
Multi-label classification
Introduction to Deep Learning project

University of Helsinki
Faculty of Science

Group 8
Enrico Buratto - 015621911

Giacomo Grandi - 016336894
Rayyan Hassan - 015635635

Academic Year 2021-2022

Contents
1 Introduction . 2

2 Data . 2
2.1 Exploratory Data Analysis . 3
2.2 Dataset class . 4

3 Model . 5
3.1 General approach . 6
3.2 CNN . 6

4 Regularization and optimization . 9
4.1 Regularization . 9
4.2 Optimization . 10

5 Results . 11
5.1 Performance metrics . 11
5.2 Hyperparameter tuning . 12
5.3 Results on the training set . 13
5.4 Second CNN . 14
5.5 Third CNN . 14

6 Conclusion and error analysis . 14

Page 1 of 16

1 Introduction
The goal of the project is to implement a Neural Network capable of recognizing
several objects inside an image. Since a picture can have more than one label,
though, this problem is different from a simple multi-classification task: it is, indeed,
a multi-label multi-classification job.

As demonstrated several times over the years[1], Convolutional Neural Networks
(CNNs) represent the gold standard when dealing with image classification tasks:
their ability to recognize patterns and to take into account spatial coherence in
the input, in fact, fits perfectly with image recognition; using a CNN is, therefore,
the central hinge of our approach to the problem. However, as we will analyze
thoroughly in this report, the possibility of having more than one class inside the
same image brings with it inevitable challenges. As we will also explain later, a
standard Convolutional Neural Network is, in fact, composed by convolutional and
pooling layers followed by a simple Feed Forward Neural Network (FFNN), and the
standard approach when using the latter is to consider the brightest neuron of the
output layer (i.e. the node with higher weight) as the final prediction. However,
for multi-label classification we need (possibly) more than one prediction for each
picture; this is, therefore, a problem that must be, and is, addressed.

This document, which also reflects our approach to the problem, is structured as
follows: first of all, we describe the data exploration we performed in order to btter
understand the domain of the problem. Secondly, we discuss the different CNN
models we have taken into consideration and we used. After that, we will explain all
the regularization and optimization techniques we used and why; finally, we present
the result we were able to achieve and we discuss them.

The entire project has been developed in Python, and both the training and the
testing of the models have been performed on a local machine; the most important
libraries we used are Numpy and Pandas for data handling, scikit-learn as an aid
for one-hot encoding of the labels and, obviously, PyTorch for modeling and using
the neural networks for training and testing tasks.

2 Data
Before starting with explaining the model we implemented and every other choice we
made, a small introduction on the data should be done. This, among other things,
reflects the approach we had with regards to the problem: before starting any other
work, in fact, we performed some exploratory data analysis so that we could know
better the problem itself.

In this section, therefore, we describe this first approach, followed by a brief de-
scription of the custom Dataset class we implemented in order to have a coherent
collection of data that could be used for the training and the other tasks. In the end,
we finally describe the general approach we had with regards to the train-dev-test
split.

Page 2 of 16

2.1 Exploratory Data Analysis
As we were saying in the introduction, in order to have a better understanding of
the domain of the problem, we performed some exploratory data analysis.

First we tried to find out if the images had different formats or dimensions. We
found out that there were some black and white pictures and some color ones, in
particular there are 18758 color pictures and 1422 black and white ones.

Then we wanted to have a look at how the dataset is balanced, counting the number
of occurrences for each of the 14 classes of the set. We used a bar chart to properly
show this splitting of the dataset. As we clearly can see from the chart below, the
dataset is strongly unbalanced: some classes have much more occurrences compared
to others.

Figure 1: Classes’ occurrences of the dataset.

Since the dataset is like this we understood that in order to get nice prediction results
we had to perform some kind of regularization, which will be better explained later
in §4.

Finally we counted the number of class labels for each image and grouped the pic-
tures by the number of labels in them. We obtained what is shown in the table
below.

Page 3 of 16

Number of class labels Number of images
0 9824
1 4161
2 2388
3 3230
4 388
5 9

Table 1: Number of class labels for each image.

Apparently there are a lot of images with no labels at all inside them and no image
representing more than 5 classes.

After this data exploration we achieved a better understanding of our dataset that
let us better organize our code and our network accordingly. The code for this data
exploration can be found in data analysis/analysis.ipynb.

2.2 Dataset class
As mentioned in the beginning of this section, we decided to implement a custom
Dataset class, which is called ImageDataset and can be found in the data loader.py
file inside utils folder. We did this because of the non-trivial structure of the
dataset itself, in which the labels are not reported grouped by image but by labels
themselves.

