Evaluating Forecasts with scoringutils in R

Nikos I. Bosse
London School of Hygiene & Tropical Medicine (LSHTM)

Hugo Gruson Anne Cori
LSHTM Imperial College London
Edwin van Leeuwen Sebastian Funk Sam Abbott
UK Health Security Agency, LSHTM LSHTM LSHTM
Abstract

Evaluating forecasts is essential to understand and improve forecasting and make fore-
casts useful to decision makers. A variety of R packages provide a broad variety of scoring
rules, visualisations and diagnostic tools. One particular challenge, which scoringutils
aims to address, is handling the complexity of evaluating and comparing forecasts from
several forecasters across multiple dimensions such as time, space, and different types of
targets. scoringutils extends the existing landscape by offering a convenient and flexible
data.table-based framework for evaluating and comparing probabilistic forecasts (forecasts
represented by a full predictive distribution). Notably, scoringutils is the first package
to offer extensive support for probabilistic forecasts in the form of predictive quantiles, a
format that is currently used by several infectious disease Forecast Hubs. The package is
easily extendable, meaning that users can supply their own scoring rules or extend exist-
ing classes to handle new types of forecasts. scoringutils provides broad functionality to
check the data and diagnose issues, to visualise forecasts and missing data, to transform
data before scoring, to handle missing forecasts, to aggregate scores, and to visualise the
results of the evaluation. The paper presents the package and its core functionality and
illustrates common workflows using example data of forecasts for COVID-19 cases and
deaths submitted to the European COVID-19 Forecast Hub.

Keywords: forecasting, forecast evaluation, proper scoring rules, scoring, R.

1. Introduction

Good forecasts are of great interest to decision makers in various fields like finance (Tim-
mermann 2018; Elliott and Timmermann 2016), weather predictions (Gneiting and Raftery
2005; Kukkonen et al. 2012) or infectious disease modeling (Reich et al. 2019; Funk et al.
2020; Cramer et al. 2021; Bracher et al. 2022; Sherratt et al. 2022). For decades, researchers,
especially in the field of weather forecasting, have therefore developed and refined an arsenal
of techniques to evaluate predictions (see for example Good (1952), Epstein (1969); Murphy
(1971); Matheson and Winkler (1976), Gneiting, Balabdaoui, and Raftery (2007), Funk, Ca-
macho, Kucharski, Lowe, Eggo, and Edmunds (2019), Gneiting and Raftery (2007), Bracher,

2 Evaluating Forecasts with scoringutils in R

Ray, Gneiting, and Reich (2021)).

Various R (R Core Team 2021) packages cover a wide variety of scoring rules, plots and metrics
that are useful in assessing the quality of a forecast. Existing packages offer functionality
that is well suited to evaluate a variety of predictive tasks, but also come with important
limitations.

Some packages such as tscount (Liboschik, Fokianos, and Fried 2017), topmodels (Zeileis
and Lang 2022), GLMMadaptive (Rizopoulos 2023), cvGEE (Rizopoulos 2019) or fabletools
(O’Hara-Wild, Hyndman, and Wang 2023) expect that forecasts were generated in a certain
way and require users to supply an object of a specific class to compute scores. These packages
provide excellent tools for users operating within the specific package framework but are by
their nature not generally applicable to many use cases practitioners might encounter.

Packages such as scoringRules (Jordan, Kriiger, and Lerch 2019), Metrics (Hamner and Frasco
2018), MLmetrics (Yan 2016), verification (Laboratory 2015), SpecsVerification (Siegert
2020), surveillance (Meyer, Held, and Hohle 2017), predtools (Sadatsafavi, Safari, and Lee
2023), or probably (Kuhn, Vaughan, and Ruiz 2023b) provide an extensive collection of tools,
scoring rules and visualisations for various use cases. However, most scoring functions operate
on vectors and matrices. This is desirable in many applications but can make it difficult to
simultaneously evaluate multiple forecasts across several dimensions, such as time, space, and
different types of targets.

scoring (Merkle and Steyvers 2013) operates on a data.frame and uses a formula interface,
making this task easier. However, scoring only exports a few scoring rules and does not allow
users to supply their own. yardstick (Kuhn, Vaughan, and Hvitfeldt 2023a), which builds on
the tidymodels (Kuhn and Wickham 2020) framework, is the most general and flexible other
forecast evaluation package. It allows users to apply arbitrary scoring rules to a data.frame
of forecasts, independently of how they were created. However, yardstick is primarily focused
on point forecasts and classification tasks. It currently lacks general support for probabilistic
forecasts (forecasts in the form of a full predictive distribution, represented e.g., by a set of
quantiles or samples from the forecast distribution). Probabilistic forecasts are desirable, as
they allow decision makers to take into account the uncertainty of a forecast (Gneiting et al.
2007), and are widely used, e.g., in Meteorology or Epidemiology.

scoringutils aims to fill the existing gap in the ecosystem by providing a flexible general-
purpose tool for the evaluation of probabilistic forecasts. It offers a coherent data.table-
based framework and workflow that allows users to evaluate and compare forecasts across
multiple dimensions using a wide variety of default and user-provided scoring rules. Notably,
scoringutils is the first package to offer extensive support for probabilistic forecasts in the
form of predictive quantiles, a format that is currently used by several infectious disease
Forecast Hubs (Reich et al. 2019; Cramer et al. 2020; Sherratt et al. 2022; Bracher et al.
2022). The package provides broad functionality to check the data and diagnose issues, to
visualise forecasts and missing data, to transform data before scoring (see Bosse, Abbott,
Cori, van Leeuwen, Bracher, and Funk 2023), to apply various metrics and scoring rules
to data, to handle missing forecasts, to aggregate scores and to visualise the results of the
evaluation. scoringutils makes extensive use of data.table (Dowle and Srinivasan 2023) to
ensure fast and memory-efficient computations. The core functionality is designed around S3
classes, allowing users to expand on the generics and methods implemented in the package.
scoringutils provides extensive documentation and case studies, as well as sensible defaults

Nikos I. Bosse, Hugo Gruson, Anne Cori, Edwin van Leeuwen, Sebastian Funk, Sam Abbott3

for scoring forecasts.

A get_forecast_unit(data)
Sec. 2.2 Input (oo frame forecast <- data |> diagnostic get_forecast_type(data)

J, helpers get_duplicate_forecasts(data)
validate/create as_forecast() |> se. 24 set_forecest_unit()
forecast ob]e‘:t validate_forecast(forecast)

— print(forecast)

M
transform data transform_forecasts()

—_— get_forecast_counts(forecast) |>
additional plot_forecast_counts()
functionality get_pit(forecast) |>
Sec. 2.8 plot_pit()

get_coverage(forecast) |>
plot_interval_coverage() /

Sec. 31 score forecasts scores <- forecast |>
plot_quantile_coverage()

score() |>
Sec.3.3 add_relative_skill()

get_correlations(scores) |>

additi_onal_ plot_correlation()
functionality

2.4 get_pairwise_comparisons(forecast) |>

plot_pairwise_comparisons()

summarise results summarised <- scores |>

summarise_scores()

additional plot_score_table(summarised)

functionality plot_heatmap(summarised)

c. 4.2

plot_wis(summarised)

.31 Input ———— scoring rule

Figure 1: Hlustration of the suggested workflow for evaluating forecasts with scoringutils. A:
Workflow for working with forecasts in a data.table-based format. The left side shows the
core workflow of the package: 1) validating and processing inputs, 2) scoring forecasts and
3) summarising scores. The right side shows additional functionality that is available at the
different stages of the evaluation process. The part in blue is covered by Section 2 and in-
cludes all functions related to processing and validating inputs as well as obtaining additional
information about the forecasts. The part in green is covered by Section 3 and includes all
functions related to scoring forecasts and obtaining additional information about the scores.
The part in red is covered by Section 4 and includes all functions related to summarising
scores and additional visualisations based on summarised scores. B: An alternative workflow,
allowing users to call scoring rules directly with vectors/matrices as inputs.

Paper outline and package workflow

The structure of this paper follows the suggested package workflow which consists of 1) vali-
dating and processing inputs, 2) scoring forecasts and 3) summarising scores. This workflow
is illustrated in Figure 1, which displays the core workflow (left side) as well as additional
functionality that is available at different stages of the evaluation process (right side).

Section 2 is centred around validating inputs, forecast objects, and the associated function-

4 Evaluating Forecasts with scoringutils in R

ality. It explains the expected input formats and how to validate inputs and diagnose issues.
It provides an overview of the types of forecasts supported by scoringutils and the different
S3 classes used to represent these forecast types. It also provides information on a variety
of functions that can be used to visualise forecasts, transform inputs or obtain additional
information and visualisations.

Section 3 is centred around scoring forecasts and the additional functionality that is available
to manipulate and analyse scores further. It explains how to score forecasts, either in a
data.table-format or in a format based on matrices and vectors. It also provides information
on additional information that can be computed from scores, such as correlations between
scores or relative skill scores based on pairwise comparisons. These can be useful to mitigate
the effects of missing forecasts.

Section 4 is centred around summarised scores. It explains how to summarise scores and gives
information on additional visualisations that can be created based on summarised scores.

Section 5 discusses the merits and limitations of the package in its current version as explores
avenues for future work.

All functionality will be illustrated using the example data shipped with the package, which
is based on a subset of case and death forecasts submitted every week between May and
September 2021 to the European COVID-19 Forecast Hub (Sherratt et al. 2022). Following
the convention of the different COVID-19 Forecast Hubs, we will restrict examples to two-
week-ahead forecasts.

The code for this package and paper can be found on https:github.com/epiforecasts/
scoringutils. The full package documentation as well as an overview of all existing functions
can also be seen on https://epiforecasts.io/scoringutils.

