
University of Technology of Belfort-Montbéliard
Distributed Artificial Intelligence and Knowledge Laboratory

INTERNSHIP REPORT
for

The fourth year of Dipl. Ing.
in Computer Science

presented by

Hongkun ZHEN

Image Data Anonymization for the “EU
Long-term Dataset with Multiple Sensors

for Autonomous Driving”

Report defended on February 28, 2020 before the committee:

Yassine RUICHEK Professor, UTBM Follower
Zhi YAN Assistant Professor, UTBM Tutor
Stephane GALLAND Professor, UTBM Examiner

Acknowledgments

I would like to express my gratitude to all those who helped me during the intern-
ship.

My deepest gratitude goes first and foremost to Dr. Zhi Yan, my tutor, for
giving me a good project, and patiently talking with me on an equal footing in
the process, guiding me to solve problems, developing my way of thinking, and
teaching my way of learning. He has walked me through all the stages of writing
of this thesis. Without his consistent and illuminating instruction, this thesis could
not have reached its present form.

I would like to express my gratitude to Prof. Yassine Ruichek, for offering me
this internship and having followed me throughout it.

I’m greatly indebted to the EPAN Research Group. It has advanced technology
and a strong academic atmosphere. Here I have the opportunity to communicate
with experts from various places to learn the latest knowledge in multiple fields.I
can also improve my expertise day by day under the guidance of my tutor.

I want to thank my colleagues for providing me with life and technical assis-
tance during the internship, making my internship very smooth and enjoyable, and
leaving many unforgettable memories.

I should finally like to express my gratitude to my girlfriend Miss. Lian Jie
who supported me during my internship, stayed with me, and worked hard to cook
for me, giving me a lot of encouragement.

Finally, I would like to thank my girlfriend Miss. NAME-HERE, who sup-
ported me as always, stayed with me and worked hard to cook for me, which gave
me a lot of encouragement.

Abstract

To comply with the EU’s latest privacy protection regulations, i.e. the General
Data Protection Regulation (EU) 2016/679 (GDPR)1, we need to remove all pri-
vate information from public data. The main goal of my internship is to blur the
faces and license plates in the images of the “EU Long-term Dataset with Mul-
tiple Sensors for Autonomous Driving2” [8]. Due to the huge amount of data to
be processed, manual removal is not advisable. To this end, we have developed
a deep learning based efficient automatic image anonymization system3. The en-
tire system (pipeline) consists of three modules. The first module is to extract the
image data from the ROS (Robot Operating System) [2] rosbag and make sure to
extract all the details about the image including timestamp, playback time, frames,
etc. The second module uses deep learning-based methods to detect the face [4]
and the license plate [5] of the image data and blur the recognized area. The third
module is to record the image data back to the ROS rosbag along with all the de-
tailed information such as the frequency and timestamp of the original data. The
developed system is used to process images from the two stereo and the two fish-
eye cameras in the dataset. The difficulty and focus of the entire internship is the
processing of the data recorded by the Bumblebee XB3 stereo camera, while the
latter outputs three overlapping shadow images in Bayer format. We compared
several methods and chose the best one to parse rosbag. We also tried various
deep learning frameworks and chose the most suitable for our system. We made a
comprehensive study of the data recorded by Bumblebee XB3 with reference to a
large amount of literature and related source code.

1https://eur-lex.europa.eu/eli/reg/2016/679/oj
2https://epan-utbm.github.io/utbm_robocar_dataset/
3https://github.com/epan-utbm/image_anonymization

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://epan-utbm.github.io/utbm_robocar_dataset/
https://github.com/epan-utbm/image_anonymization

Contents

1 Introduction 1
1.1 CIAD . 1
1.2 Background . 1
1.3 Structure of the Report . 3

2 Technical Basis 4
2.1 ROS . 4
2.2 YOLOv3 . 5

3 Extraction and Recording of rosbag 7
3.1 ROS publisher and subscriber . 7

3.1.1 Feasibility study . 7
3.1.2 Test . 8

3.2 Launch file . 8
3.2.1 Feasibility study . 9
3.2.2 Test . 9

3.3 rosbag C++ API . 10
3.3.1 Feasibility study . 10
3.3.2 Test . 10

3.4 Analysis and operation . 11
3.5 Discussion . 13

4 Face and License Plate Removal 15
4.1 Comparison and analysis . 15
4.2 Face recognition yoloface . 17

4.2.1 Application . 17
4.2.2 Image recognition area blur processing 18
4.2.3 test . 20

4.3 License Plate Detection and Recognition 21
4.3.1 Application . 21
4.3.2 Image recognition area blur processing 22

iii

CONTENTS iv

4.3.3 test . 22
4.4 Discussion . 23

5 Bumblebee XB3 24
5.1 Three-track separation of images 25

5.1.1 Extraction and separation 25
5.1.2 Bumblebee xb3 ros package 26

5.2 Three image merge . 27
5.2.1 Three channels of RGB 27
5.2.2 RGB to Bayer filter . 28
5.2.3 Discussion . 30

6 System Integration 32
6.1 Data collection . 32
6.2 Topic of information . 32
6.3 Automation script . 33

7 Experiments 34

8 Conclusion 36

Bibliography 37

List of Figures

1.1 The UTBM autonomous driving platform [8]. 2

2.1 Composition of ROS[6] . 4
2.2 YOLOv3 network Architecture [4]. 6

4.1 Progress and comparison of target detection algorithms 16
4.2 Performance on the same GPU[3] 17
4.3 Test Results . 18
4.4 alpr-unconstrained test results 21

5.1 Picture taken by Bumblebee XB3 24
5.2 stereo-image-proc working process 26
5.3 Bayer color distribution[7] . 29
5.4 The process of RGB to Bayer filter[7] 29
5.5 Results from my Bayer to RGB algorithm 30

7.1 Experimental results . 35

v

List of Algorithms

1 open rosbag and extract image . 12
2 Record new rosbag . 13

3 Mosaic in designated area . 19
4 Oval Mosaic in designated area 20

5 Merge three images into one . 27

6 File traversal under a directory . 33

vi

Chapter 1

Introduction

1.1 CIAD
I do the internship in the CIAD laboratory. The CIAD (Distributed Artificial In-
telligence and Intelligence) laboratory is a public research laboratory under the
supervision of the University of Burgundy and the supervision of the University
of Technology of Belfort-Montbéliard. It is a laboratory of the University of Bur-
gundy Franche-Comté. This laboratory is made up of around 70 people (Teacher-
Researchers, Doctoral Students, Engineers, Post-Doctoral Students, Administra-
tive Staff). Our goal is to design Hybrid, Distributed and Explainable Artificial
Intelligence. Our activity is made up of two parts. The first concerns research on
scientific obstacles and the publication of our approaches in international journals
and conferences in the field. The second concerns the development of proofs of
concepts (TRL 7 level) based on our research results and the support of compa-
nies (from spin-off to multinational through start-ups) in their innovation process
technology.

1.2 Background
Since Google’s self-driving car obtained the first U.S. self-driving vehicle license
in May 2012, self-driving cars have become an important direction for automobile
development. The accident rate of self-driving cars can almost drop to zero. Even
if it is disturbed by the incidence of other automobile accidents, the rapid growth
of the market share of autonomous vehicles will steadily reduce the overall acci-
dent rate. The driving mode of self-driving cars can be more energy efficient, so
traffic congestion and air pollution will be reduced. The popularity of self-driving
cars will mean that the government’s investment in transportation infrastructure
such as ultra-wide lanes, guardrails, speed bumps, wide shoulders and even stop

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: The UTBM autonomous driving platform [8].

signs can be greatly reduced.
Autonomous driving is one of the research directions of the CIAD laboratory.

