
Learning Non-Convergent Non-Persistent Short-Run MCMC Toward Energy-Based Model
Erik Nijkamp, Mitch Hill, Song-Chun Zhu, Ying Nian Wu

University of California, Los Angeles

Abstract
This paper studies a curious phenomenon in learning energy-based model (EBM)
using MCMC. In each learning iteration, we generate synthesized examples by
running a non-convergent, non-mixing, and non-persistent short-run MCMC
toward the current model, always starting from the same initial distribution
such as uniform noise distribution, and always running a fixed number of
MCMC steps. After generating synthesized examples, we then update the
model parameters according to the maximum likelihood learning gradient, as
if the synthesized examples are fair samples from the current model. We treat
this non-convergent short-run MCMC as a learned generator model or a flow
model. We provide arguments for treating the learned non-convergent short-run
MCMC as a valid model. We show that the learned short-run MCMC is capable
of generating realistic images. More interestingly, unlike traditional EBM or
MCMC, the learned short-run MCMC is capable of reconstructing observed
images and interpolating between images, like generator or flow models.

Maximum Likelihood Learning of EBM
Probability Density
Let x be the signal, such as an image. The energy-based model (EBM) is a
Gibbs distribution

pθ (x) =
1

Z(θ)
exp(fθ (x)), (1)

where we assume x is within a bounded range. fθ (x) is the negative energy and
is parametrized by a bottom-up convolutional neural network (ConvNet) with
weights θ . Z(θ) =

∫
exp(fθ (x))dx is the normalizing constant.

Analysis by Synthesis
Suppose we observe training examples xi, i = 1, ...,n∼ pdata, where pdata is the
data distribution. For large n, the sample average over {xi} approximates the
expectation with respect with pdata.
The log-likelihood is

L(θ) =
1
n

n

∑
i=1

log pθ (xi)
.
= Epdata [log pθ (x)]. (2)

The derivative of the log-likelihood is

L′(θ) = Epdata

[
∂

∂θ
fθ (x)

]
−Epθ

[
∂

∂θ
fθ (x)

]
.
=

1
n

n

∑
i=1

∂

∂θ
fθ (xi)−

1
n

n

∑
i=1

∂

∂θ
fθ (x−i),

(3)

where x−i ∼ pθ (x) for i = 1, ...,n are the generated examples from the current
model pθ (x).
The above equation leads to the “analysis by synthesis” learning algorithm. At
iteration t, let θt be the current model parameters. We generate x−i ∼ pθt (x) for
i = 1, ...,n. Then we update θt+1 = θt +ηtL′(θt), where ηt is the learning rate.

Short-Run MCMC
Sampling by Langevin Dynamics
Generating synthesized examples x−i ∼ pθ (x) requires MCMC, such as
Langevin dynamics, which iterates

xτ+∆τ = xτ +
∆τ

2
f ′θ (xτ)+

√
∆τUτ , (4)

where τ indexes the time, ∆τ is the discretization of time, and Uτ ∼ N(0, I) is
the Gaussian noise term.

Guidance by Energy-based Model
If fθ (x) is multi-modal, then different chains tend to get trapped in different
local modes, and they do not mix. We propose to give up the sampling of pθ .
Instead, we run a fixed number, e.g., K, steps of MCMC, toward pθ , starting
from a fixed initial distribution, p0, such as the uniform noise distribution. Let
Mθ be the K-step MCMC transition kernel. Define

qθ (x) = (Mθ p0)(z) =
∫

p0(z)Mθ (x|z)dz, (5)

which is the marginal distribution of the sample x after running K-step MCMC
from p0.
Instead of learning pθ , we treat qθ to be the target of learning. After learning,
we keep qθ , but we discard pθ . That is, the sole purpose of pθ is to guide a
K-step MCMC from p0.

Learning Short-Run MCMC
The learning algorithm is as follows. Initialize θ0. At learning iteration t, let
θt be the model parameters. We generate x−i ∼ qθt (x) for i = 1, ...,m. Then we
update θt+1 = θt +ηt∆(θt), where

∆(θ) = Epdata

[
∂

∂θ
fθ (x)

]
−Eqθ

[
∂

∂θ
fθ (x)

]
≈

m

∑
i=1

∂

∂θ
fθ (xi)−

m

∑
i=1

∂

∂θ
fθ (x−i).

(6)

The learning procedure is simple. The key to the algorithm is that the generated
{x−i } are independent and fair samples from the model qθ .

