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SUMMARY
Three-dimensional controlled-source electromagnetic data are often computed
directly in the domain of interest, either in the frequency domain or in the time
domain. Computing it in one domain and transforming it via a Fourier trans-
form to the other domain is a viable alternative. It requires the evaluation of
many responses in the computational domain if standard Fourier transforms are
used. This can make it prohibitively expensive if the kernel is time-consuming as
is the case in three-dimensional electromagnetic modelling. The speed of mod-
elling obtained through such a transform is defined by three key points: solver,
method and implementation of the Fourier transform, and gridding. The faster
the solver, the faster modelling will be. It is important that the solver is ro-
bust over a wide range of values (frequencies or times). The method should
require as few kernel evaluations as possible while remaining robust. As the
frequency and time ranges span many orders of magnitude, the required values
are ideally equally spaced on a logarithmic scale. The proposed fast method
uses either the digital linear filter method or the logarithmic fast Fourier trans-
form together with a careful selection of evaluation points and interpolation.
In frequency-to-time domain tests this methodology requires typically 15 to 20
frequencies to cover a wide range of offsets. The gridding should be frequency-
or time-dependent, which is accomplished by making it a function of skin depth.
Optimising for the least number of required cells should be combined with op-
timising for computational speed. Looking carefully at these points resulted in
much smaller computation times with speedup factors of ten or more over pre-
vious methods. A computation in one domain followed by transformation can
therefore be an alternative to computation in the other domain domain if the
required evaluation points and the corresponding grids are carefully chosen.

Key words: Controlled source electromagnetics (CSEM); Numerical mod-
elling; Fourier analysis.

1 INTRODUCTION

The controlled-source electromagnetic (CSEM) method
is one of the common non-seismic tools in explo-
ration geophysics, not only in hydrocarbon exploration
(Constable 2010), but also in the search for sulfides
(Gehrmann et al. 2019), water (Pedersen et al. 2005),
geothermal sources (Girard et al. 2015), or for geo-
logical purposes (Johansen et al. 2019). While current
sources with a few frequencies are used in the deep
marine environment, transient measurements are more

common in the shallow marine environment and on
land (e.g., Ziolkowski et al. 2007; Andréis & MacGre-
gor 2007; Avdeeva et al. 2007). One of the main rea-
sons is the dominance of the airwave in shallow ma-
rine and terrestrial measurements, which can be bet-
ter separated in the time domain. CSEM is usually di-
vided into frequency- and time-domain methods, de-
pending on whether the source signal is a continuous
waveform, such as a sine, or a finite waveform, such as
a pseudo-random binary sequence (PRBS). A numer-
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ical comparison of the two methods is given by Con-
nell & Key (2013). Acquired CSEM data are subse-
quently often analysed (modelled and inverted for) in
their respective domain, either the frequency or time
domain. Modellers of layered media usually exploit the
horizontal shift-invariance by computing the responses
in the wavenumber-frequency domain followed by a 2D
inverse spatial Fourier transform, also called Hankel
transform, to the space-frequency domain, and a reg-
ular inverse Fourier transform if time-domain data are
required (e.g., Hunziker et al. 2015). CSEM codes for
arbitrary 2D and 3D computations, on the other hand,
often compute their responses directly in the required
domain, either frequency or time.

Electromagnetic methods in geophysics span a wide
range of model scenarios and acquisition layouts, each
with its own modelling-related implications. A well-
known example is the aforementioned land or shallow
marine case versus the deep marine case, where in the
former case a dominating airwave has to be accurately
modelled, whereas it can be completely ignored in the
latter case. Recent areas of particular interest in time-
domain modelling that pose numerical challenges are,
for instance, simulating the fields through steel-cased
wells (Heagy & Oldenburg 2019) or the effects of in-
duced polarization (Kang et al. 2020). The former is
challenging because of the high conductivity contrasts
requiring very detailed meshing, the latter is challeng-
ing for time-domain modelling because the models are
frequency dependent.

Under certain conditions it can be a viable alter-
native to model time-domain data with a frequency-
domain code, as shown by Mulder et al. (2008). They
compared the computational complexity of different
time-domain methods with the computational com-
plexity of frequency-domain computation followed by a
Fourier transform: explicit time-stepping schemes (Du
Fort-Frankel method as used in, e.g., Commer & New-
man (2004); Maaø (2007)) and implicit schemes (e.g.,
Haber et al. 2004; Um et al. 2010) have a complexity
of O(n4), matrix exponentials and Lanczos reduction
schemes (e.g., Druskin & Knizhnerman 1994) have a
complexity of O(n4√logn), and Fourier transforms of
frequency-domain solutions have a complexity O(nfn3);
n is the number of grid points in each direction, and
nf the number of frequencies. Their conclusion was
that the Fourier transform method can be favourable
if the number of required frequencies is small relative
to the number of grid points in each coordinate. The
conditions for fast computation of time-domain data
with a frequency-domain code are: a sufficiently pow-
erful solver, appropriate frequency selection and inter-
polation, and an automated gridding, for which they
used the multi-frequency CSEM approach presented by
Plessix et al. (2007). We build upon these results but
improve the run time from hours to minutes. The main
reasons for this significant speed-up are the further re-
duction of required frequencies by introducing lower and
upper thresholds of numerically important frequencies,
an adaptive, frequency-dependent gridding scheme that
minimizes the required cells in each dimension, and a
logarithmic Fourier transform such as digital linear fil-

ters (DLF, Ghosh 1971) or the logarithmic fast Fourier
transform (FFTLog, Hamilton 2000) to go from the
frequency to the time domain. The latter makes it also
possible to only use the imaginary part of the frequency-
domain response, which has advantages when it comes
to interpolation.

