

Contents

I Introducing Algorithmic Trading 1

1 Introduction to the Book . 3
1.1 Introduction to QuantStart . 3
1.2 What is this Book? . 3
1.3 Who is this Book For? . 3
1.4 What are the Prerequisites? . 3
1.5 Software/Hardware Requirements . 4
1.6 Book Structure . 4
1.7 What the Book does not Cover . 5
1.8 Where to Get Help . 5

2 What Is Algorithmic Trading? . 7
2.1 Overview . 7

2.1.1 Advantages . 7
2.1.2 Disadvantages . 8

2.2 Scientific Method . 9
2.3 Why Python? . 9
2.4 Can Retail Traders Still Compete? . 10

2.4.1 Trading Advantages . 10
2.4.2 Risk Management . 11
2.4.3 Investor Relations . 11
2.4.4 Technology . 11

II Trading Systems 13

3 Successful Backtesting . 15
3.1 Why Backtest Strategies? . 15
3.2 Backtesting Biases . 16

3.2.1 Optimisation Bias . 16
3.2.2 Look-Ahead Bias . 16
3.2.3 Survivorship Bias . 17
3.2.4 Cognitive Bias . 17

3.3 Exchange Issues . 18
3.3.1 Order Types . 18
3.3.2 Price Consolidation . 18
3.3.3 Forex Trading and ECNs . 19
3.3.4 Shorting Constraints . 19

3.4 Transaction Costs . 19
3.4.1 Commission . 19
3.4.2 Slippage . 19
3.4.3 Market Impact . 20

3.5 Backtesting vs Reality . 20

4 Automated Execution . 21
4.1 Backtesting Platforms . 21

1

2

4.1.1 Programming . 22
4.1.2 Research Tools . 22
4.1.3 Event-Driven Backtesting . 23
4.1.4 Latency . 23
4.1.5 Language Choices . 23
4.1.6 Integrated Development Environments . 24

4.2 Colocation . 26
4.2.1 Home Desktop . 26
4.2.2 VPS . 27
4.2.3 Exchange . 27

5 Sourcing Strategy Ideas . 29
5.1 Identifying Your Own Personal Preferences for Trading 29
5.2 Sourcing Algorithmic Trading Ideas . 30

5.2.1 Textbooks . 30
5.2.2 The Internet . 31
5.2.3 Journal Literature . 33
5.2.4 Independent Research . 33

5.3 Evaluating Trading Strategies . 34
5.4 Obtaining Historical Data . 35

III Data Platform Development 39

6 Software Installation . 41
6.1 Operating System Choice . 41

6.1.1 Microsoft Windows . 41
6.1.2 Mac OSX . 41
6.1.3 Linux . 42

6.2 Installing a Python Environment on Ubuntu Linux 42
6.2.1 Python . 43
6.2.2 NumPy, SciPy and Pandas . 43
6.2.3 Statsmodels and Scikit-Learn . 44
6.2.4 PyQt, IPython and Matplotlib . 44
6.2.5 IbPy and Trader Workstation . 45

7 Financial Data Storage . 47
7.1 Securities Master Databases . 47
7.2 Financial Datasets . 48
7.3 Storage Formats . 48

7.3.1 Flat-File Storage . 48
7.3.2 Document Stores/NoSQL . 49
7.3.3 Relational Database Management Systems 49

7.4 Historical Data Structure . 49
7.5 Data Accuracy Evaluation . 50
7.6 Automation . 51
7.7 Data Availability . 51
7.8 MySQL for Securities Masters . 51

7.8.1 Installing MySQL . 51
7.8.2 Configuring MySQL . 51
7.8.3 Schema Design for EOD Equities . 52
7.8.4 Connecting to the Database . 54
7.8.5 Using an Object-Relational Mapper . 54

7.9 Retrieving Data from the Securities Master . 59

8 Processing Financial Data . 61
8.1 Market and Instrument Classification . 61

3

8.1.1 Markets . 61
8.1.2 Instruments . 61
8.1.3 Fundamental Data . 62
8.1.4 Unstructured Data . 62

8.2 Frequency of Data . 63
8.2.1 Weekly and Monthly Data . 63
8.2.2 Daily Data . 63
8.2.3 Intraday Bars . 63
8.2.4 Tick and Order Book Data . 63

8.3 Sources of Data . 64
8.3.1 Free Sources . 64
8.3.2 Commercial Sources . 65

8.4 Obtaining Data . 66
8.4.1 Yahoo Finance and Pandas . 66
8.4.2 Quandl and Pandas . 67
8.4.3 DTN IQFeed . 72

8.5 Cleaning Financial Data . 74
8.5.1 Data Quality . 74
8.5.2 Continuous Futures Contracts . 74

IV Modelling 79

9 Statistical Learning . 81
9.1 What is Statistical Learning? . 81

9.1.1 Prediction and Inference . 81
9.1.2 Parametric and Non-Parametric Models 82
9.1.3 Supervised and Unsupervised Learning . 83

9.2 Techniques . 83
9.2.1 Regression . 83
9.2.2 Classification . 84
9.2.3 Time Series Models . 84

10 Time Series Analysis . 87
10.1 Testing for Mean Reversion . 87

10.1.1 Augmented Dickey-Fuller (ADF) Test . 88
10.2 Testing for Stationarity . 89

10.2.1 Hurst Exponent . 89
10.3 Cointegration . 91

10.3.1 Cointegrated Augmented Dickey-Fuller Test 91
10.4 Why Statistical Testing? . 96

11 Forecasting . 97
11.1 Measuring Forecasting Accuracy . 97

11.1.1 Hit Rate . 97
11.1.2 Confusion Matrix . 98

11.2 Factor Choice . 98
11.2.1 Lagged Price Factors and Volume . 98
11.2.2 External Factors . 99

11.3 Classification Models . 99
11.3.1 Logistic Regression . 99
11.3.2 Discriminant Analysis . 100
11.3.3 Support Vector Machines . 100
11.3.4 Decision Trees and Random Forests . 101
11.3.5 Principal Components Analysis . 101
11.3.6 Which Forecaster? . 101

4

11.4 Forecasting Stock Index Movement . 103
11.4.1 Python Implementations . 103
11.4.2 Results . 106

V Performance and Risk Management 107

12 Performance Measurement . 109
12.1 Trade Analysis . 110

12.1.1 Summary Statistics . 110
12.2 Strategy and Portfolio Analysis . 111

12.2.1 Returns Analysis . 111
12.2.2 Risk/Reward Analysis . 112
12.2.3 Drawdown Analysis . 117

13 Risk and Money Management . 119
13.1 Sources of Risk . 119

13.1.1 Strategy Risk . 119
13.1.2 Portfolio Risk . 120
13.1.3 Counterparty Risk . 120
13.1.4 Operational Risk . 120

13.2 Money Management . 121
13.2.1 Kelly Criterion . 121

13.3 Risk Management . 123
13.3.1 Value-at-Risk . 123

13.4 Advantages and Disadvantages . 124

VI Automated Trading 127

14 Event-Driven Trading Engine Implementation 129
14.1 Event-Driven Software . 129

14.1.1 Why An Event-Driven Backtester? . 130
14.2 Component Objects . 130

14.2.1 Events . 131
14.2.2 Data Handler . 134
14.2.3 Strategy . 140
14.2.4 Portfolio . 142
14.2.5 Execution Handler . 150
14.2.6 Backtest . 152

14.3 Event-Driven Execution . 155

15 Trading Strategy Implementation . 163
15.1 Moving Average Crossover Strategy . 163
15.2 S&P500 Forecasting Trade . 168
15.3 Mean-Reverting Equity Pairs Trade . 172
15.4 Plotting Performance . 179

16 Strategy Optimisation . 181
16.1 Parameter Optimisation . 181

16.1.1 Which Parameters to Optimise? . 181
16.1.2 Optimisation is Expensive . 182
16.1.3 Overfitting . 182

16.2 Model Selection . 183
16.2.1 Cross Validation . 183
16.2.2 Grid Search . 189

16.3 Optimising Strategies . 191

5

16.3.1 Intraday Mean Reverting Pairs . 191
16.3.2 Parameter Adjustment . 191
16.3.3 Visualisation . 194

6

Limit of Liability/Disclaimer of
Warranty

While the author has used their best efforts in preparing this book, they make no representations
or warranties with the respect to the accuracy or completeness of the contents of this book and
specifically disclaim any implied warranties of merchantability or fitness for a particular purpose.
It is sold on the understanding that the author is not engaged in rendering professional services
and the author shall not be liable for damages arising herefrom. If professional advice or other
expert assistance is required, the services of a competent professional should be sought.

i

ii

Part I

Introducing Algorithmic Trading

1

Chapter 1

Introduction to the Book

1.1 Introduction to QuantStart

QuantStart was founded by Michael Halls-Moore, in 2010, to help junior quantitative analysts
(QAs) find jobs in the tough economic climate. Since then the site has evolved to become a
substantial resource for quantitative finance. The site now concentrates on algorithmic trading,
but also discusses quantitative development, in both Python and C++.

Since March 2010, QuantStart has helped over 200,000 visitors improve their quantitative
finance skills. You can always contact QuantStart by sending an email to mike@quantstart.com.

1.2 What is this Book?

Successful Algorithmic Trading has been written to teach retail discretionary traders and trading
professionals, with basic programming skills, how to create fully automated profitable and robust
algorithmic trading systems using the Python programming language. The book describes the
nature of an algorithmic trading system, how to obtain and organise financial data, the con-
cept of backtesting and how to implement an execution system. The book is designed to be
extremely practical, with liberal examples of Python code throughout the book to demonstrate
the principles and practice of algorithmic trading.

1.3 Who is this Book For?

This book has been written for both retail traders and professional quants who have some basic
exposure to programming and wish to learn how to apply modern languages and libraries to
algorithmic trading. It is designed for those who enjoy self-study and can learn by example. The
book is aimed at individuals interested in actual programming and implementation, as I believe
that real success in algorithmic trading comes from fully understanding the implementation
details.

Professional quantitative traders will also find the content useful. Exposure to new libraries
and implementation methods may lead to more optimal execution or more accurate backtesting.

1.4 What are the Prerequisites?

The book is relatively self-contained, but does assume a familiarity with the basics of trading in
a discretionary setting. The book does not require an extensive programming background, but
basic familiarity with a programming language is assumed. You should be aware of elementary
programming concepts such as variable declaration, flow-control (if-else) and looping (for/while).

Some of the trading strategies make use of statistical machine learning techniques. In addi-
tion, the portfolio/strategy optimisation sections make extensive use of search and optimisation

3

mailto:mike@quantstart.com

4

algorithms. While a deep understanding of mathematics is not absolutely necessary, it will make
it easy to understand how these algorithms work on a conceptual level.

If you are rusty on this material, or it is new to you, have a look at the QuantStart reading
list.

1.5 Software/Hardware Requirements
Quantitative trading applications in Python can be developed in Windows, Mac OSX or Linux.
This book is agnostic to the operating system so it is best to use whatever system you are
comfortable with. I do however recommend Mac OSX or Linux (I use Ubuntu), as I have found
installation and data management to be far more straightforward.

In order to write Python programs you simply need access to a text editor (preferably with
syntax highlighting). On Windows I tend to use Notepad++. On Mac OSX I make use of
SublimeText. On Ubuntu I tend to use emacs, but of course, you can use vim.

The code in this book will run under both Python version 2.7.x (specifically 2.7.6 on my
Ubuntu 14.04 machine) and Python 3.4.x (specifically 3.4.0 on my Ubuntu 14.04 machine).

In terms of hardware, you will probably want at least 1GB RAM, but more is always better.
You’ll also want to use a relatively new CPU and plenty of hard disk storage for historical data,
depending upon the frequency you intend to trade at. A 200Gb hard disk should be sufficient
for smaller data, while 1TB is useful for a wide symbol universe of tick data.

1.6 Book Structure
The book is designed to create a set of algorithmic trading strategies from idea to automated
execution. The process followed is outlined below.

• Why Algorithmic Trading? - The benefits of using a systematic/algorithmic approach
to trading are discussed as opposed to a discretionary methodology. In addition the different
approaches taken to algorithmic trading are shown.

• Trading System Development - The process of developing an algorithmic trading sys-
tem is covered, from hypothesis through to live trading and continual assessment.

• Trading System Design - The actual components forming an algorithmic trading system
are covered. In particular, signal generation, risk management, performance measurement,
position sizing/leverage, portfolio optimisation and execution.

• Trading System Environment - The installation procedure of all Python software is
carried out and historical data is obtained, cleaned and stored in a local database system.

• Time Series Analysis - Various time series methods are used for forecasting, mean-
reversion, momentum and volatility identification. These statistical methods later form
the basis of trading strategies.

• Optimisation - Optimisation/search algorithms are discussed and examples of how they
apply to strategy optimisation are considered.

• Performance Measurement - Implementations for various measures of risk/reward and
other performance metrics are described in detail.

• Risk Management - Various sources of risk affecting an algorithmic trading system are
outlined and methods for mitigating this risk are provided.

• Trading Strategy Implementation - Examples of trading strategies based off statistical
measures and technical indicators are provided, along with details of how to optimise a
portfolio of such strategies.

• Execution - Connecting to a brokerage, creating an automated event-based trading in-
frastructure and monitoring/resilience tools are all discussed.

http://www.quantstart.com/articles/Quantitative-Finance-Reading-List
http://www.quantstart.com/articles/Quantitative-Finance-Reading-List
http://notepad-plus-plus.org/
http://www.sublimetext.com/

5

1.7 What the Book does not Cover
This is not a beginner book on discretionary trading, nor a book filled with “technical analysis”
trading strategies. If you have not carried out any trading (discretionary or otherwise), I would
suggest reading some of the books on the QuantStart reading list.

It is also not a Python tutorial book, although once again the QuantStart reading list can
be consulted. While every effort has been made to introduce the Python code as each example
warrants it, a certain familiarity with Python will be extremely helpful.

1.8 Where to Get Help
The best place to look for help is the articles list on QuantStart.com, found at QuantStart.com/articles
or by contacting me at mike@quantstart.com. I’ve written over 140 articles about quantitative
finance (and algorithmic trading in particular), so you can brush up by reading some of these.

I also want to say thank you for purchasing the book and helping to support me while I write
more content - it is very much appreciated. Good luck with your algorithmic strategies! Now
onto some trading...

http://www.quantstart.com/articles/Quantitative-Finance-Reading-List
http://www.quantstart.com
http://www.quantstart.com/articles
mailto:mike@quantstart.com

6

Chapter 2

What Is Algorithmic Trading?

Algorithmic trading, as defined here, is the use of an automated system for carrying out
trades, which are executed in a pre-determined manner via an algorithm specifically without
any human intervention. The latter emphasis is important. Algorithmic strategies are designed
prior to the commencement of trading and are executed without discretionary input from human
traders.

In this book “algorithmic trading” refers to the retail practice of automated, systematic and
quantitative trading, which will all be treated as synonyms for the purpose of this text. In the
financial industry “algorithmic trading” generally refers to a class of execution algorithms (such
as Volume Weighted Average Price, VWAP) used to optimise the costs of larger trading orders.

2.1 Overview

Algorithmic trading differs substantially from discretionary trading. In this section the benefits
and drawbacks of a systematic approach will be outlined.

2.1.1 Advantages

Algorithmic trading possesses numerous advantages over discretionary methods.

Historical Assessment

The most important advantage in creating an automated strategy is that its performance can
be ascertained on historical market data, which is (hopefully) representative of future market
data. This process is known as backtesting and will be discussed in significant depth within
this book. Backtesting allows the (prior) statistical properties of the strategy to be determined,
providing insight into whether a strategy is likely to be profitable in the future.

Efficiency

Algorithmic trading is substantially more efficient than a discretionary approach. With a fully
automated system there is no need for an individual or team to be constantly monitoring the
markets for price action or news input. This frees up time for the developer(s) of the trading
strategy to carry out more research and thus, depending upon capital constraints, deploy more
strategies into a portfolio.

Furthermore by automating the risk management and position sizing process, by considering
a stable of systematic strategies, it is necessary to automatically adjust leverage and risk factors
dynamically, directly responding to market dynamics in real-time. This is not possible in a
discretionary world, as a trader is unable to continuously compute risk and must take occasional
breaks from monitoring the market.

7

8

No Discretionary Input

One of the primary advantages of an automated trading system is that there is (theoretically) no
subsequent discretionary input. This refers to modification of trades at the point of execution
or while in a position. Fear and greed can be overwhelming motivators when carrying out
discretionary trading. In the context of systematic trading it is rare that discretionary input
improves the performance of a strategy.

That being said, it is certainly possible for systematic strategies to stop being profitable
due to regime shifts or other external factors. In this instance judgement is required to modify
parameters of the strategy or to retire it. Note that this process is still devoid of interfering with
individual trades.

Comparison

Systematic strategies provide statistical information on both historical and current performance.
In particular it is possible to determine equity growth, risk (in various forms), trading frequency
and a myriad of other metrics. This allows an "apples to apples" comparison between various
strategies such that capital can be allocated optimally. This is in contrast to the case where only
profit & loss (P&L) information is tracked in a discretionary setting, since it masks potential
drawdown risk.

Higher Frequencies

This is a corollary of the efficiency advantage discussed above. Strategies that operate at higher
frequencies over many markets become possible in an automated setting. Indeed, some of the
most profitable trading strategies operate at the ultra-high frequency domain on limit order book
data. These strategies are simply impossible for a human to carry out.

2.1.2 Disadvantages
While the advantages of algorithmic trading are numerous there are some disadvantages.

Capital Requirements

Algorithmic trading generally requires a far larger capital base than would be utilised for retail
discretionary trading, this is simply due to the fact that there are few brokers who support
automated trade execution that do not also require large account minimums. The most prolific
brokerage in the retail automated space is Interactive Brokers, who require an account balance
of $10,000. The situation is slowly changing, especially as other brokerages are allowing direct
connection via the FIX protocol. Further, the Pattern Day Trader requirements as defined by
the Securities and Exchange Commission require a minimum of $25,000 in account equity to be
maintained at all times, in certain margin situations. These issues will be discussed at length in
the section on Execution.

In addition, obtaining data feeds for intraday quantitative strategies, particularly if using
futures contracts, is not cheap for the retail trader. Common retail intraday feeds are often
priced in the $300-$500 per month range, with commercial feeds an order of magnitude beyond
that. Depending upon your latency needs it may be necessary to co-locate a server in an exchange,
which increases the monthly costs. For the interday retail trader this is not necessarily an issue,
but it is worth considering. There are also ancillaries such as a more robust internet connection
and powerful (and thus expensive) desktop machines to be purchased.

Programming/Scientific Expertise

While certain systematic trading platforms exist, such as Quantopian, QuantConnect and TradeSta-
tion, that alleviate the majority of the programming difficulty, some do not yet (as of the time
of writing) support live execution. TradeStation is clearly an exception in this case. Thus it
is a requirement for the algorithmic trader to be relatively proficient both in programming and
scientific modelling.

9

I have attempted to demonstrate a wide variety of strategies, the basis of which are nearly
always grounded in a manner that is straightforward to understand. However, if you do possess
numerical modelling skills then you will likely find it easier to make use of the statistical time
series methods present in the Modelling section. The majority of the techniques demonstrated
have already been implemented in external Python libraries, which saves us a substantial amount
of development work. Thus we are “reduced” to tying together our data analysis and execution
libraries to produce an algorithmic trading system.

2.2 Scientific Method

The design of trading strategies within this book is based solely on the principles of the scientific
method. The process of the scientific method begins with the formulation of a question, based
on observations. In the context of trading an example would be "Is there a relationship between
the SPDR Gold Shares ETF (GLD) and the Market Vectors Gold Miners ETF (GDX)?". This
allows a hypothesis to be formed that may explain the observed behaviour. In this instance a
hypothesis may be "Does the spread between GLD and GDX have mean-reverting behaviour?".
The null hypothesis is that there is no mean-reverting behaviour, i.e. the price spread is a random
walk.

After formulation of a hypothesis it is up to the scientist to disprove the null hypothesis and
demonstrate that there is indeed mean reverting behaviour. To carry this out a prediction
must be defined. Returning to the GLD-GDX example the prediction is that the time series
representing the spread of the two ETFs is stationary. In order to prove or disprove the hypothesis
the prediction is subject to testing. In the case of GLD-GDX this means applying statistical
stationarity tests such as the Augmented Dickey-Fuller, Hurst Exponent and Variance-Ratio
Tests (described in detail in subsequent chapters).

The results of the testing procedure will provide a statistical answer upon whether the null
hypothesis can be rejected at a certain level of confidence. If the null hypothesis is unable to be
rejected, which implies that there was no discernible relationship between the two ETFs, it is still
possible that the hypothesis is (partially) true. A larger set of data, incorporation of additional
information (such as a third ETF affecting the price) can also be tested. This is the process of
analysis. It often leads to rejection of the null hypothesis, after refinement.

The primary advantage of using the scientific method for trading strategy design is that if
the strategy "breaks down" after a prior period of profitability, it is possible to revisit the initial
hypothesis and re-evaluate it, potentially leading to a new hypothesis that leads to regained
profitability for a strategy.

This is in direct contrast to the data mining or black box approach where a large quantity of
parameters or "indicators" are applied to a time series. If such a "strategy" is initially profitable
and then performance deteriorates it is difficult (if not impossible) to determine why. It often
leads to arbitrary application of new information, indicators or parameters that may temporarily
lead to profitability but subsequently lead to further performance degradation. In this instance
the strategy is usually discarded and the process of "research" continues again.

In this book all trading strategies will be developed with an observation-hypothesis approach.

2.3 Why Python?

The above sections have outlined the benefits of algorithmic trading and the scientific method. It
is now time to turn attention to the language of implementation for our trading systems. For this
book I have chosen Python. Python is a high-level language designed for speed of development.
It possesses a wide array of libraries for nearly any computational task imaginable. It is also
gaining wider adoption in the the asset management and investment bank communities.

Here are the reasons why I have chosen Python as a language for trading system research
and implementation:

• Learning - Python is extremely easy to learn compared to other languages such as C++.
You can be extremely productive in Python after only a few weeks (some say days!) of

http://python.org/

10

usage.

• Libraries - The main reason to use Python is that it comes with a staggering array of
libraries, which significantly reduce time to implementation and the chance of introduc-
ing bugs into our code. In particular, we will make use of NumPy (vectorised operations),
SciPy (optimisation algorithms), pandas (time series analysis), statsmodel (statistical mod-
elling), scikit-learn (statistical/machine learning), IPython (interactive development) and
matplotlib (visualisation).

• Speed of Development - Python excels at development speed to the extent that some
have commented that it is like writing in “pseudocode”. The interactive nature of tools like
IPython make strategy research extremely rapid, without sacrificing robustness.

• Speed of Execution - While not quite as fast as C++, Python provides scientific com-
puting components which are heavily optimised (via vectorisation). If speed of execution
becomes an issue one can utilise Cython and obtain execution speeds similar to C, for a
small increase in code complexity.

• Trade Execution - Python plugins exist for larger brokers, such as Interactive Brokers
(IBypy). In addition Python can easily make use of the FIX protocol where necessary.

• Cost/License - Python is free, open source and cross-platform. It will run happily on
Windows, Mac OSX or Linux.

While Python is extremely applicable to nearly all forms of algorithmic trading, it cannot
compete with C (or lower level languages) in the Ultra-High Frequency Trading (UHFT) realm.
However, these types of strategies are well outside the scope of this book!

2.4 Can Retail Traders Still Compete?

It is common, as a beginning algorithmic trader practising at retail level, to question whether
it is still possible to compete with the large institutional quant funds. In this section it will
be argued that due to the nature of the institutional regulatory environment, the organisational
structure and a need to maintain investor relations, that funds suffer from certain disadvantages
that do not concern retail algorithmic traders.

The capital and regulatory constraints imposed on funds lead to certain predictable be-
haviours, which are able to be exploited by a retail trader. "Big money" moves the markets,
and as such one can dream up many strategies to take advantage of such movements. Some of
these strategies will be discussed in later chapters. The comparative advantages enjoyed by the
algorithmic trader over many larger funds will now be outlined.

2.4.1 Trading Advantages

There are many ways in which a retail algo trader can compete with a fund on their trading
process alone, but there are also some disadvantages:

• Capacity - A retail trader has greater freedom to play in smaller markets. They can
generate significant returns in these spaces, even while institutional funds can’t.

• Crowding the trade - Funds suffer from "technology transfer", as staff turnover can be
high. Non-Disclosure Agreements and Non-Compete Agreements mitigate the issue, but it
still leads to many quant funds "chasing the same trade". Whimsical investor sentiment
and the "next hot thing" exacerbate the issue. Retail traders are not constrained to follow
the same strategies and so can remain uncorrelated to the larger funds.

• Market impact - When playing in highly liquid, non-OTC markets, the low capital base
of retail accounts reduces market impact substantially.

11

• Leverage - A retail trader, depending upon their legal setup, is constrained by margin/lever-
age regulations. Private investment funds do not suffer from the same disadvantage, al-
though they are equally constrained from a risk management perspective.

• Liquidity - Having access to a prime brokerage is out of reach of the average retail algo
trader. They have to "make do" with a retail brokerage such as Interactive Brokers. Hence
there is reduced access to liquidity in certain instruments. Trade order-routing is also less
clear and is one way in which strategy performance can diverge from backtests.

• Client news flow - Potentially the most important disadvantage for the retail trader is
lack of access to client news flow from their prime brokerage or credit-providing institution.
Retail traders have to make use of non-traditional sources such as meet-up groups, blogs,
forums and open-access financial journals.

2.4.2 Risk Management

Retail algo traders often take a different approach to risk management than the larger quant
funds. It is often advantageous to be "small and nimble" in the context of risk.

Crucially, there is no risk management budget imposed on the trader beyond that which they
impose themselves, nor is there a compliance or risk management department enforcing oversight.
This allows the retail trader to deploy custom or preferred risk modelling methodologies, without
the need to follow "industry standards" (an implicit investor requirement).

However, the alternative argument is that this flexibility can lead to retail traders to becoming
"sloppy" with risk management. Risk concerns may be built-in to the backtest and execution
process, without external consideration given to portfolio risk as a whole. Although "deep
thought" might be applied to the alpha model (strategy), risk management might not achieve a
similar level of consideration.

2.4.3 Investor Relations

Outside investors are the key difference between retail shops and large funds. This drives all man-
ner of incentives for the larger fund - issues which the retail trader need not concern themselves
with:

• Compensation structure - In the retail environment the trader is concerned only with
absolute return. There are no high-water marks to be met and no capital deployment rules
to follow. Retail traders are also able to suffer more volatile equity curves since nobody is
watching their performance who might be capable of redeeming capital from their fund.

• Regulations and reporting - Beyond taxation there is little in the way of regulatory
reporting constraints for the retail trader. Further, there is no need to provide monthly
performance reports or "dress up" a portfolio prior to a client newsletter being sent. This
is a big time-saver.

• Benchmark comparison - Funds are not only compared with their peers, but also "in-
dustry benchmarks". For a long-only US equities fund, investors will want to see returns
in excess of the S&P500, for example. Retail traders are not enforced in the same way to
compare their strategies to a benchmark.

• Performance fees - The downside to running your own portfolio as a retail trader are the
lack of management and performance fees enjoyed by the successful quant funds. There is
no "2 and 20" to be had at the retail level!

2.4.4 Technology

One area where the retail trader is at a significant advantage is in the choice of technology stack
for the trading system. Not only can the trader pick the "best tools for the job" as they see
fit, but there are no concerns about legacy systems integration or firm-wide IT policies. Newer

12

languages such as Python or R now possess packages to construct an end-to-end backtesting,
execution, risk and portfolio management system with far fewer lines-of-code (LOC) than may
be needed in a more verbose language such as C++.

However, this flexibility comes at a price. One either has to build the stack themselves or
outsource all or part of it to vendors. This is expensive in terms of time, capital or both. Further,
a trader must debug all aspects of the trading system - a long and potentially painstaking process.
All desktop research machines and any co-located servers must be paid for directly out of trading
profits as there are no management fees to cover expenses.

In conclusion, it can be seen that retail traders possess significant comparative advantages
over the larger quant funds. Potentially, there are many ways in which these advantages can be
exploited. Later chapters will discuss some strategies that make use of these differences.

Part II

Trading Systems

13

Chapter 3

Successful Backtesting

Algorithmic backtesting requires knowledge of many areas, including psychology, mathematics,
statistics, software development and market/exchange microstructure. I couldn’t hope to cover
all of those topics in one chapter, so I’m going to split them into two or three smaller pieces.
What will we discuss in this section? I’ll begin by defining backtesting and then I will describe
the basics of how it is carried out. Then I will elucidate upon the biases we touched upon in
previous chapters.

In subsequent chapters we will look at the details of strategy implementations that are often
barely mentioned or ignored elsewhere. We will also consider how to make the backtesting
process more realistic by including the idiosyncrasies of a trading exchange. Then we will discuss
transaction costs and how to correctly model them in a backtest setting. We will end with a
discussion on the performance of our backtests and finally provide detailed examples of common
quant strategies.

Let’s begin by discussing what backtesting is and why we should carry it out in our algorithmic
trading.

3.1 Why Backtest Strategies?

Algorithmic trading stands apart from other types of investment classes because we can more
reliably provide expectations about future performance from past performance, as a consequence
of abundant data availability. The process by which this is carried out is known as backtesting.

In simple terms, backtesting is carried out by exposing your particular strategy algorithm to
a stream of historical financial data, which leads to a set of trading signals. Each trade (which
we will mean here to be a ’round-trip’ of two signals) will have an associated profit or loss. The
accumulation of this profit/loss over the duration of your strategy backtest will lead to the total
profit and loss (also known as the ’P & L’ or ’PnL’). That is the essence of the idea, although of
course the “devil is always in the details”!

What are key reasons for backtesting an algorithmic strategy?

• Filtration - If you recall from the previous chapter on Strategy Identification, our goal
at the initial research stage was to set up a strategy pipeline and then filter out any
strategy that did not meet certain criteria. Backtesting provides us with another filtration
mechanism, as we can eliminate strategies that do not meet our performance needs.

• Modelling - Backtesting allows us to (safely!) test new models of certain market phenom-
ena, such as transaction costs, order routing, latency, liquidity or other market microstruc-
ture issues.

• Optimisation - Although strategy optimisation is fraught with biases, backtesting allows
us to increase the performance of a strategy by modifying the quantity or values of the
parameters associated with that strategy and recalculating its performance.

15

16

• Verification - Our strategies are often sourced externally, via our strategy pipeline. Back-
testing a strategy ensures that it has not been incorrectly implemented. Although we will
rarely have access to the signals generated by external strategies, we will often have access
to the performance metrics such as the Sharpe Ratio and Drawdown characteristics. Thus
we can compare them with our own implementation.

Backtesting provides a host of advantages for algorithmic trading. However, it is not always
possible to straightforwardly backtest a strategy. In general, as the frequency of the strategy
increases, it becomes harder to correctly model the microstructure effects of the market and
exchanges. This leads to less reliable backtests and thus a trickier evaluation of a chosen strategy.
This is a particular problem where the execution system is the key to the strategy performance,
as with ultra-high frequency algorithms.

Unfortunately, backtesting is fraught with biases of all types and we will now discuss them
in depth.

3.2 Backtesting Biases

There are many biases that can affect the performance of a backtested strategy. Unfortunately,
these biases have a tendency to inflate the performance rather than detract from it. Thus you
should always consider a backtest to be an idealised upper bound on the actual performance of
the strategy. It is almost impossible to eliminate biases from algorithmic trading so it is our
job to minimise them as best we can in order to make informed decisions about our algorithmic
strategies.

There are four major biases that I wish to discuss: Optimisation Bias, Look-Ahead Bias,
Survivorship Bias and Cognitive Bias.

3.2.1 Optimisation Bias

This is probably the most insidious of all backtest biases. It involves adjusting or introducing
additional trading parameters until the strategy performance on the backtest data set is very
attractive. However, once live the performance of the strategy can be markedly different. Another
name for this bias is "curve fitting" or "data-snooping bias".

Optimisation bias is hard to eliminate as algorithmic strategies often involve many parame-
ters. "Parameters" in this instance might be the entry/exit criteria, look-back periods, averag-
ing periods (i.e the moving average smoothing parameter) or volatility measurement frequency.
Optimisation bias can be minimised by keeping the number of parameters to a minimum and
increasing the quantity of data points in the training set. In fact, one must also be careful of the
latter as older training points can be subject to a prior regime (such as a regulatory environment)
and thus may not be relevant to your current strategy.

One method to help mitigate this bias is to perform a sensitivity analysis. This means varying
the parameters incrementally and plotting a "surface" of performance. Sound, fundamental
reasoning for parameter choices should, with all other factors considered, lead to a smoother
parameter surface. If you have a very jumpy performance surface, it often means that a parameter
is not reflecting a phenomena and is an artefact of the test data. There is a vast literature on
multi-dimensional optimisation algorithms and it is a highly active area of research. I won’t
dwell on it here, but keep it in the back of your mind when you find a strategy with a fantastic
backtest!

3.2.2 Look-Ahead Bias

Look-ahead bias is introduced into a backtesting system when future data is accidentally included
at a point in the simulation where that data would not have actually been available. If we are
running the backtest chronologically and we reach time point N , then look-ahead bias occurs if
data is included for any point N + k, where k > 0. Look-ahead bias errors can be incredibly
subtle. Here are three examples of how look-ahead bias can be introduced:

17

• Technical Bugs - Arrays/vectors in code often have iterators or index variables. Incorrect
offsets of these indices can lead to a look-ahead bias by incorporating data at N + k for
non-zero k.

• Parameter Calculation - Another common example of look-ahead bias occurs when
calculating optimal strategy parameters, such as with linear regressions between two time
series. If the whole data set (including future data) is used to calculate the regression
coefficients, and thus retroactively applied to a trading strategy for optimisation purposes,
then future data is being incorporated and a look-ahead bias exists.

• Maxima/Minima - Certain trading strategies make use of extreme values in any time
period, such as incorporating the high or low prices in OHLC data. However, since these
maximal/minimal values can only be calculated at the end of a time period, a look-ahead
bias is introduced if these values are used -during- the current period. It is always necessary
to lag high/low values by at least one period in any trading strategy making use of them.

As with optimisation bias, one must be extremely careful to avoid its introduction. It is
often the main reason why trading strategies underperform their backtests significantly in "live
trading".

3.2.3 Survivorship Bias
Survivorship bias is a particularly dangerous phenomenon and can lead to significantly inflated
performance for certain strategy types. It occurs when strategies are tested on datasets that do
not include the full universe of prior assets that may have been chosen at a particular point in
time, but only consider those that have "survived" to the current time.

As an example, consider testing a strategy on a random selection of equities before and after
the 2001 market crash. Some technology stocks went bankrupt, while others managed to stay
afloat and even prospered. If we had restricted this strategy only to stocks which made it through
the market drawdown period, we would be introducing a survivorship bias because they have
already demonstrated their success to us. In fact, this is just another specific case of look-ahead
bias, as future information is being incorporated into past analysis.

There are two main ways to mitigate survivorship bias in your strategy backtests:

• Survivorship Bias Free Datasets - In the case of equity data it is possible to purchase
datasets that include delisted entities, although they are not cheap and only tend to be
utilised by institutional firms. In particular, Yahoo Finance data is NOT survivorship bias
free, and this is commonly used by many retail algo traders. One can also trade on asset
classes that are not prone to survivorship bias, such as certain commodities (and their
future derivatives).

• Use More Recent Data - In the case of equities, utilising a more recent data set mitigates
the possibility that the stock selection chosen is weighted to "survivors", simply as there is
less likelihood of overall stock delisting in shorter time periods. One can also start building
a personal survivorship-bias free dataset by collecting data from current point onward.
After 3-4 years, you will have a solid survivorship-bias free set of equities data with which
to backtest further strategies.

We will now consider certain psychological phenomena that can influence your trading per-
formance.

3.2.4 Cognitive Bias
This particular phenomena is not often discussed in the context of quantitative trading. However,
it is discussed extensively in regard to more discretionary trading methods. When creating
backtests over a period of 5 years or more, it is easy to look at an upwardly trending equity
curve, calculate the compounded annual return, Sharpe ratio and even drawdown characteristics
and be satisfied with the results. As an example, the strategy might possess a maximum relative

18

drawdown of 25% and a maximum drawdown duration of 4 months. This would not be atypical
for a momentum strategy. It is straightforward to convince oneself that it is easy to tolerate such
periods of losses because the overall picture is rosy. However, in practice, it is far harder!

If historical drawdowns of 25% or more occur in the backtests, then in all likelihood you will
see periods of similar drawdown in live trading. These periods of drawdown are psychologically
difficult to endure. I have observed first hand what an extended drawdown can be like, in an
institutional setting, and it is not pleasant - even if the backtests suggest such periods will occur.
The reason I have termed it a "bias" is that often a strategy which would otherwise be successful
is stopped from trading during times of extended drawdown and thus will lead to significant
underperformance compared to a backtest. Thus, even though the strategy is algorithmic in
nature, psychological factors can still have a heavy influence on profitability. The takeaway is to
ensure that if you see drawdowns of a certain percentage and duration in the backtests, then you
should expect them to occur in live trading environments, and will need to persevere in order to
reach profitability once more.

3.3 Exchange Issues

3.3.1 Order Types

One choice that an algorithmic trader must make is how and when to make use of the different
exchange orders available. This choice usually falls into the realm of the execution system, but
we will consider it here as it can greatly affect strategy backtest performance. There are two
types of order that can be carried out: market orders and limit orders.

A market order executes a trade immediately, irrespective of available prices. Thus large
trades executed as market orders will often get a mixture of prices as each subsequent limit order
on the opposing side is filled. Market orders are considered aggressive orders since they will
almost certainly be filled, albeit with a potentially unknown cost.

Limit orders provide a mechanism for the strategy to determine the worst price at which the
trade will get executed, with the caveat that the trade may not get filled partially or fully. Limit
orders are considered passive orders since they are often unfilled, but when they are a price is
guaranteed. An individual exchange’s collection of limit orders is known as the limit order
book, which is essentially a queue of buy and sell orders at certain sizes and prices.

When backtesting, it is essential to model the effects of using market or limit orders correctly.
For high-frequency strategies in particular, backtests can significantly outperform live trading if
the effects of market impact and the limit order book are not modelled accurately.

3.3.2 Price Consolidation

There are particular issues related to backtesting strategies when making use of daily data in the
form of Open-High-Low-Close (OHLC) figures, especially for equities. Note that this is precisely
the form of data given out by Yahoo Finance, which is a very common source of data for retail
algorithmic traders!

Cheap or free datasets, while suffering from survivorship bias (which we have already discussed
above), are also often composite price feeds from multiple exchanges. This means that the
extreme points (i.e. the open, close, high and low) of the data are very susceptible to "outlying"
values due to small orders at regional exchanges. Further, these values are also sometimes more
likely to be tick-errors that have yet to be removed from the dataset.

This means that if your trading strategy makes extensive use of any of the OHLC points
specifically, backtest performance can differ from live performance as orders might be routed to
different exchanges depending upon your broker and your available access to liquidity. The only
way to resolve these problems is to make use of higher frequency data or obtain data directly
from an individual exchange itself, rather than a cheaper composite feed.

19

3.3.3 Forex Trading and ECNs

The backtesting of foreign exchange strategies is somewhat trickier to implement than that of
equity strategies. Forex trading occurs across multiple venues and Electronic Communication
Networks (ECN). The bid/ask prices achieved on one venue can differ substantially from those
on another venue. One must be extremely careful to make use of pricing information from the
particular venue you will be trading on in the backtest, as opposed to a consolidated feed from
multiple venues, as this will be significantly more indicative of the prices you are likely to achieve
going forward.

Another idiosyncrasy of the foreign exchange markets is that brokers themselves are not
obligated to share trade prices/sizes with every trading participant, since this is their proprietary
information[6]. Thus it is more appropriate to use bid-ask quotes in your backtests and to be
extremely careful of the variation of transaction costs between brokers/venues.

3.3.4 Shorting Constraints

When carrying out short trades in the backtest it is necessary to be aware that some equities
may not have been available (due to the lack of availability in that stock to borrow) or due to a
market constraint, such as the US SEC banning the shorting of financial stocks during the 2008
market crisis.

This can severely inflate backtesting returns so be careful to include such short sale constraints
within your backtests, or avoid shorting at all if you believe there are likely to be liquidity
constraints in the instruments you trade.

3.4 Transaction Costs

One of the most prevalent beginner mistakes when implementing trading models is to neglect
(or grossly underestimate) the effects of transaction costs on a strategy. Though it is often
assumed that transaction costs only reflect broker commissions, there are in fact many other
ways that costs can be accrued on a trading model. The three main types of costs that must be
considered include:

3.4.1 Commission

The most direct form of transaction costs incurred by an algorithmic trading strategy are com-
missions and fees. All strategies require some form of access to an exchange, either directly or
through a brokerage intermediary ("the broker"). These services incur an incremental cost with
each trade, known as commission.

Brokers generally provide many services, although quantitative algorithms only really make
use of the exchange infrastructure. Hence brokerage commissions are often small on per trade
basis. Brokers also charge fees, which are costs incurred to clear and settle trades. Further to
this are taxes imposed by regional or national governments. For instance, in the UK there is
a stamp duty to pay on equities transactions. Since commissions, fees and taxes are generally
fixed, they are relatively straightforward to implement in a backtest engine (see below).

3.4.2 Slippage

Slippage is the difference in price achieved between the time when a trading system decides
to transact and the time when a transaction is actually carried out at an exchange. Slippage
is a considerable component of transaction costs and can make the difference between a very
profitable strategy and one that performs poorly. Slippage is a function of the underlying asset
volatility, the latency between the trading system and the exchange and the type of strategy
being carried out.

An instrument with higher volatility is more likely to be moving and so prices between signal
and execution can differ substantially. Latency is defined as the time difference between signal
generation and point of execution. Higher frequency strategies are more sensitive to latency

20

issues and improvements of milliseconds on this latency can make all the difference towards
profitability. The type of strategy is also important. Momentum systems suffer more from
slippage on average because they are trying to purchase instruments that are already moving in
the forecast direction. The opposite is true for mean-reverting strategies as these strategies are
moving in a direction opposing the trade.

3.4.3 Market Impact
Market impact is the cost incurred to traders due to the supply/demand dynamics of the exchange
(and asset) through which they are trying to trade. A large order on a relatively illiquid asset
is likely to move the market substantially as the trade will need to access a large component of
the current supply. To counter this, large block trades are broken down into smaller "chunks"
which are transacted periodically, as and when new liquidity arrives at the exchange. On the
opposite end, for highly liquid instruments such as the S&P500 E-Mini index futures contract,
low volume trades are unlikely to adjust the "current price" in any great amount.

More illiquid assets are characterised by a larger spread, which is the difference between the
current bid and ask prices on the limit order book. This spread is an additional transaction cost
associated with any trade. Spread is a very important component of the total transaction cost
- as evidenced by the myriad of UK spread-betting firms whose advertising campaigns express
the "tightness" of their spreads for heavily traded instruments.

3.5 Backtesting vs Reality
In summary there are a staggering array of factors that can be simulated in order to generate a
realistic backtest. The dangers of overfitting, poor data cleansing, incorrect handling of transac-
tion costs, market regime change and trading constraints often lead to a backtest performance
that differs substantially from a live strategy deployment.

Thus one must be very aware that future performance is very unlikely to match historical
performance directly. We will discuss these issues in further detail when we come to implement
an event-driven backtesting engine near the end of the book.

Chapter 4

Automated Execution

Automated execution is the process of letting the strategy automatically generate execution
signals that are the sent to the broker without any human intervention. This is the purest form
of algorithmic trading strategy, as it minimises issues due to human intervention. It is the type
of system that we will consider most often during this book.

4.1 Backtesting Platforms

The software landscape for strategy backtesting is vast. Solutions range from fully-integrated in-
stitutional grade sophisticated software through to programming languages such as C++, Python
and R where nearly everything must be written from scratch (or suitable ’plugins’ obtained).
As quant traders we are interested in the balance of being able to "own" our trading technol-
ogy stack versus the speed and reliability of our development methodology. Here are the key
considerations for software choice:

• Programming Skill - The choice of environment will in a large part come down to your
ability to program software. I would argue that being in control of the total stack will have
a greater effect on your long term PnL than outsourcing as much as possible to vendor
software. This is due to the downside risk of having external bugs or idiosyncrasies that
you are unable to fix in vendor software, which would otherwise be easily remedied if you
had more control over your "tech stack". You also want an environment that strikes the
right balance between productivity, library availability and speed of execution. I make my
own personal recommendation below.

• Execution Capability/Broker Interaction - Certain backtesting software, such as
Tradestation, ties in directly with a brokerage. I am not a fan of this approach as re-
ducing transaction costs are often a big component of getting a higher Sharpe ratio. If
you’re tied into a particular broker (and Tradestation "forces" you to do this), then you
will have a harder time transitioning to new software (or a new broker) if the need arises.
Interactive Brokers provide an API which is robust, albeit with a slightly obtuse interface.

• Customisation - An environment like MATLAB or Python gives you a great deal of
flexibility when creating algo strategies as they provide fantastic libraries for nearly any
mathematical operation imaginable, but also allow extensive customisation where neces-
sary.

• Strategy Complexity - Certain software just isn’t cut out for heavy number crunching or
mathematical complexity. Excel is one such piece of software. While it is good for simpler
strategies, it cannot really cope with numerous assets or more complicated algorithms, at
speed.

• Bias Minimisation - Does a particular piece of software or data lend itself more to trading
biases? You need to make sure that if you want to create all the functionality yourself,

21

22

that you don’t introduce bugs which can lead to biases. An example here is look-ahead
bias, which Excel minimises, while a vectorised research backtester might lend itself to
accidentally.

• Speed of Development - One shouldn’t have to spend months and months implementing
a backtest engine. Prototyping should only take a few weeks. Make sure that your software
is not hindering your progress to any great extent, just to grab a few extra percentage points
of execution speed.

• Speed of Execution - If your strategy is completely dependent upon execution timeliness
(as in HFT/UHFT) then a language such as C or C++ will be necessary. However, you
will be verging on Linux kernel optimisation and FPGA usage for these domains, which is
outside the scope of the book.

• Cost - Many of the software environments that you can program algorithmic trading
strategies with are completely free and open source. In fact, many hedge funds make use of
open source software for their entire algo trading stacks. In addition, Excel and MATLAB
are both relatively cheap and there are even free alternatives to each.

Different strategies will require different software packages. HFT and UHFT strategies will
be written in C/C++. These days such strategies are often carried out on GPUs and FPGAs.
Conversely, low-frequency directional equity strategies are easy to implement in TradeStation,
due to the "all in one" nature of the software/brokerage.

4.1.1 Programming

Custom development of a backtesting language within a first-class programming language pro-
vides the most flexibility when testing a strategy. Conversely, a vendor-developed integrated
backtesting platform will always have to make assumptions about how backtests are carried out.
The choice of available programming languages is large and diverse. It is not obvious before
development which language would be suitable.

Once a strategy has been codified into systematic rules it is necessary to backtest it in such
a manner that the quantitative trader is confident that its future performance will be reflective
of its past performance. There are generally two forms of backtesting system that are utilised
to test this hypothesis. Broadly, they are categorised as research back testers and event-driven
back testers.

4.1.2 Research Tools

The simpler form of a backtesting tool, the research tool, is usually considered first. The research
tool is used to quickly ascertain whether a strategy is likely to have any performance. Such tools
often make unrealistic assumptions about transaction costs, likely fill prices, shorting constraints,
venue dependence, risk management and a host of other issues that were outlined in the previous
chapter. Common tools for research include MATLAB, R, Python and Excel.

The research stage is useful because the software packages provide significant vectorised ca-
pability, which leads to good execution speed and straightforward implementation (less lines
of code). Thus it is possible to test multiple strategies, combinations and variants in a rapid,
iterative manner.

While such tools are often used for both backtesting and execution, such research environ-
ments are generally not suitable for strategies that approach intraday trading at higher frequen-
cies (sub-minute). This is because these environments do not often possess the necessary libraries
to connect to real-time market data vendor servers or can interface with brokerage APIs in a
clean fashion.

Despite these executional shortcomings, research environments are heavily used within the
professional quantitative environment. They are the "firs test" for all strategy ideas before
promoting them to a more rigourous check within a realistic backtesting environment.

23

4.1.3 Event-Driven Backtesting

Once a strategy has been deemed suitable on a research basis it must be tested in a more realistic
fashion. Such realism attempts to account for the majority (if not all) of the issues described
in the previous chapter. The ideal situation is to be able to use the same trade generation code
for historical backtesting as well as live execution. This can be achieved using an event-driven
backtester.

Event-driven systems are widely used in software engineering, commonly for handling graph-
ical user interface (GUI) input within window-based operating systems. They are also ideal for
algorithmic trading. Such systems are often written in high-performance languages such as C++,
C# and Java.

Consider a situation where an automated trading strategy is connected to a real-time market
feed and a broker (these two may be one and the same). New market information will be sent
to the system, which triggers and event to generate a new trading signal and thus an execution
event. Thus such a system is in a continuous loop waiting to receive events and handle them
appropriately.

It is possible to generate sub-components such as a historic data handler and brokerage
simulator, which can mimic their live counterparts. This allows backtesting strategies in a
manner that is extremely similar to live execution.

The disadvantage of such systems is that they are far more complicated to design and imple-
ment than a simpler research tool. Thus the "time to market" is longer. They are more prone to
bugs and require a reasonable knowledge of programming and, to a degree, software development
methodology.

4.1.4 Latency

In engineering terms, latency is defined as the time interval between a simulation and a response.
For our purposes it will generally refer to the round-trip time delay between the generation of
an execution signal and the receipt of the fill information from a broker that is carrying out the
execution.