Algorithm 1: Learning short-run MCMC.
input :Negative energy fθ (x), training steps T , initial weights θ0, observed

examples {xi}n
i=1, batch size m, variance of noise σ2, Langevin descretization ∆τ

and steps K, learning rate η .
output :Weights θT+1.
for t = 0 : T do

1. Draw observed images {xi}m
i=1.

2. Draw initial negative examples {x−i }m
i=1 ∼ p0.

3. Update observed examples xi← xi + εi where εi ∼ N(0,σ2I).
4. Update negative examples {x−i }m

i=1 for K steps of Langevin dynamics (4).
5. Update θt by θt+1 = θt +g(∆(θt),η , t) where gradient ∆(θt) is (6) and g is ADAM.

Relation to Moment Matching Estimator
We may interpret Short-Run MCMC as Moment Matching Estimator. We outline
the case of a learning the top-filters of a ConvNet:

• Consider fθ (x) = 〈θ ,h(x)〉 where h(x) are the top-layer filter responses
of a pretrained ConvNet with top-layer weights θ .

• For such fθ (x), we have ∂

∂θ
fθ (x) = h(x).

• The MLE estimator of pθ is a moment-matching estimator, i.e.
Ep

θ̂MLE
[h(x)] = Epdata [h(x)].

• If we use the short-run MCMC learning algorithm, it will converge (as-
sume convergence is attainable) to a moment matching estimator, i.e.,
Eq

θ̂MME
[h(x)] = Epdata [h(x)].

• Thus, the learned model q
θ̂MME

(x) is a valid estimator in that it matches to
the data distribution in terms of sufficient statistics defined by the EBM.

Figure 1: The blue curve illustrates the model distributions corresponding to different
values of parameter θ . The black curve illustrates all the distributions that match pdata
(black dot) in terms of E[h(x)]. The MLE p

θ̂MLE
(green dot) is the intersection between

Θ (blue curve) and Ω (black curve). The MCMC (red dotted line) starts from p0 (hollow
blue dot) and runs toward p

θ̂MME
(hollow red dot), but the MCMC stops after K-step,

reaching q
θ̂MME

(red dot), which is the learned short-run MCMC.

Relation to Generator Model
We may consider qθ (x) to be a generative model,

z∼ p0(z); x = Mθ (z,u), (7)

where u denotes all the randomness in the short-run MCMC. For the K-step
Langevin dynamics, Mθ can be considered a K-layer noise-injected residual
network. z can be considered latent variables, and p0 the prior distribution of z.
Due to the non-convergence and non-mixing, x can be highly dependent on z,
and z can be inferred from x.
Interpolation
We can perform interpolation as follows. Generate z1 and z2 from p0(z). Let
zρ = ρz1 +

√
1−ρ2z2. This interpolation keeps the marginal variance of zρ

fixed. Let xρ = Mθ (zρ). Then xρ is the interpolation of x1 = Mθ (z1) and
x2 = Mθ (z2). Figure 3 displays xρ for a sequence of ρ ∈ [0,1].
Reconstruction
For an observed image x, we can reconstruct x by running gradient descent on
the least squares loss function L(z) = ‖x−Mθ (z)‖2, initializing from z0 ∼ p0(z),
and iterates zt+1 = zt−ηtL′(zt). Figure 4 displays the sequence of xt = Mθ (zt).

Capability 1: Synthesis

Figure 2: Generating synthesized examples by running 100 steps of Langevin dynamics
initialized from uniform noise for CelebA (64×64).

Capability 2: Interpolation

Figure 3: Mθ (zρ) with interpolated noise zρ = ρz1 +
√

1−ρ2z2 where ρ ∈ [0,1] on
CelebA (64×64). Left: Mθ (z1). Right: Mθ (z2).

Capability 3: Reconstruction

Figure 4: Mθ (zt) over time t from random initialization t = 0 to reconstruction t = 200
on CelebA. Left: Random initialization. Right: Observed examples.

Conclusion
(1) We propose to shift the focus from convergent MCMC towards efficient,
non-converging, non-mixing, short-run MCMC guided by EBM.
(2) We interpret short-run MCMC as Moment Matching Estimator and explore
the relations to residual networks and generator-based models.
(3) We demonstrate the abilities of interpolation and reconstruction due to
non-mixing MCMC, which goes far beyond the capacity of convergent MCMC.

References
• J Xie*, Y Lu*, SC Zhu, YN Wu. A Theory of Generative ConvNet, ICML 2016.

• R Gao*, Y Lu, J Zhou, SC Zhu, YN Wu. Learning generative ConvNets via
Multigrid Modeling and Sampling, CVPR 2018.

• E Nijkamp*, M Hill*, SC Zhu, YN Wu. On the Anatomy of MCMC-based
Maximum Likelihood Learning of Energy-Based Models, AAAI 2020.