In the next section, we briefly review the method-
ology as introduced by Plessix et al. (2007) and Mulder
et al. (2008) and highlight their advantages and short-
comings. This is followed by an outline of the methodol-
ogy, our changes to the Fourier transform and the adap-
tive gridding. Finally, we demonstrate the efficiency of
the approach with some numerical results. These com-
prise in of a homogeneous space, a layered model, a
model which includes dispersive media (induced polar-
ization), and a three-dimensional model.

2 MOTIVATION
Being able to model CSEM data both in the frequency
domain and in the time domain can be desirable, as
both domains have advantages and disadvantages. One
way to achieve this is to implement Maxwell’s equa-
tions in both domains as is done, for instance, in SimPEG
(Cockett et al. 2015) or in custEM (Rochlitz et al. 2021).
Another approach is to have Maxwell’s equations only
implemented in one domain, and use Fourier transforms
to go to the other. However, this approach can be costly,
as many frequencies over a wide range are required to go
from the frequency domain to the time domain, or many
times over a wide range for the opposite direction. We
present a methodology which significantly reduces the
amount and range of the required frequencies through a
combination of extrapolation, interpolation, and setting
the responses for high frequencies to zero. This trans-
lates into a significant reduction in computation time.
The number of required frequencies is not the only im-
portant point for reducing computation time. Another
important aspect is the computation grid, as the re-
quired grids for low frequencies (in our case in the order
of 0.001Hz) and high frequencies (around 100Hz) are
hugely different. Low frequencies can be computed on a
coarser grid, but they require a much larger domain in
order to avoid boundary effects. High frequencies, on the
other hand, require denser gridding, but they are much
more limited in reach. An adaptive gridding scheme is
therefore required, which is naturally based on the skin
depth, the distance after which the amplitude of the
electromagnetic field has decayed by 1/e ≈ 37 %. The
skin depth δ is a function of conductivity and frequency,
and for the diffusive approximation of Maxwell’s equa-
tions in an isotropic, homogeneous medium is given by
(e.g., Ward & Hohmann 1988)

δ =
√

2
ωµσ

≈ 503.3/
√
fσ , (1)

where σ is conductivity (S/m), ω = 2πf is angular fre-
quency of frequency f (Hz), and µ is magnetic per-
meability (H/m). The approximation is obtained by
using the free-space value of magnetic permeability,
µ0 = 4π × 10−7 H/m.
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We build our approach upon Plessix et al. (2007),
who presented such an adaptive gridding for multi-
frequency (and multi-source) CSEM modelling. They
define the minimum cell width ∆min as a fraction of the
minimum skin depth δmin, where δmin should be 2–3
times bigger than ∆min. The cells have to be smallest
around the source; in the marine case, the minimum
skin depth is therefore defined by the conductivity of
seawater. However, this can yield quite large cells for
low frequencies, so special care has to be taken around
the source by defining a maximum allowed ∆min. The
grid dimension, on the other hand, is defined as a func-
tion of skin depth for the average conductivity of the
background, δave. They use four times δave for the x-,
y-, and downward z-directions, and a fixed 50 km for
the upward z-direction to account for the airwave. To
reduce the number of cells, it is desirable to introduce
stretching, at least in the buffer zone outside of the area
where source and receivers are located.

Mulder et al. (2008) provide a computational com-
plexity analysis of various methods to model transient
electromagnetic responses directly in the time domain,
and compare it to the computation of transient EM
responses in the frequency domain with a subsequent
Fourier transform. They conclude the review by stat-
ing «Although it remains to be seen which of the four
methods requires the least computer time for a given
accuracy, the frequency-domain approach appears to be
attractive.» Their approach is to minimize the compu-
tation time by having, in addition to the just intro-
duced adaptive gridding, an adaptive frequency selec-
tion scheme. This scheme starts with computing the
responses for a set of just five frequencies, regularly
sampled on a log-scale, from minimum to maximum re-
quired frequency. All the other frequencies are interpo-
lated with a shape-preserving piecewise-cubic Hermite
interpolation (PCHIP, Fritsch & Carlson 1980). Test-
ing the stability of the obtained response by removing a
single frequency-value at a time their scheme decides if
more frequencies in-between the already computed ones
are required. In this way frequencies are only added if
required, hence if certain criteria of response stability
are not met. While this method is good and effective
for a single offset, it loses all its advantages if one tries
to compute different offsets within one computation, as
each offset requires a different set of adaptive frequen-
cies. Additionally, it hampers the parallelization over
frequencies.

We present improvements to both the adaptive
gridding and the transform from frequency domain
to time domain using the finite-integration technique
(Weiland 1977), which makes time-domain modelling
with a frequency-domain code viable in comparison
with time-domain codes. It is important to note that
our ideas can be used with any solver and is not bound
to one or another frequency- or time-domain solver. The
ideas for the frequency selection can be applied to time
selection, and time-dependent, adaptive gridding exists
as well (e.g., Commer & Newman 2006). Our recom-
mendations for speeding up the Fourier transform for
expensive kernels are independent of spatial complex-
ity, as diffusive EM responses are smooth functions of

both frequency and time. However, the intrinsic require-
ment is an accurate solver over a sufficient wide range
of frequencies or times.

