/* Display generation from window structure and buffer text.
Copyright (C) 1985-2024 Free Software Foundation, Inc.
This file is part of GNU Emacs.
GNU Emacs is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.
GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Emacs. If not, see . */
/* New redisplay written by Gerd Moellmann .
Redisplay.
Emacs separates the task of updating the display -- which we call
"redisplay" -- from the code modifying global state, e.g. buffer
text. This way functions operating on buffers don't also have to
be concerned with updating the display as result of their
operations.
Redisplay is triggered by the Lisp interpreter when it decides it's
time to do it. This is done either automatically for you as part
of the interpreter's command loop, or as the result of calling Lisp
functions like `sit-for'. The C function `redisplay_internal' in
xdisp.c is the only entry into the inner redisplay code.
The following diagram shows how redisplay code is invoked. As you
can see, Lisp calls redisplay and vice versa.
Under window systems like X, some portions of the redisplay code
are also called asynchronously, due to mouse movement or expose
events. "Asynchronously" in this context means that any C function
which calls maybe_quit or process_pending_signals could enter
redisplay via expose_frame and/or note_mouse_highlight, if X events
were recently reported to Emacs about mouse movements or frame(s)
that were exposed. And such redisplay could invoke the Lisp
interpreter, e.g. via the :eval forms in mode-line-format, and as
result the global state could change. It is therefore very
important that C functions which might cause such "asynchronous"
redisplay, but cannot tolerate the results, use
block_input/unblock_input around code fragments which assume that
global Lisp state doesn't change. If you don't follow this rule,
you will encounter bugs which are very hard to explain. One place
that needs to take such precautions is timer_check, some of whose
code cannot tolerate changes in timer alists while it processes
timers.
+--------------+ redisplay +----------------+
| Lisp machine |---------------->| Redisplay code |<--+
+--------------+ (xdisp.c) +----------------+ |
^ | |
+----------------------------------+ |
Block input to prevent this when |
called asynchronously! |
|
note_mouse_highlight (asynchronous) |
|
X mouse events -----+
|
expose_frame (asynchronous) |
|
X expose events -----+
What does redisplay do? Obviously, it has to figure out somehow what
has been changed since the last time the display has been updated,
and to make these changes visible. Preferably it would do that in
a moderately intelligent way, i.e. fast.
At its highest level, redisplay can be divided into 3 distinct
steps, all of which are visible in `redisplay_internal':
. decide which frames need their windows to be considered for redisplay
. for each window whose display might need to be updated, compute
a structure, called "glyph matrix", which describes how it
should look on display
. actually update the display of windows on the glass where the
newly obtained glyph matrix differs from the one produced by the
previous redisplay cycle
The first of these steps is done by `redisplay_internal' itself, by
looping through all the frames and testing their various flags,
such as their visibility. The result of this could be that only
the selected window on the selected frame must be redisplayed, or
it could conclude that other windows need to be considered as well.
The second step considers each window that might need to be
redisplayed. This could be only the selected window, or the window
trees of one or more frames. The function which considers a window
and decides whether it actually needs redisplay is
`redisplay_window'. It does so by looking at the changes in
position of point, in buffer text, in text properties, overlays,
etc. These changes can be deduced from window and buffer
structures, and from some global variables like `beg_unchanged' and
`end_unchanged'. The current contents of the display are recorded
in a `glyph matrix', a two-dimensional matrix of glyph structures.
Each row in such a matrix corresponds to a line on the display, and
each glyph in a row corresponds to a column displaying a character,
an image, or what else. This matrix is called the `current glyph
matrix', or `current matrix', in redisplay terminology.
For buffer parts that have been changed since the last redisplay,
`redisplay_window' constructs a second glyph matrix, the so called
`desired glyph matrix' or short `desired matrix'. It does so in
the most optimal way possible, avoiding the examination of text
that didn't change, reusing portions of the current matrix if
possible, etc. It could, in particular, decide that a window
doesn't need to be redisplayed at all.
This second step of redisplay also updates the parts of the desired
matrix that correspond to the mode lines, header lines, and
tab-lines of the windows which need that; see `display_mode_lines'.
In the third and last step, the current and desired matrix are then
compared to find a cheap way to update the display, e.g. by reusing
part of the display by scrolling lines. The actual update of the
display of each window, by comparing the desired and the current
matrix, is done by `update_window', which calls functions which
draw to the glass (those functions are specific to the type of the
window's frame: X, w32, NS, etc.).
Once the display of a window on the glass has been updated, its
desired matrix is used to update the corresponding rows of the
current matrix, and then the desired matrix is discarded.
You will find a lot of redisplay optimizations when you start
looking at the innards of `redisplay_window'. The overall goal of
all these optimizations is to make redisplay fast because it is
done frequently. Some of these optimizations are implemented by
the following functions:
. try_cursor_movement
This optimization is applicable if the text in the window did
not change and did not scroll, only point moved, and it did not
move off the displayed portion of the text. In that case, the
window's glyph matrix is still valid, and only the position of
the cursor might need to be updated.
. try_window_reusing_current_matrix
This function reuses the current glyph matrix of a window when
text has not changed, but the window start changed (e.g., due to
scrolling).
. try_window_id
This function attempts to update a window's glyph matrix by
reusing parts of its current glyph matrix. It finds and reuses
the part that was not changed, and regenerates the rest. (The
"id" part in the function's name stands for "insert/delete", not
for "identification" or somesuch.)
. try_window
This function performs the full, unoptimized, generation of a
single window's glyph matrix, assuming that its fonts were not
changed and that the cursor will not end up in the scroll
margins. (Loading fonts requires re-adjustment of dimensions of
glyph matrices, which makes this method impossible to use.)
The optimizations are tried in sequence (some can be skipped if
it is known that they are not applicable). If none of the
optimizations were successful, redisplay calls redisplay_windows,
which performs a full redisplay of all windows.
Note that there's one more important optimization up Emacs's
sleeve, but it is related to actually redrawing the potentially
changed portions of the window/frame as part of the third step, not
to generating the desired matrices of those potentially changed
portions. Namely, the function `update_frame' and its subroutines,
which you will find in dispnew.c, compare the desired matrices with
the current matrices, and only redraw the portions that changed.
So it could happen that the functions in this file for some reason
decide that the entire desired matrix needs to be regenerated from
scratch, and still only parts of the Emacs display, or even nothing
at all, will be actually delivered to the glass, because
`update_frame' has found that the new and the old screen contents
are similar or identical.
Desired matrices.
Desired matrices are always built per Emacs window. It is
important to know that a desired matrix is in general "sparse": it
only has some of the glyph rows "enabled". This is because
redisplay tries to optimize its work, and thus only generates
glyphs for rows that need to be updated on the screen. Rows that
don't need to be updated are left "disabled", and their contents
in the desired matrix should be ignored.
The function `display_line' is the central function to look at if
you are interested in how the rows of the desired matrix are
produced. It constructs one row in a desired matrix given an
iterator structure containing both a buffer position and a
description of the environment in which the text is to be
displayed. But this is too early, read on.
Glyph rows.
A glyph row is an array of `struct glyph', where each glyph element
describes a "display element" to be shown on the screen. More
accurately, a glyph row can have up to 3 different arrays of
glyphs: one each for every display margins, and one for the "text
area", where buffer text is displayed. The text-area glyph array
is always present, whereas the arrays for the marginal areas are
present (non-empty) only if the corresponding display margin is
shown in the window. If the glyph array for a marginal area is not
present its beginning and end coincide, i.e. such arrays are
actually empty (they contain no glyphs). Frame glyph matrices, used
on text-mode terminals (see below) never have marginal areas; they
treat the entire frame-wide row of glyphs as a single large "text
area".
Iteration over buffer and strings.
Characters and pixmaps displayed for a range of buffer text depend
on various settings of buffers and windows, on overlays and text
properties, on display tables, on selective display. The good news
is that all this hairy stuff is hidden behind a small set of
interface functions taking an iterator structure (`struct it')
argument.
Iteration over things to be displayed is then simple. It is
started by initializing an iterator with a call to `init_iterator',
passing it the buffer position where to start iteration. For
iteration over strings, pass -1 as the position to `init_iterator',
and call `reseat_to_string' when the string is ready, to initialize
the iterator for that string. Thereafter, calls to
`get_next_display_element' fill the iterator structure with
relevant information about the next thing to display. Calls to
`set_iterator_to_next' move the iterator to the next thing.
Besides this, an iterator also contains information about the
display environment in which glyphs for display elements are to be
produced. It has fields for the width and height of the display,
the information whether long lines are truncated or continued, a
current X and Y position, the face currently in effect, and lots of
other stuff you can better see in dispextern.h.
The "stop position".
Some of the fields maintained by the iterator change relatively
infrequently. These include the face of the characters, whether
text is invisible, the object (buffer or display or overlay string)
being iterated, character composition info, etc. For any given
buffer or string position, the sources of information that affects
the display can be determined by calling the appropriate
primitives, such as `Fnext_single_property_change', but both these
calls and the processing of their return values is relatively
expensive. To optimize redisplay, the display engine checks these
sources of display information only when needed, not for every
character. To that end, it always maintains the position of the
next place where it must stop and re-examine all those potential
sources. This is called "the stop position" and is stored in the
`stop_charpos' field of the iterator. The stop position is updated
by `compute_stop_pos', which is called whenever the iteration
reaches the current stop position and processes it. Processing a
stop position is done by `handle_stop', which invokes a series of
handlers, one each for every potential source of display-related
information; see the `it_props' array for those handlers. For
example, one handler is `handle_face_prop', which detects changes
in face properties, and supplies the face ID that the iterator will
use for all the glyphs it generates up to the next stop position;
this face ID is the result of "realizing" the face specified by the
relevant text properties at this position (see xfaces.c). Each
handler called by `handle_stop' processes the sources of display
information for which it is "responsible", and returns a value
which tells `handle_stop' what to do next.
Once `handle_stop' returns, the information it stores in the
iterator fields will not be refreshed until the iteration reaches
the next stop position, which is computed by `compute_stop_pos'
called at the end of `handle_stop'. `compute_stop_pos' examines
the buffer's or string's interval tree to determine where the text
properties change, finds the next position where overlays and
character composition can change, and stores in `stop_charpos' the
closest position where any of these factors should be reconsidered.
Handling of the stop position is done as part of the code in
`get_next_display_element'.
Producing glyphs.
Glyphs in a desired matrix are normally constructed in a loop
calling `get_next_display_element' and then `PRODUCE_GLYPHS'. The
call to `PRODUCE_GLYPHS' will fill the iterator structure with
pixel information about the element being displayed and at the same
time will produce glyphs for it. If the display element fits on
the line being displayed, `set_iterator_to_next' is called next,
otherwise the glyphs produced are discarded, and `display_line'
marks this glyph row as a "continued line". The function
`display_line' is the workhorse of filling glyph rows in the
desired matrix with glyphs. In addition to producing glyphs, it
also handles line truncation and continuation, word wrap, and
cursor positioning (for the latter, see `set_cursor_from_row').
Frame matrices.
That just couldn't be all, could it? What about terminal types not
supporting operations on sub-windows of the screen (a.k.a. "TTY" or
"text-mode terminals")? To update the display on such a terminal,
window-based glyph matrices are not well suited. To be able to
reuse part of the display (scrolling lines up and down), we must
instead have a view of the whole screen. This is what `frame
matrices' are for. They are a trick.
Frames on text terminals have a glyph pool. Windows on such a
frame sub-allocate their glyph memory from their frame's glyph
pool. The frame itself is given its own glyph matrices. By
coincidence---or maybe something else---rows in window glyph
matrices are slices of corresponding rows in frame matrices. Thus
writing to window matrices implicitly updates a frame matrix which
provides us with the view of the whole screen that we originally
wanted to have without having to move many bytes around. Then
updating all the visible windows on text-terminal frames is done by
using the frame matrices, which allows frame-global optimization of
what is actually written to the glass.
Frame matrices don't have marginal areas, only a text area. That
is, the entire row of glyphs that spans the width of a text-mode
frame is treated as a single large "text area" for the purposes of
manipulating and updating a frame glyph matrix.
To be honest, there is a little bit more done for frame matrices,
but not much more. If you plan to extend that code, take a look at
dispnew.c. The function build_frame_matrix is a good starting
point.
Simulating display.
Some of Emacs commands and functions need to take display layout
into consideration. For example, C-n moves to the next screen
line, but to implement that, Emacs needs to find the buffer
position which is directly below the cursor position on display.
This is not trivial when buffer display includes variable-size
elements such as different fonts, tall images, etc.
To solve this problem, the display engine implements several
functions that can move through buffer text in the same manner as
`display_line' and `display_string' do, but without producing any
glyphs for the glyph matrices. The workhorse of this is
`move_it_in_display_line_to'. Its code and logic are very similar
to `display_line', but it differs in two important aspects: it
doesn't produce glyphs for any glyph matrix, and it returns a
status telling the caller how it ended the iteration: whether it
reached the required position, hit the end of line, arrived at the
window edge without exhausting the buffer's line, etc. Since the
glyphs are not produced, the layout information available to the
callers of this function is what is recorded in `struct it' by the
iteration process.
Several higher-level functions call `move_it_in_display_line_to' to
perform more complex tasks: `move_it_by_lines' can move N lines up
or down from a given buffer position and `move_it_to' can move to a
given buffer position or to a given X or Y pixel coordinate.
These functions are called by the display engine itself as well,
when it needs to make layout decisions before producing the glyphs.
For example, one of the first things to decide when redisplaying a
window is where to put the `window-start' position; if the window
is to be recentered (the default), Emacs makes that decision by
starting from the position of point, then moving up the number of
lines corresponding to half the window height using
`move_it_by_lines'.
Bidirectional display.
Bidirectional display adds quite some hair to this already complex
design. The good news are that a large portion of that hairy stuff
is hidden in bidi.c behind only 3 interfaces. bidi.c implements a
reordering engine which is called by `set_iterator_to_next' and
returns the next character to display in the visual order. See
commentary on bidi.c for more details. As far as redisplay is
concerned, the effect of calling `bidi_move_to_visually_next', the
main interface of the reordering engine, is that the iterator gets
magically placed on the buffer or string position that is to be
displayed next in the visual order. In other words, a linear
iteration through the buffer/string is replaced with a non-linear
one. All the rest of the redisplay is oblivious to the bidi
reordering.
Well, almost oblivious---there are still complications, most of
them due to the fact that buffer and string positions no longer
change monotonously with glyph indices in a glyph row. Moreover,
for continued lines, the buffer positions may not even be
monotonously changing with vertical positions. Also, accounting
for face changes, overlays, etc. becomes more complex because
non-linear iteration could potentially skip many positions with
such changes, and then cross them again on the way back (see
`handle_stop_backwards')...
One other prominent effect of bidirectional display is that some
paragraphs of text need to be displayed starting at the right
margin of the window---the so-called right-to-left, or R2L
paragraphs. R2L paragraphs are displayed with R2L glyph rows,
which have their `reversed_p' flag set. The bidi reordering engine
produces characters in such rows starting from the character which
should be the rightmost on display. `PRODUCE_GLYPHS' then reverses
the order, when it fills up the glyph row whose `reversed_p' flag
is set, by prepending each new glyph to what is already there,
instead of appending it. When the glyph row is complete, the
function `extend_face_to_end_of_line' fills the empty space to the
left of the leftmost character with special glyphs, which will
display as, well, empty. On text terminals, these special glyphs
are simply blank characters. On graphics terminals, there's a
single stretch glyph of a suitably computed width. Both the blanks
and the stretch glyph are given the face of the background of the
line. This way, the terminal-specific back-end can still draw the
glyphs left to right, even for R2L lines.
Bidirectional display and character compositions.
Some scripts cannot be displayed by drawing each character
individually, because adjacent characters change each other's shape
on display. For example, Arabic and Indic scripts belong to this
category.
Emacs display supports this by providing "character compositions",
most of which is implemented in composite.c. During the buffer
scan that delivers characters to `PRODUCE_GLYPHS', if the next
character to be delivered is a composed character, the iteration
calls `composition_reseat_it' and `next_element_from_composition'.
If they succeed to compose the character with one or more of the
following characters, the whole sequence of characters that were
composed is recorded in the `struct composition_it' object that is
part of the buffer iterator. The composed sequence could produce
one or more font glyphs (called "grapheme clusters") on the screen.
Each of these grapheme clusters is then delivered to
`PRODUCE_GLYPHS' in the direction corresponding to the current bidi
scan direction (recorded in the `scan_dir' member of the `struct
bidi_it' object that is part of the iterator). In particular, if
the bidi iterator currently scans the buffer backwards, the
grapheme clusters are delivered back to front. This reorders the
grapheme clusters as appropriate for the current bidi context.
Note that this means that the grapheme clusters are always stored
in the `LGSTRING' object (see composite.c) in the logical order.
Moving an iterator in bidirectional text
without producing glyphs.
Note one important detail mentioned above: that the bidi reordering
engine, driven by the iterator, produces characters in R2L rows
starting at the character that will be the rightmost on display.
As far as the iterator is concerned, the geometry of such rows is
still left to right, i.e. the iterator "thinks" the first character
is at the leftmost pixel position. The iterator does not know that
`PRODUCE_GLYPHS' reverses the order of the glyphs that the iterator
delivers. This is important when functions from the `move_it_*'
family are used to get to certain screen position or to match
screen coordinates with buffer coordinates: these functions use the
iterator geometry, which is left to right even in R2L paragraphs.
This works well with most callers of `move_it_*', because they need
to get to a specific column, and columns are still numbered in the
reading order, i.e. the rightmost character in a R2L paragraph is
still column zero. But some callers do not get well with this; a
notable example is mouse clicks that need to find the character
that corresponds to certain pixel coordinates. See
`buffer_posn_from_coords' in dispnew.c for how this is handled. */
#include
#include
#include
#include
#include "lisp.h"
#include "atimer.h"
#include "composite.h"
#include "keyboard.h"
#include "sysstdio.h"
#include "systime.h"
#include "frame.h"
#include "window.h"
#include "termchar.h"
#include "dispextern.h"
#include "character.h"
#include "category.h"
#include "buffer.h"
#include "charset.h"
#include "indent.h"
#include "commands.h"
#include "keymap.h"
#include "disptab.h"
#include "termhooks.h"
#include "termopts.h"
#include "intervals.h"
#include "coding.h"
#include "region-cache.h"
#include "font.h"
#include "fontset.h"
#include "blockinput.h"
#include "xwidget.h"
#ifdef HAVE_WINDOW_SYSTEM
#include TERM_HEADER
#endif /* HAVE_WINDOW_SYSTEM */
#ifndef FRAME_OUTPUT_DATA
#define FRAME_OUTPUT_DATA(f) (NULL)
#endif
#define DISP_INFINITY 10000000
/* Holds the list (error). */
static Lisp_Object list_of_error;
#ifdef HAVE_WINDOW_SYSTEM
/* Test if overflow newline into fringe. Called with iterator IT
at or past right window margin, and with IT->current_x set. */
#define IT_OVERFLOW_NEWLINE_INTO_FRINGE(IT) \
(!NILP (Voverflow_newline_into_fringe) \
&& FRAME_WINDOW_P ((IT)->f) \
&& ((IT)->bidi_it.paragraph_dir == R2L \
? (WINDOW_LEFT_FRINGE_WIDTH ((IT)->w) > 0) \
: (WINDOW_RIGHT_FRINGE_WIDTH ((IT)->w) > 0)) \
&& (IT)->current_x == (IT)->last_visible_x)
#else /* !HAVE_WINDOW_SYSTEM */
#define IT_OVERFLOW_NEWLINE_INTO_FRINGE(it) false
#endif /* HAVE_WINDOW_SYSTEM */
/* Test if the display element loaded in IT, or the underlying buffer
or string character, is a space or a TAB character. This is used
to determine where word wrapping can occur. */
#define IT_DISPLAYING_WHITESPACE(it) \
((it->what == IT_CHARACTER && (it->c == ' ' || it->c == '\t')) \
|| ((STRINGP (it->string) \
&& (SREF (it->string, IT_STRING_BYTEPOS (*it)) == ' ' \
|| SREF (it->string, IT_STRING_BYTEPOS (*it)) == '\t')) \
|| (it->s \
&& (it->s[IT_BYTEPOS (*it)] == ' ' \
|| it->s[IT_BYTEPOS (*it)] == '\t')) \
|| (IT_BYTEPOS (*it) < ZV_BYTE \
&& (*BYTE_POS_ADDR (IT_BYTEPOS (*it)) == ' ' \
|| *BYTE_POS_ADDR (IT_BYTEPOS (*it)) == '\t'))))
/* These are the category sets we use. They are defined by
kinsoku.el and characters.el. */
#define NOT_AT_EOL '<'
#define NOT_AT_BOL '>'
#define LINE_BREAKABLE '|'
static bool
it_char_has_category(struct it *it, int cat)
{
int ch = 0;
if (it->what == IT_CHARACTER)
ch = it->c;
else if (STRINGP (it->string))
ch = SREF (it->string, IT_STRING_BYTEPOS (*it));
else if (it->s)
ch = it->s[IT_BYTEPOS (*it)];
else if (IT_BYTEPOS (*it) < ZV_BYTE)
ch = *BYTE_POS_ADDR (IT_BYTEPOS (*it));
if (ch == 0)
return false;
else
return CHAR_HAS_CATEGORY (ch, cat);
}
/* Return true if the current character allows wrapping before it. */
static bool
char_can_wrap_before (struct it *it)
{
if (!word_wrap_by_category)
return !IT_DISPLAYING_WHITESPACE (it);
/* For CJK (LTR) text in RTL paragraph, EOL and BOL are flipped.
Because in RTL paragraph, each glyph is prepended to the last
one, effectively drawing right to left. */
int not_at_bol;
if (it->glyph_row && it->glyph_row->reversed_p)
not_at_bol = NOT_AT_EOL;
else
not_at_bol = NOT_AT_BOL;
/* You cannot wrap before a space or tab because that way you'll
have space and tab at the beginning of next line. */
return (!IT_DISPLAYING_WHITESPACE (it)
/* Can be at BOL. */
&& !it_char_has_category (it, not_at_bol));
}
/* Return true if the current character allows wrapping after it. */
static bool
char_can_wrap_after (struct it *it)
{
if (!word_wrap_by_category)
return IT_DISPLAYING_WHITESPACE (it);
/* For CJK (LTR) text in RTL paragraph, EOL and BOL are flipped.
Because in RTL paragraph, each glyph is prepended to the last
one, effectively drawing right to left. */
int not_at_eol;
if (it->glyph_row && it->glyph_row->reversed_p)
not_at_eol = NOT_AT_BOL;
else
not_at_eol = NOT_AT_EOL;
return (IT_DISPLAYING_WHITESPACE (it)
/* Can break after && can be at EOL. */
|| (it_char_has_category (it, LINE_BREAKABLE)
&& !it_char_has_category (it, not_at_eol)));
}
#undef IT_DISPLAYING_WHITESPACE
#undef NOT_AT_EOL
#undef NOT_AT_BOL
#undef LINE_BREAKABLE
/* If all the conditions needed to print the fill column indicator are
met, return the (nonnegative) column number, else return a negative
value. */
static int
fill_column_indicator_column (struct it *it, int char_width)
{
if (display_fill_column_indicator
&& !it->w->pseudo_window_p
&& it->continuation_lines_width == 0
&& CHARACTERP (Vdisplay_fill_column_indicator_character))
{
Lisp_Object col = (EQ (Vdisplay_fill_column_indicator_column, Qt)
? BVAR (current_buffer, fill_column)
: Vdisplay_fill_column_indicator_column);
/* The stretch width needs to consider the latter
added glyph in append_space_for_newline. */
if (RANGED_FIXNUMP (0, col, INT_MAX))
{
int icol = XFIXNUM (col);
if (!ckd_mul (&icol, icol, char_width)
&& !ckd_add (&icol, icol, it->lnum_pixel_width))
return icol;
}
}
return -1;
}
/* True means print newline to stdout before next mini-buffer message. */
bool noninteractive_need_newline;
/* True means print newline to message log before next message. */
static bool message_log_need_newline;
/* Three markers that message_dolog uses.
It could allocate them itself, but that causes trouble
in handling memory-full errors. */
static Lisp_Object message_dolog_marker1;
static Lisp_Object message_dolog_marker2;
static Lisp_Object message_dolog_marker3;
/* The buffer position of the first character appearing entirely or
partially on the line of the selected window which contains the
cursor; <= 0 if not known. Set by set_cursor_from_row, used for
redisplay optimization in redisplay_internal. */
static struct text_pos this_line_start_pos;
/* Number of characters past the end of the line above, including the
terminating newline. */
static struct text_pos this_line_end_pos;
/* The vertical positions and the height of this line. */
static int this_line_vpos;
static int this_line_y;
static int this_line_pixel_height;
/* X position at which this display line starts. Usually zero;
negative if first character is partially visible. */
static int this_line_start_x;
/* The smallest character position seen by move_it_* functions as they
move across display lines. Used to set MATRIX_ROW_START_CHARPOS of
hscrolled lines, see display_line. */
static struct text_pos this_line_min_pos;
/* Buffer that this_line_.* variables are referring to. */
static struct buffer *this_line_buffer;
/* True if an overlay arrow has been displayed in this window. */
static bool overlay_arrow_seen;
/* Vector containing glyphs for an ellipsis `...'. */
static Lisp_Object default_invis_vector[3];
/* This is the window where the echo area message was displayed. It
is always a mini-buffer window, but it may not be the same window
currently active as a mini-buffer. */
Lisp_Object echo_area_window;
/* Stack of messages, which are pushed by push_message and popped and
displayed by restore_message. */
static Lisp_Object Vmessage_stack;
/* True means multibyte characters were enabled when the echo area
message was specified. */
static bool message_enable_multibyte;
/* At each redisplay cycle, we should refresh everything there is to refresh.
To do that efficiently, we use many optimizations that try to make sure we
don't waste too much time updating things that haven't changed.
The coarsest such optimization is that, in the most common cases, we only
look at the selected-window.
To know whether other windows should be considered for redisplay, we use the
variable windows_or_buffers_changed: as long as it is 0, it means that we
have not noticed anything that should require updating anything else than
the selected-window. If it is set to REDISPLAY_SOME, it means that since
last redisplay, some changes have been made which could impact other
windows. To know which ones need redisplay, every buffer, window, and frame
has a `redisplay' bit, which (if true) means that this object needs to be
redisplayed. If windows_or_buffers_changed is 0, we know there's no point
looking for those `redisplay' bits (actually, there might be some such bits
set, but then only on objects which aren't displayed anyway).
OTOH if it's non-zero we will have to loop through all windows and then
check the `redisplay' bit of the corresponding window, frame, and buffer, in
order to decide whether that window needs attention or not. Note that we
can't just look at the frame's redisplay bit to decide that the whole frame
can be skipped, since even if the frame's redisplay bit is unset, some of
its windows's redisplay bits may be set.
Mostly for historical reasons, windows_or_buffers_changed can also take
other non-zero values. In that case, the precise value doesn't matter (it
encodes the cause of the setting but is only used for debugging purposes),
and what it means is that we shouldn't pay attention to any `redisplay' bits
and we should simply try and redisplay every window out there. */
int windows_or_buffers_changed;
/* Nonzero if we should redraw the mode lines on the next redisplay.
Similarly to `windows_or_buffers_changed', if it has value REDISPLAY_SOME,
then only redisplay the mode lines in those buffers/windows/frames where the
`redisplay' bit has been set.
For any other value, redisplay all mode lines (the number used is then only
used to track down the cause for this full-redisplay).
Since the frame title uses the same %-constructs as the mode line
(except %c, %C, and %l), if this variable is non-zero, we also consider
redisplaying the title of each frame, see gui_consider_frame_title.
The `redisplay' bits are the same as those used for
windows_or_buffers_changed, and setting windows_or_buffers_changed also
causes recomputation of the mode lines of all those windows. IOW this
variable only has an effect if windows_or_buffers_changed is zero, in which
case we should only need to redisplay the mode-line of those objects with
a `redisplay' bit set but not the window's text content (tho we may still
need to refresh the text content of the selected-window). */
int update_mode_lines;
/* True after display_mode_line if %l was used and it displayed a
line number. */
static bool line_number_displayed;
/* Current, index 0, and last displayed echo area message. Either
buffers from echo_buffers, or nil to indicate no message. */
Lisp_Object echo_area_buffer[2];
/* The buffers referenced from echo_area_buffer. */
static Lisp_Object echo_buffer[2];
/* A vector saved used in with_area_buffer to reduce consing. */
static Lisp_Object Vwith_echo_area_save_vector;
/* True means display_echo_area should display the last echo area
message again. Set by redisplay_preserve_echo_area. */
static bool display_last_displayed_message_p;
/* True if echo area is being used by print; false if being used by
message. */
static bool message_buf_print;
/* Set to true in clear_message to make redisplay_internal aware
of an emptied echo area. */
static bool message_cleared_p;
/* A scratch glyph row with contents used for generating truncation
glyphs and overlay-arrow glyphs. */
#define MAX_SCRATCH_GLYPHS 100
static struct glyph_row scratch_glyph_row;
static struct glyph scratch_glyphs[MAX_SCRATCH_GLYPHS];
/* Ascent and height of the last line processed by move_it_to. */
static int last_height;
/* True if there's a help-echo in the echo area. */
bool help_echo_showing_p;
/* The maximum distance to look ahead for text properties. Values
that are too small let us call compute_char_face and similar
functions too often which is expensive. Values that are too large
let us call compute_char_face and alike too often because we
might not be interested in text properties that far away. */
#define TEXT_PROP_DISTANCE_LIMIT 100
/* SAVE_IT and RESTORE_IT are called when we save a snapshot of the
iterator state and later restore it. This is needed because the
bidi iterator on bidi.c keeps a stacked cache of its states, which
is really a singleton. When we use scratch iterator objects to
move around the buffer, we can cause the bidi cache to be pushed or
popped, and therefore we need to restore the cache state when we
return to the original iterator. */
#define SAVE_IT(ITCOPY, ITORIG, CACHE) \
do { \
if (CACHE) \
bidi_unshelve_cache (CACHE, true); \
ITCOPY = ITORIG; \
CACHE = bidi_shelve_cache (); \
} while (false)
#define RESTORE_IT(pITORIG, pITCOPY, CACHE) \
do { \
if (pITORIG != pITCOPY) \
*(pITORIG) = *(pITCOPY); \
bidi_unshelve_cache (CACHE, false); \
CACHE = NULL; \
} while (false)
/* Functions to mark elements as needing redisplay. */
enum { REDISPLAY_SOME = 2}; /* Arbitrary choice. */
static bool calc_pixel_width_or_height (double *, struct it *, Lisp_Object,
struct font *, bool, int *);
void
redisplay_other_windows (void)
{
if (!windows_or_buffers_changed)
windows_or_buffers_changed = REDISPLAY_SOME;
}
void
wset_redisplay (struct window *w)
{
/* Beware: selected_window can be nil during early stages. */
if (!BASE_EQ (make_lisp_ptr (w, Lisp_Vectorlike), selected_window))
redisplay_other_windows ();
w->redisplay = true;
}
void
fset_redisplay (struct frame *f)
{
redisplay_other_windows ();
f->redisplay = true;
}
void
bset_redisplay (struct buffer *b)
{
int count = buffer_window_count (b);
if (count > 0)
{
/* ... it's visible in other window than selected, */
if (count > 1 || b != XBUFFER (XWINDOW (selected_window)->contents))
redisplay_other_windows ();
/* Even if we don't set windows_or_buffers_changed, do set `redisplay'
so that if we later set windows_or_buffers_changed, this buffer will
not be omitted. */
b->text->redisplay = true;
}
}
void
bset_update_mode_line (struct buffer *b)
{
if (!update_mode_lines)
update_mode_lines = REDISPLAY_SOME;
b->text->redisplay = true;
}
void
wset_update_mode_line (struct window *w)
{
w->update_mode_line = true;
/* When a window's mode line needs to be updated, the window's frame's
title may also need to be updated, but we don't need to worry about it
here. Instead, `gui_consider_frame_title' is automatically called
whenever w->update_mode_line is set for that frame's selected window.
But for this to work reliably, we have to make sure the window
is considered, so we have to mark it for redisplay. */
wset_redisplay (w);
}
DEFUN ("set-buffer-redisplay", Fset_buffer_redisplay,
Sset_buffer_redisplay, 4, 4, 0,
doc: /* Mark the current buffer for redisplay.
This function may be passed to `add-variable-watcher'. */)
(Lisp_Object symbol, Lisp_Object newval, Lisp_Object op, Lisp_Object where)
{
bset_update_mode_line (current_buffer);
current_buffer->prevent_redisplay_optimizations_p = true;
return Qnil;
}
/* redisplay_trace is for displaying traces of redisplay.
If Emacs was compiled with GLYPH_DEBUG defined, the variable
trace_redisplay_p can be set to a non-zero value in debugging
sessions to activate traces. */
#ifdef GLYPH_DEBUG
extern bool trace_redisplay_p EXTERNALLY_VISIBLE;
bool trace_redisplay_p;
#else
enum { trace_redisplay_p = false };
#endif
static void ATTRIBUTE_FORMAT_PRINTF (1, 2)
redisplay_trace (char const *fmt, ...)
{
if (trace_redisplay_p)
{
va_list ap;
va_start (ap, fmt);
vprintf (fmt, ap);
va_end (ap);
}
}
#ifdef DEBUG_TRACE_MOVE
extern bool trace_move EXTERNALLY_VISIBLE;
bool trace_move;
#else
enum { trace_move = false };
#endif
static void ATTRIBUTE_FORMAT_PRINTF (1, 2)
move_trace (char const *fmt, ...)
{
if (trace_move)
{
va_list ap;
va_start (ap, fmt);
vprintf (fmt, ap);
va_end (ap);
}
}
/* Buffer being redisplayed -- for redisplay_window_error. */
static struct buffer *displayed_buffer;
/* Value returned from text property handlers (see below). */
enum prop_handled
{
HANDLED_NORMALLY,
HANDLED_RECOMPUTE_PROPS,
HANDLED_OVERLAY_STRING_CONSUMED,
HANDLED_RETURN
};
/* A description of text properties that redisplay is interested
in. */
struct props
{
/* The symbol index of the name of the property. */
short name;
/* A unique index for the property. */
enum prop_idx idx;
/* A handler function called to set up iterator IT from the property
at IT's current position. Value is used to steer handle_stop. */
enum prop_handled (*handler) (struct it *it);
};
static enum prop_handled handle_face_prop (struct it *);
static enum prop_handled handle_invisible_prop (struct it *);
static enum prop_handled handle_display_prop (struct it *);
static enum prop_handled handle_composition_prop (struct it *);
static enum prop_handled handle_overlay_change (struct it *);
static enum prop_handled handle_fontified_prop (struct it *);
/* Properties handled by iterators. */
static struct props it_props[] =
{
{SYMBOL_INDEX (Qfontified), FONTIFIED_PROP_IDX, handle_fontified_prop},
/* Handle `face' before `display' because some sub-properties of
`display' need to know the face. */
{SYMBOL_INDEX (Qface), FACE_PROP_IDX, handle_face_prop},
{SYMBOL_INDEX (Qdisplay), DISPLAY_PROP_IDX, handle_display_prop},
{SYMBOL_INDEX (Qinvisible), INVISIBLE_PROP_IDX, handle_invisible_prop},
{SYMBOL_INDEX (Qcomposition), COMPOSITION_PROP_IDX, handle_composition_prop},
{0, 0, NULL}
};
/* Enumeration returned by some move_it_.* functions internally. */
enum move_it_result
{
/* Not used. Undefined value. */
MOVE_UNDEFINED,
/* Move ended at the requested buffer position or ZV. */
MOVE_POS_MATCH_OR_ZV,
/* Move ended at the requested X pixel position. */
MOVE_X_REACHED,
/* Move within a line ended at the end of a line that must be
continued. */
MOVE_LINE_CONTINUED,
/* Move within a line ended at the end of a line that would
be displayed truncated. */
MOVE_LINE_TRUNCATED,
/* Move within a line ended at a line end. */
MOVE_NEWLINE_OR_CR
};
/* This counter is used to clear the face cache every once in a while
in redisplay_internal. It is incremented for each redisplay.
Every CLEAR_FACE_CACHE_COUNT full redisplays, the face cache is
cleared. */
#define CLEAR_FACE_CACHE_COUNT 500
static int clear_face_cache_count;
/* Similarly for the image cache. */
#ifdef HAVE_WINDOW_SYSTEM
#define CLEAR_IMAGE_CACHE_COUNT 101
static int clear_image_cache_count;
/* Null glyph slice */
static struct glyph_slice null_glyph_slice = { 0, 0, 0, 0 };
#endif
/* True while redisplay_internal is in progress. */
bool redisplaying_p;
/* True while some display-engine code is working on layout of some
window.
WARNING: Use sparingly, preferably only in top level of commands
and important functions, because using it in nested calls might
reset the flag when the inner call returns, behind the back of
the callers. */
bool display_working_on_window_p;
/* If a string, XTread_socket generates an event to display that string.
(The display is done in read_char.) */
Lisp_Object help_echo_string;
Lisp_Object help_echo_window;
Lisp_Object help_echo_object;
ptrdiff_t help_echo_pos;
/* Temporary variable for XTread_socket. */
Lisp_Object previous_help_echo_string;
/* Platform-independent portion of hourglass implementation. */
#ifdef HAVE_WINDOW_SYSTEM
/* True means an hourglass cursor is currently shown. */
static bool hourglass_shown_p;
/* If non-null, an asynchronous timer that, when it expires, displays
an hourglass cursor on all frames. */
static struct atimer *hourglass_atimer;
#endif /* HAVE_WINDOW_SYSTEM */
/* Default number of seconds to wait before displaying an hourglass
cursor. */
#define DEFAULT_HOURGLASS_DELAY 1
#ifdef HAVE_WINDOW_SYSTEM
/* Default pixel width of `thin-space' display method. */
#define THIN_SPACE_WIDTH 1
#endif /* HAVE_WINDOW_SYSTEM */
/* Function prototypes. */
static void setup_for_ellipsis (struct it *, int);
static void set_iterator_to_next (struct it *, bool);
static void mark_window_display_accurate_1 (struct window *, bool);
static bool row_for_charpos_p (struct glyph_row *, ptrdiff_t);
static bool cursor_row_p (struct glyph_row *);
static int redisplay_mode_lines (Lisp_Object, bool);
static void handle_line_prefix (struct it *);
static void handle_stop_backwards (struct it *, ptrdiff_t);
static void unwind_with_echo_area_buffer (Lisp_Object);
static Lisp_Object with_echo_area_buffer_unwind_data (struct window *);
static bool current_message_1 (void *, Lisp_Object);
static bool truncate_message_1 (void *, Lisp_Object);
static void set_message (Lisp_Object);
static bool set_message_1 (void *, Lisp_Object);
static bool display_echo_area_1 (void *, Lisp_Object);
static bool resize_mini_window_1 (void *, Lisp_Object);
static void unwind_redisplay (void);
static void extend_face_to_end_of_line (struct it *);
static intmax_t message_log_check_duplicate (ptrdiff_t, ptrdiff_t);
static void push_it (struct it *, struct text_pos *);
static void iterate_out_of_display_property (struct it *);
static void pop_it (struct it *);
static void redisplay_internal (void);
static void echo_area_display (bool);
static void block_buffer_flips (void);
static void unblock_buffer_flips (void);
static void redisplay_windows (Lisp_Object);
static void redisplay_window (Lisp_Object, bool);
static Lisp_Object redisplay_window_error (Lisp_Object);
static Lisp_Object redisplay_window_0 (Lisp_Object);
static Lisp_Object redisplay_window_1 (Lisp_Object);
static bool set_cursor_from_row (struct window *, struct glyph_row *,
struct glyph_matrix *, ptrdiff_t, ptrdiff_t,
int, int);
static bool cursor_row_fully_visible_p (struct window *, bool, bool, bool);
static bool update_menu_bar (struct frame *, bool, bool);
static bool try_window_reusing_current_matrix (struct window *);
static int try_window_id (struct window *);
static void maybe_produce_line_number (struct it *);
static bool should_produce_line_number (struct it *);
static bool display_line (struct it *, int);
static int display_mode_lines (struct window *);
static int display_mode_line (struct window *, enum face_id, Lisp_Object);
static int display_mode_element (struct it *, int, int, int, Lisp_Object,
Lisp_Object, bool);
static int store_mode_line_string (const char *, Lisp_Object, bool, int, int,
Lisp_Object);
static const char *decode_mode_spec (struct window *, int, int, Lisp_Object *);
static void display_menu_bar (struct window *);
static void display_tab_bar (struct window *);
static void update_tab_bar (struct frame *, bool);
static ptrdiff_t display_count_lines (ptrdiff_t, ptrdiff_t, ptrdiff_t,
ptrdiff_t *);
static void pint2str (register char *, register int, register ptrdiff_t);
static int display_string (const char *, Lisp_Object, Lisp_Object,
ptrdiff_t, ptrdiff_t, struct it *, int, int, int,
int);
static void compute_line_metrics (struct it *);
static bool get_overlay_strings (struct it *, ptrdiff_t);
static bool get_overlay_strings_1 (struct it *, ptrdiff_t, bool);
static void next_overlay_string (struct it *);
static void reseat (struct it *, struct text_pos, bool);
static void reseat_1 (struct it *, struct text_pos, bool);
static bool next_element_from_display_vector (struct it *);
static bool next_element_from_string (struct it *);
static bool next_element_from_c_string (struct it *);
static bool next_element_from_buffer (struct it *);
static bool next_element_from_composition (struct it *);
static bool next_element_from_image (struct it *);
static bool next_element_from_stretch (struct it *);
static bool next_element_from_xwidget (struct it *);
static void load_overlay_strings (struct it *, ptrdiff_t);
static bool get_next_display_element (struct it *);
static enum move_it_result
move_it_in_display_line_to (struct it *, ptrdiff_t, int,
enum move_operation_enum);
static void get_visually_first_element (struct it *);
static void compute_stop_pos (struct it *);
static int face_before_or_after_it_pos (struct it *, bool);
static int handle_display_spec (struct it *, Lisp_Object, Lisp_Object,
Lisp_Object, struct text_pos *, ptrdiff_t, bool);
static int handle_single_display_spec (struct it *, Lisp_Object, Lisp_Object,
Lisp_Object, struct text_pos *,
ptrdiff_t, int, bool, bool);
static int underlying_face_id (const struct it *);
#define face_before_it_pos(IT) face_before_or_after_it_pos (IT, true)
#define face_after_it_pos(IT) face_before_or_after_it_pos (IT, false)
#ifdef HAVE_WINDOW_SYSTEM
static void update_tool_bar (struct frame *, bool);
static void gui_draw_bottom_divider (struct window *w);
static void notice_overwritten_cursor (struct window *,
enum glyph_row_area,
int, int, int, int);
static int normal_char_height (struct font *, int);
static void normal_char_ascent_descent (struct font *, int, int *, int *);
static void append_stretch_glyph (struct it *, Lisp_Object,
int, int, int);
static Lisp_Object get_it_property (struct it *, Lisp_Object);
static Lisp_Object calc_line_height_property (struct it *, Lisp_Object,
struct font *, int, bool);
static int adjust_glyph_width_for_mouse_face (struct glyph *,
struct glyph_row *,
struct window *, struct face *,
struct face *);
static void get_cursor_offset_for_mouse_face (struct window *w,
struct glyph_row *row,
int *offset);
#endif /* HAVE_WINDOW_SYSTEM */
static void produce_special_glyphs (struct it *, enum display_element_type);
static void pad_mode_line (struct it *, bool);
static void show_mouse_face (Mouse_HLInfo *, enum draw_glyphs_face);
static bool coords_in_mouse_face_p (struct window *, int, int);
static void reset_box_start_end_flags (struct it *);
/***********************************************************************
Window display dimensions
***********************************************************************/
/* Return the bottom boundary y-position for text lines in window W.
This is the first y position at which a line cannot start.
It is relative to the top of the window.
This is the height of W minus the height of a mode line, if any. */
int
window_text_bottom_y (struct window *w)
{
int height = WINDOW_PIXEL_HEIGHT (w);
height -= WINDOW_BOTTOM_DIVIDER_WIDTH (w);
if (window_wants_mode_line (w))
height -= CURRENT_MODE_LINE_HEIGHT (w);
height -= WINDOW_SCROLL_BAR_AREA_HEIGHT (w);
return height;
}
/* Return the pixel width of display area AREA of window W.
ANY_AREA means return the total width of W, not including
fringes to the left and right of the window. */
int
window_box_width (struct window *w, enum glyph_row_area area)
{
int width = w->pixel_width;
if (!w->pseudo_window_p)
{
width -= WINDOW_SCROLL_BAR_AREA_WIDTH (w);
width -= WINDOW_RIGHT_DIVIDER_WIDTH (w);
if (area == TEXT_AREA)
width -= (WINDOW_MARGINS_WIDTH (w)
+ WINDOW_FRINGES_WIDTH (w));
else if (area == LEFT_MARGIN_AREA)
width = WINDOW_LEFT_MARGIN_WIDTH (w);
else if (area == RIGHT_MARGIN_AREA)
width = WINDOW_RIGHT_MARGIN_WIDTH (w);
}
/* With wide margins, fringes, etc. we might end up with a negative
width, correct that here. */
return max (0, width);
}
/* Return the pixel height of the display area of window W, not
including mode lines of W, if any. */
int
window_box_height (struct window *w)
{
struct frame *f = XFRAME (w->frame);
int height = WINDOW_PIXEL_HEIGHT (w);
eassert (height >= 0);
height -= WINDOW_BOTTOM_DIVIDER_WIDTH (w);
height -= WINDOW_SCROLL_BAR_AREA_HEIGHT (w);
/* Note: the code below that determines the mode-line/header-line/tab-line
height is essentially the same as that contained in the macro
CURRENT_{MODE,HEADER,TAB}_LINE_HEIGHT, except that it checks whether
the appropriate glyph row has its `mode_line_p' flag set, and if
it doesn't, uses estimate_mode_line_height instead. */
if (window_wants_mode_line (w))
{
if (w->mode_line_height >= 0)
height -= w->mode_line_height;
else
{
struct glyph_row *ml_row
= (w->current_matrix && w->current_matrix->rows
? MATRIX_MODE_LINE_ROW (w->current_matrix)
: 0);
if (ml_row && ml_row->mode_line_p)
height -= ml_row->height;
else
height -= estimate_mode_line_height
(f, CURRENT_MODE_LINE_ACTIVE_FACE_ID (w));
}
}
if (window_wants_tab_line (w))
{
if (w->tab_line_height >= 0)
height -= w->tab_line_height;
else
{
struct glyph_row *tl_row
= (w->current_matrix && w->current_matrix->rows
? MATRIX_TAB_LINE_ROW (w->current_matrix)
: 0);
if (tl_row && tl_row->mode_line_p)
height -= tl_row->height;
else
height -= estimate_mode_line_height (f, TAB_LINE_FACE_ID);
}
}
if (window_wants_header_line (w))
{
if (w->header_line_height >= 0)
height -= w->header_line_height;
else
{
struct glyph_row *hl_row
= (w->current_matrix && w->current_matrix->rows
? MATRIX_HEADER_LINE_ROW (w->current_matrix)
: 0);
if (hl_row && hl_row->mode_line_p)
height -= hl_row->height;
else
height -= estimate_mode_line_height (f, HEADER_LINE_FACE_ID);
}
}
/* With a very small font and a mode-line that's taller than
default, we might end up with a negative height. */
return max (0, height);
}
/* Return the window-relative coordinate of the left edge of display
area AREA of window W. ANY_AREA means return the left edge of the
whole window, to the right of the left fringe of W. */
int
window_box_left_offset (struct window *w, enum glyph_row_area area)
{
int x;
if (w->pseudo_window_p)
return 0;
x = WINDOW_LEFT_SCROLL_BAR_AREA_WIDTH (w);
if (area == TEXT_AREA)
x += (WINDOW_LEFT_FRINGE_WIDTH (w)
+ window_box_width (w, LEFT_MARGIN_AREA));
else if (area == RIGHT_MARGIN_AREA)
x += (WINDOW_LEFT_FRINGE_WIDTH (w)
+ window_box_width (w, LEFT_MARGIN_AREA)
+ window_box_width (w, TEXT_AREA)
+ (WINDOW_HAS_FRINGES_OUTSIDE_MARGINS (w)
? 0
: WINDOW_RIGHT_FRINGE_WIDTH (w)));
else if (area == LEFT_MARGIN_AREA
&& WINDOW_HAS_FRINGES_OUTSIDE_MARGINS (w))
x += WINDOW_LEFT_FRINGE_WIDTH (w);
/* Don't return more than the window's pixel width. */
return min (x, w->pixel_width);
}
/* Return the window-relative coordinate of the right edge of display
area AREA of window W. ANY_AREA means return the right edge of the
whole window, to the left of the right fringe of W. */
static int
window_box_right_offset (struct window *w, enum glyph_row_area area)
{
/* Don't return more than the window's pixel width. */
return min (window_box_left_offset (w, area) + window_box_width (w, area),
w->pixel_width);
}
/* Return the frame-relative coordinate of the left edge of display
area AREA of window W. ANY_AREA means return the left edge of the
whole window, to the right of the left fringe of W. */
int
window_box_left (struct window *w, enum glyph_row_area area)
{
struct frame *f = XFRAME (w->frame);
int x;
if (w->pseudo_window_p)
return FRAME_INTERNAL_BORDER_WIDTH (f);
x = (WINDOW_LEFT_EDGE_X (w)
+ window_box_left_offset (w, area));
return x;
}
/* Return the frame-relative coordinate of the right edge of display
area AREA of window W. ANY_AREA means return the right edge of the
whole window, to the left of the right fringe of W. */
int
window_box_right (struct window *w, enum glyph_row_area area)
{
return window_box_left (w, area) + window_box_width (w, area);
}
/* Get the bounding box of the display area AREA of window W, without
mode lines, in frame-relative coordinates. ANY_AREA means the
whole window, not including the left and right fringes of
the window. Return in *BOX_X and *BOX_Y the frame-relative pixel
coordinates of the upper-left corner of the box. Return in
*BOX_WIDTH, and *BOX_HEIGHT the pixel width and height of the box. */
void
window_box (struct window *w, enum glyph_row_area area, int *box_x,
int *box_y, int *box_width, int *box_height)
{
if (box_width)
*box_width = window_box_width (w, area);
if (box_height)
*box_height = window_box_height (w);
if (box_x)
*box_x = window_box_left (w, area);
if (box_y)
{
*box_y = WINDOW_TOP_EDGE_Y (w);
if (window_wants_tab_line (w))
*box_y += CURRENT_TAB_LINE_HEIGHT (w);
if (window_wants_header_line (w))
*box_y += CURRENT_HEADER_LINE_HEIGHT (w);
}
}
#ifdef HAVE_WINDOW_SYSTEM
/* Get the bounding box of the display area AREA of window W, without
mode lines and both fringes of the window. Return in *TOP_LEFT_X
and TOP_LEFT_Y the frame-relative pixel coordinates of the
upper-left corner of the box. Return in *BOTTOM_RIGHT_X, and
*BOTTOM_RIGHT_Y the coordinates of the bottom-right corner of the
box. */
static void
window_box_edges (struct window *w, int *top_left_x, int *top_left_y,
int *bottom_right_x, int *bottom_right_y)
{
window_box (w, ANY_AREA, top_left_x, top_left_y,
bottom_right_x, bottom_right_y);
*bottom_right_x += *top_left_x;
*bottom_right_y += *top_left_y;
}
#endif /* HAVE_WINDOW_SYSTEM */
/***********************************************************************
Utilities
***********************************************************************/
/* Return the bottom y-position of the line the iterator IT is in.
This can modify IT's settings. */
int
line_bottom_y (struct it *it)
{
int line_height = it->max_ascent + it->max_descent;
int line_top_y = it->current_y;
if (line_height == 0)
{
if (last_height)
line_height = last_height;
else if (IT_CHARPOS (*it) < ZV)
{
move_it_by_lines (it, 1);
line_height = (it->max_ascent || it->max_descent
? it->max_ascent + it->max_descent
: last_height);
}
else
{
struct glyph_row *row = it->glyph_row;
/* Use the default character height. */
it->glyph_row = NULL;
it->what = IT_CHARACTER;
it->c = ' ';
it->len = 1;
PRODUCE_GLYPHS (it);
line_height = it->ascent + it->descent;
it->glyph_row = row;
}
}
return line_top_y + line_height;
}
DEFUN ("line-pixel-height", Fline_pixel_height,
Sline_pixel_height, 0, 0, 0,
doc: /* Return height in pixels of text line in the selected window.
Value is the height in pixels of the line at point. */)
(void)
{
struct it it;
struct text_pos pt;
struct window *w = XWINDOW (selected_window);
struct buffer *old_buffer = NULL;
Lisp_Object result;
if (XBUFFER (w->contents) != current_buffer)
{
old_buffer = current_buffer;
set_buffer_internal_1 (XBUFFER (w->contents));
}
SET_TEXT_POS (pt, PT, PT_BYTE);
void *itdata = bidi_shelve_cache ();
start_display (&it, w, pt);
/* Start from the beginning of the screen line, to make sure we
traverse all of its display elements, and thus capture the
correct metrics. */
move_it_by_lines (&it, 0);
it.vpos = it.current_y = 0;
last_height = 0;
result = make_fixnum (line_bottom_y (&it));
if (old_buffer)
set_buffer_internal_1 (old_buffer);
bidi_unshelve_cache (itdata, false);
return result;
}
/* Return the default pixel height of text lines in window W. The
value is the canonical height of the W frame's default font, plus
any extra space required by the line-spacing variable or frame
parameter.
Implementation note: this ignores any line-spacing text properties
put on the newline characters. This is because those properties
only affect the _screen_ line ending in the newline (i.e., in a
continued line, only the last screen line will be affected), which
means only a small number of lines in a buffer can ever use this
feature. Since this function is used to compute the default pixel
equivalent of text lines in a window, we can safely ignore those
few lines. For the same reasons, we ignore the line-height
properties. */
int
default_line_pixel_height (struct window *w)
{
struct frame *f = WINDOW_XFRAME (w);
int height = FRAME_LINE_HEIGHT (f);
if (!FRAME_INITIAL_P (f) && BUFFERP (w->contents))
{
struct buffer *b = XBUFFER (w->contents);
Lisp_Object val = BVAR (b, extra_line_spacing);
if (NILP (val))
val = BVAR (&buffer_defaults, extra_line_spacing);
if (!NILP (val))
{
if (RANGED_FIXNUMP (0, val, INT_MAX))
height += XFIXNAT (val);
else if (FLOATP (val))
{
int addon = XFLOAT_DATA (val) * height + 0.5;
if (addon >= 0)
height += addon;
}
}
else
height += f->extra_line_spacing;
}
return height;
}
/* Subroutine of pos_visible_p below. Extracts a display string, if
any, from the display spec given as its argument. */
static Lisp_Object
string_from_display_spec (Lisp_Object spec)
{
if (VECTORP (spec))
{
for (ptrdiff_t i = 0; i < ASIZE (spec); i++)
if (STRINGP (AREF (spec, i)))
return AREF (spec, i);
}
else
{
for (; CONSP (spec); spec = XCDR (spec))
if (STRINGP (XCAR (spec)))
return XCAR (spec);
}
return spec;
}
/* Limit insanely large values of W->hscroll on frame F to the largest
value that will still prevent first_visible_x and last_visible_x of
'struct it' from overflowing an int. */
static int
window_hscroll_limited (struct window *w, struct frame *f)
{
ptrdiff_t window_hscroll = w->hscroll;
int window_text_width = window_box_width (w, TEXT_AREA);
int colwidth = FRAME_COLUMN_WIDTH (f);
if (window_hscroll > (INT_MAX - window_text_width) / colwidth - 1)
window_hscroll = (INT_MAX - window_text_width) / colwidth - 1;
return window_hscroll;
}
/* Reset the box-face start and end flags in the iterator. This is
called after producing glyphs, such that we reset these flags only
after producing a glyph with the flag set. */
static void
reset_box_start_end_flags (struct it *it)
{
/* Don't reset if we've drawn the glyph in the display margins --
those don't count as "produced glyphs". */
if (it->area == TEXT_AREA
/* Don't reset if we displayed a fringe bitmap. */
&& !(it->what == IT_IMAGE && it->image_id < 0))
{
/* Don't reset if the face is not a box face: that might mean we
are iterating some overlay or display string, and the first
character to have the box face is yet to be seen, when we pop
the iterator stack. */
if (it->face_box_p)
it->start_of_box_run_p = false;
it->end_of_box_run_p = false;
}
}
/* Return true if position CHARPOS is visible in window W.
CHARPOS < 0 means return info about WINDOW_END position.
If visible, set *X and *Y to pixel coordinates of top left corner.
Set *RTOP and *RBOT to pixel height of an invisible area of glyph at POS.
Set *ROWH and *VPOS to row's visible height and VPOS (row number). */
bool
pos_visible_p (struct window *w, ptrdiff_t charpos, int *x, int *y,
int *rtop, int *rbot, int *rowh, int *vpos)
{
struct it it;
void *itdata = bidi_shelve_cache ();
struct text_pos top;
bool visible_p = false;
struct buffer *old_buffer = NULL;
bool r2l = false;
if (FRAME_INITIAL_P (XFRAME (WINDOW_FRAME (w))))
return visible_p;
if (XBUFFER (w->contents) != current_buffer)
{
old_buffer = current_buffer;
set_buffer_internal_1 (XBUFFER (w->contents));
}
SET_TEXT_POS_FROM_MARKER (top, w->start);
/* Scrolling a minibuffer window via scroll bar when the echo area
shows long text sometimes resets the minibuffer contents behind
our backs. Also, someone might narrow-to-region and immediately
call a scroll function. */
if (CHARPOS (top) > ZV || CHARPOS (top) < BEGV)
SET_TEXT_POS (top, BEGV, BEGV_BYTE);
/* If the top of the window is after CHARPOS, the latter is surely
not visible. */
if (charpos >= 0 && CHARPOS (top) > charpos)
return visible_p;
/* Some Lisp hook could call us in the middle of redisplaying this
very window. If, by some bad luck, we are retrying redisplay
because we found that the mode-line height and/or tab/header-line
height needs to be updated, the assignment of mode_line_height
and header_line_height below could disrupt that, due to the
selected/nonselected window dance during mode-line display, and
we could infloop. Avoid that. */
int prev_mode_line_height = w->mode_line_height;
int prev_header_line_height = w->header_line_height;
int prev_tab_line_height = w->tab_line_height;
/* Compute exact mode line heights. */
if (window_wants_mode_line (w))
{
Lisp_Object window_mode_line_format
= window_parameter (w, Qmode_line_format);
w->mode_line_height
= display_mode_line (w, CURRENT_MODE_LINE_ACTIVE_FACE_ID (w),
NILP (window_mode_line_format)
? BVAR (current_buffer, mode_line_format)
: window_mode_line_format);
}
if (window_wants_tab_line (w))
{
Lisp_Object window_tab_line_format
= window_parameter (w, Qtab_line_format);
w->tab_line_height
= display_mode_line (w, TAB_LINE_FACE_ID,
NILP (window_tab_line_format)
? BVAR (current_buffer, tab_line_format)
: window_tab_line_format);
}
if (window_wants_header_line (w))
{
Lisp_Object window_header_line_format
= window_parameter (w, Qheader_line_format);
w->header_line_height
= display_mode_line (w, HEADER_LINE_FACE_ID,
NILP (window_header_line_format)
? BVAR (current_buffer, header_line_format)
: window_header_line_format);
}
start_display (&it, w, top);
move_it_to (&it, charpos, -1, it.last_visible_y - 1, -1,
(charpos >= 0 ? MOVE_TO_POS : 0) | MOVE_TO_Y);
/* Adjust for line numbers, if CHARPOS is at or beyond first_visible_x,
but we didn't yet produce the line-number glyphs. */
if (!NILP (Vdisplay_line_numbers)
&& it.current_x >= it.first_visible_x
&& IT_CHARPOS (it) == charpos
&& !it.line_number_produced_p)
{
/* If the pixel width of line numbers was not yet known, compute
it now. This usually happens in the first display line of a
window. */
if (!it.lnum_pixel_width)
{
struct it it2;
void *it2data = NULL;
SAVE_IT (it2, it, it2data);
move_it_by_lines (&it, 1);
it2.lnum_pixel_width = it.lnum_pixel_width;
RESTORE_IT (&it, &it2, it2data);
}
it.current_x += it.lnum_pixel_width;
}
if (charpos >= 0
&& (((!it.bidi_p || it.bidi_it.scan_dir != -1)
&& IT_CHARPOS (it) >= charpos)
/* When scanning backwards under bidi iteration, move_it_to
stops at or _before_ CHARPOS, because it stops at or to
the _right_ of the character at CHARPOS. */
|| (it.bidi_p && it.bidi_it.scan_dir == -1
&& IT_CHARPOS (it) <= charpos)))
{
/* We have reached CHARPOS, or passed it. How the call to
move_it_to can overshoot: (i) If CHARPOS is on invisible text
or covered by a display property, move_it_to stops at the end
of the invisible text, to the right of CHARPOS. (ii) If
CHARPOS is in a display vector, move_it_to stops on its last
glyph. */
int top_x = it.current_x;
int top_y = it.current_y;
int window_top_y = WINDOW_TAB_LINE_HEIGHT (w) + WINDOW_HEADER_LINE_HEIGHT (w);
int bottom_y;
struct it save_it;
void *save_it_data = NULL;
/* Calling line_bottom_y may change it.method, it.position, etc. */
SAVE_IT (save_it, it, save_it_data);
last_height = 0;
bottom_y = line_bottom_y (&it);
if (top_y < window_top_y)
visible_p = bottom_y > window_top_y;
else if (top_y < it.last_visible_y)
visible_p = true;
if (bottom_y >= it.last_visible_y
&& it.bidi_p && it.bidi_it.scan_dir == -1
&& IT_CHARPOS (it) < charpos)
{
/* When the last line of the window is scanned backwards
under bidi iteration, we could be duped into thinking
that we have passed CHARPOS, when in fact move_it_to
simply stopped short of CHARPOS because it reached
last_visible_y. To see if that's what happened, we call
move_it_to again with a slightly larger vertical limit,
and see if it actually moved vertically; if it did, we
didn't really reach CHARPOS, which is beyond window end. */
/* Why 10? because we don't know how many canonical lines
will the height of the next line(s) be. So we guess. */
int ten_more_lines = 10 * default_line_pixel_height (w);
move_it_to (&it, charpos, -1, bottom_y + ten_more_lines, -1,
MOVE_TO_POS | MOVE_TO_Y);
if (it.current_y > top_y)
visible_p = false;
}
RESTORE_IT (&it, &save_it, save_it_data);
if (visible_p)
{
if (it.method == GET_FROM_DISPLAY_VECTOR)
{
/* We stopped on the last glyph of a display vector.
Try and recompute. Hack alert! */
if (charpos < 2 || top.charpos >= charpos)
top_x = it.glyph_row->x;
else
{
struct it it2, it2_prev;
/* The idea is to get to the previous buffer
position, consume the character there, and use
the pixel coordinates we get after that. But if
the previous buffer position is also displayed
from a display vector, we need to consume all of
the glyphs from that display vector. */
start_display (&it2, w, top);
it2.glyph_row = NULL;
move_it_to (&it2, charpos - 1, -1, -1, -1, MOVE_TO_POS);
/* If we didn't get to CHARPOS - 1, there's some
replacing display property at that position, and
we stopped after it. That is exactly the place
whose coordinates we want. */
if (IT_CHARPOS (it2) != charpos - 1)
it2_prev = it2;
else
{
/* Iterate until we get out of the display
vector that displays the character at
CHARPOS - 1. */
do {
get_next_display_element (&it2);
PRODUCE_GLYPHS (&it2);
it2_prev = it2;
set_iterator_to_next (&it2, true);
} while (it2.method == GET_FROM_DISPLAY_VECTOR
&& IT_CHARPOS (it2) < charpos);
}
if (ITERATOR_AT_END_OF_LINE_P (&it2_prev)
|| it2_prev.current_x > it2_prev.last_visible_x)
top_x = it.glyph_row->x;
else
{
top_x = it2_prev.current_x;
top_y = it2_prev.current_y;
}
}
}
else if (IT_CHARPOS (it) != charpos)
{
Lisp_Object cpos = make_fixnum (charpos);
Lisp_Object spec = Fget_char_property (cpos, Qdisplay, Qnil);
Lisp_Object string = string_from_display_spec (spec);
struct text_pos tpos;
bool newline_in_string
= (STRINGP (string)
&& memchr (SDATA (string), '\n', SBYTES (string)));
SET_TEXT_POS (tpos, charpos, CHAR_TO_BYTE (charpos));
bool replacing_spec_p
= (!NILP (spec)
&& handle_display_spec (NULL, spec, Qnil, Qnil, &tpos,
charpos, FRAME_WINDOW_P (it.f)));
/* The tricky code below is needed because there's a
discrepancy between move_it_to and how we set cursor
when PT is at the beginning of a portion of text
covered by a display property or an overlay with a
display property, or the display line ends in a
newline from a display string. move_it_to will stop
_after_ such display strings, whereas
set_cursor_from_row conspires with cursor_row_p to
place the cursor on the first glyph produced from the
display string. */
/* We have overshoot PT because it is covered by a
display property that replaces the text it covers.
If the string includes embedded newlines, we are also
in the wrong display line. Backtrack to the correct
line, where the display property begins. */
if (replacing_spec_p)
{
Lisp_Object startpos, endpos;
EMACS_INT start, end;
struct it it3;
/* Find the first and the last buffer positions
covered by the display string. */
endpos =
Fnext_single_char_property_change (cpos, Qdisplay,
Qnil, Qnil);
startpos =
Fprevious_single_char_property_change (endpos, Qdisplay,
Qnil, Qnil);
start = XFIXNAT (startpos);
end = XFIXNAT (endpos);
/* Move to the last buffer position before the
display property. */
start_display (&it3, w, top);
if (start > CHARPOS (top))
move_it_to (&it3, start - 1, -1, -1, -1, MOVE_TO_POS);
/* Move forward one more line if the position before
the display string is a newline or if it is the
rightmost character on a line that is
continued or word-wrapped. */
if (it3.method == GET_FROM_BUFFER
&& (it3.c == '\n'
|| FETCH_BYTE (IT_BYTEPOS (it3)) == '\n'))
move_it_by_lines (&it3, 1);
else if (move_it_in_display_line_to (&it3, -1,
it3.current_x
+ it3.pixel_width,
MOVE_TO_X)
== MOVE_LINE_CONTINUED)
{
move_it_by_lines (&it3, 1);
/* When we are under word-wrap, the #$@%!
move_it_by_lines moves 2 lines, so we need to
fix that up. */
if (it3.line_wrap == WORD_WRAP)
move_it_by_lines (&it3, -1);
}
/* Record the vertical coordinate of the display
line where we wound up. */
top_y = it3.current_y;
if (it3.bidi_p)
{
/* When characters are reordered for display,
the character displayed to the left of the
display string could be _after_ the display
property in the logical order. Use the
smallest vertical position of these two. */
start_display (&it3, w, top);
move_it_to (&it3, end + 1, -1, -1, -1, MOVE_TO_POS);
if (it3.current_y < top_y)
top_y = it3.current_y;
}
/* Move from the top of the window to the beginning
of the display line where the display string
begins. */
start_display (&it3, w, top);
it3.glyph_row = NULL;
move_it_to (&it3, -1, 0, top_y, -1, MOVE_TO_X | MOVE_TO_Y);
/* If it3_moved stays false after the 'while' loop
below, that means we already were at a newline
before the loop (e.g., the display string begins
with a newline), so we don't need to return to
the last position before the display string,
because PRODUCE_GLYPHS will not produce anything
for a newline. */
bool it3_moved = false;
int top_x_before_string = it3.current_x;
/* Finally, advance the iterator until we hit the
first display element whose character position is
at or beyond CHARPOS, or until the first newline
from the display string, which signals the end of
the display line. */
while (get_next_display_element (&it3))
{
if (!EQ (it3.object, string))
top_x_before_string = it3.current_x;
PRODUCE_GLYPHS (&it3);
if ((it3.bidi_it.scan_dir == 1
&& IT_CHARPOS (it3) >= charpos)
|| (it3.bidi_it.scan_dir == -1
&& IT_CHARPOS (it3) <= charpos)
|| ITERATOR_AT_END_OF_LINE_P (&it3))
break;
it3_moved = true;
set_iterator_to_next (&it3, false);
}
top_x = it3.current_x - it3.pixel_width;
/* Account for line-number display, if IT3 still
didn't. This can happen if START - 1 is the
first or the last character on its display line. */
if (!it3.line_number_produced_p)
{
if (it3.lnum_pixel_width > 0)
{
top_x += it3.lnum_pixel_width;
top_x_before_string += it3.lnum_pixel_width;
}
else if (it.line_number_produced_p)
{
top_x += it.lnum_pixel_width;
top_x_before_string += it3.lnum_pixel_width;
}
}
/* Normally, we would exit the above loop because we
found the display element whose character
position is CHARPOS. For the contingency that we
didn't, and stopped at the first newline from the
display string, reset top_x to the coordinate of
the rightmost glyph not from the string. */
if (it3_moved
&& newline_in_string
&& IT_CHARPOS (it3) != charpos && EQ (it3.object, string))
top_x = top_x_before_string;
}
}
*x = top_x;
/* The condition below is a heuristic fix for the situation
where move_it_to stops just after finishing the display
of a fringe bitmap, which resets it.ascent to zero, and
thus causes Y to be offset by it.max_ascent. */
if (it.ascent == 0 && it.what == IT_IMAGE
&& it.method != GET_FROM_IMAGE
&& it.image_id < 0
&& it.max_ascent > 0)
*y = max (top_y, window_top_y);
else
*y = max (top_y + max (0, it.max_ascent - it.ascent), window_top_y);
*rtop = max (0, window_top_y - top_y);
*rbot = max (0, bottom_y - it.last_visible_y);
*rowh = max (0, (min (bottom_y, it.last_visible_y)
- max (top_y, window_top_y)));
*vpos = it.vpos;
if (it.bidi_it.paragraph_dir == R2L)
r2l = true;
}
}
else
{
/* Either we were asked to provide info about WINDOW_END, or
CHARPOS is in the partially visible glyph row at end of
window. */
struct it it2;
void *it2data = NULL;
SAVE_IT (it2, it, it2data);
if (IT_CHARPOS (it) < ZV && FETCH_BYTE (IT_BYTEPOS (it)) != '\n')
move_it_by_lines (&it, 1);
if (charpos < IT_CHARPOS (it)
|| (it.what == IT_EOB && charpos == IT_CHARPOS (it)))
{
visible_p = true;
RESTORE_IT (&it2, &it2, it2data);
move_it_to (&it2, charpos, -1, -1, -1, MOVE_TO_POS);
*x = it2.current_x;
if (it2.ascent == 0 && it2.what == IT_IMAGE
&& it2.method != GET_FROM_IMAGE
&& it2.image_id < 0
&& it2.max_ascent > 0)
*y = it2.current_y;
else
*y = it2.current_y + it2.max_ascent - it2.ascent;
*rtop = max (0, -it2.current_y);
*rbot = max (0, ((it2.current_y + it2.max_ascent + it2.max_descent)
- it.last_visible_y));
*rowh = max (0, (min (it2.current_y + it2.max_ascent + it2.max_descent,
it.last_visible_y)
- max (max (it2.current_y,
WINDOW_TAB_LINE_HEIGHT (w)),
WINDOW_HEADER_LINE_HEIGHT (w))));
*vpos = it2.vpos;
if (it2.bidi_it.paragraph_dir == R2L)
r2l = true;
}
else
bidi_unshelve_cache (it2data, true);
}
bidi_unshelve_cache (itdata, false);
if (old_buffer)
set_buffer_internal_1 (old_buffer);
if (visible_p)
{
if (w->hscroll > 0)
*x -=
window_hscroll_limited (w, WINDOW_XFRAME (w))
* WINDOW_FRAME_COLUMN_WIDTH (w);
/* For lines in an R2L paragraph, we need to mirror the X pixel
coordinate wrt the text area. For the reasons, see the
commentary in buffer_posn_from_coords and the explanation of
the geometry used by the move_it_* functions at the end of
the large commentary near the beginning of this file. */
if (r2l)
*x = window_box_width (w, TEXT_AREA) - *x - 1;
}
#if false
/* Debugging code. */
if (visible_p)
fprintf (stderr, "+pv pt=%d vs=%d --> x=%d y=%d rt=%d rb=%d rh=%d vp=%d\n",
charpos, w->vscroll, *x, *y, *rtop, *rbot, *rowh, *vpos);
else
fprintf (stderr, "-pv pt=%d vs=%d\n", charpos, w->vscroll);
#endif
/* Restore potentially overwritten values. */
w->mode_line_height = prev_mode_line_height;
w->header_line_height = prev_header_line_height;
w->tab_line_height = prev_tab_line_height;
return visible_p;
}
/* Return the next character from STR. Return in *LEN the length of
the character. This is like string_char_and_length but never
returns an invalid character. If we find one, we return a `?', but
with the length of the invalid character. */
static int
check_char_and_length (const unsigned char *str, int *len)
{
int c = string_char_and_length (str, len);
if (!CHAR_VALID_P (c))
/* We may not change the length here because other places in Emacs
don't use this function, i.e. they silently accept invalid
characters. */
c = '?';
return c;
}
/* Given a position POS containing a valid character and byte position
in STRING, return the position NCHARS ahead (NCHARS >= 0). */
static struct text_pos
string_pos_nchars_ahead (struct text_pos pos, Lisp_Object string, ptrdiff_t nchars)
{
eassert (STRINGP (string) && nchars >= 0);
if (STRING_MULTIBYTE (string))
{
const unsigned char *p = SDATA (string) + BYTEPOS (pos);
while (nchars--)
{
int len = BYTES_BY_CHAR_HEAD (*p);
p += len;
CHARPOS (pos) += 1;
BYTEPOS (pos) += len;
}
}
else
SET_TEXT_POS (pos, CHARPOS (pos) + nchars, BYTEPOS (pos) + nchars);
return pos;
}
/* Value is the text position, i.e. character and byte position,
for character position CHARPOS in STRING. */
static struct text_pos
string_pos (ptrdiff_t charpos, Lisp_Object string)
{
struct text_pos pos;
eassert (STRINGP (string));
eassert (charpos >= 0);
SET_TEXT_POS (pos, charpos, string_char_to_byte (string, charpos));
return pos;
}
/* Value is a text position, i.e. character and byte position, for
character position CHARPOS in C string S. MULTIBYTE_P
means recognize multibyte characters. */
static struct text_pos
c_string_pos (ptrdiff_t charpos, const char *s, bool multibyte_p)
{
struct text_pos pos;
eassert (s != NULL);
eassert (charpos >= 0);
if (multibyte_p)
{
SET_TEXT_POS (pos, 0, 0);
while (charpos--)
{
int len = BYTES_BY_CHAR_HEAD (*s);
s += len;
CHARPOS (pos) += 1;
BYTEPOS (pos) += len;
}
}
else
SET_TEXT_POS (pos, charpos, charpos);
return pos;
}
/* Value is the number of characters in C string S. MULTIBYTE_P
means recognize multibyte characters. */
static ptrdiff_t
number_of_chars (const char *s, bool multibyte_p)
{
ptrdiff_t nchars;
if (multibyte_p)
{
ptrdiff_t rest = strlen (s);
const unsigned char *p = (const unsigned char *) s;
for (nchars = 0; rest > 0; ++nchars)
{
int len = BYTES_BY_CHAR_HEAD (*p);
rest -= len, p += len;
}
}
else
nchars = strlen (s);
return nchars;
}
/* Compute byte position NEWPOS->bytepos corresponding to
NEWPOS->charpos. POS is a known position in string STRING.
NEWPOS->charpos must be >= POS.charpos. */
static void
compute_string_pos (struct text_pos *newpos, struct text_pos pos, Lisp_Object string)
{
eassert (STRINGP (string));
eassert (CHARPOS (*newpos) >= CHARPOS (pos));
if (STRING_MULTIBYTE (string))
*newpos = string_pos_nchars_ahead (pos, string,
CHARPOS (*newpos) - CHARPOS (pos));
else
BYTEPOS (*newpos) = CHARPOS (*newpos);
}
/* EXPORT:
Return an estimation of the pixel height of mode or header lines on
frame F. FACE_ID specifies what line's height to estimate. */
int
estimate_mode_line_height (struct frame *f, enum face_id face_id)
{
#ifdef HAVE_WINDOW_SYSTEM
if (FRAME_WINDOW_P (f))
{
int height = FONT_HEIGHT (FRAME_FONT (f));
/* This function is called so early when Emacs starts that the face
cache and mode line face are not yet initialized. */
if (FRAME_FACE_CACHE (f))
{
struct face *face = FACE_FROM_ID_OR_NULL (f, face_id);
if (face)
{
if (face->font)
height = normal_char_height (face->font, -1);
if (face->box_horizontal_line_width > 0)
height += 2 * face->box_horizontal_line_width;
}
}
return height;
}
#endif
return 1;
}
/* Given a pixel position (PIX_X, PIX_Y) on frame F, return glyph
coordinates in (*X, *Y). Set *BOUNDS to the rectangle that the
glyph at X, Y occupies, if BOUNDS != 0. If NOCLIP, do
not force the value into range. */
void
pixel_to_glyph_coords (struct frame *f, int pix_x, int pix_y, int *x, int *y,
NativeRectangle *bounds, bool noclip)
{
#ifdef HAVE_WINDOW_SYSTEM
if (FRAME_WINDOW_P (f))
{
/* Arrange for the division in FRAME_PIXEL_X_TO_COL etc. to round down
even for negative values. */
if (pix_x < 0)
pix_x -= FRAME_COLUMN_WIDTH (f) - 1;
if (pix_y < 0)
pix_y -= FRAME_LINE_HEIGHT (f) - 1;
pix_x = FRAME_PIXEL_X_TO_COL (f, pix_x);
pix_y = FRAME_PIXEL_Y_TO_LINE (f, pix_y);
if (bounds)
STORE_NATIVE_RECT (*bounds,
FRAME_COL_TO_PIXEL_X (f, pix_x),
FRAME_LINE_TO_PIXEL_Y (f, pix_y),
FRAME_COLUMN_WIDTH (f) - 1,
FRAME_LINE_HEIGHT (f) - 1);
/* PXW: Should we clip pixels before converting to columns/lines? */
if (!noclip)
{
if (pix_x < 0)
pix_x = 0;
else if (pix_x > FRAME_TOTAL_COLS (f))
pix_x = FRAME_TOTAL_COLS (f);
if (pix_y < 0)
pix_y = 0;
else if (pix_y > FRAME_TOTAL_LINES (f))
pix_y = FRAME_TOTAL_LINES (f);
}
}
#endif
*x = pix_x;
*y = pix_y;
}
/* Find the glyph under window-relative coordinates X/Y in window W.
Consider only glyphs from buffer text, i.e. no glyphs from overlay
strings. Return in *HPOS and *VPOS the row and column number of
the glyph found. Return in *AREA the glyph area containing X.
Value is a pointer to the glyph found or null if X/Y is not on
text, or we can't tell because W's current matrix is not up to
date. */
struct glyph *
x_y_to_hpos_vpos (struct window *w, int x, int y, int *hpos, int *vpos,
int *dx, int *dy, int *area)
{
struct glyph *glyph, *end;
struct glyph_row *row = NULL;
int x0, i;
/* Find row containing Y. Give up if some row is not enabled. */
for (i = 0; i < w->current_matrix->nrows; ++i)
{
row = MATRIX_ROW (w->current_matrix, i);
if (!row->enabled_p)
return NULL;
if (y >= row->y && y < MATRIX_ROW_BOTTOM_Y (row))
break;
}
*vpos = i;
*hpos = 0;
/* Give up if Y is not in the window. */
if (i == w->current_matrix->nrows)
return NULL;
/* Get the glyph area containing X. */
if (w->pseudo_window_p)
{
*area = TEXT_AREA;
x0 = 0;
}
else
{
if (x < window_box_left_offset (w, TEXT_AREA))
{
*area = LEFT_MARGIN_AREA;
x0 = window_box_left_offset (w, LEFT_MARGIN_AREA);
}
else if (x < window_box_right_offset (w, TEXT_AREA))
{
*area = TEXT_AREA;
x0 = window_box_left_offset (w, TEXT_AREA) + min (row->x, 0);
}
else
{
*area = RIGHT_MARGIN_AREA;
x0 = window_box_left_offset (w, RIGHT_MARGIN_AREA);
}
}
/* Find glyph containing X. */
glyph = row->glyphs[*area];
end = glyph + row->used[*area];
x -= x0;
while (glyph < end && x >= glyph->pixel_width)
{
x -= glyph->pixel_width;
++glyph;
}
if (glyph == end)
return NULL;
if (dx)
{
*dx = x;
*dy = y - (row->y + row->ascent - glyph->ascent);
}
*hpos = glyph - row->glyphs[*area];
return glyph;
}
/* Convert frame-relative x/y to coordinates relative to window W.
Takes pseudo-windows into account. */
static void
frame_to_window_pixel_xy (struct window *w, int *x, int *y)
{
if (w->pseudo_window_p)
{
/* A pseudo-window is always full-width, and starts at the
left edge of the frame, plus a frame border. */
struct frame *f = XFRAME (w->frame);
*x -= FRAME_INTERNAL_BORDER_WIDTH (f);
*y = FRAME_TO_WINDOW_PIXEL_Y (w, *y);
}
else
{
*x -= WINDOW_LEFT_EDGE_X (w);
*y = FRAME_TO_WINDOW_PIXEL_Y (w, *y);
}
}
#ifdef HAVE_WINDOW_SYSTEM
/* EXPORT:
Return in RECTS[] at most N clipping rectangles for glyph string S.
Return the number of stored rectangles. */
int
get_glyph_string_clip_rects (struct glyph_string *s, NativeRectangle *rects, int n)
{
Emacs_Rectangle r;
if (n <= 0)
return 0;
if (s->row->full_width_p)
{
/* Draw full-width. X coordinates are relative to S->w->left_col. */
r.x = WINDOW_LEFT_EDGE_X (s->w);
if (s->row->mode_line_p)
r.width = WINDOW_PIXEL_WIDTH (s->w) - WINDOW_RIGHT_DIVIDER_WIDTH (s->w);
else
r.width = WINDOW_PIXEL_WIDTH (s->w);
/* Unless displaying a mode or menu bar line, which are always
fully visible, clip to the visible part of the row. */
if (s->w->pseudo_window_p)
r.height = s->row->visible_height;
else
r.height = s->height;
}
else
{
/* This is a text line that may be partially visible. */
r.x = window_box_left (s->w, s->area);
r.width = window_box_width (s->w, s->area);
r.height = s->row->visible_height;
}
if (s->clip_head)
if (r.x < s->clip_head->x)
{
if (r.width >= s->clip_head->x - r.x)
r.width -= s->clip_head->x - r.x;
else
r.width = 0;
r.x = s->clip_head->x;
}
if (s->clip_tail)
if (r.x + (int) r.width > s->clip_tail->x + s->clip_tail->background_width)
{
if (s->clip_tail->x + s->clip_tail->background_width >= r.x)
r.width = s->clip_tail->x + s->clip_tail->background_width - r.x;
else
r.width = 0;
}
/* If S draws overlapping rows, it's sufficient to use the top and
bottom of the window for clipping because this glyph string
intentionally draws over other lines. */
if (s->for_overlaps)
{
r.y = WINDOW_TAB_LINE_HEIGHT (s->w) + WINDOW_HEADER_LINE_HEIGHT (s->w);
r.height = window_text_bottom_y (s->w) - r.y;
/* Alas, the above simple strategy does not work for the
environments with anti-aliased text: if the same text is
drawn onto the same place multiple times, it gets thicker.
If the overlap we are processing is for the erased cursor, we
take the intersection with the rectangle of the cursor. */
if (s->for_overlaps & OVERLAPS_ERASED_CURSOR)
{
Emacs_Rectangle rc, r_save = r;
rc.x = WINDOW_TEXT_TO_FRAME_PIXEL_X (s->w, s->w->phys_cursor.x);
rc.y = s->w->phys_cursor.y;
rc.width = s->w->phys_cursor_width;
rc.height = s->w->phys_cursor_height;
gui_intersect_rectangles (&r_save, &rc, &r);
}
}
else
{
/* Don't use S->y for clipping because it doesn't take partially
visible lines into account. For example, it can be negative for
partially visible lines at the top of a window. */
if (!s->row->full_width_p
&& MATRIX_ROW_PARTIALLY_VISIBLE_AT_TOP_P (s->w, s->row))
r.y = WINDOW_TAB_LINE_HEIGHT (s->w) + WINDOW_HEADER_LINE_HEIGHT (s->w);
else
r.y = max (0, s->row->y);
}
r.y = WINDOW_TO_FRAME_PIXEL_Y (s->w, r.y);
/* If drawing the cursor, don't let glyph draw outside its
advertised boundaries. Cleartype does this under some circumstances. */
if (s->hl == DRAW_CURSOR)
{
struct glyph *glyph = s->first_glyph;
int height, max_y;
if (s->x > r.x)
{
if (r.width >= s->x - r.x)
r.width -= s->x - r.x;
else /* R2L hscrolled row with cursor outside text area */
r.width = 0;
r.x = s->x;
}
r.width = min (r.width, glyph->pixel_width);
/* If r.y is below window bottom, ensure that we still see a cursor. */
height = min (glyph->ascent + glyph->descent,
min (FRAME_LINE_HEIGHT (s->f), s->row->visible_height));
max_y = window_text_bottom_y (s->w) - height;
max_y = WINDOW_TO_FRAME_PIXEL_Y (s->w, max_y);
if (s->ybase - glyph->ascent > max_y)
{
r.y = max_y;
r.height = height;
}
else
{
/* Don't draw cursor glyph taller than our actual glyph. */
height = max (FRAME_LINE_HEIGHT (s->f), glyph->ascent + glyph->descent);
if (height < r.height)
{
max_y = r.y + (int) r.height;
r.y = min (max_y, max (r.y, s->ybase + glyph->descent - height));
r.height = min (max_y - r.y, height);
}
}
}
if (s->row->clip)
{
Emacs_Rectangle r_save = r;
if (! gui_intersect_rectangles (&r_save, s->row->clip, &r))
r.width = 0;
}
if ((s->for_overlaps & OVERLAPS_BOTH) == 0
|| ((s->for_overlaps & OVERLAPS_BOTH) == OVERLAPS_BOTH && n == 1))
{
#ifdef CONVERT_FROM_EMACS_RECT
CONVERT_FROM_EMACS_RECT (r, *rects);
#else
*rects = r;
#endif
return 1;
}
else
{
/* If we are processing overlapping and allowed to return
multiple clipping rectangles, we exclude the row of the glyph
string from the clipping rectangle. This is to avoid drawing
the same text on the environment with anti-aliasing. */
#ifdef CONVERT_FROM_EMACS_RECT
Emacs_Rectangle rs[2];
#else
Emacs_Rectangle *rs = rects;
#endif
int i = 0, row_y = WINDOW_TO_FRAME_PIXEL_Y (s->w, s->row->y);
if (s->for_overlaps & OVERLAPS_PRED)
{
rs[i] = r;
if (r.y + (int) r.height > row_y)
{
if (r.y < row_y)
rs[i].height = row_y - r.y;
else
rs[i].height = 0;
}
i++;
}
if (s->for_overlaps & OVERLAPS_SUCC)
{
rs[i] = r;
if (r.y < row_y + s->row->visible_height)
{
if (r.y + (int) r.height > row_y + s->row->visible_height)
{
rs[i].y = row_y + s->row->visible_height;
rs[i].height = r.y + (int) r.height - rs[i].y;
}
else
rs[i].height = 0;
}
i++;
}
n = i;
#ifdef CONVERT_FROM_EMACS_RECT
for (i = 0; i < n; i++)
CONVERT_FROM_EMACS_RECT (rs[i], rects[i]);
#endif
return n;
}
}
/* EXPORT:
Return in *NR the clipping rectangle for glyph string S. */
void
get_glyph_string_clip_rect (struct glyph_string *s, NativeRectangle *nr)
{
get_glyph_string_clip_rects (s, nr, 1);
}
/* EXPORT:
Return the position and height of the phys cursor in window W.
Set w->phys_cursor_width to width of phys cursor.
*/
void
get_phys_cursor_geometry (struct window *w, struct glyph_row *row,
struct glyph *glyph, int *xp, int *yp, int *heightp)
{
struct frame *f = XFRAME (WINDOW_FRAME (w));
int x, y, wd, h, h0, y0, ascent;
/* Compute the width of the rectangle to draw. If on a stretch
glyph, and `x-stretch-cursor' is nil, don't draw a rectangle
as wide as the glyph, but use a canonical character width
instead. */
wd = glyph->pixel_width;
x = w->phys_cursor.x;
if (x < 0)
{
wd += x;
x = 0;
}
if (glyph->type == STRETCH_GLYPH
&& !x_stretch_cursor_p)
wd = min (FRAME_COLUMN_WIDTH (f), wd);
w->phys_cursor_width = wd;
/* Don't let the hollow cursor glyph descend below the glyph row's
ascent value, lest the hollow cursor looks funny. */
y = w->phys_cursor.y;
ascent = row->ascent;
/* The test for row at ZV is for when line numbers are displayed and
point is at EOB: the cursor could then be smaller or larger than
the default face's font. */
if (!row->ends_at_zv_p && row->ascent < glyph->ascent)
{
y -= glyph->ascent - row->ascent;
ascent = glyph->ascent;
}
/* If y is below window bottom, ensure that we still see a cursor. */
h0 = min (FRAME_LINE_HEIGHT (f), row->visible_height);
h = max (h0, ascent + glyph->descent);
/* Don't let the cursor exceed the dimensions of the row, so that
the upper/lower side of the box aren't clipped. */
h = min (h, row->height);
h0 = min (h0, ascent + glyph->descent);
y0 = WINDOW_TAB_LINE_HEIGHT (w) + WINDOW_HEADER_LINE_HEIGHT (w);
if (y < y0)
{
h = max (h - (y0 - y) + 1, h0);
y = y0 - 1;
}
else
{
y0 = window_text_bottom_y (w) - h0;
if (y > y0)
{
h += y - y0;
y = y0;
}
}
*xp = WINDOW_TEXT_TO_FRAME_PIXEL_X (w, x);
*yp = WINDOW_TO_FRAME_PIXEL_Y (w, y);
*heightp = h;
}
/*
* Remember which glyph the mouse is over.
*/
void
remember_mouse_glyph (struct frame *f, int gx, int gy, NativeRectangle *rect)
{
Lisp_Object window;
struct window *w;
struct glyph_row *r, *gr, *end_row;
enum window_part part;
enum glyph_row_area area;
int x, y, width, height;
int original_gx;
if (mouse_fine_grained_tracking)
{
STORE_NATIVE_RECT (*rect, gx, gy, 1, 1);
return;
}
/* Try to determine frame pixel position and size of the glyph under
frame pixel coordinates X/Y on frame F. */
original_gx = gx;
if (window_resize_pixelwise)
{
width = height = 1;
goto virtual_glyph;
}
else if (!f->glyphs_initialized_p
|| (window = window_from_coordinates (f, gx, gy, &part, false, false, false),
NILP (window)))
{
width = FRAME_SMALLEST_CHAR_WIDTH (f);
height = FRAME_SMALLEST_FONT_HEIGHT (f);
goto virtual_glyph;
}
w = XWINDOW (window);
width = WINDOW_FRAME_COLUMN_WIDTH (w);
height = WINDOW_FRAME_LINE_HEIGHT (w);
x = window_relative_x_coord (w, part, gx);
y = gy - WINDOW_TOP_EDGE_Y (w);
r = MATRIX_FIRST_TEXT_ROW (w->current_matrix);
end_row = MATRIX_BOTTOM_TEXT_ROW (w->current_matrix, w);
if (w->pseudo_window_p)
{
area = TEXT_AREA;
part = ON_MODE_LINE; /* Don't adjust margin. */
goto text_glyph;
}
switch (part)
{
case ON_LEFT_MARGIN:
area = LEFT_MARGIN_AREA;
goto text_glyph;
case ON_RIGHT_MARGIN:
area = RIGHT_MARGIN_AREA;
goto text_glyph;
case ON_TAB_LINE:
case ON_HEADER_LINE:
case ON_MODE_LINE:
gr = (part == ON_TAB_LINE
? MATRIX_TAB_LINE_ROW (w->current_matrix)
: (part == ON_HEADER_LINE
? MATRIX_HEADER_LINE_ROW (w->current_matrix)
: MATRIX_MODE_LINE_ROW (w->current_matrix)));
gy = gr->y;
area = TEXT_AREA;
goto text_glyph_row_found;
case ON_TEXT:
area = TEXT_AREA;
text_glyph:
gr = 0; gy = 0;
for (; r <= end_row && r->enabled_p; ++r)
if (r->y + (int) r->height > y)
{
gr = r; gy = r->y;
break;
}
text_glyph_row_found:
if (gr && gy <= y)
{
struct glyph *g = gr->glyphs[area];
struct glyph *end = g + gr->used[area];
height = gr->height;
for (gx = gr->x; g < end; gx += g->pixel_width, ++g)
if (gx + g->pixel_width > x)
break;
if (g < end)
{
if (g->type == IMAGE_GLYPH)
{
/* Don't remember when mouse is over image, as
image may have hot-spots. */
STORE_NATIVE_RECT (*rect, 0, 0, 0, 0);
return;
}
width = g->pixel_width;
}
else
{
/* Use nominal char spacing at end of line. */
x -= gx;
gx += (x / width) * width;
}
if (part != ON_MODE_LINE && part != ON_HEADER_LINE
&& part != ON_TAB_LINE)
{
gx += window_box_left_offset (w, area);
/* Don't expand over the modeline to make sure the vertical
drag cursor is shown early enough. */
height = min (height,
max (0, WINDOW_BOX_HEIGHT_NO_MODE_LINE (w) - gy));
}
}
else
{
/* Use nominal line height at end of window. */
gx = (x / width) * width;
y -= gy;
gy += (y / height) * height;
if (part != ON_MODE_LINE && part != ON_HEADER_LINE
&& part != ON_TAB_LINE)
/* See comment above. */
height = min (height,
max (0, WINDOW_BOX_HEIGHT_NO_MODE_LINE (w) - gy));
}
break;
case ON_LEFT_FRINGE:
gx = (WINDOW_HAS_FRINGES_OUTSIDE_MARGINS (w)
? WINDOW_LEFT_SCROLL_BAR_AREA_WIDTH (w)
: window_box_right_offset (w, LEFT_MARGIN_AREA));
width = WINDOW_LEFT_FRINGE_WIDTH (w);
goto row_glyph;
case ON_RIGHT_FRINGE:
gx = (WINDOW_HAS_FRINGES_OUTSIDE_MARGINS (w)
? window_box_right_offset (w, RIGHT_MARGIN_AREA)
: window_box_right_offset (w, TEXT_AREA));
if (WINDOW_RIGHT_DIVIDER_WIDTH (w) == 0
&& !WINDOW_HAS_VERTICAL_SCROLL_BAR (w)
&& !WINDOW_RIGHTMOST_P (w))
if (gx < WINDOW_PIXEL_WIDTH (w) - width)
/* Make sure the vertical border can get her own glyph to the
right of the one we build here. */
width = WINDOW_RIGHT_FRINGE_WIDTH (w) - width;
else
width = WINDOW_PIXEL_WIDTH (w) - gx;
else
width = WINDOW_RIGHT_FRINGE_WIDTH (w);
goto row_glyph;
case ON_VERTICAL_BORDER:
gx = WINDOW_PIXEL_WIDTH (w) - width;
goto row_glyph;
case ON_VERTICAL_SCROLL_BAR:
gx = (WINDOW_HAS_VERTICAL_SCROLL_BAR_ON_LEFT (w)
? 0
: (window_box_right_offset (w, RIGHT_MARGIN_AREA)
+ (WINDOW_HAS_FRINGES_OUTSIDE_MARGINS (w)
? WINDOW_RIGHT_FRINGE_WIDTH (w)
: 0)));
width = WINDOW_SCROLL_BAR_AREA_WIDTH (w);
row_glyph:
gr = 0, gy = 0;
for (; r <= end_row && r->enabled_p; ++r)
if (r->y + (int) r->height > y)
{
gr = r; gy = r->y;
break;
}
if (gr && gy <= y)
height = gr->height;
else
{
/* Use nominal line height at end of window. */
y -= gy;
gy += (y / height) * height;
}
break;
case ON_RIGHT_DIVIDER:
gx = WINDOW_PIXEL_WIDTH (w) - WINDOW_RIGHT_DIVIDER_WIDTH (w);
width = WINDOW_RIGHT_DIVIDER_WIDTH (w);
gy = 0;
/* The bottom divider prevails. */
height = WINDOW_PIXEL_HEIGHT (w) - WINDOW_BOTTOM_DIVIDER_WIDTH (w);
goto add_edge;
case ON_BOTTOM_DIVIDER:
gx = 0;
width = WINDOW_PIXEL_WIDTH (w);
gy = WINDOW_PIXEL_HEIGHT (w) - WINDOW_BOTTOM_DIVIDER_WIDTH (w);
height = WINDOW_BOTTOM_DIVIDER_WIDTH (w);
goto add_edge;
default:
;
virtual_glyph:
/* If there is no glyph under the mouse, then we divide the screen
into a grid of the smallest glyph in the frame, and use that
as our "glyph". */
/* Arrange for the division in FRAME_PIXEL_X_TO_COL etc. to
round down even for negative values. */
if (gx < 0)
gx -= width - 1;
if (gy < 0)
gy -= height - 1;
gx = (gx / width) * width;
gy = (gy / height) * height;
goto store_rect;
}
add_edge:
gx += WINDOW_LEFT_EDGE_X (w);
gy += WINDOW_TOP_EDGE_Y (w);
store_rect:
if (mouse_prefer_closest_glyph)
{
int half_width = width / 2;
width = half_width;
int bisection = gx + half_width;
if (original_gx > bisection)
gx = bisection;
}
STORE_NATIVE_RECT (*rect, gx, gy, width, height);
/* Visible feedback for debugging. */
#if false && defined HAVE_X_WINDOWS
XDrawRectangle (FRAME_X_DISPLAY (f), FRAME_X_DRAWABLE (f),
f->output_data.x->normal_gc,
gx, gy, width, height);
#endif
}
DEFUN ("remember-mouse-glyph", Fremember_mouse_glyph, Sremember_mouse_glyph,
3, 3, 0,
doc: /* Return the extents of glyph in FRAME for mouse event generation.
Return a rectangle (X Y WIDTH HEIGHT) representing the confines, in
pixel coordinates, of the glyph at X, Y and in FRAME, or, should
`mouse-fine-grained-tracking' or `window-resize-pixelwise` be enabled,
an approximation thereof. All coordinates are relative to the origin
point of FRAME. */)
(Lisp_Object frame, Lisp_Object x, Lisp_Object y)
{
struct frame *f = decode_window_system_frame (frame);
NativeRectangle rect;
#ifdef CONVERT_TO_EMACS_RECT
Emacs_Rectangle xrect;
#endif /* CONVERT_TO_EMACS_RECT */
CHECK_FIXNUM (x);
CHECK_FIXNUM (y);
remember_mouse_glyph (f, XFIXNUM (x), XFIXNUM (y), &rect);
#ifdef CONVERT_TO_EMACS_RECT
CONVERT_TO_EMACS_RECT (xrect, rect);
return list4i (xrect.x, xrect.y, xrect.width, xrect.height);
#else /* !defined CONVERT_TO_EMACS_RECT */
return list4i (rect.x, rect.y, rect.width, rect.height);
#endif /* !defined CONVERT_TO_EMACS_RECT */
}
#endif /* HAVE_WINDOW_SYSTEM */
static void
adjust_window_ends (struct window *w, struct glyph_row *row, bool current)
{
eassert (w);
w->window_end_pos = Z - MATRIX_ROW_END_CHARPOS (row);
w->window_end_bytepos = Z_BYTE - MATRIX_ROW_END_BYTEPOS (row);
w->window_end_vpos
= MATRIX_ROW_VPOS (row, current ? w->current_matrix : w->desired_matrix);
}
static bool
hscrolling_current_line_p (struct window *w)
{
return (!w->suspend_auto_hscroll
&& EQ (Fbuffer_local_value (Qauto_hscroll_mode, w->contents),
Qcurrent_line));
}
/***********************************************************************
Lisp form evaluation
***********************************************************************/
/* Error handler for dsafe_eval and dsafe_call. */
static Lisp_Object
dsafe_eval_handler (Lisp_Object arg, ptrdiff_t nargs, Lisp_Object *args)
{
add_to_log ("Error during redisplay: %S signaled %S",
Flist (nargs, args), arg);
return Qnil;
}
/* Call function FUNC with the rest of NARGS - 1 arguments
following. Return the result, or nil if something went
wrong. Prevent redisplay during the evaluation. */
/* FIXME: What's the guiding principle behind the choice
of which calls should set 'inhibit_quit' and which don't. */
static Lisp_Object
dsafe__call (bool inhibit_quit, Lisp_Object (f) (ptrdiff_t, Lisp_Object *),
ptrdiff_t nargs, Lisp_Object *args)
{
Lisp_Object val;
if (inhibit_eval_during_redisplay)
val = Qnil;
else
{
specpdl_ref count = SPECPDL_INDEX ();
specbind (Qinhibit_redisplay, Qt);
if (inhibit_quit)
specbind (Qinhibit_quit, Qt);
/* Use Qt to ensure debugger does not run,
so there is no possibility of wanting to redisplay. */
val = internal_condition_case_n (f, nargs, args, Qt,
dsafe_eval_handler);
val = unbind_to (count, val);
}
return val;
}
static Lisp_Object
funcall_with_backtraces (ptrdiff_t nargs, Lisp_Object *args)
{
/* If an error is signaled during a Lisp hook in redisplay, write a
backtrace into the buffer *Redisplay-trace*. */
push_handler_bind (list_of_error, Qdebug_early__muted, 0);
Lisp_Object res = Ffuncall (nargs, args);
pop_handler ();
return res;
}
#define SAFE_CALLMANY(inhibit_quit, f, array) \
dsafe__call (inhibit_quit, f, ARRAYELTS (array), array)
#define dsafe_calln(inhibit_quit, ...) \
SAFE_CALLMANY (inhibit_quit, \
backtrace_on_redisplay_error \
? funcall_with_backtraces : Ffuncall, \
((Lisp_Object []) {__VA_ARGS__}))
static Lisp_Object
dsafe_call1 (Lisp_Object f, Lisp_Object arg)
{
return dsafe_calln (false, f, arg);
}
static Lisp_Object
dsafe_eval (Lisp_Object sexpr)
{
return dsafe_calln (true, Qeval, sexpr, Qt);
}
/***********************************************************************
Debugging
***********************************************************************/
/* Define CHECK_IT to perform sanity checks on iterators.
This is for debugging. It is too slow to do unconditionally. */
static void
CHECK_IT (struct it *it)
{
#if false
if (it->method == GET_FROM_STRING)
{
eassert (STRINGP (it->string));
eassert (IT_STRING_CHARPOS (*it) >= 0);
}
else
{
eassert (IT_STRING_CHARPOS (*it) < 0);
if (it->method == GET_FROM_BUFFER)
{
/* Check that character and byte positions agree. */
eassert (IT_CHARPOS (*it) == BYTE_TO_CHAR (IT_BYTEPOS (*it)));
}
}
if (it->dpvec)
eassert (it->current.dpvec_index >= 0);
else
eassert (it->current.dpvec_index < 0);
#endif
}
/* Check that the window end of window W is what we expect it
to be---the last row in the current matrix displaying text. */
static void
CHECK_WINDOW_END (struct window *w)
{
#if defined GLYPH_DEBUG && defined ENABLE_CHECKING
if (!MINI_WINDOW_P (w) && w->window_end_valid)
{
struct glyph_row *row;
eassert ((row = MATRIX_ROW (w->current_matrix, w->window_end_vpos),
!row->enabled_p
|| MATRIX_ROW_DISPLAYS_TEXT_P (row)
|| MATRIX_ROW_VPOS (row, w->current_matrix) == 0));
}
#endif
}
/***********************************************************************
Iterator initialization
***********************************************************************/
/* Initialize IT for displaying current_buffer in window W, starting
at character position CHARPOS. CHARPOS < 0 means that no buffer
position is specified which is useful when the iterator is assigned
a position later. BYTEPOS is the byte position corresponding to
CHARPOS.
If ROW is not null, calls to produce_glyphs with IT as parameter
will produce glyphs in that row.
BASE_FACE_ID is the id of a base face to use. It must be one of
DEFAULT_FACE_ID for normal text, MODE_LINE_ACTIVE_FACE_ID,
MODE_LINE_INACTIVE_FACE_ID, or HEADER_LINE_FACE_ID for displaying
mode lines, or TOOL_BAR_FACE_ID for displaying the tool-bar.
If ROW is null and BASE_FACE_ID is equal to MODE_LINE_ACTIVE_FACE_ID,
MODE_LINE_INACTIVE_FACE_ID, or HEADER_LINE_FACE_ID, the iterator
will be initialized to use the corresponding mode line glyph row of
the desired matrix of W. */
void
init_iterator (struct it *it, struct window *w,
ptrdiff_t charpos, ptrdiff_t bytepos,
struct glyph_row *row, enum face_id base_face_id)
{
enum face_id remapped_base_face_id = base_face_id;
int body_width = 0, body_height = 0;
/* Some precondition checks. */
eassert (w != NULL && it != NULL);
eassert (charpos < 0 || (charpos >= BUF_BEG (current_buffer)
&& charpos <= ZV));
/* If face attributes have been changed since the last redisplay,
free realized faces now because they depend on face definitions
that might have changed. Don't free faces while there might be
desired matrices pending which reference these faces. */
if (!inhibit_free_realized_faces)
{
if (face_change)
{
face_change = false;
XFRAME (w->frame)->face_change = 0;
free_all_realized_faces (Qnil);
}
else if (XFRAME (w->frame)->face_change)
{
XFRAME (w->frame)->face_change = 0;
free_all_realized_faces (w->frame);
}
}
/* Perhaps remap BASE_FACE_ID to a user-specified alternative. */
if (! NILP (Vface_remapping_alist))
remapped_base_face_id
= lookup_basic_face (w, XFRAME (w->frame), base_face_id);
/* Use one of the mode line rows of W's desired matrix if
appropriate. */
if (row == NULL)
{
if (base_face_id == MODE_LINE_ACTIVE_FACE_ID
|| base_face_id == MODE_LINE_INACTIVE_FACE_ID)
row = MATRIX_MODE_LINE_ROW (w->desired_matrix);
else if (base_face_id == TAB_LINE_FACE_ID)
row = MATRIX_TAB_LINE_ROW (w->desired_matrix);
else if (base_face_id == HEADER_LINE_FACE_ID)
{
/* Header line row depends on whether tab line is enabled. */
w->desired_matrix->tab_line_p = window_wants_tab_line (w);
row = MATRIX_HEADER_LINE_ROW (w->desired_matrix);
}
}
/* Clear IT, and set it->object and other IT's Lisp objects to Qnil.
Other parts of redisplay rely on that. */
memclear (it, sizeof *it);
it->current.overlay_string_index = -1;
it->current.dpvec_index = -1;
it->base_face_id = remapped_base_face_id;
IT_STRING_CHARPOS (*it) = IT_STRING_BYTEPOS (*it) = -1;
it->paragraph_embedding = L2R;
it->bidi_it.w = w;
/* The window in which we iterate over current_buffer: */
XSETWINDOW (it->window, w);
it->w = w;
it->f = XFRAME (w->frame);
it->cmp_it.id = -1;
it->cmp_it.parent_it = it;
if (max_redisplay_ticks > 0)
update_redisplay_ticks (0, w);
/* Extra space between lines (on window systems only). */
if (base_face_id == DEFAULT_FACE_ID
&& FRAME_WINDOW_P (it->f))
{
if (FIXNATP (BVAR (current_buffer, extra_line_spacing)))
it->extra_line_spacing = XFIXNAT (BVAR (current_buffer, extra_line_spacing));
else if (FLOATP (BVAR (current_buffer, extra_line_spacing)))
it->extra_line_spacing = (XFLOAT_DATA (BVAR (current_buffer, extra_line_spacing))
* FRAME_LINE_HEIGHT (it->f));
else if (it->f->extra_line_spacing > 0)
it->extra_line_spacing = it->f->extra_line_spacing;
}
/* If realized faces have been removed, e.g. because of face
attribute changes of named faces, recompute them. When running
in batch mode, the face cache of the initial frame is null. If
we happen to get called, make a dummy face cache. */
if (FRAME_FACE_CACHE (it->f) == NULL)
init_frame_faces (it->f);
if (FRAME_FACE_CACHE (it->f)->used == 0)
recompute_basic_faces (it->f);
it->override_ascent = -1;
/* Are control characters displayed as `^C'? */
it->ctl_arrow_p = !NILP (BVAR (current_buffer, ctl_arrow));
/* -1 means everything between a CR and the following line end
is invisible. >0 means lines indented more than this value are
invisible. */
it->selective = (FIXNUMP (BVAR (current_buffer, selective_display))
? (clip_to_bounds
(-1, XFIXNUM (BVAR (current_buffer, selective_display)),
PTRDIFF_MAX))
: (!NILP (BVAR (current_buffer, selective_display))
? -1 : 0));
it->selective_display_ellipsis_p
= !NILP (BVAR (current_buffer, selective_display_ellipses));
/* Display table to use. */
it->dp = window_display_table (w);
/* Are multibyte characters enabled in current_buffer? */
it->multibyte_p = !NILP (BVAR (current_buffer, enable_multibyte_characters));
it->tab_width = SANE_TAB_WIDTH (current_buffer);
/* Are lines in the display truncated? */
if (TRUNCATE != 0)
it->line_wrap = TRUNCATE;
if (base_face_id == DEFAULT_FACE_ID
&& !it->w->hscroll
&& (WINDOW_FULL_WIDTH_P (it->w)
|| NILP (Vtruncate_partial_width_windows)
|| (FIXNUMP (Vtruncate_partial_width_windows)
/* PXW: Shall we do something about this? */
&& (XFIXNUM (Vtruncate_partial_width_windows)
<= WINDOW_TOTAL_COLS (it->w))))
&& NILP (BVAR (current_buffer, truncate_lines)))
it->line_wrap = NILP (BVAR (current_buffer, word_wrap))
? WINDOW_WRAP : WORD_WRAP;
/* Get dimensions of truncation and continuation glyphs. These are
displayed as fringe bitmaps under X, but we need them for such
frames when the fringes are turned off. The no_special_glyphs slot
of the iterator's frame, when set, suppresses their display - by
default for tooltip frames and when set via the 'no-special-glyphs'
frame parameter. */
#ifdef HAVE_WINDOW_SYSTEM
if (!(FRAME_WINDOW_P (it->f) && it->f->no_special_glyphs))
#endif
{
if (it->line_wrap == TRUNCATE)
{
/* We will need the truncation glyph. */
eassert (it->glyph_row == NULL);
produce_special_glyphs (it, IT_TRUNCATION);
it->truncation_pixel_width = it->pixel_width;
}
else
{
/* We will need the continuation glyph. */
eassert (it->glyph_row == NULL);
produce_special_glyphs (it, IT_CONTINUATION);
it->continuation_pixel_width = it->pixel_width;
}
}
/* Reset these values to zero because the produce_special_glyphs
above has changed them. */
it->pixel_width = it->ascent = it->descent = 0;
it->phys_ascent = it->phys_descent = 0;
/* Set this after getting the dimensions of truncation and
continuation glyphs, so that we don't produce glyphs when calling
produce_special_glyphs, above. */
it->glyph_row = row;
it->area = TEXT_AREA;
/* Get the dimensions of the display area. The display area
consists of the visible window area plus a horizontally scrolled
part to the left of the window. All x-values are relative to the
start of this total display area. */
if (base_face_id != DEFAULT_FACE_ID)
{
/* Mode lines, menu bar in terminal frames. */
it->first_visible_x = 0;
it->last_visible_x =
WINDOW_PIXEL_WIDTH (w) - WINDOW_RIGHT_DIVIDER_WIDTH (w);
}
else
{
/* When hscrolling only the current line, don't apply the
hscroll here, it will be applied by display_line when it gets
to laying out the line showing point. However, if the
window's min_hscroll is positive, the user specified a lower
bound for automatic hscrolling, so they expect the
non-current lines to obey that hscroll amount. */
if (hscrolling_current_line_p (w))
{
if (w->min_hscroll > 0)
it->first_visible_x = w->min_hscroll * FRAME_COLUMN_WIDTH (it->f);
else
it->first_visible_x = 0;
}
else
it->first_visible_x =
window_hscroll_limited (w, it->f) * FRAME_COLUMN_WIDTH (it->f);
body_width = window_box_width (w, TEXT_AREA);
if (!w->pseudo_window_p && !MINI_WINDOW_P (w)
&& body_width != w->old_body_pixel_width)
FRAME_WINDOW_CHANGE (it->f) = true;
it->last_visible_x = it->first_visible_x + body_width;
/* If we truncate lines, leave room for the truncation glyph(s) at
the right margin. Otherwise, leave room for the continuation
glyph(s). Done only if the window has no right fringe. */
if (WINDOW_RIGHT_FRINGE_WIDTH (it->w) == 0)
{
if (it->line_wrap == TRUNCATE)
it->last_visible_x -= it->truncation_pixel_width;
else
it->last_visible_x -= it->continuation_pixel_width;
}
it->tab_line_p = window_wants_tab_line (w);
it->header_line_p = window_wants_header_line (w);
body_height = WINDOW_TAB_LINE_HEIGHT (w) + WINDOW_HEADER_LINE_HEIGHT (w);
it->current_y = body_height + w->vscroll;
}
/* Leave room for a border glyph. */
if (!FRAME_WINDOW_P (it->f)
&& !WINDOW_RIGHTMOST_P (it->w))
it->last_visible_x -= 1;
it->last_visible_y = window_text_bottom_y (w);
body_height += it->last_visible_y;
if (!w->pseudo_window_p && !MINI_WINDOW_P (w)
&& body_height != w->old_body_pixel_height)
FRAME_WINDOW_CHANGE (it->f) = true;
/* For mode lines and alike, arrange for the first glyph having a
left box line if the face specifies a box. */
if (base_face_id != DEFAULT_FACE_ID)
{
struct face *face;
it->face_id = remapped_base_face_id;
/* If we have a boxed mode line, make the first character appear
with a left box line. */
face = FACE_FROM_ID_OR_NULL (it->f, remapped_base_face_id);
if (face && face->box != FACE_NO_BOX)
{
int box_thickness = face->box_vertical_line_width;
it->face_box_p = true;
it->start_of_box_run_p = true;
/* Make sure we will have enough horizontal space to add the
right box line at the end. */
if (box_thickness > 0)
it->last_visible_x -= box_thickness;
}
}
/* If a buffer position was specified, set the iterator there,
getting overlays and face properties from that position. */
if (charpos >= BUF_BEG (current_buffer))
{
it->stop_charpos = charpos;
it->end_charpos = ZV;
eassert (charpos == BYTE_TO_CHAR (bytepos));
IT_CHARPOS (*it) = charpos;
IT_BYTEPOS (*it) = bytepos;
/* We will rely on `reseat' to set this up properly, via
handle_face_prop. */
it->face_id = it->base_face_id;
it->start = it->current;
/* Do we need to reorder bidirectional text? Not if this is a
unibyte buffer: by definition, none of the single-byte
characters are strong R2L, so no reordering is needed. And
bidi.c doesn't support unibyte buffers anyway. Also, don't
reorder while we are loading loadup.el, since the tables of
character properties needed for reordering are not yet
available. */
it->bidi_p =
!redisplay__inhibit_bidi
&& !NILP (BVAR (current_buffer, bidi_display_reordering))
&& it->multibyte_p;
/* If we are to reorder bidirectional text, init the bidi
iterator. */
if (it->bidi_p)
{
/* Since we don't know at this point whether there will be
any R2L lines in the window, we reserve space for
truncation/continuation glyphs even if only the left
fringe is absent. */
if (base_face_id == DEFAULT_FACE_ID
&& WINDOW_LEFT_FRINGE_WIDTH (it->w) == 0
&& WINDOW_RIGHT_FRINGE_WIDTH (it->w) != 0)
{
if (it->line_wrap == TRUNCATE)
it->last_visible_x -= it->truncation_pixel_width;
else
it->last_visible_x -= it->continuation_pixel_width;
}
/* Note the paragraph direction that this buffer wants to
use. */
if (EQ (BVAR (current_buffer, bidi_paragraph_direction),
Qleft_to_right))
it->paragraph_embedding = L2R;
else if (EQ (BVAR (current_buffer, bidi_paragraph_direction),
Qright_to_left))
it->paragraph_embedding = R2L;
else
it->paragraph_embedding = NEUTRAL_DIR;
bidi_unshelve_cache (NULL, false);
bidi_init_it (charpos, IT_BYTEPOS (*it), FRAME_WINDOW_P (it->f),
&it->bidi_it);
}
/* This is set only when long_line_optimizations_p is non-zero
for the current buffer. */
it->medium_narrowing_begv = 0;
/* Compute faces etc. */
reseat (it, it->current.pos, true);
}
CHECK_IT (it);
}
/* How Emacs deals with long lines.
(1) When a buffer is about to be (re)displayed, 'redisplay_window'
detects, with a heuristic, whether it contains long lines.
This happens in 'redisplay_window' because it is only displaying
buffers with long lines that is problematic. In other words, none
of the optimizations described below is ever used in buffers that
are never displayed.
This happens with a heuristic, which checks whether a buffer
contains long lines, each time its contents have changed "enough"
between two redisplay cycles, because a buffer without long lines
can become a buffer with long lines at any time, for example after
a yank command, or after a replace command, or while the output of
an external process is inserted in a buffer.
When Emacs has detected that a buffer contains long lines, the
buffer-local variable 'long_line_optimizations_p' (in 'struct
buffer') is set, and Emacs does not try to detect whether the
buffer does or does not contain long lines anymore.
What a long line is depends on the variable 'long-line-threshold',
whose default value is 50000 (characters).
(2) When a buffer with long lines is (re)displayed, the amount of
data that the display routines consider is, in a few well-chosen
places, limited with a temporary restriction, whose bounds are
calculated with the functions below.
(2.1) 'get_small_narrowing_begv' is used to create a restriction
which starts a few hundred characters before point. The exact
number of characters depends on the width of the window in which
the buffer is displayed.
There is no corresponding 'get_small_narrowing_zv' function,
because it is not necessary to set the end limit of that
restriction.
This restriction is used in four places, namely:
'back_to_previous_line_start' and 'move_it_vertically_backward'
(with the 'SET_WITH_NARROWED_BEGV' macro), and in
'composition_compute_stop_pos' and 'find_automatic_composition' (in
a conditional statement depending on 'long_line_optimizations_p').
(2.2) 'get_medium_narrowing_begv' is used to create a restriction
which starts a few thousand characters before point. The exact
number of characters depends on the size (width and height) of the
window in which the buffer is displayed. For performance reasons,
the return value of that function is cached in 'struct it', in the
'medium_narrowing_begv' field.
The corresponding function 'get_medium_narrowing_zv' (and
'medium_narrowing_zv' field in 'struct it') is not used to set the
end limit of the restriction, which is again unnecessary, but to
determine, in 'reseat', whether the iterator has moved far enough
from its original position, and whether the start position of the
restriction must be computed anew.
This restriction is used in a single place:
'get_visually_first_element', with the 'SET_WITH_NARROWED_BEGV'
macro.
(2.3) 'get_large_narrowing_begv' and 'get_large_narrowing_zv' are
used to create a restriction which starts a few hundred thousand
characters before point and ends a few hundred thousand characters
after point. The size of that restriction depends on the variable
'long-line-optimizations-region-size', whose default value is
500000 (characters); it can be adjusted by a few hundred characters
depending on 'long-line-optimizations-bol-search-limit', whose
default value is 128 (characters).
For performance reasons again, the return values of these functions
are stored in the 'large_narrowing_begv' and 'large_narrowing_zv'
fields in 'struct it'.
The restriction defined by these values is used around three
low-level hooks: around 'fontification-functions', in
'handle_fontified_prop', and around 'pre-command-hook' and
'post-command-hook', in 'safe_run_hooks_maybe_narrowed', which is
called in 'command_loop_1'. These restrictions are set around
these hooks with 'labeled_narrow_to_region'; the restrictions are
labeled, and cannot be removed with a call to 'widen', but can be
removed with 'without-restriction' with a :label argument.
*/
static int
get_narrowed_width (struct window *w)
{
/* In a character-only terminal, only one font size is used, so we
can use a smaller factor. */
int fact = FRAME_WINDOW_P (XFRAME (w->frame)) ? 3 : 2;
/* If the window has no fringes (in a character-only terminal or in
a GUI frame without fringes), subtract 1 from the width for the
'\' line wrapping character. */
int width = window_body_width (w, WINDOW_BODY_IN_CANONICAL_CHARS)
- ((WINDOW_RIGHT_FRINGE_WIDTH (w) == 0
|| WINDOW_LEFT_FRINGE_WIDTH (w) == 0) ? 1 : 0);
return fact * max (1, width);
}
static int
get_narrowed_len (struct window *w)
{
int height = window_body_height (w, WINDOW_BODY_IN_CANONICAL_CHARS);
return get_narrowed_width (w) * max (1, height);
}
static ptrdiff_t
get_medium_narrowing_begv (struct window *w, ptrdiff_t pos)
{
ptrdiff_t len = get_narrowed_len (w);
return max ((pos / len - 1) * len, BEGV);
}
static ptrdiff_t
get_medium_narrowing_zv (struct window *w, ptrdiff_t pos)
{
ptrdiff_t len = get_narrowed_len (w);
return min ((pos / len + 1) * len, ZV);
}
/* Find the position of the last BOL before POS, unless it is too far
away. The buffer portion in which the search occurs is gradually
enlarged: [POS-500..POS], [POS-5500..POS-500],
[POS-55500..POS-5500], and finally [POS-555500..POS-55500]. Return
BEGV-1 if no BOL was found in [POS-555500..POS]. */
static ptrdiff_t
get_nearby_bol_pos (ptrdiff_t pos)
{
ptrdiff_t start, pos_bytepos, cur, next, found, bol = BEGV - 1, init_pos = pos;
int dist;
for (dist = 500; dist <= 500000; dist *= 10)
{
pos_bytepos = pos == BEGV ? BEGV_BYTE : CHAR_TO_BYTE (pos);
start = pos - dist < BEGV ? BEGV : pos - dist;
for (cur = start; cur < pos; cur = next)
{
next = find_newline1 (cur, CHAR_TO_BYTE (cur),
pos, pos_bytepos,
1, &found, NULL, false);
if (found)
bol = next;
else
break;
}
if (bol >= BEGV || start == BEGV)
break;
else
pos = pos - dist < BEGV ? BEGV : pos - dist;
}
eassert (bol <= init_pos);
return bol;
}
ptrdiff_t
get_small_narrowing_begv (struct window *w, ptrdiff_t pos)
{
int len = get_narrowed_width (w);
ptrdiff_t bol_pos = max (get_nearby_bol_pos (pos), BEGV);
return max (bol_pos + ((pos - bol_pos) / len - 1) * len, BEGV);
}
ptrdiff_t
get_large_narrowing_begv (ptrdiff_t pos)
{
if (long_line_optimizations_region_size <= 0)
return BEGV;
ptrdiff_t len = long_line_optimizations_region_size / 2;
ptrdiff_t begv = max (pos - len, BEGV);
ptrdiff_t limit = long_line_optimizations_bol_search_limit;
while (limit > 0)
{
if (begv == BEGV || FETCH_BYTE (CHAR_TO_BYTE (begv) - 1) == '\n')
return begv;
begv--;
limit--;
}
return begv;
}
ptrdiff_t
get_large_narrowing_zv (ptrdiff_t pos)
{
if (long_line_optimizations_region_size <= 0)
return ZV;
ptrdiff_t len = long_line_optimizations_region_size / 2;
return min (pos + len, ZV);
}
static void
unwind_narrowed_begv (Lisp_Object point_min)
{
SET_BUF_BEGV (current_buffer, XFIXNUM (point_min));
}
/* Set DST to EXPR. When IT indicates that BEGV should temporarily be
updated to optimize display, evaluate EXPR with BEGV set to BV. */
#define SET_WITH_NARROWED_BEGV(IT,DST,EXPR,BV) \
do { \
if (IT->medium_narrowing_begv) \
{ \
specpdl_ref count = SPECPDL_INDEX (); \
record_unwind_protect (unwind_narrowed_begv, Fpoint_min ()); \
SET_BUF_BEGV (current_buffer, BV); \
DST = EXPR; \
unbind_to (count, Qnil); \
} \
else \
DST = EXPR; \
} while (0)
/* Initialize IT for the display of window W with window start POS. */
void
start_display (struct it *it, struct window *w, struct text_pos pos)
{
struct glyph_row *row;
int first_vpos = window_wants_tab_line (w) + window_wants_header_line (w);
row = w->desired_matrix->rows + first_vpos;
init_iterator (it, w, CHARPOS (pos), BYTEPOS (pos), row, DEFAULT_FACE_ID);
it->first_vpos = first_vpos;
/* Don't reseat to previous visible line start if current start
position is in a string or image. */
if (it->line_wrap != TRUNCATE)
{
enum it_method method = it->method;
/* If window start is not at a line start, skip forward to POS
from the beginning of physical line to get the correct
continuation lines width. */
bool start_at_line_beg_p = (CHARPOS (pos) == BEGV
|| FETCH_BYTE (BYTEPOS (pos) - 1) == '\n');
if (!start_at_line_beg_p)
{
int first_y = it->current_y;
int continuation_width;
void *itdata = NULL;
struct it it2;
int new_x;
if (method != GET_FROM_BUFFER)
SAVE_IT (it2, *it, itdata);
reseat_at_previous_visible_line_start (it);
move_it_to (it, CHARPOS (pos), -1, -1, -1, MOVE_TO_POS);
new_x = it->current_x + it->pixel_width;
/* If lines are continued, this line may end in the middle
of a multi-glyph character (e.g. a control character
displayed as \003, or in the middle of an overlay
string). In this case move_it_to above will not have
taken us to the start of the continuation line but to the
end of the continued line. */
if (it->current_x > 0
&& it->line_wrap != TRUNCATE /* Lines are continued. */
&& (/* And glyph doesn't fit on the line. */
new_x > it->last_visible_x
/* Or it fits exactly and we're on a window
system frame. */
|| (new_x == it->last_visible_x
&& FRAME_WINDOW_P (it->f)
&& ((it->bidi_p && it->bidi_it.paragraph_dir == R2L)
? WINDOW_LEFT_FRINGE_WIDTH (it->w)
: WINDOW_RIGHT_FRINGE_WIDTH (it->w)))))
{
if ((it->current.dpvec_index >= 0
|| it->current.overlay_string_index >= 0)
/* If we are on a newline from a display vector or
overlay string, then we are already at the end of
a screen line; no need to go to the next line in
that case, as this line is not really continued.
(If we do go to the next line, C-e will not DTRT.) */
&& it->c != '\n')
{
set_iterator_to_next (it, true);
move_it_in_display_line_to (it, -1, -1, 0);
}
it->continuation_lines_width += it->current_x;
}
/* If the character at POS is displayed via a display
vector, move_it_to above stops at the final glyph of
IT->dpvec. To make the caller redisplay that character
again (a.k.a. start at POS), we need to reset the
dpvec_index to the beginning of IT->dpvec. */
else if (it->current.dpvec_index >= 0)
it->current.dpvec_index = 0;
continuation_width = it->continuation_lines_width;
/* If we started from a position in something other than a
buffer, restore the original iterator state, keeping only
the continuation_lines_width, since we could now be very
far from the original position. */
if (method != GET_FROM_BUFFER)
{
RESTORE_IT (it, &it2, itdata);
it->continuation_lines_width = continuation_width;
}
/* We're starting a new display line, not affected by the
height of the continued line, so clear the appropriate
fields in the iterator structure. */
it->max_ascent = it->max_descent = 0;
it->max_phys_ascent = it->max_phys_descent = 0;
it->current_y = first_y;
it->vpos = 0;
it->current_x = it->hpos = it->wrap_prefix_width = 0;
}
}
}
/* Return true if POS is a position in ellipses displayed for invisible
text. W is the window we display, for text property lookup. */
static bool
in_ellipses_for_invisible_text_p (struct display_pos *pos, struct window *w)
{
Lisp_Object prop, window;
bool ellipses_p = false;
ptrdiff_t charpos = CHARPOS (pos->pos);
/* If POS specifies a position in a display vector, this might
be for an ellipsis displayed for invisible text. We won't
get the iterator set up for delivering that ellipsis unless
we make sure that it gets aware of the invisible text. */
if (pos->dpvec_index >= 0
&& pos->overlay_string_index < 0
&& CHARPOS (pos->string_pos) < 0
&& charpos > BEGV
&& (XSETWINDOW (window, w),
prop = Fget_char_property (make_fixnum (charpos),
Qinvisible, window),
TEXT_PROP_MEANS_INVISIBLE (prop) == 0))
{
prop = Fget_char_property (make_fixnum (charpos - 1), Qinvisible,
window);
ellipses_p = 2 == TEXT_PROP_MEANS_INVISIBLE (prop);
}
return ellipses_p;
}
/* Initialize IT for stepping through current_buffer in window W,
starting at position POS that includes overlay string and display
vector/ control character translation position information. Value
is false if there are overlay strings with newlines at POS. */
static bool
init_from_display_pos (struct it *it, struct window *w, struct display_pos *pos)
{
ptrdiff_t charpos = CHARPOS (pos->pos), bytepos = BYTEPOS (pos->pos);
int i;
bool overlay_strings_with_newlines = false;
/* If POS specifies a position in a display vector, this might
be for an ellipsis displayed for invisible text. We won't
get the iterator set up for delivering that ellipsis unless
we make sure that it gets aware of the invisible text. */
if (in_ellipses_for_invisible_text_p (pos, w))
{
--charpos;
bytepos = BYTE_TO_CHAR (charpos);
}
/* Keep in mind: the call to reseat in init_iterator skips invisible
text, so we might end up at a position different from POS. This
is only a problem when POS is a row start after a newline and an
overlay starts there with an after-string, and the overlay has an
invisible property. Since we don't skip invisible text in
display_line and elsewhere immediately after consuming the
newline before the row start, such a POS will not be in a string,
but the call to init_iterator below will move us to the
after-string. */
init_iterator (it, w, charpos, bytepos, NULL, DEFAULT_FACE_ID);
/* This only scans the current chunk -- it should scan all chunks.