As explained in the PyTorch documentation[4], a custom Dataset class can be
created by inheritance from the standard PyTorch implementation. Three meth-
ods need then to be overwritten to make the class working: init , len and

getitem ; in addition to this, we implemented another method for convenience,
get labels.

init This is the method that deals with the class fields initialization; it is then the
first method that is called when the new dataset object is initialized. In our imple-
mentation, this method receives the directory path to the labels and to the images,
the classes for the multi-label multi-classification task and, possibly, a Transform
object for data augmentation. It then prepares the label for the training: in order
to do that, we used the preprocessing feature from sklearn[5] to create an encoding
for the labels. This encoding consists in the creation of one-hot vectors in which the
position of an element (0 or 1) represents the class: for instance, if an image belongs
to two classes, say the third and the fifth in the encoding, the one-hot vector will
be [0,0,1,0,1,0,0,0,0,0,0,0,0,0].
After this encoding, the images paths and the labels are loaded into a dataframe for
future utilization, and the transform objects are initialized.

get labels This is a convenience method that we used to find all the labels for each
image. It receives an image name as input and returns the list of classes associated

Page 4 of 16

with that image.

len This is the method that returns the length of the dataset, i.e. its size; since
our is a custom implementation with dataframes, the method has been overwritten
using a suitable procedure to get the length.

getitem This is probably the core method of the class: its purpose is to read an
image in the dataset given an index, apply the transformations and return both the
image (with possibly its transformations stacked in the same image object) and the
target, i.e. the labels. Our implementation is obviously adapted to the data we
have, but nothing in particular has to be reported except for the mode with which
we read the image. As mentioned in the previous section, in fact, some images
were black and white and some had colors: therefore, we changed the mode to
ImageReadMode.RGB in order to get images with a coherent size.

After creating the custom class, we used it to load all the images and labels into
a single object. From this object we then divided the data into the different sets
for training, validation and testing and we loaded them into different DataLoader
objects. This operation is quite standard, as it is often used to iterate over data
during the training and the testing phase; however, some considerations have to be
done.
First of all, the data inside these iterators is not shuffled during the loading; even if
this is a common procedure when dealing with multiple-class classification tasks, for
this problems is not mandatory since the annotations files are randomly composed;
moreover, we found that we had discording results using the exact same model and
hyperparameters, and this was due to the more randomness of data during training
and testing.
Secondly, the data is loaded into batches, and this is mandatory if we want to use
batch training; however, being our dataset a custom object, we had to write also a
collate function. This function is reported in the code with the name of collate fn,
and its purpose is to process the list of samples and zip them in order to form a
batch which can be used by a standard implementation of the training procedure.

Coming to the dataset partition, as already mentioned we adopted different dataset
split techniques to deal with the training and the performance measurement of the
program. Since we didn’t have a proper test set during development, and the dataset
wasn’t too big, we first decided to not have a validation set, but to divide the data
in 80% training set and 20% test set; in this implementation, we used the test set
also as a validation set for the early stopping regularization, which we will discuss
later. However, a boolean flag (USE VALIDATION) in the code can be modified if one
wants to have three different sets.

3 Model
In this section we explain the general approach we had in creating our model; after
this, we describe the different models we tried and the motivations behind, giving

Page 5 of 16

also an insight on why one model could be better than the other.

3.1 General approach
The general approach we had has been to first starting with a simple Feed Forward
Neural Network; we did so just to check if everything else, from the data loading to
the training and testing phases, was working fine. We then built a simple network
with an input layer of size n = 128 ·128 ·3 = 49152, a hidden layer with size n = 128
and an output layer with size n = 14, which is the number of classes of the dataset.
We then ran the first tests and we ascertained that, as expected, the performance
was very low: as already mentioned, images are composed of really sparse yet really
localized data; therefore, a simple FFNN could not work fine.

After this first approach we created three different Convolutional Neural Networks
with different number of layers and different layer sizes; we then used these three
CNNs in our development, applying different regularization and optimization tech-
niques and tweaking the hyperparameters. This, however, is described in the next
sections.