2. Inputs, forecast types and input validation

2.1. Input formats and types of forecasts

Forecasts differ in the exact prediction task and in how the forecaster chooses to represent
their prediction. To distinguish different kinds of forecasts, we use the term “forecast type”
(which is more a convenient classification than a formal definition). Currently, scoringutils
distinguishes four different forecast types: “binary”, “point”, “quantile” and “sample” fore-
casts.

o “Binary” denotes a probability forecast for a binary (yes/no) outcome variable. This is
sometimes also called “soft binary classification”.

e “Point” denotes a forecast for a continuous or discrete outcome variable that is repre-
sented by a single number.

e “Quantile” or “quantile-based” is used to denote a probabilistic forecast for a continuous
or discrete outcome variable, with the forecast distribution represented by a set of
predictive quantiles. While a single quantile would already satisfy the requirements
for a quantile-based forecast, most scoring rules expect a set of quantiles which are
symmetric around the median (thus forming the lower and upper bounds of central
“prediction intervals”) and will return NA if this is not the case.

https:github.com/epiforecasts/scoringutils
https:github.com/epiforecasts/scoringutils
https://epiforecasts.io/scoringutils

Nikos I. Bosse, Hugo Gruson, Anne Cori, Edwin van Leeuwen, Sebastian Funk, Sam Abbott5

e “Sample” or “sample-based” is used to denote a probabilistic forecast for a continuous
or discrete outcome variable, with the forecast represented by a finite set of samples
drawn from the predictive distribution. A single sample technically suffices, but would
lead to very imprecise results.

Forecast type column type
b d
All forecast © sel"ve
tvpes predicted
P model
. . . Soft classification observed factor with 2 levels
Classification Binary o . i .
(prediction is probability) predicted numeric [0,1]
. observed numeric
Point forecast v .
predicted numeric
observed numeric
Sample format predicted numeric
Probabilistic sample_id numeric
forecast observed numeric
Quantile format predicted numeric
quantile_level numeric [0,1]

Table 1: Formatting requirements for data inputs. Regardless of the forecast type, the
data.frame (or similar) must have columns called observed, predicted, and model. For
binary forecasts, the column observed must be of type factor with two levels and the column
predicted must be a numeric between 0 and 1. For all other forecast types, both observed
and predicted must be of type numeric. Forecasts in a sample-based format require an
additional numeric column sample_id and forecasts in a quantile-based format require an
additional numeric column quantile_level with values between 0 and 1.

The starting point for working with scoringutils is usually a data.frame (or similar) con-
taining both the predictions and the observed values. In a next step (see Section 2.2) this
data will be validated and transformed into a “forecast object” (a data.table with a class
forecast and an additional class corresponding to the forecast type). The input data needs
to have a column observed for the observed values, a column predicted for the predicted
values, and a column model denoting the name of the model/forecaster that generated the
forecast. Additional requirements depend on the forecast type. Table 1 shows the expected
input format for each forecast type.

The package contains example data for each forecast type, which can serve as an orien-
tation for the correct formats. The example data sets are exported as example_quantile,
example_sample_continuous, example_sample_discrete, example_point and example_binary.
For illustrative purposes, the example data also contains some rows with only observations

and no corresponding predictions. Input formats for the scoring rules that can be called
directly follow the same convention, with inputs expected to be vectors or matrices.

The unit of a single forecast

6 Evaluating Forecasts with scoringutils in R

Apart from the columns observed, predicted, model, and the extra columns required for
each forecast type, it is usually necessary that the input data contains additional columns.
This is because a single probabilistic forecast (apart from binary predictions) is composed
of multiple values. A quantile-based forecast, for example, is composed of several quantiles,
and a sample-based forecast of multiple samples. However, every row only holds a single
sample/quantile. Several rows in the input data therefore jointly form a single forecast.
Additional columns in the input provide the information necessary to group rows that belong
to the same forecast. The combination of values in those columns forms the unit of a single
forecast (or “forecast unit”) and should uniquely identify a single forecast. For example,
consider forecasts made by different models in various locations at different time points and
for different targets. A single forecast could then be uniquely described by the values in the
columns model, location, date, and target, and the forecast unit would be forecast_unit
= c("model", "location", "date", "target").

Rows are automatically grouped based on the values in all other columns present in the data
(excluding required columns like sample_id or quantile_level and values computed by
scoringutils). As the forecast unit is determined based on all existing columns, no column
must be present that is unrelated to the forecast unit. As a very simplistic example, consider
an additional row, "even", that is one if the row number is even and zero otherwise. The
existence of this column would change results, as scoringutils assumes it was relevant to
grouping the forecasts.

2.2. Forecast objects and input validation

The raw input data needs to be processed and validated by converting it into a forecast
object:

R> library("scoringutils")
R> forecast_quantile <- example_quantile[horizon == 2] [>
+ as_forecast_quantile()

Every forecast type has a corresponding as_forecast_<type>() function that transforms
the input into a forecast object and validates it (see Figure A.11 for details). A forecast
object is a data.table that has passed some input validations. It behaves like a data.table,
but has an additional class forecast as well as a class corresponding to the forecast type
(forecast_point, forecast_binary, forecast_quantile or forecast_sample).

All as_forecast_<type>() functions can take additional arguments that help facilitate the
process of creating a forecast object:

R> forecast_quantile <- example_quantilelhorizon == 2] [>
as_forecast_quantile(
forecast_unit = c(
"model", "location", "target_end_date",
"forecast_date'", "horizon", "location"
),

observed = "observed",

+ + + + + + +

predicted = "predicted",

Nikos I. Bosse, Hugo Gruson, Anne Cori, Edwin van Leeuwen, Sebastian Funk, Sam Abbott7

+ model = "model",
+ quantile_level = "quantile_level",
+)

The argument forecast_unit allows the user to manually set the unit of a single forecast.
This is done by dropping all columns that are not either specified in the forecast_unit or are
“protected” columns (such as observed, predicted, model, quantile_level, or sample_id).
The other arguments can be used to specify the column names of the input data that cor-
respond to the required columns. The function will rename the specified columns to the
corresponding required columns.

2.3. Diagnostic helper functions

Various helper functions are available to diagnose and fix issues with the input data. The most
important one is print (). Once a forecast object has successfully been created, diagnostic
information will automatically be added to the output when printing a forecast object. This
information includes the forecast type, the forecast unit, and additional information in case
the object fails validations.

R> print(forecast_quantile, 2)

Key: <location, target_end_date, target_type>
location target_end_date target_type observed location_name

<char> <Date> <char> <num> <char>
1: DE 2021-05-15 Cases 64985 Germany
2: DE 2021-05-15 Cases 64985 Germany
7014: IT 2021-07-24 Deaths 78 Italy
7015: IT 2021-07-24 Deaths 78 Italy
forecast_date quantile_level predicted model
<Date> <num> <int> <char>
1: 2021-05-03 0.010 63106 EuroCOVIDhub-ensemble
2: 2021-05-03 0.025 67867 EuroCOVIDhub-ensemble
7014: 2021-07-12 0.975 611 epiforecasts-EpiNow2
7015: 2021-07-12 0.990 719 epiforecasts—EpiNow2
horizon
<num>
1: 2
2: 2
7014: 2
7015: 2

Internally, the print method calls the functions get _forecast_type (), get_forecast_unit ()
and assert_forecast(). get_forecast_type() and get_forecast_unit() work on either

8 Evaluating Forecasts with scoringutils in R

an unvalidated data.frame (or similar) or on an already validated forecast object. They
return the forecast type and the forecast unit, respectively, as inferred from the input data.
assert_forecast () asserts that an existing forecast object passes all validations and returns
invisble (NULL) if the forecast object is valid (and otherwise errors). validate_forecast()
is similar to assert_forecast (), but returns the forecast object in case of success instead of
invisble(NULL), meaning that it can be used in a pipe.

One common issue that causes transformation to a forecast object to fail are “duplicates”
in the data. scoringutils strictly requires that there be only one forecast per forecast unit and
only one predicted value per quantile level or sample id within a single forecast. Duplicates
usually occur if the forecast unit is misspecified. For example, if we removed the column
target_type from the example data, we would now have two forecasts (one for cases and
one for deaths of COVID-19) that appear to have the same forecast unit (since the informa-
tion that distinguished between case and death forecasts is no longer there). The function
get_duplicate_forecasts() returns duplicate rows for the user to inspect. To remedy the
issue, the user needs to add additional columns that uniquely identify a single forecast.

R> rbind(example_quantile, example_quantile[1001:1002]) [>
+ get_duplicate_forecasts()

location target_end_date target_type observed location_name

<char> <Date> <char> <num> <char>
1: DE 2021-05-22 Deaths 1285 Germany
2: DE 2021-05-22 Deaths 1285 Germany
3: DE 2021-05-22 Deaths 1285 Germany
4: DE 2021-05-22 Deaths 1285 Germany
forecast_date quantile_level predicted model
<Date> <num> <int> <char>
1: 2021-05-17 0.975 1642 epiforecasts-EpiNow2
2: 2021-05-17 0.975 1642 epiforecasts-EpiNow2
3: 2021-05-17 0.990 1951 epiforecasts-EpiNow2
4: 2021-05-17 0.990 1951 epiforecasts-EpiNow2
horizon
<num>
1: 1
2: 1
3: 1
4: 1

2.4. Transforming forecasts

As suggested in Bosse et al. (2023), users may want to transform forecasts before scoring them.
Two commonly used scoring rules are the continuous ranked probability score (CRPS) and
the weighted interval score (WIS). Both measure the absolute distance between the forecast
and the observation. This may not be desirable, for example in the context of epidemiological
forecasts, where infectious disease processes are usually modelled to occur on a multiplicative

Nikos I. Bosse, Hugo Gruson, Anne Cori, Edwin van Leeuwen, Sebastian Funk, Sam Abbott9

scale. Taking the logarithm of the forecasts and observations before scoring them makes it
possible to evaluate forecasters based on how well they predicted the exponential growth rate.

The function transform_forecasts() takes a validated forecast object as input and allows
users to apply arbitrary transformations to forecasts and observations. Users can specify
a function via the argument fun (as well as supply additional function parameters). The
default function is log_shift (), which is simply a wrapper around log() with an additional
argument that allows adding an offset (i.e., log(x + offset)) to deal with zeroes in the
data. Users can specify to either append the transformed forecasts to the existing data by
setting append = TRUE (the default behaviour, resulting in an additional column scale) or
to replace the existing forecasts in place.

The example data contains negative values which need to be handled before applying the
logarithm. Presumably, negative values for count data should be dropped altogether, but for
illustrative purposes, we will call transform_forecasts() twice to replace them with zeroes
first before appending transformed counts.