3 METHODOLOGY
The requirement for any transform is a robust solver
of sufficient accuracy over a wide range of frequen-
cies. We use for the numerical computations the open-
source (Apache License 2.0) codes empymod (Werth-
müller 2017) and emg3d (Werthmüller et al. 2019b).
The former computes semi-analytical responses of lay-
ered models, the latter is a 3D multigrid solver based
on Mulder (2006), which can be used as a precondi-
tioner for Krylov subspace solvers or as a solver on its
own. The multigrid approach works fine for the diffusive
approximation of Maxwell’s equations, which assumes
that ωε � σ, where ε is electric permittivity (F/m).
The remaining system to solve in the frequency domain
is then given by the second-order differential equation
of the electric field,

iωσE +∇× µ−1∇×E = −iωJs , (2)
where E is the electric field (V/m) and Js the current
source (A/m2); time dependence is exp(iωt). The stan-
dard multigrid approach fails for severe stretching or
strong anisotropy, for which known improvements such
as line-relaxation and semicoarsening (Jönsthövel et al.
2006) are implemented, with a non-standard Cholesky
decomposition to speed up the computation (Mulder
et al. 2008). One of the big advantages of the multi-
grid method is that it scales linearly (optimal) with the
grid size in both CPU and RAM usage (Mulder 2020).
This makes it feasible to run even big models on stan-
dard computers, without the need for big clusters. All
examples in this article are run on a laptop with an i7-
6600UCPU@2.6GHz (x4) and 16GB of memory, us-
ing Ubuntu 20.04 and Python 3.8. They were run using
a single thread, but parallelization over frequencies is
straight forward, as the computations are independent.

Note that while we use these two algorithms for
the numerical examples, any solver that provides suf-
ficiently accurate frequency-domain responses could be
used.

3.1 Frequency selection
An important factor in terms of speed and accuracy
for time-domain responses obtained from frequency-
domain computations is the selection of the required
frequencies. The fewer frequencies required, the quicker
we obtain the time-domain result. This is true in general
but applies in particular to expensive kernels such as is
the case in 3D modelling, where the computation of the
response of a single frequency takes much longer than
the transformation itself. The same applies for the re-
verse operation, the fewer times required, the quicker we
obtain frequency-domain results. Even though we limit
our analysis here to frequency-to-time transformations,
most of the arguments are reversible and applicable to
time-to-frequency transformations. We decided to use
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a regular spacing of frequencies on a log-scale, rather
than an adaptive scheme. This approach is favourable
if a wide range of offsets is needed, as the required fre-
quencies change with offset and an adaptive frequency
selection is therefore often tailored to a single offset or
a limited range of offsets. Also, it allows for straight-
forward parallelization over frequencies, which is not
completely possible with an adaptive scheme.

For the actual transform we use either the digi-
tal linear filter (DLF) method or the logarithmic fast
Fourier transform (FFTLog). The DLF method was
introduced to geophysics by Ghosh (1971), and is ar-
guably the most common method in EM geophysics for
both its simplicity and its speed. It is implemented for
the Hankel and Fourier transforms in most EM mod-
elling codes, e.g., Key (2009). A simple tool to design
digital linear filters was recently presented by Werth-
müller et al. (2019a), together with a comprehensive
overview of the history and development of DLF in
geophysics. FFTLog, introduced by Hamilton (2000), is
another transform algorithm which proved to be pow-
erful for the frequency-to-time domain transformation
of EM responses, e.g., Werthmüller et al. (2014). In our
tests they are both about equal in speed and accuracy.
DLF requires a wider range and many more frequencies
than the FFTLog. Both methods share some important
characteristics in comparison with the standard FFT:
the required input frequencies are equally spaced on a
logarithmic scale (natural logarithm in the case of the
DLF and decimal logarithm in the case of the FFTLog),
and they only require either the real or the imaginary
part of the frequency-domain response. We can take ad-
vantage of that by using only the imaginary part of the
frequency-domain response. The imaginary part goes
to zero when the frequency goes either to zero or to in-
finity, with the advantage that knowing the endpoints
makes it possible to convert the extrapolation of missing
frequencies into an interpolation.

Any Fourier transform needs a certain range of fre-
quencies to obtain time-domain results. Our approach is
not to minimize the required frequencies for the trans-
form, but to minimize the number of frequencies for
which we actually have to compute responses. We do
this in three zones: above an upper threshold fmax,
we set the frequency-domain response to zero. Below
a lower threshold fmin, we extrapolate the frequency-
domain response. As we know that the imaginary re-
sponse goes towards zero for zero frequency, we can turn
it into an interpolation, for which we use PCHIP. And
in-between the thresholds, we use cubic spline interpola-
tion in order to only have to actually compute a few dis-
tinct frequencies per decade (nfdec). Using this approach,
we found that computing the responses for 15–25 fre-
quencies is usually good enough to obtain time-domain
responses for a large range of offsets; even though the
actual transform might need up to hundreds of frequen-
cies.

The required frequencies depend naturally on the
conductivities and on the chosen acquisition type and
layout. A trial-and-error approach with a 3D code
is very time-intensive. However, a simplified, layered
model for the required survey setup and a fast 1D mod-

10 13

10 16

10 19

10 22
10 22

10 19

10 16

10 13

Am
pl

itu
de

 (V
/m

)

required (40)
computed (20)

10 17

10 16

10 15

10 14

10 13

10 4 10 2 100 102

Frequency (Hz)

0.01
0.1

1
10

100

Re
l. 

