{ "cells": [ { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "
\n", "

Introduction to the Scikit-HEP project

\n", "
" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "### **Motivation, really quickly**\n", "\n", "As discussed earlier, the scientific Python ecosystem can be organised, schematically, as a layered set of libraries and packages ever more specialised, from foundational and key libraries such as NumPy, Pandas and matplotlib, to domain-specific projects:" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "
" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "At the time this popular slide was prepared and presented (2017), one could ask itself where the HEP domain-specific projects were. Scikit-HEP came to \"fill the gap\" for Particle Physics just about that time (Autumn 2016). (Others did the same, later on, as seen in the introduction notebook.)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### **The grand picture**\n", "\n", "The [Scikit-HEP project](https://scikit-hep.org) has had from the onset clearly-defined goals, and it cherishes a few core values:" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "
\"Scikit-HEP
" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "As a result, the tools showcased here aim to make it easy and Pythonic to perform HEP analysis in the scientific Python ecosystem." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### **Project topics and packages**\n", "\n", "Very many topics are addressed within the project!\n", "- Data manipulation and interoperability\n", "- Data aggregation and histogramming\n", "- Modeling and fitting\n", "- Statistics\n", "- Visualisation\n", "- HEP-specific utilities e.g. to deal with particles and decays\n", "- Simulation\n", "- Interoperability with HEP-specific libraries" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here is an overview of the Scikit-HEP packages that are most popular and/or most actively used and maintained:" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A \"whetting your appetite\" mini gallery ...:\n", "\n", "\n", " \n", " \n", "\n", "
\n", "\n", "\n", " \n", " \n", "\n", "
" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### **The scikit-hep metapackage**\n", "\n", "The project has a special package, `scikit-hep`, which is a *metapackage*. Unlike all others, which target specific topics, this metapackage simply provides an easy way to have a compatible set of project packages installed via a simple `conda install scikit-hep` (or `pip install scikit-hep`) command.\n", "\n", "The Scikit-HEP packages used in these notebooks are in fact installed via the metapackage. It is trivial to check the available versions:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [], "source": [ "import skhep\n", "skhep.show_versions()" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "
\n", "THANK YOU\n", "\n", "to Hans Dembinski, Henry Schreiner, Jim Pivarski, Jonas Eschle and others for knowingly (or unknowingly) providing material and/or inspiration for these tutorial notebooks!\n", "
" ] } ], "metadata": { "celltoolbar": "Slideshow", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 4 }