R> forecast_quantile [>

+ transform_forecasts(fun = \(x) {pmax(x, 0)}, append = FALSE) [>
+ transform_forecasts(fun = log shift, offset = 1) [>
+ print(2)
location target_end_date target_type observed
<char> <Date> <char> <num>
1: DE 2021-05-15 Cases 64985.000000
2: DE 2021-05-15 Cases 64985.000000
14029: IT 2021-07-24 Deaths 4.369448
14030: IT 2021-07-24 Deaths 4.369448
location_name forecast_date quantile_level predicted
<char> <Date> <num> <num>
1: Germany 2021-05-03 0.010 63106.000000
2: Germany 2021-05-03 0.025 67867.000000
14029: Italy 2021-07-12 0.975 6.416732
14030: Italy 2021-07-12 0.990 6.579251
model horizon scale
<char> <num> <char>
1: EuroCOVIDhub-ensemble 2 natural
2: EuroCOVIDhub-ensemble 2 natural
14029: epiforecasts-EpiNow2 2 log
14030: epiforecasts-EpiNow2 2 log

2.5. Additional functionality related to forecast objects

10 Evaluating Forecasts with scoringutils in R

scoringutils offers a variety of different functions that allow users to obtain and visualise
additional information about their forecast. The package also has an extensive Vignette with
examples for further visualisations that are not implemented as functions.

Displaying the number of forecasts available

Users can get an overview of how many forecasts there are using get_forecast_counts().
The function takes a validated forecast object as input and returns a data.table of forecast
counts, which helps obtain an overview of missing forecasts. This can impact the evaluation,
if missingness correlates with performance. Users can specify the level of summary through
the by argument. For example, to see how many forecasts there are per model, target_type
and forecast_date, we can run

R> forecast_counts <- forecast_quantile [>

+ get_forecast_counts(

+ by = c("model", "target_type", "forecast_date")
+)

We can visualise the results by calling plot_forecast_counts() on the output (Figure 2).

R> library("ggplot2")

R> forecast_counts [>

+ plot_forecast_counts(x = "forecast_date") +
+ facet_wrap(~ target_type) +

+ labs(y = "Model", x = "Forecast date")

Cases Deaths

UMass-MechBayes- 0 0 O O O O O O O O O lllllllllll
EuroCOVIDhub-ensemble
EuroCOVIDhub-baseline llllllllll lllllllllll
epiforecasts—EpiNow2 lllllllllll l
]

|
[Te}
g

@
°
<]
=

2021-05-10 -
2021-05-17 -
2021-05-24 -
2021-05-31 -
2021-06-07 -
2021-06-14 -
2021-06-21 -
2021-06-28 -
2021-07-05 -
2021-07-12 -

2021-05-03
2021-05-10
2021-05-17
2021-05-24
2021-05-31
2021-06-07
2021-06-14
2021-06-21
2021-06-28
2021-07-05

i
N
o
N

ecast date

Count —
o 1 2 3 4

9 2021-07-12

F

Figure 2: Visualistion of forecast counts for the example data. Numbers (and colour shade)
indicate the number of forecasts available for a given model, target type and forecast date.

Probabilistic calibration and PIT histograms

Nikos I. Bosse, Hugo Gruson, Anne Cori, Edwin van Leeuwen, Sebastian Funk, Sam Abbottl1

One important quality of good forecasts is calibration. The term describes a statistical con-
sistency between the forecasts and the observations, i.e., an absence of systematic deviations
between the two. It is possible to distinguish several forms of calibration which are discussed
in detail by Gneiting et al. (2007). The form of calibration most commonly focused on is called
probabilistic calibration. Probabilistic calibration means that the forecast distributions are
consistent with the true data-generating distributions in the sense that on average, 7% of
true observations will be below the corresponding 7-%-quantiles of the cumulative forecast
distributions.

A common way to visualise probabilistic calibration is the probability integral transform
(PIT) histogram (Dawid 1984). Observed values, y, are transformed using the CDF of the
predictive distribution, F', to create a new variable u with u = F(y). w is therefore simply
the CDF of the predictive distribution evaluated at the observed value. If forecasts are
probabilistically calibrated, then the transformed values will be uniformly distributed (for a
proof see for example Angus (1994)). When plotting a histogram of PIT values (see Figure
3), a systematic bias usually leads to a triangular shape, a U-shaped histogram corresponds
to forecasts that are underdispersed (too sharp) and a hump shape appears when forecasts
are overdispersed (too wide). There exist different variations of the PIT to deal with discrete
instead of continuous data (see e.g., Czado, Gneiting, and Held (2009) and Funk et al. (2019)).
The PIT version implemented in scoringutils for discrete variables follows Funk et al.
(2019).

Users can obtain PIT histograms based on validated forecast objects using the function
get_pit () and can visualise results using plot_pit (). Once again, the argument by controls
the summary level. The output of the following is shown in Figure 3:

R> example_sample_continuous [>

+ as_forecast_sample() |[>

+ get_pit(by = c("model", "target_type")) [>
+ plot_pit() +

+ facet_grid(target_type ~ model)

It is, in theory, possible to conduct a formal test for probabilistic calibration, for example by
employing an Anderson-Darling test on the uniformity of PIT values. In practice, this can be
difficult as forecasts, and therefore PIT values as well, are often correlated. Personal experi-
ence suggests that the Anderson-Darling test is often too quick to reject the null hypothesis
of uniformity. It is also important to note that uniformity of the PIT histogram does not
guarantee that forecasts are indeed calibrated. Gneiting et al. (2007); Hamill (2001) provide
examples with different forecasters who are mis-calibrated, but have uniform PIT histograms.

Probabilistic calibration and coverage plots

For forecasts in a quantile-based format, there exists a second way to assess probabilistic
calibration: we can easily compare the proportion of observations that fall below the 7-
quantiles of all forecasts (“empirical quantile coverage”) to the nominal quantile coverage .
Similarly, we can compare the empirical coverage of the central prediction intervals formed
by the predictive quantiles to the nominal interval coverage. For example, the central 50%
prediction intervals of all forecasts should contain around 50% of the observed values, the

12 Evaluating Forecasts with scoringutils in R

epiforecasts—EpiNow?2 EuroCOVIDhub-baseline EuroCOVIDhub-ensemble UMass—MechBayes
0.3

0.2

sase)

o

0.50 0.75 1.00 . 0. 0.75 1.00 0.25 0. 0.75 . 0.25 0.50
PIT

Frequency
o O
w o

o
[N}

syreaq@

0.

=

Figure 3: PIT histograms of all models stratified by forecast target. Histograms should ideally
be uniform. A u-shape usually indicates overconfidence (forecasts are too narrow), a hump-
shaped form indicates underconfidence (forecasts are too uncertain) and a triangle-shape
indicates bias.

90% central intervals should contain around 90% of observations etc. In addition, we can
define coverage deviation as the difference between nominal and empirical coverage.

Interval and quantile coverage can easily be computed by calling get_coverage() on a vali-
dated forecast object (in a quantile-based format). The function computes interval coverage,
quantile coverage, interval coverage deviation and quantile coverage deviation and returns
a data.table with corresponding columns. Coverage values will be summarised according
to the level specified in the by argument and one value per quantile level/interval range is
returned.

R> forecast_quantile [>
+ get_coverage(by = "model") [>
+ print(2)

Results can then be visualised using the functions plot_interval_coverage() (see Fig-
ure 4A) and plot_quantile_coverage() (see 4B). Both show nominal against empirical
coverage. Ideally, forecasters should lie on the diagonal line. If the line moves into the
green-shaded area, the forecaster is too conservative, i.e., the predictive distributions are too
wide/overdispersed on average. The white area implies overconfidence/predictive distribu-
tions that are too narrow on average (see Figure B.12) for more details).

R> coverage <- get_coverage(forecast_quantile, by = c("model", "target_type"))
R>

R> plot_interval_coverage (coverage) +

+ facet_wrap(~ target_type)

Nikos I. Bosse, Hugo Gruson, Anne Cori, Edwin van Leeuwen, Sebastian Funk, Sam Abbott13

R>
R> plot_quantile_coverage (coverage) +
+ facet_wrap(~ target_type)

Note that users can also compute individual coverage values as scores using score(). This
represents a separate workflow that allows users to obtain coverage values as a summary
measure to be computed alongside other scores, rather than providing a way to visually
assess calibration.

A
Cases Deaths
100
IS
2
Qo 75
£
[}
2 50
£
%)
S =
X
0 >
0 25 50 75 100 0 25 50 75 100
Nominal interval coverage
B
Cases Deaths
o 100
3
[}
= 75
o
<
2
> 50
o
8
w 25
Qo
[©)
R o

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Quantile level

model epiforecasts—EpiNow2 —— EuroCOVIDhub-baseline — EuroCOVIDhub-ensemble UMass-MechBayes

Figure 4: Interval coverage (A) and quantile coverage (B) plots. Areas shaded in green
indicate that the forecasts are too wide (i.e., underconfident), while areas in white indicate
that the model is overconfident and generates too narrow prediction intervals.

3. Scoring forecasts

Metrics and scoring rules can be applied to data in two different ways: They can be con-
veniently applied to a data set of observed and predicted values using score(), or they be
called directly on a set of vectors and matrices. This section will mostly focus on score().

3.1. score() and working with scoring rules

The function score () is the workhorse of the package and applies a set of metrics and scoring
rules to predicted and observed values. It is a generic function that dispatches to different
methods depending on the class of the input. The input of score() is a validated forecast
object and its output is an object of class scores, which is a essentially data.table with an
additional attribute metrics (containing the names of the metrics used for scoring).

14 Evaluating Forecasts with scoringutils in R

R> example_point[horizon == 2] [>
+ as_forecast_point() [>

+ score() [>

+ print(2)

Key: <location, target_end_date, target_type>
location target_end_date target_type observed location_name

<char> <Date> <char> <num> <char>
1: DE 2021-05-15 Cases 64985 Germany
2: DE 2021-05-15 Cases 64985 Germany
304: IT 2021-07-24 Deaths 78 Italy
305: IT 2021-07-24 Deaths 78 Italy
forecast_date predicted model horizon ae_point
<Date> <int> <char> <num> <num>
1: 2021-05-03 110716 EuroCOVIDhub-ensemble 2 45731
2: 2021-05-03 132607 EuroCOVIDhub-baseline 2 67622
304: 2021-07-12 124 UMass-MechBayes 2 46
305: 2021-07-12 186 epiforecasts-EpiNow2 2 108
se_point ape
<num> <num>

1: 2091324361 0.7037162
2: 4572734884 1.0405786
304: 2116 0.5897436
305: 11664 1.3846154

All score() methods take an argument metrics with a named list of functions to apply to
the data. These can be metrics exported by scoringutils or any other custom scoring function.
All metrics scoring rules passed to score() need to adhere to the same input format (see
Figure 5), corresponding to the type of forecast to be scored. Scoring functions must accept
a vector of observed values as their first argument, a matrix/vector of predicted values as
their second argument and, for quantile-based forecasts, a vector of quantile levels as their
third argument). However, functions may have arbitrary argument names. Within score(),
inputs like the observed and predicted values, quantile levels etc. are passed to the individual
scoring rules by position, rather than by name. The default scoring rules for point forecasts,
for example, comprise functions from the Metrics package, which use the names actual and
predicted for their arguments instead of observed and predicted. Additional arguments
can be passed down to the scoring functions via the ... arguments in score().