3.2 CNN
As already mentioned, we decided to use Convolutional Neural Networks because
they represent the gold standard when dealing with image recognition; this is due
to several characteristics that differentiate them from standard FFNNs:

• CNNs permit locality recognition: in images, usually, nearby pixels are more
strongly related than distant ones, and convolutional filters enable the recog-
nition of them;

• CNNs hold the parameter sharing feature, i.e. they are able to share the
weights by all neurons in a particular feature map; this, in particular, speeds
up the computation;

• An image can be considered as an enormous set of features, where each feature
corresponds to a pixel position. CNNs are capable to reduce this dimension-
ality using pooling layers; the input layer for the consequent FFNN is then
smaller, and having less sparse data allows to learn faster and better.

As mentioned, we built three different models in order to compare them and see
which model was the best for our problem; these three models are here described,
while the discussion on the results is left for §6.

First CNN The first CNN we built is composed by three convolutional filters, two
pooling layers, a possible dropout layer and a final FFNN with one hidden layer,
which works as the classifier; the first two convolutional layers are followed by a
pooling layer, and the dropout layer is placed between the hidden layer and the
output layer of the FFNN. The convolutional and pooling layers are composed as
follows:

Page 6 of 16

• The first convolutional layer has 3 input channels, 6 output channels and a
kernel size of 4;

• The first pooling layer has a kernel size of 3 and a stride equals to 2;

• The second convolutional layer has 6 input channels, 16 output channels and
a kernel size of 4;

• The second pooling layer has a kernel size of 2 and a stride equals to 2;

• The third convolutional layer has 16 input channels, 32 output channels and
a kernel size of 4.

The scheme of this architecture is here reported.

Figure 2: First CNN architecture.

Second CNN The second CNN we built is composed by the same amount of
layers, with the only exception of the channel sizes, which are different:

• The first convolutional layer has 3 input channels, 6 output channels and a
kernel size of 4;

• The first pooling layer has a kernel size of 3 and a stride equals to 2;

• The second convolutional layer has 6 input channels, 6 output channels and a
kernel size of 4;

• The second pooling layer has a kernel size of 2 and a stride equals to 2;

• The third convolutional layer has 6 input channels, 12 output channels and a
kernel size of 4.

The scheme of this architecture is here reported.

Page 7 of 16

Figure 3: Second CNN architecture.

Third CNN The third CNN we built is composed by a higher number of convolu-
tional and pooling layers. To be more precise, this model has 5 convolutional layers,
5 pooling layers (each one follows a convolutional layer) and the same amount of
hidden layers for the CNN. The sizes of the layers are as follows:

• The first convolutional layer has 3 input channels, 6 output channels and a
kernel size of 4;

• The first pooling layer has a kernel size of 3 and a stride equals to 2;

• The second convolutional layer has 6 input channels, 6 output channels and a
kernel size of 4;

• The second pooling layer has a kernel size of 2 and a stride equals to 2;

• The third convolutional layer has 6 input channels, 12 output channels and a
kernel size of 4;

• The third pooling layer has a kernel size of 2 and a stride equals to 2;

• The fourth convolutional layer has 12 input channels, 24 output channels and
a kernel size of 4;

• The fourth pooling layer has a kernel size of 3 and a stride equals to 1;

• The fifth convolutional layer has 24 input channels, 48 output channels and a
kernel size of 4;

• The fifth pooling layer has a kernel size of 2 and a stride equals to 1.

The scheme of this architecture is here reported.

Figure 4: Third CNN architecture.

After having defined the network, some final explanations on how the training works
must be given. As mentioned in the introduction the main idea of a FFNN, which

Page 8 of 16

is the final part of our network, is to output weights for each class in the set of
classes: a higher weight corresponds to a higher probability of that class to be in
the gold target. In a standard multi-class but single label classification, one gets
the final results by just taking the highest output. In our problem, however, we
need possibly more than one output for each tested sample in the dataset; this is
why we decided to not take only the brightest neuron, but all the neurons with a
weight greater or equal to a certain threshold. This threshold has been calculated
experimentally, doing some trial and error to see which gave us the best results; the
final value for this parameter is discussed in §5.

A final note should be done on the activation function for the output layer of the
FFNN and the loss function we implemented. These are, respectively a sigmoid and
the binary cross entropy loss. The former, in pytorch, is represented by the following
function:

σ(x) = 1
1 + e−x

This function returns values between 0 and 1; in particular, the value is not null
also before x = 0, unlike other functions such as the classical ReLU.

The latter is a loss function that compares each of the predicted probabilities from
the FFNN to an actual class output that can be 0 or 1, unlike for instance the
standard cross-entropy loss. In pytorch, the function then calculates the score that
penalizes the probabilities based on the distance from the expected value.[3]

Even if controversial because apparently not supported by any proper research, this
seemed to be a good combination when dealing with multi-label classification, as
explained in [2]. This was, actually, experimentally verified by us trying also a
softmax activation function combined with a normal cross-entropy loss function;
the results using these two functions were overall worse than the first combination,
yet this is not a scientific and proper proof.