Er
ro

r (
%

)

10 2 10 1 100 101 102 103

Time (s)

0.01
0.1
1
10
100

Figure 1. Example frequency selection for a simple layered model
(the shown model parameters are described in the text). This
example shows the impulse response at an offset of 5 km, for which
it uses FFTLog from 0.001Hz to 10Hz with five frequencies per
decade.

eller makes it possible to estimate these parameters eas-
ily. An example of this is shown in Figure 1. It shows
the responses for a marine scenario with 1 km water
depth of resistivity ρ = 0.3 Ωm (ρ = σ−1) and a 100m
thick target of 100Ωm at 1 km below the seafloor in
a background of 1Ωm. The source is 50m above the
seafloor, the receiver is on the seafloor, and the response
is the inline x-directed E-field. The left subplot shows
the imaginary part in the frequency domain and the
right plot the corresponding impulse response in the
time domain. The red lines are the semi-analytical re-
sponses. The blue circles indicate the actually computed
responses and the black dots the frequencies which are
interpolated or set to zero. The resulting time-domain
response has a relative error of less than 1% everywhere
except for very early times.

Figure 2a shows exactly the same on a linear scale
for the time and amplitude axes. It can be seen that
with the chosen, computed frequencies (blue dots) the
time-domain response starts to divert above about 100 s
and below 0.3 s. It also shows the oscillating high-
frequency part, which is hard to interpolate and we
therefore set it to zero. Figure 2b is the same as Fig-
ure 2a, but transformed with the DLF method apply-
ing the 81-point sine-cosine filter from Key (2009). The
same frequencies were computed as in the FFTLog case
and the missing ones interpolated. The error of the cor-
responding time-domain response is comparable, so ei-
ther FFTLog or DLF can be used. In the above exam-
ple we used 20 frequencies, but that many would not
be required for the shown offset of 5 km, a few of the
lower and higher frequencies could be left out. With
this frequency-selection, however, we can model a wide
range of offsets. This is shown in Figure 3, where the
same kernels were used to yield the responses at offsets
r = 1.5, 3, 6, and 12 km. We only need to compute 50%
of the required frequencies in the case of the FFTLog,
and only 14% in the case of the DLF.

The shortest offset defines the highest required fre-
quency, and the largest offset the lowest required fre-
quency. So the more one can restrict the necessary offset
range, the fewer frequencies are needed. Another impor-
tant factor is how to interpolate and extrapolate from
the computed frequencies to the frequencies required for
the Fourier transform. For the FFTLog only extrapo-
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Figure 2. (a) Same as Figure 1, but on a logarithmic scale. (b) Using DLF instead of FFTLog, but computing the same frequency range
as for the FFTLog. The resulting time-domain response has comparable accuracy.

lation for higher and lower frequencies is required. The
EM response becomes highly oscillatory for high fre-
quencies, which makes it very hard to extrapolate the
response to frequencies f > fmax. However, if fmax is
chosen judiciously, the importance of higher frequencies
for the Fourier transform can be neglected and we can
set those responses to zero. The extrapolation of fre-
quencies f < fmin can be changed to an interpolation by
assuming a zero imaginary response at zero frequency,
and we then use PCHIP to interpolate the missing fre-
quencies (as we work on a logarithmic scale we cannot
choose 0Hz nor 0V/m, but instead take 10−100 Hz and
10−100 V/m). In the case of the DLF method we also
have to interpolate in between the computed frequen-
cies, for which we found it better to use a cubic spline.
As can be seen by comparing Figure 2a with Figure 2b,
using the FFTLog or the DLF with the same actually
computed frequencies results in very similar responses.

The changes to the Fourier transform in comparison
with Mulder et al. (2008) can be summarized in three
points: (1) regular log-scale spacing for the frequency
selection; (2) DLF or FFTLog instead of FFT; and (3)
using only the imaginary part of the frequency-domain
response. The actual speed of the transform is unim-
portant, as the computation of the frequency-domain
responses takes much longer than the transform itself.
What matters is solely how many frequencies are re-
quired by it to achieve the desired precision, and how
long it takes to compute the responses for these frequen-
cies.

3.2 Gridding
The proposed Fourier transform requires a robust solver
that can compute accurate results over a wide range of
frequencies (times) to obtain time-domain (frequency-
domain) responses. In our case the solver uses a regular,
stretched grid and computes the electric fields in the fre-
quency domain. This setup is the target of the following
gridding recommendations. Whilst they will look differ-
ently for other mesh types or a time-domain code, some
conclusions will still hold.