Composing a custom list of metrics and scoring rules

For every forecast type, there exists a default list of scoring rules that are applied to the
data when calling score(). The default lists can be accessed by calling the functions
metrics_point(), metrics_binary(), metrics_sample() and metrics_quantile(). These
functions take additional arguments exclude and select which can be used to customise

Nikos I. Bosse, Hugo Gruson, Anne Cori, Edwin van Leeuwen, Sebastian Funk, Sam Abbott15

Scoring rules for binary and point forecasts
n = number of forecasts

observed predicted return
Input:
» observed factor of length n (binary)
® ° — L numeric of length n (point)
1x1 1x1 1x1 « predicted numeric of lengthn
[o []
H H E— S output: numeric of length n
[J [] °
nxi nxi nxi
Scoring rules for sample-based forecasts
n = number of forecasts, N = number of samples per forecast
observed predicted return
Input:
« observed numeric of length n
° —_ °
e predicted numeric matrix of dim nxN or
1%1 Nx1 1%x1 numeric of length N if observed is scalar
° P ° output: numeric of length n
o [) [
[[[
[] [] o
nx1 nxN nxi
Scoring rules for quantile-based forecasts
n = number of forecasts, N = number of quantiles per forecast
observed predicted quantile_level return
Input:
« observed numeric of length n
° —_— °
s predicted numeric matrix of dim nxN or
1x1 N x1 N x1 1%x1 numeric of length N if observed is scalar
Py s ° » quantile_level numeric of lengthn
[[> [3
[] D [
(] -_— °
nx1 nxN Nx1 nx 1 output: numeric of length n

Figure 5: Overview of the inputs and outputs of the metrics and scoring rules exported by
scoringutils. Dots indicate scalar values, while bars indicate vectors (comprised of values that
belong together). Several bars (vectors) can be grouped into a matrix with rows representing
the individual forecasts. All scoring functions used within score () must accept the same in-
put formats as the functions here. However, functions used within score () do not necessarily
have to have the same argument names (see Section 3). Input formats directly correspond to
the required columns for the different forecast types (see Table 1). The only exception is the
forecast type ’sample’: Inputs require a column sample_id in score (), but no corresponding
argument is necessary when calling scoring rules directly on vectors or matrices.

which scoring rules are included. Alternatively, users can call the function select_metrics()
on a list of scoring rules, which achieves the same purposes and allows users to compose custom
lists of metrics and scoring rules.

R> custom_metrics <- metrics_quantile() [>
+ select_metrics(select = c("wis", "overprediction"))
R>

16 Evaluating Forecasts with scoringutils in R

R> score(metrics = custom_metrics)

Details on metrics exported by scoringutils

All metrics are named according to the following schema: {metric name}_{forecast type}.
If only a single forecast type is possible, then _{forecast typel} is omitted. The return value
is a vector with scores (only in the case of wis (), which is composed of three components (see
C), is there an optional argument that causes the function to return a list of vectors for the
individual WIS components). The first argument of all metrics exported by scoringutils is
always observed, and the second one is predicted. Scoring rules for quantile-based forecasts
have an additional argument, quantile_level, to denote the quantile levels of the predictive
quantiles.

Metrics exported by scoringutils differ in the relationship between input and output. Some
scoring rules have a one-to-one relationship between predicted values and scores, returning one
value per value in predicted. This is the case for all metrics for binary and point forecasts.
Other scoring rules have a many-to-one relationship, returning one value per multiple values
in predicted. This is the case for all scoring rules for sample- and quantile-based forecasts.
For sample- and quantile-based forecasts, predicted is therefore a matrix, with values in
each row jointly forming a single forecast.

Input formats and return values are shown in more detail in Figure 5. The package vignettes
provide extensive documentation for the metrics exported by scoringutils and offer guidance
on which scoring rule to use and how to interpret the scores.

3.2. Adding relative skill scores based on pairwise comparisons

Raw scores for different forecasting models are usually not directly comparable when there
are missing forecasts in the data set, as missingness is often correlated with predictive per-
formance. One way to mitigate this are relative skill scores based on pairwise comparisons
(Cramer et al. 2021).

Models enter a ‘pairwise tournament’, where all possible pairs of models are compared based
on the overlapping set of available forecasts common to both models (omitting comparisons
where there is no overlapping set of forecasts). For every pair, the ratio of the mean scores
of both models is computed. The relative skill score of a model is then the geometric mean
of all mean score ratios which involve that model (see Figure 6. This gives us an indicator of
performance relative to all other models, with the orientation depending on the score used:
if lower values are better for a particular scoring rule, then the same is true for the relative
skill score computed based on that score.

Two models can of course only be fairly compared if they have overlapping forecasts. Further-
more, pairwise comparisons between models for a given score are only possible if all values
have the same sign, i.e., all score values need to be either positive or negative.

To compute relative skill scores, users can call add_pairwise_comparison() on the output
of score(). This function computes relative skill values with respect to a score specified in
the argument metric and adds them as an additional column to the input data. Optionally,
users can specify a baseline model to also compute relative skill scores scaled with respect
to that baseline. Scaled relative skill scores are obtained by simply dividing the relative skill
score for every individual model by the relative skill score of the baseline model. Pairwise

Nikos I. Bosse, Hugo Gruson, Anne Cori, Edwin van Leeuwen, Sebastian Funk, Sam Abbott17

Forecast targets 1 3 4 86

v: HEEEEE

1 3 4 6 —

‘EEEE (B
z

1/2
r AEEE (%Xg)

Y 2 3|5 6
2 3 5 6 . -
Yy 3 6 b3 . b3 /
s 136 5 B
raw scores score ratios relative skill scores

Figure 6: Illustration of the computation of relative skill scores through pairwise comparisons
of three different forecast models, M1-M3. Score ratios are computed based on the overlapping
set of forecasts common to all pairs of two models. The relative skill score of a model is then
the geometric mean of all mean score ratios which involve that model. The orientation of
the relative skill score depends on the score used: if lower values are better for a particular
scoring rule, then the same is true for the relative skill score computed based on that score.

comparisons are computed according to the grouping specified in the argument by: inter-
nally, the data.table with all scores gets split into different data.tables according to the
values specified in by (excluding the column ‘model’). Relative scores are then computed
for every individual group separately. In the example below we specify by = c("model",
"target_type"), which means that there is one relative skill score per model, calculated
completely separately for the different forecasting targets.

R> forecast_quantile [>

+ score() [>

+ add_relative_skill(by = c("model", "target_type"),

+ baseline = "EuroCOVIDhub-baseline")

Pairwise comparisons should usually be made based on raw, unsummarised scores (meaning
that add_relative_skill() should be called before summarise_scores() (see Section 4)).
Summarising scores, for example by computing an average across several dimensions, can
change the set of overlapping forecasts between two models and distort relative skill scores.

3.3. Additional functionality related to scores objects

Displaying mean score ratios from pairwise comparisons

scoringutils offers a second alternative workflow to conduct pairwise comparisons between
models through the function get_pairwise_comparisons(). The purpose of this workflow
is to obtain and visualise information on the direct comparisons between every possible pair
of models, rather than just computing relative skill scores for every model. The function

18 Evaluating Forecasts with scoringutils in R

get_pairwise_comparisons() accepts the same inputs as add_relative_skill(), and re-
turns a data.table with the results of the pairwise tournament. These include the mean
score ratios for every pair of models, a p~value for whether scores for one model are signifi-
cantly different from scores for another model, and the relative and scaled relative skill score
for every model (depending on whether a baseline was provided or not).

get_pairwise_comparisons() computes p~values using either the Wilcoxon rank sum test
(the default, the test is also known as Mann-Whitney-U test) (Mann and Whitney 1947) or a
permutation test. p~values are then adjusted using p.adjust. In practice, the computation
of p~values is complicated by the fact that both tests assume independent observations.
In reality, however, forecasts by a model may be correlated across time or space (e.g., if
a forecaster has a bad day, they might perform badly across different targets for a given
forecast date). p~values may therefore be too liberal in suggesting significant differences where
there aren’t any. We previously suggested computing relative skill scores based on pairwise
comparisons before summarising scores. One exception is the case where one is interested
in p~values specifically: One possible way to mitigate issues from correlated forecasts, is
to aggregate observations over a category where one suspects correlation (provided there
are no missing values within the categories summarised over) to reduce correlation before
making pairwise comparisons. A test that is performed on aggregate scores will likely be
more conservative.

The mean score ratios resulting from pairwise_comparison() can then be visualised using
the function plot_pairwise_comparison(). An example is shown in Figure 7.

R> forecast_quantile [>

score() [>

+ get_pairwise_comparisons(by = c("model", "target_type")) |[>
+ plot_pairwise_comparisons() +

+ facet_wrap(~ target_type)

+

Correlations between scores

Users can examine correlations between scores using the function correlations() and plot
the result using plot_correlations(). The plot resulting from the following code is shown
in Figure 8.

R> correlations <- forecast_quantile [>
+ score() [>

+ summarise_scores() [>

+ get_correlations()

R>

R> correlations [>

+ plot_correlations(digits = 2)

4. Summarising results

Nikos I. Bosse, Hugo Gruson, Anne Cori, Edwin van Leeuwen, Sebastian Funk, Sam Abbott19

Cases Deaths

EuroCOVIDhub-ensemble 0.6 0.84 1 0.25 0.59 0.78 1
UMass—MechBayes 0.32 0.73 1 1.28
epiforecasts—EpiNow2 0.71 1 1.19 0.43 1 1.38 1.7

EuroCOVIDhub-baseline 1 1.41 1.68 1 2.34 3.12 4
2 g 8 2 2 g g 2

3 S 9 = 3 S 9 £

4] z i) @ 4] z o @

8 s S 2 s [=% = 2

T 4 3 @ 0 4 3 @

o)] o ; s I

S 2 % o = 2 ; o

< % »n > < g ”n >

) [} 2} 'S) [} 1] ‘5

=] < 2 > o < S
8) =1 3 3 2 > 8

(=% Q.