However, OVERLAY_STRING_CHUNK_SIZE has been increased from 3 in 21.1
to 16 in 22.1 to make this a lesser problem. */
for (i = 0; i < it->n_overlay_strings && i < OVERLAY_STRING_CHUNK_SIZE; ++i)
{
const char *s = SSDATA (it->overlay_strings[i]);
const char *e = s + SBYTES (it->overlay_strings[i]);
while (s < e && *s != '\n')
++s;
if (s < e)
{
overlay_strings_with_newlines = true;
break;
}
}
/* If position is within an overlay string, set up IT to the right
overlay string. */
if (pos->overlay_string_index >= 0)
{
int relative_index;
/* If the first overlay string happens to have a `display'
property for an image, the iterator will be set up for that
image, and we have to undo that setup first before we can
correct the overlay string index. */
if (it->method == GET_FROM_IMAGE)
pop_it (it);
/* We already have the first chunk of overlay strings in
IT->overlay_strings. Load more until the one for
pos->overlay_string_index is in IT->overlay_strings. */
if (pos->overlay_string_index >= OVERLAY_STRING_CHUNK_SIZE)
{
ptrdiff_t n = pos->overlay_string_index / OVERLAY_STRING_CHUNK_SIZE;
it->current.overlay_string_index = 0;
while (n--)
{
load_overlay_strings (it, 0);
it->current.overlay_string_index += OVERLAY_STRING_CHUNK_SIZE;
}
}
it->current.overlay_string_index = pos->overlay_string_index;
relative_index = (it->current.overlay_string_index
% OVERLAY_STRING_CHUNK_SIZE);
it->string = it->overlay_strings[relative_index];
eassert (STRINGP (it->string));
it->current.string_pos = pos->string_pos;
it->method = GET_FROM_STRING;
it->end_charpos = SCHARS (it->string);
/* Set up the bidi iterator for this overlay string. */
if (it->bidi_p)
{
it->bidi_it.string.lstring = it->string;
it->bidi_it.string.s = NULL;
it->bidi_it.string.schars = SCHARS (it->string);
it->bidi_it.string.bufpos = it->overlay_strings_charpos;
it->bidi_it.string.from_disp_str = it->string_from_display_prop_p;
it->bidi_it.string.unibyte = !it->multibyte_p;
it->bidi_it.w = it->w;
bidi_init_it (IT_STRING_CHARPOS (*it), IT_STRING_BYTEPOS (*it),
FRAME_WINDOW_P (it->f), &it->bidi_it);
/* Synchronize the state of the bidi iterator with
pos->string_pos. For any string position other than
zero, this will be done automagically when we resume
iteration over the string and get_visually_first_element
is called. But if string_pos is zero, and the string is
to be reordered for display, we need to resync manually,
since it could be that the iteration state recorded in
pos ended at string_pos of 0 moving backwards in string. */
if (CHARPOS (pos->string_pos) == 0)
{
get_visually_first_element (it);
if (IT_STRING_CHARPOS (*it) != 0)
do {
/* Paranoia. */
eassert (it->bidi_it.charpos < it->bidi_it.string.schars);
bidi_move_to_visually_next (&it->bidi_it);
} while (it->bidi_it.charpos != 0);
}
eassert (IT_STRING_CHARPOS (*it) == it->bidi_it.charpos
&& IT_STRING_BYTEPOS (*it) == it->bidi_it.bytepos);
}
}
if (CHARPOS (pos->string_pos) >= 0)
{
/* Recorded position is not in an overlay string, but in another
string. This can only be a string from a `display' property.
IT should already be filled with that string. */
it->current.string_pos = pos->string_pos;
eassert (STRINGP (it->string));
if (it->bidi_p)
bidi_init_it (IT_STRING_CHARPOS (*it), IT_STRING_BYTEPOS (*it),
FRAME_WINDOW_P (it->f), &it->bidi_it);
}
/* Restore position in display vector translations, control
character translations or ellipses. */
if (pos->dpvec_index >= 0)
{
if (it->dpvec == NULL)
get_next_display_element (it);
eassert (it->dpvec && it->current.dpvec_index == 0);
it->current.dpvec_index = pos->dpvec_index;
}
CHECK_IT (it);
return !overlay_strings_with_newlines;
}
/* Initialize IT for stepping through current_buffer in window W
starting at ROW->start. */
static void
init_to_row_start (struct it *it, struct window *w, struct glyph_row *row)
{
init_from_display_pos (it, w, &row->start);
it->start = row->start;
it->continuation_lines_width = row->continuation_lines_width;
CHECK_IT (it);
}
/* Initialize IT for stepping through current_buffer in window W
starting in the line following ROW, i.e. starting at ROW->end.
Value is false if there are overlay strings with newlines at ROW's
end position, or if the following row begins with bidi-reordered
characters that could be composed. */
static bool
init_to_row_end (struct it *it, struct window *w, struct glyph_row *row)
{
bool success = false;
if (init_from_display_pos (it, w, &row->end))
{
if (row->continued_p)
it->continuation_lines_width
= row->continuation_lines_width + row->pixel_width;
CHECK_IT (it);
/* Initializing IT in the presence of compositions in reordered
rows is tricky: row->end above will generally cause us to
start at position that is not the first one in the logical
order, and we might therefore miss the composition earlier in
the buffer that affects how glypsh are laid out in this row.
So we punt instead. Note: the test below works because
get_next_display_element calls get_visually_first_element,
which calls composition_compute_stop_pos, which populates
it->cmp_it. */
if (get_next_display_element (it)
&& (it->bidi_it.scan_dir == -1 && it->cmp_it.id >= 0))
success = false;
else
success = true;
}
return success;
}
/***********************************************************************
Text properties
***********************************************************************/
/* Called when IT reaches IT->stop_charpos. Handle text property and
overlay changes. Set IT->stop_charpos to the next position where
to stop. */
static void
handle_stop (struct it *it)
{
enum prop_handled handled;
bool handle_overlay_change_p;
struct props *p;
it->dpvec = NULL;
it->current.dpvec_index = -1;
handle_overlay_change_p = !it->ignore_overlay_strings_at_pos_p;
it->ellipsis_p = false;
/* Use face of preceding text for ellipsis (if invisible) */
if (it->selective_display_ellipsis_p)
it->saved_face_id = it->face_id;
/* Here's the description of the semantics of, and the logic behind,
the various HANDLED_* statuses:
HANDLED_NORMALLY means the handler did its job, and the loop
should proceed to calling the next handler in order.
HANDLED_RECOMPUTE_PROPS means the handler caused a significant
change in the properties and overlays at current position, so the
loop should be restarted, to re-invoke the handlers that were
already called. This happens when fontification-functions were
called by handle_fontified_prop, and actually fontified
something. Another case where HANDLED_RECOMPUTE_PROPS is
returned is when we discover overlay strings that need to be
displayed right away. The loop below will continue for as long
as the status is HANDLED_RECOMPUTE_PROPS.
HANDLED_RETURN means return immediately to the caller, to
continue iteration without calling any further handlers. This is
used when we need to act on some property right away, for example
when we need to display the ellipsis or a replacing display
property, such as display string or image.
HANDLED_OVERLAY_STRING_CONSUMED means an overlay string was just
consumed, and the handler switched to the next overlay string.
This signals the loop below to refrain from looking for more
overlays before all the overlay strings of the current overlay
are processed.
Some of the handlers called by the loop push the iterator state
onto the stack (see 'push_it'), and arrange for the iteration to
continue with another object, such as an image, a display string,
or an overlay string. In most such cases, it->stop_charpos is
set to the first character of the string, so that when the
iteration resumes, this function will immediately be called
again, to examine the properties at the beginning of the string.
When a display or overlay string is exhausted, the iterator state
is popped (see 'pop_it'), and iteration continues with the
previous object. Again, in many such cases this function is
called again to find the next position where properties might
change. */
do
{
handled = HANDLED_NORMALLY;
/* Call text property handlers. */
for (p = it_props; p->handler; ++p)
{
handled = p->handler (it);
if (handled == HANDLED_RECOMPUTE_PROPS)
break;
else if (handled == HANDLED_RETURN)
{
/* We still want to show before and after strings from
overlays even if the actual buffer text is replaced. */
if (!handle_overlay_change_p
|| it->sp > 1
/* Don't call get_overlay_strings_1 if we already
have overlay strings loaded, because doing so
will load them again and push the iterator state
onto the stack one more time, which is not
expected by the rest of the code that processes
overlay strings. */
|| (it->current.overlay_string_index < 0
&& !get_overlay_strings_1 (it, 0, false)))
{
if (it->ellipsis_p)
setup_for_ellipsis (it, 0);
/* When handling a display spec, we might load an
empty string. In that case, discard it here. We
used to discard it in handle_single_display_spec,
but that causes get_overlay_strings_1, above, to
ignore overlay strings that we must check. */
if (STRINGP (it->string) && !SCHARS (it->string))
pop_it (it);
return;
}
else if (STRINGP (it->string) && !SCHARS (it->string))
pop_it (it);
else
{
it->string_from_display_prop_p = false;
it->from_disp_prop_p = false;
handle_overlay_change_p = false;
}
handled = HANDLED_RECOMPUTE_PROPS;
break;
}
else if (handled == HANDLED_OVERLAY_STRING_CONSUMED)
handle_overlay_change_p = false;
}
if (handled != HANDLED_RECOMPUTE_PROPS)
{
/* Don't check for overlay strings below when set to deliver
characters from a display vector. */
if (it->method == GET_FROM_DISPLAY_VECTOR)
handle_overlay_change_p = false;
/* Handle overlay changes.
This sets HANDLED to HANDLED_RECOMPUTE_PROPS
if it finds overlays. */
if (handle_overlay_change_p)
handled = handle_overlay_change (it);
}
if (it->ellipsis_p)
{
setup_for_ellipsis (it, 0);
break;
}
}
while (handled == HANDLED_RECOMPUTE_PROPS);
/* Determine where to stop next. */
if (handled == HANDLED_NORMALLY)
compute_stop_pos (it);
}
/* Compute IT->stop_charpos from text property and overlay change
information for IT's current position. */
static void
compute_stop_pos (struct it *it)
{
register INTERVAL iv, next_iv;
Lisp_Object object, limit, position;
ptrdiff_t charpos, bytepos, cmp_limit_pos = -1;
if (STRINGP (it->string))
{
/* Strings are usually short, so don't limit the search for
properties. */
it->stop_charpos = it->end_charpos;
object = it->string;
limit = Qnil;
charpos = IT_STRING_CHARPOS (*it);
bytepos = IT_STRING_BYTEPOS (*it);
}
else
{
ptrdiff_t pos;
/* If end_charpos is out of range for some reason, such as a
misbehaving display function, rationalize it (Bug#5984). */
if (it->end_charpos > ZV)
it->end_charpos = ZV;
it->stop_charpos = it->end_charpos;
/* If next overlay change is in front of the current stop pos
(which is IT->end_charpos), stop there. Note: value of
next_overlay_change is point-max if no overlay change
follows. */
charpos = IT_CHARPOS (*it);
bytepos = IT_BYTEPOS (*it);
pos = next_overlay_change (charpos);
if (pos < it->stop_charpos)
it->stop_charpos = pos;
/* If we are breaking compositions at point, stop at point. */
if (!NILP (BVAR (current_buffer, enable_multibyte_characters))
&& !NILP (Vauto_composition_mode)
&& composition_break_at_point
&& charpos < PT && PT < it->stop_charpos)
it->stop_charpos = PT;
/* Set up variables for computing the stop position from text
property changes. */
XSETBUFFER (object, current_buffer);
pos = charpos + TEXT_PROP_DISTANCE_LIMIT;
/* Make sure the above arbitrary limit position is not in the
middle of composable text, so we don't break compositions by
submitting the composable text to the shaper in separate
chunks. We play safe here by assuming that only SPC, TAB,
FF, and NL cannot be in some composition; in particular, most
ASCII punctuation characters could be composed into ligatures. */
if (!composition_break_at_point
&& !NILP (BVAR (current_buffer, enable_multibyte_characters))
&& !NILP (Vauto_composition_mode))
{
ptrdiff_t endpos = charpos + 10 * TEXT_PROP_DISTANCE_LIMIT;
bool found = false;
if (pos > ZV)
pos = ZV;
if (endpos > ZV)
endpos = ZV;
ptrdiff_t bpos = CHAR_TO_BYTE (pos);
while (pos < endpos)
{
int ch = fetch_char_advance_no_check (&pos, &bpos);
if (ch == ' ' || ch == '\t' || ch == '\n' || ch == '\f')
{
found = true;
break;
}
}
if (found)
{
pos--;
cmp_limit_pos = pos;
}
else if (it->stop_charpos < endpos)
pos = it->stop_charpos;
else
{
/* Give up and use the original arbitrary limit. */
pos = charpos + TEXT_PROP_DISTANCE_LIMIT;
}
}
limit = make_fixnum (pos);
}
/* Get the interval containing IT's position. Value is a null
interval if there isn't such an interval. */
position = make_fixnum (charpos);
iv = validate_interval_range (object, &position, &position, false);
if (iv)
{
Lisp_Object values_here[LAST_PROP_IDX];
struct props *p;
/* Get properties here. */
for (p = it_props; p->handler; ++p)
values_here[p->idx] = textget (iv->plist,
builtin_lisp_symbol (p->name));
/* Look for an interval following iv that has different
properties. */
for (next_iv = next_interval (iv);
(next_iv
&& (NILP (limit)
|| XFIXNAT (limit) > next_iv->position));
next_iv = next_interval (next_iv))
{
for (p = it_props; p->handler; ++p)
{
Lisp_Object new_value = textget (next_iv->plist,
builtin_lisp_symbol (p->name));
if (!EQ (values_here[p->idx], new_value))
break;
}
if (p->handler)
break;
}
if (next_iv)
{
if (FIXNUMP (limit)
&& next_iv->position >= XFIXNAT (limit))
/* No text property change up to limit. */
it->stop_charpos = min (XFIXNAT (limit), it->stop_charpos);
else
/* Text properties change in next_iv. */
it->stop_charpos = min (it->stop_charpos, next_iv->position);
}
}
if (it->cmp_it.id < 0)
{
ptrdiff_t stoppos = it->end_charpos;
/* If we found, above, a buffer position that cannot be part of
an automatic composition, limit the search of composable
characters to that position. */
if (it->bidi_p && it->bidi_it.scan_dir < 0)
stoppos = bidi_level_start (it->bidi_it.resolved_level) - 1;
else if (!STRINGP (it->string)
&& it->cmp_it.stop_pos <= IT_CHARPOS (*it)
&& cmp_limit_pos > 0)
stoppos = cmp_limit_pos;
/* Force composition_compute_stop_pos avoid the costly search
for static compositions, since those were already found by
looking at text properties, above. */
composition_compute_stop_pos (&it->cmp_it, charpos, bytepos,
stoppos, it->string, false);
}
eassert (STRINGP (it->string)
|| (it->stop_charpos >= BEGV
&& it->stop_charpos >= IT_CHARPOS (*it)));
}
/* How many characters forward to search for a display property or
display string. Searching too far forward makes the bidi display
sluggish, especially in small windows. */
#define MAX_DISP_SCAN 250
/* Return the character position of a display string at or after
position specified by POSITION. If no display string exists at or
after POSITION, return ZV. A display string is either an overlay
with `display' property whose value is a string, or a `display'
text property whose value is a string. STRING is data about the
string to iterate; if STRING->lstring is nil, we are iterating a
buffer. FRAME_WINDOW_P is true when we are displaying a window
on a GUI frame. DISP_PROP is set to zero if we searched
MAX_DISP_SCAN characters forward without finding any display
strings, non-zero otherwise. It is set to 2 if the display string
uses any kind of `(space ...)' spec that will produce a stretch of
white space in the text area. */
ptrdiff_t
compute_display_string_pos (struct text_pos *position,
struct bidi_string_data *string,
struct window *w,
bool frame_window_p, int *disp_prop)
{
/* OBJECT = nil means current buffer. */
Lisp_Object object, object1;
Lisp_Object pos, spec, limpos;
bool string_p = string && (STRINGP (string->lstring) || string->s);
ptrdiff_t eob = string_p ? string->schars : ZV;
ptrdiff_t begb = string_p ? 0 : BEGV;
ptrdiff_t bufpos, charpos = CHARPOS (*position);
ptrdiff_t lim =
(charpos < eob - MAX_DISP_SCAN) ? charpos + MAX_DISP_SCAN : eob;
struct text_pos tpos;
int rv = 0;
if (string && STRINGP (string->lstring))
object1 = object = string->lstring;
else if (w && !string_p)
{
XSETWINDOW (object, w);
object1 = Qnil;
}
else
object1 = object = Qnil;
*disp_prop = 1;
if (charpos >= eob
/* We don't support display properties whose values are strings
that have display string properties. */
|| string->from_disp_str
/* C strings cannot have display properties. */
|| (string->s && !STRINGP (object)))
{
*disp_prop = 0;
return eob;
}
/* If the character at CHARPOS is where the display string begins,
return CHARPOS. */
pos = make_fixnum (charpos);
if (STRINGP (object))
bufpos = string->bufpos;
else
bufpos = charpos;
tpos = *position;
if (!NILP (spec = Fget_char_property (pos, Qdisplay, object))
&& (charpos <= begb
|| !EQ (Fget_char_property (make_fixnum (charpos - 1), Qdisplay,
object),
spec))
&& (rv = handle_display_spec (NULL, spec, object1, Qnil, &tpos, bufpos,
frame_window_p)))
{
if (rv == 2)
*disp_prop = 2;
return charpos;
}
/* Look forward for the first character with a `display' property
that will replace the underlying text when displayed. */
limpos = make_fixnum (lim);
do {
pos = Fnext_single_char_property_change (pos, Qdisplay, object1, limpos);
CHARPOS (tpos) = XFIXNAT (pos);
if (CHARPOS (tpos) >= lim)
{
*disp_prop = 0;
break;
}
if (STRINGP (object))
BYTEPOS (tpos) = string_char_to_byte (object, CHARPOS (tpos));
else
BYTEPOS (tpos) = CHAR_TO_BYTE (CHARPOS (tpos));
spec = Fget_char_property (pos, Qdisplay, object);
if (!STRINGP (object))
bufpos = CHARPOS (tpos);
} while (NILP (spec)
|| !(rv = handle_display_spec (NULL, spec, object1, Qnil, &tpos,
bufpos, frame_window_p)));
if (rv == 2)
*disp_prop = 2;
return CHARPOS (tpos);
}
/* Return the character position of the end of the display string that
started at CHARPOS. If there's no display string at CHARPOS,
return -1. A display string is either an overlay with `display'
property whose value is a string or a `display' text property whose
value is a string. */
ptrdiff_t
compute_display_string_end (ptrdiff_t charpos, struct bidi_string_data *string)
{
/* OBJECT = nil means current buffer. */
Lisp_Object object =
(string && STRINGP (string->lstring)) ? string->lstring : Qnil;
Lisp_Object pos = make_fixnum (charpos);
ptrdiff_t eob =
(STRINGP (object) || (string && string->s)) ? string->schars : ZV;
if (charpos >= eob || (string->s && !STRINGP (object)))
return eob;
/* It could happen that the display property or overlay was removed
since we found it in compute_display_string_pos above. One way
this can happen is if JIT font-lock was called (through
handle_fontified_prop), and jit-lock-functions remove text
properties or overlays from the portion of buffer that includes
CHARPOS. Muse mode is known to do that, for example. In this
case, we return -1 to the caller, to signal that no display
string is actually present at CHARPOS. See bidi_fetch_char for
how this is handled.
An alternative would be to never look for display properties past
it->stop_charpos. But neither compute_display_string_pos nor
bidi_fetch_char that calls it know or care where the next
stop_charpos is. */
if (NILP (Fget_char_property (pos, Qdisplay, object)))
return -1;
/* Look forward for the first character where the `display' property
changes. */
pos = Fnext_single_char_property_change (pos, Qdisplay, object, Qnil);
return XFIXNAT (pos);
}
/***********************************************************************
Fontification
***********************************************************************/
/* Handle changes in the `fontified' property of the current buffer by
calling hook functions from Qfontification_functions to fontify
regions of text. */
static enum prop_handled
handle_fontified_prop (struct it *it)
{
Lisp_Object prop, pos;
enum prop_handled handled = HANDLED_NORMALLY;
if (!NILP (Vmemory_full))
return handled;
/* Get the value of the `fontified' property at IT's current buffer
position. (The `fontified' property doesn't have a special
meaning in strings.) If the value is nil, call functions from
Qfontification_functions. */
if (!STRINGP (it->string)
&& it->s == NULL
&& !NILP (Vfontification_functions)
&& !(input_was_pending && redisplay_skip_fontification_on_input)
&& !NILP (Vrun_hooks)
&& (pos = make_fixnum (IT_CHARPOS (*it)),
prop = Fget_char_property (pos, Qfontified, Qnil),
/* Ignore the special cased nil value always present at EOB since
no amount of fontifying will be able to change it. */
NILP (prop) && IT_CHARPOS (*it) < Z))
{
specpdl_ref count = SPECPDL_INDEX ();
Lisp_Object val;
struct buffer *obuf = current_buffer;
ptrdiff_t begv = BEGV, zv = ZV;
bool old_clip_changed = current_buffer->clip_changed;
bool saved_inhibit_flag = it->f->inhibit_clear_image_cache;
val = Vfontification_functions;
specbind (Qfontification_functions, Qnil);
eassert (it->end_charpos == ZV);
if (current_buffer->long_line_optimizations_p
&& long_line_optimizations_region_size > 0)
{
ptrdiff_t begv = it->large_narrowing_begv;
ptrdiff_t zv = it->large_narrowing_zv;
ptrdiff_t charpos = IT_CHARPOS (*it);
if (charpos < begv || charpos > zv)
{
begv = get_large_narrowing_begv (charpos);
zv = get_large_narrowing_zv (charpos);
}
if (begv != BEG || zv != Z)
labeled_narrow_to_region (make_fixnum (begv), make_fixnum (zv),
Qlong_line_optimizations_in_fontification_functions);
}
/* Don't allow Lisp that runs from 'fontification-functions'
clear our face and image caches behind our back. */
it->f->inhibit_clear_image_cache = true;
if (!CONSP (val) || EQ (XCAR (val), Qlambda))
dsafe_call1 (val, pos);
else
{
Lisp_Object fns, fn;
fns = Qnil;
for (; CONSP (val); val = XCDR (val))
{
fn = XCAR (val);
if (EQ (fn, Qt))
{
/* A value of t indicates this hook has a local
binding; it means to run the global binding too.
In a global value, t should not occur. If it
does, we must ignore it to avoid an endless
loop. */
for (fns = Fdefault_value (Qfontification_functions);
CONSP (fns);
fns = XCDR (fns))
{
fn = XCAR (fns);
if (!EQ (fn, Qt))
dsafe_call1 (fn, pos);
}
}
else
dsafe_call1 (fn, pos);
}
}
it->f->inhibit_clear_image_cache = saved_inhibit_flag;
unbind_to (count, Qnil);
/* Fontification functions routinely call `save-restriction'.
Normally, this tags clip_changed, which can confuse redisplay
(see discussion in Bug#6671). Since we don't perform any
special handling of fontification changes in the case where
`save-restriction' isn't called, there's no point doing so in
this case either. So, if the buffer's restrictions are
actually left unchanged, reset clip_changed. */
if (obuf == current_buffer)
{
if (begv == BEGV && zv == ZV)
current_buffer->clip_changed = old_clip_changed;
}
/* There isn't much we can reasonably do to protect against
misbehaving fontification, but here's a fig leaf. */
else if (BUFFER_LIVE_P (obuf))
set_buffer_internal_1 (obuf);
/* The fontification code may have added/removed text.
It could do even a lot worse, but let's at least protect against
the most obvious case where only the text past `pos' gets changed',
as is/was done in grep.el where some escapes sequences are turned
into face properties (bug#7876). */
it->end_charpos = ZV;
/* Return HANDLED_RECOMPUTE_PROPS only if function fontified
something. This avoids an endless loop if they failed to
fontify the text for which reason ever. */
if (!NILP (Fget_char_property (pos, Qfontified, Qnil)))
handled = HANDLED_RECOMPUTE_PROPS;
}
return handled;
}
/***********************************************************************
Faces
***********************************************************************/
static int
face_at_pos (const struct it *it, enum lface_attribute_index attr_filter)
{
ptrdiff_t next_stop;
if (!STRINGP (it->string))
{
return face_at_buffer_position (it->w,
IT_CHARPOS (*it),
&next_stop,
(IT_CHARPOS (*it)
+ TEXT_PROP_DISTANCE_LIMIT),
false, it->base_face_id,
attr_filter);
}
else
{
int base_face_id;
ptrdiff_t bufpos;
int i;
Lisp_Object from_overlay
= (it->current.overlay_string_index >= 0
? it->string_overlays[it->current.overlay_string_index
% OVERLAY_STRING_CHUNK_SIZE]
: Qnil);
/* See if we got to this string directly or indirectly from
an overlay property. That includes the before-string or
after-string of an overlay, strings in display properties
provided by an overlay, their text properties, etc.
FROM_OVERLAY is the overlay that brought us here, or nil if none. */
if (! NILP (from_overlay))
for (i = it->sp - 1; i >= 0; i--)
{
if (it->stack[i].current.overlay_string_index >= 0)
from_overlay
= it->string_overlays[it->stack[i].current.overlay_string_index
% OVERLAY_STRING_CHUNK_SIZE];
else if (! NILP (it->stack[i].from_overlay))
from_overlay = it->stack[i].from_overlay;
if (!NILP (from_overlay))
break;
}
if (! NILP (from_overlay))
{
bufpos = IT_CHARPOS (*it);
/* For a string from an overlay, the base face depends
only on text properties and ignores overlays. */
base_face_id
= face_for_overlay_string (it->w,
IT_CHARPOS (*it),
&next_stop,
(IT_CHARPOS (*it)
+ TEXT_PROP_DISTANCE_LIMIT),
false,
from_overlay, attr_filter);
}
else
{
bufpos = 0;
/* For strings from a `display' property, use the face at
IT's current buffer position as the base face to merge
with, so that overlay strings appear in the same face as
surrounding text, unless they specify their own faces.
For strings from wrap-prefix and line-prefix properties,
use the default face, possibly remapped via
Vface_remapping_alist. */
/* Note that the fact that we use the face at _buffer_
position means that a 'display' property on an overlay
string will not inherit the face of that overlay string,
but will instead revert to the face of buffer text
covered by the overlay. This is visible, e.g., when the
overlay specifies a box face, but neither the buffer nor
the display string do. This sounds like a design bug,
but Emacs always did that since v21.1, so changing that
might be a big deal. */
base_face_id = it->string_from_prefix_prop_p
? (!NILP (Vface_remapping_alist)
? lookup_basic_face (it->w, it->f, DEFAULT_FACE_ID)
: DEFAULT_FACE_ID)
: underlying_face_id (it);
}
return face_at_string_position (it->w,
it->string,
IT_STRING_CHARPOS (*it),
bufpos,
&next_stop,
base_face_id, false,
attr_filter);
} /* !STRINGP (it->string) */
}
/* Set up iterator IT from face properties at its current position.
Called from handle_stop. */
static enum prop_handled
handle_face_prop (struct it *it)
{
specpdl_ref count = SPECPDL_INDEX ();
/* Don't allow the user to quit out of face-merging code, in case
this is called when redisplaying a non-selected window, with
point temporarily moved to window-point. */
specbind (Qinhibit_quit, Qt);
const int new_face_id = face_at_pos (it, 0);
unbind_to (count, Qnil);
/* Is this a start of a run of characters with box face?
Caveat: this can be called for a freshly initialized
iterator; face_id is -1 in this case. We know that the new
face will not change until limit, i.e. if the new face has a
box, all characters up to limit will have one. But, as
usual, we don't know whether limit is really the end. */
if (new_face_id != it->face_id)
{
struct face *new_face = FACE_FROM_ID (it->f, new_face_id);
/* If it->face_id is -1, old_face below will be NULL, see
the definition of FACE_FROM_ID_OR_NULL. This will happen
if this is the initial call that gets the face. */
struct face *old_face = FACE_FROM_ID_OR_NULL (it->f, it->face_id);
/* If the value of face_id of the iterator is -1, we have to
look in front of IT's position and see whether there is a
face there that's different from new_face_id. */
if (!STRINGP (it->string)
&& !old_face
&& IT_CHARPOS (*it) > BEG)
{
const int prev_face_id = face_before_it_pos (it);
old_face = FACE_FROM_ID_OR_NULL (it->f, prev_face_id);
}
/* If the new face has a box, but the old face does not,
this is the start of a run of characters with box face,
i.e. this character has a shadow on the left side. */
it->face_id = new_face_id;
/* Don't reset the start_of_box_run_p flag, only set it if
needed. */
if (!(it->start_of_box_run_p && old_face && old_face->box))
it->start_of_box_run_p = (new_face->box != FACE_NO_BOX
&& (old_face == NULL || !old_face->box));
it->face_box_p = new_face->box != FACE_NO_BOX;
}
return HANDLED_NORMALLY;
}
/* Return the ID of the face ``underlying'' IT's current position,
which is in a string. If the iterator is associated with a
buffer, return the face at IT's current buffer position.
Otherwise, use the iterator's base_face_id. */
static int
underlying_face_id (const struct it *it)
{
int face_id = it->base_face_id, i;
eassert (STRINGP (it->string));
for (i = it->sp - 1; i >= 0; --i)
if (NILP (it->stack[i].string))
face_id = it->stack[i].face_id;
return face_id;
}
/* Compute the face one character before or after the current position
of IT, in the visual order. BEFORE_P means get the face
in front (to the left in L2R paragraphs, to the right in R2L
paragraphs) of IT's screen position. Value is the ID of the face. */
static int
face_before_or_after_it_pos (struct it *it, bool before_p)
{
int face_id, limit;
ptrdiff_t next_check_charpos;
struct it it_copy;
void *it_copy_data = NULL;
eassert (it->s == NULL);
if (STRINGP (it->string))
{
ptrdiff_t bufpos, charpos;
int base_face_id;
/* No face change past the end of the string (for the case we
are padding with spaces). No face change before the string
start. Ignore face changes before the first visible
character on this display line. */
if (IT_STRING_CHARPOS (*it) >= SCHARS (it->string)
|| (IT_STRING_CHARPOS (*it) == 0 && before_p)
|| it->current_x <= it->first_visible_x)
return it->face_id;
if (!it->bidi_p)
{
/* Set charpos to the position before or after IT's current
position, in the logical order, which in the non-bidi
case is the same as the visual order. */
if (before_p)
charpos = IT_STRING_CHARPOS (*it) - 1;
else if (it->what == IT_COMPOSITION)
/* For composition, we must check the character after the
composition. */
charpos = IT_STRING_CHARPOS (*it) + it->cmp_it.nchars;
else
charpos = IT_STRING_CHARPOS (*it) + 1;
}
else
{
/* With bidi iteration, the character before the current in
the visual order cannot be found by simple iteration,
because "reverse" reordering is not supported. Instead,
we need to start from the string beginning and go all the
way to the current string position, remembering the
visually-previous position. We need to start from the
string beginning for the character after the current as
well, since the iterator state in IT may have been
pushed, and the bidi cache is no longer coherent with the
string's text. */
SAVE_IT (it_copy, *it, it_copy_data);
IT_STRING_CHARPOS (it_copy) = 0;
bidi_init_it (0, 0, FRAME_WINDOW_P (it_copy.f), &it_copy.bidi_it);
it_copy.bidi_it.scan_dir = 0;
do
{
charpos = it_copy.bidi_it.charpos;
if (charpos >= SCHARS (it->string))
break;
bidi_move_to_visually_next (&it_copy.bidi_it);
}
while (it_copy.bidi_it.charpos != IT_STRING_CHARPOS (*it));
if (!before_p)
{
/* Set charpos to the string position of the character
that comes after IT's current position in the visual
order. */
int n = (it->what == IT_COMPOSITION ? it->cmp_it.nchars : 1);
/* If this is the first string character,
bidi_move_to_visually_next will deliver character at
current position without moving, so we need to enlarge N. */
if (it_copy.bidi_it.first_elt)
n++;
while (n--)
bidi_move_to_visually_next (&it_copy.bidi_it);
charpos = it_copy.bidi_it.charpos;
}
RESTORE_IT (it, it, it_copy_data);
}
eassert (0 <= charpos && charpos <= SCHARS (it->string));
if (it->current.overlay_string_index >= 0)
bufpos = IT_CHARPOS (*it);
else
bufpos = 0;
base_face_id = underlying_face_id (it);
/* Get the face for ASCII, or unibyte. */
face_id = face_at_string_position (it->w, it->string, charpos,
bufpos, &next_check_charpos,
base_face_id, false, 0);
/* Correct the face for charsets different from ASCII. Do it
for the multibyte case only. The face returned above is
suitable for unibyte text if IT->string is unibyte. */
if (STRING_MULTIBYTE (it->string))
{
struct text_pos pos1 = string_pos (charpos, it->string);
const unsigned char *p = SDATA (it->string) + BYTEPOS (pos1);
struct face *face = FACE_FROM_ID (it->f, face_id);
int len, c = check_char_and_length (p, &len);
face_id = FACE_FOR_CHAR (it->f, face, c, charpos, it->string);
}
}
else
{
struct text_pos pos;
if ((IT_CHARPOS (*it) >= ZV && !before_p)
|| (IT_CHARPOS (*it) <= BEGV && before_p))
return it->face_id;
limit = IT_CHARPOS (*it) + TEXT_PROP_DISTANCE_LIMIT;
pos = it->current.pos;
if (!it->bidi_p)
{
if (before_p)
DEC_TEXT_POS (pos, it->multibyte_p);
else
{
if (it->what == IT_COMPOSITION)
{
/* For composition, we must check the position after
the composition. */
pos.charpos += it->cmp_it.nchars;
pos.bytepos += it->len;
}
else
INC_TEXT_POS (pos, it->multibyte_p);
}
}
else
{
if (before_p)
{
int current_x;
/* With bidi iteration, the character before the current
in the visual order cannot be found by simple
iteration, because "reverse" reordering is not
supported. Instead, we need to use the move_it_*
family of functions, and move to the previous
character starting from the beginning of the visual
line. */
/* Ignore face changes before the first visible
character on this display line. */
if (it->current_x <= it->first_visible_x)
return it->face_id;
SAVE_IT (it_copy, *it, it_copy_data);
/* Implementation note: Since move_it_in_display_line
works in the iterator geometry, and thinks the first
character is always the leftmost, even in R2L lines,
we don't need to distinguish between the R2L and L2R
cases here. */
current_x = it_copy.current_x;
move_it_vertically_backward (&it_copy, 0);
move_it_in_display_line (&it_copy, ZV, current_x - 1, MOVE_TO_X);
pos = it_copy.current.pos;
RESTORE_IT (it, it, it_copy_data);
}
else
{
/* Set charpos to the buffer position of the character
that comes after IT's current position in the visual
order. */
int n = (it->what == IT_COMPOSITION ? it->cmp_it.nchars : 1);
it_copy = *it;
/* If this is the first display element,
bidi_move_to_visually_next will deliver character at
current position without moving, so we need to enlarge N. */
if (it->bidi_it.first_elt)
n++;
while (n--)
bidi_move_to_visually_next (&it_copy.bidi_it);
SET_TEXT_POS (pos,
it_copy.bidi_it.charpos, it_copy.bidi_it.bytepos);
}
}
eassert (BEGV <= CHARPOS (pos) && CHARPOS (pos) <= ZV);
/* Determine face for CHARSET_ASCII, or unibyte. */
face_id = face_at_buffer_position (it->w,
CHARPOS (pos),
&next_check_charpos,
limit, false, -1, 0);
/* Correct the face for charsets different from ASCII. Do it
for the multibyte case only. The face returned above is
suitable for unibyte text if current_buffer is unibyte. */
if (it->multibyte_p)
{
int c = FETCH_MULTIBYTE_CHAR (BYTEPOS (pos));
struct face *face = FACE_FROM_ID (it->f, face_id);
face_id = FACE_FOR_CHAR (it->f, face, c, CHARPOS (pos), Qnil);
}
}
return face_id;
}
/***********************************************************************
Invisible text
***********************************************************************/
/* Set up iterator IT from invisible properties at its current
position. Called from handle_stop. */
static enum prop_handled
handle_invisible_prop (struct it *it)
{
enum prop_handled handled = HANDLED_NORMALLY;
int invis;
ptrdiff_t curpos, endpos;
Lisp_Object prop, pos, overlay;
/* Get the value of the invisible text property at the current
position. Value will be nil if there is no such property. */
if (STRINGP (it->string))
{
curpos = IT_STRING_CHARPOS (*it);
endpos = SCHARS (it->string);
pos = make_fixnum (curpos);
prop = Fget_text_property (pos, Qinvisible, it->string);
}
else /* buffer */
{
curpos = IT_CHARPOS (*it);
endpos = ZV;
pos = make_fixnum (curpos);
prop = get_char_property_and_overlay (pos, Qinvisible, it->window,
&overlay);
}
/* Do we have anything to do here? */
invis = TEXT_PROP_MEANS_INVISIBLE (prop);
if (invis == 0 || curpos >= it->end_charpos)
return handled;
/* If not bidi, or the bidi iteration is at base paragraph level, we
can use a faster method; otherwise we need to check invisibility
of every character while bidi-iterating out of invisible text. */
bool slow = it->bidi_p && !BIDI_AT_BASE_LEVEL (it->bidi_it);
/* Record whether we have to display an ellipsis for the
invisible text. */
bool display_ellipsis_p = (invis == 2);
handled = HANDLED_RECOMPUTE_PROPS;
if (slow)
{
if (it->bidi_it.first_elt && it->bidi_it.charpos < endpos)
bidi_paragraph_init (it->paragraph_embedding, &it->bidi_it, true);
if (STRINGP (it->string))
{
bool done = false;
/* Bidi-iterate out of the invisible part of the string. */
do
{
bidi_move_to_visually_next (&it->bidi_it);
if (it->bidi_it.charpos < 0 || it->bidi_it.charpos >= endpos)
done = true;
else
{
pos = make_fixnum (it->bidi_it.charpos);
prop = Fget_text_property (pos, Qinvisible, it->string);
invis = TEXT_PROP_MEANS_INVISIBLE (prop);
/* If there are adjacent invisible texts, don't lose
the second one's ellipsis. */
if (invis == 2)
display_ellipsis_p = true;
}
}
while (!done && invis != 0);
if (display_ellipsis_p)
it->ellipsis_p = true;
IT_STRING_CHARPOS (*it) = it->bidi_it.charpos;
IT_STRING_BYTEPOS (*it) = it->bidi_it.bytepos;
if (IT_STRING_BYTEPOS (*it) >= endpos)
{
/* The rest of the string is invisible. If this is an
overlay string, proceed with the next overlay string
or whatever comes and return a character from there. */
if (it->current.overlay_string_index >= 0
&& !display_ellipsis_p)
{
next_overlay_string (it);
/* Don't check for overlay strings when we just
finished processing them. */
handled = HANDLED_OVERLAY_STRING_CONSUMED;
}
}
}
else
{
bool done = false;
/* Bidi-iterate out of the invisible text. */
do
{
bidi_move_to_visually_next (&it->bidi_it);
if (it->bidi_it.charpos < BEGV || it->bidi_it.charpos >= endpos)
done = true;
else
{
pos = make_fixnum (it->bidi_it.charpos);
prop = Fget_char_property (pos, Qinvisible, it->window);
invis = TEXT_PROP_MEANS_INVISIBLE (prop);
/* If there are adjacent invisible texts, don't lose
the second one's ellipsis. */
if (invis == 2)
display_ellipsis_p = true;
}
}
while (!done && invis != 0);
IT_CHARPOS (*it) = it->bidi_it.charpos;
IT_BYTEPOS (*it) = it->bidi_it.bytepos;
if (display_ellipsis_p)
{
/* Make sure that the glyphs of the ellipsis will get
correct `charpos' values. See below for detailed
explanation why this is needed. */
it->position.charpos = IT_CHARPOS (*it) - 1;
it->position.bytepos = CHAR_TO_BYTE (it->position.charpos);
}
/* If there are before-strings at the start of invisible
text, and the text is invisible because of a text
property, arrange to show before-strings because 20.x did
it that way. (If the text is invisible because of an
overlay property instead of a text property, this is
already handled in the overlay code.) */
if (NILP (overlay)
&& get_overlay_strings (it, it->stop_charpos))
{
handled = HANDLED_RECOMPUTE_PROPS;
if (it->sp > 0)
{
it->stack[it->sp - 1].display_ellipsis_p = display_ellipsis_p;
/* The call to get_overlay_strings above recomputes
it->stop_charpos, but it only considers changes
in properties and overlays beyond iterator's
current position. This causes us to miss changes
that happen exactly where the invisible property
ended. So we play it safe here and force the
iterator to check for potential stop positions
immediately after the invisible text. Note that
if get_overlay_strings returns true, it
normally also pushed the iterator stack, so we
need to update the stop position in the slot
below the current one. */
it->stack[it->sp - 1].stop_charpos
= CHARPOS (it->stack[it->sp - 1].current.pos);
}
}
else if (display_ellipsis_p)
{
it->ellipsis_p = true;
/* Let the ellipsis display before
considering any properties of the following char.
Fixes jasonr@gnu.org 01 Oct 07 bug. */
handled = HANDLED_RETURN;
}
}
}
else if (STRINGP (it->string))
{
Lisp_Object end_charpos = pos, limit;
if (invis != 0 && IT_STRING_CHARPOS (*it) < it->end_charpos)
{
ptrdiff_t len = endpos;
/* Get the position at which the next visible text can be
found in IT->string, if any. */
XSETINT (limit, len);
do
{
end_charpos
= Fnext_single_property_change (end_charpos, Qinvisible,
it->string, limit);
/* Since LIMIT is always an integer, so should be the
value returned by Fnext_single_property_change. */
eassert (FIXNUMP (end_charpos));
if (FIXNUMP (end_charpos))
{
endpos = XFIXNAT (end_charpos);
prop = Fget_text_property (end_charpos, Qinvisible, it->string);
invis = TEXT_PROP_MEANS_INVISIBLE (prop);
if (invis == 2)
display_ellipsis_p = true;
}
else /* Should never happen; but if it does, exit the loop. */
endpos = len;
}
while (invis != 0 && endpos < len);
if (display_ellipsis_p)
it->ellipsis_p = true;
if (endpos < len)
{
/* Text at END_CHARPOS is visible. Move IT there. */
struct text_pos old;
ptrdiff_t oldpos;
old = it->current.string_pos;
oldpos = CHARPOS (old);
if (it->bidi_p)
{
if (it->bidi_it.first_elt
&& it->bidi_it.charpos < SCHARS (it->string))
bidi_paragraph_init (it->paragraph_embedding,
&it->bidi_it, true);
/* Bidi-iterate out of the invisible text. */
do
{
bidi_move_to_visually_next (&it->bidi_it);
}
while (oldpos <= it->bidi_it.charpos
&& it->bidi_it.charpos < endpos
&& it->bidi_it.charpos < it->bidi_it.string.schars);
IT_STRING_CHARPOS (*it) = it->bidi_it.charpos;
IT_STRING_BYTEPOS (*it) = it->bidi_it.bytepos;
if (IT_STRING_CHARPOS (*it) >= endpos)
it->prev_stop = endpos;
}
else
{
IT_STRING_CHARPOS (*it) = endpos;
compute_string_pos (&it->current.string_pos, old, it->string);
}
}
else
{
/* The rest of the string is invisible. If this is an
overlay string, proceed with the next overlay string
or whatever comes and return a character from there. */
if (it->current.overlay_string_index >= 0
&& !display_ellipsis_p)
{
next_overlay_string (it);
/* Don't check for overlay strings when we just
finished processing them. */
handled = HANDLED_OVERLAY_STRING_CONSUMED;
}
else
{
IT_STRING_CHARPOS (*it) = SCHARS (it->string);
IT_STRING_BYTEPOS (*it) = SBYTES (it->string);
}
}
}
}
else /* we are iterating over buffer text at base paragraph level */
{
ptrdiff_t newpos, next_stop, tem = curpos;
Lisp_Object pos;
/* If we are on invisible text, skip over it. */
if (invis != 0 && curpos < it->end_charpos)
{
/* Loop skipping over invisible text. The loop is left at
ZV or with IT on the first char being visible again. */
do
{
/* Try to skip some invisible text. Return value is the
position reached which can be equal to where we start
if there is nothing invisible there. This skips both
over invisible text properties and overlays with
invisible property. */
newpos = skip_invisible (tem, &next_stop, ZV, it->window);
/* If we skipped nothing at all we weren't at invisible
text in the first place. If everything to the end of
the buffer was skipped, end the loop. */
if (newpos == tem || newpos >= ZV)
invis = 0;
else
{
/* We skipped some characters but not necessarily
all there are. Check if we ended up on visible
text. Fget_char_property returns the property of
the char before the given position, i.e. if we
get invis = 0, this means that the char at
newpos is visible. */
pos = make_fixnum (newpos);
prop = Fget_char_property (pos, Qinvisible, it->window);
invis = TEXT_PROP_MEANS_INVISIBLE (prop);
}
/* If we ended up on invisible text, proceed to
skip starting with next_stop. */
if (invis != 0)
tem = next_stop;
/* If there are adjacent invisible texts, don't lose the
second one's ellipsis. */
if (invis == 2)
display_ellipsis_p = true;
}
while (invis != 0);
/* The position newpos is now either ZV or on visible text. */
if (it->bidi_p)
{
ptrdiff_t bpos = CHAR_TO_BYTE (newpos);
bool on_newline
= bpos == ZV_BYTE || FETCH_BYTE (bpos) == '\n';
bool after_newline
= newpos <= BEGV || FETCH_BYTE (bpos - 1) == '\n';
/* If the invisible text ends on a newline or on a
character after a newline, we can avoid the costly,
character by character, bidi iteration to NEWPOS, and
instead simply reseat the iterator there. That's
because all bidi reordering information is tossed at
the newline. This is a big win for modes that hide
complete lines, like Outline, Org, etc. */
if (on_newline || after_newline)
{
struct text_pos tpos;
bidi_dir_t pdir = it->bidi_it.paragraph_dir;
SET_TEXT_POS (tpos, newpos, bpos);
reseat_1 (it, tpos, false);
/* If we reseat on a newline/ZV, we need to prep the
bidi iterator for advancing to the next character
after the newline/EOB, keeping the current paragraph
direction (so that PRODUCE_GLYPHS does TRT wrt
prepending/appending glyphs to a glyph row). */
if (on_newline)
{
it->bidi_it.first_elt = false;
it->bidi_it.paragraph_dir = pdir;
it->bidi_it.ch = (bpos == ZV_BYTE) ? -1 : '\n';
it->bidi_it.nchars = 1;
it->bidi_it.ch_len = 1;
}
}
else /* Must use the slow method. */
{
/* With bidi iteration, the region of invisible text
could start and/or end in the middle of a
non-base embedding level. Therefore, we need to
skip invisible text using the bidi iterator,
starting at IT's current position, until we find
ourselves outside of the invisible text.
Skipping invisible text _after_ bidi iteration
avoids affecting the visual order of the
displayed text when invisible properties are
added or removed. */
if (it->bidi_it.first_elt && it->bidi_it.charpos < ZV)
{
/* If we were `reseat'ed to a new paragraph,
determine the paragraph base direction. We
need to do it now because
next_element_from_buffer may not have a
chance to do it, if we are going to skip any
text at the beginning, which resets the
FIRST_ELT flag. */
bidi_paragraph_init (it->paragraph_embedding,
&it->bidi_it, true);
}
do
{
bidi_move_to_visually_next (&it->bidi_it);
}
while (it->stop_charpos <= it->bidi_it.charpos
&& it->bidi_it.charpos < newpos);
IT_CHARPOS (*it) = it->bidi_it.charpos;
IT_BYTEPOS (*it) = it->bidi_it.bytepos;
/* If we overstepped NEWPOS, record its position in
the iterator, so that we skip invisible text if
later the bidi iteration lands us in the
invisible region again. */
if (IT_CHARPOS (*it) >= newpos)
it->prev_stop = newpos;
}
}
else
{
IT_CHARPOS (*it) = newpos;
IT_BYTEPOS (*it) = CHAR_TO_BYTE (newpos);
}
if (display_ellipsis_p)
{
/* Make sure that the glyphs of the ellipsis will get
correct `charpos' values. If we would not update
it->position here, the glyphs would belong to the
last visible character _before_ the invisible
text, which confuses `set_cursor_from_row'.
We use the last invisible position instead of the
first because this way the cursor is always drawn on
the first "." of the ellipsis, whenever PT is inside
the invisible text. Otherwise the cursor would be
placed _after_ the ellipsis when the point is after the
first invisible character. */
if (!STRINGP (it->object))
{
it->position.charpos = newpos - 1;
it->position.bytepos = CHAR_TO_BYTE (it->position.charpos);
}
}
/* If there are before-strings at the start of invisible
text, and the text is invisible because of a text
property, arrange to show before-strings because 20.x did
it that way. (If the text is invisible because of an
overlay property instead of a text property, this is
already handled in the overlay code.) */
if (NILP (overlay)
&& get_overlay_strings (it, it->stop_charpos))
{
handled = HANDLED_RECOMPUTE_PROPS;
if (it->sp > 0)
{
it->stack[it->sp - 1].display_ellipsis_p = display_ellipsis_p;
/* The call to get_overlay_strings above recomputes
it->stop_charpos, but it only considers changes
in properties and overlays beyond iterator's
current position. This causes us to miss changes
that happen exactly where the invisible property
ended. So we play it safe here and force the
iterator to check for potential stop positions
immediately after the invisible text. Note that
if get_overlay_strings returns true, it
normally also pushed the iterator stack, so we
need to update the stop position in the slot
below the current one. */
it->stack[it->sp - 1].stop_charpos
= CHARPOS (it->stack[it->sp - 1].current.pos);
}
}
else if (display_ellipsis_p)
{
it->ellipsis_p = true;
/* Let the ellipsis display before
considering any properties of the following char.
Fixes jasonr@gnu.org 01 Oct 07 bug. */
handled = HANDLED_RETURN;
}
}
}
return handled;
}
/* Make iterator IT return `...' next.
Replaces LEN characters from buffer. */
static void
setup_for_ellipsis (struct it *it, int len)
{
/* Use the display table definition for `...'. Invalid glyphs
will be handled by the method returning elements from dpvec. */
if (it->dp && VECTORP (DISP_INVIS_VECTOR (it->dp)))
{
struct Lisp_Vector *v = XVECTOR (DISP_INVIS_VECTOR (it->dp));
it->dpvec = v->contents;
it->dpend = v->contents + v->header.size;
}
else
{
/* Default `...'. */
it->dpvec = default_invis_vector;
it->dpend = default_invis_vector + 3;
}
it->dpvec_char_len = len;
it->current.dpvec_index = 0;
it->dpvec_face_id = -1;
/* Use IT->saved_face_id for the ellipsis, so that it has the same
face as the preceding text. IT->saved_face_id was set in
handle_stop to the face of the preceding character, and will be
different from IT->face_id only if the invisible text skipped in
handle_invisible_prop has some non-default face on its first
character. We thus ignore the face of the invisible text when we
display the ellipsis. IT's face is restored in set_iterator_to_next. */
if (it->saved_face_id >= 0)
it->face_id = it->saved_face_id;
/* If the ellipsis represents buffer text, it means we advanced in
the buffer, so we should no longer ignore overlay strings. */
if (it->method == GET_FROM_BUFFER)
it->ignore_overlay_strings_at_pos_p = false;
it->method = GET_FROM_DISPLAY_VECTOR;
it->ellipsis_p = true;
}
static Lisp_Object
find_display_property (Lisp_Object disp, Lisp_Object prop)
{
Lisp_Object elem;
if (NILP (disp))
return Qnil;
/* We have a vector of display specs. */
if (VECTORP (disp))
{
for (ptrdiff_t i = 0; i < ASIZE (disp); i++)
{
elem = AREF (disp, i);
if (CONSP (elem)
&& CONSP (XCDR (elem))
&& EQ (XCAR (elem), prop))
goto found;
}
return Qnil;
}
/* We have a list of display specs. */
else if (CONSP (disp)
&& CONSP (XCAR (disp)))
{
while (!NILP (disp))
{
elem = XCAR (disp);
if (CONSP (elem)
&& CONSP (XCDR (elem))
&& EQ (XCAR (elem), prop))
goto found;
/* Check that we have a proper list before going to the next
element. */
if (CONSP (XCDR (disp)))
disp = XCDR (disp);
else
disp = Qnil;
}
return Qnil;
}
/* A simple display spec. */
else if (CONSP (disp)
&& CONSP (XCDR (disp))
&& EQ (XCAR (disp), prop))
{
elem = disp;
goto found;
}
return Qnil;
found:
/* If the property value is a list of one element, just return the
CAR. */
if (NILP (XCDR (XCDR (elem))))
return XCAR (XCDR (elem));
else
return XCDR (elem);
}
/* Return the value of 'display' text or overlay property PROP of
character at CHARPOS in OBJECT. Return nil if character at CHARPOS
has no 'display' property or if the 'display' property of that
character does not include PROP. OBJECT can be a buffer or a window
or a string. */
static Lisp_Object
get_display_property (ptrdiff_t charpos, Lisp_Object prop, Lisp_Object object)
{
return find_display_property (Fget_char_property (make_fixnum (charpos),
Qdisplay, object),
prop);
}
/* Handle 'display' property '(min-width (WIDTH))' at CHARPOS in OBJECT.
OBJECT can be a buffer (or nil, which means the current buffer) or a
string. MIN_WIDTH is the value of min-width spec that we expect to
process. */
static void
display_min_width (struct it *it, ptrdiff_t charpos,
Lisp_Object object, Lisp_Object width_spec)
{
/* We're being called at the end of the `min-width' sequence,
probably. */
if (!NILP (it->min_width_property)
&& !EQ (width_spec, it->min_width_property))
{
/* When called from display_string (i.e., the mode line),
we're being called with a string as the object, and we
may be called with many sub-strings belonging to the same
:propertize run. */
if ((STRINGP (object)
&& ((charpos == 0
&& !EQ (it->min_width_property,
get_display_property (0, Qmin_width, object)))
|| (charpos > 0
&& EQ (it->min_width_property,
get_display_property (charpos - 1, Qmin_width,
object)))))
/* In a buffer -- check that we're really right after the
sequence of characters covered by this `min-width'. */
|| (!STRINGP (object)
&& charpos > BEGV
&& EQ (it->min_width_property,
get_display_property (charpos - 1, Qmin_width, object))))
{
Lisp_Object w = Qnil;
double width;
#ifdef HAVE_WINDOW_SYSTEM
if (FRAME_WINDOW_P (it->f))
{
struct font *font = NULL;
struct face *face = FACE_FROM_ID (it->f, it->face_id);
font = face->font ? face->font : FRAME_FONT (it->f);
calc_pixel_width_or_height (&width, it,
XCAR (it->min_width_property),
font, true, NULL);
width -= it->current_x - it->min_width_start;
/* It makes no sense to try to obey min-width which yields
a stretch that ends beyond the visible portion of the
window if we are truncating screen lines. If we are
requested to do that, some Lisp program went awry. */
if (!(it->line_wrap == TRUNCATE
&& it->current_x + width > it->last_visible_x))
w = list1 (make_int (width));
}
else
#endif
{
calc_pixel_width_or_height (&width, it,
XCAR (it->min_width_property),
NULL, true, NULL);
width -= (it->current_x - it->min_width_start) /
FRAME_COLUMN_WIDTH (it->f);
if (!(it->line_wrap == TRUNCATE
&& it->current_x + width > it->last_visible_x))
w = make_int (width);
}
/* Insert the stretch glyph. */
if (!NILP (w))
{
it->object = list3 (Qspace, QCwidth, w);
produce_stretch_glyph (it);
if (it->area == TEXT_AREA)
{
it->current_x += it->pixel_width;
if (it->continuation_lines_width
&& it->string_from_prefix_prop_p)
it->wrap_prefix_width = it->current_x;
}
}
it->min_width_property = Qnil;
}
}
/* We're at the start of a `min-width' sequence -- record the
position and the property, so that we can later see if we're at
the end. */
if (CONSP (width_spec))
{
if ((!STRINGP (object)
&& charpos == BEGV)
/* Mode line (see above). */
|| (STRINGP (object)
&& charpos == 0
&& !EQ (it->min_width_property,
get_display_property (0, Qmin_width, object)))
/* Buffer. */
|| (!STRINGP (object)
&& charpos > BEGV
&& !EQ (width_spec,
get_display_property (charpos - 1, Qmin_width, object))))
{
it->min_width_property = width_spec;
it->min_width_start = it->current_x;
}
}
}
DEFUN ("get-display-property", Fget_display_property,
Sget_display_property, 2, 4, 0,
doc: /* Get the value of the `display' property PROP at POSITION.
If OBJECT, this should be a buffer or string where the property is
fetched from. If omitted, OBJECT defaults to the current buffer.
If PROPERTIES, look for value of PROP in PROPERTIES instead of the
properties at POSITION. */)
(Lisp_Object position, Lisp_Object prop, Lisp_Object object,
Lisp_Object properties)
{
if (NILP (properties))
properties = Fget_text_property (position, Qdisplay, object);
else
CHECK_LIST (properties);
return find_display_property (properties, prop);
}
/***********************************************************************
'display' property
***********************************************************************/
/* Set up iterator IT from `display' property at its current position.
Called from handle_stop.
We return HANDLED_RETURN if some part of the display property
overrides the display of the buffer text itself.
Otherwise we return HANDLED_NORMALLY. */
static enum prop_handled
handle_display_prop (struct it *it)
{
Lisp_Object propval, object, overlay;
struct text_pos *position;
ptrdiff_t bufpos;
/* Nonzero if some property replaces the display of the text itself. */
int display_replaced = 0;
if (STRINGP (it->string))
{
object = it->string;
position = &it->current.string_pos;
bufpos = CHARPOS (it->current.pos);
}
else
{
XSETWINDOW (object, it->w);
position = &it->current.pos;
bufpos = CHARPOS (*position);
}
/* Reset those iterator values set from display property values. */
it->slice.x = it->slice.y = it->slice.width = it->slice.height = Qnil;
it->space_width = Qnil;
it->font_height = Qnil;
it->voffset = 0;
/* We don't support recursive `display' properties, i.e. string
values that have a string `display' property, that have a string
`display' property etc. */
if (!it->string_from_display_prop_p)
it->area = TEXT_AREA;
propval = get_char_property_and_overlay (make_fixnum (position->charpos),
Qdisplay, object, &overlay);
/* Rest of the code must have OBJECT be either a string or a buffer. */
Lisp_Object objwin = object;
if (!STRINGP (it->string))
object = it->w->contents;
/* Handle min-width ends. */
if (!NILP (it->min_width_property)
&& NILP (find_display_property (propval, Qmin_width)))
{
ptrdiff_t pos = bufpos, start = BEGV;
if (STRINGP (object))
{
pos = IT_STRING_CHARPOS (*it);
start = 0;
}
if (pos > start)
display_min_width (it, pos, objwin, Qnil);
}
if (NILP (propval))
return HANDLED_NORMALLY;
/* Now OVERLAY is the overlay that gave us this property, or nil
if it was a text property. */
display_replaced = handle_display_spec (it, propval, object, overlay,
position, bufpos,
FRAME_WINDOW_P (it->f));
return display_replaced != 0 ? HANDLED_RETURN : HANDLED_NORMALLY;
}
/* Subroutine of handle_display_prop. Returns non-zero if the display
specification in SPEC is a replacing specification, i.e. it would
replace the text covered by `display' property with something else,
such as an image or a display string. If SPEC includes any kind or
`(space ...) specification, the value is 2; this is used by
compute_display_string_pos, which see.
See handle_single_display_spec for documentation of arguments.
FRAME_WINDOW_P is true if the window being redisplayed is on a
GUI frame; this argument is used only if IT is NULL, see below.
IT can be NULL, if this is called by the bidi reordering code
through compute_display_string_pos, which see. In that case, this
function only examines SPEC, but does not otherwise "handle" it, in
the sense that it doesn't set up members of IT from the display
spec. */
static int
handle_display_spec (struct it *it, Lisp_Object spec, Lisp_Object object,
Lisp_Object overlay, struct text_pos *position,
ptrdiff_t bufpos, bool frame_window_p)
{
int replacing = 0;
bool enable_eval = true;
/* Support (disable-eval PROP) which is used by enriched.el. */
if (CONSP (spec) && EQ (XCAR (spec), Qdisable_eval))
{
enable_eval = false;
spec = CONSP (XCDR (spec)) ? XCAR (XCDR (spec)) : Qnil;
}
if (CONSP (spec)
/* Simple specifications. */
&& !EQ (XCAR (spec), Qimage)
#ifdef HAVE_XWIDGETS
&& !EQ (XCAR (spec), Qxwidget)
#endif
&& !EQ (XCAR (spec), Qspace)
&& !EQ (XCAR (spec), Qwhen)
&& !EQ (XCAR (spec), Qslice)
&& !EQ (XCAR (spec), Qspace_width)
&& !EQ (XCAR (spec), Qheight)
&& !EQ (XCAR (spec), Qraise)
/* Marginal area specifications. */
&& !(CONSP (XCAR (spec)) && EQ (XCAR (XCAR (spec)), Qmargin))
&& !EQ (XCAR (spec), Qleft_fringe)
&& !EQ (XCAR (spec), Qright_fringe)
&& !EQ (XCAR (spec), Qmin_width)
&& !NILP (XCAR (spec)))
{
for (; CONSP (spec); spec = XCDR (spec))
{
int rv = handle_single_display_spec (it, XCAR (spec), object,
overlay, position, bufpos,
replacing, frame_window_p,
enable_eval);
if (rv != 0)
{
replacing = rv;
/* If some text in a string is replaced, `position' no
longer points to the position of `object'. */
if (!it || STRINGP (object))
break;
}
}
}
else if (VECTORP (spec))
{
ptrdiff_t i;
for (i = 0; i < ASIZE (spec); ++i)
{
int rv = handle_single_display_spec (it, AREF (spec, i), object,
overlay, position, bufpos,
replacing, frame_window_p,
enable_eval);
if (rv != 0)
{
replacing = rv;
/* If some text in a string is replaced, `position' no
longer points to the position of `object'. */
if (!it || STRINGP (object))
break;
}
}
}
else
replacing = handle_single_display_spec (it, spec, object, overlay, position,
bufpos, 0, frame_window_p,
enable_eval);
return replacing;
}
/* Value is the position of the end of the `display' property starting
at START_POS in OBJECT. */
static struct text_pos
display_prop_end (struct it *it, Lisp_Object object, struct text_pos start_pos)
{
Lisp_Object end;
struct text_pos end_pos;
end = Fnext_single_char_property_change (make_fixnum (CHARPOS (start_pos)),
Qdisplay, object, Qnil);
CHARPOS (end_pos) = XFIXNAT (end);
if (STRINGP (object))
compute_string_pos (&end_pos, start_pos, it->string);
else
BYTEPOS (end_pos) = CHAR_TO_BYTE (XFIXNAT (end));
return end_pos;
}
/* Set up IT from a single `display' property specification SPEC. OBJECT
is the object in which the `display' property was found. *POSITION
is the position in OBJECT at which the `display' property was found.
BUFPOS is the buffer position of OBJECT (different from POSITION if
OBJECT is not a buffer). DISPLAY_REPLACED non-zero means that we
previously saw a display specification which already replaced text
display with something else, for example an image; we ignore such
properties after the first one has been processed.
OVERLAY is the overlay this `display' property came from,
or nil if it was a text property.
If SPEC is a `space' or `image' specification, and in some other
cases too, set *POSITION to the position where the `display'
property ends.
If IT is NULL, only examine the property specification in SPEC, but
don't set up IT. In that case, FRAME_WINDOW_P means SPEC
is intended to be displayed in a window on a GUI frame.
Enable evaluation of Lisp forms only if ENABLE_EVAL_P is true.
Value is non-zero if something was found which replaces the display
of buffer or string text. */
static int
handle_single_display_spec (struct it *it, Lisp_Object spec, Lisp_Object object,
Lisp_Object overlay, struct text_pos *position,
ptrdiff_t bufpos, int display_replaced,
bool frame_window_p, bool enable_eval_p)
{
Lisp_Object form;
Lisp_Object location, value;
struct text_pos start_pos = *position;
void *itdata = NULL;
/* If SPEC is a list of the form `(when FORM . VALUE)', evaluate FORM.
If the result is non-nil, use VALUE instead of SPEC. */
form = Qt;
if (CONSP (spec) && EQ (XCAR (spec), Qwhen))
{
spec = XCDR (spec);
if (!CONSP (spec))
return 0;
form = XCAR (spec);
spec = XCDR (spec);
}
if (!NILP (form) && !EQ (form, Qt) && !enable_eval_p)
form = Qnil;
if (!NILP (form) && !EQ (form, Qt))
{
specpdl_ref count = SPECPDL_INDEX ();
/* Bind `object' to the object having the `display' property, a
buffer or string. Bind `position' to the position in the
object where the property was found, and `buffer-position'
to the current position in the buffer. */
if (NILP (object))
XSETBUFFER (object, current_buffer);
specbind (Qobject, object);
specbind (Qposition, make_fixnum (CHARPOS (*position)));
specbind (Qbuffer_position, make_fixnum (bufpos));
/* Save and restore the bidi cache, since FORM could be crazy
enough to re-enter redisplay, e.g., by calling 'message'. */
itdata = bidi_shelve_cache ();
form = dsafe_eval (form);
bidi_unshelve_cache (itdata, false);
form = unbind_to (count, form);
}
if (NILP (form))
return 0;
/* Handle `(height HEIGHT)' specifications. */
if (CONSP (spec)
&& EQ (XCAR (spec), Qheight)
&& CONSP (XCDR (spec)))
{
if (it)
{
if (!FRAME_WINDOW_P (it->f))
return 0;
it->font_height = XCAR (XCDR (spec));
if (!NILP (it->font_height))
{
int new_height = -1;
if (CONSP (it->font_height)
&& (EQ (XCAR (it->font_height), Qplus)
|| EQ (XCAR (it->font_height), Qminus))
&& CONSP (XCDR (it->font_height))
&& RANGED_FIXNUMP (0, XCAR (XCDR (it->font_height)), INT_MAX))
{
/* `(+ N)' or `(- N)' where N is an integer. */
int steps = XFIXNUM (XCAR (XCDR (it->font_height)));
if (EQ (XCAR (it->font_height), Qplus))
steps = - steps;
it->face_id = smaller_face (it->f, it->face_id, steps);
}
else if (FUNCTIONP (it->font_height) && enable_eval_p)
{
/* Call function with current height as argument.
Value is the new height. */
struct face *face = FACE_FROM_ID (it->f, it->face_id);
Lisp_Object height;
itdata = bidi_shelve_cache ();
height = dsafe_call1 (it->font_height,
face->lface[LFACE_HEIGHT_INDEX]);
bidi_unshelve_cache (itdata, false);
if (NUMBERP (height))
new_height = XFLOATINT (height);
}
else if (NUMBERP (it->font_height))
{
/* Value is a multiple of the canonical char height. */
struct face *f;
f = FACE_FROM_ID (it->f,
lookup_basic_face (it->w, it->f, DEFAULT_FACE_ID));
new_height = (XFLOATINT (it->font_height)
* XFIXNUM (f->lface[LFACE_HEIGHT_INDEX]));
}
else if (enable_eval_p)
{
/* Evaluate IT->font_height with `height' bound to the
current specified height to get the new height. */
specpdl_ref count = SPECPDL_INDEX ();
struct face *face = FACE_FROM_ID (it->f, it->face_id);
specbind (Qheight, face->lface[LFACE_HEIGHT_INDEX]);
itdata = bidi_shelve_cache ();
value = dsafe_eval (it->font_height);
bidi_unshelve_cache (itdata, false);
value = unbind_to (count, value);
if (NUMBERP (value))
new_height = XFLOATINT (value);
}
if (new_height > 0)
it->face_id = face_with_height (it->f, it->face_id, new_height);
}
}
return 0;
}
/* Handle `(space-width WIDTH)'. */
if (CONSP (spec)
&& EQ (XCAR (spec), Qspace_width)
&& CONSP (XCDR (spec)))
{
if (it)
{
if (!FRAME_WINDOW_P (it->f))
return 0;
value = XCAR (XCDR (spec));
if (NUMBERP (value) && XFLOATINT (value) > 0)
it->space_width = value;
}
return 0;
}
/* Handle `(min-width (WIDTH))'. */
if (CONSP (spec)
&& EQ (XCAR (spec), Qmin_width)
&& CONSP (XCDR (spec))
&& CONSP (XCAR (XCDR (spec))))
{
if (it)
{
ptrdiff_t pos = bufpos;
if (STRINGP (object))
pos = IT_STRING_CHARPOS (*it);
display_min_width (it, pos, object, XCAR (XCDR (spec)));
}
return 0;
}
/* Handle `(slice X Y WIDTH HEIGHT)'. */
if (CONSP (spec)
&& EQ (XCAR (spec), Qslice))
{
Lisp_Object tem;
if (it)
{
if (!FRAME_WINDOW_P (it->f))
return 0;
if (tem = XCDR (spec), CONSP (tem))
{
it->slice.x = XCAR (tem);
if (tem = XCDR (tem), CONSP (tem))
{
it->slice.y = XCAR (tem);
if (tem = XCDR (tem), CONSP (tem))
{
it->slice.width = XCAR (tem);
if (tem = XCDR (tem), CONSP (tem))
it->slice.height = XCAR (tem);
}
}
}
}
return 0;
}
/* Handle `(raise FACTOR)'. */
if (CONSP (spec)
&& EQ (XCAR (spec), Qraise)
&& CONSP (XCDR (spec)))
{
if (it)
{
if (!FRAME_WINDOW_P (it->f))
return 0;
#ifdef HAVE_WINDOW_SYSTEM
value = XCAR (XCDR (spec));
if (NUMBERP (value))
{
struct face *face = FACE_FROM_ID (it->f, it->face_id);
it->voffset = - (XFLOATINT (value)
* (normal_char_height (face->font, -1)));
}
#endif /* HAVE_WINDOW_SYSTEM */
}
return 0;
}
/* Don't handle the other kinds of display specifications
inside a string that we got from a `display' property. */
if (it && it->string_from_display_prop_p)
return 0;
/* Characters having this form of property are not displayed, so
we have to find the end of the property. */
if (it)
{
start_pos = *position;
*position = display_prop_end (it, object, start_pos);
/* If the display property comes from an overlay, don't consider
any potential stop_charpos values before the end of that
overlay. Since display_prop_end will happily find another
'display' property coming from some other overlay or text
property on buffer positions before this overlay's end, we
need to ignore them, or else we risk displaying this
overlay's display string/image twice. */
if (!NILP (overlay))
{
ptrdiff_t ovendpos = OVERLAY_END (overlay);
/* Some borderline-sane Lisp might call us with the current
buffer narrowed so that overlay-end is outside the
POINT_MIN..POINT_MAX region, which will then cause
various assertion violations and crashes down the road,
starting with pop_it when it will attempt to use POSITION
set below. Prevent that. */
ovendpos = clip_to_bounds (BEGV, ovendpos, ZV);
if (ovendpos > CHARPOS (*position))
SET_TEXT_POS (*position, ovendpos, CHAR_TO_BYTE (ovendpos));
}
}
value = Qnil;
/* Stop the scan at that end position--we assume that all
text properties change there. */
if (it)
it->stop_charpos = position->charpos;
/* Handle `(left-fringe BITMAP [FACE])'
and `(right-fringe BITMAP [FACE])'. */
if (CONSP (spec)
&& (EQ (XCAR (spec), Qleft_fringe)
|| EQ (XCAR (spec), Qright_fringe))
&& CONSP (XCDR (spec)))
{
if (it)
{
if (!FRAME_WINDOW_P (it->f))
/* If we return here, POSITION has been advanced
across the text with this property. */
{
/* Synchronize the bidi iterator with POSITION. This is
needed because we are not going to push the iterator
on behalf of this display property, so there will be
no pop_it call to do this synchronization for us. */
if (it->bidi_p)
{
it->position = *position;
iterate_out_of_display_property (it);
*position = it->position;
}
return 1;
}
}
else if (!frame_window_p)
return 1;
#ifdef HAVE_WINDOW_SYSTEM
value = XCAR (XCDR (spec));
int fringe_bitmap = SYMBOLP (value) ? lookup_fringe_bitmap (value) : 0;
if (! fringe_bitmap)
/* If we return here, POSITION has been advanced
across the text with this property. */
{
if (it && it->bidi_p)
{
it->position = *position;
iterate_out_of_display_property (it);
*position = it->position;
}
return 1;
}
if (it)
{
int face_id = lookup_basic_face (it->w, it->f, DEFAULT_FACE_ID);
if (CONSP (XCDR (XCDR (spec))))
{
Lisp_Object face_name = XCAR (XCDR (XCDR (spec)));
int face_id2;
/* Don't allow quitting from lookup_derived_face, for when
we are displaying a non-selected window, and the buffer's
point was temporarily moved to the window-point. */
specpdl_ref count1 = SPECPDL_INDEX ();
specbind (Qinhibit_quit, Qt);
face_id2 = lookup_derived_face (it->w, it->f, face_name,
FRINGE_FACE_ID, false);
unbind_to (count1, Qnil);
if (face_id2 >= 0)
face_id = face_id2;
}
/* Save current settings of IT so that we can restore them
when we are finished with the glyph property value. */
push_it (it, position);
it->area = TEXT_AREA;
it->what = IT_IMAGE;
it->image_id = -1; /* no image */
it->position = start_pos;
it->object = NILP (object) ? it->w->contents : object;
it->method = GET_FROM_IMAGE;
it->from_overlay = Qnil;
it->face_id = face_id;
it->from_disp_prop_p = true;
/* Say that we haven't consumed the characters with
`display' property yet. The call to pop_it in
set_iterator_to_next will clean this up. */
*position = start_pos;
if (EQ (XCAR (spec), Qleft_fringe))
{
it->left_user_fringe_bitmap = fringe_bitmap;
it->left_user_fringe_face_id = face_id;
}
else
{
it->right_user_fringe_bitmap = fringe_bitmap;
it->right_user_fringe_face_id = face_id;
}
}
#endif /* HAVE_WINDOW_SYSTEM */
return 1;
}
/* Prepare to handle `((margin left-margin) ...)',
`((margin right-margin) ...)' and `((margin nil) ...)'
prefixes for display specifications. */
location = Qunbound;
if (CONSP (spec) && CONSP (XCAR (spec)))
{
Lisp_Object tem;
value = XCDR (spec);
if (CONSP (value))
value = XCAR (value);
tem = XCAR (spec);
if (EQ (XCAR (tem), Qmargin)
&& (tem = XCDR (tem),
tem = CONSP (tem) ? XCAR (tem) : Qnil,
(NILP (tem)
|| EQ (tem, Qleft_margin)
|| EQ (tem, Qright_margin))))
location = tem;
}
if (BASE_EQ (location, Qunbound))
{
location = Qnil;
value = spec;
}
/* After this point, VALUE is the property after any
margin prefix has been stripped. It must be a string,
an image specification, or `(space ...)'.
LOCATION specifies where to display: `left-margin',
`right-margin' or nil. */
bool valid_p = (STRINGP (value)
#ifdef HAVE_WINDOW_SYSTEM
|| ((it ? FRAME_WINDOW_P (it->f) : frame_window_p)
&& valid_image_p (value))
#endif /* not HAVE_WINDOW_SYSTEM */
|| (CONSP (value) && EQ (XCAR (value), Qspace))
|| ((it ? FRAME_WINDOW_P (it->f) : frame_window_p)
&& valid_xwidget_spec_p (value)));
if (valid_p && display_replaced == 0)
{
int retval = 1;
if (!it)
{
/* Callers need to know whether the display spec is any kind
of `(space ...)' spec that is about to affect text-area
display. */
if (CONSP (value) && EQ (XCAR (value), Qspace) && NILP (location))
retval = 2;
return retval;
}
/* We want the string to inherit the paragraph direction of the
parent object, so we need to calculate that if not yet done. */
ptrdiff_t eob = (BUFFERP (object) ? ZV : it->end_charpos);
if (it->bidi_it.first_elt && it->bidi_it.charpos < eob)
bidi_paragraph_init (it->paragraph_embedding, &it->bidi_it, true);
/* Save current settings of IT so that we can restore them
when we are finished with the glyph property value. */
push_it (it, position);
it->from_overlay = overlay;
it->from_disp_prop_p = true;
if (NILP (location))
it->area = TEXT_AREA;
else if (EQ (location, Qleft_margin))
it->area = LEFT_MARGIN_AREA;
else
it->area = RIGHT_MARGIN_AREA;
if (STRINGP (value))
{
it->string = value;
it->multibyte_p = STRING_MULTIBYTE (it->string);
it->current.overlay_string_index = -1;
IT_STRING_CHARPOS (*it) = IT_STRING_BYTEPOS (*it) = 0;
it->end_charpos = it->string_nchars = SCHARS (it->string);
it->method = GET_FROM_STRING;
it->stop_charpos = 0;
it->prev_stop = 0;
it->base_level_stop = 0;
it->string_from_display_prop_p = true;
it->cmp_it.id = -1;
/* Say that we haven't consumed the characters with
`display' property yet. The call to pop_it in
set_iterator_to_next will clean this up. */
if (BUFFERP (object))
*position = start_pos;
/* Force paragraph direction to be that of the parent object.
If the parent object's paragraph direction is not yet
determined (which shouldn not happen, since we called
bidi_paragraph_init above), default to L2R. */
if (it->bidi_p && it->bidi_it.paragraph_dir == R2L)
it->paragraph_embedding = it->bidi_it.paragraph_dir;
else
it->paragraph_embedding = L2R;
/* Set up the bidi iterator for this display string. */
if (it->bidi_p)
{
it->bidi_it.string.lstring = it->string;
it->bidi_it.string.s = NULL;
it->bidi_it.string.schars = it->end_charpos;
it->bidi_it.string.bufpos = bufpos;
it->bidi_it.string.from_disp_str = true;
it->bidi_it.string.unibyte = !it->multibyte_p;
it->bidi_it.w = it->w;
bidi_init_it (0, 0, FRAME_WINDOW_P (it->f), &it->bidi_it);
}
}
else if (CONSP (value) && EQ (XCAR (value), Qspace))
{
it->method = GET_FROM_STRETCH;
it->object = value;
*position = it->position = start_pos;
retval = 1 + (it->area == TEXT_AREA);
}
else if (valid_xwidget_spec_p (value))
{
it->what = IT_XWIDGET;
it->method = GET_FROM_XWIDGET;
it->position = start_pos;
it->object = NILP (object) ? it->w->contents : object;
*position = start_pos;
it->xwidget = lookup_xwidget (value);
}
#ifdef HAVE_WINDOW_SYSTEM
else
{
specpdl_ref count = SPECPDL_INDEX ();
it->what = IT_IMAGE;
/* Don't allow quitting from lookup_image, for when we are
displaying a non-selected window, and the buffer's point
was temporarily moved to the window-point. */
specbind (Qinhibit_quit, Qt);
it->image_id = lookup_image (it->f, value, it->face_id);
unbind_to (count, Qnil);
it->position = start_pos;
it->object = NILP (object) ? it->w->contents : object;
it->method = GET_FROM_IMAGE;
/* Say that we haven't consumed the characters with
`display' property yet. The call to pop_it in
set_iterator_to_next will clean this up. */
*position = start_pos;
}
#endif /* HAVE_WINDOW_SYSTEM */
return retval;
}
/* Invalid property or property not supported. Restore
POSITION to what it was before. */
*position = start_pos;
return 0;
}
/* Check if PROP is a display property value whose text should be
treated as intangible. OVERLAY is the overlay from which PROP
came, or nil if it came from a text property. CHARPOS and BYTEPOS
specify the buffer position covered by PROP. */
bool
display_prop_intangible_p (Lisp_Object prop, Lisp_Object overlay,
ptrdiff_t charpos, ptrdiff_t bytepos)
{
bool frame_window_p = FRAME_WINDOW_P (XFRAME (selected_frame));
struct text_pos position;
SET_TEXT_POS (position, charpos, bytepos);
return (handle_display_spec (NULL, prop, Qnil, overlay,
&position, charpos, frame_window_p)
!= 0);
}
/* Return true if PROP is a display sub-property value containing STRING.
Implementation note: this and the following function are really
special cases of handle_display_spec and
handle_single_display_spec, and should ideally use the same code.
Until they do, these two pairs must be consistent and must be
modified in sync. */
static bool
single_display_spec_string_p (Lisp_Object prop, Lisp_Object string)
{
if (EQ (string, prop))
return true;
/* Skip over `when FORM'. */
if (CONSP (prop) && EQ (XCAR (prop), Qwhen))
{
prop = XCDR (prop);
if (!CONSP (prop))
return false;
/* Actually, the condition following `when' should be eval'ed,
like handle_single_display_spec does, and we should return
false if it evaluates to nil. However, this function is
called only when the buffer was already displayed and some
glyph in the glyph matrix was found to come from a display
string. Therefore, the condition was already evaluated, and
the result was non-nil, otherwise the display string wouldn't
have been displayed and we would have never been called for
this property. Thus, we can skip the evaluation and assume
its result is non-nil. */
prop = XCDR (prop);
}
if (CONSP (prop))
/* Skip over `margin LOCATION'. */
if (EQ (XCAR (prop), Qmargin))
{
prop = XCDR (prop);
if (!CONSP (prop))
return false;
prop = XCDR (prop);
if (!CONSP (prop))
return false;
}
return EQ (prop, string) || (CONSP (prop) && EQ (XCAR (prop), string));
}
/* Return true if STRING appears in the `display' property PROP. */
static bool
display_prop_string_p (Lisp_Object prop, Lisp_Object string)
{
if (CONSP (prop)
&& !EQ (XCAR (prop), Qwhen)
&& !(CONSP (XCAR (prop)) && EQ (Qmargin, XCAR (XCAR (prop)))))
{
/* A list of sub-properties. */
while (CONSP (prop))
{
if (single_display_spec_string_p (XCAR (prop), string))
return true;
prop = XCDR (prop);
}
}
else if (VECTORP (prop))
{
/* A vector of sub-properties. */
ptrdiff_t i;
for (i = 0; i < ASIZE (prop); ++i)
if (single_display_spec_string_p (AREF (prop, i), string))
return true;
}
else
return single_display_spec_string_p (prop, string);
return false;
}
/* Look for STRING in overlays and text properties in the current
buffer, between character positions FROM and TO (excluding TO).
BACK_P means look back (in this case, TO is supposed to be
less than FROM).
Value is the first character position where STRING was found, or
zero if it wasn't found before hitting TO.
This function may only use code that doesn't eval because it is
called asynchronously from note_mouse_highlight. */
static ptrdiff_t
string_buffer_position_lim (Lisp_Object string,
ptrdiff_t from, ptrdiff_t to, bool back_p)
{
Lisp_Object limit, prop, pos;
bool found = false;
pos = make_fixnum (max (from, BEGV));
if (!back_p) /* looking forward */
{
limit = make_fixnum (min (to, ZV));
while (!found && !EQ (pos, limit))
{
prop = Fget_char_property (pos, Qdisplay, Qnil);
if (!NILP (prop) && display_prop_string_p (prop, string))
found = true;
else
pos = Fnext_single_char_property_change (pos, Qdisplay, Qnil,
limit);
}
}
else /* looking back */
{
limit = make_fixnum (max (to, BEGV));
while (!found && !EQ (pos, limit))
{
prop = Fget_char_property (pos, Qdisplay, Qnil);
if (!NILP (prop) && display_prop_string_p (prop, string))
found = true;
else
pos = Fprevious_single_char_property_change (pos, Qdisplay, Qnil,
limit);
}
}
return found ? XFIXNUM (pos) : 0;
}
/* Determine which buffer position in current buffer STRING comes from.
AROUND_CHARPOS is an approximate position where it could come from.
Value is the buffer position or 0 if it couldn't be determined.
This function is necessary because we don't record buffer positions
in glyphs generated from strings (to keep struct glyph small).
This function may only use code that doesn't eval because it is
called asynchronously from note_mouse_highlight. */
static ptrdiff_t
string_buffer_position (Lisp_Object string, ptrdiff_t around_charpos)
{
const int MAX_DISTANCE = 1000;
ptrdiff_t forward_limit = min (around_charpos + MAX_DISTANCE, ZV);
ptrdiff_t found = string_buffer_position_lim (string, around_charpos,
forward_limit, false);
if (!found)
{
ptrdiff_t backward_limit = max (around_charpos - MAX_DISTANCE, BEGV);
found = string_buffer_position_lim (string, around_charpos,
backward_limit, true);
}
return found;
}
/***********************************************************************
`composition' property
***********************************************************************/
/* Set up iterator IT from `composition' property at its current
position. Called from handle_stop. */
static enum prop_handled
handle_composition_prop (struct it *it)
{
Lisp_Object prop, string;
ptrdiff_t pos, pos_byte, start, end;
if (STRINGP (it->string))
{
unsigned char *s;
pos = IT_STRING_CHARPOS (*it);
pos_byte = IT_STRING_BYTEPOS (*it);
string = it->string;
s = SDATA (string) + pos_byte;
if (STRING_MULTIBYTE (string))
it->c = STRING_CHAR (s);
else
it->c = *s;
}
else
{
pos = IT_CHARPOS (*it);
pos_byte = IT_BYTEPOS (*it);
string = Qnil;
it->c = FETCH_CHAR (pos_byte);
}
/* If there's a valid composition and point is not inside of the
composition (in the case that the composition is from the current
buffer), draw a glyph composed from the composition components. */
if (find_composition (pos, -1, &start, &end, &prop, string)
&& composition_valid_p (start, end, prop)
&& (STRINGP (it->string) || (PT <= start || PT >= end)))
{
if (start < pos)
/* As we can't handle this situation (perhaps font-lock added
a new composition), we just return here hoping that next
redisplay will detect this composition much earlier. */
return HANDLED_NORMALLY;
if (start != pos)
{
if (STRINGP (it->string))
pos_byte = string_char_to_byte (it->string, start);
else
pos_byte = CHAR_TO_BYTE (start);
}
it->cmp_it.id = get_composition_id (start, pos_byte, end - start,
prop, string);
if (it->cmp_it.id >= 0)
{
it->cmp_it.ch = -1;
it->cmp_it.nchars = COMPOSITION_LENGTH (prop);
it->cmp_it.nglyphs = -1;
}
}
return HANDLED_NORMALLY;
}
/***********************************************************************
Overlay strings
***********************************************************************/
/* The following structure is used to record overlay strings for
later sorting in load_overlay_strings. */
struct overlay_entry
{
Lisp_Object overlay;
Lisp_Object string;
EMACS_INT priority;
bool after_string_p;
};
/* Set up iterator IT from overlay strings at its current position.
Called from handle_stop. */
static enum prop_handled
handle_overlay_change (struct it *it)
{
if (!STRINGP (it->string) && get_overlay_strings (it, 0))
return HANDLED_RECOMPUTE_PROPS;
else
return HANDLED_NORMALLY;
}
/* Set up the next overlay string for delivery by IT, if there is an
overlay string to deliver. Called by set_iterator_to_next when the
end of the current overlay string is reached. If there are more
overlay strings to display, IT->string and
IT->current.overlay_string_index are set appropriately here.
Otherwise IT->string is set to nil. */
static void
next_overlay_string (struct it *it)
{
++it->current.overlay_string_index;
if (it->current.overlay_string_index == it->n_overlay_strings)
{
/* No more overlay strings. Restore IT's settings to what
they were before overlay strings were processed, and
continue to deliver from current_buffer. */
it->ellipsis_p = it->stack[it->sp - 1].display_ellipsis_p;
pop_it (it);
eassert (it->sp > 0
|| (NILP (it->string)
&& it->method == GET_FROM_BUFFER
&& it->stop_charpos >= BEGV
&& it->stop_charpos <= it->end_charpos));
it->current.overlay_string_index = -1;
it->n_overlay_strings = 0;
/* If there's an empty display string on the stack, pop the
stack, to resync the bidi iterator with IT's position. Such
empty strings are pushed onto the stack in
get_overlay_strings_1. */
if (it->sp > 0 && STRINGP (it->string) && !SCHARS (it->string))
pop_it (it);
/* Since we've exhausted overlay strings at this buffer
position, set the flag to ignore overlays until we move to
another position. (The flag will be reset in
next_element_from_buffer.) But don't do that if the overlay
strings were loaded at position other than the current one,
which could happen if we called pop_it above, or if the
overlay strings were loaded by handle_invisible_prop at the
beginning of invisible text. */
if (it->overlay_strings_charpos == IT_CHARPOS (*it))
it->ignore_overlay_strings_at_pos_p = true;
/* If we're at the end of the buffer, record that we have
processed the overlay strings there already, so that
next_element_from_buffer doesn't try it again. */
if (NILP (it->string)
&& IT_CHARPOS (*it) >= it->end_charpos
&& it->overlay_strings_charpos >= it->end_charpos)
it->overlay_strings_at_end_processed_p = true;
/* Note: we reset overlay_strings_charpos only here, to make
sure the just-processed overlays were indeed at EOB.
Otherwise, overlays on text with invisible text property,
which are processed with IT's position past the invisible
text, might fool us into thinking the overlays at EOB were
already processed (linum-mode can cause this, for
example). */
it->overlay_strings_charpos = -1;
}
else
{
/* There are more overlay strings to process. If
IT->current.overlay_string_index has advanced to a position
where we must load IT->overlay_strings with more strings, do
it. We must load at the IT->overlay_strings_charpos where
IT->n_overlay_strings was originally computed; when invisible
text is present, this might not be IT_CHARPOS (Bug#7016). */
int i = it->current.overlay_string_index % OVERLAY_STRING_CHUNK_SIZE;
if (it->current.overlay_string_index && i == 0)
load_overlay_strings (it, it->overlay_strings_charpos);
/* Initialize IT to deliver display elements from the overlay
string. */
it->string = it->overlay_strings[i];
it->multibyte_p = STRING_MULTIBYTE (it->string);
SET_TEXT_POS (it->current.string_pos, 0, 0);
it->method = GET_FROM_STRING;
it->stop_charpos = 0;
it->end_charpos = SCHARS (it->string);
if (it->cmp_it.stop_pos >= 0)
it->cmp_it.stop_pos = 0;
it->prev_stop = 0;
it->base_level_stop = 0;
/* Set up the bidi iterator for this overlay string. */
if (it->bidi_p)
{
it->bidi_it.string.lstring = it->string;
it->bidi_it.string.s = NULL;
it->bidi_it.string.schars = SCHARS (it->string);
it->bidi_it.string.bufpos = it->overlay_strings_charpos;
it->bidi_it.string.from_disp_str = it->string_from_display_prop_p;
it->bidi_it.string.unibyte = !it->multibyte_p;
it->bidi_it.w = it->w;
bidi_init_it (0, 0, FRAME_WINDOW_P (it->f), &it->bidi_it);
}
}
CHECK_IT (it);
}
/* Compare two overlay_entry structures E1 and E2. Used as a
comparison function for qsort in load_overlay_strings. Overlay
strings for the same position are sorted so that
1. All after-strings come in front of before-strings, except
when they come from the same overlay.
2. Within after-strings, strings are sorted so that overlay strings
from overlays with higher priorities come first.
2. Within before-strings, strings are sorted so that overlay
strings from overlays with higher priorities come last.
Value is analogous to strcmp. */
static int
compare_overlay_entries (const void *e1, const void *e2)
{
struct overlay_entry const *entry1 = e1;
struct overlay_entry const *entry2 = e2;
int result;
if (entry1->after_string_p != entry2->after_string_p)
{
/* Let after-strings appear in front of before-strings if
they come from different overlays. */
if (EQ (entry1->overlay, entry2->overlay))
result = entry1->after_string_p ? 1 : -1;
else
result = entry1->after_string_p ? -1 : 1;
}
else if (entry1->priority != entry2->priority)
{
if (entry1->after_string_p)
/* After-strings sorted in order of decreasing priority. */
result = entry2->priority < entry1->priority ? -1 : 1;
else
/* Before-strings sorted in order of increasing priority. */
result = entry1->priority < entry2->priority ? -1 : 1;
}
else
result = 0;
return result;
}
/* Load the vector IT->overlay_strings with overlay strings from IT's
current buffer position, or from CHARPOS if that is > 0. Set
IT->n_overlays to the total number of overlay strings found.
Overlay strings are processed OVERLAY_STRING_CHUNK_SIZE strings at
a time. On entry into load_overlay_strings,
IT->current.overlay_string_index gives the number of overlay
strings that have already been loaded by previous calls to this
function.
IT->add_overlay_start contains an additional overlay start
position to consider for taking overlay strings from, if non-zero.
This position comes into play when the overlay has an `invisible'
property, and both before and after-strings. When we've skipped to
the end of the overlay, because of its `invisible' property, we
nevertheless want its before-string to appear.
IT->add_overlay_start will contain the overlay start position
in this case.
Overlay strings are sorted so that after-string strings come in
front of before-string strings. Within before and after-strings,
strings are sorted by overlay priority. See also function
compare_overlay_entries. */
static void
load_overlay_strings (struct it *it, ptrdiff_t charpos)
{
ptrdiff_t n = 0;
struct overlay_entry entriesbuf[20];
ptrdiff_t size = ARRAYELTS (entriesbuf);
struct overlay_entry *entries = entriesbuf;
struct itree_node *node;
USE_SAFE_ALLOCA;
if (charpos <= 0)
charpos = IT_CHARPOS (*it);
/* Append the overlay string STRING of overlay OVERLAY to vector
`entries' which has size `size' and currently contains `n'
elements. AFTER_P means STRING is an after-string of
OVERLAY. */
#define RECORD_OVERLAY_STRING(OVERLAY, STRING, AFTER_P) \
do \
{ \
Lisp_Object priority; \
\
if (n == size) \
{ \
struct overlay_entry *old = entries; \
SAFE_NALLOCA (entries, 2, size); \
memcpy (entries, old, size * sizeof *entries); \
size *= 2; \
} \
\
entries[n].string = (STRING); \
entries[n].overlay = (OVERLAY); \
priority = Foverlay_get (OVERLAY, Qpriority); \
entries[n].priority = FIXNUMP (priority) ? XFIXNUM (priority) : 0; \
entries[n].after_string_p = (AFTER_P); \
++n; \
} \
while (false)
/* Process overlays. */
ITREE_FOREACH (node, current_buffer->overlays, charpos - 1, charpos + 1, DESCENDING)
{
Lisp_Object overlay = node->data;
eassert (OVERLAYP (overlay));
ptrdiff_t start = node->begin;
ptrdiff_t end = node->end;
/* Skip this overlay if it doesn't start or end at IT's current
position. */
if (end != charpos && start != charpos)
continue;
/* Skip this overlay if it doesn't apply to IT->w. */
Lisp_Object window = Foverlay_get (overlay, Qwindow);
if (WINDOWP (window) && XWINDOW (window) != it->w)
continue;
/* If the text ``under'' the overlay is invisible, both before-
and after-strings from this overlay are visible; start and
end position are indistinguishable. */
Lisp_Object invisible = Foverlay_get (overlay, Qinvisible);
int invis = TEXT_PROP_MEANS_INVISIBLE (invisible);
/* If overlay has a non-empty before-string, record it. */
Lisp_Object str;
if ((start == charpos || (end == charpos && invis != 0))
&& (str = Foverlay_get (overlay, Qbefore_string), STRINGP (str))
&& SCHARS (str))
RECORD_OVERLAY_STRING (overlay, str, false);
/* If overlay has a non-empty after-string, record it. */
if ((end == charpos || (start == charpos && invis != 0))
&& (str = Foverlay_get (overlay, Qafter_string), STRINGP (str))
&& SCHARS (str))
RECORD_OVERLAY_STRING (overlay, str, true);
}
#undef RECORD_OVERLAY_STRING
/* Sort entries. */
if (n > 1)
qsort (entries, n, sizeof *entries, compare_overlay_entries);
/* Record number of overlay strings, and where we computed it. */
it->n_overlay_strings = n;
it->overlay_strings_charpos = charpos;
/* IT->current.overlay_string_index is the number of overlay strings
that have already been consumed by IT. Copy some of the
remaining overlay strings to IT->overlay_strings. */
ptrdiff_t j = it->current.overlay_string_index;
for (ptrdiff_t i = 0; i < OVERLAY_STRING_CHUNK_SIZE && j < n; i++, j++)
{
it->overlay_strings[i] = entries[j].string;
it->string_overlays[i] = entries[j].overlay;
}
CHECK_IT (it);
SAFE_FREE ();
}
/* Get the first chunk of overlay strings at IT's current buffer
position, or at CHARPOS if that is > 0. Value is true if at
least one overlay string was found. */
static bool
get_overlay_strings_1 (struct it *it, ptrdiff_t charpos, bool compute_stop_p)
{
/* Get the first OVERLAY_STRING_CHUNK_SIZE overlay strings to
process. This fills IT->overlay_strings with strings, and sets
IT->n_overlay_strings to the total number of strings to process.
IT->pos.overlay_string_index has to be set temporarily to zero
because load_overlay_strings needs this; it must be set to -1
when no overlay strings are found because a zero value would
indicate a position in the first overlay string. */
it->current.overlay_string_index = 0;
load_overlay_strings (it, charpos);
/* If we found overlay strings, set up IT to deliver display
elements from the first one. Otherwise set up IT to deliver
from current_buffer. */
if (it->n_overlay_strings)
{
/* Make sure we know settings in current_buffer, so that we can
restore meaningful values when we're done with the overlay
strings. */
if (compute_stop_p)
compute_stop_pos (it);
eassert (it->face_id >= 0);
/* Save IT's settings. They are restored after all overlay
strings have been processed. */
eassert (!compute_stop_p || it->sp == 0);
/* We want the string to inherit the paragraph direction of the
parent object, so we need to calculate that if not yet done. */
if (it->bidi_it.first_elt && it->bidi_it.charpos < ZV)
bidi_paragraph_init (it->paragraph_embedding, &it->bidi_it, true);
/* When called from handle_stop, there might be an empty display
string loaded. In that case, don't bother saving it. But
don't use this optimization with the bidi iterator, since we
need the corresponding pop_it call to resync the bidi
iterator's position with IT's position, after we are done
with the overlay strings. (The corresponding call to pop_it
in case of an empty display string is in
next_overlay_string.) */
if (!(!it->bidi_p
&& STRINGP (it->string) && !SCHARS (it->string)))
push_it (it, NULL);
/* Set up IT to deliver display elements from the first overlay
string. */
IT_STRING_CHARPOS (*it) = IT_STRING_BYTEPOS (*it) = 0;
it->string = it->overlay_strings[0];
it->from_overlay = Qnil;
it->stop_charpos = 0;
eassert (STRINGP (it->string));
it->end_charpos = SCHARS (it->string);
it->prev_stop = 0;
it->base_level_stop = 0;
it->multibyte_p = STRING_MULTIBYTE (it->string);
it->method = GET_FROM_STRING;
it->from_disp_prop_p = 0;
it->cmp_it.id = -1;
/* Force paragraph direction to be that of the parent
buffer. */
if (it->bidi_p && it->bidi_it.paragraph_dir == R2L)
it->paragraph_embedding = it->bidi_it.paragraph_dir;
else
it->paragraph_embedding = L2R;
/* Set up the bidi iterator for this overlay string. */
if (it->bidi_p)
{
ptrdiff_t pos = (charpos > 0 ? charpos : IT_CHARPOS (*it));
it->bidi_it.string.lstring = it->string;
it->bidi_it.string.s = NULL;
it->bidi_it.string.schars = SCHARS (it->string);
it->bidi_it.string.bufpos = pos;
it->bidi_it.string.from_disp_str = it->string_from_display_prop_p;
it->bidi_it.string.unibyte = !it->multibyte_p;
it->bidi_it.w = it->w;
bidi_init_it (0, 0, FRAME_WINDOW_P (it->f), &it->bidi_it);
}
return true;
}
it->current.overlay_string_index = -1;
return false;
}
static bool
get_overlay_strings (struct it *it, ptrdiff_t charpos)
{
it->string = Qnil;
it->method = GET_FROM_BUFFER;
get_overlay_strings_1 (it, charpos, true);
CHECK_IT (it);
/* Value is true if we found at least one overlay string. */
return STRINGP (it->string);
}
/***********************************************************************
Saving and restoring state
***********************************************************************/
/* Save current settings of IT on IT->stack. Called, for example,
before setting up IT for an overlay string, to be able to restore
IT's settings to what they were after the overlay string has been
processed. If POSITION is non-NULL, it is the position to save on
the stack instead of IT->position. */
static void
push_it (struct it *it, struct text_pos *position)
{
struct iterator_stack_entry *p;
eassert (it->sp < IT_STACK_SIZE);
p = it->stack + it->sp;
p->stop_charpos = it->stop_charpos;
p->prev_stop = it->prev_stop;
p->base_level_stop = it->base_level_stop;
p->cmp_it = it->cmp_it;
eassert (it->face_id >= 0);
p->face_id = it->face_id;
p->string = it->string;
p->method = it->method;
p->from_overlay = it->from_overlay;
switch (p->method)
{
case GET_FROM_IMAGE:
p->u.image.object = it->object;
p->u.image.image_id = it->image_id;
p->u.image.slice = it->slice;
break;
case GET_FROM_STRETCH:
p->u.stretch.object = it->object;
break;
case GET_FROM_XWIDGET:
p->u.xwidget.object = it->object;
break;
case GET_FROM_BUFFER:
case GET_FROM_DISPLAY_VECTOR:
case GET_FROM_STRING:
case GET_FROM_C_STRING:
break;
default:
emacs_abort ();
}
p->position = position ? *position : it->position;
p->current = it->current;
p->end_charpos = it->end_charpos;
p->string_nchars = it->string_nchars;
p->area = it->area;
p->multibyte_p = it->multibyte_p;
p->avoid_cursor_p = it->avoid_cursor_p;
p->space_width = it->space_width;
p->font_height = it->font_height;
p->voffset = it->voffset;
p->string_from_display_prop_p = it->string_from_display_prop_p;
p->string_from_prefix_prop_p = it->string_from_prefix_prop_p;
p->display_ellipsis_p = false;
p->line_wrap = it->line_wrap;
p->bidi_p = it->bidi_p;
p->paragraph_embedding = it->paragraph_embedding;
p->from_disp_prop_p = it->from_disp_prop_p;
++it->sp;
/* Save the state of the bidi iterator as well. */
if (it->bidi_p)
bidi_push_it (&it->bidi_it);
}
static void
iterate_out_of_display_property (struct it *it)
{
bool buffer_p = !STRINGP (it->string);
ptrdiff_t eob = (buffer_p ? ZV : it->end_charpos);
ptrdiff_t bob = (buffer_p ? BEGV : 0);
eassert (eob >= CHARPOS (it->position) && CHARPOS (it->position) >= bob);
/* Maybe initialize paragraph direction. If we are at the beginning
of a new paragraph, next_element_from_buffer may not have had a
chance to do that. */
if (it->bidi_it.first_elt && it->bidi_it.charpos < eob)
bidi_paragraph_init (it->paragraph_embedding, &it->bidi_it, true);
/* prev_stop can be zero, so check against BEGV as well. */
while (it->bidi_it.charpos >= bob
&& it->prev_stop <= it->bidi_it.charpos
&& it->bidi_it.charpos < CHARPOS (it->position)
&& it->bidi_it.charpos < eob)
bidi_move_to_visually_next (&it->bidi_it);
/* Record the stop_pos we just crossed, for when we cross it
back, maybe. */
if (it->bidi_it.charpos > CHARPOS (it->position))
it->prev_stop = CHARPOS (it->position);
/* If we ended up not where pop_it put us, resync IT's
positional members with the bidi iterator. */
if (it->bidi_it.charpos != CHARPOS (it->position))
SET_TEXT_POS (it->position, it->bidi_it.charpos, it->bidi_it.bytepos);
if (buffer_p)
it->current.pos = it->position;
else
it->current.string_pos = it->position;
}
/* Restore the IT->face_box_p flag, since it could have been
overwritten by the face of the object that we just finished
displaying. Also, set the IT->start_of_box_run_p flag if the
change in faces requires that. */
static void
restore_face_box_flags (struct it *it, int prev_face_id)
{
struct face *face = FACE_FROM_ID_OR_NULL (it->f, it->face_id);
if (face)
{
struct face *prev_face = FACE_FROM_ID_OR_NULL (it->f, prev_face_id);
if (!(it->start_of_box_run_p && prev_face && prev_face->box))
it->start_of_box_run_p = (face->box != FACE_NO_BOX
&& (prev_face == NULL
|| prev_face->box == FACE_NO_BOX));
it->face_box_p = face->box != FACE_NO_BOX;
}
}
/* Restore IT's settings from IT->stack. Called, for example, when no
more overlay strings must be processed, and we return to delivering
display elements from a buffer, or when the end of a string from a
`display' property is reached and we return to delivering display
elements from an overlay string, or from a buffer. */
static void
pop_it (struct it *it)
{
struct iterator_stack_entry *p;
bool from_display_prop = it->from_disp_prop_p;
ptrdiff_t prev_pos = IT_CHARPOS (*it);
int prev_face_id = it->face_id;
eassert (it->sp > 0);
--it->sp;
p = it->stack + it->sp;
it->stop_charpos = p->stop_charpos;
it->prev_stop = p->prev_stop;
it->base_level_stop = p->base_level_stop;
it->cmp_it = p->cmp_it;
it->face_id = p->face_id;
it->current = p->current;
it->position = p->position;
it->string = p->string;
it->from_overlay = p->from_overlay;
if (NILP (it->string))
SET_TEXT_POS (it->current.string_pos, -1, -1);
it->method = p->method;
switch (it->method)
{
case GET_FROM_IMAGE:
it->image_id = p->u.image.image_id;
it->object = p->u.image.object;
it->slice = p->u.image.slice;
break;
case GET_FROM_XWIDGET:
it->object = p->u.xwidget.object;
break;
case GET_FROM_STRETCH:
it->object = p->u.stretch.object;
break;
case GET_FROM_BUFFER:
{
restore_face_box_flags (it, prev_face_id);
it->object = it->w->contents;
}
break;
case GET_FROM_STRING:
{
restore_face_box_flags (it, prev_face_id);
it->object = it->string;
}
break;
case GET_FROM_DISPLAY_VECTOR:
if (it->s)
it->method = GET_FROM_C_STRING;
else if (STRINGP (it->string))
it->method = GET_FROM_STRING;
else
{
it->method = GET_FROM_BUFFER;
it->object = it->w->contents;
}
break;
case GET_FROM_C_STRING:
break;
default:
emacs_abort ();
}
it->end_charpos = p->end_charpos;
it->string_nchars = p->string_nchars;
it->area = p->area;
it->multibyte_p = p->multibyte_p;
it->avoid_cursor_p = p->avoid_cursor_p;
it->space_width = p->space_width;
it->font_height = p->font_height;
it->voffset = p->voffset;
it->string_from_display_prop_p = p->string_from_display_prop_p;
it->string_from_prefix_prop_p = p->string_from_prefix_prop_p;
it->line_wrap = p->line_wrap;
it->bidi_p = p->bidi_p;
it->paragraph_embedding = p->paragraph_embedding;
it->from_disp_prop_p = p->from_disp_prop_p;
it->align_visually_p = false;
if (it->bidi_p)
{
bidi_pop_it (&it->bidi_it);
/* Bidi-iterate until we get out of the portion of text, if any,
covered by a `display' text property or by an overlay with
`display' property. (We cannot just jump there, because the
internal coherency of the bidi iterator state can not be
preserved across such jumps.) We also must determine the
paragraph base direction if the overlay we just processed is
at the beginning of a new paragraph. */
if (from_display_prop
&& (it->method == GET_FROM_BUFFER || it->method == GET_FROM_STRING))
iterate_out_of_display_property (it);
eassert ((BUFFERP (it->object)
&& IT_CHARPOS (*it) == it->bidi_it.charpos
&& IT_BYTEPOS (*it) == it->bidi_it.bytepos)
|| (STRINGP (it->object)
&& IT_STRING_CHARPOS (*it) == it->bidi_it.charpos
&& IT_STRING_BYTEPOS (*it) == it->bidi_it.bytepos)
|| (CONSP (it->object) && it->method == GET_FROM_STRETCH)
/* We could be in the middle of handling a list or a
vector of several 'display' properties, in which
case we should only verify the above conditions when
we pop the iterator stack the last time, because
higher stack levels cannot "iterate out of the
display property". */
|| it->sp > 0);
}
/* If we move the iterator over text covered by a display property
to a new buffer position, any info about previously seen overlays
is no longer valid. */
if (from_display_prop && it->sp == 0 && CHARPOS (it->position) != prev_pos)
it->ignore_overlay_strings_at_pos_p = false;
}
/***********************************************************************
Moving over lines
***********************************************************************/
/* Set IT's current position to the previous line start. */
static void
back_to_previous_line_start (struct it *it)
{
ptrdiff_t cp = IT_CHARPOS (*it), bp = IT_BYTEPOS (*it);
dec_both (&cp, &bp);
SET_WITH_NARROWED_BEGV (it, IT_CHARPOS (*it),
find_newline_no_quit (cp, bp, -1, &IT_BYTEPOS (*it)),
get_small_narrowing_begv (it->w, IT_CHARPOS (*it)));
}
/* Find in the current buffer the first display or overlay string
between STARTPOS and ENDPOS that includes embedded newlines.
Consider only overlays that apply to window W.
Value is non-zero if such a display/overlay string is found. */
static bool
strings_with_newlines (ptrdiff_t startpos, ptrdiff_t endpos, struct window *w)
{
struct itree_node *node;
/* Process overlays. */
ITREE_FOREACH (node, current_buffer->overlays, startpos, endpos, DESCENDING)
{
Lisp_Object overlay = node->data;
eassert (OVERLAYP (overlay));
/* Skip this overlay if it doesn't apply to our window. */
Lisp_Object window = Foverlay_get (overlay, Qwindow);
if (WINDOWP (window) && XWINDOW (window) != w)
continue;
ptrdiff_t ostart = node->begin;
ptrdiff_t oend = node->end;
/* Skip overlays that don't overlap the range. */
if (!((startpos < oend && ostart < endpos)
|| (ostart == oend
&& (startpos == oend || (endpos == ZV && oend == endpos)))))
continue;
Lisp_Object str;
str = Foverlay_get (overlay, Qbefore_string);
if (STRINGP (str) && SCHARS (str)
&& memchr (SDATA (str), '\n', SBYTES (str)))
return true;
str = Foverlay_get (overlay, Qafter_string);
if (STRINGP (str) && SCHARS (str)
&& memchr (SDATA (str), '\n', SBYTES (str)))
return true;
}
/* Check for 'display' properties whose values include strings. */
Lisp_Object cpos = make_fixnum (startpos);
Lisp_Object limpos = make_fixnum (endpos);
while ((cpos = Fnext_single_property_change (cpos, Qdisplay, Qnil, limpos),
!(NILP (cpos) || XFIXNAT (cpos) >= endpos)))
{
Lisp_Object spec = Fget_char_property (cpos, Qdisplay, Qnil);
Lisp_Object string = string_from_display_spec (spec);
if (STRINGP (string)
&& memchr (SDATA (string), '\n', SBYTES (string)))
return true;
}
return false;
}
/* Move IT to the next line start.
Value is true if a newline was found. Set *SKIPPED_P to true if
we skipped over part of the text (as opposed to moving the iterator
continuously over the text). Otherwise, don't change the value
of *SKIPPED_P.
If BIDI_IT_PREV is non-NULL, store into it the state of the bidi
iterator on the newline, if it was found.
Newlines may come from buffer text, overlay strings, or strings
displayed via the `display' property. That's the reason we can't
simply use find_newline_no_quit.
Note that this function may not skip over invisible text that is so
because of text properties and immediately follows a newline. If
it would, function reseat_at_next_visible_line_start, when called
from set_iterator_to_next, would effectively make invisible
characters following a newline part of the wrong glyph row, which
leads to wrong cursor motion. */
static bool
forward_to_next_line_start (struct it *it, bool *skipped_p,
struct bidi_it *bidi_it_prev)
{
ptrdiff_t old_selective;
bool newline_found_p = false;
int n;
const int MAX_NEWLINE_DISTANCE = 500;
/* If already on a newline, just consume it to avoid unintended
skipping over invisible text below. */
if (it->what == IT_CHARACTER
&& it->c == '\n'
&& CHARPOS (it->position) == IT_CHARPOS (*it))
{
if (it->bidi_p && bidi_it_prev)
*bidi_it_prev = it->bidi_it;
set_iterator_to_next (it, false);
it->c = 0;
return true;
}
/* Don't handle selective display in the following. It's (a)
unnecessary because it's done by the caller, and (b) leads to an
infinite recursion because next_element_from_ellipsis indirectly
calls this function. */
old_selective = it->selective;
it->selective = 0;
/* Scan for a newline within MAX_NEWLINE_DISTANCE display elements
from buffer text, or till the end of the string if iterating a
string. */
for (n = 0;
!newline_found_p && n < MAX_NEWLINE_DISTANCE;
n += !STRINGP (it->string))
{
if (!get_next_display_element (it))
return false;
newline_found_p = it->what == IT_CHARACTER && it->c == '\n';
if (newline_found_p && it->bidi_p && bidi_it_prev)
*bidi_it_prev = it->bidi_it;
set_iterator_to_next (it, false);
}
/* If we didn't find a newline near enough, see if we can use a
short-cut. */
if (!newline_found_p)
{
ptrdiff_t bytepos, start = IT_CHARPOS (*it);
ptrdiff_t limit = find_newline_no_quit (start, IT_BYTEPOS (*it),
1, &bytepos);
eassert (!STRINGP (it->string));
/* it->stop_charpos >= limit means we already know there's no
stop position up until the newline at LIMIT, so there's no
need for any further checks. */
bool no_strings_with_newlines = it->stop_charpos >= limit;
if (!no_strings_with_newlines)
{
if (!(current_buffer->long_line_optimizations_p
&& it->line_wrap == TRUNCATE))
{
/* Quick-and-dirty check: if there isn't any `display'
property in sight, and no overlays, we're done. */
Lisp_Object pos =
Fnext_single_property_change (make_fixnum (start),
Qdisplay, Qnil,
make_fixnum (limit));
no_strings_with_newlines =
(NILP (pos) || XFIXNAT (pos) == limit) /* no 'display' props */
&& next_overlay_change (start) == ZV; /* no overlays */
}
else
{
/* For buffers with very long and truncated lines we try
harder, because it's worth our while to spend some
time looking into the overlays and 'display' properties
if we can then avoid iterating through all of them. */
no_strings_with_newlines =
!strings_with_newlines (start, limit, it->w);
}
}
/* If there's no display or overlay strings with embedded
newlines until the position of the newline in buffer text, we
can just use that position. */
if (no_strings_with_newlines)
{
if (!it->bidi_p || !bidi_it_prev)
{
/* The optimal case: just jump there. */
IT_CHARPOS (*it) = limit;
IT_BYTEPOS (*it) = bytepos;
}
else
{
/* The less optimal case: need to bidi-walk there, but
this is still cheaper that the full iteration using
get_next_display_element and set_iterator_to_next. */
struct bidi_it bprev;
/* Help bidi.c avoid expensive searches for display
properties and overlays, by telling it that there are
none up to `limit'. */
if (it->bidi_it.disp_pos < limit)
{
it->bidi_it.disp_pos = limit;
it->bidi_it.disp_prop = 0;
}
do {
bprev = it->bidi_it;
bidi_move_to_visually_next (&it->bidi_it);
} while (it->bidi_it.charpos != limit);
IT_CHARPOS (*it) = limit;
IT_BYTEPOS (*it) = it->bidi_it.bytepos;
if (bidi_it_prev)
*bidi_it_prev = bprev;
}
*skipped_p = newline_found_p = true;
}
else
{
/* The slow case. */
while (!newline_found_p)
{
if (!get_next_display_element (it))
break;
newline_found_p = ITERATOR_AT_END_OF_LINE_P (it);
if (newline_found_p && it->bidi_p && bidi_it_prev)
*bidi_it_prev = it->bidi_it;
set_iterator_to_next (it, false);
}
}
}
it->selective = old_selective;
return newline_found_p;
}
/* Set IT's current position to the previous visible line start. Skip
invisible text that is so either due to text properties or due to
selective display. Caution: this does not change IT->current_x and
IT->hpos. */
static void
back_to_previous_visible_line_start (struct it *it)
{
while (IT_CHARPOS (*it) > BEGV)
{
back_to_previous_line_start (it);
if (IT_CHARPOS (*it) <= BEGV)
break;
/* If selective > 0, then lines indented more than its value are
invisible. */
if (it->selective > 0
&& indented_beyond_p (IT_CHARPOS (*it), IT_BYTEPOS (*it),
it->selective))
continue;
/* Check the newline before point for invisibility. */
{
Lisp_Object prop;
prop = Fget_char_property (make_fixnum (IT_CHARPOS (*it) - 1),
Qinvisible, it->window);
if (TEXT_PROP_MEANS_INVISIBLE (prop) != 0)
continue;
}
if (IT_CHARPOS (*it) <= BEGV)
break;
{
struct it it2;
void *it2data = NULL;
ptrdiff_t pos;
ptrdiff_t beg, end;
Lisp_Object val, overlay;
SAVE_IT (it2, *it, it2data);
/* If newline is part of a composition, continue from start of composition */
if (find_composition (IT_CHARPOS (*it), -1, &beg, &end, &val, Qnil)
&& beg < IT_CHARPOS (*it))
goto replaced;
/* If newline is replaced by a display property, find start of overlay
or interval and continue search from that point. */
pos = --IT_CHARPOS (it2);
--IT_BYTEPOS (it2);
it2.sp = 0;
bidi_unshelve_cache (NULL, false);
it2.string_from_display_prop_p = false;
it2.from_disp_prop_p = false;
if (handle_display_prop (&it2) == HANDLED_RETURN
&& !NILP (val = get_char_property_and_overlay
(make_fixnum (pos), Qdisplay, Qnil, &overlay))
&& (OVERLAYP (overlay)
? (beg = OVERLAY_START (overlay))
: get_property_and_range (pos, Qdisplay, &val, &beg, &end, Qnil)))
{
RESTORE_IT (it, it, it2data);
goto replaced;
}
/* Newline is not replaced by anything -- so we are done. */
RESTORE_IT (it, it, it2data);
break;
replaced:
if (beg < BEGV)
beg = BEGV;
IT_CHARPOS (*it) = beg;
IT_BYTEPOS (*it) = buf_charpos_to_bytepos (current_buffer, beg);
}
}
it->continuation_lines_width = 0;
eassert (IT_CHARPOS (*it) >= BEGV);
eassert (it->medium_narrowing_begv > 0 /* long-line optimizations: all bets off */
|| IT_CHARPOS (*it) == BEGV
|| FETCH_BYTE (IT_BYTEPOS (*it) - 1) == '\n');
CHECK_IT (it);
}
/* Reseat iterator IT at the previous visible line start. Skip
invisible text that is so either due to text properties or due to
selective display. At the end, update IT's overlay information,
face information etc. */
void
reseat_at_previous_visible_line_start (struct it *it)
{
back_to_previous_visible_line_start (it);
reseat (it, it->current.pos, true);
CHECK_IT (it);
}
/* Reseat iterator IT on the next visible line start in the current
buffer. ON_NEWLINE_P means position IT on the newline
preceding the line start. Skip over invisible text that is so
because of selective display. Compute faces, overlays etc at the
new position. Note that this function does not skip over text that
is invisible because of text properties. */
static void
reseat_at_next_visible_line_start (struct it *it, bool on_newline_p)
{
bool skipped_p = false;
struct bidi_it bidi_it_prev;
bool newline_found_p
= forward_to_next_line_start (it, &skipped_p,
on_newline_p ? &bidi_it_prev : NULL);
/* Skip over lines that are invisible because they are indented
more than the value of IT->selective. */
if (it->selective > 0)
while (IT_CHARPOS (*it) < ZV
&& indented_beyond_p (IT_CHARPOS (*it), IT_BYTEPOS (*it),
it->selective))
{
eassert (IT_BYTEPOS (*it) == BEGV
|| FETCH_BYTE (IT_BYTEPOS (*it) - 1) == '\n');
newline_found_p =
forward_to_next_line_start (it, &skipped_p,
on_newline_p ? &bidi_it_prev : NULL);
}
/* Position on the newline if that's what's requested. */
if (on_newline_p && newline_found_p)
{
if (STRINGP (it->string))
{
if (IT_STRING_CHARPOS (*it) > 0)
{
if (!it->bidi_p)
{
--IT_STRING_CHARPOS (*it);
--IT_STRING_BYTEPOS (*it);
}
else
{
/* We need to restore the bidi iterator to the state
it had on the newline, and resync the IT's
position with that. */
it->bidi_it = bidi_it_prev;
IT_STRING_CHARPOS (*it) = it->bidi_it.charpos;
IT_STRING_BYTEPOS (*it) = it->bidi_it.bytepos;
}
}
}
else if (IT_CHARPOS (*it) > BEGV)
{
if (!it->bidi_p)
{
--IT_CHARPOS (*it);
--IT_BYTEPOS (*it);
}
else
{
/* We need to restore the bidi iterator to the state it
had on the newline and resync IT with that. */
it->bidi_it = bidi_it_prev;
IT_CHARPOS (*it) = it->bidi_it.charpos;
IT_BYTEPOS (*it) = it->bidi_it.bytepos;
}
reseat (it, it->current.pos, false);
}
}
else if (skipped_p)
reseat (it, it->current.pos, false);
CHECK_IT (it);
}
/***********************************************************************
Changing an iterator's position
***********************************************************************/
/* Change IT's current position to POS in current_buffer.
If FORCE_P, always check for text properties at the new position.
Otherwise, text properties are only looked up if POS >=
IT->check_charpos of a property. */
static void
reseat (struct it *it, struct text_pos pos, bool force_p)
{
ptrdiff_t original_pos = IT_CHARPOS (*it);
reseat_1 (it, pos, false);
if (current_buffer->long_line_optimizations_p)
{
if (!it->medium_narrowing_begv)
{
it->medium_narrowing_begv
= get_medium_narrowing_begv (it->w, window_point (it->w));
it->medium_narrowing_zv
= get_medium_narrowing_zv (it->w, window_point (it->w));
it->large_narrowing_begv
= get_large_narrowing_begv (window_point (it->w));
it->large_narrowing_zv
= get_large_narrowing_zv (window_point (it->w));
}
else if ((pos.charpos < it->medium_narrowing_begv
|| pos.charpos > it->medium_narrowing_zv)
&& (!redisplaying_p || it->line_wrap == TRUNCATE))
{
it->medium_narrowing_begv
= get_medium_narrowing_begv (it->w, pos.charpos);
it->medium_narrowing_zv
= get_medium_narrowing_zv (it->w, pos.charpos);
it->large_narrowing_begv
= get_large_narrowing_begv (window_point (it->w));
it->large_narrowing_zv
= get_large_narrowing_zv (window_point (it->w));
}
}
/* Determine where to check text properties. Avoid doing it
where possible because text property lookup is very expensive. */
if (force_p
|| CHARPOS (pos) > it->stop_charpos
|| CHARPOS (pos) < original_pos)
{
if (it->bidi_p)
{
/* For bidi iteration, we need to prime prev_stop and
base_level_stop with our best estimations. */
/* Implementation note: Of course, POS is not necessarily a
stop position, so assigning prev_pos to it is a lie; we
should have called compute_stop_backwards. However, if
the current buffer does not include any R2L characters,
that call would be a waste of cycles, because the
iterator will never move back, and thus never cross this
"fake" stop position. So we delay that backward search
until the time we really need it, in next_element_from_buffer. */
if (CHARPOS (pos) != it->prev_stop)
it->prev_stop = CHARPOS (pos);
if (CHARPOS (pos) < it->base_level_stop)
it->base_level_stop = 0; /* meaning it's unknown */
handle_stop (it);
}
else
{
handle_stop (it);
it->prev_stop = it->base_level_stop = 0;
}
}
CHECK_IT (it);
}
/* Change IT's buffer position to POS. SET_STOP_P means set
IT->stop_pos to POS, also. */
static void
reseat_1 (struct it *it, struct text_pos pos, bool set_stop_p)
{
/* Don't call this function when scanning a C string. */
eassert (it->s == NULL);
/* POS must be a reasonable value. */
eassert (CHARPOS (pos) >= BEGV && CHARPOS (pos) <= ZV);
it->current.pos = it->position = pos;
it->end_charpos = ZV;
it->dpvec = NULL;
it->current.dpvec_index = -1;
it->current.overlay_string_index = -1;
IT_STRING_CHARPOS (*it) = -1;
IT_STRING_BYTEPOS (*it) = -1;
it->string = Qnil;
it->method = GET_FROM_BUFFER;
it->object = it->w->contents;
it->area = TEXT_AREA;
it->multibyte_p = !NILP (BVAR (current_buffer, enable_multibyte_characters));
it->sp = 0;
it->string_from_display_prop_p = false;
it->string_from_prefix_prop_p = false;
it->from_disp_prop_p = false;
it->face_before_selective_p = false;
if (it->bidi_p)
{
bidi_init_it (IT_CHARPOS (*it), IT_BYTEPOS (*it), FRAME_WINDOW_P (it->f),
&it->bidi_it);
bidi_unshelve_cache (NULL, false);
it->bidi_it.paragraph_dir = NEUTRAL_DIR;
it->bidi_it.string.s = NULL;
it->bidi_it.string.lstring = Qnil;
it->bidi_it.string.bufpos = 0;
it->bidi_it.string.from_disp_str = false;
it->bidi_it.string.unibyte = false;
it->bidi_it.w = it->w;
}
if (set_stop_p)
{
it->stop_charpos = CHARPOS (pos);
it->base_level_stop = CHARPOS (pos);
}
/* This make the information stored in it->cmp_it invalidate. */
it->cmp_it.id = -1;
it->min_width_property = Qnil;
}
/* Set up IT for displaying a string, starting at CHARPOS in window W.
If S is non-null, it is a C string to iterate over. Otherwise,
STRING gives a Lisp string to iterate over.
If PRECISION > 0, don't return more then PRECISION number of
characters from the string.
If FIELD_WIDTH > 0, return padding spaces until FIELD_WIDTH
characters have been returned. FIELD_WIDTH < 0 means an infinite
field width.
MULTIBYTE = 0 means disable processing of multibyte characters,
MULTIBYTE > 0 means enable it,
MULTIBYTE < 0 means use IT->multibyte_p.
IT must be initialized via a prior call to init_iterator before
calling this function. */
static void
reseat_to_string (struct it *it, const char *s, Lisp_Object string,
ptrdiff_t charpos, ptrdiff_t precision, int field_width,
int multibyte)
{
/* No text property checks performed by default, but see below. */
it->stop_charpos = -1;
/* Set iterator position and end position. */
memset (&it->current, 0, sizeof it->current);
it->current.overlay_string_index = -1;
it->current.dpvec_index = -1;
eassert (charpos >= 0);
/* If STRING is specified, use its multibyteness, otherwise use the
setting of MULTIBYTE, if specified. */
if (multibyte >= 0)
it->multibyte_p = multibyte > 0;
/* Bidirectional reordering of strings is controlled by the default
value of bidi-display-reordering. Don't try to reorder while
loading loadup.el, as the necessary character property tables are
not yet available. */
it->bidi_p =
!redisplay__inhibit_bidi
&& !NILP (BVAR (&buffer_defaults, bidi_display_reordering));
if (s == NULL)
{
eassert (STRINGP (string));
it->string = string;
it->s = NULL;
it->end_charpos = it->string_nchars = SCHARS (string);
it->method = GET_FROM_STRING;
it->current.string_pos = string_pos (charpos, string);
if (it->bidi_p)
{
it->bidi_it.string.lstring = string;
it->bidi_it.string.s = NULL;
it->bidi_it.string.schars = it->end_charpos;
it->bidi_it.string.bufpos = 0;
it->bidi_it.string.from_disp_str = false;
it->bidi_it.string.unibyte = !it->multibyte_p;
it->bidi_it.w = it->w;
bidi_init_it (charpos, IT_STRING_BYTEPOS (*it),
FRAME_WINDOW_P (it->f), &it->bidi_it);
}
}
else
{
it->s = (const unsigned char *) s;
it->string = Qnil;
/* Note that we use IT->current.pos, not it->current.string_pos,
for displaying C strings. */
IT_STRING_CHARPOS (*it) = IT_STRING_BYTEPOS (*it) = -1;
if (it->multibyte_p)
{
it->current.pos = c_string_pos (charpos, s, true);
it->end_charpos = it->string_nchars = number_of_chars (s, true);
}
else
{
IT_CHARPOS (*it) = IT_BYTEPOS (*it) = charpos;
it->end_charpos = it->string_nchars = strlen (s);
}
if (it->bidi_p)
{
it->bidi_it.string.lstring = Qnil;
it->bidi_it.string.s = (const unsigned char *) s;
it->bidi_it.string.schars = it->end_charpos;
it->bidi_it.string.bufpos = 0;
it->bidi_it.string.from_disp_str = false;
it->bidi_it.string.unibyte = !it->multibyte_p;
it->bidi_it.w = it->w;
bidi_init_it (charpos, IT_BYTEPOS (*it), FRAME_WINDOW_P (it->f),
&it->bidi_it);
}
it->method = GET_FROM_C_STRING;
}
/* PRECISION > 0 means don't return more than PRECISION characters
from the string. */
if (precision > 0 && it->end_charpos - charpos > precision)
{
it->end_charpos = it->string_nchars = charpos + precision;
if (it->bidi_p)
it->bidi_it.string.schars = it->end_charpos;
}
/* FIELD_WIDTH > 0 means pad with spaces until FIELD_WIDTH
characters have been returned. FIELD_WIDTH == 0 means don't pad,
FIELD_WIDTH < 0 means infinite field width. This is useful for
padding with `-' at the end of a mode line. */
if (field_width < 0)
field_width = DISP_INFINITY;
/* Implementation note: We deliberately don't enlarge
it->bidi_it.string.schars here to fit it->end_charpos, because
the bidi iterator cannot produce characters out of thin air. */
if (field_width > it->end_charpos - charpos)
it->end_charpos = charpos + field_width;
/* Use the standard display table for displaying strings. */
if (DISP_TABLE_P (Vstandard_display_table))
it->dp = XCHAR_TABLE (Vstandard_display_table);
it->stop_charpos = charpos;
it->prev_stop = charpos;
it->base_level_stop = 0;
if (it->bidi_p)
{
it->bidi_it.first_elt = true;
it->bidi_it.paragraph_dir = NEUTRAL_DIR;
it->bidi_it.disp_pos = -1;
}
if (s == NULL && it->multibyte_p)
{
ptrdiff_t endpos = SCHARS (it->string);
if (endpos > it->end_charpos)
endpos = it->end_charpos;
composition_compute_stop_pos (&it->cmp_it, charpos, -1, endpos,
it->string, true);
}
CHECK_IT (it);
}
/***********************************************************************
Iteration
***********************************************************************/
/* Map enum it_method value to corresponding next_element_from_* function. */
typedef bool (*next_element_function) (struct it *);
static next_element_function const get_next_element[NUM_IT_METHODS] =
{
next_element_from_buffer,
next_element_from_display_vector,
next_element_from_string,
next_element_from_c_string,
next_element_from_image,
next_element_from_stretch,
next_element_from_xwidget,
};
#define GET_NEXT_DISPLAY_ELEMENT(it) (*get_next_element[(it)->method]) (it)
/* Return true iff a character at CHARPOS (and BYTEPOS) is composed
(possibly with the following characters).