Such latency is rarely an issue on low-frequency interday strategies since the likely price move-
ment during the latency period will not affect the strategy to any great extent. Unfortunately,
the same is not true of higher-frequency strategies. At these frequencies latency becomes impor-
tant. The ultimate goal is to reduce latency as much as possible in order to minimise slippage,
as discussed in the previous chapter.

Decreasing latency involves minimising the "distance" between the algorithmic trading system
and the ultimate exchange on which an order is being executed. This can involve shortening the
geographic distance between systems (and thus reducing travel down network cabling), reducing
the processing carried out in networking hardware (important in HFT strategies) or choosing a
brokerage with more sophisticated infrastructure.

Decreasing latency becomes exponentially more expensive as a function of "internet distance"
(i.e. the network distance between two servers). Thus, for a high-frequency trader, a compromise
must be reached between expenditure of latency-reduction vs the gain from minimising slippage.
These issues will be discussed in the section on Colocation below.

4.1.5 Language Choices

Some issues that drive language choice have already been outlined. Now we will consider the
benefits and drawbacks of individual programming languages. I have broadly categorised the
languages into high-performance/harder development vs lower-performance/easier development.
These are subjective terms and some will disagree depending upon their background.

One of the most important aspects of programming a custom backtesting environment is
that the programmer is familiar with the tools being used. That is probably a more important
criterion than speed of development. However, for those that are new to the programming
language landscape, the following should clarify what tends to be utilised within algorithmic
trading.

24

C++, C# and Java

C++, C# and Java are all examples of general purpose object-oriented programming languages.
That is, they can be used without a corresponding IDE, are all cross-platform (can be run on
Windows, Mac OSX or Linux), have a wide range of libraries for nearly any imaginable task and
possess have rapid execution speed.

If ultimate execution speed is desired then C++ (or C) is likely to be the best choice. It
offers the most flexibility for managing memory and optimising execution speed. This flexibility
comes at a price. C++ is notoriously tricky to learn well and can often lead to subtle bugs.
Development time can take much longer than in other languages.

C# and Java are similar in that they both require all components to be objects, with the
exception of primitive data types such as floats and integers. They differ from C++ in that
they both perform automatic garbage collection. This means that memory does not have to be
manually de-allocated upon destruction of an object. Garbage collection adds a performance
overhead but it makes development substantially more rapid. These languages are both good
choices for developing a backtester as they have native GUI capabilities, numerical analysis
libraries and fast execution speed.

Personally, I would make use of C++ for creating an event-driven backtester that needs
extremely rapid execution speed, such as for HFT. This is only if I feel that a Python event-
driven system was becoming a bottleneck, as the latter language would be my first choice for
such a system.

MATLAB, R and Python

MATLAB is a commercial integrated development environment (IDE) for numerical computa-
tion. It has gained wide acceptance in the academic, engineering and financial sectors. It has
a huge array of numerical libraries for many scientific computing tasks and possesses a rapid
execution speed, assuming that any algorithm being developed is subject to vectorisation or
parallelisation. It is expensive and this sometimes makes it less appealing to retail traders on
a budget. MATLAB is sometimes used for direct execution through to a brokerage such as
Interactive Brokers.

R is less of a general purpose programming language and more of a statistics scripting en-
vironment. It is free, open-source, cross-platform and contains a huge array of freely-available
statistical packages for carrying out extremely advanced analysis. R is very widely used in the
quantitative hedge fund industry for statistical/strategy research. While it is possible to connect
R to a brokerage, is not well suited to the task and should be considered more of a research tool.
In addition, it lacks execution speed unless operations are vectorised.

I’ve grouped Python under this heading, although it sits somewhere between MATLAB, R
and the aforementioned general-purpose languages. It is free, open-source and cross-platform. It
is interpreted as opposed to compiled, which makes it natively slower than C++. Despite this it
contains a library for carrying out nearly any task imaginable, from scientific computing through
to low-level web server design. In particular, it contains NumPy, SciPy, pandas, matplotlib and
scikit-learn, which provide a robust numerical research environment that, when vectorised, is
comparable to compiled language execution speed.

Further, it has mature libraries for connecting to brokerages. This makes it a "one-stop shop"
for creating an event-driven backtesting and live execution environment without having to step
into other languages. Execution speed is more than sufficient for intraday traders trading on the
time scale of minutes. Finally, it is very straightforward to pick up and learn, when compared to
lower-level languages like C++. For these reasons we make extensive use of Python within this
book.

4.1.6 Integrated Development Environments

The term IDE has multiple meanings within algorithmic trading. Software developers use it to
mean a GUI that allows programming with syntax highlighting, file browsing, debugging and
code execution features. Algorithmic traders use it to mean a fully-integrated backtesting/trading
environment, including historical or real-time data download, charting, statistical evaluation and

25

live execution. For our purposes, I use the term to mean any environment (often GUI-based)
that is not a general purpose programming language, such as C++ or Python. MATLAB is
considered an IDE, for instance.

Excel

While some purer quants may look down on Excel, I have found it to be extremely useful for
"sanity checking" of results. The fact that all of the data is directly available, rather than
hidden behind objects, makes it straightforward to implement very basic signal/filter strategies.
Brokerages, such as Interactive Brokers, also allow DDE plugins that allow Excel to receive
real-time market data and execute trading orders.

Despite the ease of use, Excel is extremely slow for any reasonable scale of data or level of
numerical computation. I only use it to error-check when developing against other strategies and
to make sure I’ve avoided look-ahead bias, which is easy to see in Excel due to the spreadsheet
nature of the software.

If you are uncomfortable with programming languages and are carrying out an interday
strategy, then Excel may be the perfect choice.

Commercial/Retail Backtesting Software

The market for retail charting, "technical analysis" and backtesting software is extremely com-
petitive. Features offersd by such software include real-time charting of prices, a wealth of
technical indicators, customised backtesting langauges and automated execution.

Some vendors provide an all-in-one solution, such as TradeStation. TradeStation are an online
brokerage who produce trading software (also known as TradeStation) that provides electronic
order execution across multiple asset classes. I don’t currently believe that they offer a direct
API for automated execution, rather orders must be placed through the software. This is in con-
trast to Interactive Brokers, who have a more stripped down charting/trading interface (Trader
WorkStation), but offer both their proprietary real-time market/order execution APIs and a FIX
interface.

Another extremely popular platform is MetaTrader, which is used in foreign exchange trading
for creating ’Expert Advisors’. These are custom scripts written in a proprietary language that
can be used for automated trading. I haven’t had much experience with either TradeStation or
MetaTrader so I won’t spend too much time discussing their merits.

Such tools are useful if you are not comfortable with in depth software development and wish
a lot of the details to be taken care of. However, with such systems a lot of flexibility is sacrificed
and you are often tied to a single brokerage.

Web-Based Tools

The two current popular web-based backtesting systems are Quantopian (https://www.quantopian.com/)
and QuantConnect (https://www.quantconnect.com/). The former makes use of Python (and
ZipLine, see below) while the latter utilises C#. Both provide a wealth of historical data. Quan-
topian currently supports live trading with Interactive Brokers, while QuantConnect is working
towards live trading.

Open Source Backtesting Software

In addition to the commercial offerings, there are open source alternatives for backtesting soft-
ware.

Algo-Trader is a Swiss-based firm that offer both an open-source and a commercial license
for their system. From what I can gather the offering seems quite mature and they have many
institutional clients. The system allows full historical backtesting and complex event processing
and they tie into Interactive Brokers. The Enterprise edition offers substantially more high
performance features.

Marketcetera provide a backtesting system that can tie into many other languages, such as
Python and R, in order to leverage code that you might have already written. The ’Strategy

26

Studio’ provides the ability to write backtesting code as well as optimised execution algorithms
and subsequently transition from a historical backtest to live paper trading.

ZipLine is the Python library that powers the Quantopian service mentioned above. It is a
fully event-driven backtest environment and currently supports US equities on a minutely-bar
basis. I haven’t made extensive use of ZipLine, but I know others who feel it is a good tool.
There are still many areas left to improve, but the team are constantly working on the project
so it is very actively maintained.

There are also some Github/Google Code hosted projects that you may wish to look into.
I have not spent any great deal of time investigating them. Such projects include OpenQuant
(http://code.google.com/p/openquant/), TradeLink (https://code.google.com/p/tradelink/) and
PyAlgoTrade (http://gbeced.github.io/pyalgotrade/).

Institutional Backtesting Software

Institutional-grade backtesting systems, such as Deltix and QuantHouse, are not often utilised
by retail algorithmic traders. The software licenses are generally well outside the budget for
infrastructure. That being said, such software is widely used by quant funds, proprietary trading
houses, family offices and the like.

The benefits of such systems are clear. They provide an all-in-one solution for data collec-
tion, strategy development, historical backtesting and live execution across single instruments or
portfolios, up to the ultra-high frequency level. Such platforms have had extensive testing and
plenty of "in the field" usage and so are considered robust.

The systems are event-driven and as such the backtesting environment can often simulate the
live environment well. The systems also support optimised execution algorithms, which attempt
to minimise transaction costs.

I have to admit that I have not had much experience of Deltix or QuantHouse beyond some
cursory overviews. That being said, the budget alone puts them out of reach of most retail
traders, so I won’t dwell on these systems.

4.2 Colocation
The software landscape for algorithmic trading has now been surveyed. It is now time to turn
attention towards implementation of the hardware that will execute our strategies.

A retail trader will likely be executing their strategy from home during market hours, turning
on their PC, connecting to the brokerage, updating their market software and then allowing the
algorithm to execute automatically during the day. Conversely, a professional quant fund with
significant assets under management (AUM) will have a dedicated exchange-colocated server
infrastructure in order to reduce latency as far as possible to execute their high speed strategies.

4.2.1 Home Desktop
The simplest approach to hardware deployment is simply to carry out an algorithmic strategy
with a home desktop computer connected to the brokerage via a broadband (or similar) connec-
tion.

While this approach is straightforward to get started it does suffers from many drawbacks.
Primarily, the desktop machine is subject to power failure, unless backed up by a UPS. In
addition, a home internet connection is also at the mercy of the ISP. Power loss or internet
connectivity failure could occur at a crucial moment in trading, leaving the algorithmic trader
with open positions that are unable to be closed.

Secondly, a desktop machine must occasionally be restarted, often due to the reliability of
the operating system. This means that the strategy suffers from a degree of indirect manual
intervention. If this occurs outside of trading hours the problem is mitigated. However, if a
computer needs a restart during trading hours the problem is similar to a power loss. Unclosed
positions may still be subject to risk.

Component failure also leads to the same set of "downtime" problems. A failure in the hard
disk, monitor or motherboard often occurs at precisely the wrong time. For all of these reasons

27

I hesitate to recommend a home desktop approach to algorithmic trading. If you do decide
to pursue this approach, make sure to have both a backup computer AND a backup internet
connection (e.g. a 3G dongle) that you can use to close out positions under a downtime situation.

4.2.2 VPS
The next level up from a home desktop is to make use of a virtual private server (VPS). A
VPS is a remote server system often marketed as a "cloud" service. They are far cheaper than
a corresponding dedicated server, since a VPS is actually a partition of a much larger server,
with a virtual isolated operating system environment solely available to you. CPU load is shared
between multiple servers and a portion of the systems RAM is allocated to the VPS.

Common VPS providers include Amazon EC2 and Rackspace Cloud. They provide entry-
level systems with low RAM and basic CPU usage, through to enterprise-ready high RAM, high
CPU servers. For the majority of algorithmic retail traders, the entry level systems suffice for
low-frequency intraday or interday strategies and smaller historical data databases.

The benefits of a VPS-based system include 24/7 availability (with a certain realistic down-
time!), more robust monitoring capabilities, easy "plugins" for additional services, like file storage
or managed databases and a flexible architecture. The drawbacks include expense as the system
grows, since dedicated hardware becomes far cheaper per performance, assuming colocation away
from an exchange, as well as handling failure scenarios (i.e. by creating a second identical VPS,
for instance).

In addition, latency is not always improved by choosing a VPS/cloud provider. Your home
location may be closer to a particular financial exchange than the data centres of your cloud
provider. This is somewhat mitigated by choosing a firm that provide VPS geared specifically
for algorithmic trading which are located at or near exchanges, however these will likely cost
more than a "traditional" VPS provider such as Amazon or Rackspace.

4.2.3 Exchange
In order to get the best latency minimisation and fastest systems, it is necessary to colocate a
dedicated server (or set of servers) directly at the exchange data centre. This is a prohibitively
expensive option for nearly all retail algorithmic traders (unless they’re very well capitalised). It
is really the domain of the professional quantitative fund or brokerage.

As I mentioned above, a more realistic option is to purchase a VPS system from a provider
that is located near an exchange. I won’t dwell too heavily on exchange colocation, as the topic
is somewhat outside the scope of the book.

28

Chapter 5

Sourcing Strategy Ideas

In this chapter I want to introduce you to the methods by which I myself identify profitable
algorithmic trading strategies. We will discuss how to find, evaluate and select such systems. I’ll
explain how identifying strategies is as much about personal preference as it is about strategy
performance, how to determine the type and quantity of historical data for testing, how to
dispassionately evaluate a trading strategy and finally how to proceed towards the backtesting
phase and strategy implementation.

5.1 Identifying Your Own Personal Preferences for Trading
In order to be a successful trader - either discretionally or algorithmically - it is necessary to
ask yourself some honest questions. Trading provides you with the ability to lose money at an
alarming rate, so it is necessary to "know thyself" as much as it is necessary to understand your
chosen strategy.

I would say the most important consideration in trading is being aware of your own
personality. Trading, and algorithmic trading in particular, requires a significant degree of
discipline, patience and emotional detachment. Since you are letting an algorithm perform your
trading for you, it is necessary to be resolved not to interfere with the strategy when it is being
executed. This can be extremely difficult, especially in periods of extended drawdown. However,
many strategies that have been shown to be highly profitable in a backtest can be ruined by
simple interference. Understand that if you wish to enter the world of algorithmic trading you
will be emotionally tested and that in order to be successful, it is necessary to work through
these difficulties!

The next consideration is one of time. Do you have a full time job? Do you work part time?
Do you work from home or have a long commute each day? These questions will help determine
the frequency of the strategy that you should seek. For those of you in full time employment,
an intraday futures strategy may not be appropriate (at least until it is fully automated!). Your
time constraints will also dictate the methodology of the strategy. If your strategy is frequently
traded and reliant on expensive news feeds (such as a Bloomberg terminal) you will clearly have
to be realistic about your ability to successfully run this while at the office! For those of you
with a lot of time, or the skills to automate your strategy, you may wish to look into a more
technical high-frequency trading (HFT) strategy.

My belief is that it is necessary to carry out continual research into your trading strategies
to maintain a consistently profitable portfolio. Few strategies stay "under the radar" forever.
Hence a significant portion of the time allocated to trading will be in carrying out ongoing
research. Ask yourself whether you are prepared to do this, as it can be the difference between
strong profitability or a slow decline towards losses.

You also need to consider your trading capital. The generally accepted ideal minimum
amount for a quantitative strategy is 50,000 USD (approximately £35,000 for us in the UK).
If I was starting again, I would begin with a larger amount, probably nearer 100,000 USD
(approximately £70,000). This is because transaction costs can be extremely expensive for mid-
to high-frequency strategies and it is necessary to have sufficient capital to absorb them in times

29

30

of drawdown. If you are considering beginning with less than 10,000 USD then you will need
to restrict yourself to low-frequency strategies, trading in one or two assets, as transaction costs
will rapidly eat into your returns. Interactive Brokers, which is one of the friendliest brokers to
those with programming skills, due to its API, has a retail account minimum of 10,000 USD.

Programming skill is an important factor in creating an automated algorithmic trading
strategy. Being knowledgeable in a programming language such as C++, Java, C#, Python or
R will enable you to create the end-to-end data storage, backtest engine and execution system
yourself. This has a number of advantages, chief of which is the ability to be completely aware
of all aspects of the trading infrastructure. It also allows you to explore the higher frequency
strategies as you will be in full control of your "technology stack". While this means that
you can test your own software and eliminate bugs, it also means more time spent coding up
infrastructure and less on implementing strategies, at least in the earlier part of your algo trading
career. You may find that you are comfortable trading in Excel or MATLAB and can outsource
the development of other components. I would not recommend this however, particularly for
those trading at high frequency.

You need to ask yourself what you hope to achieve by algorithmic trading. Are you
interested in a regular income, whereby you hope to draw earnings from your trading account?
Or, are you interested in a long-term capital gain and can afford to trade without the need to
drawdown funds? Income dependence will dictate the frequency of your strategy. More regular
income withdrawals will require a higher frequency trading strategy with less volatility (i.e. a
higher Sharpe ratio). Long-term traders can afford a more sedate trading frequency.

Finally, do not be deluded by the notion of becoming extremely wealthy in a short space of
time! Algo trading is NOT a get-rich-quick scheme - if anything it can be a become-poor-
quick scheme. It takes significant discipline, research, diligence and patience to be successful at
algorithmic trading. It can take months, if not years, to generate consistent profitability.

5.2 Sourcing Algorithmic Trading Ideas

Despite common perceptions to the contrary, it is actually quite straightforward to locate prof-
itable trading strategies in the public domain. Never have trading ideas been more readily
available than they are today. Academic finance journals, pre-print servers, trading blogs, trad-
ing forums, weekly trading magazines and specialist texts provide thousands of trading strategies
with which to base your ideas upon.

Our goal as quantitative trading researchers is to establish a strategy pipeline that will
provide us with a stream of ongoing trading ideas. Ideally we want to create a methodical
approach to sourcing, evaluating and implementing strategies that we come across. The aims of
the pipeline are to generate a consistent quantity of new ideas and to provide us with a framework
for rejecting the majority of these ideas with the minimum of emotional consideration.

We must be extremely careful not to let cognitive biases influence our decision making
methodology. This could be as simple as having a preference for one asset class over another
(gold and other precious metals come to mind) because they are perceived as more exotic. Our
goal should always be to find consistently profitable strategies, with positive expectation. The
choice of asset class should be based on other considerations, such as trading capital constraints,
brokerage fees and leverage capabilities.

5.2.1 Textbooks

If you are completely unfamiliar with the concept of a trading strategy and financial markets in
general then the first place to look is with established textbooks. Classic texts provide a wide
range of simpler, more straightforward ideas, with which to familiarise yourself with quantitative
trading. Here is a selection that I recommend for those who are new to quantitative trading,
which gradually become more sophisticated as you work through the list.

31

Financial Markets and Participants

The following list details books that outline how capital markets work and describe modern
electronic trading.

• Financial Times Guide to the Financial Markets by Glen Arnold[1] - This book is
designed for the novice to the financial markets and is extremely useful for gaining insight
into all of the market participants. For our purposes, it provides us with a list of markets
on which we might later form algorithmic trading strategies.

• Trading and Exchanges: Market Microstructure for Practitioners by Larry Harris[7]
- This is an extremely informative book on the participants of financial markets and how
they operate. It provides significant detail in how trades are carried out, the various motives
of the players and how markets are regulated. While some may consider it "dry reading"
I believe it is absolutely essential to understand these concepts to be a good algorithmic
trader.

• Algorithmic Trading and DMA: An introduction to direct access trading strate-
gies by Barry Johnson[10] - Johnson’s book is geared more towards the technological side
of markets. It discusses order types, optimal execution algorithms, the types of exchanges
that accept algorithmic trading as well as more sophisticated strategies. As with Harris’
book above, it explains in detail how electronic trading markets work, the knowledge of
which I also believe is an essential prerequisite for carrying out systematic strategies.

Quantitative Trading

The next set of books are about algorithmic/quantitative trading directly. They outline some of
the basic concepts and describe particular strategies that can be implemented.

• Quantitative Trading: How to Build Your Own Algorithmic Trading Business
by Ernest Chan[5] - Ernest Chan’s first book is a “beginner’s guide” to quantitative trading
strategies. While it is not heavy on strategy ideas, it does present a framework for how
to setup a trading business, with risk management ideas and implementation tools. This
is a great book if you are completely new to algorithmic trading. The book makes use of
MATLAB.

• Algorithmic Trading: Winning Strategies and Their Rationale by Ernest Chan[6]
- Chan’s second book is very heavy on strategy ideas. It essentially begins where the
previous book left off and is updated to reflect “current market conditions”. The book
discusses mean reversion and momentum based strategies at the interday and intraday
frequencies. it also briefly touches on high-frequency trading. As with the prior book it
makes extensive use of MATLAB code.

• Inside The Black Box: The Simple Truth About Quantitative and High-Frequency
Trading, 2nd Ed by Rishi Narang[12] - Narang’s book provides an overview of the com-
ponents of a trading system employed by a quantitative hedge fund, including alpha gener-
ators, risk management, portfolio optimisation and transaction costs. The second edition
goes into significant detail on high-frequency trading techniques.

• Volatility Trading by Euan Sinclair[16] - Sinclair’s book concentrates solely on volatility
modelling/forecasting and options strategies designed to take advantage of these models.
If you plan to trade options in a quantitative fashion then this book will provide many
research ideas.

5.2.2 The Internet
After gaining a grounding in the process of algorithmic trading via the classic texts, additional
strategy ideas can be sourced from the internet. Quantitative finance blogs, link aggregators and
trading forums all provide rich sources of ideas to test.

32

However, a note of caution: Many internet trading resources rely on the concept of technical
analysis. Technical analysis involves utilising basic signals analysis indicators and behavioural
psychology to determine trends or reversal patterns in asset prices.

Despite being extremely popular in the overall trading space, technical analysis is considered
somewhat controversial in the quantitative finance community. Some have suggested that it is
no better than reading a horoscope or studying tea leaves in terms of its predictive power! In
reality there are successful individuals making extensive use of technical analysis in their trading.

As quants with a more sophisticated mathematical and statistical toolbox at our disposal,
we can easily evaluate the effectiveness of such "TA-based" strategies. This allows us to make
decisions driven by data analysis and hypothesis testing, rather than base such decisions on
emotional considerations or preconceptions.

Quant Blogs

I recommend the following quant blogs for good trading ideas and concepts about algorithmic
trading in general:

• MATLAB Trading - http://matlab-trading.blogspot.co.uk/

• Quantitative Trading (Ernest Chan) - http://epchan.blogspot.com

• Quantivity - http://quantivity.wordpress.com

• Quantopian - http://blog.quantopian.com

• Quantpedia - http://quantpedia.com

Aggregators

It has become fashionable in the last few years for topical links to be aggregated and then
discussed. I read the following aggregators:

• Quantocracy - http://www.quantocracy.com

• Quant News - http://www.quantnews.com

• Algo Trading Sub-Reddit - http://www.reddit.com/r/algotrading

Forums

The next place to find additional strategy ideas is with trading forums. Do not be put off by
more "technical analysis" oriented strategies. These strategies often provide good ideas that can
be statistically tested:

• Elite Trader Forums - http://www.elitetrader.com

• Nuclear Phynance - http://www.nuclearphynance.com

• QuantNet - http://www.quantnet.com

• Wealth Lab - http://www.wealth-lab.com/Forum

• Wilmott Forums - http://www.wilmott.com

33

5.2.3 Journal Literature
Once you have had some experience at evaluating simpler strategies, it is time to look at the more
sophisticated academic offerings. Some academic journals will be difficult to access, without high
subscriptions or one-off costs. If you are a member or alumnus of a university, you should be able
to obtain access to some of these financial journals. Otherwise, you can look at pre-print servers,
which are internet repositories of late drafts of academic papers that are undergoing peer review.
Since we are only interested in strategies that we can successfully replicate, backtest and obtain
profitability for, a peer review is of less importance to us.

The major downside of academic strategies is that they can often either be out of date, require
obscure and expensive historical data, trade in illiquid asset classes or do not factor in fees,
slippage or spread. It can also be unclear whether the trading strategy is to be carried out with
market orders, limit orders or whether it contains stop losses etc. Thus it is absolutely essential
to replicate the strategy yourself as best you can, backtest it and add in realistic transaction
costs that include as many aspects of the asset classes that you wish to trade in.

Here is a list of the more popular pre-print servers and financial journals that you can source
ideas from:

• arXiv - http://arxiv.org/archive/q-fin

• SSRN - http://www.ssrn.com

• Journal of Investment Strategies - http://www.risk.net/type/journal/source/journal-
of-investment-strategies

• Journal of Computational Finance - http://www.risk.net/type/journal/source/journal-
of-computational-finance

• Mathematical Finance - http://onlinelibrary.wiley.com/journal/10.1111/%28ISSN%291467-
9965

5.2.4 Independent Research
What about forming your own quantitative strategies? This generally requires (but is not limited
to) expertise in one or more of the following categories:

• Market microstructure - For higher frequency strategies in particular, one can make use
ofmarket microstructure, i.e. understanding of the order book dynamics in order to generate
profitability. Different markets will have various technology limitations, regulations, market
participants and constraints that are all open to exploitation via specific strategies. This is
a very sophisticated area and retail practitioners will find it hard to be competitive in this
space, particularly as the competition includes large, well-capitalised quantitative hedge
funds with strong technological capabilities.

• Fund structure - Pooled investment funds, such as pension funds, private investment
partnerships (hedge funds), commodity trading advisors and mutual funds are constrained
both by heavy regulation and their large capital reserves. Thus certain consistent be-
haviours can be exploited with those who are more nimble. For instance, large funds are
subject to capacity constraints due to their size. Thus if they need to rapidly offload (sell)
a quantity of securities, they will have to stagger it in order to avoid "moving the market".
Sophisticated algorithms can take advantage of this, and other idiosyncrasies, in a general
process known as fund structure arbitrage.

• Machine learning/artificial intelligence - Machine learning algorithms have become
more prevalent in recent years in financial markets. Classifiers (such as Naive-Bayes, et
al.) non-linear function matchers (neural networks) and optimisation routines (genetic
algorithms) have all been used to predict asset paths or optimise trading strategies. If you
have a background in this area you may have some insight into how particular algorithms
might be applied to certain markets.

34

By continuing to monitor the above sources on a weekly, or even daily, basis you are setting
yourself up to receive a consistent list of strategies from a diverse range of sources. The next
step is to determine how to reject a large subset of these strategies in order to minimise wasting
your time and backtesting resources on strategies that are likely to be unprofitable.

5.3 Evaluating Trading Strategies
The first, and arguably most obvious consideration is whether you actually understand the
strategy. Would you be able to explain the strategy concisely or does it require a string of
caveats and endless parameter lists? In addition, does the strategy have a good, solid basis in
reality? For instance, could you point to some behavioural rationale or fund structure constraint
that might be causing the pattern(s) you are attempting to exploit? Would this constraint hold
up to a regime change, such as a dramatic regulatory environment disruption? Does the strategy
rely on complex statistical or mathematical rules? Does it apply to any financial time series or
is it specific to the asset class that it is claimed to be profitable on? You should constantly be
thinking about these factors when evaluating new trading methods, otherwise you may waste a
significant amount of time attempting to backtest and optimise unprofitable strategies.

Once you have determined that you understand the basic principles of the strategy you need
to decide whether it fits with your aforementioned personality profile. This is not as vague a
consideration as it sounds! Strategies will differ substantially in their performance characteristics.
There are certain personality types that can handle more significant periods of drawdown, or
are willing to accept greater risk for larger return. Despite the fact that we, as quants, try
and eliminate as much cognitive bias as possible and should be able to evaluate a strategy
dispassionately, biases will always creep in. Thus we need a consistent, unemotional means
through which to assess the performance of strategies. Here is the list of criteria that I judge a
potential new strategy by:

• Methodology - Is the strategy momentum based, mean-reverting, market-neutral, di-
rectional? Does the strategy rely on sophisticated (or complex!) statistical or machine
learning techniques that are hard to understand and require a PhD in statistics to grasp?
Do these techniques introduce a significant quantity of parameters, which might lead to
optimisation bias? Is the strategy likely to withstand a regime change (i.e. potential new
regulation of financial markets)?

• Sharpe Ratio - The Sharpe ratio heuristically characterises the reward/risk ratio of the
strategy. It quantifies how much return you can achieve for the level of volatility endured
by the equity curve. Naturally, we need to determine the period and frequency that these
returns and volatility (i.e. standard deviation) are measured over. A higher frequency
strategy will require greater sampling rate of standard deviation, but a shorter overall time
period of measurement, for instance.

• Leverage - Does the strategy require significant leverage in order to be profitable? Does
the strategy necessitate the use of leveraged derivatives contracts (futures, options, swaps)
in order to make a return? These leveraged contracts can have heavy volatility charac-
terises and thus can easily lead to margin calls. Do you have the trading capital and the
temperament for such volatility?

• Frequency - The frequency of the strategy is intimately linked to your technology stack
(and thus technological expertise), the Sharpe ratio and overall level of transaction costs.
All other issues considered, higher frequency strategies require more capital, are more
sophisticated and harder to implement. However, assuming your backtesting engine is
sophisticated and bug-free, they will often have far higher Sharpe ratios.

• Volatility - Volatility is related strongly to the "risk" of the strategy. The Sharpe ratio
characterises this. Higher volatility of the underlying asset classes, if unhedged, often
leads to higher volatility in the equity curve and thus smaller Sharpe ratios. I am of course
assuming that the positive volatility is approximately equal to the negative volatility. Some
strategies may have greater downside volatility. You need to be aware of these attributes.

35

• Win/Loss, Average Profit/Loss - Strategies will differ in their win/loss and average
profit/loss characteristics. One can have a very profitable strategy, even if the number of
losing trades exceed the number of winning trades. Momentum strategies tend to have
this pattern as they rely on a small number of "big hits" in order to be profitable. Mean-
reversion strategies tend to have opposing profiles where more of the trades are "winners",
but the losing trades can be quite severe.

• Maximum Drawdown - The maximum drawdown is the largest overall peak-to-trough
percentage drop on the equity curve of the strategy. Momentum strategies are well known
to suffer from periods of extended drawdowns (due to a string of many incremental losing
trades). Many traders will give up in periods of extended drawdown, even if historical
testing has suggested this is "business as usual" for the strategy. You will need to determine
what percentage of drawdown (and over what time period) you can accept before you cease
trading your strategy. This is a highly personal decision and thus must be considered
carefully.

• Capacity/Liquidity - At the retail level, unless you are trading in a highly illiquid instru-
ment (like a small-cap stock), you will not have to concern yourself greatly with strategy
capacity. Capacity determines the scalability of the strategy to further capital. Many of
the larger hedge funds suffer from significant capacity problems as their strategies increase
in capital allocation.

• Parameters - Certain strategies (especially those found in the machine learning commu-
nity) require a large quantity of parameters. Every extra parameter that a strategy requires
leaves it more vulnerable to optimisation bias (also known as "curve-fitting"). You should
try and target strategies with as few parameters as possible or make sure you have sufficient
quantities of data with which to test your strategies on.

• Benchmark - Nearly all strategies (unless characterised as "absolute return") are mea-
sured against some performance benchmark. The benchmark is usually an index that
characterises a large sample of the underlying asset class that the strategy trades in. If
the strategy trades large-cap US equities, then the S&P500 would be a natural benchmark
to measure your strategy against. You will hear the terms "alpha" and "beta", applied to
strategies of this type.

Notice that we have not discussed the actual returns of the strategy. Why is this? In isolation,
the returns actually provide us with limited information as to the effectiveness of the strategy.
They don’t give you an insight into leverage, volatility, benchmarks or capital requirements.
Thus strategies are rarely judged on their returns alone. Always consider the risk attributes of
a strategy before looking at the returns.

At this stage many of the strategies found from your pipeline will be rejected out of hand, since
they won’t meet your capital requirements, leverage constraints, maximum drawdown tolerance
or volatility preferences. The strategies that do remain can now be considered for backtesting.
However, before this is possible, it is necessary to consider one final rejection criteria - that of
available historical data on which to test these strategies.

5.4 Obtaining Historical Data
Nowadays, the breadth of the technical requirements across asset classes for historical data
storage is substantial. In order to remain competitive, both the buy-side (funds, prop-desks)
and sell-side (broker/dealers) invest heavily in their technical infrastructure. It is imperative
to consider its importance. In particular, we are interested in timeliness, accuracy and storage
requirements. We will be discussing data storage in later chapters of the book.

In the previous section we had set up a strategy pipeline that allowed us to reject certain
strategies based on our own personal rejection criteria. In this section we will filter more strategies
based on our own preferences for obtaining historical data. The chief considerations (especially
at retail practitioner level) are the costs of the data, the storage requirements and your level of

36

technical expertise. We also need to discuss the different types of available data and the different
considerations that each type of data will impose on us.

Let’s begin by discussing the types of data available and the key issues we will need to
think about, with the understanding that we will explore these issues in significant depth in the
remainder of the book:

• Fundamental Data - This includes data about macroeconomic trends, such as interest
rates, inflation figures, corporate actions (dividends, stock-splits), SEC filings, corporate
accounts, earnings figures, crop reports, meteorological data etc. This data is often used
to value companies or other assets on a fundamental basis, i.e. via some means of ex-
pected future cash flows. It does not include stock price series. Some fundamental data
is freely available from government websites. Other long-term historical fundamental data
can be extremely expensive. Storage requirements are often not particularly large, unless
thousands of companies are being studied at once.

• News Data - News data is often qualitative in nature. It consists of articles, blog posts,
microblog posts ("tweets") and editorial. Machine learning techniques such as classifiers
are often used to interpret sentiment. This data is also often freely available or cheap,
via subscription to media outlets. The newer "NoSQL" document storage databases are
designed to store this type of unstructured, qualitative data.

• Asset Price Data - This is the traditional data domain of the quant. It consists of time
series of asset prices. Equities (stocks), fixed income products (bonds), commodities and
foreign exchange prices all sit within this class. Daily historical data is often straightforward
to obtain for the simpler asset classes, such as equities. However, once accuracy and
cleanliness are included and statistical biases removed, the data can become expensive. In
addition, time series data often possesses significant storage requirements especially when
intraday data is considered.

• Financial Instruments - Equities, bonds, futures and the more exotic derivative options
have very different characteristics and parameters. Thus there is no "one size fits all"
database structure that can accommodate them. Significant care must be given to the
design and implementation of database structures for various financial instruments.

• Frequency - The higher the frequency of the data, the greater the costs and storage
requirements. For low-frequency strategies, daily data is often sufficient. For high fre-
quency strategies, it might be necessary to obtain tick-level data and even historical copies
of particular trading exchange order book data. Implementing a storage engine for this
type of data is very technologically intensive and only suitable for those with a strong
programming/technical background.

• Benchmarks - The strategies described above will often be compared to a benchmark.
This usually manifests itself as an additional financial time series. For equities, this is
often a national stock benchmark, such as the S&P500 index (US) or FTSE100 (UK). For
a fixed income fund, it is useful to compare against a basket of bonds or fixed income
products. The "risk-free rate" (i.e. appropriate interest rate) is also another widely ac-
cepted benchmark. All asset class categories possess a favoured benchmark, so it will be
necessary to research this based on your particular strategy, if you wish to gain interest in
your strategy externally.

• Technology - The technology stacks behind a financial data storage centre are complex.
However, it does generally centre around a database cluster engine, such as a Relational
Database Management System (RDBMS), such as MySQL, SQL Server, Oracle or a Doc-
ument Storage Engine (i.e. "NoSQL"). This is accessed via "business logic" application
code that queries the database and provides access to external tools, such as MATLAB, R
or Excel. Often this business logic is written in C++, Java or Python. You will also need to
host this data somewhere, either on your own personal computer, or remotely via internet
servers. Products such as Amazon Web Services have made this simpler and cheaper in

37

recent years, but it will still require significant technical expertise to achieve in a robust
manner.

As can be seen, once a strategy has been identified via the pipeline it will be necessary
to evaluate the availability, costs, complexity and implementation details of a particular set of
historical data. You may find it is necessary to reject a strategy based solely on historical data
considerations. This is a big area and teams of PhDs work at large funds making sure pricing is
accurate and timely. Do not underestimate the difficulties of creating a robust data centre for
your backtesting purposes!

I do want to say, however, that many backtesting platforms can provide this data for you
automatically - at a cost. Thus it will take much of the implementation pain away from you, and
you can concentrate purely on strategy implementation and optimisation. Tools like TradeStation
possess this capability. However, my personal view is to implement as much as possible internally
and avoid outsourcing parts of the stack to software vendors. I prefer higher frequency strategies
due to their more attractive Sharpe ratios, but they are often tightly coupled to the technology
stack, where advanced optimisation is critical.

38

Part III

Data Platform Development

39

Chapter 6

Software Installation

This chapter will discuss in detail how to install an algorithmic trading environment. Operating
system choice is considered as a necessary first step, with the three major choices outlined.
Subsequently Linux is chosen as the system of choice (Ubuntu in particular) and Python is
installed with all of the necessary libraries.

Package/library installation is often glossed over in additional books but I personally feel that
it can be a stumbling block for many so I have devoted an entire chapter to it. Unfortunately
the reality is that the chapter will become dated the moment it is released. Newer versions of
operating systems emerge and packages are constantly updated. Hence there are likely to be
specific implementation details.

If you do have trouble installing or working with these packages, make sure to check the
versions installed and upgrade if necessary. If you still have trouble, feel free to email me at
mike@quantstart.com and I’ll try and help you out.

6.1 Operating System Choice
The first major choice when deciding on an algorithmic trading platform is that of the operating
system. In some sense this will be dictated by the primary programming language or the means
of connecting to the brokerage. These days the majority of software, particularly open source,
is cross-platform and so the choice is less restricted.

6.1.1 Microsoft Windows

Windows is probably the "default" option of many algorithmic traders. It is extremely familiar
and, despite criticism to the contrary, in certain forms is rather robust. Windows 8 has not been
hugely well received but the prior version, Windows 7, is considered a solid operating system.

Certain tools in the algorithmic trading space will only function on Windows, in particular
the IQFeed server, necessary to download tick data from DTN IQFeed. In addition Windows
is the native platform of the Microsoft .NET framework, on which a vast quantity of financial
software is written, utilising C++ and C#.

If you do not wish to use Windows then it is sometimes possible to run Windows-based
software under a UNIX based system using the WINE emulator (http://www.winehq.org/).

6.1.2 Mac OSX

Mac OSX combines the graphical ease of Windows (some say it improves substantially upon it!)
with the robustness of a UNIX based system (FreeBSD). While I use a MacBook Air for all of
my "day to day" work, such as web/email and developing the QuantStart site, I have found it
to be extremely painful to install a full algorithmic research stack, based on Python, under Mac
OSX.

The package landscape of Mac OSX is significantly fragmented, with Homebrew and Mac-
Ports being the primary contenders. Installation from source is tricky due to the proprietary

41

mailto:mike@quantstart.com

42

compilation process (using XCode). I have not yet successfully installed NumPy, SciPy and
pandas on my MacBook as of this writing!

However, if you can navigate the minefield that is Python installation on Mac OSX, it can
provide a great environment for algorithmic research. Since the Interactive Brokers Trader
Workstation is Java-based, it has no trouble running on Mac OSX.

6.1.3 Linux

“Linux” refers to a set of free UNIX distributions such as Cent OS, Debian and Ubuntu. I don’t
wish to go into details about the benefits/drawbacks of each distribution, rather I will concentrate
on Debian-based distro. In particular I will be considering Ubuntu Desktop as the algorithmic
trading environment.

The aptitude package management makes it straightforward to install the necessary under-
lying libraries with ease. In addition it is straightforward to create a virtual environment for
Python that can isolate your algo trading code from other Python apps. I have never had any
(major) trouble installing a Python environment on a modern Ubuntu system and as such I have
chosen this as the primary environment from which to conduct my trading.

If you would like to give Ubuntu a go before committing fully, by dual-booting for ex-
ample, then it is possible to use VirtualBox (https://www.virtualbox.org/) to install it. I
have a detailed guide on QuantStart (http://www.quantstart.com/articles/Installing-a-Desktop-
Algorithmic-Trading-Research-Environment-using-Ubuntu-Linux-and-Python), which describes
the process.

6.2 Installing a Python Environment on Ubuntu Linux

In this section we will discuss how to set up a robust, efficient and interactive development
environment for algorithmic trading strategy research making use of Ubuntu Desktop Linux
and the Python programming language. We will utilise this environment for all subsequent
algorithmic trading implementations.

To create the research environment we will install the following software tools, all of which
are open-source and free to download:

• Ubuntu Desktop Linux - The operating system

• Python - The core programming environment

• NumPy/SciPy - For fast, efficient vectorised array/matrix calculation

• IPython - For visual interactive development with Python

• matplotlib - For graphical visualisation of data

• pandas - For data "wrangling" and time series analysis

• scikit-learn - For machine learning and artificial intelligence algorithms

• IbPy - To carry out trading with the Interactive Brokers API

These tools coupled with a suitable MySQL securities master database will allow us to create
a rapid interactive strategy research and backtesting environment. Pandas is designed for "data
wrangling" and can import and cleanse time series data very efficiently. NumPy/SciPy running
underneath keeps the system extremely well optimised. IPython/matplotlib (and the qtconsole
described below) allow interactive visualisation of results and rapid iteration. scikit-learn allows
us to apply machine learning techniques to our strategies to further enhance performance.

43

6.2.1 Python
The latest versions of Ubuntu, which at the time of writing is 13.10, still make use of the Python
2.7.x version family. While there is a transition underway to 3.3.x the majority of libraries are
fully compatible with the 2.7.x branch. Thus I have chosen to use this for algorithmic trading.
Things are likely to evolve rapidly though so in a couple of years 3.3.x may be the predominant
branch. We will now commence with the installation of the Python environment.

The first thing to do on any brand new Ubuntu Linux system is to update and upgrade
the packages. The former tells Ubuntu about new packages that are available, while the latter
actually performs the process of replacing older packages with newer versions. Run the following
commands in a terminal session and you will be prompted for your passwords:

sudo apt-get -y update
sudo apt-get -y upgrade

Note that the -y prefix tells Ubuntu that you want to accept ’yes’ to all yes/no questions.
"sudo" is a Ubuntu/Debian Linux command that allows other commands to be executed with
administrator privileges. Since we are installing our packages sitewide, we need ’root access’ to
the machine and thus must make use of ’sudo’.

Once both of those updating commands have been successfully executed we need to install
the Python development packages and compilers needed to compile all of the software. Notice
that we are installing build-essential which contains the GCC compilers and the LAPACK
linear algebra library, as well as pip which is the Python package management system:

sudo apt-get install python-pip python-dev python2.7-dev \
build-essential liblapack-dev libblas-dev

The next stage is to install the Python numerical and data analysis libraries.

6.2.2 NumPy, SciPy and Pandas
Once the necessary packages are installed above we can go ahead and install NumPy via pip, the
Python package manager. Pip will download a zip file of the package and then compile it from
the source code for us. Bear in mind that it will take some time to compile, possible 10 minutes
or longer depending upon your CPU:

sudo pip install numpy

Once NumPy has been installed we need to check that it works before proceeding. If you
look in the terminal you’ll see your username followed by your computer name. In my case it is
mhallsmoore@algobox, which is followed by the prompt. At the prompt type python and then
try importing NumPy. We will test that it works by calculating the mean average of a list:

mhallsmoore@algobox:~$ python
Python 2.7.4 (default, Sep 26 2013, 03:20:26)
[GCC 4.7.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy
>>> from numpy import mean
>>> mean([1,2,3])
2.0
>>> exit()

Now that NumPy has been successfully installed we want to install the Python Scientific
library known as SciPy. It has a few package dependencies of its own including the ATLAS
library and the GNU Fortran compiler, which must be installed first:

sudo apt-get install libatlas-base-dev gfortran

We are ready to install SciPy now, with pip. This will take quite a long time to compile,
perhaps 10-20 minutes, depending upon CPU speed:

sudo pip install scipy

44

SciPy has now been installed. We will test it out in a similar fashion to NumPy when
calculating the standard deviation of a list of integers:

mhallsmoore@algobox:~$ python
Python 2.7.4 (default, Sep 26 2013, 03:20:26)
[GCC 4.7.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import scipy
>>> from scipy import std
>>> std([1,2,3])
0.81649658092772603
>>> exit()

The final task for this section is to install the pandas data analysis library. We don’t need
any additional dependencies at this stage as they’re covered by NumPy and SciPy:

sudo pip install pandas

We can now test the pandas installation, as before:

>>> from pandas import DataFrame
>>> pd = DataFrame()
>>> pd
Empty DataFrame
Columns: []
Index: []
>>> exit()

Now that the base numerical and scientific libraries have been installed we will install the
statistical and machine learning libraries, statsmodels and scikit-learn.

6.2.3 Statsmodels and Scikit-Learn
Installation proceeds as before, making use of pip to install the packages:

sudo pip install statsmodels
sudo pip install scikit-learn

Both libraries can be tested:

mhallsmoore@algobox:~$ python
Python 2.7.4 (default, Sep 26 2013, 03:20:26)
[GCC 4.7.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> iris
..
..
’petal width (cm)’]}
>>>

Now that the two statistical libraries are installed we can install the visualisation and devel-
opment tools, IPython and matplotlib.

6.2.4 PyQt, IPython and Matplotlib
The first task is to install the dependency packages for matplotlib, the Python graphing library.
Since matplotlib is a Python package, we cannot use pip to install the underlying libraries for
working with PNGs, JPEGs and freetype fonts, so we need Ubuntu to install them for us:

sudo apt-get install libpng-dev libjpeg8-dev libfreetype6-dev

45

Now we can install matplotlib:

sudo pip install matplotlib

The last task of this section is to instal IPython. This is an interactive Python interpreter
that provides a significantly more streamlined workflow compared to using the standard Python
console. In later chapters we will emphasise the full usefulness of IPython for algorithmic trading
development:

sudo pip install ipython

While IPython is sufficiently useful on its own, it can be made even more powerful by including
the qtconsole, which provides the ability to inline matplotlib visualisations. However, it takes a
little bit more work to get this up and running.

First, we need to install the the Qt library:

sudo apt-get install libqt4-core libqt4-gui libqt4-dev

The qtconsole has a few additional dependency packages, namely the ZMQ and Pygments
libraries:

sudo apt-get install libzmq-dev
sudo pip install pyzmq
sudo pip install pygments

It is straightforward to test IPython by typing the following command:

ipython qtconsole --pylab=inline

To test IPython a simple plot can be generated by typing the following commands. Note that
I’ve included the IPython numbered input/outut which you do not need to type:

In [1]: x=np.array([1,2,3])

In [2]: plot(x)
Out[2]: [<matplotlib.lines.Line2D at 0x392a1d0>]

This should display an inline matplotlib graph. Closing IPython allows us to continue with
the installation.

6.2.5 IbPy and Trader Workstation
Interactive Brokers is one of the main brokerages used by retail algorithmic traders due to its
relatively low minimal account balance requirements (10,000 USD) and (relatively) straightfor-
ward API. In this section we will install IbPy and Trader Workstation, which we will later use
to carry out automated trade execution.

I want to emphasise that we are not going to be trading any live capital with this download!
We are simply going to be installing some software which will let us try out a "demo account",
which provides a market simulator with out of date data in a "real time" fashion.

Disclosure: I have no affiliation with Interactive Brokers. I have used them before in a
professional fund context and as such am familiar with their software.

IbPy is a Python wrapper written around the Java-based Interactive Brokers API. It makes
development of algorithmic trading systems in Python somewhat less problematic. It will be
used as the basis for all subsequent communication with Interactive Brokers. An alternative is
to use the FIX protocol, but we won’t consider that method in this book.

Since IBPy is maintained on the GitHub source code version control website, as a git reposi-
tory, we will need to install git. This is handled by:

sudo apt-get install git-core

Once git has been installed it is necessary to create a subdirectory to store IBPy. It can
simply be placed underneath the home directory:

mkdir ~/ibapi

46

The next step is to download IBPy via the ’git clone’ command:

cd ~/ibapi
git clone https://github.com/blampe/IbPy

The final step is to enter the IbPy directory and install using Python setuptools:

cd ~/ibapi/IbPy
python setup.py.in install

That completes the installation of IBPy. The next step is to install Trader Workstation. At
the time of writing, it was necessary to follow this link (IB), which takes you directly to the
Trader Workstation download page at Interactive Brokers. Select the platform that you wish to
utilise. In this instance I have chosen the UNIX download, which can be found here (IB Unix
Download).

At that link it will describe the remainder of the process but I will replicate it here for
completeness. The downloaded file will be called unixmacosx_latest.jar. Open the file:

jar xf unixmacosx_latest.jar

Then change to the IBJts directory and load TWS:

cd IBJts
java -cp jts.jar:total.2013.jar -Xmx512M -XX:MaxPermSize=128M jclient.LoginFrame .

This will present you with the Trader Workstation login screen. If you choose the username
"edemo" and the password "demo user" you will be logged into the system.

This completes the installation of a full algorithmic trading environment under Python and
Ubuntu. The next stage is to begin collecting and storing historical pricing data for our strate-
gies.

https://www.interactivebrokers.com/en/?f=tws&p=software&ib_entity=llc
https://www.interactivebrokers.com/en/index.php?f=674&os=unix&ib_entity=llc
https://www.interactivebrokers.com/en/index.php?f=674&os=unix&ib_entity=llc

Chapter 7

Financial Data Storage

In algorithmic trading the spotlight usually shines on the alpha model component of the full
trading system. This component generates the trading signals, prior to filtration by a risk
management and portfolio construction system. As such, algo traders often spend a significant
portion of their research time refining the alpha model in order to optimise one or more metrics
prior to deployment of the strategy into production.

However, an alpha model is only as good as the data being fed into it. This concept is nicely
characterised by the old computer science adage of "garbage in, garbage out." It is absolutely
crucial that accurate, timely data is used to feed the alpha model. Otherwise results will be at
best poor or at worst completely incorrect. This will lead to significant underperformance when
system is deployed live.

In this chapter we will discuss issues surrounding the acquisition and provision of timely
accurate data for an algorithmic strategy backtesting system and ultimately a trading execution
engine. In particular we will study how to obtain financial data and how to store it. Subsequent
chapters will discuss how to clean it and how to export it. In the financial industry this type of
data service is known as a securities master database.