< ® 2 = ® 2
] S L S

o o

Figure 7: Ratios of mean weighted interval scores based on overlapping forecast sets. When
interpreting the plot one should look at the model on the y-axis, and the model on the x-axis
is the one it is compared against. If a tile is blue, then the model on the y-axis performed
better (assuming that scores are negatively oriented, i.e., that lower scores are better). If it
is red, the model on the x-axis performed better in direct comparison. In the example above,
the EuroCOVIDhub-ensemble performs best (it only has values smaller than one), while the
EuroCOVIDhub-baseline performs worst (and only has values larger than one). For cases, the
UMass-MechBayes model is excluded as there are no case forecasts available and therefore
the set of overlapping forecasts is empty.

20 Evaluating Forecasts with scoringutils in R

ae_median 1
interval_coverage_deviation 0.29 1
interval_coverage_90 0.15 0.71 1
interval_coverage 50 0.51 0.91 0.4 1
bias 0.6 0.48 0.82 0.32 1
dispersion 0.84 -0.07 -0.41 0.31 0.09 1
underprediction - 0.86 0.51 0.63 0.51 0.92 0.44 1
overprediction 0.99 0.24 0 0.52 0.46 0.91 0.76 1
wis 1 0.3 0.15 0.52 0.6 0.84 0.85 0.99 1

c c o o [%) c c c K%

8 S % D, e 2 2 2 3

B 8 ® ® < 2 S S

E, 3 g g & 8 8

A D s 5 %
2 5 5 £ 5
e 3 E :
3 g g
gl £ £
[

Correlation

05 10

Figure 8: Plot of correlations between different scores. Numbers, as well as the shade of the
cells, indicate the correlation between two scores.

4.1. Summarising scores

Usually, one will not be interested in scores for each individual forecast, but rather in sum-
marised scores. This can be achieved using the function summarise_scores(). The function
takes a scores object (a data.table with an additional attribute metrics) as input and applies
a summary function to it (by default the mean), returning a data.table with summarised
scores. Users can set the summary level using the argument by and will obtain a summarised
score for each combination of the value in the specified columns (e.g., by = c("model",
"target_type") will return one summarised score per model and target type). To display
scores it is often useful to round the output, for example to two significant digits, which can
be achieved with another call to summarise scores().

R> forecast_quantile [>

+ score(metrics = list("wis" = wis)) [>

+ summarise_scores(by = c("model", "target_type")) [>
+ summarise_scores(fun = signif, digits = 2)

model wis
<char> <num>
EuroCOVIDhub-ensemble 17000
EuroCOVIDhub-ensemble 41
EuroCOVIDhub-baseline 29000
EuroCOVIDhub-baseline 160

D W N -

Nikos I. Bosse, Hugo Gruson, Anne Cori, Edwin van Leeuwen, Sebastian Funk, Sam Abbott21

5: epiforecasts-EpiNow2 21000
6: epiforecasts-EpiNow2 69
7: UMass-MechBayes 52

While summarise_scores() accepts arbitrary summary functions, care has to be taken when
using something else than mean(), as this may create an incentive for dishonest reporting.
Many scoring rules for probabilistic forecasts are ‘strictly proper scoring rules’ (Gneiting and
Raftery 2007), meaning that they are constructed such that they cannot be cheated and
always incentivise the forecaster to report her honest belief about the future. Let’s assume
that a forecaster’s true belief about the future corresponds to a predictive distribution F'.
Then, if F' was the true data-generating process, a scoring rule would be proper if it ensures
that no other forecast distribution G would yield a better expected score. If the scoring rule
ensures that under F' no other possible predictive distribution can achieve the same expected
score as F', then it is called strictly proper. From the forecaster’s perspective, any deviation
from her true belief F' leads to a worsening of expected scores. When using summary functions
other than the mean, however, scores may lose their propriety (the property of incentivising
honest reporting) and become cheatable. For example, the median of several individual scores
(individually based on a strictly proper scoring rule) is usually not proper. A forecaster judged
by the median of several scores may be incentivised to misrepresent their true belief in a way
that is not true for the mean score.

The user must exercise additional caution and should usually avoid aggregating scores across
categories which differ much in the magnitude of the quantity to forecast, as (depending on
the scoring rule used) forecast errors usually increase with the order of magnitude of the
forecast target. In the given example, looking at one score per model (i.e., specifying by =
c("model")) is problematic, as overall aggregate scores would be dominated by case forecasts,
while performance on deaths would have little influence. Similarly, aggregating over different
forecast horizons is often ill-advised as the mean will be dominated by further ahead forecast
horizons. In the previous function calls, we therefore decided to only analyse forecasts with
a forecast horizon of two weeks.

4.2. Additional functionality for summarised scores

Heatmaps

To detect systematic patterns it may be useful to visualise a single score across several di-
mensions. The function plot_heatmap() can be used to create a heatmap that achieves this.
The following produces a heatmap of bias values across different locations and forecast targets
(output shown in Figure 9).

R> example_sample_continuous[horizon == 2] [>
as_forecast_sample() [>
score() [>
summarise_scores (by = c("model", "location", "target_type")) [>
summarise_scores(
by = c("model", "location", "target_type"),
fun = signif, digits = 2) [>

+ + + + + +

22 Evaluating Forecasts with scoringutils in R

+ plot_heatmap(x = "location", metric = "bias") +
+ facet_wrap(~ target_type)
Cases Deaths
UMass-MechBayes - 0.064 0.63 -0.19
__ EuroCOVIDhub-ensemble 0.14 0.0045 -0.42 0.036 -0.018 0.068 0.068 0.068
S
g
EuroCOVIDhub-baseline 0.56 -0.068 - 0.25 0.38 0.35 0.15 0.41
epiforecasts—EpiNow?2 0.12 -0.082 -0.17 -0.13 -0.34 -0.094 0.5 -0.045
L o m = L o m =
o w O] - [a) [10} -
location

bias -

-0.6-0.3 0.0 0.3 0.6

Figure 9: Heatmap of bias values for different models across different locations and forecast
targets. Bias values are bound between -1 (underprediction) and 1 (overprediction) and should
be 0 ideally. Red tiles indicate an upwards bias (overprediction), while blue tiles indicate a
downwards bias (underprediction)

Weighted interval score decomposition

For quantile-based forecasts, the weighted interval score (WIS, Bracher et al. 2021, see Section
C in the Appendix) is a commonly used strictly proper scoring rule for forecasts in a quantile-
based format. The score is the sum of three components: overprediction, underprediction and
dispersion (width of the forecast). These can be visualised using the function plot_wis(),
as shown in Figure 10.

R> forecast_quantile [>
+ score() [>

+ summarise_scores(by = c("model"”, "target_type")) [>
+ plot_wis(relative_contributions = FALSE) +
+ facet_wrap(~ target_type,
+ scales = "free x")

5. Discussion
Summary

This paper presented scoringutils an R package for forecast evaluation. It explained the
core workflow, consisting of 1) validating and processing inputs, 2) scoring forecasts and 3)

Nikos I. Bosse, Hugo Gruson, Anne Cori, Edwin van Leeuwen, Sebastian Funk, Sam Abbott23

Cases Deaths Cases Deaths

UMass-MechBayes

EuroCOVIDhub—ensemble

EuroCOVIDhub-baseline -

epiforecasts—EpiNow2

model

0 10000 20000 30000 O 50 100 150 000 025 050 075 1.00 0.00 0.25 050 075 1.00
WIS contributions Normalised WIS contributions

WIS component . overprediction . underprediction . dispersion

Figure 10: Decomposition of the weighted interval score (WIS) into dispersion, overprediction
and underprediction. A: absolute contributions, B: contributions normalised to 1.

summarising scores, as well as additional functionality such as visualisation and diagnostic
tools.

The package specialises in the evaluation of probabilistic forecasts (the forecast is a full
predictive distribution). It provides a comprehensive framework based on data.table and
allows users to validate, diagnose, visualise, transform and score forecasts using a wide range
of default and custom scoring rules. The package is designed to be flexible and extensible, and
to make it easy to use functionality from different packages in a single workflow. scoringutils
addresses a gap in the existing ecosystem of forecast evaluation by creating a data.table-
based forecast evaluation framework for probabilistic forecasts (similarly to what yardstick
provides for point forecasts and classification tasks). Notably, scoringutils is the first package
to provide extensive support for forecasts in a quantile-based forecasts, which is commonly
used for example in Epidemiology. In addition to providing a coherent forecast evaluation
workflow it offers a wide range of additional functions that practitioners may find useful when
assessing or comparing the quality of their forecasts.

One important limitation of the package is that it currently does not support statistical test-
ing of forecast performance as part of its core workflow. Determining whether a forecaster is
significantly better than another is an important aspect of forecast evaluation that is currently
mostly missing from the package. Another limitation is the fact that the package currently
only supports a small set of possible types of forecasts. For example, forecasts in a bin-format
or forecasts represented in a closed-form distribution (as can be scored for example using scor-
ingRules are not supported. While it is in principle possible to extend the current classes and
generic functions, this may not be very feasible in practice for most users. Some functionality
in scoringutils is necessarily redundant with other packages that provide functionality to aid
with the evaluation of forecasts. The overall idea of providing a data.frame-based evaluation
framework, for example, is similar to what yardstick offers (albeit with a focus on point fore-
casts and classification tasks, rather than probabilistic forecasts). Having a single package
that encompasses all possible use cases might be preferable. At the moment, scoringutils falls
somewhat short of its aspiration to become a bridge between different packages in the forecast
evaluation ecosystem. It does not yet offer a wide range of helper functions that allow users

24 Evaluating Forecasts with scoringutils in R

to easily convert between different formats and use functionality from other packages and
many visualisations that are available in other packages, particularly with respect to model
calibration, are missing.

A variety of extensions are planned for scoringutils. The first is the expansion of the forecast
types that are supported. We plan to add support for evaluating categorical forecasts, as
well as multivariate forecasts that specify a joint distribution across targets. Adding the
possibility to score closed-form distributions might be another useful extension. A second area
of expansion is the integration with other forecast evaluation and modelling packages. We aim
to provide a variety of helper functions to convert to and from different formats, such as the
one used by yardstick or formats used by modelling packages such as odin. These functions
would make it easy to integrate scoringutils into existing workflows or use functionality from
other packages that is not available in scoringutils. A third area of improvement is the
addition of case studies and vignettes that make working with and extending functionality
from the package easier.

scoringutils is already used by a variety of public health institutions such as the US Centers for
Disease Control, the European Centre for Disease Prevention and Control, as well as various
academic institutions. The package is actively maintained and developed and we hope it
will continue to be a valuable resource for researchers and practitioners working on forecast
evaluation.

