{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [], "collapsed_sections": [ "UszPR4dNY8sW", "J2FPr4LV86OO", "aUDER1Q4Htyy", "F31svxgPNP_t", "zyTGovhuH1_p", "AyEv5zepGLGE", "3TIfVm6TmBVP", "ESibLGhhRp8n", "hv0lpsGFldF_", "tYzchKpM7DlA" ] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "markdown", "source": [ "# **MATE Floats! Coding Notebook** - Day 2\n", "\n", "Created by Ethan C. Campbell for NCAT/MATE/GO-BGC Marine Technology Summer Program\n", "\n", "Tuesday, August 22, 2023" ], "metadata": { "id": "OxvLAQ1SWpeR" } }, { "cell_type": "markdown", "source": [ "## Part 1: Python and notebooks" ], "metadata": { "id": "UszPR4dNY8sW" } }, { "cell_type": "markdown", "source": [ "**Computer code** allows us to work with data, create visualizations, and create repeatable scientific workflows. It is an integral part of the modern scientific method!\n", "\n", "Every programming language has a specific **syntax**. In English as well as programming languages, syntax describes valid combinations of symbols and words:\n", "* Syntactically invalid: \"boy dog cat\"\n", "* Syntactically valid: \"boy hugs cat\"\n", "* Syntactically valid (but **semantically** invalid): \"cat hugs boy\"\n", "\n", "**Semantics** refer to whether a phrase has meaning. It's up to us to write computer code that has scientific meaning and is useful. The computer will allow us to write code that is syntactically valid but semantically – or scientifically – incorrect!\n", "\n", "---" ], "metadata": { "id": "stif3BkqXGuD" } }, { "cell_type": "markdown", "source": [ "![Programming languages.png]()" ], "metadata": { "id": "Djp9pEel9qA6" } }, { "cell_type": "markdown", "source": [ "(*Image source: [stackoverflow.blog](https://stackoverflow.blog/2017/09/06/incredible-growth-python/)*)\n", "\n", "No programming language is perfect. As the inventor of C++ once said, *“There are only two kinds of programming languages: the ones people complain about and the ones nobody uses.”*\n", "\n", "However, there are many reasons that we use Python instead of other programming languages, like MATLAB, Java, or C:\n", "- It's free!\n", "- It's old, so it's very stable (Python was created in 1991)\n", "- It can do almost anything\n", "- It's incredibly popular inside and outside of science (so it could help you land a job)\n", "- It's open source, which means anyone can help to improve it\n", "- It reads a bit like written English, so it's easier to write and understand\n", "\n", "***Question: How many of you have heard of Python before this course? Who has written code in Python (or a different language) before?***" ], "metadata": { "id": "E752-6589-dV" } }, { "cell_type": "markdown", "source": [ "---\n", "\n", "This web page is called a **notebook**. It lets us write and run computer code, and the results get displayed and saved alongside the code. If you download this notebook in the File menu, the file extension will be `.ipynb`.\n", "\n", "Sometimes it makes more sense to create a **script** instead of a notebook. Scripts are code files that run from top to bottom, and they don't save the output.\n", "\n", "***Question: When we run Python code in this notebook, where is the code actually being run?***" ], "metadata": { "id": "YkJewcBFh3eR" } }, { "cell_type": "markdown", "source": [ "---\n", "\n", "First, we always have to load **packages** into the notebook using the `import` command! Packages give us additional **functions** that allow us to get more stuff done.\n", "\n", "To run a coding cell, you can click the \"play\" button or type `Shift`-`Enter` (PC) or `Shift`-`Return` (Mac) on your keyboard. ***Try this with the cell below:***" ], "metadata": { "id": "db2A18q6WXtQ" } }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "-9O6SthNqtT8" }, "outputs": [], "source": [ "import numpy as np # NumPy is an array and math library\n", "import matplotlib.pyplot as plt # Matplotlib is a visualization (plotting) library\n", "import pandas as pd # Pandas lets us work with spreadsheet (.csv) data\n", "from datetime import datetime, timedelta # Datetime helps us work with dates and times" ] }, { "cell_type": "markdown", "source": [ "When we write `import numpy as np`, we are saying: \"import the package NumPy and we will access it using the abbreviation `np` from here onwards.\" You could technically write any abbreviation, but `np` is standard for NumPy." ], "metadata": { "id": "vmaVXRWMAxMO" } }, { "cell_type": "markdown", "source": [ "Often we'd like to add notes to our code. You can do this using **comments**, notated above using a \\# (hash) symbol. Everything after the \\# is ignored and not treated like code." ], "metadata": { "id": "_b8DR4MoAlCW" } }, { "cell_type": "markdown", "source": [ "## Part 2: Variables and math" ], "metadata": { "id": "J2FPr4LV86OO" } }, { "cell_type": "markdown", "source": [ "We can use Python as a calculator. Run the cell below:" ], "metadata": { "id": "ESXwBOoGW8qS" } }, { "cell_type": "code", "source": [ "3 + 9" ], "metadata": { "id": "5LUJIIQ6XWi0" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "2 + 5" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "_o7WAAKpDxIP", "outputId": "0101297d-66bc-403b-8a2c-90fcfbb10fab" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "7" ] }, "metadata": {}, "execution_count": 3 } ] }, { "cell_type": "markdown", "source": [ "Note that parentheses can be used to change the order of operations:" ], "metadata": { "id": "SOh05mH6EpLI" } }, { "cell_type": "code", "source": [ "1 + 2 * 3 + 4" ], "metadata": { "id": "P06zR16eEi3O", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "30b36c0d-d4f9-40e3-b47b-9e56311200fd" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "11" ] }, "metadata": {}, "execution_count": 4 } ] }, { "cell_type": "code", "source": [ "(1 + 2) * (3 + 4)" ], "metadata": { "id": "tLOCMyTBEvck", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "5244a9cc-35b8-4c99-b7b3-a1d92ef86a6a" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "21" ] }, "metadata": {}, "execution_count": 5 } ] }, { "cell_type": "markdown", "source": [ "If Python doesn't recognize the code, it will give an **error**.\n", "\n", "***What helpful information does the following error message include?***" ], "metadata": { "id": "s5D32op-iCGK" } }, { "cell_type": "code", "source": [ "3 + hello" ], "metadata": { "id": "uCPfRriciBXp" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "Try doing some math yourself below. ***Question: Can you figure out how to multiply and divide numbers?***" ], "metadata": { "id": "P3n99f5yXZPs" } }, { "cell_type": "code", "source": [ "10 / 2" ], "metadata": { "id": "PmQitlaNXfKF", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "1c7b68cb-3e30-41d7-c7da-3489e029c5b6" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "5.0" ] }, "metadata": {}, "execution_count": 7 } ] }, { "cell_type": "markdown", "source": [ "Usually, Python needs to be told when to \"print\" something to the screen. For this, we use the **`print()`** function:" ], "metadata": { "id": "B3kVB6JVXksP" } }, { "cell_type": "code", "source": [ "print(\"Hello world!\")" ], "metadata": { "id": "PQeI0aJbXstQ", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "9aea4848-101e-4e33-bcfa-ba53c9468144" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Hello world!\n" ] } ] }, { "cell_type": "markdown", "source": [ "***Try writing code to print a different message:***" ], "metadata": { "id": "gnjpRXeOiZsz" } }, { "cell_type": "code", "source": [ "print('Floats are amazing')" ], "metadata": { "id": "WGWdyQjEibZE", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "3517a6fb-5688-4b60-89db-c90cfff81e3f" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Floats are amazing\n" ] } ] }, { "cell_type": "markdown", "source": [ "Note how comments are used in two ways below, both to describe a section of code and to annotate a specific line:" ], "metadata": { "id": "qetc0zzL13rG" } }, { "cell_type": "code", "source": [ "# This is a section comment\n", "print('This is not a comment')\n", "print('This is also not a comment') # This is a line comment" ], "metadata": { "id": "CWCYvrgX2IX9", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "9bffe24d-724a-4d3e-ec8f-17341d5f11ea" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "This is not a comment\n", "This is also not a comment\n" ] } ] }, { "cell_type": "markdown", "source": [ "In Python, we use **variables** to store information. Variables can be numbers (**integers** or **floats**), combinations of characters (called **strings**), a **boolean** (which are either True or False), or other things that are generally called \"**objects**\".\n", "\n", "To save a variable, we use the equal sign (`=`). You can name your variable anything descriptive, as long as it's one word! Note that underscore (`_`) can be used to join words in a variable name." ], "metadata": { "id": "2yuXcWy5XxWX" } }, { "cell_type": "code", "source": [ "a = -5 # This variable is an \"integer\" because is a whole number (a number without a decimal point)\n", "almost_ten = 9.9 # This variable is a \"float\" because is a floating point number (a number with a decimal point)\n", "scientific = 2e3 # This variable is also a float, and is written in scientific notation: 2.0 x 10^3 = 1000\n", "\n", "mate = 'FLOATS' # This variable is a string\n", "mate_2 = \"FLOATS\" # You can also specify strings using double quotation marks\n", "\n", "boolean = True # This variable is a boolean" ], "metadata": { "id": "OGHwCzCiYOiv" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "print(a)" ], "metadata": { "id": "p-6FzKFwYNJ9", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "4ec799c3-71c3-4b2e-cc13-d926d33efe5a" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "-5\n" ] } ] }, { "cell_type": "code", "source": [ "print(almost_ten)" ], "metadata": { "id": "47-LhFOaYQ0m", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "02e39df7-9589-4be9-8898-2ef272568e45" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "9.9\n" ] } ] }, { "cell_type": "code", "source": [ "print(scientific)" ], "metadata": { "id": "XumLM8cKGAiC", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "67d37f2c-07b2-4095-8628-e2f806a84eb1" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "2000.0\n" ] } ] }, { "cell_type": "code", "source": [ "print(mate)\n", "print(mate_2)" ], "metadata": { "id": "qD3PPGarYXdF", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "7781dce6-8183-478e-c585-7b84d9fc25b4" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "FLOATS\n", "FLOATS\n" ] } ] }, { "cell_type": "code", "source": [ "print(boolean)" ], "metadata": { "id": "Hegia9C2GdUw", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "36adf0fe-e7fc-4958-f29c-615e5bc6025e" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "True\n" ] } ] }, { "cell_type": "markdown", "source": [ "You can do math at the same time that you create a variable!" ], "metadata": { "id": "0rlqnIOZ9NlL" } }, { "cell_type": "code", "source": [ "result = 2023 - 1913\n", "print(result)" ], "metadata": { "id": "PuWeV09m9VA_", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "88fce35e-8d4c-4baa-f8b6-46b3e4b47f8c" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "110\n" ] } ] }, { "cell_type": "markdown", "source": [ "***Try the following:***\n", "1. ***Search on Google for the formula to convert Fahrenheit to Celsius.***\n", "2. ***Save a variable with the current Seattle temperature in Fahrenheit (feel free to guess, or look it up).***\n", "3. ***Then create a new variable with that temperature converted into Celsius (using math).***\n", "4. ***Print that result!***" ], "metadata": { "id": "OBmYHJ93MZO1" } }, { "cell_type": "code", "source": [ "# Write your code here:\n", "temp = 60 # Fahrenheit\n", "new_temp = (temp - 32) * (5/9)\n", "print(new_temp)" ], "metadata": { "id": "oV3vRYprMont", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "baf1b02b-0fca-48af-967f-ff24cd960248" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "15.555555555555557\n" ] } ] }, { "cell_type": "markdown", "source": [ "You can also change a variable using this compact notation:\n", "* `a += b` is the same as `a = a + b`\n", "* `a -= b` is the same as `a = a - b`\n", "* `a *= b` is the same as `a = a * b`" ], "metadata": { "id": "4KD9Yq3lFHH2" } }, { "cell_type": "code", "source": [ "result += 50\n", "print(result)" ], "metadata": { "id": "zPlOmwLpFcu9" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "Note that Python treats booleans (True and False) like the integers 1 and 0, respectively. ***This means you can do math with booleans. What will the code produce below, and why?