7.1 Securities Master Databases

A securities master is an organisation-wide database that stores fundamental, pricing and
transactional data for a variety of financial instruments across asset classes. It provides access to
this information in a consistent manner to be used by other departments such as risk management,
clearing/settlement and proprietary trading.

In large organisations a range of instruments and data will be stored. Here are some of the
instruments that might be of interest to a firm:

• Equities

• Equity Options

• Indices

• Foreign Exchange

• Interest Rates

• Futures

• Commodities

• Bonds - Government and Corporate

• Derivatives - Caps, Floors, Swaps

47

48

Securities master databases often have teams of developers and data specialists ensuring
high availability within a financial institution. While this is necessary in large companies, at
the retail level or in a small fund a securities master can be far simpler. In fact, while large
securities masters make use of expensive enterprise database and analysis systems, it is possibly
to use commodity open-source software to provide the same level of functionality, assuming a
well-optimised system.

7.2 Financial Datasets
For the retail algorithmic trader or small quantitative fund the most common data sets are end-
of-day and intraday historical pricing for equities, indices, futures (mainly commodities or fixed
income) and foreign exchange (forex). In order to simplify this discussion we will concentrate
solely on end-of-day (EOD) data for equities, ETFs and equity indices. Later sections will
discuss adding higher frequency data, additional asset classes and derivatives data, which have
more advanced requirements.

EOD data for equities is easy to obtain. There are a number of services providing access for
free via web-available APIs:

• Yahoo Finance - http://finance.yahoo.com

• Google Finance - https://www.google.com/finance

• QuantQuote - https://www.quantquote.com (S&P500 EOD data only)

• EODData - http://eoddata.com (requires registration)

It is straightforward to manually download historical data for individual securities but it
becomes time-consuming if many stocks need to be downloaded daily. Thus an important com-
ponent of our securities master will be automatically updating the data set.

Another issue is look-back period. How far in the past do we need to go with our data? This
will be specific to the requirements of your trading strategy, but there are certain problems that
span all strategies. The most common is regime change, which is often characterised by a new
regulatory environment, periods of higher/lower volatility or longer-term trending markets. For
instance a long-term short-directional trend-following/momentum strategy would likely perform
very well from 2000-2003 or 2007-2009. However it would have had a tough time from 2003-2007
or 2009 to the present.

My rule of thumb is to obtain as much data as possible, especially for EOD data where storage
is cheap. Just because the data exists in your security master, does not mean it must be utilised.
There are caveats around performance, as larger database tables mean longer query times (see
below), but the benefits of having more sample points generally outweighs any performance
issues.

As with all financial data it is imperative to be aware of errors, such as incorrect high/low
prices or survivorship bias, which I have discussed at length in previous chapters.

7.3 Storage Formats
There are three main ways to store financial data. They all possess varying degrees of access,
performance and structural capabilities. We will consider each in turn.

7.3.1 Flat-File Storage
The simplest data store for financial data, and the way in which you are likely to receive the data
from any data vendors, is the flat-file format. Flat-files often make use of the Comma-Separated
Variable (CSV) format, which store a two-dimensional matrix of data as a series of rows, with
column data separated via a delimiter (often a comma, but can be whitespace, such as a space
or tab). For EOD pricing data, each row represents a trading day via the OHLC paradigm (i.e.
the prices at the open, high, low and close of the trading period).

49

The advantage of flat-files are their simplicity and ability to be heavily compressed for archiv-
ing or download. The main disadvantages lie in their lack of query capability and poor perfor-
mance for iteration across large datasets. SQLite and Excel mitigate some of these problems
by providing certain querying capabilities.

7.3.2 Document Stores/NoSQL

Document stores/NoSQL databases, while certainly not a new concept, have gained significant
prominence in recent years due to their use at "web-scale" firms such as Google, Facebook and
Twitter. They differ substantially from RDBMS systems in that there is no concept of table
schemas. Instead, there are collections and documents, which are the closest analogies to tables
and records, respectively. A wide taxonomy of document stores exist, the discussion of which
is well outside this chapter! However, some of the more popular stores include MongoDB,
Cassandra and CouchDB.

Document stores, in financial applications, are mostly suited to fundamental or meta data.
Fundamental data for financial assets comes in many forms, such as corporate actions, earnings
statements, SEC filings etc. Thus the schema-less nature of NoSQL DBs is well-suited. However,
NoSQL DBs are not well designed for time-series such as high-resolution pricing data and so we
won’t be considering them further in this chapter.

7.3.3 Relational Database Management Systems

A relational database management system (RDBMS) makes use of the relational model to store
data. These databases are particular well-suited to financial data because different "objects"
(such as exchanges, data sources, prices) can be separated into tables with relationships defined
between them.

RDBMS make use of Structured Query Language (SQL) in order to perform complex
data queries on financial data. Examples of RDBMS include Oracle, MySQL, SQLServer
and PostgreSQL.

The main advantages of RDBMS are their simplicity of installation, platform-independence,
ease of querying, ease of integration with major backtest software and high-performance capabil-
ities at large scale (although some would argue the latter is not the case!). Their disadvantages
are often due to the complexity of customisation and difficulties of achieving said performance
without underlying knowledge of how RDBMS data is stored. In addition, they possess semi-
rigid schemas and so data often has to be modified to fit into such designs. This is unlike NoSQL
data stores, where there is no schema.

For all of the future historical pricing implementation code in the book we will make use of
the MySQL RDBMS. It is free, open-source, cross-platform, highly robust and its behaviour at
scale is well-documented, which makes it a sensible choice for quant work.

7.4 Historical Data Structure

There is a significant body of theory and academic research carried out in the realm of computer
science for the optimal design for data stores. However, we won’t be going into too much detail
as it is easy to get lost in minutiae! Instead I will present a common pattern for the construction
of an equities security master, which you can modify as you see fit for your own applications.

The first task is to define our entities, which are elements of the financial data that will
eventually map to tables in the database. For an equities master database I foresee the following
entities:

• Exchanges - What is the ultimate original source of the data?

• Vendor - Where is a particular data point obtained from?

• Instrument/Ticker - The ticker/symbol for the equity or index, along with corporate
information of the underlying firm or fund.

50

• Price - The actual price for a particular security on a particular day.

• Corporate Actions - The list of all stock splits or dividend adjustments (this may lead
to one or more tables), necessary for adjusting the pricing data.

• National Holidays - To avoid mis-classifying trading holidays as missing data errors, it
can be useful to store national holidays and cross-reference.

There are significant issues with regards to storing canonical tickers. I can attest to this
from first hand experience at a hedge fund dealing with this exact problem! Different vendors
use different methods for resolving tickers and thus combining multiple sources for accuracy.
Further, companies become bankrupt, are exposed to M&A activity (i.e. become acquired and
change names/symbols) and can have multiple publicly traded share classes. Many of you will
not have to worry about this because your universe of tickers will be limited to the larger index
constituents (such as the S&P500 or FTSE350).

7.5 Data Accuracy Evaluation

Historical pricing data from vendors is prone to many forms of error:

• Corporate Actions - Incorrect handling of stock splits and dividend adjustments. One
must be absolutely sure that the formulae have been implemented correctly.

• Spikes - Pricing points that greatly exceed certain historical volatility levels. One must be
careful here as these spikes do occur - see the May Flash Crash for a scary example. Spikes
can also be caused by not taking into account stock splits when they do occur. Spike filter
scripts are used to notify traders of such situations.

• OHLC Aggregation - Free OHLC data, such as from Yahoo/Google is particular prone
to ’bad tick aggregation’ situations where smaller exchanges process small trades well above
the ’main’ exchange prices for the day, thus leading to over-inflated maxima/minima once
aggregated. This is less an ’error’ as such, but more of an issue to be wary of.

• Missing Data - Missing data can be caused by lack of trades in a particular time period
(common in second/minute resolution data of illiquid small-caps), by trading holidays or
simply an error in the exchange system. Missing data can be padded (i.e. filled with the
previous value), interpolated (linearly or otherwise) or ignored, depending upon the trading
system.

Many of these errors rely on manual judgement in order to decide how to proceed. It is
possible to automate the notification of such errors, but it is much harder to automate their
solution. For instance, one must choose the threshold for being told about spikes - how many
standard deviations to use and over what look-back period? Too high a stdev will miss some
spikes, but too low and many unusual news announcements will lead to false positives. All of
these issues require advanced judgement from the quant trader.

It is also necessary to decide how to fix errors. Should errors be corrected as soon as they’re
known, and if so, should an audit trail be carried out? This will require an extra table in the DB.
This brings us to the topic of back-filling, which is a particularly insidious issue for backtesting.
It concerns automatic correction of bad data upstream. If your data vendor corrects a historical
error, but a backtested trading strategy is in production based on research from their previous
bad data then decisions need to be made regarding the strategy effectiveness. This can be
somewhat mitigated by being fully aware of your strategy performance metrics (in particular the
variance in your win/loss characteristics for each trade). Strategies should be chosen or designed
such that a single data point cannot skew the performance of the strategy to any great extent.

51

7.6 Automation
The benefit of writing software scripts to carry out the download, storage and cleaning of the
data is that scripts can be automated via tools provided by the operating system. In UNIX-based
systems (such as Mac OSX or Linux), one can make use of the crontab, which is a continually
running process that allows specific scripts to be executed at custom-defined times or regular
periods. There is an equivalent process on MS Windows known as the Task Scheduler.

A production process, for instance, might automate the download all of the S&P500 end-
of-day prices as soon as they’re published via a data vendor. It will then automatically run
the aforementioned missing data and spike filtration scripts, alerting the trader via email, SMS
or some other form of notification. At this point any backtesting tools will automatically have
access to recent data, without the trader having to lift a finger! Depending upon whether your
trading system is located on a desktop or on a remote server you may choose however to have a
semi-automated or fully-automated process for these tasks.

7.7 Data Availability
Once the data is automatically updated and residing in the RDBMS it is necessary to get it
into the backtesting software. This process will be highly dependent upon how your database is
installed and whether your trading system is local (i.e. on a desktop computer) or remote (such
as with a co-located exchange server).

One of the most important considerations is to minimise excessive Input/Output (I/O) as
this can be extremely expensive both in terms of time and money, assuming remote connections
where bandwidth is costly. The best way to approach this problem is to only move data across
a network connection that you need (via selective querying) or exporting and compressing the
data.

Many RDBMS support replication technology, which allows a database to be cloned onto
another remote system, usually with a degree of latency. Depending upon your setup and data
quantity this may only be on the order of minutes or seconds. A simple approach is to replicate
a remote database onto a local desktop. However, be warned that synchronisation issues are
common and time consuming to fix!

7.8 MySQL for Securities Masters
Now that we have discussed the idea behind a security master database it’s time to actually
build one. For this we will make use of two open source technologies: the MySQL database
and the Python programming language. At the end of this chapter you will have a fully fledged
equities security master with which to conduct further data analysis for your quantitative trading
research.

7.8.1 Installing MySQL
Installation of MySQL within Ubuntu is straightforward. Simply open up a terminal and type
the following:

sudo apt-get install mysql-server

Eventually, you will be prompted for a root password. This is your primary administration
password so do not forget it! Enter the password and the installation will proceed and finish.

7.8.2 Configuring MySQL
Now that MySQL is installed on your system we can create a new database and a user to interact
with it. You will have been prompted for a root password on installation. To log on to MySQL
from the command line use the following line and then enter your password:

mysql -u root -p

52

Once you have logged in to the MySQL you can create a new database called securities_master
and then select it:

mysql> CREATE DATABASE securities_master;
mysql> USE securities_master;

Once you create a database it is necessary to add a new user to interact with the database.
While you can use the root user, it is considered bad practice from a security point of view, as
it grants too many permissions and can lead to a compromised system. On a local machine this
is mostly irrelevant but in a remote production environment you will certainly need to create a
user with reduced permissions. In this instance our user will be called sec_user. Remember to
replace password with a secure password:

mysql> CREATE USER ’sec_user’@’localhost’ IDENTIFIED BY ’password’;
mysql> GRANT ALL PRIVILEGES ON securities_master.* TO ’sec_user’@’localhost’;
mysql> FLUSH PRIVILEGES;

The above three lines create and authorise the user to use securities_master and apply
those privileges. From now on any interaction that occurs with the database will make use of
the sec_user user.

7.8.3 Schema Design for EOD Equities
We’ve now installed MySQL and have configured a user with which to interact with our database.
At this stage we are ready to construct the necessary tables to hold our financial data. For a
simple, straightforward equities master we will create four tables:

• Exchange - The exchange table lists the exchanges we wish to obtain equities pricing
information from. In this instance it will almost exclusively be the New York Stock Ex-
change (NYSE) and the National Association of Securities Dealers Automated Quotations
(NASDAQ).

• DataVendor - This table lists information about historical pricing data vendors. We will
be using Yahoo Finance to source our end-of-day (EOD) data. By introducing this table,
we make it straightforward to add more vendors if necessary, such as Google Finance.

• Symbol - The symbol table stores the list of ticker symbols and company information.
Right now we will be avoiding issues such as differing share classes and multiple symbol
names.

• DailyPrice - This table stores the daily pricing information for each security. It can
become very large if many securities are added. Hence it is necessary to optimise it for
performance.

MySQL is an extremely flexible database in that it allows you to customise how the data is
stored in an underlying storage engine. The two primary contenders in MySQL are MyISAM
and InnoDB. Although I won’t go into the details of storage engines (of which there are many!),
I will say that MyISAM is more useful for fast reading (such as querying across large amounts of
price information), but it doesn’t support transactions (necessary to fully rollback a multi-step
operation that fails mid way through). InnoDB, while transaction safe, is slower for reads.

InnoDB also allows row-level locking when making writes, while MyISAM locks the entire
table when writing to it. This can have performance issues when writing a lot of information to
arbitrary points in the table (such as with UPDATE statements). This is a deep topic, so I will
leave the discussion to another day!

We are going to use InnoDB as it is natively transaction safe and provides row-level locking.
If we find that a table is slow to be read, we can create indexes as a first step and then change
the underlying storage engine if performance is still an issue. All of our tables will use the UTF-8
character set, as we wish to support international exchanges.

Let’s begin with the schema and CREATE TABLE SQL code for the exchange table. It stores
the abbreviation and name of the exchange (i.e. NYSE - New York Stock Exchange) as well as

53

the geographic location. It also supports a currency and a timezone offset from UTC. We also
store a created and last updated date for our own internal purposes. Finally, we set the primary
index key to be an auto-incrementing integer ID (which is sufficient to handle 232 records):

CREATE TABLE ‘exchange‘ (
‘id‘ int NOT NULL AUTO_INCREMENT,
‘abbrev‘ varchar(32) NOT NULL,
‘name‘ varchar(255) NOT NULL,
‘city‘ varchar(255) NULL,
‘country‘ varchar(255) NULL,
‘currency‘ varchar(64) NULL,
‘timezone_offset‘ time NULL,
‘created_date‘ datetime NOT NULL,
‘last_updated_date‘ datetime NOT NULL,
PRIMARY KEY (‘id‘)

) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

Here is the schema and CREATE TABLE SQL code for the data_vendor table. It stores the
name, website and support email. In time we can add more useful information for the vendor,
such as an API endpoint URL:

CREATE TABLE ‘data_vendor‘ (
‘id‘ int NOT NULL AUTO_INCREMENT,
‘name‘ varchar(64) NOT NULL,
‘website_url‘ varchar(255) NULL,
‘support_email‘ varchar(255) NULL,
‘created_date‘ datetime NOT NULL,
‘last_updated_date‘ datetime NOT NULL,
PRIMARY KEY (‘id‘)

) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

Here is the schema and CREATE TABLE SQL code for the symbol table. It contains a foreign
key link to an exchange (we will only be supporting exchange-traded instruments for the time
being), a ticker symbol (e.g. GOOG), an instrument type (’stock’ or ’index’), the name of the
stock or stock market index, an equities sector and a currency.

CREATE TABLE ‘symbol‘ (
‘id‘ int NOT NULL AUTO_INCREMENT,
‘exchange_id‘ int NULL,
‘ticker‘ varchar(32) NOT NULL,
‘instrument‘ varchar(64) NOT NULL,
‘name‘ varchar(255) NULL,
‘sector‘ varchar(255) NULL,
‘currency‘ varchar(32) NULL,
‘created_date‘ datetime NOT NULL,
‘last_updated_date‘ datetime NOT NULL,
PRIMARY KEY (‘id‘),
KEY ‘index_exchange_id‘ (‘exchange_id‘)

) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

Here is the schema and CREATE TABLE SQL code for the daily_price table. This table
is where the historical pricing data is actually stored. We have prefixed the table name with
daily_ as we may wish to create minute or second resolution data in separate tables at a later
date for higher frequency strategies. The table contains two foreign keys - one to the data vendor
and another to a symbol. This uniquely identifies the data point and allows us to store the same
price data for multiple vendors in the same table. We also store a price date (i.e. the daily
period over which the OHLC data is valid) and the created and last updated dates for our own
purposes.

The remaining fields store the open-high-low-close and adjusted close prices. Yahoo Finance
provides dividend and stock splits for us, the price of which ends up in the adj_close_price

54

column. Notice that the datatype is decimal(19,4). When dealing with financial data it is
absolutely necessary to be precise. If we had used the float datatype we would end up with
rounding errors due to the nature of how float data is stored internally. The final field stores
the trading volume for the day. This uses the bigint datatype so that we don’t accidentally
truncate extremely high volume days.

CREATE TABLE ‘daily_price‘ (
‘id‘ int NOT NULL AUTO_INCREMENT,
‘data_vendor_id‘ int NOT NULL,
‘symbol_id‘ int NOT NULL,
‘price_date‘ datetime NOT NULL,
‘created_date‘ datetime NOT NULL,
‘last_updated_date‘ datetime NOT NULL,
‘open_price‘ decimal(19,4) NULL,
‘high_price‘ decimal(19,4) NULL,
‘low_price‘ decimal(19,4) NULL,
‘close_price‘ decimal(19,4) NULL,
‘adj_close_price‘ decimal(19,4) NULL,
‘volume‘ bigint NULL,
PRIMARY KEY (‘id‘),
KEY ‘index_data_vendor_id‘ (‘data_vendor_id‘),
KEY ‘index_symbol_id‘ (‘symbol_id‘)

) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

By entering all of the above SQL commands into the MySQL command line the four necessary
tables will be created.

7.8.4 Connecting to the Database

Before we can use MySQL with Python we need to install the mysqlclient library. mysqlclient
is actually a fork of another library, known as Python-MySQL. Unfortunately the latter library
is not supported in Python3 and so we must use mysqlclient. On Mac OSX/UNIX flavour
machines we need to run the following commands:

sudo apt-get install libmysqlclient-dev
pip install mysqlclient

We’re now ready to begin interacting with our MySQL database via Python and pandas.

7.8.5 Using an Object-Relational Mapper

For those of you with a background in database administration and development you might be
asking whether it is more sensible to make use of an Object-Relational Mapper (ORM).
An ORM allows objects within a programming language to be directly mapped to tables in
databases such that the program code is fully unaware of the underlying storage engine. They
are not without their problems, but they can save a great deal of time. The time-saving usually
comes at the expense of performance, however.

A popular ORM for Python is SQLAlchemy. It allows you to specify the database schema
within Python itself and thus automatically generate the CREATE TABLE code. Since we have
specifically chosen MySQL and are concerned with performance, I’ve opted not to use an ORM
for this chapter.

Symbol Retrieval

Let’s begin by obtaining all of the ticker symbols associated with the Standard & Poor’s list of
500 large-cap stocks, i.e. the S&P500. Of course, this is simply an example. If you are trading
from the UK and wish to use UK domestic indices, you could equally well obtain the list of
FTSE100 companies traded on the London Stock Exchange (LSE).

55

Wikipedia conveniently lists the constituents of the S&P500. Note that there are actually
502 components in the S&P500! We will scrape the website using the Python requests and
BeautifulSoup libraries and then add the content directly to MySQL. Firstly make sure the
libraries are installed:

pip install requests
pip install beautifulsoup4

The following code will use the requests and BeautifulSoup libraries to add the symbols
directly to the MySQL database we created earlier. Remember to replace ’password’ with your
chosen password as created above:

#!/usr/bin/python
-*- coding: utf-8 -*-

insert_symbols.py

from __future__ import print_function

import datetime
from math import ceil

import bs4
import MySQLdb as mdb
import requests

def obtain_parse_wiki_snp500():
"""
Download and parse the Wikipedia list of S&P500
constituents using requests and BeautifulSoup.

Returns a list of tuples for to add to MySQL.
"""
Stores the current time, for the created_at record
now = datetime.datetime.utcnow()

Use requests and BeautifulSoup to download the
list of S&P500 companies and obtain the symbol table
response = requests.get(

"http://en.wikipedia.org/wiki/List_of_S%26P_500_companies"
)
soup = bs4.BeautifulSoup(response.text)

This selects the first table, using CSS Selector syntax
and then ignores the header row ([1:])
symbolslist = soup.select(’table’)[0].select(’tr’)[1:]

Obtain the symbol information for each
row in the S&P500 constituent table
symbols = []
for i, symbol in enumerate(symbolslist):

tds = symbol.select(’td’)
symbols.append(

(
tds[0].select(’a’)[0].text, # Ticker
’stock’,
tds[1].select(’a’)[0].text, # Name

56

tds[3].text, # Sector
’USD’, now, now

)
)

return symbols

def insert_snp500_symbols(symbols):
"""
Insert the S&P500 symbols into the MySQL database.
"""
Connect to the MySQL instance
db_host = ’localhost’
db_user = ’sec_user’
db_pass = ’password’
db_name = ’securities_master’
con = mdb.connect(

host=db_host, user=db_user, passwd=db_pass, db=db_name
)

Create the insert strings
column_str = """ticker, instrument, name, sector,

currency, created_date, last_updated_date
"""

insert_str = ("%s, " * 7)[:-2]
final_str = "INSERT INTO symbol (%s) VALUES (%s)" % \

(column_str, insert_str)

Using the MySQL connection, carry out
an INSERT INTO for every symbol
with con:

cur = con.cursor()
cur.executemany(final_str, symbols)

if __name__ == "__main__":
symbols = obtain_parse_wiki_snp500()
insert_snp500_symbols(symbols)
print("%s symbols were successfully added." % len(symbols))

At this stage we’ll have all 502 current symbol constituents of the S&P500 index in the
database. Our next task is to actually obtain the historical pricing data from separate sources
and match it up the symbols.

Price Retrieval

In order to obtain the historical data for the current S&P500 constituents, we must first query
the database for the list of all the symbols.

Once the list of symbols, along with the symbol IDs, have been returned it is possible to call
the Yahoo Finance API and download the historical pricing data for each symbol.

Once we have each symbol we can insert the data into the database in turn. Here’s the
Python code to carry this out:

#!/usr/bin/python
-*- coding: utf-8 -*-

price_retrieval.py

57

from __future__ import print_function

import datetime
import warnings

import MySQLdb as mdb
import requests

Obtain a database connection to the MySQL instance
db_host = ’localhost’
db_user = ’sec_user’
db_pass = ’password’
db_name = ’securities_master’
con = mdb.connect(db_host, db_user, db_pass, db_name)

def obtain_list_of_db_tickers():
"""
Obtains a list of the ticker symbols in the database.
"""
with con:

cur = con.cursor()
cur.execute("SELECT id, ticker FROM symbol")
data = cur.fetchall()
return [(d[0], d[1]) for d in data]

def get_daily_historic_data_yahoo(
ticker, start_date=(2000,1,1),
end_date=datetime.date.today().timetuple()[0:3]

):
"""
Obtains data from Yahoo Finance returns and a list of tuples.

ticker: Yahoo Finance ticker symbol, e.g. "GOOG" for Google, Inc.
start_date: Start date in (YYYY, M, D) format
end_date: End date in (YYYY, M, D) format
"""
Construct the Yahoo URL with the correct integer query parameters
for start and end dates. Note that some parameters are zero-based!
ticker_tup = (

ticker, start_date[1]-1, start_date[2],
start_date[0], end_date[1]-1, end_date[2],
end_date[0]

)
yahoo_url = "http://ichart.finance.yahoo.com/table.csv"
yahoo_url += "?s=%s&a=%s&b=%s&c=%s&d=%s&e=%s&f=%s"
yahoo_url = yahoo_url % ticker_tup

Try connecting to Yahoo Finance and obtaining the data
On failure, print an error message.
try:

yf_data = requests.get(yahoo_url).text.split("\n")[1:-1]
prices = []

58

for y in yf_data:
p = y.strip().split(’,’)
prices.append(

(datetime.datetime.strptime(p[0], ’%Y-%m-%d’),
p[1], p[2], p[3], p[4], p[5], p[6])

)
except Exception as e:

print("Could not download Yahoo data: %s" % e)
return prices

def insert_daily_data_into_db(
data_vendor_id, symbol_id, daily_data

):
"""
Takes a list of tuples of daily data and adds it to the
MySQL database. Appends the vendor ID and symbol ID to the data.

daily_data: List of tuples of the OHLC data (with
adj_close and volume)
"""
Create the time now
now = datetime.datetime.utcnow()

Amend the data to include the vendor ID and symbol ID
daily_data = [

(data_vendor_id, symbol_id, d[0], now, now,
d[1], d[2], d[3], d[4], d[5], d[6])
for d in daily_data

]

Create the insert strings
column_str = """data_vendor_id, symbol_id, price_date, created_date,

last_updated_date, open_price, high_price, low_price,
close_price, volume, adj_close_price"""

insert_str = ("%s, " * 11)[:-2]
final_str = "INSERT INTO daily_price (%s) VALUES (%s)" % \

(column_str, insert_str)

Using the MySQL connection, carry out an INSERT INTO for every symbol
with con:

cur = con.cursor()
cur.executemany(final_str, daily_data)

if __name__ == "__main__":
This ignores the warnings regarding Data Truncation
from the Yahoo precision to Decimal(19,4) datatypes
warnings.filterwarnings(’ignore’)

Loop over the tickers and insert the daily historical
data into the database
tickers = obtain_list_of_db_tickers()
lentickers = len(tickers)
for i, t in enumerate(tickers):

print(

59

"Adding data for %s: %s out of %s" %
(t[1], i+1, lentickers)

)
yf_data = get_daily_historic_data_yahoo(t[1])
insert_daily_data_into_db(’1’, t[0], yf_data)

print("Successfully added Yahoo Finance pricing data to DB.")

Note that there are certainly ways we can optimise this procedure. If we make use of the
Python ScraPy library, for instance, we would gain high concurrency from the downloads, as
ScraPy is built on the event-driven Twisted framework. At the moment each download will be
carried out sequentially.

7.9 Retrieving Data from the Securities Master
Now that we’ve downloaded the historical pricing for all of the current S&P500 constituents
we want to be able to access it within Python. The pandas library makes this extremely
straightforward. Here’s a script that obtains the Open-High-Low-Close (OHLC) data for the
Google stock over a certain time period from our securities master database and outputs the tail
of the dataset:

#!/usr/bin/python
-*- coding: utf-8 -*-

retrieving_data.py

from __future__ import print_function

import pandas as pd
import MySQLdb as mdb

if __name__ == "__main__":
Connect to the MySQL instance
db_host = ’localhost’
db_user = ’sec_user’
db_pass = ’password’
db_name = ’securities_master’
con = mdb.connect(db_host, db_user, db_pass, db_name)

Select all of the historic Google adjusted close data
sql = """SELECT dp.price_date, dp.adj_close_price

FROM symbol AS sym
INNER JOIN daily_price AS dp
ON dp.symbol_id = sym.id
WHERE sym.ticker = ’GOOG’
ORDER BY dp.price_date ASC;"""

Create a pandas dataframe from the SQL query
goog = pd.read_sql_query(sql, con=con, index_col=’price_date’)

Output the dataframe tail
print(goog.tail())

The output of the script follows:

adj_close_price
price_date
2015-06-09 526.69

60

2015-06-10 536.69
2015-06-11 534.61
2015-06-12 532.33
2015-06-15 527.20

This is obviously only a simple script, but it shows how powerful having a locally-stored
securities master can be. It is possible to backtest certain strategies extremely rapidly with this
approach, as the input/output (I/O) speed from the database will be significantly faster than
that of an internet connection.

Chapter 8

Processing Financial Data

In the previous chapter we outlined how to construct an equities-based securities master database.
This chapter will discuss a topic that is not often considered to any great extent in the majority
of trading books, that of processing financial market data prior to usage in a strategy test.

The discussion will begin with an overview of the different types of data that will be of interest
to algorithmic traders. The frequency of the data will then be considered, from quarterly data
(such as SEC reports) through to tick and order book data on the millisecond scale. Sources of
such data (both free and commercial) will then be outlined along with code for obtaining the
data. Finally, cleansing and preparation of the data for usage in strategies will be discussed.

8.1 Market and Instrument Classification

As algorithmic traders we are often interested in a broad range of financial markets data. This can
range from underlying and derivative instrument time series prices, unstructured text-based data
(such as news articles) through to corporate earnings information. This book will predominantly
discuss financial time series data.

8.1.1 Markets

US and international equities, foreign exchange, commodities and fixed income are the primary
sources of market data that will be of interest to an algorithmic trader. In the equities market
it is still extremely common to purchase the underlying asset directly, while in the latter three
markets highly liquid derivative instruments (futures, options or more exotic instruments) are
more commonly used for trading purposes.

This broad categorisation essentially makes it relatively straightforward to deal in the equity
markets, albeit with issues surrounding data handling of corporate actions (see below). Thus a
large part of the retail algorithmic trading landscape will be based around equities, such as direct
corporate shares or Exchange Traded Funds (ETFs). Foreign exchange (“forex”) markets are also
highly popular since brokers will allow margin trading on percentage in point (PIP) movements.
A pip is one unit of the fourth decimal point in a currency rate. For currencies denominated in
US dollars this is equivalent to 1/100th of a cent.

Commodities and fixed income markets are harder to trade in the underlying directly. A
retail algorithmic trader is often not interested in delivering barrels of oil to an oil depot! Instead,
futures contracts on the underlying asset are used for speculative purposes. Once again, margin
trading is employed allowing extensive leverage on such contracts.

8.1.2 Instruments

A wide range of underlying and derivative instruments are available to the algorithmic trader.
The following table describes the common use cases of interest.

61

62

Market Instruments
Equities/Indices Stock, ETFs, Futures, Options
Foreign Exchange Margin/Spot, ETFs, Futures, Options
Commodities Futures, Options
Fixed Income Futures, Options

For the purposes of this book we will concentrate almost exclusively upon equities and ETFs
to simplify the implementation.

8.1.3 Fundamental Data

Although algorithmic traders primarily carry out analysis of financial price time series, funda-
mental data (of varying frequencies) is also often added to the analysis. So-called Quantitative
Value (QV) strategies rely heavily on the accumulation and analysis of fundamental data, such
as macroeconomic information, corporate earnings histories, inflation indexes, payroll reports,
interest rates and SEC filings. Such data is often also in temporal format, albeit on much larger
timescales over months, quarters or years. QV strategies also operate on these timeframes.

This book will not discuss QV strategies or large time-scale fundamental driven strategies to
any great extent, rather will concentrate on the daily or more frequent strategies derived mostly
from price action.

8.1.4 Unstructured Data

Unstructured data consists of documents such as news articles, blog posts, papers or reports.
Analysis of such data can be complicated as it relies on Natural Language Processing (NLP)
techniques. One such use of analysing unstructured data is in trying to determine the sentiment
context. This can be useful in driving a trading strategy. For instance, by classifying texts as
"bullish", "bearish" or "neutral" a set of trading signals could be generated. The term for this
process is sentiment analysis.

Python provides an extremely comprehensive library for the analysis of text data known as
the Natural Language Toolkit (NLTK). Indeed an O’Reilly book on NLTK can be downloaded
for free via the authors’ website - Natural Language Processing with Python[3].

Full-Text Data

There are numerous sources of full-text data that may be useful for generating a trading strat-
egy. Popular financial sources such as Bloomberg and the Financial Times, as well as financial
commentary blogs such as Seeking Alpha and ZeroHedge, provide significant sources of text to
analyse. In addition, proprietary news feeds as provided by data vendors are also good sources
of such data.

In order to obtain data on a larger scale, one must make use of “web scraping” tools, which
are designed to automate the downloading of websites en-masse. Be careful here as automated
web-scraping tools sometimes breach the Terms Of Service for these sites. Make sure to check
before you begin downloading this sort of data. A particularly useful tool for web scraping, which
makes the process efficient and structured, is the ScraPy library.

Social Media Data

In the last few years there has been significant interest in obtaining sentiment information from
social media data, particularly via the Twitter micro-blogging service. Back in 2011, a hedge
fund was launched around Twitter sentiment, known as Derwent Capital. Indeed, academic
studies[4] have shown evidence that it is possible to generate a degree of predictive capability
based on such sentiment analysis.

While sentiment analysis is out of the scope of this book if you wish to carry out research
into sentiment, then there are two books[15, 14] by Matt Russell on obtaining social media data
via the public APIs provided by these web services.

http://www.nltk.org/
http://www.nltk.org/book/
http://www.bloomberg.com/
http://www.ft.com/home/uk
http://seekingalpha.com/
http://www.zerohedge.com/
http://scrapy.org/
https://twitter.com

63

8.2 Frequency of Data
Frequency of data is one of the most important considerations when designing an algorithmic
trading system. It will impact every design decision regarding the storage of data, backtesting a
strategy and executing an algorithm.

Higher frequency strategies are likely to lead to more statistically robust analysis, simply due
to the greater number of data points (and thus trades) that will be used. HFT strategies often
require a significant investment of time and capital for development of the necessary software to
carry them out.

Lower frequency strategies are easier to develop and deploy, since they require less automation.
However, they will often generate far less trades than a higher-frequency strategy leading to a
less statistically robust analysis.

8.2.1 Weekly and Monthly Data
Fundamental data is often reported on a weekly, monthly, quarterly or even yearly basis. Such
data include payroll data, hedge fund performance reports, SEC filings, inflation-based indices
(such as the Consumer Price Index, CPI), economic growth and corporate accounts.

Storage of such data is often suited to unstructured databases, such as MongoDB, which can
handle hierarchically-nested data and thus allowing a reasonable degree of querying capability.
The alternative is to store flat-file text in a RDBMS, which is less appropriate, since full-text
querying is trickier.

8.2.2 Daily Data
The majority of retail algorithmic traders make use of daily ("end of day"/EOD) financial time
series data, particularly in equities and foreign exchange. Such data is freely available (see below),
but often of questionable quality and subject to certain biases. End-of-day data is often stored
in RDBMS, since the nature of ticker/symbol mapping naturally applies to the relational model.

EOD data does not entail particularly large storage requirements. There are 252 trading days
in a year for US exchanges and thus for a decade there will be 2,520 bars per security. Even
with a universe of 10,000 symbols this is 25,200,000 bars, which can easily be handled within a
relational database environment.

8.2.3 Intraday Bars
Intraday strategies often make use of hourly, fifteen-, five-, one-minutely or secondly OHLCV
bars. Intraday feed providers such as QuantQuote and DTN IQFeed will often provide minutely
or secondly bars based on their tick data.

Data at such frequencies will possess many "missing" bars simply because no trades were
carried out in that time period. Pandas can be used to pad these values forward, albeit with a
decrease in data accuracy. In addition pandas can also be used to create data on less granular
timescales if necessary.

For a ten year period, minutely data will generate almost one million bars per security.
Similarly for secondly data the number of data points over the same period will total almost
sixty million per security. Thus to store one thousand of such securities will lead to sixty billion
bars of data. This is a large amount of data to be kept in an RDBMS and consequently more
sophisticated approaches are required.

Storage and retrieval of secondly data on this magnitude is somewhat outside the scope of
this book so I won’t discuss it further.

8.2.4 Tick and Order Book Data
When a trade is filled at an exchange, or other venue, a tick is generated. Tick feeds consist
of all such transactions per exchange. Retail tick feeds are stored with each datum having a
timestamp accurate to the millisecond level. Tick data often also includes the updated best
bid/ask price. The storage of tick data is well beyond the scope of this book but needless to say

64

the volumes of such data are substantial. Common storage mechanisms include HDF5, kdb and
simply flat-file/CSV.

Multiple limit orders at an exchange lead to the concept of an order book. This is essentially
the list of all bid and ask limit orders at certain volumes for each market participant. It leads
to the definition of the bid-ask spread (or simply the “spread”), which is the smallest difference
in the bid and ask prices for the “top of book” orders. Creating a historical representation, or a
market simulator, of a limit order book is usually necessary for carrying out ultra high frequency
trading (UHFT) strategies. The storage of such data is complex and as such will be outside the
scope of this book.

8.3 Sources of Data

There are numerous sources and vendors of financial data. They vary substantially in breadth,
timeliness, quality and price.

Broadly speaking, financial market data provided on a delayed daily frequency or longer is
available freely, albeit with dubious overall quality and the potential for survivorship bias. To
obtain intraday data it is usually necessary to purchase a commercial data feed. The vendors
of such feeds vary tremendously in their customer service capability, overall feed quality and
breadth of instruments.

8.3.1 Free Sources

Free end-of-day bar data, which consists of Open-High-Low-Close-Volume (OHLCV) prices for
instruments, is available for a wide range of US and international equities and futures from Yahoo
Finance, Google Finance and Quandl.

Yahoo Finance

Yahoo Finance is the "go to" resource when forming an end-of-day US equities database. The
breadth of data is extremely comprehensive, listing thousands of traded equities. In addition
stock-splits and dividends are handled using a back-adjustment method, arising as the "Adj
Close" column in the CSV output from the API (which we discuss below). Thus the data allows
algorithmic traders to get started rapidly and for zero cost.

I have personally had a lot of experience in cleaning Yahoo data. I have to remark that
the data can be quite erroneous. Firstly, it is subject to a problem known as backfilling. This
problem occurs when past historical data is corrected at a future date, leading to poor quality
backtests that change as your own database is re-updated. To handle this problem, a logging
record is usually added to the securities master (in an appropriate logging table) whenever a
historical data point is modified.

Secondly, the Yahoo feed only aggregates prices from a few sources to form the OHLCV
points. This means that values around the open, high, low and close can be deceptive, as other
exchanges/liquidity sources may have executed differing prices in excess of the values.

Thirdly, I have noticed that when obtaining financial data en-masse from Yahoo, that errors
do creep into the API. For instance, multiple calls to the API with identical date/ticker param-
eters occasionally lead to differing result sets. This is clearly a substantial problem and must be
carefully checked for.

In summary be prepared to carry out some extensive data cleansing on Yahoo Finance data,
if you choose to use it to populate a large securities master, and need highly accurate data.

Quandl

Quandl is a relatively new service which purports to be “The easiest way to find and use numerical
data on the web”. I believe they are well on the way to achieving that goal! The service provides
a substantial daily data set of US and international equities, interest rates, commodities/futures,
foreign exchange and other economic data. In addition, the database is continually expanded
and the project is very actively maintained.

http://www.hdfgroup.org/HDF5/
http://www.kx.com/
http://finance.yahoo.com/
http://finance.yahoo.com/
https://www.google.com/finance
http://www.quandl.com/
http://finance.yahoo.com/
http://www.quandl.com/

65

All of the data can be accessed by a very modern HTTP API (CSV, JSON, XML or HTML),
with plugins for a wide variety of programming languages including R, Python, Matlab, Excel,
Stata, Maple, C#, EViews, Java, C/C++, .NET, Clojure and Julia. Without an account 50
calls to the API are allowed per day, but this can be increased to 500 if registering an account.
In fact, calls can be updated to 5,000 per hour if so desired by contacting the team.

I have not had a great deal of experience with Quandl "at scale" and so I can’t comment
on the level of errors within the dataset, but my feeling is that any errors are likely to be
constantly reported and corrected. Thus they are worth considering as a primary data source
for an end-of-day securities master.

Later in the chapter we will discuss how to obtain US Commodities Futures data from Quandl
with Python and pandas.

8.3.2 Commercial Sources

In order to carry out intraday algorithmic trading it is usually necessary to purchase a commercial
feed. Pricing can range anywhere from $30 per month to around $500 per month for “retail level”
feeds. Institutional quality feeds will often be in the low-to-mid four figure range per month and
as such I won’t discuss them here.

EODData

I have utilised EODData in a fund context, albeit only with daily data and predominantly for
foreign exchange. Despite their name they do provide a degree of intraday sources. The cost is
$25 per month for their “platinum” package.

The resource is very useful for finding a full list of traded symbols on global exchanges, but
remember that this will be subject to survivorship bias as I believe the list represents current
listed entities.

Unfortunately (at least back in 2010) I found that the stock split feed was somewhat inaccu-
rate (at least when compared to Morningstar information). This lead to some substantial spike
issues (see below) in the data, which increased friction in the data cleansing process.

DTN IQFeed

DTN IQFeed are one of the most popular data feeds for the high-end retail algorithmic trader.
They claim to have over 80,000 customers. They provide real-time tick-by-tick data unfiltered
from the exchange as well as a large quantity of historic data.

The pricing starts at $50 per month, but in reality will be in the $150-$200 per month range
once particular services are selected and exchange fees are factored in. I utilise DTN IQFeed for
all of my intraday equities and futures strategies. In terms of historical data, IQFeed provide for
equities, futures and options:

• 180 calendar days of tick (every trade)

• 7+ years of 1 minute historical bars

• 15+ years of daily historical bars

The major disadvantage is that the DTN IQFeed software (the mini-server, not the charting
tools) will only run on Windows. This may not be a problem if all of your algorithmic trading is
carried out in this operating system, but I personally develop all my strategies in Ubuntu Linux.
However, although I have not actively tested it, I have heard it is possible to run DTN IQFeed
under the WINE emulator.

Below we will discuss how to obtain data from IQFeed using Python in Windows.

http://eoddata.com/
http://morningstar.com/
http://www.iqfeed.net/
http://www.winehq.org/

66

QuantQuote

QuantQuote provide reasonably priced historical minute-, second- and tick-level data for US equi-
ties going back to 1998. In addition they provide institutional level real-time tick feeds, although
this is of less interest to retail algorithmic traders. One of the main benefits of QuantQuote
is that their data is provided free of survivorship bias, due to their TickMap symbol-matching
software and inclusion of all stocks within a certain index through time.

As an example, to purchase the entire history of the S&P500 going back to 1998 in minutely-
bars, inclusive of de-listed stocks, the cost at the time of writing was $895. The pricing scales
with increasing frequency of data.

QuantQuote is currently the primary provider of market data to the QuantConnect web-
based backtesting service. QuantQuote go to great lengths to ensure minimisation of error, so
if you are looking for a US equities only feed at high resolution, then you should consider using
their service.

8.4 Obtaining Data

In this section we are going to discuss how to use Quandl, pandas and DTN IQFeed to download
financial market data across a range of markets and timeframes.

8.4.1 Yahoo Finance and Pandas

The pandas library makes it exceedingly simple to download EOD data from Yahoo Finance.
Pandas ships with a DataReader component that ties into Yahoo Finance (among other sources).
Specifying a symbol with a start and end date is sufficient to download an EOD series into a
pandas DataFrame, which allows rapid vectorised operations to be carried out:

from __future__ import print_function

import datetime
import pandas.io.data as web

if __name__ == "__main__":
spy = web.DataReader(

"SPY", "yahoo",
datetime.datetime(2007,1,1),
datetime.datetime(2015,6,15)

)
print(spy.tail())

The output is given below:

Open High Low Close Volume \
Date
2015-06-09 208.449997 209.100006 207.690002 208.449997 98148200
2015-06-10 209.369995 211.410004 209.300003 210.960007 129936200
2015-06-11 211.479996 212.089996 211.199997 211.649994 72672100
2015-06-12 210.639999 211.479996 209.679993 209.929993 127811900
2015-06-15 208.639999 209.449997 207.789993 209.100006 121425800

Adj Close
Date
2015-06-09 208.449997
2015-06-10 210.960007
2015-06-11 211.649994
2015-06-12 209.929993
2015-06-15 209.100006

https://quantquote.com/

67

Note that in pandas 0.17.0, pandas.io.data will be replaced by a separate pandas-datareader
package. However, for the time being (i.e. pandas versions 0.16.x) the syntax to import the data
reader is import pandas.io.data as web.

In the next section we will use Quandl to create a more comprehensive, permanent download
solution.

8.4.2 Quandl and Pandas

Up until recently it was rather difficult and expensive to obtain consistent futures data across
exchanges in frequently updated manner. However, the release of the Quandl service has changed
the situation dramatically, with financial data in some cases going back to the 1950s. In this
section we will use Quandl to download a set of end-of-day futures contracts across multiple
delivery dates.

Signing Up For Quandl

The first thing to do is sign up to Quandl. This will increase the daily allowance of calls
to their API. Sign-up grants 500 calls per day, rather than the default 50. Visit the site at
www.quandl.com:

Figure 8.1: The Quandl homepage

Click on the sign-up button on the top right:

Figure 8.2: The Quandl sign-up page

Once you’re signed in you’ll be returned to the home page:

http://www.quandl.com

68

Figure 8.3: The Quandl authorised home page

Quandl Futures Data

Now click on the "New: Futures page..." link to get to the futures homepage:

Figure 8.4: The Quandl futures contracts home page

For this tutorial we will be considering the highly liquid E-Mini S&P500 futures contract,
which has the futures symbol ES. To download other contracts the remainder of this tutorial can
be carried out with additional symbols replacing the reference to ES.

Click on the E-Mini S&P500 link (or your chosen futures symbol) and you’ll be taken to the
following screen:

Scrolling further down the screen displays the list of historical contracts going back to 1997:
Click on one of the individual contracts. As an example, I have chosen ESZ2014, which refers

to the contract for December 2014 ’delivery’. This will display a chart of the data:
By clicking on the "Download" button the data can be obtained in multiple formats: HTML,

CSV, JSON or XML. In addition we can download the data directly into a pandas DataFrame
using the Python bindings. While the latter is useful for quick "prototyping" and exploration of
the data, in this section we are considering the development of a longer term data store. Click
the download button, select "CSV" and then copy and paste the API call:

The API call will have the following form:

http://www.quandl.com/api/v1/datasets/OFDP/FUTURE_ESZ2014.csv?
&auth_token=MY_AUTH_TOKEN&trim_start=2013-09-18
&trim_end=2013-12-04&sort_order=desc

The authorisation token has been redacted and replaced with MY_AUTH_TOKEN. It will
be necessary to copy the alphanumeric string between "auth_token=" and "&trim_start" for

http://www.quandl.com/futures

69

Figure 8.5: E-Mini S&P500 contract page

Figure 8.6: E-Mini S&P500 historical contracts

Figure 8.7: Chart of ESZ2014 (December 2014 delivery)

later usage in the Python script below. Do not share it with anyone as it is your unique au-
thorisation token for Quandl downloads and is used to determine your download rate for the
day.

This API call will form the basis of an automated script which we will write below to download
a subset of the entire historical futures contract.

70

Figure 8.8: Download modal for ESZ2014 CSV file

Downloading Quandl Futures into Python

Because we are interested in using the futures data long-term as part of a wider securities master
database strategy we want to store the futures data to disk. Thus we need to create a directory to
hold our E-Mini contract CSV files. In Mac/Linux (within the terminal/console) this is achieved
by the following command:

cd /PATH/TO/YOUR/quandl_data.py
mkdir -p quandl/futures/ES

Note: Replace /PATH/TO/YOUR above with the directory where your quandl_data.py file is
located.

This creates a subdirectory of called quandl, which contains two further subdirectories for
futures and for the ES contracts in particular. This will help us to organise our downloads in an
ongoing fashion.

In order to carry out the download using Python we will need to import some libraries. In
particular we will need requests for the download and pandas and matplotlib for plotting
and data manipulation:

#!/usr/bin/python
-*- coding: utf-8 -*-

quandl_data.py

from __future__ import print_function

import matplotlib.pyplot as plt
import pandas as pd
import requests

The first function within the code will generate the list of futures symbols we wish to down-
load. I’ve added keyword parameters for the start and end years, setting them to reasonable
values of 2010 and 2014. You can, of course, choose to use other timeframes:

def construct_futures_symbols(
symbol, start_year=2010, end_year=2014

):
"""
Constructs a list of futures contract codes
for a particular symbol and timeframe.
"""
futures = []

71

March, June, September and
December delivery codes
months = ’HMUZ’
for y in range(start_year, end_year+1):

for m in months:
futures.append("%s%s%s" % (symbol, m, y))

return futures

Now we need to loop through each symbol, obtain the CSV file from Quandl for that particular
contract and subsequently write it to disk so we can access it later:

def download_contract_from_quandl(contract, dl_dir):
"""
Download an individual futures contract from Quandl and then
store it to disk in the ’dl_dir’ directory. An auth_token is
required, which is obtained from the Quandl upon sign-up.
"""
Construct the API call from the contract and auth_token
api_call = "http://www.quandl.com/api/v1/datasets/"
api_call += "OFDP/FUTURE_%s.csv" % contract
If you wish to add an auth token for more downloads, simply
comment the following line and replace MY_AUTH_TOKEN with
your auth token in the line below
params = "?sort_order=asc"
#params = "?auth_token=MY_AUTH_TOKEN&sort_order=asc"
full_url = "%s%s" % (api_call, params)

Download the data from Quandl
data = requests.get(full_url).text

Store the data to disk
fc = open(’%s/%s.csv’ % (dl_dir, contract), ’w’)
fc.write(data)
fc.close()

Now we tie the above two functions together to download all of the desired contracts:

def download_historical_contracts(
symbol, dl_dir, start_year=2010, end_year=2014

):
"""
Downloads all futures contracts for a specified symbol
between a start_year and an end_year.
"""
contracts = construct_futures_symbols(

symbol, start_year, end_year
)
for c in contracts:

print("Downloading contract: %s" % c)
download_contract_from_quandl(c, dl_dir)

Finally, we can add one of the futures prices to a pandas dataframe using the main function.
We can then use matplotlib to plot the settle price:

if __name__ == "__main__":
symbol = ’ES’

Make sure you’ve created this
relative directory beforehand

72

dl_dir = ’quandl/futures/ES’

Create the start and end years
start_year = 2010
end_year = 2014

Download the contracts into the directory
download_historical_contracts(

symbol, dl_dir, start_year, end_year
)

Open up a single contract via read_csv
and plot the settle price
es = pd.io.parsers.read_csv(

"%s/ESH2010.csv" % dl_dir, index_col="Date"
)
es["Settle"].plot()
plt.show()

The output of the plot is given in Figure 8.4.2.