Note: we pass -1 as the "resolved bidi level" when the iterator
doesn't have the bidi_p flag set, because in that case we really
don't know what is the directionality of the text, so we leave it to
the shaping engine to figure that out. */
#define CHAR_COMPOSED_P(IT,CHARPOS,BYTEPOS,END_CHARPOS) \
((IT)->cmp_it.id >= 0 \
|| ((IT)->cmp_it.stop_pos == (CHARPOS) \
&& composition_reseat_it (&(IT)->cmp_it, CHARPOS, BYTEPOS, \
END_CHARPOS, (IT)->w, \
(IT)->bidi_p \
? (IT)->bidi_it.resolved_level \
: -1, \
FACE_FROM_ID_OR_NULL ((IT)->f, \
(IT)->face_id), \
(IT)->string)))
/* Lookup the char-table Vglyphless_char_display for character C (-1
if we want information for no-font case), and return the display
method symbol. By side-effect, update it->what and
it->glyphless_method. This function is called from
get_next_display_element for each character element, and from
gui_produce_glyphs when no suitable font was found. */
Lisp_Object
lookup_glyphless_char_display (int c, struct it *it)
{
Lisp_Object glyphless_method = Qnil;
if (CHAR_TABLE_P (Vglyphless_char_display)
&& CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (Vglyphless_char_display)) >= 1)
{
if (c >= 0)
glyphless_method = CHAR_TABLE_REF (Vglyphless_char_display, c);
else
glyphless_method = XCHAR_TABLE (Vglyphless_char_display)->extras[0];
if (CONSP (glyphless_method))
glyphless_method = FRAME_WINDOW_P (it->f)
? XCAR (glyphless_method)
: XCDR (glyphless_method);
}
retry:
if (NILP (glyphless_method))
{
if (c >= 0)
/* The default is to display the character by a proper font. */
return Qnil;
/* The default for the no-font case is to display an empty box. */
glyphless_method = Qempty_box;
}
if (EQ (glyphless_method, Qzero_width))
{
if (c >= 0)
return glyphless_method;
/* This method can't be used for the no-font case. */
glyphless_method = Qempty_box;
}
if (EQ (glyphless_method, Qthin_space))
it->glyphless_method = GLYPHLESS_DISPLAY_THIN_SPACE;
else if (EQ (glyphless_method, Qempty_box))
it->glyphless_method = GLYPHLESS_DISPLAY_EMPTY_BOX;
else if (EQ (glyphless_method, Qhex_code))
it->glyphless_method = GLYPHLESS_DISPLAY_HEX_CODE;
else if (STRINGP (glyphless_method))
it->glyphless_method = GLYPHLESS_DISPLAY_ACRONYM;
else
{
/* Invalid value. We use the default method. */
glyphless_method = Qnil;
goto retry;
}
it->what = IT_GLYPHLESS;
return glyphless_method;
}
/* Merge escape glyph face and cache the result. */
static struct frame *last_escape_glyph_frame = NULL;
static int last_escape_glyph_face_id = (1 << FACE_ID_BITS);
static int last_escape_glyph_merged_face_id = 0;
static int
merge_escape_glyph_face (struct it *it)
{
int face_id;
if (it->f == last_escape_glyph_frame
&& it->face_id == last_escape_glyph_face_id)
face_id = last_escape_glyph_merged_face_id;
else
{
/* Merge the `escape-glyph' face into the current face. */
face_id = merge_faces (it->w, Qescape_glyph, 0, it->face_id);
last_escape_glyph_frame = it->f;
last_escape_glyph_face_id = it->face_id;
last_escape_glyph_merged_face_id = face_id;
}
return face_id;
}
/* Likewise for glyphless glyph face. */
static struct frame *last_glyphless_glyph_frame = NULL;
static int last_glyphless_glyph_face_id = (1 << FACE_ID_BITS);
static int last_glyphless_glyph_merged_face_id = 0;
int
merge_glyphless_glyph_face (struct it *it)
{
int face_id;
if (it->f == last_glyphless_glyph_frame
&& it->face_id == last_glyphless_glyph_face_id)
face_id = last_glyphless_glyph_merged_face_id;
else
{
/* Merge the `glyphless-char' face into the current face. */
face_id = merge_faces (it->w, Qglyphless_char, 0, it->face_id);
last_glyphless_glyph_frame = it->f;
last_glyphless_glyph_face_id = it->face_id;
last_glyphless_glyph_merged_face_id = face_id;
}
return face_id;
}
/* Forget the `escape-glyph' and `glyphless-char' faces. This should
be called before redisplaying windows, and when the frame's face
cache is freed. */
void
forget_escape_and_glyphless_faces (void)
{
last_escape_glyph_frame = NULL;
last_escape_glyph_face_id = (1 << FACE_ID_BITS);
last_glyphless_glyph_frame = NULL;
last_glyphless_glyph_face_id = (1 << FACE_ID_BITS);
}
/* Load IT's display element fields with information about the next
display element from the current position of IT. Value is false if
end of buffer (or C string) is reached. */
static bool
get_next_display_element (struct it *it)
{
/* True means that we found a display element. False means that
we hit the end of what we iterate over. Performance note: the
function pointer `method' used here turns out to be faster than
using a sequence of if-statements. */
bool success_p;
get_next:
success_p = GET_NEXT_DISPLAY_ELEMENT (it);
if (it->what == IT_CHARACTER)
{
/* UAX#9, L4: "A character is depicted by a mirrored glyph if
and only if (a) the resolved directionality of that character
is R..." */
/* FIXME: Do we need an exception for characters from display
tables? */
if (it->bidi_p && it->bidi_it.type == STRONG_R
&& !inhibit_bidi_mirroring)
it->c = bidi_mirror_char (it->c);
/* Map via display table or translate control characters.
IT->c, IT->len etc. have been set to the next character by
the function call above. If we have a display table, and it
contains an entry for IT->c, translate it. Don't do this if
IT->c itself comes from a display table, otherwise we could
end up in an infinite recursion. (An alternative could be to
count the recursion depth of this function and signal an
error when a certain maximum depth is reached.) Is it worth
it? */
if (success_p && it->dpvec == NULL)
{
Lisp_Object dv;
struct charset *unibyte = CHARSET_FROM_ID (charset_unibyte);
bool nonascii_space_p = false;
bool nonascii_hyphen_p = false;
int c = it->c; /* This is the character to display. */
if (! it->multibyte_p && ! ASCII_CHAR_P (c))
{
eassert (SINGLE_BYTE_CHAR_P (c));
if (unibyte_display_via_language_environment)
{
c = DECODE_CHAR (unibyte, c);
if (c < 0)
c = BYTE8_TO_CHAR (it->c);
}
else
c = BYTE8_TO_CHAR (it->c);
}
if (it->dp
&& (dv = DISP_CHAR_VECTOR (it->dp, c),
VECTORP (dv)))
{
struct Lisp_Vector *v = XVECTOR (dv);
/* Return the first character from the display table
entry, if not empty. If empty, don't display the
current character. */
if (v->header.size)
{
it->dpvec_char_len = it->len;
it->dpvec = v->contents;
it->dpend = v->contents + v->header.size;
it->current.dpvec_index = 0;
it->dpvec_face_id = -1;
it->saved_face_id = it->face_id;
it->method = GET_FROM_DISPLAY_VECTOR;
it->ellipsis_p = false;
}
else
{
set_iterator_to_next (it, false);
}
goto get_next;
}
if (! NILP (lookup_glyphless_char_display (c, it)))
{
if (it->what == IT_GLYPHLESS)
goto done;
/* Don't display this character. */
set_iterator_to_next (it, false);
goto get_next;
}
/* If `nobreak-char-display' is non-nil, we display
non-ASCII spaces and hyphens specially. */
if (! ASCII_CHAR_P (c) && ! NILP (Vnobreak_char_display))
{
if (blankp (c))
nonascii_space_p = true;
else if (c == SOFT_HYPHEN || c == HYPHEN
|| c == NON_BREAKING_HYPHEN)
nonascii_hyphen_p = true;
}
/* Translate control characters into `\003' or `^C' form.
Control characters coming from a display table entry are
currently not translated because we use IT->dpvec to hold
the translation. This could easily be changed but I
don't believe that it is worth doing.
The characters handled by `nobreak-char-display' must be
translated too.
Non-printable characters and raw-byte characters are also
translated to octal or hexadecimal form. */
if (((c < ' ' || c == 127) /* ASCII control chars. */
? (it->area != TEXT_AREA
/* In mode line, treat \n, \t like other crl chars. */
|| (c != '\t'
&& it->glyph_row
&& (it->glyph_row->mode_line_p || it->avoid_cursor_p))
|| (c != '\n' && c != '\t'))
: (nonascii_space_p
|| nonascii_hyphen_p
|| CHAR_BYTE8_P (c)
|| ! CHAR_PRINTABLE_P (c))))
{
/* C is a control character, non-ASCII space/hyphen,
raw-byte, or a non-printable character which must be
displayed either as '\003' or as `^C' where the '\\'
and '^' can be defined in the display table. Fill
IT->ctl_chars with glyphs for what we have to
display. Then, set IT->dpvec to these glyphs. */
Lisp_Object gc;
int ctl_len;
int face_id;
int lface_id = 0;
int escape_glyph;
/* Handle control characters with ^. */
if (ASCII_CHAR_P (c) && it->ctl_arrow_p)
{
int g;
g = '^'; /* default glyph for Control */
/* Set IT->ctl_chars[0] to the glyph for `^'. */
if (it->dp
&& (gc = DISP_CTRL_GLYPH (it->dp), GLYPH_CODE_P (gc)))
{
g = GLYPH_CODE_CHAR (gc);
lface_id = GLYPH_CODE_FACE (gc);
}
face_id = (lface_id
? merge_faces (it->w, Qt, lface_id, it->face_id)
: merge_escape_glyph_face (it));
XSETINT (it->ctl_chars[0], g);
XSETINT (it->ctl_chars[1], c ^ 0100);
ctl_len = 2;
goto display_control;
}
/* Handle non-ascii space in the mode where it only gets
highlighting. */
if (nonascii_space_p && EQ (Vnobreak_char_display, Qt))
{
/* Merge `nobreak-space' into the current face. */
face_id = merge_faces (it->w, Qnobreak_space, 0,
it->face_id);
XSETINT (it->ctl_chars[0],
nobreak_char_ascii_display ? ' ' : it->c);
ctl_len = 1;
goto display_control;
}
/* Handle non-ascii hyphens in the mode where it only
gets highlighting. */
if (nonascii_hyphen_p && EQ (Vnobreak_char_display, Qt))
{
/* Merge `nobreak-space' into the current face. */
face_id = merge_faces (it->w, Qnobreak_hyphen, 0,
it->face_id);
XSETINT (it->ctl_chars[0],
nobreak_char_ascii_display ? '-' : it->c);
ctl_len = 1;
goto display_control;
}
/* Handle sequences that start with the "escape glyph". */
/* the default escape glyph is \. */
escape_glyph = '\\';
if (it->dp
&& (gc = DISP_ESCAPE_GLYPH (it->dp), GLYPH_CODE_P (gc)))
{
escape_glyph = GLYPH_CODE_CHAR (gc);
lface_id = GLYPH_CODE_FACE (gc);
}
face_id = (lface_id
? merge_faces (it->w, Qt, lface_id, it->face_id)
: merge_escape_glyph_face (it));
/* Draw non-ASCII space/hyphen with escape glyph: */
if (nonascii_space_p || nonascii_hyphen_p)
{
XSETINT (it->ctl_chars[0], escape_glyph);
XSETINT (it->ctl_chars[1], nonascii_space_p ? ' ' : '-');
ctl_len = 2;
goto display_control;
}
{
char str[10];
int len, i;
if (CHAR_BYTE8_P (c))
/* Display \200 or \x80 instead of \17777600. */
c = CHAR_TO_BYTE8 (c);
const char *format_string = display_raw_bytes_as_hex
? "x%02x"
: "%03o";
len = sprintf (str, format_string, c + 0u);
XSETINT (it->ctl_chars[0], escape_glyph);
for (i = 0; i < len; i++)
XSETINT (it->ctl_chars[i + 1], str[i]);
ctl_len = len + 1;
}
display_control:
/* Set up IT->dpvec and return first character from it. */
it->dpvec_char_len = it->len;
it->dpvec = it->ctl_chars;
it->dpend = it->dpvec + ctl_len;
it->current.dpvec_index = 0;
it->dpvec_face_id = face_id;
it->saved_face_id = it->face_id;
it->method = GET_FROM_DISPLAY_VECTOR;
it->ellipsis_p = false;
goto get_next;
}
it->char_to_display = c;
}
else if (success_p)
{
it->char_to_display = it->c;
}
}
#ifdef HAVE_WINDOW_SYSTEM
/* Adjust face id for a multibyte character. There are no multibyte
character in unibyte text. */
if ((it->what == IT_CHARACTER || it->what == IT_COMPOSITION)
&& it->multibyte_p
&& success_p
&& FRAME_WINDOW_P (it->f))
{
struct face *face = FACE_FROM_ID_OR_NULL (it->f, it->face_id);
/* It shouldn't happen, ever, that FACE is NULL here, but
evidently some faulty fonts/fontsets can sometimes cause it.
In that case, we punt and consider the stuff undisplayable. */
if (!face)
{
it->what = IT_GLYPHLESS;
it->glyphless_method = GLYPHLESS_DISPLAY_EMPTY_BOX;
}
else if (it->what == IT_COMPOSITION && it->cmp_it.ch >= 0)
{
/* Automatic composition with glyph-string. */
Lisp_Object gstring = composition_gstring_from_id (it->cmp_it.id);
it->face_id = face_for_font (it->f, LGSTRING_FONT (gstring), face);
}
else
{
ptrdiff_t pos = (it->s ? -1
: STRINGP (it->string) ? IT_STRING_CHARPOS (*it)
: IT_CHARPOS (*it));
int c;
if (it->what == IT_CHARACTER)
c = it->char_to_display;
else
{
struct composition *cmp = composition_table[it->cmp_it.id];
int i;
c = ' ';
for (i = 0; i < cmp->glyph_len; i++)
/* TAB in a composition means display glyphs with
padding space on the left or right. */
if ((c = COMPOSITION_GLYPH (cmp, i)) != '\t')
break;
}
it->face_id = FACE_FOR_CHAR (it->f, face, c, pos, it->string);
}
}
#endif /* HAVE_WINDOW_SYSTEM */
done:
/* Is this character the last one of a run of characters with
box? If yes, set IT->end_of_box_run_p to true. */
if (it->face_box_p
&& it->s == NULL)
{
if (it->method == GET_FROM_STRING && it->sp)
{
int face_id = underlying_face_id (it);
struct face *face = FACE_FROM_ID_OR_NULL (it->f, face_id);
if (face)
{
if (face->box == FACE_NO_BOX)
{
/* If the box comes from face properties in a
display string, check faces in that string. */
int string_face_id = face_after_it_pos (it);
if (FACE_FROM_ID (it->f, string_face_id)->box == FACE_NO_BOX)
it->end_of_box_run_p = true;
}
/* Otherwise, the box comes from the underlying face.
If this is the last string character displayed, check
the next buffer location. */
else if (((IT_STRING_CHARPOS (*it) >= SCHARS (it->string) - 1)
/* For a composition, see if the string ends
at the last character included in the
composition. */
|| (it->what == IT_COMPOSITION
&& (IT_STRING_CHARPOS (*it) + it->cmp_it.nchars
>= SCHARS (it->string))))
/* n_overlay_strings is unreliable unless
overlay_string_index is non-negative. */
&& ((it->current.overlay_string_index >= 0
&& (it->current.overlay_string_index
== it->n_overlay_strings - 1))
/* A string from display property. */
|| it->from_disp_prop_p))
{
ptrdiff_t ignore;
int next_face_id;
bool text_from_string = false;
/* Normally, the next buffer location is stored in
IT->current.pos... */
struct text_pos pos = it->current.pos;
/* ...but for a string from a display property, the
next buffer position is stored in the 'position'
member of the iteration stack slot below the
current one, see handle_single_display_spec. By
contrast, it->current.pos was not yet updated to
point to that buffer position; that will happen
in pop_it, after we finish displaying the current
string. Note that we already checked above that
it->sp is positive, so subtracting one from it is
safe. */
if (it->from_disp_prop_p)
{
int stackp = it->sp - 1;
/* Find the stack level with data from buffer. */
while (stackp >= 0
&& STRINGP ((it->stack + stackp)->string))
stackp--;
if (stackp < 0)
{
/* If no stack slot was found for iterating
a buffer, we are displaying text from a
string, most probably the mode line or
the header line, and that string has a
display string on some of its
characters. */
text_from_string = true;
pos = it->stack[it->sp - 1].position;
}
else
pos = (it->stack + stackp)->position;
}
else
INC_TEXT_POS (pos, it->multibyte_p);
if (text_from_string)
{
Lisp_Object base_string = it->stack[it->sp - 1].string;
if (CHARPOS (pos) >= SCHARS (base_string) - 1)
it->end_of_box_run_p = true;
else
{
next_face_id
= face_at_string_position (it->w, base_string,
CHARPOS (pos), 0,
&ignore, face_id,
false, 0);
if (FACE_FROM_ID (it->f, next_face_id)->box
== FACE_NO_BOX)
it->end_of_box_run_p = true;
}
}
else if (CHARPOS (pos) >= ZV)
it->end_of_box_run_p = true;
else
{
next_face_id =
face_at_buffer_position (it->w, CHARPOS (pos),
&ignore,
CHARPOS (pos)
+ TEXT_PROP_DISTANCE_LIMIT,
false, -1, 0);
if (FACE_FROM_ID (it->f, next_face_id)->box
== FACE_NO_BOX)
it->end_of_box_run_p = true;
}
}
}
}
/* next_element_from_display_vector sets this flag according to
faces of the display vector glyphs, see there. */
else if (it->method != GET_FROM_DISPLAY_VECTOR)
{
int face_id = face_after_it_pos (it);
if (face_id != it->face_id
&& FACE_FROM_ID (it->f, face_id)->box == FACE_NO_BOX)
it->end_of_box_run_p = true;
}
}
/* If we reached the end of the object we've been iterating (e.g., a
display string or an overlay string), and there's something on
IT->stack, proceed with what's on the stack. It doesn't make
sense to return false if there's unprocessed stuff on the stack,
because otherwise that stuff will never be displayed. */
if (!success_p && it->sp > 0)
{
set_iterator_to_next (it, false);
success_p = get_next_display_element (it);
}
/* Value is false if end of buffer or string reached. */
return success_p;
}
/* Move IT to the next display element.
RESEAT_P means if called on a newline in buffer text,
skip to the next visible line start.
Functions get_next_display_element and set_iterator_to_next are
separate because I find this arrangement easier to handle than a
get_next_display_element function that also increments IT's
position. The way it is we can first look at an iterator's current
display element, decide whether it fits on a line, and if it does,
increment the iterator position. The other way around we probably
would either need a flag indicating whether the iterator has to be
incremented the next time, or we would have to implement a
decrement position function which would not be easy to write. */
void
set_iterator_to_next (struct it *it, bool reseat_p)
{
if (max_redisplay_ticks > 0)
update_redisplay_ticks (1, it->w);
switch (it->method)
{
case GET_FROM_BUFFER:
/* The current display element of IT is a character from
current_buffer. Advance in the buffer, and maybe skip over
invisible lines that are so because of selective display. */
if (ITERATOR_AT_END_OF_LINE_P (it) && reseat_p)
reseat_at_next_visible_line_start (it, false);
else if (it->cmp_it.id >= 0)
{
/* We are currently getting glyphs from a composition. */
if (! it->bidi_p)
{
IT_CHARPOS (*it) += it->cmp_it.nchars;
IT_BYTEPOS (*it) += it->cmp_it.nbytes;
}
else
{
int i;
/* Update IT's char/byte positions to point to the first
character of the next grapheme cluster, or to the
character visually after the current composition. */
for (i = 0; i < it->cmp_it.nchars; i++)
bidi_move_to_visually_next (&it->bidi_it);
IT_BYTEPOS (*it) = it->bidi_it.bytepos;
IT_CHARPOS (*it) = it->bidi_it.charpos;
}
if ((! it->bidi_p || ! it->cmp_it.reversed_p)
&& it->cmp_it.to < it->cmp_it.nglyphs)
{
/* Composition created while scanning forward. Proceed
to the next grapheme cluster. */
it->cmp_it.from = it->cmp_it.to;
}
else if ((it->bidi_p && it->cmp_it.reversed_p)
&& it->cmp_it.from > 0)
{
/* Composition created while scanning backward. Proceed
to the previous grapheme cluster. */
it->cmp_it.to = it->cmp_it.from;
}
else
{
/* No more grapheme clusters in this composition.
Find the next stop position. */
ptrdiff_t stop = it->end_charpos;
if (it->bidi_it.scan_dir < 0)
/* Now we are scanning backward; figure out where to stop. */
stop = bidi_level_start (it->bidi_it.resolved_level) - 1;
composition_compute_stop_pos (&it->cmp_it, IT_CHARPOS (*it),
IT_BYTEPOS (*it), stop, Qnil, true);
}
}
else
{
eassert (it->len != 0);
if (!it->bidi_p)
{
IT_BYTEPOS (*it) += it->len;
IT_CHARPOS (*it) += 1;
}
else
{
int prev_scan_dir = it->bidi_it.scan_dir;
/* If this is a new paragraph, determine its base
direction (a.k.a. its base embedding level). */
if (it->bidi_it.new_paragraph)
bidi_paragraph_init (it->paragraph_embedding, &it->bidi_it,
false);
bidi_move_to_visually_next (&it->bidi_it);
IT_BYTEPOS (*it) = it->bidi_it.bytepos;
IT_CHARPOS (*it) = it->bidi_it.charpos;
if (prev_scan_dir != it->bidi_it.scan_dir)
{
/* As the scan direction was changed, we must
re-compute the stop position for composition. */
ptrdiff_t stop = it->end_charpos;
if (it->bidi_it.scan_dir < 0)
stop = bidi_level_start (it->bidi_it.resolved_level) - 1;
composition_compute_stop_pos (&it->cmp_it, IT_CHARPOS (*it),
IT_BYTEPOS (*it), stop, Qnil,
true);
}
}
eassert (IT_BYTEPOS (*it) == CHAR_TO_BYTE (IT_CHARPOS (*it)));
}
break;
case GET_FROM_C_STRING:
/* Current display element of IT is from a C string. */
if (!it->bidi_p
/* If the string position is beyond string's end, it means
next_element_from_c_string is padding the string with
blanks, in which case we bypass the bidi iterator,
because it cannot deal with such virtual characters. */
|| IT_CHARPOS (*it) >= it->bidi_it.string.schars)
{
IT_BYTEPOS (*it) += it->len;
IT_CHARPOS (*it) += 1;
}
else
{
bidi_move_to_visually_next (&it->bidi_it);
IT_BYTEPOS (*it) = it->bidi_it.bytepos;
IT_CHARPOS (*it) = it->bidi_it.charpos;
}
break;
case GET_FROM_DISPLAY_VECTOR:
/* Current display element of IT is from a display table entry.
Advance in the display table definition. Reset it to null if
end reached, and continue with characters from buffers/
strings. */
++it->current.dpvec_index;
/* Restore face of the iterator to what they were before the
display vector entry (these entries may contain faces). */
it->face_id = it->saved_face_id;
if (it->dpvec + it->current.dpvec_index >= it->dpend)
{
bool recheck_faces = it->ellipsis_p;
if (it->s)
it->method = GET_FROM_C_STRING;
else if (STRINGP (it->string))
it->method = GET_FROM_STRING;
else
{
it->method = GET_FROM_BUFFER;
it->object = it->w->contents;
}
it->dpvec = NULL;
it->current.dpvec_index = -1;
/* Skip over characters which were displayed via IT->dpvec. */
if (it->dpvec_char_len < 0)
reseat_at_next_visible_line_start (it, true);
else if (it->dpvec_char_len > 0)
{
it->len = it->dpvec_char_len;
set_iterator_to_next (it, reseat_p);
}
/* Maybe recheck faces after display vector. */
if (recheck_faces)
{
if (it->method == GET_FROM_STRING)
it->stop_charpos = IT_STRING_CHARPOS (*it);
else
it->stop_charpos = IT_CHARPOS (*it);
}
}
break;
case GET_FROM_STRING:
/* Current display element is a character from a Lisp string. */
eassert (it->s == NULL && STRINGP (it->string));
/* Don't advance past string end. These conditions are true
when set_iterator_to_next is called at the end of
get_next_display_element, in which case the Lisp string is
already exhausted, and all we want is pop the iterator
stack. */
if (it->current.overlay_string_index >= 0)
{
/* This is an overlay string, so there's no padding with
spaces, and the number of characters in the string is
where the string ends. */
if (IT_STRING_CHARPOS (*it) >= SCHARS (it->string))
goto consider_string_end;
}
else
{
/* Not an overlay string. There could be padding, so test
against it->end_charpos. */
if (IT_STRING_CHARPOS (*it) >= it->end_charpos)
goto consider_string_end;
}
if (it->cmp_it.id >= 0)
{
/* We are delivering display elements from a composition.
Update the string position past the grapheme cluster
we've just processed. */
if (! it->bidi_p)
{
IT_STRING_CHARPOS (*it) += it->cmp_it.nchars;
IT_STRING_BYTEPOS (*it) += it->cmp_it.nbytes;
}
else
{
int i;
for (i = 0; i < it->cmp_it.nchars; i++)
bidi_move_to_visually_next (&it->bidi_it);
IT_STRING_BYTEPOS (*it) = it->bidi_it.bytepos;
IT_STRING_CHARPOS (*it) = it->bidi_it.charpos;
}
/* Did we exhaust all the grapheme clusters of this
composition? */
if ((! it->bidi_p || ! it->cmp_it.reversed_p)
&& (it->cmp_it.to < it->cmp_it.nglyphs))
{
/* Not all the grapheme clusters were processed yet;
advance to the next cluster. */
it->cmp_it.from = it->cmp_it.to;
}
else if ((it->bidi_p && it->cmp_it.reversed_p)
&& it->cmp_it.from > 0)
{
/* Likewise: advance to the next cluster, but going in
the reverse direction. */
it->cmp_it.to = it->cmp_it.from;
}
else
{
/* This composition was fully processed; find the next
candidate place for checking for composed
characters. */
/* Always limit string searches to the string length;
any padding spaces are not part of the string, and
there cannot be any compositions in that padding. */
ptrdiff_t stop = SCHARS (it->string);
if (it->bidi_p && it->bidi_it.scan_dir < 0)
stop = -1;
else if (it->end_charpos < stop)
{
/* Cf. PRECISION in reseat_to_string: we might be
limited in how many of the string characters we
need to deliver. */
stop = it->end_charpos;
}
composition_compute_stop_pos (&it->cmp_it,
IT_STRING_CHARPOS (*it),
IT_STRING_BYTEPOS (*it), stop,
it->string, true);
}
}
else
{
if (!it->bidi_p
/* If the string position is beyond string's end, it
means next_element_from_string is padding the string
with blanks, in which case we bypass the bidi
iterator, because it cannot deal with such virtual
characters. */
|| IT_STRING_CHARPOS (*it) >= it->bidi_it.string.schars)
{
IT_STRING_BYTEPOS (*it) += it->len;
IT_STRING_CHARPOS (*it) += 1;
}
else
{
int prev_scan_dir = it->bidi_it.scan_dir;
bidi_move_to_visually_next (&it->bidi_it);
IT_STRING_BYTEPOS (*it) = it->bidi_it.bytepos;
IT_STRING_CHARPOS (*it) = it->bidi_it.charpos;
/* If the scan direction changes, we may need to update
the place where to check for composed characters. */
if (prev_scan_dir != it->bidi_it.scan_dir)
{
ptrdiff_t stop = SCHARS (it->string);
if (it->bidi_it.scan_dir < 0)
stop = -1;
else if (it->end_charpos < stop)
stop = it->end_charpos;
composition_compute_stop_pos (&it->cmp_it,
IT_STRING_CHARPOS (*it),
IT_STRING_BYTEPOS (*it), stop,
it->string, true);
}
}
}
consider_string_end:
if (it->current.overlay_string_index >= 0)
{
/* IT->string is an overlay string. Advance to the
next, if there is one. */
if (IT_STRING_CHARPOS (*it) >= SCHARS (it->string))
{
/* Maybe add a stretch glyph if the string had 'min-width'
display spec. */
display_min_width (it, IT_STRING_CHARPOS (*it), it->string,
Qnil);
it->ellipsis_p = false;
next_overlay_string (it);
if (it->ellipsis_p)
setup_for_ellipsis (it, 0);
}
}
else
{
/* IT->string is not an overlay string. If we reached
its end, and there is something on IT->stack, proceed
with what is on the stack. This can be either another
string, this time an overlay string, or a buffer. */
if (IT_STRING_CHARPOS (*it) == SCHARS (it->string)
&& it->sp > 0)
{
/* Maybe add a stretch glyph if the string had 'min-width'
display spec. We only do this if it->sp > 0 because
mode-line strings are handled differently, see
display_min_width. */
display_min_width (it, IT_STRING_CHARPOS (*it), it->string,
Qnil);
pop_it (it);
if (it->method == GET_FROM_STRING)
goto consider_string_end;
}
}
break;
case GET_FROM_IMAGE:
case GET_FROM_STRETCH:
case GET_FROM_XWIDGET:
/* The position etc with which we have to proceed are on
the stack. The position may be at the end of a string,
if the `display' property takes up the whole string. */
eassert (it->sp > 0);
pop_it (it);
if (it->method == GET_FROM_STRING)
goto consider_string_end;
break;
default:
/* There are no other methods defined, so this should be a bug. */
emacs_abort ();
}
eassert (it->method != GET_FROM_STRING
|| (STRINGP (it->string)
&& IT_STRING_CHARPOS (*it) >= 0));
}
/* Load IT's display element fields with information about the next
display element which comes from a display table entry or from the
result of translating a control character to one of the forms `^C'
or `\003'.
IT->dpvec holds the glyphs to return as characters.
IT->saved_face_id holds the face id before the display vector--it
is restored into IT->face_id in set_iterator_to_next. */
static bool
next_element_from_display_vector (struct it *it)
{
Lisp_Object gc;
int prev_face_id = it->face_id;
int next_face_id;
/* Precondition. */
eassert (it->dpvec && it->current.dpvec_index >= 0);
it->face_id = it->saved_face_id;
/* KFS: This code used to check ip->dpvec[0] instead of the current element.
That seemed totally bogus - so I changed it... */
if (it->dpend - it->dpvec > 0 /* empty dpvec[] is invalid */
&& (gc = it->dpvec[it->current.dpvec_index], GLYPH_CODE_P (gc)))
{
struct face *this_face, *prev_face, *next_face;
it->c = GLYPH_CODE_CHAR (gc);
it->len = CHAR_BYTES (it->c);
/* The entry may contain a face id to use. Such a face id is
the id of a Lisp face, not a realized face. A face id of
zero means no face is specified. */
if (it->dpvec_face_id >= 0)
it->face_id = it->dpvec_face_id;
else
{
int lface_id = GLYPH_CODE_FACE (gc);
if (lface_id > 0)
it->face_id = merge_faces (it->w, Qt, lface_id,
it->saved_face_id);
}
/* Glyphs in the display vector could have the box face, so we
need to set the related flags in the iterator, as
appropriate. */
this_face = FACE_FROM_ID_OR_NULL (it->f, it->face_id);
prev_face = FACE_FROM_ID_OR_NULL (it->f, prev_face_id);
/* Is this character the first character of a box-face run? */
it->start_of_box_run_p = (this_face && this_face->box != FACE_NO_BOX
&& (!prev_face
|| prev_face->box == FACE_NO_BOX));
/* For the last character of the box-face run, we need to look
either at the next glyph from the display vector, or at the
face we saw before the display vector. */
next_face_id = it->saved_face_id;
if (it->current.dpvec_index < it->dpend - it->dpvec - 1)
{
if (it->dpvec_face_id >= 0)
next_face_id = it->dpvec_face_id;
else
{
Lisp_Object gc = it->dpvec[it->current.dpvec_index + 1];
int lface_id = GLYPH_CODE_P (gc) ? GLYPH_CODE_FACE (gc) : 0;
if (lface_id > 0)
next_face_id = merge_faces (it->w, Qt, lface_id,
it->saved_face_id);
}
}
next_face = FACE_FROM_ID_OR_NULL (it->f, next_face_id);
if (this_face && this_face->box != FACE_NO_BOX
&& (!next_face || next_face->box == FACE_NO_BOX))
it->end_of_box_run_p = true;
it->face_box_p = this_face && this_face->box != FACE_NO_BOX;
}
else
/* Display table entry is invalid. Return a space. */
it->c = ' ', it->len = 1;
/* Don't change position and object of the iterator here. They are
still the values of the character that had this display table
entry or was translated, and that's what we want. */
it->what = IT_CHARACTER;
return true;
}
/* Get the first element of string/buffer in the visual order, after
being reseated to a new position in a string or a buffer. */
static void
get_visually_first_element (struct it *it)
{
bool string_p = STRINGP (it->string) || it->s;
ptrdiff_t eob = (string_p ? it->bidi_it.string.schars : ZV);
ptrdiff_t bob;
ptrdiff_t obegv = BEGV;
SET_WITH_NARROWED_BEGV (it, bob,
string_p ? 0 :
IT_CHARPOS (*it) < BEGV ? obegv : BEGV,
it->medium_narrowing_begv);
if (STRINGP (it->string))
{
it->bidi_it.charpos = IT_STRING_CHARPOS (*it);
it->bidi_it.bytepos = IT_STRING_BYTEPOS (*it);
}
else
{
it->bidi_it.charpos = IT_CHARPOS (*it);
it->bidi_it.bytepos = IT_BYTEPOS (*it);
}
if (it->bidi_it.charpos == eob)
{
/* Nothing to do, but reset the FIRST_ELT flag, like
bidi_paragraph_init does, because we are not going to
call it. */
it->bidi_it.first_elt = false;
}
else if (it->bidi_it.charpos == bob
|| (!string_p
&& (FETCH_BYTE (it->bidi_it.bytepos - 1) == '\n'
|| FETCH_BYTE (it->bidi_it.bytepos) == '\n')))
{
/* If we are at the beginning of a line/string, we can produce
the next element right away. */
bidi_paragraph_init (it->paragraph_embedding, &it->bidi_it, true);
bidi_move_to_visually_next (&it->bidi_it);
}
else
{
ptrdiff_t orig_bytepos = it->bidi_it.bytepos;
/* We need to prime the bidi iterator starting at the line's or
string's beginning, before we will be able to produce the
next element. */
if (string_p)
it->bidi_it.charpos = it->bidi_it.bytepos = 0;
else
SET_WITH_NARROWED_BEGV (it, it->bidi_it.charpos,
find_newline_no_quit (IT_CHARPOS (*it),
IT_BYTEPOS (*it), -1,
&it->bidi_it.bytepos),
it->medium_narrowing_begv);
bidi_paragraph_init (it->paragraph_embedding, &it->bidi_it, true);
do
{
/* Now return to buffer/string position where we were asked
to get the next display element, and produce that. */
bidi_move_to_visually_next (&it->bidi_it);
}
while (it->bidi_it.bytepos != orig_bytepos
&& it->bidi_it.charpos < eob);
}
/* Adjust IT's position information to where we ended up. */
if (STRINGP (it->string))
{
IT_STRING_CHARPOS (*it) = it->bidi_it.charpos;
IT_STRING_BYTEPOS (*it) = it->bidi_it.bytepos;
}
else
{
IT_CHARPOS (*it) = it->bidi_it.charpos;
IT_BYTEPOS (*it) = it->bidi_it.bytepos;
}
if (STRINGP (it->string) || !it->s)
{
ptrdiff_t stop, charpos, bytepos;
if (STRINGP (it->string))
{
eassert (!it->s);
stop = SCHARS (it->string);
if (stop > it->end_charpos)
stop = it->end_charpos;
charpos = IT_STRING_CHARPOS (*it);
bytepos = IT_STRING_BYTEPOS (*it);
}
else
{
stop = it->end_charpos;
charpos = IT_CHARPOS (*it);
bytepos = IT_BYTEPOS (*it);
}
if (it->bidi_it.scan_dir < 0)
stop = STRINGP (it->string)
? -1
: bidi_level_start (it->bidi_it.resolved_level) - 1;
composition_compute_stop_pos (&it->cmp_it, charpos, bytepos, stop,
it->string, true);
}
}
/* Load IT with the next display element from Lisp string IT->string.
IT->current.string_pos is the current position within the string.
If IT->current.overlay_string_index >= 0, the Lisp string is an
overlay string. */
static bool
next_element_from_string (struct it *it)
{
struct text_pos position;
eassert (STRINGP (it->string));
eassert (!it->bidi_p || EQ (it->string, it->bidi_it.string.lstring));
eassert (IT_STRING_CHARPOS (*it) >= 0);
position = it->current.string_pos;
/* With bidi reordering, the character to display might not be the
character at IT_STRING_CHARPOS. BIDI_IT.FIRST_ELT means
that we were reseat()ed to a new string, whose paragraph
direction is not known. */
if (it->bidi_p && it->bidi_it.first_elt)
{
get_visually_first_element (it);
SET_TEXT_POS (position, IT_STRING_CHARPOS (*it), IT_STRING_BYTEPOS (*it));
}
/* Time to check for invisible text? */
if (IT_STRING_CHARPOS (*it) < it->end_charpos)
{
if (IT_STRING_CHARPOS (*it) >= it->stop_charpos)
{
if (!(!it->bidi_p
|| BIDI_AT_BASE_LEVEL (it->bidi_it)
|| IT_STRING_CHARPOS (*it) == it->stop_charpos))
{
/* With bidi non-linear iteration, we could find
ourselves far beyond the last computed stop_charpos,
with several other stop positions in between that we
missed. Scan them all now, in buffer's logical
order, until we find and handle the last stop_charpos
that precedes our current position. */
handle_stop_backwards (it, it->stop_charpos);
return GET_NEXT_DISPLAY_ELEMENT (it);
}
else
{
if (it->bidi_p)
{
/* Take note of the stop position we just moved
across, for when we will move back across it. */
it->prev_stop = it->stop_charpos;
/* If we are at base paragraph embedding level, take
note of the last stop position seen at this
level. */
if (BIDI_AT_BASE_LEVEL (it->bidi_it))
it->base_level_stop = it->stop_charpos;
}
handle_stop (it);
/* Since a handler may have changed IT->method, we must
recurse here. */
return GET_NEXT_DISPLAY_ELEMENT (it);
}
}
else if (it->bidi_p
/* If we are before prev_stop, we may have overstepped
on our way backwards a stop_pos, and if so, we need
to handle that stop_pos. */
&& IT_STRING_CHARPOS (*it) < it->prev_stop
/* We can sometimes back up for reasons that have nothing
to do with bidi reordering. E.g., compositions. The
code below is only needed when we are above the base
embedding level, so test for that explicitly. */
&& !BIDI_AT_BASE_LEVEL (it->bidi_it))
{
/* If we lost track of base_level_stop, we have no better
place for handle_stop_backwards to start from than string
beginning. This happens, e.g., when we were reseated to
the previous screenful of text by vertical-motion. */
if (it->base_level_stop <= 0
|| IT_STRING_CHARPOS (*it) < it->base_level_stop)
it->base_level_stop = 0;
handle_stop_backwards (it, it->base_level_stop);
return GET_NEXT_DISPLAY_ELEMENT (it);
}
}
if (it->current.overlay_string_index >= 0)
{
/* Get the next character from an overlay string. In overlay
strings, there is no field width or padding with spaces to
do. */
if (IT_STRING_CHARPOS (*it) >= SCHARS (it->string))
{
it->what = IT_EOB;
return false;
}
else if (CHAR_COMPOSED_P (it, IT_STRING_CHARPOS (*it),
IT_STRING_BYTEPOS (*it),
it->bidi_it.scan_dir < 0
? -1
: SCHARS (it->string))
&& next_element_from_composition (it))
{
return true;
}
else if (STRING_MULTIBYTE (it->string))
{
const unsigned char *s = (SDATA (it->string)
+ IT_STRING_BYTEPOS (*it));
it->c = check_char_and_length (s, &it->len);
}
else
{
it->c = SREF (it->string, IT_STRING_BYTEPOS (*it));
it->len = 1;
}
}
else
{
/* Get the next character from a Lisp string that is not an
overlay string. Such strings come from the mode line, for
example. We may have to pad with spaces, or truncate the
string. See also next_element_from_c_string. */
if (IT_STRING_CHARPOS (*it) >= it->end_charpos)
{
it->what = IT_EOB;
return false;
}
else if (IT_STRING_CHARPOS (*it) >= it->string_nchars)
{
/* Pad with spaces. */
it->c = ' ', it->len = 1;
CHARPOS (position) = BYTEPOS (position) = -1;
}
else if (CHAR_COMPOSED_P (it, IT_STRING_CHARPOS (*it),
IT_STRING_BYTEPOS (*it),
it->bidi_it.scan_dir < 0
? -1
: it->string_nchars)
&& next_element_from_composition (it))
{
return true;
}
else if (STRING_MULTIBYTE (it->string))
{
const unsigned char *s = (SDATA (it->string)
+ IT_STRING_BYTEPOS (*it));
it->c = check_char_and_length (s, &it->len);
}
else
{
it->c = SREF (it->string, IT_STRING_BYTEPOS (*it));
it->len = 1;
}
}
/* Record what we have and where it came from. */
it->what = IT_CHARACTER;
it->object = it->string;
it->position = position;
return true;
}
/* Load IT with next display element from C string IT->s.
IT->string_nchars is the maximum number of characters to return
from the string. IT->end_charpos may be greater than
IT->string_nchars when this function is called, in which case we
may have to return padding spaces. Value is false if end of string
reached, including padding spaces. */
static bool
next_element_from_c_string (struct it *it)
{
bool success_p = true;
eassert (it->s);
eassert (!it->bidi_p || it->s == it->bidi_it.string.s);
it->what = IT_CHARACTER;
BYTEPOS (it->position) = CHARPOS (it->position) = 0;
it->object = make_fixnum (0);
/* With bidi reordering, the character to display might not be the
character at IT_CHARPOS. BIDI_IT.FIRST_ELT means that
we were reseated to a new string, whose paragraph direction is
not known. */
if (it->bidi_p && it->bidi_it.first_elt)
get_visually_first_element (it);
/* IT's position can be greater than IT->string_nchars in case a
field width or precision has been specified when the iterator was
initialized. */
if (IT_CHARPOS (*it) >= it->end_charpos)
{
/* End of the game. */
it->what = IT_EOB;
success_p = false;
}
else if (IT_CHARPOS (*it) >= it->string_nchars)
{
/* Pad with spaces. */
it->c = ' ', it->len = 1;
BYTEPOS (it->position) = CHARPOS (it->position) = -1;
}
else if (it->multibyte_p)
it->c = check_char_and_length (it->s + IT_BYTEPOS (*it), &it->len);
else
it->c = it->s[IT_BYTEPOS (*it)], it->len = 1;
return success_p;
}
/* Set up IT to return characters from an ellipsis, if appropriate.
The definition of the ellipsis glyphs may come from a display table
entry. This function fills IT with the first glyph from the
ellipsis if an ellipsis is to be displayed. */
static bool
next_element_from_ellipsis (struct it *it)
{
if (it->selective_display_ellipsis_p)
setup_for_ellipsis (it, it->len);
else
{
/* The face at the current position may be different from the
face we find after the invisible text. Remember what it
was in IT->saved_face_id, and signal that it's there by
setting face_before_selective_p. */
it->saved_face_id = it->face_id;
it->method = GET_FROM_BUFFER;
it->object = it->w->contents;
reseat_at_next_visible_line_start (it, true);
it->face_before_selective_p = true;
}
return GET_NEXT_DISPLAY_ELEMENT (it);
}
/* Deliver an image display element. The iterator IT is already
filled with image information (done in handle_display_prop). Value
is always true. */
static bool
next_element_from_image (struct it *it)
{
it->what = IT_IMAGE;
return true;
}
static bool
next_element_from_xwidget (struct it *it)
{
it->what = IT_XWIDGET;
return true;
}
/* Fill iterator IT with next display element from a stretch glyph
property. IT->object is the value of the text property. Value is
always true. */
static bool
next_element_from_stretch (struct it *it)
{
it->what = IT_STRETCH;
return true;
}
/* Scan backwards from IT's current position until we find a stop
position, or until BEGV. This is called when we find ourself
before both the last known prev_stop and base_level_stop while
reordering bidirectional text. */
static void
compute_stop_pos_backwards (struct it *it)
{
const int SCAN_BACK_LIMIT = 1000;
struct text_pos pos;
struct display_pos save_current = it->current;
struct text_pos save_position = it->position;
ptrdiff_t charpos = IT_CHARPOS (*it);
ptrdiff_t where_we_are = charpos;
ptrdiff_t save_stop_pos = it->stop_charpos;
ptrdiff_t save_end_pos = it->end_charpos;
eassert (NILP (it->string) && !it->s);
eassert (it->bidi_p);
it->bidi_p = false;
do
{
it->end_charpos = min (charpos + 1, ZV);
charpos = max (charpos - SCAN_BACK_LIMIT, BEGV);
SET_TEXT_POS (pos, charpos, CHAR_TO_BYTE (charpos));
reseat_1 (it, pos, false);
compute_stop_pos (it);
/* We must advance forward, right? */
if (it->stop_charpos <= charpos)
emacs_abort ();
}
while (charpos > BEGV && it->stop_charpos >= it->end_charpos);
if (it->stop_charpos <= where_we_are)
it->prev_stop = it->stop_charpos;
else
it->prev_stop = BEGV;
it->bidi_p = true;
it->current = save_current;
it->position = save_position;
it->stop_charpos = save_stop_pos;
it->end_charpos = save_end_pos;
}
/* Scan forward from CHARPOS in the current buffer/string, until we
find a stop position > current IT's position. Then handle the stop
position before that. This is called when we bump into a stop
position while reordering bidirectional text. CHARPOS should be
the last previously processed stop_pos (or BEGV/0, if none were
processed yet) whose position is less than IT's current
position. */
static void
handle_stop_backwards (struct it *it, ptrdiff_t charpos)
{
bool bufp = !STRINGP (it->string);
ptrdiff_t where_we_are = (bufp ? IT_CHARPOS (*it) : IT_STRING_CHARPOS (*it));
struct display_pos save_current = it->current;
struct text_pos save_position = it->position;
struct composition_it save_cmp_it = it->cmp_it;
struct text_pos pos1;
ptrdiff_t next_stop;
/* Scan in strict logical order. */
eassert (it->bidi_p);
it->bidi_p = false;
do
{
it->prev_stop = charpos;
if (bufp)
{
SET_TEXT_POS (pos1, charpos, CHAR_TO_BYTE (charpos));
reseat_1 (it, pos1, false);
}
else
it->current.string_pos = string_pos (charpos, it->string);
compute_stop_pos (it);
/* We must advance forward, right? */
if (it->stop_charpos <= it->prev_stop)
emacs_abort ();
charpos = it->stop_charpos;
}
while (charpos <= where_we_are);
it->bidi_p = true;
it->current = save_current;
it->position = save_position;
it->cmp_it = save_cmp_it;
next_stop = it->stop_charpos;
it->stop_charpos = it->prev_stop;
handle_stop (it);
it->stop_charpos = next_stop;
}
/* Load IT with the next display element from current_buffer. Value
is false if end of buffer reached. IT->stop_charpos is the next
position at which to stop and check for text properties or buffer
end. */
static bool
next_element_from_buffer (struct it *it)
{
bool success_p = true;
eassert (IT_CHARPOS (*it) >= BEGV);
eassert (NILP (it->string) && !it->s);
eassert (!it->bidi_p
|| (NILP (it->bidi_it.string.lstring)
&& it->bidi_it.string.s == NULL));
/* With bidi reordering, the character to display might not be the
character at IT_CHARPOS. BIDI_IT.FIRST_ELT means that
we were reseat()ed to a new buffer position, which is potentially
a different paragraph. */
if (it->bidi_p && it->bidi_it.first_elt)
{
get_visually_first_element (it);
SET_TEXT_POS (it->position, IT_CHARPOS (*it), IT_BYTEPOS (*it));
}
if (IT_CHARPOS (*it) >= it->stop_charpos)
{
if (IT_CHARPOS (*it) >= it->end_charpos)
{
bool overlay_strings_follow_p;
/* End of the game, except when overlay strings follow that
haven't been returned yet. */
if (it->overlay_strings_at_end_processed_p)
overlay_strings_follow_p = false;
else
{
it->overlay_strings_at_end_processed_p = true;
overlay_strings_follow_p = get_overlay_strings (it, 0);
}
if (overlay_strings_follow_p)
success_p = GET_NEXT_DISPLAY_ELEMENT (it);
else
{
it->what = IT_EOB;
it->position = it->current.pos;
success_p = false;
}
}
else if (!(!it->bidi_p
|| BIDI_AT_BASE_LEVEL (it->bidi_it)
|| IT_CHARPOS (*it) == it->stop_charpos))
{
/* With bidi non-linear iteration, we could find ourselves
far beyond the last computed stop_charpos, with several
other stop positions in between that we missed. Scan
them all now, in buffer's logical order, until we find
and handle the last stop_charpos that precedes our
current position. */
handle_stop_backwards (it, it->stop_charpos);
it->ignore_overlay_strings_at_pos_p = false;
return GET_NEXT_DISPLAY_ELEMENT (it);
}
else
{
if (it->bidi_p)
{
/* Take note of the stop position we just moved across,
for when we will move back across it. */
it->prev_stop = it->stop_charpos;
/* If we are at base paragraph embedding level, take
note of the last stop position seen at this
level. */
if (BIDI_AT_BASE_LEVEL (it->bidi_it))
it->base_level_stop = it->stop_charpos;
}
handle_stop (it);
it->ignore_overlay_strings_at_pos_p = false;
return GET_NEXT_DISPLAY_ELEMENT (it);
}
}
else if (it->bidi_p
/* If we are before prev_stop, we may have overstepped on
our way backwards a stop_pos, and if so, we need to
handle that stop_pos. */
&& IT_CHARPOS (*it) < it->prev_stop
/* We can sometimes back up for reasons that have nothing
to do with bidi reordering. E.g., compositions. The
code below is only needed when we are above the base
embedding level, so test for that explicitly. */
&& !BIDI_AT_BASE_LEVEL (it->bidi_it))
{
if (it->base_level_stop <= 0
|| IT_CHARPOS (*it) < it->base_level_stop)
{
/* If we lost track of base_level_stop, we need to find
prev_stop by looking backwards. This happens, e.g., when
we were reseated to the previous screenful of text by
vertical-motion. */
it->base_level_stop = BEGV;
compute_stop_pos_backwards (it);
handle_stop_backwards (it, it->prev_stop);
}
else
handle_stop_backwards (it, it->base_level_stop);
it->ignore_overlay_strings_at_pos_p = false;
return GET_NEXT_DISPLAY_ELEMENT (it);
}
else
{
/* No face changes, overlays etc. in sight, so just return a
character from current_buffer. */
unsigned char *p;
ptrdiff_t stop;
/* We moved to the next buffer position, so any info about
previously seen overlays is no longer valid. */
it->ignore_overlay_strings_at_pos_p = false;
if (composition_break_at_point
&& !NILP (BVAR (current_buffer, enable_multibyte_characters))
&& !NILP (Vauto_composition_mode))
{
/* Limit search for composable characters to point's position. */
if (it->bidi_it.scan_dir < 0)
stop = (PT <= IT_CHARPOS (*it)) ? PT : -1;
else
stop = (IT_CHARPOS (*it) < PT
&& PT < it->end_charpos) ? PT : it->end_charpos;
}
else
stop = it->bidi_it.scan_dir < 0
? bidi_level_start (it->bidi_it.resolved_level) - 1
: it->end_charpos;
if (CHAR_COMPOSED_P (it, IT_CHARPOS (*it), IT_BYTEPOS (*it), stop)
&& next_element_from_composition (it))
{
return true;
}
/* Get the next character, maybe multibyte. */
p = BYTE_POS_ADDR (IT_BYTEPOS (*it));
if (it->multibyte_p && !ASCII_CHAR_P (*p))
it->c = string_char_and_length (p, &it->len);
else
it->c = *p, it->len = 1;
/* Record what we have and where it came from. */
it->what = IT_CHARACTER;
it->object = it->w->contents;
it->position = it->current.pos;
/* Normally we return the character found above, except when we
really want to return an ellipsis for selective display. */
if (it->selective)
{
if (it->c == '\n')
{
/* A value of selective > 0 means hide lines indented more
than that number of columns. */
if (it->selective > 0
&& IT_CHARPOS (*it) + 1 < ZV
&& indented_beyond_p (IT_CHARPOS (*it) + 1,
IT_BYTEPOS (*it) + 1,
it->selective))
{
success_p = next_element_from_ellipsis (it);
it->dpvec_char_len = -1;
}
}
else if (it->c == '\r' && it->selective == -1)
{
/* A value of selective == -1 means that everything from the
CR to the end of the line is invisible, with maybe an
ellipsis displayed for it. */
success_p = next_element_from_ellipsis (it);
it->dpvec_char_len = -1;
}
}
}
/* Value is false if end of buffer reached. */
eassert (!success_p || it->what != IT_CHARACTER || it->len > 0);
return success_p;
}
/* Deliver a composition display element. Unlike the other
next_element_from_XXX, this function is not registered in the array
get_next_element[]. It is called from next_element_from_buffer and
next_element_from_string when necessary. */
static bool
next_element_from_composition (struct it *it)
{
it->what = IT_COMPOSITION;
it->len = it->cmp_it.nbytes;
if (STRINGP (it->string))
{
if (it->c < 0)
{
IT_STRING_CHARPOS (*it) += it->cmp_it.nchars;
IT_STRING_BYTEPOS (*it) += it->cmp_it.nbytes;
return false;
}
it->position = it->current.string_pos;
it->object = it->string;
it->c = composition_update_it (&it->cmp_it, IT_STRING_CHARPOS (*it),
IT_STRING_BYTEPOS (*it), it->string);
}
else
{
if (it->c < 0)
{
IT_CHARPOS (*it) += it->cmp_it.nchars;
IT_BYTEPOS (*it) += it->cmp_it.nbytes;
if (it->bidi_p)
{
if (it->bidi_it.new_paragraph)
bidi_paragraph_init (it->paragraph_embedding, &it->bidi_it,
false);
/* Resync the bidi iterator with IT's new position.
FIXME: this doesn't support bidirectional text. */
while (it->bidi_it.charpos < IT_CHARPOS (*it))
bidi_move_to_visually_next (&it->bidi_it);
}
return false;
}
it->position = it->current.pos;
it->object = it->w->contents;
it->c = composition_update_it (&it->cmp_it, IT_CHARPOS (*it),
IT_BYTEPOS (*it), Qnil);
}
return true;
}
/***********************************************************************
Moving an iterator without producing glyphs
***********************************************************************/
/* Check if iterator is at a position corresponding to a valid buffer
position after some move_it_ call. */
#define IT_POS_VALID_AFTER_MOVE_P(it) \
((it)->method != GET_FROM_STRING || IT_STRING_CHARPOS (*it) == 0)
/* Move iterator IT to a specified buffer or X position within one
line on the display without producing glyphs.
OP should be a bit mask including some or all of these bits:
MOVE_TO_X: Stop upon reaching x-position TO_X.
MOVE_TO_POS: Stop upon reaching buffer or string position TO_CHARPOS.
Regardless of OP's value, stop upon reaching the end of the display line.
TO_X is normally a value 0 <= TO_X <= IT->last_visible_x.
This means, in particular, that TO_X includes window's horizontal
scroll amount.
The return value has several possible values that
say what condition caused the scan to stop:
MOVE_POS_MATCH_OR_ZV
- when TO_POS or ZV was reached.
MOVE_X_REACHED
-when TO_X was reached before TO_POS or ZV were reached.
MOVE_LINE_CONTINUED
- when we reached the end of the display area and the line must
be continued.
MOVE_LINE_TRUNCATED
- when we reached the end of the display area and the line is
truncated.
MOVE_NEWLINE_OR_CR
- when we stopped at a line end, i.e. a newline or a CR and selective
display is on. */
static enum move_it_result
move_it_in_display_line_to (struct it *it,
ptrdiff_t to_charpos, int to_x,
enum move_operation_enum op)
{
enum move_it_result result = MOVE_UNDEFINED;
struct glyph_row *saved_glyph_row;
struct it wrap_it, atpos_it, atx_it, ppos_it;
void *wrap_data = NULL, *atpos_data = NULL, *atx_data = NULL;
void *ppos_data = NULL;
bool may_wrap = false;
enum it_method prev_method = it->method;
ptrdiff_t closest_pos UNINIT;
ptrdiff_t prev_pos = IT_CHARPOS (*it);
bool saw_smaller_pos = prev_pos < to_charpos;
bool line_number_pending = false;
int this_line_subject_to_line_prefix = 0;
#ifdef GLYPH_DEBUG
/* atx_flag, atpos_flag and wrap_flag are assigned but never used;
these hold information useful while debugging. */
int atx_flag, atpos_flag, wrap_flag;
#endif /* GLYPH_DEBUG */
/* Don't produce glyphs in produce_glyphs. */
saved_glyph_row = it->glyph_row;
it->glyph_row = NULL;
/* Use wrap_it to save a copy of IT wherever a word wrap could
occur. Use atpos_it to save a copy of IT at the desired buffer
position, if found, so that we can scan ahead and check if the
word later overshoots the window edge. Use atx_it similarly, for
pixel positions. */
wrap_it.sp = -1;
atpos_it.sp = -1;
atx_it.sp = -1;
/* Use ppos_it under bidi reordering to save a copy of IT for the
initial position. We restore that position in IT when we have
scanned the entire display line without finding a match for
TO_CHARPOS and all the character positions are greater than
TO_CHARPOS. We then restart the scan from the initial position,
and stop at CLOSEST_POS, which is a position > TO_CHARPOS that is
the closest to TO_CHARPOS. */
if (it->bidi_p)
{
if ((op & MOVE_TO_POS) && IT_CHARPOS (*it) >= to_charpos)
{
SAVE_IT (ppos_it, *it, ppos_data);
closest_pos = IT_CHARPOS (*it);
}
else
closest_pos = ZV;
}
#define BUFFER_POS_REACHED_P() \
((op & MOVE_TO_POS) != 0 \
&& BUFFERP (it->object) \
&& (IT_CHARPOS (*it) == to_charpos \
|| ((!it->bidi_p \
|| BIDI_AT_BASE_LEVEL (it->bidi_it)) \
&& IT_CHARPOS (*it) > to_charpos) \
|| (it->what == IT_COMPOSITION \
&& ((IT_CHARPOS (*it) > to_charpos \
&& to_charpos >= it->cmp_it.charpos) \
|| (IT_CHARPOS (*it) < to_charpos \
&& to_charpos <= it->cmp_it.charpos)))) \
&& (it->method == GET_FROM_BUFFER \
|| (it->method == GET_FROM_DISPLAY_VECTOR \
&& it->dpvec + it->current.dpvec_index + 1 >= it->dpend)))
if (it->hpos == 0)
{
/* If line numbers are being displayed, produce a line number.
But don't do that if we are to reach first_visible_x, because
line numbers are not relevant to stuff that is not visible on
display. */
if (!((op && MOVE_TO_X) && to_x == it->first_visible_x)
&& should_produce_line_number (it))
{
if (it->current_x == it->first_visible_x)
maybe_produce_line_number (it);
else
line_number_pending = true;
}
/* If there's a line-/wrap-prefix, handle it, if we didn't already. */
if (it->area == TEXT_AREA && !it->string_from_prefix_prop_p)
handle_line_prefix (it);
/* Save whether this line has received a wrap prefix, as this
affects whether Emacs attempts to move glyphs into
continuation lines. */
this_line_subject_to_line_prefix = it->string_from_prefix_prop_p;
}
if (IT_CHARPOS (*it) < CHARPOS (this_line_min_pos))
SET_TEXT_POS (this_line_min_pos, IT_CHARPOS (*it), IT_BYTEPOS (*it));
while (true)
{
int x, i, ascent = 0, descent = 0;
/* Utility macro to reset an iterator with x, ascent, and descent. */
#define IT_RESET_X_ASCENT_DESCENT(IT) \
((IT)->current_x = x, (IT)->max_ascent = ascent, \
(IT)->max_descent = descent)
/* Stop if we move beyond TO_CHARPOS (after an image or a
display string or stretch glyph). */
if ((op & MOVE_TO_POS) != 0
&& BUFFERP (it->object)
&& it->method == GET_FROM_BUFFER
&& (((!it->bidi_p
/* When the iterator is at base embedding level, we
are guaranteed that characters are delivered for
display in strictly increasing order of their
buffer positions. */
|| BIDI_AT_BASE_LEVEL (it->bidi_it))
&& IT_CHARPOS (*it) > to_charpos)
|| (it->bidi_p
&& (prev_method == GET_FROM_IMAGE
|| prev_method == GET_FROM_STRETCH
|| prev_method == GET_FROM_STRING)
/* Passed TO_CHARPOS from left to right. */
&& ((prev_pos < to_charpos
&& IT_CHARPOS (*it) >= to_charpos)
/* Passed TO_CHARPOS from right to left. */
|| (prev_pos > to_charpos
&& IT_CHARPOS (*it) <= to_charpos)))))
{
if (it->line_wrap != WORD_WRAP || wrap_it.sp < 0)
{
result = MOVE_POS_MATCH_OR_ZV;
break;
}
else if (it->line_wrap == WORD_WRAP && atpos_it.sp < 0)
{
/* If wrap_it is valid, the current position might be in
a word that is wrapped. So, save the iterator in
atpos_it and continue to see if wrapping happens. */
SAVE_IT (atpos_it, *it, atpos_data);
#ifdef GLYPH_DEBUG
atpos_flag = this_line_subject_to_line_prefix;
#endif /* GLYPH_DEBUG */
}
}
/* Stop when ZV reached.
We used to stop here when TO_CHARPOS reached as well, but that is
too soon if this glyph does not fit on this line. So we handle it
explicitly below. */
if (!get_next_display_element (it))
{
result = MOVE_POS_MATCH_OR_ZV;
break;
}
if (it->line_wrap == TRUNCATE)
{
/* If it->pixel_width is zero, the last PRODUCE_GLYPHS call
produced something that doesn't consume any screen estate
in the text area, so we don't want to exit the loop at
TO_CHARPOS, before we produce the glyph for that buffer
position. This happens, e.g., when there's an overlay at
TO_CHARPOS that draws a fringe bitmap. */
if (BUFFER_POS_REACHED_P ()
&& (it->pixel_width > 0
|| IT_CHARPOS (*it) > to_charpos
|| it->area != TEXT_AREA))
{
result = MOVE_POS_MATCH_OR_ZV;
break;
}
}
else
{
if (it->line_wrap == WORD_WRAP && it->area == TEXT_AREA)
{
bool next_may_wrap = may_wrap;
/* Can we wrap after this character? */
if (char_can_wrap_after (it))
next_may_wrap = true;
else
next_may_wrap = false;
/* Can we wrap here? */
if (may_wrap && char_can_wrap_before (it))
{
/* We have reached a glyph that follows one or more
whitespace characters or characters that allow
wrapping after them. If this character allows
wrapping before it, save this position as a
wrapping point. */
if (atpos_it.sp >= 0)
{
RESTORE_IT (it, &atpos_it, atpos_data);
result = MOVE_POS_MATCH_OR_ZV;
goto done;
}
if (atx_it.sp >= 0)
{
RESTORE_IT (it, &atx_it, atx_data);
result = MOVE_X_REACHED;
goto done;
}
/* Otherwise, we can wrap here. */
SAVE_IT (wrap_it, *it, wrap_data);
#ifdef GLYPH_DEBUG
wrap_flag = this_line_subject_to_line_prefix;
#endif /* GLYPH_DEBUG */
}
/* Update may_wrap for the next iteration. */
may_wrap = next_may_wrap;
}
}
/* Remember the line height for the current line, in case
the next element doesn't fit on the line. */
ascent = it->max_ascent;
descent = it->max_descent;
/* The call to produce_glyphs will get the metrics of the
display element IT is loaded with. Record the x-position
before this display element, in case it doesn't fit on the
line. */
x = it->current_x;
PRODUCE_GLYPHS (it);
if (it->area != TEXT_AREA)
{
prev_method = it->method;
if (it->method == GET_FROM_BUFFER)
prev_pos = IT_CHARPOS (*it);
set_iterator_to_next (it, true);
if (IT_CHARPOS (*it) < CHARPOS (this_line_min_pos))
SET_TEXT_POS (this_line_min_pos,
IT_CHARPOS (*it), IT_BYTEPOS (*it));
if (it->bidi_p
&& (op & MOVE_TO_POS)
&& IT_CHARPOS (*it) > to_charpos
&& IT_CHARPOS (*it) < closest_pos)
closest_pos = IT_CHARPOS (*it);
continue;
}
/* The number of glyphs we get back in IT->nglyphs will normally
be 1 except when IT->c is (i) a TAB, or (ii) a multi-glyph
character on a terminal frame, or (iii) a line end. For the
second case, IT->nglyphs - 1 padding glyphs will be present.
(On X frames, there is only one glyph produced for a
composite character.)
The behavior implemented below means, for continuation lines,
that as many spaces of a TAB as fit on the current line are
displayed there. For terminal frames, as many glyphs of a
multi-glyph character are displayed in the current line, too.
This is what the old redisplay code did, and we keep it that
way. Under X, the whole shape of a complex character must
fit on the line or it will be completely displayed in the
next line.
Note that both for tabs and padding glyphs, all glyphs have
the same width. */
if (it->nglyphs)
{
/* More than one glyph or glyph doesn't fit on line. All
glyphs have the same width. */
int single_glyph_width = it->pixel_width / it->nglyphs;
int new_x;
int x_before_this_char = x;
int hpos_before_this_char = it->hpos;
for (i = 0; i < it->nglyphs; ++i, x = new_x)
{
new_x = x + single_glyph_width;
/* We want to leave anything reaching TO_X to the caller. */
if ((op & MOVE_TO_X) && new_x > to_x)
{
if (BUFFER_POS_REACHED_P ())
{
if (it->line_wrap != WORD_WRAP || wrap_it.sp < 0)
goto buffer_pos_reached;
if (atpos_it.sp < 0)
{
SAVE_IT (atpos_it, *it, atpos_data);
IT_RESET_X_ASCENT_DESCENT (&atpos_it);
#ifdef GLYPH_DEBUG
atpos_flag = this_line_subject_to_line_prefix;
#endif /* GLYPH_DEBUG */
}
}
else
{
if (it->line_wrap != WORD_WRAP || wrap_it.sp < 0)
{
it->current_x = x;
result = MOVE_X_REACHED;
break;
}
if (atx_it.sp < 0)
{
SAVE_IT (atx_it, *it, atx_data);
IT_RESET_X_ASCENT_DESCENT (&atx_it);
#ifdef GLYPH_DEBUG
atx_flag = this_line_subject_to_line_prefix;
#endif /* GLYPH_DEBUG */
}
}
}
if (/* Lines are continued. */
it->line_wrap != TRUNCATE
&& (/* And glyph doesn't fit on the line. */
new_x > it->last_visible_x
/* Or it fits exactly and we're on a window
system frame. */
|| (new_x == it->last_visible_x
&& FRAME_WINDOW_P (it->f)
&& ((it->bidi_p && it->bidi_it.paragraph_dir == R2L)
? WINDOW_LEFT_FRINGE_WIDTH (it->w)
: WINDOW_RIGHT_FRINGE_WIDTH (it->w))))
/* There is no line prefix, next to which the
iterator _must_ produce a minimum of one actual
glyph. */
&& (!this_line_subject_to_line_prefix
/* Or this is the second glyph to be produced
beyond the confines of the line. */
|| (i != 0
&& (x > it->last_visible_x
|| (x == it->last_visible_x
&& FRAME_WINDOW_P (it->f)
&& ((it->bidi_p
&& it->bidi_it.paragraph_dir == R2L)
? WINDOW_LEFT_FRINGE_WIDTH (it->w)
: WINDOW_RIGHT_FRINGE_WIDTH (it->w)))))))
{
bool moved_forward = false;
if (/* IT->hpos == 0 means the very first glyph
doesn't fit on the line, e.g. a wide
image. */
it->hpos == 0
|| (new_x == it->last_visible_x
&& FRAME_WINDOW_P (it->f)))
{
++it->hpos;
it->current_x = new_x;
/* The character's last glyph just barely fits
in this row. */
if (i == it->nglyphs - 1)
{
/* If this is the destination position,
return a position *before* it in this row,
now that we know it fits in this row. */
if (BUFFER_POS_REACHED_P ())
{
bool can_wrap = true;
/* If the previous character says we can
wrap after it, but the current
character says we can't wrap before
it, then we can't wrap here. */
if (it->line_wrap == WORD_WRAP
&& wrap_it.sp >= 0
&& may_wrap
&& IT_OVERFLOW_NEWLINE_INTO_FRINGE (it))
{
struct it tem_it;
void *tem_data = NULL;
SAVE_IT (tem_it, *it, tem_data);
set_iterator_to_next (it, true);
if (get_next_display_element (it)
&& !char_can_wrap_before (it))
can_wrap = false;
RESTORE_IT (it, &tem_it, tem_data);
}
if (it->line_wrap != WORD_WRAP
|| wrap_it.sp < 0
/* If we've just found whitespace
where we can wrap, effectively
ignore the previous wrap point --
it is no longer relevant, but we
won't have an opportunity to
update it, since we've reached
the edge of this screen line. */
|| (may_wrap && can_wrap
&& IT_OVERFLOW_NEWLINE_INTO_FRINGE (it)))
{
it->hpos = hpos_before_this_char;
it->current_x = x_before_this_char;
result = MOVE_POS_MATCH_OR_ZV;
break;
}
if (it->line_wrap == WORD_WRAP
&& atpos_it.sp < 0)
{
SAVE_IT (atpos_it, *it, atpos_data);
atpos_it.current_x = x_before_this_char;
atpos_it.hpos = hpos_before_this_char;
#ifdef GLYPH_DEBUG
atpos_flag = this_line_subject_to_line_prefix;
#endif /* GLYPH_DEBUG */
}
}
prev_method = it->method;
if (it->method == GET_FROM_BUFFER)
prev_pos = IT_CHARPOS (*it);
set_iterator_to_next (it, true);
if (IT_CHARPOS (*it) < CHARPOS (this_line_min_pos))
SET_TEXT_POS (this_line_min_pos,
IT_CHARPOS (*it), IT_BYTEPOS (*it));
/* On graphical terminals, newlines may
"overflow" into the fringe if
overflow-newline-into-fringe is non-nil.
On text terminals, and on graphical
terminals with no right margin, newlines
may overflow into the last glyph on the
display line.*/
if (!FRAME_WINDOW_P (it->f)
|| ((it->bidi_p
&& it->bidi_it.paragraph_dir == R2L)
? WINDOW_LEFT_FRINGE_WIDTH (it->w)
: WINDOW_RIGHT_FRINGE_WIDTH (it->w)) == 0
|| IT_OVERFLOW_NEWLINE_INTO_FRINGE (it))
{
if (!get_next_display_element (it))
{
result = MOVE_POS_MATCH_OR_ZV;
break;
}
moved_forward = true;
if (BUFFER_POS_REACHED_P ())
{
if (ITERATOR_AT_END_OF_LINE_P (it))
result = MOVE_POS_MATCH_OR_ZV;
else
result = MOVE_LINE_CONTINUED;
break;
}
if (ITERATOR_AT_END_OF_LINE_P (it)
&& (it->line_wrap != WORD_WRAP
|| wrap_it.sp < 0
|| IT_OVERFLOW_NEWLINE_INTO_FRINGE (it)))
{
result = MOVE_NEWLINE_OR_CR;
break;
}
}
}
}
else
IT_RESET_X_ASCENT_DESCENT (it);
/* If the screen line ends with whitespace (or
wrap-able character), and we are under word-wrap,
don't use wrap_it: it is no longer relevant, but
we won't have an opportunity to update it, since
we are done with this screen line. */
if (may_wrap && IT_OVERFLOW_NEWLINE_INTO_FRINGE (it)
/* If the character after the one which set the
may_wrap flag says we can't wrap before it,
we can't wrap here. Therefore, wrap_it
(previously found wrap-point) _is_ relevant
in that case. */
&& (!moved_forward || char_can_wrap_before (it)))
{
/* If we've found TO_X, go back there, as we now
know the last word fits on this screen line. */
if ((op & MOVE_TO_X) && new_x == it->last_visible_x
&& atx_it.sp >= 0)
{
RESTORE_IT (it, &atx_it, atx_data);
atpos_it.sp = -1;
atx_it.sp = -1;
result = MOVE_X_REACHED;
break;
}
}
else if (wrap_it.sp >= 0)
{
RESTORE_IT (it, &wrap_it, wrap_data);
atpos_it.sp = -1;
atx_it.sp = -1;
}
move_trace ("move_it_in: continued at %td\n",
IT_CHARPOS (*it));
result = MOVE_LINE_CONTINUED;
break;
}
if (BUFFER_POS_REACHED_P ())
{
if (it->line_wrap != WORD_WRAP || wrap_it.sp < 0)
goto buffer_pos_reached;
if (it->line_wrap == WORD_WRAP && atpos_it.sp < 0)
{
SAVE_IT (atpos_it, *it, atpos_data);
#ifdef GLYPH_DEBUG
atpos_flag = this_line_subject_to_line_prefix;
#endif /* GLYPH_DEBUG */
IT_RESET_X_ASCENT_DESCENT (&atpos_it);
}
}
if (new_x > it->first_visible_x)
{
/* If we have reached the visible portion of the
screen line, produce the line number if needed. */
if (line_number_pending)
{
line_number_pending = false;
it->current_x = it->first_visible_x;
maybe_produce_line_number (it);
it->current_x += new_x - it->first_visible_x;
}
/* Glyph is visible. Increment number of glyphs that
would be displayed. */
++it->hpos;
}
}
if (result != MOVE_UNDEFINED)
break;
}
else if (BUFFER_POS_REACHED_P ())
{
buffer_pos_reached:
IT_RESET_X_ASCENT_DESCENT (it);
result = MOVE_POS_MATCH_OR_ZV;
break;
}
else if ((op & MOVE_TO_X) && it->current_x >= to_x)
{
/* Stop when TO_X specified and reached. This check is
necessary here because of lines consisting of a line end,
only. The line end will not produce any glyphs and we
would never get MOVE_X_REACHED. */
eassert (it->nglyphs == 0);
result = MOVE_X_REACHED;
break;
}
/* Is this a line end? If yes, we're done. */
if (ITERATOR_AT_END_OF_LINE_P (it))
{
/* If we are past TO_CHARPOS, but never saw any character
positions smaller than TO_CHARPOS, return
MOVE_POS_MATCH_OR_ZV, like the unidirectional display
did. */
if (it->bidi_p && (op & MOVE_TO_POS) != 0)
{
if (!saw_smaller_pos && IT_CHARPOS (*it) > to_charpos)
{
if (closest_pos < ZV)
{
RESTORE_IT (it, &ppos_it, ppos_data);
/* Don't recurse if closest_pos is equal to
to_charpos, since we have just tried that. */
if (closest_pos != to_charpos)
move_it_in_display_line_to (it, closest_pos, -1,
MOVE_TO_POS);
result = MOVE_POS_MATCH_OR_ZV;
}
else
goto buffer_pos_reached;
}
else if (it->line_wrap == WORD_WRAP && atpos_it.sp >= 0
&& IT_CHARPOS (*it) > to_charpos)
goto buffer_pos_reached;
else
result = MOVE_NEWLINE_OR_CR;
}
else
result = MOVE_NEWLINE_OR_CR;
/* If lines are truncated, and the line we moved across is
completely hscrolled out of view, reset the line metrics
to those of the newline we've just processed, so that
glyphs not on display don't affect the line's height. */
if (it->line_wrap == TRUNCATE
&& it->current_x <= it->first_visible_x
&& result == MOVE_NEWLINE_OR_CR
&& it->char_to_display == '\n')
{
it->max_ascent = it->ascent;
it->max_descent = it->descent;
}
/* If we've processed the newline, make sure this flag is
reset, as it must only be set when the newline itself is
processed. */
if (result == MOVE_NEWLINE_OR_CR)
it->constrain_row_ascent_descent_p = false;
break;
}
prev_method = it->method;
if (it->method == GET_FROM_BUFFER)
prev_pos = IT_CHARPOS (*it);
/* The current display element has been consumed. Advance to
the next. */
set_iterator_to_next (it, true);
/* If IT has just finished producing glyphs for the wrap prefix
and is proceeding to the next method, there might not be
sufficient space remaining in this line to accommodate its
glyphs, and one real glyph must be produced to prevent an
infinite loop. Next, clear this flag if such a glyph has
already been produced. */
if (this_line_subject_to_line_prefix == 1
&& !it->string_from_prefix_prop_p)
this_line_subject_to_line_prefix = 2;
else if (this_line_subject_to_line_prefix == 2
&& !it->string_from_prefix_prop_p)
this_line_subject_to_line_prefix = 0;
if (IT_CHARPOS (*it) < CHARPOS (this_line_min_pos))
SET_TEXT_POS (this_line_min_pos, IT_CHARPOS (*it), IT_BYTEPOS (*it));
if (IT_CHARPOS (*it) < to_charpos)
saw_smaller_pos = true;
if (it->bidi_p
&& (op & MOVE_TO_POS)
&& IT_CHARPOS (*it) >= to_charpos
&& IT_CHARPOS (*it) < closest_pos)
closest_pos = IT_CHARPOS (*it);
/* Stop if lines are truncated and IT's current x-position is
past the right edge of the window now. */
if (it->line_wrap == TRUNCATE
&& it->current_x >= it->last_visible_x)
{
if (!FRAME_WINDOW_P (it->f)
|| ((it->bidi_p && it->bidi_it.paragraph_dir == R2L)
? WINDOW_LEFT_FRINGE_WIDTH (it->w)
: WINDOW_RIGHT_FRINGE_WIDTH (it->w)) == 0
|| IT_OVERFLOW_NEWLINE_INTO_FRINGE (it))
{
bool at_eob_p = false;
if ((at_eob_p = !get_next_display_element (it))
|| BUFFER_POS_REACHED_P ()
/* If we are past TO_CHARPOS, but never saw any
character positions smaller than TO_CHARPOS,
return MOVE_POS_MATCH_OR_ZV, like the
unidirectional display did. */
|| (it->bidi_p && (op & MOVE_TO_POS) != 0
&& !saw_smaller_pos
&& IT_CHARPOS (*it) > to_charpos))
{
if (it->bidi_p
&& !BUFFER_POS_REACHED_P ()
&& !at_eob_p && closest_pos < ZV)
{
RESTORE_IT (it, &ppos_it, ppos_data);
if (closest_pos != to_charpos)
move_it_in_display_line_to (it, closest_pos, -1,
MOVE_TO_POS);
}
result = MOVE_POS_MATCH_OR_ZV;
break;
}
if (ITERATOR_AT_END_OF_LINE_P (it))
{
result = MOVE_NEWLINE_OR_CR;
break;
}
}
else if (it->bidi_p && (op & MOVE_TO_POS) != 0
&& !saw_smaller_pos
&& IT_CHARPOS (*it) > to_charpos)
{
if (closest_pos < ZV)
{
RESTORE_IT (it, &ppos_it, ppos_data);
if (closest_pos != to_charpos)
move_it_in_display_line_to (it, closest_pos, -1,
MOVE_TO_POS);
}
result = MOVE_POS_MATCH_OR_ZV;
break;
}
result = MOVE_LINE_TRUNCATED;
break;
}
#undef IT_RESET_X_ASCENT_DESCENT
}
#undef BUFFER_POS_REACHED_P
/* If we scanned beyond TO_POS, restore the saved iterator either to
the wrap point (if found), or to atpos/atx location. We decide which
data to use to restore the saved iterator state by their X coordinates,
since buffer positions might increase non-monotonically with screen
coordinates due to bidi reordering. */
if (result == MOVE_LINE_CONTINUED
&& it->line_wrap == WORD_WRAP
&& wrap_it.sp >= 0
&& ((atpos_it.sp >= 0 && wrap_it.current_x < atpos_it.current_x)
|| (atx_it.sp >= 0 && wrap_it.current_x < atx_it.current_x)))
{
#ifdef GLYPH_DEBUG
this_line_subject_to_line_prefix = wrap_flag;
#endif /* GLYPH_DEBUG */
RESTORE_IT (it, &wrap_it, wrap_data);
}
else if (atpos_it.sp >= 0)
{
#ifdef GLYPH_DEBUG
this_line_subject_to_line_prefix = atpos_flag;
#endif /* GLYPH_DEBUG */
RESTORE_IT (it, &atpos_it, atpos_data);
}
else if (atx_it.sp >= 0)
{
#ifdef GLYPH_DEBUG
this_line_subject_to_line_prefix = atx_flag;
#endif /* GLYPH_DEBUG */
RESTORE_IT (it, &atx_it, atx_data);
}
done:
if (atpos_data)
bidi_unshelve_cache (atpos_data, true);
if (atx_data)
bidi_unshelve_cache (atx_data, true);
if (wrap_data)
bidi_unshelve_cache (wrap_data, true);
if (ppos_data)
bidi_unshelve_cache (ppos_data, true);
/* Restore the iterator settings altered at the beginning of this
function. */
it->glyph_row = saved_glyph_row;
return result;
}
/* For external use. */
void
move_it_in_display_line (struct it *it,
ptrdiff_t to_charpos, int to_x,
enum move_operation_enum op)
{
if (it->line_wrap == WORD_WRAP
&& (op & MOVE_TO_X))
{
struct it save_it;
void *save_data = NULL;
int skip;
SAVE_IT (save_it, *it, save_data);
skip = move_it_in_display_line_to (it, to_charpos, to_x, op);
/* When word-wrap is on, TO_X may lie past the end
of a wrapped line. Then it->current is the
character on the next line, so backtrack to the
space before the wrap point. */
if (skip == MOVE_LINE_CONTINUED)
{
int prev_x = max (it->current_x - 1, 0);
RESTORE_IT (it, &save_it, save_data);
move_it_in_display_line_to
(it, -1, prev_x, MOVE_TO_X);
}
else
bidi_unshelve_cache (save_data, true);
}
else
move_it_in_display_line_to (it, to_charpos, to_x, op);
}
/* Move IT forward until it satisfies one or more of the criteria in
TO_CHARPOS, TO_X, TO_Y, and TO_VPOS.
OP is a bit-mask that specifies where to stop, and in particular,
which of those four position arguments makes a difference. See the
description of enum move_operation_enum.
If TO_CHARPOS is in invisible text, e.g. a truncated part of a
screen line, this function will set IT to the next position that is
displayed to the right of TO_CHARPOS on the screen.
Return the maximum pixel length of any line scanned but never more
than it.last_visible_x. */
int
move_it_to (struct it *it, ptrdiff_t to_charpos, int to_x, int to_y, int to_vpos, int op)
{
enum move_it_result skip, skip2 = MOVE_X_REACHED;
int line_height, line_start_x = 0, reached = 0;
int max_current_x = 0;
void *backup_data = NULL;
for (;;)
{
if (op & MOVE_TO_VPOS)
{
/* If no TO_CHARPOS and no TO_X specified, stop at the
start of the line TO_VPOS. */
if ((op & (MOVE_TO_X | MOVE_TO_POS)) == 0)
{
if (it->vpos == to_vpos)
{
reached = 1;
break;
}
else
skip = move_it_in_display_line_to (it, -1, -1, 0);
}
else
{
/* TO_VPOS >= 0 means stop at TO_X in the line at
TO_VPOS, or at TO_POS, whichever comes first. */
if (it->vpos == to_vpos)
{
reached = 2;
break;
}
skip = move_it_in_display_line_to (it, to_charpos, to_x, op);
if (skip == MOVE_POS_MATCH_OR_ZV || it->vpos == to_vpos)
{
reached = 3;
break;
}
else if (skip == MOVE_X_REACHED && it->vpos != to_vpos)
{
/* We have reached TO_X but not in the line we want. */
skip = move_it_in_display_line_to (it, to_charpos,
-1, MOVE_TO_POS);
if (skip == MOVE_POS_MATCH_OR_ZV)
{
reached = 4;
break;
}
}
}
}
else if (op & MOVE_TO_Y)
{
struct it it_backup;
if (it->line_wrap == WORD_WRAP)
SAVE_IT (it_backup, *it, backup_data);
/* TO_Y specified means stop at TO_X in the line containing
TO_Y---or at TO_CHARPOS if this is reached first. The
problem is that we can't really tell whether the line
contains TO_Y before we have completely scanned it, and
this may skip past TO_X. What we do is to first scan to
TO_X.
If TO_X is not specified, use a TO_X of zero. The reason
is to make the outcome of this function more predictable.
If we didn't use TO_X == 0, we would stop at the end of
the line which is probably not what a caller would expect
to happen. */
skip = move_it_in_display_line_to
(it, to_charpos, ((op & MOVE_TO_X) ? to_x : 0),
(MOVE_TO_X | (op & MOVE_TO_POS)));
/* If TO_CHARPOS is reached or ZV, we don't have to do more. */
if (skip == MOVE_POS_MATCH_OR_ZV)
reached = 5;
else if (skip == MOVE_X_REACHED)
{
/* If TO_X was reached, we want to know whether TO_Y is
in the line. We know this is the case if the already
scanned glyphs make the line tall enough. Otherwise,
we must check by scanning the rest of the line. */
line_height = it->max_ascent + it->max_descent;
if (to_y >= it->current_y
&& to_y < it->current_y + line_height)
{
reached = 6;
break;
}
SAVE_IT (it_backup, *it, backup_data);
move_trace ("move_it: from %td\n", IT_CHARPOS (*it));
skip2 = move_it_in_display_line_to (it, to_charpos, -1,
op & MOVE_TO_POS);
move_trace ("move_it: to %td\n", IT_CHARPOS (*it));
line_height = it->max_ascent + it->max_descent;
move_trace ("move_it: line_height = %d\n", line_height);
if (to_y >= it->current_y
&& to_y < it->current_y + line_height)
{
/* If TO_Y is in this line and TO_X was reached
above, we scanned too far. We have to restore
IT's settings to the ones before skipping. But
keep the more accurate values of max_ascent and
max_descent we've found while skipping the rest
of the line, for the sake of callers, such as
pos_visible_p, that need to know the line
height. */
int max_ascent = it->max_ascent;
int max_descent = it->max_descent;
RESTORE_IT (it, &it_backup, backup_data);
it->max_ascent = max_ascent;
it->max_descent = max_descent;
reached = 6;
}
else
{
skip = skip2;
if (skip == MOVE_POS_MATCH_OR_ZV)
{
reached = 7;
/* If the last move_it_in_display_line_to call
took us away from TO_CHARPOS, back up to the
previous position, as it is a better
approximation of TO_CHARPOS. (Note that we
could have both positions after TO_CHARPOS or
both positions before it, due to bidi
reordering.) */
if (to_charpos > 0
&& IT_CHARPOS (*it) != to_charpos
&& ((IT_CHARPOS (it_backup) > to_charpos)
== (IT_CHARPOS (*it) > to_charpos)))
{
int max_ascent = it->max_ascent;
int max_descent = it->max_descent;
RESTORE_IT (it, &it_backup, backup_data);
it->max_ascent = max_ascent;
it->max_descent = max_descent;
}
}
}
}
else
{
/* Check whether TO_Y is in this line. */
line_height = it->max_ascent + it->max_descent;
move_trace ("move_it: line_height = %d\n", line_height);
if (to_y >= it->current_y
&& to_y < it->current_y + line_height)
{
if (to_y > it->current_y)
max_current_x = max (it->current_x, max_current_x);
/* When word-wrap is on, TO_X may lie past the end
of a wrapped line. Then it->current is the
character on the next line, so backtrack to the
space before the wrap point. */
if (skip == MOVE_LINE_CONTINUED
&& it->line_wrap == WORD_WRAP)
{
int prev_x = max (it->current_x - 1, 0);
RESTORE_IT (it, &it_backup, backup_data);
skip = move_it_in_display_line_to
(it, -1, prev_x, MOVE_TO_X);
}
reached = 6;
}
}
if (reached)
{
max_current_x = max (it->current_x, max_current_x);
break;
}
}
else if (BUFFERP (it->object)
&& (it->method == GET_FROM_BUFFER
|| it->method == GET_FROM_STRETCH)
&& IT_CHARPOS (*it) >= to_charpos
/* Under bidi iteration, a call to set_iterator_to_next
can scan far beyond to_charpos if the initial
portion of the next line needs to be reordered. In
that case, give move_it_in_display_line_to another
chance below. */
&& !(it->bidi_p
&& it->bidi_it.scan_dir == -1))
skip = MOVE_POS_MATCH_OR_ZV;
else
skip = move_it_in_display_line_to (it, to_charpos, -1, MOVE_TO_POS);
switch (skip)
{
case MOVE_POS_MATCH_OR_ZV:
max_current_x = max (it->current_x, max_current_x);
reached = 8;
goto out;
case MOVE_NEWLINE_OR_CR:
max_current_x = max (it->current_x, max_current_x);
if (!IT_OVERFLOW_NEWLINE_INTO_FRINGE (it))
it->override_ascent = -1;
set_iterator_to_next (it, true);
it->continuation_lines_width = 0;
break;
case MOVE_LINE_TRUNCATED:
max_current_x = it->last_visible_x;
it->continuation_lines_width = 0;
reseat_at_next_visible_line_start (it, false);
if ((op & MOVE_TO_POS) != 0
&& (IT_CHARPOS (*it) > to_charpos
|| (IT_CHARPOS (*it) == to_charpos
/* Consider TO_CHARPOS as REACHED if we are at
EOB that ends in something other than a newline. */
&& to_charpos == ZV
&& (ZV_BYTE <= 1 || FETCH_BYTE (ZV_BYTE - 1) != '\n')
/* But if we have a display or an overlay string
at EOB, keep going until we exhaust all the
characters of the string(s). */
&& (it->sp == 0
|| (STRINGP (it->string)
&& (it->current.overlay_string_index < 0
|| (it->current.overlay_string_index >= 0
&& it->current.overlay_string_index
>= it->n_overlay_strings - 1))
&& IT_STRING_CHARPOS (*it) >= it->end_charpos)))))
{
reached = 9;
goto out;
}
break;
case MOVE_LINE_CONTINUED:
max_current_x = it->last_visible_x;
/* For continued lines ending in a tab, some of the glyphs
associated with the tab are displayed on the current
line. Since it->current_x does not include these glyphs,
we use it->last_visible_x instead. */
if (it->c == '\t')
{
it->continuation_lines_width += it->last_visible_x;
/* When moving by vpos, ensure that the iterator really
advances to the next line (bug#847, bug#969). Fixme:
do we need to do this in other circumstances? */
if (it->current_x != it->last_visible_x
&& (op & MOVE_TO_VPOS)
&& !(op & (MOVE_TO_X | MOVE_TO_POS)))
{
line_start_x = it->current_x + it->pixel_width
- it->last_visible_x;
if (FRAME_WINDOW_P (it->f))
{
struct face *face = FACE_FROM_ID (it->f, it->face_id);
struct font *face_font = face->font;
/* When display_line produces a continued line
that ends in a TAB, it skips a tab stop that
is closer than the font's space character
width (see gui_produce_glyphs where it produces
the stretch glyph which represents a TAB).
We need to reproduce the same logic here. */
eassert (face_font);
if (face_font)
{
if (line_start_x < face_font->space_width)
line_start_x
+= it->tab_width * face_font->space_width;
}
}
set_iterator_to_next (it, false);
}
}
else
it->continuation_lines_width += it->current_x;
break;
default:
emacs_abort ();
}
/* Reset/increment for the next run. */
it->current_x = line_start_x;
it->wrap_prefix_width = 0;
line_start_x = 0;
it->hpos = 0;
it->line_number_produced_p = false;
it->current_y += it->max_ascent + it->max_descent;
++it->vpos;
last_height = it->max_ascent + it->max_descent;
it->max_ascent = it->max_descent = 0;
}
out:
/* On text terminals, we may stop at the end of a line in the middle
of a multi-character glyph. If the glyph itself is continued,
i.e. it is actually displayed on the next line, don't treat this
stopping point as valid; move to the next line instead (unless
that brings us offscreen). */
if (!FRAME_WINDOW_P (it->f)
&& op & MOVE_TO_POS
&& IT_CHARPOS (*it) == to_charpos
&& it->what == IT_CHARACTER
&& it->nglyphs > 1
&& it->line_wrap == WINDOW_WRAP
&& it->current_x == it->last_visible_x - 1
&& it->c != '\n'
&& it->c != '\t'
&& it->w->window_end_valid
&& it->vpos < it->w->window_end_vpos)
{
it->continuation_lines_width += it->current_x;
it->current_x = it->hpos = it->max_ascent = it->max_descent = 0;
it->wrap_prefix_width = 0;
it->current_y += it->max_ascent + it->max_descent;
++it->vpos;
last_height = it->max_ascent + it->max_descent;
}
if (backup_data)
bidi_unshelve_cache (backup_data, true);
move_trace ("move_it_to: reached %d\n", reached);
return max_current_x;
}
/* Move iterator IT backward by a specified y-distance DY, DY >= 0.
If DY > 0, move IT backward that many pixels.
DY = 0 means move IT backward to the preceding line start or to BEGV.
This function may move over less or more than DY pixels if
IT->current_y - DY ends up in the middle of a line; in this case
IT->current_y will be set to the top of the line either before or
after the exact pixel coordinate. */
void
move_it_vertically_backward (struct it *it, int dy)
{
int nlines, h;
struct it it2, it3;
void *it2data = NULL, *it3data = NULL;
ptrdiff_t start_pos;
int nchars_per_row
= (it->last_visible_x - it->first_visible_x) / FRAME_COLUMN_WIDTH (it->f);
ptrdiff_t pos_limit;
move_further_back:
eassert (dy >= 0);
start_pos = IT_CHARPOS (*it);
/* Estimate how many newlines we must move back. */
nlines = max (1, dy / default_line_pixel_height (it->w));
if (it->line_wrap == TRUNCATE || nchars_per_row == 0)
pos_limit = BEGV;
else
pos_limit = max (start_pos - nlines * nchars_per_row, BEGV);
/* Set the iterator's position that many lines back. But don't go
back more than NLINES full screen lines -- this wins a day with
buffers which have very long lines. */
while (nlines-- && IT_CHARPOS (*it) > pos_limit)
back_to_previous_visible_line_start (it);
/* Reseat the iterator here. When moving backward, we don't want
reseat to skip forward over invisible text, set up the iterator
to deliver from overlay strings at the new position etc. So,
use reseat_1 here. */
reseat_1 (it, it->current.pos, true);
/* We are now surely at a line start. */
it->wrap_prefix_width = 0;
it->current_x = it->hpos = 0; /* FIXME: this is incorrect when bidi
reordering is in effect. */
it->continuation_lines_width = 0;
/* Move forward and see what y-distance we moved. First move to the
start of the next line so that we get its height. We need this
height to be able to tell whether we reached the specified
y-distance. */
SAVE_IT (it2, *it, it2data);
it2.max_ascent = it2.max_descent = 0;
do
{
move_it_to (&it2, start_pos, -1, -1, it2.vpos + 1,
MOVE_TO_POS | MOVE_TO_VPOS);
}
while (!(IT_POS_VALID_AFTER_MOVE_P (&it2)
/* If we are in a display string which starts at START_POS,
and that display string includes a newline, and we are
right after that newline (i.e. at the beginning of a
display line), exit the loop, because otherwise we will
infloop, since move_it_to will see that it is already at
START_POS and will not move. */
|| (it2.method == GET_FROM_STRING
&& IT_CHARPOS (it2) == start_pos
&& SREF (it2.string, IT_STRING_BYTEPOS (it2) - 1) == '\n')));
eassert (IT_CHARPOS (*it) >= BEGV);
SAVE_IT (it3, it2, it3data);
move_it_to (&it2, start_pos, -1, -1, -1, MOVE_TO_POS);
eassert (IT_CHARPOS (*it) >= BEGV);
/* H is the actual vertical distance from the position in *IT
and the starting position. */
h = it2.current_y - it->current_y;
/* NLINES is the distance in number of lines. */
nlines = it2.vpos - it->vpos;
/* Correct IT's y and vpos position
so that they are relative to the starting point. */
it->vpos -= nlines;
it->current_y -= h;
if (dy == 0)
{
/* DY == 0 means move to the start of the screen line. The
value of nlines is > 0 if continuation lines were involved,
or if the original IT position was at start of a line. */
RESTORE_IT (it, it, it2data);
if (nlines > 0)
move_it_by_lines (it, nlines);
/* The above code moves us to some position NLINES down,
usually to its first glyph (leftmost in an L2R line), but
that's not necessarily the start of the line, under bidi
reordering. We want to get to the character position
that is immediately after the newline of the previous
line. */
if (it->bidi_p
&& !it->continuation_lines_width
&& !STRINGP (it->string)
&& IT_CHARPOS (*it) > BEGV
&& FETCH_BYTE (IT_BYTEPOS (*it) - 1) != '\n')
{
ptrdiff_t cp = IT_CHARPOS (*it), bp = IT_BYTEPOS (*it);
dec_both (&cp, &bp);
SET_WITH_NARROWED_BEGV (it, cp,
find_newline_no_quit (cp, bp, -1, NULL),
get_small_narrowing_begv (it->w, IT_CHARPOS (*it)));
move_it_to (it, cp, -1, -1, -1, MOVE_TO_POS);
}
bidi_unshelve_cache (it3data, true);
}
else
{
/* The y-position we try to reach, relative to *IT.
Note that H has been subtracted in front of the if-statement. */
int target_y = it->current_y + h - dy;
int y0 = it3.current_y;
int y1;
int line_height;
RESTORE_IT (&it3, &it3, it3data);
y1 = line_bottom_y (&it3);
line_height = y1 - y0;
RESTORE_IT (it, it, it2data);
/* If we did not reach target_y, try to move further backward if
we can. If we moved too far backward, try to move forward. */
if (target_y < it->current_y
/* This is heuristic. In a window that's 3 lines high, with
a line height of 13 pixels each, recentering with point
on the bottom line will try to move -39/2 = 19 pixels
backward. Try to avoid moving into the first line. */
&& (it->current_y - target_y
> min (window_box_height (it->w), line_height * 2 / 3))
&& IT_CHARPOS (*it) > BEGV)
{
move_trace (" not far enough -> move_vert %d\n",
target_y - it->current_y);
dy = it->current_y - target_y;
goto move_further_back;
}
else if (target_y >= it->current_y + line_height
&& IT_CHARPOS (*it) < ZV)
{
/* Should move forward by at least one line, maybe more.
Note: Calling move_it_by_lines can be expensive on
terminal frames, where compute_motion is used (via
vmotion) to do the job, when there are very long lines
and truncate-lines is nil. That's the reason for
treating terminal frames specially here. */
if (!FRAME_WINDOW_P (it->f))
move_it_vertically (it, target_y - it->current_y);
else
{
struct text_pos last_pos;
int last_y, last_vpos;
do
{
last_pos = it->current.pos;
last_y = it->current_y;
last_vpos = it->vpos;
move_it_by_lines (it, 1);
}
while (target_y > it->current_y && IT_CHARPOS (*it) < ZV);
if (it->current_y > target_y)
{
reseat (it, last_pos, true);
it->current_y = last_y;
it->vpos = last_vpos;
}
}
}
}
}
/* Move IT by a specified amount of pixel lines DY. DY negative means
move backwards. DY = 0 means move to start of screen line. At the
end, IT will be on the start of a screen line. */
void
move_it_vertically (struct it *it, int dy)
{
if (dy <= 0)
move_it_vertically_backward (it, -dy);
else
{
move_trace ("move_it_v: from %td, %d\n", IT_CHARPOS (*it), dy);
move_it_to (it, ZV, -1, it->current_y + dy, -1,
MOVE_TO_POS | MOVE_TO_Y);
move_trace ("move_it_v: to %td\n", IT_CHARPOS (*it));
/* If buffer ends in ZV without a newline, move to the start of
the line to satisfy the post-condition. */
if (IT_CHARPOS (*it) == ZV
&& ZV > BEGV
&& FETCH_BYTE (IT_BYTEPOS (*it) - 1) != '\n')
move_it_by_lines (it, 0);
}
}
/* Move iterator IT past the end of the text line it is in. */
void
move_it_past_eol (struct it *it)
{
enum move_it_result rc;
rc = move_it_in_display_line_to (it, Z, 0, MOVE_TO_POS);
if (rc == MOVE_NEWLINE_OR_CR)
set_iterator_to_next (it, false);
}
/* Move IT by a specified number DVPOS of screen lines down. DVPOS
negative means move up. DVPOS == 0 means move to the start of the
screen line.
Optimization idea: If we would know that IT->f doesn't use
a face with proportional font, we could be faster for
truncate-lines nil. */
void
move_it_by_lines (struct it *it, ptrdiff_t dvpos)
{
/* The commented-out optimization uses vmotion on terminals. This
gives bad results, because elements like it->what, on which
callers such as pos_visible_p rely, aren't updated. */
/* struct position pos;
if (!FRAME_WINDOW_P (it->f))
{
struct text_pos textpos;
pos = *vmotion (IT_CHARPOS (*it), dvpos, it->w);
SET_TEXT_POS (textpos, pos.bufpos, pos.bytepos);
reseat (it, textpos, true);
it->vpos += pos.vpos;
it->current_y += pos.vpos;
}
else */
if (dvpos == 0)
{
/* DVPOS == 0 means move to the start of the screen line. */
move_it_vertically_backward (it, 0);
/* Let next call to line_bottom_y calculate real line height. */
last_height = 0;
}
else if (dvpos > 0)
{
move_it_to (it, -1, -1, -1, it->vpos + dvpos, MOVE_TO_VPOS);
if (!IT_POS_VALID_AFTER_MOVE_P (it))
{
/* Only move to the next buffer position if we ended up in a
string from display property, not in an overlay string
(before-string or after-string). That is because the
latter don't conceal the underlying buffer position, so
we can ask to move the iterator to the exact position we
are interested in. Note that, even if we are already at
IT_CHARPOS (*it), the call below is not a no-op, as it
will detect that we are at the end of the string, pop the
iterator, and compute it->current_x and it->hpos
correctly. */
move_it_to (it, IT_CHARPOS (*it) + it->string_from_display_prop_p,
-1, -1, -1, MOVE_TO_POS);
}
}
else
{
struct it it2;
void *it2data = NULL;
ptrdiff_t start_charpos, orig_charpos, i;
int nchars_per_row
= (it->last_visible_x - it->first_visible_x) / FRAME_COLUMN_WIDTH (it->f);
bool hit_pos_limit = false;
ptrdiff_t pos_limit;
/* Start at the beginning of the screen line containing IT's
position. This may actually move vertically backwards,
in case of overlays, so adjust dvpos accordingly. */
dvpos += it->vpos;
orig_charpos = IT_CHARPOS (*it);
move_it_vertically_backward (it, 0);
dvpos -= it->vpos;
/* Go back -DVPOS buffer lines, but no farther than -DVPOS full
screen lines, and reseat the iterator there. */
start_charpos = IT_CHARPOS (*it);
if (it->line_wrap == TRUNCATE || nchars_per_row == 0)
pos_limit = BEGV;
else
pos_limit = max (start_charpos + dvpos * nchars_per_row, BEGV);
for (i = -dvpos; i > 0 && IT_CHARPOS (*it) > pos_limit; --i)
back_to_previous_visible_line_start (it);
if (i > 0 && IT_CHARPOS (*it) <= pos_limit)
hit_pos_limit = true;
reseat (it, it->current.pos, true);
/* Move further back if we end up in a string or an image. */
while (!IT_POS_VALID_AFTER_MOVE_P (it))
{
/* First try to move to start of display line. */
dvpos += it->vpos;
move_it_vertically_backward (it, 0);
dvpos -= it->vpos;
if (IT_POS_VALID_AFTER_MOVE_P (it))
break;
/* If start of line is still in string or image,
move further back. */
back_to_previous_visible_line_start (it);
reseat (it, it->current.pos, true);
dvpos--;
}
it->current_x = it->hpos = it->wrap_prefix_width = 0;
/* Above call may have moved too far if continuation lines
are involved. Scan forward and see if it did. */
SAVE_IT (it2, *it, it2data);
it2.vpos = it2.current_y = 0;
move_it_to (&it2, start_charpos, -1, -1, -1, MOVE_TO_POS);
it->vpos -= it2.vpos;
it->current_y -= it2.current_y;
it->current_x = it->hpos = it->wrap_prefix_width = 0;
/* If we moved too far back, move IT some lines forward. */
if (it2.vpos > -dvpos)
{
int delta = it2.vpos + dvpos;
RESTORE_IT (&it2, &it2, it2data);
SAVE_IT (it2, *it, it2data);
move_it_to (it, -1, -1, -1, it->vpos + delta, MOVE_TO_VPOS);
/* Move back again if we got too far ahead,
or didn't move at all. */
if (it->vpos - it2.vpos > delta || IT_CHARPOS (*it) == orig_charpos)
RESTORE_IT (it, &it2, it2data);
else
bidi_unshelve_cache (it2data, true);
}
else if (hit_pos_limit && pos_limit > BEGV
&& dvpos < 0 && it2.vpos < -dvpos)
{
/* If we hit the limit, but still didn't make it far enough
back, that means there's a display string with a newline
covering a large chunk of text, and that caused
back_to_previous_visible_line_start try to go too far.
Punish those who commit such atrocities by going back
until we've reached DVPOS, after lifting the limit, which
could make it slow for very long lines. "If it hurts,
don't do that!" */
dvpos += it2.vpos;
RESTORE_IT (it, it, it2data);
for (i = -dvpos; i > 0; --i)
{
back_to_previous_visible_line_start (it);
it->vpos--;
}
reseat_1 (it, it->current.pos, true);
}
else
RESTORE_IT (it, it, it2data);
}
}
int
partial_line_height (struct it *it_origin)
{
/* In a buffer with very long and truncated lines, we ignore the
possibly-partial height of the last line in the window: it is too
expensive to compute that (since in most cases that involves
going all the way to ZV), and the effect of ignoring it is
relatively minor. */
if (XBUFFER (it_origin->w->contents)->long_line_optimizations_p
&& it_origin->line_wrap == TRUNCATE)
return 0;
int partial_height;
void *it_data = NULL;
struct it it;
SAVE_IT (it, *it_origin, it_data);
move_it_to (&it, ZV, -1, it.last_visible_y, -1,
MOVE_TO_POS | MOVE_TO_Y);
if (it.what == IT_EOB)
{
int vis_height = it.last_visible_y - it.current_y;
int height = it.ascent + it.descent;
partial_height = (vis_height < height) ? vis_height : 0;
}
else
{
int last_line_y = it.current_y;
move_it_by_lines (&it, 1);
partial_height = (it.current_y > it.last_visible_y)
? it.last_visible_y - last_line_y : 0;
}
RESTORE_IT (&it, &it, it_data);
return partial_height;
}
/* Approximate move_it_in_display_line_to for very long and truncated
display lines, when moving horizontally. This is used when the
buffer's long_line_optimizations_p flag is set. It ignores various
complications, like different font sizes, invisible text, display
and overlay strings, and, to some degree, bidirectional text. So
caveat emptor!
Starting from IT's position, reseat IT after skipping NCHARS
characters or to the next newline/ZV, whichever comes first. Return
what move_it_in_display_line_to would have returned in this case. */
static enum move_it_result
fast_move_it_horizontally (struct it *it, ptrdiff_t nchars)
{
ptrdiff_t nl_bytepos;
ptrdiff_t nl_pos = find_newline_no_quit (IT_CHARPOS (*it), IT_BYTEPOS (*it),
1, &nl_bytepos);
struct text_pos new_pos;
enum move_it_result move_result;
if (nl_pos - IT_CHARPOS (*it) > nchars)
{
SET_TEXT_POS (new_pos,
IT_CHARPOS (*it) + nchars,
CHAR_TO_BYTE (IT_CHARPOS (*it) + nchars));
move_result = MOVE_X_REACHED;
}
else
{
if (nl_bytepos < ZV_BYTE
|| (nl_bytepos > BEGV_BYTE
&& FETCH_BYTE (nl_bytepos - 1) == '\n'))
{
nl_pos--;
nl_bytepos--;
move_result = MOVE_NEWLINE_OR_CR;
}
else
move_result = MOVE_POS_MATCH_OR_ZV;
SET_TEXT_POS (new_pos, nl_pos, nl_bytepos);
}
reseat (it, new_pos, false);
return move_result;
}
/* Return true if IT points into the middle of a display vector. */
bool
in_display_vector_p (struct it *it)
{
return (it->method == GET_FROM_DISPLAY_VECTOR
&& it->current.dpvec_index > 0
&& it->dpvec + it->current.dpvec_index != it->dpend);
}
/* This is like Fwindow_text_pixel_size but assumes that WINDOW's buffer
is the current buffer. Fbuffer_text_pixel_size calls it after it has
set WINDOW's buffer to the buffer specified by its BUFFER_OR_NAME
argument. */
static Lisp_Object
window_text_pixel_size (Lisp_Object window, Lisp_Object from, Lisp_Object to,
Lisp_Object x_limit, Lisp_Object y_limit,
Lisp_Object mode_lines, Lisp_Object ignore_line_at_end)
{
struct window *w = decode_live_window (window);
struct it it;
ptrdiff_t start, end, bpos;
struct text_pos startp;
void *itdata = NULL;
int c, max_x = 0, max_y = 0, x = 0, y = 0, vertical_offset = 0, doff = 0;
if (NILP (from))
{
start = BEGV;
bpos = BEGV_BYTE;
}
else if (EQ (from, Qt))
{
start = BEGV;
bpos = BEGV_BYTE;
while (bpos < ZV_BYTE)
{
c = FETCH_BYTE (bpos);
if (!(c == ' ' || c == '\t' || c == '\n' || c == '\r'))
break;
inc_both (&start, &bpos);
}
while (bpos > BEGV_BYTE)
{
dec_both (&start, &bpos);
c = FETCH_BYTE (bpos);
if (!(c == ' ' || c == '\t'))
break;
}
}
else if (CONSP (from))
{
start = clip_to_bounds (BEGV, fix_position (XCAR (from)), ZV);
bpos = CHAR_TO_BYTE (start);
CHECK_FIXNUM (XCDR (from));
vertical_offset = XFIXNUM (XCDR (from));
}
else
{
start = clip_to_bounds (BEGV, fix_position (from), ZV);
bpos = CHAR_TO_BYTE (start);
}
SET_TEXT_POS (startp, start, bpos);
if (NILP (to))
end = ZV;
else if (EQ (to, Qt))
{
end = ZV;
bpos = ZV_BYTE;
while (bpos > BEGV_BYTE)
{
dec_both (&end, &bpos);
c = FETCH_BYTE (bpos);
if (!(c == ' ' || c == '\t' || c == '\n' || c == '\r'))
{
inc_both (&end, &bpos);
break;
}
}
while (bpos < ZV_BYTE)
{
c = fetch_char_advance (&end, &bpos);
if (!(c == ' ' || c == '\t'))
break;
}
}
else
end = clip_to_bounds (start, fix_position (to), ZV);
if (RANGED_FIXNUMP (0, x_limit, INT_MAX))
max_x = XFIXNUM (x_limit);
else if (!NILP (x_limit))
max_x = INT_MAX;
if (NILP (y_limit))
max_y = INT_MAX;
else if (RANGED_FIXNUMP (0, y_limit, INT_MAX))
max_y = XFIXNUM (y_limit);
itdata = bidi_shelve_cache ();
start_display (&it, w, startp);
int start_y = it.current_y;
/* It makes no sense to measure dimensions of region of text that
crosses the point where bidi reordering changes scan direction.
By using unidirectional movement here we at least support the use
case of measuring regions of text that have a uniformly R2L
directionality, and regions that begin and end in text of the
same directionality. */
it.bidi_p = false;
int start_x;
if (vertical_offset != 0)
{
int last_y;
it.current_y = 0;
move_it_by_lines (&it, 0);
/* `move_it_vertically_backward' is called by move_it_vertically
to move by a negative value (upwards), but it is not always
guaranteed to leave the iterator at or above the position
given by the offset, which this loop ensures. */
if (vertical_offset < 0)
{
while (it.current_y > vertical_offset)
{
last_y = it.current_y;
move_it_vertically_backward (&it,
(abs (vertical_offset)
+ it.current_y));
if (it.current_y == last_y)
break;
}
}
else
{
move_it_vertically (&it, vertical_offset);
}
it.current_y = (WINDOW_TAB_LINE_HEIGHT (w)
+ WINDOW_HEADER_LINE_HEIGHT (w));
start = clip_to_bounds (BEGV, IT_CHARPOS (it), ZV);
start_y = it.current_y;
start_x = it.current_x;
}
else
{
/* Start at the beginning of the line containing FROM. Otherwise
IT.current_x will be incorrectly set to zero at some arbitrary
non-zero X coordinate. */
move_it_by_lines (&it, 0);
it.current_x = it.hpos = it.wrap_prefix_width = 0;
if (IT_CHARPOS (it) != start)
{
void *it1data = NULL;
struct it it1;
SAVE_IT (it1, it, it1data);
move_it_to (&it, start, -1, -1, -1, MOVE_TO_POS);
/* We could have a display property at START, in which case
asking move_it_to to stop at START will overshoot and
stop at position after START. So we try again, stopping
before START, and account for the width of the last
buffer position manually. */
if (IT_CHARPOS (it) > start && start > BEGV)
{
ptrdiff_t it1pos = IT_CHARPOS (it1);
int it1_x = it1.current_x;
RESTORE_IT (&it, &it1, it1data);
/* If START - 1 is the beginning of screen line,
move_it_to will not move, so we need to use a
lower-level move_it_in_display_line subroutine, and
tell it to move just 1 pixel, so it stops at the next
display element. */
if (start - 1 > it1pos)
move_it_to (&it, start - 1, -1, -1, -1, MOVE_TO_POS);
else
move_it_in_display_line (&it, start, it1_x + 1,
MOVE_TO_POS | MOVE_TO_X);
start_x = it.current_x;
/* If we didn't change our buffer position, the pixel
width of what's here was not yet accounted for; do it
manually. */
if (IT_CHARPOS (it) == start - 1)
start_x += it.pixel_width;
}
else
{
start_x = it.current_x;
bidi_unshelve_cache (it1data, true);
}
}
else
start_x = it.current_x;
}
/* Now move to TO. */
int move_op = MOVE_TO_POS | MOVE_TO_Y;
int to_x = -1;
it.current_y = start_y;
/* If FROM is on a newline, pretend that we start at the beginning
of the next line, because the newline takes no place on display. */
if (FETCH_BYTE (start) == '\n')
it.current_x = 0, it.wrap_prefix_width = 0;
if (!NILP (x_limit))
{
it.last_visible_x = max_x;
/* Actually, we never want move_it_to stop at to_x. But to make
sure that move_it_in_display_line_to always moves far enough,
we set to_x to INT_MAX and specify MOVE_TO_X. */
move_op |= MOVE_TO_X;
to_x = INT_MAX;
}
void *it2data = NULL;
struct it it2;
SAVE_IT (it2, it, it2data);
x = move_it_to (&it, end, to_x, max_y, -1, move_op);
/* We could have a display property at END, in which case asking
move_it_to to stop at END will overshoot and stop at position
after END. So we try again, stopping before END, and account for
the width of the last buffer position manually. */
if (IT_CHARPOS (it) > end)
{
int end_y = it.current_y;
end--;
RESTORE_IT (&it, &it2, it2data);
x = move_it_to (&it, end, to_x, max_y, -1, move_op);
/* Add the width of the thing at TO, but only if we didn't
overshoot it; if we did, it is already accounted for. Also,
account for the height of the thing at TO. */
if (IT_CHARPOS (it) == end)
{
x += it.pixel_width;
/* DTRT if ignore_line_at_end is t. */
if (!NILP (ignore_line_at_end))
{
/* If END-1 is on the previous screen line, we need to
account for the vertical dimensions of previous line. */
if (it.current_y < end_y)
doff = (max (it.max_ascent, it.ascent)
+ max (it.max_descent, it.descent));
}
else
{
it.max_ascent = max (it.max_ascent, it.ascent);
it.max_descent = max (it.max_descent, it.descent);
}
}
else if (IT_CHARPOS (it) > end
&& it.line_wrap == TRUNCATE
&& it.current_x - it.first_visible_x >= it.last_visible_x)
{
/* If the display property at END is at the beginning of the
line, and the previous line was truncated, we are at END,
but it.current_y is not yet updated to reflect that. */
it.current_y += max (it.max_ascent, it.ascent)
+ max (it.max_descent, it.descent);
}
}
else
bidi_unshelve_cache (it2data, true);
if (!NILP (x_limit))
{
/* Don't return more than X-LIMIT. */
if (x > max_x)
x = max_x;
}
/* If text spans more than one screen line, we don't need to adjust
the x-span for start_x, since the second and subsequent lines
will begin at zero X coordinate. */
if (it.current_y > start_y)
start_x = 0;
/* Subtract height of header-line and tab-line which was counted
automatically by start_display. */
if (!NILP (ignore_line_at_end))
y = (it.current_y + doff
- WINDOW_TAB_LINE_HEIGHT (w)
- WINDOW_HEADER_LINE_HEIGHT (w));
else
y = (it.current_y + it.max_ascent + it.max_descent + doff
- WINDOW_TAB_LINE_HEIGHT (w) - WINDOW_HEADER_LINE_HEIGHT (w));
/* Don't return more than Y-LIMIT. */
if (y > max_y)
y = max_y;
if ((EQ (mode_lines, Qtab_line) || EQ (mode_lines, Qt))
&& window_wants_tab_line (w))
/* Add height of tab-line as requested. */
{
Lisp_Object window_tab_line_format
= window_parameter (w, Qtab_line_format);
y = y + display_mode_line (w, TAB_LINE_FACE_ID,
NILP (window_tab_line_format)
? BVAR (current_buffer, tab_line_format)
: window_tab_line_format);
}
if ((EQ (mode_lines, Qheader_line) || EQ (mode_lines, Qt))
&& window_wants_header_line (w))
{
Lisp_Object window_header_line_format
= window_parameter (w, Qheader_line_format);
y = y + display_mode_line (w, HEADER_LINE_FACE_ID,
NILP (window_header_line_format)
? BVAR (current_buffer, header_line_format)
: window_header_line_format);
}
if ((EQ (mode_lines, Qmode_line) || EQ (mode_lines, Qt))
&& window_wants_mode_line (w))
{
Lisp_Object window_mode_line_format
= window_parameter (w, Qmode_line_format);
y = y + display_mode_line (w, CURRENT_MODE_LINE_ACTIVE_FACE_ID (w),
NILP (window_mode_line_format)
? BVAR (current_buffer, mode_line_format)
: window_mode_line_format);
}
bidi_unshelve_cache (itdata, false);
return (!vertical_offset
? Fcons (make_fixnum (x - start_x), make_fixnum (y))
: list3i (x - start_x, y, start));
}
DEFUN ("window-text-pixel-size", Fwindow_text_pixel_size, Swindow_text_pixel_size, 0, 7, 0,
doc: /* Return the dimensions of the text of WINDOW's buffer in pixels.
WINDOW must be a live window and defaults to the selected one. The
return value is a cons of the maximum pixel-width of any text line and
the pixel-height of all the text lines in the accessible portion of
buffer text.
If FROM is a cons cell, the return value includes, in addition to the
dimensions, also a third element that provides the buffer position
from which measuring of the text dimensions was actually started.
This function exists to allow Lisp programs to adjust the dimensions
of WINDOW to the buffer text it needs to display.
The optional argument FROM, if non-nil, specifies the first text
position to consider, and defaults to the minimum accessible position
of the buffer. If FROM is a cons, its car specifies a buffer
position, and its cdr specifies the vertical offset in pixels from
that position to the first screen line to be measured. If FROM is t,
it stands for the minimum accessible position that starts a non-empty
line. TO, if non-nil, specifies the last text position and defaults
to the maximum accessible position of the buffer. If TO is t, it
stands for the maximum accessible position that ends a non-empty line.
The optional argument X-LIMIT, if non-nil, specifies the maximum X
coordinate beyond which the text should be ignored. It is therefore
also the maximum width that the function can return. X-LIMIT nil or
omitted means to use the pixel-width of WINDOW's body. This default
means text of truncated lines wider than the window will be ignored;
specify a non-nil value for X-LIMIT if lines are truncated and you need
to account for the truncated text.
Use nil for X-LIMIT if you want to know how high WINDOW should become in
order to fit all of its buffer's text with the width of WINDOW
unaltered. Use the maximum width WINDOW may assume if you intend to
change WINDOW's width. Use t for the maximum possible value. Since
calculating the width of long lines can take some time, it's always a
good idea to make this argument as small as possible; in particular, if
the buffer contains long lines that shall be truncated anyway.
The optional argument Y-LIMIT, if non-nil, specifies the maximum Y
coordinate beyond which the text is to be ignored; it is therefore
also the maximum height that the function can return (excluding the
height of the mode- or header-line, if any). Y-LIMIT nil or omitted
means consider all of the accessible portion of buffer text up to the
position specified by TO. Since calculating the text height of a
large buffer can take some time, it makes sense to specify this
argument if the size of the buffer is large or unknown.
Optional argument MODE-LINES nil or omitted means do not include the
height of the mode-, tab- or header-line of WINDOW in the return value.
If it is the symbol `mode-line', `tab-line' or `header-line', include
only the height of that line, if present, in the return value. If t,
include the height of any of these, if present, in the return value.
IGNORE-LINE-AT-END, if non-nil, means to not add the height of the
screen line that includes TO to the returned height of the text. */)
(Lisp_Object window, Lisp_Object from, Lisp_Object to, Lisp_Object x_limit,
Lisp_Object y_limit, Lisp_Object mode_lines, Lisp_Object ignore_line_at_end)
{
struct window *w = decode_live_window (window);
struct buffer *b = XBUFFER (w->contents);
struct buffer *old_b = NULL;
Lisp_Object value;
if (b != current_buffer)
{
old_b = current_buffer;
set_buffer_internal_1 (b);
}
value = window_text_pixel_size (window, from, to, x_limit, y_limit, mode_lines,
ignore_line_at_end);
if (old_b)
set_buffer_internal_1 (old_b);
return value;
}
DEFUN ("buffer-text-pixel-size", Fbuffer_text_pixel_size, Sbuffer_text_pixel_size, 0, 4, 0,
doc: /* Return the dimensions of whole text of BUFFER-OR-NAME in WINDOW.
BUFFER-OR-NAME must specify a live buffer or the name of a live buffer
and defaults to the current buffer. WINDOW must be a live window and
defaults to the selected one. The return value is a cons of the maximum
pixel-width of any text line and the pixel-height of all the text lines
of the buffer specified by BUFFER-OR-NAME.
The optional arguments X-LIMIT and Y-LIMIT have the same meaning as with
`window-text-pixel-size'.
Do not use this function if the buffer specified by BUFFER-OR-NAME is
already displayed in WINDOW. `window-text-pixel-size' is cheaper in
that case because it does not have to temporarily show that buffer in
WINDOW. */)
(Lisp_Object buffer_or_name, Lisp_Object window, Lisp_Object x_limit,
Lisp_Object y_limit)
{
struct window *w = decode_live_window (window);
struct buffer *b = (NILP (buffer_or_name)
? current_buffer
: XBUFFER (Fget_buffer (buffer_or_name)));
Lisp_Object buffer, value;
specpdl_ref count = SPECPDL_INDEX ();
XSETBUFFER (buffer, b);
/* The unwind form of with_echo_area_buffer is what we need here to
make WINDOW temporarily show our buffer. */
/* FIXME: Can we move this into the `if (!EQ (buffer, w->contents))`? */
record_unwind_protect (unwind_with_echo_area_buffer,
with_echo_area_buffer_unwind_data (w));
set_buffer_internal_1 (b);
ptrdiff_t base_line_pos = w->base_line_pos;
int end_valid = w->window_end_valid;
if (!EQ (buffer, w->contents))
{
wset_buffer (w, buffer);
set_marker_both (w->pointm, buffer, BEG, BEG_BYTE);
set_marker_both (w->old_pointm, buffer, BEG, BEG_BYTE);
}
value = window_text_pixel_size (window, Qnil, Qnil, x_limit, y_limit, Qnil,
Qnil);
unbind_to (count, Qnil);
/* Restore original values. This is important if this function is
called from some ':eval' form in the middle of redisplay. */
w->base_line_pos = base_line_pos;
w->window_end_valid = end_valid;
return value;
}
DEFUN ("display--line-is-continued-p", Fdisplay__line_is_continued_p,
Sdisplay__line_is_continued_p, 0, 0, 0,
doc: /* Return non-nil if the current screen line is continued on display. */)
(void)
{
struct buffer *oldb = current_buffer;
struct window *w = XWINDOW (selected_window);
enum move_it_result rc = MOVE_POS_MATCH_OR_ZV;
set_buffer_internal_1 (XBUFFER (w->contents));
if (PT < ZV)
{
struct text_pos startpos;
struct it it;
void *itdata;
/* Use a marker, since vertical-motion enters redisplay, which can
trigger fontifications, which in turn could modify buffer text. */
Lisp_Object opoint = Fpoint_marker ();
/* Make sure to start from the beginning of the current screen
line, so that move_it_in_display_line_to counts pixels correctly. */
Fvertical_motion (make_fixnum (0), selected_window, Qnil);
SET_TEXT_POS (startpos, PT, PT_BYTE);
itdata = bidi_shelve_cache ();
start_display (&it, w, startpos);
/* If lines are truncated, no line is continued. */
if (it.line_wrap != TRUNCATE)
{
it.glyph_row = NULL;
rc = move_it_in_display_line_to (&it, ZV, -1, MOVE_TO_POS);
}
SET_PT_BOTH (marker_position (opoint), marker_byte_position (opoint));
bidi_unshelve_cache (itdata, false);
}
set_buffer_internal_1 (oldb);
return rc == MOVE_LINE_CONTINUED ? Qt : Qnil;
}
/***********************************************************************
Messages
***********************************************************************/
/* Return the number of arguments the format string FORMAT needs. */
static ptrdiff_t
format_nargs (char const *format)
{
ptrdiff_t nargs = 0;
for (char const *p = format; (p = strchr (p, '%')); p++)
if (p[1] == '%')
p++;
else
nargs++;
return nargs;
}
/* Add a message with format string FORMAT and formatted arguments
to *Messages*. */
void
add_to_log (const char *format, ...)
{
va_list ap;
va_start (ap, format);
vadd_to_log (format, ap);
va_end (ap);
}
void
vadd_to_log (char const *format, va_list ap)
{
ptrdiff_t form_nargs = format_nargs (format);
ptrdiff_t nargs = 1 + form_nargs;
Lisp_Object args[10];
eassert (nargs <= ARRAYELTS (args));
AUTO_STRING (args0, format);
args[0] = args0;
for (ptrdiff_t i = 1; i < nargs; i++)
args[i] = va_arg (ap, Lisp_Object);
Lisp_Object msg = Qnil;
msg = Fformat_message (nargs, args);
ptrdiff_t len = SBYTES (msg) + 1;
USE_SAFE_ALLOCA;
char *buffer = SAFE_ALLOCA (len);
memcpy (buffer, SDATA (msg), len);
message_dolog (buffer, len - 1, true, STRING_MULTIBYTE (msg));
SAFE_FREE ();
}
/* Output a newline in the *Messages* buffer if "needs" one. */
void
message_log_maybe_newline (void)
{
if (message_log_need_newline)
message_dolog ("", 0, true, false);
}
/* Add a string M of length NBYTES to the message log, optionally
terminated with a newline when NLFLAG is true. MULTIBYTE, if
true, means interpret the contents of M as multibyte. This
function calls low-level routines in order to bypass text property
hooks, etc. which might not be safe to run.