6. Acknowledgments

Funding statements

NIB received funding from the Health Protection Research Unit (grant code NTHR200908).
HG’s work was funded by the Wellcome Trust (grant: 210758/Z/18/Z). AC acknowledges
funding by the NIHR, the Sergei Brin foundation, USAID, and the Academy of Medical
Sciences. EvL acknowledges funding by the National Institute for Health Research (NIHR)
Health Protection Research Unit (HPRU) in Modelling and Health Economics (grant number
NIHR200908) and the European Union’s Horizon 2020 research and innovation programme
- project EpiPose (101003688). SF’s work was supported by the Wellcome Trust (grant:
210758/7/18/Z), and the NIHR (NIHR200908). SA’s work was funded by the Wellcome Trust
(grant: 210758/Z/18/Z). This study is partially funded by the National Institute for Health
Research (NIHR) Health Protection Research Unit in Modelling and Health Economics, a
partnership between UK Health Security Agency and Imperial College London in collabo-
ration with LSHTM (grant code NIHR200908); and acknowledges funding from the MRC
Centre for Global Infectious Disease Analysis (reference MR/R015600/1), jointly funded by
the UK Medical Research Council (MRC) and the UK Foreign, Commonwealth & Develop-
ment Office (FCDO), under the MRC/FCDO Concordat agreement and is also part of the
EDCTP2 programme supported by the European Union. Disclaimer: “The views expressed
are those of the author(s) and not necessarily those of the NIHR, UKHSA or the Department
of Health and Social Care. We thank Community Jameel for Institute and research funding.
This work has also been supported by the US National Institutes of General Medical Sci-
ences (R35GM119582). The content is solely the responsibility of the authors and does not
necessarily represent the official views of NIGMS, or the National Institutes of Health.

Nikos I. Bosse, Hugo Gruson, Anne Cori, Edwin van Leeuwen, Sebastian Funk, Sam Abbott25

References

Angus JE (1994). “The Probability Integral Transform and Related Results.” SIAM Review,
36(4), 652—654. ISSN 0036-1445. doi:10.1137/1036146.

Bosse NI, Abbott S, Cori A, van Leeuwen E, Bracher J, Funk S (2023). “Scoring Epidemio-
logical Forecasts on Transformed Scales” PLOS Computational Biology, 19(8), e1011393.
ISSN 1553-7358. doi:10.1371/journal.pcbi.1011393.

Bracher J, Ray EL, Gneiting T, Reich NG (2021). “Evaluating Epidemic Forecasts in an
Interval Format.” PLoS computational biology, 17(2), e1008618. ISSN 1553-7358. doi:
10.1371/journal .pcbi.1008618.

Bracher J, Wolffram D, Deuschel J, Gorgen K, Ketterer JL, Ullrich A, Abbott S, Barbarossa
MYV, Bertsimas D, Bhatia S, Bodych M, Bosse NI, Burgard JP, Castro L, Fairchild G,
Fiedler J, Fuhrmann J, Funk S, Gambin A, Gogolewski K, Heyder S, Hotz T, Kheifetz
Y, Kirsten H, Krueger T, Krymova E, Leithduser N, Li ML, Meinke JH, Miasojedow B,
Michaud IJ, Mohring J, Nouvellet P, Nowosielski JM, Ozanski T, Radwan M, Rakowski F,
Scholz M, Soni S, Srivastava A, Gneiting T, Schienle M (2022). “National and Subnational
Short-Term Forecasting of COVID-19 in Germany and Poland during Early 2021.” Com-
munications Medicine, 2(1), 1-17. ISSN 2730-664X. doi:10.1038/s43856-022-00191-8.

Cramer E, Ray EL, Lopez VK, Bracher J, Brennen A, Rivadeneira AJC, Gerding A, Gneiting
T, House KH, Huang Y, Jayawardena D, Kanji AH, Khandelwal A, Le K, Miithlemann A,
Niemi J, Shah A, Stark A, Wang Y, Wattanachit N, Zorn MW, Gu Y, Jain S, Bannur N,
Deva A, Kulkarni M, Merugu S, Raval A, Shingi S, Tiwari A, White J, Woody S, Dahan
M, Fox S, Gaither K, Lachmann M, Meyers LA, Scott JG, Tec M, Srivastava A, George
GE, Cegan JC, Dettwiller ID, England WP, Farthing MW, Hunter RH, Lafferty B, Linkov
I, Mayo ML, Parno MD, Rowland MA, Trump BD, Corsetti SM, Baer TM, Eisenberg MC,
Falb K, Huang Y, Martin ET, McCauley E, Myers RL, Schwarz T, Sheldon D, Gibson GC,
Yu R, Gao L, Ma Y, Wu D, Yan X, Jin X, Wang YX, Chen Y, Guo L, Zhao Y, Gu Q, Chen
J, Wang L, Xu P, Zhang W, Zou D, Biegel H, Lega J, Snyder TL, Wilson DD, McConnell
S, Walraven R, Shi Y, Ban X, Hong QJ, Kong S, Turtle JA, Ben-Nun M, Riley P, Riley
S, Koyluoglu U, DesRoches D, Hamory B, Kyriakides C, Leis H, Milliken J, Moloney M,
Morgan J, Ozcan G, Schrader C, Shakhnovich E, Siegel D, Spatz R, Stiefeling C, Wilkinson
B, Wong A, Gao Z, Bian J, Cao W, Ferres JL, Li C, Liu TY, Xie X, Zhang S, Zheng S,
Vespignani A, Chinazzi M, Davis JT, Mu K, y Piontti AP, Xiong X, Zheng A, Baek J,
Farias V, Georgescu A, Levi R, Sinha D, Wilde J, Penna ND, Celi LA, Sundar S, Cavany
S, Espana G, Moore S, Oidtman R, Perkins A, Osthus D, Castro L, Fairchild G, Michaud
I, Karlen D, Lee EC, Dent J, Grantz KH, Kaminsky J, Kaminsky K, Keegan LT, Lauer
SA, Lemaitre JC, Lessler J, Meredith HR, Perez-Saez J, Shah S, Smith CP, Truelove SA,
Wills J, Kinsey M, Obrecht RF, Tallaksen K, Burant JC, Wang L, Gao L, Gu Z, Kim M,
Li X, Wang G, Wang Y, Yu S, Reiner RC, Barber R, Gaikedu E, Hay S, Lim S, Murray C,
Pigott D, Prakash BA, Adhikari B, Cui J, Rodriguez A, Tabassum A, Xie J, Keskinocak
P, Asplund J, Baxter A, Oruc BE, Serban N, Arik SO, Dusenberry M, Epshteyn A, Kanal
E, Le LT, Li CL, Pfister T, Sava D, Sinha R, Tsai T, Yoder N, Yoon J, Zhang L, Abbott S,
Bosse NI, Funk S, Hellewel J, Meakin SR, Munday JD, Sherratt K, Zhou M, Kalantari R,
Yamana TK, Pei S, Shaman J, Ayer T, Adee M, Chhatwal J, Dalgic OO, Ladd MA, Linas

https://doi.org/10.1137/1036146
https://doi.org/10.1371/journal.pcbi.1011393
https://doi.org/10.1371/journal.pcbi.1008618
https://doi.org/10.1371/journal.pcbi.1008618
https://doi.org/10.1038/s43856-022-00191-8

26 Evaluating Forecasts with scoringutils in R

BP, Mueller P, Xiao J, Li ML, Bertsimas D, Lami OS, Soni S, Bouardi HT, Wang Y, Wang
Q, Xie S, Zeng D, Green A, Bien J, Hu AJ, Jahja M, Narasimhan B, Rajanala S, Rumack
A, Simon N, Tibshirani R, Tibshirani R, Ventura V, Wasserman L, O’Dea EB, Drake
JM, Pagano R, Walker JW, Slayton RB, Johansson M, Biggerstaff M, Reich NG (2021).
“Evaluation of Individual and Ensemble Probabilistic Forecasts of COVID-19 Mortality in
the US.” medRxiv, p. 2021.02.03.21250974. doi:10.1101/2021.02.03.21250974.

Cramer E, Reich NG, Wang SY, Niemi J, Hannan A, House K, Gu Y, Xie S, Horstman S,
aniruddhadiga, Walraven R, starkari, Li ML, Gibson G, Castro L, Karlen D, Wattanachit
N, jinghuichen, zyt9lsb, aagarwall1996, Woody S, Ray E, Xu FT, Biegel H, GuidoEspana,
X X, Bracher J, Lee E, har96, leyouz (2020). “COVID-19 Forecast Hub: 4 December 2020
Snapshot.” doi:10.5281/zenodo.3963371.

Czado C, Gneiting T, Held L (2009). “Predictive Model Assessment for Count Data.” Bio-
metrics, 65(4), 1254-1261. ISSN 1541-0420. doi:10.1111/j.1541-0420.2009.01191.x.

Dawid AP (1984). “Present Position and Potential Developments: Some Personal Views
Statistical Theory the Prequential Approach.” Journal of the Royal Statistical Society:
Series A (General), 147(2), 278-290. ISSN 2397-2327. doi:10.2307/2981683.

Dowle M, Srinivasan A (2023). data.table: Extension of ‘data.frame‘. R package version
1.14.8, URL https://CRAN.R-project.org/package=data.table.

Elliott G, Timmermann A (2016). “Forecasting in Economics and Finance.” Annual Review
of Economics, 8(1), 81-110. doi:10.1146/annurev-economics-080315-015346.

Epstein ES (1969). “A Scoring System for Probability Forecasts of Ranked Cate-
gories.” Journal of Applied Meteorology, 8(6), 985-987. ISSN 0021-8952. doi:10.1175/
1520-0450(1969) 008<0985: ASSFPF>2.0.C0; 2.