Figure 8.9: ESH2010 Settle Price

The above code can be modified to collect any combination of futures contracts from Quandl
as necessary. Remember that unless a higher API request is made, the code will be limited to
making 50 API requests per day.

8.4.3 DTN IQFeed
For those of you who possess a DTN IQFeed subscription, the service provides a client-server
mechanism for obtaining intraday data. For this to work it is necessary to download the IQLink
server and run it on Windows. Unfortunately, it is tricky to execute this server on Mac or Linux
unless making use of the WINE emulator. However once the server is running it can be connected
to via a socket at which point it can be queried for data.

In this section we will obtain minutely bar data for a pair of US ETFs from January 1st 2007
onwards using a Python socket interface. Since there are approximately 252 trading days within

73

each year for US markets, and each trading day has 6.5 hours of trading, this will equate to at
least 650,000 bars of data, each with seven data points: Timestamp, Open, Low, High, Close,
Volume and Open Interest.

I have chosen the SPY and IWM ETFs to download to CSV. Make such to start the IQLink
program in Windows before executing this script:

#!/usr/bin/python
-*- coding: utf-8 -*-

iqfeed.py

import sys
import socket

def read_historical_data_socket(sock, recv_buffer=4096):
"""
Read the information from the socket, in a buffered
fashion, receiving only 4096 bytes at a time.

Parameters:
sock - The socket object
recv_buffer - Amount in bytes to receive per read
"""
buffer = ""
data = ""
while True:

data = sock.recv(recv_buffer)
buffer += data

Check if the end message string arrives
if "!ENDMSG!" in buffer:

break

Remove the end message string
buffer = buffer[:-12]
return buffer

if __name__ == "__main__":
Define server host, port and symbols to download
host = "127.0.0.1" # Localhost
port = 9100 # Historical data socket port
syms = ["SPY", "IWM"]

Download each symbol to disk
for sym in syms:

print "Downloading symbol: %s..." % sym

Construct the message needed by IQFeed to retrieve data
message = "HIT,%s,60,20070101 075000,,,093000,160000,1\n" % sym

Open a streaming socket to the IQFeed server locally
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect((host, port))

Send the historical data request
message and buffer the data
sock.sendall(message)

74

data = read_historical_data_socket(sock)
sock.close

Remove all the endlines and line-ending
comma delimiter from each record
data = "".join(data.split("\r"))
data = data.replace(",\n","\n")[:-1]

Write the data stream to disk
f = open("%s.csv" % sym, "w")
f.write(data)
f.close()

With additional subscription options in the DTN IQFeed account, it is possible to download
individual futures contracts (and back-adjusted continuous contracts), options and indices. DTN
IQFeed also provides real-time tick streaming, but this form of data falls outside the scope of
the book.

8.5 Cleaning Financial Data

Subsequent to the delivery of financial data from vendors it is necessary to perform data cleansing.
Unfortunately this can be a painstaking process, but a hugely necessary one. There are multiple
issues that require resolution: Incorrect data, consideration of data aggregation and backfilling.
Equities and futures contracts possess their own unique challenges that must be dealt with
prior to strategy research, including back/forward adjustment, continuous contract stitching and
corporate action handling.

8.5.1 Data Quality

The reputation of a data vendor will often rest on its (perceived) data quality. In simple terms,
bad or missing data leads to erroneous trading signals and thus potential loss. Despite this fact,
many vendors are still plagued with poor or inconsistent data quality. Thus there is always a
cleansing process necessary to be carried.

The main culprits in poor data quality are conflicting/incorrect data, opaque aggregation of
multiple data sources and error correction ("backfilling").

Conflicting and Incorrect Data

Bad data can happen anywhere in the stream. Bugs in the software at an exchange can lead
to erroneous prices when matching trades. This filters through to the vendor and subsequently
the trader. Reputable vendors will attempt to flag upstream "bad ticks" and will often leave the
"correction" of these points to the trader.

8.5.2 Continuous Futures Contracts

In this section we are going to discuss the characteristics of futures contracts that present a data
challenge from a backtesting point of view. In particular, the notion of the "continuous contract".
We will outline the main difficulties of futures and provide an implementation in Python with
pandas that can partially alleviate the problems.

Brief Overview of Futures Contracts

Futures are a form of contract drawn up between two parties for the purchase or sale of a quantity
of an underlying asset at a specified date in the future. This date is known as the delivery or
expiration. When this date is reached the buyer must deliver the physical underlying (or cash
equivalent) to the seller for the price agreed at the contract formation date.

75

In practice futures are traded on exchanges (as opposed to Over The Counter - OTC trading)
for standardised quantities and qualities of the underlying. The prices aremarked to market every
day. Futures are incredibly liquid and are used heavily for speculative purposes. While futures
were often utilised to hedge the prices of agricultural or industrial goods, a futures contract can
be formed on any tangible or intangible underlying such as stock indices, interest rates of foreign
exchange values.

A detailed list of all the symbol codes used for futures contracts across various exchanges can
be found on the CSI Data site: Futures Factsheet.

The main difference between a futures contract and equity ownership is the fact that a futures
contract has a limited window of availability by virtue of the expiration date. At any one instant
there will be a variety of futures contracts on the same underlying all with varying dates of
expiry. The contract with the nearest date of expiry is known as the near contract. The problem
we face as quantitative traders is that at any point in time we have a choice of multiple contracts
with which to trade. Thus we are dealing with an overlapping set of time series rather than a
continuous stream as in the case of equities or foreign exchange.

The goal of this section is to outline various approaches to constructing a continuous stream
of contracts from this set of multiple series and to highlight the tradeoffs associated with each
technique.

Forming a Continuous Futures Contract

The main difficulty with trying to generate a continuous contract from the underlying contracts
with varying deliveries is that the contracts do not often trade at the same prices. Thus situations
arise where they do not provide a smooth splice from one to the next. This is due to contango
and backwardation effects. There are various approaches to tackling this problem, which we now
discuss.

Unfortunately there is no single "standard" method for joining futures contracts together
in the financial industry. Ultimately the method chosen will depend heavily upon the strategy
employing the contracts and the method of execution. Despite the fact that no single method
exists there are some common approaches:

The Back/Forward ("Panama") Adjustment method alleviates the "gap" across multi-
ple contracts by shifting each contract such that the individual deliveries join in a smooth manner
to the adjacent contracts. Thus the open/close across the prior contracts at expiry matches up.

The key problem with the Panama method includes the introduction of a trend bias, which
will introduce a large drift to the prices. This can lead to negative data for sufficiently historical
contracts. In addition there is a loss of the relative price differences due to an absolute shift in
values. This means that returns are complicated to calculate (or just plain incorrect).

The Proportionality Adjustment approach is similar to the adjustment methodology of
handling stock splits in equities. Rather than taking an absolute shift in the successive contracts,
the ratio of the older settle (close) price to the newer open price is used to proportionally adjust
the prices of historical contracts. This allows a continous stream without an interruption of the
calculation of percentage returns.

The main issue with proportional adjustment is that any trading strategies reliant on an
absolute price level will also have to be similarly adjusted in order to execute the correct signal.
This is a problematic and error-prone process. Thus this type of continuous stream is often only
useful for summary statistical analysis, as opposed to direct backtesting research.

The Rollover/Perpetual Series method creates a continuous contract of successive con-
tracts by taking a linearly weighted proportion of each contract over a number of days to ensure
a smoother transition between each.

For example consider five smoothing days. The price on day 1, P1, is equal to 80% of the
far contract price (F1) and 20% of the near contract price (N1). Similarly, on day 2 the price is
P2 = 0.6 × F2 + 0.4 × N2. By day 5 we have P5 = 0.0 × F5 + 1.0 × N5 = N5 and the contract
then just becomes a continuation of the near price. Thus after five days the contract is smoothly
transitioned from the far to the near.

The problem with the rollover method is that it requires trading on all five days, which can
increase transaction costs. There are other less common approaches to the problem but we will

http://en.wikipedia.org/wiki/Mark-to-market_accounting#Marking-to-market_a_derivatives_position
http://www.csidata.com/factsheets/factsheet-futures.html
http://en.wikipedia.org/wiki/Contango
http://en.wikipedia.org/wiki/Backwardation

76

avoid them here.
The remainder of the section will concentrate on implementing the perpetual series method as

this is most appropriate for backtesting. It is a useful way to carry out strategy pipeline research.
We are going to stitch together the WTI Crude Oil "near" and "far" futures contract (symbol

CL) in order to generate a continuous price series. At the time of writing (January 2014), the
near contract is CLF2014 (January) and the far contract is CLG2014 (February).

In order to carry out the download of futures data I’ve made use of the Quandl plugin. Make
sure to set the correct Python virtual environment on your system and install the Quandl package
by typing the following into the terminal:

pip install Quandl

Now that the Quandl package is intalled, we need to make use of NumPy and pandas in
order to carry out the rollover construction. Create a new file and enter the following import
statements:

#!/usr/bin/python
-*- coding: utf-8 -*-

cont_futures.py

from __future__ import print_function

import datetime

import numpy as np
import pandas as pd
import Quandl

The main work is carried out in the futures_rollover_weights function. It requires a
starting date (the first date of the near contract), a dictionary of contract settlement dates
(expiry_dates), the symbols of the contracts and the number of days to roll the contract over
(defaulting to five). The comments below explain the code:

def futures_rollover_weights(start_date, expiry_dates,
contracts, rollover_days=5):
"""This constructs a pandas DataFrame that contains weights
(between 0.0 and 1.0) of contract positions to hold in order to
carry out a rollover of rollover_days prior to the expiration of
the earliest contract. The matrix can then be ’multiplied’ with
another DataFrame containing the settle prices of each
contract in order to produce a continuous time series
futures contract."""

Construct a sequence of dates beginning
from the earliest contract start date to the end
date of the final contract
dates = pd.date_range(start_date, expiry_dates[-1], freq=’B’)

Create the ’roll weights’ DataFrame that will store the multipliers for
each contract (between 0.0 and 1.0)
roll_weights = pd.DataFrame(np.zeros((len(dates), len(contracts))),

index=dates, columns=contracts)
prev_date = roll_weights.index[0]

Loop through each contract and create the specific weightings for
each contract depending upon the settlement date and rollover_days
for i, (item, ex_date) in enumerate(expiry_dates.iteritems()):

if i < len(expiry_dates) - 1:

http://www.quandl.com/OFDP/FUTURE_CLF2014
http://www.quandl.com/OFDP/FUTURE_CLG2014
http://www.quandl.com/

77

roll_weights.ix[prev_date:ex_date - pd.offsets.BDay(), item] = 1
roll_rng = pd.date_range(end=ex_date - pd.offsets.BDay(),

periods=rollover_days + 1, freq=’B’)

Create a sequence of roll weights (i.e. [0.0,0.2,...,0.8,1.0]
and use these to adjust the weightings of each future
decay_weights = np.linspace(0, 1, rollover_days + 1)
roll_weights.ix[roll_rng, item] = 1 - decay_weights
roll_weights.ix[roll_rng,

expiry_dates.index[i+1]] = decay_weights
else:

roll_weights.ix[prev_date:, item] = 1
prev_date = ex_date

return roll_weights

Now that the weighting matrix has been produced, it is possible to apply this to the individual
time series. The main function downloads the near and far contracts, creates a single DataFrame
for both, constructs the rollover weighting matrix and then finally produces a continuous series
of both prices, appropriately weighted:

if __name__ == "__main__":
Download the current Front and Back (near and far) futures contracts
for WTI Crude, traded on NYMEX, from Quandl.com. You will need to
adjust the contracts to reflect your current near/far contracts
depending upon the point at which you read this!
wti_near = Quandl.get("OFDP/FUTURE_CLF2014")
wti_far = Quandl.get("OFDP/FUTURE_CLG2014")
wti = pd.DataFrame({’CLF2014’: wti_near[’Settle’],

’CLG2014’: wti_far[’Settle’]}, index=wti_far.index)

Create the dictionary of expiry dates for each contract
expiry_dates = pd.Series(

{’CLF2014’: datetime.datetime(2013, 12, 19),
’CLG2014’: datetime.datetime(2014, 2, 21)}).order()

Obtain the rollover weighting matrix/DataFrame
weights = futures_rollover_weights(wti_near.index[0],

expiry_dates, wti.columns)

Construct the continuous future of the WTI CL contracts
wti_cts = (wti * weights).sum(1).dropna()

Output the merged series of contract settle prices
print(wti_cts.tail(60))

The output is as follows:

2013-10-14 102.230
2013-10-15 101.240
2013-10-16 102.330
2013-10-17 100.620
2013-10-18 100.990
2013-10-21 99.760
2013-10-22 98.470
2013-10-23 97.000
2013-10-24 97.240
2013-10-25 97.950
..

78

..
2013-12-24 99.220
2013-12-26 99.550
2013-12-27 100.320
2013-12-30 99.290
2013-12-31 98.420
2014-01-02 95.440
2014-01-03 93.960
2014-01-06 93.430
2014-01-07 93.670
2014-01-08 92.330
Length: 60, dtype: float64

It can be seen that the series is now continuous across the two contracts. This can be extended
to handle multiple deliveries across a variety of years, depending upon your backtesting needs.

Part IV

Modelling

79

Chapter 9

Statistical Learning

The goal of the Modelling section within this book is to provide a robust quantitative framework
for identifying relationships in financial market data that can be exploited to generate profitable
trading strategies. The approach that will be utilised is that of Statistical Learning. This chapter
describes the philosophy of statistical learning and associated techniques that can be used to
create quantitative models for financial trading.

9.1 What is Statistical Learning?

Before discussing the theoretical aspects of statistical learning it is appropriate to consider an
example of a situation from quantitative finance where such techniques are applicable. Consider
a quantitative fund that wishes to make long term predictions of the S&P500 stock market index.
The fund has managed to collect a substantial amount of fundamental data associated with the
companies that constitute the index. Fundamental data includes price-earnings ratio or book
value, for instance. How should the fund go about using this data to make predictions of the
index in order to create a trading tool? Statistical learning provides one such approach to this
problem.

In a more quantitative sense we are attempting to model the behaviour of an outcome or
response based on a set of predictors or features assuming a relationship between the two. In the
above example the stock market index value is the response and the fundamental data associated
with the constituent firms are the predictors.

This can be formalised by considering a response Y with p different features x1, x2, ..., xp. If
we utilise vector notation then we can define X = (x1, x2, ..., xp), which is a vector of length p.
Then the model of our relationship is given by:

Y = f(X) + ε (9.1)

Where f is an unknown function of the predictors and ε represents an error or noise term.
Importantly, ε is not dependent on the predictors and has a mean of zero. This term is included to
represent information that is not considered within f . Thus we can return to the stock market
index example to say that Y represents the value of the S&P500 whereas the xi components
represent the values of individual fundamental factors.

The goal of statistical learning is to estimate the form of f based on the observed data and
to evaluate how accurate those estimates are.

9.1.1 Prediction and Inference

There are two general tasks that are of interest in statistical learning - prediction and inference.
Prediction is concerned with predicting a response Y based on a newly observed predictor,

X. If the model relationship has been determined then it is simple to predict the response using
an estimate for f to produce an estimate for the response:

81

82

Ŷ = f̂(X) (9.2)

The functional form of f is often unimportant in a prediction scenario assuming that the esti-
mated responses are close to the true responses and is thus accurate in its predictions. Different
estimates of f will produce various accuracies of the estimates of Y . The error associated with
having a poor estimate f̂ of f is called the reducible error. Note that there is always a degree of
irreducible error because our original specification of the problem included the ε error term. This
error term encapsulates the unmeasured factors that may affect the response Y . The approach
taken is to try and minimise the reducible error with the understanding that there will always
be an upper limit of accuracy based on the irreducible error.

Inference is concerned with the situation where there is a need to understand the relationship
between X and Y and hence its exact form must be determined. One may wish to identify im-
portant predictors or determine the relationship between individual predictors and the response.
One could also ask if the relationship is linear or non-linear. The former means the model is
likely to be more interpretable but at the expense of potentially worse predictability. The latter
provides models which are generally more predictive but are sometimes less interpretable. Hence
a trade-off between predictability and interpretability often exists.

In this book we are less concerned with inference models since the actual form of f is not as
important as its ability to make accurate predictions. Hence a large component of the Modelling
section within the book will be based on predictive modelling. The next section deals with how
we go about constructing an estimate f̂ for f .

9.1.2 Parametric and Non-Parametric Models

In a statistical learning situation it is often possible to construct a set of tuples of predictors
and responses of the form {(X1, Y1), (X2, Y2), ..., (XN , YN)}, where Xj refers to the jth predictor
vector and not the jth component of a particular predictor vector (that is denoted by xj). A data
set of this form is known as training data since it will be used to train a particular statistical
learning method on how to generate f̂ . In order to actually estimate f we need to find a f̂ that
provides a reasonable approximation to a particular Y under a particular predictor X. There
are two broad categories of statistical models that allow us to achieve this. They are known as
parametric and non-parametric models.

Parametric Models

The defining feature of parametric methods is that they require the specification or assumption
of the form of f . This is a modelling decision. The first choice is whether to consider a linear
or non-linear model. Let’s consider the simpler case of a linear model. Such a model reduces
the problem from estimation of some unknown function of dimension p to that of estimating a
coefficient vector β = (β0, β1, ..., βp) of length p+ 1.

Why p+ 1 and not p? Since linear models can be affine, that is they may not pass through
the origin when creating a "line of best fit", a coefficient is required to specify the "intercept".
In a one-dimensional linear model (regression) setting this is often represented as α. For our
multi-dimensional linear model, where there are p predictors, we need an additional value β0 to
represent our intercept and hence there are p+ 1 components in our β̂ estimate of β.

Now that we have specified a (linear) functional form of f we need to train it. "Training" in
this instance means finding an estimate for β such that:

Y ≈ β̂TX = β0 + β1x1 + ...+ βpxp (9.3)

In the linear setting we can use an algorithm such as ordinary least squares (OLS) but other
methods are available as well. It is far simpler to estimate β than fit a (potentially non-linear) f .
However, by choosing a parametric linear approach our estimate f̂ is unlikely to be replicating
the true form of f . This can lead to poor estimates because the model is not flexible enough.

83

A potential remedy is to consider adding more parameters, by choosing alternate forms for f̂ .
Unfortunately if the model becomes too flexible it can lead to a very dangerous situation known
as overfitting, which we will discuss at length in subsequent chapters. In essence, the model
follows the noise too closely and not the signal.

Non-Parametric Models

The alternative approach is to consider a non-parametric form of f̂ . The benefit is that it can
potentially fit a wider range of possible forms for f and is thus more flexible. Unfortunately
non-parametric models suffer from the need to have an extensive amount of observational data
points, often far more than in a parametric settings. In addition non-parametric methods are
also prone to overfitting if not treated carefully, as described above.

Non-parametric models may seem like a natural choice for quantitative trading models as
there is seemingly an abundance of (historical) data on which to apply the models. However, the
methods are not always optimal. While the increased flexibility is attractive for modelling the
non-linearities in stock market data it is very easy to overfit the data due to the poor signal/noise
ratio found in financial time series.

Thus a "middle-ground" of considering models with some degree of flexibility is preferred.
We will discuss such problems in the chapter on Optimisation later in the book.

9.1.3 Supervised and Unsupervised Learning

A distinction is often made in statistical machine learning between supervised and unsupervised
methods. In this book we will almost exclusively be interested in supervised techniques, but
unsupervised techniques are certainly applicable to financial markets.

A supervised model requires that for each predictor vector Xj there is an associated response
Yj . The "supervision" of the procedure occurs when the model for f is trained or fit to this
particular data. For example, when fitting a linear regression model, the OLS algorithm is used
to train it, ultimately producing an estimate β̂ to the vector of regression coefficients, β.

In an unsupervised model there is no corresponding response Yj for any particular predictor
Xj . Hence there is nothing to "supervise" the training of the model. This is clearly a much
more challenging environment for an algorithm to produce results as there is no form of "fitness
function" with which to assess accuracy. Despite this setback, unsupervised techniques are
extremely powerful. They are particularly useful in the realm of clustering.

A parametrised clustering model, when provided with a parameter specifying the number
of clusters to identify, can often discern unanticipated relationships within data that might not
otherwise have been easily determined. Such models are generally fall within the domain of
business analytics and consumer marketing optimisation but they do have uses within finance,
particularly in regards to assessing clustering within volatility, for instance.

This book will predominantly concentrate on supervised learning methods since there is a
vast amount of historical data on which to train such models.

9.2 Techniques

Statistical machine learning is a vast interdisciplinary field, with many disparate research areas.
The remainder of this chapter will consider the techniques most relevant to quantitative finance
and algorithmic trading in particular.

9.2.1 Regression

Regression refers to a broad group of supervised machine learning techniques that provide both
predictive and inferential capabilities. A significant portion of quantitative finance makes use of
regression techniques and thus it is essential to be familiar with the process. Regression tries to
model the relationship between a dependent variable (response) and a set of independent variables
(predictors). In particular, the goal of regression is to ascertain the change in a response, when

84

one of the independent variables changes, under the assumption that the remaining independent
variables are kept fixed.

The most widely known regression technique is Linear Regression, which assumes a linear
relationship between the predictors and the response. Such a model leads to parameter estimates
(usually denoted by the vector β̂) for the linear response to each predictor. These parameters
are estimated via a procedure known as ordinary least squares (OLS). Linear regression can be
used both for prediction and inference.

In the former case a new value of the predictor can be added (without a corresponding
response) in order to predict a new response value. For instance, consider a linear regression
model used to predict the value of the S&P500 in the following day, from price data over the last
five days. The model can be fitted using OLS across historical data. Then, when new market
data arrive for the S&P500 it can be input into the model (as a predictor) to generate a predicted
response for tomorrow’s daily price. This can form the basis of a simplistic trading strategy.

In the latter case (inference) the strength of the relationship between the response and each
predictor can be assessed in order to determine the subset of predictors that have an effect on the
response. This is more useful when the goal is to understand why the response varies, such as in
a marketing study or clinical trial. Inference is often less useful to those carrying out algorithmic
trading, as the quality of the prediction is fundamentally more important than the underlying
relationship. That being said, one should not solely rely on the "black box" approach due to the
prevalence of over-fitting to noise in the data.

Other techniques include Logistic Regression, which is designed to predict a categorical re-
sponse (such as "UP", "DOWN", "FLAT") as opposed to a continuous response (such as a stock
market price). This technically makes it a classification tool (see below), but it is usually grouped
under the banner of regression. A general statistical procedure known as Maximum Likelihood
Estimation (MLE) is used to estimate the parameter values of a logistic regression.

9.2.2 Classification

Classification encompasses supervised machine learning techniques that aim to classify an obser-
vation (similar to a predictor) into a set of pre-defined categories, based on features associated
with the observation. These categories can be un-ordered, e.g. "red", "yellow", "blue" or or-
dered, e.g. "low", "medium", "high". In the latter case such categorical groups are known as
ordinals. Classification algorithms - classifiers - are widely used in quantitative finance, espe-
cially in the realm of market direction prediction. In this book we will be studying classifiers
extensively.

Classifiers can be utilised in algorithmic trading to predict whether a particular time series
will have positive or negative returns in subsequent (unknown) time periods. This is similar to a
regression setting except that the actual value of the time series is not being predicted, rather its
direction. Once again we are able to use continuous predictors, such as prior market prices as ob-
servations. We will consider both linear and non-linear classifiers, including Logistic Regression,
Linear/Quadratic Discriminant Analysis, Support Vector Machines (SVM) and Artificial Neural
Networks (ANN). Note that some of the previous methods can actually be used in a regression
setting also.

9.2.3 Time Series Models

A key component in algorithmic trading is the treatment and prediction of financial time series.
Our goal is generally to predict future values of time series based on prior values or external
factors. Thus time series modelling can be seen as a mixed-subset of regression and classification.
Time series models differ from non-temporal models because the models make deliberate use of
the temporal ordering of the series. Thus the predictors are often based on past or current values,
while the responses are often future values to be predicted.

There is a large literature on differing time series models. There are two broad families of time
series models that interest us in algorithmic trading. The first set are the linear autoregressive
integrated moving average (ARIMA) family of models, which are used to model the variations
in the absolute value of a time series. The other family of time series are the autoregressive

85

conditional heteroskedasticity (ARCH) models, which are used to model the variance (i.e. the
volatility) of time series over time. ARCH models use previous values (volatilities) of the time
series to predict future values (volatilities). This is in contrast to stochastic volatility models,
which utilise more than one stochastic time series (i.e. multiple stochastic differential equations)
to model volatility.

All of the raw historical price time series are discrete in that they contain finite values. In
the field of quantitative finance it is common to study continuous time series models. In partic-
ular, the famous Geometric Brownian Motion, the Heston Stochastic Volatility model and the
Ornstein-Uhlenbeck model all represent continuous time series with differing forms of stochastic
behaviour. We will utilise these time series models in subsequent chapters to attempt to charac-
terise the behaviour of financial time series in order to exploit their properties to create viable
trading strategies.

86

Chapter 10

Time Series Analysis

In this chapter we are going to consider statistical tests that will help us identify price series that
possess trending or mean-reverting behaviour. If we can identify such series statistically then we
can capitalise on this behaviour by forming momentum or mean-reverting trading strategies.

In later chapters we will use these statistical tests to help us identify candidate time series
and then create algorithmic strategies around them.

10.1 Testing for Mean Reversion

One of the key quantitative trading concepts is mean reversion. This process refers to a time
series that displays a tendency to revert to a historical mean value. Such a time series can be
exploited to generate trading strategies as we enter the market when a price series is far from
the mean under the expectation that the series will return to a mean value, whereby we exit the
market for a profit. Mean-reverting strategies form a large component of the statistical arbitrage
quant hedge funds. In later chapters we will create both intraday and interday strategies that
exploit mean-reverting behaviour.

The basic idea when trying to ascertain if a time series is mean-reverting is to use a statistical
test to see if it differs from the behaviour of a random walk. A random walk is a time series where
the next directional movement is completely independent of any past movements - in essence the
time series has no "memory" of where it has been. A mean-reverting time series, however, is
different. The change in the value of the time series in the next time period is proportional to
the current value. Specifically, it is proportional to the difference between the mean historical
price and the current price.

Mathematically, such a (continuous) time series is referred to as an Ornstein-Uhlenbeck
process. If we can show, statistically, that a price series behaves like an Ornstein-Uhlenbeck
series then we can begin the process of forming a trading strategy around it. Thus the goal of
this chapter is to outline the statistical tests necessary to identify mean reversion and then use
Python libraries (in particular statsmodels) in order to implement these tests. In particular, we
will study the concept of stationarity and how to test for it.

As stated above, a continuous mean-reverting time series can be represented by an Ornstein-
Uhlenbeck stochastic differential equation:

dxt = θ(µ− xt)dt+ σdWt (10.1)

Where θ is the rate of reversion to the mean, µ is the mean value of the process, σ is the
variance of the process and Wt is a Wiener Process or Brownian Motion.

This equation essentially states that the change of the price series in the next continuous time
period is proportional to the difference between the mean price and the current price, with the
addition of Gaussian noise.

We can use this equation to motivate the definition of the Augmented Dickey-Fuller Test,
which we will now describe.

87

88

10.1.1 Augmented Dickey-Fuller (ADF) Test
The ADF test makes use of the fact that if a price series possesses mean reversion, then the next
price level will be proportional to the current price level. Mathematically, the ADF is based on
the idea of testing for the presence of a unit root in an autoregressive time series sample.

We can consider a model for a time series, known as a linear lag model of order p. This model
says that the change in the value of the time series is proportional to a constant, the time itself
and the previous p values of the time series, along with an error term:

∆yt = α+ βt+ γyt−1 + δ1∆yt−1 + · · ·+ δp−1∆yt−p+1 + εt (10.2)

Where α is a constant, β represents the coefficient of a temporal trend and ∆yt = y(t) −
y(t− 1). The role of the ADF hypothesis test is to ascertain, statistically, whether γ = 0, which
would indicate (with α = β = 0) that the process is a random walk and thus non mean reverting.
Hence we are testing for the null hypothesis that γ = 0.

If the hypothesis that γ = 0 can be rejected then the following movement of the price series
is proportional to the current price and thus it is unlikely to be a random walk. This is what we
mean by a "statistical test".

So how is the ADF test carried out?

• Calculate the test statistic, DFτ , which is used in the decision to reject the null hypothesis

• Use the distribution of the test statistic (calculated by Dickey and Fuller), along with the
critical values, in order to decide whether to reject the null hypothesis

Let’s begin by calculating the test statistic (DFτ). This is given by the sample proportionality
constant γ̂ divided by the standard error of the sample proportionality constant:

DFτ =
γ̂

SE(γ̂)
(10.3)

Now that we have the test statistic, we can use the distribution of the test statistic calculated
by Dickey and Fuller to determine the rejection of the null hypothesis for any chosen percentage
critical value. The test statistic is a negative number and thus in order to be significant beyond
the critical values, the number must be smaller (i.e. more negative) than these values.

A key practical issue for traders is that any constant long-term drift in a price is of a much
smaller magnitude than any short-term fluctuations and so the drift is often assumed to be zero
(β = 0) for the linear lag model described above.

Since we are considering a lag model of order p, we need to actually set p to a particular value.
It is usually sufficient, for trading research, to set p = 1 to allow us to reject the null hypothesis.
However, note that this technically introduces a parameter into a trading model based on the
ADF.

To calculate the Augmented Dickey-Fuller test we can make use of the pandas and statsmodels
libraries. The former provides us with a straightforward method of obtaining Open-High-Low-
Close-Volume (OHLCV) data from Yahoo Finance, while the latter wraps the ADF test in a
easy to call function. This prevents us from having to calculate the test statistic manually, which
saves us time.

We will carry out the ADF test on a sample price series of Amazon stock, from 1st January
2000 to 1st January 2015.

Here is the Python code to carry out the test:

from __future__ import print_function

Import the Time Series library
import statsmodels.tsa.stattools as ts

Import Datetime and the Pandas DataReader

89

from datetime import datetime
import pandas.io.data as web

Download the Amazon OHLCV data from 1/1/2000 to 1/1/2015
amzn = web.DataReader("AMZN", "yahoo", datetime(2000,1,1), datetime(2015,1,1))

Output the results of the Augmented Dickey-Fuller test for Amazon
with a lag order value of 1
ts.adfuller(amzn[’Adj Close’], 1)

Here is the output of the Augmented Dickey-Fuller test for Amazon over the period. The
first value is the calculated test-statistic, while the second value is the p-value. The fourth is the
number of data points in the sample. The fifth value, the dictionary, contains the critical values
of the test-statistic at the 1, 5 and 10 percent values respectively.

(0.049177575166452235,
0.96241494632563063,
1,
3771,
{’1%’: -3.4320852842548395,
’10%’: -2.5671781529820348,
’5%’: -2.8623067530084247},
19576.116041473877)

Since the calculated value of the test statistic is larger than any of the critical values at the 1,
5 or 10 percent levels, we cannot reject the null hypothesis of γ = 0 and thus we are unlikely to
have found a mean reverting time series. This is in line with our tuition as most equities behave
akin to Geometric Brownian Motion (GBM), i.e. a random walk.

This concludes how we utilise the ADF test. However, there are alternative methods for de-
tecting mean-reversion, particularly via the concept of stationarity, which we will now discuss.

10.2 Testing for Stationarity
A time series (or stochastic process) is defined to be strongly stationary if its joint probability
distribution is invariant under translations in time or space. In particular, and of key importance
for traders, the mean and variance of the process do not change over time or space and they each
do not follow a trend.

A critical feature of stationary price series is that the prices within the series diffuse from their
initial value at a rate slower than that of a GBM. By measuring the rate of this diffusive behaviour
we can identify the nature of the time series and thus detect whether it is mean-reverting.

We will now outline a calculation, namely the Hurst Exponent, which helps us to characterise
the stationarity of a time series.

10.2.1 Hurst Exponent
The goal of the Hurst Exponent is to provide us with a scalar value that will help us to identify
(within the limits of statistical estimation) whether a series is mean reverting, random walking
or trending.

The idea behind the Hurst Exponent calculation is that we can use the variance of a log price
series to assess the rate of diffusive behaviour. For an arbitrary time lag τ , the variance of τ is
given by:

Var(τ) = 〈| log(t+ τ)− log(t)|2〉 (10.4)

Where the brackets 〈 and 〉 refer to the average over all values of t.
The idea is to compare the rate of diffusion to that of a GBM. In the case of a GBM, at large

times (i.e. when τ is large) the variance of τ is proportional to τ :

90

〈| log(t+ τ)− log(t)|2〉 ∼ τ (10.5)

If we find behaviour that differs from this relation, then we have identified either a trending
or a mean-reverting series. The key insight is that if any sequential price movements possess
non-zero correlation (known as autocorrelation) then the above relationship is not valid. Instead
it can be modified to include an exponent value "2H", which gives us the Hurst Exponent value
H:

〈| log(t+ τ)− log(t)|2〉 ∼ τ2H (10.6)

Thus it can be seen that if H = 0.5 we have a GBM, since it simply becomes the previous
relation. However if H 6= 0.5 then we have trending or mean-reverting behaviour. In particular:

• H < 0.5 - The time series is mean reverting

• H = 0.5 - The time series is a Geometric Brownian Motion

• H > 0.5 - The time series is trending

In addition to characterisation of the time series the Hurst Exponent also describes the extent
to which a series behaves in the manner categorised. For instance, a value of H near 0 is a highly
mean reverting series, while for H near 1 the series is strongly trending.

To calculate the Hurst Exponent for the Amazon price series, as utilised above in the expla-
nation of the ADF, we can use the following Python code:

from __future__ import print_function

from numpy import cumsum, log, polyfit, sqrt, std, subtract
from numpy.random import randn

def hurst(ts):
"""Returns the Hurst Exponent of the time series vector ts"""
Create the range of lag values
lags = range(2, 100)

Calculate the array of the variances of the lagged differences
tau = [sqrt(std(subtract(ts[lag:], ts[:-lag]))) for lag in lags]

Use a linear fit to estimate the Hurst Exponent
poly = polyfit(log(lags), log(tau), 1)

Return the Hurst exponent from the polyfit output
return poly[0]*2.0

Create a Gometric Brownian Motion, Mean-Reverting and Trending Series
gbm = log(cumsum(randn(100000))+1000)
mr = log(randn(100000)+1000)
tr = log(cumsum(randn(100000)+1)+1000)

Output the Hurst Exponent for each of the above series
and the price of Amazon (the Adjusted Close price) for
the ADF test given above in the article
print("Hurst(GBM): %s" % hurst(gbm))
print("Hurst(MR): %s" % hurst(mr))
print("Hurst(TR): %s" % hurst(tr))

91

Assuming you have run the above code to obtain ’amzn’!
print("Hurst(AMZN): %s" % hurst(amzn[’Adj Close’]))

The output from the Hurst Exponent Python code is given below:

Hurst(GBM): 0.502051910931
Hurst(MR): 0.000166110248967
Hurst(TR): 0.957701001252
Hurst(AMZN): 0.454337476553

From this output we can see that the GBM possesses a Hurst Exponent, H, that is almost
exactly 0.5. The mean reverting series has H almost equal to zero, while the trending series has
H close to 1.

Interestingly, Amazon has H also close to 0.5 indicating that it is similar to a GBM, at least
for the sample period we’re making use of!

10.3 Cointegration

It is actually very difficult to find a tradable asset that possesses mean-reverting behaviour. Eq-
uities broadly behave like GBMs and hence render the mean-reverting trade strategies relatively
useless. However, there is nothing stopping us from creating a portfolio of price series that is
stationary. Hence we can apply mean-reverting trading strategies to the portfolio.

The simplest form of mean-reverting trade strategies is the classic "pairs trade", which usually
involves a dollar-neutral long-short pair of equities. The theory goes that two companies in the
same sector are likely to be exposed to similar market factors, which affect their businesses.
Occasionally their relative stock prices will diverge due to certain events, but will revert to the
long-running mean.

Let’s consider two energy sector equities Approach Resources Inc given by the ticker AREX
and Whiting Petroleum Corp given by the ticker WLL. Both are exposed to similar market
conditions and thus will likely have a stationary pairs relationship. We are now going to create
some plots, using pandas and the Matplotlib libraries to demonstrate the cointegrating nature
of AREX and WLL. The first plot (Figure 10.1) displays their respective price histories for the
period Jan 1st 2012 to Jan 1st 2013.

If we create a scatter plot of their prices, we see that the relationship is broadly linear (see
Figure 10.2) for this period.

The pairs trade essentially works by using a linear model for a relationship between the two
stock prices:

y(t) = βx(t) + ε(t) (10.7)

Where y(t) is the price of AREX stock and x(t) is the price of WLL stock, both on day t.
If we plot the residuals ε(t) = y(t)− βx(t) (for a particular value of β that we will determine

below) we create a new time series that, at first glance, looks relatively stationary. This is given
in Figure 10.3.

We will describe the code for each of these plots below.

10.3.1 Cointegrated Augmented Dickey-Fuller Test

In order to statistically confirm whether this series is mean-reverting we could use one of the tests
we described above, namely the Augmented Dickey-Fuller Test or the Hurst Exponent. However,
neither of these tests will actually help us determine β, the hedging ratio needed to form the
linear combination, they will only tell us whether, for a particular β, the linear combination is
stationary.

This is where the Cointegrated Augmented Dickey-Fuller (CADF) test comes in. It determines
the optimal hedge ratio by performing a linear regression against the two time series and then
tests for stationarity under the linear combination.

92

Figure 10.1: Time series plots of AREX and WLL

Figure 10.2: Scatter plot of AREX and WLL prices

Python Implementation

We will now use Python libraries to test for a cointegrating relationship between AREX and
WLL for the period of Jan 1st 2012 to Jan 1st 2013. We will use Yahoo Finance for the data
source and Statsmodels to carry out the ADF test, as above.

The first task is to create a new file, cadf.py, and import the necessary libraries. The code
makes use of NumPy, Matplotlib, Pandas and Statsmodels. In order to correctly label the axes

93

Figure 10.3: Residual plot of AREX and WLL linear combination

and download data from Yahoo Finance via pandas, we import the matplotlib.dates module and
the pandas.io.data module. We also make use of the Ordinary Least Squares (OLS) function
from pandas:

#!/usr/bin/python
-*- coding: utf-8 -*-

cadf.py

import datetime
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import pandas as pd
import pandas.io.data as web
import pprint
import statsmodels.tsa.stattools as ts

from pandas.stats.api import ols

The first function, plot_price_series, takes a pandas DataFrame as input, with to columns
given by the placeholder strings "ts1" and "ts2". These will be our pairs equities. The function
simply plots the two price series on the same chart. This allows us to visually inspect whether
any cointegration may be likely.

We use the Matplotlib dates module to obtain the months from the datetime objects. Then
we create a figure and a set of axes on which to apply the labelling/plotting. Finally, we plot
the figure:

cadf.py

def plot_price_series(df, ts1, ts2):
months = mdates.MonthLocator() # every month
fig, ax = plt.subplots()
ax.plot(df.index, df[ts1], label=ts1)

94

ax.plot(df.index, df[ts2], label=ts2)
ax.xaxis.set_major_locator(months)
ax.xaxis.set_major_formatter(mdates.DateFormatter(’%b %Y’))
ax.set_xlim(datetime.datetime(2012, 1, 1), datetime.datetime(2013, 1, 1))
ax.grid(True)
fig.autofmt_xdate()

plt.xlabel(’Month/Year’)
plt.ylabel(’Price ($)’)
plt.title(’%s and %s Daily Prices’ % (ts1, ts2))
plt.legend()
plt.show()

The second function, plot_scatter_series, plots a scatter plot of the two prices. This allows
us to visually inspect whether a linear relationship exists between the two series and thus whether
it is a good candidate for the OLS procedure and subsequent ADF test:

cadf.py

def plot_scatter_series(df, ts1, ts2):
plt.xlabel(’%s Price ($)’ % ts1)
plt.ylabel(’%s Price ($)’ % ts2)
plt.title(’%s and %s Price Scatterplot’ % (ts1, ts2))
plt.scatter(df[ts1], df[ts2])
plt.show()

The third function, plot_residuals, is designed to plot the residual values from the fitted
linear model of the two price series. This function requires that the pandas DataFrame has a
"res" column, representing the residual prices:

cadf.py

def plot_residuals(df):
months = mdates.MonthLocator() # every month
fig, ax = plt.subplots()
ax.plot(df.index, df["res"], label="Residuals")
ax.xaxis.set_major_locator(months)
ax.xaxis.set_major_formatter(mdates.DateFormatter(’%b %Y’))
ax.set_xlim(datetime.datetime(2012, 1, 1), datetime.datetime(2013, 1, 1))
ax.grid(True)
fig.autofmt_xdate()

plt.xlabel(’Month/Year’)
plt.ylabel(’Price ($)’)
plt.title(’Residual Plot’)
plt.legend()

plt.plot(df["res"])
plt.show()

Finally, the procedure is wrapped up in a __main__ function. The first task is to download
the OHLCV data for both AREX and WLL from Yahoo Finance. Then we create a separate
DataFrame, df, using the same index as the AREX frame to store both of the adjusted closing
price values. We then plot the price series and the scatter plot.

After the plots are complete the residuals are calculated by calling the pandas ols function
on the WLL and AREX series. This allows us to calculate the β hedge ratio. The hedge ratio
is then used to create a "res" column via the formation of the linear combination of both WLL
and AREX.

95

Finally the residuals are plotted and the ADF test is carried out on the calculated residuals.
We then print the results of the ADF test:

cadf.py

if __name__ == "__main__":
start = datetime.datetime(2012, 1, 1)
end = datetime.datetime(2013, 1, 1)

arex = web.DataReader("AREX", "yahoo", start, end)
wll = web.DataReader("WLL", "yahoo", start, end)

df = pd.DataFrame(index=arex.index)
df["AREX"] = arex["Adj Close"]
df["WLL"] = wll["Adj Close"]

Plot the two time series
plot_price_series(df, "AREX", "WLL")

Display a scatter plot of the two time series
plot_scatter_series(df, "AREX", "WLL")

Calculate optimal hedge ratio "beta"
res = ols(y=df[’WLL’], x=df["AREX"])
beta_hr = res.beta.x

Calculate the residuals of the linear combination
df["res"] = df["WLL"] - beta_hr*df["AREX"]

Plot the residuals
plot_residuals(df)

Calculate and output the CADF test on the residuals
cadf = ts.adfuller(df["res"])
pprint.pprint(cadf)

The output of the code (along with the Matplotlib plots) is as follows:

(-2.9607012342275936,
0.038730981052330332,
0,
249,
{’1%’: -3.4568881317725864,
’10%’: -2.5729936189738876,
’5%’: -2.8732185133016057},
601.96849256295991)

It can be seen that the calculated test statistic of -2.96 is smaller than the 5% critical value
of -2.87, which means that we can reject the null hypothesis that there isn’t a cointegrating
relationship at the 5% level. Hence we can conclude, with a reasonable degree of certainty,
that AREX and WLL possess a cointegrating relationship, at least for the time period sample
considered.

We will use this pair in subsequent chapters to create an actual trading strategy using an
implemented event-driven backtesting system.

96

10.4 Why Statistical Testing?
Fundamentally, as far as algorithmic trading is concerned, the statistical tests outlined above are
only as useful as the profits they generate when applied to trading strategies. Thus, surely it
makes sense to simply evaluate performance at the strategy level, as opposed to the price/time
series level? Why go to the trouble of calculating all of the above metrics when we can simply
use trade level analysis, risk/reward measures and drawdown evaluations?

Firstly, any implemented trading strategy based on a time series statistical measure will have
a far larger sample to work with. This is simply because when calculating these statistical tests,
we are making use of each bar of information, rather than each trade. There will be far less
round-trip trades than bars and hence the statistical significance of any trade-level metrics will
be far smaller.

Secondly, any strategy we implement will depend upon certain parameters, such as look-
back periods for rolling measures or z-score measures for entering/exiting a trade in a mean-
reversion setting. Hence strategy level metrics are only appropriate for these parameters, while
the statistical tests are valid for the underlying time series sample.

In practice we want to calculate both sets of statistics. Python, via the statsmodels and
pandas libraries, make this extremely straightforward. The additional effort is actually rather
minimal!

Chapter 11

Forecasting

In this chapter we will create a statistically robust process for forecasting financial time series.
These forecasts will form the basis for further automated trading strategies. We will expand on
the topic of Statistical Learning discussed in the previous chapters and use a group of classification
algorithms to help us predict market direction of financial time series.

Within this chapter we will be making use of Scikit-Learn, a statistical machine learning
library for Python. Scikit-learn contains "ready-made" implementations of many machine learn-
ing techniques. Not only does this save us a great deal of time in implementing our trading
algorithms, but it minimises the risk of bugs introduced by our own code. It also allows addi-
tional verification against machine learning libraries written in other packages such as R or C++.
This gives us a great deal of confidence if we need to create our own custom implementation, for
reasons of execution speed, say.

We will begin by discussing ways of measuring forecaster performance for the particular case
of machine learning techniques used. Then we will consider the predictive factors that can be
used in forecasting techniques and how to choose good factors. Then we will consider various
supervised classifier algorithms. Finally, we will attempt to forecast the daily direction of the
S&P500, which will later form the basis of an algorithmic trading strategy.

11.1 Measuring Forecasting Accuracy
Before we discuss choices of predictor and specific classification algorithms we must discuss their
performance characteristics and how to evaluate them. The particular class of methods that we
are interested in involves binary supervised classification. That is, we will attempt to predict
whether the percentage return for a particular future day is positive or negative (i.e. whether
our financial asset has risen or dropped in price).

In a production forecaster, using a regression-type technique, we would be very concerned
with the magnitude of this prediction and the deviations of the prediction from the actual value.

To assess the performance of these classifiers we can make use of the following two measures,
namely the Hit-Rate and Confusion Matrix.

11.1.1 Hit Rate
The simplest question that we could ask of our supervised classifier is "How many times did we
predict the correct direction, as a percentage of all predictions?". This motivates the definition
of the training hit rate is given by the following formula[9]:

1

n

n∑
j=1

I(yj = ŷj) (11.1)

Where ŷj is the prediction (up or down) for the jth time period (e.g. a day) using a particular
classifier. I(yj = ŷj) is the indicator function and is equal to 1 if yj = ŷj and 0 if yj 6= ŷj .

97

98

Hence the hit rate provides a percentage value as to the number of times a classifier correctly
predicted the up or down direction.

Scikit-Learn provides a method to calculate the hit rate for us as part of the classification/-
training process.

11.1.2 Confusion Matrix

The confusion matrix (or contingency table) is the next logical step after calculating the hit rate.
It is motivated by asking "How many times did we predict up correctly and how many times did
we predict down correctly? Did they differ substantially?".

For instance, it might turn out that a particular algorithm is consistently more accurate at
predicting "down days". This motivates a strategy that emphasises shorting of a financial asset
to increase profitability.

A confusion matrix characterises this idea by determining the false positive rate (known
statistically as a Type I error) and false negative rate (known statistically as a Type II error)
for a supervised classifier. For the case of binary classification (up or down) we will have a 2x2
matrix: (

UT UF
DF DT

)
Where UT represents correctly classified up periods, UF represents incorrectly classified up

periods (i.e. classified as down), DF represents incorrectly classified down periods (i.e. classified
as up) and DT represents correctly classified down periods.

In addition to the hit rate, Scikit-Learn provides a method to calculate the confusion matrix
for us as part of the classification/training process.

11.2 Factor Choice

One of the most crucial aspects of asset price forecasting is choosing the factors used as predictors.
There are a staggering number of potential factors to choose and this can seem overwhelming
to an individual unfamiliar with financial forecasting. However, even simple machine learning
techniques will produce relatively good results when used with well-chosen factors. Note that
the converse is not often the case. "Throwing an algorithm at a problem" will usually lead to
poor forecasting accuracy.

Factor choice is carried out by trying to determine the fundamental drivers of asset movement.
In the case of the S&P500 it is clear that the 500 constituents, in a weighted manner, will be
fundamental drivers of the price, by definition! Clearly we would know the exact price of the
S&P500 series if we knew the instantaneous value of its constituents, but is there any predictive
power in using the prior history of returns for each constituent in predicting the series itself?

Alternatively, could we consider exchange rates with countries that carry out a lot of trade
with the US as drivers of the price? We could even consider more fundamental economic and
corporate factors such as interest rates, inflation, quarterly earnings.

The accuracy of the forecaster will in large part be due to the skill of the modeller in deter-
mining the right factors prior to carrying out model fitting.

11.2.1 Lagged Price Factors and Volume

The first type of factor that is often considered in forecasting a time series are prior historical
values of the time series itself. Thus a set of p factors could be easily obtained by creating p lags
of the time series close price. Consider a daily time series. For each particular current day k,
the factors would be the historical daily values at time periods k − 1, k − 2, ... , k − p.

In addition to the price series itself we can also incorporate traded volume as an indicator,
since it is provided when using OHLCV data (as is obtained from Yahoo Finance, Google Finance
or Quandl for instance). Thus we can create a p + 1-dimensional feature vector for each day of
the time series, which incorporates the p time lags and the volume series. This naturally leads

99

to a set of pairs (Xk, yk) representing the p+ 1-dimensional feature vector Xk at day k and the
actual current closing price on day k, yk. This is all we need to begin a supervised classification
exercise.

Below we will consider such a lagged time series for the S&P500 and apply multiple machine
learning techniques to see if we can forecast its direction.