The lab has a multi-sensor platform (see Figure 1.1) for data collection, devel-
oped by [8]. It is equipped with 11 heterogeneous sensors, including two stereo
cameras, two fisheye cameras, three 3D lidars, a 2D lidar, a radar, a GNSS-RTK,
and an IMU (Inertial Measurement Unit), which allow the vehicle to get a wealth
of information about the surrounding traffic. Datasets are indispensable for the
advancement of autonomous driving research. The EU long dataset was first re-
leased as a public non-commercial use dataset in November 2018. However, the
first release did not contain any image information. This is mainly subject to the
EU’s latest privacy protection regulation, i.e. i.e. the General Data Protection
Regulation (EU) 2016/679 (GDPR).

The GDPR is a regulation in EU law on data protection and privacy in the Eu-
ropean Union (EU) and the European Economic Area (EEA). Controllers and pro-
cessors of personal data must put in place appropriate technical and organizational
measures to implement the data protection principles. Business processes that
handle personal data must be designed and built with consideration of the princi-
ples and provide safeguards to protect data (for example, using pseudonymization
or full anonymization where appropriate). Data controllers must design informa-
tion systems with privacy in mind, for instance use the highest-possible privacy
settings by default, so that the datasets are not publicly available by default, and
cannot be used to identify a subject. The GDPR was adopted on 14 April 2016,

CHAPTER 1. INTRODUCTION 3

and became enforceable beginning 25 May 2018. As the GDPR is a regulation,
not a directive, it is directly binding and applicable. So we need to perform pri-
vacy processing on the data before publishing the data set. We need to remove all
content that concerns the privacy of others, mainly faces and license plates. After
the data is collected, it is stored in the rosbag data package under the ros system.
Our purpose is to process the face and license plate data of the images in rosbag,
and make sure that other data of rosbag is unchanged. Such as the timestamp of
the message, the playing time of rosbag.

1.3 Structure of the Report
The remainder of this report is organized as follows. Chapter 2 introduces the
main technologies we use and what we have learned. The scope is slightly broader,
because the entire project involves many details, and some of which are not the
main technology will not be introduced, and most of them are very basic. Chapter
3 mainly analyzes the rosbag, which uses a lot of ROS system technologies. In
order to choose the best method, we have tried many ROS frameworks and tools,
and will present many analyses and comparisons. The purpose is to quickly and
easily open rosbag and extract image data. One can then re-record an identical
rosbag. Chapter 4 covers the application of deep learning packages. After com-
paring many deep learning algorithms on the Internet, we chose one and used it
to identify the parts of the data that need to be processed. In order to process
the identified part in time, we also rewritten the identification package and did a
lot of testing. Chapter 4 introduces the application of the community provided
deep learning software. After comparing many deep learning toolkits available on
the Internet, we chose an algorithm and used it to detect the face and the licence
plate in the image data that need to be processed. In order to process the detected
subjects in a timely manner, we have also rewritten the related detection packages
and performed extensive testing. Chapter 5 introduces a special image process-
ing. The data captured by the Bumblebee XB3 stereo camera saves the images
from three different lens into a single image. This type of image requires special
processing and therefore making it difficult to record into new rosbags. This part
is the hardest part during my internship. Chapter 6 describes the integration of
different modules into an entire system.

Chapter 2

Technical Basis

2.1 ROS
The ROS provides libraries and tools to help software developers create robot
applications(see Figure 2.1). It provides hardware abstraction, device drivers, li-
braries, visualizers, message-passing, package management, and more. ROS is
licensed under an open source, BSD license. Software in the ROS Ecosystem can
be separated into three groups:

• language-and platform-independent tools used for building and distributing
ROS-based software;

• ROS client library implementations such as roscpp, rospy, and roslisp;

• packages containing application-related code which uses one or more ROS
client libraries.

Figure 2.1: Composition of ROS[6]

Our entire system is based on the ROS middleware, mainly with C++ pro-
gramming. The libraries used include:

4

CHAPTER 2. TECHNICAL BASIS 5

• OpenCV1: is a library of programming functions mainly aimed at real-time
computer vision. Widely used in image processing and supports the deep
learning frameworks TensorFlow, Torch / PyTorch

• cvbridge: is a ROS library that provides an interface between ROS and
OpenCV. It is used to convert between ROS image messages and OpenCV
images.

• rosbag: is a command line tool used to record and playback ROS mes-
sage data, which log ROS messages by listening to topics and recording
messages as they come in. Playing messages back from a bag is largely
the same as having the original nodes which produced the data in the ROS
computation graph, making bags a useful tool for recording data to be used
in later development.

• rviz, is a three-dimensional visualizer used to visualize robots, the environ-
ments they work in, and sensor data. It is a highly configurable tool, with
many different types of visualizations and plugins.

• catkin, is the ROS build system, having replaced rosbuild as of ROS Groovy.
catkin is based on CMake, and is similarly cross-platform, open source, and
language-independent.

• roslaunch, is a tool used to launch multiple ROS nodes both locally and re-
motely, as well as setting parameters on the ROS parameter server. roslaunch
configuration files, which are written using XML can easily automate a
complex startup and configuration process into a single command.

2.2 YOLOv3
Deep learning is an artificial intelligence function that imitates the workings of the
human brain in processing data and creating patterns for use in decision making.
Deep learning is a subset of machine learning in artificial intelligence (AI) that
has networks capable of learning unsupervised from data that is unstructured or
unlabeled. Also known as deep neural learning or deep neural network(see Figure
2.2). YOLOv3 [4] is an artificial intelligence recognition model developed based
on deep learning. the architecture of YOLOv3 is shown Figure 2.2.

Unlike other detection systems which repurpose classifiers or localizers to per-
form detection, and apply the model to an image at multiple locations and scales,
while high scoring regions of the image are considered detections. YOLOv3 uses

1https://opencv.org/

https://opencv.org/

CHAPTER 2. TECHNICAL BASIS 6

Figure 2.2: YOLOv3 network Architecture [4].

a totally different approach, which applies a single neural network to the full im-
age. This network divides the image into regions and predicts bounding boxes and
probabilities for each region. These bounding boxes are weighted by the predicted
probabilities. This model has several advantages over classifier-based systems. It
looks at the whole image at test time so its predictions are informed by global
context in the image. It also makes predictions with a single network evaluation
unlike systems like R-CNN which require thousands for a single image. This
makes it extremely fast, more than 1000x faster than R-CNN and 100x faster than
Fast R-CNN.

Chapter 3

Extraction and Recording of rosbag

A rosbag is a file format for storing ROS message data. It is also the release
data format of the EU long-term dataset. Due to its binary format, it cannot be
processed directly. We therefore need an efficient and robust system for rosbag
data extraction, conversion, and recording. This chapter gives relevant details.

3.1 ROS publisher and subscriber
“Node”1 is the ROS term for an executable that is connected to the ROS network.
Here we’ll create a publisher node which will continually broadcast a message.
The subscribe call is how you tell ROS that you want to receive messages on a
given topic. This invokes a call to the ROS master node, which keeps a registry
of who is publishing and who is subscribing. Messages are passed to a callback
function, so that We can process the data.

3.1.1 Feasibility study
According to the project requirements, we must first extract the data from ros-
bag. rosbag is a ROS-environment playable bag. When it’s played, all previously
recorded ROS “messages”2 to this bag will be synchronously broadcast according
to the corresponding timestamp. At this point, one only needs to select the topic
where the required messages is located and subscribe to it to get the recorded data.

