--- layout: note type: note title: MATH2331 Linear Algebra date: 2021-07-06 status: Complete professor: Valerie Hower labels: - MATH2331 - Linear Algebra --- # The Class 4 quizzes (open more than 24 hours) open on Thursday Exams are timed (65-70 minute test) Final Exam (not cumulative) on August 19th # 1.1 Introduction to Linear Systems ### Background $\mathbb{R}$ = All real numbers $(-\infty, \infty)$ $\mathbb{R}^{2}$ = xy-plane $\mathbb{R}^{n}$ = Vector space. All $(x_1, x_2, ..., x_n)$ **Single variable Functions**: Linear: $f(x) = 5x,\ f(x) = ax$ Non-linear: $f(x) = x^{2} + \cos (x),\ f(x) = e^{x},\ f(x) = \tan ^{-1}(x)$ **Multi-variable Functions**: Linear: $f(x,\ y) = ax + by,\ f(x,\ y,\ z) = 5x + 3y + bz$ Non-linear: **Equations**: $5 = 4x$ A *linear equation* in the variables $x_1,\ x_2,\ x_3,\ ...,\ x_n$ is an equation of the form $a_1x_1 + a_2x_2 + x_3x_3 + ... a_nx_n = b$ where $a_1,\ a_2,\ ...,\ a_n$ are real numbers A *linear system* (or *system of linear equations*) is a collection of linear equations in same variables $x_1,\ x_2,\ x_3,\ ..., x_n$.
Example $\begin{vmatrix} x & +3y & = 1 \\\ x & -y & =9 \end{vmatrix} \overset{L_2 = -2 L_1 + L_2}{\implies} \begin{vmatrix} x & +3y & =1 \\\ 0 & -7y & =7 \end{vmatrix} \overset{L_2 = -\frac{1}{7} L_2}{\implies} \begin{vmatrix} x & +3y & =1 \\\ 0 & y & =-1 \end{vmatrix}$ $\overset{L_1 = -3 L_2 + L_1}{\implies} \begin{vmatrix} x & = 4 \\\ y & = -1 \end{vmatrix}$
Example $\begin{vmatrix} x & + 3y & =2 \\\ -2x & -6y & =-4 \end{vmatrix} \overset{L_2 = 2L_1 + L_2}{\implies} \begin{vmatrix} x & +3y & = 2 \\\ & 0 & = 0 \end{vmatrix}$ Solutions form the line $x+3y=2$. Infinitely many solutions.
Example Example: $\begin{vmatrix} x & +y & & = 0 \\\ 2x & -y & + 3z & = 3 \\\ x & -2y & -z & =3 \end{vmatrix} \overset{\overset{L_2 = -2L_1 + L_2}{L_3 = -L_1 + L_3}}{\implies} \begin{vmatrix} x & +y & &=0 \\\ & -3y & +3z & = 3 \\\ & -3y & -z & =3 \end{vmatrix}$ $\overset{L_2 = L_2 -\frac{1}{3}}{\implies} \begin{vmatrix} x & +y & & = 0 \\\ & y & -z & =-1 \\\ & & z & =0 \end{vmatrix} \overset{L_3 = 3L_2 + L_3}{\implies} \begin{vmatrix} x & +y & & =0 \\\ & y & -z & -1 \\\ & & -4z & = 0 \end{vmatrix}$ $\overset{L_3 = -\frac{1}{4} L_3}{\implies} \begin{vmatrix} x & +y & =0 \\\ & y & -z & = -1 \\\ & & z & =0 \end{vmatrix} \overset{L_2 = L_3 + L_2}{\implies} \begin{vmatrix} x & + y & & =0 \\\ & y & & =-1 \\\ & & z & =0 \end{vmatrix}$ $\overset{L_1 = L_1 - L_2}{\implies} \begin{vmatrix} x & =1 \\\ y & =-1 \\\ z &=0 \end{vmatrix}$ Solution $(x,\ y,\ z) = (1,\ -1,\ 0)$
Example $\begin{vmatrix} x & + y & + z & =2 \\\ & y & +z & =1 \\\ x & +2y & 2z & =3 \end{vmatrix} \overset{L_3 = -L_1 + L_3}{\implies} \begin{vmatrix} x & +y & +z & = 2 \\\ & y & + z & =1 \\\ & y & +z & =1 \end{vmatrix}$ $\overset{L_3 = -L_2 + l_3}{\implies} \begin{vmatrix} x & +y & +z & =2 \\\ & y & +z & =1 \\\ & & 0 & =0 \end{vmatrix} \overset{L_1 = -L_2 + L_1}{\implies} \begin{vmatrix} x & & & =1\\\ & y & +z & =1\\\ & & 0 & =0 \end{vmatrix}$ This example has a *free variable*. Let $z=t$. Solution: $(x,\ y,\ z) = (1,\ 1-t,\ t)$. Has infinitely many solutions. $y + z = 1 \implies y = 1 -t$
Example $\begin{vmatrix} x & + y & + z & =2 \\\ & y & + z & =1 \\\ & 2y & + 2z & =0 \end{vmatrix} \overset{L_3 = -2L_2 + L_3}{\implies} \begin{vmatrix} x & +y & +z & =2 \\\ & y & + z & =1 \\\ & & 0 & =-2 \end{vmatrix}$ No solutions.
**How many solutions are possible to a system of linear equations?** Answer: * 0 Solutions * 1 Solution * Infinitely many solutions (This is because planes cannot curve) ### Geometric Interpretation A linear equation $ax + by = c$ defined a line in $\mathbb{R}^{2}$ Solutions to a linear system are intersections of lines in $\mathbb{R}^{2}$. * 0 Points (Solutions) * 1 Point (Solution) * $\infty$ many points (Solutions) if they are the same line A linear equation $ax + by + cz = d$ defined a plane in $\mathbb{R}^{3}$. Solutions to a linear system are intersections of (hyper) planes in $\mathbb{R}^{3}$. * 0 Points (Solutions) * 1 Point (Solution) * $\infty$ many points (Solutions): All the planes contain a line. Also if all planes could be the same plane.
Example Find all polynomials $f(t)$ of degree $\le 2$. * Whose graph run through (1, 3) and (2, 6) and * Such that $f^{\prime}(1) = 1$ * Use $f(t) = a + bt + ct^{2}$ We know * $f(1) = 3 \implies a + b + c = 3$ * $f(2) = 6 \implies a + 2b + 4c = 6$ * $f'(t) = b + 2ct$ * $f'(1) = 1 \implies b + 2c = 1$ $\begin{vmatrix} a & +b & + c & =3 \\\ a & +2b & +4c & =6 \\\ & b & +2c & =1 \end{vmatrix} \overset{L_2 = -L_1 + L_2}{\implies} \begin{vmatrix} a & +b & +c & =3\\\ & b & +3c & =3 \\\ & b & +2c & =1 \end{vmatrix}$ $\overset{L_3 = -L_2 + L_3}{\implies} \begin{vmatrix} a & +b & +c & =3 \\\ & b& +3c & =3 \\\ & & c & =2 \end{vmatrix} \overset{\overset{L_2 = -3L_3 + L_2}{L_1 = -L_3 + L_1}}{\implies} \begin{vmatrix} a & +b & =1\\\ & b & -3\\\ & c & =2 \end{vmatrix}$ $\overset{L_1 = L_1 - L_2}{\implies} \begin{vmatrix} a & =4 \\\ b & =-3 \\\ c & =2 \end{vmatrix}$ $f(t) = 4 - 3t + 2t^{2}$
# 1.2 Matrices, Vectors, and Gauss-Jordan Elimination $\begin{vmatrix} x & +2y & +3z & =1 \\\ 2x & +4y & +7z & =2 \\\ 3x & +7y & +4z & =8 \end{vmatrix}$ We can store all information in this linear system in a *matrix* which is a rectangular array of numbers. **Augmented Matrix**: $\begin{bmatrix} 1 & 2 & 3 & \bigm\| & 1 \\\ 2 & 4 & 7 & \bigm\| & 2 \\\ 3 & 7 & 11 & \bigm\| & 8 \end{bmatrix} $ 3 row and 4 column = 2x4 matrix **Coefficient Matrix**: $\begin{bmatrix} 1 & 2 & 3 \\\ 2 & 4 & 7 \\\ 3 & 7 & 1 \end{bmatrix}$ 3 x 3 matrix Generally, we have $A = [a_{ij}] = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1m} \\\ a_{21} & a_{22} & a_{23} & \cdots & a_{2m} \\\ \vdots & \vdots & \vdots & \ddots & \vdots \\\ a_{n_1} & a_{n2} & a_{n3} & \cdots & a_{nm} \end{bmatrix} $ Here, $A$ is $n\times m$ (n rows and m columns). For square $n \times n$ matrices: **Diagonal**: $a_{ij}$ for $i \neq j$ **Lower triangular**: $a_{ij} = 0$ for $i < j$ **Upper triangular**: $a_{ij} = 0$ for $i > j$ **Identity matrix $I_n$**: square $n\times n$ diagonal ($a_{ij} = 0$ for $i \neq j$ ) and $a_{ii} = 1$ for $1 \le i = n$ $I_3 = \begin{bmatrix} 1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 0 & 1 \end{bmatrix} $ **0 Matrix**: Any size; all entries are 0 $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\\0 & 0 & 0 & 0 & 0 \end{bmatrix}$ Above is a $2\times 5$ 0-Matrix Columns of an $n \times m$ matrix form vectors in $\mathbb{R}^{n}$. Example: $$ \begin{bmatrix} 1 & 2 & 3 & \Bigm| & 1 \\ 2 & 4 & 7 & \Bigm| & 2 \\ 3 & 7 & 11 & \Bigm| & 8 \end{bmatrix} $$ We can represent vectors as the columns: $$ \begin{bmatrix} 1 \\ 2 \end{bmatrix} , \begin{bmatrix} 3 \\ 1 \end{bmatrix} , \begin{bmatrix} 1 \\ 9 \end{bmatrix} , \text{ in } \mathbb{R}^2 $$ This is the standard representation for a vector in $\mathbb{R}^{n}$. A vector as an arrow starting at origin and ending at corresponding point. Consider the two vectors: $$ \vec{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} , \vec{w} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \text{ in } \mathbb{R}^2 $$ ![lec2-fig1](/notes/math2331/lec2-fig1.png) We may use 3 elementary row operations 1. Multiply/divide a row by a nonzero constant 2. Add/subtract a multiple of one row to another 3. Interchange two rows Solving the system of linear equations:
Example $$ \begin{bmatrix} 1 & 2 & 3 & \Bigm| & 1 \\ 2 & 4 & 7 & \Bigm| & 2 \\ 3 & 7 & 11 & \Bigm| & 8 \end{bmatrix} \overset{\overset{-2R_1 + R2}{-3R_1 + R_3}}{\implies} \begin{bmatrix} 1 & 2 & 3 & \Bigm| & 1 \\ 0 & 0 & 1 & \Bigm| & 0 \\ 0 & 1 & 2 & \Bigm| & 5 \\ \end{bmatrix} \overset{R_2 \leftrightarrow R_3}{\implies} \begin{bmatrix} 1 & 2 & 3 & \bigm| & 1 \\ 0 & 1 & 2 & \bigm| & 5 \\ 0 & 0 & 1 & \bigm| & 0 \end{bmatrix} $$ $$ \overset{\overset{-3R_3 + R_1}{-2R_3 + R_2}}{\implies} \begin{bmatrix} 1 & 2 & 0 & \bigm| & 1 \\ 0 & 1 & 0 & \bigm| & 5 \\ 0 & 0 & 1 & \bigm| & 0 \end{bmatrix} \overset{-2R_2 + R_1}{\implies} \begin{bmatrix} 1 & 0 & 0 & \bigm| & -9 \\ 0 & 1 & 0 & \bigm| & 5 \\ 0 & 0 & 1 & \bigm| & 0 \end{bmatrix} \text{ identity matrix} $$ $$ \therefore \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -9 \\ 5 \\ 0 \end{bmatrix} $$
Example $$ \begin{bmatrix} 1 & -1 & 1 & \bigm| & 0 \\ 1 & 0 & -2 & \bigm| & 2 \\ 2 & -1 & 1 & \bigm| & 4 \\ 0 & 2 & -5 & \bigm| & 4 \end{bmatrix} \overset{\overset{-R_1 + R_2}{-2R_1 + R_3}}{\implies} \begin{bmatrix} 1 & -1 & 1 & \bigm| & 0 \\ 0 & 1 & -3 & \bigm| & 2 \\ 0 & 1 & -1 & \bigm| & 4 \\ 0 & 2 & -5 & \bigm| & 4 \end{bmatrix} $$ $$ \overset{\overset{-R_2 + R_3}{-2R_2 + R_4}}{\implies} \begin{bmatrix} 1 & -1 & 1 & \bigm| & 0 \\ 0 & 1 & -3 & \bigm| & 2 \\ 0 & 0 & 2 & \bigm| & 2 \\ 0 & 0 & 1 & \bigm| & 0 \\ \end{bmatrix} \overset{R_3 \leftrightarrow R_4}{\implies} \begin{bmatrix} 1 & -1 & 1 & \bigm| & 0 \\ 0 & 1 & -3 & \bigm| & 2 \\ 0 & 0 & 1 & \bigm| & 0 \\ 0 & 0 & 2 & \bigm| & 2 \\ \end{bmatrix} $$ $$ \overset{-2R_3 + R_4}{\implies} \begin{bmatrix} 1 & -1 & 1 & \bigm| & 0 \\ 0 & 1 & -3 & \bigm| & 2 \\ 0 & 0 & 1 & \bigm| & 0 \\ 0 & 0 & 0 & \bigm| & 2 \\ \end{bmatrix} $$ No solutions
Example $$ \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} = \begin{bmatrix} 1 & -7 & 0 & 0 & 1 & \bigm| & 3 \\ 0 & 0 & 1 & 0 & -2 & \bigm| & 2 \\ 0 & 0 & 0 & 1 & 1 & \bigm| & 1 \end{bmatrix} $$ This is already as far as we can go with row operations, but we have two free variables. They are $x_2$ and $x_5$. We can say that $x_2 = t$ $x_5 = s$ $x_1 = 3 + 7t - s$ $x_3 = 2 + 2s$ $x_4 = 1 - s$ $$ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 3 + 7t - 5 \\ t \\ 2 + 2s \\ 1 - s \\ s \end{bmatrix} $$
Example $$ \begin{bmatrix} 1 & 1 & 2 & \bigm| 0 \\ 2 & -1 & 1 & \bigm| 6 \\ 4 & 1 & 5 & \bigm| 6 \\ \end{bmatrix} \overset{\overset{-R_1 + R_2}{-4R_1 + R_3}}{\implies} \begin{bmatrix} 1 & 1 & 2 & \bigm| & 0 \\ 0 & -3 & -3 & \bigm| & 6 \\ 0 & -3 & -3 & \bigm| & 6 \end{bmatrix} $$ $$ \overset{\left( -\frac{1}{3} \right) R_2}{\implies} \begin{bmatrix} 1 & 1 & 2 & \bigm| & 0 \\ 0 & 1 & 1 & \bigm| & -2 \\ 0 & -3 & -3 & \bigm| & 6 \end{bmatrix} \overset{3R_2 + R_3}{\implies} \begin{bmatrix} 1 & 1 & 2 & \bigm| & 0 \\ 0 & 1 & 1 & \bigm| & -2 \\ 0 & 0 & 0 & \bigm| & 0 \end{bmatrix} $$ $$ \overset{-R_2 + R_1}{\implies} \begin{bmatrix} 1 & 0 & 1 & \bigm| & 2 \\ 0 & 1 & 1 & \bigm| & -2 \\ 0 & 0 & 0 & \bigm| & 0 \end{bmatrix} $$ $z=t$ (free variable) $x = 2-t$ $y= -3 - t$ $$ \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 -t\\ -2-t\\ t \end{bmatrix} $$
### Reduced Row Echelon Form (rref)
Defintion: An $n\times m$ matrix is in *reduced row echelon form* (rref) provided: 1. If a row has nonzero entries, the first nonzero entry is a 1, called *leading 1* or *pivot*. 2. If a column contains a leading 1, then all other entries in column are zero. 3. If a row contains a leading 1,then each row above has a leading 1 and to the left.
Examples of matrices in reduced row echelon form: $$ \begin{bmatrix} 1 & -7 & 0 & 0\\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} , \begin{bmatrix} 1 & 0 & 5 & 2\\ 0 & 1 & 2 & 7 \\ 0 & 0 & 0 & 0 \\ \end{bmatrix} , \begin{bmatrix} 1 & 2 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{bmatrix} $$ ### Row echelon form (ref) Differences: * Leading entry (pivot position) in a row can be anything * No restriction on entries above a leading entry in a column $$ \begin{bmatrix} 5 & -7 & 2 & 8\\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} , \begin{bmatrix} 2 & 7 & 5 & 2\\ 0 & 6 & 2 & 7 \\ 0 & 0 & 0 & 0 \\ \end{bmatrix} , \begin{bmatrix} 5 & 3 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} , \begin{bmatrix} 0 & 0 & 7 & 7 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{bmatrix} $$ Using the 3 elementary row operations, we may transform any matrix to one in rref (also ref). This method of solving a linear system is called *Guass-Jordan Elimination*. # 1.3 On the Solutions of Linear Systems: Matrix Algebra Consider the augmented matrices: ref with 1 unique solution: $\begin{bmatrix} 2 & 0 & 0 & \bigm\| & -3 \\\ 0 & 3 & 0 & \bigm\| & 3 \\\ 0 & 0 & 1 & \bigm\| & 14\end{bmatrix} $ rref with infinitely many solutions: $\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & \bigm\| & -1 \\\ 0 & 1 & 0 & 0 & 1 & \bigm\| & 0 \\\ 0 & 0 & 1 & 1 & 0 & \bigm\| & 2\end{bmatrix} $ ref with 1 unique solution: $\begin{bmatrix} 0 & 0 & 0 & \bigm\| & 4 \\\ 0 & 1 & 2 & \bigm\| & 4 \\\ 0 & 0 & 3 & \bigm\| & 6 \\\ 0 & 0 & 0 & \bigm\| & 0 \\\ 0 & 0 & 0 & \bigm\| & 0 \\\ \end{bmatrix}$ ref with no solutions: $\begin{bmatrix} 1 & 0 & 0 & \bigm\| & 3 \\\ 0 & 1 & 0 & \bigm\| & -1 \\\ 0 & 0 & 2 & \bigm\| & 4 \\\ 0 & 0 & 0 & \bigm\| & 10 \\\ \end{bmatrix}$ A linear system is * *consistent* provided it has at least one solution * *inconsistent* provided it has no solutions
Theorem: * A linear system is *inconsistent* if and only if a row echelon form (ref) of its augmented matrix has a row $\begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & \bigm\| & c \end{bmatrix}$ where $c\neq 0$. * A linear system is consistent then we have either: * A unique solution or * Infinitely many solutions (at least one free variable)
### Rank The rank of a matrix $A$, denoted `rank(A)` is the number of leading 1's in `rref(A)` (the reduced row echelon form of $A$).
Example ref $$ \begin{bmatrix} 2 & 0 & 0\\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} $$ Has a rank of 3 (3x3)
Example rref: $$ \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ \end{bmatrix} $$ Has a rank of 3 (3x5)
Example ref: $$ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} $$ Rank of 3 (5x3)
Example rref: $$ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} $$ Rank of 1 (3x3)
Example rref: $$ \begin{bmatrix} 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix} $$ rank of 3 (4x6 matrix)
Example $$ \begin{bmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix} \overset{\frac{1}{3} R_1}{\implies} \begin{bmatrix} 1 & 1 & 1 \\ 3 & 3 & 3 \end{bmatrix} \overset{-3R_1 + R_2}{\implies} \text{rref}: \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} $$ This matrix has a rank of 1.
Example $$ \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \\ 0 & 0 & 0 \end{bmatrix} \overset{\overset{R_2 - R_1}{-R_1 + R_3}}{\implies} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 2 & 5 \\ 0 & 0 & 0 \end{bmatrix} \overset{R_3 - 2R_2}{\implies} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} $$ The rank of this matrix is 3.
Example $$ C = \begin{bmatrix} 0 & 1 & a \\ -1 & 0 & b \\ -a & -b & 0 \end{bmatrix} \overset{R_1 \leftrightarrow R_2}{\implies} \begin{bmatrix} -1 & 0 & b \\ 0 & 1 & a \\ -a & -b & 0 \end{bmatrix} \overset{-1 \times R_1}{\implies} \begin{bmatrix} 1 & 0 & -b \\ 0 & 1 & a \\ -a & -b & 0 \end{bmatrix} $$ $$ \overset{aR_1 + R_3}{\implies} \begin{bmatrix} 1 & 0 & -b \\ 0 & 1 & a \\ 0 & -b & -ab \end{bmatrix} \overset{bR_2 + R_3}{\implies} \begin{bmatrix} 1 & 0 & -b \\ 0 & 1 & a \\ 0 & 0 & 0 \end{bmatrix} $$ Rank is 2.
Suppose we have an $n \times m$ coefficeint matrix $$ A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix} $$ $\text{rank}(A) \le n$ $\text{rank}(A) \le m$ Number of free variables = $m - \text{rank}(A)$ If a linear system with coefficient matrix $A$ has: * exactly one solution, then we have no free variables. Therefore the $\text{rank}(A) = m$. * no solutions, then ret augmented matrix $\begin{bmatrix} 0 & 0 & 0 & \big\| & b \end{bmatrix} $ where $b\neq 0$. Therefore $\text{rank(A)} < n$. * infinitely many solutions, then at least one free variable $\text{rank(A)} < m$. *Square Matricies*: When a linear system has an $n \times n$ coefficient matrix $A$, there is exactly one soltuion... if and only if $\text{rank}(A) = n$ if and only if $\text{rref}(A) = I_n$ (the $n \times n$ identity) ### Matrix Algebra Suppose $A = [a_{ij}]$ and $B = [b_{ij}]$ are both $n \times m$ and $c$ is in $\mathbb{R}$. **Matrix Sum**: $A+B = [a_{ij} + b_{ij}]$ (add/scalar multiply entry by entry) **Scaler Multiplication**: $cA = [ca_{ij}]$
Example $$ \begin{bmatrix} 2 & 3 \\ 5 & -2 \\ -1 & 0 \end{bmatrix} + \begin{bmatrix} -1 & 6 \\ 3 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 9 \\ 8 & -2 \\ -1 & 2 \end{bmatrix} $$
Example $$ 5 \begin{bmatrix} 2 & 3 & -1 \\ 1 & 3 & -3 \end{bmatrix} = \begin{bmatrix} 10 & 15 & -5 \\ 5 & 15 & -15 \end{bmatrix} $$
Example Vector Sum and Scaler multiplication $$ \vec{v} = \begin{bmatrix} 4\\ 3 \\ 1 \end{bmatrix} $$ $$ \vec{w} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} $$ $$ \vec{v} + \vec{w} = \begin{bmatrix} 4 \\ 4 \\ 0 \end{bmatrix} $$
What about matrix/vector products? 1. Dot product for 2 vectors in $\mathbb{R}^n$ 2. $A \vec{x}$ matrix times vector
Definition: For vectors $\vec{v} = \begin{bmatrix} v_1 \\\ v_2 \\\ \vdots \\\ v_n \end{bmatrix} $ and $\vec{w} = \begin{bmatrix} w_1 \\\ w_2 \\\ \vdots \\\ w_n \end{bmatrix} $ in $\mathbb{R}^n$, the *dot product* $\vec{v} * \vec{w}$ is scaler: $\vec{v} * \vec{w} = v_1 w_1 + v_2 w_2 + v_3 w_3 ... = \sum_{k=1}^{n} v_k w_k$ Note: dot product does not distinguish between row vectors and column vectors.
Example $$ \begin{bmatrix} 5 \\ 2 \\ -3 \end{bmatrix} * \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} = 5 * 1 + 2(-1) + (-3)(-1) = 5 +2 + 3 = 6 $$
An important way to think about dot product: $$ \begin{bmatrix} 5 & 2 & -3 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} $$ The product $A\vec{x}$ : Suppose $A$ is $n\times m$ and $\vec{x} = \begin{bmatrix} x_1 \\\ x_2 \\\ \vdots \\\ x_m \end{bmatrix} $ Size: $\left( n\times m \right) \left( m \times 1\right) \to n \times 1$ Way 1: Row Viewport $$ A = \begin{bmatrix} -- \vec{w_1} -- \\ -- \vec{w_2} -- \\ \vdots \\ -- \vec{w_n} -- \\ \end{bmatrix} $$ Note: $\vec{w}_i \in \mathbb{R}^m$ $$ A\vec{x} = \begin{bmatrix} \vec{w_1} * \vec{x} \\ \vec{w_2} * \vec{x} \\ \vdots \\ \vec{w_n} * \vec{x} \end{bmatrix} $$ (Size $n \times 1$) Way 2: Column Viewport $$ A = \begin{bmatrix} | & | & & | \\ \vec{v_1} & \vec{v_2} & \cdots & \vec{v_m} \\ | & | & & | \\ \end{bmatrix} $$ $\vec{v_j} \in \mathbb{R}^n$ $A \vec{x} = x_1 \vec{v_1} + x_2 \vec{v_2} + \cdots + x_m \vec{v_m}$ (Size $n \times 1$)
Example $$ \begin{bmatrix} 5 & -1 & 2 & 6 \\ 4 & 3 & 0 & 1 \\ -1 & 0 & 2 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ -1 \\ 3 \end{bmatrix} = $$ $$ 0 \begin{bmatrix} 5 \\ 4 \\ -1 \end{bmatrix} + 2 \begin{bmatrix} -1 \\ 3 \\ 0 \end{bmatrix} - 1 \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix} + 3 \begin{bmatrix} 6 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 14 \\ 9 \\ -5 \end{bmatrix} $$
Example $$ \begin{bmatrix} 5 & -1 & 2 & 6 \\ 4 & 3 & 0 & 1 \\ -1 & 0 & 2 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix} $$ Product is not defined
Example $$ \begin{bmatrix} 5 & -2 \\ 3 & 1 \\ 1 & 4 \\ -1 & 0 \\ 0 & 6 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 10 + 2 \\ 6 - 1 \\ 2 - 4 \\ -2 + 0 \\ 0 - 6 \end{bmatrix} = \begin{bmatrix} 12 \\ 5 \\ -2 \\ -2 \\ -6 \end{bmatrix} $$
Definition: A vector $\vec{b}$ in $\mathbb{R}^n$ is a *linear combination* of $\vec{v_1},\ \vec{v_2},\ \cdots,\ \vec{v_m}$ in $\mathbb{R}^n$ provided there exists scalars $x_1,\ x_2,\ x_3,\ \cdots ,\ x_m$ with $\vec{b} = x_1 \vec{v_1} + x_2 \vec{v_2} + x_3 \vec{v_3} + \cdots + x_m \vec{v_m}$.
Example $\begin{bmatrix} 4 \\\ 10 \\\ 2 \\\ -3 \end{bmatrix} $ is a linear combination of $\begin{bmatrix} 0 \\\ 2 \\\ 0 \\\ -1 \end{bmatrix}$ and $\begin{bmatrix} 2 \\\ 0 \\\ 1 \\\ 1 \end{bmatrix}$ $$ \begin{bmatrix} 4 \\ 10 \\ 2 \\ -3 \end{bmatrix} = 5 \begin{bmatrix} 0 \\ 2 \\ 0 \\ -1 \end{bmatrix} + 2 \begin{bmatrix} 2 \\ 0 \\ 1 \\ 1 \end{bmatrix} $$
Example $\begin{bmatrix} 4 \\\ 10 \\\ 2 \\\ -3 \end{bmatrix} $ is a linear combination of $\vec{e_1} = \begin{bmatrix} 1 \\\ 0 \\\ 0 \\\ 0 \end{bmatrix} $, $\vec{e_2} = \begin{bmatrix} 0 \\\ 1 \\\ 0 \\\ 0 \end{bmatrix} $, $\vec{e_3} = \begin{bmatrix} 0 \\\ 0 \\\ 1 \\\ 0 \end{bmatrix}$, and $\vec{e_4} = \begin{bmatrix} 0 \\\ 0 \\\ 0 \\\ 1 \end{bmatrix}$. In $\mathbb{R}^n$ vector, for $1 \le i \le n$ : $\vec{e_i}$ has 1 in $i$th spot and 0 elsewhere. $$ \begin{bmatrix} 4 \\ 10 \\ 2 \\ -3 \end{bmatrix} = 4 \vec{e_1} + 10 \vec{e_2} + 2 \vec{e_3} - 3 \vec{e_4} $$
Adding vectors with parallelogram rule ![lec3-fig1](/notes/math2331/lec3-fig1.png)
Example $\begin{bmatrix} 0 \\\ 0 \\\ 1 \end{bmatrix}$ in $\mathbb{R}^3$ is not linear combination of $\vec{e_1}$ and $\vec{e_2}$. Linear combinations of $\vec{e_1}$ and $\vec{e_2}$ just fill out the xy-plane. It cannot traverse the z-axis.
Example Let $\vec{b} = \begin{bmatrix} 4 \\\ 10 \\\ 2 \\\ -3 \end{bmatrix}$. Is $\vec{b}$ a linear combination of $\vec{v} = \begin{bmatrix} 4 \\\ 2 \\\ 1 \\\ -1 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 2 \\\ -1 \\\ 1 \\\ 1 \end{bmatrix}$ What we want: scalars $x_1$, $x_2$ with: $$ x_1 \begin{bmatrix} 4 \\ 2 \\ 1 \\ -1 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ -1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 10 \\ 2 \\ -3 \end{bmatrix} $$ (We will finish this next lecture)
### Quiz 1 Preparation
Example Solve the linear system by elementary row operations. $$ \begin{bmatrix} 1 & 6 & 2 & -5 & \big| & 3 \\ 0 & 0 & 2 & -8 & \big| & 2 \\ 1 & 6 & 1 & -1 & \big| & 2 \end{bmatrix} \overset{-R_1 + R_2}{\implies} \begin{bmatrix} 1 & 6 & 2 & -5 & \big| & 3 \\ 0 & 0 & 2 & -8 & \big| & 2 \\ 0 & 0 & -1 & -4 & \big| & 2 \end{bmatrix} $$ $$ \overset{\frac{1}{2} R_2}{\implies} \begin{bmatrix} 1 & 6 & 2 & -5 & \big| & 3 \\ 0 & 0 & 1 & -4 & \big| & 1 \\ 0 & 0 & -1 & -4 & \big| & 2 \end{bmatrix} \overset{R_2 + R_3}{\implies} \begin{bmatrix} 1 & 6 & 2 & -5 & \big| & 3 \\ 0 & 0 & 1 & -4 & \big| & 1 \\ 0 & 0 & 0& 0 & \big| & 2 \end{bmatrix} $$ $$ \overset{-R_1 + R_1}{\implies} \begin{bmatrix} 1 & 6 & 0 & 3 & \big| & 1 \\ 0 & 0 & 1 & -4 & \big| & 1 \\ 0 & 0 & 0& 0 & \big| & 2 \end{bmatrix} $$ $x_2 = 5$ $x_4 = 5$ $x_1 = 1 - 6s - 3t$ $x_3 = 1 + 4t$ $$ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1-6s-3t \\ s \\ 1+4t \\ t \end{bmatrix} $$
Example Find all polynomails of the form $f(t) = a + bt + ct^2$ with the point (1, 6) on the graph of $f$ such that $f'(2) = 9$ and $f''(8) = 4$. $f'(t) = b + 2ct$ $f''(t) = 2c$ $f(1) = 6 \to a + b + c = 6$ $f'(2) = 9 \to b + 4c = 9$ $f''(8) = 4 \to 2c = 4$ $c = 2$ $b + 2 = 9 \implies b = 1$ $a + 1 + 2 = 6 \implies a=3$ $f(t) = 3 + t + 2t^2$
Example Find one value $c$ so that the agumented matrix below corresponds to an inconsistent linear system. $$ \begin{bmatrix} 1 & 2 & -1 & \big| & 3 \\ 2 & 4 & -2 & \big| & c \end{bmatrix} $$ Note that in order for an inconsistent linear system, you need the form: $\begin{bmatrix} 0 & 0 & 0 & \big\| & b \end{bmatrix} $ $$ \begin{bmatrix} 1 & 2 & -1 & \big| & 3 \\ 2 & 4 & -2 & \big| & c \end{bmatrix} \overset{2R_1 - R_2}{\implies} \begin{bmatrix} 1 & 2 & -1 & \big| & 3 \\ 0 & 0 & 0 & \big| & 6 - c \end{bmatrix} $$ So when $c \neq 6$.