11.2.2 External Factors

While lagged time series and volume information are a good starting point for time series analysis,
we are far from restricted to such data. There are a vast amount of macroeconomic time series
and asset prices series on which to consider forecasts. For instance we may wish to provide a
long-term forecast of commodities prices based on weather patterns, or ascertain foreign exchange
price direction movements via international interest rate movements.

If such a relationship between series can be ascertained and shown to be statistically signifi-
cant, then we are at the point of being able to consider a robust trading model. We won’t dwell
on such relationships too much here, as our goal is to introduce the idea of modelling and ma-
chine learning techniques. It is easy enough to form hypotheses about economic relationships and
obtain the time series data either from a repository such as Quandl, or directly from government
statistics websites.

11.3 Classification Models

The field of machine learning is vast and there are many models to choose from, particularly in the
realm of supervised classification. New models are being introduced on a monthly basis through
the academic literature. It would be impractical to provide an exhaustive list of supervised
classifiers in this chapter, rather we will consider some of the more popular techniques from the
field.

11.3.1 Logistic Regression

The first technique we will consider is logistic regression (LR). In our case we are going to use
logistic regression to measures the relationship between a binary categorical dependent variable
(i.e. "up" or "down" periods) and multiple independent continuous variables, such as the lagged
percentage returns of a financial asset.

The logistic regression model provides the probability that a particular subsequent time period
will be categorised as "up" or "down". Thus the model introduces a parameter, namely the
probability threshold for classifying whether a subsequent time period is "up" or "down". Below,
we will take this threshold to be 50% (i.e. 0.5), but it can certainly be modified to produce
alternative predictions.

Logistic regression is based on the logistic formula to model the probability of obtaining an
"up" day (Y = U) based on the continuous factors.

In this case, consider the situation where we are interested in predicting the subsequent time
period from the previous two lagged returns, which we will denote by (L1, L2). The formula
below gives the probability for having an up day, given that we have observed the returns on the
previous time periods, L1 and L2:

p(Y = U |L1, L2) =
eβ0+β1L1+β2L2

1 + eβ0+β1L1+β2L2
(11.2)

The logistic function is used instead of a linear function (i.e. in linear regression) because it
provides a probability between [0, 1] for all values of L1 and L2. In a linear regression setting
it is possible to obtain negative probabilities for these continuous variables so we need another
function.

To fit the model (i.e. estimate the βi coefficients) the maximum likelihood method is
used. Fortunately for us the implementation of the fitting and prediction of the logistic regression

100

model is already handled by the Scikit-Learn library. The technique will be outlined below when
we attempt to forecast the direction of the S&P500.

11.3.2 Discriminant Analysis
Discriminant analysis is an alternative statistical technique to logistic regression. While logistic
regression is less restrictive in its assumptions than discriminant analysis, it can give greater
predictive performance if the more restrictive assumptions are met.

We will now consider a linear method and a non-linear method of discriminant analysis.

Linear Discriminant Analysis

In logistic regression we model the probability of seeing an "up" time period, given the previous
two lagged returns (P (Y = U |L1, L2)) as a conditional distribution of the response Y given the
predictors Li, using a logistic function.

In Linear Discriminant Analysis (LDA) the distribution of the Li variables are modelled
separately, given Y , and P (Y = U |L1, L2) is obtained via Bayes’ Theorem.

Essentially, LDA results from assuming that predictors are drawn from a multivariate Gaus-
sian distribution. After calculating estimates for the parameters of this distribution, the param-
eters can be inserted into Bayes’ Theorem in order to make predictions about which class an
observation belongs to.

One important mathematical assumption of LDA is that all classes (e.g. "up" and "down")
share the same covariance matrix.

I won’t dwell on the formulae for estimating the distribution or posterior probabilities that
are needed to make predictions, as once again scikit-learn handles this for us.

Quadratic Discriminant Analysis

Quadratic Discriminant Analysis (QDA) is closely reed to LDA. The significant difference is that
each class can now possess its own covariance matrix.

QDA generally performs better when the decision boundaries are non-linear. LDA generally
performs better when there are fewer training observations (i.e. when needing to reduce variance).
QDA, on the other hand, performs well when the training set is large (i.e. variance is of less
concern). The use of one or the other ultimately comes down to the bias-variance trade-off.

As with LR and LDA, Scikit-Learn takes care of the QDA implementation so we only need
to provide it with training/test data for parameter estimation and prediction.

11.3.3 Support Vector Machines
In order to motivate Support Vector Machines (SVM) we need to consider the idea of a classi-
fier that separates different classes via a linear separating boundary. If such a straightforward
separation existed then we could create a supervised classifier solely based on deciding whether
new features lie above or below this linear classifying plane. In reality, such separations rarely
exist in quantitative trading situations and as such we need to consider soft margin classifiers or
Support Vector Classifiers (SVC).

SVCs work by attempting to locate a linear separation boundary in feature space that cor-
rectly classifies most, but not all, of the training observations by creating an optimal separation
boundary between the two classes. Sometimes such a boundary is quite effective if the class
separation is mostly linear. However, other times such separations are not possible and it is
necessary to utilise other techniques.

The motivation behind the extension of a SVC is to allow non-linear decision boundaries.
This is the domain of the Support Vector Machine (SVM). The major advantage of SVMs
is that they allow a non-linear enlargening of the feature space to include significant non-linearity,
while still retaining a significant computational efficiency, using a process known as the "kernel
trick".

SVMs allow non-linear decision boundaries via many different choices of "kernel". In partic-
ular, instead of using a fully linear separating boundary as in the SVC, we can use quadratic

101

polynomials, higher-order polynomials or even radial kernals to describe non-linear boundaries.
This gives us a significant degree of flexibility, at the ever-present expense of bias in our estimates.

We will use the SVM below to try and partition feature space (i.e. the lagged price factors
and volume) via a non-linear boundary that allows us to make reasonable predictions about
whether the subsequent day will be an up move or a down move.

11.3.4 Decision Trees and Random Forests

Decision trees are a supervised classification technique that utilise a tree structure to partition
the feature space into recursive subsets via a "decision" at each node of the tree.

For instance one could ask if yesterday’s price was above or below a certain threshold, which
immediately partitions the feature space into two subsets. For each of the two subsets one could
then ask whether the volume was above or below a threshold, thus creating four separate subsets.
This process continues until there is no more predictive power to be gained by partitioning.

A decision tree provides a naturally interpretable classification mechanism when compared
to the more "black box" opaque approaches of the SVM or discriminant analysers and hence are
a popular supervised classification technique.

As computational power has increased, a new method of attacking the problem of classification
has emerged, that of ensemble learning. The basic idea is simple. Create a large quantity of
classifiers from the same base model and train them all with varying parameters. Then combine
the results of the prediction in an average to hopefully obtain a prediction accuracy that is
greater than that brought on by any of the individual constituents.

One of the most widespread ensemble methods is that of a Random Forest, which takes
multiple decision tree learners (usually tens of thousands or more) and combines the predic-
tions. Such ensembles can often perform extremely well. Scikit-Learn handily comes with a
RandomForestClassifier (RFC) class in its ensemble module.

The two main parameters of interest for the RFC are n_estimators, which describes how
many decision trees to create, and n_jobs, which describes how many processing cores to spread
the calculations over. We will discuss these settings in the implementation section below.

11.3.5 Principal Components Analysis

All of the above techniques outlined above belong in the supervised classification domain. An
alternative approach to performing classification is to not supervise the training procedure and
instead allow an algorithm to ascertain "features" on its own. Such methods are known as
unsupervised learning techniques.

Common use cases for unsupervised techniques include reducing the number of dimensions of
a problem to only those considered important, discovering topics among large quantities of text
documents or discovering features that may provide predictive power in time series analysis.

Of interest to us in this section is the concept of dimensionality reduction, which aims to
identify the most important components in a set of factors that provide the most predictability. In
particular we are going to utilise an unsupervised technique known as Principal Components
Analysis (PCA) to reduce the size of the feature space prior to use in our supervised classifiers.

The basic idea of a PCA is to transform a set of possibly correlated variables (such as with
time series autocorrelation) into a set of linearly uncorrelated variables known as the principal
components. Such principal components are ordered according to the amount of variance they
describe, in an orthogonal manner. Thus if we have a very high-dimensional feature space (10+
features), then we could reduce the feature space via PCA to perhaps 2 or 3 principal components
that provide nearly all of the variability in the data, thus leading to a more robust supervised
classifier model when used on this reduced dataset.

11.3.6 Which Forecaster?

In quantitative financial situations where there is an abundance of training data one should
consider using a model such as a Support Vector Machine (SVM). However, SVMs suffer from
lack of interpretibility. This is not the case with Decision Trees and Random Forest ensembles.

102

The latter are often used to preserve interpretability, something which "black box" classifiers
such as SVM do not provide.

Ultimately when the data is so extensive (e.g. tick data) it will matter very little which
classifier is ultimately used. At this stage other factors arise such as computational efficiency
and scalability of the algorithm. The broad rule-of-thumb is that a doubling of training data
will provide a linear increase in performance, but as the data size becomes substantial, this
improvement reduces to a sublinear increase in performance.

The underlying statistical and mathematical theory for supervised classifiers is quite involved,
but the basic intuition on each classifier is straightforward to understand. Also - note that each
of the following classifiers will have a different set of assumptions as to when they will work best,
so if you find a classifier performing poorly, it may be because the data-set being used violates
one of the assumptions used to generate the theory.

Naive Bayes Classifier

While we haven’t considered a Naive Bayes Classifier in our examples above, I wanted to include
a discussion on it for completeness. Naive Bayes (specifically Multinomial Naive Bayes - MNB) is
good to use when a limited data set exists. This is because it is a high-bias classifier. The major
assumption of the MNB classifier is that of conditional independence. Essentially this means
that it is unable to discern interactions between individual features, unless they are specifically
added as extra features.

For example, consider a document classification situation, which appears in financial settings
when trying to carry out sentiment analysis. The MNB could learn that individual words such as
"cat" and "dog" could respectively refer to documents pertaining to cats and dogs, but the phrase
"cats and dogs" (British slang for raining heavily) would not be considered to be meteorological
by the classifier! The remedy to this would be to treat "cats and dogs" as an extra feature,
specifically, and then associate that to a meteorological category.

Logistic Regression

Logistic regression provides some advantages over a Naive Bayes model in that there is less
concern about correlation among features and, by the nature of the model, there is a probabilistic
interpretation to the results. This is best suited to an environment where it is necessary to use
thresholds. For instance, we might wish to place a threshold of 80% (say) on an "up" or "down"
result in order for it to be correctly selected, as opposed to picking the highest probability
category. In the latter case, the prediction for "up" could be 51% and the prediction for "down"
could be 49%. Setting the category to "up" is not a very strong prediction in this instance.

Decision Tree and Random Forests

Decision trees (DT) partition a space into a hierarchy of boolean choices that lead to a categori-
sation or grouping based on the the respective decisions. This makes them highly interpretable
(assuming a "reasonable" number of decisions/nodes in the tree!). DT have many benefits,
including the ability to handle interactions between features as well as being non-parametric.

They are also useful in cases where it is not straightforward (or impossible) to linearly separate
data into classes (which is a condition required of support vector machines). The disadvantage of
using individual decision trees is that they are prone to overfitting (high variance). This problem
is solved using a random forest. Random forests are actually some of the "best" classifiers when
used in machine learning competitions, so they should always be considered.

Support Vector Machine

Support Vector Machines (SVM), while possessing a complicated fitting procedure, are actually
relatively straightforward to understand. Linear SVMs essentially try to partition a space using
linear separation boundaries, into multiple distinct groups. For certain types of data this can
work extremely well and leads to good predictions. However, a lot of data is not linearly-separable
and so linear SVMs can perform poorly here.

103

The solution is to modify the kernel used by the SVM, which has the effect of allowing
non-linear decision boundaries. Thus they are quite flexible models. However, the right SVM
boundary needs to be chosen for the best results. SVM are especially good in text classification
problems with high dimensionality. They are disadvantaged by their computational complexity,
difficulty of tuning and the fact the the fitted model is difficult to interpret.

11.4 Forecasting Stock Index Movement

The S&P500 is a weighted index of the 500 largest publicly traded companies by market capi-
talisation in the US stock market. It is often utilised as an equities benchmark. Many derivative
products exist in order to allow speculation or hedging on the index. In particular, the S&P500
E-Mini Index Futures Contract is an extremely liquid means of trading the index.

In this section we are going to use a set of classifiers to predict the direction of the closing
price at day k based solely on price information known at day k − 1. An upward directional
move means that the closing price at k is higher than the price at k− 1, while a downward move
implies a closing price at k lower than at k − 1.

If we can determine the direction of movement in a manner that significantly exceeds a 50%
hit rate, with low error and a good statistical significance, then we are on the road to forming a
basic systematic trading strategy based on our forecasts.

11.4.1 Python Implementations

For the implementation of these forecasters we will make use of NumPy, Pandas and Scikit-Learn,
which were installed in the previous chapters.

The first step is to import the relevant modules and libraries. We’re going to import the
LogisticRegression, LDA, QDA, LinearSVC (a linear Support Vector Machine), SVC (a non-
linear Support Vector Machine) and RandomForest classifiers for this forecast:

#!/usr/bin/python
-*- coding: utf-8 -*-

forecast.py

from __future__ import print_function

import datetime
import numpy as np
import pandas as pd
import sklearn

from pandas.io.data import DataReader
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.lda import LDA
from sklearn.metrics import confusion_matrix
from sklearn.qda import QDA
from sklearn.svm import LinearSVC, SVC

Now that the libraries are imported, we need to create a pandas DataFrame that contains the
lagged percentage returns for a prior number of days (defaulting to five). create_lagged_series
will take a stock symbol (as recognised by Yahoo Finance) and create a lagged DataFrame across
the period specified. The code is well commented so it should be straightforward to see what is
going on:

def create_lagged_series(symbol, start_date, end_date, lags=5):
"""
This creates a Pandas DataFrame that stores the

104

percentage returns of the adjusted closing value of
a stock obtained from Yahoo Finance, along with a
number of lagged returns from the prior trading days
(lags defaults to 5 days). Trading volume, as well as
the Direction from the previous day, are also included.
"""

Obtain stock information from Yahoo Finance
ts = DataReader(

symbol, "yahoo",
start_date-datetime.timedelta(days=365),
end_date

)

Create the new lagged DataFrame
tslag = pd.DataFrame(index=ts.index)
tslag["Today"] = ts["Adj Close"]
tslag["Volume"] = ts["Volume"]

Create the shifted lag series of prior trading period close values
for i in range(0, lags):

tslag["Lag%s" % str(i+1)] = ts["Adj Close"].shift(i+1)

Create the returns DataFrame
tsret = pd.DataFrame(index=tslag.index)
tsret["Volume"] = tslag["Volume"]
tsret["Today"] = tslag["Today"].pct_change()*100.0

If any of the values of percentage returns equal zero, set them to
a small number (stops issues with QDA model in Scikit-Learn)
for i,x in enumerate(tsret["Today"]):

if (abs(x) < 0.0001):
tsret["Today"][i] = 0.0001

Create the lagged percentage returns columns
for i in range(0, lags):

tsret["Lag%s" % str(i+1)] = \
tslag["Lag%s" % str(i+1)].pct_change()*100.0

Create the "Direction" column (+1 or -1) indicating an up/down day
tsret["Direction"] = np.sign(tsret["Today"])
tsret = tsret[tsret.index >= start_date]

return tsret

We tie the classification procedure together with a __main__ function. In this instance we’re
going to attempt to forecast the US stock market direction in 2005, using returns data from 2001
to 2004.

Firstly we create a lagged series of the S&P500 using five lags. The series also includes trading
volume. However, we are going to restrict the predictor set to use only the first two lags. Thus
we are implicitly stating to the classifier that the further lags are of less predictive value. As
an aside, this effect is more concretely studied under the statistical concept of autocorrelation,
although this is beyond the scope of the book.

After creating the predictor array X and the response vector y, we can partition the arrays
into a training and a test set. The former subset is used to actually train the classifier, while the
latter is used to actually test the performance. We are going to split the training and testing set
on the 1st January 2005, leaving a full trading years worth of data (approximately 250 days) for

105

the testing set.
Once we create the training/testing split we need to create an array of classification models,

each of which is in a tuple with an abbreviated name attached. While we have not set any param-
eters for the Logistic Regression, Linear/Quadratic Discriminant Analysers or Linear Support
Vector Classifier models, we have used a set of default parameters for the Radial Support Vector
Machine (RSVM) and the Random Forest (RF).

Finally we iterate over the models. We train (fit) each model on the training data and then
make predictions on the testing set. Finally we output the hit rate and the confusion matrix for
each model:

if __name__ == "__main__":
Create a lagged series of the S&P500 US stock market index
snpret = create_lagged_series(

"^GSPC", datetime.datetime(2001,1,10),
datetime.datetime(2005,12,31), lags=5

)

Use the prior two days of returns as predictor
values, with direction as the response
X = snpret[["Lag1","Lag2"]]
y = snpret["Direction"]

The test data is split into two parts: Before and after 1st Jan 2005.
start_test = datetime.datetime(2005,1,1)

Create training and test sets
X_train = X[X.index < start_test]
X_test = X[X.index >= start_test]
y_train = y[y.index < start_test]
y_test = y[y.index >= start_test]

Create the (parametrised) models
print("Hit Rates/Confusion Matrices:\n")
models = [("LR", LogisticRegression()),

("LDA", LDA()),
("QDA", QDA()),
("LSVC", LinearSVC()),
("RSVM", SVC(
C=1000000.0, cache_size=200, class_weight=None,
coef0=0.0, degree=3, gamma=0.0001, kernel=’rbf’,
max_iter=-1, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False)

),
("RF", RandomForestClassifier(
n_estimators=1000, criterion=’gini’,
max_depth=None, min_samples_split=2,
min_samples_leaf=1, max_features=’auto’,
bootstrap=True, oob_score=False, n_jobs=1,
random_state=None, verbose=0)

)]

Iterate through the models
for m in models:

Train each of the models on the training set
m[1].fit(X_train, y_train)

106

Make an array of predictions on the test set
pred = m[1].predict(X_test)

Output the hit-rate and the confusion matrix for each model
print("%s:\n%0.3f" % (m[0], m[1].score(X_test, y_test)))
print("%s\n" % confusion_matrix(pred, y_test))

11.4.2 Results
The output from all of the classification models is as follows. You will likely see different values
on the RF (Random Forest) output as it is inherently stochastic in its construction:

Hit Rates/Confusion Matrices:

LR:
0.560
[[35 35]
[76 106]]

LDA:
0.560
[[35 35]
[76 106]]

QDA:
0.599
[[30 20]
[81 121]]

LSVC:
0.560
[[35 35]
[76 106]]

RSVM:
0.563
[[9 8]
[102 133]]

RF:
0.504
[[48 62]
[63 79]]

Note that all of the hit rates lie between 50% and 60%. Thus we can see that the lagged
variables are not hugely indicative of future direction. However, if we look at the quadratic
discriminant analyser we can see that its overall predictive performance on the test set is just
under 60%.

The confusion matrix for this model (and the others in general) also states that the true
positive rate for the "down" days is much higher than the "up" days. Thus if we are to create a
trading strategy based off this information we could consider restricting trades to short positions
of the S&P500 as a potential means of increasing profitability.

In later chapters we will use these models as a basis of a trading strategy by incorporating
them directly into the event-driven backtesting framework and using a direct instrument, such
as an exchange traded fund (ETF), in order to give us access to trading the S&P500.

Part V

Performance and Risk Management

107

Chapter 12

Performance Measurement

Performance measurement is an absolutely crucial component of algorithmic trading. Without
assessment of performance, along with solid record keeping, it is difficult, if not impossible, to
determine if our strategy returns have been due to luck or due to some actual edge over the
market.

In order to be successful in algorithmic trading it is necessary to be aware of all of the factors
that can affect the profitability of trades, and ultimately strategies. We should be constantly
trying to find improvements in all aspects of the algorithmic trading stack. In particular we should
always be trying to minimise our transaction costs (fees, commission and slippage), improve our
software and hardware, improve the cleanliness of our data feeds and continually seek out new
strategies to add to a portfolio. Performance measurement in all these areas provides a yardstick
upon which to measure alternatives.

Ultimately, algorithmic trading is about generating profits. Hence it is imperative that we
measure the performance, at multiple levels of granularity, of how and why our system is pro-
ducing these profits. This motivates performance assessment at the level of trades, strategies
and portfolios. In particular we are looking out for:

• Whether the systematic rules codified by the strategy actually produce a consistent return
and whether the strategy possesses positive performance in the backtests.

• Whether a strategy maintains this positive performance in a live implementation or whether
it needs to be retired.

• The ability to compare multiple strategies/portfolios such that we can reduce the opportu-
nity cost associated with allocating a limited amount of trading capital.

The particular items of quantitative analysis of performance that we will be interested in are
as follows:

• Returns - The most visible aspect of a trading strategy concerns the percentage gain since
inception, either in a backtest or a live trading environment. The two major performance
measures here are Total Return and Compound Annual Growth Rate (CAGR).

• Drawdowns - A drawdown is a period of negative performance, as defined from a prior
high-water mark, itself defined as the previous highest peak on a strategy or portfolio
equity curve. We will define this more concretely below, but you can think of it for now as
a (somewhat painful!) downward slope on your performance chart.

• Risk - Risk comprises many areas, and we’ll spend significant time going over them in
the following chapter, but generally it refers to both risk of capital loss, such as with
drawdowns, and volatility of returns. The latter usually being calculated as an annualised
standard deviation of returns.

• Risk/Reward Ratio - Institutional investors are mainly interested with risk-adjusted
returns. Since higher volatility can often lead to higher returns at the expense of greater

109

110

drawdowns, they are always concerned with how much risk is being taken on per unit of
return. Consequently a range of performance measures have been invented to quantify this
aspect of strategy performance, namely the Sharpe Ratio, Sortino Ratio and CALMAR
Ratio, among others. The out of sample Sharpe is often the first metric to be discussed by
institutional investors when discussing strategy performance.

• Trade Analysis - The previous measures of performance are all applicable to strategies
and portfolios. It is also instructive to look at the performance of individual trades and
many measures exist to characterise their performance. In particular, we will quantity the
number of winning/losing trades, mean profit per trade and win/loss ratio among others.

Trades are the most granular aspect of an algorithmic strategy and hence we will begin by
discussing trade analysis.

12.1 Trade Analysis
The first step in analysing any strategy is to consider the performance of the actual trades. Such
metrics can vary dramatically between strategies. A classic example would be the difference in
performance metrics of a trend-following strategy when compared to a mean-reverting strategy.

Trend-following strategies usually consist of many losing trades, each with a likely small
loss. The lesser quantity of profitable trades occur when a trend has been established and the
performance from these positive trades can significantly exceed the losses of the larger quantity
of losing trades. Pair-trading mean-reverting strategies display the opposing character. They
generally consist of many small profitable trades. However, if a series does not mean revert in
the manner expected then the long/short nature of the strategy can lead to substantial losses.
This could potentially wipe out the large quantity of small gains.

It is essential to be aware of the nature of the trade profile of the strategy and your own
psychological profile, as the two will need to be in alignment. Otherwise you will find that you
may not be able to persevere through a period of tough drawdown.

We now review the statistics that are of interest to us as the trade level.

12.1.1 Summary Statistics
When considering our trades, we are interested in the following set of statistics. Here "period"
refers to the time period covered by the trading bar containing OHLCV data. For long-term
strategies it is often the case that daily bars are used. For higher frequency strategies we may
be interested in hourly or minutely bars.

• Total Profit/Loss (PnL) - The total PnL straightforwardly states whether a particular
trade has been profitable or not.

• Average Period PnL - The avg. period PnL states whether a bar, on average, generates
a profit or loss.

• Maximum Period Profit - The largest bar-period profit made by this trade so far.

• Maximum Period Loss - The largest bar-period loss made by this trade so far. Note
that this says nothing about future maximum period loss! A future loss could be much
larger than this.

• Average Period Profit - The average over the trade lifetime of all profitable periods.

• Average Period Loss - The average over the trade lifetime of all unprofitable periods.

• Winning Periods - The count of all winning periods.

• Losing Periods - The count of all losing periods.

• Percentage Win/Loss Periods - The percentage of all winning periods to losing periods.
Will differ markedly for trend-following and mean-reverting type strategies.

111

Thankfully, it is straightforward to generate this information from our portfolio output and so
the need for manual record keeping is completely eliminated. However, this leads to the danger
that we never actually stop to analyse the data!

It is imperative that trades are evaluated at least once or twice a month. Doing so is a
useful early warning detection system that can help identify when strategy performance begins
to degrade. It is often much better than simply considering the cumulative PnL alone.

12.2 Strategy and Portfolio Analysis
Trade-level analysis is extremely useful in longer-term strategies, particularly with strategies that
employ complex trades, such as those that involve derivatives. For higher-frequency strategies,
we will be less interested in any individual trade and instead will want to consider the perfor-
mance measures of the strategy instead. Obviously for longer-term strategies, we are equally as
interested in the overall strategy performance. We are primarily interested in the following three
key areas:

• Returns Analysis - The returns of a strategy encapsulate the concept of profitability. In
institutional settings they are generally quoted net of fees and so provide a true picture
of how much money was made on money invested. Returns can be tricky to calculate,
especially with cash inflows/outflows.

• Risk/Reward Analysis - Generally the first consideration that external investors will
have in a strategy is its out of sample Sharpe Ratio (which we describe below). This is an
industry standard metric which attempts to characterise how much return was achieved
per unit of risk.

• Drawdown Analysis - In an institutional setting, this is probably the most important of
the three aspects. The profile and extent of the drawdowns of a strategy, portfolio or fund
form a key component in risk management. We’ll define drawdowns below.

Despite the fact that I have emphasised their institutional performance, as a retail trader
these are still highly important metrics and with suitable risk management (see next chapter)
will form the basis of a continual strategy evalation procedure.

12.2.1 Returns Analysis
The most widely quoted figures when discussing strategy performance, in both institutional
and retail settings, are often total return, annual returns and monthly returns. It is extremely
common to see a hedge fund performance newsletter with a monthly return "grid". In addition,
everybody will want to know what the "return" of the strategy is.

Total return is relatively straightforward to calculate, at least in a retail setting with no
external investors or cash inflows/outflows. In percentage terms it is simply calculated as:

rt = (Pf − Pi)/Pi × 100 (12.1)

Where rt is the total return, Pf is the final portfolio dollar value and Pi is the initial portfolio
value. We are mostly interested in net total return, that is the value of the portfolio/fund after
all trading/business costs have been deducted.

Note that this formula is only applicable to long-only un-leveraged portfolios. If we wish
to add in short selling or leverage we need to modify how we calculate returns because we are
technically trading on a larger borrowed portfolio than that used here. This is known as a margin
portfolio.

For instance, consider the case where a trading strategy has gone long 1,000 USD of one asset
and then shorted 1,000 USD of another asset. This is a dollar-neutral portfolio and the total
notional traded is 2,000 USD. If 200 USD was generated from this strategy then gross return on
this notional is 10%. It becomes more complex when you factor in borrowing costs and interest
rates to fund the margin. Factoring in these costs leads to the net total return, which is the
value that is often quoted as "total return".

112

Equity Curve

The equity curve is often one of the most emphasised visualisations on a hedge fund performance
report - assuming the fund is doing well! It is a plot of the portfolio value of the fund over time.
In essence it is used to show how the account has grown since fund inception. Equally, in a retail
setting it is used to show growth of account equity through time. See Fig 12.2.1 for a typical
equity curve plot:

Figure 12.1: Typical intraday strategy equity curve

What is the benefit of such a plot? In essence it gives a "flavour" as to the past volatility of
the strategy, as well as a visual indication of whether the strategy has suffered from prolonged
periods of plateau or even drawdown. It essentially provides answers as to how the total return
figure calculated at the end of the strategy trading period was arrived at.

In an equity curve we are seeking to determine how unusual historical events have shaped
the strategy. For instance, a common question asks if there was excess volatility in the strategy
around 2008. Another question might concern its consistency of returns.

One must be extremely careful with interpretation of equity curves as when marketed they
are generally shown as "upward sloping lines". Interesting insight can be gained via truncation
of such curves, which can emphasise periods of intense volatility or prolonged drawdown that
may otherwise not seem as severe when considering the whole time period. Thus an equity curve
needs to be considered in context with other analysis, in particular risk/reward analysis and
drawdown analysis.

12.2.2 Risk/Reward Analysis
As we alluded to above the concept of risk-to-reward analysis is extremely important in an
institutional setting. This does not mean that as a retail investor we can ignore the concept.
You should pay significant attention to risk/reward metrics for your strategy as they will have a
significant impact on your drawdowns, leverage and overall compound growth rate.

113

These concepts will be expanded on in the next chapter on Risk and Money Management. For
now we will discuss the common ratios, and in particular the Sharpe Ratio, which is ubiquitous
as a comparative measure in quantitative finance. Since it is held in such high regard across
institutionalised quantitative trading, we will go into a reasonable amount of detail.

Sharpe Ratio

Consider the situation where we are presented with two strategies possessing identical returns.
How do we know which one contains more risk? Further, what do we even mean by "more risk"?
In finance, we are often concerned with volatility of returns and periods of drawdown. Thus if
one of these strategies has a significantly higher volatility of returns we would likely find it less
attractive, despite the fact that its historical returns might be similar if not identical. These
problems of strategy comparison and risk assessment motivate the use of the Sharpe Ratio.

William Forsyth Sharpe is a Nobel-prize winning economist, who helped create the Capital
Asset Pricing Model (CAPM) and developed the Sharpe Ratio in 1966 (later updated in 1994).
The Sharpe Ratio S is defined by the following relation:

S =
E(Ra −Rb)√
Var(Ra −Rb)

(12.2)

Where Ra is the period return of the asset or strategy and Rb is the period return of a suitable
benchmark, such as a risk-free interest rate.

The ratio compares the mean average of the excess returns of the asset or strategy with the
standard deviation of those excess returns. Thus a lower volatility of returns will lead to a greater
Sharpe ratio, assuming identical mean returns.

The "Sharpe Ratio" often quoted by those carrying out trading strategies is the annualised
Sharpe, the calculation of which depends upon the trading period of which the returns are
measured. Assuming there are N trading periods in a year, the annualised Sharpe is calculated
as follows:

SA =
√
N

E(Ra −Rb)√
Var(Ra −Rb)

Note that the Sharpe ratio itself MUST be calculated based on the Sharpe of that particular
time period type. For a strategy based on trading period of days, N = 252 (as there are 252
trading days in a year, not 365), and Ra, Rb must be the daily returns. Similarly for hours
N = 252× 6.5 = 1638, not N = 252× 24 = 6048, since there are only 6.5 hours in a trading day
(at least for most US equities markets!).

The formula for the Sharpe ratio above alludes to the use of a benchmark. A benchmark is
used as a "yardstick" or a "hurdle" that a particular strategy must overcome for it to worth
consideration. For instance, a simple long-only strategy using US large-cap equities should hope
to beat the S&P500 index on average, or match it for less volatility, otherwise what is to be
gained by not simply investing in the index at far lower management/performance fees?

The choice of benchmark can sometimes be unclear. For instance, should a sector Exhange
Traded Fund (ETF) be utilised as a performance benchmark for individual equities, or the
S&P500 itself? Why not the Russell 3000? Equally should a hedge fund strategy be benchmark-
ing itself against a market index or an index of other hedge funds?

There is also the complication of the "risk free rate". Should domestic government bonds be
used? A basket of international bonds? Short-term or long-term bills? A mixture? Clearly there
are plenty of ways to choose a benchmark. The Sharpe ratio generally utilises the risk-free rate
and often, for US equities strategies, this is based on 10-year government Treasury bills.

In one particular instance, for market-neutral strategies, there is a particular complication
regarding whether to make use of the risk-free rate or zero as the benchmark. The market index
itself should not be utilised as the strategy is, by design, market-neutral. The correct choice
for a market-neutral portfolio is not to substract the risk-free rate because it is self-financing.
Since you gain a credit interest, Rf , from holding a margin, the actual calculation for returns

114

is: (Ra + Rf) − Rf = Ra. Hence there is no actual subtraction of the risk-free rate for dollar
neutral strategies.

Despite the prevalence of the Sharpe ratio within quantitative finance, it does suffer from
some limitations. The Sharpe ratio is backward looking. It only accounts for historical returns
distribution and volatility, not those occurring in the future. When making judgements based
on the Sharpe ratio there is an implicit assumption that the past will be similar to the future.
This is evidently not always the case, particular under market regime changes.

The Sharpe ratio calculation assumes that the returns being used are normally distributed (i.e.
Gaussian). Unfortunately, markets often suffer from kurtosis above that of a normal distribution.
Essentially the distribution of returns has "fatter tails" and thus extreme events are more likely
to occur than a Gaussian distribution would lead us to believe. Hence, the Sharpe ratio is poor
at characterising tail risk.

This can be clearly seen in strategies which are highly prone to such risks. For instance,
the sale of call options aka "pennies under a steam roller". A steady stream of option premia
are generated by the sale of call options over time, leading to a low volatility of returns, with
a strong excess returns above a benchmark. In this instance the strategy would possess a high
Sharpe ratio based on historical data. However, it does not take into account that such options
may be called, leading to significant drawdowns or even wipeout in the equity curve. Hence, as
with any measure of algorithmic trading strategy performance the Sharpe ratio cannot be used
in isolation.

Although this point might seem obvious to some, transaction costs MUST be included in the
calculation of Sharpe ratio in order for it to be realistic. There are countless examples of trading
strategies that have high Sharpes, and thus a likelihood of great profitability, only to be reduced
to low Sharpe, low profitability strategies once realistic costs have been factored in. This means
making use of the net returns when calculating in excess of the benchmark. Hence transaction
costs must be factored in upstream of the Sharpe ratio calculation.

One obvious question that has remained unanswered thus far is "What is a good Sharpe Ratio
for a strategy?". This is actually quite a difficult question to answer because each investor has
a differing risk profile. The general rule of thumb is that quantitative strategies with annualised
Sharpe Ratio S < 1 should not often be considered. However, there are exceptions to this,
particularly in the trend-following futures space.

Quantitative funds tend to ignore any strategies that possess a Sharpe ratios S < 2. One
prominent quantitative hedge fund that I am familiar with wouldn’t even consider strategies that
had Sharpe ratios S < 3 while in research. As a retail algorithmic trader, if you can achieve an
out of sample (i.e. live trading!) Sharpe ratio S > 2 then you are doing very well.

The Sharpe ratio will often increase with trading frequency. Some high frequency strategies
will have high single (and sometimes low double) digit Sharpe ratios, as they can be profitable
almost every day and certainly every month. These strategies rarely suffer from catastrophic risk
(in the sense of great loss) and thus minimise their volatility of returns, which leads to such high
Sharpe ratios. Be aware though that high-frequency strategies such as these can simply cease to
function very suddenly, which is another aspect of risk not fully reflected in the Sharpe ratio.

Let’s now consider some actual Sharpe examples. We will start simply, by considering a
long-only buy-and-hold of an individual equity then consider a market-neutral strategy. Both of
these examples have been carried out with Pandas.

The first task is to actually obtain the data and put it into a Pandas DataFrame object. In
the prior chapter on securities master implementation with Python and MySQL we created a
system for achieving this. Alternatively, we can make use of this simpler code to grab Google
Finance data directly and put it straight into a DataFrame. At the bottom of this script I
have created a function to calculate the annualised Sharpe ratio based on a time-period returns
stream:

#!/usr/bin/python
-*- coding: utf-8 -*-

sharpe.py

from __future__ import print_function

115

import datetime
import numpy as np
import pandas as pd
import pandas.io.data as web

def annualised_sharpe(returns, N=252):
"""
Calculate the annualised Sharpe ratio of a returns stream
based on a number of trading periods, N. N defaults to 252,
which then assumes a stream of daily returns.

The function assumes that the returns are the excess of
those compared to a benchmark.
"""
return np.sqrt(N) * returns.mean() / returns.std()

Now that we have the ability to obtain data from Google Finance and straightforwardly
calculate the annualised Sharpe ratio, we can test out a buy and hold strategy for two equities.
We will use Google (GOOG) from Jan 1st 2000 to Jan 1st 2013.

We can create an additional helper function that allows us to quickly see buy-and-hold Sharpe
across multiple equities for the same (hardcoded) period:

def equity_sharpe(ticker):
"""
Calculates the annualised Sharpe ratio based on the daily
returns of an equity ticker symbol listed in Google Finance.

The dates have been hardcoded here for brevity.
"""
start = datetime.datetime(2000,1,1)
end = datetime.datetime(2013,1,1)

Obtain the equities daily historic data for the desired time period
and add to a pandas DataFrame
pdf = web.DataReader(ticker, ’google’, start, end)

Use the percentage change method to easily calculate daily returns
pdf[’daily_ret’] = pdf[’Close’].pct_change()

Assume an average annual risk-free rate over the period of 5%
pdf[’excess_daily_ret’] = pdf[’daily_ret’] - 0.05/252

Return the annualised Sharpe ratio based on the excess daily returns
return annualised_sharpe(pdf[’excess_daily_ret’])

For Google, the Sharpe ratio for buying and holding is 0.703:

>>> equity_sharpe(’GOOG’)
0.70265563285799615

Now we can try the same calculation for a market-neutral strategy. The goal of this strategy
is to fully isolate a particular equity’s performance from the market in general. The simplest way
to achieve this is to go short an equal amount (in dollars) of an Exchange Traded Fund (ETF)
that is designed to track such a market. The most obvious choice for the US large-cap equities
market is the S&P500 index, which is tracked by the SPDR ETF, with the ticker of SPY.

To calculate the annualised Sharpe ratio of such a strategy we will obtain the historical prices
for SPY and calculate the percentage returns in a similar manner to the previous stocks, with

116

the exception that we will not use the risk-free benchmark. We will calculate the net daily
returns which requires subtracting the difference between the long and the short returns and
then dividing by 2, as we now have twice as much trading capital. Here is the Python/pandas
code to carry this out:

def market_neutral_sharpe(ticker, benchmark):
"""
Calculates the annualised Sharpe ratio of a market
neutral long/short strategy inolving the long of ’ticker’
with a corresponding short of the ’benchmark’.
"""
start = datetime.datetime(2000, 1, 1)
end = datetime.datetime(2013, 1, 1)

Get historic data for both a symbol/ticker and a benchmark ticker
The dates have been hardcoded, but you can modify them as you see fit!
tick = web.DataReader(ticker, ’google’, start, end)
bench = web.DataReader(benchmark, ’google’, start, end)

Calculate the percentage returns on each of the time series
tick[’daily_ret’] = tick[’Close’].pct_change()
bench[’daily_ret’] = bench[’Close’].pct_change()

Create a new DataFrame to store the strategy information
The net returns are (long - short)/2, since there is twice
the trading capital for this strategy
strat = pd.DataFrame(index=tick.index)
strat[’net_ret’] = (tick[’daily_ret’] - bench[’daily_ret’])/2.0

Return the annualised Sharpe ratio for this strategy
return annualised_sharpe(strat[’net_ret’])

For Google, the Sharpe ratio for the long/short market-neutral strategy is 0.832:

>>> market_neutral_sharpe(’GOOG’, ’SPY’)
0.83197496084314604

We will now briefly consider other risk/reward ratios.

Sortino Ratio

The Sortino ratio is motivated by the fact that the Sharpe ratio captures both upward and
downward volatility in its denominator. However, investors (and hedge fund managers) are
generally not too bothered when we have significant upward volatility! What is actually of
interest from a risk management perspective is downward volatility and periods of drawdown.

Thus the Sortino ratio is defined as the mean excess return divided by the mean downside
deviation:

Sortino =
E(Ra −Rb)√
Var(Ra −Rb)d

(12.3)

The Sortino is sometimes quoted in an institutional setting, but is certainly not as prevalent
as the Sharpe ratio.

CALMAR Ratio

One could also argue that investors/traders are concerned solely with the maximum extent of
the drawdown, rather than the average drawdown. This motivates the CALMAR (CALifornia

117

Managed Accounts Reports) ratio, also known as the Drawdown ratio, which provides a ratio of
mean excess return to the maximum drawdown:

CALMAR =
E(Ra −Rb)

max. drawdown
(12.4)

Once again, the CALMAR is not as widely used as the Sharpe ratio.

12.2.3 Drawdown Analysis

In my opinion the concept of drawdown is the most important aspect of performance measure-
ment for an algorithmic trading system. Simply put, if your account equity is wiped out then
none of the other performance metrics matter! Drawdown analysis concerns the measurement
of drops in account equity from previous high water marks. A high water mark is defined as the
last account equity peak reached on the equity curve.

In an institutional setting the concept of drawdown is especially important as most hedge
funds are remunerated only when the account equity is continually creating new high water
marks. That is, a fund manager is not paid a performance fee while the fund remains "under
water", i.e. the account equity is in a period of drawdown.

Most investors would be concerned at a drawdown of 10% in a fund, and would likely redeem
their investment once a drawdown exceeds 30%. In a retail setting the situation is very different.
Individuals are likely to be able to suffer deeper drawdowns in the hope of gaining higher returns.

Maximum Drawdown and Duration

The two key drawdown metrics are the maximum drawdown and the drawdown duration. The
first describes the largest percentage drop from a previous peak to the current or previous trough
in account equity. It is often quoted in an institutional setting when trying to market a fund.
Retail traders should also pay significant attention to this figure. The second describes the actual
duration of the drawdown. This figure is usually quoted in days, but higher frequency strategies
might use a more granular time period.

In backtests these measures provide some idea of how a strategy might perform in the future.
The overall account equity curve might look quite appealing after a calculated backtest. However,
an upward equity curve can easily mask how difficult previous periods of drawdown might actually
have been to experience.

When a strategy begins dropping below 10% of account equity, or even below 20%, it requires
significant willpower to continue with the strategy, despite the fact that the strategy may have
historically, at least in the backtests, been through similar periods. This is a consistent issue
with algorithmic trading and systematic trading in general. It naturally motivates the need to
set prior drawdown boundaries and specific rules, such as an account-wide "stop loss" that will
be carried out in the event of a drawdown breaching these levels.

Drawdown Curve

While it is important to be aware of the maximum drawdown and drawdown duration, it is
significantly more instructive to see a time series plot of the strategy drawdown over the trading
duration.

Fig 12.2.3 quite clearly shows that this particular strategy suffered from a relatively sustained
period of drawdown beginning in Q3 of 2010 and finishing in Q2 of 2011, reaching a maximum
drawdown of 14.8%. While the strategy itself continued to be significantly profitable over the
long term, this particular period would have been very difficult to endure. In addition, this is
the maximum historical drawdown that has occured to date. The strategy may be subject to
an even greater drawdown in the future. Thus it is necessary to consider drawdown curves, as
with other historical looking performance measures, in the context with which they have been
generated, namely via historical, and not future, data.

118

Figure 12.2: Typical intraday strategy drawdown curve

In the following chapter we will consider the concept of quantitative risk management and
describe techniques that can help us to minimise drawdowns and maximise returns, all the while
keeping to a reasonable degree of risk.

Chapter 13

Risk and Money Management

This chapter is concerned with managing risk as applied to quantitative trading strategies. This
usually comes in two flavours, firstly identifying and mitigating internal and external factors that
can affect the performance or operation of an algorithmic trading strategy and secondly, how to
optimally manage the strategy portfolio in order to maximise growth rate and minimise account
drawdowns.

In the first section we will consider different sources of risk (both intrinsic and extrinsic)
that might affect the long-term performance of an algorithmic trading business - either retail or
institutional.

In the second section we will look at money management techniques that can simultaneously
protect our portfolio from ruin and also attempt to maximise the long-term growth rate of equity.

In the final section we consider institutional-level risk management techniques that can easily
be applied in a retail setting to help protect trading capital.

13.1 Sources of Risk

The are numerous sources of risk that can have an impact on the correct functioning of an
algorithmic trading strategy. "Risk" is usually defined in this context to mean chance of account
losses. However, I am going to define it in a much broader context to mean any factor that
provides a degree of uncertainty and could affect the performance of our strategies or portfolio.

The broad areas of risk that we will consider include Strategy Risk, Portfolio Risk,
Market Risk, Counterparty Risk and Operational Risk.

13.1.1 Strategy Risk

Strategy risk, or model risk, encompasses the class of risks that arise from the design and imple-
mentation of a trading strategy based on a statistical model. It includes all of the previous issues
we have discussed in the Successful Backtesting chapter, such as curve-fitting, survivorship bias
and look-ahead bias. It also includes other topics related directly to the statistical analysis of
the strategy model.

Any statistical model is based on assumptions. These assumptions are sometimes not consid-
ered in proper depth or ignored entirely. This means that the statistical model based upon these
assumptions may be inappropriate and hence lead to poor predictive or inferential capability. A
general example occurs in the setting of linear regression. Linear regression makes the assump-
tion that the response data are homoscedastic (i.e. the responses have a constant variance in
their errors). If this is not the case then linear regression provides less precision in the estimates
of parameters.

Many quantitative strategies make use of descriptive statistics of historical price data. In
particular, they will often use moments of the data such as the mean, variance, skew and kurtosis
of strategy returns. Such models (including the Kelly Criterion outlined below) generally rely
on these moments being constant in time. Under a market regime change these moments can be

119

120

drastically altered and hence lead to degradation of the model. Models with "rolling parameters"
are usually utilised in order to mitigate this issue.

13.1.2 Portfolio Risk

A Portfolio contains one or more strategies. Thus it is indirectly subject to Strategy Risk as
outlined above. In addition there are specific risks that occur at the portfolio level. These are
usually only considered in an institutional setting or in a high-end retail setting where portfolio
tracking is being carried out on a stable of trading strategies.

When regressing portfolio returns to a set of factors, such as industry sectors, asset classes
or groups of financial entities it is possible to ascertain if the portfolio is heavily "loaded" into
a particular factor. For instance, an equities portfolio may be extremely heavy on technology
stocks and thus is extremely exposed to any issues that affect the tech sector as a whole. Hence
it is often necessary - at the portfolio level - to override particular strategies in order to account
for overloaded factor risk. This is often a more significant concern in an institutional setting
where there is more capital to be allocated and the preservation of capital takes precedence to
the long-term growth rate of the capital. However, it should certainly be considered even as a
retail algorithmic trading investor.

Another issue that is largely an institutional issue (unless trading more illiquid assets) are
limits on daily trading volume. For retail traders, executing strategies in the large-cap or com-
modities futures markets, there is no real concern regarding market impact. However, in less
liquid instruments one has to be careful to not be trading a significant percentage of the daily
traded volume, due to potential market impact and thus invalidation of a previously backtested
trading model (which often do not take into account market impact). To avoid this it is necessary
to calculate the average daily volume (using a mean over a loopback period, for instance) and
stay within small percentage limits of this figure.

Running a portfolio of strategies brings up the issue of strategy correlation. Correlations
can be estimated via statistical techniques such as the Pearson Product Moment Correlation
Coefficient. However, correlation itself is not a static entity and is also subject to swift change,
especially under market-wide liquidity constraints, often known as financial contagion. In gen-
eral, strategies should be designed to avoid correlation with each other by virtue of differing
asset classes or time horizons. Rolling correlations can be estimated over a large time-period and
should be a standard part of your backtest, if considering a portfolio approach.

13.1.3 Counterparty Risk

Counterparty risk is generally considered a form of credit risk. It is the risk that a counterpart
will not pay an obligation on a financial asset under which they are liable. There is an entire
subset of quantitative finance related to the pricing of counterpart risk hedging instruments, but
this is not of primary interest to us as retail algorithmic traders. We are more concerned with
the risk of default from suppliers such as an exchange or brokerage.

While this may seem academic, I can personally assure you that these issues are quite real! In
an institutional setting I have experienced first hand a brokerage bankruptcy under conditions
that meant not all of the trading capital was returned. Thus I now factor such risks into a
portfolio. The suggested means of mitigating this issue is to utilise multiple brokerages, although
when trading under margin this can make the trading logistics somewhat tricky.

Counterparty risk is generally more of a concern in an institutional setting so I won’t dwell
on it too much here!

13.1.4 Operational Risk

Operation risk encompasses sources of risk from within a fund or trading operational infrastruc-
ture, including business/entrepreneurial risk, IT risk and external regulatory or legal changes.
These topics aren’t often discussed in any great depth, which I believe is somewhat short-sighted
since they have the potential to completely halt a trading operation permanently.

121

Infrastructure risk is often associated with information technology systems and other related
trading infrastructure. This also includes employee risk (such as fraud, sudden departure). As
the scale of an infrastructure grows so does the likelihood of the "single point of failure" (SPOF).
This is a critical component in the trading infrastructure that, under malfunction, can lead to
a catastrophe halting of the entire operation. In the IT sense, this is usually the consequence
of a badly thought out architecture. In a non-IT sense this can be the consequence of a badly
designed organisation chart.

These issues are still entirely relevant for the retail trader. Often, an IT/trading infrastructure
can end up being "patchy" and "hacked together". In addition, poor record keeping and other
administrative failures can lead to huge potential tax burdens. Thankfully, "cloud" architecture
provides the ability for redundancy in systems and automation of processes can lead to solid
administrative habits. This type of behaviour, that is consideration of risks from sources other
than the market and the strategy, can often make the difference between a successful long-term
algorithmic trader and the individual who gives up due to catastrophic operation breakdown.

An issue that affects the hedge fund world is that of reporting and compliance. Post-2008
legislation has put a heavy burden on asset management firms, which can have a large impact
on their cash-flow and operating expenditure. For an individual thinking of incorporating such
a firm, in order to expand a strategy or run with external funds, it is prudent to keep on top of
the legislation and regulatory environment, since it is somewhat of a "moving target".

13.2 Money Management
This section deals with one of the most fundamental concepts in trading - both discretionary
and algorithmic - namely, money management. A naive investor/trader might believe that the
only important investment objective is to simply make as much money as possible. However
the reality of long-term trading is more complex. Since market participants have differing risk
preferences and constraints there are many objectives that investors may possess.

