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1 Introduction

The goal of this project is to apply one or more classifiers on a New Particle Formation
(NPF)[1] test dataset in order to predict the event types for days listed in the set. To
put it shortly, we can say that an NPF is the phenomenon of a big particle forming
from other small particles under some conditions. The dataset is composed of different
day measurements of particles concentration in the air around Hyytiälä Forestry Field
Station; furthermore, for each sample of the set a label indicates if that day the NPF
phenomenon happened or not.

This task can be divided into two sub-tasks, which are respectively to build a binary clas-
sifier, that inferes an event/nonevent prediction, and a multi-class classifier that predicts
four classes: Ia, Ib, II, nonevent.

This document, which also reflects our approach to the problem, is structured as follows:
first of all, we describe the data exploration we performed in order to find recurring
patterns and hints that could help us find a suitable model and, in general, a path to
follow. After that, we discuss the different models we have taken into consideration and
we used, and the feature selection we performed on the data. Finally, we present the
results we were able to achieve and we discuss them.

The entire project has been developed in Python with Jupyter Notebooks; the most im-
portant libraries we used are Numpy and Pandas for data management, Scikit-learn for
Machine Learning models and Matplotlib and Seaborn for useful graphs and plots.

2 Data

2.1 Preprocessing

The dataset was initially composed by 458 rows and 104 columns: each row corresponds
to a day in which measurements for several atmospheric properties are performed, while
the columns are divided as follows:

• One column contains the dates of the measurements;

• One column contains an unique id;

• One column contains a boolean condition on the measurements (partlybad);

• 50 columns contain mean values for several measurements, mostly the average con-
centration of different specific molecules at different altitudes;

• 50 columns contain the standard deviation of the associated averages;

• One column contains the class, i.e. Ia, Ib, II, nonevent.

After this really preliminary data analysis, we performed some simple data preprocessing
in order to have a coherent and usable dataset. First of all, we dropped the following
columns:

• id: since the dataset has been loaded in a Pandas Dataframe, this field is useless;

• date: as discussed below, we decided to not use any time-related variable for our
predictions;
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• partlybad: the values in this columns are all the same (i.e. False), hence this
column was useless.

We then separated the training set into two different Dataframes, namely one for the
features and one for the target variable. Since we started with the binary classification,
initially the target variable Dataframe was composed only by event/nonevent values; later
in the project, we also considered the four-class classification.

2.2 Exploratory Data Analysis

After having cleaned the data we started analysing the dataset. Some first useful analysis
has consisted in plotting a pairplot of the entire dataset, in order to find out how the data
was distributed among classes; an example of pairplot for the binary classification scenario
is Figure 1.

Figure 1: Pairplot of some mean features, binary classification.

Another useful insight on the data came from the analysis of correlation between features;
to be more specific, we analyzed the correlations between the mean features, and we
plotted them into the heatmap in Figure 2. From this heatmap it appears clear that some
variables are really correlated: the lighter boxes, in fact, shows that same molecules at
different altitudes are strongly similar between them. This consideration could have been
useful in later feature selection.
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Figure 2: Heatmap of mean features.

Another technique we adopted was to apply unsupervised learning to the data. In par-
ticular, we applied KMeans clustering with a different number of clusters, from 1 to 20;
plotting the total loss in function of the number of clusters (Figure 3) allowed us to see
even more that only a small partition of features is really relevant for the classification
task.

Figure 3: Total KMeans loss in function of number of clusters.

This hypothesis is confirmed also by the percentage of variance explained obtained apply-
ing Principal Component Analysis (PCA) on the dataset; as the reader may notice from
Figure 4, in fact, most part of the variance on not normalized data is explained by the
first three features.
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Figure 4: Percentage and cumulative percentage of variance explained on unnormalized
data.

In order to see if the cumulative percentage was too high on the first few features because
of data being too noisy, we also scaled the features to zero mean and unit variance; the
result we got is reported in Figure 5.

Figure 5: Percentage and cumulative percentage of variance explained on normalized
data.