This may GC (insert may run before/after change hooks),
so the buffer M must NOT point to a Lisp string. */
void
message_dolog (const char *m, ptrdiff_t nbytes, bool nlflag, bool multibyte)
{
const unsigned char *msg = (const unsigned char *) m;
if (!NILP (Vmemory_full))
return;
if (!NILP (Vmessage_log_max))
{
struct buffer *oldbuf;
Lisp_Object oldpoint, oldbegv, oldzv;
int old_windows_or_buffers_changed = windows_or_buffers_changed;
ptrdiff_t point_at_end = 0;
ptrdiff_t zv_at_end = 0;
Lisp_Object old_deactivate_mark;
old_deactivate_mark = Vdeactivate_mark;
oldbuf = current_buffer;
/* Sanity check, in case the variable has been set to something
invalid. */
if (! STRINGP (Vmessages_buffer_name))
Vmessages_buffer_name = build_string ("*Messages*");
/* Ensure the Messages buffer exists, and switch to it.
If we created it, set the major-mode. */
bool newbuffer = NILP (Fget_buffer (Vmessages_buffer_name));
Fset_buffer (Fget_buffer_create (Vmessages_buffer_name, Qnil));
if (newbuffer
&& !NILP (Ffboundp (Qmessages_buffer_mode)))
call0 (Qmessages_buffer_mode);
bset_undo_list (current_buffer, Qt);
bset_cache_long_scans (current_buffer, Qnil);
oldpoint = message_dolog_marker1;
set_marker_restricted_both (oldpoint, Qnil, PT, PT_BYTE);
oldbegv = message_dolog_marker2;
set_marker_restricted_both (oldbegv, Qnil, BEGV, BEGV_BYTE);
oldzv = message_dolog_marker3;
set_marker_restricted_both (oldzv, Qnil, ZV, ZV_BYTE);
if (PT == Z)
point_at_end = 1;
if (ZV == Z)
zv_at_end = 1;
BEGV = BEG;
BEGV_BYTE = BEG_BYTE;
ZV = Z;
ZV_BYTE = Z_BYTE;
TEMP_SET_PT_BOTH (Z, Z_BYTE);
/* Insert the string--maybe converting multibyte to single byte
or vice versa, so that all the text fits the buffer. */
if (multibyte
&& NILP (BVAR (current_buffer, enable_multibyte_characters)))
{
/* Convert a multibyte string to single-byte
for the *Message* buffer. */
for (ptrdiff_t i = 0; i < nbytes; )
{
int char_bytes, c = check_char_and_length (msg + i, &char_bytes);
char work = CHAR_TO_BYTE8 (c);
insert_1_both (&work, 1, 1, true, false, false);
i += char_bytes;
}
}
else if (! multibyte
&& ! NILP (BVAR (current_buffer, enable_multibyte_characters)))
{
/* Convert a single-byte string to multibyte
for the *Message* buffer. */
for (ptrdiff_t i = 0; i < nbytes; i++)
{
int c = make_char_multibyte (msg[i]);
unsigned char str[MAX_MULTIBYTE_LENGTH];
int char_bytes = CHAR_STRING (c, str);
insert_1_both ((char *) str, 1, char_bytes, true, false, false);
}
}
else if (nbytes)
insert_1_both (m, chars_in_text (msg, nbytes), nbytes,
true, false, false);
if (nlflag)
{
ptrdiff_t this_bol, this_bol_byte, prev_bol, prev_bol_byte;
intmax_t dups;
/* Since we call del_range_both passing false for PREPARE,
we aren't prepared to run modification hooks (we could
end up calling modification hooks from another buffer and
only with AFTER=t, Bug#21824). */
specpdl_ref count = SPECPDL_INDEX ();
specbind (Qinhibit_modification_hooks, Qt);
insert_1_both ("\n", 1, 1, true, false, false);
scan_newline (Z, Z_BYTE, BEG, BEG_BYTE, -2, false);
this_bol = PT;
this_bol_byte = PT_BYTE;
/* See if this line duplicates the previous one.
If so, combine duplicates. */
if (this_bol > BEG)
{
scan_newline (PT, PT_BYTE, BEG, BEG_BYTE, -2, false);
prev_bol = PT;
prev_bol_byte = PT_BYTE;
dups = message_log_check_duplicate (prev_bol_byte,
this_bol_byte);
if (dups)
{
del_range_both (prev_bol, prev_bol_byte,
this_bol, this_bol_byte, false);
if (dups > 1)
{
char dupstr[sizeof " [ times]"
+ INT_STRLEN_BOUND (dups)];
/* If you change this format, don't forget to also
change message_log_check_duplicate. */
int duplen = sprintf (dupstr, " [%"PRIdMAX" times]",
dups);
TEMP_SET_PT_BOTH (Z - 1, Z_BYTE - 1);
insert_1_both (dupstr, duplen, duplen,
true, false, true);
}
}
}
/* If we have more than the desired maximum number of lines
in the *Messages* buffer now, delete the oldest ones.
This is safe because we don't have undo in this buffer. */
if (FIXNATP (Vmessage_log_max))
{
scan_newline (Z, Z_BYTE, BEG, BEG_BYTE,
-XFIXNAT (Vmessage_log_max) - 1, false);
del_range_both (BEG, BEG_BYTE, PT, PT_BYTE, false);
}
unbind_to (count, Qnil);
}
BEGV = marker_position (oldbegv);
BEGV_BYTE = marker_byte_position (oldbegv);
if (zv_at_end)
{
ZV = Z;
ZV_BYTE = Z_BYTE;
}
else
{
ZV = marker_position (oldzv);
ZV_BYTE = marker_byte_position (oldzv);
}
if (point_at_end)
TEMP_SET_PT_BOTH (Z, Z_BYTE);
else
/* We can't do Fgoto_char (oldpoint) because it will run some
Lisp code. */
TEMP_SET_PT_BOTH (marker_position (oldpoint),
marker_byte_position (oldpoint));
unchain_marker (XMARKER (oldpoint));
unchain_marker (XMARKER (oldbegv));
unchain_marker (XMARKER (oldzv));
/* We called insert_1_both above with its 5th argument (PREPARE)
false, which prevents insert_1_both from calling
prepare_to_modify_buffer, which in turns prevents us from
incrementing windows_or_buffers_changed even if *Messages* is
shown in some window. So we must manually set
windows_or_buffers_changed here to make up for that. */
windows_or_buffers_changed = old_windows_or_buffers_changed;
bset_redisplay (current_buffer);
set_buffer_internal (oldbuf);
message_log_need_newline = !nlflag;
Vdeactivate_mark = old_deactivate_mark;
}
}
/* We are at the end of the buffer after just having inserted a newline.
(Note: We depend on the fact we won't be crossing the gap.)
Check to see if the most recent message looks a lot like the previous one.
Return 0 if different, 1 if the new one should just replace it, or a
value N > 1 if we should also append " [N times]". */
static intmax_t
message_log_check_duplicate (ptrdiff_t prev_bol_byte, ptrdiff_t this_bol_byte)
{
ptrdiff_t i;
ptrdiff_t len = Z_BYTE - 1 - this_bol_byte;
bool seen_dots = false;
unsigned char *p1 = BUF_BYTE_ADDRESS (current_buffer, prev_bol_byte);
unsigned char *p2 = BUF_BYTE_ADDRESS (current_buffer, this_bol_byte);
for (i = 0; i < len; i++)
{
if (i >= 3 && p1[i - 3] == '.' && p1[i - 2] == '.' && p1[i - 1] == '.')
seen_dots = true;
if (p1[i] != p2[i])
return seen_dots;
}
p1 += len;
if (*p1 == '\n')
return 2;
if (*p1++ == ' ' && *p1++ == '[')
{
char *pend;
intmax_t n = strtoimax ((char *) p1, &pend, 10);
if (0 < n && n < INTMAX_MAX && strncmp (pend, " times]\n", 8) == 0)
return n + 1;
}
return 0;
}
/* Display an echo area message M with a specified length of NBYTES
bytes. The string may include null characters. If M is not a
string, clear out any existing message, and let the mini-buffer
text show through.
This function cancels echoing. */
void
message3 (Lisp_Object m)
{
clear_message (true, true);
cancel_echoing ();
/* First flush out any partial line written with print. */
message_log_maybe_newline ();
if (STRINGP (m))
{
ptrdiff_t nbytes = SBYTES (m);
bool multibyte = STRING_MULTIBYTE (m);
char *buffer;
USE_SAFE_ALLOCA;
SAFE_ALLOCA_STRING (buffer, m);
message_dolog (buffer, nbytes, true, multibyte);
SAFE_FREE ();
}
if (! inhibit_message)
message3_nolog (m);
}
/* Log the message M to stderr. Log an empty line if M is not a string. */
static void
message_to_stderr (Lisp_Object m)
{
if (noninteractive_need_newline)
{
noninteractive_need_newline = false;
errputc ('\n');
}
if (STRINGP (m))
{
Lisp_Object coding_system = Vlocale_coding_system;
Lisp_Object s;
if (!NILP (Vcoding_system_for_write))
coding_system = Vcoding_system_for_write;
if (!NILP (coding_system))
s = code_convert_string_norecord (m, coding_system, true);
else
s = m;
errwrite (SDATA (s), SBYTES (s));
}
if (STRINGP (m) || !cursor_in_echo_area)
errputc ('\n');
}
/* The non-logging version of message3.
This does not cancel echoing, because it is used for echoing.
Perhaps we need to make a separate function for echoing
and make this cancel echoing. */
void
message3_nolog (Lisp_Object m)
{
struct frame *sf = SELECTED_FRAME ();
if (FRAME_INITIAL_P (sf))
message_to_stderr (m);
/* Error messages get reported properly by cmd_error, so this must be just an
informative message; if the frame hasn't really been initialized yet, just
toss it. */
else if (INTERACTIVE && sf->glyphs_initialized_p)
{
/* Get the frame containing the mini-buffer
that the selected frame is using. */
Lisp_Object mini_window = FRAME_MINIBUF_WINDOW (sf);
Lisp_Object frame = XWINDOW (mini_window)->frame;
struct frame *f = XFRAME (frame);
if (FRAME_VISIBLE_P (sf) && !FRAME_VISIBLE_P (f))
Fmake_frame_visible (frame);
if (STRINGP (m) && SCHARS (m) > 0)
{
set_message (m);
if (minibuffer_auto_raise)
Fraise_frame (frame);
/* Assume we are not echoing.
(If we are, echo_now will override this.) */
echo_message_buffer = Qnil;
}
else
clear_message (true, true);
do_pending_window_change (false);
echo_area_display (true);
do_pending_window_change (false);
if (FRAME_TERMINAL (f)->frame_up_to_date_hook)
(*FRAME_TERMINAL (f)->frame_up_to_date_hook) (f);
}
}
/* Display a null-terminated echo area message M. If M is 0, clear
out any existing message, and let the mini-buffer text show through.
The buffer M must continue to exist until after the echo area gets
cleared or some other message gets displayed there. Do not pass
text that is stored in a Lisp string. Do not pass text in a buffer
that was alloca'd. */
void
message1 (const char *m)
{
message3 (m ? build_unibyte_string (m) : Qnil);
}
/* The non-logging counterpart of message1. */
void
message1_nolog (const char *m)
{
message3_nolog (m ? build_unibyte_string (m) : Qnil);
}
/* Display a message M which contains a single %s
which gets replaced with STRING. */
void
message_with_string (const char *m, Lisp_Object string, bool log)
{
CHECK_STRING (string);
bool need_message;
if (noninteractive)
need_message = !!m;
else if (!INTERACTIVE)
need_message = false;
else
{
/* The frame whose minibuffer we're going to display the message on.
It may be larger than the selected frame, so we need
to use its buffer, not the selected frame's buffer. */
Lisp_Object mini_window;
struct frame *f, *sf = SELECTED_FRAME ();
/* Get the frame containing the minibuffer
that the selected frame is using. */
mini_window = FRAME_MINIBUF_WINDOW (sf);
f = XFRAME (WINDOW_FRAME (XWINDOW (mini_window)));
/* Error messages get reported properly by cmd_error, so this must be
just an informative message; if the frame hasn't really been
initialized yet, just toss it. */
need_message = f->glyphs_initialized_p;
}
if (need_message)
{
AUTO_STRING (fmt, m);
Lisp_Object msg = CALLN (Fformat_message, fmt, string);
if (noninteractive)
message_to_stderr (msg);
else
{
if (log)
message3 (msg);
else
message3_nolog (msg);
/* Print should start at the beginning of the message
buffer next time. */
message_buf_print = false;
}
}
}
/* Dump an informative message to the minibuf. If M is 0, clear out
any existing message, and let the mini-buffer text show through.
The message must be safe ASCII (because when Emacs is
non-interactive the message is sent straight to stderr without
encoding first) and the format must not contain ` or ' (because
this function does not account for `text-quoting-style'). If your
message and format do not fit into this category, convert your
arguments to Lisp objects and use Fmessage instead. */
static void ATTRIBUTE_FORMAT_PRINTF (1, 0)
vmessage (const char *m, va_list ap)
{
if (noninteractive)
{
if (m)
{
if (noninteractive_need_newline)
putc ('\n', stderr);
noninteractive_need_newline = false;
vfprintf (stderr, m, ap);
if (!cursor_in_echo_area)
putc ('\n', stderr);
fflush (stderr);
}
}
else if (INTERACTIVE)
{
/* The frame whose mini-buffer we're going to display the message
on. It may be larger than the selected frame, so we need to
use its buffer, not the selected frame's buffer. */
Lisp_Object mini_window;
struct frame *f, *sf = SELECTED_FRAME ();
/* Get the frame containing the mini-buffer
that the selected frame is using. */
mini_window = FRAME_MINIBUF_WINDOW (sf);
f = XFRAME (WINDOW_FRAME (XWINDOW (mini_window)));
/* Error messages get reported properly by cmd_error, so this must be
just an informative message; if the frame hasn't really been
initialized yet, just toss it. */
if (f->glyphs_initialized_p)
{
if (m)
{
ptrdiff_t len;
ptrdiff_t maxsize = FRAME_MESSAGE_BUF_SIZE (f);
USE_SAFE_ALLOCA;
char *message_buf = SAFE_ALLOCA (maxsize + 1);
len = doprnt (message_buf, maxsize, m, 0, ap);
message3 (make_string (message_buf, len));
SAFE_FREE ();
}
else
message1 (0);
/* Print should start at the beginning of the message
buffer next time. */
message_buf_print = false;
}
}
}
/* See vmessage for restrictions on the text of the message. */
void
message (const char *m, ...)
{
va_list ap;
va_start (ap, m);
vmessage (m, ap);
va_end (ap);
}
/* Display the current message in the current mini-buffer. This is
only called from error handlers in process.c, and is not time
critical. */
void
update_echo_area (void)
{
if (!NILP (echo_area_buffer[0]))
{
Lisp_Object string;
string = Fcurrent_message ();
message3 (string);
}
}
/* Make sure echo area buffers in `echo_buffers' are live.
If they aren't, make new ones. */
static void
ensure_echo_area_buffers (void)
{
for (int i = 0; i < 2; i++)
if (!BUFFERP (echo_buffer[i])
|| !BUFFER_LIVE_P (XBUFFER (echo_buffer[i])))
{
Lisp_Object old_buffer = echo_buffer[i];
static char const name_fmt[] = " *Echo Area %d*";
char name[sizeof name_fmt + INT_STRLEN_BOUND (int)];
AUTO_STRING_WITH_LEN (lname, name, sprintf (name, name_fmt, i));
echo_buffer[i] = Fget_buffer_create (lname, Qnil);
bset_truncate_lines (XBUFFER (echo_buffer[i]), Qnil);
/* to force word wrap in echo area -
it was decided to postpone this*/
/* XBUFFER (echo_buffer[i])->word_wrap = Qt; */
for (int j = 0; j < 2; j++)
if (EQ (old_buffer, echo_area_buffer[j]))
echo_area_buffer[j] = echo_buffer[i];
}
}
/* Call FN with args A1..A2 with either the current or last displayed
echo_area_buffer as current buffer.
WHICH zero means use the current message buffer
echo_area_buffer[0]. If that is nil, choose a suitable buffer
from echo_buffer[] and clear it.
WHICH > 0 means use echo_area_buffer[1]. If that is nil, choose a
suitable buffer from echo_buffer[] and clear it.
If WHICH < 0, set echo_area_buffer[1] to echo_area_buffer[0], so
that the current message becomes the last displayed one, choose a
suitable buffer for echo_area_buffer[0], and clear it.
Value is what FN returns. */
static bool
with_echo_area_buffer (struct window *w, int which,
bool (*fn) (void *, Lisp_Object),
void *a1, Lisp_Object a2)
{
Lisp_Object buffer;
bool this_one, the_other, clear_buffer_p, rc;
specpdl_ref count = SPECPDL_INDEX ();
/* If buffers aren't live, make new ones. */
ensure_echo_area_buffers ();
clear_buffer_p = false;
if (which == 0)
this_one = false, the_other = true;
else if (which > 0)
this_one = true, the_other = false;
else
{
this_one = false, the_other = true;
clear_buffer_p = true;
/* We need a fresh one in case the current echo buffer equals
the one containing the last displayed echo area message. */
if (!NILP (echo_area_buffer[this_one])
&& EQ (echo_area_buffer[this_one], echo_area_buffer[the_other]))
echo_area_buffer[this_one] = Qnil;
}
/* Choose a suitable buffer from echo_buffer[] if we don't
have one. */
if (NILP (echo_area_buffer[this_one]))
{
echo_area_buffer[this_one]
= (EQ (echo_area_buffer[the_other], echo_buffer[this_one])
? echo_buffer[the_other]
: echo_buffer[this_one]);
clear_buffer_p = true;
}
buffer = echo_area_buffer[this_one];
/* Don't get confused by reusing the buffer used for echoing
for a different purpose. */
if (echo_kboard == NULL && EQ (buffer, echo_message_buffer))
cancel_echoing ();
record_unwind_protect (unwind_with_echo_area_buffer,
with_echo_area_buffer_unwind_data (w));
/* Make the echo area buffer current. Note that for display
purposes, it is not necessary that the displayed window's buffer
== current_buffer, except for text property lookup. So, let's
only set that buffer temporarily here without doing a full
Fset_window_buffer. We must also change w->pointm, though,
because otherwise an assertions in unshow_buffer fails, and Emacs
aborts. */
set_buffer_internal_1 (XBUFFER (buffer));
if (w)
{
wset_buffer (w, buffer);
set_marker_both (w->pointm, buffer, BEG, BEG_BYTE);
set_marker_both (w->old_pointm, buffer, BEG, BEG_BYTE);
}
bset_undo_list (current_buffer, Qt);
bset_read_only (current_buffer, Qnil);
specbind (Qinhibit_read_only, Qt);
specbind (Qinhibit_modification_hooks, Qt);
if (clear_buffer_p && Z > BEG)
del_range (BEG, Z);
eassert (BEGV >= BEG);
eassert (ZV <= Z && ZV >= BEGV);
rc = fn (a1, a2);
eassert (BEGV >= BEG);
eassert (ZV <= Z && ZV >= BEGV);
unbind_to (count, Qnil);
return rc;
}
/* Save state that should be preserved around the call to the function
FN called in with_echo_area_buffer. */
static Lisp_Object
with_echo_area_buffer_unwind_data (struct window *w)
{
int i = 0;
Lisp_Object vector, tmp;
/* Reduce consing by keeping one vector in
Vwith_echo_area_save_vector. */
vector = Vwith_echo_area_save_vector;
Vwith_echo_area_save_vector = Qnil;
if (NILP (vector))
vector = make_nil_vector (11);
XSETBUFFER (tmp, current_buffer); ASET (vector, i, tmp); ++i;
ASET (vector, i, Vdeactivate_mark); ++i;
ASET (vector, i, make_fixnum (windows_or_buffers_changed)); ++i;
if (w)
{
XSETWINDOW (tmp, w); ASET (vector, i, tmp); ++i;
ASET (vector, i, w->contents); ++i;
ASET (vector, i, make_fixnum (marker_position (w->pointm))); ++i;
ASET (vector, i, make_fixnum (marker_byte_position (w->pointm))); ++i;
ASET (vector, i, make_fixnum (marker_position (w->old_pointm))); ++i;
ASET (vector, i, make_fixnum (marker_byte_position (w->old_pointm))); ++i;
ASET (vector, i, make_fixnum (marker_position (w->start))); ++i;
ASET (vector, i, make_fixnum (marker_byte_position (w->start))); ++i;
}
else
{
int end = i + 8;
for (; i < end; ++i)
ASET (vector, i, Qnil);
}
eassert (i == ASIZE (vector));
return vector;
}
/* Restore global state from VECTOR which was created by
with_echo_area_buffer_unwind_data. */
static void
unwind_with_echo_area_buffer (Lisp_Object vector)
{
set_buffer_internal_1 (XBUFFER (AREF (vector, 0)));
Vdeactivate_mark = AREF (vector, 1);
windows_or_buffers_changed = XFIXNAT (AREF (vector, 2));
if (WINDOWP (AREF (vector, 3)))
{
struct window *w;
Lisp_Object buffer;
w = XWINDOW (AREF (vector, 3));
buffer = AREF (vector, 4);
wset_buffer (w, buffer);
set_marker_restricted_both (w->pointm, buffer,
XFIXNAT (AREF (vector, 5)),
XFIXNAT (AREF (vector, 6)));
set_marker_restricted_both (w->old_pointm, buffer,
XFIXNAT (AREF (vector, 7)),
XFIXNAT (AREF (vector, 8)));
set_marker_restricted_both (w->start, buffer,
XFIXNAT (AREF (vector, 9)),
XFIXNAT (AREF (vector, 10)));
}
Vwith_echo_area_save_vector = vector;
}
/* Set up the echo area for use by print functions. MULTIBYTE_P
means we will print multibyte. */
void
setup_echo_area_for_printing (bool multibyte_p)
{
/* If we can't find an echo area any more, exit. */
if (! FRAME_LIVE_P (XFRAME (selected_frame)))
Fkill_emacs (Qnil, Qnil);
ensure_echo_area_buffers ();
if (!message_buf_print)
{
/* A message has been output since the last time we printed.
Choose a fresh echo area buffer. */
if (EQ (echo_area_buffer[1], echo_buffer[0]))
echo_area_buffer[0] = echo_buffer[1];
else
echo_area_buffer[0] = echo_buffer[0];
/* Switch to that buffer and clear it. */
set_buffer_internal (XBUFFER (echo_area_buffer[0]));
bset_truncate_lines (current_buffer, Qnil);
if (Z > BEG)
{
specpdl_ref count = SPECPDL_INDEX ();
specbind (Qinhibit_read_only, Qt);
/* Note that undo recording is always disabled. */
del_range (BEG, Z);
unbind_to (count, Qnil);
}
TEMP_SET_PT_BOTH (BEG, BEG_BYTE);
/* Set up the buffer for the multibyteness we need. We always
set it to be multibyte, except when
unibyte-display-via-language-environment is non-nil and the
buffer from which we are called is unibyte, because in that
case unibyte characters should not be displayed as octal
escapes. */
if (unibyte_display_via_language_environment
&& !multibyte_p
&& !NILP (BVAR (current_buffer, enable_multibyte_characters)))
Fset_buffer_multibyte (Qnil);
else if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
Fset_buffer_multibyte (Qt);
/* Raise the frame containing the echo area. */
if (minibuffer_auto_raise)
{
struct frame *sf = SELECTED_FRAME ();
Lisp_Object mini_window;
mini_window = FRAME_MINIBUF_WINDOW (sf);
Fraise_frame (WINDOW_FRAME (XWINDOW (mini_window)));
}
message_log_maybe_newline ();
message_buf_print = true;
}
else
{
if (NILP (echo_area_buffer[0]))
{
if (EQ (echo_area_buffer[1], echo_buffer[0]))
echo_area_buffer[0] = echo_buffer[1];
else
echo_area_buffer[0] = echo_buffer[0];
}
if (current_buffer != XBUFFER (echo_area_buffer[0]))
{
/* Someone switched buffers between print requests. */
set_buffer_internal (XBUFFER (echo_area_buffer[0]));
bset_truncate_lines (current_buffer, Qnil);
}
}
}
/* Display an echo area message in window W. Value is true if W's
height is changed. If display_last_displayed_message_p,
display the message that was last displayed, otherwise
display the current message. */
static bool
display_echo_area (struct window *w)
{
bool no_message_p, window_height_changed_p;
/* Temporarily disable garbage collections while displaying the echo
area. This is done because a GC can print a message itself.
That message would modify the echo area buffer's contents while a
redisplay of the buffer is going on, and seriously confuse
redisplay. */
specpdl_ref count = inhibit_garbage_collection ();
/* If there is no message, we must call display_echo_area_1
nevertheless because it resizes the window. But we will have to
reset the echo_area_buffer in question to nil at the end because
with_echo_area_buffer will set it to an empty buffer. */
bool i = display_last_displayed_message_p;
/* According to the C standard, the integral value
of a "bool" is always 0 or 1, so this array access is safe here,
if oddly typed. */
no_message_p = NILP (echo_area_buffer[i]);
window_height_changed_p
= with_echo_area_buffer (w, display_last_displayed_message_p,
display_echo_area_1, w, Qnil);
if (no_message_p)
echo_area_buffer[i] = Qnil;
unbind_to (count, Qnil);
return window_height_changed_p;
}
/* Helper for display_echo_area. Display the current buffer which
contains the current echo area message in window W, a mini-window,
a pointer to which is passed in A1. A2 is currently not used.
Change the height of W so that all of the message is displayed.
Value is true if height of W was changed. */
static bool
display_echo_area_1 (void *a1, Lisp_Object a2)
{
struct window *w = a1;
Lisp_Object window;
struct text_pos start;
/* We are about to enter redisplay without going through
redisplay_internal, so we need to forget these faces by hand
here. */
forget_escape_and_glyphless_faces ();
/* Do this before displaying, so that we have a large enough glyph
matrix for the display. If we can't get enough space for the
whole text, display the last N lines. That works by setting w->start. */
bool window_height_changed_p = resize_mini_window (w, false);
/* Use the starting position chosen by resize_mini_window. */
SET_TEXT_POS_FROM_MARKER (start, w->start);
/* Display. */
clear_glyph_matrix (w->desired_matrix);
XSETWINDOW (window, w);
void *itdata = bidi_shelve_cache ();
try_window (window, start, 0);
bidi_unshelve_cache (itdata, false);
return window_height_changed_p;
}
/* Resize the echo area window to exactly the size needed for the
currently displayed message, if there is one. If a mini-buffer
is active, don't shrink it. */
void
resize_echo_area_exactly (void)
{
if (BUFFERP (echo_area_buffer[0])
&& WINDOWP (echo_area_window))
{
struct window *w = XWINDOW (echo_area_window);
Lisp_Object resize_exactly = (minibuf_level == 0 ? Qt : Qnil);
bool resized_p = with_echo_area_buffer (w, 0, resize_mini_window_1,
w, resize_exactly);
if (resized_p)
{
windows_or_buffers_changed = 42;
update_mode_lines = 30;
redisplay_internal ();
}
}
}
/* Callback function for with_echo_area_buffer, when used from
resize_echo_area_exactly. A1 contains a pointer to the window to
resize, EXACTLY non-nil means resize the mini-window exactly to the
size of the text displayed. Value is what resize_mini_window
returns. */
static bool
resize_mini_window_1 (void *a1, Lisp_Object exactly)
{
return resize_mini_window (a1, !NILP (exactly));
}
/* Resize mini-window W to fit the size of its contents. EXACT_P
means size the window exactly to the size needed. Otherwise, it's
only enlarged until W's buffer is empty.
Set W->start to the right place to begin display. If the whole
contents fit, start at the beginning. Otherwise, start so as
to make the end of the contents appear. This is particularly
important for y-or-n-p, but seems desirable generally.
Value is true if the window height has been changed. */
bool
resize_mini_window (struct window *w, bool exact_p)
{
struct frame *f = XFRAME (w->frame);
int old_height = WINDOW_BOX_TEXT_HEIGHT (w);
eassert (MINI_WINDOW_P (w));
/* Don't resize windows while redisplaying a window; it would
confuse redisplay functions when the size of the window they are
displaying changes from under them. Such a resizing can happen,
for instance, when which-func prints a long message while
we are running fontification-functions. We're running these
functions with dsafe_call which binds inhibit-redisplay to t. */
if (!NILP (Vinhibit_redisplay))
return false;
/* By default, start display at the beginning. */
if (redisplay_adhoc_scroll_in_resize_mini_windows)
set_marker_both (w->start, w->contents,
BUF_BEGV (XBUFFER (w->contents)),
BUF_BEGV_BYTE (XBUFFER (w->contents)));
/* Nil means don't try to resize. */
if ((NILP (Vresize_mini_windows)
&& (NILP (resize_mini_frames) || !FRAME_MINIBUF_ONLY_P (f)))
|| (FRAME_X_P (f) && FRAME_OUTPUT_DATA (f) == NULL))
return false;
if (FRAME_MINIBUF_ONLY_P (f))
{
if (!NILP (resize_mini_frames))
dsafe_call1 (Qwindow__resize_mini_frame, WINDOW_FRAME (w));
}
else
{
struct it it;
int unit = FRAME_LINE_HEIGHT (f);
int height, max_height;
struct text_pos start;
struct buffer *old_current_buffer = NULL;
int windows_height = FRAME_INNER_HEIGHT (f);
if (current_buffer != XBUFFER (w->contents))
{
old_current_buffer = current_buffer;
set_buffer_internal (XBUFFER (w->contents));
}
init_iterator (&it, w, BEGV, BEGV_BYTE, NULL, DEFAULT_FACE_ID);
/* Compute the max. number of lines specified by the user. */
if (FLOATP (Vmax_mini_window_height))
max_height = XFLOAT_DATA (Vmax_mini_window_height) * windows_height;
else if (FIXNUMP (Vmax_mini_window_height))
max_height = XFIXNUM (Vmax_mini_window_height) * unit;
else
max_height = windows_height / 4;
/* Correct that max. height if it's bogus. */
max_height = clip_to_bounds (unit, max_height, windows_height);
/* Find out the height of the text in the window. */
last_height = 0;
move_it_to (&it, ZV, -1, -1, -1, MOVE_TO_POS);
/* If move_it_to moved to the next visible line after EOB,
account for the height of the last full line. */
if (it.max_ascent == 0 && it.max_descent == 0)
{
height = it.current_y;
/* Don't add the last line's height if lines are truncated
and the text doesn't end in a newline.
FIXME: if the text ends in a newline from a display
property or an overlay string, they lose: the mini-window
might not show the last empty line. */
if (!(it.line_wrap == TRUNCATE
&& it.current_x <= it.first_visible_x
&& ZV_BYTE > 1
&& FETCH_BYTE (ZV_BYTE - 1) != '\n'))
height += last_height;
}
else
height = it.current_y + it.max_ascent + it.max_descent;
height -= min (it.extra_line_spacing, it.max_extra_line_spacing);
/* Compute a suitable window start. */
if (height > max_height)
{
height = (max_height / unit) * unit;
if (redisplay_adhoc_scroll_in_resize_mini_windows)
{
init_iterator (&it, w, ZV, ZV_BYTE, NULL, DEFAULT_FACE_ID);
move_it_vertically_backward (&it, height - unit);
/* The following move is usually a no-op when the stuff
displayed in the mini-window comes entirely from buffer
text, but it is needed when some of it comes from overlay
strings, especially when there's an after-string at ZV.
This happens with some completion packages, like
icomplete, ido-vertical, etc. With those packages, if we
don't force w->start to be at the beginning of a screen
line, important parts of the stuff in the mini-window,
such as user prompt, will be hidden from view. */
move_it_by_lines (&it, 0);
start = it.current.pos;
/* Prevent redisplay_window from recentering, and thus from
overriding the window-start point we computed here. */
w->start_at_line_beg = false;
SET_MARKER_FROM_TEXT_POS (w->start, start);
}
}
else
{
SET_TEXT_POS (start, BEGV, BEGV_BYTE);
SET_MARKER_FROM_TEXT_POS (w->start, start);
}
if (EQ (Vresize_mini_windows, Qgrow_only))
{
/* Let it grow only, until we display an empty message, in which
case the window shrinks again. */
if (height > old_height)
grow_mini_window (w, height - old_height);
else if (height < old_height && (exact_p || BEGV == ZV))
shrink_mini_window (w);
}
else if (height != old_height)
/* Always resize to exact size needed. */
grow_mini_window (w, height - old_height);
if (old_current_buffer)
set_buffer_internal (old_current_buffer);
}
return WINDOW_BOX_TEXT_HEIGHT (w) != old_height;
}
/* Value is the current message, a string, or nil if there is no
current message. */
Lisp_Object
current_message (void)
{
Lisp_Object msg;
if (!BUFFERP (echo_area_buffer[0]))
msg = Qnil;
else
{
with_echo_area_buffer (0, 0, current_message_1, &msg, Qnil);
if (NILP (msg))
echo_area_buffer[0] = Qnil;
}
return msg;
}
static bool
current_message_1 (void *a1, Lisp_Object a2)
{
Lisp_Object *msg = a1;
if (Z > BEG)
*msg = make_buffer_string (BEG, Z, true);
else
*msg = Qnil;
return false;
}
/* Push the current message on Vmessage_stack for later restoration
by restore_message. Value is true if the current message isn't
empty. This is a relatively infrequent operation, so it's not
worth optimizing. */
bool
push_message (void)
{
Lisp_Object msg = current_message ();
Vmessage_stack = Fcons (msg, Vmessage_stack);
return STRINGP (msg);
}
/* Restore message display from the top of Vmessage_stack. */
void
restore_message (void)
{
eassert (CONSP (Vmessage_stack));
message3_nolog (XCAR (Vmessage_stack));
}
/* Handler for unwind-protect calling pop_message. */
void
pop_message_unwind (void)
{
/* Pop the top-most entry off Vmessage_stack. */
eassert (CONSP (Vmessage_stack));
Vmessage_stack = XCDR (Vmessage_stack);
}
/* Check that Vmessage_stack is nil. Called from emacs.c when Emacs
exits. If the stack is not empty, we have a missing
pop_message_unwind somewhere. */
void
check_message_stack (void)
{
if (!NILP (Vmessage_stack))
emacs_abort ();
}
void
clear_message_stack (void)
{
Vmessage_stack = Qnil;
}
/* Truncate to NCHARS what will be displayed in the echo area the next
time we display it---but don't redisplay it now. */
void
truncate_echo_area (ptrdiff_t nchars)
{
if (nchars == 0)
echo_area_buffer[0] = Qnil;
else if (!noninteractive
&& INTERACTIVE
&& !NILP (echo_area_buffer[0]))
{
struct frame *sf = SELECTED_FRAME ();
/* Error messages get reported properly by cmd_error, so this must be
just an informative message; if the frame hasn't really been
initialized yet, just toss it. */
if (sf->glyphs_initialized_p)
with_echo_area_buffer (0, 0, truncate_message_1,
(void *) (intptr_t) nchars, Qnil);
}
}
/* Helper function for truncate_echo_area. Truncate the current
message to at most NCHARS characters. */
static bool
truncate_message_1 (void *a1, Lisp_Object a2)
{
intptr_t nchars = (intptr_t) a1;
if (BEG + nchars < Z)
del_range (BEG + nchars, Z);
if (Z == BEG)
echo_area_buffer[0] = Qnil;
return false;
}
/* Set the current message to STRING. */
static void
set_message (Lisp_Object string)
{
Lisp_Object message = Qnil;
eassert (STRINGP (string));
if (FUNCTIONP (Vset_message_function)
/* FIXME: (bug#63253) We should really make the regexp engine re-entrant,
but in the mean time, let's ignore `set-message-function` when
called from `probably_quit`. */
&& !garbage_collection_inhibited)
{
specpdl_ref count = SPECPDL_INDEX ();
specbind (Qinhibit_quit, Qt);
message = dsafe_call1 (Vset_message_function, string);
unbind_to (count, Qnil);
if (STRINGP (message))
{
string = message;
message = Qnil;
}
}
if (NILP (message))
{
message_enable_multibyte = STRING_MULTIBYTE (string);
with_echo_area_buffer (0, -1, set_message_1, 0, string);
message_buf_print = false;
help_echo_showing_p = false;
}
if (STRINGP (Vdebug_on_message)
&& STRINGP (string)
&& fast_string_match (Vdebug_on_message, string) >= 0)
call_debugger (list2 (Qerror, string));
}
/* Helper function for set_message. First argument is ignored and second
argument has the same meaning as for set_message.
This function is called with the echo area buffer being current. */
static bool
set_message_1 (void *a1, Lisp_Object string)
{
eassert (STRINGP (string));
/* Change multibyteness of the echo buffer appropriately. We always
set it to be multibyte, except when
unibyte-display-via-language-environment is non-nil and the
string to display is unibyte, because in that case unibyte
characters should not be displayed as octal escapes. */
if (!message_enable_multibyte
&& unibyte_display_via_language_environment
&& !NILP (BVAR (current_buffer, enable_multibyte_characters)))
Fset_buffer_multibyte (Qnil);
else if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
Fset_buffer_multibyte (Qt);
bset_truncate_lines (current_buffer, message_truncate_lines ? Qt : Qnil);
if (!NILP (BVAR (current_buffer, bidi_display_reordering)))
bset_bidi_paragraph_direction (current_buffer, Qleft_to_right);
/* Insert new message at BEG. */
TEMP_SET_PT_BOTH (BEG, BEG_BYTE);
/* This function takes care of single/multibyte conversion.
We just have to ensure that the echo area buffer has the right
setting of enable_multibyte_characters. */
insert_from_string (string, 0, 0, SCHARS (string), SBYTES (string), true);
return false;
}
/* Clear messages. CURRENT_P means clear the current message.
LAST_DISPLAYED_P means clear the message last displayed. */
void
clear_message (bool current_p, bool last_displayed_p)
{
Lisp_Object preserve = Qnil;
if (current_p)
{
if (FUNCTIONP (Vclear_message_function)
/* FIXME: (bug#63253) Same as for `set-message-function` above. */
&& !garbage_collection_inhibited)
{
specpdl_ref count = SPECPDL_INDEX ();
specbind (Qinhibit_quit, Qt);
preserve = dsafe_calln (false, Vclear_message_function);
unbind_to (count, Qnil);
}
if (!EQ (preserve, Qdont_clear_message))
{
echo_area_buffer[0] = Qnil;
message_cleared_p = true;
}
}
if (last_displayed_p)
echo_area_buffer[1] = Qnil;
message_buf_print = false;
}
/* Clear garbaged frames.
This function is used where the old redisplay called
redraw_garbaged_frames which in turn called redraw_frame which in
turn called clear_frame. The call to clear_frame was a source of
flickering. I believe a clear_frame is not necessary. It should
suffice in the new redisplay to invalidate all current matrices,
and ensure a complete redisplay of all windows. */
static void
clear_garbaged_frames (void)
{
if (frame_garbaged)
{
Lisp_Object tail, frame;
struct frame *sf = SELECTED_FRAME ();
FOR_EACH_FRAME (tail, frame)
{
struct frame *f = XFRAME (frame);
if (FRAME_REDISPLAY_P (f) && FRAME_GARBAGED_P (f))
{
if (f->resized_p
/* It makes no sense to redraw a non-selected TTY
frame, since that will actually clear the
selected frame, and might leave the selected
frame with corrupted display, if it happens not
to be marked garbaged. */
&& !(f != sf && (FRAME_TERMCAP_P (f) || FRAME_MSDOS_P (f))))
redraw_frame (f);
else
clear_current_matrices (f);
#ifdef HAVE_WINDOW_SYSTEM
if (FRAME_WINDOW_P (f)
&& FRAME_RIF (f)->clear_under_internal_border)
FRAME_RIF (f)->clear_under_internal_border (f);
#endif
fset_redisplay (f);
f->garbaged = false;
f->resized_p = false;
}
}
frame_garbaged = false;
}
}
/* Redisplay the echo area of the selected frame. If UPDATE_FRAME_P, update
selected_frame. */
static void
echo_area_display (bool update_frame_p)
{
Lisp_Object mini_window;
struct window *w;
struct frame *f;
bool window_height_changed_p = false;
struct frame *sf = SELECTED_FRAME ();
mini_window = FRAME_MINIBUF_WINDOW (sf);
if (NILP (mini_window))
return;
w = XWINDOW (mini_window);
f = XFRAME (WINDOW_FRAME (w));
/* Don't display if frame is invisible or not yet initialized or
if redisplay is inhibited. */
if (!FRAME_REDISPLAY_P (f) || !f->glyphs_initialized_p
|| !NILP (Vinhibit_redisplay))
return;
#ifdef HAVE_WINDOW_SYSTEM
/* When Emacs starts, selected_frame may be the initial terminal
frame. If we let this through, a message would be displayed on
the terminal. */
if (FRAME_INITIAL_P (XFRAME (selected_frame)))
return;
#endif /* HAVE_WINDOW_SYSTEM */
/* Redraw garbaged frames. */
clear_garbaged_frames ();
if (!NILP (echo_area_buffer[0]) || minibuf_level == 0)
{
echo_area_window = mini_window;
window_height_changed_p = display_echo_area (w);
w->must_be_updated_p = true;
/* Update the display, unless called from redisplay_internal.
Also don't update the screen during redisplay itself. The
update will happen at the end of redisplay, and an update
here could cause confusion. */
if (update_frame_p && !redisplaying_p)
{
int n = 0;
/* If the display update has been interrupted by pending
input, update mode lines in the frame. Due to the
pending input, it might have been that redisplay hasn't
been called, so that mode lines above the echo area are
garbaged. This looks odd, so we prevent it here. */
if (!display_completed)
{
n = redisplay_mode_lines (FRAME_ROOT_WINDOW (f), false);
#ifdef HAVE_WINDOW_SYSTEM
if (FRAME_WINDOW_P (f)
&& FRAME_RIF (f)->clear_under_internal_border)
FRAME_RIF (f)->clear_under_internal_border (f);
#endif
}
if (window_height_changed_p
/* Don't do this if Emacs is shutting down. Redisplay
needs to run hooks. */
&& !NILP (Vrun_hooks))
{
/* Must update other windows. Likewise as in other
cases, don't let this update be interrupted by
pending input. */
specpdl_ref count = SPECPDL_INDEX ();
specbind (Qredisplay_dont_pause, Qt);
fset_redisplay (f);
redisplay_internal ();
unbind_to (count, Qnil);
}
else if (FRAME_WINDOW_P (f) && n == 0)
{
/* Window configuration is the same as before.
Can do with a display update of the echo area,
unless we displayed some mode lines. */
update_single_window (w);
flush_frame (f);
}
else
update_frame (f, true, true);
/* If cursor is in the echo area, make sure that the next
redisplay displays the minibuffer, so that the cursor will
be replaced with what the minibuffer wants. */
if (cursor_in_echo_area)
wset_redisplay (XWINDOW (mini_window));
}
}
else if (!EQ (mini_window, selected_window))
wset_redisplay (XWINDOW (mini_window));
/* Last displayed message is now the current message. */
echo_area_buffer[1] = echo_area_buffer[0];
/* Inform read_char that we're not echoing. */
echo_message_buffer = Qnil;
/* Prevent redisplay optimization in redisplay_internal by resetting
this_line_start_pos. This is done because the mini-buffer now
displays the message instead of its buffer text. */
if (EQ (mini_window, selected_window))
CHARPOS (this_line_start_pos) = 0;
if (window_height_changed_p)
{
fset_redisplay (f);
/* If window configuration was changed, frames may have been
marked garbaged. Clear them or we will experience
surprises wrt scrolling.
FIXME: How/why/when? */
clear_garbaged_frames ();
}
}
/* True if W's buffer was changed but not saved. */
static bool
window_buffer_changed (struct window *w)
{
struct buffer *b = XBUFFER (w->contents);
eassert (BUFFER_LIVE_P (b));
return (BUF_SAVE_MODIFF (b) < BUF_MODIFF (b)) != w->last_had_star;
}
/* True if W has %c or %C in its mode line and mode line should be updated. */
static bool
mode_line_update_needed (struct window *w)
{
return (w->column_number_displayed != -1
&& !(PT == w->last_point && !window_outdated (w))
&& (w->column_number_displayed != current_column ()));
}
/* True if window start of W is frozen and may not be changed during
redisplay. */
static bool
window_frozen_p (struct window *w)
{
if (FRAME_WINDOWS_FROZEN (XFRAME (WINDOW_FRAME (w))))
{
Lisp_Object window;
XSETWINDOW (window, w);
if (MINI_WINDOW_P (w))
return false;
else if (EQ (window, selected_window))
return false;
else if (MINI_WINDOW_P (XWINDOW (selected_window))
&& EQ (window, Vminibuf_scroll_window))
/* This special window can't be frozen too. */
return false;
else
return true;
}
return false;
}
/***********************************************************************
Mode Lines and Frame Titles
***********************************************************************/
/* A buffer for constructing non-propertized mode-line strings and
frame titles in it; allocated from the heap in init_xdisp and
resized as needed in store_mode_line_noprop_char. */
static char *mode_line_noprop_buf;
/* The buffer's end, and a current output position in it. */
static char *mode_line_noprop_buf_end;
static char *mode_line_noprop_ptr;
#define MODE_LINE_NOPROP_LEN(start) \
((mode_line_noprop_ptr - mode_line_noprop_buf) - start)
static enum {
MODE_LINE_DISPLAY = 0,
MODE_LINE_TITLE,
MODE_LINE_NOPROP,
MODE_LINE_STRING
} mode_line_target;
/* Alist that caches the results of :propertize.
Each element is (PROPERTIZED-STRING . PROPERTY-LIST). */
static Lisp_Object mode_line_proptrans_alist;
/* List of strings making up the mode-line. */
static Lisp_Object mode_line_string_list;
/* Base face property when building propertized mode line string. */
static Lisp_Object mode_line_string_face;
static Lisp_Object mode_line_string_face_prop;
/* Unwind data for mode line strings */
static Lisp_Object Vmode_line_unwind_vector;
static Lisp_Object
format_mode_line_unwind_data (struct frame *target_frame,
struct buffer *obuf,
Lisp_Object owin,
bool save_proptrans)
{
Lisp_Object vector, tmp;
/* Reduce consing by keeping one vector in
Vwith_echo_area_save_vector. */
vector = Vmode_line_unwind_vector;
Vmode_line_unwind_vector = Qnil;
if (NILP (vector))
vector = make_nil_vector (12);
ASET (vector, 0, make_fixnum (mode_line_target));
ASET (vector, 1, make_fixnum (MODE_LINE_NOPROP_LEN (0)));
ASET (vector, 2, mode_line_string_list);
ASET (vector, 3, save_proptrans ? mode_line_proptrans_alist : Qt);
ASET (vector, 4, mode_line_string_face);
ASET (vector, 5, mode_line_string_face_prop);
if (obuf)
XSETBUFFER (tmp, obuf);
else
tmp = Qnil;
ASET (vector, 6, tmp);
ASET (vector, 7, owin);
if (target_frame)
{
Lisp_Object buffer = XWINDOW (target_frame->selected_window)->contents;
struct buffer *b = XBUFFER (buffer);
struct buffer *cb = current_buffer;
/* Similarly to `with-selected-window', if the operation selects
a window on another frame, we must restore that frame's
selected window, and (for a tty) the top-frame. */
ASET (vector, 8, target_frame->selected_window);
if (FRAME_TERMCAP_P (target_frame))
ASET (vector, 9, FRAME_TTY (target_frame)->top_frame);
/* If we select a window on another frame, make sure that that
selection does not leave its buffer's point modified when
unwinding (Bug#32777). */
ASET (vector, 10, buffer);
current_buffer = b;
ASET (vector, 11, build_marker (current_buffer, PT, PT_BYTE));
current_buffer = cb;
}
return vector;
}
static void
unwind_format_mode_line (Lisp_Object vector)
{
Lisp_Object old_window = AREF (vector, 7);
Lisp_Object target_frame_window = AREF (vector, 8);
Lisp_Object old_top_frame = AREF (vector, 9);
mode_line_target = XFIXNUM (AREF (vector, 0));
mode_line_noprop_ptr = mode_line_noprop_buf + XFIXNUM (AREF (vector, 1));
mode_line_string_list = AREF (vector, 2);
if (! EQ (AREF (vector, 3), Qt))
mode_line_proptrans_alist = AREF (vector, 3);
mode_line_string_face = AREF (vector, 4);
mode_line_string_face_prop = AREF (vector, 5);
/* Select window before buffer, since it may change the buffer. */
if (WINDOW_LIVE_P (old_window))
{
/* If the operation that we are unwinding had selected a window
on a different frame, reset its frame-selected-window. For a
text terminal, reset its top-frame if necessary. */
if (WINDOW_LIVE_P (target_frame_window))
{
Lisp_Object frame
= WINDOW_FRAME (XWINDOW (target_frame_window));
if (!EQ (frame, WINDOW_FRAME (XWINDOW (old_window))))
Fselect_window (target_frame_window, Qt);
if (!NILP (old_top_frame) && !EQ (old_top_frame, frame)
/* This could've been destroyed during the formatting,
possibly because the terminal was deleted. */
&& FRAME_LIVE_P (XFRAME (old_top_frame)))
Fselect_frame (old_top_frame, Qt);
}
Fselect_window (old_window, Qt);
/* Restore point of target_frame_window's buffer (Bug#32777).
But do this only after old_window has been reselected to
avoid that the window point of target_frame_window moves. */
if (WINDOW_LIVE_P (target_frame_window))
{
Lisp_Object buffer = AREF (vector, 10);
if (BUFFER_LIVE_P (XBUFFER (buffer)))
{
struct buffer *cb = current_buffer;
current_buffer = XBUFFER (buffer);
set_point_from_marker (AREF (vector, 11));
ASET (vector, 11, Qnil);
current_buffer = cb;
}
}
}
if (!NILP (AREF (vector, 6)))
{
set_buffer_internal_1 (XBUFFER (AREF (vector, 6)));
ASET (vector, 6, Qnil);
}
Vmode_line_unwind_vector = vector;
}
/* Store a single character C for the frame title in mode_line_noprop_buf.
Re-allocate mode_line_noprop_buf if necessary. */
static void
store_mode_line_noprop_char (char c)
{
/* If output position has reached the end of the allocated buffer,
increase the buffer's size. */
if (mode_line_noprop_ptr == mode_line_noprop_buf_end)
{
ptrdiff_t len = MODE_LINE_NOPROP_LEN (0);
ptrdiff_t size = len;
mode_line_noprop_buf =
xpalloc (mode_line_noprop_buf, &size, 1, STRING_BYTES_BOUND, 1);
mode_line_noprop_buf_end = mode_line_noprop_buf + size;
mode_line_noprop_ptr = mode_line_noprop_buf + len;
}
*mode_line_noprop_ptr++ = c;
}
/* Store part of a frame title in mode_line_noprop_buf, beginning at
mode_line_noprop_ptr. STRING is the string to store. Do not copy
characters that yield more columns than PRECISION; PRECISION <= 0
means copy the whole string. Pad with spaces until FIELD_WIDTH
number of characters have been copied; FIELD_WIDTH <= 0 means don't
pad. Called from display_mode_element when it is used to build a
frame title. */
static int
store_mode_line_noprop (const char *string, int field_width, int precision)
{
const unsigned char *str = (const unsigned char *) string;
int n = 0;
ptrdiff_t dummy, nbytes;
/* Copy at most PRECISION chars from STR. */
nbytes = strlen (string);
n += c_string_width (str, nbytes, precision, &dummy, &nbytes);
while (nbytes--)
store_mode_line_noprop_char (*str++);
/* Fill up with spaces until FIELD_WIDTH reached. */
while (field_width > 0
&& n < field_width)
{
store_mode_line_noprop_char (' ');
++n;
}
return n;
}
/***********************************************************************
Frame Titles
***********************************************************************/
#ifdef HAVE_WINDOW_SYSTEM
/* Set the title of FRAME, if it has changed. The title format is
Vicon_title_format if FRAME is iconified, otherwise it is
frame_title_format. */
void
gui_consider_frame_title (Lisp_Object frame)
{
struct frame *f = XFRAME (frame);
Lisp_Object format_data;
if ((FRAME_WINDOW_P (f)
|| FRAME_MINIBUF_ONLY_P (f)
|| f->explicit_name)
&& !FRAME_TOOLTIP_P (f))
{
/* Do we have more than one visible frame on this X display? */
Lisp_Object tail, other_frame, fmt;
ptrdiff_t title_start;
char *title;
ptrdiff_t len;
struct it it;
specpdl_ref count = SPECPDL_INDEX ();
FOR_EACH_FRAME (tail, other_frame)
{
struct frame *tf = XFRAME (other_frame);
if (tf != f
&& FRAME_KBOARD (tf) == FRAME_KBOARD (f)
&& !FRAME_MINIBUF_ONLY_P (tf)
&& !FRAME_PARENT_FRAME (tf)
&& !FRAME_TOOLTIP_P (tf)
&& (FRAME_VISIBLE_P (tf) || FRAME_ICONIFIED_P (tf)))
break;
}
/* Set global variable indicating that multiple frames exist. */
multiple_frames = CONSP (tail);
/* select-frame calls resize_mini_window, which could resize the
mini-window and by that undo the effect of this redisplay
cycle wrt minibuffer and echo-area display. Binding
inhibit-redisplay to t makes the call to resize_mini_window a
no-op, thus avoiding the adverse side effects. */
/* The following was moved before the record_unwind_protect form
below to inhibit redisplay also when restoring the selected
window/frame: This avoids that resize_mini_window sizes back
the minibuffer window of a temporarily selected frame. See
Bug#34317. */
specbind (Qinhibit_redisplay, Qt);
/* Switch to the buffer of selected window of the frame. Set up
mode_line_target so that display_mode_element will output
into mode_line_noprop_buf; then display the title. Save the
original frame and selected window, and possibly the topmost
frame of the tty (for tty frames) into a vector; it will be
restored later. */
format_data = format_mode_line_unwind_data (f, current_buffer,
selected_window,
false);
record_unwind_protect (unwind_format_mode_line, format_data);
Fselect_window (f->selected_window, Qt);
set_buffer_internal_1 (XBUFFER (XWINDOW (f->selected_window)->contents));
fmt = (FRAME_ICONIFIED_P (f) && !EQ (Vicon_title_format, Qt)
? Vicon_title_format : Vframe_title_format);
mode_line_target = MODE_LINE_TITLE;
title_start = MODE_LINE_NOPROP_LEN (0);
init_iterator (&it, XWINDOW (f->selected_window), -1, -1,
NULL, DEFAULT_FACE_ID);
display_mode_element (&it, 0, -1, -1, fmt, Qnil, false);
len = MODE_LINE_NOPROP_LEN (title_start);
title = mode_line_noprop_buf + title_start;
/* Make sure that any raw bytes in the title are properly
represented by their multibyte sequences. */
ptrdiff_t nchars = 0;
len = str_as_multibyte ((unsigned char *) title,
mode_line_noprop_buf_end - title,
len, &nchars);
unbind_to (count, Qnil);
/* Set the title only if it's changed. This avoids consing in
the common case where it hasn't. (If it turns out that we've
already wasted too much time by walking through the list with
display_mode_element, then we might need to optimize at a
higher level than this.) */
if ((! STRINGP (f->name)
|| SBYTES (f->name) != len
|| memcmp (title, SDATA (f->name), len) != 0)
&& FRAME_TERMINAL (f)->implicit_set_name_hook)
{
Lisp_Object title_string = make_multibyte_string (title, nchars, len);
FRAME_TERMINAL (f)->implicit_set_name_hook (f, title_string, Qnil);
}
}
}
#endif /* not HAVE_WINDOW_SYSTEM */
/***********************************************************************
Menu Bars
***********************************************************************/
/* True if we will not redisplay all visible windows. */
#define REDISPLAY_SOME_P() \
((windows_or_buffers_changed == 0 \
|| windows_or_buffers_changed == REDISPLAY_SOME) \
&& (update_mode_lines == 0 \
|| update_mode_lines == REDISPLAY_SOME))
static bool
needs_no_redisplay (struct window *w)
{
struct buffer *buffer = XBUFFER (w->contents);
struct frame *f = XFRAME (w->frame);
return (REDISPLAY_SOME_P ()
&& !w->redisplay
&& !w->update_mode_line
&& !f->face_change
&& !f->redisplay
&& !buffer->text->redisplay
&& window_point (w) == w->last_point);
}
/* Prepare for redisplay by updating menu-bar item lists when
appropriate. This can call eval. */
static void
prepare_menu_bars (void)
{
bool all_windows = windows_or_buffers_changed || update_mode_lines;
bool some_windows = REDISPLAY_SOME_P ();
if (FUNCTIONP (Vpre_redisplay_function))
{
Lisp_Object windows = all_windows ? Qt : Qnil;
if (all_windows && some_windows)
{
Lisp_Object ws = window_list ();
for (windows = Qnil; CONSP (ws); ws = XCDR (ws))
{
Lisp_Object this = XCAR (ws);
struct window *w = XWINDOW (this);
/* Cf. conditions for redisplaying a window at the
beginning of redisplay_window. */
if (!needs_no_redisplay (w))
windows = Fcons (this, windows);
}
}
dsafe_calln (true, Vpre_redisplay_function, windows);
}
/* Update all frame titles based on their buffer names, etc. We do
this before the menu bars so that the buffer-menu will show the
up-to-date frame titles. */
#ifdef HAVE_WINDOW_SYSTEM
if (all_windows)
{
Lisp_Object tail, frame;
FOR_EACH_FRAME (tail, frame)
{
struct frame *f = XFRAME (frame);
struct window *w = XWINDOW (FRAME_SELECTED_WINDOW (f));
if (some_windows
&& !f->redisplay
&& !w->redisplay
&& !XBUFFER (w->contents)->text->redisplay)
continue;
if (!FRAME_TOOLTIP_P (f)
&& (FRAME_ICONIFIED_P (f)
|| FRAME_VISIBLE_P (f) == 1
/* Exclude TTY frames that are obscured because they
are not the top frame on their console. This is
because gui_consider_frame_title actually switches
to the frame, which for TTY frames means it is
marked as garbaged, and will be completely
redrawn on the next redisplay cycle. This causes
TTY frames to be completely redrawn, when there
are more than one of them, even though nothing
should be changed on display. */
|| (FRAME_REDISPLAY_P (f) && FRAME_WINDOW_P (f))))
gui_consider_frame_title (frame);
}
}
#endif /* HAVE_WINDOW_SYSTEM */
/* Update the menu bar item lists, if appropriate. This has to be
done before any actual redisplay or generation of display lines. */
if (all_windows)
{
Lisp_Object tail, frame;
specpdl_ref count = SPECPDL_INDEX ();
/* True means that update_menu_bar has run its hooks
so any further calls to update_menu_bar shouldn't do so again. */
bool menu_bar_hooks_run = false;
record_unwind_save_match_data ();
FOR_EACH_FRAME (tail, frame)
{
struct frame *f = XFRAME (frame);
struct window *w = XWINDOW (FRAME_SELECTED_WINDOW (f));
/* Ignore tooltip frame. */
if (FRAME_TOOLTIP_P (f))
continue;
if (some_windows
&& !f->redisplay
&& !w->redisplay
&& !XBUFFER (w->contents)->text->redisplay)
continue;
if (!FRAME_PARENT_FRAME (f))
menu_bar_hooks_run = update_menu_bar (f, false, menu_bar_hooks_run);
update_tab_bar (f, false);
#ifdef HAVE_WINDOW_SYSTEM
update_tool_bar (f, false);
#endif
}
unbind_to (count, Qnil);
}
else
{
struct frame *sf = SELECTED_FRAME ();
if (!FRAME_PARENT_FRAME (sf))
update_menu_bar (sf, true, false);
update_tab_bar (sf, true);
#ifdef HAVE_WINDOW_SYSTEM
update_tool_bar (sf, true);
#endif
}
}
/* Update the menu bar item list for frame F. This has to be done
before we start to fill in any display lines, because it can call
eval.
If SAVE_MATCH_DATA, we must save and restore it here.
If HOOKS_RUN, a previous call to update_menu_bar
already ran the menu bar hooks for this redisplay, so there
is no need to run them again. The return value is the
updated value of this flag, to pass to the next call. */
static bool
update_menu_bar (struct frame *f, bool save_match_data, bool hooks_run)
{
Lisp_Object window;
struct window *w;
/* If called recursively during a menu update, do nothing. This can
happen when, for instance, an activate-menubar-hook causes a
redisplay. */
if (inhibit_menubar_update)
return hooks_run;
window = FRAME_SELECTED_WINDOW (f);
w = XWINDOW (window);
if (FRAME_WINDOW_P (f)
?
#ifdef HAVE_EXT_MENU_BAR
FRAME_EXTERNAL_MENU_BAR (f)
#else
FRAME_MENU_BAR_LINES (f) > 0
#endif
: FRAME_MENU_BAR_LINES (f) > 0)
{
/* If the user has switched buffers or windows, we need to
recompute to reflect the new bindings. But we'll
recompute when update_mode_lines is set too; that means
that people can use force-mode-line-update to request
that the menu bar be recomputed. The adverse effect on
the rest of the redisplay algorithm is about the same as
windows_or_buffers_changed anyway. */
if (windows_or_buffers_changed
/* This used to test w->update_mode_line, but we believe
there is no need to recompute the menu in that case. */
|| update_mode_lines
|| window_buffer_changed (w))
{
struct buffer *prev = current_buffer;
specpdl_ref count = SPECPDL_INDEX ();
specbind (Qinhibit_menubar_update, Qt);
set_buffer_internal_1 (XBUFFER (w->contents));
if (save_match_data)
record_unwind_save_match_data ();
if (NILP (Voverriding_local_map_menu_flag))
{
specbind (Qoverriding_terminal_local_map, Qnil);
specbind (Qoverriding_local_map, Qnil);
}
if (!hooks_run)
{
/* Run the Lucid hook. */
safe_run_hooks (Qactivate_menubar_hook);
/* If it has changed current-menubar from previous value,
really recompute the menu-bar from the value. */
safe_run_hooks (Qmenu_bar_update_hook);
hooks_run = true;
}
XSETFRAME (Vmenu_updating_frame, f);
fset_menu_bar_items (f, menu_bar_items (FRAME_MENU_BAR_ITEMS (f)));
/* Redisplay the menu bar in case we changed it. */
#ifdef HAVE_EXT_MENU_BAR
if (FRAME_WINDOW_P (f))
{
#if defined (HAVE_NS)
/* All frames on Mac OS share the same menubar. So only
the selected frame should be allowed to set it. */
if (f == SELECTED_FRAME ())
#endif
set_frame_menubar (f, false);
}
else
/* On a terminal screen, the menu bar is an ordinary screen
line, and this makes it get updated. */
w->update_mode_line = true;
#else /* ! (HAVE_EXT_MENU_BAR) */
/* In the non-toolkit version, the menu bar is an ordinary screen
line, and this makes it get updated. */
w->update_mode_line = true;
#endif /* HAVE_EXT_MENU_BAR */
unbind_to (count, Qnil);
set_buffer_internal_1 (prev);
}
}
return hooks_run;
}
/***********************************************************************
Tab-bars
***********************************************************************/
/* Restore WINDOW as the selected window and its frame as the selected
frame. If WINDOW is dead but the selected frame is live, make the
latter's selected window the selected window. If both, WINDOW and
the selected frame, are dead, assign selected frame and window from
some arbitrary live frame. Abort if no such frame can be found. */
static void
restore_selected_window (Lisp_Object window)
{
if (WINDOW_LIVE_P (window))
/* If WINDOW is live, make it the selected window and its frame's
selected window and set the selected frame to its frame. */
{
selected_window = window;
selected_frame = XWINDOW (window)->frame;
FRAME_SELECTED_WINDOW (XFRAME (selected_frame)) = window;
}
else if (FRAMEP (selected_frame) && FRAME_LIVE_P (XFRAME (selected_frame)))
/* If WINDOW is dead but the selected frame is still live, make the
latter's selected window the selected one. */
selected_window = FRAME_SELECTED_WINDOW (XFRAME (selected_frame));
else
/* If WINDOW and the selected frame are dead, choose some live,
non-child and non-tooltip frame as the new selected frame and
make its selected window the selected window. */
{
Lisp_Object tail;
Lisp_Object frame UNINIT;
FOR_EACH_FRAME (tail, frame)
{
struct frame *f = XFRAME (frame);
if (!FRAME_PARENT_FRAME (f) && !FRAME_TOOLTIP_P (f))
{
selected_frame = frame;
selected_window = FRAME_SELECTED_WINDOW (f);
return;
}
}
/* Abort if we cannot find a live frame. */
emacs_abort ();
}
}
/* Restore WINDOW, if live, as its frame's selected window. */
static void
restore_frame_selected_window (Lisp_Object window)
{
if (WINDOW_LIVE_P (window))
/* If WINDOW is live, make it its frame's selected window. If that
frame is the selected frame, make WINDOW the selected window as
well. */
{
Lisp_Object frame = XWINDOW (window)->frame;
FRAME_SELECTED_WINDOW (XFRAME (frame)) = window;
if (EQ (frame, selected_frame))
selected_window = window;
}
}
/* Update the tab-bar item list for frame F. This has to be done
before we start to fill in any display lines. Called from
prepare_menu_bars. If SAVE_MATCH_DATA, we must save
and restore it here. */
static void
update_tab_bar (struct frame *f, bool save_match_data)
{
bool do_update = false;
#ifdef HAVE_WINDOW_SYSTEM
if (FRAME_WINDOW_P (f) && WINDOWP (f->tab_bar_window)) {
if (WINDOW_TOTAL_LINES (XWINDOW (f->tab_bar_window)) > 0)
do_update = true;
}
else
#endif
if (FRAME_TAB_BAR_LINES (f) > 0)
do_update = true;
if (do_update)
{
Lisp_Object window;
struct window *w;
window = FRAME_SELECTED_WINDOW (f);
w = XWINDOW (window);
/* If the user has switched buffers or windows, we need to
recompute to reflect the new bindings. But we'll
recompute when update_mode_lines is set too; that means
that people can use force-mode-line-update to request
that the menu bar be recomputed. The adverse effect on
the rest of the redisplay algorithm is about the same as
windows_or_buffers_changed anyway. */
if (windows_or_buffers_changed
|| w->update_mode_line
|| update_mode_lines
|| window_buffer_changed (w))
{
struct buffer *prev = current_buffer;
specpdl_ref count = SPECPDL_INDEX ();
Lisp_Object new_tab_bar;
int new_n_tab_bar;
/* Set current_buffer to the buffer of the selected
window of the frame, so that we get the right local
keymaps. */
set_buffer_internal_1 (XBUFFER (w->contents));
/* Save match data, if we must. */
if (save_match_data)
record_unwind_save_match_data ();
/* Make sure that we don't accidentally use bogus keymaps. */
if (NILP (Voverriding_local_map_menu_flag))
{
specbind (Qoverriding_terminal_local_map, Qnil);
specbind (Qoverriding_local_map, Qnil);
}
/* We must temporarily set the selected frame to this frame
before calling tab_bar_items, because the calculation of
the tab-bar keymap uses the selected frame (see
`tab-bar-make-keymap' in tab-bar.el). */
eassert (EQ (selected_window,
/* Since we only explicitly preserve selected_frame,
check that selected_window would be redundant. */
XFRAME (selected_frame)->selected_window));
#ifdef HAVE_WINDOW_SYSTEM
Lisp_Object frame;
record_unwind_protect (restore_selected_window, selected_window);
XSETFRAME (frame, f);
selected_frame = frame;
selected_window = FRAME_SELECTED_WINDOW (f);
#endif
/* Build desired tab-bar items from keymaps. */
new_tab_bar
= tab_bar_items (Fcopy_sequence (f->tab_bar_items),
&new_n_tab_bar);
/* Redisplay the tab-bar if we changed it. */
if (new_n_tab_bar != f->n_tab_bar_items
|| NILP (Fequal (new_tab_bar, f->tab_bar_items)))
{
/* Redisplay that happens asynchronously due to an expose event
may access f->tab_bar_items. Make sure we update both
variables within BLOCK_INPUT so no such event interrupts. */
block_input ();
fset_tab_bar_items (f, new_tab_bar);
f->n_tab_bar_items = new_n_tab_bar;
w->update_mode_line = true;
unblock_input ();
}
unbind_to (count, Qnil);
set_buffer_internal_1 (prev);
}
}
}
/* Redisplay the tab bar in the frame for window W.
The tab bar of X frames that don't have X toolkit support is
displayed in a special window W->frame->tab_bar_window.
The tab bar of terminal frames is treated specially as far as
glyph matrices are concerned. Tab bar lines are not part of
windows, so the update is done directly on the frame matrix rows
for the tab bar. */
static void
display_tab_bar (struct window *w)
{
struct frame *f = XFRAME (WINDOW_FRAME (w));
struct it it;
Lisp_Object items;
int i;
/* Don't do all this for graphical frames. */
#ifdef HAVE_NTGUI
if (FRAME_W32_P (f))
return;
#endif
#if defined (USE_X_TOOLKIT) || defined (USE_GTK)
if (FRAME_X_P (f))
return;
#endif
#ifdef HAVE_NS
if (FRAME_NS_P (f))
return;
#endif /* HAVE_NS */
#if defined (USE_X_TOOLKIT) || defined (USE_GTK)
eassert (!FRAME_WINDOW_P (f));
init_iterator (&it, w, -1, -1, f->desired_matrix->rows
+ (FRAME_MENU_BAR_LINES (f) > 0 ? 1 : 0),
TAB_BAR_FACE_ID);
it.first_visible_x = 0;
it.last_visible_x = FRAME_PIXEL_WIDTH (f);
#elif defined (HAVE_X_WINDOWS) /* X without toolkit. */
if (FRAME_WINDOW_P (f))
{
/* Tab bar lines are displayed in the desired matrix of the
dummy window tab_bar_window. */
struct window *tab_w;
tab_w = XWINDOW (f->tab_bar_window);
init_iterator (&it, tab_w, -1, -1, tab_w->desired_matrix->rows,
TAB_BAR_FACE_ID);
it.first_visible_x = 0;
it.last_visible_x = FRAME_PIXEL_WIDTH (f);
}
else
#endif /* not USE_X_TOOLKIT and not USE_GTK */
{
/* This is a TTY frame, i.e. character hpos/vpos are used as
pixel x/y. */
init_iterator (&it, w, -1, -1, f->desired_matrix->rows
+ (FRAME_MENU_BAR_LINES (f) > 0 ? 1 : 0),
TAB_BAR_FACE_ID);
it.first_visible_x = 0;
it.last_visible_x = FRAME_COLS (f);
}
/* FIXME: This should be controlled by a user option. See the
comments in redisplay_tool_bar and display_mode_line about
this. */
it.paragraph_embedding = L2R;
/* Clear all rows of the tab bar. */
for (i = 0; i < FRAME_TAB_BAR_LINES (f); ++i)
{
struct glyph_row *row = it.glyph_row + i;
clear_glyph_row (row);
row->enabled_p = true;
row->full_width_p = true;
row->reversed_p = false;
}
/* Display all items of the tab bar. */
items = it.f->tab_bar_items;
int j;
for (i = 0, j = 0; i < it.f->n_tab_bar_items; ++i, j += TAB_BAR_ITEM_NSLOTS)
{
Lisp_Object string = AREF (items, j + TAB_BAR_ITEM_CAPTION);
/* Stop at nil string. */
if (NILP (string))
break;
if (it.current_x < it.last_visible_x)
display_string (NULL, string, Qnil, 0, 0, &it,
SCHARS (string), 0, 0, STRING_MULTIBYTE (string));
}
/* Fill out the line with spaces. */
if (it.current_x < it.last_visible_x)
display_string ("", Qnil, Qnil, 0, 0, &it, -1, 0, 0, -1);
/* Compute the total height of the lines. */
compute_line_metrics (&it);
}
#ifdef HAVE_WINDOW_SYSTEM
/* Set F->desired_tab_bar_string to a Lisp string representing frame
F's desired tab-bar contents. F->tab_bar_items must have
been set up previously by calling prepare_menu_bars. */
static void
build_desired_tab_bar_string (struct frame *f)
{
int i;
Lisp_Object caption;
caption = Qnil;
/* Prepare F->desired_tab_bar_string. Make a new string. */
fset_desired_tab_bar_string (f, build_string (""));
/* Put a `display' property on the string for the captions to display,
put a `menu_item' property on tab-bar items with a value that
is the index of the item in F's tab-bar item vector. */
for (i = 0; i < f->n_tab_bar_items; ++i)
{
#define PROP(IDX) \
AREF (f->tab_bar_items, i * TAB_BAR_ITEM_NSLOTS + (IDX))
caption = Fcopy_sequence (PROP (TAB_BAR_ITEM_CAPTION));
/* Put a `display' text property on the string for the caption to
display. Put a `menu-item' property on the string that gives
the start of this item's properties in the tab-bar items
vector. */
AUTO_LIST2 (props, Qmenu_item, make_fixnum (i * TAB_BAR_ITEM_NSLOTS));
Fadd_text_properties (make_fixnum (0), make_fixnum (SCHARS (caption)),
props, caption);
f->desired_tab_bar_string =
concat2 (f->desired_tab_bar_string, caption);
#undef PROP
}
}
/* Display one line of the tab-bar of frame IT->f.
HEIGHT specifies the desired height of the tab-bar line.
If the actual height of the glyph row is less than HEIGHT, the
row's height is increased to HEIGHT, and the icons are centered
vertically in the new height.
If HEIGHT is -1, we are counting needed tab-bar lines, so don't
count a final empty row in case the tab-bar width exactly matches
the window width.
*/
static void
display_tab_bar_line (struct it *it, int height)
{
struct glyph_row *row = it->glyph_row;
int max_x = it->last_visible_x;
struct glyph *last;
/* Don't extend on a previously drawn tab bar items (Bug#16058). */
clear_glyph_row (row);
row->enabled_p = true;
row->y = it->current_y;
/* Note that this isn't made use of if the face hasn't a box,
so there's no need to check the face here. */
it->start_of_box_run_p = true;
bool enough = false;
while (it->current_x < max_x)
{
int x, n_glyphs_before, i, nglyphs;
struct it it_before;
/* Get the next display element. */
if (!get_next_display_element (it))
{
/* Don't count empty row if we are counting needed tab-bar lines. */
if (height < 0 && !it->hpos)
return;
break;
}
/* Produce glyphs. */
n_glyphs_before = row->used[TEXT_AREA];
it_before = *it;
PRODUCE_GLYPHS (it);
nglyphs = row->used[TEXT_AREA] - n_glyphs_before;
i = 0;
x = it_before.current_x;
while (i < nglyphs)
{
struct glyph *glyph = row->glyphs[TEXT_AREA] + n_glyphs_before + i;
if (x + glyph->pixel_width > max_x)
{
/* Glyph doesn't fit on line. Backtrack. */
row->used[TEXT_AREA] = n_glyphs_before;
*it = it_before;
/* If this is the only glyph on this line, it will never fit on the
tab-bar, so skip it. But ensure there is at least one glyph,
so we don't accidentally disable the tab-bar. */
if (n_glyphs_before == 0
&& (it->vpos > 0 || IT_STRING_CHARPOS (*it) < it->end_charpos-1))
break;
goto out;
}
++it->hpos;
x += glyph->pixel_width;
++i;
}
enough = ITERATOR_AT_END_OF_LINE_P (it);
set_iterator_to_next (it, true);
/* Stop at line end. */
if (enough)
break;
}
out:;
row->displays_text_p = row->used[TEXT_AREA] != 0;
/* Use default face for the border below the tab bar.
FIXME: When auto-resize-tab-bars is grow-only, there is
no additional border below the possibly empty tab-bar lines.
So to make the extra empty lines look "normal", we have to
use the tab-bar face for the border too. */
if (!MATRIX_ROW_DISPLAYS_TEXT_P (row)
&& !EQ (Vauto_resize_tab_bars, Qgrow_only))
it->face_id = DEFAULT_FACE_ID;
extend_face_to_end_of_line (it);
last = row->glyphs[TEXT_AREA] + row->used[TEXT_AREA] - 1;
last->right_box_line_p = true;
if (last == row->glyphs[TEXT_AREA])
last->left_box_line_p = true;
/* Make line the desired height and center it vertically. */
if ((height -= it->max_ascent + it->max_descent) > 0)
{
/* Don't add more than one line height. */
height %= FRAME_LINE_HEIGHT (it->f);
it->max_ascent += height / 2;
it->max_descent += (height + 1) / 2;
}
compute_line_metrics (it);
/* If line is empty, make it occupy the rest of the tab-bar. */
if (!MATRIX_ROW_DISPLAYS_TEXT_P (row))
{
row->height = row->phys_height = it->last_visible_y - row->y;
row->visible_height = row->height;
row->ascent = row->phys_ascent = 0;
row->extra_line_spacing = 0;
}
row->full_width_p = true;
row->continued_p = false;
row->truncated_on_left_p = false;
row->truncated_on_right_p = false;
it->current_x = it->hpos = it->wrap_prefix_width = 0;
it->current_y += row->height;
++it->vpos;
++it->glyph_row;
}
/* Value is the number of pixels needed to make all tab-bar items of
frame F visible. The actual number of glyph rows needed is
returned in *N_ROWS if non-NULL. */
static int
tab_bar_height (struct frame *f, int *n_rows, bool pixelwise)
{
struct window *w = XWINDOW (f->tab_bar_window);
struct it it;
/* tab_bar_height is called from redisplay_tab_bar after building
the desired matrix, so use (unused) mode-line row as temporary row to
avoid destroying the first tab-bar row. */
struct glyph_row *temp_row = MATRIX_MODE_LINE_ROW (w->desired_matrix);
/* Initialize an iterator for iteration over
F->desired_tab_bar_string in the tab-bar window of frame F. */
init_iterator (&it, w, -1, -1, temp_row, TAB_BAR_FACE_ID);
temp_row->reversed_p = false;
it.first_visible_x = 0;
it.last_visible_x = WINDOW_PIXEL_WIDTH (w);
reseat_to_string (&it, NULL, f->desired_tab_bar_string,
0, 0, 0, STRING_MULTIBYTE (f->desired_tab_bar_string));
it.paragraph_embedding = L2R;
clear_glyph_row (temp_row);
while (!ITERATOR_AT_END_P (&it))
{
it.glyph_row = temp_row;
display_tab_bar_line (&it, -1);
}
clear_glyph_row (temp_row);
/* f->n_tab_bar_rows == 0 means "unknown"; -1 means no tab-bar. */
if (n_rows)
*n_rows = it.vpos > 0 ? it.vpos : -1;
if (pixelwise)
return it.current_y;
else
return (it.current_y + FRAME_LINE_HEIGHT (f) - 1) / FRAME_LINE_HEIGHT (f);
}
DEFUN ("tab-bar-height", Ftab_bar_height, Stab_bar_height,
0, 2, 0,
doc: /* Return the number of lines occupied by the tab bar of FRAME.
If FRAME is nil or omitted, use the selected frame. Optional argument
PIXELWISE non-nil means return the height of the tab bar in pixels. */)
(Lisp_Object frame, Lisp_Object pixelwise)
{
int height = 0;
struct frame *f = decode_any_frame (frame);
if (WINDOWP (f->tab_bar_window)
&& WINDOW_PIXEL_HEIGHT (XWINDOW (f->tab_bar_window)) > 0)
{
update_tab_bar (f, true);
if (f->n_tab_bar_items)
{
build_desired_tab_bar_string (f);
height = tab_bar_height (f, NULL, !NILP (pixelwise));
}
}
return make_fixnum (height);
}
/* Display the tab-bar of frame F. Value is true if tab-bar's
height should be changed. */
static bool
redisplay_tab_bar (struct frame *f)
{
struct window *w;
struct it it;
struct glyph_row *row;
f->tab_bar_redisplayed = true;
/* If frame hasn't a tab-bar window or if it is zero-height, don't
do anything. This means you must start with tab-bar-lines
non-zero to get the auto-sizing effect. Or in other words, you
can turn off tab-bars by specifying tab-bar-lines zero. */
if (!WINDOWP (f->tab_bar_window)
|| (w = XWINDOW (f->tab_bar_window),
WINDOW_TOTAL_LINES (w) == 0))
{
/* Even if we do not display a tab bar initially, still pretend
that we have resized it. This avoids that a later activation
of the tab bar resizes the frame, despite of the fact that the
setting of 'frame-inhibit-implied-resize' should inhibit it
(Bug#52986). */
f->tab_bar_resized = true;
return false;
}
/* Build a string that represents the contents of the tab-bar. */
build_desired_tab_bar_string (f);
int new_nrows;
int new_height = tab_bar_height (f, &new_nrows, true);
if (f->n_tab_bar_rows == 0)
{
f->n_tab_bar_rows = new_nrows;
if (new_height != WINDOW_PIXEL_HEIGHT (w))
frame_default_tab_bar_height = new_height;
}
/* If new_height or new_nrows indicate that we need to enlarge or
shrink the tab-bar window, we can return right away. */
if (new_nrows > f->n_tab_bar_rows
|| (EQ (Vauto_resize_tab_bars, Qgrow_only)
&& !f->minimize_tab_bar_window_p
&& new_height > WINDOW_PIXEL_HEIGHT (w))
|| (! EQ (Vauto_resize_tab_bars, Qgrow_only)
&& new_height < WINDOW_PIXEL_HEIGHT (w)))
{
if (FRAME_TERMINAL (f)->change_tab_bar_height_hook)
FRAME_TERMINAL (f)->change_tab_bar_height_hook (f, new_height);
if (new_nrows != f->n_tab_bar_rows)
f->n_tab_bar_rows = new_nrows;
clear_glyph_matrix (w->desired_matrix);
f->fonts_changed = true;
return true;
}
/* Set up an iterator for the tab-bar window. */
init_iterator (&it, w, -1, -1, w->desired_matrix->rows, TAB_BAR_FACE_ID);
it.first_visible_x = 0;
it.last_visible_x = WINDOW_PIXEL_WIDTH (w);
row = it.glyph_row;
row->reversed_p = false;
reseat_to_string (&it, NULL, f->desired_tab_bar_string, 0, 0, 0,
STRING_MULTIBYTE (f->desired_tab_bar_string));
/* FIXME: This should be controlled by a user option. But it
doesn't make sense to have an R2L tab bar if the menu bar cannot
be drawn also R2L, and making the menu bar R2L is tricky due
tabkit-specific code that implements it. If an R2L tab bar is
ever supported, display_tab_bar_line should also be augmented to
call unproduce_glyphs like display_line and display_string
do. */
it.paragraph_embedding = L2R;
/* Display as many lines as needed to display all tab-bar items. */
if (f->n_tab_bar_rows > 0)
{
int border, rows, height, extra;
if (TYPE_RANGED_FIXNUMP (int, Vtab_bar_border))
border = XFIXNUM (Vtab_bar_border);
else if (EQ (Vtab_bar_border, Qinternal_border_width))
border = FRAME_INTERNAL_BORDER_WIDTH (f);
else if (EQ (Vtab_bar_border, Qborder_width))
border = f->border_width;
else
border = 0;
if (border < 0)
border = 0;
rows = f->n_tab_bar_rows;
height = max (1, (it.last_visible_y - border) / rows);
extra = it.last_visible_y - border - height * rows;
while (it.current_y < it.last_visible_y)
{
int h = 0;
if (extra > 0 && rows-- > 0)
{
h = (extra + rows - 1) / rows;
extra -= h;
}
display_tab_bar_line (&it, height + h);
}
}
else
{
while (it.current_y < it.last_visible_y)
display_tab_bar_line (&it, 0);
}
/* It doesn't make much sense to try scrolling in the tab-bar
window, so don't do it. */
w->desired_matrix->no_scrolling_p = true;
w->must_be_updated_p = true;
if (!NILP (Vauto_resize_tab_bars))
{
bool change_height_p = false;
/* If we couldn't display everything, change the tab-bar's
height if there is room for more. */
if (IT_STRING_CHARPOS (it) < it.end_charpos)
change_height_p = true;
/* We subtract 1 because display_tab_bar_line advances the
glyph_row pointer before returning to its caller. We want to
examine the last glyph row produced by
display_tab_bar_line. */
row = it.glyph_row - 1;
/* If there are blank lines at the end, except for a partially
visible blank line at the end that is smaller than
FRAME_LINE_HEIGHT, change the tab-bar's height. */
if (!MATRIX_ROW_DISPLAYS_TEXT_P (row)
&& row->height >= FRAME_LINE_HEIGHT (f))
change_height_p = true;
/* If row displays tab-bar items, but is partially visible,
change the tab-bar's height. */
if (MATRIX_ROW_DISPLAYS_TEXT_P (row)
&& MATRIX_ROW_BOTTOM_Y (row) > it.last_visible_y)
change_height_p = true;
/* Resize windows as needed by changing the `tab-bar-lines'
frame parameter. */
if (change_height_p)
{
int nrows;
int new_height = tab_bar_height (f, &nrows, true);
change_height_p = ((EQ (Vauto_resize_tab_bars, Qgrow_only)
&& !f->minimize_tab_bar_window_p)
? (new_height > WINDOW_PIXEL_HEIGHT (w))
: (new_height != WINDOW_PIXEL_HEIGHT (w)));
f->minimize_tab_bar_window_p = false;
if (change_height_p)
{
if (FRAME_TERMINAL (f)->change_tab_bar_height_hook)
FRAME_TERMINAL (f)->change_tab_bar_height_hook (f, new_height);
frame_default_tab_bar_height = new_height;
clear_glyph_matrix (w->desired_matrix);
f->n_tab_bar_rows = nrows;
f->fonts_changed = true;
return true;
}
}
}
f->minimize_tab_bar_window_p = false;
return false;
}
/* Get information about the tab-bar item which is displayed in GLYPH
on frame F. Return in *PROP_IDX the index where tab-bar item
properties start in F->tab_bar_items. Return in CLOSE_P an
indication whether the click was on the close-tab icon of the tab.
Value is false if GLYPH doesn't display a tab-bar item. */
static bool
tab_bar_item_info (struct frame *f, struct glyph *glyph,
int *prop_idx, bool *close_p)
{
Lisp_Object prop;
ptrdiff_t charpos;
/* This function can be called asynchronously, which means we must
exclude any possibility that Fget_text_property signals an
error. */
charpos = min (SCHARS (f->current_tab_bar_string), glyph->charpos);
charpos = max (0, charpos);
/* Get the text property `menu-item' at pos. The value of that
property is the start index of this item's properties in
F->tab_bar_items. */
prop = Fget_text_property (make_fixnum (charpos),
Qmenu_item, f->current_tab_bar_string);
if (! FIXNUMP (prop))
return false;
*prop_idx = XFIXNUM (prop);
if (close_p)
*close_p = !NILP (Fget_text_property (make_fixnum (charpos),
Qclose_tab,
f->current_tab_bar_string));
return true;
}
/* Get information about the tab-bar item at position X/Y on frame F's
tab bar window.
Set *GLYPH to a pointer to the glyph of the tab-bar item in the
current matrix of the tab-bar window of F, or NULL if not on a
tab-bar item. Return in *PROP_IDX the index of the tab-bar item in
F->tab_bar_items.
Place the window-relative vpos of Y in *VPOS, and the
window-relative hpos of X in *HPOS. If CLOSE_P, set it to whether
or not the tab bar item represents a button that should close a
tab.
Value is
-1 if X/Y is not on a tab-bar item
0 if X/Y is on the same item that was highlighted before.
1 otherwise. */
static int
get_tab_bar_item (struct frame *f, int x, int y, struct glyph **glyph,
int *hpos, int *vpos, int *prop_idx, bool *close_p)
{
struct window *w = XWINDOW (f->tab_bar_window);
int area;
/* Find the glyph under X/Y. */
*glyph = x_y_to_hpos_vpos (w, x, y, hpos, vpos, 0, 0, &area);
if (*glyph == NULL)
return -1;
/* Get the start of this tab-bar item's properties in
f->tab_bar_items. */
if (!tab_bar_item_info (f, *glyph, prop_idx, close_p))
return -1;
return *prop_idx == f->last_tab_bar_item ? 0 : 1;
}
/* EXPORT:
Like `get_tab_bar_item'. However, don't return anything for GLYPH,
HPOS, or VPOS, and treat X and Y as relative to F itself, as
opposed to its tab bar window. */
int
get_tab_bar_item_kbd (struct frame *f, int x, int y, int *prop_idx,
bool *close_p)
{
struct window *w;
int area, vpos, hpos;
struct glyph *glyph;
w = XWINDOW (f->tab_bar_window);
/* Convert X and Y to window coordinates. */
frame_to_window_pixel_xy (w, &x, &y);
/* Find the glyph under X/Y. */
glyph = x_y_to_hpos_vpos (w, x, y, &hpos, &vpos, 0,
0, &area);
if (glyph == NULL)
return -1;
/* Get the start of this tab-bar item's properties in
f->tab_bar_items. */
if (!tab_bar_item_info (f, glyph, prop_idx, close_p))
return -1;
return *prop_idx == f->last_tab_bar_item ? 0 : 1;
}
/* EXPORT:
Handle mouse button event on the tab-bar of frame F, at
frame-relative coordinates X/Y. DOWN_P is true for a button press,
false for button release. MODIFIERS is event modifiers for button
release. */
Lisp_Object
handle_tab_bar_click (struct frame *f, int x, int y, bool down_p,
int modifiers)
{
Mouse_HLInfo *hlinfo = MOUSE_HL_INFO (f);
struct window *w = XWINDOW (f->tab_bar_window);
int hpos, vpos, prop_idx;
bool close_p;
struct glyph *glyph;
Lisp_Object enabled_p;
int ts;
frame_to_window_pixel_xy (w, &x, &y);
ts = get_tab_bar_item (f, x, y, &glyph, &hpos, &vpos, &prop_idx, &close_p);
if (ts == -1)
return Fcons (Qtab_bar, Qnil);
/* If item is disabled, do nothing. */
enabled_p = AREF (f->tab_bar_items, prop_idx + TAB_BAR_ITEM_ENABLED_P);
if (NILP (enabled_p))
return Qnil;
if (down_p)
{
/* Show the clicked button in pressed state. */
if (!NILP (Vmouse_highlight))
show_mouse_face (hlinfo, DRAW_IMAGE_SUNKEN);
f->last_tab_bar_item = prop_idx; /* record the pressed tab */
}
else
{
/* Show item in released state. */
if (!NILP (Vmouse_highlight))
show_mouse_face (hlinfo, DRAW_IMAGE_RAISED);
f->last_tab_bar_item = -1;
}
Lisp_Object caption =
Fcopy_sequence (AREF (f->tab_bar_items, prop_idx + TAB_BAR_ITEM_CAPTION));
AUTO_LIST2 (props, Qmenu_item,
list3 (AREF (f->tab_bar_items, prop_idx + TAB_BAR_ITEM_KEY),
AREF (f->tab_bar_items, prop_idx + TAB_BAR_ITEM_BINDING),
close_p ? Qt : Qnil));
Fadd_text_properties (make_fixnum (0), make_fixnum (SCHARS (caption)),
props, caption);
return Fcons (Qtab_bar, Fcons (caption, make_fixnum (0)));
}
/* Possibly highlight a tab-bar item on frame F when mouse moves to
tab-bar window-relative coordinates X/Y. Called from
note_mouse_highlight. */
static void
note_tab_bar_highlight (struct frame *f, int x, int y)
{
Lisp_Object window = f->tab_bar_window;
struct window *w = XWINDOW (window);
Mouse_HLInfo *hlinfo = MOUSE_HL_INFO (f);
int hpos, vpos;
struct glyph *glyph;
struct glyph_row *row;
int i;
Lisp_Object enabled_p;
int prop_idx;
bool close_p;
enum draw_glyphs_face draw = DRAW_IMAGE_RAISED;
int rc;
/* Function note_mouse_highlight is called with negative X/Y
values when mouse moves outside of the frame. */
if (x <= 0 || y <= 0)
{
clear_mouse_face (hlinfo);
return;
}
rc = get_tab_bar_item (f, x, y, &glyph, &hpos, &vpos, &prop_idx, &close_p);
if (rc < 0)
{
/* Not on tab-bar item. */
clear_mouse_face (hlinfo);
return;
}
else if (rc == 0)
/* On same tab-bar item as before. */
goto set_help_echo;
clear_mouse_face (hlinfo);
bool mouse_down_p = false;
/* Mouse is down, but on different tab-bar item? Or alternatively,
the mouse might've been pressed somewhere we don't know about,
and then have moved onto the tab bar. In this case,
last_tab_bar_item is -1, so we DTRT and behave like other
programs by displaying the item as sunken. */
Display_Info *dpyinfo = FRAME_DISPLAY_INFO (f);
mouse_down_p = (gui_mouse_grabbed (dpyinfo)
&& f == dpyinfo->last_mouse_frame);
if (mouse_down_p && f->last_tab_bar_item != prop_idx
&& f->last_tab_bar_item != -1)
return;
draw = mouse_down_p ? DRAW_IMAGE_SUNKEN : DRAW_IMAGE_RAISED;
/* If tab-bar item is not enabled, don't highlight it. */
enabled_p = AREF (f->tab_bar_items, prop_idx + TAB_BAR_ITEM_ENABLED_P);
if (!NILP (enabled_p) && !NILP (Vmouse_highlight))
{
/* Compute the x-position of the glyph. In front and past the
image is a space. We include this in the highlighted area. */
row = MATRIX_ROW (w->current_matrix, vpos);
for (i = x = 0; i < hpos; ++i)
x += row->glyphs[TEXT_AREA][i].pixel_width;
/* Record this as the current active region. */
hlinfo->mouse_face_beg_col = hpos;
hlinfo->mouse_face_beg_row = vpos;
hlinfo->mouse_face_beg_x = x;
hlinfo->mouse_face_past_end = false;
hlinfo->mouse_face_end_col = hpos + 1;
hlinfo->mouse_face_end_row = vpos;
hlinfo->mouse_face_end_x = x + glyph->pixel_width;
hlinfo->mouse_face_window = window;
hlinfo->mouse_face_face_id = TAB_BAR_FACE_ID;
/* Display it as active. */
show_mouse_face (hlinfo, draw);
}
set_help_echo:
/* Set help_echo_string to a help string to display for this tab-bar item.
XTread_socket does the rest. */
help_echo_object = help_echo_window = Qnil;
help_echo_pos = -1;
help_echo_string = AREF (f->tab_bar_items, prop_idx + TAB_BAR_ITEM_HELP);
}
#endif /* HAVE_WINDOW_SYSTEM */
/* Find the tab-bar item at X coordinate and return its information. */
static Lisp_Object
tty_get_tab_bar_item (struct frame *f, int x, int *prop_idx, bool *close_p)
{
ptrdiff_t clen = 0;
for (int i = 0; i < f->n_tab_bar_items; i++)
{
Lisp_Object caption = AREF (f->tab_bar_items, (i * TAB_BAR_ITEM_NSLOTS
+ TAB_BAR_ITEM_CAPTION));
if (NILP (caption))
return Qnil;
clen += SCHARS (caption);
if (x < clen)
{
*prop_idx = i;
*close_p = !NILP (Fget_text_property (make_fixnum (SCHARS (caption)
- (clen - x)),
Qclose_tab,
caption));
return caption;
}
}
return Qnil;
}
/* Handle a mouse click at X/Y on the tab bar of TTY frame F. If the
click was on the tab bar and was handled, populate the EVENT
structure, store it in keyboard queue, and return true; otherwise
return false. MODIFIERS are event modifiers for generating the tab
release event. */
Lisp_Object
tty_handle_tab_bar_click (struct frame *f, int x, int y, bool down_p,
struct input_event *event)
{
/* Did they click on the tab bar? */
if (y < FRAME_MENU_BAR_LINES (f)
|| y >= FRAME_MENU_BAR_LINES (f) + FRAME_TAB_BAR_LINES (f))
return Qnil;
/* Find the tab-bar item where the X,Y coordinates belong. */
int prop_idx;
bool close_p;
Lisp_Object caption = tty_get_tab_bar_item (f, x, &prop_idx, &close_p);
if (NILP (caption))
return Qnil;
if (NILP (AREF (f->tab_bar_items,
prop_idx * TAB_BAR_ITEM_NSLOTS + TAB_BAR_ITEM_ENABLED_P)))
return Qnil;
if (down_p)
f->last_tab_bar_item = prop_idx;
else
f->last_tab_bar_item = -1;
caption = Fcopy_sequence (caption);
AUTO_LIST2 (props, Qmenu_item,
list3 (AREF (f->tab_bar_items, prop_idx * TAB_BAR_ITEM_NSLOTS
+ TAB_BAR_ITEM_KEY),
AREF (f->tab_bar_items, prop_idx * TAB_BAR_ITEM_NSLOTS
+ TAB_BAR_ITEM_BINDING),
close_p ? Qt : Qnil));
Fadd_text_properties (make_fixnum (0), make_fixnum (SCHARS (caption)),
props, caption);
return Fcons (Qtab_bar, Fcons (caption, make_fixnum (0)));
}
/***********************************************************************
Tool-bars
***********************************************************************/
#ifdef HAVE_WINDOW_SYSTEM
/* Update the tool-bar item list for frame F. This has to be done
before we start to fill in any display lines. Called from
prepare_menu_bars. If SAVE_MATCH_DATA, we must save
and restore it here. */
static void
update_tool_bar (struct frame *f, bool save_match_data)
{
#ifdef HAVE_EXT_TOOL_BAR
bool do_update = FRAME_EXTERNAL_TOOL_BAR (f);
#else
bool do_update = (WINDOWP (f->tool_bar_window)
&& WINDOW_TOTAL_LINES (XWINDOW (f->tool_bar_window)) > 0);
#endif
if (do_update)
{
Lisp_Object window;
struct window *w;
window = FRAME_SELECTED_WINDOW (f);
w = XWINDOW (window);
/* If the user has switched buffers or windows, we need to
recompute to reflect the new bindings. But we'll
recompute when update_mode_lines is set too; that means
that people can use force-mode-line-update to request
that the menu bar be recomputed. The adverse effect on
the rest of the redisplay algorithm is about the same as
windows_or_buffers_changed anyway. */
if (windows_or_buffers_changed
|| w->update_mode_line
|| update_mode_lines
|| window_buffer_changed (w))
{
struct buffer *prev = current_buffer;
specpdl_ref count = SPECPDL_INDEX ();
Lisp_Object frame, new_tool_bar;
int new_n_tool_bar;
/* Set current_buffer to the buffer of the selected
window of the frame, so that we get the right local
keymaps. */
set_buffer_internal_1 (XBUFFER (w->contents));
/* Save match data, if we must. */
if (save_match_data)
record_unwind_save_match_data ();
/* Make sure that we don't accidentally use bogus keymaps. */
if (NILP (Voverriding_local_map_menu_flag))
{
specbind (Qoverriding_terminal_local_map, Qnil);
specbind (Qoverriding_local_map, Qnil);
}
/* We must temporarily set the selected frame to this frame
before calling tool_bar_items, because the calculation of
the tool-bar keymap uses the selected frame (see
`tool-bar-make-keymap' in tool-bar.el). */
eassert (EQ (selected_window,
/* Since we only explicitly preserve selected_frame,
check that selected_window would be redundant. */
XFRAME (selected_frame)->selected_window));
record_unwind_protect (restore_selected_window, selected_window);
XSETFRAME (frame, f);
selected_frame = frame;
selected_window = FRAME_SELECTED_WINDOW (f);
/* Build desired tool-bar items from keymaps. */
new_tool_bar
= tool_bar_items (Fcopy_sequence (f->tool_bar_items),
&new_n_tool_bar);
/* Redisplay the tool-bar if we changed it. */
if (new_n_tool_bar != f->n_tool_bar_items
|| NILP (Fequal (new_tool_bar, f->tool_bar_items)))
{
/* Redisplay that happens asynchronously due to an expose event
may access f->tool_bar_items. Make sure we update both
variables within BLOCK_INPUT so no such event interrupts. */
block_input ();
fset_tool_bar_items (f, new_tool_bar);
f->n_tool_bar_items = new_n_tool_bar;
w->update_mode_line = true;
unblock_input ();
}
unbind_to (count, Qnil);
set_buffer_internal_1 (prev);
}
}
}
#ifndef HAVE_EXT_TOOL_BAR
/* Set F->desired_tool_bar_string to a Lisp string representing frame
F's desired tool-bar contents. F->tool_bar_items must have
been set up previously by calling prepare_menu_bars.
Also set F->tool_bar_wraps_p to whether or not the tool bar
contains explicit line breaking items. */
static void
build_desired_tool_bar_string (struct frame *f)
{
int i, size, size_needed;
Lisp_Object image, plist;
image = plist = Qnil;
/* Prepare F->desired_tool_bar_string. If we can reuse it, do so.
Otherwise, make a new string. */
/* The size of the string we might be able to reuse. */
size = (STRINGP (f->desired_tool_bar_string)
? SCHARS (f->desired_tool_bar_string)
: 0);
/* We need one space in the string for each image. */
size_needed = f->n_tool_bar_items;
/* Reuse f->desired_tool_bar_string, if possible. */
if (size < size_needed || NILP (f->desired_tool_bar_string))
/* Don't initialize the contents of this string yet, as they will
be set within the loop below. */
fset_desired_tool_bar_string (f, make_uninit_string (size_needed));
else
{
AUTO_LIST4 (props, Qdisplay, Qnil, Qmenu_item, Qnil);
Fremove_text_properties (make_fixnum (0), make_fixnum (size),
props, f->desired_tool_bar_string);
}
f->tool_bar_wraps_p = false;
/* Put a `display' property on the string for the images to display,
put a `menu_item' property on tool-bar items with a value that
is the index of the item in F's tool-bar item vector. */
for (i = 0; i < f->n_tool_bar_items; ++i)
{
#define PROP(IDX) \
AREF (f->tool_bar_items, i * TOOL_BAR_ITEM_NSLOTS + (IDX))
bool enabled_p = !NILP (PROP (TOOL_BAR_ITEM_ENABLED_P));
bool selected_p = !NILP (PROP (TOOL_BAR_ITEM_SELECTED_P));
int hmargin, vmargin, relief, idx, end;
if (!NILP (PROP (TOOL_BAR_ITEM_WRAP)))
{
/* This is a line wrap. Instead of building a tool bar
item, display a new line character instead. */
SSET (f->desired_tool_bar_string, i, '\n');
/* Set F->tool_bar_wraps_p. This tells redisplay_tool_bar
to allow individual rows to be different heights. */
f->tool_bar_wraps_p = true;
continue;
}
/* Replace this with a space character. */
SSET (f->desired_tool_bar_string, i, ' ');
/* If image is a vector, choose the image according to the
button state. */
image = PROP (TOOL_BAR_ITEM_IMAGES);
if (VECTORP (image))
{
if (enabled_p)
idx = (selected_p
? TOOL_BAR_IMAGE_ENABLED_SELECTED
: TOOL_BAR_IMAGE_ENABLED_DESELECTED);
else
idx = (selected_p
? TOOL_BAR_IMAGE_DISABLED_SELECTED
: TOOL_BAR_IMAGE_DISABLED_DESELECTED);
eassert (ASIZE (image) >= idx);
image = AREF (image, idx);
}
else
idx = -1;
/* Ignore invalid image specifications. */
if (!valid_image_p (image))
continue;
/* Display the tool-bar button pressed, or depressed. */
plist = Fcopy_sequence (XCDR (image));
/* Compute margin and relief to draw. */
relief = (tool_bar_button_relief >= 0
? min (tool_bar_button_relief,
min (INT_MAX, MOST_POSITIVE_FIXNUM))
: DEFAULT_TOOL_BAR_BUTTON_RELIEF);
hmargin = vmargin = relief;
if (RANGED_FIXNUMP (1, Vtool_bar_button_margin,
INT_MAX - max (hmargin, vmargin)))
{
hmargin += XFIXNAT (Vtool_bar_button_margin);
vmargin += XFIXNAT (Vtool_bar_button_margin);
}
else if (CONSP (Vtool_bar_button_margin))
{
if (RANGED_FIXNUMP (1, XCAR (Vtool_bar_button_margin),
INT_MAX - hmargin))
hmargin += XFIXNAT (XCAR (Vtool_bar_button_margin));
if (RANGED_FIXNUMP (1, XCDR (Vtool_bar_button_margin),
INT_MAX - vmargin))
vmargin += XFIXNAT (XCDR (Vtool_bar_button_margin));
}
if (auto_raise_tool_bar_buttons_p)
{
/* Add a `:relief' property to the image spec if the item is
selected. */
if (selected_p)
{
plist = plist_put (plist, QCrelief, make_fixnum (-relief));
hmargin -= relief;
vmargin -= relief;
}
}
else
{
/* If image is selected, display it pressed, i.e. with a
negative relief. If it's not selected, display it with a
raised relief. */
plist = plist_put (plist, QCrelief,
(selected_p
? make_fixnum (-relief)
: make_fixnum (relief)));
hmargin -= relief;
vmargin -= relief;
}
/* Put a margin around the image. */
if (hmargin || vmargin)
{
if (hmargin == vmargin)
plist = plist_put (plist, QCmargin, make_fixnum (hmargin));
else
plist = plist_put (plist, QCmargin,
Fcons (make_fixnum (hmargin),
make_fixnum (vmargin)));
}
/* If button is not enabled, and we don't have special images
for the disabled state, make the image appear disabled by
applying an appropriate algorithm to it. */
if (!enabled_p && idx < 0)
plist = plist_put (plist, QCconversion, Qdisabled);
/* Put a `display' text property on the string for the image to
display. Put a `menu-item' property on the string that gives
the start of this item's properties in the tool-bar items
vector. */
image = Fcons (Qimage, plist);
AUTO_LIST4 (props, Qdisplay, image, Qmenu_item,
make_fixnum (i * TOOL_BAR_ITEM_NSLOTS));
/* Let the last image hide all remaining spaces in the tool bar
string. The string can be longer than needed when we reuse a
previous string. */
if (i + 1 == f->n_tool_bar_items)
end = SCHARS (f->desired_tool_bar_string);
else
end = i + 1;
Fadd_text_properties (make_fixnum (i), make_fixnum (end),
props, f->desired_tool_bar_string);
#undef PROP
}
/* Now replace each character between i and the end of the tool bar
string with spaces, to prevent stray newlines from accumulating
when the number of tool bar items decreases. `size' is 0 if the
tool bar string is new, but in that case the string will have
been completely initialized anyway. */
for (; i < size; ++i)
/* Replace this with a space character. */
SSET (f->desired_tool_bar_string, i, ' ');
}
/* Display one line of the tool-bar of frame IT->f.
HEIGHT specifies the desired height of the tool-bar line.
If the actual height of the glyph row is less than HEIGHT, the
row's height is increased to HEIGHT, and the icons are centered
vertically in the new height.
If HEIGHT is -1, we are counting needed tool-bar lines, so don't
count a final empty row in case the tool-bar width exactly matches
the window width.
HEIGHT may also be -1 if there is an explicit line wrapping item
inside the tool bar; in that case, allow individual rows of the
tool bar to differ in height. */
static void
display_tool_bar_line (struct it *it, int height)
{
struct glyph_row *row = it->glyph_row;
int max_x = it->last_visible_x;
struct glyph *last;
/* Don't extend on a previously drawn tool bar items (Bug#16058). */
clear_glyph_row (row);
row->enabled_p = true;
row->y = it->current_y;
/* Note that this isn't made use of if the face hasn't a box,
so there's no need to check the face here. */
it->start_of_box_run_p = true;
while (it->current_x < max_x)
{
int x, n_glyphs_before, i, nglyphs;
struct it it_before;
/* Get the next display element. */
if (!get_next_display_element (it))
{
/* Don't count empty row if we are counting needed tool-bar lines. */
if (height < 0 && !it->hpos)
return;
break;
}
/* Produce glyphs. */
n_glyphs_before = row->used[TEXT_AREA];
it_before = *it;
PRODUCE_GLYPHS (it);
nglyphs = row->used[TEXT_AREA] - n_glyphs_before;
i = 0;
x = it_before.current_x;
while (i < nglyphs)
{
struct glyph *glyph = row->glyphs[TEXT_AREA] + n_glyphs_before + i;
if (x + glyph->pixel_width > max_x)
{
/* Glyph doesn't fit on line. Backtrack. */
row->used[TEXT_AREA] = n_glyphs_before;
*it = it_before;
/* If this is the only glyph on this line, it will never fit on the
tool-bar, so skip it. But ensure there is at least one glyph,
so we don't accidentally disable the tool-bar. */
if (n_glyphs_before == 0
&& (it->vpos > 0 || IT_STRING_CHARPOS (*it) < it->end_charpos-1))
break;
goto out;
}
++it->hpos;
x += glyph->pixel_width;
++i;
}
/* Stop at the end of the iterator, and move to the next line
upon a '\n' appearing in the tool bar string. Tool bar
strings may contain multiple new line characters when
explicit wrap items are encountered. */
if (ITERATOR_AT_END_OF_LINE_P (it))
{
reseat_at_next_visible_line_start (it, false);
break;
}
if (ITERATOR_AT_END_P (it))
break;
set_iterator_to_next (it, true);
}
out:;
row->displays_text_p = row->used[TEXT_AREA] != 0;
/* Use default face for the border below the tool bar.
FIXME: When auto-resize-tool-bars is grow-only, there is
no additional border below the possibly empty tool-bar lines.
So to make the extra empty lines look "normal", we have to
use the tool-bar face for the border too. */
if (!MATRIX_ROW_DISPLAYS_TEXT_P (row)
&& !EQ (Vauto_resize_tool_bars, Qgrow_only))
it->face_id = DEFAULT_FACE_ID;
extend_face_to_end_of_line (it);
last = row->glyphs[TEXT_AREA] + row->used[TEXT_AREA] - 1;
last->right_box_line_p = true;
if (last == row->glyphs[TEXT_AREA])
last->left_box_line_p = true;
/* Make line the desired height and center it vertically. */
if (height != -1
&& (height -= it->max_ascent + it->max_descent) > 0)
{
/* Don't add more than one line height. */
height %= FRAME_LINE_HEIGHT (it->f);
it->max_ascent += height / 2;
it->max_descent += (height + 1) / 2;
}
compute_line_metrics (it);
/* If line is empty, make it occupy the rest of the tool-bar. */
if (!MATRIX_ROW_DISPLAYS_TEXT_P (row))
{
row->height = row->phys_height = it->last_visible_y - row->y;
row->visible_height = row->height;
row->ascent = row->phys_ascent = 0;
row->extra_line_spacing = 0;
}
row->full_width_p = true;
row->continued_p = false;
row->truncated_on_left_p = false;
row->truncated_on_right_p = false;
it->current_x = it->hpos = it->wrap_prefix_width = 0;
it->current_y += row->height;
++it->vpos;
++it->glyph_row;
}
/* Value is the number of pixels needed to make all tool-bar items of
frame F visible. The actual number of glyph rows needed is
returned in *N_ROWS if non-NULL. */
static int
tool_bar_height (struct frame *f, int *n_rows, bool pixelwise)
{
struct window *w = XWINDOW (f->tool_bar_window);
struct it it;
/* tool_bar_height is called from redisplay_tool_bar after building
the desired matrix, so use (unused) mode-line row as temporary row to
avoid destroying the first tool-bar row. */
struct glyph_row *temp_row = MATRIX_MODE_LINE_ROW (w->desired_matrix);
/* Initialize an iterator for iteration over
F->desired_tool_bar_string in the tool-bar window of frame F. */
init_iterator (&it, w, -1, -1, temp_row, TOOL_BAR_FACE_ID);
temp_row->reversed_p = false;
it.first_visible_x = 0;
it.last_visible_x = WINDOW_PIXEL_WIDTH (w);
reseat_to_string (&it, NULL, f->desired_tool_bar_string,
0, 0, 0, STRING_MULTIBYTE (f->desired_tool_bar_string));
it.paragraph_embedding = L2R;
while (!ITERATOR_AT_END_P (&it))
{
clear_glyph_row (temp_row);
it.glyph_row = temp_row;
display_tool_bar_line (&it, -1);
}
clear_glyph_row (temp_row);
/* f->n_tool_bar_rows == 0 means "unknown"; -1 means no tool-bar. */
if (n_rows)
*n_rows = it.vpos > 0 ? it.vpos : -1;
if (pixelwise)
return it.current_y;
else
return (it.current_y + FRAME_LINE_HEIGHT (f) - 1) / FRAME_LINE_HEIGHT (f);
}
#endif /* ! (HAVE_EXT_TOOL_BAR) */
DEFUN ("tool-bar-height", Ftool_bar_height, Stool_bar_height,
0, 2, 0,
doc: /* Return the number of lines occupied by the tool bar of FRAME.
If FRAME is nil or omitted, use the selected frame. Optional argument
PIXELWISE non-nil means return the height of the tool bar in pixels. */)
(Lisp_Object frame, Lisp_Object pixelwise)
{
int height = 0;
#ifndef HAVE_EXT_TOOL_BAR
struct frame *f = decode_any_frame (frame);
if (WINDOWP (f->tool_bar_window)
&& WINDOW_PIXEL_HEIGHT (XWINDOW (f->tool_bar_window)) > 0)
{
update_tool_bar (f, true);
if (f->n_tool_bar_items)
{
build_desired_tool_bar_string (f);
height = tool_bar_height (f, NULL, !NILP (pixelwise));
}
}
#endif
return make_fixnum (height);
}
#ifndef HAVE_EXT_TOOL_BAR
/* Display the internal tool-bar of frame F. Value is true if
tool-bar's height should be changed. */
static bool
redisplay_tool_bar (struct frame *f)
{
struct window *w;
struct it it;
struct glyph_row *row;
bool change_height_p;
change_height_p = false;
f->tool_bar_redisplayed = true;
/* If frame hasn't a tool-bar window or if it is zero-height, don't
do anything. This means you must start with tool-bar-lines
non-zero to get the auto-sizing effect. Or in other words, you
can turn off tool-bars by specifying tool-bar-lines zero. */
if (!WINDOWP (f->tool_bar_window)
|| (w = XWINDOW (f->tool_bar_window),
WINDOW_TOTAL_LINES (w) == 0))
{
/* Even if we do not display a tool bar initially, still pretend
that we have resized it already. This avoids that a later
activation of the tool bar resizes the frame, despite of the
fact that a setting of 'frame-inhibit-implied-resize' should
inhibit it (Bug#52986). */
f->tool_bar_resized = true;
return false;
}
/* Set up an iterator for the tool-bar window. */
init_iterator (&it, w, -1, -1, w->desired_matrix->rows, TOOL_BAR_FACE_ID);
it.first_visible_x = 0;
it.last_visible_x = WINDOW_PIXEL_WIDTH (w);
row = it.glyph_row;
row->reversed_p = false;
/* Build a string that represents the contents of the tool-bar. */
build_desired_tool_bar_string (f);
reseat_to_string (&it, NULL, f->desired_tool_bar_string,
0, 0, 0, STRING_MULTIBYTE (f->desired_tool_bar_string));
/* FIXME: This should be controlled by a user option. But it
doesn't make sense to have an R2L tool bar if the menu bar cannot
be drawn also R2L, and making the menu bar R2L is tricky due to
toolkit-specific code that implements it. If an R2L tool bar is
ever supported, display_tool_bar_line should also be augmented to
call unproduce_glyphs like display_line and display_string
do. */
it.paragraph_embedding = L2R;
if (f->n_tool_bar_rows == 0)
{
int new_height = tool_bar_height (f, &f->n_tool_bar_rows, true);
if (new_height != WINDOW_PIXEL_HEIGHT (w))
{
if (FRAME_TERMINAL (f)->change_tool_bar_height_hook)
FRAME_TERMINAL (f)->change_tool_bar_height_hook (f, new_height);
frame_default_tool_bar_height = new_height;
/* Always do that now. */
clear_glyph_matrix (w->desired_matrix);
f->fonts_changed = true;
/* Kludge (this applies to the X Windows version as well as
Android): when the tool bar size changes,
adjust_window_size (presumably called by
change_tool_bar_height_hook) does not call through to
resize_frame_windows. Pending further investigation,
just call it here as well. */
resize_frame_windows (f, FRAME_INNER_HEIGHT (f), false);
return true;
}
}
/* Display as many lines as needed to display all tool-bar items. */
if (f->n_tool_bar_rows > 0)
{
int border, rows, height, extra;
if (TYPE_RANGED_FIXNUMP (int, Vtool_bar_border))
border = XFIXNUM (Vtool_bar_border);
else if (EQ (Vtool_bar_border, Qinternal_border_width))
border = FRAME_INTERNAL_BORDER_WIDTH (f);
else if (EQ (Vtool_bar_border, Qborder_width))
border = f->border_width;
else
border = 0;
if (border < 0)
border = 0;
rows = f->n_tool_bar_rows;
if (f->tool_bar_wraps_p)
{
/* If the tool bar contains explicit line wrapping items,
don't force each row to have a fixed height. */
while (!ITERATOR_AT_END_P (&it))
display_tool_bar_line (&it, -1);
/* Because changes to individual tool bar items may now
change the height of the tool bar, adjust the height of
the tool bar window if it is different from the tool bar
height in any way. */
if (it.current_y != it.last_visible_y)
change_height_p = true;
}
else
{
height = max (1, (it.last_visible_y - border) / rows);
extra = it.last_visible_y - border - height * rows;
while (it.current_y < it.last_visible_y)
{
int h = 0;
if (extra > 0 && rows-- > 0)
{
h = (extra + rows - 1) / rows;
extra -= h;
}
display_tool_bar_line (&it, height + h);
}
}
}
else
{
while (it.current_y < it.last_visible_y)
display_tool_bar_line (&it, 0);
}
/* It doesn't make much sense to try scrolling in the tool-bar
window, so don't do it. */
w->desired_matrix->no_scrolling_p = true;
w->must_be_updated_p = true;
if (!NILP (Vauto_resize_tool_bars))
{
/* If we couldn't display everything, change the tool-bar's
height if there is room for more. */
if (IT_STRING_CHARPOS (it) < it.end_charpos)
change_height_p = true;
/* We subtract 1 because display_tool_bar_line advances the
glyph_row pointer before returning to its caller. We want to
examine the last glyph row produced by
display_tool_bar_line. */
row = it.glyph_row - 1;
/* If there are blank lines at the end, except for a partially
visible blank line at the end that is smaller than
FRAME_LINE_HEIGHT, change the tool-bar's height. */
if (!MATRIX_ROW_DISPLAYS_TEXT_P (row)
&& row->height >= FRAME_LINE_HEIGHT (f))
change_height_p = true;
/* If row displays tool-bar items, but is partially visible,
change the tool-bar's height. */
if (MATRIX_ROW_DISPLAYS_TEXT_P (row)
&& MATRIX_ROW_BOTTOM_Y (row) > it.last_visible_y)
change_height_p = true;
/* Resize windows as needed by changing the `tool-bar-lines'
frame parameter. */
if (change_height_p)
{
int nrows;
int new_height = tool_bar_height (f, &nrows, true);
change_height_p = ((EQ (Vauto_resize_tool_bars, Qgrow_only)
&& !f->minimize_tool_bar_window_p)
? (new_height > WINDOW_PIXEL_HEIGHT (w))
: (new_height != WINDOW_PIXEL_HEIGHT (w)));
f->minimize_tool_bar_window_p = false;
if (change_height_p)
{
if (FRAME_TERMINAL (f)->change_tool_bar_height_hook)
FRAME_TERMINAL (f)->change_tool_bar_height_hook (f, new_height);
frame_default_tool_bar_height = new_height;
clear_glyph_matrix (w->desired_matrix);
f->n_tool_bar_rows = nrows;
f->fonts_changed = true;
return true;
}
}
}
f->minimize_tool_bar_window_p = false;
return false;
}
/* Get information about the tool-bar item which is displayed in GLYPH
on frame F. Return in *PROP_IDX the index where tool-bar item
properties start in F->tool_bar_items. Value is false if
GLYPH doesn't display a tool-bar item. */
static bool
tool_bar_item_info (struct frame *f, struct glyph *glyph, int *prop_idx)
{
Lisp_Object prop;
ptrdiff_t charpos;
/* This function can be called asynchronously, which means we must
exclude any possibility that Fget_text_property signals an
error. */
charpos = min (SCHARS (f->current_tool_bar_string), glyph->charpos);
charpos = max (0, charpos);
/* Get the text property `menu-item' at pos. The value of that
property is the start index of this item's properties in
F->tool_bar_items. */
prop = Fget_text_property (make_fixnum (charpos),
Qmenu_item, f->current_tool_bar_string);
if (! FIXNUMP (prop))
return false;
*prop_idx = XFIXNUM (prop);
return true;
}
/* Get information about the tool-bar item at position X/Y on frame F.
Return in *GLYPH a pointer to the glyph of the tool-bar item in
the current matrix of the tool-bar window of F, or NULL if not
on a tool-bar item. Return in *PROP_IDX the index of the tool-bar
item in F->tool_bar_items. Value is
-1 if X/Y is not on a tool-bar item
0 if X/Y is on the same item that was highlighted before.
1 otherwise. */
static int
get_tool_bar_item (struct frame *f, int x, int y, struct glyph **glyph,
int *hpos, int *vpos, int *prop_idx)
{
Mouse_HLInfo *hlinfo = MOUSE_HL_INFO (f);
struct window *w = XWINDOW (f->tool_bar_window);
int area;
/* Find the glyph under X/Y. */
*glyph = x_y_to_hpos_vpos (w, x, y, hpos, vpos, 0, 0, &area);
if (*glyph == NULL)
return -1;
/* Get the start of this tool-bar item's properties in
f->tool_bar_items. */
if (!tool_bar_item_info (f, *glyph, prop_idx))
return -1;
/* Is mouse on the highlighted item? */
if (EQ (f->tool_bar_window, hlinfo->mouse_face_window)
&& *vpos >= hlinfo->mouse_face_beg_row
&& *vpos <= hlinfo->mouse_face_end_row
&& (*vpos > hlinfo->mouse_face_beg_row
|| *hpos >= hlinfo->mouse_face_beg_col)
&& (*vpos < hlinfo->mouse_face_end_row
|| *hpos < hlinfo->mouse_face_end_col
|| hlinfo->mouse_face_past_end))
return 0;
return 1;
}
/* EXPORT:
Handle mouse button event on the tool-bar of frame F, at
frame-relative coordinates X/Y. DOWN_P is true for a button press,
false for button release. MODIFIERS is event modifiers for button
release. DEVICE is the device the click came from, or Qt. */
void
handle_tool_bar_click_with_device (struct frame *f, int x, int y, bool down_p,
int modifiers, Lisp_Object device)
{
Mouse_HLInfo *hlinfo = MOUSE_HL_INFO (f);
struct window *w = XWINDOW (f->tool_bar_window);
int hpos, vpos, prop_idx;
struct glyph *glyph;
Lisp_Object enabled_p;
int ts;
/* If not on the highlighted tool-bar item, and mouse-highlight is
non-nil, return. This is so we generate the tool-bar button
click only when the mouse button is released on the same item as
where it was pressed. However, when mouse-highlight is disabled,
generate the click when the button is released regardless of the
highlight, since tool-bar items are not highlighted in that
case. */
frame_to_window_pixel_xy (w, &x, &y);
ts = get_tool_bar_item (f, x, y, &glyph, &hpos, &vpos, &prop_idx);
if (ts == -1
|| (ts != 0 && !NILP (Vmouse_highlight)))
return;
/* When mouse-highlight is off, generate the click for the item
where the button was pressed, disregarding where it was
released. */
if (NILP (Vmouse_highlight) && !down_p)
prop_idx = f->last_tool_bar_item;
/* If item is disabled, do nothing. */
enabled_p = AREF (f->tool_bar_items, prop_idx + TOOL_BAR_ITEM_ENABLED_P);
if (NILP (enabled_p))
return;
if (down_p)
{
/* Show item in pressed state. */
if (!NILP (Vmouse_highlight))
show_mouse_face (hlinfo, DRAW_IMAGE_SUNKEN);
f->last_tool_bar_item = prop_idx;
}
else
{
Lisp_Object key, frame;
struct input_event event;
EVENT_INIT (event);
/* Show item in released state. */
if (!NILP (Vmouse_highlight))
show_mouse_face (hlinfo, DRAW_IMAGE_RAISED);
key = AREF (f->tool_bar_items, prop_idx + TOOL_BAR_ITEM_KEY);
XSETFRAME (frame, f);
event.kind = TOOL_BAR_EVENT;
event.frame_or_window = frame;
event.arg = key;
event.modifiers = modifiers;
event.device = device;
kbd_buffer_store_event (&event);
f->last_tool_bar_item = -1;
}
}
void
handle_tool_bar_click (struct frame *f, int x, int y, bool down_p,
int modifiers)
{
handle_tool_bar_click_with_device (f, x, y, down_p, modifiers, Qt);
}
/* Possibly highlight a tool-bar item on frame F when mouse moves to
tool-bar window-relative coordinates X/Y. Called from
note_mouse_highlight. */
static void
note_tool_bar_highlight (struct frame *f, int x, int y)
{
Lisp_Object window = f->tool_bar_window;
struct window *w = XWINDOW (window);
Display_Info *dpyinfo = FRAME_DISPLAY_INFO (f);
Mouse_HLInfo *hlinfo = MOUSE_HL_INFO (f);
int hpos, vpos;
struct glyph *glyph;
struct glyph_row *row;
int i;
Lisp_Object enabled_p;
int prop_idx;
enum draw_glyphs_face draw = DRAW_IMAGE_RAISED;
bool mouse_down_p;
int rc;
/* Function note_mouse_highlight is called with negative X/Y
values when mouse moves outside of the frame. */
if (x <= 0 || y <= 0)
{
clear_mouse_face (hlinfo);
return;
}
rc = get_tool_bar_item (f, x, y, &glyph, &hpos, &vpos, &prop_idx);
if (rc < 0)
{
/* Not on tool-bar item. */
clear_mouse_face (hlinfo);
return;
}
else if (rc == 0)
/* On same tool-bar item as before. */
goto set_help_echo;
clear_mouse_face (hlinfo);
/* Mouse is down, but on different tool-bar item? */
mouse_down_p = (gui_mouse_grabbed (dpyinfo)
&& f == dpyinfo->last_mouse_frame);
if (mouse_down_p && f->last_tool_bar_item != prop_idx)
return;
draw = mouse_down_p ? DRAW_IMAGE_SUNKEN : DRAW_IMAGE_RAISED;
/* If tool-bar item is not enabled, don't highlight it. */
enabled_p = AREF (f->tool_bar_items, prop_idx + TOOL_BAR_ITEM_ENABLED_P);
if (!NILP (enabled_p) && !NILP (Vmouse_highlight))
{
/* Compute the x-position of the glyph. In front and past the
image is a space. We include this in the highlighted area. */
row = MATRIX_ROW (w->current_matrix, vpos);
for (i = x = 0; i < hpos; ++i)
x += row->glyphs[TEXT_AREA][i].pixel_width;
/* Record this as the current active region. */
hlinfo->mouse_face_beg_col = hpos;
hlinfo->mouse_face_beg_row = vpos;
hlinfo->mouse_face_beg_x = x;
hlinfo->mouse_face_past_end = false;
hlinfo->mouse_face_end_col = hpos + 1;
hlinfo->mouse_face_end_row = vpos;
hlinfo->mouse_face_end_x = x + glyph->pixel_width;
hlinfo->mouse_face_window = window;
hlinfo->mouse_face_face_id = TOOL_BAR_FACE_ID;
/* Display it as active. */
show_mouse_face (hlinfo, draw);
}
set_help_echo:
/* Set help_echo_string to a help string to display for this tool-bar item.