Many retail traders consider the only goal to be a continual increase of account equity, with
little or no consideration given to the "risk" of a strategy that achieves this growth. More sophis-
ticated retail investors measure account drawdowns, and depending upon their risk preferences,
may be able to cope with a substantial drop in account equity (say 50%). The reason they can
deal with a drawdown of this magnitude is that they realise, quantitatively, that this behaviour
may be optimal for the long-term growth rate of the portfolio, via the use of leverage.

An institutional investor is likely to consider risk in a different light. Often institutional
investors have mandated maximum drawdowns (say 20%), with significant consideration given
to sector allocation and average daily volume limits. They would be additional constraints on
the "optimisation problem" of capital allocation to strategies. These factors might even be more
important than maximising the long-term growth rate of the portfolio.

Thus we are in a situation where we can strike a balance between maximising long-term
growth rate via leverage and minimising our "risk" by trying to limit the duration and extent of
the drawdown. The major tool that will help us achieve this is called the Kelly Criterion.

13.2.1 Kelly Criterion
Within this section the Kelly Criterion is going to be our tool to control leverage of, and allocation
towards, a set of algorithmic trading strategies that make up a multi-strategy portfolio.

We will define leverage as the ratio of the size of a portfolio to the actual account equity
within that portfolio. To make this clear we can use the analogy of purchasing a house with a
mortgage. Your down payment (or "deposit" for those of us in the UK!) constitutes your account
equity, while the down payment plus the mortgage value constitutes the equivalent of the size of
a portfolio. Thus a down payment of 50,000 USD on a 200,000 USD house (with a mortgage of
150,000 USD) constitutes a leverage of (150000 + 50000)/50000 = 4. Thus in this instance you
would be 4x leveraged on the house. A margin account portfolio behaves similarly. There is a
"cash" component and then more stock can be borrowed on margin, to provide the leverage.

Before we state the Kelly Criterion specifically I want to outline the assumptions that go into
its derivation, which have varying degrees of accuracy:

122

• Each algorithmic trading strategy will be assumed to possess a returns stream that is
normally distributed (i.e. Gaussian). Further, each strategy has its own fixed mean and
standard deviation of returns. The formula assumes that these mean and std values do not
change, i.e. that they are same in the past as in the future. This is clearly not the case
with most strategies, so be aware of this assumption.

• The returns being considered here are excess returns, which means they are net of all
financing costs such as interest paid on margin and transaction costs. If the strategy is
being carried out in an institutional setting, this also means that the returns are net of
management and performance fees.

• All of the trading profits are reinvested and no withdrawals of equity are carried out. This is
clearly not as applicable in an institutional setting where the above mentioned management
fees are taken out and investors often make withdrawals.

• All of the strategies are statistically independent (there is no correlation between strategies)
and thus the covariance matrix between strategy returns is diagonal.

Now we come to the actual Kelly Criterion! Let’s imagine that we have a set of N algorithmic
trading strategies and we wish to determine both how to apply optimal leverage per strategy in
order to maximise growth rate (but minimise drawdowns) and how to allocate capital between
each strategy. If we denote the allocation between each strategy i as a vector f of length N , s.t.
f = (f1, ..., fN), then the Kelly Criterion for optimal allocation to each strategy fi is given by:

fi = µi/σ
2
i (13.1)

Where µi are the mean excess returns and σi are the standard deviation of excess returns for
a strategy i. This formula essentially describes the optimal leverage that should be applied to
each strategy.

While the Kelly Criterion fi gives us the optimal leverage and strategy allocation, we still
need to actually calculate our expected long-term compounded growth rate of the portfolio,
which we denote by g. The formula for this is given by:

g = r + S2/2 (13.2)

Where r is the risk-free interest rate, which is the rate at which you can borrow from the
broker, and S is the annualised Sharpe Ratio of the strategy. The latter is calculated via the
annualised mean excess returns divided by the annualised standard deviations of excess returns.
See the previous chapter on Performance Measurement for details on the Sharpe Ratio.

A Realistic Example

Let’s consider an example in the single strategy case (i = 1). Suppose we go long a mythical
stock XYZ that has a mean annual return of m = 10.7% and an annual standard deviation of
σ = 12.4%. In addition suppose we are able to borrow at a risk-free interest rate of r = 3.0%.
This implies that the mean excess returns are µ = m − r = 10.7 − 3.0 = 7.7%. This gives us a
Sharpe Ratio of S = 0.077/0.124 = 0.62.

With this we can calculate the optimal Kelly leverage via f = µ/σ2 = 0.077/0.1242 = 5.01.
Thus the Kelly leverage says that for a 100,000 USD portfolio we should borrow an additional
401,000 USD to have a total portfolio value of 501,000 USD. In practice it is unlikely that our
brokerage would let us trade with such substantial margin and so the Kelly Criterion would need
to be adjusted.

We can then use the Sharpe ratio S and the interest rate r to calculate g, the expected
long-term compounded growth rate. g = r + S2/2 = 0.03 + 0.622/2 = 0.22, i.e. 22%. Thus we
should expect a return of 22% a year from this strategy.

123

Kelly Criterion in Practice

It is important to be aware that the Kelly Criterion requires a continuous rebalancing of capital
allocation in order to remain valid. Clearly this is not possible in the discrete setting of actual
trading and so an approximation must be made. The standard "rule of thumb" here is to
update the Kelly allocation once a day. Further, the Kelly Criterion itself should be recalculated
periodically, using a trailing mean and standard deviation with a lookback window. Again, for
a strategy that trades roughly once a day, this lookback should be set to be on the order of 3-6
months of daily returns.

Here is an example of rebalancing a portfolio under the Kelly Criterion, which can lead to
some counter-intuitive behaviour. Let’s suppose we have the strategy described above. We have
used the Kelly Criterion to borrow cash to size our portfolio to 501,000 USD. Let’s assume we
make a healthy 5% return on the following day, which boosts our account size to 526,050 USD.
The Kelly Criterion tells us that we should borrow more to keep the same leverage factor of 5.01.
In particular our account equity is 126,050 USD on a portfolio of 526,050, which means that the
current leverage factor is 4.17. To increase it to 5.01, we need to borrow an additional 105,460
USD in order to increase our account size to 631,510.5 USD (this is 5.01× 126050).

Now consider that the following day we lose 10% on our portfolio (ouch!). This means
that the total portfolio size is now 568,359.45 USD (631510.5 × 0.9). Our total account equity
is now 62,898.95 USD (126050 − 631510.45 × 0.1). This means our current leverage factor is
568359.45/62898.95 = 9.03. Hence we need to reduce our account by selling 253,235.71 USD of
stock in order to reduce our total portfolio value to 315,123.73 USD, such that we have a leverage
of 5.01 again (315123.73/62898.95 = 5.01).

Hence we have bought into a profit and sold into a loss. This process of selling into a loss may
be extremely emotionally difficult, but it is mathematically the "correct" thing to do, assuming
that the assumptions of Kelly have been met! It is the approach to follow in order to maximise
long-term compounded growth rate.

You may have noticed that the absolute values of money being re-allocated between days
were rather severe. This is a consequence of both the artificial nature of the example and the
extensive leverage employed. 10% loss in a day is not particularly common in higher-frequency
algorithmic trading, but it does serve to show how extensive leverage can be on absolute terms.

Since the estimation of means and standard deviations are always subject to uncertainty,
in practice many traders tend to use a more conservative leverage regime such as the Kelly
Criterion divided by two, affectionately known as "half-Kelly". The Kelly Criterion should
really be considered as an upper bound of leverage to use, rather than a direct specification. If
this advice is not heeded then using the direct Kelly value can lead to ruin (i.e. account equity
disappearing to zero) due to the non-Gaussian nature of the strategy returns.

Should You Use The Kelly Criterion?

Every algorithmic trader is different and the same is true of risk preferences. When choosing to
employ a leverage strategy (of which the Kelly Criterion is one example) you should consider the
risk mandates that you need to work under. In a retail environment you are able to set your own
maximum drawdown limits and thus your leverage can be increased. In an institutional setting
you will need to consider risk from a very different perspective and the leverage factor will be
one component of a much larger framework, usually under many other constraints.

13.3 Risk Management

13.3.1 Value-at-Risk

Estimating the risk of loss to an algorithmic trading strategy, or portfolio of strategies, is of
extreme importance for long-term capital growth. Many techniques for risk management have
been developed for use in institutional settings. One technique in particular, known as Value
at Risk or VaR, will be the topic of this section.

124

We will be applying the concept of VaR to a single strategy or a set of strategies in order to
help us quantify risk in our trading portfolio. The definition of VaR is as follows:

VaR provides an estimate, under a given degree of confidence, of the size of a
loss from a portfolio over a given time period.

In this instance "portfolio" can refer to a single strategy, a group of strategies, a trader’s
book, a prop desk, a hedge fund or an entire investment bank. The "given degree of confidence"
will be a value of, say, 95% or 99%. The "given time period" will be chosen to reflect one that
would lead to a minimal market impact if a portfolio were to be liquidated.

For example, a VaR equal to 500,000 USD at 95% confidence level for a time period of a day
would simply state that there is a 95% probability of losing no more than 500,000 USD in the
following day. Mathematically this is stated as:

P (L ≤ −5.0× 105) = 0.05 (13.3)

Or, more generally, for loss L exceeding a value V aR with a confidence level c we have:

P (L ≤ −V aR) = 1− c (13.4)

The "standard" calculation of VaR makes the following assumptions:

• Standard Market Conditions - VaR is not supposed to consider extreme events or "tail
risk", rather it is supposed to provide the expectation of a loss under normal "day-to-day"
operation.

• Volatilities and Correlations - VaR requires the volatilities of the assets under consid-
eration, as well as their respective correlations. These two quantities are tricky to estimate
and are subject to continual change.

• Normality of Returns - VaR, in its standard form, assumes the returns of the asset or
portfolio are normally distributed. This leads to more straightforward analytical calculation,
but it is quite unrealistic for most assets.

13.4 Advantages and Disadvantages
VaR is pervasive in the financial industry, hence you should be familiar with the benefits and
drawbacks of the technique. Some of the advantages of VaR are as follows:

• VaR is very straightforward to calculate for individual assets, algo strategies, quant port-
folios, hedge funds or even bank prop desks.

• The time period associated with the VaR can be modified for multiple trading strategies
that have different time horizons.

• Different values of VaR can be associated with different forms of risk, say broken down
by asset class or instrument type. This makes it easy to interpret where the majority of
portfolio risk may be clustered, for instance.

• Individual strategies can be constrained as can entire portfolios based on their individual
VaR.

• VaR is straightforward to interpret by (potentially) non-technical external investors and
fund managers.

However, VaR is not without its disadvantages:

• VaR does not discuss the magnitude of the expected loss beyond the value of VaR, i.e. it
will tell us that we are likely to see a loss exceeding a value, but not how much it exceeds
it.

125

• It does not take into account extreme events, but only typical market conditions.

• Since it uses historical data (it is rearward-looking) it will not take into account future
market regime shifts that can change volatilities and correlations of assets.

VaR should not be used in isolation. It should always be used with a suite of risk management
techniques, such as diversification, optimal portfolio allocation and prudent use of leverage.

Methods of Calculation

As of yet we have not discussed the actual calculation of VaR, either in the general case or a
concrete trading example. There are three techniques that will be of interest to us. The first
is the variance-covariance method (using normality assumptions), the second is a Monte Carlo
method (based on an underlying, potentially non-normal, distribution) and the third is known
as historical bootstrapping, which makes use of historical returns information for assets under
consideration.

In this section we will concentrate on the Variance-Covariance Method.

Variance-Covariance Method

Consider a portfolio of P dollars, with a confidence level c. We are considering daily returns,
with asset (or strategy) historical standard deviation σ and mean µ. Then the daily VaR, under
the variance-covariance method for a single asset (or strategy) is calculated as:

P − (P (α(1− c) + 1)) (13.5)

Where α is the inverse of the cumulative distribution function of a normal distribution with
mean µ and standard deviation σ.

We can use the SciPy and pandas libraries in order to calculate these values. If we set P = 106

and c = 0.99, we can use the SciPy ppf method to generate the values for the inverse cumulative
distribution function to a normal distribution with µ and σ obtained from some real financial
data, in this case the historical daily returns of CitiGroup (we could easily substitute the returns
of an algorithmic strategy in here):

#!/usr/bin/python
-*- coding: utf-8 -*-

var.py

from __future__ import print_function

import datetime

import numpy as np
import pandas.io.data as web
from scipy.stats import norm

def var_cov_var(P, c, mu, sigma):
"""
Variance-Covariance calculation of daily Value-at-Risk
using confidence level c, with mean of returns mu
and standard deviation of returns sigma, on a portfolio
of value P.
"""
alpha = norm.ppf(1-c, mu, sigma)
return P - P*(alpha + 1)

126

if __name__ == "__main__":
start = datetime.datetime(2010, 1, 1)
end = datetime.datetime(2014, 1, 1)

citi = web.DataReader("C", ’yahoo’, start, end)
citi["rets"] = citi["Adj Close"].pct_change()

P = 1e6 # 1,000,000 USD
c = 0.99 # 99% confidence interval
mu = np.mean(citi["rets"])
sigma = np.std(citi["rets"])

var = var_cov_var(P, c, mu, sigma)
print("Value-at-Risk: $%0.2f" % var)

The calculated value of VaR is given by:

Value-at-Risk: $56503.12

VaR is an extremely useful and pervasive technique in all areas of financial management, but
it is not without its flaws. David Einhorn, the renowned hedge fund manager, has famously
described VaR as "an airbag that works all the time, except when you have a car accident."
Indeed, you should always use VaR as an augmentation to your risk management overlay, not as
a single indicator!

Part VI

Automated Trading

127

Chapter 14

Event-Driven Trading Engine
Implementation

This chapter provides an implementation for a fully self-contained event-driven backtest system
written in Python. In particular this chapter has been written to expand on the details that are
usually omitted from other algorithmic trading texts and papers. The following code will allow
you to simulate high-frequency (minute to second) strategies across the forecasting, momentum
and mean reversion domains in the equities, foreign exchange and futures markets.

With extensive detail comes complexity, however. The backtesting system provided here
requires many components, each of which are comprehensive entities in themselves. The first
step is thus to outline what event-driven software is and then describe the components of the
backtester and how the entire system fits together.

14.1 Event-Driven Software

Before we delve into development of such a backtester we need to understand the concept of
event-driven systems. Video games provide a natural use case for event-driven software and
provide a straightforward example to explore. A video game has multiple components that
interact with each other in a real-time setting at high framerates. This is handled by running
the entire set of calculations within an "infinite" loop known as the event-loop or game-loop.

At each tick of the game-loop a function is called to receive the latest event, which will have
been generated by some corresponding prior action within the game. Depending upon the nature
of the event, which could include a key-press or a mouse click, some subsequent action is taken,
which will either terminate the loop or generate some additional events. The process will then
continue.

Here is some example pseudo-code:

while True: # Run the loop forever
new_event = get_new_event() # Get the latest event

Based on the event type, perform an action
if new_event.type == "LEFT_MOUSE_CLICK":

open_menu()
elif new_event.type == "ESCAPE_KEY_PRESS":

quit_game()
elif new_event.type == "UP_KEY_PRESS":

move_player_north()
... and many more events

redraw_screen() # Update the screen to provide animation
tick(50) # Wait 50 milliseconds

129

130

The code is continually checking for new events and then performing actions based on these
events. In particular it allows the illusion of real-time response handling because the code is
continually being looped and events checked for. As will become clear this is precisely what we
need in order to carry out high frequency trading simulation.

14.1.1 Why An Event-Driven Backtester?
Event-driven systems provide many advantages over a vectorised approach:

• Code Reuse - An event-driven backtester, by design, can be used for both historical
backtesting and live trading with minimal switch-out of components. This is not true of
vectorised backtesters where all data must be available at once to carry out statistical
analysis.

• Lookahead Bias - With an event-driven backtester there is no lookahead bias as market
data receipt is treated as an "event" that must be acted upon. Thus it is possible to "drip
feed" an event-driven backtester with market data, replicating how an order management
and portfolio system would behave.

• Realism - Event-driven backtesters allow significant customisation over how orders are
executed and transaction costs are incurred. It is straightforward to handle basic market
and limit orders, as well as market-on-open (MOO) and market-on-close (MOC), since a
custom exchange handler can be constructed.

Although event-driven systems come with many benefits they suffer from two major disadvan-
tages over simpler vectorised systems. Firstly they are significantly more complex to implement
and test. There are more "moving parts" leading to a greater chance of introducing bugs. To
mitigate this proper software testing methodology such as test-driven development can be em-
ployed.

Secondly they are slower to execute compared to a vectorised system. Optimal vectorised
operations are unable to be utilised when carrying out mathematical calculations.

14.2 Component Objects
To apply an event-driven approach to a backtesting system it is necessary to define our compo-
nents (or objects) that will handle specific tasks:

• Event - The Event is the fundamental class unit of the event-driven system. It contains
a type (such as "MARKET", "SIGNAL", "ORDER" or "FILL") that determines how it
will be handled within the event-loop.

• Event Queue - The Event Queue is an in-memory Python Queue object that stores all
of the Event sub-class objects that are generated by the rest of the software.

• DataHandler - The DataHandler is an abstract base class (ABC) that presents an inter-
face for handling both historical or live market data. This provides significant flexibility
as the Strategy and Portfolio modules can thus be reused between both approaches. The
DataHandler generates a new MarketEvent upon every heartbeat of the system (see below).

• Strategy - The Strategy is also an ABC that presents an interface for taking market data
and generating corresponding SignalEvents, which are ultimately utilised by the Portfolio
object. A SignalEvent contains a ticker symbol, a direction (LONG or SHORT) and a
timestamp.

• Portfolio - This is a class hierarchy which handles the order management associated
with current and subsequent positions for a strategy. It also carries out risk management
across the portfolio, including sector exposure and position sizing. In a more sophisticated
implementation this could be delegated to a RiskManagement class. The Portfolio takes
SignalEvents from the Queue and generates OrderEvents that get added to the Queue.

131

• ExecutionHandler - The ExecutionHandler simulates a connection to a brokerage. The
job of the handler is to take OrderEvents from the Queue and execute them, either via a
simulated approach or an actual connection to a liver brokerage. Once orders are executed
the handler creates FillEvents, which describe what was actually transacted, including fees,
commission and slippage (if modelled).

• Backtest - All of these components are wrapped in an event-loop that correctly handles
all Event types, routing them to the appropriate component.

Despite the quantity of components, this is quite a basic model of a trading engine. There is
significant scope for expansion, particularly in regard to how the Portfolio is used. In addition
differing transaction cost models might also be abstracted into their own class hierarchy.

14.2.1 Events
The first component to be discussed is the Event class hierarchy. In this infrastructure there
are four types of events which allow communication between the above components via an event
queue. They are a MarketEvent, SignalEvent, OrderEvent and FillEvent.

Event

The parent class in the hierarchy is called Event. It is a base class and does not provide any
functionality or specific interface. Since in many implementations the Event objects will likely
develop greater complexity it is thus being "future-proofed" by creating a class hierarchy.

#!/usr/bin/python
-*- coding: utf-8 -*-

event.py

from __future__ import print_function

class Event(object):
"""
Event is base class providing an interface for all subsequent
(inherited) events, that will trigger further events in the
trading infrastructure.
"""
pass

MarketEvent

MarketEvents are triggered when the outer while loop of the backtesting system begins a new
"heartbeat". It occurs when the DataHandler object receives a new update of market data
for any symbols which are currently being tracked. It is used to trigger the Strategy object
generating new trading signals. The event object simply contains an identification that it is a
market event, with no other structure.

event.py

class MarketEvent(Event):
"""
Handles the event of receiving a new market update with
corresponding bars.
"""

def __init__(self):

132

"""
Initialises the MarketEvent.
"""
self.type = ’MARKET’

SignalEvent

The Strategy object utilises market data to create new SignalEvents. The SignalEvent contains
a strategy ID, a ticker symbol, a timestamp for when it was generated, a direction (long or short)
and a "strength" indicator (this is useful for mean reversion strategies). The SignalEvents are
utilised by the Portfolio object as advice for how to trade.

event.py

class SignalEvent(Event):
"""
Handles the event of sending a Signal from a Strategy object.
This is received by a Portfolio object and acted upon.
"""

def __init__(self, strategy_id, symbol, datetime, signal_type, strength):
"""
Initialises the SignalEvent.

Parameters:
strategy_id - The unique identifier for the strategy that

generated the signal.
symbol - The ticker symbol, e.g. ’GOOG’.
datetime - The timestamp at which the signal was generated.
signal_type - ’LONG’ or ’SHORT’.
strength - An adjustment factor "suggestion" used to scale

quantity at the portfolio level. Useful for pairs strategies.
"""

self.type = ’SIGNAL’
self.strategy_id = strategy_id
self.symbol = symbol
self.datetime = datetime
self.signal_type = signal_type
self.strength = strength

OrderEvent

When a Portfolio object receives SignalEvents it assesses them in the wider context of the port-
folio, in terms of risk and position sizing. This ultimately leads to OrderEvents that will be sent
to an ExecutionHandler.

The OrderEvent is slightly more complex than a SignalEvent since it contains a quantity field
in addition to the aforementioned properties of SignalEvent. The quantity is determined by the
Portfolio constraints. In addition the OrderEvent has a print_order() method, used to output
the information to the console if necessary.

event.py

class OrderEvent(Event):
"""
Handles the event of sending an Order to an execution system.
The order contains a symbol (e.g. GOOG), a type (market or limit),

133

quantity and a direction.
"""

def __init__(self, symbol, order_type, quantity, direction):
"""
Initialises the order type, setting whether it is
a Market order (’MKT’) or Limit order (’LMT’), has
a quantity (integral) and its direction (’BUY’ or
’SELL’).

Parameters:
symbol - The instrument to trade.
order_type - ’MKT’ or ’LMT’ for Market or Limit.
quantity - Non-negative integer for quantity.
direction - ’BUY’ or ’SELL’ for long or short.
"""

self.type = ’ORDER’
self.symbol = symbol
self.order_type = order_type
self.quantity = quantity
self.direction = direction

def print_order(self):
"""
Outputs the values within the Order.
"""
print(

"Order: Symbol=%s, Type=%s, Quantity=%s, Direction=%s" %
(self.symbol, self.order_type, self.quantity, self.direction)

)

FillEvent

When an ExecutionHandler receives an OrderEvent it must transact the order. Once an order
has been transacted it generates a FillEvent, which describes the cost of purchase or sale as well
as the transaction costs, such as fees or slippage.

The FillEvent is the Event with the greatest complexity. It contains a timestamp for when
an order was filled, the symbol of the order and the exchange it was executed on, the quantity
of shares transacted, the actual price of the purchase and the commission incurred.

The commission is calculated using the Interactive Brokers commissions. For US API orders
this commission is 1.30 USD minimum per order, with a flat rate of either 0.013 USD or 0.08
USD per share depending upon whether the trade size is below or above 500 units of stock.

event.py

class FillEvent(Event):
"""
Encapsulates the notion of a Filled Order, as returned
from a brokerage. Stores the quantity of an instrument
actually filled and at what price. In addition, stores
the commission of the trade from the brokerage.
"""

def __init__(self, timeindex, symbol, exchange, quantity,
direction, fill_cost, commission=None):

https://www.interactivebrokers.com/en/index.php?f=commission&p=stocks2

134

"""
Initialises the FillEvent object. Sets the symbol, exchange,
quantity, direction, cost of fill and an optional
commission.

If commission is not provided, the Fill object will
calculate it based on the trade size and Interactive
Brokers fees.

Parameters:
timeindex - The bar-resolution when the order was filled.
symbol - The instrument which was filled.
exchange - The exchange where the order was filled.
quantity - The filled quantity.
direction - The direction of fill (’BUY’ or ’SELL’)
fill_cost - The holdings value in dollars.
commission - An optional commission sent from IB.
"""

self.type = ’FILL’
self.timeindex = timeindex
self.symbol = symbol
self.exchange = exchange
self.quantity = quantity
self.direction = direction
self.fill_cost = fill_cost

Calculate commission
if commission is None:

self.commission = self.calculate_ib_commission()
else:

self.commission = commission

def calculate_ib_commission(self):
"""
Calculates the fees of trading based on an Interactive
Brokers fee structure for API, in USD.

This does not include exchange or ECN fees.

Based on "US API Directed Orders":
https://www.interactivebrokers.com/en/index.php?
f=commission&p=stocks2
"""
full_cost = 1.3
if self.quantity <= 500:

full_cost = max(1.3, 0.013 * self.quantity)
else: # Greater than 500

full_cost = max(1.3, 0.008 * self.quantity)
return full_cost

14.2.2 Data Handler
One of the goals of an event-driven trading system is to minimise duplication of code between
the backtesting element and the live execution element. Ideally it would be optimal to utilise the
same signal generation methodology and portfolio management components for both historical

135

testing and live trading. In order for this to work the Strategy object which generates the Signals,
and the Portfolio object which provides Orders based on them, must utilise an identical interface
to a market feed for both historic and live running.

This motivates the concept of a class hierarchy based on a DataHandler object, which gives
all subclasses an interface for providing market data to the remaining components within the
system. In this way any subclass data handler can be "swapped out", without affecting strategy
or portfolio calculation.

Specific example subclasses could include HistoricCSVDataHandler, QuandlDataHandler, Se-
curitiesMasterDataHandler, InteractiveBrokersMarketFeedDataHandler etc. In this chapter we
are only going to consider the creation of a historic CSV data handler, which will load intraday
CSV data for equities in an Open-Low-High-Close-Volume-OpenInterest set of bars. This can
then be used to "drip feed" on a bar-by-bar basis the data into the Strategy and Portfolio classes
on every heartbeat of the system, thus avoiding lookahead bias.

The first task is to import the necessary libraries. Specifically it will be necessary to im-
port pandas and the abstract base class tools. Since the DataHandler generates MarketEvents,
event.py is also needed as described above.

#!/usr/bin/python
-*- coding: utf-8 -*-

data.py

from __future__ import print_function

from abc import ABCMeta, abstractmethod
import datetime
import os, os.path

import numpy as np
import pandas as pd

from event import MarketEvent

The DataHandler is an abstract base class (ABC), which means that it is impossible to
instantiate an instance directly. Only subclasses may be instantiated. The rationale for this is
that the ABC provides an interface that all subsequent DataHandler subclasses must adhere to
thereby ensuring compatibility with other classes that communicate with them.

We make use of the __metaclass__ property to let Python know that this is an ABC. In
addition we use the @abstractmethod decorator to let Python know that the method will be
overridden in subclasses (this is identical to a pure virtual method in C++).

There are six methods listed for the class. The first two methods, get_latest_bar and
get_latest_bars, are used to retrieve a recent subset of the historical trading bars from a stored
list of such bars. These methods come in handy within the Strategy and Portfolio classes, due
to the need to constantly be aware of current market prices and volumes.

The following method, get_latest_bar_datetime, simply returns a Python datetime object
that represents the timestamp of the bar (e.g. a date for daily bars or a minute-resolution object
for minutely bars).

The following two methods, get_latest_bar_value and get_latest_bar_values, are conve-
nience methods used to retrieve individual values from a particular bar, or list of bars. For
instance it is often the case that a strategy is only interested in closing prices. In this instance
we can use these methods to return a list of floating point values representing the closing prices of
previous bars, rather than having to obtain it from the list of bar objects. This generally increases
efficiency of strategies that utilise a "lookback window", such as those involving regressions.

The final method, update_bars, provides a "drip feed" mechanism for placing bar infor-
mation on a new data structure that strictly prohibits lookahead bias. This is one of the key
differences between an event-driven backtesting system and one based on vectorisation. Notice
that exceptions will be raised if an attempted instantiation of the class occurs:

136

data.py

class DataHandler(object):
"""
DataHandler is an abstract base class providing an interface for
all subsequent (inherited) data handlers (both live and historic).

The goal of a (derived) DataHandler object is to output a generated
set of bars (OHLCVI) for each symbol requested.

This will replicate how a live strategy would function as current
market data would be sent "down the pipe". Thus a historic and live
system will be treated identically by the rest of the backtesting suite.
"""

__metaclass__ = ABCMeta

@abstractmethod
def get_latest_bar(self, symbol):

"""
Returns the last bar updated.
"""
raise NotImplementedError("Should implement get_latest_bar()")

@abstractmethod
def get_latest_bars(self, symbol, N=1):

"""
Returns the last N bars updated.
"""
raise NotImplementedError("Should implement get_latest_bars()")

@abstractmethod
def get_latest_bar_datetime(self, symbol):

"""
Returns a Python datetime object for the last bar.
"""
raise NotImplementedError("Should implement

get_latest_bar_datetime()")

@abstractmethod
def get_latest_bar_value(self, symbol, val_type):

"""
Returns one of the Open, High, Low, Close, Volume or OI
from the last bar.
"""
raise NotImplementedError("Should implement

get_latest_bar_value()")

@abstractmethod
def get_latest_bars_values(self, symbol, val_type, N=1):

"""
Returns the last N bar values from the
latest_symbol list, or N-k if less available.
"""
raise NotImplementedError("Should implement

get_latest_bars_values()")

137

@abstractmethod
def update_bars(self):

"""
Pushes the latest bars to the bars_queue for each symbol
in a tuple OHLCVI format: (datetime, open, high, low,
close, volume, open interest).
"""
raise NotImplementedError("Should implement update_bars()")

In order to create a backtesting system based on historical data we need to consider a mecha-
nism for importing data via common sources. We’ve discussed the benefits of a Securities Master
Database in previous chapters. Thus a good candidate for making a DataHandler class would
be to couple it with such a database.

However, for clarity in this chapter, I want to discuss a simpler mechanism, that of importing
(potentially large) comma-separated variable (CSV) files. This will allow us to focus on the
mechanics of creating the DataHandler, rather than be concerned with the "boilerplate" code of
connecting to a database and using SQL queries to grab data.

Thus we are going to define the HistoricCSVDataHandler subclass, which is designed to
process multiple CSV files, one for each traded symbol, and convert these into a dictionary of
pandas DataFrames that can be accessed by the previously mentioned bar methods.

The data handler requires a few parameters, namely an Event Queue on which to push
MarketEvent information to, the absolute path of the CSV files and a list of symbols. Here is
the initialisation of the class:

data.py

class HistoricCSVDataHandler(DataHandler):
"""
HistoricCSVDataHandler is designed to read CSV files for
each requested symbol from disk and provide an interface
to obtain the "latest" bar in a manner identical to a live
trading interface.
"""

def __init__(self, events, csv_dir, symbol_list):
"""
Initialises the historic data handler by requesting
the location of the CSV files and a list of symbols.

It will be assumed that all files are of the form
’symbol.csv’, where symbol is a string in the list.

Parameters:
events - The Event Queue.
csv_dir - Absolute directory path to the CSV files.
symbol_list - A list of symbol strings.
"""
self.events = events
self.csv_dir = csv_dir
self.symbol_list = symbol_list

self.symbol_data = {}
self.latest_symbol_data = {}
self.continue_backtest = True

self._open_convert_csv_files()

138

The handler is will look for files in the absolute directory csv_dir and try to open them with
the format of "SYMBOL.csv", where SYMBOL is the ticker symbol (such as GOOG or AAPL).
The format of the files matches that provided by Yahoo Finance, but is easily modified to handle
additional data formats, such as those provided by Quandl or DTN IQFeed. The opening of the
files is handled by the _open_convert_csv_files method below.

One of the benefits of using pandas as a datastore internally within the HistoricCSVData-
Handler is that the indexes of all symbols being tracked can be merged together. This allows
missing data points to be padded forward, backward or interpolated within these gaps such that
tickers can be compared on a bar-to-bar basis. This is necessary for mean-reverting strategies,
for instance. Notice the use of the union and reindex methods when combining the indexes for
all symbols:

data.py

def _open_convert_csv_files(self):
"""
Opens the CSV files from the data directory, converting
them into pandas DataFrames within a symbol dictionary.

For this handler it will be assumed that the data is
taken from Yahoo. Thus its format will be respected.
"""
comb_index = None
for s in self.symbol_list:

Load the CSV file with no header information, indexed on date
self.symbol_data[s] = pd.io.parsers.read_csv(

os.path.join(self.csv_dir, ’%s.csv’ % s),
header=0, index_col=0, parse_dates=True,
names=[

’datetime’, ’open’, ’high’,
’low’, ’close’, ’volume’, ’adj_close’

]
).sort()

Combine the index to pad forward values
if comb_index is None:

comb_index = self.symbol_data[s].index
else:

comb_index.union(self.symbol_data[s].index)

Set the latest symbol_data to None
self.latest_symbol_data[s] = []

Reindex the dataframes
for s in self.symbol_list:

self.symbol_data[s] = self.symbol_data[s].\
reindex(index=comb_index, method=’pad’).iterrows()

The _get_new_bar method creates a generator to provide a new bar. This means that
subsequent calls to the method will yield a new bar until the end of the symbol data is reached:

data.py

def _get_new_bar(self, symbol):
"""
Returns the latest bar from the data feed.
"""
for b in self.symbol_data[symbol]:

139

yield b

The first abstract methods from DataHandler to be implemented are get_latest_bar and
get_latest_bars. These method simply provide either a bar or list of the last N bars from the
latest_symbol_data structure:

data.py

def get_latest_bar(self, symbol):
"""
Returns the last bar from the latest_symbol list.
"""
try:

bars_list = self.latest_symbol_data[symbol]
except KeyError:

print("That symbol is not available in the historical data set.")
raise

else:
return bars_list[-1]

def get_latest_bars(self, symbol, N=1):
"""
Returns the last N bars from the latest_symbol list,
or N-k if less available.
"""
try:

bars_list = self.latest_symbol_data[symbol]
except KeyError:

print("That symbol is not available in the historical data set.")
raise

else:
return bars_list[-N:]

The next method, get_latest_bar_datetime, queries the latest bar for a datetime object
representing the "last market price":

def get_latest_bar_datetime(self, symbol):
"""
Returns a Python datetime object for the last bar.
"""
try:

bars_list = self.latest_symbol_data[symbol]
except KeyError:

print("That symbol is not available in the historical data set.")
raise

else:
return bars_list[-1][0]

The next two methods being implemented are get_latest_bar_value and get_latest_bar_values.
Both methods make use of the Python getattr function, which queries an object to see if a par-
ticular attribute exists on an object. Thus we can pass a string such as "open" or "close" to
getattr and obtain the value direct from the bar, thus making the method more flexible. This
stops us having to write methods of the type get_latest_bar_close, for instance:

def get_latest_bar_value(self, symbol, val_type):
"""
Returns one of the Open, High, Low, Close, Volume or OI
values from the pandas Bar series object.
"""

140

try:
bars_list = self.latest_symbol_data[symbol]

except KeyError:
print("That symbol is not available in the historical data set.")
raise

else:
return getattr(bars_list[-1][1], val_type)

def get_latest_bars_values(self, symbol, val_type, N=1):
"""
Returns the last N bar values from the
latest_symbol list, or N-k if less available.
"""
try:

bars_list = self.get_latest_bars(symbol, N)
except KeyError:

print("That symbol is not available in the historical data set.")
raise

else:
return np.array([getattr(b[1], val_type) for b in bars_list])

The final method, update_bars, is the second abstract method from DataHandler. It simply
generates a MarketEvent that gets added to the queue as it appends the latest bars to the
latest_symbol_data dictionary:

data.py

def update_bars(self):
"""
Pushes the latest bar to the latest_symbol_data structure
for all symbols in the symbol list.
"""
for s in self.symbol_list:

try:
bar = next(self._get_new_bar(s))

except StopIteration:
self.continue_backtest = False

else:
if bar is not None:

self.latest_symbol_data[s].append(bar)
self.events.put(MarketEvent())

Thus we have a DataHandler-derived object, which is used by the remaining components to
keep track of market data. The Strategy, Portfolio and ExecutionHandler objects all require the
current market data thus it makes sense to centralise it to avoid duplication of storage between
these classes.

14.2.3 Strategy
A Strategy object encapsulates all calculation on market data that generate advisory signals
to a Portfolio object. Thus all of the "strategy logic" resides within this class. I have opted
to separate out the Strategy and Portfolio objects for this backtester, since I believe this is more
amenable to the situation of multiple strategies feeding "ideas" to a larger Portfolio, which then
can handle its own risk (such as sector allocation, leverage). In higher frequency trading, the
strategy and portfolio concepts will be tightly coupled and extremely hardware dependent. This
is well beyond the scope of this chapter, however!

At this stage in the event-driven backtester development there is no concept of an indicator
or filter, such as those found in technical trading. These are also good candidates for creating

141

a class hierarchy but are beyond the scope of this chapter. Thus such mechanisms will be used
directly in derived Strategy objects.

The strategy hierarchy is relatively simple as it consists of an abstract base class with a
single pure virtual method for generating SignalEvent objects. In order to create the Strategy
hierarchy it is necessary to import NumPy, pandas, the Queue object (which has become queue
in Python 3), abstract base class tools and the SignalEvent:

#!/usr/bin/python
-*- coding: utf-8 -*-

strategy.py

from __future__ import print_function

from abc import ABCMeta, abstractmethod
import datetime
try:

import Queue as queue
except ImportError:

import queue

import numpy as np
import pandas as pd

from event import SignalEvent

The Strategy abstract base class simply defines a pure virtual calculate_signals method.
In derived classes this is used to handle the generation of SignalEvent objects based on market
data updates:

strategy.py

class Strategy(object):
"""
Strategy is an abstract base class providing an interface for
all subsequent (inherited) strategy handling objects.

The goal of a (derived) Strategy object is to generate Signal
objects for particular symbols based on the inputs of Bars
(OHLCV) generated by a DataHandler object.

This is designed to work both with historic and live data as
the Strategy object is agnostic to where the data came from,
since it obtains the bar tuples from a queue object.
"""

__metaclass__ = ABCMeta

@abstractmethod
def calculate_signals(self):

"""
Provides the mechanisms to calculate the list of signals.
"""
raise NotImplementedError("Should implement calculate_signals()")

142

14.2.4 Portfolio

This section describes a Portfolio object that keeps track of the positions within a portfolio
and generates orders of a fixed quantity of stock based on signals. More sophisticated portfolio
objects could include risk management and position sizing tools (such as the Kelly Criterion).
In fact, in the following chapters we will add such tools to some of our trading strategies to see
how they compare to a more "naive" portfolio approach.

The portfolio order management system is possibly the most complex component of an event-
driven backtester. Its role is to keep track of all current market positions as well as the market
value of the positions (known as the "holdings"). This is simply an estimate of the liquidation
value of the position and is derived in part from the data handling facility of the backtester.

In addition to the positions and holdings management the portfolio must also be aware of risk
factors and position sizing techniques in order to optimise orders that are sent to a brokerage or
other form of market access.

Unfortunately, Portfolio and Order Management Systems (OMS) can become rather complex!
Thus I’ve made a decision here to keep the Portfolio object relatively straightforward, so that you
can understand the key ideas and how they are implemented. The nature of an object-oriented
design is that it allows, in a natural way, the extension to more complex situations later on.

Continuing in the vein of the Event class hierarchy a Portfolio object must be able to
handle SignalEvent objects, generate OrderEvent objects and interpret FillEvent objects
to update positions. Thus it is no surprise that the Portfolio objects are often the largest
component of event-driven systems, in terms of lines of code (LOC).

We create a new file portfolio.py and import the necessary libraries. These are the same
as most of the other class implementations, with the exception that Portfolio is NOT going to
be an abstract base class. Instead it will be normal base class. This means that it can be
instantiated and thus is useful as a "first go" Portfolio object when testing out new strategies.
Other Portfolios can be derived from it and override sections to add more complexity.

For completeness, here is the performance.py file:

#!/usr/bin/python
-*- coding: utf-8 -*-

performance.py

from __future__ import print_function

import numpy as np
import pandas as pd

def create_sharpe_ratio(returns, periods=252):
"""
Create the Sharpe ratio for the strategy, based on a
benchmark of zero (i.e. no risk-free rate information).

Parameters:
returns - A pandas Series representing period percentage returns.
periods - Daily (252), Hourly (252*6.5), Minutely(252*6.5*60) etc.
"""
return np.sqrt(periods) * (np.mean(returns)) / np.std(returns)

def create_drawdowns(pnl):
"""
Calculate the largest peak-to-trough drawdown of the PnL curve
as well as the duration of the drawdown. Requires that the
pnl_returns is a pandas Series.

143

Parameters:
pnl - A pandas Series representing period percentage returns.

Returns:
drawdown, duration - Highest peak-to-trough drawdown and duration.
"""

Calculate the cumulative returns curve
and set up the High Water Mark
hwm = [0]

Create the drawdown and duration series
idx = pnl.index
drawdown = pd.Series(index = idx)
duration = pd.Series(index = idx)

Loop over the index range
for t in range(1, len(idx)):

hwm.append(max(hwm[t-1], pnl[t]))
drawdown[t]= (hwm[t]-pnl[t])
duration[t]= (0 if drawdown[t] == 0 else duration[t-1]+1)

return drawdown, drawdown.max(), duration.max()

Here is the import listing for the Portfolio.py file. We need to import the floor function from
the math library in order to generate integer-valued order sizes. We also need the FillEvent and
OrderEvent objects since the Portfolio handles both. Notice also that we are adding two ad-
ditional functions, create_sharpe_ratio and create_drawdowns, both from the performance.py
file described above.

#!/usr/bin/python
-*- coding: utf-8 -*-

portfolio.py

from __future__ import print_function

import datetime
from math import floor
try:

import Queue as queue
except ImportError:

import queue

import numpy as np
import pandas as pd

from event import FillEvent, OrderEvent
from performance import create_sharpe_ratio, create_drawdowns

The initialisation of the Portfolio object requires access to the bars DataHandler, the events
Event Queue, a start datetime stamp and an initial capital value (defaulting to 100,000 USD).

The Portfolio is designed to handle position sizing and current holdings, but will carry out
trading orders in a "dumb" manner by simply sending them directly to the brokerage with a
predetermined fixed quantity size, irrespective of cash held. These are all unrealistic assumptions,
but they help to outline how a portfolio order management system (OMS) functions in an event-
driven fashion.

144

The portfolio contains the all_positions and current_positions members. The former
stores a list of all previous positions recorded at the timestamp of a market data event. A position
is simply the quantity of the asset held. Negative positions mean the asset has been shorted.
The latter current_positions dictionary stores contains the current positions for the last market
bar update, for each symbol.

In addition to the positions data the portfolio stores holdings, which describe the current
market value of the positions held. "Current market value" in this instance means the closing
price obtained from the current market bar, which is clearly an approximation, but is reasonable
enough for the time being. all_holdings stores the historical list of all symbol holdings, while
current_holdings stores the most up to date dictionary of all symbol holdings values:

portfolio.py

class Portfolio(object):
"""
The Portfolio class handles the positions and market
value of all instruments at a resolution of a "bar",
i.e. secondly, minutely, 5-min, 30-min, 60 min or EOD.

The positions DataFrame stores a time-index of the
quantity of positions held.

The holdings DataFrame stores the cash and total market
holdings value of each symbol for a particular
time-index, as well as the percentage change in
portfolio total across bars.
"""

def __init__(self, bars, events, start_date, initial_capital=100000.0):
"""
Initialises the portfolio with bars and an event queue.
Also includes a starting datetime index and initial capital
(USD unless otherwise stated).

Parameters:
bars - The DataHandler object with current market data.
events - The Event Queue object.
start_date - The start date (bar) of the portfolio.
initial_capital - The starting capital in USD.
"""
self.bars = bars
self.events = events
self.symbol_list = self.bars.symbol_list
self.start_date = start_date
self.initial_capital = initial_capital

self.all_positions = self.construct_all_positions()
self.current_positions = dict((k,v) for k, v in \

[(s, 0) for s in self.symbol_list])

self.all_holdings = self.construct_all_holdings()
self.current_holdings = self.construct_current_holdings()

The following method, construct_all_positions, simply creates a dictionary for each
symbol, sets the value to zero for each and then adds a datetime key, finally adding it to a list.
It uses a dictionary comprehension, which is similar in spirit to a list comprehension:

portfolio.py

145

def construct_all_positions(self):
"""
Constructs the positions list using the start_date
to determine when the time index will begin.
"""
d = dict((k,v) for k, v in [(s, 0) for s in self.symbol_list])
d[’datetime’] = self.start_date
return [d]

The construct_all_holdings method is similar to the above but adds extra keys for cash,
commission and total, which respectively represent the spare cash in the account after any
purchases, the cumulative commission accrued and the total account equity including cash and
any open positions. Short positions are treated as negative. The starting cash and total account
equity are both set to the initial capital.

In this manner there are separate "accounts" for each symbol, the "cash on hand", the
"commission" paid (Interactive Broker fees) and a "total" portfolio value. Clearly this does not
take into account margin requirements or shorting constraints, but is sufficient to give you a
flavour of how such an OMS is created:

portfolio.py

def construct_all_holdings(self):
"""
Constructs the holdings list using the start_date
to determine when the time index will begin.
"""
d = dict((k,v) for k, v in [(s, 0.0) for s in self.symbol_list])
d[’datetime’] = self.start_date
d[’cash’] = self.initial_capital
d[’commission’] = 0.0
d[’total’] = self.initial_capital
return [d]

The following method, construct_current_holdings is almost identical to the method
above except that it doesn’t wrap the dictionary in a list, because it is only creating a single
entry:

portfolio.py

def construct_current_holdings(self):
"""
This constructs the dictionary which will hold the instantaneous
value of the portfolio across all symbols.
"""
d = dict((k,v) for k, v in [(s, 0.0) for s in self.symbol_list])
d[’cash’] = self.initial_capital
d[’commission’] = 0.0
d[’total’] = self.initial_capital
return d

On every heartbeat, that is every time new market data is requested from the DataHandler
object, the portfolio must update the current market value of all the positions held. In a live
trading scenario this information can be downloaded and parsed directly from the brokerage, but
for a backtesting implementation it is necessary to calculate these values manually from the bars
DataHandler.

Unfortunately there is no such as thing as the "current market value" due to bid/ask spreads
and liquidity issues. Thus it is necessary to estimate it by multiplying the quantity of the asset
held by a particular approximate "price". The approach I have taken here is to use the closing

146

price of the last bar received. For an intraday strategy this is relatively realistic. For a daily
strategy this is less realistic as the opening price can differ substantially from the closing price.

The method update_timeindex handles the new holdings tracking. It firstly obtains the
latest prices from the market data handler and creates a new dictionary of symbols to represent
the current positions, by setting the "new" positions equal to the "current" positions.

The current positions are only modified when a FillEvent is obtained, which is handled
later on in the portfolio code. The method then appends this set of current positions to the
all_positions list.

The holdings are then updated in a similar manner, with the exception that the market value
is recalculated by multiplying the current positions count with the closing price of the latest bar.
Finally the new holdings are appended to all_holdings:

portfolio.py

def update_timeindex(self, event):
"""
Adds a new record to the positions matrix for the current
market data bar. This reflects the PREVIOUS bar, i.e. all
current market data at this stage is known (OHLCV).

Makes use of a MarketEvent from the events queue.
"""
latest_datetime = self.bars.get_latest_bar_datetime(

self.symbol_list[0]
)

Update positions
================
dp = dict((k,v) for k, v in [(s, 0) for s in self.symbol_list])
dp[’datetime’] = latest_datetime

for s in self.symbol_list:
dp[s] = self.current_positions[s]

Append the current positions
self.all_positions.append(dp)

Update holdings
===============
dh = dict((k,v) for k, v in [(s, 0) for s in self.symbol_list])
dh[’datetime’] = latest_datetime
dh[’cash’] = self.current_holdings[’cash’]
dh[’commission’] = self.current_holdings[’commission’]
dh[’total’] = self.current_holdings[’cash’]

for s in self.symbol_list:
Approximation to the real value
market_value = self.current_positions[s] * \

self.bars.get_latest_bar_value(s, "adj_close")
dh[s] = market_value
dh[’total’] += market_value

Append the current holdings
self.all_holdings.append(dh)

The method update_positions_from_fill determines whether a FillEvent is a Buy or
a Sell and then updates the current_positions dictionary accordingly by adding/subtracting

147

the correct quantity of shares:

portfolio.py

def update_positions_from_fill(self, fill):
"""
Takes a Fill object and updates the position matrix to
reflect the new position.

Parameters:
fill - The Fill object to update the positions with.
"""
Check whether the fill is a buy or sell
fill_dir = 0
if fill.direction == ’BUY’:

fill_dir = 1
if fill.direction == ’SELL’:

fill_dir = -1

Update positions list with new quantities
self.current_positions[fill.symbol] += fill_dir*fill.quantity

The corresponding update_holdings_from_fill is similar to the above method but updates
the holdings values instead. In order to simulate the cost of a fill, the following method does
not use the cost associated from the FillEvent. Why is this? Simply put, in a backtesting
environment the fill cost is actually unknown (the market impact and the depth of book are
unknown) and thus is must be estimated.

Thus the fill cost is set to the the "current market price", which is the closing price of the
last bar. The holdings for a particular symbol are then set to be equal to the fill cost multiplied
by the transacted quantity. For most lower frequency trading strategies in liquid markets this is
a reasonable approximation, but at high frequency these issues will need to be considered in a
production backtest and live trading engine.

Once the fill cost is known the current holdings, cash and total values can all be updated.
The cumulative commission is also updated:

portfolio.py

def update_holdings_from_fill(self, fill):
"""
Takes a Fill object and updates the holdings matrix to
reflect the holdings value.