The computation grid consists of a core or survey
domain Ds that should contain all source and receiver
positions. The survey domain usually has no or a very

small cell stretching factor αs. The minimum cell width
is defined as

∆min = δ(f, σsrc)/nδ , (3)
where σsrc is the conductivity of the media in which the
source resides, and nδ is a positive number that defines
how many cells there should be per skin depth. The
actual computational domain Dc is usually much bigger
than Ds in order to avoid artefacts from the boundary
condition. It can also have a much higher stretching
factor αc. In the presented examples we have chosen Dc
such that the distance for the signal diffusing from the
source to the boundary and back to the receiver closest
to the boundary is at least two wavelengths, after which
the amplitude of the signal is reduced to a millionth of
its initial strength. The wavelength λ to compute Dc is
given by

λ = 2πδ(f, σave) ≈ 3162/
√
fσave , (4)

where σave is the average conductivity, which can vary
for different directions. However, the skin-depth ap-
proach fails for air, in which the EM field propagates
as a wave at the speed of light. A largest computational
domain is therefore enforced, defining the maximum dis-
tance from the source to the boundary; this distance is
by default set to 100 km, but this can be reduced in
the marine case with increasing water depth. This also
applies to the horizontal dimensions, not only to the up-
ward z-direction, and it equally applies to very resistive
basements, even in deep water. One way to circumvent
this difficulty is the use of a primary-secondary formu-
lation, where the primary field, including the air wave,
is computed with a semi-analytical code for layered me-
dia. We do not consider this approach here. Note that
grid stretching for complex-valued diffusion fields is es-
sentially what is done for wave fields with the perfectly
matched layer (PML). PML is an absorbing layer to
avoid scattering from the boundary by letting the field
decay to zero, which is achieved by introducing a com-
plex factor that causes damping. As electromagnetic dif-
fusion fields are damped fields by themselves, it suffices
to stretch the grid.

In summary, the adaptive gridding takes f , Ds,
σsrc, σave, nδ, and ranges for αs, αc, where we usually
fix αs = 1 or keep it at least below 1.05, and let αc
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Figure 3. Normalized (a) frequency- and (b) time-domain responses for offsets r = 1.5, 3, 6, and 12 km using the parameters defined
in Figure 2a. The coloured symbols are the actually computed responses, the black dots are the responses which are set to zero (high
frequencies) or interpolated (low frequencies). The grey curves are the analytical responses.

be anything between [1, 1.5]. The minimum cell width
∆min can further be restricted by a user-defined range.
Given these inputs, the adaptive gridding will search
for the smallest possible number of cells which fulfils
these criteria. The implemented multigrid method puts
some constraints on the number of cells, of which the
adaptive gridding takes care (the number of cells have
to be powers of two multiplied by a low prime, e.g.,
{2, 3, 5} · 2n).

The main difference with Mulder et al. (2008) is
that their adaptive gridding searches for the optimal
stretching factor α fulfilling certain criteria, for a fixed
number of cells. Our adaptive gridding, on the other
hand, searches for the smallest number of cells that still
fulfils the given criteria. The number of cells becomes
therefore also a function of frequency. It is important to
note that this is our implementation of an adaptive grid,
but there are certainly other possibilities. The relevant
point for fast computations is that the adaptive gridding
tries to minimize the number of required cells. This is
generally best done in a frequency- and conductivity-
dependent manner. To go from the model grid to the
computational grid, we use the volume-averaging tech-
nique on logarithmic resistivities, as used in Plessix
et al. (2007). While this technique ensures that the
total resistivity in the subsurface remains the same,
it does not consider effective-medium theory (Davydy-
cheva et al. 2003), for instance, the apparent anisotropy
from a stack of finely layered formations of varying re-
sistivity.

4 NUMERICAL EXAMPLES

4.1 Homogeneous space
The first example is the inline electric field from a source
at the origin measured by an inline receiver with an

offset of 900m in a homogeneous space of 1Ωm. We
chose this simple example to compare it with the an-
alytical solution and with previously published results.
We used the following values to define the required fre-
quencies: fmin = 0.05Hz, fmax = 21Hz, using FFTLog
with 5 frequencies per decade. This results in 14 fre-
quencies to compute from 0.05Hz to 20.0Hz. The com-
plete frequency range for the transform, including the
frequencies for which we use interpolation, includes 30
frequencies from 0.0002Hz to 126.4Hz. For the adap-
tive gridding the following inputs were used: nδ = 12,
minimum cell width must be between 20 and 40m, and
αs = 1, αc = [1, 1.3]. This yields grids with cell numbers
between 46 080 (80 × 24 × 24, for 20.0Hz) and 128 000
(80× 40× 40, for 0.05Hz) cells. The run times for each
frequency, the corresponding number of cells, minimum
cell width, and computation domain stretching factor
are listed in Table 1. The total run time to compute
this model was less than two minutes.

Figure 4 (a) shows the frequency-domain result,
where the blue dots are the computed responses and
the black dots correspond to the interpolated values or
the values set to zero. Most of the computed values
stay below a relative error of 1%, our chosen adaptive
gridding only starts to generate considerable errors at
higher frequencies. Figure 4(b) shows the correspond-
ing time-domain result, where the dashed black line is
the result obtained by transformation of the frequency-
domain response, on top of the red line which is the an-
alytical result. The relative error is mostly below 1%,
except for early times. However, for practical reasons
that is more than enough. Figure 5 shows the same on a
logarithmic scale, with times up to 10 seconds. It clearly
shows that if later times are required, we would need to
adjust our Fourier transform parameters. Note that for
the gridding we chose nδ = 12, which is very dense.
This was necessary because we are relatively close to
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Figure 4. (a) Frequency- and (b) time-domain results for the homogeneous space model. The red lines are the analytical solutions, the
blue circles are the actually computed responses, the black dots are the interpolated responses, and the dashed black line the obtained
time-domain response.

Table 1. Run times per frequency for the homogeneous space
example, with the corresponding number of cells and minimum
cell width as well as the stretching factor in the computation
domain; αs = 1 everywhere.

