvyJsJO1stU3H49RKAApn7sD92goWRT/FVKubbTfHsXXiEX4qGc2XHle52xGIVClGR9jH5ceROAdWM9Yml356pYhQs/TUKgoWakBHB3gXM8YsizmGmmHhb5p8SWp2RfazPbUxWnw85QLLvJ/+t4f4zHwt1SMPTP3T68/E7P7f3oNAIDiFxhgsBUKAG0CMWq3O+XfXjQVeqNXqeoFA4AOcA86q1eqv/yv7/Fn5/1IKawqQo1arzwIIBIK/Ak0CgcBHrVbn/0eL8hqtsfHroUjRxaWKID41L0S6oo2LLeEIeoTsrxiIZVQdhx8OQrtTSOMrTZSw1PJtek1VDIzMw8+whmE5E/AxqedltT2nLG34a0oc/VwryCxyonTsPmJ2rUC5QMhio3o6VDLmxR7hutSImiwb3hHP4B3HByhGa0pKOsI+Zi6/y56MWLIcZGS+HYTxZy38vm0KFtMrWBjzlKO3B3NZ0o85sYnc2B1L4VtNGL6QkGTkQme7Lm4+DXyVP4FPvW7SrdJ4r64DXuNjUIfb1WWI2kWoRbBIEouJWMpW23T6vZiBu0kzU+0y2NHmgKN2C5H2FYwLfIWZqItBkh5+bA5HT9RDqcwSsUDJKS1NuD/TALa3OeGlX09yjz4/vR5D43kn1ANkjLPOwe/m29wZ+QtLKkez1uYuk4snMcUmg41J4xjgW0xHj4TbPtf5zCwIlVpAdbcmcv4XBsd2G11afWDkg/fQMehhTFQmf7G5x7qKiex1voGBUMIpoyL+UjCZorm72NjsT9pfd7Kl1Y9eY/DRqcHYuhMTsQz9M8YAfPvDHublzecX79NMf7SKz6OvkaOQMtM2hfisRXQnWvLqnd/xyF9K6agDuF1dhufjBehXCGgPlKDzzIAI/emEW1axOjUQibWU/b4aLu6LHaFcrgxil/8JHEQitrsEMcc4nbn585gbf5+btX4MMCumvU8PZ70WXvdYMLYgnN8HHGdbxQisjDv57flwSufuwuPhQi6M/RWAEoUlLQo9Nn22i921QynpM+PuuK3MyV6Ih2sdJUW2DO1fRJahLb4eFXgb1nMyNRIrvS5qMSbizFqKZ+7iu/0h6OjyJmIAGBGaw1m3e1QrO5kYlcWY5NUMNCjgAV782OKBh049M0v6s9nlAvV9rtiJ2zR0zK/tGRSTw02pHjdaghhgXEx7mQmXfDSOxu6qcYTYVrOr3Z4ffc+zo82B0jH733zu7yYdPPK/jHfCfL4NuoTH6dUUx++ipK8LQY+Qpl4DhJY96Gn14K1XR4Oyi81xmucsREjZW3txu7oMB9dGkuN/5mynxuAtqRzAfsdEXK8vZXn0E6Ki8vE1qGO0QTZn2iI4UxDG7bk/cb7bDrVCwHrbWyzKXsCcME3K92DyAGZFpJC+VsAGh6d8/Gwa8PRPqqd/I/8zsOyrgQNAA9AMrFKr1TkCgcAJyAX81Gp1BTAcOCQQCAyAeuAY8P3/bp+/1U3+3zIgGwUCwQ9AAfCXP/qW/dF0CACgVqu7BQJByR/n/0MD4mzRiLVdM4UKC+Jd0rkuldCWa46ubQmhIaWcd7+L56OFHJ/wO6u2ruHFXzT5c9+9q5gwMI3bZb4kNPggMumFTZZor5JR1WuGdqkEO782EKjxeLAQIgTQbMSg7EmMsCnAS1LH6boIdk/ai0Sg4LfaEWQ88Abgu5nHMBFK0QvvZWnOPJx+qmacaTGnJ4RTWm9BYYktWbN+oUWlILPXmmWfJrG1cQjZcTK+d7vIlprRfHBsCSoxfPxyPgWLNPd8TVvO3vSBaJvJyY87ypZWV9r79PjaMofJxaOY7vICM1E3V+qDqes2JN75BQedEvB7NhfJQ0O0xzfS1GrAFL9MRhjnMEm/+w039aVuE2Yb5XG5y43hukoOSLq5/ZedjC0Yh1jQR9m4fcRmzWO+03M+KZtChNlr3LQbKB2zn+OdZjwvcwUgUr+E9efncyR+OwCzykahLDCkUFuBvncbwVY1jDDL5ftT0zGaIOek6wPuy/Tx0W7jywuryJ//O2Eb3mb3R78S8tO7hM7MRundzTtps+mr08XIWUbdSM09j3m+GskzA6YXrmHb2KOsfzmFvJhjJEh1ORt4kGGFHyFEiLhaY4BtHwoxW1mPSbxMM2i5XkPx6y5u4rWfKQvsk/ARa5Tm/jvD6B+Tx7iHawh1r6Twigf5U2yYZJ/J/UYf6lqM6LEVk91hh1ypRW6RPUuinnKtNYSCChvUvUJmRaQwtWQkX/W7xrSnGo+7eNghPrnsS1ekDnNtk2hT6jPltyXYxFUQalpFWbcDF0qD/7WGkeOCpE6L1cMe8J18PKF+VWxo8uGHZQcZpdtFs0rOc7k1AFdbQhiUPYknAZcAMNGXsfbVDORyMXYubVxrDuGixx2aVQLWmpYRnDKL2+F7mdE1l8I2S8Ltm4ixv0unSsniabtZXa1hwbrpfYN3aiKRqrTZXj2C4eZ5ZPXKuN0VQIPCiN+9TuJ6413ODN9JhI6Yi5O3srJqGLscklCL1PgZ1KJyEbDfMZFFFbG4aDey9u4cAD636SI7+gTajVpUaVnwjdkQ+htpwEXLO81wP7sCN/8avCS17Hs5gGobY2p6jKmXG1EQe4Tol4t4HnKOz03lBGrrkhZ2BhWaCfzccb+jK9DB7XkUn9VPYl7oczb8FxXV/y1Rq9UtwKT/xfkKNMXxf/l5HbDuv7rP30r+b6SwotBY0F5gJvAbmtDqM6BRrVZ/8m+uTQT2qtXqQ/9uj+XAcgAne63wfQkenG/pR3OPASn5ruwbepCLreH0qrR4WOyFvWUrj/wv43Z3MacHaUgtV33/Lts+/Z0Ve97mwdubiL66ltJJe3A/u4KS6btxP7uC4xN+Z2HaIq5H7eRBtyffJ44nwKOKhm4DPve+QbdKh5+LRpAaepYetYK0Hg3J1E+VYznkfpHoIx8ycPgrHuZ5c3fYr8z85iNOfLGJhXnzEQlV2Ot38PKeN3J7BXrlYmQevUhKtek1UzFrSCInHwzkx7jj7KvSFEkr7zjz+aJT/FoyjGfB5/F8tJBNEWdZlzydcJdK6mUGuBs10SQ3YLBFIecqwjgbcIiFhbMINavm/JNIvIIquel9g7D0eJZ7POXHBE0aakhQPl769exNjcXbtZaCChsMjWVILhrTOLQXs2c6hC3N5H5SID+PO8b218O473eVLa2uROmWIBKoMBfK6VBrkyx149ecoQDo6vTSlW+K2l7O2tB7PG7xZpvzZWIevMvqcA0Uvc+BVfSaKJkck8ZI42zG6PaSKFdRqrDiVnMANpIOAvWq2LJ3KpPnP+HkLc3ziB/9lLNXY+l17OGdiIdUys3YapvO9NIRpOW64udVxWxbDadFj1pMjtSeccaZOGm1s7JoFuW1FpQMP8j4wrEUpjrzwfhrBEs0kPwX2vox3TSFFZnzcDJpZYZtGnZarXywczl9uiC378PGuYVFLs9I73ThTnog9m6NJARe5JFcgAg1675eSdLGHXhcXUFp3F4Absm0+fDldEY4F2IilmKsJeW1zIK3TDMwE0mJf7qcdeF3OVTWH0ejNgrPezJ+QSIXCoPp6xWhatfm2xHn+LV4GAY6PdQmOCAObQPgx8DzrL67gMmR6Vx8FYp+jjbd/r2M8MvjRYMDoxw0flh3nw5XM4N5NHIrh9oimWGcRrdazJX2UEQCFbdrfPExrSfhQRAAfbY9LA57xs0aPxKDLhD+zSruff4ze9qCGG2Qja9Yk+78oiEAqUqbiynhbBp+CoVaCx/tWlbkzKU53wKhvZTxnjnEGBYjV2vg7RPbPd/UU+7KtNhYOg57g3bMxFKu5QZQMuIgl7r1Se925XjCAEqn7mZHmwN7igaiVguQSnUIcarCQKuHEaY5FMpt+dpS42BvbPaisNuaEMNK3jMt51SXKXM8U/7bKSxTHyv1sAPT/vT6CwN2/sNgYf1fB1MUCAS3gOuAByBWq9Wr/83vsoC/qtXq8//Reht/M/XH5/qxxrSUZZWxfGN3C3uRJvdtK2nnC8tU3qseihA1t18GoPdaE3T1WKr4cfwJnLRaWJo5H1N9KZa63UywfMl3r8YiEKgRCtTcjNjFb82DqJcbssvpLrelZogEauL0pPzY4oG3Ti3r06diZCCnpV6Ttikdu48OlYwHMgs+OT2fH+KPkNLtznDDHN7ftZywKTmUdphTm2ONuXcTyaHnONppwbaiYbTnm+HTr5yWXc6YrXxNTpYzpVM1Rs/t/Ar6hxeQecWXc6s2M+76ByyLfUSx1BJdkQJP3QaKZFZ46jbwW+YQioYcwjthPqaGUuqrTNE1k/Fp4C06lRLMtLoJ16kk/tUSADxNm7CUdLLe6j5OWoa8VxPBeusH2IsMyVdo0lwOIhFTC6dSnOWAvW890x1e0KMS4yvRQNBvaXXlSk0Qj/wvc1+mMaYf503lA897bC0awVa/M3yQO4O0sDPMKhuGlU4n2+xSAU0x1c+yni8drxL3cA1iXQWiHH2CRxeQnO9GoEcltrodPCr3QPlaEyXMHpXAvVpv3IybOer8mMDk2Ui0FfQ8sKA7RM7Dwb+yrWkwF1+GImoWY+zbwnjHHL62zGFvuy3LjGvxOryK76aewFO7HhFqVuZrPOOGFiN+iTzFmoQ5HBh8gMVPFvF1/ytsKxrGeMcc2hR6GGnJuLU9lkt//Ym4l0tJDjuO76Ol9HcrY4ZlKj8UjyHYvJpQgwqK5DYANPfqkV7nSLzbC65VB9CrFNFcb8S4oCyC9Su5Uh9MYb0V9mZtnPA5QZHCgIddvjhpNzPHsAaxQAufp/P4PfwEy68vRWjRQ9GQQwAsqohlv9NjPqsP5QfrTD5rCGK4YQ7flY7na/crPO7y4fDtIYhkAvKX7qRa2cmx9lCeNHmy1vEOdzsCuPnaD6VKwIbAy3x6QjNA22OlxMmjXuOEXVyOtqWM/IFH39Q5NjZ7YSCSk9XlgK1OO8+aXBEK1HgaNXIjKZQVQ+9zKD+aZb6JJLW6Y6DVw+OXPgDsGHmYOoUJZ+vCUakFlKQ4IWkQYJ0mp3ylCqtLEhom9iDW7sPGuIOKLDuUhn1vgEKPdlowz7AJgC2triS2eCBXat7x8VZZLDEuw+/Bcu4M3s7ywlk8Gr7lb2JAhuyf/qfXXxq4458G5G92AwLBTeAmIAcWqNXqAX+c1wcagbD/rAbiHSRR63y3nvkeySjUIjx06vESN3C5I5TTJWGY6MmoLrakdPIeApNnkxV1AoC4wjFc9bqF15P5FA46gsfJlbw39gZbn4zm6Kjd7KkfwmHnJ3Sp5PSgpFEJx1ujqJKbEmtSyGKjeoYsX4blJ2V0fGTHtAN32ZiimSpGLUDHoAdliQGF83YxuXgU0j4xovcN2XVtL+N2rMd+VAXaQk3hu7LdhB8CLvDR7iU4jSvn9W0Xflu2i2qFKV88nIpAX9OwZmbWhVSujZZIRUrEEaLT5zLPPYXzlaH87nOCaYkryRqyG//LayiYuIPgPWsQSaHHHIYMyyTGqJhvnsdxe+g2PqucxFm3e4SmxQMg7xVDtiEzJj/hxO1YJM0CBH1gnqvA/9tXPK12Y5HHc357NZgdkcd57/AyRk9MoUpmSphxBQq1iJJuS2ZZPefboreQKTQepqtJCxKRguMuj/ixxYOPzTRgg+vrQ/nUMpHFpZPIqbFhY/hF/podR3erLkeH7MVeq5vLnYEM1s/n64oJqNQCcqttUfUJUCs0xqlgzC4GvpxJhHUFiTWuZPQ7zYLXg5hhmUKnSpdiuTV1vUboiTQpr8VmT/m4fAp73c4T92ohFvrdjLLMe+OdemrXU67QdLwVym3ZnxnDsQH7WJU1hzDrKh49D8DMo4VFrkncbfKjtsuIha5JbEodxTdRl7nRHMRxl0dvOMk3t7jzluErpuxbx7fzjwGw7nE8Yd6vyXxtj1otwMhYioFOLyY6MvJrbOjr1iK+XyopTc6U59uilihxuCWieVY3PVIxbvaNWOl2UdFpyiLnZ6R1upDVYgdAQuBFSvq6+LFuFI1yA7Iq7DBM1mXYomR+tnnBy145YoEKf7EeAAteD+J7h+vYiwzZ1urCnUZfZtsmkyV15HalDwPsygC4fz2cMW9p/tYzrZP56Ek8pWP34X1oFesmXyLesBQjoS6uN5ZyZNg+/LS7edljRLbckb0FMXwdeJVNRaP51vsS75xehq5/KyZ6MgBau/WQFhqTO+c3hudMo6rECiePeirybXC4r2bntl+Y92oR8lQzesxVqHRVlL21ly2trhRLrdhhn4zb+RWUTt3NN02+fGmRx7ZWFwA8dOq40BxOncyI/mZlVMlN/yZIuCY+VurB+2b86fVXYn//hzEg/6M1EIFAYAJEAY/RtPHGA4OA94EWYJNAIJiKJiL5Enj1nxkPgNfd5kgjTuF6fSlZY3/jcrcdm2tH42NQh5VhJzZ6nQRG1vBJfTCCRGPGm/5Bh9phhOv1pQwJLADAKh12Og8CXSULLq5m2rAkvA+tYuSodG5kBTIx6CWXU8JRi1WkmTvy0KaaR3v2sr3NieLt7cw3quCGq6aj6aLHHWIyp+I4oJaQ1JkYSno44HOU3qtCvqoZR/a7mpqGx4OFbI0+w8+KkdxtDyBoUh613UbsXLaTZenz0JP0IjRUINbRGJCehxa4vFXOVJsXLCwfzQC7MrI6HVjiksjGqvEEO1UzqWAKQ8Nz8L62itRlmxn28zquzNrM3KxF7HF4RoJvPiV9ZmTV2PKNkS8uJq0A1HYZYT6kGZlKm9mjExhhmMMv1SNZuCoRH3EDD197olCLEArVlPRaM3VKAu9bJHO4PYAddzRQE4FHhzB2WRafedxgvJ6GCS69txeVWsDw3Ck0d+vzrNmdy563AYh6upLvwi7z3fnZ/Gw8iu5WXb4ecJmlR95m8qREnje6UG9pxKtye+4M2c7oqncwNevmQpCmgLujLRAHo3Zae/U4EnSIEfPeptdQi4/nOxBoXcfLe95cWbiJlUve4/VYMdOnpJBTacsq4WSs9LsYbFGEsUjKqS5T9IU9/FQ1FneDRgDOZIcR5VbOX0om85nPLbaXD8XGu5FAs1qa+gypOOlOlwPou/cgqpGQJXXEQlsTqR1t6c8P1pnIVWLGX1pL2OgipuprWu8HjP6FX5tjyOhzRLtCB5okjFz6CAftFuZ5VhPzchb1PUZUNplyNm47MxJW0Bjfg51xB3J9Md+7XWRO8hIKBx1hZVV/JpmnM8hYM2g8sWg0jVIDdvge55nUg4sedwg2mMUP1ikMyZlKXbLdmy6+rF4ZGef8ebQ8m92vB/Ek4BJytRYP2nzZ75jIEKM81mVq0jRfzTqFo1YzmbpOhOvUMCpQE8ENH/mCaYYlDEpfzCz3NBxuCFmgtQSjDG06gnsZFZCLtN6AHUZDGGRbwqqrS3hv0nUkAgWbMkcCaOau/PRZXjkUW71OTP1k5NbYoNZR0emoxbtL19D+lhYGHbB4xj2u1ATidnk5cREZ6IoUpPf2snfcPoJTZhFkXUOCQR678jS01TGOZay0esSK7LmozAQMMcln739BX/1T/vfyPz2JLgY2oIksmoA1wCS1Wl2gVqsb0UxSfge0ojE0M/93G2qJNAWzGP9iDIQS9lcMxEKnixs1/ngaNZFU4M79u2FcL/cneGouXoYNeBk20PfUjLUD7vA404e7Mi0i1qaTG3OMcPcKxg9OR6bUZsXEWxo+b6mIrbbpSCyl6Bj1IK0wZKhpPiGpM8nrtmWsaSZ+D5aTleZGVpobHqdXcjbgEMbaMo4GH6S5Ux9DIWyuHY1KLcDt/Aq+afIl1qOEL3ImIBYqMdWSkt1gi6NBG0tOr9JM1cq1CXSsQa0WoFYLUMW0U/rYhQ2PJiAUqOhUSPja7gb1CmOEAjUm2lJMtOXsd0zkwMh9mlmQCBl7m2NpqTThZa+c1dYP+TRnMq6WzXxpkUfpBXdKL7ijr91DQbU1npI6TuT242GXL3l3PThRH819qTcm+jLWmZUw0j2f6/WB3NgdS2qPKf8Pe38dJdW5rnvDv9Ku7mp3d3elGxp3d7fgkoSQACG64h4kQJDg7u7QeEMjLbS7u7uXvX/U2nzn298e54x3rZxzdta3rjFqAJOaxexJzft5brmuq6LHBKFNJxNyR9NneiqVCmM+3bmYj2uC+LgmiDCplIweO+77XuN26H7KWo0BaFXIsDBuR0/YQ7c5uBg1YGTezuGyvnw65xzzTF7wq8d5CtotGOObwfuF0wlwqMTLtJbRBzYy+sBG9mT1J7XMDgfdJqY+X0Xj+x1c/30bAgGccnlAr7GaDo2Y2ne6yJ+zhwgdCXP8E7jgFsN5j2u8bHbhVZsLFqJWHrV6060SE1vjRmyNGz/2uURCmSO1bQZ8cm0OJjpdBJhWscryISdzwtm5cQd61XCysg/GORp+skrh2osQzrUbYafTxLSCEVwv90di00lynDsXOgy40GHA2OSl/GCZyudRN9ALaeTt1ZcJ0Sthb+EAvO8vp61Txg77GJb4P2fWxfcoGHYIQZY++7xOIhKqtUrN+XJcL63g3tMgynrN2Fk0mJ1FgwFwM64nWKqVP3e5uYxPfG8jEYh55HeF7CW7mW+p1bcKkOry+IPN/C1mOk/8L+N6bTkSgYpoo3wGpk9GgooprqlMcU2lpNeMaJmQTc9HM/Tael5UORGqW8Iw40zCH77Dt35XWWeSTffSJgpHHmDSkiecGbKHB4UeHBy1jw9d7nDxcR/ip29l+42xOEvr0NFRoqOj5FJjGD/mjCa51pbXsZ5kxrtgZ96MjnE33rNz6F7fRMGMPzAsVTHFMIVA00riJ2wlRL+E579GsDF/GhsyprPSM5asQ75cbApDUaKPokSfh0l+dGskJIWd4fDz/hwq7/enBbJ/UsrkXwb/10tY/yxk9g6alOcq5n21gVff72FjTQgZLdbsdTtLpVJGhI6EecWDsZa1cuVxH+QuWma/JtaYSQtiOX23P4F9C8h45I7PoAKyHruxec4h1iXOZG3AA35LHYqpYSd1eWaIuoQEROdT2mqMp0kdPvrViARqBsqzeStuCUuDtA9nWbcJ00wT+LZwPDVxtmQt380HVWG46tbhKq3lXosfxR1mZMS58eO043x4dw6oBfw86jT7y/tTmOSAykSJvUM9/iZVuOpqa7wbTAvY1OjGUuM0Is6sY9GIR1wpC2C0XRanHvYnfsYWBicsxUivCyNpN9c8b+N2fzE6ugpsjFvY43GKOd99iNmcUu5432BW4TACDLUmSrH1buSXW2Jt2YKlXju9ahFZWQ7M7vuCU/F90DHuYbJ7KmcSInin70P6y7WZW4NKn/fi5qBRiBjin4WFtJ2frFJYVd4XAIVGSMKZQAbPTeDhqXBS1+/G9coK+gblkl5rQ3uJISZuTbzt/pglhjUARL6ejr95Fa+PBtI7rIUv/W/wt7NzMQ6tQ6OB+katEsPqkCfsTY9mnEcGjw71wX9eJkEG5fjrltGm0uVqQzC7He6gL5SxvjqUzBZrbnndZEezI1erAvEwrGOX3Us+rgnCTqeJNcalLC3Tem0MNc6iRmnE7wlDCHEtI+WVG0F9Cnhd4Ii4RoJulQDXqQV85HCTtV+/i/XiIgpvuuI9IQ9fgyq+tsjA5cYyisbtZ1uTM3MMtTIaOxqiWGf+iqgj68lZvBv306v4ctx5HjT54K1fRVGnBXdfBoJcSeHoA0R8sZr4b3bTpenhabechE5XPjHLZVezPbaSJlQICdPRcpucxQb4PZ+HgW4PdgYt7HS+xNT0t3AybOKUywOWlkWjK1JgIu6kRyMhpcmWO943CE2cRVLYGWYUDuec6z2+q/cmUp7P3qrBAJTud+fzz4+yvWQoQy1zOZrTh+U+z7hUHsw532OMeb2USOtSjCWdCAUa7u6MZtm6q4hQs9yoigFpU1jsFMfxskge+F1lT4sdcqGWb3O8IhI3g3puZ/hhYdGKpbyd/McuiANbeMvjJVaSFr6+OR21RI29Zy06IiU9KjFP/C+zsSaEX6xes746lPtlnnR1S5nkmUZJh1aocbplAl+kTtA+7xoBErGKzMlf/9PlIyNvK03/vbP+4fNvDtrxL1PC+strYYn1lPQiRDijnhXl/VhuGssNz1vYiQzYXj2cVeV9OeH8CHNJOza+Ncx1j2euezwOE4ppUMjZN/0PcuoskPi3cMn9LsPHJNKo0mdT2HlOl4cTZF9Je7eUghl/oOfTRHKxPSEWFZS2mXCxJIhPzHLZUjGKbVGnGa6fwXD9DB4Ue7Lq1XxaumQI/NoYljmB+6f6UNhlwfbSYWy1SaSq3ZB1k67y4f3Z6FaKSJyylb8lT6Sg0gL7hyoG+Obib1LF9zYPqeo1oqrXSNu0l1UxJnUh2yYd5sCLAcSHnONcbgjDo1MIvf0eX/td5YrvSYZbZOP9bAE6+TJ6KuV4GNaT3GNHwte7iTIrZk+LHWdc73PgxQAOvBjAaodH6Or3MMCqgIxKayxl7UjNujj9MpKB/rn4WVezxvwpOsY9bDAtYM33a9hZPYwNJxZja9WMbqEEJ91GHlZ64Hpt+RsPk9e19gyem8A223ja/XsZmD6ZyMB83rZ+QFujHs+mbkZ9y4xzVWGEJs4ipktMr0rEWNNUVr97mfSok5QpTHm9+Ddqaw15GXIeO6sm7KyaOLVzJMpOCVfSghi4KIF2hQ5XKgIZrdvLAN0KnuW6sbFqEK1qbb39ltdNYrrErDIqZIBFAUl1DqT1dnE2JYx2lYw8RTvZW/3J3urP9ydmsSNuGDrFOggFGjRiDbn1FkwKSMYnqoiUjbspazUmSkdMQ7CGKx53iJ6WjK9BFUtNXgDwaf8bTMobxRzDdKZlLmBa5gJspM2k9+qRs3g3LjeXkTRzK1/em8pHNrf5yDQfsVBF4bQ/8HKp4lG3gB8+2Udiby9+Mat5P3kW+x8MYVbhMDbFjuFxqzc/5ozhncKZvFM4E/cHi0jrewyRUI2VrJVvqochFStJqbKlQNlOdpMV/vIKdIRKJhkl8rvbGQJezmW9Zwyn2020PvK9XXxkls4IXSXnXO9xzvUezKjnm5xxjLHO4BMzbblsnUkRTR26xHQ609UtZY/9c+6Wa829jn++idHybE6VR5Ch6KS+Tc7xskgCTKr4oCoMubCHbXlD2ZY3lB6VmKQ6B0Q6KkbaZSMWqrm35BcMdbuZYpjCzfpAlo+4h7RRxDfuVyhMt2O4dQ5rKyPwkFVToWrjWbUrU11SEOTIyWuzID7VjfhUNz56Op3eCjlPo/5goFMBiz2f/2lx53+3H8hfBX/5DMQrUKY5dM2WRcfXkL10N+4PF3Gl/y5+qBjLCedHTMkfiZ1eM1VdRvSqRHzhdA2ATwunIBWpcNevZ5ttPPE9Cn6vHsYgkxz0hL1cqQshwljbY3h5058eczVqmRphlxBz9wYtsznXHDufmjdz9/8jIl9P5z33B5T2miMRqMjqsOaAwzPcz6wif9Ye1leHstb8MadaQ7hYEoy3aS1P891wPCHC77tU7t8IwyRHg3RxFSq1dp1XqES8CNbqGA3LnMB932u4P1hE/tDDDM6YxHqXGD469hYxy37h/ZIpiAXa8t4plwecbjfhQbMP97O9EIo1jPXMoFUpw0JHaw9rJ23ieHEES13j2Hx9Ath3IcrX49tZJ/no2XSmBydxt9QLHbGSQbYFAPxi9ZqfG90xEnXx2/mJKF27MH6iy88b97I8ZgkAy6Mfsy9hAIWjDuB6bTl+XmWk59mTPXY3wc8X80vwReqUBiwyrOJoqzUtKj123BmNgXsTA20LufE4DJ1GAT0WaiwSBNREqekbqg1iBmKtn8mYnLHIREo6lRLy0+xZP+IGB3ZMYOY7MTQoDHhY6Y6pbifL7J9yu8mfKMNClhtV8W5lH2q6DcmttyDarpC8VgtOeGrFDw+1BDPL8DXOYgPWV4diI23heZMrzvIGrmQG8l2fK+wsGkxThy6WBu0EmFTxoMyDWW5JXCvz52XIeRaUDOKY02PWV4cSKi8G4Lf8YSx1jaNTLWWdSRHvVvbhd9tXBMfPJsCyipI2E574X2ZawQjc9Ou5kBbMKJ9MAD62useaoulvekijssdhqtPFQedbABxpdaVWYUiTQo8rySH8POAczpJ6rrcGE1PpzSSHFCzEbbxqdaVFoctcqxc0q/RYYFD/5joSe3v5tHAKgy3ySG/TNudTqm0Z4ZTDVptE1KjJVXSxu24wA42yOV7Vl/RyW14N3EVSjwGGwm6+KZlARrEtGqWQ6yO286DDG5lAwdWaICJNi7GVNjFJXyvhNPyXDbz+eDeT8kbxs7PWMfDLsolUdRow0jqbu9Xe1D+zodejiwDHStLLbVH1iAhyK8NOr5nfbV+xtCyapBp7el+Z8nLVVsZkzAF4M1K9KmE+nwXd4pvE8RTO+eyfz0C8rDRRe+f8w+ffHbztXyYD+e/ERP+H0KzUI0pHTK+Zig+qwrAxb2F55gLO+R+mVAkpmU5cmnj3jc/H2kptHXSh/QsWGNTTqu7ib7URBOqV0de4gDOV4fT+YkPEj4msMyliXosTtrE99HzcRHWaFdh2IxJqfbX/Vj2FrZ5nASkej99iS8Q5AL7OHk9bh4w/SgbS0qnLpoBznPp9JFvWVGKcLeCtkoE8zXPjmbkrze26eFjWEWBQQaapFcIN3dzM8Ofkwh1IBGrCpFL6pWhlE+qb9PF7Po9ZHknc972Gz97V5K/YzeCMSTzyu8LBViucBpdwsc0PsUDNKLN0vr0zhW3GhbSotGY/eukyJsx9xoNKT77yusqTNu045cnicHoVYk6Xh6OWanAwb2ZRiDYw+blUYCLuoLVBjkSuwFVWy5aUYVxICybQuYIL7rc50aeajW532Ll1Kt8XjsPGWet5HdfgyvTgJNJ6uzBNFHNtwm0W6AziSbcuPTV6pHQ6cursEJa8vZu9RQOIC7pAXJ88zrjex+vQajz6lXDL6yYXOgz4UDSXCVGv0RVptZ90hEpa1V3kxzuiNFbRPyCXg1M3YScyoHjFC47n9WGqawr1FcaM7pNFsE4FcWJ3lhtVkdjby4tqZ3zMavja7yodah2quoz4pmYoAL/bvmJjzUC+sHjOpZQQPoiMYaplIs6SevQDejAQdvGr5zledrpjIOrSlt9s4/m4JohNPtpFfraFtjyW3GjHjQKtgnaQTSW7cwbCE2MGrNlOf8M8XG4uw8auiVelTigaZexzsKG1V0cr4ZEnI6Y2hCEDUxlyeQMzBrwgOH42VgZteBvW0qMW82m19jvd3zAXtUbAhcJgrg3fzpST61HrqhHbdWIs72LfneFMHfqSXfbPONpqzQS9Tp51t3O/S0LaN0G4TffDIEmGw+QiPjHLJdFAW3abkbgGB69GphWM4HvHy3hL5G/Gr0vM8kgvtyXs0gfIy4TIBtVjLOvi1+hz3GwM5EGHN6aidj6PnUrR2P2EJMxiq/9ZhidpNxjzVtwlOnUqnb0SlmfPx1y3g9w6C+Z7xjPGQKtblzKiHUe9RjZbJ+FeugiAMGMtX2dXsz1xtwNZOu0uVfZGLC4ej7uRtuR7rt2I/B4rnvXbQ+SZ9UwYHM/2Pynu/Bta/PUXkB5dWtVdTIlKYILxa6aaJDJABlPyp/GL00Wc3Wpwvbacwgn7cI1ZgkCgzbi2DY9nR7Mj7SoZAw2yOV0fSVKNPWs8HzHgjwJSe23YWBNCcpUdljIhoWblXNM3507070w8/CFn9SJYHh6LXKAgOH4hv4afRyLQTktt9T3LomsreTLgKI+6BQyWaej7+VbKVSpiZvtwxOkJY7r1ueV1E+9nC9jjdo4JycsY55DBtRJ/6BCzbN8ahk1NYOazUMzdtcFYJFZzOmw/AVJdXvQoyVqhNWi6MHEbTWo1Swxr2JRuSoLMGTOddhYZ1vJzsxBbSROm4nYyWm0xGKINOt97XeLbwvFvspuXIefZWBPCxcwgLDwaWOTwnO+vT2XggDTaFDoM0c8k3duW/CZzRsuzkQUrmGNQgd+ZNXxuGEx9m5z3Hsxjzv6X9KjFmEu0mU1FjzGtChkGQiWT330IQNwrb2wGtiLqEGIg6uadudqssD7ZEoKgvlsP9zOruD5/E7O2beAt2UCae3WR2XTw6GQ4au2EMB2+PZxoHIBVYC3NHbokVDgw6MWHqKVqpE0iRo1OQCRQ8+XAKxws7UdxlxnDTLL4scGT/Q+HUDBdy6/xPrCasGFZFF1w4/MPtgFaAUFX3TqOt7nxYNhvTE9dioW8neIGU0RCNQ/knlz2O86ClMHEDvgd0Ce+R8FPVil8WefHAFkGB6sGUNupT2zAJdZWRgDwosYJS4M2hONbedDhw5WyIK6P2M6nxVO47H+Efuc3sNyoil+u2XNizmmeNYVxZdkmxp7dQHjfPG6X+tBWYoShdzfbbOPpt34l9zdpw2Lo86UoFSK+CL1Bdq8VJoF1nAs4RKbCjC+zJ+ITVsz3lvG4x6ygcMRBYrrEPO/wwFzcht/fUnls9xKGg+vlFdS6tfNxgXaGRWrdSWyDBxaydlzEUuJ7FPxSMYalNk9wldYy0TuVKP0CbMVNNKr1KeyxxE1SxwEHrRf8xpoQTg3bgxohoVblrNu0iu/WHQJg7dVF5M/eg/fTBbwOP8PlDjnDXRtYUz6CT8xkTI8ZzJXpW0jqdsT17lJSh+8k4sUyYuvduOB5gVNtLmQt1yomFNSYkzvwKJ7HtKz/d2fdZ4Z+CyDnyvQtfFE66U+JOf8HxBT/MvjLLyD/xr/xb/wb/6fx7wVEi798D8TY21ITtns+PSoxOiIlgSaVXHoeDjI1Hi5VnPY8x6EWP3I7rFlvFcOBRu2UzSqzpzSrJcx4vhJVow4bh97ATtLE4apoqtoN2eVzgmON/bSSEFlSVr91jbMVYTTctWXyvFhWmT1nVPxKrAzbqHxmz8Kp99n3SutxEDPiN9YVTcNc1s5yy8fMfbgS3UIpGW/vxvPoauS+jXR1SxnlqqW4vKx1Yqx9BsfSI/G0raGo3gwns0Zysu1ZEv2EAy+00h1Sox5kz+W0Bfdi+kxK04Bu/J0qsdNrZpfdSz6tDeQHy1Q+rQ2kRy3mYmIoApUAQ5s2LPTb8TWqwVW3jrt1PijVQlz0G9/ISLifWcWakbfZe2oMajEcX7SNRa8XYSLvZI3zQz6KncHPA85xuT6EXxyuYSqU8mtDMNHyXIbpqvB+toC0focYmz2Z+g45bYXGAHw++hJRukWMe/wuNEnZPPY4627PJzo8m1elTkgT5IgHNLLBK4Z5Bo3c7xKhQERKlyPnS0L4zPMm3+WMIyH0LN7PFpAdfYyhGRMBGG+bxizDVMYmrkAqUdLcqoeNWQtKlYg/fI7zW81woo3yMRW1k9rlyOGkfhSOPMCxNnOaVXrMMMgktsuOBpU+vzwey8ZBNxH9XUfJVVrL8seLiB+5nTOtXnSqddj5YggimRJJvi4jxydwKyacWWNi+dYyncEZk6huNuRZ3z2YCeV8V+/NGMNUHnd4MUAvl+utwQCIBGpO5oSjrNDj+pQtxHc7sa+kP00degieGuE2qYCyVmM2eMbw2a2ZBIcW0qmU4GlQx93r4SyaHkNBpyWmkg5+skp5Q4gFrY1w9IhUHr30JzikkPRYdzbNPMLau/MJCywkMc+Ja0N3sK5gBqsdHtGskpPQ7owIDUOMMjlXF8HzbDd0jbrpY1fKOuu7AHxTPoG0KhvcLOo5436JQ62e3K71w1Snk7g8V3TyZTgMLqW4zoycAUcpULbjKJJxtt2SXUWDqWkwxNK0jUCzSn6xfcBvjaFMM9KaSXVrxMy4/Q4CuRIH60Ye+V3B7dxK+oTnMcniNZ88mcbiPs+4UBhMa50cWYWEQWOTuZvpi8VDCV9/cZD0LgeWGqfxtNucCJ1aMnq1YpuNKn3uN/vy4H4wxnkaRr33lB+CLv3T/QcDL2tN+O55//D5fwYb/r8L/vJTWO46rZz1OktlmjUxPtfRESopnLKXCK8iJlmnYCLUw0DYzTDjTJ51udKqlNGqlPFB8TTa1DIu99uN1LKL37MG8beMifQ1KeQd14coNCLunomEThFdgV1sThxBU4ce7yy5Sn6HJY86nehslRFpXkKPcw+fmOUS6V1IpHchMoGGXrUIJ91G1ny/hsLRB9CJ1EpMmwbWIRapsTNtZrzJa0o7Tfib53UcpQ0g0FBx2RmVSsgIyyyEPQKOpEdRMP4PCsb/gYG8m7agXn6NPotKFzQqIYttn7LLTqv3dLfcm9PtJkTr5zLVOIF+fvmgErAz4CQFxdZss41n59UxfO98ibxi6zeLB4DGrIcWlS4Zb+9GFNjCjNvv0FlmwHDrHBwkDRwZsp8Z+i18b38NO5EBH1QMRqURsurlAr6s8yPEtoKAA2voUYnRaARYeddh5V1HtG4hk1+tYn14DPMHP8Va3ELs5E246tUT5VjMskW36OqWMsegHtery+kv6+ZWUxAfmeZzP+go62Jn01hrwITc0biYN+B6dwnFudYU51rzssmVwbFrkEkUtLbrssT/OdWJNjgZNjFvxzqUahH53VYcqBjA62YHNkZqA+2WnGHENbljJJRwtjaC+w0+FE7cR2G3JWcrwzhbGcbR2mgC3MqZmzuTTS9H0amWImoX4WFXS49LD/W9cpT6amYax/O3Wn8GWeYT7VjIjKw59EuZhp6ohzCplEvlwUToSLhYGMTFwiDGGaawzCeOhUOfENvpzhR5OU0degxyyCd1/W58DKs5EnCYmCZf9o7fT1O3LiEm5aQ02dLr2o2FuI37LwJQI6RY2UbxTRd84+bjGzcfcSfElbkgse6kuUeG1KeFdfEzKJy8F7FATcywbfhJ9LjjfYPJ8g7kwh5EaLDWaeHztEnY6bZgbdPMaJcsYp/5MTVuNVPjVuOtX43BHX26FBLCnq1gb05/6jvkvHjqQx+3EhbMuE+YaRmaIq3EzJhTG2jV9FCjNOJT95u42dThY1qNsaQTHYGYm+V+zH29lLmvl7IyfT6FE/dhYtLB927aUt/zqZuJMi7k04fTeTpqK88bXGhvk/F+v3t8Ofc0aY02JA7fwfyPbtKm0qW/PIclhZOZoNfJ/U5H3k+dxfups9heNBSxUIVTnzI6x7fyreWf50j4H9ysf+T1r4S/fAkrrc2c6x2O5M/Zw6NuAfW9+ngfWM1nM8+R3OHI0IxQvnC7xrJLK8mYvYOCbksAcloseevWCqJDc7gftYuFOXOpbjHkUE4URnrdLHN5iuvYQjIrbFAphPT1KGSsWSqGom46lRLMxO3QJuFqoT8+TlW4XlpB3MQtAPS7vp5zY37naYcngctTGZU9jgDzKprUndQWmrJvzAE8JM3saYwmOceRxwY+5LRacq3fLrwHyTncasmF6lAMXJt5HX6GoFfa3Y5KLeCLvtf4btt8lrx9g9tTIvC4W0fAy2X8EHCZlixTZoc24Rs3n2+DrvCq2BljxxaWHXsHnHoYkDYFmxcqbo0PJMSjlMOtlrxq06roSvUUHEuPJKRPCUZnDLi3aTPX2j1IbHPm15YxJCe5YuTajJNRE7Wd+rgb1WMlaUFfvwsjcSdpNdZkL9uNx4lVDBuUwlc2MQD8WDOE+1G7mJc9n0d+V1hcOgRDcTdXk4Nwcqpjg80dtnUNZVLuWO6M2YpPzFrMLFpxfxzGl+PPs7LPY+5U+ZJbY0nOgKNEdM5gRaRWkvtwSV+kOgpakizotVHwiVkun7yVS2JvL5cX1JLcbE/8LT8U+hpEzh2kldkS41iBqV4nc61ecK/LhMR0F5ZHPyb8q9UkfLUbn783u2N8rrO0LJqxpqkcFPZnjlE893y9GGaRQ9FTJ142eCOvEqBCgJ1OE7+lD+VV372cNHRnlVEFrneWsqtRgsC2C9e7SzAy1bLUixVmpLTZk1pjyxinTObUBKHIMOJubigseEVGiw0z8legJ+tlj30PefaJROvmc63In7MD/2DhvrX0G5/JlVtR1A3Vp9tSg6pFBsAH82+wM2MQ49wzSGxwINCqkl61GDVqTrk8YEHJOI45PcbzyULMjTro7JUgkygx0OkmPvIQ6ysHcs7/MF9XjSJ/zh4Ot2qfFTNxO+2rddhqk8iswmHY6zUx1iiFz84sJ3B0OZdLA2l7aYHH0GIAFo55hJlQjoW4jfWnF2MWXkM5xtr/9w5zXgSfp0ejlZf5tCaSsG9XI+7SsHTsW3hZ1RId+y6aWh10WoSM3byRNh8lIsNe4prceJXlglhfwW8NEVw8PpChsxK4dS+cMcMTyFZ0sK900hu5ohXl/fjA8gErP3yPzml/+VD33xJ/+bsqFqmIkJUQnrQYgNY0MwaPSuGHUzPQ+LbT2yhjWdpKXs7azPqqIVpmORBa5sexMXvwlXYjE0gJMysnS2zFNc/buJ9ZhZNnPRUnXMn7ajcej98iKcaHtxc8wEzUxc/OF7nUGkJ0eDYrrB6T1m1PVrEN1iKtynLMuC00q6UE6ZawI2YUkX1yOOL0BNBDZNrLLyWjiTIrJrbGDRv7Jm4W+bDS+ykfFk2j+JYLmsgWuksMcQqoIOjVHIY6aMdWvfSq+eHKVKLnp5PU6sSnt86xOmcunuZ1yAS9qCwUuN5dgkYp5Pvssbjb1JJTZEPh8t2Efbua2L9dwmXCMlQaIRkP3Vk09xlOutoGfW9lMLMGPueXglGIltYwIXUxX3jdIK3RhtYuGQUz/mBpWTS1XQaMsc3kxMUhHFnxhLfDzxD0ag5SiQr/HavR+HcRk+NNoH4ZANdSgnCIbKSmxYDbXVLir/iTvmY3rUoZcy2eM+nmWnaMPMo4vW48j21g+JBUppol8JN0zN/HS11Z73KXcX7duF5ZgaVTI+erQgGY7ZjALINMlptPY7p1Ih/XBHH2VR+2DTvBxYIg5ngkUtXHkPZOHSIdSuhrXMDvWYO4FLaXV92ODNMrJcCnlJhqb8ST67jcIcfCUNv8/w/9sg+TZyOpF/OVdDzl+ZZcODoCvVmN/Op7nt8rhqFCyNFvJ9A7speVJeNIv+pF0/z7GCdICVqQjo5QSR/DQrZmDQPATVJHXLw3dt41PKrywM+sihWzj6DSCBiTM5bqNgOM5V14mdSyqGQ4ieUObMuaiPugIpzFCnzH5CEX9dJnSCYJVQ6o9FXEj9I2/vc3B7Ex4C5bjk4l9u3NDPl1PQI19BllSnuXDnqyXjyfrCJ3gXazteTuMqw8K/E3ruJelwnjTFLY09CXLpUEl5vL3jgN3u6Scj3Xn+IOM2QiJWONUlj2cDGSsZ0cuD8EgULAwUW7MRZ2sbh0JCutHjImZyIDzfOZOv4Z9ys8sdZtI6XRjq02iUzKG8U+V60+6r1SL/Qn1fCNxxWG6ar4uCaIQea5TNBPw0Oi9ClOlAABAABJREFUz9CMiay2T+TXhJE098owtmqjpc6AcHkRl9QDcZA1ojRQ8aTSlfcsHyIRqvA+sBoAh35lLPl+HZVjhKDfi+vtpcAbse9/Cv9qfI5/FH/5Hojc3EHjunAdbV4q5EUixN0we0UM1ysCaO7UpavQkEUjHnH0xhDMg2upb9Gm2fryHu6HHKL/7vXsWbqbz/InIxGqWGD/kp/TR6LKN0DUA73GagwLhCiHtJAWeZJv6n3wkVUiEyr44OVMQpzKmWaZyFenZ5O9TKtxpdAoGZs9mRif62/4GgDRqVNxNGjmLeunrDu8FJdhxZTecMZsZCWNd2xZuvgW+w+PocNRzcoh99kTN4SzI3bxfo6W9fqx+20sRK3Mu/oOBTP+IOL1DG4EHmLg89VM9Ux5U7+/VBhIetTJN+Jy1zr1uNwQwsMsb5zt6qh9YEeXTzc0SdEYaXeCejk6CPq0EG1XREaTNT95XCBaJmR9dSjV3YbUd8vJK7VG2CDh0rStBEh1GZg+meVOT9m8awbJH+3G89gq9LybEQo1uJloF6aNdreI7fTkdasjx5we4/d8HpuDz7H64UJ0jbvRu2OAw4ICSs644TMvi1clTsj1ejCTdzDRJo1Q3WIGyMAnbj49tXoY2rVyP0yrhTUhbSEKtRAhGuqqjSkcs5/o1Kk8C7zIwPTJ+BrXcDfTh4MDD/F+2iyGOeSS3WrFRY+rnGqzw1jUgYe0jkqlIYNl3XxWG0FCvQMAD/yu4nppBXfGb2F57jxGWWdxKCOKnREnee/YcqJGp/M4w4spIUmYiDsJ0StmzdN53ByynaVZC1jk9JwfX45lrH8ad/J8GOWRBYAIDfdKPMnoe0L7M7XI2DX4KJ9mTuFbnyt8kDCTpf5xDNfP5FxTBEKBhsv5gdjullIyWqodsfatpjzDGol9B8t9nvH7Y62ulJlTE0qVEFvDVhbZxpHfY0VyiwNnXO8zJmcspfed0AhAYaQB225u9/+dETHvI66VIO6CXs8ujJ7pMnj5SwYbZpPeZQ9AbocVzb26VLUb0tiqh4N5E8UZtggtu8kbdATXmCXI5L285f0CL50qJss7mJA7msZuPaIsi7lb4s3F0L10aMR4SQSUKxW86tYau313ehYqKdg90Yp23nwVTJB/MYUX3TAaW0X7ZRvMppVRUGZF3LBtDDr2Iftn7+a9LatpCe/h1+hzbHwxnfuDtnO0uQ82kmYMRFodtoxOO761TOfLOj9O3hmASl9NyeoP/+n+g76ntSZ418J/+PxnI379l+mB/OUXEEtfM824IxO1zeonK7C5JaF6XC/hLqX4GVbSrZbwuNqdZ4EX6dL0sL/FA4A1xqVsaXLhQlkIPUoxCaFntV7LxW6oKvXYMPoaJ0r7EBtwiVpVOz/XDaSyy5jkKlt6OyUUDD/0xhL2YKsV/XQLKVNqm3fZPbZU9JhwJr4PUX4FrLW9y6L4xWT2P4LX8beRtgh4vnoLE7NmU5ZljciyC2myHJ/xeSQVOSBPlqEztJ6mZjkTvNO4Eq/dcQs7RGDdzY8Rl7hYF8YplwdMyR+JUi1kolUK27OHoHvVkJ1f7GDxvvdIf3c3vnHzibArpVUhw8ughjOJEWSO2cmiorEEG5XR/feZ2DO5oazwfUqLUo8hBpncbQ3gaa0r5ZVmFI48QMTrGYRYVBBb6soQpzyym60oqzNlik8KN4t8AOjNMcI8uJbaBgNuDfgdgFEP1+JsV0drj4yuHglWhm088LsKaOf0C3stuFIWxBee13j7yQIKRx1gcen/x2VxVXlfHhZ5INNR0N0jIdS+nOwzWuOut1df5mhpFLbyVvQl3cw1f8EvJaPxN67iYYUH2/zO8FvFCMKNS6hX6DPD5BW7q4eS02TJPOdXPGrwYrR5Onnd1jypcmOP73Hm7/kAgM+XnObn32dzb+MmIu6sRbdQwk+Lj7D29nwm9dVqpcWWudLTLeGj0DsU9VjQ2CvnXmwQuq6tLPZ8TkWPCfdKvUjpcwqffdpdcdZybUY70DUffVEv22zjOdduxKa8EYRZlnH3aQiyGgGdPj3oGXQjempElwWo5GqGRaVxL8Efa5cG3nF9SJisjN9qhr95FtIabbDUa+es2036frUGvRlVVCfZoOvdTFuTHlJ5L+8HPOB0eThR5sUMMMhhnF43Fao2RuzdSObq3fRoFEzNm8gQ81w2mGoJo273FmNi2kF7khlKuQa1TI2udQd7Q46xNPEtsqOP4f9iLluDzlKtNMZU1M44vW7iexSUKk2ZqNfE7S5Dvs8dS0u8BWff2oKnRFv80BFI2NdiwyyDQro1Kj6qGMMBx8e4X1zF8D7pJBwO4uLHv7CmcAb9zfM5cmYESjkMH5ZEzKMQJC7t6N0xYOjbL7hb6kVyxGk8TmrHePdN/YO1O1bx3TtH+PDUWzhFl3JvyG9/ygIStPOtf/j8uJG//HsB+e8CY29LTeDOt2hol9PRrIvZUym6s6qofm2N0khFdFAuzxK8McoV8umak3hLqwFYnrmAFa6x/L5jKqoRzSgSjclcvZvYbvgoZxpznOLZ+nwkACMDMthj/5xtTc4cyo/iQNBRZAIlk86vI3/OHgakTSHUrJw7hVpS3lTPFC7mBfGO32O2vhpB4cgDfFAVxlCjLF53OvG+aRJR+9YxdEIiN1MDcDuipmi5BgQg0+0lPeokQa/mMMYpk7NxkcyO/rs0hvkrtjSGcK/aiyu+Jzne6k1ymwMRhsWcKO2DtbyNhdZx5HTbkN9piUIj5IDDM0ISZuFs3IRQoOF9uxg+yplGbZYFxlkCHBZog0RKqjMWLtpG/8uQ83xaG0iYvAhLURvhOj34xazm86gbnCjvQ1WzEZn9jnOszZxKhTGHLo4ge9luwpNmYqbXQadCSlOHlrjY3SVlaWAcNpJmLtWEEGZSyhfmWQzLnEBhkRXSWgmfTLvA75un0di3F0GbGLWuGhuHRtq6deio1mdIaAYfW98hV2HOB+cXk7ZAy3uIfj0PgUDDtcBDDDz+IRrnTvRe6pGycTeRr6dzxP8IViIBEWfXsWnCMb7PHUt8yLk3k0uud5Yy3C+LvfZxbKwJYa35E76v1gbkmm5DLrjFsKpcW9I54vSEoFdzaCs3QCNTUzR2P66XVyA27eZG311IBBrGxa/iaeQ+wm6sxc65HkOdbrwNa7CUtqLWaOdVXjU5E2VaSHa7Dcm1tnzkfZdHzd7ssX9Oj0ZBn/iFmOu3c9TrJKN2beSTRWc4XhlFe68O3UoxDcUmmDo10/XCjOTVOxibPZkfXC8BMOvJSm4O3sGEuLcJtK9kue1jvs8fx2fuN1ibMJtFvi84dHMoQ4ekUNJhwgybRH5MGoOxUQfvuD0mQreYJekLeRlynsWlA2hVaHsrSdlOyM06GeWczWbrJH5s8ORejRdCgYbDnqdYkjebyjuO+E7IJfmxJ9tmH+D9pFncjdxFmVKOobAHC5EKa5E+Fao2knss+NsWbcm5d3gLVoZt1MbYYza8ktJKM7ZFn2ZtzHwWRcfSotRls3USMwqHc9LlNgFxixnnlsGTKjfM9TrIj3ckb/6eNxN6ALUqbRlyQuoiuhUSHoTv529VQ3lR7UzK+O/+vYD8ifjLLyBhQTqawP1z8dOvZMfzYbg41WIjbwVgsEkOy42qGJE1nhif6/9fdp9/q/XnW8t0RmSN55LXee51mfFb8XAe+V0h4OVc1AlGRE1M5YDDM0ITZzHBMZ1zeSFk9jvOlPyRfOd0GT+JHh4nV+EdXkxFmxEdnVrr1EW+L3jHJIWhyW/xLOQEgU+X4m9bRXqlDcpqXcZEv+ZljRO2+q0oNUK2u55jwv4PWTDjPvuToxGKNOjrd9FabEzB9D8YN3AKAG/fvsVnvy8m/sMd+D9dQmL0XoIerKZguJaUNa94MHa6Lbyqd0StETDbPoGtN8Yj7hDgOFAroHiw1YogWRkzbr1L8oRtPOgyB6Baacyxkkh2ep/EWqRkS/0AfrF6zZ4WOwA23RlP3LTNLC6YgVSoIiXdmc+HXuGHhDE4WjViIusi56Y7QROyeJ7rhuFrKQDKQS0YnTFg6deX8ZDWkNerNSE62GpFdpctG8xjmZ41n34WRUwzTmB79XDymiz4yfsCd1sDkAkVnLw8GIWRGmGPAJFzB4oqrZ+FrXctFRWm0C1iUGgWX9reJK3Xim61hMOV/Qg3KeVriwxiusSM0NWSPP/H3/dLmcYHbvf4On0c3Z1S8oce5ly7Not82OJNTJ4PeYMP825lH27GB/Ni/BaWF05juEUWW5+MwsKhCbm0l8omI4QZ+mxbuI8rTaGoNQKiDfPI7bYhRK+YyfIOfmzwBOATs1xmFA5nlc1Dlj1cTNHY/YzL1VoMmOp0stvhDmFHPmDaOC0J71RCH34ceIHkDkcWmcYx5u5afD0q+Mb5CjNuvcuZ0Tv5tFD7/cgvskbHqAc9WS/NJUZIWkVcnLeZdbNW0W0l44/tW7nUGsJMoyTcxPp8WefHO6YvsRTpU6Bsx02sj9u9xRgad2Jv2MJZjysATMyexgWvc0TuX4esESLmp/DqZBDvrNQ+S8uNqnC5uYzrI7bjJ9F74+rpGzefm3124yw2YEbhcBZZPyW2zYsz8X0I9SkGYIR5Jlkdtkw0SWKYroqAl3PZF3yUddmzmOqQzLH8PhwJPsTUB+/Q17uAlKs+CFTgPqGAlEwn5FYduJvVk3fTDbUOjJiQQJC+lqW+OWM43pa1zLZ6xSfX55A/ew8im7w/YQGx0QT8/o8vIC9G/fwvs4D85ZvoZQp9GjK9edjuz7phtziybRxtSjsa+ijJf+5NzbpH1N5wYIJoNDoi5Zvz3jF7AeizyvEx+kIZsW1ePPC7xIseNV/5X2NaZBuRr6fzNx1/Ojp1+NoiA3OJ1tNhsFkuHxdNBSBv7h6CNq1m4sJYTt/T+hCsiH5N8J21FI7Zzzf1gYxwy8ZS2kZKghuTB70iu9UKa3kb+1wvMOjlKkZXvovaTE11jxE6eTJchhbzN6dr3HIKIqZLTMdubW9jnF434zbuZkDaDBKj9xJ64n3S529jQclIwg1L8Deo5EBKP9KG/EHA6bVsrhmBSCXgo9kX2Jo9DP8XcxEJNfQoxBhmixjnOlcbgIEJgak0tMqZcu9dJPUSlMZKzhMOKgETIl8zrn8SR1uCMNfpoL9xHq5R9SwxrOEXHRW1D+3wnZpIuj60K3TY0f8ER921fJuEQkd6wgRcqA4lP84ZgXs7u/R6aGqUIxRruKPnzQ/+l1jzZB7OfevJqLems1vK0meLMH4mQzihHqVbF1IdJZPc0ijpNCPQR+u7ssYkleGq+bwIPo/vntU4r4qlWtXKjxXjGGaRTWKLE2G7VzN+9RPefhmBplpG/uw9BMfP5nLIPiIti+mnW46dcQtFedrex2+F2mZ3Q5scqY6COUVD+cjuJvpRPYz+6UOefLKVwHvvsKjfUw4n9uPI0O14S+QsdYoms9ueXrWY1B2BDPsikxMP+1PVz4iHLYo30h9esQsZ75HO8w4PHo7ciuvt9xHpKlH1iKBdzA+6TfgOKCCr1ZqsR248X/wr0zIW0qsSEaWfT5RvIYX7PFklWsv0d1+wKGkRd/vsAWDS2Y1sWH+BOqUBa8K0QfR0ux3in+ooL7PmQYcX+19Hc9EsiMZ8UzQyNacbBtJ/WCrPSl1xMtNmoLoSJVmvnRnerdV76uyVEN+jj0ANghGNlHUYYza+nOVGVfTduIqAb3/H5LWEKQ3r8Igs4fbkzSwoGYdCISKmw5Mf48ZhYNbBFWkoe+3jsOvfxK7MgW+exU6lhLfvrmDDlMu4mjawfNcaZi14yKGcKHhtyNSaNVg+E/H+kBhW9LNif+AxZjxexYTwZL6yfszxVm8qBxjytfdVPng9k239tPd6c5IhWSECbkoCWTriwd8VovP+lLjzrzaO+4/iL88DMRe3IWyU4OxdxW8JwxBPqmPYu3Ggo6JtfDs9ajFtriqued6mqsWQWlU7tap2vqnWBor/MPr5yeoVwzMmE6Uj5ucf5vFzozv3g44TqFfGIJd8YrrEbE8eSqmyjbUmxWRkOTLSMpOIL1bjOLGIszcGIC8TIC8TMPK7DRhbtjFq6kKOJEfR1yCf07lh3Jm2ifJOE7qVYrKrrJiXOxvxKwN+63MagUrAdNN4LAdUMsEqlcVH13D28kBG6CppuGtLw11bbakscRZt3TqEnHwfSZuAx90GqDUCzpaF8olZLiHO5SwrGUVYZB4Fww4hcm9jkWEtvUoRCoUY2WUj3vJ+iXB4I3Mc4jk4+CAHBx/kWnwI2f2PoW/WydbphzCybaVw4j5iJ25mm208TypdsZK0UN5hhLO0js3WSYzIGo+lURtOI4u5FReCrA6UGiFrryxCT9yLnrgXda+IwL4FVFx2ZtusA+hIlSSEnuXDiLtM8UnB0qCNRpU+yyNi2ZQ4gqSwM5Clj1RXweAVLwmzKGeAWwH7Q4/SpZISZlTC3pcD2ftyIPe6zKgtMMNn72pkEY2EJ83EQtRNVpwrI+SZbHe8QeIXu3lY40He4MOcmbqdg61WyCRKnMUGfGL5mJ0N0VTedkTcIWBFeT9aOmW0dMqY4fGarnYdXr52J7nbkValjKTPdvOw25Qvoq5x+Hl/hvhms712KHmKdhp75Nyu9eV1nR2S+TXsKhnM0H5pdKkkbLONZ0+LHXta7Fjg8wo/vQqqew0Zc2gjYwPTGOuRyQd97iFUCAnRKyH3jhvZtZZceGszs7Pn0d6tQ5hFOTKhguzTXjSO6qJpaBdigQpNiiEz0hcxI30R6vGNvGxzZdutsQTHzybq41XUKIwoue3Mx+G3OV0ezoyAJGz1W7HyrOfRmC34D8gnwrAYtUrAHe8brA59wlSHZPRdmxlgVcAAqwK2+p/ls5wpWCUq6WNVSlmTMSVpdrxVMhDPdzKZd/UddCfUsHnaUYKMK7jYFswxp8esDHjKcqMqCsfsZ7ZbIkI0eO9fTY9aglolRK0SYq/bTHa+Ldfn/cqP9ybiIG9i+OxXNCn12BNygqgJqcgtO4j7aRerf3qP5hoDLjRrNzZ3r4cTeXw9cmEPHc8sOFUbxSS3NG53SbndJcVsUBU9nRIOOcbSrZZQ1G76p8Sc/5Ay+bcfyL9ACUvf00YT7vYB87dd47t7k5jd/wUXr0Uj9muBBCN+XHKE95/PwsG6EcUBa55t0eof+e5ZzcQpcUQb5DFat5Vv6oL51jKdtysiWW91HzexPh7HV7FxwhX2bprMnr9tY0vlSD60vc3sV8s5HHGIOpUhrzudOH5zMLNGx3IhPxiAzH7HeatkIEecnuC9fzW/zTuAtaiVjB5b5hk0EvzLan5ds4/3ji/Hd2g+rwscMTJt507IAT4oG88J50csLh3AJLMkhurWk9arLY0teLKMDX3usunVKJKH/86VDgcMhF18nTWeV2EnuN+tx/tJs/g44A7fJY5lf98jbMicQXuXDjKpgtYGOYI2MQKVgLWjb3K31pfMFCftfSwWotOioWl4N4JSXXS8WujulqBWCPkw4i6rjCo40WbKwbJo3AwbsJc1cfunQUgXV1Hx2gaVpQJBixijXCEDFifwbJ82Q49enkB+uzl6YgXe+tXkd1iSXmtNZ7sOuvIeevINCY/OZa3tXeY+WQEaAZJKKQpjFULDXoRluijMFYwJTuNJmRtikRoHo2YAFto+/7vWEQzNmIiTQRMSoQo/eSUGoi4kAhVfvZpAoFMFybmOSA166eNYwsvHvsh9G2ktMkYtVzEuOJW7+d4c6HOUYoW2pLevpD+bPc6xr24QqfW29NyyQGdMHS+Cz/NBVRjfWj0j8O47uDnVMMCigPdNkxiZuoDaOkN+7XeOH3PG0FhsjEaqQVonJmexdkJv2FtLifw1nrMP+2HpXYd0lynqNXWUFVuwqt9DEpqd6VaKMZR2E5fhjqhNjE6jgD1LtGOyAVJd/J7Po7tcn4IZf6BG/YZTodJoyFKI2FQxmsMuN/m8pi8BeuUsMqxlR7Mja4xLcT+1CrWeNqM1c2xCKlIx0yGJRqWc3HYrLHXauJ7pj2G8jJZg7eeavpIQsDidA46PWV42AIlAzYsqJ1RqIRoNLPJ8ya4nw7BwaqSuyJTCqXtxubkMd5dqbPVa6VRJ+cnxMt0aIXvrBvGt9RMWFEwGQCZSEp/hisysC4lYhbNJIxmvnZk66BUXnvRBI9WAQAMqAXLbdnQkSo4EHGZ8zHuMCsygqVePM6738Ymbj7t5PYbSbowkWvn+LpWU2m593neI4WhtNJV/c+dRzMf/dPlI7mGj8d2++B8+P2Hsj/8uYf13gZGkiwG/PMdVWgtiDXrCXqJHpqIjVFJkYsYEvU7WiTQ88rtC5ILpbGp0AyBgZC4/WaWwrckZiV4nF/K1C8jt+CB2TX7JN/U+RA3IYpJ+Hnobz2As7OVFvgt7xENY5hvHz2VjSclzRM+kk++nnuR6QxDGF7U8ENf2pUjLpdyY/QqH6DIetPqxxPQp8wwacY1ZQsi0fLaUjkTl1YG9bjP7h1/haIsvliJ9LHW0GdHjBB9eNPgzdsJLrt+KBGDKmJc4SBsZ5J1LWOwqnC0bKIl3IGH+FjZUDSS71RIDvW4m6BcxYdBOGlUaXIwbqdORU1pqwQ8DLlDSa0akXgGFvZaUNpuweMhjAK7+NpjGYd2oe0UULtQaYH1i+RgDoYRGdS9u99/T3vAmKUUSG6QNIlZ8dptdyYOIm7OJNSWTOOpym4DYpTw8FY56lDaw/2TzlDNtDtxp8Od985f8qumHmUM7t7L8uBK+l+nipYiFKmxFXQgbpOTP3oPb/cUciz7AgpiVLB1/nyH6mSz7Yw0Rk9OJK3GhU66dHPvxt7l8P6qJ1np9zg3bxeXmUC2pL20o2f2PMSp7HAXDDnGizRQvgxpuFPuRfsqXoJl5fOVwlQlVa8kes5vw394j94PdbGp0Y52ptsQhcX7M9urhDDHJ5v6LAMJn5ZIW48kHVmHciOlDwORyvFyqKG004Wh1JNeM/YkPOceWJhemydv46rEZhR/s5libOVtyhhGVrLWHnfnbA1YYZTFxchLVSiOG727gUoc9z03cuFfjjbFON0W3XUh/bzeeT3xYOj6GPxIHsv67VQx49xVXswMRFunSZ3COliPh9JiP4rRqzXSKEXUIUVv14Je2Bh2LTlJNbPku0Zz8IYeZVjACA48mtvqfZVXCfCY4pJPXYYmvrJy1R5eTuXI339V7UzD8EENtJnLHW0vIG1T+IXJxD3773uHQwh3EdXrw/FEwPZEdmBh0crUyAEO7Vla6xXJFP5gXPUqKxu4nNHEWM20T+TFuHMu75mKn30Jjjx4hD95GJ0/boM9cvRtc73OjU1tGtpS2kmVtxeWcAKTNQpwHlvCjy0XKlKasvTOfQZHJTLjxPkJ9BWmNNggFGj6oCkNVoI+5fQl7HB7wW5N2KrBHLSGp2p4RnkpGOD3Ge6UjxPzviUP//4q/fAZi5WuqGXpwOkusYilRmLPEsIZdzfY0KvU5lNKXt4JecLU0gJY2XbxtahhuodWfOrJrDAMWJ/DgTDgx7/3KgFMbmDLiJUUdZvzkeJkZP3/4hgi23iqGUqURy28vZcmAJ3xunv1Gd6pU2YZIANfavZH+XY33x6QxzPZN4GRaBAXDDnG7S8po3V4+qApjq00iPze6YyVuZZFhLT82eDLSIJ1zTRH8ZJWC55OF5A48yoUOA6bJ23irZCABBlrXwOmGyVxr98NY1MkUeTkHWryZZZhOs1qAt0ROhaqN94qn8rrAkQUhLzj6sh+bhpzmZmMgjT1yUl+78NXoC2zaM4NWXwXrou+yf984AKwnlNJ4wpFuU+hwUSHsFSDoFaDj3oqpfie1zQZk99dOucwoHE5Npz5VDUYYG3bSlGeKrlMb7Q16CHqFnByzi29LtE5w3Uox9vIWjjg9YVuTM6ntdjy/Hsgn888RrFNGgFQXlxvLGBWUgY5QSXmXMdl33FHog8JMgWGWBAY2I5MoqKs1QiBSI5Fp7/N873iqew3x0K2lXqHP15apuN9dRqRHMYed73Co1ZlNiSOwMm+lo0dKa5Mcx/NCymcrUDdL+Xz4FYxEnUyTt9EvZRp/+Bxncbq2OTrRMY2GXn0spG2sNk0k8vE7jPTM4sGdUGaMj+VZnSttvTq0vTZHFtBEa4OcCM9iplgmMVu/iXG5YxhinsuxAyP5+d0DnKvXqvFaSNsJ0CtjZ+EQ4oIuMDB9Ms13bbBM7MH152zuPw9gfHQScnEP04wTSOu255uX48ka/geDUuYQalHGLruXxHSJedLmzbeW6XRptO5+I9Nns8PrFEcaohlqlMX7NxYQHpbPGdf7+D2fx9nwfUx7tZLFPs8xEnURU+/Lpw43iOt0x1engrX7ViCNbqS5whBhtxAD12YAZrsmcv2LodiuKyC12oZBjgU8uhvM7YW/MPTmOsL8ixhomssa41Jiu+GHkrHc8rrJiTZTHrd4s9c+jrTeLpZnLqCrV4JKLcDBRPvZvkbV5LdZkHfPFYWBhs8mXmR3wUAaW+UY6Hfzh/9xFiQsYZxbBq/qnIi2LOQnqxSC42dzLng/018v50zIfhQaId4SCV0aBXub/QFw16lmsryDyx1yPry0AFO/+j9l9y/3sNF4b1/yD5+fNPaHf2cg/12g0IhYYBXHMF0VMTTgGzcfoVDN7uCTHFT3I6PVVms765qPWiNkrUkxANtCFUw3jSdtpJZBPmRwKiqNAENJF40qHdodoKjNlMokG+7KAxjZJ42IoAIOJkVz19abtms2xE10obbFAA3wkf9dzlWHATDbNwETSQfvhWrly0/VRjHa6QkPyjx5VyNivEkyDUp9puSP5JL7XWYUjqW4xQSsUlC0Sfm0NpCzj/ryoUyNvEhMziCtpMRxRQS3Q/eT2GOOjkBMaY8pOxuiiDbI5YPC4QyzyKGpWxdnuzruVXkxMTSZhy0+SARq0l+5ojFR8uXzSWxccZUAnTLWZc1k2uJHAFwoDEYypQFVtxTqdRkZncIuu5f47l7N9ZUHCL73Dve7RLxzcgXWUZWUlZgjL5Iwf95j9nT1Jy3yJNWqdqxF+ozLnUDeS21pLHvBLl71qAExWR02uOg28EwKxqJODjdGM8H4NUsjn3IyN5zMfsdxvbuEBTOe8LVFBu4PF7Fy2W2S2x15WuqKQKTm44jb7C/UNuhj6920dqjh1oQ87+TL2kCMzTp4kenKCTN7mpRy1oY+wEHSwEdJ0/BxrmTJ1qckdriQ02bFzymjsDFt4ceztjz4cguh5z4gf5a2IR2dOpXDPkeZmbKUlFZ7BBUy+oQVUTXQiG8t0xla50qIRQVJwQK6eiQ4OtTzncMVPCTaLHSgeR4bTAv4o08no3V7Gf13afM5RUP5ySqF47Iu5hQNRSjQMGLuS25E+rHaJA1xPxXX0gNYGf4EO1EvH5ZFcXLgXvp9+x56U6px0m1gaMZEigusmB31kuD42Qyx12ZNDXHWLD/3AQ3BKq4ZB+DkW8XXDlcJT1qMOt2QpboLUSmFGAi7yeqwpbzViAN1AxhilM3h2v4IIltICjvDzy7unMyP4HX4GQAOtlpRMVHJPLNsqjoNWGX5kAmzX9OhEbFj+DFetLuz5dlIiL7LGuNSepRi2tXd9Ggk7LWP41y7EVcbBjHFMZn9t4bzxcTzbM8fAsC9Fi9M5J0EjMqlpNWERYa1xJjUcyLkvNaqwD4cnef6fNn3GWE5AZzLjsJoaBcvw4/RpAZ3s3qSe+zZlDuCtg4ZkmQ56Wu05UKvw6uZvGg33+WMw7NPCXpiBQl/QszR8O8m+n/gL7+AGIq6WJswm5wBR8nuseV130PoCCQcazPnwZBtnGoJY4PdbQ7V9+dWcgBrxVqW6uywVxT0WjLKJpNv6n0Ya5LCZHkHvntW89jLA7WFgim2KZxViejslZDaYEtdkwG6Bt2scX7IxdlhDDXN4qm+Bx7yWhpVcj521BowLY5bhI1FC9GWhfj+sRq3IUV8XBPErsATLHiyjEkDkihXmGIs7eLnRnfOud7j09pAtjU5MzggBxtpM8JuIfOGPGXFuBfYibQe4Jsa3bAW6TNGrxMhYiL0i0jucGS0bi9PTMop7jZDqRFSnm9J4eS9JPb2EiaVcrjVkocOHshlvYRYVbAzexATXNKZ5ZzIjSrtbs1M3oHoW1M8fizlZb0btzP9eBt4sOJXDrX4Y23VwreF48leuptiZRvZrmY8avVhqVE2B16MYYDBFAQCDZV1xkjydTn1llZewz9uCZp0A2ShjbRnm5A3fw/HGcI4vXbWX+jD5gVJ7Ku2xtKoDfcHi/BxriK21g3XpCi29D/NunvziA7OobtKzq6xh/gqZyJ1RdpmaFuNCOkwFbNeJ7GzYBANtYYsCosjzKeIL7Mn0pZixqARKWwvGIKqWYe8Qmd+DZJTW2vIrgHHeWXkRl95Hiuj38JQqEvSjK1Evl4AwGTHVDwk+ihVIhz1Gjk3fw/H2sxp6tHlyzo/elRi2hQyGiuMsHRoorzWhFndWs+QbW5naVAY4P10AVKpku/qvTmSoS1D9nEq4e2KSC57XkFHIGFXsz3FPRaolEI+jJuBSKJmSmAy6W12DMuJpKtGztzKFUxYloCDrJE/0voT5VyMmX8nXSoJyRGn3zwLEX1cuRx48M33xePRIvaZDeBIwGEmFnzACNtsThT1Y6pBNodUelwJPEy1SszXpRO55H6XtRJtlrQ/tT/9XQs42GoFwP1GH6YHvUYu7KG9R4errSHYSxsxFnay8fBieny6EKgFBMjKcD+9ikmDX/FO2UiyGy35Ic+MkPACGrr0SLztC96dXK8LojnTTPv8Fgr4aeMx6lSGvF80ixXl/Xie50qB/XXeGvyEL8yzuNgnCEOhLsEOFdSeciE30ooDok4UGjEX3GJYUd4PQ51uEkLPcjtc61cC0G+oVjzxa++rfJ83jsK/c5P+efzrNcP/Ufz1p7BESo70Oci1Tj3WGJdyoMWFHxs8+Tp+PIty5lPba8CaL9cwziQFUauY/oa59DfM5eahaBYZ1rInbghfmGexpWgElzvk9Jip+S7iCkP8s3CS1iETK3jb4wkLnV8g1VGQ0fcEk+UNuMtrudfgS2yKF5+bZ6PQiFh0bSWLrq1kQ1gMhjrdnEmI4LO5Z+hnVkiYvJhujYTCkQdZc3I5pqIOEi7585FpPodbLRljmMp4g3SeFbuQ1m6P0rqHEw8GMODyBvyez8Pv+TzspY2Myh6H+9WVzCsezFDdMoo6zGlSd6In7KVXLabjog0bh9zAe/9qfq8ehueThWzdM43E6L14mdWRUOXALLckHle74yStp7DIisIiK7Z4nKX7sxaMJF2cG70TZ9t6frF5zJb6AbjrVFPbaMBmj3OsrYxAIoB3X8zlWqE/wY9WYTeuhKHWuUSYl7I18ixZy3dzqL4/h+r7k9nvOJ/OOcfj0MPoezdp/9O82hmVNZEbszexoGQQ39hfZ5rda64P2El5szGjbDKJ9s7nk5QprBzwgGdJXnw+4jJbFs1ln+8xpvRLYEq/BMLGZpJfb8623CE0lJowOySek9nhrH89g1ehp8G9g+9s7vJ6wB/4+ZSS+9ZuVBoBhSMPMlq3l0c1HgzT7SXItYz4HgUDNq0jyqqEKKsSAnVLudEpI6HPEaL0CwhJmEV+txVuhvWoNQKeBV7Uyo0PvM4Ux2SWBsaRFHYGc1kH3hKtN7e1SSuhtuXoiXrIG3SEvEFH6GNUTItCl/VV2iwqtd0BhVpIlHMxdIj5LPQmjb1yjjk9RvrQEB/fMgpHHMRW1kSQbgkWxu20K3RIeebOT9YvcL2wEs8nC/F8spCmZjkDLm+gR6PA4/FbjPLMJL3ZhgnX30cjhAuXBuDiVcXgIx9y+tAw9AVi5iYs44K7VqU4s8WKHc2OiCQqDjnGssSwRuu0CJxPCeVmfSBPQo7whXkWzSo93s+axfDJCTweuANH11ra1LpMHfKSzdZJpNTa8q77I3Qc2llh84iyOlP0IhoIdSjHRV5P3rw95M3bQ1OQkkXH1nCwsj+ichn3Mr0RNEsYfXoDR2MGEfF6BsoOKT82eJJ+3wP1O/Uk19riIG1krH46j7oFfGh1l8rndridW0lChyvvZs7h3cw5HHKM5XaXlMPV/YkLuoC3Ze2fFnc0mn/89a+Ev3wPJCRIqun68nPORexlwsN30TXQEqn6Wxcy3CiDX4tG8b7zPb7PHcsXXjd43u4OwA+WqbidW8nmscf5LHUyvT0SLEza6FWJ0JP2wi5L6uZ3AiAAxrtl8LDSnamOKXxilvtGc+k/MKtwGDuctMSrSZ9swPXtbN62fsCN1mBulviic8mYr/92kL9lT8LTpI7Uyz6kva9NtTfWhKAr7MVdVkOorJQl6QuZ7/IKD51qnrV54qen7YHM1m+iVNlGWq8FAdI6PiqbxFyrF5yvC6e2Wx+hQENOsiObxh1nX8VAvnK6yqxHq7R+5BdX8MXwyywyrOVvtf6MNkxFgYjT9VEALLKIZXXaPM4HHyC715xxet3c7xLxrMMTHaGCym4T+hrm8/m1WXiElnLL6+abOvypjHAEVTJU5r0UjjyIx6NFRLkUASAX9RJmUIxCI2KAXh7PutxpV2kbqBtMC6hVtbO4YAYzrBO5UhtMcq4jAqWA6KBckqvtMNbroqLaBD+nSmoPOVMbrcLFRRvU5ju85FxVGCUPnPAYXkhGkgtuQWWMsspEhIadV8cQPSSd5zH+mEXU0PLIim5rNXembua9whlMtkrmak0Q+9zOYy3SZ1bhMM643gdgcekApponsiFxOtvCT7P29FJs+lTSx7yUX6xe43FiFSq5msLJe9nR7EiUbgGzHq3ig8gYXKW1WIraONfch1f1jlz1Of1m6qilV4ZKLWSSXSrzjVLQE4h42WPA8w4PVpjEMzppGZv9z/FV/kRiAy5xocOAvx2dz9wZDzl+ZQiDRyXzMCYYs9BafvU6hwIRt1sCAVhq+ozYLjdqFEbkd1rgKa/hVEE4yRGn+bQ2kIEG2VxsCEelEWAs6aJLJWGX3Uu2NLmwzCiTPs9XMNgpn0D9Mk6Xh+NhVAfABNNkbjYFYSVt5UG1J/rSHrqUElY6PeGPkoH0KMR4mtbhJa+hXaWDQiPCT6+Cw6V90RUryC2wQaAWoBFpCPUqIfuOO2vmaeVsNt+YgGtoGbn5tkT5FRBlXMjOq2OQdEDG21opnvR+RxmcPpWdnqeY8WoFDmZNVDQZE2lfgrGkk9oeAw473WNRyXAOO91jaPoMAFY4xyJEzZfxE1kaFMexnD7kTPvyn+4/6HnYajy2Lv2Hz0+d8M+z4f+74C+/gLgFyDV5MVq2dIO6AzOhHI/HbzHMLZeSDhN6VSIKi61ALUAgVZE/Uqswuqq8P1GGBQzXy2f0q9XsCj3BNwUTMNPtJL3aGgvDdiLMS8lssSYn2x6dWhHrZl4msc2ZPfbP3zDZf250Z19yf+T6Pbibab2Yf3G6RKVSn+UnV/PkrV+ZmT2P6z5n0BfKeLsikvQmG574X37TM7jdJSWly5GiTgvu53thatROY6ucr0Kv8cXLSW+Y5hGvZ/CF1w02nniLl0u3EHzvXbb1P8Xx6r6YSDtRI2CJxRP+qBlCWr0NRwIO817eLIZY5jHcIJ2Xne6sMSlE+PfE8+OaIC5khQDgYNGImW4n4cbFLDZKZnb2XP7wPMkX5ROp6jTASNqNTKSkUykhK9kJmWMbK72fcryoD0+CT6EjkDApbxT9zAr4yDSfUdna5vw+99PUqGTcagvk0MtoBvrnkr/Nhymf3+N1qwMvX3izbvR12tQy3HVqKOqxpFEp5wfLVA62alnrwzInsMfjFL/XDcFap4V98VqDrbgR2/imehhLLWKZf2StdiQ61QWBUlteKJjxB1/W+ZHdZk2EcfEbbadsRQdxXa7s/G0qiV/sxv3sSk5N+p0HHT7MMXwNwOhXq7nZZzcX2wLRE/ZSqzDkC/MsopKnY6HXToBxJVaSVpJaHTni9IQV5f3Yax/HtU49Juh1crjVkl/SR5LZ7zjf1Xsz/e8GSp+UTOGS+10KlO3cafdmc+IIbC2bqcy2xNmvkrIEe3L/PgV3JS2IecGvqOk1ZJBRNvMMGllaFs0Bh2d8XBPE1YIAlvk841mjdlNkLO0k6UQgrz/ezbziweQ0WtKjEPNTwEXWJc5E/lhO55B2VEoh6joZswY+51xmKLEDfmfw4Q9ZP/0yv++bzJH3tjL92SqeDtTqmR1qDmWgPJsFT5YjrpJiEliHfJsRn+w+wtrDy3m1cisPu00JkNbgLDbA9fZSQjxKOel6k4VFo4kvcOLKoJ1Me7GS5/13E3Hjff6jAmTj0IiLUQOZp3xo8VKhkWoQKATMi44jrt4FH+Ma9EU9NCrkxKT4UjRuP2NyxvKN8xVKlab8lDua+gpjnFxqsdDtYLPjJRzF2hLe2xWRFLWbMdYqnXqFAX318xjnmvGnLCDuW5b9w+enTfz2X2YB+cuXsEyEKsKTZrKnxY4lBVNZXx2KpUkbuqJevA1rKM6wZU74K0xsWjk2cD/ud5fjfnc5O+2eEKlbxL1Odzb4xzBYpqGjV0pSohvhdmU88b9Ms0KXPqYliIx7mDQxjuVGVbQpdQiOn02YvIh+KdOIa3BDoxGgK1VwwS2GC24xTEpYwQAZfDz9Aim9xtzyPcuQrz7gg6owXlQ746DfzLjcMZxp9WdMzliCpY24SusYYJRDsGM5dTVGfBJymzkG9Yh1VES8nkHE6xnEh5xDT9DDpnmHaFYrQQP3mv1o7NHlboYva63uMf/ZMpZZPuZO8CGqlQbUt+vzuXk2SV3O3K3zIejlfE63m/CiR8lPVikIymQIymRMsUvGTV6HlbiVpF5TqloMud3hy8t8Zx75XaHomitfOFwjo9gWE49GprmlsPXBaJyNmhiYPId3K/uQVmRHQrMzb5UMRE+sQE+s4GxrMKsz5pHXYcnDUVuJK3Zh+0872JM8gKkWidj6V5PY5sS57SM4XRPJ4eMjmWn8ioHvrOD7+LFsaXJB8KMFHhJ9HpwNp6zbRJsSCmB5wXTyWi2YeXUN4g5o7pFh5NDCT2NOs3P8IbY1OXOjzI/plglYSVoI3LyafinTWF80nSWGNXz/4QFa1V2cmvQ72b02SAQq4ntsie+xZYn3c4Y9fo/LFUH46VRw6tJgLnQYYKDTTUahHefv9KOq14iSdhN89q3GT17JsMwJnKyJolXdxdbsYWwLOU3Qqzk8rPVgfdF01hdNJ73ChoCXc1lXNI2h8hxmBSQSG3AJa6867vteQ6bdgzDWOIUAlwrmmbzkYb4n8wwaWVHejwMOzwh4OZefrFJQ9IpRa4T0MSmij0kRsUVueM7MxfvpAtzldbgYN+Jo0oSftA5ljwirGSV4WdYyxC2P8NB8MlpsGOGRxbycOTxa9CsPGn1o9VVQoLDg8cAdb56xV03OfFYwhdhhvyFrgNpKY4pnQ6taF7UOhB39gAl6ndSpZFzr1KNw9AFkIgU6AgnfOVzhwZBtrMmbjfFdPYQIELaLCPUp1sqZHDVHrREiHl2Pm08lwd4loKfCW7eS2XYJFLWb8ZNVCvcyfJgT8Yro1KnIREoed3jz4b05nA44xIyIBH51P88wsywG3f2AHo2CHo0CJ90GckqscZXWcqU4gM+zJv8pMUdbivq3oRT8CywgzWohPQoxbxkWcsXjDhOMX9PHogQTSSfDjTLQGCk4nx3MJ163WfBkOQcHHuTgwIMMTZ+BWiPgVn0Av6SOZH11KObyDrKn78RZt4EMRSeLLJ5x+sZA8gYd4Xymdqde3WlAcsRpthcPQyZWkJbmhKBWh9P+h3A7vxK38yuxM27B48Qqvr07BVdJMwGn13Lhi1+w02nGTK+DE86PuOhxle1JQ3jb4REDYt9lhn4LOwqGklVryUj/TA4UR/NlbSCP++2iKduMpmwz7neJyOmx4f2LizjaHAHdIkYapxHjc513+zxgb90gkgfvIafXhtEpi+jU6OBs0vhmrNlcpwOxSIWduIkoHTHf1XuDWgBqAYe3j+PSzX6YiduJ0Gmip02Hra9GsLHPHVzvLuHD5eeY+mIV70Y8ZKpjCmqNgF9HneI92xhsDVoJ1y8mY8RuKtsNSam1xU6vGTu9Zv5IHcCj4KM8zfBgfclUVL0iZl5dg8lDXT45Px+NRsD3tncYuvoF51zv8eLdrQRLZdTN60TfoBsRGtrWabXNBs1M5HZSIPNCXjIv5CVV7YaUvHJAY6jg2+VH6VWJaanX55uMcbx9axHbXg7Dx6yG/eX9GaVXjKZ/C7t8TnDD8xbxPQqcxU086DLnUksYCwzq2XtxNNPkbUyTt1HcbYZAqOEj19ssvL+M4OE5KDRiqlsNWRL+DJVMQ1GHOVWNRmQt341EoGSz+zkAVGj4wf8SI3SVtLXoakUjhSqkQhUikZq0yJOUthjjLZFzKT+QtysiqSo245t6H7a/rZ0CkwhUfOJ4A2+JHAeLRmK6xATrl+J+diUXQ/fyqFuATLeXIN0STh4cwcmDI5jvG0/LOhsczJpQawRk3vYgv8aCEac/ZFpAMsVPnHCQNxF7M4jFNrFkVlrzk80jxEI1h5pDyW6wwN6hAUNhFwOur+dQcyiHmkP5xvEKmz3OMez526ilMCooA5lhD4crohF1wR+z9+B6axnFCnPWXV7IrMJhBBqW83OjOwcao3nW5YSBpIdeAwEmQj3UJgrmWr9grvULmqd18KrQid775hS/tietzJbP+17nbqM/puJ2qtoMqVBpuVFV3UY0tMmp2+HC+dIQhoelszRHa7b2oMOHX+6Np2jsfprUPTSpe/jINB9Bq4QNydNJjjjNRMe0Py3u/JuJrsVffgqrtteA5siTuN1bxWT/FC4mhCEx7EEnUc7jUe7QKebooL2kdTvwYtg2Pq/SKuzGBlwitluXHU6XGdu0lM3WSczpGso3dcEcf9UXRYSIi3f68XDBL4zKno2OTMGzbjUt3bqEJ81ErRHQmmuCfUA1RtJuTrWEkT1tJwAHWp0oHVHGEINMdtUPJH/OHkZlzyav2BpphRSfJq0PxMmhe5j3dDnb+54CwMe0Brm4h9uPQwmIKGSd+Ss+qhzJrembAJiRvAzFKxMkIW3E1rsh6BVQqTDB7d5ogl3KEQo0tGgUZHfZEmJRwZdZE2guNWLDmDssuraSD0deZ6bFK6JlakDIFKMkImfmA3C4pj9vWz9gTcYcjgQcxsyylXMBB5m4fSOLFj5izxfTWPT5Q35/OAId605UeQaYTOzgwwdzEfYKMI7u4qdz05g/6SEHE6KxdtEGfWOjDva2+LCm730idIu4qBdGs0KP1hAZF9xi8HyykAqVlMfbIrn9twzeP7UalVsnX4TeIEJWQrHSBJFQQ3JvNzefh7Bv7H7ePb4CgFuLf2HqrY0MGZXMZHkHG5OsuTl3E1+XT6DTVMIoiwx8ZRW8nTSPtF4jPvO7xdT77yKQqFgW8gx/3XJetLsTJi/m50Z3spfufvO9upXph0YlZM3thczp/4JnX0TyyURX+vnmc/zqEAIHFpBSacuWsLO4XlpB4ZS9VKgUvMhyxcRFjzWP57PLrQKBUMOSyKd8bq7lH/nGrIb+YPOphll7htHHrpQulRR01BiJulj6dBHfR13mi6QJ5A48imvMEiLdi0nqcqZTpcOAqEzeXvAuu479zhjnLEboKvli9XEArEUtRJ/SetRH/G0197/6ldGbPuT7NYdYf3oxw8cl0qLQZeuCA5T1mjHCPRtDoS4ykRJ7aSPzXBPoVksYKOvi52Fn+D5LK/J4QRSMk1ETbpb1ZFvp8bLaERP9TjKKbZk09RUbv11J4fd78Hs+j7y52l8HmeZQozDCRtpCUoczZz2uEOC4lmGZE5AVS/mkdj4A0YPTaVXIGB2eTlyLO7qiXl60upFUbY+VrI1zQQdYlj+LO0O3MSb2XdQdEnoWNbLQ+RVHCqMIMK+iqtuQhl495PbaheZQs9b+4MC9oUjsO5DGGaDup2ah8Su+/t8Qg/53QCAQmAIHgJFAPfCJRqM5+V+87y3gPcADaAVOAp9qNBrl3//+ERAF/IcQYIVGo/H6s67zL5+B/Bv/xr/xb/yfxv+BKaydQC9gBcwDdgsEAr//4n16wPuAORAJDAM2/Kf3vKvRaPT//vrTFg/4F2iihwfJNI9vW7GwaBxm0g6+t73HD7UDyG+zwEq3jYf5nuQNPsyg1Svw+iwd47/r5FzN80ciUeFrUYO1rJUbT0OR1Qo5smIbnWopazNmMdkplaMxg/AKKyG30oq8wYeZUaj1i8hvNMPTtJ5etYhetQhPg9o3xk92LvU4GjTxssiZP6KOsfzpW8QN3c6zbhs+T5nEJLc0bhT7oSNR0tktpbtel5mRr/jJKuWNlei+FhuWG1Vxu0vK9/nahnRlrTG/9T3Dh6ffQjewkZYSY3Rt2zkQeoQoHTHeB1YzcFQKr6ocWej+kkjdAgyFPRxujCa92YbSRhOM9Lp5EXwej+OryJu/h7Re7f141uXOz0/HINJTMt33NWfjIhG3CxG7tdPdIaWvRyHPc12JGbqdkY/X8FnETR43edHYo8c1z9vsabGjXmHAwfj+LAh/Tl2vllAXol+Ks7SO95NnkdH3BGsrI9ho9YBGlZhTzZG8ZxZHfI8lrzudUKhF6AiVXCvzp7bSGLFcyf3+Oxh05wOKxu3H5fpyJIY9RDqVACAVKgk2KGONcSkTckdT26GP4S8GFC6D+YGvOPaiHzFjtjL2+dtkDTjMe5VRDDLMwVrcgr+0k1OtnozXz8JRbPDm+v8jU3C9tYzCMftRo+ZEmyX3Gn0JMixjnUkRPze6c6UsiPXud/kldxQnAw6zIncON30uMjVvIg2dcl4En+dGp4xxet24XluOvFCb7OsNrONnnwusTZ3NmZD9jLu8juzpO5EIxPjsXc2ESS9w0GngZo0/YoEaT8NaRAINl+9Gkr1gF+NyxjPJOoVbtf609Mp45HcFt/taXaZfos7zVfoE0iJPEp06lb0+x/mlcjTe+tUktzgQn+YGQg1iIy1zfWfESdYeWc6GuRc5VxXGLa+bnG434bMXkykYfogV5f0A+Mj6Lgca++GnW84Xt2cwql8yMfneCIv00KuGvR9sZ9H+9xg97SWjjVKpVhoDcKi0H3Ps49mxfzLiwY00Fxtj5tqIq1EjnUqtHE3FWRcGLEngQZkHMqmC5hY5E71TyWyx5qrnVSQCMQPSplDXqo8kXp9xc+K4W+6NnUELdnot3E0MQNQuxLdPETm1lvQ2ynBzrwJghUMsM/Rb2NVsz6myCGpeW1Pw0bp/uoGt626rcf515T98fvbUr/6n1yAQCORAE+Cv0Why/37sGNrs4X/qySsQCNYBQzQazYS///kRcFyj0ez/hy/4f4K/fAaS1mzOqtIROOo18jAmmLhuCy7FhZNeastKy0fIknX5tDaQ+oUdSIVKfrF6zS9Wr+nrWMwKr6eccb3P42PhfDnmAmNnvGBf7SCqlUYMsCnkZaMzc4Y9xUGvmW/DrzAscwJJRQ5a4p/3beJfu2Oj20Jbrw46QiUenpV4eFbSpZBQ3GrKjxGXWHl1OVJdBQNPajcFPR1SctqsOBxymKZCE7rbdSicuI9LuUEAJI3ejho1PyeNAuByQxhDrXMZap2LqFzG97ljEfu20J5rgqN3NZ1NuiR3O7GqvC9Kly5e7w2irVWXG1X+OIg7yOi15UmVG7+7neF4+EGmO75mY00IamttEJn06B0mPXqHVUYV9PfPY0NoDHY6TWgkGpR6GqQSJSvDnvA8y53pQa+ZGL8ST/savnsxDjd5Hdc8b9N34yo2JY3gyTtRSA17SGpywFjShbGkix/vT+Dtl/M58XcbWne9GjaUTuJscwRjDFOZnLaIIbJGjmdGMNk4iVaVLlFWJYibxSwJiONwcx+Kxu3nWbcaoa4SU8NOUi74knLBl4fJvuw5MQ7306to7tGlMcOcMbseYWTcSXabNRsG3GJU7LvkDDjKqKyJeOlV813mWFrVMk61enKlOoihsWvw37GaVUYVHL05hApVGxWqNsTyXjIUnbhdX8mXMVPJbLRi/+nRRLyewZ64IdRmW/D1H/PZ6HmHMSc/ZKfHaWbmj2eCVSojbLM52GrFD/ljcb2ygp+HnGXQjEQGzUhER6KkWaVHj0KMt0ROaFgBEoGYXc32ZK3YzZXcACJ0C4k2K+Sa520uvQxnqGEGKtseAl/M55bXTazFzXzgcJeJtqmsrYxA0ytC0yvifG0EmldaPxPBAQv8JHrkbffhE7NcEgodkVWLEOgpyR14lOneyRyu6c+GuRdpVOozwSoVgKwuW24M+h3Xa8up6TKgpsuAURfXczouiq9fj+f7MWe5nebPnj7HCRyYx8SlT5j1eCWKgA68dav4qWgMxqJOFhjU06mQkt1lw4crztGrEPHu0Lus97iHp34NIy0zGWmZyZmPfuVJpStpkSfxNKkjb/Bh5pq+oEsp4VibHfE9CmIDLpEdfQzXcYWktdjiZNTENc/bdKikzIx6iUqm4V37+4xxzcTNvYoYn+vE+Fxnf3l/BqZPprTHjOZOXXIX7ubPgIZ/vIH+9ya6uUAgSPgfXiv+0z/hCaj+Y/H4O1KA/yoD+c8YCGT8p2M/CgSCeoFA8EwgEAz+B3/s/xJ/+R4IAhALVeS3WTB29Ct+LRyJTr0IUYWIt03nsvit2xzK7cv24NMYi7rwjdNq2BwLP8iyzWvZaQFiOdysDyQx1guvqCK+qxxLSh9tX2JC7mhc9Ru4UBtG/Q17NME9xHSJ+ezSHOyCaxhpnM56q/tI0HBWEgyAlaSFtE4HhAI1+bP28HOjO+kOdtQpDZngl4Zc3MOZpkj6hOVhptPOpkY3XC3rCUmYxUfed5mt38SG0BitoKNhAQ4Srb+4YoyILpWEuxf7oPLowUm/iRK1JVtShqEv70FcpMuId59xs8SX+77X+LEhjOx2axa7PGdJ9gL8TKrJbLbigNdxEmwcmFU4DDOLtje3Mq/JAgNxNx1KHQQSNSgFdKeacDh5BDaRWu7Fp/632Jw7Ah/nKg4/HsjpusHozGzkeMAJ9rkPYrv1Xc63hNGu0ioIe/hWUPzckexwGy4023GpMJARTjk0KfUoVphjo9/K3hYfpnqlECaVckvUxedW2TyqDGeeUSJpvRZEvp6Op2kdBcMO4f5wEfnrtIEg8vV0row9zFdVI1hkEcvitkXsujuKcQMSuV/qQe5ZT2zHV9EvZRqDbfJ41eKCkV4XdUpD3jbWyqPXWRoQFFXKjmZHxo14xcfl4wF4P/ABm6pGkT1uF6m9kNFjxzfFk8kMOQchvLEzftQtIHfhblxurmVpn6dsShpB/pDDAHyfY0FkeB6fXJ/DmalaF8XlVQuYLO/g5ytyEiN6yaq1ZJW0L3dS/dhWo92Vz2ldhUCsocjXDGf3akbr9iLT0zpVzikaylvWT1n6dBGZw/YSXRSBpU0zAAlxnkyZ+QK/nav56ccjFCjbUcxvxP/FXDRqAZFj0kk94k/poDaunYpmwPQkbCVN2EqaGK3bi8eJVVyeuYUfK8ewvN9jTuRpN8n5M/+gQNnONxVj+ezWTF5M3UzUzQ8YFJRNUpMDhSMP4rdrNcsHVpHSUcPWouGsqzchZ9AhtjR6sO+jqZz6bRuzDq1D1AVCJaxdoeVQzdz8Ie19O3G7t5irg3Yyq3ACC62fMcU2BV+dCiJ0JKytjGC6aTxZca7oeLewwusprreXIpCo0SiESK07CdVpYdXTcNwDyt98nzsV0jeW1BktNn9SwNHin6zb1P8vsiB9oOU/HWsBDP5nHyoQCBYD4cD/OGP8EZCJthw2G7gmEAiCNRpNwf/rq/4v8JfPQMQSFTpCJXWd+pR3mTDNLpkJk17w+J1N9LMu4lRxONaGrXxbOB4zYQ9KpRClUkiYVMqX7x3l3MItKGUw1DSLu3N/4ZrnbYKttMS9WYXDmGiVwutGO8653iNyTgr5I/azMnYhQtcOYgMu8V3OODaWTGFhznxO7RzJqZ0jcZbU09CrR36PFT5x8zl8YQS++lXsyBzMcOMMzt3rx7eWr3DSa6Ck3ZSrlQF843yFUKtyTlX1oUDZzi+vtBnIhepQ9lcPYn/1IN43i+NptSu/LD6EhUUrzwpdMbZuJcCuirkuCbj0L+EHy1TUT0z4uCaIQN1SulUSujUSws1L2WP/HG/jWi62BTPWJoMzrvfRlSjQlWilH+ryzEhrtCU21x16hYwMT0Pt0cHCqfepKjDnWY0Lu76YwQ6/U2SV2PD1yAv0mKnZ4BXD0qS30BUp+LJsIhlttvxklcJPVil4GNaRs3g33xyfzbm8EPaHHOV6rj/OsgYOlEbzrt198jstEQo0eMUu5OT5ISg0SizHl/Fd9Sjei5vDJp/z9KrEDM2YyKKAFwxbuJRhC5fyMuQ8a0om8/hWMPOuvUNPu5R5Q2Op7TEgPeokDG9kiWMccUEXaFXK+N7uOpUZ1piJ20nr7SJUVsKTeg+aVXLmG2ZzNTOQj21v8bHtLWwlTRxyjKVc1UODWs7rdidmR7/gcoecwM2rOV4SycD0yfxRNYQPqsIoGrufz82ziXAuJTp1KoMzJpE9fScjzDLIn72HRpUejSo9Rtpns6vZnrpwDWnd9gx2zGeP/XOKxu4nZ/FuNs06wsNRW7G0aiHKsJDWHhnf1Xtzt88ennWrCTMq4Z3ri3kv7CEhzxejUgsYaFPAQJsClEYqLqQF8+GCC2wuGsGkhBXUVxgT22c/dIh5nO1B4FvpbK4dyk/LD6EjVOIgbqZBqU+PRsG7Y2/jJ9HDWNLFBtNMpPeMkN4z4kanjBkpS0k+48eMgS+YmLYIM/tmDjnG0qGQ4hs3n+ertjAscwK9ajGTbFPJG3SEImUnj+s9OLBtC2+lLeLgoh1MnfeED1ZcoFcjplcjZuLSJ/R3KeT2oB1MOb2OM673+SZnPP6yMuY+0paJfOSVZPfY8P6ka1wM3YsINYkjdxDlVsSGqDv4WNVQqJAis29nk+t5PI+twvPYKm74ncTr8Go+qRxFXqwL/VKm/d8JUv/v0Q4Y/qdjhkDbf/FeAAQCwWTgJ2CMRqOp/4/jGo3mpUajadNoND0ajeYI8AwY+2dd6F8+AzGUdrPY/CkRdhJc7yxF6KEh5YEnl3QjEfUICBuaxQnnR0wrGMGpljAiHLVObd/Ve3OhOIjZronItBt8hl5bz7uDY0i65Ef4QGsSQs+yoGQQT/wvMyZHqzAa8XoWg7zzKGozpVXdxVC7PFoVMiZbvub2Aq2u1MN2H6q7DOlWSbgXuZvCUAPSuu0Z6ZzNT/mjsQ6oQUcg4U6ZN22FxmDeQ4S/hHiDEnJE2p2Si10dl0sCcTNpIMxIW/PfUh9N22tzYm29UCPg8cAdDI5dQ0aPNf6GleSmOlDh3obThCIquo0ZY9XJ35rMKWwxZaPHXWK7oaLTiBHGGczQb2FjTQj9LQsBiEqejkD59zFDjQChXEFJhwluvyjZt7Y/NrECdM8bU7Skl88KpjDcJ5u9xQMomPEHH9cEsTPkJFvLRnLa/SofVAwmOH42AKZ6nczoHs6CGfc5eGcoq3XmYXJXlyovIx75XWFe8WDEAjUrLB7zfr84RsqWIRGIkYmUzDV/zuPyIC42hTHcLJN6pQEH7g8h/6jW08XjxCry5u1hkkpElGkRV8oCaVDIyTnpReRYU+wNW4jSLcL94TvkDzlMaOIy8mftYVuTMw1KfW7UB1JUb4bKRsDe5kDeD7vPnXZtleB1qyP9ZDc42xLKiZPDSF+zG5ebyzil6cP8BbF8a6nVWZqSP5KEekemdJgxwjyTl7kuzAxO4CerFIZlTuGs92lCE5egVmvHN+2MWrjR5Md3Y8+yvWAo77k9oELVRv9b67B1bEAo0BBqVk59jjljA3LZrhjCerMUQg5tJHvJbqJlBYyfnEpclyvbQk7z/qHlvJBphSt1TLrJjj7GiKzxmMk6ue5zho+rB9I3biXDI9KRi3qo79WntNOE93NnczDqMGVKY2qURugIGllrUozrteWcGbmLR926tLlo99nj9LpZ06DPsfd2sr1yBJ953nzz/FU2GxHtWMh3df3oVkpQqEXcrvXlQkUw9a369HUoYv6XG/BankuUjhhfswSGfrMOt4Xa6kzBUU/6LE9i9JX1hEfnUaFqI8yyjGG6KsI8SjjdbgLAD7Hj+XTAdSYc/RBZYBPXDAOxlLVjJOok0KiCF11u+FtV83nJZG7M1k4tRh74kE9mXeBoWRQhQ3M45fIA0Z8RdDT/28UUcwGxQCDw0Gg0/2GhGMT/b2kKAIFAMBrYB4zTaDT/q1llDVom1Z+C/2sZiEAg8BAIBN0CgeD4/3BsmEAgyBYIBJ0CgeChQCBw+l99TlOzPtUqIy1Lu+814lPd+Gr2aVSWvUhawFVPuxinvHJjX9wgNjtcZ7PDdcLlhfhbVLPYKBmrSaU8avJiUlQij+s9mTrvCX5m1USnTuWY02PCk2YSZFyB64WVjLbLol2pQ2mhJTubgshrs+Bukj8/pI0m87QPmad9uFbmT91RJ360v8aEHzfyWf5kNseM48GxPuhJeqmoMGVawQi+871C/sw/cLOto1Xdxfb0IfxiE0dajxWVT+1Z7xnDOPNUThaFc7IoHHNJO9lLdlPVbYS5XgezMxeiUYOdyf/D3l+HR5Vu/77opyyVirsTdyEJJEgguLu7e6BprKFltXuj3U3j7u5O8BBICBBCiLu7VqRSev+otdj77rP3Ofeu1Wf/dq9njeepPyo158ysmnO+433H+Eoj39jq7y07oYyZTons6HSbXxu8WON7n3DbMiabNBFtqJdXn2zSxMzCfjyt9OR0YndOJ3Znitsrlg+7wxiXtwwLeke4eymrXO+RtVKGi2M9khYtR47+hud+eBR0BSE64kIuMTZnKGtt4nnS4k9qngvB95fhYVRDc6UpzZWmPAi6ymqnuzyt86JHrwxOhR7k288PciMviE+qQjnh/ohF9k+YemINY1Ln0ZZhSVjSNNJLHPGXyPHsWYSJqIONb4ZwJKM7I3u/ZnL+ICbnD6JH7ww8ry2mk3EDB+4NwMuiloIWa+wnFZEYfp45Ts/xlxjjZNtIQoea113PENsuZpVlIXkKO750uUZ61HGq1OaMNU3BR1pJF1khXWSF5DTY8lN1Xz61zmbgxJd4xi7Aza2Gb/tc5mRqJG+UCnwez2WC/WtOBx7FTKLg17cD+KXXea5ejGJk9nBWu9/ng6LR3A47wBeBN/gi8Aall90JtK3i8xtTeRZ6gVyFPd9VDOHliF95EHKGC4HHUOmE5E7dTd8LH9HZvpz1FdFsmXaI6QUDANhV049GjRE3G0M5vWgrxhIlxhIlnawamFnYD61OQB+rHDZU9EWuMkQo1OEhq+XWrW7kNNhS2GjJos5PmftkIZ9sX8i+jF4kdajY3eRM/uh9LE+fQT9DBWpLNWrLv6M/W0U4i1upajfhRn0oay/PQYsWO3M5/SyyuJQRSlObIU8SAxlsl4FGK+RVzwOMsHpL7w9fkJjlAcDglNm8/HoXWgRoEfDxRyd5UOjLluHHyaqzZdjLpeQ02wLwXacreEmqmWyazdUhv/PLq6FkLtzF14HX6GldwMsb+mT/sMqHJeb6isx2j/PsrO3Lztq+dNhpuFYTyndel2lRGfwp49b70P0Lr/+nQ+t0rcBF4FuBQGAsEAh6AWOBY//jtgKBYABwApio0+le/A+fWQgEgqECgcBQIBCIBQLBTPQ9kjv/zFf+n8V/ZQlrB5D0jzcCgcAG/Y/2BWAFvATO/D8dxN6ykZNVPXgYeowmjRHmLk1sz++PlXULYRPS38uNOIVUYmTbSrzCkXiFIxfrIojP8qLnpXUUPXPl5aMArqSG8e6NO+cu9tFzKtoMWVIaRZB1JSFGJSSM28K57HDOed7DrlMDDWpjMqvtEDeISeqxH9GQOkRD6mhOsSEiJpl5WTPZ+tFuqhtN2TjiJBfXbmKd+10EYi0tKr3IW1KHilDLcpYWjUSbb8LuRh+etfhCsJwpJtV883TM+zLTrtd9CEmcQWqtI/u9z9DLLh+RRIuXWR1Bz2cypvdL/B8sxlok54zck8e1vtSoTfGQ1RKSOINjchuuB5wHQCzQUlFmyZd9r/Bl3ytYiNowFKgwF7Wj1onIrLGjXGWJZaIB9kYtOH+Ww+DEGEoHGBKcMIO7qUEEJ8ygvMWMpQUT6Gacx4KIeERlhuS12WHu2Iy5YzOXW41ZlzmFz1xvkHE4EH+JMcvvzGOG30su53Tmg/JuRBuCwLeFG52P4BZZwomwg4iLDSlUG5JdYs9ntq/QdIjJ7H2M6xnBzLR/zkz759QqjMkfvY/bWYHsGbMPN6N6Fjs/Ib/aBpVOzVdv9Z4kFbUWWAg72N7oymCZfkBcZv2cEAMZU/MHYiVqZdyLZXzwfAYrkvWvpjZDAo3KAfjNKYn8wQfpZNJIQYctER7FfJw/EYFAh0IrIfryR4SYliF9bUy+0pa/zTpDaaMFqx7PoFZhRJMW0tpdSGt3oaWLglqFEblTdxO6KQY3aS130wO40uLJ9zXhFKml7HROxPPuQnKn7CHhpR+3MwNZc24+Hsa13Ggz5DenJFQ6kV6dt7Yvt/xucsvvJpf8zhNgUskg+yxWWRaSWu9EX8sszkTsY29CHxaNu8sUt1fIJGoe1fiytddpmsM62N/lKIYCNa/lbvR6O4H+TrlMyRtB+vAdpA/fgefVxdi8FKLSCfja6yq7XZ7zwfDbhDyfTUWKA1/FTsDopQx1mjkWmUJ23BuC6ZdGLCsezPq707mWHcy+vodJ6FDzNOw02xtdMRCqMRCqye2wp49bHi9avbjRZR9ikQZ5hyHf1gbgLzFmZ9UAKjUCggykhLqVUaaR833WSI7d7oumcwsA81yfv2e9T/10PU8rPXla6cmmQadIzuuESKBlplPinzZwwf8WJvpyQAZUA6eAGJ1OlyYQCFwFAkGLQCBw/ft2XwDmwM2//71FIBDc+vtnEuB7oAY9l2QlME6n02X9ST/Dfw2MVyAQTAMmoG/ueOt0ull/RyLM0+l0UX/fxhj9lw7X6XSZ/6tjhYYa6JLvuON5aQlXRv7GozY/GtTGnMsLJ7X7STyvLSZuxFaG7tjAqrmX2ZnTB4DkiDOEJU3jSddD7G0MJrHRAzNJO2ZiBdscX+m1iBK7MqlnEjKhkhPvItHVSomfsIWoa2uxdmugtsyCq0N+Z0X2dJ4EXyZ0cwwAKR/tYllpTzY7PeRsixszTUvZVBeCk0EDIdJSClU23G8M5HGxF8sCnlKmtGSjfTI32gyJNmzgjNyTX14PRVcr5fLYXxn74AMAPFyrKa2zxGW/BMO/lZNVas+U4NecfRhFdM803h4JZseG7SS1e3K0oDue5vVoEZAS54NxUD2rfB+yK68PbY9tscjVUBMmQiPTX3+NoQ7TPCGGg2uQStRUN5oy2TeZm7uj2fHxdpb+tpKUDbvwvLiEO6O3Mn7Xet59qH/v6F2LkUTJr95nSe1wplRpRXabXgrc37iCpEYPmlX6pnppo8V7gEKztp3va6KYYfmcVq0B7pJWttf2RipU06EV06gyYrfLcwB2NzkTKSvAWaTkcoseyq7Sidj6dCiBvqUoNSIqYjsROiaDkhYLTgUcY9zbBXS3L+J1TSc+9HrAAFkJA3aux2tYPgFmlfxsn8LhZjs6SeqIObeEHyacpFWrP88JJkXMzR/LJe+7+B6JwSWiDGtZGzl1NvwacoZlr2Yx0iuNwlZr8uqt2RR8npWvpiMWa1AUmJE7Xd+zeNgSSHydJ1Md9U4U/tJy1mVNwUbWilIrIqvIkeURj/jIKo/lZd0ZYvGOjbnDGOGcxslz/UmP2UVI4gwmeKZw6mYfxG1g3KOW9jgbek94g69xJbZifWk8vskHF8MGntd70N2qkEOJvfi+z0W+eDaeAI9yZjgmcrG6K8XNFiSFn6NQLWfUy6XM800kwigfjU6Ig1jOuLNr8Y8sRKHRV7gNRBryamz0drJhhwgzMMT3SAz3Zm5kyt/Wk/DLbsJfTuV6+H4GJcYQaF9FcooHPw45x2fPxrO461P2xfUjf9xeWrQKOt9bToiHvs84x+kZnQ0qGHFGb+i22CqO262BVCvN+M7uHRGvp2Apa6NNZcBar1hEaGnVSnnZ4oGZWEFuqy31HUaUNlpwP2IvcQpHxhvr+8++DxcwNuAtWxxe43V+KXmT9iByzPmXYbyGXs46l59i/un986Z+8W+jhfW/PYEIBAIz9KuLgcBC/lsC+Q0w0Ol0Mf/dtu+Ar3Q63YX/4RhLgCUAYhvzrsMuzqZFZUBfu1wuHO6H8WC9bHNTmyEqlYij3Q8y424MHl6VlDfqYY46rQBdrgmBvfMYaptGk0bGwbQo1JUyunTNw9WonsmWL1DoJGwvG4RSI2K43Tv25vTmecQRVpX1p6TVgqwiB6QmStRKMVJDJQDSWHM6z33H8xJ3bnTfxcx381BdteXVl7sYnT2Ma7638Y+fTWavY4zPHYKZREHSzSCkjXDv481E3FwNAh1GVu0IXpmhDtPPtEyMOjCRdlD+2pHs2bvfiw12T57EkeAjiNCxpWowHkY1fGylZ5h/VRPEePNX/FY5mCK5JYX59qzqHcvVihAqm8wY66UvmSY3uBBoXsmlpK7kj96H/8EYRo5IxFVaj1CgxV9azrL42fT2ySPujT8CYxU6lQhX1xpkYhUtSikSoQYPszomWL9i/d8tXNOjjuP9cB5Xeu8ksd2DBWZVdN4Sw9VVGzEVCun28ANMTBXIG4xY0DWeNLkTWp2AqnYTHgVdoc+7cbQpDehiV8qLE6HMWXKb/Rl6KfT2BkP2DjjMsusLWTf4Bl1khVxt6sLDzVEYzSvDx6yWF1WuCG5YsXjVVXYcGsPFFZt41ObDocIoIm2LuZEVhKFMicsvIvJWC1kXdg+AZeZljM8dQkOHDJVGxJ3gk+xtCuDgiWEMnPCSOzcjcOtdTMljV3bO3c3LNk923xnMkfE7OVXfgxvJnREYaDE1b8fEsIMvfK4DYC1sJandg8IOW5pVhmgRcC81EA+3Kla6PaCHYRV7GyIpVViy1+UZXueWYu9bi7WslU9cbzL7yWI+6naHra8HcSjqMBKBGsO/O2EuTZtFYvh5DjbbU682wVtaybX6MLyNauhvks7TVj9y2+zo0Ir53OkWpgJYVzqS+Le+bBpwmsu1XQg2LaNEYcX9Ql8yovTVZa9zS8mbvIfLrcb0MKwi6tpaTJ3kyMtNcfaq0V+vTFu0phrsHBsRCnQo1GJivJ+w2FzPyRiQNoYbgecIO7yaB3M2cqChm/7Y0ioGGxVzRh5IJ0kdY4zleN9dTP6QA3xSFUpCrTt/87xBzPNZTAhKYaN9MmsqutLXLJPPU8fyuNs+ZuVMxsu0ltg7XdEa6NA56j1/RBItFiZt1Dcbs73bKT5KmUTG+G/+k0D+xPivSCC/AeU6ne4XgUDwNf8tgRwAav57ooxAIIgH9ul0usP/q+P5d5bq0u+6MbOwH6sdY/GWqLAUGpHQoUahk+AvkeMgMuGL6mBulwWgUuvbaAE21RiKVPibVNCgMuYbu5dcbbXh8+SxBDtVsMXtIsMSliMzVNJYbYrYSI3stYy3a3fhc3wZdp2raXxqT9py/Sw8f8JeAp/p5Rm8bGpRaMTs9jnNpsrB7HZ5zve1/oQaFZPc5oaRUImNWM7LFnceFXuT3P0omSoVIQYyVDo1Wxv8mW/+hiK1lGlxS/DtpIfQ9rHJ5Xh2JB3tEj6LuIWbpJaYs0uYOjyOhVbPOVDfE6FAR0WHOQVyK077neHX2u7ElvvT2aac5+dCaQ9rx8ayBXm7lPl+Cex4rneGc3Gto/6JA5OmPOHpRz0I+CmVe7e74vb5M5wSzIjL80JUJEPl1ME3Pa/yTdIoBELQdIhYGvmYvQ8GMrTnG+LOd+FvC08zzUTv/bG90ZXJpulExa7CxaWOr7yuYS1q5YfSUYSYlXG1OIQ1Pve4WhPOGc/7BDybhYtlI/nltqQP2MveJi86tJL3Sro/1fmy2kqf9B60m7PyyUyEDRI8LysoHCFD7agkf8gB4hVavi8aRZNChlIjoiXZmpD+OdS1GzHJ+TWRsgIipRIutJrSpDHi+4RRbOp1lvXxUwAwMmvHw6qe1Z1i8ZE04io2pV3XgUwgJUfVwpsOZyab6Ge6p1ss2ZYzkJoCK8xdm2hLteLMzG3srenLTudEyjRyom+uBeDg4P2s/n0Zzb4aQoMLibbO4Wp5Z476Haf/ow/5JPI2Z8u7stvnNKvzJzHc7h1XFg7gzoWjACwpjWKV/T0KVVYMN2qj37sJPAm+/P55ON1iyWd3J5M/YS9+cXMY5pVBXIUnmvtWfBRzjtmmtXifXQq2HbjYNVCS7oDUuRWhUMvawPt8f28soZ0LcZQ1sdNZX/ZZVR7Jk3JPejkV0KA0IiHPA+oNEDu0o1ELORW1jzcKVxabVxDxego9HAq5lRFE3sBD+B+I4cbcTYw6tJ6zc7cy9cBa5k6NJV3uBEBukw01jSbs7XaMfoY6lpX2JLPJDo1WiLtZPZ5GtVwu6MxQt0yaVYbcTQohbdx2Br6dwQrPh/xwYiqb5hwiq8ORtZYFbK73IlhWAsAwmZI8dQteYhMGpI0h3LqUX8PP/MuDt9TLWefy4/J/ev/8aZ//2ySQ/60oLIFAEAYMAsL/Jx///w1dAygts8Pr3FI6BVbya8VgPnG6xRe13bgd1wVRmwClnQpxgxitVIdAK8AtRL907muVxRu5Ky1qQ/xlFcwqGM6bYhfsrJqpUxjhLjZldcgDlpmXEa/QkqJwZXm/UjwvLCVu+iZ6317Dyum3iXg9BWefGgKezWJzmL6/sOrqPIw9m/i8ZAwZtXZsNynjyJ1+fDjyJkce9WF+v8dcqQ5jsE06Dt7NBD5epP+/cmPEySZImqFgji0FLVbYWMtZ5BIHwCeXZ2Ls24jhUzPKO1vyx+8TCJqWRw+TXB60edPZqISHTf585nCHVe2TuNbiwen0CKSGSjIa7Elds4vQF9MZ4JTN7ZIAvWCgSD+BMBSraHfW0NMkh2+OpBHwbBYbJl1kIxOw0WagaZWgc1GQP+gQXvfm43DTAIcV+bwrd6S3UTZ3AgJZaBuH9fRWshUOBJ7Qo7DSl+5i8PSVrNkVy870Pjxp8edoUk9W9rzP3gvD0Ing+5dT0fi38oVJMBlRx+mXNpaY8CfcarPAQtSGg7SR++0i1qdPorHWhAMGeoa0rlaKYa2QURMSuFXdg06RpSx2fUroi+kI71lw9KOtfF40jsJLngyY+Zr+5plcrOnK25ZOaBASKS3mcFkv5jg9x9i8HV9JNY4O+sQX3/ki39YGUKMxY8XJJajcFJglGdLsreXs2O2UqKzol9aPoiJbCkbs561zNqcquiFvlhHeN4fpLxehzjeBWYnMy55O7mg9cmxy3lB+/XA3Z+u6IRTo6CSpJ9SynB8rh/Cw3++4ik1Jktcz+OGHdPcuZO+e0by5sAuPG4soGLmfaPNsNhRMpOChOyXTrrLN9yye11YAkDbqDwo6bEkat42djX48jtrJtRYfxM4atmx4DcAjhYBnE7dgJzKhTCPnc9MRHHKNw/PyEn5WDgWJjkved9lQ9d8e0QjTArr55THTtJ5f6r05MfARAN4P5uHnUsX15jDsJU16j5zwE/R8PQudRsAJuRU/TzvKspxpCIObiW0NRCuF3Qn92NhHLzzZxbmMbdUDSFc4YyrM5/WuUFpHyen0i4D4Oba8cuiE5Jkpd/v6sd7/LmVB5sgEUj70eoCXpJorCzcx7MlKfu5+kRNyK/a+68Xz3nqe0MjsSRiJVZzzvEfFM2cKHez5/6Gt+v8cOuD/XRTWXyb+dzfR+wHuQLFAIKhEr9kyUSAQvEYPUQv9x4Z/74F48b+Arv0jdEK4PPZXZrq8YIT1W8beX8kfTi/oGpmDLLiB9BE76BKVw/z+j3EKquSU3ylO+Z1i4+MR7HZ5jrO0gXlm1fzqdokeHgXMdH3Bo6ArJHWoWGZehuflJViIFJwqiWRuUR+QaJmWPgdvz0p2xg6hvsCS0mJr1gfHsvLpTFY+nYlXWAkOZs2MsHmLWKTlVFEk3XplssQ8j+DQQj63ySS1xAkrcavera7fYdZ73eG70Ks8W74Vy7FlJFa6UlxviYWsnWdyH57Jfbg5ZTOKt5b4z8ngc5tMRi6JI6PSnpVPZ/KwwZ/JJk0IBTq+KhvJcLt3aBFgZ9XMttCzCAQ6Fpb0IsKxGHtJM43VptQoTDEwUWJgosRIrAIdaHRCvM4vJS3qKN/FjUZpoSGv0QZhu5DbfbezrrILe3sdZdCnT1ns9JhurkWYCTvwNa/hQmMEbVoDvrTJ4Mz8rZyZv5WkDhV+W9IYYJyJAJhikUQn11p2vO6HtHMjsbM3Ytm9GrFYS3mHOb3eTmCU4zteNbnxU/Zw4pt8+PD4YlYeWUK0Yz46jYCPusTyUZdYhLYddPgouLe/B0Z9amhoN2JHQT8kYg3Jn+1i7O0PSS9zpN0B7jwPQ4MQB8MmhAItT+p9AbCQtnOwrBdtxab8WjUII4kSI4mS7Y2u9DLOZppJA3bdK/i2+xVanfQeIwtT5rDWsgBjiRJ/r3IikyfTrpEwKyKB3AGHMZO087j7bnJm7eanOl8spIr3NgJCgY6Vu5dR0GLN4xJvrteFci0thJoOE1zFpnidW8ovTvfo5ZvHJLskGNBAVMpEFnZ/SqWmhZmm1Yy0S0VlrONxvR9yrRSJRQcSiw6ut9qxLymaYSnzWG5RyvDkhfyUMIItDq/ZXO9FmUbOgrj55KsNGZwxCmeRKVYGrVxoNcUyVUR2n6OEBhTxSCHgclbIe1n0Vq2U6aa1DM4YxYF3UZyQWzEyezgfdY2l4KE73oZV/JHej/jOFwnf+yGvu55BKNYy07SeU1U9iA24jlIpZq1lAUF9c7k06A9+yBjODxnDEaHDwaAZoUCHARpWfXKWsV6p7D6/i4zxO/goOJYNS89gZdTG548nMtI+lZ/qfAmRlnGpqStKhPT2zuN0VTcsRG0EOVWyoWwIG8qGsNfrLNPsE7nRZohOCPmj9/1pA9l/HAn18b+1hCUQCIz4/15lfIQ+ofyjoJgLLABuAN8AfXU6XY//u2Ma+Tjpsh7p+KBgIikZbvQPSyeh1J32WiPcL2gpmq2FegNkVUI8hhTQ31YPQPgjqT/LIx7zuNaHjNfuTOifyMX0UPb3PMKCO4vJH7uXNFUbcW0+NGlkRMgKGCjTEJwwg3c9TvJKqcRQoGZJxiwmdkqmTSPFTaqHDM82rWVJaRT2Bs1cPxDNpfUbGXx6PbHTNpGgcEWlE2ErbuZyXVfuJgfj4lGDuYGCunZjKsos2dv/MJuLhpJTYk+kV9F7l7w+78axwPUZBz4bx5Tvb7PtwTBujt7GHzX9qeswoUVlwHiHZH5JGcqeyGPkK+2YZ1bBZ1XhXMsPpr3ZkNEhb3GT1XJi+zCWrbpM29+bxlFGOaR1ONNDVsDZpghSmly44BWLZ+wChgWmEV/myQzvJHY/74dNgoQWV1CZ6YjumYa9tJmURmeKHrghaYUFC2+x+5xeydW8Ww1WG4Scvn2E4e9m4mtRw+tKF0QiLU35Fszt/4RLe/txfsMmBl9ZR9y4zQxOjCE96jhBz2fya9gZ1r+bxEKfZ2h1QnalR7Oji16UdMn1ReRM3oXfowV8GPaAl03udDEr5o9bw9AJQSfWYenZwJ7g42zInUhVsyl/hJ3CR9JMXLsr12pDKWiyprXDgEGuWSyzfsJHhXqy2Vnv65yQu+AmqSVF4cpaywJmFvZjj+ttUpQGFKps8DWookxtQbnKkl+vjULk1YKNaSvVjaZoi4y4OGUbv1YNIto8h59ShgGQFX0U71PLmDP4MXE1XpQ2WCCNM2XW4rs86O3C/BdvuFoXhlYnINi0nJPHB7JhwTkkAg3RsmLyVab8Ua53Tlxe1p2dzolkqloBGHFjDe4+ldwIPMemujDiaz056XsWa6ExoDcQ+9k+BYB9TY5ktjuy1vYxziJT6rStXJR7M8A4hzst/hgKVWxM1StXCwU60qOOk9ChZuGBlejC5PRzy2GgRTpv21xxNGhk4/NhhPsUk5zXCUeHRmpf2ePfO5+Kwx40+oNP9yLq2owZ7JTJQLM0fCR6tebPy0ZQJLfE17yGO2+CsXRsxnqzEQClK1VYXjBm/pdXKeiwxVVaxzLzMo7JbSjosGWJZRIOIhP8D8QQ0j+HzBo7JGINt8P0sjlTMmdSVmNJTr/D+B3WDzG5n/7rWlhST2ed8w8r/un9C2b87d+mhPVfKqb43/dA/v5+EPAH4AYkokdlFf7fHcM6wFZnuvJjIsPyeJHpwWe9brAtbSChjuUk5rozpfMrzqV2wd2pFgORBjdjfYlCi4Chlqmsvzed8d1fstLmMddaghhgnMnXJWPY636Vo02BHMzpSU+nQrqZ5bMxdQjWpq00tBjhZ1dNyjt38sftZXL+IKbZJ3K0XF9a+c3jPKNfLUWpFPNN+DXOVUUQaFqBo0EjO06M5urSTYx4vhyhSMsUn2RGmb0hUipBi5ZBaeN4EHQVz6uLMbBSoMsxQeSnr+J1tEkQSrRk9T3E1PwhvHnmjcZcg3G+mL8tPM1ncRPpGZDLYKt0SpVWzLFI4npLAFvvjsQntIQWpZTa5w4oXFR634dVIrKWWQOgs1KiU4lwd60mxLKCQRZphBhUUaMxZGXGdEylCmID9I3gXm8nsNH3PL0MhXifXcqV8duYumsd7z7cxRfVwTyu9qZOrh+0vu18lYnGcoKez+SLkJtcqw3F0qCN3mY5/JA2HHWKOR2Oauyeilj3xSmSWj05/zac7b1OotBJ+HHLLHRCmLH8LiqdCBuxnIRmTwAkAi320mYS6tzZ6nWOCSfWMX74M67lB7Mx9AKP5QE8KPPBRNqBRKihsMqGYJdympVSXIybsJG2EHuyOwHjssm45MvG5QeIeTgHgN/7nWSIrIkXHRIetgSwzDKJiy1+LDMvo8ebSSSEndf3G+5PJn/sXr13t0bIlbD9GAgEHG8K5U5VAKvd7mEnkiMU6J+znVX98ZDVcfhtDwQiHZ1dysmrtybcvoyptomsPbyQ9Bg92CKzwh5bixYUajHyLEus3sEvX+5hW8kQwixKORbfizX9bmMs1OuaFShsOfWwN1oLFeIqAy5M28onhRMYaZfKH2dG89ucfWwtHoKHSR1val2orLJgUGAGcbdCUXm3My8kgYOvozA2V6BLNMdqgL4B/o8ei++xZVyYuo3JL5awofNdUltd2Ob4ivnF0cQXevBDlysktXrqLX9PLiNnxu736KeQxBmkdj/J4WY7KlQWfGr932SehmaOJCfHCaGxip5eBezodJsu51eTPWUXF1os+TV/INNcX/JHaj8eRO0gR2XG0xY/jrzrwZddr7M1ayAvup6gRafk4/JBPC9zB6CncyEuhg08rvampUNKTY05RXM/+XMSyPf/QgKZ+Z8E8n9MWPnb6QL/mEeHSkxNlTn5ww6wvKw7Dwp9WR38gG0Xx5A1fxcT8waT8soTj7/3QIzEKrJrbHG3rqd9izO+X6ZR/IEnK05eZN2FOWTP3s3mei9sxHJ+Th2KNt+YG9M2U6i24Kf8EYxwTOMjqzxeKZVMfhiD0EDDqSj9EtlepKBf7BpoF9I1LJ/0Wz70GPOWJ3EhTBv0lFulgbzscpaDzfZ4GlTzRc44WjoMEAl1DHDOoVElI/ZtIIHeZbSqDJCJ9VIjuRV2aDUCorzzya63RaUVYWaoYJ1HLKeru/G76w3Gpc2i5YYDa1ec43BJT4Y7pHOzIoj6NiNC7cqJz/dEqxQhNe0g2KHyvSrq757nmPp2AWKhlvoUW2QBjUQ4FqPVCSmSW9LNpojLOZ0RizWE2FfSrJKS/dIN68BaVng9YrZpLcvLuhP7MByNiRaM9cggvYqvF3uij7A0dj7Xhv/G2rzJlDWaIxBAR7YZHpEltKsl1Dx3JGPxLnyPxtBvQApJlZ0wEGn4I/AUx+uiSKx24xOfW5yp7g5AToMN0Y55XEkJ4/Oo6ywwq+JCqynRhhWM+uojXny/m+9r/Ymv86RSbsrRzocZ+3gFzwb8joPIhNAX07nZdS85KjOOVPcmt8mGuJBLAHifXcrmkccRCXSMNmojTdVGptIeM2E7g2VqfI/GIPVrwshAiVSipjzVgUkDnvOowoe40NP8rTqSvqYZfLVpPi+/2oXnLb08UYBXGUZiFXXtRriZNtDdPJ+9ub2Z65nIozpfLnnfxePGIqQVEqaOfcLxlG442TfSrpIQYlNB9rZAKoZocHBqoLtdIelNDkx10kOEo2V5+Ej0gJFeptkMkymJV2j5o2IQzSopl32uIRH8t7ZntaaFiy1+OEsa6C6tpveJ9Xw74TS/5g5koUc8v6briYvt1cbYutZTU2iFlVsjH/nG8s3bkbzueYB77Za8aPHESKTk4LueXOy5m8kvljA3IJFRpimMvbmKiyN+Z1n6LGa6v2Dbi0GkDd713lb5nUrHzqr+LLCNI7HdixsVwbR0SKmusMCgSoLAt4XdXY9TorJGoxMy2qSATKWMpW9moX5njkd0EeVX3ZD7qTFzlBNuX0a0hT451atNuFQaik4noLLCAi+3Kh4M2PYnJBAXndN3/3wCKZz12b9NAvnLS5mYiBWU11iQ2/8wHtcX43FzEdcH/06HVszp0gg+n3SOb2sDSK+yR2uqYbzjGwBCDYt5aeOJSifio703+aomiL2X9bDF0bN3s66yCz/aJzItbySfhNxBESxhX300D8u9qc+14qOgq4zPHcIl77u4ONcRaFFFTJreHe0D70eMD3+NnUEz3tIqPjXzJqHUHd+IIk48jcLAvp2p+QPZ5HqZvrfXkjh8G9dbvThUFMXdYj98rGtZG3WXsg5LClptGGWrLzsc1vTkvP8ZPi0fSGL4ecJfTqWk0oq1NVPY2u0s3c+uwz6wGscHdbyZ50phmhMq+yyazzvT3F1J2s0gHOq1WH9QyLsUd141u2FYoGfoTpYvpLHWhO3RJ/AKqmPEtTUc6BZPh05vTRqcMIPM3sfo8moqmXW2nA87wKTmhQRZV5DW5kyvrybiuzodraGO2b3ieVCp7zE8S/fGyaWekzU9OTJkHyJ0fOh6n5H+CorVcsaKFlFUZ4XFNWM6+isJ2RbDinm3SGt1IjniDIVqOe5iU24ZtNDYKiND4YxSq0fSjXFNRaMTIpRqWGBWRcTrKfR1yuWTyzO5+dVmvq2N5GxuOIp2A1zt6lmQNgdRjQFDXy3G1aKBi132MWPFWlw+ySH5VgDtndQEP9KXOi4t3Up8uzfLzMv4pd6bj61yOdHgQbtGQrW6gMRZW/i+ujetaim9zHO4ahRGUp0r8zyeE/BoEbn9DzO/OBrbaUVcbjXG/O+ilas7xbIqeRo/hl7iSl0X8hV2nAs9wJSf1uMyLZ99TY6Im8SMG/0MK3ErR3sf4FR9D8ZbviK9w5lnEzwQlhvh5t/A9YeRCDu1kWDiBcDrFjcKWqzJKrPHJFRBq7aKicZy2hyeMFimJrbdkD9KB9LXJps/Hg/Gzr2epiRb3iz6nYCL60ib/StTcsbya8BpbjSF4WShR5kd67aHHXU9sHRv5X6NP9NMGrjiWI5MIOVlq55hvtDiNUN6vqNMY05m72P4H4jh04XZGFaIsBKqMJUqkAg0GJoo+b0hiItFYQAs8ozn4csg5g2P54+k/tzp/zsbiiawP+gYV5rDMRUpOFnbE1Oxgq/s4inXwJNWf8QiLe8W7eKNUsGRWb14fLAb10buQ6WDmLypAFQ0mxFqV059hxGzeiQSaljMgz9r4Plrz7v/tPjLiynaiZR8E3GV2HYxK6IeUDBiP2OerGCE1VvKXzvy46nJHL/Vl2EeGQibxGx9PYitrwexNmMKuzN6M9Y0Be/Tyzj6oifeD+fhdW8+/RcuwtGgiYDYZXzgfJ/vb07gbYsLQ83eUp9rhdS5lYjXU1BoxHheWkJpiQ3fOsZSX2JBfYkFcU0+rLR5TEK9J9aiFq5O20JazxPUtRmzdegJJGIN/a0z+bR0ND2C8jgjD8RNUkuIVTlLfJ5iK5UTZZTLxdtRfO5ynY0HJrPxwGQ+87hJxIMVfO0Yy74mR1paZAgrpZiYtLP+5Fycgiv51ucKim0K5lnFY50i4OCtAfz28Q4EYi1zV91A7iKkq2Uxzg91jA9LRisFrRScTZsQNIv57N14FmbMxqBBP0h3SZiH17mlCBLMCUuaxuXQ/bS/tWJG6jwaq0zZ6HyXjGYHuq1/ydM4vbREbLk/9S1G1LcY4e9VTnW9GYvsHnOsNopMpR3nayNp1rYz8Mx6hnbKRFNkTHU/FQYmSk5/sIU9Z4bjalhPv7SxDLi+DoDj6ZEYGSo5kBL13nv+UmFnvrFNw9KiFZ/Hc+nrlEtynQsxI+4w9uB6vrTJQPjMnNR+e4iwKWGYcwbWgbUYXLegi2UJE14vpmSIgI2drqGw12CaLWb2zFhmz4zlx7KR3KkJ4lyLOafyIrjdbkBCjTuFrdbcawhiXt54Rpin0Kox4FBxFOc871EtNyWuwQeqDPF9ModIswKyMlzYcGEOYpEWsUjLYJkaS5M21t6fwU/Ot9hon0y52oSFK6+RluzO3vzeaA103DitL4fOfzGP25mBDJRp2JHWl97ueewas59mlZRuUZmIxRo8ZLV4yGopabXkqPd50MHHVrlMNJbzQXk3thbrexmDZWoG2WbwvMGL8T1e0vjSlozFuzjU7E7+xD3IBFKqW01YnTGNUoUlCrUEhVpCv+cxfGf3jvh6bxxkzcwu6kux3IJlpT25VhzM5YLOzM6ZyvSERQyTKXmjVKC00QBgEVWNhVBMRZMZcQ0+KORSnCSNqK/bor5uSxdZEUeG7+VyYxfSBu9iTNIy9nhcZNyV1cTXebI9uR97XZ5xNbMzZkIZGgTYiOVsCT7HhqpwfigdRYRJAX9bfZzddT3ZWdeH2jZjatuMsTVpwdGwiZxqW+ab5/FJzp8kpvgfT/T38ZdfgRQqTfji+TiEEi1atRCTbgp0GgGlSmtWj76Ok6SBU1U9uBofwdDoZDq0+q882DKdB40BXJGHYuFbz8suZ7nQaoqxsINNTkNxMahHKNbwvNWHrt1y2OmciNf5pXwy5CqRsgIS2r04W9oVkaUSdauYdJUpDu56VcYDneL5pKo3GY+8+Fs3E2xkrVzxuUPLU1s+lk9EKNJyqSIMF+NGEsvcOOWhnxdtlNvgIG0modKdsjYLbN5qGWe8mrzVeljimoquTA55zZBf1/N23S5+bBWzcsQd7g/248bLM4S/nMp3+aNo6ZCyo3oAQUvSeJLtzbyLy5HVCfhNOADHYZV8bpPGnN9esL54PPYv9KWmmi4mGDi3olKLWO7xiHpXEz4o78bPoZf4WDeBIdHp2Bk0MydrFjoBJIafx6N8ERfl3mTFeVKV5YF2cAcGRipqm4xZHxoLwNNGHz7ucYtehkJ6uTwD4KPrQWzq38DJSdv5vGAcmr/rLcmkSmb/so6Uv22ny68r2bpsHxva9Q/9rMAkOsuKOVTe+/21/9j/LgAOxnJ0OgEJ1e5U15txVtUVpW87HjcXIQprZ0zmRIpqrLC1aGG620uOjevG2yZn5BWmiKw76PtkJZFheZyZcP+9YVizUoqXaS1fHZ9B+rJd9Ho7gevBx+l650MO9j+AoUCFp1jBEKs0NlcNJnRjDCuWXuVhnT+SZgFmfm3ktNtj7NjC5N7JHI6L1p90ONjIWhkalcHcnKmEW5aS0uiMh4n+3gm3LeNerSkuIZVcrwzW29re1VsQdDRKeSF2412tI83thkiemzJ61jOubNKXmm78uIXu59ciUAsIeDYLS+N2Im2LMRKrOCa34fSoPsy7cZ8yuTmp5Y6MHJXII4WAxCZPZpnmcbbFjTU+95lm0kCmqhVbF/0pl6hFfF8bRqBpBYut9MoAWyQD+M0pifEKU7Q6AT+6X8LUW8P2xiCWmeeTP3YvX1QHY2vUglQgpiPXDD/vZOrdjahRmzJpuR4Y8mPJSGY7PGOTw0s+LI+mo05Gkxbcg8q54Xed9eb6So9GoZ/QjL66hv7d3rGjsi9vIk/T6+0E7oqC+cb5BuvvT2NS95ecDjkEQI7KimEyJVfzQnimMMLdrJ5n//xQ85/4n8RffgXibtDCm0E7sLFsIcitnPlmheQO2Y9KJ2K5RSk+BjW8KXNmx8hDOEmbiC/2JL7Yk7Q2Z54We5LY6EF9mTlbGzz46OE0rtaHc8rvFJ9fn8qU4Nd8bpNJi9qAN0oFyRN+5ee7Y1DoxGS1OfCh+310VYakj9jB/AcLsTVqwdaohaQOFZaSViaMiWeZxxP62mRzv12EYVQdByMPYyLrYKvXOeo7jHGzasD74TzmF0ej1gqp7DBDcNOKTsYNNPoK2T3yAF7nl+J1finbHF9hKWll0txHeNxcxMLuT4mtDiB/qQfRqePpYl9KN5tiXnY5y90XIRTIrdA1S0if/gfOg4sxNFKi229H9NtJTPpuA6/yXOlY1kDHsgZaFAYIUkxZE3Sfnw5PxUHcxI03ncnpsKePax6LreM4cXgwQx0yUDmoWFIahdSig505fRCqoHaYgkDXCh52343pI2Nu1oRwsyaEF3eDWLV9GZvrvShUy3mjVBDSNZ/4Gk/mJ8/lR89LuLtWsyAinpYWGZohjSwp6Y84up6bjaHI5TKate14Sav4NnMU4+2TiW0XE9suZppJA8fkNvS3zaK+zoSKcks0HSIcTZpxOSVheGgqWo2QrlYlSKVq4jtfZNel4YzslMYl77vsGXIQrUpIgHMlr4o6MbuoL+c873HO8x45JfY4SZtIX7aLfmljWe91h72Nnfmt70lE6Pjgp5X8UtMHB3EjXwZdJ2XDLpaZl3HG8z4ZS3bxo/8l7hX7MdrjHacu9cM8U4R5pojYdjFXfO5wuagzmz3PE1/tiYdJHZ/Y30PmJkcs0GBh1cryTo+IDbjOVzVBvBm0A4/riwnzK0apFNOYYgtpptxbvYkXH0cw85ObzPzkJr/XdSN3yh5yZuxmZeAjFnk85TuHJ1S3mTDbtJasr8x41+6Cs2kTDpbNjLZIZl9lX7a7xNL5+krKlZZ8fkNf/lmRM42kDkuSOiz5tGAC96r8OJ0egUgAMflT+M0pCe+H85jqkERqgTMOIh19b6/leEE3Lrdac0xuwziL16Qlu3O11YZuvTM5mRlBfZsR258N5FPrbD61zqay1ZR1CVPo9noaH9ndJ3/0PkbEf8D9wGuUqlvZ4qDnr1jZyfE9GkPCuC10NiljmW8cnrcWUVFozbMCT67IQ3g0YiuW4lauyEO4Ig9hmEzJ0MyR/BJ2kUatERscb/95A8//i2KKf6X4yyeQjHZLwq6tYorbK9TrrAk59iGBB1ZwYs8Qgp7PJCZrBmqlfvZyviCM+z12cr/HTi4XdEb4ypSelnlYuzQywfQtRtZtmIiV7G2IQNgh4FmNB4HPZtGukhBmYMio9Ol0Di+gUm3Ow1IfdpX0o29UKn3ezGJ91G12ep5np+d55ifP5WOrXJLqXNmV35edt4dSpLJBd8Oa2U8WYSZVkKm0p6TZgtlOCZiZtfPorT9bvM9xJyMQ75nZFLVYMXxsIksezmN+v8fM7/eYD8q78bFVLg0qIwpG7Ofcof7c8ruJ0kPBzz4X8DWuYq1NHJ9UheLoXUtlgxkjeryh5zcr8TGrgSRzBFqIsCmhIVjL2OAUqsotqCq34F2Pk+hC5UgEGlRhrdRpTPD2qGR3ajQ1HSbEtgbQFtbOp9bZLO/+kLFWr/kh7DLnww5gFFlHqGsZ+bEefFo2HJfp+dgatmBr2IJ9VDmdp6TzqsmNbdUDcBCpaeowZKfvKY50OUxXAwMCLSvJa7Pldu8/6FCJSSrvxMf+d0lvciC3/2G6Ponhdas7o13f8d2LkXSRNtFF2sSAtDFIBBp2xg4hf/BBful9HouXBoRblFAyRMgn9vdAJ+B6QRBikYbI5MlYR1TRzVjPal+VPA0n+0bS8p2xs5LzNM0Hv7g5+MXNQWbSwec2mYRujOE7ryt8dmwOs8yTGW3UxtbSIbz8ehdf2cXzRdY4vkodTZlGjtf9+Wxt8OBCqymL4+aR2v0k0y0SebtoO73mvqLX3FdYidrwPrMMP6saLjV3obLOHLnaEFexKa2VJlhI2mksNWdV3HT842dzrTiYXkkLEcrUZFXboVELEfs1021IGlFnP2LUtgfsSOvLjrS+2EuaGJ41grE5Q9mTHU250pKuT2IY7JipF5eMvE5ctRcZ1Xb8zfMGJSprKttMudLqxLCubzlxqT/XJ2xhdlFfvva8xp3GEO40huBvVsVRv+NEuBXjLDLlhu8t2nUdDPNL57Nn45kS+oruj1dg49yIQiXh0xfjcZfUsjprKisH32GySRM2Bq2k9z7CONe3jOuSTEKHmoQONZ7mdeQNPMRk99c8avMiOnU8Of30/SNXsSldfojRqwVkWuHXo4Cel9YRIctn863RXBz4Bxv63kSnhZOFEYx+vYQDdweg1QnR6oSsKo/koM9pLteFM9FYztjH/3zj+/8agn/h9e8Tf3kUlszbSdf61OR9Q3tJaRR7XZ7h82ge8dF/0CchBj+7aobbvaO4w5oLN/U6Shq3dtCB7K2Mji6t+DlUU9JkQYBNNYkp3hjUi1C5KXC2b2C4YzrBslLuNQaR2uDIuYBTRO/5iPDhGaTX2pMccYaBcxeyetffXQyN2khVtmMqVDM1dT5KjYjkiDN43ZtP5sB9SARilpd1x9aghWe1HhiINJQ2WrA55Jwe4fNkjr50cWUJz0ZtJfqU3g63S1QOg6zTiZQVsCB1Lr8EXmDp3QUg0GH+Toz52HK+8LzOQJmGT6pCuVfmR4B1FcGmZXxslUvQ85lEOJVwxO0JG6rCWWodx5gkvWlPX9dcOhk2IBRoGWSSzsykhczwe4mluJXBxhmsyptCcb0lGVHHCd0cQ/zabfR7M4fP/W7gIG6iTmPC6ovzyJm1m4Hpo9/XeuvbjNDpBJgbtTPN5SVbkwdBjZRL437lSnM45R3mDLdMJdSgipj8KVTIzWhukjE6IJXYIj+GumeyxeE119qM+GzPXDYsOsfJcr2O0kaPC2yuGEoXs2KaNDK+tMkg/OcYBIPrcVzaRNkuCzTxljgMLaEg1Zm+Pd/x8F0AO/sdZeWFBXSJyiGv0Zr48BOsLOvLZOsXxCTo5Wg8HGpZ0ikOiUDND9kj8LaoI6velu1Bp1j+xwrCJqchFOgYYfWWz8/NQOzfzLedr3K4rBdlcnMcTZv5zPUGp+p7cP96Vzoc9WU6Z/daPM3q3l8Df1k5cY2+DLV6x6mKbgSZV3DuXhQ5M3YTvD2Gdyt3cUJuxYHi3rQqDVjqFUe50pLjl/vzaP4mom6s4c0ovdth15NruDx1K6PvfUjasB1MyB7PXOfnbPxtGprBjXSoxOzuepwFjxaQNOR3Iu99yKfdb/JbRn8URWbsGbOP5S9nsjPiBEuvLMbEqxEARaolE0bFcyErDFWbBLFMRXe3IorkljwJvvxe361O20qOSsrrdnfatFL2XhuCcTk0+2jRmamwtW3mUdgJuv26GlFvPZy+qdoEe+dGlnk+YV9hbyrybcgftxefE8t4MX0r+WoxT1t90SDgbFFXlnjG0UlSR53GlGkmepLls9AL3G43YJhMyWfVnd+XqedZxRNiIKNO28rfygchV0s53XPfv47C8nDROX698p/ev2jevw4l/j8l/vIJJCLUUGe6bQVfeF6nRGXNbNPa90KFayq60tssmy+OzkJhp2VmdPx7I6CvaoL4xjaNOAXMvbOEbwZc5Iezkxk5MpErj7uhNdCSMGYrI79ZT++YF7xtcOIzj5t8nTuGuJBL70lZh5vtsBa38KApgNsFAQBkRB1/f2N7P5yHQZYMYVgT6jRzMhfuwvPOQrKG7MEvdilJg35ncPICboYdYG9DJF/aZDAyezjful8hvcOJb25MInfabgB+a3DXm/5cXkL+uL14XF/Mt30vcbO2Mx853+bLwrHkVNpibNSBu0UDH3e6yY7KgWTX21JTY460SI+4OjRnO6ZCJXtr+vKsyh2ApPBzBP8Rw7wZd9mfEUVmr2P0eDMJP8tqnqT6IakX0ymilOpYFzqPzaCreRGvmtzoal7EqcIIjA2UdLMp5l6pL1M9XmEv1hPFvk0YRV//HKItsmnVSllpoTf0+oeuFOjNvc4e7U/Smt/JVqmZfGwtmQt3MbeoD41KGe9S3Nky/Di/Fg7iTuB57rbrBTE/fzeWCMdinuR7kxC9k+h9H3Ft4SYG318F7SIODtvH37LHM8/tOVFGeYy+tpo9ww+y8tV0dDoB/g5VZFbao1KI6epVTJtago1UT8prUUspbragv1MuH9nE8WXFYHqZ57AxfQieVnUsco4jp8OeEMMSElu9qVGaEm5SRGa7I5eyQ9FqhOT0O8yS0ihCTErZ9lBPJFza9wFHMvXcWK1WgLJdgplFG+fC9rNg7Tpc1uZQ0WbKNJeX9JLlMv+HtSxYc42tt0cxqHcK0eZZfHF3MvkT9zCzsB+vyjrRz00vnHk3IwAP5xoWuz7Fx6CKeo0RGwuHMcg+k4+tcvX3+qOFnOy/h07idqKvr2NVn7sss8hhePpEOpk08vxxEIem7GBd5hQS/i7NE/hsFh8EPiKp2YPPHG/hKpYiFeh1xCYay+m8JYa363bR5dVUXnfV9+KSI85QppHjLDJ9P7j3eTeO5nZD1AmWPFuxFYABb+YyyDmLyZZJ3JUHM8fiFc4iU5I6VERK9SZxg4IySK5xxt+qmhfFbqjaJfT1z+Z5sTsDPLK5H9sFtYteQNEwyxCRnhZDn2mv+MPpBRuqwtlon8z2RldWB9z/cxLIV/9CApn/75NA/vIlrP/Ef+I/8Z/4T/zXxF9+BSL1dNa1PzOmx5tJLPGMQypQ8eWLsUikarzsasl95o779Ta039WRV2TPqu569McfN4aRMGMLkfc+xPylAdpBjWi0AuzN5LgYN5FZb0eUQwEOUj0W/mOr3PerjoUlvXhV2YmkiOOMyxlN2WV3uk5/S3K1HrbSzb4YuVrKQKsMfWPSRm9n8kghQIQODQLuNwfxnd07+rwbR1mlJVqFmNW9YrlS3pmKeGd2zdnNslezULWLWRehRzSNNc3AWWRKxOspOJo00982iz+eDCZ/7F7iFVo+eDcdS1k7da3GBNpWkfjWGwPrdsRiDWqNiB1dTnKytgcuho3cKQvgB79LrEyeDoBSISZ3wGEGpo9muEM69WpjzqV3IS76D3pfWEfuFL0YYFKHipUZ0+lpX4CdgZxPrbOZXjCAqjYTCnMc0Em0OLo0cDroMABaoP/dNRSM2I/n3YV81O0OQoGOCSZZ3Glz53pNKO9u+eI+uJDscnuEIi0jvNP41O4x60tHkHg/iCXjb3OjIhj1dkcavEV4jNHb8BZe8kTVW84vYRf5vWgAdrIW0mocmO+dQLBhCYufzgWdgDv9f2PInTUY1IpROSo51ncfcy8tJ3f6bjyvLiZ/zD4qNS04iEwYnDEKgNwCB7w9KvnV+yz3WgJZZVmI3+EY+g96Q/y5MG6s3EiVxpDpl1cSEF7IELt0frs9gkn9nzPO4hWhBhpkAimfVXdmiFkqjRq9PMe6m7Mw82jkVOhBPi6cwBWfO3jdn0/ewEOcbrEkyrCYm63+ZLU58LDUh1leSe+ViAOezWKh/3MOZPZEAAx2z+La8y6IbP4uXy7WktnrGK+USowFKobHrmJMWAqv61yQCDU0XXTmwMfbWJE5g+vBx4l4uAJtuxiBVIN5kpRmHy1T+z5nisULStRWfJOp/y3qiyzIGLeDPm+m05Bqi6gDVCY6xvZ/wZVH3RgSnUxmoz09bAsZbvaWVWlTaaw3Jto3l+ePgjCsBemAWqLsC8lstmOEfRqH8/RkUF+rWhwMm+lkWM+RnO7cjtiDs8iU4Vkj+Mj1DiUqa7QIaNVK2fpsCIHeZdzwvcX2RlecJA2crupOTbsxJ/yP803FUL51vMvHpXrLb5lIhb20mW9s0/iiOphv7N4iccz711cg7i46x68+/Kf3L1rw8b/NCuQvn0CCOxvo3t5152CzPSdKu7HM9QmTTZr4pd6b3Qn9KBixn6AdMVxduomjDd3fW7/eaDPEVdxAiIGMiXmDueAVS9COGL6ee5LJJk2cazHXK7dWOpLW8wRdXk3lZtgBBuxfT/rSXWxvdEWEFqFAxzJzPbt9fK4eb3/J++77Mlpk8mS012zwnZ1F4msfvALLCLaoINS4BAdJI3KNjIQWLz62fUKf5zE86rmLHJUJx2qjGGGZwrqEKQS76p3x+tpks9aygKiUiZwMOszC7BncD7yGx/XFuLjVMsklmS6yQtzEcuLa3ZhgUkHw+Q/xDimlpN6SpQFP+ePmMDaNO8bvK6bxt12HWXl4CQAvlm6j++41CNQg6N7Eh/4PmWCay6aaKH62T+Hb2gA+tn5LwOUV9O2agVYnYLh1KhONa3ir0jIlbilOdo00PHRg2+J9fJenH3wuBZ5gdOocDMRqlrk94UR5d6756tEwKp2aNJWadbmTKSi1xdmxgbiQS3heW0zXoAIMRSrqO4yY6PCaze8GE+JQQVKeGw/6/wbA5NQFHAw6SoiBjO2NrhQqbEiqdaW82oLunoXMtn/Gg+YgzqeEkztkPz7nYpjRN57zV6IZMTqRW/mBjPFK5XJOZ9RlxnTvnsmrsk4AaAqMiRl5Rw/XlVazJnkKnR0qqFUY8av3WXbV9MNTVsv54nCakvR8Cq978/HtVEWgeSU+siqWmZcxMH009wOv6SXU0Yu46kzViGskmAQ2YChWIxDoaFdJMDlgTuk4NcI6A7zCSzjpe5bIK2vIH7+XpA4VM54vxixOxq/rd9GoNaJObcI8s+r3Ok9GwfWMcXtHi0bK53ZP6Xp1NR/0jcVQoMJWLOfbtJGc67IPlU5ItcaE+FZfFFoJ98t8qWswQSCETrb1VD51xqZXBVt89Iq5s5MWcDjyEEdre7HE9jGnG7rzld0LrrQ6MN64Gv8byykYtY+djS4styhla4MHpkIFG5OHktPvMJ9Vd+ZHu7fcbjfAVKBgd1V/0modAPgu4Ar7y/tQLjcjyqGAQKNyFptXcLnVmHHGrUSnjicu5BK93k5gvEsKg0zSmPZiMQhAWS2jZ3i2Xl5eBwYFhigc1QgM9BwUnVrI62G/0/3YOpaNuU1umx17Io7/KQnE4ct/PoEUL/z3SSB/eR5IXpsNAN/HjmNmdDyXa8M5XC4jJ8EdobOCNRVdcXihZEyXpShKTbjs1hkAjVZAqEM5wablKDUiPG8tYvzERD6+P5XJY/fyqtWdGfYJLHLo4I1SwdagswxPXsiiKbdJVbaz0qKYfU2ObLwxlk7jDvPj53Opm9AGQGj9dJ702MXm+lCsZG3s/GwTXmIT8HhAsVrOvTZv2rQGfPB8BnM66weyq5mdMUqSMd92Ct2sivje8S59EmLo55vNZBu9869KJ+Zgs/3feysred13F7OLhnF80B4KVTbcawhCoRMTbZVLh05C962r0YUoaTzSCa23gHx3WwRqAeOMW1k3UoyZUIEmWF/zNxEa4j6oEDvDFnKbbFhsXsHk/LGc87xHpaaFL20yWFLal6Sx25iWNZX8d84oukoY4X6dqfEx6LQCyiqscBlQQU9pC6Wleo0t62BjKous+CD6Hp/fnIKlTz1lGjmP2tzYnDWY5IgzlMe7YNy5iYaHDkw0GoyXdwXnPO8xvziadpWEn66NJyIqm8RMT9b0vMvgs+sB+G7MGRZ+s4amYW2Y3TXGamYxpbl2jO3+ijsFAYy2MeZKdggH+xyiS9IMekRmceJ5FNIgObeudMeiRzUl7ZYM9cyk3V1ClFkuz1/rGfRvZ/zK3yqjCTUpZphMyQ+mrYiFGn72ukhsayAjLVOoUpvznd9lPnizmPvtInRaAQuc47nfGEiQtIydjS4U5Dqw2cELsZP+3ujpWsgo6zdMNJYT8XUM177cTK/ny8jsdYwo8UQkzca8m7YXiUDM7iZfRJZK4hRQp7FAoxDx80f7mPt4IQh0XOm3A8/Lqzg3Q59QF7yZS6PKiDsF/kyzTGTT4FN8/W40i3yfYStupj3fjBHNK6FVjMiyg6E+GeQ02zLEOZN0M0fEAi3NKinpS/W8l18rBgMw1DOTHlIxs7IDaFVLeXckiDMRkfQJyia2QcPZwTvxOvcB5p6NvLUvpkMrxl7ajEYppEwj52ZRIMkNLmh1An7xvECR3JJ1vvpV9Yc355I3aQ8e1xfzQqTl8+AnRKfOQq6Q8olSQmavY+9XaIVqOTvr+nAs8iD7avqyt9czPG4uol9wFi8rOhExNBdf4yruVOp7kT1sCilVC8ieu4sNVeHsdE5kz5818Py1591/WvzleyABxnUMzxpB/sQ9fGzzEmOxkpF2qQwf9BKdUoSnrIbOP79hvl8CAh24W9bjblnPH2Gn0OqEfGqdTWaFPYi15MptcfeuZGZhP362T2HN9dkMlGmYfHY1gRI5yRFnCDQsY39tHxaW9GKxeQVSz2Y+eDiL9d8d51y3vZzrtpfPA28y5PUi7CVNrHGLZWdtH14plXifXkaOyoJIw0IMhSp0dVK+tMlAB+T0O0ybo46PXO9w5lofBr5cgq1ZC89LPPjg+Qw+eD6DL9LGADA4YxRjA96yqnQIiUVu/Fg8kpmm9UiEGlrUhgBEGhayeOEN8occ4JsvDzJ8xAtuZAYhUkKeugWDRiGRUgmCbGME2cZ0eaXH/ydXObPQLR6fx3NpVko5JrfBQWSC36EY7r0LYMj3HyEU6AgOK6S+Q0aOWkSAcyVjg1PIH3IA0+UCCtQ6ZPkGyPINGJwxCmGriPh6b15P+pWGbGt21/Xk62tTaCo1x/vBPNz7FNFaYcK7D3exze0iO71Pk6Nqob7DiMIyG8QeLbx46cPNQb9xe1Q4OTN2kzNjN5s3TePUN5sxNVaw8/PfaVFKsUsQcvNONxz3SPExqELVJmFbyRDmeydQ2WaKnVs96nwT0pfuYrRLKm8qnKlXGRFf4oGhUMXFUb9zcdTv9H41j9+ckhhrks9n1Z1pV0k44f6IZ20+iNDxc95wypWWNGqM6dJXr/B8rt9uNAhp10j4sWgEr+Ru5I/ZR3y9F1u6nGNLl3P4GleR0e7Mbw3uNAboiIz9EFmcCZdbjanOsmGwVyZBcQv4tjaA41+OIib0MQtfzGGccSvH+u1j+YuZfBd1CVGNAZOT9GCKKU+WMuXJUq502cvrOhcEAh3eEhWfnZ2FkYGSw3ndmX9vEdgr8HKpRifRopYb8KzCAy/TWs7ciiaz2o7kOF92eZ3B88oSmtsN6WZeSDfzQjQImFnYD8M0GUfcnmA8oYKnQ7dR2mrOPNt4ZpxbSd7kPRgbKNnt8pzu5vl8ZpvA0ognfFI6CrVGyC2/m9zxv8Gy9FlcDzyFl0E1XgbV5E3aw8D00RSM2sdu/xNclHsTal3GVM/XZPY6xtyiPuQNPMQxuQ2DLqxntHkyU2+t4FmpO2FJ0xA3iEk9GMzPIRdJLHWjQW1MWa0FZbUW3CoKZOrLxWyu96JCYcZn1Z3/S8aof+f4y5ewHIKsdOX3bfC4uYgBIRl863Sb6KvrEFl10KVTKeYG7dzP8kMnl3BuxB+crNcjYBZbx+EvMeZyqzEDZLVMz51AqEUZOS12nPO8x85GF65UhvK9x2WK1VY4ixs4WtuL+DJPhrplUtBqTUqpEybGHTTWGWNr28xkt2QAQmVFtGqlDJLV8Wt9GN2NcxksUxPwbBYZUce53W7AqjML2TNtN5VqC6aZNOBxfTHLoh7ysVUu2xtdWWlRTItWQejFVWCht8p1sGtipusLThR3Y6F7PFKBimKlDW+aOuFg2MxvTvqVSlTKRAzEakIty7lb6IfolSnq8BbmBz7neE43doaeZHPJUEqaLYhyLADAU1bD9vhBDA5LI6XGiTU+99mcPZjn4Sfp/WYabUoDlOnmvJq7jTEZUzjtf5Ie9z/E2bGB8ioLnC5LqO0sQiKHL5ae5OOHeme/D3rf4/jOYXyz5gjfZ43AzriFIPMKOrRiZCIVD8p9SQg7T9DzmZgYduBgIkerE7DM5REjjRTMLOxH4nN/QrvlkXPZG4uhFRz3PwbAiF0bUJqDeUgt4pPWVPXRMK/nUw4n9SJ/uL7n4udWgYlEyascN9Z0j6VBbcyXNhmMzRnKFZ875KhaON/chYUWrzneHEKLRp+AG1RGdDfNJ6Nd75x35lofMhfoZ7LPq90JsqykTmnMcJtUfno9nNu9/2DYmY94NX0bI9NmcCLgKOkqa3I6HCjrsMTdUC/1X9ZhSWaLAy/TPbB2auJR2FGm5o5ngfNTHERNNGqNWH1xHnOHPaJFI6VDKybEuJR6tQkqnYib5UEYiNRodEIuBZwiKmEJywKeAnCvxp/8Omum+rymSS2jVS0lucYZM0MFl/zOMzBFb3nrdyiGrPm7KFbLGRj/Ad4ONcxySuCH1BEc6XqIPJUdjxr9eVys19jSaQVc676LUQnLyYo+SuCzWST02EdM8XCy6u1oT7Bm0uQnBMtKEQq0jDCqpUmrIl7hyERjOVPzB7Lb/RqWQn0f6Pta//d9wa0NHrgZ1PJt2ih2dj5BqIGSVWUDmWD9ig9vzOXquG1MOrSO0WMTuJTZGU2TAYIOIQ5+NZhJFWh1AsRCLRn5TljHG6ATwoI11wAwF7Ux07SeN0oFx+qj2OLw+k/xRJe6u+gcPl/1T+9fvHjDf0pY/6eEgUBNi1ZBwYj9bK734rfaPozo/oafHZ4QenEVeZP2MLLNHLFAy2f547GStgMwK3U+DQ3G/Nz9IkuLRnLD9xY9Pl7Gys/P4hc3hwdRO9j8YghW3h18nNsftU7Ik+DL+OT6k9LgxHW/K1y2s6aLYZm+PAXEK7QA/Fo+hKzLPpQsuIG9pAlToQKv+4sZHpBGtaaFPWUTyJq3C88rSzg4dB9+h2MQWGqwFctJ6FATZljM8rLuCAU6hEoBGpWeCBlkVcnW5EGIxFquVIVhINKQWuGIslZG/li9rHxapQN+dtVMdUjiUGkU34deoS1Eyo68fux+1h9rpybm3lmCo0ctbSlWJEv0Sr8vta48HraVbyqGcTz4MKNfxLAo4BnBR1Zi06WKFf6PqfC0IPRhDJJCQ8ao5mGcLmVolwzqbIx5YOaLq1kzd/xvEJUyEQfXegAOZEbREdXOx28mkB51nDdKBXtr+nL7RSj54/ey06Aer/vz+bbbFUpVVkw3SyZLZcma/YvRLjzCyxJXcqfvxvvhPF6v2cqUcYs5ejASAOdHrSw6coUipQ13FgSgaDXm9IV+BPUvYOjEOZhHGFBlbYqJZR0iQzXb3/Zjgl8K/gdi8IoufK/avL3LKUakLEAk0OtVAdTJjTHx6WCI2Tu9hteCXdxuN+BmQQA3I/Yw4uVSjnQ5TIqiE1Ee+WypGsioAUmckXtSWmRD/+oP0bWKmd3z2XsPDoDAXWPQdm5B1CJCpRYR9mgZIomWwd7VnJF7crkqjMH9k/nY+h19Pv6AqmgNwkgdJqIOjEQdVDWYEulaTHK5CyNTZ6PTCpAK9dcwrcCZ/KF6L/E39c569dpO77hSEkLohVXkTd6D55Ul2IbV4HVuKUKlAMfQSkpvufGVgysaUzWHanuz0zmRL66EcmzSHwAcrOmDjUhIVrTeVvdc5F7MhEYU/u5H7OZtjNu7iuELU/g0Zhn9N8bzyZWZxAy/w76MXuT6J5DfZIWl0IiB6aOZ1+k510uDadbI9M9MlQchVhV84PcIH0kbIoGEzc6xDEmZi85CRabSHt/++dQpjfD5to2b94/gcWMR3WyLeHS4G55TcsmstmNexDPuufjR2aqc82v0kOnSfhI2BjTyIGI/1291RzJCA+T8KeOO4K897/7T4i+fQMQCDROzJ9LYLsPdvAEjsZKptomo0LJx+Ek+KO/GFo/zjLj/IeE+xSxyeAxAuqXze06CQvcWgGV/u8iO/P44WzUyLX0OB/scYuTR9WQu2MX0Ar3e0OygF8TXejIicxwWUgWfFo6HWil7Ru+nSGUPwNedriJfYcC2sqHsc79ObLsdonIp7uF1jEmdR3WFBVOFAzk5bCcz4xZzd9YmBt9bxQKzKjwvLufZ2K384fycwIMrkCghZrgeObbrbR9c7eoZ5ZSKlaiVrfsmcnrlNsIM9LNma4NWFC1SLkXd5Zd6b3JK7NlQNol1XWNpfWyLYaScae6vyLWzY7RVMlmdHNmbrteWEgp0jNi9gdBRGcS2+mNh3M7BzJ4IfeW0KKSodCIu5IUikaq5MGcL486s5fTy35j8aBn5Qw7i+S6Unk6F7G5yprldiplMD8af4JVCs1rGtRd6i9Rb8s784PiQzgNKeaNUsDlxKPlDD+D9YB4u9g1kt9rzKDGYmJl3MRW2o+4QMTRzJGIDDdNzJ1D1pYoDL/TnnHdhL963FxPiVUp+uS0SQzUCAaRldUI8ToRBA3RkWpLpLUIg0PFDlyscLo8ic+EughNmcMP3Fjl29/GRmJDi/oqTBRHM9UgAINCwjH6GOr6qCeIzhztUagTUqV1RZZgzx3QWxlfMUISJOVzck/qHjtxbvolBu9ZzM7QV02wxRgMaqNaYc/RFT06aRLC7m17pWW0E2b30K6jJ+YN40+7Mu94HGZU1iQ1ut4mwLMZQqOKY3JmPvjpBYos3Gp2Ai8f7EDP/GlqNkG7mhaRUOvGj30XuNwex8bl+wFwcGcf84mgGWaax2iaeay0+iARaFEoJXw+7gM+jeTwbtZX5uVM4M/4Q7mJTNtd7cX2wjlq5MR8EPOZCeThlDnK8I4qZ93I+AAe6HiFfLWZ11ngUajGuZo2c9LxJ/NY9xCmMeLx7Hx+UR+HzbTpf2mTwvKsHA4wzWBtVwC/13jQ2G+H7ZA4yQxWzTWtJtCum7O9cntluibRoDJlnVoJEYEKDto15eeOJsi/kWmE4T5r82ed5gQFJS0i6dwjPu8sZE57CAuunXAnuwgyHBDLMnQmQldHfO4OD1dFU9NRbFDyZtYm5OVPp+2Ixn068gEig/XMGnX9DSZJ/Nv7yPZDydgsA3M0bKGq2ZJJNEo+aA9jb2Jm9JX14We3K79UDyB92AHfjOrQI0CJgpUUxXV5N5ZjcBitRCxuqwlHoJDzufIYOjZgIm2JWp07l7pyNTMwbzAgbfZI5ld0VrU7AUPsM0mJ9cLWvJ3fKHoyFHSwwq2KBWRWfFY5nX3Vfsk/70vf1PIyFHYi9Woiv90J9yZb84fs543mfVEUn8gYdwktswsn+e/i2NgCMNEx4NxffhwtYNO4uHgMKuVwWyuWyUKRSFYVlNpwp7Mpv2f3xGJPP2pwpbG905XKrMdNsEogb+Csn5FaI0GFspqCTQz2hhsWoI+UE2lex+85g0hvtGSBrYmdyX5Q1MpQ1Mvq45vFs+VYCTCrJU9hRXW1GR5kxXZxKcbes53plCKoMc74IvcHY82vZOXE/0898yIMBv+F1bz4ykw7qlMb4GFRiaKDGzawBN7MGitut+M7hCfnj9nJCbsWn1tlkqQzY+HgEYQaG5A89QFKHis3dzyERaphsk8SLCVsZb5ZCP0Md4hJD7vjfQKUQs971NkqVGIFKiEAlZF1FJObJBlzxucNAvyzUHSIEWlje6wEqKzVtPioOT9yJ0WUzdkSe5NNr04mwLMbn5DLuRe5lfnE0b5WOrKnoSonCioZKUza/GMLmF0PYVDyM4IQZfGObxrR38zEXSohr8uPKrM08CrpCzQAlazOmUN1kSujoDHreWkPC8m1kRR9FaQ4DnLIJ9Swh2KcUE2MFPpJGfCSNrB57jTdKBV7nllLZaoqgWIZEIEYs1BLbHMzt0gD6GGeyPbsf2QpHGlUyepjk4T06j81JQ3Czr+NSeSiGBmoWxM3ndGxv9vQ9wp6+Ryhqt8bfpILv3o5k6oo1/JQ4nB9ejMDCqJ1t2QPJ6XeY2dnT2O99BnexKQCpcmeqnjkRYl/J72n9yS+3BWCV6z0yex0js9cxZj1YQlcDAypqzPnZ/yJvS50IuB1DrzVLWfxqNv2WLOZ2ViCpv3WmTCPHSKwizMAQj5uLsBXLkUg0/B55mrZcc07IrbgVH84MuwRm2CWQ1aZHY31S1Y0bbYZYCo2Y5ZhAdYcpPcOzqVSYMSZ1HvvDj9LnzSzMLFvZYP+A6/JQjGxbmWgs52ZZEOUqS+Y+Wcgh1zhcoktwiS5h7Nt53PK/xgiPDDLbHZltWvsnjTqCv8Pp/snXv1H85ROIUKAjr9yW/taZSEQa5FoZP9unYC9u5qrfZTzM67nzPIyf6nzZ4vCaUINGQg0aWVPRFZlEPyMaaaQgUFbGlcpQgo+sZLXnfbY4JvGh30NWFkyiRWXA0dIeeky/exbRtnkEGJZh1r2GiiYzfJ/MwVOsYHT2MEZnD+OKzx0OdIpn45p9JEecYU3yFMKdSnmT7Yr9zEI8by8E4PeD49jX5MjMwn4cre1FH5NMBBItz0IvsDzsMUKBlowiR54EX+ZJ8GXsTFvY1OscTa9s2RtynLxbnjwIusrNqmCu1HVhYfw8+sev4HRFN/oaZzKgUw4r3B4x+0YMGVHHcZE1MiD6Lc7GzUQkLOBQ1GEMbNsxsG3nztsgVpQMI6XZhVa1lGi/XAJDi/A00j90d/xvsHTcbeKbfbALrOHrnDEY+DTT/+4ahgemEeFUwm73K0RKW2hqNiK1yoHUKgdKWix4rLDG5/gytAjZUBVOuIGOpFG/crnVmIjXU5h6cwW3Gzqj0Qr5KnMMa0uG80vlEG63G6Ax0vFBeTfcHWtZeH0JW8LOgVAHQh2eshqaI/UciGcXQxEVy+g58i3H9w8hdfgfSKok/Fo+hPAVKewu749HWCm5rbbEDL+DtdAQW2kL/WSVWErasJC04elRxbwuz5nX5TkDbTNprdfX7Oe4JyBGxECLdL4oGcuNNkOEdQYkhp/H2bKRcTbJBPqW8lF5f3q8mYRFjo5nNR6UHPfiO/fLdHcoxlEkw1Eko7jDmjADQ/Im78HJuJns2btp0SpwNmpinMUrEsP1To/HQw/R2zibJqUMB3ET7xI82RR1DhOJktJqS+Z6JpA/+CDfjT1DSrsbKe1udDPL53R+V3Z3PU7IlymAgN+jTuFi0sQQl0wCn83ia4+rfFI6is+qO+NxfTHDrVNZNeUq1e3GiERaJEWGfFY6khPVPanWtFCtaUEggNMtljzr+wer307FzlLOzn5HObppC/MDnlM5R8HrvrtQz6jDXCAhu9aWBm0bLp3qyFXYo9UK+CpzDBobFddrw9CZqok2bCDasIHYIj88pNW8bXCiTSulTCNnb0k0q5zu8jzZlxCzMgKsqpj/ah51xZa0tRswLX0OB1KiUGbpVzFjO6XwW/IAnB3r8bo3X1/6FeiwkLXjcy6Gx+VejLN49R5K/Z/48+Iv30SPCDXUKQf8xBcfHOer1NGEO5bhaVTLHMtEPsibwi2/m4BeOuPzqp5cfhcKQPrAvWyqC+FelR8XAk4ScXsVK3o85COrPIITZvCs2wFSlDK6SVWckLtwrqIrkx1fMdYkn24X1vLryGOsfTGFyYGvOZPalZyBB/B9qJfdftN3N6UaDR8XTuC89w3UaJiWO4bU3E4YWbaxLfQs6QoXVlkWktShwk3cwei38/jIJ5avU0fRzbmY5Cpn1BohXR1LOeL2BIA0lR4Kmt7hyGSTJuYXR+No2MQUixfMTl7ABM8U7CVNpLc5YSLqwNGgiTPFXVnk8ZSXcndeVXciMfw8X1QHc7UwhJYiM2IG3gNg993B2AXUYG8sJ9o6h1lmqawsGotQoMNa2sLtx10Qd2ols/cxWrQKFhaOZIr9C0qV1vyWMIil3R/xTu5MUmwgQjX8beYZAH4+OJXOYzM44f6I7smTSAw///56yARSTrdYcqUmnKl2iViI2nje6kNP4xwWPZtL7oDD+B6NIbx3NpkXfRk++xk1ShMGW6YDkK1wIEhWyucpY/kp9BKVagtOlkTSpjTgZuhB5ubqr7/HjUV4uFfjbV7LWvtYclS21KhNWWBW9f4+SlO1YSjQ8lHhBABMJB04Gjaz0T4Z/4MxXJu9CR+JCXEKsBW1YirU0i9uJTn9DvNJVShJda40nndh+gd32fW6D1E++STdCySkfw4tKgMyc5wBKBi1D+9TyzAtEtAYrMbXu5wPXB/SrDFEpRNzoKgXC93iKVZa86VNxvvzG587BDOJgqSbQUgj6+lIsiJ52e+Myx5LeZN+ILU0bmOU4zvy222IfRSOuFWAcUQd9iZy6tqM+drvKieqe7LaMZat5UMwl7Sz0zmRgH0xvF20nattlhR02PGRVR5T8wfyttIRAF/bGg57XaLP9nWkrtqF57XFGBWI0UohdEgWKbf9IFSOssQEG79aGl/aorRXY54q5vvVh1h3ej67Z+xmxcFlrJhxjRvVIRj93WUzrdKB9KjjBCfM4HG3fQgR0CN+GaoWA36MvsDbtk78aPeWfmljeRR0BS1aajVtDHm9iN7O+VS0m3PBK5YTcitet7pz+WkkeZP0YN3A3TGkL9tFtaaF3Q2RHHvXnfzp/7qdrNStk87x03++iV4Us/7fpon+l08gniHGOum3GzA3UjDaJZUShSU7nRPffz6/OJrnJe5IxBpcLBppUer1l8ykCjJLHOjmWUSzSkpdmzFf+Or1tLQ6ATsz+3A9Yg/uYlM+qQrFXNyOUKDlY6tcvE8vI3fa7vcksX/oXv0jtje6kttmz29OSVRqWhiUtITPg29xqboLIWZlGIk6cDOo5XpdGFkNdvhY1BCfEEhI13y6WhRzOrcLhrfM0YyuR3zFimEr4wA4+TaSHt4F5O/058kvf9Dzm5XEf/U7IcdXEtorFxdZA2MtX9PPUEeqsp1mrZRehkJi28UktnpTrLAizKSYX98OINSlnLp2I1qP61FGAi00jmnFzbqenGwndCIdArEOkaGaa1E7Se1w4uO7UxFZdyDONmL91Iu8aPbkXrYfi8Oe8qjGl989z/JjxXAeZ/qwNEKf9PbdG4hPaAkVzWaMdnvHQqvnLMiaiblUQXaNLeuC7rHn5/Ek/rgbz9sLeTtkBz1eLGBz6HnWJE8hqlMBHrI6rpSEYLzLgsM7tzIzfS4A8Z0vAlCmkbM8fxJXfO68v+aPXwfg4l2NWKBlk895psYvodNxMYYbyslKd2FIZCp3k0JY2vcB5qJ2Nr0cwrqusfyWqu91CYQ6YgLjkApVqHQilpnnc7bFjqNlPbnjf4O5RX0INSthb1pvBnlmMcg8jXqNCQvMqghJnMG+sKPMS5pPZu9j7zWhAJq17QxLnfX+fvmHntQ/kEm/NbgjFaoYZpyJu1jPyL7ld5Pwl1NZ4P2cs58Pw2pVEWqdkBDzcn62T+GE3AoAA4GGj+9PZVWfu1wp74yjcTMplU60NRixIPIpg0zfcaMpjONJPSgYuZ+wpGl4WNYz1SEJa5GcJ3J/Tsf2RmOjIsijjABzfYKNMsnmdkNnZtvE633qC0YQaV3M+fRw/uhxkg/PLaRrdBYVbaY8CrqCf/xsBnlkkVDpTlz4MUrVKh61+fDLq6HkDjjM6RZLvnilh6Tn9D3C1gYPalWmDDFLpZ+hDr9DMfj2KiCtyAmjDCm6yGY06WaED8jCTirn6f4IjMZXUvPCAZ0QzHN1fPv5QdYkT8HXtobMp54AXJ+1iaG31mDu1MyukBPMeLDsT2GBS9066Rw/+RcSyPL/JJD/YyIi1FC39kIov2QO4auA69xtDOZRkQ/pUcffK/RGp47HQtrOCe9LmAn16I88dQslalO+zB3Lk+DLBD6bRXrUcTyvLubisO1IBFomHl1HyoLfmVMwjJf5rjjZNxIXcgmP64uZEPGK0jZLatqNKUp3pFtEDpYGelLeTudEPC8vYefQw6y8tICcGbsJfDaLv4XcZIpJ9Xtf6jdKBWEGhqh0anY3efLb7RGkTd1OSNxCsvscJVXZToiB7P13HZwxitiA66yp6Mo2x1eMzx1CV4ti7lb609cuFzuDZnyklTRqjBGh5bOr08mZsfv9/pvrvahXG2MubiOh3pPBNunUqvUDW1yNF7EB1xmfO4TRdikMMMpFoRMy8vJa3IPKuR94ja0NHtiLm/ji7mQMHNro7lLEBqfbBEmMaNd1cLHFkZ/3T0XSpx5DsV599m7ICYa+m0F854ucbrFkmolehXVnowt+0gp+LhxOo0LG/dCj3GlzYLJJE8VqOaZCERKE/FIbwZe2b1hW2pc/XB7weVXP9x4R//CU31I8lADzKi5nhZDd5yhhSdNY4vOUXYdG87fFp8lV2PO4xpu8EnvyhxzQO0861mBm0MGrPFe29zqJmVBBtCH4PNYnp5y+R/CPn82W8HOodCJatVJS2tx4WduJoY7pTDB9w5elYzjl8eC9MGePN5P4xOcWIoGOIbIm9jZ5sT+7F5tDzvFV9lgAnoaeI2TnCr6de5w2rZSN6UPYHXqci40RLLB+yo7q/mQ12VH01pncabvfM7G/qA4mrsaLR0FX8Ly8hM8HXOHnN0MJdynjAyc9yGLxy9lk9j6G75M5uNnWIxZqGW3/liMFPRAJdTwLvfAeIh74bBYCgY5J3m84ndkVVYsBy7s/5NDpIUgiG2jLsMSlq15hoTzRmdOztjEpfhkisRY7Czll2XbkT9xD2C8xtLjpcHyqpbaziA47DRipETRJMCoX0uKjQtQs1t/Xx1cyoH8KsQmdmRytBytczu1MH7c8Hj7pzNwhj3hQ5UthuQ2fdrvFdNMCJudMIL/ahtieO4hrd+PrV2MY5ZdKrtyWa763eaVU0tXAAL+4OWRFH6X7p8uQzaoAwNxAwaeuN1iVPo3E8PNsqApnS9jZPyeBfPwvJJAV/0kg/8eEW7Cpbv35SKpU5hS2WSMWatjXKQ7fhwvI7a/XdqpoNKejzJiJfV4gE+o5FVbiVpwkDXySMIHO7mX0sMonyiiXVWlTsTZqxcawjVMeDzjYbM/Rkh7vl8/bGzxZZVnIK6WS1VlTiQu5BMArpZKvC/WzqrxaGzpZNRBtk8d0i5fMSZ9DfOeLfFIVyqv6TijUEiJsirlzuRsTJ8Zx6mFvJM0CTAt1dIxtornaBMMKMSbFUBelwsdD/0CUNlgQaF9F+i0f0lbswvPCUnIn7uKTqq58Z/eC/m+nUVlozQd9YllrWcBPdXpW9SCTNCyEHTiKxPRMWkBbiSlh4fl863qFUXf0D4K1UxPyVkNU1TK2DjvOJ8kTmOybTJXSjKGWqUw0lrO90ZXrlSHUn3SlLroDQZMEs2wh7lPyKDrtRWP3DlALSRu2g6BYvbzGlX472FXTj/gyTzpUYsZ5v+XCvZ74RxaSlubKhgE3OLhxNPPWX2f/H6OxnFDK/cBrrCqP5DenJOq0rfxYHc3zKg+q603J7X+YFq2+72EiNCTi9RR+CzxNo9YIZ3EjlRoz4uW++MoqCZGW8kPpKCpbTalpNmFL+DnCpDUcaOiGl7SKfkZFlKsNiZRK/i/3leelJeSP38v3tf4MN3tLudqCdIUTH1vlvueQBOyN4ejc37neHMbJ9Ah+7HqZh03+BBuX8bzJi/gUX2S2bTiYN3M/UM9N8Dm+DKFagHuPYqpbTNgYdIHehq3MKRjJOc97HGy2Z4FZFd5nl/JgwmaGHN3A11NO8/WbUagUYh72+50t1QN4VuVOQ4MxoW5l5NXrWf9vIk9zrc2IXwsHYmbQQUqGGz1DcuhqXoSPtIqNeUOJC7mE94N5aFslGOeL8RyRT6RlEd6GVWzLGUib0oCezoWotCJm2er9+9p0UkYbtfFJVSgFrTYMt0llnlk1QzNHcsf/BqGbY/gy5jj7S6PpUIuZ0ymBX94N4XXPA5ySu7LArIo1FV35zj6e72u687N9CnVa/WRrdckITMUKFtrGsSJ9BlPcXrEzuS+5Aw7jfzCGzAW7GDhnIT4/pjPROonehq18UtEbJ8MGdif0I9C7jLafnSkZJsLtuprCuVqO9joAwKr0adQXWiC0ULI47ClrLTMxdCr4TwL5E+Mvn0AiQg11W6644iRu4ceKoQAUyq1Y6x7LqzYPkhs78S7Bk7jpm4ltc+fnd/ptojvl4yar4+y+gciGV/OL3wUMBSrONXZjgFkaXQzqudjiR7XKjC9tMlhX2YXB5u+QoOGTzAk0NhuhqZOydegJPj05hxGjE7lT6A/AGM93nI7rybNxW+h5ezVGVu04WTRxye88K0sH08WsiN/fDGBT5DnGGbdyodUUL0kNZxu78YVtEpGJ8wl1KGeC7Su9EU6O/py3e5zneksAgYZldBLLWZ47FR+zGqoUZoSYlZFY746NtBVHwybOvetC3sBD3G8XcamhKy9/60LYyhR6mefQV1bAnVZftqUNxM1az9coqLVmuGc62xxfEf5zDIuXXWPLq8EsCovn9IGBzF50lytfDmTJTxf55dBk3n24Cy1a2rRKzra48X38aIws25jt+4L9twaRM1O/8plZ2I8R1m8p6LDjQ6tk+r6ex7bgs/Qz1LGusst7r48Qgyo2Vg1ip3Mi99tFDJRp8Ly7gL7+ObypduLbwGusipvOtPAkLmbr+1ghThVscr3EhF82IBtdRVObIb1dCkj/KQTZyjJyU10YGvWGe3l+aMuM6Ns7lce5PiT13UnEwxXY2zRT12yMzFCJ6oUlZ5dsIb1DX/ffljcIhVpMN/tiZtvEk6+y4259EOsc77yHTS8pjUImVCEVqXEwaKRFY4ijpJFZZoXItSrsRCbvRRo9Y/X9sfzBB/F9MofU6AMsL+3H62Od2bVuO7sqB+BlXMOhhN4UjNrH0MyRHPQ5jZ1QxpqKKP5weoHnxSXEjd3C7MyZPAi6yvCsEezyOsOIF/pkraiVETtiG0uyp9PXLpfDcdFkjdtJ8OGV2EdWsNTtCTvy+6PVCbA1aiGzwp7TPfdxVx78nqBYLTelI9McjYsCwyz99+w79jW/OcUzLGM8q93vs/bFFDRyCe6eVah1QppuO9LqqiV3yh78n85G2WCItEKMQAvpy3YRmTwZb4s63sT68f3M43xyZeb7lbHXuaXkTd7DL/XenM7vSnKEvncWuCeGD6ddJV9hx8VH3Xk2aTNHm0LZ8WwA63vfYtOzYRSM2A/A/XYRd5o7c/lOD3ZM3odCp7cteNfugoe0BmdxAwtfzOFGz534u1b86wnEtZPO8ePV//T+RR989G+TQP7yPJAKtSELEubRuVMZfaxyMBe14WJoy2N5ABdSwxBLNawZdZ2Lcn/25faiQ6GfbT68F8bysbdo6tKBSCOiWmPK2apuvK105LJaXwrZeH8kGwbewPfJHIRCHfelvlwI38/P/hc5U9edyLACxhm30mX+RrbV9ONdj5MA7G5yBomWM83BHB+4l2Upszjgc4qvqvsS/zCYRzZ+SCslfJI7h8cjXxB7rpu+zqsRcim3Mxq1kJIWC9ZnT2H8kH28zdEL/OEBm58PY15kPF/aZHDZ7yJBt1dwZeB2HrX54WZcT4RpIZ0kddh1aWZA2hg2+Zxng919XH95AUB06njGBpVgK25mQ/BdDhZHAWBl0sY2x1d8WxtAe+8WtiYPootHCZ9aZ/NuihMfWeUh/8qQjHYn1MYQ/nIqykQrnJ+0kzvVAEfvWiJsSth/axBZM3fyVU0IAKsdY4mUStinlRJ2eRV9IzK4VB/BfXE7Wp2A0y2W1KuNuVwXzpM8H2KtXtHbsJVitRJrWzmrHGIJczXkcqsxe/ocYbBMTVGbvuY/2/4Z7mJT5q+4wUqLYk63WDLYqJR5q8yZ4viSApt8llkm8azcgwuTd5Kk6ESCoTvmQkPGBaVwt8ifT0Nvc6O2M+dWnKZOq2Nvs37VtsjjKYeKoqjpMOF5mw+DTNL4JnEiEyy88HGtwsW4kUcJweRN3oPP47mc7LGfqY+X8VvvUwTeWsG48GQel3tzP/wQnncXkj9EPyv2vLQEd99KpAIJgy3TGbHqLT2kYhaUuXIk6gnns/sB0Ngu406rN7s2T8BgUhWHTQpx9K7lWbsLFU1m7z03Il4vpI+rXq1X7iRl+In1vJy9lTNyT26O2obfvZX0H/SWNrUUB3ETd0NOsLZ8AKOt3vBD2wiMBSreyZ0Y5ZzKnpd9oENEr37ppFY7ovh7otzpnMjA9PFUy0358NEMlvV4xCjTt8x+O5/XXc8wXDKCYXbphCVNI7P3MTJVrSxIn8PF4CO06yT0d8rlclYISOFvyeP4ddxholPHA2Do0sK1NiMOXxjM/tk7iHg9ja/8rzNm3DNqVaacfxZJ/tTdTC/QlwvPOHfhaGEPwnyL8T0Sw9Fp29k0YzbmW8pROyjxkzQw+tcNAEybf58f0oaT2v0kqzs/wFUs/dPGnf8QCfXxb7ECcd6xiA+c75OicKVaacbntomYCA31DHW1jmMNUWy0T2ZszlDSEz0ACIvKxUik5IjbEyo1LUgFQiyFRozNGYqjrJkHD8KYMPQZZ1O6Eu2Xi7tRHWcv90HhqEZWJkZlokMj02Lk1IJaLcJQqkKVZAmArAa6LEwh9k0Q94ZtY/CDVQiEWmxt5CSEnWd+cTSHXOM412LOu3YXHA0auVMThJFYyXqn20xLWszfOt9iikkF71Q69lT3A8DLqJoDNwYxdejT/w97bxke15nl+/6qpAIxMzOzJdmWQbbMzMyOMXZiisPQ6SSdxIkdO46ZmZltmWVLlmWRxWwxs1QqvB8q4zNnzrkzPd25d07P6fU8+lClvd/a9dbeL6z1B5ZbPGfQiQ+QeLfR0ajP9IhkLEUdXCgP5UTAIYY/f5cNwXd52uJF4oMAggcUkFrqSIBTtVZC/OwyNCYKDg84AMCnhRNofGzH1/OPsfH5FJaGP+HQuaFY9a1Gs9uGkI9TCTSoZIJhHl9UD8NG3MbxlN4cHrSPBU8XEh+7ja31sayyesTexhhmm2lz3EUKSyYYdL592GfdX07xyH14nllG/97Z2Eja6G+Uh0Kjw2eZ43nd+wQKjZIUOZxs7IO7Xj1bnw6leOxe/PauYOy4RLpU2kVAdbcJSrUQB/0WBpnk8snLicR55nEv34f+nkUUtlribNSMga6c8k5TZtm/4OurUzDwakGWboZOQBvyIiNE7h2k9jnIG2UPw+6sAaBk9D7OdpjQqZZQITfn4MOBWHo0Ul9izpCo1zTL9bGStHMrKQSNRM3C6AQOPe9H/+A8epmUYqXbTlqnM9/bpHOqw4wtBXEAdPaIsTTqxEzSrVVtfjqX+X5J7EuNYWrQK760fkFSj5S/lI7iY9cbxEo1eD1cwN7eh1l0ewnjo1IYbJLD/VY/7r3xIT36GH1StbIxo52yaFXq8WhnNA5zirHRa0elEfC83I13/BLoq1/A/BeLmOGbgo5AjZ+0io+vzWT7+AN8+8ECHNcXknndh2crNzP4T+swmV6h7YtcO1bGxuMmqSNUUs03VSPJa7bmWch50uQypp5Zw6lp22hR6fGiy4MTR+LodFNhVKjD4fe2MDtlMVl9juN+azHFI7Sk0cLBhwAY8HoCHsaNlLWbUVJqzc1hWxnz5F3G+mXiKm0ko8MBkUDN/Qch5M/dRUzGJBKCL+C3dwU6Qa10teqxY8BRRujJOdBmw7HyaO4HXAG0i6WOHjGtDYY4OjbyOPDSHyNl4uyksf9gzd98ful7//EORCAQmAP7gWFAA/CxRqM58f9y7FrgQ0APOA+s0Gg0Pf/Zdv6W+A8nEIFA4KvRaHL/qA/8o+NfLG2nFg/B36iaJ3Ue7PU5gUwjZGz8am7HbWX4tXWYu7TQ3ilFmGOgPTGwHYVMF3WLGFGrDuNHJfL0xygagoUYBjYRYFlDXbchBQX2iM1lDHApItKohPROJ5RqHXY5PidT3s33VSNJue+HQAXvT9PeuFsujkMjBI1zN1ZXJfiteU1TjwHfuFxi0vH1TBz5jLx2G9KzXEGiwty6HYFAg+yRJXITmDHmMXbiFjZfHkdQTCFZNVqylbxRSnRQEbpCFR0KCfq6ctKv+TF08gvy261Z7RTP+rSpOJq14GjQQoRRGStNK2hTd3OszYuVphVv0yevFRqmPlqOj3MNoLWHXZ47mw6ZBHuTVvIznLDyasRMr4sBloXcrfGl8YYD59ZsYvafNqA7tZ7mTj00agGKan00EjUbBtzkp4ejKJ6gJekBrLO9w5MuL/yllXyQMwVL/U5K6i2Qd4sY4Z9Ft0pMTpMNT0JOMaVwNBFmbzj0aADGzq30titDoRGip6OgWyXC26CWD80L6dY+G+gJJKyqiuJ9q/ssy5/FFIdXLDEpZUHZEMKMy9mV3p9PIm6yr6QfdoZtnPe4y/Dc0TgatJBa50hHthkxA7OINC5hT0E/0iJPMb9sAAD9TAvYU9yPpLDThP/wLmkf7mRzsxvbXwyGbh1m933G8bRofuh7jk9eTsTCtIPE0HM0q7s42BpAapszfUyK+DllKKISKT22WlDBlWHbmPRsBRkDd6MnkOB+dxFBrpVUdRjjadpI7mkfUj/aScCOFVxasokxxz4gb+FOPqkL5kxWOOI8Pd6ZfovtLwehbyTjfb8HLDHR1sjcLy5lx4hD7KwYxDcul3jS5cVPL4ajVyBGv28DjcXmJE74mf0t4bSrpHQqJWy1T+aNsh0bHSkSgQj/nSsYOv4lNx5GMGuoFv3nImlgimEp+1r9GWyQg62OEplGg6uuEauqovjM5j5Ts+cSYlFJRpM94+wzyWx34FmpGwUDDxP64wrSNu4kU97NjY4g0lqdScrU6mz5+FS+hdr7Jswloc8uIq+vYVrUC9JbHDjmdZZPq4bQo9blHetHxHcEcL/Wm8E2+UwzeYmvyADfAyt4PH8TfR6sxsWukeoELWQ6Z6kWcryh/01u1wfQ27yEzwKv/6NMICfR8vQWA6HAdaCvRqPJ+jfHDQeOAIOBKuAikKjRaD76z7Tzt8ZfQyRMFQgEWwUCgdkf8YF/dLjoN7K0oi+va2zpVoupbTNiR8MAfqoeDhoBI89vICKkmP52RQx0K3zLUp3n8wI9AzlmWToMGpqGl7SGFV+dxymyAj2RAn/DambaJ/N+v7tEO5axx/EZKoTcLfKlVaHH3LKBjL+6hoJ9vlj0qkXp1c3t+gBu1wcgrYdtU/ejW6DH1U2bKfvIh4ued1hTOI28BTsp6bRELFTxXdxZdPSUvAw/A0Dmmp0oTFT0Mijhx6QR/GXyMbqUIhb6PWeh33N+HXKU2i5D2uRSvnS+gomoG8tBVWyxS8Fa2sHqi4uIcnhDUbUVL6pcaFXpM7NkMKG3VzPGMIerXfp8FHqbe91GuOsqMTCWcdPnBjd9biAUaOiSi7gRsYdRNq9ZGhfPveBjyFU6FHZZ4Wtay5C5SSTKXKnvreJZyHl0hGpy+x3FxruB4nF7UWh06ROaT2DiLP7icJO/ONzESKhkpWkFP5SN5HrwQfLyHcjudxhHuyaS65wZYpaFi3EzPRolcrUOX1jm4BNYzhS3NEaYZWAh7iKxxpWmHgOsdNuZWTKYgIurCbi4mpAXM6nuNmHKLx+ww/sk56vCeLdyABm19uxK60/hoEPkd9syyiGLyr0ebKwNY4XTQ4INK2mpNEZl30NRmwVbL45lV/AxLnUa8KLSmReVziwxqcZALGd9dSRpH+6kVNmOl6QWN6c6xJbdWmvkbh0+fTUejVpLaPU5uIL73TbsOT+CPiZFbEkbgkiixKFvBaG+ZYT6lrGvYQB2li0ca3OlW9ODiVknRY0WXA8+yGDzHFI/0lr5Zq3cyY2OQPIW7mRs/gi+s85gX5/DZC/fyYG8PkwLTsHsmCG/5Q8k7OV0wl5OR6dLS8RslUtZ+N06Xnc6MCowk6crfiY57Cy7R+1nSfFkPrbIJ7HelS9sHwJgp6NHjkLF9S4pMhsVvYxKMCwVcK/ah3vVPpyZP4w+u9bx26tYypXmTM2eS1qPLd6HV2Cm28UHFaP5s9clrqcFs9PnBPvPDeNllRNWV7UIwo7IbrIUXVSqTBhvlI5aI+DwsL0cHrYXuUqHW91iFr7pz4s+e/iyZhBb444TYVBKj1KXgds3EF/kTYdSwtMuby6WBvOL12kSlkWyuXYoQVtXsHTiLfqe2YCvcw0iHRXusaW4x5ayuDwGsbmMLTfGkFtjw/my0P+iUeo/FwKBwACYDHyu0Wg6NBrNU+AKMPd/c/h8YL9Go8nSaDTNwJ+BBX9DO3/btf4VO5AgYAva2etPwA6NRqP6oy7g741eIVLN15c8+dMXi3i+aRezS2P5yuEaXiJD+qZPZqZLMlteDAGVEA/Xmrdiiqfd49/yOAITZxHrXEhjj+FbWKaJbhcnSiLZF3iESqUp3xaM/p+4HsfbzdlSMIRw6wp0BSoSKt0Z6aIluF0/2RfpwAbWeMbzw57pfLj0ND/lDSXYqpqERH8M3VtoqzLGoFiHriAZrvYNdMolhFuVk1jjyjDHXL63SWdi4TD0deXMstamg0bry5hfNoCabiN2eJ5mb2MMD6u90JyxRDahFXfzRryM6jmXHs6f+lzmh8NToVcr0zxTuVXpj5dpPblN1gxzyKVebkS7UkLWmd+9E2alscT6ETK1LvvqBrLV8Q63u2yZYNBIQo+IaImMYa9noC+S42LYzOtGO8Y6ZuInreRkbW9+cL6ECgHDHq3m1oBfGfFY6xn9ctBvfFo9iLXW8Tzs8sJKt43LjeEklLoR6fyGRTZPiNNTEfJiJh/733oL8/3XaT4VQj67Ph21SI2HXxXOvx+z3ymB5RV9iDXN5dfiQSQEX8DzzDIKp+3Gb+8KzKLq6JKLOBRyiPm/rGXuO3fYf34YBhGNGO424c1IAdP6JPGgygtv83qeZnlxbsgOANJlThwp780S5yf8UhiHq0kzp93vsL/VgZ8zh6AnleNo3ErOK1e+HH2OGYY1+B9fhUasYXHcAw7cHkzBrF2srwlnrGkqG7KnAhBlU0Z1twmjrDLJ7bbjZrE/awPiye22Y6XlY4Y9XA0tYvTLhUya85hzZwfQba/C2rWJlk49zkbuYWd9LM+q3OhtV8bDMk++Db0EwCevJmJs2I1YR4VUV0FjpwFCoQYDsZzGp7ZImmHn+l852xzFAvMEPimdSH2XIW4mTXQpRbzneI9Ns2Yx4dB9imXW+OppjcxuNgQxziqNsh5LSrotWGL9iHa1FH2BnKdd3mS0OZJS6UQfp1LK2s247X+BjTXRbLFLYW11BE+qPXgZfoaFb/rTItejt3kxdXJjAFoUevzocAcLoQHLK/qwxuYeU3ZvYNHsWyQ0eTLC8jUqhCw3qcT3wAoWTrjLoXNDkbvLEIrUFAw8TOTnKxi0KpH4Pb2JXvSKWy+1IAsP7yr6WpaQ1uJIabM5u0OOEuP6B6CwnJ00DhvW/M3nl7z/7+9ABAJBGPBMo9Ho/av3NgADNRrN2H9zbDrwnUajOf37a0ugHrAEnP/adv7W+KtrIAKBYAKwCVAA6zUazc0/4gL+3jD2sdGYv/8B+vYdeFg0Ms/+GZMNtCvVZXYPWJ0+E6lYwXe+F+lUS1j3ZAYAVjatRNq84V6xD4oeXdCASE+JvE0CciEPR/9MXMIqhnvlMMfiGU663Vxu9+OnxyNxcGug4bktcjM1AosepgW+orzbjNQr/gCYxdZQlWuNbocQ09B6JPvMkayqovKxE9/NOcL6m3NImPgzco2GyX/ayNWvNtE3/j2W9XpMfqcNAYZVHN8+gpTPd+J2/R30zLSwVUGaEZOmPCHOOAsvURv9b6zji4GX+TppDBsi7+AlqeHD7MlY6HcyzzGRcOkbAkT69GgUSAQiUuRyTIVyDARgKNDl1+ZgPrbIByA2azwVdWbkDzqAV/xibCzb2Ox7mrWfreL0XzbxY10cqQ2OJARfYHlFHzIa7akptWBQeBaO0hb6GebxbfFonAxbOOryiFVVUQAUtVty0+cG5zuNkKlFfPZkEifjdvGo05eZxqkYCIUsLZnAGoe7NKoMKFdYYCSUceBNX9a53eWj0/M4PmcrUx+u4Lu+F/jm4AwchmpFMFu69ehrW8LTGndaX1tgFtjAWq94DIQ9fLFtPh2OGjQ6cG/qJgZfWY+kUatqTEA7PY16SCy6EScYMXnhQyx12ynotuF9q4cADI5fQ/Hw/Vzt0sdfXEe23Bohaq43h3D7WShFU3dzoM2GVx0u3EgJwdW9ltIiG0RmPSiaJWSN3U70ljXoDaqn7aXV2/tVENCO7nMjvCYUct7jLr1eaesXQxzySKhz1zoyXl5K8fg9uN9dRPHQA7ifX8bcAU/pUEn42fYVo/NHstopnlXPZ7EgOJHUVi3IIrvWBoVMF0mOHmvmXGLLqQl8Ous0f8ka8Rbg0azuwkyoj/vlpawdeIstL4agI1Gh6hLxWcxVDn00nsBP07l3Lxx9f+1E3S0TIxBo+CXiNO+fWszk0QlcuBaDUVgDRuIefvU+xfdVI6nsMKFLIaYhzxK1RM3moceZYNCJ++3FFA/fz9j8EYyzSedaXTAz7bSgjttNgRS1WTDIpoAWhT43CvwpGKhV3J3aK4Xr53qjCu1gV8QxYqUaQn5cgfukIgqve9AT1on0pQFbVuxhyY13KJ68G88HCzA01D4v+mIFKrWA+loTon1KyGuyIn3MN3/MBLJ+7d98fsma9WVo6xH/Ens0Gs2ef3khEAj6A2c1Go3tv3pvCTBbo9HE/uu2BAJBEfCuRqO59ftrESAH3ACnv7advzX+U0V0gUAgBtYCnwAJwLr/6vqIc6CxpvSeLTEZk5CrdOhMsmT+tLtcLg+hpsYUg1wxspBuTB7o0X/5C27c1g5seQt2EvjrCrp8ejC16ORT3xt8fG4OI4e+5Oa9XiwcHc/Z0jBeRpykQtmJs64RPk/mcS56N6VKCwZJm+iXsoBb4ftYXTaBs+73SJNrb9wAkS6zSkZgLOrGStyBvo6cKIMivisaxR6f44w/voGoQdnkNNrQVGrKtJgkrlzqi9PAN5TUWaCU6XJ/8FY6NTrc6/DHXVIHwFj9rrff+1CbNd/cmohHsLbQqVQLife/Sremh8D7y996bL/qdOV9y8dsrh+ItbiN3A47WuR62npM4nLeD7oPwM93R2Pi3sIst5ckNHkwyzaJD+9M59cRR7DVbaNeZcj3xSPplIuR6ippfmCL3dBy7vpdw+3aErYPPsp7z2Zyqv8eIiUiLnVqa00TDDoZXzActUbAFy5XyZXbodIIyZfZ8p11BqPzR3Ld+yZeDxcw1f8VT2o9CDCroVZmxE+uF/iuejgJt4ORO8vRKAR8M+ACP+drnfKWej5luUklH9WG8JmVVn1gcv5kxtumc6S0NyIdFX5mtSRcCcFiQDVeJvXUzLPldPxxxudORSjQsMPzFLkKaz7dNZ8OVxXFk7TPcd/0yQRaVHMvNYDowCIqO415HHgJn0Mr+HjSeR40+2Ip6SCj2Z6icmvGB6WzxS4FgMjUqTgbt7DS/j6/lA9lscMTJhh0vv3tgpJm0cehlKQqFzo7JYS5VKDWCOhlWsaB24NRWcmxeiCmPlqNsX0baZGn8D2wAlErdHgr0G3Wxb1XOQVvbLg6aDtjH6wCYFPMWT64MxMMlfwac4J9VQNIL3Li6MC9fPdmNM27nXFbnUdKpRO5MUf5vC6Qqh4THj8K4s8TTnOyOorsKlvMjTvZ7n+S2ae1tq1K2x6MzbpoazZgbGAGLxucSAi+wOZmN27X+jPHIYnNeXF0y8QoZLosDH2OGgFfWOZQqmzHVdeIX1ucUWuE7MmN4VD4ITx/txH4urY/1uJ2njW6c9X71luP+rvdupyo74OpqIsrT3vhHljJTIdkFhhX43FtGfviDpDa7crFihCqq8zwc69CrRGQl+XIZ0MuA7A5Ow5DqZzmNCuCBxTgZVjHDyHn//4JxOnvnEDWrv9rdiAJGo1G/1+9tx6I/X/ZgXyr0WjO/P7aAu3k9C87kL+qnb81/rMwXn0gBTgMvAtkCASCXWhzbK1/xAX9Z6O2w5jI1KnE2eeT02aLdFgTuR12KNRCEGp4b8EllphUU9m/nWKFEVcMtb+b79O5zJn5gCM3Y/mh/xHePbMElYOM2yW+2IZXoy+U01JmwieOYVwvDaAnz4RtU/eTr7Dmg/gZxITk85X/VQ63huKo14z7rcV4uPwPbSWhQENpqxkzXV+y79QITkhisY2uYtSD1ViH1nPU5RFbjV357fVIyrvNkDTDmyYzlA1SiiftIezlO0x0zSCvw4bDjdEAfK4W0NklQdUoQc+uE7/QMq5632Jvqx2TjArZ3BzIwfw+BDpX4X51CcVj9zLDsJm5ZWOYZpWMSiPgQ/NCzncaMSd9IdIkA/pHa/0Rxkz8iaHP32WIYRaH8qOpsTRhbv8EVt+ax5KBD1FodLgfcJHzHWbcaAomev4LCrptCEycRe+AInzFDZiYdWEklLO2ujdzLJ7/3hNixtukcbY6gkqlKb8VxXIq8CAnqyI5IK3lI+eb9Ho1jUDHKgL0KvguKIPZpbFkprjzmc44xlulohyqwzSrFwyUttDn17WETtCmCvduG8fyz3dy/WRfEoe6UpFpBxo4E6xL5yMrvltymI8zJjB6ciL3KrzR01GQvd6c6F1ryVq5k63NrtzoCOS3KyPJX7eT4bmjOdqutUgOtKjmUYknYnMZyaXObI0+RegPK1i7/Ao/ZQ/hh+ALrHowB8MCEU65Sm6VRZH5MITiKbqgFmAd1MFXHyzmyfY9+CbMJc9P2x/7MvoR6FiFh34d9yoCwVBFQaMlk9zSOXBzMAVzduF2/R067QXol+nQt1cJZztMyF20kwJFB/kKSyIlDbySm/Ne3QyutIWyIeoOAL8UD0HHTI732ko2/DYFZakhuo5dNKkN8TWu5bufrvCiR4S9YwfuN9ewI/YI0ZYtmM1JoFLVzi75AMKdKvjG6TIjLq0nvJ/23lhq95BltxcRE5ZHjcyYhlc2bLQJw0LUjodRA7a6Lcx2f8nNGn8aOw1wk9TxffYIjmRGM8U/lQu3+rJz2h6ed3qx3O8Jyd1umOto151O0iacRE2k6TrheWo51r4NbKwNY7hxBgedn+B5fwFjYl5xNTmMRX61TC8eirdnFTVKE3Y8jGPRgMd8FqyVgBEJlHQqxHiJtc/hN0GXedbhzYU8S4RoOPWkD1qQ0h8Q/9+CV/MBXYFA4KXRaP7FwCQE+N8VvrN+/9+Zf3VcrUajaRQIBLL/RDt/U/yHRXSBQLBGIBAcFwgE+UAjcBWIBLYC7wA+QLZAIIj+oy7qn/HP+Gf8M/5vDY1G0wlcAL4WCAQGAoEgBhgPHP3fHH4EWCwQCPx/Bzp9Bhz6G9r5m+KvKaKXA89//0sEUjQajfzfHPMhME+j0QT8URf214ZHkIFm1olhvGx2prlbH7VGQG2FGaJmHZTWChBoKB52gJiMSbQ8taHHT1tE16gEDPfLxlBX+1XOZYSxJPwpH1vkM+D1BD5wv8O65KmgEdDPvYiDzlpIY66ik4nJy5CIlIx3zURHoGaYUSaLUhYw2TMNgD9bv2ZxeQwSoZKbqcEcGbKX+XeXYOfSSHWNKdFepaQ89UbtKCPCpRxfoxqu7RqA++wCRltmcOT9cZzY9wun2wIx0ummRaXdgUbqlfDOSa0d6fKKPtxOD8DXswp/kxqSG5ypeWXH6KEveFDhxUd+t/m1eBBH/I8w6tgHKA3VqKVqjK07CLetoE5myDqnO6w+shQAcStMXxzPnqQBHBm8j/5SLcP3k9yJzHJ9yUCDXN75bi1qXRCPqaehyZBr/X/jTGsvjudEolIIMTLuZolnAlvS49CotL4H30Rd5mJdONVdRlz0P86CwslUdxjT1GDIQN8Chphl8d3rkSz1TeBVmzMNPQbkpjtzZcIWxKj5vmY4D5IDiA4r5KTbfZZX9GGsudY6uExuSa3ChAGGuagRMFRPSYGig+E31rFqwF1S25wparFEoRYiPGOB85JCzrrfY1VVFPdKfNgfcZiN+VOobTTm/bD7bEkcik6DlmNiG1LLu24Pud/iR7tCSlK+G8XD97O0oi++BtW4i+vYsmE2k767Q0G3NdvtX9A7bQrrPe9yoDIGW712Zlk95/3UGUQ4lJNYouUffR95nghJFa66Rm81u/buGkv0nDSCDcspklmT3OBMdYMpQh01+no9xDoUktLoxNeel6lRmvLZjWlkTt3G7S5znnV4U9Sh3TXp68o54BzP8OxJyJQiPva6SWqXC6fOxiKNaqKl3ASBoYJxARlcvxtF0pyfedljzOqUmUglCr7yv8oEg05CflyB/9Q8suu1BmmyHhE6Omp0ko2ImZxGfqsVQ21z0RfKEQmUjDHMIS5hFQUDDzO+YDjTbJP508Xp5M/TujjWKEzprVeCr8iA8QXD8TGu43G1Fsb7IOQ4egIJR9staVdJcRI3Uakww0Ncy1A9JWlyGc+6PLWf8XQ1H4ff5GZDEGbiLh6VeKInlWNj1E5/yyJufB+LanbD25pT7+GvqeoypvG0M93D2tBoBORN/vIPSWE5rv3bU1jF6//9FBa85W8cAIaiXbh/pNFoTggEAmcgG/DXaDRvfj92Hf8zD2T5v+GB/C/t/M0X/2+v848gEgoEAmugWqPR6PwVxx4D4gADoAb4UaPR7Pv9f3HAb2hzd0nAAo1GU/bvtSdxc9R0P9dnavEQnPWbuJgRirFZF73tyogyLubQmz4EmlVzMz0IM5t22lq1gISxfplkt9rS0q1HfbEFUrtO/GxqKbjsiXGpGuWiRpSXrVCPaeJx2GG+rOtLQo07ARbVPMj1wdqqjVi7AmaYJTH5yvuopWqk5trJSVFhwLCYNFz0GtFBw+6M/ojESvo4leBtUMuh3N70NOoRHVjEyzdOzPBLIaPVgbVOdzjXFMl2+xdvxR1nlgymslOLWKlpMqa/WxFueo2cLQ7jcvgeKpUGxEiFuF9Zgo6JnFN99rK/vj8xxgV8fmcqDt51VNWZ4utUw0rHB5xriEQoULPS5gFTHy0nzL0cgMp2E1o6tX2jUgopGHiYHS2OeElquNwcznb7Fywuj6GkzQKZUoSTUQtFLVoNJi5bYDHzDYYiOTNsXvBR4iR6uWsL3VbSdh6UefFz6FlaVAZ8/nI86noJLyZv5kSbH1kdDtzJ9mND1B1UCHnZ6oqDXgunkqJZ1OcJB54MIDq0ELVGQO55b9r8lHzS/xoA+0ti2OR7joWXliNy7mCaVyovm50pfuSKXi10DepAIlIy1/MFPtJq3r85l8Ojd7PkpRbFuCboPhY6HdxqDiTGpJCja8Yy/xctl6daYcqLZldyam2Qt4s5HLufefHvsH3QMdanTuX70Ava9MjDaNRSNeapOij1oDVQgWWiiKGrE7h+OIb0D3YS/clyHBdr2eJpr9yROnYwxCWf63kBmJl20v3UEpfhpfzsdo5SpRkfZk5mlmcyux8ORkcmRC3SMGtgAl1qMd/YPKdX4iIeRO1mWu5sHgZcfgtYGG/2ivONkaQ1ONCUaYlbZDlF1VasDn3I0ZIoTgYdoEhpzutuJ0x0ugjXK2P5N+/z7E+/Epo4H1/rOl5X2XGt9w4mpizlUdReABJlFpyqj0amElHfbcCbSgsEQg06VVLUUjUCpYC70zaxtT6Wq48jMfNuxOx7AwrniDAo1OXx+z9zscPtrXy+QqNkXL5WN85S2slRl0f0TZ9Mc6ceO8OP80PZSLZ7nGFx3mxkR+xI/EEre9Ko7sRMqIcQIX57V2DVp5rHgZdwv7SUjYOus9ykkjZ1N1EH1wGQu1jLA9EINZSM3kfIi5m8Hv/1HzOBrPk7JpAN//EE8o8Sf9QEIgAGaDSaR3/FsQFAoUaj6REIBL7AQ2A0UAYUoU2LXUWLZ+6v0Wh6/3vtSVycNONOjuG0ezwBO1agMACrsFqs9TsovOqB9fAKLKVdZMR78/60K2xO1zKCdXXVuFk20q3QrjhrHzog85UxISCdq3ej+HLCGdrVekwwzENfoMPCknHUdxuwzfsU9zv9KJeZcy0vCCuzdvREcvZ4n8RNV7tTON9hxlTDVjY3u7H7dX/6uRZR0GpFVbYNRu4tyOQilHJdLTvdtIO619acmrKNKfdW4utRhbmkC12BmpEWmXx+eTpi93YAfK3rkKt0KL7rxuo5V9h0ZwxO/jXUPrNnweS7nNg3FPHQBlozLVFaKRBKlfg41JKT58ja/rd52OiDjbSNxh5DTrvHs7XZlbwu7SozyqiEecY1+D1ZwOaIM0RKGtjfEk5JtyV7HJ8RnjKdlkYDQtwrqO4wxsesjqR7AbjEvMHFsJncFmsMRNrdnLdRPcLf7UPvvfHhbPheRj1cTfHQAwQ8n833IRf5Nn8Ud4KP8ltzCM7iBj57PAmBQkhEcDE517z4cOFZElq9GGueyuc54/GzqOW460POdxoxVE8LKjjX4cqhN33Y6XMCHTT4igzIVXQyPnEFik4Rm/qfYbJBO75P5xLhWI5crUtVhzH16dZ8MO4yruJ64tsCyGq1Y4FDAl//Nof0jTsBGJs/gkOe59lQMYKBpnnINCKWm1SyudmNo0VRjHHOYp3lC57JzLnZEkxSrYsWLnvHnoHTU6iVGTPZOoVvXo/kcq89jN/5AQBdTipMcnTYsnYXix4u4v3oeA4W9qYr15SIfvlUdxkxxu41d+t8KSjX/jbD/HKo7DIh55UrP4w9jlig4kRtb3SFKo66PCIyVQsRXuj2nLPrR9CxqpV3PR4h04jYVxSD6pYFK9+9hAohx99EUVVryvzQRJKaXOlnUcRi01dE31qDQKaD2KaL9UH32HRpAgvHaFV+jxf0oqfQmPgZmxidsozOOgOMbDrY6HebG43BHHd9SI2qAzOhhEEZM956yqS3OfEnh+vMylpA2xNr4ia9xF7azLmyMAbZFwIwyTSZFrU+I/Tk5Co6mZS8jGjHMjz06wnUK+fTjAk4mzdjLe1gs9NNhrxaxAafu3x5bRoC+248beu56XODo+2WlPVYotDocDQhBoCwoBIyyh0Idy4nNcGL/Lm7/hgmupOTxvH9v2MC+eC/zwTyhzgSarTxH04evx+b9S/bK/6Hu7AHMAnI0mg0ZzUajQz4Cgj5fZL5dxqEFfb36bNxObq9WlDa97DL9zg1e9zRj63njO8pXAyacOxXznKTSsxv6GN+Q5/svsdY7RSPkbiH6mcOdDspEZVKWWTxFJFnO00qQ46/icJWx5DQK+/jYdjA48BLbKkexpWqYLbYpfBe6H0+9bpOyRtrPnkznvhuMfHdYgbra/HzO9MHktP/EDlNtpiIZRh7tBBpW46rRRMZA3cz3fcVDa2GFMzaxdT4lZSM2kdFiynr7O+QXOlMmdyCjFlbGeGWwwi3HIxFMt60mLFn8W8ESCrxDi7njO9xLi74CR00pG/cSaBFDR7RZSAXEun6hn4WRQgNFRR22TDC8jWjzdLxNtSuBLM67Zls/pLJ5i/5+t4EVlX2YZRnFu9fWcDErHnsz+jLvWxfVlVFMcElAwe7ZlY5xONg1Iq/URXvTr7Obd/rPCj0ZrT9a/JyHYm1yudadiCdKgmdKgkaDYw7tZ6xAZkMXL6Egc6FrD87n8TQc4TcWs2B1304UtmH0WEZiCxk+BtVk7J6G1sLBtPbuIjVT2ZzOOgQDTIDgpJm8dHLSWyoimNDVRyPmn14HHiJbyrGoELA8XZzJiUvw9OmnsIRe/n4wmxmlgxmRcATXpY7k5LqgURHyZDBqRTJrDlW15frpQFY67Uz2aCdnpiOt7dVZbsJS0smMNA0jwXGdcQ3+pGr6GSNWRFbAs8gEqoYlj6fR+1+3LsZQXLYWWRH7FBGt/OkwoNXKR58mjSBud4vGHFqA7q9m9Ht3YzEugvBsCYuN4djnCHmVp0/7W16KPU1vK6zZbhtDuntjjQdd0anToyRSTepO0J4ne/E1nGH+K10EOldziyyfUxWgy0JMjUGYjkGYjmvOx2onC8nOewsz9o8OVsZjkRXSeonO2lQGrHYuIyJjmmkDt7BmcIwvnK5wvHjcVzu8NJCxY0VHIo8yG/5A3GLfsP5slDOl4WiVOqgEWuw0ZHyru8j/Hy0NsffH5hOhEkZvdOm0PfKOn5p9qM235Ldbhc4WdqLqi5jRhzayLOQ87xetZNBJtmUy8x5EHKUc6nhnEsNp1JpRpVCy1GuURmiyjeisNWSzyxz+TZ/FPvDD+Nm2IiNtJ1FRZPYE3SM3npv0Fj1UDDwMHn5Dvg+nctcowYSGt25VeGHwEiBwEjBGoe7eNrVkddohVkOzC0b+FePaf+Mvy7+S7SwBALBDrRsST0gFRgAfAuINRrNin913GvgS41Gc/7fnL8UWAqgb2sYYfWXzygesR+Pc8somrKb8JTpbA04zeYKrR+I++3F2Nk109hmgLxbu+MYFfCajCZ71rndpUZpys9pQ4hyKUOmEiEUaEgpcMHLpYaqVhMyo7Upw0Nt1iwwrnvrM7K8og+hRm/Yenoc/Uel8+SN1sjmy+DrvOp05TOrZ8wtmsBMuxd8cWEG+fN2cqDNhhKZFccT+1A4bjf+CfP5KOg27Wop29IHEexYhb6uHLVGQPJjP/oMzKKgRZvTbWg1YKRnDonbI2gY3INlvAT3pfm8eujDd9OO8VHyZDZFnqVKYcaW9DjQCBCW6NE37jWvG21pajKkl9sbLCQdOEmb2ZvS/63In+fp5SDQIK0R0u0vY32vuxjpyAiVlLMsZw7NL6zpcZEjKRPzzaxjbHgwgx9jz/DDz7OQG4LhkDpanlsTO/YVRe2WlDVoBQ+9rOu56n2LoF9WcGnVJmZlLmCqSyp363wRCjR843aJYrkVZXJL9lwbhm14NZ0X7BCMaaS5yIyiqbtxv7OYEwN3MzN+Od7u1XzsqpW+eOf5fD6LuMHXdyciahMiUINKqmHikCQ+s3rG1PwpmIpllLebojptRX0fFXN7P+PWlv4kfbeLGlUH9Sodpr9cwobAu3x3cyIXJ24BYFHWPLp7RIjum9DZr5P8AUfwPLkciWs7vezLMRLJuPE8DIyUxPgU8rzYjTCXCrJveqEK6UClEqKp0sM0T4D+lGoaH2lVfmW+MuyuiKkcpkKgEPJwzM9Me72QYMsqsn8MIvjDNGplxqTmu6BRCRA16iL06EBXV0VXsz4rox+Q1OLGJueLXG4Pwkinmx8zhwEwxC2P2wV+pPTfxeC0+bQUmPPlqHMktHoRX+iDSiFkc9/TrLszG4Tg5VNJSZIzg+PSaJbrU91lxDHfo5xpC0UoULMrUytHM8c/mdMF4QTaaGVvlto9ZIC0hzS5hsRuDy5WhuJg2EqbXIpcrUMvszecyongvZAHbHk4gqMjdrHo1LvYRVahUgt5z+0+eTJtf4w0zuBehz8dSikzzF4QINLH/eoSDPN16Ts9jTsvghCaypHoKehq1iPYq5w3raa0lptg7NjGtwGXOFITww/Olxj1YgUJvfcQEa+FNUd7ltK81p7CmYbodAsIH5jHmb67/+7Vv9Tx79uBFG3877MD+S9R49VoNCsFAsFqoA8QC/QAhmgZlP86WgGj/835e4A9ANb+Fho/9yoCt6+g79hsPE8vZ+e4fXxTOpqCEjs+MgqBHiGdt2xYs+wKrzu1Ojlf2NxnrXwMLzo9eNciAa+oGlYkz0ZHV82HgXdYbPeYdanTSO9ziOQeDYvS5tOTZ4Lt1P2UNJtTp+rgeZUru6Ke85NnNwq1DvamWiRzVpcDmS12RN5Yh8q1m28aR3JmxhZis6bzMOAyIbmDsXVp4rsGfwTZhiS6eHDntT906VBhbEJDkQVCKxkaqRo9HQVN7drU2BTfNM7fiCHvu52srY6gztMIJ71m/jL3R1rUIgpiD+F1bDmHpmjZ1AWxh4i1Go9SI8RALMfXs5iEFB/sngrIe6eKILcKllf0AUDUJmDi+GeczQ7HUL+H5DY30uvtGeKYz0yXZEJ93rDo/HJyluwkNHkG/t4VfJM9ii82HCO5wx2RQIXJtDROlUbQmmuOf2QJoIUz902fzKy58UzPWISJtJs914cyb+RDjmRH8RkTmGOfSGWPKQg0hJlXsuWLCywsi+W30CO4X3iPZbH32Vo1jJJR+/B8sICVD5dr+3nZNgIeLmFQ1GtmWSYSIG5lfMYCgvTLmVs0gboOQ3SXKZly7xXnZcPYNPgUm4uG0jyiix0tjlysDuWu3zXGeWSyyLiWY4FV3O/UMvMH2RfSpRLhsKyFd83S6Z85iwVDH3I8vxfzrBNYcW4JV2dsZm7GQlIqnSgcdIihOWOYMyOexw2eqDUCYgMLMBvVSbHMmqyh2k33WJsMjltHISi2wiRHh5MDwqitMiXxvhXKAGhXSsm/4snRFb+x4fOVTP74DrvuDSF96nYGZ05nkKHW5tZV14i9eX0Ri1Rcj9am3UYnrkCSoc9vgSEILlkwc9UTSnqsWG0TT0GbJZ+7X+NqSxgG9h101ml5OuJ2SKh0I9C6hr5WJUzOXERzvgUaoYavRmjXbV8+H4+oSszwgHscK49m+Ys5FAw8zPaaAYyxSGeOUxJzjSpJk2u41xHA00YPfok8zcaDC9m9aC/X20LJW6C9xr2tdqgQ0qXWSq4XyG141ujBGc9rhO1ajzq4g7X9b1MdbcrpjAg0EjVLQp8y0ziV2PtryH7hxnujb9DgYsS5wlCsddp5XWtLub0Re8OPEHFvNSbm2p1kYo47gnlCto44wnv3Z/OJw/W3WNe/OzSCP6qlf+j4Q1JYf0toNBrV79osjsAKoAMw/jeHGQPt/147OgI12YUOnFy6mTa5FDPvRpbdXkRZgzljQ9JJbHBFz6qLHjP4IWEkdwp9uVPoy+DkpWxzvo6duAUHHSOutYSypdcZDPV6EAmUrHw8l73hR/C5tZw6lRE9Pbocn76N43V9eN7rMNY6hqRHneRAmw26EhVTLJNxNWrC1aiJExmRmIpl5C3ciYFBD16WDUyKX6V1k7u1mLsRe6ltMOZmlT89FiqWWz9gVfR90FfRlmzFmiE38barIyY6hxiTAuSdYuSdYk6+jMK7b4kWLy9u5+VDPxaYP2PMy2XY6mgRK0KFgGKFNZpaKV4nllOebcsA03yqk+3JbbLm8Kg9VA9TssY1nswMV3SFKnSFKgwiGmmQG6JSCPkh6DxdSjHT3VI4lx6Ov6SS1ZkziBuYju++FQxzzkP5kRVPeh3gx29mUy0zYZ3lC543u9PLupy9k3ZjKOrBUNTDFtfzPAs5z760GB6GHqGjR0L+3F3cq/VBJFJR0WJKSY81DpIWvp14EgtxB/4J89HTURB0cxWuPjUczY/CQtLBgJVLmRnwEplHDzKPHpaXD8bOspXHj4J42e1Gpwbqy82w0m3jC5eraDQCRsTn8Fv8MPSXVHK7OYiE4AuEOFYRrldKXbsRlzoNOJPai+tdUtrlEq7VBHKtJpBzaeGkNzpws9qf7xuiqc6x5tiVQehJFASJWzELbGB1/gzkz8wJsauib/pkHA1aOV0cjotBMwVvbHEWN3Bu1XAMdWTkFDmQU+TAtqxBsNsKE4dWVBK48uc4zg3ZgcIIjKLqCTGqYP78OxQrrKmL0nCtOhBhj4A9rR6IdFRsqx7C/lztpN/XsZReNuVMerWESa+W4GTRTMjYHNpVUr766CAP/xzDkYxoZmxfT3GpDUsuLGOC6St8req4PHwbHkYNDJ38gldRR5DqKKiUmdKcb8HKYbcRWss4VN6HQ+V9mB2aRN6CnWx6PZQ/eVyhYOBhfmrywFmvCSOdbo6U9yZXoeCdbe+h0gipaDHlvWcz6XZQ8VXBOE497U2zuouj7ZaMNSzAS1zLSOMMRhpnYKHTTqRZGRKBiI2zz/Np8E1mGefQppTi61yDQCnk/pK+jH21lPFBaQwYkEmsfh7HHvbjo8DbzE5aTFL0fj7Mm0yMVIiwRRczvW7M9LrRadOlf0QuH2dMYGHvp2wonvIHDmB/x99/o/gvl3MXCAT7gE605Jb5Go0m5vf3DdDuSML/Pba71MNB4z5zAz1BXYzzySS10ZH+1kUcy4hicmAa8Xt60xShYHRoBtvtX+DzZB4A34Rd5tsds+hw0TCsXyrxxT4ounUxS5IgGltPZ48YtVrArrDjHKqP4S/2txl44AOUXt1IpHJ8rOo55X6TsN9W83rVThJkas41RwLweG8UplMqsNbrJLXKAXmDHiEBpeQ+8ODRok0MTVlCe7URInMZojQDulyViBp06T04iyevfBGoBBRN2f32O+5t1W73l5hU06juxEJoQMiLmazweYyvpIpYqYblFX3Y5fgc/2dzcLFoolspYqB1IW1KKZdfhnN5+DY8RUKitq5BHtGJqlKfi5O2sChL2x/NeRZcnLSFo819uZQXhLJVwpK+j3ja6MEap7vcbQviQZUnGo0AL7MGhlpk8UP6cPL6H6FR3cmJNj9+eRnHndhfmZW5gL622h3I5bQw+vgVklVvS1uNERmjf2VD1SBKOsxZ63IXJ90WZv66nox1O+nW9HCuwwF9YQ8bHk7nytBfmfpiKYb6Pfzkf5bFTxdgadFOU7YWtqoRaRA5dtLXqYTHxZ642zRgKpZhJW3HWtxOnGEW63KmMcv1JYeLo3kVcZpfW5yZapTNipJJ2EjbaZQbMMwiiy1ZcXwadIPMLq0syL1KH0yk3fiZ1pJQ5UZnjhnLx9zm3Jtw5rgksSU9DlvzNtq6pShfmhI+OpuEFB8wUlI89ADzywbwg+MNTIQibneZU6/Uro0OlvblRMAhRr1Ywe7wYzzr8uTQuaGcWbCZ91as5sH+ffjtWcEHMy6wOTuOjwNu4SupQabW5XJrBNPNklj16Xs4ryign3kB2zNjUci0iQQH22aaH9mybM51btQGss39DHNeL2CFh9af3kK3g0uNYZiKurmQEs6H/W7yw9ORjAzN5NbLEMydWjDT68JQJKeq3RgdoXZsqKk1IcyjnNw6a2KcSihqs8BUIuO8x13mlw1gitVLxup3kSnv5puKMbxnfxeZRoSBsAd3XRlHWkO4XevHXb9rjM0fgbdxHX2NtLy2H/O1ZmmXgw8x6MAHhA7JI6nAjV/7HWd7+WCKai1ZE3yf+EY//I2qOfaiD8JuITbeDXTEW7N80VVWmlbgfmsxC3o9Y7RxOu9kaFF2nuaNhBhXYC9uplMt4WGjD5f67fhDUlhOq9b9zecXfrzuv00K6//XHYhAILAWCAQzBAKBoUAg0PldingmcB+tDHGgQCCYLBAIpMAXQMZ/JJWiL5ajiWjD1ryNm5eiqWs35FxhKAKhhnMZYZhPKWdb7Anu3Yhgb6sdRgYyjAxkBEmqsBhTgU9YGSKBGkmyAUcH7CNwXhbngw7SWWNIVp/jfFM6mv1OCcQmLafXsGwkUjmve59AX1eOSKDLnxYew+PcMmKkQkRCNSKhmgefbSbS4g1J+Vrsv66ZjPRsFx4t2sQvjX3Z6HcbgULAZ6E3MB9UjZ1LI94xJVR1GbNjxCH2j9mD5/0FBCbOwu36OywxqWaJSTWZ8m6Se8wISpqFv1UtO/MG8LjDl95pU2hXSrjbrYuHZQOW0k4a7tuj0Ohw+XkED0duZtaOdQTcXUGnqwp36wY2jLzK9IPrMBL3YCTuQcehiyCxHqNM0hCJVEgrddmf0Zd1Tnd4N3kWugIVDZWmqDUCdIUqzteEsyjgGe5Xl2AhNGCqUTZFQw5iKhQwy/Xl2yL6k2Fb6G1aTFuFMVOiXtKhUbLL8TnWeh0U9NjyXsF0Vi++xPF2c6YVjEelETLZoJ05kYmMv/k+DuYttLbpYyTswequhFmuL9GINGhEGow9WhDrqniYFMjcgBdU33DGTNyFsa6M541u3GoLpq7SjK1JcZhKu+n33jJCpW/4pnYwcrUOy60fkFNnzXdPRzPfN5HNv0zndHIUp5OjUKkFxPtfpajdkhj7EpwiKtmXE6OdPK6P4ZfI0zQ9tkUsUjJl6mPy9vgxKDKLjLgdfFkfwJNsb2bnzaTPy/lMMOhke14s2/Niec/jPl9WjkYu00UqUNClkqD26+Rhlw/6H1ZytUufHicFud32iHRVfHt8OovT53G5NYIrhYHMeLaUlV+cY6PjTTY/1Q6+AqEGgVBDVa0pahH8khJHXpYjw2+tZb5bIg+afdlb2o8vc8biZ1DDn6yf8ZeB53nd6YDEtIcnFR6cHvEbL8PPcNfvGhc972Ao6UFHqEZHqKZ4mNYzxtSgm0ijEuL9r5Ka4cbndYEcdHkIgP+zOYy/v4qmHj3mxC9lyb1FrPpuNdY6hjyYHIqjQSt90yejr6vg3hsf9lX0Z19Ff5LCzvGOewJ/qR1EzpKdTLdO4s99LvJL2RBu+tzAQL+Hc5XhzLV9xomMSCxe6qLbKaSm1gSPcUXcbdDqzyHU8IVlDtOeLMNI2oORtIdo0xLu1PhysKwvW54Mx1C3538ZP/4Zf1/8/10D0aBNV+1CO3mVAWs0Gs1lAIFAMBnYDhxDywOZ8R82qBEw3iOTCwUh7F2wk+/KRmml0l0vsrFkMt0KEY1KQwIGFdKq0meCcwYAviIDLbEo1YUCuQtCY1iZMZvvAi8yKmUpP8SdZmz+CFY4PeRUhxnZfY/heX8BYqmS611SkuP92TzxDb/dG0b8xJ/4oSkMJ0kjAMZCPW4d6ovRoBZOh+1j1LW1DOqVxY1Od8L0y/goaRIaAZjrdFCdYYvEvY3aRmOWhzzhflsAugIV6lYxNraNFDfpkyLXwmMjxHrcb7bni4DrTDBoZEzPeE6fjmXm9Af0qHUZqqckybyU00XhqCPaCdYv55ReFHub+tDpo2B3/yOES1q50O7JDynDkQS30aPS3gKaUn0So5QcrR/Ib2En0AnTcLMtmJfdbuQPOILvgRWULNrJxtowelS6PE/0o9fgN3wx8DIJMjU6Aikmwh4shAZMMc5kvFEmACt/TxsY5+tg3L+b2MMfoDDScgdee9nSWmHCrvMT+H7DXnZ5nKVYYcRfGr059rI3JeP3cKDNhl+7YlmbP40uawHheqVYeGn7uZ9dMXdOR2PcDZezY+lxhucnQlFLQGahwbCvnK8HXmR7YSwmEhkdKypZlDSf7AH7GZc/jnsdAbiYN3O99wnczy+DECUlY7Tch8XlMbhfWsqmoSfJ6XbgYXwE2au1niAOodVsOL4QjRT8zWtRawS0j+4gv8Wa7yRR+OlVsSTqMZ6SWvrrVTLg9RzSo04CsLXZlceZPnw54DI/Vo7krPs9lpon4qBjRIdKyvMOT8RGPSyzeMKPNqkc9bFk26apPJrogZeVFpAQmzWej9xvIqnTZU3/G+zK1xa7RzjnMKF/Cr0lutzqFuMvamTwhQ0UTttNgkzN50UT2JsVw5Q+aVxvDCa/yQp1oSEKzw5mnVuNa3gFZclOzBv1AEORnLXuWr6Nz6EVmGdpaPEW8Jeakey3bmPHiEMYCWT4J8xHKddhQ/hdrHTbmGzQzmy9WD6yv0nQWD1udYup/FHEBJNCZCoRhS0WuJo1kfNcCzhxL36HaN9iGmT6BJTNRqMRkN33GLP9tJ892/0lbpI6/pI/ku97X+BD5RSsbFqpLzEnI80NgVLAUMUYor1KCUqaxeeR1/n2yiQALu2xQbysmroOQywcW5Cr/8Dh7r9ZKupvjf/yFNbfG71CpJovL3ozUNpCv5QFyF+aQUg72X2PvXW2+6RwEkFm1dwu/h+I4Ok+rzDR1YoTigQqznw+EtPVZXgb15FQ405zuz4/RZzDVNiFkVBGYrcHU43yaVerkWmEyDQ6fFA0hfWudzjbEMlf7G+TpzDUXpOkhznFY2iTSyh6Y8Ov/Y/zadYEQqyrSChyZ5hPDreyA9gQeYfXnQ48Lvegn2MJj9548Kz3HmbkT2WiXRq+kioGSFVML9aibAoaLVnu/YQtF8aRt3AnlzoNtGqndxeREredeYWTyKmwRSXTZXHUUy69CaapzBSEYJMgZOrHtzm+fQQXP/6RuKeryRi4m6VvtG3LVCIGmOczyziHd4onYqfXymKrJ9QojalVmpDe4YyfQRWb0+OY4ptGUoML8f5XmV0aS7BxBUVd1hS2WnI/4ApzywZS3KolGdbmWqEyULE4+inRBoVszJpMt0yMnlROaq/TrK8Jp1slIs40mzO1UeQ3WTLAvpiKblNqtrtz8+dfiDyyjmmjnnCuMJSLkbv5vHw8AP3MCnEUN+IhqmddwTRKSq2R1IoYMiKFjCZ7Kqos+KL3Vb65PgmBCuxCawg2r2K7/Qt+avJAhYDEJu1AdtHzDj4HV3B5zk8AzMlciIV+J41dBjQ3aQvOIj0lbpaNdG5z5Ouf9/JhzmQ2et8mq9uR1BYntrqe58Py8djrtbDAPIEgsR5LK/oy3CyTCrm2P943K+WnJg+uVQcyzj6DvedG8PXME3SqJbSq9NmTG4O9aStjbF9rNbrm78Tr4QI+Db/Bi3Y3buf6UxR38O197H5hKdNitEKStw/0xXZSGUOtc+hSSTjwqi99vIuZYf2Cc/W9aFNIMRV3c9D5CYfarJltVIX/8VUcmLKLrB4HZhkVYizU4/2qSLbaJzMybxQAG5xvo0CHbJkDgw1yuN0RyOMGL2bYJZPZ5USHUky3SkxqrQNpkafw372CTXMP8sOGeUz+9g77jozk5XvbCHy0hLmBSXxhmUOWQvvszU5bhJG0B2OJjHVOdwiXtPNp9SByW2zY4X2Slfkzae7WI9ymgme3gpE2Qs+AdvxsapGrdPjU5RrHGvtS2WVKeokjdOtwe6QWSbexbBIXPe+QIFOzuXI4C+wSmOCR/vensBycNM7v/u0prIJP//uksP7hPdGL5Ua4ippYUT6S93we4B9cybzTq9nh78jmV0OIcC3nU/frLHkyH4mhHONr2kG+2tWEsxcGkL1Miw7ZNauD8x7n0BEIKDB7QW+JLlmKLi2s8Na7PBn6C9HnNhAUXsJFzzv471rBpnkHWZ82leler+gd/z4RnlrSfEq6OztGHMJU2EW7q5QQcQtjXV5jqCvjqdqDB2VeoBTy69mxaIQwaWwCV07HkLN6J/4717Nsxk127h1H7KyXLEwLYXpEMgBBxpXMNy5m+cKd5Co6yevxZGadM1tjThH5aCUXY3YyvWEJsT45HEjti06tGIuARh6EHKWXxRLq5MZ8su4Yg89+wLFJ25lSMIHmbi3CS6qrYF9+DA8tfPjE6TqREhGnOmz45MlkRoVkEF/qTWBABfp6cr6zzmBwvSvul5YSEljKh+aFbBUo2erwgPhufY66POKTumAAvgu+gM/BFTxp8OBBnRdG0h50hBr0xdpdlb5QzhxYOmYAAQAASURBVL03PtzKDsDHuYbtgSc5UN+fRpk+Dzf/xtf1kah1NfQ2LORMfn+8++rR+Ps1H2qKpr1djz7uJdz0P0+ht4KxN9bw6GwEHZ4K9gw+xPNOL4QOXYheG6BU6fDwXAS894L4eh/yyuwY6JuPWiPAb+8KBo1MY/yxDQAozFQ06RuhK1UgrJXgFFpFY6cBebmOXNiyjWmJS8kfcASfgyv4ePJ5vvDMwfvIRuaNesCBlBgC+lQyJ20wNyL2sOHNePR/T58s7nAgvd6Bl+FnKFJ2kDLUha+zRpMZfYLkHgWlrhbYSlqxEbWyZ/ou1lZHoJuvx1n7CLoVIi7138HkonG0ySWYS7opnrTnLZLuzIZNSAQanHWN2NtqR/GwA7jfWcRx14eoLFNI7XLlab073odXMGVkAr1y41BLNJjrdLElI47XHg6Ud5rR36KQjbVh5FdoiYzfKkdTf8+BmMlpKDQ67H4xkAW9nvFt+khy+x3F/fZihgTk8Kmf1uFh6NiXGAh7EL6r5RudWvkzj2XG5MUeYGrRcNwS+zE9Uivnfj18L/3vrmHzoF0sez2HOe4vuJkWxIf9bvJx2UTuB1zB7fo71Bkbkbx4C0faPPkpaTiGDj385naHucXjkKl0uelzg9DzK7CbUMaa4QsAaNuqwv32YvTzxYSMzeG9h7OA9D9m4PnHXnf/YfEPP4EY68iYlboSqUhBm1yKlUM7RmWw0rSCX4v00HVXsTxJW1T7Mvg6vxnFArDH8RmfT2zjVreYD/YsRhXRwVc1cTy6FI4qtAPdFEPUEogd8wrJGzFSgZDtYw9ytiGSSlU76sAOmlSGeFvVI0TD7UFbyVVYA6ArUDNMT8aeVhdu1wfQ36KA4wl9+XX4EcYFZJDS6MRInxccqYhDYazmVrkfJgNrGZw1jh0Ld/FbVRy7V//KpoqRSIx7WGOZAEDf+PdoDdajv1EeTiK5VllXUkuIuJZzMbtYXTADWbuEyeYvudMUhlqqQayjIuLwWoQ+7bQppTjoNmPk1cyilAVsCj3HjopBAFz3von75aWcjzpJplxJqVLGDEOIHfYLX1QP40jEQWZeWo3QrgufJ/OY5vPqrfd0gkzN+cpQ3jcr5dO8iWy4aUVrhHaCuGQYTK9BOeQd9ENvSg0dPWJSe51mcXkMH9WGUNBhTXeuKT7RZdSec2Gh07vkzvsNz8vL2evgyolHMTiE1pDQ4c03U04Q+vO7dHhp7WEFciH9InPIbrIhrHIhDmYtCI3kOI6ow1Ak56ey4XTIJQDI/bupqTLDILqVNLmMbe5naHSV0luiy/tVkQTH5ZN4IpS835nov7Y4s9r0Df67VpC9XOsS2HDbgeJ1O9nc7Ecfl1KmF8dxbNY2/EQq1tf0ZcuUg+yoGISRWRcigYr2Jn2MBLq8SPEiddIvACwuHctklzR+avIgTK8UJ71mjkc/xP3OIhztmxhpl01ZtwUfmhfSoZbx52Z7ji3YilSgJECkT3y34Vtr3h2uV9jR4kOokVY2Zln+LNa73WHa6zGMd8ogKGkQtjat9E6bQmLoORI7dPnW4yKmXj3kyq0J8KvggkUEpkIVyh4d3PXqmWPxjNNNWl3UTyO1fBt9oZyvIsYw2jydfZX9QQi3q/xQ9Gj7LsCtErFQyaM2H7aVOFBZbMXIYem0X7Bnd5wR9618cDds4L1UP74OvkpRkwUTTLXS93c7PdCoBNzrCKAnyRwjTxnhvmU4iJqZb6e97y3tW/nU5RphJ9YQ3KeIL/pcJb7ZD0OhlPQCZ9KG/0ps1gwGzXvBlae98N2l7Y/ldkk8MvOlb59C+usX4+FqyH+otfTXxj8nEOC/EMb7R4VUqMDMoAtbw3aOe1xm47H5yI20RT3XAWUkJfkyxicTL+daZhg2o1ILUamFfFkfwOWj/Vn9YiZCOYiTDElvdCDr3Z3kxhxFGdHB2hmXtJ7dS3fysNuW/dUDSD4bTNyhjUjESr7LHEFpixkHUvtyuT2EfZX92VfZnxa5FI9rywCYbpvMseIoiifuYfXN+Uw3TyLMvJIXza7ohTeh0dXQUmaCSEfFCd8TLLq9BH+jaq60hlPRZkJuv6P81tib3xp7MyP0JckNzkww6ORYYx/OdphQrzTmmcyZmS/f4aLfScTlYuL0VOhVCdAINdTmWKPj085YjyzSGx3wEvUwxjkLHR01ZXJLAkxqCDCp4VCbNasG3MXz9HLG3V1NgcKMrxv8iE1cQVKVC+dberF17CFUch2WBT7hVqUff2n0xjdhLjUqE1a6PuLXFmfauyWsXHmJ0wN3cXrgLmRtEqwl7Rz8dDOG4h5aGwzZ2uxKRoM9F/NDaOmRotJXk1dmR5unhtFDXzCzeCjTeiex3PQNP486RoRFOQF6FXz4fDKKPu0Uj9tL8bi93JnwMyHG5SiUOkQ7llF33Yn+nkUc9DyDEA0bXG4TZF7Nb5EnEImVjA9NRfDUhD+9GcfsrzawKmsWQb+s4H65F+U7vOjo1c3s0lhml8by65XReJ5ezu4FO/F8sIDNTjeJnJrB3lY7jhVHIVOJ2Oh4k+l3VtJ7x1rMdLv4+psFzLBLRnTdFCNhN9/1u0Cvp8somLKTJzIznsjMOOt+jxtfxrLcNIv3Dizle5t0RvefQOGwfUx1fMXHFvk8vBJOco+CyP1ribCoYOap97ESqnG/soQ4PZVW0NG4DkOBmJWmFbiK63EV1+Ng2MqFxghqK00x1JHxIuogz0LOY6bXxeCscZx52pveEl3+XDmazw7M4/P7U2iU6TPwzAfY27SQ2uaMl6gHd716UhqdWGRcyyLjWi7XhzHYLZ9ISR0N3Qas7PWQ5W6PQQNVMhNyq20YZJJDYo0rT4IuIjBUsLdqICmf72R3+DGyKuxYZfUIG5N2xhjU0V5qwoWWSC60RHK1PgShRMXHFvmoQjp43OKNTKXLWP0utpXGsbXZFSNxDyKBml8mHcJG2sbXDybgrt9AdOoUvut/ng1VcTgYtHK/3JsfR52guMGC4gYLPn8+kS/tbrNt22T2NsbgEb/wv3i0+u8X//A1EAs/K83Eo6N5cjMEhZEGt5AKatqM6aw0xM23Gl2hmsHWeXhKavkgYRpnY7UrzNPN0fxok0rf9MnU5Vki7BbiFFlBTasx/Z2KcdOvp6jLmpe1TvTIdVnu94RquSnfWWfgfmEpK2Pj2fEojuKJe5hZMpiTbvfxfqyFxG6LPMX3xSP5yuMKi68uZc+YfSx9No+iuIO4XVtCyZi9PJHBjurBVHSY8CToIrNLY5GpRKSnuKMRgE6XEJPgBsQ6KnpblwIQpK8dLNK7XVAhYJ1ZCX9p9OZIXhQGUjnbA07wadFEKptNsTVt44jPMUanLKOPQyl30wII9yvlE6frHGzox3b7F/9LX8ZmjedhwGUmFw3FTq+VgcZ5DNGvJvLcWlYPvc3u0yMJGFZAeZspHqYNyFQi0koceScsAZVGiI5AzccW+YzMG8UW97MATDqwgfdmXGHzpXEojVScHv0b0x8to3jYAYK2rmDq7IeY6HSz88JITCPqqW8wQleiQlOqT//YTJ6UeKCvJ6e91IR+UTkkvnFlR6/jAKw6tpRj87ey7Nv3+enjXSy+tpTg0BJcDRoJMqjgl32TeLpmM6OzZlGVZ82cgU+xE7ew0LiULo0CM6E+i8tjGGH2mqmGrRxos6FJqU1x7kgYzOXh28hXWPOs3YufbV8RmTqV5LCzb6HU/zo61DL2t/pypTqITrmEowGH2FA6GamOkuQ8N77rryXlffN6JDd67ebD8vHYSlvJbrWluMYKQbmUNWOvIRRouFkXiEyly3T7lyS0evKjwx12NkXwmWUuQ3PGaE28rr9Dyeh97Gp14FSFNp3uZNiCv2E1BzL7UhB7CPcLSymetIcOtYwBqfNpLTFlxeB7HDk4jJXvXKGg24b8Nmuuet/C98AK5A5yZoQl06aUEm5YhkqjXV+mdjhz63Ugbk51NHYasCv4GAtTFuBu2Uh1uzHGUhnDbXP42CKf4bmjqWkzRvnSFI0QspfvJGjrCjLf3/m2ttLr1TRehmspfTEZk2jrluJo2oKbYSM7HJLY0eJIdpc9j8o96WqXYG/TgqdJA0+eB3B64jYWpC5gR8gJfEQdfFg5kg12t5mctIzcfkcJT5nOJv9zAMTpqTjfqeUhO+g2EyhSYuJQ/ofUQFyW/+01kPwv/lkD+T8mdAUqxEIlrgPKOOt1gTE508mMPsH7VZHcKPBHrRQSZV6GrX4rIe7lmAq1qZXnda4sVejRz7aYc9WmaMzVOBq0Ulqt5RicKwsjwqoCP4ta1tnfYe7LRUQ7lhGaPINNw0/y5cE56AR2E7x5BQI1eEY4o+rWduealOloCg3ZqTeYqF4FxOmp8HeqJjZrPIHe5fyl0RtvaTVJmR6gEhCnM5ZFTglUKMwZOjybQyV9cDJuwUqi5VCmNjoC8J1NEg1qGe3qOj5Kn8hhnd7I00y5snATE/Z+wDHbvoSaV1JWa0FHjwRnXSM6awzp61dIT5AufUyLiBCLmZ7nT5vtI6IOrsOtn7Zuk19hQ6y31t42rdQRsbuKLzLGsrFJj5ExaWx9NIyQIUWkPfdk1KAUriaFUTxxD741c/nYIp/ZpbG46DdRqmynQy6h/XemscK3i1+zY/lk4nm+TR3JL9VDWRt1jwSZGjRwtigMdYoJYSPzsNdrIeFUFInf76KgdweWOkJ67G/zdU0c9RZGJD4I4O6cHxmWtBIAl/5vmP1iMfbTKnk3dRY6nUK+dr5MWo8Tc40aWLRuJ6PzJxFuUYF5SBc6AjU/3h9NTnQqNx5EMGpQCgl3g3ns4cmX2foo/LtQNWtTXoZFOhzo1Y9r9yOZMfQpu1odGGBXhNeJ5fSNySbhmT8Wvg3o6qhJCL7AmQ4XDu4ZScSsDBLuBPPGx4SNTjf5qGAyicN+4asarYhncvRB+qcu5mX4GdwvLuXoyF3MLX+HE9O2M/vqu7gHVFJ13wnnIWX8sm8SM+fHMyBpKSPccoj6bDk+S3LonTYFN9c6Fr7pz0DTPKY5aNNBMo2I7S8H8afeV/A5tIKYQVrjrbDHy/kq4gq7xAP57dlgZs5N4GBxH1pTrJCGNHO3Wxe9WshdtJ/RvUez8+kphh7byDdTtBI+48xTUQcI3/KMPimcxHiPTDykdYz3KGBm3kxkahE/NHky2DoPc7tOvIJr+EvpKHIVnXiP0QonJm+O4Mk3yTQ1GBHwfDYAAoEGD4tGzCVdPCjzosA6npWmFdyV1CASqOhUSehrXIiHuI4/Tb6Bs64R/la19JfC1w2RHHR+Qq8/rSdifg7fNPhits2QDX5ai4LPVh/j66wxqBJNkdmqUZsqgI//2AHo//L4h09hqRFSLzNikUMCUXvXotyjtf9NrHVBoxbgYttIQr07VUoz8uqsmZq+mKnpi3kSdJE9js8YapyJtW0rH0XeIuluAHOCX5BQ6cZM15dMsEjhRakrs5LeIbvvMR5m+PJtwCU2Fw3l5NLN9HMvwm1sMdK4eqiVsjAqgYVRCQTZVzNj9GNkKl2SClwBKG81ZbnLY7LK7BEJVGR0ObN76EHm9ktAqqvkt+JBPGv0wEjYzZnAg+xxvcIw09fcL/WmtMiG0iIbNjcFMOzFcqIldfSyL8fZtBnjyHq8RIaIo5rYbv+C2+eimR2YTFOZKcfbzTG2b0Oh0UGioyRUqp0scmL3kdRjxOARr1CqhSjVQoriDmIjaadDLcPqjgQX/UaUcl1KxuxlvU08t0dvZrfbBRJm/MRCyyc4e9cyNn8EXlb1RH+ynC6lmDD9MqZmLgIgUiIiUiJCJFKR1ec4DUoj1HVSkt84s2/vaGKkQozK1Wg04PR9MnnHfbiY1Is2FwEf1YYwLX0x0cfWMzlrHo/LPcg/70Xegp3E3l1LhEM5EQ7ltBx2YrrPK6oSHTDS62H5uFvUqQzZkh+HQqNkavEQvI3qmGnxnKoOY9JbHZE06JBc74yOaydvuszYNOMwKpkug8enoKOrpnjCHoon7KHDS8kWuxSiYnK59iaA5SaV3CnzZdmIuzwt8GD3hL30timjv00R8d06LDKuJWhGNqPMM4iIyyFOT8W+uoHYG7Txl7qBdKu0SCX/66vYHnBCa3+sr2JNznTQwIJjq8FUzkjbLLpclLy550LGup0cL+hFVp/jWIvbePTnrZiIulnveZe9Pido6tHHS1yDi7jh7R/tuvhLqnCOLqelR49SZTt3+/1KQpsXf/a6hKBHyJnX4ewIOIFheCNxTvmsTJpDe3Q37leWoH+ih7iEVVhH1PDlsVl8eWwWa1OnUd+j3ZkNds2nSyHm3KPe/HxuAtkKI8oyHHhS58HrdgesdNv5LX8gsVINVbeccdHVJbXYiR0tjkSvT6a/FMYGZpDV5zhZfY5jadTJZa/bPEn0Z0/4MR52eRGZOpUVz+fwhc0T7ud7Y6XbRqnCkuQee3yezCO50IX5ZQM4cncgfs/m0OKrobrTGE9pLWt2niT1o52kfrSTlE430qNOsnLeVQqn7ebj6Jt/3MDzTyY68N8ghRUcItKYbl5DhEU5P9u+YnZpLEKBhjizHBYY1+HzZB6no/cw6eFKNsWcZWOilpcgLpaSs0SbzipQdDDi0noc/GqR6CipbDZlvm8ip0sieBx2mMud9mzKHYabWZM2tWD3ku/SRqCu0scluJKGDkPmeyWy2lTLrtURCBmSNYH1bncYrS/jiQzqVEbsq+jPVLsUfjg/ibyFO4nJmERjsg2n5m5hzqtF9MjEqHp0WBn5kMx2BwaZ5XKovA9uRk0AHHR+gvvtxSyIeEZJlyWmoi5ul/hhYdSpNdLKsubZtJ/ol7CST0JvscC4Dvfzy7g6bgsBIn2Ot5sTIS1n/uv5JIWdo1LVTv9LWtSRTo8AA68WFnomsvv0SCJHZuGq30ibUspaq4fEXt6AjkUP1uZtdF+1YdaKO5zeMozGKCVzez/jfFEI3R0S5oS8wEbUSkaHltE9wzKR551e5HfaMMkyhY1pk/gy+Donq6PIferOo3mbGLz3AxwGltPeI6W+wYj42G18VzOcRyWe5PU/8va3Dk2eQZhNJU09WhSWnV4blV0m1HcZItJRcSngGENTF/Eq4jSgVV+1lrRz6WkkwaElbHE9T9yj9yiKO/i2H0+fiSVqzGuyG21QX7DCem4pAFVtxnzmd4MPr8zm4mQtY3+UYzYPvoyh31eJnHwZRbhPGYUXPBkyN4mLmaE42jXR0GZId4sUk9ci+s1J4d6tCN6bdJV9RVqJ8V8DTjL/2SKOxexjzuV3sfRuZKbLS5aa5hGZtJDLvfYwOfUdPMwbkat0uOp9C7+9K+hx7cHZvpEIi3JCDd6wvTCWMKtKxpqnMlpfBoD7+WVo9FSUjNrH5mY3nERNDNevYW7RBKbZJvPl9WnYBdRy3O8Iy4qmc9PnBne7tfwhj3PLsPepo7LIitl9n3F9T3/EY7TSdIqrVnjPyaNDISa73A4byzYcjFpJee1GRGAJr0qc+CrqKnONGphcNJQQkwq+sMz5n57TXa1aDbo5RkUsezMCS7HWI75Joc/zIjd29jmGl6iZrfWxbLFLIUGmZu71FWRN2saf6qJoUeizy1FrCzzg9QQeB15iaUVfAgyqSGxxJznZi8VxD9jzfCCWDi0A9LMtZqXlIybt+ABFRAfyLhFl8z/+Y1JYy/6OFNaX/0xh/R8TzSo9dHskXEwPw1rcRodCwnibNBYY1xGXPZahHrksypyPUFfN5qKhBLtUAnAx7g6XOg0Yrd/K8BvrKJ6qlQ75S6M3Iz0y+LB4MlYGHQTdWoVZqoi0T3fS771l/PDjTuY+XMKIoNco3XX40PYOtzt8CZJW8GmdVsokpdGRMIsKjtTEcEygYaXdfSIlVVySdnKxJgyloZoCRQe/+Z4gNFjK2uoYumoNMXFoxd6+jdQ2J57ne5Bk4MKmsPOsTZym/bLOTxCXixFGaJhv/RQvURuXUsJZH3KRSGkNTb66DHqxjC29znCkJoYFxvEYO7diIFAB0KA0xk1XTFLYOYKSZpEZfYKsSdsA6J28ANDyFH716eYXp1tEnVjHhWlb+K5mGF4BFTR162Ot30F6LzM2mBdxzAjcPGq4/XN/Xn+/i7CX0+lWi9m9byzpG7STc8COFUSNeU3CowDa+kpZ7f+QnG57upQiPGNKGXBiA2oTDR5Gjdyt8kVcImVY5UYmjXjG5ogzhKdMp7tHhLxbhKZTl0ctXhgYawfMNzqmKJ+aEzMljYRKN5aWTKC7R4T/szn8GnaSohZLktudUUvV5N/2YLDHGiK8y/B7NodRQZkcet6P20s24SUyJNO2m3eYy2onrQfGdxsWMPm3dj5SwbyMBfha1JPW4kjFCA3fWWeg00vNjd39YXgLLQo9ioceYGNtGFjBjzappA2RMfnJCtZPusr27Fh0dLT+KOVKC0SFevQerEtAWCmXvW4zsXAY75uVEmZXyYgzGxg0IIOsJlt6lLpMLR5CzhLtYuNNhSUVtWaYBHeTFKbN8y+v6MPq20EAuPlVMdpO64bpqV/Ph8+m8K1ZJ611hlz2us2lqEJSipz5xmw45bdd2GgaRl6bNcuyXJg9IIF6uRELBz/jz4/H8fl7F94+Y4/m+bDW7g7Pujy56n0LgB0tjmRa2LHf9SpRD9YxN66BuOyxjLTNZndGf76IzcH94lKKJ+7B/e4iBvoUUNRmQX+fAhz0WkmsdwGgKtOWk5N+JUXmyqHafvgZ1uBxbyHXB25nbdxN8hQaPrR6jplQu2g41WFGVaYtvkkrsHmp4t6QIKzcG+kTnUsv/WJyg2z52F670xj1cDVbhqbwePXP7GoO5XDuH+S6rQHBP/a6+w+Lf/gUlg4aJjhn0MeniHu1vpS3mRIiLadv+mQWOD3nRlYg892TQAAJwRd4XWnH60o7PO8vYMP1OSwtH8SfBl9gaUVfvI+s4EBmXzrVYqz1OuhvWcSk8Ff0XvBKKwT3VTxXW8O4O2Qrdwt9aewxYNIvH7Dp6UjqVEb8aJPKjzapTLZP5VJWCOGmZbQpJPSXghoYbZHBpy7XmD7wOaVKU1rUeqytjmCLXQoWzs34W9Zy3fsmadUOaJQCcmOOsubGXExNuzA17aJO1YFTTDmfWeay4Yfl/NYYQ8mYvVQpzNhYPpbJp9eS1ec4x2r7UtFhgtdxrWrtpxVjARhimM0bZQ/ra8LfStT733gX/xvvMtU9la5uMW7X30GjFiBCiNijnSCxHsYiGbd9r/OVz1UGW+YiqhLzSV0w5qMrEeuoSPx+F96P5+Fp3siPNqn0mEKNqoMaVQdyUw3fONwAjYDzHnfZcXQsl0qC2e91krwUF2IHZSB26SDxeCjmj6QYlWqwDK3DWdLImuTpfOxzC3mVAUVxBzEo0eXPvS8h0lUh0lVhoifDeHAtL/eGoi+W86bNlLEeWUjECsoVFlSXmxPrWohArCLr3Z0Uj9hPSoY7D6J3Udllyt4hB5ia9g6+CXP5pmIM8ltWfJk7ji9zx9H9TjPej+chaRLQ1qpPU48exmIZMSH5eB9ZQZdazOfrjmB8xIj9TgmE/LSCgnYr4nf3ZnpxHOsKpmFr1crWS2NZ5PsctVqAWi3AVKcTaYP23s2r08K+59slEJs1npRKJ94bdYNnFa5MdkpFpRYg1VHgfWQFUVZlCNq1670rv8XSP3Mim5vdCDV6Q96EHeRN2EFduxHPmz3ob1KAm6QeHbGKtMhTfNn/Cm3qbjY5XyTItRJzUScGNRpsxS2UXnKneMIe7n8fg6moiy37J6Gjr+Cn45P4MXMYP2YOQ09HwaT77xLf6IfPk3l43l/Apmcj+CX8NMk9htj21vrfyFW6tKukTPV/BYCzdy01qg4SB29DIlQyyymZz8omkFjvgpNhC06GLUwZ/Jx1+dMIlZax2/kWZ4vDKBpykIWfrqdZacCuukH0PrweAN+ncwmSVIIQRo9OonKqnKDgUiJt3rDJ8TpSgZLsJhtGP17F6MercLZv5FSHGdPyprE/oy9D3PL+uIHnnyks4L9BCssvWKLJuqNdzXSoZQTfW4mtTSvPQs6/RX3MLBmMi34jC8yfYa+jnTONhXqEJs8gqddRopLncS5sL8NvrWVsRBovG5w46X+Yi+1B9DPIZ1v1EA67PMZv7wq2zNnPysdzyRq2g32tXnSpxdyv88HFsJmnv/uB/DnkMmqNkC8yxmJn0sYXHld53umFSKDiUYMXjd0G/Op3ktnJi1EpdAh1riC9wp78AUfY22rH98kj0M+SsmPZTmQaXWQabUH667zRKFVCPM0bSSlyRrdGzOBB6ViJ27lT6cu+gKNsKJ7CTd+rLH4z8K2P+w9NnkwySsNLZEiRsoNr7YFsuzec38YcZM2r6QAcj9zPtMurGdongztJwdh51aP/nTGNH3Qje2mOtFcTVgYdbPY4y/Hm3liK2tl9eQRfTD7NloIh6IkUOBq2klLuyCeht3AQadNur7pdOZIXzSCXAvR1FNyv9EKiq0SioyTIrJq7l3uhMNFgngn1sQrEBnJm+b7kypsgHoYeIejWKqZGpNAo1yfUqBwr3XZcRdrUytnmKLz0atl8aRyLx96lRy3iVqU/8cEnGJMzBV2hmqpWExQKHdysGil64cyckY/oUEn50SaVjbVh/Nn6BcOzp3DK9zgfV45822ce9xaSG7eXoISFpMbsI+DKarYOPcb3hSMYaFuIt7SGoxXRfOV+lXd3rOCDJWf5OmUMhs/1uL1xE73j32NuWBIPar0wEvfgoK+V+k86EcLptVq2e4rMib9kjeB0xD7ud/pyrCSKxhZDRBIlPTX6ePhVYS7pxtuwlpPx/dg+4QDFPdasNK2gVNnO7Oz5nPQ/zP0urb/4AuM6ejQKer2YT2b0CQITZ5EcfZA/10fytM6duiQ77J8qiN2UwMHEfowLT+NZrSvOxi1kVNhjbdZOt0LEWu94vro1maLfd+WeDxbwl8iL/FYWy8OAy/zQ5Em5zJz7lyO4umQTG8smItVRcNz1If0zJ7LU9Qk53fbU9hgRYFhFfqctbvr17H46iCnRL0lvtmeh4zMA2lVSnrZ48YPjDXY2RZPfYUNilgefD7hCeoczHSoxjx8FEdUvl68crjEzcxHdPSJ6ukVI9eV0lxsxvG8amU32jLLPwltazbXGUABquo3ILbRHR09JzqB99PnTalJ3//3pI6m9k8Z1yd+ewsr7+p8prH/GP+Of8c/4vzIE/DOF9S/xD5/CUmp02NHiyKkOM4LvvYtGIeR60FHcby2mRmaM16P5NMj0uVQYTItawsaqwWysGswTmVZ8rkQpp71VD32hBoNCXd50mRFmWcGgR++x7d5w3s2exTs2j+nRKLDrW8mPxSMoHr6faQXjWW36how2RwqyHRhlls6NqJ3ciNrJhofT+SRlAvamrUxxeEWMREFGmyOWuu209Oix3vMO6wumopTr8GLADmq7DLExa8fzwQLa1VIWhj5HbgLz7yzhYlMEUoEcqUBrVdrerkfBWS/0DHvIn7uLNTb3cJY0khR2jiy5Pbd9r/NeVW8OOj/hy/oAllf0wV9ahZfIkMXlMdzu8GWM0Wsc/Gq1PtQxR8mNOcrUW+9i6dmIqagLjUTNNt9TVL2v4NeAk8jN1Mx3T2Kp02OSu135zjqDdWYlWIbX8sXtqVpIqnEjL4pcuNl3Bz++HoaPqBkfUTO7Xwzkl9DTPCr3JLHehcYaYz7yvEWMVTFXXwfx8ZyzoIZVn5xjUUQCqjcG3Kvxwc+ilpDz7+PtXk2HUoypqJvHTd7I1CJ6S3TpLdFFJFAx1CCP5eNu8bDeGzPdTtZ73uFypy1v6iyIMC+nu8wI3VRD6jsNiR2Uwamzsfxok8rXDX6ssnhMhaqHN8XWJMjsaJAZEJk6lcjUqejlSnmjkvGO/zMudNhh69pIQrsXAeY1xFd6c7fJnyXOT5l3/x00Atj861Rm+L/k3oc/Ebf9A5ZEPOVcYSgioYrr3jepmO9AxXwHdr//K/NfzydXbs0vhXHc6LWba+3B5HTaoSdWMNY3E3mlAQN75VDTZsxIy0xOPI5hwdCHHK7pR4XcnMDtK5j21Qd0K0RMzVzI/rIY9pfFsLnZjXklIwi1rcT/2RzsTNoIfrSM76wz0GgEXJr3E9N+uYlKI8TFrY74C71QqYWEmFTgat3IbOcXmEq7sdVtYeqARMbmj2Bs/gjMTDt50OrLIZ9jTC4ayp0aPwINKtEJb+W76uGkJ3tw3PUhcdlj+d7rPGmdzjiKm3hU6MWVqmCSD4Qy3ySNGb2TSKx3wd+khsOVfThc2YclJtVMs3rBsuLJ9Kh1SXniw7XhW9nz7US22icTalTOrOFPOO76kOHX1/Ey/AwSsZLCwYcwvGiMg18tFqJO+tsUYagj44PH01llG88q23i6tjjg5NKAWqmDSKBLU4Tyv3q4+m8X//ApLNdAQ43X9iUUVlozPSiFTqUEhUbIaLN0fi4ZRoxVMScyIvko8hZLTKrxfzYHgNO99iLT6OIpUvBbUzhXywNxNG6lSymi7IELaGDutHii9ItY8nAhhSP34H/gXS7N/YnPy8cTbVrCEMMsTjT3ob7HEIlQSW6rNqc92SGVwi4bppknMffBUmZEvOA9i2ecbgskXK+UzRXDiLXI52RZL2wM2hlsmcfpNxEcDTjMkeZoTuVG4G1Tx16Pc9jqGDI6fyQA37teoFRpgb+4jukZi+hR6Grz6gbdmEu7uOB1DR2BECFCPM8sw8KrEUNJD3KVLt6mdex3SuD9qkiupoeQOOwXrHUM8XywAIDCQYfwfjyPHyPO88Of5pLw4w76frQSq0Wl1HUa8o3vJZY9no/YQE5uv6PMLBmMk34zLxucuO1/gVMdtnydMoZVIQ85VxHGvcDfiWKps3EybmGZw0PeO7MYja4GSbOAaTMe4i2t4beSWGKsiznzLJqx0ak8PN6L9A928lFtCPVyQx4VejHWN5MtdilML45jh+sVZBptQXrMDxuxn1JKdqEDeqYytoadYtntRVi7NtEhE2OiL6Mt3gZpbANTXFK5UhFMba4VQttu3KwbMRTJ6VCIKa23QFmrR2z0a/Y7aeUzEnuUWOnISOuxY7JBO+Ep07kUso/RKctQZJrQY6vk5NCdZPdooavf5o8iMfQcH9WGYKjTw7kDgwiYlkPhHl8ks2qoa9ES2kQvDdH0bqWr0ojiybvp1vQQcG8F/b0LMRV186TanYH2hVy7H4llOtRHQOH0XcwvG8AmxxuUq8RYCHtw1TWiWd3F/pYgNpgX/U/PxPF2cz6P16INB0Vk8SDbF5t4EU1ju4hzz+N2rj+Gr6To12mIWPuKGy9DGNUrnfJOM7KT3Ng86Qh/2jSflWu1hfSdmyahM1mbNqytMkUgFzIiMp1bmYFkDPuNMpWaAJE+f2n0xlK3nTnGpfy5PpJg/XK8xLW8mz2Lm8FHiDqxjpRZWzjc5kNelxZu/28JrVubXQF41eZMQYsVz0LOE7tsCX/eupeV6bOwNW6jJM2RyN75lLSaYySRUZLpwIfDr/D93XHoO7XT0aAtuM+JTCTGKJ9fy+OYZZfEqeoobgz89e9OH+nZO2lcF//tKazcb/6Zwvo/JqpbzfARaAh3K6dbJeLWnV7oeLdzKyWY8ZGvOH+hPwunPGB/SQy71UI2BN4F4OuKsZx1v0f/zGk8CbqIpagdV3E9Ko2Qb/uMpqbOhP3pfTmRGQe+cjxvLiV6UB4TkpYz1TsVFQIqlaZcudqbHjsFLlcEvJmiRTsVmtlwJTWE+OJeDJuYxqlnvVkz9hmWum1k9TiQXuTEFJuX7A84wth771HabM5o1yyKFaYcf9APgY2M3BeuyNw1eB9dTtLszQD0eb6MF3328KzHnIH2haQ1ORDvfxWvR/NJGHiB0B9X4zc1j4HmeSwZEo9UoGS68WtGpi7mA9s7hLx4h452KWHeZbSqwVoHLM209p9zywYCMMGgk5wP7yNESF2sgkNu57nWHoyXqJni4fvfwjEtJB2EG5RyMTeY6FezEQo0qJUCDhVFE2pdhUSg9Z43lPQgFqpYET8fgbWCsSHpXHkVir5QzjcHZnBxxSaGx7/P5dFbmfZyCTpSuNuty+1yX9oLzbDwaeBmkT8brB9Sus+Lgi8lrP/4XQC2fLeLDdlTKRm1T8t36PSmeMKet8CEmSWD2fv+CTZWD+RD80JOFEai0lejqdPj9oDruN9dxKa+Z/nq1hx2LNvDuyeWsn50NwA3rkRj0KuRVZ4P+ajWHQv9TmJvrCPI7w0ZtgZE+Rfzc+UI6rsN8DetIcCiGoDvbdI51GbN0w1beL8yDtuFJQgFGhpea03BuhzUaKoMsfVsYH7ZAB5n+iCt1uWJ0htruxZeRZxGjZqBE3K52C+CBJeH7G11IOGZPzH2bohy9DHtU0dtgzEGaVKcxpaiL9QKNS43fcPM4qEMNM9DI1ZTMmofPgdXULxwJysDo4kzzWZTwXB29T3KgMHdLCgdTrNcnx1DD7PyxkIiwooQe7SzLnkq3jNLedGmrem5LizgrPs9ABL9lPSW6PJlfQDPhm5FjQ4Tny/nVb89VPaY8rLFhU3pQxGLlTw1dGegdSEN+Rb0BKlxCKvmQocLL1tdOeyiNbkqUHRQozLkneR5fBN2ma0v4rCza2a1+wO+cChnfc0AaubJeNThi/CRCXc3nsAnaQUn3e4zaNE73D2wj3hXHVrU+uh0CnE0bcHeXst3OpnViw8GJrPugSut0zMZaFnAjT9i0PknCutt/MPvQGwDzDWSdR9xZshOIiXaQevXFmf66+dTrzIkU+ZEcbcVj85E8PL9bQzK0FqMPAs5T5+Ny3n+4y7cby8meeg2os+tQ1onxKRIjXRJFaXVlgQ6V5GV6sqUgYncLtfKwbfUGOPpUc2nbteRaUT8uWAM33tfoL9Ue009GgW/NPthpdvOkxZvDjo/YW11BC0KfUaZZ7ClaAgr3B8xXL8Uax1DbnWLaVQaUqs0YWf6QL6PPM+p2mhGW2YQIKkkX65VRVUjZNumqby74Tz7Pp9I3GdPufomkEku6Yw0zmBN3nQ2e5952w8AG2vD6FKJiDYqZq5RA0FJsxDpqrAzauO6903G5o8A4LjnRUKvvceU6Jfc39mbd9ZeoVRmyc0yfzYHnWFbxRCMxTKSy535LeIEjzt8uVQSTHuTPlnDd/BzYwinjw7CfUwxw62y2HJjDAD9+mXxKNcLB7tmLPU6GWqZzU9PRnJ7xBa8RFpy2uj8kRQ9cUVupsIkX4c+c19xKzGUjIlbeSAz515LAPbSZvrqF/JGYc4vhVpWd7ClFv3TIDNEKNBQ1W5MY4shevpyut4YEdcnk/hcH76OvswUw1qGvJ5GlFUZLQo9HuT6IBBqkOrLWeiTiESo4FpNEFPstAiiH26Oxy2kgqIcewon7UKIEO/H88gfcATvIyvIn7cTj3PLKJqym4AdKxBGtGJl2MEXHld55/l8ot1KeZbtiVCs4v9h7y/D67iXNW/4t1BLzMzMbMuyZJBtmZmZ2TEkjuMwo504jmPHzMzMMoMssCywmMFi5iVpwfth5fjdz1wz58ycnWdmcp5d17U+qLvVavXqrvpX1X3fVRB9CP/4WQBEO+TgJKtnR9pAEvrvYndjEGbiVhqUunxoko/r/YWo28UgUbMu/B6XKgL51vUKLSoZ+ysGcMntLt57V5K1bBfON5dQNGr/26AOEK5dwJcl48muskSYpcvECc+Jq3XCUEtOvVyH5lvWtLop6R1YwMskNwRmXagapUyLjOdSbiBO5vX0NytgkF4mkTJNhTv45XQ60k1ADdZhFZz2OkHkxfcZ0CeTaOMMnre4s9M2npCk6XzrfYU1MfOwc63hid9lLrfr8sXueZiPfENRuTl21g20dMroTDcGYPyoOK5fDkc/rJbvvC4T3+7GZ2bZvFcZipOsnnXGxfza6IynViWuknqmbd/A0Fnx3C3xwsG4EdBwdtZ4PGJz2jBW+j7lQnkQAIMs8+hUSUlttMHHsIpbBT7kTf3in89ArO3Vzov+8xlI1g//ykD+r7EmuTabIu+yLnsGsYEXcD+5gqDwfH6/PgqVdRcOJ0WUDRWj3bcZ75gVFA47AIDHk3nM2/iIj6oDWdrrKUq1GrFtB3OjX3C6MJTKN+a42tfwOs0J/+Bi7r7xQn3fhM6IdvTyxewecZrRcSu50GcPNY36pMgduNykkUG5ke+Lv00lyQluSFoEPJ/3mOs5/oilCj6xvkVVjSFzA+uYXzIKXXEXXSoxj1/4MaJfMsoWCRU9xqTEuXFu1j08ny7mw8A7AMTU+9JvZQLfJoxmyw/H+S5nNK1Zxjze0pfPTmZTmWHJR6JJtHdrYarTTl68I2YBtfzqdYa5L5YQ75FJj0KEvFPKp143cbm7mM/CNYN7gi6vQ9Ii4tzLUGS2sMKwnNfa+SwwiUWuFpGW40DRmH38auBMq0rGsbgIrBwaUOYZsconmsHGWUTPSKCPfiFfn5rBp9M12k8LDGpos4uhQdXDghxNpmJg1cqZ5l48rHHH1aAeC1kbziOTeHI6lGYvJV9Z3Wfn5Hjeq4xkkekzrqUFUDjiAP3WLmf1D2fpuau5z3EDpNwP28OmGk321KGQsNrtEd+njeTs+O28kzmLOYEJ/FE4iKF+R9D7WBudg91kz3ch5u7vTP3pA2I+2UGFQsgfNYP5weUS35RoIM/CHpCKlPQOKuB+p5Sh2grszRpxuboUDJW87u5EVqNxsN/PP0qW3JabFb7cbg5gcUCsRhdKrsvXzldwubOcwuGa525qYTQx58MYMjGFH2sjSW20oalTGzfjOkoNklkW/BRDUSeR2vmkdNnzyPcKG6uDuXY1HJvINwRuXklXcBd+cbMwSpEw13cgte86ALD73E4G31yPkW0LQ12zcfGrZUfiYOgSEuhdwlnv40S8WUfisN950GFDW6CUGx63+KQmgMdVbkzzfMXTWleulfmh7yRn/hXN4sI1sIw7CzTkzLG5I7AS6SEw7eKQw1N2NtmhJdT0FkbbZzBaR448+hSTdTUyPBuuzcVzbDFTrZK4r+tNpFE+PycOwydSM/L4cYUrphFV1MZbcdQkkqoOfXrpFpLZbEVdtx4bu43pUEoYpZfOe4VT8Z+Uxa1LfUhYvpWQY++RO38XzjeWcN/MG0GmHuv6/f8zsh+fjKFw7D5ckkP4ZfB5nla6/nWO5++97v7L7G+fgei4W6utv1uNUKhmqe9z9mVEMsMrifP5QczxSOTg6wie999B+N13ifbP5APLuwAszZ2NpXYbLwsdNLjz0v48zvKAThGFE/ayvUnzUv6WNATRGxkI1dyb+TOTXy8iwrKYaKMMvsgcS4B5Ja+q7Fjo8YL1xpqXwv3xfEa5Z+Kn+4ZRerkMjV+JGjDW7aSpXRuJWElfm+K3zFqf2DnI27SQlEsRuLcRbFtOfLorC/o+w1rSxC9pQwE402cvU8+9i0qqxsarhqf+lyhWtGImlDC7YDxX3O9wrNUML2kli1I0UM7FZZEcsH/OuTZDKnqM2R4zHJW2CieXavZ4nGT4w3UAWFk24WlcwyGHp8wtGUhDlw5eBtVcftqb94feYGtKNFqybnwtqiloMmW561POVoQSbZnNsdwwOmp0OTN8JzOurUalo3z7/RwfvJcVqXN43eckvV5NY5P3BVwlTRxtCqO+W+8tzDrhpTsCpQBTzzoirIqI3d6bPV/9RpBUxuKySL7/UxNrpfkj3smdCcATv8u43F5M4rDfGfjHBj5ccI5dX03G/p18khLcSZz2KyG31zI9NJGGHl322sXS69U0Gur0mR0UT3GnKWbSNtKbrHnH4SEfn5zHxPGaHsiZx32RtArZMuMQRsIOVm1/h21rdhMlU/NUDv1l0OvLlXguzCK5wg57k0YMpF2cc7nHxupgzqeEINbuwdK4laf+l6hXaZjX0Zs20GduCjFxARRM2UNGTwfflI1lk8Nl2tUixl9Yz/XJWxh3cgOB/fN4leTKVyMucLIijL6mRdhJGwiRlTDp/mrs7OtobNfBWFcznKmlU8Yf/idZePYdFEYKxI1iEKoRyQUo3DtRtEkoGrOPY61mHC7rS0WTIUqFEJVCiIVpKz3nLei3KoF2pRb6YjmXn2qIsYfH7uG13I6TX4ymZ2E9dgbNlDQbs8rtMReqQhCi5prHbWYXR/GudQwukm5WFY/D36Ccx7VuGGnJSS62o7dzKeXtBtQ06/Ou3wMA0ttt+cHqMfFd+rhImlicM5sI8yKunYhk2cIb7D08mt+W76W3VhsGQm1czy/HJ6AEb8NqYso8GGyXx5XHYSRO/ZWwJ6sIcyrGRUdDtPnWIp0B7yzD+v0Czrjc50aHjHGur/+aDGThP5GB/PhfJwP52weQXoEydd2Gr5gbFM/p7FBUpToE9c3nnMs9+iRrGokj7LI4mtAXUYsYM2/Nw/Vv/3Z88HkCE2aSGnaK4dmjcdZr4O5rX8YGphJzpRe/LjjAB2lTcDJuIDPVkX5hWcQWO9PPuZAIw3ySWp1w1qklQiefVXtWAtDm3oPzWTX6n76hbpcTDV5ClNpqXs7eyoNOM9Y/mEXh2H1EZYxni/s5pl5bQ9/QHN61jmFazCoEWkqEDVI+G3mRXQUD8DDRNDCLW0zwN6ngVa09IqGKBY4v6K1dxKQ7azgzbCcfFUxCrRYw0TaFrQ9GkDbhd7J6RNQo9SnstkClFrLOuJik7m5CpRpuyaYGN0AjHtnaIcNItxOJSMlT/0v4x89ijnsCu19EIdJREOhQTkGDKZ963+KTlxPZGHyHLa+j+SroOjP0NOWEifnDSC+35nbkHwA87nBFqRZiJOrgw9jJeDtVMsEyheQ2B2LyvFnkH8vB9L4Mdcvme+uHLCkaT369GXPdEpCrJEiECuYYJrO5ejDXM/1IGLyD/nEaqfwvAm4Q3+rCVuskRueORE/cTW+jYv6IG8TmAef49OIsLs3cwsRT73No2h9s+HwVL37ejfe+leydu4uPPlnO4I+eM0A/m9vNAfTWK2J3yQAAuhVinA3rEQtUHHF8gsvtxVjbNFKZb0ZwYBFbHC8yK2MBSpWA+ODzuD+ej1olYJrvK36wSKNR1cH1dgeUaiGPmzxp6tYG4EfHS5xvDuVAQj9CPEvIinFDoQ3fTD5NlHYZZ1r8+O35UMaFpHAj25f8wYdxvr6UOWEvOJXei/zBh+n11UoufraZSd9tpMMSAkdoCHKvHnnSY9sNKvgi4honysOou2LPrve2My9+EVt6nae8x5i0NjvuvAjCyaeCIJNybtzsQ/aiXW9Vcp1vLMHYqpXmJk0z2ti4nV4WZey2e8HMosH46ldwNDOMKJd8PHSq2Z3an/xBh3E/voLkWb8RcGkdocEFZFRZIdPqoaVFG1WPEGmpFmoRCJSgr2lTMO/9GxR2mlPXrceLeC+2jTmCTNDD1cYQBhhmM1m3lcVlkaTtDeD9D0/zrMWdlzUOHPA9yoN2Lx7UebHV6QJOYn3mlwzga9sbDL6qIR6uHhTDEsNMej1bjqJRxroBd1nvE/OXBBCXBf/5AJL503+dAPK3L2EB9HYtoUslxse6ikWhz5CrJPROnso7ro/5JmYix6r6ItbrQSmElhfmAHgPy2eq5Uv8t67kh+VH6JM8BSu9Vu6k+XJo8AGWvJiPyrWbXW8GvSVlqSVq5lk8p0MpZYP1HfQFSkbp5SITCEnpMuD1Oo18x4V2fT5snU2++x12fmHHKqM3uJ1dTkTCYjqatRkVmsrY3BGMs0njcbsnS6Mesi+pH/FxazAoE5D6wT4m5g+jQyWlLt+UlcM1Dcef7k9m56JLeNwPIXfeLjJ6OliTOwOdEjG9tSSo1QLcDOvI77DEyLGZx3IjjldHIFeKmW/9nA1X52I59gw36gOw127kB4s0OpQa9dn33e/xe8Fg9LXkVLUY8E2dNyKhij0Ph1A0eQ++L2bjpFuPSi3g2z2zMBpcx7ajE1CYq/kpdgaXpuQSYlRCVrUlp/vuY/n8tQCUrVDQ3SrFxakaoUTFN05XmH55DV+OvMCDwhBOvRpCr4k5vG6w4ZCOL0KBmm6FiJ3xgzCxbOFp8DF8r77PzVFb6fEWUqEQosjTIJpmRDTSoXpDp7oLA0kXY8xS+PzFRLRLJfySNxQEan6tGorCQImpqJPQ915xotWEEWMS2JA1BfGCWk7E9yXX15KWHi0upQVrJAMAYYuYtaMeoFQLmF8ygJzhe7jRYciEgHb2NVvjJNann1Uhmy2T8Ymdg0ohRFooI9HKAZfUXozwyWCh2TMcxV18f20SlvGaFcvTb92o79FlQnAyCbWOfD3nJPsWT2TG/Ea2N/mwzriY0l5JXIrrReGEvYzNHcH+IQeRCpTEHu6DS/MyRi1LQiSAtug2VAV67HTUlCFDrVzQKpGi1QDfMBaxTg+Ll8Ww4YN3yP19D9GzF+G2KYsetZCXk7aS0yNlT/Uguq17uNEho7lFh8DNKxEEdaNUCtHR05SC3I3ruJvsh0t8AMsH3WdfTDRTol5w9nkfpo5MINBB02zvFZmLnlDG2L6v0BV3kS81xdGwkaxUE9RCmDA2lku5gViZNPNoyRUAhmSOZYXDE9yl1QRNe8zs4ihOOD2iQ51BptwGlzszGdQ7g2Nf/IKNSMiLFjfG26cx49USpru+IjXTkZ36A2hTSBlnlkxKlxUWLhoS646Xg9ivG8k3Ideo7jHERavmr3M6f+91919mf3seSL1KjAoBT6rcqG7X50WbG91qEYf9jlDUZQ56CiR63airtPk44gYbZ19g4+wLZN11Y3vhIKbPfUgfrRqs9FopaTKmaNR+Vh5bgZlxGzoGndjqNNGo6mCd90MejNnCEG0lScmujH20msEXPuB8iz/RrxaR2WXLJzUBfFITQFanLSrDHtweLGDr9TG43FqCtmMr6eEn+Tj8JrZaTbzvcIf9WZEsMczkQMxgCocdRGDdifGoCoZkjiWtxJbf0gYzoX/i24FBXRYKJhcMBbVGOM9cqPF2q+dexSVmERe8T3Mv04thRq8R3DBhtI6cUWZpVLfrM0G3nWlDYpmh14hKLaCvXj69k6fSTy+Hfno5pHXYU1luzBK7Z6z0fMIXZlmY6HQQO2EL4SlTWOgZx+WMQIyknWgPrqUh34ShUxLQc20iZeMuzrjcZ7heOqkRBwmVSvnu4F6+O7gX7Re6nBqym26lGAuTVqZfWotaCL/nD2L4iJd0hnYQn+xGt0KEo7SO5GI7vgy4gbdrOW2dWnSoFSBVkdJlx91cbz4qnoTCuhuFdTcD0idwv8Eb/3Nric924WptMHSKUPm3sdL1CX0GZHHA/jlG9s14SXQpaTNhtn4DpR0m7PE9TmW1ERljdnDG5T56km7cHarY2Pc2G/veZlhkCjP0GtlTMoAjjk8I+2kN3+WMxj9+FkVd5rjcWoKVtAnXc8vR15aDGrrMldjpNlM49CBP37iyaNdaqpUijk3ZQeucFlrntJAnt6Ki04hJxkns9jqBRKBg1r6b1Cjb+D11EPc7RcwyiePcqB2MzxtOVbs+n+dOQEfYTckCJYUT93L3fgiGAgnCDD2kzRB6bzWh91Yj1u1G7dOG/cQibG0byB1wlKIOczb8eJwB6RPYf2Qbd1L8sJM1MSd/MrVKA6KNM4j0yaNBqYeyR0jqxl042NYx2SWFwfZ5DLbPw16nkY8HXOfmuF951eTIL2OO4aFdxYNxWxiqrcBHv5Kncjjl/IBSRSvJDbaYSVpZ5/GQ5u/s6TZV0mOs5GxyL0yu6tB6wQaXu4txubuYLW7n6K9dzvxt7zE8ezRWshbiuhRsLhiOvlBO4aS9rLeKYUrSUuYWTECJgJH6abzuc5KHNe6Y2jdhKmnle+uHfPB8KhN027HUbcVSt5XCoQfZF3IUe3E9e86OZJh281/jdP4ZGZP/YoHnb5+BNCu0Scpxetvf6EZIhcKA7G5LVprEs3BIHM87Hfm8cwI/PhiLk0cVAP3GptLfMJfdRQP4xCwTb4MqQo1L2VgdjNy2B60eMet97rO3sD+X9J2xkjTjJNasfJ29KzDSkmPp08I642Ii/PMo6LHARapZ4UTIGjjYPpD9UQdZGj+P/k5FaIkUxHSKqVPoI1dJWJ8xjZ5iPQwitBkflYDb2eWkTNkGwMScKXzf5zIz9BrxfTEbX1+NAKRenpjg8DJStVzBoIdNtQPoUor55fZYCqfvxm/7+3w87zIbUyczc9VDoucu4t6xg+w4Y85Y7RGUXHPmbHAICwLiUKoFfOV5DX2hRpjQTtrAuKBUTlb1YZ1dDLOLo3jge5Uva/sQF3SeR3IBn/Zuo6TLjDcyQ34du4tXcieulIXip5xFqPUbStqMsdRuQypSUPqTJwAqd/i6eBw2ui0cdr6JdqAWA9In8IfHKX6rjkZZr8XAXlmMN33F5vwRqLrEbMoeRmeaCSsn3sJUqIu3azn5ckuMDDvoa1JEe4+m/PbI9wrvVYbiGVRK3WFHvHpVkdLggaBGj6+bxnF8yF62NbrwKvQMA9In8KbQnNV6YSSnOhPkKkMoVjEodTa2+s3UyzWObXMfDT9hWtBLfGLnkBlxHNf7Cyn4eBf+8bP4wf8yZd0mFI7cT49awfqpRTjfWML5oTtZsmUdz9p8mRkpIciqnOeOepxv7kVcvROq50YAnK8PxcK6iXUnV2I86Q33fa5xuEWXHtSsDnhMh1qL41UReOlVEmT0huLGAIz0W9mYPxmVUsjOJjskbq18WRPBezMuM1w3l5+qowHoVEp5mu9Kw25HqiLAr30WXV0SGu11eOJ3mR/rQykasw+3hwsY6/WavW8GUPDQmXOLtjD24Wo2RVygRdVJzVMbbvcVU1Oved439bnAhsfTyRz5B0kJ7pyZcZ/TbVImpizhVOBBHLTq2VExhPn5ThQOO0Bjuw5nS0LpVooQrWshxv8QRxv78LjGDetVraTXWOGkp4GPb68ewgH751iMKeMXl/O0qLQI1xJT/coKT7dK3B/P54fQy8hLDOg2biKx2oGbcWsJDSqkJNWWwLACXjU58k2XIYO8NaW8uk7NsK9/y2Ym5g9DFNSM95V3gA/+X/BC/9+1v30G4iJtxcSyBSFqbrb5sSh9Hidr+9Ks1OHn2gFca/Nl8+7pjPDNwMGjmsGWuQy2zGWvXSxfPpvA84CLuN9bzN03XtzaPJDLOf6IWsUo4oyJa3FFoRLir/WGzzPGsbPJjqmF0Xzlco25VrEMM0rH7eECShUmeEkrudUUwK2mADrUSnRsW0ntdERfT06IQSnVnfoESpv42DSXTpWUy4H7CQnXyL8vMn2GjU81ekIZfeIXM9E6he/3zWDZmwgA8uWW5MstUcrg6I1B6BcLGOadxZ1iL3Z7naBveBY+sXPoCuiguscQeYeUz8yy6f6wgSGZYwlclUaDXAdRF/zS5xx+2mUcqujH/ooBb1ndV6oC2WaTyDq7GKJkavoba67NWauWUkUr3xaOQUfYzbNaF/qbF3C31Z81RqXsG3kAeZEBX9veoKTEnJmWcTzPcuPxrr083rWXztAObnhep7ZTl5AXi3G9t5Cpdq9QIuDxCz8k5nJyGi1Y//xPFJ1zJWq1APd+RbxscWRVeR8OuJ7jXZMUQizecKE4kEe+V3jke4XbnVKmm8TTx6SYJR9e4VhKHxaMu8+aqdfwcK1k0al3WGdcjMfRlZz3Po6nZzk7bBKIDNU4GjuLRgxlnay3vcMC+xd8s+EQhcMPUDj8AMmNdmRGHMfz6TyEIjWBCTNpr9LjbG1vhAI1eT1t+Dxeohkf0CFiY/5kQuakcXra7ww2ySKt2obCiXsRCVT4GFbhNyEHvwk5bOh7m6Z2bQLnpdPQocP4vOFcqw1k1JaNlHcb894VzVTLK2WBuMmqGef0mvoOXTwNa9DW60Im7GGKWwpdKjGPGj0Z//NGbLSasdFqJrXWBq1sbaI/fobApIv08JOIRCqmWSbgcncxSrWQ0bkjkWgpeFnnQEGdGZnLd+Er0WFucDz1Sj0MhNrMnxbDCNtMMgbtI2PQPiJllRhZtFKt7MY58A1eB1byXfpIHocc5p28GSw1rKS42ZjCYQcYnTuSiyF7aYk3Z6BNPsY/6TI05l2OJvZlheMT0i97IrlnSHG2NcXZ1lR0GDK/ZADvO93lSkswtuJ2utQ9KGy6SO50QixRUq/UI7BXAesc7jHENpf8Sbs553KP9SOvM9Y8lY/tbjDc6DVpdTY8kguoadSnplGflm7ZW6Ls7V57GN8n6S/zOwL1f/7zX8n+9gGkrEeHlyFnmWv2HE9ZBfVNejx/5Mf3dydgq9VITocVfWemMMwonS3u5/jMLJvPzLIJSpyBu3MlnodX0s+9gKZ6PfzXpvFj6CXEdu0cWvY7Ra0mqNQCvikZS0rv0/jIyjnnco/ETme+zx1Feqc9d/rvoKTbjK2Vw2hXaNGu0OKXmijsjZu4W+tNW7oJ64yL+c7xMlOy5rCpwY0rt8JxEOtT3GzMjQ4Zk+OXM9omnc9r/HjH+zG/JAwjcmoK22wf0tksY6JhEhMNk5g8+Sm583fx3dpDfG9zj/Oh+9hcOQKVWsBktxSuRezkYHIEByIPE5Q4g9oWPX53P0NCpQNh5iU09+pCrpYyQbcdJ90G0kpsmVwwlMkFQ/EyqMH1/HKiZGoiUiezwrCcL2t9WWBQw9Gm3tz3ucZv+UMoemOOr/YbvjbPYGzuCFpVMsYPSqBdLeJ89E4m6LZzctAeihWtFCta8bGp4kCzLae9TuJg0ohAqGaOQTYfF01i8ZCH6Gh34WxYz9d9r7C72ZaiRHvM9doIMS4j7rk388yec63NneCT7xKT5oNYpGJdRW/WVfQmU27LnupB6Ai72btlgqZk8TSK3tpF5BVZk7NwF9/VeZE7bxcPOu1p75Gyr9ma9FM+JHb1UN+mS6BxBe9nT2P7b5M5XNUPt4cLcHu4gDteNzjXZkhO/6MYGnSQGnaKbUOPc8zxMYsNSnCX6LEv/Ajx8V5YedZywOMkDxN9mRm3hJ07J6B+ZkR2TztXS/2JrXImr9GMvEYztqYOwdG0gaJWExRKEb86X6CvcSEB0zM5l9gL3XIBaYf9qG3SI19uyd1yLwba5DPOJJmMvifI7bTiaGJfVGoBo0zTMJtQxunTgzh9ehAfe95m7ORYjj2NZFOfC7gfX0FCxF5kgh5+iLhITrslM6wT8TCvJcoyD3m9NtsanRiZM4rruweQ2OKE67nlHDs5FIlAif+xtfgfW8vx5kBkZ41xEusjV0iYNf4Rrqb1zC8cT0WTId77VuJk2Ij/1pVMsEzhs7LxyK0VRBtmcPHUbo4M2o9pgoSvUscgD+mg2UOFjm0rOratrLJ/hJlWG/oCORdLAhl89X2qlXK087TYYFKASikkSFaCk249q+7N59KVSH5u8MDl2lJCtIvZfHIyk26upUctJsCsAlNhBz/1ushPvS6iQkD+oMMYSOSMSV7CHNMXf53j+b+ghCUQCEwEAsElgUDQLhAISgQCwax/59j5AoEgSSAQtAgEgjcCgWCzQCAQ/8P+RwKBQC4QCNr+/PxPSRf/l0BhmW9fTl68I59POK/pewAXD0Txx7o/cJK080d9JAq1iA6lhJvpfgAUDjtIVMZ4Qk3LSG+y5k2jEZ1tWqAWQJcQLdNOFN1iXKxq2eN2msEx77Ez6iifZE7kfvAhjIU6FCta2VYbxbUsf0Z4ZXL7cQgAlr412Ok1M848mfPVvch+6MqU8U95IzfmcbYHUwJf8bH587czDg63WDBJr4R3ykYw2jSNBoUuq4zecK7NkM/Oz6LHRtPMRCXg5KA9zLm4muj+qUw2TeSD9Cl0yqXM9U7gZrkv27xOM/3mO/QPySb2qQ8+fYrIeOmMd2gxHQoJVjqt6Iq7uffSD1S8XY2LBSp0xV0sNHv2FqEFGlSVk249ffQLmaHXSFTGeP7wOEWZwojtZUPQEffgb1COt6yCjU+mImwXERWezm67xwB43l6By3EVk/64y5Z7o3HyqaC4woy7UdsZeeIDDAPqqC80YWnUQ/Y/HIRaT4GtbQOVdYbo63eyzuMh12oDaeqSUR5nx75Zu9iQpUHXfed1mUsNoey0jSevpw13iR7rKnrzvdVTAmLe4dd+p8npsubAjWiCI/NYYv2YodoK3q8KYYvVK+53ihiirYEczy6OItSw5C0U+5s6bw4/68/TsVtYkj+dToWEN9XG2Fg0sdfzBCtyZ7HA/gWhshJm7VpPh58cD7tqckqtEAjUCCUqNgbdJUonjx21g3he5QxAR4IpcqduXB2rKci24cHYLawsmE7ZHUf2L9/OlvIRJL905crErcxJXUhyrzNsrA5ms2Uyz+UqjtVFYiJt58GvEfi+85qHWV5YWGhq+/VNegiLtFk38Rp/ZA3kcMhhutUi5l9ahXaVgNfv7SLssxUoJjbSVK9L4bCDdKl78Hu8lLyow9zvFGEhauPXqmHstn+A/9PFAOQOOEpI0nR6WZaR1WjJFLtkVhnlc7bNgoIuS0o6TchrNmez+3nWZM7knP9Bxv2+kTFznnPubgSSdgFqAVhGVlCaryHFzugb9/YZs5Y2cXDXaL5ce5QzNX3QEXeR9ZsfN37eyvo3w8lvNqOXWSmjjFIZqq3hnGysDsZdVsXp8l446TcwwyyeodoKhmaNweFPROA22/v0++U9Zi6JoUJuTItCxtE+B/95FJaVvdptzn8ehZW+5a9BYQkEglNokoDFQBBwA4hQq9UZ/51jVwLpQDxgDlwFzqnV6p/+3P8IOK5Wq/f/L13D3z2AeAVoqTPvOtL/9USm2SdxojgMa70WHHQauXu9F2HDM+hQahziFodL3GzXsMm3nxiHMLSZnh4R9qaNvGk04l6fXdiK9N8OW/qkJoAfLNIYmzuCaPNsBupmEySV8V2dF8P1X9NbS8IjuYDyHmO8tKp4L1cz+CnUtIxr2f70dy3gcaoXG/rfYk9uf44EHeKV3JFf0ocib5fyRZ/rLDDQ9E0+r/HjW4t03M4uJ3/aHuaXDKCfUR7XawI47XYVgC9rwvnQ/BkXW924XhNAuEkRx3LC+DrgGgO1y5mWPZvSAgs2DLjFL4nDWBryjGM5YewJOc5ruR3bXg+mp1OCukfA4j7PeCM3JqNRU/NvbNfG1qiZZfZP+Hr3HAKnZNLLoIRVRvl4PVjK/MA4jt0eyJghiVxJD+RI/4McrOnPKJM0kjsc+cEijV8bnZll8Jqowx/w7hTNNU/Vz+Vkizf2knraVVrM1m9gU4MbMoGCDpUUa0kT9xu9Oeb4mNudUr7KGUdzhwy1WsDu0ONsKR1ObrUF6/wf0Fu7iF8rhrPBVjPUqKzHmLROB7SEPdyo8GOgRT7nrvUne/Gut/Xvz2v8OPWgHz+OOcX3WSNJ6X1a09MYcoiI1MnEBl5geuEQEvOcWBAayxu5hiG91y6WXxpc2WBSQJe6h3xFD5eaQ8hpt+SYoyY4Ti2M5iv7q5xoDMdX+w0Jra48LneltcQQQ+cmmoqN6Buag6NOAyq1AIAPzGM51BTAlfIADLTkmGh1MNnsJRKBkvdPLkS3EuTRLXQ0amNj10B/ywJyWi2RiRS8rrYiPfwky95E8I31XUZu/oBxS55wtUSzKErudYbZxVEssnzKF3nj8TWpYq9dLDXKNu50OBHf6kJrj4xhJul8HjuRtKF/EHrkPVZPvMHB/L6IhGo6uyREO+ZyPdMPG8smACRCJT7GVdzM8IM2MZEhOVS0G1DTqk97szZp0X8w+It3afIQYN/rDX5GVXjrVvDbhXGIOuHAku3cagnka/MM/OJmIXlkyKH1WwHI+1NlYWtBNAKBmsoSUxxcami8YYPZmDdYaLezw/EaMR12fJ02Gi2JgmDLcmIf+NFvSBpN3ToMMMljvP5rsntMqVUYcLU2CIBAgzesNEniSLMf642L6PVqGsmjv/9rAsjsfyKA/PrPBxCBQKALNAJ+arU6989tx4BytVr90f/E768HBqnV6rF//vyI/y8GEC0XO/WIoxOobDPge89LnKnvQ0GLKWayDl5XWbPE+zkHsiMw1W+nsV2HICtNQzqjzoqpTsnMNkxiXPJSWup1Eev00NMmxcy6mYZ8E2R2bbzj/ZiDhRE4GjZywTWG192dWIqUDDjyAS8XbCXg8lqOjNqLENVb6YdfGlw5vn8Yc5bcxUTcxo/XJnJ52q+8mz+NGO/r+MXNYkfQKXwkrVxs82RH1kA8zWv5wO4Wz9o92WBSwPySATzNdSPUtZTiZo1T8zOtYonFY/K6rfj6yXhuDf+N36qj2W33ghOtJpys7ENpozHCp4Ykb/gDt0srGBGWyu2XgQwKyaBDoUVCoSNn++9hSdpcFEoRG300xEobcSOHa/rholOHvkj+VqDv31bp/ybmF/5gLUlDdvCyy4Dfy6Kx1mmhsVuHA07XyOyRUNBtQbNSh6RWzYyWNZb3Wbd2DY9373srARI9dxEhvyRz8WEfzkz6nan3V3Fk0H7WZ01lgHUBV3P8UbRKEXUIEVjKCbCroFspQiZWkJTqwtg+yQAUtpmS8dqRX0ccp0mpy/1Gbyy0WslstuKW500Su3pQIiBF7sgKw3IiUiczwCqfJ1VuzHOKY8uNsXw65iLu0ip+LR9OUZMJlwM178+gx2sJcS6jW6lh4ft5lJH90gmFgZIwn0KSn7sTPTiZnbbxlCtbsRXp43JxGZuGnWGqXjMuF5cxvm8Sj8o1PJuRDpoRr3G1ToSbF3MuMwS1CoRl2uTO34XvzpVkrNpFSNJ0pjolc7PCl+HWWVz7NYq6IV2EuxbxItUDXas2nIwbCDEuI7bOGT+jSiL08wGIbXXjzpUwMlfsYl1Fbxy165AJegDYk9ufmNB9jEpdxMsQzaTHL7yuM1yngR9qQ1lh+oJfajTjZFe86UuYQSF9tDXZmK9Eh4MtliwyqOZEqwnfpo3m28CrROtUcqjZF3NxK+N1ywi6vhaDbDEt3gpME8X89PFelt5djKlDIxbrFNT/LqKpTRtlqS667k0AtDToYmvTQGO7Nh2VeohbRLiGl5Cdb4NQS4mhcQeWeq0469Vzv9CTIS453I4LYueoQwRJG4hOXEZ6+EkWlvbnRakTwgw9rPpp3nFT7Q4KTrmjPbaa6noDIl0KOR5+4L9KAAkGYtVqtfY/bNsADPy3oPAf/P5lIPvfgs2fAcQXjVp9DvCpWq1+9B+d52+PwtKWdiNXijnme5iRFzYwL/ox9176IfYqR16nTX6HBV2dEmb5JJLebvtW/XOVuA+vmh1w06pGctWYrzeeY29xf7aHn2Lyk5UUTN2DT+wcZMIeehQiplq+5FirGXP16/B6PpdlE2/zeXUkseN/ZWrmXJo6tPEw0xD+gg3LcJ2czwaTAtwfLUDq0sre2oHEeF9nU4MbA+wL2JCpkUHXFXbhblbHBdcYQpJm8yLkODXKLp5muRMTvY1V+dOR/AnX1RZ183vFUFz1avkx6jyTEpeTGXGc2cVR5Daas8/3GGu7Z9BvXjpChBg5NJNab4u7ZzlPnvpjG1iJmUkrx+v70tKkg/EzGT+kTgWgy1SFrE7Ic8dutAukaM2+wdbEaCI9CliS7o6zUw0WIj3EWgoedFqS1WnLNY/bLCztzzmXe6jQYtb1lfw84iQe0iJ8ZJqXWK4W83j3PkoVrawZd4PDLRYUzBBy0PQJH097zocV0fT1zqe/DB4GHqNDrSC53g5LhzZeX/PExKeZ1ERXPht1kVt1/pg6NbLNJhEA3xez2TT8NB+nTqSnS0ygQzlX4sLIn76boMQZhFmXUtlhgLdhNRiWM9Qmm6/NM/C5GMGKwHI2GSlYYFBD8MuZJPc6Q4uqk+Ul4wFQyUVYylroo19IgGE5emI50j5KklNcGGn2mi9mXMNXooPXs7lMcE/jJ8tUkKj5+tAsPrJSsWjQYw7E9WeAfw4hBqXYSesBOJ3cm7JUGyRObWRGHMflwnJ8d65k2MQEvGPnkBVxnJAkzZCv2m59rnz7C5EP11DVoY+4ScTr8Sfx27GSmkg9TDcIaD+ixcZHmsy3aMw+EhfGARKeHO3FlQ2bmZGxgJoGfQa753Kz3YUwyxLG5w1HeM2EY0YR/PqrM50mIgI+LCO2yplee8PQm1LBg0J3ZIkaNFN7oJzdkcfwj59Fd7cYZYUOv+gMZTMC9KVdvOd8j8+rBrA9+hhEww/5o2gy0+aX0uH09i9guFk6XEfDoL+zhsJZu/F6PhcAqW43AoGaKId87uaEorDuIsykhA2D72AglDMnYTFLvG7ypNmLX0PPcriqHwLDbnQF3XxTNYR7vfdyrNWJbXZ3uWZsi0fvan4p10iwbHO8gtWnGr01FSqECDn+Vzidf76XYSYQCF7+w8971Wr13v/Fc+gB/y0uuRnQ/49+USAQLAR6AUv+YfOHQCbQDcwArgkEgiC1Wl3w3znFW/vbBxB5ixZzbOKY9McH5L+7C/dHC5A0iQg1KWPHyDPsqB3EFN9kDmwZR+iyFJyvLwVg/5CD/FQ8kql6zYz75neqlXK+rBzPlNoV+DhUEpk2ie4uMa/b7XAzreNZizuPLoTyaEIa2ZHHcHuwgPzBhwE9ZOIepHetEM7WlKMOx0ShUyHg/dn1CEq1uT97B+daffA6sJLRo+N5WOKOpWEr1zp0kAiUiIUqZhdH0dSgy4Li4ciVYqL9ssjstsDdoJbMP8tMLtp1bLZ+jJ5QxiO5gMyI45oSWrshAMsz5vCF53Uet3pzotWE7hcmtPp1orwl4/J3vzLu8nsILeT8FBRH9iIPNlw8SrrcHtDMQg9Jmk5m6Blud0qRCXqIG/w731QPxtGpFolISZe6h/7OBRqdI91sXC4sp3DyHgJ+XYn7+Hw2DT+NlaiZpx0eGg0mYG5wHIvPDeD3hXu5V+vNBvs7IIAPSifgrFvHeJNXNCl1CEmaTlOZIaJ2IcIeAcX6KvDqhofWCPw76a1dzHcloxjhmanRowKGhaTzWfJ49HXlNHZKyLvsxtKFMfzS4Mo8t3hOFvUmIeQ0n9UEAXDifn88Rlfy6ZwzuFxYzuKBj5laGM0Ov1PMLRlE2lkfWnw0K3b9HAnuETX8+sdUtEfW4G1SRX69Gf4BxWzJiuZg0BFczy2nYOoe9jVrlHYjA3I5NvYxpYpWDjeFUTRmH5fbdZmg2/72eb3vl06YfhEjdAvx2/EBWlJYOOMuzlo1XGkJYmjWGB4FH2Zc1gyuZfjzss6eguhDeBxdiVqsxm/7SoZPjSexzoH6X8R8avaMl6mBABSMaGPVdx/QM66R5oAeHnS4UpNjhntgGV66lVhJmthpG09iVw+rxs+itlOXJ3/sxT9+FlP1milxTKZ1lYxgnWI2Js3j3rs/A9D30vtcagjFQFuOQipk1rAnFMtNAbiSGsRY3w42F9ixzSYRz8MrSZn/G77XVvNlyBFm3l9Bt4eIktOuyMbWgBoeyQW876dR9/0pZhxz/e+x+fp4RAqYFphEsE4xEbIOolJm09Mp4fvsUWidNiZ2lhNtL804MW87s66/g5FTExGv3kNSL0Y+8TJBslJ2Vg/GS18D1R9w/AO0GmDlwmsc2TQGkwWlwLZ/2ucI/vz8E1b3H2Ugf2YEA/8Hu58DawCD/2a7AdD6H5x3AvATEK1Wq+v+bbtarY7/h8OOCASCmcAoYPu/e76/ewnLw19brfz0c/KiDnO5XZf1d2azbcRxDldGUtlmQHWtARHuhbwocGam30tGGKQBcK05mBWmz9ARCBibtoDjfocZ+XT1W+mIojH7+KXBFUdpHR/en07h+L0sLO3POqsYPiyczA7XMzztdGWRQTXuj+ejrydHKtI0ZD9wv8OXr8dyvdceqpTafF08juV2j/kqcyxqtQDDI/p88PPxtzMkhmaNIdoymyPZ4YTalrHX4S7aAi0+qg7kxukIfl6mEeLbWjKUwRY5SARK1hsX4RKziFDXUqZZJJLY7sLlHH8u9d3N2PtrMDJvw0AmZ7BlLokNjpQ2GdNeYIi0SYC0VyPCO8Z0WkKXqeaaJc0iTDPUOL6Tq0EL+Zxl3oMlfNnvKj8fm4zfyFxevXDHKeQNBW8sMDJpx1i7gzWOD2hVaaMv7ESulnKhJpRzLvf4rk7TawrWKWZ90jQmeqTyk2Uqj+QCVrycg79NJYEGb6jqNmCMcQprEmaSN/AIn9QEUNBmTmKBIxvD7lDaZYqHrIpv70xEu0pIp4+cgiGHAI2Kb3mzId09YhQKIYJCXSx7VfLE7zJ9kqcQH3ye1RVhbLS4j4NYn3JlK9vqBvCsyoXYwAvMLo7isOM9DrfYYy5u4XZjAHczvQGQ6vSgztNjxPCX6Iq7aFdo8brRmpIqU07328uS1Hl87XuV5A4nbpT5EmZZwvNTITCgiZ0BJ1gQv5AZ3kmcyw3G0ayB/Nd2APQK1ZSbXpXZcS1iJ9OTl9CVbsTuWbtZ9Wo2mRHH+ag6kIxma6553MbtwQIkBdq4DCzG17CKC0/D+GDodUxFbVytD+KY42OGZGoqFr1NS5lglERmly3f3RtPn+B84l+7MjAom1nmL/jys8VU9Vdj61pLeaE5At0eVoY8Ib7JmbYeKW+ajBA8M6TNWYl5opBGH8075ny5gzsXjuISswhbq0acDBpIvuJD+tpdeD2fy+uIQ3xTG8TJtN78FH6R/C5LWpUydITd1Hbrv80YNzW44alVydNWT7ZYaVSP36sMJabEkwH2BYTpF/FbzmD0ZV2U51pQOHkPcV0a+fjJBUPJrLZkoEMBDwrdMTHo4FvPywzVVnC7U8rF+l7oi+WkNNgyzvo1AKdKehFlnUdvvUKOV/blkttdRNZ5/3T5SMfSXu026z9fwnr921/aA/FVq9V5f247ClT8j3ogAoFgBHAMGK1WqxP+e8f8w7G3gFtqtfr3f/e4v3sACQ3UUjvtWkzBSXfWrr3A3qL+VJWaUDh2H8/lmr7EiVYTHjR5U9pmTP1FzYr74oebGXz9fQon7CXk+5Voj62m86olc965zZ4rI/h12iG+yhnLw8BjhMUtoZ9DIVNNE6hSGDFGt5Q7HbbM0Gt8K6n9j7azyY4InXyCpLK3c9mHZo0hv9AKgVxE4eQ9jM8bzjHXyxgINSXMKmUbP9cO4Oa1PnS7yNkcfp7jlX1ZZxfD6n0rNP/ruAwKfvXm2bY9+MfPwsG4kdJGYwy05VTlmBMUUsgF1xj8t67k9OotuIklHGh25mBhBKvdHlHabYqxuB19oZzvbk3ik5GX+OH2BAAi+2Qx0vQ1+sJOkjqcEf6Zo2e1WbHH4Ta3OjTNzi/SxqLK0Sdp/lYCLq0jZeJvDP3sPVyW5vIy1gNzv1oaXlqgctesuv1tK/nD6RJWIj3G5o7gmsdtsnvaOdrYF4VaxPlnYSBU8/OwU/z8zWz6rEvianIglrZN/OR1AS9JK9k9+kTJ1G81y063aXpCb7pN2PO6H6oaGVHh6aQeDOCzDUcxEnXQR0tO0JF3cehTRlGqHfkzdrO6IozmHu23TfBfGlx5Wu9Gh0JCXbsuOieMOPWzZl75zMz52Oi1MM0ikWctHhiIO/HSriC1wxELSQt6IjkrDDVlunpVO1VKAZMTlmNu0MZh72P8XDWUCaZJbC4cwXvO996yoLUEEg62WDJb/w0vu0QALIhfyFTvZHSE3VR1G3D3Xigit1aEAjWdNboUjt/L1MJoZKIeFCoREcb5rDEqxS9uFsdDDjItbhkAUS75PMz34IvQ6+wt7s8Kp8d8f2I67828THanNZnNVuSUWKOTLUXWrx5Hw0b6Ghey8/EQvo0+z8WaUFz16thsmcyP9R6U/QkoeHE0hB596LBXEuhbTIBhOcE6xUzQbcfl6lI8PcuRCpXoiHto6NLGSCrXzECR6/Cm0QjRS31UvVrp6pRQMOQQ/ltXMnC6hpPx8vcQrJcUUthgygbvGObq1/FeZShWWs3UdBvQqZRgo9XM+QODkAyrozHbFAOPRjo6pXwVdJ2jk4bS9LMSfS05pU8dWDftKvpCzUyX4xXhFD1zxDysivJyEzb1O88M95d/SQBxn/mfDyBp2/4yFNZpNMW0JWhQWDf5H6OwBgPngIlqtfrJf7PPCOgDPAYUwHRgLxCiVqv/XTjv354Hkt5izjs292m3g2u1gbR0aqFl2klgwkzmxixne5MDXyWN41GcHy1yGSOWPmfE0udsro5Gq0aE880lvPp0F5UFZrz6bJdmZd+3BF9pLUNtc/iutg8J4fvZaxfL8puLCZcVE/VyMTP0Gsnuaado1H7OtRnySU0AIUnTCUmaziqjN7zu0qw43XSqcbm2lIHm+ZjFS4ju85prHTrY6zZy58+pbCndci63eTLLJA6fwfmYmLSx4eEM5ls/p12lxfWVm7m+cjPdKjHfbdqLy+3FhNmU0PyHA5G2RdS36CLsEjDAJA+f2Dlo16tZljWH3lvXcqkyiA897rD55GSulvpzqqQ3k/RKMHBr5FadP4fG7eHQuD3ElTrRoZLyoMWHcQbJmElaWWicSE6DBYdaPPj+j1ncbvRDEqePUVAtgRfXgX4PQfdW8+sXO3HWrWPckAQO+hxl1vhHSKUKpFIFF1xjiLiyHrcHC/AwqMH90QImHdjA2fQQclosQE/BxL4vOVsdhnpGHT9ZP+OXqDPEBZ3nj4ohZHQb8u7vmgDaWqlPZNok+muX0l+7lPOlweQNPIJRlpCnj/zRmVzJ+pjZ3G3xR6lW82DuZmK8r5M/YzeP5ALsZQ0cc3xMj1rB7mZbklvsGWyWQ1GlGW3tMsZ89pCnnY487XRksn0yr4rsmarXjL2sgW8t0vn8xUSuXg9HS9jDsZI+lCtbeSQX8E1VFLNTFqEVq0dtvBVDY95FhYCrDcHMtEtkR+kgfm3w5dcGX9weLOC7uNFoCSTMvbmCuU+WYHpLmzOP+3LwVQQTjZOYM+oRBtf1yOh7gkEhGbidWkGHQkLSLR/cdGu4uH4Y39R5IxapuNPmh7d1Nd7W1XxgeZefel9AJuihPtaK8boVzJ16n98yB9NfX+MHIj3z6XBUMtg2j8qdLuR2WDI7MpZmpQ6mWu24yGrwOrCSV80O5DRbkNNsQUe/dqImJeHrXUrVHhcG6WfiLq3F48hKJoYlkZ1vg7V2C5PMkzCTtVPSYswp5wf0Ny/Ay6KGbUv3sj34FAmDduByezEOo4uJNswg2jCD09/9zHzr50TaFuIkqWNkzii0hAr2p/WjSyXmC6v7qBAgUIG+tAuJYxuCmyZk9zvGpZoQZl+4R1WhKYMtcuh2kWMubiGj046MTjvae6RkL97Fuy73MEiTktTu9H/ER/2/aKsAbaAGOAWs/LfgIRAIHP7kczj8eezngCFw8x+4Hrf+3CcBvgNqgTo05bEJ/1HwgP/NGYhAINACdgLRgAmQD3yiVqtv/bl/CPAH4IAGr7xArVaX/HvntPQxUQ8+OIW5lrGsjpvFjvCTrImfxSA3DdvcL24WM9xe4ahVh1It5Js4TbofM3gbs77YQPwPuxk1bBo/XD/K/N/fw2OShoF9zuUeH1UHcq3QjyluKbQoZGy1TuK5XMX9Nl++MMt6ew2n24zpUYtwkmhKiguea2Ci/5Z93OiQcbw6ApVawOsqaya7pfCo2p2n/pcASOruRlfQw/z0+VwLOMyE9PnIFWIaq/SZ2iuJS9kBmr/Tdx9T77xDdHAGDwvcMdTvxNOkhg6FFGvtZjqVUiRCJUq1gCijHPSFnUzQbadT3cV75VFkN1sw2y4Be2k9776aTm+7Ul7EaUo2+dN30yd5Cjt8TjHz4houTd6KuUhJuxpcxXqUK1vZWDaWE06P6PXVSj7ccJIvTs1C0gryXu2Y3NBBq0VF1Sw5Nke1OLNbA9Mc/9EGTJaW0LjHAfkszcS9yQVD+dz+GlNfLOfj4NtsOTaJZyu3EPXL+4xb8JQTSeEUjtxPn+Qp2Bk0M8EiGR+tCr4pGcsvThcY/kgj1Lin31GqFEb8cGoqXoML2ON8kffKxhBmWExdjx7Pa13Y6HKbM7V9iH/jyAS3NFRqAVEGWZyr682LMmd+DjrP73Om4b4jmxuvAt8yhUUG3VibNtPVI6Y1zpwBY1N4WOROTN8/eNzpzGz9GnJ7OjncEIGhuJOPTXNJ7Oph+vXV6Nq1Mt89nn66OdQr9bASt7x9VlpVWpyuC8dG1sQQvQzm3lyBjk0b6eEn+bXRmR3xg0Et4OTg3YRrien1ahptnVp0NcqY3juBnyxT+bXRmfXGRbg/ns/qgMc8a9Qgvao79OjqERNsXk6rQouhJpnENPiw3/EOP9WF0KMW8Z1FCkKEjM0dgb9RBaMNUoiUCXkuV2EvbqdLLcBMJCSnR8r3JZqhYO0/2qH78Rs6FBIaO3V4FXoGz6fziI3cxZLCiZohYQnDsbBopk0uRaEQIRYraa/XQSCEp8O20v/melb3u4e+UM6zJndWWmnk3DeVjcJBp5GRxqkaiZ/7s/D0LMdet4n8ZjNEQhV2us209Mio+c2FMV/fJ6HRmeQCe9TdIgQSFZsiz3O0oi9GWp2MMHn99l5/f2I6m+Yd4ZO98+nwl7M25OFfosarY2mvdp/xT2Qgv/9Ljfef+XtlaJpDpWiaNGcFAoE/0AZcRJOOXQO+Bc4A4f/eCe0lHYwwTSdHbqORlD65Ao9eJSScDISNsQywL0BfJCe304rsNiv0UzWckGHCNez+fD+3O6W4Hy7icbsXrW5KylqMGGyTC4BQoGaEcxZfm2dwrUMHj6MrMQuswdGgkdcGrzjRGI5EoKRLLeFZlQtN7ZpyVMGQQzSqOphjGsuXtUHIhD1YaLUSW+2EvFWLB1UeDLbKfatEerU+iJfl9qhVAo42B9LXsogVpk9I8HDgm5QxpA3QADR8r62mcNw+wlOmcK7vHmYdfI+UQAkd9TooPMqYZv2Sb65MQc+rkUc5HtAkZWOHkMB+eaTEuhE3awvhT97hdMRe7E0aSTvrgyqgGwCXK8tYFPmEr0rGoTLuYVdtFDtt43G+sYT1kXfZdXo03cZq/C95s/H9c3x8cwYqMyVuA0sZaJbHC1sXChpM8TBsIjfSmT8a+gDQMbWZ6mJrxIFCAo3rWVfRGx1xN5OurcPTr4ynTR4cWLIdY6EOVuNKmWaUiHNkLYvLIjnid4QfK0byw6mppCz9neLLLnw0aSKzAzXl29/KhjLVKon+o1LZaxfLiVYHXlXYkdtoTmLwOaJqXcnrsqK3QRH5+mZ4yKrYljsILUcFptIOPvW/iQoheXNlhEvakRh0oejSvBKTvVJYZfqMQZc2sGTafQ7dHIxv30JG7d6IuE8jm5RCToUc4OG2vtz8bgshSYv41OsmVm51jLdPJanZkQPZfXncZzcWIj1OtJoAsLMoCl+TKiwkLZxqCEdq2YnoqSHbPJ24XuGPQKIiwq2QhUfX0OPWifFDbQYvf0VMjzdnEsMo9zfCRNKBb3YESrmYVUb57MroD8CWkHNsKhyBUKDixSsPxKGqtwALS0kz2y6N5ZR5H8QtIrSrBFRGGeDtXsHnBRH0tyhgplECX5aNY4rFS37IHoHV55oCRdlHPVBhxTivNNIabQDws6lkctYsHvheYmLeSL7te4kRumVMzJyNvV4TH9jc5oOCKUy0TuFmmweFY/dRrmylRw1bXkcz0UxzXVKhkmsvg1D2EtCplJAzdhd9k2dxy/MmI9tHcdL9PKtKxmApayFlALxjlM6B9AgKhx3kXJshSoR8kzEaXa1uDKRyonRKeNqpWXRvmneEsTodjH13FypUfFQd+r/orv4d+3tX/v8y+98aQNRqdTvw1T9sui4QCIqAUMAUyFCr1ecABALBV0CdQCDwUqvV2f87r/Nf9i/7l/3L/of2X1DT6j9r/0dhvAKBwBLwADKAlUDqv+1Tq9XtAoGgAA255X8YQNrVal60uJJQ7cjBvL7kzdpNlbKN40s00MZl5o852xTG6yYbHPUaKBuq4Wqsdn7Oqvg5pA3cwwdl7gzzf41usQhb/2ZOvwjnmpUfF0P2MvzGepyi6vg9dRBPZ//MwvxpfGZ3HblaTFydE64GdWyzvU9wdgAymQYCOiB9Ak/8LtNbCxadGIDB4Gpqky1RO3YS7ZvFw8cBXGjTobNRxtaeaKz1WvAwr0UmUjBS/zW+Eh1mFo3DRruJpMi9fFnTF4DCcftwubqUDQNuMTV2BYcX/MH6rGlkjDnBuorenKwII2/Obt6rDGW6fzxzni8hd8phACarBTSp1KirZazNnkF9iy7zF93naE4YAFomCpYZv8RO2sAdSRc2Ws14HVyJwFzBoYK+fDz7HNu2TOXlV7vo88kKlBFKdErF5Nc5k2HqwMUxvzO1bAX7Qs4z4MUHyISae2GyT4/vtp1g7YPZNHXJMJZ2UCfXxc6zmlueN9nU4MaN5iDCLdIRC1XMfLWY7hxDtBpgcrgTXaX6LJj0kA51D6ajyrngGkNMp+axjdLP4nm7B0+KXZmv1GxL6XsI74urOeZmxqcuN5CrpfxeMpjaFj1u1fmzwDWedcbFeMfO4XxrCBaWzQh7BJzJCUHZLSLaW/Oo3Sv3pKTDFFGHkDP7h/Dj6uN8dnIO5lGViLaZ4/5lBjHtPvRbm0Cc3JSmBl225A9jvH0qbQoZ2xyusle/FxYiPS6366L755jVe/6niO+SoVQLOVTYF3fzWvKM9SjvNqbpsi1zlj3hHZN4No1t5XJGID9/spv1W1ZgO6GCMO9SnlW5kK0SolQKmR0cz+5mF8SvNFyHtVXzMUkVEhNtiNSykyfpHgzwy0VboIWNpJGk+VvRE8oAGJ83nMYubZqUOgSbvuFZrQtnrg1g5MgENj6eioVNEznvaXggwXZluOrVsc7sCbZW+mxvcsBTv5rzzyLxTFmFSC7gKzcrfruvg9vCHF5ku3JWJ4zKe/YcH6BF230LQlZvY0bsGg6GHybKKf/t+5tZa8moXqnczvbBzrKREVkTkXeL8dq/ErzaMPbUIafBnGF29YyJfEXAndWMDUxlW6MTN6t9ueN1g887pVwL3UNMuwcfvRnD85caBKBaW8mPto3IxD1Y67a8nVT4L/vr7P9YE10gEEiAE8CRPzOM/2lijEAgWCYQCF4KBIKXHQ0qFGoRL0POMs7pNe6PFvC005YThb043GLBtqqh/GCRRlGDCTdTAxhqk81Qm2xu1/mxMvAxwc+X0Ne2mOdtHsiDOmnp1kKo3839XnuZk74AE4cmrMTNrA18SLFCRkm9CWtyZ/BuznQ+crnFeqsYlpeOwMG8gV7WZfSyLkNLpCClW05SdzfKsFbCzEvYO303ahWUtBmTN3s3VoYt2DnUE2BawVCzTL5wvEZSiT2+Eo0+lpWsmS1Wr/i8OpLNlslstkxmYWl/Ngy4hUzYg0ohYPHL+Sium+N5eCXX0gJYZPscj2Mr0Bb18MW8JXjbafDwG6uDSS2x5ZXclgVDHvE84CI/h1zgUEY4AVaVBFhV0t4uI+LC+ywwqGG9zR0+NE0ne9EuZvSJ51XoGXYVDuTlV7vw+30lgavScLwKcnMVWUt3Mbf/cyQCFfbmDViIdJg+8in3qj25V+3J/C1XGKvTgXGqmIqH9tTK9ej+3pqaJn0GpE8gu82aIF1Nm6tbKSI9/CTzRj9E1K+RAKtK9ozbh0SoYG3ZSBqv2uL1bC71Sn3qlfp8lD2JFcaJDHbO5WObWyjUQrxjlhPd5zXb8gZzsGoAY3U6EAtVvO93j5dFDpwq6YXvi9ms8nlC4fADBJhVgFkX2f2OoeoS8Z31Xb6zvotSJeA7+6uo7Dv5fs0hcuXWLJ1ym+bb1jzct4+XhwN5XOeBSi2gVmHAxYE7mecUx+HscL61SCexy4zabn384maR02XN78VD+L14CH7n1/Lu6+lcbwqiuUObDoWEd6dexV1WRYcVrDVNYGbOTK7f7sNvfc/wYdZkBi2O53OX64wyTOELj2vU1+qT3e8Yp7NCWWNUyq5lu9i1bBdHx+ziq48PMdw9i/vhO9Ey7OJ5oYuG7Fnbm4D7q3A/voIaZRuW2q109ki4XeOLsbiDcdavmT72CRssHoFaQKhFGa72Nbja11B2yJXhBmlcbPVlY3Uwa4xKSW60Q+jaxlfjztJlqSCh/y52f7aN3kZF9PEsYppRAoqQNlofWSAe2MD8PeuY6vOKa83BCAUqJui2M0G3nfZmGS7atei+1KZHKWKG7Uss9NvIXrKLjwLu0KaS8yr0DEMMMhhkmEnhyP1ciw+mWamNn1ElbSo5eVGHGXbqA3prF/Esw533htzivSG3EHSKmOmYyGXvMwgFanx1yv86B/Z/gZji/w32fyQDEQgEQjR45G5g9Z+b2/ifJMb8ydrcCxoxxb12sSR29bDU5AVfR6XxQVUvEkJP8ESuxWc2t3B7sBp/hwpS6h3oUksAyKy2xFq7mUCbCpJrbXEzqsfJso5gk3JivK/T66sPaPZQs3bUTT47N4src35BIlBzsfceAD4tncAI7W48nqwgd8BRXK4u5f64a4BGgNBTIiCnR0VXuS7abj188ukyhOM7qWg2JCJ1Mg1tOuhpd/G83JkFQU8JlUrp41xMXk8bG4on0980n8CEmUjESlxSggGYEZrAjtNjkdsoGBGahpGkkzPyUMxMWxlrn84nV2eSN1eDOJp3/AX6QhWvu8VoC7vZGn6Wwi4LLpcGUNRpyuPn/oSG5THIVLPibuqWcSdKo0BrI24EVEzMH8Ylt7tvORUudxcxbFIKT64H0T2zE60cbbyezaW7UYbzwFq0xAqECOlSS3DS10yF++bBBGaO/4MOa/h5xhF2lkVRNFPAUu94PjbNxfX8cn6ZdJt1FVFc8jzPxPxxmMvaaK7RQ2pRwdK7i0Eh4MyYHfwyXcxamxhWpc0GQCbpYXnRJIabZ7A4ay7ttyzZsPwa58tD0JF2c8r5AeXKVho6dDhQFMkE31QaunU55PCUFW/6ElHSm6pqI3SzpAywmIBWpYTf6jUS+h3pJozrWY6xcTtrb8xHx6GV9gYdBEFywlOmsG/jNmacW8uV2XdwubyMR2O2kNNhxfnee4nrkjJaR85PBXbc7LWHBTmzqYy1BcAp8g3lcXYsD3rCtUe9kZnX8bTRnf7GedhHlDE1ayZ1d2xRBnXyvNWdla5POFzWl1aFjHvp3ogaJEwcnMDInFEoWqW4XFsKEo1SgYVVMwqVkLYOLW4mBmFi34SnSQ19DAt50eSKsF6KrmcTI1IW01xkhNpAQbB5OVXdBhzMiIA2MekBNmwddJIqhRHeupUArPnuOl7P5iISqdgSdA6XO4vRyZWiDtJAtY1TxByN9OH3e8MZE/kKhVrIpPurMUyWsPm9fRR0WyJyU7EzbwCr3J+wK38ASeZPAQh2LWO6QRo7vKNJDbjId3VeFOdZ4VazAIEAFkRplKU/8LrLbP0GChRtLB3wiNx2Sw45PKVY0cP8orHkzt3N8OzJiGQKfk/RkFgtXOvZk92P2ya+5CQ7snHi7f9FT/U/tn+VsDT2vz2ACAQCAXAAsARGqdXqnj93ZQDz/+E4XcD1z+3/rg3PHk2oSRk/WKS9LR+53FrB9oHHEaFmXkA8X5hl4VU9l82WGh2lm0Xe7LBJ4HSbMTLLbgZr1xGxYz0xa6/TO3kq2z76g1/ejCCuyYWwwZnsqo3CT/cNt+v8+N7hMjm15pQ6tuJqWcfOJjsKx+2jSqkZknPJ7S5tKjXT4paxcsg9DEUdrN28hTMtfgzUzWZ5xhyuhe1i2N13WRNxHyexnO/qenHC6RE7m7zIfu5C/3H59LUpRkuoYFuIhoh1sMWSzBW7GJA+gcpOQx5dDUHl2IONfguHY6IYPCCN4JfTkVwyxnVJLm09UnJjnfli8hnei59G/qDD7M2OxFzaRmTfTFZb3Wf6Yw1E1tW+Gq9nc+nrUExRqwklJebomnTgUriYp0N+Y1NDMM52tTwqdgO/NlSdEvqMSmeKWSL7KwawwKCGh41tjMwZRZhJCR9ZaRxER6AWg9Jm0G3dw4s2N4rqTEGsYqZhEgG/buSnZScxFeqyzSaRb+qCueR2lxVv+uLmUkW0SSZLhj9h9Y6VnGsKw06nkTUZM7kWogEV7G6I5HJ+AC56dTgZNHB441k8r64CJailaup92rEV6RMffB6AqIzxtHVpEWepoOhdDwJ+y6XhpQXK3q2MtM7kqNoaX+03ADzrVclI60xO5PXCI6CMSVbJ/HJxAssn3EelFrI4dR4ip3bCPl2B9/wSWtUiKjqN+KF8FPmNZuhpdVGRbcErFysm2qagP12jPvuw0Yu5U+IZe+59zFOgV3Qpx16Fk1DvhdNVOY6bC6gwsCU+6g/6nH0f75Bi2rul7LWLZZ2whx61kC1Wrygwa6PYwZBPsicSYaXRrFpt/hgjoYDw0+8TN/0XZAIRj+WmfJA8mRt9djEt1xe70EZkIgUFV01o8pFw77UPlg/ErPo4husfD2bG0ATevzUHS/c6mp9ZALAjoB1Ft4gJfq/IkdvwNPo3dIaK+LRyEACjlz0lttEVHYdWbub58F7gfV61ubJo1Q3WnFzK84W/oCeQsvWlCUt7VdLhEv9WbiTSJJ+YdlcKx+7DJWYRQrGKR2O2cKAxnAsFgYzPG05K79N8UhMA+g3YiCR8bJqL36khhPS1Qf7ShDMLf8Xt7LvkT9tDlHI8k20173iHSkpsvSveBlVkm1rh+Fd6u38FEOD/TAayC/BGQ6Xv/Iftl4CfBQLBZDSyxF8Aaf9RA71SISPB6wbhKVM4LKtCS6Qg+OV0Qj2LsRK3cKYlGG9ZBX7bVzJySgJxXRo5aHmJAT6qOaiy9MlevIvxeRMwHlTFJzUBfOt1hUWJC5BKFXTlGuB8uYPg/U/58eFYvhh8mW/LR9NRpUehwoAuhRh3rSoSu3roraWpRSd29fBd6XhyBxwlpVvOobr+/HJpAjkLdjE4YxpfeF5nTvoCHJ1qKek0Y2ntFMRCFX3K/LgWcJht6rH4aZexMyEKQ7M2JnZoCF25tebsu6RP+HuJ3C7yRhjUwjKPRA7dGMLXE8/w1dVpjBmcSOdKKXPNnhMpE7LJzA1XaQ3DPLIoULShUgv4wDwWU6Eul9uNGOGbDsDTN67cCN9FbKcTX+ePYXpoIjF7Ijj04e9EH9hI1rJdHDk3lOzlu/A4upKnszczY937rB7liU6RhE0mbjzNcadw2AFudMhw/bMU96HtTdqtpbyvnsbZjBBUXSJQC3AS65O2fhef1AQQpBWLvhCSGh2Y3GxHaoktevpyWpUyPvxqOft/+B0lAubFLyJ3wFF2Nmmgx++YPmemUTwx7T7467xheOYkUMOdsb8y8ulqPq8cjJVWC6fPR9HlLifAsRxn/QYWv5rPiZN7eNDuzSPPNrSe6HNdz48uxy6+vKXRBhO3CtlvYImxayPZ+Tb8HO+I0L2Nmm4DrhX6scbnEZuejuL3L3ZwuLY/E0+vR9IiwGdkHjb6LVxyu4tL6WJOVYeTds8Dlbdmtb6t12l2vRmEW2gppc7GSARKBvlk8yjHg8X7r6Av7OS7hTcZnrIYla6SjBIbbkZt58vaMB6Xu+JqUo9LzCLEVVJ6TBSYWrcQc17Txxq4KJvPDs5j+OQk+seuQtkjxNe+kqnuyWytGUyzhxpZpy5Vueaog5Ro1YkY0j+NElcTblX5UDpBjZGoHRPXBg76HMUrUNMD2VgdjIushitVgXTqSxkYswHf4GJeF9vS6iGjsNmUhjhLpk18QkqTHdszowA4URzG/An36fPoHTIG7WPCpOe0qDpZZ1xMoLambPmszZOFhhk431xL0aj95PW08arLirRmWzpaZMz0S2BqYTSmUs39m1c0muPOt0hfvYtyZSvFvrqMv7+Gwml78N67ksVT7nLmi5EAzPrmBq8L7bgy/A7Xi3zREvx17u5fGYjG/rcGEIFA4AgsB7qAKk0yAsBytVp94s/gsQM4joYHMuM/PqeaAkUbLS/M8fKuoKDUkomByVxKDuGzngkYSLr40CWfqWt2MTp3JB/UaRzEpYlb8Zdq49K2CAAXvTrSU3qRIevgUaU7Mq0e2gsNUemqKP9AgaW4mXUD73Jo43jKRgiwcq5nadx88qIOM79kAGNMU2lRaTKQVpUua+3uvZ07YaXVTM6CXRQo2qhoNCTHxhoPk1pWWD7EQNiFv4029ap2TIW6nGuzJWJIOpfrQ+nrVUCHQsolN41ibr1LO2e8PSnuMkdZoMeooQkcz+2NUlvFj4emYz+knPxWc3LinUhLCaB2bBe6unI+7J3P3EfBBIx5w9XeuylTiNnb6sGhjHB0tDUw3vYmbcYkrGCUSyYWpq2YSdpoG9TO0w4Pfp+7j89r/Ojx7ORwiwXmQdX0v/o+0z6P52xsH6ZMe0J2mzU6Bp1MLxxCdaceUpcbALSoDHGV1NL21BzXoaV4GdRw52YvbnTI2P0mCgOpHAdzLe52GrLN+TyLcmYzwiuTx2Vu/JIwjLkfPWNV5ix2+pwkd8BRVpX3wV6mmfewumgyZS1GBJqX8zDTi9jobUTkrOd+hydmJm3Yyxop6TTFNLKKpvtW2Ho3MdE4iUMOT4lInU2PSojzJhWqn0upueiAMLyT3r01PKDkh55cnbCVbdXRJN4NJPmjXbgfX8GNpAi6LNRsahiJUZqY8kHGtCulfD/xFJs3zeIdm/ssPb+cuZKBzAhJJK/NgqChOZxy1vAeLrfrkl5qg8UdLTqju0lqciA13x4D03Z2bZhC14pG5HfNsRxXitxcTGe7Fh8WT8LboAqFUshX9leJM3Mhu9OaS7G9GGmXSeNkTbD+MmMc6Wt2sa3RiSm9E7ndHICrrAYjUQdbC6LRdm6hrlkPtZaKpNHbWFI0nthKZ6Ltcokp88AwWcJ6k2mokgzJ8zRn3GnNdMQpw2PZfH80o8JTeFLhgq5TC3KlmK/DrzJXv46gxBk8Xvwz4ffXYmLWRle1DkKzLnQk3SwzTqZvRB7J3QIu5Qdwv9yDunp9HK014pJldcZYBjUj0taMfF7xfA0vB/+Bvu19lhYuoEMlpazFiHNB9xiePZqTHmfpUAvo83Iul4P3sbt6EIUj9xOUOIOlU29ztSKAroWa8ulMg1xMItuZXRxFsHU5WgLJ/6rL+pf9B/a/tYmuVqtL1Gq1QK1Wy9Rqtd4/fE78uf+eWq32UqvV2mq1OkqtVhf/R+dsU2jhKtbj2OJttKu00NLvYovVK1KGb8dZr/5tjd9v+0qstFuY5xDHPIc4Jl54j5RuOYEub+j/eiJXn/ViTOQrMpKc6WNRjJ6sC5VpN8PCXhNhV8ztBn92ZfYn6IsUtg87SmePmHFeafj/tpIvbG8yVa+ZNckzWZM8kx61mG8Lx7De/DHuJ1cwzfAVod+upEyhzxKfWHSE3Yw2TSNSJmRh+nx2NtnR5/E7xHSKaVLqsNzyIc/PBfEiyw1r7WY+qg7ko+pAhqcs5FJlENVyfXLn7iah1hGVWoBOhZD0tbsoqzPmI4eb/DFlP+KF1cz3i6NTLmVhaX+U2ip0hV38UDmSs01hNCu0yR1w9O19HB+QgqVhKwm1jlRVGbE/M4LHETt53uDG8mfz+NYiHdNbMn7LGUxloRlatSIuZAUjNOqmtNOE1GN+pIefJPesB5Ntk1mfNo31adNI63Bg0ev57F+2ncJX9myzScQivJLROnIyUx158cqDjZURjNXpYMzujQy2zOXZsVCWeMQirtTia/MMhtjkYinSzG5P/i2YRoUujQpd5Eox9gZNpNdZ4+/yhr533kW3TMSW5KEoVEKi9TJIq7ehl1kpYZPTMJW0s+bIMlSomOcUh1SkZOyxx4y3SmXuytuomqTscbzBHscb9DjKmf/d+6TW2tB3rka3KW/Obl6v24WxVz1Fo/cjHVlLRY8xfQ0LkAl7aBzcSZRMjdKsBx+9SvRFcpIynLHXaeRahw7XOnSYoNtOuGsRVssK0TWUE2xUBkI17R1ajP/xHk1t2nz1zlHm2MaTHn6SEOcyhptnEGWQxf7go8xKXkxRlzkPy90xzBbRptTi/o1Q7t8Ipa3EAJfbi/n91SA+/nw5DT26HCqO4GJtKIayTtor9QiwreCLgVfYVNuX5FxHXoQc59nmMD7xuk1reCdhNiXcWLaZsTodvDv2Ou+OvY6brJrCSXtRqESMdMhCJFKRl2OLEBXf1XnRUmHAzXYXAF6GnKVw4l7EUiUVjYacbPFGhBpPSTf9HQrpVor4ps8VNrldYJPbBVQKIUVd5uQPOkx5jwkF0YdoVSnZkDEFaZmUBoUe7Q/NeSQXIBaqGJ02n3sd1kTYaMp2xxwf43J3EfaGTWyPHcIC+xfIxApkYgV9Y5fzZfJY0qptGGKcRYvqHwse/4wj+yc//4Xsb6+F5eSnr068a0Dv6+9qYK63F7Nz4DHWnVmMwK2N4S7Z2MgaeVLnzg2PW3gdWAlA9mLNSm2dcTEAq8r78KjEnUd9djMqdRG9LMp43zKGz8rG06aQovzQjPw1IsRF2ih01egXC5ixLIbdsYMQqMHIpoVXoWcACEyYycvex7gv1yFHbsM642JKFa1YimRoCSQcbrFArpbQXyeP2A5Xfng6hnDfAk45P6BF1cnJVjdqegwYbZDKtKfLCXPRpPtSoYLt9ncIe7EMYboeSp92hNm6OA0owUSrg4pv3WhylRC5IImi8aYULHdCP7SOITa5PNraF/X0OmprDbG9JqZ9QRPtaSb02GgyEGGjBJVJN1/3vYq9pJ4omea5iOkU86rTiQ9NNNBL5+tLsbZvoKrGkG/DLyMSqPnm2AxM+1XRrRBRU26MoWUrYx01pTElQhy06tmVM4DWJh1Qg7BJwviBCVx63hst63Z2hZzgYasPX5tncKNDRrisnsiDG/h0+jk2Zw7jdZ+Tb3tbbmdWMCVKM5rUQtrC1YoAtMU9CAVqsrLsUYtVSPS7kabqEjg2i9xGc1o7ZFwI28PctIU0N+kgeiMjOvoVeR/4ULBQgESmQOepLp1WcHqOhkG/qXwUlR36VMfaoPZpY5bnSxyk9XwTNxZ3hyryiqxBoGZp76dcKQugqV0bX6sqGuXatJ2yoS5YDfo9mJu34GVSQ0uPBj67xOYJo3Xk+P2+kg6vbiI989EVddPYrcPLQgdcbGuRKyT87HGO1RmzeBlyFp9dKxk+IYFnVS6c8z9IlVKbhUkLeNX3AL4X1+Lrr3k+rHVa2GsXS3jKFERCFUKBGhvdFnIbzLgXcpARX22gZ2wj7XlG6Lg101Kry48DL/DJ80k42dVSnGvFqD4pZDVZ0tChA/c05Efx8DoUSiFd3RI+9b/J7uKBzHZI4HmTG5PNXqJEyGTdVlzvL2ScTxrXnvQmd/pOhmeNI9iknNdN1tzyvEnArytJW78Ln90ryVyxC4BeX63k5Ve7yO5p52mHG0dLw/nU7QYjtLvxejaX7H7H2NboBMCVigC0JT0ssIlFIlBoRkpXevPU/xKrK8L41uoRp1o8eNHsCoCLTh3HXoVTOPzAW0Lsu973/3kmurm92mvSf56Jnrz3vw4T/W8fQGRutuqOZ7pMLxyCVKSgTq7Leoe7vJbbI0LNqxYHjjg+YWjWGIJNyhGiQawMMcjgemMw1xKDGRSSwQH75/R/PZGZ9ons2T+WI2u3crKxL0q1gIsvQxFIVZyL2kWoVEpGTweT45ezMeAu3z0cz9yI58iEPXxsqmGwx3UpWHh0DYmLtxL0eAVH+h5k/pVVqMRq+oTkMd48mU+eTqZw5H68961k/9w/eCV3orzLmAv3+7JkxD3ctKrZVjSE6kYDwhw0DuL1aR+GzI/nYbk7R/wPMzVxGXraXRhoyTntdZIOtRonsT6/NLhS16OHjqibS3ujcJuRR1q5DR6WNdjqNNPYrUNDlzYx3tf5tVEzarVHLWLvgyH0652Fj34Fe54MZs/wg6yMm8MUn2QWmMQyIWEFwTblxOc5UTjsIC6XluHrW8o1j9t4PJlH7oCjLC6L5ID9c1zvLQSgIPoQz+UqXnfZU9plSoBOGTP0Gnkqh/gOV0zEbXSrxUzQyyHi8vuM6pvM4zOhvH5vF0GJM+iUS/GwrMHXsJLqLgMeJ3mDTPMdCiRKCqIPcbrNmE8eTCHQpwSVWkBjlzZvKkzIH7afhSVRHHJ8hOv15fTyKSIlzg0tlxb0LhkQt2k3p9uM2V0ygMZ2HU2A+9P6e+ahK+5CpRYSExdAwZQ9rCrvQ16LOTe9LnO3U4/ROnK61D380eSBkaiDx42ezLN4zpIHCwnzLiIhyxm340rknzRx2PsYAAuy5vKR6y2MhB3srxmIg3YDCQ2OdCok/OZ+hkkP32Fpr6eUdxmxwyaBj6oD+ckylckFQ5lhmcCnF2aRO38XqyvCaOzWIancnnFummB95VY4k0c953WTDVnlVgx0y2OV5UOuNgfztXkGr7s78Zdqv53IOCB9Ase9jjE+ZQnD7bOZYRzP1sph2Go3YSjuwFNLg8K6VBfKEccnRGWM54L3SZYVTcBAIqdGrsdkq1f8lDKcSKcills+JFxLTJe6h98avfGTvcFAKEeuFmMlamVj0WSa5drEBl7A5ZJGAHJ8eBLfWj5nat4kLGRt9DPK49Sb3miJFYywyMRS0sytev+373CM93UutOsTIK0kpt2LVUZvSOruxl7UTfjl95kYmciN6xoVBIWumt7huaRU2pAVoZkE8leo8eqa26u9Jv7nA8irff91Asjffh6I5E8J9aREd34cfYp2lRY1CgN2PItGWitGO6CBLoceyhqMifG+juchTQby08JUhmonEj00gztNfvRfs5wxX9/nRbMrksH1zEhciqFOJ83t2lwd9jtzt67HfHAXzjdW4exUgzpfjwQnF8RNIsYZJrP8h3WcGa2ZiS4Wqfhy5mn8b63mw363CJR288nISwTKymhSatOg1KNw5H784mYRNiyDJpUOl8qD+MHtIj/N0pCkLtaG8qHLbfZXDCClSgMBnbToCYUdZqx1f8ieuoF8H3SZDQ9nEBL0hqFbPmDukrvcWxxB0Tg9xB1ASAt6I2sRC1SYGbZhr9tIeYcRr9Oc0C8Q4lK2+G03cKBnHhG9szni+IS4LgUJ/s4M1VbwXe8rvGp3wkuiS0+nmKQyO9Kid+L1fCmFE/ficncxLq+XI7XqwCd2Dn3sSvB9MRt1i6be7PZwAfmDDrP0yDhMI6q4cymSzwd0opSLiIneRky7J5vjhyMNV/DekFv8fmMU+gMa2NdszWL3WNYYlb49z6qgxzj3r2OYvkbv6INcTT/rVGUYGwfe5EpVIGaydgykcspbLDncYk3aSV+mTtNC26STkWavyXUzp7VJG4GVgNBvV6IWgE6Nim5/IVZhNTT+KUdjIm3nSloQeulSbIdXsq6iNwMMc1lp/ohSpRIDoZixuSMoueZMu4MK7SohSi14aupNWHA+dXJNMCpaqkZVacLQynUAGMdJ+WbsGARnzBi14TGX9kehPbKGjjsWzI9ayLSglzQrtEmsduC5SRyX8wN4tLUvf3zzO+vXvoNiuJIaZRuZjVa0dMmQSXuIq9VMf/Trn0+nUsLIP0mZB+yf43J7JaIGCfVRuvjoVCBXF6GVK8OlZRlqiZoGDwnNpYb81CsVlzvv0MejiLpuPUo6TKjS0siNPE315JhJJm1dWlxrcyan1pwfAy7zYcokbOwbSe2/j8hX87io1ZtXWrWYiNv50CSfwy0WXGsJ5gOrGFzFeuSk23NyzB+43lvK6qgYAHbeHc4jVzfacoyp86mnpUeGj3EVgbpl7C3sR2LwOWboPeF2p5T6Dl02Nbhxcv9QUjfuYnjccH5WCNkcdZb3S6LoHZzPBKNXbFmiKTn+2yx5nDXPj6NlPfDrX+N4/t7r7r/M/vYZiJGXhdpr22Iq3xgjlClRd4g5N/wPDtX1I67KiZchZwEYmzuCeTYvGKxTAcDtdnuG6JSyMH8awcZvmGz0klCplJ1Ndiw1LGZ45iRK020I7Z2HnkTOAvPnLLi2HBe/ctY6PuByfTBVnQZvZ1rLhD2UdWuG7NhIGvkgZQrbg0+x9NFCCkfu573KUMYYpfD5Z0uI3bLn7XTD0YFD6HO/gpw2S4INykhqdiTpiSeefYuobDNgmF02P1hoZpgsexPBXrtYvqvzwk7awHi9Yr6r6cdgg0xMRW38/GYkF1xjcLmyDGvnOi75HmVT7QB0hN1E6Wdxsi6cOrkeEaYFZLba0K0SY/wnuuUn60d8VBlFpEEes//kcABk9HSwqzaK8g4jUovsKBx6EJ9dKxEEtaDINuD6nJ/5oXLk23GickslT8du4ZM3owE44viEkKTpTHJM5Wa5L/b6TTR0aVPwxgLzh1K++Owwo3XkuJ1egX+vQlRqARMtk9mRH8WP3hc5Vx9G3NlA0tbvwuXiMsydGwg013yH99K9oVsICgHCHiECq04UbRKCPEvxNqjiB4s0LrfrYi9pJL7DhVVGb/ikJoAulZgrD8Ow8a+iplkfV/M6ypsN/x8By/nGEgRC2Bd1iJN14UwwTeZeky/fWj2hTKnGV6LDiVYTZus3EJE6mUn2KcwzTMVCpKfJvhqlSFqEdJsosXWrpemeRnnZYEg1boZ1VHXqk5dhx9i+r9hmk8juZlu8tCqIkqkZnDGOB75X307Rc7mzmOW9HxOiXcxQbQV5PW3sqB1EZrMlBtIuZlhqtMGy5DbktFmSUOxEXtRh7neKqFUacK0ukD0Ot7nUbsdc/To2VgejVAu4U+zFep/7/HBrIvvH7+HbwjEMssjjYY07RaUWFI7QzKFxvr4UBGr2Dz7EEG0lrueWs3vMAY7XRPA0xw2hWIWjVT0Oek1YarXww59QeSFCRuaMQqUWsNrhIe/emEvB1D34xc0iPfzk/+M9drm2FF/PMhz1Gogp8GKudwIHHw+kcPIebnTI2FE2mB+dL7I+bxrFuVbsHHGYd57PpiD60FuZ/4AtK0l7fxezi6MASK+xJjXsFF7P5/JbyBlMhe2EOxX/NRnIhH8iA9n/rwzk/xpTqES4GtVRVWNIwZBDuFxexo2WQEL0SrB3asDt7HISp2wlJ86ZirHZaFENwNNmTw6WRbLb/RTuEj2cb65iXu8XnM8PIiSkmI4eKfnTdwPgEzsHA7EcR59KZCIF78ZOx+ayhMY5bWQ12RDZN5+zb0IJNtVwCIbr5vKgz24W5k/jvb4aBJW9rIEh2kp2v1OAd+wcAqwq+fqlPYNv5HIiqzdhDiUkNjmRmOFC4XyN+FtWj5yPiiaxuEtDxk+vs8YlaxE3o7YzJWkpW4VqWpu1KXU1Ia/eDH+LSqKWL+Xmjq2sDxzFuJML6FaK8DerZGfrYHz0K5llFscPRaOobDLkdtgu5uXMAeCBkRm3EwIhDBJaVWyzSWRkzij0JN0stn5CusyeKNNcfGLncGzxNj4pnMidhSdYVT6E7XYxZFmK6O4lwkcqZ23ZGEabaoLe1MJomur0ONLWB1uzJpJeujF70DOKa0ypDVdiIWrllwYvdow/yLtJ04l2yeFoWTiTHVNwEjfxgeVdbi6soNeraXw85BqPGj1ZbvFIcz+srYkNvMDUwmgcdBpYYPKcSeff45LbXY61mgFwpqYP39lf5ZcnI5H3v0divQMx3te5aBBCRYYVKVN/Y9jGd9GaXcdvMSPJj9SsXgVKAb7uZaw9uAxhr2YeJvgR3ec1ExeuZsGOK9Qq63na7MnnD/0I9i1m5+Mh7BQOITIoB3WPCGmzEMd+pRqpjRo/zulrAshPHhf5vGA8EeZF9B9YwP2P++Pv24seAxg3Oo5lCf7IEnUJ7pyOmW47B9xPIdbu4VJpEMfkYXhb1GCn3cjrTwM5tn8rYzZt5FN7Tc1f2C1A6N3KT70v4HpvIXrJMo6s28qnBRMY1TaD2hfWDF/0M5fv9kFp3YWWTg878qJAoMZF3EJZnTF+jmUcLI1EViLlmzoNXFqrRsz2mftY+ngBhSMOMKTva17L7Ym/5wsmSnaMOMyqOwv4fMR1ahUGuF1agZFDMy3N2mwLP836Mwvp51GHZbyA4omtyDulBCbMBMD0z2mNUmM5tjrNxBR4oegW8ZlZNqdsQknplrM2diF/RJ5gevwycvof5RtLb0Zod+PnWMH0wiHsCDhFjbKNNt9uhmaNwUJbg4Y8GXyAiNS5WBi2cqByAJm33IH/vOP/RxP8zRfef5X97eeB6Em60BdrEDr9X0+kf3A2602SedNtwoMaT1RaarY3hDJlxHOmG6SztGQUS0tG8YnVXX5yvcg3FaNZXBbJs+FbufnGh4y+J7jX6sd271McazVjfskAvgi4QbtSiwe+V8mJc2aIVw61wSI6WmXcGbKNzbEjCTZ9w9V7YVy9F8bC3FmcbPHH36iS32JGsrE6mPwOC6qUbaQ9cSfIugI9iZz8QYcxknSS0/8oCaWOKNRC7ozYysyiwQTGz2Fp5lzetBhywP65phxh1EDh0INcbw1A+NyQiyH7EAjVGEg6Mddro61Hi09/00zry/7NFYVK8/WaabVhIJFzvdSXmBY/bHRbONd7LwPvvIefcSV+xppa95SIREYbp7LNJpFiRSu3PG9S1mJETLMf0wxSyOu0QKUSIELFcMtMItMmkVjjwMScKcx8vhRTUSeFCjHPUz3oLSujt6yMcy73oEvI7cg/0BIpuDVxCxKBku1hpxAZ9DD98QoOXBjG6quLeBmxj5FGaZRUmfKxaS6Tt3/AZ2XjaVXKeBlylq2nJ2As7SBUKiVUKkWpEuB2ZgXJ8W5cyQzgTpsfX4zVkAY3Zw4jpVvOqzd2yNVCpLVi1hjlEeN9HecbS5gU+ood4w4S/GQFuovf8LHHLcb1e8k2m0S22STi5FrNefdrdNoqORh0hK+HXWCuWSzCj6rfggxenAyicNw+hpplMqhXBrpWbRxzfIxAosSqbwVNndq4P1rAtxbphEZnERqdhaekDXPtdk4/C+f8wUFYfVLAD8uO8OnUcyTUOZA74CiqyGaSe52hLNYeB7E+dqZN1NQYkh5+EiFqtlonwYYavq+KZujiuLdoKaVMza/BZ4lvc+PygJ3cXL+Ze22+fN77Bk/8LiNpgcGJyxgdnUhB9CEkYiXbfU9hkCfEQaxP7oCjFHZbMMI/Hf+huRx+2p/DT/vTbddNfLsb+iYdPJer2GsXS1KzI3rB9ehYt/FR+iQM7Zr5vmg0n6eOw9WrAl+zKsxM2tiYOhnc2tERSFj71RkONYZzPnI3qWGnSA07xWDLXB74XiXSsZDddi9Y7f8ItULIe5Wh9OQZ8HnxBLKH7KO42xxL4xb6v55IarNm1k5thx6bHC6zNGkuFiI9DNKkTLNJorzdkPJ2QyaefJ+GNh28jGoobzUkfFzaX+N0/oXCemt/+wykpVtGTL4X0d7Z9DfMZXfRAKptFRy7M5CQvnn8MOQcKe0OjDVM5ufaAW/x+OsqBrPS/BFC1BS1mGJhp81u3xOAlM/MsgEJvbXq6FHn4CSpZZKpZq6Gf2S+JmB5tqErUXKtzR9EKrZYvaI0QoNasdNuJKPNhieFbtyY8CvLcmbjZ1zJV5VD0Q+op7DJhEdBJwhPmc1un+OUK3sw1u9gje09PimbwF6nq3yn3Q937WrCtQtwvqFRe3F0qiUqYzzBJm9Q/P/Y+8vwqNJt3R/+VVWqUqm4u7sHCCQkSJDg7jTuhG4aGhpaVnvTTjdNQwONu7s7wYLGhRB3d6lI2fth9uLsc96z9zlnrXVk7f8a11UfqMz5ZDIz5xjPGOMe920o6HQAJFYJKou3eh8nMmUK01wT2TtgH2syp/Gu9z2cpfUsP7sEx7BKTiT2xvKFlDNv12Dj0MTTKjcAfnN4SqmqntGKTnwOxKF1/hPyWCsnz7CVmBdrcPEQNN/X5k1Fuc+RzumN/Bh4hqxOJ1b5F+Fx810Khu1hRb+7b64t+NlbeHpX8m3lcFyNGhl+eQ2nRm9lSfocZgS85Gm9G2ZenVS1GxNy621kRt1IyuX474xDFyHsJBvVCorUrWgD2xhjnvIGlTPb/TkHdJFsDDiFSifhenMI58pCmRNylo52GWEyOfMDnlKksiB70XaedsGSbXGsW3AJX/1K3k58izG+6Vy90YddkgHUHnAl/lMhAynKteNjywiMCiT01pfyVXE4BbfcUbqreGDtx71WMW8tFur4owyziTV8zYLm2fg9moOuTcpkx2RWmpVwpl0gH/zGSaC5adaKyLjjTf9hmVT4myAWacntsmX7leEY+jZxqNUKf5savI8sZ9tbu7iilFPVbIKFVSsxmeOpSHQAjzuMss/kfYt8/HfF8d1bAhxbY63ip8LhzHJ6zt76flzICCVh8G+M+Hkd22Nr6bKA15FH8bi5iBVW99FoRUTLxShjhPvsdXw5Oj0dxq7NKDtkiNTCnJadXSMOskameiSzu2Yg0S4PkYk11FeZ4ODUIBCFuikxNeikr3MRVR3GvKq3pfORJU7DSvA0rkNfJGVT7hBOBO9jzqu57PITmtr74gfyyZRsHhR48Y5ERVKtMxcGbcVaomHFzPt4ShUsKR3IHufHbDo3jg8mneWX/ZOIGaKgIdGGeHdPsqMPMfL1KIbMfcYS00qMJYLg3vdKYYp9cOY4qoot8DWv+Ue4HOBfg4R/tX/6DETXJiG+31aK28z55feptHTI+axsDFNjE3iR58qRighGmKbxrMOTEqXFm/P0xBo+KJrEbJsEivJt2dgQwNT4OIGlVKvkYSd8WhPEFKMi7CQdjDDo5naHOfYGzbjJ6/C2qaVDKWONeSE9PEtZWhbFDNtnzLB9xv0KL/Y4P0YvR8HKvOlYypXcyvWnWWXAR77XeNbjNP2T57DI/TGTLq1idfFEampMiJHrGG2VhrlYgULczat2B+alLGBm7+fM7P0ca4N2RtpnUtFhRreZjiOtFlhYtNHLrpSWJgUe1xcxwD6fbSkDye5y4Gv/C8w3qWFtxlS0Mh1dB+w5OWQ7ZnldrLRIZLRzJi97nuRlz5OcbLMkRvGaKk0bE0Y8JW/wfjZFnuS70ccoarQgb+wf9LEqwcG8mTsBl1jz+TEA3k+fyoWKEEKfz2SQfzY7mh3ZfncoEclTiEieQnuzAePs09AXq9nplMCIPqksTJnHruBDhBkWo1TJkInVfOh5DYcremRFH8D2uYYPZpxhqncys+2ecLfMGzc9Yw713sv3BSMp6bKgpMuC3zMHcix4L6u2LOeT7AmkNDiy2uMOAJmDdrGr2Z60FieO1kTyuFPLpwUT0OvfwLWaIJZeXswE7zTOJ/ZEZaHmVYED6kmNJHW4kdThRmBACT/bJZGwWoD1rnW5wc8L9/B5v4vcqvTjS+tM9l6IBWBD1XA2VIxkqN1rRGIdLt7VFHVaMTpnJL8XDWKlWQnxSk/ilZ54S42wiKimUyNltettErK8OF3SE78+RWi0YuYY13HK4za5s3aw7PYCwvQF9mhrwzbG2Atoq40Nnuy4Gcui0mhURjouNYRxqSEMy0cygsyq2HBnPF1aPcYHpdKp05Gyfjs/+J954/RCPUrxlhqREXmUXc32ZEcfIiJ5CucmbWJCvxd8GnAFdbsMO99a7HxraUyw5V6jH+9aJPOo0IP9LTYEG5fxcsRmDgYcRObbTKRbEfGBF4gwLeBzt4t84HOD22//hFor5v6FnnicWYaRfhe2EhkV2Tb4SQ3xkxpyZ4IgIfxZzytssk8gwqaIqc+X0q3TMfZZHPc6pNzP8+aSUsHr+dv54cwkMt7dTkm+DdkLtzPfpAa/x3P4zv0sF7JCuNWhx7manpyr6UlLgyEDMiZwN/Ai+lYd3M/0/d/vkP4/Zv/0GYilZQv973zMZ5GXkL+TwNfpo1jncJ0pZ1Yza8gjAIq6rclsc+AL54vs+hMj/pbFU+YWLiDcs4W9w3ZjJ2mjKsiUzQ4vAAUvOtz52iYDMGBl6QAOuD6gtNuCUMNSnGX1nFeHYmaq5GmXGrVWzONSd3Y6JQBww7aU9dU9+HjGKeYY1zE2ZwSabjHPUryo9DHm00cObJu3g59KRvDekGscLIxArKdlf4sN2R32+J+YjEYG0YMyGOycw7USoRbd266U3deGcnbqJorsLLnWGIyJvlC+M7NoR3PPAr2eGuQG3W/0ui8pFaT0Po5n0TJmfHSdBcnzkK1uJ/qPtXgPLaDFQthxf/xwMe/1vcnhwj7oSbRs069l453RWCWL2PiX3XidiWPbqH2cTunJCrMIStvN2RR0khi5js9rA/nSOpP11T2QidQcHLMdb6kSgFyVggftfoQbF3FJqSDOOp4eRiUUqSx51OLDfv+DjH6ygkizAo7+spEunYzvN+5gwfP5nIn8g+kvl+BrI+wc4zJn8bDHIQ63uAHgFliHt9SIsGmZJFU54WVexw8/vYV4/WHSlC7cr/FCKtbQy6KUs03hWOh3UNduSLtKhoNfDf2NX5Ps5UTrbmcSNu5idN8xnNsZBkBFjRk+T+JQWas4OHg3iy8uRe7SiuSBKanrhRkGkXcb6d0dJNU48bLnSTzvLCDKqwAPRR1TTF+SZujILOMG1lb1xNtA6L1Nzo+lrtkIF+Mmhhq0Ii+XYunVzrvOt/lUOQHPOwt4K/gFKp2EgaHZDHu+nMleKdyp9GVb4kAUPs24yuqQubSxxOY+e2Y+ZmrBUABefLUdj+uLKJi4E6+789G2yJgy4gVuemApVmIXIYAPylpNadQqGZMxm8chZ/F9OJfN4ceZemgNA4anktLuiqxSyo+DhHLgnMLlPMl3521GEBfygGiDAsY+j6PO25ibZX7M8XnOzSp/grbGoXTWIFaKkTWLeGfGJS77n+Zbq16odBJOpvbCIECfcf1esqFOoFw/fmwQGSu3M82oktAd7+I+pIjsfodYWjacr8MuokJC3qD9bGlyQaso4vWC7fjtieOPt3axt8WWhSbViEQ6wmRyTvTbyerX0wm1FJ79X/odZ4JhO9MLhvAq6jBeJ5b/o9zOf7pS1N9q//QoLH1XZ92II+PJuenJrwt28f7vS7AcWY5UoqG43gJNkSELR9xlX2YkOQMO4nlqGQBugRWEmFdgLlVyLKcXIXaVyCRqnpe4IpOpmeqZTLPagHPJPSkYuRuAdyr6UNlhyhnPW1xRypGJ1PhKG4m5uoY5fRM4nCZwEgW5VDDRNpmNWUNRtsqhVY+CSTs51WaKXKxifcokXkUdZm+LLfoiFRtfxzLf8xn6YhUPG7352PEqgVIFkSlT6GldioFE4JuMMs7lg4uzCO2Tz3z7x6y6NZuzI39j8sM4erqXUnjQm2YvHdJ2Efr10Nq3A1vLFpRXbWmL7ECjEqMw7iTCsZh7z4MwdGrlaA8BabO3vh+b7BOFpmXODPQlauY7JTDTuI4ydTsqRFiIxUQ+Xk5avz00arto1cL3VcPZ4/yY3slTGeH4ig+sXjI0bTY1JQJ/l7VzI896nH6DLAKBzuOPsoGEm5dwLD6avGkCw7HHtcWMCk3j8cFenHv/R0a/WM7+nvtRiFXcaAukqtuMCznBXI7cBsCJ5nAWm78k9uVSvg66QHG3NV76VZyt70WbSo6rYQOfWCdgIjZgQUl/9MVq8lstqWoxwcW8kYL7brheaeXY2Z1MfjWDzzwvsal0GACRFoXMNE3krtKLhSbV7G+xYbxREfPzJ5Ke78T88AT23x/AD8OP83naWLKiDtPj2zhaIzswSTCgJbqD/p75BBpV8L5FPh5nhOcuOjybbxwvYy8xQCrS44cGL6aYpPBV+SgOuD5gTvFA1trfYEv1EPY4PwYgX93Gt5XD+c7hBrGJS2grNkHSKcIooBF3swZSXwqbIqlzG4fD9zI1fjlHB+4kSCrwvk3Pm0ioWTnGkk785eVMMGxnRXkEBhIVP9sJG4gjrRaYSDpZ9XgGE4NTSK53QiIW5m1qLzpjMroSjVZMqGU52xyfMT53OO8732DJS4Gl9+Oga5R0W2EvbeKr2xPwDyqlr0Uhex8OYE6/xzSpFFR1mhBhXsCdWj/6WeYDkFDvQU/zUvwNKrjREESbWp8BFjmsNCvhfLshFSpzDhRG0phmzezR8ZwrCmGyWyqv221ZbS+UEJekz+Ezv8vsKh/Abx6nmJKyCIDk8BMMyRrLnYBLb5ByHwRe//tRWFbOusAx7/3N5784sPZfKKz/VyzYrJb0UgcCYwt40u7N1Pn3/uxhCBPhYl+BD6mvaxEAIitB2Odnr1N8UDCZKfZJkGlMarYxv87cQ7RZ3pvde3p3B5dqhKGkvS22OMsb+M3hKQEJcwm1r8DfuJJvqn0YFZ7Kl9aZHNIIx77nfJOlp5YxckgiV+/2Inf2Dt6p6MOD472QdMHJtb/gcfFd5kc9ok0jx3SnCdUbTDiR3ot+XvnMTl1Ac7EZn8SeZ19xFO3dggxvb99C9JQiRlunMVahpGjgdX6qGMH5/tv4sXIETX46DD2a+SjgOlHyEpq1evxYOYI+y1+y0qyEgITZTPRI49TF/gwankbq3hDG1Qr64npGKuq6jahoN0Eq1uBu3EBhlw0rmn25mRjMgeE7ebdkJH/0PsT6yigSqt3oZV1GrHkWUwuG0txqwM1yP762yeBQ4H6WywSUzVTHpDd08PnqNrK6bdhVPoBYm1ecKe2Bd2gpgzPH0dRpQIRfASZ6nQxfkIAYMJJ3cb/dj+3JA/hL76soJfp82eMS7+RPB+CG3xUedyp4y+slie1CxuhxcQknhm9jXd4U0m/5cLe3N9aGbZQ1mfFt8Hl2d/QnPeIoGxs8eeXsQOFaMUOSF+BtXsfiJ/OYFig41E6tlNjH7xDgUMX3F9xR26g45V5Bh0rKlB5JLDJ/zmHr3njLqvG1qWFtVU/a3HTYWzejHdeCoUjHCtu7TL+3nD/k/SmYLATJXxrdcdEzxjt+Prkx+5GL1DztcCGv2Yq1VT2ZZv2CMJmc+Nc+zNJIGWGZwda8KVwNPUCfM2vJn/oHc2wH4m1Yw61KP7LueOHevxSARc6PWbxxFa8/2sIVpSmhsgYOt7gxx+Epf3k2gX5e+fRR5ON1Yjl503fgc2g5PScU8dn1qeRP/QOPm4uYFvqSBpUhJekOfDLqLAAP32rkU/vruOkZMzk/lsedWrLK7ZmXtgxZsxh5Ofwsi8XRuJlfPU4jte4kO80Fq97tyKw7kItVXEwKo3DMLka+HsVsh6ekKoXZFSNpN+GGhXySMZ7uFDPMI2pY4JYDyDlTF05+kxUDHfIZ7neOd1NmkNn3CO6XlxAZmM/0s++SPn0zw5yyMZMoWel8B089I1b6xAOCrEKHSkb/9Ik0K+X8kdYf+AdRuv9z77v/YfZPH0Cyqqz5S0gCuxL7vZlvGN/oSsNvbrSO0kCHmC963CLq0hpm6cScixbKD1OfL+XtoPtsTItl4MhUHlwPJavTEYVYoPbwezyHb8LOowhoxOPiEpDqGBqcxU+AiaKTY+53adQqOVsYytbA55xpN2Z8sCCouPjiUkKj8rmYEopMLcLv8Ry+CL3MqxG2LHR+zIWWHqATGpRXC/3pnKniW5s0vh0ioER+MXHHw7+GWrUJFnIltS1CQ/pafTAafR3b8gbi4H+ey1XB5BTYE+xmwOMUXyIicnjxzId4Bz+MLTpYmzwVI4MuXtwJ4Hb/Ajrb9Dma1pvfZ+3BTa+Rv8xWsNgqC4AXLW7ce+WLu1MtbV36bHG8z8isyWzzOUZjsIL+ctigFZPd5cAA02zunggnctF9LtT2wFLWTs6Ag0zOjyXk5zjaAruxvyk8Wrfe7mRb4FFWVUQzzeIZACuc7rHmxAJWTbzEyfJexAdeYOTrUcglKs5ciUZeD4mjBWDAobw+XB+wheF3VrFlwBG+eD2WXtYCXHrk61G8znEEuQZ0IgKjypG0CU3vLzwvEhOow+fBXJ70OMq2Ji+OVkfibNhITOZ4rgWcZLdxFN+HnUUq0pDW4YKeu4YeCmHq/4v0MeyNOMDemv70iM7lZZIXXkZ1WMtaOXp6EC1j5GiqDViSOQeVWkJqphs6MzVzXZ5yvDycGY4vudvuT+KwLRxu8XvzvP71+TIzFeCrW9MG4mdfTft1W65EGXL/TgSpb9/D1FzJDJvnrDs6D/zasBQbYudbS2TKFNZ63eLzQ2/R5d2JQReUNgjZ3l8qJpD/8XYWlQ6ksMWSz9sNSe1zjPXVPcgfso+NDZ4MMdBwYdIv5Ku1HJv+G79WxrJjzB4GZEzAyaGeBpUh8XdCyZsnkI8CXPG5xtKy4VjJ2kgvt2fhg7f5YsoJ/igewE7fIyR0eFCrNmZ3ejQpjvZoyhUY1Ijo1Ejp5VTKrqR+ONwVox2j5XWhPZ8WTGJXjIAW3Ng0HLmom84uKbcW/sjU9AUYieX4PJjLNz0vMNW1mVsderzscCez7xE+rA6lcIxQvir2N6dTpyHSKI+XSg/spY1oqWOhiVAu/PaqBxoTNav73iZKkUtvfSmSf4TT+Zek7Rv7pw8gXrZVdGrD8XapplmtINy0CDdZHZrvH7H22my+Gn4KO4kRc6IfM8g4i/HxbwNQMGwvADW+SZy62J/QwTk8rPemuUvOlepgLI3budUYRKhNBeHeRWxOGkxpuxn9TXOoqTIlV9XG8NurKRi5G+/4+VyN3soH2ZMByJv2B0NnLUSySI1Zjh6fTTvFp6/GE2VfyBdJY5FKNczqm8ChjAikMjUeO6Ckf6uwM70/jzDncnY8HIHatpsTg3bg4CH0OVq1YvbHNjPfIgE/qSERPqco8xDRooW0sb9hJJYT2WyBv2ElX7wey19CruEmreMvsglYydswNlMSH76HId+tJekv20kvt+eMp1AG2HRuHKH98skotyd34AE8bi4n1KOU32oG42MkvJA3/K6Q0t2Jq56WvaOLuN/kS0mrGZE2TbRoO6ja6kG/95Oo7zIisckbgOGmZeR227LR/glSkR5+jyZjZ97CnLH3OFLSB4VUcKgysYb+ZjkU9rEgPvACAInd3bzocGfUifcZGpPGhYaeSMVabqQGAmDv1EigbylexrW8Y32fr8pH4RImZI8xch3vVfbiSt9tBNx/h4yBu7hd64dWZ0wfqxIMRPqIRDp6y6t42OHCo3pPXA0bSFMKgWup32M2FI2m9L4LWcu2M0usYbPDC/wTZhM0LBczqRJZk5iZbi9JbnEhUaXHMv9HXK8Lwte0hiWmlWxpcuHd0pHsdLkJ6AOwpyCKxxY1SP70QGf77iBYZsCCGf3Z5/KQ9zx78YlVNp9YZROZMoU9s39n/pkV0A9q0mzInb2DBSX96TsmjR1O97nS15QJf85S7G2xpXfyVD7zvcJzfQ++/pOq30Dcjce5pdwd+zN+u9fz9pQrrDQrYWlZFAYSFfur+3HQ7xC1GjkLU+axfdpOphcM4YrPtTfv2U6nBDY3umFk2MVPM45gI2kjxKKCdYWT2eJxik/LxzDAI4/zdT0xcG/BpWcjprIOnlW4UhC7l6meQ8ns7qK/fy5m0g6GGAgMErtlnQyQd6DViLGVyGloFiSAHSybqVUb81WdAwdvDeTc5E2cb7dijsUTVDoZGzNiuRuxg97x73BjwFZ66lexsnAK04yusKPZRXgPZ+xgTvFAXra4cvy7EUz48DaQ+w/wOv+yv9o/fQB53WjH4fh+6Du2Y6Hfwfm8EJL77mN+0XDWDr3C9YZgZhnfRy5WsejSUsb3ewlAr6/j+PC9o1wrC2DC2ASGmGQSa6DGf1ccIUNyeJ1qw+QpF9lZGcNKsxLO2TawyeMUo66tRq9JD2+pEa9GbKdNq2G4TxajEt5GoifUjJeWRWH4RTkjDBvJdbDmdnMgmwNPYC1px0Svk0uFQTys9SQ3Zj9t2k6+8uxLlsqSCakTGeebzrln4UTHZPH0sT8rX83kaZjQzNRKtCQ2ONPbyA4nSS1KnYbfa4YRaFTOLwnD0DcVynPbM/vjbl3P54/H81P/k5jrd3Av048DMXuI3rmWP/6c1nW1FihDAL6ccpwZRo1ovbT0TJyJXqWMVK0zm4eeYeiR9Xw9LwO/R3OIccvDRNrJq3QXrkz+g6CLcQTOfcxrlR4VQ7RESlS0qWUM7idkU5ktDhy8PZB9YaXkV1qzIuw+HrIa1jyagbG5ktomI7r8VGRX2SKXBCH/izHjfxqOlbyNe5l+9PXLZ96IeFz165hjXMchUyt2ivsDMNflKXKxio2vYtlkn8jzm4HMmniP5WWChnyMWTbxSm9yY/azrcmd8lZT9gYfYEHaPKKr3REnG/Od2xDqu4zIrbKmztiQee6C8JOxpBM9sRZZT4E6/kmuB+/IlKi69Fhufw8zSQcPIzzZkd4fabohnd5dXKgIoeGKI+GL7rCqojeXs4LIH7oP0H9zn8+H7EWpFfGheiLe8fNRt+sRFZiHqbSD/ukTUUi78b8cx4gxz1nrdYtFifMwqBbhcXMRYodOPO8sYKR/JvfO92LaMEPSih350lQALDisU9P4mSG99Wt479k0AhXlzDBq5Nrm/qxae51VhVM4P28jn5eO43pNIDbyNrLqbdkdeIjDTb1xkDUy3TOJJTcWYePWQECCMGT6WcgVNuybQeI7v1Fgb82NlhDOZITxds94vA1qGPk8jiC7KqLN8mjTyDGQqChstWCsRQrPK13Y32LDWsfrdOr0yGu24nHI2TdDis9y3fnWKAyFootjrY4YGnYKcreBFzjSakGnTkrezB2AAcGyduI7DQmU6ngcuRNzsRGW5kJZdM3zaYzyyWTEq4msdBWg+iqdmtI2Mwbb5vB8rCs3KgOA/xIU/y77VwYC/CcIIP+yf9m/7F/2f9JE/KuE9Vf7p0dhmfja6s5ct2BbxWAyHnjxx8wdLE+cTYxrHiFGpezM7cci7wQOF/ZhgccT7PSaAJhg2E6XToW+SMqdDglykYpQWTfn2p34Jm0kDmbN3A28SOCTWYz1yOB0Vg9WhN0nucWFCVZJbCkazGq326x5PB2RWEeYexmNnQIRn5dpHS8PhJL0l+2MfD2KhY6PuVwfymLbByx4Mh+tSszCngnsTY7ivd63edrkwRG3eI60WvBr3hBM9DsJMa/gfZt4+l9dw4HYXQDUaIyZbChIxB9qtSJMv5QmrQELngiEhX6P5jDU4zWN3QqePfPDJaiCmnuO2Awq527gRfqnT+Rh8DlmFg7G37gShbibBWZCpmAi0md41iT09dRc872Kx8UlePtUUPTEhdcLtnOm3Zjvc0Yw0+0ltnrN7C+LoqDCmunBiYwzTSJSX4+ZhYM55n6XwCezWB0g7AKv1gbjbVzLxbwg9ofv43ZrEI1qBZduRCD2akOrEaGfaEj6e9vxuLmIKaFJ5LdZYW/QTFKtMyqtGA/TBip/9qSyrxi9DhFGQs+Ybz/axd6qARS3mCPXU6H3pTk3Tx7A79EcPg29wt7SaO4EXML7/jyMDDvRasW873+LL1+OIW/Qfka+HkVbtz6rPW5jIu4gvdOZpaavAGjQqjjY1JvkZmfOeN5iesEQTnjcwevefHQaEbo2KdJGCcah9TRnW+AYWsmHHtf4Kmcs010SqVMZ4aJfzxTjfDK6hR4SQM/E6UTZF3Kv2JvMvke4pFQQIKth/I51XFj+E7FX1vBRzCV+TB6OQtElEHoqDQROp91xZC/eTmTKFIY7vsJCrx0LvTYa1EKP7FxFKN94nuNsUzhqrYSLSWFsHHQc4M1zU69tR4yIOo0Wb6kRsa/G8K7rXd57Ng0bi1bmuj3lWbMHJW1mHPQV+Kr6XVtD4ZhdeN+fR+7AA7xT0Qe1VoKBpJt+Jjn85cRszHrWkhB2kncrIqnuNEFPpMXBoIkOjZQHpZ50lBpzcvwWFm9cxcfvHmWkQiiLatFhIjYgW9XOjbZAVpkXEZkyhZNB+4h98jaOFk0YSFWYyTpIuumP28Bi8qutUHfqMS00kRGmaSy8uZhdsXtZ+nguTwZtYV7eNACu+V5lVUVv9MQa7pV785b7y38ICsvI0lkXNGL133z+s6Pv/wuF9f+KScVahhhoqLJJZM3MG2R1OdJda4CFdzv9Fbk0eyi4W+dHQ4shewqiiLAVmqRrHoQwMPA19zN9SRu+lSGps1nvc4OjFX3Ijj4kYMYDwdigi+9tUzmTHUZVtxkDzHIo67bke68zzH22kIdDNjPql/VkFnkxfJRQHqvpMqbVXUdM5njM9TvYkDWK+PA9xLxchFYtxslBICt0cahntkk2Wp2YiXnDCDKpwFjWhVxPjZu8nj2NfVBYt3OzJQiAwy8jSev9hDaNPj/bJaFFHzFg9mcJY2ngI+aZZhDfYUeSsxNdGj22Lt5BaocrHheXYOHUjNex5awYcQNf/Uqet3sS3yFwNE02bGW/7xFK1YZ06TQM6pHFNw43GH5pHYtKo6npMOZX/xNUqM2xkLThZNhMi4Wc46nhXDIJIj3iKFlnfAnub4cm04Tv2oQGbH+fPBK+7YPRvEZm3opD0i5BbK9ErxOyog/R5y/LcV+UQ8COOAaNTuPs/T70CM+nsVvBFJckpCINK81KOPR9KgH6FUx/vJRLC7cCoEHHMfe7hL2YQULoGUZvGMkVpZy+LkX4yKoxknbTqFUS4FBFoGklLWo5m3KGcCxqFxvqgmlQKljvc4N1N2bSt2cOdZ2GbEsZCMCG3he4UBpMb5sS7nRI0CLC8/YCZAoVqjJDxGoRI4a/5Ep2IBpTNeV1Zlw068ECtwQKu6wx1VPyoMmHJaaVWEvaWVURA0Bzk4KtvZ4ztdMEv8dzWB98E6VePZqerYx+FofYpJvv4scyJ+oxh+/3w8S3E7FYyy+N7iyedJOlZVGotWIu7RyA71uvefHCm7H9/3zuHjjw/oEVdExtYpBTLsY5ekwe00rQljhclv7GzIQlDPTK5d4rP+RGXXwWcgWxSEey0hVbyxZWe9xh/YOpGFkqUbbqM+TpegBmj3mIx7XFGFoo2dzohr5Yzdd28fS6sJrPxj/EuW8py13u43NvIZMCUmnp1ifIrJIJZknsrh7A0z57SQ0T6GfUhtCqlbOkeBQAU2xecLUhhOxGW/S2WWL64wXCbUowE+uxNfwoH72axN3Ai6yv7kFLTCF5dVaoG+XM6PuUM6/DiOyZR7B/CT8Wj8DVvp5+j1ewPPghAB7XFyGSapEVyPEYWESdyuh/jxP6/7D90weQbq2EwCezuNJ7BxtrhrDV4TnBI7chF6kJlhkw7slAVkbf5pyX8PJtdRCYS8tt71CqNsBe3syzLkM2+J3HWtKGnkgrkCd6NdIzcTqtbXK+q/fB/JYBK6IfMOfVXFyMG9l6bQQzhj5ixG/raQ8S5jQaVAKFt41+K2tHXyJQv5x58YuY0iOJ3vdXsCgkgf0Xh2Ds2kVikwsVSfaYByroaVBEtYkJNrIW/uJxhSU3F3HM6ywTs6cR4VjMkcRIADYOPMHhyr5kVdrxs10SA9Mn8zD4HA3FZuz1siW5xYVbNf7s9jqBiUEn1XUmLMxfAgYaPL0rqVca4t2zhBvVAeyo6U/OgIOsr+4BwLq74Ri/1qPVV42dSwPNj234YWInrR5aHt4LwbAcFtq/jU4MH044S8buIHwWvqK1Q46DaTMAB97dRJhMjkfNEtwdhQnqpConPtxwChNJJ9aBLVSpTXn/2VQ6XbvZ3OhG2+g2Xha68P3so5ys6Y2hWwunPG7jcX0RxkFd6IvVTK73JbXYkdP9dmB3Tp9JFvMAWOCWwIMmH2QXzIhRjKfzkD2J77tzP9uHURZp5Ndb8q5sJEsd77O3sj9v2T2luM2CKo0p+UpramtMmdyjlerBV5lrkoeRWM56c+F+zDBq5Hu1hKwmOx6UTkeqp0Ei0zDL5yV726OwtGrFTr+ZoT6v2eH0BK+Ty7ir58O1pmDe7nuP9y3yea/LlA11fhzM6sP23kcAGBeVxPpqAbm2P3wfcemzsDJsJ8SuksRn3uisu9g2bD8naiMwdW/ifvAZvG4uZk14IfnqNlTGIooszRnRUwAfBFbZM95cgB7f7u7Dkx93MGDFUpy/aSByWiprq3qSsXI7Uakz0HbqEWueRWREAc6yerI6HeljUcypwzFcX/kjjhJjFDGHGa3oZHlZX+b0E+ZQ5j9bwIUhW5j92xpCQ4vZ/GIwirBu0NPR6/ZK3ul9l/VPpuDmUMeFnGCkyYbkOjmSEWCPn0kN15S2fPBoCgUj9rB+4SkeNvvwLFfQoZlu84yE6yEEDcnl5TgLNmUPwcOinkvtjhws74u5gZLPawPRE2m45HMdfASGaEORhmeWrqxPnMyD6G2Ua2Scb+rJ14EZHGkVGCd+6n+SD668hV5IM0Z63bSo5f8wv/OvEpZg//QBRCLSsjrgLnNezWWUQybH28y50RCEj2E1H9V5MbvPE5ylDfg+nMv8gKdMzBMGxVwUjQwyzeJbmzQuKRX8mD+cGNtcnA0b+d79LHfb/WjTyNlzezAfDczhwRwvErscaOmQ80fgdXok+DHAOJvqqSYklLnRnWNKt0a4nRczQsnxskZuryLUq5Snta6YPjTAvXctYt9Wzntfwj9+MXlzdhDfKeJOSyAfWz3nRoc1K17Owt+/lMmvpzLQJo/UZicGBQllla8yx/Bt0DlWl0/nToeEwXY5LC2LIjiomB/OTEJlqWZgWDa/10fzjlc8Z6t7UtFqwginV9hKm1lhVob3keXkztrBQzcoUrfiIRemvG+M2ITxKLCTGFGlaeOSmzffxY99Q6c9WtHJ6JyReBnVseH2eGa885hvbdJ4T78X2S227G2x5Zvno1BkyJEbwOohAqXIh6kT+X7PdEQaUDprcQmsZKx/Oo76TYQbFHDTyp8TXucY9MV7wiR16lJ+aPDC0bGB5Tb36NTpEamvx0NH+EvRROK+OfWGbn549mhu+F1h9FwFr/IdubVhIxsqRvJl3wucrOnNhuALGIq70CDmjOct3C8vYVzPFD7LGkuEXQlfR53DP2E2Vsbt4AymEiXO+oJWd5G6lZTexwn6LY6n72witVvGrxXD0CJCItPQnG7FA4UXr4vteGj1BINyMd3tRtj3rMFI0smpNlMStvRGO7Wevq5F7KgcBAg8adkttlzzvcrEvFEcDNnP1INrGDn5Ookib/p55/OkzZv7L/3xDSzjTJs57/W5zfrqHjyo9KS9S0aHUobxUwMOrv0Fy0OGpPoJMxUOPyQQ2hWHOhBO/DScCWvvcrfGh8ntltwLOc40xRg+TRzHsuBHfHd1HHMGPOJrmwyOuEfxsMOFTq2Usm4Ldpa7UtdhiKGNEKQWBj1hdd402ly1XG8OYXxwKvMtnnLaMgxRmjHNPRRoO/WY7/yEJgcFv2kGY2PWRpdGjwcHw9n84Qs+UAoA2j0l0cQHXsArIRiAj1InovZRUt5qil6THkpDGal5zngY1ZGf5oTIpovaNiPalfo8q3OlJMmR+Jk/8XXlMHpZljHBIZW4wknkXfGkw07HEUVfLo3YDMCSrDmsiL3JgV0jeOlujEm+GDj89zud/4SkiH+r/dP3QFyCTHSfnQ1loUk1LdoOCtQidtYO5GeHByR0KthZGcNIq3S+SR5JP/cCnOQCqsZe1sQKszK+qvPHSdZAsH4ZMx4uRW7YjYNZM0udH9KkUbDjtwl0xTbT1SlDP92AzsAO5FkGdNhpMc4XYzK6kqF2r/nM6tUbqoTxA59zLiGcr2NPM8u4gUatkj4PVuBiU4+RtJuSZjOmuSfztnkqWSopluJOjjX3pk0j50fbZDzvLKCfVz6hJqWMN04npUtA8PxaMBQT/U62e5wk5s5qJHI1zlaNlCY7MHVYAqZ6ShLqPRlpk8Fbxnn0/3kNIi20+KsxdWhhlsdLppiksKpwCunprojNutnaV6hzv3t6IWoTLREheeQc8kWjD75Tc0i77UOXexeWVq0on1jhtCGBGxWpBP0Wh/uIQlpV+sxyes4U43yini7lVdRh/B7PQaonwDSP99xNUqcLX1yfTM9e+bgoGrjwoDeSdjF35wq7XoBdzfYkt7mwzfEZNZo2zrb5sty0nNDnM5FLVcj0NIRbldChkbHIWiDLW5Yx+42McEzmeErKLSkYtvdNr2dtVU/GmiW/kefVouWnBh8WmKbwdvEETnnc5pJSwapbsykYv/O/eq6qNG0syZ+CTKLhe5dzTExcSkebPvPCnnIgNZK/9L7KhtvjmRL9gtOP+uAZUI5WJ2KkXRZGkk42JsZyrf9WttUNpEurx83XAuoob/B+tjU5cb/BlxN/8nb1eDmd5PATb3739IIh1HYY0tqtz5WQfcTsWkfW8u0EbI8jK247c4oH4mZQzyzzZ4w/8j5iIQFG7aNE0yJ7I698RSlnfepkfgs7zhADDU+71ETq6zExbxgxljkoxF1ktDtxMSUUV9danI2aBI3xC0tZNeAmDxoEKLaTQRMtajkuBg3UqwxRSFQssXjIpbZgqrrN6G1YwFSjZjxvL8AgW45Rv1palHI29zjOimezcbOt45b/ZQZnjqMox47Nww9zqSEMEODBk/NjMZMpuZctcFX19S7g+WM/1o+5wBLTSnJVbW/6NYucHzNcUc6MnKk4GTbxuMQDdakhH4y8wO36AA6730AqEjZyV5Ry3j+8gFdLt+O3N46lE6+zLuDm398DsXDWhcSu/pvPf3LyXz2Q/2esus0EhbibD6tDKe0w52meO7NDnzMyaxr7fQ/jaigILz30yKOqw4QVtkJz96HShw+rQzl9ry+fjz7NO1kziev5gDu1vuiJtHz8ciImDwyYtfI6ztIGPk0dR8ZKYQjxeB9zvtk1g1ELHnOlKBAfeRXeh5cj92oBoKrThG0j9/NT4XAifY4Re2cVBcP30KbtRCISERy/jAd1XthKm0lvd0Iq1uIhr+FYTi9+tE1mclAKz+tceJjtzR13P4rqhZS8o9oQi8BiYm69x2fRF0lXOlHRYUatdwuvW21JzndmoF8uP90cw+t+L0ldJ1zv2qqeBCrKed7iwaTCxQx0yKPExYyWJgVx9+YCUDhH0D7JVbUxOmYFswNesP9lFJ/NOEOrVk6M4jUt/vpcmtyDh52g692CWiemvM4MpYM+s/Mm8yrqMJ63F2Br3UJdig0AH5pPIjPbGWQ6sqptsXZp5Y+xu1l8ZyGOEmMSu7v5oyaGdrWMCVbJLC/rS323Iac8bhOdNonUPgJp44CMCUQYFzDesAoDkTBTIZNoiMkcj0Yr5mHwOdwLl+AdP59DfXfzXmUEY8xSWHh/Ie/0uUuXVko/wxy89KuxkRjhbliPSqdmf2U0BeN38nFNCN/apHFFKZQ53r2yjN9GH8BFrxEriZiMyKN4nF/KTNMXnEmM4cfiSUhkOm6X+fDlsDPMMKpiduFwtj0ejE6iQ2HewaiEtznedxefFE6gv5dA3eFxayEFsXu5UhPM/hYb9pZEYSzv4qs6fyabJnKooS/vOd7gfrsfKq0eX1UPpsu7k97JU1k84zqNWiU/OV3h17poitTm6ETwaonwd/bbHYdZMSjtLPB+tZzj037jm5DzPGjzY21GMJ8GXMHv8GxCB+VgK23moweTsXdspHDUbsJ+iGPXmiN4H3mf0IgCVDrJmxmh9dU9KGs2JanKidZGBfrGXVw7HsnAqYlczQjCJryF9dUevN0rnr3ZIzA3UNL83Jr2UH3kqQZMm5+I3+443PsXI7dVUtptwf3boQDMHCinrMWUVx227O2/jwV3FyGXqMidtYNVFb2JWTcGz0+zyG60pbLCnAvyHsxwb0SlkVDWbkYvx1Jkzhr2FUWx3us6U/JG0/qtMMujXNWEyxcJ+MriMOlRx4HcSODmP8bx/HPvu/9h9k8fQLxMavjy2No3L9Fei1fUqo2xNWjj+6phzLJ6wp6mYJ5eDOH80p8YflUQlNGvlqDy6kC/XkRSmyvLPB+yNTeGz/wuk9dlR1aJPfPfvcKjBm+iHHMRpxvh0b4Q/48ryP7AFbfhZRx/FoHUrAtDcRce4aXo/ckdNMEqmVUnFrF3xu+MPLKOrycJu8u+m99j/eJTGCi6ueZ7lcGZ42jt1kejFfOyVyK75ULJ4HJ+IFlRh0n07uZemz9TPFIAcNMz5vPaQBYPfMj6lEks8ntCk8oAa6M2ipvN+brveXxk1dwXB3AlN5Ao4zw+fDYJPZmGCb2TuNARRkeSBfpOalRPLTBuh6XLBJrxRaXRhBmXcq48DMNHhhwVh+PtVsW+9eNR2uhxeGIfautMkBt2c/5VFCINlHaZoPHr4mWLKw27XAmdOpP8ofsEpb5Qocyk0qnxT3kbkU0XmX2PEJE8hfW2t/kuRphtqdUYscLmLk87PJlq1MzVBj1OedxmePZoxjmlEbQlji5zHQbVIr42mIHh/AN8vFPogYx96zEWeu24ygSVPVunRsJtSthcMYytrpeE6W27JhKbXelhUkqArJ1HjT6MLu9HYZ0lXRo98hss2WttS7RRDluaXMhsE+SDDZxbudDQk8cXQsl8ezs9vovDIKYFb6kRraHdFAzfw3f1PkhFGr64MRn5iOMkPvdm/MAXlCgtOON5i4A/4pha/w5fxp7lxyyhdKqnr8br3nyORe1i3v53yVq2Ha+78xHbCSqH39umAnrMOT2UIQNT2eH0hPUSFWusHmInMeJ8uzUTDNtx