In our case, we first publish the required messages by a ROS publisher, and
then use a subscriber to receive them. Data processing starts after the reception.
Although this method can achieve the extraction of rosbag data, it is not conve-
nient to record new rosbags. Since a large number of rosbags need to be pro-

1http://wiki.ros.org/Nodes
2http://wiki.ros.org/Messages

7

http://wiki.ros.org/Nodes
http://wiki.ros.org/Messages

CHAPTER 3. EXTRACTION AND RECORDING OF ROSBAG 8

cessed, a large number of publishers need to be started. Each Publisher node
plays a rosbag, which is a waste of resources. We need the new rosbag to have
the same timestamp as the original timestamp. This is a piece of information that
publishers need to republish separately, which adds to the burden. In theory, the
two processes of opening a rosbag and recording a new rosbag should be synchro-
nized. Obviously, the method of recording rosbag in this framework needs to be
reconsidered.

3.1.2 Test
We built a Publisher and Subscriber model.Play rosbag on the Publisher,Subscriber
receives messages for two topics. One is the image message and the other is the
image’s head, The head contains the timestamp of the message.

This method is very efficient, and the data can be stored in time after the
Publisher releases the message. The specific delay time will be discussed in the
experimental section later. In my sample tests, There are no missing messages in
the results of several tests, The data transfer process is very stable, and the speed
is as fast as rosbag’s playback speed, which is very efficient. Each message and
the head are published synchronously, effectively saving the timestamp.

The first problem we encountered was that we couldn’t play multiple ros-
bags in order. There are no such examples online. We can only achieve this by
starting the Publisher node multiple times with the help of a script. At the same
time, the problem of system resource occupation will be discussed in later experi-
ments.Since the saved image data and head data are in one-to-one correspondence,
the best way is to process them in time without saving them locally.But during the
test, we do n’t know how to record rosbag by Subscriber.

There is also a server and client model, similar to this. Not discussed for now

3.2 Launch file
The launch file is used to start the node. It can start multiple nodes in the back-
ground at the same time, give detailed parameters, and automatically close all
nodes at the end of the run.In the official wiki tutorial, the way to exporting image
data from rosbag is to use a launch file.Created 2 nodes in the launch file. One
is the play function of rosbag, and the other is the exporting image from the ros-
bag running according to the topic parameter. It is equivalent to executing two
ros function packages in two terminals, and specifying detailed parameters in the
launch file, such as the path of rosbag and the name of the topic. For example, this
500-frame video data is stored in rosbag, and 500 messages are sent during play-
back, while another node will extract 500 images based on these 500 messages

CHAPTER 3. EXTRACTION AND RECORDING OF ROSBAG 9

and save them to the local default path.

3.2.1 Feasibility study
This is the easiest way to extract image data from rosbag. This is also the offi-
cial method, simple and intuitive. But this method did not involve the recording
of the new rosbag at all. because the results are directly saved in the local as
image format, it is impossible to extract the timestamp of the source rosbag mes-
sage.Although this method is very convenient for extracting image data, due to
the strong directivity of the function, many details required for the project cannot
be achieved.

3.2.2 Test
We tested with the launch file recommended in the ros wiki tutorial.Analysis of
the test results of multiple groups, we found.

The launch file can use many existing ros packages, which is very simple and
convenient.Data images are saved in jpg format, we don’t need to do data conver-
sion anymore, which makes us more convenient for image processing later.Image
data sequence is correct and complete. The launch file will automatically run
each node as a background process, no need to distribute operations on multiple
terminals, which also makes the operation more concise.After the launch file was
running, We observed the background process. We found that after the launch
file was finished, the process started by the launch file was automatically ended,
avoiding the process conflict caused by multiple operations.

The biggest problem with this method is that it cannot get the timestamp of the
source rosbag message. Since we need these timestamp data when we record a
new rosbag at the end, if we open the rosbag with a launch file, which means that
we need to open the source rosbag again to get the timestamp when we record
a new rosbag at the end, which makes the project more complicated , causing
unnecessary waste of resources. And this method can only process one rosbag
at a time. If you want to process a large number of rosbags, you still need a
script. And the image data obtained from the launch file is initially stored in the
default path, and the data must be transferred after each processing. There is
also the problem of dropped frames, The launch file has a rate for rosbag image
extraction. The default is 0.1 seconds, which means that it extracts ten times per
second. Although the parameters can be modified to increase the rate of extracting
images, it cannot be completely coincided with the playback rate of rosbag. So
there will be a few dropped frames.

CHAPTER 3. EXTRACTION AND RECORDING OF ROSBAG 10

3.3 rosbag C++ API
rosbag has both C++ and Python APIs for reading messages from and writing
messages to bag files.Because we am more familiar with C++, we used rosbag
C++ API.This is a C ++ library that specializes in rosbag. The rosbag C++ API
works on the premise of creating "views" of one or more bags using "queries". A
Query is an abstract class which defines a function that filters whether or not the
messages from a connection are to be included. This is a set of tools for recording
from and playing back to ROS topics. It is intended to be high performance and
avoids deserialization and reserialization of the messages.With this complete C ++
library, we can flexibly perform multiple operations on rosbag using programming

3.3.1 Feasibility study
The rosbag C ++ API has complete rosbag processing functions.From the open-
ing of rosbag to the closure of rosbag„there are access to topic name, datatype,
md5sum, message definition as well as the connection header. Using this method,
you can complete the data extraction from rosbag to the final recording of the
new rosbag,including keeping rosbag timestamp unchanged. However, since it
is a programming language, the probability of error will be relatively higher, and
it will be more complicated and difficult to use. Many problems still need to be
determined after testing

3.3.2 Test
I tried to achieve the rosbag image extraction and the recording process of the new
rosbag in a ros package. Since we didn’t find related examples on the Internet,
according to the official source code of the rosbag C ++ API, we wrote a simple
ros package. After testing, this method can achieve all the functions we need. ros-
bag image extraction, data conversion, message timestamp extraction, recording
of new rosbag and so on. We have tested each function individually. The rosbag C
++ API can make every function perfect.Especially the method of recording new
rosbag. So far, in addition to using the rosbag C ++ API for programming record-
ing, all we know is to use the ros instruction rosbag record for real-time rosbag
recording. But this method is not very operable,which is difficult to implement all
kinds of details

But compared to several other methods, the programming process is more
difficult and tedious. Integrating many functions into a piece of code will cause
many unexpected problems, so more detailed testing is needed. And in testing, we
found that the recorded rosbag playback rate is equal to the rate of the program
running loop. In contrast, the other rosbag methods do not need to change the

CHAPTER 3. EXTRACTION AND RECORDING OF ROSBAG 11

recorded rosbag rate because the rosbag playback and recording are synchronized
and the playback is not affected by other processes.The programming with the
rosbag C ++ API is different. We just open the rosbag with a function and then
read it one by one according to the topic. The loop rate is the rate at which the
program runs. Therefore, the two steps of extracting pictures from rosbag and
recording new rosbag need to be separated separately, because there is also a
process of image data processing in the middle, which will affect the rate of new
rosbag.Therefore, the previous analysis, this method can simplify the combination
of rosbag data extraction and new rosbag recording, which is not feasible.

3.4 Analysis and operation
My mentor suggested that we create this entire framework following the basic
structure of ros, the model of publishers and subscriber. After trying, we found
that this method has many disadvantages. Firstly, because the publish and sub-
scrib in this model are performed synchronously, operations that take too long
cannot be implemented in the middle. However, my project needs to perform ar-
tificial intelligence recognition processing on image data in the middle, so it will
inevitably take a long time. Secondly, using this model alone cannot accurately
process the internal parameters of rosbag, such as timestamps. So in the end we
gave up this method.