As the reader can see, the number of features it needs to achieve a cumulative percentage
near to 100% is now 30 on normalized data: this means that some variable had a great
variance that busted the results. However, even with normalized data, it is pretty clear
that only a restricted number of features are really meaningful for the prediction task.
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2.3 Considerations

Some considerations could be made on data before proceeding with model and feature
selection. First of all, it is evident that the number of samples is very small in relation
to the number of features: a hundred is, in fact, a huge number of variables when the
data samples are less than five hundred. Even if we count only the means, without the
standard deviations, we get an amount of fifty features, that are still a lot. This led to the
idea of performing some sort of feature selection an dimensionality reduction on the data.

Another discussion we had was whether to keep the date or not as a feature for the
classification task: this variable, in fact, could have been taken into consideration after
some transformation, if for example there was seasonal variation in the frequency of events,
or an increased probability of events after several nonevent days. However, after trying the
first models we noticed that the performance measurements basically did not change. In
addition to this, keeping the date would have transformed the approach from a relatively
simple classification task to time-series analysis; since this is not in-scope of the project,
we finally decided to not use this feature.

With these considerations in mind, we proceeded in analysing different classification mod-
els.

3 Model selection

3.1 Performance metrics

In order to measure the model performance we used different metrics on which we based
all the work that follows; these are accuracy and perplexity.

Accuracy This metric is defined as the number of correct predictions divided by the
total number of predictions, i.e.

Accuracy = TP + TN

TP + FP + TN + FN

We measured accuracy both for the binary classification and the for the 4-class classifica-
tion tasks.

Perplexity This is a metric that defines how much ”perplexed” to see a certain value is
a model. It is defined as a weighted geometric average of the inverses of the probabilities,
i.e.

Perplexity = e− 1
N

·
∑N

i=1 l(ŷi,yi)

where l(ŷi, yi) is the logarithmic loss of the predicted value and the real value. We measured
perplexity both for the binary classification and the for the 4-class classification tasks; in
the last case, we calculated it on the 4-class model but only for the binary classification.

We performed cross-validation and we calculated the accuracy and the perplexity on
k-fold cross-validation with different k, typically 5 or 10. In order to do this we used
Sklearn’s GridSearchCV[3], that enabled us to build a pipeline that could also sort the
different model performances in order of accuracy or perplexity; the small excerpt of code
in Listing 1 shows an example of pipeline with different hyperparameters in a Random
Forest classifier.
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1 p = GridSearchCV (
2 e s t imator=P i p e l i n e ( [
3 ( ” s c a l e ” , StandardSca ler ( ) ) ,
4 ( ”model” , RandomForestClass i f i e r (
5 max depth=10,
6 max features =5,
7 min samp l e s l ea f =3,
8 m i n s a m p l e s s p l i t =8,
9 n e s t imato r s =170 ,

10 random state =42) )
11 ] ) ,
12 param grid={” mode l n e s t imato r s ” : [ n f o r n in range (99 ,400 ,20) ] } ,
13 s c o r i n g={
14 ” p e r p l e x i t y ” : make scorer ( pe rp l ex i ty , needs proba=True ) ,
15 ” accuracy ” : make scorer ( a c c u r a c y s c o r e )
16 } ,
17 r e f i t=” p e r p l e x i t y ” ,
18 cv=5
19 )

Listing 1: GridSearchCV example

3.2 Baseline

Coming to the model selection, we decided to try a bunch of different selected classification
models to find out what to expect from the classification task and to fix a benchmark that
we could use to measure the more in-depth model analysis progress. In order to do that,
we decided to adopt an Automated Machine Learning process using the TPOT library[2].
This library is a Python AutoML tool that optimizes machine learning pipelines; it can
use a configuration file containing all the pipelines it should try, and then it tries them for
several generations and population sizes.

We did not used this library in a ”total blackbox” fashion; in fact, we properly configured
the library with models we have already seen during our careers. The excerpt of code in
Listing 2 shows the TPOT configuration we used.

It is important to remind that this approach could not be considered as definitive, since it
is data agnostic: we used it only to simplify the procedure of trying different models with
different hyperparameters in the beginning of the project.