1G9k9dFFOPct48NqwRlHD0+jRWXAfLtHjFZ0Mr1gJGKRjhCTMpb7PGSyYSvR83/iREsQO4oHML3XC8aaJhORPI1Fy64w/sVyrk/fyNTURRhJnViqtAUgdVsI73x0mm/TRxDhU4iXYQ13jXz4zPYu+mI1CnEXN4r9cDNvQNuzlSHWr3k8WM2u8gGkrxLE0WYu3ISRWI7HdYGnSu0sDMeOskrj84yJzIh4xsIHCzk4eDdxu+KYM06PhFwPdJO1dP8aRMwHT7h3KIrEWh88X3rzxYgzTDOqZELOeA57n6JvURwfHpvL77N28vG7EwEY4pBDcYIFuSka1nvfFJr3/1Dv8y/7py9hmYgsdHan34NXRmQv3s75dkPWXZiDzL2Vg732sfr1dDxM6nn42ht/twoK6wTZ2Ut9dvBV+Si+drzCa5W5oP9d54expJP9+RE87XWY8OfzGOrymtQGR0pTHNg/eRvRcjFXlHKq1aaYSpRMNmzF49ZC+noX0K0V4vHLbDdSR2wh6vc1ZKzcjs+h5eTM2cHYnBFc8LmK1/nlnB31GxdberA/MYpe3sW4KBp4tLkPiz+8wP7ivpwJPMj8icup7W1Mt4nwf3UYXsJip0dszI3lfe9b1GuMOFnWi/ZuGSqthOZGBcamHaT0Pk6Npg0biRFXlHJ+KxnCYqdHeMuq+aF8FMfc71KuaWVh7gzG2wn0KxufD0ck1rKn336c9VpZUziZC9436NKpkIokvFJ1crk1hOFGGazLn4KTYTOptQ486XmYoCMrSX7rV+YUjCPEtBxX/f9CJxHx0XKGvJfA8WcR/DF0H8sezMM6Xorf8iweZvmgb9qJg1kzg2xyObV3EHff30i7Vsui3JlodSLWud/gQasf66ye0udhHL/2PsHNJqF+ntdmxRDrbHZcHs6kYU/QIkalFZPc4MRy1wfMMGrkvcpeTDF/wVdFY8krs+HtXvGcLunJqaD9OEqM2djgyWzTVPRFYszFCsbmjABgmv1LyrotaFQbcqvUhwCrap499SNvxg684+fzTmg8FypCkEo0DLfN4lxZGAppN4udHvFlxmje8b/PxhtjMHBtZbFPAlEKYQJaIVYRKFW8kTT+ocGLDyzyWFAiTKKDkG2FWFQQYVyAQtzFZMNW9rbY8vOhSeg3woilj1lr9YTsbgPe/3QFTnF5ACS+dsMyQUr9gC6M0vSRDaqnrUOfKxHbmZUxn5oiC8yc/wQ8BO/n2/LReBnWMMIkjdONvYkwLuCX76ezZN0Fvr85jgn9XwDwcEsfuic00f3SHPchRWTlOKEo1sM4upaWp9Z0+3bgYN3EHOdnVKrMhHLu3fkYm3SgfmyBMqiTL/pcYo5xHcfbzKlVG2MoFoZeX7a6sc3xGR4XlyBSqFnX+ya5HbassrpPqdqQT/MnUJRjR/zYn5n66To++fQg3+WOpLrWhP399vHB68lMd0kkSF7K4rsLKBy9m0tKAcxysrY3SRVOeFjWk1nkiNRARd60T/8hJazQIav/5vMTTv9jSlgikcgC2AMMA+qAj3Q63dF/59j5fx7b8W++HqPT6eL/V9f6r9b9Zw8gtgEWuuRbcqa9ms1Kt3u86nSgTSNnuEkaX+SNY6bzCy7NHoDF1grs5C1v2Ef9d8WxbvpZNtyaACYqLK1a2RZwlASlN3UqI142uvCbx0mmpizmp6DTvH1yCWsmXGTzyXHoAtrobtF/w9Ib3ynidENvJponAqDU6bOjbCCdaj2+8LjEpeYenMkIQ0+mYaB7HgNNs7lcF0ZZmymLXB+T32nD1zYZb7SdI5KnUFtrwoWY3znUGMXtMh8AulUSZnglMd4kmXKNKafqenM/15spgcl8b5uK1/HlaIzVeLhXU1JrQZhzOUZ6XfQ0KWalWQketxbi7liLQk+FvaKF0nYzFHpCAT2tzAEzEyXf+p1j5ZEldDmo8HKvoijRCY2BDkmHiL1TdvBV4RhkEg2OimaeHQ3FYFgt892fcKEqlMYOBVKJhsF2OWj/5Po6ktIHRY4+toPL8DSp50GxJ70cS1lpf5uUTle2ZMXwMnIvQaffZVy/l1y/3IdXS7aTr27DVqzHT/W9WGeZyKfV0WyyT2RyfiwjrASKjh9ujGPKwKdcKw4gtc8xAv6II2vZdsJezMBCoWSz9wnEIh1nmntxu8qXIPNKtjk+I+jpW0Q4FnM/zxtvhxpWOMfTrZPwos3jzXMVX+nN07DT+O+K49WS7QRtjWP74u1sqxzMx45X6NTpoRCreNbhTrtWn1jDV/hJDXmvshfO8gYU4m6mGufwedUgnOUNnPxd0A6JWJhEdpMtap2YbrXem9+xdfZOTMSd+Es13Ou04Lfiwdzyv0yXTsWeZnfkf210AD+cncTEkQlEGuVhKWlnXfYUAGLsc4k1yeBMQzg3noRxcfwmAqUK9rbYsuH+OE4N/50P8ycx1DabgYbZzLr4NsmTf2VqzhTEIh35z1zJmbud6x0yhhl0EvBYyPSyog8wMXckzd1yyjLtmBnzmHGmyaR3OfFd0kh01XL2jd/B8j1xdDhpEBmpyB+y7808x9b6AZQqzZGJ1TxM9CNz4hbCHgm5QIB9FZEWBSg1+hQordDqRDwvciPctYTsE750DWhFBwxyzaW2y5gZts/49NBsus11aIzULO8bT067LU/L3DBVdHIz+Ai99whMuT1jX/GswI28wftZUR7BNsdnSOxz//4AYu6sCx2y6m8+P+HMun9UADmGoOm0CAgDrgBROp0u879z7HxgsU6n6/f3rvVfnffPHkAM7J11b1+P4tydCNaPFhppJzzu4HFjEYMCsnHQb8ZRv5G9P47lu092sbdaoMH4zeUKfQ+9z5W3fmJ2xnzMDDrIfe2IyFCFWE9HuGsJvUyLsZc2Msu4gaVlUZS2m/Gd+1nONIXztU0GmSolSZ0ufH9wKm6xRW+c5ljbNDSI2RQ/AhfvanxMa+lpXMzWA+PIeHc74UnTUKkltFYY83r8Ni4qzbnRGMzjUndMFZ203Ldh1PSnnHnQB4NKMUo/Ybf2YugWRqTOZ5GHoDvyosWNu6kBhPkVc8brOr83ubHjVX9Ohu9i3P23eTxoC6daAzCTKHGT1rGhaDRljWZM8kzlVoUf892f4C2rEu5H2VDS85yxsG1BoxXRlWhB1rLtxL4aw/eeZ3GUdPNDzUAWWz1kZc4MIq2LOJHWi8nBKVzMCyI+cjtX2z1ZaFLNvOIBDLMQnPyn8ZPRa9TDN7KQzCwXTHIkBE57JcwfXAxg99ItHK6P4mmVG/FhBxmVNYMHQeeZXjCEFyme/DL8CL8UxtKsNMDOpIWjPiff/O2nZc8AYKRdFumtjrSo5KxyukWMXMeLLhULkudhoK8izvMBJyrCGW+XyoWqUG74XSG+U8SW8qFMsknkcl0Y6dV2jHJ/hZFEKK20aeQ0qQwobjMnt8iOp7GbmZc3japW4zcN7/XVPfjRNvnNgN2sohhSKh3R6UR4W9fS2GVAWZklc3o9xVYq7Pw1iMlT2rLZ4QW3OvRw1mvGT2r4RtuiUaskqcuYMP0WEjqtGatQ8nFNCAm17vSxKuFakT82xq3odCK2+Bxn4vE1jB4qZAp3S31Qa8R0d+sx0S8Nc7127KVNpCudGGySxdbSwVzzvUpM5njedo1ngmE966si6GeSQ2K7O4OMs7jVEkx+mxWdGr03XFgxy5YQ/8cuvOPno2mSITYVSq2zgl5Q2WXKJ3Y3iLm6hoVRDxljksLtNoGrrKjTkmaVAWJ0HHB9gPfR5QwZkEqzyoDvnAW+s4kpi3EyaeZd59ssu7WASyM3M/beSugU0yuokAizQg7kRmCm6KBJaYCTWRNqrZjKW86EjntFZq0d13vuJuriGgaFZzLY7BXfZQpZ5OdBV/gyYzTGZ03omNpES6kJxW///c7byNxZFzb4bw8gj8/+/dcgEokMgUYgSKfT5fz53SGgXKfTffjfOX4+/04A+V9d69/aP30PxNSinVulPkwdmoBKJ+HFa3f878QRHFPAw0JP/O2rOZwTieHYFp60e/Os0A2Av+gNJX3ub/TYsY6suO380uiOXKLGQl9JWbspOYd8OfbZXU61mQLwvNIFV7NGajVG+BhU4fNgLjkDDjI2fhwPl/+IBBF2kv8yqDQ4cxwzop5yq9yXxm4F+wr6snXpDoZkjUWllnA4bC/T1Uu43mHCujszuDVqE5cNg5CK1LyY4M6PtslcdAiiW2lE4lBhcG5Y6nwaGowocbTk6r5oNPpg3r+BzCceeL5eCjoRIpmGsfdWsiz8Pg87HOmvyGHKmdXkzdxBtFUBn/m9okbTxtc2GaR3d7D4C2G39uzbHVxyVDBWoSTklzhUtjr6/GU5dQNVTH39DrIGCd3OXXT4y6hoNCXQpYwxAfqcedCHnWN20+/k+6TP2Izf3tVkL9zOxzUhABSM3UXQ07dQ68RsG76fB1F+nLwTxeFJW6ld9ILFyXPJiDyKX4EvvR4vRdUmY5ezPUq1lIJJO5lZOFgo57gWsDl3MBuqBzDcLB2AcfbprDIv4p2KPuQ2WQMCieJ39T7crfERGt/XFpPjYEeoeQUNaiMKkpwZoJ6AuX4HVXvdsfzsPp0aPdrrDLmkDSTAVii9fex8hanxy6FVirVHPcOSFiMS6ZjhkYjX3flEexbw8LUXPw5LJm3ATnonz6a+xoT+frmMs0rmeHUEIRYV1D2yxz2qlq+ejgUg0K0cI2k3XieWExou6LqMeTiN7/qcI7G7m6QOTzYdm8C8abeQoONusxm3in2R6mmo7TLiPf87iNGR32nDnB/Xou7VjY1MmDI3VXQQZV1ImGEJm3KH8KzHaTwuLCU0sIiLt+ejMdDxnZUPJRWWfFAylac9krCRtfLd65Gs8r7L0dq+9DQpZpLZC97JfIs7HQL0tn5hO7GvxiDLMkDpqkJu0I2yxYATFwYwffwDhj+PI3PsVmJSZuHuVcOui8PYNn0n6a2OBBhV4iRr4Ks6f+5M+4nYJ2/jYVPH0DPrAJgS84QX9S78UjKMHoFFLPxsDeJhnVjcl6INFLH9zlB+HnUYQ3EXxuJOdtUMxFKmhFjwNarmSbo3/c6spW+f17xqsGOsRQoSsbApFou0KCuMuPHdT/xSO5CL7SH/OMfz9+27rUQi0ct/8++dOp1u57979H/ffADNXx3+n5YKDPwPzukhEonqgAbgEPCdTqdT/41rAf8JAogELZ/4X+W71yOZ4JLGicHbcdXr4kWXFSO9lXxc3YMLo2/gdWI5Fn5t2Fq2vDl3aMY0FNUQtCUOaSt0xbSSFXWYdyr6sPWzy7hfXcyknkl88KgHCrMOssrt2as3gK2ul/i8UY7nnQUUxO6lQyfDQKSP3+44AF4u3MTdwIu0aDvwkVcx1qiQmBdLiJHrcPQ+hoVERPjV1dwesQlPPSPshm8j9up7WDo30cu6DHdFHfGdImEivmw5P9UJg4S9rMt4fjWMrkA9moNViNslTHd+xRllGIX9DzLy9Sgm2SUz26SIoekzeRxylhatjoH90vE6thyXkAoOpkfwZfhFPr88jYi+2dSGC41/r3vzcbWt590CO/LX/E6jtgNLsSHRaZN4HHKWz2sDWWrxlGmZ81CXGzIiqpTCLhsGRGSxsWQ4WkMNgZff4eupJ5heMITZdk8A8L4/D4fj+uzbupOpq9dyf8t2HgZ5siprBurL1nREddI/fSLd1Qq2jdrHreYgnGX1XPK5TtDTt+gsNKF3ZA5f5Y5mXqBAB28pFthnV5kXMTZnBBEWRai0YnQ6EZPzY/nG5TxXKwLpnTwVhbmS721TGfl6FLmpzryY8Qv9f1+LMroeiQhKuy0xknbh511OsFklN/cL93pW9CKW9HrE/qxI2jr1IdmEDgcN08OS2VM+FLfgegZFCrozo7Om8qLHKcJezCDYuJxPUsdjYtDJYfdrfDu5nXSlEy6OdQBc8rnOqTZTnpm7odaK+algGHmD9zM8ezRzHZ8Ik+tzDjJa0Uy+uotMfTsW9nzEnNQF7HG5z+DMicQHXqBn7iBcp+eT5HWTjQ2CoJRGKybWJIMn7d5E2RWyudGNgvE7KVK3ku9oxpN2bz6yzCHD24EjbvEMzx6Nu1EDn/he4WpjKA+eBbBl8i2m5k7ifZ9b7K4S/EeYXTlP8t2x7FuLKs0ajbmYTyIvs3BYNZsb3ejvUsDi4uG0JVjzbedIdBId67Km4GleT5BBGX/ZPo/bq39iwIH1JMzfyIU2DzYUCdD0721TWaWRYaffjFIjQzlfio1Iy4wPn/Nl8hi+H3mcjA5n0lscSauyx8m8ifhyH7ycarCRtuDrU84Br5NsqY8kv8mKKrUZHa+FTd/kPq18Xi4hpcuaawUBHI/aSZ//HU7of93q/gElLCOg+b/5rhkw/neOfwAEAcVAIHACUAPf/Q1rvbF/+hKWvoeT7ovLITSrFdjLmlhpVoLf7jj+Mv0UO4v68zD4HI87tTjrtbO5biCTzITAPyd+CdH+eQyzyMRBr5F3kmfyKuowl5QKnrd5kNduQ6xlJodLI7gbeJHv6n3Q6MQcvDoIk6B6RjplMd/iKd9WDqe/aS4SkZbiLisAkpudSUnyYEx0Eg8rPZBJNAx2yMFHXsVXT8diaNqBh0U9xU3miMU6knqdYGlZFL843MVILGdXsz0vWt1pVclZ5XCT3G6BbkSlk5Dd4cD565GsHH+FV+32TLRIJO7JbMSlBkQPymC4RQa/F8Ywy+U5ewqiaMqyxK1nGRqtmFH2mbxvkc+qit7Mtkxg+rW38fYT6M89jesobLOkqtUY6TlzJq+9zR/PYhgWnImeWMP11wF80PMGt+sDqFQaM84hnd2vouhul+LtUs1Rn5OYiPQZmDadU0H72dMovKp9DXOJNVCzv8WGb5JHkjvwAF7Hl6M1U/Ftv7MUd1uS0uzCyxJnNA36iFUiRvRLRirSsMk+kXcq+uAmr+doYTiLPR+zwqyMRq1A3fJdbTQ/2iaT2N1NQbc1H1+YidyrhfSIo3jeXvAnEy5sqPPjfq0Xt/wvA8Ik8/12H7KUDpQrzVjo8IixCiXe8fM5Hy2oHc76ZS27Vv/Gkl/fZci8Z0QZ57KzdAC/eJ5i9sa1eEzLIznXhYIRe9jVbM8S00piMsdzxv8oiwsmEmJaToHSikeZ3hSO2s2KckFsLL7YGxvTVoLMK7mSEoKHWzXljWY4mjfha1qDpbSdp/VujLNP40BBJOE2pdxMDMawUEKHg5ZPRpxDItLy+c3JmOSLaQvvINC5EoBpdi+YZdzA8TZzPn48ibTY3+n7YiF7ww4w8/ESTvfbwYK0eQxwKODG1XAmjXvMXPMn+EkN+bQmiI+tE+nxeDGrg+8SbZDHQ6UwB3K/wZd3HW6xOGkuJgadNCsNQAe7wg+x+HgcLhEClckXGWPZG3aA+UnzSYk8wPqqCIINyxiqyGPUtvU8fOdnfm/oySdW2bzoEno6nxROYK7jE3YUDeSQ/0Em/LyeyFkp3L0ThtalA027FGe3WsrybcBAg2mSDIY24GVRzymP23ieWobYphP9VAX+Y3JJfunJtYk/A/C4w4OvX4wmwLmSmv1uNPmIyPtozd9dPjI2d9aFxfztJaxH5//HJSyRSBTPv58BPAZWAo91Op3i35yzFojR6XRj/0fXIBKJZgDrdDpdL5FI1ONvXeufPgMBHcUdlhS3W1CnMKLNJIffZ+0k7sUscgYcJL5TRIxcTGTKAp6GnSb8C0EPZMv6fbzusmd7wUAWuz/C1rSVOcUDOeR6nw8O9kc/vIGnr8YSG5JFibqVDyyzCUyYS87c7ZRrWrGXGDK9YAKH3a8RmTibCLsSnhwNA+DSmh9pcJYSJpODwwvOtxuS2O4ulKeG/karVsvZ1hDOdYZRUWNGQMJsYlxzUerUzMuPpU0lY4p9EgdLIrnY3JOTmT0BcLFpoKTGAlw6MJMoyW+1ItZRLTTRB6eyvKwvp6rDeRh8jg+rQ1ntdQcbvxZiDdRsaXJhb15fDuX1wdKwnZkPVzI0Oo2HVwUIaKnWBUmPZpQlxpz8/DdatfrEDU9HhZb+T5dhd04fZZg+nzhd5peqYQw3ysA2pJmjFX14XWzPT+ZRnHoYya+jDjHql/V0Rwtllf31/bB2amSCSxoT/dJwv7IYfed2NCoJn52ZgYF/E6v87vKy2IV3YoS5g60PYhF3ibjl4kt3tx49nMqZ4JpGfqcNQU8H0NEuzIH8pfdVPK4tpq9/Ht84XSJ31g6i0yaxscETcZU+s4piePbED5eQCsKtSvml0R0LSTsHSyMpKrciwruIgvOevOvnSveg4/g5VPFjhVA/V9rBjIdLwUNLlHEu+8ujGWOXzti7K3ln+XVy2u04NXg77ldWUDh6N+9U9GGgTR5Rj+NQdegxL/oxPvJKnjb5s7nRjU0OjwA4Z5rDx7en4hjWjFhfg41BOwd9jzLs+XLuBAiQ6kar55iLFWwqGYGDSzqnRm7l44KJuBs18H36cFYH3QWFhpT1f7CoNJrBZgJTwSf3J9M14CJidFjbNGMklrMt9Ci99aUEOlfyosOdae7JuOvXUjTQgm9t0phaMJ6RVum4y2u53WFOdr9DAlpQF0pOqQDjtbZqpdbWmE09TnK5MYxypRnjbVJYmjSb1/MF0MKNxmD0pWrutvsz2+cFmSo1SV/25GpEH47d7OTcwZ843BKASidhZuFgxlilANDQoeB4ZR9mOr/ATc+Yn9/dycaS4eTM247n7QWY27fQrDTg0PAdfJo/gU5bKTH2ueS22XCk1QKxTSfvhNxn1cAiMlVKPlRPIq1byG7yO2042f8PJGiZErscffl/ASL8fS5HJ3z+N5pOp4v5j37+Z99CTyQSeet0ur+KnIQC/2HT+9/+CgRiYYCcv3Wtf/4MxNVZF7Vv2puX73y7IWsezCRh2K+sLR3DfNtHLHs4j2+jzrIxJ5ZlngJU8nh5OHaKVlq65Vzyuc7+FhuiDQp43OHBfJMaPE8v48eRR1n3aBoFw/cwtWAo6x2vka+yIVPpSE6bLeOsk5ll3PBmh1vRJKTOmX2P4HFmGQWT/6D3p3Gc+fxHYi6txcK1CSP9Lgyl3bxOckVn1cWPfU8z2bCVmMzxHPc7wuNOezq1Uj57Ph5FhpxLb/+Im95/ySSDn72FQtbNsx6n6Zk4HXezBtKeeaI2U/NbzFEet3rjqN/IoZ9G0TisAz2pBp1WBCIwM+xgiksy71vk8129Dx9Z5jCnWNjkHHK9D8D43OGMsUljknEekQ9X0NO5jAjzArbej+WjQZeYZJxHrQbGnF1LREQ20WZ5bE4fjJNlI1f9z1Kt6cRF7z/OfN+p6POGkyzsxQzUGjHmhh2UF1nxYvSvhF9fReEoAeHW4/s4tq7+nTk3l5E2ZgvhT5agqhA2SkuH3OEDizzmFQ/ggOsDAhJm817gHeRiFRqdmPkmNWxs8MRLv4oqtRlmEiUzjAQmgvCkaQx1fE20cS4FXTbkdthwJSmUj/sLWcqxst50qqU0PrNh59ztzLu/iLTY3wmLX07e4P2Ua1rZ09iHz6xeEftqDBPtU9j4YCTfDj7NZ2dmYNdL0BDXl6gxlHbT+YXg1G4d3Ufg73F8Ou84Xx6bwVczj/JzXiwRNsXcOR2OzZByStIc+GPCLr4vEuY48iusmR/ylP13B+IUWEVJuRUR3oW4Kuo5mdoLWqUA/DD8OO1afeaaVBGRPJ2boQfoc2wNubOEIdGxOSPIq7PCUN7NPI+neMhquNsSQIxJNj/mD2eX32GedrjT26CIlTkzuBEgSNoG3F/MwuAECjus+MTuBvNfz2KaUyJnKnqQn2uPRZIey947z+EPxhD4aRrXM4MoGLaHWUUxmEo72Ob4jO/qfeihKGL99kVMm3sPUz0hi4xS5FGksiSn056XTa4MsMhllFEGS3JmER94Af9dcXw+8zhl3RYMNcokRCajx/NZyKRqZActaAgQ0+XcjaxMhsq9k9RB29nTLChAvlbakri1ByPWPOTQ42hOjdpKH9fivz8DMXPS9Rj4t2cgDy+u/0ehsI4jBILFCMipq/z7KKyRQJJOp6sWiUR+wGnglE6n+/J/da3/at1/9gDiFmSkY8UXFEzaSeC2ODyGFnLJ5zrH28zxk1Wyr64/LWo5WfW2tHbI+SzkCgC1amNWmpXwQ4MX80xT+LUumvRmB8To+NbtHNYSDXGFkyhtMUN71RL52Bqqc61YEHOf29W+jLTPZG9mFO+F3GFnXj+uh+0h4prQkPbzLudzt4tsrxrMRKtEEtvdiTF+xRADDdmqdvykhgCkdHcKWQpwqs2UqUZCGfKvZHFufyoUmpkIL1t9qRkr+t3FXb+GdY+mMSUsiR9tk/F7PIfs6EPsbbHFQdqIRifmZlMw2S02KFUyZjq/4Fhpbw75H2RHfT/uVXjT0iFH+sQY/cFCbb6+xJyzI3+jSGVJb3kVB5t6oRB3c6Y8jNP+hxmXPh/lHWv6zUiir0k+m3KG0Me2hPpuQ5wMGrlf4UVThQkzIp6R2uRIdpqgCucXUkLZRTfMR1ZQUm7F2KA0/A0rOFgUSVW1GbpuMZ8OuMi3Vydi419Ls1JOd5cUeaoB0ZNTWGJzn8P1fdlkn0h40jROh+xh0A3hPissOtCXqXE2aeKQ53l6P17GCM9XTLR4yQ/FI+lQS/EzrSG+2AtVpx66NimyegnGRSCZVEugZSWFLZY0dhgwxiWTkg4LHmQKkOnlkfGkNLvwLNcNa+sWetuWsNXhOR9Wh2Kq18GtKj+Ks+z5ZuRJlFoZG56MYUaPF/QyLOTD87OQebSywPcpS80yyFVLmHFa0J6PHZiMpbSdtGZHOjV6rHe9jom4k3adjBi5jktKBfVqI766N4Ffhh5hgmE7kSlTCLGqYIfTI3xOrGDD6BNvAuE7FX34yV7YFEW+mE97mz66en1+HHWUD8/P4vnMXzASyVhVEc1aW0EzPLG7m14yGcOzR1Pdakxnl5TFAQnUqEwwkXQIRJ+tJnzmKwTTVRfms3LEdaz0Wkhqd2OF1QNW5E3nM7dLRMvFzCqKYbvLNSKfLqG3YwnFbebEB17A+/BycmfvIHRjHI/XbCJPDYcaoshosudLdwGF9dbltymY/AczCwez1+0avzYEY67XTkGnDcXtFhx0v86Xtb0wlnTykWUO3keWc3TKFm60BvOJVTabG91YZV7EjmZHDMVdWOu1cLFBIMQcYJrDDKNG5hQPpKjFgvZuGaljNvxnCiAWwF4gFqgHPvzr7IZIJHIBsoAAnU5XIhKJNgJzEPod1QikYF/rdDrV/2it//Aa/tkDiEuQic7su9Wk9D5OvrqN+0pPdhf2w9xAyasMZ3qEFpLfYElK7+N4H17OTxMPAfBV9hjElyy4+9kvzCsYT5tKhoOihQOuDzjeZk6TRoGxuINog+I3GcCH1aG46Nfzx86xfPb2YR40+5HVbIuNQRs2+q0kNzgBcM7/GHc7bHGT1vNh/iQqm03oZV/GszuBSPyFJr7BDRPqw9XYOjXiaVbHEbd4HndqmftoEWcGbGfa8fdYPe4Sv14Yi3ffIgDya63Ijj6Ez6Hl3Jz5E+ndtnyYOhGNVoxErEX92oRVEy5xpSaYonoLnkXsoVmnYl9jbz6xymZbkxMpbS7sdErgaZeag3XR3M4X+IdCnSrwNKzlE+tnBF9/h9iQLO5k+6JrldI7NJ84h7vEyHUEP3uL9IijeN2bj4tNA6V15vwUfpovX41hmnsyPvJKEtvd+dYm7c3f6L3KXmyyT+TjmhA+tHrG0VYv/PQriJHrCEiYzdPIXfQ4s5q4Ibe5WhlI3XVH2sM6EdXpI3FQEmBfRf4FT9pdtYg0IvKm73iz9v4WGyQiLcMVRaR2myEVad40i9dW9eRb22d8WBVJaoMjP3idYU/tABq7FUSYF3CiqBfdGgnNjYas73OD5ablDM4cB8B6j+tkdDhjJOnktdKOxHpnqhLtmTDiKfe2RvL1x3sA6Kffwq8NYVwoDUYq1nIz+AhPuozoq99G9MsFtBeZoLPsxvqmUHb74ou9bPhgAZ//sIeVR5fg2b+IVxnOTIt+xsmUcAqG78Hr7nzc7esoqrFEUydHbN7FDxFnWHd7Ji5e1ZRk2yHWgP0DHZWTu3GyEYLJLKfnBMtLOVgXTbnSDDfDBhzkjXxgkYffozl429TiYVTP7fPh/LZgJ4/bfRhmnM6SbSt5vOoX+iQsRfrSiA8XnWBbYQzrPG8AcL0xhPQGe9xMGjjkdpdrSgX95Y3Eps7hcNB+pqUuYqJbGsdyeqEqNmLakAQunoim01aLgWsr53vtJPbOKm4M3syEXesw6ltLwyuhX7h+9AVOV/bEybCJFpUB+9wuU6dVMejmexSO2o3fozn82usEK67PZ2xEMv6GFYw1yuZwcw8OnIhFbaSjV78cUisdmOP7nPctsgjduRKAZdOu4Sqr5WmbFyutHrGzIZINIef/MQFkwN8RQC79YwLI/wv2f7wHIhKJ3gHmA8HAMZ1ON//f/GwI8DvgAjwD5ut0uuL/aL2aRlOKeh/H89Qy8qf+gZNxGQtDzwBwxN6CKUbVDGydyS+N7pgGNLzRj37qlE3/9a8xERuQe82TjJXb+bw2kIA/4ug7Ko17z4MQW3Rxud/veJ1cxqIh97hX4Y2LqTWaAc1MNmzldI0xIeYVGEm6eFTrgVQsEAjuaQpmikkKcfnTueV/mV3N9gw2zOXCxFKSW1z42ekKO7x7c7YwlKdhp3nYCZ/XBvK03o38ofsYnTORTVP2kah0Z2TsSz6ziwcgPHcV25qc6BGdi0on4rOssWT2PSJQhxg3EGkwhY1Ph9PDu4TxnulMzZ3ENd+r7H3Sn/2GkQzzfcXtTH987oSitusmb/gu1kmEunBNlzHm0nZOtrkirdfjdnIgpvYtOLk0k/TUm6tDGnjQ1olC1k1E8hR0GhE+prWIRDo+zRhPT7syPrLMYUDGBA77HcLngdBryhlwECNJF+fbDble6s/n1on8dGsM46JfsvpgHw69t5mwC6u4O3EjK0YtomKGJfpacN8vwvbrbCrbTWjukqN00mFcICZl/XbG5w4HID3fCUPzDtzMG+i0lWKh18Zkw1YWnx9M+PgCzib15FJ9HzQOXeQP2ceoEXNw2l1C5mUfUno4YhRviGhUA2lDthFyZSXOQw5RluQAgKN3M+9eWkT63N94ol9BQpU7m6buY/XzGfRZ9Iq3E2YhEuuwvajPiq9OoXxihVoBY35fiePHuaw9409bUDcWXo00VJuglgvl5mSlGwZx5cQaqJF0whWfa1R5trGhejB2dk2EvZhBD7cySprNuBS1jSmJS1BnmvKr9VAKxu9kcn4sS4adYk9JP+5Ou8ii0mjic4Ss6bv8MehbdSBKNabTo5usenc0xhr2NMaSM3c7fo/mMMvhGXMXP+atZ4t53f8gfntXkvXe7/jeX07uwANEGk2hUmWOh2k9ax7OePOeubvU8OqwP2sXtdKhkfFBmTune+1iwstlRDoVodJKCHcs5d1et4WG/bJN/FQxgiNu8Xhceg9Pr0pONIfzzbyDlKosOScLA0Cp1cfGoI0KpSnvON8l4tkiBrrksSbqJgMyJvBu0D3kIhV9e+RwKSOEx1buLO9Zjqusnqy47XjcWMQx97t4Fc1nnEkKEUkLyFq2/c11zyseQLdWj88qRuAkb/qf9FL/Y/sXnbtg/zea6BXABmA4YPDXL0UikRVwFqEGdwn4GgFqFvkfLeZuWUPPxPWYuDexv8WG3gZFlKoN2VI6hKl2iZxrt2GL/zF8pWrMvJR4nFkGgLRFzFnPUJ77JzJ/1k0edsLpvDAGjE7BTKpkSr/n3C33xk9qiNiug0a1IbPdn7P13Gi+nHqciXnDUKqlvEzwIaxvHt0aPVRHhKZj6OfXGfk8jldRh7nVoUdvg0ImJS3B0rAdc3kHkbdWodOIUBRL2ezlxpaUGPIG7Se60pcSdStyiZqVj94ifvBmxqcsZkazsK5hgZQVo8vY+GIYabb2jHPNYGODJ3tPDaPXwo3UvbJi2uAnVHeZoNZJmO3wFN/9cRTM387UgqH8aH8fM2kH39qksbQsiovtxtwpFZxPu1IfsZuOTo0UsXs7vRwqUaqlZOQ6sW7UZQ59M4aWSa14WdUxxiaNg3qRrLO7hdROx7SMBSywfUi+uo3SYitcgozp5VwGCMN2T2rcaLE0wNqwDX2RlDPjNrOjZhApH2znUKsDaeN/I+Tc+wzcnUX5SUtGzk3gdrkvBeneoBUxLfIZ5Q5mtJjrcarNlOwq4X4Ee5bR0KnASNrNEtNK9rfY4HF2JgUzdpCtamdD/7N8v3s6f5l4nktKBabba7id6U/BuwL/lMvMfKrbjXmlkjC/7yOSlW58OkHg6AqWGTBl5GPCf3sXxYBampOsMfTvwvSeAYWTLJEWyhk6KhHpeg2zjBv4xFWFSCvi+PZN2EmM6Fhzg7sdphytieRlmiUNIQJcuk5lRH6WI+75SwiILaJ38lTqa0y4NHgLCYaeLDGtJOr95TzbuIMfGkJ5EbGPdS79cZY3sLHBk4JTXmyt90Q5tZnAbXGcXPIzGXVCf2VB+BPcZLVccwtls8MLajRtJHTaMsGwnU9rgsjud4gXXSpmnHyXHZN3MfL1KHTe7cwsiEVh0I375SWE+RXjJGtgW+pgCsYJSphatNzskLPafhGO+k3sye7LioAHTE9ezFzfZ9ys8mej4y2K1WImX1hFTGQGk668i2GJhB/mlJE2egsxKXNxkjVQ0G3D1nuxHBolZJFzbixnSb94gqzL0CLmYK99TLuwkvxgKx4EnWfk61Gs8C0j3ayAI8PiOdRqxZFWC560ejHD6DkSuZr07g7mBz9lTtoCmmqMCU8SFAk7Eyw5vHQTF1t6kNtuw/MG17/JYf3/mQ7Q/iuCgDC6/n/UdDrdWZ1Odx6hzvZvbRKQqdPpTul0uk7gCyD0z4bPf2gjnF/xgd9NrtUFk9Vlz57KAVzxuYadtIkZRo3MTVyAidiAhSbVxI/fSPz4jbxesJ1ezmXYSpvZeSWWEw196OqU8rLGmWKlJdPNnxFqXY7fnjgeRW/jSY0bm14MpWfMaz47N52UHBdyi+y4NO1nSprNqKgxI3bNI2LXPOL7wpHYmgoopJ76zazJnYZYrMXHtJb0cns+ibrMuditaOTCLIO2VUrkB8tpuWvLjzVDMNLr4u7gzXxbNQwLhZIeFuX0sCjHfXghy8v6cqj/bm41BlGvMsRe2sjXsw+Tr7JkxYgbSEUa2tT6nH7cm1nGDbyev50tTS6c8rjNhtoIQhSleB1fTpRJHluKB3Oxxy4u9tiFplOPA64POOFxh9l+L6jtMORDl2uIVGJ+uT6GGR9fR0+ipVOjxx/5/VnrcZORR9cx8sVynE2aiJHruNAaTFSgwMvUqdGjU6PHj7bJ9LfNJ7vFBvGf27YFafMwkXYSvCmOdKUz4Xvfw9CplZxfA2gN6eJifjCNBeYg16AokRBmWMIMv0Sk5fqMMaxhjHcGY7wziLQoxMOknoV2DxiQMQGpSM3EqJf4PpzLsaY+fJowkf1vb2bD/hnUqo1JvufLqOB0vO/P48veFznndROZnpre+lKulgUy0Cibk5XhnKwMZ1FpNO1qfQ7FbaK2yIJ5E+7w8etJKGo1mBso0XgrGW6WQcJvvXnapUakFeHiUcOCvGlEfrCc0EOriZTX8/SFLzL/ZowLxRgXikmudyI6PBsPjyrmOyTQ26YEUYseVWpjvnsuqDiO//g27lcXU9VlSpZKxFaH5+QrbSjvMkM7uIknP+1AmWNK2KhXxL1+Cw+zBjzMGvg1YzArn72FnX4zQVvjiLyzivfiZwJwKqcHVZo2ZiYsIXf2DlYcX8o136u4WdczyDKbLwMv8mPMSfpb5nKpLhRvnwqWlkWxtCyKWYVDqVcbMXhEEl76VZBhjLG4k92hB2lTy7kTcIm+Ccv4qHASI6OTiTF7jY17AyHjX2Es7iT0XhwbA07xzeVJrDEvxDxTQrRcTLRczIr+dxhqlElBlw3xLX7cb/dl8oDnLHBKYOTrUTR2KDjTbkys4StG54xkX0kUs4wbuFfszXf1PkS6FbG+cDJV3SaMds5ky8DDTHVLYqpbEruXbOFySxgH0yIIMi7HTNb59zuwv5ru7/j8J7L/az0QkUi0AXD6awlLJBJtBmQ6nS7u3xyTAXyu0+nO/Hvr6Ls668YcG0veCW+WxF2iVSvnXEmYANlNmsbLnif5rt4HL/1qtqyfTutCoVG9L+QA054uJWfAQQZkTCDArJodTk9YWhbF7Sw/3BzraOmScyB4P1NfLMVE0cnbnvF8lTSatAE72dnkyx+v+vFe4B12bpxA3LqzbDw2CYAD839j2q0VhPiWUHTegxOrN/J56TiyLvgg6dfIz0GnqFKbcrU+BFdFA69bbck740Xft1JI/COMQe88pbzDlHUO15nyaDnaFhkAJjkSLEaXM9f5Kfca/XA0aCJEUcqGjJGYG3ZwPvAwu5tCcZXVk9TuxkfWj/mhti/f26aypcmFlWYlbGtyYoWZkB0cbzPns7NCmUKj0CK27iTAoYp3nW5zpiGc6k6TN5TeEclTeNbjNCG/xPFj3B4+3LKIlPXb6f1pHE1DOghxLiclyQOdTMe0yGf0NioAwE7STIXaHIAogzIcJcYUqVsxFUtQiKToi6RMzo/FUr8dmViNpVQoMdrLmlhuWs6GOj/ylda8b3+DjZXDsdYXhIoAXtY5M8Yxg6N54Vzp9QfNWj1W5U6nUy1lb8BBxp5ayy8TDlKvNuKnzFgy+x4h9Mc49q7ezLJvVqEd18BAhzwK2qxY7PiQr16PxkRfcDKTHZLx1q/ig6zJyCQaVnvdIaXdhWBFKV+enY5WrkOr0KBfpYeiEnzmvOb5S28ULq38FHL6zfM5wqDa3w7sAACWJElEQVSbr+r8UWqEv+GFC1GojXTg2MEYnwwuvOgJWhETI19yv8LrDUowSpHP8cY+2MuaaNXKqVcZc/p5OFuGHGLt0QVkLxZKUvF9t7O2dAwAK+zu8mn+BO4GXmRjgyf9DF8Tqa/3hrZlgk0yT1o82eb4jOi0SYxxzGCkcRo/Vw4ns84OX4tacg750jJQSZRbIYV/KvtVptnx0/hDfPlqDFaG7ZQ3mvGWz0v234mhb+QrHqf64OJZQ3GhDfJKPdBBl7UGiXk3MwJecvR+ND4hpVzzvcq2Jieu1QThaiSwNVd2mBJqWsb+pChODNzBrJMrOTb9NxanzaGzW8qG0AuE6VeyumAKg6xfU9xhxWaHF7hfXoKNYyPGv5hQ3UsftQJM83X4v53Jw6cBAOgsuzEw7CLW9TUXs0LwcKjl7uBNf38PxNRJ1zP63b/5/AfXPvhXD+R/gxkBtf/Nd//daUiRSLQUWAogtzVGLlHRc3YaYpGO43/EMnnJPW516NFQb8TeFls+shQm9H9/uxrdZaHGHRYuR1RgSITxFFo75OwIOs+QrLH0sizj0IDdzH+2gBn+iYw/s4axA19ws8iPsm4LzEyUXFVa8bLFlQEu+Txt8UA+rYqFJtU8H50CQInaAh+vCsLMyvhjzRmyVca8SPXkQNx2FOJupj1YRohbOa9veRI58wrHMyJZsugO5nrtlM8xZY55Ak/lHiQovdB2S/h6iOCQ+o8pZnzKYpyl9RxwfUDgk1kU21sQ5VRETrM1kcfXMqB/OjXdJqQ1OvCRagibHOOZmDeWc1432dbkhELczfUOGe1affaVRbFm/EUArtUEccFbaJoebzOnXGlGUaMFeELgk1kYXTLmkq+CdhctuyoG8tPKXWxrciJ25WOu7otGz0XLb6MPYKfXwpSbb3PbQWjO64m16O2zxHl1LhubYpnulsixonBe9DiFx9mlHBi1k4yHXmjdlYQ5l3P1eRgGtu10tMrZadnGet+b9DXMJVCqYLhFBpHyEk60CCib3/wEydVSJ3OW5U9ngFUeg21z6GuYi5/UELceZViI20judmV1wF2CN8XRGaFk6vW3kQ5tZ6P/Jdacn8uuSX+w6NJSJg94jolEICvN77Th58RYjE06qC2wZHJoLRsyRhIYWM6PUw6y5tYsvow5x7avpzD5QyHIvj/+OkqtjEXP56Jqk2FkqeRTmQoDqQpbRRsAXbYavh1yii/TRnOj0J+BYdl4KmpZav4SiUjHEtPKP59yBV/bZDC9YIjA7XZ9EQNDs/mpcDjZiwWqmC/CLjMvd/obGYELzb0AuNMhYVdmND3Ci1he1ocdTk+I+XMjMMe4Dt+Hc5nsm8Kpoh4onWVUtJswz+MZvyUNYnbcA760zmRyfuyba/bun84Ew3bMgk5ysr4Ph3yOU66RYTWileWm5UzX6PGDy3mGvHofw171tGRaUDBxJ1GpkzGXtmOZKuLa1KuE/BxH2trt/Hx7NB+OuQrAgufz8Taq4Yeo0/TWl2IU0EgvmYxY5xxulfqg0umxpnAy9R2GTDdJY+jp9agWP0HSKkGmp8Hg0wraM12wcW9AEd2NVKxBay709S7038aK12/xo90zOjQynhwL+59yRP8z9q8eiGD/x0tY/4G1ASb/zXcmQOt/e6BOp9up0+nCdTpduMzM4L/98b/sX/Yv+5f977W/DhP+LZ//RPb/UgDJRJh+BN5MWnryP5iG7GyX8bzElXuv/NDqRJiUaFBIulh6ZwHv977JjbogQEA59bAo4/dVv/P7qt9p0XbQba3icNB+NBpB46NBqeDcrQg2FI9hfdhNslrt2Tj2ECVKCzL7HsFHXklnt5QPLs/iG8fLxBd58azclap0W1ZV9ObWkxBuPQnhRmMwZY1mnDo7gMed9hyqjaJg4k42FI3mvZxphLiVk57oQe9RmezdMZqHY37mRpU/MpGanGobgmUGfHdvLLfqAtCrkRFpUEKkQQkuesb0tC1jiIGGHxq8GOuRwRG3eG4nBnEj4DR/GXOWBwVevGXxlIIKa3Y4PSHozLssc4wn6OlbLDEtwlHaQJisgeEGtTgoWrhT78+den98TWrwezwHz1PLOFDelwveN+jINmNI1lgO9tqHanIj1pIWtAYajntc4/30qTSojchvs2bRsisUNFsgF6lY+v0qLg77DS5ZwiVL3vaMJ2BdOsfc7/Ksx2kU4m5e9DhFVOpkInrkUaMx5u6cHwlwqKK2w5CCCTtRyLt5MfQ3OrukfPxkIhVqcwYtXMyGjJGM3LueUUbpjDJKZ2vVEGY8WUJ2ky05ac74yCvZ87Q/Sx7Mx+PsUqzkSpz12sltt+G7J6P4eulBFC8UzIp8gqpdyjc5o9AYa/gsbzzrhl1GpRXTpdWjS6vHnVIf1va6RVurnKVD7rCyvD897MvZVdyP9YmTUZRJ+PzRBKoHq9j2YAhH/hhGbrct73+5nJFer3C5JGZL6DFM9DupyLIlMdOdxEx33L0rqVaZMsg1l0Phe7mf4sfbFkkM3LuOH22TCf8iDo9ri1lV0ZvpBUMoajZnQMYEdFoR+1weYiwVmJnlYhUzjBq57HuB1m59Wrv1aVPLqG83ZIiBhn5u+cS9mMWdfB9iX43heJs5MZnj8Ty9DBerBgINynjZ6xhf22RwJ+AS5ypCmRyUgkSkZWlZFAHGlWxxPc8W1/OssL2Hx62FLE+czWaHx0RdeY9eMhk7t46jRdvBiwwPhpx/H6mdEtVtS7QyCPsxjqoqM7z1q7n45UY8Lizl5LsbmVc8gPwpf1CksqJIZUXOgIM0qAy52hDCh9WhLPB8wiWlgtNJvUgOP8Gxyj4MtMqhJtsaU5EUtwHFSEV6hPbJp6relOZuOb4BZeh0UJLuwK3UALznJeI9L5Hx8W9TVmqJz9Xl3HoSgtuEgn+YsxLp/vbPfyb7P94DEYlEegils88BJ2AJAqmXOZAHLETgov8SGKjT6f5DFJZdoIVu20VXHPWamHHpHX4ceZT1T6aQP3QfMwsH84nTZQKlCnY0O7IxMfbfXAhsijhJsKyaoWffJ2/aH4T+FMfmlTu41NSDc2k9+CTyMj+mD0MvyQj34QIded6EHYj/TdydmDeMENNyFJIuPrAQGsgzCwezy/UqKrSca3Pn58yhzPZ5QV/DXBZeXYJ+vQSvgYXk3Xdn2OiXXMkOZKx/OjeL/MjsewT/hNn4WNcSYlrOlzZpnGsXJtxlIg0KURdDDDR43lnAzYFbWFM4mcwyezTtUrwPqcifqo+iVEzIxFekVArqepl9j/BhdShSkYbLJYE0V5hwdeSvjD/8PmJfIcGb6ZPISOM0eutLOdNuzP7yaHxMaqjqNEGrE5N+2ZcVcy5xac5A9H6up1WlTw+LMlrUcpRqfabbPONpmxcnn/XBNFOP5I8EKKXHtcXol0nR+rXjvFOPmE0JXC4LYpH7Y5aYVuJ1bz62li1E2xaS3OBIXqEdptZt7Ag5jLNeB7kqEwKkrdhIhHKks7SeWAM1ABsbPCnqtHwz1Q6CNotGJya3244tWTFk9j1CkbqVD0omvJllWV/dAxNJB/lKawKNKhhjnMaYR2+jbZXi61v+Zq1ujYSqZhM6KowYH/WSi4/CMckVM3jhMx5u6UPzCCWqGgM2jzzElYZQJlu+oF2rz/uX52DpU8cwx2yOpPTh0IDdbCgW+hQBplVcyQ/ExrSV0Q4ZFCqtqe40ppdZCZ9YCeSMf9WuONRqxbfpI/g4+Dqf35vI3mG7Wf5yNlcitzPzi/dZuO4SB4siORBwAIAJO9fhNKQEO4NW1DoxWp2YlyXO7OhzmCEGGka+HsU136tMzBtGapob/XtlM8YylalGzSwo6U9Dl4K0XGc83KopTnNkYLTAemwpU9KkMmCnUwIb6vw4WxzKIMdcWtVy7iYE43RbS/zOXXjdm0/eoP34HIzj2IzNzDq8ijNzfuadFatYsekk6+9P5eXIzfS59w7ZgwWE17T8UaQnuZM37Q9iX43BQr+DX1zP87TTgR9zhlNbas6UiJecTulJoHs5MomGlCQPFOViAsbl0NQtp+yOC17DCig57cHG1Tv5tnAUAD97nSKp05UA/XLmPluIRiWhaPbHf38PxMRJFx658m8+P/7Wh/9peiD/NwLIFwjB49/alzqd7guRSDQU2Aq48l/mQIr+o/VMjBx14++MpOxTb+4c3EOP7+PoOSuNF6dCcB9bQMv3ztzZIzAlixG/IbWbbPESuUiFo147g++uomDYXjwuLOWnoccwEXeQ3unMWybpbyja3S8vYXnUPXal9EMk0SHR09LdLmWQ/2vyNwQw/Nv7HHwtEAjqSbRIxFqmuKeg1Mr41iYNjxuL2DbgEJ1aKZ7SOqY+X4qpoVBfnz/wAacOxfDtsgO8f3Ier+dvx29vHCNHPkelk1DaLjShe5mX8JnVKwZkTKCfTQHHn0SSOPZXPqgYykDTbLZ/MpW3vrzC768G0tkuY2nPh1ypCOJB0Hl2NDvyosWNPc6Pqde2YykWpuHjO4X5hCVP52Fo2IneFXOmvnuLjFZH0qodaK0y4v/H3n+HRZl1677wr4qqosg555yjIiIiJsw55xzA1tbW1s45ahta7Ta2OeesKAYUEREFFMk555wKKKq+P6qXe+31nbPW/t639/l2r/OO66o/eKrmw7yemjXHHGPc477d3MrJLrRAUiEBBSyc/IDYWhfOul4g5NlKuhukpI7bha5QA+dzkUhs2tC5oXpusT/uxOfRSnR0O/nQLQYnSQ0f502ls1uMu2ENOmIZo/XfsHnjAqb/EM3hvBBCLQt5XW+FpVYLdloNPK1yRCYX0VSvzfbQs8iUqoL0uaogcmpN0JZ2EeX0hAOFYUQ5PubLJ5OQGsiQd4uQt4n5afBFPomdxux+qi75SWap/JQ4Bi/7ctIzbTk36nei0ufiYlBHYpZKVOq7gZfpUoo5Ux5EjMdNtjY4EayZz/rM6fzsfpkL9f2ILXJGXqaFR2ARWRXmvBq0l6GpC1nl/JhTZf343eUsn5VM4lvbayxMWwSArFuE4rUeah0wfX4sR5+EUTDlwDv6+y6FiJouHd5UW9JeqIeWQzPdcjUyB5zk42o/kuptWWUXy6fJk3kWuhcjoRZxf4KLdlUMJ6PajK4iHZaPvM+pIxH0hLTSVaXJh0Nvs/vCePqNSKdNro5CKcBWs5GBuqr64OXaPpxxeMjQ9AmYabYx0SSFxFbVs/jZ/Dm+R98ne/FeBr2dxO+uZ/i0aDI1R+xZ9vE1fno0HqVIiUGqiKbgLkzvS9BbXEpulhWGtk0Empax3iyGrG5TjlQMZKhxNnYSVbmzXaFOfpcZF48PRm1QA5a6LQwzySK9zRIPrSrsJHVU9BhQ16ONl2Y5s7QbUaAgJGUGplptZLyxw9m7DE+9KqJv9qPbQYb+MxW7gyyihSfBB8jo1mLTl5EYLismOnzXvxzIX2h/+050Ky995cGb1pyqCSHpvic3FvzCqKsbyJ++n52N9rT2SnnfMAX/e6uZFpDMzSt/BjS+rQiTdXi7WkXaljBkN4MSotDT6sRer5GUOFemjHrGvTJ37PQaqdvpgOUHeXxoFY2msIcZBzbgPiqPS04xVPW2kd+jyZN2FeJ4oFYOixMWoavbyWfut3na4spEg2Sikucy3imd2i5tjtjG4Xx+JQF98ynb60y/D15xIyEQP79CBhvlcLvai9wSc7Ij9jMjX3WiOu90G7e7KykYdYjxOaP4zO4m8669x85xx7jT5Mub7/05tHM7I2+sJ3Py78zIG8dq6wfcbvKjrNOAL61v4CPRwPHuUgpGHuLTGl+cpSr9iyW61RxstngnyDU5bwTHHK/hf20tJvYNNKWaMGbUC64974OmRRtiUS93Aw4R8mgNc3yTOBU/AIFuD9opUuYvuUdNj6qc9aTSiYYWTSa5pRF9sj9tvl180/86tXId1huoKMfT2y159MSX98fcZo1+CeNzRmGj1UhfnSLu1PmQ32jEKJvMd93tzg8XARDkUELKQze6bbpR9gi4M2InC98u5JrvUY40BfKJUc476dhv6zxYb5ii+urvrubZiF/Z2xBMVqs55xwfsLXBifcMMkjuUvFKZXRZcaI0mD5GpaQ0WKMh6iG7xBz1InWWTr3HnheDGeKVxRqzB9xt80ZT2E1qqw1VnbpkptkybeALunpFRN/ry6qJdzhZFATAQa8TTH0ShYFhO2tdHlLdo0ddjzZ3S92x1G1hvuVzfs0bxtdu19ESdHO0NpQXFXbEBh0kfM+HOIwopKlLg/JKA8QaciQSOfI3qghVvQEGzn/Fs0oHNMQ9HPc8zqjzH5I7Zx+7m2wJ0ijASCgjpt2drS9G8GzYLqIKp5BRaY67eTVeepXktpnyusySUPtCAnVVPbyOkhoyZVbseRlO7NCdrJy4grUXL/FL4Ug0RT1kJdkzLPw1D/JdGef6lokGybiLW1lZMJUVVo/ZcHoxh+b9zsJnSxjvkcbV5ABMn6rwO55R6cS+deO9/o/448oI1GSwbt5Vfro/gYKp+/m42o8I3bcsf7IIc/MmgkxKWGwcR1WvLt/mjOcTlzucrw2itE0fP4MK+unk88XzSQDsH3ichHYXzucFMN/1BanNtpwfsP+f3rx1da2VfYNX/8PjH93/5L+NA/k/qQbyD1lbphoxzd7UhDTx2YwLjLnwIQqtXkaPm0NmuwWHE8LQFWpgYdnIFrMUJH0akfRpJGPASWwiivmiRlUjye7RprtVHT+TChy06nhvwh3G66VwwvcIJtI2amd28L5lDL9WRjD+5jr08xVkVJsR8HMUv9f355MNkZzK7cup3L4sPx3FUt9nbHCNIabRmw9MYll6cwV3++0l88+mQOczkSjESl7HuTBk4zNEwl7Epp2ccLzOzhfDmG2ZRKhbHv7PF9LWI6GtR8KK0iEUjDrEzIJhBBkWs3LnGhx8yvkicyIfmD7E7MMCxj1fhYZFO1NyJ5CWbsf7J5dzPV11uo3vdAagYOQhiuStGIraWaJbzRLdalXTWbMzxS0GOF5fTvZ9JyZnzcDLq4SGDGN+nHGSgbo5KMVK7AwbMddp5df6AXzW7zbnswMRyAVs63+etgAZ6sIeLrzsw4WXfdCTdvIo9HcSauxZs+wq+obtlHUbcqk0AIdby8hst8BHuwz9TAGV3fp4P5+Dl14lD+8E8uOdyaywiEWi1sv52BC2NjgxMmssawJiWRMQyxmHh/ToKvgk+DZDfTMZE70Ob+NKwp+t4lxBIKsr+vHV8wmcaDUmcbwT6gIRfQ9/wLMRvzLg+noGaWfxKtGFtO5Ojp4cgVfMKnK7zcntNmfLzYn87nqGKpkev7qcQyLsxc+hDP/h2SQ2OWBzTY1VZo9Y+/4aCjtM2Bk9Bn+dUjRFPRwbu59X9dbstEwCp3bGaL+lM86Yzjhjptxdg0ImQt4r5GxlEH9cGYG7RiU9cjWWWz1hjGYFnd1iRml0c6Y+GFetatKCT9OuUOAyKp8f7a/grFdH3LCdrPSOY4rja7bMPcaWucdI2rQbsaAXxX1D5tq+YNovG5Hr9uJ6PIqLH4/kZP0ARtxbx45b45AWqvNR2RjWWsdwOvgPcmpNcJZWY6LeSs6g4ywxjcNeUoe9pI6UDnssxI0EuxQx5c1Sstdosj5lBi1dUspb9RC1C0hvNEdYoImVehMZMivmZM1hmvkr1iXNRO7UyZN2d0KcCvnG7CkW1o0k/rSPxJ/2EahbTMbo35mo85pf5xyi07mb6h49nk/axoqyAfhollIhN2CafzLP/C4xzTCJ9bkz2Fs2hO9cr/LJm0mIBAqOu52kUyHmYnVfjoUd5ljYYT44uJwKmT5KpYD9L8Mp+1Mc7i8xxT/x+m9kf/sIxNlHUzn86FRWmDxm1ovliMW9COJVC+XO2i1MfL2Ul4HncT8chWGfGtrvmQLweuNeXE5G8nzONnJ71OmvLiJf3kZGtyn3m7x4eL4vWoNrUSphvM1bTl4dgk6fOgaaF7DD4hWX2nWYqtWKx7N5bPG/zCiNFj6uVqWwtpknE/ByJkucE3BRr2JD6nTUH+oyJ+oeexKHgExIweQDRGSOI8bj5juoJoD74SheLNqO//3VbA89yyStdsbmqBrMKlt1aWrQIn34Xubkq6C5PjuiSPtgL6vKg/nM/D4NvSKmJETyIPQ3CuS6nK3rj4ZaNzssXpHW3YmzWEhFbw9OIm0cbi1j1xAVX9rGlKk4mdQhREmgQSnP6+2JsokFYH38TEDAyr6P8ZaW8eXWxTjPyyFQv5ibXw0jbvd+Vlf0I7nWhoZWTcjS5r1pKtLKNfolJHX1MPPeKmJHbyfixCa+nHaO3flDueRzhLDrGyiYrEoxfl/njppAwSdGOexpsmaoVjaaAgU9CGhViDjdGEJphwEFB1Td84k/7cPh1jI0DGRkDDjJwWYLtr6JYIBdIU8LnMgdfBTH68tZOfART+uc8dKr5PzrPozxfstqk0eMebSGVX0fM1n3NU4ibVK7ZdiIVHQ0SV0GjNLoJuDlTFwN60jKt8PNtoqcUjM006X0aIHAs5XMASfx/i2KDqcePg+9wQ93J6GUKlDT6UGaosGPK4+x9sFcRE0qdT9JowCZTyeCSikoQbNSQEdQB0Z67bQ8N8FmcAknXM4xO3s2hWWmfBJ8m1aFlAe17tQet+Pi178QHr2eoX4ZPL/hS/jEZLoUqtO8l3YFvz2JYPvwU3ydMR4eGjBi0XNuXezPt4tOkt5pzZfGmexussVFvYqP306hpUqHwxF/YCTsYPqJ9eybuw93cStigYA5OaqO7rw0a4yd65lk+4aPjLJwPbeKxOnb+L2hL4v0X2CiJiEsZT5WOs2kv3JAq0zAiw272Fzvy9GkUOb3TeBsVh/kVRp8POI6P8aNe1dNnh30gvgvg6mY3Y1BjAad41V6LkPTJ3DX8zLRnbrkdpnxR2Yos1xfYSxqZZV+GUEp01EqBbwMPM/E3JHMtnjxjmDy2zoP1Zo2SqV/0iIWujzHTb2SDWcWk/v5P68HoqtrrQzq+94/PP7ho3++DvN/iv2f1AfyD1lFtRGjDdKYv/cD3lt4ix2xo1i0IJYjiaHEtDtxzvcwrk9W0WdINtNMkwj1VuHstzb4IWkWkNWtwffF4/DRr2SAdg5nqvvTrVBDOKCJU95Hibi/FkOHNvTzlCyYlsDdWi+cLqzEOFnAF/YCXIcWcLamH1+d8kAxQrWAXXO8Ge2cyRr9EsbmjCY95BR970UxXDud35VDKJx8AMeYJSwKSMD9jyhM+1eyqjyY3BYTcGuj//PljPd+w/roedQOv059h6peMcomk0QNO+YVjCM1yw7HwiVoDWhmduFQjtvfI7JsFIds4jHSa8dWpMPknyJZtOYWOx6NwnNoxTvRo1iva7zq7qZw7B+caFWR2ulrdbLOJobkTntO5wXRWq/FxpfzMfKuQzNHnYipL9homMPsggjUJ9ZQ1qZHZYc3gZ8k81WtF95a5fxm+QLXE5E4hRWz67Yq7RY27VcO1g4l3C+LEYmr6NHr5XGzO3UN2gw+u5HQgaoNbdetMcyKeMrpx6FYj2rgwP7xPJ7uRsYNV9pte9G3bWaIVS41nVqM3aCinh+fMwojixZeBp7HJ3EOH3tGY2vcwONsFzS0u9jZaI92roiYc4MoH6xOlpY9uqUCFobHMzlpJa+G/8aQV0vw8CpnafZI+hiVktWiihBvud5BgYKtXheJafFmU/gdFu9ey8Zl14lzdiHxhRt7A87ifH4luiENmPyuw8gReXyv3cva/vfZGTuC3uBWNiZPRVz3P35mopBGPnJ9zNVqf+ZYJHKyoj+m0jY+sLiHv78Ul5OR7DbszwHXMzh5arO5wZmXTfbccr3DhY/1MFOTYm1XxxqzB8jHqhGgXUJJlxEA54r6cGPMr0RmzaW5Vhuho4JHFc502PdwubYPbT3quN0cjMSjGU1JN6lBZwlKmc6DFi/OPBzIoomPWHk2kq0zjlEv1353gJjk3s7H1X7E1rpw6P5QFCIlrQoFR+PCuG7ng9pFQyasf8z504O5Ermd3TXDUBeIqZDpc27oXraUj0aYpcW66bd41WqPQL2XuKE7AYhIjMLug3KUFaas/eg831ydwU5Xe4oqjIl1lDJeswM0C/ELKOFKYx9OZ/flpHYHsm4x33lfw+niSg6NO8DOsgj2dWmgJ5G962faVN2f1/3OMLdoMMdrgxk95gW5n/9v24r+X2l/+wjEyktfqfPdejIGnCTg5UyaS/Wwuatk/I8P2X8nArleL0v7x3E8ox+DHfNol6sKsMn3PBD5NWNv0EBGqQXr+jxgjX4JV9tVm/W5mmCy6k1QKIS0VmkjqRHRo69gQuhLPjF9zMD4VSz2es6TOmc65WJc9WqRCFXooMwmMyJtn2Co1sbdFl9iSl1xN6qlqVvKHbfbON5bSsGIQ7icjGRQeBoJt33ZveAAkVeW89m4yxwtDeFXl3NYqskJPfshvVLVd/ThsFtsfTCWgqn7ATjYbEGgRjGznq3gu77X+PTRNA5H/MGTNndy2015U23JUJscrmf48iB8F8tzZ7PJPpqbjQH0oqLIiMhUoYMK3loREfKGqUZJRDf7Mlg3C7FAziiNbgCyetpZlTObkhpD8oYcZXbhUM44PMTx7lJ2h53ieFUoRc0GDLQoIKHagZp6Vf/nkQFHOVMfzBC9LKZrNxOROY5LbhcYmz6Hn10u8UdNOG1yddIqLMgaeILNDc7E1rpS2aLLoz6HGbRzA2dXb2N60goyBpwEVOy+ADssXnGi1RixoJdauQ5FMmNiTgVjNqaUrx2us6dqKDYajfxs9pqglOl4G1XxOMsVW6s6nHTr8Ncp5cCxsdx6bwtDL3+IkUs9roaq4m6ofh5xjS4olEKyzrrRbgVy3V7UTTuQNWiwa+gp1sbNxsm2miaZBo/8TvBjXT+Mxa1cKfPHVqeRN1c9MB9ZylHXMwy6/CEACq1exPUicuaruKCcz0Yi6hDgNziHxRZxBKk3ktylR3SzL16a5SzRrX6HbnJ5vJCp7qm0yKW4aVZT2a3HGuOnzEhfCMBIy0xWGCRxusWHR7Vu1HZo89z/IsMyxvPA8wZhaZN57HOJVWWh7LNOwPlcJMsj7tMml9Ii1+AH8zh8779HqFsei0yfcrdFlfq8nueNnVED5hqtWEibufA2kI/7RrM5eSRb+11ALOiltMeIRrkWIVq5XGnoy07LJBQoON9mxA9/zEJnSA1VecYgULJoUBzH36jALGpiBcIsLSxDy2i8bI3JtBKaZRo46DVwxuEhTvcXEx2+GzM1NSZkziLW6xoxnSI+OLScdoceIkNiOZ4dzPWg/eyqGcL9q31JX6VCADYqOjjS7IWjpIbdxUPZ6HCXsY7p/3wEovNPRiCx/30ikL99DaSuQxuFUoBXwlzO+x3CwqkOt8/T2Z82EHPfarLG7mGIdgY+VpVMMXpJaqUVqZVWKD3baG+REm6cy7b+5yntMmJi7kj2l4Vzr8mbjEtufO5xG57o8+GgOzheaMDOo5KXP/Rh5JaN9FZrcHHPMLJzVFDZlP1+qAvlqAvlDDHNxUTUQkG3KT0KIXcCDhGkX4i5RivODxehViNmdPYYTk/fTVWnLqtn3iAqaS4A9pJa2rrUmZ6wkgK5FB33RjSqhWhUCzlV0o/5g1TKds5nI/np0Ximx0bhbV1Barstwg41EtpdEKKku1eEQKCkR6nGlv4XkQoEjDN/S4SGnJxWE9rl6vRPncZR1zMcdT2DulU7X1jcY5hGNw9KXfkgcQYbUqcTJwPHKytwF2vhZ1jOFM/XrK0Ior9+AVsbnPg85Ca3Gv1Ieu3EA7+TJFQ7sMfjFGpiBWpiBcmd9jwsdGW6djM3OjT5zvEqfrffx1W/BhtRO09ynDlif5OeSk2+qvWiVGbIR3Z3aK7VprpXydcrTjJn5wYG2+XiekzFcnMzx5ubOd6EvpmCo7iG9A4r9pwfS12XNnItKKwy5uvFSwnVz+PJLyHsbLSnrkKPI7ZxaKVL0JPIKGkzoEMhYfSs54zfvokp4S9ok6kj6xUj6xVzq9qHE/YP+dz6JrLwVvR86hB2C9CSduPvXsymkwsRNoipfGDDTLtkfqzrx8fGidyt9sTLoIpX9z2QBXQw1+oFYfc+YEC/LAb0y0L3rRhxq4A9TdYEfh9FQL88ug17yag14+O3Uwg5+SFf507gbpE7S3SrWVg8iMzBf5Db00aEcxZj9V7jq13GWoMirt4awMUWH4QCJUKBEmtJA/EyC6bovCHvsQNtMgmf1vjyqYOq69tQ2oFz9HL2WSfgeiISbccmrMUNzDVIxE+7hLn5EykYcYgTdo/pUKqzxSyFLWYp3Oi3F0+9KtLrzSnuMGKxXwLm4mZ6O0R8dH4BX/2ymEMFAzgcPZQMmRX64g4cbi9DiJBPEyYzYlYiT/0uMDw4jYIpBzgaH0a4Sy7hLrkoeoVIAxooqzfglw0H0JV0oVRCcqwbriciyR9+BAs1EZfb7HjodYWh6ROI0JDzycJzrBnwgHN7VRQ14//YSEazGZ2Wve/2BgOhJnkdpkzSaqcwy4L4Vte/aNf5J5oI/+YH9v9of/sIRN/dVHnwlg2fnZ1Ht0EvcRO3MfXTjdSEKBje9y2fm99laNwaqFUncvh9zhWr5GGbmrUY5KRSb4x97s26iDvseDQKQ7sm5jgkMVP3DcZCKbPyx6It7qKmU5vSWFs+mXuBfYWD6OgW09qqQR+7UkykraTUWVOdqaqvhPTPJLfRBLFaLzK5CHOtVnKqTTG6qoH3B2lkNppx3esUofs3cG7pdpoUGoRJwXN/FJ3WPai1ilBo9SIxlLHQPZFLxf4A2Og2YSZtpZ9uAXbiOv6oCmen7XUmpC3iuf9FPA5GsWr6LfaeG8uL5TuYmDWdB543cLyxnILxBxmZNZYfHa+wq3I4zwod6WdfxItiFUOpsEATkXsL8mxdfAflMskkma3ZEXS8NeTh/C1MTVNJAk/OG8F+h8sMebFSpbx4dQXzQ+O5WuhLSr9TpHTLSexw5EypCnXkqFvPDJMX7CoZRnG9IWeDDjLj3DrUZAJWTb9FXocZOy2TcLyzjF8GnWOqViubG5y5UBTIJ253UCiFXKzpi5F6G3ONElj9djbr3VT1ovhmF0wkrQzSySKx3ZlTOX0ZYZ+NUKDARaOag3mhWOs2M9r0LQ1ybcK1syjpMSS905obhd5oXtMl8UdVHUXULGLlqBj2vBgMgECswN++7J2WzLd1HrxutuaYww38HkUR4ZbFPusEfqp3ZbTOG663BBBf58hgk1w+McqhU9mF/9PlfOD74F0/Cqjy87ntpiQ98GTfnH18mTeRJ95XmV8cTluPOjvtL6EApALBOwj5v6Ud6xXt/NHkh0Ip5GGNK4dczjArfRESkSryPeR2ikMNA1hhGM/JJtXz11GT8dubcJzNa8lNtSUsJJ2mbg3OO93miUydjC4rLMWNFHcbc6fKi8pmXQIsyol/5UaQfz4ASalOFEw58K7ut7gkjLXmMfhLpAS8nIm/aQXPHniDcztb+1zkZFUIxS0GtCSYkBG1F689UfR4t6OpoUqbTS8YzgXH+4Cqjyqv3pj4oEOEb17P8qgbxDW68pX1DdzFWu96Yv4NrVcr0+aK8z1GZo3FXbeGz8wesbZkAubSZqJv9sNsQAUl2ao05PB+b0mqsiGl7zlGZo3FUL3zr0Fh6Vgp+wX+4xHIgyef/beJQP72DkTLxUK577YdP74djSheF62IGkZZZfC62ZqSFn22e1xgwYNlGFm00Napjp2RisTNSacOS/VmLhwZgnBIAwYanaiL5EjV5Lx+Yw9C2DPyKB8eWsrb1Xvx2RmFKLSBtnYpCrkQGiXMC39KapM1ux0usmj5B8z+VVU4PlXWj5JyIw4POoKNqBV9oYAKuRBnsRCv6PeQFovpcpYxyDWPt394k/TtXny3R3FpzS9ca/WjQyEhQLMYE7UW5jxeweFBRwC40RTArTwvbvXfS0y7G3drvci97YQopJHmGm2+H3SZL2KnglzA/IHxHH8RgrNjFWVPbeiy64J2ESb2DWz1uEiqTEWu6P18DgCfe9/hYZMHLyptWez8nBfN9oTq57FKv4yzbQZM1KpiyOu5NKaaoO9Xy/fuV/k8axK9SiFeRlWsNn9AVrcF8c0uvGf6kKln1wOQs2Avi0vCeJzhyrOIneT2aOMt6cBAqIl/0izG2GVw7k0fNgbdw19azNLkhZzvexAvsSZOF1by3vB7HMtV5bLd4+dzo99efqxUgQpqZNrkPrdH4NCOjpaMT9zu8EPWGFpyDFCadrHMPx51YQ977o0kb+Y+XnV383H+FGy1G0kst+Mbnxt0KNS5WetHcokNvc0SCiaqCvpee6K4s2ILI45tQiGCERGveHSlD6eW72Da5XWcnPwbK3evIXb9NqZlzeRX5/Msz5iPVNxD9TNLrizayq/Vw7mX6IuwW4CBu4p8erzNW54PNqP4oBU6Gl3UVOlBtxAnl0ryS80Y7/2Gl3U2OOrVc8LuMSdajZmrU8O+JltyO81w1KilpluX70zfsqo8mOgXfqgZqNKMq/1iMRM3k95hRaNcE12RjBunQwmdlkpilS1KpQDZawMOztvL5cY+jNNP5dOsybzv/BCJoJdWhZQlutXsa7Z6J/gFMOjtJHoVQtY5PiBTZvmud2XI0mU8OvQHjtdWMH9APM7Sas5X9mW4SRaO6jWM1+ygUaH6rqt62zBX0yapq4c91UMJ1lN1hW9LiUDzhQbdA1s52fcwkelzcdavR0/cyd3XXgz0zqW41YAHXheJ7tRlvGYHcTJYGLuUtcEP+D1tELM9XnHu2iB+nq3SGjmQPRCAUKtCYrLcUdfsISZ4L4OfrqZg1ud/jQMJWPUPj38Q98/P4f8U+9s7EBcfTWX4kRk8yndhk/89fsseTGupLkK5AF3nRkbZZHI2OQhdo3b0NTvZ4KAilRuu0UjQ7nUMmppMdrMphXnmzO2fQFGnEUvNnvCyw5EPDfOZmh9BSqojzyZtI/TRGpRyIaJqCX0GZROkX8ijWjc65GIeeN7ALW4BABKJnHCbPJp7NHDUrGOQdhbFPca8bLVntlEi7UrJu9rChTY9Ltb0ZaBhLtcrfalq0UX+Rg/rgaVUPrDhk4XnUPyZadQRdjJco57gxKXMdEnGQKRirtUSdqEjlPHVqTksnB5DcacR9x8Eop+jxG15Jsm3PLmzYguDYz7gxJADHKsbyAHrZ6woG8AB62cAON5dyqb+0dyp8aa2Q5tPXO4A8MGNBYwNe8WzfX1J+nYvAS9ncj/wMCEnP+TTSZf48epU7s3ZwneVo3hRYYempJvGNybsmqFS7HvS6s7NE6FoD6/hmd8l4mUKlicvwFi3jeV2T9m2dzqpm/a+0zW/0KbHo2Z3ol/48c3wy/irlzLt9HoiRrziN8sXPOhUY5iGKk2R2i2jVSFlfeZ0OmQSDgScQEvYTZNCg0BJBxMyZ3HK/SQfl41DS62b9l4JJ+weM7doMC+K7ZC81UQ/rBp7XdWhonC3G7UBqsZK/wF5XHC8z/SC4cwyS+RNhy19tQo5WRXCbLPnfJw6hZ/9L3OvyRtHjTr2pYYx1yeJKycGMWBGKvEX/fGfnMEPVjexFemwvdEBABtxA9O1m5lbNPh/UvfTFWq8U4n01ipnpHYWH5dMwl27CmNxG629UtJbLdlvd4vpOdO4636L1RX9eF1vxQybVwCooeBsWV96FUIaEs3IXL6XiMxx/OJ0kUU7PsBwXDmlKZbvVDm/zx6Li0EdWfUmnPE7TGqXNV+fm4XX4DzcdKrp7FX1xNwvcWODx32Ol/YnzDQfQ1E7qa02WEib+dH0Dbk9bXxbMZY6mRbZxRaoF0sYMz6RgjZjsmpM+d7vGicrQ+hWqCFVk3PJKYa0bhVpZUy7J1fL/eiWi6jPMGZORBy13dok19rgoNeAqXorI/TTeNjiyTbzZCLLQnjP9OE7xNi3+eMZZ5nGGO23jLm+HpFJJzbGKjCLvU4DLy75YhRRwUOvK7zp7qaPXem/HMhfaH/7GoieUMH9DA9yw49xcMtElrgkoFMgJKR/Jh0phlzK9qdg1CE2uKtC5tJuQ0q7DRnw0zp0w2uIzvCiVylEqN1Do1yT983vM1iq5G61B/OLwyk/4ISPbxFjf9iIpFCK/ksJQ4elkvjameN5waRn2BJkVIL37ig2B15ic+AlOot0eVljS0GzEZVdeuwqG05auzW+2mUsvhpJtsySkVlj2VQdwLeH5nDO8QEXygIJMirhM687JC/7laIaI96u3stcnQYsRY1YihqZpNVOh1JOesgpjiYPIK3NmrMlfTlTHsR07WZGT0zkI8M8Rui/5avJ59CcXYlCKaBbV8mp5j4EuRWiJezmTZ0lJ1qNeZDgQ72inXpFOyaxYrSEXWTHOVJVqc+2wghKuw1R6xRQ0mHAs292E5QynW89bxB04wOmjYqnoVcLhXUntiItXlTYkRZ8GnPtVrS9G7hQF8SFuiCaejRo95PxpesNzrYZcKM5gNjgfXzqdJu5OjW0+PRwtMWUNrk6i0vC2FcyiAmGKXw+7Brmoia+LRtPj1kPj670YXrBcHK7zanpbaOmt435KUuwFLUh6xbjb1HOwoQlJMvsGCxV8n3tAABut7mSXmfOXOMEHDXreNXdTUKOI2oiBaIOCDAu4021JT9Z36AmSECvWTe9Zt04adXi8ngh71k+4A9vT06+7scH1xaQlG/HjQZ/QmyK+OzNJPZYJXJ29whuhv1O/PpgZMaQ02xClwG8KLFjbuYCbnRo8tvLIfz2cgifvpqEV8Jckiuscbq5kj2jxxDwaBXOZyI5Ux9CTJ47Wx+PYU7aIr6zuYamWje/vQnnc+MshAIFad3q3HVXRbq/Wb4gzucKa/RLWKNfwqWKAJ54X0Uq6mHp1Hvc6pByyOUMd1p9GbYwkTEW6Xj3L6BKrs+1+kBi/Y+TmOxCSt9zfFYyiVnajfRqKJH1itATdfClWRxfmsWRFnyaCK18ispNWGrwnOZeDY7YxhF9IBSA1fkzOWB7j9JGfdIj9tBl38Uk/WSmmCUz1/UlU7VaVZBzvQokwl4Wl4RxonEAJxoHsN6gEMlmQ577X8TIs45ndQ5Ep3tzz/cEb6osmGGYiAIhTtIaVlf0o1WuTmyHG8NHv6Ko24SifDMW66Uz9vFqrN2q6WlR5wvHm3zheJPYHFfkmtDWpU5IygyWp8//azYdJQgU//jrv5P97SMQb1+JctWFUE58M46OOU1oH9Wj3+cvuZbhi4d1FdlVpkxySyO7xZTFlk/58NY8AK5N3kFal6oAntTmQFG7Eeut7nKv1YfqLl32WSfwcbUfP5u95tMaXzYaP2fA8xVcCdrP6Ji1mFk20SVXo7VFA+rU+WnMWbZsUaWDLOcXkF1tymLPBE6cimDJvGiy2i0wlrQhV6qxxUzVEb20NJSGLi3elltgY9xITas2HRXazB34TAWrHB5LSrMNJS36AMi6xbTVayIQKbAwb8LLsIqYVC8EEgVKuYAVwU849HoAeUOP4vpkAR4W1RRdccT812c4vNDk5R/+NA3qRC9eg66IZnrT9JBZqPLn4noRPcY9qFeLkdbCxlXnmK1TR3p3Fz4SDcbmjOaW6x1cHi8kN/wYm6oDGKn7hm/yx9PVI0J5yRjxjBr6GpeS12bMKutHqjkrxVyvCyC70ZTn/hf5vs4dD41ygtQrSJRZc7GmLyON3+IiqeZWs+p5b25w5kqJP01tGtgYNeKkU8+9DE8KRhzC+/kczHRV/F1FGZb4BxSw3uouC6+tIm3GToJ3rGPQrFfcSvUlf8wBnG6uRL1aRLeJHC/3UjbY3mVbyUjstBv4zjyWQTs3kPbBXtziFpAddhyfRNV3ONQmFw21bs7HBxMzYTujnq5md/BpPs2YTLhlHjMNE9lfPQR1oZz8ViNiPG4y6O0k6lu16G9dRNo+H2pD5Qz2zuaIbRw9yj+fs0CEw+1liDTl/Bx0iZOVIWyxu8zIR2sRNorZOf4oz9uc6VKK0VaTEaBZTFOvJlJBDx8lTMXCrImuS2a8/GYvjtdWEOBdiJN2HQC9SgEZzebccbtNWncn8Z3O7LgyATXXVox0VNFqnM8VPJ/NI2PASW51SHk/YTbzfF9wIqU/q4MektVugY5IhppA+W6duh+KImvpXtz/iOLeoi0Me7oGT6tKvre7yonGAWwxS8ExZgkFEYfxfj4HQ+0OvnC6yYoHi9ky+DwmohaW3F6Oi2c5eeWmuNtUkV2uqlPkDTlKeW8r++pDiC73ICngAi6PF6KolZI/bT+uTxYgzNUidMQb4gqd2BV0lredNsgUYkpkhghREl/ugI60i16FgCinJzxqVDFCxD/zRGHQQ/rIPfg+XsnXfa6zwDXxn49AtK2UwX5R//UH/2/s/rMv/ttEIH/7PpAauQ47rkwge/teXI9FcXz7dmYeXs/NpVvRFCi4aeqhElBSrVcCp2wFYGPJJA7a32RXQwBzDJ8zPWUVPg5dbCj3YKPLXfLlbSTV27K6V53sZlMCXwSzIPgZ0/Z/SOHqvfT5Ngr/RW+Jy/UidEAG32eM4fW3Kvjg0RZTHkg8OJIRwr7l+4g6EYnCvR1RmhbioEYCtYrY9dUMPvnuBD98u4A9X/3BtcZAijMC+G7UBRp6tflj0n6WPFmCrVUd9/xUZHmjXi+gp0IPpVs7lUVG2Os2UDjuIJ/W+GIoamff6zD2h6jSE2oiBeHGOUinyTm36TUA4+fo8dI1mkvBOhR2mXJC2I++ZhUAJN33xN25grxGWzRH1bItJ4LHZqVkNZlS89yCoaOTKZK34mhWh0vsInIHH1VJCBuXsNb4MT+ajGCfdQIupyI5O30Xsy6qBHdy5+wjprGH5/4qTZPPjbMYnT2GGK1GYouc0dGS8UtVBEKBEkejerwLvZBK5Iy2zkAoUKo4m9TrSTGxYmuDEy7GdXxrew2AHzXGcsbhIVW9HSBQEvrDOrrC27lf6MajETsALYb6ZTBUP5P4FheiTGKJ73Qms8ycQ+EX+bU+mLAZyQx6O4lP/KLx3B9Fj5sqtTLBIJldZcNJmrSDqZlzEQgVBKk30vXcEMVkIfurh5BRb8Zq51jM1FtwPR6F0raTyR6vmW/wjFmWvvw06BINci0c7y5Fx6ADAIlYzsXhe1hwcC1TB7fySbwTMcbuiKQ9BPfP406TLx+aPiCm3ZWsTgt+KxlCUYItbxbt4gf9DkZbZlCxopyIzHHv6jX/ZqndMhxNlVxqN0VXKCJSr5wtFt2s9nxCWps1huJ2/JNmMcEpDfdDUZgGV6KtI2OpwXO+GaEivQ7I78d6twdE13tztk3FwTZ4ZCpHW0zpde7EUChGUCplgG8+6d2WXM32wU+zGAerWlaVB3Ot7wHUUHK8qR+F4w5S09vGuVZPtKzacNetIcw4n9n6L/lNJxxQQW2HJaxig8996ir0GK81iriBvzMqWcVIvMY3ljRHa56V2TPPM4nWXg2c1au40eDPJKMUNiZP5V7/PUz5fhN3v9xK+IvlrPZQ9QklNXkxKCwDDYE6kgwN6vz+o1rEP2F/73P3X2Z/+wjExNNYqbXuI/p4FzLEMIsjhSHIe4WYarexzPopHz2dhlqDGFG7AI3ABlqzVT+K57O2EXRrHQXjD+J+KAqnsCJyq0xY4R3PcO10tlWOZK/NXRK6tHna5kaUYSIDbqynYNIBnnfJWfl6PqFWqkJgTGwAE4a9oKxDde/XFZbYGDUyweINz5scCdXPY5x2Jhk9RnySPplBlgU8LnciNegs7vHz6anUZN3wO+zPGojaUz30RlVSWmzMT+GX+CR2GlP6qnLc1x/2o1eqQNgtJG/WPjwORGEQXENNgw5mRi0EGJdR2m7AboeLnG/xZ8/LcCRaPXTXaiBqUUPi2kxHpTYS007Eol560vQYNErlXOJu+9Hr3k5vjQbod7MsIJ4epRojdNKo79Xm/YTZjHTPYI9VIi6xi5Co96iYgw9GcXfxFq60+vCmzYqEUgei++1lcY7qJH/e/SwhT6O4FbKH6Ts2Ihpez1CrXCpluswwSSK3y4wHte7IFUKKn9pyYcF2fCQqjZd/i3piZQKetrkRX+/IKNMMDEUqoaMf3oxmrFM6coUaOy2T+Ljaj2v5PihydJBbyxCVSRkw9C1tcnVSS6zJHXyUtRVBRJnEEpkzh9IqQ5QtYoR63YgkvXR3SBCo/Y8cg7dtBeHGOThKajhXE0xxiwHtXRJ0NWQEGpXxuNyJniQDpHXQ6C9HrUWNB7N+YfDDdQS7FPLymSuvZu+g//717FykYp9t6tV6R1yY3tPBsYZQgrXzOFA6iHlWiXyXMoYwh3w+tbiLk0hVdA5SV6k2BuiVcuxtf7Sfa9DsosDIUVW7UV5TNYOGRyaiLpRz7kkIcwbF853pWyLLQvjY/B7fVY5CXSinXa7OQP1clutVMjF3JBnlFjhb1PCb03m+rxjNEds4bnRocrhiIFec7wHgciqS3Ln7cDsSxTfTzzJSs5yI1EX0Ny/CXNLCaN03GAm7eNVlyVStVlxiFxHl95j1BoUcbLbgpyfj6ONVyCDDHHY8HoWbexnZb20A3vU0Od5dys6wM6x9OouCEYdpU8gIS15ISt9zfFrjy9nXfdFKV8d7YjYv8u0wNGqjM86Ybv92zAxaMdVsQyhQIpOLuOEarZr3yUgsnimoni3jdPAfTL+1muJVG/+SCKS/T+Q/PD7m+Zf/ikD+TzE7cRuTQx/ziVEOmxucOetzhIkvV7DV8SI+Eg26Q68wV6cB7+dz2Ol1jkWNiwF4LjMiyKuAeJmCboNe5lgk8sODmZgFNDMleg3p43+jf9Ji9DQ7eeJ9FdDmxKh9OF6K4psRl0jpdwrXR0uI9Itj2ej7HMkMoVeuKikJCzTpNWhmx/MITgw+yPzY5Tx2deNVkQ3UqbMp4CExRW64H4pCoxpMJ1RS3mWAnWEjY5c9YVf6EArH/sH84nASRu9gY9lYADaNvcbxkv4I9plwa4KUHudOljk8pcLKgOx2MxYbP2XFH2sZP2oFXT0ijg06zMLbK7B1q+ZXl3OooeSVzI4LVX3QFnVTnKdLa4+KubTLvouCQcfp+3UUn288T0qHPeuMkhiavJi5ji9xt6niwb1AnO086JWJ8LVR0Z57D8vFVqTDnquj2TPrAI8TvHnma0t7tzoAR5p8CbErYnxiFD19ZAw0quLWxf6krtqNR+wytLVlNNdqIxAq+XLGJX6uGM3zJDfUrdpxM62hSN6KGjpYShq543abAa+nMsbqf0jEbDNPpv9HkUxfqUdFmy67As7y1MWNU2lBBIZnk3jHm8tLtvKD2hicz0bi4FfGnMolbPc6zz0THwDulbnTUKsDAiWL/RIAOHZ3MI6edfz2OAKNCjWEfZox123BQruFfgaFPKlzobVZAzVtEAc1UhB0lvnF4egI1ZBodvO60pKrM7bjf30d6iJY+VQFsHCyriHMJJ/v69wpkRny6IkvD91daMox5PA2S+zWV/I4wZtDM+KZWTCMH22vMbNgFDvsLrMyfybf9b3GMYsQaNXhM9fbuEtqMPlTRef3hr58aZxJio81YmEvDreW8enAW8R1OjBYP5vCLhNOF/bldY0lW9MNCB/+mv4+hXxilMP2Rh+O2Maxr9mK82V9WGDz/B1z9bihSQBYxvUwbmElYT9vIHhBKguN4jFRk1GvUGdNwXTCjXOZXxfI9n7nOVwxEKmgBztJHedG7KFdKWFd2kwKJh4gvacDSxfVnONlUvZVD+HykN/xl0gJHLaT510a7K+OIKXvOVaVB3M305P5/omEDMzl25zxDHApYK5pAqMCuhmcPpE+RqVcjQsiYco2FudPZ3rBcNXvZfw1fm2exOGgo/xcNoYPh9zmH+fQ/Zf9X9nfvohe0K1DRpsF0Z0SXjbZMyFpJZMd3xCZNZd6RTvfvRnLvmYrFK/1KJcbQJMEmiRIBT3kNhrzXtoctIvU0FWTodO/lh/TRhHql8Oq0uEEmpdRm2DBxNyRnG0zoLZXh19Gnaas2xAhQsKc8mntldKjEPGz/2XcLapxt6hmycQYTDTakVRIqOrVQ1O/k4xaVQ5t57hjDH32HgGWZaybdh2ZCWiJu7mYEUDz77bsvjCedd4PGRs+haQyW8a/WUxxqwHFrQZsuziJDY73qPVTY038HARVUraemUJKsw1VHTosSV3ImnWXaK3S5lTQIZadjWL/6MNUPbdkzstlzDi6nh9TR5FVomKgffzTbuRKIXKlkIIRh+lUdtE+opVD5WFktFqQ0S0l1LKQDw3zkSuEaNSCukYPArECF+0aAJILbGhRdLJ95hEaerW5M3kbs7QbUROqKO0/NMxngWk8g+zzyR92hC+tbpP+3l78ny/Ezaqa9lx9Ng6IpmDUIb69P4mUCmuU2r384n+RE47XWZk3i8VXIjFUa8Ppwkqe+V3CWNyKsbgVoUBJcMo0tBaWM8woE3OtVgZK2/nGJB0EkJjiTNTMW9xu8yblmid5s/bhoNPAL54XWX5pJWdeBOOrWYqmpBsT02ZW9X1MRZceFV16iFsFmEpaWR4WS+ScWyiT9CipMyTzvjPBmvmUNelzIPQ488bE4mJUx8yCYbho1WAg1KSPdSld5VrMfLWMgkkH0MtTImgWI2gW46Jby5fGmXxunMUB62dsGHuDl4Hn0XJsRrCumoMuZ9g57hjRnRI65GIm7t1Idac2G0omk/vahgvVfcl7aYusW8yHN+czY/eHhJxQvU5Eh+N0fzG55aZYSxoQdAt5227NlowRuEsq+dI4k/e9HzHNIZW3C3fztt4CD2k5/kmzcFGvxvVYFNN1cujqFWEubmKpSRxLTeJIabBmc4MzI355wtseESmf7uVBvitB6mKGPX6fVoU6ux0v8KDWjadprvhIqrHXqmeVfhmPWz241NSXwVIlsm4xEZnj6FCImZA+lwnpc0nsdOKE3WPWrn2fyLIQwu6vo7+6iMevPOibPIMQ3Xzyhx9BU62L1TcWs8Ihjpd3Pfn47RQ+qOyDkbQDNYGSfeMOkdGjww/2V5AI5UiEci5WBtJ3XDon6kLx0S3nYF7oX7fx/KuREPhv4EC01LrYZBHNnUY/LjjeJz3kFGdjBrLILoG9DX3okalywSkrdjFLu5H8afvJn7af3G5ztnudZ5/vSRzGF/BF+gTUhEpO9j2Mp3YlYmEvqTWWKD3akPWKOFAcRqtCg6+OzONtqyVf1Xoh6xVjKGpnoHY2e0sHc8M1mhuu0VR16VHWpodOEXwYOxPJfT0WuiQiLJfyR8Ug+tsWoVAK2Rw3BtuwErJyrXCxrOGjn04watwLEpqcGH89kUF2+Qw0L6CszIiyMiMeLNoCQOCITHaGnkXTuZmpk+MYZpRJjMdNehUCpMIedMzbkNCLwKWNHwrGkrV0LxkDTnJy0U5yBh1nqk8qwSnT8Ly4mqmmr5hq+gq/rVGoC8To3NZmhGkGr/Js+SJ/ErfTfBicPpEfHa/Q4tuNrWEjmtnqGIvbONxixiTv11T0Kvg2exzB0jJm/7CRWx1SGhPMaEwwY3T2GJbHLiZQpxiXxwsZ/yKS/qnTcDauo7xZD5F9G9vuqyKs7yIuMsg2n4cRO9hcMAptoRRdSRc/jT/D1xnjOTDuD1aUDSBSr5xIvXIO9zmKn0kFxWlWlHcZ4KZTzfC02ZxoNSbcOZdRwa9Zo1/C7oRhrFxwi2/rPCht12fFzWX8OvkofT0LMVJrpazciCf+Z7hZ6U2rXEqrXEqvVzu3K7x4Wu/E1Qo/erRB+5EW0Uu3kNVlyVafC3yWPRmxoJf0ey7465XypXEmADWd2lyftIOOVlV01z2jEYVUgUKqYIXJY2YXDuXjaj+GZYynuVeDFWUDUD7Vp6ZVG3uRDmuezmGURjdZlWZcjNyKn0EFgXolWHjUUNKij41/BWu9HvHT2DOsW3YZ677lWPct55MJVxDWqJM39Cg7Dk3hy2FXed1oSVeXiB9Lx6JAgVCgpL5Hi8AXC3DSr6O0x4i2NinlPQbkLNzLsWZv6lu0+GHjIq43B3C9OYCSciPyO0w5dWoYcx5G4vNrFGq5moS+mUL0oN1EJc9ld104C60ScHcpR0co5AOTWK62a3E915vpBqoI5n2vR/Qo1DhYG05dqxZ1rVqM1FZFk9K15ZhIWhFXShiWMR6tYjWsdJr5PX8w43NGoYYSa68qdNQ68RyWxwm/IyTW2LPEIo7lhnG8d3EZS2+sYGP+NBIL7EkssMddt4asBlNMJK2cvD2YUMvCv2bTUfIvNt4/7W9fA1F3tFJafPk+Xw64wSLdGjY3OPORYR41vW2Yqmm/65z+qSYcG2kDu58NA6Bw7B+4nohk/YQb/HphAkq3dlZ5P2GtQdE7hlvPZ/PQ0ZChrd7F7y5n2Vw5ipkmiYzS6OZoiymLdGvoUvYQkT6dPkalTDRIBiC3y5yybkOG6GQAcKxmIP46pZR3G3Al04/+DoXYa9Tz9OP+1PQR0+XRiVqJBj26vajJhPw88RSbEqZxftB+ItPn0qtQ+Xn5Y0M6AjoZ65bOw1IX7A0aWGH9hDuNPiw2fsqcS2vInbOPgJcz2eJ1iV6ErIqbx5LAZxzP6IeTWR0BBmXcLvbkoO8JPi+chLG0/d2zTKmwRhyvg+PkfGw1G7mRFAAavYS45vM8yQ1Jo5AxExJ5XmNPZ4+Y5D7n8NoTxdll27ETgf/91RSMOMTS0lA65KoUllCgYIzRGw6VDOSh13XC0iYzw+YVTxtcWGERy89Fo5lr9YJzlX0xlrYTopdPdY8eN/cOwnxWEXnVJmSHHedsm8E7tlXnR4sAGOuWzk7LJDY3OOMtLePHvDHv5uV4dQUFkw4Q+mYKhtIOspLsyZ2r4p+q6W1j0tuFXPA+StiNDTi4VlKYY4FSrECiq+rP0ZB2oyPtorJWj83Bl/gqbTxv+59+p+q3oSqQNcaPmZy6jE/do+lWqlHWY4imsJvtT0ci1u1C3qyOUk2JWpsaQUEq1oPUSks2esdgKW6ktVcDG3E967Nm0qMQ0tklpqNRE0m5mOFjVH0vJ1qNSWhx4u4zf2aGJ/Dsi2BkUY1UV+jT172I0v3OuK1SrbPXZ71YF3WJazX+KJQCggyKOZkdhJNJHWtsHhAubcXryhqujdvJ+aYg6nu0WGoSRx+JhMMtZoRr5nOxxZ/71e7MtXqBllAln3u2uh+FTYZY6LQQaf2Y8ZodeD6bh4dZNfkNKgfkcEDAogPX+PnwTEKmvuZ+pjvLA5+iLuyhvMuAa4/7sXncKX7OGYWxZju1Z1QMCA1+vYha1Fgw9hHx9Y5kF1hi+lhE3UgZGprdtNVpcn/kr2yuGkF9lxaXnGJwjFlCmGsex+yeEPByJoFmZfjrlDJROx1bkQ4X/qRtn67dDECnsouXXeqESUHNIvefrj/oaVkq+3uu/IfH33v59X+bGsjfPgLx1Knl4fBfWaRbw9qKIA7eHY7j9eXEdNjSqOhgsFEO4YmR7LB4RbBGPt8Ousq3g67yU70rj+b8woN6D4aOTkZRrMmVCj+cz0bS4SsjInMcvb1CtNW7WGSTwJRDH7LK7CHrkmfyfZ07x0v74xi9FHWBGKVSwEemjzFXa8NcrY1XrfaM003FRK0dMb0csY1jrUERxe2GAFR16BBplMCynZdJXbUbBCDqgPlh8fQPzeR2gy9fB9/ARq2b+kIDZjq8YqbDKwbNesXmfpdYbfKItODTvGfzkPGaHYgFCoLUxdgHlLG90QGtE/o8aXVn1f2FJA3fTVqLFV8F3ES22ZLvTVOx02+kXqHFattHyBVqyBVqpN7ywMawEa0q1Sn1erI/q8IeYH8aTtnHYnunF7lbBzGngqnMN2asTTrev0XhPyaTi819WVgwkWuDf+N5l5zcZhPMpc2YS5tp6tbgqzvTOe1+mqMtpiy1i+dkYT/GmbzGXNTKFbeLnCrvxx2325ywe0y+zJQQ7VzMZxXR2SNmlfcTXnV38+nTKSwsHgTA2oCHrA14yPumjyiRtzJNNxV/9VpWOcTS16yUrJ52XNzLcT4bSbzvZX5xuMTCkbHvtF82lo3BSqeZ8MdryJ64BxfdOq6N2Ym2cQe2xg3YGjegdVqPOJ8r6CRq4K9eSUeLlBZFJz76lZT3tjLd4AX2Ih0+dIthW14E0Q0+TNFJJbvDnMJxB/k28AYF4w9SOOYPjkzYj4NWHQ5adehqyNiROYx6uTYfP5/CTyVjaXpmykDzAjpapdwd/itSv0ZcNGpwOxLFfJ06phq+RClS0tSjgdPnGUQ6PkFaLsZS2kzIuiRelNvyotyW1I/28uPVqeTecWKnw0Xi6pzortXglusddpYM536nAfPD4mlXiinpNCQ63Ys+EolKSlatjeONwXT0qnPI5Qw6ap2EaZQTplFOWrwzP3peIe+ZPYcrBuL6ZAHLPOJJybclOeg0M7ySiTlzhLk6DZhGlPGR+T1E6nLMxM0cuDSKK2/8Uej3sOn2HNo71dEVd9FmC222MG1AEkLnNg69GMgOxwtY29Tx/Od9+NhU8IvvRQQ9QiKurye5xprXJVZ8UNkHe8s6Stv0yeppZ4f3eR4/9eFUUT9mvF3MpXYdNueMZHPOSL6vc8fz2Tx+bfDBUtT2bv38y/46+9sX0bNqzPiqfCR5zcZ03jBDMLCD+Z4vsRU3YCDU5NeE4dyM2MXhFgeW6FbTpFAheOYb1RH4ahkDLAqxl9aTO28f/luiyNu0l4FrV9K6WIqrWQ1nnK9yt9OEoRNe8VHeVC4EHWDervV4Ts1mwYDn7Gu2QqImJ6bDnoPFKgqFPkal5HSb0aFQR1+tgzZFNf2eL2OCUxqvapz5LuQq++pDuFPmya6LhigG9dBhK8dOvY5TjwYydEAaP52czs2ROTyfuB3TPzmRIjLHMVwvnV+qR1DYakhHjwQd14sU/emYxpm/5XBuCBM+i+d6kQ+bh5wn7MCHHF68m7nX30NjRSuuZ1ah1iUgZlQt0ZeC6XRRnTJFukryykwRjO3CQa0HjTIRB26OQGNVE04XVnJ136+YqfViGq6ay54ma3TDagjQLaWvZgHfmKTTpRQhFghp61Jnh4UKOVZk0splE1+iCqfQ1iPha4frTLFLZftv0xm86AWfmz1hrtULQt9MYah5DtcyfGl1laIv6aSyVZc3bVY8a3SiYNQhIstCqFe0M0BTpT3/bfkYhhtm8MP56QQMzcZSo4kD1s9I7VZjovlrTMY9ZX5xOAds73G30oM4nyu4P53PaKcMjljEMrJrAm73V4BcyF2FFxcj9nC8TpUnf7lYgsvJSMThrRysD0Wi1YOuUINbl/pz3c8bN9MaDjtd5nTlaDq7xVR16HCyKZhvzB8BWvQqBXxa48vVK6GoycBgmEpGwFG/gcQ8e756OQFvuwre5Njw3sx7yBRing3dRVWvCB/TSk4U9kPXv47tjQ6sNyjE7JkQt8HVnNg5mv4fFKCfo8RxWi33hrow4LoqNRP0ZRReC/LJu+VEVP5MwozzuTvpFsMyxlNYZsp4tw4+uBHGRVt/Oho1eD1qN6BBkFEJ4Rq17CoaxmCzXKp7pWx6Po38YSoKHY+QAkZpdPPRlMskt9lRqavLyd9HIQztZGTmBAYYF+L8aBHrA+7TdsKKuE8ckUjk7Nw/hZ5AGWHO+aTXmzM6IINGuSbPDvdBMFTVy3OnyANz/RYGuBTyrNOR6pcWxDiJKG424JBwEJ8MucE83SKeyrRYGbuIHRaviNZP+5PJQYtPiiN4OmMrWT06OIpaSOs24WXg+Xf7g5lYFYUsypxPoFHZX7fx/M0zN3+V/e0dyL/sX/Yv+5f9P27/ciDAf4MUlo5BB5utb9PcISXmk63M8XyJtaSBraUjmVkwjOND/+B+mydLdKupV7TzS+FIfikcSWq3jOQ+53DRqCFEMxfHO8uwm1yAV8JcGma2U5trRLhxLnlycBLXoqnWw0Ov63xfNo6+M9+gKepikW4NRmpt6Eq6+Cp+Ig46DTjoNGAjbSC905o6uQ7na4LQFkrJGHCSn81ekzdjP8frQllnnEiM/1FqQuWcG7KPmUEvEAt6eTZ1G69rLVELbCbcMJthv22kqreNqt42yhv1CdOo4UGCDwVvrWjplBIqFZJWYI3rkwXsuj+Sa4EHuHI+DF0NGT9mjaLHvZPVP65hy5jTyNP1sPMrR+TWwqt6G6T1IKyXIKyXIGkUoJcoxSRayvN8B0xe9+IRUoCrcS0/jD7PxOj3ud3uiOON5QBsTRzJYItczu0YwafZUwh4OZNNlQNwvhbJMZ+jeCXMxSthLhZqUvZEj6SgwYgfHa9wrbkPV0r8Gbo4kR0Wr9hV349FujWYarbhq1lK3tCjHLB+xhzT57zsc4bHT30YafwWx+ilRBi8ZVDiCiT0IqGXuCwXAqUlKCRKnmc4ss08mU5lF+VyfUZqZ/FrwTBGGKYzPG02Xzrf4FSrIV3N6sw0TMTlYhR17VoURBzGzbGCr8KuM+vi+ywzfsIy4yeEm+cRO/sX4vsf4Gez12SFnsD96XzSVv0OStCVyBj11YcYqnfwPOgoefkWPK5x5mGHJQ861ZiiXUlspQs6/Wo5HbX93dqQqvXwQdB9NJM1WGz5FDUNOXseD+NIagjTM+aTLLMjPtOZlU5xyHuFVHXrUyJv5cOvT/Hb7VE0hHZhImqh3VzAzqRhFEY6k9tsQm6zCRPff0RLtzojZiZS2qhPbrsp+fI2tMXdFIw4RIuik7yZ+1C81WXLoAssL1Jpwdwp8WDAHxvoZ1zMkecD+blsDBoZUlxiF+ESu4icWEcWl4Sx+dIUtNW6aGrTYMiyRJR16myyj8ZY3IpOogY7bo1DMqeasm5DtK7rMnjuS3STpDyL86ShSJ9z0WFEPwlEf3I5ZnqtmOm18rFnNB1nLJitn8gS3WokHs1EaMhpbtIkvcqcfTsn8VVNf0p7jCgY/Qff17lzpqY/e5qscbi1jCvO91ieP40dpSP4onwsz9uc2dygem2qDmDfrkncq/eCA6YqieG/wv5VRH9nf/sIpLlTg4FPVmFnVs+KwklstL5Dbrc5ObUmLHVPIPJwFMMnvWSrUo2kJnustFQhrb9ESo9SToNci/MNwdja1lJy0ZGzG7ajKewltcuCvC4zdIRyVuTM5lfn84zOnsoqm1iOVw3gtEM0oW9m0NCmyVb/i2AJP3+kEvY5tvsJP9W78olRDqHl3kzNj6C2UwsXvVpC9fK4m+BPV7CI17VWDPDK40JTP2zU6/ktbzDb5CJMtNv4zfMMOsJuWAg32lSgeQ+zalYUTsLSvYamDg3am6U0KjqY7JfC4wpneqQ9pHWb8cnCc9yu9yXxrTvmCUokK8tJbbdDKEdF7353KbEhp3CsWELSsN0ABD1Yw/K+D7nw9UiUvUIqQoVUP3FEL7CWJiNNbJ1qGKVVQOWAx+TL2zA1ayZUO4cfv3sDgGPMEvTtOtgZcZJ5qUve0ZePzZnAlKGJ6Kp1cqRuICaSNibavOH0iWF8MaebFw12YJKOvqST6drNOF5dwZ6RR7nWEMiap+7MHx7Hj9GTQFfO95ljGG6Xw8S7qi531BXMeLkclAIC3Yv5oLIPDd1adCtEHLS7zR3vU8zPn0S872V8EueQFnyaMaN3YSDUxNipntt+xwh8tYTmQn3uSmSI7duYnbxU9TwsSyno0cFF3EZ6TwdeYk2yBp4AhGQNPEFadyc/LlEjocCBvbruTOqTzJtGS/YWh9PSJeWy7yHqmrWwM2ngZqsfOmIZALffelNhq4vxqHIqegwQqCmZFfqcc2l96Gtcwus2WzaFRPOs2Rlt9W6u3+zPTQ8vpruk0GsoB6WAKrk+CnX4JuQaZz/pw6FllwCYP38NHlvTeVLpRGe7Op46FTzvtKW6XecdBU3E7MVINzRwvd6fgYa5uD+dj1S9h24DBauMnvLKyYY/HK7Rx3UNBYOPAjDUZAKvay3xDMvnYkYAUzxfc/1mf9zDilh9djnZi/dyZnQNpuoyKu7YcnmQhF59AbqiTjrD2lBTgrJbjQNjjrHkyWJmWL9CIlBRu3ydPB6jaXXk9xgz69UkejN1mWg4ko197xGpV84eT2sVkwQwNT+CtHhnPp10idk65WiGXeeDyj6ss4nho8yp5HUZ8xIb3E1VEPNLTjFsWgE9CiEXdu/H+VwksOEv2XcE/4pAgP8GEYhEImdn8FmmWqZQ3qrH1aY+3Kz1Y7lHPB8a5hM55xY7LZO4XelFWpUFjpp1OGrW4Ra3gBn5Y6ju0iW53pqqBEtSPtnL5CsfsK16GF++mcDRrP6Min8PW+0mtlaOZLBJDtsKI/DTLcMrbgnxvpfpqtWkQ6FOfJsrvcvq6F1Wx6lWQ45fGkZSVw9tMnXmmD9nlf1jdljd52hJCBNCX5Jcbc1PHpdJLLQns9mMXTfHsMn1LrJuMfllpqx8O4+Piqbwtt2K5XqVLNer5E2CE6nJjphrtdKTpscQj2z63H2fh2Uu+JmUY67bQrdSja2/z2S6SRJmSUqqp8qoirPCVr0epU8rY3NG42BTQ9AXUYgq1MntUb0kperoqXUgMxSi7BYiaRYgd+ikvlGbOzXejLZI50hTIKdODcNJpI3yvDFSQQ9ucQtwiV2E/gt1vjFJZ1thBJZ6zfhticJvSxS3XO9gLmnidE5fdEUyWuRS9NQ6+GXlIQo6jLHUbKFF0fmO3lurWI1h0g4s1JspGHGY5EYbnHzLkOp28YfvCWq6dCgYf5CC8Qd5M/x3DLU7iBwfzeuXTlx73odjdk844/CQK+3WhCQuw023hlOthojUeonIHMczmSG5PW3s8TpNQ6+SxmodhF0CXpVas8n7HtrSbrSl3bystOFpuyuxnTZ4iTUBcLy+nNRuGd7P5zAnZSm5R93oY1eKWNDLi1o7goxKaOzU4KLvIca8XInJVQ2Gm2VxPLsf4brZhOtmM9wzi7vutzDTbGOiTibKain3dw7A06aSj0wfM9soga3R41lm+pifXS7R69zBZz63uV/pxhDvTApGHGJL7Fgmz4gjut6bjfH3CItbTVjcat47eJ7bL/2w1G5BqRAgFcixF9dx3vsIueHHSO/pIObMEVL6nuOE3WPW6JdgotdGV48Ig3QhG0smUVhlzBdVg6FDDce7S3G8uxQDaScHfU7Q1iMhffBBtpil4BJWiEig4Nic3Vxq18HNoIaRZhm0e3QzxCqXVr9uTr3qT1eTOj8EXMXBoo6zdf2Z7JvK5qejuVDZhwuVfeiViehrWsKmV1NZ6v4MTb8GNtncYVf6EEZnj2HvkfH0T52Gw83lmKi3oedTR2WPPj5xSynsMsFTs4Lld5fS1SNCnqVLZ7UW9TJN6mWaOF5dwe1CD669DGRpaShKo67/P+5Uf70JBAJDgUBwRSAQtAsEgmKBQDDnP/nsPoFA0PbvXl0CgaD1370fKxAIZP/u/ez/pTn83WG8dt46SoPN6xAKlMxxSGK9QSGOMUt4NnQXV9vcmKKdzYBLG/hm9AW+SpqAtZkKCtp425KxC+Px1Szli5cT6e0RIqpUR70B3l98FUdJDTEt3nT2Sphn9AwdYTc6QgWT3ixhn9cpLjX1ZaxuKvbidqQCIZtrB5LWZAHAV/bXWXBuDTkL9jI0fQK1bdrs8TvN1wXjKa0zQChUYqTbjvh3Iw7+toP0bjOOVYZy1ukW6gIxkWUheGmX0yjXYoROGnMeqSCDBaMOMSxjPACLbBLYcng6k2bHcelyGD3unQhKpQwe8gYf7TIe1rkTYZxBnVyHCbop+EukvOru5rXMhqxOSz43eYb//feY6/8CgKuFvgy3zUZdKOdGgTdGOu0MN88mt92UdRYxPGrz4EPDfOoV7TyXGaEl7OJ0XQhmkhYquvQ4ZBNPUMp0kgIuvJPsBVhYPIhNltHvNuGYThF/VIZz3CGaA81OWIob+Sx1EupiOcbabVhqtfCm2hKxqJeGIn3C+mQRl+OMlXkjrXfMcZqaR/kBJ+DP/or7hrT370BNpKC7XYyyR8jjkTvYUjOM2YbPudbchy1mKaR2yzBXkxP6aA1Phuwiq1uf7wrGMc7iLRdLAmiTSejuFuFjpSp2d/eqUdJkgK6GDHvdBn62vsnWmsF8ZPqYn6qHsNrkESNvr8fFrRxNUQ+O2nWIBb2M10th1W/vsX/Nbn6vGoahuIPH5U60lKp4mMyd6mmVqdPeLOWX0At8mz4OLfVuptkmk9dhyhC9LD59OZmpHilceBvIpbC9fFY0mUNOFxjw8H2srov5ddtupsdGIlBTQoME9TrVOfCb+af5+tgcxO3Q4qRAbNqJmpqC0Y4ZXI0L4tHkrQy+v44lfeNJbLDnhmv0OxJEj2fz2BFwnnO1wWy1jib8xXJ2+p0DYPntZZg712Gl04yLdg1nn/ZneXgsp48PY+jMl0Tne6DxTIvUj/bifH4lEut2OhuloBSgb96Cv2kFCqWAzda3iZdZsO2rubTYqmjzpQ2gEEGXAXTayNEw6eD3gNN8ljOZn10vI1OKWHlvCRqm7Yx1zMBRWsPmp6NZ0f8JfzwawqSBSbTKpcSkelE47iCbqgPe7Q1LDJ9iJxIxKHUeltotvG99nxGOWf88jFfTUhnisvQfHn/3zfd/CYxXIBCcQRUELAX8gVvAAKVSmf6fjftz7FFAoVQql/z5dyxwUqlU/vH/0xz+7g7ExNNIabM1io4kI7oMFUwY+JL7Z/uRsHYHgU9XYGnUTKzXNcp7W4lpd2KRriq83VAVSKTRE36sHM1XlrdJkllT0WPAuZI+fOd6leVPF2Jk3MoJ76Nca/WjSyHmWOwglCIlAu0e7C3rKMy2wM2zjIIEO3rMekBN9SwLRhwiPHI5ZdPliNXlZAw8hvOlKGaFJXDlWiieQ/OoatdB3iukMc2EIzN+Z3v5SC45xdDv80gaPWH16GgulgXQetuc9v4qIj6dOE3EY2sZZZ3J2xZLXLRruPgwhItTf+VsYzDnU/qyJ/wEBV2meErLiTwVidCjld5sHZIWbifg0jp2jT3GmvvzQS5AJ08NBjcB0NUjYpLzG67n++BlXsUh+xuE7FtPr28bLqa1ZJRaoKvXgUAAyX3OcatDio+klgnbNyGOqKNHrkZC32N43lqN1LCTNyFHAVhROoSXlTb0tSjlcYoHr8b/SoNCgZNIheZyvLcUW6s6Kur18LGq5Hf7Kww5tJHMFXvZ02RNj1LE+dJAfnU7x8a8aYy2SOcjQxUKa21FEAN1c0hqd2SLWQq3OqSYqrUSpC6mU9mFhkDVi1KvaMdIqNK6j5NBbrcZe/MH4W5Yw/NCByTpGvQb/5aMejNaO1XNfx5m1ehLOnhRYcdi1wTWGxTicGsZhWP/oH/qNEZaZbLB6CWj0ubxo9tlNhePVundX1+O3TUlxp8VIRHKMZa0E6Bd/G7dOV1cSWBgPi+z7PF3LeGw41UGJi5nolMavpqlDJCWkCiz5mRlf+RKIetsYljzajZZA08Q+Gom4ZZ5RBd6IC/QZsLwF2wzT8Y9/n/QlI92zCD6Rj96pTB6+Eu6FCIeFrhgot/GVJsUSmUqxN79EjcAOtrU8bcvY775M+41eRP9xodZfV5wLq3POxTWq+5uKuT6fJA4gxleyXQpRDT1qPjK1pg9YF/NEPZYx/NLgytP65xJL7Lkm5DrVPTo85FhHktLQ+lWiHhzwRPzcSU0dWqQGKAi1/R7MZtgy2IMxe18bpLI8uIxnHF4iOuTBSjLNPHuV8BM8yR25Q/lmd8lZhcOxVW7mnPXBtFt0kvM2O18WTaO+WbPWHVnEWj1opkjAcBrbA5JqU4gAN1cNcLnveS3Pqf/AgdioQxx/iccSNoP//QcBAKBFtAIeCuVypw/r50AypVK5cf/C2OrgHFKpfLxn9di+X+jA+nrJ1Ua7IxinHkaOx6MRte2meSg08TLhKxNn0lyn3M4n4kkcmQMF0sCqK3XAeD9wEfsjB3B2sH3WGNQgNvpVcyJiONqoS+v+52hXtHO5tqB/GCaREjKHHTVZTR0aLLO7SGPm9yYZ/LsnbARgPPDRSz1U4kziQW9PK5z4TO7m6zLnEWc31kGps7CVKuNo86XON3iwRr9Enx2RhG9egs/VA1nrlECusIuLjb35XKBHybabXzieJsHLV68alARz31sf4ffyoex0CKeuFY3fjF/idOtFSwNfsqRR+HkT9//Tv70QpseJyv7Y6PViEIpYIXJY9blzqSfcQmO0hr27p+A9aQiMjNU9/bYUUfmZwYI68WYvoLaAAgMycVas5E1xo+JaXfFXb0SR3Erx5v68IlRDqdaDfFVL+dhuwfhWlkkdTowWDOXHytH46Ojylv7SEt52eHICoMUZmTNYolNPM29mjxucKO2Uwt3/Wru57vxVcBNLtf0ISXdHnunajY5RrP27FJ67TuxNW2gKM8cNf0u5ni+RE+kcqi/JQ1BI1ede5FbGJmkitI6qrV5Pm47A09tJGfBXvomz+Bl4Hkm542gul2H7e7nWJMxm7aXxmQu34vzmUgwk6FUCPC0reRtnjWgkrQNcSlgr+0d9jb5YCZqeecEAAa8nkpVpT5uDpUss45DDQUXaoP42uomLUoJG3Kn46pXy7cW95ieMZ+yEiMAfgq/xN0GbzrkEqIsH7IubSa/eF/EUtTCx4VTeN/mPt/lj+OJ99V30q8xnSIu1Qex1OQJ8868z9YZxzhd3Z8wgxwMRe3ENqnoy/dZJ+D0YDHGhq2Mss7EWtJAdJ03qYXW2FvW0XDNmvmR0eR1mDLXKIENX63CZmUeEqGchi5VhKhQChhsksvxS8MIH5MKQEy2O/nDjuD8aBFhTvnEprkh0e3G3qSeu+63CEqZTmuyMTcW/MLoSx+iVSKg1bkX++u9tNhJ8Fn6lrQ6C7yMqojLdsbJpobmk6rnbLSghNJGfeRyNYY65LDHKpHDLWZsfj0SpRK+CLjN7Tpf2nokvGfzkFEa3Xxc7cf5+GAeTtjGB0VT2WJ3mXqFlPut3nxunPXuO1pd0Y/fLF8QkTmOceZvSW214Xjw4X/egWhYKEOcl/zD4+++/bEYqPt3lw4olcoD/3ef/78ygUAQADxTKpUa/+7ah0C4Uqkc/1+MXQB8DTgp/3QAfzoQL0AAZAOfKZXK2P9qHn/7Inq2TJ9Bwl7W6Jdwyqme5/4XKZK3EybVYYOrSn3wzJTdvJLZ09qp/u5UNTU/goLJB/i2zgMhQgTWHZzN6oOySJO11kEk/N6H4WufIRaI+NA1BidxDVea+/Br9lCs9Jp5LbPlaI0t8cluxI7fRt7Qo5xoVbGiukiqKO/Sx0RNhlitlwk5E2hu10BD0kO/h6sRqfdyKEELmZWSSW+WUFeuzwM9N2yNGxhuloWsU8L73g/45OflyEY3czLwMAAzE1fwoW8MF2qD+MH6Bj/WBaHWrkZVty7fjrqA574oNi84RtCXUSzdcJ20N/ZMjEjl+/sT2Tk5Hk/9Kq7nemNp0IzlxGK0Rd1ITVWbcf4PWkjo5sXw34h48wG5c/fhGL2UJnspE05vYs3Sq6TJrFlxYjxaferx1SghR2bBtxdn4jigmL21YUx3TWFRcQjOenXENzgDcKhmAAqlgCp7PZbYxLOvKJzKWj2uhe1BX9jL5VYv7Lzr2VM4mI5uMcMD04l95MsZ7f7IdRSsC3jIzrtjeDV9O3Nyp+GtUUaVXNVpHOJaQJLUllK5Bj5mVRS3GPB24mkcbq+jcIGKWv9l4Hkiy0L4yvY6M56vILnTnj4mZcQ4ajM6ewzGr8FiWQXVex0QRirRKFWp8GlWQmhQHn1Prue98XdI67DG88xUNs2+xCJdlboifvBpjS9TtVoZmj6BkRYZLMxYSFWFAXQKabLR4A9pXxraNNEyUj3nL67OZMP4G8TUebIsYSHGBm18t2EJBh8Uk15kidi2l9oWbQJfzWS4dQ7TC4bz6q0DBRMO4nhpNYvGxXK1PoCXJTZYajRhqZNNfLlK7dC9yBlfu3Iy4pzQs3+Fj7SUtxrWnB52mw8qBtI6p4WYGg/ykmyJbQ3EaF4V6Xdd6HKRIRQpyR18lKn5EQgFCiKn3+FerYdqbQw7QuibKVibNqIrktHPo5AhRlmcL+vDB5V9aGzSwrp/BS5ibT4dc4WRWnlsqR5KUx8Njtk9oby3FStbHSIyx7Ep+C7zdPLxH65is22pNSJr4Anc4hYw2yiRQW8nEW6ax9Y+F3nZ7sD1Wn9mmCYRplGOuZo2I7PGssAqAa+IcmamLWazxyW+rRhLfKobywfGkt7TwcN2lUN9XOqM4xsfRvm85XqlD5ZaLX/dxvPPoanq/oIUljbQ/B+uNQM6/wtjFwLHlf9z9PARkAF0A7OAGwKBwF+pVOb/Zzf62zsQO/UGbrhGM+jtJGbYvcL1yQJ0H2px7LNtHCqZwFyv68yOX46aWME4l7f4J80CQEu9m9mFQ3lVas0nYWks9X7GMv3XTDWcw07LJEYvMMFWvR6/F7OZ7pjCt2/GMtIhE01JDyGGhZiIWjlh9xjHbGfmZc2nrMAEtRY1AAS2HXwRcJu5n39I3E+/4f5gOYPdcnh635eMRbsI2v4+70deZuvbCNY5P+AX+Qis9JoJMSzEWtxAfNhvDIxfxbw1sRx9GkaqzBaAVd5PWK5XyU+JY3hlYsk6w1TKBhjQ2SvGXb0Km8ElfJU5nk2bzpLQ4szu0ccYqtGMesRFxAIRM4xeoC/uZIJeMsfrQomJDUDUrspFO4QXM97sDf0Or0ceoMB/SxRB03J4WWiLuibcrvWhpkOb5dOiSWmxJbvLghMJAyhYvJesnnbc3bSYXjCcfibF1HTpcMThOgANdnJiO5xYoFtFZo+MOJ8rxHSK3tVEdt4bjZt/CXXN2oxzeUurXMqKsTEIBQqS6r2IrXdj7cjb9Lm6jleTfiUw+n18XUoBsNBoYY1vLBtzplP12ozceftwvLGcnHF7mVkwknOOD9hUHcBc4wQW7voA81GVbIsZy9Hx+3lZY8Mdt9u4jlnA11ax/L5SyGjTt6Q5qETG3p91l7ZeKdI6eNrozKu3DhxbuJf1mdPRd73NpldTUVeXM8/lBQM2rMR/fSrPGxx53+khMYaepNRY09klxk69DjPdVvoaq+a8pX8KHs/mqZiba6TU9KhRsOcAjveW8Hn/WxysCmepewJXyvywV69lieFTfpMOYXzOKFYNuc/B9FCyw45zweAtn7yYTI2TDuq3VQ7VcnYJ9dvt+eTnS2w5M5VbYd5MsEgjIGExx/oc4fPCSYwzTyNvaC2xp/tiKO2gTg32hZ5g3eHlXOirR/EJZy59HYPL6UiGDFIh7NwPRzFy1EscNWrpRUCFTI8H9R74GZajLpQjLNFg38DfGZ8zlfQiS7blqSMIbMZqi4j5OwTkNprQ0KLJlZB9TIxbRZGXMXpPVQdn7wXp+G2JosdDzp7KoTQ+sMB1yVPWxszj4dhtLKmZy97icIot0jlV0JeP3O+xK38oHdGm9OhA1MtIMpfvZSFKZuu9YmnOHIylKmedFnwaUFGZHNB0Y61BEaf/d21Ef7H9GRGE/9+8HQ+sAf6jwIku0Pr//fH/6b42f953+b+/rlQqE//dn8cEAsFsYAyw+z+739/egUgFQj6o7MMT76s4XltBH58CUsKt2Vs7mO0u55mYO5GLA/fhL5HSN3kGqUFnAfigsg87LF7h9HIl/s8XQoouNVN0KS42YZNxAMWP7Hgzvp6dvmexEbXyXv9kGhQK3jZZUNWti5u0khVlA7C2rOeJ91WK3FsZ91KVRtnrfxobUSt5G+JYUDQCb7sKXlXZkL14L1/UBOA0MZ/vn49FS09GWY8h8gQDasJ6udzqR1OZHrvtGhjulM1HRm/IDTDlyp+FwbfFllwyb+TDfnfZeHc2YRO3Y6begq9mCfNfLkFd0oOlbgtl3YYM109nXdJM3gw6wA9pY0hzSsNHsxQ9UQdfFExCJhdj7ltNeaUqJ77KJpb3Y+fwesl2JmTO4peJF1l4+H32LTqIeVgrRXIj/igPY4z2WyzFTeTIzBFoyRmbM5q8ahPme7wgv9EIH91yHh/qx+X3VfxMO/ZN5fWmvTjGLMPWsh51NTmWmi181WhKwytTzPpWk1lkyfI+cdws96b2tSn3dRToWrVwcOHvBKr3cKzFkYIpBxidPQ2tPDFHR10BIOKbDdwL9URTtxOhXEBMp4hRgW/o92ounTIJS8Wh1Mm0eV47ia6QNg65nWQp8wiTQvtLIxzrlrJ5wEUu1AWR8dqOqSOTCXFVocEitLKZlbYYq7HFABRMOMiGqkACTMqpkuvjYFrPQeez7KkfSOUQBd5KNXKjndBfGsvz675YDi0lr8qcdoU6tfetiFhxGwDHe0tQL1ZHbqjg9pRtjHm0BqcLK/lx9Hk+iZ2GjX0tiS/csPOu4FRJP1b5lhH9JJC8WfveQXG/r3Pnc+Msdpk0E5/ljPpI1Z5hIlBy87edfFU9kMHjknHUqGN36mCeDvqNcd9tpGFAFz1mGTzb1xeRGNIybXHbnEKk43zEfm18kTqB6avi+LTGF6W5jP66qsNnb4SA2DJnSgwN2Gp/md8fjGBC6Et2WLzC49k8Rke85JXMhhuu0QS0zGTqjGdcKvKj5EMhx6xvEW9swbfp45hycgP352/hm4oxhCxVMRUkVdsSOOstVZ06SNV6mD43lq9fjCc8IJPhlzbSqy1Hy6gDO7s6Uvqqivqz/C4RJpyMh0E1B6yfoUCBn24p9iIdwk3zyG5TMV+vrujHapNHfFc+lldlNqwdWPSX7Tv/u2G8SqVy8H/6/1V1DJFAIHBRKpW5f172A/6rAvoCVKmvgv9qCqjSWf+p/e1rIFquFsrWJyoCtenazfRPnUZjigkC1zbUhAo6GjXo71FAYrYDBaMO4fRApQeSP+wI/VOnob7PgMf7DuIYvZS1wQ940uDC7/ZXiCqcglCgJOOBMx/NusSWtyPozdZBIVZiE1BBUbkxn/e/xY5DU9gTtZc9lUOp7FBFjyV5ZiwKjePGrsE0eirBTIaFcTPdcjUSAy4SlDIdW90m7LXq+dQ0jpGpi1nr8pAwjUKGRK+ncNxB+n8UyfPN+3C8u5SCkSpEU1JXD25iOUHxK9kceIlJWu3MLBjGOccHXG3XwkbcyPyXSwixKWSRSTx7KodyyuE+QoREloWgodbNozIXRLcM6DKA6XNj6VGooiYnaQ0KBBwpHsBSO1WdYq1BEQD+SbNIDTrLzIJhfGgVzaLkRUR6xJHcYscYwzd8cX4OKYt/xffxSr7rew0ncQ36fxLxxXU6sUS3GgD3+Pnc6LcXe5EUsUDE1PwI0mOdyVq6F5dTkei4N2Kj20R/w0JKZQa8qLZD3isk3Cofc/VmLhX709apjqJXta5zBh1nct4Idtpf4quKMZipt3DzwgB0w2qQnzdh2xf7WHohEvOAKnQWdrLt+WXGPHwfHYMOxHf02f/JTuacXkvSgu0sLxrHTrtrhB/fqJr3gl840+LN3iujMQ+uQLjVhKMHd3C8KQhnaTW7C4ZQWaWPhXkT4eZ5/Gj6BsfopSBUEuqWT/wrN55P3E5w9DrcnSvoZ6hyRF0KEWE62Txs8aSpR4P+ugXs3zGJEaviOZsSxNyARO5vHciRH7Yx+u46zKwbkYjktHRKsdBtoeiJHXMnPyKtxYqkXHv2DzrGyjhV/9GzYTsZcngjkdPu8PvNUcweFYeOmowimRH3HgQyfGgKDwrckKr3IOsSM9n1NTcKvFnjGUtJlxE/mr7B+dEiPgq8S51ch7etlgAkV1hzPWgfLmJt5hYNZolZHCuvLcfJv5S77rdwOxqFgX8tvZdNSPpWhTxUEypouGCD47xcZHIRBfVGOBvXkX/HkeDJb0i85gtAwPgMnr51QaQlJ3fwUTZVB5DbakJmlRlZA0+wucGZCpkBOStcsNxbTOJVX7oMlIjbBBi/6aV+fjvzXJPIajNHX9zJ43InDvkdB2BRyiLOBv6BBAWjrm4gf/r+v4ZMUcNCOcB+0T88Pjrr578KhXUW1Ua/DBUK6zb/BQrrT3juZqVSefjfXdMHgoHHgByYCRwAApVK5X8K5/3bRyAeGo2srRiKlqgLKKa9S4KGdyNtbVJ29z/D6doQdlrfI9lCk5hO0bsayOqKfjz3v4jLQFUuVloo4XfNQbh81oJ5nDaZVWb0FmlxYuFu+quLiLMppI9nMVtfjOSh13Vc61UCQdPnx7KlZBSZyfbkzVKxvX5r5sEg7Sy+/FZF7+3yeCG73c6w6PUihmWMR4iSHXaXmfzTJmIJBiXUrtFh3MuV7B12jFOthugtLqVHKUcrS8LOfvYA7HwxjADnEjQ1upik1Y7HwSiGjX2F46WVmDjWM8UuFV1NGY9eeNPgp0WoYT6/N9mz//hY3r6/l9HZY0joe4yBd9YRNi2ZIy9CUddTbfRqr7WxHlqCtqSLMxVB5JWb8ru4l71Bp1jn9pCIzHHEeNwkplOD9JBTjM8ZRWGDIUds4/ilQElil5TcwUc52GzBnJfL6ZWpHJNSIUAv/Bxnq4N5PeAw6gJV7WGt7X0KmwwReTUzt2gwUWPucicqHJvthZw/OIxmt14kpp1oSrvJaDYjptENoVCBlUETXftUG5uLciHCQk0MHcXIesUsN4rnvGUwY8wLuGltypaSUfRqKNGTyFj65ClflE4kzD2XY3ZPcMmLZMGrxShESjQEYkpb9dnbEEz2YlXt5ESrPYaiNhZPimGAZh6fbZiEiZoES0kjrb1S4n0vM1Y6GomwlwUGCYAWqCm5PXg3P1SMYeeok9xud6Rw7B/MLRrMDH1VF/SMl8upttIlZ4cny7+5wrexEzGZWMvZV/1ATcnVM2F0eUFWtymGySIGBeXT1Stip2USzuciEXu1ciQ2HLFFB5p6nURdX4ban1iOka+Wo923jrUGRew07eFtiyWzzF6w724ERt517LFKxDHNG0WpJp+Mu8JvuYORPNIlydqeR1lu+IaUYmnSRIdCnQX6r9AxUKlViu2EeD9Yg7aujNi+hwh6vOrdWo/ulKAmAyPNdkrGSlS8aRN/5WhDKOqRJfxo+oYSeSsTmpfjq1fO/vcucbXNjbehKsh7fLIbvt7FNMg0OdFqzNV7wdj0KSdr4AmCvoyiaWgnaqJeDH/oIO+xD/oD6wgwrGGXzR3m5E7jJ7ubyJRiNIXdHDo8GsmQerK6zAEQCpREZc/BSbee/On737H0/tOmBBT/Rxy8VwGHgRqgHoj6N+chEAhsUdU0PJVKZcmf10IAa+DCf7iPGPgecAd6gSxg0n/lPOC/QSNhvUJEP518LsQMYLp2Mx0lOkxxeM2dgb9xti6YI7Zx6Ao1SJPZ8LTNjayedrJ62qnv0sbx2gqGDX7NzIJhyL3aCbItIXuVORNzRzLIPp+j0/awJmM2q8qDiSt0YmvCKNzsVH0CogwtTpYGM0Q7k4qzDmwef4rAVzMJfDWTCpk+rQoNBr2dRFJXD70yEf4SKS2VOjzwvIFAAL/VD2LXxt/pHtGMLKIFR0kNsk4J3+aMZ19ROG3d6myu9+bCqq2UdBlS0mXICK8MMu85I1JTEPRlFGGjX3MnPoDsKb/TEWtCR686NTW6vJq8g9cFNmgKu+ivkU9PQDvjc0bRJRfhf2wdzWGdDNHLQtCpxhSX10xxeU3fsenMs0rkjtttvrS/gadNJXo6nbhLmjhX2ZcYj5usKBtAhIaczQ3O/OJwifWeDxiZNRb/yDcYCTtwjFnCUK1cXC2reTPid96M+J3CMX+Q2ObMBcf7jMyYxoaqQBo7NVmXPJO2dENI0mO88Wse1Lqz+8TvOGrU0ta/k8+HXePXwHN84PqAqZYpCFJ1eNv/NMttn1LdX0B1fwHTPVIQuzezvmIoeuJOzIQijBwa2WKWgvmgctKLLVk3/A5Wms2cqg7hguN93h7zYsDrqZj7VNPZImXD+BtEloXjZlBDTpsZsTIBsTIBO3KGoa/WwZGrEZirtTHfJpECeS9bz0xhuZ5qDXjpVZFbZ8zdNi8AlgQ8w12sxXdWNxmv2UEfaTFO9xdjIOlg+ccfsPzjD5jmnEqNTBvtlWUcLBqIunEnQyxzUdOQY2XRwJM12xA6tzFWsxn3BZkM0M7hB/M4HG4vY8TAFCz3q5M/bT/yEi2G2eYisv4fdPztbeo0pxmzqjwYtXoxudecyZRZou3cxFibdHY22jMtIBlzn2p+eDEGG90muvXh4RsPxOXqzNJupKzciId1bqwunEqTQk6TQs6Q13PxtK1kiUsCfR6sxs+2HK+EufgkzuFcbTByz3Z+dbhAqFUhNp5VLPl+PRaSZs6mBpHV086s9EX0tyimoMOYgec/pKTLiLoGHeoadFBKFKQVWtPSKWWGdiUuwcXscjmH87lI9ny2i95WMVkDT9Dy2JReTQXGmu00dGkyaNcGyu7Ycao+hNUnViAUKDAeVU67TMIXD6bxxYNp2Bs0UJFuzjeWt/F4No/zNUH/j+9P/ztNqVQ2KJXKSUqlUkupVNoqlcrT/+69EqVSqf1vzuPPawl/frb1P9ynVqlUBimVSh2lUqmvVCr7K5XKmP+VOfztU1iaLpbKtjht9jVbsS0lAnOjZqy1m3lTZUF6yCkco5dSMOoQC4sHsdgsDkeRColhK9LhcIsZ205OIX3VXnx2RLE7ah9LopeTPnE3g1LnkRRwgTaFjNfdErL/P+3dd1RUZ/7H8fczQ6+itNCl2AVssSv2ikaNEaNRk6hR0zZZsybZZDe9maLRqGs0appRCWrsJUaDRhS7YgFBQERFitShzTy/P+6YH5uTbBY0YWSf1zn3ONzLwOcIzDP3ad/Ke7jfKR0XnT3BOx8hsf8Cuh2YiY1NNSU3HGnfMp1X/LWB42tGZ5Zk96HapKOs2pqb5fa81WI9L5wbzdst48gzOuOoq2BpVi9i7jnMqxseoNqjis7NL/Gi7xYeOzcRX+dCPghYT9Smv9IhQuuuPP1DGOcfXcyjl7uz3P8A7+aHUlJth69tAfPXjqBFn1Syi12oqLbiRKdvGHJhKC8FbubRI5M53+MLIubOJHhUKr4ON1noc5jm8ZPo6K/9fl0qbMKNAmesbarxb1xARl5jxFknRo74iQ1bujEu+kd2Zbeg4JAn56YvpkJWMTWzP2XVNixrupGLVdZMO/UQjraV6ITkXg+ty6bapKeHSzJhNtd5/PyDHAiPY2WRJ2uudmRb8608kX0vnZ3TeOPbsRgDDchcWzyOCtwezuRCkh8D7z3N2bfbkt1bYNLDtKgf2H1dW8OwotnXZBvtKTbZ4SAq8bcqpd83z+FySVAQbiS603FOFviQnefKyZ6fcqTCli2FEbzjdZJrxhK89U6MS+vHyqZbiToxgUPtYrli1P62Esu9uc+xlJVFnhwpCeIx930kGIIpNtlpi1U3TmfH0A8ZdXQ6Z7p8zaKbfnye3oW/hH5PjFMBwd9NY93gTzhZ7o+DrpIQa20K8OQVT+HZM5u83T7IzoWU5Thi525AJjlT4Wmkc/hFEs4Goy+xonPn85y46suk5of416EorJ0qcXEyYDTpKLjqgrA1Qrkeu2ytI8HgV4WuTE/q2H/R/s2ZRDx0BpMU/LS/FQOijjOhyUGmxM7CLqwI4zFXxoyJZ/3ansgORQghKStwIG3Isp+34bml52ltvGHfpVCeaLuX7SM60DXuHIG2ucQXNuPMvHD2zV1ITNoQOjbKYIbbCcaci8Heuopn/XfSz95IdPJgfB0KWeJ3kDGpA7hWqnX3Gk068k950LV3EoeyArHSG9HvdyX4vlRK/uFLxgwj9gmO2AzI5WahI2NbHcNZX84LTZJpd2Qc+9qvZEeZN9lVblRJPatSOv88eN7vbDTft9oEQEpVCc468PW7evtdWHbeslvA5Do/f3vKe6oeyB+lNsvzAWSxnlY/TeSjuBHMu/cbrh/zJr/Cnv6ByWwqc8Auw4YSUznH1rdm+poZ6AXoBXxv0POIy3W6jzjJmNQBBA9P4+HdU2kSWIC9sOX5ZttZcDOAtSWBdLfTcaPamajjUwjeNhW7NFua6BxZ2PFruvteYvOg+XjZFdHWxp62NvakV3pgkoLUHcHMC12Lu0MpB0vDONJ+LYuu9CXGqYCTZQGUG63oaZ9BVJ9T/K3rdvIr7Bm99hmqTDryDA4MTJhFu/BLrAvezbrg3XQfeIo2H8/Ew6aE6VndiM1oR1G1PZ3sLzHt/u0M9ThNbp4zE0O07pJtzbfS3U4HyU5MzuhFcZiRYKdc9l8JJrW6BJsjjto6h4BtVMZ50ic0GU47k7MhgEaOBry6ZWMtjFT6VNLSPhtDlRW0KWZkyiBOVcKVEleuFLvSK3Eqn97oTVvPqxwIjyO+7Xo2xHdiQ3wn5vskMufgGCJt7Lieq00ameKSw5qwb8msLtbqalsV8f4Dq7BKtWfnqA8oChI84b+Htm0zWOJ3EN2s6ywbsRSsTZwp9sFKZ8JKZyLAypkH9z3Gk0fHMy97IH5Wjjg0K2Tn39+nadhVciqcsbeqItAjnxmZA5i8axot7K+y4GYAg49NJeLweJ7x3cG8/LYsbLWahIpqfPXO+Or/fybkG0eHcrnUjV2lrdiT35LYzPbMLwgibeRSNpW0ZUW7VXxb6owRHQmRsbz6dYy2cNH/JjeMTjjryolxKmDSqqeYtOopzs5YTOYFL+ZOX47phCvdI5Ipz7PHsUMeaSOX8qLvFi4NW8b86JW0dLpG+RUnJroex+2INVX5djjaVDLY/xyXhn/K6102sKDfF5Q3raC8aQWPd/0Bx0wde8sFDtdN/Jgcyk/xrXhwYDzbTrRl6fUoXhixntOdv+bszMXEbuyJ3gBJXb/CkOXMiUELCP1hCocLggCte2q7wYZRfieY7/sDNsccebJRJqmTvAm0zWVFZjcmu+/nxvByrIUV34bsYvOVNow8+yCXc914MWALn+d054nsezmf7c2ePZHkmUrxsC3hQHgcB8LjmB4cz+mHPian3Ak7myreDt+A6F1AVrEr3321hE4BmWx89j28HYvx/dqaK4ZG7H6mJ91PjcY21o3rRiNvLHqQ+Yn92HG9JZWVVoxN68/YtP40tjMQtncKE9KjeOjl2XSPuzP7YGkvPKqkLVjgHUhtl+e7t3SX3++wJ8foRD97Iz1Pj+KdsG+Ju9mRHekt+LL9Z2wuikQvTBwuCOLcPm0bDKOtZHvM+wze/wQpUStpuXQmx6bNo03sUzw3cDPrr0YS4qz1G98aoO915j5eDNnKU7GP4Nc+m6yjvvTsc4pTuT4ktlvHpjJtamq0QxmfFt7DRJd0IuKnUX3Dnrjo+SQYQpjuepmwdTMZ0+swOzJasCzic8bHPcnG+z9kbOJ0egWk8rjnHiaeeISXWm1lzoH7md9zNQClJm1ltbPOQIh1HvOu90cnTFwudWOU93FGOqXx7o0eDHI5xcqcHhy/6supLl/yVm4r2jmk8/prU0h4Zwl/vdYevZDE7enMqlGLADhb4cs45zR6HX2YCM9syow2nMvxZFm7zyk22XHSEMjsxqm02P8QUUEX2b8+kg4jkvgxqRlDIk6z43wrlndfyePLZ1DZ2sBj4fEAfJXWkeMd1zAjqyuB9nkk5DdliOcZliwZQVWvIiY2S2TpoV4sjPqSG9UuvLl5NCbPCloFXOX84SCMTiYe67WHVWsGUO5bTdqIT3+eCHGm7xKGnR1LhdEKT4cSopok8+mFbpQbbDBV6ukUls7JbB+qLzsirSTzhn3Bl9e64udQwAfex0ipKsFdryOrWtDWRptW+mGBtqbiWbdL9DpzHz+22UBKVQlvXR3C0ManaKQvZdahiaRErdTGs4RkV8vNRCbGMKNZPHN3DSf1/n8RumcKJ6KWkG+q4lC5H3a6KgBSKryY6HKa/vOfo8xHm2DBNTsG9tIGuMc0P0Hc5u5UNzXg2biYskprevimse1sa0zlVthlW+HYMY/SchtmtNzPvIP9f167MvWB7SzaOYhH++8hwCaX1Aov9uWEknHGh+aRmeSUOpGX6QbVAvSSRv6FFJfYsa7rvxj9w+O4NilhY+QyJpybxF+DdxJpew2AICtnXswJ55uEzthdscI5UxL3xlyGffA3oqfEs3pvd+YM+o69Bc2J8TzMlvwIlvgdZPylvqxuuocXc8LZmtGKx5vtY/HFXrjYlWOo1DK/0GwbN42ObLoRQXPn61wqdecN/+9wFDDszeeY9vR3HCoMppF1GfmVjrzuu4UXsqJ53mcbqVXu9La/Qd93/krXycdY5HuIvkkj2NNa6wl4OacN9zqlcaA4jPwqR5b6/XRnBtHtvGU3v4d+/xN/w/bU99UdyB/BPDVtDPCylLJESrkf+A74zZ+WIUd71z/j0EOsLPLkZpn2QrBhfyfsbasYd2g6ACuSuuBlV0zn/kl07p/EI0P2MPrYNO4NSqfp1qn49bxMn5MTmNznR2a4XiEjtzG9XJO1wfaSEOYXBNHUOZ/XkqNZH/MhrdyuMX34Tga7nSGx3TqteFBeOzbktWNyRi/eThjKiPNjqK6wAp3k64KupBi80KHj5UHr2ZnZnJP3rmbczlmM7HOY6M1/AeDgN5E466qxW+9KI30prsdsmL12MrPXTsZaVPNRSj9euRDN5wVdKah0YPeedjzqG88HSf3ZU+ZDSrEHy671xkZXjaHUlub7HsZBX8Ewh3IKQwQh3z9MToUzkxsfQFpJVud3YXV+F97bPJJ+/3yW8kprjmT7M8HrIABdbK34y4lxdHZIZVOZA6ObnWRnYlvOPLmY8/mehDa9xlOee/D2KOSm0YGkxxeztftCjhf5c7zIn4/arCV456M8572LPk5n2Ri2gy8yOnNizmLCva8yp8l52jfPoIm+hI/O92PJqE/pGJzJV6Hr+T5mLuuGLuSLrwdgCKgicfg8ns7uRGq/FaT2W4G9sCXQuQAnmwrSb7ox0TWJ8ksuzG6/C71dNccy/RkScpbAiCuM6XWYz7J7YKUzsi87lJ6nRzEycQZuOgc+yelLyPcPU2QyEO10mmin0wDMCtrHjKyuDPl2Nm2ds1ic0RsHUUlK1Eo2lDri7VDMrpabAXinTRzbctpg66ONSfQOS8FJZ0e8IZCxToU01pXQWFfC0rM96PLds3gNuYypSSXWttWY3CvZub8dxiod3xzrhBTQP+wCfw/bgk4nWehzmGDfGzTyLsJoL7HSmXi69Q886ZaGlUM1w+9LYPh9CTjoKpk9eBO9HM8zwTmf8a6JFMT5MWvATq6XOKNDsm7IQqb0/pHX+8Vyr1cmMtueSBs7EFBcZM/QRX+jpMKGZw/E4K6zxl1nTVTSSDZcDEdU6Dg7czGFYYJikw76FJCQF8TgHsc5b7iH1JvuOOsM7E7RuhhXN93DNyVuDHE5RWmpHanlnsxvvYa9rTdyqF0sh9rFMi+9P68nDiNtbShveZ7C1drA5wWd+bIwgqP/WIweEysC4vnonqMc29CaRXk9OLazJc+mjiWt0pMvi1pQFGbiUY943s5rxt+DtzDkwlCGXBiKtc7ItSpX5ngc5Mh1f9osmHlnXqhuDaLX9WhALG0WVjPAeGtvF7OT/PaCGpr6XudopQ++HgV8frkLezt9yqz0EUgBeZfcSBu9lBOV5biGl+FjXcAYR62P+938UOI7fkb7dc+weMRn/PP1R8hvBVtkaxLzAwnzvEEjfSlbEyJ5od8mujmk8vGxPrzXJZbHk8czyT+BuWtGUxFYwbvuJbT3zCLc6QoAT7ulk+m7hYeTHySh78dMvvgA73kdJ3jDdPoOPEuV1DMp9BDN4yeRFv0pEXNnMnvaJmY1yiLCajwJ5QE4TsymUlph8ILNE+YCcKLCl2WtvyCz2o1tN8MZ4XGcE0G+9LXPpYtfOmOdCnn+RFPcgguIC1+Ok74SFysDPR2SAWsqmhhJ67eC9kfHcd+lWThk6xjudgKArZ5tWHD/Uh4+OoUKgzVvXBhGtVHPoPPD6OmfxodZA+nrfp492c24v1siHV+Zicf4DC7vDCQ9yI3S7V58MaYbz+8LZdNDczmYEgzAuTwvqNDxt4xRnL5yD9Xl1rzbLZZuJ8eQW+iIMchEan4THt3xJDKymM03Izm5txk92zxCxelGiJbFtBmawvHEUB44H0NRhR2Y6zosuulHW+csWjjpmdPiIi32z2DaoN18+F00YwYexGC0YY7nPt6QfdmY3JZFHb/ivYzBxIYv5/Wrg3FqUsn7+SEs8jtA7wJvJqeNJCVX201gfsQatuSFc/qbVrQencau9p48k7Sbk+UBTNo0jHG9DzK0ySla7H+ITv6ZxHgcYmPYDtB23udZ7128ltuBIc6nGJY8ggfv0dZpVWU74Nsih9TLXnRtlsrlkkbkH7mHCneJLsMeu5aF2HsVseNka47c489g/3OkVJVQYbSi5IIb+uBScvOdeO/qEGYMWQZCsnVdFwBkhyL6BybjrDPw/HNjuRFTRtOxGSSV+JCf2YhX+8UxfvXTGB1MOKfpMHiBTi+JTh7M/B6rmbNqMrOnfEtWZWNiZSRjU0YDUFJhS1f/S/iEaguf7XPAQZiQ+9x45YmveT9rMPODviW9tAmHykJwcionsaKKqQuewm9EOmdTfBnf6TDrL4YTW96OTk0zcbPRGtrsPFda+F/DJtDIhPQoXK0NvOqhdTZUyCoWX+zFyMjlRC17DqML/HgtlPGj97I+PZyFh/sSEXIZ++s6pn7wNAnPf8zwCdP57itthtikS8P4R/A5Qr5/nE+6fcXgDpXo36r1a5LyH1hUF5YQoiewTkrpXePcNGBCzYU1QojpwHTzh22AM39mzjpy59/3v7FUKuedpXLeWbebM1BK6XE7AVxtvWQ3nwl1fv729I8aTBeWpd2BlPBfLM83bzy2FEAIceRu+GGonHeWynlnqZy1ZEFvvOuTpTUgydRteb6iKMqfw3IWEtY7ixpEl1KWAnHAa0IIRyFEd2Ak8EX9JlMURalBTeMFLKwBMZsF2KMtz19NjeX5v6FW++jXI5XzzlI57yyVU6k1ixpEVxRFsXSuNl6ym+e4Oj9/+5UFahBdURTlf1PD64qqK9WAKIqi1IYETLdXkrChsMQxkP9KbffM+rMIIZ4QQhwRQlQIIVb+4lo/IcR5IUSZEOIHIURgPWW0FUIsN/+/FQshjgshhlhaTnOWL4UQV4UQRUKIZCHEVEvMWSNTmBCiXAjxZY1zFpNTCLHXnK/EfFyocc1icprzxAghzpn/xlPN68QsLuf/sru2AQE+Qavf6wVMABYLIVrXbyQAstH21v+s5kkhhDvaDLOXgcbAEWDNn55OYwVcRlvh72rOtFYIEWRhOQHeBoKklC7ACOANIUQHC8x5yydA4q0PLDTnE+atvp2klM3B8nIKIQYA7wIPo9X57gWkWUxONQsLuEu7sGrsmdVGSlkC7BdC3Noz6/n6zCaljAMQQnREK95yy2ggSUq5znz9FSBXCNFCSnn+T85YCrxS49RmIcQloAPQxFJymrPWnIEnzUeIOavF5DRniAFuAj8BoebTFvNz/x2WlvNV4DUpZYL54yvmXNMtImcDawjq6m69A/mtPbMs4Q7kt7RGywj8/CKeigVkFkJ4of2fJmGBOYUQi4QQZWiV0q6ile60qJxCCBfgNeCXe4ZbVE6zt4UQuUKIA0KIKPM5i8kphNADHQEPIcRFIUSWEGKhEMLeMnLexkaKDWwB4t3agDgBhb84V4h2q2upLDKzEMIa+ApYZX4HZ3E5pZSzzN+/J1r3RQWWl/N1YLmU8vIvzltazjlAMOCLtqZikxAiBMvK6YVWZvV+tJ95JNAOeAlLyClBSlOdj4bkbm1A/qs9syyMxWUWQujQVvlXAk+YT1tcTgAppdG8vb8fMBMLyimEiAT6Ax/9ymWLyQkgpTwkpSyWUlZIKVcBB4ChWFZOg/nfBVLKq1LKXOBDLC/n/7y7tQH5ec+sGucsfc+sJLSMwM/jOCHUU2YhhACWo73bGyOlrDJfsqicv8KK/89jKTmjgCAgUwhxDZgNjBFCHMOycv4aCQgsKKeUsgDIMmf7JcvIqbqwgLu0AbHkPbOEEFZCCDtAD+iFEHZCCCtgPdBGCDHGfP0fwKl6HEhdDLQEoqWUhhrnLSanEMLTPJXTSQihF0IMAsYDeywpJ1pXUAhaV0sksAStkuYgS8ophGgkhBh063dSCDEBbXbTDkvKabYCeNL8O+AG/AXYbDE51Sws4C5tQMxqu2fWn+UltFvw54GJ5scvSSlvoM0cexMoADoDMfUR0Dxv/jG0F7trNdYETLCknGjvQGeivRstAN4H/iKl3GhJOaWUZVLKa7cOtG6WcinlDUvKiTau8AZwA62mxpPAfVLKCxaWE7QxpUS03oZzwHHgTYvIKaW2kLCuRwOi9sJSFEWpBVe9u+zqGF3n5+8oXtlg9sK6m+9AFEVRlHp0Vy4kVBRFqU+ygXVF1ZVqQBRFUWql4Q2G15VqQBRFUWpD0uCm49aVGgNRFEVR6kTdgSiKotRWA9uSpK5UA6IoilILEpCqCwtQXViKoii1I6V2B1LX4w4R/6F43W98/jNCiGtCiEIhxGdCCNsa1+pUoE81IIqiKLUkTbLOxx30q8Xrfo15G6DngX5o+7YFo9VcuaVOBfpUA6I0GEKIseZ3Y4E1zs03l0P1qs9sinKnSSnjpJQbgLz/4tMno5UbSDJvVvk6MAX+rUDfy1LKEvOu17cK9P1HqgFRGpJY4DTafmQIIWajbb44WEp5vT6DKQ2MBXRh1dK/FeIyP/YSQjThNgr0qUF0pcGQUkohxIvAFiFEKvB3oK+UMqWeoykNSDEFO3bLWPfb+BJ2QogjNT5eKqVceru5fscvC3Hdeuz8K9duXf/dIl2qAVEaFCnlTiFEIlrfcLSUMrG+MykNi5Ry8B/9PYQQe4Hev3H5gJSyRy2/5C8Lcd16XPwr125d/90iXaoLS2lQhBB90QoOCUB1Wyl3JSlllJRS/MZR28YDflGIy/z4upQyj9so0KcaEKXBEEJEoBUaexLYALxdr4EU5Q/0H4rX/ZrPgUeFEK3MBbpeAlbC7RXoUw2I0iCYZ15tBT6UUn4G/BMYIISIqs9civIH+tXidQBCiABzkbgAACnlduA94Acgw3z8s8bXqlOBPlVQSrnrCSEaAweAH6WUj9U4vwYIkFJ2rbdwitKAqQZEURRFqRPVhaUoiqLUiWpAFEVRlDpRDYiiKIpSJ6oBURRFUepENSCKoihKnagGRFEURakT1YAoiqIodaIaEEVRFKVOVAOiKIqi1Mn/AZNqCjwMIWH2AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEjCAYAAAAYFIcqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAtpklEQVR4nO3deZhcVZ3/8fcnC0nIAoSEsEin2QIkwSTQshjZBERwFDTOiEEURJFFRxB14g8QElAQFMUBgpkJIIsog6BIJBFk34QECBAIgUA2SMje6e6sdL6/P+7tUF1d3V3V1d2VdD6v56mHqnNPnXtOpalvneXeo4jAzMyspTqVugJmZrZlcyAxM7OiOJCYmVlRHEjMzKwoDiRmZlYUBxIzMyuKA4mZmRXFgcTMzIriQGJmmz1Ju0t6TNLrkqZL+lKp62Qfka9sN7PNnaRdgAER8bKknYBpwL4RsbrEVTPcI7HNhKRbJT1Q4Hsek3R9e5/XEpI6SfqdpGWSQtJRrVTuNEkXZqZFxMKIeDl9vhhYAfRrjfNZ8RxIzKylTgTOAD4P7AI8kyuTpJ0k3S5poaR1khZJuqyRvF2AIcDLjZ1UUgXQFZhfXPWttXQpdQXMrCFJ20TE+lLXoxl7AwsjImcAyTAe2A74DLCcpCexcyN59wO60UggkbQjcBtwZnhcfrPhHom1C0k9Jd0mqVrSB5J+IukBSbc2kr+bpN+keddKek7Sp3Jk7SLpOkkr0sc1kjpllPNZSU+mx5ZLmiJp/wLr3mgZkr6T1rFL1nv+IOmvGa8l6ceSZktaI+lVSV/LOP6YpPGSfilpCfB0PvXP53Nt7tyNtLnJzz8t/9dAWTqsNaeJ4rYBBgIjgR4RMT0ipmSd7+OSHgKmpkmzJP00u07AfcCVeQQva0cOJNZefgUcCXwR+DQwDDi8ifxXA18BvgmMAF4FJqeTrplOJfk7Pgz4DnAWcH7G8Z7Ab4CDgaOASuBvkrYpoO5NlXE3sD1wbF1mST2Bk4A7Msq4AjgTOA8YDFwJ/E7S5zLyfA0Qyefy9Tzrn8/nms+5szX3+X8fGAcsIBnW+kSuQiR1Bh4CvgpMAk6X9M+0Z1GXZw/gCeBZ4M/AZOCnwFhJx6Z5BNwKPBIRtzdRbyuFiPDDjzZ9AL2A9cApGWk9SSZMb01f3wo8kHFsPfD1jPydgdnAFRlpjwGzSFcfpmkXAwuaqEtPoBb4VPZ5C2hPdhn3AbdnHP8ayRd+94z8a4DDs8r5DfD3jLa8Usi58/xcmz13I+fI5/P/ITCnmfpeB4zOSnuNpFdR9/pB4A/p88eBn6bP5wFj0+efAjaSDHnVPQ4o9d+2H8nDcyTWHvYimRx9vi4hImokvdZM/qcz8tdKepbkF3Wm5yL9pkk9C1wuqU9ErJK0F3A5cAjQn6T30gkoy7fyeZRxB3CrpG0jWY56KnBPRKxNjw8GupP8os+sa1dgTsbraQWeu4rmP9d8z52pkM+/UZIOIOkJ/Tjr0Epg1zRPf+A44NNpr2MY8Ms034ckAY2IeAqPoGy2HEisPSj9b76To03lL3SC9W/AeyTDXu+RfDm9TjJu31plPJCmnSTpnyTDXJ/JeH/dF+DnSX5lZ9qQ8bymwHPn87nme+5MrfX5fwl4KyLWbSpY6goMJWkXwKEkvZ2XgD1JJuVfToe+ysgIZrb5ciCx9vA2yZfWwcC7AJK2JflCmd1I/vUkwxnvpPk7k8yD/CEr7yGSlNErORR4P+2N7AjsD5wXEY+m5RxIAX/3+ZQREesk3UPSE+kHLCIZoqnzOrAOGBgRj7TiufP5XFty7kI+/6bsSDJMlul0kiG5u9LX3dL/bgMMB5ZFxHxJY4D3SeZObDPnQGJtLiKqJd0M/ELSUmAhyVxGJ3L8wk2HZ8YDV6X53wUuAAYAN2Zl3xX4jaQbgQOAH5FMLkMyV7AU+Lak+cBuwDUkv+rzlW8ZdwAPA3uQjPdvzGhPlaRfAr9Mh2+eIPkyPRTYGBETWnLufD7Xlpy7wM+/Kc8B35P0I+CvJIsBfgX8V0TU9Y7+lbbnUpKe0FuSvpW24/OZn6NtvhxIrL38kOTX6f1ANcnS0QHA2kby/1f631tIVkW9BHw2IhZm5buTZGjkXyRfnhPTsomIjZK+AvyWZIL3beBCkpVBeSmgjCdIhp4GA6fkKOoS4AOSz2E8sIpkwvjqIs+dz+da8LnJ//Nvyl0kw1PnkKzCmkEygb+p/mnv4wzgFyQ/CmpJeimj6nphtvnzvbasJNJrAuYC10TEr0pdn45iS/5cJS0ELoiIP5a6LlYY90isXUgaQTLe/zzQm+QXb2/gT6Ws15auo3yukuqudn+11HWxwjmQWHv6AbAvyZj4y8AREbGgpDXqGDrC53oAyQT/m6WuiBXOQ1tmZlYUX+BjZmZFcSAxM7OibJVzJP369Yvy8vJSV8PMbIsybdq0pRHRPzu9JIFEUl+S9f6fIbng6icR0eCKWUlDSS5gOgjYMSKUI88pJBczlZFcUXx6RDzZ1PnLy8uZOnVqU1nMzCyLpLm50ks1tHUDyQqNASS3lRgvaUiOfBtIbtN9Zq5CJB1HciHTGSRLHo8gvaWDmZm1j3bvkaR7NYwChkZENfCUpPuB04AxmXkj4k3gTUl7N1LcWGBcRDyXvn6vjaptZmaNKEWPZBBQGxGzMtKmk+zTnLf0JnIVQH9Jb0taIOl6ST1asa5mZtaMUgSSXiSb/mSqJBmaKsQAkj0TvkyyI9xwkp3cLs6VWdJZkqZKmrpkyZICT2VmZo0pRSCpBvpkpfUh2aSnEGvS//53RCyMiKXAtcCJuTJHxISIqIiIiv79Gyw6MDOzFipFIJkFdJG0T0baMJI7g+YtIlaQ7BftS/PNzEqo3QNJRNQA9wLjJPWUNBI4Cbg9O68S3Ul3opPUPb27aZ1bSPY72EnSDsD5JLvVmZlZOynV8t9zgR7AYpI9C86JiBmSyiRVS6rbC3sgyRBWXW9lDfVv6nY58AJJL+cNkj0TftYO9d+qRAQbNwaLV63lpsdzbWi4eZu/fDVPv7201NVoFy/NW8H0+SsLes/85atZs762bSpkW4WSXJAYEcuBk3OkzyOZjK97PYeP9o/OVc4GkqB0bqtX0jb5zz++zN+mv7/p9aABvejXqxsD+nRnQJ/uLSrznSXVlPXdli6dW+e3zPKa9fTtmXsb9sOvTvZH+uNZh3Lonjs2W9Z7K9cw8qpHuPTzgzlj5B71ji2rXsfiqnXsv0v2NF/pVa7ZwBdvfAaAOVd9Lq/3vLdyDYdf/SiDBvTiHxcc2ZbV22J9efwzzFm2mhcuOob1tRvp1qVzk/nfXlzF+g+Dwbt+9DcSETw7exkjynagZv2H9OvVjfUfbqRrZ5FsXJmfDbUbiYBtumxed7favGqzFXpp3grKx0xi7YaW/SK87dk5TH5tUb20Z2YvpXzMJP768ntsqG1+p9KZi1Zx1YMzufuF+ZSPmcSUGYtYvCrZYO+DVWvrBRGAW56ewxeuf5pDfv7PFtX5vZVr+PSvHmfvix5k0EUPUj5mEourGm6UuHFjMGzsPygfM2nTI5e/TX+fAy9/iMvubzjNlvm5njLhOZ57ZxnvLq2hfMwkVq5en7O8Xz+UrEwf+7fXueHRt8m8Q/ZBVzzMCdc9yYIVqwtqczH+Nv19Bv90cs5/yz8+P4/yMZN47M3FXP/IW5vSL7t/Btc9/BanTHiW8jGTmPF+JXOX1fDivBWb8px9+zRGXpVs4z7rg+p65d7x3FzeXVpD7cak7TPer+Smx2ezoXYjz72zjAUrVvPKgpUFteP25+ayeNVa/vLSe7z2XiXzl6/O+e+ebVHlWsrHTOKJWclqy+ffXc6fpzV+l/y1G2q5Z9oCqtd9yJylNRx25T858bonKR8zqd6/ZfmYSXzz1hdylvH+yjU8O3sZAFPnrmBp9Tr2+Mnf2ffiyfz0r6/xYca/xYbajfzm4Vmb/taOvfYJTvztk6xen+zG/NDrH3DrM3MY/b//Yv+fTqbiioepXL2BQRc/yI/ueaXBuVet3UD5mElcM2UmM96vZPaSj/5tPnnVIwy6OPl/5rX36i9+ff39VTz46kJq1iXnXVy1lqGXTuHiv7T9Fi9b5W3kKyoqolS3SPnd47O58sGZvP2zE6iNYN+LJ2869sJFx7JN507c8a+5fHPkHvTYpjO/+sebPPHWUv563kggHWYKeGXBSuavWMN/3vUSAI/+8Ciuf+RtjhjUj+//8eV65zxkj778693lAMz++Yk8OnMx37qtddo/56rP8fdXF3LunS/yxrjP8o2bn+erh+xOj65d+MzgATz7zjLunjqfcV8YynbbdmVZ9ToOuuLhBuV8/bCB3DNtARd+Zl/O/NQeXHb/DG59Zk6j592jX0+mnH8EVz04k5uffndT+kMXHMHAHXvy6nsrWVK1nrPvmNZk/a/60gF8cq9+7NhrG56fs5wzbmn4xXLe0XtRs66Wr3xid064rv7ddyaffzj77Zz88qzdGAj46/T3uOBP0zfl+fkXD2D0Iclo7U/ufYU/vjCff5x/BMf9+gkAnvzx0fTs1oVpc1ewYMVqxv7tdQD+7+zD2K5HVz6T5gPYrkdXKtdsAODdK09kj5/8vcn25TKibHuOGzyAqyfX3/rj5Z8ex9Lq9Rx77eP10p/40dEccU3uXW8zez4LK9ewbddkkOPAKx6idmPQtbPYUBv0792NJVXrmqzXsfvvxFc+Uca3b5vK2UfuxRkjy5v8sZLd65q9pJrz7nyRmYsaXwD6jcMGMvakoVz+wOtMfCr5u/nnhUfypxfmM+GJhjfFOPeovbjxscaHc//z03tz+3NzWbE6+Tf5wrBduT/rh1dzrvnyx/n3it35sHYjtRHc+OhsrvvnW/XyXD96BCtq1nPJXxv+WDp5+K785eX657xh9IGc94cXG+TNt6faGEnTIqKiQboDSev4+s3Pc9ieO3LaYQMZeukUfnfaQRw/ZOdNxzduDN5aXM3xv0m+FJ6/6Bguvu81/vH6B61aj/Z2/3dH8oXrn84r74yxxzPk0inN5uvcSZt+CTfls0N2ZvKMRc3ma2vv/PxEHn1zMWf+vn1/nBy7/wAefmPL/vtpDReduD//NmwXDrvykbzyjz6kjD/8a14b12rztMt23Xn2J8e0+P0OJBlaM5C89UHVpl+W2d75+Ync8OjbHD6oP6f+z3PUeELTzErs4R8cyd479Wo+Yw6NBZKt8jbyraWpIAKw5/9Lhh1+9dCsRvOYmbWnf7y+iL13auz2hS3jyfYiNBVEzMw2R50KWCWWd5mtXuJWYtrcFc1n6kC+dOBupa5Cu7r8pILuIbrZGrb79k0eP+eovdqnIrbZ+GzG3G1rcSBpgYhg1PhnSl2NJl1+8lB+/82Dm8333aPz6+L+7OQDil7xUSr3nH1YQfkf++FRfO3QgVx+8tCcx799+B4509vSVyp2b/TYzafXH7I+7+gkOPz2qyM2rfZrzH99dr8G77eGRpRtz5Tzj2DWFSfklf/8Y/ep9/o/Kj7Gv/7fMbRGZ+D0T5Y3euzhHxzR7Pt32b5l1341xZPtLXDHc3O5+C+vtVp9Zow9noWVaxssu2ypzAvpLrx7Ovvv0ptvHb4ni6vWcvDPkuWUmUHhZ5Ne58ONwS1Pz+GG0QfStbN49p1lfO3QgezVv/6kXN21HD85YT+ufHBmg3N/er+deGTmYnp360JVup4929cPG8hlnx/C+Mdnc82UN/nvr47ge+ky5kxP/vhodu+7LT+591Xuen4eP//iAfy/+5pfE1++47Z87dCBXDHpDf7t47tw/egDmb98NbM+qOKY/QdsakNZ32154sdH8/isJXzj5ucBePGS4+pd2HjT47O5KqOd9537SUaU7dDoNS0Ad37rEB6duZj/ferdnMd32a47CyvXcvWoj3Pix3dhaBMr2X74mUGcd/TeSGLyawtZsGINI/fux23PzuGu5+cDyb/ls7OXsWf/njkvEJ23bPWm5bvPjPk00+au4IFX3uemrx2EJDZuDM7/08ublq3e9LWD2FC7kb3696Jsx21ZvGotbyys4ohB/ejdvSsbajfyP0++02D58OM/Ooojr3ls0+vZPz+Rzp2U87Oq+/v73l0vbbpO6asH784n9+pH507i3DuTpauDd+nD/d8dSdXaDxlx+UOb3nvUNY8yZ1nDa3m+9+m9GXXgxyjv15OIQBKVazbQSXDAZf9okP/hHxy56f+7q0d9nFffq+SUg3dnv5370LmTeGPhKj5YtZbD9tpx04WIz85exh3PzeX60SM2Lb8+eI++PJ8usf/bdz/FAR/bjsrVG5i/YjVDd9uuwXkrV29g2LiG9anzhWG78tuvjgCSH65rNtQy+KdT+NwBu3DDqQcmZazZwLCxSRknDd+V604Zsen9dZ955v/nq9ZuYFn1evbo17PR8zbHq7YyFBtIcv2P0dKlqF8/bCDjTkp++b6/cg03PPo2/1GxOxLsv0sfzrnjRb59+B4cvEdfFletQ4Ixf36VR2Yu5sZTD+T9lWu46fHZ9O25DZO/fwSdOjX9k+eRmR/Qp3tXKsr7FlxXgNMm/ouX563klcs+U+8ahhcuOpb/mzaf7xyxF51z1KHuMzto4A78+ZxP5ix71gdVXDPlTabPX8nzFx27Kb3ub1QStz07h5NHJMNsH0+/GF4bezwPTH+f8n49ufDu6fzte59q9Cp3SC5YW1aznt22/2jrmqq1yXUAvbt3zZl/v0uS633evfJEJLGkah0RwcEZ1zm88/MTWVaznv69k9vBVa/7kJ7bdOafbyTX7Vxx8lC+dujAnO1+ce4KvvKJ3ZHEozMXc0Z6odzbPzuh0av///fJdzhu8AAG7tj8F8OG2o3MXVbD3jsVultD4976oApJLK1eR79e3dh7p14srFzDYVc+whdH7MavvzIcgBOue5I3Fq7inrMPY86y1XxxxG71/kZWrl7PNVPe5IqThzZ5lfd7K9ewdkMte/XvxdoNtdz89Ls89uaSTV/gb/3sBLo2c6eEP09bwIQn3uHB7x+OlPxN5frSLcTiVWvp06Mrq9Zs4P+mLeDco/bK62r1p95ayroPazl63534y8vvUdZ3W74y4TlmjD2e7l2bvnq+zobajaz/cCM9u9VfN/XivBVs07lTziBWDAeSDMUEko0bY9NqrExzrvpck79SM+2zUy9OObiMyx94ndM/Wc5lX9gyx+OXVK3jxsfe5tuH78mu2ze9n9jbi6vp12sbtt+28S/4Ql359zfo2rkTPzx+31Yrs1Cvv7+KH9z9Mvvu3LveL8JiRAQTn3qXf6/Yne16NAxsm7s5S2vYbYcem77UV63dwMyFVRy8R8t+vDSlZt2HLFixhn13br0AaY1zIMlQTCDJDhZnjCzngN2240sHfqzecuDzjt6LA3bbjrPvSLroc676HLOXVHPMrx7nuZ8kY6VfuvEZ7vjWIUV1Nc3M2osDSYbWDCS5btOwZn3tpi7l/z75DkN32y6vmwWamW3OfEFiG8i1RDR7cvpbh+/ZXtUxMysJL/8tQq6JUzOzrU1JAomkvpLuk1Qjaa6k0Y3kGyppiqSlkhodg5O0j6S1ku5ou1rX94dvHVLQPgJmZh1VqXokNwDrgQHAqcB4SbmWLm0A7gbOzKO83BsLtJFP7t2vPU9nZrbZavc5Ekk9gVHA0IioBp6SdD9wGjAmM29EvAm8KanRy68lnQKsBJ4BWvdOZFnaczMjM7MtRSl6JIOA2ojIvCXudKDgiykk9QHGARe2Ut2aNHtJTXucxsxsi1KKQNILqMxKqwRackXR5cDEiJjfXEZJZ0maKmnqkiVLWnAqeG/Fmha9z8ysIytFIKkG+mSl9QEa3x8zB0nDgWOBX+eTPyImRERFRFT079+/kFNt8vTspS16n5lZR1aK60hmAV0k7RMRdRsTDwMabkbctKOAcmBeunqqF9BZ0uCIOLCV6lrPjun9m7xYy8zsI+3eI4mIGuBeYJyknpJGAicBt2fnVaI7sE36urukbunhCcBewPD0cRMwCTi+rererUvyce2/c3aHysxs61Wq5b/nAj2AxcBdwDkRMUNSmaRqSWVpvoHAGj7qrawB3gSIiNURsajuQTJktjYiWjYBUoCzvRmQmdkmJblFSkQsB07OkT6PZIiq7vUcIK+BpIi4rHVq17j/eTLZX+KdJdVtfSozsy2Gb5FSgL13SmKc79ZrZvYRB5ICfDPddfATLdwUysysI3IgKcC4B5Kpmg9rt75b75uZNcaBpABrN2wEYO5yX+FuZlbHgaQFsvccMTPbmjmQtECPrp1LXQUzs82GA0kLdOvqj83MrI6/EVuga2d/bGZmdfyN2AKdfbMtM7NNHEhaoFMnBxIzszoOJGZmVhQHEjMzK4oDiZmZFcWBxMzMiuJAYmZmRXEgMTOzopQkkEjqK+k+STWS5koa3Ui+oZKmSFoqKbKOdZM0MX1/laSXJJ3QlvUefUgZ/Xp1az6jmdlWpFQ9khuA9cAA4FRgvKQhOfJtAO4GzsxxrAswHzgS2A64BLhbUnlbVNjMzHJr9612JfUERgFDI6IaeErS/cBpwJjMvBHxJvCmpL2zy4mIGuCyjKQHJL0LHATMaZvam5lZtlL0SAYBtRExKyNtOpCrR5I3SQPSsmc0cvwsSVMlTV2yZEkxpzIzswylCCS9gMqstEqgd0sLlNQVuBP4fUTMzJUnIiZEREVEVPTv379F5wlvjGhm1kApAkk10CcrrQ9Q1ZLCJHUCbieZc/lucVXL53xtfQYzsy1LKQLJLKCLpH0y0obRyJBUUyQJmEgyaT8qIja0ThXNzCxf7R5I0knye4FxknpKGgmcRNKrqEeJ7sA26evukjLX344H9gc+HxFr2r72ZmaWrVTLf88FegCLgbuAcyJihqQySdWSytJ8A4E1fNRbWQO8CSBpIPAdYDiwKH1ftaRT27EdZmZbvXZf/gsQEcuBk3OkzyOZjK97PQfIOSsREXMbO9Z2PNtuZpbNt0gpkOfazczqcyAxM7OiOJCYmVlRHEjMzKwoDiQF8JXtZmYNOZAUyFe2m5nV50BiZmZFcSAxM7OiOJCYmVlRHEjMzKwoDiQF8KotM7OGHEgKJN8kxcysHgcSMzMrigOJmZkVxYHEzMyKUpJAIqmvpPsk1UiaK2l0I/mGSpoiaamkBlPd+ZbTWsL7kZiZNVCqHskNwHqSvdZPBcZLGpIj3wbgbuDMIstpNb5FiplZfe0eSCT1BEYBl0REdUQ8BdwPnJadNyLejIiJfLTVbovKMTOztlOKHskgoDYiZmWkTQcK7Um0VjlmZlaEUgSSXkBlVlol0Lsty5F0lqSpkqYuWbKkwFOZmVljShFIqoE+WWl9gKq2LCciJkRERURU9O/fv8BT1ZXRoreZmXVopQgks4AukvbJSBtGjnmQdiqnIJ5rNzOrr90DSUTUAPcC4yT1lDQSOAm4PTuvEt2BbdLX3SV1K7QcMzNrO6Va/nsu0ANYDNwFnBMRMySVSaqWVJbmGwis4aNexhrgzebKaY8GmJlZokspThoRy4GTc6TPI5lEr3s9hyZGkxorx8zM2o9vkVIAz7WbmTXkQFIg+dJ2M7N6HEjMzKwoDiRmZlYUBxIzMyuKA4mZmRXFgaQAvkWKmVlDDiRmZlYUBxIzMyuKA4mZmRWl4FukpDdN3JXkHldLIsKbe5iZbcXy6pFI6i3pHElPkGwe9TbwGrBI0nxJ/yPpE21Z0c1B+CYpZmYNNBtIJF0AzAG+CTxEcqv24SRb3R4GXErSs3lI0uSs/UE6HN8hxcysvnyGtj4JHBkRrzVy/HngZklnA2cCRwJvtVL9zMxsM9dsIImIf8+noIhYB9xYdI3MzGyLUtCqLUmvStqurSpjZmZbnkKX/w4BumUnStpO0g35FiKpr6T7JNVImitpdBN5L5C0SFKlpJvrttpNj5VL+rukFWme6yW13WZdnms3M2sg31Vbf5d0GclX6e45smwLfKeA894ArAcGAKcC4yUNyXHe44ExwDFAObAnMDYjy40k2+zuQrIA4EiS7XfbjCfbzczqy/fX+wzgKJJtb5+XVAVMB14CXgH2AxbmU5CknsAoYGhEVANPSbofOI0kaGT6BjCxbh92SZcDd2bk2wO4PiLWkixFnkzSazIzs3aSVyCJiB8BSFpHsuR3V5IewHDgc2k5P87znIOA2oiYlZE2naQ3kW0I8NesfAMk7RgRy4DrgFMkPQbsAJwAXJLrpJLOAs4CKCsry7OqZmbWnELnE3pGxIfAi8ADLTxnL5KLGjNVAr3zyFv3vDewDHgc+DawCugM/B74S66TRsQEYAJARUWFZzvMzFpJPhck7lH3PA0iTeWVpFxzKJmqgT5ZaX2Aqjzy1j2vktQJmALcC/QE+pH0Sn7RzPlbzNHHzKyhfCbbn5U0UdJhjWWQtIOkc4DXSa58b8osoEvWFfDDSOZhss1Ij2Xm+yAd1upLMvF/fUSsS9NuAU5stkVFEJ5tNzPLlM/Q1n7ARcAkSbXANJKJ9bUkPYDBwP4kV7ifHxFTmiosImok3QuMk/QtknmWk0iuoM92G3CrpDvTc14M3JqWs1TSu8A5kn5JMgz2DZJ5FDMzayfN9kgiYmU62b4bcA4wE9ieZMXUhyTzEiMiYmRzQSTDuSR3D14M3AWcExEzJJVJqpZUlp57MnA18CgwN31cmlHOl4DPAktIbiT5IXBBnnUwM7NWkPdke0SsAe5JH0WJiOXAyTnS55H0LDLTrgWubaScl0mWJZuZWYl4YyszMytK0YEkvU3JFyWNbT73li3C67bMzLLlPbSV3sNqMDCCjy5GHE6yJFckk+GX5n53x+FbpJiZ1ZdXIJE0jeQq822A90mW5b4IHA78B/CPiMh1HYiZmXVw+Q5tDQZ+CewQER+LiOMj4kKSa/TecBAxM9t65RtIDgQ+Adwj6eNtWB8zM9vC5BVIIuKNiDgeGA/cJ+kWSbu1bdU2P55qNzNrqKBVWxFxL8lcyTyS28d3Arq2Qb02W55rNzOrr+DlvxGxNiIuBQ4C7gf+KWlMus+ImZltZVp8HUlEzImILwKjga8D77ZarczMbItR9P7mEfGPdAL++61QHzMz28IUHUhg0z4lv2qNsjZnvrDdzKwh32urQPKl7WZm9TiQmJlZURxIzMysKCUJJJL6SrpPUo2kuZJGN5H3AkmLJFVKullSt6zjp0h6Iy1rtqTD274FZmZWp1Q9khuA9cAA4FRgvKQh2ZkkHQ+MAY4ByoE9gbEZx48DfgGcAfQGjgDeaatKe67dzKyhdg8k6YWLo4BLIqI6Ip4iubDxtBzZvwFMjIgZEbECuBw4PeP4WGBcRDwXERsj4r2IeK9N69+WhZuZbYFK0SMZBNRGxKyMtOkkt17JNiQ9lplvgKQdJXUGKoD+kt6WtEDS9ZJ6tFnNzcysgVIEkl5AZVZaJcnQVHN56573JhkW6wp8mWRflOEkm25dnOukks6SNFXS1CVLlrS48mZmVl8pAkk1ya6KmfoAufY0yc5b97wKWJM+/++IWBgRS4FrgRNznTQiJkRERURU9O/fv8WVNzOz+koRSGYBXSTtk5E2jGTXxWwz0mOZ+T6IiGXpnMkCPAduZlZS7R5IIqIGuBcYJ6mnpJHAScDtObLfBpwpabCkHUiGrW7NOH4L8D1JO6XHzwceaMO6t1XRZmZbrFIt/z0X6AEsBu4CzomIGZLKJFVLKgOIiMnA1cCjwNz0cWlGOZcDL5D0ct4AXgJ+1qY197ItM7N6WuWmjYWKiOXAyTnS55FMsGemXUsy95GrnA0kQenc1q+lmZnlw7dIMTOzojiQmJlZURxICuCpdjOzhhxICuS5djOz+hxIzMysKA4kZmZWFAcSMzMrigNJITzbbmbWgANJgSRPt5uZZXIgMTOzojiQmJlZURxIzMysKA4kBQjPtpuZNeBAUiBPtZuZ1edAYmZmRXEgMTOzopQkkEjqK+k+STWS5koa3UTeCyQtklQp6WZJ3XLk2UfSWkl3tG3NzcwsW6l6JDcA64EBwKnAeElDsjNJOh4YAxwDlAN7AmMbKe+FtqqsmZk1rt0DiaSewCjgkoiojoingPuB03Jk/wYwMSJmRMQKkj3aT88q7xRgJfDPtqw3QHjRlplZA6XokQwCaiNiVkbadKBBjyRNm56Vb4CkHQEk9QHGARc2d1JJZ0maKmnqkiVLWlx53yHFzKy+UgSSXkBlVlol0DuPvHXP6/JeTtJjmd/cSSNiQkRURERF//79C6yymZk1pksJzlkN9MlK6wNU5ZG37nmVpOHAscCI1q6gmZnlrxSBZBbQRdI+EfFWmjYMmJEj74z02N0Z+T6IiGWSTiOZgJ+X3pG3F9BZ0uCIOLAtG2BmZh9p96GtiKgB7gXGSeopaSRwEnB7juy3AWdKGixpB+Bi4Nb02ARgL2B4+rgJmAQc33Z1b6uSzcy2XKVa/nsu0ANYDNwFnBMRMySVSaqWVAYQEZOBq4FHgbnp49L02OqIWFT3IBkGWxsRLZ9Jz4N8kxQzs3pKMbRFRCwHTs6RPo9kiCoz7Vrg2jzKvKyVqmdmZgXwLVLMzKwoDiRmZlYUB5ICeD8SM7OGHEgK5CvbzczqcyAxM7OiOJCYmVlRHEjMzKwoDiQF8JXtZmYNOZCYmVlRHEjMzKwoDiRmZlYUBxIzMyuKA4mZmRXFgaQAXrRlZtaQA0mB5HukmJnVU5JAIqmvpPsk1UiaK2l0E3kvkLRIUqWkmyV1S9O7SZqYvr9K0kuSTmi/VpiZGZSuR3IDsB4YAJwKjJc0JDuTpOOBMcAxJPuz7wmMTQ93AeYDRwLbAZcAd0sqb+O6m5lZhnYPJJJ6AqOASyKiOiKeAu4HTsuR/RvAxIiYERErgMuB0yHZ+z0iLouIORGxMSIeAN4FDmqXhpiZGVCaHskgoDYiZmWkTQca9EjStOlZ+QZI2jE7o6QBadkzcp1U0lmSpkqaumRJy7Z19y1SzMwaKkUg6QVUZqVVAr3zyFv3vF5eSV2BO4HfR8TMXCeNiAkRURERFf37929RxQE81W5mVl8pAkk10CcrrQ9QlUfeuueb8krqBNxOMufy3darppmZ5aMUgWQW0EXSPhlpw8g9JDUjPZaZ74OIWAagZC3uRJJJ+1ERsaFtqmxmZo1p90ASETXAvcA4ST0ljQROIulVZLsNOFPSYEk7ABcDt2YcHw/sD3w+Ita0bc3NzCyXUi3/PRfoASwG7gLOiYgZksokVUsqA4iIycDVwKPA3PRxKYCkgcB3gOHAovR91ZJObbtqe7bdzCxbl1KcNCKWAyfnSJ9HMsGemXYtcG2OvHMpwdy3L2w3M6vPt0gxM7OiOJCYmVlRHEjMzKwoDiQF8JXtZmYNOZAUyJPtZmb1OZCYmVlRHEjMzKwoDiRmZlYUBxIzMyuKA0kBvGjLzKwhB5ICyTuSmJnV40BiZmZFcSAxM7OiOJCYmVlRHEgKEL5HiplZAyUJJJL6SrpPUo2kuZJGN5H3AkmLJFVKullSt5aU03p1b+szmJltWUrVI7kBWE+y1/qpwHhJQ7IzSToeGAMcA5QDewJjCy3HzMzaTrsHEkk9gVHAJRFRHRFPAfcDp+XI/g1gYkTMiIgVwOXA6S0ox8zM2kgpeiSDgNqImJWRNh3I1ZMYkh7LzDdA0o4FlmNmZm2kFHu29wIqs9Iqgd555K173rvAcpB0FnAWQFlZWWE1TlWU96Vq7Ycteq+ZWUdVikBSDfTJSusDVOWRt+55VYHlEBETgAkAFRUVLVp+dd7Re7fkbWZmHVophrZmAV0k7ZORNgyYkSPvjPRYZr4PImJZgeWYmVkbafdAEhE1wL3AOEk9JY0ETgJuz5H9NuBMSYMl7QBcDNzagnLMzKyNlGr577lAD2AxcBdwTkTMkFQmqVpSGUBETAauBh4F5qaPS5srp/2aYWZm2hqv1q6oqIipU6eWuhpmZlsUSdMioiI73bdIMTOzojiQmJlZURxIzMysKA4kZmZWlK1ysl3SEpIVYC3RD1jaitXZErjNWwe3ueMrtr0DI6J/duJWGUiKIWlqrlULHZnbvHVwmzu+tmqvh7bMzKwoDiRmZlYUB5LCTSh1BUrAbd46uM0dX5u013MkZmZWFPdIzMysKA4kZmZWFAeSPEnqK+k+STWS5koaXeo6tSZJ3SRNTNtWJeklSSdkHD9G0kxJqyU9KmlgKevb2iTtI2mtpDsy0jpsmyWdIumN9O95tqTD0/QO2WZJ5ZL+LmmFpEWSrpfUJT22xbdZ0nclTZW0TtKtWccabZ8Sv5C0LH1cLUmFnt+BJH83AOuBAcCpwHhJHWl/+C7AfOBIYDvgEuDu9H/AfiR7v1wC9AWmAn8qVUXbyA3AC3UvOnKbJR0H/AI4g2Rr6iOAdzpym4EbSbab2AUYTvJ3fm4HavP7wBXAzZmJebTvLOBkkk0BPw78G/Cdgs8eEX408wB6kgSRQRlptwNXlbpubdzuV4BR6R/bM1mfxxpgv1LXsZXaeQpwN3AZcEea1mHbDDwDnJkjvSO3+Q3gxIzX1wC/62htJgkmt+b7b5r+LZyVcfxM4LlCz+seSX4GAbURMSsjbTrQkXok9UgaQNLuGSTtnF53LJLdKWfTAdovqQ8wDrgw61CHbLOkzkAF0F/S25IWpMM8PeigbU5dB5wiaVtJuwEnAJPp2G2G5ttX7zgt/F5zIMlPL6AyK62SZFigw5HUFbgT+H1EzKRjt/9yYGJEzM9K76htHgB0Bb4MHE4yzDOCZBvrjtpmgMdJviBXAQtIhnj+QsduMzTfvuzjlUCvQudJHEjyUw30yUrrA1SVoC5tSlInkmG79cB30+QO2X5Jw4FjgV/nONwh20wyrAHw3xGxMCKWAtcCJ9JB25z+TU8hmSvoSXLjwh1I5ok6ZJszNNe+7ON9gOpIx7ny5UCSn1lAF0n7ZKQNIxn26TDSXyETSX61joqIDemhGSTtrcvXE9iLLb/9RwHlwDxJi4AfAqMkvUgHbXNErCD5RZ7ri6JDtplkknl34PqIWBcRy4BbSIJnR21znebaV+84Lf1eK/Xk0JbyAP4I3EXyi2YkSRdwSKnr1cptvAl4DuiVld4/be8ooDvJL7mCJ+Q2twewLbBzxuOXwD1peztkm9N2jyNZobYTyS/zJ0mG+Dpym98BxpCsTtweuI9k+LZDtDltV3fgSpIRhe5pWpPtA84mWYiwG7BrGkTOLvj8pf4AtpQHya+avwA1wDxgdKnr1MrtG0jyK3UtSXe37nFqevxYYCbJ0MhjQHmp69wGn8FlpKu2OnKbSeZIbgRWAouA3wLdO3ibh6ftWUGyH8f/ATt1lDanf7uR9bisufYBAq4GlqePq0lvnVXIw/faMjOzoniOxMzMiuJAYmZmRXEgMTOzojiQmJlZURxIzMysKA4kZmZWFAcSMzMrigOJ2WZC0i8lTS51PcwK5UBitvn4BPB8qSthVihf2W5WYult+2tIbl1S5/WI6Ch7YlgH5x6JWenVAoelzw8h2Q72U6WrjllhupS6AmZbu4jYKGkXkj0iXggPE9gWxj0Ss83DCGC6g4htiRxIzDYPw4GXSl0Js5ZwIDHbPAwDXil1JcxawoHEbPPQBdhP0q6Sti91ZcwK4UBitnm4CDiFZD/1K0tcF7OC+DoSMzMrinskZmZWFAcSMzMrigOJmZkVxYHEzMyK4kBiZmZFcSAxM7OiOJCYmVlRHEjMzKwoDiRmZlaU/w9jpd3T830ezwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "######################\n", "# run the simulation #\n", "######################\n", "\n", "# initialize phi\n", "phi = np.ones((Nx, Ny))*phi0\n", "A = np.zeros(Nt)\n", "\n", "# loop for Nt timesteps for until system reaches steady state\n", "for n in range(0, Nt, 1):\n", " dphi = phi - np.ones((Nx, Ny))*phi0\n", " A[n] = np.sum(dphi*dphi)/(Nx*Ny)\n", " if n % 10000 == 0:\n", " print(f't = {n*dt}')\n", " phi = update(phi)\n", " \n", "plot(phi)\n", "plot_A(dt, A)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Using fast Fourier transform in Numpy\n", "\n", "The method to perform a $2$-dimensional discrete Fourier transform\n", "on the array phi and save it to another array phi\\_q is:\n", "\n", "`phi_q = numpy.fft.fft2(phi, norm='ortho')`\n", "\n", "The discrete Fourier transform in Numpy is defined to be:\n", "\\begin{align}\n", "\\phi(\\mathbf{r}) & =\\frac{1}{\\sqrt{N_{x}N_{y}}}\\sum_{\\mathbf{q}}\\phi_{\\mathbf{q}}e^{i\\mathbf{q}\\cdot\\mathbf{r}}\\quad\\text{(inverse Fourier transform)}\\\\\n", "\\phi_{\\mathbf{q}} & =\\frac{1}{\\sqrt{N_{x}N_{y}}}\\sum_{\\mathbf{r}}\\phi(\\mathbf{r})e^{-i\\mathbf{q}\\cdot\\mathbf{r}}\\quad\\text{(forward Fourier transform)}.\n", "\\end{align}\n", "But we want:\n", "\\begin{align}\n", "\\phi(\\mathbf{r}) & =\\frac{1}{\\sqrt{L_{x}L_{y}}}\\sum_{\\mathbf{q}}\\phi_{\\mathbf{q}}e^{i\\mathbf{q}\\cdot\\mathbf{r}}\\\\\n", "\\phi_{\\mathbf{q}} & =\\frac{1}{\\sqrt{L_{x}L_{y}}}\\underbrace{\\sum_{\\mathbf{r}}\\Delta x\\Delta y}_{\\int d\\mathbf{r}}\\,\\phi(\\mathbf{r})e^{-i\\mathbf{q}\\cdot\\mathbf{r}}.\n", "\\end{align}\n", "so we need to multiply the forward Fourier transform in Numpy by $\\sqrt{\\Delta x\\Delta y}$\n", "and divide the inverse Fourier transform in Numpy by $\\sqrt{\\Delta x\\Delta y}$.\n", "Also note that the array $\\phi_{q}$ is arranged in a peculiar way\n", "in Numpy:\n", "\\begin{equation}\n", "\\phi_{q}=\\underbrace{\\begin{array}{|c|c|c|c|c|c|c|c|c|}\n", "\\hline \\phi_{0} & \\phi_{\\frac{2\\pi}{L}} & \\phi_{\\frac{2\\pi(2)}{L}} & \\dots & \\phi_{\\frac{2\\pi(N/2-1)}{L}} & \\phi_{\\frac{2\\pi(-N/2)}{L}} & \\phi_{\\frac{2\\pi(-N/2+1)}{L}} & \\dots & \\phi_{\\frac{2\\pi(-1)}{L}}\\\\\\hline \\end{array}}_{\\text{total length}=N}\n", "\\end{equation}\n", "So we also need to shift each element of the array to the right by $N/2$." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "# method to plot S(q)\n", "def plot_Sq(dx, dy, Sq):\n", " Nx = np.shape(Sq)[0]\n", " Ny = np.shape(Sq)[1]\n", " \n", " # define wavevector\n", " qx = 2*np.pi/(Nx*dx)*np.arange(-Nx/2,Nx/2,1)\n", " qy = 2*np.pi/(Ny*dy)*np.arange(-Ny/2,Ny/2,1)\n", " qy, qx = np.meshgrid(qy, qx)\n", "\n", " # contour plot of S(q)\n", " fig, ax = plt.subplots(figsize=(6,6)) \n", "\n", " ax.set_title('$S(q)$', fontsize=14)\n", " ax.set_aspect('equal')\n", " ax.set_xlabel('$q_x$', fontsize=14)\n", " ax.set_ylabel('$q_y$', fontsize=14)\n", " ax.set_xlim(-5,5)\n", " ax.set_ylim(-5,5)\n", " ax.tick_params(axis='both', which='major', labelsize=12)\n", "\n", " colormap = ax.pcolormesh(qx, qy, Sq, shading='auto', vmin=0, vmax=0.1)\n", " colorbar = plt.colorbar(colormap)\n", " colorbar.ax.tick_params(labelsize=12)\n", "\n", " plt.show()\n", " \n", " # slice plot of S(q)\n", " fig, ax = plt.subplots(figsize=(6,4)) \n", "\n", " ax.set_title('Structure factor', fontsize=14)\n", " ax.set_xlabel('$q_x$', fontsize=14)\n", " ax.set_ylabel('$S(q_x)$', fontsize=14)\n", " ax.set_xlim(0, 6)\n", "\n", " q = 2*np.pi/(Nx*dx)*np.arange(-Nx/2,Nx/2,1)\n", " q1 = 2*np.pi/(Nx*dx)*np.arange(-Nx/2,Nx/2,0.0001)\n", " Sq_theory = T/(a+3*b*phi0**2+kappa*q1**2)\n", "\n", " ax.scatter(q, Sq[:,int(Ny/2)], c='red', label='simulation')\n", " ax.plot(q1, Sq_theory, label='theory')\n", "\n", " plt.legend(fontsize=14)\n", " plt.show()" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "t = 0.0\n", "t = 10.0\n", "t = 20.0\n", "t = 30.0\n", "t = 40.0\n", "t = 50.0\n", "t = 60.0\n", "t = 70.0\n", "t = 80.0\n", "t = 90.0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAFjCAYAAADIAvdZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABFr0lEQVR4nO2de7Bld1Xnv+uce/t2px8hCdLiI4lIgiRAIsbRCqNBiURSU0U0/sEQKbCiYRLRgZFRVDIkoeYhZcGohGBrEMGIExEkAxhGEaaMlvIQAvYITYA8gLw6j053p7vvvees+WPv39lrn7P2e5/Xvt9P1ek+97d/r73Puff3W2v91lqiqiCEEEI8evOeACGEkMWFiwQhhJBMuEgQQgjJhIsEIYSQTLhIEEIIyYSLBCGEkEy4SBBCCMmEiwQhhCw4InKqiHxQRI6KyD0i8vKMes8RkY+JyEERmXCCK9uPhYsEIYQsPjcCWAewF8AVAG4SkXOdehsAbgVwZcN+Rgg9rgkhZHERkZ0AHgPwHFU9EJe9F8A3VfUNGW2eCeArqipN+gEoSRBCyKJzNoBB+MMecyeAXAmgrX5WKg5CCCHEcMmP7dRHHh3Ubv/ZL5zYD+C4KdqnqvvMz7sAHBprdgjA7opD1eqHiwQhhDTg4KMD/NPHvqt2+9Wnf/W4ql6QU+UIgD1jZXsAHK44VK1+uEgQQkgjFAMdTnOAAwBWROQsVf1KXHYegP2z6Ic2CUIIWWBU9SiADwC4QUR2isgLALwUwHvH60rEdgDb4p+3i8ha1X4sXCQIIaQBCmAIrf0qyTUAdgB4CMD7AFytqvtF5HQROSIip8f1zgBwDIl0cAzAl4v6yRuY6iZCCGnIEFNVN0FVHwVwmVN+LyKDdPj5bgAyXq+onzy4SBBCSAMUikGH/c24SBBCSEMqqI2WDtokCCGEZEJJghBCGqAABh2WJLhIEEJIQ7qsbuIiQQghDVCg04Zr2iRIJxGRU0TkQRH53ort3i8i/2la8yJk2eAiQZYSEflOEblRRL4iIsdF5CER+VsR+aG4ym8A+KiqfrVi19cDeKOInNzujEmXGTZ4LTpcJMjSISJnAPgcgO8E8CoA3wfgpwB8BsCGiJwE4OcB3Fy1b1X9IoCvAfjZtuZLuo1CMWjwWnS4SJBl5JcBDABcrqp/r6p3x///qqr+M4BLEW3S/n68oYicLSJ/HUsfXxWRl4jICRF5kal2G4B/P5M7IcuPAoMGr0WHiwRZRk5BFMDszIzrPwLgszqWdlFEzgLwaURxbZ6DaLH5w7ivO03VTwH4NyKyo91pky4SxW6iuomQReJ3ATwB4Csi8s8i8tsicr65fgaA+512bwdwm6q+VlXvUtWPALgdUfrGg6betwCsAviO6UyfkOWBiwRZOlT18wCeCeAiAB9GpF76rIi8Mq6yA+lMXxCR7wbwYgBvG+tuHWkpAogiZ4Z+CClAMGjwWnS4SJClRFUHqvp3qvpfADwXaWPzQUQqKcvzEdkx/mWs/HkAPj9Wdmr8/8OtTZh0FgUw1PqvRYeLBOkCAmA7kj/qnwNwzlidIaLv++qoUZR05UJMLhLPAfAtVX1wGpMl3YOSBCELgoj8iYj8poj8sIicISIXAfgQgJMB/I+42scAPFtETjNNP4tItfQ/ROQZIvJSJEdkx9VNP4LIVkFIIVHsJi4ShCwKn0Vkg/jfiDJu/SGAbwI4X1W/AIx8HT4F4GWhkap+C8CViNI1fgGRf8U7ABwFcFeoF6d+/CkAfzD9WyFk8WHsJrJUqOrbMGl89rgewO+IyDtVdRC3vQXALaGCiFwH4AuqqSz2VwL4J1X9x/ZmTbrOUBdfIqgLFwnSSVT1dhG5EcB3Abgno9rzMKlq2gDwS9OcG+kWQd3UVbhIkM6iqr9bUOU8AG8Za7NvejMiXUQhGHRYc89FgmxZVLVShFhCtiJcJAghpCG0SRBCCHGhTWLJ2NbboTv6u+c9DZJF49+l0EEVV1WvjZ3IjNxel8C7dqvxxObDB1X125r1IhgobRJLw47+blx46uXznsbskSnsZNrqs9fiL9A07jMEi7V9Tzsd5bBG/M9pzLPDaTfLcPtD78w6+VaaKApsdxeJ7t4ZIYSQxnROkiCEkFlDmwTZOrSpzmmiZpqGWqnKWEXjz0NNM02V4hZXOzVBlTYJQgghOQwpSZCFpM2dZZO+mhqmZyk1tIU35yq78bxnVsWo3ZYRe5ZG+44RHYHtriTR3TsjhBDSGEoShBDSCNokSFdpquZZZMN0U3VQ0zGXWWXTlfuYEV33k+AiQQghDRl0OHZTd5c/QgghjaEksWw0VdPMQ8U0D9VS03k0VbM0UXfZZ1z3pFPVMUltmE+CEEJILkMarsncmacvQRXpYd6STltMY1dexyBcV6poC0onhXTdT4KLBCGENEAhNFwTQgjZmlCSWEQWJTdEkZrJCw5n3+eNOW+1Uh3VT5tB/+qocbzPo0gFxQB+M4F+EoQQQlxUQY9rsqRMQ3qweJnSpoG366+yq296RLaJpFFHuqBn+JIhjAJLCCHER9FtSaK7d0YIIaQxlCQWhbZUNnX7KatmqtJ/nbkUtZmGd3XZMYtUWJ7qZtqqnbJ+FNPKPUJ1FYBu+0ksxZ2JyFkiclxE/mTecyGEEItCMNT6r0VnWSSJGwF8et6TIIQQjy5LEgu/SIjIywA8DuAfADxzvrNpmXmHsGiadtRjGiqmsvRMP0P1y/MYFqhO2vy88tQ0dU9Zhc+zTlDAumojhu3oPAu9SIjIHgA3AHgRgCvnPB1CCJlAwQB/8+TNAG5W1fskZxcnIlcBuAoAtvd2zWhqFVkUY980gvVNw5hddvffZvsqbTypo8quOs8YXqWNx7yDAm45BAP6ScweETkfwMUAvr+orqruA7APAE5efRplXULIzKAkMT9eCOBMAPfGUsQuAH0ROUdVnz/HeRFCSApKEvNhH4A/Mz+/HtGicfVcZlOHLBXTvIPb5dGWn0JR3abqpKrj5VFH/efNv6wKyo7pXW9TNVnWmN00JElRXzRmLy0Lu0io6pMAngw/i8gRAMdV9eH5zYoQQtKoSqfVTUtzZ6p6nar+7LznQQgh4wy0V/tVBhE5VUQ+KCJHReQeEXl5Tt3XicgDInJIRN4lImvm2pki8lEReSyu83YRyRUWlmaRWEpUk5dI8qqDbV+2n15v8lWnzypjFtXtSb6qyZtT2Veqn17yqjLnsv3n3Zu9P68sa8yiuRXNN3duGd+BIpp8Z71+mv4eLCAKYBhHgq3zKsmNANYB7AVwBYCbROTc8UoicgmANyByGzgTwDMAXG+qvAPAQwCeDuB8ABcBuCZvYC4ShBCywIjITgCXA7hWVY+o6h0AbgPwCqf6KxG5DexX1ccQuRG8ylz/HgC3qupxVX0AwO0AJhYby8LaJEhNymaTq3u9SpuyxulaY1bx96ixF1LH0Fslh0XRvYfrwxb9JOhHMSdk2qHCzwYwUNUDpuxORFLAOOcC+NBYvb0icpqqPgLgdwC8TEQ+CeAUAC8BcG3e4JQkCCGkAZGfRKMAf08Vkc+Y11VjQ+wCcGis7BCA3c50xuuG96Hu/0W0kDwB4BsAPgPgL/Puj5IEIYQ0pGGAv4OqekHO9SMA9oyV7QFwuETd8P6wiPQAfAzA7wO4ENGC8i4AvwXgV7MGpyTRFk2NnkV9FVHHKFmHorl5htqmz8Yaocsaoz2yjMh1xnTLShrti8ZvepBgGkbiaRicO2LEnkGo8AMAVkTkLFN2HoD9Tt398TVb78FY1XQqgO8G8HZVPRGX/RGAS/MG5yJBCCELjKoeBfABADeIyE4ReQGAlwJ4r1P9PQCuFJFzROQUAG8E8O64n4MAvg7gahFZEZGnIDJ035k3PhcJQghpyBC92q+SXANgB6Ljq+8DcLWq7heR00XkiIicDgCqejuAtwD4BIB74tebTD8/DeAnATwM4C4AmwBelzcwbRKLQh2Ru82IrnnX655eKntPVdRHbYXz6Jsxy4aMGDrzzJx7wamhMGZWDoxR/+b6NNKjet+hOiE82gy7UfaU1oKgCgymnGFOVR8FcJlTfi8i24IteyuAt2b083lEcfFKw0WCEEIasgxpSOvCRaIpTYxu85AemvpJNJUeiqQGr/+inWtTw2fZ9t7Us7LZefdpfS+8MUOTzD4b+Elk3aNXdx5+FE0lojkSGa67q7nv7p0RQghpDCUJQghpCPNJkPmf5S6rZso7O1977AoqpqbqpLw8C7Z8Gp9Hlsojb05FH0sq7IY1lueE/ci0hRc8m7x51lXh1MlH0VRd5KnNFtiYHTyuuwoXCUIIaUS3bRJcJIpoa8c6DSP1NAy2ZQ3HqestGaOB6d9zWZqO4x1xtXjHaYN0kbUr94ICWsoarqe9Q29LklliY3aX4CJBCCENqZAXYungIkEIIQ2YhTPdPOEi4TFPFRPQXqC+On4SVep6aqbxwH5V+y6rAvOwapgqHtVZ6pu8ORUZ2ItwfS7iwix/ikIVljOnsqqnojZZ38myfhRNVVDT9vJuCG0ShBBCXEIU2K7S3eWPEEJIYyhJTPu8fR511Ep1w2o0OcmUdXqpqH0ddVNe30Xt+v41jZ+zZKknQruiUB/2uqdlqdI+9yRSQdDArPuokxLVo8qporJ+FNNggVRQNFwTQghxoTNdF5mn9NBm/02D9RX2H+8SK3lcl5Qk6kgKALRBMD4dSu51DP2+gwSiRvITV5QoCPudmoxjMC4KIDiSMMzYrpHZmUeRn4Q3tzLXF40qgQxbhIZrQgghPuXTkC4l3V3+CCGENGZrSRLLYqRuYvCtkkWuipE6t00NI3RGG1edVPToyn4GfTuQo37o+yoZDWokq+UpMoa7qqNy03RDcaT6MZ3by17QQC9HxTSy3TXNcDcNddCMAgQqaLgmhBCSQ5fVTVwkCCGkATzdtOwsykkmK3q3FXbDUscPoki11C+peipScZnrhaeTwpBZp6TKpuYsGsfrx5b1+5PlYq4P4hNPGeO4pT2nhncKqiivhXd6qYisNnX8OcqeeKqSBnUap6iKvheLfEprgej+IkEIIVOGksSy0ab00CijW4u5Ecrulmv6H+T6QhR5cReM6e62M7yjvTFT/gmavYO3RuTUdedjkEHyXuO5yKBCoL8gaGTsRtXxuSiULsJmu8quPSUh5AQIzGxTcjfddAdeRapoa8wZ0fXYTd1cJAghZIbwdBMhhBAfpbqJVGUe+SDqGKnrBOhLqXFKGqbt0N6zcdpkqYtGPgv2ejAi98vPXWXSIKyrxlhtVSKe6iioP4r8JKwKzLNRG7XXSAU3qBAsz01vah9YjZSoTfNR5LUF6gUFnFWaVTIBFwlCCGkAj8BuFZruKpp6VNfxpK7gyZzbBsiff9ZRWM8w3Zu87koKdjzPeJs1He/+ViYr2zl5xu6Uo7LnPW3nJ5O716Sq6XMwKZ0U7cq9eWZnnnP6cT9vLyig15Hpq+iI7DQMx02N2ZY5G7a5SBBCCHHh6SZCCCG5KBeJDjNNNVPTfA9t5YMAKgT4a2iY9gzftr3nH2HbrMhkPauJ8B53gdF02IsM0ik/Cjj3lKXy8AzXTl3tp2pE/1oVlOfFbW5u5FvhqaAAYwwvULm4QQEz1DFl/Sjq5KOok+EOmE+WO5IJFwlCCGkI/SQIIYS4KP0kOkgdFVObQflqjV9WXZShYipSLeVczwzK56mOnOfkqphMPde/IRVszzsd5ZSZeuJoLIo0HtpPOWQkb7dF/faOJ04N6txnSjUUTlRZFdTQqZtS7zmnn4aO6snOc+CE4LB9BtWNF74jGmCyTVM/Co+6qqfAPAIEVqDLNglmpiOEEJLJwkoSIrIG4B0ALgZwKoC7APyGqv5Vg07bmdy0+66Tma4o7LfXvqyROsswPWprpIJUELxyfboB/GyfKwVSkLMrV7MrT6QOK2moeR/Xs5KIMTjLZjynbdYjW1PzBQBs2jFj34uBcalOCSrxdS+EfKrMSieelGUNvo4XeKFhOicooG1XxY+iTvjxaTCzAIE8AjsvVgDcB+AiAPcCuBTArSLyXFW9e54TI4QQS5fVTQu7SKjqUQDXmaIPi8jXAfwAgLvnMSdCCBmHYTkWBBHZC+BsAPuda1cBuAoAtvd2jV+sPtisMscVXS80PBcE7SvwWfDqukbmjHmOVEIFITS8sB0pw6/VCoQ2K1aFlT+PYGTWVaO2Muqi0KdVMdn7HKmmerZsUjVVlG9iuJb8OsnmIJ5a360rsY5LnYcn9tkYddVozp4xO+7NGWiyrGxQQNu+SF0zK2P2IvpQ6NyjgkyVpTBci8gqgFsA/LGqfmn8uqruU9ULVPWCbb0ds58gIYR0lIWXJESkB+C9ANYBvGbO0yGEkAnoTDcnREQA3AxgL4BLVXWjZMNpTqv8WEVpP7NwThrl1suq66mbMtq4vhBeWA0vequ97kVkdXNImOt9R82TmnvydrgyGbF1dJLIqJMG24zqqeD00mAtUgn1N4bu9WHcl9jrQQeWoYIazclGkB04J3w83wh7Ckvzo7im/CjCSScvH0XW6SM3X0SBH0Uqam9Lepayqqe64Tum+DdBQcP1PLkJwLMBXKyqx+Y9GUIImYRHYOeCiJwB4NUATgB4QJKdwKtV9Za5TQwo3rWXbZOVNyC3nwIzUoV5ZOaBKNtnvKsryghX5Ocw3GZ3h5NtZHPS4OxtNj0pBgCGa47X8GrSfy/uf2jaS8o/IbSxBuWQo8JUMz4L/RODyXl6ntCSGLZHPhOexDHR2SQjA73nkW134F4/WdJB+L5pxq49zyO7iu+EpayxfIGCAnbZcL2wi4Sq3gN0WNFHCCFLwMIuEoQQsizQJrEVKPKNKFLjFKaUdLAielmfiCwVVdncEBYv3IYXYsPW867bbJhGjRNUQzbYXjASZzLyozDqqO2TPhGp+3FUHlYFNgxzMr/IPWuYdp7N0OZ0iNVR9j4ktLEf4WZSIajQeuu2kbkNmTRsj0J1qPGNsIbp0UAZqVVHKjDTxvvcC/w9MkNwjDotqQKbWVgMzNWPQpWLBCGEkBxouO4yTb2r6xyBbRr2O7dNgUd1VoC/vIxzBcZuzQr7HZMyTHtRoN0jsMl17+jq0EgsYTOd8tK2dtrJLlNjht380Bime5vOztfE6hsZ2FP3Mxmo0PaZCioYggZaz+4Q3NB4aYsRX4KAkXrCXkh1z/BdR9KNZxO1KfDIrnMstvAobg1JZIGM2V2BiwQhhDSEp5sIIYRkQptEV6ijWpql9/ZozJx5FqmLijyqi3wayqqgzPWUH0RqzMnmQy/HRMowHpUPrZ+EUV9s7uhltrcqqJVjxoi8OjkRGaR+mhgnrUZy9FVBHWUN7GvJ+96J4J9g2tjtZlCNpdRAkZopBAcE0gEAJdZxqZ1736imQjBAq3bbnPSYFnvSIKimKmWmq+CRHbCanzqqpTo5KGakelIIFwlCCCHZdFjbtBxRYAkhhMwHShIedUJsFF0vezopq42XD6LgdJMbtC+D0ckgTwW16vs2jE7u2DH7/vukr6AbyvBpcEJ42NNRg21xm4J8DxsnTZ4qsm2wmrxN2iXX++tmzuE2rcYinmdvY/LEEgAM13oTZTKYPKUVwnfYcayapMiPIpU3I1Y9uSlTs7QtpU8/Vdgrh/ZeoMGsMcten6XvRVnoJ0EIISSXBVmvpkE3F4lpGKhrZbir4h3t+ERUGTMO6pYpPYTdeoFPgxf22+7AUz4L8UZxuM0fMwTMs4btsOEKO20AGKxN9qlGeEmNHwSR1Dd30vu5b4LKb+4Ihmnbp2nuOVLAGrGjCyvHMYHaQICOFCQZP4TnmPKjGAXjMxWtz8NIKrCfkVO3iv+BJ2m4AQAzvlcho50XADCzTcl5ton3N6FFY/a0JQkRORVR2oQXAzgI4NdV9U8z6r4OwK8B2AHgLwBcraonzPWXAXgTgNMBPADgVar6d1lj0yZBCCENUa3/KsmNiBKv7QVwBYCbROTc8UoicgmANwB4EYAzATwDwPXm+k8A+C0APwdgN4AfBfC1vIG5SBBCyAIjIjsBXA7gWlU9oqp3ALgNwCuc6q8EcLOq7lfVxwC8GcCrzPXrAdygqv+oqkNV/aaqfjNv/G6qm2bJrPwoPMN1EVW2ADXuIxiZhxl5HBLVkGPAzpjb5vZ81VBQMw1M0L/+iWg7tnHSpNoKSIzQXqgOABjEadFXnkzK1ncbn4vj2f33ZdJAbq/b+HvWv8EL+zHKR5FqZMbcCAZ4O6a50d5kGy8Dnh800EwkK5/FqIMZKeCnEbZjCrSQme6pIvIZ8/M+Vd1nfj4bwEBVD5iyOwFc5PR1LoAPjdXbKyKnAXgcwAUAbhORuwBsB/CXAP5zXlI3LhKEENIEhe85Wp6DqnpBzvVdAA6NlR1CpC4qqhve7wawhuhc388A+BEAG4gWlDcC+M2swaluIoSQhkzZJnEEwJ6xsj0ADpeoG94fBhCkhd9T1ftV9SCAtwK4NG/w7kkSZRb0KmJqW+qkOlFei7CnfrxonKlTLPn7gZEKI6WSidqnfR9spNXJ66k+Q6rRlLpo8iSSPd3UX59U7dgTW4O16H+rkQlhN9R8m+2nuh7/mqwYgdqejgohOja3J2XWT2JjZ9T/6pGk1zAP+4x7m0mbXnwfA3Pya+XJST8K++xGKU+tD4g9bbYt+EGYyLCYVD3Zk2ESrqfUUvbhY5Jap6MKQnUUhvpoqDqqoxZrGgF6dhwAsCIiZ6nqV+Ky8wDsd+ruj6/dauo9qKqPAICIfAMVD+wuzVMihJCFRRu8irpWPQrgAwBuEJGdIvICAC8F8F6n+nsAXCki54jIKYhUSe821/8IwC+JyNPi668F8OG88bsnSVSlKCfDVMYsmQWvQgC/3DJDatdvd1JOboiR+0Eva5fnGKSNkTpIDVZdG3bwknFEfcPxaQiGZcB4XJvdcvCJ2DT17NSOnxbN+aRvWYkouR78H1LtU/kRov/W90xKDfbeth8zkkIs3QTJCAAG2/PzVYQDANaL2hr9R21Su3LTQZhMhZ14kNIkq02dHXr4fnu+E5asDHh5XuCL4mWdYiYB/q4B8C4ADwF4BJHvw34ROR3A/wNwjqreq6q3i8hbAHwCiZ/Em0w/bwbwVETSyXFEEsd/zRuYiwQhhDRlymuXqj4K4DKn/F5Exmpb9lZEtgavnw1EC841ZcfmIkEIIU1g7KYOMU0jdFsB/Mq0i/FSiRaOnxWML6iZnNAR1kg8WJsM9pdSMaXCaUyOE8a3hmP7Pqi2NrfZeSTve7GhdX2nmVNscB6aNj1jeN5+MITAMG2Mamkz7qtvDdum7tpj6XGAxAhtje7W2J7MfdKfI7qgqfsBjEYllUvDqu/ifgZZ34+4fxt6JdaVif2CeAEA7R85+3llBemrSls+DQviG7GV2FqLBCGETIMOr1dcJAghpDFUN5F5kFInlfwSiqNCAvzTSwWM/CBWJ088ARm5H0zdoLLZtH4Q4SSSCathVTvBV6FntBwnTk7eB/8Fq1raFquDju0xJ4mMf0Jo0z+RtLEhOMLpp966UfPYgzWxdsaqsE48JfiImLmZ/kfjpE48JeXhJNOq8V8IqV1768YPwp5uilOipiPH2tC3sXpw0zw8T1tkvwOxyiYVycP1acBEm6iy458zivLq+E7MklmqpihJEEIIyYSLBGlMU+/qafhupIzlXlnwc7CG6UnDt921252txPdpczuMAufZza75Fgbj8MDuTJ0Af9aPYiP2qO4ft1JUcv3EqVHllSeT66tPmHta03juSdnxb7Mu3fEO3dh7g3RivbhTXuCjfBEmsJ753FeOBa/kpE34Q5M6KOPk90g9YyOJBCnRZrNDkHQcv4yoUTB2mzLPC9vSlnd0lWgHTQP8LbSfxWLDRYIQQprQPMDfQsNFghBCGtJlAaX7i0RZNU3d9KV1/COCYa9f3ojsj11hTKeNeqqllO9ECA/idyWxCsMeq984aTI9qvUfCIbc46ckZaNgeUgM0tYwvXI0eR/UQFa1tLF7Up20ctTcx1ps8N1IrMwnTk1+q7c91psoWzk2qYqzKq5ghLZB/dZ3TRrL13clz2PbEasaitVR1vC9OWnc9cJl2E1rKhjgMBihrQE+LrNpZ63qKRixzdhe+/SkHDWPG/TPGrgLjNhZITrGx2z613haxuwOLxIM8EcIISST7ksSTWliMK5irC4K5hejtSWeSaNnKjucOrvQsDPN8sYdhnDY/l4j7JKtp3EwXKd2w+Zb2AtGbmsENlJFMB6vpiLpR+NvPCWxuK58b3LGdcedUW6WVAhts5k99t3RoHJ80pscANZij+3BSaZ9LEHYY61ipIpRWVbcPJ28HoIC9mwIeLPrDp9dKnGdzQq4EXtX2yx0CJ978mzczHb2lPOgYFvs7cDnrW+Zt2GaNglCCCFZZG0GugAXCUIIaULJvBDLSjcXiSoqomnnjghYY1wNP4laaiZHC1SURS59Lt8xXJv7COoRq3KxWP+J0TTj5ulgecn79Thrr1UxbZ6UjBkMxda3Yvs5jwMATjJu2k8eS6zhG98bWZHlUNJo573Jw1l9NCrf3GOMt2b8QWx4twZ26U/OfdOoo0aZ7VLBESe9zLcdNj4PQSNk80k4qryeVUF5Rl6D9aMYlRWoZFzDdcqwnNt8/qqnPKYyN+m0uomGa0IIIZl0U5IghJBZssDCU1M6uEiUEPuaqpjqhNVoiDinj7z7yLw+Os/uC4/htI86B3xSgfzMvYdTTfZUTyotaHyqaWOnCYdxNL4P249RV4X2NtyFVT0FNdPx70mi7Q2/+BQAwGk/+OCo7ImvPyVp9JTo9NJwR6InecolSd3DH3561MYGHVyZPAUWwnsAwM77osJUylPDKHyIfZ4bJljf5mQ+ihBA0J68ssH+Rqol+7F6H7cXymPDnG6y6iRn7jKrtKFZPgujoIINQ3FUGbMpXCQIIYRkwkVimSjxaXk7pUWkxbm5IcLtpmpkuDZlEgLbmV213fA5QeM21kyo8H76fyDxk7DG7hOnJe9Xj0T/Hz0z2fn2D5s+d0bl276RiBfBGH7x0788KrvlkT1Jm6PRYL944d+Oym76+MWj99tjY/nKkWScnglKeGzvMDUOkEg8Vorqm1Dio6x85rH3j9vAfKFicj3xerfjWJ+JuJr5PHobjhXZfkhuqHDzPnyGqYyFZkqez4SVpPN8Koq8qOuwyEbxjtLBRYIQQmZIxwP8VT7dJCJ/JCLfMY3JEELIMiJa/7Xo1JEk3g/gQyLyNwD+u6o+0fKcRojIqQBuBvBiAAcB/Lqq/mlBqzIdN59c1T7rGLuLMoDVIdWn01mBsVBXJwPfpfJJmPajIHZGtRT8HFIGV5O/IKhvVh5PdB5qjMjYEVUe7Eiuh4xyf/6BHx2VPe2AyfgWz/n1/+6ro7K9P3lo9P76D/9M1PUzkq/y0W/sTsbsR+OvPpqMGQzTQ+MbAfObsBqrnuzTTAXZW3cC98UfRypfhH3vqPdsWA4JqqfUd9EJwDdwvldFKipLU4Ny+N7VyVY3jRwTbbAEf+zrUvlPjqp+BMAPAfgagDtE5JdEZFpqqxsBrAPYC+AKADeJyLlTGosQQsgYtfalGkUd+ziA/wngTQD+VUR+qsV5QUR2ArgcwLWqekRV7wBwG4BXtDkOIYSQbCpLALGa6fsQSRKfAnANgC8DeI2IXKSqr21pbmcDGKjqAVN2J4CL8pst6emmonmM5jyd+Y7UP27k2eS9VXkE1VMqz4LxqejFaiQbuiKEtthIDh+NTjQByUkn2+fmSckPK/dHHWw+LTlK1I9POj374rtGZf+y7Zmj92f+5j8AAJ71rKtHZc/50aRuyD1x9LEdpizZP23ujm7EPodBXHXtUTPPncn74OfRP5GU9R0Vk73PUZTXwaTKDrAnqsx1+9mEuk5eikw8lYx3+imL8L11wn9kj1lDzTRqWyNCbRt1C1gG20JdChcJEfkxAHeqavh1eD2AL6rqeCbcXxCRL7U4t10ADo2VHQKwe7yiiFwF4CoA2N7f1eIUCCGkBB0+3VRGkvgrAKsi8k1EO/nPA3iGiHxBVe8aq3tpi3M7AmDPWNkeAIfHK6rqPgD7AODkbXuL1/S6ORnKkuHVnDtOkXQz2rGZsr5zvcqYxgAp8Zc8dWw/7GzN7diAc8EQqxm3GwzaqcB48fz7Nqjfycn7frwDH5o2Vnja3Bl1sPOUxCX72GORZfyyp31uVPYXP/fXo/c//OX/AAA47V+Sh/ev64mkEYL59R9JLOybT09EgP5DUQV7n9sPRv9vmC3LNrOlCTtLG/TPZrFb2Qie55PX1UpjjvSR/twmL7dKkcf1ovktzMNw3fEosGX+ml0G4H4A/wfAfQB+DNEJpy+LyBMicoeI3Cgiv6CqX2txbgcArIjIWabsPAD7WxyDEEKaow1eC04ZSeL3APyCqv5VKBCRFwD4QwDvAHAqgOcB+FUAf9DWxFT1qIh8AMANIvLzAM4H8FIAF7Y1BiGEkHzKLBLfhcgwPUJV/15Efg3AK1X18qnMLOIaAO8C8BCARwBcraoFkkQLhuumhu1gmCtSO2WNk+dTkdVl6KtfIG57gdQASGzs1L71TwhhIqzx1PpExGU2x70X0sEaX+P/+ybshfUvCKlMT3yb0asNkvZrj0SDrT+R6KjWYtXVdbcnX8UHX/Q3yft/G5nP+juTQa94zqdH72/9yx+N52uCDh6zsTGi/zZNelSN/ThS9+vZgM19WiN1MEivHHPyPWzY+B8VwmKM4nY4fhJV8OzKdfosCsUxDVUVDdetU2aR+DsAvwjgV8bKvwjgJ1qfkSE2ll82zTEIIaQxW3yReA2AT4nIaQDehsgmsArgdQAezWu4tEzjWGyVzHTDyR14IHU80hquQwA/uwvsOe8z7m24OimiBO/plEe03bmG8a1HdkqqiMrtbjocAtk04b/tL1gYyx4W2fFg0umxbx/E9ZIKJ8XXT7soCf994z/8eNLnWnyE9WBiDf+b+581Mef170yO1fYeS4zYYZd40n3JAw8hwtceSeZp7zNknNvcMXkkGEiCI6bCsMf0reRmBcxBEN2SstTn4TkgVzmamseiGaizoMd16xQuEqp6QER+EMDbAXwOwCaiPznrAK6c7vQIIYTMk1LOdKr6FQCXiMh3AXg+ov3qZ1X1/mlOjhBCFp1lCdRXl0oe16r6DQDfmNJc2qOx4bmgvac6mrYXd8hM5+WFMNfT5kXHML1i9UHmuqa6iceKDddGFWW9fcNU7C+IDfY3yjdhxvEy39ksdCdOif5fe9SMaTO1bcZBA9eSQY9+Z/R+8LGnJ/VOTxrptuj9yrcnAz25nqiT1p77eNTms08ZlW3uSvoPwfxsFrpRFjlzH+vGZ0KGkqoHAJsmC922+Nmo+Q1ceTKes/l+eTk7LFa9l+SocL6LRu0kRQcabHHIKTJLdVOT3BNzMlxvdWc6QggheVCSIIQQkgXVTcvGogTtK6JI3E2dVJoU+9UJ9qcZ956pphrD5oPwUmPasBxJm+T96tGk/SA+wTTcOTknG/TPqlxCQDwbGcyG8JA4d4QNSbJxahTPYuVookLa9phRVx2MJ3JeEmrj0DcSP4vV2Odh1YTNsGqcbU9MhkQJITRs2A07z6B98IL6RRXS/QBAL/hH9PwTOiNVny1z0oe6KUezDjkVfAcbqZmmkb40i7LzXJZTWgtENxcJQgiZJR1ee7hIuF6qMyJrzJy5pCQFxyfCnou30kMoV+M8IVZGjg3bef4SgMl+BqA3DAH8/HP9eWUW618QjMRiQmwPjMG4v+5IJXFgvvWTrcHWtN8ViSU7vpBYlld2JnU3dod7ssELzfxi47MNBR767x83RWb4bUdiY7p5NqtPTv4l6a9bN+wwYf8+wkGClDHb8QtIecVvjAdrRj3pwUoCmvHeqzuq19BfY5ElAJ5uIoQQkgsXCUIIIZlwkVgy2vRZKFJH5YTQSInYqaQMoY2p64UTcMZMGa5tML+gZrIqJhvCY2XS8D0Uq46K/SycKA9ZxvBwz71UJjXTPp7LtiPJc9g4KZQlbTa3G9+KWPU0yAjbsbkj+mH7w0mbY0+P+t/+UDL4xh5znyei8mFi10b/eNI+ZKazqp1RGYBhPBdrbA+qPltms9CFcBwhPEd0b5PvB6vJOP3wsW86HwJsmBRf3TP6bKtoduq0yesHSH4XsozVpVVULQYIXGR11YLTzUWCEEJmSJdtEiVTqBFCCNmKdF+SKKt6ajPHRNMTU2Xbp1KZFtQNKgqb/8CehOr30mMjUXtIKkfFZG4IqxIZGvVJUEOJ8QUIKhN74mnDpCUPUWBXjyZl9vRTUGWkTh+dCKd+krJth4waJ1YtpVRYvWTSO+6Prq+fklzum74G8aNZPZKUDeOyXurekvfBX2Sw6l/X+GTYynFTGD8bq74T7yRRqgyT15vStJ+gOmp6ommZoCRBCCFkK9J9ScIyT58Iz4idChRo6nrJ50NzewbeGrF1/A2Avt1uj/WNMQNorFS1PhGDtai9NaSqDeAXn/EfmjnZTGvB58L6Ctidd8Du0PsnorHWT57MgBdNYLJs5VhUN+X9bIIGBl8GG2xvaO4j+D/Y69YgHd7bvBrbQoA/87ys4TpgfSPs8/YC91nD9qgs5UdRbrtqJcTRmEW+DVkMnfYkDf0kCCGE5MJFghBCSCZcJLYYbflZTCPHxMBGmbN+EvF7q7ayaof4gqai1FmnBkfVMUqxmZSlVE/94Hth2tgoEJ4Ka9ukkdnmoAhqIC9UB5AYtK0RettD0f8bJmyGVQ09+R2xb8Uj1pjt9GmMzEOjqVuJ1Ugrx8y9h8ftpCQFEn8Rq2JK5cWI29nnGeqK+YxT6UtHAf6SskLV0qijjL9icfNKgfw81VVRAL+U6rRF/4dZ9FOAoNvqJhquCSGEZEJJogjP2O1m/nI8TjP7DNu3gjXa2wllSCRhJ+iFDy/Vf5BEnKO0doc8NFumMOag76SbA9CPj3dunpTcZzDOWsPxygkjacRvreF4Y5cxYgfjstmVBwlAUrv65H3wzl4x0kNqnifC3JKy1A4+HtN6kweDtJWC7Pgy2qHbOU0eL3ZJHS6YDABopYfUMei43A0VbimSNLxgflUM39M8+po19jwPpQBUNxFCCMmg46ebqG4ihJCmaINXCUTkVBH5oIgcFZF7ROTlOXVfJyIPiMghEXmXiKw5dc4SkeMi8idFY3dPkijz0CuocUr3lcrzEJdlZBhL/CCs2sCs145Pg9uPp1pK5ZiwKoRYFZGRM8HNNzGI9Ce6OhkIEEjyG/SPJ3oWm49iGAcVtNnZQkC7nimzHtlBz5NS7ZhsdyEYoFUdBf+IvvHStjs7z9ht+x8F2zP+HNZIHVRXklJxxfdmVGWprH5OGoeUEdvNKDec6Ecc7+usAH8uQTXl+dyYPmtnjsvzrm7TcDyNzHPDFtVi05ckbgSwDmAvgPMBfERE7lTV/baSiFwC4A0AfhzAtwB8EMD1cdl4f58uMzAlCUIIWWBEZCeAywFcq6pHVPUOALcBeIVT/ZUAblbV/ar6GIA3A3jVWH8vA/A4gI+XGZ+LBCGENES0/gvAU0XkM+Z11Vj3ZwMYqOoBU3YngHOdqZwbX7P19orIaQAgInsA3ADgV8reW/fUTXVpM8BfWxSpxZywHnZmIYhcdN05pWKvx6qnVNC/lV5cZto4qo5RcMAxQqA6L9WARY1aTHSyL5tvYtvh+MTUDpMW9HBonLRJBdOLu9z+eFJmfSJCO0/FZPtKqYGcE092zJHPg/rXe5uTqo5w+sl5BNmUVa/UyTFRpf86dCnUR7NbOaiqF+Rc3wXg0FjZIQC7S9QN73cDeASRZHGzqt4nJf+OcZEghJAmVDBA1+QIgD1jZXsAHC5RN7w/LCLnA7gYwPdXGbybi0SWQao3Re1ake+ExQvrnWXEzm3jGCOzst15bWzVeGebznYXxjYVHX+Q3oaRPoyooM6cRztrK5Gs2GB+k/Pz/Rsm66XGS+3gww7dGKaPWwP85NxTgftCMD/H2NxzPKajC5NGfQ9xsvrZ55mqu1HQ16ZjpPYM5KnrJUWMTD+KkgbrOobxNjPTtWmknj0HAKyIyFmq+pW47DwA+526++Nrt5p6D6rqIyLyCgBnArg3liJ2AeiLyDmq+vyswWmTIISQhjS0SeSiqkcBfADADSKyU0ReAOClAN7rVH8PgCtF5BwROQXAGwG8O762D8D3IjoddT6AdwL4CIBL8sbnIkEIIU0p6xPhvcpxDYAdAB4C8D4AV6vqfhE5XUSOiMjpAKCqtwN4C4BPALgnfr0pvvakqj4QXohUU8dV9eG8gbupbmpKUyO25zvh+UxUMYAXGbFH1zP6DNK2Ve0MEvWFhtAa1vgqju9EyvciapPyOTAGWR2Evo1vxiAaf7hm+jRdhlAeauZp+w/vbe6GkZrI5GNQJ1KIzQK3uWMyVIh44SgA9Dcm1VUjNZM1ZluNRvB5sOoeWze8NeOM1Eyp7ICOmiQVNLCcGsXNcGfJul4ngF8gq00TNdKCGrun7XGtqo8CuMwpvxeR2siWvRXAW0v0eV2ZsblIEEJIUxZz7WoFqpsIIYRksrUkiSCaVznlVKQayrueEQphRNZJJC9KbBDd+56KybS3Ko207ihqYtUXfUf11LOqocl+UqqnzbhCyk/CnlrKTtPaO2HTnDqpSm2U1JTqKL4Po47qxyk+rToI5iCQOh/N6lGThyGcfrLawZTqKoQS8SKyGnVRQfRV7+RWKhrsSLWT0UEIy1EUCdUJ5bE0UV4zxyy5VZ/HKabpH4GdK1trkSCEkJYRZFoCO8HWXCTsbqOsVDENj2xnh51qb3dsQaqoZLgrMJbbnW+QKqzRNDS1eRLMDxpv8cVY7VK+BqNMa8n1YXwfktp6WbflUedm7phgxcnHoGbuQyslhVGMdOD5NKQN15ioW+Qx7UkAVvpIeWeHPp1+Mo3M3ibZqeu2zzDK55bZdlnSQxPDdptG6Hn7QVCSIIQQkgXzSRBCCNmSUJKoY8yuQxV1VJ4xvEqaVM9QalVDnurJ+kH0gmrITM0EBXT9KMx9animqVSgUZvBWt+U2byjsWHaqItSmo4QNNAJoTG0xuxNR52UlTLUC01hnk0wsltjuRcGJaWCCsEPU3krPH2UGTJ8BqaflOrIyw1h8TQuI3VRBZ+FOmE37HexbAiOrJTAeWWWeauYLB2WJLhIEEJIU7hIEEIIcdFu2yS4SASqnHiqctLJq5eX8hTISLqQ4zsB+NYlnVQdWdWK2HAZeSow24/jp2HDe6T0K+GZWtVR/LZ/wo9oOgqnYe/Npk8NORdMn4P4et+E3UhHoHVUP6noq5Onm6zPxCht6LpVw8RlWSemvD8azvdCHBVVUZsUXirSptFTq/hB5KmWqqi4qlwnM2UhDdcisiYiN8cJvw+LyOdE5CXznhchhLhog9eCs6iSxAqA+wBcBOBeAJcCuFVEnquqdxe2ztqJlPZfqCFVtJmtLuzOyvpOePMZn5P3TBypIpXNzrGEysBKBc49izO+9QDuhV19YrgWaziOxxebl0Ktr0F83fS5srGZHg9jUkHIe2EM11bS6AWpxrZ3dtOpW/P8JOz18B3ydvqAb3QdZcAb5tdLzamkT0Sm70XJv1JFbRpLLzP6azmlcahumjFx/PTrTNGHReTrAH4AwN3zmBMhhGTCRWK+iMheRMnAvUxMiBOHXwUA23u7vCqEEDI1KEnMERFZBXALgD9W1S95dVR1H6KsSzh59Wntflxl/SjqhOVo6jvhpTz18lZYCgIVptUXkz4LVv0hvclQIWmfiUnjdAjl0TuxmZSt5D9b2bBjTs5JRr4Tkyome92qoKzaLHm2mCyz87CpSoMfRErFZT+PdL2JPr3rRef+C/vMUS0Vqotqht2YVe6Hpj4RNIbXZi6GaxH5pIhoxusOU6+HKEXfOoDXzGOuhBCSSxOj9RKsXXORJFT1hUV1JMrUfTOAvQAuVdWNFgYOnTfuqvI4pTPLmXLvWGymYToYSnuTbcrMKRiCbdjv0S7SukzbNo7B1+z4RlKF9SoO1zMCDYrzWzPcbozcm47EE67ZQISDjOcU5mbuI6lryoqMsxKOzRopJ5WFzjP6O316O+SMkOOje/Y8xO38quyay3pUV7leOOZyG6n9sWY31KxZZHXTTQCeDeBiVT0278kQQoiHoNs2iUX1kzgDwKsBnA/ggTjR9xERuWK+MyOEEAeqm2aLqt4DTDGPRxWDbiDLcJZn0K5jzLbtPI/sLMO050fhqZ7sfdj+Rz4NNnNdHODPGqaHzn30/PtM1CNmykFzZPNWuOqgZO694zYA4OTwoW5WxrbgPZ1SDZX1lAfcYH4jP4mCjG5pL+wig/Lk0JlG6rJ9jvq29QpUTGV9J7JoquZpYqSmgbp1FnKRIISQZSIzpWwH4CJBCCFNWBK1UV24SDSliR9FUfiQsieebN0stZanQnCC9bltrJrFmVNRKA/7bEa+Bmae2h9vMOZzYFHn/uK6KbWYzQcRq1dSPg1VTvU4ajNPBZUKweHN3w2hYdoUnU7KOtXk9T+aU+iz4ERUEXVOPFXZXS+5HwQN14QQQrYklCQCswwKWIey4cVT9+FZQh0/iNR1R7rI2uTFkkhqB++dNyiQolIZ44J0kvXYg5HcSieev4YzfpH3c7FkZabpSRdum0kvbEvpAH2WImN2keG5Sps6EkLZXX0d6WFRdf8LOq024CJBCCEN6bK6iYsEIYQ0hYvEFqZOKI8iY3ZZNU/RWf5p+FFUEeeDITUVTM+Zclr3E7fJ6DOEu8gMRBj8OZKBQrA/m+MhnZkuJiO3w8igbcODONdTxuii5+SE1ij0efAC9FmKDNt5RuqiNkV1FylY36Kh3ZYkaLgmhBCSCSUJQghpSoclCS4SZakTYqPpiadaY1bwo2iaj8I7/eTcpjdzN7xHdCX6z/pOePduQ2w4R6E8tVd6GEe1lKFSEc9vpejk13jf4+3z1DxFqp0qYTPKnmQqUnFV6X80zgL6Pkyhz64H+OMiQQghTVnUo7kt0M1FIjPnQg0jdFH/3jgeRVJFHWN2UZssqSJ3ngW+F0XSjZfHoaR0AfhG5FQAQW9sb8da5zMu2k0X+TkU9VXF/8ErK5tRrqkfRFvY73kVqWJJJIitQjcXCUIImSFUNxFCCPFR0HC91NTN6TDNcTzRu6xhu2icQj+KrH4nQ1uk/CgCRYZtD0/TkDGPoL7RVNgNx6fB/lZ6fQ0KrlfQfuSGga7if1DUvnSwvYJgfXXCchRdn3awviVXMUnHXD8s3V8kCCFk2lCS6Ah1DM7zpKwxu8z1olDjbp/x9sgGBfR2qXanXjS/gGfgtt2k3KOdbHepHXj+ZxiO29ZODNNWED3veiUjcwVP6rL12grWV4cllx62CltrkSCEkClAwzUhhBAfRaclGC4Si6KCKuudXdcQXzYfhTtWhlVOCvw98jLwFamlUkMW/QIGo7z/PMS7d5vlrY4PyWjohmqcsr4PWX3XUXu1qWKap5F6gf4wU5IghBCSTYcXCUaBJYQQkgklCY+mKqim7cv6URSpdur4UaTGLOgzqEU8fwqg3hYkT0U1Pv44hb4JNX0a6vhJ1DoRVUHNVLXevPNBdFDFFGCAP0IIIdmoLuTi1RZcJIoou0MvYtoG8qIAgFWkikCdbHep9jke201/qcr6Y7RB3s680ABfQXqoEyK86b2X9ppngL48uixJ0CZBCCEkE0oShBDSlA5LElwkiigyAjZRGdUJClgnw934WN6YedezVCa9sXoTY5YM6+H16c0DyA9n0ZQq6rnAoMjY3NAYXSULXdn+p+0H0ZQFVy15dFndxEWCEEKaoGi+mC8wXCQIIaQp3V0juEjUYhopUctSJw0qUO90U9G9FeWoyDv95IX0sH1aymrY2jzxVCX0xahNSyeA6qYarePP4Y4/Bz+IJVQxbRW4SBBCSENokyBpZnUOfJoZ7rLGb+JPAVTIXFcQNNDuyrM8uifImEdb+uIqkoLbvo4fxZSvj+ZR894oAUR0+DnQT4IQQhoiWv9Vqn+RU0XkgyJyVETuEZGX59R9nYg8ICKHRORdIrIWl6+JyM1x+8Mi8jkReUnR2FwkCCGkCdrwVY4bAawD2AvgCgA3ici545VE5BIAbwDwIgBnAngGgOvjyysA7gNwEYCTAVwL4FYROTNvYC4SbRHit7QpdrbZp+0rr8+m1y1DzTfCev3ocFKtE8rsq+zYdVVNdcb0nnHWfXpzK/sZtclwWE7VVOae6rTveNyjNhCRnQAuB3Ctqh5R1TsA3AbgFU71VwK4WVX3q+pjAN4M4FUAoKpHVfU6Vb1bVYeq+mEAXwfwA3njc5EghJAGRFFgtfarBGcDGKjqAVN2J4AJSSIuu3Os3l4ROW1i3iJ747735w1Ow3XXKJvhDmh+BNa7XrRzLwoa6OHOrYah1R67bWqEHvVT8n7rtq9Tt3BOc/Ci7jrNHulTReQz5ud9qrrP/LwLwKGxNocA7Hb6Gq8b3u8G8EgoFJFVALcA+GNV/VLe5LhIEEJIQ0pKBFkcVNULcq4fAbBnrGwPgMMl6ob3o7oi0gPwXkQ2jtcUTY7qJkIIWWwOAFgRkbNM2Xnw1UT742u23oOq+ggAiIgAuBmRAfxyVd0oGpySxDSYRu6IOp7ddVVPgTrZ7rz2nsoly7ei7NzyxsvsJ0MnMA3DaVtqpqZ+EIuSRW6W+T9mTbVTStW7Vz0qIh8AcIOI/DyA8wG8FMCFTvX3AHi3iNwC4H4AbwTwbnP9JgDPBnCxqh4rMz4lCUIIaUTBya12TnZdA2AHgIcAvA/A1aq6X0ROF5EjInI6AKjq7QDeAuATAO6JX28CABE5A8CrES0yD8TtjojIFXkDL7wkEYtYXwTwflX92XnPhxBCxpl2WA5VfRTAZU75vYiM1bbsrQDe6tS9B9FhrEos/CKByInk0/OeRGPaUkFVCeBnaZqPwhu/SB1V9p7doH4tPptpUDro3xxOL80bTzW66HNuSofvb6HVTSLyMgCPA/j4nKdCCCFbkoWVJERkD4AbELmXXznn6XSHOsbsIj+JrLKyRu6y0kUWZaWOLGN5awEAa/TTVoA+y6L4QXR4d51CAVmQRz4NFnaRQOROfrOq3icFqhQRuQrAVQCwvbcrty4hhLROhxfEuaibROSTIqIZrztE5HwAFwN4W5n+VHWfql6gqhds6+2Y6twJIWQCbfBacOYiSajqC/Oui8hrEUUwvDeWInYB6IvIOar6/GnPb2bUNULn9TUNP4q686wzJ2/MQqN8HZXMHFVMTdrlsSg+EVuQhh7XC82iqpv2Afgz8/PrES0aV89lNoQQskVZyEVCVZ8E8GT4WUSOADiuqg/Pb1aEEJIBJYn5oqrXzXsOM6WJmsbrp0xfbflR1JlHlRM+daLVlu2nqO40fB6atpmniqntvpYVRdMosAvNUiwShBCyqAhK54VYSrhIdI1ZflnrSDxNPc9nFRivbt0mfZaVWOYtPZAtBRcJQghpSocXYS4ShBDSFC4SZOkpqxryVBl1clGUGauofdv9TIO6Y3qqpUVWM3X4j2BjaLgmhBCSR5cN1wsdBZYQQsh8oSSxyEwjDWodqkSOtUzD3yMwjecw7d3gMkZ07fAOuVU6/Jy4SBBCSCMqpSFdOrhIbDWaGpnrSBXTkASq/FLW8fJuSpP+m0oPTe+tw3/wpoKi08+MiwQhhDSlw6ebaLgmhBCSCSWJZaNKkLpFZpb3MStVQNNx5q1mIrXp8hFYLhKEENIULhJkIWlzN940s53HPA3b02beUkNb82i7n62Ior1MhwsIbRKEEEIyoSRBCCGNoJ8EWQba8m6edp9Vx87Czmna82zrD8CiqZhIe3T4M+EiQQghTeEiQQghxKXjhmsuEiRNmzuioF6pEhSwLFXSk5ZNC2ppS3U17wB9RXR4B1zIop+gWxA6t0g8sfnwwdsfeuc9MxruqQAOzmisWdHFewJ4X8vELO/pjOZdKKALvhloQOcWCVX9tlmNJSKfUdULZjXeLOjiPQG8r2ViKe+pwxJZ5xYJQgiZKbRJEEIIyaXDkgQ9rpuxb94TmAJdvCeA97VMdPGelhZKEg1Q1c59mbt4TwDva5lYynvqsCTBRYIQQhrBsByEEEKyUCy+P0wDaJNoCRE5S0SOi8ifzHsuTRGRNRG5WUTuEZHDIvI5EXnJvOdVBxE5VUQ+KCJH4/t5+bzn1JQufT4eXfpd6gKUJNrjRgCfnvckWmIFwH0ALgJwL4BLAdwqIs9V1bvnObEa3AhgHcBeAOcD+IiI3Kmq++c6q2Z06fPxWL7fpQ6rmyhJtICIvAzA4wA+PueptIKqHlXV61T1blUdquqHAXwdwA/Me25VEJGdAC4HcK2qHlHVOwDcBuAV851ZM7ry+Xgs7e+Sav3XgsNFoiEisgfADQB+Zd5zmRYishfA2QCWbfd9NoCBqh4wZXcCOHdO85kKS/z5pFje3yWNnOnqvhYcqpua82YAN6vqfdLBgGEisgrgFgB/rKpfmvd8KrILwKGxskMAds9hLlNhyT+fcZbzd0kB7XDsJkoSOYjIJ0VEM153iMj5AC4G8LY5T7USRfdl6vUAvBeRTv81c5twfY4A2DNWtgfA4TnMpXU68PmMWNbfpa0AJYkcVPWFeddF5LUAzgRwb7zz2QWgLyLnqOrzpz2/uhTdFwBIdEM3IzL4XqqqG9Oe1xQ4AGBFRM5S1a/EZedhydUyQGc+H8sLsYS/SyOWQG1UFy4SzdgH4M/Mz69H9EW/ei6zaZebADwbwMWqemzek6mDqh4VkQ8AuEFEfh7R6aaXArhwrhNrh6X/fMZY7t+lJTBA14WLRANU9UkAT4afReQIgOOq+vD8ZtUcETkDwKsBnADwgNEPv1pVb5nbxOpxDYB3AXgIwCMArl7y469d+3wALPnvkmqnnem4SLSIql437zm0gareA2CJLIfZqOqjAC6b9zzapEufTxZL97vUYUmChmtCCCGZUJIghJCGKNVNhBBCfJbDc7ouXCQIIaQJHU9fSpsEIYSQTChJEEJIUzocloOLBCGENEABKNVNhBBCXFQjSaLuqwRVkmeJyOtE5AEROSQi7xKRtTr9BLhIkM4hImeLyF/H2c2+KiIvEZETIvKiec+NdBMdau1XSWzyrCsA3CQiEyHvReQSAG8A8CJEYU2eAeD6qv1YuEiQTiEiZyHKarYfwHMA/DKAPwSwDVEuCUKWiorJs16JKNz6flV9DFH49VfV6GcEbRKka7wdwG2q+tr457tE5HYAl6jqwflNi3Sa6Rqus5JnXeTUPRfAh8bq7RWR0wCcXqGfEVwkSGcQke8G8GJMpvFcB6UIMiUO47GP/Y2+/6kNutguIp8xP+9T1X3m5yrJs8brhve7K/YzgosE6RLPBzAA8C9j5c8D8EkAEJG/B/ArqvqPIrIPwAFV/e2ZzpJ0ClX9ySkPUSV51njd8P5wxX5G0CZBusQQ0Xd6NRSIyAsQ5Y/4fFx0PYDfEJFfBrDKBYIsAaPkWaYsK3nW/viarfegqj5SsZ8Roh2OOUK2FiLyHQC+BuAPEKXBfC6A3wLwLADPCrpYEfkUotwFL1bV9TlNl5DSiMifIXLJCMmzPgrgwvHcKCLykwDeDeDHAdwP4C8AfEpV31ClHwslCdIZVPVbAK5ElH3uC4hOdbwDwFEAdwGAiDwfwFMBPMEFgiwR1wDYgSh51vsQJ88SkdNF5IiInA4Aqno7gLcA+ASAe+LXm4r6yRuYkgTpNCJyHSKJ4cJY0vgogJ8G8L8A/IKqfn6O0yNk4aEkQbrO8wDcKSI7APw5gP+oql8D8N8AXDvXmRGyBFCSIJ1GRL4K4C2q+vvzngshywgXCUIIIZlQ3UQIISQTLhKEEEIy4SJBCCEkEy4ShBBCMuEiQQghJBMuEoQQQjLhIkEIISQTLhKEEEIy+f+RHNnbA8EjqAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEcCAYAAAAC+llsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA+UklEQVR4nO3dd3xUZfb48c9JgyQQamihS2giIEREUUFRARvqqqsidlFsuPaya1m/umtZf4srgqhYVuxYWBfBBqKrlKD0CIZqqAGFENKT8/vj3sRkmJCZzEwm5bxfr/uamXufuffcoDl5nvsUUVWMMcaYQESEOwBjjDF1nyUTY4wxAbNkYowxJmCWTIwxxgTMkokxxpiAWTIxxhgTMEsmxtQDIhInIu+LyH4RURHpGu6YTMNiycTUKSKSKCLPi8hmEckXkV0i8qWInFauzGYRubMGY1IRuaCmrleJq4GTgBOA9sAvgZ5QRF4VkU8CPY9pGKLCHYAxfpoFxAHXAOlAG2A40Mqfk4hIBCCqWhz0CKtJRKKAYq3eSOIeQJqqrgpyWAETkRhVLQh3HCbEVNU22+rEBjQHFDj1MGUWuGXKNnf/lUA2cAawGigC+gGvAp94nONhYLXHviuAVUA+sAt41d2/2eN6mw9zjiuBbM/ruPs3AMVAE6AZMB3YDRwAvgZS/LjnBe7+y4Cl7jl2A+8BSR7f7Q3MBva7P5/vgaPc2NRjG+F+5yjgCyAX+NX9GTYrd85XgU+Ae4AMYHe4/9uxLfSbNXOZuiTb3c4RkcaVlDkf5xfYX3Gae9qXO9YY+DNwPdAX2OLLRUXkeuAF4BWgP05CWuMePsZ9vc691jGHnODwugGXAhcCA3CS1X+BJOAs4GhgIfCViLSv5Bznu7F978Zwvrs/BnjIPe9ZQGvgrXL31QH4FidRnAYMAqYAkcDTwLs4SaP05/idiMQBc3H+HYYA5wHHAzM8YhqO87MaDYz06ydi6iRr5jJ1hqoWiciVwIvABBH5Efgf8J6qLnbL/CoixcABVd3pcYpI4BZVXVa6Q0R8ufRfgH+q6jPl9i1zr5fpnmOfl+v5IgYYr6q73HhOAQYCiaqaW3p9ETkbGA886XkC955zgILyMahq+V/wG0VkIpAmIh1VNQO4CTgIXKi/N0OtL/2CiOQC+eXPKSJX4NSexqvqAXffBGC+iPRQ1XS3aB5wtarmV+NnYuogq5mYOkVVZwEdgLOBT3H+Kl4kIvf78PUiYLk/1xORNji1hC/9i9RnGaWJxDUY55lQpohkl244TXJH+HNiERkkIh+LyBYROQCkuoc6u69HA9+qf88z+gArSxOJ6zugBKe2V2q1JZKGxWomps5R1Tzgc3f7q4i8BDwsIk9X8YsxXw994F4CeFZPosu996nq4kVV5y110ONzBM4zmRO9lM3y9eIiEg/Mw2mmGo/zzKQ18A1ObQgv8fl0apxmMW/K7/e8L1PPWc3E1Adrcf4wKn2OUoDTpOWLTCo+VwGnmQkAt9awjcO3+xd6uV4m0FYqtqMNpGo/AG2BElVN99h2+/D9Ur1xksf9qrpQVX/C6fnmea0TRCTmkG87vP0c1wIDRKRpuX3H4/wuSfMjPlPPWDIxdYaItBKRr0TkMhHpLyLdRORC4G7gS1Ut/ct9M3CiiCSJSOsqTvsVcLSIXC0iPUTkbmCYR5nHgNtE5E8i0lNEBorIHeWObwZGikg7EWnh7lsAtATuF5EjROQawJexKF/gPAf6WETGuPd4nIg8IiLeaiuV2YrzMP9mEekuImcCj3qUeR7n+ce7InKMe/+XiMjAcvfVT0R6iUhrEYkGZuLUOl4XkaNE5CSczgkflHteYhogSyamLskGFgGTcLrLrgEeB94E/liu3INAJ5zutpmHO6GqzgMewUkYy4CuOL9ky5eZivOw+jqcrrxzgSPLFbkDOBlnoOCP7nfSgInABGAlTm+px6u6QVVVnN5iX+F0NFiH06uqF7C9qu+XO08mTnfmc3FqEw8Bt3uU2YYz0DEGmO/GfgvOsyXc66fhPGvJBIapag4wCkgAlgAf4/Qiu9rX2Ez9JM5/u8YYY0z1Wc3EGGNMwCyZGGOMCZglE2OMMQGzZGKMMSZgDWrQYuvWrbVr167hDsMYY+qMZcuW7VHVxKrKNahk0rVrV1JTU6suaIwxBgAR8WlCVGvmMsYYEzBLJsYYYwJmycQYY0zALJkYY4wJmCUTY4wxAQtrby4RGQ1Mxpnm+iVV/bvHcXGPnwHkAFeq6g/usT8B1+KsobAKuMpd58IYEwRZWVns3r2bwsLCcIdiQig+Pp6OHTsSERFY3SJsyUREInHWmz4NZ83upSIyW1XXlis2Bkh2t2OBqcCxIpIE3Ar0VdVcEXkXuBh4tQZvwZh6Kysri127dpGUlERsbKyvyxubOqakpIRt27axZ88e2rTxXO7GP+Fs5hoCpKvqRnd1vLeBsR5lxgKvq2MR0FxEShcyigJiRSQKZ5nTKqfn3pOdz9zVO8k8YKuJGnM4u3fvJikpibi4OEsk9VhERARt27Zl//79AZ8rnM1cSTjrP5TKwKl9VFUmSVVTReRpnAWAcoHPVPUzbxcRkQk4a0oQ064HN7yxDIAh3Voy7tjOnNW/A5ER9j+LMeUVFhYSGxsb7jBMDYiOjqaoqKjqglUIZ83E229wz8VVvJZxV7MbC3QDOgDxInKZt4uo6nRVTVHVlL7tE5g18XjuOK0nmQfymfT2cs6Y/A1LN/8a0I0YUx9ZjaRhCNa/cziTSQbOanilOnJoU1VlZU4FNqlqpqoWAh/grEN9WJERwuAuLbhlZDJf3j6cf11yNAcLirjohe/525w0CotLArohY4xpqMKZTJYCye4a1zE4D9Bne5SZDVwujqHAflXdgdO8NVRE4tweXyNxlhf1WUSEcPaADsy77SQuGdKZFxZu5OpXl7I/13quGGOMv8KWTFS1CLgZmIeTCN5V1TUicoOI3OAWmwNsBNJx1qO+0f3uYuB94AecbsERwPTqxBHfKIrHzzuKJy/oz6KNe7lo2vfsybYH9MbUFwsWLEBE2LNnT7hDqdfCOs5EVefgJIzy+6aVe6/ATZV89yHgoWDFclFKJ5Kax3LNa0u59MVFvHndUFo3aRSs0xtjasiIESPo168fzz33XLhDaVBsBHw5w3q0ZsYVx7D11xyumLGEg/mB93AwxjRcDWnApyUTD8f3aM3UcYNJ25HFrW/9SHGJZwczY0xtdeWVV/L1118zZcoURAQRYfPmzQCsWLGCY489lri4OFJSUvjhhx8qfPe7775j+PDhxMXFkZSUxMSJE8nKyio7np+fz2233Ubbtm1p3LgxQ4cO5dtvvy07XtqcNmfOHIYMGUJMTAwvvPACkZGRh6yj9OKLL9K6dWsKCgpC98OoYQ1qcSxfndy7DY+ccyR/+XgNj89J4y9n9Q13SMaE3SP/WcPa7VlVFwyivh0SeOjsI30uP3nyZNavX0/v3r15/PHHAVizZg0A9913H0888QTt27dn0qRJjBs3jrVr1yIirFq1itNPP51HHnmEl156iV9//ZXbbruNq6++mvfffx+Au+++m3fffZcZM2bQvXt3nnnmGUaPHs3PP/9M+/bty2K45557+Mc//kGPHj1o2rQp//nPf5gxYwYpKSllZWbMmMH48eOJiYkJxo+pVrCaSSXGH9eVK47rwsvfbuLTVTvCHY4xxgfNmjUjJiaGuLg42rVrR7t27YiMjATg0Ucf5eSTT6Z37948+OCD/PTTT2zbtg2Ap556ij/+8Y/ccccdJCcnc+yxxzJ16lRmzZrF7t27OXjwIFOnTuWJJ57gzDPPpE+fPkybNo22bdsyZcqUCjE8/PDDnH766XTv3p3ExESuu+463nrrLfLynKkD09LSWLRoEddcc03N/nBCzGomh/HAmX1ZnrGfu99fSd8OCXRpFR/ukIwJG39qCLVR//79y9536NABcKaN6dixI8uWLSM9PZ133nmnrIzT/wc2bNhAfHw8hYWFDBs2rOx4ZGQkxx13HGvXlp9OkAo1EICxY8dy00038cEHH3DppZcyY8YMhgwZQr9+/YJ+j+FkNZPDiImK4LlLjiYiQrjpzR9sUKMxdVh0dHTZ+9JR3yUlJWWv1157LcuXLy/bVqxYwc8//8zAgQPLEou30eKe++LjK/7RGR0dzeWXX86MGTMoKiri3//+d72rlYAlkyp1ahnHE3/oz+ptWTz3VXq4wzHGVCEmJobi4mK/vjNo0CDWrFlDjx49DtliY2Pp0aMHMTExFR64FxcX8/3339O3b9XPVK+77jrmz5/P888/z4EDB7j44ov9vq/azpKJD0b3a8e5AzswZX46q7cFPrumMSZ0unbtypIlS9i8eTN79uwpq30czj333MOSJUu44YYb+PHHH0lPT+eTTz7h+uuvB5zaxsSJE7n33nuZM2cOaWlpTJw4kV27dnHjjTdWef6ePXtywgkncNddd3HBBReQkJAQ8H3WNpZMfPTIOf1oGR/D7e8uJ7/Iv796jDE158477yQmJoa+ffuSmJjI1q1bq/xO//79WbhwIZs3b2b48OEMGDCA++67j7Zt25aVeeKJJ7jooou46qqrGDhwICtXrmTu3LkVenIdzjXXXENBQUG9bOICkNK2wIYgJSVFPft7+2P+T7u56tWl/OnUnkw6NTmIkRlTu6SlpdGnT59wh1GvPPHEE7z88susX78+3KEc4nD/3iKyTFVTvB4sx2omnmbOhK5dISLCeZ05s+zQyb3bcFb/9kxZkM7mPQfDFqIxpu7Izs4mNTWVyZMnM2nSpHCHEzKWTMqbORMmTIAtW0DVeZ0woUJC+ctZfYmJjODB2WtoSLU6Y0z13HzzzQwbNoxhw4aVPYOpjyyZlPfAA5CTU3FfTo6z39U2oTF3nN6TheszmbNqZw0HaIypa1599VXy8/N57733iIqqv0P7LJmUV9mDOo/944d24cgOCfz1kzU2GaQxxmDJpKLOnX3aHxUZwV/H9mNXVj7TF26sgcCMMaZ2s2RS3mOPQVxcxX1xcc5+D4O7tOCs/u15YeEGdu7Pq6EAjTGmdgprMhGR0SKyTkTSReReL8dFRJ51j68UkUHu/l4isrzcliUitwUc0LhxMH06dOkCIs7r9OnOfi/uGd2bEoWn5q0L+NLGGFOXhS2ZiEgkMAUYA/QFLhERz3kJxgDJ7jYBmAqgqutUdaCqDgQGAznAh0EJbNw42LwZSkqc10oSCThTrVw9rBuzfshgVYaNjDfGNFzhrJkMAdJVdaOqFgBvA2M9yowFXlfHIqC5iHgONx0JbFDVLaEP+VA3nnwEreJjePS/a62rsDGmwQpnMkkCfin3OcPd52+Zi4G3KruIiEwQkVQRSc3MzAwgXO8SGkdz22k9WbLpV+av2x308xtjgqN0JcQ9e/aE/FpXXnklZ511VsDnefjhh+vMVPXhTCaHzuUMnn/aH7aMiMQA5wDvVXYRVZ2uqimqmpKYmFitQKty8TGd6NIqjqfmrafElvk1plY6/vjj2bFjB61atQp3KIfYvHkzInLI8r533nknX3/9dZii8k84k0kG0Knc547Adj/LjAF+UNVdIYnQR9GREdx+Wk/SdmTxia3KaEytFBMTQ7t27byuSVJbNWnSpFYmP2/CmUyWAski0s2tYVwMzPYoMxu43O3VNRTYr6rlf1tfwmGauGrS2f070LtdU575bJ0tomVMqcPMdRcqCxcuZOjQoTRp0oRmzZpx7LHHsnr16kOauV599VWaNGnCp59+Su/evYmLi+Occ85h//79vP/++yQnJ9OsWTPGjx9Pbm5u2flHjBjBzTffXOGaVTVrzZ07lxNPPJEWLVrQsmVLRo0aRVpaWtnxbt26AXDMMccgIowYMQI4tJmrpKSERx99lE6dOtGoUSOOOuooPv7447LjpTWcWbNmcdpppxEXF0ffvn35/PPPq/8D9VHYkomqFgE3A/OANOBdVV0jIjeIyA1usTnARiAdeBEoWzhAROKA04APajTwSkRECHee3ovNe3N4LzUj3OEYE34+zHUXbEVFRYwdO5YTTjiBFStWsHjxYiZNmlS2Dryn/Px8/vGPfzBz5ky+/PJLUlNTueCCC3jttdeYNWsWH330EZ988gnPP/98QHEdPHiQ2267jSVLlrBgwQKaNWvG2WefTUFBAQBLliwBnKSzY8cOPvjA+6+1yZMn89RTT/HEE0+watUqzjvvPM4//3yWL19eodwDDzzArbfeyooVKzjmmGO4+OKLyc7ODugeqqSqDWYbPHiwhlJJSYmeN+VbPfaxLzS3oCik1zImlNauXRv4Sbp0UXXSSMWtS5fAz12JvXv3KqALFiw45Nj8+fMV0MzMTFVVfeWVVxTQn376qazMHXfcoREREWVlVFWvuOIKPfPMM8s+Dx8+XG+66aYK5/Ys4/nZU3Z2tkZEROg333yjqqqbNm1SQJcuXVqh3EMPPaRHHnlk2ecOHTroI488UqHM8OHDddy4cRXOM23atLLjGRkZCpRdy5vD/XsDqerD71cbAR9EIsJdo3qzMyuPf38flp7KxtQePs51F0wtW7bkyiuvZNSoUZx55pk888wz/PLLL5WWb9SoEb169Sr73LZtW9q1a0fr1q0r7Nu9O7Cemhs2bODSSy/liCOOICEhgbZt21JSUuLTwl2lsrKy2L59O8OGDauw/4QTTmDt2rUV9vXv37/sfYcOHQACvoeqWDIJsuOOaMWJya2Z+vUGcgpsEkjTgPk4112wvfLKKyxevJiTTjqJ2bNn07NnT+bNm+e1rOcsviJCdHT0IfvKL/0bERFxyJiywsLCw8Z09tlnk5mZyQsvvMDixYv58ccfiYqKKmvm8oe3DgSe+8rfQ+kxX5YvDoQlkxC47dSe/HqwwGonpmHzY667YBswYAD33HMPCxYsYMSIEbz22mtBO3diYiI7dlTstblixYpKy+/du5e0tDTuv/9+Tj31VPr06cOBAwcoKvr9j82YmBgAiosrXxI8ISGBDh068O2331bY/+2339K3r+fkITXPkkkIDO7SghOTWzN94UarnZiGy8+57oJh06ZN3HvvvXz33Xds2bKF+fPns3LlyqD+sj3llFP49NNPmT17NuvWreP2228/bFNaixYtaN26NS+++CLp6el8/fXX3HDDDRVqRW3atCE2NpZ58+axa9cu9u/3Pj3TXXfdxdNPP81bb73F+vXrefDBB/nmm2+44447gnZ/1WXJJERuOzWZvQcLeGOR1U5MA+bHXHfBEBcXx/r167nwwgvp2bMnV1xxBePGjeOee+4J2jWuvvrqsm3YsGE0adKE8847r9LyERERvPPOO6xcuZJ+/fpx00038eijj9KoUaOyMlFRUTz77LO89NJLdOjQgbFjPWeWctx6663cdddd3H333fTr148PP/yQWbNmMXDgwKDdX3WJZ9tffZaSkqKeI0xDafzLi1m7PYtv7jmZuJj6u8KaqX/S0tLo06dPuMMwNeRw/94iskxVU6o6h9VMQmjSSKudGGMaBksmIZTStaU9OzHGNAiWTEJs0shk9mQXMHNR6PrWG2NMuFkyCbGUri05oUdrXli4gdyCyrv9GWNMXWbJpAZMOtWpndizE1OXNKTOOQ1ZsP6dLZnUgGO6tmRYj1a8sHCj1U5MnRAdHV1hplxTfxUWFh4yE0B1WDKpIZNG9mRPdj5vLrFnJ6b2a9OmDdu2bSMnJ8dqKPVYSUkJu3btolmzZgGfywY/1JAh3VoytHtLpn29gXHHdqZxtPcpsY2pDRISEgDYvn17lfNOmbotPj6+wsSW1WXJpAZNGtmTS15cxNtLtnLlsG7hDseYw0pISChLKsZUxZq5atDQ7i0Z0rUlU7/eQF6hPTsxxtQfYU0mIjJaRNaJSLqI3OvluIjIs+7xlSIyqNyx5iLyvoj8JCJpInJczUbvPxFh0qnJ7MrK573UyieGM8aYuiZsyUREIoEpwBigL3CJiHhO7TkGSHa3CcDUcscmA3NVtTcwAGfp31rv+CNaMbhLC55fsIH8IqudGGPqh3DWTIYA6aq6UVULgLcBz6kyxwKvu6tHLgKai0h7EUkATgJeBlDVAlXdV4OxV5uIMGlkMjv25zFr2bZwh2OMMUERzmSSBJRv68lw9/lSpjuQCbwiIj+KyEsiEu/tIiIyQURSRSQ1MzMzeNEH4MTk1gzs1Jwp89MpKArt6mfGGFMTwplMDl17Ejw7tFdWJgoYBExV1aOBg8Ahz1wAVHW6qqaoakpiYmIg8QZNae1k275cPvwxI9zhGGNMwMKZTDKATuU+dwS2+1gmA8hQ1cXu/vdxkkudMaJXIv07NuO5+ekUFlvtxBhTt4UzmSwFkkWkm4jEABcDsz3KzAYud3t1DQX2q+oOVd0J/CIivdxyI4G1NRZ5EIgIt56SzC+/5vLRj/bsxBhTt4Vt0KKqFonIzcA8IBKYoaprROQG9/g0YA5wBpAO5ABXlTvFLcBMNxFt9DhWJ4zs04YjOyTw3Px0zjs6iahIG/ZjjKmbbNneMJu3ZifX/3sZz1w0gPMHdQx3OMYYU4Et2xtqM2dC164QEeG8zpxZrdOc3rctfdon8NxX6RSXNJzEboypXyyZVMfMmTBhAmzZAqrO64QJ1UoozrOTHmzcc5BPVnr2PzDGmLrBkkl1PPAA5ORU3JeT4+yvhlFHtqNX26b8y2onxpg6ypJJdWytZE2SyvZXISJCuGVkD9J3ZzNn1Y4AAjPGmPCwZFIdnTv7t98HY/q1p0ebJvzrq58psdqJMaaOsWRSHY89BnFxFffFxTn7qykyQrjllB6s35XN3DU7AwzQGGNqliWT6hg3DqZPhy5dQMR5nT7d2R+As/p3oHtiPM9+abUTY0zdYsmkusaNg82boaTEeQ0wkcDvtZOfdh7g87RdAZ/PGGNqiiWTWubs/h3o2iqOZ7/8mYY0oNQYU7dZMqlloiIjuOnkHqzZnsWXabvDHY4xxvjEkklN8HO0/LlHJ9G5ZRyTrXZijKkjLJmEWjVGy0dHRnDTyUewatt+FqyrHQt6GWPM4VgyCbVqjpY/f1BHkprH8k+rnRhj6gBLJqFWzdHy0e6zkxW/7GPhz3tCEJgxxgSPJZNQC2C0/AWDO9KhWWMmf7HeaifGmFotrMlEREaLyDoRSReRQ9Zwd1dYfNY9vlJEBpU7tllEVonIchGpXYuUlBfAaPmYqAgmntyDH7bu43/pe0MUoDHGBC5syUREIoEpwBigL3CJiPT1KDYGSHa3CcBUj+Mnq+pAXxZuCZsAR8tflNKR9s0a84/P11ntxBhTa4WzZjIESFfVjapaALwNjPUoMxZ4XR2LgOYi0r6mAw1YAKPlG0VFMmlkMj9u3cfna21UvDGmdgpnMkkCfin3OcPd52sZBT4TkWUiMqGyi4jIBBFJFZHUzMy62c32gsEd6d46nqc/W2frnRhjaqVwJhPxss/zN+XhygxT1UE4TWE3ichJ3i6iqtNVNUVVUxITE6sfbRhFRUZwx+m9WL8rm49+3BbucIwx5hDhTCYZQKdynzsCnuvWVlpGVUtfdwMf4jSb1Vtj+rWjX1IC/++L9eQXFYc7HGOMqSCcyWQpkCwi3UQkBrgYmO1RZjZwudurayiwX1V3iEi8iDQFEJF44HRgdU0GX9MiIoS7R/Um47dc3lpcvRUdjTEmVMKWTFS1CLgZmAekAe+q6hoRuUFEbnCLzQE2AunAi8CN7v62wLcisgJYAvxXVefW6A2EwYnJrRnavSXPzU/nYH5RuMMxxpgyYR1noqpzVLWnqh6hqo+5+6ap6jT3varqTe7xo1Q11d2/UVUHuNuRpd+tFfyc1NEfIsLdo3uzJ7uAGd9uCtp5jTEmUDYCPpiqMamj13McJhkN6tyC0/q2ZfrCjfx2sCCo4RtjTHVZMgmmak7qWMbHZHTXqF4cLCjiufnpQQrcGGMC03CTSSiao/yd1NEzhkmTfEpGPds25cLBnXj9+81s3nMw4LCNMSZQDTOZBKM5yht/JnX0FsPeSubf8pKM7ji9J9GREfz9058CCNgYY4LD72QiIo3c7rx9RaRujgIMtDmqMv5M6ugthsp4SUZtEhozcfgRzF2zkyWbfq1GsMYYEzw+JRMRaSoiE0VkIbAfp6vuamCniPwiIi+KyDGhDDSoAm2OqqwG48+kjlWsZ1LmMDMMX3tid9olNOb//ruWEptmxRgTRlUmExH5E7AZuBr4HGfyxYFAT+A44CEgCvhcROaKSHKogg2aQJujDtck5uukjpXF0KqVzzMMx8ZEcvfoXqzM2M/sFZ6TBxhjTM3xpWZyPDBcVY9R1UdVdZ6qrlLVdFVdoqozVPUqnIGEs4HhIY04GAJtjgplk9jkyX7NMHzuwCSOSmrGk3N/Iq/QplkxxoRHlclEVS9U1SqnKlHVfFV9XlVfCk5oIRSM5ihfm6mCEUNlZs4kons3Hnj6Rrbvz+Pl5z4MLCZjjKkmCWTBJRG5XVWfCWI8IZWSkqKpqX4uyti1q9O05alLF6fmEC6lzW9uren6c+/nm26D+Kp/Pu2uvDR8cRlj6hURWebLAoSBdg3uJSIvi0iUe9H+IvJegOesXQJYdjekPJrfHpj/MkURETw+b30YgzLGNFQBJRNVvR5YjrNI1Uc4kzEGbzKq2iAYzVGh4NHM1nn/LiYuep/ZXY7h+w22XrwxpmYFlExEZAhwKhAP9AP+qKofBSGu2iWAZXdDxktvsImL36dj9h4emr2awuKSMARljGmoAm3megb4l6oeC1wEfCAiJwQelqmSl+a3xjFRPHhkY9bvyub177085zHGmBAJtJnrBFX9wn3/A3AW8PdgBGaqUEnz22k3XMTwnon88/P17D6QF+4ojTENhF/JREROFpGWlR13l9I9NeCojG+8NL+JCA+fcyT5RSU2b5cxpsb4WzP5FMgUka0i8h8ReVRE/iAiPUoLqKrPfw6LyGgRWSci6SJyr5fjIiLPusdXisggj+ORIvKjiHzi533Ua91ax3PdSd344IdtLNpoD+ONMaHnbzI5F9gBfAb8ApwMvAesE5EsEflWRKaIyHVVnUhEIoEpwBigL3CJiPT1KDYGSHa3CcBUj+OTcJb8NR5uPjmZzi3juP+DVTYy3hgTcv4mk38B16nqtap6o6qeAJwIrAcewJm7qx1wtw/nGgKku0vwFgBv48z7Vd5Y4HV3+d5FQHMRaQ8gIh2BM4HaP+I+DGJjInnsvH5s3HOQKbaIljEmxPxNJh2BdeV3qOr/gHuAEar6iKr+QVV9mewxCad2UyrD3edrmX/iJK3D9oEVkQkikioiqZmZmT6EVUtVYzGvE5MTOf/oJKYu2MC6nQdCHqIxpuHyN5l8A9zkZf8q4DQ/zyVe9nnO7eK1jIicBexW1WVVXURVp6tqiqqmJCbWzeVXAlnM689n9SUhNpp7P1hJsU1Tb4wJEX+Tyc3ANSLyqogMEJEoEYkF/gT4u0JTBtCp3OeOgOc86pWVGQacIyKbcZrHThGRN/y8ft0RwMzFLeNj+MtZffhx6z7eWGRjT4wxoeFXMlHV9cAxQHvgRyAHOABcC9zn57WXAsnuqo0xwMU4U9iXNxu43O3VNRTYr6o7VPU+Ve2oql3d732lqpf5ef26I8CZi88dmMSJya15cu5PbNuXG8TAjDHG4fegRVX9WVVHAZ2BC3B6eB2hqm/5eZ4inJrOPJweWe+q6hoRuUFEbnCLzQE24qzs+CJwo7/x1gv+LOblhYjw+HlHocA976+0VRmNMUEX0BT0dU21pqCvDTymmwecqVT8nHBy5uItPPDhah4deyTjj+sa/DiNMfVO0KagF5FuflxURKRT1SWNX4I0c/GlQzpzUs9EHp/zE5v3HAxRsMaYhsiXZq7v3TVLjqusgIi0EJGJwFoOHStigiEIMxeLCE/+oT/RkcKd762w3l3GmKDxJZn0xump9V8RyRSRuSLyiohMFZG3RWQlsBu4DLhNVZ8LZcDGB4cZk9KuWWMeGXskqVt+4+VvN4YtRGNM/eLLGvD7VPUunMGCE4GfgOZAN6AIeA04WlWHqeq8EMZqfOHDmJRzByYx6si2PD1vPT/tzApjsMaY+sKnB/AicgxQqKrLQx5RCNXZB/D+8HHN+j3Z+Yz+5ze0iItm9s0nEBsTWWMhGmPqjmCvAf93nPEc5S8wXkTmici/ReTI6gRpQsDHMSmtmzTi//1xAD/vzubR/66tgcCMMfWZr8mkH/Bx6QcRGQC8gtPUNRz4n4h0DXp0xn9+jEk5MTmR64d3583FW/l01Y4QB2aMqc98TSYJwLZyny/DeXbSC+gO/A84ZD0SEwZelvMlLs7Z78Wdp/diQKfm3DNrJRm/5XgtY4wxVfE1mfxCxRl9TwHed6eGLwKexFnbxISbn2NSoiMj+NfFR1OiMOnt5RQVH3YSZmOM8crXZPIZcBeAiHQHBuCsXVJqExUnZDTh5G1MymG6C3duFcdj5/Vj2ZbfeHLeukpOaowxlYvysdzjwI8isg2IAbYA35U73h5nwkdTG3lOx1LaXRjKaixjByaxbMtvTF+4kQEdm3Nm//ZhCtYYUxf5VDNR1e04swW/jTOT7/lasU/xSJzVFk1t5OMU9n8+sy+DOjfnrvdXkL7b/jYwxvjO51mDVXWrqt6hqteo6gqPw32A94MbmgkaH7sLx0RF8Py4wcTFRDLh38s4kFdYA8EZY+oDv6eg90ZVx6vq5GCcy4SAH92F2zVrzL8uGcSWvTnc9d5KGtKs0saY6gtKMjG1nJ/dhY87ohX3ju7N3DU7efbL9BoI0BhT11kyaQiqMYX9tSd24w+DOvL/vljP7BWeqykbY0xFYU0mIjJaRNaJSLqIHDLo0V0f5Vn3+EoRGeTubywiS0RkhYisEZFHaj76OqayKewr6TIsIjx+fj+GdG3Jne+t4Metv4UpcGNMXRC2ZCIikcAUYAzQF7hERPp6FBsDJLvbBGCquz8fOEVVBwADgdHuGvHGH1XMMNwoKpJp4wfTLqEx172+zNaPN8ZUKpw1kyFAuqpuVNUCnG7HngtrjQVed0faLwKai0h793O2Wyba3exJsb986DLcMj6Gl69IIb+wmGteXWo9vIwxXoUzmSThTNNSKoOKU7YctoyIRIrIcpyFuT5X1cXeLiIiE0QkVURSMzMzgxV7/VBZl+EtWyo0fSV/MZsp4waRvjub6/+9jPyi4hoN0xhT+4UzmYiXfZ61i0rLqGqxqg4EOgJDRKSft4uo6nRVTVHVlMTExEDirX8q6zIsckjT10lLP+PJC/rz3Ya93P6OLflrjKkonMkkg4rzeXUEPLsNVVlGVfcBC4DRQY+wvvPWZVjESSLluU1f5w/qyANn9OG/q3bwyH/W2BgUY0yZcCaTpUCyiHQTkRicxbdme5SZDVzu9uoaCuxX1R0ikigizQFEJBY4FWdKfOMPb12GK0sQbpPYdSd1Z8JJ3Xn9+y0895WNQTHGOHyd6DHoVLVIRG4G5gGRwAxVXSMiN7jHpwFzgDOAdCAHuMr9envgNbdHWATwrqp+UtP3UC+MG1dxvElly/6WaxK7d3Rv9hzI5x+fr6dp4yiuHNYt9HEaY2o1n9aAry8axBrwgfKcYRicprDp0533DzwAW7dS2KUrN1/3D+ZlxfB/5/bjsqFdwhOvMSakgr0GvGkoKhstDxXGpERv3sS//nYFI5sW8uePVvPO0kp6hhljGgSrmRjfVNL8ld/tCCb8+U0W/pzJUxcM4ILBHWs+NmNMyFjNxARXJWNSGm3awAuPjWPYph+5690fefdf79VwYMaY2sCSifHNYcakNN6Yzouz/o8TNi/n7m1xvDLZEooxDY0lE+ObKsakxBbl89KsvzJq3Xc8siOO57762cahGNOAWDIxvvFhTEqj4iKmfPx3zl/9FU9/tp6/f/qTJRRjGghLJsZ3ntPYdzm0O3CUlvD06g8YP7QLLyzcyN3vr6SwuKTGQzXG1CxLJqb6KlnBMeKx/+OvY4/k1pHJvLcsg6tttmFj6j1LJqb6DrOCo4hw+2k9efIP/fl+w14unPY9O/bbeijG1FeWTExgqljB8aJjuzDjq2fJ2J3FeVO+Y+32rHBGa4wJEUsmJvg8VnA8afE83p15N+Tk8Iep3/HflTvCHaExJsgsmZjg87KCY9+tacx+7Tb67PiZm978gSfPuZXiN2aGKUBjTLBZMjHBV8lo+TYZG3nr1du5ZPlcnu87ims+2cj+19+s4eCMMaFgycQEX2Wj5XHGovxt3nM8Nvc5vu3Un7GL81m9bX8NBmeMCQVLJib4vHUZ9jBuxVzeeut+conk/Oe/4/XvN9sAR2PqsLAmExEZLSLrRCRdRO71clxE5Fn3+EoRGeTu7yQi80UkTUTWiMikmo/eVMpbl+FWrQ4pdsy2tcz54kmGxeXz4MdrmHj+n9mf3Md5gG+MqVPClkzcVRKnAGOAvsAlItLXo9gYINndJgBT3f1FwB2q2gcYCtzk5bsmnDy7DE+e7HWAY6uRJ/Hy45fxwFcv80WPIZw58k6WPfi0JRRj6phw1kyGAOmqulFVC4C3gbEeZcYCr6tjEdBcRNqr6g5V/QFAVQ8AaUBSTQZv/FTZAMc5c4jIOch1Sz/kvZl3A3DhHx7h7298S373HhAR4aylYsnFmFotnMkkCfil3OcMDk0IVZYRka7A0cBibxcRkQkikioiqZmZmYHGbALhbYBjuZ5fR+9Yz9xXbuGPKz9n2oCzOOfkP7E6sZszXmXCBEsoxtRi4Uwm4mWf5xPYw5YRkSbALOA2VfU6tFpVp6tqiqqmJCYmVjtYEyIePb+aFOTyt3nP8cp7D/Nb46ace/kzPHv8xRTkFTjjV9yR9VZjMaZ2CWcyyQA6lfvcEdjuaxkRicZJJDNV9YMQxmlCqZKeXydvTOWzGTdxxrpveebEyzjrysmkFsVVGFlvNRZjao9wJpOlQLKIdBORGOBiYLZHmdnA5W6vrqHAflXdISICvAykqeozNRu2CarD9PxqnpfNs/95mpfff4SDMbFccNlT3HfiVexvFP/793NynBqLMSaswpZMVLUIuBmYh/MA/V1VXSMiN4jIDW6xOcBGIB14EbjR3T8MGA+cIiLL3e2Mmr0DEzRV9PwauWEpn795BxMWz+Ld/qcz8rppfNR3xO/tnVu2WNOXMWEmDWmgWEpKiqampoY7DOOLmTOdGsfWrc5zlccegwceYE1uBPePupkVHXoxaFsaD375IgN3/lxx1ce4uLKp8I0xgRGRZaqaUmU5SyamznBnIy7JyeX9o0by1EmXk9mkJeev/oq7v36Ndtl7fy/bpYtTyzHGBMTXZBJVE8EYExRuTSPigQe4aPWXnJGzleeThvLSMefyac/juX7JLK5d+hFNCnIrnWzSGBMaNjeXqVvKPV9pkr6Ou7d8zZcvTeTkjan884RxnHT9S7x4zHnkdTvCezdi61psTEhYM5ep20oX4srJYUW7ZJ4+aTzfdBtE25I8bvn63/wx9ROiS4qdstHRTo+xgoLfv2/PV4w5LF+buaxmYuq2cl2LB+xK59+LX+btbgfotHcbfz75Ok657gVmDhhNXmQ0FBZWTCTwe9diq7EYExCrmZh6SSMiWNBtMP8cdgkrOvSizYG9XLf0Iy5d/inxhXmHfiEuruLqkFZjMQaw3lxeWTJpQLp2hS1bUOC7LgOYMvQivus6gGa5B7hy2X+4/IdPaJXrzsATGQnFxYeew3qEGWPNXKaBc6dpEWDYlhW8+c4DfPDWPRyzPY3JJ1zKcTe+yt1jbiWtU2/viQRsMKQxfrBkYuonL9O0DHr8Pl46tyefz3mUC1Z/yey+Ixhz6dNcfOUzzEseSrF4/O8gcug8YDfeaAnGGC+smcs0WPtyCnhn6S+8/sVathVG0HHfTv648nMuXPUF7Q7+WnFUfSkRG21vGhRr5jKmCs3jYrh++BF8/fCZTOt8kM75+/nHSeM5fuIrXHP+X/i8xxCKPGsrngnmcL3BrIeYaUCsZmJMOVv2HuTd1F94b84ydsc2p82Bvfxh9Vect3Y+PfccZlS9Z28wG9Ni6gnrzeWFJRPjq6I3ZjL/7y/wTq8RfHVECiURkfTZtZFz1y7g7LSFdDiw5/fClfUG88Z6iJk6xpq5jAlA1GXjOO2+63lp2essfv5KHl72Lo1ateBvJ1/NsIkz+OMlf+PNAaP4tWVb3xMJOHOGWZOYqYesZmKMH7bMeIuPZ33NRx2OZmOrjkSgHLtrPaNWzuf0nxdVrLF406oV5OZak5ipM6yZywtLJiZYVJU127OYt2Ync/+3jp/zIwEYsH09o9Z/x6hNSzli345DE0RsLOzdW8lZPXTpUraOS4V1XeDQfZZ0TIjUiWQiIqOByUAk8JKq/t3juLjHzwBygCtV9Qf32AzgLGC3qvbz5XqWTEyobJjxFvPe+4p5bfqyon1PALrEFDNi9TeMWLmAobqP2L8+DOPHe+9yXBl/HuyDJRkTdLU+mYhIJLAeOA3IwFkT/hJVXVuuzBnALTjJ5Fhgsqoe6x47CcgGXrdkYmqT7fty+SJtFwvWZfLdhj3kFZbQKCqCY7u3YsTbzzMi9XO6/bYdqepE/jzY99Z8FhcHV1wBc+YcmmC8rWRpicd4UReSyXHAw6o6yv18H4Cq/q1cmReABar6lvt5HTBCVXe4n7sCn1gyMbVVXmExizf9yoJ1u/l6XSYb9xwEoEPWbo7bspLjtq7kuO1pJGXvPbS2UT4xVJe3QZZXXAGvveZ74jENWl1YaTEJ+KXc5wyc2kdVZZKAHb5eREQmABMAOnfuXK1AjamuxtGRDO+ZyPCeiXA2bN2bw9cz/8v3WzP46oghzDrqVMBpEjsubRHHrf2e44r30uYv9zg1hy1bAgvA2yDL6dMPrfHk5MC0ab+XL50+ppQ9tzFVCGfN5EJglKpe634eDwxR1VvKlfkv8DdV/db9/CVwt6oucz93xWompo4qKVHW7TrA9xv28t2GvSzetJcDeUUAdGoZy+CS/Qz+6HUGbVpB78wtRGpJ5c9M/Hmw7w9/e5+BJZ56pi7UTDKATuU+dwS2V6OMMXVSRITQp30CfdoncPUJ3SguUdZuz2Lxpr38sPU3vttcwkcjroUREF+Qw8BftzK4f1cGxRXR/5m/0jI9reIvbHfFyTKeTVyl/HkW4y1BFRYeui8nByZNqph4tmyBq66qmHisxlNvhbNmEoXzAH4ksA3nAfylqrqmXJkzgZv5/QH8s6o6pNzxrljNxNRTqsq2fbks2/Jb2Za2I4sS93/ZpOaxHJXUjKM6NnNev/+cFg/d//sv4jPOqPzZiOf+yhJPqISyxmOdC4Kq1j+Ah7LeWv/E6Ro8Q1UfE5EbAFR1mts1+DlgNE7X4KtUNdX97lvACKA1sAt4SFVfPtz1LJmYuu5gfhErMvaxett+VmbsZ/W2/Wze+/sv5KTmsfTv2Ix+Sc3o3a4pvRZ9SdIj9yNV/cKtLPGEqvnMH/4kHn87F3hLPGA1pnJ8TSaoaoPZBg8erMbUN/tyCvR/P2fq1AXpeuPMZXriE19pl3s+Kdv6PThX//D8//T+D1bq699t0iWb9uq+nIJDT/TGG6pduqiKOK9vvOFscXGqTr3F2aKjVWNiKu6Li1Nt1arivnBskZHe94scGu/Eib7dW2X3W/rz8fYz89x3uJ9voGW9CeJ5gVT14ferjYA3ph7Kyitk/c4D/LTzAD/tzGKd+770AT9Ah2aNSW7blO6J8RyR2MTd4kls2ginUcDlz1/vns9tarrDgD/8eXbkTaA1pmCU9dYE6E/zpg/nTdmyhVTVKodFWTIxpoFQVXbsz2PdzgOkuQlmQ2Y2G3YfJLfw91+qTRtF/Z5g2jShe+t4uiXG07llHHExVfTZCXfiCTRBhIo/cQU6WDUYHS/KnTcFLJl4smRizKFKSpSdWXlszDzoJJfM7LL3O/bnVSib2LQRnVvG0aVlHJ1axtGlVRydW8bRuVUciU08ajRVCUXi8adzQW1NPLWMJRMvLJkY45+D+UVs2nOQjXsO8suvOWzZe5Ctv+awdW8OO7LyKvyObhwd4SSWlvF0bBFL+2aN6dA8lg7NY0lqHkti00ZERviRbMrzNfH407nA12afmq4xhSrJVfO8lky8sGRiTPDkFxWT8VsuW3/NcRNNTtn7bftyKzyfAYiKENomNCapeSwdmjuJpn3zWJKaN6ZdQixtExrRIi6GiOomnMOprLtwIL25ILAaUzDKVpbQfJ1Gx4fzWjLxwpKJMTUnK6+QHfvy2L4vl237ctmxP5ft+/LYti+X7fty2bk/j6KSir9/oiKENk0bkZjQmLZNG9EmoRFtmzamTUIj2iQ0LnvfMlRJx1+B1JiCURYOTWjB6grtnteSiReWTIypPYpLlD3Z+WT8lsuurDx2Z+Wx60A+u7Py2X0gj91Z+ew6kMe+nENH3EdFCIlNG9G6SSNaNYmhZXyM8z4+hlZlr7+/bxwdGYY7rCGhGqTpntd6c3lhycSYuievsJjMA/nsPpDP7qw8dh/Id5LPgXz2Zuez92ABe7ML2JOdT35RiddzxMdEOomlSYyTaOIb0SI+huZx0bSIi6ZZrPPe+RxDs9jo+p2A/FAX5uYyxpgqNY6OpJPbe+xwVJWcgmInsRzMZ292Ab8ezGdPtpNs9h7M59eDBWzbl8fKjP38llNAYXHlf0w3jo4oSyylSaa5m3hauIknoXE0CbHRNG0cRdPGpa9RNIpqeInIkokxpl4QEeIbRRHfKIrOrQ6feOD35LMvt5B9OQXsyyl0ttzS9+6rezx9d3bZ+8MlIYBGURE0bRxNgptcyhJOo+iKn8sloITG0cTFRNKkURRxjaKIi46sHc+FfGTJxBjTIJVPPknNY33+XmkS+i2ngKzcIg7kFXIgr4gD+c5rVq77muccK33dsT+vrGxOgW9ddONiIolvFOUkGPd9fNlrlBt/ZNl9VDzmvI+NjiQuJpLYmEgaR4UuQVkyMcYYP5RPQrSo3jkKi0vIzityk04hWXmFHMwv5mB+EQcLipzXCp9/f78nu4Atv+ZwML+InPxisguKvI7JrEzj6AjiYpwkExsTWeE1zstnX1kyMcaYGhYdGUGL+BhaxMcEfC5VJbew+NDk4yalnIJi8gqLySkoJregmNzCYnIKisgtKCG3sIjcguKymtb2fcUVyxf6PsjRkokxxtRhIkJcTBRxMVEkNm0U1HOXlCiRT/hWNiKoVzbGGFNv+PN8xZKJMcaYgIU1mYjIaBFZJyLpInKvl+MiIs+6x1eKyCBfv+vVsmXQtaszstMYY0zQhC2ZiEgkMAUYA/QFLhGRvh7FxgDJ7jYBmOrHd73bssWZc8YSijHGBE04ayZDgHRV3aiqBcDbwFiPMmOB193VIxcBzUWkvY/frVxOjjOXjTHGmKAIZzJJAn4p9znD3edLGV++C4CITBCRVBFJzSx/YOvWaoZtjDHGUziTibduAp5Dbyor48t3nZ2q01U1RVVTEssf6NzZpyCNMcZULZzjTDKATuU+dwS2+1gmxofvVi4u7vc5+40xxgQsnDWTpUCyiHQTkRjgYmC2R5nZwOVur66hwH5V3eHjd73r0gWmTw/OfP/GGGOAMNZMVLVIRG4G5gGRwAxVXSMiN7jHpwFzgDOAdCAHuOpw363yooMHg61nYowxQWeLYxljjKmUr4tj2Qh4Y4wxAbNkYowxJmCWTIwxxgTMkokxxpiANagH8CJyAFgX7jhCpDWwJ9xBhJDdX91m91d39VLVplUVamiLY63zpVdCXSQiqfX13sDur66z+6u7RMSnLrDWzGWMMSZglkyMMcYErKElk+nhDiCE6vO9gd1fXWf3V3f5dG8N6gG8McaY0GhoNRNjjDEhYMnEGGNMwBpEMhGR0SKyTkTSReTecMcTTCIyQ0R2i8jqcMcSCiLSSUTmi0iaiKwRkUnhjimYRKSxiCwRkRXu/T0S7piCTUQiReRHEfkk3LEEm4hsFpFVIrLc1y60dYmINBeR90XkJ/f/weMqLVvfn5mISCSwHjgNZ7GtpcAlqro2rIEFiYicBGQDr6tqv3DHE2wi0h5or6o/iEhTYBlwbj369xMgXlWzRSQa+BaYpKqLwhxa0IjI7UAKkKCqZ4U7nmASkc1AiqrWywGLIvIa8I2qvuSuHRWnqvu8lW0INZMhQLqqblTVAuBtYGyYYwoaVV0I/BruOEJFVXeo6g/u+wNAGpAU3qiCRx3Z7sdod6s3f+GJSEfgTOClcMdi/CMiCcBJwMsAqlpQWSKBhpFMkoBfyn3OoB79MmpIRKQrcDSwOMyhBJXbDLQc2A18rqr16f7+CdwNlIQ5jlBR4DMRWSYiE8IdTJB1BzKBV9xmypdEJL6ywg0hmYiXffXmL7+GQkSaALOA21Q1K9zxBJOqFqvqQKAjMERE6kVzpYicBexW1WXhjiWEhqnqIGAMcJPb7FxfRAGDgKmqejRwEKj0mXNDSCYZQKdynzsC28MUi6kG91nCLGCmqn4Q7nhCxW1CWACMDm8kQTMMOMd9rvA2cIqIvBHekIJLVbe7r7uBD3Ga1euLDCCjXE35fZzk4lVDSCZLgWQR6eY+QLoYmB3mmIyP3AfULwNpqvpMuOMJNhFJFJHm7vtY4FTgp7AGFSSqep+qdlTVrjj/332lqpeFOaygEZF4t1MIbvPP6UC96VWpqjuBX0Skl7trJFBpx5d6P2uwqhaJyM3APCASmKGqa8IcVtCIyFvACKC1iGQAD6nqy+GNKqiGAeOBVe5zBYD7VXVO+EIKqvbAa26vwwjgXVWtd11o66m2wIfO3ztEAW+q6tzwhhR0twAz3T/ENwJXVVaw3ncNNsYYE3oNoZnLGGNMiFkyMcYYEzBLJsYYYwJmycQYY0zALJkYY4wJmCUTY4wxAbNkYowxJmCWTIypYSLSU0Q+F5E8EdkgImNEJF9ERoY7NmOqy5KJMTVIRJJxpvhZA/QDbsWZnj0GWBHG0IwJiI2AN6YGicg8nJl0x5fb9zIwSlU7hi8yYwJT7+fmMqa2EJFOOJMBDvY4VIDVSkwdZ81cxtScQUAxh84s2x9YDiAi/xORoe776SJyZ41GaEw1WTIxpuaU4Pw/F126Q0SGAcfjJhPgEeB+EbkViFbVp2s6SGOqw56ZGFNDRKQDzjTeLwL/DzgKeALoBfRS1fVuuSVADnC6qhaEKVxj/GI1E2NqiLsq3zXAWGAlcCXwPM5yqOkAIjIIaA1kWSIxdYklE2NqkKrOVNXOqtpEVc8DWgIrVbXErbnMwFltsb2IDAxnrMb4w5KJMeHVH1jhLtn7HjBJVTcCjwN/CWtkxvjBnpkYE0YisgF4UlVfCHcsxgTCkokxxpiAWTOXMcaYgFkyMcYYEzBLJsYYYwJmycQYY0zALJkYY4wJmCUTY4wxAbNkYowxJmD/H4+s9WiDxcNPAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "##################################\n", "# calculate the structure factor #\n", "##################################\n", "\n", "# calculate the time average <|dphi_q|^2>, or S(q)\n", "Sq = np.zeros((Nx, Ny))\n", "\n", "# loop again for Nt timesteps\n", "for n in range(0, Nt, 1):\n", " dphi = phi - np.ones((Nx, Ny))*phi0\n", " dphi_q = np.fft.fft2(dphi, norm='ortho')*np.sqrt(dx*dx)\n", " Sq = Sq + np.real(dphi_q*np.conjugate(dphi_q)) \n", " if n % 10000 == 0:\n", " print(f't = {n*dt}')\n", " phi = update(phi)\n", "\n", "Sq = Sq/Nt\n", "\n", "# needs to shift rows and columns in order before plotting\n", "Sq = np.roll(Sq,+int(Nx/2),axis=0)\n", "Sq = np.roll(Sq,+int(Ny/2),axis=1)\n", "\n", "plot_Sq(dx, dx, Sq)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Pseudo-spectral simulation\n", "\n", "The equation we are solving is:\n", "\\begin{equation}\n", "\\frac{\\partial\\phi}{\\partial t}=Ma\\nabla^{2}\\phi+Mb\\nabla^{2}\\phi^{3}-M\\kappa\\nabla^{4}\\phi+\\sqrt{2MT}\\nabla\\cdot\\boldsymbol{\\Lambda}\n", "\\end{equation}\n", "Taking Fourier transform, we get:\n", "\\begin{equation}\n", "\\frac{\\partial\\phi_{\\mathbf{q}}}{\\partial t}=-M\\left(aq^{2}+\\kappa q^{4}\\right)\\phi_{\\mathbf{q}}-Mbq^{2}\\mathcal{F}[\\phi^{3}]_{\\mathbf{q}}+\\sqrt{2MT}i\\mathbf{q}\\cdot\\boldsymbol{\\Lambda}_{\\mathbf{q}}.\n", "\\end{equation}\n", "The algorithm will be:\n", "\\begin{equation}\n", "\\begin{array}{c|c|c}\n", "\\text{Real space} & \\longleftrightarrow & \\text{Fourier space}\\\\\n", "\\hline \\text{calculate }\\phi\\text{, }\\phi^{3}\\text{ and }\\nabla\\cdot\\boldsymbol{\\Lambda} & \\underset{\\text{forward FFT}}{\\longrightarrow} & \\phi_{\\mathbf{q}}\\text{, }\\mathcal{F}[\\phi^{3}]_{\\mathbf{q}}\\text{ and }\\mathcal{F}[\\nabla\\cdot\\boldsymbol{\\Lambda}]_{\\mathbf{q}}\\\\\n", " & & \\text{update }\\downarrow\\text{ timestep}\\\\\n", "\\text{get }\\phi\\text{ at the next timestep} & \\underset{\\text{inverse FFT}}{\\longleftarrow} & \\phi_{\\mathbf{q}}\\text{ at the next timestep}\n", "\\end{array}\n", "\\end{equation}\n", "Recall that Fourier transform array in Numpy is arranged in a slightly peculiar way.\n", "So for this code, we have defined the $q$-vector to be:\n", "\\begin{equation}\n", "q=\\underbrace{\\begin{array}{|c|c|c|c|c|c|c|c|c|}\n", "\\hline 0 & \\frac{2\\pi}{L} & \\frac{2\\pi(2)}{L} & \\dots & \\frac{2\\pi(N/2-1)}{L} & \\frac{2\\pi(-N/2)}{L} & \\frac{2\\pi(-N/2+1)}{L} & \\dots & \\frac{2\\pi(-1)}{L}\\\\\\hline \\end{array}}_{\\text{total length}=N}\n", "\\end{equation}" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "dx = 0.5 # lattice step size dx = dy\n", "dt = 0.0001 # time discretization\n", "Nx, Ny = 128, 128 # system size Lx = Nx.dx and Ly = Ny.dy\n", "Nt = 1000000 # total number of timesteps\n", "\n", "M = 1.0\n", "a, b, kappa = 0.5, 1.0, 1.0\n", "T = 0.1\n", "phi0 = 0.5\n", "\n", "# array of cartesian coordinates (needed for plotting)\n", "x = np.arange(0, Nx)*dx\n", "y = np.arange(0, Ny)*dx\n", "y, x = np.meshgrid(y, x) \n", "\n", "# define wavevector\n", "qx = 2*np.pi/(Nx*dx)*np.concatenate((np.arange(0, Nx/2, 1), np.arange(-Nx/2, 0, 1)))\n", "qy = 2*np.pi/(Ny*dx)*np.concatenate((np.arange(0, Ny/2, 1), np.arange(-Ny/2, 0, 1)))\n", "qy, qx = np.meshgrid(qy, qx)\n", "q2 = qx*qx + qy*qy\n", "q4 = q2*q2\n", "\n", "# update phi\n", "def update_pseudo_spectral(phi):\n", " # calculate noise: create an Nx by Ny matrix of random numberes\n", " Lambda_x = np.random.normal(0, 1, size=(Nx, Ny)) \n", " Lambda_y = np.random.normal(0, 1, size=(Nx, Ny))\n", "\n", " # Fourier transform phi, phi^3, and Lambda\n", " phi_q = np.fft.fft2(phi, norm='ortho')*np.sqrt(dx*dx)\n", " phi_cube_q = np.fft.fft2(phi*phi*phi, norm='ortho')*np.sqrt(dx*dx)\n", " Lambda_x_q = np.fft.fft2(Lambda_x, norm='ortho')*np.sqrt(dx*dx)\n", " Lambda_y_q = np.fft.fft2(Lambda_y, norm='ortho')*np.sqrt(dx*dx)\n", "\n", " # update phi in Fourier\n", " phi_q = phi_q - dt*M*(a*q2 + kappa*q4)*phi_q \\\n", " - dt*M*b*q2*phi_cube_q \\\n", " + np.sqrt(2*M*T*dt/dx**2)*complex(0,1)*(qx*Lambda_x_q + qy*Lambda_y_q)\n", " \n", " # inverse Fourier transform to get back phi in real space\n", " phi = np.real(np.fft.ifft2(phi_q, norm='ortho'))/np.sqrt(dx*dx)\n", "\n", " return phi, phi_q\n", "\n", "# plot phi\n", "def plot(phi):\n", " # initialize figure and movie objects\n", " fig, ax = plt.subplots(figsize=(6,6)) \n", "\n", " ax.set_title('$\\phi(\\mathbf{r})$', fontsize=14)\n", " ax.set_aspect('equal')\n", " ax.set_xlabel('$x$', fontsize=14)\n", " ax.set_ylabel('$y$', fontsize=14)\n", " ax.set_xlim(0, Nx*dx)\n", " ax.set_ylim(0, Ny*dx)\n", " ax.tick_params(axis='both', which='major', labelsize=12)\n", "\n", " colormap = ax.pcolormesh(x, y, phi, shading='auto', vmin=-1, vmax=1)\n", " colorbar = plt.colorbar(colormap)\n", " colorbar.ax.tick_params(labelsize=12)\n", "\n", " plt.show()" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "t = 0.0\n", "t = 10.0\n", "t = 20.0\n", "t = 30.0\n", "t = 40.0\n", "t = 50.0\n", "t = 60.0\n", "t = 70.0\n", "t = 80.0\n", "t = 90.0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAFiCAYAAADY5Y7eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9d5hkV3Utvk7nUNVdXZ1zT85RGo2yRjmAECCQRcaAsQm2sc37OduA/R48Y+xnTLIMAkQWApRzzjOanFPPdM6hOue+vz/WXnWrB6UZtUb0+O7v66+nqm+de+65p+autcPazvM8BBZYYIEFFtjJWtJbPYHAAgsssMDmpgUPkMACCyywwE7JggdIYIEFFlhgp2TBAySwwAILLLBTsuABElhggQUW2ClZ8AAJLLDAAgvslCx4gAQWWGCBBXZKFjxAAgsssMB+x8w591nn3Fbn3Jhz7gevceyfOefanHN9zrlbnXPpCX+LOud+45wbcs7VO+feP5vzDB4ggQUWWGC/e9YC4J8B3PpqBznnrgbwVwAuB1ADYD6ALyYc8k0A4wCKAXwAwLedcytma5IuqEQPLLDAAvvdNOfcPwOo8Dzvo6/w958CqPM872/s9eUAfuJ5XolzLhtAL4CVnucdtr//CECz53l/NRvzCxhIYIEFFtjctRUAdiW83gWg2DmXD2AxgCk9PBL+PmsMJGW2BgossMAC+59gV1+a7XX3TJ3y57ftHtsHYDThrVs8z7vlFIcLAehLeK1/h1/mb/p7+BTP9VsWPEACCyywwE7CunqmsPmhilP+fGpp7ajneWfP0nQGAeQkvNa/B17mb/r7wCydO3BhBRZYYIGdnHmY8qZP+WeWbR+ANQmv1wBo9zyvG8BhACnOuUUn/H3fbJ08eIAEFlhggf2OmXMuxTmXASAZQLJzLsM593Ieo9sAfNw5t9w5lwfg7wD8AAA8zxsC8GsAX3LOZTvnLgBwA4AfzdY8gwdIYIEFFthJmAdgGt4p/7xO+zsAI2CK7gft33/nnKtyzg0656oAwPO8BwH8C4AnANTbzz8mjPNpAJkAOgD8DMCnPM+bNQYSpPEGFlhggZ2ErV+T7j3zYMkpfz5U1rBtFmMgb6kFQfTAAgsssJMwDx6mAuANIHiABBZYYIGdtJ2EK+qMtiAGElhggQUW2ClZwEACCyywwE7CPABTAQMBEDxAAgsssMBO2gIXFi14gAQWWGCBnYR5QBBENwtiIIHNSXPObXPO/cXLvJ/nnGt3zi14HWPc4Zz78zdnhoEFduZb8AAJbM6ZVeSuALDzZf78NwDu9zyv9nUM9UWwOCt3FqcX2P8Am34DP2eSBQ+QwOaiLQWQjhMeIM65LACfAPC9V/uwcy4NADzP2wPgGFjpG1hgr8s8eJh6Az9nkgUPkMDmjDnnVjvnHgGw1d467Jz7h4RDrgNB3nMJn6lzznnOuR85577mnOsCsDnhM3cDeN+bPffAziDzgKk38HMmWRBED2xOmHNuHoCnAXwd1PWJArgXwDecc897nvcogIsAbPNeXp/nJvt9GJS5lm0B3ViZnueNvGkXENgZY9TCCgwIGEhgc8e+BcY2/gFABYAXPM/7JoBG8MEBANUAWl9ljA2e560CsCnhvRYAqQDKZn3GgQV2hlvAQAL7nTfnXCGAKwFc5pxzYE+Df7U/TwIYt39nAmh/hWGe8DxvNwB4npfYTk6sI3NWJx3YGWwOU3Bv9SR+Jyx4gAQ2F+xcsC/CDgDzAeQC2Gl9n6vgxzy6AOS9whhtr/B+1H53zs5UAzvTzQMwfYbFMk7VAhdWYHPB0u13GoC1ALo9z2sE8AegC+pp+/sOAMtPcuyVAFo8z3sl5hJYYL9lU8ZCTuXnTLKAgQQ2F2wz6Kr6RwAOwBHn3CfApjvXe168T+hDAP6vcy7fWnq+HrsIwIOzPeHAzlyjFtaZ9SA4VQseIIH9zpvneY3Oud8H8H/BYPcUyEpu9DzviYTj9jjntgC4GcA3X2tcaxn6LgBXvykTDyywM9wCF1Zgc8I8z/ux53nlYCzjg57nrfc876GXOfSLAP7EOZdsn6vxPM95nvfRlzn24wA2e5734ps28cDOSJv23Cn/nEkWMJDA5ow55woAlADY80rHeJ73oHPum2Cqb/1rDDkB4I9nb4aB/U+wwIXlW/AACWwu2SowZffQqx3ked7XX89gnufdMhuTCux/lnlwmAqcNwCCB0hgc8gs3pH+mgcGFlhgp8WCB0hggQUW2EnamRbLOFULHiCBBRZYYCdhQQzEtzn/ACkoKPBqamre6mkEFlhgc8C2bdvW5Xle4RsbxWHKC2IgwBnwAPEKHS767sL4646xMACgZyyLr4dCPM4oZ3dbDgBg9aJGAMDAOF3qLTH2FHrnwt0AgBVZzfEx9w2XAwAWZHRw7KlsAMDu/goAwOhUKgCgMJ0ir5HUYQBAbIJz+FABlTaWp40CAP6k8dr42Hs7SwAABdlDAIDWPs7v8qojAIAdPTx3OG0MADA+lQwAeF/5SwCAX7aexeMLGVd+pttfC12b7KIi9lja3ccx6/uo+vGR+VQ3F6ra0V/F+Y9RHiqSTrmot+Xvjo/1s9ZzAABtg1zvNYUtAIAUR5mpS3MPAgBeHGRjwIP9xQCA86LHAQBlab18f4Qaho83L4qPfU4xk6faR7kWDf2RGdcRyeB85oV7AAAvtVUCADaVHwUAlKfHAACNo9H4Zx6uW8LzRvoAABPTXEfti6xUymktyqGiSU1G94wxPpj/PACgdqIIADAwleGP3b0CAHC0J3/GmKuKqOs4aecqSh8AAOzv41qsjPDvV0eYVPYfDVcAAJpi/vWmJHM9q3J5TXKdnJ9/DADQO8m9OGXvP3CMhfjjY/xqVxT1zlirzU3V8bE3lDcAAP6s9GEAwN396zim7VuNdVY5vyu1sQIAwKZS7s1Uu9cKKEdThuJjl6byvI/2cm0O9PCaO+q5nsm5XO9LFx4GAHSO8nuaksSa0BuLtgEAYlNZ8TF/2rgBAJDkqCNyfiH3UmzC9mkq98WRQd6jbYdqAADZUX4f993wBTjnXisz7zWNarzBAwQI6kACCyywwAI7RZvzDCQreRzPts6Pv+7pJyLLDRONZKZOAABKson+1hSSWawIETE3jxGFT74KJR2ZSgMA1I4S2QgB7WghAzmv8viM42/OI6J/aHAlAOALx98BAFgX5bmXZPuyS2lJkwCAaTv/hytY0/ZgNz87aYxjcpp/L8nidewaJEuo6yaiSy0iGsxKmYiPfVMJWcq/HyGy/cWh9QCAy+YR9Q1PkjmNetwGh4eIEsWKkpN4ndF0IrjvN50fH3teiIi2PCsGAOgeI4JsHSYj6TQmuK+NY6WmcH5jEZ7rYzlcg5fSmwAAl4QPxMe+KIPo9RcDvK+39F9oa8E1yEienLF2yws4Vs847/3QFJnX0b6C+JhX1ZChjUzzmvvGiVpDqWSFtf08dnsn2UxnmPPPS+O1f6v9MgDAYrt3xal98bEHJ7g/Yu38TEo25/VSE+9Reipfj+fzXg4ZM3yhfR4A4Nk2XqdY5iWVR+Nji7083UAmJzZwcJDrqn3bOkS2Nq+AzKl7mGsxOMZzjWdznEWFvmZkeWYMgL9PK9J4T/f1kxUuK+a1FqSRWSyroB5lsiNLyE3m2rxcSquYR8zWeWiMa5RZxLHeNn8/j2taDADITiMjWZHHczzdx/crbS8AwIYCMibd57tqVwEArpnHvVOQyu9GVg7H2jbOddX3dTYtiIHQ5vwDJLDAAgvsdJrnBTEQ2Zx/gAxPpeHSsiPx1+35RGJ7ukoBANEMoqT1uUQvHeNEiT+qpQ9/cbQLAHBtKRFR2xhjIbe3nh0fM8diF1vq6ROeX8zP/O2q+wEADeNEr8syyDCSre/xf+8kcj5vARnKhLGIQ6PFv30dk0RoTeNkFCvDZEhiJmFDyq3DvD4h06VFjMs830uEWmaoEgDu714NAEhPIQIuLiJCuzzCa93eSQmo38vZAQD48TR9zAdSiW7Lw0TZWkvFHgBgXy+PGZ/kPLp6uK7n2rX2jzNGMDpIBFxdTX//BWGyn/5pjpVExRG0TPgq7LeMMkYzL53XttFiIkVpnP8jrUsBANH0jBlrJzbUOMSxkpP8vnEpSWRAncP8W1UWke2xQcYtijMZvxq3dX1fMZlg22QEALBzgGzirkau6ZVlB+Njr4nwvveU0V/f2cl7dPEC7suWYe6prBQi43dX7gQAPNbJuMyIMcHuISLrouKB+NiKR+SHidwHJ7ieNdlkGm2jHPs95dsBABPGJlvH+f5jLYbw7dxbG6viY88PcR/v6+PeOT+fMbKlYbKAw4Pcpw22ZknGPPonue6pbmZfvhUhP264NkymdH87mUg4g+wqNkRG0mhjqnekM5ZQO8D78YHyLQCA42N+vPvoAP/dPMBrGx3mfReTWxbNnDGvqoVkUOXZPlucLZsOGAiAM+ABElhggQV2Oo1pvAEDAc6AB0iym0ZRWn/89YF+IuPBESK1hukIAOBa873OS6cPOL+Gr68I7wUA/KJnIwA/60lZKwDQNUZkeOVCyyxqqwHgZ2Kcl02kOTTNc24bZabLH6x9FoAfW1gfIpKOJvstudsniabSHWMXQpDZSURseVHOU9k3h/uYdXW0i6znkiqixnNzauPrIdvs0Qfckcr4hOIj32m4hNdjKDpmcYFOY2eLIlyj4gwi4bYhvr804sduHq0ler5+MdcvVkD0t6ODcaFVBWQchYVEfyHLctpoGVKPjxBNLkglCu5LyLa5NsyspLoJsrESu797+nlvhFZ1X5RtJvZQnc17d9zYBeAztveXMD7VOclrEgMptGvVZx7sXY1Ei1oc4IZKZqKJqQJ+XCWaRbabXc5rvSaPazOQS8R+yzF23v14MduXFJdxbUpSuCabh5hBt2/A766bkcx7NjLBc/Qn81q3jpBJKGZwZTbvZfc0z9WZThbUU8g1Ohhj/K44z/+ulKTz/Pv7+J15sYf7ZXUumYTiK8qMmvC4hmLFsL1WYXGKfYPl8bHTLT41YTG8kQnu65Jcnl/xq6srD84YO9nu7YI0ss9dQ5XxMetjZC3jGsv2Vk462bnWW0xpaIoxv5rM16vsH9jJWvAYDSywwAI7KWMM5FR/XtcZnIs6537jnBtyztU7597/Csd9xzk3mPAz5pwbSPj7k8650YS/v6qO3MnanGcgqW4KHeM58ddC6vIZF2UR7XdNhGf8vjDEdbwzRkTfNU6U/tGqFwD4sQgAeFcBc9L3jhANnV1M/+7WAfpek8JEPD1TIZsDN0nLKBFTKJmI9LamcwH4mVYAUG0I/LEB+opHrKakaYSfzbHc9vFp3qreISL1mnyi7E7LfrrlONHt/7fQ7420JpvzVGaRMrguK2I8SHUsXx2+BgBwcxH9zi8MEgkr20VxJKFKADirktlT27o5dkMjGVFGDplT/wSRsOpW9PvDR98NAFifx7kdSmZ8ZXvMr09QNtCoIfvNPTUAgGPdZAdCsULlfcNkP0lxPzrnItYDAEuyyIju7V4DAGgaIoNYkEN0qtqRUDLnf1Z2Ha/d2OJ328jaFGMam/a/OsXGkJTZ9SfV9wIAOqe414pTiJS/ufynAIBsY5uFydyjR8bJxtZl8ZyJGV6tExEAQE+Y9z2Sxv2w3+oqFHfItf+Xfj3A+NB1oZmCxWflc70VRwKAnx5lzCsnkwhebKFhhHtfGWhb23mPF1WSFSzPYnzumV7GV27MZ7bfe3L9eT8+RIaqmpe+XssKG+QaKTvyiijjcTX2PTgyzuP/vvYGAEBplj/flGRjFkNc+7YO3sOcSs7/9g5ej9jNNfnGjhPY7WzYaaoD+SYoHFoMduG8zzm3y/O8fTPm4nl/BOCP9No59wMAM4NTwGc9z/vumzHJOf8ACSywwAI73Tb1JmphOeeyAdwIYKXneYMAnnXO3Q3gQwD+6nV87u1v2uROsDn/AMlMGkdNRlf8taq/lSVRmEEEKb+yfMpHhqxatZUofNoypJoHiWo2FfuZXZ2TZDhCwvINL8+1bJVRomhVeAslplrmTziFCEnV44mIaFEax3hbzk4AwK2dZBJrcojwD1i+vzKNPrGYVe1iOY93LZmxHr/q8rPHdC2FxsJWholWxYzOz2O9gXzXh+w6vljIjJ4f9BN5tmZE+PdBP3us2eoOVHXtTfP35CTn1TVCxDk/j2zi7AjjP2I9j7Zy3sqUSow5qfL/2DCZhNiKqq8f7yDybezhvN67mFlkTaN+JhcADE76lfgv9ZMtLshmfEeZZdl5RNNHh8kCVidkEgH+Pso3lYEmyx5SDQ0/Y7UZKJnx2XKLbcSmibrv6yf7yUoiM/pg7i4AwL1jpTZfsrb2BEbdbBlcS61uRtXf5eUc+71hIvjcJF6r4m07+xgjWW37SJ8TqwOAGrs3h9r5XYiEuG9V66LP7E3h/OqHfVYOAH9YymaQ20dqAADrExjI1SHGNm6fJsPHAP+rmZ7ieoaqZrLyIsuCWxLiuS8rtlolq8ECgJIMjv+8473sHeD3aNBiYPVWE1Vt7Pxf9l8FAFhbMvOezgFbDGDK87zDCe/tAnDJa3zuRgCdAJ4+4f0vO+e+ArZB+FvP856crYnO+QdIYIEFFtjptFnoB1LgnNua8PqWE3rThACcmHvcByD8GuN+BMBtnqfkaADAXwLYD7rDbgZwj3Nured5tac29Zn2lgTRnXM3O+cOWICo1jl3kb1/uXPuoHNu2Dn3hHOu+rXGCiywwAI73TbtJZ3yD4Auz/POTvg5sbHZIICcE97LATCAVzDnXCXIUG5LfN/zvM2e5w14njfmed4PATwH4Lo3ev2y085AnHNXAvi/AH4PwBYApfZ+AYBfA/gEgHsA/BOAXwA499XGG/VS8ZGcY/HXl2cxOP6FZroBFdhcby4UuW+Uwngsm4FZBWQ7BhiURkKt35O9S2wsuhgUrH3OJChW5DNAuy5CV4ZShdsn6H54roeFWiqEuqF4Z3zsuonCGccqUN1mbozDvRZgNQmWe9so35Bm7jGlrmZawLhlyN93Egys6yW1XxuhO0Nij+sz6njNdq6NWQQl95nbpGGMa6OCskS5l65+rlOpiRNKnHJ/M90dbT0z9/8WrwaA71KsyaGbYaG5lOSuAoAtPcQN5+ZzfoszuL7XZ3MN9po7ciLPihAtpbZthABNrkXJaAB+YdvTPRRtHBqm20OFeJdFKYehdOL1VhT6G3M7KTlD++j4sF/g1jNpadKWLPHsMF1sFam8xir7vSKT639nF9NL60bzZ4xdbemmiei2II3rVTvI8zWZW7IixHX/fjLHOsfu3XVRphmrMPPxLguqFzKonpscHxqhVCYMXFzDz14ZYXz2iT5+5oIcunEvL+V3Sunycp/WWfC/b5Jr9qW2TfGxr82je27KXMNVS+iayrRUcknIXF3AQPcjJkj5kt37DCt+LUz3/89UcoSkYTZUMRlkXQ7v7fA03V1ytba4XPt7A2bTTkMdyGEAKc65RZ7nyZe+BsC+V/nMhwE873nesVc5BuD0Zy2A81YwkC8C+JLneS96njfteV6z53nNAN4NYJ/neb/0PG8UwBcArHHOLX0L5hhYYIEF9rLmwWHKO/Wf1xzf84ZAMP0l51y2c+4CADcA+NGrfOzDAH6Q+IZzLuKcu9o5l+GcS3HOfQDAxQAeOtVrP9FOKwNxziUDOBvA3c65owAyANwJ4H8BWAEGigBwEZ1ztfb+wd8ejTYxnYyr9t4cf10VZlHT+4uYKqvUWkkirLNivj3DDOZKxlvpvkL2d9b7hWTriogc31nO6Sm4eHcrj1HxXH4Fkf3OIQYwVRTVN0bmkp/Jvw9M+chYdmCIyF2SG39d/BgA4BeZPEfvBIPSz1ixl2TJFcQutvlfV+BLrovVvNDLzzzYtAwA8B/Lfw4A+PdmSpkoIHxzHtN4lUq5NJMBZqGtBxqWxccuyiUyPL+A0iU7Y1yDfziLKaz3d3HeQte6rrEpbrlcS0/utPTpxGIvoe5wMlHqU4aIlTopqf7KUAyAv84qlFSK7eFOnyUsCRMB15rkerKlhG6tr5rx+yMruW9+EmNKaMtoBADQOjKTUb03f0v837e2M/HhrFzurUGTepfETZrtl5+2sVh11NagMpN7Vfvp5UzrJ/YXlzLPI2tYmE62lWGpwY/0Uhhxwo6XXInYZEtCAaSQ+4XZZBgHx8jsJIsuW5ttrGuMwXYJCZZZsasYY0GGL+f+tToGsFs7eb6qYrKwnmHeO33PknJ5PQrI7xll4oZYzTNdC+JjNvaQVUke59w1Vpibwv3SPMQ92DGidHrOU9+dOWafBnArgA4A3QA+5XnePudcFRjTWO55XgMAOOfOA1AB4JcnjJEK4J8BLAUwBf4/+k7P82atFuR0u7CKwYt6D4CLAEwAuAvA34GBo84Tjn/ZwJFz7pMAPgkA4ZLZzfEOLLDAAnste7PrQDzP6wHwzpd5vwH8vzLxvRcA/NZT0vO8TgAb3qQpAjj9DxBBm//0PK8VAJxz/wY+QJ7G6wwcWdDpFgDIX1boDY0npvrRTztssiJKE+wfJSp8ZxUR+rFBK3wzafAc88nK/mTRE/F/q6iwOo1obm06ffITJXQoxxswWWMb0dQ/KHoKAHDAiqlUFJjYjGhjFlNpx8Mzb0WLpXQKzUq++/IaZvY9cIA+46wQUaDSTV/o9xHbnh4iyjRdYwav8dbOiwEAFSYoeG6IaPYLjZSdP9hJpFkRidm8eY7cTH+NWrqJLFty+PtSa2ilSlsxDlnjYGTm9dnn88JkZV3dPk5YP5/IWLLskmk5P7MOAPDfExSpFOPQ2MkniPvlZvnz3RVjavD5ZWRMq0NklUqjvqV1EwBgRx8RsBhL4zDHPtJmQn4hznt/zE/ZzTYWu9mY3qocxk+UgpplSP3cKN3TSrV9vpPpqGsslVgFfImxG8mILDAmIQZyRxObPy3L4zyTTMDz44XM4Bz1yCr/8tCN/HyEnz/YUxQfu9/2672tZC1tMX79KqMmTWLpu2IxamuwKUKHQL0xrPPyuaZtYwnpx9Ncp+RUzr+hg9eWH7F03RwWJUrC5Pbuc2z+zwDwiy2Vbg8A86rIYiS4+FQL93rlPLLXs0OchxhoVYjXkci6ZsM8D6+7ovxMt9O6Cp7n9QJoAvByAv37wEARgHhRzAK8euAosMACC+w0m8P0G/g5k+ytqAP5PoA/ds49CLqwPgfgXgC/AfBV59yNAO4D8A8Adnue94rxDwDISJqIxygAoDydqOP5AcpxCLGpOZKK0AYsLlEaImNR8dR2K8CShAQAHDLEuMuK4O60YkQVCKpVqc69KJ1jlSSTcVxYQJYhv64kKwDg7j5m0VxqBWEdVrT4GxNN/NWhtQCAS+ZxDAkLLq8kC7qqiJ/b0kc0u63DF5+7qpxLp8I0MaNuiRCa3MiDE0SgnVb8p+I+yY+02OfV2hYA5hUR9S3Motfx6hCf819pYbve+gFJgHPdxQCLQ1yrSWu5urian0/8Yompzcsk8lWM4M+PE02rQFONnCTXraI5Zdpp/gCwIUp/+eU2zwsyZmKnLblkPY+0Md6Sm0dmdE0Rj89IZiae4hfTCcFQtU1ut/c+XMJiz++2kOlpXzzdxQywg41kL0sryX6eaiaSXldM5tI66CP5eblE3SGLB4ndxMb4GTGPQpMo+Zdmrv88k3tfkkekr+y+irBfXtBvBXjdg7zv08f4+/g41+2mFSwoPTTA/b8m19bXvhv7BslwFZO6rMB3rUtSXbGbPNs7YlRHLCNxeSavp8yyIh8e4F5UsWV5QnsCzaPApHXUfvi7hy8A4Me1zi8lEym276Uy2GbLPAQMRPZWrMI/AXgJTFU7AGAHgP9t/robAfxvAL0ANoKFL4EFFlhggf0O2mlnIJ7nTYAZBp9+mb89CmYMvG4bnEqP5/gDMyWlAaDT0GFpmMj9QD39ulVlRGjKQLqnifUVQmwFKX7oZU/H+hljKrf99xdTeLFxlP7diLX4zHBETw8O8VLuqKe/+p+W3vVb81cbzl+aD7gqg4iz1eoTpq2Nq9D4A61sanVj+U4AwLmZjA8830vGpTgH4MuzP1FL5JuaSuR+sUnA944TOV6ZRxZTkUFEqewn5dUvziBS/s9jl8bHVvZa1wTX9z/a2TY3xZCnfis+cG0pkfyE+acvt5jJ5hiZ04Ulfvr6+WGyrQOjVu9hfnKh2fda86QXYkThpRkzi3YXZpEBliW0Q93Sy/PkpTBTKD+ZdR9fbLqe75tcu0T+9lutyXJr7KUYRKYh48fbFsfHXh7l+RZlc++8aGKUYiuSa7+8cCaZVvxN8vRLQ2SVSQmxnA6rbekenxE3RecgX6+2+MmH85g99rMkxkzVOE3MWvfpE2U74mM83s+91GDZTdMVvO9hawetGE1hJtdGMZ1rw4wj6r5sLOJ+erDPz1zsMUmhasuKVIOxi6Msa6hOI3s4ZDIuYvdLQ20z1iA5QRdwRy29A9ev1Pm5H8Q8KnNiAIC9vRzz7aWsMXmw188enC0L+oHQAimTwAILLLCTMA9uhgvzf7LN/QeINxOlXGlNZW5vJ6L/s8Wsp9g+yFz15giRfVMHUVdehOiqIIu/u0bpB+4J+Vlx11UToT/VRmS5MJdoVAgsx2Ihqu/oTiL6OzJCn22VIaNvNxHBV2b7yFifXZFNJKnsGvn5nfmMxZBSkqdmnPspYznLwkSvL0346i+PHaXf/tx59AkrW0mZRYvDRMw1qZ0zxlRjLDGrn1izLVWPA34F+UPNRHeKm2htbqqgBP5TPZxD/QgzZ94RJQL+XivjAwc6mGVzOMn3U3cUcf3U1leS6lcVkjUcGmYMQTL7ipGUpJBlfnTHRznfPH++80NknFv7agD41dRCumok1W+xsfIssprbDvHaVXejWM7AiJ9JFzM5+cECrpsy+r5UQ8b5wACReVUa5yAmUj/CLKaYnXPYss4qMmLxsZ88RKaTUsN5ijG/Z95OHivpe7t3iolckkOGt9wyBneOEuGrXgQAzg+TDTSV8Luw+1Geq6+aY5XUzEyAzE0hM7m3fy0AYHUWK7zV9rfZamYS5yHW2DNKRqJ6p93mKajO5PzFWFV7dE4Gxz444Wdh5W3gd1TKCSszuH+XLeA1PtjBzESx3lzzCKwpbMFsW8BAaMEqBBZYYIEFdko25xlIkvPiGRsAsNn8z8ooureTmcFX5JNFjJXxkl9orQEAlGQTZamKVgzk8Q5fJv3qYn72nEJm8uSn8ljFNiYmidjOKmEspm7A2IKh8tpWouuywpidy29p22e5+J/JZ+ZOTwnP/2wnawomh4k4p3NImRflEvmrJmXAWphOWYtWZWUBPoqO12SYG/3GAgqBqkHW/22ktlpWCtdRmVPzs3iODVHOtyjVb4c6ZrLgavEq/a/HY2QkD3Qwm0Z+ftVNrAuZvlYX16Q4h+vfPeQzPvnLjxtCf6iNY36m+kles9XGjHqWhZVCJNpo+k/hDNZdqO0vAKzIJUrtGAvbZ7kPlLl1yw5Wk3sWc2ppIvsqLbdaghiZ61U1ZA9dCTGJUqs9Enpens7MogzHa1c8LWINpMT0DlsmUk4a5/vTfYxfJKf4NTRpWWQMcpno2CxrfKXWxw8Ncr37jQXvHSHjEHt7uId/PxLzmV6/tX0uN3Y1VmP3P+H8AHBxlLVHewY5Zucor12Zg8227sq8A4CwzTOaThZwdgEZhZqUqR2xMqUUg8qx+NvOMTIU1ZoAPiNWJfzBEbKZFVlcb9UrKTtPMcm35+/EbJqHhLa+/8Ntzj9AAgsssMBOr7n4Q+x/us35B0hG8gQOj/pVwVfmUHV00BowCSlsG6gBAJSZf/ljC5lBpUwjocWdICrf0lwVH7M+hyio36rDn29jdsriPKLuUWtD22XIrMsyZJQd8qfrHgfg+9+P9Pko8IoS+qr/rZO9YlZlERHfNUQWA6tfUU3DuQnKwwDwqzarIyk4bNfh+7hVkftRq+591tqMCrVKQ+iGop0AgPtMv2p0kp8Lh4kGL8km6j44Xhofe7eh0WaLp/TlEPkqljMyxViM0LnYzaPdzPz5yCK/rS/g1xQAvhaT2vveWM64yWMxfnZZduuMzz5kjE+V6BOWJTc16aNEZbUdjZEBCfGKAUaNZa3MZxbQoV763jeVMk4gxiEFA7E0AOhOon//uON9XZTGzKeFaUTyz9hxu0e4pw4McB3FKqRQnJ7BNRoe8OMrN61mnEe1JIr/NI8R7R8d5jzfl7+Zc5kisj8wSgQvhqp6iuMDflOovGyuc10n16TCMhOb2zl2nTVounOKLH5RDhnprgO8t/eEyMCXZvJ+SI8N8JWJ1cBLCrmb8rjflelXP85zl6ZxfnXGOM43hYan+hM8ARHGN+/pWct5dPMa96ZyPW8ooVadFJXDVof1ZD8Z7HsxOxYwEN/m/AMksMACC+x0W8BAaHP+ARJKGsODjX6e90tZRHmqVt3RTJSyqIhISLpKhZax89QAP/tCRw0AoCNGH3lOyK+6fugYM51WlBKdOts7tTGiJfX/UjV1f6f58+24Z/NYh6EeCD9e6qsy32EZOoov3NWxFgAwab74BZX07wvxvthvPUhCRPrSaFJ182fWPxkfW8dI4VSM4+ddzCxqGooAAKpNM2i5ZXKJuTzRxawc9a1ITlCg0XykaSSELzSqdrpiIDLFYxQHuK+Fvvl1Ub/tqPzkR/u4voqf/NX8BwAAO4ZrAAC/sfqcT5RSc6zG6i1g5FG1DwDQNcZ/d3fx/j4zzhqSq6rJrj69jCxxApzX/elrAQBHBonw1ZdCrXrHJv2vTk0pkfuT7bzPY6ZDddDqZx7pInMqzWSsQZlUiq1FLTYyVEI2XJfls4QD/bz250Z535UJp/jUAstEUkzn/l6yhZfaeM+X5pMpSi0hNUGjrNlaAqvWaNg05c6ex3jF7jYi++NN3GPHxziX/IoYEu3XbWQiiamtKelkg891cd5qO/vrMR67JsL7rVoT9QmJWsW6etUsz/IzqG5pYubewATHElPWd3aqhNehvfXDNmqm/WnZwwjszbE5/wAJLLDAAjud5nkucGGZzfkHyNB0OjKm/Jt5vJWotcFUQDPNrzxkmRkPdNFffm0BYyX7+oiq1A+kuZnob+MCv2pYWVfqXXFOHusqfnqUWTNCXsr+OXtZHQDf/1s7RAQ3bsj+Awc+HB9baqrqL7EkzPnXmJZRyLJtpGeVYjUP2sCZGdbhzVROlXkCAC+aMq9YV1kqmUamaXlF0qx+xTSxVplCrdDfoNUlqGJd/msAuD7E2MCP+4h4Ow3hf+0AK9I/sog++ftbmZsvxWRVyrelk6EoW0fZUYCfRdN8zGIKS3x2AgCNpnXVbn0fnh2kn/wJQ55vy9kJADiWUEPw782XAwCSejj2iMWndnQTof9zMWNiW8e4rtKe2hjhvT48TB++svYSdbb2xkzdwKqupfOk31cWkGnUjnI+ObbuUu9VV0l1tFQXSgBYlkMWc2cHmapqTs5ZwnllJPFefreVMbQFIe45ab8p5rPZkP7LmhFLVeHLoiHupSlTNR6wrK3+Qc7hcD+vR/u/IjsW/6ziWKoDaR8wZp/OscSsJm0di2zt/qKUvY7+tu5dAPw4DACU5JLN5tr6jVoXUXkLftlERlqezeNKTKFgv2V0nf/KK3DSFmhh0eb8AySwwAIL7HSaB5xxqrqnanP+ATLhJWNxgd+HqjEtAsBHiJEMopN067Fca4jsqRSiVlXA7mogSkkLkbGo/zIA3F9P1lJaQpTUnk020N9hvbDzidQ6Y3wdNpS1qZSV0z0TM9Vvoxk+SxCj2DzE+hVVVfdb9oz8udLCUkV6UiFhY1kuUVb7IBHeFouRAH5GlCpyf9lFxjQ8SSS5NEx0qz4UreNcuycm6bNfksW/D2cQtfdM+bUaf9H4diTapKHo/BDZWs8kjz23sA6AjzjrYqYAUMg5bYzy76sz/b7Vqk/pmZdlYxPtPRTjtfdajOQPqpjf9NNWxnRUc1KVzs/vHfJ10aaMpaZVkqmNDnANlufxGn89SBYhBqc+LGIi68OsAcrOJWNS10kAeNHiZ1u7/PcAIGII/hsdm/jZTH42zmJszY61c68JyScnZHgdH+LfVOm/sojzlfbZ8T7eO8XhctO43/NNWeGYxciS07k2SUn+2OXRGACfJcwLM74SV1C2avv/s+pOAMChUa7R3S28D2JSzUNkk883+ixHvVg62mf24vjwQjLTuJKvVajvbOO9eiBEpvVXVYx3fWHy+vhnvXgtDMfuHOb3rTqH30vFlqqzyN7Vv0SdOQObfZvzD5DAAgsssNNrLnBhmQUPkMACCyywkzDWgQQuLOAMeIBMTiehe8Tvi35ZGQvqHmmmi6quhS6A/AK6DS4oYfBxXYguiV+0ng0AiORak5o8uorOzzsaH/PoNromJguJOtTwJyNKd8HEBF0RH1vJQKwaRj1gKZUqiGuy1NZVUT81sXWE723vpNtlcJS0e8x+qwXoZAHP8ScLmG76/44yKJyXyXmfU0wXUPe472Z6cpRpuC0DnG9VbgyAX+QluzrKAq2jowwUv9BDV4SEBTVfBd8Bv3jyQyXPAwD+fu8NAICSHAYw76+nGywrjZ9RS9V3VPNcE9N+EPpEUxrxTZWUbb+9kcHRu/ZwPedV0GUp15USJJpiEQBAcQYD4wuzOuJj9hZxjywJMWlBxXxF1ogpzVyHP+/kmCvDDNw/0jFTClzuNDUzAnz3ktJhp/q5NplRuhdrculi6TJ3zeF2Bp+zs+jSmjK5mn07agAAKWW+i/O8Yu7X4XweozTovZ10CY6M8dovrp4p0a8EiZAFmIeG6bJLSvaFR3V/C7O5x9RK92CbNW7K5ft3djP1dlcn3UyhdM77QHfxjM8X5/rii2pSJXN2XsmRXJDL75caT3Vn83hJxt/SzqSAS4uOxMdQu+G6fo5xcQnHiJl0/LxsrtsFJhLZaK2oeyZnSuHPhgViirQ5/wAJLLDAAjudFsi5+zbnHyCpSVPYVOyjlH39DM4tjRJ9DloLTzX3aRhmEFctQFdFWPi2zxHRSd5b0tAAULqagcsFOQzOZRqCP8dk0hVc3jNA5HuFtU3NMfnrtlEyAKUKq30nADzXzKD3xjIyIqU/7uots/kwoDlgge/dw0RhYh5ZKsAyaY5tnRXxsS83NiapEonPvTfvJQDAj7vP4xqY+J9ECkMmO6IvyTNNTAd+/8Kt8bFjaUSrD8dYCFgRiQHwC8YiWbyOlm4yrCFDykVVXPeWkQgAIGzFlc97foMmNX2an857WBHieoWqiHznhRjsFbNT8FyNvhqHeI8TJU+ULKFiPzVxGjT5+6JiMqfN9Xw9WsGxheTz03nvxBjrh/z00neUMSX8Xse1mMo3qXjLj93bzr2VYih8aQlZkMQ2d9VyLZKH+bnKfF/uf7MF6K8r34dEEwpXum7UUs2HTMJnfxfZgVLLzyutAwC82FYTH6O7hdeSXM55qDhSwfU1VtypRI5BS+ONxYj4F5Xz/ug79MutZ8XHTglxXyZ3mRhoGud553aymW3V3Mfpdu8qrC2xJE22x/j3WuenNO9uJAOqKSabVVr9pgjTyxWXuK2NCbttQ0wsKUqQWAlsdm3OP0ACCyywwE63TQcuLABnwANkeDINF2Qfjr8+L5ts5NY2yh4I5Z2TS4S/vZfI5ld19KcvLzA0qBashr7/pvz++Ji3x5j+elcd0xcXRMlEalPpy5Y8xA359NmPC7FZId7+TqJBpWDq3ABwdqnFLkzeurafacZp1jhK86rMJCp9pp1s4F0VOwEAxSlEbvd3M/0xO82Pb0heRHLXii38d8clM17/po8xBuW2H+ll3GhdEQsLhUz7JjPjY8t3XWltY4/0EylKXqIsRETf7EUAAFURHvdEMxnA+aVkb2eH6gD4BXGAL/Y4ZQxI6a6KOyhlWO1Pq0za/rl+jr0uxDWVxAbgpznL+vt4Ldcs3T/jnEnJRMrbj3GflBXH+HlLGT2ngPtI6bUAsGeAyLjcULTmJwHJ2CjPJdYoifNBY5WpFWQPVVGu0ZVFfhHrcz283/c2kd2MWeuAm+btsDXif2QPt1Fup9UY3/Iyrs18a8Urxqd1B4AnxrleSnlXO4KWYY6htOQ1+dw/Ym2lhbzOBWGOnW9tmdPbU+NjT2aRWYSX8JoKsq1dgsn2a183dJFJ3VRG0Uix5OY+zkFNzwBgepL7YUM+729VOr+HS9PIgA6P83um4s8fd/N72zPox0hnwzzP35v/023OP0ACCyywwE63BTEQ2hnwAPFwf5+P6OUX7xkj6lMDHhXoHe8h4slII0I63kfEL3R1hbVNFSoHgHfkEu2lzjMZEUPqbWOMbSzJIotZn07Ud+8gM3eui1Beujw9BsCXw1BmEgCkJ3EexSY62GFIV9LZR/qJdJU5dUM5Gzjda8VcX1xwNwCgxD6/LqcxPva9rUStR7N4XmVRyae9p6fU1ooIbUMe0fWSKJH+4myTJc/ia0mIcCzOZ2UmWcrqaqLCH5iAndq0rq1snnF9atxVmcE4huT0L8ryZer/q5vNnQ70cd6KA12YQ3applXNYxEAflvX6kwi0rvbuR8uLvAz6QbyOJ9tPWQWve1kJLt7GGvSfwgXVB2bsVbK0uo2f7vE/7oH/CwjFbhdXMVMqMsjZDXdU/yMpOGVeZadYo2PjIGsLiGCrs7mdWzr89sSnxXhut567AK+McgxjpdwX1QYAxTKzsrkfVHb5IZh7veVOcykUyMqADi7jHvl0jwynn8/yMy+v1tO9i0peBXiLS70M88AX+iwy5qZRc/qwIkmRirW0J/LMZUtphbIknmRPEqpZfPt7/NbNbx3FRn+wgzuS8WYYtP8rsutpD2lOJykT2bLGEQPXFhA0NI2sMACCyywU7Q5z0CmPYemYR8Zq5Wt5BkOHyXCbK40eXETZJPvNS9Mf3S+/NPJvy1KuHmYmVJCulsGiEIVB/hBLWsH7spkHOKCQqLYJelElguNmUhe/HPzH4uPfWszkeU5UaL/i4qJYiVp/qEKSj88FWNdS6kJxF1XyqwcxVsuyyHqfdjkPgBgZV6rzZPMScjtzg7GBmJDRG7t3WRSEjF8bzmRXp+1R1WM4dF2v7mPGNKotbZNbPyTaAc7iSh3WovVD63k9fRNEoEOgoj06x2Xxj8jdvL4IH30o+PcpvtyGWv4dBFrYf7iKFsEdZuQ40V5jIWJsYihAMD7omxg9XgLs702rWTmjhigGkspfqHGXXe2r+WcsmJ839oa39HkM9QLlh2dMcaBUe45ZZNtKCT63txBZlE/yL13RSGR//ePngsA2HKQ+2r5Ql888pkuxkBqyo0FdvKz4RQTpTQWXBTmvm3sMqFJy/wTE1TsrzTLl9d/XxHXZK3t6/aF/MzRMTK/XpOj6TcJnnJbA9XXjJpsfZMx05RkXyo+O5VMKMMYyI5e3v80ixfWGNva0cN7em0p9++NJdx7rRMRAEB6QmysLJXnPzDC9c1N4XdU30cx0I5xMqLiTNW3+A26ZsuCfiC0Of8ACSywwAI7nRZUovs25x8gWSkTeFfR9vhr+fdfMClz1Qa8o4KxA1XCKjOm2ITtCqyt6IQ15hECAnwkO2Q+68vyGCepH6Mfetjy4xdHicolTijhvR93Mi9dvvD6nPz42EJkq7MaZpz/e91kJpFUoqyLIkTXqqpV5o9YjTJS5F8H/HjQxmwi5Ef6yU76rVYjNYXnjuTTV1xmMthCnkJ/24dqAAAlWX6lcY7Vb6jN7A6rUn5v9Q6bJ8c4ks5rnmfy9Ko0Vkxnh+X7z2hGZGsyMETkqIrox9sW21rRd68amE+XkpHUjvNcHywlsv7a0SvjYz7fSpS6qoCsTOuqGMd+E1NUxleTVTHnpHI998eIylXzIdYBAF2jvNbG3oi9JrtSk6y91hBLtTCVOWQ9DWM8x+gY79PKhYwnvaN4F040xXXU9nZLJ9mM7pkY9AXLyJxUTyGWsKOfGVWHE9opH8omkm+zva7WxW2TZOs/bOUevL6I85Eo59N9zPhSFl9BmlWiZ/nZTsrsGvJ4zR22Nhss7rLf4lv5Jiz681rWkKgeSvUsF0T8dVZsQ4z6F3X8jBQWPpBPJYi0bP79L46QofYN+9mDs2NBDEQWrEJggQUWWGCnZHOegUx4yYhN+cjnyAiRjfy0k8ZI1PzpHTVEkKpTaOyP2HF8ltZYpklNmp9x8tgUq9JXZhNR3tFG5KP2ph9axmZQ86xyWtkgnVP0KcvPvrGoDoDfgAgALikkwto9TIRYnMoYR5MhtrZ+jlG6mO+3jhMdSrdIGVT92b/t59W1f72RTZ6EbIdzU2eMrbjL23L5dyH5h7qZxSV2MGioEAAyLEtJmljSe/qv3cyg+tgqamR9vPRpAMCqNDKQURvrs7U3AQAuL2QsYnPMlwJXHGJqwpo7WSadqsJva2EF/fn5RNsHx7ie7w4b0xqmv136WwCwu51o+2APr60kROaxd5Kf/f9qHgTgt/t9sbsGiaZ40o5+MqaF2f7+KM+IAfAZiJiaqtWrQvz7klzuDzUoE1teU8Zsps+WMTa2b8yXoZfp3j2fQRn3jbm89md6F804Tnvt93N5T/+seRMAnyUURP2q7Ec7ySTW55EVqAajINXiKfbdGC/kfxMZjve82loLPNDG78XhaZOMT/J1tgYs9iJZ+W5vZmzy6mKyeDFoMb9LcsmCDpt0fKIUe4HVm2jdBkxuvjuN34EBj69/1s6YkpjHQMvMGqDZsDe7H4hzLgrgewCuAtAF4K89z/vpyxz3UTtuJOHtt3ue9+TJjHOqNucfIIEFFlhgp9NOUyHhNwGMAygGsBbAfc65XZ7n7XuZY1/wPO/CWRjnpG3uP0A8P1sIAErTiNR7rYmTGjHtTSeiaRkjoqnrJTpUUyg1nto+UgMAuLtldXzML1itxW96qNzbPMAx1lul9s+PMiPn8irWKTRZ1W9+OtFXmqHCwwNEv4rLAEC/zb0mnYhWmVvryzi26jvUjjYraWZdS7tl4ZwdrgMAhJP8nPc7u5ht1WBNnL7Vz+p8Vd9PWFXzi1285lUWWyixbBfFIpTx8ydlL8THfmKQsQ9VkB8d5rWtrCCaPjxEJviiKfv+c/WdAIDmKa5dtdUp/OQY17Qk7MdXnrFWr8nWlli1PBsivMYlGVwjNTjSmvx6gOi8MIVrVhvzq8XVdExKyrr/a4vJKveMklncXMAssT0hvr6jgfd2/5Sp346btlOCD1wMbUF+NxJN+lkyZYtJoysZvD6t/8+6N+JE07HP9fHallhtztJ0rvPeNLIV1ciUpMQAALdY1t6TddaoLJX3cn7Un+NVRcx8eraHLEb3+84j3PspFiMTy0lyHGtdToO9ZrZblt0fMRYAGBwy3SzL9BtvI0vYbNpjBYu4Ni+0c3+sLeB9qLUMsL2mafdHZU/81pr8cvAcAH6DrrMLuG/ViKxxkPNYXcw12j5Vgdm2NzMG4pzLBnAjgJWe5w0CeNY5dzeADwH4q9M9zqtZEAMJLLDAAjsJkxrvqf4AKHDObU34+eQJp1gMYMrzvMMJ7+0CsAIvb+ucc13OucPOub93zokYnOw4J21znoGEU0fjqB0AWiaIto9NEH3ut74PV5bRtyrf9hVV9L3fM0o/f10DEfTtE4xvfKBmS3zM77UTuY+bou+H5vFv6lOhSuTn2oimYn1EW9csIcJLtorZa4rIGn9WvyE+9rZuoqPKMiLD54aYaVSeSSZVlEo0/WAv56kK6ZI0vl9jvnD18nip22+rOmx1HcmmAiuWpbhFWYTnkJrxM31ErVfmsWfHP5XfCwAIJxFnDE37Pu4Gy2arspoNoVdpLylD53zr+/D4EKvHH+7kb2WfZaaSnYmRAH6sY88EUf+Rbt5L6VHlZzDDTlX7qVZ/EDOf92cWPwUAWF/oV+VrPmvKyewODXK99nXzHJubiIw3VFjFtNUOXF7KfXJOiOv8eB/nLzYJAJdbPUfXBH3tu2JkBR8tehYA8MIQEbx6vpRkmDZaNudyWTG/320nsEkAGJq2Ph62h9SrZVkmEbv2wX2mhbYmzDGvDTPW93AR53ugjoh+IJQeH1us9vPljP/8KkY2mFHNPabWx+dGeO3nZ/FeVloGXfMYv2uK6U1P+26dKxZw3R45wvOnFnHvqc3vI/XcawVhsvTF2ayV2mUxpuVhfqeVOQgA6RaDyTTWOz7Be7rHzn9ePvfNJ6vZ6vjwKO9tT/7samHNgnV5nnf2q/w9BKDvhPf6ALxcMOdpACsB1IMPhl8AmATw5ZMc55QsYCCBBRZYYCdp03Cn/PM6bBBAzgnv5QAYOPFAz/OOeZ533PO8ac/z9gD4EoD3nOw4p2qnnYE4554EcC74lASAZs/zltjfLgeDPlUANgP4qOd59a823qSXjAd7/XhF43AEAHBhPrNQlAkzYjnky3OtKtz80RfUULlTirpPHaefV35hACjM4HqPJ3O5XozRR78iyrEWV9AvrdqHu8fJFh6vI5sIZxIZ9ecT1ar2BAD6LFvlqOlkPdVMdH29de5TLYb0qCZOUPr98UGymaIIx8xM8St3W48SuWeX098spC50l5rL1y2jXDNVUg9YXObxYa7FqnSi2o4pH7h8s5zZVV/qXAsA2N9LtLc8j2sild09lhF131GyZvnVr5vHLBzFD6SNBPixg2mLFZWbSu3GaJ1du+kpmd5ZQwvralIzuKWet3iBdKIAP/b100MEfpnppuVVyPk2W7dIZYBdXUi2eFEW2dm+cSL4owPMOLq59KX42O8yJvGdGK9Rars7LJ4m/ambqqk4e2czazqUzXSiptrxUb9WY14G7/t6iztst3qO29sZB+if4D4oyeT9l1rC39S9C4lWVc5z5WX4yTrKdDoM/g7ZPHNNQ6rN1uwndTzXvgIyK/WmaR3ivMeMma+wtQSAZvseZmdz7w9az5NeU51ecO7Mr3XHOMfa38PvQVsm99pFBbXxYxRv67b4pmIcYnoT4L3LTyKrUX+bNRG/sn827DQUEh4GkOKcW+R5npodrQHwegLfHhB/Sr2RcV6XvVUM5LOe54XsRw+PAgC/BvD3AKIAtoJ0LLDAAgvsd8qmvaRT/nkt8zxvCPy/8EvOuWzn3AUAbgDwoxOPdc5d65wrtn8vBf//vOtkxzlV+11yYb0bwD7P837ped4ogC8AWGOLElhggQX2u2FvIIB+Eszl0wAyAXQA+BmAT3met885V+WcG3TOKdh5OYDdzrkhAPeDD4z/81rjvPFFoL1VQfQvO+e+AuAQgL+1opcVYIYAAD49nXO19v7Blx0FwMB4OtpHfdfKgePW0jaH7gA1pMlJJi1fYmmRLw3RDXVDLt0KP+qibMO7FnMKsQnfpSK5i809NQCAhl4GD7PNDfJEjK6qqEluDA+QOqek06XS00d32S41RsrzC9zW5dP9oeKtNUWk5bnWDvczlrq6bYyun4cGGFSsHaKbY2qKGOAPqknj7+/y3XlF8+nOULqlmms900k32eJck20318ndJhG/1ArblKqrQG5lqp8C+uVuHnvH0bUAgAyTqE+NmgyJSYHHzC32kWVMj5ULTgJ8KiBLTAHtt0Bvuo0p19UL3Qwg697qy1hYwECyCsdUrKY1BYDnOs3tWEI3S69J2Rzu4ToOj9PFOWAyL58u5X3JsHRppcf+SeWjnOO0nzr+MxPzk7tRAXg1g3p3MaV25qea3LnVCa7JoFvq8BDdf/uGuHd1PwA/OWJfH91My3I4/2tyKc2jAH39CN14P2ulu2l/C8e8bhETOc7LYQA8P9l3nx4Z4zG7Bxm4PscEJA+P8P2Lrahv0ORnagd4DrWf/UwNU2yPjzGhQPI6gJ9MIVn5XRkziyO1J2s76WZVK+SMFH5n1uVx/ZOdn7ghmXu1nVbrgntjawEATSPcU9+0lPGXbK+pCdtcMs/zegC882XebwCD43r9eQCfP9lxZsveigfIXwLYDxa33AzgHufcWnBROk849mUzBizt7ZMAkFZ0YowosMACC+zNMw9vfiX6XLHT/gDxPG9zwssfOufeB+A6nFzmwS0AbgGA0OISb3e9j26KiomOHjhG9LyhnCjvI/nPAQB2jpL5XRRmmuGeMSs+sqDflgH+XUgIAPpyJPVNZJtlbWNzLSCZHJ2ZJivr7GAQMqmPy1xYwudjKNUv9luUSbT5X0dYSKqCut9Ykyw1oSq2dM2mhKZOAHB2FVFYpzX1SaTIGanGCiROaChPshzbOnjtrdlc9nlhMpY7Y0xl3tJFxKfge1Gmj+hLrcCxIi8GAOgY4Pk7xvh7lQWWQ5byGUrmNbeORwD4Ynn9lkSQ2Iq3c4gAa4O1WFXb1sVhrt/VEaaoDlkiQecoj1fbVDVIEpJOPI8CvrpX7yrfCQCoGyUSVsvdf6x9BwBgjQkirg8x6Cv5ejVRAnxWtTiD7EBNyRrHiNglx9FiooUKGIt5SNhR4yRa/yTnrXv3ZCvnJ7mc9dl1PJftixW5vLcX5ZNxXBqamazw0ogvGSOhxQlb37tMul7CopsHmYzQZev7yUqmx0q6/+ftLHxcFCKzKkgonHxvHlPd/6PlKgD+HizMtNa2Jji5oJBMRWndYlgrrFFZYu/xUB73kCRVllr6fnMar/3oAOdzyORRJAskKZzZtECNl/a7UAeirIF9AD6iN62KcgFmMWMgsMACC+yNWiDn7ttpfYA45yIANgJ4Ckzj/T0AFwP4HIAeAF91zt0I4D4A/wBgt+d5rxj/AIDslHEsrfTTB+Uvf6iFBUzHB5jG+2iYKZalVjyVZDISj3XzOLXevL6K6bOSZAd8+fYHTVxQqcBCwK3DRJTy6yrmYbVfyKgiq2jpIxIV2gKAXw7MLEZsikUAAIUhork+E01carEbITm1WJVsirI78tL8RlhK8ZTNC88UmDy/hCnMYg0LTCBQab2y95UxZfWBLr+oS+nR9dbgaEExkaSkzfcMMX33fSaxvdIKBndZrOHpZOZGSAzyUL3PFqIFvPbafiL4sWzem98vJgLeag2+9nYzLtA3TJQuNqSmYCoeBIDCbEsNtnU+cIDsKyOZ86oxuXkJAi6NkBmKAdzbSUa4wlrDrs5siI/9/RayxwUl/MyhYStObCeD6xvgPVTK+IYc/r6tTqJ/PIf+Szqv8nh87MMxxhdaO7l3VlXx/I8bUzqSwxhOncnVpBlb3FDM+X19gEKa6XadURNyBIA9fYy5DFnBaUMz13vdAjK/fotfKY7xhMm455i0TY4xD62RWtwCwPPDnF+TpUeryFMNsaqKuN6KZ6n17rMdvLe1WbwuSfkA/j79RvU9AIAHh3gP+0xMVdf+lYZrAQCRNLJMMdfAZt9ONwNJBfDPAJYCmAKD4+/0PO8QANjD4xsAfgzWgdx8mucXWGCBBfaaFjAQ2ml9gHie1wlgw6v8/VHw4fK6bRouXrgFAI+08uOLI0QdT+7m6wJjAV89SJ9saQ6RjfztQi8q0FPzJ8CX/shLI3pLRLYAsCpC5CVkr8yiMWM1Lb1EYSr2S5xvnbX6VEZXbJBIbZXFKUrS6cdVQyDZ/CwifhUeplhmSl2fHyNRZlFNHmMbC0ziXhk7ErJbkc9zHR82+Zduxl3UqOf4WKFdn++P3nGM6M8Z65L8yPAk1yrVkLwk7Xd5ZABfOM7YgmRW3l5Oxjcv5Gd4HR/k/PosU0rMqG6c85Bw4/UVjIVIuLF+gNeuwtL6IX8tVkV4jXfsosBkZhHv5Zpc+toVW6rK4TUXmvx5k7Gxiiyi8D+OMmtv+5gfA3l7ETOihIR3dFXMGCsjj/NXa9ifN7GYMcvavsYsoyvFBA/FOgCgqZ73ZP58st7Vuc0zfoctttQ9SnaoJlaKa4h5SP4jce8KoYuFxfI4j1GLE5Vnce+pxbDaEKuVbK3dBxWBDkz4LQU+WEQ5/4xKnvelfmsDbQxaarb6j1hSLWqFe6SX1z2a48/3rDyyqhdHbX/YequFQ7GxldUh3tNsE9lsSWgONxsmLazAfjdiIIEFFlhgc8qCLCzanH+AFKQMom3YR4MZJuWhxjpXryXCVV3C/15xJwDgwCgzt+6fZGxEktCqKbmw5Fh8zG5DWIpxqC4kK4loSc2QJPM+bJLfKSZi6JL4uZEJez8hBjIxQbayrNTkULJ5LrVBPZZCtCWGdE0Br+fZGH3Mv7+Q7Vu/f5T+9Ouq98fHVu3A/mb+bhvitXUfo7/5rHWUiThibU7VXrTfGvW0p5KddY4wG2diKiFLaIT/Lp/faWszPWMNtFYfi7I+5RETU1QNgdC45DJ2dvmS2yuNEW0qpMjg/gH66vf0854tDRGNb40xxlCRGeP8jPkd7CMy/qPqp+Nj7hwig/vAWmYHCQmvy2J2lRiIxvpUlMmCX+2kkOamHIbiftbPmp+GMb8t8QYTWpSQ5/xcsimJb8oU+zq3kOeUOOCP63nvJvt5/PrzmuKfaRnltXy0krGk5Sbj/qyJbkZTyJRutGyyrf1cE8m+S/RStRzF6X5S40V5VLcYs8yyBqvF6R3hHhSrPdpXYO+ToWRZfc6qKO9TpzVWK0zoHFs7TlagtgN/WMyaEbVs1vwlvaIMtFU5ZFBPTFm2WQLSVx2W7rP22DOtZOEfm0/Ws3eI+0TSLI0jMzMX37B5gQtL9rtUiR5YYIEFFtgcsjnPQBpGoviLcl/Y7qt7rwTg1yV8ZBERuhotXWYy6eVWWbw5k+yhPI0+7n19fjaQTHRVQnvy+er12VYtvijE9x9pZp68ag1C6dYEyhDowd7i+Njj3YRtmfPIZo52ESmPjZjkehHneX4hM3OE1IozxII49pJ8MgEJzgHAQss+ic4nsxCShDVq2tfGa73ahA0lsZ2ZzjGE8EaNOZWG/IyY3gJeq3zszUNkEivyyQ7KDck/NEiGd3crffRXlfBcYhVbuxhL6ez1WWR9Ou/VdXlUBXi2iwxI2UJFUc6jIYXoWn79D1fxXottHhgpi4+pdStP532WFPmjJoCojC8xvfd2fwgA8INllA36r2626lUdia4bAO7sYiadYmWSnZ80xnZdOTPRJcG+bYh7LmTZTCnZXO+sAsZlEhlq+VIyCdWSqAZC17M23drROt7LgjRex7CJh9YP8jrVlGtxtl/l/lJ/DQBgn2Wzzc8lG1AcTTGHvBTOS9llz7Vw/hJVXB7hPU/UeVJcQvUguieKY6lGQ+2hLytgXZZaNtdYTZIyvgDgiSayEtX0VIV5L0fHeU9uPXY+AGBehJ/dbmx4aMxvxTwbFqTx+jbnHyCBBRZYYKfbggcIbc4/QJKTptEzGZeGwfwC+p8Vb6gfIepelUek9u0Ys7LU5GljhMheMtlFVoX7saJn4mMqr1w+7G6rotU5lKs+ZUxFVezSnhqyKuIryomyeid9na2X7Bg1ihoZ5LFxHa1BHnuXNda5br41qTJ2sG2gBgCwPkK/enVaQjaTZU+1jebYPIjEkkI8V54195Hu1xdXMb/+B80XzJj/ccvhXxL20Wu9odSm3ggA4IYFzIi6IHwEiXZ7p8nNWwXyll6iV7WWbasjYg6X+r551Z38dzPjD6oV6Bmnr10ofI1pIQn53tvB7Ktrixgn6oO/zpLvX5tNVN0Mzr/O6ll0rV3DPMdiy5zabrGy63J3AgC+2nANP9ft1wmtLmEsQMzj0zVsaCXWcGyE9+HSEFG3YmcPtJL9VBValpNlnT11xG8lUFFMlC1GcZnVWvzCKuG7p3mNj8WovCA2dnggZGvHzDtpkm23uBEAzMtmJt/bK7heykDMsL0oBQC1Lzgntw4AMF7Cczxdx9iDGkmV5fu9i9ZFGcdRq+BK25frM7lP6yaMKVnWnr5/2SlkSjFj+dWZPfExr7ImcM0jXFd971JKee+er+PeanARjm37/Z9W3mUjfBGzYUEWlm9z/gESWGCBBXa6zQseIADOgAdIbupIXAUVAGo7yDjUuOhgMrNYzglbPYK1zJSfOdUyTVQRnWP1DNutGRAAZFlmlxoxbZ0mWlJc4vIc+rj/pY7o9ER0oqyia3NYL5AG38e9KotI7d8PXs43hnhLsvOI2JcXEH2rxa0q6BdkEFn2pXLe0pp6PLYsPrb89VdGyVqWhDjWiaq2baOWCTVEdCoGpayteVZHoqwuwI/ryN9cmsb57Rrm2rw9ZycA4G35vGY126ozVqT4i5hHUdhnIHd1rAUAfLqCmTtPDfCaBs3nHo8DpfCcd3eytqPd5qs6i39aIOQJPOxRRUBxkZGpmX5x1aXItFaNE2QaqsJWzcTvL3kxfqz0yuaF+bcftTCraqEp0qqC+mFTUtb8+0fpy9d6p9vv5FRfgVb1EfH7O8z5Ry0u8WAfWZeUdB/pJqu5uIBMcMIYScNw3oz5A8CqLDI41Ut87RhrpP5i/sMAgGcGGBO7PMq41bhlUCkLKho2DS/TiFMNB+DvqS5TTLgqyu+ImpVJT0vzUUxPLZxvjG4FAPy/xivjY6oOSdl5D7dxXygmUpTHMZbm8d69t4BMVvplgc2+zfkHSGCBBRbY6bagDoQ25x8guUmj+PHxc/w3DhHxjC1gBpTYQE7y6IzPbW9n3cFAPxGRswSSrCyiscTaEvmCR7KJUiuzYgCA50y350A/0bQyeD5cwfoDod2f7yQifqG5BgBwWaUfJ1hpqrV/uJgxl83FHFOMqHEwAgD4aDHrKX7eRcXRFVnM6HnRzq3smoI0XxFVfu+w9UIZNtStquxhyxpSC9l7G4hey6xKX5XSu+sYB0jL8pmeYk2qWlb2jPqY/Gc7GZWyaFSXoyy3iRF+bnyIc3pbja+ZqVhHzCqN3xthJs+/DpHhbRvw/fgAcH4e61nKMulXvyGP/TfE1gC/pe2WFlMYNoaan+VrQwHA+ATn9Xj7YhuDDKA4i2uUn87jdxiTBYDamPW0GOW1SFVAigNSng2ncg7bO7j3cjK4Np393LPKflta4seaFJupTCXTk4Kurk1spn6Mc1ibyxjP4x1E+FJaUEbd0KjPtMKpM78TN1Wyyn7HcA0A4HA/2XtVOs/9nhzGuZSNpXqnZQVkwwuzO+JjKc6nNsmqw5FJ3fhThU8CAH7Ucx4AoNHqVtSbprUrEv+MvpsPWO2WMuF6eniN58znmPmmB3fM+pQUpsxaC3AAgBfUgcRtzj9AAgsssMBOtwUxENqcf4A0j0ewPsNHUrHFRIgZaUQny3OJ5uQH7RgNzfj81CiXIDPCMYaG6GdfXOAreFZkMhNGmTg/7SJamjLfr5hHijc941zqaZCcxjqBiUmixcI0HxEpO2XXCBGaGIf6JmjsLEdUu6uTbEC5+9U5nFs0mccruwzws32UpSb11RW5vnoxADxwgIguLZMIuNlUg6VztX4+feXdI35WU7dlK6k2RP1V5DcvMw0vId9f1VLNNtmq8qtLed2l2fz8Y82L42NX5PCz+0YqZvxuNVbYa9pX6suiniPvMOaxa4QsY366j4ilbTVpHRzFEhq6/GwqgOgSAIZMRyslzWJldh86rOpamXUAcIGpFjxudQqdppz7zirGf9blkBU81cVr1D0dN620/DDvnSrU76ldER/7b1Y9CAD4dv0lHMs6WIpdCm2rc9+wZVJdXcy4149qyc6F0pO6fQZyPC8641rmZTJmo+pxzbNhjMc9Ocx1PTxAZC/Vg0MDvB/nho7Gx/7q8asBAE3tXMcLFnCNFOvQd+TeAcZwWi1momxE9azRGgHAiDEeKSI0dXDscstUE5NWHOU3rWsBAFcUv6qgd2BvwOb8AySwwAIL7PRakMYrm/MPkKzkcVxWdDj+ujdKhLijh0j9uTbrV23+0osLiJJu6yYyS87k+9KkKsgjivmL8gfjY97XtxYA8MMO9n2ostz0vjBRYM+YaQRZttbd7UTbHy1nF8RPrGb84ukuItQdfb7/fJ6hZCnKinnkmlLq0/XMtf9OyqUAgM8vfgQA8M3jmwAAl0SJ/Pdbds7zbX7HuXTrwXFtKZGiWMNwiEjuilzGHZ4J8xzzo8aGdtcg0doz6HtORIPZVtms2pjb2lg7UqgKeUOSyzMYq/nAImbV/Kp+LQDgoiLGLaQme1ZufXxsVYnXW48IZURVhmIAgKURrlmpsZytvWRvz6UR4Qvd/qZlTXzMpbn8jHqGNPbwHOFsi9FYBtS4odveGNdqLEZ0nlU8MeN6CzJ8RWVVty+09QtZX3vNY3c/GdQSq8nosZiIeo/IFJNSfAkAnutbNOOYETtm0LTELsplPO35flbrqzujlHbVpXHAepLkLOqNjxWyGFfXEK81N5nX1DTOdQ9ZTcZ+i1vt7JnZ1/zIIJnIpnzuwWPjvoqwdMi+EHs7AGBPFxlzfQbXfZvjmkRNreFoD+NX6sipDMGryw/Ex9zdx/M3mmbX25bM7DWneqc12WTMykJcmdGE2bbAhUWb8w+QwAILLLDTaYGUiW/BAySwwAIL7GTM82Nl/9Ntzj9A0pMmsC6rLv76yX4WF8md1GZpmfcf5/sL8ukemDQBtupivpbY3LlRBvueGFweH/Mz+Swa+3I73UgSgutMp7tgXwfdTxvKSJ3bRhjsvbd7Lce2VNYOS6nMSfeD/rc20vXzoQrKh5+YX37uKrp6nonRPaNCwT8yuYx8k/OW++F5+C4suXyWmRvp2Sy6quRe2jtCV9onFtPVJsmN0o0zA+DjVoyW4vwCyMoMukKODptcygjdB9PmRig02fAtA5zPu6wR01QVg9hrshhYvtXawa7M8duhKvjfOsSxFlpDKbm55OI6Zg2wriqkm0PFihKUvKl8W3zMW47wPP29Js2fQvdRrwXFZdF8rueScrpQ1OhqZTbX8MBQmV2/L7GxuZep15OWVNFiLY6VWi0X55ZjDEInW+OojdW8nkvzGOQ9aGnfShMHfJn81j6OqSK+Mks++PoR7kn9h7a6kMHnpw5yvzhrKVBcwOOX5PmJBUoVV2KDGjQ90859UmHSKxknuH91z5dlMxljSx/v8UeLno2PfUvrJgBAigXiLy2nq+1gvy8kCgDbt/NcF59DN6uKBSWcuKLQT/g40G4Fm+biU7M1yfqfbXI+SnX+aBUl8CWzH9js25x/gAQWWGCBnW4LCglpc/4BMjSVjqcH/C64KuoTahrqZ7AxM2QBwRb+PcXSfCXyd7yPgcM/WcDA3B2DfsDwn9sv41gmpXF7MyWoB8f4ujzii8gBfqC1wlB6lqWZSqBP7WgBPwC8Ip0I91GTP1fxotqHLsjiZ2sN/e0ZJnuQHIUKJT+1wG+itGeYgUohsFW5RPn9k1yTQ1Yodm6UkiySnRic4HVdX0Q59bJUXkfY+czpyDjXsS2Z6ZcxEwIcTeGW+quK++04osatw0TpG7OJYqPGmKqsVezddaviYycbalaQ+fE2omnJtV+ZS/G/X3ezQPPWI0yrvqySyRRqJJQobX9WCdfp8U4yuOwIg7dVEZ4/ZiyhJJvMSWxC7FHFczlWKBlKKExNs722v5PXmmENl35ZR4mVWLexHPObT/UwlXZ3BhnHeblkmQqiJ7ad1fmXF5PNNPVzvfvtHp1fynv3ZAOD6M8f5zqLeXgTvA6lZBem+4Wm8uOXFpGdSBLohnKmH2/rI7JXQF7NvzQnFf0d6eWe/EXyxvjYKu5U6rUC8dXZXO8n6znfymVtM8a8/wiZf3lBDADwYq3PqPNM3kf3RvN5fwn3RVEy792/NVGS5YainQCAPcO+rP9smIcgiC6b8w+QwAILLLDTa0Ear2zOP0Cm4fBiZ038tdIxhZqyc4hsVEC2uoIofL/5U4/00o9+QQmR3NEJSUf4qZTPTFv70DQioLiP2AqYjjRwrJZcIqKLKoi+itKI7AaniPhzUzmnXx1dGx/7s8uf5HsxomkV5ElOQlLadf1Ee33DHGvYJFhKN1iDLGMJR6Z8H3OTCegtzaRfvHk0AgA43EPEuDCPTKjApB4GJ3jOKwvoj76vk0VeSm29uXRLfOxv11JqXanCKrSTsN2dMSueNKmNK3PIGn5gqdBhQ5wDxoaSElJaJQ9eaZIqkvN42uJAatd6WYSxj+ujOwH48ZR+K4zrzPHlaK6LElVfdhE/898NbBClWJmaVZVlcD23d5O9bZsk06sOcX0lwpia0PRJcieRLN7fUUt37oup8JLXU1NBFtltabOfWkK2qHsn3732CwC0jeXYPMliNxQzdtRt8vRC7gVWjChuq3bKSRbfUDxrV6+Pxtfk8bugwru7W3i/VZSoeV5TxTVTIeriMOMoXSY5I6ao5lWAn0LbdIx7LTmX82/KiAAApqfcjHM93cJ9vtRaO0six5v0m1T1dPJ+rlnebNfO9W4aZwrwQDK/E/rPvcHeP1E4czYsCKLTgpa2gQUWWGCBnZLNeQaSBA9XlvhSBX2TRCEPNTIukh8iMmvpJjs42EG//9ggUUlNPrNpmkYiAIDbY2yAdHHYH3NtiKhP0gg3raRkxmqLPzybZxIWo0RI8mErq0nigItMbK4y6hdzKZ4STrW2t5bpVJVOBlQR5fxuG6JE+KTJoSyoJFKLWhaWGvdUp/nxlcZMspZbjhGZL43y/JJiVwvWX7fRV6+4kcaoyuK5heCe6/eL2noHiK7nFXGetS28Vs/Yw5MpPHZhLse6tZ2IP9uQ9IN7KK/+Z+eyMPJrFffFx/7j+hsAAAe7eK8kL5OTQ8Qp9nJkiH+X/IV83l87cAUA4PyC4/ExJVW/PcZ1uqjQ4g7WqEkxhWqT89ibTJ/9OVFm9uyMkZEUZHA/zUv3pW7WZfGYrVn019+2ma1Vsxq4D0bKeU8vKGSG37Fsst4HOrgG5ZZ1dVWELO3bjZviY0fTec0brPHZIx2M4bSY3IyylrR/epN4XySbo9gHkHbCa+D63B0AgK+3cL3EpJThpbayipmdZ7Eytea9tZn76h0VZHdqPQz4hbtrlnNtxAr0+6DFIt9RSoHGVMfjn4txjGqTaBkr9/+LkuikZGnU0mDXEO9pjRE3scon27kHy0MzY5SzYUEMhDbnHyCBBRZYYKfTPC94gMjm/AMkPWkyXjcAAI2T9MPqBrf2EKmlWu79lMVCiizz5HgX/aQXVBEdSo78kX4/K2hPjDIMEavfkPDb8SEiyd8rYg3HoQwet3eAGVzKPDlykK9HV1sL3ExfTPHZo4yn3LhyJwDgqQ4isOxUZmednUf20zNMZLmkmKhLja8k4y35bLV3BYBVJhV/2RL6sPeaKOHleXytJla55rtPMX+04i/ym6v5VmLg8Hvn3AYA+EUPJWHOipKN3V/PLBrVuuxo57V/ZvHMNq/XrSbyPD+LWVktU/5WvLaAf9vfSWScbDUb1blkbvXWhlZZZWrFunWQ815eSHZ2dMiX1rgyn9l1i0uZ9aPYjIQmV5VyrR7o4n2vshqa5zotq8nWQmugLDgA2NrFf4cl75LL3yNltl7pXL+6Ee41yb9LDkbCk2vTObcbSnbFxz4ywpiW2Kz2jmTad9TxnlaXkAnqXqrdcjSTSP5dpTt5TmseBQCj1iDqk6VPAgA2D3HviZU92UoE/8Fq7u81GdyLMWuje3khWbqk5heW+zL0Ezb2A91cz0vyGNsTy+kqIFuXUOP51gpZbXO39NUAADJTfruFgGJ6ip/kp5IVKl6YZq0DdM/Gp2b/v7kgiE4LYiCBBRZYYL9j5pyLOud+45wbcs7VO+fe/wrHfcQ5t8051++ca3LO/YtzLiXh708650adc4P2c2g25znnGciklxRvZgQAtQNEd5W5MQBARwqRWpW9lkCcMqrU6GjSEOnRYaLW/TE/m+nSYqKjglSivz2DRH0bc8laFqR2zfj9ezn0LX9g/0cAALkVMyu7jw/4EuIFUY653PzKytT52ja28mwbIFJTNk19bCbDunkl0eGP2+l3f7RhSXzs987nPK4wlP9QjD73jnGOqSZOYlTzrD7l7Gzz1VtDnp81Mi50dakvbPfSCP39Wm8hskX5HKPTKrwlm75jkIzqSD+RtLJ0/nWMTaIUgwD8LJ+y3Jm+a8UKDti9qR3iWGtyyB5UM/N7UWaLPT/s++TVVGh5Gse+35QGVOn9WC9jCyUZZKaSS9c85+cS/UYsk67VKu4BIM8EAdXyWHGJ2iSuzYoSMouXmrgGqhO5sowIXkh6yPagWBngi1H+2d6bAAB9vVzX1AzuW8nNt/fznq4q5rnEGiUlvyqdDHE6ATN+t/3iGcfW2b5UDKTYamKmTsCZjRNkUqoDCSeRbd7ZvjZ+jKrpVe2ujD4pDqgl7/UR7tGnBxmz7J3g8V2jvM60hGy31kGuuarvK3N4jvPza+0z/GxJFud9lknfHx/Kx2zbacjC+iaAcQDFANYCuM85t8vzvH0nHJcF4HMANgMoBHA3gM8D+ErCMZ/1PO+7b8Yk5/wDJLDAAgvsdNubGQNxzmUDuBHASs/zBgE865y7G8CHAPzVzHl430542eyc+wmAS9+0yZ1gc/4B0j+RGfdnA8CCMBGwMoeUT/6ZssdmfE6V0esy6wD42j07m+mzX1jsZ9ns7Wf+u7KS+saJTn/ZzFqH/+zjZ1ca+nt7IX3YV5SSLbZaxazQq2pPAKB/kKkjkuN+fwH1ezYtZlX1tjb61/t6iK4yQkT0/7CaWUsZjmj2PUUvAQB+On1ufGy1cW1PqCsAgHsPk4lUFjCmoBqOdxdQO2pgitcnP7Zand4Q8sHPT/qYPXaogXGe0uIYAKAokxky66JEf8pAU72Csopi45yTKpXb+/yajdYBIk0hzEqrXpYSQEMHEWVHJteieYDXuTKfDOC9Ydax/MSq9gGg1phl2NZ3vjERoenPlHB//KCT2WK6V1qbmky/LggAroj4a1E3zvs5ZvLtn654gtdeSvb77WNsBrWgkHtTmmjat2o1/B/tjPlcnbcnPvbuYbKWdGvBm2vV2JJpV8aRGGDTINdC1eR/nsfMqR+YQsNai2MAQE0Wr+meBssGC5PxKUZzTTnXsXGMa/R0D+tw1lvb3NQT5OjXRxrj/1YcZX0e3xux15Lv32eaYhdmc5+3WI3SihAZV4tlReYnVM4XWfynw7TmluXw+6Y2CaOT1jRuJDTjd2JMaTbMg3ujD5AC59zWhNe3eJ53S8LrxQCmPM87nPDeLgCXvI6xLwZwIkv5snPuKwAOAfhbz/OePIU5v6zN+QdIYIEFFtjptjfoweryPO/sV/l7CMCJucd9AMIvc2zcnHO/D+BsAJ9IePsvAewH3WE3A7jHObfW87zak571y9icf4BMTCXhrgOr46/Pm0/EpRoHZQfVpNCve0f/WgDAY52MFfx0kPdxcB/9uV4VkWdSwhYpzeS93NLJWoKhMaIpVfuWmRbW0jAR0fnGavYNk82IsezrIQpclOfXagyGONaANQiqG5+pbpuTScS2rrjZ3uceuqeLzZI+VPw8AB+pDk74VbebDJF3T5MFKF5xjqnA7mojCryymkxpylCV4gIPm26U6kPk6waAR9ros15SxWtWvURFmq9SCwA96Tz3dlNMvTSffv+OCV7foUHGM5TjD/hIWJlmYh7yp0vHTLGE3iGu74JKsor3H2S8UbEJwK9OPxieqYtUkhID4NfRxOdtvni1Vu23+iLV+Oyy9QaAh1q5TrFhHhO2BlxiRIolqKJe9ThSHfhuC2MR46a0uy+jIj62lJ+XRZnhJKZxqJeMqn+U++asIu7ztxWTvXRNcJ/80hjJKmuq9BtjjoDPrGM9vEcjY9Yy1to878ieuSbSoJJmVvMIx5ZKs7TUACBqmVGlaTEAPlOWOnPvuNWrWLxoyFjYsz1kE9XZ3Ed37FgfH/NdaxkvWWi6cDutMZvmpX1QUsT1buiLAAB+eJys/LO+ZN7vug0CyDnhvRwAAy9zLADAOfdOMO5xhed58f9gPM/bnHDYD51z7wNwHYD/nI2JzvkHSGCBBRbYabU3vw7kMIAU59wiz/OO2Htr8NuuKQCAc+4aAP8N4G2e5+15uWMSzANmT0r4LXuAOOcWAdgD4A7P8z5o710OZh9UgVkFH/U8r/6VRwEw7ZCS6mdqKOf7PFMD3TNANPexQx8A4LeMPdxE5KssltAKIp6cDKLej5c/Ex9z9wjR5pQhHWVErSogwsy2zK4nrPL1pgjjEX9ewD4bt6WSLaQkETENJmQctQ0RKVaZv/+JXsKk95Yw7iBFXdWUVGbzuM0tRPSPZ1K9t98YzGVFfpaeagd+UsdajY52IsaMMOd7ZQ2PXZ7FzJh6Yz/zrc3u9cX0o++2rLMdg9XxseVvlqz1UcuIkq9bWUpXRbnnt3hEntsHOIaq+9NziEwzkv18f9VF3H6I6LMoYlpdxvzOLifaVh+Nbx2la/jgYCkS7VCnHwP5/PJHAfjrmWcZW79qYRW+sq2ksLymkGvSZ9lYUhGQbtjmvvnxsVVvMDzAz6o98pZx7ptLyrkXxV6WZXPfaF9Jt217G+e2JpIaH1uV2dcX0I//SC+zx8RInqvjur4wVcMP2BKo/8qRMe4bZVKpqhwAFoQIVIuXk53Ptyp8teJtG+c9XB/iV/DoKL8zh4c4plQFlMF4Sa6v3qA6Gd3vgzEypkuKmGF2Tpiegtu62A9H2WKKI6n18ZqFflxlWzfHvLGcTESKv3WjjNGIicjkKRgffxP+m3sTs7A8zxtyzv0awJecc58As7BuAHD+icc65y4D8BMA7/I8b8sJf4sA2AjgKQCTAH4PjJF8brbm+lbWgXwTwEt64ZwrAPBrAH8PIApgK4BfvDVTCyywwAJ7ZfM8d8o/r9M+DSATQAeAnwH4lOd5+5xzVVbPIR/q3wPIBXB/Qq3HA/a3VAD/DKAT1Nn8YwDv9Dxv1mpB3hIG4py7GUAMwPMAlKz/bgD7PM/7pR3zBQBdzrmlnucdfLlxACA5ZQrLSvwK2LLMGAAfyZSauurODvp7s1OJmtIziXhVmS7/7yVlREjbhvw+BCHLIFpbwDiEakRWhelXlj7R6ihR6/PDrC5/NkZG8p5CJlwIKanTHgB8cj67uEnP54P5jGmo38Y7I9Td2tlzPQDgujwiUcVohJzlS07UI7qqiFk0q+Zznl+OXcs1sZjNOkOW3zlGH/z6QqI9ZdBcYVlXihM8P7g4PrY6zcnUtVDKrqoWH5omKlcNTLvFcDKMeTSN87gLcv3ah+OjZA4TIxwzNcpzRbPIGna0ls9YA9VRCMGrGnu4V2q4wK0NBG/XlnJNlPm0IZ/I94EG3sOxce4D1Qdl2tg6/i6LPS3P9TvlvdBTwzWxivP8HLLcshDXYsKbidOeNj//sLG48/KJxiOVvL5DA34N0uX5rL2JJHPMBlO8Ddk+3lDF+bdZNps6RT7WT2a6K8a1UmfFPT1+DEgdBxV70T36VOGTAIB7BxhbPDzCvRizuNCmCL+OX69ln5wvLr4LANA95cd4jwyScXRbbUbvEH+3G6t5sbsGANDcGwEA7M/lOcqzOadzirk3n2v2mZ76xOyzXj05qfxeLsnivdA9kw7eTQvJVJ7pXIDZtje7DsTzvB4A73yZ9xvAILtev2LKrud5nQA2vBnzk512BuKcywHwJQB/ccKfVoCpagBI4wDU2vsnjvFJ59xW59zWyb7hN3O6gQUWWGCBvYK9FQzknwB8z/O8Rudm0LkQSLUS7WVT1yxn+hYAiCwt8pQlBfixgvklHOp9ufQFf86Q/R6rWt9fRBSj3gvb+8gI1We5Os3P+49Zr+h9vRx73JROd/TzM2VZ/Mz8TJ7z4Agd0cqz/3UXM18uijCte1Gm35c6y7SJajJ4rOoSjo8Rhd/duRaAr8P1381kCzeX0vv3aA994k1DvK5E3R/pYu2yKvCiqPUnMT+/dJ86Golq91ovlXWVRLXfsk6M6qz4dKuP5MI2H/XozrG6ia4JgqP3FJF1qSvgvjauXSSbx/3bfupw5WTy+tuj/m2u7We2WKbFaqQxNWCZVNPm6xbjGBkiO5i23hEFIdYObFx6LD5mh1XGL0wnW31xkNfSZX01RsU8rL/J4T6uv/rKKxNMKD0x42iR7TVV0Kv2RXGpJVk8pzo7/rydMSn1IFFWk+oqpEkGANsshqDfKyOtSDT1GFcHy3uaeE+ls1WQQYC1rYMMV/1EAKB5OAIAmG+xEGnKiXmodmapxWzarTfJC1aztCxK5N82yXGkKwb4tTlSbS7I5T1R7Ev7ZkGY+35hFtfu2AjvvfqdLMz3Mxb3NPN7pbhUvK2shXU25ZCt3TnK+T/UQlYpXbDZsqAjoW+n9QHinFsL4AoA617mzyeduhZYYIEFdtrNQ7w98f90O90MZBOAGgANxj5CAJKdc8sBfAfAR3SglfMvwCukrgUWWGCBvVUWdCSkne4HyC0Afp7w+vPgA+VT9vqrzrkbAdwH4B8A7H61ADpAl43oLgD0jZLeHhqmy6RulJT4ulyGV37Vw8JBifp9poqyEwcHefyLPQza/ajrnPiY86ypk4KO7cM8X2XmTImNqAU6H+hl2KbCAoIq/nqsh5S6wIQcAaA1mVRfwoCtWXytdrSF6SbgmBD8BICyFJ77fUUvAgD+bAfF9laX+C4OyUUohTLDZC+SUrn793XQ/VFUae1ajep3TdKd9PnShwAAO0fpKjoW8SVYjvfR1XZxCYPfDzcxcDkvwrVSQ6zcZLpQrp5H94IkKmLp9DuMWCD5uXo/WKq03ZF+HrPXrmN+OV1Fan97/Tw2YFJqauMQ1+xca3ykYkcAeHsZ0+O/28QmSJK8UcGpWsKGzPXz6conAQDjlqK6z6Tw1bxKqdsAsLON7lAVXCq4e1kBt240me6bTltXuVyVdro1VsO5WCtcBcgBoGmI6/XBctaDKSnhR/UbAfgtjlcU0U0m6Q+lQkvO5sLSGAA/FRbw3XPaa1fkM8FgfSYD2Cut+HCv3f9IKu/lC+1MMFlhhZJK+1XaOACcXURX1Use3addffzO3GHyP0sjnK8C38tMNFLCqHFByh5fCDHFZP0lT9RkRahKJHlsit+v9y+l+1QNpVJPSPgIbPbstD5APM8bBhCPejvnBgGMWrYA7OHxDQA/ButAbj6d8wsssMACe10WMBAAb3Eluud5Xzjh9aMATkpwYGosGT1jmfHX5xUTfTaNEFVJ2uPOvUy/LCkiMotacHHLkIKpDHyqSVFiUZKCdW8v2MmxJ5h6WmGNdNSkp9KCpBcVEjXdlEskdHsfWc+2XqKxy6O+LPrWgRoAfhMcIXQVSa0xNNg8fBUA4F3FTE08NMaAohoO/evaOwAA32i8LD620jPnWWvSrS1En5npftEeAHTU8XpK5xOV/+IYUeLBIrKyNTlM700M7iqNV6mdV1UQbSsFVcwjx8TzFFjOtaK5wgyyDMmrrCj102IlO1Jo96rH0GvnYGjG/JWi+r+qHuRaZHO+alo1lpBQ8EIv77PkwXXesiwmFoid6Rrv6OQ9UyBcUvLn5DAwLyYAAD9adysA4D/bmRiwq5Pz2pDDvbh1kIhdSQ0KXu+3oHBWFvdPRYTnWBzy09J/1c59+2DGSiTa4gjZ2P4prve2Ot7bsiKOUVnKvVhtIpBtxkTeUbY7PsZLMWMSJrEuOfb9JveSZ4wjZPdQAqUxkwxJLeBa7R/m8UkJ+yNiqe8qzD3X0nKfaSXTLEnnujeNWgKHsRw1i9L3QKnbgJ9MIVn3/CyyRglfqjnbtkmTzVnOPanU59mzNyymeMZYIGUSWGCBBXayFjAQAGfAAyQvPIQluX5arNJw5atuH6PfebqCiGFpDo+ts0K35zuJwqpDRGzyyWZYSisAbKslc9gXIUqSJHXtGNHfsgwiuGwTjPvrfPrbfzRAtNVnQnwb8ojClM4JADkpRM2SuYiZyFw0hb7suOS3xQqe6Vs04/omjWWkOc734gK/IE9+5Sf6mOr7wcVM/d07QMS4+XgNAMCFZjKSeXlkLEdi9Gk3DkY4l2lfNl/+erEzNSo6J68OANA6QdTXN0XUqFiDEP2RLjKA0WGi2iUVPuoeMgYi9CrpcrFCxU2W5vAz/9HE5lub8pkmrdThmyq3x8d8sINrsC6Pfn2tt+JTRyc5H8UfFOMQuh0xP/+Wft7TyyP742NH7XzXR3cCAOYZ6lcLWCF0FVtG03k9C0tNUt6K6RSDahjxG44p032+NftS+94b8nhtv0khU3rOpGL6TNAxzxo2KRaoONFzPX6hqeRj2iw990gb73f7IL8zCyK8jsFJ3iNJx2dlcI3UiOrwAGNslxb46uMqRr2okExaqco/Wv19AEDLJM957zgTMu9uYuqtmKBaOEuYEvDTjffWcz27kshIe/N5rNr6SlpmbxcZ3gfnzVD4eOMW9ESPW9DSNrDAAgsssFOyOc9ABifS0DnqF6G9L8qspF/HiMyEQkYN3W0qpLjlU830lwrh1JuftGOUqEatZAFgVQ2R/K8P0x8dDdMvm2/CjDtMJLHY/PrvzSfiuaeDx58VIRKVNPfTA36YZ08f0ZTQdY75eVsmIgB8f75k6c8NkWHsHeE5U40xFVqmz8XZftLaPX1Ed5ImnzK2IBG8UIgIX4hNbVsvz2OMRsWMKiBrNN89AExNc8z1YbKqhzqZeXaONTwS66qwJlx5aVwz+clH87j1WpJ4fYny+ZJUeaaJ90itbWtbOZ+PruI9lv9cYoSSCMk3hN856mfnHWkhShbj0D4YsELSoiyu3/iUCSG204/+tkpmke+wjJ50y7QqTPOzmZRldWyc57g6TAaqQkxJ8AvZDw2TRWQakj+rlKyoZZjrXNvvZx6tLeHe+8VBxqWqC7mebaNUsFAbV0nwKNYkBnB2iHEYiRtubfVl6JcXWuaWSa+/b9k2JNrPD7IAtqaQ++KoZUTVRMigVdCnvdszmR3/rBheVXrPjPm0WSbafot55KTw3i3N41zE0uQBkKw7AHSYN+Ha5bwn8ha0mXCnGmFJaPKiCjKiR7q5N/8Us2iBCwvAGfAACSywwAI7/Ra4sIAz4AFSkDaED5a8EH/9t7XvAgBcVkz0EckkwmkcIdK8s4G+VklsC5WPmI9ejZz+cNGz8TGFrlWfcGP5zhlzUEzjkRiP2zFSAwB4fwlz9x/sZQZNrkmIL8tsiX82GUTkWclEo8qW+WUdEaeEAt9fw4yu2BRR3oUhCmqqNe/jQ8yB3zfo14scNyQrCfsia2ykJk5XVXGM+4/zs+UZsRnn3GpZY0KYqnMA/HanDdbuVOxL8ZVqYx6pFptpHjamYWyn2trUyte9LNePgahRkRCyUPaycmZqiXmIzagVb2EyM3ueGGS8Q7IZAHBulNlTkufY0lsDwG/ytCmfa6H2rYrtCEl3WcOr8yqJ6CWwCfjNkjZmck+9NMJ4xB8Ws8aobZLX8+3GTQCAiDW66h7ivdxjLHl4xOTHB/wMr548XvsFNTyvUPfBPl7H+YV8v3aQ7OzvKu4FALw4YvE3k+FRdlxNno/o86we6W25OwH4mWX/2nA1AF+8sHvYpFn6rKFXlIxkeYgZUyvDPO7wkC8CqdiR6jr29fEaldElRpJqcZR+YzMbI7yeFyZnZmsBQLsxje2dZFPJdu/OK6oD4GfY3VLJda+b5Lke+W05vTduAQMBcAY8QAILLLDATrsFDxAAZ8ADpH8qA99p8nvNZ6ra2u6wKo4nzLd9TgF99tfnWj3FOJHRr9qI+C/MJ4pU9grgV76+v5JZTL3m65WA3XdaKXD4jlL6vgusfW6LZSIVpg3OGFPCiYCPKJWlouyfi0o5D9VZHBjiPN+ZT7Sdn0Q2szKT8YJvWv1HNN3Pmy82v/7BbqJTZc0UWXW7WpF+bAkZnNjLbT1sAVqUyc/vNPn01JTfrugVgt/dyGPSza/fHCbyVJV+ZfbMuoSH28h6lGW0q9dnTtcV08f9/aOcR6GJI6o6+ekGxkbyQrxWKRGonkFtdZ/qXeKvhTEk1duIVd1QtBMAMDBNhtptWXAfLaP45vw01lssWMGMKcnui8kAwCUWd5IEv2Jd242JinXdUEI1hFRb9we7yEwlNFmWx8/V9fhIXuvTNco9N99k2T9ayXt2XxcZtRjsQZtDic1BDLA8i+ur5mEAsCSdDCLDjhl1M+Xlz84jg5Mc+kBaxoz56pznRbhXqzN9dqPv35EhrtMGa3mslrVpxmaVXXZplGuoDMf6PrFM/39qMYzOGO/32krGh0qsba5aMg96nNeLozUA/BYPgc2+zfkHSGCBBRbYabVATDFuc/4B4nkO55n2EQDs6Kuc8XtdLhH6kSSicNUrPDxA2etWizlcU0TUK6SfmTyzNgLwM3iEcJXZUpJFdCuf/E9bqVNUlEHknGP+clUgK9MEADKNeVwVqQPgo8I7ujbMOOfaMNGgdIf+rumdAHwGoNa4feN+y1JlDCVbC979XUS2q63BlNC1mhX1ThDlqhZFtrCgCydaj8UlpB313uWsS7ivjv5mScY/1mBtfq25z4VZjE3dO8X17+zivKvn+7Ux/++FKwAAbpLXvmYNUbPk8VXLoUr0TpNqX1HM9wem6E+X3HuiKQawIpfrrBhB+wT964uzGXc5NMp9cG83M+muilJ3q36QNRqLc/zaoy83vA2Afy/UBGrvEOenJk/XhlkF/t0uMtZz8rhvdY+XhP04kGzYlBQi6YwpLMnivA+PWpOnMd5vZTf95wCzsxQbKU/nuTeGGQN6od+X5H+pn7Gaz5Y8BgD4eRcZX5nFwlSPoiZsF9aQaRQbgy015P9CjGNKOw0Anhwm+wubLpi+Mx0ZnKdYmOpaDg7weLUBEANXRToAbGvk/Yxaw64/KWObYjE9ZaDtst+61kQWM1sWiCnS5vwDJLDAAgvstFvwAAFwBjxAxqaScXzEz5tXDYCqpsVEBgyptVomR8+YIWiriZCelZr/zE/3EebhfvpxH+lids+yHGYD5SQTFfancOzbG5k3/66KnQCAxlEiuK1dzGZSpfHnKx6Mj90zTX9uThKR2h7Lj1ftgPzmQqnS7spJ4/FhYzdCvZoj4GthqZbh2DDz5IcN9b09m9e41dhCtzGQ5WGi3Dpb105THy4P+427VuRxDYotS0ZoVA2A/qDsKY5pTYbSDHGqNqXAMsNyqvxsJllWHtf1PQt38hzmzxeSVFZcv93TP6rhuZrGOV/pcKldMQCkp5HpqYmTYktFaZz/x6OMeTwyRCT83AArtqW4nG/KAGIeyQmoVs2TJqzRWOcIa5DEwiprOMaox69bnmXjSYX3QDuZYSiVezA7QY1XmUbarzIh+GtLeG8PGnM+2sd7rPqiggLO+8D4TDVnAPhY0TMAgCcGGY+SirBqeNTG970ljLv9oPE8AMB4aGYVv2JT/9J6TXzsAsX9LFvs/r2M91xh+lTK+FoRIrtckMF1FRuWB2B9pD4+pvTT9ltjt+oUvr7I1A8+bq1u7+plPPPsMN+vH/NVpAObXZvzD5DAAgsssNNuQQwEwBnwAJn2krC93fd13zyfaOk9OTsBAP/VfREAoKmfKFGaTIpPRC0XXn5z1YVIjRXw0X68Raz53o93EfH+w+r7AABbrW3obUcZAym3Cur5OfTdK/bx2KCfl353A2MBqr0YM42p8Qn+rrMeHOoXokrpL1bfBQC4t38tAGDC0O2nyx+Pj31/jP77vf1En3F2Zvpa3++b6SO+NPegrYG1jI3xevpHDEmHfdQttPp8F/3oi3IYT7kgyoroTtM6es60uxZnk7HkWdWzPn9hhBXhP2rcGB97ZTGPPWz1KhPZnK9qGVR5LgT8TB9ZQ6dlY620bKyzyhvjY0rPqzpMNtBrcZ6LCg/bmnCs1nEed0GE19FhsZEXBq0S3bK4pC0FAIXZ3EtdVi/RO8Sx51u9xHFr0zrlEYUrLvFcJ2sdFhSStbUNmwZV2M/Sm7A9p723e5D3ROu5q3+mCkJpNhlVufUc+XndWTPmKEYL+Gx3s6nyisVqXdUuV8xjQQ7nuczOvTGLcYrtaTUAgHvbfMXgjxc/bf8iG6it87MaAWB/N8dWDc+uYbJ01W2dk82xy1Ni8c/8ccP7AABL8shWvtNzAQBgXRZZyqYIa3maxsn832dxw8/2+fpfs2VvQlhlTtqcf4AEFlhggZ1W8xDEQMzm/AMkI2UCa4v83PaHWhkDODhIn/Blput0/9iyGZ8T8lmeRjTz1DDR+H/VkrFcX7k3fqwqyH/TvBYAUHeM6CmzgO8/HuPY6k+gOobbG4m+VMkrf3Zi34TLyonA7zxEJiKVz6I8Isp4tor57lXn0TlFtC3VXiFT+f8BH0F+qYZs5YEB1gxIPfjn7ey6+MflzGY5MkaU+HRsMQDgwAHTe0rjfBszI/Gxj/UR5RXYNa8OMQNKiH1ROmNJL7TUAADqc5nXf0H+MVsDfgNbTfNLzAAAFllspt6ygJ5sJfpfnc95iwUoLiBNpn2tnL9iEhdbJg8AXBwh0/hBPdH0H80jQq6bIDtQvUTTKOejCvRG6ytzcxH1zX7ewTWT7hIAdHTwfGlZjF1I4+pQB/3/h8Df185njKN3kvMutw6XqvGIWTfNsWz/a/meAtYe1Y/zfHWmT7a5l+xFtT0vdlK7a3WUazRhdS7ak00xXte7Fx6Kj/3NHrK+kNUe/bSRmX8XFvEeDZgqshR+dxhjSS3mfnjJYjjqgii1XgD4m0PvBuDrrOUWcj8fH+A9TbEq973W6fGZLn7/GixuqBhKQepAfMyry/ldvqeBTCdSSraiLpMV2TEAwHVRZrv9Tdv5APwsyNkzF7iwzAI13sACCyywwE7JnDfHE5qzFpV5FV/+VPz1PFMOldbSkX4it7eVklFUp9GPq6yrX1q9hbqW9Y4QHa4q8HuLqxf0FkN5qn041s6xF5Z0zvjsBSVEcMpLbxqa2SEvPUFTarlpQElRVJlT1xWyqn2p1YV0TNE//h/H2fVu3GIl11Xsm7Ee52Ufif/7xx1EYELqN5Uyx/5+q16OWc2I1mrAqsYHJ/j7LKtE/tFeItWSfD8LS/3hmwZ5bWcX8NjdVlG+yPzlijXoXOfm1wEA5qVzzdTfpGfMV3LNssy4bU1kQM7qWApziEqlNqDKZOloKQZyqJeIPzMhm6nP0L38+2nWUVEV6ULKFZZppowodSiUZtPmFu6BtFT/Hk6pT8kY42vp9rf+Xl57YSHjEtLX0rmlfqyqbWXefcr6sQN+LGnUMzXpLDKIW7uJutUlcF4W1zNqWUxHrE7kkGUQSgmgOUFRWesspWQhdakHqAeKdOLGbf8eMmWDJfk85+42sv287JH42OpaeGEVvwuH+/gZ9WG/Jsr9PWbX9ZzFKVJtvcWsshLqsXR/dS9UQ/XBfGbQDXlcixeGuKdKU3mu5/s59nfP/gGcc9s8z/MDnKdg6dWVXulfn7q2b/2n/tcbnsPvis15F1ZggQUW2Gm3uY27Z82CB0hggQUW2Mla8AABcAY8QJKchyXFftFf7xipsyjwhny6VsaMjt9ugWO1iFXgT4WHOemk8UrvBYCdPUzbXRFl+qIaRn0jme6kPccZCJxXwXmoKOqpFrqQ5A6TKywxBVQteDXfF9qZUhktpbvmggwLvIPBxAWLf86xjL7fFuP1xOVVRv1GRwpYrotSdO7BbgYfV4QZaH28ncFyuQaU5rssxOtUa9jsbGstm+mvicaQ1Lrs2hLKvEu2u8/So/cOcA2PWjry/gG6PeQiWp3bHB9jSw/dRGq5MHmc8xteRpeLCjL7B80tZQdWZsUAANU5dNfoHgO++0WteMN2nyVRLwmY3fWc59oaJgVcX8i0V0mHLC3gvW0ZyomPfWUp05+Van3MZPRdlP/LSBBxYIjnUAJBv62ngu0ZVuwoyX7Ad13tHOB9jViSxJIs3iO55NQ2d/9E2YxzKOlCEiylWb48usQ0awfoiv1gGRt1bR+qAQCcH/KL+ADgR010ZarlsVrinlvB456vnxc/Vm7HqKVtpybx/Ntb+F1ZGeb93tI7b8Z8a3u5dnmZnHeVubwAfz8vzqXrTI3SftzN79k54Zntc285zoSYvmH7vp0RTqPfLZvzD5DAAgsssNNqgZhi3Ob8AyTZTccDhABwzNpuHkhiCuvKiBVcWfFfxIoC1TJTUs9qSqU0zYEEliD0+ugepgh3LyZCFGr+4PlEbi8OMhVx2GQalkSJVqtM5lqIXqwDADrGiWTPDzP4XZPB4LOaFP1kgOh03zDn/5ViIuJnRg3NGpd+yKTBE1uALrACRgXthfbvbeKxQnkn2kOtTEuW5Pa5pUSYkpoHgG0xFn5J7O9eS0O+cRlFE1WsqEDmmiIywV90EsUqDVZz2Bnzi0HVZErB6NEqHlMcIguTzPj2XqLyz1SyeFLyGGKZG/J8BN1vTCjJGnjdc4xroKJFCSG2p/F+SE58QTnvYe0o78PiEAP2G/OOxcfummDwW/Ib4yZpsjjKe9lvSQk9/byu8R5LOx4jC5M7pLpo5rkAn82qkFBFclWWDNIwPlOmQ2xMYpetg7yeeRHui4OxIpxo5xZyne7upMxM40AEANARCc84TuxSqdqSBRIbU/oyAESzeM9yrWXtJYUszOy1BllPdpL9KolBpoLHK4vI6o6N+Ne3LkpWKBmamHkbVCT6eCOD5+eU8XrWFvB4NaCaTQsKCWlBGm9ggQUW2Mma9wZ+Xoc556LOud8454acc/XOufe/yrF/5pxrc871Oedudc6ln8o4p2KvyUCcc0s9zzs4myedTZv0krC3tzT+uihMlNrcEwEARMzXLf/uU31LZ3z+ilymwd7SzKZUYhUSBwSAgQmi/ax5RFjXFDAlWKmSB0bpd1aab6+lMM6LEvU9PkC0tT6fiEixEMAvFFRrWzGS9Rl1AIBnTOZaMh7/mEQZFLXFXZhBRKxix+axvPjYHyxkeuOuUbKFVVmU9viz0ocBAAetmdbTfZyfUkJvKGchVtcEYw8q3HuxuyY+9vEOMr2/WksJ79R5vI6Hezi/8lyyQhUKZpzQMOuj88j4xLTUqAkA2gaJfEty6K8PWTquRB4/GGGr4GtzyMaaJ3nNd3QwJXtpuG3GmgDArn4ynBxrtXpRJRnEOTn8rTTSKxdwq+u+/Nn+mwAAfQO8pyVRE1+sfi4+to6NWUFjpsUyFB/S/HPDPLcX4p7s6bLYkxXZrY1wfyQWz61I537cn04GKoFDtRJQewLFQtQsbF0OWdpLqYwxiAUNjPrtclcWcp22dnGscwvrAABX2/4Wu+0yqfh5JjAqdjk/wte7U7i2ibLp2h97s/nd+FolW+22GZvfk83PFFrzNRWxqllb81gEALCruxwnms6zyoom5S1Yk8fXSj9+ot6aV71MI7Q5YN8EMA6gGMBaAPc553Z5njcjb985dzWAvwJwGYAWAL8B8EV773WPc6r2ehjIDufcfzjn8l770MACCyywwN6IOeeyAdwI4O89zxv0PO9ZAHcD+NDLHP4RAN/zPG+f53m9AP4JwEdPYZxTstcTAzkHwL8DOOKc+yKAb3me9zvzSE9LmoojJQDIsSK/lfOJJLd3E+nc27UWAHB1PtGVZKP3mjzDDcU7AfiiihLVA4CL8iiDUWmZTm0TLJ5rHOYztb6fv4uzif5UlNZtjY7SLN5yXg79wDWpnfGxnxoiI5JMu7KpfmZtZVX4VWjij8rgWpRG5vHLXqLuHb28jvYB32997nKeb31mHQDgv1rZbOiZVDIOScGXWUxG8h1qk7sXRKYPtTMmMpqQ1VRdyHkKuR+3zKPMVKLvxjG+ViHbQ+Mc47JirmU4iWg8x7K1EuUmNhQTPR/pZ1bTohCRbruxs34rGFNL4aeNVa7N5efUGOvBDl+0UhlaZ5nE93ePUYhvZxcRrjK3VFA6ZDIeKg4sjFhWnMl8vJjQmGmfyYuruDLPmj+V2zlViFeaSbQtIcn0Cq6VCuNkR4f9lrZiN0cGuBYSTSxMM6mbJLKbpcZIi1M4h8aJ/BlrIun4TeVH42OLMS+OcD9+zgry/rrlas7PmKcQf4+xAxXIdiRzr73UQYYrOXsA2FjNOITiQo+ZWOIHwtw3D1hGlRqkDU5xX+daiwS1wpX8DwCclc99uaOHe13ZY/GmaiZGKUmYirwYAF9KaDbtTY6BLAYw5Xne4YT3dgG45GWOXQHgrhOOK3bO5QOoOolxTslek4F4nrfH87wrAHwCwJ8A2OOcu3a2JhBYYIEFNufMc6f+AxQ457Ym/HzyhNFDAPpOeK8PQBi/bSceq3+HT3KcU7LXnYXled6dzrn7AfwZgJ87554D8OdvdXwkyXnxTCAAOLtAKIXIUjITueb7lmhej4kRFlpTmrJUaxyU3vRb57jbmiBdHeKlSnpatRtT0/Q/q4agsoQoSw2Y3lG4E4DvO26bzI2P/fu5/Fu7ybQXmszF5j6K5fkiijyHMrh+FWNSu+TR5Wcfy/LlJF4cJDtoNoHAHc2c36dWsJHQbmvAI9+9WERcstzYmKTaJZgI+E2dIrauLTFeU66df+sE2Ut9G8f0hrjV7hnn9SSBnxfbKE+PxcfW+SV7crGt+7FxolKxroJUsgK1eX2gw+TSs7hGaoQEAMPTPO+GTLZ6/X4Sawc6e/ldWpTHa1RdyHQq13s8nfelZ4DxjH2ZpTPOAQDNtWQH3UVEunkhxl5Uh6KMIokPipH0W2ztsgL+/d1huqX/qfWq+Njx5lnGiDqsudeHqrluxyxjS9lZMWvRK0mTnzQzI00ZdYMJ35VzCmeyhPuHuOcO9pIBZdmeKsjg9Ui0UqZaqXWFjNMkegLOzWFNRrtJsbROkNn9aojnEvM43yThX7K2tAdHuL7K7CrN8uNBhy0jsbOfa5BlWV9ivR+tYlxNGYvHBi2Da2ap0hu3N67G2/UaUiaDAHJOeC8HwMDrOFb/HjjJcU7JTjYLKwvANgA/BHA1gN3Oua8753Jf/WOBBRZYYGeQvblZWIcBpDjnFiW8twbAywW+99nfEo9r9zyv+yTHOSV7PVlYnwOwwX4WgBH9nQD+w35/AMB+59y7Pc/bPFsTe72WljQZb7IE+MxD2VfKP5dcdN/EWgA+e5Co2/5Rfk5taJNexsn5pebrZnz2SC+RZyidcZeCSiIy1Sko8+joKBGdkHRR8mB8zO2GHC8x3/afNrO6falVg3+qhDUOP+umDPn39/N3YS7HULOqdblkXs9M+L555curLWvu/JksbNhE8/IMSf5+FX3gL5h/X7UH1Zk8R8OY3zpYSPbRBmaJpVqmS08f0eFoFtekusQ+287r7Onh39+xnJle54fVgMpn1c93EwkL5d86xIriPyhh69o+Q9mHLVag2gZJmS/KZMxEGWCJY+7N5n3eUMh7VFbJtdk/wGyhw+0cKyuT8x8dJ1IuyWP8QhXrBRl+VX5hNRnnqFXIr7P6A/nov3eQ92x5MeNW/18ZWxp//th7APiZR49YHExtggHguFWQqyK7foBIXsoKzSPEbqtzuH8US7izmf+nRCweo4ZqJWEffB61uIrqqGpNdr4sxPNfmMd7c3cra3za+ghmJWqp/a/Y37uKd8THvq2RMbwhY5xqFPX2En4n1DAq22I8OwYZjzlsc7q5nMKfL/bPj4+p2psfD5BVSTWiroXr/Js0egpWRbgP/rXm1wCAb3VdjLlknucNOed+DeBLzrlPgNlTNwA4/2UOvw3AD5xzPwHQCuDvAPzgFMY5JXs9DOQvAKQC+DaACwHkep53nud5f+553m2e510N4OsAbp2tSQUWWGCB/S6b807953XapwFkAugA8DMAn/I8b59zrso5N+icqwIAz/MeBPAvAJ4AUG8///ha48zCEgB4HQzE87zXU8b5fQD/5/Wc0Dn3YwCXA8gG0AbgXzzP+6797XIwb7kKwGYAH/U8r/6VxgKAvvFMVCRksSgLa2OEvu66UaLmlRH6ySU3Lg2sWxuZjfPe8u0AgHyLKbSM+V65B/fQt56ew7FDhk7VdjbV4haXFrGaXLEDtWQVwv+OZUFJPhsANoQ5z69Yy1RJVMtH/F/t/My8LFYeF0WI9ppaeF3ybava/Zyov1xV6UT/z1um1CeKiOC3jhDVvb1gJwBg1zDRX/0YkdwLrTUAEG/U9Ugbs5wSs7CUWXZ2KZF8rcnmj6bTL72xiPN4ro11CNPjZIlL5vE+1A1x/hvDRJWL0tviY5eVExH/pJ3IfVeT6Tx1sSZjqcmISyJebHF5Fue7d4gs46kGv5Xp+Lg1iMqKAACuqWJzotphom7VV8wv4jqrtXBqiGj7g+Uk1wOG8BVvAfw4zjNNZBB5Vn9Sksl7FS3j6+sLWLeSYYoAVxZxDvOtqZkyrhSvAYCWPu7DEVv7SWPbz/by2i6NktUqQ/DIGPfcO8rIrJ/q4r7KstqUeSG/XW6rsRfFsZTl1mLV6+ECvv+BCmq/3ZfONgBSNOhPIYPVd0laWQCQbfGTvAyOcZ6xB2U3it3WpHLeC7PIzi7MYcLQSxaPSWxXrZbQylrbWMA9pu/8ka4Ce01mkmxaZE3Db0IFwptcie55Xg+Ad77M+w1gcDzxvX8D8G8nM85s2WxVoneChSyvx74MoMbzvBwA7wDwz865s5xzBQB+DeDvAUQBbAXwi1maX2CBBRbY7NmbXIk+V2xWtLA8dqV66nUem0iftKQLAJwFYJ/neb8EAOfcFwB0vZ5K+JwMv4ZAOfbKWW8cIvpQlW9zbwQAcFkNkc7xQSJhVfIuySBCPj7i+/tLSmMAgMowfx/uIdLp7yAQyJtHhHloiOgvzbKIVIm8OofnVrbLosz2+NgXZdHPfO8U0d2xYWtSZYiswdq6vtBNJC9dq42LyFyUXdY5zhiCajkAv3WqGhX9sItNiNQudEtfDQCgOosoUKwr3eIZe7qYETNmTOuySr9Z1b37icDVIGie5fe3DBO9rszmNRdWEYXvyyOLuK6AsQ9lDf2ijRlVm/L9VHW16VUWk2ow1MhL90rtcX9VR3//rcfo2l1fxHNfUe2P2THGNdjeRET7cBNZleo81GJ1aSHZwHXFe22N5s2YrzSoEpV+lUF2WSXPtylMZvG04zmUfffN45sA+FXsyzOYvZSfRIbaPc0925UQDxob49p32HtjfUT9+Qv5mW0DZI+/V85GU8fGTNnXGqbNN8ZRHeL9aR/1k3I+Uca2vt9qIss92s74w8JiMjzFpaRbJY0y1d8kGxN5dwljH9+v813r+p5tNKXeHf10ZGRbEyspPTwwwPjKtWEypnut7fLyTK5NZ5EPtgutdW5RqcVccpllNzZN5hNJsxifMZTvWNOtRMYf2OzaW6KF5Zz7lnNuGMBBMPBzP1gQs0vHeJ43BKDW3j/x859UDvVk39CJfw4ssMACe9PsjcQ/zjQRxrdEjdfzvE875/4YwHkANgEYA/16nScc+rJFL57n3QLgFgDIX1bolSX0OIiNM/4wPEk/svL6lRGlFptS6Ly+gshnYxbfPzJOFvHufL+G4PZpZn3IB7u60OIp9ve4ZtAoEeTHyokwU6M897Yhoth3RhhnUXtaAPjHxnfYPDm/5SHrHWJ9H4S6xAY+vZBEb9zjXO5rJ4JbGObSJepsqU5idw/R/6P7WQ1eUUZUmmu+4q4UoryX2rgmZaZBJUQatn4gdUPR+NiesQD5w1W7sTyXsQyhaLEgxYHUTlfsTFXCx7IK42O/p5j3pLOQY0gfrHOc81S85aU9ll2TxjlkRohAu609rtgo4GtBfWDZSwCAX9YyYyfbagmGRrlfpA6r9S/PiAHwUXeX1TXcsdT3rn65k3G05y3e82Qz4xNvryLZrh3ktUm76ZEeqjqfG+Gee8HUfKMpXCP1pgGAJSVkRPtqyZzcOOcxYNejbLA/b2Rt79m5dTyn1Ycoq0nXpXgB4Pca+ePKxzjvXO6PLV1kNW3GSBXjqLZ6j9oBsvMmYxl3tK4HAPQM+gUXZRFm0ImR6ju6NJv7W/GeMVifnhiZqBi0KtIT+/KoJfSUKQ7/5dEbAQCbismMs6wq//E2Mia1DBbjnlUL5NwBvIVqvJ7nTZk2SwWAT+E0FL0EFlhggc2KBTEQAL8b/UBSwBjIPlAYDEBcCEzvv6JNey6eQQMA44beEn3UQAI6OUJ0csF8oj9lO33f4gOVGfQVh5N89CoU1WE6U/LBf3DRlhnHSnNqu1XV1o0R/RWlEn19veUKAMDnyh6Oj51rflt1W7upcMuMeW/pYtW7+jnsGSISFVK7pIDo62xjUPf3rY1/9jdNjA0MWy1DeojoU5W8HdO8ntYsXl+e5erXdszsMaFK3+kE1LWkikxDGlaqZp8wpK64wP4+6kQdqp/Z+0LdBpPTyVyeavbrV8oymIW1JJ1odUc/10D1LPOKiSxvbeQ800K8t2HLjguZ4q8YIQAUWLfFplHGxOZHOYa6AaqOpWWAa/Hfo9wPhdY1UHpc6oPynpw98bGvtH+rw1/9MO/lWdmMU/VPcm0aLBtIvvq6Uc5farLtYzy3qrgBoCmDnymyONyKfK7J5mayBMXEPlHxLK9nlOs8ZDU+aRYP+MeauwEA9yXsj7W2vql2U1JzGPd5ooWZW0808bc0rjJKuQ+kPfXRpdYHp4cZU5PjPnOSOsTgqJQUeM3SKXvIWJiYyc4Oy460bLF7hhhjW13SGh+z1bSuwqm8v1IP3tfPz5ZkcCztd3khRpL9/x9my840V9Sp2mllIM65Iufczc65kHMu2aSI3wfgcVCGeKVz7kbnXAaAfwCw+62WSgkssMACC+zl7XQzEA90V30HfHjVA/ic53l3AYBz7kYA3wDwY7AO5ObXGjAtaRLrTXEUALbGiMyGzb97cQGznA4MEZnlRYgo93UTGauDm7qbzc9kLOEnDefEx4xYLvviAv6t2JCOfPNP9xOp/VsTGca7VzAXQN3vllm2TWoe0WDblF9j0jgUAQCUmObPo33MGRATekcZIy2qkJe+j5iW1HrVg7w1IctGPdzrTWFWfnBpGwnRyVTPos5y64uZzVRsPSZ+fdhXTMjN5poMZpm2lUGyQdN3ur+V1yEEn5TKsdUre6qXCHna0OxgbSQ+9neHGVN4+2Ii4ncWMHZ03DKMfnjEsm4K6dv+5EKi79ubzgIAdFkM5OICP2vsv7YxXnLRYu4HrV84i+smlF1jfUzmZTPbSh31Hm1nxX1FNn37O8f8mE2OMVDF2cR8vnaMmlaLrW/GqPnwD/RYtp7V0sjU6z1Rc6rdtK8WRDif5xqI9hVjUIyvcYL7o8H2yaNbieDXrSIL+vTeDwCYqfx7cZjYbOswx1T/lzWFjNX0WTxRulR1/Rxb++TR9pn1QVVFfjfMhr1kBcXLeO1vt97yWZYdtjab2VmHjTG9MFYDAMi0LpRiu8diftyts5Pfm+xc3hOtp747Uiiuyo0BAEozuUZiY7NqAQMBcJofIJ7ndeJVpIQ9z3sUwNJX+ntggQUW2FtuZ2A21ana70IMJLDAAgtsblnwAAFwBjxAxqdTZgTR5V6SS+UnR6ia/LEllHr+eCGLp77RRtHCjlHS9j5rQqOGPH9Q82x8zO/V06WiRjVKuVX67uEWvwEQ4Ae+P17FdN6BaX7uyAhdMCrgA3w5C4nfLSlhAeFRk9hYYgWFJzb3WZc3U3Zest9pCS6Kl5o4j3cupBvsl3ss3TJCF9afLn4CgF8Q9oy1th0Yy7D3ea7WUUvnzByPj6201ucbmbp6TjndiFfk7wcAPBujW+8TxVzvW1MoiPj0Eaa4ZjbTZTSygPNNrfTTNS+wVOu79zHl96k8fubckjoAfqvbqhDdTZIVaenlPMe7rP3sWX5694IKuZHobrmhhC6VX7Uwnbetn26akKX+lqdzbAkdZpi76Yoor0/3FACeGmD6q5o+VWTHAPgyHJIKWWgu0Mc7uM6tJk6YbG69tcV0de6ygDIArCpiELk2Zq7LYc6/bojn+tMNTMFtn+BY2pOfveQRAMC9LUzznraWA9GQn+ZdN84x0s311jISAeA3XVObYRXiqflW/wj3R1Ue10gBcrmDAaBwA92Harb2rweu5Gci/IzWUy2G37+E4ok/2kv3ZJIVdman+Xtu+VIWar7QWAMA6B1h2vA7Srm/n+3hnus0t98ny5nyrjYAs2rBAwTAW5jGG1hggQUW2Ny2Oc9A0pIm46KFAHBJlJIOQurpNUQ6Sh9cYkE6ocIjMaIwtTRVIHRLn59WOjhmRWYmZBfLIPo836Q0pudZ8yEL6unc36zdBABYX0ip9RfbagAAAwM+eh2u4NjjJt53TyPRdJqlle7tZZDx/EIGQ9XSdE+MKFVy3QqmpiQwkHJr6an00JR0/m3agulqNtQ/SkR5aRlRo4or56UTMasF71cn/EaUO/bxWpIHuCaHsojylFYqu4hD43krkGwqI0sYLrQUyxYi1HkFvsjfM8cXINGuqDg84/W1JczsVmLBBcUMjH+1kyg3KYeoda8VXwK+1LoCrl1WvKemVbnFSq1lkdyjnWQV50a57qtyGVj+cTMRsgomASCUzMBwTTavQSnWEts82M/9eZW1Ab6xjNIfwyVcg2Mj3INqNJWU5MPbF2rJ8FyyvTdseyzMa7y/ncxTabNqqzs8xcBxU3eE1x0lG0sU21RA+/5OshSx14Zxa09sTHuXtUgoNZn37hQi/wvzmW6s4PtLxrwB4OYKMorWEM//fBev48YSJkQ81M19XmhFfiocLMzj/ZFE/B+WPxkfs9OKOLc08zw93TzvsxFjHtZCOmwy77e2kvUqmD6bFsRAaAEDCSywwAIL7JRszjOQ0enUeEomABwZIdqTXPSaEH3zkirfb0i0a5xoZdSQvwoPn+gj8kxMpRRj8LqI6noyiXBKU2MAgMOO5zwQI3LLtbRfFX2pUEz+3FCBLyeh1NolefTRS7KkLJNob28zX9/RSV/9umrGPqLp9Ev3jGXNeC3UCPhNtZRWen410XStta5VTKe7g8hurIRrIfG/45aqunuYvvCVOS3xsfdFmQY9kcXPxIY41khe6oxz3mMCfFt6iUAVt5BJIFGy5QCQnEL/96pyrt+2bsYSVkaI+uXXz8/kNT90nPdMsiSZYRMnHPALCUcHidCPpEnag9d4Vi4RuUQ0L8wmg92eVQPAb16lmEhpMdHsXS2r42Or0FKNxLb2EiGPDvGcRyd5zn6LLV1QROYqZqiCt4osniNRHDSeQp5LFqg4w65OMlCxhkFLexUD/6Q1GNtcwuvQd+TZTr9BU3UFU4P7bF4Lc/l6R4z3+6J8MlLtk09WsxXylJ3rmT6mNl+TxxjEhtDx+NhfO8KU9skp7m+1Bnimj2zhfGtWtc/aKl8U5rwXRXid2tdq9Ab4xcBvm884lJrHrY/wHg6H+f2UlMmgtQHeWWeS8OsxexYwEAABAwkssMACC+wUbc4zkFQ3ha4RH2l+tpxZKff3Mavpx430WYcN6UrETe1RXwgTET3bTb/7861EyoktbS9bRB98azkR44l+3HwTPPznZXcCAL5t8thCufotGe9ftJ4dH1uyECr2q7ZCtl3HDTWdINq2r43If00pEV2pSUG8O58+5y1Dfvyg21hWmhV+qYhsXZTZPpnJRHQvptUA8CXP5dNXRtL+QbKgfmvgBADLLFtskYk4NppMx+52IuOyXCL1n7afO2P+f2BNrZ4dInpdEeJ1NOb6BWP3Hua6XhAlSr2vla/VnOqdVUS8Ykr5Jri3P0YmqCwhyZMAQH4p1/W6MsZPbj9ORjdpTDUpT02S+FllZ4k1zM9l/EJZZmqUBPiCkmohrEyoy5cSVUumRuKDT05xz20qJcIPWfvfdVl1AID35vlyNmplLCHLA63GsJt5rs4omVtGmGN8/xiPf6mgBoDPrIcMjV9dfiA+tiTqz7HGTI0jvIchkwr58THGyK6vYlbWuRlkWMUmDaJ44VeOMDamuAXgi22qJbCKJxVrfLyL5V6SjtFeXZBt+2mQayXWAQCL0shAJQGzOo97pzqNsae16WTnyiq8s54s8colsyxmEdSBxG3OP0ACCyywwE67BQ8QAGfAA2RsOiWeeQIATw8S2dRk0J/bFWKmhpDmS72UOgmb9IdQrGIhknEQMgZ81lJhIn9bBoiElS9/WyNRdn4qkeW1RXz/rjayIEluK+tJDAAAPhZlvclDg8ymeb6XDKKokMxCYnTKnFpQwOu6KI+saFUGUVckiYh4V5/fAnRBiMfOz2B8Re1Ef32M81KDqEyT6w6bCKEk2N+Ry2whZQm1JUifKOvrUD+zr3pMnl2SIPXdRLehEqJG+er//tg7AfjZT7LERlhLS2fWwij2IcZ0bxMZybKoNd0ytNraTTT+qdWsPdk36NdTPPkiP3OnzS9krXcvzz9g10wE/FQf948Q+1eX3QEAeKyf92fHIOMbYh2J9mg9fe8lubx3kmVXvUKBxWbm5xhiziaiL0/hvvpJF9lD+6i/zpL02GNy7uXlZEI9qT67AoA0yy5cns816bL6JjEBz/7D293nxxQuiDKL6gMRStx/qfk6AH5tlAQ8xYyOTJChfMWagInxSdpEewAA1pj0+6YIWdhPW7j311psRnVE3aNc725bo0tN5LI2k3vuwJB/D7V/FTuSkOePWvj9yyjnfe+w5mrrrLFYoiT8rFnwAAFwBjxAAgsssMBOpzkELizZnH+AZCWPzxAFFNO4Kr9nxusCQyFq3ypxxcN9RDpCi0mGLKcSqmqT7N+/OMI0jsx0Ina1w10aIeqrG+brVmvEk2O+5O0tRI9TxiKuLvb90M2W235omGju6gKyl2/FKBm2sZz+6VSbV5k1OHp7iGMMC8lNMVNGWV0A8EQLK7iHi+mHXh/iWOeV13GMPDKMPZnMuvlZHWMzRdmM6Xy6/f0AgN4Y0flNK7bHx5Zv+rluZvWIwa0o8esjAD8+oaw2VXynFxIx//gg0WzCcmN6ii86c4iEv7b0dgDAN1qZ2dMd4/tdWZynGErXIN8fM4n+5IRv+dI1RPuSdd9vPvnftK4FAFxQwMyobIv/3FDJOIuYh1iZriMxRtY0yPs9Oky22DwVAQAUmZCksrRUTyRErGymb7RQFeH8PDKCemvDDABjtq5VlWST1ZbFtiafCP+AsYCrSrgfJHCoJlDa1+eXMEMqL6HhWPMY53l7nykUWOZTKJX3Vq2ZD1gmlNr56jsidnNRMec96fnZkLUm+vmgxQnPy7cWzNaoS2Kl5xTa/rZYoBq7fX0v44hb+2viY65cSEahjLL6Ka6TxBy/30IJ/vYhk323LEQ1IAts9m3OP0ACCyywwE67BQwEwBnwAJn0kuMNkgBgXZQoRbGNK027qN2QvprfCKWUhxk/OTtSBwBosYZDz3YtjI8ptBkxCfOWJquAXktUpQZIGrt3kCh1XphsRzpR63OItuandcTHLk+hv3xlNhFlzOoOPjKfzXqEph9oYwOebZ1kM8r02dXP12tyeN1XFPrs5rZBZqBJR0uxnMsiPKbW2veWWT2LEPuhJr6fksbjU8zfflftqvjY8vMLhQpli3FkWzxFDaVq24kCJ8e45X6wm37raasTqCj1pcAVk5Em1z19zIiqtDqJkiW8Zz2WuaP4yaYKZm0pa0ztaAFgJJ3reMxqYMSy/sD85pLRHzA5eiH1g4Oc/3nGDtqSIwCA7nHf3y81gJqFvIZtzWR0il98uIr38uFunqMmg37+mlQiejVC2jnAzyWyG7VxbWnknrv6XN47VX+3mZ7Wj/qJ6BUrW2WNmCQl/2wb92aitpRMNSZrI9xDe61B07hVsxencr1XpFtc0DoGhFI41u17yWDOqmmMj1nfx++R9sXKMD8r3TLFLRus+dbZVsvx3vs+CwBI7eP3N7LS3xc51oL5ojzG7p7qYSZfXCa/nfu2Msp9siDMdW4e9muMZsWCLKy4zfkHSGCBBRbYabfgAQLgDHiAjE2l4NyKuvjrJVn0h78QYzbT2bn8W7dpH/Va46gNhWQFqmZVs6ccayAkHzIA7OsgsslII5LPtUZGPZb3/3SLtfQ0rayaPKKmdxdsAwB8q3ETAGA6THSYnJDBc9cAM6LaLG6yrduqvvOIIM8Oc/4XFtI3/EgLfdydlmlS20tEvTFCNiRFUsCv/1ATqsetRalYQ3GYeft/XXM/AN9nnFpomll2nGI3amoE+DElXbvy/Z+McV4TrVybrGZ+dno119WbMIWA+USraj+rBl+JNmUKsocGuP7lWTEAfhyiY4QoXDpQUWuUNd+yzy4I+w2ltiYxc25dDu/7xkwyil/HGPdpHeH6d5iS66owGeHhLsbIjvZwnVcWcn+tDPuZdNJzOjd0dMa8NhirlartuO2Pb++jRtOGSmYEqr5G663Kb8CPdeTYvfl5LZtmfWgha0Xm5xNlN/ZFAAClpn+mJlBlViJ1YQn3j2pVEm1HJ78Dacm8B8kWj8i39fx2LZtxLY2SzSg2IsZ61RKyokN9vuqt5jvPMs6k+Ls4h2NIN6t3iPNRVlthDb87Ha28nvEOP77ZbAoQsBCRMhFrR3leMbeGfn62M433oTxr9rWwggcILahEDyywwAIL7JRszjOQSNowPl38RPy1+nwUWHX4gx0z+2Q07SPKGlpE1Prx+c8DAJaaf/e/Ysz+kC4RAKxaSBR4fzPHGhwxTSzLWtlYYmzGkFzHEJHPjmEizFUR08SaItLMcD67mTD//VZDZPINrzMNr6FpnuvDeZsB+P7+EeuBckkZUa9a2l4Y9VH3dVWM/9zWy1jIDUU7AQBf2vx2AD5r+GmI9QcrI9KeImK+ooQIryKNqHB42m8NqkycrgJC3BPrIralMDYzFDLEO8RzZeSTiVRkxvh5i2P84YJn4p99vIfaVod6TIurzvpQlPH8H6rgWiRHec7tg1zn34vy/TtjROmdkz56fU8uK/XbpvhezzTvUVW6scUI/654i5R+L6vkGsRjCFaLEk7y9aouibDS+YlBxqm0jronnVbXEUnjtb9jETPttnZZrMRS0C4p4r08OOCzMSk4Sx+rIhIDAERTuL9X5PJcasksTbRPVHA97+jYYOfi/spIYNbSJbu+kvN5ppOsfUkuWYJiNQfSOR+pJF+7kIxjSRbPvX+YMZMFOb6ispQV8q2XyHM9fkwRSFBDKOR6LrBapUgRj78tm3sysbakOJPX3GG9T57q4JjKGquP8ZzLCjiWqvBbR/w2z7NlQQyENucfIIEFFlhgp92CBwiAM+ABMjiZjl8YwgZ8zZ1s076KmmaREPK8VUQ+8jf3Wf3EHT1EavLvxhLUeJdmEmkti9L/3ZOdPWOMpxsWzHitrm+Pt7MyWb7kJWHWi6hqHACWZXI+GxcSfY57vCXStBqZJtO4Y3otACDXYjT/p5g1HC8YEK5JZUyiPNlH3Q2T3OXq6zFsY2VkE7FNTtKDKWXXS8oYF+gb5rUPWhbOkdESWwe/Ol/zLEpnHEVVwQ0jRO7j47a1RniO7HKix3SrmL7/MNnc0jKuqVRvAeATplP2v4ffxnlncN45dk/3DJPdSP11eZZl+PQzniQtL1U7A8A/NNwAAGg0//jnF7Nj37vC7H3yxdZrAPgKBMpYU/Xzcqt6H5jkmtzT7qvxDhfyPXXGlPpywxjjJjcVM16xb4TzltqtapQGx/h53WshZ8DXL3tXGTsoKiNq6gSNtBvKWbdSmkpWcYGpCz9ifW92DfAeryvzO1mqJ47W6XPVjwIAdo+YmvAJ9TQbqsiKFfdat5iZU6qHurTA79uSaTGP40P8W8SYSMyy1+Znck9u7+e5sozZqZPlJQVk0i/0+urBXcZG9oCMtCKba6HK+XLTX9O6ivGNT8/yf3MeggeIWRADCSywwAIL7JRszjOQZOehf8JXiVUPjh0dRHuXFhHJiA1cXcq4gOo9fnSY+fNFYSLk5XmGiBMYyJO9zDe/IEKWcNcQka7iKvmmcZRlvljVL3QPkqkIYaovQc8SXz1YXejUSTBkSEzqq1JGXZXFrKUy0036ZqyG1w8yq0Wp9MMfnPB1fyJJRKkPdLF+QxW8qhGos1z9gmx+RpXrMqnzimX8osVXEV6UQwSp+hUppJZmGEIet6rkbF7X22qogttv6LwvyvWVem9Rpu/3L0jh+dTvo7HLr8wG/DiQan2mDAetziJC/rdadiZM9Pcrq27YtMW+VcdK/8gCZqDNy6T/fo0pzn63jX8vsetZk8P1Tzbo+YNan/U+Bu4P9QNRjc6+PtajrMsiUu+b5DVLR+xC6wvSbL3I1fdEKrOAn0Ek9tg+wWyxHx7j+dUnXv1Kyo2BPDNClH6WZfF1FhOlJyoqq0bqxX6y3cenGMNR3ZCY66EhsvpWy+yqyOGcbm04n8dZvdNLticB4NoCMrtl2dzfOwfINOJZd6ZxJdb2Qjez5FR5f1WUcZmsFL9uJcfUoY/2ca8NjPJ7lWL90ytzYgB8Rd+35ZK13dpxEWbbghgILWAggQUWWGAna94b+Jklc85FnXO/cc4NOefqnXPvf5VjP+Kc2+ac63fONTnn/sU5l5Lw9yedc6POuUH7OfR65hA8QAILLLDATtKcd+o/s2jfBDAOoBjABwB82zm34hWOzQLwOQAFADYCuBzA50845rOe54XsZ8nrmcCcd2FFUobjAoOAnzqpJk4v9JAaZ5t7SSKAkgZXkVx1mNRfAcHEtFQF5RQUVTD3T8oYdPw/9ZTB3lTIIOIPD1KmQxLbkrbuCtONMJEQ3FXjnOtK6eK515onKXh6dSHfVzOdCQtel5mrosUktvOS6Jr4Xmx5fOyF6Qz8SipjxIKircN0RYTSeR0H6uhqqSlnAd7SIrpi5CpqMRfL8Y78+NgLwjz2sW6m3ErEMWpihSVFdHOouE8S3BtyGPhW0Lw2RnfE4uz2+NglJq2yKofrdjCDhWJK512yqt3Wgvd4QRpfFybTDbnY2qI+fcR3yYVzGFAd7afbo9fcHodGrQFWGtdzx0gNAGBZmG6+R9v4PRqK8HO7u3h8VW4sPrYamtWNcH3CllBQk03XztExuoBU0KlixXnZXMOd7b7EOoB4oRwA1A5wTAXvL48yhba/n+6wkmreW6UVf6n2egDAe8opfKl1zk+fKeAI+AV4MiUfqO3tgTS6FbsteK3vUHWI16XgtAQbtc8Av1j2vSE/sA4AaY7fCbWYLk3nPlEbWrU4Lknh+1pLABiyNajJ4fnrHRdqqcm1KHVYrRyeH+b9l0tuVu0tdmE557IB3Ahgped5gwCedc7dDeBDAP7qxOM9z/t2wstm59xPAFz6RucRMJDAAgsssLlniwFMeZ6X+ITeBeCVGMiJdjGAfSe892XnXJdz7jnn3KbXM8icZyC9k1loG/MLhcamGXweNLSyNMca7IyZ7IUFI4VeC3OIWhX8jZiI3pbOav8cg0Rgx7qIBj++9AUAwFca2Mrz0F6mZaatJmsY6SUbmAwTsW1u5li5WURTCmYDQHoK0dH3DrJwKs8EG7Mz+VnJXt+XwUD4l2ruAgBkTDMorKLEzzRTbmIiYWyJCq4JM3Wzx5omSbJcshY90awZcykzVDgvncjuf+8hw3rfsm3xsZXiW5FJ5L67l8hcIpUpJqMiiY2N0ToAfiOvndaYKSNV1+GjxKcHrKmT3cNIFtdEbXLv2M9iv/Pmk83cVMiGSJXWwvZQL5F1ZYkvxFdo0uoHjSmpmVa7FaU93EkmdbGljyqAvCCHSLkqg2MdT+f+kqwKABwzmZO2VF77/AJf8gXwWa+kNlZYOrgSIMatyVVZhNcnAUrAl2lpmCS6jpqMzqpKBtolEVJoopxKAnmih2t4VT7/jzg4xTHXm5QL4LcskATLMwNkWwXGGpXYcczaFJQWMLnhoSNcqysXMnFjzFhxYguEezuZaHJ4hOe92dr0PjVEpnFhiC72JwbImK8s5Vhvy2Hge/8Y95MkZgBgTyPfu2IRP5tnIpZqyVBuab1iOVstqK9mVbNmbzyWUeCc25rw+hbP8245yTFCAE7UaOkDEH6ZY2eYc+73AZwN4BMJb/8lgP2gS+xmAPc459Z6nlf7amMFDCSwwAIL7CTMvcEfAF2e552d8PNbDw8Lanuv8PMsgEHEdZHjlgNg4MSxThj3nQC+AuBaz/PiSMfzvM2e5w14njfmed4PATwH4LrXWos5z0A8z2F7Z2X89QUmGre1lQhXvl+J4ylGcnCc6FzyC5eGmdL4g3Y2pZHvHvDjJJJ+P2zNn2o7iE6T8ojoVaR27nLOQXIf0xbzUIHYwLgvCbKpmIhXMYUj/URTakaldqhXmUz7WWlEpP89QkQqGQmljqqoCvALqSRFUjdKJClkr8JHCQTOz+IclLbZYgKPZ5UzhTUjKUGCxRichA4jJp6nxka/aVjL67IWpdXpXTM+J5ny5dYMSjIviVZpqH9XEq+xIjvGeVRMzrjmaBJR+ZEJXtfv11Ce5ltHLo6PdX6hNVSygjZJ8PdZo6g1Ee6P6jTOVzIoKpB8tJ3ofEEOr+Phw8viY1cUcSwhd/n/q2yscDLvw9sK+fuJ3pmCmJfX0Atx/z7Gv1zMLyQsWMgx3lZJJhGbIouUhPmgpUUfGyfr6rVCvZ0NfmtjADjYaXGkztL4eyPW4EpNwK6xZmZKCW4e4x5rC3GeklypKuR90b5WWu38XF/K5IMlZOmpxgZuj7FQV8xOEj3tliqu9HUVBd95iIx7etLHuJ8/i8WfSgmWzImEG7Mt5VdFrjlWKFmY/qr/p56avckxEM/zNr3a3y0GkuKcW+R5nvSL1uC33VKJn7kGwH8DeJvneXteawqY0ebt5S1gIIEFFlhgJ2lvdRaW53lDAH4N4EvOuWzn3AUAbgDwo5edr3OXAfgJgBs9z9tywt8izrmrnXMZzrkU59wHwBjJQ681jznPQEYnU9C9z29Z2ZFHhHNFFf2kin1cEeKD+Yg1UYqNM4vlE2VsKKTmSgutCOn/b++9w+S8yrPx+2zfmd2Z2ZntXVr1Ykm2ZFkybnLHFYzBxkAglAQDv5DCFb4EEkJJ8kv4QgihxInBdLCJbdxArrIt2bLVZZVVWWl773W2nu+P+3nmnRWu60WaFee+rr1WO/POec97zjt6n3I/97N33LPgFucwF6AxYZWAKM6hRxJjofhp6VR30YvQAqeRUVqU2p62XvICAHDPi/R4/Pn0lIZaOF9fIa3qOxYyVKq5m0eHaXGGpDXopiAt/qf7aBHfWujlKVZLUZx6W8owU29G2+hWZHqWIwAs9PN6jw3Rar04RAs5Xm6kJUrvZEMOva3NbTx/zTA/MygFe2M+YcNJsZq2PY1KAaX+jm+HWpDGeL56Tpq/ONjF69CCsc5RWuP/3nwVAODyCK/r162Mvw+PeJ6e5htUtsVfSA9P2/yqnMf+4bJp51bmmgod7u7h+1VFHbGxP1a6ldcq19A4zjxJ4xh/r/fzsypGuSHIsLKyoBqHhXYl1raZ8Ay/QSmW29VDq7vVx6jFxbkc8wVpKfyuQkrbKHvw1mVkYf1iNy3/7DDvFxvHwhpr43egJYtj7pPWxurFaPvnll7udQv4e1KagN1YRCP2ujDzFl0Tnve7c4jsx2slp7Egg7nI752kV3hjKaVX9okAabfItqf6xcs9yb3NXu7lsfxJ3LNS8R6HArzHavu5ztfk8zuuYovKvtrWJHIo5+Fsw50Avg+gHUAXgE9aaw8CgDGmHMxpLLPW1gP4IoAggMeMid0Dz1trrwWQCuCrAJYAmARQDeBma+0b1oKc1geIMSYdwHcAXAEgDOA4gL+x1v5G3r8c5DaXA3gJwIettXWnc44ODg4Ob4gEqES31nYDuPk13qsHE+3692tSdq21HQDWzWQOp9sDSQHQAOASAPVgkuZeY8xKMCl0P8gMeBjAVwD8EsAFrzdgavIkwss81ovWf2gNg3oNf3n8VgDA5+f9BgBwUYRhw8NRWkC7+siUquunNajNjABgOINWqIq3DYvVXCLS65ViwWsdgHoe2jb1UAvPsW2CllAoyxNTDBbR2lajYOESxuI1R6CifopfdDBG/KciYa+y5AszaeG1jIdix5ak0nrb0suYe67kg35WS0mS+SGRoGindVucxbmkSEOhC8O0cp/rJXMmmOrN+/rIXgDAY90UFbwkj8cqO0vXQBsIaTOrBZITaR6klVie3QsA2FrvieYtzKN1nyMCkRrLTk7iZ6Iid7E8yNj9A4fpcczzc+x5WfzdF9eYqW0sMO2aO8e4bs2yXtpwTFvV5qbSm7wpTEteW97eUUzJ+B2D82Jj143RA1aW241BfmZvlPfUzmFem9blJMnaqJT80X56ImnZtLChvwGM9PIamtJp/SuDT/MPKt/+aAf3QaVClPnlz+HaXV1BltORfq/2ozOdx6jn3CXe+qAwvxqkziIjnV5BVDxpXybPsSyD7L5DUXrrO/s95uKyLNbR/LxLWgX4eWxHL89xMizMKckrdjdNbzs7VcZ5L8v16oPUS9R77EQfv2/t3dzbwWJ65/mpvI9Vnv7W+Xsw60iAB0gi4LQ+QCRu96W4lx4xxpwEncsIgIPW2vsAwBjzJQCdxpgl1trq0zlPBwcHh9eE64kewxnNgRhjCsCCmIMAPgkWwgDgw8YYUwMWxrzmAySQGkVaimelrw4y7q+idyrwliE1Dq9EGed9tpNWtbJZ1FodkSZL+dkecyMq7CllLZ36Wy2dVSKCp9Lfmcm03Cbm03LqGqaFekell8M6LnmIBT5+Zlk6PRCtiFZJ7Vf66cVcFuFSDFhaWxp3XynW4Fbh2QPAZ3bdzvOP85j182oBAL1S13JSvB5tqvVsN5lGx3poUWck06K8KIfemrJyAGCJVH/vEoaLWuzadGtxhF5Ea5TWYaGsp7aGHRjgemtthD/Ts7p1XX/TyrEuiHDeL0mDLhVJVPHB8nx6HG3SuOkdIc43K06I79gALd46EZBUEUIV1dTmThcVMD9RLNXw93cxcK75F7X8u+Naw6oH8amypwEA1VrDIFLwPqm7ebCT9SsXhJg3UlacNkTS3IIv05t3irRa7mrhOmaW89q39kiL3iK5X2roRa6cx/vg+RHek+U5zBd0iHehLZ0BYGWYXoIKeiqDTwUNi3y05FWxICStEbQivUuac50Y4dq+VOd5IGOlHEM9ppg4qJ9jNQ3T49DvpS+P3uaoeDmXLOQehuK83hf6WVl+bjaj2rtSuWfaEkCZfOp9VWXzvtB702H2ccZYWMaYVJAV8EPxMN50YYwx5hPGmJ3GmJ1D3WOnvu3g4ODw+0UCiCkmAs6IB2KMSQLpZmMAPi0vv+nCGCm8uQsAQkvyrfLAAaBdYt2aA9mYQ4syKKylbuHRK4d8VYQWnC+Hlt1BqQKeimOrvKt0LwBgjzS/OdBDazRdZLnHxGKrFzZNi8T3+4QxpQ2mrigRZti490zU2LCyqrSy/L46Wqsas8/L4DK8008P5DtdZG9pjuSjYfLuT454jLSScC8AoLWP8zkunoXG4N9ZStaK8uqbRK67KkTL7fxgLQCPAdY/4VmvP+5mbFvZWFph3toaAgCUSW5jjciga+3MsSZa68mpnEPLIb4+leFpj/Xl8DwpKXzt6XF6VSq5PyZeY4z1JjUOq6VNqtaanOuvjY2puY2pgHqPom8mlc4X5PPY7Z2VAICTQ1yrS8LcswuDIuXfthoAkJbseb3vEEbUtxs2cd6SQ1LrOz+D816RTQ9V93iVn2tzXLyjDy6nZ6qtBwCguYvze8cKWuSX55Bp9vIAPZCGId5zFy0+Jufk2qg+l0Il5LV6Ox7XR+j439VA2fO6VnpG86RGSj0O9ZSU7faieAQVmcxB5ga9VgIRaSmteZUjwkz0S95lvuSpnm9hfmjiEK9zKptrl7dEGpDF6VhpzkgZdeqZPlJPT7W6md/dPzmH7XzPD9DT05bHswkXwiJOuwdiyCG7G1SQvMVaq9VpB8FCGD3OD6AKr1MY4+Dg4HBG4DwQAGfGA/kugKUArrDWxptDDwD4V2PMLQAeBfB3APa/UQLdlzwW01kCPKaGVtOuzaQV8tt+slSUKZXvG5w2TomosW6Sit9tA54VuKOX1p5Wlpf4GRsu8/EzZem0po4M0wI62cN4r2obdQ7SCnuqmWPm+jxL7Xg6LTOtP3lkmM9Qbf16uJPW9fvm01P5RselvA5pFaqW5Tcn+bpWBQNAgVzjiLBq+qUu4qpKWtXazGd/F2P2mWJhNosn8vQkcyLzs2hh7un2VGNHx6WlrTDNxv20touKuCY7amj1RSt5nFbhVxXzOus6uUbIE+8xruJ4SnIB0SHO7/rFtMzVs3iwjns5T3IfkTSup7aSLZMajq8e8ZQYAhk8jzLpttTSet40jzUuF2TRU9Uq/ccPs65FK9cX+Rlnv0Tatsbngzb5aZGrV1M3Ml1Bt3GI1rXWvGgOJCoV04ebeN/cWEBPYE3Yazur1r/W4kQtx9gQ4HwDKdyTEdnLpxvIdtN8iipCD6cLgyquydaTx7i/DSUhAECx5DwmC5PkmpnnisgaVEoV+TNdZPWph3VUPKgNBSdjY6tnrB5EaRnvC40M6HdpaYTnyL6Kucu9nbwe9QSLfF4AYl2I41/qo7f1g1Ge9475rJW6LIv7MCD1Nne3seakKE4leLbgPBDitHogxpgKAH8CYDWA1rjmJXcIF/kWAF8D0ANq1t92Oufn4ODg4PDmcbppvHV4HX0Va+2TYDXkm8bYVMo0BVrVF9IcxlOTjI8+0cxhte2s1lko5z0nhVZWOIXW9zWB/bExl+XSen1AuP9PddM6VdZPprA+lM2i1nlbP983p1xx26CXA1EW0rNDtIiVBaZtZrVd6HOdfL+ln/OLyPtJ6fy8Mr6uLPQctr19ZKkEhT1j5FzKiFGtrI4ezqeygJ5GsXhY2gdFLWutxgaAQwPMA91aQOvvgfZzAXjrW1JIi/NAHb2bDD9fv6yC1qPmCZQplZbsxbq1zW2hVHsfFW0uteQLsmiV1kh/Dd3rPMk1aFW+tl4FgMZ+frZU4uaFObIGwvL5Xj2tVe31AqkD0qrsuiSe69ocegnrMz2R0qOiYrC7j7kkVRqIaUdJ5Xyb9AGpyOd1qfrtqnLmbrTHSzTT08IakpoHteh39VcCABb4WF/zN3nbOZ/tHwcQp/g8ye/EPMmhafvl471eT5eFxRxDczQK1WfTde8UdtbOMd5P2bJGh5qEmSaV8yMT3rxVPUBb22q/ktaJ4LS/N0ep/7U6u37adb0yQE9kKu6/i23d4jWKx3e+n3vQMcHvhHoeyrS8JZf3ZmXqdKWFt42zMBQ1U8x5KRMHBweH0w73AAFwFjxAjLF4udtjWdS0MC76nmWsPh0Vr0D1rFSNdOBECADQU0pL6fZi9pTITqJFui9aHhuze4pWnFqIWhexQ6xBVRj95VFa4eMjXFY7KDUllcKkkpxEKI4J80o756OV26q6qnhPkFbUnUfY7rhMOuFphXcwhWNpnYh2BgSAhdmcl1ZqT/bQ20pdRGs0kEYr8LIFjK9nitpuo3Qg1BoZ1YPa1uhVX//ZQtY8ZJjpNGpVD1ZF2ltW7gXgVe8rCjPp5VT30MrNiIvNV+ZwvdblkO/fKLUaJ5q4t3nSlyJDKufLJRfVLIywRaHpdTgA4BNP56kWWv3rhXWlOY/uYc67fYDemOZy+kXhd7n0jdGOkN/vvCg29vIssqti6sA+erPqBRxo5h6PdzBHc59f9KmkalxZew3j9A56JjwGVXUvc2CLpE7og7nbAABbh5lP+49usvVU0VfRN04m26nx/wqfZ42Xp0+3zDtFgfiweJedwlRUL3hpgHmgzQ305q38J5qUwn+o9wwAKT6PVQcAGzOZ1/l6+4Jpr2se8diIsPHEm9ROnRopALy6Fe00WJFGj3mTXxStU+gpNY1zr3aJHteRFF7PuZgdGLgciGLOP0AcHBwcTjvcAwSAk3N3cHBwcJgh5rwHMjqZgoqsntjfzT6GMbTRUSCVYRoVVYyKmy15YUTb6KY3LmJSNZrK97UlKMdgmOjmCMNiSictEBmPZ3sZFsmWBGZmkKGTlv2kZ/ZLQeFSkThRKXkACGTKZySEc2KYyVptQ/vZ4+/lZ3P4WZVxuOs4CwlvrmCyf22oFgDQM+6FP7QYzu/nOarKmKxtlbazl+Uw4d48xhBRfZRroCKKKufxmy4294kXmNSGS3c1MpQzNMbwmCa4lSjQK6EUFSX8XuOlAICKLIZFeof4/mjUqyEtz/ckvAFgeRbnPbCA4SQtiCyQ4kptPJWXxr9XZLJAb3PvytgYfmlYdFMZk+CPtzLRvjjIUKASHXxpPG5NLtf/AxHKvPxD7Y0AgD4pplwqtF7AKwy9MY/3R5okvH/WSuHLFJHaSSthaGVfq0jKS1GdSvEcGGIYMr6N6+Aor1nl8m9awPmrbL4SNz5awLYEWwd5L3ZEp69/yzDX95Jc7T0EdIv8+hXZbCT1TZHFf+mI0NbTNNTJUJuSVSYkNDc1KuSVZJrj0XEvhHVnEUOcD/YycKTEk/OCvH+f7yLdOEsap+WmcW0KpZ3yfsM10rAV4NHNte30wBS/V7/pJa1b92pgitd8cTbv7591bMBsw1jnggBnwQPEwcHB4bTCsbBimPMPkOyUUQyMe+1QzylgQlObzBzupyeiAnXjUV7yghW0MMOS0NbmScUiPtc04FmBG8pJF/xe4yUAvPanNYN50+ZSGZRkriRFJ4Vi65diLi3yG4h6jY76m3hsSRUT3tdJo52jUXov1xXROnyph5IPtVGOEZFixD29pCy2C0VUxQCBuOI9kVDXBOX1JRxz3yCJApcF2c738CDPqbIqu4cq+TmhUuZneXTP/zl8IQBgrJEeT9U5XM8yaTvbP8o96ZKmT3c1ce26RGJjLI56DQApaZ40SHMP174jh1a0ihGqnPwNZQemffY3rcsAAOVZPHdQKNnLfM2xYx5pp5U6Lq7nOSJ8qRTld1fQsn+xm9a3yowoJfTKfFJHVaRTqaQA0D7Jtdd1enGI1nVtLz279yzYCwA40E8L+nCbeMdS3KitcJ88Qe8hnuh+aQW9QfWuVCRRPYohoaEfCxXK9XFdVfqmJJ1r0jbCtdQCPsAjXmi7Xm37G1zBdb5AihWXpHOtVJp9US7v1T1CW87PY6L+nFxvvb9YcxPXRO45pba/dLISAFCUS09Di271Hj0kUkLrc+mpbGlZGBszReRj9vVy3toGek8nRTVTDT2+owP8LlfXc6yNC09gtuGS6ITLgTg4ODg4zAjGzvFYXkZViS352qdif88vpHW0KZ9yHU+2MZexRoT2tPhPhRDXZdPq0kZMD9Uzbh4vpjg+QatOi/4Gepg3qSzlubR4T+mXKtyXLMc/U0MrKjVV5B3SPHqpNljKk3zKfBGmW5rB+R4fLZx2vc91c6wMoajqnGp66ZnE5ynW5DXJMbQ6awZ4jFJ9tSVpy9j0Zj7XBWmN37mP1GHN00zGUYSLhELbPEBLWK1vtUJrB2hZrouwQOyaID2rl4ZpQf/sOKmsQ4P0xtZUevIdXUIFzpECSC2C0z3RosPoKdTgVQGOoRTiNb7a2Hv7Rmgtr83kfm8T2fvWUc7/fLkPftTA/mXJUuj4lfkPAgA6JnncVZm0nNONd25tM/zsAOP8hWm9AICjQ9w7v9B164fDcj0iLzJB70GFD1P1OuNcEL1PczPocZ4j1/jOLO7dt9ovBwAcFjr0p+ZtAeA1yhoUifMnWvg9uKnEK5DVJmraAmFYihbfFWRb5IYJzrdBWvM+0LIagNeWoLdZWsdGuE+jg2mxsTOy6PEvL2SuKNYUTO5XpefWDUr+rYn3Zmkxvw+a++nt8NrkXrac37PdbfQ4siSHpAWyfcPMfQw0S6FuOvcwM8RzH37X38MYs8tauxZvA/7cMrvshj+f8ed33vOXb3sOiYI5H8JycHBwON1wISxizj9A7KSBz+c1I2rqpTX9yLgyh2g1q+ex0E/WTc8ErVxt19o6nC3H0/pLj2tSlZPJGLVa00+mMGZcJjH31lGeMyJMkoYJWlXd0rxnvkiEdItlPTLqWa/lPjKItBXvtdm0LCuSOe/tgyya0mLJ+m6OvbGMFnOqWNvqERztnJ6XAYAPSfHZf02yLbKyWDaKKN0/dl0HwMujXB5gMeOKfFqPvWO0YtUTALwiRW1QVN/EIrgtXVxPLfb7bb2wb5bWAgAGRfAwxy/y9an0pJQZBgCVAa7JoBTx6TqqFb4mwH1QkcvCDHoFXXEMNAD4+aDXDVklS/5H4vZaJKlFiM/30bNTy3hTHgvz/v4kY/nLpH3uktRnAQBj8LzIQilSXJJJ72t+Gu+xDwS4l3VSrPjfE8wDhaVV73kiN79/mHkW9SbjGyCpB1Et+am8FL731cbrAQClMn/NfannoUV2+4d5vXeUU5BSC/YAr6hQWyCoh/fsEL2Vxzu4dypWWijChvqdWrqSzMA9zfQICgs86RiVz6mVBl4rIvyORien5770OzRvCfd8T1vJtPdLSjxGXr14KzdWMAemLQR+UcumX/2d3H/jm5g2n6FRzzOaNbgHCICz4AHi4ODgcFrhWtrGMOcfIEkpUzGGBwBURER2RKSpj/SQkfFSAy34aj//Hpa6hQ0ltQA8me9N+bQ849kqd+25SF7jXZMubTiP9dLav6aELKYd4iWocN93V/4UANA7Rc/jBy0cR5tcAUDfJK3r5SL18I9NlCBfmkWL9/EmWoOZkjfJTOfvbXVkZV1YQYZJaWYvAKA+LRQbu7qP13oPeF6tP7mzgBz9p4doYa4I0HJ+YpDn2i3tdNVC9YlExEQcc0pbxGozLRUfrCjpRDzUw9gxxPn+RS6b/WSl0Ho8NEBmUnV3fuwzu8WiPb9EYvPCJjvcRes5V+Tbl0uDJrXYtfHVvn5a9BpfB4ATUyKxLgy4y0rpfbWP0vNpEQn7lmZ+5oFhsrayMuhdVBue+z8tvbjFPq8+4fsnNgIAvrnsFwCAe7vJBvovGVubK2kb16pckdURz0OZU9qK1Z/kedQbfWRhLUintf9YN+fVOCjikOKB6Bo0SC3PO7NopdeNefL+wPQmW8q209yNNmy6t4G1Gy2tXIsNYXq7V4Xpmf4sej4Az/MYH5MWuAWebIreUz8+SS/w2Q6uxTXLOcbuDl57VYj3Szide6qSPhXCaOwf8xiL1xfymjQPeLBFmGejPH9miPdUJJtjqTxOdGLO/zeXsHAr6+Dg4PBW4TwQAGfBAyQ5yWJq0mOtaA5E6ztUNG9nEmPBHf20prVh03I/LaXDQxRcU078woBnSd+4jMwVtRSP9dP6Vvnq5mgIgFfbsK6QNQT/1UZrNU8sUG1OdHCoODa2VpZr9bLWOmg9QrmIJ24Qr0WZM+0jvI4rc+j9bO2nVTYW541dXMTPVGXQ4j2SxGv8etM1ADy5dp3f8git6nFp+tM7Ts9J8yzXRLz6i3uaaXUXSFvZkkX04Br6uRbqrSlDZp2fntInT76bn5M6hZebuC9jI15eKDVjOstK93JAakvUa1iVRQ9lWx/zRH9R+AQAYFTEH3e1lMbGLMvp5bVJDP7dOWQaDVl6LeodDhfy76is44A04RoVJl51DfcuPegpFWwSIcP/aL4SgOcdpErdgnpKPlEoUK9rrbQM3ioW9XKx2n/aeH5s7INh5gT+NMJK8wOZvKa6AXoHmwLc/8IUWv/3jZHd9qMe1myoZ6K5FG0HCwDvzuJ+n5dOr7BV8j9NBRz7Rdm7UmnQdbWw2saLuBbRAhHZ7OX6z/d53xmV+19YSU9avysRyf+o8KLW4eSm8h5UJQD1LtaUNMXGVG9d84aHkkSAUSriR+T3lYu4tzVD/J4Oj89uDsSJKXqY8w8QBwcHh9OOOV7+MFs4Cx4gFoVhL/ba0hkC4LWCrShnHP/CfFrA43m0Ulb6mHPQuLnmPFT3R1txAl5Tn4Yhjq0WTWs34+ZBkUXXvItfKqdro4y7K79/UlguymOPRyREC0wlyOuEbfWOUsaftYWqtkPdIu1m1fOYn0lW1AF/UWzMzlF6KSpZnil6UB1Sd6DtUrXu4GAXP1uTyri5MmTOD3IOP2nxWE0VflqBTcNcE/Wudncytm2S+AXLj9AC1ni/ah89V896kKKgtAcu6Y2NrbUPLzXT21oQmZ5XqevnWvxylFR69So+P0LvRr2fVYVeZbRKp58fpsen9SjvCrDmpVBkz6uyuI5FUsvxvcP0TFRDLT3AcfKDHlPq8aPS/jZE63pRDscYE09OK/xXiCdSEmB8XzW0LouwvkFbxV5V6FW5q7eyZZj7rB7FEpGs15oXvY9zxMJXTbRXBnivfbrwKf4d9e69zVKXsjqdXoJqS23Mokf17hBbHBwb4/w7hH1VJg2anupnszbN16XGfWe0kdQrQ5InEe9dvwubyniOE9IUTOueevKkxiREb0Mr6AEgVxho2or5ElGI2NzNplTXncu93NVDr1bb914Y12rXYXZxFjxAHBwcHE4vXAiLmPMPkOzU0ZjFCgAlebTu1oTpYTxUw3qQqFTJfmXDgwC8xkDKJR8Rq0YbDy31e9brE53UWlKdp45kWvarFtJq2tYs6qVyV2kuRFusqm6RKtBeWOxZRCv8HGNI2nEeF3aTeh7nZDGfUj9Kb0aZM8q62ikW/x8tZq3HwYCXX9GqX1Vs1Xah7X5adVr7ouygK4tpCW/vqgTg1VsoK6jE1xsbu7pX4s/ivXRL86ELFkhlv7Ca1FL+TSPXsLs2xAGyaIlOBGjVak4E8BheaqU+00jrWxk6anW3SfOnoWGu3Tml3LOqLHosZXENk9RCPznMsXNFNfjubuZylFX1qyYykNT70pqHcBbXvV9yIl0DXs1JcR6PbWqjZ9Tr575flUdPYu8A90iZVF2infVoAy34vn6u3bISzkG9DsBTkT40zNfUQ708xNzHQ9JQqmGI506TvIsqKqsq9b+J0m5ndHqtDODV92iTsjtzmW+5p5se53HViZM2xTuHyahTb6cijeucarzvoTZz0jyaevSTKoN9Cu7rYO5mgZ/eW5fl57SpGOCx1FRlWj3RZD/XRHOT54X5ncmQBmlZ8h2fNTgxxRjm/APEwcHB4XQjjuX/B405/wAZnEiP9SkAEOsNonmLohDZQXWSj/jik+8BACxfTuu6fYjWYGacPhUAfLP5sti//VIL0JRES72zh5/ZN07LcnEFLcciadO6s52v31xO9pZWHv9yJ62sC5Z56qDPjjKXodXehZm0jFtGaMHXDKwG4OVXjg3SGlQrW5V1v9O2ideV5XlOneOc572HWam75FzGqjVf8XIdcwxXLqDnoZXcGeLRaT8QjTHPi2PZ1CTTCry6gJawekaPdrBOQfXBHmniZ5dGaH1vO0mrcWE557JKVHE7Rj3NI/V0dA8HB6SfSik/o7Htfc20yielhbD2flGL8/iwV3X9UjuvVXXAtEZGPQ21Vv92/qMAgGZRE2iVGHyKaGNptXZ8dbN6ntcuZY2D5pwKUnnvBVJoGWsOaUBqG7TWYV8vrW2tjr89f3tsbPUwlL2knpRa+IXpvC/apJ9KT5S5g4ODxdPW5FA312J9gWfR94hmW7/ce9o7pFVUGlStwSf5o89XM8d0UxnzG1odP+qfzkbkmnC9TvV41KMeVN2tAvZQeaaH+Z8HT/L+ubCE35HPRV6JfVb1xyIpLwIAMor4vXyin1GGR2ro0b2zgPugisn9U14tyazBeSAAnBqvg4ODg8MMMec9kCRYJMWZA88fJSf9qqW0PkLpkuMQNlBHEi1KrRbX+Pmo9AsZHqGFNxFXl1AqNQQNXVLZLKcLRRjrPtEuKre5wlIJ8HhlpfRG+blzl9D6065s8XhlgHz/RX5a6lkBzlvj58qXv62AmkaPdK0CADzbTTbR3y1+BAAQtd6890hF9rwSxpWVvaKqvJX5jF2XZdASPiCxd7WotRPhMmEPqbIxALyraC8Az3K/u5b9QRaFeK6PhtiB8OWeSgBAk9RGLF1Jz+9Yq+QiRN+qwudpHu3q5rzVm7ywitao5klU1yxTPMN3LyL7ZkcX2Tdaca/aXgDQ3hLitUmNSbcwoAZzuf9aw/CcVONrD5KaZs6zKI/ehHaV3Nvu5SmKRCPq5CC93BsK6HnWjfHvzjFa4R0yn65+/h0podd2xSIqR18aotfmN2OxsXvks+rVqEd0sp1jryllDk1reY53yb0o90tVgHucL3mZ/d3evDW/o13/NJ+lrCs9Z02/nEvUnVf5uIfPd/Le0z43Vxd77DHN73T3ib7aAl5j2zjvA81ndE6oh8c8zPpifjcuDjL/dXLCW4tUwz1ZJppzqfJF3C3MtNuk/mNVJseokP/dfthfCQCixzA7SIQkujEmDOBuAFcB6ATwf6y1P3uNYz8sx47EvXy9tXbLWx0rHnP+AeLg4OBwWmGRKHUg3wYwBqAAwGoAjxpj9llrD77G8S9aa98xS2MBOAseINHR1Jg2FQAU5tNS7JN4rnoa3WL1qXKv9uEAqfA42Eqry4pVduGS47Ex97fRaltVTEtc1WEbuj2tJcCz6LS/Q92IKNTW0SvSjmqVfo8dtLWFjBatOH9vkJb7sXFO7LE25hCUKfM/jdx/9RJ6Bxmn/s8G5kA2RDyG16155PG/MEiF3J3Cjz/ZwXlNiX7V5inWMeRlDk2bf6XUemzv5hyvKKiOja2eTl4Srb8sqZ8pEmXcj9TcCgAYkT7ZahEfrmWtidaJqO5VbVY4Nrb2ST96gscumu/pTgGexbssl97AE03MI3V10pq9aBH3bn9HnLLrOK91cRU/o3mU9SGul1Zb/6CRrKwOyY2lZ07PjdUPhnh8wFOe7RfV4BSJ++8d4DorU2o/eI2q9PzexdxjjfevLqRlX5VKFtQDfefFxtZeHT+vYc3LeaJy0JvNNcqSHEedsLAKA8yJ6P1yUvqyaOV3Z7dXV5EdoDGqXRq1z/vJUdE5k9xie6/3GV4nPVNlO9VJPUnXmOfxhX30rpQ5p/mW87JrAQALpfakMJnehK7/3iGu3ZZeeoLJIS9brXUqC9O4h/XyHdFcx0+6uHf7Rpjv2j3C9d7TX47Zxpn2QIwxfgC3AFhhrR0EsNUY8xCADwL4/Okay+VAHBwcHN4q7Nv4AXKNMTvjfj4xgxksAjBprT0a99o+AMtf5zNrjDGdxpijxpgvGmPUgZjJWADOAg/EwcHBYY6hcxY6EmYB6DvltT4A2a9yLAA8B2AFgDrwwfBLABMA/mkGY8Uw5x8gqWmTCKR68tchkRXRIqP+nXTH51/EUMCaHBYYjorMRHU/6Y0qA98jTZ+2n5wXG3NyjK78iVS6zJkiUT55kqGeyQhDaJo0vWXFXgBA0wjDZ2NDDB9MpkuTqPbK2NhRCfH4RGbk+pf/FACwtoThgXwpRrw+wkSxho7+8RUKIpbnct5/VEJq47qMhtjY3+m8GIBXSKjJ/vEuhgJSI1yr+nquUXuQ98vKQoaMnqpnAd8XVvwGgEchBYB9gwwLqHDh/1dOqYw0KSa7PJuh0/9sYstVbUB10sfr0UZD5UI4GItrNKSJ+Jpsrqcm03e2CaFAQkFKEdUEsf7W8J4d9AgFNoWhkHlZDB92CW24fZz018UZvObrC0kb/XkdKdfzQtrwi3t3SS6NNBW1BDyZFE3u75HQmYaGtDHWefncm/19fP/aSoZetHDy7g7ulzb8AjziwtAQ9+zmCGmvnyt8HABw+74/BgDkZDIcpWHIJdkMEdUOcw2bpZg1XOqN3T3sQzzub1gNADgnwlCtX4pqP7CEodBnOxZMO75TQlYaLotvgaDrtTaX19wtBYXb+xkOrczlHu8dZXjvh00UfxwUirO2LR6YWBMb8+OFbOZVM0YKdnYyr/noGL/DSkNO8nEe3z9KYkdpqBezidMhpmiM2QLgktd4exuAzwAInPJ6AMDA7x4OWGtPxP35ijHmywA+Bz5ABt/KWPGY8w8QBwcHh9MKa3/vSXRr7aWv977kLVKMMQuttcfk5VUAXjfpHX8KACpjfnSmY835B8jklEHLsOdpvUNEE+sHQgCA5JX0zNQzaRvlg1ZF3Sr8tG61kC1FLOT4+2NFLq1TpdjWDNMCKtjIY/fW04pKTuWYLVLU1SAJV59QckcGaV3FW9vnFtIjUlnzoI/HHuhgUr9YkqIdQndU61qTky19PFfhvF4AwNNDC2NjL/cxObtzoBIAEMiixRYSr0ULMCPFnlUKeNZrMI3HX5pJK7JrykuZDYi09rIMzv+eNib3f1q5BQDwsFi3X614EACwQ5pU1Yh43kfm0WN6qosJ/HVhj9rcPsZr1UZhR/tooV9QWAsAqBuiJ6je2bkBflbFCbXY713rd8bG3NVF7yUgjazUA5kvUvcZQp09OEjvYHUur0vlMZQOrqKWKpQIAFsbSbLIlUZGxdncs36xiC+QhkxHh2gpqxejEutqwWvx6MlBj1Cg+xsODk6bp8q1K5FAvRylw6qXc3WeNIEaoEc1OeV5CZVSyKgUcV23Y/3co8/N2wwAaB7PmbYGL7ZUAvDaPr+nfI+snUcRvqWYr6kMziMdpJ03i8TNPr+0JRAP8Mp8emPaDEyLKY+NFsbGfLiX3kh+Gte3UApdD47w+6c07yXp9KDWFjHq0Bn1kvuzhTOdRLfWDhlj7gfwZWPMx0Dm1E0ANr7a8caYawHstta2GWOWAPgigPtmMlY8XBLdwcHBYW7iTgCZANoB/BzAJ5V2a4wpN8YMGmOUgnY5gP3GmCEAjwG4H8A/vpmxXg9z3gNJSZ6KeR2AF5dVCeecFFqFKuL2s6PMXWnO42Olz08b72vVbClbkOWF/wbHaSlmSHx/ZRat0xMjtE4Hi1SIcTrlUy1obYuqXsMyKUYDPOmRwQJakPOE4nunNBD6Thfj4iqmqBIQgUxag5UBXseL4nkodRjwRBIPnqA1esUKWnlK7SzIpFV7dS7lUJ7oIuniieYlMl9amD/zk7YZH/fX5lJhkTC5OZcW57d6y2WtuBYvDjJurhIsGSIG2DIW4hwHpLAsxSsYU0s4kDFdJl+l41Vq5aYI6bBKU37oGCnPm+bRwl/s89Z5KiwSJFIcly3015Xp9K6eGuS1q/V9XRGvr0XyWIMi4f/rw6TeXrXIK5rLkbzCphBfu69t7bRr3dIhUuxSNJksVBxtY6yeoDZV0patgCeq+XIb1/Uzu24HALx/Cb0r3YdftZ4n8+T1LZCc0y8aOZfGJt4XSeIlA8BQDq9JPez1+fTkRiSvtbmX+94a5RpcFiaNu8rPseokv6KSLYtzPbr153bfAgAozOHetfbS09AGY8+kcM8WiCTPsNzXVSKm+MNWerRfL/91bMxX0nm+p0VG/jdRejWH+ujZXZRHeffWiRAArxFaKC2+dm6WkABlINbabgA3v8Z79WByXP/+KwB/NZOxXg+n3QMxxnxaqGujxph7TnnvcmNMtTFm2BjzjDGm4jWGcXBwcDhjMHbmP2cTzoQH0gzgqwCuBl0mAIAxJhd0qz4G4GEAXwGpZhe8yhgxBFNHprXp1AY0WmyWLCJ4auUFJMewLMg4/yNdqwF4nsDyXL6+o9ErPtLmQb8aYgx2ZZjHXhhgvkkltlVm+pV2r6kT4BUYTk7yt+ZGAK/ArkAaGiXJtfyyn+fSVrBaRBW7TsmzqASINuTZ2lUVOyZmeYmZcLiHllpAYtl5EjP+4wAt9YIUWpL/OEAvrFuKFJ/pYKFeR5w0yHE/x8pO4jlaJ2ilasz72R5+JpxGqzsvnec6P5sW9aOdtOQ/VbUFAPBOv5cD+XY3rWZt26sSG30i+hfJGJZzhgAADcOM0S8t9DwOAJiM5QiB/gl+tnvUP21tvt54zbS/VfpDY/Gac1J23jWLWRy42NcaG/tSH2U6ioXp1R3hOWqlIK8sk7mGg328Lx5ppaekeYKnW2mNf3Eh5WjGc7wc2TOdfC+UIUV/0lr3mEist0pOb75Y8s0jXJP9PcxHDI7Ssg/ncf1VOh4A2pt57IsjXJv1pdwDzfWlSpvlra1kTtX1rwcAfKiS+QltgXBXLUVCrizyCk03lNcCAO4seBoA8Dcn3oV4qOehjLPNLcyF6XcrTWSA/q3DIyLdlvMSAE8s89ETlN5PkqLU1gDXYo2P1/GpfJ77V31vlzF7CiyAqbPsSTBDnPYHiLX2fgAwxqwFEN+a790ADlpr75P3vwSg0xizxFpb/TsDOTg4OJwpuOcHgMTKgSwHqx8BxJgBNfL6az5AxqeSYxIdANDcJzFrkQDP8DG2vraYsW5lqSi2NzJK9qKtBABcWE6Lf3mhZ2GuCjJWva2TlthvDzEGuyuXVqrGkJX5NRKlZZbtp6XkE6n4lgbmHmpbPInr1iJaTVfPY/xccxxqMSvjS6UgNGeQJ2wxlZFQ70fzBwC9MwC4YzUtt0lxRfQzKvfy5U5afwf7abXOD9IKLyqgV/ToCTaDuqjMyzXpPPcMVwIALs7iFq0WefHsJF67ek5RiaureJ4y0dTjiiR5a3KdtJl9V4A5jh/3kAzSGse2A4BjI/SCdN03FTL3obL0DVGPzRSVWhj1KNTzU8/johA/2zjGz6hlf0KEBIPiAVRmcG2KU3tiYz8xxPXROL56ByrqeLCBnse6eWQF5Qp7bIeI/F2QXwsAeLCLeQxlYwFeuwFtqaseyJ4W5rUCmfT4MiT/pjmGyVOYVWsLeP/3hWJOP6ql7XNu1uC0+T4xwByYSt2rx6rNqpTtpgilc22e7/C833Kp3flv8SA0j/WSfN/C8pk93byOHpGvWVrG75Iy1DSHCQAh8W5VFHRslGtSlkcvXHMeO0XqPjWLXozemw6zj0R6gGQB6DjltVethpTS/08AQHaR79S3HRwcHH6vONtyGTNFIj1A3nQ1pLX2LgB3AUDh8rBdlO09dzqHaX0W5NLiGREmlFqSd5RTDl1ZQgfCtA5b+yWnkCk5Bb/ngXRPcExtfhR7XeLiWVJFvirCPERPNo/Pkfj/hKXVeHEhRf5e7vS4Adp4qW+CFthaH3MENaO0rtWqU0uyJLtv2t8aX39SBAXVWuQxtEIXZfJatG3u9o5KAIA/lfN+MUqLTVlCKm1+fIgx/JuqWJ2tEtyAJ37XMh4C4K1nThKv41zJyfx6gEyeJ9rp5ShTTT2pmhxe58NxbUdXpnHLD47lyXy5XmoRF0q+SOP8hf6BadepbVC7Jj1ru2GC+x9J5rFfr7ua1yFtitWjuCiTTJ4fiNfT0U8PwCdMusNDrEt4ttNjSinjqX2Utk79AHMy6hEFpAZJRTmvruCevyiKBAuCXG+1znOyvLocbVWQnUHrW/MP3z1Cdt488RZP9vH62jp5H6tQ4u1VZGvdtYd5ivev3BEbW5uYabMsbcGsIoq7WhhhzkijJT8hOby7a8iQung5r69IvIv4xm71g1yDUj/v163HeB+vnU8vbEcNr9WOc8zMENeoNkpPeqWPXn/fpGcg1kueTRl9ty3jtW3rYGRgexvHfHfFXgBe/cqYtK++ErOIxFDjPeNIpDqQg2D1I4BYpWUV3nxlpYODg8NpgWNhEafdAxEFyBQAyQCSjTEZoKjXAwD+1RhzC4BHAfwdgP1vlEC3FohIgxkAKBUL/WQPY9mr8uk1VHfTajk8RCtQue69I7RSF4k2z7x0/n5MWEKAVzNQlC5S5aUvAABe7BeZdsmrvDfEXMMzg4yJa7Ml9S7qRzin/lGPUVWeRuuzHrS8ftJM0lm8LDvgxZ8DktcolrkcGqAHtVLyMI1Dwdhn0oXJ8sFsnuPBIXpGKn/fMkhrNSud1q3KkavnoSwozR/cWfx0bOynBpgHapEagaDUgzw3RItxkWhL/aaVx2kMfG2wlscZsouUMfPy4PzY2PdHmQuo8nEvtGFTrnh07w/TCt/VRcl4ZbDlpfB3zTitcdXlAoBx8QJ3S0X8pnwyp9b76HGkguv7cpT5tBc66JVpLky1nXa28P0lue2xsdXz0Nawn5q3BYBXD6Ly/cVB7tmv9pI9lJzOc7buoxdmyrmGfcPe/ZEsDKOoxPvva+Jn9X5VxLzbFFrhjV0hAMABaVSmsvR6vwDAhbnMab3SHyd7D6DEx3kuF6biM828z/u7eP+YSXq/L5zknt26jLmqW0Je5f8/N5LJp97MufOZg1HvsbSIHmxTNa9da2k+HN4GAPjs8fcCmF5b9TjoxR5t4Xf54+dTG0t15LQhmnrKqpYQr+E2K/BUdf/gcSY8kC+AXbE+D+AD8u8vWGs7QE36rwHoAbAewG1nYH4ODg4ODm8CZ4LG+yUAX3qN954EsOTV3nstTMFgS5sXj27upUVcFmZMu3N0umKregtLMmmVD0iVueYUlC10UY4njf+jWnoF4SJawGrNDgob5J1BtjAdsBzr8CDj5PlS+1CS3gvAY4+szfcUcxulKY7qJK3NYYx4UQatvycmpi9Hd7LkeGRs1VHaeoIx5mUlXjXwxUE6bx+pZ/xbdaAuzqW1encz4/xrF3I+qiaryrkay9fK73vavWZmwxPS+lcs83ub6DVcks+xj0Zp6RaK97DQT4tdW/Tq5x7uXg0AONjtaR6Fpc7jxYZKzreCXsJRUa39l+i1AIA1YcbJG0c4T9VNUpaQsrEAoFD0k7RV7b11nO+vDaOmBf7p6zkvmxbykR5au5pruLaCdSDadhcAOsWz+/gCWs+VqVy/tSF6V9u76c1ofi6UO101eKSPlvKEEOhGo57FnCTqBamp3IN1Ed4fN4fYvrVpgteuelCah1hcyPXWVsIbyujRXhDwmHQv9NGz0Ir5A12SD2znZ7KD9HYXRPhd6RvgPEsjvQCARUFep7YSzo7LYymaxCO+rZTeiTLn1NtdsaoWgOepfKnhRgBAi3yPR4fjFJUnpE1vBetUvlh9EwDg8mJ+VzUf+GAz97RS9lCVJGYLVON1LgiQWEl0BwcHh7mBqTc+5A8Bc/4BMmWT0DPisW0m6mnltUjOYGSIzKPCPMZ1G1NosS3MpBVzXpBW4okR5iAeFz2ocqnwBoB3le8FAAxKbYaymeZl0ip9qpc5D2VbLc7i2B/NIePr75pZ7XxxmJbSy31erxGt9tVeCs+20ypsCzE/sUFqBLqkDmRYtJy07kMrdv1Sc6JtaAHg3rbzAQB7Ghnjft8SxqqVQXXDErKr6qUupF0qzVXVVBWLlWX0dMOi2NiZUtuilrv2NVnrp6XbNcGxDljGpdUruyBEC/gbh8iJKSqi1Vie3RsbW68pS2ocVLtLvZmbc3kdD3WyWl97i9T2sVJatcbKM721+EgO2UePiW7WObnTK561JkY9pfxUidVniFqzKAR3iNZaKI7tpvmdmii9lc0d0xu56Z6oJ9cmuaV60afyncd7c0Ue17kr6jGPVENKlX6VwXdB1nRPT9l6qnowPCGedL7keOQ+K0z1+gZp3UdDfwiA54XbUd7HqwvIpNNeNBtyeM8dl9qkPGHLvShqzy8ke3ms/Ey5Lyb4X0xIcmRH+/nZimyu6zxh/On889LpnQ1HOP8j7V6tsU2h1Z8rHqp6cJqv+njFVgCe4rZ63MpGnE04D4RIJBaWg4ODg8Mcwpz3QAwsbFz19dLzagF4VvM+qXQdGmNcWXtc7B+kZfO3hU8CAP5hmHUBao3F448jtGwe6CMDRi21YAotIVUjPRalla2sqx/0sAeDsphWZzB+rXkAANjRS+vpkjBZQauzmY/44QnmXW4uZ34lPZ0W/2AKPRDtb6FKxDcuo67SM31LY2OvDNCCnCqVGpJ0Wn3b+rycEQD0Ciusq5/eW2kxj1Or/LjkHrQOAAD8afQOVKW2vZUx6y+MMS6t1c0j8v66PF676papNpPWzqzJqo+N3TbOsc4N8DWfVCA/10vvQa1u1dnyp5F1Mx7XZwXwquUB4NAYvRSN018UpDeofSoiYvk2Rnmc1l/kpPIcPRP0Cobkeur7QrGxF4V5r21toQWuygQhYczt6GSOIMVMj3ton5hhyYHsq6MVvmptTeyYomKu09+UPAoAaJ2kJ7QqrReAV+tQlU1vuEEUi3ujHPPoIHMOf1HM3h57o55qQzid11ZSyLEmJA9RUC49aMTbOhylF7mnl/dcUSbv98ebmJ8rlJ41K0NenVSD5KUuyaVenDLStP5Hj+2RToVaixIQxqPWJB3xecoR+i3fmEPvK5zMPXusi4zJ755g1fviHHqRquF1TYmnnDwrcCysGOb8A8TBwcHh9MK6QkLBnH+ADE+koSTYF/c3rX2tUs5OG512fIGwcWqlb8ZuqfhuGAoBAJZHaD3eEN4b+8wvephLuE1yGk9KnUdFGi1PzYloD3TF5lZaaBXCCNsxQm/j/bnbY8c0SM2CdlfLE6sqvJC/OycYz13rp8X283Z6JgWihaVsrYCo4n4yb0ts7GNSya39vvcMM36+tZHzKMvhOfvEWvVl0pJ/rIkxfFUy9knFemXEyyl0CaNIj7lsORlfeyRmXdfK6wqF6KXVShfBpXId2l3wsiCtw8MjXi3CL2vo6d1aRa+qNsqxlFFUKbkn9YzUW9A8iqojXxH0alBDsj6/7uHYmhNQpV+Nk3dEtc838xUnB3nuY608VzCb43xliden4lCUc1etrpeauM6Z4jWqflV/C9/35dO6nhfmelbLPXj5hWR4nZPlsfTOzeQ6rUzjHq0E5/XnLbS2u8eElSd5qxsK6LGqh631QmOSn9Oe5ADQKppbWpfUL6q888NcX83ZaPfGSyP02pSFmF7I91PlHtC5AN4eKQ620jsvDPH7d2SgQObNv1Ude3SS/yX1jvJ6Tb/3X1SgshcA8NNafh+rQsyfvDuPjLT/U0/F34EoPSW9N+M90dnC2VYQOFPM+QeIg4ODw2mH80AAuCS6g4ODg8MMMec9EAMbowoCwOIgE2i7O+jGaiMgFSE8IJLlWakMbf1D9fUAgKURUj/XBWoBeGEpAMiXsNdmaXtaIfIjP23bAMBLjr50jKGhbAnbBKV5lYZYqoeY/FVKIwCcjDI08oLIonw8j/IMVWm8jst9TCTXSLJxUGi8es6XB3jOCcvPa1tVAPj345cDAO6oZOhN2/2Oi8DkyU6GZ7ToclmQa7BPwn9dgwxJrC3nHGqHvHa5GurTxGuy+PTXlPH8W9MZKlEZEi1W++bBywAA71mwF4AnN/Fww4rY2BtKagF41M4TTVyjNJ8QCcJcA5U6D/u4nlqMdnmIoaCpOPto+wjHuiRAssL/PU4asYbnSqUIrU4owZrM1YLHefkMySh1VGnKgNd8SgU5oyMiN36EIbfJEpH1l9BVagrDZ5qQL8vluReJgOeVfk+9p1aaZlWP8/6NSvjokgCP0RCoikEel3CYtu59ZZThtVQJyR3o9KRMRuV7ow2ZMlK5viqqqBTmq7JJ964d5z7sHqoE4IWsTm2RAHhkhLYkrkmJhEtb+2SNhPat98XoFOei1PjF+UJEWOe1o/WLZEmFHKNklW+e5H0+McT1TBPxx6FhrsHOTo84MCuwwCl8iD9YzPkHiIODg8NphwthATgbHiAGuK7oQOzPZSIjXjPAoicVY1OrSgURtWHT4jCTqNpmdvM4vYxzgk2xMT8XYZLuyx30OBan0zq6PEJr+8AQrbykblpV5yxmolgbOj26lzTDoQp6FRsDx2NjV2XwtVHLzw5ZWlFP9S+XedLKKhZrUIvM1IJTAfxzRTYjw3iS62vz6TloglhppatLeG0qqd3rE7HHVFqNLd20nC+bRwqmWpqLs72WsSrUqOsYEbqrFtyp56EWe7skp0f7aRWqsOSSTK5VIMMrzLsgQBprrohkXlvIZPj3j3D9NYm7IIee4Jhar/7phZ3xyegjw0zibhmh7P07SznmQ/WUm39WBAPValVP7/pCWt8PtXAPT0gy/Xn/4tjYqwI8T51ImLeMcT7jAVrm2ULXLQ9xD6OSKFa5FN2XUZHReWzQ88ZaxrgX67JI11aadlmGNlHiOZSEoJa/SrGHRRp+8wjXRCnPAPD+SsqL/OA4iRnzJamvRJPz/dyH/9vEQlj10rRtrnoe2sZYC2k5L0/IEgAyRMAzIgWRy0K8l5TEoA3TCgL8fu4bolcX3yDt5CDvGS261Xvrgjze+//byms38pGiCMfKy/SaUs0a3PMDwNnwAHFwcHA4zXCV6MScf4AEUqMxixQAtg2w2Oy8MK3CJrGWlJ55vI+eyaowrfAbcinT8Kihhalx1ufbvfacRVK0VZJGC2z7IK1VbRGr1veFGxh7V8tsfzdzCZFCWnRKvS1LnU5xBIA2oesWCo338gAt5L8+fAsAYHyKOYVVebTYtSWrCshpO9X9I168d5mPx6pXtiKDa3IknXHw9Tm0alvHuEa7umi1/tlKyrav9/H9/24nZTSeDqn5haMDlKZQEUKlkzYK5TZdqKAfLWcx5uMZtK4PdTNWr/LzKk8BAHWj3KOwtDO9SWLwv0ynAOLOdl5jxMf3y3y9iMeLzZUAgGp/fuw19dhUwkTbzpYF+FktqlPaq2JnH8famEuJlizJmVyZ43m9e4foyamQZHYRPY59A1zP7bUcY8gvOQ9pjBWW++aibOZl7peWtnlx7QmeaWbRZ24FX7s6xPMek1yHNvLSXI5iXTG/2jtbaMmPSH7An+XR2h9p5V4sFLFEXwrf0+LJn7bT42sW2X/1uNX76ZPiyt09PEdSHLf1I8Xc7wsy6Gm8IvdYzRjn/UwXKe7qgah3ow3KmqQgciyuSVWTCCxeEKkFACwV73XHIPOAt66kxI16xbqOD9d7Hp3D7GLOP0AcHBwcTjucBwLgLHiADE2koTTVK3B7qJcCe0e7acXeNp/5i1WZzAdo0ZfGmzd30zq5LY/NoLaJ2N6CoBd73T1AC/PqHFrCJ0YYB58U60k9EI3zH6mjhR8MC5tF4rraQnTLgCc3kiWCby/30IrqEinyJJH8uLyExVvaJCecwjG11ecGP/MUO4fpoWzr9jyn9xQwxt0kchcBkfG4PcAxNw9zLV7q4WevKqSFeXUWGT5R8XI+mvcc5zblFYo9N0AL8muVDwAAvtFyFecrDKhLQxzjx9IgS+UmOqMco6uWcxoqoOcxHvAszTTxWpRp1hBl7HtjIb2A6n5ascqwW5BFCzpdrPH1xYyJ72zzJGM0xzIpMfVwKs+rkvvPtXDdAoU8bmM2vQn1BLUQMVnmFEn2vITzJT9xb8e6Vx07FODf2shLLXVlHt3bwcI4zbtMxFndxdn0Xi8RZpbugUrWa96hULxklVxRBlV/rkiZ8+uAjhFvD9Wb0mK+94XJ1uua5DHj2dK2YJzz0lyf5l10H/I1v5jheW9LhEXYIfIy6q2XCFtsnp97Fkzhuh4f5ndq80nvuwEAa4obY/9uTApxHsKkVLRG6SF9uIBejzLTftTAe08ZmLMGC6fGK5jzDxAHBweH0wkD63Iggjn/AMlMHsc/H7om9vekCP5NTEyvkfxBC5sqXZtLL2JzLz2PpdlkVGn8WXnobSPZsc8qI+tH0oDp6jxapZv8jF3/ayut78beEABgwyKyV3Y2MFZfLc2iwgF6KqMhr0lO7QCtJZWx1qZOl+XQ4lQ2iorTbQiqhAnn/UNp8pT0KsT0c9I576eHaNUp0+uuXlpwv26gkGCe5GaebKNX0T5Gi25ERCBHpBHWuoDXZvfGIOPNqXLe5mF+5jHJJak1+o4I1+KFLno5HVK7kVnItViQS0u0KLM/NvauDuYOFuVQKua5Zn52XSFzOOF0WvRax6Ax7w9E2Gr4Z920POOZXQoVq1Rm2sAkP6utkHul3uaJXrLg+kTyfGPOdFl09fgA4LIsem7KuvNLLqFOZPL/ciEFO++q4z2o4poHpC6oPItW+cIsWu1J03QyQgCAV0a5Jo1jHHODyLk/P0A2mNYW1U3R1cgXr2LvJD93XQHv+9+0e/kAbRzWK6KZ32u9FIDXLExrpbQ99KZc3pP3NVIOJlMYjvFtlBVDcq/9qPNCAJ7ETq/UV+k9tSST9/H+Cc4zOsD3VeZfPVYAuLGS16D1Qb4czq+2n/N7KpN7dmmA+3FehHutkjcOs485/wBxcHBwOO1wHgiAs+ABMm6TkeP3GDwqCFcRoQWmFqMvhfFeZX0UZ/YC8Hjz7eJxKCc/N8OLcasMejDC96JiXW0ZZr6kpp9W36JcWnSFYv1pRezwIK2qdQXMwxyLs4hUsK5DKptVHv3f2zcBAC4vY76ieYgW/sNRWviF0rBH8y4DY9Mr1AHgvzrJntLq63vEgyrx0dqenFIhQTNtLg/soYWJFI5VXkyvrMrXERv72SF6K3kpnEdARCsL0nnt5/ho/a0UL6hBZdJPUaFTNtmWugWx184raZh2LVpprkJ7asGviTA+3j7KvfvM4dsBALdXMPfTnBmKjakVz+syma9IFiJ/6yStZ22ypZL7mgfonpTGWNIydkMWc07aPhcAquXfPjnHnh4eq+2JQ8n0tq4srJ62FoXipWkOTe/F8bgGSKeu10vdlbxmqbeZn8k9aRa5evV+/reJuUDN2dRGeY92xzWrGvZzHc/NZs5IBRjVA9ndzL/PL6mfNsY5YbKf9nUxJ6ItiPe1e7mJf5lk22HNdewSgcO2Ca53o7AjtSnVOQHuZX0RX+8dolc0Mu5563uTOJ+Ofu7JA+OrAQDr8zn/lijHVgHP23KY13woaQ1mHe4BAuAseIA4ODg4nFa4JHoMc/4BYuDx7wGPhfKeMFuYqqbVnn7mIybFuusUiert9ZUAgHNKaFWphtCH87bFxtQmPKq9k5tK72RQ4ucfKqM8+78doiaPtoYtDfUCACYCwkBJ598LM9tjYz/XTZ5/i3DtczJpPYV89HaUkaONmXpGpm9Z9zCvd5loeX0g74XYe9uG6CHtEu2iDxZznhqLb2+i1Tqcx7FV/nrhPMalG3tCALw2qfXChgKAzCRa27ujZKjdKoyv41Hme57uZd7lgkJar6pfpBplY8LO0VqOVUVeM6LLw4xhd0zQytbWq63iJZ4fpsWpDDatIr9zAXXEosKw+1aFJ7m+Q2pL1HMKJgurSv4nODlKr1Briq720/N7Xizm3FRaytmG54yv5dk1RAbduKyTspJ2SwMmvSdVHUFzZSqbnh/m2Jr/ivc6bs6npL021bqtiPf1492M9z8z6FXEA0Aonde1MY/5Kq1hUtbWe0r3xI7VKvfDQ/QcGoZ4P2hzp9ERrqOuu6oP3JH7IgAgJ4X5FK0P0iZugMcwK0qjl3V/O3OMoTTe39qU6r4T9A7+eCHH1OZwI630AEeyvIp2vT9TkkU+vp/rWp3Bmp73FfMefLCX5/pwmN+Fp1q4Rl87B7MGl0QnnBqvg4ODwxyEMSZsjHnAGDNkjKkzxrz/dY79njFmMO5n1BgzEPf+FmNMNO79I29mDnPeA8lKjmJ4Ki32d6Ho+NzddjEAYFU2Y6uL/bTQH2mnGdInNRnz8xmj1Rj56myJ947nxsY8PkyrWtkqj9TT+vtgFXnzP20kj394gGMWBTkHbct5oo9MK2X8ZCV77CD1VlpreExrVggA4A/Skmz30fpLkxqCkfHpW9ZzgPM8TEkn7MyaF3uvdZRezcXSvlWhldA9hdK0R0peFoq21IE2xvTPFQ7+Gmktq+wswGPRaG5Jq4E/KFbfLybXAwCOSQ2K1rHcVMaGRz87zhante287txyT7dKW9pqrqCmi8f89fLHAQBHRzi//f2MiWel0zpXjyU7iev7fNRTnu2Y8OYOAMdGuKfl6cx9zEun9fxkFzWjDg3TKl/so0LuwnT+1vzXA53nxcbKFQadMrv6x7nPdd2cf1Mfr0dbAg/3ct2TInba2iwN8BxbWryWw0+nTq+L0JzRfB/3qnqSa1ErKsKN/TzXWJj3yTHQOveJwoIv26tEvznEGqlW8bIuDnJsraxvzuGabYjQm9GWtvf38NpfbOOeX1jIvNK5/trY2Fr3c28n82laKa/5NlU91mZbWhUfEd2qVn8IAJCc5in9ZopacHEWv19aIV+VzbWYL7Unmpf7s5r3AvDaL88qEsMD+TaAMQAFAFYDeNQYs89ae/DUA621fwrgT/VvY8w9+N1A3Kettf/zViYw5x8gDg4ODqcXZ76lrTHGD+AWACustYMAthpjHgLwQQCff5Ofvf7tzmPOP0DSzQQ+HPbyFb/uZ0xVNa1+eIyW8HWVfCgru+p4Jy33S8qZP2mRdrTfriZz6dpKr6+GMl18floya4O1fF0snm3pEoM/jzF4ZfS8NMBagQsreI7/bebcslI9Bs/SHHpGI5W0bD9WxWu5r4mW2+FOWpBrCshmakziPDVOXrGWXsKQsLC0tgMAjByj1cqqvaQtX88t4Gere2iNK2Mmq5QWfL94XHqdxdJ2FwC+dYJ9PYZG6Yl8aAEZL03Sv+Ivcnkdv5KKdc01tI5y/oNdwgaS7+HJPi+/UuYj6+25BvL91aN7pMO7NgBYHmDeRK1xZVZpb4y7my6KHbsyxGOVHaZKBG3jtGK1zkbrhNSrVU9Ff2vfE9VUA4D0ML3D90tu4Ms9NwDw+sGkJtOK1r4wwxm8N7XnSLbkY3QumXG6VuE07pm2aNbq8QzJQakHmJnGv7va6NFm5PHvHU3M311ZyYhERpxKrnoej0tNlN5TylzUyn/N/WlLW10bZT9dGaQ+15Gox8LSKvyXe+jNTI5JdX0/133hct57xXnc23pRw94YOTHtOve3el6k1p20DtLTvLKE1/RZqf85JjU8qgjwrqK9ALzq91mDxdt9gOQaY3bG/X2XtfautzjGIgCT1tr48MI+AJe8ic/eAqADwHOnvP5Pxph/BnAEwN9aa7e80UBz/gHi4ODgcNrx9lhYndbatW9zBlkATtVo6QOQ/SrHnoo/AvAja6c9Bf8awCEwJHYbgIeNMauttTWvN9Ccf4CM2DRsH/GqgrMlv6C9IEKVZH08Wsu8hdZkpGbQEtvVzrhuRwMt0IxcWoMNwzmxMTeJHpJfem3Uj9NaVuXbC8P0MDSWrYweVaqtl4pkZbfMF+0mwGN99fbSevp1K61s9SjKgr0AgEtCtLaeN4yPNw6FAADFPlpwE5mMX+9r9axAZbRAjPtX+vheKI3XqH00logXpL1JrgtSofg/mq8AAPz1bioCLyrw2GP6mXOy6Bnt7Kel+cggkzHLchjPr8wg0+j4MNdCef83ruY5XumhhakMGwDYXEevZWk+z5cm7J/zxfPbLYw6tehrRyLyPi1m7RSpPSgArxvjXsvPag5Ha0g0Nq/6SQ2dUqsRlnyWxObPz+Ec4tVvByTnodXpfnmvZ4SW+4B0KlxayjXpGiLDqERqkbb3V00b59rCQ7Gxn+/y6mMArzpclQgKUvl/SCCF15UqqsjDcn25AXrcR6X2SJV0AeDlIZ63upfe1QfK6EU+2sH8RZbUlCzJ4rxVA07VpnUsHefFLi//pvm/Gxe/Mm3+qjmmatnqmSrDS72dYz308OL7gei/VYFAlRK+3LZp2hiqUF0/Kh03X0X9OtFhjNmC1/YmtgH4DGLdgGIIABj43cOnjVsm4348/nVr7Utxf/7QGHM7gHcC+NbrjTfnHyAODg4Opxu/bxqvtfbS1z0/8xgpxpiF1tpj8vIqAL+TQD8FHwLwgrX2xBtNAYB5g2Pm/gNk3CbjwFBp7G9V5tRKc7UwMyRGvHYhLZ+aflonGlcdENVSn8Snj/d6/b+7cmm9viw9GFSL55wcxtXVEro9wod4bRKtpxRDi2yZ6G293E0rXfV/AMTmvqaSMeE9Ozl2aiktOGVfHY0yb6Ix+FVybmWGJUm9yI3zvT4Vyix6oY9WbFbK9J4REYmvq9ruunRex993LJf50zr0+2iJdsUpudaKPtKBNHoQkYX3iAAADwhJREFUmgtJS53eC6VSqth1jRRXhHifqzWr1wEAXcM8j/afOC+jFgCwOJVr8UIP1+h/a8Vbky6CTRHG9HujYvkPZsTGDGbT61qbrzkQ3voVPs7vyAD3tqk7BAA4v4Lx/b0trLZeKdXXWieSluyxgxZl0RtTdp12HEyWXuNGyPKH9nH/bYDXcSTCc66VbpIHJrhmytYDgBLpdXKtKEF/r5FG6dZ+1vhcHeLrG/P4/8H3k6mNNl+8yScsWWUne7lfh31e/k1zYRGpPfpmNS35/GwasVXiKWvVu+qtHejlnpcU0NLvkdzDvCzP0ldvICeFYx8e5HnLpf/KU02c/5Iw56m1JlXZPEcgnWs5OOz1oGmSuqRCyYnpd7tJtLi09kX3Vn8/3M3c4w1eoOLt4wwn0a21Q8aY+wF82RjzMZCFdROAjW/w0Q8B+P/jXzDGhACsB/AsgAkA7wNwMYDPvtE85vwDxMHBweG0wgKYSgga750Avg+gHUAXgE8qhdcYUw7mNJZZa+vltQ0ASgHcd8o4qQC+CmAJgEkA1QButta+YS2Ie4A4ODg4zEFYa7sB3Pwa79WDifb4114E4H+VYzsArJvJHOb8A2RgLB3FGR5N77IgE5DHReDu1/tWAwCqKhhm0ETcBXkMG6h8REU5x9jTwZCFFisBwH/VsSgxTxKpVdl01dVFfr6RIRUVxdOkrlKG9/eVyOcYElBJbgDY3sawxg1lDD0NrtICPQkvSKtVlaRQuqkmlpVOelE+yRIatgI8uqVSJMclzHVFIQ0LFeZTuff+KYYAVB59Yw7JAd2jDAltyvcMkkE55ulWhiLWFTM0pDLu2zs4drtQUzWpWz/Ca/9QDmVVjqUzjLO9vTI2dm8X7/vnIyQMdGZxjx6R8FGNhBenRDpEE92NXbzO88oYDryoymM4Kg33kgAFDVUGXdu3NvTzs+eX875oHeY5I9l8v26I8/7tIYb3lld40iua0Fa66MnWK/mGGKkFuZxffybXTKMfJyQMqHRebQtcPeCFmSJSpFg7xn2+LJfXdGKEfy+TBPGArM07g3sBAM8MMHTVL2SMK0r5ucN9BbGxNdEdoxdruEhCWC0SDtZ7TWndeh8r3VcJCZ8peCo29pcabgQADInMyZVhfi/rx7h3KhqqMjUakg0IpXlpCdf0QeNRt/Pl+6ehtGxJ8mth7KIMJvu/UU1JIRU3jW+iNTs483UgiYKEkzJ5K+X5Dg4ODmcE1s785yxCInogb7o8H6BHoY2QAKDazwSfyoovn0+aafWOSgDAwHJaT9EAk7rDE/y9PlwLACgqpQV9fWBvbMz/bKVFowWE3z7ARGZEGkRdWELL/cYgheqOZtLK+203Ka0FIr3eM0ZLSKnDgCcqqEnGRSJIp1aWCjCqcKNaizvaSNsszOLY8Z6HQinBLb1MMuYHeazSja/LZwJ2fjoTmf/RSNquek7vl8Y8ammqIB8ANEtBoNJ5TwopQRsAtfTRek3K5XWcG1Q5FI5RPU5a78J0fn54zEuy5+dzD9Qif7qNXk6BNL5SOnSfCEn2t9NjSRJqdqdIlsc3T7oij55HRKTVB8SDUtKFFnDu6K/kWEJWWBbi/NRLOJrGeatkCADUR+gNfKuGSehQkInjm8sp21KRznvuJ00sal2TQw+pe5xrpYSO9bn0ftQDBIA2mZ+2GVArOyqEh+dH6MHWCMGjPI0eyQudKvAo95d4HurZAkBAxCjVC0hL53vRCf1u0EsYBn/fkEfqtbZT9ovA4y0RCjxqISfgefpDMobKyh+UdrTXF/LeU/n8H3cy96seyG/b6elp22IAKPTx/r05l9+zgSmuU1jaCx+WdtVXlNNTfqqB943KpcwqzrIHwUyRUA+Qt1Oe7+Dg4HBakDhJ9DOOhHqAYAbl+clJFmvCTbG/y9JpgSnd8oE2WuFTBbSW2ppCALxCMC1ge7iB1uqiMC35Jl8oNqY26bm3gSJyedJWVmVItDhOZSJUZmJZFuO4avErVLgRALaeYP7kaDKLtGoMrVm1gIMZYnmKZ3JygHHz4mx6WNXttIifSmMeQ0Uj48dIFvnrFTmcT9Mor01zNkFph6piflpwuGNUiiuNyGYke6J0WSIVo+1my6XgUc9ZGWGRmVrTKoGv7x8Ti1nHDmZ6ApPailSpv/MC3NNnqpm3UIG9UJDz37ioFgCwu4uU6FYp3DunwMtT/LadOYGWED2HFmnBqw2W6gcoiPneMgoMXhQktb5bGkupUOI75pEuq9Y54O2vXps26ipOY05ExSE1hzQseQG1zu+s2MLXpfXAQx2rY2NPSJ5H2+OGU3jNa3y85gNRXvOjDbTYV+XxmpXy6s/knq0J0+tJjSvY/CORAPpux6UAgMNT3JNiP++tnSfp5V5QRQ+7eoTe/cMn+F1ZXcTvncqWaL4DAAqkqdqNYXoLm3tXTlsj/S69ksP5F4gIqkrDK+W8TGi/AHBRDvdkfhq/Cz/pYsGoFqv2THCvlGbc3yB1dvYNyxkcZghjE8gVM8ZcBOA+a21h3GsfB3BHfGGNMeYTAD4hf64AcACJj1wAnW941JmHm+fsws1zdvF251lhrX1bTdKD6QV2Y/EdM/78b2u/sWsWpEwSAonmgQziTZTni/DYXQBgjNk5FzbDzXN24eY5u3DzfItIIMP7TCLRHiBHMbPyfAcHB4fTA5cDiSGhaLzW2iEAWp7vN8ZcCJbn//jMzszBwcEhDo7GCyDBHiCCOwFkguX5P0dcef5r4K3q6J8puHnOLtw8Zxdung5vGQmVRHdwcHBIdATTCuzG/PfN+PO/bfqWS6I7ODg4/GHi7AtFzRTuAeLg4ODwVmABTL29loRnCxIxB/KmkKiaWcaYTxtjdhpjRo0x95zy3uXGmGpjzLAx5hljTMUZmmO6MeZuWbcBY8weY8y1iTZPmctPjDEtxph+Y8xR6X2QcPOMm9NCY0zUGPOTuNcSZp7GmC0yv0H5ORL3XsLMU+ZzmzHmsHzHa6ROLOHm+YeMOfsAwXTNrDsAfNcYs/zMTgkA0Axq638//kVjTC7IMPsi2GR2J4BfnvbZESkAGsAK/6DM6V5jTGWCzRMA/glApbU2AOBGAF81xpyXgPNUfBvADv0jQef5aWttlvwsBhJvnsaYK8HGRx8B+3xfDOBEwszTsbAAzNEQViJrZllr7wcAY8xasHmL4t0ADlpr75P3vwSg0xizxFpbfZrnOATgS3EvPWKMOQngPACRRJmnzDWegWflp0rmmjDzlDncBqAXwAsAtJl5wuz7GyDR5vkPAL5srd0ufzfJvD6REPM8yx4EM8Vc9UBeSzMrETyQ18JycI4AYv+J1yAB5myMKQDX9CAScJ7GmO8YY4bBTmktAB5Dgs3TGBMA8GUAf3nKWwk1T8E/GWM6jTHbjDGXymsJM09jTDKAtQDyjDHHjTGNxpj/NMZkJsY8LQsJZ/pzFmGuPkCyAPSd8lof6OomKhJyzsaYVAA/BfBDseASbp7W2jvl/BeB4YtRJN48vwLgbmttwymvJ9o8/xrAfAAlYE3Fw8aYKiTWPAvANqvvAfd8NYA1AL6ARJinBaydmvHP2YS5+gB5U5pZCYaEm7MxJgms8h8D8Gl5OeHmCQDW2klr7VYwLPhJJNA8jTGrAVwB4Buv8nbCzBMArLUvWWsHrLWj1tofAtgG4J1IrHmOyO9vWWtbrLWdAP4NiTfPP3jM1QdITDMr7rVE18w6CM4RQCyPU4UzNGdjjAFwN2jt3WKtVY35hJrnqyAF3nwSZZ6XAqgEUG+MaQXwVwBuMcbsRmLN89VgARgk0DyttT0AGgG8WrwnMebpQlgA5ugDJJE1s4wxKcaYDADJAJKNMRnGmBQADwBYYYy5Rd7/OwD7z2Ai9bsAlgK4wVo7Evd6wszTGJMvVM4sY0yyMeZqALcDeDqR5gmGgqrAUMtqAN8D8CiAqxNpnsaYkDHmar0njTF3gOymzYk0T8EPAHxG7oEcAJ8F8EjCzNOxsADM0QeI4K1qZp0ufAF0wT8P4APy7y9YaztA5tjXAPQAWA/gtjMxQeHN/wn4n11rXE3AHYk0T9AC/SRojfYA+DqAz1prf51I87TWDltrW/UHDLNErbUdiTRPMK/wVQAdYE+NzwC42Vp7JMHmCTCntAOMNhwGsAfA1xJintaykHCmP2cRnBaWg4ODw1tAMDnXbvDfMOPPbx6456zRwprLHoiDg4ODwxnEnCwkdHBwcDiTsGdZKGqmcA8QBwcHh7eEsy8ZPlO4B4iDg4PDW4HFWUfHnSlcDsTBwcHBYUZwHoiDg4PDW8VZJkkyU7gHiIODg8NbgAVgXQgLgAthOTg4OLw1WEsPZKY/swTzOs3rXuP4PzfGtBpj+owx3zfGpMe9N6MGfe4B4uDg4PAWYafsjH9mEa/avO7VIDJAnwdwOajbNh/suaKYUYM+9wBxOGtgjLlVrLGKuNe+Ke1QC87k3BwcZhvW2vuttQ8C6HoTh/8R2G7goIhVfgXAh4FpDfq+aK0dFNVrbdD3unAPEIezCb8C8AqoRwZjzF+B4ovXWGvbzuTEHM4yJEAI6y1iWiMu+XeBMSaCt9GgzyXRHc4aWGutMeZvADxqjKkB8LcANllrj53hqTmcRRhAz+Yn7a9y38YQGcaYnXF/32WtvevtzusNcGojLv139qu8p++/YZMu9wBxOKtgrX3cGLMDjA3fYK3dcabn5HB2wVp7ze/7HMaYLQAueY23t1lr3/EWhzy1EZf+e+BV3tP337BJlwthOZxVMMZsAhsOGQAubOUwJ2GtvdRaa17j560+PIBTGnHJv9ustV14Gw363APE4ayBMWYV2GjsMwAeBPBPZ3RCDg6/R7xO87pXw48AfNQYs0wadH0BwD3A22vQ5x4gDmcFhHn1GIB/s9Z+H8DfA7jSGHPpmZyXg8PvEa/avA4AjDHl0iSuHACstb8F8C8AngFQJz9/HzfWjBr0uYZSDnMexpgwgG0AnrPW/knc678EUG6t3XDGJufgcBbDPUAcHBwcHGYEF8JycHBwcJgR3APEwcHBwWFGcA8QBwcHB4cZwT1AHBwcHBxmBPcAcXBwcHCYEdwDxMHBwcFhRnAPEAcHBweHGcE9QBwcHBwcZgT3AHFwcHBwmBH+H9ovm8cllxOHAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAEjCAYAAAALw8feAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA2XElEQVR4nO3deZgU1bnH8e8Lw+awKKuiAiIqggoq4h4XVBSTaCQ37lGD1+16kxijl0RQwH1DY0SjCYpiYtQIiYriCgq4IIgooziyI+uwODDsy3v/qOqhu6d7pmfommbG3+d5+rHn1OmqOm1Tb52lzjF3R0REJCp1cn0CIiJSuynQiIhIpBRoREQkUgo0IiISKQUaERGJlAKNiIhESoFGREQipUAjIiKRUqARkRrNzPY1s/Fm9pWZTTez83J9TpLINDOAiNRkZrYX0MbdPzez1sBU4CB3X5/jU5OQajSyyzOzEWb2WiU/M97MHq3u40rAzOqY2RNmttLM3MxOztJ+p5rZjfFp7r7E3T8P3y8HVgMts3E8yQ4FGhGJQh/gCuAnwF7Ah6kymVlrMxtpZkvMbJOZLTWzQWny5gFdgc/THdTMegD1gIU7d/qSTXm5PgERqRwzq+/um3N9HhXoBCxx95QBJs7jQDPgDGAVQU1kzzR5OwMNSBNozKwF8CzQz9UnsEtRjUZyzszyzexZMysxs2Vm9gcze83MRqTJ38DMHg7zbjSzj83shBRZ88zsT2a2Onzdb2Z14vZzpplNCLetMrM3zezgSp572n2Y2dXhOeYlfeYfZvafuL/NzG42s9lmtsHMvjSzS+K2jzezx83sATMrAiZlcv6ZfK8VHTtNmcv9/sP9PwS0C5vN5pWzu/pAe+B4oJG7T3f3N5OOd5iZvQ1MCZMKzezW5HMCRgN3ZxDcpJop0Miu4EHgJOBnwKlAN+DEcvLfB5wP/Ao4HPgSGBt2Cse7mOA3fixwNXAV8Nu47fnAw0BP4GSgGHjVzOpX4tzL28eLwO7AabHMZpYPnAM8F7ePO4B+wP8AXYC7gSfM7Oy4PJcARvC9/DLD88/ke83k2Mkq+v5/AwwBviNoNjsq1U7MrC7wNnAhMAa43MzeDWsmsTz7AR8AHwEvA2OBW4HBZnZamMeAEcB77j6ynPOWXHF3vfTK2QtoDGwGLohLyyfo0B0R/j0CeC1u22bgl3H56wKzgTvi0sYDhYQjK8O0AcB35ZxLPrANOCH5uJUoT/I+RgMj47ZfQhAQGsbl3wCcmLSfh4HX48ryRWWOneH3WuGx0xwjk+//98C8Cs73T8BFSWkzCGolsb/fAP4Rvn8fuDV8vwAYHL4/AdhO0KQWex2a69+2Xjte6qORXNufoPN2cizB3deZ2YwK8k+Ky7/NzD4iuCOP97GHV6LQR8DtZtbU3deY2f7A7cDRQCuC2k8doF2mJ5/BPp4DRpjZbh4Mt70Y+Je7bwy3dwEaEtQI4s+1HjAv7u+plTz2Wir+XjM9drzKfP9pmdmhBDWpm5M2fQ+0DfO0Ak4HTg1rLd2AB8J8WwkCHu4+EbXO7NIUaCTXLPxvpp235eWvbAfwq8Aigma1RQQXr68I+g2ytY/XwrRzzOxdgma0M+I+H7tA/oTgLj3elrj36yp57Ey+10yPHS9b3/95wLfuvql0x2b1gEMIygVwDEFtaRrQkWDQwOdh01o74oKd7NoUaCTXZhFc1HoCcwHMbDeCC87sNPk3EzSXzAnz1yXoh/lHUt6jzcziajXHAIvD2kwL4GDgf9x9XLifI6jEv4lM9uHum8zsXwQ1mZbAUoImoJivgE1Ae3d/L4vHzuR7rcqxK/P9l6cFQTNcvMsJmvyeD/9uEP63PtAdWOnuC82sP7CYoO9GagAFGskpdy8xs6eAe81sBbCEoC+lDinukMPmn8eBe8L8c4EbgDbAY0nZ2wIPm9ljwKHATQSd3xD0VawA/tvMFgJ7A/cT1Aoylek+ngPeAfYj6G/YHleetWb2APBA2Dz0AcHF9hhgu7s/WZVjZ/K9VuXYlfz+y/Mx8L9mdhPwH4LBCg8C/+fusdrVJ2F5biOoSX1rZleG5fhJ/PcouzYFGtkV/J7g7vYVoIRgaGwbYGOa/P8X/vdpglFd04Az3X1JUr6/EzS9fEJwcR0e7ht3325m5wOPEHRAzwJuJBjZlJFK7OMDgqatLsAFKXY1EFhG8D08Dqwh6NC+byePncn3Wuljk/n3X57nCZq/riUYRVZAMMCg9PzD2ssVwL0ENw3bCGo5fWO1OKkZNNeZ7HLCZyLmA/e7+4O5Pp/aoiZ/r2a2BLjB3f+Z63ORylONRnLOzA4n6G+YDDQhuGNuAryQy/Oq6WrL92pmsdkCvsz1uUjVKNDIruJ3wEEEbfKfAz9y9+9yeka1Q234Xg8lGIDwTa5PRKpGTWciIhIpPeQkIiKRUqAREZFIqY8mScuWLb1Dhw65Pg0RkRpl6tSpK9y9VaptCjRJOnTowJQpUyrOKCIipcxsfrptajoTEZFIKdCIiEikFGhERCRSCjQiIhIpBRoREYmUAo2IiERKgUZERCKlQCM/SDOXruGbpWtzfRo/aJ8v/J6nJ83N9WlINVCgkR+kMx+eQO+Ha9dKwLOLSli7cUuuTyNj5w6bxOBXv6rUZ2YsKs5ZGecUlXDlM5+yccu2nBy/JlOgkV3GpFkrKNm0lb+8P5vLn56c69OpMTZv3c6Wbdvp9eD7HDrorVyfTkY69B9T+v779Zsz+sz27c6P/zyxWsq4omQTBYuLE9Jue6WAd75ezsdzVqb8zKkPjOfk+7XwZyqagkYSbNi8jS3bt9O0Yb1qPe4vnviIyXNX0atza96duTxh21eL13BAm8bUq1sHd2feyvXs1zI/q8eftmA19erW4ZC9m2V1v1Fydwa/+hUjPpyXkP7OV8s4rUubKu3z3rEzee2LxUy4+VQgCAgdW+bz3u9P3smzTe+rxWs4rlPLCvO9l/S7iFKPO94BYMbg3sxeXsJh+zRjwrcrgrRFxZx8UOsyn5mzYl21nV9NoxrND0CH/mPo0H8M27dXvPbQj+4fx2E5uCuePHcVAF8vWZOQPqeohD6PTODeN2bytwlz2O8Pr3PKA+MZPjF7bfuvTl/Mzx77kB//eWLaPBu3bGPGouK029P5ZM5KRn6cdgqoKvnyu2KWr93It8tLygQZgCufrfpcfY+Pn83CVRsYNm5WaVrUF9Cvkv6fpxNfrrEzllCyaWtGnzvjoff55+QFGeX987vfcuCAN0r/PuS2Nzln2CQ+W/B9adoDbxUyMQw6ubZ12/aU6a9MX8zi7zdU89mkp0BTS/zl/dl06D+G5Ws3ps1TvGELq9dt5tLhn/CHUalXxS1auynh741btnHJ3z6pto7zxcU7zv/Yu99leXg+f5s4lzvGfF267fbXdrTt93pwPB36j+HTeatS7nPT1m28X1gEwAeFRQnNNgA3/+uLCs/rv5+dwo//PLHc7zeV85/8mIH/npHxRTETP3l0Imc89AHPZTmAxbv/zW9Yv3nnz3nYuFmM+qz8BT3XbdrGy1Mrt+jnNc99xmGD3kxI27ptOw+/U1jahzNtwWreLyyicFkJ/dP83pM9+HYhm7eWvXjPX5kYbC8Z/klCvvj35wybVObfURRemrKQTre8wcJV6xPSt27bzq+fn8YvnvgIgMJla5ldVBL5+ZRHgaaGefKDIKAkd0je88ZMAHre+S4d+o9h9bqy7d5mcPjtbzPh2xU8n3SHFwtUyT5f+D0TZ61g4H9mAEGzwVMT5+LuvPPVMqJcoXVJ8UYuePLjtNtjF/3ZRcFF4L/+8lHKfAcNGMtlT01myrxV/PKpxL6fI25/mw1x3+WmrdtS3gnGmk0Wriq7rWjtpoR+hiXFG/jHJ4nf7yG3vcm3y8oG65JNW3nwrW/YEndn+uV3xUxJEzRjvl+/hWc/ym6g+Xzh9wl/fxAG551x/5vf8LsXp7N8zUZWlgQX31nLEy96D71TyI0vTefwIW+V+V2P+WIJ//P3z1LuO76C7u50uuUNHn7nW+5/M1jx+WePfchlSf+/l63ZyJsFS8v8bj8oLCp3kMHvXpxeJm12UQnF67cwc+mahFrQ9IXfc9Sd76StbQyfOJcO/cewYXNQ1s1bt5c7wGDIq18xdsaSMuk3hTdIf5swhzMf/oAO/cdQvH4LPe96F4DvVge/1TMe+oBeD75P8YagfH//ZD5Liqu3tqM+ml3MjEXFNM+vT9vdG6XcftfrQUC5+G+f8PK1x6Xdz+TwQnXX6ztqAWs2JN6h9npwPP1O6MhBezYuDVTJ6pgBlDa7xZqXhoQ1isYN8pgxuHeF5UrlkzkrOf/Jj5l8S68qff6cRyfx0R8y/+xf3p9dJm1VUkA+aMBYAGbdeRZ5dcveh/V9/EPm3XN2QtpRdwbt+bH0S4dPZtbyEvocumdCvgfe+oYnLu2RkPab56fx7szl/Pm9Wcy752xueOFzRk9bVLr96cuP4pTOZfsDqmLrtu289sUSzuneFjNjxqJiOrTMp3GD4DJw7rBJCfmveS71BT5T8Xf5sYvfZwNP56WpC1PmX71+CzOXrqX7vruXpv3PP4JzGJbmGA+8+Q3/1WOfhBr31u3OQXEX/nhHh+fxs8P3Zt7KdTx12VGs37KtzA1IJs7604Ryt3e65Y0yvxUIAgPA6vWbaVS/UWmQis971+tfs37zVp77OLhheWrSXKbfdgbNGpXtO51VVMLMsPzdhiQ2ey9fs6MG/syH87ig577cMnpGmeNFLSc1GjNrbmajzWydmc03s4vKyXuDmS01s2Ize8rMGsRte87MlpjZGjMrNLMrkz7by8xmmtl6MxtnZu2jLFdFhr71DYfclljd/2j2ytImiq3btvPjP0/kuHveo0P/MQnNQwBz49rKp85fXe6xrh45latHTmX+yh3V6h8ljYiZXbSOP47+kqcmzku7n63bg4vFlDTHK9m0lYffKaRD/zFl+lcAlhZv5LSh77MorCUsXLWekR/No0P/MZwf1lZ63vluuWVJZ0lx2WasaQsSzzO+pvDO15l3Js9cupYZi4p57YvFZYJRef76wZzSO/ZXpy9O2LY07nynLViNuycMfHjh0wUJQQbgihGf8n5hEV8tzqwfI2bW8pIyfXIX/vVjfvvC5+z3h9fZtHUbP/7zRK4eOYWbXpqesjYb719Tvyu9I87UuhTNhUfc/jZPvD8n7WfOHTaJvo9/WKapKnkEWMyj42Zx0v3juWrk1NK0f3yygE0pmr/ijZ62iGkLvmfkx/MzHvVWFU9PmsvyNRtL+0lveOHz0t/tPW/MTPjef/HER2zcso1P563iyQ/mlAaZmFg/ZrJJs1KPggOYNHtHX9LQtwvL/Ft7+J1C7hub+iYzm3JVoxkGbAbaAN2BMWY