Speaking of, the usage of this combination is also the motivation behind the fact
that we did not use any class weighting during the training: pytorch implementation
of binary cross-entropy loss, in fact, does not provide this functionality, yet the
weighting is only on the batch; however, weighting the samples in a batch would not
have improve anything, thus we relied on the regularization techniques described in
the next section.

4 Regularization and optimization

4.1 Regularization
Regularization is the set of techniques used to prevent overfitting in the model.
This is because the model is incapable of making good prediction on data it has not
previously seen. The dataset for our project was unbalanced thus regularization was
necessary to reduce the bias that would have been present due to the uneven data
distribution. This technique functions by penalizing the model for every parameter

Page 9 of 16

that it adds thus preventing the formation of a complex model. This can be done in a
multitude of ways such as the addition of dropout, weight, decay, data augmentation
and early stopping. Each of these techniques assist the prevention of overfitting in
their own unique way.

• Dropout:

The dropout layer deactivates the neurons which are not overtly useful to the
model thus they reduce the number of parameters being used and increase the
regularization of the network. They are commonly used with CNN. In our
project we applied them after the pooling layers. Their presence is essential
in CNN as without them the probability of overfitting becomes quite high as
the first batch of training data has an inordinately great effect on the overall
learning of the model.

• Weight Decay:

Weight decay adds a penalty term to the cost function of the algorithm so as
to reduce the size of the weight during back propagation. This can also be
referred to as the L-1 regularization technique as it takes advantage of the the
same phenomenon. Thus the size of weights is reduced which in turn prevents
the gradient vanishing problem as well.

• Data Augmentation:

Data Augmentation is especially useful for image classification tasks as it
greatly improves the accuracy of the algorithm. It does this by modifying
the dataset. We have added the following transformations in our model :
Color-jitter, Random adjust brightness, Random invert and Random rotation.
These techniques are especially useful when the dataset is large as is the case
in our project.

• Early Stopping:

The performance of a model usually starts to deteriorate after a certain num-
ber of epochs therefore during training it is a common practice to add early
stopping. Thus we choose an arbitrary value for the training epochs and the
model automatically stops training when the loss starts increasing i.e the per-
formance of the model starts to decrease

4.2 Optimization
The objective of all machine learning and deep learning algorithms is to create
a model which has the lowest possible error when making predictions while also
preventing overfitting. Thus, a proper balance between the two is required.

There are a variety of techniques which can be utilized to optimize the algorithm and
these include hyper-parameter tuning, and optimization algorithms such as ADAM,
ADAM-grad and Stochastic Gradient Descent (SGD). The initial step was to try the

Page 10 of 16

different optimizer algorithms and check which optimizer provides the best results.
In our project, we obtained similar results with both the SGD and ADAM.

SGD is one of the most powerful optimizers as it combines the best qualities of
gradient descent while fixing the problems associated with it. The biggest problem
that came with the use of Gradient Descent (GD) was the high computational time
that it took when working on large data but this was fixed through the utilization
of SGD. This was accomplished by adding randomness in the GD algorithm as the
algorithm now took random data points from the data set after each iteration.

ADAM was the optimizer which provided the best overall results on the performance
metrics of precision, recall and F-1 score. The most significant difference between
ADAM and SGD was that ADAM had a per-parameter learning rate whereas SGD
utilized a constant learning rate for all the weight updates. Moreover, it reduces the
noise on a large dataset as well which was quite advantageous as our dataset was
relatively large. However, the greatest reason behind the utilization of ADAM was
that it was computationally efficient while providing great results. After choosing
the algorithm, the last step is to tune the different hyper-parameters such as learning
rate, batch size, number of epochs, patience and weight decay. More information on
these hyper-parameters and their tuning is mentioned in the next section

5 Results
After defining the model and explaining the choices we made, in this section we
describe the results we achieved on the test dataset with the final model, regulariza-
tion and optimization techniques. Before reporting the results, however, we firstly
describe the performance metrics and the justification for them.

