{"metadata":{"language_info":{"name":"gdl","codemirror_mode":"idl","mimetype":"text/x-idl","file_extension":".pro"},"kernelspec":{"name":"gdl","display_name":"GDL","language":"GDL"}},"nbformat_minor":5,"nbformat":4,"cells":[{"cell_type":"markdown","source":"# Collision Unit\n\n**How to Use Collision Unit**\n\n*Collision Unit* has the API functions for plasma diagnostics and abundance analysis of collisionally excited lines. Here are some examples of using Collision Unit:","metadata":{"tags":[]},"id":"e9a484e7-51a7-45c9-9702-fcdede261874"},{"cell_type":"markdown","source":"* *Temperature*:","metadata":{},"id":"36801507-47b6-4157-8c64-bb0e3abb298d"},{"cell_type":"code","source":"s2=obj_new('collision')\ns2->set,['s','ii']\nupper_levels='1,2,1,3/'\nlower_levels='1,5/'\ndensity = double(2550)\nline_flux_ratio=double(10.753)\ntemperature=s2->calc_temperature(line_flux_ratio=line_flux_ratio, density=density, $\n upper_levels=upper_levels, lower_levels=lower_levels)\nprint, \"Electron Temperature:\", temperature","metadata":{"trusted":true},"execution_count":1,"outputs":[{"name":"stdout","text":"Electron Temperature: 7920.2865\n","output_type":"stream"}],"id":"badf1c90-4803-4407-9495-f978b6a9769b"},{"cell_type":"markdown","source":"* *Density*:","metadata":{},"id":"f2f38044-a25a-44b2-bfcc-8da6a364a46e"},{"cell_type":"code","source":"s2=obj_new('collision')\ns2->set,['s','ii']\nupper_levels='1,2/'\nlower_levels='1,3/'\ntemperature=double(7000.0);\nline_flux_ratio=double(1.506);\ndensity=s2->calc_density(line_flux_ratio=line_flux_ratio, temperature=temperature, $\n upper_levels=upper_levels, lower_levels=lower_levels)\nprint, \"Electron Density:\", density","metadata":{"trusted":true},"execution_count":2,"outputs":[{"name":"stdout","text":"Electron Density: 2312.6164\n","output_type":"stream"}],"id":"59b12951-c5c1-4c43-9636-9a0920b84c11"},{"cell_type":"markdown","source":"* *Ionic Abundance*:","metadata":{},"id":"bbb07699-41a6-45be-a638-040b2bf62072"},{"cell_type":"code","source":"o3=obj_new('collision')\no3->set,['o','iii']\nlevels5007='3,4/'\ntemperature=double(10000.0)\ndensity=double(5000.0)\niobs5007=double(1200.0)\nAbb5007=o3->calc_abundance(temperature=temperature, density=density, $\n line_flux=iobs5007, atomic_levels=levels5007)\nprint, 'N(O^2+)/N(H+):', Abb5007","metadata":{"trusted":true},"execution_count":3,"outputs":[{"name":"stdout","text":"N(O^2+)/N(H+): 0.00041256231\n","output_type":"stream"}],"id":"b58b9850-403a-4e32-959d-26e8feea577f"},{"cell_type":"markdown","source":"* *Emissivity*:","metadata":{},"id":"9b7df357-a837-4645-853a-28f19918fe0c"},{"cell_type":"code","source":"o3=obj_new('collision')\no3->set,['o','iii']\nlevels5007='3,4/'\ntemperature=double(10000.0)\ndensity=double(5000.0)\niobs5007=double(1200.0)\nemis=o3->calc_emissivity(temperature=temperature, density=density, $\n atomic_levels=levels5007)\nprint, 'Emissivity(O III 5007):', emis","metadata":{"trusted":true},"execution_count":4,"outputs":[{"name":"stdout","text":"Emissivity(O