After many tests and comparisons, we find that different methods have differ-
ent advantages, so we will probably use multiple methods to deal with multiple
processes in the system separately. First, to read rosbag messages and record new
rosbag, we chose to use the rosbag C ++ API. The stability of the three meth-
ods is qualified, and there will be no obvious drop frames, but because we need
to multi-step processing the rosbag message, and to extract various information
(time stamp, etc.) of the message, we also need to record new rosbag, so the ros-
bag C ++ API which is the most operable method is the best choice .Next, if some
processes only require a large amount of image data extraction, we will choose
the launch file because this method is the simplest and most convenient. However,
this is only an idea, and it depends on the future needs.

The following is the actual operation process
I refer to the basic rosbag C ++ programming template on the ros wiki tutorial,

and we have viewed the source code of the rosbag C ++ API. The rosbag API has
two main classes: bag and view.

First, we use the open function of the bag class to open the rosbag, we use the
view function of the view class to mark the topic to be processed, and then loop
the specified topic internally. Each loop is a frame of the rosbag. In the loop,
the information of each frame (a message) is extracted, including the image, the

CHAPTER 3. EXTRACTION AND RECORDING OF ROSBAG 12

Algorithm 1: open rosbag and extract image
Data: rosbag B, topic of the rosbag TB, message m, timestamp of the

messagetm
Result: image im∗

1 open B;
2 foreach m in the TB do
3 convert m to image format;
4 im∗← m;
5 name im∗ as tm;
6 save im∗;
7 end

timestamp in the header, and the image is saved locally for subsequent processing.
The image is stored in rosbag as a message, so we need the cvbridge library
which is used to convert the image from the message to an image matrix. In
order to do experiments at the end, more information needs to be extracted. After
extracting the timestamp for each message, we use the timestamp as the name
of the image for that message. The timestamp is an eighteen-bit floating-point
number, which requires nineteen bytes. To convert it to a string, you cannot use
the general number-to-character method.I input the timestamp variable directly
into a stringstearm variable using the stream method, and it can be saved as the
name of the picture.Although the string object is very convenient, the string type
is likely to be the source of an engineering efficiency problem. In product-level
applications, you should try to avoid using the string type in deep loop nesting, so
using C ++ streaming is better. Since this step only saves the image locally, there
is no need to consider frequency.

The next step is to record the new rosbag. In order to make the newly recorded
rosbag highly consistent with the original rosbag, we need to open the original
rosbag first, and then record the new topic synchronously in the message loop of
the original rosbag. In this way, the topic name of the newly recorded rosbag and
the number of message frames remain unchanged, and the header of each frame of
the original rosbag can be extracted and assigned to the new rosbag. The specific
method is: first we need to create a bag object to open rosbag, and then re-create a
bag object, loop the original rosbag message in the specified topic, read a frame of
images in sequence in the loop, and convert it using cvbridge to msg format, and
then write into the new bag object. The newly recorded rosbag also needs to keep
the same playback frequency as the original rosbag, but the frequency of the new
rosbag recorded is equal to the frequency of the original rosbag message loop.
This frequency is not equal to the rosbag playback frequency, so the frequency of

CHAPTER 3. EXTRACTION AND RECORDING OF ROSBAG 13

Algorithm 2: Record new rosbag
Data: original rosbag B1, processed image im, topic of the rosbag TB,

message m, timestamp of the message tm ,duration of the original
rosbag tB1 , number of original rosbag frames nB1

Result: newly recorded rosbag B∗2
1 open B1;
2 open B∗2;
3 foreach m in the TB do
4 read im;
5 convert im to message format;
6 write im into B∗2;
7 t← tB1/nB1;
8 sleep t;
9 end

the message loop needs to be changed. In the view class, you can get the time
when rosbag starts to play and the time when it ends, and then we subtract it to
get the length of rosbag. We get the number of rosbag frames in the view class.
You can get the frequency of rosbag by dividing, so that we adjust the original
rosbag’s message loop to this frequency. Although there will be slight errors in
the calculation process, it can also roughly keep the rosbag’s playback frequency
same.

3.5 Discussion
Compared with other data storage methods, rosbag is quite complicated. In a
rosbag, you can store quite a lot of data, and all data is very neatly synchronized.
This is like a future movie. You can see the images synchronously every frame,
hear the sound, smell the smell, feel the temperature, and even feel the emotion.
Although the extraction and reconstruction of data becomes more complicated in
this process, this kind of data storage can support a complex system such as robots
with multi-point sensing.However, there are still some problems with this storage
method

As far as the image problem we am dealing, the final recorded rosbag will be
much larger than the original image data. This is very inconvenient for uploading
and sharing data. After consulting many sources, we found that the official ros
solution is compression. This is for image data. There is a compression format /
compressed for storing images in the ros system, which can effectively reduce the
data write size. However, this compression format will damage the quality of the

CHAPTER 3. EXTRACTION AND RECORDING OF ROSBAG 14

image and has certain defects, but it will reduce the size of rosbag by more than
2 times. However, the reason why the size of the rosbag is larger than the data
is still unknown. Another problem is that the playback frequency of my newly
recorded rosbag is calculated by the data. There is a slight error. The reason is
that we can’t get the rosbag playback frequency directly. If we really can’t get
the rosbag playback frequency directly, then we think rosbag’s library needs to be
improved.

Chapter 4

Face and License Plate Removal

After determining the method of rosbag data extraction and packaging, we need
to perform face recognition and license plate recognition on the saved image data,
and then perform mosaic processing. At present, artificial intelligence image
recognition technology is very mature, and there are already many recognition al-
gorithms and recognition frameworks. Based on the characteristics of my project,
we need to choose the most suitable framework for identification. First of all, we
need to process a lot of data, there are about 2 T image data, so the processing
speed is a very critical index. If the processing speed is too slow, it will affect the
establishment of the entire online data set. However, due to the EU’s latest pri-
vacy protection legislation, there are considerable requirements for the accuracy
of identification. At least on the premise that the human eye can recognize the
face or license plate, the system must be able to recognize the target. In addition,
the GPU consumption of the recognition system and the loss of image data af-
ter processing are indicators that need to be considered. So we did the following
attempts and information review.

4.1 Comparison and analysis
At present, the more popular algorithms can be divided into two categories. One
is based on Region Proposal’s R-CNN system algorithms (R-CNN, Fast R-CNN,
Faster R-CNN). They are two-stage and need to be used first. Heuristic method
(selective search) or CNN network (RPN) generates Region Proposal, and then
performs classification and regression on Region Proposal. The other is one-stage
algorithms such as Yolo and SSD, which only use one CNN network to directly
predict the categories and positions of different targets. The first method is more
accurate, but slower, but the second algorithm is faster, but less accurate. This can
be seen in Figure 4.1 .

15

CHAPTER 4. FACE AND LICENSE PLATE REMOVAL 16

Figure 4.1: Progress and comparison of target detection algorithms

Among them, mAP represents an index for measuring the accuracy of recog-
nition in target detection. Since the calculation principle is too complicated, it will
not be described here. FPS can indicate the speed of processing. As can be seen
from the figure, the recognition accuracy is high and the processing speed is fast.
There are mainly two types: YOLO [3] and SSD. So these two methods are my
main research directions

Later, we consulted more scholarly papers, and we saw more parameter com-
parisons between the two methods. After commemorative updates, YOLO has
been updated to the third generation, and YOLOv3 performance has been greatly
improved in all aspects. YOLOv3 mainly uses techniques such as bounding
box prediction, category prediction, and prediction at different scales to improve
recognition speed while ensuring accuracy. Bounding box prediction uses a di-
mension cluster as the anchor box to predict the bounding box. Each box then
uses multi-label classification to predict the classes that the bounding box may
contain. It does not use softmax because we found that it has no impact on per-
formance, but just uses a separate logical classifier. During training, it uses binary
cross-entropy loss for class prediction. In addition, YOLOv3 can predict boxes
of 3 different sizes, which significantly improves the accuracy of recognition. In
the past, YOLO was not good at detecting smaller objects. With the update of
these technologies, we now see that this situation has changed. Due to the new
multi-scale prediction method, we see that YOLOv3 has relatively high APS per-
formance.