Example Consider the matriceis $A$, $B$, $C$, $D$ below. $$ A = \begin{bmatrix} 1 & 3 & 0 & -1 & 5 \\ 0 & 1 & 0 & 9 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 4 \\ \end{bmatrix} $$ $$ B = \begin{bmatrix} 0 & 1 & 6 & 0 & 3 & -1 \\ 0 & 0 & 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} $$ $$ C = \begin{bmatrix} 0 & 1 & 0 & 2 & 4 \end{bmatrix} $$ $$ D = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 2 \\ 4 \end{bmatrix} $$ a) Which of the matrices are in reduced row-echelon form (rref)? *Solution* B, C b) List the rank of each matrix *Solution* rank($A$) = 3 rank($B$) = 2 rank($C$) = rank($D$) = 1
A linear system is consistent if and only if rank of coefficient matrix equals tank of augmented matrix. For example, this would change the rank: $$ \begin{bmatrix} \vdots & \big\| & \vdots \\ 0 & \big\| & 1 \end{bmatrix} $$ **Recall** $A \vec{x}$ for $A$ an $n \times m$ matrix and $\vec{x} = \begin{bmatrix} x_1 \\\ \vdots \\\ x_m \end{bmatrix} $ **Row Viewport**: Suppose $\vec{w_1}, \vec{w_2}, \cdots, \vec{w_n}$ in $\mathbb{R}^m$ are the rows of $A$, then: $$ A\vec{x} = \begin{bmatrix} - & \vec{w_1} * \vec{x} & - \\ - & \vec{w_2} * \vec{x} & - \\ & \vdots & \\ - & \vec{w_m} * \vec{x} & - \\ \end{bmatrix} $$ *i*th entry of $A \vec{x}$ is [Row *i* of $A$] $\cdot \vec{x}$ **Column Viewport**: Suppose $\vec{v_1},\ \vec{v_2},\ \cdots ,\ \vec{v_m}$ in $\mathbb{R}^n$ are ithe columns of $A$, i.e. $A = \begin{bmatrix} \| & \| && \| \\\ \vec{v_1} & \vec{v_2} & \cdots & \vec{v_m} \\\ \| & \| && \| \end{bmatrix} $ Then, $A \vec{x} = x_1 \vec{v_1} + x_2 \vec{v_2} + \cdots + x_m \vec{v_m}$ **Properties of the product $A\vec{x}$**: Suppose $A$ is $n\times m$, $\vec{x}$, $\vec{y}$ are in $\mathbb{R}^m$ and $k$ is a scalar 1. $A(\vec{x} + \vec{y}) = A\vec{x} + A\vec{y}$ 2. $A(k\vec{x}) = kA\vec{x}$ Justification of 2: $k\vec{x} = \begin{bmatrix} kx_1 \\\ kx_2 \\\ \vdots \\\ kx_m \end{bmatrix}$ $A(k\vec{x}) = (kx_1) \vec{v_1} + (kx_2)\vec{v_2} + \cdots + (kx_m) \vec{v_m}$ $= k(x_1 \vec{v_1} + x_2 \vec{v_2} + \cdots + x_m \vec{v_m})$ $= kA\vec{x}$ We continue with this question: is $\begin{bmatrix} 4 \\\ 10 \\\ 2 \\\ -3 \end{bmatrix}$ a linear combination of $\begin{bmatrix} 4 \\\ 2 \\\ 1 \\\ -1 \end{bmatrix}$ and $\begin{bmatrix} 2 \\\ -1 \\\ 1 \\\ 1 \end{bmatrix}$? Can we find $x_1$, $x_2$ scalars such that $x_1 \begin{bmatrix} 4 \\\ 2 \\\ 1 \\\ -1 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\\ -1 \\\ 1 \\\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\\ 10 \\\ 2 \\\ -3 \end{bmatrix}$? Is there a solution to the linear system $\begin{bmatrix} 4 & 2 & \big\| & 4 \\\ 2 & -1 & \big\| & 10 \\\ 1 & 2 & \big\| & 2 \\\ -1 & 1 & \big\| & -3 \end{bmatrix}$? $$ \begin{bmatrix} 4 & 2 & \big\| & 4 \\ 2 & -1 & \big\| & 10 \\ 1 & 1 & \big\| & 2 \\ -1 & 1 & \big\| & -3 \end{bmatrix} \overset{R_1 \leftrightarrow R_3}{\implies} \begin{bmatrix} 1 & 1 & \big\| & 2 \\ 2 & -1 & \big\| & 10 \\ 4 & 2 & \big\| & 4 \\ -1 & 1 & \big\| & -3 \end{bmatrix} $$ $$ \implies \begin{bmatrix} 1 & 1 & \big\| & 2 \\ 0 & -3 & \big\| & 6 \\ 0 & -2 & \big\| & -4 \\ 0 & 2 & \big\| & -1 \end{bmatrix} \implies \begin{bmatrix} 1 & 1 & \big\| & 2 \\ 0 & 1 & \big\| & -2 \\ 0 & 0 & \big\| & -8 \\ 0 & 0 & \big\| & 3 \end{bmatrix} $$ This linear system is inconsistent so: No, there is no solution. We see $$ \begin{bmatrix} 4 & 2 & \big\| & 4 \\ 2 & -1 & \big\| & 10 \\ 1 & 1 & \big\| & 2 \\ -1 & 1 & \big\| & -3 \\ \end{bmatrix} \leftrightarrow \begin{bmatrix} 4 & 2 \\ 2 & -1 \\ 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 10 \\ 2 \\ -3 \end{bmatrix} $$ This correspondence works generally: * A linear system with augmented matrix $\begin{bmatrix} A & \big\| & \vec{b} \end{bmatrix}$ can be written in matrix form as $A\vec{x} = \vec{b}$. Moreover, this system is consistent if and only if $\vec{b}$ is a linear combination of the columns of $A$. (More in sections 3.1-3.3, 5.4) # 2.1 Introduction to Linear Transformation Recall that a function $f : \mathbb{R}^m \to \mathbb{R}^n$ is a rule that assigns to each vector in $\mathbb{R}^m$ a unique vector in $\mathbb{R}^n$. * Domain: $\mathbb{R}^m$ * Codomain/target space: $\mathbb{R}^n$ * Image/range: $\\{ f(\vec{x}) : x \in \mathbb{R}^m \\}$
Example $f : \mathbb{R}^3 \to \mathbb{R}$ given by $f \begin{bmatrix} x_1 \\\ x_2 \\\ x_3 \end{bmatrix} = \sqrt{x_1^2 + x_2^2 + x_3^3}$ This is given the length of the vector. **Domain**: $\mathbb{R}^3$ **Range**: $[0, \infty)$
Definition: A function $T : \mathbb{R}^m \to \mathbb{R}^n$ is a *linear transformation* provided there exists an $n \times m$ matrix $A$ such that $T(\vec{x}) = A\vec{x}$ for all $\vec{x} \in \mathbb{R}^m$.
Comments: * "Linear functions" in calculus 1/2/3: graph is a line/plane/3-space Examples: $f(x) = 5x + 4$ $f(x,\ y) = 2x - 3y + 8$ But not all of these are linear transformations. These should be called affine. * For any $n\times m$ matrix $A$, $A\vec{0} = \vec{0}$ : For any linear transformation $T: T(\vec{0}) = \vec{0}$.
Example For scalars, $a$, $b$, $c$, the function $g(x,\ y,\ z) = ax + by + cz$ is a linear transformation. $g : \mathbb{R}^3 \to \mathbb{R}$ $g \begin{bmatrix} x \\\ y \\\ z \end{bmatrix} = \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x \\\ y \\\ z \end{bmatrix}$ The matrix of $g$ is: $\begin{bmatrix} a & b & c \end{bmatrix}$
Example The function $f(x) = \begin{bmatrix} a \\\ 5 \\\ -x \end{bmatrix}$ is not a linear transformation. $f : \mathbb{R} \to \mathbb{R}^3$ $f(0) = \begin{bmatrix} 0 \\\ 5 \\\ 0 \end{bmatrix} \neq \vec{0}$ Therefore $f$ is not a linear transformation.
Question: What is the linear transformation corresponding to $I_3 = \begin{bmatrix} 1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 0 & 1 \end{bmatrix}$? $$ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = x \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + z \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} $$ Answer: Identity map. It maps any matrix to itself. Consider $T(\vec{x}) = A\vec{x}$ where $A = \begin{bmatrix} 5 & 1 & 3 \\\ 4 & -1 & 6 \\\ 2 & 0 & 7 \\\ 3 & 2 & 5 \end{bmatrix}$. Find $T(\vec{e_1})$, $T(\vec{e_2})$, and $T(\vec{e_3})$. Recall that $\vec{e_1} = \begin{bmatrix} 1 \\\ 0 \\\ 0 \end{bmatrix}$, $\vec{e_2} = \begin{bmatrix} 0 \\\ 1 \\\ 0 \end{bmatrix}$, $\vec{e_3} = \begin{bmatrix} 0 \\\ 0 \\\ 1 \end{bmatrix}$ Note: $A$ is $4\times 3$. $T : \mathbb{R}^3 \to \mathbb{R}^4$ $$ T(\vec{e_1}) = \begin{bmatrix} 5 \\ 4 \\ 2 \\ 3 \end{bmatrix} $$ $$ T(\vec{e_2}) = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 2 \end{bmatrix} $$ $$ T(\vec{e_3}) = \begin{bmatrix} 3 \\ 6 \\ 7 \\ 5 \end{bmatrix} $$ Suppose $T : \mathbb{R}^m \to \mathbb{R}^n$ is a linear transformation. The matrix of $T$ is $$ \begin{bmatrix} | & | & & | \\ T(\vec{e_1}) & T(\vec{e_2}) & \cdots & T(\vec{e_m}) \\ | & | & & | \\ \end{bmatrix} $$ Where $\vec{e_1},\ \vec{e_2},\ \cdots ,\ \vec{e_m}$ standard vectors in $\mathbb{R}^m$. e.i.: 1's in the ith spot, 0's elsewhere
Example Find the matrix of the transformation $T : \mathbb{R}^4 \to \mathbb{R}^2$ given by $T \begin{bmatrix} x_1 \\\ x_2 \\\ x_3 \\\ x_4 \end{bmatrix} = \begin{bmatrix} x_4 \\\ 2x_2 \end{bmatrix}$. $T(\vec{e_1}) = \begin{bmatrix} 0 \\\ 0 \end{bmatrix} $ $T(\vec{e_2}) = \begin{bmatrix} 0 \\\ 2 \end{bmatrix}$ $T(\vec{e_3}) = \begin{bmatrix} 0 \\\ 0 \end{bmatrix}$ $T(\vec{e_4}) = \begin{bmatrix} 1 \\\ 0 \end{bmatrix}$ $A = \begin{bmatrix} 0 & 0 & 0 & 1 \\\ 0 & 2 & 0 & 0 \end{bmatrix}$ Check: $$ \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_4 \\ 2x_2 \end{bmatrix} $$
Example Find the matrix of this transformation from $\mathbb{R}^2$ to $\mathbb{R}^4$ given by $\begin{vmatrix} y_1 = 9x_1 + 3x_2 \\\ y_2 = 2x_1 - 9x_2 \\\ y_3 = 4x_1 - 9x_2 \\\ y_4 = 5x_1 + x_2 \end{vmatrix}$. $\vec{e_1} = T\left( \begin{bmatrix} 1 \\\ 0 \end{bmatrix} \right) = \begin{bmatrix} 9 \\\ 2 \\\ 4 \\\5 \end{bmatrix}$ $\vec{e_1} = T \left( \begin{bmatrix} 0 \\\ 1 \end{bmatrix} \right) = \begin{bmatrix} 3 \\\ -9 \\\ -9 \\\ 1 \end{bmatrix}$ $$ A = \begin{bmatrix} 9 & 3 \\ 2 & -9 \\ 4 & -9 \\ 5 & 1 \end{bmatrix} $$
Theorem: A function $T : \mathbb{R}^m \to \mathbb{R}^n$ is a linear transformation if and only if $T$ satisfies: * $T(\vec{v} + \vec{w}) = T(\vec{v}) + T(\vec{w})$ for all $\vec{v}$, $\vec{w}$ in $\mathbb{R}^n$ * $T(k\vec{v}) = kT(\vec{v})$ for all $\vec{v}$ in $\mathbb{R}^n$ and scalars $k$.
Proof: If $T : \mathbb{R}^m \to \mathbb{R}^n$ is a linear transformation, there is an $n \times m$ matrix $A$ with $T(\vec{x}) = A\vec{x}$. (1) and (2) hold from matrix properties. Assume $T : \mathbb{R}^m \to \mathbb{R}^m$ satisfies (1) and (2). Find matrix $A$ with $T(\vec{x}) = A\vec{x}$ for all $\vec{x}$ in $\mathbb{R}^m$. Let $A = \begin{bmatrix} \| & \| & & \| \\\ T(\vec{e_1}) & T(\vec{e_2}) & \cdots & T(\vec{e_m}) \\\ \| & \| & & \| \end{bmatrix} $. Let $\vec{x} = \begin{bmatrix} x_1 \\\ \vdots \\\ x_m \end{bmatrix}$ $A \vec{x} = x_1 T(\vec{e_1}) + x_2 T(\vec{e_2}) + \cdots + x_m T(\vec{e_m})$ $A \vec{x} = T(x_1 \vec{e_1}) + T (x_2 \vec{e_2}) + \cdots + T (x_m \vec{e_m})$ (property 2) $A \vec{x} = T(x_1 \vec{e_1} + x_2 \vec{e_2} + \cdots + x_m \vec{e_m})$ (property 1) $A \vec{x} = T(\vec{x})$ as $\vec{x} = x_1 \vec{e_1} + x_2 \vec{e_2} + \cdots + x_m \vec{e_m}$
Example Sow the transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ is not linear, where $T$ is given by: $y_1 = x_1^2$ $y_2 = x_1 + x_2$ $$ f \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1^2 \\ x_1 + x_2 \end{bmatrix} $$ $$ f \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1^2 \\ 1 + 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} $$ $$ f \begin{bmatrix} -1 \\ -1 \end{bmatrix} = \begin{bmatrix} (-1)^2 \\ -1 -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \end{bmatrix} \neq - \begin{bmatrix} 1 \\ 2 \end{bmatrix} $$ More generally: $$ T \left( -\begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) \neq - T \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) $$ This fails property 2. Therefore, this is not a linear transformation.
Example Recall the function $f : \mathbb{R}^3 \to \mathbb{R}$ given by $f \begin{bmatrix} x_1 \\\ x_2 \\\ x_3 \end{bmatrix} = \sqrt{x_1^2 + x_2^2 + x_3^2}$. Show that $f$ is not a linear a transformation. $f \begin{bmatrix} -1 \\\ 0 \\\ 0 \end{bmatrix} = \sqrt{\left( -1 \right) ^{2} + 0 + 0} = 1$ $-1 f \begin{bmatrix} 1 \\\ 0 \\\ 0 \end{bmatrix} = -1 \sqrt{1 + 0 + 0} =-1$ $f(-\vec{e_1}) \neq -f (\vec{e_1})$ (fails property 2) or $f(\vec{e_1}) = 1$ $f(\vec{e_2}) = 1$ $f(\vec{e_1} + \vec{e_2}) = f \begin{bmatrix} 1 \\\ 1 \\\ 0 \end{bmatrix} = \sqrt{1 + 1 + 0} = \sqrt{2}$ $f(\vec{e_1} + \vec{e_2}) \neq f(\vec{e_1}) + f(\vec{e_2})$ (fails property 1)
# 2.2 Linear Transformations in Geometry Suppose $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation. Geometrically, we will discuss: * Orthogonal projection * Reflection * Scaling * Rotation * Horizontal or vertical shear **Background material (Geometry)**: See Appendix A in textbook * $\mid \mid \vec{v} \mid \mid$ length (magnitude, norm) of $\vec{v}$ in $\mathbb{R}^n$ $ \mid \mid \vec{v} \mid \mid = \sqrt{\vec{v} * \vec{v}} = \sqrt{v_1^2 + v_2^2 + \cdots + v_n^2}$ $\vec{v} = \begin{bmatrix} v_1 \\\ v_2 \\\ \vdots \\\ v_n \end{bmatrix} $ * If $c$ is a scalar and $\vec{v} \in \mathbb{R}^n,\ \mid \mid c \vec{v} \mid \mid = \mid c \mid \mid \mid \vec{v} \mid \mid$. Here $ \mid c \mid $ is absolute value of $c$. * A vector $\vec{u} \in \mathbb{R}^n$ is a unit vector provided. $ \mid \mid \vec{u} \mid \mid =1$ Example: $\vec{e_1},\ \vec{e_2}, \cdots ,\ \vec{e_n}$ all unit * Two vectors $\vec{v},\ \vec{w}$ in $\mathbb{R}^n$ are orthogonal (perpendicular, normal) provided $\vec{v} * \vec{w} = 0$ (angle between $\vec{v}$ and $\vec{w}$ is right) * Two nonzero vectors $\vec{v}$, $\vec{w}$ in $\mathbb{R}^n$ are parallel provided they are scaler multiples of each other
Example Let $\vec{v} = \begin{bmatrix} 6 \\\ -2 \\\ -1 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 2 \\\ 5 \\\2 \end{bmatrix} $ 1) Show $\vec{v}$ and $\vec{w}$ are perpendicular $\vec{v} \cdot \vec{w} = 6(2) + (-2)(5) + (-1)(2) = 0$ 2) Find two unit vectors parallel to $\vec{w}$ $\mid \mid \vec{w} \mid \mid = \sqrt{2^{2} + 5^{2} + 2^{2}} = \sqrt{4 + 25 + 4} = \sqrt{33}$ $\frac{\vec{w}}{ \mid \mid \vec{w} \mid \mid } = \frac{1}{\sqrt{33}} \begin{bmatrix} 2 \\\ 5 \\\ 2 \end{bmatrix}$ (the length of unit vectors must be 1) Sometimes this is called the normalization of $\vec{w}$ or the direction of $\vec{w}$. and $\frac{-1}{\sqrt{33}} \begin{bmatrix} 2 \\\ 5 \\\ 2 \end{bmatrix}$
**Adding Vectors** (triangle rule and parallelogram rule): ![lec5-fig1](/notes/math2331/lec5-fig1.png) **Properties of the Dot Product** Consider $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^{n}$ and $k$ scalar. 1. $\vec{v} \cdot \vec{w} = \vec{w} \cdot \vec{v}$ 2. $k\left( \vec{v} \cdot \vec{w} \right) = \left( k \vec{v} \right) \cdot \vec{w} = \vec{v} \cdot \left( k \vec{w} \right)$ 3. $\vec{u} \cdot \left( \vec{v} + \vec{w} \right) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$ ### Orthogonal Projection onto a line $L$ Suppose $L$ is a line in $\mathbb{R}^{n}$ and $\vec{w}$ is a nonzero vector with $L = \text{space}\\{\vec{w}\\}$. * `span` means all multiples of $\vec{w}$ Given $\vec{x}$ in $\mathbb{R}^{n}$, we may write $\vec{x} = \vec{x^{\parallel}} + \vec{x^{\bot}}$ $\vec{x}^{\parallel} = \text{proj}_{L} \vec{x}$: This is the orthogonal projection of $\vec{x}$ onto $L$. Component of $\vec{x}$ parallel to $L$. ![lec5-fig2](/notes/math2331/lec5-fig2.png) $\vec{x}^{\bot} = \vec{x} - \vec{x}^{\parallel}$: This is the component of $\vec{x}$ perpendicular to $L$ We want: $\vec{x}^{\parallel} = k \vec{w}$. Find $k$. We also want: * $\vec{x}^{\bot} \cdot \vec{w} = 0$ $\left( \vec{x} - \vec{x}^{\parallel} \right) \cdot \vec{w} = 0$ $\left( \vec{x} - k \vec{w}\right) \cdot \vec{w} = 0$ $\vec{x} \cdot \vec{w} - k \left( \vec{w} \cdot \vec{w} \right) = 0$ $\vec{x} \cdot \vec{w} = k \left( \vec{w} \cdot \vec{w} \right)$ $k = \frac{\vec{x} \cdot \vec{w}}{\vec{w} \cdot \vec{w}}$ The definition of a projection onto a line: $\text{proj}_{L} \vec{x} = \frac{\vec{x} \cdot \vec{w}}{\vec{w} \cdot \vec{w}} \vec{w}$
Example Let $L$ be the line in $\mathbb{R}^{3}$ spanned by $\vec{w} = \begin{bmatrix} 1 \\\ 0 \\\ -2 \end{bmatrix}$. Find the orthogonal projection of $\vec{x} = \begin{bmatrix} 2 \\\ 1 \\\ -1 \end{bmatrix}$ onto $L$ and decompose $\vec{x}$ into $\vec{x}^{\parallel}$ into $\vec{x}^{\parallel} + \vec{x}^{\bot}$. $\vec{x} \cdot \vec{w} = 2(1) + 0 + (-2)(-1) = 4$ $\vec{w} \cdot \vec{w} = 1(1) + 0(-2)(-2) = 5$ $\vec{x}^{\parallel} = \text{proj}_{L} \vec{x} = \left( \frac{\vec{x} \cdot \vec{w}}{\vec{w} \cdot \vec{w}} \right) \vec{w}$ $\vec{x}^{\parallel} = \frac{4}{5} \begin{bmatrix} 1 \\\ 0 \\\ 2 \end{bmatrix} = \begin{bmatrix} \frac{4}{5} \\\ 0 \\\ -\frac{8}{5} \end{bmatrix}$ $\vec{x}^{\bot} = \vec{x} - \vec{x}^{\parallel} = \begin{bmatrix} 2 \\\ 1 \\\ -1 \end{bmatrix} - \begin{bmatrix} \frac{4}{5} \\\ 0 \\\ -\frac{8}{5} \end{bmatrix} = \begin{bmatrix} \frac{6}{5} \\\ 1 \\\ \frac{3}{5} \end{bmatrix}$ Check: $\vec{x}^{\bot} \cdot \vec{w} = 0 = \begin{bmatrix} \frac{6}{5} \\\ 1 \\\ \frac{3}{5} \end{bmatrix} \cdot \begin{bmatrix} 1 \\\ 0 \\\ -2 \end{bmatrix} = \frac{6}{5} - \frac{6}{5} = 0$
Linear transformations $T : \mathbb{R}^{2} \to \mathbb{R}^{2}$ and geometry: Suppose $\vec{w} = \begin{bmatrix} w_1 \\\ w_2 \end{bmatrix}$ is a nonzero vector in $\mathbb{R}^{n}$ and $L = \text{span}\\{\vec{w}\\}$. For $\vec{x}$ in $\mathbb{R}^{2}$, the map $\vec{x} \to \text{proj}_{L}\left( \vec{x} \right)$ is a linear transformation! Let's find the $2 \times 2$ matrix of orthogonal projection. $\text{proj} _{L} \left( \vec{e} _{1} \right) = \left( \frac{\vec{e} _{1}\cdot \vec{w}}{\vec{w} \cdot \vec{w}} \right) \vec{w} = \frac{w _{1}}{w _{1}^{2} + w _{2}^{2}} \begin{bmatrix} w _1 \\\ w _2 \end{bmatrix}$ $\text{proj} _{L} \left( \vec{e} _{2} \right) = \left( \frac{\vec{e} _{2}\cdot \vec{w}}{\vec{w} \cdot \vec{w}} \right) \vec{w} = \frac{w _{2}}{w _{1}^{2} + w _{2}^{2}} \begin{bmatrix} w _1 \\\ w _2 \end{bmatrix}$ Matrix: $\frac{1}{w_1^{2} + w_2^{2}} \begin{bmatrix} w_1^{2} & w_1w_2 \\\ w_1w_2 & w_2 ^{2} \end{bmatrix}$ Comment: if $w=\text{span} \\{ \begin{bmatrix} u_1 \\\ u_2 \end{bmatrix} \\}$ where $\begin{bmatrix} u_{1} \\\ u_2 \end{bmatrix}$ is unit. i.e. $u_1^{2} + u_2^{2} = 1$ Let's verify $T$ is a linear transformation. Let $\begin{bmatrix} x_1 \\\ x_2 \end{bmatrix}$. Show $\text{proj}_{L} \vec{x} = A \vec{x}$ $\frac{1}{w_1^{2} + w_2^{2}} \begin{bmatrix} w_1^{2} & w_1w_2 \\\ w_1w_2 & w_2 ^{2} \end{bmatrix} \begin{bmatrix} x_1 \\\ x_2 \end{bmatrix} = \frac{1}{w_1 ^{2} + w_2 ^{2}} \begin{bmatrix} w_1^{2}x_1 + w_1w_2x_2 \\\ w_1w_2x_1 + w_2^{2}x_2 \end{bmatrix}$ $= \frac{1}{w_1^{2} + w_2^{2}} \begin{bmatrix} w_1 \left( w_1x_1 + w_2x_2 \right) \\\ w_2 \left( w_1x_1 + w_2x_2 \right) \end{bmatrix} = \frac{\vec{w} \cdot \vec{x}}{\vec{v} \cdot \vec{w}} \begin{bmatrix} w_1 \\\ w_2 \end{bmatrix}$
Example Find the matrix of orthogonal projection onto the line spanned by $\vec{w} = \begin{bmatrix} -1 \\\ 2 \end{bmatrix}$. $\frac{1}{\left( -1 \right) ^{2} + 2^{2}} \begin{bmatrix} \left( -1 \right) ^{2} & -2 \\\ -2 & 2^{2} \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 1 & -2 \\\ -2 & 4 \end{bmatrix} = \begin{bmatrix} \frac{1}{5} & -\frac{2}{5} \\\ -\frac{2}{5} & \frac{4}{5} \end{bmatrix}$
Example Find the matrix of orthogonal projection onto the line $y=x$. $\text{span}\\{ \begin{bmatrix} 1 \\\ 1 \end{bmatrix} \\}$ $\frac{1}{1^{2} + 1^{2}} \begin{bmatrix} 1^{1} & 1\cdot 1 \\\ 1\cdot 1 & 1^{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$
Reflection: Let $L = \text{span} \\{ \vec{w} \\}$ by a line in $\mathbb{R} ^2$. We use $\vec{x}^{\bot} = \vec{x} - \text{proj}_L (\vec{x})$ $\text{ref} _{L} = \text{proj} _{L}\left( \vec{x} \right) - \vec{x}^{\bot}$ $= \text{proj} _{L} \left( \vec{x} \right) - \left( \vec{x} - \text{proj} _{L}\left( x \right) \right) $ $= 2 \text{proj}_{L} \left( \vec{x} \right) - \vec{x}$ **The matrix of reflection about line $L$**: Two ways to compute: 1) Suppose $L = \text{span}\\{ \begin{bmatrix} u_1 \\\ u_2 \end{bmatrix} \\}$, where $u_1 ^{2} + u_2 ^{2} = 1$ $\text{ref} _{L}\left( \vec{x} \right) = 2 \text{proj} _{L} \left( \vec{x} \right) - \vec{x} \to 2 \begin{bmatrix} u _1^{2} & u _1u _2 \\\ u _1u _2 & u _2^{2} \end{bmatrix} - I _2 = \begin{bmatrix} 2u _1^{2}-I & 2u _1u _2 \\\ 2u _1u _2 & 2u _2^{2} - 1 \end{bmatrix}$ 2) The matrix has the form $\begin{bmatrix} a & b \\\ b & -a \end{bmatrix}$ where $a^{2} + b^{2} = 1$ and $\begin{bmatrix} a \\\ b \end{bmatrix} = \text{ref}_{L}\left( \vec{e}_1 \right) $
Example Calculate the matrix $\begin{bmatrix} 0 & 1 \\\ 1 & 0 \end{bmatrix}$ that yields reflection about the line $y=x$. $2 \text{proj}_{L}\left( \vec{x} \right) - \vec{x}$ $2 \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} - \begin{bmatrix} 1 & 0 \\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1-1 & 1 \\\ 1 & 1-1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\\ 1 & 0 \end{bmatrix}$
Example Let $L$ by the $y$-axis, i.e. $L = \text{span}\\{ \begin{bmatrix} 0 \\\ 1 \end{bmatrix} \\}$. Find $\text{ref}_{L}\left( \vec{e}_1 \right)$ and the matrix of reflection about the line $L$. $\text{ref}_{L} \left( \vec{e}_1 \right) = \begin{bmatrix} a \\\ b \end{bmatrix}$ Matrix: $\begin{bmatrix} a & b \\\ b & -a \end{bmatrix}$ $\text{ref} _{L}\left( \vec{e} _{1} \right) = 2 \text{proj} _{L} \left( \vec{e} _1 \right) - \vec{e} _1$ $= 2 \left( \frac{\vec{e}_1 \cdot \vec{e}_2}{\vec{e}_2 \cdot \vec{e}_2} \right) \vec{e}_2 - \vec{e}_1 = 2 \left( \frac{0}{1} \right) \vec{e}_2 - \vec{e}_1 = \begin{bmatrix} -1 \\\ 0 \end{bmatrix}$ $A = \begin{bmatrix} -1 & 0 \\\ 0 & 1 \end{bmatrix}$
### Scaling For $k > 0,\ T(\vec{x}) = k \vec{x}$. $$ \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix} $$ * $k > 1$ : Dilation * $0 < k < 1$ : Contraction Question: Can we interpret the transformation $T(\vec{x}) = \begin{bmatrix} 0 & -1 \\\ 1 & 0 \end{bmatrix} \vec{x}$ geometrically? Answer: Rotation counterclockwise by $\frac{\pi}{2}$ or 90 degrees. ### Rotation Counterclockwise by angle $\theta$. ![lec5-fig3](/notes/math2331/lec5-fig3.png) $T\left( \vec{e}_1 \right) = \begin{bmatrix} \cos \theta \\\ \sin \theta \end{bmatrix}$ $T\left( \vec{e}_2 \right) = \begin{bmatrix} \cos \left( \theta + \frac{\pi}{2} \right) \\\ \sin \left( \theta + \frac{\pi}{2} \right) \end{bmatrix} = \begin{bmatrix} -\sin \theta \\\ \cos \theta \end{bmatrix} $ $\therefore A = \begin{bmatrix} \cos \theta & - \sin \theta \\\ \sin \theta & \cos \theta \end{bmatrix}$ ## Transformation Recap: | Transformation | Matrix | |--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Scaling (by $k$) | $kI_2 = \begin{bmatrix} k & 0 \\\ 0 & k \end{bmatrix} $ | | Orthogonal projection onto line $L$ | $\begin{bmatrix} u_1^2 & u_1u_2 \\\ u_1u_2 & u_2^2 \end{bmatrix} $, where $\begin{bmatrix} u_1 \\\ u_2 \end{bmatrix}$ is a unit vector parallel to $L$ | | Reflection about a line | $\begin{bmatrix} a & b \\\ b & -a \end{bmatrix}$, where $a^2 + b^2 = 1$ | | Rotation through angle $\theta$ | $\begin{bmatrix} \cos \theta & - \sin \theta \\\ \sin \theta & \cos \theta \end{bmatrix}$ or $\begin{bmatrix} a & -b \\\ b & a \end{bmatrix} $, where $a^2 + b^2 = 1$ | | Rotation through angle $\theta$ combined with scaling by $r$ | $\begin{bmatrix} a & -b \\\ b & a \end{bmatrix} = r \begin{bmatrix} \cos \theta & - \sin \theta \\\ \sin \theta & \cos \theta \end{bmatrix}$ | | Horizontal shear | $\begin{bmatrix} 1 & k \\\ 0 & 1 \end{bmatrix} $ | | Vertical shear | $\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix} $ | # 2.3 Matrix Products **Rotation combined with scaling**. Suppose * $T_1 \mathbb{R}^2 \to \mathbb{R}^2$ gives rotation counter clockwise by angle $\theta$ * $T_2 \mathbb{R}^2 \to \mathbb{R}^2$ Scales by $k > 0$ This is in the form $T_2 (T_1(\vec{x}))$ $$ T_2 T_1 : \mathbb{R}^2 \to \mathbb{R}^2 \text{ function composition} $$ $$ (T_2 T_1)(\vec{x}) = k \begin{bmatrix} \cos \theta & - \sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \vec{x} $$ What is the matrix? $$ \begin{bmatrix} k\cos \theta & -k \sin \theta \\ k \sin \theta & k \cos \theta \end{bmatrix} = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} $$ $$ \text{Composition of Transformations} \leftrightarrow \text{Matrix Product} $$ **The matrix product BA**: Suppose $B$ is an $n\times p$ matrix and $A$ is a $p \times m$ matrix. Size of $BA$: $[n \times p] [p\times m] \to n\times m$ Columns of the product $BA$: Suppose $A = \begin{bmatrix} \| & \| & & \| \\\ \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_m \\\ \| & \| & & \| \end{bmatrix}$ $$ BA = \begin{bmatrix} | & | & & | \\ B\vec{v}_1 & B\vec{v}_2 & \cdots & B\vec{v}_m \\ | & | & & | \\ \end{bmatrix} $$ Entries of $BA$ are dot products. (i, j) - entry of BA = [row i of B] * [Column j of A]
Example $$ \begin{bmatrix} 1 & 3 & -1 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 7 & 4 \\ 2 & 5 \end{bmatrix} $$
**Rows of the product $BA$** [ith row of BA] = [ith row of B] A
Example $$ \begin{bmatrix} 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 5 \end{bmatrix} $$
Example Suppose $A = \begin{bmatrix} 5 & 3 & 2 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 \\\ -1 \\\ 2 \\\ -3 \end{bmatrix}$. Find $AB$ and $BA$. $$ AB = 5 - 3 + 4 + 0 = \begin{bmatrix} 6 \end{bmatrix} $$ $$ BA = \begin{bmatrix} 1 \\ -1 \\ 2 \\ -3 \end{bmatrix} \begin{bmatrix} 5 & 3 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 5 & 3 & 2 & 0 \\ -5 & -3 & -2 & 0 \\ 10 & 6 & 4 & 0 \\ -15 & -9 & -6 & 0 \end{bmatrix} $$
Notice by these examples that $AB \neq BA$ (they are not even the same size).