III 5007): 3.6041012e-21\n","output_type":"stream"}],"id":"7bd8a18b-b7a7-48c4-8231-82347d8a11ee"},{"cell_type":"markdown","source":"* *Atomic Level Population*:","metadata":{},"id":"6bff8e1a-26bf-423c-9563-a4472a8f5478"},{"cell_type":"code","source":"s2=obj_new('collision')\ns2->set,['s','ii']\ndensity = double(1000)\ntemperature=double(10000.0);\nNlj=s2->calc_populations(temperature=temperature, density=density)\nprint, 'Populations:', Nlj","metadata":{"trusted":true},"execution_count":5,"outputs":[{"name":"stdout","text":"Populations: 0.96992796 0.0070037404 0.023062517 2.6594158e-06\n 3.1277593e-06\n","output_type":"stream"}],"id":"e707252b-49e2-4268-aa40-36fd0ff472c6"},{"cell_type":"markdown","source":"* *Critical Density*:","metadata":{},"id":"6a1f3531-a560-4b4b-9df0-a16b74bcbf25"},{"cell_type":"code","source":"s2=obj_new('collision')\ns2->set,['s','ii']\ntemperature=double(10000.0)\nN_crit=s2->calc_crit_density(temperature=temperature)\nprint, 'Critical Densities:', N_crit","metadata":{"trusted":true},"execution_count":6,"outputs":[{"name":"stdout","text":"Critical Densities: 0.0000000 5007.8396 1732.8414\n 1072685.0 2220758.1\n","output_type":"stream"}],"id":"d6a583ef-0a2a-4e97-9a82-f8a0ec2a25e6"},{"cell_type":"markdown","source":"* *All Ionic Level Information*:","metadata":{},"id":"e5faa1e8-c069-438c-b8c0-99307e425d72"},{"cell_type":"code","source":"o3=obj_new('collision')\no3->set,['o','iii']\ntemperature=double(10000.0)\ndensity=double(5000.0)\no3->print_ionic, temperature=temperature, density=density","metadata":{"trusted":true},"execution_count":7,"outputs":[{"name":"stdout","text":"Temperature = 10000.0 K\nDensity = 5000.0 cm-3\n\nLevel Populations Critical Densities\nLevel 1: 1.556E-01 0.000E+00\nLevel 2: 4.269E-01 4.908E+02\nLevel 3: 4.172E-01 3.419E+03\nLevel 4: 2.221E-04 6.853E+05\nLevel 5: 1.522E-08 2.547E+07\n\n 2.597E-05 \n 88.34um \n (2-->1) \n 4.986E-23 \n\n 0.000E+00 9.632E-05 \n 32.66um 51.81um \n (3-->1) (3-->2) \n 0.000E+00 3.081E-22 \n\n 2.322E-06 6.791E-03 2.046E-02 \n 4932.60A 4960.29A 5008.24A \n (4-->1) (4-->2) (4-->3) \n 4.153E-25 1.208E-21 3.604E-21 \n\n 0.000E+00 2.255E-01 6.998E-04 1.685E+00 \n 2315.58A 2321.67A 2332.12A 4364.45A \n (5-->1) (5-->2) (5-->3) (5-->4) \n 0.000E+00 5.875E-24 1.815E-26 2.335E-23 \n\nH-beta emissivity: 1.239E-25 N(H+) Ne [erg/s]\n","output_type":"stream"}],"id":"8f8dddc1-90da-47e5-8fdc-28bb83516d07"},{"cell_type":"markdown","source":"# Recombination Unit\n\n**How to Use Recombination Unit**\n\n*Recombination Unit* has the API functions for plasma diagnostics and abundance analysis of recombination lines. Here are some examples of using Recombination Unit:","metadata":{"tags":[]},"id":"1bf247f7-ff44-4d9b-a634-1222646fee17"},{"cell_type":"markdown","source":"* *He+ Ionic Abundance*:","metadata":{},"id":"7dcd88fa-98db-4f1f-8515-d66bb43c13a2"},{"cell_type":"code","source":"he1=obj_new('recombination')\nhe1->set,['he','ii'] ; He