Frequency Time nx×ny×nz ∆min αc
(Hz) (s) (m)

20.0 4 80×24×24 20 1.26
12.6 8 96×32×32 20 1.17
7.98 8 96×32×32 20 1.20
5.03 8 96×32×32 20 1.23
3.18 7 80×32×32 24 1.23
2.00 7 80×32×32 30 1.21
1.26 5 64×32×32 37 1.21
0.798 5 64×32×32 40 1.23
0.503 5 64×32×32 40 1.26
0.318 5 64×32×32 40 1.28
0.200 8 64×40×40 40 1.27
0.126 8 64×40×40 40 1.30
0.0798 10 80×40×40 40 1.26
0.0503 11 80×40×40 40 1.28

the source. If the offsets of interest are larger this factor
can be lowered considerably; 3–4 is often enough.

This model corresponds to the one presented in Ta-
ble 1 and in Figures 3 and 4 of Mulder et al. (2008).
The response here appears to be more accurate, their re-
ported peak-error is roughly 1%, whereas we are below
0.1% at the peak (there are no error-plots presented, so
visual inspection is all we have). However, the difference
in run time is dramatic. Summing the run times for the
different frequencies of the original figure comes to a
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Figure 5. Same as in Figure 4 (b), but on a logarithmic scale.
To improve later times we would have to compute lower frequen-
cies; to improve earlier times we would have to compute more
frequencies per decade to get a better resolution.

total computation time of 3 h 47min 12 s; 0.01Hz was
the slowest run with 31min 19 s, and 2.37Hz was the
fastest run with 2min 54 s. Our example, on the other
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hand, took less than two minutes in total, where the
individual frequencies took between 4 and 11 s to run.

This massive speed-up has a couple of reasons.
Computers have become more powerful in the last
twelve years, and the codes were run on different com-
puters. A quick test with the old scripts on our test ma-
chine shows that it would roughly run 2–3 times faster,
therefore somewhere between 1 and 2 hours. The more
important facts besides different hardware are: (1) we
only used 14 frequencies instead of the 26 frequencies
between 0.01 and 100Hz of the original; (2) our adap-
tive gridding used significantly less cells (f -dependent)
in comparison to the fixed 2 097 152 cells (1283) used in
the original example. We did not see a significant differ-
ence in the speed of the actual codes, where the kernel-
algorithm of the two implementations is the same, but
in the original example it is implemented in Matlab/C,
whereas emg3d is written in Python/Numba (Numba
is a just-in-time compiler for Python code, Lam et al.
(2015)).

4.2 1D Model
The second example is a shallow marine, layered model
with 200m of seawater (3 S/m) above a halfspace of
1 S/m, an embedded target layer at 2 km depth, 100m
thick, with a conductivity of 0.02 S/m. The source is
located 20m above the seafloor and the receivers are
on the seafloor. We chose the frequency range such
that we can model offsets from 3 to 7 kilometers, with
fmin = 0.007Hz and fmax = 32Hz, using FFTLog with
5 frequencies per decade. This results in computations
for 19 frequencies from 0.008Hz to 31.8Hz. The com-
plete frequency range for the transform includes 35 fre-
quencies from 2 10−5 to 126.4Hz. For the adaptive grid-
ding, we used a cell width of 100m in the core domain
and stretching outside up to a factor 1.5, where the com-
putation domain extends up to 50 km in each direction.
This yielded grids between 204 800 (higher frequencies)
and 245 760 (lower frequencies) cells. The run times for
each frequency and their corresponding parameters are
listed in Table 2.

Figure 6 shows the result for an offset of 5 km, (a) in
the frequency domain and (b) in the time domain. The
recovered response with the 3D code captures the air-
wave (first peak) and the subsurface (second peak) very
accurately. At later times the error starts to increase.
We would need to compute a few additional lower fre-
quencies if we want to improve it. In the frequency-
domain plot, it can be seen that the high frequencies are
not computed very accurately, but without too much in-
fluence on the time-domain response. These frequencies
could be left out if an offset of 5 km is the only objec-
tive. However, we also want to retrieve shorter offsets
from the same computation, for which these frequencies
are required.

Figure 7 shows the time-domain responses of the
same model for offsets of 3, 5, and 7 km, all obtained
with the same frequency-domain computations and the
same frequencies for the Fourier transform. The com-
putation of these frequencies took less than 9 minutes
and it handles any offset between 3 and 7 km. It can be

Table 2. Run times per frequency for the marine 1D example,
with the corresponding number of cells and minimum cell width
as well as the stretching factor in the computation domain; αs = 1
everywhere.

Frequency time nx×ny×nz ∆min αc
(Hz) (s) (m)

31.8 16 128×40×40 100 1.36
20.0 17 128×40×40 100 1.36
12.6 17 128×40×40 100 1.36
7.98 17 128×40×40 100 1.36
5.03 17 128×40×40 100 1.44
3.18 17 128×40×40 100 1.48
2.00 17 128×40×40 100 1.49
1.26 20 128×40×48 100 1.36
0.798 24 128×40×48 100 1.36
0.503 27 128×40×48 100 1.36
0.318 27 128×40×48 100 1.36
0.200 34 128×40×48 100 1.38
0.126 34 128×40×48 100 1.40
0.0798 37 128×40×48 100 1.41
0.0503 37 128×40×48 100 1.44
0.0318 44 128×40×48 100 1.44
0.0200 44 128×40×48 100 1.47
0.0126 37 128×40×48 100 1.48
0.007 98 43 128×40×48 100 1.49

seen that the chosen frequency selection is sufficient for
this offset range; again, more low frequencies could be
added to improve late-time values.

4.3 Horizontal extent of the computation
domain

The skin-depth approach fails for the air layer, as ex-
plained in the Section Gridding. The reason is that the
EM field in the air travels at the speed of light as a wave,
and its amplitude is only reduced through geometrical
spreading. On land and in shallow marine scenarios one
has therefore to include a sufficiently large computa-
tional domain. The default in our scheme is 100 km.
The important point is that this does not only apply
to the upward z-direction, but also to the horizontal di-
rections, as the airwave bounces back horizontally and
would continuously emit energy into the subsurface if
the boundaries are not chosen far enough away from
the receivers. If models are computed with very resis-
tive layers or models with highly resistive basements,
this can even apply to deep marine scenarios.

Figure 8 shows this effect. It is the same model as
in the previous section; however, for the adaptive grid-
ding in the horizontal directions, ρave = 1 Ωm was used
instead of ρave = 10 000 Ωm. Having the boundaries
too near in the horizontal directions leads to worse re-
sults for most frequencies and entirely wrong results for
high frequencies. Comparison with the 1D result in the
time domain shows that it is the airwave whose ampli-
tude is heavily overestimated. It can be difficult to spot
these errors in the time-domain result, as the response
looks plausible. Only a comparison with the 1D result
reveals that it is actually wrong. A possibility to de-
tect such problems for complicated cases, where there
is no semi-analytical result to compare with, is to carry
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Figure 6. Electric inline response at an offset of 5 km for a shallow marine, layered scenario. (a) Frequency-domain response, where the
blue circles denote computed responses and the black dots interpolated responses or responses set to zero. (b) Time-domain response.
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Figure 7. Time-domain responses for offsets of 3, 5, and 7 km
for the same model as shown in Figure 6.

out a mesh-convergence test by computing two or more
models, moving the boundary. When the responses stop
to change, one can assume that the boundary is far
enough. Another possibility is to look at the amplitudes
close to the boundaries and ensure that they are small
enough.

4.4 Induced Polarization
The proposed Fourier-transform approach works inde-
pendently of spatial complexity, as diffusive electromag-
netic fields are smooth functions of both frequency and
time. An interesting test it to see whether this applies as
well for dispersive media where the model parameters
depend on frequency, as is the case in induced polar-
ization. To test this we use the Cole-Cole model (CCM,
Cole & Cole 1941) which, written in terms of conductiv-
ities instead of electric permittivities as by the original
authors, is given by

σ(ω) = σ∞ + σ0 − σ∞
1 + (iωτ)c , (5)

where σ0 and σ∞ refer to the low-frequency and high-
frequency conductivity values, respectively, τ is the cen-
tral relaxation time (s), and c the CCM exponent de-
scribing the broadness of the relaxation time distribu-
tion. Note that this model slightly differs from the one
phrased in terms of resistivities given by Pelton et al.
(1978), see, e.g., Tarasov & Titov (2013).

Commer et al. (2017) have shown that time-domain
IP modelling can be difficult, particularly for low c-
values. Modelling frequency-dependent models in the
frequency domain is, for any given frequency, not differ-
ent from modelling a non frequency-dependent model.
However, the interesting point is to see how the Fourier
transform behaves to obtain time-domain data from
frequency-domain responses. As an example, we mod-
elled the response for a land case with air above a half-
space of 1 S/m. Within the halfspace is a dispersive,
100m thick layer at a depth of 300m, with σ0 = 1.0S/m
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Figure 8. Same model as used for Figure 6, but with the horizontal boundaries not far enough. Although the resulting time-domain
result looks plausible, the comparison with the 1D result shows that it significantly overestimates the amplitude of the airwave.

and σ∞ = 1.25 S/m; τ = 1, and we vary c from 0 (no IP)
to 1.0, 0.75, 0.5, and 0.25. The x-directed step-off source
and the receiver at an inline offset of 900m are placed on
the surface. The real and imaginary frequency-domain
responses for this model are shown in the left column of
Figure 9. It can be seen that the effect of the IP layer in
the frequency domain is that the real part starts to de-
viate from the DC value at lower frequencies. The imag-
inary part decays slower towards zero when decreasing
the frequency, and it deviates from a power-law func-
tion at lower frequencies as well. This indicates that we
need lower frequency content for the Fourier transform,
the smaller c becomes.

For the Fourier transform, we used the 601-point
sine-cosine filter from Key (2009). This is a very long
filter, but it seemed to be by far the best filter for low c-
values. However, designing a new filter particularly for
IP problems might be a better approach. The selected
frequency thresholds were chosen at fmin = 10−4 Hz
and fmax = 500Hz, and within the thresholds we only
computed every 6th frequency. Using these values only
27 frequencies have to be computed, instead of the 747
frequencies required by the actual transform. To obtain
the step-off response we computed the step-on response
and subtracted it from the DC value at 1000 s (without
the need for any additional frequencies).

