{ "cells": [ { "cell_type": "markdown", "metadata": { "jp-MarkdownHeadingCollapsed": true, "tags": [] }, "source": [ "# SOSTAT 2021\n", "## 2nd IAA-CSIC Severo Ochoa School on Statistics, Data Mining, and Machine Learning\n", "\n", "### A Severo Ochoa School of the Instituto de Astrofísica de Andalucía (CSIC)\n", "-----\n", "\n", "### Workshop Tutorials\n", "\n", "- Gwendolyn Eadie\n", " - [Sampling from distributions with R](./gwen_probability/sampling_from_distributions_with_R.ipynb)\n", " - [Bayesian inference with candy](./gwen_probability/Bayesian_inference_with_candy.ipynb)\n", "\n", "- Željko Ivezić\n", " - [ZIlecture1: Gentle Introduction to Big Data in Astronomy and Basics](./zeljko/ZIlecture1.ipynb)\n", " - [ZIlecture2: Introduction to ML; density estimation and regression](./zeljko/ZIlecture2.ipynb)\n", "- Abigail Stevens\n", " - [boot_jack_workbook](./abigail_bootjack/boot_jack_workbook.ipynb) ([solutions](./abigail_bootjack/boot_jack_solutions.ipynb))\n", " - [time_series_workbook](./abigail_timeseries/time_series_workbook.ipynb) ([solutions](./abigail_timeseries/time_series_solutions.ipynb))\n", " \n", "- Daniela Huppenkothen\n", " - [Practical Machine Learning with SDSS Data](./daniela_machine_learning/SOSTAT2021_ML_Tutorial.ipynb) ([solutions](./daniela_machine_learning/SOSTAT2021_ML_Tutorial_SOLUTIONS.ipynb))\n", " - [A Tutorial on Neural Networks](./daniela_neural_networks/SOSTAT2021_NN_Tutorial_SOLUTIONS.ipynb)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.12" } }, "nbformat": 4, "nbformat_minor": 4 }