Figure 4.2 compares the performance of the latest smart recognition detectors.
It can be seen from this figure that under the same level of hardware support,

CHAPTER 4. FACE AND LICENSE PLATE REMOVAL 17

Figure 4.2: Performance on the same GPU[3]

YOLOv3 [4] has the fastest processing speed and the accuracy is also relatively
good. Compared with RetinaNet-101, which has the best accuracy, the accuracy
is not much different, but the speed is more than eight times. So obviously, the
overall performance of YOLOv3 is the best, and it is the most suitable for my
project.

4.2 Face recognition yoloface
The first step is face recognition. After much searching, we finally found yoloface,
a feature pack that can recognize faces with deep learning based face detection
using the YOLOv3 algorithm

4.2.1 Application
Yoloface [1] is a mature pre-trained deep learning model, you can directly add the
pre-trained YOLOv3 weights file. So it is very convenient to use. We directly
use the yoloface code provided by sthanhng on github. This code is very com-
prehensive and can perform image recognition, video recognition, and real-time
camera recognition. Although our data is stored in rosbag in the form of video,
the video actually consists of many sequential image frames. And because the
new rosbag needs to be recorded, the new rosbag needs to be synchronized with
each frame of the original rosbag, so the data must be recorded frame by frame in

CHAPTER 4. FACE AND LICENSE PLATE REMOVAL 18

the form of an image in the end. Then we just need to perform image recognition.
yoloface uses OpenCV Deep Neural Networks (dnn module), OpenCV dnn mod-
ule supports running inference on pre-trained deep learning models from popular
frameworks such as TensorFlow, Torch, Darknet and Caffe. And because depth
needs to configure a lot of dependencies, we use Virtual environment to run yolo-
face, this allows us to experiment with different versions of dependencies.After
the configuration is complete, the test results are as follows. After the configu-
ration is complete, we chose a picture with blurred faces and a large number of
faces for testing.Figure 4.3

Figure 4.3: Test Results

As can be seen from the figure above, although the facial features are already
blurred and very small, and there are a lot of them, all the faces have been identi-
fied and framed by a yellow box, and there is a quantitative statistics. The entire
recognition process is only about 2 seconds. This shows that the recognition speed
and accuracy of yoloface are very reliable. In combination with my project, be-
cause the project requires automation, yoloface itself can only process one image
at a time, so a script is needed to assist in automatic processing, which will be
explained in detail later.

4.2.2 Image recognition area blur processing
The original yoloface will recognize the facial area of the image. The specific
method is to get the four coordinates of the top, bottom, left, and right of the

CHAPTER 4. FACE AND LICENSE PLATE REMOVAL 19

image face area, and then mark it with a yellow rectangular frame. However, we
need to perform mosaic processing on the face area of the image, so we need to
modify the marked yellow box part in the original code.

In the original code, the function that draws the v yellow box has obtained the
upper, lower, left, and right coordinates of the face area, and the image matrix. The
image matrix is a two-dimensional array, and the number of each point represents
its color. Mosaic is to average multiple pixels into one value, which is equivalent
to greatly reducing the resolution of the image.

Algorithm 3: Mosaic in designated area
Data: Image matrix:IM, The value of the image matrix IM (x, y):IMx,y,

Four coordinates of the face area :top, bottom, le f t, right
1 n← top;
2 m← le f t;
3 while n<bottom do
4 n← n+10;
5 while m<right do
6 m← m+10;
7 IMn−5:n+5,m−5:m+5← IMn,m

8 end
9 end

Algorithm 3 is equivalent to changing 10*10 pixels to the same color, and
looping this algorithm in the face area successfully mosaics the face. Changing
the value of 10 can change the blur degree of the mosaic.

The recognition area of yoloface is generally slightly larger than the face and
is rectangular. If the entire rectangular area is covered with mosaic, some un-
necessary parts will be covered and it will be very unsightly. So at the teacher’s
suggestion, we will upgrade the face mosaic. According to the shape of the face,
the best way is an oval mosaic. The ellipse needs to determine the position of the
center of the circle, length and width. Obviously, the center of the rectangular area
identified by yoloface here is the center of the circle, the length is the length of
the rectangle, and the width is also the width of the rectangle. After modification,
as follows

Calculate the center, length, and width of the circle based on the four coordi-
nates of the face area: up, down, left, and right. We bring these data into the ellipse
equation and we get the ellipse mosaic. However, it can be found from the test
results that this method has some errors. The entire ellipse has a slight translation
to the upper left corner. After checking the formula multiple times and analyzing
it, we found that the reason is that each pixel is theoretically a small square block

CHAPTER 4. FACE AND LICENSE PLATE REMOVAL 20

Algorithm 4: Oval Mosaic in designated area
Data: Image matrix:IM, The value of the image matrix IM (x, y):IMx,y,

Four coordinates of the face area :top, bottom, le f t, right
1 w← bottom− top;
2 l← right− le f t;
3 x← (right + le f t)/2;
4 y← (right + le f t)/2;
5 n← top;
6 m← le f t;
7 while n<bottom do
8 n← n+10;
9 while m<right do

10 m← m+10;
11 if square(w)*square(n-y)+square(height)*square(j-x) <

square(w*h)/4: then
12 IMn−5:n+5,m−5:m+5← IMn,m
13 end
14 end
15 end

that displays a color. However, it is inaccurate to use a coordinate to represent
this square block. To be precise, the coordinates represent the position of the top
left vertex of the square block, so dividing the ellipse by coordinates will cause
some positional errors in the entire ellipse. But it is small, so the impact is not
significant and can be ignored.

4.2.3 test
I tested my modified yoloface using about 30 images of different situations. First
of all, yoloface can detect all faces, which proves the reliability of YOLOv3 again.
Five of the 30 images have very large face areas. At this point, we found that the
unit block of my mosaic was too small, making that the face was not sufficiently
blurred, and the human eye could barely recognize it. There are also five small
facial areas in the five images. The test results of these five images do not show
that my mosaic is elliptical, because maybe the entire facial area may only have
four mosaic unit blocks. Only the remaining 20 images turned out to be good.
This result shows that the optimal size of the mosaic unit block will change as
the image size changes. The best solution is to change the size of the mosaic unit
block into a variable, which is proportional to the length and width of the face

CHAPTER 4. FACE AND LICENSE PLATE REMOVAL 21

recognition area.

4.3 License Plate Detection and Recognition
After the face recognition and processing of the image, the license plate recogni-
tion and processing is needed. Here we choose a license plate recognition system
similar to yolo that uses Darknet deep learning framework: alpr-unconstrained

4.3.1 Application
We learned that Darknet deep learning framework is an open source neural net-
work framework written in C and CUDA by Joseph Redmon. It is fast to install,
easy to install, and supports CPU and GPU computing. YOLO is also built on this
framework. All the reasons we choose it are the same as YOLO.

Serjim Silva has the original code on GitHub. After downloading from GitHub,
alpr-unconstrained [5]is also a pre-trained intelligent recognition system, which is
very convenient to use. With yoloface’s experience, various environment config-
urations are complete. After the configuration is complete, the test results are
shown in Figure 4.4.