Parameters:
fill - The Fill object to update the holdings with.
"""
Check whether the fill is a buy or sell
fill_dir = 0
if fill.direction == ’BUY’:

fill_dir = 1
if fill.direction == ’SELL’:

fill_dir = -1

Update holdings list with new quantities
fill_cost = self.bars.get_latest_bar_value(fill.symbol, "adj_close")
cost = fill_dir * fill_cost * fill.quantity
self.current_holdings[fill.symbol] += cost
self.current_holdings[’commission’] += fill.commission
self.current_holdings[’cash’] -= (cost + fill.commission)

148

self.current_holdings[’total’] -= (cost + fill.commission)

The pure virtual update_fillmethod from the Portfolio class is implemented here. It sim-
ply executes the two preceding methods, update_positions_from_fill and update_holdings_from_fill,
upon receipt of a fill event:

portfolio.py

def update_fill(self, event):
"""
Updates the portfolio current positions and holdings
from a FillEvent.
"""
if event.type == ’FILL’:

self.update_positions_from_fill(event)
self.update_holdings_from_fill(event)

While the Portfolio object must handle FillEvents, it must also take care of generating
OrderEvents upon the receipt of one or more SignalEvents.

The generate_naive_order method simply takes a signal to go long or short an asset,
sending an order to do so for 100 shares of such an asset. Clearly 100 is an arbitrary value, and
will clearly depend upon the portfolio total equity in a production simulation.

In a realistic implementation this value will be determined by a risk management or position
sizing overlay. However, this is a simplistic Portfolio and so it "naively" sends all orders
directly from the signals, without a risk system.

The method handles longing, shorting and exiting of a position, based on the current quantity
and particular symbol. Corresponding OrderEvent objects are then generated:

portfolio.py

def generate_naive_order(self, signal):
"""
Simply files an Order object as a constant quantity
sizing of the signal object, without risk management or
position sizing considerations.

Parameters:
signal - The tuple containing Signal information.
"""
order = None

symbol = signal.symbol
direction = signal.signal_type
strength = signal.strength

mkt_quantity = 100
cur_quantity = self.current_positions[symbol]
order_type = ’MKT’

if direction == ’LONG’ and cur_quantity == 0:
order = OrderEvent(symbol, order_type, mkt_quantity, ’BUY’)

if direction == ’SHORT’ and cur_quantity == 0:
order = OrderEvent(symbol, order_type, mkt_quantity, ’SELL’)

if direction == ’EXIT’ and cur_quantity > 0:
order = OrderEvent(symbol, order_type, abs(cur_quantity), ’SELL’)

if direction == ’EXIT’ and cur_quantity < 0:
order = OrderEvent(symbol, order_type, abs(cur_quantity), ’BUY’)

149

return order

The update_signal method simply calls the above method and adds the generated order to
the events queue:

portfolio.py

def update_signal(self, event):
"""
Acts on a SignalEvent to generate new orders
based on the portfolio logic.
"""
if event.type == ’SIGNAL’:

order_event = self.generate_naive_order(event)
self.events.put(order_event)

The penultimate method in the Portfolio is the generation of an equity curve. This simply
creates a returns stream, useful for performance calculations, and then normalises the equity
curve to be percentage based. Thus the account initial size is equal to 1.0, as opposed to the
absolute dollar amount:

portfolio.py

def create_equity_curve_dataframe(self):
"""
Creates a pandas DataFrame from the all_holdings
list of dictionaries.
"""
curve = pd.DataFrame(self.all_holdings)
curve.set_index(’datetime’, inplace=True)
curve[’returns’] = curve[’total’].pct_change()
curve[’equity_curve’] = (1.0+curve[’returns’]).cumprod()
self.equity_curve = curve

The final method in the Portfolio is the output of the equity curve and various performance
statistics related to the strategy. The final line outputs a file, equity.csv, to the same directory as
the code, which can loaded into a Matplotlib Python script (or a spreadsheet such as MS Excel
or LibreOffice Calc) for subsequent analysis.

Note that the Drawdown Duration is given in terms of the absolute number of "bars" that the
drawdown carried on for, as opposed to a particular timeframe.

def output_summary_stats(self):
"""
Creates a list of summary statistics for the portfolio.
"""
total_return = self.equity_curve[’equity_curve’][-1]
returns = self.equity_curve[’returns’]
pnl = self.equity_curve[’equity_curve’]

sharpe_ratio = create_sharpe_ratio(returns, periods=252*60*6.5)
drawdown, max_dd, dd_duration = create_drawdowns(pnl)
self.equity_curve[’drawdown’] = drawdown

stats = [("Total Return", "%0.2f%%" % \
((total_return - 1.0) * 100.0)),

("Sharpe Ratio", "%0.2f" % sharpe_ratio),
("Max Drawdown", "%0.2f%%" % (max_dd * 100.0)),
("Drawdown Duration", "%d" % dd_duration)]

150

self.equity_curve.to_csv(’equity.csv’)
return stats

The Portfolio object is the most complex aspect of the entire event-driven backtest system.
The implementation here, while intricate, is relatively elementary in its handling of positions.

14.2.5 Execution Handler

In this section we will study the execution of trade orders by creating a class hierarchy that will
represent a simulated order handling mechanism and ultimately tie into a brokerage or other
means of market connectivity.

The ExecutionHandler described here is exceedingly simple, since it fills all orders at the
current market price. This is highly unrealistic, but serves as a good baseline for improvement.

As with the previous abstract base class hierarchies, we must import the necessary proper-
ties and decorators from the abc library. In addition we need to import the FillEvent and
OrderEvent:

#!/usr/bin/python
-*- coding: utf-8 -*-

execution.py

from __future__ import print_function

from abc import ABCMeta, abstractmethod
import datetime
try:

import Queue as queue
except ImportError:

import queue

from event import FillEvent, OrderEvent

The ExecutionHandler is similar to previous abstract base classes and simply has one pure
virtual method, execute_order:

execution.py

class ExecutionHandler(object):
"""
The ExecutionHandler abstract class handles the interaction
between a set of order objects generated by a Portfolio and
the ultimate set of Fill objects that actually occur in the
market.

The handlers can be used to subclass simulated brokerages
or live brokerages, with identical interfaces. This allows
strategies to be backtested in a very similar manner to the
live trading engine.
"""

__metaclass__ = ABCMeta

@abstractmethod
def execute_order(self, event):

"""
Takes an Order event and executes it, producing
a Fill event that gets placed onto the Events queue.

151

Parameters:
event - Contains an Event object with order information.
"""
raise NotImplementedError("Should implement execute_order()")

In order to backtest strategies we need to simulate how a trade will be transacted. The
simplest possible implementation is to assume all orders are filled at the current market price for
all quantities. This is clearly extremely unrealistic and a big part of improving backtest realism
will come from designing more sophisticated models of slippage and market impact.

Note that the FillEvent is given a value of None for the fill_cost (see the penultimate
line in execute_order) as we have already taken care of the cost of fill in the Portfolio object
described above. In a more realistic implementation we would make use of the "current" market
data value to obtain a realistic fill cost.

I have simply utilised ARCA as the exchange although for backtesting purposes this is purely
a string placeholder. In a live execution environment this venue dependence would be far more
important:

execution.py

class SimulatedExecutionHandler(ExecutionHandler):
"""
The simulated execution handler simply converts all order
objects into their equivalent fill objects automatically
without latency, slippage or fill-ratio issues.

This allows a straightforward "first go" test of any strategy,
before implementation with a more sophisticated execution
handler.
"""

def __init__(self, events):
"""
Initialises the handler, setting the event queues
up internally.

Parameters:
events - The Queue of Event objects.
"""
self.events = events

def execute_order(self, event):
"""
Simply converts Order objects into Fill objects naively,
i.e. without any latency, slippage or fill ratio problems.

Parameters:
event - Contains an Event object with order information.
"""
if event.type == ’ORDER’:

fill_event = FillEvent(
datetime.datetime.utcnow(), event.symbol,
’ARCA’, event.quantity, event.direction, None

)
self.events.put(fill_event)

152

14.2.6 Backtest

We are now in a position to create the Backtest class hierarchy. The Backtest object encapsulates
the event-handling logic and essentially ties together all of the other classes that we have discussed
above.

The Backtest object is designed to carry out a nested while-loop event-driven system in
order to handle the events placed on the Event Queue object. The outer while-loop is known as
the "heartbeat loop" and decides the temporal resolution of the backtesting system. In a live
environment this value will be a positive number, such as 600 seconds (every ten minutes). Thus
the market data and positions will only be updated on this timeframe.

For the backtester described here the "heartbeat" can be set to zero, irrespective of the
strategy frequency, since the data is already available by virtue of the fact it is historical!

We can run the backtest at whatever speed we like, since the event-driven system is agnostic
to when the data became available, so long as it has an associated timestamp. Hence I’ve only
included it to demonstrate how a live trading engine would function. The outer loop thus ends
once the DataHandler lets the Backtest object know, by using a boolean continue_backtest
attribute.

The inner while-loop actually processes the signals and sends them to the correct component
depending upon the event type. Thus the Event Queue is continually being populated and
depopulated with events. This is what it means for a system to be event-driven.

The first task is to import the necessary libraries. We import pprint ("pretty-print"), because
we want to display the stats in an output-friendly manner:

#!/usr/bin/python
-*- coding: utf-8 -*-

backtest.py

from __future__ import print_function

import datetime
import pprint
try:

import Queue as queue
except ImportError:

import queue
import time

The initialisation of the Backtest object requires the CSV directory, the full symbol list of
traded symbols, the initial capital, the heartbeat time in milliseconds, the start datetime stamp
of the backtest as well as the DataHandler, ExecutionHandler, Portfolio and Strategy objects.
A Queue is used to hold the events. The signals, orders and fills are counted:

backtest.py

class Backtest(object):
"""
Enscapsulates the settings and components for carrying out
an event-driven backtest.
"""

def __init__(
self, csv_dir, symbol_list, initial_capital,
heartbeat, start_date, data_handler,
execution_handler, portfolio, strategy

):
"""
Initialises the backtest.

153

Parameters:
csv_dir - The hard root to the CSV data directory.
symbol_list - The list of symbol strings.
intial_capital - The starting capital for the portfolio.
heartbeat - Backtest "heartbeat" in seconds
start_date - The start datetime of the strategy.
data_handler - (Class) Handles the market data feed.
execution_handler - (Class) Handles the orders/fills for trades.
portfolio - (Class) Keeps track of portfolio current

and prior positions.
strategy - (Class) Generates signals based on market data.
"""
self.csv_dir = csv_dir
self.symbol_list = symbol_list
self.initial_capital = initial_capital
self.heartbeat = heartbeat
self.start_date = start_date

self.data_handler_cls = data_handler
self.execution_handler_cls = execution_handler
self.portfolio_cls = portfolio
self.strategy_cls = strategy

self.events = queue.Queue()

self.signals = 0
self.orders = 0
self.fills = 0
self.num_strats = 1

self._generate_trading_instances()

The first method, _generate_trading_instances, attaches all of the trading objects (Data-
Handler, Strategy, Portfolio and ExecutionHandler) to various internal members:

backtest.py

def _generate_trading_instances(self):
"""
Generates the trading instance objects from
their class types.
"""
print(

"Creating DataHandler, Strategy, Portfolio and ExecutionHandler"
)
self.data_handler = self.data_handler_cls(self.events, self.csv_dir,

self.symbol_list)
self.strategy = self.strategy_cls(self.data_handler, self.events)
self.portfolio = self.portfolio_cls(self.data_handler, self.events,

self.start_date,
self.initial_capital)

self.execution_handler = self.execution_handler_cls(self.events)

The _run_backtest method is where the signal handling of the Backtest engine is carried
out. As described above there are two while loops, one nested within another. The outer keeps
track of the heartbeat of the system, while the inner checks if there is an event in the Queue
object, and acts on it by calling the appropriate method on the necessary object.

154

For a MarketEvent, the Strategy object is told to recalculate new signals, while the Portfolio
object is told to reindex the time. If a SignalEvent object is received the Portfolio is told to
handle the new signal and convert it into a set of OrderEvents, if appropriate. If an OrderEvent
is received the ExecutionHandler is sent the order to be transmitted to the broker (if in a real
trading setting). Finally, if a FillEvent is received, the Portfolio will update itself to be aware of
the new positions:

backtest.py

def _run_backtest(self):
"""
Executes the backtest.
"""
i = 0
while True:

i += 1
print i
Update the market bars
if self.data_handler.continue_backtest == True:

self.data_handler.update_bars()
else:

break

Handle the events
while True:

try:
event = self.events.get(False)

except queue.Empty:
break

else:
if event is not None:

if event.type == ’MARKET’:
self.strategy.calculate_signals(event)
self.portfolio.update_timeindex(event)

elif event.type == ’SIGNAL’:
self.signals += 1
self.portfolio.update_signal(event)

elif event.type == ’ORDER’:
self.orders += 1
self.execution_handler.execute_order(event)

elif event.type == ’FILL’:
self.fills += 1
self.portfolio.update_fill(event)

time.sleep(self.heartbeat)

Once the backtest simulation is complete the performance of the strategy can be displayed to
the terminal/console. The equity curve pandas DataFrame is created and the summary statistics
are displayed, as well as the count of Signals, Orders and Fills:

backtest.py

def _output_performance(self):
"""
Outputs the strategy performance from the backtest.

155

"""
self.portfolio.create_equity_curve_dataframe()

print("Creating summary stats...")
stats = self.portfolio.output_summary_stats()

print("Creating equity curve...")
print(self.portfolio.equity_curve.tail(10))
pprint.pprint(stats)

print("Signals: %s" % self.signals)
print("Orders: %s" % self.orders)
print("Fills: %s" % self.fills)

The last method to be implemented is simulate_trading. It simply calls the two previously
described methods, in order:

backtest.py

def simulate_trading(self):
"""
Simulates the backtest and outputs portfolio performance.
"""
self._run_backtest()
self._output_performance()

This concludes the event-driven backtester operational objects.

14.3 Event-Driven Execution
Above we described a basic ExecutionHandler class that simply created a corresponding FillEvent
instance for every OrderEvent. This is precisely what we need for a "first pass" backtest, but
when we wish to actually hook up the system to a brokerage, we need more sophisticated han-
dling. In this section we define the IBExecutionHandler, a class that allows us to talk to the
popular Interactive Brokers API and thus automate our execution.

The essential idea of the IBExecutionHandler class is to receive OrderEvent instances from
the events queue and then to execute them directly against the Interactive Brokers order API
using the open source IbPy library. The class will also handle the "Server Response" messages
sent back via the API. At this stage, the only action taken will be to create corresponding
FillEvent instances that will then be sent back to the events queue.

The class itself could feasibly become rather complex, with execution optimisation logic as
well as sophisticated error handling. However, I have opted to keep it relatively simple here so
that you can see the main ideas and extend it in the direction that suits your particular trading
style.

As always, the first task is to create the Python file and import the necessary libraries. The
file is called ib_execution.py and lives in the same directory as the other event-driven files.

We import the necessary date/time handling libraries, the IbPy objects and the specific Event
objects that are handled by IBExecutionHandler:

#!/usr/bin/python
-*- coding: utf-8 -*-

ib_execution.py

from __future__ import print_function

import datetime
import time

156

from ib.ext.Contract import Contract
from ib.ext.Order import Order
from ib.opt import ibConnection, message

from event import FillEvent, OrderEvent
from execution import ExecutionHandler

We now define the IBExecutionHandler class. The __init__ constructor firstly requires
knowledge of the events queue. It also requires specification of order_routing, which I’ve
defaulted to "SMART". If you have specific exchange requirements, you can specify them here.
The default currency has also been set to US Dollars.

Within the method we create a fill_dict dictionary, needed later for usage in generating
FillEvent instances. We also create a tws_conn connection object to store our connection
information to the Interactive Brokers API. We also have to create an initial default order_id,
which keeps track of all subsequent orders to avoid duplicates. Finally we register the message
handlers (which we’ll define in more detail below):

ib_execution.py

class IBExecutionHandler(ExecutionHandler):
"""
Handles order execution via the Interactive Brokers
API, for use against accounts when trading live
directly.
"""

def __init__(
self, events, order_routing="SMART", currency="USD"

):
"""
Initialises the IBExecutionHandler instance.
"""
self.events = events
self.order_routing = order_routing
self.currency = currency
self.fill_dict = {}

self.tws_conn = self.create_tws_connection()
self.order_id = self.create_initial_order_id()
self.register_handlers()

The IB API utilises a message-based event system that allows our class to respond in partic-
ular ways to certain messages, in a similar manner to the event-driven backtester itself. I’ve not
included any real error handling (for the purposes of brevity), beyond output to the terminal,
via the _error_handler method.

The _reply_handler method, on the other hand, is used to determine if a FillEvent
instance needs to be created. The method asks if an "openOrder" message has been received
and checks whether an entry in our fill_dict for this particular orderId has already been set.
If not then one is created.

If it sees an "orderStatus" message and that particular message states than an order has
been filled, then it calls create_fill to create a FillEvent. It also outputs the message to the
terminal for logging/debug purposes:

ib_execution.py

def _error_handler(self, msg):
"""

157

Handles the capturing of error messages
"""
Currently no error handling.
print("Server Error: %s" % msg)

def _reply_handler(self, msg):
"""
Handles of server replies
"""
Handle open order orderId processing
if msg.typeName == "openOrder" and \

msg.orderId == self.order_id and \
not self.fill_dict.has_key(msg.orderId):
self.create_fill_dict_entry(msg)

Handle Fills
if msg.typeName == "orderStatus" and \

msg.status == "Filled" and \
self.fill_dict[msg.orderId]["filled"] == False:
self.create_fill(msg)

print("Server Response: %s, %s\n" % (msg.typeName, msg))

The following method, create_tws_connection, creates a connection to the IB API using
the IbPy ibConnection object. It uses a default port of 7496 and a default clientId of 10. Once
the object is created, the connect method is called to perform the connection:

ib_execution.py

def create_tws_connection(self):
"""
Connect to the Trader Workstation (TWS) running on the
usual port of 7496, with a clientId of 10.
The clientId is chosen by us and we will need
separate IDs for both the execution connection and
market data connection, if the latter is used elsewhere.
"""
tws_conn = ibConnection()
tws_conn.connect()
return tws_conn

To keep track of separate orders (for the purposes of tracking fills) the following method
create_initial_order_id is used. I’ve defaulted it to "1", but a more sophisticated approach
would be th query IB for the latest available ID and use that. You can always reset the current
API order ID via the Trader Workstation > Global Configuration > API Settings panel:

ib_execution.py

def create_initial_order_id(self):
"""
Creates the initial order ID used for Interactive
Brokers to keep track of submitted orders.
"""
There is scope for more logic here, but we
will use "1" as the default for now.
return 1

The following method, register_handlers, simply registers the error and reply handler
methods defined above with the TWS connection:

ib_execution.py

158

def register_handlers(self):
"""
Register the error and server reply
message handling functions.
"""
Assign the error handling function defined above
to the TWS connection
self.tws_conn.register(self._error_handler, ’Error’)

Assign all of the server reply messages to the
reply_handler function defined above
self.tws_conn.registerAll(self._reply_handler)

In order to actually transact a trade it is necessary to create an IbPy Contract instance
and then pair it with an IbPy Order instance, which will be sent to the IB API. The following
method, create_contract, generates the first component of this pair. It expects a ticker symbol,
a security type (e.g. stock or future), an exchange/primary exchange and a currency. It returns
the Contract instance:

ib_execution.py

def create_contract(self, symbol, sec_type, exch, prim_exch, curr):
"""
Create a Contract object defining what will
be purchased, at which exchange and in which currency.

symbol - The ticker symbol for the contract
sec_type - The security type for the contract (’STK’ is ’stock’)
exch - The exchange to carry out the contract on
prim_exch - The primary exchange to carry out the contract on
curr - The currency in which to purchase the contract
"""
contract = Contract()
contract.m_symbol = symbol
contract.m_secType = sec_type
contract.m_exchange = exch
contract.m_primaryExch = prim_exch
contract.m_currency = curr
return contract

The following method, create_order, generates the second component of the pair, namely
the Order instance. It expects an order type (e.g. market or limit), a quantity of the asset to
trade and an "action" (buy or sell). It returns the Order instance:

ib_execution.py

def create_order(self, order_type, quantity, action):
"""
Create an Order object (Market/Limit) to go long/short.

order_type - ’MKT’, ’LMT’ for Market or Limit orders
quantity - Integral number of assets to order
action - ’BUY’ or ’SELL’
"""
order = Order()
order.m_orderType = order_type
order.m_totalQuantity = quantity

159

order.m_action = action
return order

In order to avoid duplicating FillEvent instances for a particular order ID, we utilise a
dictionary called the fill_dict to store keys that match particular order IDs. When a fill has
been generated the "filled" key of an entry for a particular order ID is set to True. If a subsequent
"Server Response" message is received from IB stating that an order has been filled (and is a
duplicate message) it will not lead to a new fill. The following method create_fill_dict_entry
carries this out:

ib_execution.py

def create_fill_dict_entry(self, msg):
"""
Creates an entry in the Fill Dictionary that lists
orderIds and provides security information. This is
needed for the event-driven behaviour of the IB
server message behaviour.
"""
self.fill_dict[msg.orderId] = {

"symbol": msg.contract.m_symbol,
"exchange": msg.contract.m_exchange,
"direction": msg.order.m_action,
"filled": False

}

The following method, create_fill, actually creates the FillEvent instance and places it
onto the events queue:

ib_execution.py

def create_fill(self, msg):
"""
Handles the creation of the FillEvent that will be
placed onto the events queue subsequent to an order
being filled.
"""
fd = self.fill_dict[msg.orderId]

Prepare the fill data
symbol = fd["symbol"]
exchange = fd["exchange"]
filled = msg.filled
direction = fd["direction"]
fill_cost = msg.avgFillPrice

Create a fill event object
fill = FillEvent(

datetime.datetime.utcnow(), symbol,
exchange, filled, direction, fill_cost

)

Make sure that multiple messages don’t create
additional fills.
self.fill_dict[msg.orderId]["filled"] = True

Place the fill event onto the event queue
self.events.put(fill_event)

160

Now that all of the preceeding methods having been implemented it remains to override the
execute_order method from the ExecutionHandler abstract base class. This method actually
carries out the order placement with the IB API.

We first check that the event being received to this method is actually an OrderEvent and
then prepare the Contract and Order objects with their respective parameters. Once both
are created the IbPy method placeOrder of the connection object is called with an associated
order_id.

It is extremely important to call the time.sleep(1) method to ensure the order actually
goes through to IB. Removal of this line leads to inconsistent behaviour of the API, at least on
my system!

Finally, we increment the order ID to ensure we don’t duplicate orders:

ib_execution.py

def execute_order(self, event):
"""
Creates the necessary InteractiveBrokers order object
and submits it to IB via their API.

The results are then queried in order to generate a
corresponding Fill object, which is placed back on
the event queue.

Parameters:
event - Contains an Event object with order information.
"""
if event.type == ’ORDER’:

Prepare the parameters for the asset order
asset = event.symbol
asset_type = "STK"
order_type = event.order_type
quantity = event.quantity
direction = event.direction

Create the Interactive Brokers contract via the
passed Order event
ib_contract = self.create_contract(

asset, asset_type, self.order_routing,
self.order_routing, self.currency

)

Create the Interactive Brokers order via the
passed Order event
ib_order = self.create_order(

order_type, quantity, direction
)

Use the connection to the send the order to IB
self.tws_conn.placeOrder(

self.order_id, ib_contract, ib_order
)

NOTE: This following line is crucial.
It ensures the order goes through!
time.sleep(1)

Increment the order ID for this session

161

self.order_id += 1

This class forms the basis of an Interactive Brokers execution handler and can be used in
place of the simulated execution handler, which is only suitable for backtesting. Before the IB
handler can be utilised, however, it is necessary to create a live market feed handler to replace
the historical data feed handler of the backtester system.

In this way we are reusing as much as possible from the backtest and live systems to ensure
that code "swap out" is minimised and thus behaviour across both is similar, if not identical.

162

Chapter 15

Trading Strategy Implementation

In this chapter we are going to consider the full implementation of trading strategies using the
aforementioned event-driven backtesting system. In particular we will generate equity curves
for all trading strategies using notional portfolio amounts, thus simulating the concepts of
margin/leverage, which is a far more realistic approach compared to vectorised/returns based
approaches.

The first set of strategies are able to be carried out with freely available data, either from
Yahoo Finance, Google Finance or Quandl. These strategies are suitable for long-term algorith-
mic traders who may wish to only study the trade signal generation aspect of the strategy or
even the full end-to-end system. Such strategies often possess smaller Sharpe ratios, but are far
easier to implement and execute.

The latter strategy is carried out using intraday equities data. This data is often not freely
available and a commercial data vendor is usually necessary to provide sufficient quality and
quantity of data. I myself use DTN IQFeed for intraday bars. Such strategies often possess
much larger Sharpe ratios, but require more sophisticated implementation as the high frequency
requires extensive automation.

We will see that our first two attempts at creating a trading strategy on interday data are
not altogether successful. It can be challenging to come up with a profitable trading strategy
on interday data once transaction costs have been taken into account. The latter is something
that many texts on algorithmic trading tend to leave out. However, it is my belief that as many
factors as possible must be added to the backtest in order to minimises surprises going forward.

In addition, this book is primarily about how to effectively create a realistic interday or
intraday backtesting system (as well as a live execution platform) and less about particular
individual strategies. It is far harder to create a realistic robust backtester than it is to find
trading strategies on the internet! While the first two strategies presented are not particularly
attractive, the latter strategy (on intraday data) performs well and gives us confidence in using
higher frequency data.

15.1 Moving Average Crossover Strategy
I’m quite fond of the Moving Average Crossover technical system because it is the first non-
trivial strategy that is extremely handy for testing a new backtesting implementation. On a
daily timeframe, over a number of years, with long lookback periods, few signals are generated
on a single stock and thus it is easy to manually verify that the system is behaving as would be
expected.

In order to actually generate such a simulation based on the prior backtesting code we need to
subclass the Strategy object as described in the previous chapter to create the MovingAverageCrossStrategy
object, which will contain the logic of the simple moving averages and the generation of trading
signals.

In addition we need to create the __main__ function that will load the Backtest object and
actually encapsulate the execution of the program. The following file, mac.py, contains both of
these objects.

163

164

The first task, as always, is to correctly import the necessary components. We are importing
nearly all of the objects that have been described in the previous chapter:

#!/usr/bin/python
-*- coding: utf-8 -*-

mac.py

from __future__ import print_function

import datetime

import numpy as np
import pandas as pd
import statsmodels.api as sm

from strategy import Strategy
from event import SignalEvent
from backtest import Backtest
from data import HistoricCSVDataHandler
from execution import SimulatedExecutionHandler
from portfolio import Portfolio

Now we turn to the creation of the MovingAverageCrossStrategy. The strategy requires
both the bars DataHandler, the events Event Queue and the lookback periods for the simple
moving averages that are going to be employed within the strategy. I’ve chosen 100 and 400 as
the "short" and "long" lookback periods for this strategy.

The final attribute, bought, is used to tell the Strategy when the backtest is actually "in
the market". Entry signals are only generated if this is "OUT" and exit signals are only ever
generated if this is "LONG" or "SHORT":

mac.py

class MovingAverageCrossStrategy(Strategy):
"""
Carries out a basic Moving Average Crossover strategy with a
short/long simple weighted moving average. Default short/long
windows are 100/400 periods respectively.
"""

def __init__(
self, bars, events, short_window=100, long_window=400

):
"""
Initialises the Moving Average Cross Strategy.

Parameters:
bars - The DataHandler object that provides bar information
events - The Event Queue object.
short_window - The short moving average lookback.
long_window - The long moving average lookback.
"""
self.bars = bars
self.symbol_list = self.bars.symbol_list
self.events = events
self.short_window = short_window
self.long_window = long_window

165

Set to True if a symbol is in the market
self.bought = self._calculate_initial_bought()

Since the strategy begins out of the market we set the initial "bought" value to be "OUT",
for each symbol:

mac.py

def _calculate_initial_bought(self):
"""
Adds keys to the bought dictionary for all symbols
and sets them to ’OUT’.
"""
bought = {}
for s in self.symbol_list:

bought[s] = ’OUT’
return bought

The core of the strategy is the calculate_signals method. It reacts to a MarketEvent
object and for each symbol traded obtains the latest N bar closing prices, where N is equal to
the largest lookback period.

It then calculates both the short and long period simple moving averages. The rule of the
strategy is to enter the market (go long a stock) when the short moving average value exceeds
the long moving average value. Conversely, if the long moving average value exceeds the short
moving average value the strategy is told to exit the market.

This logic is handled by placing a SignalEvent object on the events Event Queue in each of
the respective situations and then updating the "bought" attribute (per symbol) to be "LONG"
or "OUT", respectively. Since this is a long-only strategy, we won’t be considering "SHORT"
positions:

mac.py

def calculate_signals(self, event):
"""
Generates a new set of signals based on the MAC
SMA with the short window crossing the long window
meaning a long entry and vice versa for a short entry.

Parameters
event - A MarketEvent object.
"""
if event.type == ’MARKET’:

for s in self.symbol_list:
bars = self.bars.get_latest_bars_values(

s, "adj_close", N=self.long_window
)
bar_date = self.bars.get_latest_bar_datetime(s)
if bars is not None and bars != []:

short_sma = np.mean(bars[-self.short_window:])
long_sma = np.mean(bars[-self.long_window:])

symbol = s
dt = datetime.datetime.utcnow()
sig_dir = ""

if short_sma > long_sma and self.bought[s] == "OUT":
print("LONG: %s" % bar_date)
sig_dir = ’LONG’

166

signal = SignalEvent(1, symbol, dt, sig_dir, 1.0)
self.events.put(signal)
self.bought[s] = ’LONG’

elif short_sma < long_sma and self.bought[s] == "LONG":
print("SHORT: %s" % bar_date)
sig_dir = ’EXIT’
signal = SignalEvent(1, symbol, dt, sig_dir, 1.0)
self.events.put(signal)
self.bought[s] = ’OUT’

That concludes the MovingAverageCrossStrategy object implementation. The final task
of the entire backtesting system is populate a __main__ method in mac.py to actually execute
the backtest.

Firstly, make sure to change the value of csv_dir to the absolute path of your CSV file
directory for the financial data. You will also need to download the CSV file of the AAPL stock
(from Yahoo Finance), which is given by the following link (for Jan 1st 1990 to Jan 1st 2002),
since this is the stock we will be testing the strategy on:

http://ichart.finance.yahoo.com/table.csv?s=AAPL&a=00&b=1&c=1990&d=00&e=1
&f=2002&g=d&ignore=.csv

Make sure to place this file in the path pointed to from the main function in csv_dir.
The __main__ function simply instantiates a new backtest object and then calls the simu-

late_trading method on it to execute it:

mac.py

if __name__ == "__main__":
csv_dir = ’/path/to/your/csv/file’ # CHANGE THIS!
symbol_list = [’AAPL’]
initial_capital = 100000.0
heartbeat = 0.0
start_date = datetime.datetime(1990, 1, 1, 0, 0, 0)

backtest = Backtest(
csv_dir, symbol_list, initial_capital, heartbeat,
start_date, HistoricCSVDataHandler, SimulatedExecutionHandler,
Portfolio, MovingAverageCrossStrategy

)
backtest.simulate_trading()

To run the code, make sure you have already set up a Python environment (as described in
the previous chapters) and then navigate the directory where your code is stored. You should
simply be able to run:

python mac.py

You will see the following listing (truncated due to the bar count printout!):

..

..
3029
3030
Creating summary stats...
Creating equity curve...

AAPL cash commission total returns equity_curve drawdown
datetime
2001-12-18 0 99211 13 99211 0 0.99211 0.025383
2001-12-19 0 99211 13 99211 0 0.99211 0.025383
2001-12-20 0 99211 13 99211 0 0.99211 0.025383
2001-12-21 0 99211 13 99211 0 0.99211 0.025383

167

2001-12-24 0 99211 13 99211 0 0.99211 0.025383
2001-12-26 0 99211 13 99211 0 0.99211 0.025383
2001-12-27 0 99211 13 99211 0 0.99211 0.025383
2001-12-28 0 99211 13 99211 0 0.99211 0.025383
2001-12-31 0 99211 13 99211 0 0.99211 0.025383
2001-12-31 0 99211 13 99211 0 0.99211 0.025383
[(’Total Return’, ’-0.79%’),
(’Sharpe Ratio’, ’-0.09’),
(’Max Drawdown’, ’2.56%’),
(’Drawdown Duration’, ’2312’)]
Signals: 10
Orders: 10
Fills: 10

The performance of this strategy can be seen in Fig 15.1:

Figure 15.1: Equity Curve, Daily Returns and Drawdowns for the Moving Average Crossover
strategy

Evidently the returns and Sharpe Ratio are not stellar for AAPL stock on this particular set
of technical indicators! Clearly we have some work to do in the next set of strategies to find a
system that can generate positive performance.

168

15.2 S&P500 Forecasting Trade
In this sectiuon we will consider a trading strategy built around the forecasting engine discussed
in prior chapters. We will attempt to trade off the predictions made by a stock market forecaster.

We are going to attempt to forecast SPY, which is the ETF that tracks the value of the
S&P500. Ultimately we want to answer the question as to whether a basic forecasting algorithm
using lagged price data, with slight predictive performance, provides us with any benefit over a
buy-and-hold strategy.

The rules for this strategy are as follows:

1. Fit a forecasting model to a subset of S&P500 data. This could be Logistic Regression,
a Discriminant Analyser (Linear or Quadratic), a Support Vector Machine or a Random
Forest. The procedure to do this was outlined in the Forecasting chapter.

2. Use two prior lags of adjusted closing returns data as a predictor for tomorrow’s returns. If
the returns are predicted as positive then go long. If the returns are predicted as negative
then exit. We’re not going to consider short selling for this particular strategy.

Implementation

For this strategy we are going to create the snp_forecast.py file and import the following
necessary libraries:

#!/usr/bin/python
-*- coding: utf-8 -*-

snp_forecast.py

from __future__ import print_function

import datetime

import pandas as pd
from sklearn.qda import QDA

from strategy import Strategy
from event import SignalEvent
from backtest import Backtest
from data import HistoricCSVDataHandler
from execution import SimulatedExecutionHandler
from portfolio import Portfolio
from create_lagged_series import create_lagged_series

We have imported Pandas and Scikit-Learn in order to carry out the fitting procedure for the
supervised classifier model. We have also imported the necessary classes from the event-driven
backtester. Finally, we have imported the create_lagged_series function, which we used in
the Forecasting chapter.

The next step is to create the SPYDailyForecastStrategy as a subclass of the Strategy
abstract base class. Since we will "hardcode" the parameters of the strategy directly into the
class, for simplicity, the only parameters necessary for the __init__ constructor are the bars
data handler and the events queue.

We set the self.model_*** start/end/test dates as datetime objects and then tell the class
that we are out of the market (self.long_market = False). Finally, we set self.model to
be the trained model from the create_symbol_forecast_model below:

snp_forecast.py

class SPYDailyForecastStrategy(Strategy):
"""

169

S&P500 forecast strategy. It uses a Quadratic Discriminant
Analyser to predict the returns for a subsequent time
period and then generated long/exit signals based on the
prediction.
"""
def __init__(self, bars, events):

self.bars = bars
self.symbol_list = self.bars.symbol_list
self.events = events
self.datetime_now = datetime.datetime.utcnow()

self.model_start_date = datetime.datetime(2001,1,10)
self.model_end_date = datetime.datetime(2005,12,31)
self.model_start_test_date = datetime.datetime(2005,1,1)

self.long_market = False
self.short_market = False
self.bar_index = 0

self.model = self.create_symbol_forecast_model()

Here we define the create_symbol_forecast_model. It essentially calls the create_lagged_series
function, which produces a Pandas DataFrame with five daily returns lags for each current pre-
dictor. We then consider only the two most recent of these lags. This is because we are making
the modelling decision that the predictive power of earlier lags is likely to be minimal.

At this stage we create the training and test data, the latter of which can be used to test
our model if we wish. I have opted to not output testing data, since we have already trained
the model before in the Forecasting chapter. Finally we fit the training data to the Quadratic
Discriminant Analyser and then return the model.

Note that we could easily replace the model with a Random Forest, Support Vector Machine
or Logistic Regression, for instance. All we need to do is import the correct library from Scikit-
Learn and simply replace the model = QDA() line:

snp_forecast.py

def create_symbol_forecast_model(self):
Create a lagged series of the S&P500 US stock market index
snpret = create_lagged_series(

self.symbol_list[0], self.model_start_date,
self.model_end_date, lags=5

)

Use the prior two days of returns as predictor
values, with direction as the response
X = snpret[["Lag1","Lag2"]]
y = snpret["Direction"]

Create training and test sets
start_test = self.model_start_test_date
X_train = X[X.index < start_test]
X_test = X[X.index >= start_test]
y_train = y[y.index < start_test]
y_test = y[y.index >= start_test]

model = QDA()
model.fit(X_train, y_train)
return model

170

At this stage we are ready to override the calculate_signals method of the Strategy
base class. We firstly calculate some convenience parameters that enter our SignalEvent object
and then only generate a set of signals if we have received a MarketEvent object (a basic sanity
check).

We wait for five bars to have elapsed (i.e. five days in this strategy!) and then obtain the
lagged returns values. We then wrap these values in a Pandas Series so that the predict method
of the model will function correctly. We then calculate a prediction, which manifests itself as a
+1 or -1.

If the prediction is a +1 and we are not already long the market, we create a SignalEvent
to go long and let the class know we are now in the market. If the prediction is -1 and we are
long the market, then we simply exit the market:

snp_forecast.py

def calculate_signals(self, event):
"""
Calculate the SignalEvents based on market data.
"""
sym = self.symbol_list[0]
dt = self.datetime_now

if event.type == ’MARKET’:
self.bar_index += 1
if self.bar_index > 5:

lags = self.bars.get_latest_bars_values(
self.symbol_list[0], "returns", N=3

)
pred_series = pd.Series(

{
’Lag1’: lags[1]*100.0,
’Lag2’: lags[2]*100.0

}
)
pred = self.model.predict(pred_series)
if pred > 0 and not self.long_market:

self.long_market = True
signal = SignalEvent(1, sym, dt, ’LONG’, 1.0)
self.events.put(signal)

if pred < 0 and self.long_market:
self.long_market = False
signal = SignalEvent(1, sym, dt, ’EXIT’, 1.0)
self.events.put(signal)

In order to run the strategy you will need to download a CSV file from Yahoo Finance for SPY
and place it in a suitable directory (note that you will need to change your path below!). We then
wrap the backtest up via the Backtest class and carry out the test by calling simulate_trading:

snp_forecast.py

if __name__ == "__main__":
csv_dir = ’/path/to/your/csv/file’ # CHANGE THIS!
symbol_list = [’SPY’]
initial_capital = 100000.0
heartbeat = 0.0
start_date = datetime.datetime(2006,1,3)

backtest = Backtest(

171

csv_dir, symbol_list, initial_capital, heartbeat,
start_date, HistoricCSVDataHandler, SimulatedExecutionHandler,
Portfolio, SPYDailyForecastStrategy

)
backtest.simulate_trading()

The output of the strategy is as follows and is net of transaction costs:

..

..
2209
2210
Creating summary stats...
Creating equity curve...

SPY cash commission total returns equity_curve \
datetime
2014-09-29 19754 90563.3 349.7 110317.3 -0.000326 1.103173
2014-09-30 19702 90563.3 349.7 110265.3 -0.000471 1.102653
2014-10-01 19435 90563.3 349.7 109998.3 -0.002421 1.099983
2014-10-02 19438 90563.3 349.7 110001.3 0.000027 1.100013
2014-10-03 19652 90563.3 349.7 110215.3 0.001945 1.102153
2014-10-06 19629 90563.3 349.7 110192.3 -0.000209 1.101923
2014-10-07 19326 90563.3 349.7 109889.3 -0.002750 1.098893
2014-10-08 19664 90563.3 349.7 110227.3 0.003076 1.102273
2014-10-09 19274 90563.3 349.7 109837.3 -0.003538 1.098373
2014-10-09 0 109836.0 351.0 109836.0 -0.000012 1.098360

drawdown
datetime
2014-09-29 0.003340
2014-09-30 0.003860
2014-10-01 0.006530
2014-10-02 0.006500
2014-10-03 0.004360
2014-10-06 0.004590
2014-10-07 0.007620
2014-10-08 0.004240
2014-10-09 0.008140
2014-10-09 0.008153
[(’Total Return’, ’9.84%’),
(’Sharpe Ratio’, ’0.54’),
(’Max Drawdown’, ’5.99%’),
(’Drawdown Duration’, ’811’)]
Signals: 270
Orders: 270
Fills: 270

The following visualisation in Fig 15.2 shows the Equity Curve, the Daily Returns and the
Drawdown of the strategy as a function of time:

Note immediately that the performance is not great! We have a Sharpe Ratio < 1 but a
reasonable drawdown of just under 6%. It turns out that if we had simply bought and held SPY
in this time period we would have performed similarly, if slightly worse.

Hence we have not actually gained very much from our predictive strategy once transaction
costs are included. I specifically wanted to include this example because it uses an "end to
end" realistic implementation of such a strategy that takes into account conservative, realistic
transaction costs. As can be seen it is not easy to make a predictive forecaster on daily data
that produces good performance!

172

Figure 15.2: Equity Curve, Daily Returns and Drawdowns for the SPY forecast strategy

Our final strategy will make use of other time series and a higher frequency. We will see that
performance can be improved dramatically after modifying certain aspects of the system.

15.3 Mean-Reverting Equity Pairs Trade
In order to seek higher Sharpe ratios for our trading, we need to consider higher-frequency
intraday strategies.

The first major issue is that obtaining data is significantly less straightforward because high
quality intraday data is usually not free. As stated above I use DTN IQFeed for intraday minutely
bars and thus you will need your own DTN account to obtain the data required for this strategy.

The second issue is that backtesting simulations take substantially longer, especially with
the event-driven model that we have constructed here. Once we begin considering a backtest
of a diversified portfolio of minutely data spanning years, and then performing any parameter
optimisation, we rapidly realise that simulations can take hours or even days to calculate on a
modern desktop PC. This will need to be factored in to your research process.

The third issue is that live execution will now need to be fully automated since we are edging
into higher-frequency trading. This means that such execution environments and code must be
highly reliable and bug-free, otherwise the potential for significant losses can occur.

This strategy expands on the previous interday strategy above to make use of intraday data.
In particular we are going to use minutely OHLCV bars, as opposed to daily OHLCV.

The rules for the strategy are straightforward:

1. Identify a pair of equities that possess a residuals time series which has been statistically
identified as mean-reverting. In this case, I have found two energy sector US equities with
tickers AREX and WLL.

173

2. Create the residuals time series of the pair by performing a rolling linear regression, for a
particular lookback window, via the ordinary least squares (OLS) algorithm. This lookback
period is a parameter to be optimised.

3. Create a rolling z-score of the residuals time series of the same lookback period and use
this to determine entry/exit thresholds for trading signals.

4. If the upper threshold is exceeded when not in the market then enter the market (long or
short depending on direction of threshold excess). If the lower threshold is exceeded when
in the market, exit the market. Once again, the upper and lower thresholds are parameters
to be optimised.

Indeed we could have used the Cointegrated Augmented Dickey-Fuller (CADF) test to identify
an even more accurate hedging parameter. This would make an interesting extension of the
strategy.

Implementation

The first step, as always, is to import the necessary libraries. We require pandas for the
rolling_apply method, which is used to apply the z-score calculation with a lookback win-
dow on a rolling basis. We import statsmodels because it provides a means of calculating the
ordinary least squares (OLS) algorithm for the linear regression, necessary to obtain the hedging
ratio for the construction of the residuals.

We also require a slightly modified DataHandler and Portfolio in order to carry out
minutely bars trading on DTN IQFeed data. In order to create these files you can simply
copy all of the code in portfolio.py and data.py into the new files hft_portfolio.py and
hft_data.py respectively and then modify the necessary sections, which I will outline below.

Here is the import listing for intraday_mr.py:

#!/usr/bin/python
-*- coding: utf-8 -*-

intraday_mr.py

from __future__ import print_function

import datetime

import numpy as np
import pandas as pd
import statsmodels.api as sm

from strategy import Strategy
from event import SignalEvent
from backtest import Backtest
from hft_data import HistoricCSVDataHandlerHFT
from hft_portfolio import PortfolioHFT
from execution import SimulatedExecutionHandler

In the following snippet we create the IntradayOLSMRStrategy class derived from the
Strategy abstract base class. The constructor __init__method requires access to the bars his-
torical data provider, the events queue, a zscore_low threshold and a zscore_high threshold,
used to determine when the residual series between the two pairs is mean-reverting.

In addition, we specify the OLS lookback window (set to 100 here), which is a parameter
that is subject to potential optimisation. At the start of the simulation we are neither long or
short the market, so we set both self.long_market and self.short_market equal to False:

intraday_mr.py

174

class IntradayOLSMRStrategy(Strategy):
"""
Uses ordinary least squares (OLS) to perform a rolling linear
regression to determine the hedge ratio between a pair of equities.
The z-score of the residuals time series is then calculated in a
rolling fashion and if it exceeds an interval of thresholds
(defaulting to [0.5, 3.0]) then a long/short signal pair are generated
(for the high threshold) or an exit signal pair are generated (for the
low threshold).
"""

def __init__(
self, bars, events, ols_window=100,
zscore_low=0.5, zscore_high=3.0

):
"""
Initialises the stat arb strategy.

Parameters:
bars - The DataHandler object that provides bar information
events - The Event Queue object.
"""
self.bars = bars
self.symbol_list = self.bars.symbol_list
self.events = events
self.ols_window = ols_window
self.zscore_low = zscore_low
self.zscore_high = zscore_high

self.pair = (’AREX’, ’WLL’)
self.datetime = datetime.datetime.utcnow()

self.long_market = False
self.short_market = False

The following method, calculate_xy_signals, takes the current zscore (from the rolling
calculation performed below) and determines whether new trading signals need to be generated.
These signals are then returned.

There are four potential states that we may be interested in. They are:

1. Long the market and below the negative zscore higher threshold

2. Long the market and between the absolute value of the zscore lower threshold

3. Short the market and above the positive zscore higher threshold

4. Short the market and between the absolute value of the zscore lower threshold

In either case it is necessary to generate two signals, one for the first component of the pair
(AREX) and one for the second component of the pair (WLL). If none of these conditions are
reached, then a pair of None values are returned:

intraday_mr.py

def calculate_xy_signals(self, zscore_last):
"""
Calculates the actual x, y signal pairings
to be sent to the signal generator.

175

Parameters
zscore_last - The current zscore to test against
"""
y_signal = None
x_signal = None
p0 = self.pair[0]
p1 = self.pair[1]
dt = self.datetime
hr = abs(self.hedge_ratio)

If we’re long the market and below the
negative of the high zscore threshold
if zscore_last <= -self.zscore_high and not self.long_market:

self.long_market = True
y_signal = SignalEvent(1, p0, dt, ’LONG’, 1.0)
x_signal = SignalEvent(1, p1, dt, ’SHORT’, hr)

If we’re long the market and between the
absolute value of the low zscore threshold
if abs(zscore_last) <= self.zscore_low and self.long_market:

self.long_market = False
y_signal = SignalEvent(1, p0, dt, ’EXIT’, 1.0)
x_signal = SignalEvent(1, p1, dt, ’EXIT’, 1.0)

If we’re short the market and above
the high zscore threshold
if zscore_last >= self.zscore_high and not self.short_market:

self.short_market = True
y_signal = SignalEvent(1, p0, dt, ’SHORT’, 1.0)
x_signal = SignalEvent(1, p1, dt, ’LONG’, hr)

If we’re short the market and between the
absolute value of the low zscore threshold
if abs(zscore_last) <= self.zscore_low and self.short_market:

self.short_market = False
y_signal = SignalEvent(1, p0, dt, ’EXIT’, 1.0)
x_signal = SignalEvent(1, p1, dt, ’EXIT’, 1.0)

return y_signal, x_signal

The following method, calculate_signals_for_pairs obtains the latest set of bars for
each component of the pair (in this case 100 bars) and uses them to construct an ordinary least
squares based linear regression. This allows identification of the hedge ratio, necessary for the
construction of the residuals time series.

Once the hedge ratio is constructed, a spread series of residuals is constructed. The next
step is to calculate the latest zscore from the residual series by subtracting its mean and dividing
by its standard deviation over the lookback period.

Finally, the y_signal and x_signal are calculated on the basis of this zscore. If the signals
are not both None then the SignalEvent instances are sent back to the events queue:

intraday_mr.py

def calculate_signals_for_pairs(self):
"""
Generates a new set of signals based on the mean reversion
strategy.

176

Calculates the hedge ratio between the pair of tickers.
We use OLS for this, althought we should ideall use CADF.
"""
Obtain the latest window of values for each
component of the pair of tickers
y = self.bars.get_latest_bars_values(

self.pair[0], "close", N=self.ols_window
)
x = self.bars.get_latest_bars_values(

self.pair[1], "close", N=self.ols_window
)

if y is not None and x is not None:
Check that all window periods are available
if len(y) >= self.ols_window and len(x) >= self.ols_window:

Calculate the current hedge ratio using OLS
self.hedge_ratio = sm.OLS(y, x).fit().params[0]

Calculate the current z-score of the residuals
spread = y - self.hedge_ratio * x
zscore_last = ((spread - spread.mean())/spread.std())[-1]

Calculate signals and add to events queue
y_signal, x_signal = self.calculate_xy_signals(zscore_last)
if y_signal is not None and x_signal is not None:

self.events.put(y_signal)
self.events.put(x_signal)

The final method, calculate_signals is overidden from the base class and is used to check
whether a received event from the queue is actually a MarketEvent, in which case the calculation
of the new signals is carried out:

intraday_mr.py

def calculate_signals(self, event):
"""
Calculate the SignalEvents based on market data.
"""
if event.type == ’MARKET’:

self.calculate_signals_for_pairs()

The __main__ section ties together the components to produce a backtest for the strategy.
We tell the simulation where the ticker minutely data is stored. I’m using DTN IQFeed format.
I truncated both files so that they began and ended on the same respective minute. For this
particular pair of AREX and WLL, the common start date is 8th November 2007 at 10:41:00AM.