Example Let $A = \begin{bmatrix} 2 & 1 \\\ -3 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 \\\ 1 & 0 \end{bmatrix}$, and $C = \begin{bmatrix} 0 & 1 \\\ -1 & 0 \end{bmatrix}$. Show that $A(B+C) = AB + AC$ $$ \begin{bmatrix} 2 & 1 \\ -3 & 0 \end{bmatrix} \left( \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right) = \begin{bmatrix} 2 & 1 \\ -3 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ -3 & -3 \end{bmatrix} $$
Properties * $A(B+C) = AB + AC$ and $(C+D)A = CA + DA$ * $I_nA = AI_m = A$ * $K(AB) = (KA)B = A(KB)$ * $A(BC) = (AB)C$ Be Careful! * $AB \neq BA$ generally even if they are the same size * If $AB = AC$, it does not generally follow that $B=C$ * If $AB=0$, it does not generally follow that $A=0$ or $B=0$
Example $$ \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 4 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 1 \\ 4 & 1 \end{bmatrix} $$ and $$ \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 1 \\ 4 & 1 \end{bmatrix} $$
Example $$ \begin{bmatrix} 4 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 2 & 0 \end{bmatrix} $$
Example $$ \begin{bmatrix} 2 & 0 \\ 0 & 0 \\ -4 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 6 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} $$
Definition: For matrices $A$ and $B$, we say $A$ and $B$ *commute* provided $AB = BA$. Note that both $A$ and $B$ must be $n \times n$. * We see $\begin{bmatrix} 1 & 0 \\\ 1 & 0 \end{bmatrix}$ an $\begin{bmatrix} 4 & 1 \\\ 1 & 1 \end{bmatrix}$ do not commute. * $I_n$ commutes with any $n \times n$ matrix
Example $$ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} a + b & 0 \\ c+d & 0 \end{bmatrix} $$ $$ \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ a & b \end{bmatrix} $$ $a+b = a$ $c+d = a$ $b = 0$ $b=0$ $$ \begin{bmatrix} c+d & 0 \\ c & d \end{bmatrix} $$
Example Find all matrices that commute with $\begin{bmatrix} 2 & 0 & 0 \\\ 0 & 3 & 0 \\\ 0 & 0 & 4 \end{bmatrix} $ $$ \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} 2a & 2b & 2c \\ 3d & 3e & 3f \\ 4g & 4h & 4i \end{bmatrix} $$ $$ \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 2a & 3b & 4c \\ 2d & 3e & 4f \\ 2g & 3h & 4i \end{bmatrix} $$ $2b = 3b$ $2c = 4c$ $3d = 2d$ $3f = 4f$ $4g = 2g$ $4h = 3h$ $$ \begin{bmatrix} a & 0 & 0 \\ 0 & e & 0 \\ 0 & 0 & i \end{bmatrix} $$
### Power of a Matrix Suppose $A$ is $n \times n$. For $k \ge 1$ integer, define the $k$th power of $A$. $$ A^k = \underbrace{AAAA \cdots A}_{k \text{ times}} $$
Properties: * $A^pA^q = A^{p+q}$ * $\left( A^{p} \right)^{q} = A^{pq}$
Example $A = \begin{bmatrix} 0 & 1 & 2 \\\ 0 & 0 & -1 \\\ 0 & 0 & 0 \end{bmatrix}$. Find $A^{2}$, $A^{3}$. What is $A^{k}$ for $k > 3$? $$ A^2 = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} $$ $$ A^3 = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} $$ Note that $A^3 = 0$, but $A \neq 0$. $\text{rank}\left( A \right) = 2$ $\text{rank}\left( A^{2} \right) = 1$ $\text{rank}\left( A^{3} \right) = 0$
Example $$ \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} = \begin{bmatrix} a^2 & 0 & 0 \\ 0 & b^2 & 0 \\ 0 & 0 & c^2 \end{bmatrix} $$
$$ \begin{bmatrix} a & 0 & 0\\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}^k = \begin{bmatrix} a^k & 0 & 0\\ 0 & b^k & 0 \\ 0 & 0 & c^k \end{bmatrix} $$ --- Exam 1 Will most likely have a "find all matrices that commute with" question 100 minutes --- ## Practice Quiz 2 1) Compute the product $A \vec{x}$ using paper and pencil: $\begin{bmatrix} 1 & 3 \\\ 1 & 4 \\\ -1 & 0 \\\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\\ -2 \end{bmatrix}$. $$ 1 \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix} - 2 \begin{bmatrix} 3 \\ 4 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -5 \\ -7 \\ -1 \\ -2 \end{bmatrix} $$ 2) Let $A$ be a $6 \times 3$ matrix. We are told that $A \vec{x} = \vec{0}$ has a unique solution. a) What is the reduced row-echelon form of $A$? b) Can $A\vec{x} = \vec{b}$ be an inconsistent system for some $\vec{b} \in \mathbb{R}^6$? *Justify your answer*. c) Can $A\vec{x} = \vec{b}$ have infinitely many solutions for some $\vec{b} \in \mathbb{R}^6$? *Justify your answer*. *Solution* a) $$ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} $$ b) Yes; we can have $\begin{bmatrix} 0 & 0 & 0 & \big\| & c \end{bmatrix}$ where $c\neq 0$ in $\text{ref}\begin{bmatrix} a & \big\| & \vec{b} \end{bmatrix}$. c) No; there are no free variables 3) Let $\vec{w} = \begin{bmatrix} -2 \\\ 2 \\\ 0 \\\ 1 \end{bmatrix}$, $L = \text{span}\left( \vec{w} \right)$, and $\vec{x} = 3 \vec{e}_3 \in \mathbb{R}^4$. *Show your work* a) Find $\vec{x}^{\parallel} = \text{proj}_L \left( \vec{x} \right)$, the projection of $\vec{x}$ onto $L$. b) Find $\vec{x}^{\bot}$, the component of $\vec{x}$ orthogonal to $L$. *Solution* a) $\text{proj}_L \left( \vec{x} \right) = \left( \frac{\vec{x} \cdot \vec{w}}{\vec{w} \cdot \vec{w}} \right) \vec{w}$ $\vec{x} \cdot \vec{w} = 0 + 6 + 0 + 0 = 6$ $\vec{w} \cdot \vec{w} = 4 + 4 + 0 + 1 = 9$ $\text{proj}_{L} \left( \vec{x} \right) = \frac{2}{3} \begin{bmatrix} -2 \\\ 2 \\\ 0 \\\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{4}{3} \\\ \frac{4}{3} \\\ 0 \\\ \frac{2}{3} \end{bmatrix}$ b) $\vec{x}^{\bot} = \vec{x} - \text{proj}_L \left( \vec{x} \right)$ $= \begin{bmatrix} 0 \\\ 3 \\\ 0 \\\ 0 \end{bmatrix} - \begin{bmatrix} -\frac{4}{3} \\\ \frac{4}{3} \\\ 0 \\\ \frac{2}{3} \end{bmatrix} = \begin{bmatrix} \frac{4}{3} \\\ \frac{5}{3} \\\ 0 \\\ -\frac{2}{3} \end{bmatrix}$ 4) Suppose $T_1 : \mathbb{R}^{2} \to \mathbb{R}^{3}$ is given by $T_1 \left( \begin{bmatrix} x \\\ y \end{bmatrix} \right) = \begin{bmatrix} 0 \\\ x - y \\\ 3y \end{bmatrix}$ and $T_2 : \mathbb{R}^{2} \to \mathbb{R}^{2}$ is a scaling transformation with $T_2 \left( \begin{bmatrix} 1 \\\ 7 \end{bmatrix} \right) = \begin{bmatrix} 3 \\\ 21 \end{bmatrix}$. *Show your work* a) Find the matrix of the transformation $T_1$. b) Find the matrix of the transformation $T_2$. *Solution* a) $\begin{bmatrix} \| & \| \\\ T\left( \vec{e}_1 \right) & T\left( \vec{e}_2 \right) \\\ \| & \| \end{bmatrix}$ $T \begin{bmatrix} 1 \\\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\\ 1 \\\ 0 \end{bmatrix}$, $T \begin{bmatrix} 0 \\\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\\ -1 \\\ 3 \end{bmatrix}$ $A = \begin{bmatrix} 0 & 0 \\\ 1 & -1 \\\ 0 & 3 \end{bmatrix}$ b) Scaling by $k=3$ $\begin{bmatrix} 3 & 0 \\\ 0 & 3 \end{bmatrix}$ 5) Let $T : \mathbb{R}^{2} \to \mathbb{R}^{3}$ be a linear transformation such that $T \left( 2 \vec{e}_1 \right) = \begin{bmatrix} 2 \\\ 2 \\\ 2 \end{bmatrix}$ and $T \left( \vec{e}_1 + \vec{e}_2 \right) = \begin{bmatrix} 2 \\\ 3 \\\ 4 \end{bmatrix}$. Find $T \left( \vec{e}_1 \right)$ and $T \left( \vec{e}_2 \right)$. *Show your work*. $T \left( 2 \vec{e}_1 \right) = 2 T \left( \vec{e}_1 \right) = \begin{bmatrix} 2 \\\ 2 \\\ 2 \end{bmatrix}$ $T \left( \vec{e}_1 \right) = \begin{bmatrix} 1 \\\ 1 \\\ 1 \end{bmatrix}$ $T \left( \vec{e}_1 + \vec{e}_2 \right) = T \left( \vec{e}_1 \right) + T \left( \vec{e}_2 \right) = \begin{bmatrix} 2 \\\ 3 \\\ 4 \end{bmatrix}$ $T \left( \vec{e}_2 \right) = \begin{bmatrix} 2 \\\ 3 \\\ 4 \end{bmatrix} - T \left( \vec{e}_1 \right) = \begin{bmatrix} 1 \\\ 2 \\\3 \end{bmatrix}$ # 2.4 Inverse of a Linear Transformation In Math1365 (or other courses), you see diagrams for $f : X \to Y$ function. ![lec7-fig1](/notes/math2331/lec7-fig1.png)
Definition: We say the function $f : X \to Y$ is *invertible* provided for each $y$ in $Y$, there is a unique $x$ in $X$ with $f(x) = y$ if any only if $f^{-1} : Y \to X$ is a function $f^{-1}(y) = x$ provided $f(x) = y$. *Same notation* for linear transformation $T : \mathbb{R}^{n} \to \mathbb{R}^{n}$
A square $n \times n$ matrix $A$ is *invertible* provided the map $T \left( \vec{x} \right) = A \vec{x}$ is invertible. The matrix for $T^{-1}$ is denoted $A^{-1}$. Note: * $T T^{-1} (\vec{y}) = \vec{y}$ for any $\vec{y}$ in $\mathbb{R}^{n}$ * $T^{-1}T(\vec{x}) = \vec{x}$ for any $\vec{x}$ in $\mathbb{R}^{n}$ * $AA^{-1} = I_{n}$ and $A^{-1}A = I_{n}$ $A$ invertible means $A\vec{x} = \vec{b}$ has a unique solution for every $\vec{b}$ in $\mathbb{R}^{n}$. * The unique solution is $\vec{x} = A^{-1}\vec{b}$ For our discussion of rank: $A$ is invertible is equivalent to... * $\text{rank}(A) = n$ * $\text{rref}(A) = I_n$ * The only solution to $A\vec{x} = \vec{0}$ is $\vec{x} = \vec{0}$ **How to find $A^{-1}$** if $A$ is $n \times n$, 1. Form the $n \times \left( 2n \right)$ matrix $\begin{bmatrix} A & \big\| & I \end{bmatrix}$ 2. Perform elementary row operations to find $\text{rref} \begin{bmatrix} A & \big\| & I \end{bmatrix}$ Then, * If $\text{rref} \begin{bmatrix} A & \big\| & I \end{bmatrix} = \begin{bmatrix} I & \big\| & B\end{bmatrix}$ then $B = A^{-1}$. * If $\text{rref} \begin{bmatrix} A & \big\| & I \end{bmatrix}$ is not of this form then $A$ is not invertible.
Example $A = \begin{bmatrix} 2 & 3 \\\ 1 & 1 \end{bmatrix}$. Find $A^{-1}$. $$ \begin{bmatrix} 2 & 3 & \big| & 1 & 0 \\ 1 & 1 & \big| & 0 & 1 \end{bmatrix} \to \begin{bmatrix} 1 & 1 & \big| & 0 & 1 \\ 2 & 3 & \big| & 1 & 0 \end{bmatrix} \to $$ $$ \begin{bmatrix} 1 & 1 & \big| & 0 & 1 \\ 0 & 1 \big| & 1 & -2 \end{bmatrix} \to \begin{bmatrix} 1 & 0 & \big| & -1 & 3 \\ 0 & 1 & \big| & 1 & -2 \end{bmatrix} $$ $$ A^{-1} = \begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix} $$
Example $A = \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}$. Find $A^{-1}$. $$ \begin{bmatrix} 2 & 2 & \big| & 1 & 0 \end{bmatrix} \to \begin{bmatrix} 1 & 1 & \big| & 0 & 1 \end{bmatrix} \to \begin{bmatrix} 1 & 1 & \big| & 0 & 1 \\ 0 & 0 & \big| & 1 & -2 \end{bmatrix} $$ $A$ is not invertible
Example $A = \begin{bmatrix} 1 & 3 & 1 \\\ 1 & 4 & 1 \\\ 2 & 0 & 1 \end{bmatrix}$. Find $A^{-1}$. $$ \begin{bmatrix} 2 & 2 & \big| & 1 & 0 \\ 1 & 1 & \big| & 0 & 1 \\ \end{bmatrix} \to \begin{bmatrix} 1 & 3 & 1 & \big| & 1 & 0 & 0 \\ 0 & 1 & 0 & \big| & -1 & 1 & 0 \\ 0 & -6 & -1 & \big| & -2 & 0 & 1 \end{bmatrix} $$ $$ \to \begin{bmatrix} 1 & 3 & 1 & \big| & 1 & 0 & 0 \\ 0 & 1 & 0 & \big| & -1 & 1 & 0 \\ 0 & 0 & -1 & \big| & -8 & 6 & 1 \end{bmatrix} $$ $$ \to \begin{bmatrix} 1 & 3 & 1 & \big| & 1 & 0 & 0 \\ 0 & 1 & 0 & \big| & -1 & 1 & 0 \\ 0 & 0 & 1 & \big| & 8 & -6 & -1 \end{bmatrix} \to \begin{bmatrix} 1 & 3 & 0 & \big| & -7 & 6 & 1\\ 0 & 1 & 0 & \big| & -1 & 1 & 0 \\ 0 & 0 & 1 & \big| & 8 & -6 & -1 \end{bmatrix} $$ $$ \to \begin{bmatrix} 1 & 0 & 0 & \big| & -4 & 3 & 1 \\ 0 & 1 & 0 & \big| & -1 & 1 & 0 \\ 0 & 0 & 1 & \big| & 8 & -6 & -1 \end{bmatrix} $$ $$ A^{-1} = \begin{bmatrix} -4 & 3 & 1 \\ -1 & 1 & 0 \\ 8 & -6 & -1 \end{bmatrix} $$
Example Find all solutions to the system $A\vec{x} = \vec{b}$ where $A = \begin{bmatrix} 1 & 3 & 1 \\\ 1 & 4 & 1 \\\ 2 & 0 & 1 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 1 \\\ -1 \\\ 0 \end{bmatrix}$ $$ A^{-1} = \begin{bmatrix} -4 & 3 & 1 \\ -1 & 1 & 0 \\ 8 & -6 & -1 \end{bmatrix} $$ $$ \vec{x} = A^{-1}\vec{b} = \begin{bmatrix} -4 & 3 & 1 \\ -1 & 1 & 0 \\ 8 & -6 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} -7 \\ -2 \\ 14 \end{bmatrix} $$
Theorem: Let $A$, $B$ be $n \times n$ matrices with $BA = I_n$ then, 1. $A$, $B$ are both invertible 2. $A^{-1} = B$ and $B^{-1} = A$ 3. $AB = I_n$
Proof of 1) Assume $A$, $B$ are $n\times n$ matrices with $BA = I_n$. Suppose $A\vec{x} = \vec{0}$. Show $\vec{x}=0$. Multiply by $B$: $BA\vec{x} = B\vec{0}$ rewriting $I\vec{x} = \vec{0}$ meaning $\vec{x} = \vec{0}$. Thus, $A$ is invertible. Then, $BA A^{-1} = IA^{-1}$ and $B = A^{-1}$. $B$ is invertible. Using the theorem: If $A$, $B$ are $n\times n$ invertible matrices then so is $BA$ and $\left( BA \right) ^{-1} = A^{-1}B^{-1}$. Proof: $\left( BA \right) \left( A^{-1}B^{-1} \right) = B\left( A A^{-1} \right) B^{-1} = BIB^{-1} = B B^{-1} = I$. **Exercise**: Suppose $A$ is an $n\times n$ invertible matrix. Is $A^{2}$ invertible? If so, what is $\left( A^{-2} \right) ^{-1}$? Yes; $A^{-1}A^{-1} = \left( A^{-1} \right) ^{2}$ Is $A^{3}$ invertible? If so, what is $\left( A^{3} \right)^{-1}$? Yes; $\left( A^{-1} \right) ^{3}$ $\left( A AA \right) \left( A^{-1}A^{-1}A^{-1} \right) = A A A^{-1}A^{-1} = A A^{-1} = I$ Back to $2\times 2$ matrices: We saw * For $A = \begin{bmatrix} 2 & 3 \\\ 1 & 1 \end{bmatrix}$, $A^{-1} = \begin{bmatrix} -1 & 3 \\\ 1 & -2 \end{bmatrix}$. * The matrix $\begin{bmatrix} 2 & 2 \\\ 1 & 1 \end{bmatrix}$ is not invertible **Theorem**: Consider a $2\times 2$ matrix $A = \begin{bmatrix} a & b \\\ c & d \end{bmatrix}$. $A$ is invertible if and only if $ad - bc \neq 0$ If $A$ is invertible, then $A^{-1}$ = $\frac{1}{ad-bc} \begin{bmatrix} d & -b \\\ -c & a \end{bmatrix}$ The number $ad - bc$ is a *determinant* of $A = \begin{bmatrix} a & b \\\ c& d \end{bmatrix}$.
Example $A = \begin{bmatrix} 4 & 7 \\\ 0 & 1 \end{bmatrix}$. Find $\text{det}(A)$ and $A^{-1}$. $\text{det}(A) = 4 - 0 = 4$ $A^{-1} = \frac{1}{4} \begin{bmatrix} 1 & -7 \\\ 0 & 4 \end{bmatrix}$
# 3.1 Image and Kernel of a Linear Transformation
Definition: Let $T : \mathbb{R}^{m} \to \mathbb{R}^{n}$ be a linear transformation. The *Image of $T$*, denoted $\text{im}\left( T \right)$ : $\text{im}\left( T \right) = \\{T \left( \vec{x} \right) : x \in \mathbb{R}^{m} \\} \subseteq \mathbb{R}^{n}$ The *kernel of $T$* $\text{ker}\left( T \right)$ : $\text{ker}\left( T \right) = \\{ \vec{x} \in \mathbb{R}^{m} : T \left( \vec{x} \right) = \vec{0} \\} \subseteq \mathbb{R}^{m}$
Example What is $\text{ker} \left( T \right)$ and $\text{im}\left( T \right)$ when $T : \mathbb{R}^{2} \to \mathbb{R}^{2}$ is 1) Projection onto the line $y = -x$. 2) Reflection about the line $y = -x$. *Solution* 1) $\vec{w} = \begin{bmatrix} -1 \\\ 1 \end{bmatrix}$ $L = \text{span}\left( \begin{bmatrix} -1 \\\ 1 \end{bmatrix} \right) $ $\text{proj}_{L} \left( \vec{x} \right) = \left( \frac{\vec{w} \cdot \vec{w}}{\vec{w} \cdot \vec{w}} \right) \vec{w}$ $\vec{x}$ is in $\text{ker}\left( T \right)$ provided $\vec{x} \cdot \begin{bmatrix} -1 \\\ 1 \end{bmatrix} = \vec{0}$ $\text{ker}\left( T \right) = \\{ \begin{bmatrix} x_1 \\\ x_2 \end{bmatrix} : -x_1 + x_2 = 0 \\}$ $\text{im}\left( T \right) = L$ 2) $\text{ker}\left( T \right) = \\{ \vec{0} \\}$ $\text{im}\left( T \right) = \mathbb{R}^{2}$
Suppose $T : \mathbb{R}^{m} \to \mathbb{R}^{n}$ is a linear transformation. There is an $n \times m$ matrix $A = \begin{bmatrix} \| & \| & & \| \\\ \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_m \\\ \| & \| & & \| \end{bmatrix}$ such that $T \left( \vec{x} \right) = A \vec{x}$ for all $\vec{x}$ in $\mathbb{R}^{m}$. *Image of $T$* (Also written $\text{im}\left( A \right)$): $\text{im}\left( T \right) = \\{ A\vec{x} : \vec{x} \in \mathbb{R}^{m} = \\{ x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_m\vec{a}_m : x_i \in \mathbb{R} = \\{ \text{all linear combinations of } \vec{a}_1,\ \vec{a}_2,\ \cdots ,\ \vec{a}_m \\} = \text{span}\left( \vec{a}_1,\ \vec{a}_2,\ \cdots, \vec{a}_m \right)$ *Kernel of $T$* (Also written $\text{ker}\left( A \right)$: $\text{ker}\left( T \right) = \\{ x \in \mathbb{R}^{m} : A\vec{x} = \vec{0} \\} = \\{ \text{all solutions to } A\vec{x} = \vec{0} \\}$
Example Find vectors that span the kernel of $\begin{bmatrix} 1 & -3 \\\ -3 & 9 \end{bmatrix}$. $$ \begin{bmatrix} 1 & -3 & \big| & 0 \\ -3 & 9 & \big| & 0 \end{bmatrix} \to \begin{bmatrix} 1 & -3 & \big| & 0 \\ 0 & 0 & \big| & 0 \end{bmatrix} $$ $x_2 = t$ $x_1 - 3t = 0$ $x_1 = 3t$ $\begin{bmatrix} 3t \\\ t \end{bmatrix} = t \begin{bmatrix} 3 \\\ 1 \end{bmatrix}$ $\text{ker}\left( A \right) = \text{span} \\{ \begin{bmatrix} 3 \\\ 1 \end{bmatrix} \\}$
Example Find vectors that span the kernel of $\begin{bmatrix} 1 & 3 & 0 & 5 \\\ 2 & 6 & 1 & 16 \\\ 5 & 15 & 0 & 25 \end{bmatrix}$. $$ \begin{bmatrix} 1 & 3 & 0 & 5 \\ 2 & 6 & 1 & 16 \\ 5 & 15 & 0 & 25 \end{bmatrix} \to \begin{bmatrix} 1 & 3 & 0 & 5 \\ 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 0 \end{bmatrix} $$ $x_2 = t$ $x_4 = r$ $x_1 = -3t - 5r$ $x_3 = -6r$ $$ \begin{bmatrix} -3t - 5t \\ t \\ -6r \\ r \end{bmatrix} = t \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + r \begin{bmatrix} -5 \\ 0 \\ -6 \\ 1 \end{bmatrix} = \text{span} \{ \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -5 \\ 0 \\ -6\\ 1 \end{bmatrix} \} $$
Example Find vectors that span the kernel of $\begin{bmatrix} 1 & 1 & -2 \\\ -1 & -1 & 2 \end{bmatrix}$ $$ \begin{bmatrix} 1 & 1 & -2 \\ -1 & -1 & 2 \end{bmatrix} \to \begin{bmatrix} 1 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix} $$ $x_1 = -r + 2s$ $x_2 = r$ $x_3 = s$ $$ \begin{bmatrix} -r + 2s \\ r \\ s \end{bmatrix} = r \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} $$ $$ \text{ker}(A) = \text{span} \{ \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\1 \end{bmatrix} \} $$
Properties of the kernel: * $\vec{0} \in \text{ker}\left( A \right)$ * If $\vec{v}_1$, $\vec{v}_2 \in \text{ker}\left( A \right)$, then $\vec{v}_1 + \vec{v}_2 \in \text{ker}\left( A \right)$. Closed under addition. * If $\vec{v} \in \text{ker}\left( A \right)$ then $k\vec{v} \in \text{ker}\left( A \right)$. Closed under scaler multiplication Proof: * $A\vec{0} = \vec{0}$ * If $A\vec{v}_1 = \vec{0}$ and $A\vec{v}_2 = \vec{0}$, then $A \left( \vec{v}_1 + \vec{v}_2\right) = A\vec{v}_1 + A \vec{v}_2 = \vec{0} + \vec{0} = \vec{0}$ * If $A\vec{v}$, then $A\left( k\vec{v} \right) = kA\vec{v} = k\vec{0} = \vec{0}$.
Give as few vectors as possible!!
Example $A = \begin{bmatrix} 1 & -3 \\\ -3 & 9 \end{bmatrix}$ $\text{rref}(A) = \begin{bmatrix} 1 & -3 \\\ 0 & 0 \end{bmatrix}$ $x \begin{bmatrix} 1 \\\ -3 \end{bmatrix} + y \begin{bmatrix} -3 \\\ 9 \end{bmatrix} = \left( x - 3y \right) \begin{bmatrix} 1 \\\ -3 \end{bmatrix}$ $\text{im}(A) = \text{span}\left( \begin{bmatrix} 1 \\\ -3 \end{bmatrix} \right)$
Example $A = \begin{bmatrix} 1 & -1 & 1 & 2 \\\ -2 & 2 & 0 & 0 \\\ -1 & 1 & 3 & 1 \end{bmatrix}$ $\text{rref}\left( A \right) = \begin{bmatrix} 1 & -1 & 0 & 0 \\\ 0 & 0 & 1 & 0 \\\ 0 & 0 & 0 & 1 \end{bmatrix}$ $\text{lm}\left( A \right) = \text{span} \\{ \begin{bmatrix} 1 \\\ -2 \\\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\\ 2 \\\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\\ 0 \\\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\\ 0 \\\ 1 \end{bmatrix} \\}$ $\text{im}\left( A \right) = \text{span} \\{ \begin{bmatrix} 1 \\\ -2 \\\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\\ 0 \\\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\\ 0 \\\ 1 \end{bmatrix} \\}$
**Careful**: Make sure you use columns in $A$ corresponding to leading 1's in $\text{rref}$.
Example $A = \begin{bmatrix} 1 & 2 & 3 \\\ 1 & 2 & 3 \\\ 1 & 2 & 3 \\\ 1 & 2 & 3 \end{bmatrix}$ $\text{rref}\left( A \right) = \begin{bmatrix} 1 & 2 & 3 \\\ 0 & 0 & 0 \\\ 0 & 0 & 0 \\\ 0 & 0 & 0 \end{bmatrix}$ $\text{im}\left( A \right) = \text{span}\\{ \begin{bmatrix} 1 \\\ 1 \\\ 1\\\ 1 \end{bmatrix} \\} \neq \text{span} \\{ \begin{bmatrix} 1 \\\ 0 \\\ 0 \\\ 0 \end{bmatrix} \\} = \text{im} \left( \text{rref} \left( A \right) \right)$
**Note**: $\text{im}\left( T \right)$ or $\text{im}\left( A \right)$ is a *subspace* of $\mathbb{R}^{n}$. * $\vec{0} \in \text{im}\left( A \right)$ to * Closed under addition and scaler multiplication
Exercise $I_3 = \begin{bmatrix} 1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 0 & 1 \end{bmatrix}$. What is $\text{ker}\left( I_3 \right)$ and $\text{im}\left( I_3 \right)$? $\text{ker}\left( I_3 \right) = \\{ \vec{0} \\}$ $\text{im}\left( I_3 \right) = \mathbb{R}^{3}$
Generally, if $A$ is $n\times n$ matrix, $\text{im}\left( A \right) = \mathbb{R}^{n}$ if and only if $\text{ker}\left( A \right) = \\{ \vec{0} \\}$ if and only if $A$ is invertible. A linear transformation $T : \mathbb{R}^{n} \to \mathbb{R}^{n}$ is invertible if and only if: 1. The equation $T \left( \vec{x} \right) = \vec{b}$ has a unique solution for any $\vec{b} \in \mathbb{R}^{n}$. 2. The corresponding matrix $A$ is invertible and $\left( T_A \right) ^{-1} = T_{A^{-1}}$ 3. There is a matrix $B$ such that $AB = I_n$. Here $B = A^{-1}$ 4. There is a matrix $C$ such that $CA = I_n$. Here $C = A^{-1}$. 5. The equation $A\vec{x} = \vec{b}$ has a unique solution for any $\vec{b}\in \mathbb{R}^{n}$. The unique solution is given by $\vec{x} = A^{-1} \vec{b}$. 6. The equation $A\vec{x} = \vec{0}$ only has zero solution. 7. $\text{rref}\left( A \right) = I_n$ 8. $\text{rank}\left( A \right) = n$ 9. The image of the transformation $T$ is $\mathbb{R}^{n}$. 10. The transformation $T$ is one-to-one **Basis**: Spanning set with as few vectors as possible
Example For $A = \begin{bmatrix} 1 & 2 & 0 & 1 & 2 \\\ 2 & 4 & 3 & 5 & 1 \\\ 1 & 2 & 2 & 3 & 0 \end{bmatrix}$, we are given $\text{rref}\left( A \right) = \begin{bmatrix} 1 & 2 & 0 & 1 & 2\\\ 0 & x & y & 1 & -1 \\\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$. 1. Find $x$ and $y$. 2. Find a basis for $\text{im}\left( A \right)$. 3. Find a basis for $\text{ker}\left( A \right)$. *Solution* 1. $x=0$, $y=1$ 2. $\text{im}\left( A \right) = \text{span} \\{ \begin{bmatrix} 1 \\\ 2 \\\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\\ 3 \\\ 2 \end{bmatrix} \\}$ 3. See below $x_2 = t$ $x_4 = r$ $x_5 = s$ $x_1 = -2t - r - 2s$ $x_3 = -r + s$ $$ \begin{bmatrix} -2t - r -2s \\ t \\ -r+s \\ r \\ s \end{bmatrix} = t\begin{bmatrix}-2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + r \begin{bmatrix} -1 \\ 0 \\ -1 \\ 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} $$ $\text{ker}\left( A \right) = \text{span}\\{ \begin{bmatrix} -2 \\\ 1 \\\ 0 \\\ 0 \\\ 0 \end{bmatrix} , \begin{bmatrix} -1 \\\ 0 \\\ -1 \\\ 1 \\\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\\ 0 \\\ 1 \\\ 0 \\\ 1 \end{bmatrix} \\}$
# 3.2 Subspaces of $\mathbb{R}^2$: Bases and Linear Independence
Definition: For $W \subseteq \mathbb{R}^{n}$, $W$ is a *subspace* of $\mathbb{R}^{n}$ provided 1. $\vec{0} \in W$ 2. If $\vec{v}_1,\ \vec{v}_2 \in W$ then $\vec{v}_1 + \vec{v}_2 \in W$ 3. If $\vec{v} \in W$, then $k\vec{v} \in W$ for all scalars $k$.
Which are subspaces of $\mathbb{R}^{3}$? 1) Vectors $\begin{bmatrix} x \\\ y \\\ z \end{bmatrix}$ with $x=y$. * $\vec{0}$ is in set * $\begin{bmatrix} t \\\ t \\\ a \end{bmatrix} + \begin{bmatrix} s \\\ s \\\ b \end{bmatrix} = \begin{bmatrix} t + s \\\ t + s \\\ a+b \end{bmatrix}$ * $k \begin{bmatrix} t \\\ t \\\ a \end{bmatrix} = \begin{bmatrix} kt \\\ kt \\\ ka \end{bmatrix}$ Yes! 2) Vectors $\begin{bmatrix} x \\\ y \\\ z \end{bmatrix}$ with $x=1$. * $\begin{bmatrix} 0 \\\ 0 \\\ 0 \end{bmatrix}$ not in set No! 3) Vectors $\begin{bmatrix} x \\\ y \\\ z \end{bmatrix}$ with $xyz = 0$. * $\begin{bmatrix} 1 \\\ 0 \\\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\\ 1 \\\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\\ 1 \\\ 1 \end{bmatrix}$ (not in set) No; fails property 2. Subspaces of $\mathbb{R}^{n}$ is equivalent to $\text{span}\left( \vec{v}_1,\ \vec{v}_2,\ \cdots ,\ \vec{v}_m \right)$
Example $A = \begin{bmatrix} 1 & 3 & 0 & 5 \\\ 2 & 6 & 1 & 16 \\\ 5 & 15 & 0 & 25 \end{bmatrix}$ $\text{rref}\left( A \right) = \begin{bmatrix} 1 & 3 & 0 & 5 \\\ 0 & 0 & 1 & 6 \\\ 0 & 0 & 0 & 0 \end{bmatrix}$ $\text{im}\left( A \right) = \text{span}\\{ \begin{bmatrix} 1 \\\ 2 \\\ 5 \end{bmatrix}, \begin{bmatrix} 3 \\\ 6 \\\ 15 \end{bmatrix}, \begin{bmatrix} 0 \\\ 1 \\\ 0 \end{bmatrix}, \begin{bmatrix} 5 \\\ 16 \\\ 25 \end{bmatrix} \\} $ Few vectors as possible: $\text{im}\left( A \right) = \\{\begin{bmatrix}1 \\\ 2 \\\ 5 \end{bmatrix}, \begin{bmatrix} 0 \\\ 1 \\\ 0 \end{bmatrix} \\}$
Definition: Consider vectors $\vec{v}_1$, $\vec{v}_2$, $\cdots$, $\vec{v}_m$ in $\mathbb{R}^{n}$. * Vector $\vec{v} _{i}$ is *redundant* provided it is a linear combination of $\vec{v} _1$, $\vec{v} _2$, ..., $\vec{v} _{i-1}$. ($\vec{0}$ is always redundant) * Vectors $\vec{v}_{1}$, $\vec{v}_2$, ..., $\vec{v}_m$ are linearly independent provided non of them are redundant. * Vectors $\vec{v}_1$, $\vec{v}_2$, ..., $\vec{v}_m$ are *linearly dependent* provided at least one vector $\vec{v}_c$ is redundant.
Example $\\{ \begin{bmatrix} 1 \\\ 2 \\\ 5 \end{bmatrix}, \begin{bmatrix} 0 \\\ 1 \\\ 0 \end{bmatrix} , \begin{bmatrix} 3 \\\ 6 \\\ 15 \end{bmatrix} , \begin{bmatrix} 5 \\\ 16 \\\ 25 \end{bmatrix} \\}$ is a linearly dependent collection because $\vec{v}_3 = 3 \vec{v}_1$ and $\vec{v}_4 = 5\vec{v}_1 + 6 \vec{v}_2$. Linear relations: $-3 \vec{v}_1 + \vec{v}_3 = \vec{0}$ $-5 \vec{v}_1 - 6 \vec{v}_2 + \vec{v}_4 = \vec{0}$
Generally, we consider linear relation $c_1\vec{v}_1 + c_2\vec{v}_2 + \cdots + c_m\vec{v}_m = \vec{0}$. * We always have a *trivial relation*: $c_1 = c_2 = c_3 = \cdots = c_m = 0$ * *nontrivial relation*: When at least one $c_i$ is non-zero. **Note**: $\vec{v}_1$, $\vec{v}_2$, ..., $\vec{v}_m$ are linearly dependent if and only if there exists a nontrivial relation among $\vec{v}_1$, $\vec{v}_2$, ..., $\vec{v}_m$. This is a trivial relation: $$ 0 \begin{bmatrix} 5 \\ 16 \\ 25 \end{bmatrix} + 0 \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix} + 0 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} $$ This is a nontrivial relation: $$ 1 \begin{bmatrix} 5 \\ 16 \\ 25 \end{bmatrix} - 5 \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix} - 6 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} $$
Example The vectors $\\{ \begin{bmatrix} 1 \\\ 6 \end{bmatrix} , \begin{bmatrix} 0 \\\ 0 \end{bmatrix} \\}$ are linearly dependent. ($\vec{0}$ is never part of a linearly independent set) $\vec{0}$ is redundant: $$ 0 \begin{bmatrix} 1 \\ 6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} $$ Nontrivial relation: $$ 0 \begin{bmatrix} 1 \\ 6 \end{bmatrix} + 10 \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \vec{0} $$
Example The vectors $\\{\begin{bmatrix} 1 \\\ 6 \end{bmatrix} , \begin{bmatrix} 1 \\\ 0 \end{bmatrix} \\}$ are linearly independent. There are no redundant vectors. Because if $c_1 \begin{bmatrix} 1 \\\ 6 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\\ 0 \end{bmatrix}$ then $6c_1 + 0 = 0 \implies c_1 = 0$ and $0 + c_2 = 0 \implies c_2 =0$
Recall from 3.1: We found a basis for $\text{im}\left( A \right)$ by listing all columns of $A$ and omitting redundant vectors. Let's interpret a linear relation $v_1 \vec{v}_1 + v_2 \vec{v}_2 + \cdots + c_m \vec{v}_m = \vec{0}$ as a matrix equation. Let $A = \begin{bmatrix} \| & \| & & \| \\\ \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_m \\\ \| & \| & & \| \end{bmatrix}$ Linear relation: $A = \begin{bmatrix} c_1 \\\ c_2 \\\ \vdots \\\ c_m \end{bmatrix} = \vec{0}$ Question: What does it mean to be linearly independent? For $\vec{v}_1$, ... $\vec{v}_m$ and $\begin{bmatrix} c_1 \\\ c_2 \\\ \vdots \\\ c_m \end{bmatrix} = \vec{0}$? Answer: * Only solution to $A\vec{x}= \vec{0}$ is $\vec{x}= \vec{0}$ * $\text{ker}\left( A \right) = \\{ \vec{0} \\}$ (no free variables) * $\text{rank}\left( A \right) = m$ ### Linearly Dependent Collections of Vectors $\\{ \begin{bmatrix} 7 \\\ 1 \end{bmatrix}, \begin{bmatrix} 14 \\\ 22 \end{bmatrix} \\}$ (2nd one is redundant) $\\{ \begin{bmatrix} 1 \\\ 2 \\\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\\ 0 \\\ 0 \end{bmatrix} , \begin{bmatrix} 3 \\\ 3 \\\ 3 \end{bmatrix} , \begin{bmatrix} -1 \\\ 11 \\\ 7 \end{bmatrix} \\}$ (4 vectors in $\mathbb{R}^{3}$ are dependent) $\\{ \begin{bmatrix} 0 \\\ 0 \\\ 0 \\\ 0 \end{bmatrix} \\}$ ($\vec{0}$ is in set) $\\{ \begin{bmatrix} 3 \\\ 2 \\\ 1 \\\ 0 \end{bmatrix} , \begin{bmatrix} -3 \\\ -2 \\\ -1 \\\ 0 \end{bmatrix} , \begin{bmatrix} 1 \\\ 0 \\\ 0 \\\ 10 \end{bmatrix} \\}$ (2nd vector is redundant) ### Linearly Independent Collections of Vectors $\\{ \begin{bmatrix} 1 \\\ 0 \\\ 0 \end{bmatrix} , \begin{bmatrix} 1 \\\ 2 \\\ 0 \end{bmatrix} , \begin{bmatrix} 1 \\\ 2 \\\ 3 \end{bmatrix} \\}$ (Because $\text{rank} \begin{bmatrix} 1 & 1 & 1 \\\ 0 & 2 & 2 \\\ 0 & 0 & 3 \end{bmatrix} = 3$, it is independent) $\\{ \begin{bmatrix} -4 \\\ 1 \\\ 0 \\\3 \end{bmatrix} \\}$ (No redundant vectors) $\\{ \begin{bmatrix} 0 \\\ 2 \\\ 1 \\\ 0 \\\ 3 \end{bmatrix} , \begin{bmatrix} 0 \\\ 8 \\\ -7 \\\ -1 \\\ -3 \end{bmatrix} , \begin{bmatrix} 1 \\\ 0 \\\ 2 \\\ 10 \\\ 6 \end{bmatrix} \\}$ * If $c_1 \vec{v}_1 + c_2 \vec{v}_2 + c_3 \vec{v}_3 = \vec{0}$, we have $0+0+c_3 = 0 \implies c_3 =0$, $0-c_2+0=0 \implies c_2=0$, $2c_1+0+0=0 \implies c_1=0$
Example Determine whether the vectors $\\{ \begin{bmatrix} 1 \\\ 1 \\\ 1 \end{bmatrix} , \begin{bmatrix} 1 \\\ 2 \\\ 3 \end{bmatrix} , \begin{bmatrix} 1 \\\ 4 \\\ 7 \end{bmatrix} \\}$ are linearly independent. $$ \begin{bmatrix} 1 & 1 & 1 \\ 1 & 3 & 4 \\ 1 & 3 & 7 \end{bmatrix} \to \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 2 & 6 \end{bmatrix} $$ $$ \to \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \to \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix} $$ Therefore the rank is 2 (and therefore is dependent) $$ \begin{bmatrix} 1 \\ 4 \\ 7 \end{bmatrix} = -2 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + 3 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} $$
**Remark**: $\begin{bmatrix} 5 \\\ 2 \\\ 1 \end{bmatrix} = 5\vec{e}_1 + 2\vec{e}_2 + 1\vec{e}_3$. This is the unique way of writing $\begin{bmatrix} 5 \\\ 2 \\\ 1 \end{bmatrix}$ in terms of basis $\\{ \vec{e}_1,\ \vec{e}_2,\ \vec{e}_3 \\}$ of $\mathbb{R}^{3}$.