4.5 3D Model
The last example consists of a resistive, three-
dimensional block embedded in the lower of two halfs-
paces, as depicted in Figure 10. The target has resistiv-

ity ρtg = 100 Ωm, the upper halfspace corresponds to
seawater with ρsea = 0.3 Ωm, and the lower halfspace is
the background with ρbg = 1 Ωm. The source is a 100-
m long, x-directed dipole at the origin, 50m above the
seafloor, and we are using a step-off source function.
The x-directed inline receiver is at an offset of 2 km.
The dimension of the target cube is 1.1× 1.0× 0.4 km,
located 300m below the seafloor in the centre between
source and receiver.

For the comparison, we use the open-source code
SimPEG (Cockett et al. 2015), which is a framework
for modelling and inversion of geophysical data such as
gravity, magnetics, and CSEM. It has Maxwell’s equa-
tions implemented in both the frequency and time do-
main. As such we can compare our result computed in
the frequency domain followed by a Fourier transform to
a result computed directly in the time domain. A prin-
cipal difference between SimPEG and emg3d is that the
former has various direct solvers implemented, whereas
the latter is an iterative multigrid solver. The 3D model
is therefore a rather small example in order to be able
to run it on our test machine, as the memory require-
ment by the direct solver would otherwise be too high.
There are not many options out there of open-source
time-domain 3D CSEM codes, SimPEG being the one
we found to be suitable. A step-off response was chosen
as this is the response currently implemented in it.

The model was discretised with 100× 100× 100m
cells in the survey domain Ds. For the time-domain
model, 14 cells in x-direction and 12 cells in y- and
z-directions were used on both sides with a stretch-
ing of 1.3 for the total computation domain Dc, which
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Figure 9. IP example for different c values, frequency-domain response on the left and time-domain response on the right. The frequencies
indicated by the blue vertical bars in the lower-left figure were used for our Fourier transform approach, requiring only the computation
of 27 frequencies instead of the full 747 frequencies required by the digital linear filter method.
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Figure 10. Three-dimensional block embedded in the lower of
two halfspaces. The 100-m long, x-directed dipole source is lo-
cated 50m above the seafloor at the origin, and the receiver is on
the seafloor at an offset of 2 km.

yields a mesh of 58 344 cells. The time-steps start
at 0.1 s and are: 21 × 0.01 s, 23 × 0.03 s, 21 × 0.1 s,
23×0.3 s, covering exactly the desired range of 0.1–10 s.
For the frequency-domain model, the mesh is gener-
ated frequency-dependent as in the previous examples,
with a maximum stretching of αc = 1.5. This results in
meshes between 18 432 cells for the highest frequencies
and 76 800 cells for the lowest frequencies. The required
frequencies were obtained by using the FFTLog with
five points per decade, which results in 20 frequencies
between 0.001Hz and 8Hz. The actual transform was
carried out with the 201-point sine-cosine filter from
Key (2009).

The results are shown in Figure 11: In (a) the 1D

background responses and the relative error using the
semi-analytical result, and in (b) the responses includ-
ing the target. The background comparison shows that
both 3D codes do an acceptable job with a relative
error of a few percents at most; the result obtained
through transformation seems to be better at early
times. The reason is probably the implemented back-
ward Euler scheme in the time-domain code that has
an error of order one in time. We cannot compare the
errors for the response that includes the target for lack
of an analytical solution. The 1D background model
is only included to show that there is a significant re-
sponse from the target. We therefore show the normal-
ized difference (NRMSD) between the two responses
R1 and R2 as a percentage, where NRMSD (%) =
200|R1 − R2|/(|R1| + |R2|). The NRMSD between the
two codes is below 1% everywhere except for early
times. Both codes took roughly 4–5 minutes to com-
pute the two models (single thread). However, in this
particular comparison, the main difference in runtime
is not frequency-domain computation vs. time-domain
computation, but iterative solver vs. direct solver.

5 CONCLUSIONS
We have shown a method to minimize the required fre-
quencies and their range for the computation of time-
domain CSEM data with a frequency-domain code.
This can significantly reduce the computation time and
makes time-domain CSEM modelling with a frequency-
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Figure 11. Responses for the model outlined in Figure 10 using time-domain and frequency-domain computations, and for the layered
background also the semi-analytical result. In the lower plot of (a) the relative error (%) is shown in comparison to the semi-analytical
result, and in (b) the normalized difference (%) between the two 3D codes.

domain code competitive given a robust frequency-
domain solver, a frequency-dependent gridding function
that minimizes the required cells, and a Fourier trans-
form that works on a logarithmic scale. Fast layered
modelling can be used to design the required frequency
range, as the Fourier transform does not know about
the dimensionality of the underlying model. Twenty fre-
quencies or less are usually sufficient for a wide range
of offsets. The values for lower frequencies can be in-
terpolated using PCHIP knowing that the imaginary
part goes to zero for zero frequency. The values for
higher frequencies can be set to zero, as we can neglect
their influence. And values for frequencies in-between
the computed ones are best obtained with a spline inter-
polation. The actual transform can be carried out with
either the DLF method or FFTLog, where the latter
one requires usually much fewer frequencies to be inter-
polated. We have demonstrated the idea of our Fourier
transform method on CSEM data transformed from the
frequency domain to the time domain. However, it could
equally be applied to the transform from the time do-
main to the frequency domain and to other methods
with similar characteristics. We believe that our pro-
posed improvements to the previously published meth-
ods makes simulating results in one domain obtained
through computations in the other domain followed by
a transformation a viable alternative. The methodology
is relatively simple to implement and has therefore the
potential to expand the capability of any existing code
to an additional dimension.
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