Quantum Convolutional Neural Networks (QCNN) for High Energy Physics Analysis at the LHC

Eraraya Ricardo Muten Quantum Technology Lab Institut Teknologi Bandung MCQST Mentor: Dr. Maximilian Buser, Faculty of Physics, LMU

GSoC Project Mentors: Prof. Sergei V. Gleyzer, Dr. Emanuele Usai, Raphael Koh

1

Introduction

Dataset and Algorithm

Results and Discussion

Summary and Future Works

Outline

Introduction:

- Background
- Goal & Related Works

Dataset & Algorithm:

- Dataset
- Overall Architecture
- Quantum Convolutional Layer

Results & Discussion

Summary & Future Works

Introduction: Background

HL-LHC upgrades at CERN will require enormous computing resources^[1]

01

Quantum computing has potential in improving performance of data processing and ML^[2]

02

Can it improves HEP data analysis?

Projected LHC performance through 2038, more luminosity = produce more data^[1]

[1] Burkhard Schmidt 2016 *J. Phys.: Conf. Ser.* **706** 022002.
[2] Biamonte J, et al. *Nature* 2017;**549**.

Introduction

Project's Goal

Explore quantum machine learning method performance on particle identification from ECAL image data, compared to the classical method.

Related Works

QCNN on other datasets:

- MNIST dataset^[3, 4] and
- simulated particle trajectory images ^[5]

with performance comparable to the classical model.

Example images of simulated particle used in [5]

[3] Henderson, M., et al. Quantum Mach. Intell. 2, 2 (2020).
[4] Oh, S., et al. 2020. arXiv:2009.09423
[5] Chen, S.Y., et al. 2020. arXiv:2012.12177

Dataset

- Images of electrons and photons captured by ECAL (Electromagnetic Calorimeter).
- A pixel = a detector cell
- Pixel's intensity = energy measured in that cell
- The dataset contains 32x32 images but cropped into 8x8
- The every pixel in the dataset is standard-scaled

$$x' = \frac{x - \mu}{\sigma}$$

Averages of image samples from the dataset. Left: Photon, Right: Electron. Top: Full 32x32, Bottom: After cropping 8x8.

Algorithm

Overall Architecture of QCNN

Model creation & training: TensorFlow Quantum ^[6]

Quantum Simulator: Google's Cirq^[7] noiseless analytic simulator

Quantum Convolution Layer:

- Transform input features to another feature map via a convolution-like operation
- The transformation is done by a trainable variational ansatz instead of a classical filter

[6] Broughton, M., et al. 2020. arXiv:2003.02989
[7] Cirq Developers. doi: 10.5281/zenodo.4586899.

Quantum Convolution Layer

- The variational quantum circuit used for the quantum convolution layers is the data re-uploading circuit ^[8]
- The number of layers and qubits can be increased (ring of CZ gate will be used if 2 or more qubits are used)
- The Z expectation of the last qubit is measured

[8] Pérez-Salinas, A., et al. (2020). Quantum, 4, 226.

Results & Discussion

QCNN Validation AUC (8500 training samples, 1500 validation samples)

AUC = Area under the ROC (Receiver Operating Characteristic) Curve

Original paper shows more layers = higher accuracy as a classifier for 1-D dataset

- Not the case if used as convolution filter for 2-D dataset
- Choosing the right variational ansatz is not so trivial

Results & Discussion

Validation AUC of QCNN vs Classical CNN (8500 training samples, 1500 validation samples)

With 423300 training samples & 74700 testing samples:

- QCNN (190 parameters): **0.730**
- Classical CNN (193 parameters): 0.738
- With similar number of parameters, the QCNN is a little bit worse than Classical CNN

Both QCNN and Classical CNN:

- Increasing the number of training samples increases performance
- Only increasing the number of trainable parameters not necessarily increases performance (overfitting)

Choosing variational ansatz is not trivial

A good ansatz for one type of task doesn't always transfer to another different task Using data re-uploading circuit as convolution filter, classical model is still a little bit better

Future Works

Try using several filters on every quantum convolution layer similar to what usually is done by classical CNN

Thank You! Any Questions?

APPENDIX

Rz(theta5)	P Rx(x18) Ry(x19) Rz(x20) Rx(theta18) Ry(theta19) Rz(theta20) Rx(x21)	Ry(x22) Rz(x23) Rx(theta21) Ry(theta22) Rz(theta2	3) • • • • • • • • • •
Rz(theta11)	Rx(x24) Ry(x25) Rz(x26) Rx(theta24) Ry(theta25) Rz(theta26) Rx(x27)	Ry(x28) Rz(x29) Rx(theta27) Ry(theta28) Rz(theta2	ə) Rx(x42) Ry(x43)
Rz(theta17)	Rx(x30) Ry(x31) Rz(x32) Rx(theta30) Ry(theta31) Rz(theta32) Rx(x33)	Ry(x34) Rz(x35) Rx(theta33) Ry(theta34) Rz(theta3	5) Rx(x48) Ry(x49)

QCNN Settings

- 10k samples with 15% for test samples
- 200 epochs, 128 batch size
- varying qubits, varying layers
- filter size = [3, 3], stride = [1, 1]
- followed by classical head [8, 2] with activation [relu, softmax]
- classical preprocessing = crop to 8x8 + standard scaling
- optimizer: Adam, Ir = 0.001 with decay, $\beta 1 = 0.9$, $\beta 2 = 0.999$, $\epsilon = 1e-07$
- cross-entropy loss
- Simulator: noiseless
- Gradient calculation: analytic

Classical CNN Settings

- 10k samples with 15% for test samples
- 200 epochs, 128 batch size
- filter size = [3, 3], stride = [1, 1]
- conv activation = [relu, relu]
- use_bias = [True, True]
- followed by classical head [8, 2] with activation [relu, softmax]
- classical preprocessing = crop to 8x8 + standard scaling
- optimizer: Adam, Ir = 0.001 with decay, $\beta 1 = 0.9$, $\beta 2 = 0.999$, $\epsilon = 1e-07$
- cross-entropy loss

```
LR Decay
lr = 1e-3
    if epoch > 180:
        lr *= 0.5e-3
    elif epoch > 160:
        lr *= 1e-3
    elif epoch > 120:
        lr *= 1e-2
    elif epoch > 80:
        lr *= 1e-1
```