Theorem: Suppose $\\{ \vec{v}_1,\ \vec{v}_2, \cdots ,\ \vec{v}_m \\}$ is a basis for a subspace $W$ of $\mathbb{R}^{n}$. Then, for $\vec{v}$ in $W$, $\vec{v}$ can be expressed uniquely as a linear combination of $\\{ \vec{v}_1,\ \vec{v}_2,\ \cdots ,\ \vec{v}_m \\}$. Proof: Suppose $\\{ \vec{v}_1 ,\cdots , \vec{v}_n \\}$ is a basis for $W$ and $\vec{v}$ in $W$. $\\{ \vec{v}_1 , \cdots , \vec{v}_n \\}$ spans $W$ therefore there exists $c_1, c_2, \cdots , c_m$ with $\vec{v} = v_1 \vec{v}_1 + \cdots + c_m \vec{v}_m$. Suppose $\vec{v} = d_1 \vec{v}_1 + d_2 \vec{v}_2 + \cdots + d_m \vec{v}_m$. Show $d_i = c_i$ for $1 \le i \le m$. $\vec{0} = \vec{v} - \vec{v} = \left( d_1 - c_1 \right) \vec{v}_1 + \left( d_2 - c_2 \right) \vec{v}_2 + \cdots + \left( d_m - d_m \right) \vec{v}_m$ as $\vec{v}_1, \cdots , \vec{v}_m$ are linearly independent, $d_1 - c_1 = c_2 - c_2 = \cdots = d_m - c_m = 0$ meaning $d_i = c_i$ for $1 \le i \le m$. This shows uniqueness.
# 3.3 The Dimension of a Subspace of $\mathbb{R}^n$ **Theorem**: Suppose $\vec{v}_1,\ \cdots , \vec{v}_p$, $\vec{w}_1 , \cdots , \vec{w}_1$ are vectors in a subspace $W$ of $\mathbb{R}^{n}$. If * $\vec{v}_1 , \cdots , \vec{v}_p$ are linearly independent and * $\vec{w}_1 , \cdots , \vec{w}_q$ span $W$, then $p \le q$. Every basis for $W$ has the same number of vectors. **Definition**: The *dimension* of a subspace $W$, denoted $\text{dim}\left( W \right) $, is the number of vectors in a basis for $W$.
Example $\text{dim}\left( \mathbb{R}^{n} \right) = n$ Basis: $\\{ \vec{e}_1, \vec{e}_2, \vec{e}_3, \cdots , \vec{e}_n \\}$
* $\text{dim}\left( \\{ \vec{0} \\} \right) = 0$ (By convention)
Example Consider the subspace $\\{ z = 0 \\}$ in $ \mathbb{R}^{3}$. The dimension is 2 (because it's a plane) * $\\{ \begin{bmatrix} 1 \\\ 2 \\\ 0 \end{bmatrix} \\\}$ $\\{ \begin{bmatrix} 1 \\\ 0 \\\ 0 \end{bmatrix} , \begin{bmatrix} 1 \\\ 2 \\\ 0 \end{bmatrix} \\}$ $\\{ \begin{bmatrix} 0 \\\ 1 \\\ 0 \end{bmatrix} \\}$ $\\{ \begin{bmatrix} 0 \\\ 1\\\ 0 \end{bmatrix}, \begin{bmatrix} 5 \\\ 1 \\\ 0 \end{bmatrix} \\}$ (All linearly independent) * $\\{ \begin{bmatrix} 1 \\\ 0 \\\ 0 \end{bmatrix} , \begin{bmatrix} 7 \\\ -1 \\\ 0 \end{bmatrix} , \begin{bmatrix} 0 \\\ 1 \\\ 0 \end{bmatrix} \\}$ $\\{ \begin{bmatrix} 1 \\\ 0 \\\ 0 \end{bmatrix} , \begin{bmatrix} 0 \\\ 1 \\\ 0 \end{bmatrix} \\}$ $\\{ \begin{bmatrix} 2 \\\ 2 \\\ 0 \end{bmatrix} , \begin{bmatrix} 1 \\\ 1 \\\ 0 \end{bmatrix} , \begin{bmatrix} 0 \\\ 1 \\\ 0 \end{bmatrix} , \begin{bmatrix} 0 \\\ 0 \\\ 0 \end{bmatrix} \\}$ (All span subspace)
Generally, for a subspace $W$ of $\mathbb{R}^{n}$ with $\text{dim}\left( W \right) = m$, 1. We can find at most $m$ linearly independent vectors in $W$. 2. We need at least $m$ vectors to span $W$. Suppose we know $\text{dim}\left( W \right) = m$, * Any collection of $m$ linearly independent vectors is a basis. * Any collection of $m$ vectors that span $W$ is a basis.
Example Show the vectors $\\{ \begin{bmatrix} 1 \\\ 0 \\\ 0 \\\ 2 \end{bmatrix} , \begin{bmatrix} 0 \\\ 1 \\\ 0 \\\ 3 \end{bmatrix} , \begin{bmatrix} 0 \\\ 0 \\\ 1 \\\ 4 \end{bmatrix} , \begin{bmatrix} 2 \\\ 3 \\\ 4 \\\ 0 \end{bmatrix} \\}$ form a basis for $\mathbb{R}^{4}$. $\text{dim}\left( \mathbb{R}^{4} \right) = 4$ $$ \begin{bmatrix} 1 & 0 & 0 & 2\\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 4 \\ 2 & 3 & 4 & 0 \end{bmatrix} \to \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & -29 \end{bmatrix} $$ $\text{rank}\left( A \right) = 4$ Therefore vectors are independent and hence a basis.
We see in the above example: Vectors $\vec{v}_1 , \cdots , \vec{v}_n$ form a basis for $\mathbb{R}^{n}$ if and only if: $\begin{bmatrix} \| & \| & & \| \\\ \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_n \\\ \| & \| & & \| \end{bmatrix}$ is invertible. * This gives yet another characterization of invertible matrices ### Rank-Nullity Theorem Let $A$ by $n\times m$ matrix. $\text{dim}\left( \text{ker}\left( A \right) \right) + \text{dim}\left( \text{im}\left( A \right) \right) = m$ * $\text{dim}\left( \text{ker}\left( \right) \right)$ called nullity of matrix * $\text{dim}\left( \text{im}\left( A \right) \right)$ is rank of matrix Restated: $\text{rank}\left( A \right) + \text{nullity}\left( A \right) = m$ (Number of columns) Recall: For $A = \begin{bmatrix} 1 & 2 & 0 & 1 & 2 \\\ 2 & 4 & 3 & 5 & 1 \\\ 1 & 2 & 2 & 3 & 0 \end{bmatrix}$, * Basis for $\text{im}\left( A \right)$ : $\\{ \begin{bmatrix} 1 \\\ 2 \\\ 1 \end{bmatrix} , \begin{bmatrix} 0 \\\ 3 \\\ 2 \end{bmatrix} \\}$ ($\text{dim} 2$) * Basis for $\text{ker}\left( A \right)$ : $\\{ \begin{bmatrix} -2 \\\ 1 \\\ 0 \\\ 0 \\\ 0 \end{bmatrix} , \begin{bmatrix} -1 \\\ 0 \\\ -1 \\\ 1 \\\ 0 \end{bmatrix} , \begin{bmatrix} -2 \\\\ 0 \\\ 1 \\\ 0 \\\ 1 \end{bmatrix} \\}$ ($\text{dim} 3$) $2+3 = 5$
Example Suppose we have a linear transformation $T : \mathbb{R}^{5} \to \mathbb{R}^{3}$. What are possible values for $\text{dim}\left( \text{ker}\left( T \right) \right) $? $A$ is $3\times 5$ $\text{rank}\left( A \right) \le 3$ $\text{rank}\left( A \right) + \text{dim}\left( \text{ker}\left( T \right) \right) = 5$ (Cannot be one-to-one) Answer: 2, 3, 4, or 5 | Rank A | nullity | |--------|---------| | 0 | 5 | | 1 | 4 | | 2 | 3 | | 3 | 2 |
Example Suppose we have a linear transformation $T : \mathbb{R}^{4} \to \mathbb{R}^{7}$. What are possible values for $\text{dim}\left( \text{im}\left( T \right) \right)$? $A$ is $7\times 4$ $\text{rank}\left( A \right) \le 4$ Answer: 0, 1, 2, 3, 4
# Test 1 Preparation ## Sample Test 1 1) Suppose $T_1,\ T_2 : \mathbb{R}^{2} \to \mathbb{R}^{2}$ are linear transformations such that * $T_1$ is orthogonal projection onto the line $y=-3x$. * $T_2$ is scaling by a factor of 5 a) Find the matrix $A$ of the transformation $T_2T_1$. *Show your work*
Solution $L = \text{span} \\{ \begin{bmatrix} 1 \\\ -3 \end{bmatrix} \\}$ $$ 5 \frac{1}{1^2 + (-3)^2} \begin{bmatrix} 1 & -3 \\ -3 & 9 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & -3 \\ -3 & 9 \end{bmatrix} $$
b) Determine weather or not the transformation $T : \mathbb{R}^{2} \to \mathbb{R}^{2}$ given by $T \left( \begin{bmatrix} x \\\ y \end{bmatrix} \right) = \begin{bmatrix} 2 - x \\\ y - 2x \end{bmatrix} $ is a linear transformation. If so, find its associated matrix. If not, give a reason as to why not.
Solution $T\left( \vec{0} \right) = \begin{bmatrix} 2 \\\ 0 \end{bmatrix} \neq \vec{0}$ Therefore $T$ is not a linear transformation.
2) For which values of $a,b,c,d$ and $e$ is the following matrix in reduced row-echelon form? Choose an answer from 0, 1, any real number. *No explanation needed* $$ A = \begin{bmatrix} 1 & a & b & 9 & 0 & 7 \\ 0 & c & 0 & 1 & 0 & d \\ 0 & e & 0 & 0 & 1 & 9 \end{bmatrix} $$
Solution $a = 0$ $a =$ any $c=1$ $d =$ any $e=0$
3) Write $\vec{b} = \begin{bmatrix} 10 \\\ 0 \\\ 2 \end{bmatrix}$ a linear combination of $\vec{v}_1 = \begin{bmatrix} 1 \\\ 2 \\\ 1 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 4 \\\ 3 \\\ 2 \end{bmatrix}$. *Show your work*
Solution Find $x_1$, $x_2$ with $x_1 \begin{bmatrix} 1 \\\ 2 \\\ 1 \end{bmatrix} + x_2 \begin{bmatrix} 4 \\\ 3 \\\ 2 \end{bmatrix} = \begin{bmatrix} 10 \\\ 0 \\\ 2 \end{bmatrix}$. $$ \begin{bmatrix} 1 & 4 & | & 10 \\ 2 & 3 & | & 0 \\ 1 & 2 & | & 2 \end{bmatrix} \to \begin{bmatrix} 1 & 4 & | & 10 \\ 0 & -5 & | & -20 \\ 0 & -2 & | & -8 \end{bmatrix} $$ $$ \to \begin{bmatrix} 1 & 4 & | & 10 \\ 0 & 1 & | & 4 \\ 0 & -2 & | & -8 \end{bmatrix} \to \begin{bmatrix} 1 & 0 & | & -6 \\ 0 & 1 & | & 4 \\ 0 & 0 & | & 0 \end{bmatrix} $$ $x_1 = -6$ $x_2 = 4$ $\vec{b} = -6 \begin{bmatrix} 1 \\\ 2 \\\ 1 \end{bmatrix} + 4 \begin{bmatrix} 4 \\\ 3 \\\ 2 \end{bmatrix}$
4) Find all upper triangular $3\times 3$ matrices $\begin{bmatrix} a & b & c \\\ 0 & d & e \\\ 0 & 0 & f \end{bmatrix}$ that commute with $\begin{bmatrix} 0 & 0 & -1 \\\ 0 & 2 & 0 \\\ 1 & 0 & 0 \end{bmatrix}$. *Show your work*
Solution $$ \begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{bmatrix} \begin{bmatrix} 0 & 0 & -1 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} c & 2b & -a \\ e & 2d & 0 \\ f & 0 & 0 \end{bmatrix} $$ $$ \begin{bmatrix} 0 & 0 & -1 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -f \\ 0 & 2d & 2e \\ a & b & c \end{bmatrix} $$ $b=c=e=0$ $a=f$ $d=d$ Answer: $\begin{bmatrix} a & 0 & 0 \\\ 0 & d & 0 \\\ 0 & 0 & a \end{bmatrix}$ $a, d \in \mathbb{R}$
5) Suppose $A$ is $2\times 3$, $B$ is $3\times 3$, $C$ is $3\times 2$, and $D$ is $2\times 1$. Which matrix operations that are defined? *No justification needed* $$ AC+B; CA; CB; BCD; A(B+C) $$
Solution $CA$ and $CBD$ are defined.
6) Let $A = \begin{bmatrix} 1 & 3 & 4 & 0 \\\ 0 & 1 & 0 & 0 \\\ 0 & 0 & 0 & 2 \\\ 0 & 0 & 1 & 0 \end{bmatrix}$. *Show your work* a) Use Elementary Row Operations to find $A^{-1}$.
Solution $A^{-1} = \begin{bmatrix} 1 & -3 & 0 & -4 \\\ 0 & 1 & 0 & 0 \\\ 0 & 0 & 0 & 1 \\\ 0 & 0 & \frac{1}{2} & 0 \end{bmatrix}$
b) Use part (a) to find all solutions to the linear system $A\vec{x} = \begin{bmatrix} 0 \\\ 2 \\\ 0 \\\ 0 \end{bmatrix}$.
Solution $\vec{x} = A^{-1}\vec{b}$ $$ \begin{bmatrix} 1 & -3 & 0 & -4 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 2\\ 0 \\ 0 \end{bmatrix} $$ $\vec{x} = \begin{bmatrix} -6 \\\ 2 \\\ 0 \\\ 0 \end{bmatrix}$
7) Let $A = \begin{bmatrix} 1 & 3 & 2 & 5 \\\ 2 & 6 & 1 & -2 & 4 \\\ 2 & 6 & 1 & -2 & 4 \\\ 3 & 9 & 1 & 0 & 9\end{bmatrix}$. (Suppose we already know $\text{rref}\left( A \right) = \begin{bmatrix} 1 & 3 & 2 & 5 \\\ 0 & 0 & 1 & -6 & -6 \\\ 0 & 0 & 0 & 0 \end{bmatrix}$). a) Find vectors that span the kernel of $A$. *Show your work*
Solution $x_1 = -3t - 2r - 5s$ $x_2 = t$ $x_3 = 6r + 6s$ $x_4 = r$ $x_5 = s$ $$ \begin{bmatrix} -3t-2r-5s \\ t \\ 6r + 6s \\ r \\ s \end{bmatrix} = t \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + r \begin{bmatrix} -2 \\ 0 \\ 6 \\ 1 \\0 \end{bmatrix} + s \begin{bmatrix} -5 \\ 0 \\ 6 \\ 0 \\1 \end{bmatrix} $$ Answer: $\begin{bmatrix} -3 \\\ 1 \\\ 0 \\\ 0 \\\\ 0 \end{bmatrix}$, $\begin{bmatrix} -2 \\\ 0 \\\ 6 \\\ 1 \\\ 0 \end{bmatrix}$, $\begin{bmatrix} -5 \\\ 0 \\\ 6 \\\ 0 \\\ 1 \end{bmatrix}$
b) Find vectors that span the image of $A$
Solution $\begin{bmatrix} 1 \\\ 2 \\\ 3 \end{bmatrix}$, $\begin{bmatrix} 0 \\\ 1 \\\ 1 \end{bmatrix}$
8) True or false. a) If $A$ is an $n\times n$ matrix and $A^{4} = A$, then $A^{3} = I_n$.
Solution $A= \begin{bmatrix} 0 & 0 \\\ 0 & 0 \end{bmatrix}$ $A^{4} = A$ and $A^{3}\neq I_2$ False
b) If $\vec{v}$ and $\vec{w}$ in $\mathbb{R}^{n}$ are solutions of $A\vec{x}=\vec{b}$, where $\vec{b} \neq \vec{0}$. Then $\vec{v}+\vec{w}$ is also a solution for $A\vec{x}= \vec{b}$.
Solution $A\vec{v} = \vec{b}$ and $A\vec{w}= \vec{b}$ where $\vec{b}\neq \vec{0}$ $A\left( \vec{v} + \vec{w} \right) = A\vec{v} + A\vec{w} = \vec{b} + \vec{b} = 2\vec{b} \neq \vec{b}$ and $\vec{b}\neq \vec{0}$ False
d) There exists a rank 2 matrix $A$ with $A \begin{bmatrix} 1 \\\ -7 \end{bmatrix} = \begin{bmatrix} 2 \\\ -1 \\\ 0 \end{bmatrix}$.
Solution $A \begin{bmatrix} 1 \\\ -7 \end{bmatrix} = \begin{bmatrix} 2 \\\ -1 \\\ 0 \end{bmatrix}$. $$ \begin{bmatrix} 2 & 0 \\ 0 & \frac{1}{7}\\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -7 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} $$ True
e) For any $6\times 2$ matrix $A$ the system $A\vec{x} = \vec{0}$ is consistent
Solution For any $n\times m$ matrix $A$, $A\vec{x}=\vec{0}$ is consistent. ($A\vec{0} = \vec{0}$ )
# 5.1 Orthogonal Projections and Orthonormal Bases **Recall**: Geometry of Vectors * $\vec{v}$, $\vec{w}$ in $\mathbb{R}^{n}$ are orthogonal provided they are perpendicular ($\vec{v}\cdot \vec{w} = 0$) * The length of $\vec{v}$ is $ \mid \mid \vec{v} \mid \mid = \sqrt{\vec{v} \cdot \vec{v}}$. Note $ \mid \mid \vec{v} \mid \mid ^{2} = \vec{v}\cdot \vec{v}$ * Distance between $\vec{v}$ and $\vec{w}$ in $\mathbb{R}^{n}$ is $ \mid \mid \vec{v} - \vec{w} \mid \mid $ (this is used in section 5.4). * Geometry and the dot product $\vec{v} \cdot \vec{w} = \mid \mid \vec{v} \mid \mid \cdot \mid \mid \vec{w} \mid \mid \cos \left( \theta \right)$ where $\theta$ is the angle between $\vec{v}$ and $\vec{w}$ ($0 \le \theta \le \pi$). * For $\vec{v}$, $\vec{w}$, nonzero in $\mathbb{R}^{n}$, the angle between $\vec{v}$ and $\vec{w}$ is $\theta = \cos ^{-1} \left( \frac{\vec{v}\cdot \vec{w}}{ \mid \mid \vec{v} \mid \mid \mid \mid \vec{w} \mid \mid } \right) $ (Note that the range of $\cos ^{-1} (\cdots )$ is $[0,\ \pi]$)
Example $\vec{v} = \begin{bmatrix} 2 \\\ 0 \\\ 2 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 1 \\\ 1\\\ 0 \end{bmatrix}$ 1) Find the angle between $\vec{v}$ and $\vec{w}$. 2) Find the distance between $\vec{v}$ and $\vec{w}$. *Solution* 1) $\vec{v} \cdot \vec{w} = 2 + 0 + 0 = 2$ $ \mid \mid \vec{v} \mid \mid = \sqrt{4 + 4} = 2 \sqrt{2}$ $ \mid \mid \vec{w} \mid \mid = \sqrt{1 + 1} = \sqrt{2}$ $\theta = \cos ^{-1} \left( \frac{2}{2\sqrt{2} \left( \sqrt{2} \right) } \right) = \cos ^{-1} \left( \frac{1}{2} \right)$ $\therefore \theta = \frac{\pi}{3}$ 2) $\vec{v} - \vec{w} = \begin{bmatrix} 1 \\\ -1 \\\ 2 \end{bmatrix}$ $ \mid \mid \vec{v} - \vec{w} \mid \mid = \sqrt{1 + 1 + 4} = \sqrt{6}$
**Remark**: For $\vec{v}$ and $\vec{w}$ in $\mathbb{R}^{n}$, $\vec{v}$ and $\vec{w}$ are orthogonal if and only if $ \mid \mid \vec{v} + \vec{w} \mid \mid ^{2} = \mid \mid \vec{v} \mid \mid ^{2} + \mid \mid \vec{w} \mid \mid ^{2}$ $c^{2} = a^{2} + b^{2}$ ![lec10-fig1](/notes/math2331/lec10-fig1.png)
Definition: Vectors $\\{ \vec{u} _{1}, \vec{u} _{2}, \cdots , \vec{u} _{m} \\}$ in $\mathbb{R}^{n}$ form an orthonormal collection of vectors provided 1. Each vectors $\vec{u}_i$ is unit. $ \mid \mid \vec{u}_i \mid \mid = 1$ or $\vec{u}_j \cdot \vec{u}_i = 1$ 2. Vectors are pairwise orthogonal $\\{ \vec{u}_1, \vec{u}_2, \cdots , \vec{u}_m \\}$ are orthonormal if and only if $\vec{u}_i \cdot \vec{u}_j = \begin{cases} 0 & i \neq j \\\ 1 & i =j\end{cases}$
Example In $\mathbb{R}^{3}$, $\\{ \vec{e}_1 , \vec{e}_2 , \vec{e}_3 \\}$ and $\\{ \begin{bmatrix} \frac{\sqrt{2} }{2} \\\ 0 \\\ \frac{\sqrt{2} }{2} \end{bmatrix} , \begin{bmatrix} -\frac{\sqrt{2} }{2} \\\ 0 \\\ \frac{\sqrt{2} }{2} \end{bmatrix} \\}$ $\vec{u}_1 \cdot \vec{u}_2 = 0$ $\vec{u}_i \cdot \vec{u}_i = \left( \frac{\sqrt{2} }{2} \right) ^{2} + \left( \frac{\sqrt{2} }{2} \right) ^{2} = \frac{1}{2} + \frac{1}{2} = 1$
**Theorem**: Orthonormal vectors are linearly independent. Proof: Suppose $\\{ \vec{u}_1 , \vec{u}_2, \cdots , \vec{u}_m \\}$ are orthonormal and $c_1 \vec{u}_1 + v_2 \vec{u}_2 + \cdots + c_m \vec{u}_m = \vec{0}$. Show $c_1 = c_2 = \cdots = c_m = 0$ Fix i: Show $c_{i} = 0$ : $\vec{u}_i \cdot \left( c_1 \vec{u}_1 + c_2 \vec{u}_2 + \cdots + c_m \vec{u}_m \right) = \vec{u}_i \cdot \vec{0} = 0$ Rewrite LHS $c_1 \left( \vec{u}_i \cdot \vec{u}_1 \right) + c_2 \left( \vec{u}_i \cdot \vec{u}_2 \right) + \cdots + c_1 \left( \vec{u}_i \cdot \vec{u}_i \right) + \cdots + c_m \left( \vec{u}_i \cdot \vec{u}_m \right) = 0$ We get: $c_i \cdot 1 = 0$. Therefore $c_i = 0$. Therefore, $c_1 = c_2 = c_3 = \cdots = c_m = 0$ Note: Really just needed orthogonal and nonzero. A collection $\\{ \vec{u}_1 , \vec{u}_2 , \cdots , \vec{u}_n \\}$ of orthonormal vectors in $\mathbb{R}^{n}$ form a basis for $\mathbb{R}^{n}$. $\text{dim}\left( \mathbb{R}^{n} \right) = n$. $n$ linearly independent vectors are a basis. This is called an *orthonormal basis*.
Examples * The columns of the rotational matrix $\begin{bmatrix} \frac{5}{13} & \frac{12}{13} \\\ -\frac{12}{13} & \frac{5}{13} \end{bmatrix}$ form an orthonormal basis for $\mathbb{R}^{2}$. * The columns of the reflection matrix $\begin{bmatrix} -\frac{7}{24} & -\frac{24}{25} \\\ -\frac{24}{25} & \frac{7}{25} \end{bmatrix}$ form an orthonormal basis for $\mathbb{R}^{2}$.
Given an orthogonal basis, we may normalize the vectors to obtain an orthonormal basis.
Example Normalize the basis for $\mathbb{R}^{3}$: $\\{ \begin{bmatrix} 1 \\\ 2 \\\ 1 \end{bmatrix}, \begin{bmatrix} -2 \\\ 1 \\\ 0 \end{bmatrix} , \begin{bmatrix} 3 \\\ 6 \\\ -15 \end{bmatrix} \\}$. $ \mid \mid \vec{v}_1 \mid \mid = \sqrt{1+4+1} = \sqrt{6}$ $ \mid \mid \vec{v}_2 \mid \mid = \sqrt{4 + 1} = \sqrt{5}$ $ \mid \mid \vec{v}_3 \mid \mid = \sqrt{9 + 36 + 225} = \sqrt{270} = 3 \sqrt{30} $ $\\{ \begin{bmatrix} \frac{1}{\sqrt{6} } \\\ \frac{2}{\sqrt{6} } \\\ \frac{1}{\sqrt{6} } \end{bmatrix} , \begin{bmatrix} -\frac{2}{\sqrt{5} } \\\ \frac{1}{\sqrt{5} }\\\ 0 \end{bmatrix} , \begin{bmatrix} \frac{1}{\sqrt{30} }\\\ \frac{2}{\sqrt{30} }\\\ -\frac{5}{\sqrt{30} } \end{bmatrix} \\}$
**Orthogonal Projections**: Recall: If $L = \text{span} \\{ \vec{w} \\}$ where $\vec{w}\neq \vec{0}$ in $\mathbb{R}^{n}$. * The orthogonal projection of $\vec{x}$ onto $L$ is $\text{proj}_{L}\left( \vec{x} \right) = \vec{x}^{\parallel} = \left( \frac{\vec{x}\cdot \vec{w}}{\vec{w} \cdot \vec{w}} \right) \vec{w}$ * The component of $\vec{x}$ orthogonal to $L$ is $\vec{x}^{\bot} = \vec{x} - \vec{x}^{\parallel} = \vec{x} - \text{proj}_{L} \left( \vec{x} \right) $ Note: If $L = \text{span}\\{ \vec{x} \\}$ where $\vec{u}$ is unit, then $\text{proj}_{L}\left( \vec{x} \right) = \left( \vec{x}\cdot \vec{u} \right) \vec{u}$. ### Orthogonal Projection onto a subspace $V$ of $\mathbb{R}^n$. Let $\vec{x}$ be in $\mathbb{R}^{n}$ and $V$ a subspace of $\mathbb{R}^{n}$. We may write $\vec{x} = \vec{x}^{\bot} + \vec{x}^{\parallel}$ where $\vec{x}^{\parallel} = \text{proj}_V \left( \vec{x} \right) $ is in $V$. Suppose $\\{ \vec{u}_1, \vec{u}_2 , \cdots , \vec{u}_m \\}$ is an orthonormal basis for $V$ then $\text{proj}_V \left( \vec{x} \right) = \left( \vec{x} \cdot \vec{u}_1 \right) \vec{u}_1 + \left( \vec{x} \cdot \vec{u}_2 \right) \vec{u}_2 + \cdots + \left( \vec{x} \cdot \vec{u}_m \right) \vec{u}_m$
Example Find the orthogonal projection of $\vec{e}_1$ onto the subspace $V$ of $\mathbb{R}^{4}$ spanned by $\\{ \begin{bmatrix} 1 \\\ 1\\\ 1 \\\ 1 \end{bmatrix} , \begin{bmatrix} 1 \\\ 1 \\\ -1 \\\ -1 \end{bmatrix} , \begin{bmatrix} 1 \\\ -1 \\\ -1 \\\ 1 \end{bmatrix} \\}$. $ \mid \mid \vec{v}_i \mid \mid = \sqrt{1 + 1 + 1 + 1} = 2$ $\text{proj}_V \left( \vec{e}_1 \right) = \left( \vec{u}_1 \cdot \vec{e}_1 \right) \vec{u}_1 + \left( \vec{u}_2 \cdot \vec{e}_1 \right) \vec{u}_2 + \left( \vec{u}_3 \cdot \vec{e}_1 \right) \vec{u}_3$ $= \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\\ \frac{1}{2} \\\ \frac{1}{2} \\\ \frac{1}{2} \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\\ \frac{1}{2} \\\ -\frac{1}{2} \\\ -\frac{1}{2} \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\\ -\frac{1}{2} \\\ -\frac{1}{2} \\\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{3}{4} \\\ \frac{1}{4} \\\ -\frac{1}{4} \\\ \frac{1}{4} \end{bmatrix}$ in $V$ Note: $\vec{e}_1^{\bot} = \vec{e}_1 - \text{proj}_V \left( \vec{e}_1 \right)$ $= \begin{bmatrix} 1 \\\ 0 \\\ 0 \\\ 0 \end{bmatrix} - \begin{bmatrix} \frac{3}{4} \\\ \frac{1}{4} \\\ -\frac{1}{4} \\\ \frac{1}{4} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\\ -\frac{1}{4} \\\ \frac{1}{4} \\\ -\frac{1}{4} \end{bmatrix}$ This is orthogonal to $\vec{u}_1$, $\vec{u}_2$, $\vec{u}_3$ and every vector in $V$.