Funk S, Abbott S, Atkins BD, Baguelin M, Baillie JK, Birrell P, Blake J, Bosse NI, Burton J,
Carruthers J, Davies NG, Angelis DD, Dyson L, Edmunds WJ, Eggo RM, Ferguson NM,
Gaythorpe K, Gorsich E, Guyver-Fletcher G, Hellewell J, Hill EM, Holmes A, House TA,
Jewell C, Jit M, Jombart T, Joshi I, Keeling MJ, Kendall E, Knock ES, Kucharski AlJ,
Lythgoe KA, Meakin SR, Munday JD, Openshaw PJM, Overton CE, Pagani F, Pearson J,
Perez-Guzman PN, Pellis L, Scarabel F, Semple MG, Sherratt K, Tang M, Tildesley MJ,
van Leeuwen E, Whittles LK, Group CCW, Team ICCR, Investigators I (2020). “Short-
Term Forecasts to Inform the Response to the Covid-19 Epidemic in the UK.” medRziv, p.
2020.11.11.20220962. doi:10.1101/2020.11.11.20220962.

Funk S, Camacho A, Kucharski AJ, Lowe R, Eggo RM, Edmunds WJ (2019). “Assessing the
Performance of Real-Time Epidemic Forecasts: A Case Study of Ebola in the Western Area
Region of Sierra Leone, 2014-15" PLOS Computational Biology, 15(2), e1006785. ISSN
1553-7358. doi:10.1371/journal.pcbi.1006785.

Gneiting T, Balabdaoui F, Raftery AE (2007). “Probabilistic Forecasts, Calibration and
Sharpness.” Journal of the Royal Statistical Society: Series B (Statistical Methodology),
69(2), 243-268. ISSN 1467-9868. doi:10.1111/j.1467-9868.2007.00587 .x.

Gneiting T, Raftery AE (2005). “Weather Forecasting with Ensemble Methods.” Science,
310(5746), 248-249. ISSN 0036-8075, 1095-9203. doi:10.1126/science.1115255.

https://doi.org/10.1101/2021.02.03.21250974
https://doi.org/10.5281/zenodo.3963371
https://doi.org/10.1111/j.1541-0420.2009.01191.x
https://doi.org/10.2307/2981683
https://CRAN.R-project.org/package=data.table
https://doi.org/10.1146/annurev-economics-080315-015346
https://doi.org/10.1175/1520-0450(1969)008<0985:ASSFPF>2.0.CO;2
https://doi.org/10.1175/1520-0450(1969)008<0985:ASSFPF>2.0.CO;2
https://doi.org/10.1101/2020.11.11.20220962
https://doi.org/10.1371/journal.pcbi.1006785
https://doi.org/10.1111/j.1467-9868.2007.00587.x
https://doi.org/10.1126/science.1115255

Nikos I. Bosse, Hugo Gruson, Anne Cori, Edwin van Leeuwen, Sebastian Funk, Sam Abbott27

Gneiting T, Raftery AE (2007). “Strictly Proper Scoring Rules, Prediction, and Estimation.”
Journal of the American Statistical Association, 102(477), 359-378. ISSN 0162-1459, 1537-
274X. d0i:10.1198/016214506000001437.

Good 1J (1952). “Rational Decisions.” Journal of the Royal Statistical Society. Series B
(Methodological), 14(1), 107-114. ISSN 0035-9246. 2984087.

Hamill TM (2001). “Interpretation of Rank Histograms for Verifying Ensemble Forecasts.”
Monthly Weather Review, 129(3), 550-560. ISSN 1520-0493, 0027-0644. doi:10.1175/
1520-0493(2001) 129<0550: IORHFV>2.0.C0;2.

Hamner B, Frasco M (2018). Metrics: FEvaluation Metrics for Machine Learning. R package
version 0.1.4, URL https://CRAN.R-project.org/package=Metrics.

Jordan A, Kriiger F, Lerch S (2019). “Evaluating Probabilistic Forecasts with scoringRules.”
Journal of Statistical Software, 90(12), 1-37. doi:10.18637/jss.v090.112.

Kuhn M, Vaughan D, Hvitfeldt E (2023a). yardstick: Tidy Characterizations of Model
Performance. R package version 1.2.0, URL https://CRAN.R-project.org/package=
yardstick.

Kuhn M, Vaughan D, Ruiz E (2023b). probably: Tools for Post-Processing Class Probabil-
ity Estimates. R package version 1.0.2, URL https://CRAN.R-project.org/package=
probably.

Kuhn M, Wickham H (2020). Tidymodels: a collection of packages for modeling and machine
learning using tidyverse principles. URL https://www.tidymodels.org.

Kukkonen J, Olsson T, Schultz DM, Baklanov A, Klein T, Miranda AI, Monteiro A, Hirtl M,
Tarvainen V, Boy M, Peuch VH, Poupkou A, Kioutsioukis I, Finardi S, Sofiev M, Sokhi
R, Lehtinen KEJ, Karatzas K, San José R, Astitha M, Kallos G, Schaap M, Reimer E,
Jakobs H, Eben K (2012). “A Review of Operational, Regional-Scale, Chemical Weather
Forecasting Models in Europe.” Atmospheric Chemistry and Physics, 12(1), 1-87. ISSN
1680-7316. doi:10.5194/acp-12-1-2012.

Laboratory NRA (2015). werification: Weather Forecast Verification Utilities. R package
version 1.42, URL https://CRAN.R-project.org/package=verification.

Liboschik T, Fokianos K, Fried R (2017). “tscount: An R Package for Analysis of Count
Time Series Following Generalized Linear Models.” Journal of Statistical Software, 82(5),
1-51. doi:10.18637/jss.v082.105.

Mann HB, Whitney DR (1947). “On a Test of Whether One of Two Random Variables Is
Stochastically Larger than the Other.” The Annals of Mathematical Statistics, 18(1), 50-60.
ISSN 0003-4851, 2168-8990. doi:10.1214/aoms/1177730491.

Matheson JE, Winkler RL (1976). “Scoring Rules for Continuous Probability Distributions.”
Management Science, 22(10), 1087-1096. ISSN 0025-1909. doi:10.1287/mnsc.22.10.
1087.

Merkle EC, Steyvers M (2013). “Choosing a Strictly Proper Scoring Rule.” Decision Analysis,
10, 292-304.

https://doi.org/10.1198/016214506000001437
2984087
https://doi.org/10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2
https://doi.org/10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2
https://CRAN.R-project.org/package=Metrics
https://doi.org/10.18637/jss.v090.i12
https://CRAN.R-project.org/package=yardstick
https://CRAN.R-project.org/package=yardstick
https://CRAN.R-project.org/package=probably
https://CRAN.R-project.org/package=probably
https://www.tidymodels.org
https://doi.org/10.5194/acp-12-1-2012
https://CRAN.R-project.org/package=verification
https://doi.org/10.18637/jss.v082.i05
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1287/mnsc.22.10.1087
https://doi.org/10.1287/mnsc.22.10.1087

28 Evaluating Forecasts with scoringutils in R

Meyer S, Held L, Hohle M (2017). “Spatio-Temporal Analysis of Epidemic Phenomena Using
the R Package surveillance.” Journal of Statistical Software, 77(11), 1-55. doi:10.18637/
jss.v077.111.

Murphy AH (1971). “A Note on the Ranked Probability Score.” Journal of Applied Meteo-
rology and Climatology, 10(1), 155-156. ISSN 1520-0450. doi:10.1175/1520-0450(1971)
010<0155:ANOTRP>2.0.C0O; 2.

O’Hara-Wild M, Hyndman R, Wang E (2023). fabletools: Core Tools for Packages in the 'fa-
ble’ Framework. R package version 0.3.4, URL https://CRAN.R-project.org/package=
fabletools.

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Reich NG, Brooks LC, Fox SJ, Kandula S, McGowan CJ, Moore E, Osthus D, Ray EL,
Tushar A, Yamana TK, Biggerstaff M, Johansson MA, Rosenfeld R, Shaman J (2019). “A
Collaborative Multiyear, Multimodel Assessment of Seasonal Influenza Forecasting in the
United States.” Proceedings of the National Academy of Sciences, 116(8), 3146-3154. ISSN
0027-8424, 1091-6490. doi:10.1073/pnas.1812594116.

Rizopoulos D (2019). cvGEE: Cross-Validated Predictions from GEE. R package version
0.3-0, URL https://CRAN.R-project.org/package=cvGEE.

Rizopoulos D (2023). GLMMadaptive: Generalized Linear Mixed Models using Adaptive
Gaussian Quadrature. R package version 0.9-0, URL https://CRAN.R-project.org/
package=GLMMadaptive.

Sadatsafavi M, Safari A, Lee TY (2023). predtools: Prediction Model Tools. R package version
0.0.3, URL https://CRAN.R-project.org/package=predtools.

Sherratt K, Gruson H, Grah R, Johnson H, Niehus R, Prasse B, Sandman F, Deuschel J,
Wolffram D, Abbott S, Ullrich A, Gibson G, Ray EL, Reich NG, Sheldon D, Wang Y,
Wattanachit N, Wang L, Trnka J, Obozinski G, Sun T, Thanou D, Pottier L, Krymova E,
Barbarossa MV, Leithduser N, Mohring J, Schneider J, Wlazlo J, Fuhrmann J, Lange B,
Rodiah I, Baccam P, Gurung H, Stage S, Suchoski B, Budzinski J, Walraven R, Villanueva
I, Tucek V, Smid M, Zajicek M, Pérez AC, Reina B, Bosse NI, Meakin S, Di Loro A,
Maruotti A, Eclerova V, Kraus A, Kraus D, Pribylova L, Dimitris B, Li ML, Saksham S,
Dehning J, Mohr S, Priesemann V, Redlarski G, Bejar B, Ardenghi G, Parolini N, Ziarelli
G, Bock W, Heyder S, Hotz T, E SD, Guzman-Merino M, Aznarte JL, Morifia D, Alonso
S, Alvarez E, Lopez D, Prats C, Burgard JP, Rodloff A, Zimmermann T, Kuhlmann A,
Zibert J, Pennoni F, Divino F, Catala M, Lovison G, Giudici P, Tarantino B, Bartolucci
F, Jona LG, Mingione M, Farcomeni A, Srivastava A, Montero-Manso P, Adiga A, Hurt
B, Lewis B, Marathe M, Porebski P, Venkatramanan S, Bartczuk R, Dreger F, Gambin A,
Gogolewski K, Gruziel-Slomka M, Krupa B, Moszynski A, Niedzielewski K, Nowosielski J,
Radwan M, Rakowski F, Semeniuk M, Szczurek E, Zielinski J, Kisielewski J, Pabjan B,
Holger K, Kheifetz Y, Scholz M, Bodych M, Filinski M, Idzikowski R, Krueger T, Ozanski T,
Bracher J, Funk S (2022). “Predictive Performance of Multi-Model Ensemble Forecasts of
COVID-19 across European Nation.” Furope PMC. doi:10.1101/2022.06.16.22276024.

https://doi.org/10.18637/jss.v077.i11
https://doi.org/10.18637/jss.v077.i11
https://doi.org/10.1175/1520-0450(1971)010<0155:ANOTRP>2.0.CO;2
https://doi.org/10.1175/1520-0450(1971)010<0155:ANOTRP>2.0.CO;2
https://CRAN.R-project.org/package=fabletools
https://CRAN.R-project.org/package=fabletools
https://www.R-project.org/
https://doi.org/10.1073/pnas.1812594116
https://CRAN.R-project.org/package=cvGEE
https://CRAN.R-project.org/package=GLMMadaptive
https://CRAN.R-project.org/package=GLMMadaptive
https://CRAN.R-project.org/package=predtools
https://doi.org/10.1101/2022.06.16.22276024

Nikos I. Bosse, Hugo Gruson, Anne Cori, Edwin van Leeuwen, Sebastian Funk, Sam Abbott29

Siegert S (2020). SpecsVerification: Forecast Verification Routines for Ensemble Forecasts
of Weather and Climate. R package version 0.5-3, URL https://CRAN.R-project.org/
package=SpecsVerification.