I\ntemperature=double(10000.0)\ndensity=double(5000.0)\nhe_i_4471_flux= 2.104\nlinenum=10; 4471.50\nAbund_he_i=he1->calc_abundance(temperature=temperature, density=density, $\n linenum=linenum, line_flux=he_i_4471_flux)\nprint, 'N(He^+)/N(H^+):', Abund_he_i","metadata":{"trusted":true},"execution_count":8,"outputs":[{"name":"stdout","text":"N(He^+)/N(H^+): 0.040848391\n","output_type":"stream"}],"id":"e6e9fa0d-f489-434e-a8d9-7929a0d54cf1"},{"cell_type":"markdown","source":"* *He++ Ionic Abundance*:","metadata":{},"id":"b9a20317-3455-4418-b8be-0375d873bfdf"},{"cell_type":"code","source":"he2=obj_new('recombination')\nhe2->set,['he','iii'] ; He II\ntemperature=double(10000.0)\ndensity=double(5000.0)\nhe_ii_4686_flux = 135.833\nAbund_he_ii=he2->calc_abundance(temperature=temperature, density=density, $\n line_flux=he_ii_4686_flux)\nprint, 'N(He^2+)/N(H^+):', Abund_he_ii","metadata":{"trusted":true},"execution_count":9,"outputs":[{"name":"stdout","text":"N(He^2+)/N(H^+): 0.11228817\n","output_type":"stream"}],"id":"17cbe208-46b9-40e3-a882-71cfe744a1da"},{"cell_type":"markdown","source":"* *C++ Ionic Abundance*:","metadata":{},"id":"689a45db-bdbd-48b8-b4a7-688a31fbf69f"},{"cell_type":"code","source":"c2=obj_new('recombination')\nc2->set,['c','iii'] ; C II\ntemperature=double(10000.0)\ndensity=double(5000.0)\nwavelength=6151.43\nc_ii_6151_flux = 0.028\nAbund_c_ii=c2->calc_abundance(temperature=temperature, density=density, $\n wavelength=wavelength, line_flux=c_ii_6151_flux)\nprint, 'N(C^2+)/N(H+):', Abund_c_ii","metadata":{"trusted":true},"execution_count":10,"outputs":[{"name":"stdout","text":"N(C^2+)/N(H+): 0.00063404650\n","output_type":"stream"}],"id":"2eca145e-da55-4cbb-9827-1235c7a94f07"},{"cell_type":"markdown","source":"* *C3+ Ionic Abundance*:","metadata":{},"id":"4c20a6d3-d9c0-400b-ba84-ea46a3d269be"},{"cell_type":"code","source":"c3=obj_new('recombination')\nc3->set,['c','iv'] ; C III\ntemperature=double(10000.0)\ndensity=double(5000.0)\nwavelength=4647.42\nc_iii_4647_flux = 0.107\nAbund_c_iii=c3->calc_abundance(temperature=temperature, density=density, $\n wavelength=wavelength, line_flux=c_iii_4647_flux)\nprint, 'N(C^3+)/N(H+):', Abund_c_iii","metadata":{"trusted":true},"execution_count":11,"outputs":[{"name":"stdout","text":"N(C^3+)/N(H+): 0.00017502840\n","output_type":"stream"}],"id":"e2b0c338-1f06-4c2a-acf8-48731d59ead0"},{"cell_type":"markdown","source":"* *N++ Ionic Abundance*:","metadata":{},"id":"b08a5f3d-d422-4c6c-9130-4b4b55c534af"},{"cell_type":"code","source":"n2=obj_new('recombination')\nn2->set,['n','iii'] ; N II\nwavelength=4442.02\nn_ii_4442_flux = 0.017\nAbund_n_ii=n2->calc_abundance(temperature=temperature, density=density, $\n wavelength=wavelength, line_flux=n_ii_4442_flux)\nprint, 'N(N^2+)/N(H+):', Abund_n_ii","metadata":{"trusted":true},"execution_count":12,"outputs":[{"name":"stdout","text":"N(N^2+)/N(H+): 0.00069297542\n","output_type":"stream"}],"id":"424c1ce3-2cd2-4cc0-b1a1-7716ed756cde"},{"cell_type":"markdown","source":"* *N3+ Ionic Abundance*:","metadata":{},"id":"eacec309-3b28-475b-8d09-1496212160b4"},{"cell_type":"code","source":"n3=obj_new('recombination')\nn3->set,['n','iv'] ; N III\nwavelength=4640.64\nn_iii_4641_flux = 0.245\nAbund_n_iii=n3->calc_abundance(temperature=temperature, density=density, $\n wavelength=wavelength, line_flux=n_iii_4641_flux)\nprint, 'N(N^3+)/N(H+):', Abund_n_iii","metadata":{"trusted":true},"execution_count":13,"outputs":[{"name":"stdout","text":"N(N^3+)/N(H+): 6.3366174e-05\n","output_type":"stream"}],"id":"2a9bb27f-6030-44cd-afdd-b5659d747dff"},{"cell_type":"markdown","source":"* *O++ Ionic Abundance*:","metadata":{},"id":"751ef494-fde7-4c32-9529-f2c8565228f3"},{"cell_type":"code","source":"o2=obj_new('recombination')\no2->set,['o','iii'] ; O II\nwavelength=4613.68\no_ii_4614_flux = 0.009\nAbund_o_ii=o2->calc_abundance(temperature=temperature, density=density, $\n wavelength=wavelength, line_flux=o_ii_4614_flux)\nprint, 'N(O^2+)/N(H+):', Abund_o_ii","metadata":{"trusted":true},"execution_count":14,"outputs":[{"name":"stdout","text":"N(O^2+)/N(H+): 0.0018886330\n","output_type":"stream"}],"id":"057b15ff-9e1f-44ab-bf30-408cda64b9b2"},{"cell_type":"markdown","source":"* *Ne++ Ionic Abundance*:","metadata":{},"id":"a239925e-6c24-4f41-bfd7-f68b3ec3f80a"},{"cell_type":"code","source":"ne2=obj_new('recombination')\nne2->set,['ne','iii'] ; Ne II\nwavelength=3777.14\nne_ii_3777_flux = 0.056\nAbund_ne_ii=ne2->calc_abundance(temperature=temperature, density=density, $\n wavelength=wavelength, line_flux=ne_ii_3777_flux)\nprint, 'N(Ne^2+)/N(H+):', Abund_ne_ii","metadata":{"trusted":true},"execution_count":15,"outputs":[{"name":"stdout","text":"N(Ne^2+)/N(H+): 0.00043376850\n","output_type":"stream"}],"id":"4823957b-4369-4ebc-9761-1a8055206834"},{"cell_type":"markdown","source":"* *He I Emissivity*:","metadata":{},"id":"2af8e684-d4c1-43db-a0a4-5188fc63564c"},{"cell_type":"code","source":"he1=obj_new('recombination')\nhe1->set,['he','ii'] ; He I\ntemperature=double(10000.0)\ndensity=double(5000.0)\nlinenum=10; 4471.50\nemiss_he_i=he1->calc_emissivity(temperature=temperature, density=density, $\n linenum=linenum)\nprint, 'He I Emissivity:', emiss_he_i","metadata":{"trusted":true},"execution_count":16,"outputs":[{"name":"stdout","text":"He I Emissivity: 6.3822830e-26\n","output_type":"stream"}],"id":"6e95c37e-3bb5-42d6-893a-85ae9279c88e"},{"cell_type":"markdown","source":"* *He II Emissivity*:","metadata":{},"id":"35963564-1ef5-4860-ba66-e3e39d5066dc"},{"cell_type":"code","source":"he2=obj_new('recombination')\nhe2->set,['he','iii'] ; He II\ntemperature=double(10000.0)\ndensity=double(5000.0)\nemiss_he_ii=he2->calc_emissivity(temperature=temperature, density=density)\nprint, 'He II Emissivity:', emiss_he_ii","metadata":{"trusted":true},"execution_count":17,"outputs":[{"name":"stdout","text":"He II Emissivity: 1.4989134e-24\n","output_type":"stream"}],"id":"cfd180e1-7692-40ec-9c2f-d14cd29b434e"},{"cell_type":"markdown","source":"* *C II Emissivity*:","metadata":{},"id":"dc0f40d0-496b-420b-8cbe-a33ea37fb861"},{"cell_type":"code","source":"c2=obj_new('recombination')\nc2->set,['c','iii'] ; C II\ntemperature=double(10000.0)\ndensity=double(5000.0)\nwavelength=6151.43\nemiss_c_ii=c2->calc_emissivity(temperature=temperature, density=density, $\n wavelength=wavelength)\nprint, 'C II Emissivity:', emiss_c_ii","metadata":{"trusted":true},"execution_count":18,"outputs":[{"name":"stdout","text":"C II Emissivity: 5.4719511e-26\n","output_type":"stream"}],"id":"0d9fef55-9daf-4540-94b9-2c29d73ac8fc"},{"cell_type":"markdown","source":"* *C III Emissivity*:","metadata":{},"id":"c93178ca-6dee-41cd-a254-7192593508dc"},{"cell_type":"code","source":"c3=obj_new('recombination')\nc3->set,['c','iv'] ; C III\ntemperature=double(10000.0)\ndensity=double(5000.0)\nwavelength=4647.42\nemiss_c_iii=c3->calc_emissivity(temperature=temperature, density=density, $\n wavelength=wavelength)\nprint, 'C III Emissivity:', emiss_c_iii","metadata":{"trusted":true},"execution_count":19,"outputs":[{"name":"stdout","text":"C III Emissivity: 7.5749632e-25\n","output_type":"stream"}],"id":"25598dda-6642-46ec-b8f4-d659f8ddc0c2"},{"cell_type":"markdown","source":"* *N II Emissivity*:","metadata":{},"id":"6308ac08-98e6-46a6-9cdc-1df712515543"},{"cell_type":"code","source":"n2=obj_new('recombination')\nn2->set,['n','iii'] ; N II\nwavelength=4442.02\nemiss_n_ii=n2->calc_emissivity(temperature=temperature, density=density, $\n wavelength=wavelength)\nprint, 'N II Emissivity:', emiss_n_ii","metadata":{"trusted":true},"execution_count":20,"outputs":[{"name":"stdout","text":"N II Emissivity: 3.0397397e-26\n","output_type":"stream"}],"id":"69ad0236-91da-4446-bea1-aa5c95a28411"},{"cell_type":"markdown","source":"* *N III Emissivity*:","metadata":{},"id":"a2f23754-a846-4a4b-91df-7bab50eb40e9"},{"cell_type":"code","source":"n3=obj_new('recombination')\nn3->set,['n','iv'] ; N III\nwavelength=4640.64\nemiss_n_iii=n3->calc_emissivity(temperature=temperature, density=density, $\n wavelength=wavelength)\nprint, 'N III Emissivity:', emiss_n_iii","metadata":{"trusted":true},"execution_count":21,"outputs":[{"name":"stdout","text":"N III Emissivity: 4.7908644e-24\n","output_type":"stream"}],"id":"5f74b7ec-1e98-44b9-a5b3-a92ab7493c6f"},{"cell_type":"markdown","source":"* *O II Emissivity*:","metadata":{},"id":"6fc05ad6-a1d6-40d2-be41-819bb8a2e773"},{"cell_type":"code","source":"o2=obj_new('recombination')\no2->set,['o','iii'] ; O II\nwavelength=4613.68\nemiss_o_ii=o2->calc_emissivity(temperature=temperature, density=density, $\n wavelength=wavelength)\nprint, 'O II Emissivity:', emiss_o_ii","metadata":{"trusted":true},"execution_count":22,"outputs":[{"name":"stdout","text":"O II Emissivity: 5.9047319e-27\n","output_type":"stream"}],"id":"a78cdb44-8689-4d77-8b5e-5dd66856808a"},{"cell_type":"markdown","source":"* *Ne II Emissivity*:","metadata":{},"id":"e9edb871-0d02-4b59-a8c8-38db5aef947f"},{"cell_type":"code","source":"ne2=obj_new('recombination')\nne2->set,['ne','iii'] ; Ne