Note: if $\vec{x}$ is in $V$ then $\text{proj}_V \left( \vec{x} \right) = \vec{x}$
Example $\vec{x} = \begin{bmatrix} 1 \\\ 1 \\\ 0 \\\ 0 \end{bmatrix}$ is in $V = \text{span} \\{ \begin{bmatrix} 1 \\\ 1 \\\ 1 \\\ 1 \end{bmatrix} , \begin{bmatrix} 1 \\\ 1 \\\ -1 \\\ -1 \end{bmatrix} , \begin{bmatrix} 1 \\\ -1 \\\ - 1\\\ 1 \end{bmatrix} \\}$. Show $\text{proj}_V \left( \vec{x} \right) = \vec{x}$. $\text{proj}_V \left( \vec{x} \right) = \left( \vec{x} \cdot \vec{u}_1 \right) \vec{u}_1 + \left( \vec{x} \cdot \vec{u}_2 \right) \vec{u}_2 + \left( \vec{x} \cdot \vec{u}_3 \right) $ $= 1 \begin{bmatrix} \frac{1}{2} \\\ \frac{1}{2} \\\ \frac{1}{2} \\\ \frac{1}{2} \end{bmatrix} + 1 \begin{bmatrix} \frac{1}{2}\\\ \frac{1}{2} \\\ \frac{-1}{2} \\\ -\frac{1}{2} \end{bmatrix} + 0 \begin{bmatrix} \frac{1}{2} \\\ -\frac{1}{2} \\\ -\frac{1}{2} \\\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 1 \\\ 1 \\\ 0 \\\ 0 \end{bmatrix}$ $\\{ \begin{bmatrix} \frac{1}{2} \\\ \frac{1}{2} \\\ \frac{1}{2} \\\ \frac{1}{2} \end{bmatrix} , \begin{bmatrix} \frac{1}{2} \\\ \frac{1}{2} \\\ -\frac{1}{2} \\\ -\frac{1}{2} \end{bmatrix} , \begin{bmatrix} \frac{1}{2} \\\ -\frac{1}{2} \\\ -\frac{1}{2} \\\ \frac{1}{2} \end{bmatrix} \\}$
**An Application of Orthogonal Projection**: Recall: If $\\{ \vec{v}_1 , \vec{v}_2 , \cdots , \vec{v}_3 \\}$ is a basis for $\mathbb{R}^{n}$ then any vector $\vec{v}$ in $\mathbb{R}^{n}$ can be expressed uniquely as a linear combination of $\\{ \vec{v}_1 , \vec{v}_2 , \cdots , \vec{v}_n \\}$. When $\beta = \\{ \vec{u}_1 , \vec{u}_2 , \cdots , \vec{u}_n \\}$ is an orthonormal basis for $\mathbb{R}^{n}$, we can easily write $\vec{x}$ as linear combination of $\\{ \vec{u}_1 , \cdots , \vec{u}_n \\}$ $\vec{x} = \left( \vec{x} \cdot \vec{u}_1 \right) \vec{u}_1 + \left( \vec{x} \cdot \vec{u}_2 \right) \vec{u}_2 + \cdots + \left( \vec{x} \cdot \vec{u}_n \right) \vec{u}_n$ called coordinates of $\vec{x}$ relative to basis $\beta$
Example $\beta = \\{ \begin{bmatrix} \frac{1}{\sqrt{6} } \\\ \frac{2}{\sqrt{6} } \\\ \frac{1}{\sqrt{6} } \end{bmatrix} , \begin{bmatrix} -\frac{2}{\sqrt{5} } \\\ \frac{1}{\sqrt{5} } \\\ 0 \end{bmatrix} , \begin{bmatrix} \frac{1}{\sqrt{30} } \\\ \frac{2}{\sqrt{30} } \\\ -\frac{5}{\sqrt{30} } \end{bmatrix} \\}$. Find the coordinates of $\vec{x} = \begin{bmatrix} 1 \\\ 2 \\ 3 \end{bmatrix} $ relative to $\beta$. $\vec{x} \cdot \vec{u}_1 = \frac{1+4+3}{\sqrt{6} } = \frac{8}{\sqrt{6} }$ $\vec{x} \cdot \vec{u}_2 = \frac{-2 + 2}{\sqrt{5} } = 0$ $\vec{x}\cdot \vec{u}_3 = \frac{1+4 - 15}{\sqrt{30} } = -\frac{10}{\sqrt{30}}$ $\vec{x} = \frac{8}{\sqrt{6} } \vec{u}_1 - \frac{10}{\sqrt{30} } \vec{u}_3$ Note: $\vec{v}_1$, $\vec{v}_2$, $\vec{v}_3$ form an orthonormal basis for $\mathbb{R}^{3}$
**Exercise**: Express $\vec{x} = \begin{bmatrix} 3\\\ 2\\\ 1 \end{bmatrix}$ as a linear combination of $\vec{v}_1 = \begin{bmatrix} -\frac{3}{5} \\\ \frac{4}{5} \\\ 0 \end{bmatrix} $, $\vec{v}_2 = \begin{bmatrix} \frac{4}{5} \\\ \frac{3}{5} \\\ 0 \end{bmatrix} $, and $\vec{v}_3 = \begin{bmatrix} 0 \\\ 0 \\\ 1 \end{bmatrix} $. $\vec{x}\cdot \vec{v}_1 = \frac{-9+8}{5} = -\frac{1}{5}$ $\vec{x}\cdot \vec{v}_2 = \frac{12+6}{5} = \frac{18}{5}$ $\vec{x}\cdot \vec{v}_3 = 0 + 0 + 1 = 1$ $\vec{x} = -\frac{1}{5} \vec{v}_1 + \frac{18}{5} \vec{v}_2 + \vec{v}_3$ For a subspace $V$ of $\mathbb{R}^{n}$, the map $T : \mathbb{R}^{n} \to \mathbb{R}^{n}$ given by $T\left( \vec{x} \right) = \text{proj}_{V}\left( \vec{x} \right)$ is a linear transformation! What is $\text{im}\left( T \right)$? $\text{im}\left( T \right) = V$ What is $\text{ker}\left( T \right)$? $\text{ker}\left( T \right) = \\{ x \in \mathbb{R}^{n} : \vec{x} \cdot \vec{v} = 0$ for all $\vec{v} \in V \\}$. This is called the *orthogonal complement of $V$* denoted $V^{\bot}$ Theorem: Let $V$ be a subspace of $\mathbb{R}^{n}$. Then, 1. $V^{\bot}$ is a subspace of $\mathbb{R}^{n}$ 2. $V \cap V^{\bot} = \\{ \vec{0} \\}$ 3. $\text{dim}\left( V \right) + \text{dim}\left( V^{\bot} \right) = n$ 4. $\left( V^{\bot} \right)^{\bot} = V$ Proof: 2) Suppose $\vec{x} \in V$ and $\vec{x} \in V^{\bot}$. Therefore $\vec{x}\cdot \vec{x} = 0$. $\vec{x} = 0$ 3) Follows from rank nullity theorem
Example Find a basis from $V^{\bot}$ where $V = \text{span} \\{ \begin{bmatrix} 1 \\\ 3 \\\ 1 \\\ -1 \end{bmatrix} \\}$. $\begin{bmatrix} 1 & 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\\ x_2 \\\ x_3 \\\ x_4 \end{bmatrix} = 0$ $x_1 = -3t - r + s$ $x_2 = t$ $x_3 = r$ $x_4 = s$ $$ \begin{bmatrix} -3t - r + s \\ t \\ r \\ s \end{bmatrix} = t \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + r \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} $$ Basis for $V^{\bot}$: $$ \{ \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \end{bmatrix} , \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix} , \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \} $$
Example Find a basis for $V^{\bot}$ where $V = \text{span} \\{ \begin{bmatrix} -1 \\\ 2 \\\ 4 \end{bmatrix} , \begin{bmatrix} 0 \\\ 3 \\\ 1 \end{bmatrix} \\}$. Notice $\vec{x}$ is in $V^{\bot}$ provided $\begin{bmatrix} -1 & 2 & 4 \\\ 0 & 3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\\ x_2 \\\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\\ 0 \end{bmatrix}$ Find a basis for $\text{ker} \begin{bmatrix} -1 & 2 & 4 \\\ 0 & 3 & 1 \end{bmatrix}$ $$ \begin{bmatrix} -1 & 2 & 4 \\ 0 & 3 & 1 \end{bmatrix} \to \begin{bmatrix} 1 & -2 & -4 \\ 0 & 1 & \frac{1}{3} \end{bmatrix} $$ $$ \to \begin{bmatrix} 1 & 0 & \frac{-10}{3} \\ 0 & 1 & \frac{1}{3} \end{bmatrix} $$ $x_3 = t$ $x_1 = \frac{10}{3} t$ $x_2 = -\frac{1}{3} t$ $\begin{bmatrix} \frac{10}{3}t \\\ -\frac{1}{3}t \\\ t \end{bmatrix}$ Basis: $\\{ \begin{bmatrix} 10 \\\ -1 \\\ 3 \end{bmatrix} \\}$
Definition: Comment: Suppose $A$ is $n \times m$. The *row space* of $A$, denoted $\text{row}\left( A \right)$ is the span of the rows of $A$ in $\mathbb{R}^{m}$. Our above examples illustrate: $\text{ker}\left( A \right) = \left( \text{row}\left( A \right) \right) ^{\bot}$ Note: $\text{dim}\left( \text{row}\left( A \right) \right) = \text{rank}\left( A \right) $.
Example $\begin{bmatrix} 1 & 2 & 3 & 4 \\\ 0 & 1 & 3 & 7 \\\ 0 & 0 & 1 & 0 \end{bmatrix}$ $\text{im}\left( A \right) \in \mathbb{R}^{3}$ $\text{span}\left( \begin{bmatrix} 1 \\\ 0 \\\ 0 \end{bmatrix} , \begin{bmatrix} 2 \\\ 1 \\\ 0 \end{bmatrix} , \begin{bmatrix} 3 \\\ 3 \\\ 1 \end{bmatrix} , \begin{bmatrix} 4 \\\ 7 \\\ 0 \end{bmatrix} \right) $ Basis: $\\{ \begin{bmatrix} 1 \\\ 0 \\\ 0 \end{bmatrix} , \begin{bmatrix} 2 \\\ 1 \\\ 0 \end{bmatrix} , \begin{bmatrix} 3 \\\ 3 \\\ 1 \end{bmatrix} \\}$ **Row Space**: $\text{span} \\{ \begin{bmatrix} 1 \\\ 2 \\\ 3 \\\ 4 \end{bmatrix} , \begin{bmatrix} 0 \\\ 1 \\\ 3 \\\ 7 \end{bmatrix} , \begin{bmatrix} 0 \\\ 0 \\\ 1 \\\ 0 \end{bmatrix} \\} \in \mathbb{R}^{4}$ Basis: $\\{ \begin{bmatrix} 1 \\\ 2 \\\ 3 \\\ 4 \end{bmatrix} , \begin{bmatrix} 0 \\\ 1 \\\ 3 \\\ 7 \end{bmatrix} , \begin{bmatrix} 0 \\\ 0 \\\ 1 \\\ 0 \end{bmatrix} \\}$
# 5.2 Gram-Schmidt Process and QR Factorization Last time: $\text{Orthonormal Basis} \begin{cases} \text{Northonormal Bases} \\\ \text{Orthogonal Projection} \end{cases}$ Today: Given a subspace $W$ with basis $\beta$, find an orthonormal basis for $W$.
Example $W = \text{span} \\{ \begin{bmatrix} 4 \\\ 0 \\\ 3 \\\ 0 \end{bmatrix} , \begin{bmatrix} 25 \\\ 0 \\\ -25 \\\ 0 \end{bmatrix} \\} \in \mathbb{R}^{4}$. We want a new basis for $W$ that is orthonormal. New basis: $\\{ \vec{u}_1 , \vec{u}_2 \\}$ $\vec{u}_1 = \frac{\vec{u}_1}{ \mid \mid \vec{v}_1 \mid \mid }$ $\mid \mid \vec{v}_1 \mid \mid = \sqrt{16 + 9} = 5$ $\text{proj}_{L} \left( \vec{v}_2 \right) = \left( \vec{u}_1 \right) \cdot \left( \vec{v}_2 \right) \vec{u}_1$ $= 5 \begin{bmatrix} \frac{4}{5} \\\ 0 \\\ \frac{3}{5} \\\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\\ 0 \\\ 3 \\\ 0 \end{bmatrix}$ $\therefore \vec{u}_1 = \begin{bmatrix} \frac{4}{5} \\\ 0 \\\ \frac{3}{5} \\\ 0 \end{bmatrix} $ $\vec{u}_2 = \frac{\vec{v}_2 ^{\bot}}{ \mid \mid \vec{v}_2 ^{\bot} \mid \mid }$ $\vec{v} _2 ^{\bot} = \vec{v} _2 - \text{proj} _{L} \left( \vec{v} _i \right)$ $= \begin{bmatrix} 25 \\\ 0 \\\ -25 \\\ 0 \end{bmatrix} - \begin{bmatrix} 4 \\\ 0 \\\ 3 \\\ 0 \end{bmatrix} = \begin{bmatrix} 21 \\\ 0 \\\ -28 \\\ 0 \end{bmatrix} $ $ \mid \mid \vec{v}_2 ^{\bot} \mid \mid = \sqrt{21^{2} + 28^{2}} = 35$ $\therefore \vec{u}_2 = \begin{bmatrix} \frac{3}{5} \\\ 0 \\\ -\frac{4}{5} \\\ 0 \end{bmatrix}$
Example $W = \text{span} \\{ \begin{bmatrix} 4 \\\ 0 \\\ 3 \\\ 0 \end{bmatrix} , \begin{bmatrix} 25 \\\ 0 \\\ -25 \\\ 0 \end{bmatrix} , \begin{bmatrix} 0 \\\ 1 \\\ 1 \\\ 1 \end{bmatrix} \\} \in \mathbb{R}^{4}$. Orthonormal Basis: $\\{ \vec{u}_1 , \vec{u}_2 , \vec{u}_3 \\}$ We begin the same way: $\vec{u}_1 = \frac{\vec{v}_1}{ \mid \mid \vec{v}_1 \mid \mid }$ $L = \text{span}\\{ \vec{u}_1 \\}$ $\vec{v}_2 ^{\bot} = \vec{v}_2 - \text{proj}_L \left( \vec{v} \right) $ $\vec{u}_2 = \frac{\vec{v}_2 ^{\bot}}{ \mid \mid \vec{v}_2 ^{\bot} \mid \mid }$ $\vec{u}_1 = \begin{bmatrix} \frac{4}{5} \\\ 0 \\\ \frac{3}{5} \\\ 0 \end{bmatrix} $ $\vec{u}_2 = \begin{bmatrix} \frac{3}{5} \\\ 0 \\\ -\frac{4}{5} \\\ 0 \end{bmatrix}$ Let $V = \text{span}\\{ \vec{u} _1 , \vec{u} _2 \\} = \text{span} \\{ \vec{v} _1 , \vec{v} _2 \\}$. We may write $\vec{v} _3 = \text{proj} _{V} \left( \vec{v} _3 \right) + \vec{v} _3 ^{\bot}$. Then $\vec{u} _3 = \frac{\vec{v} _3 ^{\bot}}{ \mid \mid \vec{v} _3 ^{\bot} \mid \mid }$ $\text{proj}_{V} \left( \vec{v}_3 \right) = \left( \vec{u}_1 \cdot \vec{v}_3 \right) \vec{u}_1 + \left( \vec{u}_2 \cdot \vec{v}_3 \right) \vec{u}_2$ (Projection along subspace) $= \frac{3}{5} \cdot \begin{bmatrix} \frac{4}{5} \\\ 0 \\\ \frac{3}{5} \\\ 0 \end{bmatrix} + \left( -\frac{4}{5} \right) \cdot \begin{bmatrix} \frac{3}{5} \\\ 0 \\\ -\frac{4}{5} \\\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\\ 0 \\\ \frac{25}{25} \\\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\\ 0 \\\ 1 \\\ 0 \end{bmatrix}$ (Projection of $\vec{v}_3$) $\vec{v}_3 ^{\bot} = \begin{bmatrix} 0 \\\ 1 \\\ 1 \\\ 1 \end{bmatrix} - \begin{bmatrix} 0 \\\ 0 \\\ 1 \\\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\\ 1 \\\ 0 \\\ 1 \end{bmatrix} $ $ \mid \mid \vec{v}_3 ^{\bot} \mid \mid = \sqrt{2}$ $\therefore \vec{u}_3 = \begin{bmatrix} 0 \\\ \frac{1}{\sqrt{2} } \\\ 0 \\\ \frac{1}{\sqrt{2} } \end{bmatrix} $
**Gram-Schmidt Process**: Let $\beta = \\{ \vec{v}_1 , \vec{v}_2 , \cdots , \vec{v}_m \\}$ be a basis for a subspace $W$ of $\mathbb{R}^{n}$. We construct an orthonormal basis $\mathcal{U} = \\{ \vec{u}_1 , \vec{u}_2 , \cdots , \vec{u}_m \\}$ for $W$ as follows: * $\vec{u}_1 = \frac{\vec{v}_1}{ \mid \mid \vec{v}_1 \mid \mid }$ * $\vec{u} _2 = \frac{\vec{v} _2 ^{\bot}}{ \mid \mid \vec{v} _2 ^{\bot} \mid \mid }$ where $\vec{v} _2 ^{\bot} = \vec{v} _2 - \text{proj} _{L} \left( \vec{v} _2 \right) $ and $L = \text{span} \\{ \vec{v} _1 \\} = \text{span} \\{ \vec{u} _1 \\}$ To get $\vec{u} _j$, project $\vec{v} _j$ onto $\text{span} \\{ \vec{v} _1 , \vec{v} _2 , \cdots , \vec{v} _{j-1} = \text{span} \\{ \vec{u} _1 , \vec{u} _2 , \cdots , \vec{u} _{j-1} \\}$ $\vec{v}_j ^{\bot} = \vec{v}_j - \text{proj}_V \left( \vec{v}_j \right)$ gives the direction * $\vec{u}_j = \frac{\vec{v}_j ^{\bot}}{ \mid \mid \vec{v}_j ^{\bot} \mid \mid }$ Note: $\vec{v} _j ^{\bot} = \vec{v} _j - \left( \vec{u} _1 \cdot \vec{v} _j \right) \vec{u} _1 - \left( \vec{u} _2 \cdot \vec{v} _j \right) \vec{u} _2 - \cdots - \left( \vec{u} _{j-1} \cdot \vec{v} _j \right) \vec{u} _{j-1}$ **Exercise**: Perform the Gram-Schmidt process on $\\{ \begin{bmatrix} 1 \\\ 1 \\\ 1 \\\ 1 \end{bmatrix} , \begin{bmatrix} 2 \\\ 2 \\\ 3 \\\ 3 \end{bmatrix} \\}$ $ \mid \mid \vec{v}_1 \mid \mid = \sqrt{1 + 1 + 1 + 1} = 2$ $\vec{v}_2 ^{\bot} = \vec{v}_2 - \left( \vec{v}_2 \cdot \vec{u}_1 \right) \vec{u}_1$ $= \begin{bmatrix} 2 \\\ 2 \\\ 3 \\\ 4 \end{bmatrix} - \left( 1 + 1 + \frac{3}{2} + \frac{3}{2} \right) \begin{bmatrix} \frac{1}{2} \\\ \frac{1}{2} \\\ \frac{1}{2} \\\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\\ -\frac{1}{2} \\\ \frac{1}{2} \\\ \frac{1}{2} \end{bmatrix}$ $ \mid \mid \vec{v}_2 ^{\bot} \mid \mid = \sqrt{\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4}} = 1$ $\vec{u}_1 = \begin{bmatrix} \frac{1}{2} \\\ \frac{1}{2} \\\ \frac{1}{2} \\\ \frac{1}{2} \end{bmatrix} $ $\vec{u}_2 = \begin{bmatrix} -\frac{1}{2} \\\ -\frac{1}{2} \\\ \frac{1}{2} \\\ \frac{1}{2} \end{bmatrix}$ *Let's interpret this process via matrices* $A = \begin{bmatrix} 1 & 2 \\\ 1 & 2 \\\ 1 & 3 \\\ 1 & 3 \end{bmatrix}$ has linearly independent columns. We want to write $A = QR$ where $Q$ has orthonormal columns. Suppose $\begin{bmatrix} \| & \| \\\ \vec{v}_1 & \vec{v}_2 \\\ \| & \| \end{bmatrix} = \begin{bmatrix} \| & \| \\\ \vec{u}_1 & \vec{u}_1 \\\ \| & \| \end{bmatrix} R$ ($A = QR$) $R = \begin{bmatrix} \mid \mid \vec{v}_1 \mid \mid & \vec{u}_1 \cdot \vec{v}_2 \\\ 0 & \mid \mid \vec{v}_2 ^{\bot} \mid \mid \end{bmatrix}$ Check that this $R$ works: * First column of $\begin{bmatrix} \| & \| \\\ \vec{u}_1 & \vec{u}_2 \\\ \| & \| \end{bmatrix} R$ is $\begin{bmatrix} \| & \| \\\ \vec{u}_1 & \vec{u}_2 \\\ \| & \| \end{bmatrix} \begin{bmatrix} \mid \mid \vec{v}_1 \mid \mid \\\ 0 \end{bmatrix}$ * $\mid \mid \vec{v}_1 \mid \mid \vec{u}_1 = \vec{v}_1$ * Second column of $\begin{bmatrix} \| & \| \\\ \vec{u}_1 & \vec{u}_2 \\\ \| & \| \end{bmatrix} R$ is $\begin{bmatrix} \| & \| \\\ \vec{u}_1 & \vec{u}_2 \\\ \| & \| \end{bmatrix} \begin{bmatrix} \vec{u}_1 \cdot \vec{v}_2 \\\ \mid \mid \vec{v}_2 ^{\bot} \mid \mid \end{bmatrix}$ * $= \left( \vec{u}_1 \cdot \vec{v}_2 \right) \vec{u}_1 + \mid \mid \vec{v}_2 ^{\bot} \mid \mid \vec{u}_2 = \left( \vec{u}_1 \cdot \vec{v}_2 \right) \vec{u}_1 + \vec{v}_2 ^{\bot}$ * $= \text{proj}_{L} \left( \vec{v}_2 \right) + \vec{v}_2 ^{\bot} = \vec{v}_2$
Example $\begin{bmatrix} 1 & 2 \\\ 1 & 2 \\\ 1 & 3 \\\ 1 & 3 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\\ \frac{1}{2} & -\frac{1}{2} \\\ \frac{1}{2} & \frac{1}{2} \\\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} R$ $$ R = \begin{bmatrix} \mid \mid \vec{v}_1 \mid \mid & \vec{u}_1 \cdot \vec{v}_2 \\ 0 & \mid \mid \vec{v}_2 ^{\bot} \mid \mid \end{bmatrix} = \begin{bmatrix} 2 & 5 \\ 0 & 1 \end{bmatrix} $$
### QR-Factorization Consider an $n\times m$ matrix $A$ with linearly independent columns $\vec{v}_1 , \vec{v}_2 , \cdots , \vec{v}_m$. * There exists an $n\times m$ matrix $Q$ with orthonormal columns $\vec{u}_1 , \vec{u}_2 , \cdots , \vec{u}_m$ (comes from Gram-Schmidt) and * An upper triangular $m \times m$ matrix $R$ with positive diagonal entries such that $A = QR$ Moreover, for the matrix $R = [R_{ij}]$, we have: $r_{11} = \mid \mid \vec{v}_1 \mid \mid $ $r_{jj} = \mid \mid \vec{v}_{j} ^{\bot} \mid \mid $ $r_{ij} = \vec{u}_i \cdot \vec{v}_j$ for $i < j$
Example Find the $QR$-Factorization of $A = \begin{bmatrix} 1 & 0 & 1 \\\ 7 & 7 & 1 \\\ 1 & 2 & -1 \\\ 7 & 7 & -1 \end{bmatrix}$. $R = \begin{bmatrix} \mid \mid \vec{v}_1 \mid \mid & \vec{u}_1 \cdot \vec{v}_2 & \vec{u}_1 \cdot \vec{v}_3 \\\ 0 & \mid \mid \vec{v}_2 ^{\bot} \mid \mid & \vec{u}_2 \cdot \vec{v}_3 \\\ 0 & 0 & \mid \mid \vec{v}_3 ^{\bot } \mid \mid \end{bmatrix}$ *Solution*: $R = \begin{bmatrix} 10 & 10 & 0 \\\ 0 & \sqrt{2} & -\sqrt{2} \\\ 0 & 0 & \sqrt{2} \end{bmatrix}$ $\mid \mid \vec{v}_1 \mid \mid = \sqrt{1 + 49 + 1 + 49} = 10$ $\vec{u}_1 = \begin{bmatrix} \frac{1}{10} \\\ \frac{7}{10} \\\ \frac{1}{10} \\\ \frac{7}{10} \end{bmatrix}$ $\vec{v}_2 ^{\bot} = \vec{v}_2 - \left( \vec{u}_1 \cdot \vec{v}_2 \right) \vec{u}_1$ $\vec{v}_2 ^{\bot} = \begin{bmatrix} 0 \\\ 7 \\\ 2 \\\ 7 \end{bmatrix} - \left( \frac{100}{10} \right) \begin{bmatrix} \frac{1}{10} \\\ \frac{7}{10} \\\ \frac{1}{10}\\\ \frac{7}{10} \end{bmatrix} = \begin{bmatrix} -1 \\\ 0 \\\ 1 \\\ 0 \end{bmatrix}$ $\mid \mid \vec{v}_2 ^{\bot} \mid \mid = \sqrt{2} $ $\vec{u}_2 = \begin{bmatrix} -\frac{1}{\sqrt{2} } \\\ 0 \\\ \frac{1}{\sqrt{2} } \\\ 0 \end{bmatrix}$ $\vec{v}_3 ^{\bot} = \vec{v}_3 - \left( \vec{u}_1 \cdot \vec{v}_3 \right) \vec{u}_1 - \left( \vec{u}_2 \cdot \vec{v}_3 \right) \vec{u}_2$ $\vec{v}_3 ^{\bot} = \begin{bmatrix} 1 \\\ 1 \\\ - 1\\\ -1 \end{bmatrix} - \left( \frac{8-8}{10} \right) \begin{bmatrix} \frac{1}{10} \\\ \frac{7}{10} \\\ \frac{1}{10} \\\ \frac{7}{10} \end{bmatrix} - \left( -\sqrt{2} \right) \begin{bmatrix} -\frac{1}{\sqrt{2} }\\\ 0 \\\ \frac{1}{\sqrt{2} } \\\ 0 \end{bmatrix}$ $\vec{v}_3 ^{\bot} = \begin{bmatrix} 1 \\\ 1 \\\ -1 \\\ -1 \end{bmatrix} + \begin{bmatrix} -1 \\\ 0 \\\ 1 \\\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\\ 1 \\\ 0 \\\ -1 \end{bmatrix}$ $\vec{u}_3 = \frac{\vec{v}_3 ^{\bot}}{ \mid \mid \vec{v}_3 ^{\bot} \mid \mid } = \begin{bmatrix} 0 \\\ \frac{1}{\sqrt{2} } \\\ 0 \\\ -\frac{1}{\sqrt{2} } \end{bmatrix} $ $\therefore Q = \begin{bmatrix} \frac{1}{10} & -\frac{1}{\sqrt{2} } & 0 \\\ \frac{7}{10} & 0 & \frac{1}{\sqrt{2} } \\\ \frac{1}{10} & \frac{1}{\sqrt{2} } & 0 \\\ \frac{7}{10} & 0 & -\frac{1}{\sqrt{2} } \end{bmatrix}$
How else can we find $R$? * Case 1: $A$, $Q$ are $n \times n$ square. * $A$ and $Q$ have linearly independent columns which means that $Q$ is invertible. * $Q^{-1}A = Q^{-1}QR \implies R = Q^{-1} A$ * Case 2: Often $A$, $Q$ are $n\times m$ with $n \neq m$ (n > m)
Definition: The transpose of $Q$, denoted $Q^{T}$, has (i, j)-entry the (j, i)-entry of $Q$. When $Q = \begin{bmatrix} \| & \| & & \| \\\ \vec{u}_1 & \vec{u}_2 & \cdots & \vec{u}_m \\\ \| & \| & & \| \end{bmatrix}$ with $\\{ \vec{u}_i \\}$ orthonormal, $Q^{T} = \begin{bmatrix} -- & \vec{u}_1 ^{T} & -- \\\ -- & \vec{u}_2 ^{T} & -- \\\ & \vdots & \\\ -- & \vec{u}_m & -- \end{bmatrix}$. $$ Q^T Q = \begin{bmatrix} -- & \vec{u}_1 ^{T} & -- \\\ -- & \vec{u}_2 ^{T} & -- \\\ & \vdots & \\\ -- & \vec{u}_m & -- \end{bmatrix} \begin{bmatrix} | & & | \\ \vec{u}_1 & \cdots & \vec{u}_m \\ | & & | \end{bmatrix} = I_m $$ Has (i, j)-entry $\vec{u}_j \cdot \vec{u}_j = \begin{cases} 1 & \text{if } i=j \\\ 0 & \text{if } i\neq j \end{cases}$
Way #2 of finding matrix $R$ : We have $Q^{T}Q = I_m$. $A = QR \implies Q^{T}A = Q^{T}QR \implies R = Q^{T}A$
Example $A = \begin{bmatrix} 1 & 0 & 1 \\\ 7 & 7 & 1 \\\ 1 & 2 & -1 \\\ 7 & 7 & -1 \end{bmatrix}$ and $Q = \begin{bmatrix} \frac{1}{10} & -\frac{1}{\sqrt{2} } & 0 \\\ \frac{7}{10} & 0 & \frac{1}{\sqrt{2} } \\\ \frac{1}{10} & \frac{1}{\sqrt{2} } & 0 \\\ \frac{7}{10} & 0 & -\frac{1}{\sqrt{2} } \end{bmatrix}$ $Q^{T}A = \begin{bmatrix} \frac{1}{10} & \frac{7}{10} & \frac{1}{10} & \frac{7}{10} \\\ -\frac{1}{\sqrt{2} } & 0 & \frac{1}{\sqrt{2} } & 0 \\\ 0 & \frac{1}{\sqrt{2} } & 0 & -\frac{1}{\sqrt{2} } \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\\ 7 & 7 & 1 \\\ 1 & 2 & - 1\\\ 7 & 7 & -1 \end{bmatrix} = \begin{bmatrix} 10 & 10 & 0 \\\ 0 & \sqrt{2} & -\sqrt{2} \\\ 0 & 0 & \sqrt{2} \end{bmatrix}$
# 5.3 Orthogonal Transformations and Orthogonal Matrices
Orthogonal Transformations: $T : \mathbb{R}^{n} \to \mathbb{R}^{n}$ **Definition**: $ \mid \mid T \left( \vec{x} \right) \mid \mid = \mid \mid \vec{x} \mid \mid $ for all $\vec{x} \in \mathbb{R}^{n}$. i.e. $T$ preserves lengths. $\text{ker}\left( T \right) = \\{ \vec{0} \\}$ (Any vector mapping to $\vec{0}$ must have 0 length) $T$ is invertible $T^{-1}$ is an orthogonal transformation If $T_1$, $T_2 : \mathbb{R}^{n} \to \mathbb{R}^{n}$ are orthogonal transformations, $T_1 \cdot T_2$ orthogonal transformation
Orthogonal Matrices: $n\times n$ matrix $A$ **Definition**: The transformation $T \left( \vec{x} \right) = A \vec{x}$ is an orthogonal transformation. **Characterization**: Columns of $A$ form an orthonormal basis for $\mathbb{R}^{n}$. $A^{-1}$ is an orthogonal matrix. If $A_1$ and $A_2$ are orthogonal matrices, $A_1A_2$ is an orthogonal matrix
Example $A = \begin{bmatrix} \frac{\sqrt{2} }{2} & \frac{-\sqrt{2} }{2} \\\ \frac{\sqrt{2} }{2} & \frac{\sqrt{2} }{2} \end{bmatrix}$ The transformation $T : \mathbb{R}^{2} \to \mathbb{R}^{2}$ given by $T\left( \vec{x} \right) = A\vec{x}$ is rotation counter-clockwise by $\theta = \frac{\pi}{4}$.
Example $A = \begin{bmatrix} 0 & 1 \\\ 1 & 0 \end{bmatrix}$ The transformation $T : \mathbb{R}^{2}\to \mathbb{R}^{2}$ given by $T\left( \vec{x} \right) = A \vec{x}$ is a reflection about the line $y=x$
**Non-Example**: $A = \begin{bmatrix} 1 & 0 \\\ 0 & 0 \end{bmatrix} $. The transformation $T : \mathbb{R}^{2} \to \mathbb{R}^{2}$ given by $T \left( \vec{x} \right) = A \vec{x}$ is orthogonal projection onto $x$-axis. * This is because it does not preserve length. * Orthogonal projection is not an orthogonal transformation **Remark**: For any subspace $V$ of $\mathbb{R}^{n}$ and $\vec{x} \in \mathbb{R}^{n}$, $$ \mid \mid \text{proj}_v (\vec{x}) \mid \mid \le \mid \mid \vec{x} \mid \mid \text{ with equality if and only if } \vec{x} \in V $$ $\vec{x} = \text{proj}_V \left( \vec{x} \right) + \vec{x}^{\bot}$ where $\vec{x}^{\bot}$ is orthogonal to $\text{proj}_V \left( \vec{x} \right) $ $ \mid \mid \vec{x} \mid \mid ^{2} = \mid \mid \text{proj}_V \left( \vec{x} \right) \mid \mid ^{2} + \mid \mid \vec{x}^{\bot} \mid \mid ^{2} \ge \mid \mid \text{proj}_V \left( \vec{x} \right) \mid \mid ^{2}$ Let's justify. The columns of an $n\times n$ orthogonal matrix form an orthonormal basis for $\mathbb{R}^{n}$. **Theorem**: If $T : \mathbb{R}^{n} \to \mathbb{R}^{n}$ is an orthogonal transformation and $\vec{v}$ and $\vec{w}$ are orthonormal, then $T \left( \vec{v} \right)$ and $T \left( \vec{w} \right)$ are orthonormal. **Proof**: 1) Show $T \left( \vec{v} \right)$ and $T \left( \vec{w} \right) $ are orthogonal. Assume $ \mid \mid \vec{v} + \vec{w} \mid \mid ^{2} = \mid \mid \vec{v} \mid \mid ^{2} + \mid \mid \vec{w} \mid \mid ^{2}$. Show $ \mid \mid T \left( \vec{v} \right) + T \left( \vec{w} \right) \mid \mid ^{2} = \mid \mid T \left( \vec{v} \right) \mid \mid ^{2} + \mid \mid T \left( \vec{w} \right) \mid \mid ^{2}$. We have $ \mid \mid T \left( \vec{v} + T \left( \vec{w} \right) \right) \mid \mid ^{2}$ (T is linear) $= \mid \mid \vec{v} + \vec{w} \mid \mid ^{2}$ (T preserves length) $= \mid \mid \vec{v} \mid \mid ^{2} + \mid \mid \vec{w} \mid \mid ^{2}$ ($\vec{v}_1$ and $\vec{w}$ are orthogonal) $= \mid \mid T \left( \vec{v} \right) \mid \mid ^{2} + \mid \mid T \left( \vec{w} \right) \mid \mid ^{2}$. (T preserves lengths) 2) Show $T \left( \vec{v} \right)$ and $T \left( \vec{w} \right)$ are unit. $\vec{v}$ and $\vec{w}$ are unit. T preserves length $T \left( \vec{v} \right)$ and $T \left( \vec{w} \right)$ are unit. * $T : \mathbb{R}^{n} \to \mathbb{R}^{n}$ is an orthogonal transformation if and only if $\\{ T \left( \vec{e}_1 \right) , T \left( \vec{e}_2 \right) , \cdots T \left( \vec{e}_n \right) \\}$ is an orthonormal basis for $R^{n}$. * The columns of an $n\times n$ orthogonal matrix form an orthonormal basis for $\mathbb{R}^{n}$. Recall: QR Factorization if $A$ has linearly independent columns, we may write $A=QR$ where $Q$ has orthonormal columns and $R = Q^{T}A$.