***" ], "metadata": { "id": "aIjuN0miGoUt" } }, { "cell_type": "code", "source": [ "print((False * 5) + (True * 3))" ], "metadata": { "id": "pIt2B0QQG6TX", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "f2a2cebc-ec0c-494c-e0b3-425dd532cf17" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "3\n" ] } ] }, { "cell_type": "markdown", "source": [ "***What happens when you add two strings together? Try it below.***" ], "metadata": { "id": "1rp4Jnh27cgX" } }, { "cell_type": "code", "source": [ "# Write your code here:\n", "print('MATE' + ' ' + 'Floats')" ], "metadata": { "id": "K1CmVOqj7hYP", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "10752a4f-f1c4-471b-ffc1-e976ad501495" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "MATE Floats\n" ] } ] }, { "cell_type": "markdown", "source": [ "## Part 3: Lists, 1-D arrays, indexing, and slicing" ], "metadata": { "id": "aUDER1Q4Htyy" } }, { "cell_type": "markdown", "source": [ "To store multiple numbers, we use **lists** or **NumPy arrays**. Lists and arrays are types of variables, and NumPy is one of the packages that we imported at the top. Here's how we create a list or array:" ], "metadata": { "id": "_u4V8X5zYWnc" } }, { "cell_type": "code", "source": [ "my_list = [1,2,3,4,5]" ], "metadata": { "id": "DeEk5f6tGt1I" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "my_array = np.array([1,2,3,4,5,6,7,8,9])" ], "metadata": { "id": "stU_2biAYpWF" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "print(my_list)\n", "print(my_array)" ], "metadata": { "id": "1ZZAFrtPYqTi", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "3671e7b1-7454-4f53-f7bf-aa5b9106a061" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "[1, 2, 3, 4, 5]\n", "[1 2 3 4 5 6 7 8 9]\n" ] } ] }, { "cell_type": "markdown", "source": [ "You can add elements to the end of a list by **appending**. The syntax is:\n", "\n", "> **`list_name.append(NEW_ELEMENT)`**" ], "metadata": { "id": "KF7f04zmPAva" } }, { "cell_type": "code", "source": [ "# Append to the list that you created earlier:\n", "my_list.append(6)\n", "my_list.append(7)\n", "print(my_list)" ], "metadata": { "id": "3l95QDNjPON5", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "8cc34e79-2e34-4a55-c26f-0c6133ea7a85" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "[1, 2, 3, 4, 5, 6, 7]\n" ] } ] }, { "cell_type": "markdown", "source": [ "You can convert a list to an array by putting it inside **`np.array()`**:" ], "metadata": { "id": "lakCzdpAOyys" } }, { "cell_type": "code", "source": [ "print(np.array(my_list))" ], "metadata": { "id": "qVHEFrDVO30V", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "a3260146-f404-4b42-dcef-3ef84a6db010" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "[1 2 3 4 5 6 7]\n" ] } ] }, { "cell_type": "markdown", "source": [ "A list can store a combination of numbers and strings, while an array can store only one variable type (so just numbers OR just strings):" ], "metadata": { "id": "tTFXh0wFH_WO" } }, { "cell_type": "code", "source": [ "combo_list = ['element #1', 2, 'element #3', 4]\n", "print(combo_list)" ], "metadata": { "id": "cNOev1VOH-rf" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "Naturally, we can do math with arrays. This is very useful!\n", "\n", "***Before running the cells below, what do you expect will be the result of each line of code?***" ], "metadata": { "id": "55hydvn0YtqH" } }, { "cell_type": "code", "source": [ "my_array + 5" ], "metadata": { "id": "eLmXjAhFYs8U", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "bea3204c-8c1e-49fb-9292-3c39f50b21c1" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "array([ 6, 7, 8, 9, 10, 11, 12, 13, 14])" ] }, "metadata": {}, "execution_count": 44 } ] }, { "cell_type": "code", "source": [ "my_array * 2" ], "metadata": { "id": "ob3atI21Y1WW", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "753eb8d6-58e3-4b28-b61d-6e7b3e00ae6b" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "array([ 2, 4, 6, 8, 10, 12, 14, 16, 18])" ] }, "metadata": {}, "execution_count": 42 } ] }, { "cell_type": "code", "source": [ "my_array + my_array" ], "metadata": { "id": "185UbNiqY3Db", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "f8964cd0-f9cb-4a57-802b-60bcabe91fe6" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "array([ 2, 4, 6, 8, 10, 12, 14, 16, 18])" ] }, "metadata": {}, "execution_count": 45 } ] }, { "cell_type": "code", "source": [ "np.array([50,100,150]) + np.array([1,1,1])" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "oF9a4UnUNZKD", "outputId": "267d0a47-70e1-440b-a1b2-07617d718b28" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "array([ 51, 101, 151])" ] }, "metadata": {}, "execution_count": 46 } ] }, { "cell_type": "code", "source": [ "var = [1, 2, 3, 4] * 4" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "hu-Yney4NowO", "outputId": "ce07ea71-3696-443f-ad87-ecf1982fd386" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "[1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4]" ] }, "metadata": {}, "execution_count": 47 } ] }, { "cell_type": "markdown", "source": [ "***What happens when you add two lists together? Try it!***" ], "metadata": { "id": "_V4cxdvBQwdy" } }, { "cell_type": "code", "source": [ "# Write your code here:\n", "[1,2,3] + [4,5]" ], "metadata": { "id": "SrKe3oWZQ1bg", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "72bf4953-7c85-4cba-dc8c-cd599bac288b" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "[1, 2, 3, 4, 5]" ] }, "metadata": {}, "execution_count": 48 } ] }, { "cell_type": "markdown", "source": [ "If we want to retrieve certain elements from a list or array, we need to count the position of the elements, which we call an **index**. More than one index are **indices**. For example:\n", "\n", "* List: `['A', 'B', 'C', 'D', 'E', 'F', 'G']`\n", "\n", "* Indices: A = 0, B = 1, C = 2, D = 3, E = 4, F = 5, G = 6\n", "\n", "To extract the element, we can **index** or **slice** into the list or array using a bracket **[ ]** after the variable name:\n", "\n", "* Indexing: **`variable_name[INDEX]`**\n", "* Slicing: **`variable_name[START (optional) : END (optional)]`** (note: `END` is exclusive, so it is the index after the final element that you want)\n", "\n", "***Run each cell below and think about why the results make sense:***" ], "metadata": { "id": "oTg8kxr7GB1i" } }, { "cell_type": "code", "source": [ "year = [2,0,2,3]\n", "print(year)" ], "metadata": { "id": "VfMxSqQESQxF", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "5a16b1ce-8846-4b76-acf4-eef410a4450d" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "[2, 0, 2, 3]\n" ] } ] }, { "cell_type": "code", "source": [ "# Examples of indexing:\n", "print(year[0])\n", "print(year[3])\n", "print(year[-1]) # This is pretty cool! Negative indexing counts backwards from the end" ], "metadata": { "id": "31P9AAA63yxZ", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "628d0132-45ec-4d19-d6e4-2eacd81e7589" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "2\n", "3\n", "3\n" ] } ] }, { "cell_type": "code", "source": [ "# Examples of slicing:\n", "print(year[0:4])\n", "print(year[:2])" ], "metadata": { "id": "HF2d3rOc3zD5", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "7c4ffa39-e1f6-4891-9b8d-28c8d5dc5eb2" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "[2, 0, 2, 3]\n", "[2, 0]\n" ] } ] }, { "cell_type": "markdown", "source": [ "***Can you find two different ways to extract the last two elements (`['2','3']`) of the variable `year`?***\n", "\n", "***Try using one of them to save (`['2','3']`) into a new variable.***" ], "metadata": { "id": "UfnTZRSI5Q91" } }, { "cell_type": "code", "source": [ "# Write your code here:\n", "my_year = np.array([2,0,2,3])\n", "a = my_year[-2:]\n", "print(a)" ], "metadata": { "id": "9AtXnl7A5tL9", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "70ba7bf8-7a93-4276-9afe-d6b2496fc9ec" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "[2 3]\n" ] } ] }, { "cell_type": "code", "source": [ "a[1] = 99\n", "print(a)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "9jEogCoNQfTq", "outputId": "3a959505-b2d9-42be-f6b8-107bd82369da" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "[ 2 99]\n" ] } ] }, { "cell_type": "code", "source": [ "print(my_year)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "8phQ5briQm1J", "outputId": "5d4a3ec3-e689-4b3b-8416-b9890c4b389c" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "[ 2 0 2 99]\n" ] } ] }, { "cell_type": "markdown", "source": [ "Similarly, you can use indexing or slicing to assign new values in a list or array:" ], "metadata": { "id": "fzu-AQ4pTbSZ" } }, { "cell_type": "code", "source": [ "array_to_modify = np.array([10,20,30,40,50])\n", "array_to_modify[0] = 0\n", "array_to_modify[1:4] = np.array([21,31,41])\n", "array_to_modify[4] *= 2" ], "metadata": { "id": "wvH6Lpb4Ti9d" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "***What will `array_to_modify` be after these modifications? Test your prediction by printing the variable below:***" ], "metadata": { "id": "vlfG--UHT_pY" } }, { "cell_type": "code", "source": [ "# Write your code here:\n", "array_to_modify" ], "metadata": { "id": "ZSBSfaHEUJCQ", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "816a0465-e6d5-41cd-bf4c-cd08ae9befa5" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "array([ 0, 21, 31, 41, 100])" ] }, "metadata": {}, "execution_count": 74 } ] }, { "cell_type": "markdown", "source": [ "***What happens when you index or slice into a string? Try it!***" ], "metadata": { "id": "fW9RymUp9st2" } }, { "cell_type": "code", "source": [ "# Write your code here:\n", "my_string = 'projector'\n", "my_string[3]" ], "metadata": { "id": "CVt-kKZF90xq", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "766a9f10-bdcb-4849-8ef8-48dfabec6987" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "'j'" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "string" } }, "metadata": {}, "execution_count": 83 } ] }, { "cell_type": "markdown", "source": [ "## Part 4: 2-D arrays" ], "metadata": { "id": "F31svxgPNP_t" } }, { "cell_type": "markdown", "source": [ "NumPy arrays can also be **two-dimensional** (or higher dimensions). Whoa!\n", "\n", "This allows us to represent data on multiple **axes** using nested brackets: **[ [ ], [ ], [ ], etc. ]**. Below, I've created a 2-D NumPy array where each column is average monthly temperature for a city. Each row is a different city. I've found the data for [Pasadena, CA](https://en.climate-data.org/north-america/united-states-of-america/california/pasadena-715014/#climate-table) (top row - index 0) and [Seattle, WA](https://en.climate-data.org/north-america/united-states-of-america/washington/seattle-593/#climate-table) (bottom row - index 1) on [climate-data.org](https://en.climate-data.org/)." ], "metadata": { "id": "f-vWngOeHAP7" } }, { "cell_type": "code", "source": [ "len(my_array)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "5rEoOLFsWy6H", "outputId": "60b54b00-e4f8-4bc6-baab-e078d6d619ba" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "9" ] }, "metadata": {}, "execution_count": 86 } ] }, { "cell_type": "code", "source": [ "temp = np.array([[53.6,53.9,57.3,60.5,64.8,70.1,75.7,76.4,74.1,67.3,59.8,52.9], # (Pasadena)\n", " [40.0,40.6,44.2,48.4,54.9,60.2,66.2,66.7,60.5,52.0,44.5,39.6]]) # (Seattle)\n", "\n", "print(temp)" ], "metadata": { "id": "UtAc_AUKHFZC", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "b3924765-8917-4e7a-c4a7-baabbd4789f0" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "[[53.6 53.9 57.3 60.5 64.8 70.1 75.7 76.4 74.1 67.3 59.8 52.9]\n", " [40. 40.6 44.2 48.4 54.9 60.2 66.2 66.7 60.5 52. 44.5 39.6]]\n" ] } ] }, { "cell_type": "markdown", "source": [ "Just like `len()` gives the length of a 1-D array, the command **`.shape`** (a property, not a function!) gives the dimensions of a 2-D (or 3-D, 4-D, etc.) array:" ], "metadata": { "id": "3MpPjhtuknQg" } }, { "cell_type": "code", "source": [ "temp.shape # returns: (number of rows, number of columns)" ], "metadata": { "id": "jOqkONCIkwpS", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "bc73907a-68a9-4678-ec4c-c0c735821b5d" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "(2, 12)" ] }, "metadata": {}, "execution_count": 87 } ] }, { "cell_type": "markdown", "source": [ "**Axis 0** goes across rows and **axis 1** goes down columns.