23d0L4jOZWW+gP3AqsBgYDQwO0wDuBvq5+yYz6wyMN7Np7j7VzFoCo4ArgVeB24EXgGOiLlw6j7wXdLCuKNlEy8YNWLByPRf+9WPO7d6WC3u2K73wxgyfOJeBP+4CBEHolAfGJ2zfuGUb946dydOT5u3UeY35smy1HIKL9EV//aT073RNAQ+/8y0Q3OEl3yU98NY3zFpewj8+mc9NvTtz4n3ZHf6ZfIH82WMfMvfuPlhYEzvgltR3thWZ/t33pXd+D5/fvUrnMvA/CT9npn9XzANvfsM/P13AipLN3PfzwxK2/9/LqfsRYs0/c+7qw+Y0/w+SnTb0ffqf1ZlrTtofCILYp/N2BOFTH3gfKP8iFe/3LwVNR5W5C053c1KRqfNXc9L94/nV8fuVpp39SPqBGplK1Tw19O3CSve7VcbgV79KuNmLv5F4JelGZPLcVRx3z3tpb2w+W7Ca0ys5mnD28vQDOeJ/rzef2blS+62saq/RmFk+0BcY6O4l7j4ReAW4NEX2y4Dh7l7g7qsJgsXlsY1heqzXzcPX/uHf5wEF7v6Su28EBgHdwoCUU8fc9S4fFBbx2xemAcEPbNRni1Lm/d0Ln7OkeAOdUlwwf/6XD3c6yJRnddKd3ryVmY0+WrNxC3+bMIe3Cpbyr7CTd9i41H1AUYgFzgff+qbK+4ivDfz2hc939pRKPTpuFitKgu/14bcLK/XZh98ppPPAsRnnj79jTg5ii6o4IunTeatK787LG+CwcNV6ClP0SVXGU1meNeDFKamb7JJrDtlWmUEV5dWe92rWsPT9G2luDpM9Gjd6MJdyUaM5ENjm7vH/yqYDJ6XI2xX4T1K+NmbWwt1XApjZYwTBpxEwDXg97rOlPXjuvs7MZofp0dcVy7F1uye0CS8u3siEb1N3vI6atohR01IHoRmLKtecUhmPjZ9F++aJz6qcNrTiJ+nfm7mMX43I7VLYN730BWd23ZM/v1f1f2TpankA3yxdy6Lv1/PYuNlVvmuHxBF2mXhkJ8qTLfEDLg657U3m3t2HLducLdu2k99gx+Uk2zXXbEg1mqw6vDilciPq0rn1PwXs1zKfEzq15No0AyR2xuVPT+b4/Vvy3z/qmPV95yLQNAaSG1yLgSYZ5I29bwKsBHD368zsf4FjgZOBTXGfTb56pzyOmV0FXAXQrl27DIuRXZW96ETtvrFVqw3kOsgAbNiyLWUNsDI+npN+1FdNm7omyhFGXy1ZQ/+Xv+TLRcW8f9PJtGrSgDe+XBrZ8XZG/PD4murS4dHNmDH+myLGf1NUawJNCdA0Ka0pkKqenZw39j4hr7tvAyaa2SXAtcAjlTmOuz8JPAnQo0ePrIzX3RY2vdStE/QVFK+vOXNQSe1y7N3vRbbv+L6Tk+4fH9lxJFrfrV5fcaadkItRZ4VAnpkdEJfWDShIkbcg3Bafb1ms2SyFPHb00SR8Nuwb2j/NcbLu0EFvsv8fXy/9u88j5Q+FFBHJlRPujbaps9oDjbuvIxgNNsTM8s3seOAcYGSK7M8C/cysi5ntAQwARgCYWWszu8DMGptZ3XCE2oVA7PZtNHCImfU1s4bArcAX7l4t/TPr4x7Ggqp3voqI1HS5mhngOoLO++XA88C17l5gZu3MrMTM2gG4+1jgPmAcMD983Rbuwwmayb4DVgMPAL919/+Eny0iGN12Z7j9aOCC6ineDv2e+bS6DykiskvJyXM07r4KODdF+gKCTvz4tKHA0BR5i0g9Ui0+zztAToczT/h2RcLT+SLZ9tNubcs8k1ETzLmrDx3jmpel9tJcZ9XgyQ/SPwktO4yPcCr6eIfWoKUAMnFCOMV+7OHenXXawVVbYqCy6tQx/nnVMezfKvMlH27qfRAnHtCSqyMYGVWRwjvO4vLjOlT7cWsDBZosGzdzObeGE1DuKto1343D2+1e+nfsafFdzd57BPO7nRH39PPR+zWn8I6zsnqcnvs1BxIvqPcnPaVfU1x8dDt+fuQ+/OmC7lx+XAe+GlK1eefiXX9qpyycWWaO6diCV//3hIzzX3fy/ozsdzR/6HNwhGcFJx3Yij/2SWwMqZ9Xh0E/7Vru7AgN6+mSmoq+lSy7YsSnWZ9VN1PHdmzBayn+0f7y2Pbc13fHhfSqHNwNZqJe3TpMuPkUHrnw8NK0PXarT/28xJ9pXjhkPNkD/9UtZXqy351+IFf9qCOPXrTjOKkWsqoJmufXp04d45zue1O3jrFb/Z1vDe++7+78ulcwKHTwT7vu9P4qslv9PKYOOC2jvLGphQAGnF1+sKnquV92bHue+VVPzj6sbWnaF4POSJn32V/1TPh75u1VuylqkPQbP7d7W169vuIA3LVt8hMcuyYFmlpi3j1n8/xVx5A8a/99fQ/jyhM7ckCb4DnVfZs3onl+/ZT72Ld5o2prNkln3+a70bBeXb698ywGnH0w94YB8r0bg+64l689jmm3ns5ff5k4C/K7N55E3yP2TrnP+DvQd288ifwGefyxz8E0rFeXb+44k5m3n0mrJg2Y/MdezLz9zJT7uLDnvlUu0yvXH1/u9p1pyuvUunGZtLdv+FGl93Nv30MB+HpIUP7fnX4g8+45m8uqqamoReMGFeY5vlOLhL/7HrFP2ry9u7bhl8e258Ke+/LrStbQrgpr/PEX/3Qrzp4QtzLoOd2DwHRAiv8nFZnU/9SEvx86vzuH7lPx7+Lu8w4tfR8/s3Om8/NVFy0TUANd9aOOaft9Dt5rx8QHyVX8GYN7l9YGZt15FvNWrue0ocHkin/9ZY/SCfuimpOsQV6dCmfVjalXtw5Xnrij5tWxVeOE8pzepQ3z7jmb8d8s59tlJezfqvx/3O1b7Mb8levL5GuQV7f0feumDdOuC3LbT7qyYNX6tJNQXn5cB1aUbOK1L8pOXXNgm1STXsTvuws/D6d2efna4/hm6Vr+ODqYm+yla45Nuc7OfX0PY5s7P+3Wtsy2NnFzYpXnjnMP4Ywubfhw9krOPXxvzj8q9awYE24+JetTylSlP+4XPRKD/R759fn2zrNKJ07de/dGpY8RxJZjuPu84EYl0+l7+hy6J3uHS3TELtzxF/NkdeJq10POOQSAxy85svTfVbxJ/U/l+HuCpy+ObL8HfY/Yh/wGdflpt7YJNTXYUXPbrX7d0kclUjlsn9154tIjqZ9Xh72aNeTMh4Pn9fZtnnqZkVxRoNmF/PrUThn9g/h1rwMSAk18c1mqNVRiGsfNRZVXtw6dWjdm9l19mLGomG5xa4AkO7ZjCz6as+MC+9r/nsDi7zckTM2ezmH7NOOpy4+iZeMGfL7w+zJrngB8OegMqjodw8kHtc6o2eu9G0/OaJG2hvXqpk1/4tIeZZZ5iBn44y7UrWM8Gi54sW7TVj6cvbI0ePc7YT96d92zdNXDeD06NOfxi4/gzte/pts+zUonT/zV8ftxVIfmCXkvOaYdN55+EHukqZVC+rtvCPql7jrvEDZt2c6+zXcD4NzDU9cEY/Ztvhv9z+qcds2i8rRsXJ93fncSeXXr0PuhD0oDQYeWZQcAPHHpkVw9cmrC7+3EA1oy4dsV/KLHPpzTvex51o27QCfXCiqjRX59GtaryyMX7GhOrVe3TkazVU/qf2rp5yF1LbNgcG/yG+Rx2bHt6blfC84+bK+0+4vVjAD+2OdgBvx7BgPOPjjtFDq9u+5Y92jm7Wfy0ZyVHNm+OaOvO46fPfYhAIfs3ZQZi9bw61M7cfVJ+9Nt8FuceEBLxn2z84vbZUKBpppNvqUXrZs0ZObSNZz58ATuPu/Q0mWVf3PagQmBJvkCD8HIl/g+i88Gnp62KSwTdetYuUEG4MFfdGPCt0X838tfck73thyydzMO2bsZY359Ah8UruDectazeCWunbn7vrsz756zuXPMV/x1wo6ZeZuUc2GsrOf6Hc0lw3csbRDrawimAkrdt1ORWCCPD9Txju/UguRuo/wGeQlTuiePCPtjn86li9gBnHXoXpx1aHDxabt7Iz76w6m0bhIEnKevOIorng6ex+rQIr/cIFOeji3zeeTC7lXqx7nmpP1LA83xnVqweev2hGUHUnnx6mM5bJ9mpRfgSf1PZeOWbSnXqYEdQaNR/R3BfmS/o9m4ZRv10txA1aljlV7A65Y+B/PuzGWl89ndfOZB/PzIfUq/78raO8Uihe/87iQmfFtUeqMQm3B0cFjrSSVVOS45pj2XHBMsoxULNDf1Pqh0FdFkDevV5ZTwxuvwdnuU7nPLtu1s2+6l/y9m3dUHiK71IpkCTTWL/Zg779mUqQNOo3l+fS7sWbbJ4oROLbni+A5lAk0syDx28RHs1zI/ZZA5+aBWjM/SncqJB7Sk7e6N+EWPfem+7x4ctOeOZqCubZvRtW0zjunYHAdWlWxmfOFynvt4AS9dcywt0lwQbzm7C9s9WG8n2044oCVz7+7Dfn8Ins/43ekH7tT+MrmI/f3Kyi9xdNlxHbjr9Znckmb01F7Ndly8TjmoNRf2bMfzkxewfSeWzr7ulE47NVjgnvMOpf+oL7nu5E7MKSqpMNDERvfFa1ivbtpa448ObMXPj9yHG04/kPfueS/hM9l06bHt+e8fdSy9yF56TPtK3+xc2HNfOrZM31zbqXXjlDWbnTH8sh70e2YKF/VslzbQpFOvbh1SfY2ndm7Ne3GL7+2VYbNrZSnQ5FCqDtCvh5zJy599x0+7t01oFvj2zrMSOvr7HJq+6j3iip5pt2WiScM81m7cmnCRNbOEIBPv8HZ7lL4/rUsb7jg3fZt2TLpF1LIhub07mybf0oued77LkHO6snzNJs48ZM+KP5RCg7y6lboTb9oo+Ke6dXtmgWb870/m7je+5s2CZaVplV00K9kFPdtxQXhTdEzHFsxYtIZmu9XjyQ/m0HnPJqXLCVdV/bw6pSMHh1/Wg6Ypli2uqmkDT6dR/cQg9/K1x/LsR/PT1lTLE+v7qU69Dm5T+pu55qT9Wbhq5yfCfOj87oz67DtOPKAVz3w4j9vPTV/j2hkKNLuYRvXrllaV46VrOojCpP6nsmlLtGt3nNK5Nc98NJ/OaYLXzppw8ykZr0aZTqoLUOsmDXdqrfXLj+vAZwvKrwmkEuuY3i3Du/sOLfMZcHaXhECTar35qqpbx7g3fPboyhP2Y/fd6rNg1bqM1izKRK8sj35M1dx4ZPvmHNm+bK2rJuh/VnYmPGnWqB5XhCuZRhVkQIEmq+atKH8FylTPuFTkiUuPrHDUUrY1bVgPoqlBlzqhU0suP64D154czcOjsY7uqoj1ibx87XFZPKPAoCo+23HlCR2pX7cOF6e4CUmnVZOKhwxnQ+umwY+lU+smzLvnbKYv/L5ajis1h2UyEueHpEePHj5lStUW7zr/iY/4ZG7qBbP+dEH3lKNmRKK0btNWuoYj5XamJiZSETOb6u49Um3TA5tZNHle2SATG9GlICO5EBvtdMkxuVk5VgTUdJZVyZXDCTefwp7NGqYdzilSHVSTkVxToIlQrJ9g992q/pyLiEhNp6aziAw5J/rJCEVEagIFmohcWonRQSIitZkCTUSifGhQRKQmUaAREZFIKdCIiEikFGgi0L5F1Z9KFxGpbRRoIvDGb07M9SmIiOwychJozKy5mY02s3VmNt/MLion7w1mttTMis3sKTNrEKY3MLPh4efXmtk0Mzsr7nMdzMzNrCTuNbA6ypeNddtFRGqLXF0RhwGbgTZAd2CMmU1394L4TGbWG+gPnAosBkYDg8O0PGAhcBKwAOgDvGhmh7r7vLjd7O7uejRfRCRHqr1GY2b5QF9goLuXuPtE4BXg0hTZLwOGu3uBu68GbgcuB3D3de4+yN3nuft2d38NmAscWS0FERGRjOSi6exAYJu7F8alTQdSPUrfNdwWn6+NmbVIzmhmbcJ9FyRtmm9m35nZ02bWMtUJmdlVZjbFzKYUFVXPGtoiIj8UuQg0jYHipLRiINWiK8l5Y+8T8ppZPeDvwDPuHluIfQVwFNCeoJbTJMxThrs/6e493L1Hq1atKlEUERGpSC76aEqApklpTYFU68Am5429L81rZnWAkQR9PtfH0t29BIgtLLPMzK4HlphZU3dfs1MlEBGRjOWiRlMI5JnZAXFp3Sjb5EWY1i0p3zJ3XwlgwTwvwwkGFfR19y3lHDc2ib/mhhERqUbVHmjcfR0wChhiZvlmdjxwDkGtJNmzQD8z62JmewADgBFx2x8HDgZ+4u4b4j9oZkeb2UFmVifs03kEGO/uyc12IiISoVw9sHkd0AhYDjwPXOvuBWbWLnzepR2Au48F7gPGAfPD120AZtYeuJpgePTSuGdlLg6P0REYS9DMNgPYBFxYTeUTEZFQTp6jcfdVwLkp0hcQDACITxsKDE2Rdz7lNIO5+/MEQUxERHJIU9CIiEikFGhERCRSCjQiIhIpBRoREYmUAo2IiERKgUZERCKlQCMiIpFSoBERkUgp0IiISKQUaEREJFIKNCIiEikFGhERiZQCjYiIREqBRkREIqVAIyIikVKgERGRSCnQZFmrJg1yfQoiIrsUBZosyqtj/KLHPrk+DRGRXYoCjYiIREqBRkREIqVAk0We6xMQEdkF5STQmFlzMxttZuvMbL6ZXVRO3hvMbKmZFZvZU2bWIExvYGbDw8+vNbNpZnZW0md7mdlMM1tvZuPMrH3kZcOiPoSISI2SqxrNMGAz0Aa4GHjczLomZzKz3kB/oBfQAegIDA435wELgZOAZsBA4EUz6xB+tiUwKkxvDkwBXoiqQCIiklq1Bxozywf6AgPdvcTdJwKvAJemyH4ZMNzdC9x9NXA7cDmAu69z90HuPs/dt7v7a8Bc4Mjws+cBBe7+krtvBAYB3cysc5TlExGRRLmo0RwIbHP3wri06UCZGk2YNj0pXxsza5Gc0czahPsuSPVZd18HzE51HDO7ysymmNmUoqKiShZHRETKk4tA0xgoTkorBppkkDf2PiGvmdUD/g484+4zK3scd3/S3Xu4e49WrVplVIhU3DUcQEQkWS4CTQnQNCmtKbA2g7yx96V5zawOMJKgz+f6Kh4na0xjAUREEuQi0BQCeWZ2QFxaN3Y0ecUrCLfF51vm7isBzMyA4QSDCvq6+5Z0nw37hvZPcxwREYlItQeasK9kFDDEzPLN7HjgHIJaSbJngX5m1sXM9gAGACPitj8OHAz8xN03JH12NHCImfU1s4bArcAXcU1rIiJSDXI1vPk6oBGwHHgeuNbdC8ysnZmVmFk7AHcfC9wHjAPmh6/bAMJnYq4GugNLw8+VmNnF4WeLCEa33QmsBo4GLqi+IoqICATPolQ7d18FnJsifQFBJ3582lBgaIq886H8pyPd/R2g2oYzayiAiEhZmoImyzQWQEQkkQKNiIhESoFGREQipUAjIiKRUqDJIk0MICJSlgJNtmlqABGRBAo0IiISqUo/RxMuPNaW4IHLovDBSBERkZQyqtGYWRMzu9bMPiCYAXkWMIPgifyFZvZXMzsqyhMVEZGaqcJAY2Y3APOAXwFvE8xL1p1g7ZdjCaaEyQPeNrOxSZNliojID1wmTWfHASe5+4w02ycDT5nZNUA/gqWVv83S+dU4GgogIpKowkDj7v+VyY7cfRPw2E6fkYiI1CqVGnVmZl+aWbOoTkZERGqfyg5v7go0SE40s2ZmNiw7pyQiIrVJpqPOXjezQQQz4e+bIstuBGvD/GC5pgUQEUkp0+doCoCTCfq6J5vZWmA6MA34gmDNlyVRnGBNo4kBREQSZRRo3P0mADPbRDCkuS3BEOfuwNnhfm6O5AxFRKRGq+zMAPnuvhX4DHgtgvMREZFaJpMHNveLvQ+DTHl5zcxS9eGIiMgPVCaDAT4ys+Fmdmy6DGa2h5ldC3xFMHPAD47GAoiIpJZJ01ln4BZgjJltA6YSdPxvBPYAugAHE8wQ8Ft3fzOic60RTHMDiIgkqLBG4+7fh4MB9gauBWYCuwP7AVuBZ4DD3f34TIOMmTU3s9Fmts7M5pvZReXkvcHMlppZsZk9Fc4eHdt2vZlNMbNNZjYi6XMdzMzNrCTuNTCT8xMRkezJeDCAu28A/hW+dtYwYDPQhmDk2hgzm+7uBfGZzKw30B84FVgMjAYGh2mEaXcAvQmWLUhl94r6lkREJDrVvvCZmeUDfYGB7l7i7hOBV4BLU2S/DBju7gXuvhq4Hbg8ttHdR7n7v4GVkZ+4iIhUyU4HmrCJ6mdmNjjDjxwIbHP3wri06QTT2yTrGm6Lz9fGzFpU4hTnm9l3Zva0mbVMlcHMrgqb4KYUFVVtHTeNBRARSS3jQGNmeWZ2mJldZmYPmdk4M1sNzAZeBq7McFeNCRZPi1cMNMkgb+x9qrzJVgBHAe2BI8PP/D1VRnd/0t17uHuPVq1aZbDr9DQzgIhIooz6aMxsKkHtoj5Bv0gBwUObJwK/AN5y97UZHrMEaJqU1hRI9fnkvLH3FR7L3UuAKeGfy8zsemCJmTV19zUZnquIiOykTGs0XYAHgD3cfR937+3uNxK0GH1diSADUAjkJa3E2Y0geCUrCLfF51vm7lXpk4m1bqnOISJSjTINNEcQNEP9y8wO25kDuvs6YBQwxMzyzex4goc8R6bI/izQz8y6mNkewABgRGxj2JzXEKgL1DWzhmaWF2472swOMrM6YZ/OI8B4d09uthMRkQhlFGjc/Wt37w08DowOO9b33onjXkcwHHk58DxwrbsXmFm78HmXduFxxwL3AeOA+eHrtrj9DAA2EAx3viR8PyDc1hEYS9DMNgPYBFy4E+dcLi0TICKSWqUm1XT3UWb2OvAHguUB6gD1KntQd18FnJsifQHBAID4tKHA0DT7GQQMSrPteYIgVq3ULicikqjSw5vdfaO730YwkusV4F0z6x8+HyMiIpKgys/RuPs8d/8ZcBHwS2Bu1s5KRERqjcquR1OGu78VDhD4TRbOR0REapmdDjRQuk7Ng9nYV02loQAiIqlV+1xntZ1mBhARSaRAIyIikVKgERGRSCnQiIhIpBRoskQTA4iIpKZAk2Wm0QAiIgkUaEREJFIKNCIiEikFGhERiZQCTZa45gYQEUlJgUZERCKlQCMiIpFSoBERkUgp0IiISKQUaLJEMwOIiKSmQJNlmhhARCSRAo2IiEQqJ4HGzJqb2WgzW2dm883sonLy3mBmS82s2MyeMrMGcduuN7MpZrbJzEak+GwvM5tpZuvNbJyZtY+oSCIikkauajTDgM1AG+Bi4HEz65qcycx6A/2BXkAHoCMwOC7LYuAO4KkUn20JjAIGAs2BKcAL2SyEiIhUrNoDjZnlA32Bge5e4u4TgVeAS1NkvwwY7u4F7r4auB24PLbR3Ue5+7+BlSk+ex5Q4O4vuftGYBDQzcw6Z7M8yQx10oiIxMtFjeZAYJu7F8alTQfK1GjCtOlJ+dqYWYsMjpPwWXdfB8xOcxwREYlILgJNY6A4Ka0YaJJB3tj7VHmrfBwzuyrs65lSVFSUwa5FRCRTuQg0JUDTpLSmwNoM8sbep8pb5eO4+5Pu3sPde7Rq1SqDXYuISKZyEWgKgTwzOyAurRtQkCJvQbgtPt8yd0/VJ1PuZ8O+of3THGen6YFNEZHUqj3QhH0lo4AhZpZvZscD5wAjU2R/FuhnZl3MbA9gADAittHM8sysIVAXqGtmDc0sL9w8GjjEzPqGeW4FvnD3mZEVDj2wKSKSLFfDm68DGgHLgeeBa929wMzamVmJmbUDcPexwH3AOGB++Lotbj8DgA0EQ6AvCd8PCD9bRDC67U5gNXA0cEH0RRMRkXh5FWfJPndfBZybIn0BQSd+fNpQYGia/QwiGLac7jjvAJEOZxYRkfJpChoREYmUAk2WaClnEZHUFGiyTGMBREQSKdCIiEikFGhERCRSCjQiIhIpBZos0cwAIiKpKdBkmWYGEBFJpEAjIiKRUqAREZFIKdCIiEikFGiyRGMBRERSU6DJMtPcACIiCRRoREQkUgo0IiISKQUaERGJlAJNlrimBhARSUmBJss0M4CISCIFGhERiZQCjYiIREqBRkREIpWTQGNmzc1stJmtM7P5ZnZROXlvMLOlZlZsZk+ZWYNM9mNmHczMzawk7jUwqjJpKICISGp5OTruMGAz0AboDowxs+nuXhCfycx6A/2BU4HFwGhgcJiW6X52d/et0RVFRETKU+01GjPLB/oCA929xN0nAq8Al6bIfhkw3N0L3H01cDtweRX2IyIiOZKLprMDgW3uXhiXNh3omiJv13BbfL42ZtaiEvuZb2bfmdnTZtZy509fREQqIxeBpjFQnJRWDDTJIG/sfZMM9rMCOApoDxwZpv891QmZ2VVmNsXMphQVFWVYDBERyUQuAk0J0DQprSmwNoO8sfdrK9pP2Jw2xd23uvsy4HrgDDNL/gzu/qS793D3Hq1atap0gYJ9VOljIiK1Xi4CTSGQZ2YHxKV1AwpS5C0It8XnW+buKyu5H9gxMCzSZ/dNUwOIiCSo9kDj7uuAUcAQM8s3s+OBc4CRKbI/C/Qzsy5mtgcwABiRyX7M7GgzO8jM6oR9Oo8A4909ublNREQilKsHNq8DGgHLgeeBa929wMzahc+7tANw97HAfcA4YH74uq2i/YTbOgJjCZrSZgCbgAujLpiIiCTKyXM07r4KODdF+gKCTv74tKHA0MrsJ9z2PEHwERGRHNIUNNmiwQAiIikp0GSZhgKIiCRSoBERkUgp0IiISKQUaEREJFIKNFniGg0gIpKSAk2WaWIAEZFECjQiIhIpBRoREYmUAo2IiERKgSZLtEyAiEhqCjRZprEAIiKJFGhERCRSCjQiIhIpBRoREYmUAk2WaCyAiEhqCjRZZpoaQEQkgQKNiIhESoFGREQipUAjIiKRUqDJEtfUACIiKeUk0JhZczMbbWbrzGy+mV1UTt4bzGypmRWb2VNm1iDT/ZhZLzObaWbrzWycmbWPslzBMaM+gohIzZKrGs0wYDPQBrgYeNzMuiZnMrPeQH+gF9AB6AgMzmQ/ZtYSGAUMBJoDU4AXoimOiIikU+2Bxszygb7AQHcvcfeJwCvApSmyXwYMd/cCd18N3A5cnuF+zgMK3P0ld98IDAK6mVnn6EonIiLJclGjORDY5u6FcWnTgTI1mjBtelK+NmbWIoP9JHzW3dcBs9McR0REIpKLQNMYKE5KKwaaZJA39r5JBvvJ+DhmdpWZTTGzKUVFRRUWIJX6eXU4+9C9aNd8typ9XkSktsrLwTFLgKZJaU2BtRnkjb1fm8F+Mj6Ouz8JPAnQo0ePKg0fa9KwHsMuPqIqHxURqdVyUaMpBPLM7IC4tG5AQYq8BeG2+HzL3H1lBvtJ+GzYp7N/muOIiEhEqj3QhH0lo4AhZpZvZscD5wAjU2R/FuhnZl3MbA9gADAiw/2MBg4xs75m1hC4FfjC3WdGWDwREUmSq+HN1wGNgOXA88C17l5gZu3MrMTM2gG4+1jgPmAcMD983VbRfsLPFhGMSrsTWA0cDVxQDWUTEZE4pifaE/Xo0cOnTJmS69MQEalRzGyqu/dItU1T0IiISKQUaEREJFIKNCIiEikFGhERiZQGAyQxsyKC0W1V1RJYkaXTqSl+aGX+oZUXVOYfip0pc3t3b5VqgwJNlpnZlHQjL2qrH1qZf2jlBZX5hyKqMqvpTEREIqVAIyIikVKgyb4nc30COfBDK/MPrbygMv9QRFJm9dGIiEikVKMREZFIKdCIiEikFGiyxMyam9loM1tnZvPN7KJcn1M2mVkDMxselm2tmU0zs7Pitvcys5lmtt7MxplZ+1yebzaZ2QFmttHMnotLq7XlBTCzC8zs6/D3PNvMTgzTa125zayDmb1uZqvNbKmZPWpmeeG2WlFeM7s+XEV4k5mNSNqWtowWuNfMVoav+8zMKnt8BZrsGQZsBtoAFwOPm1nX3J5SVuUBC4GTgGbAQODF8B9pS4K1gQYCzYEpwAu5OtEIDAM+jf1R28trZqcD9wJXECx9/iNgTi0u92MES43sBXQn+I1fV8vKuxi4A3gqPjGDMl4FnEuwiORhwI+Bqyt9dHfXaydfQD5BkDkwLm0kcE+uzy3icn9BsObPVcCHSd/HBqBzrs8xC2W8AHgRGAQ8F6bV2vKG5fkQ6JcivVaWG/ga6BP39/3AE7WxvATBZkSm/0/D38JVcdv7AR9X9riq0WTHgcA2dy+MS5sO1KYaTQIza0NQ7gKCck6PbfNg9dPZ1PDym1lTYAhwY9KmWlleADOrC/QAWpnZLDP7LmxKakTtLfefgAvMbDcz2xs4CxhL7S1vvIrKmLCdKl7XFGiyozFQnJRWTNDsUOuYWT3g78AzHiyNXVvLfzsw3N0XJqXX1vJC0PRbD/g5cCJBU9LhBMuo19Zyv09w8VwDfEfQfPRvam9541VUxuTtxUDjyvbTKNBkRwnQNCmtKbA2B+cSKTOrQ9AsuBm4PkyudeU3s+7AacBDKTbXuvLG2RD+98/uvsTdVwBDgT7UwnKHv+c3Cfop8gkmldyDoI+q1pU3hYrKmLy9KVDiYTtaphRosqMQyDOzA+LSuhE0K9Ua4V3McIK73r7uviXcVEBQ3li+fGB/anb5TwY6AAvMbCnwe6CvmX1G7SwvAO6+muCuPtWFpDaWuzmwL/Cou29y95XA0wSBtTaWN1lFZUzYTlWva7nunKotL+CfwPMEd0XHE1Qxu+b6vLJcxr8AHwONk9JbheXtCzQkuBusdIfhrvQCdgP2jHs9APwrLGutK29S2YcQjLJrTXB3P4GgGbFWlhuYA/QnGFm5OzCaoGm41pQ3LFtD4G6CFomGYVq5ZQSuIRgssTfQNgwy11T6+Ln+AmrLi+DO6N/AOmABcFGuzynL5WtPcJe7kaA6HXtdHG4/DZhJ0PQyHuiQ63POcvkHEY46q+3lJeijeQz4HlgKPAI0rK3lJuiHGg+sJliL5SWgdW0qb/j79aTXoIrKCBhwH7AqfN1HOHVZZV6a60xERCKlPhoREYmUAo2IiERKgUZERCKlQCMiIpFSoBERkUgp0IiISKQUaEREJFIKNCI1hJk9YGZjc30eIpWlQCNScxwFTM71SYhUlmYGENnFhcsyrCOYGibmK3evTeuiSC2mGo3Irm8bcGz4/miCJYdPyN3piFROXq5PQETK5+7bzWwvgjVCPnU1Q0gNoxqNSM1wODBdQUZqIgUakZqhOzAt1ychUhUKNCI1Qzfgi1yfhEhVKNCI1Ax5QGcza2tmu+f6ZEQqQ4FGpGa4BbgA+I5gOV6RGkPP0YiISKRUoxERkUgp0IiISKQUaEREJFIKNCIiEikFGhERiZQCjYiIREqBRkREIqVAIyIikVKgERGRSP0/0WhMgteYrLIAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "##############################\n", "# pseudo-spectral simulation #\n", "##############################\n", "\n", "# initialize phi\n", "phi = np.ones((Nx, Ny))*phi0\n", "phi_q = np.zeros((Nx, Ny))\n", "\n", "A = np.zeros(Nt)\n", "\n", "# loop for Nt timesteps for equilibriation\n", "for n in range(0, Nt, 1):\n", " dphi = phi - np.ones((Nx, Ny))*phi0\n", " A[n] = np.sum(dphi*dphi)/(Nx*Ny)\n", " if n % 100000 == 0:\n", " print(f't = {n*dt}')\n", " phi, phi_q = update_pseudo_spectral(phi)\n", "\n", "plot(phi)\n", "plot_A(dt, A)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "t = 0.0\n", "t = 10.0\n", "t = 20.0\n", "t = 30.0\n", "t = 40.0\n", "t = 50.0\n", "t = 60.0\n", "t = 70.0\n", "t = 80.0\n", "t = 90.0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAFjCAYAAADIAvdZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABHuUlEQVR4nO2de7Qld1Xnv/s++nanOw1JOjRgTCKQKAmQGOJjBZ0gxAQyywWaWbMwyIArEiYRFdRRVBiSMA9lucAHIdrQCIYIk1GQDGBAEVxGl4Zg6GBr6ARI5/3oTtLp2+nue+85e/6o+lXtOudX76pT59T9ftY66577q9+r6px7f7+992/vLaoKQgghxMdc1xMghBAyvXCRIIQQkgoXCUIIIalwkSCEEJIKFwlCCCGpcJEghBCSChcJQgghqXCRIISQKUdEjheRT4vIIRHZKyKXptR7kYh8QUT2iciYE1zRfixcJAghZPq5FsAKgO0AXg/gOhE501NvFcCNAC6r2U+E0OOaEEKmFxHZDOAJAC9S1T1h2fUAHlDVd6S0eQGAu1RV6vQDUJIghJBp53QAA/ePPWQXgEwJoKl+FkoOQgghxHDRj23W/Y8PKrf/2h1HdwM4Yop2qOoO8/sWAAdGmh0AcGzJoSr1w0WCEEJqsO/xAf75CydVbr/4nG8dUdVzM6osA9g6UrYVwMGSQ1Xqh4sEIYTUQjHQYZsD7AGwICKnqepdYdlZAHZPoh/aJAghZIpR1UMAPgXgGhHZLCIvA/AaANeP1pWAjQA2hL9vFJGlsv1YuEgQQkgNFMAQWvlVkCsBbALwKIBPALhCVXeLyMkisiwiJ4f1TgFwGLF0cBjAN/P6yRqY6iZCCKnJEK2qm6CqjwN4raf8XgQGaff7PQBktF5eP1lwkSCEkBooFIMe+5txkSCEkJqUUBvNHLRJEEIISYWSBCGE1EABDHosSXCRIISQmvRZ3cRFghBCaqBArw3XtEmQXiIix4nIIyLy/JLt/lxEfrmteREya3CRIDOJiHyXiFwrIneJyBEReVRE/lZEfiis8psAPq+q3yrZ9dUA3ikiz2h2xqTPDGu8ph0uEmTmEJFTANwO4LsAvAnA9wH4SQC3AVgVkWMA/ByAnWX7VtVvAPg2gJ9par6k3ygUgxqvaYeLBJlFfhHAAMAlqvoPqnpP+PPXVPVfAFyMYJP2D6MNReR0EfnrUPr4loi8WkSOisgrTbWbAPz0RO6EzD4KDGq8ph0uEmQWOQ5BALNTU67/KICv6UjaRRE5DcBXEcS1eRGCxebDYV+7TNVbAfygiGxqdtqkjwSxm6huImSa+AMATwG4S0T+RUR+V0TONtdPAfCQp90HANykqm9T1btV9XMAbkaQvnGfqfcggEUAz21n+oTMDlwkyMyhql8H8AIA5wP4LAL10tdE5I1hlU1IZvqCiHw3gAsBvH+kuxUkpQggiJzp+iEkB8Ggxmva4SJBZhJVHajq36vqfwfwYiSNzfsQqKQs5yCwY/zrSPlLAHx9pOz48OdjjU2Y9BYFMNTqr2mHiwTpAwJgI+J/6rcDOGOkzhDB930xahQkXTkP44vEiwA8qKqPtDFZ0j8oSRAyJYjIx0Xkt0Tkh0XkFBE5H8BnADwDwG+H1b4A4IUicoJp+jUEqqXfFpHnichrEB+RHVU3/SgCWwUhuQSxm7hIEDItfA2BDeL/Ici49WEADwA4W1XvACJfh1sBvM41UtUHAVyGIF3jHQj8Kz4I4BCAu129MPXjTwL4UPu3Qsj0w9hNZKZQ1fdj3Pjs42oAvy8if6Sqg7DtDQBucBVE5CoAd6gmsthfBuCfVfWfmps16TtDnX6JoCpcJEgvUdWbReRaACcB2JtS7SUYVzWtAviFNudG+oVTN/UVLhKkt6jqH+RUOQvAe0fa7GhvRqSPKASDHmvuuUiQdYuqlooQS8h6hIsEIYTUhDYJQgghXmiTmDE2yEbdJJuzK3Xyefb3SzQ1SMVn7OIA2vY9zjTWPRN6tgWGeUof36eqJ9YbSDBQ2iRmhk2yGT+8dLH/4tyE/lFX/WdVpOu5lr+MLc49Qdv30TXDDuJ7trCwaZv3McmFOCX+xRePfDzt5Fthgiiw/f0+9/fOCCGE1KZ3kgQhhEwa2iRmmRlWMbWiWmpbndR3NVJRij6HJtU5vs+2pkrH9x1sTAU1SRuQ+z/QQthVVdokCCGEZDCkJDFjTEp6AKZbgmhDauhaUpiUYd1HG7vdvOdZd9fesnQxc1KF/d/QkFQRHIHtryTR3zsjhBBSm35KEoQQMjFok5gtJqGNaEjlMZWG6b74YbRBmbk35aDXhjqqQRVUK4btFlRkXhpSS/fdT6J/iwQhhEyYQY9jN/V3+SOEEFIbShJFaVBNMjWnl6ZR3VWUMqdUiqoVmjxD73sObahRfJ9hXRVUQ6efWg3pMUUwnwQhhJBMhjRcrzOm0fehqTlNyzwsdQ2ITfnF1O2niiSS9zybMnaX2dU3JPGkfecrSRiTMmZXoO9+ElwkCCGkBgqh4ZoQQsj6hJKEoy+G6WlSJ00oPIpIM89btaahtcz9FlVNNaVmSfteFFX9MCFTJvSTIIQQ4kUV9Lgm+XRumK4yfiVJpQWjfkOSQF3qzqOUJJL1HPOkjCaN3e57M0HDdmNe2lMj3QijwBJCCPGj6Lck0d87I4QQUhtKEjXVPLXUTJNUMdUZq6KKqVU1UhtGcavm8fWfowYqc7+Zqqm0e2vT2G2/Sx2ofmrnqHDjd6R26rOfxEzcmYicJiJHROTjXc+FEEIsCsFQq7+mnVmRJK4F8NWuJ0EIIT76LElM/SIhIq8D8CSAfwTwgoY6rde8i5NMU3h6qZY6aZIpZouSN6e86yXCcmQ9u1RVVJ3x074LPvVMU2E9ulD9TM2Jp/4w1YuEiGwFcA2AVwK4rOPpEELIGAoG+OuS9wDYqar3ScauWEQuB3A5AGyUzem91ZAgpl56aFFqqCwx1JEWpjGDXa7xtxmP67TnneuH4cYvE2iw6K6/imG74q5+9vwoBAP6SUweETkbwAUAvj+vrqruALADAJ4xfwJlTELIxKAk0R0vB3AqgHtDKWILgHkROUNVz+lwXoQQkoCSRDfsAPBJ8/uvIlg0rijVy6z4QbRtmG5TtZTXdxuqo0mqo5yqosqYaWqOhvwwvCqoCn2XUs1MUPUUNa+b7a5jP4pZZmoXCVV9GsDT7ncRWQZwRFUf625WhBCSRFV6rW6amTtT1atU9We6ngchhIwy0LnKryKIyPEi8mkROSQie0Xk0oy6bxeRh0XkgIh8RESWzLVTReTzIvJEWOcDIpIpLEytJFGLrk/GtDl+Xt9t+DmUObVT5d67/rzyqKNmKhOxtYIfRC0VVEqflVVPUZ85KqGe+VEoMIkosNcCWAGwHcDZAD4nIrtUdbetJCIXAXgHgFcAeBDApwFcHZYBwAcBPArgOQCeCeCvAVwJ4A/SBp4ZSYIQQtYjIrIZwCUA3qWqy6p6C4CbALzBU/2NCNwGdqvqEwjcCN5krn8PgBtV9YiqPgzgZgBnZo3fQ0mi/opeyVjdhh9Eg4bpxqSGMnMqWrepTH5dY3fQRSWIupJGjnRR27eiTrDAohJFkT5dk7qBANPGr9dR26HCTwcwUNU9pmwXgPM9dc8E8JmRettF5ARV3Q/g9wG8TkS+AuA4AK8G8K6swXvy10kIId0Q+EnUCvC3TURuM6/LR4bYAuDASNkBAMd6pjNa1713df8OwULyFID7AdwG4C+z7q+HkgQhhEyWmgH+9qnquRnXlwFsHSnbCuBggbru/UEJRMwvAPhjAOchWFA+AuB3APxa2uBcJEIq+0O0oVLJ6rNJw3RTqqUm/UGm3YjtqBsYL+s+bd956p4cFVQlw3ZTPhVl/Cm6Vj3VwIUKb5E9ABZE5DRVvSssOwvAbk/d3eG1G029R1R1v4hsA/DdAD6gqkcBHBWRPwHwP5CxSFDdRAghU4yqHgLwKQDXiMhmEXkZgNcAuN5T/U8BXCYiZ4jIcQDeCeCjYT/7AHwHwBUisiAiz0Rg6N6VNT4XCUIIqckQc5VfBbkSwCYEx1c/AeAKVd0tIieLyLKInAwAqnozgPcC+DKAveHr3aafnwLwKgCPAbgbwBqAt2cNvO7VTa2eZGoyimtTYTXqqphy59mQOmlW1E5pOJVJ3vPwqUnycj/kqWZyVEe5p5+qqJ6a9Hmo0GftsB01UAUGLWeYU9XHAbzWU34vAtuCLXsfgPel9PN1BHHxCrPuFwlCCKnLLKQhrcq6XCRa94Mo2n/d4IOzKDXUlRCKGvXL5FQoSp5BuQplJA3fDrshw3apbHhVvLTreGan9elr0oExOzBc91dz3987I4QQUpt1KUkQQkiTMJ/EembKjNStqZh85VXUZk0ZptNUR0X9RHz16gZ3y9NelFFHZYXlSKiLctQ0vvuoYNgulTI1T63XZkrUKcR5XPcVLhKEEFKLftsk1tUiUSvLXO3BOzBSVzFMN+kRXcdz3LadLyqdmLnbHbD32fmOnqa0d+R+fWoazvOC/vmO1fp24FUM2ynzLWzYrhtyPI8ax2KBbj2yZ511tUgQQkgbTCCfRGdwkSCEkBpMwpmuS3q/SHTqE1HTi7pRFVNRn4cqKqoq95k6zxoqwcQ48zmVc64PPfPwTTlVDZMzfFHtR57qyKd6ylMx+dRAdX1MihqzR+cStS9oxK6owmrbI5s2CUIIIV4mEAW2U/q7/BFCCKkNJQnHJHMi1FEzpbUtqgZKm3vR9t4+y8yppp9HVt95dcukF50vqNbwqaWCC9n9Fzxw5SVtPlk+FWlqGt+poRw/ityUqHVpMf1pW9BwTQghxAud6WaQVvwhWvaxaMxInbZD9s2/jvRg55TwuJ6QP0eZ6475FGN1ntdy1o42VeIIx0o1Amf4YQxzjNV5+Dy206SovPDjHj+I3Gx3eUEBO/TIbst3goZrQgghfpSGa0IIIesUShJN5QVoKLNcbpuqAfqaMkz7rls1Tl4wPvGoqHzkqbjyKKNSyTU6Zuyl8vwP0tRRXoP3MLvNSLVC5IXyyMtR0ZQfhY+Ow3Y0hYKGa0IIIRn0Wd3ERYIQQmrA003rnTo+EVX9IeqcZKqiYkrtK0c15Jv/fM4pqqJ+FjnqKM1V75n3w2L9S5qqYj5LlVFRDePVNuU4TxTNHVEmR8Wk/CiaCtvRoO9Ep1GhZwguEoQQUhNKEn2jKWN1GlUkiCrSQ5VseGV8HqK2c+P10uZUVHrxSRxIkRCK3mbaLjIvH0VYV5FyHwOPEdptwNPGceVpPg/uuq99qoE7x7A99JQVlSpa8KOolINiBul77Kb1uUgQQkiD8HQTIYQQP0p1U38oqmaqYqxuSsWU1n/Ruaepfor6P+TNs0zQQI8KK1edlKcWq6Aq9I2ZaqSOGpnrCz7jbaiiSqQ8taqfoI2Iplx3E8kz2Jr3eYbtufGi3JSoUdvm/SgqBwXM8nkoE6pjigIAzjLra5EghJCG4RHY9UILx+Fyg/YlKxcrq3rENWqfJmnMZV+v0L/6nqkryglEmNj9+ySNvJ1h3hHa3I1ljpHah93Zhk7oOvD2mGKkzpmSNwCgx7CdeOw5RuKiu/Uyu/Kihuna2fCaDwBYFS4ShBBCvPB0EyGEkEyUi8QMM6kAfmWoFOxvrtg8ygTGy/N/GB17tJ5nrISayKlUcgzo6vNjKOqBOzpmdH28KIFPO2HmIWvjBmFVjxE6YeP13edwrIktTsw8mrP10cjIOzHK0GO5LmqwTfWDyPF0Lqj+q2TE7kkAwFmn/4sEIYS0DP0kCCGEeFH6SfScOgH8AK+apvCppjxfgCphNyxVUoV6TyT520RqHt/pI/ve5yeR1sbVs/PwhaEoEwDQvU0c9dexuvb0kk8FJuakki4E87NqKbU35bSDtizha6BjRZFvRSJUhz3B4wnlkVANuXo5J56azEeRFbYj5fSSN2xH0QCAaeqiogEAW6LPNgmGQSSEEJLK1EoSIrIE4IMALgBwPIC7Afymqv5VpxMD6meZq+NRndamcOa5FCN0lmHcSgI+I3OK74Z6DNde3wmPpKBpAQDDcrGbWV90cnvd55Mw8FwfenbDibFt/+E8F03hnNktR0ED44lYScTvyRy2SfOtcPc5SNlNi09k8hizfVJFVYNulkf2NBqJW/HC5hHYrlgAcB+A8wHcC+BiADeKyItV9Z4uJ0YIIZY+q5umdpFQ1UMArjJFnxWR7wB4KYB7upgTIYSMwrAcU4KIbAdwOoDdnmuXA7gcADbK5vo+DRXalwrgl4dPJeMLfFcm0KAv7IZPTZQXViPPMD0/fj3RjycshybmLGP92OvO3jzcYNUG49NU+82Orsdthoumz9AXwaqtxPzRu7dzq8ZI7eaU0OwYw7cbSxI6KjMndyNmHs7oapqoR0WV+IQHnj6tqs7nZ2GJQmhkV8vNbJdHmQCAWWE9pjFon07PVNpgJgzXIrII4AYAH1PVO0evq+oOVT1XVc/dIBsnP0FCCOkpUy9JSLDduB7ACoC3djwdQggZg850HSFBnIOdALYDuFhVVxvpuIsE6FVONJVRe/nSj87Pe+qlRJH1tfdFbPWdVErxeXDXnU9BcN3Tp2G4wfPZ2ENJ4fWET4NTw5hTP7af6CSSvY3E6af5sT6HZn5OzTTcED9P8fksDKxPRFgvkU/C8xyHVoU1fm/eEBu2H58fxdCnuklxlPD5NAw8J5UsPt1KmZSnRakSJbaDyLAKGq675DoALwRwgaoe7noyhBAyDo/AdoKInALgLQCOAnjYBE97i6reMPEJpRiEGzNYF80T4dv9J66nZYnLDhCYaaRO83OY9ximbZ+L4+VOqkj8TZn7GDpPZrubtQJRWHVgpJO5sO5go38ew0XnHW13yJ565j7F7FwHG4MJzK3EO1MnqSSN2dZPwjVO2QGH5bIwvvNVa8z2BkQ0t2EN264r3z+s1Ax34fzzMs+lUcXT2WOYrpzFrg4NBu3ss+F6ahcJVd0L758yIYSQSTG1iwQhhMwKtEn0hSyDdZk8DEWpG8DPZzDOSz9aZHyHNXr67MXO8J0yTZ/hOhFOIxx/aNVOoVyeMAJbI7TTXviM3Yj9J6wfxTAK5WGMzUa1NFwIDdvzfnWSM2IPEy4N9tmGY5tn7NrbeSYMzqEaShfMnBIBAMO61o/BGdBXYx2SDRooHpVOwhZeMPihX/Vk+84xXCcmkBEAsKoKqyglco60acRW5SJBCCEkAxquSfs0FfTPs5NPvDfX/RndxnfGdgftNVynBOOLJIiEQ7WMldl5+CQF6wk9F26yre3VtdeEt7invXUaNgbfSNJI2WzOhwbr4ZIxlrsy4/ltDdvzg2IGZ/U9b3N0WTAuVcjATD5x6ja8bqUC3z0lvKfdSQCMlwH5R0/rBPOrEkq86FFY0hhcJAghpCY83UQIISQV2iT6zKSC+ZUZJytwX5qxOi8LXXg9oWKyt+Hxo4g8pdPauHq+HBOIVT7JoH/Bj+HC+NwAYLDoMUybb2nkF5AwZgc/15b885hfdfOJywbmj3rhSLANXNtoDNseL+8Ny7H6w/lkzK0aA/mSVcsFfVkD+pzR/URBA9fMfYSXbaDAZLIMZ2FPO7zg8cj25aDwekeneGT77NqWrC30JIPxdZjDQiFcJAghhKTTY23TbESBJYQQ0g39lySqBPOr4xsBFDinnh0io5Wxc04yObz5IOxJo4XxoIGpITY2eEJwhCRCaFjVztL4SSOrmtKl8THd9Q2H4kYrW6zqJxhg3oSHtFqc1WMkvG5Ccdh8E+Fgq5vN6aawr+Fi3I9VLfnmbvdkLuzI0OhxnOpJvflFEeemsEU+3wnrDxKp5/K+azX3wgmVZE6oji5UQ1XChxSFfhKEEEIy6bG+iYtEQbzGaiBb6mjKWG2vpxmr8wIARmXFx9e8AH4eP4mE1OGmZP6A1o4Zly6sr4HLGDf0BPVL69Pt5p/eFs9j4Yi9LuHYcdmcDTrvnJ+XxucOGAkjka3OTcAawM2Uw2dvAxVq4ox/eN306Qz01pidNEKH7Y2Xt5q6WR7ZkvBJsBU8ocITTijWgcIN5Ple1ZUKimauqxI+fAK0LUmIyPEI0iZcCGAfgN9Q1T9Lqft2AL8OYBOAvwBwhaoeNddfB+DdAE4G8DCAN6nq36eNTZsEIYTURLX6qyDXIki8th3A6wFcJyJnjlYSkYsAvAPAKwGcCuB5AK42138cwO8A+FkAxwL4DwC+nTUwFwlCCJliRGQzgEsAvEtVl1X1FgA3AXiDp/obAexU1d2q+gSA9wB4k7l+NYBrVPWfVHWoqg+o6gNZ469PdVMbBuMmqTK/nLAekRooLcvcgme/4AkqmAyX4a7HTRJG5vD92tK4wXaQ4pMQGZQ9hmkAWN08Pk2nOhosjV8DgLVN42XWiO2Mu/MrcdmqbXPI+ZjYfBEy1mbo+WtyPhhA0o8izm3hMWabcRKfiifzXEIL6lV5+IL+eXwm0ra0Mv4ZV1LzTNJnYsI0kJlum4jcZn7foao7zO+nAxio6h5TtgvA+Z6+zgTwmZF620XkBABPAjgXwE0icjeAjQD+EsB/y0rqtj4XCUIIaQpFygJdmH2qem7G9S0ADoyUHUCgLsqr694fC2AJwCKA/wTgRwGsIlhQ3gngt9IGp7qJEEJq0rJNYhnA1pGyrQAOFqjr3h8E4KSFP1TVh1R1H4D3Abg4a3BKEk1R1DeiSF1v/y53Q0pIhmgcewInRwXlS0vqia5qv8n2pFMUdiPlhFd8OiouS/oNBNhwGu6E0WCjmbI5YONCcFjVzmDD+Ngrzxy/vvFxf5v58NzHmhnTqqPcXAY2vWl4qmjhcKz6WdsUX3fhOqyqbd5EiUX4HKzmJtK0efJrAMZ3JKH6sapANzeb+jX8DMwz9J50Sgu94k46+U455TGhfA4J+qnW2gNgQUROU9W7wrKzAOz21N0dXrvR1HtEVfcDgIjcj5IHdilJEEJIXbTGK69r1UMAPgXgGhHZLCIvA/AaANd7qv8pgMtE5AwROQ6BKumj5vqfAPgFEXlWeP1tAD6bNX4/JYkqXtal+s+RBIpKCnnZ8PL68Rmh8zyuUwP8efoM5+EzRgPA0O1STeY566ns2g1NWbSDt34Opk+3W076KcTvB6FPhJU05g+7ucVlq8fGAyztCzo7/Kz4+qJHULfe06tb4vcLTwc/rW+Fm+fhE+J7Xzw0bhDWeSMVWE/ocLdvfURctruE17uRFCQ0aCdyUMj4fxl7CCHKcpdq4C64qUyVNDLa5O3k03b9ntwR3hwTVWhFuplIgL8rAXwEwKMA9iPwfdgtIicD+DcAZ6jqvap6s4i8F8CXEftJvNv08x4A2xBIJ0cQSBz/M2vgfi4ShBAySVrWbKnq4wBe6ym/F4Gx2pa9D4GtwdfPKoIF58qiY3ORIISQOjB20zohRYWUGo6jaer6buSF4PAE6/MG+EsYszP6Nn3aEBpzJgyFUzMNjBonCuCXSB863rVVJw0T7YOfVl20fGqgNlg8YNOLxnM+cmIwp02PGn8Lc3jQqZaGS0ZF9Xhcdy30zVhYHp+nTUk6MKoj5/yxeCjluqs2GFdHWY2KeHxdrGHafl7iU++4z3iQYnh2n62mqH6awqfmaSGUB2keLhKEEFKXHq9RXCQIIaQ2VDeRKtT1jUj0lR1Ww+H1jUgbPyHue0JweNKPDn2pSk3fK5vH52dVMk6FZbUbVrUUBauwJ5pMuI3VrUGNlePisg1PBJ2ubTH5ILaZeBnLwdf86ef4VYcbngzVOOYkkfWZmAs1NUdPMGXh/DYY39ah9dfwPG8b3TUKBWJVS4Pgl0Tok4E9/eQJkZE4CTU2pFel41VRpX2vovSlOZFhffTTZ8FPj2+PiwQhhNSFiwRJpU4wvlyfhppG8zyP6wWPpGN3fO5suoxLF0B8xt/n5xCUBz/nUjLCRfVsm9BIvfKM8TL7fvFgPObRU0Kp4UgssuhK/H5+JRh0uBQP9Ozn74/e77vjRADA2laTJe6wyU2xHIw1b/JFuPuwc0v4dhzFGPbZRJ7jVpIIvbPnVvy+FW4Dn/aNc59n5BuB2KciYdSeM++jSXuC/gGTkwDWk9QxY3CRIISQOtQP8DfVcJEghJCa9Fn4WV+LxDTnkSga6iNPReXxjQAyDNruujNS29SYTo1km1pDqTNMp+WTCFUqNlTHShiT0qperGHaqZlsOIu1Y0x+BWdEflbcwfz+QOfzjO+LI/htWox1XA/eGcTjWDwx1hcNzc5v8QWB04WsxSqqNaOuWl0ILNIrC8aP4tHgus1VYX0inKrNqufmbOA9Hb/u8lUMNpqggIeN6ihMEzs0Fuo5G7YjqhfPXYYVAvPl4TNsDzzqqmn3g2gyfE+PFwkG+COEEJLK+pIkCuL1ss7b6dfF7pR8x0x9+OZkj0H6jkqWOSLrwapenae19Rq2mdpWjk2fnw3VnQwFHga+M97PC8vxjZx0bpBp8ckj8Rb+yfsD8ePxR+Iw+lu3xe7RujU4e/qsZ8Zu2idtic+u3r78XQCA1UfjPu2YC6EAsmqP2G4K3s8fsQENzW2GBm1r7La7TSdBWIOyk8KslOXLKJfI5GcPDay6657441bcM97XTsJM/fSj8SsG66vTpq70kNt/g+HLaZMghBCShicYb2/gIkEIIXUomBdiVuEi4cHGrC8c4K/JAH0VxowM0x7DclBhPBeBj4TUHD4Gmw/C6+dgrq9tHJ+TDabn9BoLRg1jczc49c3cqlGjGE/lJw4HKqEtS7Fe6ys/8fsAgF+6/8Ko7JtPxMkjNj/nCQDAA3edGJXtf/bmeM4PHhPMyfhG2J3h3FmBamrwWNwmuvZY/Ce0Zi7PuekZo7xVxTmj/pxRtTnVlA2SKJ7UdfYzmvME+0t8E30aFY8KK/H9G0zJfzyP4dr+PTaaW6IW0mt1Ew3XhBBCUqEkQQghdZkS4asNuEh4TghVyiGRCGdRU/R0YrQ57+7t2zdm2skSp4qwp2nmsvuPQkJYDZaO100cnFkaP+1jcz841ZPNMXH0eKsyCdssx/0cOSn2edCjoc/CavzV/cF/vBwAcPmZt0Rltz5wcvR+5Wgw2Fte/rdR2Ye+eEHcZ3iiasP3xieeDu0/Jp7zI4E+bP6ZJtbGfZvC+4lVHkv7TBrXsPmcyUGxtim+p4XDwZhrS+NqNatisn4UkWYo5x9SIk2qe6BrJf6LMURGeXr8mLhIEEJIXbhI9JjhuOGuE8N1UTwB+ADE1qVcw7QnTDQAxbjU4DNS2z8GZzS1hut5E5xOwjDXNlifM+gefq7xoj5qgwYG5avPPxyVnXPKA9H7f39ke9D+4XEj8nnH3BW9//iXXhW9v/CyWwEAH9r1I1HZmy74SvR+11MnAQBuv+ekqGzTcbFlfXEhsC4f3G/G3BpanFfjh2SD/bmghtbobkOFO8O1kyiCyu6nPShgn6crs5EEzefpDM4eP4vE544cfBJqwrCd10EHuPmV8a1o0k+ix3CRIISQOvQ8wF9p5buI/ImIPLeNyRBCyCwiWv017VSRJP4cwGdE5G8A/G9VfarhOUWIyPEAdgK4EMA+AL+hqn+W06jcIE0ZrqvQZKgPJzmbb53PJyJhuM65T9dVIodEwmdCxq4PNoznlrBqlrXQoDtvVUz2W+j8KDbEOo0f3/Zv0fuVQaCnOXJc3Og7dwRqov9y41ujsoVtcZe7f+lFAIB//uS1Udmle/5z9P6ue54NADhxe2y4XjAp47YuBaqnbxp10/xTwTzEZo6zWprw/REzj2Mejt/bHBtRm1BdNDTnCeYS3xH3gfgN2+Lzb6iiUrF/Q7729ntTJUvdtMAAf4Uo/ZRU9XMAfgjAtwHcIiK/ICJtqa2uBbACYDuA1wO4TkTObGksQgghI1RaSjWw7H4JwO8BeDeAfxeRn2xwXhCRzQAuAfAuVV1W1VsA3ATgDU2OQwghJJ3SEkCoZvo+BJLErQCuBPBNAG8VkfNV9W0Nze10AANV3WPKdgE4P7PVNJ3rzhOxEyEXPGE5fJFh8/wk7PBWLRGpjvz7guhsved0iPeUk2Fto60cv3XhNuZMOAoXjsOeBNpk/Cie+oHAF2FwKA4Tu+Pu+FTSpd9zGwDg7/e/ICr75Ys+CwC48pn3R2XP++Jl0Xu55usAgB/4m1+Myr594c7o/QefHairvvBYLKT+6Al3R+//7DvnhjdiVHXPCea59avxza+Y8CML4eEs6yOyFrteRIZONaolF7Yj6Sdh2ni+TgmddsZXX+r+XbSRz6FrGjzdNAu2harkLhIi8mMAdqmqy+jyqwC+oTqmjHyziNzZ4Ny2ADgwUnYAwLGjFUXkcgCXA8BGGT8aSQghrdLj001FJIm/ArAoIg8g2Ml/HcDzROQOVb17pO7FDc5tGcDWkbKtAA6OVlTVHQB2AMAzFk7sz5pe07Cdl40u4RPhqxo+SZvfIFEv3J0uxC4NiTwRTrp5+tlx0XzotDw09Q49J34/91AQEW9wQmzt3r4l/sg/ff9ZAIC1QbzF/t1vXQQA+MypsWX4qxf8QfT+p3/kSgDAxm/Hg55+/X+N3ru5fM9LYknk7/adFr2//AWBJ/fvHX5FVDa4d/P43K2BPjRM20CGi8b72kkI9roP8W12rbF6ZbyCeCRM+7l5vxUJCdUzaMJPwmOszgsQOE0SvqMpw3XPo8AWeUqvBfAQgC8CuA/AjyE44fRNEXlKRG4RkWtF5M2q+u0G57YHwIKInGbKzgKwu8ExCCGkPlrjNeUUkST+EMCbVfWvXIGIvAzAhwF8EMDxAF4C4NcAfKipianqIRH5FIBrROTnAJwN4DUAzmtqDEIIIdkUWSROQmCYjlDVfxCRXwfwRlW9pJWZBVwJ4CMAHgWwH8AVqpotSUyTWFs16F8k7hurpjeAX4k+c0RrZyzVeV/CCBNCw/gFWJ8IhzXEOlXJxn1x2UqoQLTqj7UtRr2xOK7qePBAHNdjdS0YYOVI/NV96el7AQBnbY3VRT/0dz8fvf+J3/8GAGDfzh+Myj74sx+I3l/6+UAd9a07Yx/Rjdufjt7/9fwZwTxX4psTjypuYFKubnokuEGrVrO7Rhe+xBqpXZiThL+DNWLnaQ9dzhBP6BWfCioYNCyvG2pjQobt1BwSVcan4boQRRaJvwfw8wB+ZaT8GwB+vPEZGUJj+WvbHIMQQmqzzheJtwK4VUROAPB+BDaBRQBvB/B4VsNOKOvZ6QnwNzXY3ZHbqpQwtiWPwIbvbeY6273bvXq2RAnjqd2RhlvbhJe12ZE6I7bab1k4fetxbPufCz2Z8d2xNfzgQ/GBNl0IKm8+Id7p/8vXng8AuH0QH4t984V/E73/8B3BEdoNr4yDA/zj07Gpa8OJwVjzxst6MIyf87988xQAwMYH4nO7q1tC72grPTxkvNHDe95gzucNTJY6XQvqzh81x2oXwrKUXXH0nFL+ITkJYi4vY5vdQUd9pkgabUrmFfpOzUxXJcBfk6znRUJV94jIDwD4AIDbAawh+FNfAXBZVltCCCGzTSFnOlW9C8BFInISgHMQ7D++pqoPtTk5QgiZdmYlUF9VSnlcq+r9AO7PrUjao6rhOlQnSSIAoKf7RBa68fwEYio4Q+uCSdi2esx49rWVBZNvItQSDY6L2ywejCeycmLobPBUbPE9ZnvsYLB6Z2DEXtkXG7NlUzDBDSfH9f74K7FPw3NeEFjO1cz9Gwfj3BG3nrcDAPAfd18alS0fjceX+wPXcas2c5nz5s29zxsVmgvSt2pcP633dWSk9qjykp+Bee9UgilqGgnVSAnDtTdAnydoYJ6fREL1WSHAn48Kaq1GDddNss6d6QghhGRBSYIQQkgaVDfNEg2cxvCmL00LxtcliTmFP9Pu36NaSuSWWJgLy+Lr7jGoURcNzeko9ZxUsuoXb5nLF3EoLloz4bYWnpxP9A0Awwdj1ZKG8fSsb8WG0KfhrOc8GJXdf2zc5oEHjwcAbD0+HvTvdn9v9P7s218IAHjmSfFRpOM2xaer7g9PJQ03xWO6lKuLB+PnYQMduqCGVsVkn/fi0x6fCFfPHtoZjH/GNiWqD69PhFXTmD6jumX+bmxfddQ8TZ5uIq3Rv0WCEEImDSWJGSLLT0I9Rrqi5EkPVbyryxihc+YeedvafqzRUsId+nxK+9CQOvR4Udt5JgypYZtkNjpjGI/Cm8dtnNQxZ0KF253x/OGg8tFnxQbR4ZLp4Lhgi75oMtc5/4bvHDg+KnviYByXW54KvubHPjcWaRa2x8/mwJ1Buyfvj6WPp44+Mx4/lFoWnrb+IJ5Q30Zi8h0KsAEA3TObN2HUIy/sMv9wfLtxW+YLtmfn5h5jVYmgTf8EX9j6aZQeeLqJEEJIJlwkCCGEpMJFYoZoK4xAk4Zrn+rIZ4RuwT4uJheAzpmAdW7oNWPMDh0kZD6uN38kFvedasqqmGQ4nrjAqVGAOPSE9b2w+SjWNgU/Nz0Qj2nDWaytBb+sGiOyPhU8sLmXxMkZVh+LrcguKOH9e7fFUzOBCnFCoANbujf2jVg9Np7zQqgCswZ6F27D+kYsxJFCIuy9JwzSGX4SCRWRR70na+ZgRY6ax2uYTguz4ivL+3vq2j8hi2kK9jnD9G+RIISQCdNnm0RDqZkIIYT0EUoSdalzYqrOeKNjRiE0PLkCYEI2mCiyVm2hi+aYjrvubs2oP+zpqLmjrs+4bcK/wZxgGr2eCGFhd2HhoaSB9Tkwp4IWwnAYOBSP6XwSHv23E+My0+VwKVSb2RNR+2LV0sIjQV9rW0xuB6taCoPHJvw9nA+JvV/71+QOdlm1mklVGvmYGPVeFBE2cZrMo/pJCaERfZ55KqQq2FNFdVVU3v5nfCs+49PPgpIEIYSQVChJTIpKfhTWs9VtPVP6DLeuiRwS1vKdN6Yvn4Tz8LWGaSNVDBfHs+XNmXhvGu7GfV7YNiCa3YEvPT5etrYlfr8Q9nn0eBuoMPR+Xo77tJ7Oh58V3Mj8EzahQ/x25bjgOW+5J364a7GbRSRVWMnI5omI6hmJx/lP2Pwac6vGGH7EBePz9DPwP+/oc0gzFvuyF3p26FJGEmjKo7rBLHBTB/0kCCGEZMJFghBCSCpcJNYBbfhBWBG7RNrR0uMA8fxTwm5Ec5kfN1ADNqyHKQtVHWoN4Nao6lQpi8aYvTb+12LDdkRhKNSjtsKI30BIIhhgqAba9LAZczV5DQCOxhE6sPGxMNTHtnjMDU9a1VTw2SRyPzxl3of+D86HAzCqJfu1sfceXrcGelvXBUqcX81WDSHhgxL+TDPyhp9xImigJydIWv+VmJDB2RuOY0p8NAT9VjfRcE0IISSVfkoSDe7g3Q7Ghij2Sh1lDNO5Xqyub1NWVLhJSBemkTOk2mOvC+PPxmYyc8dlE1691pAa3uec8SpWKxW4bHjGu9lJJTbD3ab98ZiHTxg30FuD8NKT4a15vrnWSLzp0fj9kVCqsGG9feG2580RVXiO8ibCqLujvEfjQp93tZWMrNTgjg8njNSRF7Y9imuPnrqfKd7TQ8/1okbqvO9knjG7VKjxDr242zKg91iS6OciQQghk6Lnp5uobiKEkLpojVcBROR4Efm0iBwSkb0icmlG3beLyMMickBEPiIiS546p4nIERH5eN7Y61OSqOKzUJe6KjBnuBtaPYy9Pm6gFLO9ifLVL4yrgwCTF8FK45GfxPgwtn3Cu9k+znCshaNxB2uh2i4RSNCoqFzGNus/MDRzXg2z2C2aoICD0Hna5mYYGJ8G5zNhAwnaoIGu3OchDsR+HnbO7plYFZOds1NDWQ91fxa6cT+IhHpPrFE/VH2u+VUmWVnmpIy6yF6vkr/Bd3Ajq14faP9WrgWwAmA7gLMBfE5EdqnqbltJRC4C8A4ArwDwIIBPA7g6LBvt76tFBqYkQQghU4yIbAZwCYB3qeqyqt4C4CYAb/BUfyOAnaq6W1WfAPAeAG8a6e91AJ4E8KUi43ORIISQmohWfwHYJiK3mdflI92fDmCgqntM2S4AZ3qmcmZ4zdbbLiInAICIbAVwDYBfKXpv61PdNCnqqrXK5JjwBn/zjJ96xj4M6zFn1Q4uYJzxSbBNFlwoEDspk6g+VK8MN8RlTj2TFhjPqXbU+KokVCWH3JimjTuVZGMbGtWR86Pw+WDY8qUDftVRNJaOt7FlVvXk5rK4bPJ32Pk51ZVVDzp1k1VLJVQ/4+okr0+E73ra5963YHxdza3esPtU9dyM61sAjAaCOQDg2AJ13ftjAexHIFnsVNX7pOD/JC4ShBBShxIG6IosA9g6UrYVwMECdd37gyJyNoALAHx/mcG5SPjw+EFYj0+vz0RTXtoW30rvC/oHxJ7WKWfonRE7baMVhRK3/gMSWrPn/Dtb579gJYGkcTbc9VuDb/je+lMkQ2gH5cPFFONt2L/1ORgsjj8nMVninBHbGpGP2Rc/nJXN4XO0H7t9dqEwkDBSe/wkrCQzf3g8gF8idqIzPqcET4zKjPHXd93vpT1e5JVI7Ps0Y7Xvet74Vep5+vd6Wa9P9gBYEJHTVPWusOwsALs9dXeH12409R5R1f0i8gYApwK4N5QitgCYF5EzVPWctMFpkyCEkJrUtElkoqqHAHwKwDUisllEXgbgNQCu91T/UwCXicgZInIcgHcC+Gh4bQeA5yM4HXU2gD8C8DkAF2WNz0WCEELqMur7UOZVjCsBbALwKIBPALhCVXeLyMkisiwiJwOAqt4M4L0Avgxgb/h6d3jtaVV92L0QqKaOqOpjWQP3X93UdpA9H3nZ6tyc7Hzq+msUDKtgQ1fogkdNY5+Xq6sJc3XcHs7nwV416pFI1xK3H3rGtHkWnK/C4qG4bGWLyaYXPqehUR0534q1jVa3E79dCI3hA6PCWluKK2w45ALjmUlZ7YsLaWK/Sqvjaq+EKi4yGJsppeSJiMvGM8v5DNNetRPg90toI0udjzK5I+qMXzVkR8v5LNr2uFbVxwG81lN+LwK1kS17H4D3FejzqiJj93+RIISQtpniA191obqJEEJIKpQk8lRDTY9TZKysEytzvkIgCvOaNk50Css0sWqLOc9zGI69iU88wZyYsmoYTwrPOdPeXR+Yk1kJP4owract27Actx9sGN/XOG3Y4tNxPauOcqonm0Y1cerI+Sek+DwMPeqmKCSJJ38GMBK9NRp0vL0X29SqntbG1VEJNYov34T73FP9Y9z1lNgrdSK+Voz2WulUU5e+G+0fge0ULhKEEFIDQbqPax/gIpGHxw/C6zNRN7NdUUnDjjPvkxRSPK6jemYYjxEaJnFd5DthxA+B8SCeCyrbnasaHxJnCFbP7STyKByxOSzC6yYooPWpmA/LrS19zo1jzwHYjbHr0wYV9AU6NM894R3tjNP2I/IE41Of5GbKkrkhnBHaIwkMrAXdNAn7SrsefQ4Dj1RgvwuDBnfq0+x9PUl6/Bi4SBBCSE2YT4IQQsi6ZH1JEj7/BEcbOSbS+vTF27dzyhLh0wL4OV1FWr4Jf2fxu7Avb3SQoUctBUBWQ7WHnbu9p1AdNmeD/jkVmVG9iFGRDRdD3wujbhrq+LNJBgAcvRtAbS4NF4jQqLjmjerJqaGssTuhDnOqI6vFmR/vMxFCw81pNUU15DFsR+2HnjLAfG+8XWarkVLVRT5j+LhvRr4ROsXwnTd+UaoY0Fv2jUjQY0lifS0ShBDSBlwkCCGEeCkYg2lW4SJRE3fSqXZk2KLhQxIitk/1lBIl1telJ19FImzHPMZInGRyuUqtmmXBDOTzIXB5K+zUjZpnfjCuTpo/Ek8qUkcZ1Yr61IP21o+O9zm3YtqH48+v+vuMotha34qwzPaTIFLT2DbmOQ19ap6Ra6PX3YkoXxRX39hASqiOnCivdfvPo2jE16ohOIrCk1mFmErDtYgsicjOMOH3QRG5XURe3fW8CCHEi9Z4TTnTKkksALgPwPkA7gVwMYAbReTFqnpP7d6rBP1rww8iz1iel2PCNyefMRuIpYqEb4XdUTq3ZCsRubr+Pl2wPU0zXLu5WuPunG9nah0cwt2yHXHReGQfHSSma+uqmbsNGjhWEfD6PCQy2yUklfByXoA+3248xwidl1kOeTkkvGMOx6+X8aj2UTCAZKk2bTBJY7WB6qYJE8ZPv8oUfVZEvgPgpQDu6WJOhBCSCheJbhGR7QiSgfsyMSFMHH45AGyUzROcGSGEUJLoFBFZBHADgI+p6p2+Oqq6A0HWJTxjflv9jytPDVQ0vWlVFZXPnyP3THjBcexZ+nlP/+Z61JMNV2GP/UeB7zxqq+CXsJ5VicyF1Yxh2P6FOe2INTL7fArsnFzYjdU4uqAmAvyN+zSoR8voC+UB+IP4ReE07PcjJ/2oN09EjhE4YaT2+UH42qelIo3q5aiG8gzXbRqr86irwqKxujSdGK5F5CsioimvW0y9OQQp+lYAvLWLuRJCSCZ1jNYzsGZ1Ikmo6svz6kiwVdwJYDuAi1V1tcQAtqPS82sdX3jyunP2eeP6wopLinSSJTFZu7Id0kkVcyn9RDt40yach921xwZyQMMjtL4jqgkSBvxwnMQO2NYdP446lxWqG+bYqx0rxbs6HtNznDVvh553BDat/6hNCSN1Vp9Vd9hZBuvKWeRm4D/nKDM45aJMs7rpOgAvBHCBqh7uejKEEOJD0G+bxLT6SZwC4C0AzgbwcJjoe1lEXt/tzAghxAPVTZNFVfdiUnk8soL+BZMJfqapgDLyTXi9sG3dKgEAy6gFvKqnHI9srz+HmZsxdkeqFHM9Ybf2ZLsTjN9HImig02HZNp4YeWrzQax5DL4+fwyLR6OTqxpKDa7o5lnCIBzWlbzPs0qwPa9aKqVN0e9TgwH8KnlXT1Mwv3XGVC4ShBAyS+Qu9jMMFwlCCKnDjKiNqtL/RaKpk04V+vH6TlTtP893oui95YXtsPimbM/quzFTTj/Bm740zxcgmmhUlAjg5wIRpgXWi4bJeR55Oz/f87Snm3wqQV//KZfF69NQQY1T1CeizE63hQB+lWhyd97yTp+Ga0IIIeuS/ksSRakS9C/R3mOYzqubV88nKeTNM23H5HbBnl152HF43RfyPHuayd3y+HPw+1bY9h6jaMIj2/pEYOy6D/VcLqc3LrjD9/g5pI6ZF1gvNyy373pO2G8fVTyqUzPbFXumlbyr85gmY3WPJQkuEoQQUpM+q5u4SBBCSF24SPSEPJ8HRxmVTh0jdpqKKutcfkL1UkJF5sthkedHERXlZLhLex5RV8bgG/mI+JM7REZq6+dg/Q/mPWo3z9jeTyXPLyWPPHWSJS8Yn68sz7/Bp7IpqsLKGyeNosb0KgH8qvhulFExTepYqvZbkqDhmhBCSCrrS5IghJA26LEkwUWiDXJOL9UK25Gq2imYgyJNzeJRDcXzT/On8Nynb36+nAuJU1ZGTeTzL7B1PbkdYj+KnL9UO/W8KLBNhb7IU/P41EVpapq800uV/CwqqMUS7RtUMzVBB57PfQ/wx0WCEELqwrAcPaOM4blOAMAc34lUj2yfJFI0B0WaMbuoVOG7jzQv7ago5dkUtXgN8j6P7Ofo3fX77k0rGKuB4j4Nvut5O/DEZ1zDMF2mrK4fRBvSQwcB/HSa/CymmPW5SBBCSINQ3UQIIcSPgobrXlPUd6JoP0305aiSgyLPj6JqPop4oPE5pUWxi9RQFe4jlYz7SDx3Xz81VR5N5nFwDGxu14YM00VDbZRqX+G/YF0VUxk6tglIjzVXXCQIIaQulCRmC2uQkirB+nyU8W727uo93yJPNjtLYWO2HavuEdk8fPeU+jg82yu3cRbPUVqgQHDEjC1b2nHTKlJUYS/svN1yiR18HcN0ap/NH3FNNmtxC01j9VTQy0WCEEImCQ3XhBBC/Cg6t4m0CRcJRxXfCaBa7omCNBYU0JanidtlclOMkibBZz6aPGN3Gtne7P4+W/QArqtOymtTxlheVBWXV15XxTQpn4gp+sdMSYIQQkg6PV4kGAWWEEJIKr2XJCqddGoqbEdeP2VSnnrHrul/kHf6qWg/qfPLuJb2UehgvMz77OwpLV+iB9/nMfRfr3JCJ1dlUjNsR+FxSoTYyLpeVcVUVFXXsYqpzVNNDPBHCCEkHdWpso80zbpaJNxuopTvxKQ8sgsGAxTfDtm2T/Oj8I2dd64+z7/A55tRlNygfgZvNjyPxJHA3IfXIJzX3nblebZteBMXPihQ03s60VeLfhAd/+OcpE9EnyUJ2iQIIYSksq4kCUIIaYUeSxJcJJqibtiORF/pvgBp4n+uH8Xo2Gnj5527r5r5rmo9INsAnkpOn1VURznZ7DLbFi0H8o24tY3dFVRMZXxJ6qrN6vTZEX1WN3GRIISQOijaTcnaMVwkCCGkLv1dI9bnIjEx3wlLXT+KqB//2N7TT3ntq6Q0zVMRNBWmpKpvRlGqqI4sRedU1z+gC9VSFUr5z7TnE8Eor82zLhcJQghpEtokekwt3wmguSx0Rfss6E8RdOO5pyqG7Tw/iUT/BSWNKTdEFqYpT+IifRUes0HpoSl/kJaN1J1LEH35PnugnwQhhNREtPqrUP8ix4vIp0XkkIjsFZFLM+q+XUQeFpEDIvIREVkKy5dEZGfY/qCI3C4ir84bm4sEIYTUQWu+inEtgBUA2wG8HsB1InLmaCURuQjAOwC8EsCpAJ4H4Orw8gKA+wCcD+AZAN4F4EYROTVr4HWvbnJUTnlaNGxHk34UUZ/FVU+OVgzbaRRVR9XJZTFNTKFqKe6mwZwaTarYivbpa9K1imlCiMhmAJcAeJGqLgO4RURuAvAGBAuC5Y0Adqrq7rDtewDcAOAdqnoIwFWm7mdF5DsAXgrgnrTxKUkQQkgNgiiwWvlVgNMBDFR1jynbBWBMkgjLdo3U2y4iJ4zNW2R72PfurMF7KEnU34F2Gl48rc+8vjO8tJNdljBsO/Kki7T5FfW47suOsM2gfkBzUkOZPtswTJft2zZp8rvSpLRab1rbROQ28/sOVd1hft8C4MBImwMAjvX0NVrXvT8WwH5XKCKLCCSMj6nqnVmT6+EiQQghk6WgRJDGPlU9N+P6MoCtI2VbARwsUNe9j+pKsDu8HoGN4615k6O6iRBCpps9ABZE5DRTdhb8aqLd4TVb7xFV3Q8AIiIAdiIwgF+iqqt5g/dTkmjDj6HK+FU8s4FsNVQVL22gmmE7r09f30XVUVV3XpP6PNswnDdkhE52WVDP0UaAvqp0eSihlc8VrYblUNVDIvIpANeIyM8BOBvAawCc56n+pwA+KiI3AHgIwDsBfNRcvw7ACwFcoKqHi4xPSYIQQmqhcXa6Kq9iXAlgE4BHAXwCwBWqultEThaRZRE5GQBU9WYA7wXwZQB7w9e7AUBETgHwFgSLzMNhu2UReX3WwFMvSYQi1jcA/Lmq/kzX8yGEkFHaDsuhqo8DeK2n/F4Exmpb9j4A7/PU3YvgMFYppn6RQOBE8tXKrWuqniqF7ag7dpXTT2V8Khx1VFB5faf0X0ncbzvYXxXqzmNaVEtx58XrTugkU6J53VNNfVahtcxUq5tE5HUAngTwpY6nQggh65KplSREZCuAaxC4l1/WSKdFDcq+pik7mVb8KBxteGkn+s/22I67zsmGV6T/LHJ8O2Zyl1YjCU2jfg7+Acq3ofSQMQ4gPXH18TG1iwSA9yBwL79Pcv7xicjlAC4HgI2yeQJTI4QQwyxuZArSibpJRL4iIpryukVEzgZwAYD3F+lPVXeo6rmqeu6GIOAhIYRMjvYD/HVGJ5KEqr4867qIvA1BBMN7QyliC4B5ETlDVc9pYAJ2sNrdVR6/ijHbUiYwXhXDdjROdja8NHLVUUXGThu/oKqsMi3nLK6UEa7OnNo2TFcdy9e8zvgd7ehrelxPNdOqbtoB4JPm919FsGhc0clsCCFknTKVi4SqPg3gafe7iCwDOKKqj3U3K0IISYGSRLeo6lUtdh78rKh26sSPwlHl9JOl8CmrEn4QiSGLqQ1qn5JqWTVUlEoqpDym+fRS3TFt81k5yeQdG3WjwE41M7FIEELItCIonBdiJuEi4WjIM9tSKcNdooMWvLTzxiwzfhWDs3ca9bZhhQ3kLc+jFE1JP7U9vyfv/xB105c8Ij2HiwQhhNSFkgQhhJBUuEiQTqgbysNS17Bedh5Ac2E5cpiomiiLNgzoXaiTWphHK6qlafnHTMM1IYSQLPpsuJ7qKLCEEEK6hZKEj7pqFtdN3cixic4aOv1kaWoelkr+HjV3YUXVVWVOY03K96KNHeiU+Bw0qmKa9p36tM+vBlwkCCGkFqXSkM4cXCQ6oJaXdqKjBj22HU3OyeHLLNdkYMWmdv3TaHjOY0qkhkSXU2IsnxiK2ZlrBbhIEEJIXXp8uomGa0IIIan0T5JoS+qrmqchq8tpMmw78lQFTc2tjHjeRc4PS5eqhCn3L5hp/4cG1Yt9PgLbv0WCEEImDReJGaPtrGWWFgyxrRi2HXXn2YakkUeP/wBbkRQs02yYTnQ6e9JDhLbU75RAmwQhhJBU+ilJEELIxKCfxGwzKdVTXZ8FX5d1c1R4O23eAJ+gqCqiDbXUNDGpXAkt/3NqNefDJP+xtq0O4iJBCCEkFS4ShBBCvPTccL2+Fgn3Qc7giaeo6yZ9KxIdZ3zJ2/BTqKvGsPdbJXVrk3OZFC3uVltPJdrFTrvH/7gnSe8Wiaf08X1fPPLxvRMabhuAfRMaa1L08Z4A3tcsMcl7OqV+FwpMS+KrFujdIqGqJ05qLBG5TVXPndR4k6CP9wTwvmaJmbwn2iQIIYR4oU2CEEJIJj2WJHp+WL11dnQ9gRbo4z0BvK9Zoo/3NLNQkqiBqvbuy9zHewJ4X7PETN5TjyUJLhKEEFILhuUghBCShmJ2fG0qQJtEQ4jIaSJyREQ+3vVc6iIiSyKyU0T2ishBEbldRF7d9byqICLHi8inReRQeD+Xdj2nuvTp8/HRp7+lPkBJojmuBfDVrifREAsA7gNwPoB7AVwM4EYRebGq3tPlxCpwLYAVANsBnA3gcyKyS1V3dzqrevTp8/Exe39LPVY3UZJoABF5HYAnAXyp46k0gqoeUtWrVPUeVR2q6mcBfAfAS7ueWxlEZDOASwC8S1WXVfUWADcBeEO3M6tHXz4fHzP7t6Ra/TXlcJGoiYhsBXANgF/pei5tISLbAZwOYNZ236cDGKjqHlO2C8CZHc2nFWb480kwu39LGjjTVX1NOVQ31ec9AHaq6n3SRiC8jhGRRQA3APiYqt7Z9XxKsgXAgZGyAwCO7WAurTDjn88os/m3pID2OHYTJYkMROQrIqIpr1tE5GwAFwB4f8dTLUXefZl6cwCuR6DTf2tnE67OMoCtI2VbARzsYC6N04PPJ2JW/5bWA5QkMlDVl2ddF5G3ATgVwL3hzmcLgHkROUNVz2l7flXJuy8AkOCGdiIw+F6sqqttz6sF9gBYEJHTVPWusOwszLhaBujN52N5OWbwbyliBtRGVeEiUY8dAD5pfv9VBF/0KzqZTbNcB+CFAC5Q1cNdT6YKqnpIRD4F4BoR+TkEp5teA+C8TifWDDP/+Yww239LM2CArgoXiRqo6tMAnna/i8gygCOq+lh3s6qPiJwC4C0AjgJ42OiH36KqN3Q2sWpcCeAjAB4FsB/AFTN+/LVvnw+AGf9bUu21Mx0XiQZR1au6nkMTqOpeADNkOUxHVR8H8Nqu59Ekffp80pi5v6UeSxI0XBNCCEmFkgQhhNSk9RzhHcJFghBCajEbntNV4SJBCCF16Hn6UtokCCGEpEJJghBC6tLjsBxcJAghpAYKQKluIoQQ4kU1kCSqvgpQJnmWiLxdRB4WkQMi8hERWarSj4OLBOkdInK6iPx1mN3sWyLyahE5KiKv7HpupJ/oUCu/CmKTZ70ewHUiMhbyXkQuAvAOAK9EENbkeQCuLtuPhYsE6RUichqCrGa7AbwIwC8C+DCADQhySRAyU5RMnvVGBOHWd6vqEwjCr7+pQj8RtEmQvvEBADep6tvC3+8WkZsBXKSq+7qbFuk17Rqu05Jnne+peyaAz4zU2y4iJwA4uUQ/EVwkSG8Qke8GcCHG03iugFIEaYmDeOILf6N/vq1GFxtF5Dbz+w5V3WF+L5M8a7Sue39syX4iuEiQPnEOgAGAfx0pfwmArwCAiPwDgF9R1X8SkR0A9qjq7050lqRXqOqrWh6iTPKs0bru/cGS/UTQJkH6xBDBd3rRFYjIyxDkj/h6WHQ1gN8UkV8EsMgFgswAUfIsU5aWPGt3eM3We0RV95fsJ0K0xzFHyPpCRJ4L4NsAPoQgDeaLAfwOgO8F8L1OFysityLIXXChqq50NF1CCiMin0TgkuGSZ30ewHmjuVFE5FUAPgrgFQAeAvAXAG5V1XeU6cdCSYL0BlV9EMBlCLLP3YHgVMcHARwCcDcAiMg5ALYBeIoLBJkhrgSwCUHyrE8gTJ4lIieLyLKInAwAqnozgPcC+DKAveHr3Xn9ZA1MSYL0GhG5CoHEcF4oaXwewE8B+D8A3qyqX+9weoRMPZQkSN95CYBdIrIJwP8F8Euq+m0A/wvAuzqdGSEzACUJ0mtE5FsA3quqf9z1XAiZRbhIEEIISYXqJkIIIalwkSCEEJIKFwlCCCGpcJEghBCSChcJQgghqXCRIIQQkgoXCUIIIalwkSCEEJLK/wdXVn+EFenGywAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEcCAYAAAAC+llsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA4TUlEQVR4nO3deXgV1fnA8e+bldyEsIU1IQRlEWQngAoK7gsK6s8FRRS1UlEqtIobbd2KrXVptSKyiEtNXSq2UkulVkXBBQgiaxADBghbAghJCGR9f3/MTbgJN+SGe5NLkvfzPPPczJkzM+8EvW/OOTNnRFUxxhhj/BES7ACMMcbUf5ZMjDHG+M2SiTHGGL9ZMjHGGOM3SybGGGP8ZsnEGGOM3yyZGNMAiIhLRN4TkYMioiKSFOyYTONiycTUKyLSWkReEpEMESkQkT0i8omIXOhRJ0NE7qvDmFRErqmr81XhNuAcYBjQHtju7wFF5DUR+dDf45jGISzYARhTQ/MBF3A7kA60AYYDrWpyEBEJAURVSwIe4QkSkTCgRE/sSeIuQJqqrg1wWH4TkQhVLQx2HKaWqaotttSLBWgOKHDBceosdtcpX9zl44E84DJgHVAM9AJeAz6sdIxHgXWVym4B1gIFwB7gNXd5RqXzZRznGOOBvMrncZdvBkqAGKAZMBvIAnKBz4HkGlzzYnf5TcAK9zGygL8D8ZX2PQ1YABx0/36+Bnq7Y9NKywj3Pr2B/wGHgf3u32Ezj2O+BnwIPABkAlnB/m/HltpfrJvL1Cd57mWUiDSpos7VOF9gj+N097T32NYE+DXwc6AnsNWXk4rIz4FZwKtAH5yEtN69eZD78w73uQYdc4Dj6wzcCFwL9MVJVv8G4oHLgf7AF8CnItK+imNc7Y7ta3cMV7vLI4BH3Me9HIgD3vK4rg7AUpxEcSEwAJgBhALPAO/iJI2y3+NXIuICPsL5dxgMXAWcBcyrFNNwnN/VJcD5NfqNmHrJurlMvaGqxSIyHpgDTBCRVcCXwN9VdZm7zn4RKQFyVXV3pUOEAr9Q1ZVlBSLiy6l/A/xZVZ/zKFvpPl+2+xgHvJzPFxHAOFXd447nPKAf0FpVD5edX0SuAMYBf6x8APc15wOFnjGoqucX/BYRmQikiUiCqmYCdwOHgGv1aDfUprIdROQwUOB5TBG5Baf1NE5Vc91lE4DPRKSLqqa7qx4BblPVghP4nZh6yFompl5R1flAB+AK4D84fxV/IyIP+7B7MfBdTc4nIm1wWgmf1CxSn2WWJRK3gThjQtkikle24HTJnVqTA4vIABH5QES2ikgukOrelOj+7A8s1ZqNZ/QA1pQlErevgFKc1l6ZdZZIGhdrmZh6R1WPAB+7l8dFZC7wqIg8U80XY4EeO+BeClRunoR7/OxT08WL6o5b5lCl9RCcMZmzvdTN8fXkIhINLMLpphqHM2YSByzBaQ3hJT6fDo3TLeaNZ3nl6zINnLVMTEOwAecPo7JxlEKcLi1fZFNxXAWcbiYA3K2GHRy/37/Iy/mygbZSsR+tH9X7FmgLlKpqeqUly4f9y5yGkzweVtUvVHUjzp1vlc81TEQijtnb4e33uAHoKyJNPcrOwvkuSatBfKaBsWRi6g0RaSUin4rITSLSR0Q6i8i1wP3AJ6pa9pd7BnC2iMSLSFw1h/0U6C8it4lIFxG5Hxhaqc50YIqI/FJEuolIPxG512N7BnC+iLQTkRbussVAS+BhETlVRG4HfHkW5X8440AfiMil7ms8U0QeExFvrZWqbMMZzJ8kIqeIyEjgiUp1XsIZ/3hXRAa5r/8GEenncV29RKS7iMSJSDiQgtPqeENEeovIOTg3J7zvMV5iGiFLJqY+yQO+ASbj3C67HngS+BtwvUe93wIdcW63zT7eAVV1EfAYTsJYCSThfMl61pmJM1h9B86tvB8Bp3tUuRc4F+dBwVXufdKAicAEYA3O3VJPVneBqqo4d4t9inOjwfc4d1V1B3ZWt7/HcbJxbme+Eqc18Qjwq0p1duA86BgBfOaO/Rc4Y0u4z5+GM9aSDQxV1XzgYiAWWA58gHMX2W2+xmYaJnH+2zXGGGNOnLVMjDHG+M2SiTHGGL9ZMjHGGOM3SybGGGP81qgeWoyLi9OkpKRgh2GMMfXGypUr96pq6+rqNapkkpSURGpqavUVjTHGACAiPk2Iat1cxhhj/GbJxBhjjN8smRhjjPGbJRNjjDF+s2RijDHGb43qbi6fpKTAtGmwbRskJsL06TB2bLCjMqbO5eTkkJWVRVFRUbBDMbUoOjqahIQEQkL8a1tYMvGUkgITJkB+vrO+dauzDpZQTKOSk5PDnj17iI+PJyoqytfXG5t6prS0lB07drB3717atKn8upuasW4uT9OmHU0kZfLznXJjGpGsrCzi4+NxuVyWSBqwkJAQ2rZty8GDB/0/VgDiaTi2batZuTENVFFREVFRUcEOw9SB8PBwiouLq69YjaAmExG5RES+F5F0EXnQy/bTRORrESkQkfs8yjuKyGcikiYi60VkckACSkysWbkxDZi1SBqHQP07By2ZiEgoMAO4FOgJ3CAiPStV2w/cAzxTqbwYuFdVewBnAHd72bfmpk8Hl6timcvllBtjjKlSMFsmg4F0Vd2iqoXA28BozwqqmqWqK4CiSuW7VPVb98+5OK8Wjfc7orFjYfZs6NQJRJzP2bNt8N0YY6oRzGQSj/PO7DKZnEBCEJEkoD+wrIrtE0QkVURSs7OP+zpwx9ixkJEBpaXOpyUSY+q1xYsXIyLs3bs32KE0aMFMJt466mr0QnoRiQHmA1NUNcdbHVWdrarJqprcunW1sygbY+q5ESNGMGnSpGCH0egEM5lkAh091hOAnb7uLCLhOIkkRVXfD3Bsxhjjt8b0wGcwk8kKoKuIdBaRCGAMsMCXHcW5/eAVIE1Vn6vFGI0x9cj48eP5/PPPmTFjBiKCiJCRkQHA6tWrGTJkCC6Xi+TkZL799tsK+3711VcMHz4cl8tFfHw8EydOJCfnaIdHQUEBU6ZMoW3btjRp0oQzzjiDpUuXlm8v605buHAhgwcPJiIiglmzZhEaGnrMe5TmzJlDXFwchYWFtffLqGNBewJeVYtFZBKwCAgF5qnqehG50739ZRFpB6QCsUCpiEzBufOrDzAOWCsi37kP+bCqLqzjyzCm0XjsX+vZsNNrb3Kt6dkhlkeuON3n+s8//zybNm3itNNO48knnwRg/fr1ADz00EM89dRTtG/fnsmTJzN27Fg2bNiAiLB27VouuugiHnvsMebOncv+/fuZMmUKt912G++99x4A999/P++++y7z5s3jlFNO4bnnnuOSSy7hhx9+oH379uUxPPDAAzz77LN06dKFpk2b8q9//Yt58+aRnJxcXmfevHmMGzeOiIiIQPyaTgpBnU7F/eW/sFLZyx4/78bp/qpsKd7HXIwxjVizZs2IiIjA5XLRrl07ADZu3AjAE088wbnnngvAb3/7W4YNG8aOHTtISEjg6aef5vrrr+fee+8tP9bMmTPp378/WVlZREdHM3PmTObOncvIkSMBePnll/n000+ZMWMGv/vd78r3e/TRR7nooovK1++44w7uuOMOnnvuOZo0aUJaWhrffPMNc+bMqfXfR12yubmMMT6pSQvhZNSnT5/ynzt06AA408YkJCSwcuVK0tPTeeedd8rrqDr3A23evJno6GiKiooYOnRo+fbQ0FDOPPNMNmzYUOE8ni0QgNGjR3P33Xfz/vvvc+ONNzJv3jwGDx5Mr169An6NwWTTqRhjGoXw8PDyn8ue+i4tLS3//NnPfsZ3331XvqxevZoffviBfv36lScWb0+LVy6Ljo4+5rw333wz8+bNo7i4mL/+9a/cfvvtAb22k4G1TIwxDUpERAQlJSU12mfAgAGsX7+eLl26eN3epUsXIiIiWLp0KaeccgoAJSUlfP3119x4443VHv+OO+6gR48evPTSS+Tm5jJmzJgaxVcfWMvEGNOgJCUlsXz5cjIyMti7d2956+N4HnjgAZYvX86dd97JqlWrSE9P58MPP+TnP/854LQ2Jk6cyIMPPsjChQtJS0tj4sSJ7Nmzh7vuuqva43fr1o1hw4YxdepUrrnmGmJjY/2+zpONJRNjTINy3333ERERQc+ePWndujXbfJj1u0+fPnzxxRdkZGQwfPhw+vbty0MPPUTbtm3L6zz11FNcd9113HrrrfTr1481a9bw0UcfVbiT63huv/12CgsLG2QXF4CU9QU2BsnJyVr5fm9jzLHS0tLo0aNHsMNoUJ566ileeeUVNm3aFOxQjnG8f28RWamqyV43erCWiTHG1KK8vDxSU1N5/vnnmTw5MG/LOBlZMjHGmFo0adIkhg4dytChQ8vHYBoiSybGGFOLXnvtNQoKCvj73/9OWFjDvYHWkokxxhi/WTIxxhjjN0smxhhj/GbJxBhjjN8smRhjjPGbJRNjjDF+s2RijGkUyt6EuHfv3lo/1/jx47n88sv9Ps6jjz5ab6aqt2RijGkUzjrrLHbt2kWrVq2CHcoxMjIyEJFjXu9733338fnnnwcpqpppuE/QGGOMh4iIiPK3L9YXMTExxMTEBDsMn1jLxBhTe1JSICkJQkKcz5SUWj/lF198wRlnnEFMTAzNmjVjyJAhrFu37phurtdee42YmBj+85//cNppp+FyuRg1ahQHDx7kvffeo2vXrjRr1oxx48Zx+PDh8uOPGDGCSZMmVThndd1aH330EWeffTYtWrSgZcuWXHzxxaSlpZVv79y5MwCDBg1CRBgxYgRwbDdXaWkpTzzxBB07diQyMpLevXvzwQcflG8va+HMnz+fCy+8EJfLRc+ePfn4449P/BfqI0smxpjakZICEybA1q2g6nxOmFCrCaW4uJjRo0czbNgwVq9ezbJly5g8eTKhoaFe6xcUFPDss8+SkpLCJ598QmpqKtdccw2vv/468+fP55///CcffvghL730kl9xHTp0iClTprB8+XIWL15Ms2bNuOKKKygsLARg+fLlgJN0du3axfvvv+/1OM8//zxPP/00Tz31FGvXruWqq67i6quv5rvvvqtQb9q0adxzzz2sXr2aQYMGMWbMGPLy8vy6hmqpaqNZBg4cqMaY6m3YsMH/g3TqpOqkkYpLp07+H7sK+/btU0AXL158zLbPPvtMAc3OzlZV1VdffVUB3bhxY3mde++9V0NCQsrrqKrecsstOnLkyPL14cOH6913313h2JXrVF6vLC8vT0NCQnTJkiWqqvrjjz8qoCtWrKhQ75FHHtHTTz+9fL1Dhw762GOPVagzfPhwHTt2bIXjvPzyy+XbMzMzFSg/lzfH+/cGUtWH71drmRhjakdVL6Xy4WVVJ6ply5aMHz+eiy++mJEjR/Lcc8+xffv2KutHRkbSvXv38vW2bdvSrl074uLiKpRlZWX5FdfmzZu58cYbOfXUU4mNjaVt27aUlpb69OKuMjk5OezcuZOhQ4dWKB82bBgbNmyoUNanT5/ynzt06ADg9zVUx5KJMaZ2JCbWrDxAXn31VZYtW8Y555zDggUL6NatG4sWLfJat/IsviJCeHj4MWWer/4NCQlBK71UsKio6LgxXXHFFWRnZzNr1iyWLVvGqlWrCAsLK+/mqgkRqbbM8xrKtvny+mJ/BDWZiMglIvK9iKSLyINetp8mIl+LSIGI3FeTfY0xQTZ9OrhcFctcLqe8lvXt25cHHniAxYsXM2LECF5//fWAHbt169bs2rWrQtnq1aurrL9v3z7S0tJ4+OGHueCCC+jRowe5ubkUFxeX14mIiACgpKSkyuPExsbSoUMHli5dWqF86dKl9OzZ80QuJaCCdmuwiIQCM4ALgUxghYgsUFXP9tp+4B7gyhPY1xgTTGPHOp/TpjldW4mJTiIpK68FP/74I7NmzWLUqFHEx8ezZcsW1qxZw8SJEwN2jvPOO48pU6awYMECunfvzqxZs9i+fTtJSUle67do0YK4uDjmzJlDx44d2bFjB1OnTq3QKmrTpg1RUVEsWrSIpKQkmjRpQrNmzY451tSpU/ntb39L165dGThwIG+++SZLlixh5cqVAbu+ExXMlslgIF1Vt6hqIfA2MNqzgqpmqeoKoHIbstp9jTEngbFjISMDSkudz1pMJAAul4tNmzZx7bXX0q1bN2655RbGjh3LAw88ELBz3HbbbeXL0KFDiYmJ4aqrrqqyfkhICO+88w5r1qyhV69e3H333TzxxBNERkaW1wkLC+OFF15g7ty5dOjQgdGjvX+d3XPPPUydOpX777+fXr168Y9//IP58+fTr1+/gF3fiZLKfX91dmKRa4BLVPVn7vVxwBBVneSl7qNAnqo+cwL7TgAmACQmJg7cunVrLV2RMQ1HWloaPXr0CHYYpo4c799bRFaqanJ1xwhmy+TYUSTwNbP5vK+qzlbVZFVNbt26tc/BGWOM8V0wk0km0NFjPQHYWQf7GmOMCbBgJpMVQFcR6SwiEcAYYEEd7GuMMSbAgnY3l6oWi8gkYBEQCsxT1fUicqd7+8si0g5IBWKBUhGZAvRU1Rxv+wblQowxxgR31mBVXQgsrFT2ssfPu3G6sHza1xgTOKrq9QE507AE6iYsewLeGHOM8PDwCjPlmoarqKjomJkAToQlE2PMMdq0acOOHTvIz88P2F+u5uRTWlrKnj17vD4gWVP2cixjzDFiY2MB2LlzZ7XzTpn6LTo6usLElifKkokxxqvY2NjypGJMdaybyxhjjN8smRhjjPGbJRNjjDF+s2RijDHGb5ZMjDHG+M2SiTHGGL9ZMjHGGOM3SybGGGP8ZsnEGGOM3yyZGGOM8ZslE2OMMX6zZGKMMcZvlkyMMcb4zZKJL1JSICkJQkKcz5SUYEdkjDEnFZuCvjopKTBhAuTnO+tbtzrrAGPHBi8uY4w5iVjLpDrTph1NJGXy851yY4wxgCWT6m3bVrNy6xIzxjRClkyqk5joe3lZl9jWraB6tEvMEooxpoGzZFKd6dPB5apY5nI55ZVZl5gxppEKajIRkUtE5HsRSReRB71sFxF5wb19jYgM8Nj2SxFZLyLrROQtEWlSK0GOHQuzZ0OnTiDifM6e7X3wvaZdYsYY00AELZmISCgwA7gU6AncICI9K1W7FOjqXiYAM937xgP3AMmq2gsIBcbUWrBjx0JGBpSWOp9V3cVVky4xY4xpQILZMhkMpKvqFlUtBN4GRleqMxp4Qx3fAM1FpL17WxgQJSJhgAvYWd0JC4pL+elQYeCuoLKadIkZY0wDEsznTOKB7R7rmcAQH+rEq2qqiDwDbAMOA/9V1f9Wd8JNe3Lp/8THxMVE0iehGeee1oaLeralbWyAesjKWizTpjldW4mJTiKx51GMMQ1cMFsm4qVMfakjIi1wWi2dgQ5AtIjc5PUkIhNEJFVEUpuHFTPtsh6M6N6azdl5/Oaf6zjrD58y8c2VrNy636+LKedrl5gxxjQgwWyZZAIdPdYTOLarqqo6FwA/qmo2gIi8D5wFvFn5JKo6G5gNkJycrHecc0pZOelZeby3MpO3V2znP+t2c2HPtjxwyWl0aRMTkAs0xpjGIpgtkxVAVxHpLCIROAPoCyrVWQDc7L6r6wzgoKruwuneOkNEXCIiwPlAWk1OLiJ0bduUhy7rwdcPncfUi7vz9eZ9XPb8EmZ8lk5xSan/V2iMMY1E0JKJqhYDk4BFOIngXVVdLyJ3isid7moLgS1AOjAHuMu97zLgPeBbYC3Odcw+0VhcEWHcfW4XFk8dwYWnt+XpRd/zfzO/Yvv+/Op3NsYYg6hWHqZouJKTkzU1NbXaev9es4sH319DaIjw/Jj+DO/Wug6iM8aYk4+IrFTV5Orq2RPwXozs055/TRpGu9gmjH91Oa99+WOwQzLGmJOaJZMqJMVF8/5dZ3Fhj7Y8+q8N/PGjjTSmVpwxxtSEJZPjcEWEMfOmgdw4JJGXFm/mgflrKC21hGKMMZXZy7GqERoiTL+yF3HREbzwaToAf7i6DyEh3h6BMcaYxsmSiQ9EhF9d1B2AFz5NdyeY3pZQjDHGzbq5auCXF3bj7nNP5a3l23n82X+g9hIsY4wBLJnUiIhw30Xdua3VEV7bF8mstsn2EixjjMGSSY2JCL+ecR9XbPicP5x7K++ffq6zwV6CZYxpxGzM5ASEbNvKM5l/Ym90c+6/dDKtD/3E2Rnf2UuwjDGNlrVMTkRiIpElxcx6fzpd9m3nrtEPsrllvL0EyxjTaNU4mYhIpHtyxp4i0jjnGXG/BCu2MJ+58x8noqSYn13zCAcffzLYkRljTFD4lExEpKmITBSRL4CDOBMvrgN2i8h2EZkjIoNqM9CTisd74RNy9zLr61fIbNmeSUWn2mzDxphGqdpkIiK/BDKA24CPcV5K1Q/oBpwJPIIz9vKxiHwkIl1rK9iTisdLsJJTP2X61X1Z8sNepi+s0Uz4xhjTIPgyAH8WMFxV11WxfTkwzz1t/O3AcOCHAMVXb1w3qCMbd+cy78sfOb1DM64ZmBDskIwxps5Um0xU9VpfDqSqBcBLfkdUjz182Wmk7cph2j/W0rN9LD07xAY7JGOMqRN+3c0lIr8KVCANQVhoCC/c0J/mrnAmpqzk4OGiYIdkjDF1wt9bg7uLyCsiEgYgIn1E5O8BiKveat00kpfGDmDHT4e5993VzizDKSnOlCs29YoxpoHyK5mo6s+B74D/isg/cV6t2+i/KQd2asm0kT34X9oeXn5+vjPVytatNvWKMabB8rebazBwARAN9AKuV9V/BiCuem/8WUlc3qc9z+yK5Ku4LhU32tQrxpgGxt9urueAv6jqEOA64H0RGeZ/WPWfiPDU//XhlP2Z/GLU/eyJaVmxgk29YoxpQPzt5hqmqv9z//wtcDnwh0AE1hBER4bx8vLXyA9vwuTL76NEPH7dNvWKMaYBqVEyEZFzRaRlVdtVdSdOt5dx6/LAPTzx+St806kPzw8d4xS6XM6ULMYY00DUdNbg/wDhIrIDWI0z+P4dsFpV0wFU9UggA6z3xo7lGuDrBd/wl7PGMKRwL0Pvudl5gt4YYxoIUVXfK4tcAswFPgIKgT44T8grcAhYgzvJqOqcgEfrp+TkZE1NTQ3KufMLixn14pccyC9i4eRhtGnaJChxGGNMTYjISlVNrq5eTcdM/gLcoao/U9W7VHUYcDawCZiGM3dXO+B+H4O8RES+F5F0EXnQy3YRkRfc29eIyACPbc1F5D0R2SgiaSJyZg2vpU65IsKYceMA8gqK+OU731FS6nsSN8aYk11Nk0kC8L1ngap+CTwAjFDVx1T1/1S12skeRSQUmAFcCvQEbhCRnpWqXQp0dS8TgJke254HPlLV04C+wEk/w2L3dk15bNTpfJm+jxmfpQc7HGOMCZiaJpMlwN1eytcCF9bwWIOBdFXdoqqFwNs4MxJ7Gg28oY5vgOYi0l5EYoFzgFcAVLVQVQ/U8PxBcV1yR67s14E//28T32zZF+xwjDEmIGqaTCYBt4vIayLSV0TCRCQK+CWwv4bHige2e6xnust8qXMKkA28KiKrRGSuiER7O4mITBCRVBFJzc7OrmGIgSci/O6q3iS1iuaet1axN6+gYgWbesUYUw/VKJmo6iZgENAeWAXkA7nAz4CHanhu8XYKH+uEAQOAmaraH2fw/5gxF3fMs1U1WVWTW7c+OV4MGRMZxos3DuDAYWf8pLRs/CQlxaZeMcbUSzV+aFFVf1DVi4FE4BrgSuBUVX2rhofKBDp6rCcAO32skwlkquoyd/l7OMnFd0FuAfTsEMujbfNY8sNeZg4b48QwebIz1Yonm3rFGFMPnPAT8KqaqaoLVPVDVd11AodYAXR1v08+AhgDLKhUZwFws/uurjOAg6q6S1V3A9tFpLu73vnABp/PfDK0AFJSuOHB8Vyx4XOeHTaW5SUxsK+KMRSbesUYc5Lz5bW9nX09mPtLv2P1NUFVi3HGYBbh3In1rqquF5E73W9tBFgIbMF55/wc4C6PQ/wCSBGRNTivEX7S1ziZNi34LYBp05D8fJ5c9CKJB/Zwz6ip7I+q4mVaNvWKMeYkV+1DiyKyG/g3MFdVv66iTguclsU9wAxVfTHQgQZC+UOLISFOi6QyESgtrZtgPGJY1+YUrh73LGdtXc289x4jxHPoyOWC2bPtiXljTFAE8qHF03Du1Pq3iGSLyEci8qqIzBSRt90tgyzgJmDKyZpIKqjqL/26bAF4nKtX1hZ+8+kcFp+azKxzb4JOnZzE1qmTJRJjTL1QbTJR1QOqOhXnltyJwEagOdAZKAZeB/qr6lBVXVSLsQbO9OnOX/ye6nryxUox3LRqISN/+IqnB1/H15+sdFpIGRmWSIwx9YJPEz2KyCCgSFXfw7lzqn4r+4KeNs0Z3E5MdL7c6/KLu1IMkpjIU6N7kpYdwy/eWsXCe4bRJtbm7zLG1A8+TfQoIp8AK1T1QY+ycThdW1nAH1R1fa1FGSDBnOjRV5v25DL6xS/pHd+MlDuGEB7q7/vLjDHmxAV6osdewAceB+8LvIrT1TUc+FJEkk4gTlNJt7ZN+f3VvVmesZ+nF31f/Q7GGHMS8DWZxAI7PNZvwhk76Y4ztcmXVPEEuqm5K/vHc9MZicz+Ygsfrdsd7HCMMaZaviaT7VScN+s84D33BIzFwB+BcwMdXGP2m8t70jehGVP/vpof9x4KdjjGGHNcviaT/wJTAUTkFJwp3z/22P4jFac9MX6KDAtlxtgBhIYKE99cyeHCkmCHZIwxVfI1mTwJDHW/rncZsBX4ymN7e5wJH00AJbRw8afr+/H9nlym/XMtNXkrpjHG1CWfkomq7sSZLfhtnPmyrtaK32zn47xt0QTYud3b8IvzuvL+tzt4/auMYIdjjDFe+fScCYCqbgPurWJzDxrC8ycnqSnnd2XDzhye+Hca3do25awuccEOyRhjKgjIQwyqOk5Vnw/EscyxQkKEP13fl1Piornrb9+ybV9+9TsZY0wdsifi6ommTcKZc3MyqnDHG6kcKigOdkjGGFPOkkk9khQXzYs39ueHrFx+9a7HGxqNMSbILJnUM2d3bc3Dl/Vg0fo9vPDpD8EOxxhjgBoMwJuTx+3DOrNhVw5//t8PnNo6hiv6dgh2SMaYRs5aJvWQiPD7q3szKKkF9/59NakZ+4MdkjGmkbNkUk9FhoUye1wy8c2juOONVJtyxRgTVJZM6rEW0RG8On4QIsKtry5n/6HCYIdkjGmkLJnUc0lx0cy5eSA7Dx5hwhupHCmyObyMMXXPkkkDMLBTS/50XT9St/7Eve+upsRuGTbG1DFLJvVZSgokJUFICCNHncnD7Q7z77W7+O0H62xSSGNMnbJkUl+lpMCECbB1K6jC1q1MmHYLP487QsqybTz7X5t30xhTd4KaTETkEhH5XkTSReSYNzWK4wX39jUiMqDS9lARWSUiH9Zd1CeJadMgv9IcXfn5PPjivYwZ1JEXP0tn7pItwYnNGNPoBO2hRREJBWYAFwKZwAoRWaCqGzyqXQp0dS9DgJnuzzKTgTSc1wo3Ltu2eS2WbduYflVvDh4u4nf/TqO5K4JrBibUcXDGmMYmmC2TwUC6qm5R1UKcd6WMrlRnNPCG+/XA3wDNRaQ9gIgkACOBuXUZ9EkjMbHK8tAQ4c9j+jGsSxwPzF/DwrW76jY2Y0yjE8xkEo/zbvkymVR8z3x1df4M3A+UHu8kIjJBRFJFJDU7O9uvgE8q06eDy1WxzOVyynEeapw1biD9OjbnnrdW8dE6SyjGmNoTzGQiXsoq34LktY6IXA5kqerK6k6iqrNVNVlVk1u3bn0icZ6cxo6F2bOhUycQcT5nz3bK3aIjw3jt1kH0SWjGpL+tYtH63UEM2BjTkAUzmWQCHT3WE4CdPtYZCowSkQyc7rHzROTN2gv1JDV2LGRkQGmp8+mRSMo0bRLO67cNpndCM+5O+Zb/WkIxxtSCYCaTFUBXEeksIhHAGJz3y3taANzsvqvrDOCgqu5S1YdUNUFVk9z7faqqN9Vp9HXN45kSkpKcdR/rNp3/Lq/fNphe8c24+2/f8vGGPSd2XGOMqULQ7uZS1WIRmQQsAkKBeaq6XkTudG9/GVgIXAakA/nArcGKN6jKnikpuxV461ZnHY5tjVRRNxZ44/brGPfKcia+uZJnr+vL6PWLfT+uMcYchzSmJ6WTk5M1NTU12GHUXFKS80VfWadOTvdWDermFRTzs9dXsOzH/Ty+4m3GfeKld9DbcY0xjZKIrFTV5Orq2RPw9UEVz5R4La+q7tatkJRETFQErz11M+fHFPGb5DHMOONa349hjDFVsGRSHxznmRKf64qUT73SZEs6M/9wM6PTv+Lp4bfw+xG3VryNrqpjGGNMFSyZ1AfVPFNSbV0RZ/4uD+F5ufxp8WzGrVnErCH/x5TL76MgNKzq4xpjzHFYMqkPfHim5Lh1qxgXC9m/j8dvHMLU1R/wwekjGHfzM/z00hxno93hZYypARuAbwx8GMBfsHon9727moTQIl6dM4VOu388Ws/lqjp5GWMaNBuAN0f50E02qm8H3vzZEPbnHuaqa3/HivieR+vm5zuzFNszKcaYKlgyaQx87CYb3Lkl779xL82O5HHDDU/y136XHh2YL3sGxeP9KUyYYAnFGANYN5epLCmJg7v3MuWK+/js1EFcv3oRj388k0gUSry8X96eSTGmQbNuLnNipk+nWagyd/4T/OKrt3mn78Vcf9Mf2R3V3Ht9eybFGIMlE1OZu0ssNLEj9y5N4eWls/mhQ1dG3v4iizsPOLa+PZNijMGSifHGYzbiS5Z+wAdThhPXzMX46x7n98PHUxQS6tSzZ1KMMW6WTEy1urRpyge/HsmNLQuYdcY1XDv2Kbb3HGC3CxtjylkyMT5pEh7Kk/dfzYwbB7C5cy8uu/ZJ/tFzOI3pBg5jTNUsmZgaGdmnPQsnn023tk355TurufPNlezNKwh2WMaYILNkYmqsY0sX7/78TB669DQ+27Cbi379DxaeNsweZDSmEbNkYk5IaIjw88xv+Pdff0XCT7u468qHmNT3erKmTHUSij0tb0yjYg8tmhPnnvOrKCSUl4dcw1/OGkNkcQH3r5zP2G8XEpJ/6Ghdm9/LmHrJ14cWLZmYExcSUmFG4s0t4/nNhXfxVVJf+u3cyPRFMzg9y2PCSHta3ph6x56AN7Wv0gOLp+7fQco70/jzv54hs1lbRt3yZx49fwIHmsQ4Fdxve7SuL2MaHksm5sR5mY1YXC6u3LOWT+bcyZjVi3hjwEiGT5jDvIGjKAoNs4kijWmgrJvL+CclxZmefts2p6VS9kT8hAmQn8/GuE5MP+92lnQewCn7Mnn4s3mcv3k5Ura/dX0Zc1KzMRMvLJnUIY8ko4mJfBbamt+ddztbWnVk8La13LvkTYZkrnemxC8tDXa0xpgq2JiJCS6P+b0kI4PzSrJZNG8Sj/93Jj+2jOf6sU8x7rrHWdXvHLuN2JgGIKjJREQuEZHvRSRdRB70sl1E5AX39jUiMsBd3lFEPhORNBFZLyKT6z56UyPTpxPeJJKbV/2bL2bdwbRPX2F9uy5cddFUbl+wmbVHwmwsxZh6LGjJRERCgRnApUBP4AYR6Vmp2qVAV/cyAZjpLi8G7lXVHsAZwN1e9jUnE4+3PUaVFHJH1rd8MbCUqWsWsKJ9d64Y/zw3Xf8ESzv1RcteE2yMqTeCNmYiImcCj6rqxe71hwBU9fcedWYBi1X1Lff698AIVd1V6VgfAC+q6sfHO6eNmZyEQkLICY/ib/0u5ZVBo8mOaUnvXT8wcdl7XLxhCaEhUv0xjDG1pj6MmcQD2z3WM91lNaojIklAf2BZ4EM0tS4xkdjCfO5cPp8lL9/O7z/6C7mR0dx15UOc94vXmTv4Kg527XG028vGV4w5KYUF8dze/uSs3Ew6bh0RiQHmA1NUNcfrSUQm4HSRkWhvBTz5TJ9efhtxk5Iibli9iOvSFvNR1zN4td9l/O68n/Fs4RGu+tsSbvl6Nd1fnQH5+c6+ZeMrYNO0GBNkwWyZZAIdPdYTgJ2+1hGRcJxEkqKq71d1ElWdrarJqprcunXrgARuAshjLAUR6NSJ0KYxjFz/Oe+lPMCHr97DFRu/YP5p53BxzHDGjPo1H/Q4hyNhEc7+Nr5izEkhmGMmYcAm4HxgB7ACuFFV13vUGQlMAi4DhgAvqOpgERHgdWC/qk7x9Zw2ZlJPVJrzC+CnJk15t8+F/LX/ZWQ2b0fskTxGbfic69Z+TO/d6UinThUfnLSWijEBUS8eWhSRy4A/A6HAPFWdLiJ3Aqjqy+6k8SJwCZAP3KqqqSIyDFgCrAXKnnh7WFUXHu98lkzqCfdsxMcIDaW0pJRvEnvzbp8L+U+3sygIj6R7dgbXrv0fV6R9Qdu8/TZDsTEBVC+SSV2zZFJPpKSUj6OUc7ngllvg9dfLyw9GRvNhj3N4t/cFrO7QHdFShmxbxxVpX3Bp/jZaPvLwsVO9WIIxpkYsmXhhyaQe8Tbn19ixx5a7WzDpLRP4sMfZ/KvHOWxu1ZHQ0hKGbl/L5esXc+EPy2hxJNdaLMacAEsmXlgyaYAqdYkpkNa6Mx/2PId/nXY225u3I7S0hOTMDVyYvowLs7+nk+Zba8UYH1ky8cKSSQNUVZdYfj4KrGnXlf91HcLHXYawsU1nALru3coFPyzngs3L6Hsgk7BZLzv7WZeYMcewZOKFJZMGyluX2LRpxwzib2/Wlo+7DOF/XYawLLEXJSGhND2Sx9BdaZz94yrO2bSMjgf3OJWtS8wYwJKJV5ZMGhFvLRYPByOjWdK5P0uT+vNF5/7sjG0DQNL+nZyd8S1DM1Yz+NBOWoZjrRXTqFky8cKSSSNTucWSlwf79h1TTYEtLeNZktSfJZ0H8HVib/IjogDolr2VQZnrGbx9HUP2bqbdNaNg4UJLMKbRsGTihSWTRq6q8ZWoqApJpjAkjNXtu7G84+ks73g6K+N7khfpvJ448addDM5cx4AdG+m3cxPd8rNtzMU0aJZMvLBkYqp7zbA3xRLCxjadWdbxdJYn9GJFx9PZ72oGQFThEXrv20rfXZvot20d/XZuokNuNlL2XIy1Ykw9Z8nEC0smpko+domB0y22rXk7vmvfje86dGd1+26sa3sqhe75wuLyfqL3nnR6Zv1Ij6wt9NyzhaSfdhHiinIG9cFaMabesGTihSUT4zNvXWIix8wZVqYwJIyNbZJY3b4bq9p3Z0PbU0hv1ZHiUGdiblfhYbpnb6Vnzk567kqnx47v6bp3G00LDx99ut9bK6aqhzeNqSOWTLywZGJqpPIX+WWXVZjOBfA65lKmIDSMH1olktamMxvansKGNqewoU1ncpvElNdpn5NNl33b6bJvO133bqPLvky67t1Gi5CSY6aPKT+fdZ+ZOmTJxAtLJsZvvo65VNGKUSAztg1pbTqT3qoj6XGJpLdKIL1Vx/I7yADiDv3EqfszOXVvJkkHdtLpp10k/bSLxAO7iSoprHjssmdiwHts1rIxfrBk4oUlE1Nr/GzFlCLsjI3zSDAd2RSXSEaLDuWD/WXa5e51Jxd3kjmwi0TNJyE7k2Y/ZR99o1x4uJPUCgsrxmCJx9SAJRMvLJmYOuVnK4bQUCgp4WBkNNuatyOjRQe2tmhPRov2ZLToQEbzDuyNaVFhl+iCfOJzsonPyaJDTjbxB7OIz8kiISeL+IPZtMnbT0irlnD4cMUYapp4LMk0GpZMvLBkYk4KvrZivI2ZVEo8eRFRbG3ejm3N27OjWRsyY9uwI7Y1O2Nbs6NZGw5ExVY4dXhJEe1y99E+J5u2eftpm7efdnn7aJO3n7a5+8rLoooLnB1atTo28dgNA42KJRMvLJmYk5avU+7XsPssLyLKSSyxbciMbc3O2DbsaNaa3TGtyIppxe6mLTkS3uSY/WKP5NE2bx/tcp1E0ybvJ+LyfyLu0EFa5R8gLv8grQ4doMXhHMK0tOrkV9PEA5aMTjKWTLywZGIaBF+7z6rquvJIPArkREaTFdOSPTEt2d20FXtiWlVYz4ppSVZ0y/LbnD2JltLicC6t8g/QKj+HVod+chKNO9m0yj9IiyO5ND+cS4vDOTQ7kktkZIT3xBOoMR5rHQWUJRMvLJmYBs3Xv/ShxolHgYNNYtjras4+VzP2RTufnutlP++Nbk6Ox+3PlbkKD9P8SB7ND+fQ/HAeLY7k0OxwHi0O59D8SB7NjjiJp/nhPJofySXWFUHTg/uJyvmp+psLaqt15K2skSQoSyZeWDIxxs2fxFPNDQPgPMS539WMva5mHIhq6ixNjn7+FNWUg+5Pz20lIaFVhhxaWkLTgkM0Lcgn9kgeTQvyj64XHKJpYT6xhfk0PZxXXt604JB722GiC/KJKiogBK068XhLUrXZYqpJ3SAlL0smXlgyMeYEBPCGgXIeiaeM4ozxHIiK5UCTGH6KiuVAVFNyI1zkRkaTG+kip0m0+2f3uvvnnEgXeZEuVEKOeymipbgKj+AqOkJ00RGiC/KJLjqCq/AI0YVHf44pzHd/HsZVdJjowiNEFx4muuhweXmTpi6icg8SlXOAUC11TlCTFlNdt65OsG7y1q2kqgrVsGRijKk5f28YqMmXaxU3F1RWinAoKpqcsChyIz0TUAy5EVHkR0RxyL3khzchr6wsvIm7vMnROuFNKD1OK6myiOIimhQXEFVUcMxnVFEBUSWFNCk8QpPiQme9uIAmZds86jcpKiCqtIiogsNEFhcRUVJEZHGhs5QWE1lUQFhpidPdF4gk5UPdZLBkUpklE2OCwNfEE4gxHj9bR2UUKAiLcBJOebKpmIiOhEdyODySw2HO55GwSKfMvV5W5nxGVFg/HB5ZbSuqKqKl7gRTRGRJERHFhUSWJx3nszwJlXislzjJKLLk6L5l+0SUOEt4SRERJcVEaAkRRQVEFBdx657Nlkwqs2RiTD3lT1eOv60jP1tMwDGJS4GC0HCOeCaYssQTGcXhkHAKw8IpCA2nICyCgrAICkPDKQhzr4eGu9cj3Es4BaFln577hLnrR5TvWza7ta/inrrckklllkyMaaQC0ToKdIuplltXVdVVcJJMaMUkVRQaTmFoGIVh4RSGR1IooRSGhvFQ+nKfkgmqGrQFuAT4HkgHHvSyXYAX3NvXAAN83dfbMhBUO3VSffNNNcYYv735pvOdInL0u8Vbmb91J05UdblUnZTiLC6X9/LwcNWIiIDVHQiqvnyf+1KpNhYgFNgMnAJEAKuBnpXqXAb8x51UzgCW+bqvt2Wg5y/LEooxpj6pjSTlQ11fk0nQurlE5EzgUVW92L3+EICq/t6jzixgsaq+5V7/HhgBJFW3rzfJIlreydWpE2RkBO6CjDGmAfL1OZMTu50gMOKB7R7rme4yX+r4si8AIjJBRFJFJDXbc8O2bScYtjHGmMqCmUy8DehUbiZVVceXfZ1C1dmqmqyqya09NyQm+hSkMcaY6h07c1vdyQQ6eqwnADt9rBPhw75Vc7mO3o1hjDHGb8FsmawAuopIZxGJAMYACyrVWQDcLI4zgIOqusvHfb3r1MmZU6eRTNJmjDF1IWgtE1UtFpFJwCKcu7Pmqep6EbnTvf1lYCHOHV3pQD5w6/H2rfakAweCPWdijDEBZw8tGmOMqVJ9uJvLGGNMA2HJxBhjjN8smRhjjPGbJRNjjDF+a1QD8CKSizM5ZEMUB+wNdhC1yK6vfrPrq7+6q2rT6ioF86HFYPjel7sS6iMRSW2o1wZ2ffWdXV/9JSI+3QJr3VzGGGP8ZsnEGGOM3xpbMpkd7ABqUUO+NrDrq+/s+uovn66tUQ3AG2OMqR2NrWVijDGmFlgyMcYY47dGkUxE5BIR+V5E0kXkwWDHE0giMk9EskRkXbBjqQ0i0lFEPhORNBFZLyKTgx1TIIlIExFZLiKr3df3WLBjCjQRCRWRVSLyYbBjCTQRyRCRtSLyna+30NYnItJcRN4TkY3u/wfPrLJuQx8zEZFQYBNwIc7LtlYAN6jqhqAGFiAicg6QB7yhqr2CHU+giUh7oL2qfisiTYGVwJUN6N9PgGhVzRORcGApMFlVvwlyaAEjIr8CkoFYVb082PEEkohkAMmq2iAfWBSR14ElqjrX/e4ol6oe8Fa3MbRMBgPpqrpFVQuBt4HRQY4pYFT1C2B/sOOoLaq6S1W/df+cC6QB8cGNKnDUkedeDXcvDeYvPBFJAEYCc4Mdi6kZEYkFzgFeAVDVwqoSCTSOZBIPbPdYz6QBfRk1JiKSBPQHlgU5lIBydwN9B2QBH6tqQ7q+PwP3A6VBjqO2KPBfEVkpIhOCHUyAnQJkA6+6uynnikh0VZUbQzIRL2UN5i+/xkJEYoD5wBRVzQl2PIGkqiWq2g9IAAaLSIPorhSRy4EsVV0Z7Fhq0VBVHQBcCtzt7nZuKMKAAcBMVe0PHAKqHHNuDMkkE+josZ4A7AxSLOYEuMcS5gMpqvp+sOOpLe4uhMXAJcGNJGCGAqPc4wpvA+eJyJvBDSmwVHWn+zML+AdOt3pDkQlkerSU38NJLl41hmSyAugqIp3dA0hjgAVBjsn4yD1A/QqQpqrPBTueQBOR1iLS3P1zFHABsDGoQQWIqj6kqgmqmoTz/92nqnpTkMMKGBGJdt8Ugrv75yKgwdxVqaq7ge0i0t1ddD5Q5Y0vDX7WYFUtFpFJwCIgFJinquuDHFbAiMhbwAggTkQygUdU9ZXgRhVQQ4FxwFr3uALAw6q6MHghBVR74HX3XYchwLuq2uBuoW2g2gL/cP7eIQz4m6p+FNyQAu4XQIr7D/EtwK1VVWzwtwYbY4ypfY2hm8sYY0wts2RijDHGb5ZMjDHG+M2SiTHGGL9ZMjHGGOM3SybGGGP8ZsnEGGOM3yyZGFPHRKSbiHwsIkdEZLOIXCoiBSJyfrBjM+ZEWTIxpg6JSFecKX7WA72Ae3CmZ48AVgcxNGP8Yk/AG1OHRGQRzky64zzKXgEuVtWE4EVmjH8a/NxcxpwsRKQjzmSAAyttKsRaJaaes24uY+rOAKCEY2eW7QN8ByAiX4rIGe6fZ4vIfXUaoTEnyJKJMXWnFOf/ufCyAhEZCpyFO5kAjwEPi8g9QLiqPlPXQRpzImzMxJg6IiIdcKbxngP8CegNPAV0B7qr6iZ3veVAPnCRqhYGKVxjasRaJsbUEfdb+W4HRgNrgPHASzivQ00HEJEBQByQY4nE1CeWTIypQ6qaoqqJqhqjqlcBLYE1qlrqbrnMw3nbYnsR6RfMWI2pCUsmxgRXH2C1+5W9fwcmq+oW4EngN0GNzJgasDETY4JIRDYDf1TVWcGOxRh/WDIxxhjjN+vmMsYY4zdLJsYYY/xmycQYY4zfLJkYY4zxmyUTY4wxfrNkYowxxm+WTIwxxvjt/wF3eCon7exq7wAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "##################################\n", "# calculate the structure factor #\n", "##################################\n", "\n", "# define structure factor\n", "Sq = np.zeros((Nx, Ny))\n", "phi_q = np.fft.fft2(phi, norm='ortho')*np.sqrt(dx*dx)\n", "\n", "# loop again for Nt timesteps\n", "for n in range(0, Nt, 1):\n", " Sq = Sq + np.real(phi_q*np.conjugate(phi_q)) \n", " if n % 100000 == 0:\n", " print(f't = {n*dt}')\n", " phi, phi_q = update_pseudo_spectral(phi)\n", "\n", "Sq = Sq/Nt\n", "\n", "# set q=0 mode to zero since this corresponds to phi=constant\n", "Sq[0,0] = 0 \n", "\n", "# shift rows and columns to make S(q) in order\n", "Sq = np.roll(Sq,+int(Nx/2),axis=0)\n", "Sq = np.roll(Sq,+int(Ny/2),axis=1)\n", "\n", "plot_Sq(dx, dx, Sq)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" }, "vscode": { "interpreter": { "hash": "cae271c71fdd3cc871ab10677ba94a2a4bc532d008bc675b95ab71698b6079a6" } } }, "nbformat": 4, "nbformat_minor": 2 }