1 t p o t c o n f i g = {
2 ' s k l e a r n . l i n e a r m o d e l . L o g i s t i c R e g r e s s i o n ' : {
3 ' penal ty ' : [ ' l 1 ' , ' l 2 ' , ' e l a s t i c n e t ' , ' none ' ] ,
4 'C ' : [ 1 e −2, 1e −1, 1 , 1 e2 ]
5 } ,
6 ' s k l e a r n . ne ighbors . KNe igh bo r sC la s s i f i e r ' : {
7 ' n ne ighbors ' : [ 1 , 2 , 3 , 4 , 5 , 10 , 2 0 ] ,
8 ' l e a f s i z e ' : [ 2 0 , 30 , 50 , 60 , 100 ] ,
9 'p ' : [ 1 , 2 ] ,

10 ' num jobs ' : [ 1 6 ]
11 } ,
12 ' s k l e a r n . svm .SVC ' : {
13 'C ' : [ 0 . 5 , 1 , 2 , 5 , 1 0 ] ,
14 ' k e r n e l ' : [ ' l i n e a r ' , ' poly ' , ' r b f ' , ' s igmoid ' ] ,
15 ' degree ' : [ 1 , 2 , 3 , 4 , 5 ] ,
16 'gamma ' : [ ' s c a l e ' , ' auto ' ]
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17 } ,
18 ' s k l e a r n . na ive bayes . GaussianNB ' : {
19 ' var smoothing ' : [ 1 e −10, 1e −9, 1e −8]
20 } ,
21 ' s k l e a r n . t r e e . D e c i s i o n T r e e C l a s s i f i e r ' : {
22 ' c r i t e r i o n ' : [ ' g i n i ' , ' entropy ' ]
23 } ,
24 ' s k l e a r n . ensemble . RandomForestClass i f i e r ' : {
25 ' n e s t imato r s ' : [ 5 0 , 100 , 200 , 500 ] ,
26 ' c r i t e r i o n ' : [ ' g i n i ' , ' entropy ' ]
27 }
28 }

Listing 2: TPOT configuration

3.3 Chosen models

The TPOT execution showed us that Random Forest could be a possible model for the
binary classification task; the cross-validation accuracies we got were, in fact, higher than
the other models. We then decided to use this model for further investigation, along with
a simple Logistic Regression that we kept for comparison; a brief summary of these two
models follows.

Logistic regression This is one of the simplest models among the classifier algorithms
class. It uses a logistic function, i.e. a sigmoid that models probabilities, to model a
binary dependent variable. Usually this model is used for binary classification, but it
could be extended to a multiple classes scenario assigning a probability to each class so
that the total probability (the sum of class probabilities) is equal to one. We used this
model because its results are really easy to interpret; however, although it works good
with binary classification, we were not able to achieve the same accuracy scores on the
4-class classification task.

Random Forest This is one of the most powerful classification algorithms. It is an
ensemble method that rely on the construction of different decision trees during the train-
ing phase; for classification tasks, the predicted class is the one selected by the majority
of trees. Although this is a really powerful algorithm, its results are usually difficult to
interpret; that is why we decided to use also Logistic Regression along with it.

3.4 Hyperparameter tuning

After fixing which models to use, we tried to do some hyperparameter tuning on the
models in order to see if we were able to achieve higher accuracy and/or lower perplexity.
We proceeded both with the TPOT library, that helped us trying different parameters on
the same model, and manually changing them.
For Random Forest, we tuned the following parameters:

• max depth: maximum depth of the trees;

• max features: the number of features to consider when looking for the best split;

• min samples leaf: the minimum number of samples required to be at a leaf node;

• min samples split: the minimum number of samples required to split an internal
node;
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• n estimators: the numbers of trees in the forest.

Since Logistic Regression was not our designated model, we tweaked only two parameters:

• max iter: maximum number of iterations of the algorithm, in order to let it converge
in every scenario;

• C: inverse of regularization strength, i.e. a value for which smaller values mean
stronger regularization.