Finally, we build the backtest object and begin simulating the trading:

intraday_mr.py

if __name__ == "__main__":
csv_dir = ’/path/to/your/csv/file’ # CHANGE THIS!
symbol_list = [’AREX’, ’WLL’]
initial_capital = 100000.0
heartbeat = 0.0
start_date = datetime.datetime(2007, 11, 8, 10, 41, 0)

backtest = Backtest(
csv_dir, symbol_list, initial_capital, heartbeat,

177

start_date, HistoricCSVDataHandlerHFT, SimulatedExecutionHandler,
PortfolioHFT, IntradayOLSMRStrategy

)
backtest.simulate_trading()

However, before we can execute this file we need to make some modifications to the data
handler and portfolio objects.

In particular, it is necessary to create new files hft_data.py and hft_portfolio.py which
are copies of data.py and portfolio.py respectively.

In hft_data.py we need to rename HistoricCSVDataHandler to HistoricCSVDataHandlerHFT
and replace the names list in the _open_convert_csv_files method.

The old line is:

names=[
’datetime’, ’open’, ’high’,
’low’, ’close’, ’volume’, ’adj_close’

]

This must be replaced with:

names=[
’datetime’, ’open’, ’low’,
’high’, ’close’, ’volume’, ’oi’

]

This is to ensure that the new format for DTN IQFeed works with the backtester.
The other change is to rename Portfolio to PortfolioHFT in hft_portfolio.py. We

must then modify a few lines in order to account for the minutely frequency of the DTN data.
In particular, within the update_timeindex method, we must change the following code:

for s in self.symbol_list:
Approximation to the real value
market_value = self.current_positions[s] * \

self.bars.get_latest_bar_value(s, "adj_close")
dh[s] = market_value
dh[’total’] += market_value

To:

for s in self.symbol_list:
Approximation to the real value
market_value = self.current_positions[s] * \

self.bars.get_latest_bar_value(s, "close")
dh[s] = market_value
dh[’total’] += market_value

This ensures we obtain the close price, rather than the adj_close price. The latter is for
Yahoo Finance, whereas the former is for DTN IQFeed.

We must also make a similar adjustment in update_holdings_from_fill. We need to
change the following code:

Update holdings list with new quantities
fill_cost = self.bars.get_latest_bar_value(

fill.symbol, "adj_close"
)

To:

Update holdings list with new quantities
fill_cost = self.bars.get_latest_bar_value(

fill.symbol, "close"
)

178

The final change is occurs in the output_summary_stats method at the bottom of the file.
We need to modify how the Sharpe Ratio is calculated to take into account minutely trading.
The following line:

sharpe_ratio = create_sharpe_ratio(returns)

Must be changed to:

sharpe_ratio = create_sharpe_ratio(returns, periods=252*6.5*60)

This completes the necessary changes. Upon execution of intraday_mr.py we get the fol-
lowing (truncated) output from the backtest simulation:

..

..
375072
375073
Creating summary stats...
Creating equity curve...

AREX WLL cash commission total returns \
datetime
2014-03-11 15:53:00 2098 -6802 120604.3 9721.4 115900.3 -0.000052
2014-03-11 15:54:00 2101 -6799 120604.3 9721.4 115906.3 0.000052
2014-03-11 15:55:00 2100 -6802 120604.3 9721.4 115902.3 -0.000035
2014-03-11 15:56:00 2097 -6810 120604.3 9721.4 115891.3 -0.000095
2014-03-11 15:57:00 2098 -6801 120604.3 9721.4 115901.3 0.000086
2014-03-11 15:58:00 2098 -6800 120604.3 9721.4 115902.3 0.000009
2014-03-11 15:59:00 2099 -6800 120604.3 9721.4 115903.3 0.000009
2014-03-11 16:00:00 2100 -6801 120604.3 9721.4 115903.3 0.000000
2014-03-11 16:01:00 2100 -6801 120604.3 9721.4 115903.3 0.000000
2014-03-11 16:01:00 2100 -6801 120604.3 9721.4 115903.3 0.000000

equity_curve drawdown
datetime
2014-03-11 15:53:00 1.159003 0.003933
2014-03-11 15:54:00 1.159063 0.003873
2014-03-11 15:55:00 1.159023 0.003913
2014-03-11 15:56:00 1.158913 0.004023
2014-03-11 15:57:00 1.159013 0.003923
2014-03-11 15:58:00 1.159023 0.003913
2014-03-11 15:59:00 1.159033 0.003903
2014-03-11 16:00:00 1.159033 0.003903
2014-03-11 16:01:00 1.159033 0.003903
2014-03-11 16:01:00 1.159033 0.003903
[(’Total Return’, ’15.90%’),
(’Sharpe Ratio’, ’1.89’),
(’Max Drawdown’, ’3.03%’),
(’Drawdown Duration’, ’120718’)]
Signals: 7594
Orders: 7478
Fills: 7478

You can see that the strategy performs adequately well during this period. It has a total
return of just under 16%. The Sharpe ratio is reasonable (when compared to a typical daily
strategy), but given the high-frequency nature of the strategy we should be expecting more. The
major attraction of this strategy is that the maximum drawdown is low (approximately 3%).
This suggests we could apply more leverage to gain more return.

The performance of this strategy can be seen in Fig 15.3:
Note that these figures are based on trading a total of 100 shares. You can adjust the leverage

by simply adjusting the generate_naive_order method of the Portfolio class. Look for the

179

Figure 15.3: Equity Curve, Daily Returns and Drawdowns for intraday mean-reversion strategy

attribute known as mkt_quantity. It will be set to 100. Changing this to 2000, for instance,
provides these results:

..

..
[(’Total Return’, ’392.85%’),
(’Sharpe Ratio’, ’2.29’),
(’Max Drawdown’, ’45.69%’),
(’Drawdown Duration’, ’102150’)]
..
..

Clearly the Sharpe Ratio and Total Return are much more attractive, but we have to endure
a 45% maximum drawdown over this period as well!

15.4 Plotting Performance
The three Figures displayed above are all created using the plot_performance.py script. For
completeness I’ve included the code so that you can use it as a base to create your own perfor-
mance charts.

It is necessary to run this in the same directory as the output file from the backtest, namely
where equity.csv resides. The listing is as follows:

#!/usr/bin/python
-*- coding: utf-8 -*-

plot_performance.py

import os.path

180

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

if __name__ == "__main__":
data = pd.io.parsers.read_csv(

"equity.csv", header=0,
parse_dates=True, index_col=0

).sort()

Plot three charts: Equity curve,
period returns, drawdowns
fig = plt.figure()
Set the outer colour to white
fig.patch.set_facecolor(’white’)

Plot the equity curve
ax1 = fig.add_subplot(311, ylabel=’Portfolio value, %’)
data[’equity_curve’].plot(ax=ax1, color="blue", lw=2.)
plt.grid(True)

Plot the returns
ax2 = fig.add_subplot(312, ylabel=’Period returns, %’)
data[’returns’].plot(ax=ax2, color="black", lw=2.)
plt.grid(True)

Plot the returns
ax3 = fig.add_subplot(313, ylabel=’Drawdowns, %’)
data[’drawdown’].plot(ax=ax3, color="red", lw=2.)
plt.grid(True)

Plot the figure
plt.show()

Chapter 16

Strategy Optimisation

In prior chapters we have considered how to create both an underlying predictive model (such
as with the Suppor Vector Machine and Random Forest Classifier) as well as a trading strategy
based upon it. Along the way we have seen that there are many parameters to such models. In
the case of an SVM we have the "tuning" parameters γ and C. In a Moving Average Crossover
trading strategy we have the parameters for the two lookback windows of the moving average
filters.

In this chapter we are going to describe optimisation methods to improve the performance
of our trading strategies by tuning the parameters in a systematic fashion. For this we will use
mechanisms from the statistical field of Model Selection, such as cross-validation and grid search.
The literature on model selection and parameter optimisation is vast and most of the methods
are somewhat beyond the scope of this book. I want to introduce the subject here so that you
can explore more sophisticated techniques at your own pace.

16.1 Parameter Optimisation
At this stage nearly all of the trading strategies and underlying statistical models have required
one or more parameters in order to be utilised. In momentum strategies using technical indica-
tors, such as with moving averages (simple or exponential), there is a need to specify a lookback
window. The same is true of many mean-reverting strategies, which require a (rolling) lookback
window in order to calculate a regression between two time series. Particular statistical machine
learning models such as a logistic regression, SVM or Random Forest also require parameters in
order to be calculated.

The biggest danger when considering parameter optimisation is that of overfitting a model
or trading strategy. This problem occurs when a model is trained on an in sample retained slice
of training data and is optimised to perform well (by the appropriate performance measure), but
performance degrades substantially when applied to out of sample data. For instance, a trading
strategy could perform extremely well in the backtest (the in sample data) but when deployed
for live trading can be completely unprofitable.

An additional concern of parameter optimisation is that it can become very computationally
expensive. With modern computational systems this is less of an issue than it once was, due to
parallelisation and fast CPUs. However, multiple parameter optimisation can increase compu-
tational complexity by orders of magnitudes. One must be aware of this as part of the research
and development process.

16.1.1 Which Parameters to Optimise?
A statistical-based algorithmic trading model will often have many parameters and different
measures of performance. An underlying statistical learning algorithm will have its own set of
parameters. In the case of a multiple linear or logistic regression these would be the βi coefficients.
In the case of a random forest one such parameter would be the number of underlying decision
trees to use in the ensemble. Once applied to a trading model other parameters might be entry

181

182

and exit thresholds, such as a z-score of a particular time series. The z-score itself might have
an implicit rolling lookback window. As can be seen the number of parameters can be quite
extensive.

In addition to parameters there are numerous means of evaluating the performance of a
statistical model and the trading strategy based upon it. We have defined concepts such as the
hit rate and the confusion matrix. In addition there are more statistical measures such as the
Mean Squared Error (MSE). These are performance measures that would be optimised at the
statistical model level, via parameters relevant to their domain.

The actual trading strategy is evaluated on different criteria, such as compound annual growth
rate (CAGR) and maximum drawdown. We would need to vary entry and exit criteria, as well
as other thresholds that are not directly related to the statistical model. Hence this motivates
the question as to which set of parameters to optimise and when.

In the following sections we are going to optimise both the statistical model parameters, at
the early research and development stage, as well as the parameters associated with a trading
strategy using an underlying optimised statistical model, on each of their respective performance
measures.

16.1.2 Optimisation is Expensive

With multiple real-valued parameters, optimisation can rapidly become extremely expensive, as
each new parameter adds an additional spatial dimension. If we consider the example of a grid
search (to be discussed in full below), and have a single parameter α, then we might wish to
vary α within the set {0.1, 0.2, 0.3, 0.4, 0.5}. This requires 5 simulations.

If we now consider an additional parameter β, which may vary in the range {0.2, 0.4, 0.6, 0.8, 1.0},
then we will have to consider 52 = 25 simulations. Another parameter, γ, with 5 variations brings
this to 53 = 125 simulations. If each paramater had 10 separate values to be tested, this would
be equal to 103 = 1000 simulations. As can be seen the parameter search space can rapidly make
such simulations extremely expensive.

It is clear that a trade-off exists between conducting an exhaustive parameter search and
maintaining a reasonable total simulation time. While parallelism, including many-core CPUs
and graphics processing units (GPUs), have mitigated the issue somewhat, we still need to be
careful when introducing parameters. This notion of reducing parameters is also an issue of
model effectiveness, as we shall see below.

16.1.3 Overfitting

Overfitting is the process of optimising a parameter, or set of parameters, against a particular
data set such that an appropriate performance measure (or error measure) is found to be max-
imised (or minimised), but when applied to an unseen data set, such a performance measure
degrades substantially. The concept is closely related to the idea of the bias-variance dilemma.

The bias-variance dilemma concerns the situation where a statistical model has a trade-off
between being a low-bias model or a low-variance model, or a compromise between the two. Bias
refers to the difference between the model’s estimation of a parameter and the true "population"
value of the parameter, or erroneous assumptions in the statistical model. Variance refers to the
error from the sensitivity of the model to small fluctuations in the training set (in sample data).

In all statistical models one is simultaneously trying to minimise both the bias error and
the variance error in order to improve model accuracy. Such a situation can lead to overfitting
in models, as the training error can be substantially reduced by introducing models with more
flexibility (variation). However, such models can perform extremely poorly on new (out of
sample) data since they were essentially "fit" to the in sample data.

A common example of a high-bias, low-variance model is that of linear regression applied to
a non-linear data set. Additions of new points do not affect the regression slope dramatically
(assuming they are not too far from the remaining data), but since the problem is inherently
non-linear, there is a systematic bias in the results by using a linear model.

A common example of a low-bias, high-variance model is that of a polynomial spline fit
applied to a non-linear data set. The parameter of the model (the degree of the polynomial)

183

could be adjusted to fit such a model very precisely (i.e. low-bias on the training data), but
additions of new points would almost certainly lead to the model having to modify its degree of
polynomial to fit the new data. This would make it a very high-variance model on the in sample
data. Such a model would likely have very poor predictability or inferential capability on out of
sample data.

Overfitting can also manifest itself on the trading strategy and not just the statistical model.
For instance, we could optimise the Sharpe ratio by varying entry and exit threshold parameters.
While this may improve profitability in the backtest (or minimise risk substantially), it would
likely not be behaviour that is replicated when the strategy was deployed live, as we might have
been fitting such optimisations to noise in the historical data.

We will discuss techniques below to minimise overfitting, as much as possible. However one
has to be aware that it is an ever-present danger in both algorithmic trading and statistical
analysis in general.

16.2 Model Selection

In this section we are going to consider how to optimise the statistical model that will underly a
trading strategy. In the field of statistics and machine learning this is known as Model Selection.
While I won’t present an exhaustive discussion on the various model selection techniques, I will
describe some of the basic mechanisms such as Cross Validation and Grid Search that work well
for trading strategies.

16.2.1 Cross Validation

Cross Validation is a technique used to assess how a statistical model will generalise to new data
that it has not been exposed to before. Such a technique is usually used on predictive models,
such as the aforementioned supervised classifiers used to predict the sign of the following daily
returns of an asset price series. Fundamentally, the goal of cross validation is to minimise error
on out of sample data without leading to an overfit model.

In this section we will describe the training/test split and k-fold cross validation, as well as use
techniques within Scikit-Learn to automatically carry out these procedures on statistical models
we have already developed.

Train/Test Split

The simplest example of cross validation is known as a training/test split, or a 2-fold cross
validation. Once a prior historical data set is assembled (such as a daily time series of asset
prices), it is split into two components. The ratio of the split is usually varied between 0.5 and
0.8. In the latter case this means 80% of the data is used for training and 20% is used for testing.
All of the statistics of interest, such as the hit rate, confusion matrix or mean-squared error are
calculated on the test set, which has not been used within the training process.

To carry out this process in Python with Scikit-Learn we can use the sklearn cross_validation
train_test_split method. We will continue with our model as discussed in the chapter on
Forecasting. In particular, we are going to modify forecast.py and create a new file called
train_test_split.py. We will need to add the new import to the list of imports:

#!/usr/bin/python
-*- coding: utf-8 -*-

train_test_split.py

from __future__ import print_function

import datetime

import sklearn

184

from sklearn.cross_validation import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.lda import LDA
from sklearn.metrics import confusion_matrix
from sklearn.qda import QDA
from sklearn.svm import LinearSVC, SVC

from create_lagged_series import create_lagged_series

In forecast.py we originally split the data based on a particular date within the time series:

forecast.py

..

The test data is split into two parts: Before and after 1st Jan 2005.
start_test = datetime.datetime(2005,1,1)

Create training and test sets
X_train = X[X.index < start_test]
X_test = X[X.index >= start_test]
y_train = y[y.index < start_test]
y_test = y[y.index >= start_test]
..

This can be replaced with the method train_test_split from Scikit-Learn in the train_test_split.py
file. For completeness, the full __main__ method is provided below:

train_test_split.py

if __name__ == "__main__":
Create a lagged series of the S&P500 US stock market index
snpret = create_lagged_series(

"^GSPC", datetime.datetime(2001,1,10),
datetime.datetime(2005,12,31), lags=5

)

Use the prior two days of returns as predictor
values, with direction as the response
X = snpret[["Lag1","Lag2"]]
y = snpret["Direction"]

Train/test split
X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.8, random_state=42
)

Create the (parametrised) models
print("Hit Rates/Confusion Matrices:\n")
models = [("LR", LogisticRegression()),

("LDA", LDA()),
("QDA", QDA()),
("LSVC", LinearSVC()),
("RSVM", SVC(
C=1000000.0, cache_size=200, class_weight=None,
coef0=0.0, degree=3, gamma=0.0001, kernel=’rbf’,
max_iter=-1, probability=False, random_state=None,

185

shrinking=True, tol=0.001, verbose=False)
),
("RF", RandomForestClassifier(
n_estimators=1000, criterion=’gini’,
max_depth=None, min_samples_split=2,
min_samples_leaf=1, max_features=’auto’,
bootstrap=True, oob_score=False, n_jobs=1,
random_state=None, verbose=0)

)]

Iterate through the models
for m in models:

Train each of the models on the training set
m[1].fit(X_train, y_train)

Make an array of predictions on the test set
pred = m[1].predict(X_test)

Output the hit-rate and the confusion matrix for each model
print("%s:\n%0.3f" % (m[0], m[1].score(X_test, y_test)))
print("%s\n" % confusion_matrix(pred, y_test))

Notice that we have picked the ratio of the training set to be 80% of the data, leaving the
testing data with only 20%. In addition we have specified a random_state to randomise the
sampling within the selection of data. This means that the data is not sequentially divided
chronologically, but rather is sampled randomly.

The results of the cross-validation on the model are as follows (yous will likely appear slightly
different due to the nature of the fitting procedure):

Hit Rates/Confusion Matrices:

LR:
0.511
[[70 70]
[419 441]]

LDA:
0.513
[[69 67]
[420 444]]

QDA:
0.503
[[83 91]
[406 420]]

LSVC:
0.513
[[69 67]
[420 444]]

RSVM:
0.506
[[8 13]
[481 498]]

186

RF:
0.490
[[200 221]
[289 290]]

It can be seen that the hit rates are substantially lower than those found in the aforemen-
tioned forecasting chapter. Consequently we can likely conclude that the particular choice of
training/test split lead to an over-optimistic view of the predictive capability of the classifier.

The next step is to increase the number of times a cross-validation is performed in order to
minimise any potential overfitting. For this we will use k-fold cross validation.

K-Fold Cross Validation

Rather than partitioning the set into a single training and test set, we can use k-fold cross
validation to randomly partition the the set into k equally sized subsamples. For each iteration
(of which there are k), one of the k subsamples is retained as a test set, while the remaining
k− 1 subsamples together form a training set. A statistical model is then trained on each of the
k folds and its performance evaluated on its specific k-th test set.

The purpose of this is to combine the results of each model into an emsemble by means of
averaging the results of the prediction (or otherwise) to produce a single prediction. The main
benefit of using k-fold cross validation is that the every predictor within the original data set is
used both for training and testing only once.

This motivates a question as to how to choose k, which is now another parameter! Generally,
k = 10 is used but one can also perform another analysis to choose an optimal value of k.

We will now make use of the cross_validation module of Scikit-Learn to obtain the KFold
k-fold cross validation object. We create a new file called k_fold_cross_val.py, which is a
copy of train_test_split.py and modify the imports by adding the following line:

#!/usr/bin/python
-*- coding: utf-8 -*-

k_fold_cross_val.py

from __future__ import print_function

import datetime

import pandas as pd
import sklearn
from sklearn import cross_validation
from sklearn.metrics import confusion_matrix
from sklearn.svm import SVC

from create_lagged_series import create_lagged_series

We then need to make changes the __main__ function by removing the train_test_split
method and replacing it with an instance of KFold. It takes five parameters.

The first isthe length of the dataset, which in this case 1250 days. The second value is K
representing the number of folds, which in this case is 10. The third value is indices, which I
have set to False. This means that the actual index values are used for the arrays returned by
the iterator. The fourth and fifth are used to randomise the order of the samples.

As before in forecast.py and train_test_split.py we obtain the lagged series of the
S&P500. We then create a set of vectors of predictors (X) and responses (y). We then utilise
the KFold object and iterate over it. During each iteration we create the training and testing
sets for each of the X and y vectors. These are then fed into a radial support vector machine
with identical parameters to the aforementioned files and the model is fit.

Finally the hit rate and confusion matrix for each instance of the SVM is output.

187

k_fold_cross_val.py

if __name__ == "__main__":
Create a lagged series of the S&P500 US stock market index
snpret = create_lagged_series(

"^GSPC", datetime.datetime(2001,1,10),
datetime.datetime(2005,12,31), lags=5

)

Use the prior two days of returns as predictor
values, with direction as the response
X = snpret[["Lag1","Lag2"]]
y = snpret["Direction"]

Create a k-fold cross validation object
kf = cross_validation.KFold(

len(snpret), n_folds=10, indices=False,
shuffle=True, random_state=42

)

Use the kf object to create index arrays that
state which elements have been retained for training
and which elements have beenr retained for testing
for each k-element iteration
for train_index, test_index in kf:

X_train = X.ix[X.index[train_index]]
X_test = X.ix[X.index[test_index]]
y_train = y.ix[y.index[train_index]]
y_test = y.ix[y.index[test_index]]

In this instance only use the
Radial Support Vector Machine (SVM)
print("Hit Rate/Confusion Matrix:")
model = SVC(

C=1000000.0, cache_size=200, class_weight=None,
coef0=0.0, degree=3, gamma=0.0001, kernel=’rbf’,
max_iter=-1, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False

)

Train the model on the retained training data
model.fit(X_train, y_train)

Make an array of predictions on the test set
pred = model.predict(X_test)

Output the hit-rate and the confusion matrix for each model
print("%0.3f" % model.score(X_test, y_test))
print("%s\n" % confusion_matrix(pred, y_test))

The output of the code is as follows:

Hit Rate/Confusion Matrix:
0.528
[[11 10]
[49 55]]

188

Hit Rate/Confusion Matrix:
0.400
[[2 5]
[70 48]]

Hit Rate/Confusion Matrix:
0.528
[[8 8]
[51 58]]

Hit Rate/Confusion Matrix:
0.536
[[6 3]
[55 61]]

Hit Rate/Confusion Matrix:
0.512
[[7 5]
[56 57]]

Hit Rate/Confusion Matrix:
0.480
[[11 11]
[54 49]]

Hit Rate/Confusion Matrix:
0.608
[[12 13]
[36 64]]

Hit Rate/Confusion Matrix:
0.440
[[8 17]
[53 47]]

Hit Rate/Confusion Matrix:
0.560
[[10 9]
[46 60]]

Hit Rate/Confusion Matrix:
0.528
[[9 11]
[48 57]]

It is the clear that the hit rate and confusion matrices vary dramatically across the various
folds. This is indicative that the model is prone to overfitting, on this particular dataset. A
remedy for this is to use significantly more data, either at a higher frequency or over a longer
duration.

In order to utilise this model in a trading strrategy it would be necessary to combine each of
these individually trained classifiers (i.e. each of the K objects) into an ensemble average and
then use that combined model for classification within the strategy.

Note that technically it is not appropriate to use simple cross-validation techniques on tem-
porally ordered data (i.e. time-series). There are more sophisticated mechanisms for coping with
autocorrelation in this fashion, but I wanted to highlight the approach so we have used time series
data for simplicity.

189

16.2.2 Grid Search

We have so far seen that k-fold cross validation helps us to avoid overfitting in the data by
performing validation on every element of the sample. We now turn our attention to optimising
the hyper-parameters of a particular statistical model. Such parameters are those not directly
learnt by the model estimation procedure. For instance, C and γ for a support vector machine.
In essence they are the parameters that we need to specify when calling the initialisation of each
statistical model. For this procedure we will use a process known as a grid search.

The basic idea is to take a range of parameters and assess the performance of the statistical
model on each parameter element within the range. To achieve this in Scikit-Learn we can create
a ParameterGrid. Such an object will produce a list of Python dictionaries that each contain a
parameter combination to be fed into a statistical model.

An example code snippet that produces a parameter grid, for parameters related to a support
vector machine, is given below:

>>> from sklearn.grid_search import ParameterGrid
>>> param_grid = {’C’: [1, 10, 100, 1000], ’gamma’: [0.001, 0.0001]}
>>> list(ParameterGrid(param_grid))

[{’C’: 1, ’gamma’: 0.001},
{’C’: 1, ’gamma’: 0.0001},
{’C’: 10, ’gamma’: 0.001},
{’C’: 10, ’gamma’: 0.0001},
{’C’: 100, ’gamma’: 0.001},
{’C’: 100, ’gamma’: 0.0001},
{’C’: 1000, ’gamma’: 0.001},
{’C’: 1000, ’gamma’: 0.0001}]

Now that we have a suitable means of generating a ParameterGrid we need to feed this into
a statistical model iteratively to search for an optimal performance score. In this case we are
going to seek to maximise the hit rate of the classifier.

The GridSearchCV mechanism from Scikit-Learn allows us to perform the actual grid search.
In fact, it allows us to perform not only a standard grid search but also a cross validation scheme
at the same time.

We are now going to create a new file, grid_search.py, that once again uses create_lagged_series.py
and a support vector machine to perform a cross-validated hyperparameter grid search. To this
end we must import the correct libraries:

#!/usr/bin/python
-*- coding: utf-8 -*-

grid_search.py

from __future__ import print_function

import datetime

import sklearn
from sklearn import cross_validation
from sklearn.cross_validation import train_test_split
from sklearn.grid_search import GridSearchCV
from sklearn.metrics import classification_report
from sklearn.svm import SVC

from create_lagged_series import create_lagged_series

As before with k_fold_cross_val.py we create a lagged series and then use the previous
two days of returns as predictors. We initially create a training/test split such that 50% of the

190

data can be used for training and cross validation while the remaining data can be "held out"
for evaluation.

Subsequently we create the tuned_parameters list, which contains a single dictionary de-
noting the parameters we wish to test over. This will create a cartesian product of all parameter
lists, i.e. a list of pairs of every possible parameter combination.

Once the parameter list is created we pass it to the GridSearchCV class, along with the
type of classifier that we’re interested in (namely a radial support vector machine), with a k-fold
cross-validation k-value of 10.

Finally, we train the model and output the best estimator and its associated hit rate scores.
In this way we have not only optimised the model parameters via cross validation but we have
also optimised the hyperparameters of the model via a parametrised grid search, all in one class!
Such succinctness of the code allows significant experimentation without being bogged down by
excessive "data wrangling".

if __name__ == "__main__":
Create a lagged series of the S&P500 US stock market index
snpret = create_lagged_series(

"^GSPC", datetime.datetime(2001,1,10),
datetime.datetime(2005,12,31), lags=5

)

Use the prior two days of returns as predictor
values, with direction as the response
X = snpret[["Lag1","Lag2"]]
y = snpret["Direction"]

Train/test split
X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.5, random_state=42
)

Set the parameters by cross-validation
tuned_parameters = [

{’kernel’: [’rbf’], ’gamma’: [1e-3, 1e-4], ’C’: [1, 10, 100, 1000]}
]

Perform the grid search on the tuned parameters
model = GridSearchCV(SVC(C=1), tuned_parameters, cv=10)
model.fit(X_train, y_train)

print("Optimised parameters found on training set:")
print(model.best_estimator_, "\n")

print("Grid scores calculated on training set:")
for params, mean_score, scores in model.grid_scores_:

print("%0.3f for %r" % (mean_score, params))

The output of the grid search cross validation procedure is as follows:

Optimised parameters found on training set:
SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.001,
kernel=’rbf’, max_iter=-1, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False)

Grid scores calculated on training set:
0.541 for {’kernel’: ’rbf’, ’C’: 1, ’gamma’: 0.001}
0.541 for {’kernel’: ’rbf’, ’C’: 1, ’gamma’: 0.0001}
0.541 for {’kernel’: ’rbf’, ’C’: 10, ’gamma’: 0.001}

191

0.541 for {’kernel’: ’rbf’, ’C’: 10, ’gamma’: 0.0001}
0.541 for {’kernel’: ’rbf’, ’C’: 100, ’gamma’: 0.001}
0.541 for {’kernel’: ’rbf’, ’C’: 100, ’gamma’: 0.0001}
0.538 for {’kernel’: ’rbf’, ’C’: 1000, ’gamma’: 0.001}
0.541 for {’kernel’: ’rbf’, ’C’: 1000, ’gamma’: 0.0001}

As we can see γ = 0.001 and C = 1 provides the best hit rate, on the validation set, for
this particular radial kernel support vector machine. This model could now form the basis of a
forecasting-based trading strategy, as we have previously demonstrated in the prior chapter.

16.3 Optimising Strategies
Up until this point we have concentrated on model selection and optimising the underlying
statistical model that (might) form the basis of a trading strategy. However, a predictive model
and a functioning, profitable algorithmic strategy are two different entities. We now turn our
attention to optimising parameters that have a direct effect on profitability and risk metrics.

To achieve this we are going to make use of the event-driven backtesting software that was
described in a previous chapter. We will consider a particular strategy that has three parameters
associated with it and search through the space formed by the cartesian product of parameters,
using a grid search mechanism. We will then attempt to maximise particular metrics such as the
Sharpe Ratio or minimise others such as the maximum drawdown.

16.3.1 Intraday Mean Reverting Pairs

The strategy of interest to us in this chapter is the "Intraday Mean Reverting Equity Pairs Trade"
using the energy equities AREX and WLL. It contains three parameters that we are capable of
optimising: The linear regression lookback period, the residuals z-score entry threshold and the
residuals z-score exit threshold.

We will consider a range of values for each parameter and then calculate a backtest for the
strategy across each of these ranges, outputting the total return, Sharpe ratio and drawdown
characteristics of each simulation, to a CSV file for each parameter set. This will allow us to
ascertain an optimised Sharpe or minimised max drawdown for our trading strategy.

16.3.2 Parameter Adjustment

Since the event-driven backtesting software is quite CPU-intensive, we will restrict the parameter
range to three values per parameter. This will give us a total of 33 = 27 separate simulations to
carry out. The parameter ranges are listed below:

• OLS Lookback Window - wl ∈ {50, 100, 200}

• Z-Score Entry Threshold - zh ∈ {2.0, 3.0, 4.0}

• Z-Score Exit Threshold - zl ∈ {0.5, 1.0, 1.5}

To carry out the set of simulations a cartesian product of all three ranges will be calculated
and then the simulation will be carried out for each combination of parameters.

The first task is to modify the intraday_mr.py file to include the product method from the
itertools library:

intraday_mr.py

..
from itertools import product
..

We can then modify the __main__ method to include the generation of a parameter list for
all three of the parameters discussed above.

192

The first task is to create the actual paramater ranges for the OLS lookback window, the
zscore entry threshold and the zscore exit threshold. Each of these has three separate variations
leading to a total of 27 simulations.

Once the ranges are created the itertools.product method is used to create a cartesian
product of all variations, which is then fed into a list of dictionaries to ensure that the correct
keyword arguments are passed to the Strategy object.

Finally the backtest is instantiated with the strat_params_list forming the final keyword
argument:

if __name__ == "__main__":
csv_dir = ’/path/to/your/csv/file’ # CHANGE THIS!
symbol_list = [’AREX’, ’WLL’]
initial_capital = 100000.0
heartbeat = 0.0
start_date = datetime.datetime(2007, 11, 8, 10, 41, 0)

Create the strategy parameter grid
using the itertools cartesian product generator
strat_lookback = [50, 100, 200]
strat_z_entry = [2.0, 3.0, 4.0]
strat_z_exit = [0.5, 1.0, 1.5]
strat_params_list = list(product(

strat_lookback, strat_z_entry, strat_z_exit
))

Create a list of dictionaries with the correct
keyword/value pairs for the strategy parameters
strat_params_dict_list = [

dict(ols_window=sp[0], zscore_high=sp[1], zscore_low=sp[2])
for sp in strat_params_list

]

Carry out the set of backtests for all parameter combinations
backtest = Backtest(

csv_dir, symbol_list, initial_capital, heartbeat,
start_date, HistoricCSVDataHandlerHFT, SimulatedExecutionHandler,
PortfolioHFT, IntradayOLSMRStrategy,
strat_params_list=strat_params_dict_list

)
backtest.simulate_trading()

The next step is to modify the Backtest object in backtest.py to be able to handle multiple
parameter sets. We need to modify the _generate_trading_instances method to have an
argument that represents the particular parameter set on creation of a new Strategy object:

backtest.py

..
def _generate_trading_instances(self, strategy_params_dict):

"""
Generates the trading instance objects from
their class types.
"""
print("Creating DataHandler, Strategy, Portfolio and ExecutionHandler for")
print("strategy parameter list: %s..." % strategy_params_dict)
self.data_handler = self.data_handler_cls(

self.events, self.csv_dir, self.symbol_list, self.header_strings
)

193

self.strategy = self.strategy_cls(
self.data_handler, self.events, **strategy_params_dict

)
self.portfolio = self.portfolio_cls(

self.data_handler, self.events, self.start_date,
self.num_strats, self.periods, self.initial_capital

)
self.execution_handler = self.execution_handler_cls(self.events)

..

This method is now called within a strategy parameter list loop, rather than at construction
of the Backtest object. While it may seem wasteful to recreate all of the data handlers, event
queues and portfolio objects for each parameter set, it ensures that all of the iterators have been
reset and that we are truly starting with a "clean slate" for each simulation.

The next task is to modify the simulate_tradingmethod to loop over all variants of strategy
parameters. The method creates an output CSV file that is used to store parameter combina-
tions and their particular performance metrics. This will allow us later to plot performance
characteristics across parameters.

The method loops over all of the strategy parameters and generates a new trading instance on
every simulation. The backtest is then executed and the statistics calculated. These are stored
and output into the CSV file. Once the simulation ends, the output file is closed:

backtest.py

..
def simulate_trading(self):

"""
Simulates the backtest and outputs portfolio performance.
"""
out = open("output/opt.csv", "w")

spl = len(self.strat_params_list)
for i, sp in enumerate(self.strat_params_list):

print("Strategy %s out of %s..." % (i+1, spl))
self._generate_trading_instances(sp)
self._run_backtest()
stats = self._output_performance()
pprint.pprint(stats)

tot_ret = float(stats[0][1].replace("%",""))
cagr = float(stats[1][1].replace("%",""))
sharpe = float(stats[2][1])
max_dd = float(stats[3][1].replace("%",""))
dd_dur = int(stats[4][1])

out.write(
"%s,%s,%s,%s,%s,%s,%s,%s\n" % (

sp["ols_window"], sp["zscore_high"], sp["zscore_low"],
tot_ret, cagr, sharpe, max_dd, dd_dur

)
)

out.close()

On my desktop system, this process takes some time! 27 parameter simulations across more
than 600,000 data points per simulation takes around 3 hours. The backtester has not been
parallelised at this stage, so concurrent running of simulation jobs would make the process a lot
faster. The output of the current parameter study is given below. The columns are given by

194

OLS Lookback, ZScore High, ZScore Low, Total Return (%), CAGR (%), Sharpe, Max DD (%),
DD Duration (minutes):

50,2.0,0.5,213.96,20.19,1.63,42.55,255568
50,2.0,1.0,264.9,23.13,2.18,27.83,160319
50,2.0,1.5,167.71,17.15,1.63,60.52,293207
50,3.0,0.5,298.64,24.9,2.82,14.06,35127
50,3.0,1.0,324.0,26.14,3.61,9.81,33533
50,3.0,1.5,294.91,24.71,3.71,8.04,31231
50,4.0,0.5,212.46,20.1,2.93,8.49,23920
50,4.0,1.0,222.94,20.74,3.5,8.21,28167
50,4.0,1.5,215.08,20.26,3.66,8.25,22462
100,2.0,0.5,378.56,28.62,2.54,22.72,74027
100,2.0,1.0,374.23,28.43,3.0,15.71,89118
100,2.0,1.5,317.53,25.83,2.93,14.56,80624
100,3.0,0.5,320.1,25.95,3.06,13.35,66012
100,3.0,1.0,307.18,25.32,3.2,11.57,32185
100,3.0,1.5,306.13,25.27,3.52,7.63,33930
100,4.0,0.5,231.48,21.25,2.82,7.44,29160
100,4.0,1.0,227.54,21.01,3.11,7.7,15400
100,4.0,1.5,224.43,20.83,3.33,7.73,18584
200,2.0,0.5,461.5,31.97,2.98,19.25,31024
200,2.0,1.0,461.99,31.99,3.64,10.53,64793
200,2.0,1.5,399.75,29.52,3.57,10.74,33463
200,3.0,0.5,333.36,26.58,3.07,19.24,56569
200,3.0,1.0,325.96,26.23,3.29,10.78,35045
200,3.0,1.5,284.12,24.15,3.21,9.87,34294
200,4.0,0.5,245.61,22.06,2.9,12.52,51143
200,4.0,1.0,223.63,20.78,2.93,9.61,40075
200,4.0,1.5,203.6,19.55,2.96,7.16,40078

We can see that for this particular study the parameter values of wl = 50, zh = 3.0 and
zl = 1.5 provide the best Sharpe ratio at S = 3.71. For this Sharpe ratio we have a total return
of 294.91% and a maximum drawdown of 8.04%. The best total return of 461.99%, albeit with a
maximum drawdown of 10.53% is given by the parameter set of wl = 200, zh = 2.0 and zl = 1.0.

16.3.3 Visualisation
As a final task in strategy optimisation, we are now going to visualise the performance charac-
teristics of the backtester using Matplotlib, which is an extremely useful step when carrying out
initial strategy research. Unfortunately we are the situation where we have a three-dimensional
problem and so performance visualisation is not straightforward! However, there are some partial
remedies to the situation.

Firstly, we could fix the value of one parameter and take a "parameter slice" through the
remainder of the "data cube". For instance we could fix the lookback window to be 100 and
then see who the variation in z-score entry and exit thresholds affects the Sharpe Ratio or the
maximum drawdown.

To achieve this we will use Matplotlib. We will read the output CSV and reshape the data
such that we can visualise the results.

Sharpe/Drawdown Heatmap

We will fix the lookback period of wl = 100 and then generate a 3 × 3 grid and "heatmap" of
the Sharpe ratio and maximum drawdown for the variation in z-score thresholds.

In the following code we import the output CSV file. The first task is to filter out the lookback
periods that are not of interest (wl ∈ {50, 200}). Then we reshape the remaining performance
data into two 3 × 3 matrices. The first represents the Sharpe ratio for each z-score threshold
combination while the second represents maximum drawdown.

195

Here is the code for creating the Sharpe Ratio heatmap. We first import Matplotlib and
NumPy. Then we define a function called create_data_matrix which reshapes the Sharpe
Ratio data into a 3 × 3 grid. Within the __main__ function we open the CSV file (make sure
to change the path on your system!) and exclude any lines not referencing a lookback period of
100.

We then create a blue-shaded heatmap and apply the correct row/column labels using the
z-score thresholds. Subsequently we place the actual value of the Sharpe Ratio onto the heatmap.
Finally, we set the ticks, labels, title and then plot the heatmap:

#!/usr/bin/python
-*- coding: utf-8 -*-

plot_sharpe.py

import matplotlib.pyplot as plt
import numpy as np

def create_data_matrix(csv_ref, col_index):
data = np.zeros((3, 3))
for i in range(0, 3):

for j in range(0, 3):
data[i][j] = float(csv_ref[i*3+j][col_index])

return data

if __name__ == "__main__":
Open the CSV file and obtain only the lines
with a lookback value of 100
csv_file = open("/path/to/opt.csv", "r").readlines()
csv_ref = [

c.strip().split(",")
for c in csv_file if c[:3] == "100"

]
data = create_data_matrix(csv_ref, 5)

fig, ax = plt.subplots()
heatmap = ax.pcolor(data, cmap=plt.cm.Blues)
row_labels = [0.5, 1.0, 1.5]
column_labels = [2.0, 3.0, 4.0]

for y in range(data.shape[0]):
for x in range(data.shape[1]):

plt.text(x + 0.5, y + 0.5, ’%.2f’ % data[y, x],
horizontalalignment=’center’,
verticalalignment=’center’,
)

plt.colorbar(heatmap)

ax.set_xticks(np.arange(data.shape[0])+0.5, minor=False)
ax.set_yticks(np.arange(data.shape[1])+0.5, minor=False)
ax.set_xticklabels(row_labels, minor=False)
ax.set_yticklabels(column_labels, minor=False)

plt.suptitle(’Sharpe Ratio Heatmap’, fontsize=18)
plt.xlabel(’Z-Score Exit Threshold’, fontsize=14)

196

plt.ylabel(’Z-Score Entry Threshold’, fontsize=14)
plt.show()

The plot for the maximum drawdown is almost identical with the exception that we use a
red-shaded heatmap and alter the column index in the create_data_matrix function to use
the maximum drawdown percentage data.

#!/usr/bin/python
-*- coding: utf-8 -*-

plot_drawdown.py

import matplotlib.pyplot as plt
import numpy as np

def create_data_matrix(csv_ref, col_index):
data = np.zeros((3, 3))
for i in range(0, 3):

for j in range(0, 3):
data[i][j] = float(csv_ref[i*3+j][col_index])

return data

if __name__ == "__main__":
Open the CSV file and obtain only the lines
with a lookback value of 100
csv_file = open("/path/to/opt.csv", "r").readlines()
csv_ref = [

c.strip().split(",")
for c in csv_file if c[:3] == "100"

]
data = create_data_matrix(csv_ref, 6)

fig, ax = plt.subplots()
heatmap = ax.pcolor(data, cmap=plt.cm.Reds)
row_labels = [0.5, 1.0, 1.5]
column_labels = [2.0, 3.0, 4.0]

for y in range(data.shape[0]):
for x in range(data.shape[1]):

plt.text(x + 0.5, y + 0.5, ’%.2f%%’ % data[y, x],
horizontalalignment=’center’,
verticalalignment=’center’,
)

plt.colorbar(heatmap)

ax.set_xticks(np.arange(data.shape[0])+0.5, minor=False)
ax.set_yticks(np.arange(data.shape[1])+0.5, minor=False)
ax.set_xticklabels(row_labels, minor=False)
ax.set_yticklabels(column_labels, minor=False)

plt.suptitle(’Maximum Drawdown Heatmap’, fontsize=18)
plt.xlabel(’Z-Score Exit Threshold’, fontsize=14)
plt.ylabel(’Z-Score Entry Threshold’, fontsize=14)
plt.show()

197

The heatmaps produced from the above snippets are given in Fig 16.3.3 and Fig 16.3.3:

Figure 16.1: Sharpe Ratio heatmap for z-score entry/exit thresholds

Figure 16.2: Maximum Drawdown heatmap for z-score entry/exit thresholds

At wl = 100 the differences betwee the smallest and largest Sharpe Ratios, as well as the
smallest and largest maximum drawdowns, is readily apparent. The Sharpe Ratio is optimised
for larger entry and exit thresholds, while the drawdown is minimised in the same region. The
Sharpe Ratio and maximum drawdown are at their worst when both the entry and exit thresholds
are low.

198

This clearly motivates us to consider using relatively high entry and exit thresholds for this
strategy when deployed into live trading.

Bibliography

[1] Glen. Arnold. Financial Times Guide to the Financial Markets. Financial Times/Prentice
Hall, 2011.

[2] David. Barber. Bayesian Reasoning and Machine Learning. Cambridge University Press,
2012.

[3] Klein E. Loper E. Bird, S. Natural Language Processing with Python. O’Reilly Media, 2009.

[4] Mao H. Zeng X. Bollen, J. Twitter mood predicts the stock market. CoRR, abs/1010.3003,
2010.

[5] Ernest P. Chan. Quantitative Trading: How to Build Your Own Algorithmic Trading Busi-
ness. John Wiley & Sons, 2009.

[6] Ernest P. Chan. Algorithmic Trading: Winning Strategies And Their Rationale. John Wiley
& Sons, 2013.

[7] Larry. Harris. Trading and Exchanges: Market Microstructure for Practitioners. Oxford
University Press, 2002.

[8] Tibshirani Robert. Friedman Jerome. Hastie, Trevor. The Elements of Statistical Learning:
Data Mining, Inference and Prediction, 2nd Ed. Springer, 2011.

[9] Witten Daniela. Hastie Trevor. Tibshirani Robert. James, Gareth. An Introduction to Sta-
tistical Learning: with applications in R. Springer, 2013.

[10] Barry. Johnson. Algorithmic Trading & DMA: An introduction to direct access trading
strategies. 4Myeloma Press, 2010.

[11] W. McKinney. Python for Data Analysis. O’Reilly Media, 2012.

[12] Rishi K. Narang. Inside The Black Box: The Simple Truth About Quantitative and High-
Frequency Trading, 2nd Ed. John Wiley & Sons, 2013.

[13] Robert. Pardo. The Evaluation and Optimization of Trading Strategies, 2nd Ed. John Wiley
& Sons, 2008.

[14] M. A. Russell. 21 Recipes for Mining Twitter. O’Reilly Media, 2011.

[15] M. A. Russell. Mining the Social Web, 2nd Ed. O’Reilly Media, 2013.

[16] Euan. Sinclair. Volatility Trading, 2nd Ed. John Wiley & Sons, 2013.

[17] Paul. Wilmott. Paul Wilmott Introduces Quantitative Finance, 2nd Ed. John Wiley & Sons,
2007.

199

	I Introducing Algorithmic Trading
	Introduction to the Book
	Introduction to QuantStart
	What is this Book?
	Who is this Book For?
	What are the Prerequisites?
	Software/Hardware Requirements
	Book Structure
	What the Book does not Cover
	Where to Get Help

	What Is Algorithmic Trading?
	Overview
	Advantages
	Disadvantages

	Scientific Method
	Why Python?
	Can Retail Traders Still Compete?
	Trading Advantages
	Risk Management
	Investor Relations
	Technology

	II Trading Systems
	Successful Backtesting
	Why Backtest Strategies?
	Backtesting Biases
	Optimisation Bias
	Look-Ahead Bias
	Survivorship Bias
	Cognitive Bias

	Exchange Issues
	Order Types
	Price Consolidation
	Forex Trading and ECNs
	Shorting Constraints

	Transaction Costs
	Commission
	Slippage
	Market Impact

	Backtesting vs Reality

	Automated Execution
	Backtesting Platforms
	Programming
	Research Tools
	Event-Driven Backtesting
	Latency
	Language Choices
	Integrated Development Environments

	Colocation
	Home Desktop
	VPS
	Exchange

	Sourcing Strategy Ideas
	Identifying Your Own Personal Preferences for Trading
	Sourcing Algorithmic Trading Ideas
	Textbooks
	The Internet
	Journal Literature
	Independent Research

	Evaluating Trading Strategies
	Obtaining Historical Data

	III Data Platform Development
	Software Installation
	Operating System Choice
	Microsoft Windows
	Mac OSX
	Linux

	Installing a Python Environment on Ubuntu Linux
	Python
	NumPy, SciPy and Pandas
	Statsmodels and Scikit-Learn
	PyQt, IPython and Matplotlib
	IbPy and Trader Workstation

	Financial Data Storage
	Securities Master Databases
	Financial Datasets
	Storage Formats
	Flat-File Storage
	Document Stores/NoSQL
	Relational Database Management Systems

	Historical Data Structure
	Data Accuracy Evaluation
	Automation
	Data Availability
	MySQL for Securities Masters
	Installing MySQL
	Configuring MySQL
	Schema Design for EOD Equities
	Connecting to the Database
	Using an Object-Relational Mapper

	Retrieving Data from the Securities Master

	Processing Financial Data
	Market and Instrument Classification
	Markets
	Instruments
	Fundamental Data
	Unstructured Data

	Frequency of Data
	Weekly and Monthly Data
	Daily Data
	Intraday Bars
	Tick and Order Book Data

	Sources of Data
	Free Sources
	Commercial Sources

	Obtaining Data
	Yahoo Finance and Pandas
	Quandl and Pandas
	DTN IQFeed

	Cleaning Financial Data
	Data Quality
	Continuous Futures Contracts

	IV Modelling
	Statistical Learning
	What is Statistical Learning?
	Prediction and Inference
	Parametric and Non-Parametric Models
	Supervised and Unsupervised Learning

	Techniques
	Regression
	Classification
	Time Series Models

	Time Series Analysis
	Testing for Mean Reversion
	Augmented Dickey-Fuller (ADF) Test

	Testing for Stationarity
	Hurst Exponent

	Cointegration
	Cointegrated Augmented Dickey-Fuller Test

	Why Statistical Testing?

	Forecasting
	Measuring Forecasting Accuracy
	Hit Rate
	Confusion Matrix

	Factor Choice
	Lagged Price Factors and Volume
	External Factors

	Classification Models
	Logistic Regression
	Discriminant Analysis
	Support Vector Machines
	Decision Trees and Random Forests
	Principal Components Analysis
	Which Forecaster?

	Forecasting Stock Index Movement
	Python Implementations
	Results

	V Performance and Risk Management
	Performance Measurement
	Trade Analysis
	Summary Statistics

	Strategy and Portfolio Analysis
	Returns Analysis
	Risk/Reward Analysis
	Drawdown Analysis

	Risk and Money Management
	Sources of Risk
	Strategy Risk
	Portfolio Risk
	Counterparty Risk
	Operational Risk

	Money Management
	Kelly Criterion

	Risk Management
	Value-at-Risk

	Advantages and Disadvantages

	VI Automated Trading
	Event-Driven Trading Engine Implementation
	Event-Driven Software
	Why An Event-Driven Backtester?

	Component Objects
	Events
	Data Handler
	Strategy
	Portfolio
	Execution Handler
	Backtest

	Event-Driven Execution

	Trading Strategy Implementation
	Moving Average Crossover Strategy
	S&P500 Forecasting Trade
	Mean-Reverting Equity Pairs Trade
	Plotting Performance

	Strategy Optimisation
	Parameter Optimisation
	Which Parameters to Optimise?
	Optimisation is Expensive
	Overfitting

	Model Selection
	Cross Validation
	Grid Search

	Optimising Strategies
	Intraday Mean Reverting Pairs
	Parameter Adjustment
	Visualisation