Definition: Consider an $m\times n$ matrix $A$, the transpose $A^{T}$ is the $n\times m$ matrix such that (i, j)-entry of $A^{T}$ is the (j, i)-entry of $A$. In other words: interchange rows and columns
Example $A = \begin{bmatrix} 2 & 4 \\\ 7 & 0 \\\ 1 & 0 \\\ 2 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 3 \\\ 3 & 2 \end{bmatrix}$. Find $A^{T}$ and $B^{T}$. $A^{T} = \begin{bmatrix} 2 & 7 & 1 & 2 \\\ 4 & 0 & 0 & 1 \end{bmatrix}$ $B^{T} = \begin{bmatrix} 1 & 3 \\\ 3 & 2 \end{bmatrix} = B$
Note: for any $A$, $\text{im}\left( A^{T} \right) = \text{row }\left( A \right)$ (row space of $A$)
Definition: A square matrix $A$ is * symmetric provided $A^{T} = A$ * skew-symmetric provided $A^{T} = -A$
Properties: (1, 2, 3 for any matrices such that operations are defined. 4 provided $A$ is $n\times n$ and invertible) 1. $\left( A +B \right) ^{T} = A^T + B^{T}$ 2. $\left( AB \right) ^{T} = B^{T}A^{T}$ 3. $\text{rank}\left( A^{T} \right) = \text{rank}\left( A \right) $ 4. $\left( A^{-1} \right) ^{T} = \left( A^{T} \right) ^{-1}$ Proof of 2) Suppose $A$ is $m\times p$ with $A = \begin{bmatrix} -- & \vec{w}_1 & -- \\\ & \vdots & \\\ -- & \vec{m}_m & -- \end{bmatrix} $ and $B$ is $p\times n$ with $B = \begin{bmatrix} \| & & \| \\\ \vec{v}_1 & \cdots & \vec{v}_m \\\ \| & & \| \end{bmatrix}$. $B^{T} = \begin{bmatrix} -- & \vec{v}_1 ^{T} & -- \\\ -- & \vec{v}_2 ^{T} & -- \\\ & \vdots & \\\ -- & \vec{v}_n ^{T} & -- \end{bmatrix}$ $A^{T} = \begin{bmatrix} \| & & \| \\\ \vec{w}_1 & \cdots & \vec{w}_m \\\ \| & & \| \end{bmatrix}$ * $(i, j)$-entry of $(AB)^{T}$ : $(jji)$-entry of $AB$ -- $\vec{w}_j \cdot \vec{v}_i$ * $\left( i, j \right) $-entry of $B^{T}A^{T}$ : $\vec{v}_i ^{T} \cdot \vec{w}_j = \vec{v}_j \cdot \vec{w}_j = \vec{w}_j \cdot \vec{v}_i$ Dot product does not distinguish between rows and columns
Example Verify that $\left( A^{-1} \right) ^{T} = \left( A^{T} \right) ^{-1}$ for the matrix $A = \begin{bmatrix} 2 & 1 \\\ 0 & -1 \end{bmatrix}$. Recall: $\begin{bmatrix} a & b \\\ c & d \end{bmatrix} ^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\\ -c & a \end{bmatrix}$ * $\left( A^{-1} \right) ^{T} = \left( \frac{1}{-2} \begin{bmatrix} -1 & -1 \\\ 0 & 2 \end{bmatrix} \right) ^{T} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\\ 0 & -1 \end{bmatrix} ^{T} = \begin{bmatrix} \frac{1}{2} & 0 \\\ \frac{1}{2} & -1 \end{bmatrix}$ * $\left( A^{T} \right) ^{-1} = \begin{bmatrix} 2 & 0 \\\ 1 & -1 \end{bmatrix} ^{-1} = \frac{1}{-2} \begin{bmatrix} -1 & 0 \\\ -1 & 2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 \\\ \frac{1}{2} & -1 \end{bmatrix}$ Note: $\text{det}\left(A \right) = \text{det}\left( A^{T} \right)$
**Exercise**: Suppose $A$ and $B$ are $n\times n$ orthogonal matrices, which of the following must be orthogonal? $$ 2B , AB^2 , A -B $$ 2B: Columns are not unit $AB^2$: Yes; $B^2 = BB$ orthogonal $A-B$: Columns are not unit Suppose $A$ and $B$ are $n\times n$ symmetric matrices, which of the following must be symmetric? $$ 2B , AB^2 , A-B $$ * $(2B)^T = 2B^T = 2B$ Yes * $(AB^2)^T = \left( B^{2} \right) ^{T} A^{T} = B^{T}B^{T}A^{T} = B^{2}A$ No * $(A-B)^{T} = A^{T} - B^{T} = A-B$ Yes **Theorem**: For an $n\times n$ matrix $A$, $A$ is an orthogonal matrix: 1. If and only if $A^{T}A = I_{n}$ and 2. If and only if $A^{T} = A^{-1}$ Note: (2) follows from (1) (Criterion for infertility) Proof of (1): Suppose $A$ is $n\times n$ with $A = \begin{bmatrix} \| & \| & & \| \\\ \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_n \\\ \| & \| & & \| \end{bmatrix}$. $A^{T}A$ has (i, j)-entry $\vec{v}_i^T \cdot \vec{v}_j = \vec{v}_i \cdot \vec{v}_j$ $A^{T}A = I_{n}$ if and only if $\vec{v}_i \cdot \vec{v}_j = \begin{cases} 1 & i=j \text{(unit)} \\\ 0 & i\neq j \text{Perpendicular} \end{cases}$ Note: We can interpret the dot product as a matrix product. For $\vec{x} = \begin{bmatrix} x_1 \\\ \vdots \\\ x_n \end{bmatrix}$ and $\vec{x}^T = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}$ For $\vec{x}$ and $\vec{y}$ in $\mathbb{R}^{n}$, $\vec{x}\cdot \vec{y} = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\\ \vdots \\\ y_n \end{bmatrix} = \vec{x}^{T} \vec{y}$ **Theorem**: If $T$ is an orthogonal transformation then $T$ preserves dot product, i.e. $T\left( \vec{x} \right) \cdot T\left( \vec{y} \right) = \vec{x} \cdot \vec{y}$. Proof: $$ \begin{align*} T(\vec{x}) \cdot T(\vec{y}) & = A\vec{x} \cdot A \vec{y} \\ & = (A\vec{x})^T A \vec{y} \\ & = \vec{x}^T A^T A \vec{y} \\ & = \vec{x}^T \vec{y} \\ & = \vec{x} \cdot \vec{y} \end{align*} $$
Example Let $\vec{v}_1 = \begin{bmatrix} 1 \\\ 1 \\\ 1 \\\ 1 \end{bmatrix} $, $\vec{v}_2 = \begin{bmatrix} 1 \\\ 1 \\\ 1 \\\ -1 \end{bmatrix}$, $\vec{y}_1 = \begin{bmatrix} 2 \\\ 0 \\\ 0 \\\ 0 \end{bmatrix}$, $\vec{y}_2 = \begin{bmatrix} 0 \\\ 2 \\\ 0 \\\ 0 \end{bmatrix}$. Show there is no orthogonal transformation $T : \mathbb{R}^{4} \to \mathbb{R}^{4}$ such that $T\left( \vec{v}_1 \right) = \vec{y}_1$ and $T\left( \vec{v}_2 \right) = \vec{y}_2$. We would need $T \left( \vec{v}_1 \right) \cdot T\left( \vec{v}_2 \right) = \vec{v}_1 \cdot \vec{v}_2$. $\vec{v}_1 \cdot \vec{v}_2 = 1 + 1 + 1 - 1 =2$ $\vec{y}_1 \cdot \vec{y}_2 = 0 \neq 2$ No such orthogonal transformation exists.
Suppose $T : \mathbb{R}^{n}\to \mathbb{R}^{n}$ is an orthogonal transformation. Show $T$ preserves angles. That is, for any nonzero $\vec{v}$ and $\vec{w}$ in $\mathbb{R}^{n}$, the angle between $T\left( \vec{v} \right)$ and $T\left( \vec{w} \right)$ equals the angle between $\vec{v}$ and $\vec{w}$. $\cos ^{-1} \left( \frac{\vec{v}\cdot \vec{w}}{ \mid \mid \vec{v} \mid \mid \cdot \mid \mid \vec{w} \mid \mid } \right) = \cos ^{-1} \left( \frac{T\left( \vec{v} \right) \cdot T\left( \vec{w} \right) }{ \mid \mid T \left( \vec{v} \right) \mid \mid \cdot \mid \mid T \left( \vec{w} \right) \mid \mid } \right)$ Question: Suppose $T : \mathbb{R}^{n} \to \mathbb{R}^{n}$ preserves angles. Is $T$ necessarily an orthogonal transformation? Answer: No! Scaling by $k$ preserves angle. **Review of ideas/terminology from 3.2, 3.3, 5.1**: Question: What is the span of vectors in $\mathbb{R}^{n}$? Answer: All linear combinations Question: What is a basis for a subspace $W$ of $\mathbb{R}^{n}$? Answer: A (finite) collection $\mathcal{B}$ of vectors in $W$ such that: * $\mathcal{B}$ is linearly independent * $\text{span}\left( \mathcal{B} \right) = W$
Example Let $W = \\{ \begin{bmatrix} x \\\ y \\\ z \end{bmatrix} \in \mathbb{R}^{3} : x = 0 \\}$. $W = \text{ker} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ $x = 0$ $y = t$ (free) $z = r$ (free) $$ \begin{bmatrix} 0 \\ t \\ r \end{bmatrix} = t \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + r \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} $$ Basis: $\\{ \begin{bmatrix} 0 \\\ 1 \\\ 0 \end{bmatrix} , \begin{bmatrix} 0 \\\ 0 \\\ 1 \end{bmatrix} \\}$ $\text{dim}\left( W \right) = 2$ Note: This is not the only basis for $W$.
Let $\vec{w}_1 = \begin{bmatrix} 0 \\\ 1 \\\ 1 \end{bmatrix}$ and $\vec{w}_2 = \begin{bmatrix} 0 \\\ -1 \\\ 1 \end{bmatrix}$. Let's verify $\mathcal{B} = \\{ \vec{w}_1 , \vec{w}_2 \\}$ a basis for $W = \\{ \begin{bmatrix} x \\\ y \\\ z \end{bmatrix} \in \mathbb{R}^{3} : c = 0 \\}$. Using only the definition of basis (and not the theory we will review) * Linear Independence: $\vec{w}_1$ and $\vec{w}_2$ are nonzero. $\vec{w}_2$ is not a multiple of $\vec{w}_1$. No redundant vectors. * $\text{span} \left( \mathcal{B} \right) = W$ $$ \begin{bmatrix} 0 \\ y \\ z \end{bmatrix} = a \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + b \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} $$ $$ \begin{bmatrix} 0 \\ y \\ z \end{bmatrix} = \frac{y+z}{2} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + \frac{z-y}{2} \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} $$ Find $a$ and $b$. $a - b = y$ $a + b = z$ $2a = y+z$ $a = \frac{y+z}{2}$ $b = z - \frac{y+z}{2}$ $= \frac{z-y}{2}$ **Some theory from 3.3** Suppose we know $\text{dim} \left( W \right) = m$ and $\mathcal{B}_1$ and $\mathcal{B}_2$ $\subseteq W$. If $\mathcal{B}_1$ is linearly independent and $\mathcal{B}_2$ spans $W$, then $ \mid \mathcal{B}_1 \mid \le \mid \mathcal{B}_2 \mid $. * Any collection of $m$ linearly independent vectors in $W$ is a basis for $W$. * Any collection of $m$ vectors that span $W$ is a basis for $W$.
Example $\\{ \begin{bmatrix} 1 \\\ 2 \\\ 1 \end{bmatrix} , \begin{bmatrix} 3 \\\ 1 \\\ 0 \end{bmatrix} \\}$ is not a basis for $\mathbb{R}^{3}$. Vectors are independent. 2 Vectors cannot span $\mathbb{R}^{3}$.
Example $\\{ \begin{bmatrix} 1 \\\ 2 \\\ 1 \end{bmatrix} , \begin{bmatrix} 3 \\\ 1 \\\ 0 \end{bmatrix} , \begin{bmatrix} 5 \\\ 0 \\\ 0 \end{bmatrix} \\}$ is a basis for $\mathbb{R}^{3}$. $$ c_1 \begin{bmatrix} 1 \\ 2 \\1 \end{bmatrix} + c_2 \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} + c_3 \begin{bmatrix} 5 \\ 0 \\ 0 \end{bmatrix} = \vec{0} $$ 3rd line $c_1 =0$ 2nd line $c_2 = 0$ 1st line $5c_3 = 0 \implies c_3 =0$ * Vectors are independent * $\text{dim}\left( \mathbb{R}^{3} \right) = 3$
Example $\\{ \begin{bmatrix} 1 \\\ 2 \\\ 1 \end{bmatrix} , \begin{bmatrix} 3 \\\ 1 \\\ 0 \end{bmatrix} , \begin{bmatrix} 5 \\\ 0 \\\ 0 \end{bmatrix} , \begin{bmatrix} 1 \\\ 1 \\\ 1 \end{bmatrix} \\}$ is not a basis for $\mathbb{R}^{3}$. Vectors span $\mathbb{R}^{3}$. 4 vectors cannot be independent in $\mathbb{R}^{3}$, however.
Question: How do we find the dimension of a subspace? Answer: We can use Rank-Nullity Theorem. Suppose $A$ is $n\times m$. $$ \text{dim} (\text{im} (A)) + \text{dim} (\text{ker} (A)) = m $$ * If $V = \text{im} \left( A \right) $, then $\text{dim} \left( V \right) = \text{rank}\left( A \right)$ * If $W = \text{ker}\left( A \right) $, then $\text{dim}\left( W \right) = m - \text{rank}\left( A \right) $. Question 3 #2: For $Z = \\{ \begin{bmatrix} x_1 \\\ x_2 \\\ x_3 \end{bmatrix} \in \mathbb{R}^{3} : x_1 = 0 \text{ and } x_2 + 5x_3 = 0 \\}$, $\text{dim}\left( Z \right) =1$. $Z = \text{ker} \left( \begin{bmatrix} 1 & 0 & 0 \\\ 0 & 1 & 5 \end{bmatrix} \right) $ Matrix has rank 2. $\text{dim}\left( Z \right) = 3 - 2 =1$ Quiz 3 #1B: The dimension of $\text{span} \\{ \begin{bmatrix} 1 \\\ 0 \\\ 1 \end{bmatrix} , \begin{bmatrix} 0 \\\ 0 \\\ 0 \end{bmatrix} , \begin{bmatrix} 0 \\\ 2 \\\ 0 \end{bmatrix} , \begin{bmatrix} 4 \\\ 4 \\\ 4 \end{bmatrix} , \begin{bmatrix} 3 \\\ -2 \\\ 3 \end{bmatrix} \\}$ is 2. $$ \begin{bmatrix} 1 & 0 & 0 & 4 & 3 \\ 0 & 0 & 2 & 4 & -2 \\ 1 & 0 & 0 & 4 & 3 \end{bmatrix} \to \begin{bmatrix} 1 & 0 & 0 & 4 & 3 \\ 0 & 0 & 2 & 4 & -2 0 & 0 & 0 & 0 & 0 \end{bmatrix} $$ Rank is 2. $\text{dim} \left( \text{im}\left( A \right) \right) = 2 < 3$ $\text{im}\left( A \right) \neq \mathbb{R}^{3}$ Question: What is the orthogonal complement of a subspace $V$ of $\mathbb{R}^{n}$? $V^{\bot} = \\{ \vec{x} \in \mathbb{R}^{n} : \vec{x} \cdot \vec{v} = 0 \forall \vec{v} \in V \\}$ $V^{\bot}$ is a subspace of $\mathbb{R}^{n}$. * $V \cap V^{\bot} = \\{ \vec{0} \\}$ * $\text{dim} \left( V \right) + \text{dim} \left( V^{\bot} \right) = n$ In example: 2 + 1 = 3 Note: * $\vec{x}$ is in $V^{\bot}$ if and only if $\vec{x} \cdot \vec{v} = 0$ for $\vec{v}$ in a basis for $V$. * For $V$ and $W$ subspaces, $W = V^{\bot}$ if and only if every vector in a basis for $W$ is perpendicular to every vector in a basis $V$. Four subspaces of a matrix. $A (n \times m)$ * $\text{im}\left( A \right) \subseteq \mathbb{R}^{n}$ * $\text{ker}\left( A \right) \subseteq \mathbb{R}^{m}$ $A^{T} (m \times n)$ * $\text{im}\left( A^{T} \right) \subseteq \mathbb{R}^{m}$ * $\text{ker}\left( A^{T} \right) \subseteq \mathbb{R}^{n}$ Properties: * $\text{dim} \left( \text{im}\left( A \right) \right) = k$ * $\text{dim}\left( \text{ker}\left( A \right) \right) = m -k$ * $\text{dim}\left( \text{im}\left( A^{T} \right) \right) = k$ * $\text{dim}\left( \text{ker}\left( A^{T} \right) \right) = n -k$ Relationship: $\text{ker}\left( A^{T} \right) = \left( \text{im}\left( A \right) \right) ^{\bot}$ in $\mathbb{R}^{n}$ (we use in 5.4) $\text{ker}\left( A \right) = \left( \text{im}\left( A^{T} \right) \right) ^{\bot}$
Example $A = \begin{bmatrix} 1 & 0 & 0 \\\ 0 & 1 & 0 \end{bmatrix}$ $A^{T}= \begin{bmatrix} 1 & 0 \\\ 0 & 1 \\\ 0 & 0 \end{bmatrix} $ Orthogonal complements $\text{ker}\left( A^{T} \right) = \\{ \vec{0} \\}$ $\text{im}\left( A \right) = \mathbb{R}^{2}$ $\text{ker}\left( A \right) = \text{span} \\{ \begin{bmatrix} 0 \\\ 0 \\\ 1 \end{bmatrix} \\}$ $\text{im}\left( A^{T} \right) = \text{span} \\{ \begin{bmatrix} 1 \\\ 0 \\\ 0 \end{bmatrix} , \begin{bmatrix} 0 \\\ 1 \\\ 0 \end{bmatrix} \\}$
In 5.4 we will use $\text{im}\left( A \right) ^{\bot} = \text{ker}\left( A^{T} \right) $
Example $A = \begin{bmatrix} 1 & 0 & 0 \\\ 2 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 1 & 0 \end{bmatrix}$. Verify that $\text{im}\left( A \right) ^{\bot} = \text{ker}\left( A^{T} \right)$. $A^{T} = \begin{bmatrix} 1 & 2 & 0 & 0 \\\ 0 & 0 & 1 & 1 \\\ 0 & 0 & 0 & 0 \end{bmatrix}$ $\text{ker}\left( A^{T} \right)$: $x_2 = t$ $x_4 = r$ $x_1 = -2t$ $x_3 = -r$ $$ \begin{bmatrix} -2t \\ t \\ -r \\ r \end{bmatrix} = t \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + r \begin{bmatrix} 0 \\ 0 \\ -1 \\ 1 \end{bmatrix} $$
Basis: $\\{ \begin{bmatrix} -2 \\\ 1 \\\ 0 \\\ 0 \end{bmatrix} , \begin{bmatrix} 0 \\\ 0 \\\ -1 \\\ 1 \end{bmatrix} \\}$ $\text{im}\left( A \right) $ : Basis: $\\{ \begin{bmatrix} 1 \\\ 2 \\\ 0 \\\ 0 \end{bmatrix} , \begin{bmatrix} 0 \\\ 0 \\\ 1 \\\ 1 \end{bmatrix} \\}$ Notice: Each element in basis for $\text{im}\left( A \right) $ is perpendicular to each element in a basis for $\text{ker}\left( A^{T} \right)$. # 5.4 Least Squares and Data Fitting Suppose $A$ is $n\times m$ matrix. For $\vec{b}$ in $\mathbb{R}^{n}$, the system $A\vec{x} = \vec{b}$ may have no solution. That is, $b \not\in A$. Question: How do we find a vector in $\mathbb{R}^{m}$ that is "almost" a solution? We want: $\vec{x}^{\star} \in \mathbb{R}^{m}$ that makes $ \mid \mid \vec{b} - A \vec{x}^{\star} \mid \mid $ as small as possible. $\text{proj}_{\text{im}\left( A \right) } \vec{b} = A \vec{x}^{\star}$ for some $\vec{x}^{\star}$ in $\mathbb{R}^{m}$. This $\vec{x}^{\star}$ is a *least squares solution*. Without using any theory, too many steps involved: 1. Find orthonormal basis for $\text{im}\left( A \right) $. Using Gram-Schmidt Process. 2. Project $\vec{b}$ onto $\text{im}\left( A \right)$. Using the orthonormal basis. 3. Solve linear system $A\vec{x} = \text{proj}_{\text{im}\left( A \right)} \left( \vec{b} \right)$. Using Gauss Jordan Elimination. How to find $\vec{x}^{\star}$ : $A\vec{x}^{\star}$ is the vector in $\text{im}\left( A \right)$ closest to $\vec{b} \leftrightarrow A\vec{x}^{\star} = \text{proj}_{\text{im}\left( A \right)}\left( \vec{b} \right)$. * $\vec{b} - A\vec{x}^{\star}$ is in $\left( \text{im}\left( A \right) \right) ^{\bot}$ * $\vec{b} - A \vec{x}^{\star}$ is in $\text{ker}\left( A^{T} \right)$ * $A^{T}\left( \vec{b} - A\vec{x}^{\star} \right) = \vec{0} \leftrightarrow A^{T}\vec{b} - A^{T}A \vec{x}^{\star} = \vec{0}$ * $\left( A^{T}A \right) \vec{x}^{\star} = \left( A^{T} \vec{b} \right) $
Definition: The least squared solutions of the system $A\vec{x}=\vec{b}$ are the solutions to the system $$ A^{T} A \vec{x} = A^T \vec{b} $$ (Called the normal equation of the system $A\vec{x}= \vec{b}$) Method of Least Squares: If $A\vec{x} = \vec{b}$ is inconsistent, multiply by $A^{T}$ and solve: $A^{T}A\vec{x} = A^{T}\vec{b}$ Note: The normal equation is *always* consistent.
5.4 #20: Let $A = \begin{bmatrix} 1 & 1 \\\ 1 & 0 \\\ 0 & 1 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 3 \\\ 3 \\\ 3 \end{bmatrix}$. Find the least squares solution $\vec{x}^{\star}$ of the system $A\vec{x}= \vec{b}$. Verify $\vec{b} - A\vec{x}^{\star}$ is perpendicular to the image of $A$. $A^{T}A \vec{x} = A^{T}\vec{b}$ $A^{T}A = \begin{bmatrix} 1 & 1 & 0 \\\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\\ 1 & 0 \\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\\ 1 & 2 \end{bmatrix}$ $\begin{bmatrix} 2 & 1 \\\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\\ x_2 \end{bmatrix} = \begin{bmatrix} 6 \\\ 6 \end{bmatrix}$ $A^{T}\vec{b} = \begin{bmatrix} 1 & 1 & 0 \\\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\\ 3 \\\ 3 \end{bmatrix} = \begin{bmatrix} 6 \\\ 6 \end{bmatrix}$ $\left( A^{T}A \right) ^{-1} = \frac{1}{4-1} \begin{bmatrix} 2 & -1 \\\ -1 & 2 \end{bmatrix} = \begin{bmatrix} \frac{2}{3} & -\frac{1}{3} \\\ -\frac{1}{3} & \frac{2}{3} \end{bmatrix}$ $\vec{x}^{\star} = \begin{bmatrix} \frac{2}{3} & -\frac{1}{3} \\\ -\frac{1}{3} & \frac{2}{3} \end{bmatrix} \begin{bmatrix} 6 \\\ 6 \end{bmatrix} = \begin{bmatrix} 2 \\\ 2 \end{bmatrix}$ (Least squares solution) $\vec{b} - A\vec{x} = \begin{bmatrix} 3 \\\ 3 \\\ 3 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\\ 1 & 0\\\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\\ 3 \\\ 3 \end{bmatrix} - \begin{bmatrix} 4 \\\ 2 \\\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\\ 1 \\\ 1 \end{bmatrix}$ (Notice this is orthogonal to each column of $A$)
Example Find the closest line to points (-1, 6), (1, 0), (2, 4). $f(t) = c_0 + c_1 t$ $6 = c_0 - c_1$ $0 = c_0 + c_1$ $4 = c_0 + 2c_1$ Inconsistent Linear System: $\begin{bmatrix} 1 & -1 \\\ 1 & 1 \\\ 1 & 2 \end{bmatrix} \begin{bmatrix} c_0 \\\ c_1 \end{bmatrix} = \begin{bmatrix} 6 \\\ 0 \\\ 4 \end{bmatrix} $ * Solve $A^{T}A\vec{x} = A^{T}\vec{b}$ $A^{T}A = \begin{bmatrix} 1 & 1 & 1 \\\ -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\\ 1 & 1 \\\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\\ 2 & 6 \end{bmatrix}$ $A^{T}\vec{b} = \begin{bmatrix} 1 & 1 & 1 \\\ -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 6 \\\ 0 \\\ 4 \end{bmatrix} = \begin{bmatrix} 10 \\\ 2 \end{bmatrix}$ $\left( A^{T}A \right) ^{-1} = \frac{1}{18-4} \begin{bmatrix} 6 & -2 \\\ -2 & 3 \end{bmatrix} = \begin{bmatrix} \frac{6}{14} & -\frac{2}{14} \\\ -\frac{2}{14} & \frac{3}{14} \end{bmatrix} $ $\vec{x}^{\star} = \begin{bmatrix} \frac{6}{14} & -\frac{2}{14} \\\ -\frac{2}{14} & \frac{3}{14} \end{bmatrix} \begin{bmatrix} 10 \\\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\\ -1 \end{bmatrix}$ $f(t) = 4 - t$ Question: How close is $\vec{b}$ to $A\vec{x}^{\star}$? $\vec{b} - A\vec{x}^{\star} = \begin{bmatrix} 6 \\\ 0 \\\ 4 \end{bmatrix} - \begin{bmatrix} 1 & -1 \\\ 1 & 1 \\\ 1 & 2 \end{bmatrix} \begin{bmatrix} 4 \\\ -1 \end{bmatrix} = \begin{bmatrix} 6 \\\ 0 \\\ 4 \end{bmatrix} - \begin{bmatrix} 5 \\\ 3 \\\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\\ -3 \\\ 2 \end{bmatrix}$ (Gives vertical "errors" from points)
Definition: Using the least squares method, the error is $ \mid \mid \vec{b} - A\vec{x}^{\star} \mid \mid$.
In the above example: $ \mid \mid \vec{b} - A\vec{x}^{\star} \mid \mid = \mid \mid \begin{bmatrix} 1 \\\ -2 \\\ 2 \end{bmatrix} \mid \mid = \sqrt{1 + 9 + 4} = \sqrt{14}$ Least squares method minimizes $e_1^{2} + e_2^{2} + e_3^{3}$ **Exercise** Given $A = \begin{bmatrix} 1 & 1 \\\ 1 & -2 \\\ 1 & 1 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 3 \\\ 2 \\\ 1 \end{bmatrix}$. Find the least squares solution $\vec{x}^{\star}$ of the system $A\vec{x} = \vec{b}$. Solve $A^{T}A\vec{x} = A^{T}\vec{b}$ (Normal equation) $A^{T}A = \begin{bmatrix} 1 & 1 & 1 \\\ 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\\ 1 & -2 \\\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\\ 0 & 6 \end{bmatrix}$ $A^{T}\vec{b} = \begin{bmatrix} 1 & 1 & 1 \\\ 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} 3 \\\ 2 \\\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\\ 0 \end{bmatrix}$ $\left( A^{T}A \right) ^{-1} = \frac{1}{18} \begin{bmatrix} 6 & 0 \\\ 0 & 3 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & 0 \\\ 0 & \frac{1}{6} \end{bmatrix}$ $\vec{x}^{\star} = \begin{bmatrix} \frac{1}{3} & 0 \\\ 0 & \frac{1}{6} \end{bmatrix} \begin{bmatrix} 6 \\\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\\ 0 \end{bmatrix}$ **Remark**: In examples so far, our matrix $A^{T}A$ was invertible and hence we had a unique least squares solution $$ A^T A \vec{x}^{\star} = A^T \vec{b} \text{ and } A^T A \text{ invertible } \to \vec{x}^{\star} = \left( A^T A \right) ^{-1} A^T \vec{b}. $$ Generally, there need not be a unique least squares solution. One can show: For an $n\times m$ matrix $A$, $\text{ker}\left( A^{T}A \right) = \text{ker}\left( A \right)$ * When $A$ has linearly independent columns, $A^{T} A$ is invertible. * $A^{T}A$ is $m\times m$ with $\text{ker}\left( A^{T}A \right) = \\{ \vec{0} \\} \to A^{T}A$ is invertible * When $A$ has linearly dependent columns, $A^{T}A$ is not invertible. * $A^{T}A$ is $m\times m$ with $\text{rank}\left( A^{T}A \right) < m$. The normal equation has at least one free variable (and is consistent always) we have infinitely many least squares solutions.
Example Find the least squares solutions to $A\vec{x} = \vec{b}$ where $A = \begin{bmatrix} 2 & 4 \\\ 0 & 0 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 1 \\\ 2 \end{bmatrix}$. $A^{T}A = \begin{bmatrix} 2 & 0 \\\ 4 & 0 \end{bmatrix} \begin{bmatrix} 2 & 4 \\\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 8 \\\ 8 & 16 \end{bmatrix}$ (Not invertible) $A^{T} \vec{b} = \begin{bmatrix} 2 & 0 \\\ 4 & 0 \end{bmatrix} \begin{bmatrix} 1 \\\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\\ 4 \end{bmatrix}$ $\begin{bmatrix} 4 & 8 & \| & 2 \\\ 8 & 16 & \| & 4 \end{bmatrix} \to \begin{bmatrix} 4 & 8 & \| & 2 \\\ 0 & 0 & \| & 0 \end{bmatrix} \to \begin{bmatrix} 1 & 2 & \| & \frac{1}{2} \\\ 0 & 0 & \| & 0 \end{bmatrix}$ $x_1 = \frac{1}{2} - 2t$ $x_2 = t$ $\begin{bmatrix} \frac{1}{2} - 2t \\\ t \end{bmatrix} , t \in \mathbb{R}$ (Least squares solutions) Error: $\vec{b} - A\vec{x}^{\star} = \begin{bmatrix} 1 \\\ 2 \end{bmatrix} - \begin{bmatrix} 2 & 4 \\\ 0 \\\ 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2} - 2t \\\ t \end{bmatrix} = \begin{bmatrix} 1 \\\ 2 \end{bmatrix} - \begin{bmatrix} 1 - 4t + 4t \\\ 0 \end{bmatrix} $ $= \begin{bmatrix} 1 \\\ 2 \end{bmatrix} - \begin{bmatrix} 1 \\\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\\ 2 \end{bmatrix}$ (Error: 2)
In the above example, we can solve using our original discussion of least squares. Solve the linear system $A\vec{x} = \text{proj}_{\text{im}\left( A \right) }\left( \vec{b} \right)$ (We'll get the same answer): $A = \begin{bmatrix} 2 & 4 \\\ 0 & 0 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 1 \\\ 2 \end{bmatrix}$ $\text{im}\left( A \right) = \text{span} \\{ \begin{bmatrix} 1 \\\ 0 \end{bmatrix} \\}$ $\text{proj}_{\text{im}\left( A \right) } \left( \vec{b} \right) = \begin{bmatrix} 1 \\\ 0 \end{bmatrix}$ $\begin{bmatrix} 2 & 4 \\\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\\ 0 \end{bmatrix}$ $$ \begin{bmatrix} 2 & 4 & | & 1 \\ 0 & 0 & | & 0 \end{bmatrix} \to \begin{bmatrix} 1 & 2 & | & \frac{1}{2} \\ 0 & 0 & | & 0 \end{bmatrix} $$ $x_1 = \frac{1}{2} - 2t$ $x_2 = t$ (free) $\begin{bmatrix} \frac{1}{2} - 2t \\\ t \end{bmatrix} , t \in \mathbb{R}$ # 6.1/6.2 Determinants Suppose $A$ is $n\times n$. The *determinant* of $A$ is a number such that $A$ is invertible if and only if $\text{det}\left( A \right) \neq 0$. **Notation**: $\text{det}\left( A \right)$ or $ \mid A \mid$ The determinant of a $2 \times 2$ matrix $\begin{vmatrix} a & b \\\ c & d \end{vmatrix} = ad-bc$. Determent Nat have many properties that help us compute $ \mid A \mid $ for an $n\times n$ matrix $A$. 1. $ \mid I_{n} \mid =1$ ; $\begin{vmatrix} 1 & 0 \\\ 0 & 1 \end{vmatrix} = 1-0 =1$ 2. Determinant changes sign when you interchange 2 rows. * $\begin{vmatrix} c & d \\\ a & b \end{vmatrix} = c b - ad = - \left( ad - bc \right) = - \begin{vmatrix} a & b \\\ c & d \end{vmatrix}$
Example $\begin{vmatrix} 1 & 0 & 0 \\\ 0 & 0 & 1 \\\ 0 & 1 & 0 \end{vmatrix} = - \begin{vmatrix} 1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 1 \end{vmatrix} = -1$
1. Determent is linear in each row separately: 1. $\begin{vmatrix} ka & kb \\\ c & d \end{vmatrix} = ka d - kbc = k \left( ad - bc \right) = k \begin{vmatrix}a & b \\\ c & d \end{vmatrix}$ $\begin{vmatrix} a_1 + a_2 & b_1 + b_2 \\\ c & d \end{vmatrix} = \left( a_1 + a_2 \right) d - \left( b_1 + b_2 \right) c = a_1 d - b_1 c + a_2d - b_2 c = \begin{vmatrix} a_1 & b_1 \\\ c & d \end{vmatrix} + \begin{vmatrix} a_2 & b_2 \\\ c & d \end{vmatrix}$
Example $\begin{bmatrix} 5 & 5 \\\ 10 & 15 \end{bmatrix} = 5 \begin{bmatrix} 1 & 1 \\\ 2 & 3 \end{bmatrix}$. But $\begin{vmatrix} 5 & 5 \\\ 10 & 15 \end{vmatrix} \neq 5 \begin{vmatrix} 1 & 1 \\\ 2 & 3 \end{vmatrix}$ $\begin{vmatrix} 5 & 5 \\\ 10 & 15 \end{vmatrix} = 5 \left( 15 \right) - 5 \left( 10 \right) = 5(5) = 5^{2}$ $\begin{vmatrix} 1 & 1 \\\ 2 & 3 \end{vmatrix} = 3-2=1$ Example: If $A$ is $b\times b$, then $\text{det}\left( 3A \right) = 3^{6} \text{det}\left( A \right) $.
Example $\begin{vmatrix} 0 & 0 & 1 \\\ 0 & 2 & 0 \\\ -1 & 0 & 0 \end{vmatrix} = - \begin{vmatrix} -1 & 0 & 0 \\\ 0 & 2 & 0 \\\ 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\\ 0 & 2 & 0 \\\ 0 & 0 & 1 \end{vmatrix} = 2 \begin{vmatrix} 1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 0 & 1 \end{vmatrix} = 2$
4. If 2 rows of $A$ are equal, the $\text{det}\left( A \right) =0$ ($\begin{vmatrix} a & b \\\ a & b \end{vmatrix} = ab - ab = 0$) 5. Adding a multiple of one row to another row does not change the determinant. ($\begin{vmatrix} a & b \\\ c+ka & d+kb \end{vmatrix} = \begin{vmatrix} a & b \\\ c & d \end{vmatrix} + k \begin{vmatrix} ab \\\ ab \end{vmatrix} = \begin{vmatrix} a & b \\\ c & d \end{vmatrix} $)
Example $\begin{vmatrix} a & b & c \\\ 1 & 3 & 8 \\\ 2a+1 & 2b+3 & 2c + 8 \end{vmatrix} = \begin{vmatrix} a & b & c \\\ 1 & 3 & 8 \\\ 1 & 3 & 8 \end{vmatrix} = 0$
Note: We see how elementary row operations affect the determinant. * Interchange two rows: Change the sign of the determinant * Multiply a row by a nonzero constant $k$: multiplies the determinant by $k$ * Add a multiple of one row to another: does not change the determinant
Example Suppose $A = \begin{bmatrix} - & \vec{v}_1 & - \\\ - & \vec{v}_2 & - \\\ - & \vec{v}_3 & - \end{bmatrix}$ is $3\times 3$ with $\text{det}\left( A \right) =6$ then, * $\begin{vmatrix} - & \vec{v}_2 & - \\\ - & \vec{v}_1 & - \\\ - & \vec{v}_3 & - \end{vmatrix} = -6$ * $\begin{vmatrix} - & \vec{v}_1 & - \\\ - & \vec{v}_2 & - \\\ - & \vec{v}_1 & \vec{v}_2 & \vec{v}_3 & - \end{vmatrix} = 6$
Example $\begin{vmatrix} 1 & 1 & 1 \\\ 2 & 2 & 2 \\\ 3 & 3 & 3 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\\ 0 & 0 & 0 \\\ 0 & 0 & 0 \end{vmatrix} = 0$
6. If a has a row of 0's, then $\text{det}\left( A \right) = 0$ ($\begin{vmatrix} 0 & 0 \\\ c & d \end{vmatrix} = 0d - 0c = 0$) Note: At this point, we can calculate any determinant. Moreover, we see that $\text{det}\left( A \right) \neq 0$ if and only if $A$ is invertible. * Perform row operations to find $\text{rref}\left( A \right)$ * $\text{rref}\left( A \right) = I_{n}$ if and only if $A$ is invertible 7. $\text{det}\left( A \right) = \text{det}\left( A^{T} \right)$ ($\begin{vmatrix} a & b \\\ c & d \end{vmatrix} = ad - bc = \begin{vmatrix} a & c \\\ b & d \end{vmatrix} = ad - cd$ )
Example $\begin{vmatrix} 1 & 0 & 0 & 5 \\\ 0 & 1 & 0 & 3 \\\ 0 & 0 & 1 & 2 \\\ 0 & 0 & 0 & 10 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & 0 \\\ 0 & 1 & 0 & 0 \\\ 0 & 0 & 1 & 0 \\\ 5 & 3 & 2 & 10 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & 0 \\\ 0 & 1 & 0 & 0 \\\ 0 & 0 & 1 & 0 \\\ 0 & 0 & 0 & 10 \end{vmatrix} = 10 \mid I_{4} \mid = 10$
The difference between $\text{det}\left( A \right)$ and $\text{det}\left( \text{rref}\left( A \right) \right) $ is always a nonzero multiplier. $\text{det}\left( \text{rref}\left( A \right) \right) \begin{cases} 0 & \text{if row of 0's} \\\ 1 & \text{if} \text{rref} \left( A \right) = I_{n} \end{cases}$ **Exercise**: * $\begin{vmatrix} 1 & 0 & 0 & 0 \\\ 0 & 3 & 0 & 0 \\\ 0 & 0 & -1 & 0 \\\ 0 & 0 & 0 & 5 \end{vmatrix} = -15 \begin{vmatrix} 1 & 0 & 0 & 0 \\\ 0 & 1 & 0 & 0 \\\ 0 & 0 & 1 & 0 \\\ 0 & 0 & 0 & 1 \end{vmatrix} = -15$ * $A = \begin{vmatrix} 1 & 0 & 0 & 0 \\\ 2 & 3 & 0 & 0 \\\ 0 & 1 & -1 & 0 \\\ 7 & 3 & 1 & 5 \end{vmatrix} = -15$ How to compute using cofactors (The book has other methods):
Definition: For an $n\times n$ matrix $A$, * $A_{ij}$ is $(n-1)\times (n-1)$ matrix obtained by removing row i and column j from matrix $A$. * The determinant $\mid A_{ij} \mid $ is called the *minor* of $A$.