XTread_socket does the rest. */
help_echo_object = help_echo_window = Qnil;
help_echo_pos = -1;
help_echo_string = AREF (f->tool_bar_items, prop_idx + TOOL_BAR_ITEM_HELP);
if (NILP (help_echo_string))
help_echo_string = AREF (f->tool_bar_items, prop_idx + TOOL_BAR_ITEM_CAPTION);
}
#endif /* ! (HAVE_EXT_TOOL_BAR) */
#endif /* HAVE_WINDOW_SYSTEM */
/************************************************************************
Horizontal scrolling
************************************************************************/
/* For all leaf windows in the window tree rooted at WINDOW, set their
hscroll value so that PT is (i) visible in the window, and (ii) so
that it is not within a certain margin at the window's left and
right border. Value is true if any window's hscroll has been
changed. */
static bool
hscroll_window_tree (Lisp_Object window)
{
bool hscrolled_p = false;
bool hscroll_relative_p = FLOATP (Vhscroll_step);
int hscroll_step_abs = 0;
double hscroll_step_rel = 0;
if (hscroll_relative_p)
{
hscroll_step_rel = XFLOAT_DATA (Vhscroll_step);
if (hscroll_step_rel < 0)
{
hscroll_relative_p = false;
hscroll_step_abs = 0;
}
}
else if (TYPE_RANGED_FIXNUMP (int, Vhscroll_step))
{
hscroll_step_abs = XFIXNUM (Vhscroll_step);
if (hscroll_step_abs < 0)
hscroll_step_abs = 0;
}
else
hscroll_step_abs = 0;
while (WINDOWP (window))
{
struct window *w = XWINDOW (window);
if (WINDOWP (w->contents))
hscrolled_p |= hscroll_window_tree (w->contents);
else if (w->cursor.vpos >= 0
/* Don't allow hscroll in mini-windows that display
echo-area messages. This is because desired_matrix
of such windows was prepared while momentarily
switched to an echo-area buffer, which is different
from w->contents, and we simply cannot hscroll such
windows safely. */
&& !(w == XWINDOW (echo_area_window)
&& !NILP (echo_area_buffer[0])))
{
int h_margin;
int text_area_width;
struct glyph_row *cursor_row;
struct glyph_row *bottom_row;
bottom_row = MATRIX_BOTTOM_TEXT_ROW (w->desired_matrix, w);
if (w->cursor.vpos < bottom_row - w->desired_matrix->rows)
cursor_row = MATRIX_ROW (w->desired_matrix, w->cursor.vpos);
else
cursor_row = bottom_row - 1;
if (!cursor_row->enabled_p)
{
bottom_row = MATRIX_BOTTOM_TEXT_ROW (w->current_matrix, w);
if (w->cursor.vpos < bottom_row - w->current_matrix->rows)
cursor_row = MATRIX_ROW (w->current_matrix, w->cursor.vpos);
else
cursor_row = bottom_row - 1;
}
bool row_r2l_p = cursor_row->reversed_p;
bool hscl = hscrolling_current_line_p (w);
int x_offset = 0;
/* When line numbers are displayed, we need to account for
the horizontal space they consume. */
if (!NILP (Vdisplay_line_numbers))
{
struct glyph *g;
if (!row_r2l_p)
{
for (g = cursor_row->glyphs[TEXT_AREA];
g < cursor_row->glyphs[TEXT_AREA]
+ cursor_row->used[TEXT_AREA];
g++)
{
if (!(NILP (g->object) && g->charpos < 0))
break;
x_offset += g->pixel_width;
}
}
else
{
for (g = cursor_row->glyphs[TEXT_AREA]
+ cursor_row->used[TEXT_AREA];
g > cursor_row->glyphs[TEXT_AREA];
g--)
{
if (!(NILP ((g - 1)->object) && (g - 1)->charpos < 0))
break;
x_offset += (g - 1)->pixel_width;
}
}
}
if (cursor_row->truncated_on_left_p)
{
/* On TTY frames, don't count the left truncation glyph. */
struct frame *f = XFRAME (WINDOW_FRAME (w));
x_offset -= (FRAME_TERMCAP_P (f) || FRAME_MSDOS_P (f));
}
text_area_width = window_box_width (w, TEXT_AREA);
/* Scroll when cursor is inside this scroll margin. */
h_margin = (clip_to_bounds (0, hscroll_margin, 1000000)
* WINDOW_FRAME_COLUMN_WIDTH (w));
/* If the position of this window's point has explicitly
changed, no more suspend auto hscrolling. */
if (w->suspend_auto_hscroll
&& NILP (Fequal (Fwindow_point (window),
Fwindow_old_point (window))))
{
w->suspend_auto_hscroll = false;
/* When hscrolling just the current line, and the rest
of lines were temporarily hscrolled, but no longer
are, force thorough redisplay of this window, to show
the effect of disabling hscroll suspension immediately. */
if (w->min_hscroll == 0 && w->hscroll > 0
&& EQ (Fbuffer_local_value (Qauto_hscroll_mode, w->contents),
Qcurrent_line))
SET_FRAME_GARBAGED (XFRAME (w->frame));
}
/* Remember window point. */
Fset_marker (w->old_pointm,
((w == XWINDOW (selected_window))
? make_fixnum (BUF_PT (XBUFFER (w->contents)))
: Fmarker_position (w->pointm)),
w->contents);
if (!NILP (Fbuffer_local_value (Qauto_hscroll_mode, w->contents))
&& !w->suspend_auto_hscroll
/* In some pathological cases, like restoring a window
configuration into a frame that is much smaller than
the one from which the configuration was saved, we
get glyph rows whose start and end have zero buffer
positions, which we cannot handle below. Just skip
such windows. */
&& (CHARPOS (cursor_row->start.pos)
>= BUF_BEG (XBUFFER (w->contents)))
/* For left-to-right rows, hscroll when cursor is either
(i) inside the right hscroll margin, or (ii) if it is
inside the left margin and the window is already
hscrolled. */
&& ((!row_r2l_p
&& ((w->hscroll && w->cursor.x <= h_margin + x_offset)
|| (cursor_row->enabled_p
&& cursor_row->truncated_on_right_p
&& (w->cursor.x >= text_area_width - h_margin))))
/* For right-to-left rows, the logic is similar,
except that rules for scrolling to left and right
are reversed. E.g., if cursor.x <= h_margin, we
need to hscroll "to the right" unconditionally,
and that will scroll the screen to the left so as
to reveal the next portion of the row. */
|| (row_r2l_p
&& ((cursor_row->enabled_p
/* FIXME: It is confusing to set the
truncated_on_right_p flag when R2L rows
are actually truncated on the left. */
&& cursor_row->truncated_on_right_p
&& w->cursor.x <= h_margin)
|| (w->hscroll
&& (w->cursor.x >= (text_area_width - h_margin
- x_offset)))))
/* This last condition is needed when moving
vertically from an hscrolled line to a short line
that doesn't need to be hscrolled. If we omit
this condition, the line from which we move will
remain hscrolled. */
|| (hscl
&& w->hscroll != w->min_hscroll
&& !cursor_row->truncated_on_left_p)))
{
struct it it;
ptrdiff_t hscroll;
struct buffer *saved_current_buffer;
ptrdiff_t pt;
int wanted_x;
/* Find point in a display of infinite width. */
saved_current_buffer = current_buffer;
current_buffer = XBUFFER (w->contents);
if (w == XWINDOW (selected_window))
pt = PT;
else
pt = clip_to_bounds (BEGV, marker_position (w->pointm), ZV);
/* Move iterator to pt starting at cursor_row->start in
a line with infinite width. */
init_to_row_start (&it, w, cursor_row);
if (hscl)
it.first_visible_x = window_hscroll_limited (w, it.f)
* FRAME_COLUMN_WIDTH (it.f);
it.last_visible_x = DISP_INFINITY;
ptrdiff_t nchars = pt - IT_CHARPOS (it);
if (current_buffer->long_line_optimizations_p
&& nchars > large_hscroll_threshold)
{
/* Special optimization for very long and truncated
lines which need to be hscrolled far to the left:
jump directly to the (approximate) first position
that is visible, instead of slowly walking there. */
fast_move_it_horizontally (&it, nchars);
it.current_x += nchars * FRAME_COLUMN_WIDTH (it.f);
}
else
move_it_in_display_line_to (&it, pt, -1, MOVE_TO_POS);
/* If the line ends in an overlay string with a newline,
we might infloop, because displaying the window will
want to put the cursor after the overlay, i.e. at X
coordinate of zero on the next screen line. So we
use the buffer position prior to the overlay string
instead. */
if (it.method == GET_FROM_STRING && pt > 1)
{
init_to_row_start (&it, w, cursor_row);
if (hscl)
it.first_visible_x = (window_hscroll_limited (w, it.f)
* FRAME_COLUMN_WIDTH (it.f));
if (current_buffer->long_line_optimizations_p
&& nchars > large_hscroll_threshold)
{
fast_move_it_horizontally (&it, nchars - 1);
it.current_x += (nchars - 1) * FRAME_COLUMN_WIDTH (it.f);
}
else
move_it_in_display_line_to (&it, pt - 1, -1, MOVE_TO_POS);
}
current_buffer = saved_current_buffer;
/* Position cursor in window. */
if (!hscroll_relative_p && hscroll_step_abs == 0)
hscroll = max (0, (it.current_x
- (ITERATOR_AT_END_OF_LINE_P (&it)
? (text_area_width - 4 * FRAME_COLUMN_WIDTH (it.f))
: (text_area_width / 2))))
/ FRAME_COLUMN_WIDTH (it.f);
else if ((!row_r2l_p
&& w->cursor.x >= text_area_width - h_margin)
|| (row_r2l_p && w->cursor.x <= h_margin))
{
if (hscroll_relative_p)
wanted_x = text_area_width * (1 - hscroll_step_rel)
- h_margin;
else
wanted_x = text_area_width
- hscroll_step_abs * FRAME_COLUMN_WIDTH (it.f)
- h_margin;
hscroll
= max (0, it.current_x - wanted_x) / FRAME_COLUMN_WIDTH (it.f);
}
else
{
if (hscroll_relative_p)
wanted_x =
text_area_width * hscroll_step_rel + h_margin + x_offset;
else
wanted_x =
hscroll_step_abs * FRAME_COLUMN_WIDTH (it.f)
+ h_margin + x_offset;
hscroll
= max (0, it.current_x - wanted_x) / FRAME_COLUMN_WIDTH (it.f);
}
hscroll = max (hscroll, w->min_hscroll);
/* Don't prevent redisplay optimizations if hscroll
hasn't changed, as it will unnecessarily slow down
redisplay. */
if (w->hscroll != hscroll
/* When hscrolling only the current line, we need to
report hscroll even if its value is equal to the
previous one, because the new line might need a
different value. */
|| (hscl && w->last_cursor_vpos != w->cursor.vpos))
{
struct buffer *b = XBUFFER (w->contents);
b->prevent_redisplay_optimizations_p = true;
w->hscroll = hscroll;
hscrolled_p = true;
}
}
}
window = w->next;
}
/* Value is true if hscroll of any leaf window has been changed. */
return hscrolled_p;
}
/* Set hscroll so that cursor is visible and not inside horizontal
scroll margins for all windows in the tree rooted at WINDOW. See
also hscroll_window_tree above. Value is true if any window's
hscroll has been changed. If it has, desired matrices on the frame
of WINDOW are cleared. */
static bool
hscroll_windows (Lisp_Object window)
{
bool hscrolled_p = hscroll_window_tree (window);
if (hscrolled_p)
clear_desired_matrices (XFRAME (WINDOW_FRAME (XWINDOW (window))));
return hscrolled_p;
}
/************************************************************************
Redisplay
************************************************************************/
/* Variables holding some state of redisplay if GLYPH_DEBUG is defined.
This is sometimes handy to have in a debugger session. */
#ifdef GLYPH_DEBUG
/* First and last unchanged row for try_window_id. */
static int debug_first_unchanged_at_end_vpos;
static int debug_last_unchanged_at_beg_vpos;
/* Delta vpos and y. */
static int debug_dvpos, debug_dy;
/* Delta in characters and bytes for try_window_id. */
static ptrdiff_t debug_delta, debug_delta_bytes;
/* Values of window_end_pos and window_end_vpos at the end of
try_window_id. */
static ptrdiff_t debug_end_vpos;
/* Append a string to W->desired_matrix->method. FMT is a printf
format string. If trace_redisplay_p is true also printf the
resulting string to stderr. */
static void debug_method_add (struct window *, char const *, ...)
ATTRIBUTE_FORMAT_PRINTF (2, 3);
static void
debug_method_add (struct window *w, char const *fmt, ...)
{
void *ptr = w;
char *method = w->desired_matrix->method;
int len = strlen (method);
int size = sizeof w->desired_matrix->method;
int remaining = size - len - 1;
va_list ap;
if (len && remaining)
{
method[len] = '|';
--remaining, ++len;
}
va_start (ap, fmt);
vsnprintf (method + len, remaining + 1, fmt, ap);
va_end (ap);
if (trace_redisplay_p)
fprintf (stderr, "%p (%s): %s\n",
ptr,
((BUFFERP (w->contents)
&& STRINGP (BVAR (XBUFFER (w->contents), name)))
? SSDATA (BVAR (XBUFFER (w->contents), name))
: "no buffer"),
method + len);
}
#endif /* GLYPH_DEBUG */
/* Value is true if all changes in window W, which displays
current_buffer, are in the text between START and END. START is a
buffer position, END is given as a distance from Z. Used in
redisplay_internal for display optimization. */
static bool
text_outside_line_unchanged_p (struct window *w,
ptrdiff_t start, ptrdiff_t end)
{
bool unchanged_p = true;
/* If text or overlays have changed, see where. */
if (window_outdated (w))
{
/* Gap in the line? */
if (GPT < start || Z - GPT < end)
unchanged_p = false;
/* Changes start in front of the line, or end after it? */
if (unchanged_p
&& (BEG_UNCHANGED < start - 1
|| END_UNCHANGED < end))
unchanged_p = false;
/* If selective display, can't optimize if changes start at the
beginning of the line. */
if (unchanged_p
&& FIXNUMP (BVAR (current_buffer, selective_display))
&& XFIXNUM (BVAR (current_buffer, selective_display)) > 0
&& (BEG_UNCHANGED < start || GPT <= start))
unchanged_p = false;
/* If there are overlays at the start or end of the line, these
may have overlay strings with newlines in them. A change at
START, for instance, may actually concern the display of such
overlay strings as well, and they are displayed on different
lines. So, quickly rule out this case. (For the future, it
might be desirable to implement something more telling than
just BEG/END_UNCHANGED.) */
if (unchanged_p)
{
if (BEG + BEG_UNCHANGED == start
&& overlay_touches_p (start))
unchanged_p = false;
if (END_UNCHANGED == end
&& overlay_touches_p (Z - end))
unchanged_p = false;
}
/* Under bidi reordering, adding or deleting a character in the
beginning of a paragraph, before the first strong directional
character, can change the base direction of the paragraph (unless
the buffer specifies a fixed paragraph direction), which will
require redisplaying the whole paragraph. It might be worthwhile
to find the paragraph limits and widen the range of redisplayed
lines to that, but for now just give up this optimization. */
if (!NILP (BVAR (XBUFFER (w->contents), bidi_display_reordering))
&& NILP (BVAR (XBUFFER (w->contents), bidi_paragraph_direction)))
unchanged_p = false;
}
return unchanged_p;
}
/* Do a frame update, taking possible shortcuts into account. This is
the main external entry point for redisplay.
If the last redisplay displayed an echo area message and that message
is no longer requested, we clear the echo area or bring back the
mini-buffer if that is in use. */
void
redisplay (void)
{
redisplay_internal ();
}
static Lisp_Object
overlay_arrow_string_or_property (Lisp_Object var)
{
Lisp_Object val;
if (val = Fget (var, Qoverlay_arrow_string), STRINGP (val))
return val;
return Voverlay_arrow_string;
}
/* Return true if there are any overlay-arrows in current_buffer. */
static bool
overlay_arrow_in_current_buffer_p (void)
{
Lisp_Object vlist;
for (vlist = Voverlay_arrow_variable_list;
CONSP (vlist);
vlist = XCDR (vlist))
{
Lisp_Object var = XCAR (vlist);
Lisp_Object val;
if (!SYMBOLP (var))
continue;
val = find_symbol_value (var);
if (MARKERP (val)
&& current_buffer == XMARKER (val)->buffer)
return true;
}
return false;
}
/* Return true if any overlay_arrows have moved or overlay-arrow-string
has changed.
If SET_REDISPLAY is true, additionally, set the `redisplay' bit in those
buffers that are affected. */
static bool
overlay_arrows_changed_p (bool set_redisplay)
{
Lisp_Object vlist;
bool changed = false;
for (vlist = Voverlay_arrow_variable_list;
CONSP (vlist);
vlist = XCDR (vlist))
{
Lisp_Object var = XCAR (vlist);
Lisp_Object val, pstr;
if (!SYMBOLP (var))
continue;
val = find_symbol_value (var);
if (!MARKERP (val))
continue;
if (! EQ (Fmarker_position (val),
/* FIXME: Don't we have a problem, using such a global
* "last-position" if the variable is buffer-local? */
Fget (var, Qlast_arrow_position))
|| ! (pstr = overlay_arrow_string_or_property (var),
EQ (pstr, Fget (var, Qlast_arrow_string))))
{
struct buffer *buf = XMARKER (val)->buffer;
if (set_redisplay)
{
if (buf)
bset_redisplay (buf);
changed = true;
}
else
return true;
}
}
return changed;
}
/* Mark overlay arrows to be updated on next redisplay. */
static void
update_overlay_arrows (int up_to_date)
{
Lisp_Object vlist;
for (vlist = Voverlay_arrow_variable_list;
CONSP (vlist);
vlist = XCDR (vlist))
{
Lisp_Object var = XCAR (vlist);
if (!SYMBOLP (var))
continue;
if (up_to_date > 0)
{
Lisp_Object val = find_symbol_value (var);
if (!MARKERP (val))
continue;
Fput (var, Qlast_arrow_position, Fmarker_position (val));
Fput (var, Qlast_arrow_string,
overlay_arrow_string_or_property (var));
}
else if (up_to_date < 0
|| !NILP (Fget (var, Qlast_arrow_position)))
{
Fput (var, Qlast_arrow_position, Qt);
Fput (var, Qlast_arrow_string, Qt);
}
}
}
/* Return overlay arrow string to display at row.
Return integer (bitmap number) for arrow bitmap in left fringe.
Return nil if no overlay arrow. */
static Lisp_Object
overlay_arrow_at_row (struct it *it, struct glyph_row *row)
{
Lisp_Object vlist;
for (vlist = Voverlay_arrow_variable_list;
CONSP (vlist);
vlist = XCDR (vlist))
{
Lisp_Object var = XCAR (vlist);
Lisp_Object val;
if (!SYMBOLP (var))
continue;
val = find_symbol_value (var);
if (MARKERP (val)
&& current_buffer == XMARKER (val)->buffer
&& (MATRIX_ROW_START_CHARPOS (row) == marker_position (val)))
{
if (FRAME_WINDOW_P (it->f)
/* FIXME: if ROW->reversed_p is set, this should test
the right fringe, not the left one. */
&& WINDOW_LEFT_FRINGE_WIDTH (it->w) > 0)
{
#ifdef HAVE_WINDOW_SYSTEM
if (val = Fget (var, Qoverlay_arrow_bitmap), SYMBOLP (val))
{
int fringe_bitmap = lookup_fringe_bitmap (val);
if (fringe_bitmap != 0)
return make_fixnum (fringe_bitmap);
}
#endif
return make_fixnum (-1); /* Use default arrow bitmap. */
}
return overlay_arrow_string_or_property (var);
}
}
return Qnil;
}
/* Return true if point moved out of or into a composition. Otherwise
return false. PREV_BUF and PREV_PT are the last point buffer and
position. BUF and PT are the current point buffer and position. */
static bool
check_point_in_composition (struct buffer *prev_buf, ptrdiff_t prev_pt,
struct buffer *buf, ptrdiff_t pt)
{
ptrdiff_t start, end;
Lisp_Object prop;
Lisp_Object buffer;
XSETBUFFER (buffer, buf);
/* Check a composition at the last point if point moved within the
same buffer. */
if (prev_buf == buf)
{
if (prev_pt == pt)
/* Point didn't move. */
return false;
if (prev_pt > BUF_BEGV (buf) && prev_pt < BUF_ZV (buf)
&& find_composition (prev_pt, -1, &start, &end, &prop, buffer)
&& composition_valid_p (start, end, prop)
&& start < prev_pt && end > prev_pt)
/* The last point was within the composition. Return true iff
point moved out of the composition. */
return (pt <= start || pt >= end);
}
/* Check a composition at the current point. */
return (pt > BUF_BEGV (buf) && pt < BUF_ZV (buf)
&& find_composition (pt, -1, &start, &end, &prop, buffer)
&& composition_valid_p (start, end, prop)
&& start < pt && end > pt);
}
/* Reconsider the clip changes of buffer which is displayed in W. */
static void
reconsider_clip_changes (struct window *w)
{
struct buffer *b = XBUFFER (w->contents);
if (b->clip_changed
&& w->window_end_valid
&& w->current_matrix->buffer == b
&& w->current_matrix->zv == BUF_ZV (b)
&& w->current_matrix->begv == BUF_BEGV (b))
b->clip_changed = false;
/* If display wasn't paused, and W is not a tool bar window, see if
point has been moved into or out of a composition. In that case,
set b->clip_changed to force updating the screen. If
b->clip_changed has already been set, skip this check. */
if (!b->clip_changed && w->window_end_valid)
{
ptrdiff_t pt = (w == XWINDOW (selected_window)
? PT : marker_position (w->pointm));
if ((w->current_matrix->buffer != b || pt != w->last_point)
&& check_point_in_composition (w->current_matrix->buffer,
w->last_point, b, pt))
b->clip_changed = true;
}
}
static void
propagate_buffer_redisplay (void)
{ /* Resetting b->text->redisplay is problematic!
We can't just reset it in the case that some window that displays
it has not been redisplayed; and such a window can stay
unredisplayed for a long time if it's currently invisible.
But we do want to reset it at the end of redisplay otherwise
its displayed windows will keep being redisplayed over and over
again.
So we copy all b->text->redisplay flags up to their windows here,
such that mark_window_display_accurate can safely reset
b->text->redisplay. */
Lisp_Object ws = window_list ();
for (; CONSP (ws); ws = XCDR (ws))
{
struct window *thisw = XWINDOW (XCAR (ws));
struct buffer *thisb = XBUFFER (thisw->contents);
if (thisb->text->redisplay)
thisw->redisplay = true;
}
}
#define STOP_POLLING \
do { if (! polling_stopped_here) stop_polling (); \
polling_stopped_here = true; } while (false)
#define RESUME_POLLING \
do { if (polling_stopped_here) start_polling (); \
polling_stopped_here = false; } while (false)
/* Perhaps in the future avoid recentering windows if it
is not necessary; currently that causes some problems. */
static void
redisplay_internal (void)
{
struct window *w = XWINDOW (selected_window);
struct window *sw;
struct frame *fr;
bool pending;
bool must_finish = false, match_p;
struct text_pos tlbufpos, tlendpos;
int number_of_visible_frames;
struct frame *sf;
bool polling_stopped_here = false;
Lisp_Object tail, frame;
/* Set a limit to the number of retries we perform due to horizontal
scrolling, this avoids getting stuck in an uninterruptible
infinite loop (Bug #24633). */
enum { MAX_HSCROLL_RETRIES = 16 };
int hscroll_retries = 0;
/* Limit the number of retries for when frame(s) become garbaged as
result of redisplaying them. Some packages set various redisplay
hooks, such as window-scroll-functions, to run Lisp that always
calls APIs which cause the frame's garbaged flag to become set,
so we loop indefinitely. */
enum {MAX_GARBAGED_FRAME_RETRIES = 2 };
int garbaged_frame_retries = 0;
/* False means that only the selected_window needs to be updated.
True means that other windows may need to be updated as well,
so we need to consult `needs_no_update` for all windows. */
bool consider_all_windows_p;
/* True means redisplay has to redisplay the miniwindow. */
bool update_miniwindow_p = false;
redisplay_trace ("redisplay_internal %d\n", redisplaying_p);
/* I don't think this happens but let's be paranoid. In particular,
this was observed happening when Emacs shuts down due to losing X
connection, in which case accessing SELECTED_FRAME and the frame
structure is likely to barf. */
if (redisplaying_p)
return;
/* No redisplay if running in batch mode or frame is not yet fully
initialized, or redisplay is explicitly turned off by setting
Vinhibit_redisplay. */
if ((FRAME_INITIAL_P (SELECTED_FRAME ())
&& redisplay_skip_initial_frame)
|| !NILP (Vinhibit_redisplay))
return;
/* Don't examine these until after testing Vinhibit_redisplay.
When Emacs is shutting down, perhaps because its connection to
X has dropped, we should not look at them at all. */
fr = XFRAME (w->frame);
sf = SELECTED_FRAME ();
if (!fr->glyphs_initialized_p)
return;
#if defined (USE_X_TOOLKIT) || defined (USE_GTK) || defined (HAVE_NS)
if (popup_activated ())
return;
#endif
#if defined (HAVE_HAIKU)
if (popup_activated_p)
return;
#endif
/* Record a function that clears redisplaying_p
when we leave this function. */
specpdl_ref count = SPECPDL_INDEX ();
record_unwind_protect_void (unwind_redisplay);
redisplaying_p = true;
block_buffer_flips ();
specbind (Qinhibit_free_realized_faces, Qnil);
/* Record this function, so it appears on the profiler's backtraces. */
record_in_backtrace (Qredisplay_internal_xC_functionx, 0, 0);
FOR_EACH_FRAME (tail, frame)
XFRAME (frame)->already_hscrolled_p = false;
reset_outermost_restrictions ();
retry:
/* Remember the currently selected window. */
sw = w;
pending = false;
forget_escape_and_glyphless_faces ();
inhibit_free_realized_faces = false;
/* If face_change, init_iterator will free all realized faces, which
includes the faces referenced from current matrices. So, we
can't reuse current matrices in this case. */
if (face_change)
windows_or_buffers_changed = 47;
if ((FRAME_TERMCAP_P (sf) || FRAME_MSDOS_P (sf))
&& FRAME_TTY (sf)->previous_frame != sf)
{
/* Since frames on a single ASCII terminal share the same
display area, displaying a different frame means redisplay
the whole thing. */
SET_FRAME_GARBAGED (sf);
#if !defined DOS_NT && !defined HAVE_ANDROID
set_tty_color_mode (FRAME_TTY (sf), sf);
#endif
FRAME_TTY (sf)->previous_frame = sf;
}
/* Set the visible flags for all frames. Do this before checking for
resized or garbaged frames; they want to know if their frames are
visible. See the comment in frame.h for FRAME_SAMPLE_VISIBILITY. */
number_of_visible_frames = 0;
FOR_EACH_FRAME (tail, frame)
{
struct frame *f = XFRAME (frame);
if (FRAME_REDISPLAY_P (f))
{
++number_of_visible_frames;
/* Adjust matrices for visible frames only. */
if (f->fonts_changed)
{
adjust_frame_glyphs (f);
/* Disable all redisplay optimizations for this frame.
This is because adjust_frame_glyphs resets the
enabled_p flag for all glyph rows of all windows, so
many optimizations will fail anyway, and some might
fail to test that flag and do bogus things as
result. */
SET_FRAME_GARBAGED (f);
f->fonts_changed = false;
}
/* If cursor type has been changed on the frame
other than selected, consider all frames. */
if (f != sf && f->cursor_type_changed)
fset_redisplay (f);
}
clear_desired_matrices (f);
}
/* Notice any pending interrupt request to change frame size. */
do_pending_window_change (true);
/* Clear frames marked as garbaged. */
clear_garbaged_frames ();
/* Build menubar and tool-bar items. */
if (NILP (Vmemory_full))
prepare_menu_bars ();
/* do_pending_window_change could change the selected_window due to
frame resizing which makes the selected window too small.
prepare_menu_bars may call lisp hooks and hence also change the
selected_window. */
if (WINDOWP (selected_window) && (w = XWINDOW (selected_window)) != sw)
sw = w;
reconsider_clip_changes (w);
/* In most cases selected window displays current buffer. */
match_p = XBUFFER (w->contents) == current_buffer;
if (match_p)
{
/* Detect case that we need to write or remove a star in the mode line. */
if ((SAVE_MODIFF < MODIFF) != w->last_had_star)
w->update_mode_line = true;
if (mode_line_update_needed (w))
w->update_mode_line = true;
/* If reconsider_clip_changes above decided that the narrowing
in the current buffer changed, make sure all other windows
showing that buffer will be redisplayed. */
if (current_buffer->clip_changed)
bset_update_mode_line (current_buffer);
}
/* Normally the message* functions will have already displayed and
updated the echo area, but the frame may have been trashed, or
the update may have been preempted, so display the echo area
again here. Checking message_cleared_p captures the case that
the echo area should be cleared. */
if ((!NILP (echo_area_buffer[0]) && !display_last_displayed_message_p)
|| (!NILP (echo_area_buffer[1]) && display_last_displayed_message_p)
|| (message_cleared_p
&& minibuf_level == 0
/* If the mini-window is currently selected, this means the
echo-area doesn't show through. */
&& !MINI_WINDOW_P (XWINDOW (selected_window))))
{
echo_area_display (false);
if (message_cleared_p)
update_miniwindow_p = true;
must_finish = true;
/* If we don't display the current message, don't clear the
message_cleared_p flag, because, if we did, we wouldn't clear
the echo area in the next redisplay which doesn't preserve
the echo area. */
if (!display_last_displayed_message_p)
message_cleared_p = false;
}
else if (EQ (selected_window, minibuf_window)
&& (current_buffer->clip_changed || window_outdated (w))
&& resize_mini_window (w, false))
{
/* Resized active mini-window to fit the size of what it is
showing if its contents might have changed. */
must_finish = true;
/* If window configuration was changed, frames may have been
marked garbaged. Clear them or we will experience
surprises wrt scrolling. */
clear_garbaged_frames ();
}
if (!NILP (Vrun_hooks))
run_window_change_functions ();
if (windows_or_buffers_changed && !update_mode_lines)
/* Code that sets windows_or_buffers_changed doesn't distinguish whether
only the windows's contents needs to be refreshed, or whether the
mode-lines also need a refresh. */
update_mode_lines = (windows_or_buffers_changed == REDISPLAY_SOME
? REDISPLAY_SOME : 32);
/* If specs for an arrow have changed, do thorough redisplay
to ensure we remove any arrow that should no longer exist. */
/* Apparently, this is the only case where we update other windows,
without updating other mode-lines. */
overlay_arrows_changed_p (true);
consider_all_windows_p = (update_mode_lines
|| windows_or_buffers_changed);
#define AINC(a,i) \
{ \
Lisp_Object entry = Fgethash (make_fixnum (i), a, make_fixnum (0)); \
if (FIXNUMP (entry)) \
Fputhash (make_fixnum (i), make_fixnum (1 + XFIXNUM (entry)), a); \
}
AINC (Vredisplay__all_windows_cause, windows_or_buffers_changed);
AINC (Vredisplay__mode_lines_cause, update_mode_lines);
/* Optimize the case that only the line containing the cursor in the
selected window has changed. Variables starting with this_ are
set in display_line and record information about the line
containing the cursor. */
tlbufpos = this_line_start_pos;
tlendpos = this_line_end_pos;
if (!consider_all_windows_p
&& CHARPOS (tlbufpos) > 0
&& !w->update_mode_line
&& !current_buffer->clip_changed
&& !current_buffer->prevent_redisplay_optimizations_p
&& FRAME_REDISPLAY_P (XFRAME (w->frame))
&& !FRAME_OBSCURED_P (XFRAME (w->frame))
&& !XFRAME (w->frame)->cursor_type_changed
&& !XFRAME (w->frame)->face_change
/* Make sure recorded data applies to current buffer, etc. */
&& this_line_buffer == current_buffer
&& match_p
&& !w->force_start
&& !w->optional_new_start
/* Point must be on the line that we have info recorded about. */
&& PT >= CHARPOS (tlbufpos)
&& PT <= Z - CHARPOS (tlendpos)
/* FIXME: The following condition is only needed when
significant parts of the buffer are hidden (e.g., under
hs-minor-mode), but there doesn't seem to be a simple way of
detecting that, so we always disable the one-line redisplay
optimizations whenever display-line-numbers-mode is turned on
in the buffer. */
&& (NILP (Vdisplay_line_numbers)
|| EQ (Vdisplay_line_numbers, Qvisual))
/* All text outside that line, including its final newline,
must be unchanged. */
&& text_outside_line_unchanged_p (w, CHARPOS (tlbufpos),
CHARPOS (tlendpos)))
{
if (CHARPOS (tlbufpos) > BEGV
&& FETCH_BYTE (BYTEPOS (tlbufpos) - 1) != '\n'
&& (CHARPOS (tlbufpos) == ZV
|| FETCH_BYTE (BYTEPOS (tlbufpos)) == '\n'))
/* Former continuation line has disappeared by becoming empty. */
goto cancel;
else if (window_outdated (w) || MINI_WINDOW_P (w))
{
/* We have to handle the case of continuation around a
wide-column character (see the comment in indent.c around
line 1340).
For instance, in the following case:
-------- Insert --------
K_A_N_\\ `a' K_A_N_a\ `X_' are wide-column chars.
J_I_ ==> J_I_ `^^' are cursors.
^^ ^^
-------- --------
As we have to redraw the line above, we cannot use this
optimization. */
struct it it;
int line_height_before = this_line_pixel_height;
/* Note that start_display will handle the case that the
line starting at tlbufpos is a continuation line. */
start_display (&it, w, tlbufpos);
/* Implementation note: It this still necessary? */
if (it.current_x != this_line_start_x)
goto cancel;
/* Give up on this optimization if the line starts with a
string with display property that draws on the fringes,
as that might interfere with line-prefix display. */
if (it.sp > 1
&& it.method == GET_FROM_IMAGE && it.image_id == -1)
goto cancel;
redisplay_trace ("trying display optimization 1\n");
w->cursor.vpos = -1;
overlay_arrow_seen = false;
it.vpos = this_line_vpos;
it.current_y = this_line_y;
it.glyph_row = MATRIX_ROW (w->desired_matrix, this_line_vpos);
display_line (&it, -1);
/* If line contains point, is not continued,
and ends at same distance from eob as before, we win. */
if (w->cursor.vpos >= 0
/* Line is not continued, otherwise this_line_start_pos
would have been set to 0 in display_line. */
&& CHARPOS (this_line_start_pos)
/* Line ends as before. */
&& CHARPOS (this_line_end_pos) == CHARPOS (tlendpos)
/* Line has same height as before. Otherwise other lines
would have to be shifted up or down. */
&& this_line_pixel_height == line_height_before
/* Cannot use this optimization if hscrolling current
line and this line is the current one, because
display_line above is not informed about the
current-line's vpos, and cannot DTRT in that case. */
&& !hscrolling_current_line_p (w))
{
/* If this is not the window's last line, we must adjust
the charstarts of the lines below. */
if (it.current_y < it.last_visible_y)
{
struct glyph_row *row
= MATRIX_ROW (w->current_matrix, this_line_vpos + 1);
ptrdiff_t delta, delta_bytes;
/* We used to distinguish between two cases here,
conditioned by Z - CHARPOS (tlendpos) == ZV, for
when the line ends in a newline or the end of the
buffer's accessible portion. But both cases did
the same, so they were collapsed. */
delta = (Z
- CHARPOS (tlendpos)
- MATRIX_ROW_START_CHARPOS (row));
delta_bytes = (Z_BYTE
- BYTEPOS (tlendpos)
- MATRIX_ROW_START_BYTEPOS (row));
increment_matrix_positions (w->current_matrix,
this_line_vpos + 1,
w->current_matrix->nrows,
delta, delta_bytes);
}
/* If this row displays text now but previously didn't,
or vice versa, w->window_end_vpos may have to be
adjusted. */
if (MATRIX_ROW_DISPLAYS_TEXT_P (it.glyph_row - 1))
{
if (w->window_end_vpos < this_line_vpos)
w->window_end_vpos = this_line_vpos;
}
else if (w->window_end_vpos == this_line_vpos
&& this_line_vpos > 0)
w->window_end_vpos = this_line_vpos - 1;
w->window_end_valid = false;
/* Update hint: No need to try to scroll in update_window. */
w->desired_matrix->no_scrolling_p = true;
#ifdef GLYPH_DEBUG
*w->desired_matrix->method = 0;
debug_method_add (w, "optimization 1");
#endif
#ifdef HAVE_WINDOW_SYSTEM
update_window_fringes (w, false);
#endif
goto update;
}
else
goto cancel;
}
else if (/* Cursor position hasn't changed. */
PT == w->last_point
/* Make sure the cursor was last displayed
in this window. Otherwise we have to reposition it. */
/* PXW: Must be converted to pixels, probably. */
&& 0 <= w->cursor.vpos
&& w->cursor.vpos < WINDOW_TOTAL_LINES (w))
{
if (!must_finish)
{
do_pending_window_change (true);
/* If selected_window changed, redisplay again. */
if (WINDOWP (selected_window)
&& (w = XWINDOW (selected_window)) != sw)
goto retry;
/* We used to always goto end_of_redisplay here, but this
isn't enough if we have a blinking cursor. */
if (w->cursor_off_p == w->last_cursor_off_p)
goto end_of_redisplay;
}
goto update;
}
/* If highlighting the region, or if the cursor is in the echo area,
then we can't just move the cursor. */
else if (NILP (Vshow_trailing_whitespace)
&& !cursor_in_echo_area
&& !composition_break_at_point)
{
struct it it;
struct glyph_row *row;
/* Skip from tlbufpos to PT and see where it is. Note that
PT may be in invisible text. If so, we will end at the
next visible position. */
init_iterator (&it, w, CHARPOS (tlbufpos), BYTEPOS (tlbufpos),
NULL, DEFAULT_FACE_ID);
it.current_x = this_line_start_x;
it.current_y = this_line_y;
it.wrap_prefix_width = 0;
it.vpos = this_line_vpos;
if (current_buffer->long_line_optimizations_p
&& it.line_wrap == TRUNCATE
&& PT - CHARPOS (tlbufpos) > large_hscroll_threshold)
{
/* When lines are very long and truncated, jumping to
the next visible line is much faster than slowly
iterating there. */
reseat_at_next_visible_line_start (&it, false);
if (IT_CHARPOS (it) <= PT) /* point moved off this line */
it.vpos = this_line_vpos + 1;
}
else
{
/* The call to move_it_to stops in front of PT, but
moves over before-strings. */
move_it_to (&it, PT, -1, -1, -1, MOVE_TO_POS);
}
if (it.vpos == this_line_vpos
&& (row = MATRIX_ROW (w->current_matrix, this_line_vpos),
row->enabled_p))
{
eassert (this_line_vpos == it.vpos);
eassert (this_line_y == it.current_y);
set_cursor_from_row (w, row, w->current_matrix, 0, 0, 0, 0);
if (cursor_row_fully_visible_p (w, false, true, false))
{
#ifdef GLYPH_DEBUG
*w->desired_matrix->method = 0;
debug_method_add (w, "optimization 3");
#endif
goto update;
}
else
goto cancel;
}
else
goto cancel;
}
cancel:
/* Text changed drastically or point moved off of line. */
SET_MATRIX_ROW_ENABLED_P (w->desired_matrix, this_line_vpos, false);
}
CHARPOS (this_line_start_pos) = 0;
++clear_face_cache_count;
#ifdef HAVE_WINDOW_SYSTEM
++clear_image_cache_count;
#endif
/* Build desired matrices, and update the display. If
consider_all_windows_p, do it for all windows on all frames that
require redisplay, as specified by their 'redisplay' flag.
Otherwise do it for selected_window, only. */
if (consider_all_windows_p)
{
FOR_EACH_FRAME (tail, frame)
XFRAME (frame)->updated_p = false;
propagate_buffer_redisplay ();
FOR_EACH_FRAME (tail, frame)
{
struct frame *f = XFRAME (frame);
/* We don't have to do anything for unselected terminal
frames. */
if ((FRAME_TERMCAP_P (f) || FRAME_MSDOS_P (f))
&& !EQ (FRAME_TTY (f)->top_frame, frame))
continue;
retry_frame:
if (FRAME_WINDOW_P (f) || FRAME_TERMCAP_P (f) || f == sf)
{
bool gcscrollbars
/* Only GC scrollbars when we redisplay the whole frame. */
= f->redisplay || !REDISPLAY_SOME_P ();
bool f_redisplay_flag = f->redisplay;
/* The X error handler may have deleted that frame before
we went back to retry_frame. Or this could be a TTY
frame that is not completely made, in which case we
cannot safely redisplay its windows. This must come
before any accesses to f->terminal. */
if (!FRAME_LIVE_P (f)
|| (FRAME_TERMCAP_P (f) && !f->after_make_frame))
continue;
/* Mark all the scroll bars to be removed; we'll redeem
the ones we want when we redisplay their windows. */
if (gcscrollbars && FRAME_TERMINAL (f)->condemn_scroll_bars_hook)
FRAME_TERMINAL (f)->condemn_scroll_bars_hook (f);
if (FRAME_REDISPLAY_P (f) && !FRAME_OBSCURED_P (f))
{
/* Don't allow freeing images and faces for this
frame as long as the frame's update wasn't
completed. This prevents crashes when some Lisp
that runs from the various hooks or font-lock
decides to clear the frame's image cache and face
cache, when the images and faces in those caches
are referenced by the desired matrix. */
f->inhibit_clear_image_cache = true;
redisplay_windows (FRAME_ROOT_WINDOW (f));
}
/* Remember that the invisible frames need to be redisplayed next
time they're visible. */
else if (!REDISPLAY_SOME_P ())
f->redisplay = true;
/* The X error handler may have deleted that frame. */
if (!FRAME_LIVE_P (f))
continue;
/* Any scroll bars which redisplay_windows should have
nuked should now go away. */
if (gcscrollbars && FRAME_TERMINAL (f)->judge_scroll_bars_hook)
FRAME_TERMINAL (f)->judge_scroll_bars_hook (f);
if (FRAME_REDISPLAY_P (f) && !FRAME_OBSCURED_P (f))
{
/* If fonts changed on visible frame, display again. */
if (f->fonts_changed)
{
adjust_frame_glyphs (f);
/* Disable all redisplay optimizations for this
frame. For the reasons, see the comment near
the previous call to adjust_frame_glyphs above. */
SET_FRAME_GARBAGED (f);
f->fonts_changed = false;
goto retry_frame;
}
/* See if we have to hscroll. */
if (!f->already_hscrolled_p)
{
f->already_hscrolled_p = true;
if (hscroll_retries <= MAX_HSCROLL_RETRIES
&& hscroll_windows (f->root_window))
{
hscroll_retries++;
goto retry_frame;
}
}
/* If the frame's redisplay flag was not set before
we went about redisplaying its windows, but it is
set now, that means we employed some redisplay
optimizations inside redisplay_windows, and
bypassed producing some screen lines. But if
f->redisplay is now set, it might mean the old
faces are no longer valid (e.g., if redisplaying
some window called some Lisp which defined a new
face or redefined an existing face), so trying to
use them in update_frame will segfault.
Therefore, we must redisplay this frame. */
if (!f_redisplay_flag && f->redisplay)
goto retry_frame;
/* In some case (e.g., window resize), we notice
only during window updating that the window
content changed unpredictably (e.g., a GTK
scrollbar moved, or some Lisp hook that winds up
calling adjust_frame_glyphs) and that our
previous estimation of the frame content was
garbage. We have to start over. These cases
should be rare, so going all the way back to the
top of redisplay should be good enough. */
if (FRAME_GARBAGED_P (f)
&& garbaged_frame_retries++ < MAX_GARBAGED_FRAME_RETRIES)
goto retry;
#ifdef HAVE_WINDOW_SYSTEM
if (FRAME_WINDOW_P (f)
&& FRAME_RIF (f)->clear_under_internal_border)
FRAME_RIF (f)->clear_under_internal_border (f);
#endif
/* Prevent various kinds of signals during display
update. stdio is not robust about handling
signals, which can cause an apparent I/O error. */
if (interrupt_input)
unrequest_sigio ();
STOP_POLLING;
pending |= update_frame (f, false, false);
/* On some platforms (at least MS-Windows), the
scroll_run_hook called from scrolling_window
called from update_frame could set the frame's
garbaged flag, in which case we need to redisplay
the frame. Don't do that on TTY frames, since we
need to keep the garbaged flag in that case when
the frame has been resized. */
if (FRAME_GARBAGED_P (f))
{
fset_redisplay (f);
f->garbaged = false;
goto retry_frame;
}
f->cursor_type_changed = false;
f->updated_p = true;
f->inhibit_clear_image_cache = false;
}
}
}
eassert (EQ (XFRAME (selected_frame)->selected_window, selected_window));
if (!pending)
{
/* Do the mark_window_display_accurate after all windows have
been redisplayed because this call resets flags in buffers
which are needed for proper redisplay. */
FOR_EACH_FRAME (tail, frame)
{
struct frame *f = XFRAME (frame);
if (f->updated_p)
{
f->redisplay = false;
f->garbaged = false;
mark_window_display_accurate (f->root_window, true);
if (FRAME_TERMINAL (f)->frame_up_to_date_hook)
FRAME_TERMINAL (f)->frame_up_to_date_hook (f);
}
}
}
}
else if (FRAME_REDISPLAY_P (sf) && !FRAME_OBSCURED_P (sf))
{
sf->inhibit_clear_image_cache = true;
displayed_buffer = XBUFFER (XWINDOW (selected_window)->contents);
/* Use list_of_error, not Qerror, so that
we catch only errors and don't run the debugger. */
internal_condition_case_1 (redisplay_window_1, selected_window,
list_of_error,
redisplay_window_error);
if (update_miniwindow_p)
{
Lisp_Object mini_window = FRAME_MINIBUF_WINDOW (sf);
displayed_buffer = XBUFFER (XWINDOW (mini_window)->contents);
internal_condition_case_1 (redisplay_window_1, mini_window,
list_of_error,
redisplay_window_error);
}
/* Compare desired and current matrices, perform output. */
update:
/* If fonts changed, display again. Likewise if redisplay_window_1
above caused some change (e.g., a change in faces) that requires
considering the entire frame again. */
if (sf->fonts_changed || sf->redisplay)
{
if (sf->redisplay)
{
/* Set this to force a more thorough redisplay.
Otherwise, we might immediately loop back to the
above "else-if" clause (since all the conditions that
led here might still be true), and we will then
infloop, because the selected-frame's redisplay flag
is not (and cannot be) reset. */
windows_or_buffers_changed = 50;
}
goto retry;
}
/* Prevent freeing of realized faces, since desired matrices are
pending that reference the faces we computed and cached. */
inhibit_free_realized_faces = true;
/* Prevent various kinds of signals during display update.
stdio is not robust about handling signals,
which can cause an apparent I/O error. */
if (interrupt_input)
unrequest_sigio ();
STOP_POLLING;
if (FRAME_REDISPLAY_P (sf) && !FRAME_OBSCURED_P (sf))
{
if (hscroll_retries <= MAX_HSCROLL_RETRIES
&& hscroll_windows (selected_window))
{
hscroll_retries++;
goto retry;
}
XWINDOW (selected_window)->must_be_updated_p = true;
pending = update_frame (sf, false, false);
sf->cursor_type_changed = false;
sf->inhibit_clear_image_cache = false;
}
/* We may have called echo_area_display at the top of this
function. If the echo area is on another frame, that may
have put text on a frame other than the selected one, so the
above call to update_frame would not have caught it. Catch
it here. */
Lisp_Object mini_window = FRAME_MINIBUF_WINDOW (sf);
struct frame *mini_frame = XFRAME (WINDOW_FRAME (XWINDOW (mini_window)));
if (mini_frame != sf && FRAME_WINDOW_P (mini_frame))
{
XWINDOW (mini_window)->must_be_updated_p = true;
pending |= update_frame (mini_frame, false, false);
mini_frame->cursor_type_changed = false;
if (!pending && hscroll_retries <= MAX_HSCROLL_RETRIES
&& hscroll_windows (mini_window))
{
hscroll_retries++;
goto retry;
}
}
}
/* If display was paused because of pending input, make sure we do a
thorough update the next time. */
if (pending)
{
/* Prevent the optimization at the beginning of
redisplay_internal that tries a single-line update of the
line containing the cursor in the selected window. */
CHARPOS (this_line_start_pos) = 0;
/* Let the overlay arrow be updated the next time. */
update_overlay_arrows (0);
/* If we pause after scrolling, some rows in the current
matrices of some windows are not valid. */
if (!WINDOW_FULL_WIDTH_P (w)
&& !FRAME_WINDOW_P (XFRAME (w->frame)))
update_mode_lines = 36;
}
else
{
if (!consider_all_windows_p)
{
/* This has already been done above if
consider_all_windows_p is set. */
if (XBUFFER (w->contents)->text->redisplay
&& buffer_window_count (XBUFFER (w->contents)) > 1)
/* This can happen if b->text->redisplay was set during
jit-lock. */
propagate_buffer_redisplay ();
mark_window_display_accurate_1 (w, true);
/* Say overlay arrows are up to date. */
update_overlay_arrows (1);
if (FRAME_TERMINAL (sf)->frame_up_to_date_hook != 0)
FRAME_TERMINAL (sf)->frame_up_to_date_hook (sf);
}
update_mode_lines = 0;
windows_or_buffers_changed = 0;
}
/* Start SIGIO interrupts coming again. Having them off during the
code above makes it less likely one will discard output, but not
impossible, since there might be stuff in the system buffer here.
But it is much hairier to try to do anything about that. */
if (interrupt_input)
request_sigio ();
RESUME_POLLING;
/* If a frame has become visible which was not before, redisplay
again, so that we display it. Expose events for such a frame
(which it gets when becoming visible) don't call the parts of
redisplay constructing glyphs, so simply exposing a frame won't
display anything in this case. So, we have to display these
frames here explicitly. */
if (!pending)
{
int new_count = 0;
FOR_EACH_FRAME (tail, frame)
{
if (FRAME_REDISPLAY_P (XFRAME (frame)))
new_count++;
}
if (new_count != number_of_visible_frames)
windows_or_buffers_changed = 52;
}
/* Change frame size now if a change is pending. */
do_pending_window_change (true);
/* If we just did a pending size change, or have additional
visible frames, or selected_window changed, redisplay again. */
if ((windows_or_buffers_changed && !pending)
|| (WINDOWP (selected_window)
&& (w = XWINDOW (selected_window)) != sw))
goto retry;
/* Clear the face and image caches.
We used to do this only if consider_all_windows_p. But the cache
needs to be cleared if a timer creates images in the current
buffer (e.g. the test case in Bug#6230). */
if (clear_face_cache_count > CLEAR_FACE_CACHE_COUNT)
{
clear_face_cache (false);
clear_face_cache_count = 0;
}
#ifdef HAVE_WINDOW_SYSTEM
if (clear_image_cache_count > CLEAR_IMAGE_CACHE_COUNT)
{
clear_image_caches (Qnil);
clear_image_cache_count = 0;
}
#endif /* HAVE_WINDOW_SYSTEM */
end_of_redisplay:
#ifdef HAVE_NS
ns_set_doc_edited ();
#endif
if (interrupt_input && interrupts_deferred)
request_sigio ();
/* We're done with this redisplay cycle, so reset the tick count in
preparation for the next redisplay cycle. */
if (max_redisplay_ticks > 0)
update_redisplay_ticks (0, NULL);
unbind_to (count, Qnil);
RESUME_POLLING;
}
static void
unwind_redisplay_preserve_echo_area (void)
{
unblock_buffer_flips ();
}
/* Redisplay, but leave alone any recent echo area message unless
another message has been requested in its place.
This is useful in situations where you need to redisplay but no
user action has occurred, making it inappropriate for the message
area to be cleared. See tracking_off and
wait_reading_process_output for examples of these situations.
FROM_WHERE is an integer saying from where this function was
called. This is useful for debugging. */
void
redisplay_preserve_echo_area (int from_where)
{
redisplay_trace ("redisplay_preserve_echo_area (%d)\n", from_where);
block_input ();
specpdl_ref count = SPECPDL_INDEX ();
record_unwind_protect_void (unwind_redisplay_preserve_echo_area);
block_buffer_flips ();
unblock_input ();
if (!NILP (echo_area_buffer[1]))
{
/* We have a previously displayed message, but no current
message. Redisplay the previous message. */
display_last_displayed_message_p = true;
redisplay_internal ();
display_last_displayed_message_p = false;
}
else
redisplay_internal ();
flush_frame (SELECTED_FRAME ());
unbind_to (count, Qnil);
}
/* Function registered with record_unwind_protect in redisplay_internal. */
static void
unwind_redisplay (void)
{
redisplaying_p = false;
unblock_buffer_flips ();
}
/* Function registered with record_unwind_protect before calling
start_display outside of redisplay_internal. */
void
unwind_display_working_on_window (void)
{
display_working_on_window_p = false;
}
/* Mark the display of leaf window W as accurate or inaccurate.
If ACCURATE_P, mark display of W as accurate.
If !ACCURATE_P, arrange for W to be redisplayed the next
time redisplay_internal is called. */
static void
mark_window_display_accurate_1 (struct window *w, bool accurate_p)
{
struct buffer *b = XBUFFER (w->contents);
#ifdef HAVE_TEXT_CONVERSION
ptrdiff_t prev_point, prev_mark;
#endif /* HAVE_TEXT_CONVERSION */
w->last_modified = accurate_p ? BUF_MODIFF (b) : 0;
w->last_overlay_modified = accurate_p ? BUF_OVERLAY_MODIFF (b) : 0;
w->last_had_star = BUF_MODIFF (b) > BUF_SAVE_MODIFF (b);
if (accurate_p)
{
b->clip_changed = false;
b->prevent_redisplay_optimizations_p = false;
eassert (buffer_window_count (b) > 0);
/* Resetting b->text->redisplay is problematic!
In order to make it safer to do it here, redisplay_internal must
have copied all b->text->redisplay to their respective windows. */
b->text->redisplay = false;
BUF_UNCHANGED_MODIFIED (b) = BUF_MODIFF (b);
BUF_OVERLAY_UNCHANGED_MODIFIED (b) = BUF_OVERLAY_MODIFF (b);
BUF_BEG_UNCHANGED (b) = BUF_GPT (b) - BUF_BEG (b);
BUF_END_UNCHANGED (b) = BUF_Z (b) - BUF_GPT (b);
w->current_matrix->buffer = b;
w->current_matrix->begv = BUF_BEGV (b);
w->current_matrix->zv = BUF_ZV (b);
w->current_matrix->header_line_p = window_wants_header_line (w);
w->current_matrix->tab_line_p = window_wants_tab_line (w);
w->last_cursor_vpos = w->cursor.vpos;
w->last_cursor_off_p = w->cursor_off_p;
#ifdef HAVE_TEXT_CONVERSION
prev_point = w->last_point;
prev_mark = w->last_mark;
#endif /* HAVE_TEXT_CONVERSION */
if (w == XWINDOW (selected_window))
w->last_point = BUF_PT (b);
else
w->last_point = marker_position (w->pointm);
/* w->last_mark is recorded for text conversion purposes.
Input methods aren't interested in the value of the mark
if it is inactive, so set it to -1 if it's not. */
if (XMARKER (BVAR (b, mark))->buffer == b
&& !NILP (BVAR (b, mark_active)))
w->last_mark = marker_position (BVAR (b, mark));
else
w->last_mark = -1;
#ifdef HAVE_TEXT_CONVERSION
/* See the description of this field in struct window. */
w->ephemeral_last_point = w->last_point;
/* Point motion is only propagated to the input method for use
in text conversion during a redisplay. While this can lead
to inconsistencies when point has moved but the change has
not yet been displayed, it leads to better results most of
the time, as point often changes within calls to
`save-excursion', and the only way to detect such calls is to
observe that the next redisplay never ends with those changes
applied.
Changes to buffer text are immediately propagated to the
input method, and the position of point is also updated
during such a change, so the consequences are not that
severe. */
if ((prev_point != w->last_point
|| prev_mark != w->last_mark)
&& FRAME_WINDOW_P (WINDOW_XFRAME (w))
&& !FRAME_TOOLTIP_P (WINDOW_XFRAME (w))
&& w == XWINDOW (WINDOW_XFRAME (w)->selected_window))
report_point_change (WINDOW_XFRAME (w), w, b);
#endif /* HAVE_TEXT_CONVERSION */
struct glyph_row *row;
/* These conditions should be consistent with CHECK_WINDOW_END. */
if (w->window_end_vpos < w->current_matrix->nrows
&& ((row = MATRIX_ROW (w->current_matrix, w->window_end_vpos),
!row->enabled_p
|| MATRIX_ROW_DISPLAYS_TEXT_P (row)
|| MATRIX_ROW_VPOS (row, w->current_matrix) == 0)))
w->window_end_valid = true;
w->update_mode_line = false;
w->preserve_vscroll_p = false;
}
w->redisplay = !accurate_p;
}
/* Mark the display of windows in the window tree rooted at WINDOW as
accurate or inaccurate. If ACCURATE_P, mark display of
windows as accurate. If !ACCURATE_P, arrange for windows to
be redisplayed the next time redisplay_internal is called. */
void
mark_window_display_accurate (Lisp_Object window, bool accurate_p)
{
struct window *w;
for (; !NILP (window); window = w->next)
{
w = XWINDOW (window);
if (WINDOWP (w->contents))
mark_window_display_accurate (w->contents, accurate_p);
else
mark_window_display_accurate_1 (w, accurate_p);
}
if (accurate_p)
update_overlay_arrows (1);
else
/* Force a thorough redisplay the next time by setting
last_arrow_position and last_arrow_string to t, which is
unequal to any useful value of Voverlay_arrow_... */
update_overlay_arrows (-1);
}
/* Return value in display table DP (Lisp_Char_Table *) for character
C. Since a display table doesn't have any parent, we don't have to
follow parent. Do not call this function directly but use the
macro DISP_CHAR_VECTOR. */
Lisp_Object
disp_char_vector (struct Lisp_Char_Table *dp, int c)
{
Lisp_Object val;
if (ASCII_CHAR_P (c))
{
val = dp->ascii;
if (SUB_CHAR_TABLE_P (val))
val = XSUB_CHAR_TABLE (val)->contents[c];
}
else
{
Lisp_Object table;
XSETCHAR_TABLE (table, dp);
val = char_table_ref (table, c);
}
if (NILP (val))
val = dp->defalt;
return val;
}
static int buffer_flip_blocked_depth;
static void
block_buffer_flips (void)
{
eassert (buffer_flip_blocked_depth >= 0);
buffer_flip_blocked_depth++;
}
static void
unblock_buffer_flips (void)
{
eassert (buffer_flip_blocked_depth > 0);
if (--buffer_flip_blocked_depth == 0)
{
Lisp_Object tail, frame;
block_input ();
FOR_EACH_FRAME (tail, frame)
{
struct frame *f = XFRAME (frame);
if (FRAME_TERMINAL (f)->buffer_flipping_unblocked_hook)
(*FRAME_TERMINAL (f)->buffer_flipping_unblocked_hook) (f);
}
unblock_input ();
}
}
bool
buffer_flipping_blocked_p (void)
{
return buffer_flip_blocked_depth > 0;
}
/***********************************************************************
Window Redisplay
***********************************************************************/
/* Redisplay all leaf windows in the window tree rooted at WINDOW. */
static void
redisplay_windows (Lisp_Object window)
{
while (!NILP (window))
{
struct window *w = XWINDOW (window);
if (WINDOWP (w->contents))
redisplay_windows (w->contents);
else if (BUFFERP (w->contents))
{
displayed_buffer = XBUFFER (w->contents);
/* Use list_of_error, not Qerror, so that
we catch only errors and don't run the debugger. */
internal_condition_case_1 (redisplay_window_0, window,
list_of_error,
redisplay_window_error);
}
window = w->next;
}
}
static Lisp_Object
redisplay_window_error (Lisp_Object error_data)
{
displayed_buffer->display_error_modiff = BUF_MODIFF (displayed_buffer);
/* When in redisplay, the error is captured and not shown. Arrange
for it to be shown later. */
if (max_redisplay_ticks > 0
&& CONSP (error_data)
&& EQ (XCAR (error_data), Qerror)
&& CONSP (XCDR (error_data))
&& STRINGP (XCAR (XCDR (error_data))))
Vdelayed_warnings_list = Fcons (list2 (XCAR (error_data),
XCAR (XCDR (error_data))),
Vdelayed_warnings_list);
return Qnil;
}
static Lisp_Object
redisplay_window_0 (Lisp_Object window)
{
if (displayed_buffer->display_error_modiff < BUF_MODIFF (displayed_buffer))
redisplay_window (window, false);
return Qnil;
}
static Lisp_Object
redisplay_window_1 (Lisp_Object window)
{
if (displayed_buffer->display_error_modiff < BUF_MODIFF (displayed_buffer))
redisplay_window (window, true);
return Qnil;
}
/***********************************************************************
Aborting runaway redisplay
***********************************************************************/
/* Update the redisplay-tick count for window W, and signal an error
if the tick count is above some threshold, indicating that
redisplay of the window takes "too long".
TICKS is the amount of ticks to add to the W's current count; zero
means to initialize the tick count to zero.
W can be NULL if TICKS is zero: that means unconditionally
re-initialize the current tick count to zero.
W can also be NULL if the caller doesn't know which window is being
processed by the display code. In that case, if TICKS is non-zero,
we assume it's the last window that shows the current buffer. */
void
update_redisplay_ticks (int ticks, struct window *w)
{
/* This keeps track of the window on which redisplay is working. */
static struct window *cwindow;
static EMACS_INT window_ticks;
/* We only initialize the count if this is a different window or
NULL. Otherwise, this is a call from init_iterator for the same
window we tracked before, and we should keep the count. */
if (!ticks && w != cwindow)
{
cwindow = w;
window_ticks = 0;
}
/* Some callers can be run in contexts unrelated to display code, so
don't abort them and don't update the tick count in those cases. */
if ((!w && !redisplaying_p && !display_working_on_window_p)
/* We never disable redisplay of a mini-window, since that is
absolutely essential for communicating with Emacs. */
|| (w && MINI_WINDOW_P (w)))
return;
if (ticks > 0)
window_ticks += ticks;
if (max_redisplay_ticks > 0 && window_ticks > max_redisplay_ticks)
{
/* In addition to a buffer, this could be a window (for non-leaf
windows, not expected here) or nil (for pseudo-windows like
the one used for the native tool bar). */
Lisp_Object contents = w ? w->contents : Qnil;
char *bufname =
NILP (contents)
? SSDATA (BVAR (current_buffer, name))
: (BUFFERP (contents)
? SSDATA (BVAR (XBUFFER (contents), name))
: (char *) "");
windows_or_buffers_changed = 177;
/* scrolling_window depends too much on the glyph matrices being
correct, and we cannot guarantee that if we abort the
redisplay of this window. */
if (w && w->desired_matrix)
w->desired_matrix->no_scrolling_p = true;
error ("Window showing buffer %s takes too long to redisplay", bufname);
}
}
/* Set cursor position of W. PT is assumed to be displayed in ROW.
DELTA and DELTA_BYTES are the numbers of characters and bytes by
which positions recorded in ROW differ from current buffer
positions.
Return true iff cursor is on this row. */
static bool
set_cursor_from_row (struct window *w, struct glyph_row *row,
struct glyph_matrix *matrix,
ptrdiff_t delta, ptrdiff_t delta_bytes,
int dy, int dvpos)
{
struct glyph *glyph = row->glyphs[TEXT_AREA];
struct glyph *end = glyph + row->used[TEXT_AREA];
struct glyph *cursor = NULL;
/* The last known character position in row. */
ptrdiff_t last_pos = MATRIX_ROW_START_CHARPOS (row) + delta;
int x = row->x;
ptrdiff_t pt_old = PT - delta;
ptrdiff_t pos_before = MATRIX_ROW_START_CHARPOS (row) + delta;
ptrdiff_t pos_after = MATRIX_ROW_END_CHARPOS (row) + delta;
struct glyph *glyph_before = glyph - 1, *glyph_after = end;
/* A glyph beyond the edge of TEXT_AREA which we should never
touch. */
struct glyph *glyphs_end = end;
/* True means we've found a match for cursor position, but that
glyph has the avoid_cursor_p flag set. */
bool match_with_avoid_cursor = false;
/* True means we've seen at least one glyph that came from a
display string. */
bool string_seen = false;
/* Largest and smallest buffer positions seen so far during scan of
glyph row. */
ptrdiff_t bpos_max = pos_before;
ptrdiff_t bpos_min = pos_after;
/* Last buffer position covered by an overlay string with an integer
`cursor' property. */
ptrdiff_t bpos_covered = 0;
/* True means the display string on which to display the cursor
comes from a text property, not from an overlay. */
bool string_from_text_prop = false;
/* Don't even try doing anything if called for a mode-line or
header-line or tab-line row, since the rest of the code isn't
prepared to deal with such calamities. */
eassert (!row->mode_line_p);
if (row->mode_line_p)
return false;
/* Skip over glyphs not having an object at the start and the end of
the row. These are special glyphs like truncation marks on
terminal frames. */
if (MATRIX_ROW_DISPLAYS_TEXT_P (row))
{
if (!row->reversed_p)
{
while (glyph < end
&& NILP (glyph->object)
&& glyph->charpos < 0)
{
x += glyph->pixel_width;
++glyph;
}
while (end > glyph
&& NILP ((end - 1)->object)
/* CHARPOS is zero for blanks and stretch glyphs
inserted by extend_face_to_end_of_line. */
&& (end - 1)->charpos <= 0)
--end;
glyph_before = glyph - 1;
glyph_after = end;
}
else
{
struct glyph *g;
/* If the glyph row is reversed, we need to process it from back
to front, so swap the edge pointers. */
glyphs_end = end = glyph - 1;
glyph += row->used[TEXT_AREA] - 1;
while (glyph > end + 1
&& NILP (glyph->object)
&& glyph->charpos < 0)
--glyph;
if (NILP (glyph->object) && glyph->charpos < 0)
--glyph;
/* By default, in reversed rows we put the cursor on the
rightmost (first in the reading order) glyph. */
for (x = row->x, g = end + 1; g < glyph; g++)
x += g->pixel_width;
while (end < glyph
&& NILP ((end + 1)->object)
&& (end + 1)->charpos <= 0)
++end;
glyph_before = glyph + 1;
glyph_after = end;
}
}
else if (row->reversed_p)
{
/* In R2L rows that don't display text, put the cursor on the
rightmost glyph. Case in point: an empty last line that is
part of an R2L paragraph. */
cursor = end - 1;
/* Avoid placing the cursor on the last glyph of the row, where
on terminal frames we hold the vertical border between
adjacent windows. */
if (!FRAME_WINDOW_P (WINDOW_XFRAME (w))
&& !WINDOW_RIGHTMOST_P (w)
&& cursor == row->glyphs[LAST_AREA] - 1)
cursor--;
x = -1; /* will be computed below, at label compute_x */
}
/* Step 1: Try to find the glyph whose character position
corresponds to point. If that's not possible, find 2 glyphs
whose character positions are the closest to point, one before
point, the other after it. */
if (!row->reversed_p)
while (/* not marched to end of glyph row */
glyph < end
/* glyph was not inserted by redisplay for internal purposes */
&& !NILP (glyph->object))
{
if (BUFFERP (glyph->object))
{
ptrdiff_t dpos = glyph->charpos - pt_old;
if (glyph->charpos > bpos_max)
bpos_max = glyph->charpos;
if (glyph->charpos < bpos_min)
bpos_min = glyph->charpos;
if (!glyph->avoid_cursor_p)
{
/* If we hit point, we've found the glyph on which to
display the cursor. */
if (dpos == 0)
{
match_with_avoid_cursor = false;
break;
}
/* See if we've found a better approximation to
POS_BEFORE or to POS_AFTER. */
if (0 > dpos && dpos > pos_before - pt_old)
{
pos_before = glyph->charpos;
glyph_before = glyph;
}
else if (0 < dpos && dpos < pos_after - pt_old)
{
pos_after = glyph->charpos;
glyph_after = glyph;
}
}
else if (dpos == 0)
match_with_avoid_cursor = true;
}
else if (STRINGP (glyph->object)
&& !glyph->avoid_cursor_p)
{
Lisp_Object chprop;
ptrdiff_t glyph_pos = glyph->charpos;
chprop = Fget_char_property (make_fixnum (glyph_pos), Qcursor,
glyph->object);
if (!NILP (chprop))
{
/* If the string came from a `display' text property,
look up the buffer position of that property and
use that position to update bpos_max, as if we
actually saw such a position in one of the row's
glyphs. This helps with supporting integer values
of `cursor' property on the display string in
situations where most or all of the row's buffer
text is completely covered by display properties,
so that no glyph with valid buffer positions is
ever seen in the row. */
ptrdiff_t prop_pos =
string_buffer_position_lim (glyph->object, pos_before,
pos_after, false);
if (prop_pos >= pos_before)
bpos_max = prop_pos;
}
if (FIXNUMP (chprop))
{
bpos_covered = bpos_max + XFIXNUM (chprop);
/* If the `cursor' property covers buffer positions up
to and including point, we should display cursor on
this glyph. Note that, if a `cursor' property on one
of the string's characters has an integer value, we
will break out of the loop below _before_ we get to
the position match above. IOW, integer values of
the `cursor' property override the "exact match for
point" strategy of positioning the cursor. */
/* Implementation note: bpos_max == pt_old when, e.g.,
we are in an empty line, where bpos_max is set to
MATRIX_ROW_START_CHARPOS, see above. */
if (bpos_max <= pt_old && bpos_covered >= pt_old)
{
cursor = glyph;
break;
}
}
string_seen = true;
}
x += glyph->pixel_width;
++glyph;
}
else if (glyph > end) /* row is reversed */
while (!NILP (glyph->object))
{
if (BUFFERP (glyph->object))
{
ptrdiff_t dpos = glyph->charpos - pt_old;
if (glyph->charpos > bpos_max)
bpos_max = glyph->charpos;
if (glyph->charpos < bpos_min)
bpos_min = glyph->charpos;
if (!glyph->avoid_cursor_p)
{
if (dpos == 0)
{
match_with_avoid_cursor = false;
break;
}
if (0 > dpos && dpos > pos_before - pt_old)
{
pos_before = glyph->charpos;
glyph_before = glyph;
}
else if (0 < dpos && dpos < pos_after - pt_old)
{
pos_after = glyph->charpos;
glyph_after = glyph;
}
}
else if (dpos == 0)
match_with_avoid_cursor = true;
}
else if (STRINGP (glyph->object))
{
Lisp_Object chprop;
ptrdiff_t glyph_pos = glyph->charpos;
chprop = Fget_char_property (make_fixnum (glyph_pos), Qcursor,
glyph->object);
if (!NILP (chprop))
{
ptrdiff_t prop_pos =
string_buffer_position_lim (glyph->object, pos_before,
pos_after, false);
if (prop_pos >= pos_before)
bpos_max = prop_pos;
}
if (FIXNUMP (chprop))
{
bpos_covered = bpos_max + XFIXNUM (chprop);
/* If the `cursor' property covers buffer positions up
to and including point, we should display cursor on
this glyph. */
if (bpos_max <= pt_old && bpos_covered >= pt_old)
{
cursor = glyph;
break;
}
}
string_seen = true;
}
--glyph;
if (glyph == glyphs_end) /* don't dereference outside TEXT_AREA */
{
x--; /* can't use any pixel_width */
break;
}
x -= glyph->pixel_width;
}
/* Step 2: If we didn't find an exact match for point, we need to
look for a proper place to put the cursor among glyphs between
GLYPH_BEFORE and GLYPH_AFTER. */
if (!((row->reversed_p ? glyph > glyphs_end : glyph < glyphs_end)
&& BUFFERP (glyph->object) && glyph->charpos == pt_old)
&& !(bpos_max <= pt_old && pt_old <= bpos_covered))
{
/* An empty line has a single glyph whose OBJECT is nil and
whose CHARPOS is the position of a newline on that line.
Note that on a TTY, there are more glyphs after that, which
were produced by extend_face_to_end_of_line, but their
CHARPOS is zero or negative. */
bool empty_line_p =
((row->reversed_p ? glyph > glyphs_end : glyph < glyphs_end)
&& NILP (glyph->object) && glyph->charpos > 0
/* On a TTY, continued and truncated rows also have a glyph at
their end whose OBJECT is nil and whose CHARPOS is
positive (the continuation and truncation glyphs), but such
rows are obviously not "empty". */
&& !(row->continued_p || row->truncated_on_right_p));
if (row->ends_in_ellipsis_p && pos_after == last_pos)
{
ptrdiff_t ellipsis_pos;
/* Scan back over the ellipsis glyphs. */
if (!row->reversed_p)
{
ellipsis_pos = (glyph - 1)->charpos;
while (glyph > row->glyphs[TEXT_AREA]
&& (glyph - 1)->charpos == ellipsis_pos)
glyph--, x -= glyph->pixel_width;
/* That loop always goes one position too far, including
the glyph before the ellipsis. So scan forward over
that one. */
x += glyph->pixel_width;
glyph++;
}
else /* row is reversed */
{
ellipsis_pos = (glyph + 1)->charpos;
while (glyph < row->glyphs[TEXT_AREA] + row->used[TEXT_AREA] - 1
&& (glyph + 1)->charpos == ellipsis_pos)
glyph++, x += glyph->pixel_width;
x -= glyph->pixel_width;
glyph--;
}
}
else if (match_with_avoid_cursor)
{
cursor = glyph_after;
x = -1;
}
else if (string_seen)
{
int incr = row->reversed_p ? -1 : +1;
/* Need to find the glyph that came out of a string which is
present at point. That glyph is somewhere between
GLYPH_BEFORE and GLYPH_AFTER, and it came from a string
positioned between POS_BEFORE and POS_AFTER in the
buffer. */
struct glyph *start, *stop;
ptrdiff_t pos = pos_before;
x = -1;
/* If the row ends in a newline from a display string,
reordering could have moved the glyphs belonging to the
string out of the [GLYPH_BEFORE..GLYPH_AFTER] range. So
in this case we extend the search to the last glyph in
the row that was not inserted by redisplay. */
if (row->ends_in_newline_from_string_p)
{
glyph_after = end;
pos_after = MATRIX_ROW_END_CHARPOS (row) + delta;
}
/* GLYPH_BEFORE and GLYPH_AFTER are the glyphs that
correspond to POS_BEFORE and POS_AFTER, respectively. We
need START and STOP in the order that corresponds to the
row's direction as given by its reversed_p flag. If the
directionality of characters between POS_BEFORE and
POS_AFTER is the opposite of the row's base direction,
these characters will have been reordered for display,
and we need to reverse START and STOP. */
if (!row->reversed_p)
{
start = min (glyph_before, glyph_after);
stop = max (glyph_before, glyph_after);
}
else
{
start = max (glyph_before, glyph_after);
stop = min (glyph_before, glyph_after);
}
for (glyph = start + incr;
row->reversed_p ? glyph > stop : glyph < stop; )
{
/* Any glyphs that come from the buffer are here because
of bidi reordering. Skip them, and only pay
attention to glyphs that came from some string. */
if (STRINGP (glyph->object)
&& !glyph->avoid_cursor_p)
{
Lisp_Object str;
ptrdiff_t tem;
/* If the display property covers the newline, we
need to search for it one position farther. */
ptrdiff_t lim = pos_after
+ (pos_after == MATRIX_ROW_END_CHARPOS (row) + delta);
string_from_text_prop = false;
str = glyph->object;
tem = string_buffer_position_lim (str, pos, lim, false);
if (tem == 0 /* from overlay */
|| pos <= tem)
{
/* If the string from which this glyph came is
found in the buffer at point, or at position
that is closer to point than pos_after, then
we've found the glyph we've been looking for.
If it comes from an overlay (tem == 0), and
it has the `cursor' property on one of its
glyphs, record that glyph as a candidate for
displaying the cursor. (As in the
unidirectional version, we will display the
cursor on the last candidate we find.) */
if (tem == 0
|| tem == pt_old
|| (tem - pt_old > 0 && tem < pos_after))
{
/* The glyphs from this string could have
been reordered. Find the one with the
smallest string position. Or there could
be a character in the string with the
`cursor' property, which means display
cursor on that character's glyph. */
ptrdiff_t strpos = glyph->charpos;
if (tem)
{
cursor = glyph;
string_from_text_prop = true;
}
for ( ;
(row->reversed_p ? glyph > stop : glyph < stop)
&& EQ (glyph->object, str);
glyph += incr)
{
Lisp_Object cprop;
ptrdiff_t gpos = glyph->charpos;
cprop = Fget_char_property (make_fixnum (gpos),
Qcursor,
glyph->object);
if (!NILP (cprop))
{
cursor = glyph;
break;
}
if (tem && glyph->charpos < strpos)
{
strpos = glyph->charpos;
cursor = glyph;
}
}
if (tem == pt_old
|| (tem - pt_old > 0 && tem < pos_after))
goto compute_x;
}
if (tem)
pos = tem + 1; /* don't find previous instances */
}
/* This string is not what we want; skip all of the
glyphs that came from it. */
while ((row->reversed_p ? glyph > stop : glyph < stop)
&& EQ (glyph->object, str))
glyph += incr;
}
else
glyph += incr;
}
/* If we reached the end of the line, and END was from a string,
the cursor is not on this line. */
if (cursor == NULL
&& (row->reversed_p ? glyph <= end : glyph >= end)
&& (row->reversed_p ? end > glyphs_end : end < glyphs_end)
&& STRINGP (end->object)
&& row->continued_p)
return false;
}
/* A truncated row may not include PT among its character positions.
Setting the cursor inside the scroll margin will trigger
recalculation of hscroll in hscroll_window_tree. But if a
display string covers point, defer to the string-handling
code below to figure this out. */
else if (row->truncated_on_left_p && pt_old < bpos_min)
{
cursor = glyph_before;
x = -1;
}
else if ((row->truncated_on_right_p && pt_old > bpos_max)
/* Zero-width characters produce no glyphs. */
|| (!empty_line_p
&& (row->reversed_p
? glyph_after > glyphs_end
: glyph_after < glyphs_end)))
{
cursor = glyph_after;
x = -1;
}
}
compute_x:
if (cursor != NULL)
glyph = cursor;
else if (glyph == glyphs_end
&& pos_before == pos_after
&& STRINGP ((row->reversed_p
? row->glyphs[TEXT_AREA] + row->used[TEXT_AREA] - 1
: row->glyphs[TEXT_AREA])->object))
{
/* If all the glyphs of this row came from strings, put the
cursor on the first glyph of the row. This avoids having the
cursor outside of the text area in this very rare and hard
use case. */
glyph =
row->reversed_p
? row->glyphs[TEXT_AREA] + row->used[TEXT_AREA] - 1
: row->glyphs[TEXT_AREA];
}
if (x < 0)
{
struct glyph *g;
/* Need to compute x that corresponds to GLYPH. */
for (g = row->glyphs[TEXT_AREA], x = row->x; g < glyph; g++)
{
if (g >= row->glyphs[TEXT_AREA] + row->used[TEXT_AREA])
emacs_abort ();
x += g->pixel_width;
}
}
/* ROW could be part of a continued line, which, under bidi
reordering, might have other rows whose start and end charpos
occlude point. Only set w->cursor if we found a better
approximation to the cursor position than we have from previously
examined candidate rows belonging to the same continued line. */
if (/* We already have a candidate row. */
w->cursor.vpos >= 0
/* That candidate is not the row we are processing. */
&& MATRIX_ROW (matrix, w->cursor.vpos) != row
/* Make sure cursor.vpos specifies a row whose start and end
charpos occlude point, and it is valid candidate for being a
cursor-row. This is because some callers of this function
leave cursor.vpos at the row where the cursor was displayed
during the last redisplay cycle. */
&& MATRIX_ROW_START_CHARPOS (MATRIX_ROW (matrix, w->cursor.vpos)) <= pt_old
&& pt_old <= MATRIX_ROW_END_CHARPOS (MATRIX_ROW (matrix, w->cursor.vpos))
&& cursor_row_p (MATRIX_ROW (matrix, w->cursor.vpos)))
{
struct glyph *g1
= MATRIX_ROW_GLYPH_START (matrix, w->cursor.vpos) + w->cursor.hpos;
/* Don't consider glyphs that are outside TEXT_AREA. */
if (!(row->reversed_p ? glyph > glyphs_end : glyph < glyphs_end))
return false;
/* Keep the candidate whose buffer position is the closest to
point or has the `cursor' property. */
if (/* Previous candidate is a glyph in TEXT_AREA of that row. */
w->cursor.hpos >= 0
&& w->cursor.hpos < MATRIX_ROW_USED (matrix, w->cursor.vpos)
&& ((BUFFERP (g1->object)
&& (g1->charpos == pt_old /* An exact match always wins. */
|| (BUFFERP (glyph->object)
&& eabs (g1->charpos - pt_old)
< eabs (glyph->charpos - pt_old))))
/* Previous candidate is a glyph from a string that has
a non-nil `cursor' property. */
|| (STRINGP (g1->object)
&& (!NILP (Fget_char_property (make_fixnum (g1->charpos),
Qcursor, g1->object))
/* Previous candidate is from the same display
string as this one, and the display string
came from a text property. */
|| (EQ (g1->object, glyph->object)
&& string_from_text_prop)
/* this candidate is from newline and its
position is not an exact match */
|| (NILP (glyph->object)
&& glyph->charpos != pt_old)))))
return false;
/* If this candidate gives an exact match, use that. */
if (!((BUFFERP (glyph->object) && glyph->charpos == pt_old)
/* If this candidate is a glyph created for the
terminating newline of a line, and point is on that
newline, it wins because it's an exact match. */
|| (!row->continued_p
&& NILP (glyph->object)
&& glyph->charpos == 0
&& pt_old == MATRIX_ROW_END_CHARPOS (row) - 1))
/* Otherwise, keep the candidate that comes from a row
spanning less buffer positions. This may win when one or
both candidate positions are on glyphs that came from
display strings, for which we cannot compare buffer
positions. */
&& MATRIX_ROW_END_CHARPOS (MATRIX_ROW (matrix, w->cursor.vpos))
- MATRIX_ROW_START_CHARPOS (MATRIX_ROW (matrix, w->cursor.vpos))
< MATRIX_ROW_END_CHARPOS (row) - MATRIX_ROW_START_CHARPOS (row))
return false;
}
w->cursor.hpos = glyph - row->glyphs[TEXT_AREA];
w->cursor.x = x;
w->cursor.vpos = MATRIX_ROW_VPOS (row, matrix) + dvpos;
w->cursor.y = row->y + dy;
if (w == XWINDOW (selected_window))
{
if (!row->continued_p
&& !MATRIX_ROW_CONTINUATION_LINE_P (row)
&& row->x == 0)
{
this_line_buffer = XBUFFER (w->contents);
CHARPOS (this_line_start_pos)
= MATRIX_ROW_START_CHARPOS (row) + delta;
BYTEPOS (this_line_start_pos)
= MATRIX_ROW_START_BYTEPOS (row) + delta_bytes;
CHARPOS (this_line_end_pos)
= Z - (MATRIX_ROW_END_CHARPOS (row) + delta);
BYTEPOS (this_line_end_pos)
= Z_BYTE - (MATRIX_ROW_END_BYTEPOS (row) + delta_bytes);
this_line_y = w->cursor.y;
this_line_pixel_height = row->height;
this_line_vpos = w->cursor.vpos;
this_line_start_x = row->x;
}
else
CHARPOS (this_line_start_pos) = 0;
}
return true;
}
/* Run window scroll functions, if any, for WINDOW with new window
start STARTP. Sets the window start of WINDOW to that position.
We assume that the window's buffer is really current. */
static struct text_pos
run_window_scroll_functions (Lisp_Object window, struct text_pos startp)
{
struct window *w = XWINDOW (window);
SET_MARKER_FROM_TEXT_POS (w->start, startp);
eassert (current_buffer == XBUFFER (w->contents));
if (!NILP (Vwindow_scroll_functions))
{
safe_run_hooks_2
(Qwindow_scroll_functions, window, make_fixnum (CHARPOS (startp)));
SET_TEXT_POS_FROM_MARKER (startp, w->start);
/* In case the hook functions switch buffers. */
set_buffer_internal (XBUFFER (w->contents));
}
return startp;
}
/* Make sure the line containing the cursor is fully visible.
A value of true means there is nothing to be done.
(Either the line is fully visible, or it cannot be made so,
or we cannot tell.)
If FORCE_P, return false even if partial visible cursor row
is higher than window.
If CURRENT_MATRIX_P, use the information from the
window's current glyph matrix; otherwise use the desired glyph
matrix.
If JUST_TEST_USER_PREFERENCE_P, just test what the value of
make-cursor-row-fully-visible requires, don't test the actual
cursor position. The assumption is that in that case the caller
performs the necessary testing of the cursor position.
A value of false means the caller should do scrolling
as if point had gone off the screen. */
static bool
cursor_row_fully_visible_p (struct window *w, bool force_p,
bool current_matrix_p,
bool just_test_user_preference_p)
{
struct glyph_matrix *matrix;
struct glyph_row *row;
int window_height;
Lisp_Object mclfv_p =
buffer_local_value (Qmake_cursor_line_fully_visible, w->contents);
/* If no local binding, use the global value. */
if (BASE_EQ (mclfv_p, Qunbound))
mclfv_p = Vmake_cursor_line_fully_visible;
/* Follow mode sets the variable to a Lisp function in buffers that
are under Follow mode. */
if (FUNCTIONP (mclfv_p))
{
Lisp_Object window;
XSETWINDOW (window, w);
/* Implementation note: if the function we call here signals an
error, we will NOT scroll when the cursor is partially-visible. */
Lisp_Object val = dsafe_call1 (mclfv_p, window);
if (NILP (val))
return true;
else if (just_test_user_preference_p)
return false;
}
else if (NILP (mclfv_p))
return true;
else if (just_test_user_preference_p)
return false;
/* It's not always possible to find the cursor, e.g, when a window
is full of overlay strings. Don't do anything in that case. */
if (w->cursor.vpos < 0)
return true;
matrix = current_matrix_p ? w->current_matrix : w->desired_matrix;
row = MATRIX_ROW (matrix, w->cursor.vpos);
/* If the cursor row is not partially visible, there's nothing to do. */
if (!MATRIX_ROW_PARTIALLY_VISIBLE_P (w, row))
return true;
/* If the row the cursor is in is taller than the window's height,
it's not clear what to do, so do nothing. */
window_height = window_box_height (w);
if (row->height >= window_height)
{
if (!force_p || MINI_WINDOW_P (w)
|| w->vscroll || w->cursor.vpos == 0)
return true;
}
return false;
}
/* Try scrolling PT into view in window WINDOW. JUST_THIS_ONE_P
means only WINDOW is redisplayed in redisplay_internal.
TEMP_SCROLL_STEP has the same meaning as emacs_scroll_step, and is used
in redisplay_window to bring a partially visible line into view in
the case that only the cursor has moved.
LAST_LINE_MISFIT should be true if we're scrolling because the
last screen line's vertical height extends past the end of the screen.
Value is
1 if scrolling succeeded
0 if scrolling didn't find point.
-1 if new fonts have been loaded so that we must interrupt
redisplay, adjust glyph matrices, and try again. */
enum
{
SCROLLING_SUCCESS = 1,
SCROLLING_FAILED = 0,
SCROLLING_NEED_LARGER_MATRICES = -1
};
/* If scroll-conservatively is more than this, never recenter.
If you change this, don't forget to update the doc string of
`scroll-conservatively' and the Emacs manual. */
#define SCROLL_LIMIT 100
/* The freshness of the w->base_line_number cache is only ensured at every
redisplay cycle, so the cache can be used only if there's been
no relevant changes to the buffer since the last redisplay. */
#define BASE_LINE_NUMBER_VALID_P(w) \
(eassert (current_buffer == XBUFFER ((w)->contents)), \
!current_buffer->clip_changed \
&& BEG_UNCHANGED >= (w)->base_line_pos)
static int
try_scrolling (Lisp_Object window, bool just_this_one_p,
intmax_t arg_scroll_conservatively, intmax_t scroll_step,
bool temp_scroll_step, bool last_line_misfit)
{
struct window *w = XWINDOW (window);
struct text_pos pos, startp;
struct it it;
int this_scroll_margin, scroll_max, rc, height;
int dy = 0, amount_to_scroll = 0;
bool scroll_down_p = false;
int extra_scroll_margin_lines = last_line_misfit;
Lisp_Object aggressive;
/* We will never try scrolling more than this number of lines. */
int scroll_limit = SCROLL_LIMIT;
int frame_line_height = default_line_pixel_height (w);
#ifdef GLYPH_DEBUG
debug_method_add (w, "try_scrolling");
#endif
SET_TEXT_POS_FROM_MARKER (startp, w->start);
this_scroll_margin = window_scroll_margin (w, MARGIN_IN_PIXELS);
/* Force arg_scroll_conservatively to have a reasonable value, to
avoid scrolling too far away with slow move_it_* functions. Note
that the user can supply scroll-conservatively equal to
`most-positive-fixnum', which can be larger than INT_MAX. */
if (arg_scroll_conservatively > scroll_limit)
{
arg_scroll_conservatively = scroll_limit + 1;
scroll_max = scroll_limit * frame_line_height;
}
else if (0 < scroll_step || 0 < arg_scroll_conservatively || temp_scroll_step)
/* Compute how much we should try to scroll maximally to bring
point into view. */
{
intmax_t scroll_lines_max
= max (scroll_step, max (arg_scroll_conservatively, temp_scroll_step));
int scroll_lines = clip_to_bounds (0, scroll_lines_max, 1000000);
scroll_max = scroll_lines * frame_line_height;
}
else if (NUMBERP (BVAR (current_buffer, scroll_down_aggressively))
|| NUMBERP (BVAR (current_buffer, scroll_up_aggressively)))
/* We're trying to scroll because of aggressive scrolling but no
scroll_step is set. Choose an arbitrary one. */
scroll_max = 10 * frame_line_height;
else
scroll_max = 0;
too_near_end:
/* Decide whether to scroll down. */
if (PT > CHARPOS (startp))
{
int scroll_margin_y;
/* Compute the pixel ypos of the scroll margin, then move IT to
either that ypos or PT, whichever comes first. */
start_display (&it, w, startp);
scroll_margin_y = it.last_visible_y - partial_line_height (&it)
- this_scroll_margin
- frame_line_height * extra_scroll_margin_lines;
move_it_to (&it, PT, -1, scroll_margin_y - 1, -1,
(MOVE_TO_POS | MOVE_TO_Y));
if (PT > CHARPOS (it.current.pos))
{
int y0 = line_bottom_y (&it);
/* Compute how many pixels below window bottom to stop searching
for PT. This avoids costly search for PT that is far away if
the user limited scrolling by a small number of lines, but
always finds PT if scroll_conservatively is set to a large
number, such as most-positive-fixnum. */
int slack = max (scroll_max, 10 * frame_line_height);
int y_to_move = it.last_visible_y + slack;
/* Compute the distance from the scroll margin to PT or to
the scroll limit, whichever comes first. This should
include the height of the cursor line, to make that line
fully visible. */
move_it_to (&it, PT, -1, y_to_move,
-1, MOVE_TO_POS | MOVE_TO_Y);
dy = line_bottom_y (&it) - y0;
if (dy > scroll_max)
return SCROLLING_FAILED;
if (dy > 0)
scroll_down_p = true;
}
else if (PT == IT_CHARPOS (it)
&& IT_CHARPOS (it) < ZV
&& it.method == GET_FROM_STRING
&& arg_scroll_conservatively > scroll_limit
&& it.current_x == 0)
{
enum move_it_result skip;
int y1 = it.current_y;
int vpos;
/* A before-string that includes newlines and is displayed
on the last visible screen line could fail us under
scroll-conservatively > 100, because we will be unable to
position the cursor on that last visible line. Try to
recover by finding the first screen line that has some
glyphs coming from the buffer text. */
do {
skip = move_it_in_display_line_to (&it, ZV, -1, MOVE_TO_POS);
if (skip != MOVE_NEWLINE_OR_CR
|| IT_CHARPOS (it) != PT
|| it.method == GET_FROM_BUFFER)
break;
vpos = it.vpos;
move_it_to (&it, -1, -1, -1, vpos + 1, MOVE_TO_VPOS);
} while (it.vpos > vpos);
dy = it.current_y - y1;
if (dy > scroll_max)
return SCROLLING_FAILED;
if (dy > 0)
scroll_down_p = true;
}
}
if (scroll_down_p)
{
/* Point is in or below the bottom scroll margin, so move the
window start down. If scrolling conservatively, move it just
enough down to make point visible. If scroll_step is set,
move it down by scroll_step. */
if (arg_scroll_conservatively)
amount_to_scroll
= min (max (dy, frame_line_height),
frame_line_height * arg_scroll_conservatively);
else if (scroll_step || temp_scroll_step)
amount_to_scroll = scroll_max;
else
{
aggressive = BVAR (current_buffer, scroll_up_aggressively);
height = WINDOW_BOX_TEXT_HEIGHT (w);
if (NUMBERP (aggressive))
{
double float_amount = XFLOATINT (aggressive) * height;
int aggressive_scroll = float_amount;
if (aggressive_scroll == 0 && float_amount > 0)
aggressive_scroll = 1;
/* Don't let point enter the scroll margin near top of
the window. This could happen if the value of
scroll_up_aggressively is too large and there are
non-zero margins, because scroll_up_aggressively
means put point that fraction of window height
_from_the_bottom_margin_. */
if (aggressive_scroll + 2 * this_scroll_margin > height)
aggressive_scroll = height - 2 * this_scroll_margin;
amount_to_scroll = dy + aggressive_scroll;
}
}
if (amount_to_scroll <= 0)
return SCROLLING_FAILED;
start_display (&it, w, startp);
if (arg_scroll_conservatively <= scroll_limit)
move_it_vertically (&it, amount_to_scroll);
else
{
/* Extra precision for users who set scroll-conservatively
to a large number: make sure the amount we scroll
the window start is never less than amount_to_scroll,
which was computed as distance from window bottom to
point. This matters when lines at window top and lines
below window bottom have different height. */
struct it it1;
void *it1data = NULL;
/* We use a temporary it1 because line_bottom_y can modify
its argument, if it moves one line down; see there. */
int start_y;
SAVE_IT (it1, it, it1data);
start_y = line_bottom_y (&it1);
do {
RESTORE_IT (&it, &it, it1data);
move_it_by_lines (&it, 1);
SAVE_IT (it1, it, it1data);
} while (IT_CHARPOS (it) < ZV
&& line_bottom_y (&it1) - start_y < amount_to_scroll);
bidi_unshelve_cache (it1data, true);
}
/* If STARTP is unchanged, move it down another screen line. */
if (IT_CHARPOS (it) == CHARPOS (startp))
move_it_by_lines (&it, 1);
startp = it.current.pos;
}
else
{
struct text_pos scroll_margin_pos = startp;
int y_offset = 0;
/* See if point is inside the scroll margin at the top of the
window. */
if (this_scroll_margin)
{
int y_start;
start_display (&it, w, startp);
y_start = it.current_y;
move_it_vertically (&it, this_scroll_margin);
scroll_margin_pos = it.current.pos;
/* If we didn't move enough before hitting ZV, request
additional amount of scroll, to move point out of the
scroll margin. */
if (IT_CHARPOS (it) == ZV
&& it.current_y - y_start < this_scroll_margin)
y_offset = this_scroll_margin - (it.current_y - y_start);
}
if (PT < CHARPOS (scroll_margin_pos))
{
/* Point is in the scroll margin at the top of the window or
above what is displayed in the window. */
int y0, y_to_move;
/* Compute the vertical distance from PT to the scroll
margin position. Move as far as scroll_max allows, or
one screenful, or 10 screen lines, whichever is largest.
Give up if distance is greater than scroll_max or if we
didn't reach the scroll margin position. */
SET_TEXT_POS (pos, PT, PT_BYTE);
start_display (&it, w, pos);
y0 = it.current_y;
y_to_move = max (it.last_visible_y,
max (scroll_max, 10 * frame_line_height));
move_it_to (&it, CHARPOS (scroll_margin_pos), 0,
y_to_move, -1,
MOVE_TO_POS | MOVE_TO_X | MOVE_TO_Y);
dy = it.current_y - y0;
if (dy > scroll_max
|| IT_CHARPOS (it) < CHARPOS (scroll_margin_pos))
return SCROLLING_FAILED;
/* Additional scroll for when ZV was too close to point. */
dy += y_offset;
/* Compute new window start. */
start_display (&it, w, startp);
if (arg_scroll_conservatively)
amount_to_scroll
= min (max (dy, frame_line_height),
frame_line_height * arg_scroll_conservatively);
else if (scroll_step || temp_scroll_step)
amount_to_scroll = scroll_max;
else
{
aggressive = BVAR (current_buffer, scroll_down_aggressively);
height = WINDOW_BOX_TEXT_HEIGHT (w);
if (NUMBERP (aggressive))
{
double float_amount = XFLOATINT (aggressive) * height;
int aggressive_scroll = float_amount;
if (aggressive_scroll == 0 && float_amount > 0)
aggressive_scroll = 1;
/* Don't let point enter the scroll margin near
bottom of the window, if the value of
scroll_down_aggressively happens to be too
large. */
if (aggressive_scroll + 2 * this_scroll_margin > height)
aggressive_scroll = height - 2 * this_scroll_margin;
amount_to_scroll = dy + aggressive_scroll;
}
}
if (amount_to_scroll <= 0)
return SCROLLING_FAILED;
move_it_vertically_backward (&it, amount_to_scroll);
startp = it.current.pos;
}
}
/* Run window scroll functions. */
startp = run_window_scroll_functions (window, startp);
/* Display the window. Give up if new fonts are loaded, or if point
doesn't appear. */
if (!try_window (window, startp, 0))
rc = SCROLLING_NEED_LARGER_MATRICES;
else if (w->cursor.vpos < 0)
{
clear_glyph_matrix (w->desired_matrix);
rc = SCROLLING_FAILED;
}
else
{
/* Maybe forget recorded base line for line number display. */
/* FIXME: Why do we need this? `try_scrolling` can only be called from
`redisplay_window` which should have flushed this cache already when
needed. */
if (!BASE_LINE_NUMBER_VALID_P (w))
w->base_line_number = 0;
/* If cursor ends up on a partially visible line,
treat that as being off the bottom of the screen. */
if (! cursor_row_fully_visible_p (w, extra_scroll_margin_lines <= 1,
false, false)
/* It's possible that the cursor is on the first line of the
buffer, which is partially obscured due to a vscroll
(Bug#7537). In that case, avoid looping forever. */
&& extra_scroll_margin_lines < w->desired_matrix->nrows - 1)
{
clear_glyph_matrix (w->desired_matrix);
++extra_scroll_margin_lines;
goto too_near_end;
}
rc = SCROLLING_SUCCESS;
}
return rc;
}
/* Compute a suitable window start for window W if display of W starts
on a continuation line. Value is true if a new window start
was computed.
The new window start will be computed, based on W's width, starting
from the start of the continued line. It is the start of the
screen line with the minimum distance from the old start W->start,
which is still before point (otherwise point will definitely not
be visible in the window). */
static bool
compute_window_start_on_continuation_line (struct window *w)
{
struct text_pos pos, start_pos, pos_before_pt;
bool window_start_changed_p = false;
SET_TEXT_POS_FROM_MARKER (start_pos, w->start);
/* If window start is on a continuation line... Window start may be
< BEGV in case there's invisible text at the start of the
buffer (M-x rmail, for example). */
if (CHARPOS (start_pos) > BEGV
&& FETCH_BYTE (BYTEPOS (start_pos) - 1) != '\n')
{
struct it it;
struct glyph_row *row;
/* Handle the case that the window start is out of range. */
if (CHARPOS (start_pos) < BEGV)
SET_TEXT_POS (start_pos, BEGV, BEGV_BYTE);
else if (CHARPOS (start_pos) > ZV)
SET_TEXT_POS (start_pos, ZV, ZV_BYTE);
/* Find the start of the continued line. This should be fast
because find_newline is fast (newline cache). */
row = w->desired_matrix->rows + window_wants_tab_line (w)
+ window_wants_header_line (w);
init_iterator (&it, w, CHARPOS (start_pos), BYTEPOS (start_pos),
row, DEFAULT_FACE_ID);
reseat_at_previous_visible_line_start (&it);
/* Give up (by not using the code in the block below) and say it
takes too much time to compute a new window start, if the
line start is "too far" away from the window start. Also,
give up if the line start is after point, as in that case
point will not be visible with any window start we
compute. */
if (IT_CHARPOS (it) <= PT
&& (CHARPOS (start_pos) - IT_CHARPOS (it)
/* PXW: Do we need upper bounds here? */
< WINDOW_TOTAL_LINES (w) * WINDOW_TOTAL_COLS (w)))
{
int min_distance, distance;
/* Move forward by display lines to find the new window
start. If window width was enlarged, the new start can
be expected to be > the old start. If window width was
decreased, the new window start will be < the old start.
So, we're looking for the display line start with the
minimum distance from the old window start. */
pos_before_pt = pos = it.current.pos;
min_distance = DISP_INFINITY;
while ((distance = eabs (CHARPOS (start_pos) - IT_CHARPOS (it))),
distance < min_distance)
{
min_distance = distance;
if (CHARPOS (pos) <= PT)
pos_before_pt = pos;
pos = it.current.pos;
if (it.line_wrap == WORD_WRAP)
{
/* Under WORD_WRAP, move_it_by_lines is likely to
overshoot and stop not at the first, but the
second character from the left margin. So in
that case, we need a more tight control on the X
coordinate of the iterator than move_it_by_lines
promises in its contract. The method is to first
go to the last (rightmost) visible character of a
line, then move to the leftmost character on the
next line in a separate call. */
move_it_to (&it, ZV, it.last_visible_x, it.current_y, -1,
MOVE_TO_POS | MOVE_TO_X | MOVE_TO_Y);
move_it_to (&it, ZV, 0,
it.current_y + it.max_ascent + it.max_descent, -1,
MOVE_TO_POS | MOVE_TO_X | MOVE_TO_Y);
}
else
move_it_by_lines (&it, 1);
}
/* It makes very little sense to make the new window start
after point, as point won't be visible. If that's what
the loop above finds, fall back on the candidate before
or at point that is closest to the old window start. */
if (CHARPOS (pos) > PT)
pos = pos_before_pt;
/* Set the window start there. */
SET_MARKER_FROM_TEXT_POS (w->start, pos);
window_start_changed_p = true;
}
}
return window_start_changed_p;
}
/* Try cursor movement in case text has not changed in window WINDOW,
with window start STARTP. Value is
CURSOR_MOVEMENT_SUCCESS if successful
CURSOR_MOVEMENT_CANNOT_BE_USED if this method cannot be used
CURSOR_MOVEMENT_MUST_SCROLL if we know we have to scroll the
display. *SCROLL_STEP is set to true, under certain circumstances, if
we want to scroll as if scroll-step were set to 1. See the code.
CURSOR_MOVEMENT_NEED_LARGER_MATRICES if we need larger matrices, in
which case we have to abort this redisplay, and adjust matrices
first. */
enum
{
CURSOR_MOVEMENT_SUCCESS,
CURSOR_MOVEMENT_CANNOT_BE_USED,
CURSOR_MOVEMENT_MUST_SCROLL,
CURSOR_MOVEMENT_NEED_LARGER_MATRICES
};
static int
try_cursor_movement (Lisp_Object window, struct text_pos startp,
bool *scroll_step)
{
struct window *w = XWINDOW (window);
struct frame *f = XFRAME (w->frame);
int rc = CURSOR_MOVEMENT_CANNOT_BE_USED;
#ifdef GLYPH_DEBUG
if (inhibit_try_cursor_movement)
return rc;
#endif
/* Previously, there was a check for Lisp integer in the
if-statement below. Now, this field is converted to
ptrdiff_t, thus zero means invalid position in a buffer. */
eassert (w->last_point > 0);
/* Likewise there was a check whether window_end_vpos is nil or larger
than the window. Now window_end_vpos is int and so never nil, but
let's leave eassert to check whether it fits in the window. */
eassert (!w->window_end_valid
|| w->window_end_vpos < w->current_matrix->nrows);
/* Handle case where text has not changed, only point, and it has
not moved off the frame. */
if (/* Point may be in this window. */
PT >= CHARPOS (startp)
/* Selective display hasn't changed. */
&& !current_buffer->clip_changed
/* Function force-mode-line-update is used to force a thorough
redisplay. It sets either windows_or_buffers_changed or
update_mode_lines. So don't take a shortcut here for these
cases. */
&& !update_mode_lines
&& !windows_or_buffers_changed
&& !f->cursor_type_changed
&& NILP (Vshow_trailing_whitespace)
/* When display-line-numbers is in relative mode, moving point
requires redrawing the entire window. */
&& !EQ (Vdisplay_line_numbers, Qrelative)
&& !EQ (Vdisplay_line_numbers, Qvisual)
/* When the current line number should be displayed in a
distinct face, moving point cannot be handled in optimized
way as below. */
&& !(!NILP (Vdisplay_line_numbers)
&& NILP (Finternal_lisp_face_equal_p (Qline_number,
Qline_number_current_line,
w->frame)))
/* This code is not used for mini-buffer for the sake of the case
of redisplaying to replace an echo area message; since in
that case the mini-buffer contents per se are usually
unchanged. This code is of no real use in the mini-buffer
since the handling of this_line_start_pos, etc., in redisplay
handles the same cases. */
&& !EQ (window, minibuf_window)
/* When overlay arrow is shown in current buffer, point movement
is no longer "simple", as it typically causes the overlay
arrow to move as well. */
&& !overlay_arrow_in_current_buffer_p ())
{
int this_scroll_margin, top_scroll_margin;
struct glyph_row *row = NULL;
#ifdef GLYPH_DEBUG
debug_method_add (w, "cursor movement");
#endif
this_scroll_margin = window_scroll_margin (w, MARGIN_IN_PIXELS);
top_scroll_margin = this_scroll_margin;
if (window_wants_tab_line (w))
top_scroll_margin += CURRENT_TAB_LINE_HEIGHT (w);
if (window_wants_header_line (w))
top_scroll_margin += CURRENT_HEADER_LINE_HEIGHT (w);
/* Start with the row the cursor was displayed during the last
not paused redisplay. Give up if that row is not valid. */
if (w->last_cursor_vpos < 0
|| w->last_cursor_vpos >= w->current_matrix->nrows)
rc = CURSOR_MOVEMENT_MUST_SCROLL;
else
{
row = MATRIX_ROW (w->current_matrix, w->last_cursor_vpos);
/* Skip the tab-line and header-line rows, if any. */
if (row->tab_line_p)
++row;
if (row->mode_line_p)
++row;
if (!row->enabled_p)
rc = CURSOR_MOVEMENT_MUST_SCROLL;
}
if (rc == CURSOR_MOVEMENT_CANNOT_BE_USED)
{
bool scroll_p = false, must_scroll = false;
int last_y = window_text_bottom_y (w) - this_scroll_margin;
if (PT > w->last_point)
{
/* Point has moved forward. */
while (MATRIX_ROW_END_CHARPOS (row) < PT
&& MATRIX_ROW_BOTTOM_Y (row) < last_y)
{
eassert (row->enabled_p);
++row;
}
/* If the end position of a row equals the start
position of the next row, and PT is at that position,
we would rather display cursor in the next line. */
while (MATRIX_ROW_BOTTOM_Y (row) < last_y
&& MATRIX_ROW_END_CHARPOS (row) == PT
&& row < MATRIX_MODE_LINE_ROW (w->current_matrix)
&& MATRIX_ROW_START_CHARPOS (row+1) >= PT
&& !cursor_row_p (row))
++row;
/* If within the scroll margin, scroll. Note that
MATRIX_ROW_BOTTOM_Y gives the pixel position at which
the next line would be drawn, and that
this_scroll_margin can be zero. */
if (MATRIX_ROW_BOTTOM_Y (row) > last_y
|| PT > MATRIX_ROW_END_CHARPOS (row)
/* Line is completely visible last line in window
and PT is to be set in the next line. */
|| (MATRIX_ROW_BOTTOM_Y (row) == last_y
&& PT == MATRIX_ROW_END_CHARPOS (row)
&& !row->ends_at_zv_p
&& !MATRIX_ROW_ENDS_IN_MIDDLE_OF_CHAR_P (row)))
scroll_p = true;
}
else if (PT < w->last_point)
{
/* Cursor has to be moved backward. Note that PT >=
CHARPOS (startp) because of the outer if-statement. */
struct glyph_row *row0 = row;
while (!row->mode_line_p
&& (MATRIX_ROW_START_CHARPOS (row) > PT
|| (MATRIX_ROW_START_CHARPOS (row) == PT
&& (MATRIX_ROW_STARTS_IN_MIDDLE_OF_CHAR_P (row)
|| (/* STARTS_IN_MIDDLE_OF_STRING_P (row) */
row > w->current_matrix->rows
&& (row-1)->ends_in_newline_from_string_p))))
&& (row->y > top_scroll_margin
|| CHARPOS (startp) == BEGV))
{
eassert (row->enabled_p);
--row;
}
/* With bidi-reordered rows we can have buffer positions
_decrease_ when going down by rows. If we haven't
found our row in the loop above, give it another try
now going in the other direction from the original row. */
if (!(MATRIX_ROW_START_CHARPOS (row) <= PT
&& PT <= MATRIX_ROW_END_CHARPOS (row))
&& row0->continued_p)
{
row = row0;
while (MATRIX_ROW_START_CHARPOS (row) > PT
&& MATRIX_ROW_BOTTOM_Y (row) < last_y)
{
eassert (row->enabled_p);
++row;
}
}
/* Consider the following case: Window starts at BEGV,
there is invisible, intangible text at BEGV, so that
display starts at some point START > BEGV. It can
happen that we are called with PT somewhere between
BEGV and START. Try to handle that case. */
if (row < w->current_matrix->rows
|| row->mode_line_p)
{
row = w->current_matrix->rows;
/* Skip the tab-line and header-line rows, if any. */
if (row->tab_line_p)
++row;
if (row->mode_line_p)
++row;
}
/* Due to newlines in overlay strings, we may have to
skip forward over overlay strings. */
while (MATRIX_ROW_BOTTOM_Y (row) < last_y
&& MATRIX_ROW_END_CHARPOS (row) == PT
&& !cursor_row_p (row))
++row;
/* If within the scroll margin, either the top one or
the bottom one, scroll. */
if ((row->y < top_scroll_margin
&& CHARPOS (startp) != BEGV)
|| MATRIX_ROW_BOTTOM_Y (row) > last_y
|| PT > MATRIX_ROW_END_CHARPOS (row)
|| (MATRIX_ROW_BOTTOM_Y (row) == last_y
&& PT == MATRIX_ROW_END_CHARPOS (row)
&& !row->ends_at_zv_p
&& !MATRIX_ROW_ENDS_IN_MIDDLE_OF_CHAR_P (row)))
scroll_p = true;
}
else
{
/* Cursor did not move. So don't scroll even if cursor line
is partially visible, as it was so before. */
rc = CURSOR_MOVEMENT_SUCCESS;
}
if ((PT < MATRIX_ROW_START_CHARPOS (row)
&& (row == MATRIX_FIRST_TEXT_ROW (w->current_matrix)
/* Don't give up if point is inside invisible text
at the beginning of its glyph row. */
|| (MATRIX_ROW_END_CHARPOS (row-1)
== MATRIX_ROW_START_CHARPOS (row))))
|| PT > MATRIX_ROW_END_CHARPOS (row))
{
/* if PT is not in the glyph row, give up. */
rc = CURSOR_MOVEMENT_MUST_SCROLL;
must_scroll = true;
}
else if (rc != CURSOR_MOVEMENT_SUCCESS
&& !NILP (BVAR (XBUFFER (w->contents), bidi_display_reordering)))
{
struct glyph_row *row1;
/* If rows are bidi-reordered and point moved, back up
until we find a row that does not belong to a
continuation line. This is because we must consider
all rows of a continued line as candidates for the
new cursor positioning, since row start and end
positions change non-linearly with vertical position
in such rows. */
/* FIXME: Revisit this when glyph ``spilling'' in
continuation lines' rows is implemented for
bidi-reordered rows. */
for (row1 = MATRIX_FIRST_TEXT_ROW (w->current_matrix);
MATRIX_ROW_CONTINUATION_LINE_P (row);
--row)
{
/* If we hit the beginning of the displayed portion
without finding the first row of a continued
line, give up. */
if (row <= row1)
{
rc = CURSOR_MOVEMENT_MUST_SCROLL;
break;
}
eassert (row->enabled_p);
}
}
if (must_scroll)
;
else if (rc != CURSOR_MOVEMENT_SUCCESS
&& MATRIX_ROW_PARTIALLY_VISIBLE_P (w, row)
/* Make sure this isn't a header line nor a tab-line by
any chance, since then MATRIX_ROW_PARTIALLY_VISIBLE_P
might yield true. */
&& !row->mode_line_p
&& !cursor_row_fully_visible_p (w, true, true, true))
{
if (PT == MATRIX_ROW_END_CHARPOS (row)
&& !row->ends_at_zv_p
&& !MATRIX_ROW_ENDS_IN_MIDDLE_OF_CHAR_P (row))
rc = CURSOR_MOVEMENT_MUST_SCROLL;
else if (row->height > window_box_height (w))
{
/* If we end up in a partially visible line, let's
make it fully visible, except when it's taller
than the window, in which case we can't do much
about it. */
*scroll_step = true;
rc = CURSOR_MOVEMENT_MUST_SCROLL;
}
else
{
set_cursor_from_row (w, row, w->current_matrix, 0, 0, 0, 0);
if (!cursor_row_fully_visible_p (w, false, true, false))
rc = CURSOR_MOVEMENT_MUST_SCROLL;
else
rc = CURSOR_MOVEMENT_SUCCESS;
}
}
else if (scroll_p)
rc = CURSOR_MOVEMENT_MUST_SCROLL;
else if (rc != CURSOR_MOVEMENT_SUCCESS
&& !NILP (BVAR (XBUFFER (w->contents), bidi_display_reordering)))
{
/* With bidi-reordered rows, there could be more than
one candidate row whose start and end positions
occlude point. We need to let set_cursor_from_row
find the best candidate. */
/* FIXME: Revisit this when glyph ``spilling'' in
continuation lines' rows is implemented for
bidi-reordered rows. */
bool rv = false;
bool pt_invis = false;
Lisp_Object val = get_char_property_and_overlay (make_fixnum (PT),
Qinvisible,
Qnil, NULL);
if (TEXT_PROP_MEANS_INVISIBLE (val) != 0)
pt_invis = true;
do
{
bool at_zv_p = false, exact_match_p = false;
/* If point is in invisible text, we cannot assume
it must be after row's start position, since the
row could have invisible text at its beginning
where point is located. */
if ((pt_invis || MATRIX_ROW_START_CHARPOS (row) <= PT)
&& PT <= MATRIX_ROW_END_CHARPOS (row)
&& cursor_row_p (row))
rv |= set_cursor_from_row (w, row, w->current_matrix,
0, 0, 0, 0);
/* As soon as we've found the exact match for point,
or the first suitable row whose ends_at_zv_p flag
is set, we are done. */
if (rv)
{
at_zv_p = MATRIX_ROW (w->current_matrix,
w->cursor.vpos)->ends_at_zv_p;
if (!at_zv_p
&& w->cursor.hpos >= 0
&& w->cursor.hpos < MATRIX_ROW_USED (w->current_matrix,
w->cursor.vpos))
{
struct glyph_row *candidate =
MATRIX_ROW (w->current_matrix, w->cursor.vpos);
struct glyph *g =
candidate->glyphs[TEXT_AREA] + w->cursor.hpos;
ptrdiff_t endpos = MATRIX_ROW_END_CHARPOS (candidate);
exact_match_p =
(BUFFERP (g->object) && g->charpos == PT)
|| (NILP (g->object)
&& (g->charpos == PT
|| (g->charpos == 0 && endpos - 1 == PT)));
/* Perhaps the point position is inside
invisible text? In that case, we trust
'set_cursor_from_row' to do its job and
find the best position for the cursor. */
if (!exact_match_p && pt_invis)
exact_match_p = true;
}
if (at_zv_p || exact_match_p)
{
rc = CURSOR_MOVEMENT_SUCCESS;
break;
}
}
if (MATRIX_ROW_BOTTOM_Y (row) == last_y)
break;
++row;
}
while (((MATRIX_ROW_CONTINUATION_LINE_P (row)
|| row->continued_p)
&& MATRIX_ROW_BOTTOM_Y (row) <= last_y)
|| (MATRIX_ROW_START_CHARPOS (row) == PT
&& MATRIX_ROW_BOTTOM_Y (row) < last_y));
/* If we didn't find any candidate rows, or exited the
loop before all the candidates were examined, signal
to the caller that this method failed. */
if (rc != CURSOR_MOVEMENT_SUCCESS
&& !(rv
&& !MATRIX_ROW_CONTINUATION_LINE_P (row)
&& !row->continued_p))
rc = CURSOR_MOVEMENT_MUST_SCROLL;
else if (rv)
rc = CURSOR_MOVEMENT_SUCCESS;
}
else
{
do
{
if (set_cursor_from_row (w, row, w->current_matrix, 0, 0, 0, 0))
{
rc = CURSOR_MOVEMENT_SUCCESS;
break;
}
++row;
}
while (MATRIX_ROW_BOTTOM_Y (row) < last_y
&& MATRIX_ROW_START_CHARPOS (row) == PT
&& cursor_row_p (row));
}
}
}
return rc;
}
void
set_vertical_scroll_bar (struct window *w)
{
ptrdiff_t start, end, whole;
/* Calculate the start and end positions for the current window.
At some point, it would be nice to choose between scrollbars
which reflect the whole buffer size, with special markers
indicating narrowing, and scrollbars which reflect only the
visible region.
Note that mini-buffers sometimes aren't displaying any text. */
if (!MINI_WINDOW_P (w)
|| (w == XWINDOW (minibuf_window)
&& NILP (echo_area_buffer[0])))
{
struct buffer *buf = XBUFFER (w->contents);
whole = BUF_ZV (buf) - BUF_BEGV (buf);
start = marker_position (w->start) - BUF_BEGV (buf);
end = BUF_Z (buf) - w->window_end_pos - BUF_BEGV (buf);
/* If w->window_end_pos cannot be trusted, recompute it "the
hard way". But don't bother to be too accurate when
long-line shortcuts are in effect. */
if (!w->window_end_valid && !buf->long_line_optimizations_p)
{
struct it it;
struct text_pos start_pos;
struct buffer *obuf = current_buffer;
/* When we display the scroll bar of a mini-window,
current_buffer is not guaranteed to be the mini-window's
buffer, see the beginning of redisplay_window. */
set_buffer_internal_1 (XBUFFER (w->contents));
SET_TEXT_POS_FROM_MARKER (start_pos, w->start);
start_display (&it, w, start_pos);
move_it_to (&it, -1, it.last_visible_x, window_box_height (w), -1,
MOVE_TO_X | MOVE_TO_Y);
end -= (BUF_Z (buf) - IT_CHARPOS (it)) - w->window_end_pos;
set_buffer_internal_1 (obuf);
}
if (end < start)
end = start;
if (whole < (end - start))
whole = end - start;
}
else
start = end = whole = 0;
/* Indicate what this scroll bar ought to be displaying now. */
if (FRAME_TERMINAL (XFRAME (w->frame))->set_vertical_scroll_bar_hook)
(*FRAME_TERMINAL (XFRAME (w->frame))->set_vertical_scroll_bar_hook)
(w, end - start, whole, start);
}
void
set_horizontal_scroll_bar (struct window *w)
{
int start, end, whole, portion;
if (!MINI_WINDOW_P (w) || EQ (w->horizontal_scroll_bar_type, Qbottom))
{
struct buffer *b = XBUFFER (w->contents);
struct buffer *old_buffer = NULL;
struct it it;
struct text_pos startp;
if (b != current_buffer)
{
old_buffer = current_buffer;
set_buffer_internal (b);
}
SET_TEXT_POS_FROM_MARKER (startp, w->start);
start_display (&it, w, startp);
it.last_visible_x = INT_MAX;
whole = move_it_to (&it, -1, INT_MAX, window_box_height (w), -1,
MOVE_TO_X | MOVE_TO_Y);
/* whole = move_it_to (&it, w->window_end_pos, INT_MAX,
window_box_height (w), -1,
MOVE_TO_POS | MOVE_TO_X | MOVE_TO_Y); */
start = w->hscroll * FRAME_COLUMN_WIDTH (WINDOW_XFRAME (w));
end = start + window_box_width (w, TEXT_AREA);
portion = end - start;
/* After enlarging a horizontally scrolled window such that it
gets at least as wide as the text it contains, make sure that
the thumb doesn't fill the entire scroll bar so we can still
drag it back to see the entire text. */
whole = max (whole, end);
if (it.bidi_p)
{
Lisp_Object pdir;
pdir = Fcurrent_bidi_paragraph_direction (Qnil);
if (EQ (pdir, Qright_to_left))
{
start = whole - end;
end = start + portion;
}
}
if (old_buffer)
set_buffer_internal (old_buffer);
}
else
start = end = whole = portion = 0;
w->hscroll_whole = whole;
/* Indicate what this scroll bar ought to be displaying now. */
if (FRAME_TERMINAL (XFRAME (w->frame))->set_horizontal_scroll_bar_hook)
(*FRAME_TERMINAL (XFRAME (w->frame))->set_horizontal_scroll_bar_hook)
(w, portion, whole, start);
}
/* Subroutine of redisplay_window, to determine whether a window-start
point STARTP of WINDOW should be rejected. */
static bool
window_start_acceptable_p (Lisp_Object window, ptrdiff_t startp)
{
if (!make_window_start_visible)
return true;
struct window *w = XWINDOW (window);
struct frame *f = XFRAME (w->frame);
Lisp_Object startpos = make_fixnum (startp);
Lisp_Object invprop, disp_spec;
struct text_pos ignored;
/* Is STARTP in invisible text? */
if ((invprop = Fget_char_property (startpos, Qinvisible, window)),
TEXT_PROP_MEANS_INVISIBLE (invprop) != 0)
return false;
/* Is STARTP covered by a replacing 'display' property? */
if (!NILP (disp_spec = Fget_char_property (startpos, Qdisplay, window))
&& handle_display_spec (NULL, disp_spec, Qnil, Qnil, &ignored, startp,
FRAME_WINDOW_P (f)) > 0)
return false;
return true;
}
DEFUN ("long-line-optimizations-p", Flong_line_optimizations_p, Slong_line_optimizations_p,
0, 0, 0,
doc: /* Return non-nil if long-line optimizations are in effect in current buffer.
See `long-line-threshold' and `large-hscroll-threshold' for what these
optimizations mean and when they are in effect. */)
(void)
{
return current_buffer->long_line_optimizations_p ? Qt : Qnil;
}
/* Redisplay leaf window WINDOW. JUST_THIS_ONE_P means only
selected_window is redisplayed.
We can return without actually redisplaying the window if fonts has been
changed on window's frame. In that case, redisplay_internal will retry.
As one of the important parts of redisplaying a window, we need to
decide whether the previous window-start position (stored in the
window's w->start marker position) is still valid, and if it isn't,
recompute it. Some details about that:
. The previous window-start could be in a continuation line, in
which case we need to recompute it when the window width
changes. See compute_window_start_on_continuation_line and its
call below.
. The text that changed since last redisplay could include the
previous window-start position. In that case, we try to salvage
what we can from the current glyph matrix by calling
try_scrolling, which see.
. Some Emacs command could force us to use a specific window-start
position by setting the window's force_start flag, or gently
propose doing that by setting the window's optional_new_start
flag. In these cases, we try using the specified start point if
that succeeds (i.e. the window desired matrix is successfully
recomputed, and point location is within the window). In case
of optional_new_start, we first check if the specified start
position is feasible, i.e. if it will allow point to be
displayed in the window. If using the specified start point
fails, e.g., if new fonts are needed to be loaded, we abort the
redisplay cycle and leave it up to the next cycle to figure out
things.
. Note that the window's force_start flag is sometimes set by
redisplay itself, when it decides that the previous window start
point is fine and should be kept. Search for "goto force_start"
below to see the details. Like the values of window-start
specified outside of redisplay, these internally-deduced values
are tested for feasibility, and ignored if found to be
unfeasible.
. Note that the function try_window, used to completely redisplay
a window, accepts the window's start point as its argument.
This is used several times in the redisplay code to control
where the window start will be, according to user options such
as scroll-conservatively, and also to ensure the screen line
showing point will be fully (as opposed to partially) visible on
display. */
static void
redisplay_window (Lisp_Object window, bool just_this_one_p)
{
struct window *w = XWINDOW (window);
struct frame *f = XFRAME (w->frame);
struct buffer *buffer = XBUFFER (w->contents);
struct buffer *old = current_buffer;
struct text_pos lpoint, opoint, startp;
bool update_mode_line;
int tem;
struct it it;
/* Record it now because it's overwritten. */
bool current_matrix_up_to_date_p = false;
bool used_current_matrix_p = false;
bool temp_scroll_step = false;
specpdl_ref count = SPECPDL_INDEX ();
int rc;
int centering_position = -1;
bool last_line_misfit = false;
ptrdiff_t beg_unchanged, end_unchanged;
int frame_line_height, margin;
bool use_desired_matrix;
void *itdata = NULL;
modiff_count lchars_modiff = CHARS_MODIFF, ochars_modiff = lchars_modiff;
SET_TEXT_POS (lpoint, PT, PT_BYTE);
opoint = lpoint;
#ifdef GLYPH_DEBUG
*w->desired_matrix->method = 0;
#endif
if (!just_this_one_p && needs_no_redisplay (w))
return;
/* Make sure that both W's markers are valid. */
eassert (XMARKER (w->start)->buffer == buffer);
eassert (XMARKER (w->pointm)->buffer == buffer);
reconsider_clip_changes (w);
frame_line_height = default_line_pixel_height (w);
margin = window_scroll_margin (w, MARGIN_IN_LINES);
/* Has the mode line to be updated? */
update_mode_line = (w->update_mode_line
|| update_mode_lines
|| buffer->clip_changed
|| buffer->prevent_redisplay_optimizations_p);
if (!just_this_one_p)
/* If `just_this_one_p' is set, we apparently set must_be_updated_p more
cleverly elsewhere. */
w->must_be_updated_p = true;
if (MINI_WINDOW_P (w))
{
if (w == XWINDOW (echo_area_window)
&& !NILP (echo_area_buffer[0]))
{
if (update_mode_line)
/* We may have to update a tty frame's menu bar or a
tool-bar. Example `M-x C-h C-h C-g'. */
goto finish_menu_bars;
else
/* We've already displayed the echo area glyphs in this window. */
goto finish_scroll_bars;
}
else if ((w != XWINDOW (minibuf_window)
|| minibuf_level == 0)
/* When buffer is nonempty, redisplay window normally. */
&& BUF_Z (XBUFFER (w->contents)) == BUF_BEG (XBUFFER (w->contents))
/* Quail displays non-mini buffers in minibuffer window.
In that case, redisplay the window normally. */
&& !NILP (Fmemq (w->contents, Vminibuffer_list)))
{
/* W is a mini-buffer window, but it's not active, so clear
it. */
int yb = window_text_bottom_y (w);
struct glyph_row *row;
int y;
for (y = 0, row = w->desired_matrix->rows;
y < yb;
y += row->height, ++row)
blank_row (w, row, y);
goto finish_scroll_bars;
}
else if (minibuf_level >= 1)
{
/* We could have a message produced by set-minibuffer-message
displayed in the mini-window as an overlay, so resize the
mini-window if needed. */
resize_mini_window (w, false);
}
clear_glyph_matrix (w->desired_matrix);
}
/* Otherwise set up data on this window; select its buffer and point
value. */
/* Really select the buffer, for the sake of buffer-local
variables. */
set_buffer_internal_1 (XBUFFER (w->contents));
current_matrix_up_to_date_p
= (w->window_end_valid
&& !current_buffer->clip_changed
&& !current_buffer->prevent_redisplay_optimizations_p
&& !window_outdated (w)
&& !composition_break_at_point
&& !hscrolling_current_line_p (w));
beg_unchanged = BEG_UNCHANGED;
end_unchanged = END_UNCHANGED;
SET_TEXT_POS (opoint, PT, PT_BYTE);
ochars_modiff = CHARS_MODIFF;
specbind (Qinhibit_point_motion_hooks, Qt);
/* When windows_or_buffers_changed is non-zero, we can't rely
on the window end being valid, so set it to zero there. */
if (windows_or_buffers_changed)
{
/* If window starts on a continuation line, maybe adjust the
window start in case the window's width changed. */
if (XMARKER (w->start)->buffer == current_buffer)
compute_window_start_on_continuation_line (w);
w->window_end_valid = false;
/* If so, we also can't rely on current matrix
and should not fool try_cursor_movement below. */
current_matrix_up_to_date_p = false;
}
/* Some sanity checks. */
CHECK_WINDOW_END (w);
if (Z == Z_BYTE && CHARPOS (opoint) != BYTEPOS (opoint))
emacs_abort ();
if (BYTEPOS (opoint) < CHARPOS (opoint))
emacs_abort ();
if (mode_line_update_needed (w))
update_mode_line = true;
/* Point refers normally to the selected window. For any other
window, set up appropriate value. */
if (!EQ (window, selected_window))
{
ptrdiff_t new_pt = marker_position (w->pointm);
ptrdiff_t new_pt_byte = marker_byte_position (w->pointm);
if (new_pt < BEGV)
{
new_pt = BEGV;
new_pt_byte = BEGV_BYTE;
set_marker_both (w->pointm, Qnil, BEGV, BEGV_BYTE);
}
else if (new_pt > (ZV - 1))
{
new_pt = ZV;
new_pt_byte = ZV_BYTE;
set_marker_both (w->pointm, Qnil, ZV, ZV_BYTE);
}
/* We don't use SET_PT so that the point-motion hooks don't run. */
TEMP_SET_PT_BOTH (new_pt, new_pt_byte);
}
/* If any of the character widths specified in the display table
have changed, invalidate the width run cache. It's true that
this may be a bit late to catch such changes, but the rest of
redisplay goes (non-fatally) haywire when the display table is
changed, so why should we worry about doing any better? */
if (current_buffer->width_run_cache
|| (current_buffer->base_buffer
&& current_buffer->base_buffer->width_run_cache))
{
struct Lisp_Char_Table *disptab = buffer_display_table ();
if (! disptab_matches_widthtab
(disptab, XVECTOR (BVAR (current_buffer, width_table))))
{
struct buffer *buf = current_buffer;
if (buf->base_buffer)
buf = buf->base_buffer;
invalidate_region_cache (buf, buf->width_run_cache, BEG, Z);
recompute_width_table (current_buffer, disptab);
}
}
/* Check whether the buffer to be displayed contains long lines. */
if (!NILP (Vlong_line_threshold)
&& !current_buffer->long_line_optimizations_p
&& (CHARS_MODIFF - UNCHANGED_MODIFIED > 8
|| current_buffer->clip_changed))
{
ptrdiff_t cur, next, found, max = 0, threshold;
threshold = XFIXNUM (Vlong_line_threshold);
for (cur = BEGV; cur < ZV; cur = next)
{
next = find_newline1 (cur, CHAR_TO_BYTE (cur), 0, -1, 1,
&found, NULL, true);
if (next - cur > max) max = next - cur;
if (!found || max > threshold) break;
}
if (max > threshold)
current_buffer->long_line_optimizations_p = true;
}
/* If window-start is screwed up, choose a new one. */
if (XMARKER (w->start)->buffer != current_buffer)
goto recenter;
SET_TEXT_POS_FROM_MARKER (startp, w->start);
/* If someone specified a new starting point but did not insist,
check whether it can be used. */
if ((w->optional_new_start || window_frozen_p (w))
&& CHARPOS (startp) >= BEGV
&& CHARPOS (startp) <= ZV)
{
ptrdiff_t it_charpos;
w->optional_new_start = false;
if (!w->force_start)
{
start_display (&it, w, startp);
move_it_to (&it, PT, 0, it.last_visible_y, -1,
MOVE_TO_POS | MOVE_TO_X | MOVE_TO_Y);
/* Record IT's position now, since line_bottom_y might
change that. */
it_charpos = IT_CHARPOS (it);
/* Make sure we set the force_start flag only if the cursor
row will be fully visible. Otherwise, the code under
force_start label below will try to move point back into
view, which is not what the code which sets
optional_new_start wants. */
if (it.current_y == 0 || line_bottom_y (&it) < it.last_visible_y)
{
if (it_charpos == PT)
w->force_start = true;
/* IT may overshoot PT if text at PT is invisible. */
else if (it_charpos > PT && CHARPOS (startp) <= PT)
w->force_start = true;
#ifdef GLYPH_DEBUG
if (w->force_start)
{
if (window_frozen_p (w))
debug_method_add (w, "set force_start from frozen window start");
else
debug_method_add (w, "set force_start from optional_new_start");
}
#endif
}
}
}
if (!BASE_LINE_NUMBER_VALID_P (w))
/* Forget any recorded base line for line number display. */
w->base_line_number = 0;
force_start:
/* Handle case where place to start displaying has been specified,
unless the specified location is outside the accessible range. */
if (w->force_start)
{
/* We set this later on if we have to adjust point. */
int new_vpos = -1;
w->force_start = false;
/* The vscroll should be preserved in this case, since
`pixel-scroll-precision-mode' must continue working normally
when a mini-window is resized. (bug#55312) */
if (!w->preserve_vscroll_p && !window_frozen_p (w))
w->vscroll = 0;
w->preserve_vscroll_p = false;
w->window_end_valid = false;
/* Redisplay the mode line. Select the buffer properly for that.