4 Feature selection

As already stated in this document, the training dataset has a small amount of samples
and a relatively large set of features; consequently, some dimensionality reduction could be
useful to improve the performance of the classification model. We tried different methods
to increase the number of samples and/or decrease the number of features; these techniques
are described in this section.

4.1 Artificial samples

A first technique we tried was to halve the number of features, removing the standard
deviation columns. Along with this, we tried to expand the number of samples in the
training set combining mean and standard deviation for each variable into a normal distri-
bution, creating then a large amount of artificial samples. The three functions at Listing
3 does that.

1 de f pad data column ( co l , n ) :
2 v=np . column stack ( [ c o l ] ∗ n)
3 v=v . f l a t t e n ( )
4 re turn v
5

6 de f generate Gauss ian sample (m, s , n ) :
7 samples =[ ]
8 f o r i in range (n) :
9 samples . append (np . random . normal ( l o c=m, s c a l e=s ) )

10 re turn np . array ( samples ) . f l a t t e n ( order= 'F ' )
11

12 de f pad npf ( df , n ) :
13 padded=pd . DataFrame ( )
14 f o r name in df . columns :
15 i f name == ” c l a s s 4 ” :
16 padded [ ” c l a s s 4 ” ]= pad data column ( df [ ” c l a s s 4 ” ] , n )
17 i f name [ −5 : ] == ” . mean” :
18 padded [ name ] = generate Gauss ian sample (
19 df [ name ] ,
20 df [ name[: −5]+ ” . std ” ] ,
21 n)
22 re turn padded

Listing 3: Artificial samples building

Unfortunately, we didn’t get the desired results: both accuracy and perplexity scores were,
in fact, more or less the same; this is probably due to the fact that both Logistic Regression
and Random Forest classifiers ignored the standard deviations or, at least, use them in
the right way, building a loss function very similar to the one built with the artificial data.
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4.2 Feature Cherrypicking

Another technique that was attempted was plotting every feature separated by class and
manually observing which features show the highest distinction between classes. This may
not be a very ”professional” method however it yielded fairly good results. Additionally,
features which were nearly identical were reduced by only picking one from the near-
identical group.

In the end, the chosen cherry-picked features were the following: ’UV A’, ’T84’, ’RPAR’,
’RHIRGA42’, ’RGlob’, ’PAR’, ’PTG’, ’O3672’, ’NOx504’, ’NET’, ’H2O42’ and ’CO2504’.

Figure 6: Cherry picked features (mean + 2sd).

By only training our final model only on these features, the classification accuracy and
perplexity on both class4 and event vs. non-event classification tasks were impacted min-
imally. Resulting perplexity was within 0.1 difference and accuracy within 0.01 difference
from using all features.

4.3 Automated PCA

We also tried to apply Principal Component Analysis in an automated fashion: Sklearn’s
PCA class and related functions, in fact, automatically select the best n variables, i.e. the
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features that, in order, explain more percentage of variance.
We first applied PCA on our pipeline trying different numbers of selected features on un-
normalized data: we started halving them and then down until 5. Secondly, we normalized
the data scaling it to zero mean and unit variance, using Sklearn’s standard scaler, and we
proceeded in the same way. Unfortunately, these techniques didn’t improve significantly
our performance measures on the classifiers; more details about these results can be found
in Section 5.

5 Results

5.1 Challenge

We participated in the mid-project challenge using the Random Forest classifier, which
we considered was the best at the moment. The accuracy score we reported has been
calculated using a 10-fold cross-validation; the predictions were made using the model in
Listing 4, that we got after several trial and error.

1 RandomForestClass i f i e r (
2 max features =12,
3 min samp l e s l ea f =3,
4 m i n s a m p l e s s p l i t =12,
5 n e s t imato r s =170
6 )

Listing 4: Random Forest hyperparameters

This model creates a Random Forest with 170 different trees; Figure 7 is an example of
them. Note: yellow stands for nonevent class, green for Ia, blue for Ib and pink for II.

Figure 7: First decision tree in the forest.
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The final results we got for the challenge with this model are:

• Binary classification accuracy: 0.852, that we reported decreased by 0.05 to have
a little slack;

• 4-class classification accuracy: 0.65;

• Perplexity on nonevent: 1.41.