Example $A_{23} = \begin{bmatrix} 1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 7 & 3 & 5 \end{bmatrix}$
**Cofactor expansion for calculating $\text{det}\left( A \right)$** $\text{det}\left( A \right) = a_{11}\text{det}\left( A_{11} \right) - a_{12}\text{det}\left( A_{12} \right) + \cdots + a_{1n}\left( -1 \right) ^{n+1} \text{det}\left( A_{1n} \right) $ $= a_{11}c_{11} + a_{12}c_{12} + a_{13}c_{13} + \cdots + a_{1n}c_{1n}$ Where $C_{ij} = \left( -1 \right) ^{i+j} \mid A_{ij} \mid$ is called a cofactor. For $3\times 3$ matrix: $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\\ a_{21} & a_{22} & a_{23} \\\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\\ a_{31} & a_{32} \end{vmatrix}$ Or another expansion: $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\\ a_{21} & a_{22} & a_{23} \\\ a_{31} & a_{32} & a_{33} \end{vmatrix} = -a_{12} \begin{vmatrix} a_{21} & a_{23} \\\ a_{31} & a_{33} \end{vmatrix} + a_{22} \begin{vmatrix} a_{11} & a_{13} \\\ a_{31} & a_{33} \end{vmatrix} - a_{32} \begin{vmatrix} a_{11} & a_{13} \\\ a_{21} & a_{23} \end{vmatrix}$
Example $\begin{vmatrix} 1 & 2 & 0 \\\ 4 & 1 & 0 \end{vmatrix} = 1 \begin{vmatrix} 1 & 0 \\\ -1 & 3 \end{vmatrix} - 2 \begin{vmatrix} 4 & 0\\\ 1 & 3 \end{vmatrix} + 0 \begin{vmatrix} 4 & 1 \\\ 1 & -1 \end{vmatrix} $ $= 1 (3-0) - 2 (12-0) = -21$
Example $\begin{vmatrix} 0 & 0 & 0 & 2 \\\ 1 & 0 & 0 & 3 \\\ 0 & 1 & 0 & 2 \\\ 0 & 0 & 1 & 3 \end{vmatrix} = (-1)^{1+4} 2 \begin{vmatrix} 1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 0 & 1 \end{vmatrix} = -2$
Example $\begin{vmatrix} 5 & 4 & 3 \\\ 0 & -1 & 2 \\\ 0 & 0 & 6 \end{vmatrix} = 5 \begin{vmatrix} -1 & 2 \\\ 0 & 6 \end{vmatrix} + 0 + 0 = 5(-1)(6) = -30$
8. If $A$ is upper triangular (or lower triangular), $\text{det}\left( A \right)$ is product of diagonal entries.
Example For which values of $k$ is the matrix $\begin{bmatrix} 0 & k & 1 \\\ 2 & 3 & 4 \\\ 5 & 6 & 7 \end{bmatrix}$ invertible? $\begin{vmatrix} 0 & k & 1 \\\ 2 & 3 & 4 \\\ 5 & 6 & 7 \end{vmatrix} = -k \begin{vmatrix} 2 & 4 \\\ 5 & 7 \end{vmatrix} + 1 \begin{vmatrix} 2 & 3 \\\ 5 & 6 \end{vmatrix} $ $= -k (14-20) + 1(12-15)$ $= 6k-3$ Need: $6k-3 \neq 0$ $\therefore k\neq \frac{1}{2}$
**Exercise**: For which values of $\lambda$ is the matrix $A - \lambda I$ not invertible where $A = \begin{bmatrix} 4 & 2 \\\ 2 & 7 \end{bmatrix}$? $A - \lambda I = \begin{bmatrix} 4-\lambda & 2 \\\ 2 & 7-\lambda \end{bmatrix}$ Want $\lambda$ so that $\text{det}\left( A-\lambda I \right) = 0$ $\begin{vmatrix} 4-\lambda & 2 \\\ 2 & 7 - \lambda \end{vmatrix} = (4-\lambda) (7-\lambda) -4 = 28 - 11\lambda + \lambda ^2 - 4$ $= \lambda ^{2} - 11\lambda + 24 = (\lambda - 8) (\lambda - 3)$ $\text{det}(A-\lambda I) = 0$ if and only if $\lambda = 8$ or $\lambda = 3$
Example Let $A = \begin{bmatrix} 4 & 3 & 2 & 1 \\\ 0 & x & 7 & 2 \\\ 0 & 2 & 3 & 4 \\\4 & 3 & 5 & 1 \end{bmatrix} $ * Compute the determinant of $A$ $\text{det}\left( A \right) = \begin{vmatrix} 4 & 3 & 2 & 1 \\\ 0 & x & 7 & 2 \\\ 0 & 2 & 3 & 4 \\\ 0 & 0 & 3 & 0 \end{vmatrix} = 4 \begin{vmatrix} x & 7 & 2 \\\ 2 & 3 & 4 \\\ 0 & 3 & 0 \end{vmatrix} = -4 (3) \begin{vmatrix} x & 2 \\\ 2 & 4 \end{vmatrix} $ $= -12 (4x -4) = -48x + 48$ * For which value of $x$ is the matrix $A$ not invertible? $x=1$ This is when $\text{det}\left( A \right) = 0$ or $-48x + 48 = 0$
Properties of Determinants: For an $n\times n$ matrix $A$, the determinant of $A$, $ \mid A \mid $ or $\text{det}\left( A \right)$, is a number satisfying: 1. $ \mid I_{n} \mid = 1$ 2. Determinant changes sign when 2 rows in matrix are exchanged 3. Determinant is linear in each row separately (called multi linear). 4. If 2 rows of $A$ are equal, then $\text{det}\left( A \right) =0$ 5. Adding a multiple of one row to another tow does not change the determinant. 6. If $A$ has a row of zeros, then $\text{det}\left( A \right) = 0$ 7. For any $n\times n$ matrix $A$, $\text{det}\left( A \right) = \text{det}\left( A^{T} \right)$. 8. If $A$ is upper triangular (or lower triangular), then $\text{det}\left( A \right)$ is the product of the diagonal entries 9. If $A$ and $B$ are $n\times n$ matrices, then $\text{det}\left( AB \right) = \text{det}\left( A \right) \text{det}(B)$ Recall that $\text{det}\left( A \right) \neq 0$ if and only if $A$ is invertible.
**Illustrating Property #9 for $2\times 2$ matrices** $A = \begin{bmatrix} a & b \\\ c & d \end{bmatrix}$ $B = \begin{bmatrix} x & y \\\ z & w \end{bmatrix}$ $A\cdot B = \begin{bmatrix} ax+bzay + bw \\\ cx + dzcy + dw \end{bmatrix}$ $\text{det}\left( A \right) \cdot \text{det}\left( B \right) = (ad-bc) (wx-yz)$ $\text{det}\left( A\cdot B \right) = adwx-adyz-bcwx+bcyz$ $\text{det}\left( AB \right) = \text{det}\left( A \right) \text{det}\left( B \right)$
Example $A = \begin{bmatrix} 1 & 4 & 7 \\\ 0 & 2 & 2 \\\ 0 & 0 & 4 \end{bmatrix}$ Find $ \mid A \mid = 1 (2)(4) = 8$ Find $ \mid A^{3} \mid = \mid AAA \mid = \mid A \mid \mid A \mid \mid A \mid = 8^{3}$ Find $ \mid A^{-1} \mid = \frac{1}{8}$
Example Suppose $M$ and $N$ are $3\times 3$ matrices with $\text{det}\left( M \right) = 4$ and $\text{det}\left( N \right) = -1$. Find the determinant of the matrix $2M^{-1}N^{2}M^{T}$. $2^{3}\frac{1}{\text{det}\left( M \right) } \left( \text{det}\left( N \right) \right) ^{2} \text{det}\left( M \right) = 2^{3}\frac{1}{4} (-1)^{2} \cdot 4 = 8$
Example Suppose $\vec{v}_1$, $\vec{v}_2$, and $\vec{v}_3$ are *row vectors* in $\mathbb{R}^{3}$ and $A = \begin{bmatrix} - & \vec{v}_1 & - \\\ - & \vec{v}_2 & - \\\ - & \vec{v}_3 & - \end{bmatrix}$ satisfies $\text{det}\left( A \right) = 5$. * $\text{det}\left( 3A \right) = 3^{3}5$ * $\text{det}\left( -A \right) = (-1)^{3}5 = -5$ * $\begin{vmatrix} 0 & 0 & 4 & 0 \\\ \| & \| & 1 & \| \\\ \vec{v}_1^{\bot} & \vec{v}_2 ^{\bot} & 3 & \vec{v}_3^{\bot} \\\ \| & \| & 0 & \| \end{vmatrix} = (-1)^{1+3}4 \text{det} \left( A^{T} \right) = 4(5)=20$
Suppose $A$ is an orthogonal matrix. What can $\text{det}\left( A \right)$ be? Know: $A$ is invertible. $\text{det}\left( A \right) \neq 0$ Use: $A^{T}A = I_{n} \implies \text{det}\left( A^{T} \right) \text{det}\left( A \right) =1$ Property: $\text{det}\left( A^{T} \right) = \text{det}\left( A \right) \implies \left( \text{det}\left( A \right) \right) ^{2}=1$ Answer: $\text{det}\left( A \right) = 1$ or $\text{det}\left( A \right) = -1$ # 7.1 Diagonalization Suppose $D = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\\ 0 & d_2 & \cdots & 0 \\\ \vdots & \vdots & \ddots & \vdots \\\ 0 & 0 & \cdots & d_n \end{bmatrix}$ is a $n\times n$ diagonal matrix. Then, * For $k$ positive integer, $D^{k} = \begin{bmatrix} d_1^{k} & 0 & \cdots & 0 \\\ 0 & d_2^{k} & \cdots & 0 \\\ \vdots & \vdots & \ddots & \vdots \\\ 0 & 0 & \cdots & d_n^{k} \end{bmatrix}$ * $\text{det}\left( D \right) = d_1d_2d_3 \cdots d_n$ * $D^{-1} = \begin{bmatrix} \frac{1}{d_1} & 0 & \cdots & 0 \\\ 0 & \frac{1}{d_2} & \cdots & 0 \\\ \vdots & \vdots & \ddots & \vdots \\\ 0 & 0 & \cdots & \frac{1}{d_n} \end{bmatrix} $ (if $d_1, d_2, d_3, \cdots , d_n \neq 0$)
Definition: A square matrix $A$ is diagonalizable provided there exists an invertible matrix $S$ and diagonal matrix $B$ such that $S^{-1}AS = B$.
When we diagonalize a matrix $A$, we find an invertible matrix $S$ and a diagonal matrix $B$ such that $S^{-1}AS = B$. **Notice**: $S^{-1}AS = B \leftrightarrow AS = SB \leftrightarrow A = SBS^{-1}$ * $\text{det}\left( A \right) = \text{det}\left( SBS^{-1} \right) = \text{det}\left( A \right) \text{det}\left( B \right) \text{det}\left( S^{-1} \right) = \text{det}\left( B \right) $ * $A^{k} = (SBS^{-1}) (SBS^{-1}) (SBS^{-1}) \cdots (SBS^{-1}) = SB^{k}S^{-1}$ * $A$ is invertible if and only if $B$ is invertible. $A^{-1} = SB^{-1}S^{-1}$ Check: $A(SB^{-1}S^{-1}) = SBS^{1}(SB^{-1}S^{-1}) = I_{n}$
Example Let $A = \begin{bmatrix} 5 & 1 \\\ 1 & 5 \end{bmatrix}$. $A$ is diagonalizable with $S = \begin{bmatrix} 1 & -1 \\\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 6 & 0 \\\ 0 & 4 \end{bmatrix}$. Check * $S^{-1} = \frac{1}{2}\begin{bmatrix} 1 & 1 \\\ -1 & 1 \end{bmatrix}$ * $BS^{-1} = \begin{bmatrix} 6 & 0 \\\ 0 & 4 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 3 & 3 \\\ -2 & 2 \end{bmatrix}$ * $SBS^{-1} = \begin{bmatrix} 1 & -1 \\\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 3 \\\ -2 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 1 \\\ 1 & 5 \end{bmatrix}$
Question: What does diagonalizable mean? Suppose $B = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\\ 0 & \lambda_2 & \cdots & 0 \\\ \vdots & \vdots & \ddots & \vdots \\\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$, $S = \begin{bmatrix} \| & \| & & \| \\\ \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_3 \\\ \| & \| & & \| \end{bmatrix}$, and $S^{-1}AS = B$. Then, * $AS = A \begin{bmatrix} \| & \| & & \| \\\ \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_n \\\ \| & \| & & \| \end{bmatrix} = \begin{bmatrix} \| & \| & & \| \\\ A\vec{v}_1 & A\vec{v}_2 & \cdots & A\vec{v}_n \\\ \| & \| & & \| \end{bmatrix}$ * $SB = \begin{bmatrix} \| & \| & & \| \\\ \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_n \\\ \| & \| & & \| \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\\ 0 & \lambda_2 & \cdots & 0 \\\ \vdots & \vdots & \ddots & \vdots \\\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} = \begin{bmatrix} \| & \| & & \| \\\ \lambda_1 \vec{v}_1 & \lambda_2 \vec{v}_2 & \cdots & \lambda_n \vec{v}_n \\\ \| & \| & & \| \end{bmatrix}$ Notice: $AS = SB$ if and only if $A\vec{v}_i = \lambda_i \vec{v}_i$ for $1\le i \le n$. Note: $S$ invertible. Columns of $S$ are independent and form a basis for $\mathbb{R}^{n}$. Answer: An $n\times n$ matrix $A$ is diagonalizable if and only if there exists a basis $\\{ \vec{v}_1 , \vec{v}_2 , \cdots , \vec{v}_n \\}$ for $\mathbb{R}^{n}$ and scalars $\lambda_1 , \lambda_2 , \cdots , \lambda_n$ with $A\vec{v}_i = \lambda_i \vec{v}_i$ for $i=1,2,\cdots , n$. *In our example*: $A = \begin{bmatrix} 5 & 1 \\\ 1 & 5 \end{bmatrix}$. We had $S = \begin{bmatrix} 1 & -1 \\\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 6 & 0 \\\ 0 & 4 \end{bmatrix}$. Basis for $\mathbb{R}^{2}$ : $\\{ \begin{bmatrix} 1 \\\ 1 \end{bmatrix} , \begin{bmatrix} -1 \\\ 1 \end{bmatrix} \\}$ $A \begin{bmatrix} 1 \\\ 1 \end{bmatrix} = \begin{bmatrix} 5 & 1 \\\ 1 & 5 \end{bmatrix} \begin{bmatrix} 1 \\\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\\ 6 \end{bmatrix} = 6 \begin{bmatrix} 1 \\\ 1 \end{bmatrix}$ $A \begin{bmatrix} -1 \\\ 1 \end{bmatrix} = \begin{bmatrix} 5 & 1 \\\ 1 & 5 \end{bmatrix} \begin{bmatrix} -1 \\\ 1 \end{bmatrix} = \begin{bmatrix} -4 \\\ 4 \end{bmatrix} = 4 \begin{bmatrix} -1 \\\ 1 \end{bmatrix}$
Definition: * A nonzero vector $\vec{v}$ in $\mathbb{R}^{n}$ is an **eigenvector** of $A$ with **eigenvalue** $\lambda$ provided $A \vec{v} = \lambda \vec{v}$. Note, $A\vec{v}$ is parallel to $\vec{v}$ * A basis $\\{ \vec{v}_1 , \vec{v}_2 , \cdots , \vec{v}_n \\}$ for $\mathbb{R}^{n}$ is called an **eigenbasis** for $A$ provided there exists scalars $\lambda_1 , \cdots , \lambda_n$ with $A\vec{v}_1 = \lambda_i \vec{v}_i$ for $1 \le i \le n$.
**Note**: With this language, an $n\times n$ matrix $A$ is diagonalizable if and only if $A$ has an eigenbasis. (There exists a basis for $\mathbb{R}^{n}$ of eigenvectors for $A$).
Example Find all $2\times 2$ matrices for which $\begin{bmatrix} 1 \\\ 1 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda = 6$. Want: $\begin{bmatrix} a & b \\\ c & d \end{bmatrix} \begin{bmatrix} 1 \\\ 1 \end{bmatrix} = 6 \begin{bmatrix} 1 \\\ 1 \end{bmatrix}$. Note $\begin{bmatrix} 5 & 1 \\\ 1 & 5 \end{bmatrix} $ is of this type. $\begin{bmatrix} a & b \\\ c & d \end{bmatrix} \begin{bmatrix} 1 \\\ 1 \end{bmatrix} = \begin{bmatrix} a+b \\\ c+d \end{bmatrix}$ $a+b = 6 \implies b = 6-a$ $c+d = 6 \implies d=6-c$ $\begin{bmatrix} a & 6-a \\\ c & 6-c \end{bmatrix} a,c \in \mathbb{R}$
Example Suppose $A$ is the $2\times 2$ matrix of reflection about line $y=2x$. Is $A$ diagonalizable? If so, diagonalize $A$. Yes! $L = \text{span} \|{ \begin{bmatrix} 1 \\\ 2 \end{bmatrix} \\}$ $\text{ref}_{L}\left( \vec{x} \right) = 2 \text{proj}_{L}\left( \vec{x} \right) - \vec{x}$ Matrix: $2 \cdot \frac{1}{1+4} \begin{bmatrix} 1 & 2 \\\ 2 & 4 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -\frac{3}{5} & \frac{4}{5} \\\ \frac{4}{5} & \frac{3}{5} \end{bmatrix} $ $\text{ref}_{L} \begin{bmatrix} 1\\\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\\ 2 \end{bmatrix}$ ($\lambda = 1$) $\text{ref}_{L} \begin{bmatrix} 2 \\\ -1 \end{bmatrix} = - \begin{bmatrix} 2 \\\ -1 \end{bmatrix}$ ($\lambda = -1$) $S = \begin{bmatrix} 1 & 2 \\\ 2 & 1 \end{bmatrix}$ $B = \begin{bmatrix} 1 & 0 \\\ 0 & -1 \end{bmatrix} $ Check: $AS = SB = \begin{bmatrix} 1 & -2 \\\ 2 & 1 \end{bmatrix} $
Example Suppose $A$ is the $2\times 2$ matrix of projection onto the line $L = \text{span}\\{ \begin{bmatrix} -1 \\\ 7 \end{bmatrix} \\}$. Diagonalize $A$ if you can. $\text{proj}_{L} \begin{bmatrix} -1 \\\ 7 \end{bmatrix} = 1 \begin{bmatrix} -1 \\\ 7 \end{bmatrix}$ ($\lambda = 1$) $\text{proj}_{L} \begin{bmatrix} 7 \\\ 1 \end{bmatrix} = 0 \begin{bmatrix} 7 \\\ 1 \end{bmatrix}$ ($\lambda = 0$) $S = \begin{bmatrix} -1 & 7 \\\ 7 & 1 \end{bmatrix}$ $B = \begin{bmatrix} 1 & 0 \\\ 0 & 0 \end{bmatrix}$ Test 1: $A = \begin{bmatrix} \frac{1}{50} & -\frac{7}{50} \\\ -\frac{7}{50} & \frac{49}{50} \end{bmatrix}$ Check: $AS = SB = \begin{bmatrix} -1 & 0 \\\ 7 & 0 \end{bmatrix}$
Example Suppose $A$ is the $2\times 2$ matrix of rotation counterclockwise by $\theta = \frac{\pi}{2}$. Is $A$ diagonalizable? No! For $\vec{v} \neq \vec{0}$, $A \vec{v}$ is never parallel to $\vec{v}$. $A = \begin{bmatrix} 0 & -1 \\\ 1 & 0 \end{bmatrix}$ No eigenvectors and no (real) eigenvalues.
Let $V$ be a subspace of $\mathbb{R}^{n}$, Then, the matrix of projection $\text{proj}_{v} : \mathbb{R}^{n} \to \mathbb{R}^{n}$ is diagonalizable. Say $\text{dim}\left( V \right) = K$. $V^{\bot}$ has dimension $n-k$. Basis for $V$: $\\{ \vec{v}_1 , \vec{v}_2 , \vec{v}_3 , \cdots , \vec{v}_k \\}$ $\text{proj}_{v}\left( \vec{v}_i \right) = 1 \vec{v}_i$ for $1\le i\le k$. Basis for $V^{\bot}$: $\\{ \vec{w}_{k+1} , \vec{w}_{k+2} , \cdots , \vec{w}_{n} \\}$ $\text{proj}_{v}\left( \vec{w}_i \right) = 0 \vec{w}_i$ for $k+1 \le i \le n$ $S = \begin{bmatrix} \| & & \| & \| & & \| \\\ \vec{v} _1 & \cdots & \vec{v} _k & \vec{w} _{k+1} & \cdots & \vec{w} _n \\\ \| & & \| & \| & & \| \end{bmatrix}$ $B = \begin{bmatrix} 1 & 0 & \cdots & 0 \\\ 0 & 1 & \vdots & 0 \\\ 0 & 0 & \ddots & \vdots \\\ 0 & 0 & 0 & 0 \end{bmatrix}$ ($k$ amount of diagonal 1's)
Example Suppose $A$ is $n\times n$ and $\vec{v}$ is an eigenvector for $A$ with eigenvalue $\lambda = 4$. 1) Is $\vec{v}$ an eigenvector for $A^{2}$? $A^{2}\vec{v} = A\cdot A \vec{v} = A 4\vec{v} = 4A\vec{v} = 4\cdot 4 \vec{v} = 16 \vec{v}$ Yes! Eigenvalue is $\lambda = 16$. 2) Is $\vec{v}$ an eigenvector for $A - I_{n}$? $\left( A - I_{n} \right) \vec{v} = A\vec{v} - I_{n}\vec{v} = 4\vec{v} - \vec{v} = 3\vec{v}$ Yes! Eigenvalue is $\lambda = 3$.
Question: Suppose $A$ is an $n\times n$ orthogonal matrix. What are possibilities for (real) eigenvalues for $A$? Note: We may not have any eigenvalue, e.g. the $2\times 2$ (counterclockwise) rotation matrix with angle $\frac{\pi}{2}$. Answer: $\lambda = 1$ or $-1$ only possibilities $ \mid \mid A \vec{v} \mid \mid = \mid \mid \vec{v} \mid \mid $ Suppose $A \vec{v} = \lambda \vec{v}$. Then, $ \mid \mid \lambda \vec{v} \mid \mid = \mid \mid \vec{v} \mid \mid \to \mid \lambda \mid \mid \mid \vec{v} \mid \mid = \mid \mid \vec{v} \mid \mid $ ; $\vec{v} \neq \vec{0}$ $ \mid \lambda \mid = 1$ # 7.2 Finding Eigenvalues 7.1 #7: If $\vec{v}$ is an eigenvector of the $n\times n$ matrix $A$ with associated eigenvalue $\lambda$, 1) What can you say about $\text{ker}\left( A - \lambda I_{n} \right)$? We have $A \vec{v} - \lambda \vec{v} = \vec{0}$ Equivalently, $\left( A - \lambda I \right) \vec{v} = \vec{0}$. $\text{ker}\left( A - \lambda I \right) $ has dimension at least 1. 2) Is the matrix $A - \lambda I_{n}$ invertible? No! Nullity $\ge 1$. Rank < n Notice: $\lambda$ is an eigenvalue for $A$ if and only if $\text{det}\left( A - \lambda I \right) = 0$.
Definition: The characteristic equation of a matrix $A$: $$ \text{det} (A - \lambda I) = 0 $$ Solutions $\lambda$ to this equation are eigenvalues.
Question: When is 0 an eigenvalue for $A$? Answer: Precisely when $A$ is not invertible. $A - 0I = A$
Example Find the eigenvalues of $A = \begin{bmatrix} 1 & 2 \\\ 5 & 4 \end{bmatrix} $. $\lambda I_{2}= \begin{bmatrix} \lambda & 0 \\\ 0 & \lambda \end{bmatrix}$ $0 = \text{det}\left( A - \lambda I \right) = \begin{vmatrix} 1-\lambda & 2 \\\ 5 & 4-\lambda \end{vmatrix} = \left( 1-\lambda \right) (4- \lambda ) - 10$ $= \lambda ^{2} - 4 \lambda - \lambda + 4 - 10 = \lambda ^{2} - 5 \lambda - 6 = (\lambda - 6 ) (\lambda + 1)$ $0 = \left( \lambda -6 \right) \left( \lambda + 1 \right)$ $\lambda = 6, -1$
Example Find the eigenvalues of $A = \begin{bmatrix} 1 & 2 \\\ 2 & 4 \end{bmatrix}$. $0 = \begin{vmatrix} 1-\lambda & 2 \\\ 2 & 4-\lambda \end{vmatrix} = \left( 1- \lambda \right) \left( 4 - \lambda \right) - 4 = \lambda ^{2} - 5 \lambda + 4 - 4 = \lambda \left( \lambda - 5 \right) $ $\lambda = 0, 5$ Notice: * Product: $0\cdot 5 = \text{det}\left( A \right) $ * Sum: 0+5= sum of diagonal entries. Trace of $A$.
Example $A = \begin{bmatrix} 0 & -1 \\\ 1 & 0 \end{bmatrix}$ (Matrix of rotation by counterclockwise $\theta = \frac{\pi}{2}$) $0 = \mid A - \lambda I \mid = \begin{vmatrix} -\lambda & -1 \\\ 1 & -\lambda \end{vmatrix} = \lambda ^{2} + 1$ No real eigenvalues
Generally for $n\times n$ matrix, $\lambda_1 , \lambda_2 , \cdots , \lambda _n$ $\lambda_1\lambda_2\lambda_3 \cdots \lambda_n = \text{det}\left( A \right) $ $\lambda_1 + \lambda_2 + \lambda_3 + \cdots + \lambda_n = \text{tr}\left( A \right)$ (Trace) Moreover, for a general $2\times 2$ matrix $A = \begin{bmatrix} a & b \\\ c & d \end{bmatrix}$, we see $$ \begin{align*} \text{det}(A - \lambda I) & = \begin{bmatrix} a-\lambda & b \\ c & d-\lambda \end{bmatrix} \\ &= (a - \lambda) (d - \lambda) - bc \\ &= \lambda^2 - a\lambda - d \lambda + ad - bc \\ &= \lambda^2 - (a+d)\lambda + (ad-bc) \\ &= \lambda^2 - \text{tr}(A) \lambda + \text{det}(A) \end{align*} $$
Example Find eigenvalues for $A = \begin{bmatrix} 1 & 3 & 4 \\\ 0 & 3 & 2 \\\ 0 & 0 & -1 \end{bmatrix}$. $= \begin{vmatrix} 1-\lambda & 3 & 4 \\\ 0 & 3-\lambda & 2 \\\ 0 & 0 & -1-\lambda \end{vmatrix} = \left( 1- \lambda \right) \left( 3 - \lambda \right) \left( -1-\lambda \right) $ $\lambda = 1, 3, -1$
We see: 1. When $A$ is upper triangular (or lower triangular), eigenvalues of $A$ are along diagonal 2. Any matrix $A$: $\text{det}\left( A- \lambda I \right)$ is polynomial in $\lambda$. Called characteristic polynomial $f_{A}\left( \lambda \right)$ If $A$ is $n\times n$, the characteristic polynomial of $A$ has *degree $n$* and is of the form $$ f_A (\lambda) = (-\lambda)^n + \text{tr}(A)(-\lambda)^{n-1} + \cdots + \text{det}(A) $$ $$ \text{Eigenvalues of } A \leftrightarrow \text{Roots of characteristic polynomial} $$
Definition: An eigenvalue $\lambda_{0}$ of an $n\times n$ matrix $A$ has *algebraic multiplicity* $k$ (notation: $\text{almu}\left( \lambda_{0} \right) = k$ ) provided $$ f_{A}\left( \lambda \right) = \text{det}\left( A - \lambda I \right) = \left( \lambda _{0} - \lambda \right) ^{k} g(\lambda) $$ Where $g\left( \lambda_{0} \right) \neq 0$.
Example $A = \begin{bmatrix} 5 & 0 & 0 \\\ 2 & 5 & 0 \\\ 1 & 2 & 5 \end{bmatrix}$ has eigenvalue $\lambda = 5$ with... $\text{almu} (5) = 3$ as $\text{det}\left( A - \lambda I \right) = \left( 5 - \lambda \right) ^{3}$
Example Find eigenvalues with algebraic multiplicities for $A = \begin{bmatrix} 7 & 0 & 3 \\\ -3 & 2 & -3 \\\ -3 & 0 & 1 \end{bmatrix}$. $$ \begin{align*} \begin{vmatrix} 7-\lambda & 0 & 3 \\\ -3 & 2-\lambda & -3 \\\ -3 & 0 & 1-\lambda \end{vmatrix} &= \left( -1 \right) ^{2+2} \left( 2-\lambda \right) \begin{vmatrix} 7-\lambda & 3 \\\ -3 & 1-\lambda \end{vmatrix} \\ &= (2-\lambda) [\left( 7- \lambda \right) \left( 1-\lambda \right) + 9 ] \\ &= (2-\lambda ) \left( \lambda ^{2} - 8\lambda + 7 + 9 \right) \\ &= (2-\lambda ) (\lambda - 4) ^{2} \\ \end{align*} $$ $\lambda = 2, 4, 4$ $\text{almu}(4) = 2$ $\text{almu}(2) = 1$
**Exercise**: Find eigenvalues with algebraic multiplicities for $A = \begin{bmatrix} 2 & 1 & 0 \\\ -1 & 4 & 0 \\\ 5 & 3 & 3 \end{bmatrix}$. $$ \begin{align*} \begin{vmatrix} 2-\lambda & 1 & 0 \\\ -1 & 4-\lambda & 0 \\\ 5 & 3 & 3-\lambda \end{vmatrix} &= (2-\lambda ) \begin{vmatrix} 2-\lambda & 1 \\\ -1 & 4-\lambda \end{vmatrix} \\ &= (3-\lambda) ((2-\lambda ) (4-\lambda ) + 1) \\ &= (3-\lambda ) (\lambda ^2 - 6\lambda + 8 + 1) \\ &= (3-\lambda )^3 \end{align*} $$ $\lambda = 3, 3, 3$ $\text{almu}(3) = 3$ **Remarks**: 1) A degree $n$ polynomial has at most $n$ roots (counted with multiplicities) $f_{a}\left( \lambda \right) $ - An $n\times n$ matrix $A$ has no more than $n$ eigenvalues (counting algebraic multiplicities)
Example Find (real) eigenvalues for matrix $A = \begin{bmatrix} 8 & 1 & 3 & 6 \\\ 0 & 2 & 1 & -1 \\\ 0 & 0 & 0 & -4 \\\ 0 & 0 & 1 & 0 \end{bmatrix}$. Note: $\text{rref}\left( A \right) = I_{4}$ $$ \begin{align*} \begin{vmatrix} 8-\lambda & 1 & 3 & 6 \\\ 0 & 2-\lambda & 1 & -1 \\\ 0 & 0 & -\lambda & -4 \\\ 0 & 0 & 1 & -\lambda \end{vmatrix} &= (8-\lambda ) \begin{vmatrix} 2-\lambda & 1 & -1 \\\ 0 & -\lambda & -4 \\\ 0 & 1 & -\lambda \end{vmatrix} \\ &= (8-\lambda ) (2-\lambda ) \begin{vmatrix} -\lambda & -4 \\\ 1 & -\lambda \end{vmatrix} \\ &= (8-\lambda ) (2-\lambda ) (\lambda ^2 + 4) \end{align*} $$ $\lambda = 8, 2$ $\text{almu}(8) = 1$ $\text{almu}(2) = 1$
2) If $n$ is odd and $A$ is an $n\times n$ matrix then $A$ has at least one eigenvalue. Reason: Any odd degree polynomial has at least one root.
Example Consider the matrix $A = \begin{bmatrix} 1 & k \\\ 1 & 1 \end{bmatrix}$. 1) For what value(s) of $k$ does $A$ have two distinct eigenvalues? 2) For what value(s) of $k$ does $A$ have no real eigenvalues? *Solution* Recall: $ax^{2} + bx + c =0$ * Roots: $x = \frac{-b \pm \sqrt{b^{2} - 4ac} }{2a}$ $f_{A}( \lambda ) = \lambda ^{2} - \text{tr}\left( A \right) \lambda + \text{det}\left( A \right) $ $= \lambda ^{2} - 2 \lambda + (1-k)$ $b^2 - 4ac = 4-4(1-k) \begin{cases} >0 & \text{2 distinct eigenvalues} \\\ <0 & \text{no eigenvalues} \end{cases}$ $4-4(1-k) = 4k$ No eigenvalues: k<0 2 Distinct eigenvalues: k>0
**Exercise**: For what value(s) of $k$ does the matrix $A = \begin{bmatrix} -1 & k & 2 \\\ 4 & 3 & 7 \\\ 0 & 0 & 2 \end{bmatrix}$ have $\lambda = 5$ as an eigenvalue? Restated: For what $k$ is $\text{det}\left( A - 5I \right) = 0$ $$ 0 = \mid A - 5I \mid = \begin{vmatrix} -6 & k & 2 \\ 4 & -2 & 7 \\ 0 & 0 & -3 \end{vmatrix} = (-1)^{3+3} -3 \begin{vmatrix} -6 & k \\ 4 & -2 \end{vmatrix} $$ $$ = -3 (12-4k) $$ $4k = 12$ $k=3$ ### Quiz Preparation 1) (a) Find the least-squares solutions to $A \vec{x} = \vec{b}$ where $A = \begin{bmatrix} 1 & 2 \\\ 0 & 0 \\\ 1 & 2 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 3 \\\ 1 \\\ 3 \end{bmatrix}$.