\n", "\n", "We still index and slice into 2-D arrays using brackets, with the index for each dimension separated by a comma: `,`:\n", "\n", "> **`array_name[ROW_INDEX, COLUMN_INDEX]`**\n", "\n", "So we'd get the temperature in Pasadena (row index 0) in June (month #6, so column index 5) by writing:" ], "metadata": { "id": "foHcxcjTJFgo" } }, { "cell_type": "code", "source": [ "print(temp[0,5])" ], "metadata": { "id": "8QsmFBS_JFAW", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "0176d010-3796-407d-d96e-06720f7586d5" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "70.1\n" ] } ] }, { "cell_type": "markdown", "source": [ "***Use indexing to retrieve the December average temperature in Seattle. Print your result:***" ], "metadata": { "id": "HvY3DkuCLGaK" } }, { "cell_type": "code", "source": [ "# Write your code below\n", "temp[1,11]" ], "metadata": { "id": "P7Ki5VVqLMY-" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "Slicing works the same way. Instead of a single row or column index, use the range of indices:\n", "\n", "> **`array_name[ROW_START:ROW_END, COLUMN_START:COLUMN_END]`**\n", "\n", "To get all the elements along a certain axis, just use a single colon, `:`." ], "metadata": { "id": "q08mizMUJ9Mn" } }, { "cell_type": "markdown", "source": [ "***Try using slicing to get the temperatures for the first half of the year for Pasadena:***" ], "metadata": { "id": "vFO3sKq0LZtj" } }, { "cell_type": "code", "source": [ "# Write your code below\n", "temp[0,0:6]" ], "metadata": { "id": "N_iFNlNELfuN", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "769aa0fc-c9b9-4f99-f1d5-dd8704c76583" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "array([53.6, 53.9, 57.3, 60.5, 64.8, 70.1])" ] }, "metadata": {}, "execution_count": 89 } ] }, { "cell_type": "markdown", "source": [ "***Next, try using slicing to obtain the average temperatures for both cities in August:***" ], "metadata": { "id": "DRvUqWbrLCeo" } }, { "cell_type": "code", "source": [ "# Write your code below\n", "temp[:,7]" ], "metadata": { "id": "qDGhe5fuLkjj", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "705678c6-cbf1-4260-c2ef-33d511cdbf07" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "array([76.4, 66.7])" ] }, "metadata": {}, "execution_count": 90 } ] }, { "cell_type": "markdown", "source": [ "***Finally, using slicing and mathematical operations to calculate the average temperatures for both cities between December to February (three months). You got this!***" ], "metadata": { "id": "QJ6ZQMAbL0a5" } }, { "cell_type": "code", "source": [ "# Write your code below\n", "(temp[:,-1] + temp[:,0] + temp[:,1]) / 3" ], "metadata": { "id": "HB_tMQP_MAFP", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "4a4a64fa-2fcc-491b-9571-b2c1bdbdda5b" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "array([53.46666667, 40.06666667])" ] }, "metadata": {}, "execution_count": 93 } ] }, { "cell_type": "code", "source": [ "temp[:,[-1,0,1]] # Where from here?" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "Z69rJ5yrblWH", "outputId": "280dfd49-b6cc-44fb-85e7-6501ae5d2c36" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "array([[52.9, 53.6, 53.9],\n", " [39.6, 40. , 40.6]])" ] }, "metadata": {}, "execution_count": 94 } ] }, { "cell_type": "markdown", "source": [ "## Part 5: Functions" ], "metadata": { "id": "zyTGovhuH1_p" } }, { "cell_type": "markdown", "source": [ "You already know two functions: `print()` and `np.array()`. Functions usually take at least one input \"**argument**\" inside the parentheses, with multiple arguments separated by commas. Then the function \"**returns**\" or \"**outputs**\" something back.\n", "\n", "Let's learn a few other functions...\n", "\n", "The function **`len(INPUT)`** returns the length of a list, array, or string. ***Do the following outputs make sense based on the input arguments?***" ], "metadata": { "id": "yyBf1Z4xYlcY" } }, { "cell_type": "code", "source": [ "year = np.array([2,0,2,3])\n", "array_digits = len(year)\n", "print(array_digits)" ], "metadata": { "id": "zzcRF9jzMLGB", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "bae446d5-9896-4afd-ec96-6947adf7d981" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "4\n" ] } ] }, { "cell_type": "code", "source": [ "year = '2023'\n", "str_digits = len(year)\n", "print(str_digits)" ], "metadata": { "id": "TxHtHB09MUcz", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "ee01b3af-c5cd-4e30-bee6-ee60573eaabd" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "4\n" ] } ] }, { "cell_type": "markdown", "source": [ "The NumPy function **`np.arange(START, END, INTERVAL)`** creates an array of numbers from START to END with a certain INTERVAL between each number.\n", "\n", "***Can you guess what the result of the code below will be?***" ], "metadata": { "id": "ccT1EH-aLxgb" } }, { "cell_type": "code", "source": [ "np.arange(0,100,5)" ], "metadata": { "id": "gEV7V5IXZXiD", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "049869ed-777f-4a59-c50f-544111ad1cdd" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "array([ 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80,\n", " 85, 90, 95])" ] }, "metadata": {}, "execution_count": 98 } ] }, { "cell_type": "markdown", "source": [ "Note that **`np.arange(END)`** is a shorter way of writing **`np.arange(0,END,1)`**:" ], "metadata": { "id": "MlBxrW2iSEQr" } }, { "cell_type": "code", "source": [ "print(np.arange(10))\n", "print(np.arange(0,10,1))" ], "metadata": { "id": "Ts_1PauNSMNR", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "b9c90658-fb1c-46aa-9bd0-80c9b3348130" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "[0 1 2 3 4 5 6 7 8 9]\n", "[0 1 2 3 4 5 6 7 8 9]\n" ] } ] }, { "cell_type": "markdown", "source": [ "Additionally, the NumPy package has many useful functions for mathematical operations:\n", "\n", "* `np.mean(INPUT)` calculates the average value of elements in an `INPUT` list or array\n", "* `np.sum(INPUT)` calculates the sum of elements in an `INPUT` list or array\n", "* `np.max(INPUT)` and `np.min(INPUT)` find the maximum or minimum values in `INPUT`\n", "* `np.ones(N)` creates a new array of length `N` filled with the integer `1`\n", "* `np.zeros(N)` creates a new array of length `N` filled with the integer `0`\n", "\n", "For example:" ], "metadata": { "id": "j7r_aHOBKj63" } }, { "cell_type": "code", "source": [ "# Do some math on arrays:\n", "test = np.array([1,2,3])\n", "print(np.mean(test))\n", "print(np.sum(test))\n", "print(np.max(test))\n", "\n", "# Create new arrays:\n", "print(np.ones(5))\n", "print(np.zeros(5))" ], "metadata": { "id": "57G_kWHPLOis", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "66cb6e9f-8158-4e0d-a2c9-fd9a8ddd5eef" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "2.0\n", "6\n", "3\n", "[1. 1. 1. 1. 1.]\n", "[0. 0. 0. 0. 0.]\n" ] } ] }, { "cell_type": "markdown", "source": [ "Many functions can be **called** (applied) to a variable in two different ways. For example:" ], "metadata": { "id": "SDu-P969RI9_" } }, { "cell_type": "code", "source": [ "np.mean(test) # Option 1" ], "metadata": { "id": "HQEVUCGIROpg" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "test.mean() # Option 2 (same result!)" ], "metadata": { "id": "PSI8XXGTRRho" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "To learn more about a function, you can always consult its online **documentation**! A package's documentation website usually has a page for each function describing its arguments, outputs, and examples of how to use it.\n", "\n", "***Google \"numpy mean\" to find the documentation page for that function. How is the webpage structured, and what information does it tell us about the arguments needed to apply `np.mean()` to 2-D arrays?***\n", "\n", "Now that you've discovered named arguments... ***use `np.mean()` to calculate and print the average annual (yearly) temperature in Seattle using the variable `temp` from earlier:***" ], "metadata": { "id": "Sds1U_tEE1vr" } }, { "cell_type": "code", "source": [ "# Write your code here:\n", "np.mean(temp,axis=0)" ], "metadata": { "id": "A1sFRubGNqvb", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "f6d45714-b4f3-4e57-9306-8af34cf172f5" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "array([63.86666667, 51.48333333])" ] }, "metadata": {}, "execution_count": 110 } ] }, { "cell_type": "markdown", "source": [ "## Part 6*: Logical operations" ], "metadata": { "id": "AyEv5zepGLGE" } }, { "cell_type": "markdown", "source": [ "Often, we will want to compare two numbers or variables. We do this using the following **logical operations**:\n", "\n", "* `==` : equal\n", "* `!=` : not equal\n", "* `>` : greater than\n", "* `>=` : greater than or equal to\n", "* `<` : less than\n", "* `<=` : less than or equal to\n", "* `and` or `&` : are both booleans true?\n", "* `or` or `|` : is either boolean true?\n", "* `not` or `~` : reverse the boolean (True -> False, False -> True)\n", "* `in` : is a member\n", "* `not in` : is not a member\n", "\n", "Each logical operation **evaluates to** (returns) a boolean — True or False. Consider the following examples:" ], "metadata": { "id": "daEFmmF-WWwy" } }, { "cell_type": "code", "source": [ "3 == 3" ], "metadata": { "id": "vicDzeODXYQX" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "3 == 3.0 # integers can be compared to floating-point numbers" ], "metadata": { "id": "AYo-JMq9XiI6" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "not 3 == 3" ], "metadata": { "id": "rLtyg4YuYRGj" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "3 == 5" ], "metadata": { "id": "Vf-bE8BdXcsv" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "3 != 5" ], "metadata": { "id": "XkQYFoOsXeO5" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "3 > 5" ], "metadata": { "id": "BVTJ7DsuXfcy" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "5 <= 5" ], "metadata": { "id": "A01RZl1yXrz4" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "(11 == 12) or (12 == 12)" ], "metadata": { "id": "65J31-aKdojg" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "(11 == 12) and (12 == 12)" ], "metadata": { "id": "ZIf4G-zQduE8" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "Applying a logical comparison to a NumPy array gives a **boolean array**!" ], "metadata": { "id": "H5CEY27qXJKx" } }, { "cell_type": "code", "source": [ "x = np.array([1,2,3,4,5,6])\n", "\n", "print(x < 4)\n", "print(x <= 4)" ], "metadata": { "id": "HM9BJ_oGXwIv" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Note: \"not\" can't be applied to an entire boolean array. Instead, we have to use \"~\":\n", "print(~np.array([True,False,True]))" ], "metadata": { "id": "MHyuNtiTZOKj" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "Note that membership tests work on lists, arrays, and strings:" ], "metadata": { "id": "4WtW0WZYZthB" } }, { "cell_type": "code", "source": [ "print(3 in x) # this is asking: \"is 3 in x?\"" ], "metadata": { "id": "4jK2SArSZMIl" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "print(7 in x)" ], "metadata": { "id": "0P0q7toGZMvZ" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "print(3 not in x) # this is asking: \"is 3 not in x?\"" ], "metadata": { "id": "W6ntHithZNYR" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "print('hello' in 'hello world')" ], "metadata": { "id": "cMOnhhwpZbe3" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "print('o w' in 'hello world')" ], "metadata": { "id": "5BQOtilZZlQG" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "print('World' in 'hello world') # note that string membership is case-sensitive" ], "metadata": { "id": "Myd1SxUcZbmb" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "Heads up: this next skill is super powerful. We saw above that applying a logical comparison to an array of numbers gives us a boolean array.\n", "\n", "We can use boolean arrays as \"**masks**\" to select certain elements of an array. This is called **boolean indexing**." ], "metadata": { "id": "dh9dJWyaaCdU" } }, { "cell_type": "code", "source": [ "# Let's revisit the Seattle temperatures from earlier:\n", "seattle_temps = np.array([40.0,40.6,44.2,48.4,54.9,60.2,66.2,66.7,60.5,52.0,44.5,39.6])\n", "\n", "# Applying a logical comparison creates a boolean array, or \"mask\":\n", "print(seattle_temps > 60)" ], "metadata": { "id": "MCeGAg1KazgD" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Now let's use the mask to retrieve only the elements where the mask is True:\n", "seattle_temps[seattle_temps > 60]\n", "\n", "# Note: this only works when the mask is the same length as the array!" ], "metadata": { "id": "ukVZKFk4bSDO" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# The boolean indexing gives the same result as specifying the actual array indices:\n", "seattle_temps[[5,6,7,8]]" ], "metadata": { "id": "2PQ1TvPVcSsY" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "***How many months of the year is Seattle 40°F or colder? Try using boolean indexing and a function that you've learned to calculate and print the answer:***" ], "metadata": { "id": "DAtgHv27be7b" } }, { "cell_type": "code", "source": [ "# Write your code here:\n" ], "metadata": { "id": "WkQW0l6dbn5Y" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "## Part 7*: `if` statements and `for` loops" ], "metadata": { "id": "3TIfVm6TmBVP" } }, { "cell_type": "markdown", "source": [ "We can use logical operations to create **conditional actions** using the **`if-else` statement**.