5.1 Performance metrics
Being this problem a multi-label and multi-class classification task, we could not
measure the performance of the system with the usual accuracy score; the latter, in
fact, is calculated on the number of correctly guessed targets divided by the number
of total samples in a test dataset. Even if this could still work, it suffers from a
big problem: it’s hard to state how to count the semi-correct inferred samples; if
we count only the totally correct samples, we would probably get a close-to-zero
accuracy even with a pretty precise model, because only a wrong inferred label on
a sample invalidates the full inference.
We then decided to use the three most typical performance measure for this kind of
problem: precision, recall and F1-score.

Precision This metric is generically defined as number of true positives divided
by the number of true positives and false positives:

precision = TP

TP + FP

Page 11 of 16

In our domain, we express precision as the proportion of correct inferred labels on
the total number of inferred labels; it is, therefore, an expression of how precise our
model is, disregarding how many labels are inferred.

Recall This metric is generically defined as number of true positives divided by
the number of true positives and false negatives:

recall = TP

TP + FN

In our problem, we define recall as the proportion of correct inferred labels among
the total number of correct labels; it is, therefore, an expression of how many correct
labels our model infers.

F1-score This metric has not a real counterpart in reality; it is, in fact, defined
as the harmonic mean of precision and recall:

F1 = 2 ∗ precision ∗ recall

precision + recall

It is however useful to compare the performance of two different systems, as ex-
plained below.

These three metrics enable us to fully understand how the performance of the system
is going: low precision and high recall, for example, mean that the system is inferring
more labels for every image in average but there is a high number of wrong guesses;
vice versa, high precision and low recall mean that the system is probably inferring
less labels, but most of them are correct.
In order to compare the overall performance of two or more versions of the system
(e.g. different hyperparameters or a different network structure), we can finally
use the F1-score: a lower score on system A means that system B is performing
somewhat better, and vice versa.

In our implementation, all the three metrics are computed both during the train-
ing phase and during the testing phase: during the former we get these mea-
surements after every epoch, in order to have an idea of how the training is go-
ing; in the latter, we obviously compute them in order to know the final perfor-
mance of the system. The code for these metrics calculations can be found in
utils/performance measure.py.

5.2 Hyperparameter tuning
After having created the three models, we started tweaking the hyperparameters in
order to find the combination which gives the best results. To be more precise, we
combined these different values for the hyperparameters:

• Batch size: we tried a batch size of 10, 100 and 1000 both for the training
and the testing phase;

Page 12 of 16

• Learning Rate: we tried with learning rates equal to 0.01, 0.05, 0.1 and
0.5;

• Number of epochs: at first, we tried different number of epochs; however,
due to the long time the models with higher epochs were taking, we decided
to use only 40 epochs and tweak the patience parameter instead;

• Patience: we tried with a variable patience between 5 and 15;

• Activation threshold: we tried with an activation threshold of 0.2 and 0.4,
sometimes with some adjustments such as 0.25 or 0.35;

• Weight decay: we tried a weight decay equal to 0.01, 0.1 and 0.5.

With different hyperparameters we got, as expected, different results: this was es-
pecially true for the activation threshold and the weight decay.

For the former, as expected we found that the higher was the threshold, the higher
was the precision metric but the lower was the recall metric; this is due to the
fact that with a higher threshold the results were more accurate but, being the
dataset unbalanced, more biased towards the most frequent classes, while with a
lower threshold the model tended to predict more labels but with less precision.

For the latter we can make the same considerations, but in the other sense: the
lower was the decay, the higher was the precision because the model was more
biased towards the most common classes, while the higher was the decay the less
overfitted the model was, and therefore the higher was the recall.

However, after this automated running we tried to change single hyperparameters
in order to achieve better results. The best results we got on the test set (part of the
set we had for training which has not been used during training itself) are reported
below; the results for the proper training set are reported in file final results.txt
as one-hot-encoded values with the following formatting:

image name class1 class2 ... class14

5.3 Results on the training set
Talking about models, we got overall best results with the first CNN described in
§3. However, here are reported also some good results from the other networks. The
legend to read the tables below is the following:

Page 13 of 16

Parameter Abbreviation
Batch size bs
Learning rate lr
Number of epochs e
Patience p
Activation threshold tr
Weight decay wd
Data augmentation da
Dropout dr

Table 2: Legend for the hyperparameters in the results section.

5.3.1 First CNN

bs lr e p tr wd da dr Prec Rec F1
1000 0.1 40 5 0.2 0.5 Yes No 0.3542 0.5357 0.4263
1000 0.1 40 5 0.3 0.1 Yes No 0.3398 0.6593 0.4483
100 0.1 40 5 0.4 0.1 No No 0.3528 0.5180 0.4182
100 0.5 40 4 0.2 0.1 Yes No 0.3365 0.5620 0.4192
100 0.5 40 5 0.2 0.1 Yes Yes 0.3298 0.6661 0.4399

Table 3: Best results with the first CNN.