Also, run the hook window-scroll-functions
because we have scrolled. */
/* Note, we do this after clearing force_start because
if there's an error, it is better to forget about force_start
than to get into an infinite loop calling the hook functions
and having them get more errors. */
if (!update_mode_line
|| ! NILP (Vwindow_scroll_functions))
{
update_mode_line = true;
w->update_mode_line = true;
startp = run_window_scroll_functions (window, startp);
}
if (CHARPOS (startp) < BEGV)
SET_TEXT_POS (startp, BEGV, BEGV_BYTE);
else if (CHARPOS (startp) > ZV)
SET_TEXT_POS (startp, ZV, ZV_BYTE);
/* Reject the specified start location if it is invisible, and
the buffer wants it always visible. */
if (!window_start_acceptable_p (window, CHARPOS (startp)))
goto ignore_start;
/* Redisplay, then check if cursor has been set during the
redisplay. Give up if new fonts were loaded. */
/* We used to issue a CHECK_MARGINS argument to try_window here,
but this causes scrolling to fail when point begins inside
the scroll margin (bug#148) -- cyd */
clear_glyph_matrix (w->desired_matrix);
if (!try_window (window, startp, 0))
{
w->force_start = true;
clear_glyph_matrix (w->desired_matrix);
goto need_larger_matrices;
}
if (w->cursor.vpos < 0)
{
/* If point does not appear, try to move point so it does
appear. The desired matrix has been built above, so we
can use it here. First see if point is in invisible
text, and if so, move it to the first visible buffer
position past that. */
struct glyph_row *r = NULL;
Lisp_Object invprop =
get_char_property_and_overlay (make_fixnum (PT), Qinvisible,
Qnil, NULL);
if (TEXT_PROP_MEANS_INVISIBLE (invprop) != 0)
{
ptrdiff_t alt_pt;
Lisp_Object invprop_end =
Fnext_single_char_property_change (make_fixnum (PT), Qinvisible,
Qnil, Qnil);
if (FIXNATP (invprop_end))
alt_pt = XFIXNAT (invprop_end);
else
alt_pt = ZV;
r = row_containing_pos (w, alt_pt, w->desired_matrix->rows,
NULL, 0);
}
if (r)
new_vpos = MATRIX_ROW_BOTTOM_Y (r);
else /* Give up and just move to the middle of the window. */
new_vpos = window_box_height (w) / 2;
}
if (!cursor_row_fully_visible_p (w, false, false, false))
{
/* Point does appear, but on a line partly visible at end of window.
Move it back to a fully-visible line. */
new_vpos = window_box_height (w);
/* But if window_box_height suggests a Y coordinate that is
not less than we already have, that line will clearly not
be fully visible, so give up and scroll the display.
This can happen when the default face uses a font whose
dimensions are different from the frame's default
font. */
if (new_vpos >= w->cursor.y)
{
w->cursor.vpos = -1;
clear_glyph_matrix (w->desired_matrix);
goto try_to_scroll;
}
}
else if (w->cursor.vpos >= 0)
{
/* Some people insist on not letting point enter the scroll
margin, even though this part handles windows that didn't
scroll at all. */
int pixel_margin = margin * frame_line_height;
bool tab_line = window_wants_tab_line (w);
bool header_line = window_wants_header_line (w);
/* Note: We add an extra FRAME_LINE_HEIGHT, because the loop
below, which finds the row to move point to, advances by
the Y coordinate of the _next_ row, see the definition of
MATRIX_ROW_BOTTOM_Y. */
if (w->cursor.vpos < margin + tab_line + header_line)
{
w->cursor.vpos = -1;
clear_glyph_matrix (w->desired_matrix);
goto try_to_scroll;
}
else
{
int window_height = window_box_height (w);
if (tab_line)
window_height += CURRENT_TAB_LINE_HEIGHT (w);
if (header_line)
window_height += CURRENT_HEADER_LINE_HEIGHT (w);
if (w->cursor.y >= window_height - pixel_margin)
{
w->cursor.vpos = -1;
clear_glyph_matrix (w->desired_matrix);
goto try_to_scroll;
}
}
}
/* If we need to move point for either of the above reasons,
now actually do it. */
if (new_vpos >= 0)
{
struct glyph_row *row;
row = MATRIX_FIRST_TEXT_ROW (w->desired_matrix);
while (MATRIX_ROW_BOTTOM_Y (row) < new_vpos
&& !row->ends_at_zv_p)
++row;
TEMP_SET_PT_BOTH (MATRIX_ROW_START_CHARPOS (row),
MATRIX_ROW_START_BYTEPOS (row));
if (w != XWINDOW (selected_window))
set_marker_both (w->pointm, Qnil, PT, PT_BYTE);
else if (current_buffer == old)
SET_TEXT_POS (lpoint, PT, PT_BYTE);
set_cursor_from_row (w, row, w->desired_matrix, 0, 0, 0, 0);
/* Re-run pre-redisplay-function so it can update the region
according to the new position of point. */
/* Other than the cursor, w's redisplay is done so we can set its
redisplay to false. Also the buffer's redisplay can be set to
false, since propagate_buffer_redisplay should have already
propagated its info to `w' anyway. */
w->redisplay = false;
XBUFFER (w->contents)->text->redisplay = false;
dsafe_calln (true, Vpre_redisplay_function, Fcons (window, Qnil));
if (w->redisplay || XBUFFER (w->contents)->text->redisplay
|| ((EQ (Vdisplay_line_numbers, Qrelative)
|| EQ (Vdisplay_line_numbers, Qvisual))
&& row != MATRIX_FIRST_TEXT_ROW (w->desired_matrix)))
{
/* Either pre-redisplay-function made changes (e.g. move
the region), or we moved point in a window that is
under display-line-numbers = relative mode. We need
another round of redisplay. */
clear_glyph_matrix (w->desired_matrix);
if (!try_window (window, startp, 0))
goto need_larger_matrices;
}
}
if (w->cursor.vpos < 0
|| !cursor_row_fully_visible_p (w, false, false, false))
{
clear_glyph_matrix (w->desired_matrix);
goto try_to_scroll;
}
#ifdef GLYPH_DEBUG
debug_method_add (w, "forced window start");
#endif
goto done;
}
ignore_start:
/* Handle case where text has not changed, only point, and it has
not moved off the frame, and we are not retrying after hscroll.
(current_matrix_up_to_date_p is true when retrying.) */
if (current_matrix_up_to_date_p
&& (rc = try_cursor_movement (window, startp, &temp_scroll_step),
rc != CURSOR_MOVEMENT_CANNOT_BE_USED))
{
switch (rc)
{
case CURSOR_MOVEMENT_SUCCESS:
used_current_matrix_p = true;
goto done;
case CURSOR_MOVEMENT_MUST_SCROLL:
goto try_to_scroll;
default:
emacs_abort ();
}
}
/* If current starting point was originally the beginning of a line
but no longer is, or if the starting point is invisible but the
buffer wants it always visible, find a new starting point. */
else if (w->start_at_line_beg
&& ((CHARPOS (startp) > BEGV
&& FETCH_BYTE (BYTEPOS (startp) - 1) != '\n')
|| (CHARPOS (startp) >= BEGV
&& CHARPOS (startp) <= ZV
&& !window_start_acceptable_p (window, CHARPOS (startp)))))
{
#ifdef GLYPH_DEBUG
debug_method_add (w, "recenter 1");
#endif
goto recenter;
}
/* Try scrolling with try_window_id. Value is > 0 if update has
been done, it is -1 if we know that the same window start will
not work. It is 0 if unsuccessful for some other reason. */
else if ((tem = try_window_id (w)) != 0)
{
#ifdef GLYPH_DEBUG
debug_method_add (w, "try_window_id %d", tem);
#endif
if (f->fonts_changed)
goto need_larger_matrices;
if (tem > 0)
goto done;
/* Otherwise try_window_id has returned -1 which means that we
don't want the alternative below this comment to execute. */
}
else if (CHARPOS (startp) >= BEGV
&& CHARPOS (startp) <= ZV
&& PT >= CHARPOS (startp)
&& (CHARPOS (startp) < ZV
/* Avoid starting at end of buffer. */
|| CHARPOS (startp) == BEGV
|| !window_outdated (w)))
{
int d1, d2, d5, d6;
int rtop, rbot;
/* If first window line is a continuation line, and window start
is inside the modified region, but the first change is before
current window start, we must select a new window start.
However, if this is the result of a down-mouse event (e.g. by
extending the mouse-drag-overlay), we don't want to select a
new window start, since that would change the position under
the mouse, resulting in an unwanted mouse-movement rather
than a simple mouse-click. */
if (!w->start_at_line_beg
&& NILP (track_mouse)
&& CHARPOS (startp) > BEGV
&& CHARPOS (startp) > BEG + beg_unchanged
&& CHARPOS (startp) <= Z - end_unchanged
/* Even if w->start_at_line_beg is nil, a new window may
start at a line_beg, since that's how set_buffer_window
sets it. So, we need to check the return value of
compute_window_start_on_continuation_line. (See also
bug#197). */
&& XMARKER (w->start)->buffer == current_buffer
&& compute_window_start_on_continuation_line (w)
/* It doesn't make sense to force the window start like we
do at label force_start if it is already known that point
will not be fully visible in the resulting window, because
doing so will move point from its correct position
instead of scrolling the window to bring point into view.
See bug#9324. */
&& pos_visible_p (w, PT, &d1, &d2, &rtop, &rbot, &d5, &d6)
/* A very tall row could need more than the window height,
in which case we accept that it is partially visible. */
&& (rtop != 0) == (rbot != 0))
{
w->force_start = true;
SET_TEXT_POS_FROM_MARKER (startp, w->start);
#ifdef GLYPH_DEBUG
debug_method_add (w, "recomputed window start in continuation line");
#endif
goto force_start;
}
/* Don't use the same window-start if it is invisible or covered
by a replacing 'display' property and the buffer requested
the window-start to be always visible. */
if (!window_start_acceptable_p (window, CHARPOS (startp)))
{
#ifdef GLYPH_DEBUG
debug_method_add (w, "recenter 2");
#endif
goto recenter;
}
#ifdef GLYPH_DEBUG
debug_method_add (w, "same window start");
#endif
/* Try to redisplay starting at same place as before.
If point has not moved off frame, accept the results. */
if (!current_matrix_up_to_date_p
/* Don't use try_window_reusing_current_matrix in this case
because a window scroll function can have changed the
buffer. */
|| !NILP (Vwindow_scroll_functions)
|| MINI_WINDOW_P (w)
|| !(used_current_matrix_p
= try_window_reusing_current_matrix (w)))
{
IF_DEBUG (debug_method_add (w, "1"));
clear_glyph_matrix (w->desired_matrix);
if (try_window (window, startp, TRY_WINDOW_CHECK_MARGINS) < 0)
/* -1 means we need to scroll.
0 means we need new matrices, but fonts_changed
is set in that case, so we will detect it below. */
goto try_to_scroll;
}
if (f->fonts_changed)
goto need_larger_matrices;
if (w->cursor.vpos >= 0)
{
if (!cursor_row_fully_visible_p (w, true, false, false))
{
clear_glyph_matrix (w->desired_matrix);
last_line_misfit = true;
}
/* Drop through and scroll. */
else
goto done;
}
else
clear_glyph_matrix (w->desired_matrix);
}
try_to_scroll:
/* Redisplay the mode line. Select the buffer properly for that. */
if (!update_mode_line)
{
update_mode_line = true;
w->update_mode_line = true;
}
/* Try to scroll by specified few lines. */
if ((0 < scroll_conservatively
/* FIXME: the option is supposed to affect minibuffers, but we
test MINI_WINDOW_P, which can also catch uses of
mini-windows for displaying the echo area. Do we need to
distinguish these two use cases? */
|| (scroll_minibuffer_conservatively && MINI_WINDOW_P (w))
|| 0 < emacs_scroll_step
|| temp_scroll_step
|| NUMBERP (BVAR (current_buffer, scroll_up_aggressively))
|| NUMBERP (BVAR (current_buffer, scroll_down_aggressively)))
&& CHARPOS (startp) >= BEGV
&& CHARPOS (startp) <= ZV)
{
/* The function returns -1 if new fonts were loaded, 1 if
successful, 0 if not successful. */
int ss = try_scrolling (window, just_this_one_p,
((scroll_minibuffer_conservatively
&& MINI_WINDOW_P (w))
? SCROLL_LIMIT + 1
: scroll_conservatively),
emacs_scroll_step,
temp_scroll_step, last_line_misfit);
switch (ss)
{
case SCROLLING_SUCCESS:
goto done;
case SCROLLING_NEED_LARGER_MATRICES:
goto need_larger_matrices;
case SCROLLING_FAILED:
break;
default:
emacs_abort ();
}
}
/* Finally, just choose a place to start which positions point
according to user preferences. */
recenter:
#ifdef GLYPH_DEBUG
debug_method_add (w, "recenter");
#endif
/* Determine the window start relative to point. */
init_iterator (&it, w, PT, PT_BYTE, NULL, DEFAULT_FACE_ID);
it.current_y = it.last_visible_y;
if (centering_position < 0)
{
ptrdiff_t margin_pos = CHARPOS (startp);
Lisp_Object aggressive;
bool scrolling_up;
/* If there is a scroll margin at the top of the window, find
its character position. */
if (margin
/* Cannot call start_display if startp is not in the
accessible region of the buffer. This can happen when we
have just switched to a different buffer and/or changed
its restriction. In that case, startp is initialized to
the character position 1 (BEGV) because we did not yet
have chance to display the buffer even once. */
&& BEGV <= CHARPOS (startp) && CHARPOS (startp) <= ZV)
{
struct it it1;
void *it1data = NULL;
SAVE_IT (it1, it, it1data);
start_display (&it1, w, startp);
move_it_vertically (&it1, margin * frame_line_height);
margin_pos = IT_CHARPOS (it1);
RESTORE_IT (&it, &it, it1data);
}
scrolling_up = PT > margin_pos;
aggressive =
scrolling_up
? BVAR (current_buffer, scroll_up_aggressively)
: BVAR (current_buffer, scroll_down_aggressively);
if (!MINI_WINDOW_P (w)
&& (scroll_conservatively > SCROLL_LIMIT || NUMBERP (aggressive)))
{
int pt_offset = 0;
/* Setting scroll-conservatively overrides
scroll-*-aggressively. */
if (!scroll_conservatively && NUMBERP (aggressive))
{
double float_amount = XFLOATINT (aggressive);
pt_offset = float_amount * WINDOW_BOX_TEXT_HEIGHT (w);
if (pt_offset == 0 && float_amount > 0)
pt_offset = 1;
if (pt_offset && margin > 0)
margin -= 1;
}
/* Compute how much to move the window start backward from
point so that point will be displayed where the user
wants it. */
if (scrolling_up)
{
centering_position = it.last_visible_y;
if (pt_offset)
centering_position -= pt_offset;
centering_position -=
(frame_line_height * (1 + margin + last_line_misfit)
+ WINDOW_TAB_LINE_HEIGHT (w) + WINDOW_HEADER_LINE_HEIGHT (w));
/* Don't let point enter the scroll margin near top of
the window. */
if (centering_position < margin * frame_line_height)
centering_position = margin * frame_line_height;
}
else
centering_position = margin * frame_line_height + pt_offset;
}
else
/* Set the window start half the height of the window backward
from point. */
centering_position = window_box_height (w) / 2;
}
if (current_buffer->long_line_optimizations_p
&& it.line_wrap == TRUNCATE)
{
/* For very long and truncated lines, go back using a simplified
method, which ignored any inaccuracies due to line-height
differences, display properties/overlays, etc. */
int nlines = centering_position / frame_line_height;
while (nlines-- && IT_CHARPOS (it) > BEGV)
back_to_previous_visible_line_start (&it);
reseat_1 (&it, it.current.pos, true);
}
else
move_it_vertically_backward (&it, centering_position);
eassert (IT_CHARPOS (it) >= BEGV);
/* The function move_it_vertically_backward may move over more
than the specified y-distance. If it->w is small, e.g. a
mini-buffer window, we may end up in front of the window's
display area. Start displaying at the start of the line
containing PT in this case. */
if (it.current_y <= 0)
{
init_iterator (&it, w, PT, PT_BYTE, NULL, DEFAULT_FACE_ID);
move_it_vertically_backward (&it, 0);
it.current_y = 0;
}
it.current_x = it.wrap_prefix_width = it.hpos = 0;
/* Set the window start position here explicitly, to avoid an
infinite loop in case the functions in window-scroll-functions
get errors. */
set_marker_both (w->start, Qnil, IT_CHARPOS (it), IT_BYTEPOS (it));
/* Run scroll hooks. */
startp = run_window_scroll_functions (window, it.current.pos);
/* We invoke try_window and try_window_reusing_current_matrix below,
and they manipulate the bidi cache. Save and restore the cache
state of our iterator, so we could continue using it after that. */
itdata = bidi_shelve_cache ();
/* Redisplay the window. */
use_desired_matrix = false;
if (!current_matrix_up_to_date_p
|| windows_or_buffers_changed
|| f->cursor_type_changed
/* Don't use try_window_reusing_current_matrix in this case
because it can have changed the buffer. */
|| !NILP (Vwindow_scroll_functions)
|| !just_this_one_p
|| MINI_WINDOW_P (w)
|| !(used_current_matrix_p
= try_window_reusing_current_matrix (w)))
use_desired_matrix = (try_window (window, startp, 0) == 1);
bidi_unshelve_cache (itdata, false);
/* If new fonts have been loaded (due to fontsets), give up. We
have to start a new redisplay since we need to re-adjust glyph
matrices. */
if (f->fonts_changed)
goto need_larger_matrices;
/* If cursor did not appear assume that the middle of the window is
in the first line of the window. Do it again with the next line.
(Imagine a window of height 100, displaying two lines of height
60. Moving back 50 from it->last_visible_y will end in the first
line.) */
if (w->cursor.vpos < 0)
{
if (w->window_end_valid && PT >= Z - w->window_end_pos)
{
clear_glyph_matrix (w->desired_matrix);
move_it_by_lines (&it, 1);
try_window (window, it.current.pos, 0);
}
else if (PT < IT_CHARPOS (it))
{
clear_glyph_matrix (w->desired_matrix);
move_it_by_lines (&it, -1);
try_window (window, it.current.pos, 0);
}
else if (scroll_conservatively > SCROLL_LIMIT
&& (it.method == GET_FROM_STRING
|| overlay_touches_p (IT_CHARPOS (it)))
&& IT_CHARPOS (it) < ZV)
{
/* If the window starts with a before-string that spans more
than one screen line, using that position to display the
window might fail to bring point into the view, because
start_display will always start by displaying the string,
whereas the code above determines where to set w->start
by the buffer position of the place where it takes screen
coordinates. Try to recover by finding the next screen
line that displays buffer text. */
ptrdiff_t pos0 = IT_CHARPOS (it);
clear_glyph_matrix (w->desired_matrix);
do {
move_it_by_lines (&it, 1);
} while (IT_CHARPOS (it) == pos0);
try_window (window, it.current.pos, 0);
}
else
{
/* Not much we can do about it. */
}
}
/* Consider the following case: Window starts at BEGV, there is
invisible, intangible text at BEGV, so that display starts at
some point START > BEGV. It can happen that we are called with
PT somewhere between BEGV and START. Try to handle that case,
and similar ones. */
if (w->cursor.vpos < 0)
{
/* Prefer the desired matrix to the current matrix, if possible,
in the fallback calculations below. This is because using
the current matrix might completely goof, e.g. if its first
row is after point. */
struct glyph_matrix *matrix =
use_desired_matrix ? w->desired_matrix : w->current_matrix;
/* First, try locating the proper glyph row for PT. */
struct glyph_row *row =
row_containing_pos (w, PT, matrix->rows, NULL, 0);
/* Sometimes point is at the beginning of invisible text that is
before the 1st character displayed in the row. In that case,
row_containing_pos fails to find the row, because no glyphs
with appropriate buffer positions are present in the row.
Therefore, we next try to find the row which shows the 1st
position after the invisible text. */
if (!row)
{
Lisp_Object val =
get_char_property_and_overlay (make_fixnum (PT), Qinvisible,
Qnil, NULL);
if (TEXT_PROP_MEANS_INVISIBLE (val) != 0)
{
ptrdiff_t alt_pos;
Lisp_Object invis_end =
Fnext_single_char_property_change (make_fixnum (PT), Qinvisible,
Qnil, Qnil);
if (FIXNATP (invis_end))
alt_pos = XFIXNAT (invis_end);
else
alt_pos = ZV;
row = row_containing_pos (w, alt_pos, matrix->rows, NULL, 0);
}
}
/* Finally, fall back on the first row of the window after the
tab-line and header line (if any). This is slightly better
than not displaying the cursor at all. */
if (!row)
{
row = matrix->rows;
/* Skip the tab-line and header-line rows, if any. */
if (row->tab_line_p)
++row;
if (row->mode_line_p)
++row;
}
set_cursor_from_row (w, row, matrix, 0, 0, 0, 0);
}
if (!cursor_row_fully_visible_p (w, false, false, false))
{
/* If vscroll is enabled, disable it and try again. */
if (w->vscroll)
{
w->vscroll = 0;
clear_glyph_matrix (w->desired_matrix);
goto recenter;
}
/* Users who set scroll-conservatively to a large number want
point just above/below the scroll margin. If we ended up
with point's row partially visible, move the window start to
make that row fully visible and out of the margin. */
if (scroll_conservatively > SCROLL_LIMIT)
{
int window_total_lines
= WINDOW_TOTAL_LINES (w) * FRAME_LINE_HEIGHT (f) / frame_line_height;
bool move_down = w->cursor.vpos >= window_total_lines / 2;
move_it_by_lines (&it, move_down ? margin + 1 : -(margin + 1));
clear_glyph_matrix (w->desired_matrix);
if (1 == try_window (window, it.current.pos,
TRY_WINDOW_CHECK_MARGINS))
goto done;
}
/* If centering point failed to make the whole line visible,
put point at the top instead. That has to make the whole line
visible, if it can be done. */
if (centering_position == 0)
goto done;
clear_glyph_matrix (w->desired_matrix);
centering_position = 0;
goto recenter;
}
done:
SET_TEXT_POS_FROM_MARKER (startp, w->start);
w->start_at_line_beg = (CHARPOS (startp) == BEGV
|| FETCH_BYTE (BYTEPOS (startp) - 1) == '\n');
/* Display the mode line, header line, and tab-line, if we must. */
if ((update_mode_line
/* If window not full width, must redo its mode line
if (a) the window to its side is being redone and
(b) we do a frame-based redisplay. This is a consequence
of how inverted lines are drawn in frame-based redisplay. */
|| (!just_this_one_p
&& !FRAME_WINDOW_P (f)
&& !WINDOW_FULL_WIDTH_P (w))
/* Line number to display. */
|| w->base_line_pos > 0
/* Column number is displayed and different from the one displayed. */
|| (w->column_number_displayed != -1
&& (w->column_number_displayed != current_column ())))
/* This means that the window has a mode line. */
&& (window_wants_mode_line (w)
|| window_wants_header_line (w)
|| window_wants_tab_line (w)))
{
specpdl_ref count1 = SPECPDL_INDEX ();
specbind (Qinhibit_quit, Qt);
display_mode_lines (w);
unbind_to (count1, Qnil);
/* If mode line height has changed, arrange for a thorough
immediate redisplay using the correct mode line height. */
if (window_wants_mode_line (w)
&& CURRENT_MODE_LINE_HEIGHT (w) != DESIRED_MODE_LINE_HEIGHT (w))
{
f->fonts_changed = true;
w->mode_line_height = -1;
MATRIX_MODE_LINE_ROW (w->current_matrix)->height
= DESIRED_MODE_LINE_HEIGHT (w);
}
/* If tab line height has changed, arrange for a thorough
immediate redisplay using the correct tab line height. */
if (window_wants_tab_line (w)
&& CURRENT_TAB_LINE_HEIGHT (w) != DESIRED_TAB_LINE_HEIGHT (w))
{
f->fonts_changed = true;
w->tab_line_height = -1;
MATRIX_TAB_LINE_ROW (w->current_matrix)->height
= DESIRED_TAB_LINE_HEIGHT (w);
}
/* If header line height has changed, arrange for a thorough
immediate redisplay using the correct header line height. */
if (window_wants_header_line (w)
&& CURRENT_HEADER_LINE_HEIGHT (w) != DESIRED_HEADER_LINE_HEIGHT (w))
{
f->fonts_changed = true;
w->header_line_height = -1;
MATRIX_HEADER_LINE_ROW (w->current_matrix)->height
= DESIRED_HEADER_LINE_HEIGHT (w);
}
if (f->fonts_changed)
goto need_larger_matrices;
}
if (!line_number_displayed && w->base_line_pos != -1)
{
w->base_line_pos = 0;
w->base_line_number = 0;
}
finish_menu_bars:
/* When we reach a frame's selected window, redo the frame's menu
bar, tool bar, tab-bar, and the frame's title. */
if (update_mode_line
&& EQ (FRAME_SELECTED_WINDOW (f), window))
{
bool redisplay_menu_p;
if (FRAME_WINDOW_P (f))
{
#ifdef HAVE_EXT_MENU_BAR
redisplay_menu_p = FRAME_EXTERNAL_MENU_BAR (f);
#else
redisplay_menu_p = FRAME_MENU_BAR_LINES (f) > 0;
#endif
}
else
redisplay_menu_p = FRAME_MENU_BAR_LINES (f) > 0;
if (redisplay_menu_p)
display_menu_bar (w);
#ifdef HAVE_WINDOW_SYSTEM
if (FRAME_WINDOW_P (f))
{
if (WINDOWP (f->tab_bar_window)
&& (FRAME_TAB_BAR_LINES (f) > 0
|| !NILP (Vauto_resize_tab_bars))
&& redisplay_tab_bar (f))
ignore_mouse_drag_p = true;
#ifdef HAVE_EXT_TOOL_BAR
if (FRAME_EXTERNAL_TOOL_BAR (f))
update_frame_tool_bar (f);
#else
if (WINDOWP (f->tool_bar_window)
&& (FRAME_TOOL_BAR_LINES (f) > 0
|| !NILP (Vauto_resize_tool_bars))
&& redisplay_tool_bar (f))
ignore_mouse_drag_p = true;
#endif
}
else
{
if ((FRAME_TAB_BAR_LINES (f) > 0))
display_tab_bar (w);
}
gui_consider_frame_title (w->frame);
#else
if ((FRAME_TAB_BAR_LINES (f) > 0))
display_tab_bar (w);
#endif
}
#ifdef HAVE_WINDOW_SYSTEM
if (FRAME_WINDOW_P (f)
&& update_window_fringes (w, (just_this_one_p
|| (!used_current_matrix_p && !overlay_arrow_seen)
|| w->pseudo_window_p)))
{
update_begin (f);
block_input ();
if (draw_window_fringes (w, true))
{
if (WINDOW_RIGHT_DIVIDER_WIDTH (w))
gui_draw_right_divider (w);
else
gui_draw_vertical_border (w);
}
unblock_input ();
update_end (f);
}
if (WINDOW_BOTTOM_DIVIDER_WIDTH (w))
gui_draw_bottom_divider (w);
#endif /* HAVE_WINDOW_SYSTEM */
/* We go to this label, with fonts_changed set, if it is
necessary to try again using larger glyph matrices.
We have to redeem the scroll bar even in this case,
because the loop in redisplay_internal expects that. */
need_larger_matrices:
;
finish_scroll_bars:
if (WINDOW_HAS_VERTICAL_SCROLL_BAR (w) || WINDOW_HAS_HORIZONTAL_SCROLL_BAR (w))
{
if (WINDOW_HAS_VERTICAL_SCROLL_BAR (w))
/* Set the thumb's position and size. */
set_vertical_scroll_bar (w);
if (WINDOW_HAS_HORIZONTAL_SCROLL_BAR (w))
/* Set the thumb's position and size. */
set_horizontal_scroll_bar (w);
/* Note that we actually used the scroll bar attached to this
window, so it shouldn't be deleted at the end of redisplay. */
if (FRAME_TERMINAL (f)->redeem_scroll_bar_hook)
(*FRAME_TERMINAL (f)->redeem_scroll_bar_hook) (w);
}
/* Restore current_buffer and value of point in it. The window
update may have changed the buffer, so first make sure `opoint'
is still valid (Bug#6177). */
if (CHARPOS (opoint) < BEGV)
TEMP_SET_PT_BOTH (BEGV, BEGV_BYTE);
else if (CHARPOS (opoint) > ZV)
TEMP_SET_PT_BOTH (Z, Z_BYTE);
else if (ochars_modiff == CHARS_MODIFF)
TEMP_SET_PT_BOTH (CHARPOS (opoint), BYTEPOS (opoint));
else
{
/* If the buffer was modified while we were redisplaying it, we
cannot trust the correspondence between character and byte
positions. This can happen, for example, if we are
redisplaying *Messages* and some Lisp, perhaps invoked by
display_mode_lines, signals an error which caused something
added/deleted to/from the buffer text. */
TEMP_SET_PT_BOTH (CHARPOS (opoint), CHAR_TO_BYTE (CHARPOS (opoint)));
}
set_buffer_internal_1 (old);
/* Avoid an abort in TEMP_SET_PT_BOTH if the buffer has become
shorter. This can be caused by log truncation in *Messages*. */
if (CHARPOS (lpoint) <= ZV)
{
if (lchars_modiff == CHARS_MODIFF)
TEMP_SET_PT_BOTH (CHARPOS (lpoint), BYTEPOS (lpoint));
else
TEMP_SET_PT_BOTH (CHARPOS (lpoint), CHAR_TO_BYTE (CHARPOS (lpoint)));
}
unbind_to (count, Qnil);
}
/* Build the complete desired matrix of WINDOW with a window start
buffer position POS.
Value is 1 if successful. It is zero if fonts were loaded during
redisplay or the dimensions of the desired matrix were found
insufficient, which makes re-adjusting glyph matrices necessary.
Value is -1 if point would appear in the scroll margins. (We check
the former only if TRY_WINDOW_IGNORE_FONTS_CHANGE is unset in
FLAGS, and the latter only if TRY_WINDOW_CHECK_MARGINS is set in
FLAGS.)
Note that 'x-show-tip' invokes this function in a special way, and
in that case the return value of zero doesn't necessarily mean the
glyph matrices need to be re-adjusted, if the entire text of the
tooltip was processed and has its glyphs in the matrix's glyph
rows, i.e. if the dimensions of the matrix were found insufficient
while producing empty glyph rows beyond ZV. */
int
try_window (Lisp_Object window, struct text_pos pos, int flags)
{
struct window *w = XWINDOW (window);
struct it it;
struct glyph_row *last_text_row = NULL;
struct frame *f = XFRAME (w->frame);
int cursor_vpos = w->cursor.vpos;
/* Make POS the new window start. */
set_marker_both (w->start, Qnil, CHARPOS (pos), BYTEPOS (pos));
/* Mark cursor position as unknown. No overlay arrow seen. */
w->cursor.vpos = -1;
overlay_arrow_seen = false;
/* Initialize iterator and info to start at POS. */
start_display (&it, w, pos);
it.glyph_row->reversed_p = false;
/* Display all lines of W. */
while (it.current_y < it.last_visible_y)
{
int last_row_scale = it.w->nrows_scale_factor;
int last_col_scale = it.w->ncols_scale_factor;
if (display_line (&it, cursor_vpos))
last_text_row = it.glyph_row - 1;
if (f->fonts_changed
&& !((flags & TRY_WINDOW_IGNORE_FONTS_CHANGE)
/* If the matrix dimensions are insufficient, we _must_
fail and let dispnew.c reallocate the matrix. */
&& last_row_scale == it.w->nrows_scale_factor
&& last_col_scale == it.w->ncols_scale_factor))
return 0;
}
/* Save the character position of 'it' before we call
'start_display' again. */
ptrdiff_t it_charpos = IT_CHARPOS (it);
/* Don't let the cursor end in the scroll margins. However, when
the window is vscrolled, we leave it to vscroll to handle the
margins, see window_scroll_pixel_based. */
if ((flags & TRY_WINDOW_CHECK_MARGINS)
&& w->vscroll == 0
&& !MINI_WINDOW_P (w))
{
int top_scroll_margin = window_scroll_margin (w, MARGIN_IN_PIXELS);
int bot_scroll_margin = top_scroll_margin;
if (window_wants_header_line (w))
top_scroll_margin += CURRENT_HEADER_LINE_HEIGHT (w);
if (window_wants_tab_line (w))
top_scroll_margin += CURRENT_TAB_LINE_HEIGHT (w);
start_display (&it, w, pos);
if ((w->cursor.y >= 0
&& w->cursor.y < top_scroll_margin
&& CHARPOS (pos) > BEGV)
/* rms: considering make_cursor_line_fully_visible_p here
seems to give wrong results. We don't want to recenter
when the last line is partly visible, we want to allow
that case to be handled in the usual way. */
|| w->cursor.y > (it.last_visible_y - partial_line_height (&it)
- bot_scroll_margin - 1))
{
w->cursor.vpos = -1;
clear_glyph_matrix (w->desired_matrix);
return -1;
}
}
/* If bottom moved off end of frame, change mode line percentage. */
if (w->window_end_pos <= 0 && Z != it_charpos)
w->update_mode_line = true;
/* Set window_end_pos to the offset of the last character displayed
on the window from the end of current_buffer. Set
window_end_vpos to its row number. */
if (last_text_row)
{
eassert (MATRIX_ROW_DISPLAYS_TEXT_P (last_text_row));
adjust_window_ends (w, last_text_row, false);
eassert
(MATRIX_ROW_DISPLAYS_TEXT_P (MATRIX_ROW (w->desired_matrix,
w->window_end_vpos)));
}
else
{
w->window_end_bytepos = Z_BYTE - ZV_BYTE;
w->window_end_pos = Z - ZV;
w->window_end_vpos = 0;
}
/* But that is not valid info until redisplay finishes. */
w->window_end_valid = false;
return 1;
}
/************************************************************************
Window redisplay reusing current matrix when buffer has not changed
************************************************************************/
/* Try redisplay of window W showing an unchanged buffer with a
different window start than the last time it was displayed by
reusing its current matrix. Value is true if successful.
W->start is the new window start. */
static bool
try_window_reusing_current_matrix (struct window *w)
{
struct frame *f = XFRAME (w->frame);
struct glyph_row *bottom_row;
struct it it;
struct run run;
struct text_pos start, new_start;
int nrows_scrolled, i;
struct glyph_row *last_text_row;
struct glyph_row *last_reused_text_row;
struct glyph_row *start_row;
int start_vpos, min_y, max_y;
#ifdef GLYPH_DEBUG
if (inhibit_try_window_reusing)
return false;
#endif
if (/* This function doesn't handle terminal frames. */
!FRAME_WINDOW_P (f)
/* Don't try to reuse the display if windows have been split
or such. */
|| windows_or_buffers_changed
|| f->cursor_type_changed
/* This function cannot handle buffers where the overlay arrow
is shown on the fringes, because if the arrow position
changes, we cannot just reuse the current matrix. */
|| overlay_arrow_in_current_buffer_p ())
return false;
/* Can't do this if showing trailing whitespace. */
if (!NILP (Vshow_trailing_whitespace))
return false;
/* If top-line visibility has changed, give up. */
if (window_wants_tab_line (w)
!= MATRIX_TAB_LINE_ROW (w->current_matrix)->mode_line_p)
return false;
/* If top-line visibility has changed, give up. */
if (window_wants_header_line (w)
!= MATRIX_HEADER_LINE_ROW (w->current_matrix)->mode_line_p)
return false;
/* Give up if old or new display is scrolled vertically. We could
make this function handle this, but right now it doesn't. */
start_row = MATRIX_FIRST_TEXT_ROW (w->current_matrix);
if (w->vscroll || MATRIX_ROW_PARTIALLY_VISIBLE_P (w, start_row))
return false;
/* Clear the desired matrix for the display below. */
clear_glyph_matrix (w->desired_matrix);
/* Give up if line numbers are being displayed, because reusing the
current matrix might use the wrong width for line-number
display. */
if (!NILP (Vdisplay_line_numbers))
return false;
/* Can't scroll the display of w32 GUI frames when position of point
is indicated by the system caret, because scrolling the display
will then "copy" the pixels used by the caret. */
#ifdef HAVE_NTGUI
if (w32_use_visible_system_caret)
return false;
#endif
/* The variable new_start now holds the new window start. The old
start `start' can be determined from the current matrix. */
SET_TEXT_POS_FROM_MARKER (new_start, w->start);
start = start_row->minpos;
start_vpos = MATRIX_ROW_VPOS (start_row, w->current_matrix);
if (CHARPOS (new_start) <= CHARPOS (start))
{
/* Don't use this method if the display starts with an ellipsis
displayed for invisible text. It's not easy to handle that case
below, and it's certainly not worth the effort since this is
not a frequent case. */
if (in_ellipses_for_invisible_text_p (&start_row->start, w))
return false;
IF_DEBUG (debug_method_add (w, "twu1"));
/* Display up to a row that can be reused. The variable
last_text_row is set to the last row displayed that displays
text. Note that it.vpos == 0 if or if not there is a
header-line; it's not the same as the MATRIX_ROW_VPOS! */
start_display (&it, w, new_start);
w->cursor.vpos = -1;
last_text_row = last_reused_text_row = NULL;
while (it.current_y < it.last_visible_y && !f->fonts_changed)
{
/* If we have reached into the characters in the START row,
that means the line boundaries have changed. So we
can't start copying with the row START. Maybe it will
work to start copying with the following row. */
while (IT_CHARPOS (it) > CHARPOS (start))
{
/* Advance to the next row as the "start". */
start_row++;
start = start_row->minpos;
/* If there are no more rows to try, or just one, give up. */
if (start_row == MATRIX_MODE_LINE_ROW (w->current_matrix) - 1
|| w->vscroll || MATRIX_ROW_PARTIALLY_VISIBLE_P (w, start_row)
|| CHARPOS (start) == ZV)
{
clear_glyph_matrix (w->desired_matrix);
return false;
}
start_vpos = MATRIX_ROW_VPOS (start_row, w->current_matrix);
}
/* If we have reached alignment, we can copy the rest of the
rows. */
if (IT_CHARPOS (it) == CHARPOS (start)
/* Don't accept "alignment" inside a display vector,
since start_row could have started in the middle of
that same display vector (thus their character
positions match), and we have no way of telling if
that is the case. */
&& it.current.dpvec_index < 0)
break;
it.glyph_row->reversed_p = false;
if (display_line (&it, -1))
last_text_row = it.glyph_row - 1;
}
/* A value of current_y < last_visible_y means that we stopped
at the previous window start, which in turn means that we
have at least one reusable row. */
if (it.current_y < it.last_visible_y)
{
struct glyph_row *row;
/* IT.vpos always starts from 0; it counts text lines. */
nrows_scrolled = it.vpos - (start_row - MATRIX_FIRST_TEXT_ROW (w->current_matrix));
/* Find PT if not already found in the lines displayed. */
if (w->cursor.vpos < 0)
{
int dy = it.current_y - start_row->y;
row = MATRIX_FIRST_TEXT_ROW (w->current_matrix);
row = row_containing_pos (w, PT, row, NULL, dy);
if (row)
set_cursor_from_row (w, row, w->current_matrix, 0, 0,
dy, nrows_scrolled);
else
{
clear_glyph_matrix (w->desired_matrix);
return false;
}
}
/* Scroll the display. Do it before the current matrix is
changed. The problem here is that update has not yet
run, i.e. part of the current matrix is not up to date.
scroll_run_hook will clear the cursor, and use the
current matrix to get the height of the row the cursor is
in. */
run.current_y = start_row->y;
run.desired_y = it.current_y;
run.height = it.last_visible_y - it.current_y;
if (run.height > 0 && run.current_y != run.desired_y)
{
#ifdef HAVE_WINDOW_SYSTEM
update_begin (f);
gui_update_window_begin (w);
FRAME_RIF (f)->clear_window_mouse_face (w);
FRAME_RIF (f)->scroll_run_hook (w, &run);
gui_update_window_end (w, false, false);
update_end (f);
#endif
}
/* Shift current matrix down by nrows_scrolled lines. */
bottom_row = MATRIX_BOTTOM_TEXT_ROW (w->current_matrix, w);
rotate_matrix (w->current_matrix,
start_vpos,
MATRIX_ROW_VPOS (bottom_row, w->current_matrix),
nrows_scrolled);
/* Disable lines that must be updated. */
for (i = 0; i < nrows_scrolled; ++i)
(start_row + i)->enabled_p = false;
/* Re-compute Y positions. */
min_y = WINDOW_TAB_LINE_HEIGHT (w) + WINDOW_HEADER_LINE_HEIGHT (w);
max_y = it.last_visible_y;
for (row = start_row + nrows_scrolled;
row < bottom_row;
++row)
{
row->y = it.current_y;
row->visible_height = row->height;
if (row->y < min_y)
row->visible_height -= min_y - row->y;
if (row->y + row->height > max_y)
row->visible_height -= row->y + row->height - max_y;
if (row->fringe_bitmap_periodic_p)
row->redraw_fringe_bitmaps_p = true;
it.current_y += row->height;
if (MATRIX_ROW_DISPLAYS_TEXT_P (row))
last_reused_text_row = row;
if (MATRIX_ROW_BOTTOM_Y (row) >= it.last_visible_y)
break;
}
/* Disable lines in the current matrix which are now
below the window. */
for (++row; row < bottom_row; ++row)
row->enabled_p = row->mode_line_p = row->tab_line_p = false;
}
/* Update window_end_pos etc.; last_reused_text_row is the last
reused row from the current matrix containing text, if any.
The value of last_text_row is the last displayed line
containing text. */
if (last_reused_text_row)
adjust_window_ends (w, last_reused_text_row, true);
else if (last_text_row)
adjust_window_ends (w, last_text_row, false);
else
{
/* This window must be completely empty. */
w->window_end_bytepos = Z_BYTE - ZV_BYTE;
w->window_end_pos = Z - ZV;
w->window_end_vpos = 0;
}
w->window_end_valid = false;
/* Update hint: don't try scrolling again in update_window. */
w->desired_matrix->no_scrolling_p = true;
#ifdef GLYPH_DEBUG
debug_method_add (w, "try_window_reusing_current_matrix 1");
#endif
return true;
}
else if (CHARPOS (new_start) > CHARPOS (start))
{
struct glyph_row *pt_row, *row;
struct glyph_row *first_reusable_row;
struct glyph_row *first_row_to_display;
int dy;
int yb = window_text_bottom_y (w);
/* Find the row starting at new_start, if there is one. Don't
reuse a partially visible line at the end. */
first_reusable_row = start_row;
while (first_reusable_row->enabled_p
&& MATRIX_ROW_BOTTOM_Y (first_reusable_row) < yb
&& (MATRIX_ROW_START_CHARPOS (first_reusable_row)
< CHARPOS (new_start)))
++first_reusable_row;
/* Give up if there is no row to reuse. */
if (MATRIX_ROW_BOTTOM_Y (first_reusable_row) >= yb
|| !first_reusable_row->enabled_p
|| (MATRIX_ROW_START_CHARPOS (first_reusable_row)
!= CHARPOS (new_start)))
return false;
/* We can reuse fully visible rows beginning with
first_reusable_row to the end of the window. Set
first_row_to_display to the first row that cannot be reused.
Set pt_row to the row containing point, if there is any. */
pt_row = NULL;
for (first_row_to_display = first_reusable_row;
MATRIX_ROW_BOTTOM_Y (first_row_to_display) < yb;
++first_row_to_display)
{
if (PT >= MATRIX_ROW_START_CHARPOS (first_row_to_display)
&& (PT < MATRIX_ROW_END_CHARPOS (first_row_to_display)
|| (PT == MATRIX_ROW_END_CHARPOS (first_row_to_display)
&& first_row_to_display->ends_at_zv_p
&& pt_row == NULL)))
pt_row = first_row_to_display;
}
if (first_row_to_display->y >= yb)
return false;
/* Start displaying at the start of first_row_to_display. */
init_to_row_start (&it, w, first_row_to_display);
nrows_scrolled = (MATRIX_ROW_VPOS (first_reusable_row, w->current_matrix)
- start_vpos);
it.vpos = (MATRIX_ROW_VPOS (first_row_to_display, w->current_matrix)
- nrows_scrolled);
it.current_y = (first_row_to_display->y - first_reusable_row->y
+ WINDOW_TAB_LINE_HEIGHT (w) + WINDOW_HEADER_LINE_HEIGHT (w));
/* Display lines beginning with first_row_to_display in the
desired matrix. Set last_text_row to the last row displayed
that displays text. */
it.glyph_row = MATRIX_ROW (w->desired_matrix, it.vpos);
if (pt_row == NULL)
w->cursor.vpos = -1;
last_text_row = NULL;
while (it.current_y < it.last_visible_y && !f->fonts_changed)
if (display_line (&it, w->cursor.vpos))
last_text_row = it.glyph_row - 1;
/* If point is in a reused row, adjust y and vpos of the cursor
position. */
if (pt_row)
{
w->cursor.vpos -= nrows_scrolled;
w->cursor.y -= first_reusable_row->y - start_row->y;
}
/* Give up if point isn't in a row displayed or reused. (This
also handles the case where w->cursor.vpos < nrows_scrolled
after the calls to display_line, which can happen with scroll
margins. See bug#1295.) */
if (w->cursor.vpos < 0)
{
clear_glyph_matrix (w->desired_matrix);
return false;
}
/* Scroll the display. */
run.current_y = first_reusable_row->y;
run.desired_y = WINDOW_TAB_LINE_HEIGHT (w) + WINDOW_HEADER_LINE_HEIGHT (w);
run.height = it.last_visible_y - run.current_y;
dy = run.current_y - run.desired_y;
if (run.height)
{
#ifdef HAVE_WINDOW_SYSTEM
update_begin (f);
gui_update_window_begin (w);
FRAME_RIF (f)->clear_window_mouse_face (w);
FRAME_RIF (f)->scroll_run_hook (w, &run);
gui_update_window_end (w, false, false);
update_end (f);
#endif
}
/* Adjust Y positions of reused rows. */
bottom_row = MATRIX_BOTTOM_TEXT_ROW (w->current_matrix, w);
min_y = WINDOW_TAB_LINE_HEIGHT (w) + WINDOW_HEADER_LINE_HEIGHT (w);
max_y = it.last_visible_y;
for (row = first_reusable_row; row < first_row_to_display; ++row)
{
row->y -= dy;
row->visible_height = row->height;
if (row->y < min_y)
row->visible_height -= min_y - row->y;
if (row->y + row->height > max_y)
row->visible_height -= row->y + row->height - max_y;
if (row->fringe_bitmap_periodic_p)
row->redraw_fringe_bitmaps_p = true;
}
/* Scroll the current matrix. */
eassert (nrows_scrolled > 0);
rotate_matrix (w->current_matrix,
start_vpos,
MATRIX_ROW_VPOS (bottom_row, w->current_matrix),
-nrows_scrolled);
/* Disable rows not reused. */
for (row -= nrows_scrolled; row < bottom_row; ++row)
row->enabled_p = false;
/* Point may have moved to a different line, so we cannot assume that
the previous cursor position is valid; locate the correct row. */
if (pt_row)
{
for (row = MATRIX_ROW (w->current_matrix, w->cursor.vpos);
row < bottom_row
&& PT >= MATRIX_ROW_END_CHARPOS (row)
&& !row->ends_at_zv_p;
row++)
{
w->cursor.vpos++;
w->cursor.y = row->y;
}
if (row < bottom_row)
{
/* Can't simply scan the row for point with
bidi-reordered glyph rows. Let set_cursor_from_row
figure out where to put the cursor, and if it fails,
give up. */
if (!NILP (BVAR (XBUFFER (w->contents), bidi_display_reordering)))
{
if (!set_cursor_from_row (w, row, w->current_matrix,
0, 0, 0, 0))
{
clear_glyph_matrix (w->desired_matrix);
return false;
}
}
else
{
struct glyph *glyph = row->glyphs[TEXT_AREA] + w->cursor.hpos;
struct glyph *end = row->glyphs[TEXT_AREA] + row->used[TEXT_AREA];
for (; glyph < end
&& (!BUFFERP (glyph->object)
|| glyph->charpos < PT);
glyph++)
{
w->cursor.hpos++;
w->cursor.x += glyph->pixel_width;
}
}
}
}
/* Adjust window end. A null value of last_text_row means that
the window end is in reused rows which in turn means that
only its vpos can have changed. */
if (last_text_row)
adjust_window_ends (w, last_text_row, false);
else
w->window_end_vpos -= nrows_scrolled;
w->window_end_valid = false;
w->desired_matrix->no_scrolling_p = true;
#ifdef GLYPH_DEBUG
debug_method_add (w, "try_window_reusing_current_matrix 2");
#endif
return true;
}
return false;
}
/************************************************************************
Window redisplay reusing current matrix when buffer has changed
************************************************************************/
static struct glyph_row *find_last_unchanged_at_beg_row (struct window *);
static struct glyph_row *find_first_unchanged_at_end_row (struct window *,
ptrdiff_t *, ptrdiff_t *);
static struct glyph_row *
find_last_row_displaying_text (struct glyph_matrix *, struct it *,
struct glyph_row *);
/* Return the last row in MATRIX displaying text. If row START is
non-null, start searching with that row. IT gives the dimensions
of the display. Value is null if matrix is empty; otherwise it is
a pointer to the row found. */
static struct glyph_row *
find_last_row_displaying_text (struct glyph_matrix *matrix, struct it *it,
struct glyph_row *start)
{
struct glyph_row *row, *row_found;
/* Set row_found to the last row in IT->w's current matrix
displaying text. The loop looks funny but think of partially
visible lines. */
row_found = NULL;
row = start ? start : MATRIX_FIRST_TEXT_ROW (matrix);
while (MATRIX_ROW_DISPLAYS_TEXT_P (row))
{
eassert (row->enabled_p);
row_found = row;
if (MATRIX_ROW_BOTTOM_Y (row) >= it->last_visible_y)
break;
++row;
}
return row_found;
}
/* Return the last row in the current matrix of W that is not affected
by changes at the start of current_buffer that occurred since W's
current matrix was built. Value is null if no such row exists.
BEG_UNCHANGED is the number of characters unchanged at the start of
current_buffer. BEG + BEG_UNCHANGED is the buffer position of the
first changed character in current_buffer. Characters at positions <
BEG + BEG_UNCHANGED are at the same buffer positions as they were
when the current matrix was built. */
static struct glyph_row *
find_last_unchanged_at_beg_row (struct window *w)
{
ptrdiff_t first_changed_pos = BEG + BEG_UNCHANGED;
struct glyph_row *row;
struct glyph_row *row_found = NULL;
int yb = window_text_bottom_y (w);
/* Find the last row displaying unchanged text. */
for (row = MATRIX_FIRST_TEXT_ROW (w->current_matrix);
MATRIX_ROW_DISPLAYS_TEXT_P (row)
&& MATRIX_ROW_START_CHARPOS (row) < first_changed_pos;
++row)
{
if (/* If row ends before first_changed_pos, it is unchanged,
except in some case. */
MATRIX_ROW_END_CHARPOS (row) <= first_changed_pos
/* When row ends in ZV and we write at ZV it is not
unchanged. */
&& !row->ends_at_zv_p
/* When first_changed_pos is the end of a continued line,
row is not unchanged because it may be no longer
continued. */
&& !(MATRIX_ROW_END_CHARPOS (row) == first_changed_pos
&& (row->continued_p
|| row->exact_window_width_line_p))
/* If ROW->end is beyond ZV, then ROW->end is outdated and
needs to be recomputed, so don't consider this row as
unchanged. This happens when the last line was
bidi-reordered and was killed immediately before this
redisplay cycle. In that case, ROW->end stores the
buffer position of the first visual-order character of
the killed text, which is now beyond ZV. */
&& CHARPOS (row->end.pos) <= ZV)
row_found = row;
/* Stop if last visible row. */
if (MATRIX_ROW_BOTTOM_Y (row) >= yb)
break;
}
return row_found;
}
/* Find the first glyph row in the current matrix of W that is not
affected by changes at the end of current_buffer since the
time W's current matrix was built.
Return in *DELTA the number of chars by which buffer positions in
unchanged text at the end of current_buffer must be adjusted.
Return in *DELTA_BYTES the corresponding number of bytes.
Value is null if no such row exists, i.e. all rows are affected by
changes. */
static struct glyph_row *
find_first_unchanged_at_end_row (struct window *w,
ptrdiff_t *delta, ptrdiff_t *delta_bytes)
{
struct glyph_row *row;
struct glyph_row *row_found = NULL;
*delta = *delta_bytes = 0;
/* Display must not have been paused, otherwise the current matrix
is not up to date. */
eassert (w->window_end_valid);
/* A value of window_end_pos >= END_UNCHANGED means that the window
end is in the range of changed text. If so, there is no
unchanged row at the end of W's current matrix. */
if (w->window_end_pos >= END_UNCHANGED)
return NULL;
/* Set row to the last row in W's current matrix displaying text. */
row = MATRIX_ROW (w->current_matrix, w->window_end_vpos);
/* If matrix is entirely empty, no unchanged row exists. */
if (MATRIX_ROW_DISPLAYS_TEXT_P (row))
{
/* The value of row is the last glyph row in the matrix having a
meaningful buffer position in it. The end position of row
corresponds to window_end_pos. This allows us to translate
buffer positions in the current matrix to current buffer
positions for characters not in changed text. */
ptrdiff_t Z_old =
MATRIX_ROW_END_CHARPOS (row) + w->window_end_pos;
ptrdiff_t Z_BYTE_old =
MATRIX_ROW_END_BYTEPOS (row) + w->window_end_bytepos;
ptrdiff_t last_unchanged_pos, last_unchanged_pos_old;
struct glyph_row *first_text_row
= MATRIX_FIRST_TEXT_ROW (w->current_matrix);
*delta = Z - Z_old;
*delta_bytes = Z_BYTE - Z_BYTE_old;
/* Set last_unchanged_pos to the buffer position of the last
character in the buffer that has not been changed. Z is the
index + 1 of the last character in current_buffer, i.e. by
subtracting END_UNCHANGED we get the index of the last
unchanged character, and we have to add BEG to get its buffer
position. */
last_unchanged_pos = Z - END_UNCHANGED + BEG;
last_unchanged_pos_old = last_unchanged_pos - *delta;
/* Search backward from ROW for a row displaying a line that
starts at a minimum position >= last_unchanged_pos_old. */
for (; row > first_text_row; --row)
{
/* This used to abort, but it can happen.
It is ok to just stop the search instead here. KFS. */
if (!row->enabled_p || !MATRIX_ROW_DISPLAYS_TEXT_P (row))
break;
if (MATRIX_ROW_START_CHARPOS (row) >= last_unchanged_pos_old)
row_found = row;
}
}
eassert (!row_found || MATRIX_ROW_DISPLAYS_TEXT_P (row_found));
return row_found;
}
/* Make sure that glyph rows in the current matrix of window W
reference the same glyph memory as corresponding rows in the
frame's frame matrix. This function is called after scrolling W's
current matrix on a terminal frame in try_window_id and
try_window_reusing_current_matrix. */
static void
sync_frame_with_window_matrix_rows (struct window *w)
{
struct frame *f = XFRAME (w->frame);
struct glyph_row *window_row, *window_row_end, *frame_row;
/* Preconditions: W must be a leaf window and full-width. Its frame
must have a frame matrix. */
eassert (BUFFERP (w->contents));
eassert (WINDOW_FULL_WIDTH_P (w));
eassert (!FRAME_WINDOW_P (f));
/* If W is a full-width window, glyph pointers in W's current matrix
have, by definition, to be the same as glyph pointers in the
corresponding frame matrix. Note that frame matrices have no
marginal areas (see build_frame_matrix). */
window_row = w->current_matrix->rows;
window_row_end = window_row + w->current_matrix->nrows;
frame_row = f->current_matrix->rows + WINDOW_TOP_EDGE_LINE (w);
while (window_row < window_row_end)
{
struct glyph *start = window_row->glyphs[LEFT_MARGIN_AREA];
struct glyph *end = window_row->glyphs[LAST_AREA];
frame_row->glyphs[LEFT_MARGIN_AREA] = start;
frame_row->glyphs[TEXT_AREA] = start;
frame_row->glyphs[RIGHT_MARGIN_AREA] = end;
frame_row->glyphs[LAST_AREA] = end;
/* Disable frame rows whose corresponding window rows have
been disabled in try_window_id. */
if (!window_row->enabled_p)
frame_row->enabled_p = false;
++window_row, ++frame_row;
}
}
/* Find the glyph row in window W containing CHARPOS. Consider all
rows between START and END (not inclusive). END null means search
all rows to the end of the display area of W. Value is the row
containing CHARPOS or null. */
struct glyph_row *
row_containing_pos (struct window *w, ptrdiff_t charpos,
struct glyph_row *start, struct glyph_row *end, int dy)
{
struct glyph_row *row = start;
struct glyph_row *best_row = NULL;
ptrdiff_t mindif = BUF_ZV (XBUFFER (w->contents)) + 1;
int last_y;
/* If we happen to start on a header-line or a tab-line, skip that. */
if (row->tab_line_p)
++row;
if (row->mode_line_p)
++row;
if ((end && row >= end) || !row->enabled_p)
return NULL;
last_y = window_text_bottom_y (w) - dy;
while (true)
{
/* Give up if we have gone too far. */
if ((end && row >= end) || !row->enabled_p)
return NULL;
/* This formerly returned if they were equal.
I think that both quantities are of a "last plus one" type;
if so, when they are equal, the row is within the screen. -- rms. */
if (MATRIX_ROW_BOTTOM_Y (row) > last_y)
return NULL;
/* If it is in this row, return this row. */
if (! (MATRIX_ROW_END_CHARPOS (row) < charpos
|| (MATRIX_ROW_END_CHARPOS (row) == charpos
/* The end position of a row equals the start
position of the next row. If CHARPOS is there, we
would rather consider it displayed in the next
line, except when this line ends in ZV. */
&& !row_for_charpos_p (row, charpos)))
&& charpos >= MATRIX_ROW_START_CHARPOS (row))
{
struct glyph *g;
if (NILP (BVAR (XBUFFER (w->contents), bidi_display_reordering))
|| (!best_row && !row->continued_p))
return row;
/* In bidi-reordered rows, there could be several rows whose
edges surround CHARPOS, all of these rows belonging to
the same continued line. We need to find the row which
fits CHARPOS the best. */
for (g = row->glyphs[TEXT_AREA];
g < row->glyphs[TEXT_AREA] + row->used[TEXT_AREA];
g++)
{
if (!STRINGP (g->object))
{
if (g->charpos > 0 && eabs (g->charpos - charpos) < mindif)
{
mindif = eabs (g->charpos - charpos);
best_row = row;
/* Exact match always wins. */
if (mindif == 0)
return best_row;
}
}
}
}
else if (best_row && !row->continued_p)
return best_row;
++row;
}
}
/* Try to redisplay window W by reusing its existing display. W's
current matrix must be up to date when this function is called,
i.e., window_end_valid must be true.
Value is
>= 1 if successful, i.e. display has been updated
specifically:
1 means the changes were in front of a newline that precedes
the window start, and the whole current matrix was reused
2 means the changes were after the last position displayed
in the window, and the whole current matrix was reused
3 means portions of the current matrix were reused, while
some of the screen lines were redrawn
-1 if redisplay with same window start is known not to succeed
0 if otherwise unsuccessful
The following steps are performed:
1. Find the last row in the current matrix of W that is not
affected by changes at the start of current_buffer. If no such row
is found, give up.
2. Find the first row in W's current matrix that is not affected by
changes at the end of current_buffer. Maybe there is no such row.
3. Display lines beginning with the row + 1 found in step 1 to the
row found in step 2 or, if step 2 didn't find a row, to the end of
the window.
4. If cursor is not known to appear on the window, give up.
5. If display stopped at the row found in step 2, scroll the
display and current matrix as needed.
6. Maybe display some lines at the end of W, if we must. This can
happen under various circumstances, like a partially visible line
becoming fully visible, or because newly displayed lines are displayed
in smaller font sizes.
7. Update W's window end information. */
static int
try_window_id (struct window *w)
{
struct frame *f = XFRAME (w->frame);
struct glyph_matrix *current_matrix = w->current_matrix;
struct glyph_matrix *desired_matrix = w->desired_matrix;
struct glyph_row *last_unchanged_at_beg_row;
struct glyph_row *first_unchanged_at_end_row;
struct glyph_row *row;
struct glyph_row *bottom_row;
int bottom_vpos;
struct it it;
ptrdiff_t delta = 0, delta_bytes = 0, stop_pos;
int dvpos, dy;
struct text_pos start_pos;
struct run run;
int first_unchanged_at_end_vpos = 0;
struct glyph_row *last_text_row, *last_text_row_at_end;
struct text_pos start;
ptrdiff_t first_changed_charpos, last_changed_charpos;
#ifdef GLYPH_DEBUG
if (inhibit_try_window_id)
return 0;
#endif
/* This is handy for debugging. */
#if false
#define GIVE_UP(X) \
do { \
redisplay_trace ("try_window_id give up %d\n", X); \
return 0; \
} while (false)
#else
#define GIVE_UP(X) return 0
#endif
SET_TEXT_POS_FROM_MARKER (start, w->start);
/* Don't use this for mini-windows because these can show
messages and mini-buffers, and we don't handle that here. */
if (MINI_WINDOW_P (w))
GIVE_UP (1);
/* This flag is used to prevent redisplay optimizations. */
if (windows_or_buffers_changed || f->cursor_type_changed)
GIVE_UP (2);
/* This function's optimizations cannot be used if overlays have
changed in the buffer displayed by the window, so give up if they
have. */
if (w->last_overlay_modified != OVERLAY_MODIFF)
GIVE_UP (200);
/* Verify that narrowing has not changed.
Also verify that we were not told to prevent redisplay optimizations.
It would be nice to further
reduce the number of cases where this prevents try_window_id. */
if (current_buffer->clip_changed
|| current_buffer->prevent_redisplay_optimizations_p)
GIVE_UP (3);
/* Window must either use window-based redisplay or be full width. */
if (!FRAME_WINDOW_P (f)
&& (FRAME_INITIAL_P (f)
|| !FRAME_LINE_INS_DEL_OK (f)
|| !WINDOW_FULL_WIDTH_P (w)))
GIVE_UP (4);
/* Give up if point is known NOT to appear in W. */
if (PT < CHARPOS (start))
GIVE_UP (5);
/* Another way to prevent redisplay optimizations. */
if (w->last_modified == 0)
GIVE_UP (6);
/* Verify that window is not hscrolled. */
if (w->hscroll != 0)
GIVE_UP (7);
/* Verify that display wasn't paused. */
if (!w->window_end_valid)
GIVE_UP (8);
/* Likewise if highlighting trailing whitespace. */
if (!NILP (Vshow_trailing_whitespace))
GIVE_UP (11);
/* Can't use this if overlay arrow position and/or string have
changed. */
if (overlay_arrows_changed_p (false))
GIVE_UP (12);
/* When word-wrap is on, adding a space to the first word of a
wrapped line can change the wrap position, altering the line
above it. It might be worthwhile to handle this more
intelligently, but for now just redisplay from scratch. */
if (!NILP (BVAR (XBUFFER (w->contents), word_wrap)))
GIVE_UP (21);
/* Under bidi reordering, adding or deleting a character in the
beginning of a paragraph, before the first strong directional
character, can change the base direction of the paragraph (unless
the buffer specifies a fixed paragraph direction), which will
require redisplaying the whole paragraph. It might be worthwhile
to find the paragraph limits and widen the range of redisplayed
lines to that, but for now just give up this optimization and
redisplay from scratch. */
if (!NILP (BVAR (XBUFFER (w->contents), bidi_display_reordering))
&& NILP (BVAR (XBUFFER (w->contents), bidi_paragraph_direction)))
GIVE_UP (22);
/* Give up if the buffer has line-spacing set, as Lisp-level changes
to that variable require thorough redisplay. */
if (!NILP (BVAR (XBUFFER (w->contents), extra_line_spacing)))
GIVE_UP (23);
/* Give up if display-line-numbers is in relative mode, or when the
current line's number needs to be displayed in a distinct face. */
if (EQ (Vdisplay_line_numbers, Qrelative)
|| EQ (Vdisplay_line_numbers, Qvisual)
|| (!NILP (Vdisplay_line_numbers)
&& NILP (Finternal_lisp_face_equal_p (Qline_number,
Qline_number_current_line,
w->frame))))
GIVE_UP (24);
/* composition-break-at-point is incompatible with the optimizations
in this function, because we need to recompose characters when
point moves off their positions. */
if (composition_break_at_point)
GIVE_UP (27);
/* Make sure beg_unchanged and end_unchanged are up to date. Do it
only if buffer has really changed. The reason is that the gap is
initially at Z for freshly visited files. The code below would
set end_unchanged to 0 in that case. */
if (MODIFF > SAVE_MODIFF
/* This seems to happen sometimes after saving a buffer. */
|| BEG_UNCHANGED + END_UNCHANGED > Z_BYTE)
{
if (GPT - BEG < BEG_UNCHANGED)
BEG_UNCHANGED = GPT - BEG;
if (Z - GPT < END_UNCHANGED)
END_UNCHANGED = Z - GPT;
}
/* The position of the first and last character that has been changed. */
first_changed_charpos = BEG + BEG_UNCHANGED;
last_changed_charpos = Z - END_UNCHANGED;
/* If window starts after a line end, and the last change is in
front of that newline, then changes don't affect the display.
This case happens with stealth-fontification. Note that although
the display is unchanged, glyph positions in the matrix have to
be adjusted, of course. */
row = MATRIX_ROW (w->current_matrix, w->window_end_vpos);
if (MATRIX_ROW_DISPLAYS_TEXT_P (row)
&& ((last_changed_charpos < CHARPOS (start)
&& CHARPOS (start) == BEGV)
|| (last_changed_charpos < CHARPOS (start) - 1
&& FETCH_BYTE (BYTEPOS (start) - 1) == '\n')))
{
ptrdiff_t Z_old, Z_delta, Z_BYTE_old, Z_delta_bytes;
struct glyph_row *r0;
/* Compute how many chars/bytes have been added to or removed
from the buffer. */
Z_old = MATRIX_ROW_END_CHARPOS (row) + w->window_end_pos;
Z_BYTE_old = MATRIX_ROW_END_BYTEPOS (row) + w->window_end_bytepos;
Z_delta = Z - Z_old;
Z_delta_bytes = Z_BYTE - Z_BYTE_old;
/* Give up if PT is not in the window. Note that it already has
been checked at the start of try_window_id that PT is not in
front of the window start. */
if (PT >= MATRIX_ROW_END_CHARPOS (row) + Z_delta)
GIVE_UP (13);
/* If window start is unchanged, we can reuse the whole matrix
as is, after adjusting glyph positions. No need to compute
the window end again, since its offset from Z hasn't changed. */
r0 = MATRIX_FIRST_TEXT_ROW (current_matrix);
if (CHARPOS (start) == MATRIX_ROW_START_CHARPOS (r0) + Z_delta
&& BYTEPOS (start) == MATRIX_ROW_START_BYTEPOS (r0) + Z_delta_bytes
/* PT must not be in a partially visible line. */
&& !(PT >= MATRIX_ROW_START_CHARPOS (row) + Z_delta
&& MATRIX_ROW_BOTTOM_Y (row) > window_text_bottom_y (w)))
{
/* Adjust positions in the glyph matrix. */
if (Z_delta || Z_delta_bytes)
{
struct glyph_row *r1
= MATRIX_BOTTOM_TEXT_ROW (current_matrix, w);
increment_matrix_positions (w->current_matrix,
MATRIX_ROW_VPOS (r0, current_matrix),
MATRIX_ROW_VPOS (r1, current_matrix),
Z_delta, Z_delta_bytes);
}
/* Set the cursor. */
row = row_containing_pos (w, PT, r0, NULL, 0);
if (row)
set_cursor_from_row (w, row, current_matrix, 0, 0, 0, 0);
return 1;
}
}
/* Handle the case that changes are all below what is displayed in
the window, and that PT is in the window. This shortcut cannot
be taken if ZV is visible in the window, and text has been added
there that is visible in the window. */
if (first_changed_charpos >= MATRIX_ROW_END_CHARPOS (row)
/* ZV is not visible in the window, or there are no
changes at ZV, actually. */
&& (current_matrix->zv > MATRIX_ROW_END_CHARPOS (row)
|| first_changed_charpos == last_changed_charpos))
{
struct glyph_row *r0;
/* Give up if PT is not in the window. Note that it already has
been checked at the start of try_window_id that PT is not in
front of the window start. */
if (PT >= MATRIX_ROW_END_CHARPOS (row))
GIVE_UP (14);
/* If window start is unchanged, we can reuse the whole matrix
as is, without changing glyph positions since no text has
been added/removed in front of the window end. */
r0 = MATRIX_FIRST_TEXT_ROW (current_matrix);
if (TEXT_POS_EQUAL_P (start, r0->minpos)
/* PT must not be in a partially visible line. */
&& !(PT >= MATRIX_ROW_START_CHARPOS (row)
&& MATRIX_ROW_BOTTOM_Y (row) > window_text_bottom_y (w)))
{
/* We have to compute the window end anew since text
could have been added/removed after it. */
w->window_end_pos = Z - MATRIX_ROW_END_CHARPOS (row);
w->window_end_bytepos = Z_BYTE - MATRIX_ROW_END_BYTEPOS (row);
/* Set the cursor. */
row = row_containing_pos (w, PT, r0, NULL, 0);
if (row)
set_cursor_from_row (w, row, current_matrix, 0, 0, 0, 0);
return 2;
}
}
/* Give up if window start is in the changed area.
The condition used to read
(BEG_UNCHANGED + END_UNCHANGED != Z - BEG && ...)
but why that was tested escapes me at the moment. */
if (CHARPOS (start) >= first_changed_charpos
&& CHARPOS (start) <= last_changed_charpos)
GIVE_UP (15);
/* Check that window start agrees with the start of the first glyph
row in its current matrix. Check this after we know the window
start is not in changed text, otherwise positions would not be
comparable. */
row = MATRIX_FIRST_TEXT_ROW (current_matrix);
if (!TEXT_POS_EQUAL_P (start, row->minpos))
GIVE_UP (16);
/* Give up if the window ends in strings. Overlay strings
at the end are difficult to handle, so don't try. */
row = MATRIX_ROW (current_matrix, w->window_end_vpos);
if (MATRIX_ROW_START_CHARPOS (row) == MATRIX_ROW_END_CHARPOS (row))
GIVE_UP (20);
/* Can't let scroll_run_hook below run on w32 GUI frames when
position of point is indicated by the system caret, because
scrolling the display will then "copy" the pixels used by the
caret. */
#ifdef HAVE_NTGUI
if (FRAME_W32_P (f) && w32_use_visible_system_caret)
GIVE_UP (25);
#endif
/* Compute the position at which we have to start displaying new
lines. Some of the lines at the top of the window might be
reusable because they are not displaying changed text. Find the
last row in W's current matrix not affected by changes at the
start of current_buffer. Value is null if changes start in the
first line of window. */
last_unchanged_at_beg_row = find_last_unchanged_at_beg_row (w);
if (last_unchanged_at_beg_row)
{
/* Avoid starting to display in the middle of a character, a TAB
for instance. This is easier than to set up the iterator
exactly, and it's not a frequent case, so the additional
effort wouldn't really pay off. */
while ((MATRIX_ROW_ENDS_IN_MIDDLE_OF_CHAR_P (last_unchanged_at_beg_row)
|| last_unchanged_at_beg_row->ends_in_newline_from_string_p)
&& last_unchanged_at_beg_row > w->current_matrix->rows)
--last_unchanged_at_beg_row;
if (MATRIX_ROW_ENDS_IN_MIDDLE_OF_CHAR_P (last_unchanged_at_beg_row))
GIVE_UP (17);
if (! init_to_row_end (&it, w, last_unchanged_at_beg_row))
GIVE_UP (18);
/* Give up if the row starts with a display property that draws
on the fringes, since that could prevent correct display of
line-prefix and wrap-prefix. */
if (it.sp > 1
&& it.method == GET_FROM_IMAGE && it.image_id == -1)
GIVE_UP (26);
start_pos = it.current.pos;
/* Start displaying new lines in the desired matrix at the same
vpos we would use in the current matrix, i.e. below
last_unchanged_at_beg_row. */
it.vpos = 1 + MATRIX_ROW_VPOS (last_unchanged_at_beg_row,
current_matrix);
it.glyph_row = MATRIX_ROW (desired_matrix, it.vpos);
it.current_y = MATRIX_ROW_BOTTOM_Y (last_unchanged_at_beg_row);
eassert (it.hpos == 0 && it.current_x == 0);
}
else
{
/* There are no reusable lines at the start of the window.
Start displaying in the first text line. */
start_display (&it, w, start);
it.vpos = it.first_vpos;
start_pos = it.current.pos;
}
/* init_to_row_end and start_display above could have caused the
window's window_end_valid flag to be reset (e.g., if init_iterator
decides to free all realized faces). We cannot continue if that
happens. */
if (!w->window_end_valid)
GIVE_UP (108);
/* Find the first row that is not affected by changes at the end of
the buffer. Value will be null if there is no unchanged row, in
which case we must redisplay to the end of the window. delta
will be set to the value by which buffer positions beginning with
first_unchanged_at_end_row have to be adjusted due to text
changes. */
first_unchanged_at_end_row
= find_first_unchanged_at_end_row (w, &delta, &delta_bytes);
IF_DEBUG (debug_delta = delta);
IF_DEBUG (debug_delta_bytes = delta_bytes);
/* Set stop_pos to the buffer position up to which we will have to
display new lines. If first_unchanged_at_end_row != NULL, this
is the buffer position of the start of the line displayed in that
row. For first_unchanged_at_end_row == NULL, use 0 to indicate
that we don't stop at a buffer position. */
stop_pos = 0;
if (first_unchanged_at_end_row)
{
eassert (last_unchanged_at_beg_row == NULL
|| first_unchanged_at_end_row >= last_unchanged_at_beg_row);
/* If this is a continuation line, move forward to the next one
that isn't. Changes in lines above affect this line.
Caution: this may move first_unchanged_at_end_row to a row
not displaying text. */
while (MATRIX_ROW_CONTINUATION_LINE_P (first_unchanged_at_end_row)
&& MATRIX_ROW_DISPLAYS_TEXT_P (first_unchanged_at_end_row)
&& (MATRIX_ROW_BOTTOM_Y (first_unchanged_at_end_row)
< it.last_visible_y))
++first_unchanged_at_end_row;
if (!MATRIX_ROW_DISPLAYS_TEXT_P (first_unchanged_at_end_row)
|| (MATRIX_ROW_BOTTOM_Y (first_unchanged_at_end_row)
>= it.last_visible_y))
first_unchanged_at_end_row = NULL;
else
{
stop_pos = (MATRIX_ROW_START_CHARPOS (first_unchanged_at_end_row)
+ delta);
first_unchanged_at_end_vpos
= MATRIX_ROW_VPOS (first_unchanged_at_end_row, current_matrix);
eassert (stop_pos >= Z - END_UNCHANGED);
}
}
else if (last_unchanged_at_beg_row == NULL)
GIVE_UP (19);
#ifdef GLYPH_DEBUG
/* Either there is no unchanged row at the end, or the one we have
now displays text. This is a necessary condition for the window
end pos calculation at the end of this function. */
eassert (first_unchanged_at_end_row == NULL
|| MATRIX_ROW_DISPLAYS_TEXT_P (first_unchanged_at_end_row));
debug_last_unchanged_at_beg_vpos
= (last_unchanged_at_beg_row
? MATRIX_ROW_VPOS (last_unchanged_at_beg_row, current_matrix)
: -1);
debug_first_unchanged_at_end_vpos = first_unchanged_at_end_vpos;
#endif /* GLYPH_DEBUG */
/* Display new lines. Set last_text_row to the last new line
displayed which has text on it, i.e. might end up as being the
line where the window_end_vpos is. */
w->cursor.vpos = -1;
last_text_row = NULL;
overlay_arrow_seen = false;
if (it.current_y < it.last_visible_y
&& !f->fonts_changed
&& (first_unchanged_at_end_row == NULL
|| IT_CHARPOS (it) < stop_pos))
it.glyph_row->reversed_p = false;
while (it.current_y < it.last_visible_y
&& !f->fonts_changed
&& (first_unchanged_at_end_row == NULL
|| IT_CHARPOS (it) < stop_pos))
{
if (display_line (&it, -1))
last_text_row = it.glyph_row - 1;
}
if (f->fonts_changed)
return -1;
/* The redisplay iterations in display_line above could have
triggered font-lock, which could have done something that
invalidates IT->w window's end-point information, on which we
rely below. E.g., one package, which will remain unnamed, used
to install a font-lock-fontify-region-function that called
bury-buffer, whose side effect is to switch the buffer displayed
by IT->w, and that predictably resets IT->w's window_end_valid
flag, which we already tested at the entry to this function.
Amply punish such packages/modes by giving up on this
optimization in those cases. */
if (!w->window_end_valid)
{
clear_glyph_matrix (w->desired_matrix);
return -1;
}
/* Compute differences in buffer positions, y-positions etc. for
lines reused at the bottom of the window. Compute what we can
scroll. */
if (first_unchanged_at_end_row
/* No lines reused because we displayed everything up to the
bottom of the window. */
&& it.current_y < it.last_visible_y)
{
dvpos = (it.vpos
- MATRIX_ROW_VPOS (first_unchanged_at_end_row,
current_matrix));
dy = it.current_y - first_unchanged_at_end_row->y;
run.current_y = first_unchanged_at_end_row->y;
run.desired_y = run.current_y + dy;
run.height = it.last_visible_y - max (run.current_y, run.desired_y);
}
else
{
delta = delta_bytes = dvpos = dy
= run.current_y = run.desired_y = run.height = 0;
first_unchanged_at_end_row = NULL;
}
IF_DEBUG ((debug_dvpos = dvpos, debug_dy = dy));
/* Find the cursor if not already found. We have to decide whether
PT will appear on this window (it sometimes doesn't, but this is
not a very frequent case.) This decision has to be made before
the current matrix is altered. A value of cursor.vpos < 0 means
that PT is either in one of the lines beginning at
first_unchanged_at_end_row or below the window. Don't care for
lines that might be displayed later at the window end; as
mentioned, this is not a frequent case. */
if (w->cursor.vpos < 0)
{
/* Cursor in unchanged rows at the top? */
if (PT < CHARPOS (start_pos)
&& last_unchanged_at_beg_row)
{
row = row_containing_pos (w, PT,
MATRIX_FIRST_TEXT_ROW (w->current_matrix),
last_unchanged_at_beg_row + 1, 0);
if (row)
set_cursor_from_row (w, row, w->current_matrix, 0, 0, 0, 0);
}
/* Start from first_unchanged_at_end_row looking for PT. */
else if (first_unchanged_at_end_row)
{
row = row_containing_pos (w, PT - delta,
first_unchanged_at_end_row, NULL, 0);
if (row)
set_cursor_from_row (w, row, w->current_matrix, delta,
delta_bytes, dy, dvpos);
}
/* Give up if cursor was not found. */
if (w->cursor.vpos < 0)
{
clear_glyph_matrix (w->desired_matrix);
return -1;
}
}
/* Don't let the cursor end in the scroll margins. */
{
int top_scroll_margin = window_scroll_margin (w, MARGIN_IN_PIXELS);
int bot_scroll_margin = top_scroll_margin;
int cursor_height = MATRIX_ROW (w->desired_matrix, w->cursor.vpos)->height;
if (window_wants_header_line (w))
top_scroll_margin += CURRENT_HEADER_LINE_HEIGHT (w);
if (window_wants_tab_line (w))
top_scroll_margin += CURRENT_TAB_LINE_HEIGHT (w);
if ((w->cursor.y < top_scroll_margin
&& CHARPOS (start) > BEGV)
/* Old redisplay didn't take scroll margin into account at the bottom,
but then global-hl-line-mode doesn't scroll. KFS 2004-06-14 */
|| (w->cursor.y
+ (cursor_row_fully_visible_p (w, false, true, true)
? 1
: cursor_height + bot_scroll_margin)) > it.last_visible_y)
{
w->cursor.vpos = -1;
clear_glyph_matrix (w->desired_matrix);
return -1;
}
}
/* Scroll the display. Do it before changing the current matrix so
that xterm.c doesn't get confused about where the cursor glyph is
found. */
if (dy && run.height)
{
update_begin (f);
if (FRAME_WINDOW_P (f))
{
#ifdef HAVE_WINDOW_SYSTEM
gui_update_window_begin (w);
FRAME_RIF (f)->clear_window_mouse_face (w);
FRAME_RIF (f)->scroll_run_hook (w, &run);
gui_update_window_end (w, false, false);
#endif
}
else
{
/* Terminal frame. In this case, dvpos gives the number of
lines to scroll by; dvpos < 0 means scroll up. */
int from_vpos
= MATRIX_ROW_VPOS (first_unchanged_at_end_row, w->current_matrix);
int from = WINDOW_TOP_EDGE_LINE (w) + from_vpos;
int end = (WINDOW_TOP_EDGE_LINE (w)
+ window_wants_tab_line (w)
+ window_wants_header_line (w)
+ window_internal_height (w));
gui_clear_window_mouse_face (w);
/* Perform the operation on the screen. */
if (dvpos > 0)
{
/* Scroll last_unchanged_at_beg_row to the end of the
window down dvpos lines. */
set_terminal_window (f, end);
/* On dumb terminals delete dvpos lines at the end
before inserting dvpos empty lines. */
if (!FRAME_SCROLL_REGION_OK (f))
ins_del_lines (f, end - dvpos, -dvpos);
/* Insert dvpos empty lines in front of
last_unchanged_at_beg_row. */
ins_del_lines (f, from, dvpos);
}
else if (dvpos < 0)
{
/* Scroll up last_unchanged_at_beg_vpos to the end of
the window to last_unchanged_at_beg_vpos - |dvpos|. */
set_terminal_window (f, end);
/* Delete dvpos lines in front of
last_unchanged_at_beg_vpos. ins_del_lines will set
the cursor to the given vpos and emit |dvpos| delete
line sequences. */
ins_del_lines (f, from + dvpos, dvpos);
/* On a dumb terminal insert dvpos empty lines at the
end. */
if (!FRAME_SCROLL_REGION_OK (f))
ins_del_lines (f, end + dvpos, -dvpos);
}
set_terminal_window (f, 0);
}
update_end (f);
}
/* Shift reused rows of the current matrix to the right position.
BOTTOM_ROW is the last + 1 row in the current matrix reserved for
text. */
bottom_row = MATRIX_BOTTOM_TEXT_ROW (current_matrix, w);
bottom_vpos = MATRIX_ROW_VPOS (bottom_row, current_matrix);
if (dvpos < 0)
{
rotate_matrix (current_matrix, first_unchanged_at_end_vpos + dvpos,
bottom_vpos, dvpos);
clear_glyph_matrix_rows (current_matrix, bottom_vpos + dvpos,
bottom_vpos);
}
else if (dvpos > 0)
{
rotate_matrix (current_matrix, first_unchanged_at_end_vpos,
bottom_vpos, dvpos);
clear_glyph_matrix_rows (current_matrix, first_unchanged_at_end_vpos,
first_unchanged_at_end_vpos + dvpos);
}
/* For frame-based redisplay, make sure that current frame and window
matrix are in sync with respect to glyph memory. */
if (!FRAME_WINDOW_P (f))
sync_frame_with_window_matrix_rows (w);
/* Adjust buffer positions in reused rows. */
if (delta || delta_bytes)
increment_matrix_positions (current_matrix,
first_unchanged_at_end_vpos + dvpos,
bottom_vpos, delta, delta_bytes);
/* Adjust Y positions. */
if (dy)
shift_glyph_matrix (w, current_matrix,
first_unchanged_at_end_vpos + dvpos,
bottom_vpos, dy);
if (first_unchanged_at_end_row)
{
first_unchanged_at_end_row += dvpos;
if (first_unchanged_at_end_row->y >= it.last_visible_y
|| !MATRIX_ROW_DISPLAYS_TEXT_P (first_unchanged_at_end_row))
first_unchanged_at_end_row = NULL;
}
/* If scrolling up, there may be some lines to display at the end of
the window. */
last_text_row_at_end = NULL;
if (dy < 0)
{
/* Scrolling up can leave for example a partially visible line
at the end of the window to be redisplayed. */
/* Set last_row to the glyph row in the current matrix where the
window end line is found. It has been moved up or down in
the matrix by dvpos. */
int last_vpos = w->window_end_vpos + dvpos;
struct glyph_row *last_row = MATRIX_ROW (current_matrix, last_vpos);
/* If last_row is the window end line, it should display text. */
eassert (MATRIX_ROW_DISPLAYS_TEXT_P (last_row));
/* If window end line was partially visible before, begin
displaying at that line. Otherwise begin displaying with the
line following it. */
if (MATRIX_ROW_BOTTOM_Y (last_row) - dy >= it.last_visible_y)
{
init_to_row_start (&it, w, last_row);
it.vpos = last_vpos;
it.current_y = last_row->y;
}
else
{
init_to_row_end (&it, w, last_row);
it.vpos = 1 + last_vpos;
it.current_y = MATRIX_ROW_BOTTOM_Y (last_row);
++last_row;
}
/* We may start in a continuation line. If so, we have to
get the right continuation_lines_width and current_x. */
it.continuation_lines_width = last_row->continuation_lines_width;
it.hpos = it.current_x = it.wrap_prefix_width = 0;
/* Display the rest of the lines at the window end. */
it.glyph_row = MATRIX_ROW (desired_matrix, it.vpos);
while (it.current_y < it.last_visible_y && !f->fonts_changed)
{
/* Is it always sure that the display agrees with lines in
the current matrix? I don't think so, so we mark rows
displayed invalid in the current matrix by setting their
enabled_p flag to false. */
SET_MATRIX_ROW_ENABLED_P (w->current_matrix, it.vpos, false);
if (display_line (&it, w->cursor.vpos))
last_text_row_at_end = it.glyph_row - 1;
}
}
/* Update window_end_pos and window_end_vpos. */
if (first_unchanged_at_end_row && !last_text_row_at_end)
{
/* Window end line if one of the preserved rows from the current
matrix. Set row to the last row displaying text in current
matrix starting at first_unchanged_at_end_row, after
scrolling. */
eassert (MATRIX_ROW_DISPLAYS_TEXT_P (first_unchanged_at_end_row));
row = find_last_row_displaying_text (w->current_matrix, &it,
first_unchanged_at_end_row);
eassume (row && MATRIX_ROW_DISPLAYS_TEXT_P (row));
adjust_window_ends (w, row, true);
eassert (w->window_end_bytepos >= 0);
IF_DEBUG (debug_method_add (w, "A"));
}
else if (last_text_row_at_end)
{
adjust_window_ends (w, last_text_row_at_end, false);
eassert (w->window_end_bytepos >= 0);
IF_DEBUG (debug_method_add (w, "B"));
}
else if (last_text_row)
{
/* We have displayed either to the end of the window or at the
end of the window, i.e. the last row with text is to be found
in the desired matrix. */
adjust_window_ends (w, last_text_row, false);
eassert (w->window_end_bytepos >= 0);
}
else if (first_unchanged_at_end_row == NULL
&& last_text_row == NULL
&& last_text_row_at_end == NULL)
{
/* Displayed to end of window, but no line containing text was
displayed. Lines were deleted at the end of the window. */
int first_vpos = window_wants_tab_line (w) + window_wants_header_line (w);
int vpos = w->window_end_vpos;
struct glyph_row *current_row = current_matrix->rows + vpos;
struct glyph_row *desired_row = desired_matrix->rows + vpos;
for (row = NULL; !row; --vpos, --current_row, --desired_row)
{
eassert (first_vpos <= vpos);
if (desired_row->enabled_p)
{
if (MATRIX_ROW_DISPLAYS_TEXT_P (desired_row))
row = desired_row;
}
else if (MATRIX_ROW_DISPLAYS_TEXT_P (current_row))
row = current_row;
}
w->window_end_vpos = vpos + 1;
w->window_end_pos = Z - MATRIX_ROW_END_CHARPOS (row);
w->window_end_bytepos = Z_BYTE - MATRIX_ROW_END_BYTEPOS (row);
eassert (w->window_end_bytepos >= 0);
IF_DEBUG (debug_method_add (w, "C"));
}
else
emacs_abort ();
IF_DEBUG ((debug_end_pos = w->window_end_pos,
debug_end_vpos = w->window_end_vpos));
/* Record that display has not been completed. */
w->window_end_valid = false;
w->desired_matrix->no_scrolling_p = true;
return 3;
#undef GIVE_UP
}
/***********************************************************************
More debugging support
***********************************************************************/
#ifdef GLYPH_DEBUG
void dump_glyph_row (struct glyph_row *, int, int) EXTERNALLY_VISIBLE;
void dump_glyph_matrix (struct glyph_matrix *, int) EXTERNALLY_VISIBLE;
void dump_glyph (struct glyph_row *, struct glyph *, int) EXTERNALLY_VISIBLE;
/* Dump the contents of glyph matrix MATRIX on stderr.
GLYPHS 0 means don't show glyph contents.
GLYPHS 1 means show glyphs in short form
GLYPHS > 1 means show glyphs in long form. */
void
dump_glyph_matrix (struct glyph_matrix *matrix, int glyphs)
{
int i;
for (i = 0; i < matrix->nrows; ++i)
dump_glyph_row (MATRIX_ROW (matrix, i), i, glyphs);
}
/* Dump contents of glyph GLYPH to stderr. ROW and AREA are
the glyph row and area where the glyph comes from. */
void
dump_glyph (struct glyph_row *row, struct glyph *glyph, int area)
{
if (glyph->type == CHAR_GLYPH
|| glyph->type == GLYPHLESS_GLYPH)
{
fprintf (stderr,
" %5"pD"d %c %9"pD"d %c %3d 0x%06x %c %4d %1.1d%1.1d\n",
glyph - row->glyphs[TEXT_AREA],
(glyph->type == CHAR_GLYPH
? 'C'
: 'G'),
glyph->charpos,
(BUFFERP (glyph->object)
? 'B'
: (STRINGP (glyph->object)
? 'S'
: (NILP (glyph->object)
? '0'
: '-'))),
glyph->pixel_width,
glyph->u.ch,
(glyph->u.ch < 0x80 && glyph->u.ch >= ' '
? (int) glyph->u.ch
: '.'),
glyph->face_id,
glyph->left_box_line_p,
glyph->right_box_line_p);
}
else if (glyph->type == STRETCH_GLYPH)
{
fprintf (stderr,
" %5"pD"d %c %9"pD"d %c %3d 0x%06x %c %4d %1.1d%1.1d\n",
glyph - row->glyphs[TEXT_AREA],
'S',
glyph->charpos,
(BUFFERP (glyph->object)
? 'B'
: (STRINGP (glyph->object)
? 'S'
: (NILP (glyph->object)
? '0'
: '-'))),
glyph->pixel_width,
0u,
' ',
glyph->face_id,
glyph->left_box_line_p,
glyph->right_box_line_p);
}
else if (glyph->type == IMAGE_GLYPH)
{
fprintf (stderr,
" %5"pD"d %c %9"pD"d %c %3d 0x%06x %c %4d %1.1d%1.1d\n",
glyph - row->glyphs[TEXT_AREA],
'I',
glyph->charpos,
(BUFFERP (glyph->object)
? 'B'
: (STRINGP (glyph->object)
? 'S'
: (NILP (glyph->object)
? '0'
: '-'))),
glyph->pixel_width,
(unsigned int) glyph->u.img_id,
'.',
glyph->face_id,
glyph->left_box_line_p,
glyph->right_box_line_p);
}
else if (glyph->type == COMPOSITE_GLYPH)
{
fprintf (stderr,
" %5"pD"d %c %9"pD"d %c %3d 0x%06x",
glyph - row->glyphs[TEXT_AREA],
'+',
glyph->charpos,
(BUFFERP (glyph->object)
? 'B'
: (STRINGP (glyph->object)
? 'S'
: (NILP (glyph->object)
? '0'
: '-'))),
glyph->pixel_width,
(unsigned int) glyph->u.cmp.id);
if (glyph->u.cmp.automatic)
fprintf (stderr,
"[%d-%d]",
glyph->slice.cmp.from, glyph->slice.cmp.to);
fprintf (stderr, " . %4d %1.1d%1.1d\n",
glyph->face_id,
glyph->left_box_line_p,
glyph->right_box_line_p);
}
else if (glyph->type == XWIDGET_GLYPH)
{
#ifndef HAVE_XWIDGETS
eassume (false);
#else
fprintf (stderr,
" %5td %4c %6td %c %3d %7p %c %4d %1.1d%1.1d\n",
glyph - row->glyphs[TEXT_AREA],
'X',
glyph->charpos,
(BUFFERP (glyph->object)
? 'B'
: (STRINGP (glyph->object)
? 'S'
: '-')),
glyph->pixel_width,
glyph->u.xwidget,
'.',
glyph->face_id,
glyph->left_box_line_p,
glyph->right_box_line_p);
#endif
}
}
/* Dump the contents of glyph row at VPOS in MATRIX to stderr.
GLYPHS 0 means don't show glyph contents.
GLYPHS 1 means show glyphs in short form
GLYPHS > 1 means show glyphs in long form. */
void
dump_glyph_row (struct glyph_row *row, int vpos, int glyphs)
{
if (glyphs != 1)
{
fputs (("Row Start End Used oE><\\CTZFesm X Y W H V A P\n"
"==============================================================================\n"),
stderr);
fprintf (stderr, "%3d %9"pD"d %9"pD"d %4d %1.1d%1.1d%1.1d%1.1d\
%1.1d%1.1d%1.1d%1.1d%1.1d%1.1d%1.1d%1.1d %4d %4d %4d %4d %4d %4d %4d\n",
vpos,
MATRIX_ROW_START_CHARPOS (row),
MATRIX_ROW_END_CHARPOS (row),
row->used[TEXT_AREA],
row->contains_overlapping_glyphs_p,
row->enabled_p,
row->truncated_on_left_p,
row->truncated_on_right_p,
row->continued_p,
MATRIX_ROW_CONTINUATION_LINE_P (row),
MATRIX_ROW_DISPLAYS_TEXT_P (row),
row->ends_at_zv_p,
row->fill_line_p,
row->ends_in_middle_of_char_p,
row->starts_in_middle_of_char_p,
row->mouse_face_p,
row->x,
row->y,
row->pixel_width,
row->height,
row->visible_height,
row->ascent,
row->phys_ascent);
/* The next 3 lines should align to "Start" in the header. */
fprintf (stderr, " %9"pD"d %9"pD"d\t%5d\n", row->start.overlay_string_index,
row->end.overlay_string_index,
row->continuation_lines_width);
fprintf (stderr, " %9"pD"d %9"pD"d\n",
CHARPOS (row->start.string_pos),
CHARPOS (row->end.string_pos));
fprintf (stderr, " %9d %9d\n", row->start.dpvec_index,
row->end.dpvec_index);
}
if (glyphs > 1)
{
int area;
for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
{
struct glyph *glyph = row->glyphs[area];
struct glyph *glyph_end = glyph + row->used[area];
/* Glyph for a line end in text. */
if (area == TEXT_AREA && glyph == glyph_end && glyph->charpos > 0)
++glyph_end;
if (glyph < glyph_end)
fputs (" Glyph# Type Pos O W Code C Face LR\n",
stderr);
for (; glyph < glyph_end; ++glyph)
dump_glyph (row, glyph, area);
}
}
else if (glyphs == 1)
{
int area;
char s[SHRT_MAX + 4];
for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
{
int i;
for (i = 0; i < row->used[area]; ++i)
{
struct glyph *glyph = row->glyphs[area] + i;
if (i == row->used[area] - 1
&& area == TEXT_AREA
&& NILP (glyph->object)
&& glyph->type == CHAR_GLYPH
&& glyph->u.ch == ' ')
{
strcpy (&s[i], "[\\n]");
i += 4;
}
else if (glyph->type == CHAR_GLYPH
&& glyph->u.ch < 0x80
&& glyph->u.ch >= ' ')
s[i] = glyph->u.ch;
else
s[i] = '.';
}
s[i] = '\0';
fprintf (stderr, "%3d: (%d) '%s'\n", vpos, row->enabled_p, s);
}
}
}
DEFUN ("dump-glyph-matrix", Fdump_glyph_matrix,
Sdump_glyph_matrix, 0, 1, "p",
doc: /* Dump the current matrix of the selected window to stderr.
Shows contents of glyph row structures. With non-nil
parameter GLYPHS, dump glyphs as well. If GLYPHS is 1 show
glyphs in short form, otherwise show glyphs in long form.
Interactively, no argument means show glyphs in short form;
with numeric argument, its value is passed as the GLYPHS flag. */)
(Lisp_Object glyphs)
{
struct window *w = XWINDOW (selected_window);
struct buffer *buffer = XBUFFER (w->contents);
fprintf (stderr, "PT = %"pD"d, BEGV = %"pD"d. ZV = %"pD"d\n",
BUF_PT (buffer), BUF_BEGV (buffer), BUF_ZV (buffer));
fprintf (stderr, "Cursor x = %d, y = %d, hpos = %d, vpos = %d\n",
w->cursor.x, w->cursor.y, w->cursor.hpos, w->cursor.vpos);
fputs ("=============================================\n", stderr);
dump_glyph_matrix (w->current_matrix,
TYPE_RANGED_FIXNUMP (int, glyphs) ? XFIXNUM (glyphs) : 0);
return Qnil;
}
DEFUN ("dump-frame-glyph-matrix", Fdump_frame_glyph_matrix,
Sdump_frame_glyph_matrix, 0, 0, "", doc: /* Dump the current glyph matrix of the selected frame to stderr.
Only text-mode frames have frame glyph matrices. */)
(void)
{
struct frame *f = XFRAME (selected_frame);
if (f->current_matrix)
dump_glyph_matrix (f->current_matrix, 1);
else
fputs ("*** This frame doesn't have a frame glyph matrix ***\n", stderr);
return Qnil;
}
DEFUN ("dump-glyph-row", Fdump_glyph_row, Sdump_glyph_row, 1, 2, "P",
doc: /* Dump glyph row ROW to stderr.
Interactively, ROW is the prefix numeric argument and defaults to
the row which displays point.
Optional argument GLYPHS 0 means don't dump glyphs.
GLYPHS 1 means dump glyphs in short form.
GLYPHS > 1 or omitted means dump glyphs in long form. */)
(Lisp_Object row, Lisp_Object glyphs)
{
struct glyph_matrix *matrix;
EMACS_INT vpos;
if (NILP (row))
{
int d1, d2, d3, d4, d5, ypos;
bool visible_p = pos_visible_p (XWINDOW (selected_window), PT,
&d1, &d2, &d3, &d4, &d5, &ypos);
if (visible_p)
vpos = ypos;
else
vpos = 0;
}
else
{
CHECK_FIXNUM (row);
vpos = XFIXNUM (row);
}
matrix = XWINDOW (selected_window)->current_matrix;
if (vpos >= 0 && vpos < matrix->nrows)
dump_glyph_row (MATRIX_ROW (matrix, vpos),
vpos,
TYPE_RANGED_FIXNUMP (int, glyphs) ? XFIXNUM (glyphs) : 2);
return Qnil;
}
DEFUN ("dump-tab-bar-row", Fdump_tab_bar_row, Sdump_tab_bar_row, 1, 2, "P",
doc: /* Dump glyph row ROW of the tab-bar of the current frame to stderr.
Interactively, ROW is the prefix numeric argument and defaults to zero.
GLYPHS 0 means don't dump glyphs.
GLYPHS 1 means dump glyphs in short form.
GLYPHS > 1 or omitted means dump glyphs in long form.
If there's no tab-bar, or if the tab-bar is not drawn by Emacs,
do nothing. */)
(Lisp_Object row, Lisp_Object glyphs)
{
#if defined (HAVE_WINDOW_SYSTEM)
struct frame *sf = SELECTED_FRAME ();
struct glyph_matrix *m = WINDOWP (sf->tab_bar_window)
? XWINDOW (sf->tab_bar_window)->current_matrix
: sf->current_matrix;
EMACS_INT vpos;
if (NILP (row))
vpos = WINDOWP (sf->tab_bar_window) ? 0 :
FRAME_MENU_BAR_LINES (sf) > 0 ? 1 : 0;
else
{
CHECK_FIXNUM (row);
vpos = XFIXNUM (row);
}
if (vpos >= 0 && vpos < m->nrows)
dump_glyph_row (MATRIX_ROW (m, vpos), vpos,
TYPE_RANGED_FIXNUMP (int, glyphs) ? XFIXNUM (glyphs) : 2);
#endif
return Qnil;
}
DEFUN ("dump-tool-bar-row", Fdump_tool_bar_row, Sdump_tool_bar_row, 1, 2, "P",
doc: /* Dump glyph row ROW of the tool-bar of the current frame to stderr.
Interactively, ROW is the prefix numeric argument and defaults to zero.
GLYPHS 0 means don't dump glyphs.
GLYPHS 1 means dump glyphs in short form.
GLYPHS > 1 or omitted means dump glyphs in long form.
If there's no tool-bar, or if the tool-bar is not drawn by Emacs,
do nothing. */)
(Lisp_Object row, Lisp_Object glyphs)
{
#if defined (HAVE_WINDOW_SYSTEM) && ! defined (HAVE_EXT_TOOL_BAR)
struct frame *sf = SELECTED_FRAME ();
struct glyph_matrix *m = XWINDOW (sf->tool_bar_window)->current_matrix;
EMACS_INT vpos;
if (NILP (row))
vpos = 0;
else
{
CHECK_FIXNUM (row);
vpos = XFIXNUM (row);
}
if (vpos >= 0 && vpos < m->nrows)
dump_glyph_row (MATRIX_ROW (m, vpos), vpos,
TYPE_RANGED_FIXNUMP (int, glyphs) ? XFIXNUM (glyphs) : 2);
#endif
return Qnil;
}
DEFUN ("trace-redisplay", Ftrace_redisplay, Strace_redisplay, 0, 1, "P",
doc: /* Toggle tracing of redisplay.
With ARG, turn tracing on if and only if ARG is positive. */)
(Lisp_Object arg)
{
if (NILP (arg))
trace_redisplay_p = !trace_redisplay_p;
else
{
arg = Fprefix_numeric_value (arg);
trace_redisplay_p = XFIXNUM (arg) > 0;
}
return Qnil;
}
DEFUN ("trace-to-stderr", Ftrace_to_stderr, Strace_to_stderr, 1, MANY, "",
doc: /* Like `format', but print result to stderr.
usage: (trace-to-stderr STRING &rest OBJECTS) */)
(ptrdiff_t nargs, Lisp_Object *args)
{
Lisp_Object s = Fformat (nargs, args);
fwrite (SDATA (s), 1, SBYTES (s), stderr);
return Qnil;
}
#endif /* GLYPH_DEBUG */
/***********************************************************************
Building Desired Matrix Rows
***********************************************************************/
/* Return a temporary glyph row holding the glyphs of an overlay arrow.
Used for non-window-redisplay windows, and for windows without left
fringe. */
static struct glyph_row *
get_overlay_arrow_glyph_row (struct window *w, Lisp_Object overlay_arrow_string)
{
struct frame *f = XFRAME (WINDOW_FRAME (w));
struct buffer *buffer = XBUFFER (w->contents);
struct buffer *old = current_buffer;
const unsigned char *arrow_string = SDATA (overlay_arrow_string);
ptrdiff_t arrow_len = SBYTES (overlay_arrow_string), char_num = 0;
const unsigned char *arrow_end = arrow_string + arrow_len;
const unsigned char *p;
struct it it;
bool multibyte_p;
int n_glyphs_before;
set_buffer_temp (buffer);
init_iterator (&it, w, -1, -1, &scratch_glyph_row, DEFAULT_FACE_ID);
scratch_glyph_row.reversed_p = false;
it.glyph_row->used[TEXT_AREA] = 0;
SET_TEXT_POS (it.position, 0, 0);
multibyte_p = !NILP (BVAR (buffer, enable_multibyte_characters));
p = arrow_string;
while (p < arrow_end)
{
Lisp_Object face, ilisp;
/* Get the next character. */
if (multibyte_p)
it.c = it.char_to_display = check_char_and_length (p, &it.len);
else
{
it.c = it.char_to_display = *p, it.len = 1;
if (! ASCII_CHAR_P (it.c))
it.char_to_display = BYTE8_TO_CHAR (it.c);
}
p += it.len;
/* Get its face. */
ilisp = make_fixnum (char_num++);
face = Fget_text_property (ilisp, Qface, overlay_arrow_string);
it.face_id = compute_char_face (f, it.char_to_display, face);
/* Compute its width, get its glyphs. */
n_glyphs_before = it.glyph_row->used[TEXT_AREA];
SET_TEXT_POS (it.position, -1, -1);
PRODUCE_GLYPHS (&it);
/* If this character doesn't fit any more in the line, we have
to remove some glyphs. */
if (it.current_x > it.last_visible_x)
{
it.glyph_row->used[TEXT_AREA] = n_glyphs_before;
break;
}
}
set_buffer_temp (old);
return it.glyph_row;
}
/* Insert truncation glyphs at the start of IT->glyph_row. Which
glyphs to insert is determined by produce_special_glyphs. */
static void
insert_left_trunc_glyphs (struct it *it)
{
struct it truncate_it;
struct glyph *from, *end, *to, *toend;
eassert (!FRAME_WINDOW_P (it->f)
|| (!it->glyph_row->reversed_p
&& WINDOW_LEFT_FRINGE_WIDTH (it->w) == 0)
|| (it->glyph_row->reversed_p
&& WINDOW_RIGHT_FRINGE_WIDTH (it->w) == 0));
/* Get the truncation glyphs. */
truncate_it = *it;
truncate_it.current_x = 0;
truncate_it.wrap_prefix_width = 0;
truncate_it.face_id = DEFAULT_FACE_ID;
truncate_it.glyph_row = &scratch_glyph_row;
truncate_it.area = TEXT_AREA;
truncate_it.glyph_row->used[TEXT_AREA] = 0;
CHARPOS (truncate_it.position) = BYTEPOS (truncate_it.position) = -1;
truncate_it.object = Qnil;
produce_special_glyphs (&truncate_it, IT_TRUNCATION);
/* Overwrite glyphs from IT with truncation glyphs. */
if (!it->glyph_row->reversed_p)
{
short tused = truncate_it.glyph_row->used[TEXT_AREA];
from = truncate_it.glyph_row->glyphs[TEXT_AREA];
end = from + tused;
to = it->glyph_row->glyphs[TEXT_AREA];
toend = to + it->glyph_row->used[TEXT_AREA];
if (FRAME_WINDOW_P (it->f))
{
/* On GUI frames, when variable-size fonts are displayed,
the truncation glyphs may need more pixels than the row's
glyphs they overwrite. We overwrite more glyphs to free
enough screen real estate, and enlarge the stretch glyph
on the right (see display_line), if there is one, to
preserve the screen position of the truncation glyphs on
the right. */
int w = 0;
struct glyph *g = to;
short used;
/* The first glyph could be partially visible, in which case
it->glyph_row->x will be negative. But we want the left
truncation glyphs to be aligned at the left margin of the
window, so we override the x coordinate at which the row
will begin. */
it->glyph_row->x = 0;
while (g < toend && w < it->truncation_pixel_width)
{
w += g->pixel_width;
++g;
}
if (g - to - tused > 0)
{
memmove (to + tused, g, (toend - g) * sizeof(*g));
it->glyph_row->used[TEXT_AREA] -= g - to - tused;
}
used = it->glyph_row->used[TEXT_AREA];
if (it->glyph_row->truncated_on_right_p
&& WINDOW_RIGHT_FRINGE_WIDTH (it->w) == 0
&& it->glyph_row->glyphs[TEXT_AREA][used - 2].type
== STRETCH_GLYPH)
{
int extra = w - it->truncation_pixel_width;
it->glyph_row->glyphs[TEXT_AREA][used - 2].pixel_width += extra;
}
}
while (from < end)
*to++ = *from++;
/* There may be padding glyphs left over. Overwrite them too. */
if (!FRAME_WINDOW_P (it->f))
{
while (to < toend && CHAR_GLYPH_PADDING_P (*to))
{
from = truncate_it.glyph_row->glyphs[TEXT_AREA];
while (from < end)
*to++ = *from++;
}
}
if (to > toend)
it->glyph_row->used[TEXT_AREA] = to - it->glyph_row->glyphs[TEXT_AREA];
}
else
{
short tused = truncate_it.glyph_row->used[TEXT_AREA];
/* In R2L rows, overwrite the last (rightmost) glyphs, and do
that back to front. */
end = truncate_it.glyph_row->glyphs[TEXT_AREA];
from = end + truncate_it.glyph_row->used[TEXT_AREA] - 1;
toend = it->glyph_row->glyphs[TEXT_AREA];
to = toend + it->glyph_row->used[TEXT_AREA] - 1;
if (FRAME_WINDOW_P (it->f))
{
int w = 0;
struct glyph *g = to;
while (g >= toend && w < it->truncation_pixel_width)
{
w += g->pixel_width;
--g;
}
if (to - g - tused > 0)
to = g + tused;
if (it->glyph_row->truncated_on_right_p
&& WINDOW_LEFT_FRINGE_WIDTH (it->w) == 0
&& it->glyph_row->glyphs[TEXT_AREA][1].type == STRETCH_GLYPH)
{
int extra = w - it->truncation_pixel_width;
it->glyph_row->glyphs[TEXT_AREA][1].pixel_width += extra;
}
}
while (from >= end && to >= toend)
*to-- = *from--;
if (!FRAME_WINDOW_P (it->f))
{
while (to >= toend && CHAR_GLYPH_PADDING_P (*to))
{
from =
truncate_it.glyph_row->glyphs[TEXT_AREA]
+ truncate_it.glyph_row->used[TEXT_AREA] - 1;
while (from >= end && to >= toend)
*to-- = *from--;
}
}
if (from >= end)
{
/* Need to free some room before prepending additional
glyphs. */
int move_by = from - end + 1;
struct glyph *g0 = it->glyph_row->glyphs[TEXT_AREA];
struct glyph *g = g0 + it->glyph_row->used[TEXT_AREA] - 1;
for ( ; g >= g0; g--)
g[move_by] = *g;
while (from >= end)
*to-- = *from--;
it->glyph_row->used[TEXT_AREA] += move_by;
}
}
}
/* Compute the hash code for ROW. */
unsigned
row_hash (struct glyph_row *row)
{
int area, k;
unsigned hashval = 0;
for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
for (k = 0; k < row->used[area]; ++k)
hashval = ((((hashval << 4) + (hashval >> 24)) & 0x0fffffff)
+ row->glyphs[area][k].u.val
+ row->glyphs[area][k].face_id
+ row->glyphs[area][k].padding_p
+ (row->glyphs[area][k].type << 2));
return hashval;
}
/* Compute the pixel height and width of IT->glyph_row.
Most of the time, ascent and height of a display line will be equal
to the max_ascent and max_height values of the display iterator
structure. This is not the case if
1. We hit ZV without displaying anything. In this case, max_ascent
and max_height will be zero.
2. We have some glyphs that don't contribute to the line height.
(The glyph row flag contributes_to_line_height_p is for future
pixmap extensions).
The first case is easily covered by using default values because in
these cases, the line height does not really matter, except that it
must not be zero. */
static void
compute_line_metrics (struct it *it)
{
struct glyph_row *row = it->glyph_row;
if (FRAME_WINDOW_P (it->f))
{
int i, min_y, max_y;
/* The line may consist of one space only, that was added to
place the cursor on it. If so, the row's height hasn't been
computed yet. */
if (row->height == 0)
{
if (it->max_ascent + it->max_descent == 0)
it->max_descent = it->max_phys_descent = FRAME_LINE_HEIGHT (it->f);
row->ascent = it->max_ascent;
row->height = it->max_ascent + it->max_descent;
row->phys_ascent = it->max_phys_ascent;
row->phys_height = it->max_phys_ascent + it->max_phys_descent;
row->extra_line_spacing = it->max_extra_line_spacing;
}
/* Compute the width of this line. */
row->pixel_width = row->x;
for (i = 0; i < row->used[TEXT_AREA]; ++i)
row->pixel_width += row->glyphs[TEXT_AREA][i].pixel_width;
eassert (row->pixel_width >= 0);
eassert (row->ascent >= 0 && row->height > 0);
row->overlapping_p = (MATRIX_ROW_OVERLAPS_SUCC_P (row)
|| MATRIX_ROW_OVERLAPS_PRED_P (row));
/* If first line's physical ascent is larger than its logical
ascent, use the physical ascent, and make the row taller.
This makes accented characters fully visible. */
if (row == MATRIX_FIRST_TEXT_ROW (it->w->desired_matrix)
&& row->phys_ascent > row->ascent)
{
row->height += row->phys_ascent - row->ascent;
row->ascent = row->phys_ascent;
}
/* Compute how much of the line is visible. */
row->visible_height = row->height;
min_y = WINDOW_TAB_LINE_HEIGHT (it->w) + WINDOW_HEADER_LINE_HEIGHT (it->w);
max_y = WINDOW_BOX_HEIGHT_NO_MODE_LINE (it->w);
if (row->y < min_y)
row->visible_height -= min_y - row->y;
if (row->y + row->height > max_y)
row->visible_height -= row->y + row->height - max_y;
}
else
{
row->pixel_width = row->used[TEXT_AREA];
if (row->continued_p)
row->pixel_width -= it->continuation_pixel_width;
else if (row->truncated_on_right_p)
row->pixel_width -= it->truncation_pixel_width;
row->ascent = row->phys_ascent = 0;
row->height = row->phys_height = row->visible_height = 1;
row->extra_line_spacing = 0;
}
/* Compute a hash code for this row. */
row->hash = row_hash (row);
it->max_ascent = it->max_descent = 0;
it->max_phys_ascent = it->max_phys_descent = 0;
}
static void
clear_position (struct it *it)
{
it->position.charpos = 0;
it->position.bytepos = 0;
}
/* Append one space to the glyph row of iterator IT if doing a
window-based redisplay. The space has the same face as
IT->face_id. Value is true if a space was added.
This function is called to make sure that there is always one glyph
at the end of a glyph row that the cursor can be set on under
window-systems. (If there weren't such a glyph we would not know
how wide and tall a box cursor should be displayed).
At the same time this space let's a nicely handle clearing to the
end of the line if the row ends in italic text. */
static bool
append_space_for_newline (struct it *it, bool default_face_p)
{
int n = it->glyph_row->used[TEXT_AREA];
if (it->glyph_row->glyphs[TEXT_AREA] + n
< it->glyph_row->glyphs[1 + TEXT_AREA])
{
/* Save some values that must not be changed.
Must save IT->c and IT->len because otherwise
ITERATOR_AT_END_P wouldn't work anymore after
append_space_for_newline has been called. */
enum display_element_type saved_what = it->what;
int saved_c = it->c, saved_len = it->len;
int saved_char_to_display = it->char_to_display;
int saved_x = it->current_x;
const int saved_face_id = it->face_id;
bool saved_box_end = it->end_of_box_run_p;
struct text_pos saved_pos = it->position;
Lisp_Object saved_object = it->object;
struct face *face;
it->what = IT_CHARACTER;
clear_position (it);
it->object = Qnil;
it->len = 1;
int char_width = 1;
if (default_face_p
#ifdef HAVE_WINDOW_SYSTEM
|| FRAME_WINDOW_P (it->f)
#endif
)
{
const int local_default_face_id =
lookup_basic_face (it->w, it->f, DEFAULT_FACE_ID);
#ifdef HAVE_WINDOW_SYSTEM
if (FRAME_WINDOW_P (it->f))
{
struct face *default_face
= FACE_FROM_ID (it->f, local_default_face_id);
struct font *font = (default_face->font
? default_face->font
: FRAME_FONT (it->f));
char_width = (font->average_width
? font->average_width
: font->space_width);
}
#endif
if (default_face_p)
it->face_id = local_default_face_id;
}
/* Corner case for when display-fill-column-indicator-mode
is active and the extra character should be added in the
same place than the line. */
const int indicator_column =
fill_column_indicator_column (it, char_width);
int saved_end_of_box_run = it->end_of_box_run_p;
bool should_keep_end_of_box_run = false;
if (it->current_x == indicator_column)
{
it->c = it->char_to_display
= XFIXNAT (Vdisplay_fill_column_indicator_character);
it->face_id
= merge_faces (it->w, Qfill_column_indicator,
0, saved_face_id);
face = FACE_FROM_ID (it->f, it->face_id);
}
else
{
it->c = it->char_to_display = ' ';
/* If the default face was remapped, be sure to use the
remapped face for the appended newline. */
face = FACE_FROM_ID (it->f, it->face_id);
it->face_id = FACE_FOR_CHAR (it->f, face, 0, -1, Qnil);
/* In R2L rows, we will prepend a stretch glyph that will
have the end_of_box_run_p flag set for it, so there's no
need for the appended newline glyph to have that flag
set. */
if (!(it->glyph_row->reversed_p
/* But if the appended newline glyph goes all the way to
the end of the row, there will be no stretch glyph,
so leave the box flag set. */
&& saved_x + FRAME_COLUMN_WIDTH (it->f) < it->last_visible_x))
should_keep_end_of_box_run = true;
}
PRODUCE_GLYPHS (it);
/* Restore the end_of_box_run_p flag which was reset by
PRODUCE_GLYPHS. */
if (should_keep_end_of_box_run)
it->end_of_box_run_p = saved_end_of_box_run;
#ifdef HAVE_WINDOW_SYSTEM
if (FRAME_WINDOW_P (it->f))
{
/* Make sure this space glyph has the right ascent and
descent values, or else cursor at end of line will look
funny, and height of empty lines will be incorrect. */
struct glyph *g = it->glyph_row->glyphs[TEXT_AREA] + n;
struct font *font = face->font ? face->font : FRAME_FONT (it->f);
if (n == 0)
{
Lisp_Object height, total_height;
int extra_line_spacing = it->extra_line_spacing;
int boff = font->baseline_offset;
if (font->vertical_centering)
boff = VCENTER_BASELINE_OFFSET (font, it->f) - boff;
it->object = saved_object; /* get_it_property needs this */
normal_char_ascent_descent (font, -1, &it->ascent, &it->descent);
/* Must do a subset of line height processing from
gui_produce_glyph for newline characters. */
height = get_it_property (it, Qline_height);
if (CONSP (height)
&& CONSP (XCDR (height))
&& NILP (XCDR (XCDR (height))))
{
total_height = XCAR (XCDR (height));
height = XCAR (height);
}
else
total_height = Qnil;
height = calc_line_height_property (it, height, font, boff, true);
if (it->override_ascent >= 0)
{
it->ascent = it->override_ascent;
it->descent = it->override_descent;
boff = it->override_boff;
}
if (EQ (height, Qt))
extra_line_spacing = 0;
else
{
Lisp_Object spacing;
it->phys_ascent = it->ascent;
it->phys_descent = it->descent;
if (!NILP (height)
&& XFIXNUM (height) > it->ascent + it->descent)
it->ascent = XFIXNUM (height) - it->descent;
if (!NILP (total_height))
spacing = calc_line_height_property (it, total_height, font,
boff, false);
else
{
spacing = get_it_property (it, Qline_spacing);
spacing = calc_line_height_property (it, spacing, font,
boff, false);
}
if (FIXNUMP (spacing))
{
extra_line_spacing = XFIXNUM (spacing);
if (!NILP (total_height))
extra_line_spacing -= (it->phys_ascent + it->phys_descent);
}
}
if (extra_line_spacing > 0)
{
it->descent += extra_line_spacing;
if (extra_line_spacing > it->max_extra_line_spacing)
it->max_extra_line_spacing = extra_line_spacing;
}
it->max_ascent = it->ascent;
it->max_descent = it->descent;
/* Make sure compute_line_metrics recomputes the row height. */
it->glyph_row->height = 0;
}
g->ascent = it->max_ascent;
g->descent = it->max_descent;
}
#endif /* HAVE_WINDOW_SYSTEM */
it->override_ascent = -1;
it->constrain_row_ascent_descent_p = false;
it->current_x = saved_x;
it->object = saved_object;
it->position = saved_pos;
it->what = saved_what;
it->face_id = saved_face_id;
it->len = saved_len;
it->c = saved_c;
it->char_to_display = saved_char_to_display;
it->end_of_box_run_p = saved_box_end;
return true;
}
return false;
}
/* Extend the face of the last glyph in the text area of IT->glyph_row
to the end of the display line. Called from display_line. If the
glyph row is empty, add a space glyph to it so that we know the
face to draw. Set the glyph row flag fill_line_p. If the glyph
row is R2L, prepend a stretch glyph to cover the empty space to the
left of the leftmost glyph. */
static void
extend_face_to_end_of_line (struct it *it)
{
struct frame *f = it->f;
/* If line is already filled, do nothing. Non window-system frames
get a grace of one more ``pixel'' because their characters are
1-``pixel'' wide, so they hit the equality too early. This grace
is needed only for R2L rows that are not continued, to produce
one extra blank where we could display the cursor. */
if ((it->current_x >= it->last_visible_x
+ (!FRAME_WINDOW_P (f)
&& it->glyph_row->reversed_p
&& !it->glyph_row->continued_p))
/* If the window has display margins, we will need to extend
their face even if the text area is filled. */
&& !(WINDOW_LEFT_MARGIN_WIDTH (it->w) > 0
|| WINDOW_RIGHT_MARGIN_WIDTH (it->w) > 0))
return;
specpdl_ref count = SPECPDL_INDEX ();
/* Don't allow the user to quit out of face-merging code, in case
this is called when redisplaying a non-selected window, with
point temporarily moved to window-point. */
specbind (Qinhibit_quit, Qt);
/* The default face, possibly remapped. */
struct face *default_face =
FACE_FROM_ID_OR_NULL (f, lookup_basic_face (it->w, f, DEFAULT_FACE_ID));
if (!default_face)
return;
const int extend_face_id =
(it->face_id == default_face->id || it->s != NULL)
? it->face_id
: (it->glyph_row->ends_at_zv_p
? default_face->id
: face_at_pos (it, LFACE_EXTEND_INDEX));
unbind_to (count, Qnil);
/* Face extension extends the background and box of IT->extend_face_id
to the end of the line. If the background equals the background
of the frame, we don't have to do anything. */
struct face *face = FACE_FROM_ID (f, (it->face_before_selective_p
? it->saved_face_id
: extend_face_id));
if (FRAME_WINDOW_P (f)
&& MATRIX_ROW_DISPLAYS_TEXT_P (it->glyph_row)
&& face->box == FACE_NO_BOX
&& face->underline == FACE_NO_UNDERLINE
&& !face->overline_p
&& !face->strike_through_p
&& face->background == FRAME_BACKGROUND_PIXEL (f)
#ifdef HAVE_WINDOW_SYSTEM
&& !face->stipple
#endif
&& !it->glyph_row->reversed_p
&& !display_fill_column_indicator)
return;
/* Set the glyph row flag indicating that the face of the last glyph
in the text area has to be drawn to the end of the text area. */
it->glyph_row->fill_line_p = true;
const int orig_face_id = it->face_id;
/* If current character of IT is not ASCII, make sure we have the
ASCII face. This will be automatically undone the next time
get_next_display_element returns a multibyte character. Note
that the character will always be single byte in unibyte
text. */
if (!ASCII_CHAR_P (it->c))
it->face_id = FACE_FOR_CHAR (f, face, 0, -1, Qnil);
#ifdef HAVE_WINDOW_SYSTEM
if (FRAME_WINDOW_P (f))
{
/* If the row is empty, add a space with the current face of IT,
so that we know which face to draw. */
if (it->glyph_row->used[TEXT_AREA] == 0)
{
it->glyph_row->glyphs[TEXT_AREA][0] = space_glyph;
it->glyph_row->glyphs[TEXT_AREA][0].face_id = face->id;
it->glyph_row->used[TEXT_AREA] = 1;
}
/* Mode line and the header line don't have margins, and
likewise the frame's tool-bar window, if there is any. */
if (!(it->glyph_row->mode_line_p
|| (WINDOWP (f->tab_bar_window)
&& it->w == XWINDOW (f->tab_bar_window))
#ifndef HAVE_EXT_TOOL_BAR
|| (WINDOWP (f->tool_bar_window)
&& it->w == XWINDOW (f->tool_bar_window))
#endif
))
{
if (WINDOW_LEFT_MARGIN_WIDTH (it->w) > 0
&& it->glyph_row->used[LEFT_MARGIN_AREA] == 0)
{
it->glyph_row->glyphs[LEFT_MARGIN_AREA][0] = space_glyph;
it->glyph_row->glyphs[LEFT_MARGIN_AREA][0].face_id =
default_face->id;
it->glyph_row->used[LEFT_MARGIN_AREA] = 1;
}
if (WINDOW_RIGHT_MARGIN_WIDTH (it->w) > 0
&& it->glyph_row->used[RIGHT_MARGIN_AREA] == 0)
{
it->glyph_row->glyphs[RIGHT_MARGIN_AREA][0] = space_glyph;
it->glyph_row->glyphs[RIGHT_MARGIN_AREA][0].face_id =
default_face->id;
it->glyph_row->used[RIGHT_MARGIN_AREA] = 1;
}
struct font *font = (default_face->font
? default_face->font
: FRAME_FONT (f));
const int char_width = (font->average_width
? font->average_width
: font->space_width);
const int indicator_column =
fill_column_indicator_column (it, char_width);
const char saved_char = it->char_to_display;
const struct text_pos saved_pos = it->position;
const bool saved_avoid_cursor = it->avoid_cursor_p;
const bool saved_box_start = it->start_of_box_run_p;
Lisp_Object save_object = it->object;
const int saved_face_id = it->face_id;
it->face_id = extend_face_id;
it->avoid_cursor_p = true;
it->object = Qnil;
const int stretch_height = it->ascent + it->descent;
const int stretch_ascent =
(stretch_height * FONT_BASE (font)) / FONT_HEIGHT (font);
if (indicator_column >= 0
&& indicator_column > it->current_x
&& indicator_column < it->last_visible_x)
{
/* Here we subtract char_width because we want the
column indicator in the column INDICATOR_COLUMN,
not after it. */
const int stretch_width =
indicator_column - it->current_x - char_width;
clear_position (it);
/* Only generate a stretch glyph if there is distance
between current_x and the indicator position. */
if (stretch_width > 0)
{
append_stretch_glyph (it, Qnil, stretch_width,
stretch_height, stretch_ascent);
}
/* Generate the glyph indicator only if
append_space_for_newline didn't already. */
if (it->current_x < indicator_column)
{
const int save_face_id = it->face_id;
const int save_ascent = it->ascent;
const int save_descent = it->descent;
it->char_to_display
= XFIXNAT (Vdisplay_fill_column_indicator_character);
it->face_id
= merge_faces (it->w, Qfill_column_indicator,
0, extend_face_id);
PRODUCE_GLYPHS (it);
it->face_id = save_face_id;
it->ascent = save_ascent;
it->descent = save_descent;
}
}
/* Fill space until window edge with the merged face. Do that
only for L2R rows, as R2L rows are handled specially below. */
if (!it->glyph_row->reversed_p)
{
const int stretch_width = it->last_visible_x - it->current_x;
if (stretch_width > 0)
{
clear_position (it);
append_stretch_glyph (it, Qnil, stretch_width,
stretch_height, stretch_ascent);
}
}
it->char_to_display = saved_char;
it->position = saved_pos;
it->avoid_cursor_p = saved_avoid_cursor;
it->start_of_box_run_p = saved_box_start;
it->object = save_object;
it->face_id = saved_face_id;
}
if (it->glyph_row->reversed_p)
{
/* Prepend a stretch glyph to the row, such that the
rightmost glyph will be drawn flushed all the way to the
right margin of the window. The stretch glyph that will
occupy the empty space, if any, to the left of the
glyph. */
struct font *font = face->font ? face->font : FRAME_FONT (f);
struct glyph *row_start = it->glyph_row->glyphs[TEXT_AREA];
struct glyph *row_end = row_start + it->glyph_row->used[TEXT_AREA];
struct glyph *g;
int row_width, stretch_ascent, stretch_width;
struct text_pos saved_pos;
int saved_face_id;
bool saved_avoid_cursor, saved_box_start;
for (row_width = 0, g = row_start; g < row_end; g++)
row_width += g->pixel_width;
/* FIXME: There are various minor display glitches in R2L
rows when only one of the fringes is missing. The
strange condition below produces the least bad effect. */
if ((WINDOW_LEFT_FRINGE_WIDTH (it->w) == 0)
== (WINDOW_RIGHT_FRINGE_WIDTH (it->w) == 0)
|| WINDOW_RIGHT_FRINGE_WIDTH (it->w) != 0)
stretch_width = window_box_width (it->w, TEXT_AREA);
else
stretch_width = it->last_visible_x - it->first_visible_x;
stretch_width -= row_width;
if (stretch_width > 0)
{
stretch_ascent =
(((it->ascent + it->descent)
* FONT_BASE (font)) / FONT_HEIGHT (font));
saved_pos = it->position;
clear_position (it);
saved_avoid_cursor = it->avoid_cursor_p;
it->avoid_cursor_p = true;
saved_face_id = it->face_id;
saved_box_start = it->start_of_box_run_p;
/* The last row's stretch glyph should get the default
face, to avoid painting the rest of the window with
the region face, if the region ends at ZV. */
it->face_id = (it->glyph_row->ends_at_zv_p ?
default_face->id : face->id);
it->start_of_box_run_p = false;
append_stretch_glyph (it, Qnil, stretch_width,
it->ascent + it->descent, stretch_ascent);
it->position = saved_pos;
it->avoid_cursor_p = saved_avoid_cursor;
it->face_id = saved_face_id;
it->start_of_box_run_p = saved_box_start;
}
/* If stretch_width comes out negative, it means that the
last glyph is only partially visible. In R2L rows, we
want the leftmost glyph to be partially visible, so we
need to give the row the corresponding left offset. */
if (stretch_width < 0)
it->glyph_row->x = stretch_width;
}
it->face_id = orig_face_id;
}
else
#endif /* HAVE_WINDOW_SYSTEM */
{
/* Save some values that must not be changed. */
int saved_x = it->current_x;
struct text_pos saved_pos = it->position;
Lisp_Object saved_object = it->object;;
enum display_element_type saved_what = it->what;
it->what = IT_CHARACTER;
clear_position (it);
it->object = Qnil;
it->c = it->char_to_display = ' ';
it->len = 1;
if (WINDOW_LEFT_MARGIN_WIDTH (it->w) > 0
&& (it->glyph_row->used[LEFT_MARGIN_AREA]
< WINDOW_LEFT_MARGIN_WIDTH (it->w))
&& !it->glyph_row->mode_line_p
&& face->background != FRAME_BACKGROUND_PIXEL (f))
{
struct glyph *g = it->glyph_row->glyphs[LEFT_MARGIN_AREA];
struct glyph *e = g + it->glyph_row->used[LEFT_MARGIN_AREA];
for (it->current_x = 0; g < e; g++)
it->current_x += g->pixel_width;
if (it->continuation_lines_width
&& it->string_from_prefix_prop_p)
it->wrap_prefix_width = it->current_x;
it->area = LEFT_MARGIN_AREA;
it->face_id = default_face->id;
while (it->glyph_row->used[LEFT_MARGIN_AREA]
< WINDOW_LEFT_MARGIN_WIDTH (it->w)
&& g < it->glyph_row->glyphs[TEXT_AREA])
{
PRODUCE_GLYPHS (it);
/* term.c:produce_glyphs advances it->current_x only for
TEXT_AREA. */
it->current_x += it->pixel_width;
g++;
}
it->current_x = saved_x;
it->area = TEXT_AREA;
}
/* The last row's blank glyphs should get the default face, to
avoid painting the rest of the window with the region face,
if the region ends at ZV. */
it->face_id = (it->glyph_row->ends_at_zv_p ?
default_face->id : face->id);
/* Make sure our idea of current_x is in sync with the glyphs
actually in the glyph row. They might differ because
append_space_for_newline can insert one glyph without
updating current_x. */
it->current_x = it->glyph_row->used[TEXT_AREA];
/* The above assignment causes the code below to use a
non-standard semantics of it->current_x: it is measured
relative to the beginning of the text-area, thus disregarding
the window's hscroll. That is why we need to correct the
indicator column for the hscroll, otherwise the indicator
will not move together with the text as result of horizontal
scrolling. */
const int indicator_column =
fill_column_indicator_column (it, 1) - it->first_visible_x;
/* Display fill-column indicator if needed. */
while (it->current_x <= it->last_visible_x)
{
if (it->current_x != indicator_column)
PRODUCE_GLYPHS (it);
else
{
int saved_face_id = it->face_id;
it->face_id
= merge_faces (it->w, Qfill_column_indicator, 0, extend_face_id);
it->c = it->char_to_display
= XFIXNAT (Vdisplay_fill_column_indicator_character);
PRODUCE_GLYPHS (it);
it->face_id = saved_face_id;
it->c = it->char_to_display = ' ';
}
}
if (WINDOW_RIGHT_MARGIN_WIDTH (it->w) > 0
&& (it->glyph_row->used[RIGHT_MARGIN_AREA]
< WINDOW_RIGHT_MARGIN_WIDTH (it->w))
&& !it->glyph_row->mode_line_p
&& face->background != FRAME_BACKGROUND_PIXEL (f))
{
struct glyph *g = it->glyph_row->glyphs[RIGHT_MARGIN_AREA];
struct glyph *e = g + it->glyph_row->used[RIGHT_MARGIN_AREA];
for ( ; g < e; g++)
it->current_x += g->pixel_width;
it->area = RIGHT_MARGIN_AREA;
it->face_id = default_face->id;
while (it->glyph_row->used[RIGHT_MARGIN_AREA]
< WINDOW_RIGHT_MARGIN_WIDTH (it->w)
&& g < it->glyph_row->glyphs[LAST_AREA])
{
PRODUCE_GLYPHS (it);
it->current_x += it->pixel_width;
g++;
}
it->area = TEXT_AREA;
}
/* Don't count these blanks really. It would let us insert a left
truncation glyph below and make us set the cursor on them, maybe. */
it->current_x = saved_x;
it->object = saved_object;
it->position = saved_pos;
it->what = saved_what;
it->face_id = orig_face_id;
}
}
/* Value is true if text starting at CHARPOS in current_buffer is
trailing whitespace. */
static bool
trailing_whitespace_p (ptrdiff_t charpos)
{
ptrdiff_t bytepos = CHAR_TO_BYTE (charpos);
int c = 0;
while (bytepos < ZV_BYTE
&& (c = FETCH_BYTE (bytepos),
c == ' ' || c == '\t'))
++bytepos;
if (bytepos >= ZV_BYTE || c == '\n' || c == '\r')
{
if (bytepos != PT_BYTE)
return true;
}
return false;
}
/* Highlight trailing whitespace, if any, in row at IT. */
static void
highlight_trailing_whitespace (struct it *it)
{
struct glyph_row *row = it->glyph_row;
int used = row->used[TEXT_AREA];
if (used)
{
struct glyph *start = row->glyphs[TEXT_AREA];
struct glyph *glyph = start + used - 1;
if (row->reversed_p)
{
/* Right-to-left rows need to be processed in the opposite
direction, so swap the edge pointers. */
glyph = start;
start = row->glyphs[TEXT_AREA] + used - 1;
}
/* Skip over glyphs inserted to display the cursor at the
end of a line, for extending the face of the last glyph
to the end of the line on terminals, and for truncation
and continuation glyphs. */
if (!row->reversed_p)
{
while (glyph >= start
&& (glyph->type == CHAR_GLYPH
|| glyph->type == STRETCH_GLYPH)
&& NILP (glyph->object))
--glyph;
}
else
{
while (glyph <= start
&& (glyph->type == CHAR_GLYPH || glyph->type == STRETCH_GLYPH)
&& NILP (glyph->object))
++glyph;
}
/* If last glyph is a space or stretch, and it's trailing
whitespace, set the face of all trailing whitespace glyphs in
IT->glyph_row to `trailing-whitespace'. */
if ((row->reversed_p ? glyph <= start : glyph >= start)
&& BUFFERP (glyph->object)
&& (glyph->type == STRETCH_GLYPH
|| (glyph->type == CHAR_GLYPH
&& glyph->u.ch == ' '))
&& trailing_whitespace_p (glyph->charpos))
{
int face_id = lookup_named_face (it->w, it->f, Qtrailing_whitespace, false);
if (face_id < 0)
return;
if (!row->reversed_p)
{
while (glyph >= start
&& BUFFERP (glyph->object)
&& (glyph->type == STRETCH_GLYPH
|| (glyph->type == CHAR_GLYPH
&& glyph->u.ch == ' ')))
(glyph--)->face_id = face_id;
}
else
{
while (glyph <= start
&& BUFFERP (glyph->object)
&& (glyph->type == STRETCH_GLYPH
|| (glyph->type == CHAR_GLYPH
&& glyph->u.ch == ' ')))
(glyph++)->face_id = face_id;
}
}
}
}
/* Value is true if glyph row ROW should be
considered to hold the buffer position CHARPOS. */
static bool
row_for_charpos_p (struct glyph_row *row, ptrdiff_t charpos)
{
bool result = true;
if (charpos == CHARPOS (row->end.pos)
|| charpos == MATRIX_ROW_END_CHARPOS (row))
{
/* Suppose the row ends on a string.