II\nwavelength=3777.14\nemiss_ne_ii=ne2->calc_emissivity(temperature=temperature, density=density, $\n wavelength=wavelength)\nprint, 'Ne II Emissivity:', emiss_ne_ii","metadata":{"trusted":true},"execution_count":23,"outputs":[{"name":"stdout","text":"Ne II Emissivity: 1.5996881e-25\n","output_type":"stream"}],"id":"3c055a43-0027-4aee-aa16-993fc9c18bc7"},{"cell_type":"markdown","source":"# Reddening Unit\n\n**How to Use Reddening Unit**\n\n*Reddening Unit* has the API functions for estimating logarithmic extinctions at H-beta and dereddening observed fluxes based on reddening laws and extinctions. Here are some examples of using Reddening Unit:","metadata":{},"id":"cdfc8e0f-b902-44ab-9ff0-eb1c531bae75"},{"cell_type":"markdown","source":"* *Reddening Law Function*:","metadata":{},"id":"e9aab312-25cb-45f2-ab09-48272c6c20be"},{"cell_type":"code","source":"ext=obj_new('reddening')\nwavelength=6563.0\nR_V=3.1\nfl=ext->redlaw(wavelength, rv=R_V, ext_law='GAL')\nprint, 'fl(6563):', fl","metadata":{"trusted":true},"execution_count":24,"outputs":[{"name":"stdout","text":"fl(6563): -0.32013816\n","output_type":"stream"}],"id":"8107603e-26dc-4bfe-a6f4-1abf1e2e3e2f"},{"cell_type":"markdown","source":"* *Galactic Reddening Law Function based on Seaton (1979), Howarth (1983), & CCM (1983)*:","metadata":{},"id":"ae1b6d8b-7c09-4da9-b9b7-6d3edd2c83f8"},{"cell_type":"code","source":"ext=obj_new('reddening')\nwavelength=6563.0\nR_V=3.1\nfl=ext->redlaw_gal(wavelength, rv=R_V)\nprint, 'fl(6563):', fl","metadata":{"trusted":true},"execution_count":25,"outputs":[{"name":"stdout","text":"fl(6563): -0.32013816\n","output_type":"stream"}],"id":"28f020d9-f57d-4db0-a8e9-bb1ffcc3bafc"},{"cell_type":"markdown","source":"* *Galactic Reddening Law Function based on Savage & Mathis (1979)*:","metadata":{},"id":"84ea9ca6-ac0d-45f2-baa8-3c782364f299"},{"cell_type":"code","source":"ext=obj_new('reddening')\nwavelength=6563.0\nfl=ext->redlaw_gal2(wavelength)\nprint, 'fl(6563):', fl","metadata":{"trusted":true},"execution_count":26,"outputs":[{"name":"stdout","text":"fl(6563): -0.30925984\n","output_type":"stream"}],"id":"83ba15d1-9e9e-4f7c-a51f-323cdc57ed55"},{"cell_type":"markdown","source":"* *Reddening Law Function based on Cardelli, Clayton & Mathis (1989)*:","metadata":{},"id":"e34cec34-696b-4070-b5d8-ea9f99b9740a"},{"cell_type":"code","source":"ext=obj_new('reddening')\nwavelength=6563.0\nR_V=3.1\nfl=ext->redlaw_ccm(wavelength, rv=R_V)\nprint, 'fl(6563):', fl","metadata":{"trusted":true},"execution_count":27,"outputs":[{"name":"stdout","text":"fl(6563): -0.29756615\n","output_type":"stream"}],"id":"e1852d0e-d112-4f81-80d1-d2959ce6f23b"},{"cell_type":"markdown","source":"* *Galactic Reddening Law Function based on Whitford (1958), Seaton (1977), & Kaler(1976)*:","metadata":{},"id":"64b5983c-b842-45e6-80da-c4ee0f7b7768"},{"cell_type":"code","source":"ext=obj_new('reddening')\nwavelength=6563.0\nfl=ext->redlaw_jbk(wavelength)\nprint, 