5.4 Second CNN

bs lr e p tr wd da dr Prec Rec F1
1000 0.1 40 6 0.2 0.1 No No 0.3356 0.6565 0.4439
1000 0.1 40 5 0.3 0.5 No No 0.3573 0.4893 0.4130

Table 4: Best results with the second CNN.

5.5 Third CNN

bs lr e p tr wd da dr Prec Rec F1
1000 0.1 40 5 0.3 0.1 Yes Yes 0.3561 0.5233 0.4235

Table 5: Best results with the third CNN.

6 Conclusion and error analysis
In conclusion, from the data we have collected we can state the the first CNN
works better than the others, especially than the third one. Therefore, from this
we can infer that for this data and this type of problem, a simpler CNN with less
convolutional layers and with a limited number of neurons in the FFNN is more

Page 14 of 16

appropriate than a more complex one. However, a too small network as the second
is, is not appropriate either.

The explanation we gave ourselves, and we are therefore proposing, relies on how
Convolutional Neural Networks work. Each layer has, in fact, the task of extracting
a certain type of information from the image: the first layer extracts low-level infor-
mation, while the last extracts higher-level features. Adding more layers, sometimes,
enables the recognition of more interesting and useful features, but this is true only
as long as these features are present. Evidently, with the data of this problem this
is not entirely true: the consequence of this is, then, that more layers actually learn
only non-relevant features, bringing the model to be more overfitted and excessively
focused on these non-relevant features.
Regarding the fact that the second CNN gives worse results than the first, the ex-
planation could be similar: while a too big network would likely overfit, a too small
one would probably underfit, and therefore the results are less precise.

From the results, moreover, we can see that the two parameters don’t change usually:

• Patience is basically always equal to 5, except for two cases where it was 4 or
6. This means, as we also verified manually, that the loss on the validation set
is not increasing too often after having reached the minimum;

• Dropout seems to decrease the performance, except for the biggest model we
had. This probably means that the first and the second models are not too
complex, thus dropout is not needed.

We can also see that some parameters especially are crucial to the results, since
different combinations of them influences the performance of the model; this is
particularly true for learning rate, activation threshold and data augmentation:

• The learning rate is highly dependent on the batch size. This is as expected,
since a smaller batch size means that the optimizer is approaching slower to
an optimal solution; therefore, the learning rate can be higher because the two
balance each other;

• The activation threshold is the main responsible for the precision/recall trade-
off: as already explained in this document, a higher threshold means more
correct yet less results, and vice versa. As already mentioned, we very much
played with this parameter, since we had to find the perfect spot which gives
reasonable precision and recall scores;

• Data augmentation is also crucial as this is, as already explained, a useful
technique to avoid overfitting.

Finally, we can say that the results we got are probably not the best that could be
achieved, yet are quite good: even if a precision equals to ∼ 0.35 may seems quite
low, we also have to consider that we are dealing with multiple labels, and the same
holds for recall, therefore we can be satisfied.

Page 15 of 16

References
[1] Neha Sharma, Vibhor Jain, Anju Mishra, An Analysis Of Convolutional Neural

Networks For Image Classification, Procedia Computer Science, Volume 132,
2018, Pages 377-384, https://doi.org/10.1016/j.procs.2018.05.198.

[2] Sigmoid Activation and Binary Cross entropy — A Less Than Perfect Match?,
retrieved from https://towardsdatascience.com/sigmoid-activation-and-binary-
crossentropy-a-less-than-perfect-match-b801e130e31.

[3] Binary Cross Entropy/Log Loss for Binary Classification, retrieved from
https://www.analyticsvidhya.com/blog/2021/03/binary-cross-entropy-log-
loss-for-binary-classification/.

[4] Writing Custom Datasets, DataLoaders and Transforms, retrieved from
https://pytorch.org/tutorials/beginner/data loading tutorial.html.

[5] Preprocessing data, retrieved from https://scikit-
learn.org/stable/modules/preprocessing.html.

Page 16 of 16

	Contents
	Introduction
	Data
	Exploratory Data Analysis
	Dataset class

	Model
	General approach
	CNN

	Regularization and optimization
	Regularization
	Optimization

	Results
	Performance metrics
	Hyperparameter tuning
	Results on the training set
	Second CNN
	Third CNN

	Conclusion and error analysis