5.2 Final results

As said in Section 4, we didn’t get the desired results using PCA: the performance scores
were, in fact, only slightly higher than the results we got on raw data. These results
are also shown in Figure 8: these graphs represent the 4-class classification accuracy on
function with the number of components in PCA. The image should be read in horizontal
order: in the first row, the first graph refers to logistic regression without normalization
and the second with normalization; the second row is the same but for Random Forest.

Figure 8: Accuracy vs PCA components

As the reader may notice from the previous figure and from Table 1, we actually got some
improvements in accuracy. However, the maximum accuracy gain we got was less than
2%, and this is not enough to say that the models are actually better; in fact, this little
fluctuation is most likely due to the random parts of the algorithms, and thus cannot be
trusted.

Without normalization With normalization
Logistic Regression components=8, acc=0.66 components=38, acc=0.65
Random Forest components=30, acc=0.67 component=13, acc=0.67

Table 1: Performance results with PCA
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6 Conclusion

From the investigation of the data as well as the results we conclude that the source data
is not sufficient to accurately predict a full classification of events into all four categories.
Even the limited classification of events vs. non-events only reaches 85%. This is still not
an optimal classification accuracy and would not be suitable for systems in production
which rely on accurate event type information. Observing these accuracy results and
the research taken across various classification models, we conclude that better data is
necessary for accurate predictions.

We additionally concluded that the Random Forest model was a well-suited classification
model for this data as it produced consistently good results irrespective of data normal-
ization or limited feature selection. If anything, it showed the best results when trained
on the complete feature set, indication that it would likely scale well for larger numbers
of new features, and would pick up on any class-indicative features without the need for
pre-processing the data for either training or classification.

7 Discussion

With the data as it is, we are satisfied with the results we achieved. The reported Random
Forest model can be trained on raw measurement data with no normalization without any
degradation in performance. Our previous research did reveal that other models such as
logistic regression performed better on a normalized set of limited features, however we
have outperformed those results using un-normalized data with full features. In hindsight
there may have been a better result possible through the use of normalized data and
limited features through the use of some other models with better tuned parameters.

7.1 Self-grading

7.1.1 Deliverables Grading

The overall grade we would like to give to our deliverables is a 4/5.

We believe that we have presented an in-depth analysis of the data as well as a solid
final model based on what we learned from our research. We analysed a wide range of
classification models and feature selection processes and documented the decisions and
conclusions we reached from our analysis and trials.

The short pitch presentation presented a general overview of the project. Perhaps it did
not cover as many details as it could, mostly due to the limited duration time, however we
do believe some presentation elements could have been improved such as presenting more
concrete data as opposed to narrative about our processes. The visuals of the presentation
could also use some more work if we wanted to make it presentable for the general audience.

The final challenge results achieved performed at a significantly above-average level. There-
fore we believe that no points should be deduced in this area. We are satisfied with the
overall result and the final results was reached through consistent group teamwork.

Finally, the final report presents a fairly in-depth overview of our process, thinking and
conclusions. It covers the final model and how we reached it as well as general conclusions
about the data and the problem at hand. We believe that some parts could have been
presented better such as the evaluation of various other models which we have tested
internally. A portion of our model testing results were never systematically recorded, so
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they never made it into the report. We should have been more consistent with recording
the various trials and errors we had along the way as they could have provided additional
insight into our decisions.

7.1.2 Group Grading

Regarding the group as a whole, we think that our group deserves a full 5/5: in fact,
we collaborated in keeping the environment clean and performing, and in our opinion we
worked good together. We were able to maintain our goals on meetings: in fact, we met
regularly on Google Meet in order to update the others on the work we did, to divide
the subsequent tasks and to reason together on the problems. These meetings lasted a
reasonable amount of time, enough to do what we had to do and not so much to get bored
or tired; during these appointments every component of the group brought his personal
experiences on previous courses and experiences that could be useful for our work, and
we discussed about them taking into account everyone’s ideas. Moreover, we can say that
our group also helped us in understanding and expand individual knowledge.
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