Unless the row is continued, that means it ends on a newline
in the string. If it's anything other than a display string
(e.g., a before-string from an overlay), we don't want the
cursor there. (This heuristic seems to give the optimal
behavior for the various types of multi-line strings.)
One exception: if the string has `cursor' property on one of
its characters, we _do_ want the cursor there. */
if (CHARPOS (row->end.string_pos) >= 0)
{
if (row->continued_p)
result = true;
else
{
/* Check for `display' property. */
struct glyph *beg = row->glyphs[TEXT_AREA];
struct glyph *end = beg + row->used[TEXT_AREA] - 1;
struct glyph *glyph;
result = false;
for (glyph = end; glyph >= beg; --glyph)
if (STRINGP (glyph->object))
{
Lisp_Object prop
= Fget_char_property (make_fixnum (charpos),
Qdisplay, Qnil);
result =
(!NILP (prop)
&& display_prop_string_p (prop, glyph->object));
/* If there's a `cursor' property on one of the
string's characters, this row is a cursor row,
even though this is not a display string. */
if (!result)
{
Lisp_Object s = glyph->object;
for ( ; glyph >= beg && EQ (glyph->object, s); --glyph)
{
ptrdiff_t gpos = glyph->charpos;
if (!NILP (Fget_char_property (make_fixnum (gpos),
Qcursor, s)))
{
result = true;
break;
}
}
}
break;
}
}
}
else if (MATRIX_ROW_ENDS_IN_MIDDLE_OF_CHAR_P (row))
{
/* If the row ends in middle of a real character,
and the line is continued, we want the cursor here.
That's because CHARPOS (ROW->end.pos) would equal
PT if PT is before the character. */
if (!row->ends_in_ellipsis_p)
result = row->continued_p;
else
/* If the row ends in an ellipsis, then
CHARPOS (ROW->end.pos) will equal point after the
invisible text. We want that position to be displayed
after the ellipsis. */
result = false;
}
/* If the row ends at ZV, display the cursor at the end of that
row instead of at the start of the row below. */
else
result = row->ends_at_zv_p;
}
return result;
}
/* Value is true if glyph row ROW should be
used to hold the cursor. */
static bool
cursor_row_p (struct glyph_row *row)
{
return row_for_charpos_p (row, PT);
}
/* Push the property PROP so that it will be rendered at the current
position in IT. Return true if PROP was successfully pushed, false
otherwise. Called from handle_line_prefix to handle the
`line-prefix' and `wrap-prefix' properties. */
static bool
push_prefix_prop (struct it *it, Lisp_Object prop)
{
struct text_pos pos =
STRINGP (it->string) ? it->current.string_pos : it->current.pos;
eassert (it->method == GET_FROM_BUFFER
|| it->method == GET_FROM_DISPLAY_VECTOR
|| it->method == GET_FROM_STRING
|| it->method == GET_FROM_IMAGE);
/* We want the string to inherit the paragraph direction of the parent
object, so we need to calculate that if not yet done. */
ptrdiff_t eob = (STRINGP (it->string) ? SCHARS (it->string) : ZV);
if (it->bidi_it.first_elt && it->bidi_it.charpos < eob)
bidi_paragraph_init (it->paragraph_embedding, &it->bidi_it, true);
/* We need to save the current buffer/string position, so it will be
restored by pop_it, because iterate_out_of_display_property
depends on that being set correctly, but some situations leave
it->position not yet set when this function is called. */
push_it (it, &pos);
if (STRINGP (prop))
{
if (SCHARS (prop) == 0)
{
pop_it (it);
return false;
}
it->string = prop;
it->string_from_prefix_prop_p = true;
it->multibyte_p = STRING_MULTIBYTE (it->string);
it->current.overlay_string_index = -1;
IT_STRING_CHARPOS (*it) = IT_STRING_BYTEPOS (*it) = 0;
it->end_charpos = it->string_nchars = SCHARS (it->string);
it->method = GET_FROM_STRING;
it->stop_charpos = 0;
it->prev_stop = 0;
it->base_level_stop = 0;
it->cmp_it.id = -1;
/* Force paragraph direction to be that of the parent
buffer/string. */
if (it->bidi_p && it->bidi_it.paragraph_dir == R2L)
it->paragraph_embedding = it->bidi_it.paragraph_dir;
else
it->paragraph_embedding = L2R;
/* Set up the bidi iterator for this display string. */
if (it->bidi_p)
{
it->bidi_it.string.lstring = it->string;
it->bidi_it.string.s = NULL;
it->bidi_it.string.schars = it->end_charpos;
it->bidi_it.string.bufpos = IT_CHARPOS (*it);
it->bidi_it.string.from_disp_str = it->string_from_display_prop_p;
it->bidi_it.string.unibyte = !it->multibyte_p;
it->bidi_it.w = it->w;
bidi_init_it (0, 0, FRAME_WINDOW_P (it->f), &it->bidi_it);
}
}
else if (CONSP (prop) && EQ (XCAR (prop), Qspace))
{
it->method = GET_FROM_STRETCH;
it->object = prop;
it->string_from_prefix_prop_p = true;
}
#ifdef HAVE_WINDOW_SYSTEM
else if (IMAGEP (prop))
{
it->what = IT_IMAGE;
it->image_id = lookup_image (it->f, prop, it->face_id);
it->method = GET_FROM_IMAGE;
it->string_from_prefix_prop_p = true;
}
#endif /* HAVE_WINDOW_SYSTEM */
else
{
pop_it (it); /* bogus display property, give up */
return false;
}
return true;
}
/* Return the character-property PROP at the current position in IT. */
static Lisp_Object
get_it_property (struct it *it, Lisp_Object prop)
{
Lisp_Object position, object = it->object;
if (STRINGP (object))
position = make_fixnum (IT_STRING_CHARPOS (*it));
else if (BUFFERP (object))
{
position = make_fixnum (IT_CHARPOS (*it));
object = it->window;
}
else
return Qnil;
return Fget_char_property (position, prop, object);
}
/* Return the line-prefix/wrap-prefix property, checking both the
current IT->OBJECT and the underlying buffer text. */
static Lisp_Object
get_line_prefix_it_property (struct it *it, Lisp_Object prop)
{
Lisp_Object prefix = get_it_property (it, prop);
/* If we are looking at a display or overlay string, check also the
underlying buffer text. */
if (NILP (prefix) && it->sp > 0 && STRINGP (it->object))
return Fget_char_property (make_fixnum (IT_CHARPOS (*it)), prop,
it->w->contents);
return prefix;
}
/* See if there's a line- or wrap-prefix, and if so, push it on IT. */
static void
handle_line_prefix (struct it *it)
{
Lisp_Object prefix;
bool wrap_prop = false;
if (it->continuation_lines_width > 0)
{
prefix = get_line_prefix_it_property (it, Qwrap_prefix);
if (NILP (prefix))
prefix = Vwrap_prefix;
wrap_prop = true;
}
else
{
prefix = get_line_prefix_it_property (it, Qline_prefix);
if (NILP (prefix))
prefix = Vline_prefix;
}
if (! NILP (prefix) && push_prefix_prop (it, prefix))
{
/* If the prefix is wider than the window, and we try to wrap
it, it would acquire its own wrap prefix, and so on till the
iterator stack overflows. So, don't wrap the prefix. */
it->line_wrap = TRUNCATE;
it->avoid_cursor_p = true;
/* Interpreting :align-to relative to the beginning of the logical
line effectively renders this feature unusable, so we make an
exception for this use of :align-to. */
if (wrap_prop && CONSP (prefix) && EQ (XCAR (prefix), Qspace))
it->align_visually_p = true;
}
}
/* Remove N glyphs at the start of a reversed IT->glyph_row. Called
only for R2L lines from display_line and display_string, when they
decide that too many glyphs were produced by PRODUCE_GLYPHS, and
the line/string needs to be continued on the next glyph row. */
static void
unproduce_glyphs (struct it *it, int n)
{
struct glyph *glyph, *end;
eassert (it->glyph_row);
eassert (it->glyph_row->reversed_p);
eassert (it->area == TEXT_AREA);
eassert (n <= it->glyph_row->used[TEXT_AREA]);
if (n > it->glyph_row->used[TEXT_AREA])
n = it->glyph_row->used[TEXT_AREA];
glyph = it->glyph_row->glyphs[TEXT_AREA] + n;
end = it->glyph_row->glyphs[TEXT_AREA] + it->glyph_row->used[TEXT_AREA];
for ( ; glyph < end; glyph++)
glyph[-n] = *glyph;
}
/* Find the positions in a bidi-reordered ROW to serve as ROW->minpos
and ROW->maxpos. */
static void
find_row_edges (struct it *it, struct glyph_row *row,
ptrdiff_t min_pos, ptrdiff_t min_bpos,
ptrdiff_t max_pos, ptrdiff_t max_bpos)
{
/* FIXME: Revisit this when glyph ``spilling'' in continuation
lines' rows is implemented for bidi-reordered rows. */
/* ROW->minpos is the value of min_pos, the minimal buffer position
we have in ROW, or ROW->start.pos if that is smaller. */
if (min_pos <= ZV && min_pos < row->start.pos.charpos)
SET_TEXT_POS (row->minpos, min_pos, min_bpos);
else
/* We didn't find buffer positions smaller than ROW->start, or
didn't find _any_ valid buffer positions in any of the glyphs,
so we must trust the iterator's computed positions. */
row->minpos = row->start.pos;
if (max_pos <= 0)
{
max_pos = CHARPOS (it->current.pos);
max_bpos = BYTEPOS (it->current.pos);
}
/* Here are the various use-cases for ending the row, and the
corresponding values for ROW->maxpos:
Line ends in a newline from buffer eol_pos + 1
Line is continued from buffer max_pos + 1
Line is truncated on right it->current.pos
Line ends in a newline from string max_pos + 1(*)
(*) + 1 only when line ends in a forward scan
Line is continued from string max_pos
Line is continued from display vector max_pos
Line is entirely from a string min_pos == max_pos
Line is entirely from a display vector min_pos == max_pos
Line that ends at ZV ZV
If you discover other use-cases, please add them here as
appropriate. */
if (row->ends_at_zv_p)
row->maxpos = it->current.pos;
else if (row->used[TEXT_AREA])
{
bool seen_this_string = false;
struct glyph_row *r1 = row - 1;
/* Did we see the same display string on the previous row? */
if (STRINGP (it->object)
/* this is not the first row */
&& row > it->w->desired_matrix->rows
/* previous row is not the header line or tab-line */
&& !r1->mode_line_p
/* previous row also ends in a newline from a string */
&& r1->ends_in_newline_from_string_p)
{
struct glyph *start, *end;
/* Search for the last glyph of the previous row that came
from buffer or string. Depending on whether the row is
L2R or R2L, we need to process it front to back or the
other way round. */
if (!r1->reversed_p)
{
start = r1->glyphs[TEXT_AREA];
end = start + r1->used[TEXT_AREA];
/* Glyphs inserted by redisplay have nil as their object. */
while (end > start
&& NILP ((end - 1)->object)
&& (end - 1)->charpos <= 0)
--end;
if (end > start)
{
if (EQ ((end - 1)->object, it->object))
seen_this_string = true;
}
else
/* If all the glyphs of the previous row were inserted
by redisplay, it means the previous row was
produced from a single newline, which is only
possible if that newline came from the same string
as the one which produced this ROW. */
seen_this_string = true;
}
else
{
end = r1->glyphs[TEXT_AREA] - 1;
start = end + r1->used[TEXT_AREA];
while (end < start
&& NILP ((end + 1)->object)
&& (end + 1)->charpos <= 0)
++end;
if (end < start)
{
if (EQ ((end + 1)->object, it->object))
seen_this_string = true;
}
else
seen_this_string = true;
}
}
/* Take note of each display string that covers a newline only
once, the first time we see it. This is for when a display
string includes more than one newline in it. */
if (row->ends_in_newline_from_string_p && !seen_this_string)
{
/* If we were scanning the buffer forward when we displayed
the string, we want to account for at least one buffer
position that belongs to this row (position covered by
the display string), so that cursor positioning will
consider this row as a candidate when point is at the end
of the visual line represented by this row. This is not
required when scanning back, because max_pos will already
have a much larger value. */
if (CHARPOS (row->end.pos) > max_pos)
inc_both (&max_pos, &max_bpos);
SET_TEXT_POS (row->maxpos, max_pos, max_bpos);
}
else if (CHARPOS (it->eol_pos) > 0)
SET_TEXT_POS (row->maxpos,
CHARPOS (it->eol_pos) + 1, BYTEPOS (it->eol_pos) + 1);
else if (row->continued_p)
{
/* If max_pos is different from IT's current position, it
means IT->method does not belong to the display element
at max_pos. However, it also means that the display
element at max_pos was displayed in its entirety on this
line, which is equivalent to saying that the next line
starts at the next buffer position. */
if (IT_CHARPOS (*it) == max_pos && it->method != GET_FROM_BUFFER)
SET_TEXT_POS (row->maxpos, max_pos, max_bpos);
else
{
inc_both (&max_pos, &max_bpos);
SET_TEXT_POS (row->maxpos, max_pos, max_bpos);
}
}
else if (row->truncated_on_right_p)
/* display_line already called reseat_at_next_visible_line_start,
which puts the iterator at the beginning of the next line, in
the logical order. */
row->maxpos = it->current.pos;
else if (max_pos == min_pos && it->method != GET_FROM_BUFFER)
/* A line that is entirely from a string/image/stretch... */
row->maxpos = row->minpos;
else
emacs_abort ();
}
else
row->maxpos = it->current.pos;
}
/* Like display_count_lines, but capable of counting outside of the
current narrowed region. */
static ptrdiff_t
display_count_lines_logically (ptrdiff_t start_byte, ptrdiff_t limit_byte,
ptrdiff_t count, ptrdiff_t *byte_pos_ptr)
{
if (!display_line_numbers_widen || (BEGV == BEG && ZV == Z))
return display_count_lines (start_byte, limit_byte, count, byte_pos_ptr);
ptrdiff_t val;
specpdl_ref pdl_count = SPECPDL_INDEX ();
record_unwind_protect (save_restriction_restore, save_restriction_save ());
labeled_restrictions_remove_in_current_buffer ();
Fwiden ();
val = display_count_lines (start_byte, limit_byte, count, byte_pos_ptr);
unbind_to (pdl_count, Qnil);
return val;
}
/* Count the number of screen lines in window IT->w between character
position IT_CHARPOS(*IT) and the line showing that window's point. */
static ptrdiff_t
display_count_lines_visually (struct it *it)
{
struct it tem_it;
ptrdiff_t to;
struct text_pos from;
/* If we already calculated a relative line number, use that. This
trick relies on the fact that visual lines (a.k.a. "glyph rows")
are laid out sequentially, one by one, for each sequence of calls
to display_line or other similar function that follows a call to
init_iterator. */
if (it->lnum_bytepos > 0)
return it->lnum + 1;
else
{
specpdl_ref count = SPECPDL_INDEX ();
if (IT_CHARPOS (*it) <= PT)
{
from = it->current.pos;
to = PT;
}
else
{
SET_TEXT_POS (from, PT, PT_BYTE);
to = IT_CHARPOS (*it);
}
/* Need to disable visual mode temporarily, since otherwise the
call to move_it_to below and inside start_display will cause
infinite recursion. */
specbind (Qdisplay_line_numbers, Qrelative);
start_display (&tem_it, it->w, from);
/* Some redisplay optimizations could invoke us very far from
PT, which will make the caller painfully slow. There should
be no need to go too far beyond the window's bottom, as any
such optimization will fail to show point anyway. */
move_it_to (&tem_it, to, -1,
tem_it.last_visible_y
+ (SCROLL_LIMIT + 10) * FRAME_LINE_HEIGHT (tem_it.f),
-1, MOVE_TO_POS | MOVE_TO_Y);
unbind_to (count, Qnil);
return IT_CHARPOS (*it) <= PT ? -tem_it.vpos : tem_it.vpos;
}
}
/* Produce the line-number glyphs for the current glyph_row. If
IT->glyph_row is non-NULL, populate the row with the produced
glyphs. */
static void
maybe_produce_line_number (struct it *it)
{
ptrdiff_t last_line = it->lnum;
ptrdiff_t start_from, bytepos;
ptrdiff_t this_line;
bool first_time = false;
ptrdiff_t beg_byte;
ptrdiff_t z_byte;
bool line_numbers_wide;
void *itdata = bidi_shelve_cache ();
if (display_line_numbers_offset
&& !display_line_numbers_widen
&& !EQ (Vdisplay_line_numbers, Qvisual)
&& !EQ (Vdisplay_line_numbers, Qrelative))
line_numbers_wide = true;
else
line_numbers_wide = display_line_numbers_widen;
beg_byte = line_numbers_wide ? BEG_BYTE : BEGV_BYTE;
z_byte = line_numbers_wide ? Z_BYTE : ZV_BYTE;
if (EQ (Vdisplay_line_numbers, Qvisual))
this_line = display_count_lines_visually (it);
else
{
if (!last_line)
{
/* If possible, reuse data cached by line-number-mode. */
/* NOTE: We use `base_line_number` without checking
BASE_LINE_NUMBER_VALID_P because we assume that `redisplay_window`
has already flushed this cache for us when needed.
NOTE2: Checking BASE_LINE_NUMBER_VALID_P here would be
overly pessimistic because it might say that the cache
was invalid before entering `redisplay_window` yet the
value has just been refreshed. */
if (it->w->base_line_number > 0
&& it->w->base_line_pos > 0
&& it->w->base_line_pos <= IT_CHARPOS (*it)
/* line-number-mode always displays narrowed line
numbers, so we cannot use its data if the user wants
line numbers that disregard narrowing, or if the
buffer's narrowing has just changed. */
&& !(line_numbers_wide
&& (BEG_BYTE != BEGV_BYTE || Z_BYTE != ZV_BYTE))
&& !current_buffer->clip_changed)
{
start_from = CHAR_TO_BYTE (it->w->base_line_pos);
last_line = it->w->base_line_number - 1;
}
else
start_from = beg_byte;
if (!it->lnum_bytepos)
first_time = true;
}
else
start_from = it->lnum_bytepos;
/* Paranoia: what if someone changes the narrowing since the
last time display_line was called? Shouldn't really happen,
but who knows what some crazy Lisp invoked by :eval could do? */
if (!(beg_byte <= start_from && start_from <= z_byte))
{
last_line = 0;
start_from = beg_byte;
}
this_line =
last_line + display_count_lines_logically (start_from,
IT_BYTEPOS (*it),
IT_CHARPOS (*it), &bytepos);
eassert (this_line > 0 || (this_line == 0 && start_from == beg_byte));
eassert (bytepos == IT_BYTEPOS (*it));
}
/* Record the line number information. */
if (this_line != last_line || !it->lnum_bytepos)
{
it->lnum = this_line;
it->lnum_bytepos = IT_BYTEPOS (*it);
}
/* Produce the glyphs for the line number. */
struct it tem_it;
char lnum_buf[INT_STRLEN_BOUND (ptrdiff_t) + 1];
bool beyond_zv = IT_BYTEPOS (*it) >= ZV_BYTE;
ptrdiff_t lnum_offset = -1; /* to produce 1-based line numbers */
int lnum_face_id = merge_faces (it->w, Qline_number, 0, DEFAULT_FACE_ID);
int current_lnum_face_id
= merge_faces (it->w, Qline_number_current_line, 0, DEFAULT_FACE_ID);
/* From here onwards, we must prevent freeing realized faces, because
we are using the above 2 face IDs for the glyphs we produce. */
bool save_free_realized_faces = inhibit_free_realized_faces;
inhibit_free_realized_faces = true;
/* Compute point's line number if needed. */
if ((EQ (Vdisplay_line_numbers, Qrelative)
|| EQ (Vdisplay_line_numbers, Qvisual)
|| lnum_face_id != current_lnum_face_id)
&& !it->pt_lnum)
{
ptrdiff_t ignored;
if (PT_BYTE > it->lnum_bytepos && !EQ (Vdisplay_line_numbers, Qvisual))
it->pt_lnum =
this_line + display_count_lines_logically (it->lnum_bytepos, PT_BYTE,
PT, &ignored);
else
it->pt_lnum = display_count_lines_logically (beg_byte, PT_BYTE, PT,
&ignored);
}
/* Compute the required width if needed. */
if (!it->lnum_width)
{
if (FIXNATP (Vdisplay_line_numbers_width))
it->lnum_width = XFIXNAT (Vdisplay_line_numbers_width);
/* Max line number to be displayed cannot be more than the one
corresponding to the last row of the desired matrix. */
ptrdiff_t max_lnum;
if (NILP (Vdisplay_line_numbers_current_absolute)
&& (EQ (Vdisplay_line_numbers, Qrelative)
|| EQ (Vdisplay_line_numbers, Qvisual)))
/* We subtract one more because the current line is always
zero in this mode. */
max_lnum = it->w->desired_matrix->nrows - 2;
else if (EQ (Vdisplay_line_numbers, Qvisual))
max_lnum = it->pt_lnum + it->w->desired_matrix->nrows - 1;
else
max_lnum = this_line + it->w->desired_matrix->nrows - 1 - it->vpos;
max_lnum = max (1, max_lnum);
it->lnum_width = max (it->lnum_width, log10 (max_lnum) + 1);
eassert (it->lnum_width > 0);
}
if (EQ (Vdisplay_line_numbers, Qrelative))
lnum_offset = it->pt_lnum;
else if (EQ (Vdisplay_line_numbers, Qvisual))
lnum_offset = 0;
else if (display_line_numbers_offset)
lnum_offset -= display_line_numbers_offset;
/* Under 'relative', display the absolute line number for the
current line, unless the user requests otherwise. */
ptrdiff_t lnum_to_display = eabs (this_line - lnum_offset);
if ((EQ (Vdisplay_line_numbers, Qrelative)
|| EQ (Vdisplay_line_numbers, Qvisual))
&& lnum_to_display == 0
&& !NILP (Vdisplay_line_numbers_current_absolute))
lnum_to_display = it->pt_lnum + 1;
/* In L2R rows we need to append the blank separator, in R2L
rows we need to prepend it. But this function is usually
called when no display elements were produced from the
following line, so the paragraph direction might be unknown.
Therefore we cheat and add 2 blanks, one on either side. */
pint2str (lnum_buf, it->lnum_width + 1, lnum_to_display);
strcat (lnum_buf, " ");
/* Setup for producing the glyphs. */
init_iterator (&tem_it, it->w, -1, -1, &scratch_glyph_row,
/* FIXME: Use specialized face. */
DEFAULT_FACE_ID);
scratch_glyph_row.reversed_p = false;
scratch_glyph_row.used[TEXT_AREA] = 0;
SET_TEXT_POS (tem_it.position, 0, 0);
tem_it.avoid_cursor_p = true;
tem_it.bidi_p = true;
tem_it.bidi_it.type = WEAK_EN;
/* According to UAX#9, EN goes up 2 levels in L2R paragraph and
1 level in R2L paragraphs. Emulate that, assuming we are in
an L2R paragraph. */
tem_it.bidi_it.resolved_level = 2;
/* We must leave space for 2 glyphs for continuation and truncation,
and at least one glyph for buffer text. */
int width_limit =
tem_it.last_visible_x - tem_it.first_visible_x
- 3 * FRAME_COLUMN_WIDTH (it->f);
tem_it.face_id = lnum_face_id;
/* Avoid displaying any face other than line-number on
empty lines beyond EOB. */
if (lnum_face_id != current_lnum_face_id
&& (EQ (Vdisplay_line_numbers, Qvisual)
? this_line == 0
: this_line == it->pt_lnum)
&& it->what != IT_EOB)
tem_it.face_id = current_lnum_face_id;
else if (!beyond_zv)
{
if (display_line_numbers_major_tick > 0
&& (lnum_to_display % display_line_numbers_major_tick == 0))
tem_it.face_id = merge_faces (it->w, Qline_number_major_tick,
0, DEFAULT_FACE_ID);
else if (display_line_numbers_minor_tick > 0
&& (lnum_to_display % display_line_numbers_minor_tick == 0))
tem_it.face_id = merge_faces (it->w, Qline_number_minor_tick,
0, DEFAULT_FACE_ID);
}
/* Produce glyphs for the line number in a scratch glyph_row. */
for (const char *p = lnum_buf; *p; p++)
{
/* For continuation lines and lines after ZV, instead of a line
number, produce a blank prefix of the same width. */
if (beyond_zv
/* Don't display the same line number more than once. */
|| (!EQ (Vdisplay_line_numbers, Qvisual)
&& (it->continuation_lines_width > 0
|| (this_line == last_line && !first_time))))
tem_it.c = tem_it.char_to_display = ' ';
else
tem_it.c = tem_it.char_to_display = *p;
tem_it.len = 1;
/* Make sure these glyphs will have a "position" of -1. */
SET_TEXT_POS (tem_it.position, -1, -1);
PRODUCE_GLYPHS (&tem_it);
/* Stop producing glyphs, and refrain from producing the line
number, if we don't have enough space on this line. */
if (tem_it.current_x >= width_limit)
{
it->lnum_width = 0;
it->lnum_pixel_width = 0;
bidi_unshelve_cache (itdata, false);
inhibit_free_realized_faces = save_free_realized_faces;
return;
}
}
inhibit_free_realized_faces = save_free_realized_faces;
/* Record the width in pixels we need for the line number display. */
it->lnum_pixel_width = tem_it.current_x;
/* Copy the produced glyphs into IT's glyph_row. */
struct glyph *g = scratch_glyph_row.glyphs[TEXT_AREA];
struct glyph *e = g + scratch_glyph_row.used[TEXT_AREA];
struct glyph *p = it->glyph_row ? it->glyph_row->glyphs[TEXT_AREA] : NULL;
short *u = it->glyph_row ? &it->glyph_row->used[TEXT_AREA] : NULL;
eassert (it->glyph_row == NULL || it->glyph_row->used[TEXT_AREA] == 0);
for ( ; g < e; g++)
{
it->current_x += g->pixel_width;
/* The following is important when this function is called
from move_it_in_display_line_to: HPOS is incremented only
when we are in the visible portion of the glyph row. */
if (it->current_x > it->first_visible_x)
it->hpos++;
if (p)
{
*p++ = *g;
(*u)++;
}
}
/* Update IT's metrics due to glyphs produced for line numbers.
Don't do that for rows beyond ZV, to avoid displaying a cursor of
different dimensions there. */
if (!beyond_zv)
{
if (it->glyph_row)
{
struct glyph_row *row = it->glyph_row;
it->max_ascent = max (row->ascent, tem_it.max_ascent);
it->max_descent = max (row->height - row->ascent, tem_it.max_descent);
it->max_phys_ascent = max (row->phys_ascent, tem_it.max_phys_ascent);
it->max_phys_descent = max (row->phys_height - row->phys_ascent,
tem_it.max_phys_descent);
}
else
{
it->max_ascent = max (it->max_ascent, tem_it.max_ascent);
it->max_descent = max (it->max_descent, tem_it.max_descent);
it->max_phys_ascent = max (it->max_phys_ascent,
tem_it.max_phys_ascent);
it->max_phys_descent = max (it->max_phys_descent,
tem_it.max_phys_descent);
}
}
it->line_number_produced_p = true;
bidi_unshelve_cache (itdata, false);
}
/* Return true if this glyph row needs a line number to be produced
for it. */
static bool
should_produce_line_number (struct it *it)
{
if (NILP (Vdisplay_line_numbers))
return false;
/* Don't display line numbers in minibuffer windows. */
if (MINI_WINDOW_P (it->w))
return false;
#ifdef HAVE_WINDOW_SYSTEM
/* Don't display line number in tooltip frames. */
if (FRAME_TOOLTIP_P (XFRAME (WINDOW_FRAME (it->w))))
return false;
#endif
/* If the character at current position has a non-nil special
property, disable line numbers for this row. This is for
packages such as company-mode, which need this for their tricky
layout, where line numbers get in the way. */
Lisp_Object val = Fget_char_property (make_fixnum (IT_CHARPOS (*it)),
Qdisplay_line_numbers_disable,
it->window);
/* For ZV, we need to also look in empty overlays at that point,
because get-char-property always returns nil for ZV, except if
the property is in 'default-text-properties'. */
if (NILP (val) && IT_CHARPOS (*it) >= ZV)
return !disable_line_numbers_overlay_at_eob ();
return NILP (val) ? true : false;
}
/* Return true if ROW has no glyphs except those inserted by the
display engine. This is needed for indicate-empty-lines and
similar features when the glyph row starts with glyphs which didn't
come from buffer or string. */
static bool
row_text_area_empty (struct glyph_row *row)
{
if (!row->reversed_p)
{
for (struct glyph *g = row->glyphs[TEXT_AREA];
g < row->glyphs[TEXT_AREA] + row->used[TEXT_AREA];
g++)
if (!NILP (g->object) || g->charpos > 0)
return false;
}
else
{
for (struct glyph *g = row->glyphs[TEXT_AREA] + row->used[TEXT_AREA] - 1;
g > row->glyphs[TEXT_AREA];
g--)
if (!NILP ((g - 1)->object) || (g - 1)->charpos > 0)
return false;
}
return true;
}
/* Construct the glyph row IT->glyph_row in the desired matrix of
IT->w from text at the current position of IT. See dispextern.h
for an overview of struct it. Value is true if
IT->glyph_row displays text, as opposed to a line displaying ZV
only. CURSOR_VPOS is the window-relative vertical position of
the glyph row displaying the cursor, or -1 if unknown. */
static bool
display_line (struct it *it, int cursor_vpos)
{
struct glyph_row *row = it->glyph_row;
Lisp_Object overlay_arrow_string;
struct it wrap_it;
void *wrap_data = NULL;
bool may_wrap = false;
int wrap_x UNINIT;
int wrap_row_used = -1;
int wrap_row_ascent UNINIT, wrap_row_height UNINIT;
int wrap_row_phys_ascent UNINIT, wrap_row_phys_height UNINIT;
int wrap_row_extra_line_spacing UNINIT;
ptrdiff_t wrap_row_min_pos UNINIT, wrap_row_min_bpos UNINIT;
ptrdiff_t wrap_row_max_pos UNINIT, wrap_row_max_bpos UNINIT;
int cvpos;
ptrdiff_t min_pos = ZV + 1, max_pos = 0;
ptrdiff_t min_bpos UNINIT, max_bpos UNINIT;
bool pending_handle_line_prefix = false;
int tab_line = window_wants_tab_line (it->w);
int header_line = window_wants_header_line (it->w);
bool hscroll_this_line = (cursor_vpos >= 0
&& it->vpos == cursor_vpos - tab_line - header_line
&& hscrolling_current_line_p (it->w));
int first_visible_x = it->first_visible_x;
int last_visible_x = it->last_visible_x;
int x_incr = 0;
int this_line_subject_to_line_prefix = 0;
/* We always start displaying at hpos zero even if hscrolled. */
eassert (it->hpos == 0 && it->current_x == 0);
if (MATRIX_ROW_VPOS (row, it->w->desired_matrix)
>= it->w->desired_matrix->nrows)
{
it->w->nrows_scale_factor++;
it->f->fonts_changed = true;
return false;
}
/* Clear the result glyph row and enable it. */
prepare_desired_row (it->w, row, false);
row->y = it->current_y;
row->start = it->start;
row->continuation_lines_width = it->continuation_lines_width;
row->displays_text_p = true;
row->starts_in_middle_of_char_p = it->starts_in_middle_of_char_p;
it->starts_in_middle_of_char_p = false;
it->stretch_adjust = 0;
it->line_number_produced_p = false;
/* If we are going to display the cursor's line, account for the
hscroll of that line. We subtract the window's min_hscroll,
because that was already accounted for in init_iterator. */
if (hscroll_this_line)
x_incr =
(window_hscroll_limited (it->w, it->f) - it->w->min_hscroll)
* FRAME_COLUMN_WIDTH (it->f);
bool line_number_needed = should_produce_line_number (it);
/* Move over display elements that are not visible because we are
hscrolled. This may stop at an x-position < first_visible_x
if the first glyph is partially visible or if we hit a line end. */
if (it->current_x < it->first_visible_x + x_incr)
{
enum move_it_result move_result;
this_line_min_pos = row->start.pos;
if (hscroll_this_line)
{
it->first_visible_x += x_incr;
it->last_visible_x += x_incr;
}
if (current_buffer->long_line_optimizations_p
&& it->line_wrap == TRUNCATE
&& window_hscroll_limited (it->w, it->f) > large_hscroll_threshold)
{
/* Special optimization for very long and truncated lines
which are hscrolled far to the left: jump directly to the
(approximate) position that is visible, instead of slowly
walking there. */
ptrdiff_t chars_to_skip =
it->first_visible_x / FRAME_COLUMN_WIDTH (it->f);
move_result = fast_move_it_horizontally (it, chars_to_skip);
if (move_result == MOVE_X_REACHED)
it->current_x = it->first_visible_x;
else /* use arbitrary value < first_visible_x */
it->current_x = it->first_visible_x - FRAME_COLUMN_WIDTH (it->f);
}
else
move_result = move_it_in_display_line_to (it, ZV, it->first_visible_x,
MOVE_TO_POS | MOVE_TO_X);
/* If we are under a large hscroll, move_it_in_display_line_to
could hit the end of the line without reaching
first_visible_x. Pretend that we did reach it. This is
especially important on a TTY, where we will call
extend_face_to_end_of_line, which needs to know how many
blank glyphs to produce. */
if (it->current_x < it->first_visible_x
&& (move_result == MOVE_NEWLINE_OR_CR
|| move_result == MOVE_POS_MATCH_OR_ZV))
{
it->current_x = it->first_visible_x;
it->wrap_prefix_width = 0;
}
/* In case move_it_in_display_line_to above "produced" the line
number. */
it->line_number_produced_p = false;
/* Record the smallest positions seen while we moved over
display elements that are not visible. This is needed by
redisplay_internal for optimizing the case where the cursor
stays inside the same line. The rest of this function only
considers positions that are actually displayed, so
RECORD_MAX_MIN_POS will not otherwise record positions that
are hscrolled to the left of the left edge of the window. */
min_pos = CHARPOS (this_line_min_pos);
min_bpos = BYTEPOS (this_line_min_pos);
/* Produce line number, if needed. */
if (line_number_needed)
maybe_produce_line_number (it);
}
else if (it->area == TEXT_AREA)
{
/* Line numbers should precede the line-prefix or wrap-prefix. */
if (line_number_needed)
maybe_produce_line_number (it);
/* We only do this when not calling move_it_in_display_line_to
above, because that function calls itself handle_line_prefix. */
handle_line_prefix (it);
this_line_subject_to_line_prefix = it->string_from_prefix_prop_p;
}
else
{
/* Line-prefix and wrap-prefix are always displayed in the text
area. But if this is the first call to display_line after
init_iterator, the iterator might have been set up to write
into a marginal area, e.g. if the line begins with some
display property that writes to the margins. So we need to
wait with the call to handle_line_prefix until whatever
writes to the margin has done its job. */
pending_handle_line_prefix = true;
}
/* Get the initial row height. This is either the height of the
text hscrolled, if there is any, or zero. */
row->ascent = it->max_ascent;
row->height = it->max_ascent + it->max_descent;
row->phys_ascent = it->max_phys_ascent;
row->phys_height = it->max_phys_ascent + it->max_phys_descent;
row->extra_line_spacing = it->max_extra_line_spacing;
/* Utility macro to record max and min buffer positions seen until now. */
#define RECORD_MAX_MIN_POS(IT) \
do \
{ \
bool composition_p \
= !STRINGP ((IT)->string) && ((IT)->what == IT_COMPOSITION); \
ptrdiff_t current_pos = \
composition_p ? (IT)->cmp_it.charpos \
: IT_CHARPOS (*(IT)); \
ptrdiff_t current_bpos = \
composition_p ? CHAR_TO_BYTE (current_pos) \
: IT_BYTEPOS (*(IT)); \
if (current_pos < min_pos) \
{ \
min_pos = current_pos; \
min_bpos = current_bpos; \
} \
if (IT_CHARPOS (*it) > max_pos) \
{ \
max_pos = IT_CHARPOS (*it); \
max_bpos = IT_BYTEPOS (*it); \
} \
} \
while (false)
/* Loop generating characters. The loop is left with IT on the next
character to display. */
while (true)
{
int n_glyphs_before, hpos_before, x_before;
int x, nglyphs;
int ascent = 0, descent = 0, phys_ascent = 0, phys_descent = 0;
/* Retrieve the next thing to display. Value is false if end of
buffer reached. */
if (!get_next_display_element (it))
{
bool row_has_glyphs = false;
/* Maybe add a space at the end of this line that is used to
display the cursor there under X. Set the charpos of the
first glyph of blank lines not corresponding to any text
to -1. */
if (IT_OVERFLOW_NEWLINE_INTO_FRINGE (it))
row->exact_window_width_line_p = true;
else if ((append_space_for_newline (it, true)
&& row->used[TEXT_AREA] == 1)
|| row->used[TEXT_AREA] == 0
|| (row_has_glyphs = row_text_area_empty (row)))
{
row->glyphs[TEXT_AREA]->charpos = -1;
/* Don't reset the displays_text_p flag if we are
displaying line numbers or line-prefix. */
if (!row_has_glyphs)
row->displays_text_p = false;
if (!NILP (BVAR (XBUFFER (it->w->contents), indicate_empty_lines))
&& (!MINI_WINDOW_P (it->w)))
row->indicate_empty_line_p = true;
}
it->continuation_lines_width = 0;
/* Reset those iterator values set from display property
values. This is for the case when the display property
ends at ZV, and is not a replacing property, so pop_it is
not called. */
it->font_height = Qnil;
it->voffset = 0;
row->ends_at_zv_p = true;
/* A row that displays right-to-left text must always have
its last face extended all the way to the end of line,
even if this row ends in ZV, because we still write to
the screen left to right. We also need to extend the
last face if the default face is remapped to some
different face, otherwise the functions that clear
portions of the screen will clear with the default face's
background color. */
if (row->reversed_p
|| lookup_basic_face (it->w, it->f, DEFAULT_FACE_ID)
!= DEFAULT_FACE_ID)
extend_face_to_end_of_line (it);
break;
}
/* Now, get the metrics of what we want to display. This also
generates glyphs in `row' (which is IT->glyph_row). */
n_glyphs_before = row->used[TEXT_AREA];
x = it->current_x;
/* Remember the line height so far in case the next element doesn't
fit on the line. */
if (it->line_wrap != TRUNCATE)
{
ascent = it->max_ascent;
descent = it->max_descent;
phys_ascent = it->max_phys_ascent;
phys_descent = it->max_phys_descent;
if (it->line_wrap == WORD_WRAP && it->area == TEXT_AREA)
{
bool next_may_wrap = may_wrap;
/* Can we wrap after this character? */
if (char_can_wrap_after (it))
next_may_wrap = true;
else
next_may_wrap = false;
/* Can we wrap here? */
if (may_wrap && char_can_wrap_before (it))
{
SAVE_IT (wrap_it, *it, wrap_data);
wrap_x = x;
wrap_row_used = row->used[TEXT_AREA];
wrap_row_ascent = row->ascent;
wrap_row_height = row->height;
wrap_row_phys_ascent = row->phys_ascent;
wrap_row_phys_height = row->phys_height;
wrap_row_extra_line_spacing = row->extra_line_spacing;
wrap_row_min_pos = min_pos;
wrap_row_min_bpos = min_bpos;
wrap_row_max_pos = max_pos;
wrap_row_max_bpos = max_bpos;
}
/* Update may_wrap for the next iteration. */
may_wrap = next_may_wrap;
}
}
PRODUCE_GLYPHS (it);
/* If this display element was in marginal areas, continue with
the next one. */
if (it->area != TEXT_AREA)
{
row->ascent = max (row->ascent, it->max_ascent);
row->height = max (row->height, it->max_ascent + it->max_descent);
row->phys_ascent = max (row->phys_ascent, it->max_phys_ascent);
row->phys_height = max (row->phys_height,
it->max_phys_ascent + it->max_phys_descent);
row->extra_line_spacing = max (row->extra_line_spacing,
it->max_extra_line_spacing);
set_iterator_to_next (it, true);
/* If we didn't handle the line/wrap prefix above, and the
call to set_iterator_to_next just switched to TEXT_AREA,
process the prefix now. */
if (it->area == TEXT_AREA && pending_handle_line_prefix)
{
/* Line numbers should precede the line-prefix or
wrap-prefix. */
if (line_number_needed)
maybe_produce_line_number (it);
pending_handle_line_prefix = false;
handle_line_prefix (it);
this_line_subject_to_line_prefix
= it->string_from_prefix_prop_p;
}
continue;
}
/* Does the display element fit on the line? If we truncate
lines, we should draw past the right edge of the window. If
we don't truncate, we want to stop so that we can display the
continuation glyph before the right margin. If lines are
continued, there are two possible strategies for characters
resulting in more than 1 glyph (e.g. tabs): Display as many
glyphs as possible in this line and leave the rest for the
continuation line, or display the whole element in the next
line. Original redisplay did the former, so we do it also. */
nglyphs = row->used[TEXT_AREA] - n_glyphs_before;
hpos_before = it->hpos;
x_before = x;
if (/* Not a newline. */
nglyphs > 0
/* Glyphs produced fit entirely in the line. */
&& (it->current_x < it->last_visible_x
/* Or a line or wrap prefix is in effect, and not
truncating the glyph produced immediately after it
would cause an infinite cycle. */
|| (it->line_wrap != TRUNCATE
/* This code is not valid if multiple glyphs were
produced, as some of these glyphs might remain
within this line. */
&& nglyphs == 1
&& this_line_subject_to_line_prefix)))
{
it->hpos += nglyphs;
row->ascent = max (row->ascent, it->max_ascent);
row->height = max (row->height, it->max_ascent + it->max_descent);
row->phys_ascent = max (row->phys_ascent, it->max_phys_ascent);
row->phys_height = max (row->phys_height,
it->max_phys_ascent + it->max_phys_descent);
row->extra_line_spacing = max (row->extra_line_spacing,
it->max_extra_line_spacing);
if (it->current_x - it->pixel_width < it->first_visible_x
/* When line numbers are displayed, row->x should not be
offset, as the first glyph after the line number can
never be partially visible. */
&& !line_number_needed
/* In R2L rows, we arrange in extend_face_to_end_of_line
to add a right offset to the line, by a suitable
change to the stretch glyph that is the leftmost
glyph of the line. */
&& !row->reversed_p)
row->x = x - it->first_visible_x;
/* Record the maximum and minimum buffer positions seen so
far in glyphs that will be displayed by this row. */
if (it->bidi_p)
RECORD_MAX_MIN_POS (it);
}
else
{
int i, new_x;
struct glyph *glyph;
for (i = 0; i < nglyphs; ++i, x = new_x)
{
/* Identify the glyphs added by the last call to
PRODUCE_GLYPHS. In R2L rows, they are prepended to
the previous glyphs. */
if (!row->reversed_p)
glyph = row->glyphs[TEXT_AREA] + n_glyphs_before + i;
else
glyph = row->glyphs[TEXT_AREA] + nglyphs - 1 - i;
new_x = x + glyph->pixel_width;
if (/* Lines are continued. */
it->line_wrap != TRUNCATE
&& (/* Glyph doesn't fit on the line. */
new_x > it->last_visible_x
/* Or it fits exactly on a window system frame. */
|| (new_x == it->last_visible_x
&& FRAME_WINDOW_P (it->f)
&& (row->reversed_p
? WINDOW_LEFT_FRINGE_WIDTH (it->w)
: WINDOW_RIGHT_FRINGE_WIDTH (it->w))))
/* There is no line prefix, next to which the
iterator _must_ produce a minimum of one actual
glyph. */
&& (!this_line_subject_to_line_prefix
/* Or this is the second glyph to be produced
beyond the confines of the line. */
|| (i != 0
&& (x > it->last_visible_x
|| (x == it->last_visible_x
&& FRAME_WINDOW_P (it->f)
&& (row->reversed_p
? WINDOW_LEFT_FRINGE_WIDTH (it->w)
: WINDOW_RIGHT_FRINGE_WIDTH (it->w)))))))
{
/* End of a continued line. */
if (it->hpos == 0
|| (new_x == it->last_visible_x
&& FRAME_WINDOW_P (it->f)
&& (row->reversed_p
? WINDOW_LEFT_FRINGE_WIDTH (it->w)
: WINDOW_RIGHT_FRINGE_WIDTH (it->w))))
{
/* Current glyph is the only one on the line or
fits exactly on the line. We must continue
the line because we can't draw the cursor
after the glyph. */
row->continued_p = true;
it->current_x = new_x;
it->continuation_lines_width += new_x;
++it->hpos;
if (i == nglyphs - 1)
{
/* If line-wrap is on, check if a previous
wrap point was found. */
if (!IT_OVERFLOW_NEWLINE_INTO_FRINGE (it)
&& wrap_row_used > 0 /* Found. */
/* Even if there is a previous wrap
point, continue the line here as
usual, if (i) the previous character
allows wrapping after it, AND (ii)
the current character allows wrapping
before it. Because this is a valid
break point, we can just continue to
the next line at here, there is no
need to wrap early at the previous
wrap point. */
&& (!may_wrap || !char_can_wrap_before (it)))
goto back_to_wrap;
/* Record the maximum and minimum buffer
positions seen so far in glyphs that will be
displayed by this row. */
if (it->bidi_p)
RECORD_MAX_MIN_POS (it);
set_iterator_to_next (it, true);
if (IT_OVERFLOW_NEWLINE_INTO_FRINGE (it))
{
if (!get_next_display_element (it))
{
row->exact_window_width_line_p = true;
it->continuation_lines_width = 0;
it->font_height = Qnil;
it->voffset = 0;
row->continued_p = false;
row->ends_at_zv_p = true;
}
else if (ITERATOR_AT_END_OF_LINE_P (it))
{
row->continued_p = false;
row->exact_window_width_line_p = true;
}
/* If line-wrap is on, check if a
previous wrap point was found. */
else if (wrap_row_used > 0
/* Even if there is a previous
wrap point, continue the
line here as usual, if (i)
the previous character was a
space or tab AND (ii) the
current character is not,
AND (iii) the current
character allows wrapping
before it. */
&& (!may_wrap || !char_can_wrap_before (it)))
goto back_to_wrap;
}
}
else if (it->bidi_p)
RECORD_MAX_MIN_POS (it);
if (WINDOW_LEFT_MARGIN_WIDTH (it->w) > 0
|| WINDOW_RIGHT_MARGIN_WIDTH (it->w) > 0)
extend_face_to_end_of_line (it);
}
else if (CHAR_GLYPH_PADDING_P (*glyph)
&& !FRAME_WINDOW_P (it->f))
{
/* A padding glyph that doesn't fit on this line.
This means the whole character doesn't fit
on the line. */
if (row->reversed_p)
unproduce_glyphs (it, row->used[TEXT_AREA]
- n_glyphs_before);
row->used[TEXT_AREA] = n_glyphs_before;
/* Fill the rest of the row with continuation
glyphs like in 20.x. */
while (row->glyphs[TEXT_AREA] + row->used[TEXT_AREA]
< row->glyphs[1 + TEXT_AREA])
produce_special_glyphs (it, IT_CONTINUATION);
row->continued_p = true;
it->current_x = x_before;
it->continuation_lines_width += x_before;
/* Restore the height to what it was before the
element not fitting on the line. */
it->max_ascent = ascent;
it->max_descent = descent;
it->max_phys_ascent = phys_ascent;
it->max_phys_descent = phys_descent;
if (WINDOW_LEFT_MARGIN_WIDTH (it->w) > 0
|| WINDOW_RIGHT_MARGIN_WIDTH (it->w) > 0)
extend_face_to_end_of_line (it);
}
else if (wrap_row_used > 0)
{
back_to_wrap:
if (row->reversed_p)
unproduce_glyphs (it,
row->used[TEXT_AREA] - wrap_row_used);
RESTORE_IT (it, &wrap_it, wrap_data);
it->continuation_lines_width += wrap_x;
row->used[TEXT_AREA] = wrap_row_used;
row->ascent = wrap_row_ascent;
row->height = wrap_row_height;
row->phys_ascent = wrap_row_phys_ascent;
row->phys_height = wrap_row_phys_height;
row->extra_line_spacing = wrap_row_extra_line_spacing;
min_pos = wrap_row_min_pos;
min_bpos = wrap_row_min_bpos;
max_pos = wrap_row_max_pos;
max_bpos = wrap_row_max_bpos;
row->continued_p = true;
row->ends_at_zv_p = false;
row->exact_window_width_line_p = false;
/* Make sure that a non-default face is extended
up to the right margin of the window. */
extend_face_to_end_of_line (it);
}
else if ((it->what == IT_CHARACTER
|| it->what == IT_STRETCH
|| it->what == IT_COMPOSITION)
&& it->c == '\t' && FRAME_WINDOW_P (it->f))
{
/* A TAB that extends past the right edge of the
window. This produces a single glyph on
window system frames. We leave the glyph in
this row and let it fill the row, but don't
consume the TAB. */
if ((row->reversed_p
? WINDOW_LEFT_FRINGE_WIDTH (it->w)
: WINDOW_RIGHT_FRINGE_WIDTH (it->w)) == 0)
produce_special_glyphs (it, IT_CONTINUATION);
it->continuation_lines_width += it->last_visible_x;
row->ends_in_middle_of_char_p = true;
row->continued_p = true;
glyph->pixel_width = it->last_visible_x - x;
it->starts_in_middle_of_char_p = true;
if (WINDOW_LEFT_MARGIN_WIDTH (it->w) > 0
|| WINDOW_RIGHT_MARGIN_WIDTH (it->w) > 0)
extend_face_to_end_of_line (it);
}
else
{
/* Something other than a TAB that draws past
the right edge of the window. Restore
positions to values before the element. */
if (row->reversed_p)
unproduce_glyphs (it, row->used[TEXT_AREA]
- (n_glyphs_before + i));
row->used[TEXT_AREA] = n_glyphs_before + i;
/* Display continuation glyphs. */
it->current_x = x_before;
it->continuation_lines_width += x;
if (!FRAME_WINDOW_P (it->f)
|| (row->reversed_p
? WINDOW_LEFT_FRINGE_WIDTH (it->w)
: WINDOW_RIGHT_FRINGE_WIDTH (it->w)) == 0)
produce_special_glyphs (it, IT_CONTINUATION);
row->continued_p = true;
extend_face_to_end_of_line (it);
if (nglyphs > 1 && i > 0)
{
row->ends_in_middle_of_char_p = true;
it->starts_in_middle_of_char_p = true;
}
/* Restore the height to what it was before the
element not fitting on the line. */
it->max_ascent = ascent;
it->max_descent = descent;
it->max_phys_ascent = phys_ascent;
it->max_phys_descent = phys_descent;
}
break;
}
else if (new_x > it->first_visible_x)
{
/* Increment number of glyphs actually displayed. */
++it->hpos;
/* Record the maximum and minimum buffer positions
seen so far in glyphs that will be displayed by
this row. */
if (it->bidi_p)
RECORD_MAX_MIN_POS (it);
if (x < it->first_visible_x && !row->reversed_p
&& !line_number_needed)
/* Glyph is partially visible, i.e. row starts at
negative X position. Don't do that in R2L
rows, where we arrange to add a right offset to
the line in extend_face_to_end_of_line, by a
suitable change to the stretch glyph that is
the leftmost glyph of the line. */
row->x = x - it->first_visible_x;
/* When the last glyph of an R2L row only fits
partially on the line, we need to set row->x to a
negative offset, so that the leftmost glyph is
the one that is partially visible. But if we are
going to produce the truncation glyph, this will
be taken care of in produce_special_glyphs. */
if (row->reversed_p
&& new_x > it->last_visible_x
&& !line_number_needed
&& !(it->line_wrap == TRUNCATE
&& WINDOW_LEFT_FRINGE_WIDTH (it->w) == 0))
{
eassert (FRAME_WINDOW_P (it->f));
row->x = it->last_visible_x - new_x;
}
}
else
{
/* Glyph is completely off the left margin of the
window. This should not happen because of the
move_it_in_display_line at the start of this
function, unless the text display area of the
window is empty. */
eassert (it->first_visible_x <= it->last_visible_x);
}
}
/* Even if this display element produced no glyphs at all,
we want to record its position. */
if (it->bidi_p && nglyphs == 0)
RECORD_MAX_MIN_POS (it);
row->ascent = max (row->ascent, it->max_ascent);
row->height = max (row->height, it->max_ascent + it->max_descent);
row->phys_ascent = max (row->phys_ascent, it->max_phys_ascent);
row->phys_height = max (row->phys_height,
it->max_phys_ascent + it->max_phys_descent);
row->extra_line_spacing = max (row->extra_line_spacing,
it->max_extra_line_spacing);
/* End of this display line if row is continued. */
if (row->continued_p || row->ends_at_zv_p)
break;
}
at_end_of_line:
/* Is this a line end? If yes, we're also done, after making
sure that a non-default face is extended up to the right
margin of the window. */
if (ITERATOR_AT_END_OF_LINE_P (it))
{
int used_before = row->used[TEXT_AREA];
row->ends_in_newline_from_string_p = STRINGP (it->object);
/* Add a space at the end of the line that is used to
display the cursor there. */
if (!IT_OVERFLOW_NEWLINE_INTO_FRINGE (it))
append_space_for_newline (it, false);
/* Extend the face to the end of the line. */
extend_face_to_end_of_line (it);
/* Make sure we have the position. */
if (used_before == 0)
row->glyphs[TEXT_AREA]->charpos = CHARPOS (it->position);
/* Record the position of the newline, for use in
find_row_edges. */
it->eol_pos = it->current.pos;
/* Consume the line end. This skips over invisible lines. */
set_iterator_to_next (it, true);
it->continuation_lines_width = 0;
break;
}
/* Proceed with next display element. Note that this skips
over lines invisible because of selective display. */
set_iterator_to_next (it, true);
/* If IT has just finished producing glyphs for the wrap prefix
and is proceeding to the next method, there might not be
sufficient space remaining in this line to accommodate its
glyphs, and one real glyph must be produced to prevent an
infinite loop. Next, clear this flag if such a glyph has
already been produced. */
if (this_line_subject_to_line_prefix == 1
&& !it->string_from_prefix_prop_p)
this_line_subject_to_line_prefix = 2;
else if (this_line_subject_to_line_prefix == 2
&& !it->string_from_prefix_prop_p)
this_line_subject_to_line_prefix = 0;
/* If we truncate lines, we are done when the last displayed
glyphs reach past the right margin of the window. */
if (it->line_wrap == TRUNCATE
&& ((FRAME_WINDOW_P (it->f)
/* Images are preprocessed in produce_image_glyph such
that they are cropped at the right edge of the
window, so an image glyph will always end exactly at
last_visible_x, even if there's no right fringe. */
&& ((row->reversed_p
? WINDOW_LEFT_FRINGE_WIDTH (it->w)
: WINDOW_RIGHT_FRINGE_WIDTH (it->w))
|| it->what == IT_IMAGE))
? (it->current_x >= it->last_visible_x)
: (it->current_x > it->last_visible_x)))
{
/* Maybe add truncation glyphs. */
if (!FRAME_WINDOW_P (it->f)
|| (row->reversed_p
? WINDOW_LEFT_FRINGE_WIDTH (it->w)
: WINDOW_RIGHT_FRINGE_WIDTH (it->w)) == 0)
{
int i, n;
if (!row->reversed_p)
{
for (i = row->used[TEXT_AREA] - 1; i > 0; --i)
if (!CHAR_GLYPH_PADDING_P (row->glyphs[TEXT_AREA][i]))
break;
}
else
{
for (i = 0; i < row->used[TEXT_AREA]; i++)
if (!CHAR_GLYPH_PADDING_P (row->glyphs[TEXT_AREA][i]))
break;
/* Remove any padding glyphs at the front of ROW, to
make room for the truncation glyphs we will be
adding below. The loop below always inserts at
least one truncation glyph, so also remove the
last glyph added to ROW. */
unproduce_glyphs (it, i + 1);
/* Adjust i for the loop below. */
i = row->used[TEXT_AREA] - (i + 1);
}
/* produce_special_glyphs overwrites the last glyph, so
we don't want that if we want to keep that last
glyph, which means it's an image. */
if (it->current_x > it->last_visible_x)
{
it->current_x = x_before;
if (!FRAME_WINDOW_P (it->f))
{
for (n = row->used[TEXT_AREA]; i < n; ++i)
{
row->used[TEXT_AREA] = i;
produce_special_glyphs (it, IT_TRUNCATION);
}
}
else
{
row->used[TEXT_AREA] = i;
produce_special_glyphs (it, IT_TRUNCATION);
}
it->hpos = hpos_before;
}
/* If the default face is remapped, and the window has
display margins, and no glyphs were written yet to the
margins on this screen line, we must add one space
glyph to the margin area to make sure the margins use
the background of the remapped default face. */
if (lookup_basic_face (it->w, it->f, DEFAULT_FACE_ID)
!= DEFAULT_FACE_ID /* default face is remapped */
&& ((WINDOW_LEFT_MARGIN_WIDTH (it->w) > 0
&& it->glyph_row->used[LEFT_MARGIN_AREA] == 0)
|| (WINDOW_RIGHT_MARGIN_WIDTH (it->w) > 0
&& it->glyph_row->used[RIGHT_MARGIN_AREA] == 0)))
extend_face_to_end_of_line (it);
}
else if (IT_OVERFLOW_NEWLINE_INTO_FRINGE (it))
{
/* Don't truncate if we can overflow newline into fringe. */
if (!get_next_display_element (it))
{
it->continuation_lines_width = 0;
it->font_height = Qnil;
it->voffset = 0;
row->ends_at_zv_p = true;
row->exact_window_width_line_p = true;
break;
}
if (ITERATOR_AT_END_OF_LINE_P (it))
{
row->exact_window_width_line_p = true;
goto at_end_of_line;
}
it->current_x = x_before;
it->hpos = hpos_before;
}
row->truncated_on_right_p = true;
it->continuation_lines_width = 0;
reseat_at_next_visible_line_start (it, false);
/* We insist below that IT's position be at ZV because in
bidi-reordered lines the character at visible line start
might not be the character that follows the newline in
the logical order. */
if (IT_BYTEPOS (*it) > BEG_BYTE)
row->ends_at_zv_p =
IT_BYTEPOS (*it) >= ZV_BYTE
&& (ZV_BYTE <= 1 || FETCH_BYTE (ZV_BYTE - 1) != '\n');
else
row->ends_at_zv_p = false;
break;
}
}
if (wrap_data)
bidi_unshelve_cache (wrap_data, true);
/* If line is not empty and hscrolled, maybe insert truncation glyphs
at the left window margin. */
if (it->first_visible_x
&& IT_CHARPOS (*it) != CHARPOS (row->start.pos))
{
if (!FRAME_WINDOW_P (it->f)
|| (((row->reversed_p
? WINDOW_RIGHT_FRINGE_WIDTH (it->w)
: WINDOW_LEFT_FRINGE_WIDTH (it->w)) == 0)
/* Don't let insert_left_trunc_glyphs overwrite the
first glyph of the row if it is an image. */
&& row->glyphs[TEXT_AREA]->type != IMAGE_GLYPH))
insert_left_trunc_glyphs (it);
row->truncated_on_left_p = true;
}
/* Remember the position at which this line ends.
BIDI Note: any code that needs MATRIX_ROW_START/END_CHARPOS
cannot be before the call to find_row_edges below, since that is
where these positions are determined. */
row->end = it->current;
if (!it->bidi_p)
{
row->minpos = row->start.pos;
row->maxpos = row->end.pos;
}
else
{
/* ROW->minpos and ROW->maxpos must be the smallest and
`1 + the largest' buffer positions in ROW. But if ROW was
bidi-reordered, these two positions can be anywhere in the
row, so we must determine them now. */
find_row_edges (it, row, min_pos, min_bpos, max_pos, max_bpos);
}
/* If the start of this line is the overlay arrow-position, then
mark this glyph row as the one containing the overlay arrow.
This is clearly a mess with variable size fonts. It would be
better to let it be displayed like cursors under X. */
if ((MATRIX_ROW_DISPLAYS_TEXT_P (row) || !overlay_arrow_seen)
&& (overlay_arrow_string = overlay_arrow_at_row (it, row),
!NILP (overlay_arrow_string)))
{
/* Overlay arrow in window redisplay is a fringe bitmap. */
if (STRINGP (overlay_arrow_string))
{
struct glyph_row *arrow_row
= get_overlay_arrow_glyph_row (it->w, overlay_arrow_string);
struct glyph *glyph = arrow_row->glyphs[TEXT_AREA];
struct glyph *arrow_end = glyph + arrow_row->used[TEXT_AREA];
struct glyph *p = row->glyphs[TEXT_AREA];
struct glyph *p2, *end;
/* Copy the arrow glyphs. */
while (glyph < arrow_end)
*p++ = *glyph++;
/* Throw away padding glyphs. */
p2 = p;
end = row->glyphs[TEXT_AREA] + row->used[TEXT_AREA];
while (p2 < end && CHAR_GLYPH_PADDING_P (*p2))
++p2;
if (p2 > p)
{
while (p2 < end)
*p++ = *p2++;
row->used[TEXT_AREA] = p2 - row->glyphs[TEXT_AREA];
}
}
else
{
eassert (FIXNUMP (overlay_arrow_string));
row->overlay_arrow_bitmap = XFIXNUM (overlay_arrow_string);
}
overlay_arrow_seen = true;
}
/* Highlight trailing whitespace. */
if (!NILP (Vshow_trailing_whitespace))
highlight_trailing_whitespace (it);
/* Compute pixel dimensions of this line. */
compute_line_metrics (it);
/* Implementation note: No changes in the glyphs of ROW or in their
faces can be done past this point, because compute_line_metrics
computes ROW's hash value and stores it within the glyph_row
structure. */
/* Record whether this row ends inside an ellipsis. */
row->ends_in_ellipsis_p
= (it->method == GET_FROM_DISPLAY_VECTOR
&& it->ellipsis_p);
/* Save fringe bitmaps in this row. */
row->left_user_fringe_bitmap = it->left_user_fringe_bitmap;
row->left_user_fringe_face_id = it->left_user_fringe_face_id;
row->right_user_fringe_bitmap = it->right_user_fringe_bitmap;
row->right_user_fringe_face_id = it->right_user_fringe_face_id;
it->left_user_fringe_bitmap = 0;
it->left_user_fringe_face_id = 0;
it->right_user_fringe_bitmap = 0;
it->right_user_fringe_face_id = 0;
/* When they turn off tooltip-mode on a GUI frame, we call 'message'
with message-truncate-lines bound to non-nil, which produces
truncation bitmaps on the fringe. Force redrawing of the fringes
in that case, to make sure the fringe bitmaps are removed when a
shorter message is displayed. */
if (MINI_WINDOW_P (it->w) && it->line_wrap == TRUNCATE
&& FRAME_WINDOW_P (it->f) && !cursor_in_echo_area)
row->redraw_fringe_bitmaps_p = true;
/* Maybe set the cursor. */
cvpos = it->w->cursor.vpos;
if ((cvpos < 0
/* In bidi-reordered rows, keep checking for proper cursor
position even if one has been found already, because buffer
positions in such rows change non-linearly with ROW->VPOS,
when a line is continued. One exception: when we are at ZV,
display cursor on the first suitable glyph row, since all
the empty rows after that also have their position set to ZV. */
/* FIXME: Revisit this when glyph ``spilling'' in continuation
lines' rows is implemented for bidi-reordered rows. */
|| (it->bidi_p
&& !MATRIX_ROW (it->w->desired_matrix, cvpos)->ends_at_zv_p))
&& PT >= MATRIX_ROW_START_CHARPOS (row)
&& PT <= MATRIX_ROW_END_CHARPOS (row)
&& cursor_row_p (row))
set_cursor_from_row (it->w, row, it->w->desired_matrix, 0, 0, 0, 0);
/* Prepare for the next line. This line starts horizontally at (X
HPOS) = (0 0). Vertical positions are incremented. As a
convenience for the caller, IT->glyph_row is set to the next
row to be used. */
it->wrap_prefix_width = it->current_x = it->hpos = 0;
it->current_y += row->height;
/* Restore the first and last visible X if we adjusted them for
current-line hscrolling. */
if (hscroll_this_line)
{
it->first_visible_x = first_visible_x;
it->last_visible_x = last_visible_x;
}
SET_TEXT_POS (it->eol_pos, 0, 0);
++it->vpos;
++it->glyph_row;
/* The next row should by default use the same value of the
reversed_p flag as this one. set_iterator_to_next decides when
it's a new paragraph, and PRODUCE_GLYPHS recomputes the value of
the flag accordingly. */
if (it->glyph_row < MATRIX_BOTTOM_TEXT_ROW (it->w->desired_matrix, it->w))
it->glyph_row->reversed_p = row->reversed_p;
it->start = row->end;
return MATRIX_ROW_DISPLAYS_TEXT_P (row);
#undef RECORD_MAX_MIN_POS
}
DEFUN ("current-bidi-paragraph-direction", Fcurrent_bidi_paragraph_direction,
Scurrent_bidi_paragraph_direction, 0, 1, 0,
doc: /* Return paragraph direction at point in BUFFER.
Value is either `left-to-right' or `right-to-left'.
If BUFFER is omitted or nil, it defaults to the current buffer.
Paragraph direction determines how the text in the paragraph is displayed.
In left-to-right paragraphs, text begins at the left margin of the window
and the reading direction is generally left to right. In right-to-left
paragraphs, text begins at the right margin and is read from right to left.
See also `bidi-paragraph-direction'. */)
(Lisp_Object buffer)
{
struct buffer *buf = current_buffer;
struct buffer *old = buf;
if (! NILP (buffer))
{
CHECK_BUFFER (buffer);
buf = XBUFFER (buffer);
}
if (NILP (BVAR (buf, bidi_display_reordering))
|| NILP (BVAR (buf, enable_multibyte_characters))
/* When we are loading loadup.el, the character property tables
needed for bidi iteration are not yet available. */
|| redisplay__inhibit_bidi)
return Qleft_to_right;
else if (!NILP (BVAR (buf, bidi_paragraph_direction)))
return BVAR (buf, bidi_paragraph_direction);
else
{
/* Determine the direction from buffer text. We could try to
use current_matrix if it is up to date, but this seems fast
enough as it is. */
struct bidi_it itb;
ptrdiff_t pos = BUF_PT (buf);
ptrdiff_t bytepos = BUF_PT_BYTE (buf);
int c;
void *itb_data = bidi_shelve_cache ();
set_buffer_temp (buf);
/* bidi_paragraph_init finds the base direction of the paragraph
by searching forward from paragraph start. We need the base
direction of the current or _previous_ paragraph, so we need
to make sure we are within that paragraph. To that end, find
the previous non-empty line. */
if (pos >= ZV && pos > BEGV)
dec_both (&pos, &bytepos);
AUTO_STRING (trailing_white_space, "[\f\t ]*\n");
if (fast_looking_at (trailing_white_space,
pos, bytepos, ZV, ZV_BYTE, Qnil) > 0)
{
while ((c = FETCH_BYTE (bytepos)) == '\n'
|| c == ' ' || c == '\t' || c == '\f')
{
if (bytepos <= BEGV_BYTE)
break;
bytepos--;
pos--;
}
while (!CHAR_HEAD_P (FETCH_BYTE (bytepos)))
bytepos--;
}
bidi_init_it (pos, bytepos, FRAME_WINDOW_P (SELECTED_FRAME ()), &itb);
itb.paragraph_dir = NEUTRAL_DIR;
itb.string.s = NULL;
itb.string.lstring = Qnil;
itb.string.bufpos = 0;
itb.string.from_disp_str = false;
itb.string.unibyte = false;
/* We have no window to use here for ignoring window-specific
overlays. Using NULL for window pointer will cause
compute_display_string_pos to use the current buffer. */
itb.w = NULL;
bidi_paragraph_init (NEUTRAL_DIR, &itb, true);
bidi_unshelve_cache (itb_data, false);
set_buffer_temp (old);
switch (itb.paragraph_dir)
{
case L2R:
return Qleft_to_right;
break;
case R2L:
return Qright_to_left;
break;
default:
emacs_abort ();
}
}
}
DEFUN ("bidi-find-overridden-directionality",
Fbidi_find_overridden_directionality,
Sbidi_find_overridden_directionality, 3, 4, 0,
doc: /* Return position between FROM and TO where directionality was overridden.
This function returns the first character position in the specified
region of OBJECT where characters have their bidirectional
properties affected in a way that might make its text look confusingly
on display. For example, characters whose `bidi-class' property is `L',
could be forced to display as `R' by a directional override, and
likewise characters whose `bidi-class' is `R' or `AL' that are
forced to display as `L'.
If no such character is found, the function returns nil.
OBJECT is a Lisp string or buffer to search for overridden
directionality, and defaults to the current buffer if nil.
OBJECT can also be a window, in which case the function will search
the buffer displayed in that window. Passing the window instead of
a buffer is preferable when the buffer is displayed in some window,
because this function will then be able to correctly account for
window-specific overlays, which can affect the results.
Optional argument BASE-DIR specifies the base paragraph directory
of the text. It should be a symbol, either `left-to-right'
or `right-to-left', and defaults to `left-to-right'.
Strong directional characters `L', `R', and `AL' can have their
intrinsic directionality overridden by directional override control
characters RLO (u+202E) and LRO (u+202D). They can also have their
directionality affected by other formatting control characters: LRE
(u+202A), RLE (u+202B), LRI (u+2066), and RLI (u+2067). See the
function `get-char-code-property' for a way to inquire about the
`bidi-class' property of a character. Characters whose intrinsic
directionality is weak or neutral, such as numbers or punctuation
characters, can be forced to display in a very different place with
respect of its surrounding characters, so as to make the surrounding
text confuse the user regarding what the text says.
Also see the `highlight-confusing-reorderings' function, which can be
useful in similar circumstances as this function. */)
(Lisp_Object from, Lisp_Object to, Lisp_Object object, Lisp_Object base_dir)
{
struct buffer *buf = current_buffer;
struct buffer *old = buf;
struct window *w = NULL;
bool frame_window_p = FRAME_WINDOW_P (SELECTED_FRAME ());
struct bidi_it itb;
ptrdiff_t from_pos, to_pos, from_bpos;
void *itb_data;
if (!NILP (object))
{
if (BUFFERP (object))
buf = XBUFFER (object);
else if (WINDOWP (object))
{
w = decode_live_window (object);
buf = XBUFFER (w->contents);
frame_window_p = FRAME_WINDOW_P (XFRAME (w->frame));
}
else
CHECK_STRING (object);
}
if (STRINGP (object))
{
/* Characters in unibyte strings are always treated by bidi.c as
strong LTR. */
if (!STRING_MULTIBYTE (object)
/* When we are loading loadup.el, the character property
tables needed for bidi iteration are not yet
available. */
|| redisplay__inhibit_bidi)
return Qnil;
validate_subarray (object, from, to, SCHARS (object), &from_pos, &to_pos);
if (from_pos >= SCHARS (object))
return Qnil;
/* Set up the bidi iterator. */
itb_data = bidi_shelve_cache ();
itb.paragraph_dir = NEUTRAL_DIR;
itb.string.lstring = object;
itb.string.s = NULL;
itb.string.schars = SCHARS (object);
itb.string.bufpos = 0;
itb.string.from_disp_str = false;
itb.string.unibyte = false;
itb.w = w;
bidi_init_it (0, 0, frame_window_p, &itb);
}
else
{
/* Nothing this fancy can happen in unibyte buffers, or in a
buffer that disabled reordering, or if FROM is at EOB. */
if (NILP (BVAR (buf, bidi_display_reordering))
|| NILP (BVAR (buf, enable_multibyte_characters))
/* When we are loading loadup.el, the character property
tables needed for bidi iteration are not yet
available. */
|| redisplay__inhibit_bidi)
return Qnil;
set_buffer_temp (buf);
validate_region (&from, &to);
from_pos = XFIXNUM (from);
to_pos = XFIXNUM (to);
if (from_pos >= ZV)
return Qnil;
/* Set up the bidi iterator. */
itb_data = bidi_shelve_cache ();
from_bpos = CHAR_TO_BYTE (from_pos);
if (from_pos == BEGV)
{
itb.charpos = BEGV;
itb.bytepos = BEGV_BYTE;
}
else if (FETCH_BYTE (from_bpos - 1) == '\n')
{
itb.charpos = from_pos;
itb.bytepos = from_bpos;
}
else
itb.charpos = find_newline_no_quit (from_pos, CHAR_TO_BYTE (from_pos),
-1, &itb.bytepos);
itb.paragraph_dir = NEUTRAL_DIR;
itb.string.s = NULL;
itb.string.lstring = Qnil;
itb.string.bufpos = 0;
itb.string.from_disp_str = false;
itb.string.unibyte = false;
itb.w = w;
bidi_init_it (itb.charpos, itb.bytepos, frame_window_p, &itb);
}
ptrdiff_t found;
bidi_dir_t bdir = EQ (base_dir, Qright_to_left) ? R2L : L2R;
do {
bidi_paragraph_init (bdir, &itb, false);
while ((found = bidi_find_first_overridden (&itb)) < from_pos)
;
} while (found == ZV && itb.ch == '\n' && itb.charpos < to_pos);
bidi_unshelve_cache (itb_data, false);
set_buffer_temp (old);
return (from_pos <= found && found < to_pos) ? make_fixnum (found) : Qnil;
}
DEFUN ("move-point-visually", Fmove_point_visually,
Smove_point_visually, 1, 1, 0,
doc: /* Move point in the visual order in the specified DIRECTION.
DIRECTION can be 1, meaning move to the right, or -1, which moves to the
left.
Value is the new character position of point. */)
(Lisp_Object direction)
{
struct window *w = XWINDOW (selected_window);
struct buffer *b = XBUFFER (w->contents);
struct glyph_row *row;
int dir;
Lisp_Object paragraph_dir;
#define ROW_GLYPH_NEWLINE_P(ROW,GLYPH) \
(!(ROW)->continued_p \
&& NILP ((GLYPH)->object) \
&& (GLYPH)->type == CHAR_GLYPH \
&& (GLYPH)->u.ch == ' ' \
&& (GLYPH)->charpos >= 0 \
&& !(GLYPH)->avoid_cursor_p)
CHECK_FIXNUM (direction);
dir = XFIXNUM (direction);
if (dir > 0)
dir = 1;
else
dir = -1;
/* If current matrix is up-to-date, we can use the information
recorded in the glyphs, at least as long as the goal is on the
screen. */
if (w->window_end_valid
&& !windows_or_buffers_changed
&& b
&& !b->clip_changed
&& !b->prevent_redisplay_optimizations_p
&& !window_outdated (w)
/* We rely below on the cursor coordinates to be up to date, but
we cannot trust them if some command moved point since the
last complete redisplay. */
&& w->last_point == BUF_PT (b)
&& w->cursor.vpos >= 0
&& w->cursor.vpos < w->current_matrix->nrows
&& (row = MATRIX_ROW (w->current_matrix, w->cursor.vpos))->enabled_p)
{
struct glyph *g = row->glyphs[TEXT_AREA];
struct glyph *e = dir > 0 ? g + row->used[TEXT_AREA] : g - 1;
struct glyph *gpt = g + w->cursor.hpos;
for (g = gpt + dir; (dir > 0 ? g < e : g > e); g += dir)
{
if (BUFFERP (g->object) && g->charpos != PT)
{
SET_PT (g->charpos);
w->cursor.vpos = -1;
return make_fixnum (PT);
}
else if (!NILP (g->object) && !EQ (g->object, gpt->object))
{
ptrdiff_t new_pos;
if (BUFFERP (gpt->object))
{
new_pos = PT;
if ((gpt->resolved_level - row->reversed_p) % 2 == 0)
new_pos += (row->reversed_p ? -dir : dir);
else
new_pos -= (row->reversed_p ? -dir : dir);
new_pos = clip_to_bounds (BEGV, new_pos, ZV);
/* If we didn't move, we've hit BEGV or ZV, so we
need to signal a suitable error. */
if (new_pos == PT)
break;
}
else if (BUFFERP (g->object))
new_pos = g->charpos;
else
break;
SET_PT (new_pos);
w->cursor.vpos = -1;
return make_fixnum (PT);
}
else if (ROW_GLYPH_NEWLINE_P (row, g))
{
/* Glyphs inserted at the end of a non-empty line for
positioning the cursor have zero charpos, so we must
deduce the value of point by other means. */
if (g->charpos > 0)
SET_PT (g->charpos);
else if (row->ends_at_zv_p && PT != ZV)
SET_PT (ZV);
else if (PT != MATRIX_ROW_END_CHARPOS (row) - 1)
SET_PT (MATRIX_ROW_END_CHARPOS (row) - 1);
else
break;
w->cursor.vpos = -1;
return make_fixnum (PT);
}
}
if (g == e || NILP (g->object))
{
if (row->truncated_on_left_p || row->truncated_on_right_p)
goto simulate_display;
if (!row->reversed_p)
row += dir;
else
row -= dir;
if (!(MATRIX_FIRST_TEXT_ROW (w->current_matrix) <= row
&& row < MATRIX_BOTTOM_TEXT_ROW (w->current_matrix, w)))
goto simulate_display;
if (dir > 0)
{
if (row->reversed_p && !row->continued_p)
{
SET_PT (MATRIX_ROW_END_CHARPOS (row) - 1);
w->cursor.vpos = -1;
return make_fixnum (PT);
}
g = row->glyphs[TEXT_AREA];
e = g + row->used[TEXT_AREA];
for ( ; g < e; g++)
{
if (BUFFERP (g->object)
/* Empty lines have only one glyph, which stands
for the newline, and whose charpos is the
buffer position of the newline. */
|| ROW_GLYPH_NEWLINE_P (row, g)
/* When the buffer ends in a newline, the line at
EOB also has one glyph, but its charpos is -1. */
|| (row->ends_at_zv_p
&& !row->reversed_p
&& NILP (g->object)
&& g->type == CHAR_GLYPH
&& g->u.ch == ' '))
{
if (g->charpos > 0)
SET_PT (g->charpos);
else if (!row->reversed_p
&& row->ends_at_zv_p
&& PT != ZV)
SET_PT (ZV);
else
continue;
w->cursor.vpos = -1;
return make_fixnum (PT);
}
}
}
else
{
if (!row->reversed_p && !row->continued_p)
{
SET_PT (MATRIX_ROW_END_CHARPOS (row) - 1);
w->cursor.vpos = -1;
return make_fixnum (PT);
}
e = row->glyphs[TEXT_AREA];
g = e + row->used[TEXT_AREA] - 1;
for ( ; g >= e; g--)
{
if (BUFFERP (g->object)
|| (ROW_GLYPH_NEWLINE_P (row, g)
&& g->charpos > 0)
/* Empty R2L lines on GUI frames have the buffer
position of the newline stored in the stretch
glyph. */
|| g->type == STRETCH_GLYPH
|| (row->ends_at_zv_p
&& row->reversed_p
&& NILP (g->object)
&& g->type == CHAR_GLYPH
&& g->u.ch == ' '))
{
if (g->charpos > 0)
SET_PT (g->charpos);
else if (row->reversed_p
&& row->ends_at_zv_p
&& PT != ZV)
SET_PT (ZV);
else
continue;
w->cursor.vpos = -1;
return make_fixnum (PT);
}
}
}
}
}
simulate_display:
/* If we wind up here, we failed to move by using the glyphs, so we
need to simulate display instead. */
if (b)
paragraph_dir = Fcurrent_bidi_paragraph_direction (w->contents);
else
paragraph_dir = Qleft_to_right;
if (EQ (paragraph_dir, Qright_to_left))
dir = -dir;
if (PT <= BEGV && dir < 0)
xsignal0 (Qbeginning_of_buffer);
else if (PT >= ZV && dir > 0)
xsignal0 (Qend_of_buffer);
else
{
struct text_pos pt;
struct it it;
int pt_x, pt_wrap_prefix_x, target_x, pixel_width, pt_vpos;
bool at_eol_p;
bool overshoot_expected = false;
bool target_is_eol_p = false;
void *itdata = bidi_shelve_cache ();
/* Setup the arena. */
SET_TEXT_POS (pt, PT, PT_BYTE);
start_display (&it, w, pt);
/* When lines are truncated, we could be called with point
outside of the windows edges, in which case move_it_*
functions either prematurely stop at window's edge or jump to
the next screen line, whereas we rely below on our ability to
reach point, in order to start from its X coordinate. So we
need to disregard the window's horizontal extent in that case. */
if (it.line_wrap == TRUNCATE)
it.last_visible_x = DISP_INFINITY;
if (it.cmp_it.id < 0
&& it.method == GET_FROM_STRING
&& it.area == TEXT_AREA
&& it.string_from_display_prop_p
&& (it.sp > 0 && it.stack[it.sp - 1].method == GET_FROM_BUFFER))
overshoot_expected = true;
/* Find the X coordinate of point. We start from the beginning
of this or previous line to make sure we are before point in
the logical order (since the move_it_* functions can only
move forward). */
reseat:
reseat_at_previous_visible_line_start (&it);
it.current_x = it.hpos = it.current_y = it.vpos = 0;
it.wrap_prefix_width = 0;
if (IT_CHARPOS (it) != PT)
{
move_it_to (&it, overshoot_expected ? PT - 1 : PT,
-1, -1, -1, MOVE_TO_POS);
/* If we missed point because the character there is
displayed out of a display vector that has more than one
glyph, retry expecting overshoot. */
if (it.method == GET_FROM_DISPLAY_VECTOR
&& it.current.dpvec_index > 0
&& !overshoot_expected)
{
overshoot_expected = true;
goto reseat;
}
else if (IT_CHARPOS (it) != PT && !overshoot_expected)
move_it_in_display_line (&it, PT, -1, MOVE_TO_POS);
}
pt_x = it.current_x;
pt_wrap_prefix_x = it.wrap_prefix_width;
pt_vpos = it.vpos;
if (dir > 0 || overshoot_expected)
{
struct glyph_row *row = it.glyph_row;
/* When point is at beginning of line, we don't have
information about the glyph there loaded into struct
it. Calling get_next_display_element fixes that. */
if (pt_x == 0)
get_next_display_element (&it);
at_eol_p = ITERATOR_AT_END_OF_LINE_P (&it);
it.glyph_row = NULL;
PRODUCE_GLYPHS (&it); /* compute it.pixel_width */
it.glyph_row = row;
/* PRODUCE_GLYPHS advances it.current_x, so it must be
restored, lest it become out of sync with its buffer
position. */
it.current_x = pt_x;
it.wrap_prefix_width = pt_wrap_prefix_x;
}
else
at_eol_p = ITERATOR_AT_END_OF_LINE_P (&it);
pixel_width = it.pixel_width;
if (overshoot_expected && at_eol_p)
pixel_width = 0;
else if (pixel_width <= 0)
pixel_width = 1;
/* If there's a display string (or something similar) at point,
we are actually at the glyph to the left of point, so we need
to correct the X coordinate. */
if (overshoot_expected)
{
if (it.bidi_p)
pt_x += pixel_width * it.bidi_it.scan_dir;
else
pt_x += pixel_width;
}
/* Compute target X coordinate, either to the left or to the
right of point. On TTY frames, all characters have the same
pixel width of 1, so we can use that. On GUI frames we don't
have an easy way of getting at the pixel width of the
character to the left of point, so we use a different method
of getting to that place. */
if (dir > 0)
target_x = pt_x + pixel_width;
else
target_x = pt_x - (!FRAME_WINDOW_P (it.f)) * pixel_width;
/* Target X coordinate could be one line above or below the line
of point, in which case we need to adjust the target X
coordinate. Also, if moving to the left, we need to begin at
the left edge of the point's screen line. */
if (dir < 0)
{
if (pt_x > 0)
{
start_display (&it, w, pt);
if (it.line_wrap == TRUNCATE)
it.last_visible_x = DISP_INFINITY;
reseat_at_previous_visible_line_start (&it);
it.current_x = it.current_y = it.hpos = 0;
it.wrap_prefix_width = 0;
if (pt_vpos != 0)
move_it_by_lines (&it, pt_vpos);
}
else
{
move_it_by_lines (&it, -1);
target_x = it.last_visible_x - !FRAME_WINDOW_P (it.f);
target_is_eol_p = true;
/* Under word-wrap, we don't know the x coordinate of
the last character displayed on the previous line,
which immediately precedes the wrap point. To find
out its x coordinate, we try moving to the right
margin of the window, which will stop at the wrap
point, and then reset target_x to point at the
character that precedes the wrap point. This is not
needed on GUI frames, because (see below) there we
move from the left margin one grapheme cluster at a
time, and stop when we hit the wrap point. */
if (!FRAME_WINDOW_P (it.f) && it.line_wrap == WORD_WRAP)
{
void *it_data = NULL;
struct it it2;
SAVE_IT (it2, it, it_data);
move_it_in_display_line_to (&it, ZV, target_x,
MOVE_TO_POS | MOVE_TO_X);
/* If we arrived at target_x, that _is_ the last
character on the previous line. */
if (it.current_x != target_x)
target_x = it.current_x - 1;
RESTORE_IT (&it, &it2, it_data);
}
}
}
else
{
if (at_eol_p
|| (target_x >= it.last_visible_x
&& it.line_wrap != TRUNCATE))
{
if (pt_x > 0)
move_it_by_lines (&it, 0);
move_it_by_lines (&it, 1);
target_x = 0;
}
}
/* Move to the target X coordinate. */
/* On GUI frames, as we don't know the X coordinate of the
character to the left of point, moving point to the left
requires walking, one grapheme cluster at a time, until we
find ourself at a place immediately to the left of the
character at point. */
if (FRAME_WINDOW_P (it.f) && dir < 0)
{
struct text_pos new_pos;
enum move_it_result rc = MOVE_X_REACHED;
if (it.current_x == 0)
get_next_display_element (&it);
if (it.what == IT_COMPOSITION)
{
new_pos.charpos = it.cmp_it.charpos;
new_pos.bytepos = -1;
}
else
new_pos = it.current.pos;
while (it.current_x + it.pixel_width <= target_x
&& (rc == MOVE_X_REACHED
/* Under word-wrap, move_it_in_display_line_to
stops at correct coordinates, but sometimes
returns MOVE_POS_MATCH_OR_ZV. */
|| (it.line_wrap == WORD_WRAP
&& rc == MOVE_POS_MATCH_OR_ZV)))
{
int new_x = it.current_x + it.pixel_width;
/* For composed characters, we want the position of the
first character in the grapheme cluster (usually, the
composition's base character), whereas it.current
might give us the position of the _last_ one, e.g. if
the composition is rendered in reverse due to bidi
reordering. */
if (it.what == IT_COMPOSITION)
{
new_pos.charpos = it.cmp_it.charpos;
new_pos.bytepos = -1;
}
else
new_pos = it.current.pos;
if (new_x == it.current_x)
new_x++;
rc = move_it_in_display_line_to (&it, ZV, new_x,
MOVE_TO_POS | MOVE_TO_X);
if (ITERATOR_AT_END_OF_LINE_P (&it) && !target_is_eol_p)
break;
}
/* The previous position we saw in the loop is the one we
want. */
if (new_pos.bytepos == -1)
new_pos.bytepos = CHAR_TO_BYTE (new_pos.charpos);
it.current.pos = new_pos;
}
else if (it.current_x != target_x)
move_it_in_display_line_to (&it, ZV, target_x, MOVE_TO_POS | MOVE_TO_X);
/* If we ended up in a display string that covers point, move to
buffer position to the right in the visual order. */
if (dir > 0)
{
while (IT_CHARPOS (it) == PT)
{
set_iterator_to_next (&it, false);
if (!get_next_display_element (&it))
break;
}
}
/* Move point to that position. */
SET_PT_BOTH (IT_CHARPOS (it), IT_BYTEPOS (it));
bidi_unshelve_cache (itdata, false);
}
return make_fixnum (PT);
#undef ROW_GLYPH_NEWLINE_P
}
DEFUN ("bidi-resolved-levels", Fbidi_resolved_levels,
Sbidi_resolved_levels, 0, 1, 0,
doc: /* Return the resolved bidirectional levels of characters at VPOS.
The resolved levels are produced by the Emacs bidi reordering engine
that implements the UBA, the Unicode Bidirectional Algorithm. Please
read the Unicode Standard Annex 9 (UAX#9) for background information
about these levels.
VPOS is the zero-based number of the current window's screen line
for which to produce the resolved levels. If VPOS is nil or omitted,
it defaults to the screen line of point. If the window displays a
header line, VPOS of zero will report on the header line, and first
line of text in the window will have VPOS of 1.
Value is an array of resolved levels, indexed by glyph number.
Glyphs are numbered from zero starting from the beginning of the
screen line, i.e. the left edge of the window for left-to-right lines
and from the right edge for right-to-left lines. The resolved levels
are produced only for the window's text area; text in display margins
is not included.
If the selected window's display is not up-to-date, or if the specified
screen line does not display text, this function returns nil. It is
highly recommended to bind this function to some simple key, like F8,
in order to avoid these problems.
This function exists mainly for testing the correctness of the
Emacs UBA implementation, in particular with the test suite. */)
(Lisp_Object vpos)
{
struct window *w = XWINDOW (selected_window);
struct buffer *b = XBUFFER (w->contents);
int nrow;
struct glyph_row *row;
if (NILP (vpos))
{
int d1, d2, d3, d4, d5;
pos_visible_p (w, PT, &d1, &d2, &d3, &d4, &d5, &nrow);
}
else
{
CHECK_FIXNUM (vpos);
nrow = XFIXNUM (vpos);
}
/* We require up-to-date glyph matrix for this window. */
if (w->window_end_valid
&& !windows_or_buffers_changed
&& b
&& !b->clip_changed
&& !b->prevent_redisplay_optimizations_p
&& !window_outdated (w)
&& nrow >= 0
&& nrow < w->current_matrix->nrows
&& (row = MATRIX_ROW (w->current_matrix, nrow))->enabled_p
&& MATRIX_ROW_DISPLAYS_TEXT_P (row))
{
struct glyph *g, *e, *g1;
int nglyphs, i;
Lisp_Object levels;
if (!row->reversed_p) /* Left-to-right glyph row. */
{
g = g1 = row->glyphs[TEXT_AREA];
e = g + row->used[TEXT_AREA];
/* Skip over glyphs at the start of the row that was
generated by redisplay for its own needs. */
while (g < e
&& NILP (g->object)
&& g->charpos < 0)
g++;
g1 = g;
/* Count the "interesting" glyphs in this row. */
for (nglyphs = 0; g < e && !NILP (g->object); g++)
nglyphs++;
/* Create and fill the array. */
levels = make_uninit_vector (nglyphs);
for (i = 0; g1 < g; i++, g1++)
ASET (levels, i, make_fixnum (g1->resolved_level));
}
else /* Right-to-left glyph row. */
{
g = row->glyphs[TEXT_AREA] + row->used[TEXT_AREA] - 1;
e = row->glyphs[TEXT_AREA] - 1;
while (g > e
&& NILP (g->object)
&& g->charpos < 0)
g--;
g1 = g;
for (nglyphs = 0; g > e && !NILP (g->object); g--)
nglyphs++;
levels = make_uninit_vector (nglyphs);
for (i = 0; g1 > g; i++, g1--)
ASET (levels, i, make_fixnum (g1->resolved_level));
}
return levels;
}
else
return Qnil;
}
/***********************************************************************
Menu Bar
***********************************************************************/
/* Redisplay the menu bar in the frame for window W.
The menu bar of X frames that don't have X toolkit support is
displayed in a special window W->frame->menu_bar_window.
The menu bar of terminal frames is treated specially as far as
glyph matrices are concerned. Menu bar lines are not part of
windows, so the update is done directly on the frame matrix rows
for the menu bar. */
static void
display_menu_bar (struct window *w)
{
struct frame *f = XFRAME (WINDOW_FRAME (w));
struct it it;
Lisp_Object items;
int i;
/* Don't do all this for graphical frames. */
#ifdef HAVE_NTGUI
if (FRAME_W32_P (f))
return;
#endif
#if defined (HAVE_PGTK)
if (FRAME_PGTK_P (f))
return;
#endif
#if defined (USE_X_TOOLKIT) || defined (USE_GTK)
if (FRAME_X_P (f))
return;
#endif
#ifdef HAVE_NS
if (FRAME_NS_P (f))
return;
#endif /* HAVE_NS */
#ifdef HAVE_HAIKU
if (FRAME_HAIKU_P (f))
return;
#endif /* HAVE_HAIKU */
#if defined (USE_X_TOOLKIT) || defined (USE_GTK)
eassert (!FRAME_WINDOW_P (f));
init_iterator (&it, w, -1, -1, f->desired_matrix->rows, MENU_FACE_ID);
it.first_visible_x = 0;
it.last_visible_x = FRAME_PIXEL_WIDTH (f);
#elif defined (HAVE_X_WINDOWS) || defined (HAVE_ANDROID)
struct window *menu_window = NULL;
struct face *face = FACE_FROM_ID (f, MENU_FACE_ID);
if (FRAME_WINDOW_P (f))
{
/* Menu bar lines are displayed in the desired matrix of the
dummy window menu_bar_window. */
menu_window = XWINDOW (f->menu_bar_window);
init_iterator (&it, menu_window, -1, -1,
menu_window->desired_matrix->rows,
MENU_FACE_ID);
}
else
#endif /* not USE_X_TOOLKIT and not USE_GTK */
{
/* This is a TTY frame, i.e. character hpos/vpos are used as
pixel x/y. */
init_iterator (&it, w, -1, -1, f->desired_matrix->rows,
MENU_FACE_ID);
it.first_visible_x = 0;
it.last_visible_x = FRAME_COLS (f);
}
/* FIXME: This should be controlled by a user option. See the
comments in redisplay_tool_bar and display_mode_line about
this. */
it.paragraph_embedding = L2R;
/* Clear all rows of the menu bar. */
for (i = 0; i < FRAME_MENU_BAR_LINES (f); ++i)
{
struct glyph_row *row = it.glyph_row + i;
clear_glyph_row (row);
row->enabled_p = true;
row->full_width_p = true;
row->reversed_p = false;
}
/* Display all items of the menu bar. */
items = FRAME_MENU_BAR_ITEMS (it.f);
for (i = 0; i < ASIZE (items); i += 4)
{
Lisp_Object string;
/* Stop at nil string. */
string = AREF (items, i + 1);
if (NILP (string))
break;
/* Remember where item was displayed. */
ASET (items, i + 3, make_fixnum (it.hpos));
/* Display the item, pad with one space. */
if (it.current_x < it.last_visible_x)
display_string (NULL, string, Qnil, 0, 0, &it,
SCHARS (string) + 1, 0, 0, STRING_MULTIBYTE (string));
}
/* Fill out the line with spaces. */
if (it.current_x < it.last_visible_x)
display_string ("", Qnil, Qnil, 0, 0, &it, -1, 0, 0, -1);
/* Compute the total height of the lines. */
compute_line_metrics (&it);
it.glyph_row->full_width_p = true;
it.glyph_row->continued_p = false;
it.glyph_row->truncated_on_left_p = false;
it.glyph_row->truncated_on_right_p = false;
/* This will break the moment someone tries to add another window
system that uses the no toolkit menu bar. Oh well. At least
there will be an error, meaning he will correct the ifdef inside
which `face' is defined. */
#if defined HAVE_WINDOW_SYSTEM && !defined HAVE_EXT_MENU_BAR
/* Make a 3D menu bar have a shadow at its right end. */
extend_face_to_end_of_line (&it);
if (face->box != FACE_NO_BOX)
{
struct glyph *last = (it.glyph_row->glyphs[TEXT_AREA]
+ it.glyph_row->used[TEXT_AREA] - 1);
int box_thickness = face->box_vertical_line_width;
last->right_box_line_p = true;
/* Add back the space for the right box line we subtracted in
init_iterator, since the right_box_line_p flag will make the
glyph wider. We actually add only as much space as is
available for the last glyph of the menu bar and whatever
space is left beyond it, since that glyph could be only
partially visible. */
if (box_thickness > 0)
last->pixel_width += max (0, (box_thickness
- (it.current_x - it.last_visible_x)));
}
/* With the non-toolkit version, modify the menu bar window height
accordingly. */
if (FRAME_WINDOW_P (it.f) && menu_window)
{
struct glyph_row *row;
int delta_height;
row = it.glyph_row;
delta_height
= ((row->y + row->height)
- WINDOW_BOX_HEIGHT_NO_MODE_LINE (menu_window));
if (delta_height != 0)
{
FRAME_MENU_BAR_HEIGHT (it.f) += delta_height;
adjust_frame_size (it.f, -1, -1, 3, false, Qmenu_bar_lines);
}
}
#endif
}
/* This code is never used on Android where there are only GUI and
initial frames. */
#ifndef HAVE_ANDROID
/* Deep copy of a glyph row, including the glyphs. */
static void
deep_copy_glyph_row (struct glyph_row *to, struct glyph_row *from)
{
struct glyph *pointers[1 + LAST_AREA];
int to_used = to->used[TEXT_AREA];
/* Save glyph pointers of TO. */
memcpy (pointers, to->glyphs, sizeof to->glyphs);
/* Do a structure assignment. */
*to = *from;
/* Restore original glyph pointers of TO. */
memcpy (to->glyphs, pointers, sizeof to->glyphs);
/* Copy the glyphs. */
memcpy (to->glyphs[TEXT_AREA], from->glyphs[TEXT_AREA],
min (from->used[TEXT_AREA], to_used) * sizeof (struct glyph));
/* If we filled only part of the TO row, fill the rest with
space_glyph (which will display as empty space). */
if (to_used > from->used[TEXT_AREA])
fill_up_frame_row_with_spaces (to, to_used);
}
/* Display one menu item on a TTY, by overwriting the glyphs in the
frame F's desired glyph matrix with glyphs produced from the menu
item text. Called from term.c to display TTY drop-down menus one
item at a time.
ITEM_TEXT is the menu item text as a C string.
FACE_ID is the face ID to be used for this menu item. FACE_ID
could specify one of 3 faces: a face for an enabled item, a face
for a disabled item, or a face for a selected item.
X and Y are coordinates of the first glyph in the frame's desired
matrix to be overwritten by the menu item. Since this is a TTY, Y
is the zero-based number of the glyph row and X is the zero-based
glyph number in the row, starting from left, where to start
displaying the item.
SUBMENU means this menu item drops down a submenu, which
should be indicated by displaying a proper visual cue after the
item text. */
void
display_tty_menu_item (const char *item_text, int width, int face_id,
int x, int y, bool submenu)
{
struct it it;
struct frame *f = SELECTED_FRAME ();
struct window *w = XWINDOW (f->selected_window);
struct glyph_row *row;
size_t item_len = strlen (item_text);
eassert (FRAME_TERMCAP_P (f));
/* Don't write beyond the matrix's last row. This can happen for
TTY screens that are not high enough to show the entire menu.
(This is actually a bit of defensive programming, as
tty_menu_display already limits the number of menu items to one
less than the number of screen lines.) */
if (y >= f->desired_matrix->nrows)
return;
init_iterator (&it, w, -1, -1, f->desired_matrix->rows + y, MENU_FACE_ID);
it.first_visible_x = 0;
it.last_visible_x = FRAME_COLS (f) - 1;
row = it.glyph_row;
/* Start with the row contents from the current matrix. */
deep_copy_glyph_row (row, f->current_matrix->rows + y);
bool saved_width = row->full_width_p;
row->full_width_p = true;
bool saved_reversed = row->reversed_p;
row->reversed_p = false;
row->enabled_p = true;
/* Arrange for the menu item glyphs to start at (X,Y) and have the
desired face. */
eassert (x < f->desired_matrix->matrix_w);
it.current_x = it.hpos = x;
it.current_y = it.vpos = y;
int saved_used = row->used[TEXT_AREA];
bool saved_truncated = row->truncated_on_right_p;
row->used[TEXT_AREA] = x;
it.face_id = face_id;
it.line_wrap = TRUNCATE;
/* FIXME: This should be controlled by a user option. See the
comments in redisplay_tool_bar and display_mode_line about this.
Also, if paragraph_embedding could ever be R2L, changes will be
needed to avoid shifting to the right the row characters in
term.c:append_glyph. */
it.paragraph_embedding = L2R;
/* Pad with a space on the left. */
display_string (" ", Qnil, Qnil, 0, 0, &it, 1, 0, FRAME_COLS (f) - 1, -1);
width--;
/* Display the menu item, pad with spaces to WIDTH. */
if (submenu)
{
display_string (item_text, Qnil, Qnil, 0, 0, &it,
item_len, 0, FRAME_COLS (f) - 1, -1);
width -= item_len;
/* Indicate with " >" that there's a submenu. */
display_string (" >", Qnil, Qnil, 0, 0, &it, width, 0,
FRAME_COLS (f) - 1, -1);
}
else
display_string (item_text, Qnil, Qnil, 0, 0, &it,
width, 0, FRAME_COLS (f) - 1, -1);
row->used[TEXT_AREA] = max (saved_used, row->used[TEXT_AREA]);
row->truncated_on_right_p = saved_truncated;
row->hash = row_hash (row);
row->full_width_p = saved_width;
row->reversed_p = saved_reversed;
}
#endif
/***********************************************************************
Mode Line
***********************************************************************/
/* Redisplay mode lines in the window tree whose root is WINDOW.
If FORCE, redisplay mode lines unconditionally.
Otherwise, redisplay only mode lines that are garbaged. Value is
the number of windows whose mode lines were redisplayed. */
static int
redisplay_mode_lines (Lisp_Object window, bool force)
{
int nwindows = 0;
while (!NILP (window))
{
struct window *w = XWINDOW (window);
if (WINDOWP (w->contents))
nwindows += redisplay_mode_lines (w->contents, force);
else if (force
|| FRAME_GARBAGED_P (XFRAME (w->frame))
|| !MATRIX_MODE_LINE_ROW (w->current_matrix)->enabled_p)
{
struct text_pos lpoint;
struct buffer *old = current_buffer;
/* Set the window's buffer for the mode line display. */
SET_TEXT_POS (lpoint, PT, PT_BYTE);
set_buffer_internal_1 (XBUFFER (w->contents));
/* Point refers normally to the selected window. For any
other window, set up appropriate value. */
if (!EQ (window, selected_window))
{
struct text_pos pt;
CLIP_TEXT_POS_FROM_MARKER (pt, w->pointm);
TEMP_SET_PT_BOTH (CHARPOS (pt), BYTEPOS (pt));
}
/* Display mode lines. */
clear_glyph_matrix (w->desired_matrix);
if (display_mode_lines (w))
++nwindows;
/* Restore old settings. */
set_buffer_internal_1 (old);
TEMP_SET_PT_BOTH (CHARPOS (lpoint), BYTEPOS (lpoint));
}
window = w->next;
}
return nwindows;
}
/* Display the mode line, the header line, and the tab-line of window
W. Value is the sum number of mode lines, header lines, and tab
lines actually displayed. */
static int
display_mode_lines (struct window *w)
{
Lisp_Object old_selected_window = selected_window;
Lisp_Object new_frame = w->frame;
specpdl_ref count = SPECPDL_INDEX ();
int n = 0;
record_unwind_protect (restore_selected_window, selected_window);
record_unwind_protect
(restore_frame_selected_window, XFRAME (new_frame)->selected_window);
if (window_wants_mode_line (w))
{
Lisp_Object window;
Lisp_Object default_help
= buffer_local_value (Qmode_line_default_help_echo, w->contents);
/* Set up mode line help echo. Do this before selecting w so it
can reasonably tell whether a mouse click will select w. */
XSETWINDOW (window, w);
if (FUNCTIONP (default_help))
wset_mode_line_help_echo (w, dsafe_call1 (default_help, window));
else if (STRINGP (default_help))
wset_mode_line_help_echo (w, default_help);
else
wset_mode_line_help_echo (w, Qnil);
}
selected_frame = new_frame;
/* FIXME: If we were to allow the mode-line's computation changing the buffer
or window's point, then we'd need select_window_1 here as well. */
XSETWINDOW (selected_window, w);
XFRAME (new_frame)->selected_window = selected_window;
/* These will be set while the mode line specs are processed. */
line_number_displayed = false;
w->column_number_displayed = -1;
if (window_wants_mode_line (w))
{
Lisp_Object window_mode_line_format
= window_parameter (w, Qmode_line_format);
struct window *sel_w = XWINDOW (old_selected_window);
/* Select mode line face based on the real selected window. */
display_mode_line (w,
CURRENT_MODE_LINE_ACTIVE_FACE_ID_3 (sel_w, sel_w, w),
NILP (window_mode_line_format)
? BVAR (current_buffer, mode_line_format)
: window_mode_line_format);
++n;
}
if (window_wants_tab_line (w))
{
Lisp_Object window_tab_line_format
= window_parameter (w, Qtab_line_format);
display_mode_line (w, TAB_LINE_FACE_ID,
NILP (window_tab_line_format)
? BVAR (current_buffer, tab_line_format)
: window_tab_line_format);
++n;
}
if (window_wants_header_line (w))
{
Lisp_Object window_header_line_format
= window_parameter (w, Qheader_line_format);
display_mode_line (w, HEADER_LINE_FACE_ID,
NILP (window_header_line_format)
? BVAR (current_buffer, header_line_format)
: window_header_line_format);
++n;
}
unbind_to (count, Qnil);
if (n > 0)
w->must_be_updated_p = true;
return n;
}
/* Display mode or header/tab line of window W. FACE_ID specifies
which line to display; it is either MODE_LINE_ACTIVE_FACE_ID,
HEADER_LINE_FACE_ID or TAB_LINE_FACE_ID. FORMAT is the
mode/header/tab line format to display. Value is the pixel height
of the mode/header/tab line displayed. */
static int
display_mode_line (struct window *w, enum face_id face_id, Lisp_Object format)
{
struct it it;
struct face *face;
specpdl_ref count = SPECPDL_INDEX ();
init_iterator (&it, w, -1, -1, NULL, face_id);
/* Don't extend on a previously drawn mode-line.
This may happen if called from pos_visible_p. */
it.glyph_row->enabled_p = false;
prepare_desired_row (w, it.glyph_row, true);
it.glyph_row->mode_line_p = true;
if (face_id == TAB_LINE_FACE_ID)
{
it.glyph_row->tab_line_p = true;
w->desired_matrix->tab_line_p = true;
}
else if (face_id == HEADER_LINE_FACE_ID)
w->desired_matrix->header_line_p = true;
/* FIXME: This should be controlled by a user option. But
supporting such an option is not trivial, since the mode line is
made up of many separate strings. */
it.paragraph_embedding = L2R;
record_unwind_protect (unwind_format_mode_line,
format_mode_line_unwind_data (NULL, NULL,
Qnil, false));
/* Temporarily make frame's keyboard the current kboard so that
kboard-local variables in the mode_line_format will get the right
values. */
push_kboard (FRAME_KBOARD (it.f));
record_unwind_save_match_data ();
if (NILP (Vmode_line_compact)
|| face_id == HEADER_LINE_FACE_ID || face_id == TAB_LINE_FACE_ID)
{
mode_line_target = MODE_LINE_DISPLAY;
display_mode_element (&it, 0, 0, 0, format, Qnil, false);
}
else
{
Lisp_Object mode_string = Fformat_mode_line (format, Qnil, Qnil, Qnil);
if (EQ (Vmode_line_compact, Qlong)
&& WINDOW_TOTAL_COLS (w) >= SCHARS (mode_string))
{
/* The window is wide enough; just display the mode line we
just computed. */
display_string (NULL, mode_string, Qnil,
0, 0, &it, 0, 0, 0,
STRING_MULTIBYTE (mode_string));
}
else
{
/* Compress the mode line. */
ptrdiff_t i = 0, i_byte = 0, start = 0;
int prev = 0;
while (i < SCHARS (mode_string))
{
int c = fetch_string_char_advance (mode_string, &i, &i_byte);
if (c == ' ' && prev == ' ')
{
display_string (NULL,
Fsubstring (mode_string, make_fixnum (start),
make_fixnum (i - 1)),
Qnil, 0, 0, &it, 0, 0, 0,
STRING_MULTIBYTE (mode_string));
/* Skip past the rest of the space characters. */
while (c == ' ' && i < SCHARS (mode_string))
c = fetch_string_char_advance (mode_string, &i, &i_byte);
start = i - 1;
}
prev = c;
}
/* Display the final bit. */
if (start < i)
display_string (NULL,
Fsubstring (mode_string, make_fixnum (start),
make_fixnum (i)),
Qnil, 0, 0, &it, 0, 0, 0,
STRING_MULTIBYTE (mode_string));
}
}
pop_kboard ();
unbind_to (count, Qnil);
/* Fill up with spaces. */
display_string (" ", Qnil, Qnil, 0, 0, &it, 10000, -1, -1, 0);
compute_line_metrics (&it);
it.glyph_row->full_width_p = true;
it.glyph_row->continued_p = false;
it.glyph_row->truncated_on_left_p = false;
it.glyph_row->truncated_on_right_p = false;
/* Make a 3D mode-line have a shadow at its right end. */
face = FACE_FROM_ID (it.f, face_id);
extend_face_to_end_of_line (&it);
if (face->box != FACE_NO_BOX)
{
struct glyph *last = (it.glyph_row->glyphs[TEXT_AREA]
+ it.glyph_row->used[TEXT_AREA] - 1);
int box_thickness = face->box_vertical_line_width;
last->right_box_line_p = true;
/* Add back the space for the right box line we subtracted in
init_iterator, since the right_box_line_p flag will make the
glyph wider. We actually add only as much space as is
available for the last glyph of the modeline and whatever
space is left beyond it, since that glyph could be only
partially visible */
if (box_thickness > 0)
last->pixel_width += max (0, (box_thickness
- (it.current_x - it.last_visible_x)));
}
return it.glyph_row->height;
}
/* Move element ELT in LIST to the front of LIST.
Return the updated list. */
static Lisp_Object
move_elt_to_front (Lisp_Object elt, Lisp_Object list)
{
register Lisp_Object tail, prev;
register Lisp_Object tem;
tail = list;
prev = Qnil;
while (CONSP (tail))
{
tem = XCAR (tail);
if (EQ (elt, tem))
{
/* Splice out the link TAIL. */
if (NILP (prev))
list = XCDR (tail);
else
Fsetcdr (prev, XCDR (tail));
/* Now make it the first. */
Fsetcdr (tail, list);
return tail;
}
else
prev = tail;
tail = XCDR (tail);
maybe_quit ();
}
/* Not found--return unchanged LIST. */
return list;
}
/* Subroutine to call Fset_text_properties through
internal_condition_case_n. ARGS are the arguments of
Fset_text_properties, in order. */
static Lisp_Object
safe_set_text_properties (ptrdiff_t nargs, Lisp_Object *args)
{
eassert (nargs == 4);
return Fset_text_properties (args[0], args[1], args[2], args[3]);
}
/* Contribute ELT to the mode line for window IT->w. How it
translates into text depends on its data type.
IT describes the display environment in which we display, as usual.
DEPTH is the depth in recursion. It is used to prevent
infinite recursion here.
FIELD_WIDTH is the number of characters the display of ELT should
occupy in the mode line, and PRECISION is the maximum number of
characters to display from ELT's representation. See
display_string for details.
Returns the hpos of the end of the text generated by ELT.
PROPS is a property list to add to any string we encounter.
If RISKY, remove (disregard) any properties in any string
we encounter, and ignore :eval and :propertize.
The global variable `mode_line_target' determines whether the
output is passed to `store_mode_line_noprop',
`store_mode_line_string', or `display_string'. */
static int
display_mode_element (struct it *it, int depth, int field_width, int precision,
Lisp_Object elt, Lisp_Object props, bool risky)
{
int n = 0, field, prec;
bool literal = false;
tail_recurse:
if (depth > 100)
elt = build_string ("*too-deep*");
depth++;
switch (XTYPE (elt))
{
case Lisp_String:
{
/* A string: output it and check for %-constructs within it. */
unsigned char c;
ptrdiff_t offset = 0;
if (SCHARS (elt) > 0
&& (!NILP (props) || risky))
{
Lisp_Object oprops, aelt;
oprops = Ftext_properties_at (make_fixnum (0), elt);
/* If the starting string's properties are not what
we want, translate the string. Also, if the string
is risky, do that anyway. */
if (NILP (Fequal (props, oprops)) || risky)
{
/* If the starting string has properties,
merge the specified ones onto the existing ones. */
if (! NILP (oprops) && !risky)
{
Lisp_Object tem;
oprops = Fcopy_sequence (oprops);
tem = props;
while (CONSP (tem) && CONSP (XCDR (tem)))
{
oprops = plist_put (oprops, XCAR (tem),
XCAR (XCDR (tem)));
tem = XCDR (XCDR (tem));
}
props = oprops;
}
aelt = Fassoc (elt, mode_line_proptrans_alist, Qnil);
if (! NILP (aelt) && !NILP (Fequal (props, XCDR (aelt))))
{
/* AELT is what we want. Move it to the front
without consing. */
elt = XCAR (aelt);
mode_line_proptrans_alist
= move_elt_to_front (aelt, mode_line_proptrans_alist);
}
else
{
Lisp_Object tem;
/* If AELT has the wrong props, it is useless.
so get rid of it. */
if (! NILP (aelt))
mode_line_proptrans_alist
= Fdelq (aelt, mode_line_proptrans_alist);
elt = Fcopy_sequence (elt);
/* PROPS might cause set-text-properties to signal
an error, so we call it via internal_condition_case_n,
to avoid an infloop in redisplay due to the error. */
/* FIXME: Use 'SAFE_CALLMANY'? */
internal_condition_case_n (safe_set_text_properties,
4,
((Lisp_Object [])
{make_fixnum (0),
Flength (elt),
props,
elt}),
Qt, dsafe_eval_handler);
/* Add this item to mode_line_proptrans_alist. */
mode_line_proptrans_alist
= Fcons (Fcons (elt, props),
mode_line_proptrans_alist);
/* Truncate mode_line_proptrans_alist
to at most 50 elements. */
tem = Fnthcdr (make_fixnum (50),
mode_line_proptrans_alist);
if (! NILP (tem))
XSETCDR (tem, Qnil);
}
}
}
offset = 0;
if (literal)
{
prec = precision - n;
switch (mode_line_target)
{
case MODE_LINE_NOPROP:
case MODE_LINE_TITLE:
n += store_mode_line_noprop (SSDATA (elt), -1, prec);
break;
case MODE_LINE_STRING:
n += store_mode_line_string (NULL, elt, true, 0, prec, Qnil);
break;
case MODE_LINE_DISPLAY:
n += display_string (NULL, elt, Qnil, 0, 0, it,
0, prec, 0, STRING_MULTIBYTE (elt));
break;
}
break;
}
/* Handle the non-literal case. */
while ((precision <= 0 || n < precision)
&& SREF (elt, offset) != 0
&& (mode_line_target != MODE_LINE_DISPLAY
|| it->current_x < it->last_visible_x))
{
ptrdiff_t last_offset = offset;
/* Advance to end of string or next format specifier. */
while ((c = SREF (elt, offset++)) != '\0' && c != '%')
;
if (offset - 1 != last_offset)
{
ptrdiff_t nchars, nbytes;
/* Output to end of string or up to '%'. Field width
is length of string. Don't output more than
PRECISION allows us. */
offset--;
prec = c_string_width (SDATA (elt) + last_offset,
offset - last_offset, precision - n,
&nchars, &nbytes);
switch (mode_line_target)
{
case MODE_LINE_NOPROP:
case MODE_LINE_TITLE:
n += store_mode_line_noprop (SSDATA (elt) + last_offset, 0, prec);
break;
case MODE_LINE_STRING:
{
ptrdiff_t bytepos = last_offset;
ptrdiff_t charpos = string_byte_to_char (elt, bytepos);
ptrdiff_t endpos = (precision <= 0
? string_byte_to_char (elt, offset)
: charpos + nchars);
Lisp_Object mode_string
= Fsubstring (elt, make_fixnum (charpos),
make_fixnum (endpos));
n += store_mode_line_string (NULL, mode_string, false,
0, 0, Qnil);
}
break;
case MODE_LINE_DISPLAY:
{
ptrdiff_t bytepos = last_offset;
ptrdiff_t charpos = string_byte_to_char (elt, bytepos);
if (precision <= 0)
nchars = string_byte_to_char (elt, offset) - charpos;
n += display_string (NULL, elt, Qnil, 0, charpos,
it, 0, nchars, 0,
STRING_MULTIBYTE (elt));
}
break;
}
}
else /* c == '%' */
{
ptrdiff_t percent_position = offset;
/* Get the specified minimum width. Zero means
don't pad. */
field = 0;
while ((c = SREF (elt, offset++)) >= '0' && c <= '9')
field = field * 10 + c - '0';
/* Don't pad beyond the total padding allowed. */
if (field_width - n > 0 && field > field_width - n)
field = field_width - n;
/* Note that either PRECISION <= 0 or N < PRECISION. */
prec = precision - n;
if (c == 'M')
n += display_mode_element (it, depth, field, prec,
Vglobal_mode_string, props,
risky);
else if (c != 0)
{
bool multibyte;
ptrdiff_t bytepos, charpos;
const char *spec;
Lisp_Object string;
bytepos = percent_position;
charpos = (STRING_MULTIBYTE (elt)
? string_byte_to_char (elt, bytepos)
: bytepos);
spec = decode_mode_spec (it->w, c, field, &string);
eassert (NILP (string) || STRINGP (string));
multibyte = !NILP (string) && STRING_MULTIBYTE (string);
/* Non-ASCII characters in SPEC should cause mode-line
element be displayed as a multibyte string. */
ptrdiff_t nbytes = strlen (spec);
ptrdiff_t nchars, mb_nbytes;
parse_str_as_multibyte ((const unsigned char *)spec, nbytes,
&nchars, &mb_nbytes);
if (!(nbytes == nchars || nbytes != mb_nbytes))
multibyte = true;
switch (mode_line_target)
{
case MODE_LINE_NOPROP:
case MODE_LINE_TITLE:
n += store_mode_line_noprop (spec, field, prec);
break;
case MODE_LINE_STRING:
{
Lisp_Object tem = build_string (spec);
props = Ftext_properties_at (make_fixnum (charpos), elt);
/* Should only keep face property in props */
n += store_mode_line_string (NULL, tem, false,
field, prec, props);
}
break;
case MODE_LINE_DISPLAY:
{
int nglyphs_before, nwritten;
nglyphs_before = it->glyph_row->used[TEXT_AREA];
nwritten = display_string (spec, string, elt,
charpos, 0, it,
field, prec, 0,
multibyte);
/* Assign to the glyphs written above the
string where the `%x' came from, position
of the `%'. */
if (nwritten > 0)
{
struct glyph *glyph
= (it->glyph_row->glyphs[TEXT_AREA]
+ nglyphs_before);
int i;
for (i = 0; i < nwritten; ++i)
{
glyph[i].object = elt;
glyph[i].charpos = charpos;
}
n += nwritten;
}
}
break;
}
}
else /* c == 0 */
break;
}
}
}
break;
case Lisp_Symbol:
/* A symbol: process the value of the symbol recursively
as if it appeared here directly. Avoid error if symbol void.
Special case: if value of symbol is a string, output the string
literally. */
{
register Lisp_Object tem;
/* If the variable is not marked as risky to set
then its contents are risky to use. */
if (NILP (Fget (elt, Qrisky_local_variable)))
risky = true;
tem = Fboundp (elt);
if (!NILP (tem))
{
tem = Fsymbol_value (elt);
/* If value is a string, output that string literally:
don't check for % within it. */
if (STRINGP (tem))
literal = true;
if (!EQ (tem, elt))
{
/* Give up right away for nil or t. */
elt = tem;
goto tail_recurse;
}
}
}
break;
case Lisp_Cons:
{
register Lisp_Object car, tem;
/* A cons cell: five distinct cases.
If first element is :eval or :propertize, do something special.
If first element is a string or a cons, process all the elements
and effectively concatenate them.
If first element is a negative number, truncate displaying cdr to
at most that many characters. If positive, pad (with spaces)
to at least that many characters.
If first element is a symbol, process the cadr or caddr recursively
according to whether the symbol's value is non-nil or nil. */
car = XCAR (elt);
if (EQ (car, QCeval))
{
/* An element of the form (:eval FORM) means evaluate FORM
and use the result as mode line elements. */
if (risky)
break;
if (CONSP (XCDR (elt)))
{
Lisp_Object spec;
spec = dsafe_eval (XCAR (XCDR (elt)));
/* The :eval form could delete the frame stored in the
iterator, which will cause a crash if we try to
access faces and other fields (e.g., FRAME_KBOARD)
on that frame. This is a nonsensical thing to do,
and signaling an error from redisplay might be
dangerous, but we cannot continue with an invalid frame. */
if (!FRAME_LIVE_P (it->f))
signal_error (":eval deleted the frame being displayed", elt);
n += display_mode_element (it, depth, field_width - n,
precision - n, spec, props,
risky);
}
}
else if (EQ (car, QCpropertize))
{
/* An element of the form (:propertize ELT PROPS...)
means display ELT but applying properties PROPS. */
if (risky)
break;
if (CONSP (XCDR (elt)))
n += display_mode_element (it, depth, field_width - n,
precision - n, XCAR (XCDR (elt)),
XCDR (XCDR (elt)), risky);
}
else if (SYMBOLP (car))
{
tem = Fboundp (car);
elt = XCDR (elt);
if (!CONSP (elt))
goto invalid;
/* elt is now the cdr, and we know it is a cons cell.
Use its car if CAR has a non-nil value. */
if (!NILP (tem))
{
tem = Fsymbol_value (car);
if (!NILP (tem))
{
elt = XCAR (elt);
goto tail_recurse;
}
}
/* Symbol's value is nil (or symbol is unbound)
Get the cddr of the original list
and if possible find the caddr and use that. */
elt = XCDR (elt);
if (NILP (elt))
break;
else if (!CONSP (elt))
goto invalid;
elt = XCAR (elt);
goto tail_recurse;
}
else if (FIXNUMP (car))
{
register int lim = XFIXNUM (car);
elt = XCDR (elt);
if (lim < 0)
{
/* Negative int means reduce maximum width. */
if (precision <= 0)
precision = -lim;
else
precision = min (precision, -lim);
}
else if (lim > 0)
{
/* Padding specified. Don't let it be more than
current maximum. */
if (precision > 0)
lim = min (precision, lim);
/* If that's more padding than already wanted, queue it.