Timmermann A (2018). “Forecasting Methods in Finance” Annual Review of Financial
Economics, 10(1), 449-479. doi:10.1146/annurev-financial-110217-022713.

Yan Y (2016). MLmetrics: Machine Learning Evaluation Metrics. R package version 1.1.1,
URL https://CRAN.R-project.org/package=MLmetrics.

Zeileis A, Lang MN (2022). topmodels: Infrastructure for Inference and Forecasting in Prob-
abilistic Models. R package version 0.1-0/r1498, URL https://R-Forge.R-project.org/
projects/topmodels/.

https://CRAN.R-project.org/package=SpecsVerification
https://CRAN.R-project.org/package=SpecsVerification
https://doi.org/10.1146/annurev-financial-110217-022713
https://CRAN.R-project.org/package=MLmetrics
https://R-Forge.R-project.org/projects/topmodels/
https://R-Forge.R-project.org/projects/topmodels/

30 Evaluating Forecasts with scoringutils in R

A. Constructing and validating forecast objects

The following section gives an overview of how scoringutils constructs forecast objects. The
forecast class comes with a constructor, new_forecast(), a generic validation function,
assert_forecast (), and a convenient wrapper function as_forecast_... ().

new_forecast() constructs a forecast object based on a data.frame or similar. It makes
a deep copy of the input and converts it into a data.table, adds a model column with value
“Unspecified model” if there isn’t one and adds a class forecast_x*, where * depends on the
forecast type to the object.

assert_forecast () is a generic which dispatches to a specialised validator method depending
on the class of the input. It validates the input and returns it if it is valid. If the input is not
valid, it throws an error with a message that explains what went wrong.

as_forecast_... () (optionally) renames existing columns to conform with the requirements
for forecast objects, (optionally) sets the forecast unit, constructs the class and validates the
input. The process is illustrated in Figure A.11.

input
l forecast
as_forecast() object

« if forecast_unit is specified: - determines forecast type « constructs forecast object « validates forecast object

calls set_forecast_unit based on input l l
- if other column args new_forecast(data, type) validate_forecast()

specified: renames columns « constructs an object of class

c(forecast_[type], J,
« if forecast_type is specified: data.table, data.frame)
X validate_forceast.forecast_[type]
checks accordance « ensures a model column is present

+ checks inputs and throws
warnings, errors, messages

Figure A.11: Illustration of the process of creating a ‘forecast‘ object.

Nikos I. Bosse, Hugo Gruson, Anne Cori, Edwin van Leeuwen, Sebastian Funk, Sam Abbott31

B. Comparing different calibration plots

The following Figure gives a more detailed overview of how to interpret different calibra-
tion plots (showing the actual forecasts and observations that produced the corresponding
visualisations).

32 Evaluating Forecasts with scoringutils in R

A
Pred: N(O, 1 Pred: N(0.5, 1) Pred: N(0, 2) Pred: N(0, 0.5)
08
2 ;
[
) /\ j\
0
. _A
5 i} 5 1 10 5 a 5 10 0 23 ! o
Value
B
Prad: N(D, 1 Pred: N(0.5, 1) Pred: N(0, 2) Pred: N(0, 0.5)
0.
>
ﬂ:i 104
& 02
- [[. = Insesnnl
0.25 0.50 075 1.00 0.25 0.50 0.75 00 0.25).5¢ 75 1.00 0.25 0.50)75 1.00
PIT
c
_ Pred: N(0, 1 Pred: N{0.5. 1) Pred: N(0, 2) Pred: N(0, 0.5
@
>
3
o
=
SJJ
@ 5
A -
O
o 5
P)
2t) 10 75 oo b} 25 2 50 00
Mominal interval coverage
D
- Pred: N(O, 1 Pred: N(0.5, 1) Pred: N(0, 2 Pred: N(0, 0.5)
=
o
@
o
w
0
C
o 0.00 0.25 0.50 0.75 00 0.00 025 0.50 075 00 0.00 0.25 0.50 0.75 00 0.00 025 0.50 0.75 1.00
Quantile
E
mean 0.92 1.2 0.9 0.92
0.77 0.87 0.77 0.77
1.4 1.5 1.7 26
0.54 0.62 0.58
4 0.92 1.2 16 23
bia 0.0072 0.29 0.0033 0.0067
Prad: N(D, Prad: N{0.5 Prad: N Prad: N{D, 0.5)

Figure B.12: A: Different forecasting distributions (black) against observations sampled from
a standard normal distribution (grey histograms). B: PIT histograms based on the predictive
distributions and the sampled observations shown in A. C: Empirical vs. nominal coverage of
the central prediction intervals for simulated observations and predictions. Areas shaded in
green indicate that the forecasts are too wide (i.e., underconfident), covering more true values
than they actually should, while areas in white indicate that the model generates too narrow
predictions and fails to cover the desired proportion of true values with its prediction intervals.
D: Quantile coverage values, with green areas indicating too wide (i.e., conservative) forecasts.
E: Scores for the standard normal predictive distribution and the observations drawn from
different data-generating distributions.

Nikos I. Bosse, Hugo Gruson, Anne Cori, Edwin van Leeuwen, Sebastian Funk, Sam Abbott33

C. Details on the weighted interval score (WIS)

The WIS treats the predictive quantiles as a set of symmetric prediction intervals and mea-
sures the distance between the observation and the forecast interval. It can be decomposed
into a dispersion (uncertainty) component and penalties for over- and underprediction. For
a single interval, the interval score is computed as

2 2
ISo(Fiy)= (u—1) +—-(-y) Ly <)+—-(y—u) 1y =),
—— (0% (0%
dispersion overprediction underprediction

where 1() is the indicator function, y is the observed value, and [and u are the § and 1 — &

quantiles of the predictive distribution F', i.e., the lower and upper bound of a single prediction
interval. For a set of K prediction intervals and the median m, the score is computed as a
weighted sum,

1 K
WIS=— | wp-|y— IS.(Fy)),
K105 (wo ly —m| +k;wk (y))

where wy, is a weight for every interval. Usually, wy, = % and wg = 0.5.

34 Evaluating Forecasts with scoringutils in R

Affiliation:

Nikos 1. Bosse

London School of Hygiene & Tropical Medicine (LSHTM)
Centre for Mathematical Modelling of Infectious Diseases
London School of Hygiene & Tropical Medicine

Keppel Street

London WCI1E 7THT

E-mail: nikos.bosse@lshtm.ac.uk

URL: https://1lshtm.ac.uk

Hugo Gruson

LSHTM

Centre for Mathematical Modelling of Infectious Diseases
London School of Hygiene & Tropical Medicine

Keppel Street

London WC1E 7THT

E-mail: hugo.gruson@lshtm.ac.uk

Anne Cori

Imperial College London

MRC Centre for Global Infectious Disease Analysis, School of Public Health
Imperial College London

Norfolk Place

London W2 1PG

E-mail: a.cori@imperial.ac.uk

Edwin van Leeuwen

UK Health Security Agency, LSHTM

Statistics, Modelling and Economics Department
UK Health Security Agency

London NW9 5EQ

E-mail: Edwin.VanLeeuwen@phe.gov.uk

Sebastian Funk

LSHTM

Centre for Mathematical Modelling of Infectious Diseases
London School of Hygiene & Tropical Medicine

Keppel Street

London WC1E 7THT

E-mail: sebastian.funk@lshtm.ac.uk

mailto:nikos.bosse@lshtm.ac.uk
https://lshtm.ac.uk
mailto:hugo.gruson@lshtm.ac.uk
mailto:a.cori@imperial.ac.uk
mailto:Edwin.VanLeeuwen@phe.gov.uk
mailto:sebastian.funk@lshtm.ac.uk

Nikos I. Bosse, Hugo Gruson, Anne Cori, Edwin van Leeuwen, Sebastian Funk, Sam Abbott35

Sam Abbott

LSHTM

Centre for Mathematical Modelling of Infectious Diseases
London School of Hygiene & Tropical Medicine

Keppel Street

London WC1E 7THT

E-mail: sam.abbott@lshtm.ac.uk

mailto:sam.abbott@lshtm.ac.uk

	Introduction
	Paper outline and package workflow

	Inputs, forecast types and input validation
	Input formats and types of forecasts
	The unit of a single forecast

	Forecast objects and input validation
	Diagnostic helper functions
	Transforming forecasts
	Additional functionality related to forecast objects
	Displaying the number of forecasts available
	Probabilistic calibration and PIT histograms
	Probabilistic calibration and coverage plots

	Scoring forecasts
	score() and working with scoring rules
	Composing a custom list of metrics and scoring rules
	Details on metrics exported by scoringutils

	Adding relative skill scores based on pairwise comparisons
	Additional functionality related to scores objects
	Displaying mean score ratios from pairwise comparisons
	Correlations between scores

	Summarising results
	Summarising scores
	Additional functionality for summarised scores
	Heatmaps
	Weighted interval score decomposition

	Discussion
	Summary

	Acknowledgments
	Constructing and validating forecast objects
	Comparing different calibration plots
	Details on the weighted interval score (WIS)