Figure 4.4: alpr-unconstrained test results

As can be seen from Figure 4.4, the information of the recognition results
is very detailed. First, the entire vehicle area was identified and framed by a
yellow rectangle. Then the license plate was recognized in the area of vehicle and
framed in red. Finally, it can also identify the code number in the license plate

CHAPTER 4. FACE AND LICENSE PLATE REMOVAL 22

and display it on the image. After we researched its original code, we found that
the entire recognition process has several steps. The first step is to identify the
vehicle area in the image . Like the yoloface, a bounding box is used. After the
vehicle area is identified, the area is cut out and saved as a new image with a text
file that records the position of the new image in the original image. The second
part performs the second intelligent recognition on the new image, which means
identifying the position of the license plate in the area of vehicle. If the license
plate is recognized, it will be cut out and saved as a new image as in the previous
step , and a tex t file will be saved with its position in the image of the car. Then
the third recognition, the number in the license plate image. Finally, mark the
vehicle, license plate and license plate number in the original image according to
the text file of the location.

After understanding the whole process, we admire its meticulousness and
rigor. The license plate is not like a human face, and has very unique charac-
teristics. If the license plate is directly recognized, perhaps the billboard and road
signs will be recognized as the license plate . So first identify the area of vehicle,
it is rigorous to identify the license plate within the area of vehicle.

4.3.2 Image recognition area blur processing
The image features of the license plate are relatively simple, and the content is
just a series of numbers. If you use mosaic processing like yoloface, it will still
be easy to expose the license plate content, which violates the original intention
of my project. Therefore, in the intelligent recognition system of license plate
detection, the image blur processing does not use mosaic, and it is directly filled
with a color. Since the license plate area is small, the unsightly appearance caused
by color filling can also be ignored.

The specific process is very simple. We just change it directly in the last step
of the code. After three intelligent recognitions, in the last step, the original image
obtained the area of the car, the area of the license plate, and the number of the
license plate. We removed all the changes from the original code in the original
image, and then used the area of the license plate and an OpenCV function to fill
the area completely with white.

4.3.3 test
I tested 30 different vehicle images using modified alpr-unconstrained. First, all
visible license plates are completely filled with white, including some license
plates that cannot be discerned with the naked eye. This shows that the recog-
nition accuracy of alpr-unconstrained is very high, and the method of filling color

CHAPTER 4. FACE AND LICENSE PLATE REMOVAL 23

can ensure the privacy of the license plate information. This intelligent recogni-
tion system batches the images, which automatically runs with my project. The
processing time of 30 images is 3 minutes and 40 seconds. Since each image needs
to undergo intelligent recognition at least twice, its processing time is longer than
that of yoloface, but it is acceptable.In each of the 30 test charts, the license plate
of each vehicle presents a different angle. In the image plane, they are all par-
allelograms, not regular rectangles. However, the test results can still be fully
identified. This turned out to be very reliable.

4.4 Discussion
After learning and using yolo, we discovered many shortcomings of yolo. YOLO
performs poorly on small targets. In principle, the YOLO target detector divides
the input image into S * S grids, and each unit grid predicts only a single target. If
there are multiple targets and small targets in a single cell, YOLO will be difficult
to detect and eventually lead to false detection. And after the rosbag data test,
because the data of rosbag is video data, some frames of the image will be moved
by the lens And become blurred. So there are often faces that can’t see the facial
features undetected. Although this has no effect on my project, because it will not
leak privacy, it can be seen that yolo’s judgment on human faces is not as good as
human eyes.

Chapter 5

Bumblebee XB3

In my lab, the rosbag data to be processed was collected by a car. At the rear
of the car is an ordinary binocular camera, which will record the image data of
two topics in rosbag. This data can be processed by the method we said above.
The front of the car uses a special three-eye camera, Bumblebee XB3. The data
recorded by Bumblebee XB3 has only one topic in rosbag. After opening this
topic, we found that this three-track ghost image. For the processing of this topic,
we cannot simply use the rosbag c ++ API in chapter3 to handle it. This is a more
complicated question.

Bumblebee XB3 is a three-eye camera. It is the third-generation stereo vision
product of Point Grey Research. The video from the three angles taken with it
will be overlapped into a video and stored in rosbag. Figure 5.1.

Figure 5.1: Picture taken by Bumblebee XB3

This overlapping data can be split. In order to comply with EU privacy laws,
we need to ensure that users do not reveal privacy when using any of the split
videos. So the first problem to be solved is to split the overlapping videos and then
perform artificial intelligence recognition one by one. And in order to identify
accurately, it is necessary to ensure that the split image is color and clear. After
the data is processed, we are equivalent to having three pieces of video data. In
order to compress the size of the rosbag, and to comply with the principle of

24

CHAPTER 5. BUMBLEBEE XB3 25

minimizing other elements of the rosbag, we need to combine the three pieces of
data back into one, just like the overlapping images in the original rosbag. This is
the new problem we need to solve

5.1 Three-track separation of images
I need to get three sets of image data from a topic recorded by Bumblebee XB3.
Each frame in this topic is still an image, but it has data for three images. Then
you must use a lot of image processing technology. We think of several ways.

5.1.1 Extraction and separation
The first thing we thought of was the same method as in Chapter 3, using it as a
common topic to get a set of overlapping image data. Then use image processing
technology to separate it into three groups of images. For testing purposes, we
used a launch file to get a set of overlapping images. From the overlapping colors,
three colors of red, blue, and green can be seen. It is natural to know that this is
a group of RGB-encoded images, and maybe one set of the images is one of the
three channels of RGB.

When using OpenCV’s function to get a three-channel image, we found that
this is not just an ordinary grayscale image in three channels. The image is covered
with small square mosaics. Through searching we learned that this is a coding
method, Bayer filter. A Bayer filter mosaic is a color filter array for arranging
RGB color filters on a square grid of photosensors. Its particular arrangement
of color filters is used in most single-chip digital image sensors used in digital
cameras, camcorders, and scanners to create a color image. This can also explain
how the color information of the three sets of images is stored in a set of images.

I tried the Bayer to rgb algorithm. Due to the different encoding order of
Bayer, there are several algorithms. After trying it, we finally determined that my
Bayer data was RGGB encoded. Images in the Bayer format are single-channel,
each point has only one value, Fifty percent of which is green, Twenty five percent
is red, and Twenty five percent is blue. In order to complement the values of the
other two channels, it is sufficient to obtain the average of the values of the same
color around the point. According to this method, an accurate original image
is indeed obtained, However, we cannot guarantee that the quality of the image
will not be lost, because it cannot be distinguished with the naked eye, and this
method is tedious, requires many steps, it is very inconvenient to operate. Because
these methods are existing, and Bumblebee XB3 is a commodity, there must be a
dedicated coding tool available.

CHAPTER 5. BUMBLEBEE XB3 26

5.1.2 Bumblebee xb3 ros package
With the help of my tuteur, we found a bumblebee-xb3 ros package. The function
of this ros package is very comprehensive. It combines the two steps of extracting
image messages from rosbag and separating and transcoding the extracted images
into three sets of color images. With an extract image ros node, you can get three
sets of color images directly from rosbag, which is very convenient and fast.

Bumblebee xb3 ros package main starts a camera1394 node which will pub-
lish a interlaced (combined) bayered image.When the camera1394 node is started,
rosbag is played. The topic of rosbag containing bayer data is automatically pro-
cessed by this node, and the message is converted into an image matrix and sep-
arated. The separation process is completed by node image-proc/stereo-image-
proc.Figure 5.2

Figure 5.2: stereo-image-proc working process

As shown in Figure 5.2, stereo-image-procx processes the binocular camera
data, and the three-eye camera is the same. It will separate the image data of
the three cameras into three groups of topics. While testing, we found through
the ros visualization tool rviz that when using the bumblebee xb3 ros package,
the playback of rosbag can detect some topics that the original rosbag does not
have. Originally there was only one topic about bumblebee xb3 in rosbag, and
now there are three new topics left/image-color, right/image-color, center/image-
color. Through the visualization tool rviz, you can directly see the playback of
these three topics. This is indeed the result of the original topic three-channel
separation. At this step, you can directly use the method introduced in Chapter 3
to extract the image. Since it needs to work with bumblebee xb3 at the same time,
a launch file with multiple nodes started at the same time must be the best choice.