But don't reduce padding already specified even if
that is beyond the current truncation point. */
field_width = max (lim, field_width);
}
goto tail_recurse;
}
else if (STRINGP (car) || CONSP (car))
FOR_EACH_TAIL_SAFE (elt)
{
if (0 < precision && precision <= n)
break;
n += display_mode_element (it, depth,
/* Pad after only the last
list element. */
(! CONSP (XCDR (elt))
? field_width - n
: 0),
precision - n, XCAR (elt),
props, risky);
}
}
break;
default:
invalid:
elt = build_string ("*invalid*");
goto tail_recurse;
}
/* Pad to FIELD_WIDTH. */
if (field_width > 0 && n < field_width)
{
switch (mode_line_target)
{
case MODE_LINE_NOPROP:
case MODE_LINE_TITLE:
n += store_mode_line_noprop ("", field_width - n, 0);
break;
case MODE_LINE_STRING:
n += store_mode_line_string ("", Qnil, false, field_width - n, 0,
Qnil);
break;
case MODE_LINE_DISPLAY:
n += display_string ("", Qnil, Qnil, 0, 0, it, field_width - n,
0, 0, 0);
break;
}
}
return n;
}
/* Store a mode-line string element in mode_line_string_list.
If STRING is non-null, display that C string. Otherwise, the Lisp
string LISP_STRING is displayed.
FIELD_WIDTH is the minimum number of output glyphs to produce.
If STRING has fewer characters than FIELD_WIDTH, pad to the right
with spaces. FIELD_WIDTH <= 0 means don't pad.
PRECISION is the maximum number of characters to output from
STRING. PRECISION <= 0 means don't truncate the string.
If COPY_STRING, make a copy of LISP_STRING before adding
properties to the string.
PROPS are the properties to add to the string.
The mode_line_string_face face property is always added to the string.
*/
static int
store_mode_line_string (const char *string, Lisp_Object lisp_string,
bool copy_string,
int field_width, int precision, Lisp_Object props)
{
ptrdiff_t len;
int n = 0;
if (string != NULL)
{
len = strnlen (string, precision <= 0 ? SIZE_MAX : precision);
lisp_string = make_string (string, len);
if (NILP (props))
props = mode_line_string_face_prop;
else if (!NILP (mode_line_string_face))
{
Lisp_Object face = plist_get (props, Qface);
props = Fcopy_sequence (props);
if (NILP (face))
face = mode_line_string_face;
else
face = list2 (face, mode_line_string_face);
props = plist_put (props, Qface, face);
}
Fadd_text_properties (make_fixnum (0), make_fixnum (len),
props, lisp_string);
}
else
{
len = SCHARS (lisp_string);
if (precision > 0 && len > precision)
{
len = precision;
lisp_string = Fsubstring (lisp_string, make_fixnum (0), make_fixnum (len));
precision = -1;
}
if (!NILP (mode_line_string_face))
{
Lisp_Object face;
if (NILP (props))
props = Ftext_properties_at (make_fixnum (0), lisp_string);
face = plist_get (props, Qface);
if (NILP (face))
face = mode_line_string_face;
else
face = list2 (face, mode_line_string_face);
props = list2 (Qface, face);
if (copy_string)
lisp_string = Fcopy_sequence (lisp_string);
}
if (!NILP (props))
Fadd_text_properties (make_fixnum (0), make_fixnum (len),
props, lisp_string);
}
if (len > 0)
{
mode_line_string_list = Fcons (lisp_string, mode_line_string_list);
n += len;
}
if (field_width > len)
{
field_width -= len;
lisp_string = Fmake_string (make_fixnum (field_width), make_fixnum (' '),
Qnil);
if (!NILP (props))
Fadd_text_properties (make_fixnum (0), make_fixnum (field_width),
props, lisp_string);
mode_line_string_list = Fcons (lisp_string, mode_line_string_list);
n += field_width;
}
return n;
}
DEFUN ("format-mode-line", Fformat_mode_line, Sformat_mode_line,
1, 4, 0,
doc: /* Return a string formatted according to mode-line format specification.
First arg FORMAT specifies the mode line format (see `mode-line-format'
for details) to use.
By default, the format is evaluated for the currently selected window.
Optional second arg FACE specifies the face property to put on all
characters for which no face is specified. The value nil means the
default face. The value t means whatever face the window's mode line
currently uses (either `mode-line' or `mode-line-inactive',
depending on whether the window is the selected window or not).
An integer value means the value string has no text
properties.
Optional third and fourth args WINDOW and BUFFER specify the window
and buffer to use as the context for the formatting (defaults
are the selected window and the WINDOW's buffer). */)
(Lisp_Object format, Lisp_Object face,
Lisp_Object window, Lisp_Object buffer)
{
struct it it;
int len;
struct window *w;
struct buffer *old_buffer = NULL;
int face_id;
bool no_props = FIXNUMP (face);
specpdl_ref count = SPECPDL_INDEX ();
Lisp_Object str;
int string_start = 0;
w = decode_any_window (window);
XSETWINDOW (window, w);
if (NILP (buffer))
buffer = w->contents;
CHECK_BUFFER (buffer);
if (!BUFFER_LIVE_P (XBUFFER (buffer)))
error ("Attempt to format a mode line for a dead buffer");
/* Make formatting the modeline a non-op when noninteractive, otherwise
there will be problems later caused by a partially initialized frame. */
if (NILP (format) || noninteractive)
return empty_unibyte_string;
if (no_props)
face = Qnil;
face_id = (NILP (face) || EQ (face, Qdefault)) ? DEFAULT_FACE_ID
: EQ (face, Qt) ? (EQ (window, selected_window)
? MODE_LINE_ACTIVE_FACE_ID : MODE_LINE_INACTIVE_FACE_ID)
: EQ (face, Qmode_line_active) ? MODE_LINE_ACTIVE_FACE_ID
: EQ (face, Qmode_line_inactive) ? MODE_LINE_INACTIVE_FACE_ID
: EQ (face, Qheader_line) ? HEADER_LINE_FACE_ID
: EQ (face, Qtab_line) ? TAB_LINE_FACE_ID
: EQ (face, Qtab_bar) ? TAB_BAR_FACE_ID
: EQ (face, Qtool_bar) ? TOOL_BAR_FACE_ID
: DEFAULT_FACE_ID;
old_buffer = current_buffer;
/* Save things including mode_line_proptrans_alist,
and set that to nil so that we don't alter the outer value. */
record_unwind_protect (unwind_format_mode_line,
format_mode_line_unwind_data
(XFRAME (WINDOW_FRAME (w)),
old_buffer, selected_window, true));
mode_line_proptrans_alist = Qnil;
Fselect_window (window, Qt);
set_buffer_internal_1 (XBUFFER (buffer));
init_iterator (&it, w, -1, -1, NULL, face_id);
/* Make sure `base_line_number` is fresh in case we encounter a `%l`. */
if (current_buffer == XBUFFER ((w)->contents)
&& !BASE_LINE_NUMBER_VALID_P (w))
w->base_line_number = 0;
if (no_props)
{
mode_line_target = MODE_LINE_NOPROP;
mode_line_string_face_prop = Qnil;
mode_line_string_list = Qnil;
string_start = MODE_LINE_NOPROP_LEN (0);
}
else
{
mode_line_target = MODE_LINE_STRING;
mode_line_string_list = Qnil;
mode_line_string_face = face;
mode_line_string_face_prop
= NILP (face) ? Qnil : list2 (Qface, face);
}
push_kboard (FRAME_KBOARD (it.f));
display_mode_element (&it, 0, 0, 0, format, Qnil, false);
pop_kboard ();
if (no_props)
{
len = MODE_LINE_NOPROP_LEN (string_start);
str = make_string (mode_line_noprop_buf + string_start, len);
}
else
{
mode_line_string_list = Fnreverse (mode_line_string_list);
str = Fmapconcat (Qidentity, mode_line_string_list,
empty_unibyte_string);
}
return unbind_to (count, str);
}
/* Write a null-terminated, right justified decimal representation of
the positive integer D to BUF using a minimal field width WIDTH. */
static void
pint2str (register char *buf, register int width, register ptrdiff_t d)
{
register char *p = buf;
if (d <= 0)
*p++ = '0';
else
{
while (d > 0)
{
*p++ = d % 10 + '0';
d /= 10;
}
}
for (width -= (int) (p - buf); width > 0; --width)
*p++ = ' ';
*p-- = '\0';
while (p > buf)
{
d = *buf;
*buf++ = *p;
*p-- = d;
}
}
/* Write a null-terminated, right justified decimal and "human
readable" representation of the nonnegative integer D to BUF using
a minimal field width WIDTH. D should be smaller than 999.5e24. */
static const char power_letter[] =
{
0, /* no letter */
'k', /* kilo */
'M', /* mega */
'G', /* giga */
'T', /* tera */
'P', /* peta */
'E', /* exa */
'Z', /* zetta */
'Y', /* yotta */
'R', /* ronna */
'Q' /* quetta */
};
static void
pint2hrstr (char *buf, int width, ptrdiff_t d)
{
/* We aim to represent the nonnegative integer D as
QUOTIENT.TENTHS * 10 ^ (3 * EXPONENT). */
ptrdiff_t quotient = d;
int remainder = 0;
/* -1 means: do not use TENTHS. */
int tenths = -1;
int exponent = 0;
/* Length of QUOTIENT.TENTHS as a string. */
int length;
char * psuffix;
char * p;
if (quotient >= 1000)
{
/* Scale to the appropriate EXPONENT. */
do
{
remainder = quotient % 1000;
quotient /= 1000;
exponent++;
}
while (quotient >= 1000);
/* Round to nearest and decide whether to use TENTHS or not. */
if (quotient <= 9)
{
tenths = remainder / 100;
if (remainder % 100 >= 50)
{
if (tenths < 9)
tenths++;
else
{
quotient++;
if (quotient == 10)
tenths = -1;
else
tenths = 0;
}
}
}
else
if (remainder >= 500)
{
if (quotient < 999)
quotient++;
else
{
quotient = 1;
exponent++;
tenths = 0;
}
}
}
/* Calculate the LENGTH of QUOTIENT.TENTHS as a string. */
if (tenths == -1 && quotient <= 99)
if (quotient <= 9)
length = 1;
else
length = 2;
else
length = 3;
p = psuffix = buf + max (width, length);
/* Print EXPONENT. */
*psuffix++ = power_letter[exponent];
*psuffix = '\0';
/* Print TENTHS. */
if (tenths >= 0)
{
*--p = '0' + tenths;
*--p = '.';
}
/* Print QUOTIENT. */
do
{
int digit = quotient % 10;
*--p = '0' + digit;
}
while ((quotient /= 10) != 0);
/* Print leading spaces. */
while (buf < p)
*--p = ' ';
}
/* Set a mnemonic character for coding_system (Lisp symbol) in BUF.
If EOL_FLAG, set also a mnemonic character for end-of-line
type of CODING_SYSTEM. Return updated pointer into BUF. */
static unsigned char invalid_eol_type[] = "(*invalid*)";
static char *
decode_mode_spec_coding (Lisp_Object coding_system, char *buf, bool eol_flag)
{
Lisp_Object val;
bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
const unsigned char *eol_str;
int eol_str_len;
/* The EOL conversion we are using. */
Lisp_Object eoltype;
val = CODING_SYSTEM_SPEC (coding_system);
eoltype = Qnil;
if (!VECTORP (val)) /* Not yet decided. */
{
*buf++ = multibyte ? '-' : ' ';
if (eol_flag)
eoltype = eol_mnemonic_undecided;
/* Don't mention EOL conversion if it isn't decided. */
}
else
{
Lisp_Object attrs;
Lisp_Object eolvalue;
attrs = AREF (val, 0);
eolvalue = AREF (val, 2);
if (multibyte)
buf += CHAR_STRING (XFIXNAT (CODING_ATTR_MNEMONIC (attrs)),
(unsigned char *) buf);
else
*buf++ = ' ';
if (eol_flag)
{
/* The EOL conversion that is normal on this system. */
if (NILP (eolvalue)) /* Not yet decided. */
eoltype = eol_mnemonic_undecided;
else if (VECTORP (eolvalue)) /* Not yet decided. */
eoltype = eol_mnemonic_undecided;
else /* eolvalue is Qunix, Qdos, or Qmac. */
eoltype = (EQ (eolvalue, Qunix)
? eol_mnemonic_unix
: EQ (eolvalue, Qdos)
? eol_mnemonic_dos : eol_mnemonic_mac);
}
}
if (eol_flag)
{
/* Mention the EOL conversion if it is not the usual one. */
if (STRINGP (eoltype))
{
eol_str = SDATA (eoltype);
eol_str_len = SBYTES (eoltype);
}
else if (CHARACTERP (eoltype))
{
int c = XFIXNAT (eoltype);
return buf + CHAR_STRING (c, (unsigned char *) buf);
}
else
{
eol_str = invalid_eol_type;
eol_str_len = sizeof (invalid_eol_type) - 1;
}
memcpy (buf, eol_str, eol_str_len);
buf += eol_str_len;
}
return buf;
}
/* Return the approximate percentage N is of D (rounding upward), or 99,
whichever is less. Assume 0 < D and 0 <= N <= D * INT_MAX / 100. */
static int
percent99 (ptrdiff_t n, ptrdiff_t d)
{
int percent = (d - 1 + 100.0 * n) / d;
return min (percent, 99);
}
/* Return a string for the output of a mode line %-spec for window W,
generated by character C. FIELD_WIDTH > 0 means pad the string
returned with spaces to that value. Set *STRING to be a Lisp
string if the resulting string is taken from that Lisp string;
otherwise, set *STRING to Qnil.
Note we operate on the current buffer for most purposes. */
static char lots_of_dashes[] = "--------------------------------------------------------------------------------------------------------------------------------------------";
static const char *
decode_mode_spec (struct window *w, register int c, int field_width,
Lisp_Object *string)
{
Lisp_Object obj;
struct frame *f = XFRAME (WINDOW_FRAME (w));
char *decode_mode_spec_buf = f->decode_mode_spec_buffer;
/* We are going to use f->decode_mode_spec_buffer as the buffer to
produce strings from numerical values, so limit preposterously
large values of FIELD_WIDTH to avoid overrunning the buffer's
end. The size of the buffer is enough for FRAME_MESSAGE_BUF_SIZE
bytes plus the terminating null. */
int width = min (field_width, FRAME_MESSAGE_BUF_SIZE (f));
struct buffer *b = current_buffer;
obj = Qnil;
*string = Qnil;
switch (c)
{
case '*':
if (!NILP (BVAR (b, read_only)))
return "%";
if (BUF_MODIFF (b) > BUF_SAVE_MODIFF (b))
return "*";
return "-";
case '+':
/* This differs from %* only for a modified read-only buffer. */
if (BUF_MODIFF (b) > BUF_SAVE_MODIFF (b))
return "*";
if (!NILP (BVAR (b, read_only)))
return "%";
return "-";
case '&':
/* This differs from %* in ignoring read-only-ness. */
if (BUF_MODIFF (b) > BUF_SAVE_MODIFF (b))
return "*";
return "-";
case '%':
return "%";
case '[':
{
int i;
char *p;
if (command_loop_level > 5)
return "[[[... ";
p = decode_mode_spec_buf;
for (i = 0; i < command_loop_level; i++)
*p++ = '[';
*p = 0;
return decode_mode_spec_buf;
}
case ']':
{
int i;
char *p;
if (command_loop_level > 5)
return " ...]]]";
p = decode_mode_spec_buf;
for (i = 0; i < command_loop_level; i++)
*p++ = ']';
*p = 0;
return decode_mode_spec_buf;
}
case '-':
{
register int i;
/* Let lots_of_dashes be a string of infinite length. */
if (mode_line_target == MODE_LINE_NOPROP
|| mode_line_target == MODE_LINE_STRING)
return "--";
if (field_width <= 0
|| field_width > sizeof (lots_of_dashes))
{
for (i = 0; i < FRAME_MESSAGE_BUF_SIZE (f) - 1; ++i)
decode_mode_spec_buf[i] = '-';
decode_mode_spec_buf[i] = '\0';
return decode_mode_spec_buf;
}
else
return lots_of_dashes;
}
case 'b':
obj = BVAR (b, name);
break;
case 'c':
case 'C':
/* %c, %C, and %l are ignored in `frame-title-format'.
(In redisplay_internal, the frame title is drawn _before_ the
windows are updated, so the stuff which depends on actual
window contents (such as %l) may fail to render properly, or
even crash emacs.) */
if (mode_line_target == MODE_LINE_TITLE)
return "";
else
{
ptrdiff_t col = current_column ();
int disp_col = (c == 'C') ? col + 1 : col;
w->column_number_displayed = col;
pint2str (decode_mode_spec_buf, width, disp_col);
return decode_mode_spec_buf;
}
case 'e':
#if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
{
if (NILP (Vmemory_full))
return "";
else
return "!MEM FULL! ";
}
#else
return "";
#endif
case 'F':
/* %F displays the frame name. */
if (!NILP (f->title))
return SSDATA (f->title);
if (f->explicit_name || ! FRAME_WINDOW_P (f))
return SSDATA (f->name);
return "Emacs";
case 'f':
obj = BVAR (b, filename);
break;
case 'i':
{
ptrdiff_t size = ZV - BEGV;
pint2str (decode_mode_spec_buf, width, size);
return decode_mode_spec_buf;
}
case 'I':
{
ptrdiff_t size = ZV - BEGV;
pint2hrstr (decode_mode_spec_buf, width, size);
return decode_mode_spec_buf;
}
case 'l':
{
ptrdiff_t startpos, startpos_byte, line, linepos, linepos_byte;
ptrdiff_t topline, nlines, height;
ptrdiff_t junk;
/* %c, %C, and %l are ignored in `frame-title-format'. */
if (mode_line_target == MODE_LINE_TITLE)
return "";
startpos = marker_position (w->start);
startpos_byte = marker_byte_position (w->start);
height = WINDOW_TOTAL_LINES (w);
/* We cannot cope with w->start being outside of the
accessible portion of the buffer; in particular,
display_count_lines call below might infloop if called with
startpos_byte outside of the [BEGV_BYTE..ZV_BYTE] region.
Such w->start means we were called in some "creative" way
when the buffer's restriction was changed, but the window
wasn't yet redisplayed after that. If that happens, we
need to determine a new base line. */
if (current_buffer != XBUFFER (w->contents)
|| !(BUF_BEGV_BYTE (b) <= startpos_byte
&& startpos_byte <= BUF_ZV_BYTE (b)))
{
startpos = BUF_BEGV (b);
startpos_byte = BUF_BEGV_BYTE (b);
}
/* If we decided that this buffer isn't suitable for line numbers,
don't forget that too fast.
FIXME: What if `current_buffer != w->contents`? */
if (w->base_line_pos == -1)
goto no_value;
/* If the buffer is very big, don't waste time. */
if (FIXNUMP (Vline_number_display_limit)
&& BUF_ZV (b) - BUF_BEGV (b) > XFIXNUM (Vline_number_display_limit))
goto no_value;
/* Callers of `display_mode_element` are in charge of flushing
any stale `base_line_number` cache. */
if (current_buffer == XBUFFER ((w)->contents)
&& w->base_line_number > 0
&& w->base_line_pos > 0
&& w->base_line_pos <= startpos)
{
line = w->base_line_number;
linepos = w->base_line_pos;
linepos_byte = buf_charpos_to_bytepos (b, linepos);
}
else
{
line = 1;
linepos = BUF_BEGV (b);
linepos_byte = BUF_BEGV_BYTE (b);
}
/* Count lines from base line to window start position. */
nlines = display_count_lines (linepos_byte,
startpos_byte,
startpos, &junk);
topline = nlines + line;
/* Determine a new base line, if the old one is too close
or too far away, or if we did not have one.
"Too close" means it's plausible a scroll-down would
go back past it. */
if (current_buffer != XBUFFER (w->contents))
; /* The base line is for another buffer, don't touch it! */
else if (startpos == BUF_BEGV (b))
{
w->base_line_number = topline;
w->base_line_pos = BUF_BEGV (b);
}
else if (nlines < height + 25 || nlines > height * 3 + 50
|| linepos == BUF_BEGV (b))
{
ptrdiff_t limit = BUF_BEGV (b);
ptrdiff_t limit_byte = BUF_BEGV_BYTE (b);
ptrdiff_t position;
ptrdiff_t distance
= (line_number_display_limit_width < 0 ? 0
: ckd_mul (&distance, line_number_display_limit_width,
height * 2 + 30)
? PTRDIFF_MAX : distance);
if (startpos - distance > limit)
{
limit = startpos - distance;
limit_byte = CHAR_TO_BYTE (limit);
}
nlines = display_count_lines (startpos_byte,
limit_byte,
- (height * 2 + 30),
&position);
/* If we couldn't find the lines we wanted within
line_number_display_limit_width chars per line,
give up on line numbers for this window. */
if (position == limit_byte && limit == startpos - distance)
{
w->base_line_pos = -1;
w->base_line_number = 0;
goto no_value;
}
/* NOTE: if `clip_changed` is set or if `BEG_UNCHANGED` is
before `position`, this new cached value may get flushed
soon needlessly, because we can't reset `BEG_UNCHANGED` or
`clip_changed` from here (since they reflect the changes
since the last redisplay so they can only be reset from
`mark_window_display_accurate_1`). :-( */
w->base_line_number = topline - nlines;
w->base_line_pos = BYTE_TO_CHAR (position);
}
/* Now count lines from the start pos to point. */
nlines = display_count_lines (startpos_byte,
PT_BYTE, PT, &junk);
/* Record that we did display the line number. */
line_number_displayed = true;
/* Make the string to show. */
pint2str (decode_mode_spec_buf, width, topline + nlines);
return decode_mode_spec_buf;
no_value:
{
char *p = decode_mode_spec_buf;
int pad = width - 2;
while (pad-- > 0)
*p++ = ' ';
*p++ = '?';
*p++ = '?';
*p = '\0';
return decode_mode_spec_buf;
}
}
break;
case 'm':
obj = BVAR (b, mode_name);
break;
case 'n':
if (BUF_BEGV (b) > BUF_BEG (b) || BUF_ZV (b) < BUF_Z (b))
return " Narrow";
break;
/* Display the "degree of travel" of the window through the buffer. */
case 'o':
{
ptrdiff_t toppos = marker_position (w->start);
ptrdiff_t botpos = BUF_Z (b) - w->window_end_pos;
ptrdiff_t begv = BUF_BEGV (b);
ptrdiff_t zv = BUF_ZV (b);
if (zv <= botpos)
return toppos <= begv ? "All" : "Bottom";
else if (toppos <= begv)
return "Top";
else
{
sprintf (decode_mode_spec_buf, "%2d%%",
percent99 (toppos - begv, (toppos - begv) + (zv - botpos)));
return decode_mode_spec_buf;
}
}
/* Display percentage of buffer above the top of the screen. */
case 'p':
{
ptrdiff_t pos = marker_position (w->start);
ptrdiff_t begv = BUF_BEGV (b);
ptrdiff_t zv = BUF_ZV (b);
if (w->window_end_pos <= BUF_Z (b) - zv)
return pos <= begv ? "All" : "Bottom";
else if (pos <= begv)
return "Top";
else
{
sprintf (decode_mode_spec_buf, "%2d%%",
percent99 (pos - begv, zv - begv));
return decode_mode_spec_buf;
}
}
/* Display percentage of size above the bottom of the screen. */
case 'P':
{
ptrdiff_t toppos = marker_position (w->start);
ptrdiff_t botpos = BUF_Z (b) - w->window_end_pos;
ptrdiff_t begv = BUF_BEGV (b);
ptrdiff_t zv = BUF_ZV (b);
if (zv <= botpos)
return toppos <= begv ? "All" : "Bottom";
else
{
sprintf (decode_mode_spec_buf,
&"Top%2d%%"[begv < toppos ? sizeof "Top" - 1 : 0],
percent99 (botpos - begv, zv - begv));
return decode_mode_spec_buf;
}
}
/* Display percentage offsets of top and bottom of the window,
using "All" (but not "Top" or "Bottom") where appropriate. */
case 'q':
{
ptrdiff_t toppos = marker_position (w->start);
ptrdiff_t botpos = BUF_Z (b) - w->window_end_pos;
ptrdiff_t begv = BUF_BEGV (b);
ptrdiff_t zv = BUF_ZV (b);
int top_perc, bot_perc;
if ((toppos <= begv) && (zv <= botpos))
return "All ";
top_perc = toppos <= begv ? 0 : percent99 (toppos - begv, zv - begv);
bot_perc = zv <= botpos ? 100 : percent99 (botpos - begv, zv - begv);
if (top_perc == bot_perc)
sprintf (decode_mode_spec_buf, "%d%%", top_perc);
else
sprintf (decode_mode_spec_buf, "%d-%d%%", top_perc, bot_perc);
return decode_mode_spec_buf;
}
case 's':
/* status of process */
obj = Fget_buffer_process (Fcurrent_buffer ());
if (NILP (obj))
return "no process";
#ifndef MSDOS
obj = Fsymbol_name (Fprocess_status (obj));
#endif
break;
case '@':
{
specpdl_ref count = inhibit_garbage_collection ();
Lisp_Object curdir = BVAR (current_buffer, directory);
Lisp_Object val = Qnil;
if (STRINGP (curdir))
val = dsafe_call1 (Qfile_remote_p, curdir);
val = unbind_to (count, val);
if (NILP (val))
return "-";
else
return "@";
}
case 'z':
/* coding-system (not including end-of-line format) */
case 'Z':
/* coding-system (including end-of-line type) */
{
bool eol_flag = (c == 'Z');
char *p = decode_mode_spec_buf;
if (! FRAME_WINDOW_P (f))
{
/* No need to mention EOL here--the terminal never needs
to do EOL conversion. */
p = decode_mode_spec_coding (CODING_ID_NAME
(FRAME_KEYBOARD_CODING (f)->id),
p, false);
p = decode_mode_spec_coding (CODING_ID_NAME
(FRAME_TERMINAL_CODING (f)->id),
p, false);
}
p = decode_mode_spec_coding (BVAR (b, buffer_file_coding_system),
p, eol_flag);
#if false /* This proves to be annoying; I think we can do without. -- rms. */
#ifdef subprocesses
obj = Fget_buffer_process (Fcurrent_buffer ());
if (PROCESSP (obj))
{
p = decode_mode_spec_coding
(XPROCESS (obj)->decode_coding_system, p, eol_flag);
p = decode_mode_spec_coding
(XPROCESS (obj)->encode_coding_system, p, eol_flag);
}
#endif /* subprocesses */
#endif /* false */
*p = 0;
return decode_mode_spec_buf;
}
}
if (STRINGP (obj))
{
*string = obj;
return SSDATA (obj);
}
else
return "";
}
/* Return the number of lines between start_byte and end_byte in the
current buffer. */
ptrdiff_t
count_lines (ptrdiff_t start_byte, ptrdiff_t end_byte)
{
ptrdiff_t ignored;
return display_count_lines (start_byte, end_byte, ZV, &ignored);
}
/* Count up to COUNT lines starting from START_BYTE. COUNT negative
means count lines back from START_BYTE. But don't go beyond
LIMIT_BYTE. Return the number of lines thus found (always
nonnegative).
Set *BYTE_POS_PTR to the byte position where we stopped. This is
either the position COUNT lines after/before START_BYTE, if we
found COUNT lines, or LIMIT_BYTE if we hit the limit before finding
COUNT lines. */
static ptrdiff_t
display_count_lines (ptrdiff_t start_byte,
ptrdiff_t limit_byte, ptrdiff_t count,
ptrdiff_t *byte_pos_ptr)
{
register unsigned char *cursor;
unsigned char *base;
register ptrdiff_t ceiling;
register unsigned char *ceiling_addr;
ptrdiff_t orig_count = count;
/* If we are not in selective display mode,
check only for newlines. */
bool selective_display
= (!NILP (BVAR (current_buffer, selective_display))
&& !FIXNUMP (BVAR (current_buffer, selective_display)));
if (count > 0)
{
while (start_byte < limit_byte)
{
ceiling = BUFFER_CEILING_OF (start_byte);
ceiling = min (limit_byte - 1, ceiling);
ceiling_addr = BYTE_POS_ADDR (ceiling) + 1;
base = (cursor = BYTE_POS_ADDR (start_byte));
do
{
if (selective_display)
{
while (*cursor != '\n' && *cursor != 015
&& ++cursor != ceiling_addr)
continue;
if (cursor == ceiling_addr)
break;
}
else
{
cursor = memchr (cursor, '\n', ceiling_addr - cursor);
if (! cursor)
break;
}
cursor++;
if (--count == 0)
{
start_byte += cursor - base;
*byte_pos_ptr = start_byte;
return orig_count;
}
}
while (cursor < ceiling_addr);
start_byte += ceiling_addr - base;
}
}
else
{
while (start_byte > limit_byte)
{
ceiling = BUFFER_FLOOR_OF (start_byte - 1);
ceiling = max (limit_byte, ceiling);
ceiling_addr = BYTE_POS_ADDR (ceiling);
base = (cursor = BYTE_POS_ADDR (start_byte - 1) + 1);
while (true)
{
if (selective_display)
{
while (--cursor >= ceiling_addr
&& *cursor != '\n' && *cursor != 015)
continue;
if (cursor < ceiling_addr)
break;
}
else
{
cursor = memrchr (ceiling_addr, '\n', cursor - ceiling_addr);
if (! cursor)
break;
}
if (++count == 0)
{
start_byte += cursor - base + 1;
*byte_pos_ptr = start_byte;
/* When scanning backwards, we should
not count the newline posterior to which we stop. */
return - orig_count - 1;
}
}
start_byte += ceiling_addr - base;
}
}
*byte_pos_ptr = limit_byte;
if (count < 0)
return - orig_count + count;
return orig_count - count;
}
/***********************************************************************
Displaying strings
***********************************************************************/
/* Display a NUL-terminated string, starting with index START.
If STRING is non-null, display that C string. Otherwise, the Lisp
string LISP_STRING is displayed. There's a case that STRING is
non-null and LISP_STRING is not nil. It means STRING is a string
data of LISP_STRING. In that case, we display LISP_STRING while
ignoring its text properties.
If FACE_STRING is not nil, FACE_STRING_POS is a position in
FACE_STRING. Display STRING or LISP_STRING with the face at
FACE_STRING_POS in FACE_STRING:
Display the string in the environment given by IT, but use the
standard display table, temporarily.
FIELD_WIDTH is the minimum number of output glyphs to produce.
If STRING has fewer characters than FIELD_WIDTH, pad to the right
with spaces. If STRING has more characters, more than FIELD_WIDTH
glyphs will be produced. FIELD_WIDTH <= 0 means don't pad.
PRECISION is the maximum number of characters to output from
STRING. PRECISION < 0 means don't truncate the string.
This is roughly equivalent to printf format specifiers:
FIELD_WIDTH PRECISION PRINTF
----------------------------------------
-1 -1 %s
-1 10 %.10s
10 -1 %10s
20 10 %20.10s
MULTIBYTE zero means do not display multibyte chars, > 0 means do
display them, and < 0 means obey the current buffer's value of
enable_multibyte_characters.
Value is the number of columns displayed. */
static int
display_string (const char *string, Lisp_Object lisp_string, Lisp_Object face_string,
ptrdiff_t face_string_pos, ptrdiff_t start, struct it *it,
int field_width, int precision, int max_x, int multibyte)
{
int hpos_at_start = it->hpos;
int saved_face_id = it->face_id;
struct glyph_row *row = it->glyph_row;
ptrdiff_t it_charpos;
/* Initialize the iterator IT for iteration over STRING beginning
with index START. */
reseat_to_string (it, NILP (lisp_string) ? string : NULL, lisp_string,
start, precision, field_width, multibyte);
if (string && STRINGP (lisp_string))
/* LISP_STRING is the one returned by decode_mode_spec. We should
ignore its text properties. */
it->stop_charpos = it->end_charpos;
/* If displaying STRING, set up the face of the iterator from
FACE_STRING, if that's given. */
if (STRINGP (face_string))
{
ptrdiff_t endptr;
struct face *face;
it->face_id
= face_at_string_position (it->w, face_string, face_string_pos,
0, &endptr, it->base_face_id, false, 0);
face = FACE_FROM_ID (it->f, it->face_id);
it->face_box_p = face->box != FACE_NO_BOX;
/* If we have a display spec, but there's no Lisp string being
displayed, then check whether we've got one from the
:propertize being passed in and use that. */
if (NILP (lisp_string))
{
Lisp_Object display = Fget_text_property (make_fixnum (0), Qdisplay,
face_string);
if (!NILP (display))
{
Lisp_Object min_width = plist_get (display, Qmin_width);
if (!NILP (min_width))
display_min_width (it, 0, face_string, min_width);
}
}
}
/* Set max_x to the maximum allowed X position. Don't let it go
beyond the right edge of the window. */
if (max_x <= 0)
max_x = it->last_visible_x;
else
max_x = min (max_x, it->last_visible_x);
/* Skip over display elements that are not visible because IT->w is
hscrolled. */
if (it->current_x < it->first_visible_x)
move_it_in_display_line_to (it, 100000, it->first_visible_x,
MOVE_TO_POS | MOVE_TO_X);
row->ascent = it->max_ascent;
row->height = it->max_ascent + it->max_descent;
row->phys_ascent = it->max_phys_ascent;
row->phys_height = it->max_phys_ascent + it->max_phys_descent;
row->extra_line_spacing = it->max_extra_line_spacing;
if (STRINGP (it->string))
it_charpos = IT_STRING_CHARPOS (*it);
else
it_charpos = IT_CHARPOS (*it);
/* This condition is for the case that we are called with current_x
past last_visible_x. */
while (it->current_x < max_x)
{
int x_before, x, n_glyphs_before, i, nglyphs;
/* Get the next display element. */
if (!get_next_display_element (it))
break;
/* Produce glyphs. */
x_before = it->current_x;
n_glyphs_before = row->used[TEXT_AREA];
PRODUCE_GLYPHS (it);
nglyphs = row->used[TEXT_AREA] - n_glyphs_before;
i = 0;
x = x_before;
while (i < nglyphs)
{
struct glyph *glyph = row->glyphs[TEXT_AREA] + n_glyphs_before + i;
if (it->line_wrap != TRUNCATE
&& x + glyph->pixel_width > max_x)
{
/* End of continued line or max_x reached. */
if (CHAR_GLYPH_PADDING_P (*glyph))
{
/* A wide character is unbreakable. */
if (row->reversed_p)
unproduce_glyphs (it, row->used[TEXT_AREA]
- n_glyphs_before);
row->used[TEXT_AREA] = n_glyphs_before;
it->current_x = x_before;
}
else
{
if (row->reversed_p)
unproduce_glyphs (it, row->used[TEXT_AREA]
- (n_glyphs_before + i));
row->used[TEXT_AREA] = n_glyphs_before + i;
it->current_x = x;
}
break;
}
else if (x + glyph->pixel_width >= it->first_visible_x)
{
/* Glyph is at least partially visible. */
++it->hpos;
if (x < it->first_visible_x)
row->x = x - it->first_visible_x;
}
else
{
/* Glyph is off the left margin of the display area.
Should not happen. */
emacs_abort ();
}
row->ascent = max (row->ascent, it->max_ascent);
row->height = max (row->height, it->max_ascent + it->max_descent);
row->phys_ascent = max (row->phys_ascent, it->max_phys_ascent);
row->phys_height = max (row->phys_height,
it->max_phys_ascent + it->max_phys_descent);
row->extra_line_spacing = max (row->extra_line_spacing,
it->max_extra_line_spacing);
x += glyph->pixel_width;
++i;
}
/* Stop if max_x reached. */
if (i < nglyphs)
break;
/* Stop at line ends. */
if (ITERATOR_AT_END_OF_LINE_P (it))
{
it->continuation_lines_width = 0;
break;
}
set_iterator_to_next (it, true);
if (STRINGP (it->string))
it_charpos = IT_STRING_CHARPOS (*it);
else
it_charpos = IT_CHARPOS (*it);
/* Stop if truncating at the right edge. */
if (it->line_wrap == TRUNCATE
&& it->current_x >= it->last_visible_x)
{
/* Add truncation mark, but don't do it if the line is
truncated at a padding space. */
/* Need to do the below for the last string character as
well, since it could be a double-width character, in
which case the previous character ends before
last_visible_x. Thus, comparison with <=, not <. */
if (it_charpos <= it->string_nchars)
{
if (!FRAME_WINDOW_P (it->f))
{
int ii, n;
if (it->current_x > it->last_visible_x)
{
/* This flag is true if we are displaying mode
line, false for header-line or tab-line. */
bool mode_line_p = false;
/* ROW->mode_line_p is true if we display mode
line or header-line or tab-line. */
if (row->mode_line_p)
{
struct window *w = it->w;
if (row == MATRIX_MODE_LINE_ROW (w->desired_matrix))
mode_line_p = true;
}
if (!row->reversed_p)
{
for (ii = row->used[TEXT_AREA] - 1; ii > 0; --ii)
if (!CHAR_GLYPH_PADDING_P (row->glyphs[TEXT_AREA][ii]))
break;
}
else
{
for (ii = 0; ii < row->used[TEXT_AREA]; ii++)
if (!CHAR_GLYPH_PADDING_P (row->glyphs[TEXT_AREA][ii]))
break;
unproduce_glyphs (it, ii + 1);
ii = row->used[TEXT_AREA] - (ii + 1);
}
for (n = row->used[TEXT_AREA]; ii < n; ++ii)
{
row->used[TEXT_AREA] = ii;
if (row->mode_line_p)
pad_mode_line (it, mode_line_p);
else
produce_special_glyphs (it, IT_TRUNCATION);
}
}
produce_special_glyphs (it, IT_TRUNCATION);
}
row->truncated_on_right_p = true;
}
break;
}
}
/* Maybe insert a truncation at the left. */
if (it->first_visible_x
&& it_charpos > 0)
{
if (!FRAME_WINDOW_P (it->f)
|| (row->reversed_p
? WINDOW_RIGHT_FRINGE_WIDTH (it->w)
: WINDOW_LEFT_FRINGE_WIDTH (it->w)) == 0)
insert_left_trunc_glyphs (it);
row->truncated_on_left_p = true;
}
it->face_id = saved_face_id;
/* Value is number of columns displayed. */
return it->hpos - hpos_at_start;
}
/* This is like a combination of memq and assq. Return 1/2 if PROPVAL
appears as an element of LIST or as the car of an element of LIST.
If PROPVAL is a list, compare each element against LIST in that
way, and return 1/2 if any element of PROPVAL is found in LIST.
Otherwise return 0. This function cannot quit.
The return value is 2 if the text is invisible but with an ellipsis
and 1 if it's invisible and without an ellipsis. */
int
invisible_prop (Lisp_Object propval, Lisp_Object list)
{
Lisp_Object tail, proptail;
for (tail = list; CONSP (tail); tail = XCDR (tail))
{
register Lisp_Object tem;
tem = XCAR (tail);
if (EQ (propval, tem))
return 1;
if (CONSP (tem) && EQ (propval, XCAR (tem)))
return NILP (XCDR (tem)) ? 1 : 2;
}
if (CONSP (propval))
{
for (proptail = propval; CONSP (proptail); proptail = XCDR (proptail))
{
Lisp_Object propelt;
propelt = XCAR (proptail);
for (tail = list; CONSP (tail); tail = XCDR (tail))
{
register Lisp_Object tem;
tem = XCAR (tail);
if (EQ (propelt, tem))
return 1;
if (CONSP (tem) && EQ (propelt, XCAR (tem)))
return NILP (XCDR (tem)) ? 1 : 2;
}
}
}
return 0;
}
DEFUN ("invisible-p", Finvisible_p, Sinvisible_p, 1, 1, 0,
doc: /* Non-nil if text properties at POS cause text there to be currently invisible.
POS should be a marker or a buffer position; the value of the `invisible'
property at that position in the current buffer is examined.
POS can also be the actual value of the `invisible' text or overlay
property of the text of interest, in which case the value itself is
examined.
The non-nil value returned can be t for currently invisible text that is
entirely hidden on display, or some other non-nil, non-t value if the
text is replaced by an ellipsis.
Note that whether text with `invisible' property is actually hidden on
display may depend on `buffer-invisibility-spec', which see. */)
(Lisp_Object pos)
{
Lisp_Object prop
= (FIXNATP (pos) || MARKERP (pos)
? Fget_char_property (pos, Qinvisible, Qnil)
: pos);
int invis = TEXT_PROP_MEANS_INVISIBLE (prop);
return (invis == 0 ? Qnil
: invis == 1 ? Qt
: make_fixnum (invis));
}
/* Calculate a width or height in pixels from a specification using
the following elements:
SPEC ::=
NUM - a (fractional) multiple of the default font width/height
(NUM) - specifies exactly NUM pixels
UNIT - a fixed number of pixels, see below.
ELEMENT - size of a display element in pixels, see below.
(NUM . SPEC) - equals NUM * SPEC
(+ SPEC SPEC ...) - add pixel values
(- SPEC SPEC ...) - subtract pixel values
(- SPEC) - negate pixel value
NUM ::=
INT or FLOAT - a number constant
SYMBOL - use symbol's (buffer local) variable binding.
UNIT ::=
in - pixels per inch *)
mm - pixels per 1/1000 meter *)
cm - pixels per 1/100 meter *)
width - width of current font in pixels.
height - height of current font in pixels.
*) using the ratio(s) defined in display-pixels-per-inch.
ELEMENT ::=
left-fringe - left fringe width in pixels
right-fringe - right fringe width in pixels
left-margin - left margin width in pixels
right-margin - right margin width in pixels
scroll-bar - scroll-bar area width in pixels
Examples:
Pixels corresponding to 5 inches:
(5 . in)
Total width of non-text areas on left side of window (if scroll-bar is on left):
'(space :width (+ left-fringe left-margin scroll-bar))
Align to first text column (in header line):
'(space :align-to 0)
Align to middle of text area minus half the width of variable `my-image'
containing a loaded image:
'(space :align-to (0.5 . (- text my-image)))
Width of left margin minus width of 1 character in the default font:
'(space :width (- left-margin 1))
Width of left margin minus width of 2 characters in the current font:
'(space :width (- left-margin (2 . width)))
Center 1 character over left-margin (in header line):
'(space :align-to (+ left-margin (0.5 . left-margin) -0.5))
Different ways to express width of left fringe plus left margin minus one pixel:
'(space :width (- (+ left-fringe left-margin) (1)))
'(space :width (+ left-fringe left-margin (- (1))))
'(space :width (+ left-fringe left-margin (-1)))
If ALIGN_TO is NULL, returns the result in *RES. If ALIGN_TO is
non-NULL, the value of *ALIGN_TO is a window-relative pixel
coordinate, and *RES is the additional pixel width from that point
till the end of the stretch glyph.
WIDTH_P non-zero means take the width dimension or X coordinate of
the object specified by PROP, WIDTH_P zero means take the height
dimension or the Y coordinate. (Therefore, if ALIGN_TO is
non-NULL, WIDTH_P should be non-zero.)
FONT is the font of the face of the surrounding text.
The return value is non-zero if width or height were successfully
calculated, i.e. if PROP is a valid spec. */
static bool
calc_pixel_width_or_height (double *res, struct it *it, Lisp_Object prop,
struct font *font, bool width_p, int *align_to)
{
/* Don't adjust for line number if we didn't yet produce it for this
screen line. This is for when this function is called from
move_it_in_display_line_to that was called by display_line to get
past the glyphs hscrolled off the left side of the window. */
int lnum_pixel_width = it->line_number_produced_p ? it->lnum_pixel_width : 0;
double pixels;
# define OK_PIXELS(val) (*res = (val), true)
# define OK_ALIGN_TO(val) (*align_to = (val), true)
if (NILP (prop))
return OK_PIXELS (0);
eassert (FRAME_LIVE_P (it->f));
if (SYMBOLP (prop))
{
if (SCHARS (SYMBOL_NAME (prop)) == 2)
{
char *unit = SSDATA (SYMBOL_NAME (prop));
/* The UNIT expression, e.g. as part of (NUM . UNIT). */
if (unit[0] == 'i' && unit[1] == 'n')
pixels = 1.0;
else if (unit[0] == 'm' && unit[1] == 'm')
pixels = 25.4;
else if (unit[0] == 'c' && unit[1] == 'm')
pixels = 2.54;
else
pixels = 0;
if (pixels > 0)
{
double ppi = (width_p ? FRAME_RES_X (it->f)
: FRAME_RES_Y (it->f));
if (ppi > 0)
return OK_PIXELS (ppi / pixels);
return false;
}
}
#ifdef HAVE_WINDOW_SYSTEM
/* 'height': the height of FONT. */
if (EQ (prop, Qheight))
return OK_PIXELS (font
? normal_char_height (font, -1)
: FRAME_LINE_HEIGHT (it->f));
/* 'width': the width of FONT. */
if (EQ (prop, Qwidth))
return OK_PIXELS (font
? (font->average_width
? font->average_width
: font->space_width)
: FRAME_COLUMN_WIDTH (it->f));
#else
if (EQ (prop, Qheight) || EQ (prop, Qwidth))
return OK_PIXELS (1);
#endif
/* 'text': the width or height of the text area. */
if (EQ (prop, Qtext))
return OK_PIXELS (width_p
? (window_box_width (it->w, TEXT_AREA)
- lnum_pixel_width)
: WINDOW_BOX_HEIGHT_NO_MODE_LINE (it->w));
/* ':align_to'. First time we compute the value, window
elements are interpreted as the position of the element's
left edge. */
if (align_to && *align_to < 0)
{
*res = 0;
/* 'left': left edge of the text area. */
if (EQ (prop, Qleft))
return OK_ALIGN_TO (window_box_left_offset (it->w, TEXT_AREA)
+ lnum_pixel_width);
/* 'right': right edge of the text area. */
if (EQ (prop, Qright))
return OK_ALIGN_TO (window_box_right_offset (it->w, TEXT_AREA));
/* 'center': the center of the text area. */
if (EQ (prop, Qcenter))
return OK_ALIGN_TO (window_box_left_offset (it->w, TEXT_AREA)
+ lnum_pixel_width
+ window_box_width (it->w, TEXT_AREA) / 2);
/* 'left-fringe': left edge of the left fringe. */
if (EQ (prop, Qleft_fringe))
return OK_ALIGN_TO (WINDOW_HAS_FRINGES_OUTSIDE_MARGINS (it->w)
? WINDOW_LEFT_SCROLL_BAR_AREA_WIDTH (it->w)
: window_box_right_offset (it->w, LEFT_MARGIN_AREA));
/* 'right-fringe': left edge of the right fringe. */
if (EQ (prop, Qright_fringe))
return OK_ALIGN_TO (WINDOW_HAS_FRINGES_OUTSIDE_MARGINS (it->w)
? window_box_right_offset (it->w, RIGHT_MARGIN_AREA)
: window_box_right_offset (it->w, TEXT_AREA));
/* 'left-margin': left edge of the left display margin. */
if (EQ (prop, Qleft_margin))
return OK_ALIGN_TO (window_box_left_offset (it->w, LEFT_MARGIN_AREA));
/* 'right-margin': left edge of the right display margin. */
if (EQ (prop, Qright_margin))
return OK_ALIGN_TO (window_box_left_offset (it->w, RIGHT_MARGIN_AREA));
/* 'scroll-bar': left edge of the vertical scroll bar. */
if (EQ (prop, Qscroll_bar))
return OK_ALIGN_TO (WINDOW_HAS_VERTICAL_SCROLL_BAR_ON_LEFT (it->w)
? 0
: (window_box_right_offset (it->w, RIGHT_MARGIN_AREA)
+ (WINDOW_HAS_FRINGES_OUTSIDE_MARGINS (it->w)
? WINDOW_RIGHT_FRINGE_WIDTH (it->w)
: 0)));
}
else
{
/* Otherwise, the elements stand for their width. */
if (EQ (prop, Qleft_fringe))
return OK_PIXELS (WINDOW_LEFT_FRINGE_WIDTH (it->w));
if (EQ (prop, Qright_fringe))
return OK_PIXELS (WINDOW_RIGHT_FRINGE_WIDTH (it->w));
if (EQ (prop, Qleft_margin))
return OK_PIXELS (WINDOW_LEFT_MARGIN_WIDTH (it->w));
if (EQ (prop, Qright_margin))
return OK_PIXELS (WINDOW_RIGHT_MARGIN_WIDTH (it->w));
if (EQ (prop, Qscroll_bar))
return OK_PIXELS (WINDOW_SCROLL_BAR_AREA_WIDTH (it->w));
}
prop = buffer_local_value (prop, it->w->contents);
if (BASE_EQ (prop, Qunbound))
prop = Qnil;
}
if (NUMBERP (prop))
{
int base_unit = (width_p
? FRAME_COLUMN_WIDTH (it->f)
: FRAME_LINE_HEIGHT (it->f));
if (width_p && align_to && *align_to < 0)
return OK_PIXELS (XFLOATINT (prop) * base_unit + lnum_pixel_width);
return OK_PIXELS (XFLOATINT (prop) * base_unit);
}
if (CONSP (prop))
{
Lisp_Object car = XCAR (prop);
Lisp_Object cdr = XCDR (prop);
if (SYMBOLP (car))
{
#ifdef HAVE_WINDOW_SYSTEM
/* '(image PROPS...)': width or height of the specified image. */
if (FRAME_WINDOW_P (it->f)
&& valid_image_p (prop))
{
ptrdiff_t id = lookup_image (it->f, prop, it->face_id);
struct image *img = IMAGE_FROM_ID (it->f, id);
return OK_PIXELS (width_p ? img->width : img->height);
}
/* '(xwidget PROPS...)': dimensions of the specified xwidget. */
if (FRAME_WINDOW_P (it->f) && valid_xwidget_spec_p (prop))
{
/* TODO: Don't return dummy size. */
return OK_PIXELS (100);
}
#endif
/* '(+ EXPR...)' or '(- EXPR...)' add or subtract
recursively calculated values. */
if (EQ (car, Qplus) || EQ (car, Qminus))
{
bool first = true;
double px;
pixels = 0;
while (CONSP (cdr))
{
if (!calc_pixel_width_or_height (&px, it, XCAR (cdr),
font, width_p, align_to))
return false;
if (first)
pixels = (EQ (car, Qplus) ? px : -px), first = false;
else
pixels += px;
cdr = XCDR (cdr);
}
if (EQ (car, Qminus))
pixels = -pixels;
return OK_PIXELS (pixels);
}
car = buffer_local_value (car, it->w->contents);
if (BASE_EQ (car, Qunbound))
car = Qnil;
}
/* '(NUM)': absolute number of pixels. */
if (NUMBERP (car))
{
double fact;
int offset =
width_p && align_to && *align_to < 0 ? lnum_pixel_width : 0;
pixels = XFLOATINT (car);
if (NILP (cdr))
return OK_PIXELS (pixels + offset);
if (calc_pixel_width_or_height (&fact, it, cdr,
font, width_p, align_to))
return OK_PIXELS (pixels * fact + offset);
return false;
}
return false;
}
return false;
}
void
get_font_ascent_descent (struct font *font, int *ascent, int *descent)
{
#ifdef HAVE_WINDOW_SYSTEM
normal_char_ascent_descent (font, -1, ascent, descent);
#else
*ascent = 1;
*descent = 0;
#endif
}
/***********************************************************************
Glyph Display
***********************************************************************/
#ifdef HAVE_WINDOW_SYSTEM
#ifdef GLYPH_DEBUG
extern void dump_glyph_string (struct glyph_string *) EXTERNALLY_VISIBLE;
void
dump_glyph_string (struct glyph_string *s)
{
fputs ("glyph string\n", stderr);
fprintf (stderr, " x, y, w, h = %d, %d, %d, %d\n",
s->x, s->y, s->width, s->height);
fprintf (stderr, " ybase = %d\n", s->ybase);
fprintf (stderr, " hl = %u\n", s->hl);
fprintf (stderr, " left overhang = %d, right = %d\n",
s->left_overhang, s->right_overhang);
fprintf (stderr, " nchars = %d\n", s->nchars);
fprintf (stderr, " extends to end of line = %d\n",
s->extends_to_end_of_line_p);
fprintf (stderr, " font height = %d\n", FONT_HEIGHT (s->font));
fprintf (stderr, " bg width = %d\n", s->background_width);
}
#endif /* GLYPH_DEBUG */
/* Initialize glyph string S. CHAR2B is a suitably allocated vector
of 2-byte unsigned integers for S; it can't be allocated in
init_glyph_string because it must be allocated via `alloca'. W
is the window on which S is drawn. ROW and AREA are the glyph row
and area within the row from which S is constructed. START is the
index of the first glyph structure covered by S. HL is a
face-override for drawing S. */
#ifdef HAVE_NTGUI
/* We set inhibit-quit here due to paranoia: get_frame_dc acquires the
critical section, and we cannot QUIT while we hold the critical
section. If any of the code run by callers of ALLOCATE_HDC happens
to call Lisp (might be possible due to all the hooks lying around),
we must prevent it from quitting. */
# define ALLOCATE_HDC(hdc, f) \
Lisp_Object prev_quit = Vinhibit_quit; \
Vinhibit_quit = Qt; \
HDC hdc = get_frame_dc (f)
# define RELEASE_HDC(hdc, f) \
release_frame_dc (f, hdc); \
Vinhibit_quit = prev_quit
#else
# define ALLOCATE_HDC(hdc, f)
# define RELEASE_HDC(hdc, f)
#endif
static void
init_glyph_string (struct glyph_string *s,
#ifdef HAVE_NTGUI
HDC hdc,
#endif
unsigned *char2b, struct window *w, struct glyph_row *row,
enum glyph_row_area area, int start, enum draw_glyphs_face hl)
{
memset (s, 0, sizeof *s);
s->w = w;
s->f = XFRAME (w->frame);
#ifdef HAVE_NTGUI
s->hdc = hdc;
#endif
s->char2b = char2b;
s->hl = hl;
s->row = row;
s->area = area;
s->first_glyph = row->glyphs[area] + start;
s->height = row->height;
s->y = WINDOW_TO_FRAME_PIXEL_Y (w, row->y);
s->ybase = s->y + row->ascent;
}
/* Append the list of glyph strings with head H and tail T to the list
with head *HEAD and tail *TAIL. Set *HEAD and *TAIL to the result. */
static void
append_glyph_string_lists (struct glyph_string **head, struct glyph_string **tail,
struct glyph_string *h, struct glyph_string *t)
{
if (h)
{
if (*head)
(*tail)->next = h;
else
*head = h;
h->prev = *tail;
*tail = t;
}
}
/* Prepend the list of glyph strings with head H and tail T to the
list with head *HEAD and tail *TAIL. Set *HEAD and *TAIL to the
result. */
static void
prepend_glyph_string_lists (struct glyph_string **head, struct glyph_string **tail,
struct glyph_string *h, struct glyph_string *t)
{
if (h)
{
if (*head)
(*head)->prev = t;
else
*tail = t;
t->next = *head;
*head = h;
}
}
/* Append glyph string S to the list with head *HEAD and tail *TAIL.
Set *HEAD and *TAIL to the resulting list. */
static void
append_glyph_string (struct glyph_string **head, struct glyph_string **tail,
struct glyph_string *s)
{
s->next = s->prev = NULL;
append_glyph_string_lists (head, tail, s, s);
}
/* Get face and two-byte form of character C in face FACE_ID on frame F.
The encoding of C is returned in *CHAR2B. DISPLAY_P means
make sure that X resources for the face returned are allocated.
Value is a pointer to a realized face that is ready for display if
DISPLAY_P. */
static struct face *
get_char_face_and_encoding (struct frame *f, int c, int face_id,
unsigned *char2b, bool display_p)
{
struct face *face = FACE_FROM_ID (f, face_id);
unsigned code = 0;
if (face->font)
{
code = face->font->driver->encode_char (face->font, c);
if (code == FONT_INVALID_CODE)
code = 0;
}
/* Ensure that the code is only 2 bytes wide. */
*char2b = code & 0xFFFF;
/* Make sure X resources of the face are allocated. */
#ifdef HAVE_X_WINDOWS
if (display_p)
#endif
{
eassert (face != NULL);
prepare_face_for_display (f, face);
}
return face;
}
/* Get face glyph GLYPH on frame F, and if a character glyph, its
multi-byte character form in *CHAR2B. Value is a pointer to a
realized face that is ready for display. */
static struct face *
get_glyph_face_and_encoding (struct frame *f, struct glyph *glyph,
unsigned *char2b)
{
struct face *face;
unsigned code = 0;
face = FACE_FROM_ID (f, glyph->face_id);
/* Make sure X resources of the face are allocated. */
prepare_face_for_display (f, face);
if (glyph->type == CHAR_GLYPH)
{
if (face->font)
{
if (CHAR_BYTE8_P (glyph->u.ch))
code = CHAR_TO_BYTE8 (glyph->u.ch);
else
code = face->font->driver->encode_char (face->font, glyph->u.ch);
if (code == FONT_INVALID_CODE)
code = 0;
}
/* Ensure that the code is only 2 bytes wide. */
*char2b = code & 0xFFFF;
}
return face;
}
/* Get glyph code of character C in FONT in the two-byte form CHAR2B.
Return true iff FONT has a glyph for C. */
static bool
get_char_glyph_code (int c, struct font *font, unsigned *char2b)
{
unsigned code;
if (CHAR_BYTE8_P (c))
code = CHAR_TO_BYTE8 (c);
else
code = font->driver->encode_char (font, c);
if (code == FONT_INVALID_CODE)
return false;
/* Ensure that the code is only 2 bytes wide. */
*char2b = code & 0xFFFF;
return true;
}
/* Fill glyph string S with composition components specified by S->cmp.
BASE_FACE is the base face of the composition.
S->cmp_from is the index of the first component for S.
OVERLAPS non-zero means S should draw the foreground only, and use
its physical height for clipping. See also draw_glyphs.
Value is the index of a component not in S. */
static int
fill_composite_glyph_string (struct glyph_string *s, struct face *base_face,
int overlaps)
{
int i;
/* For all glyphs of this composition, starting at the offset
S->cmp_from, until we reach the end of the definition or encounter a
glyph that requires the different face, add it to S. */
struct face *face;
eassert (s);
s->for_overlaps = overlaps;
s->face = NULL;
s->font = NULL;
for (i = s->cmp_from; i < s->cmp->glyph_len; i++)
{
int c = COMPOSITION_GLYPH (s->cmp, i);
/* TAB in a composition means display glyphs with padding space
on the left or right. */
if (c != '\t')
{
int face_id = FACE_FOR_CHAR (s->f, base_face->ascii_face, c,
-1, Qnil);
face = get_char_face_and_encoding (s->f, c, face_id,
s->char2b + i, true);
if (face)
{
if (! s->face)
{
s->face = face;
s->font = s->face->font;
}
else if (s->face != face)
break;
}
}
++s->nchars;
}
s->cmp_to = i;
if (s->face == NULL)
{
s->face = base_face->ascii_face;
s->font = s->face->font;
}
if (s->hl == DRAW_MOUSE_FACE
|| (s->hl == DRAW_CURSOR
&& MATRIX_ROW (s->w->current_matrix,
s->w->phys_cursor.vpos)->mouse_face_p
&& cursor_in_mouse_face_p (s->w)))
{
int c = COMPOSITION_GLYPH (s->cmp, 0);
Mouse_HLInfo *hlinfo = MOUSE_HL_INFO (s->f);
s->face = FACE_FROM_ID_OR_NULL (s->f, hlinfo->mouse_face_face_id);
if (!s->face)
s->face = FACE_FROM_ID (s->f, MOUSE_FACE_ID);
s->face = FACE_FROM_ID (s->f, FACE_FOR_CHAR (s->f, s->face, c, -1, Qnil));
prepare_face_for_display (s->f, s->face);
}
/* All glyph strings for the same composition has the same width,
i.e. the width set for the first component of the composition. */
s->width = s->first_glyph->pixel_width;
/* If the specified font could not be loaded, use the frame's
default font, but record the fact that we couldn't load it in
the glyph string so that we can draw rectangles for the
characters of the glyph string. */
if (s->font == NULL)
{
s->font_not_found_p = true;
s->font = FRAME_FONT (s->f);
}
/* Adjust base line for subscript/superscript text. */
s->ybase += s->first_glyph->voffset;
return s->cmp_to;
}
static int
fill_gstring_glyph_string (struct glyph_string *s, int face_id,
int start, int end, int overlaps)
{
struct glyph *glyph, *last;
int voffset;
Lisp_Object lgstring;
int i;
bool glyph_not_available_p;
s->for_overlaps = overlaps;
glyph = s->row->glyphs[s->area] + start;
last = s->row->glyphs[s->area] + end;
voffset = glyph->voffset;
glyph_not_available_p = glyph->glyph_not_available_p;
s->cmp_id = glyph->u.cmp.id;
s->cmp_from = glyph->slice.cmp.from;
s->cmp_to = glyph->slice.cmp.to + 1;
if (s->hl == DRAW_MOUSE_FACE
|| (s->hl == DRAW_CURSOR
&& MATRIX_ROW (s->w->current_matrix,
s->w->phys_cursor.vpos)->mouse_face_p
&& cursor_in_mouse_face_p (s->w)))
{
Mouse_HLInfo *hlinfo = MOUSE_HL_INFO (s->f);
s->face = FACE_FROM_ID_OR_NULL (s->f, hlinfo->mouse_face_face_id);
if (!s->face)
s->face = FACE_FROM_ID (s->f, MOUSE_FACE_ID);
prepare_face_for_display (s->f, s->face);
}
else
s->face = FACE_FROM_ID (s->f, face_id);
lgstring = composition_gstring_from_id (s->cmp_id);
s->font = XFONT_OBJECT (LGSTRING_FONT (lgstring));
/* The width of a composition glyph string is the sum of the
composition's glyph widths. */
s->width = s->first_glyph->pixel_width;
glyph++;
while (glyph < last
&& glyph->u.cmp.automatic
&& glyph->u.cmp.id == s->cmp_id
&& glyph->face_id == face_id
&& s->cmp_to == glyph->slice.cmp.from
&& glyph->glyph_not_available_p == glyph_not_available_p)
{
s->width += glyph->pixel_width;
s->cmp_to = (glyph++)->slice.cmp.to + 1;
}
for (i = s->cmp_from; i < s->cmp_to; i++)
{
Lisp_Object lglyph = LGSTRING_GLYPH (lgstring, i);
unsigned code = LGLYPH_CODE (lglyph);
/* Ensure that the code is only 2 bytes wide. */
s->char2b[i] = code & 0xFFFF;
}
/* If the specified font could not be loaded, record that fact in
S->font_not_found_p so that we can draw rectangles for the
characters of the glyph string. */
if (glyph_not_available_p)
s->font_not_found_p = true;
/* Adjust base line for subscript/superscript text. */
s->ybase += voffset;
return glyph - s->row->glyphs[s->area];
}
/* Fill glyph string S from a sequence glyphs for glyphless characters.
See the comment of fill_glyph_string for arguments.
Value is the index of the first glyph not in S. */
static int
fill_glyphless_glyph_string (struct glyph_string *s, int face_id,
int start, int end, int overlaps)
{
struct glyph *glyph, *last;
int voffset;
eassert (s->first_glyph->type == GLYPHLESS_GLYPH);
s->for_overlaps = overlaps;
glyph = s->row->glyphs[s->area] + start;
last = s->row->glyphs[s->area] + end;
voffset = glyph->voffset;
s->face = FACE_FROM_ID (s->f, face_id);
s->font = s->face->font ? s->face->font : FRAME_FONT (s->f);
if (s->hl == DRAW_MOUSE_FACE
|| (s->hl == DRAW_CURSOR
&& MATRIX_ROW (s->w->current_matrix,
s->w->phys_cursor.vpos)->mouse_face_p
&& cursor_in_mouse_face_p (s->w)))
{
Mouse_HLInfo *hlinfo = MOUSE_HL_INFO (s->f);
s->face = FACE_FROM_ID_OR_NULL (s->f, hlinfo->mouse_face_face_id);
if (!s->face)
s->face = FACE_FROM_ID (s->f, MOUSE_FACE_ID);
prepare_face_for_display (s->f, s->face);
}
s->nchars = 1;
s->width = glyph->pixel_width;
glyph++;
while (glyph < last
&& glyph->type == GLYPHLESS_GLYPH
&& glyph->voffset == voffset
&& glyph->face_id == face_id)
{
s->nchars++;
s->width += glyph->pixel_width;
glyph++;
}
s->ybase += voffset;
return glyph - s->row->glyphs[s->area];
}
/* Fill glyph string S from a sequence of character glyphs.
FACE_ID is the face id of the string. START is the index of the
first glyph to consider, END is the index of the last + 1.
OVERLAPS non-zero means S should draw the foreground only, and use
its physical height for clipping. See also draw_glyphs.
Value is the index of the first glyph not in S. */
static int
fill_glyph_string (struct glyph_string *s, int face_id,
int start, int end, int overlaps)
{
struct glyph *glyph, *last;
int voffset;
bool glyph_not_available_p;
eassert (s->f == XFRAME (s->w->frame));
eassert (s->nchars == 0);
eassert (start >= 0 && end > start);
s->for_overlaps = overlaps;
glyph = s->row->glyphs[s->area] + start;
last = s->row->glyphs[s->area] + end;
voffset = glyph->voffset;
s->padding_p = glyph->padding_p;
glyph_not_available_p = glyph->glyph_not_available_p;
while (glyph < last
&& glyph->type == CHAR_GLYPH
&& glyph->voffset == voffset
/* Same face id implies same font, nowadays. */
&& glyph->face_id == face_id
&& glyph->glyph_not_available_p == glyph_not_available_p)
{
s->face = get_glyph_face_and_encoding (s->f, glyph,
s->char2b + s->nchars);
++s->nchars;
eassert (s->nchars <= end - start);
s->width += glyph->pixel_width;
if (glyph++->padding_p != s->padding_p)
break;
}
s->font = s->face->font;
if (s->hl == DRAW_MOUSE_FACE
|| (s->hl == DRAW_CURSOR
&& MATRIX_ROW (s->w->current_matrix,
s->w->phys_cursor.vpos)->mouse_face_p
&& cursor_in_mouse_face_p (s->w)))
{
Mouse_HLInfo *hlinfo = MOUSE_HL_INFO (s->f);
s->face = FACE_FROM_ID_OR_NULL (s->f, hlinfo->mouse_face_face_id);
if (!s->face)
s->face = FACE_FROM_ID (s->f, MOUSE_FACE_ID);
s->face
= FACE_FROM_ID (s->f, FACE_FOR_CHAR (s->f, s->face,
s->first_glyph->u.ch, -1, Qnil));
prepare_face_for_display (s->f, s->face);
}
/* If the specified font could not be loaded, use the frame's font,
but record the fact that we couldn't load it in
S->font_not_found_p so that we can draw rectangles for the
characters of the glyph string. */
if (s->font == NULL || glyph_not_available_p)
{
s->font_not_found_p = true;
s->font = FRAME_FONT (s->f);
}
/* Adjust base line for subscript/superscript text. */
s->ybase += voffset;
eassert (s->face && s->face->gc);
return glyph - s->row->glyphs[s->area];
}
/* Fill glyph string S from image glyph S->first_glyph. */
static void
fill_image_glyph_string (struct glyph_string *s)
{
eassert (s->first_glyph->type == IMAGE_GLYPH);
s->img = IMAGE_FROM_ID (s->f, s->first_glyph->u.img_id);
eassert (s->img);
s->slice = s->first_glyph->slice.img;
s->face = FACE_FROM_ID (s->f, s->first_glyph->face_id);
s->font = s->face->font;
if (s->hl == DRAW_MOUSE_FACE
|| (s->hl == DRAW_CURSOR
&& MATRIX_ROW (s->w->current_matrix,
s->w->phys_cursor.vpos)->mouse_face_p
&& cursor_in_mouse_face_p (s->w)))
{
Mouse_HLInfo *hlinfo = MOUSE_HL_INFO (s->f);
s->face = FACE_FROM_ID_OR_NULL (s->f, hlinfo->mouse_face_face_id);
if (!s->face)
s->face = FACE_FROM_ID (s->f, MOUSE_FACE_ID);
prepare_face_for_display (s->f, s->face);
}
s->width = s->first_glyph->pixel_width;
/* Adjust base line for subscript/superscript text. */
s->ybase += s->first_glyph->voffset;
}
#ifdef HAVE_XWIDGETS
static void
fill_xwidget_glyph_string (struct glyph_string *s)
{
eassert (s->first_glyph->type == XWIDGET_GLYPH);
s->face = FACE_FROM_ID (s->f, s->first_glyph->face_id);
s->font = s->face->font;
if (s->hl == DRAW_MOUSE_FACE
|| (s->hl == DRAW_CURSOR
&& MATRIX_ROW (s->w->current_matrix,
s->w->phys_cursor.vpos)->mouse_face_p
&& cursor_in_mouse_face_p (s->w)))
{
Mouse_HLInfo *hlinfo = MOUSE_HL_INFO (s->f);
s->face = FACE_FROM_ID_OR_NULL (s->f, hlinfo->mouse_face_face_id);
if (!s->face)
s->face = FACE_FROM_ID (s->f, MOUSE_FACE_ID);
prepare_face_for_display (s->f, s->face);
}
s->width = s->first_glyph->pixel_width;
s->ybase += s->first_glyph->voffset;
s->xwidget = xwidget_from_id (s->first_glyph->u.xwidget);
}
#endif
/* Fill glyph string S from a sequence of stretch glyphs.
START is the index of the first glyph to consider,
END is the index of the last + 1.
Value is the index of the first glyph not in S. */
static int
fill_stretch_glyph_string (struct glyph_string *s, int start, int end)
{
struct glyph *glyph, *last;
int voffset, face_id;
eassert (s->first_glyph->type == STRETCH_GLYPH);
glyph = s->row->glyphs[s->area] + start;
last = s->row->glyphs[s->area] + end;
face_id = glyph->face_id;
s->face = FACE_FROM_ID (s->f, face_id);
s->font = s->face->font;
if (s->hl == DRAW_MOUSE_FACE
|| (s->hl == DRAW_CURSOR
&& MATRIX_ROW (s->w->current_matrix,
s->w->phys_cursor.vpos)->mouse_face_p
&& cursor_in_mouse_face_p (s->w)))
{
Mouse_HLInfo *hlinfo = MOUSE_HL_INFO (s->f);
s->face = FACE_FROM_ID_OR_NULL (s->f, hlinfo->mouse_face_face_id);
if (!s->face)
s->face = FACE_FROM_ID (s->f, MOUSE_FACE_ID);
prepare_face_for_display (s->f, s->face);
}
s->width = glyph->pixel_width;
s->nchars = 1;
voffset = glyph->voffset;
for (++glyph;
(glyph < last
&& glyph->type == STRETCH_GLYPH
&& glyph->voffset == voffset
&& glyph->face_id == face_id);
++glyph)
s->width += glyph->pixel_width;
/* Adjust base line for subscript/superscript text. */
s->ybase += voffset;
/* The case that face->gc == 0 is handled when drawing the glyph
string by calling prepare_face_for_display. */
eassert (s->face);
return glyph - s->row->glyphs[s->area];
}
static struct font_metrics *
get_per_char_metric (struct font *font, const unsigned *char2b)
{
static struct font_metrics metrics;
if (! font)
return NULL;
if (*char2b == FONT_INVALID_CODE)
return NULL;
font->driver->text_extents (font, char2b, 1, &metrics);
return &metrics;
}
/* A subroutine that computes "normal" values of ASCENT and DESCENT
for FONT. Values are taken from font-global ones, except for fonts
that claim preposterously large values, but whose glyphs actually
have reasonable dimensions. C is the character to use for metrics
if the font-global values are too large; if C is negative, the
function selects a default character. */
static void
normal_char_ascent_descent (struct font *font, int c, int *ascent, int *descent)
{
*ascent = FONT_BASE (font);
*descent = FONT_DESCENT (font);
if (FONT_TOO_HIGH (font))
{
unsigned char2b;
/* Get metrics of C, defaulting to a reasonably sized ASCII
character. */
if (get_char_glyph_code (c >= 0 ? c : '{', font, &char2b))
{
struct font_metrics *pcm = get_per_char_metric (font, &char2b);
eassume (pcm);
if (!(pcm->width == 0 && pcm->rbearing == 0 && pcm->lbearing == 0))
{
/* We add 1 pixel to character dimensions as heuristics
that produces nicer display, e.g. when the face has
the box attribute. */
*ascent = pcm->ascent + 1;
*descent = pcm->descent + 1;
}
}
}
}
/* A subroutine that computes a reasonable "normal character height"
for fonts that claim preposterously large vertical dimensions, but
whose glyphs are actually reasonably sized. C is the character
whose metrics to use for those fonts, or -1 for default
character. */
static int
normal_char_height (struct font *font, int c)
{
int ascent, descent;
normal_char_ascent_descent (font, c, &ascent, &descent);
return ascent + descent;
}
/* EXPORT for RIF:
Set *LEFT and *RIGHT to the left and right overhang of GLYPH on
frame F. Overhangs of glyphs other than type CHAR_GLYPH are
assumed to be zero. */
void
gui_get_glyph_overhangs (struct glyph *glyph, struct frame *f, int *left, int *right)
{
unsigned char2b;
struct face *face;
*left = *right = 0;
face = get_glyph_face_and_encoding (f, glyph, &char2b);
if (glyph->type == CHAR_GLYPH)
{
if (face->font)
{
struct font_metrics *pcm
= get_per_char_metric (face->font, &char2b);
if (pcm)
{
/* Overstruck text is displayed twice, the second time
one pixel to the right. Increase the right-side
bearing to match. */
if (face->overstrike)
pcm->rbearing++;
if (pcm->rbearing > pcm->width)
*right = pcm->rbearing - pcm->width;
if (pcm->lbearing < 0)
*left = -pcm->lbearing;
}
}
}
else if (glyph->type == COMPOSITE_GLYPH)
{
if (! glyph->u.cmp.automatic)
{
struct composition *cmp = composition_table[glyph->u.cmp.id];
int rbearing;
rbearing = cmp->rbearing;
/* Overstruck text is displayed twice, the second time one
pixel to the right. Increase the right-side bearing to
match. */
if (face->overstrike)
rbearing++;
if (rbearing > cmp->pixel_width)
*right = cmp->rbearing - cmp->pixel_width;
if (cmp->lbearing < 0)
*left = - cmp->lbearing;
}
else
{
Lisp_Object gstring = composition_gstring_from_id (glyph->u.cmp.id);
struct font_metrics metrics;
composition_gstring_width (gstring, glyph->slice.cmp.from,
glyph->slice.cmp.to + 1, &metrics);
/* Overstruck text is displayed twice, the second time one
pixel to the right. Increase the right-side bearing to
match. */
if (face->overstrike)
metrics.rbearing++;
if (metrics.rbearing > metrics.width)
*right = metrics.rbearing - metrics.width;
if (metrics.lbearing < 0)
*left = - metrics.lbearing;
}
}
}
/* Return the index of the first glyph preceding glyph string S that
is overwritten by S because of S's left overhang. Value is -1
if no glyphs are overwritten. */
static int
left_overwritten (struct glyph_string *s)
{
int k;
if (s->left_overhang)
{
int x = 0, i;
struct glyph *glyphs = s->row->glyphs[s->area];
int first = s->first_glyph - glyphs;
for (i = first - 1; i >= 0 && x > -s->left_overhang; --i)
x -= glyphs[i].pixel_width;
k = i + 1;
}
else
k = -1;
return k;
}
/* Return the index of the first glyph preceding glyph string S that
is overwriting S because of its right overhang. Value is -1 if no
glyph in front of S overwrites S. */
static int
left_overwriting (struct glyph_string *s)
{
int i, k, x;
struct glyph *glyphs = s->row->glyphs[s->area];
int first = s->first_glyph - glyphs;
k = -1;
x = 0;
for (i = first - 1; i >= 0; --i)
{
int left, right;
gui_get_glyph_overhangs (glyphs + i, s->f, &left, &right);
if (x + right > 0)
k = i;
x -= glyphs[i].pixel_width;
}
return k;
}
/* Return the index of the last glyph following glyph string S that is
overwritten by S because of S's right overhang. Value is -1 if
no such glyph is found. */
static int
right_overwritten (struct glyph_string *s)
{
int k = -1;
if (s->right_overhang)
{
int x = 0, i;
struct glyph *glyphs = s->row->glyphs[s->area];
int first = (s->first_glyph - glyphs
+ (s->first_glyph->type == COMPOSITE_GLYPH ? 1 : s->nchars));
int end = s->row->used[s->area];
for (i = first; i < end && s->right_overhang > x; ++i)
x += glyphs[i].pixel_width;
k = i;
}
return k;
}
/* Return the index of the last glyph following glyph string S that
overwrites S because of its left overhang. Value is negative
if no such glyph is found. */
static int
right_overwriting (struct glyph_string *s)
{
int i, k, x;
int end = s->row->used[s->area];
struct glyph *glyphs = s->row->glyphs[s->area];
int first = (s->first_glyph - glyphs
+ (s->first_glyph->type == COMPOSITE_GLYPH ? 1 : s->nchars));
k = -1;
x = 0;
for (i = first; i < end; ++i)
{
int left, right;
gui_get_glyph_overhangs (glyphs + i, s->f, &left, &right);
if (x - left < 0)
k = i;
x += glyphs[i].pixel_width;
}
return k;
}
/* Set background width of glyph string S. START is the index of the
first glyph following S. LAST_X is the right-most x-position + 1
in the drawing area.
If S->hl is DRAW_CURSOR, S->f is a window system frame, and the
cursor in S's window is currently inside mouse face, also update
S->width to take into account potentially differing :box
properties between the original face and the mouse face. */
static void
set_glyph_string_background_width (struct glyph_string *s, int start, int last_x)
{
/* If the face of this glyph string has to be drawn to the end of
the drawing area, set S->extends_to_end_of_line_p. */
if (start == s->row->used[s->area]
&& ((s->row->fill_line_p
&& (s->hl == DRAW_NORMAL_TEXT
|| s->hl == DRAW_IMAGE_RAISED
|| s->hl == DRAW_IMAGE_SUNKEN))
|| s->hl == DRAW_MOUSE_FACE))
s->extends_to_end_of_line_p = true;
/* If S extends its face to the end of the line, set its
background_width to the distance to the right edge of the drawing
area. */
if (s->extends_to_end_of_line_p)
s->background_width = last_x - s->x + 1;
else
{
s->background_width = s->width;
#ifdef HAVE_WINDOW_SYSTEM
if (FRAME_WINDOW_P (s->f)
&& s->hl == DRAW_CURSOR
&& MATRIX_ROW (s->w->current_matrix,
s->w->phys_cursor.vpos)->mouse_face_p
&& cursor_in_mouse_face_p (s->w))
{
/* Adjust the background width of the glyph string, because
if the glyph's face has the :box attribute, its
pixel_width might be different when it's displayed in the
mouse-face, if that also has the :box attribute. */
struct glyph *g = s->first_glyph;
struct face *regular_face = FACE_FROM_ID (s->f, g->face_id);
s->background_width +=
adjust_glyph_width_for_mouse_face (g, s->row, s->w,
regular_face, s->face);
/* S->width is probably worth adjusting here as well. */
s->width = s->background_width;
}
#endif
}
}
/* Return glyph string that shares background with glyph string S and
whose `background_width' member has been set. */
static struct glyph_string *
glyph_string_containing_background_width (struct glyph_string *s)
{
if (s->cmp)
while (s->cmp_from)
s = s->prev;
return s;
}
/* Compute overhangs and x-positions for glyph string S and its
predecessors, or successors. X is the starting x-position for S.
BACKWARD_P means process predecessors. */
static void
compute_overhangs_and_x (struct glyph_string *s, int x, bool backward_p)
{
if (backward_p)
{
while (s)
{
if (FRAME_RIF (s->f)->compute_glyph_string_overhangs)
FRAME_RIF (s->f)->compute_glyph_string_overhangs (s);
if (!s->cmp || s->cmp_to == s->cmp->glyph_len)
x -= s->width;
s->x = x;
s = s->prev;
}
}
else
{
while (s)
{
if (FRAME_RIF (s->f)->compute_glyph_string_overhangs)
FRAME_RIF (s->f)->compute_glyph_string_overhangs (s);
s->x = x;
if (!s->cmp || s->cmp_to == s->cmp->glyph_len)
x += s->width;
s = s->next;
}
}
}
/* The following macros are only called from draw_glyphs below.
They reference the following parameters of that function directly:
`w', `row', `area', and `overlap_p'
as well as the following local variables:
`s', `f', and `hdc' (in W32) */
#ifdef HAVE_NTGUI
/* On W32, silently add local `hdc' variable to argument list of
init_glyph_string. */
#define INIT_GLYPH_STRING(s, char2b, w, row, area, start, hl) \
init_glyph_string (s, hdc, char2b, w, row, area, start, hl)
#else
#define INIT_GLYPH_STRING(s, char2b, w, row, area, start, hl) \
init_glyph_string (s, char2b, w, row, area, start, hl)
#endif
/* Add a glyph string for a stretch glyph to the list of strings
between HEAD and TAIL. START is the index of the stretch glyph in
row area AREA of glyph row ROW. END is the index of the last glyph
in that glyph row area. X is the current output position assigned
to the new glyph string constructed. HL overrides that face of the
glyph; e.g. it is DRAW_CURSOR if a cursor has to be drawn. LAST_X
is the right-most x-position of the drawing area. */
/* SunOS 4 bundled cc, barfed on continuations in the arg lists here
and below -- keep them on one line. */
#define BUILD_STRETCH_GLYPH_STRING(START, END, HEAD, TAIL, HL, X, LAST_X) \
do \
{ \
s = alloca (sizeof *s); \
INIT_GLYPH_STRING (s, NULL, w, row, area, START, HL); \
START = fill_stretch_glyph_string (s, START, END); \
append_glyph_string (&HEAD, &TAIL, s); \
s->x = (X); \
} \
while (false)
/* Add a glyph string for an image glyph to the list of strings
between HEAD and TAIL. START is the index of the image glyph in
row area AREA of glyph row ROW. END is the index of the last glyph
in that glyph row area. X is the current output position assigned
to the new glyph string constructed. HL overrides that face of the
glyph; e.g. it is DRAW_CURSOR if a cursor has to be drawn. LAST_X
is the right-most x-position of the drawing area. */
#define BUILD_IMAGE_GLYPH_STRING(START, END, HEAD, TAIL, HL, X, LAST_X) \
do \
{ \
s = alloca (sizeof *s); \
INIT_GLYPH_STRING (s, NULL, w, row, area, START, HL); \
fill_image_glyph_string (s); \
append_glyph_string (&HEAD, &TAIL, s); \
++START; \
s->x = (X); \
} \
while (false)
#ifndef HAVE_XWIDGETS
# define BUILD_XWIDGET_GLYPH_STRING(START, END, HEAD, TAIL, HL, X, LAST_X) \
eassume (false)
#else
# define BUILD_XWIDGET_GLYPH_STRING(START, END, HEAD, TAIL, HL, X, LAST_X) \
do \
{ \
s = alloca (sizeof *s); \
INIT_GLYPH_STRING (s, NULL, w, row, area, START, HL); \
fill_xwidget_glyph_string (s); \
append_glyph_string (&(HEAD), &(TAIL), s); \
++(START); \
s->x = (X); \
} \
while (false)
#endif
/* Add a glyph string for a sequence of character glyphs to the list
of strings between HEAD and TAIL. START is the index of the first
glyph in row area AREA of glyph row ROW that is part of the new
glyph string. END is the index of the last glyph in that glyph row
area. X is the current output position assigned to the new glyph
string constructed. HL overrides that face of the glyph; e.g. it
is DRAW_CURSOR if a cursor has to be drawn. LAST_X is the
right-most x-position of the drawing area. */
#define BUILD_CHAR_GLYPH_STRINGS(START, END, HEAD, TAIL, HL, X, LAST_X) \
do \
{ \
int face_id; \
unsigned *char2b; \
\
face_id = (row)->glyphs[area][START].face_id; \
\
s = alloca (sizeof *s); \
SAFE_NALLOCA (char2b, 1, (END) - (START)); \
INIT_GLYPH_STRING (s, char2b, w, row, area, START, HL); \
append_glyph_string (&HEAD, &TAIL, s); \
s->x = (X); \
START = fill_glyph_string (s, face_id, START, END, overlaps); \
} \
while (false)
/* Add a glyph string for a composite sequence to the list of strings
between HEAD and TAIL. START is the index of the first glyph in
row area AREA of glyph row ROW that is part of the new glyph
string. END is the index of the last glyph in that glyph row area.
X is the current output position assigned to the new glyph string
constructed. HL overrides that face of the glyph; e.g. it is
DRAW_CURSOR if a cursor has to be drawn. LAST_X is the right-most
x-position of the drawing area. */
#define BUILD_COMPOSITE_GLYPH_STRING(START, END, HEAD, TAIL, HL, X, LAST_X) \
do { \
int face_id = (row)->glyphs[area][START].face_id; \
struct face *base_face = FACE_FROM_ID (f, face_id); \
ptrdiff_t cmp_id = (row)->glyphs[area][START].u.cmp.id; \
struct composition *cmp = composition_table[cmp_id]; \
unsigned *char2b; \
struct glyph_string *first_s = NULL; \
int n; \
\
SAFE_NALLOCA (char2b, 1, cmp->glyph_len); \
\
/* Make glyph_strings for each glyph sequence that is drawable by \
the same face, and append them to HEAD/TAIL. */ \
for (n = 0; n < cmp->glyph_len;) \
{ \
s = alloca (sizeof *s); \
INIT_GLYPH_STRING (s, char2b, w, row, area, START, HL); \
append_glyph_string (&(HEAD), &(TAIL), s); \
s->cmp = cmp; \
s->cmp_from = n; \
s->x = (X); \
if (n == 0) \
first_s = s; \
n = fill_composite_glyph_string (s, base_face, overlaps); \
} \
\
++START; \
s = first_s; \
} while (false)
/* Add a glyph string for a glyph-string sequence to the list of strings
between HEAD and TAIL. */
#define BUILD_GSTRING_GLYPH_STRING(START, END, HEAD, TAIL, HL, X, LAST_X) \
do { \
int face_id; \
unsigned *char2b; \
Lisp_Object gstring; \
\
face_id = (row)->glyphs[area][START].face_id; \
gstring = (composition_gstring_from_id \
((row)->glyphs[area][START].u.cmp.id)); \
s = alloca (sizeof *s); \
SAFE_NALLOCA (char2b, 1, LGSTRING_GLYPH_LEN (gstring)); \
INIT_GLYPH_STRING (s, char2b, w, row, area, START, HL); \
append_glyph_string (&(HEAD), &(TAIL), s); \
s->x = (X); \
START = fill_gstring_glyph_string (s, face_id, START, END, overlaps); \
} while (false)
/* Add a glyph string for a sequence of glyphless character's glyphs
to the list of strings between HEAD and TAIL. The meanings of
arguments are the same as those of BUILD_CHAR_GLYPH_STRINGS. */
#define BUILD_GLYPHLESS_GLYPH_STRING(START, END, HEAD, TAIL, HL, X, LAST_X) \
do \
{ \
int face_id; \
\
face_id = (row)->glyphs[area][START].face_id; \
\
s = alloca (sizeof *s); \
INIT_GLYPH_STRING (s, NULL, w, row, area, START, HL); \
append_glyph_string (&HEAD, &TAIL, s); \
s->x = (X); \
START = fill_glyphless_glyph_string (s, face_id, START, END, \
overlaps); \
} \
while (false)
/* Build a list of glyph strings between HEAD and TAIL for the glyphs
of AREA of glyph row ROW on window W between indices START and END.
HL overrides the face for drawing glyph strings, e.g. it is
DRAW_CURSOR to draw a cursor. X and LAST_X are start and end
x-positions of the drawing area.
This is an ugly monster macro construct because we must use alloca
to allocate glyph strings (because draw_glyphs can be called
asynchronously). */
#define BUILD_GLYPH_STRINGS_1(START, END, HEAD, TAIL, HL, X, LAST_X) \
do \
{ \
HEAD = TAIL = NULL; \
while (START < END) \
{ \
struct glyph *first_glyph = (row)->glyphs[area] + START; \
switch (first_glyph->type) \
{ \
case CHAR_GLYPH: \
BUILD_CHAR_GLYPH_STRINGS (START, END, HEAD, TAIL, \
HL, X, LAST_X); \
break; \
\
case COMPOSITE_GLYPH: \
if (first_glyph->u.cmp.automatic) \
BUILD_GSTRING_GLYPH_STRING (START, END, HEAD, TAIL, \
HL, X, LAST_X); \
else \
BUILD_COMPOSITE_GLYPH_STRING (START, END, HEAD, TAIL, \
HL, X, LAST_X); \
break; \
\
case STRETCH_GLYPH: \
BUILD_STRETCH_GLYPH_STRING (START, END, HEAD, TAIL, \
HL, X, LAST_X); \
break; \
\
case IMAGE_GLYPH: \
BUILD_IMAGE_GLYPH_STRING (START, END, HEAD, TAIL, \
HL, X, LAST_X); \
break;
#define BUILD_GLYPH_STRINGS_XW(START, END, HEAD, TAIL, HL, X, LAST_X) \
case XWIDGET_GLYPH: \
BUILD_XWIDGET_GLYPH_STRING (START, END, HEAD, TAIL, \
HL, X, LAST_X); \
break;
#define BUILD_GLYPH_STRINGS_2(START, END, HEAD, TAIL, HL, X, LAST_X) \
case GLYPHLESS_GLYPH: \
BUILD_GLYPHLESS_GLYPH_STRING (START, END, HEAD, TAIL, \
HL, X, LAST_X); \
break; \
\
default: \
emacs_abort (); \
} \
\
if (s) \
{ \
set_glyph_string_background_width (s, START, LAST_X); \
(X) += s->width; \
} \
} \
} while (false)
#define BUILD_GLYPH_STRINGS(START, END, HEAD, TAIL, HL, X, LAST_X) \
BUILD_GLYPH_STRINGS_1(START, END, HEAD, TAIL, HL, X, LAST_X) \
BUILD_GLYPH_STRINGS_XW(START, END, HEAD, TAIL, HL, X, LAST_X) \
BUILD_GLYPH_STRINGS_2(START, END, HEAD, TAIL, HL, X, LAST_X)
/* Draw glyphs between START and END in AREA of ROW on window W,
starting at x-position X. X is relative to AREA in W. HL is a
face-override with the following meaning:
DRAW_NORMAL_TEXT draw normally
DRAW_CURSOR draw in cursor face
DRAW_MOUSE_FACE draw in mouse face.
DRAW_INVERSE_VIDEO draw in mode line face
DRAW_IMAGE_SUNKEN draw an image with a sunken relief around it
DRAW_IMAGE_RAISED draw an image with a raised relief around it
If OVERLAPS is non-zero, draw only the foreground of characters and
clip to the physical height of ROW. Non-zero value also defines
the overlapping part to be drawn:
OVERLAPS_PRED overlap with preceding rows
OVERLAPS_SUCC overlap with succeeding rows
OVERLAPS_BOTH overlap with both preceding/succeeding rows
OVERLAPS_ERASED_CURSOR overlap with erased cursor area
Value is the x-position reached, relative to AREA of W. */
static int
draw_glyphs (struct window *w, int x, struct glyph_row *row,
enum glyph_row_area area, ptrdiff_t start, ptrdiff_t end,
enum draw_glyphs_face hl, int overlaps)
{
struct glyph_string *head, *tail;
struct glyph_string *s;
struct glyph_string *clip_head = NULL, *clip_tail = NULL;
int i, j, x_reached, last_x, area_left = 0;
struct frame *f = XFRAME (WINDOW_FRAME (w));
ALLOCATE_HDC (hdc, f);
/* Let's rather be paranoid than getting a SEGV. */
end = min (end, row->used[area]);
start = clip_to_bounds (0, start, end);
/* Translate X to frame coordinates. Set last_x to the right
end of the drawing area. */
if (row->full_width_p)
{
/* X is relative to the left edge of W, without scroll bars
or fringes. */
area_left = WINDOW_LEFT_EDGE_X (w);
last_x = (WINDOW_LEFT_EDGE_X (w) + WINDOW_PIXEL_WIDTH (w)
- (row->mode_line_p ? WINDOW_RIGHT_DIVIDER_WIDTH (w) : 0));
}
else
{
area_left = window_box_left (w, area);
last_x = area_left + window_box_width (w, area);
}
x += area_left;
/* Build a doubly-linked list of glyph_string structures between
head and tail from what we have to draw. Note that the macro
BUILD_GLYPH_STRINGS will modify its start parameter. That's
the reason we use a separate variable `i'. */
i = start;
USE_SAFE_ALLOCA;
BUILD_GLYPH_STRINGS (i, end, head, tail, hl, x, last_x);
if (tail)
{
s = glyph_string_containing_background_width (tail);
x_reached = s->x + s->background_width;
}
else
x_reached = x;
/* If there are any glyphs with lbearing < 0 or rbearing > width in
the row, redraw some glyphs in front or following the glyph
strings built above. */
if (head && !overlaps && row->contains_overlapping_glyphs_p)
{
struct glyph_string *h, *t;
Mouse_HLInfo *hlinfo = MOUSE_HL_INFO (f);
int mouse_beg_col UNINIT, mouse_end_col UNINIT;
bool check_mouse_face = false;
int dummy_x = 0;
/* If mouse highlighting is on, we may need to draw adjacent
glyphs using mouse-face highlighting. */
if (area == TEXT_AREA && row->mouse_face_p
&& hlinfo->mouse_face_beg_row >= 0
&& hlinfo->mouse_face_end_row >= 0)
{
ptrdiff_t row_vpos = MATRIX_ROW_VPOS (row, w->current_matrix);
if (row_vpos >= hlinfo->mouse_face_beg_row
&& row_vpos <= hlinfo->mouse_face_end_row)
{
check_mouse_face = true;
mouse_beg_col = (row_vpos == hlinfo->mouse_face_beg_row)
? hlinfo->mouse_face_beg_col : 0;
mouse_end_col = (row_vpos == hlinfo->mouse_face_end_row)
? hlinfo->mouse_face_end_col
: row->used[TEXT_AREA];
}
}
/* Compute overhangs for all glyph strings. */
if (FRAME_RIF (f)->compute_glyph_string_overhangs)
for (s = head; s; s = s->next)
FRAME_RIF (f)->compute_glyph_string_overhangs (s);
/* Prepend glyph strings for glyphs in front of the first glyph
string that are overwritten because of the first glyph
string's left overhang. The background of all strings
prepended must be drawn because the first glyph string
draws over it. */
i = left_overwritten (head);
if (i >= 0)
{
enum draw_glyphs_face overlap_hl;
/* If this row contains mouse highlighting, attempt to draw
the overlapped glyphs with the correct highlight. This
code fails if the overlap encompasses more than one glyph
and mouse-highlight spans only some of these glyphs.
However, making it work perfectly involves a lot more
code, and I don't know if the pathological case occurs in
practice, so we'll stick to this for now. --- cyd */
if (check_mouse_face
&& mouse_beg_col < start && mouse_end_col > i)
overlap_hl = DRAW_MOUSE_FACE;
else
overlap_hl = DRAW_NORMAL_TEXT;
if (hl != overlap_hl)
clip_head = head;
j = i;
BUILD_GLYPH_STRINGS (j, start, h, t,
overlap_hl, dummy_x, last_x);
start = i;
compute_overhangs_and_x (t, head->x, true);
prepend_glyph_string_lists (&head, &tail, h, t);
if (clip_head == NULL)
clip_head = head;
}
/* Prepend glyph strings for glyphs in front of the first glyph
string that overwrite that glyph string because of their
right overhang. For these strings, only the foreground must
be drawn, because it draws over the glyph string at `head'.
The background must not be drawn because this would overwrite
right overhangs of preceding glyphs for which no glyph
strings exist. */
i = left_overwriting (head);
if (i >= 0)
{
enum draw_glyphs_face overlap_hl;
if (check_mouse_face
&& mouse_beg_col < start && mouse_end_col > i)
overlap_hl = DRAW_MOUSE_FACE;
else
overlap_hl = DRAW_NORMAL_TEXT;
if (hl == overlap_hl || clip_head == NULL)
clip_head = head;
BUILD_GLYPH_STRINGS (i, start, h, t,
overlap_hl, dummy_x, last_x);
for (s = h; s; s = s->next)
s->background_filled_p = true;
compute_overhangs_and_x (t, head->x, true);
prepend_glyph_string_lists (&head, &tail, h, t);
}
/* Append glyphs strings for glyphs following the last glyph
string tail that are overwritten by tail. The background of
these strings has to be drawn because tail's foreground draws
over it. */
i = right_overwritten (tail);
if (i >= 0)
{
enum draw_glyphs_face overlap_hl;
if (check_mouse_face
&& mouse_beg_col < i && mouse_end_col > end)
overlap_hl = DRAW_MOUSE_FACE;
else
overlap_hl = DRAW_NORMAL_TEXT;
if (hl != overlap_hl)
clip_tail = tail;
BUILD_GLYPH_STRINGS (end, i, h, t,
overlap_hl, x, last_x);
/* Because BUILD_GLYPH_STRINGS updates the first argument,
we don't have `end = i;' here. */
compute_overhangs_and_x (h, tail->x + tail->width, false);
append_glyph_string_lists (&head, &tail, h, t);
if (clip_tail == NULL)
clip_tail = tail;
}
/* Append glyph strings for glyphs following the last glyph
string tail that overwrite tail. The foreground of such
glyphs has to be drawn because it writes into the background
of tail. The background must not be drawn because it could
paint over the foreground of following glyphs. */
i = right_overwriting (tail);
if (i >= 0)
{
enum draw_glyphs_face overlap_hl;
if (check_mouse_face
&& mouse_beg_col < i && mouse_end_col > end)
overlap_hl = DRAW_MOUSE_FACE;
else
overlap_hl = DRAW_NORMAL_TEXT;
if (hl == overlap_hl || clip_tail == NULL)
clip_tail = tail;
i++; /* We must include the Ith glyph. */
BUILD_GLYPH_STRINGS (end, i, h, t,
overlap_hl, x, last_x);
for (s = h; s; s = s->next)
s->background_filled_p = true;
compute_overhangs_and_x (h, tail->x + tail->width, false);
append_glyph_string_lists (&head, &tail, h, t);
}
tail = glyph_string_containing_background_width (tail);
if (clip_tail)
clip_tail = glyph_string_containing_background_width (clip_tail);
if (clip_head || clip_tail)
for (s = head; s; s = s->next)
{
s->clip_head = clip_head;
s->clip_tail = clip_tail;
}
}
#ifdef HAVE_RSVG
/* Update SVG image glyphs with mouse face features. FIXME: it
should be possible to have this behavior with transparent
background PNG. */
if (hl == DRAW_MOUSE_FACE)
{
Mouse_HLInfo *hlinfo = MOUSE_HL_INFO (f);
for (s = head; s; s = s->next)
if (s->first_glyph->type == IMAGE_GLYPH)
if (s->img
&& (EQ (image_spec_value (s->img->spec, QCtype, NULL), Qsvg)))
{
ptrdiff_t id;
id = lookup_image (f, s->img->spec, hlinfo->mouse_face_face_id);
s->img = IMAGE_FROM_ID (f, id);
prepare_image_for_display (f, s->img);
}
}
#endif
/* Draw all strings. */
for (s = head; s; s = s->next)
FRAME_RIF (f)->draw_glyph_string (s);
/* When focus a sole frame and move horizontally, this clears on_p
causing a failure to erase prev cursor position. */
if (area == TEXT_AREA
&& !row->full_width_p
/* When drawing overlapping rows, only the glyph strings'
foreground is drawn, which doesn't erase a cursor
completely. */
&& !overlaps)
{
int x0 = clip_head ? clip_head->x : (head ? head->x : x);
int x1 = (clip_tail ? clip_tail->x + clip_tail->background_width
: (tail ? tail->x + tail->background_width : x));
x0 -= area_left;
x1 -= area_left;
notice_overwritten_cursor (w, TEXT_AREA, x0, x1,
row->y, MATRIX_ROW_BOTTOM_Y (row));
}
/* Value is the x-position up to which drawn, relative to AREA of W.
This doesn't include parts drawn because of overhangs. */
if (row->full_width_p)
x_reached = FRAME_TO_WINDOW_PIXEL_X (w, x_reached);
else
x_reached -= area_left;
RELEASE_HDC (hdc, f);
SAFE_FREE ();
return x_reached;
}
/* Find the first glyph in the run of underlined glyphs preceding the
beginning of glyph string S, and return its font (which could be
NULL). This is needed because that font determines the underline
position and thickness for the entire run of the underlined glyphs.
This function is called from the draw_glyph_string method of GUI
frame's redisplay interface (RIF) when it needs to draw in an
underlined face. */
struct font *
font_for_underline_metrics (struct glyph_string *s)
{
struct glyph *g0 = s->row->glyphs[s->area], *g;
for (g = s->first_glyph - 1; g >= g0; g--)
{
struct face *prev_face = FACE_FROM_ID (s->f, g->face_id);
if (!(prev_face && prev_face->underline != FACE_NO_UNDERLINE))
break;
}
/* If preceding glyphs are not underlined, use the font of S. */
if (g == s->first_glyph - 1)
return s->font;
else
{
/* Otherwise use the font of the last glyph we saw in the above
loop whose face had the underline_p flag set. */
return FACE_FROM_ID (s->f, g[1].face_id)->font;
}
}
/* Expand row matrix if too narrow. Don't expand if area
is not present. */
#define IT_EXPAND_MATRIX_WIDTH(it, area) \
{ \
if (!it->f->fonts_changed \
&& (it->glyph_row->glyphs[area] \
< it->glyph_row->glyphs[area + 1])) \
{ \
it->w->ncols_scale_factor++; \
it->f->fonts_changed = true; \
} \
}
/* Store one glyph for IT->char_to_display in IT->glyph_row.
Called from gui_produce_glyphs when IT->glyph_row is non-null. */
static void
append_glyph (struct it *it)
{
struct glyph *glyph;
enum glyph_row_area area = it->area;
eassert (it->glyph_row);
eassert (it->char_to_display != '\n' && it->char_to_display != '\t');
glyph = it->glyph_row->glyphs[area] + it->glyph_row->used[area];
if (glyph < it->glyph_row->glyphs[area + 1])
{
/* If the glyph row is reversed, we need to prepend the glyph
rather than append it. */
if (it->glyph_row->reversed_p && area == TEXT_AREA)
{
struct glyph *g;
/* Make room for the additional glyph. */
for (g = glyph - 1; g >= it->glyph_row->glyphs[area]; g--)
g[1] = *g;
glyph = it->glyph_row->glyphs[area];
}
glyph->charpos = CHARPOS (it->position);
glyph->object = it->object;
if (it->pixel_width > 0)
{
eassert (it->pixel_width <= SHRT_MAX);
glyph->pixel_width = it->pixel_width;
glyph->padding_p = false;
}
else
{
/* Assure at least 1-pixel width. Otherwise, cursor can't
be displayed correctly. */
glyph->pixel_width = 1;
glyph->padding_p = true;
}
glyph->ascent = it->ascent;
glyph->descent = it->descent;
glyph->voffset = it->voffset;
glyph->type = CHAR_GLYPH;
glyph->avoid_cursor_p = it->avoid_cursor_p;
glyph->multibyte_p = it->multibyte_p;
if (it->glyph_row->reversed_p && area == TEXT_AREA)
{
/* In R2L rows, the left and the right box edges need to be
drawn in reverse direction. */
glyph->right_box_line_p = it->start_of_box_run_p;
glyph->left_box_line_p = it->end_of_box_run_p;
}
else
{
glyph->left_box_line_p = it->start_of_box_run_p;
glyph->right_box_line_p = it->end_of_box_run_p;
}
glyph->overlaps_vertically_p = (it->phys_ascent > it->ascent
|| it->phys_descent > it->descent);
glyph->glyph_not_available_p = it->glyph_not_available_p;
glyph->face_id = it->face_id;
glyph->u.ch = it->char_to_display;
glyph->slice.img = null_glyph_slice;
glyph->font_type = FONT_TYPE_UNKNOWN;
if (it->bidi_p)
{
glyph->resolved_level = it->bidi_it.resolved_level;
eassert ((it->bidi_it.type & 7) == it->bidi_it.type);
glyph->bidi_type = it->bidi_it.type;
}
else
{
glyph->resolved_level = 0;
glyph->bidi_type = UNKNOWN_BT;
}
++it->glyph_row->used[area];
}
else
IT_EXPAND_MATRIX_WIDTH (it, area);
}
/* Store one glyph for the composition IT->cmp_it.id in IT->glyph_row.
Called from gui_produce_glyphs when IT->glyph_row is non-null. */
static void
append_composite_glyph (struct it *it)
{
struct glyph *glyph;
enum glyph_row_area area = it->area;
eassert (it->glyph_row);
glyph = it->glyph_row->glyphs[area] + it->glyph_row->used[area];
if (glyph < it->glyph_row->glyphs[area + 1])
{
/* If the glyph row is reversed, we need to prepend the glyph
rather than append it. */
if (it->glyph_row->reversed_p && it->area == TEXT_AREA)
{
struct glyph *g;
/* Make room for the new glyph. */
for (g = glyph - 1; g >= it->glyph_row->glyphs[it->area]; g--)
g[1] = *g;
glyph = it->glyph_row->glyphs[it->area];
}
glyph->charpos = it->cmp_it.charpos;
glyph->object = it->object;
eassert (it->pixel_width <= SHRT_MAX);
glyph->pixel_width = it->pixel_width;
glyph->ascent = it->ascent;
glyph->descent = it->descent;
glyph->voffset = it->voffset;
glyph->type = COMPOSITE_GLYPH;
if (it->cmp_it.ch < 0)
{
glyph->u.cmp.automatic = false;
glyph->u.cmp.id = it->cmp_it.id;
glyph->slice.cmp.from = glyph->slice.cmp.to = 0;
}
else
{
glyph->u.cmp.automatic = true;
glyph->u.cmp.id = it->cmp_it.id;
glyph->slice.cmp.from = it->cmp_it.from;
glyph->slice.cmp.to = it->cmp_it.to - 1;
}
glyph->avoid_cursor_p = it->avoid_cursor_p;
glyph->multibyte_p = it->multibyte_p;
if (it->glyph_row->reversed_p && area == TEXT_AREA)
{
/* In R2L rows, the left and the right box edges need to be
drawn in reverse direction. */
glyph->right_box_line_p = it->start_of_box_run_p;
glyph->left_box_line_p = it->end_of_box_run_p;
}
else
{
glyph->left_box_line_p = it->start_of_box_run_p;
glyph->right_box_line_p = it->end_of_box_run_p;
}
glyph->overlaps_vertically_p = (it->phys_ascent > it->ascent
|| it->phys_descent > it->descent);
glyph->padding_p = false;
glyph->glyph_not_available_p = it->glyph_not_available_p;
glyph->face_id = it->face_id;
glyph->font_type = FONT_TYPE_UNKNOWN;
if (it->bidi_p)
{
glyph->resolved_level = it->bidi_it.resolved_level;
eassert ((it->bidi_it.type & 7) == it->bidi_it.type);
glyph->bidi_type = it->bidi_it.type;
}
++it->glyph_row->used[area];
}
else
IT_EXPAND_MATRIX_WIDTH (it, area);
}
/* Change IT->ascent and IT->height according to the setting of
IT->voffset. */
static void
take_vertical_position_into_account (struct it *it)
{
if (it->voffset)
{
if (it->voffset < 0)
/* Increase the ascent so that we can display the text higher
in the line. */
it->ascent -= it->voffset;
else
/* Increase the descent so that we can display the text lower
in the line. */
it->descent += it->voffset;
}
}
/* Produce glyphs/get display metrics for the image IT is loaded with.
See the description of struct display_iterator in dispextern.h for
an overview of struct display_iterator. */
static void
produce_image_glyph (struct it *it)
{
struct image *img;
struct face *face;
int glyph_ascent, crop;
struct glyph_slice slice;
eassert (it->what == IT_IMAGE);
face = FACE_FROM_ID (it->f, it->face_id);
/* Make sure X resources of the face is loaded. */
prepare_face_for_display (it->f, face);
if (it->image_id < 0)
{
/* Fringe bitmap. */
it->ascent = it->phys_ascent = 0;
it->descent = it->phys_descent = 0;
it->pixel_width = 0;
it->nglyphs = 0;
return;
}
img = IMAGE_FROM_ID (it->f, it->image_id);
/* Make sure X resources of the image is loaded. */
prepare_image_for_display (it->f, img);
slice.x = slice.y = 0;
slice.width = img->width;
slice.height = img->height;
if (FIXNUMP (it->slice.x))
slice.x = XFIXNUM (it->slice.x);
else if (FLOATP (it->slice.x))
slice.x = XFLOAT_DATA (it->slice.x) * img->width;
if (FIXNUMP (it->slice.y))
slice.y = XFIXNUM (it->slice.y);
else if (FLOATP (it->slice.y))
slice.y = XFLOAT_DATA (it->slice.y) * img->height;
if (FIXNUMP (it->slice.width))
slice.width = XFIXNUM (it->slice.width);
else if (FLOATP (it->slice.width))
slice.width = XFLOAT_DATA (it->slice.width) * img->width;
if (FIXNUMP (it->slice.height))
slice.height = XFIXNUM (it->slice.height);
else if (FLOATP (it->slice.height))
slice.height = XFLOAT_DATA (it->slice.height) * img->height;
if (slice.x >= img->width)
slice.x = img->width;
if (slice.y >= img->height)
slice.y = img->height;
if (slice.x + slice.width >= img->width)
slice.width = img->width - slice.x;
if (slice.y + slice.height > img->height)
slice.height = img->height - slice.y;
if (slice.width == 0 || slice.height == 0)
return;
it->ascent = it->phys_ascent = glyph_ascent = image_ascent (img, face, &slice);
it->descent = slice.height - glyph_ascent;
if (slice.y == 0)
it->descent += img->vmargin;
if (slice.y + slice.height == img->height)
it->descent += img->vmargin;
it->phys_descent = it->descent;
it->pixel_width = slice.width;
if (slice.x == 0)
it->pixel_width += img->hmargin;
if (slice.x + slice.width == img->width)
it->pixel_width += img->hmargin;
/* It's quite possible for images to have an ascent greater than
their height, so don't get confused in that case. */
if (it->descent < 0)
it->descent = 0;
it->nglyphs = 1;
if (face->box != FACE_NO_BOX)
{
/* If you change the logic here, please change it in
get_cursor_offset_for_mouse_face as well. */
if (face->box_horizontal_line_width > 0)
{
if (slice.y == 0)
it->ascent += face->box_horizontal_line_width;
if (slice.y + slice.height == img->height)
it->descent += face->box_horizontal_line_width;
}
if (face->box_vertical_line_width > 0)
{
if (it->start_of_box_run_p && slice.x == 0)
it->pixel_width += face->box_vertical_line_width;
if (it->end_of_box_run_p && slice.x + slice.width == img->width)
it->pixel_width += face->box_vertical_line_width;
}
}
take_vertical_position_into_account (it);
/* Automatically crop wide image glyphs at right edge so we can draw
the cursor on same display row. But don't do that under
word-wrap, unless the image starts at column zero, because
wrapping correctly needs the real pixel width of the image. */
if ((it->line_wrap != WORD_WRAP
|| it->hpos == 0
/* Always crop images larger than the window-width, minus 1 space. */
|| it->pixel_width > it->last_visible_x - FRAME_COLUMN_WIDTH (it->f))
&& (crop = it->pixel_width - (it->last_visible_x - it->current_x),
crop > 0)
&& (it->hpos == 0 || it->pixel_width > it->last_visible_x / 4))
{
it->pixel_width -= crop;
slice.width -= crop;
}
if (it->glyph_row)
{
struct glyph *glyph;
enum glyph_row_area area = it->area;
glyph = it->glyph_row->glyphs[area] + it->glyph_row->used[area];
if (it->glyph_row->reversed_p)
{
struct glyph *g;
/* Make room for the new glyph. */
for (g = glyph - 1; g >= it->glyph_row->glyphs[it->area]; g--)
g[1] = *g;
glyph = it->glyph_row->glyphs[it->area];
}
if (glyph < it->glyph_row->glyphs[area + 1])
{
glyph->charpos = CHARPOS (it->position);
glyph->object = it->object;
glyph->pixel_width = clip_to_bounds (-1, it->pixel_width, SHRT_MAX);
glyph->ascent = glyph_ascent;
glyph->descent = it->descent;
glyph->voffset = it->voffset;
glyph->type = IMAGE_GLYPH;
glyph->avoid_cursor_p = it->avoid_cursor_p;
glyph->multibyte_p = it->multibyte_p;
if (it->glyph_row->reversed_p && area == TEXT_AREA)
{
/* In R2L rows, the left and the right box edges need to be
drawn in reverse direction. */
glyph->right_box_line_p = it->start_of_box_run_p;
glyph->left_box_line_p = it->end_of_box_run_p;
}
else
{
glyph->left_box_line_p = it->start_of_box_run_p;
glyph->right_box_line_p = it->end_of_box_run_p;
}
glyph->overlaps_vertically_p = false;
glyph->padding_p = false;
glyph->glyph_not_available_p = false;
glyph->face_id = it->face_id;
glyph->u.img_id = img->id;
glyph->slice.img = slice;
glyph->font_type = FONT_TYPE_UNKNOWN;
if (it->bidi_p)
{
glyph->resolved_level = it->bidi_it.resolved_level;
eassert ((it->bidi_it.type & 7) == it->bidi_it.type);
glyph->bidi_type = it->bidi_it.type;
}
++it->glyph_row->used[area];
}
else
IT_EXPAND_MATRIX_WIDTH (it, area);
}
}
static void
produce_xwidget_glyph (struct it *it)
{
#ifdef HAVE_XWIDGETS
struct xwidget *xw;
int glyph_ascent, crop;
eassert (it->what == IT_XWIDGET);
struct face *face = FACE_FROM_ID (it->f, it->face_id);
/* Make sure X resources of the face is loaded. */
prepare_face_for_display (it->f, face);
xw = it->xwidget;
it->ascent = it->phys_ascent = glyph_ascent = xw->height/2;
it->descent = xw->height/2;
it->phys_descent = it->descent;
it->pixel_width = xw->width;
/* It's quite possible for images to have an ascent greater than
their height, so don't get confused in that case. */
if (it->descent < 0)
it->descent = 0;
it->nglyphs = 1;
if (face->box != FACE_NO_BOX)
{
if (face->box_horizontal_line_width > 0)
{
it->ascent += face->box_horizontal_line_width;
it->descent += face->box_horizontal_line_width;
}
if (face->box_vertical_line_width > 0)
{
if (it->start_of_box_run_p)
it->pixel_width += face->box_vertical_line_width;
it->pixel_width += face->box_vertical_line_width;
}
}
take_vertical_position_into_account (it);
/* Automatically crop wide image glyphs at right edge so we can
draw the cursor on same display row. */
crop = it->pixel_width - (it->last_visible_x - it->current_x);
if (crop > 0 && (it->hpos == 0 || it->pixel_width > it->last_visible_x / 4))
it->pixel_width -= crop;
if (it->glyph_row)
{
enum glyph_row_area area = it->area;
struct glyph *glyph
= it->glyph_row->glyphs[area] + it->glyph_row->used[area];
if (it->glyph_row->reversed_p)
{
struct glyph *g;
/* Make room for the new glyph. */
for (g = glyph - 1; g >= it->glyph_row->glyphs[it->area]; g--)
g[1] = *g;
glyph = it->glyph_row->glyphs[it->area];
}
if (glyph < it->glyph_row->glyphs[area + 1])
{
glyph->charpos = CHARPOS (it->position);
glyph->object = it->object;
glyph->pixel_width = clip_to_bounds (-1, it->pixel_width, SHRT_MAX);
glyph->ascent = glyph_ascent;
glyph->descent = it->descent;
glyph->voffset = it->voffset;
glyph->type = XWIDGET_GLYPH;
glyph->avoid_cursor_p = it->avoid_cursor_p;
glyph->multibyte_p = it->multibyte_p;
if (it->glyph_row->reversed_p && area == TEXT_AREA)
{
/* In R2L rows, the left and the right box edges need to be
drawn in reverse direction. */
glyph->right_box_line_p = it->start_of_box_run_p;
glyph->left_box_line_p = it->end_of_box_run_p;
}
else
{
glyph->left_box_line_p = it->start_of_box_run_p;
glyph->right_box_line_p = it->end_of_box_run_p;
}
glyph->overlaps_vertically_p = 0;
glyph->padding_p = 0;
glyph->glyph_not_available_p = 0;
glyph->face_id = it->face_id;
glyph->u.xwidget = it->xwidget->xwidget_id;
glyph->font_type = FONT_TYPE_UNKNOWN;
if (it->bidi_p)
{
glyph->resolved_level = it->bidi_it.resolved_level;
eassert ((it->bidi_it.type & 7) == it->bidi_it.type);
glyph->bidi_type = it->bidi_it.type;
}
++it->glyph_row->used[area];
}
else
IT_EXPAND_MATRIX_WIDTH (it, area);
}
#endif
}
/* Append a stretch glyph to IT->glyph_row. OBJECT is the source
of the glyph, WIDTH and HEIGHT are the width and height of the
stretch. ASCENT is the ascent of the glyph (0 <= ASCENT <= HEIGHT). */
static void
append_stretch_glyph (struct it *it, Lisp_Object object,
int width, int height, int ascent)
{
struct glyph *glyph;
enum glyph_row_area area = it->area;
eassert (ascent >= 0 && ascent <= height);
glyph = it->glyph_row->glyphs[area] + it->glyph_row->used[area];
if (glyph < it->glyph_row->glyphs[area + 1])
{
/* If the glyph row is reversed, we need to prepend the glyph
rather than append it. */
if (it->glyph_row->reversed_p && area == TEXT_AREA)
{
struct glyph *g;
/* Make room for the additional glyph. */
for (g = glyph - 1; g >= it->glyph_row->glyphs[area]; g--)
g[1] = *g;
glyph = it->glyph_row->glyphs[area];
/* Decrease the width of the first glyph of the row that
begins before first_visible_x (e.g., due to hscroll).
This is so the overall width of the row becomes smaller
by the scroll amount, and the stretch glyph appended by
extend_face_to_end_of_line will be wider, to shift the
row glyphs to the right. (In L2R rows, the corresponding
left-shift effect is accomplished by setting row->x to a
negative value, which won't work with R2L rows.)
This must leave us with a positive value of WIDTH, since
otherwise the call to move_it_in_display_line_to at the
beginning of display_line would have got past the entire
first glyph, and then it->current_x would have been
greater or equal to it->first_visible_x. */
if (it->current_x < it->first_visible_x)
width -= it->first_visible_x - it->current_x;
eassert (width > 0);
}
glyph->charpos = CHARPOS (it->position);
glyph->object = object;
/* FIXME: It would be better to use TYPE_MAX here, but
__typeof__ is not portable enough... */
glyph->pixel_width = clip_to_bounds (-1, width, SHRT_MAX);
glyph->ascent = ascent;
glyph->descent = height - ascent;
glyph->voffset = it->voffset;
glyph->type = STRETCH_GLYPH;
glyph->avoid_cursor_p = it->avoid_cursor_p;
glyph->multibyte_p = it->multibyte_p;
if (it->glyph_row->reversed_p && area == TEXT_AREA)
{
/* In R2L rows, the left and the right box edges need to be
drawn in reverse direction. */
glyph->right_box_line_p = it->start_of_box_run_p;
glyph->left_box_line_p = it->end_of_box_run_p;
}
else
{
glyph->left_box_line_p = it->start_of_box_run_p;
glyph->right_box_line_p = it->end_of_box_run_p;
}
glyph->overlaps_vertically_p = false;
glyph->padding_p = false;
glyph->glyph_not_available_p = false;
glyph->face_id = it->face_id;
glyph->u.stretch.ascent = ascent;
glyph->u.stretch.height = height;
glyph->slice.img = null_glyph_slice;
glyph->font_type = FONT_TYPE_UNKNOWN;
if (it->bidi_p)
{
glyph->resolved_level = it->bidi_it.resolved_level;
eassert ((it->bidi_it.type & 7) == it->bidi_it.type);
glyph->bidi_type = it->bidi_it.type;
}
else
{
glyph->resolved_level = 0;
glyph->bidi_type = UNKNOWN_BT;
}
++it->glyph_row->used[area];
}
else
IT_EXPAND_MATRIX_WIDTH (it, area);
}
#endif /* HAVE_WINDOW_SYSTEM */
/* Produce a stretch glyph for iterator IT. IT->object is the value
of the display property. The value must be a list of the form
`(space KEYWORD VALUE ...)' with the following KEYWORD/VALUE pairs
being recognized:
1. `:width WIDTH' specifies that the space should be WIDTH *
canonical char width wide. WIDTH may be an integer or floating
point number.
2. `:relative-width FACTOR' specifies that the width of the stretch
should be computed from the width of the first character having the
`display' property, and should be FACTOR times that width.
3. `:align-to HPOS' specifies that the space should be wide enough
to reach HPOS, a value in canonical character units.
Exactly one of the above pairs must be present.
4. `:height HEIGHT' specifies that the height of the stretch produced
should be HEIGHT, measured in canonical character units.
5. `:relative-height FACTOR' specifies that the height of the
stretch should be FACTOR times the height of the characters having
the display property.
Either none or exactly one of 4 or 5 must be present.
6. `:ascent ASCENT' specifies that ASCENT percent of the height
of the stretch should be used for the ascent of the stretch.
ASCENT must be in the range 0 <= ASCENT <= 100. */
void
produce_stretch_glyph (struct it *it)
{
/* (space :width WIDTH :height HEIGHT ...) */
Lisp_Object prop, plist;
int width = 0, height = 0, align_to = -1;
bool zero_width_ok_p = false;
double tem;
struct font *font = NULL;
#ifdef HAVE_WINDOW_SYSTEM
int ascent = 0;
bool zero_height_ok_p = false;
struct face *face = NULL; /* shut up GCC's -Wmaybe-uninitialized */
if (FRAME_WINDOW_P (it->f))
{
face = FACE_FROM_ID (it->f, it->face_id);
font = face->font ? face->font : FRAME_FONT (it->f);
prepare_face_for_display (it->f, face);
}
#endif
/* List should start with `space'. */
eassert (CONSP (it->object) && EQ (XCAR (it->object), Qspace));
plist = XCDR (it->object);
/* Compute the width of the stretch. */
if ((prop = plist_get (plist, QCwidth), !NILP (prop))
&& calc_pixel_width_or_height (&tem, it, prop, font, true, NULL))
{
/* Absolute width `:width WIDTH' specified and valid. */
zero_width_ok_p = true;
width = (int)tem;
}
else if (prop = plist_get (plist, QCrelative_width), NUMVAL (prop) > 0)
{
/* Relative width `:relative-width FACTOR' specified and valid.
Compute the width of the characters having this `display'
property. */
struct it it2;
Lisp_Object object =
it->sp > 0 ? it->stack[it->sp - 1].string : it->string;
unsigned char *p = (STRINGP (object)
? SDATA (object) + IT_STRING_BYTEPOS (*it)
: BYTE_POS_ADDR (IT_BYTEPOS (*it)));
bool multibyte_p =
STRINGP (object) ? STRING_MULTIBYTE (object) : it->multibyte_p;
it2 = *it;
if (multibyte_p)
{
it2.c = it2.char_to_display = string_char_and_length (p, &it2.len);
#ifdef HAVE_WINDOW_SYSTEM
if (FRAME_WINDOW_P (it->f) && ! ASCII_CHAR_P (it2.c))
it2.face_id = FACE_FOR_CHAR (it->f, face, it2.c,
IT_CHARPOS (*it),
STRINGP (object)? object : Qnil);
#endif
}
else
{
it2.c = it2.char_to_display = *p, it2.len = 1;
if (! ASCII_CHAR_P (it2.c))
it2.char_to_display = BYTE8_TO_CHAR (it2.c);
}
it2.glyph_row = NULL;
it2.what = IT_CHARACTER;
PRODUCE_GLYPHS (&it2);
width = NUMVAL (prop) * it2.pixel_width;
}
else if ((prop = plist_get (plist, QCalign_to), !NILP (prop))
&& calc_pixel_width_or_height (&tem, it, prop, font, true,
&align_to))
{
int x = it->current_x + (it->align_visually_p
? 0
: it->continuation_lines_width);
int x0 = x;
/* Adjust for line numbers, if needed. */
if (!NILP (Vdisplay_line_numbers) && it->line_number_produced_p)
{
x -= it->lnum_pixel_width;
/* Restore the original width, if required. */
if (x + it->stretch_adjust >= it->first_visible_x)
x += it->stretch_adjust;
}
if (it->glyph_row == NULL || !it->glyph_row->mode_line_p)
align_to = (align_to < 0
? 0
: align_to - window_box_left_offset (it->w, TEXT_AREA));
else if (align_to < 0)
align_to = window_box_left_offset (it->w, TEXT_AREA);
width = max (0, (int)tem + align_to - x);
int next_x = x + width;
if (!NILP (Vdisplay_line_numbers) && it->line_number_produced_p)
{
/* If the line is hscrolled, and the stretch starts before
the first visible pixel, simulate negative row->x. */
if (x < it->first_visible_x)
{
next_x -= it->first_visible_x - x;
it->stretch_adjust = it->first_visible_x - x;
}
else
next_x -= it->stretch_adjust;
}
width = next_x - x0;
zero_width_ok_p = true;
}
else
/* Nothing specified -> width defaults to canonical char width. */
width = FRAME_COLUMN_WIDTH (it->f);
if (width <= 0 && (width < 0 || !zero_width_ok_p))
width = 1;
#ifdef HAVE_WINDOW_SYSTEM
/* Compute height. */
if (FRAME_WINDOW_P (it->f))
{
int default_height = normal_char_height (font, ' ');
if ((prop = plist_get (plist, QCheight), !NILP (prop))
&& calc_pixel_width_or_height (&tem, it, prop, font, false, NULL))
{
height = (int)tem;
zero_height_ok_p = true;
}
else if (prop = plist_get (plist, QCrelative_height),
NUMVAL (prop) > 0)
height = default_height * NUMVAL (prop);
else
height = default_height;
if (height <= 0 && (height < 0 || !zero_height_ok_p))
height = 1;
/* Compute percentage of height used for ascent. If
`:ascent ASCENT' is present and valid, use that. Otherwise,
derive the ascent from the font in use. */
if (prop = plist_get (plist, QCascent),
NUMVAL (prop) > 0 && NUMVAL (prop) <= 100)
ascent = height * NUMVAL (prop) / 100.0;
else if (!NILP (prop)
&& calc_pixel_width_or_height (&tem, it, prop, font, false, 0))
ascent = min (max (0, (int)tem), height);
else
ascent = (height * FONT_BASE (font)) / FONT_HEIGHT (font);
}
else
#endif /* HAVE_WINDOW_SYSTEM */
height = 1;
if (width > 0
&& it->area == TEXT_AREA && it->line_wrap != TRUNCATE
&& it->current_x + width > it->last_visible_x)
{
width = it->last_visible_x - it->current_x;
#ifdef HAVE_WINDOW_SYSTEM
/* Subtract one more pixel from the stretch width, but only on
GUI frames, since on a TTY each glyph is one "pixel" wide. */
width -= FRAME_WINDOW_P (it->f);
#endif
}
if (width > 0 && height > 0 && it->glyph_row)
{
Lisp_Object o_object = it->object;
Lisp_Object object =
it->sp > 0 ? it->stack[it->sp - 1].string : it->string;
int n = width;
if (!STRINGP (object))
object = it->w->contents;
#ifdef HAVE_WINDOW_SYSTEM
if (FRAME_WINDOW_P (it->f))
append_stretch_glyph (it, object, width, height, ascent);
else
#endif
{
it->object = object;
it->char_to_display = ' ';
it->pixel_width = it->len = 1;
while (n--)
tty_append_glyph (it);
it->object = o_object;
}
}
it->pixel_width = width;
#ifdef HAVE_WINDOW_SYSTEM
if (FRAME_WINDOW_P (it->f))
{
it->ascent = it->phys_ascent = ascent;
it->descent = it->phys_descent = height - it->ascent;
it->nglyphs = width > 0 && height > 0;
take_vertical_position_into_account (it);
}
else
#endif
it->nglyphs = width;
}
/* Get information about special display element WHAT in an
environment described by IT. WHAT is one of IT_TRUNCATION or
IT_CONTINUATION. Maybe produce glyphs for WHAT if IT has a
non-null glyph_row member. This function ensures that fields like
face_id, c, len of IT are left untouched. */
static void
produce_special_glyphs (struct it *it, enum display_element_type what)
{
struct it temp_it;
Lisp_Object gc;
GLYPH glyph;
/* Take face-remapping into consideration. */
int face_id = lookup_basic_face (it->w, it->f, DEFAULT_FACE_ID);
temp_it = *it;
temp_it.object = Qnil;
memset (&temp_it.current, 0, sizeof temp_it.current);
if (what == IT_CONTINUATION)
{
/* Continuation glyph. For R2L lines, we mirror it by hand. */
if (it->bidi_it.paragraph_dir == R2L)
SET_GLYPH (glyph, '/', face_id);
else
SET_GLYPH (glyph, '\\', face_id);
if (it->dp
&& (gc = DISP_CONTINUE_GLYPH (it->dp), GLYPH_CODE_P (gc)))
{
/* FIXME: Should we mirror GC for R2L lines? */
SET_GLYPH_FROM_GLYPH_CODE (glyph, gc);
spec_glyph_lookup_face (it->w, &glyph);
}
}
else if (what == IT_TRUNCATION)
{
/* Truncation glyph. */
SET_GLYPH (glyph, '$', face_id);
if (it->dp
&& (gc = DISP_TRUNC_GLYPH (it->dp), GLYPH_CODE_P (gc)))
{
/* FIXME: Should we mirror GC for R2L lines? */
SET_GLYPH_FROM_GLYPH_CODE (glyph, gc);
spec_glyph_lookup_face (it->w, &glyph);
}
}
else
emacs_abort ();
#ifdef HAVE_WINDOW_SYSTEM
/* On a GUI frame, when the right fringe (left fringe for R2L rows)
is turned off, we precede the truncation/continuation glyphs by a
stretch glyph whose width is computed such that these special
glyphs are aligned at the window margin, even when very different
fonts are used in different glyph rows. */
if (FRAME_WINDOW_P (temp_it.f)
/* init_iterator calls this with it->glyph_row == NULL, and it