Solution $A^{T}A = \begin{bmatrix} 1 & 0 & 1 \\\ 2 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\\ 0 & 0 \\\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\\ 4 & 8 \end{bmatrix} $ Normal Equation: $\begin{bmatrix} 2 & 4 \\\ 4 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\\ x_2 \end{bmatrix} \begin{bmatrix} 6 \\\ 12 \end{bmatrix} $ $A^{T}\vec{b} = \begin{bmatrix} 1 & 0 & 1 \\\ 2 & 0 & 2 \end{bmatrix} \begin{bmatrix} 3 \\\ 1 \\\ 3 \end{bmatrix} = \begin{bmatrix} 6 \\\ 12 \end{bmatrix} $ $$ \begin{bmatrix} 2 & 4 & | & 6 \\ 4 & 8 & | & 12 \end{bmatrix} \to \begin{bmatrix} 1 & 2 & | & 3 \\ 4 & 8 & | & 12 \end{bmatrix} $$ $$ \to \begin{bmatrix} 1 & 2 & | & 3 \\ 0 & 0 & | & 0 \end{bmatrix} $$ $x_2 = t$ free $x_1 = 3-2t$ $$ \vec{x}^{\star} = \begin{bmatrix} 3-2t \\ t \end{bmatrix} $$
(b) Compute the error $ \mid \mid \vec{b} - A \vec{x}^{\star} \mid \mid $. *Show your work*.
Solution $$ \mid \mid \begin{bmatrix} 3 \\ 1 \\ 3 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 0 & 0 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 3-2t \\ t \end{bmatrix} \mid \mid = \mid \mid \begin{bmatrix} 3 \\ 1 \\ 3 \end{bmatrix} - \begin{bmatrix} 3-2t+2t \\ 0 \\ 3 - 2t + 2t \end{bmatrix} \mid \mid $$ $$ = \mid \mid \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \mid \mid = \sqrt{0 + 1^2 + 0} = 1 $$
2) Suppose $A$ and $B$ are $3\times 3$ matrices with $\text{det}\left( A \right) = 2$ and $\text{det}\left( B \right) = 3$. Calculate $\text{det}\left( -2A^{2}B^{T}A^{-1} \right)$. *Show your work*.
Solution $$ (-2)^3 (\text{det}(A))^2 \text{det}(B) \cdot \frac{1}{\text{det}(A)} = -8 \cdot 4 \cdot 3 \cdot \frac{1}{2} = -48 $$
3) Let $A = \begin{vmatrix} 1 & 2 & 3 & 4 \\\ 0 & 1 & 2 & 1 \\\ 2 & 4 & 6 & 10 \\\ 0 & 3 & 6 & 5 \end{vmatrix}$. (a) Compute the determinant of $A$. *Show your work*.
Solution $$ \begin{align*} \text{det}(A) &= \begin{vmatrix} 1 & 2 & 3 &4 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 2 \\ 0 & 3 & 6 & 5 \end{vmatrix} \\ &= \begin{vmatrix} 1 & 2 & 1 \\ 0 & 0 & 2 \\ 3 & 6 & 5 \end{vmatrix} \\ &= (-1)^{2+3} \cdot 2 \begin{vmatrix} 1 & 2 \\ 3 & 6 \end{vmatrix} \\ &= -2(6-6)\\ &= 0 \end{align*} $$
(b) For the above matrix $A$, Select all that apply. **A**: $A$ is invertible. **B**: $A$ is not invertible. **C**: $A$ is an orthogonal matrix. **D**: $\text{det}\left( -A \right) = - \text{det}\left( A \right)$. **E**: $\text{det}\left( A^{-1}A^{T}A \right) = \text{det}\left( A \right)$
Solution Because $\text{det}\left( A \right) = 0$, the matrix is not invertible. Also recall that for an $n\times n$ orthogonal matrix, the following properties hold: 1. Columns are orthonormal (unit and perpendicular) 2. $A^{T}A = I_{n}$ 3. Will be invertible 4. $\text{det}\left( A \right) = \pm 1$ Therefore, **B** and **D** are correct.
4) *Justify your answers* (a) Suppose $T : \mathbb{R}^{2} \to \mathbb{R}^{2}$ gives rotation through an angle of $\frac{\pi}{3}$ in the counterclockwise direction. Let $B$ be the matrix of the transformation $T$. Is $B$ diagonalizable?
Solution No; $B$ has no eigenvectors as for $\vec{v}= \vec{0}$, $B\vec{v}$ is never a multiple of $\vec{v}$.
(b) Let $A = \begin{bmatrix} 1 & 1 & 3 \\\ 1 & 3 & 1 \\\ 3 & 1 & 1 \end{bmatrix}$. Is $\vec{v} = \begin{bmatrix} 1 \\\ -2 \\\ 1 \end{bmatrix}$ an eigenvector of $A$? If so, what is the corresponding eigenvalue?
Solution $$ \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & 1 \\ 3 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ -4 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} $$ Yes as $A\vec{v}$ is a multiple of $\vec{v}$. We see $ \lambda = 2$.
Example $A = \begin{bmatrix} \cos \left( \theta \right) & - \sin \left( \theta \right) \\\ \sin \left( \theta \right) & \cos \left( \theta \right) \end{bmatrix} $ Rotation counterclockwise by $\theta$. $\text{tr}\left( A \right) = 2 \cos \left( \theta \right) $ $\text{det}\left( A \right) = \cos ^{2} (\theta) + \sin ^{2} \theta = 1$ $f_{A} \left( \lambda \right) = \lambda - \text{tr}\left( A \right) \lambda + \text{det}\left( A \right) $ $= \lambda ^{2} - 2 \cos \left( \theta \right) \lambda + 1$ $b^{2} - 4ac$ $4 \cos ^{2}\left( \theta \right) - 4 \ge 0$ Only when $\cos ^{2} \theta = 1 \implies \cos \theta = \pm 1$ $$ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} , \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} $$ The above matrices are the only rotation matrices with eigenvalues.
3) Suppose $A$ is an $n\times n$ matrix. Then, $f_{A}\left( \lambda \right) = f_{A^{T}} \left( \lambda \right) $.
Proof Note: $A^{T} - \lambda I = \left( A - \lambda I \right) ^{T}$ $$ \begin{align*} f_A (\lambda) &= \text{det}(A - \lambda I) & \\ &= \text{det}\left( \left( A - \lambda I \right) ^{T} \right) & \text{(Property of determinants)}\\ &= \text{det} \left( A^T - \lambda I \right) & \text{(Using note)} \\ &= f_{A^T} ( \lambda ) & \end{align*} $$ $A$ and $A^{T}$ have same eigenvalues with algebraic multiplicities.
Note: $A$ and $A^{T}$ do not *necessarily* have the same eigenvectors. * $A = \begin{bmatrix} 0 & 0 \\\ 1 & 0 \end{bmatrix}$ has eigenvector $\vec{v} = \begin{bmatrix} 0 \\\ 1 \end{bmatrix}$ corresponding to eigenvalue $ \lambda = 0$. $A \vec{v} = 0 \vec{v}$ * $A^{T} = \begin{bmatrix} 0 & 1 \\\ 0 & 0 \end{bmatrix}$. $A^{T}\vec{v} = \begin{bmatrix} 0 & 1 \\\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\\ 0 \end{bmatrix}$ (Not a multiple of $\vec{v}$). $\begin{bmatrix} 0 \\\ 1 \end{bmatrix} $ is not an eigenvector for $A^{T}$. # 7.3 Finding Eigenvectors
Definition: Let $A$ be an $n\times n$ matrix with eigenvalue $ \lambda $. The *eigenspace* associated to $ \lambda $ is $$ E_\lambda = \text{ker}(A - \lambda I) = \{ \vec{v} \in \mathbb{R}^n : A \vec{v} = \lambda \vec{v} \} $$ Note: Nonzero vectors in $E_{ \lambda }$ are eigenvectors for $A$ with eigenvalue $ \lambda $.
Example $A = \begin{bmatrix} 1 & 2 \\\ 5 & 4 \end{bmatrix}$ has eigenvalues $ \lambda = -1, 6$. Find a basis for each eigenspace. 1) For $ \lambda = -1 : A + I = \begin{bmatrix} 2 & 2 \\\ 5 & 5 \end{bmatrix}$ $\overset{\text{rref}}{\to} \begin{bmatrix} 1 & 1 \\\ 0 & 0 \end{bmatrix}$ $x_2 = t$ (free) $x_1 = -t$ $\begin{bmatrix} -t \\\ t \end{bmatrix} $ Basis: $\\{ \begin{bmatrix} -1 \\\ 1 \end{bmatrix} \\}$ 2) For $ \lambda = 6 : A - 6I = \begin{bmatrix} -5 & 2 \\\ 5 & -2 \end{bmatrix}$ $\overset{\text{rref}}{\to} \begin{bmatrix} 5 & -2 \\\ 0 & 0 \end{bmatrix} $ $x_2 = t$ $5x_1 = 2t$ $\begin{bmatrix} \frac{2}{5}t \\\ t \end{bmatrix} $ Basis: $\\{ \begin{bmatrix} 2 \\\ 5 \end{bmatrix} \\}$
Previous class notes: We verified $A = \begin{bmatrix} 5 & 1 \\\ 1 & 5 \end{bmatrix}$ is diagonalizable with $S = \begin{bmatrix} 1 & -1 \\\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 6 & 0 \\\ 0 & 4 \end{bmatrix}$. Question: Where did matrix $B$ come from? A: Diagonal entries are eigenvalues for $A$. $f_{A} \left( \lambda \right) = \lambda ^{2} - \text{tr}\left( A \right) \lambda + \text{det} \left( A \right) = \lambda ^{2} - 10 \lambda + 24 = \left( \lambda - 6 \right) \left( \lambda -4 \right) $ (Eigenvalues $ \lambda = 6, 4$) Question: Where di matrix $S$ come from? A: In order, columns are eigenvectors corresponding to eigenvalues. * For $ \lambda = 6 : A - 6I = \begin{bmatrix} -1 & 1 \\\ 1 & -1 \end{bmatrix}$ $\overset{\text{rref}}{\to} \begin{bmatrix} 1 & -1 \\\ 0 & 0 \end{bmatrix}$ $x_2 = t$ $x_1 = t$ $\begin{bmatrix} 1 \\\ 1 \end{bmatrix}$ (1st column of $S$) * For $ \lambda = 4 : A - 4I = \begin{bmatrix} 1 & 1 \\\ 1 & 1 \end{bmatrix}$ $\overset{\text{rref}}{\to} \begin{bmatrix} 1 & 1 \\\ 0 & 0 \end{bmatrix}$ $x_2 = t$ $x_1 = -t$ $\begin{bmatrix} -1 \\\ 1 \end{bmatrix}$ (2nd column of $S$)
Example The matrix $A = \begin{bmatrix} 4 & 0 & 6 \\\ 0 & 3 & 0 \\\ 6 & 0 & 4 \end{bmatrix}$ has characteristic polynomial $f_{A} \left( \lambda \right) = - \left( \lambda -3 \right) \left( \lambda - 10 \right) \left( \lambda +2 \right)$. Find a basis for each eigenspace $E_{ \lambda }$. Diagonalize $A$, if you can. $ \lambda = 3, 10, -2$ $ \lambda = 3$ : $A - 3I = \begin{bmatrix} 1 & 0 & 6 \\\ 0 & 0 & 0 \\\ 6 & 0 & 1 \end{bmatrix}$ This matrix has rank 2 and nullity is 1. Basis: $\\{ \begin{bmatrix} 0 \\\ 1 \\\ 0 \end{bmatrix} \\}$ $ \lambda = 10$: $A - 10 I = \begin{bmatrix} -6 & 0 & 6 \\\ 0 & -7 & 0 \\\ 6 & 0 & -6 \end{bmatrix} \overset{\text{rref}}{\to} \begin{bmatrix} 1 & 0 & -1 \\\ 0 & 1 & 0 \\\ 0 & 0 & 0 \end{bmatrix}$ $x_3 = t$ $x_2 = 0$ $x_1 = t$ Basis: $\\{ \begin{bmatrix} 1 \\\ 0 \\\ 1 \end{bmatrix} \\}$ $ \lambda = -2$ $A + 2I = \begin{bmatrix} 6 & 0 & 6 \\\ 0 & 5 & 0 \\\ 6 & 0 & 6 \end{bmatrix} \overset{\text{rref}}{\to} \begin{bmatrix} 1 & 0 & 1 \\\ 0 & 1 & 0 \\\ 0 & 0 & 0 \end{bmatrix}$ $x_3 = t$ $x_2 = 0$ $x_1 = -t$ Basis: $\\{ \begin{bmatrix} -1 \\\ 0 \\\ 1 \end{bmatrix} \\}$ $$ \{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} , \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} , \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \} $$ Basis for $\mathbb{R}^{3}$ and hence an eigenbasis for $A$. Yes, $A$ is diagonalizable. $$ S = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} $$ $$ B = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & -2 \end{bmatrix} $$
Theorem: 1. Suppose $\vec{v}_1$, $\vec{v}_2$, ..., $\vec{v}_p$ are eigenvectors of an $n\times n$ matrix $A$ corresponding to distinct eigenvalues. Then, $\\{ \vec{v}_1, \vec{v}_2, \cdots , \vec{v}_p \\}$ is a linearly independent set. 2. If an $n\times n$ matrix $A$ has $n$ distinct eigenvalues, then $A$ is diagonalizable.
**Summary of Digitalization** We diagonalize an $n\times n$ matrix $A$ y finding an invertile matrix $S$ and a diagonal matrix $B$ such that $$ A = SBS^{-1} $$ Note: Matrix $A$ is said to be *similar* to matrix $B$ * $A$ is diagonalizable if and only if $A$ has $n$ linearly independent eigenvectors $\\{\vec{v}_1 , \vec{v}_2 , \cdots , \vec{v}_n \\}$. * $\\{ \vec{v}_1 , \vec{v}_2 , \cdots , \vec{v}_n \\}$ is called an eigenbasis for $A$ * Matrix $S$ has eigenvectors as columns. $S = \begin{bmatrix} \| & \| & & \| \\\ \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_n \\\ \| & \| & & \| \end{bmatrix}$. $B = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\\ 0 & \lambda_2 & \cdots & 0 \\\ \vdots & & \ddots & 0 \\\ 0 & \cdots & 0 & \lambda _n \end{bmatrix} $ * We saw $2\times 2$ rotation matrices are not diagonalizable as they have no eigenvectors. Many other matrices are not diagonalizable. Reason: $A$ may not have enough linearly independent eigenvectors.
Theorem: 1. Suppose $\vec{v}_1 , \vec{v}_2 , \cdots , \vec{v}_p$ are eigenvectors of an $n\times n$ matrix $A$ corresponding to **distinct** eigenvalues. Then, $\\{ \vec{v}_1 , \vec{v}_2 , \cdots , \vec{v}_p \\}$ is a linearly independent set. 2. If an $n\times n$ matrix $A$ has $n$ distinct eigenvalues then $A$ is diagonalizable
Example Find a basis for each eigenspace of $A = \begin{bmatrix} 7 & 0 & 3 \\\ -3 & 2 & -3 \\\ -3 & 0 & 1 \end{bmatrix}$. Diagonalize $A$ if you can. We found $ \lambda = 2, 4, 4$ $ \lambda = 2$: $A - 2I$ $\begin{bmatrix} 5 & 0 & 3 \\\ -3 & 0 & -3 \\\ -3 & 0 & -1 \end{bmatrix}$ Rank is 2 $\text{dim}\left( E_2 \right) = 3-2 = 1$ Basis to $E_2: \\{ \begin{bmatrix} 0 \\\ 1 \\\ 0 \end{bmatrix} \\}$ $ \lambda = 4$: $A - 4I$ $\begin{bmatrix} 3 & 0 3 \\\ -3 & -2 & -3 \\\ -3 & 0 & -3 \end{bmatrix} \overset{\text{rref}}{\to} \begin{bmatrix} 1 & 0 & 1 \\\ 0 & 1 & 0 \\\ 0 & 0 & 0 \end{bmatrix}$ Rank is 2 $\text{dim}\left( E_4 \right) = 1$ $x_3 = t$ $x_2 = 0$ $x_1 = -t$ Basis for $E_4: \\{ \begin{bmatrix} -1 \\\ 0 \\\ 1 \end{bmatrix} \\}$ $A$ is not diagonalizable. We only have 1 linearly independent eigenvector for $ \lambda =4$. $B = \begin{bmatrix} 2 & 0 & 0 \\\ 0 & 4 & 0 \\\ 0 & 0 & 4 \end{bmatrix}$ $S = \begin{bmatrix} 0 & -1 & ? \\\ 1 & 0 & ? \\\ 0 & 1 & ? \end{bmatrix}$ No invertible $S$ that works.
Definition: For an $n\times n$ matrix $A$ with eigenvalue $ \lambda $, the *geometric multiplicity* of $ \lambda $ is the dimension of $E _{ \lambda }$: $$ \begin{align*} \text{gemu}( \lambda ) = \text{dim}(E_{ \lambda }) &= \text{dim}(\text{ker}(A - \lambda I)) \\ &= n - \text{rank}(A - \lambda I) \end{align*} $$ Last example: $\text{almu}(2) = 1 = \text{geom}(2)$ $\text{almu}(4) = 2$ $\text{gemu}(4) = 1$
Theorem: An $n\times n$ matrix $A$ is diagonalizable if and only if the geometric multiplicities of eigenvalues add to $n$.
**Exercise**: Show $A = \begin{bmatrix} 2 & 1 & 0 \\\ -1 & 4 & 0 \\\ 5 & 3 & 3 \end{bmatrix}$ with $ \lambda = 3, 3, 3$ is not diagonalizable. $$ A - 3I = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 1 & 0 \\ 5 & 3 & 0 \end{bmatrix} $$ $\text{rank}\left( A - 3I \right) = 2$ $\text{gemu}(3) = 3-2 = 1 < 3$ We only have 1 linearly independent eigenvector.
Example The matrix $A = \begin{bmatrix} 4 & -3 & 0 \\\ 2 & -1 & 0 \\\ 1 & -1 & 1 \end{bmatrix}$ has characteristic polynomial $f_{A} ( \lambda ) = (1 - \lambda )^2 (2- \lambda )$. Diagonalize $A$ if you can. $ \lambda = 1$: $A - I$ $$ \begin{bmatrix} 3 & -3 & 0 \\ 2 & -2 & 0 \\ 1 & -1 & 0 \end{bmatrix} \overset{\text{rref}}{\to} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} $$ Rank is 1 $\text{dim}\left( E_1 \right) = 2 = \text{almu}(1)$ $x_1 = t$ $x_2 = t$ $x_3 = r$ Basis for $E_1 = \\{ \begin{bmatrix} 1 \\\ 1 \\\ 0 \end{bmatrix} , \begin{bmatrix} 0 \\\ 0 \\\ 1 \end{bmatrix} \\}$ $ \lambda = 2$ : $A - 2I$ $$ \begin{bmatrix} 2 & -3 & 0 \\ 2 & -3 & 0 \\ 1 & -1 & -1 \end{bmatrix} \to \begin{bmatrix} 1 & -1 & -1 \\ 2 & -3 & 0 \\ 0 & 0 & 0 \end{bmatrix} $$ $$ \to \begin{bmatrix} 1 & -1 & -1 \\ 0 & -1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \to \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix} $$ $x_3 = t$ $x_2 = 2t$ $x_1 = 3t$ Basis for $E_2 = \\{ \begin{bmatrix} 3 \\\ 2 \\\ 1 \end{bmatrix} \\}$ Yes! It's diagonalizable $$ B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} $$ $$ S = \begin{bmatrix} 1 & 0 & 3 \\ 1 & 0 & 2 \\ 0 & 1 & 1 \end{bmatrix} $$
Comment: if $ \lambda $ is an eigenvalue for $A$ then $$ 1 \le \text{gemu}( \lambda ) \le \text{almu}( \lambda ) $$ For any $ n\ge 1$, there exists a non-diagonalizable $n\times n$ matrix. Proof for $n =5$ Let $A = \begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\\ 0 & 2 & 1 & 0 & 0 \\\ 0 & 0 & 2 & 1 & 0 \\\ 0 & 0 & 0 & 2 & 1 \\\ 0 & 0 & 0 & 0 & 2 \end{bmatrix} $ Note $ \lambda = 2$ only eigenvalue $\text{almu}(2) = 5$ $\text{det}\left( A - \lambda I \right) = \left( 2- \lambda \right) ^{5}$ Has rank 4 $\text{dim}(E_2) = 1<5$ $A - 2I = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\\ 0 & 0 & 1 & 0 & 0 \\\ 0 & 0 & 0 & 1 & 0 \\\ 0 & 0 & 0 & 0 & 1 \\\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ # 8.1 Symmetric Matrices Two "fantastic" things: * Orthonormal bases (The easiest bases to work with) * Diagonal matrices (The easiest matrices to work with) Question: Which $n\times n$ matrices have an orthonormal eigenbasis? $\\{ \vec{v}_1 , \cdots , \vec{v}_n \\}$ eigenvectors for $A$ and are orthonormal. Equivalently, for which $n\times n$ matrices $A$ can we find * An orthogonal matrix $S$ and * diagonal matrix $B$ with $A = SBS^{-1}$ Recall: An $n\times n$ matrix $S$ is orthogonal if and only if $S^{-1} = S^{T}$ * $A$ has an orthonormal eigenbasis if and only if $A = SBS^{T}$ where $S$ is an orthogonal matrix and $B$ is a diagonal matrix. **Definition**: Matrix $A$ is said to be orthogonally diagonalizable. Answer: (Spectra Theorem) An $n\times n$ matrix $A$ is orthogonally diagonalizable if and only if $A$ is symmetric. Check: If $A = SBS^{T}$ then $A^{T} = \left( SBS^{T} \right) ^{T} = \left( S^{T} \right) ^{T} B^{T}S^{T} = SBS^{T} = A$
Properties of Symmetric Matrices: All of this is part of Spectral Theorem 1. A symmetric $n\times n$ matrix has $n$ (real) eigenvalues counted with geometric multiplicities. Any eigenvalue for $A$ satisfies $\text{almu}\left( \lambda \right) = \text{geom} \left( \lambda \right) $ 2. Any 2 eigenvectors corresponding to different eigenvalues of a symmetric matrix are perpendicular. (This is not true if $A$ is not symmetric)
Example Let $A = \begin{bmatrix} 2 & 3 \\\ 3 & 2 \end{bmatrix}$. Orthogonally diagonalize $A$. $f_{A}\left( \lambda \right) = \lambda ^{2} - \text{tr}\left( A \right) \lambda + \text{det}\left( A \right) $ $f_{A}\left( \lambda \right) = \lambda ^{2} - 4 \lambda -5 = \left( \lambda -5 \right) \left( \lambda +1 \right)$. $ \lambda = 5, -1$ $ \lambda =5$: $A - 5I$ $$ \begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix} \overset{\text{rref}}{\to} \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} $$ $x_2 = t$ $x_1 = t$ Basis for $E_5 : \\{ \begin{bmatrix} 1 \\\ 1 \end{bmatrix} \\}$ $ \lambda = -1$ $A = I$ $$ \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} \overset{\text{rref}}{\to} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} $$ $x_2 = t$ $x_1 = -t$ Basis for $E_{-1} : \\{ \begin{bmatrix} -1 \\\ 1 \end{bmatrix} \\}$ $$ B = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} $$ $$ S = \begin{bmatrix} \frac{1}{\sqrt{2} } & -\frac{1}{\sqrt{2} } \\\ \frac{1}{\sqrt{2} } & \frac{1}{\sqrt{2} } \end{bmatrix} $$ 5 is orthogonal
In the next example, we will use that if $A$ is an orthogonal matrix, then the only possible eigenvalues are $ \lambda = 1$ and $ \lambda = -1$ Reason: Orthogonal matrix $A$ : $ \mid \mid A \vec{v} \mid \mid = \mid \mid \vec{v} \mid \mid $ for all $\vec{v}$ in $\mathbb{R}^{n}$. If $ \lambda $ an eigenvalue $\vec{v} \neq \vec{0}$ $A \vec{v} = \lambda \vec{v}$. $ \mid \lambda \mid \mid \mid \vec{v} \mid \mid = \mid \mid \lambda \vec{v} \mid \mid = \mid \mid \vec{v} \mid \mid \to \mid \lambda \mid = 1$ $ \lambda = 1, -1$
Example Let $A = \begin{bmatrix} 0 & 0 & 0 & 1 \\\ 0 & 0 & 1 & 0 \\\ 0 & 1 & 0 & 0 \\\ 1 & 0 & 0 & 0 \end{bmatrix}$. Find an orthogonal matrix $S$ and a diagonal matrix $B$ with $A = SBS^{T}$. Hint: $A$ is orthogonal what can eigenvalues be? Only possibilities are $ \lambda = 1, -1$. $ \lambda = 1$: $A - I$ $$ \begin{bmatrix} -1 & 0 & 0 & 1 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{bmatrix} \overset{\text{rref}}{\to} \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} $$ $x_4 = t$ $x_3 = r$ $x_1 = t$ $x_2 = r$ $$ \begin{bmatrix} t \\ r \\ r \\ t \end{bmatrix} = t \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} + r \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} $$ Basis for $E_{1} = \\{ \begin{bmatrix} 1 \\\ 0 \\\ 0 \\\ 1 \end{bmatrix} , \begin{bmatrix} 0 \\\ 1 \\\ 1 \\\ 0 \end{bmatrix} \\}$ $ \lambda = -1$ $A + I$ $$ \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \overset{\text{rref}}{\to} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} $$ $x_4 = t$ $x_3 = r$ $x_1 = -t$ $x_2 = -r$ $$ \begin{bmatrix} -t \\ -r \\ r \\ t \end{bmatrix} = t \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix} + r \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \end{bmatrix} $$ Basis for $E_{-1} = \\{ \begin{bmatrix} -1 \\\ 0 \\\ 0 \\\ 1 \end{bmatrix} , \begin{bmatrix} 0 \\\ -1 \\\ 1 \\\ 0 \end{bmatrix} \\}$ $ \mid \mid \vec{v}_i \mid \mid = \sqrt{1^{2} + 0 + 0 + 1^{2}} = \sqrt{2} $ $$ B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} $$ $$ S = \begin{bmatrix} \frac{1}{\sqrt{2} } & 0 & -\frac{1}{\sqrt{2} } & 0 \\ 0 & \frac{1}{\sqrt{2} } & 0 & -\frac{1}{\sqrt{2} } \\ 0 & \frac{1}{\sqrt{2} } & 0 & \frac{1}{\sqrt{2} } \\ \frac{1}{\sqrt{2} } & 0 & \frac{1}{\sqrt{2} } & 0\end{bmatrix} $$
Example The matrix $A = \begin{bmatrix} 2 & 2 & 2 \\\ 2 & 0 & 0 \\\ 2 & 0 & 0 \end{bmatrix}$ has characteristic polynomial $f_{A} \left( \lambda \right) = - \lambda \left( \lambda - 4 \right) \left( \lambda +2 \right)$. Orthogonally diagonalize $A$. $ \lambda = 0$ $A - 0I$ $$ \begin{bmatrix} 2 & 2 & 2 \\ 2 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix} \overset{\text{rref}}{\to} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} $$ $x_3 = t$ $x_2 = -t$ $x_1 = 0$ Basis for $E_{0} : \\{ \begin{bmatrix} 0 \\\ -1 \\\ 1 \end{bmatrix} \\}$ $ \lambda = 4$ $A - 4I$ $$ \begin{bmatrix} -2 & 2 & 2 \\ 2 & -4 & 0 \\ 2 & 0 & -4 \end{bmatrix} \to \begin{bmatrix} 1 & 0 & -2 \\ 1 & -2 & 0 \\ -1 & 1 & 1 \end{bmatrix} $$ $$ \to \begin{bmatrix} 1 & 0 & -2 \\ 0 & -2 & 2 \\ 0 & 1 & -1 \end{bmatrix} \to \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} $$ $x_3 = t$ $x_2 = t$ $x_1 = 2t$ Basis for $E_{4} : \\{ \begin{bmatrix} 2 \\\ 1 \\\ 1 \end{bmatrix} \\}$ $ \lambda = -2:$ $A + 2I$ $$ \begin{bmatrix} 4 & 2 & 2 \\ 2 & 2 & 0 \\2 & 0 & 2 \end{bmatrix} \to \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 2 & 1 & 1 \end{bmatrix} $$ $$ \to \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & -1 \end{bmatrix} \to \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} $$ $x_3 = t$ $x_2 = t$ $x_1 = -t$ Basis for $E_{-2} : \\{ \begin{bmatrix} -1 \\\ 1 \\\ 1 \end{bmatrix} \\}$ $$ \{ \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} , \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} , \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \} $$ Eigenbasis $ \mid \mid \vec{v}_1 \mid \mid = \sqrt{1+1+0} = \sqrt{2}$ $ \mid \mid \vec{v}_2 \mid \mid = \sqrt{4 + 1 + 1} = \sqrt{6}$ $ \mid \mid \vec{v}_3 \mid \mid = \sqrt{1+1+1} = \sqrt{3} $ $$ S = \begin{bmatrix} 0 & \frac{2}{\sqrt{6} } & -\frac{1}{\sqrt{3} } \\ -\frac{1}{\sqrt{2} } & \frac{1}{\sqrt{6} } & \frac{1}{\sqrt{3} } \\ \frac{1}{\sqrt{2} } & \frac{1}{\sqrt{6} } & \frac{1}{\sqrt{3} } \end{bmatrix} $$ $$ B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -2 \end{bmatrix} $$
Notes: * Generally, for a symmetric matrix $A$, if you have a repeated eigenvalue $ \lambda $ i.e. $\text{almu}\left( \lambda \right) > 1$, one would perform Gram Schmidt on basis for $E_{ \lambda }$. * Two *different* concepts: in terms of chapter 7. **Diagonalizable**: $n$ linearly independent eigenvectors **Invertible**: 0 is not an eigenvalue. **Exercise** Suppose $A$ is a $3\times 3$ matrix with eigenbasis $\\{ \begin{bmatrix} 3 \\\ 0 \\\ 4 \end{bmatrix} , \begin{bmatrix} -8 \\\ 0 \\\ 6 \end{bmatrix} , \begin{bmatrix} 0 \\\ 1 \\\ 0 \end{bmatrix} \\}$. * Is $A$ diagonalizable? Yes * Is $A$ symmetric? Yes (Can normalize each vector to get orthonormal eigenbasis) * Is $A$ invertible? Not enough information ### Diagonalization
Example Suppose $A$ has characteristic polynomial $f_{A}\left( \lambda \right) = \lambda ^{2} \left( 1- \lambda \right) \left( 2 - \lambda \right) ^{3}$. Note: $A$ is $6\times 6$ 1) What are possible dimensions of the eigenspaces of $A$? $E_{0}$: dim 1 or 2 $\text{almu}(0) = 2$ $E_{1}$: dim 1 $\text{almu}(1) = 1$ $E_{2}$: dim 1, 2, 3 $\text{almu}(2) = 3$ 2) What is $A$ diagonalizable? When $\text{dim}(E_{0}) = 2$ and $\text{dim}(E_{2}) = 3$.
Example The matrix $A = \begin{bmatrix} 2 & 0 & 2 \\\ 0 & 4 & 2 \\\ 2 & 2 & 3 \end{bmatrix}$ has eigenvectors $\vec{v}_1 = \begin{bmatrix} 1 \\\ 2 \\\ 2 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 2 \\\ -2 \\\ 1 \end{bmatrix}$, and $\vec{v}_3 = \begin{bmatrix} 2 \\\ 1 \\\ -2 \end{bmatrix}$. $A$ is symmetric. We will orthogonally diagonalize $A$. $$ \begin{bmatrix} 2 & 0 & 2 \\ 0 & 4 & 2 \\ 2 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 6 \\ 12 \\ 12 \end{bmatrix} = 6 \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} $$ $$ \begin{bmatrix} 2 & 0 & 2 \\ 0 & 4 & 2 \\ 2 & 2 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ -6 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix} $$ $$ \begin{bmatrix} 2 & 0 & 2 \\ 0 & 4 & 2 \\ 2 & 2 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = 0 \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} $$ $$ B = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{bmatrix} $$ $ \mid \mid \vec{v}_i \mid \mid = \sqrt{4 + 4 + 1} = 3$ $$ S = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \end{bmatrix} $$ Note: $S$ is orthogonal
Example Let $A = \begin{bmatrix} 2 & 0 & -3 \\\ 1 & 3 & 3 \\\ 0 & 0 & 3\end{bmatrix}$. Find eigenvalues and a basis for each eigenspace. Diagonalize $A$ if you can. $ \mid A - \lambda I \mid = \begin{vmatrix} 2- \lambda & 0 & -3 \\\ 1 & 3- \lambda & 3 \\\ 0 & 0 & 3- \lambda \end{vmatrix} = (-1)^{3+3} (3 - \lambda ) \begin{vmatrix} 2- \lambda & 0 \\\ 1 & 3- \lambda \end{vmatrix} = \left( 3- \lambda \right) ^{2} \left( 2 - \lambda \right) $. $ \lambda = 3, 3, 2$ $ \lambda = 3$ $A - 3I$ $$ \begin{bmatrix} -1 & 0 & -3 \\ 1 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix} \overset{\text{rref}}{\to} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} $$ $x_3 = t$ $x_2 = r$ $x_1 = -3r$ $\begin{bmatrix} -3t \\\ r \\\ t \end{bmatrix} = t \begin{bmatrix} -3 \\\ 0 \\\ 1 \end{bmatrix} + r \begin{bmatrix} 0 \\\ 1 \\\ 0 \end{bmatrix} $ Basis for $E_3 : \\{ \begin{bmatrix} -3 \\\ 0 \\\ 1 \end{bmatrix} , \begin{bmatrix} 0 \\\ 1 \\\ 0 \end{bmatrix} \\}$ $ \lambda = 2$ $A - 2 I$ $$ \begin{bmatrix} 0 & 0 & -3 \\ 1 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} \overset{\text{rref}}{\to} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} $$ $x_3 = 0$ $x_2 = t$ $x_1 = -t$ Basis for $E_2 : \\{ \begin{bmatrix} -1 \\\ 1 \\\ 0 \end{bmatrix} \\}$ $$ S = \begin{bmatrix} -3 & 0 & -1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} $$ $$ B = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix} $$ Yes diagonalizable.
Example Let $A = \begin{bmatrix} 4 & 2 & 3 \\\ 2 & 1 & x \\\ 0 & 0 & 5 \end{bmatrix} $ 1) Find all eigenvalues for the matrix $A$. $$ \begin{align*} \text{det}(A - \lambda I) = \begin{vmatrix} 4 - \lambda & 2 & 3 \\ 2 & 1 - \lambda & x \\0 & 0 & 5- \lambda \end{vmatrix} &= (-1)^{3+3} (5- \lambda ) \begin{vmatrix} 4 - \lambda & 2 \\ 2 & 1- \lambda \end{vmatrix} \\ &= (5 - \lambda ) [(4- \lambda ) (1 - \lambda ) - 4] \\ &= (5- \lambda ) [ \lambda ^2 - 5 \lambda +4 - 4] \\ &= - \lambda (5 - \lambda )^2 \end{align*} $$ $ \lambda = 0, 5, 5$ $\text{almu}(5) = 2$ 2) For which values of $x$ is the matrix $A$ diagonalizable? $A$ is diagonalizable if and only if $\text{gemu}(5) = 2$ $ \lambda =5$ Need $A - 5I$ to have rank 1 / nullity 2. $$ \begin{bmatrix} -1 & 2 & 3 \\ 2 & -4 & x \\ 0 & 0 & 0 \end{bmatrix} \overset{2R_1 + R_2}{\to} \begin{bmatrix} -1 & 2 & 3 \\ 0 & 0 & 6+x \\ 0 & 0 & 0 \end{bmatrix} $$ Need $6+x = 0 \implies x =-6$ Gives $A$ diagonalizable