A total of three nodes are set in the launch file, the first one is rosbag play-
back, the second one is Bumblebee xb3 for separating topics, and the third one is

CHAPTER 5. BUMBLEBEE XB3 27

image extraction from the three separated topics after processing.Although in this
way, many details of extracting image data, such as extraction time stamp, will be
ignored. But because this is a special topic processing, we must first consider the
completion function. And this method is simple and can complete the processing
of a whole package with one click, which is convenient for project automation

5.2 Three image merge
The Bumblebee xb3 image extraction problem was solved. The subsequent intel-
ligent image recognition is the same as the general situation. Finally you need to
re-record the image back to rosbag. The last thing our project needs to process is
a data set. The ultimate purpose is to upload the data to everyone for sharing after
processing. This step is only to record three sets of image data from different an-
gles into three topics and save them in rosbag. , So it is acceptable to not combine
the three sets of images into one set. But following the principle of exploration,
and in order to reduce the size of rosbag as much as possible, we still tried to
merge three groups of images back into one group of images.

5.2.1 Three channels of RGB
From the data in the original rosbag, it can be seen that merging the three sets of
images into a set of images is to use the three sets of images as three channels
of the new image. These three channels represent R red, G green, and B blue,
respectively. There is a merge () function in OpenCV. After trying, we found that
these three sets of images must be grayscale to be merged. A grayscale image is
actually a single-layer black-and-white image. It originally could only represent
the depth of one color. The human eye looks like it is black-and-white. Put it in
one of the layers of the new image to represent the depth of one of the RGB colors
of the new image.

Algorithm 5: Merge three images into one
Data: channel n of image A An, channel n of image B Bn, channel n of

image C Cn
Result: channel n of new image IM IM∗n

1 split A,B,C;
2 IM∗1 ← A1;
3 IM∗2 ← B2;
4 IM∗3 ←C3;
5 merge IM∗;

CHAPTER 5. BUMBLEBEE XB3 28

As in Algorithm 5, first, split the three images to get the three channels of
each image, and then assign the corresponding color channels to the new image.
Finally merge the new three channels into one image. After testing, the result-
ing overlay image is very similar to the data in the original rosbag. The overall
color and image position are very consistent. However, the question is, can such
overlapping images be re-separated to obtain three different sets of color images?
The answer is of course no. Each pixel of an image needs to have three colors of
RGB information to become a color image. If you simply use a grayscale image
to represent an image, you can only turn into a black and white image in the end.
However, the single track of the new image can only use a single channel image.
How to use a single channel image to store color information. That is the biggest
problem.

5.2.2 RGB to Bayer filter
Bayer filter[7] coding is a coding method that stores color information in a single
channel. In the current public information, everyone is discussing the Bayer to
RGB method. Because many cameras’ raw data and image data are stored in
Bayer format, in most practical scenarios, people are looking for an RGB format
that can be operated. So we can’t get any reference to the RGB to Bayer method.
Although the theory of the conversion of the two encodings is known, we can only
try to simulate this process briefly.

Although Bayer also has several different encoding formats, the same is that
the proportion of the three colors of RGB does not change. Because human eyes
are more sensitive to green, green accounts for Fifty percent and the other two ac-
count for Twenty five percent each. The specific distribution is shown in Figure5.3

The specific method is to first separate the image into three channels, each
channel represents red, yellow, and blue, and then clear the corresponding pixel
value to 0 according to Figure 5.4, The three groups of channels are then merged
back into an image matrix, and the resulting image is similar to Figure 5.5.

It can be seen that the image is mainly greenish, and there is a very obvious
mosaic unique to Bayer on the image. These are the salient features of Bayer
coding, and you can roughly judge that the coding result is correct. The first test
is whether this image can be directly converted into a color image. This is also
the problem of RGB to Bayer, which can be converted directly using the OpenCV
function, and the result is successful, and the color can be restored losslessly.Then
test if it can be saved in a single channel of the new image. Color images must not
be saved, so you must first convert the image to a single-channel image. Single-
channel images are black and white to the naked eye, and Bayer’s single-channel
images still have obvious mosaics. As in Section 5.3.1,I used Bayer’s single-

CHAPTER 5. BUMBLEBEE XB3 29

Figure 5.3: Bayer color distribution[7]

Figure 5.4: The process of RGB to Bayer filter[7]

CHAPTER 5. BUMBLEBEE XB3 30

channel image to reconstruct the overlay image. In order to test result, and also to
test whether the user can extract the image normally , we recorded the new image
data into a rosbag. The recorded topic is exactly the same as the Bumblebee xb3
topic in the original rosbag. then we used the Bumblebee XB3 ROS package to
get the image viewing results directly from the newly recorded rosbag. The result
is the image shown in Figure 5.5. We already know that Figure 5.5 can get the
original color image. To put it simply, this is our goal, but from the user’s point of
view, this makes it more difficult for the user to use it, and we did not record the
rosbag back to its original state. This result may not be used.

Figure 5.5: Results from my Bayer to RGB algorithm

5.2.3 Discussion
In the process of processing the rosbag data recorded by Bumblebee xb3, the
main problem is the encoding and conversion of the image. In contrast, RGB to
Bayer methods and discussions are too scarce. It is true that this process has less
practical uses, only for reducing the image size for storage. Although the method
of converting RGB to Bayer is well understood, from the results of my tests, we
still can’t get the Bayer image that can directly get the color image. According to
my analysis, maybe my coding is wrong. The technology is constantly updated,
and the encoding method of Bayer is also continuously improved and improved.
We only use the earliest encoding arrangement of Bayer, and now there are more.
such as Panchromatic cells, Fujifilm EXR color filter array, Fujifilm X-Trans filter
and so on. However, we have no way of knowing the type of bayer encoding of
the data recorded by Bumblebee xb3, so we can’t do the right thing. However,
we still lament the ingenuity of Bayer coding, using the principle of image color
gradation, using Twenty five percent points to save all color data. We still upload

CHAPTER 5. BUMBLEBEE XB3 31

my RGB to Bayer method. Although it may not be useful, we still hope to share
the discussion with you.

Chapter 6

System Integration

Now that the main steps have been completed, in order to make the project run
automatically and process about 2T of data in one click, we need to use a shell
script to integrate all the steps and ensure the process is accurate. In order to
complete the project, many details need to be resolved.

6.1 Data collection
The project was officially running, we also need to give the overall performance
and the results do an assessment, then the data is essential. Data collection is the
basis for scientific data analysis. The accuracy of data collection directly deter-
mines the value of data analysis. The main data to be collected is, of course, the
number of faces and license plates detected in each frame of the image, and then
the time stamp of each frame is used to represent this frame. The source of the data
is two deep learning packages, yoloface and alpr-unconstrained. My approach is
that after yoloface recognizes an image each time, the number of recognized faces
is added to the end of the image name, as is alpr-unconstrained. we finally in-
cluded the names of all the images in a dat file according to the timestamp for
analysis.

6.2 Topic of information
In the original rosbag, in addition to the topic of the image, each image topic
has a corresponding info topic. There are various kinds of information stored in
each frame. Considering the user experience, although this information can be
extracted from rosbag, it is more convenient for users to record a topic separately.

The topic of info must be synchronized with the corresponding image topic,
otherwise all information is meaningless. So when recording the topic of info,

32

CHAPTER 6. SYSTEM INTEGRATION 33

we need to open the corresponding image topic to record synchronously. Since
this topic is just some string information, it takes up very little space and does not
affect the overall size of rosbag.