'fl(6563):', fl","metadata":{"trusted":true},"execution_count":28,"outputs":[{"name":"stdout","text":"fl(6563): -0.33113684\n","output_type":"stream"}],"id":"9bc3f4c4-4a85-44ca-973d-ac34e7303ae9"},{"cell_type":"markdown","source":"* *Reddening Law Function based on Fitzpatrick & Massa (1990), Fitzpatrick (1999), Misselt (1999)*:","metadata":{},"id":"55d6e8fd-fdf9-4223-a5f0-c34f74b576fc"},{"cell_type":"code","source":"ext=obj_new('reddening')\nwavelength=6563.0\nR_V=3.1\nfmlaw='AVGLMC'\nfl=ext->redlaw_fm(wavelength, fmlaw=fmlaw, rv=R_V)\nprint, 'fl(6563):', fl","metadata":{"trusted":true},"execution_count":29,"outputs":[{"name":"stdout","text":"fl(6563): -0.35053034\n","output_type":"stream"}],"id":"a99906d1-c479-4d86-aa13-5fa142ed434e"},{"cell_type":"markdown","source":"* *Reddening Law Function for the Small Magellanic Cloud*:","metadata":{},"id":"8f400003-d1b8-42d0-b79e-68c2e7db9805"},{"cell_type":"code","source":"ext=obj_new('reddening')\nwavelength=6563.0\nfl=ext->redlaw_smc(wavelength)\nprint, 'fl(6563):', fl","metadata":{"trusted":true},"execution_count":30,"outputs":[{"name":"stdout","text":"fl(6563): -0.22659261\n","output_type":"stream"}],"id":"4af6bca9-7553-48ab-a742-8f5ffa5eafe2"},{"cell_type":"markdown","source":"* *Reddening Law Function for the Large Magellanic Cloud*:","metadata":{},"id":"8245d0bb-f571-43cf-becc-736808e77ae6"},{"cell_type":"code","source":"ext=obj_new('reddening')\nwavelength=6563.0\nfl=ext->redlaw_lmc(wavelength)\nprint, 'fl(6563):', fl","metadata":{"trusted":true},"execution_count":31,"outputs":[{"name":"stdout","text":"fl(6563): -0.30871187\n","output_type":"stream"}],"id":"06e80802-fa16-437d-b1f4-d93bc3338805"},{"cell_type":"markdown","source":"* *Dereddening Relative Flux*:","metadata":{},"id":"1273ad34-2e9d-4c96-8f6e-5ea3575dad08"},{"cell_type":"code","source":"ext=obj_new('reddening')\nwavelength=6563.0\nm_ext=1.0\nflux=1.0\next_law='GAL'\nR_V=3.1\nflux_deredden=ext->deredden_relflux(wavelength, flux, m_ext, ext_law=ext_law, rv=R_V)\nprint, 'dereddened flux(6563)', flux_deredden","metadata":{"trusted":true},"execution_count":32,"outputs":[{"name":"stdout","text":"dereddened flux(6563) 0.47847785\n","output_type":"stream"}],"id":"a8df6f7e-d576-44ea-937d-79b670652906"},{"cell_type":"markdown","source":"* *Dereddening Absolute Flux*:","metadata":{},"id":"be0512cb-b4ae-4f22-9999-a7aadfefc9c5"},{"cell_type":"code","source":"ext=obj_new('reddening')\nwavelength=6563.0\nm_ext=1.0\nflux=1.0\next_law='GAL'\nR_V=3.1\nflux_deredden=ext->deredden_flux(wavelength, flux, m_ext, ext_law=ext_law, rv=R_V)\nprint, 'dereddened flux(6563)', flux_deredden","metadata":{"trusted":true},"execution_count":33,"outputs":[{"name":"stdout","text":"dereddened flux(6563) 4.7847785\n","output_type":"stream"}],"id":"fd24ece5-fffc-4b5c-af36-b671c94d066e"},{"cell_type":"code","source":"","metadata":{},"execution_count":null,"outputs":[],"id":"7ca51403-4d27-418d-a84e-ee9cefc1faa3"}]}