6.3 Automation script
When all the steps have been tested, we need to connect all the steps with a script.
Since the amount of data to be processed is very large, the script needs to be able
to process all the data in one click, all we need to do is wait. We use a shell script.
First, in order to process all rosbags in one click, the framework of the script needs
to be able to traverse all files in the parameter directory. As in Algorithm 6, all

Algorithm 6: File traversal under a directory
Data: directory dire

1 foreach m in the dire do
2 if m is folder then File traversal under a directory(m);
3 ;
4 else process m;
5 ;
6 end

rosbags are placed in one path and can be processed at once. At this processing
step, it is sufficient to execute each step in a scripting language. There are mainly
three image topics in the rosbag we deal with. One is the topic of Bumblebee
XB3. We need to use three launch files to get three groups of images directly, and
then use the rosbag C ++ API to process the other two common topics. There
are five groups in total. Then the five sets of images were processed with my
rewritten yoloface and alpr-unconstrained, and all the privacy-related parts were
mosaicked. Finally, the three sets of Bumblebee XB3 images were recorded as a
new rosbag, and the other two sets of images were recorded as another rosbag,
and also recorded on the info topic.At this point, the entire project is complete

Chapter 7

Experiments

After the system is completed, we need to do an experiment on the recognition
efficiency of the system and its completion. We have added experimental data
collection functions to the yoloface and alpr-unconstrained deep learning recogni-
tion packages in advance, and make a statistics of the number of faces and number
of license plates recognized in each frame. Since there is a lot of data to be pro-
cessed, we can only make a statistical value and evaluate our project based on this
value.

We have selected three days of data, ten minutes of rosbag video data per
day. The content of the video is a street view of a car driving on the street. The
frequency of the video is 15 frames per second. After processing these data, we
got the identification number results for three days.Figure 7.1

According to the statistical results in Figure 7.1, we can point out that the
number of license plates is much greater than the number of faces. According to
analysis, this result is reasonable. The reason is that the on-board camera only
captures the forward and backward angles, and it is very intuitive to shoot the
vehicles in the front and rear lanes, and the moving speed of the front and rear ve-
hicles relative to the shooting vehicle is slow, so the shooting results of the vehicle
are very clear and the recognition effect is very good . However, for pedestrians
on both sides of the sidewalk, the shooting angle is very biased, and the relative
speed is very fast. Most human faces are so blurred that they cannot be identified.
We can only identify pedestrians on the sidewalk when the vehicle is decelerat-
ing, or pedestrians on the zebra crossing while waiting for a red light.Compare the
data for three days, the first day is noon, the second day is evening, and the third
day is afternoon. It can be seen that the intensity of the light will directly affect
the recognition result. The better the light, the greater the number of recognitions,
and the better the recognition effect. This is because the light affects the clarity of
the image, which affects the recognition results.

In general, the results of the identification were similar to those expected and

34

CHAPTER 7. EXPERIMENTS 35

Figure 7.1: Experimental results

met the project requirements. Judging from the results, the entire system still has
some shortcomings. The first is that the last three groups of Bumblebee XB3
images cannot be merged into one group. If this can be done perfectly, the data
storage size can be greatly reduced. The second is that the face recognition is not
sophisticated enough. Although the current results have met the requirements, the
human eyes cannot identify those faces that are not recognized. However, if it
is family or friends, it may be recognized, and the image processing technology
is very advanced now. So if the accuracy is not improved, it is still easy to leak
privacy.

However, the project still met the requirements and began to work on the es-
tablishment of a data set to meet the EU Privacy Act.

Chapter 8

Conclusion

After experiments, we can basically determine that the actual effect of the project
can meet the establishment of the data set. Now some data have been uploaded
to the dataset after being processed by my project. In this internship, in addition
to the results, the most I learned is the method of doing research. The laboratory
environment made me understand that achieving the goal is not the most important
thing. The most important thing is to understand the whole process and the details
in it, and I can learn a lot of neglected knowledge. Doing research also develops
the ability to discover and discover. When you encounter a problem, the first thing
that comes to your mind is not how to solve it utilitarianly, but why this problem
occurs, and study the cause in detail. This has helped me a lot in my future studies.

Of course, there are still many shortcomings in this process. My plan is very
unclear. Due to the lack of a complete plan, many detours were taken halfway.
Doing any project in the future must first do a good job of investigation and com-
plete opportunities. To be more specific, my programmers have bad habits. Ty-
pography, notes, version replacement, I did very poorly. I think it takes time to
accumulate, and I believe it will improve in the future. There are still many short-
comings in this project. The first is that it does not solve the data processing
problem of the Bx3 camera. How to convert RGB to bayer still interest me. And
my project is not smart enough. It is completely used for the data in my labora-
tory. If I change a batch of rosbag, I can’t deal with it in a targeted manner.These
shortcomings, I will improve and update my GitHub bit by bit in the future.

After this internship, I have a new understanding of deep learning and image
processing. Maybe this will be my direction for life. I look forward to my future
as an excellent artificial intelligence engineer.

36

Bibliography

[1] Ayoosh Kathuria. Yoloface — GitHub, the free encyclopedia. https://
github.com/sthanhng/yoloface, 2019. [Online; accessed 16-Aug-
2019]. 17

[2] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng. ROS: an open-source robot
operating system. In ICRA Workshop on Open Source Software, 2009. ii

[3] Ali Redmon, Santosh Divvala. You only lool once. arXiv, 2016. v, 16, 17

[4] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement.
arXiv, 2018. ii, v, 5, 6, 17

[5] S. M. Silva and C. R. Jung. License plate detection and recognition in un-
constrained scenarios. In 2018 European Conference on Computer Vision
(ECCV), pages 580–596, 2018. ii, 21

[6] Wikipedia. What is ros — Wikipedia, the free encyclopedia. http://
wiki.ros.org/cn/ROS/Introduction, 2014. [Online; accessed 2-
May-2014]. v, 4

[7] Wikipedia contributors. Bayer filter — Wikipedia, the free ency-
clopedia. https://en.wikipedia.org/w/index.php?title=
Bayer_filter&oldid=939392140, 2020. [Online; accessed 9-
February-2020]. v, 28, 29

[8] Zhi Yan, Li Sun, Tomas Krajnik, and Yassine Ruichek. EU long-term dataset
with multiple sensors for autonomous driving. CoRR, abs/1909.03330, 2019.
ii, v, 2

37

https://github.com/sthanhng/yoloface
https://github.com/sthanhng/yoloface
http://wiki.ros.org/cn/ROS/Introduction
http://wiki.ros.org/cn/ROS/Introduction
https://en.wikipedia.org/w/index.php?title=Bayer_filter&oldid=939392140
https://en.wikipedia.org/w/index.php?title=Bayer_filter&oldid=939392140

	Introduction
	CIAD
	Background
	Structure of the Report

	Technical Basis
	ROS
	YOLOv3

	Extraction and Recording of rosbag
	ROS publisher and subscriber
	Feasibility study
	Test

	Launch file
	Feasibility study
	Test

	rosbag C++ API
	Feasibility study
	Test

	Analysis and operation
	Discussion

	Face and License Plate Removal
	Comparison and analysis
	Face recognition yoloface
	Application
	Image recognition area blur processing
	test

	License Plate Detection and Recognition
	Application
	Image recognition area blur processing
	test

	Discussion

	Bumblebee XB3
	Three-track separation of images
	Extraction and separation
	Bumblebee xb3 ros package

	Three image merge
	Three channels of RGB
	RGB to Bayer filter
	Discussion

	System Integration
	Data collection
	Topic of information
	Automation script

	Experiments
	Conclusion
	Bibliography