\n", "\n", "If the first condition evaluates to `True`, then the lines inside the first block are executed.\n", "\n", "If the first condition evaluates to `False`, then Python tests the second\n", "`elif` statement.\n", "\n", "If all of the `if` and `elif` statements are `False`, then Python will finally run the `else` statement.\n", "\n", "```\n", "if :\n", " \n", " \n", " etc.\n", "elif : (optional)\n", " \n", "elif : (optional)\n", " \n", "else : (optional)\n", " \n", "```\n", "IMPORTANT: note the colons (**`:`**) and how the lines below each condition are indented using a `Tab` or two spaces on your keyboard.\n" ], "metadata": { "id": "JRQXELtbcs-6" } }, { "cell_type": "markdown", "source": [ "***Try changing the value of `rain_chance` below and running the code. Do you understand the control flow?***\n", "\n", "***What range of values for `rain_chance` will trigger the `else` statement?***" ], "metadata": { "id": "15duR-xzeoeE" } }, { "cell_type": "code", "source": [ "rain_chance = 5 # i.e., a 5% chance of rain\n", "\n", "if rain_chance >= 50:\n", " print('Ugh... I better bring an umbrella.')\n", "elif rain_chance == 0:\n", " print('I definitely will not need an umbrella.')\n", "elif rain_chance <= 20:\n", " print('I should be okay without an umbrella.')\n", "else:\n", " print('I am not sure what to do.')" ], "metadata": { "id": "BrwnP44Rfmry" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "Sometimes, we might want to perform an action again and again. Coding makes this possible using **loops**!\n", "\n", "A **`for` loop** has the following syntax:\n", "\n", "```\n", "for in :\n", " \n", " \n", " etc.\n", "```\n", "Here, `` can be a list, array, string, or other collection of elements. You can give `` any variable name, and that variable can *only* be used inside the loop.\n", "\n", "***Run and consider the following examples:***" ], "metadata": { "id": "hOg7bceSWEd-" } }, { "cell_type": "code", "source": [ "countdown = [4,3,2,1]\n", "\n", "for item in countdown:\n", " print(item)" ], "metadata": { "id": "KlpsHwSMhV7Z" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "for character in 'floats':\n", " print(character)" ], "metadata": { "id": "IyvdevH0hpQ4" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "for even_number in np.arange(0,7,2):\n", " print(even_number)" ], "metadata": { "id": "LQetubWdhtf-" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "***You already learned how to calculate the sum of an array of numbers using `np.sum()`.***\n", "\n", "***Now, try to calculate the average Seattle annual temperaturre by writing a `for` loop below. There are at least two different ways to do this!***" ], "metadata": { "id": "ZQObEHLXh-xs" } }, { "cell_type": "code", "source": [ "seattle_temps = np.array([40.0,40.6,44.2,48.4,54.9,60.2,66.2,66.7,60.5,52.0,44.5,39.6])\n", "\n", "# Write your code below:\n", "\n", "\n", "# Finally, print the average temperature by adding it to the print() statement:\n", "print('The average temperature is:',)" ], "metadata": { "id": "1qSyaJBoiK0P" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "## Part 8*: Missing data" ], "metadata": { "id": "ESibLGhhRp8n" } }, { "cell_type": "markdown", "source": [ "In the real world, you'll frequently encounter missing data in an array.\n", "\n", "Missing data is represented by the float **`np.nan`** or **`np.NaN`** (the two are the same). NaN stands for \"Not a Number\"." ], "metadata": { "id": "ArvW0A6qmKQ0" } }, { "cell_type": "code", "source": [ "pH_measurements = np.array([7.84, 7.91, 8.05, np.nan, 7.96, 8.03])\n", "\n", "print(pH_measurements)" ], "metadata": { "id": "SZn9Cq_7mbcz" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "We can test for missing values using the function **`np.isnan()`**, which returns a boolean (or a boolean array when applied to an array):" ], "metadata": { "id": "sqSHEDzWnNmH" } }, { "cell_type": "code", "source": [ "np.isnan(5)" ], "metadata": { "id": "sfF17YZ3nTcF" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "np.isnan(np.nan)" ], "metadata": { "id": "h-bbsucSnVDv" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "np.isnan(pH_measurements)" ], "metadata": { "id": "WzRxDMMWnMSQ" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "Do you remember boolean indexing? We can use it to extract only the valid data from an array:" ], "metadata": { "id": "uCsjn0klnYYO" } }, { "cell_type": "code", "source": [ "pH_measurements[~np.isnan(pH_measurements)]" ], "metadata": { "id": "SwEClP51nh0o" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "It's good to be aware that missing data can cause functions like `np.mean()` to fail:" ], "metadata": { "id": "ljnxDSL-nyup" } }, { "cell_type": "code", "source": [ "np.mean(pH_measurements)" ], "metadata": { "id": "JF6HxqP3n50y" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "Many functions have a \"NaN-safe\" version that ignores missing values and still calculates the result, such as **`np.nanmean()`**:" ], "metadata": { "id": "9AiNIclLoANX" } }, { "cell_type": "code", "source": [ "np.nanmean(pH_measurements)" ], "metadata": { "id": "DElGwXISoIQd" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "## Part 9: Line and scatter plots" ], "metadata": { "id": "hv0lpsGFldF_" } }, { "cell_type": "markdown", "source": [ "Wow! It's time to start creating visualizations of data, called **plots**.\n", "\n", "Earlier, we imported the package Matplotlib using:\n", "\n", "> `import matplotlib.pyplot as plt`\n", "\n", "Creating a **line plot** is simple. Use the Matplotlib function **`plt.plot()`**. The basic form of the function is:\n", "\n", "> **`plt.plot(X, Y, ...)`**\n", "\n", "where `X` and `Y` are 1-D arrays of data, and the `` can be found on Matplotlib's [documentation webpage](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html)." ], "metadata": { "id": "cUQUaS4voeSG" } }, { "cell_type": "code", "source": [ "x = np.array([0,1,2,3,4])\n", "y = np.array([0,4,2,6,4])\n", "\n", "plt.plot(x,y)" ], "metadata": { "id": "pSJL5_gRobxX", "colab": { "base_uri": "https://localhost:8080/", "height": 448 }, "outputId": "ec75a71b-2c14-4b1f-f941-c9da0457f873" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "[]" ] }, "metadata": {}, "execution_count": 111 }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAGdCAYAAABO2DpVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFdklEQVR4nO3deVxTd74+8OewJOxBdhAUkMUdVxa17ta2drEz09al1VqX1mrV9t6ZqXNnpndu7wztnfm1tdZacbdVsZ3WttNWHasiLuCCorjLKoiAqCSsAZLz+yOAUEUJJDlZnvfrlT/AE/I5HmIen3zPiSCKoggiIiIiA7CTegAiIiKyHgwWREREZDAMFkRERGQwDBZERERkMAwWREREZDAMFkRERGQwDBZERERkMAwWREREZDAOpn5ArVaL4uJiuLu7QxAEUz88ERERdYIoiqisrERQUBDs7NrvJUweLIqLixESEmLqhyUiIiIDKCwsRHBwcLt/bvJg4e7uDkA3mIeHh6kfnoiIiDpBpVIhJCSk5XW8PSYPFs1vf3h4eDBYEBERWZiHLWPg4k0iIiIyGAYLIiIiMhgGCyIiIjIYBgsiIiIyGAYLIiIiMhgGCyIiIjIYBgsiIiIyGAYLIiIiMhgGCyIiIjIYvYPF9evX8eKLL8Lb2xvOzs4YMGAATp48aYzZiIiIyMLodUnvO3fuYOTIkRg3bhx27doFX19fXL16Fd26dTPWfERERGRB9AoW77//PkJCQrBx48aW74WFhRl8KCIiIrJMer0V8v3332PYsGF47rnn4Ofnh8GDB2Pt2rUPvI9arYZKpWpzIyIi83O5pBKfpmSjSt0o9ShkwfQKFrm5uVi9ejUiIyOxZ88eLFy4EEuWLMHmzZvbvU9iYiIUCkXLLSQkpMtDExGRYWm0IhZuzcD/7b6MWeuPobKuQeqRyEIJoiiKHd1YJpNh2LBhOHr0aMv3lixZghMnTiAtLe2+91Gr1VCr1S1fN3+eu1Kp5MemExGZiZ2ni/DmjjMtXw/u4YnNr8TCw8lRwqnInKhUKigUioe+fuvVWAQGBqJv375tvtenTx9cu3at3fvI5XJ4eHi0uRERkflo1Gjx8b5sAMCvhwRD4eyI09cqMGv9cajYXJCe9AoWI0eOxOXLl9t878qVK+jZs6dBhyIiItP5LrMYeeXV6ObiiL880w9b58XB08URmYUVeGn9cShrGS6o4/QKFm+++SbS09Pxt7/9DdnZ2di2bRuSkpKwaNEiY81HRERG1KjRYuX+qwCA+aPD4SZ3QP/uipZwcaawArPWH2O4oA7TK1gMHz4cO3fuxPbt29G/f3+8++67+OijjzBz5kxjzUdEREb0bWYx8m/VwMtVhtkJoS3f7xekwLZ58ejm4ogzRUq8tP4YlDUMF/Rwei3eNISOLv4gIiLjatRoMeGDgyi4VYO3H++N18b0umebizdUmLnuGG5X16N/dw98MTcOni4yCaYlqRll8SYREVmPb05fR8GtGni7yjAr4f5r5foEemDb/Dh4ucpw7rouZFTU1Jt4UrIkDBZERDaoodXailfHhMNF1v6FmHsHeGD7/Hh4u8pwvliFGWuP4U41wwXdH4MFEZEN+uZUEQpv18LHTYYX4x9+Zl90gDu2L4iHj5sMF26oMKPp7RGiX2KwICKyMfWNWqzcr7tuxaujez2wrWgtyt8d2+fHw8dNjos3VJixNp3hgu7BYEFEZGO+OVWEoju18HGTd6itaC3S3x3JC+Lg4ybHpZJKzFibjltV6offkWwGgwURkQ1p3Va8NiYczjJ7vX9GhJ87khfEw9ddFy5mrjvGcEEtGCyIiGzIPzOKcL2iFr7u+rcVrUX4uSF5QTz83Jubi2MoZ7ggMFgQEdmM+kYtVh3QtRULx/SCk6P+bUVrvXx14cLfQ47LpZWYnpSOm5UMF7aOwYKIyEZ8ebIQ1ytq4ecux4y4Hgb5meG+bkhekAB/DzmullVhxlqGC1vHYEFEZAPUjZq7bcXYrrcVrYX5uCJ5QQICPJxwtawK09emo6yyzmA/nywLgwURkQ348mQRbijr4O8hx/RYw7QVrenCRTwCFU7ILqvC9KR0lKkYLmwRgwURkZVTN2rwaVNb8frYCIO2Fa2FNoWLIIUTcm5WY9pahgtbxGBBRGTldpwoxA1lHQI8nPDC8BCjPlZPb93bIt09nZF7sxrTktJRynBhUxgsiIisWF3D3bUVi8YZdm1Fe3p4uyB5QbwuXJTrwkWJkuHCVjBYEBFZseTj11CqUiNQ4YTnjdxWtBbidTdc5JVXY1pSGm4oa032+CQdBgsiIitV16DBpyk5AIDXx0VA7mD8tqK15nAR3M0Z+bdqMC0pHcUVDBfWjsGCiMhKbT9+DWWVagQpnPD8sGBJZmgOFyFezihoChfXGS6sGoMFEZEVat1WLBpv+raiteBuLkhekIAeXi64drsG05LSGC6sGIMFEZEV2nrsGm5WqtHd0xnPDTXd2or2dPd0RvKCePTwckHh7VpMS0pD0Z0aqcciI2CwICKyMrX1GqxuaisWj4+AzME8/qkP8nTGjlfj0dO7OVyko/A2w4W1MY/fNiIiMpitxwpQXqVGcDdn/HqINGsr2hOocMaOBQkI9XZB0R2GC2vEYEFEZEVq6hvx2cGmtmKc+bQVrQUonJC8IAFhPq64XsFwYW3M7zeOiIg6bWv6NZRX1SPEyxm/HmpebUVrunARj/CmcPHCmjRcu8VwYQ0YLIiIrETrtuKNcZFwtDfvf+L9PZrCha8ripV1eCEpDQW3qqUei7rIvH/riIiowz5PK8Ct6nr08HLBs0O6Sz1Oh/h5OCF5fjx6+brihrIO05LSkV/OcGHJGCyIiKxAtboRa1JzAQBvjI8w+7aiNT8PJ2xfEI8IP7eWcJHHcGGxLOc3j4iI2rUlrQC3q+vR09sFzw62jLaiNT93J2yfH49IPzeUqOowLSkNuTerpB6LOoHBgojIwlWpG5GU2rS2YnwkHCyorWjN112ObfPjEeXvhlKVGtOS0pHDcGFxLPO3j4iIWmxJy8edmgaE+bhi6qAgqcfpkuZwEe3vjrJKNaYnpSO7jOHCkjBYEBFZMF1bcXdthaW2Fa35uMmxbX4cegc0hYu1DBeWxPJ/A4mIbNjmo/moqGlAuI8rno6x7LaiNW83ObbO04WLm5W6t0WyyyqlHos6gMGCiMhCVdY1tLQVSyZY7tqK9ni76d4W6RPogfIqXbi4WspwYe6s67eQiMiGbDqSD2VtA8J9XfGUFbUVrXm5yrBtXhz6BnqgvKoe05LScYXhwqwxWBARWSBVXQPWHtK1FUsnRMLeTpB4IuPp5irD1nlx6BfkgVvV9ZielI7LJQwX5orBgojIAm06kg9VXSMi/Nzw5EDrbCtaaw4X/bs3hYu16bhUopJ6LLoPBgsiIgujrG3AukN311ZYc1vRmqeLDFvnxmNAdwVuNzUXF28wXJgbBgsiIguz8UgeVHWNiPRzw5QBgVKPY1IKF0d8MTcOA4MVuFPTgBlr03GhmOHCnDBYEBFZEGVtA9YfzgMALJ1oO21FawoXR3w+Nw4xzeFiXTrOFyulHouaMFgQEVmQ9YfzUFnXiCh/NzzR37baitYUzo74fF4cYkI8UVHTgBlrj+HcdYYLc8BgQURkIZQ1DdjY3FZMiIKdDbYVrXk4OeLzubEYFOIJZW0DZq5juDAHDBZERBZi/eFcVKob0TvAHY/3D5B6HLPQHC6G9NCFixlr05FVxHAhJQYLIiILUFFTjw1H8gHorlth621Fa+5Ojtj8SiyG9uwGVV0jZq5Lx9miCqnHslkMFkREFmDdoTxUNbUVk/uxrfil5nAxrCVcHMOZwgqpx7JJDBZERGbuTnU9Nh7Rra1YNpFrK9rjJnfApldiMTy0GyrrGvHiumM4fe2O1GPZHAYLIiIzt/ZQLqrrNegb6IHJ/fylHsesuckdsGlOLGJDvVCpbsSs9cdxiuHCpPQKFv/93/8NQRDa3Hr37m2s2YiIbN7t6npsPpoPQHfdCkFgW/EwrnIHbJwzHLFhd8NFRgHDhano3Vj069cPN27caLkdPnzYGHMRERHuthX9gjzwaF+2FR3lKnfApjnDER/uhSp1I2ZvOI6MgttSj2UT9A4WDg4OCAgIaLn5+PgYYy4iIpt3q0rd0lYsmxjFtkJPLjIHbHh5OBLCvVHV1FyczGe4MDa9g8XVq1cRFBSE8PBwzJw5E9euXXvg9mq1GiqVqs2NiIgeLulQLmrqNRjQXYGJffykHsciNYeLEb28UV2vwewNx3GC4cKo9AoWcXFx2LRpE3bv3o3Vq1cjLy8PjzzyCCorK9u9T2JiIhQKRcstJCSky0MTEVm78io1thwtAAAs49qKLnGW2WP97OEYGXE3XBzPY7gwFkEURbGzd66oqEDPnj3xwQcfYO7cuffdRq1WQ61Wt3ytUqkQEhICpVIJDw+Pzj40EZFV+9tPF5GUmouBwQp8t2gkg4UB1DVoMG/zSRzOLoeLzB4bXx6OuHBvqceyGCqVCgqF4qGv31063dTT0xNRUVHIzs5udxu5XA4PD482NyIiat/NSjW2pOUDYFthSE6O9lg3exgeifRBTb0GL288gfTcW1KPZXW6FCyqqqqQk5ODwEDb/YQ9IiJDS0rNQV2DFjEhnhgXzbUVhuTkaI+1s4ZhdJQvahs0mLPxBNJyGC4MSa9g8Z//+Z84ePAg8vPzcfToUTz77LOwt7fH9OnTjTUfEZFNKausw+fpXFthTE6O9kh6aSjGNIeLTcdxNLtc6rGshl7BoqioCNOnT0d0dDSef/55eHt7Iz09Hb6+vsaaj4jIpqw5mIu6Bi0GhXhibBT/bTUWJ0d7rHlpKMZG+6KuQYtXNp/AEYYLg+jS4s3O6OjiDyIiW1OmqsMj/3cA6kYtNr8SizEMFkanbtRg4RensP9SGeQOdlg/ezhGRfL6TPdjksWbRERkOKsP5kDdqMWQHp4YzRc3k5A72GP1i0Mwobcf1I1azN18Aoeu3pR6LIvGYEFEZAbKVHXYdkx3wUFeZdO05A72+PTFIZjYpzlcnMTBKwwXncVgQURkBj5N0bUVQ3t2wyNsK0xO7mCPT2cOxaS+/qhv1GL+lpNIuVwm9VgWicGCiEhiJco6bDuuayveZFshGZmDHVbNGIJHm8LFgs8zcIDhQm8MFkREEludko36Ri2Gh3bDyAheCVJKMgc7fDJjCCb304WLV7dk4MAlhgt9MFgQEUnohrIW248XAmBbYS6aw8Xj/QNQr9Hi1c8zsO9iqdRjWQwGCyIiCX16IAf1Gi1iw7yQ0ItthblwtLfDx9MH44kBunDx2hcZ+PkCw0VHMFgQEUmkuKIWO07o2gpeZdP8ONrbYcW0wZgyIBANGhELt2ZgL8PFQzFYEBFJ5NOUbNRrtIgL88KIXjwTxBzpwsUgPDlQFy5e35qBf58vkXoss8ZgQUQkgeut2oo3J0VJPA09iIO9HT56YRCeiglqChensPscw0V7GCyIiCSw6kA2GjQiEsK9ER/OtRXmzsHeDh8+H4OnY4LQqBWxeNsp7D53Q+qxzBKDBRGRiRXdqcFXJ9lWWBoHezt88HwMpg7ShYtF205jVxbDxS8xWBARmVhzWzEywhuxYV5Sj0N6cLC3w/97fhCeHdwdGq2IxdtP48ezDBetOUg9ABGRLSm8XYOvThYB0H0mCFkeezsB/3guBgKAb05fx5Lk0xAh4smBQVKPZhYYLIiITGjVgWw0akWMivDB8FC2FZbK3k7A35+LgSAI+PpUEZYmZ0IUgadiGC74VggRkYkU3q7BPzN0bcWbkyIlnoa6yt5OwP/9ZiCeGxoMjVbE0uTT+C7zutRjSY6NBRGRiazcfxWNWhGPRPpgaE+2FdbA3k7A+78eCEEAvjxZhDd3ZAIAnhnUXdrBJMTGgojIBApuVePrU7r/zfJMEOtiZyfgvV8NxLThIdCKwJs7MrHzdJHUY0mGwYKIyARW7s+GRitiTJQvhvToJvU4ZGB2dgL+9uwATI/VhYv/+PIMvjllm+GCwYKIyMjyy6ux87SurVg2kWsrrJWdnYC/Th2A6bE9dOHiqzMta2psCYMFEZGRNbcVY6N9MZhthVXThYv+mBnXA6II/PafZ1ouhmYrGCyIiIwor7y65f12XrfCNtjZCfjfqf3xYrwuXPzu67P40obCBYMFEZERrdx3FVoRGN/bD4NCPKUeh0xEEAS8+0x/zEroCVEEfv/1Wew4cU3qsUyCwYKIyEhyblbh20yurbBVgiDgL0/3w8sjQpvCRRaSj1t/uGCwICIykua2YmIfPwwM9pR6HJKAIAh456m+eHlEKADg7W+ysO2YdYcLBgsiIiPILqvC92eKAQBLJ3BthS1rDhdzRoYCAP6wMwtbjxVIO5QRMVgQERnByv3NbYU/BgQrpB6HJCYIAv78ZF/MHRUGAPivnefwebp1hgsGCyIiA8suq2xpK7i2gpoJgoA/TumD+Y/owsWfvj2Hz9PypR3KCBgsiIgMbMW+bIgi8Ghff/TvzraC7hIEAX94og8WjA4HAPzpu/PYfDRf2qEMjMGCiMiArpRW4oezzW0F11bQvQRBwPLHe+PVMbpw8c7357HpSJ7EUxkOgwURkQGt2HcVogg81i8AfYM8pB6HzJQgCHj7sd5YOLYXAOC//3UBGw5bR7hgsCAiMpDLJZX4KesGAGAp11bQQwiCgN9NjsbrTeHif364gHWHciWequsYLIiIDOTjprbi8f4B6BPItoIeThAE/HZyNBaPiwAA/O+PFy0+XDBYEBEZwKUSFX5kW0GdIAgC/uPRKCwZfzdcrE213HDBYEFEZAArfr4KAJgyIBC9A9hWkH4EQcCbk6KwZIIulP71p4tYczBH4qk6h8GCiKiLLhSrsOtcCQSBbQV1niAIeGtSVMu1TxJ3XcJnFhguGCyIiLpoxb4rAHRtRZS/u8TTkKVbNjEKbzadqvzerkv4NCVb4on0w2BBRNQF54uV2HO+VNdWTGBbQYaxdGIk3pqkCxf/t/syVh2wnHDBYEFE1AXNayueHBiESLYVZEBLJkTiPx/VhYu/77mMT/ZflXiijmGwICLqpHPXlfj3hea2IkLqccgKLR4fid9OjgYA/OPfV/DxPvMPFwwWRESd9FFTW/F0TBAi/NhWkHEsGheB3z2mCxcf7L2Cj36+IvFED8ZgQUTUCVlFSvx8sRR2AlpOESQyltfHRuDtx3sD0AXaD/eab7hgsCAi6oTm/zU+M6g7evm6STwN2YLXxvTCH57QhYsV+67ig71XIIqixFPdi8GCiEhPZ4sqsO9SGewE4I3xXFtBprNgdC/81xN9AOguIW+O4YLBgohIT81rK6YO6o5wthVkYvNHh+OPU3ThYuX+bPy/f5tXuOhSsHjvvfcgCAKWLVtmoHGIiMxbZmEF9l8qg72dgDe4toIkMu+RcPzpyb4AgE8OZOPvey6bTbjodLA4ceIE1qxZg4EDBxpyHiIis9a8tmLqoO4I83GVeBqyZXNHheGdp3Th4tOUHLy/2zzCRaeCRVVVFWbOnIm1a9eiW7duhp6JiMgsnbp2BymXb8LeTsASXreCzMCckWH4y9P9AACfHczBe7svSR4uOhUsFi1ahClTpmDixIkP3VatVkOlUrW5Ef2SKIrYeqwABy6XST0KUbua11b8anB39PRmW0HmYfaIUPzPM7pwseZgLhJ3SRsu9A4WycnJOHXqFBITEzu0fWJiIhQKRcstJCRE7yHJ+u29UIr/2nkOr2w6gS9PFEo9DtE9MgruIPWKrq1YzDNByMzMSgjFu03hIik1F4eulks2i4M+GxcWFmLp0qXYu3cvnJycOnSf5cuX46233mr5WqVSMVxQG6IotvxPUBSB3319FiJEvDC8h8STEd3VvLbi10PYVpB5eikhFIIg4GalGqOjfCWbQ69gkZGRgbKyMgwZMqTlexqNBqmpqfjkk0+gVqthb2/f5j5yuRxyudww05JV2nO+FBduqOAqs8eTA4Ow42Qhfv91FrQiMD2W4YKkl1FwG4eulsPBTsAb43kmCJmvF+N7Sj2CfsFiwoQJyMrKavO9OXPmoHfv3vj9739/T6ggehitVmz5n+CckWH4j0ej4Cyzx6aj+Vj+TRZEEZgRx3BB0vpwr65R+83QYIR4uUg8DZF50ytYuLu7o3///m2+5+rqCm9v73u+T9QRe86X4FJJJdzkDpj3SBgEQcA7T/WFIAAbj+TjDzuzoBVFs0jhZJtO5N/G4WxdW7FoHNdWED0Mr7xJktFqRaxo+gjgOSND4ekiAwAIgoA/P9kXc0eFAQD++O05fJ5eINmcZNuaP+zpuWEhbCuIOkCvxuJ+UlJSDDAG2aLdTW2Fu9wB80aFt/kzQRDwxyl9YCcAaw/l4U/fnoMoipiVECrNsGSTjuXewtGcW3C0F7BoXC+pxyGyCGwsSBJarYgVTWeCzBkVBoWL4z3bCIKAPzzRBwtG60LHn787j81H8005Jtm45rOVnhsWguBubCuIOoLBgiTx07kbuFxaCXcnh5a3PO5HEAQsf7w3Xh2jCxfvfH8eG4/kmWpMsmHpubeQltvcVnBtBVFHMViQyWlatRVzR4VB4XxvW9GaIAh4+7HeWDhWV0X/5V8XsP4wwwUZV/PaiheGh6C7p7PE0xBZDgYLMrkfs27galkV3J0cMGdk+21Fa4Ig4HeTo/F6U7h494cLWHco15hjkg07mlOOY3m3IbO3Y1tBpCcGCzIpjVbEx01ngswbFf7QtqI1QRDw28nRWNz0D/3//niR4YIMrvWVYKfFhiBQwbaCSB8MFmRSP5wtRnZZFTycHDBnVKje9xcEAf/xaBSWjL8bLpJScww8JdmytJxbON7UVjS//UZEHcdgQSbTuq2Y/0g4PJw63la0JggC3pwUhSUTdJdW/ttPl7DmIMMFdZ0oiviw6Uqw09lWEHUKgwWZzL/OFCPnZjU8XRzx8sjQLv0sQRDw1qQoLJuoCxeJuy5hdQrDBXXNkexbOJF/BzIHO7zOtRVEncJgQSbRqNG2aSvcO9lW/NKyiVF4c2IUAOD93Zew6kC2QX4u2Z7WbcWM2B7w9+jYJzgTUVsMFmQS358pRm65rq2YlWDYz/1YOjESb03ShYu/77nMcEGdcuhqOTIK7kDuYNdy9hER6Y/BgoyuUaPFyv26F3tDthWtLZkQif989G64WNnUjhB1hO5MEF1bMTOuJ/zYVhB1GoMFGd13mcXIK69GNxdHzB4RarTHWTw+Er+dHA0A+H97r7RchIvoYVKvluPUtQrIHezw2pjwh9+BiNrFYEFGpWsrdC/wC0b3gpu8y59790CLxkXgd4/pwsWHP19p+V8oUXtEUWy5yuaL8WwriLqKwYKMaufp68i/VQMvV5nB11a05/WxEXj78d4AdB8i9cHeKxBF0SSPTZYn5cpNZBZWwMnRDq+N4doKoq5isCCjaWi1tuLV0eFwNXJb0dprY3rhD0/owsXH+67iQ4YLug9RFPFRU1vxUnxP+LrLJZ6IyPIxWJDR7Dx1Hddu18DbVYaXTNRWtLZgdC/81xN9AAAf789mc0H3OHC5DGeKlHB2tMerbCuIDILBgoyiQaPFygO6tRWvjgmHi8x0bUVr80eH449TdOFi5f5s/OPflxkuCEDbzwSZldATPm5sK4gMgcGCjOKbU0UovF0LHzcZXow3fVvR2rxHwvGnJ/sCAFYdyMH/7WG4IGD/pTKcbWor5o/mmSBEhsJgQQZX33h3bcVrY3pJ1la0NndUGN55ShcuVqfk4P3dDBe2rE1bMYJtBZEhMViQwX19qghFd2rh4ybHzDhp24rW5owMw1+e7gcA+OxgDt7bdYnhwkb9fLEMWdeVcJHZ49XRXFtBZEgMFmRQ9Y1afNLUViwc2wvOMnuJJ2pr9ohQ/M8zunCxJjUXf/vpIsOFjWl9lc3ZI0Lh5SqTeCIi68JgQQb1VUYhrlfUwtddjplxPaQe575mJYTi3aZwsfZQHv76I8OFLfn3hVKcL1bBVWaPBY9wbQWRoTFYkMGoGzVY1dxWjOkFJ0fzaitaeykhFP87tT8AYN3hPLz7A8OFLRBFseVS7y+PDEU3thVEBsdgQQbz1ckiFCvr4OcuxwwzbStaezG+J/727AAAwIYjefifHy4wXFi5PedLceGGCm5yB8wbxbaCyBgYLMgg1I2alo8rf32sebcVrc2I64HEX+nCxcYj+fjLvxgurJVWe3dtxcsj2FYQGQuDBRnElycKcUNZhwAPJ0yLNf+2orXpsT3w/q8HQBCATUfz8c735xkurNCe8yW4VFIJd7kD5j0SJvU4RFaLwYK6rK5Bg1UHcgAAr4+znLaitReG98D7vxoIQQC2pBXgz98xXFgTXVuhW1sxZ2QoPF3YVhAZC4MFddmOE4UoUenaiueHhUg9Tqc9PzwE7/9aFy4+Ty/An747B62W4cIa7DpXgsullXB3csBcrq0gMioGC+qSugYNPk3Rra1YZKFtRWvPDwvB338TA0EAvki/hj8yXFg8rVbEin26tRWvjAyDwsVR4omIrBuDBXVJ8vFrKFWpEaRwwvPDLbetaO03Q4Pxj6Zwse3YNfzXt1kMFxbsp3M3cKW0Cu5ODnhlFNdWEBkbgwV1mq6taF5bEQG5g2W3Fa39emgwPng+BnYCsP14If6wk+HCEmm0d69bMXdUGBTObCuIjI3Bgjpt27FrKKtUo7uns0WvrWjPs4OD8cHzg2AnAMknCvH2N2cZLizMj1k3cLWsCh5sK4hMhsGCOqWuQYPVB3VtxaJxEZA5WOev0tTB3fHhC7pw8eXJIvz+a4YLS6FrK3RrK+Y9Eg4PJ7YVRKZgna8GZHRfpBfgZlNb8ZuhwVKPY1TPDOqOj6YNhp0AfJVRhN99fRYahguz98PZYuTcrIbC2RFzRoZKPQ6RzXCQegCyPLX1Gnx2MBcAsHi89bYVrT0dEwQBwLIdmfhnRhG0ooi//yYG9naC1KPRfWi0Ilbs062tmP9IGNzZVhCZDIMF6W3rsQKUV6kR3M3624rWnooJgp0gYEnyaXxz6jogAn9/juHCHP3rTDFyb1bD08URs0eESj0OkU2x/v9qkkHV1Dfis6a1FW+Mj4CjvW39Ck0ZGIiV0wfD3k7AN6ev4z++zOTbImamUaPFxy1tRTjbCiITY2NBevkivQDlVfXo4eWCXw2xnbaitScGBEIA8Mb20/g2sxgigP/3XAwcbCxkmavvzxQjt7wa3dhWEEmC/xJSh9XUN2JNq7UVttZWtPb4gEB8MmMIHOwEfJdZjDe/PINGjVbqsWxem7ZidDjc5Py/E5Gp2e4rA+ltS1oBblXr2opnB3eXehzJPdY/AKtm6sLFv84UY9mOTIYLiX2bWYz8WzXwcpVhdkKo1OMQ2SQGC+qQanUjklJ1bYUtrq1oz+R+Afh05hA42gv44ewNLE3ORAPDhSQaNVqs3K9rKxaMDocr2woiSfDVgTpkS1oBblfXI9SbbcUvPdovAKtnDoWjvYAfs25gafJphgsJ7Dx9HQVNbcVL8T2lHofIZjFY0ENVqRuRlNp8JkgkFynex8S+/vjsxaGQ2dvhp6wSLNnOcGFKDRotVu7Xfcruq2wriCTFVwh6qM1H83GnpgFhPq54ZlCQ1OOYrQl9/PHZS0Mgs7fDrnMleGMbw4Wp7Dx1Hddu18DHTYaXEthWEEmJwYIeqLKuAWsP6dZWLJkQwbbiIcb39seal3TNxe7zJVi87RTqGxkujKlBo8XKA7q1Fa+O7gUXGdsKIinp9SqxevVqDBw4EB4eHvDw8EBCQgJ27dplrNnIDGw+mo+KmgaE+7ji6RiureiIcb39kDRrKGQOdthzvhSLGC6M6uuMIhTeroWPmxwvcm0FkeT0ChbBwcF47733kJGRgZMnT2L8+PF45plncP78eWPNRxJS1TVg7aE8AMCSCZG8dLUexkb7Ye2sYZA52GHvhVK8vpXhwhjqG7X45IBubcVrY8LhLLOXeCIi0itYPPXUU3jiiScQGRmJqKgo/PWvf4WbmxvS09ONNR9JaPORfChrG9DL1xVPxXBthb7GRPli3axhkDvY4eeLpXh9awbUjRqpx7IqX58qQtEdXVsxM45tBZE56PQb5hqNBsnJyaiurkZCQkK726nVaqhUqjY3Mn+qNmsr2FZ01ugoX6yb3RwuyrDwi1MMFwZS36jFJ01ngiwc24ttBZGZ0DtYZGVlwc3NDXK5HK+99hp27tyJvn37trt9YmIiFApFyy0kJKRLA5NpbDycD1VdIyL83PDkQLYVXfFIpC82vDwcTo522H+pDK99noG6BoaLrvoqoxDXK2rh5y7HzLgeUo9DRE30DhbR0dHIzMzEsWPHsHDhQsyePRsXLlxod/vly5dDqVS23AoLC7s0MBmfsrYB6w7r2oqlbCsMYmSEDzbM1oWLA5dv4rUvGC66Qt2owapWbYWTI9sKInOhd7CQyWSIiIjA0KFDkZiYiJiYGKxYsaLd7eVyectZJM03Mm8bDuehsq4RkX5umDIgUOpxrMaICJ+W5iLl8k0sYHPRaV+eLEKxsg7+HnJMj2VbQWROunxRAq1WC7VabYhZyAwoaxqw4bDuTJClEyNhx7bCoEb08sHGl2Ph7GiP1Cs3MX/LSYYLPakbNfi06UyQ18dGsK0gMjN6BYvly5cjNTUV+fn5yMrKwvLly5GSkoKZM2caaz4ysfVH8lCpbkS0vzue6M+2whgSenlj45zhcHa0x6Gr5QwXevryRCFuKOsQ4OGEF4ZzzRaRudErWJSVlWHWrFmIjo7GhAkTcOLECezZsweTJk0y1nxkQsqaBmxkW2ES8eHe2DRnOFxkunAxb/NJ1NYzXDxMXYMGqw7oPrfm9XFcW0FkjvS69u369euNNQeZgXWHc1GpbkTvAHc81i9A6nGsXly4Nza/EouXNxzH4exyzN18AutnD+dpkw+w40QhSlR1CFSwrSAyV/zgBwIAVNTUY+ORfADAMrYVJjM81AubX4mFq8weR3Nu4ZVNJ1BT3yj1WGaprkGDT1Oa1laMi4DcgQGMyBwxWBAAYO2hXFSpG9En0AOP9mVbYUrDQr2wZW4s3OQOSMtluGjP9uPXUKpSI0jhhOeHBUs9DhG1g8GCcLu6Hpua2oqlE9hWSGFoT11z4SZ3QHrubczZyHDRWl2DBqtTdGsrFo1nW0FkzhgsCOsO5aK6XoO+gR6Y3M9f6nFs1tCe3bBlbizc5Q44lncbL288gWo1wwUAbDt2DWWVanT3dMZzQ7m2gsicMVjYuNvV9dh8NB+Abm2FILCtkNKQHnfDxfG823h543FU2Xi4qGvQYPXBprZiXARkDvxni8ic8Rlq45JSdW1F/+4emNSXbYU5GNyjGz6fFwd3JwecyL+DlzfYdrj4Ir0AN5vait8M5doKInPHYGHDblWpsSUtHwCwbEIU2wozMijEE1/M1YWLkwV3MHvDcVTWNUg9lsnV1mvw2UHd59a8MZ5tBZEl4LPUhiWl5qKmXoMB3RWY0MdP6nHoF2JCPLF1Xhw8nByQYaPh4ov0ApRXqRHi5Yxfs60gsggMFjaqvEqNLWkFALi2wpwNDPbEtvnxUDg74tS1CszacBwqGwkXNfWNWJOqW1vxxrhIONrznysiS8Bnqo1KSs1FbYMGMcEKjO/NtsKc9e+uwNZ5cVA4O+L0tQrMWm8b4ULXVtSjh5cLnh3SXepxiKiDGCxs0M3KVmsrJnJthSVoDheeLo7ILKzAS+uPQ1lrveGipr4Ra5rWViweH8G2gsiC8Nlqg9YczEFdgxaDQjwxNtpX6nGog/p3V2DbvHh0c3HEmcIKzFp/zGrDxZa0AtyqrkdPbxf8ajDbCiJLwmBhY8oq6/DFMa6tsFR9gzywtTlcFCnx0vpjUNZYV7ioVjciKbX5TJBIOLCtILIofMbamM9SclHXoMXgHp4YE8W2whL1DfLAtvnx8HKV4WyREjPXp6Oipl7qsQxmS1oBblfXI8zHFVMHBUk9DhHpicHChpSp6rC1pa3g2gpL1ifQA9vnx8PbVYZz11WYue6YVYSLKnUjkprPBBkfwbaCyALxWWtDVh/MgbpRiyE9PDE60kfqcaiLogPcsa0pXJwvVmHG2mO4U23Z4WLz0XzcqWlAmI8rno5hW0FkiRgsbESpqg5bj10DALw5iW2FtYgOcMf2BfHwcZPhwg0VZqw7htsWGi4q6xqw9pBubcWSCWwriCwVn7k2YnVKDuobtRjWsxtGRbCtsCZR/u7YPj8ePm5yXLyhwoy16RYZLjYfzUdFTQPCfV3xdAzPBCGyVAwWNqBEWYdtx9lWWLNIf3ckL4iDj5scl0oqMWNtOm5VqaUeq8NUdQ1YeygPALB0QiTs7fg7SmSpGCxswKcp2ahv1CI21AsjenlLPQ4ZSYSfO5IXxMPXvTlcHEO5hYSLzUfyoaxtQISfG54cyLUVRJaMwcLKFVfUIvl4IQBet8IWRPi5IXlBPPzc5bhcqmsuzD1cqNqsrWBbQWTpGCys3OqUHNRrtIgN80IC2wqb0MtXFy78PeS4UlqF6UnpuFlpvuFi4+F8qOoaEeHnhikDAqUeh4i6iMHCihVX1GLHCV1b8SavW2FTwn3dkLwgAQEeTrhaVoXpa9NRVlkn9Vj3UNY2YN1hXVvBtRVE1oHBwoqtOpCNeo0W8eFsK2xRmI8rkhfEI1DhhOwyXXNhbuFiw+E8VNY1IsqfbQWRtWCwsFJFd2rw5cm7bQXZptBW4SLnZrUuXKjMI1woaxqw4XDzmSBRsGNbQWQVGCys1KoDOWjQiBjRyxtx4WwrbFlPb124CGoKF9PWmke4WH8kD5XqRvQOcMfj/QOkHoeIDITBwgoV3q7BVyebzwRhW0HN4SIB3T2dkXuzGtOS0lEqYbhQ1jRg4+G7161gW0FkPRgsrNCnKdlo1IoYGeGN2DAvqcchM9HD2wXJC+J14aJcFy5KlNKEi3WHc1vaisn92FYQWRMGCyujayuKAHBtBd0rxOtuuMgrr8a0pDTcUNaadIaKmnpsPJIPQHdtFbYVRNaFwcLKfLJf11Y8EumDYaFsK+heIV4u2PFqPIK7OSP/Vg2mJaWjuMJ04WLtoVxUqRvRJ9ADj/ZlW0FkbRgsrMi1WzX45yldW8G1FfQgwd1csOPVBIR4OaOgKVxcN0G4uF1dj01sK4isGoOFFVm5/yo0WhGjo3wxtGc3qcchM9fd0xnJCxLQw8sF127XYFpSmtHDxbpDuaiu16BfkAce7etv1MciImkwWFiJ/PJqfHP6OgDd/wSJOkIXLuLR09sFhbdrMS0pDUV3aozyWLer67H5aD4AXaPGK8ESWScGCyvxyYFsaLQixkT5YkgPthXUcUFN4SK0JVyko/C24cNFUqqurejf3QMT+/gZ/OcTkXlgsLAC+eXV2NnUVrw5iWsrSH+BCt3bImE+rii6Y/hwcatKjS1p+QCAZRPYVhBZMwYLK/Bx09qKcdG+GBTiKfU4ZKECFE7YPj8e4T6uuF5h2HCRlJqLmnoNBgYrMIFtBZFVY7CwcLk3q/Bty9oKthXUNQEKJ2xfcDdcvLAmDddudS1clFepsSWtAIBu/Q/bCiLrxmBh4Vbuz4ZWBCb09kMM2woyAH8PJyQviEe4ryuKlXV4ISkNBbeqO/3zklJzUdugQUyIJ8ZFs60gsnYMFhYs52YVvsvUtRVLeSYIGZBfU7jo5euKG8o6TEtKR365/uHiZmWrtRVsK4hsAoOFBVu57yq0IjCxjx8GBntKPQ5ZGT93JyQvSECEn1tLuMjTM1ysOZiDugYtBoV4YmyUr5EmJSJzwmBhobLLqvD9mWIAXFtBxuPrLsf2+fGI9HNDiaoO05LSkHuzqkP3LauswxfHuLaCyNYwWFioj5vaikl9/dG/u0LqcciK+brLsX1BPKL83VCqUmNaUjpyOhAuPkvJRV2DFoN7eGIM2woim8FgYYGullbiX2eb2wqurSDj83HTNRfR/u4oq1RjelI6ssvaDxdlqjpsbWor3uRVNolsCoOFBVqx7ypEEZjczx/9gthWkGl4u8mxbX4cegc0hYu17YeL1QdzoG7UYmjPbngk0sfEkxKRlBgsLMyV0kr8mHUDALB0AtdWkGnpwkU8ege442al7m2R7LLKNtuUquqw9dg1AGwriGyRXsEiMTERw4cPh7u7O/z8/DB16lRcvnzZWLPRfTS3FY/1C0DfIA+pxyEb5OUqw/b58egT6IHyKl24uFp6N1ysTslBfaMWw3p2w8gIbwknJSIp6BUsDh48iEWLFiE9PR179+5FQ0MDHn30UVRXd/7iOdRxl0sq8VNzW8G1FSShbq4ybJsXh76BHiivqse0pHRcKa1EibIO2443tRWT2FYQ2SIHfTbevXt3m683bdoEPz8/ZGRkYPTo0QYdjO61Yt8ViCLwxIAA9AlkW0HS6uYqw7b5cZi57hjOF6swPSkdg3t0Q32jFrGhXhjRi20FkS3q0hoLpVIJAPDy8mp3G7VaDZVK1eZG+rt4Q4WfskogCFxbQebD00WGrfPi0L+7B25V1+Pni6UAgGWTeN0KIlvV6WCh1WqxbNkyjBw5Ev379293u8TERCgUipZbSEhIZx/Spq34+SoA4IkBgYgOcJd4GqK7PF1k2Do3HgOarqcSF+aFEb14JgiRrRJEURQ7c8eFCxdi165dOHz4MIKDg9vdTq1WQ61Wt3ytUqkQEhICpVIJDw/W+R1xvliJKR8fhiAAe5aNRpQ/gwWZH1VdA/55sgiP9Q9AkKez1OMQkYGpVCooFIqHvn7rtcai2eLFi/HDDz8gNTX1gaECAORyOeRyeWcehpp8vE/XVkwZEMhQQWbLw8kRr4wKk3oMIpKYXsFCFEW88cYb2LlzJ1JSUhAWxn9EjO18sRJ7zpc2ra3gmSBERGTe9AoWixYtwrZt2/Ddd9/B3d0dJSUlAACFQgFnZ1afxvBR09qKpwYGIZJtBRERmTm9Fm+uXr0aSqUSY8eORWBgYMttx44dxprPpp27rsTeC6WwE4AlbCuIiMgC6P1WCJnORz9fAQA8HROECD83iachIiJ6OH5WiJk6W1SBny+WwU4A3mBbQUREFoLBwkw1X7fimUHd0cuXbQUREVkGBgszdKawAvsuNbUV4yOkHoeIiKjDGCzMUPPaiqmDuyOcbQUREVkQBgszc/raHRy4fBP2dgKWjOfaCiIisiwMFmam+boVzw7ujlAfV4mnISIi0g+DhRnJKLiDg1d0bQXXVhARkSVisDAjK5o+E+RXg7ujpzfbCiIisjwMFmYio+AOUq/chIOdgDe4toKIiCwUg4WZaD4T5NdDgtHD20XiaYiIiDqHwcIMnMy/jUNXy+FgJ2Ax11YQEZEFY7AwAx82tRXPDQtGiBfbCiIislwMFhI7nncbR7JvwcFOwOtj2VYQEZFlY7CQ2EctbUUI2woiIrJ4DBYSOpZ7C0dzbsHRnmsriIjIOjBYSKh5bcXzw0LQ3dNZ4mmIiIi6jsFCImk5t5CeexsyezssGse2goiIrAODhQREUWxpK14YHoIgthVERGQlGCwkkJZzC8fzdG3F6+N6ST0OERGRwTBYmJgoii2fYDotNgSBCrYVRERkPRgsTOxozi0cz78NmYMdr1tBRERWh8HChERRxId7dWsrZsT2QIDCSeKJiIiIDIvBwoQOZ5fjZMEdyB3ssHAs11YQEZH1YbAwkTZtRVwP+HuwrSAiIuvDYGEiqVfLcepaha6tGMO2goiIrBODhQnozgTRtRUz43rCj20FERFZKQYLEzh45SZOX6uAk6MdXhsbLvU4RERERsNgYWS6q2zqrlvxYlxP+LmzrSAiIuvFYGFkKZdv4kyhrq14lWsriIjIyjFYGFHrzwSZlRAKX3e5xBMREREZF4OFEe2/VIazRUo4O9pjwWiurSAiIuvHYGEkrT8TZFZCT/i4sa0gIiLrx2BhJPsuliHruhIuMrYVRERkOxgsjEAURXy07+7aCm+2FUREZCMYLIxg74VSnLuugivbCiIisjEMFgbWem3F7BGh8HKVSTwRERGR6TBYGNie86W4cEPXVsx/hG0FERHZFgYLA9JqRazYp2srXh4Zim5sK4iIyMYwWBjQvy+U4OINFdzkDmwriIjIJjFYGIhWe3dtxZyRofB0YVtBRES2h8HCQHafL8Glkkq4yx0wbxTbCiIisk0MFgag1YpY0dxWjAqDwsVR4omIiIikwWBhAD+du4HLpZVwd3LA3JFhUo9DREQkGQaLLmrdVrwykm0FERHZNgaLLvox6waullXB3ckBr4xiW0FERLZN72CRmpqKp556CkFBQRAEAd9++60RxrIMmlbXrZg3KhwKZ7YVRERk2/QOFtXV1YiJicGqVauMMY9F+eFsMbLLquDh5IA5o0KlHoeIiEhyDvre4fHHH8fjjz9ujFksikYr4uOmtmL+I+HwcGJbQUREpHew0JdarYZarW75WqVSGfshTeJfZ4qRc7MaCmdHvDwyVOpxiIiIzILRF28mJiZCoVC03EJCQoz9kEbXtq0IgzvbCiIiIgAmCBbLly+HUqlsuRUWFhr7IY3u+zPXkVteDU8XR8weESr1OERERGbD6G+FyOVyyOVyYz+MyTRqtPh4XzYA3doKthVERER38ToWevousxh55dXoxraCiIjoHno3FlVVVcjOzm75Oi8vD5mZmfDy8kKPHj0MOpy5adRosXK/bm3FgtG94CY3euFDRERkUfR+ZTx58iTGjRvX8vVbb70FAJg9ezY2bdpksMHM0c7T15F/qwZerjLMSugp9ThERERmR+9gMXbsWIiiaIxZzFqjRotPDuiamgWjw+HKtoKIiOgeXGPRQd+cvo6CWzXwZltBRETULgaLDmhotbbi1THhcJGxrSAiIrofBosO+OZUEQpv18LHTYYX49lWEBERtYfB4iHqG7VYuV+3tuK1Mb3YVhARET0Ag8VDfH2qCEV3auHjJsfMOLYVRERED8Jg8QD1jVp80tJWhMNZZi/xREREROaNweIB/plRhOsVtfB1l3NtBRERUQcwWLSjvlGLVU3XrVg4phecHNlWEBERPQyDRTu+PFmI6xW18HOXY0acdV+qnIiIyFAYLO5D3ahpaSteH8u2goiIqKMYLO7jyxOFuKGsg7+HHNNi2VYQERF1FIPFL+jaihwAwOtjI9hWEBER6YHB4hd2nChEiaoOAR5OeGF4iNTjEBERWRQGi1bqGu6urVg0jmsriIiI9MVg0Ury8WsoVakRpHDC82wriIiI9MZg0aSuQYNPU5rWVoyLgNyBbQUREZG+GCyabDt2DWWVurbiuWHBUo9DRERkkRgsoGsrVh/UtRWLxrOtICIi6iwGCwBbj13DzUo1uns647mhXFtBRETUWTYfLGrrNVjdtLZi8fgIyBxs/q+EiIio02z+VXTrsQKUV6kR3M0ZvxnKtRVERERdYdPBoqa+EZ81ra14Y3wEHO1t+q+DiIioy2z6lfSL9AKUV9UjxMsZvxrCtoKIiKirbDZY1NQ3Ys3BXADAG+Mi2VYQEREZgM2+mn6eVoBb1fXo4eWCZ4d0l3ocIiIiq2CTwaJa3Yg1qU1tBddWEBERGYxNvqJuSSvA7ep6hHq74NnBbCuIiIgMxeaCRZW6EUmpzWeCRMKBbQUREZHB2Nyr6uaj+bhT04AwH1c8MyhI6nGIiIisik0Fiyp1I9Yeuru2gm0FERGRYdnUK+vmo/moqGlAuI8rno5hW0FERGRoNhMsKusakNR0JsiSCVxbQUREZAw28+q66Ug+lLUN6OXriqfYVhARERmFTQQLVV1Dy9qKJRMiYW8nSDwRERGRdbKJYLHxcD5UdY2I8HPDkwPZVhARERmL1QcLZW0D1h9mW0FERGQKVh8sNh7Jg6quEZF+bpgyIFDqcYiIiKyaVQcLXVuRBwBYOpFtBRERkbFZdbBYfzgPlXWNiPZ3xxP92VYQEREZm9UGC2VNAza2aivs2FYQEREZndUGi3WHc1GpbkTvAHc81i9A6nGIiIhsglUGi4qaemw8kg8AWDqBbQUREZGpWGWwWHcoD1VNbcVkthVEREQmY3XB4k51PTYe0a2tWDYxim0FERGRCVldsFh7KBfV9Rr0DfTA5H7+Uo9DRERkUzoVLFatWoXQ0FA4OTkhLi4Ox48fN/RcnXK7uh6bj+YDAJZNjIQgsK0gIiIyJb2DxY4dO/DWW2/hnXfewalTpxATE4PJkyejrKzMGPPpJSlV11b0C/LApL5sK4iIiExN72DxwQcfYP78+ZgzZw769u2Lzz77DC4uLtiwYYMx5uuwW1VqbEnLB6BbW8G2goiIyPT0Chb19fXIyMjAxIkT7/4AOztMnDgRaWlp972PWq2GSqVqczOGpEO5qKnXYEB3BSb28TPKYxAREdGD6RUsysvLodFo4O/f9m0Gf39/lJSU3Pc+iYmJUCgULbeQkJDOT9uOW1VqbDlaAIBrK4iIiKRk9LNCli9fDqVS2XIrLCw0+GN0c5Hhwxdi8Ksh3TG+N9sKIiIiqTjos7GPjw/s7e1RWlra5vulpaUICLj/hajkcjnkcnnnJ+wAOzsBj/UPxGP8oDEiIiJJ6dVYyGQyDB06FPv27Wv5nlarxb59+5CQkGDw4YiIiMiy6NVYAMBbb72F2bNnY9iwYYiNjcVHH32E6upqzJkzxxjzERERkQXRO1i88MILuHnzJv785z+jpKQEgwYNwu7du+9Z0ElERES2RxBFUTTlA6pUKigUCiiVSnh4eJjyoYmIiKiTOvr6bXWfFUJERETSYbAgIiIig2GwICIiIoNhsCAiIiKDYbAgIiIig2GwICIiIoNhsCAiIiKDYbAgIiIig2GwICIiIoPR+5LeXdV8oU+VSmXqhyYiIqJOan7dftgFu00eLCorKwEAISEhpn5oIiIi6qLKykooFIp2/9zknxWi1WpRXFwMd3d3CIJgsJ+rUqkQEhKCwsJCq/0MEmvfR+6f5bP2feT+WT5r30dj7p8oiqisrERQUBDs7NpfSWHyxsLOzg7BwcFG+/keHh5W+cvSmrXvI/fP8ln7PnL/LJ+176Ox9u9BTUUzLt4kIiIig2GwICIiIoOxmmAhl8vxzjvvQC6XSz2K0Vj7PnL/LJ+17yP3z/JZ+z6aw/6ZfPEmERERWS+raSyIiIhIegwWREREZDAMFkRERGQwDBZERERkMBYVLFatWoXQ0FA4OTkhLi4Ox48ff+D2X331FXr37g0nJycMGDAAP/30k4km7Rx99m/Tpk0QBKHNzcnJyYTT6ic1NRVPPfUUgoKCIAgCvv3224feJyUlBUOGDIFcLkdERAQ2bdpk9Dm7Qt99TElJuecYCoKAkpIS0wysp8TERAwfPhzu7u7w8/PD1KlTcfny5Yfez1Keh53ZP0t6Hq5evRoDBw5suXBSQkICdu3a9cD7WMqxa6bvPlrS8buf9957D4IgYNmyZQ/cztTH0WKCxY4dO/DWW2/hnXfewalTpxATE4PJkyejrKzsvtsfPXoU06dPx9y5c3H69GlMnToVU6dOxblz50w8ecfou3+A7spqN27caLkVFBSYcGL9VFdXIyYmBqtWrerQ9nl5eZgyZQrGjRuHzMxMLFu2DPPmzcOePXuMPGnn6buPzS5fvtzmOPr5+Rlpwq45ePAgFi1ahPT0dOzduxcNDQ149NFHUV1d3e59LOl52Jn9AyzneRgcHIz33nsPGRkZOHnyJMaPH49nnnkG58+fv+/2lnTsmum7j4DlHL9fOnHiBNasWYOBAwc+cDtJjqNoIWJjY8VFixa1fK3RaMSgoCAxMTHxvts///zz4pQpU9p8Ly4uTnz11VeNOmdn6bt/GzduFBUKhYmmMywA4s6dOx+4ze9+9zuxX79+bb73wgsviJMnTzbiZIbTkX08cOCACEC8c+eOSWYytLKyMhGAePDgwXa3sbTnYWsd2T9Lfh6Koih269ZNXLdu3X3/zJKPXWsP2kdLPX6VlZViZGSkuHfvXnHMmDHi0qVL291WiuNoEY1FfX09MjIyMHHixJbv2dnZYeLEiUhLS7vvfdLS0tpsDwCTJ09ud3spdWb/AKCqqgo9e/ZESEjIQ1O5pbGk49dVgwYNQmBgICZNmoQjR45IPU6HKZVKAICXl1e721jycezI/gGW+TzUaDRITk5GdXU1EhIS7ruNJR87oGP7CFjm8Vu0aBGmTJlyz/G5HymOo0UEi/Lycmg0Gvj7+7f5vr+/f7vvR5eUlOi1vZQ6s3/R0dHYsGEDvvvuO3zxxRfQarUYMWIEioqKTDGy0bV3/FQqFWprayWayrACAwPx2Wef4euvv8bXX3+NkJAQjB07FqdOnZJ6tIfSarVYtmwZRo4cif79+7e7nSU9D1vr6P5Z2vMwKysLbm5ukMvleO2117Bz50707dv3vtta6rHTZx8t7fgBQHJyMk6dOoXExMQObS/FcTT5p5uSYSQkJLRJ4SNGjECfPn2wZs0avPvuuxJORh0VHR2N6Ojolq9HjBiBnJwcfPjhh/j8888lnOzhFi1ahHPnzuHw4cNSj2IUHd0/S3seRkdHIzMzE0qlEv/85z8xe/ZsHDx4sN0XXkukzz5a2vErLCzE0qVLsXfvXrNeZGoRwcLHxwf29vYoLS1t8/3S0lIEBATc9z4BAQF6bS+lzuzfLzk6OmLw4MHIzs42xogm197x8/DwgLOzs0RTGV9sbKzZv1gvXrwYP/zwA1JTUxEcHPzAbS3pedhMn/37JXN/HspkMkRERAAAhg4dihMnTmDFihVYs2bNPdta4rED9NvHXzL345eRkYGysjIMGTKk5XsajQapqan45JNPoFarYW9v3+Y+UhxHi3grRCaTYejQodi3b1/L97RaLfbt29fue2cJCQlttgeAvXv3PvC9Nql0Zv9+SaPRICsrC4GBgcYa06Qs6fgZUmZmptkeQ1EUsXjxYuzcuRP79+9HWFjYQ+9jScexM/v3S5b2PNRqtVCr1ff9M0s6dg/yoH38JXM/fhMmTEBWVhYyMzNbbsOGDcPMmTORmZl5T6gAJDqORlsWamDJycmiXC4XN23aJF64cEFcsGCB6OnpKZaUlIiiKIovvfSS+Pbbb7dsf+TIEdHBwUH8xz/+IV68eFF85513REdHRzErK0uqXXggfffvL3/5i7hnzx4xJydHzMjIEKdNmyY6OTmJ58+fl2oXHqiyslI8ffq0ePr0aRGA+MEHH4inT58WCwoKRFEUxbffflt86aWXWrbPzc0VXVxcxN/+9rfixYsXxVWrVon29vbi7t27pdqFh9J3Hz/88EPx22+/Fa9evSpmZWWJS5cuFe3s7MSff/5Zql14oIULF4oKhUJMSUkRb9y40XKrqalp2caSn4ed2T9Leh6+/fbb4sGDB8W8vDzx7Nmz4ttvvy0KgiD++9//FkXRso9dM3330ZKOX3t+eVaIORxHiwkWoiiKK1euFHv06CHKZDIxNjZWTE9Pb/mzMWPGiLNnz26z/ZdffilGRUWJMplM7Nevn/jjjz+aeGL96LN/y5Yta9nW399ffOKJJ8RTp05JMHXHNJ9a+ctb8z7Nnj1bHDNmzD33GTRokCiTycTw8HBx48aNJp9bH/ru4/vvvy/26tVLdHJyEr28vMSxY8eK+/fvl2b4DrjfvgFoc1ws+XnYmf2zpOfhK6+8Ivbs2VOUyWSir6+vOGHChJYXXFG07GPXTN99tKTj155fBgtzOI782HQiIiIyGItYY0FERESWgcGCiIiIDIbBgoiIiAyGwYKIiIgMhsGCiIiIDIbBgoiIiAyGwYKIiIgMhsGCiIiIDIbBgoiIiAyGwYKIiIgMhsGCiIiIDIbBgoiIiAzm/wMRo/meGrtG+QAAAABJRU5ErkJggg==\n" }, "metadata": {} } ] }, { "cell_type": "markdown", "source": [ "Some formatting arguments include:\n", "* `c` or `color`: line color (options: `'k'` or `'black'` for black, `'red'` for red, etc. – see [this page](https://matplotlib.org/stable/gallery/color/named_colors.html) for color options)\n", "* `lw` or `linewidth`: line width (a number; the default is 1.5)\n", "* `ls` or `linestyle`: line style (options: `'-', '--', '-.', ':'`)\n", "* `marker`: optional marker style (options: `'.', 'o', 'v', '^', '<', '>', 's', '*',` etc.)\n", "\n", "***Try plotting x versus y again, except this time use a \"goldenrod\"-colored dashed line of width 2.5 with star-shaped markers:***" ], "metadata": { "id": "zO_MeypJp4nE" } }, { "cell_type": "code", "source": [ "# Write your code here:\n", "plt.plot(x,y,color='goldenrod',lw=3,ls='--',marker='*')" ], "metadata": { "id": "D1XzxR0MqmG0", "colab": { "base_uri": "https://localhost:8080/", "height": 448 }, "outputId": "7d763b7d-c595-4a88-d60c-5391cea1399a" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "[]" ] }, "metadata": {}, "execution_count": 112 }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAGdCAYAAABO2DpVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABF6ElEQVR4nO3deXhU5d0+8PvMmnUmmSRkZ5d9c38BBVkqtWq1m4qo1LqLC7Xayttfa1t9i9bWnSKuWBdQq7jVpQoKLuDCIoEAsiSQhCwkmcxMJsmsz++PSOBkgUwyM8+cmftzXbnsfOdM5j4dQm6eOXOOIoQQICIiIgoDnewAREREFD9YLIiIiChsWCyIiIgobFgsiIiIKGxYLIiIiChsWCyIiIgobFgsiIiIKGxYLIiIiChsDNF+wmAwiIMHDyI9PR2KokT76YmIiKgPhBBwuVwoKCiATtfzukTUi8XBgwdRXFwc7aclIiKiMKioqEBRUVGP90e9WKSnpwNoD2axWKL99ERERNQHTqcTxcXFHb/HexL1YnH47Q+LxcJiQUREpDHHO4yBB28SERFR2LBYEBERUdiwWBAREVHYsFgQERFR2LBYEBERUdiwWBAREVHYsFgQERFR2LBYEBERUdiwWBAREVHYhFwsqqqqcNlllyErKwvJyckYP348vvnmm0hkIyKiKGpr2IrKjy5FW8NW2VFIw0I6pbfdbsfUqVMxY8YMvPfee8jJycHu3buRmZkZqXxERBQlzrLX0Vq3Hq6yVUjKmiA7DmlUSMXivvvuQ3FxMZ599tmO2ZAhQ8IeioiIosPnrkTAYwegoHn/OwAA1/63kT70ZwAE9OZMGFN7vpIlUWeKEEL0duMxY8Zgzpw5qKysxNq1a1FYWIgbb7wR11xzTY+P8Xg88Hg8HbcPXx3N4XDwImRERJLtfunofxwqAMRR/213wqVlUU5FscjpdMJqtR7393dIx1js27cPS5cuxQknnIAPPvgAN9xwA2655RY899xzPT5m8eLFsFqtHV/FxcWhPCUREUVQ7uQHAeXw4rVQ/1fRtd9PFIKQVixMJhNOOeUUfPHFFx2zW265BV9//TXWr1/f7WO4YkFEFNvaGreh4v3zu7lHh7wzHkX6wB9FPRPFnoisWOTn52PMmDGq2ejRo3HgwIEeH2M2m2GxWFRfREQUi5ROt4Oo+fwWuA78R0oa0qaQisXUqVOxa9cu1ey7777DoEGDwhqKiIiiw+vcB73ZBn1SDsy28UgbeK56AxFAzee3wvX9gZ1ExxPSp0J+/etfY8qUKfjrX/+Kiy66CF999RWeeOIJPPHEE5HKR0REEeJva8CB98+HyTIcA069BymFs6EoCupMGXDuefHIhiKAmi8WAkIgfXB3b5kQHRHSisWpp56KVatWYcWKFRg3bhzuvvtuPPTQQ5g3b16k8hERUYQ07XgSwt8CT+NWVH96Hao+uggQfgw49W5YR1yh3lgEULN+IZzlb8oJS5oR0ooFAJx33nk477zzIpGFiIiixN9Wj6bv/qWaGdMHQdEZAQA5J/8JgALHd0d96k8EUbv+NkAIWIZcGLWspC28VggRUQKy73gCItB6ZKDoYRt385GbioKck+9Cxsgr1Q8UQdRu+A2cZauilJS0hsWCiCjB+FsPwfHd86pZ+pCfwJQ+WDVTFAXZJ/0BGSN/pf4GIoja9b+Bc99rEU5KWsRiQUSUYOw7lkEE2o4MFD1sY2/qdtv2cvH/kDHqqk73CNRuuIPlgrpgsSAiSiD+1kNw7H5RNbMM+RlM6T2fNkBRFGSf+HtkjLq60z2Hy8W/I5CUtIrFgogogdhLO69WGGAb1/1qxdHay8X/InP0tZ3uEWgoeQhBf2u3j6PEw2JBRJQg/K11cOx5QTWzDP0ZjGm9u4aToijImnQnMsdc3zEzpOSjaNZL0BmSw5qVtCvkj5sSEZE22UsfhwgcuXYTFEOPx1b0RFEUZE38LQAFrvI3UDhrBYxpA8MblDSNxYKIKAH4W2q7Hlsx9OcwphWF/L3ay8UdyBx9DfTmzHBFpDjBt0KIiBJAY+lSiKD3yEBnhG3cgj5/P0VRWCqoWywWRERxzt9SA+eeFaqZZegvYEwNfbWiN4QQOLTx7i5n9qTEwLdCiIjinNe5DzpTOgJtDe0DnRG2sTdG5LmEEKjfdA+adj1zeICMkfMj8lwUm7hiQUQU51LypmDwj9ch+8RF0JuzYB12MYyphWF/HiEE6jf/35FSAeDQxj+hadfysD8XxS6uWBARJQCdIQWZo6+F9YTLIALe4z+gDxRFgc5o6TI/tPHPEEIgc9SV3TyK4g2LBRFRAtEZUgBDSsS+f9b4W6AoChq2PqCa12/6C4AgMrucGpziDd8KISKisLKNuxlZE2/vMq/fdA/sO56SkIiiicWCiIjCzjZ2wfcn0lKr3/x/sO94UkIiihYWCyKiOOQsWwVfc6XUDLaxNyBr0u+6zOs3/xX20mUSElE08BgLIqI442uuRO2G3wKKAsvQn8M2dkFEPgXSG7Yx10OBgvot96rm9VvuhYCA7ajrjlB84IoFEVGcadz+GCD8QNAH554VOPDuOQj63NLyZI65DtknLuoyb9hyHxq3L5WQiCKJxYKIKI74mivg3PeaamYZ+gvojKmSErXLHH0tsk/8fZd5w7d/Q2Pp4xISUaSwWBARxZGO1YrvKXozMsdcJzHREZmjr0b2Sf9PNVN0JpgzRktKRJHAYkFEFCd8zQe6rFZYh18GQ/IASYm6yhx1FbJP+iOA9lKRP+0JpBZMl5yKwokHbxIRxYnGbY8BItBxW9EnxcxqxdEyR10JRdHBmDaQpSIOsVgQEcUBr6sczrLXVTPrCZfBkJwjKdGx8cJk8YtvhRARxYGuqxXJMbla0Vuepp0QQsiOQX3AYkFEpHFeZxlc5atUs4wRl8OQlC0pUf+4yt/GgffORWPJgywXGsRiQUSkce2fBAl23Fb0ycgYfY3ERH3n2v8OatYvBEQQjdseRcPWf7BcaAyLBRGRhnmd++Aqf0M1yxhxhSZXK3zNlaj54teqkmTfvgQN3/6d5UJDWCyIiDSscduj6tUKQwoyR18rMVHfGdOKMODUv3SZ20v/iYZv72e50AgWCyIijfI698K1/y3VLGPEfOiTbJIS9Z91+FwMOP1eAIpqbi9dioYt97FcaACLBRGRRil6M9IH/RhQ2v8qVwypyNTosRVHsw67uPtysWMZGrbcy3IR43geCyIijTKmFiFvyoOwjb0JjdsfhTG1GHpzpuxYYWEddhEURdd+lVYcKRL2HU9AiCCyT/xfKIrS8zcgaVgsiIg0zmQdhrwpD8Xdv+QtQ38OQEHthjtwdLlo2vkUIASyT/o9y0UM4lshRERxIh5/yVqG/gy5k/+Ozm+LNO16GvWb7om7MhUPWCyIiCimWYb8FLmT/9FxLMlhTbueQf3Gv7BcxBgWCyIiinmWIT9B7uQHupaL75ajpeZTSamoOywWREQacmjjX9D03fMIBjyyo0SdZfAFyJv8oKpcZE28Han50ySmos548CYRkUZ4mnaiadezAAB76ePIHHsjrEN/AUVvkpwsetIHt3+8tuaLhcgafytsYxfIjkSdsFgQEWlEY8kjHf/b33IQDVvuQ/qg86FPoGIBAOmDzoMpYyTM1hNkR6Fu8K0QIiIN8Nh3oLniPdUsY9RV0JsskhLJxVIRu1gsiIg0oGHbI6rbOqMFGSOvlJQmtnnsO3Bo818hjrqGCkUP3wohIopxHnsp3BXvq2aJvFpxLJ6mnahacxkCnkYEvQ4MOG0xFIX/ho4m/r9NRBTjGkoeVt1uX634pZwwMczTtBNVq+ch4GkEADj3voK6Lxdx5SLKWCyIiGJYW+N2uCv/q5pljr6aqxXd8LmrEPC5VDPnvldQ++XvIIIBSakSD4sFEVEMa9zWabXClAErVyu6lVY4C/lnLAF0RtXcte/fLBdRFFKx+NOf/gRFUVRfo0aNilQ2IqKE1ta4De7KD1WzzNFXQ29Ml5Qo9qUV/QD5Z/yza7koew21G+5guYiCkFcsxo4di+rq6o6vzz77LBK5iIgSXmPJQ6rbOnMmMkbMlxNGQ9KKZiP/zKVQdOrze7jKV6F2w+0sFxEW8qdCDAYD8vLyIpGFiIi+19ZYAnfVatUsc9Q10BnTJCXSlrTCWcg/83FUf3o9RNDbMXeVvwEIgdzJf4ei4wcjIyHkFYvdu3ejoKAAQ4cOxbx583DgwIFjbu/xeOB0OlVfRER0bI1bH1Ldbl+tuFxOGI1KLZyB/GnLuq5c7H8TNet/AxH0S0oW30IqFqeffjqWL1+O999/H0uXLkVZWRnOPPNMuFyuHh+zePFiWK3Wjq/i4uJ+hyYiimceeyncB9eoZpmjr+VqRR+kFpyF/GlPdCkXzfvfQs3621guIkAR/biQfVNTEwYNGoQHHngAV111VbfbeDweeDxHrsLndDpRXFwMh8MBi4UflyIi6kyIIJor3kdjySPwOnZBb7Zh8I/XQWdMlR1Ns9zV61C97lqITleFTRt4HvKmPMi3RXrB6XTCarUe9/d3v/6fzMjIwIgRI7Bnz54etzGbzTCbzf15GiKihKIoOqQP/BHSin+I5or3IAIelop+Ss2fhvxpT6J63TWqciGCXoAn0Aqrfp3Horm5GXv37kV+fn648hAR0ffaC8a5sAz5qewocSE1/0wUTH8Kir79H7uphbORP/XRhLrsfDSEVCxuv/12rF27FuXl5fjiiy/wk5/8BHq9HnPnzo1UPiIiorBJyTsDBdOfRtrA85B/xhKWiggI6a2QyspKzJ07Fw0NDcjJycEZZ5yBDRs2ICcnJ1L5iIiIwiolbypS8qbKjhG3QioWK1eujFQOIqKEFvS3QWdIkh2DAAS8Tuj0SVzN6CNeK4SIKAZUr7sGVWuuQGv9ZtlRElrA04Sq1Zei+rMFEAHv8R9AXbBYEBFJ1nroG7TUfIaWmk9R+d+fourjX8LfUiM7VsIJeB2oWnM5PPbtcFd9hOrPbkSw08dT6fhYLIiIJGvodJZNT9MO6EwZUrIkKiEEqtddD499W8fMXbUaNZ+yXISKxYKISKLWuq/QWvu5amYbcz2Pt4gyRVGQNeE2KAb1+ULcB9eg+tMbWC5CwGJBRCRRQ6crmOqTc2EZfqmcMAkuecCpKJyxvEu5aDn4MarXXc9y0UssFkREkrTUbkBr7XrVzDbmBuj0PFuxLMk5p6BwxnPQGdTXZWmp/gTV665juegFFgsiIkkaSx5W3TYk58Ey/BJJaeiw5JyTUdBtuViL6rXXIOhvk5RMG1gsiIgkaKndgNa6DapZ5liuVsSK5JyTUDDzX9AZ01XzlppPUb2O5eJYWCyIiKJMCIHGkgdVM0NKPizDLpaUiLqTnH1i+9siXcrFZzi47moE/a2SksU2FgsioihrrV2P1rqvVLPMsTdytSIGJWWfiMIZXVcuWms+x8G117BcdIPFgogoioQQaOiyWlEAy9BfSEpEx5OUPQmFM5/vWi5qP8ehjX+RlCp2sVgQEUVRa+3naDv0jWpmG7uAqxUxLilrIgpnvgCd0dIxM1qGImvCryWmik0sFkREUdK+WtHpkyApBbAM/bmkRBSKpKwJKJz1InQmK4zpQ1A0awUMyQNkx4o5IV3dlIiI+s7vroTHvkM1s41bwKtoakiSbRyKZr0EvTmLpaIHXLEgIooSY1oxhlzwKTLH3gjFkApDaiEsQ7haoTXmzDEwpOTKjhGzuGJBRBRFenMmsifegcyRV8HXfICrFXFGBAOw73gCGSMuh86YdvwHxCGuWBARSaBPsiEpe5LsGBRGIhhA7Ze/RcO3f0PVJ1ci6GuWHUkKFgsiIqJ+ai8Vv4Or7HUAQNuhb1D18S8R8LkkJ4s+FgsiIqJ+8rfWoOXgJ6pZW/1GHEzAcsFiQUQUQZ6m7+Bva5AdgyLMmFqIwlkvQZ+UpZq31W/CwTXzEfA6JSWLPhYLIqIIEUKgdsMdKH9rGuq33IdAW6PsSBRB5owRKJy1AvqkbNW8rWEzqj6+ImHKBYsFEVGEuA+ugadxK4S/BfbSx1H21jS0NW6XHYsiyGw9AUXdlAtPw7eoWnN5QpQLFgsioghov4Jpp7NsJuXAnDFSUiKKFpN1OIpmrYQ+KUc19zRu/b5cOCQliw4WCyKiCHBXfQRPY4lqZht3ExQdTx+UCEzWYSiavQL6TmfnTIRywWJBRBRm3a1WGNMHI33wBZISkQwmy7D20393KRclqFp9GQKeJjnBIozFgogozNxVH8JjVx9LYRt3C1crElB7uVgBfbL6FOAe+zZUrYnPcsFiQUQURt2uVliGIn3QjyUlItlMlqHfXwk1TzX3ufbD566QlCpyWCyIiMLIXflfeOylqln7aoVeUiKKBSbLEBTOXgFDSj4AQDGkomDGc0iyjZecLPxYLIiIwkSIIBpKHlLNjJZhSB94npxAFFNM6YNROGsFTNYTUDjjOSTnnCQ7UkTwDT8iojBxV/4X3qadqlkWVyvoKKb0QRh4zntx/WeCKxZERGHQ3WqFyTIcaQPPlROIYtbxSkUw4IlSkshgsSAiCoPmivfhbdqlmtnG3xrX/zKl8Gv67nlUvH8B/G31sqP0GYsFEVE/CRFEY8kjqpnJOgJpA38kKRFpUdPuF3Domz/C69iFqtWXwt96SHakPmGxICLqp6DXCUNqgWpmG38LFIV/xVLvOMtW4dDXf+i47XXs1my54J96IqJ+0pszUHjWMyg++3Wk5J8Fk3Uk0orPkR2LNCR5wGkwpBarZl7nHlSungt/a52kVH2jCCFENJ/Q6XTCarXC4XDAYrFE86mJiKIi4HNBb0yXHYM0xueuQtXqS+FrPqCaGztOsDWgh0dGR29/f3PFgogozFgqqC+MqYUonLUCxrRBqrnPuQ+VH10Cf0utpGShYbEgIiKKEcbUAhTOXgFj2mDV3OcqQ+XqS+BvqZETLAQsFkRERDHEmJKPotkrYEwfrJr7XOWo/GgufC3VcoL1EosFEVEfuKs+hqv8bYhgQHYUikOGlDwUzVoBY/oQ1dzXXI6qj+bC5z4oKdnxsVgQEYVIBAM4tOlu1HxxCw68dw5c+9+BEEHZsSjO9Fwu9qNqdeyWCxYLIqIQufa/BZ+rDED7+QZqPr8ZLdWfSk5F8ciQkoui2SthtAxVzX3NB1C1+lIE/W2SkvWMxYKIKAQi6EfjNvVZNs2Z45CSP01SIop3huQBKJq1EkbLMNU8c/S10BmSJKXqGYsFEVEIXOVvwucqV81s42+FoihyAlFCMCTnoGjWCpgswwEAOafeDesJl0pO1T1eNp2IqJfaVyseU83MtvFILZwlKRElEkNyDgpnvYSWms9hGXKh7Dg96teKxb333gtFUbBw4cIwxaFE1tawFZUfXYq2hq2yoxB1y1X+JnzN5aoZVysomgzJOccsFbHw92ifi8XXX3+NZcuWYcKECeHMQwnMWfY6WuvWw1W2SnYUoi7aVyseVc3MtglILZgpKRFRV/bSZdL/Hu1TsWhubsa8efPw5JNPIjMzM9yZKIH43JVoayyB++BaOPe9CqD9iPu2xm1oayyBz10pOSFRO2fZKvia96tmWeMXcrWCpDv896hj7ytorngXAOAsf0Pa36N9OsZiwYIFOPfcczF79mzcc889x9zW4/HA4/F03HY6nX15SopT5W+e2WUW8DSi4v3zO26fcGlZNCMRdSGCvi6rFUlZk5BScJacQERH6e7v0aC3SdrfoyGvWKxcuRKbNm3C4sWLe7X94sWLYbVaO76Ki4uP/yBKGLmTH0SPfwwV/ff3E8nlLHsdfneFambjagXFiNzJD/R8p2KI+t+jIRWLiooK3HrrrXjxxReRlNS7z84uWrQIDoej46uiouL4D6KEkVo0C4ohpdv7jOlDkFo4I8qJiNTaVyvUnwRJyprE81ZQzLAM+QkKZ77Y7X3Fc1ZF/RMkIRWLjRs3oq6uDieddBIMBgMMBgPWrl2LRx55BAaDAYFA13Pmm81mWCwW1RfRYY5dyyH8zd3e53PuQdWayxHwOqKciugI577X4O/0HjVXKyjW6EyHf7cqnf4bfSEdYzFr1iyUlJSoZldeeSVGjRqF3/3ud9Dr9WENR/Et4HXCvuOpY27jaSxB1erLUDjzeejNGdEJRvQ9EfCicXun1Yrsk7haQTFHn5QFfVIODCn5sA67GI69L8PfUg19UlbUs4RULNLT0zFu3DjVLDU1FVlZWV3mRMfTtGs5gj71wbx5ZyxB3Td/RrCtrmPmsW+Dq3wVMkZeGe2IlOgUBbaxC9C47TH4W9ov+MTVCopFxpR8DL7gUyg6ExRFgWX4XIigFzq9OepZeOZNkiLgdaJpp3q1IrX4h0gf+COYM0ajavWl8LfWAAAyRl0N64hfSkhJiU7RGWEdPheWIT+Dc9+/0VK3ASl5Z8iORdSto0uEoihQJJQKAFCEECKaT+h0OmG1WuFwOHi8RQJzH1yL6nXXQgS9HbOB57wLc+ZoAIDXVY6q1ZcibeCPkH3i7/kvRCIiyXr7+5srFiRFasF0DP7xOjSWLoVzzwqkFs7qKBUAYEofjOIfvg292cZSQUSkIVyxIOn8LTUQwg9japHsKERE1IPe/v7mZdNJOkNKXsilwusqR9XH8+Fvq49QKiIi6gsWC9Icr6scVR/NRUv1uu8P8jwkOxLFkabdL6L6s5vhdeyRHYVIk1gsSFN8zQdUnxjxOnajas08lgsKi2DAg8Ztj6L5wDvY/5+zUfP5Qnhd+4//QCLqwGJBUdNSuwEBn6t/30TRAYr6mGOvYzdXLigsnHtWINBa+/0tAdf+NxH4vsQSUe+wWFBUBDx2HFx7NcrfPBON2x7rc8EwphahaPYKGFLVF7PzOvegcvVc+Fvrengk0bEFAx40li5VzZJzpyB5wOmSEhFpE4sFRYV9x1MQfjeCXgcatv4D+9+a0Y9yUYii2SthTBuomvuce1kuqM+ce15CoNOfnazxC+WEIdIwFguKuEBbI5q+e041S8k/A3pjep+/pzG1AIWzVsCYNkg19zn3ofKjS+Bvqe3hkURdBf1taNzeabUibyqSB5wqKRGRdrFYUMTZd7avVnRQdLCNu7nf39eYWoDC2StgTBusmvtcZahcfQn8LXxvnHrHseclBNrUx+hwtYKob1gsKKL8bQ1dVivSB/0YJsuwsHx/Y0o+imavgDF9sGruc5Wj8qO58LVUh+V5KH4F/a2wdzq2IiXvDCTnnCIpEZG2sVhQRDXteBLC33JkEKbViqMZUvJQNGsFjOlDVHNfc/v5Llgu6Fgcu19EoNOJ1mzjfy0pDZH2sVhQxPjb6tH03b9Us/TBF8JkGRr25+ooF52+t695P6o+mstjLqhbQX8L7DseV81S8qchOeckSYmItI/FgiLGvuMJiEDrkYGiD/tqxdEMKbnflwv12yyG1ELoTLwuDXXl2P0CAm0NqhmPrSDqHxYLigh/Wz0c3z2vmqUP+QlMnY6FCDdD8gBVuUjOnYyC6U9BZ0iO6POS9gT9LbCXPqGapeSfhaTsEyUlIooPLBYUEfbSZRCBtiMDRQ/b2Jui8tyG5BwUzVoBy7BLWCqoR47vnkfA03m14lZJaYjih+H4mxCFxt96CI7dL6hmliE/gyl9UA+PCD9Dcg5yT18ctecjbRFBP5p2LVfNUgpmICl7kpQ8RPGEKxYUdl1XKwywjVsgL1A3gj43fO4q2TFIEkVnQNHZ/4Z1+DxAZwTA1QqicOGKBYWVv7UOjj2dViuG/rTL6bdlCvrcqPrkSvjdVe3nwIihbBQ9xtRCDDjtHmSOvR7uytVIypooOxJRXOCKBYVV0OtS/wWtGGAbG7lPgoQq6G/BwbVXoe3Q1/C3HETlR3N5WewEZ0wtQsbI+bJjEMUNFgsKK5N1GApnrUThzBeQlHMKLEN/DmNakexYHeo3L0Zr3Zcdt/0tB1G1muWCiChcFCGEiOYTOp1OWK1WOBwOWCw8t0A8E0JABL3Q6c2yo3QItDWics1l8DbtUM0NyXkonL0i4h+HJSLSqt7+/uaKBUWMoigxVSoAQJ9kQ9GsF2HOHKOa+1trUPnRJfA6yyQlo0gL+lsQ9LmPvyER9QuLBSUcvTkThTNfhDlzrGoeaK1F5eq58Dr3SUpGkdS082mUvzUNjaWPI3j09WuIKKxYLCgh6c0ZKJz5AsyZ41TzI+Vir6RkFAkBrxP2HU8h4GlEw5b7UP7mNDRXfig7FlFcYrGgfrPvfBruqjWI8uE6/aY3Z6Bw1gsw28ar5oHWuvZPizhYLuJF067lCPqcHbcDngYYUwslJiKKXywW1C8+90E0bPkbDq69ChUfXAh31ceaKhh6k7V95cI2QTUPtB1qX7lw7JGUjMIl4HWiaedTqllq8Q+7HGdDROHBYkH9Yt/+T4igFwDgadyK6k+vR6DtkORUodGbLCic+TzMnU6QdLhceBy7JSWjcGja9SyCPpdqljXuFklpiOIfiwX1mc9dCce+V1Qzy/BLYEgeIClR3+lNFhTO+BeSsiap5oG2etSuv11TqzB0RPtqxdOqWVrxOTBnjpaUiCj+sVhQnzVuXwoEfR23FZ0JtjE3SEzUP3qTBQUznkNS1pHLZhtSCpB/xmNQFEViMuqrpp1Pd1mtsPGaIEQRxWJBfeJzV8K571XVzDJ8LgwpeZIShYfeZEHBzOeQlH0SDCkF319LpFh2LOqDgNeBpl3PqmZpA38Ec8ZISYmIEgMvQkZ90rhtiXq1Qm/W9GrF0fTGdBTOeA4BT1NMnY6cQtO046lOqxUKbOO4WkEUaSwWFDJfcwWc+/6tmlmHXwpDSq6kROGnM6ZBZ0yTHYP6KOBpQtOu5apZ2sBzYc4YIScQUQLhWyEUssbtjwHC33Fb0ZuROeZ6iYmiSwiB+i33w2MvlR2FemDf+RSC/uajJgps4/lJEKJoYLGgkPiaD8C57zXVzDr8Mk1+EqQvhBCo3/gX2Ev/icrV89DWuF12JOok4LF3Xa0YdD7M1hPkBCJKMCwWFJLGbUsAEei4reiTkDnmOomJokcIgfpNd6Ppu+UAgKC3CVVr5qGtcZvcYKRi3/EUhP+oi40pOp63giiKWCyo17yu/XCWdVqtOGEeDMk5khJFlwh64WnaqZoFvQ5UrbkMbY0lklLR0YQQ8HR6LdIHnQ+TdZikRESJh8WCeq392IpOqxWjE2O1AgB0ejMKpj+N5NzJqnnQ60DV6svQ1rBVUjI6TFEUFMx4DgVnLW8/2Zmig23czbJjESUUFgvqFa+rHK6yVaqZdcTlCbNacZjOkPx9uZiimgd9zvaVi4ZvJSWjwxRFQWrBdBSd/ToG/vBtmCxcrSCKJhYL6hVDci6yJ90JfVIWAEDRJyNz9LWSU8nRXi6eQnLeVNU86HOhas3laKvfIicYqSiKwguNEUmgiChfBMHpdMJqtcLhcMBisUTzqSkMgv4WOHa/ABH0wzb2RtlxpAr621C97hq01Hymmuu+P8FWUvaJPTySiEh7evv7mysWFBKdIQWZo69N+FIBADpDEvKnPYmUvDNV86DPhaqP56O1frOkZERE8rBYEPWDzpCE/OlPIiV/mmoe9LlwcM0VaD20SVKyxOFvq4e7eh2vQEsUI1gsiPpJpzcjf9oTSMmfrpoH/c2o+vgKtB7aKClZYrCXLsPBj+ej8sNfwF39KQsGkWQsFtQj/gXde+3lYhlSCmao7xB+BP0tckIlAH/rITh2vwAAaKvfiIMfXwF76T8lpyJKbCEVi6VLl2LChAmwWCywWCyYPHky3nvvvUhlI8lqN9yB2i8XwddcKTuKJuj0ZuSfuRQpBTMBAIrOhPxpTyA1/8zjPJL6yl66DCLQdmSgGJA+6Hx5gYgotGJRVFSEe++9Fxs3bsQ333yDmTNn4oILLsD27bxeQrzxOvbAVfY6nHtXovztGaj96n/hb6uXHSvmtZeLfyKt+JzvS8W04z+I+sTfWgfHnhdUM8vQn8KYNlBSIiICwvBxU5vNhvvvvx9XXXVVr7bnx021ofrzW9C8/+2O2zpDGgZf8Cn05gx5oYiOcmjjX9C069kjA8WAweevgTGtWF4oojjW29/fhr4+QSAQwKuvvgq3243Jkyf3uJ3H44HH41EFo9jmafoOzfvfUc0yRv6SpSKMAm2N0CfZZMfQrPbVipdUM8vQn7FUEMWAkA/eLCkpQVpaGsxmM66//nqsWrUKY8b0fHa7xYsXw2q1dnwVF/MHP9Y1bnsEwJGFLJ0xHRmjr5YXKM44y99E+VvT0VLzhewommXfvhQicOQfLFAMsI29SV4gIuoQcrEYOXIktmzZgi+//BI33HAD5s+fj9LS0h63X7RoERwOR8dXRUVFvwJTZHmadqH5wLuqWcbIK6E3WSUlii+u8rdQu/42BP3NOLj2KrTUfC47kub4W2q6rlYM+wWMaUWSEhHR0UIuFiaTCcOHD8fJJ5+MxYsXY+LEiXj44Yd73N5sNnd8iuTwF8WublcrRv1KXqA40lr3JWrW/xoQQQCACLR9Xy4+O84j6WiNpUshgt4jA50RtrEL5AUiIpV+n8ciGAyqjqEg7fI07exmteJXXK0Ik6Tsk5BWNEc1EwEPDq69Gu7qTyWl0hZfSzWce1aqZtahF8GYWigpERF1FlKxWLRoEdatW4fy8nKUlJRg0aJF+OSTTzBv3rxI5aMoaixRrzxxtSK8FJ0ReVMfRtrAc1VzEfCgeu3VcFevk5RMO+zb/9lltSJz7A3yAhFRFyF9KqSurg5XXHEFqqurYbVaMWHCBHzwwQf4wQ9+EKl8FCUeeymaK95XzTJGXQ29iW9dhZOiMyJvykOogYLmA0c+eSOCXlSvvab93BcF04/xHRKXz30Qzr2vqGbWYRdztYIoxoRULJ5++ulI5SDJGkoeUd3WGS3IGPlLOWHinKIzIG/Kg6hRFNW5QkTQi+p11yJ/2jKkFpwlL2CMsnc6tkLRmZDJq+wSxRxeK4TgsZfCXfmBapYx6iquVkSQojMgb/IDSB90gWreXi6ug7vqY0nJYpcxfQh05syO25ZhF8OYki8xERF1h8WC0ND52AqTFRmjrpSUJnEoOgNyJ/8D6YMvVM1F0IvqT6+Hu2qNnGAxKnPUrzDkx58ia+JvoU/OhY2rFUQxicUiwfncVXBXrVbNMkddDb0xXVKixKLo9Mj9n78jffBPVHMR9OLgp9ejufIjSclik86YCtvYGzDkgs9gSMmTHYeIusFikeCMqYUYdO4H7f9qVnTQmTJgHTlfdqyE0l4u7kf6kJ+q7wj6UP3ZjfC6yqXkimWKrs9XIyCiCONPJ8FkGYa8KQ/CNvYmeF37uFohgaLTI/f0vwGKDq59/+6YZ43/NUzpg+UFIyIKEYsFdTBZh8FkHSY7RsJqLxf3QYEOzn2vIGviHbDxHA1EpDEsFkQxRFF0GHD6YqQVz0Fq4UzZcaTyNVfAvuMJZI69kZ/+INIQHmNBFGMURZfwpQIAGrc9BsfuF7D/rbNQ9/Uf4W+pkR2JiHqBxSIB+VvrEAzw+i5a1X6W1A+Ov6GGeV374Sx7DUD7J2Qcu5+HfSdP0EekBSwWCah2w++w/+0ZaNr9AguGxnjspahcPQ/Vny2A68B/ZMeJGPv2JYAIdNxW9EnIHH2txERE1FssFgmmrX4zWqo/gb+lGoe+/gP2vz0THnup7FjUCx77DlSuuQxBbxMgAqj5/Fa49r9z3MdpjddVDmfZ66qZdcTlMCTnSEpERKFgsUgwnc+yKYIeGPlxRk1w7X8HQY/9yEAEUPPFQrjK3+75QRrUuO2xTqsVyVytINIQFosE0npoE1qq16pmmaOvg86QIikRhSJr4u2wjrhCPRQB1KxfCGf5m3JChZnXWQZX+SrVLGPEFTAkZUtKREShYrFIII0lD6lu65OyYT3hMjlhKGSKoiDn5D8hY8Qv1XeIIGrX3wZn2RsyYoVV47ZHARHsuK0YUpAx+hqJiYgoVCwWCaL10Ea01HyqmmWOuR46Q7KkRNQXiqIg++Q/ImNkp4vEiSBqN/wGzrJV3T9QA7zOvXDtV6+8tK9WZElKRER9wWKRIBpKHlTd1iflwDp8nqQ01B+KoiD7pD8gY+Sv1HeIIGrX/wbOfa/JCdZPXVcrUpE5iqsVRFrDYpEAWuu+RmvN56pZ5pgboDMkSUpE/dVeLv4fMkZd1ekegdoNd2iuXHgde+Harz4INWPEfOiTbJISEVFfsVgkgM6fBNEnD4B1+FxJaShcFEVB9om/7+YYhPZy4dj7qpRcfdGw7ZGuqxWjr5aYiIj6isUizrXWfYXWWvVqhW3M9VytiBOKoiB70qJuPo4pUPfl7+DY+4qUXKHwOHajufNqxcj50JszJSUiov5gsYhzDZ0/CZKcC8vwS+WEoYhQFAVZk+5E5pjrO90j0HLwEwghpOTqrcZtjwI4klFnSOOxFUQaxmIRx1pqN6C1dr1qZhtzA3R6s6REFCmKoiBr4m+ROebIZdZTi+Ygb+rDUBRFYrLjs429CWkDzwPQnjNj5C+hN2dIzUREfcfLpsexzuetMCTnwTL8EjlhKOLay8UdgKLA69iN/KmPQNEZZcc6LnPGCOSf8Sg8TTfBXrqsmwNSiUhLWCziVMDrQMDbpJpljr2RqxVxTlEUZE24HRABKDpt/XibM0Yib8oDsmMQUT/xrZA4pTdZMfCcd5F3xhKYrCNgSCmAZdhFsmNRFCiKcsxSIQLeKKYhokSjrX/SUEgURYf0gT9CWvEP4XdXcrWCEPDYUbXmcliGXYSMztcdISIKA65YJABF0cGYNlB2DJIs4GlC1ZrL4bFvx6Fv7kLTruXSsohg4PgbEZEmsVgQJYBgwNNRKg47tPHPaNr1bNSzeOylKH97Bhx7VkIEfVF/fiKKLBYLogSg05uRVnx2l/mhjX+BfeczUc3SUPII/O4K1H21COVvz4Sr/K2oPj8RRRaLRRxpa/gWrYc2yY5BMco27mZkTby9y7x+092w73w6Khk89lK4Kz/ouO13V8LXvD8qz01E0cGDN+OEEAKHvvkz2ho2IyV/GmzjFyI5+0TZsSjG2MYuAKCg4dv7VfP6TfcAIojMLtcdCa/O163RmaywjvxlRJ+TiKKLKxZxoqV6HdoaNnf878r//hTuqo8lp6JYZBt7I7Im/a7LvH7zX2Hf8UTEnretcTvclf9VzTJHXQ29MT1iz0lE0cdiEQeEEF3PsplajJT8M+QEophnG3M9sifd2WVev3kxGksfj8hzdv4zqjNlwDpyfkSei4jkYbGIAy3Va9HWsEU1s427SROncyZ5Msdch+wT/7fLvGHLfWEvF22NJXBXfaR+/tHXcLWCKA6xWGicEAINWx9UzYxpA2EZ8hNJiUhLMkdfg+wTf99l3rDlPjRu/2fYnqdx60Oq2zpzJk/QRRSnWCw0ruXgx/A0blXNbONu5moF9Vrm6KuRfdIfuswbvr0fjt0v9fv7tzV8C/fBNernHHUNdMa0fn9vIoo9LBYaJoTocpS9MW0w0gdfKCcQaVbmqF8h5+Q/qmYmy3CkFv2g39+7oeQR1W292cbVCqI4xmKhYe6q1d2sVtykuataUmzIGHklck6+CwBgtAxD4ayXYEjO6df3bKvfgpZOqxUZo6+Bzpjar+9LRLGLv4E0qv2TIJ1WK9IHI33wBZISUTzIGPlL6EwWpOSd0e9SAXQ9b4XenMXVCqI4x2KhUe6qj+Cxb1PN2o+t4EtK/WMZ8tOwfJ/W+s1oqf5ENcsccy10hpSwfH8iik18K0SDul+tGIL0QT+WlIgShQgG4DrwLoQQx93Wue9V1W19UhasJ1wWqWhEFCNYLDTIXfmh6iqVAGAbdwtXKyiiRDCA2g23o+azBWjY+o/jlosBp9yNvCkPw2gZBgDIHH0dVyuIEgB/E2mMEEE0dDqDodEyFOmDzpcTiBJCe6m4A67yNwAA9u1LAAhkTbgdiqJ0+xhFp0f64B8jbeC5aD7wn7B8woSIYh9XLDRGBH1ILZwJxXDkqPr21Qq9xFQU71oPfQ1X+SrVzL79n2j49v7jrlwcLhg6Q3IkIxJRjGCx0Bid3ozsibdjyAWfInPMjTBnTUT6wPNkx6I4l5L7Pxhw+r0A1KsT9tKlaNhyX6+OuSCixMC3QjRKb85E9qQ7IMRvoCjshxR51mEXA1BQ9+WdAI4UCfuOZRAIInvSoh7fFiGixBHSb6TFixfj1FNPRXp6OgYMGIALL7wQu3btilQ26gWWCoom67CLkPs/f0PnlYumHU+ifvNf4dr/H1R+dCnaGrZ2/w2IKO6F9Ftp7dq1WLBgATZs2IAPP/wQPp8PZ599Ntxud6TyEVGMsQz9OXL/5350KRc7n0LN5zehtW497DuelBOOiKRTRD/eHD106BAGDBiAtWvXYtq0ab16jNPphNVqhcPhgMVi6etTE5FkzrLXUbv+dhz9tsjRUovmwDZuAfTmTBhTi6IbjojCrre/v/t1jIXD4QAA2Gy2HrfxeDzweDyqYBSa5or/oq1+EzJHXwt9Us//XxNFU/sZOhXUrr+t2/vdlR/AXfkBAOCES8uimIyIZOrzG/TBYBALFy7E1KlTMW7cuB63W7x4MaxWa8dXcXFxX58yIYlgAA1b/w77jmUoe+tM1G/5GwJtjbJjEQEALEN+AsvwY5xNUzEgd/KD0QtERNL1uVgsWLAA27Ztw8qVK4+53aJFi+BwODq+Kioq+vqUCan5wLvwOnYDAIS/BfbSpWip+1JyKqIjck+7G1kTbu/2vuI5q2AZcmF0AxGRVH0qFjfddBPeeecdfPzxxygqOvZ7p2azGRaLRfVFvSOCATRsU18TxJQxCmnFcyQlIupeSsH0ThN+7JQoUYV0jIUQAjfffDNWrVqFTz75BEOGDIlULgLgOvAOfM69qlnW+IX8iCnFHH1SFvRJOTCk5MM67GI49r4Mf0s19ElZsqMRUZSFVCwWLFiAl156CW+++SbS09NRU1MDALBarUhO5ul6w0kEA2jc9ohqZsoYzestUEwypuRj8AWfQtGZoCgKLMPnQgS90OnNsqMRUZSF9E/fpUuXwuFw4KyzzkJ+fn7H18svvxypfAnLtf9t+Jz7VDOuVlAs0+nNHWfeVBSFpYIoQYX8VghFngj6u6xWmDPHcrWCiIhiHv/5G4Nc+9+Cz6X+3L9t/K28DgMREcU8FosYI4J+NJY8qpqZbeORWjhbUiIiIqLeY7GIMa7yN+FrLlfNuFpBRERawWIRQ9qPrei8WjEBqQUzJSUiIiIKDYtFDHGVvwFf837VLIurFUREpCEsFjGi/bwVj6lm5qyJSCmYISkRERFR6FgsYoSi0yNv6sNIOeptj/bzVnC1goiItKNfl02n8ErKmojCs55GW/0WuA68g5T8ztdfICIiim0sFjEoKXsSkrInyY5BREQUMr4VQkRERGHDYkFERERhw2IhkQj6IYIB2TGIiIjChsVCIufeV3Dg3R/CVf42CwYREcUFFgtJggEPGrcvgde5BzVf3IID752DlpovZMciIiLqFxYLSZz7XoW/5WDHba9jNwBelp6IiLSNxUKCYMAD+/Z/qmZJOaciOXeKpEREREThwWIhgXPvK/C3VKtmWRN+zbNsEhGR5rFYRFl3qxXJA05HSu5kSYmIiIjCh8Uiypx7VsLfWqOa2cYvlBOGiIgozFgsoigY8KCxdKlqlpw7GSm5/yMpERERUXixWESRc88KBFprVbMsrlYQEVEcYbGIkqC/rZvViqlIHnCapEREREThx2IRJY49KxBorVPNssbfKikNERFRZLBYREHQ3wZ759WKvKlIHnCqpERERESRwWIRBY49LyHQdkg1yxr/a0lpiIiIIofFIsKEEGje/45qlpJ3JpJzTpaUiIiIKHJYLCJMURQUzV6JAaf9FYaUAgCAbQJXK4iIKD4ZZAdIBIreBOvwubAM+Rnc1euQnH2i7EhEREQRwRWLKFL0JqQVzZYdg4iIKGJYLIiIiChsWCyIiIgobFgsIiDoc8Pj2C07BhERUdSxWERA03f/woH/zEH157fA69gjOw4REVHUsFiEWdDXDPuOJwAINO9/G/v/czbsO5+WHYuIiCgqWCzCrOm75xD0Nh01EbzQGBERJQwWizAK+Fyw73hSNUstnI0k23hJiYiIiKKLxSKMHLueQ9DrUM1s4xfKCUNERCQBi0WYBLxO2Hc+pZqlFp2NJNtYSYmIiIiij8UiTJp2Le+yWpE1/lZJaYiIiORgsQiDgNeJpk6f/Egt/iHMmWMkJSIiIpKDxSIMmnY9i6DPqZpljbtFUhoiIiJ5WCz6qbvVirTiH8KcOVpSIiIiInlYLPqpaeczCPpcqpmNx1YQEVGCYrHoh4DXgaZdz6hmaQN/BHPGKEmJiIiI5GKx6IemnU93Wq1QYBvH1QoiIkpcIReLdevW4fzzz0dBQQEURcEbb7wRgVjaIII+KDpTx+20gefCnDFCYiIiIiK5Qi4WbrcbEydOxJIlSyKRR1OyJ/0Og87/GNbh86DoTLCN5ydBiIgosRlCfcA555yDc845JxJZNMmYWoABp92DrIm3Q2/OkB2HiIhIqpCLRag8Hg88Hk/HbafTeYyttYulgoiIKAoHby5evBhWq7Xjq7i4ONJPSURERJJEvFgsWrQIDoej46uioiLST0lERESSRPytELPZDLPZHOmniYpAWyMc+15BxgmXQ2dMlR2HiIgo5vA8FiGw73wSDVvuQ/lb09BY+jiC/hbZkYiIiGJKyCsWzc3N2LNnT8ftsrIybNmyBTabDQMHDgxruFjib2tA03f/AgAEPI1o2HIf/M2VGHDaPZKTERERxY6Qi8U333yDGTNmdNy+7bbbAADz58/H8uXLwxYs1jTteALi6BUKRY+MUVfJC0RERBSDQi4WZ511FoQQkcgSs/xt9Wj67nnVLH3whTBZhkhKREREFJt4jEUv2EuXQQRajwwUPWzjbpIXiIiIKEaxWByHv/UQHLtfUM3Sh/wEpvTBcgIRERHFMBaL47DvWAYRaDsyUPSwjeVqBRERUXdYLI6hfbXiRdXMMuRnMKUPkpSIiIgotrFYHIO99PFOqxUGHltBRER0DCwWPfC31sGxp9NqxdCfwZjGa50QERH1hMWiB+2rFUeuygrFwGMriIiIjoPFohv+ltqux1YM/TmMaUWSEhEREWkDi0U3GkuXQgS9RwY6I2zjFsgLREREpBEsFt1IK5qNpKwTO25bhv4CxlSuVhARER1PxC+brkUpeWcgOXcqWqrXoXH7EtjG3ig7EhERkSawWPRAURSkFkxHasF02VGIiIg0g2+FEBERUdiwWBAREVHYsFgQERFR2LBYAPC5q1D50cVwV6+DEEJ2HCIiIs3iwZsAGrcvQWvdV2it+wpJ2Scja8JtSMmbIjsWERGR5iT8ioWvuRLOva923G6r3wh35YcSExEREWlXwheLxu1LAOHvuK3ozcgce4PERERERNqV0MXC11wB575/q2bW4fNgSB4gKREREZG2JXSxaNz+WNfVijHXS0xERESkbQlbLHzNB+Dc95pqZh1+GQzJOZISERERaV/CFovGbY8BItBxW9EnIXPMdRITERERaV9CFguvqxzOstdVM+sJXK0gIiLqr4QsFl1XK5K5WkFERBQGCVcsvM4yuMpXqWYZIy6HISlbUiIiIqL4kXDFov2TIMGO24o+GRmjr5WYiIiIKH4kVLHwOvfBVf6GapYx4goYkrLkBCIiIoozCVUs7DufVq9WGFKQydUKIiKisEmoYpFz4v8ia+JvoTNnAgAyRsyHPskmORUREVH8SKirm+qMqbCNvQEZIy5H0+4XYB16kexIREREcSWhisVhOmMabDx1NxERUdgl1FshREREFFksFkRERBQ2cV8sAl6H7AhEREQJI66LhafpO5StOh11X/8BvpZq2XGIiIjiXlwXi8ZtD0MEPHDsfgH73zoL9Vvulx2JiIgorsVtsfA07UTzgXc7bougF4ouIT8EQ0REFDVxWywaSx5R3dYZ05Ex6ipJaYiIiBJDXBYLj30HmiveU80yRl0FvckiKREREVFiiMti0bCt82qFBRkjr5SUhoiIKHHEXbHw2EvhrnhfNeNqBRERUXTEXbFoKHlYdbt9teKXcsIQERElmLgqFm2N2+Gu/K9qljn6aq5WEBERRUlcFYvGbZ1WK0wZsHK1goiIKGr6VCyWLFmCwYMHIykpCaeffjq++uqrcOcKmbNsFdyVH6pmmaOvht6YLikRERFR4gm5WLz88su47bbbcNddd2HTpk2YOHEi5syZg7q6ukjk67WGrQ+obuvMmcgYMV9SGiIiosQUcrF44IEHcM011+DKK6/EmDFj8PjjjyMlJQXPPPNMJPIdk89dibbGEjjLVsHvrlTdlz7wfAS8TVHPRERElMhCOse11+vFxo0bsWjRoo6ZTqfD7NmzsX79+m4f4/F44PF4Om47nc4+Ru2q/M0ze7zPsftfcOz+F064tCxsz0dERETHFtKKRX19PQKBAHJzc1Xz3Nxc1NTUdPuYxYsXw2q1dnwVFxf3PW0nuZMfBJQeupFiaL+fiIiIoibinwpZtGgRHA5Hx1dFRUXYvrdlyIUonrOq2/uK56yCZciFYXsuIiIiOr6Q3grJzs6GXq9HbW2tal5bW4u8vLxuH2M2m2E2m/uesNcUAOKo/xIREVG0hbRiYTKZcPLJJ2P16tUds2AwiNWrV2Py5MlhD9cb+qQs6JNyYLaNx4BT/w9m23jok3KgT8qSkoeIiCiRhbRiAQC33XYb5s+fj1NOOQWnnXYaHnroIbjdblx5pZyLfBlT8jH4gk+h6ExQFAWW4XMhgl7o9NFYJSEiIqKjhVwsLr74Yhw6dAh//OMfUVNTg0mTJuH999/vckBnNB1dIhRFgcJSQUREJIUihIjqAQlOpxNWqxUOhwMWC6/hQUREpAW9/f0dV9cKISIiIrlYLIiIiChsWCyIiIgobFgsiIiIKGxYLIiIiChsWCyIiIgobFgsiIiIKGxYLIiIiChsWCyIiIgobEI+pXd/HT7Rp9PpjPZTExERUR8d/r19vBN2R71YuFwuAEBxcXG0n5qIiIj6yeVywWq19nh/1K8VEgwGcfDgQaSnp0NRlLB9X6fTieLiYlRUVMTtNUjifR+5f9oX7/vI/dO+eN/HSO6fEAIulwsFBQXQ6Xo+kiLqKxY6nQ5FRUUR+/4WiyUu/7AcLd73kfunffG+j9w/7Yv3fYzU/h1rpeIwHrxJREREYcNiQURERGETN8XCbDbjrrvugtlslh0lYuJ9H7l/2hfv+8j9075438dY2L+oH7xJRERE8StuViyIiIhIPhYLIiIiChsWCyIiIgobFgsiIiIKG00ViyVLlmDw4MFISkrC6aefjq+++uqY27/66qsYNWoUkpKSMH78eLz77rtRSto3oezf8uXLoSiK6ispKSmKaUOzbt06nH/++SgoKICiKHjjjTeO+5hPPvkEJ510EsxmM4YPH47ly5dHPGd/hLqPn3zySZfXUFEU1NTURCdwiBYvXoxTTz0V6enpGDBgAC688ELs2rXruI/Tys9hX/ZPSz+HS5cuxYQJEzpOnDR58mS89957x3yMVl67w0LdRy29ft259957oSgKFi5ceMztov06aqZYvPzyy7jttttw1113YdOmTZg4cSLmzJmDurq6brf/4osvMHfuXFx11VXYvHkzLrzwQlx44YXYtm1blJP3Tqj7B7SfWa26urrja//+/VFMHBq3242JEydiyZIlvdq+rKwM5557LmbMmIEtW7Zg4cKFuPrqq/HBBx9EOGnfhbqPh+3atUv1Og4YMCBCCftn7dq1WLBgATZs2IAPP/wQPp8PZ599Ntxud4+P0dLPYV/2D9DOz2FRURHuvfdebNy4Ed988w1mzpyJCy64ANu3b+92ey29doeFuo+Adl6/zr7++mssW7YMEyZMOOZ2Ul5HoRGnnXaaWLBgQcftQCAgCgoKxOLFi7vd/qKLLhLnnnuuanb66aeL6667LqI5+yrU/Xv22WeF1WqNUrrwAiBWrVp1zG1++9vfirFjx6pmF198sZgzZ04Ek4VPb/bx448/FgCE3W6PSqZwq6urEwDE2rVre9xGaz+HR+vN/mn551AIITIzM8VTTz3V7X1afu2Odqx91Orr53K5xAknnCA+/PBDMX36dHHrrbf2uK2M11ETKxZerxcbN27E7NmzO2Y6nQ6zZ8/G+vXru33M+vXrVdsDwJw5c3rcXqa+7B8ANDc3Y9CgQSguLj5uK9caLb1+/TVp0iTk5+fjBz/4AT7//HPZcXrN4XAAAGw2W4/baPl17M3+Adr8OQwEAli5ciXcbjcmT57c7TZafu2A3u0joM3Xb8GCBTj33HO7vD7dkfE6aqJY1NfXIxAIIDc3VzXPzc3t8f3ompqakLaXqS/7N3LkSDzzzDN488038cILLyAYDGLKlCmorKyMRuSI6+n1czqdaG1tlZQqvPLz8/H444/jtddew2uvvYbi4mKcddZZ2LRpk+xoxxUMBrFw4UJMnToV48aN63E7Lf0cHq23+6e1n8OSkhKkpaXBbDbj+uuvx6pVqzBmzJhut9XqaxfKPmrt9QOAlStXYtOmTVi8eHGvtpfxOkb96qYUHpMnT1a18ClTpmD06NFYtmwZ7r77bonJqLdGjhyJkSNHdtyeMmUK9u7diwcffBDPP/+8xGTHt2DBAmzbtg2fffaZ7CgR0dv909rP4ciRI7FlyxY4HA78+9//xvz587F27doef/FqUSj7qLXXr6KiArfeeis+/PDDmD7IVBPFIjs7G3q9HrW1tap5bW0t8vLyun1MXl5eSNvL1Jf968xoNOLEE0/Enj17IhEx6np6/SwWC5KTkyWlirzTTjst5n9Z33TTTXjnnXewbt06FBUVHXNbLf0cHhbK/nUW6z+HJpMJw4cPBwCcfPLJ+Prrr/Hwww9j2bJlXbbV4msHhLaPncX667dx40bU1dXhpJNO6pgFAgGsW7cOjz32GDweD/R6veoxMl5HTbwVYjKZcPLJJ2P16tUds2AwiNWrV/f43tnkyZNV2wPAhx9+eMz32mTpy/51FggEUFJSgvz8/EjFjCotvX7htGXLlph9DYUQuOmmm7Bq1SqsWbMGQ4YMOe5jtPQ69mX/OtPaz2EwGITH4+n2Pi29dsdyrH3sLNZfv1mzZqGkpARbtmzp+DrllFMwb948bNmypUupACS9jhE7LDTMVq5cKcxms1i+fLkoLS0V1157rcjIyBA1NTVCCCEuv/xyceedd3Zs//nnnwuDwSD+/ve/ix07doi77rpLGI1GUVJSImsXjinU/fvzn/8sPvjgA7F3716xceNGcckll4ikpCSxfft2WbtwTC6XS2zevFls3rxZABAPPPCA2Lx5s9i/f78QQog777xTXH755R3b79u3T6SkpIg77rhD7NixQyxZskTo9Xrx/vvvy9qF4wp1Hx988EHxxhtviN27d4uSkhJx6623Cp1OJz766CNZu3BMN9xwg7BareKTTz4R1dXVHV8tLS0d22j557Av+6eln8M777xTrF27VpSVlYmtW7eKO++8UyiKIv773/8KIbT92h0W6j5q6fXrSedPhcTC66iZYiGEEI8++qgYOHCgMJlM4rTTThMbNmzouG/69Oli/vz5qu1feeUVMWLECGEymcTYsWPFf/7znygnDk0o+7dw4cKObXNzc8WPfvQjsWnTJgmpe+fwRys7fx3ep/nz54vp06d3ecykSZOEyWQSQ4cOFc8++2zUc4ci1H287777xLBhw0RSUpKw2WzirLPOEmvWrJETvhe62zcAqtdFyz+Hfdk/Lf0c/upXvxKDBg0SJpNJ5OTkiFmzZnX8whVC26/dYaHuo5Zev550Lhax8DrysulEREQUNpo4xoKIiIi0gcWCiIiIwobFgoiIiMKGxYKIiIjChsWCiIiIwobFgoiIiMKGxYKIiIjChsWCiIiIwobFgoiIiMKGxYKIiIjChsWCiIiIwobFgoiIiMLm/wN94ZD+iT32egAAAABJRU5ErkJggg==\n" }, "metadata": {} } ] }, { "cell_type": "markdown", "source": [ "Some other options include changing the figure size by starting with a call to:\n", "\n", "> **`plt.figure(figsize=(WIDTH,HEIGHT))`**\n", "\n", "Adding x-axis and y-axis labels and a title at the top:\n", "\n", "> **``plt.xlabel(STRING)``**\n", "\n", "> **``plt.ylabel(STRING)``**\n", "\n", "> **``plt.title(STRING)``**\n", "\n", "Or adding grid lines using:\n", "\n", "> **`plt.grid()`**\n", "\n", "Or adding multiple lines by specifying the **`label`** argument in `plt.plot()` and adding a key using:\n", "\n", "> **`plt.legend()`**\n", "\n", "Check out these additional formatting options below:" ], "metadata": { "id": "wN74Irogq33z" } }, { "cell_type": "code", "source": [ "plt.figure(figsize=(6,3))\n", "plt.plot(x,y,label='Original data')\n", "plt.plot(x,2*y,label='2 * y') # y-values are multiplied by 2 here\n", "plt.legend()\n", "plt.grid()\n", "plt.xlabel('x-values')\n", "plt.ylabel('y-values')\n", "plt.title('This is a title');" ], "metadata": { "id": "58RRTpadrTRJ", "colab": { "base_uri": "https://localhost:8080/", "height": 333 }, "outputId": "1cc35eb8-473d-4a4c-b2ec-2ea2a1648c8e" }, "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAAE8CAYAAAB6sTNaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAByCklEQVR4nO3dd1xV9f/A8de9bJDhAAEFUVFc4NbcW3PlyJGWOTIrrTR/Zdpw5i6z4WxomX4rt7lx594K7i0qiCJ7Xrjn98dRikQFuXAH7+fj4cNzzz3j/bnnjjef8xkaRVEUhBBCCCGek9bYAQghhBDCvEkyIYQQQog8kWRCCCGEEHkiyYQQQggh8kSSCSGEEELkiSQTQgghhMgTSSaEEEIIkSeSTAghhBAiTySZEEIIIUSeSDIhhIXatWsXGo2GFStWPHPbAQMG4OfnZ5DzajQaxo8fb5Bj5Yfx48ej0WhytO3ixYvRaDRcv349f4MSwsxJMiGEGdFoNDn6t2vXLmOHalRJSUmMHz8+x6/DlClTWLNmTb7GJIQlszZ2AEKInFuyZEmWx7/++ivBwcGPra9cuTLnzp3L8XF/+OEH9Hq9QWJMTk7G2tq4Xy1JSUlMmDABgObNm2d57rPPPmP06NFZ1k2ZMoUePXrQtWvXAopQCMsiyYQQZuS1117L8vjgwYMEBwc/th7IVTJhY2OT59gesbe3N9ix8oO1tbXRkx0hLI3c5hDCwun1eiZPnkzp0qWxt7enVatWXL58Ocs22bWZ+P3336lduzbOzs64uLgQGBjIN99888zz/bfNRHx8PCNGjMDPzw87Ozs8PDxo06YNx48ff+pxbty4wdChQwkICMDBwYHixYvTs2fPZ7ZfuH79Ou7u7gBMmDAh89bPo5j+22ZCo9GQmJjIL7/8krntgAEDnnqOTZs20aRJE5ycnHB2dqZjx46cOXPmqfsIYckkPRfCwk2bNg2tVsuHH35IbGwsM2bM4NVXX+XQoUNP3Cc4OJg+ffrQqlUrpk+fDqg1Hfv27WP48OG5Ov/bb7/NihUrePfdd6lSpQpRUVHs3buXc+fOUatWrSfud+TIEfbv388rr7xC6dKluX79OvPmzaN58+acPXsWR0fHbPdzd3dn3rx5vPPOO3Tr1o3u3bsDEBQUlO32S5YsYfDgwdSrV48hQ4YAUL58+SfGtWTJEvr370+7du2YPn06SUlJzJs3j8aNG3PixAmDNWQVwqwoQgizNWzYMOVJH+OdO3cqgFK5cmUlNTU1c/0333yjAEpISEjmuv79+ytlypTJfDx8+HDFxcVFSU9Pz3VMgDJu3LjMx66ursqwYcNyfZykpKTH1h04cEABlF9//fWp+967d++xOB4ZN27cY6+Zk5OT0r9//8e2XbRokQIo165dUxRFUeLj4xU3NzflzTffzLJdRESE4urq+th6IQoLuc0hhIUbOHAgtra2mY+bNGkCwNWrV5+4j5ubG4mJiQQHB+f5/G5ubhw6dIg7d+7kaj8HB4fMZZ1OR1RUFP7+/ri5uT3zFkl+CQ4OJiYmhj59+nD//v3Mf1ZWVtSvX5+dO3caJS4hjE2SCSEsnK+vb5bHRYsWBSA6OvqJ+wwdOpSKFSvSvn17SpcuzaBBg9i8efNznX/GjBmEhobi4+NDvXr1GD9+/FMTmUeSk5MZO3YsPj4+2NnZUaJECdzd3YmJiSE2Nva5YsmrS5cuAdCyZUvc3d2z/Nu6dSuRkZFGiUsIY5M2E0JYOCsrq2zXK4ryxH08PDw4efIkW7ZsYdOmTWzatIlFixbx+uuv88svv+Tq/L169aJJkyasXr2arVu3MnPmTKZPn86qVato3779E/d77733WLRoESNGjKBBgwa4urqi0Wh45ZVXDNaNNbcenXfJkiV4eno+9rz0EhGFlbzzhRDZsrW1pXPnznTu3Bm9Xs/QoUNZsGABn3/+Of7+/rk6lpeXF0OHDmXo0KFERkZSq1YtJk+e/NRkYsWKFfTv35+vvvoqc11KSgoxMTHPPF9OR7jM7faPGmZ6eHjQunXrXJ1DCEsmtzmEEI+JiorK8lir1Wb2hkhNTc3xcTIyMh67JeHh4YG3t/czj2NlZfVY7cl3331HRkbGM8/7qKdHThIPACcnpxxt265dO1xcXJgyZQo6ne6x5+/du5ej8wlhaaRmQgjxmMGDB/PgwQNatmxJ6dKluXHjBt999x01atSgcuXKOT5OfHw8pUuXpkePHlSvXp0iRYqwbds2jhw5kqXGITudOnViyZIluLq6UqVKFQ4cOMC2bdsoXrz4M8/r4OBAlSpV+OOPP6hYsSLFihWjWrVqVKtWLdvta9euzbZt25g1axbe3t6ULVuW+vXrP7adi4sL8+bNo1+/ftSqVYtXXnkFd3d3bt68yYYNG2jUqBHff/99zl4cISyIJBNCiMe89tprLFy4kLlz5xITE4Onpye9e/dm/PjxaLU5r9B0dHRk6NChbN26lVWrVqHX6/H392fu3Lm88847T933m2++wcrKiqVLl5KSkkKjRo3Ytm0b7dq1y9G5f/zxR9577z0++OAD0tLSGDdu3BOTiVmzZjFkyBA+++wzkpOT6d+/f7bJBEDfvn3x9vZm2rRpzJw5k9TUVEqVKkWTJk0YOHBgjmITwtJolKe1whJCCCGEeAZpMyGEEEKIPJFkQgghhBB5IsmEEEIIIfJEkgkhhBBC5IkkE0IIIYTIE0kmhBBCCJEnFj/OhF6v586dOzg7O+d6iF0hhBCiMFMUhfj4eLy9vZ86xozFJxN37tzBx8fH2GEIIYQQZissLIzSpUs/8XmLTyacnZ0B9YVwcXExyDF1Oh1bt26lbdu22NjYGOSYxiZlMg+WViZLKw9ImcyFlCln4uLi8PHxyfwtfRKLTyYe3dpwcXExaDLh6OiIi4uLRb0JpUymz9LKZGnlASmTuZAy5c6zmglIA0whhBBC5IkkE0IIIYTIE0kmhBBCCJEnRm0zsWfPHmbOnMmxY8cIDw9n9erVdO3aFVDv/Xz22Wds3LiRq1ev4urqSuvWrZk2bRre3t4GjUNRFNLT08nIyMjR9jqdDmtra1JSUnK8j6mTMj2bjY0NVlZWBohMCCEsi1GTicTERKpXr86gQYPo3r17lueSkpI4fvw4n3/+OdWrVyc6Oprhw4fz0ksvcfToUYPFkJaWRnh4OElJSTneR1EUPD09CQsLs5ixK6RMz6bRaChdujRFihQxQHRCCGE5jJpMtG/fnvbt22f7nKurK8HBwVnWff/999SrV4+bN2/i6+ub5/Pr9XquXbuGlZUV3t7e2Nra5uhHR6/Xk5CQQJEiRZ46iIc5kTI9naIo3Lt3j1u3blGhQgWpoRBCiH8xq66hsbGxaDQa3NzcnrhNamoqqampmY/j4uIAtcpbp9M9tm1GRgalSpXC0dExx3EoikJaWhp2dnYW9Ve8lOnpihcvTkJCAsnJydjZ2Rkgwtx79B7+73vZXFlaecACy6QosH0Cta8dIT2yAnhUMHZEBmFx14n8KVNOj6VRFEUx2FnzQKPRZGkz8V8pKSk0atSISpUqsXTp0iceZ/z48UyYMOGx9cuWLXssYbC2tsbT0xMfHx9sbW3zFL+wfGlpaYSFhREREUF6erqxwxGiQJSL3ELgbfU7N11ry1nvXlwr0Ro0llGDKZ4uKSmJvn37Ehsb+9SxmswimdDpdLz88svcunWLXbt2PbVA2dVM+Pj4cP/+/cf2S0lJISwsDD8/P+zt7XMc66Oxyi1pvg8p07OlpKRw/fp1fHx8cvV+MSSdTkdwcDBt2rSxiIF2LK08YFll0tw+htWvndDodSTYlaRI6l0A9D4vkNHpGyhW3sgRPj9Luk6P5EeZ4uLiKFGixDOTCZO/zaHT6ejVqxc3btxgx44dzxzF0s7OLtsqaBsbm8de3IyMDDQaDVqtNlf31PV6PUDmvpZAyvRsWq0WjUaT7XupoJlCDIZkaeUBCyhT0gNYPRj0OvSVXmK7fXc6lYzEascEtGEH0f7QHFp9DvXfBq35tiEy++uUDUOWKafHMelfjUeJxKVLl9i2bRvFixc3dkgW4fr162g0Gk6ePJnjfRYvXvzUtioFFQeAn58fs2fPNmgsQoh/URRYMxRiw6BoWTI6zgaNFn2dQTD0AJRtCunJsOUTWNQe7l8ydsTCyIyaTCQkJHDy5MnMH5Nr165x8uRJbt68iU6no0ePHhw9epSlS5eSkZFBREQEERERpKWlGTNskxAWFsagQYMye6GUKVOG4cOHExUV9cx9fXx8CA8Pp1q1ajk+X+/evbl48WJeQjaa/EiEhLBo+7+Di5vAyg56/QL2/6oRLloGXl8HnWaDrTOEHYL5jWHft6C3jDFqRO4ZNZk4evQoNWvWpGbNmgCMHDmSmjVrMnbsWG7fvs26deu4desWNWrUwMvLK/Pf/v37jRm20V29epU6depw6dIl/ve//3H58mXmz5/P9u3badCgAQ8ePHjivmlpaVhZWeHp6Ym1dc7vcjk4OODh4WGI8IUQpuzmQdg2Xl1+cSp4VX98G40G6gxUaynKt4T0FAj+HH5qC/cuFGi4wjQYNZlo3rw5iqI89m/x4sX4+fll+5yiKDRv3jxf4lEUhaS09Bz9S07LyPG2OfmXm3aww4YNw9bWlq1bt9KsWTN8fX1p374927Zt4/bt23z66aeZ2/r5+TFp0iRef/11XFxcGDJkSLa3F9atW0ft2rVxdHSkRYsW/PLLL2g0GmJiYoDH/7ofP348NWrUYMmSJfj5+eHq6sorr7xCfHx85jabN2+mcePGuLm5Ubx4cTp16sSVK1dydU0iIyPp3LkzDg4OlC1bNtuePLNmzSIwMBAnJyd8fHwYOnQoCQkJAOzdu5c33ngjs1uxRqNh/PjxACxZsoQ6derg7OyMp6cnffv2JTIyMlfxCWFREqNg+UBQMqBaD6gz6Onbu/nAa6vgpe/AzgVuH4X5TWDv15AhPZ4KE5NvgFmQknUZVBm7xSjnPjuxHY62z74cDx48YMuWLUyePBkHB4csz3l6evLqq6/yxx9/MHfu3MweDF9++SVjx45l3Lhx2R7z2rVr9OrVi7feeouhQ4dy6tQpPvzww2fGcuXKFdasWcP69euJjo6mV69eTJs2jcmTJwPqCKcjR44kKCiIhIQExo4dS7du3Th58mSOG0QOGDCAO3fusHPnTmxsbHj//fcf+8HXarV8++23lC1blqtXrzJ06FBGjRqVOcjZ119/zbhx47hwQf2L6dEIljqdjkmTJhEQEEBkZCQjR45kwIABbNy4MUexCWFR9HpYPQTi70Bxf+g8W62BeBaNBmq9DuVbwV/D4XKwWrNxdh10mQMlq+R35MIESDJhZi5duoSiKFSuXDnb5ytXrkx0dDT37t3LvC3RsmVL/u///i9zm+vXr2fZZ8GCBQQEBDBp0iRcXFyoXLkyoaGhmUnBk+j1ehYvXoyzszMA/fr1Y/v27Zn7vfzyy1m2//nnn3F3d+fs2bM5aq9x8eJFNm3axOHDh6lbty4AP/3002NlHzFiROayn58fX3zxBW+//Tbff/89tra2uLi4oNFo8PT0zLLfoEH//NVVrlw5vv32W+rWrZs5aqYQhcq+r+HyNrC2h56/gJ1z7vZ3LQWvLodT/4NNo+HOcVjYDJqNgkYjwMqyekyIrCSZ+BcHGyvOTmz3zO30ej3xcfE4uzgbrBulg03uulbl5rZInTp1nvr8hQsXHtumXr16zzyun59fZiIB4OXllaXW4NKlS4wdO5ZDhw5x//79zK6aN2/ezFEyce7cOaytraldu3bmukqVKj3WmHLbtm1MnTqV8+fPExcXR3p6OikpKc+cb+XYsWOMHz+eU6dOER0dnSW+KlXkrylRiFzfCzu+UJc7zATPnDfOzkKjgRp9oVwLWD8CLm5Wj3vuL+gy9/mPK0yeSXcNLWgajQZHW+sc/XOwtcrxtjn5l9NBlfz9/dFoNJw7dy7b58+dO0fRokVxd3fPXOfk5GSQ1+e//tv/WKPRZP4gA3Tu3JkHDx7www8/cOjQIQ4dOgRg0N44169fp1OnTgQFBbFy5UqOHTvGnDlznnmexMRE2rVrh4uLC0uXLuXIkSOsXr3a4PEJYfISImHFG6DooXofqNkv78d08YI+v0O3hWDvBuGnYGFz2DUdMixn+GrxD0kmzEzx4sVp06YNc+fOJTk5OctzERERLF26lN69e+dqxMeAgACOHTuWZd2RI0fyFGdUVBQXLlzgs88+o1WrVpm3X3KjUqVKpKenZ4ntwoULmY1CQa1d0Ov1fPXVV7zwwgtUrFiRO3fuZDmOra3tY1OQnz9/nqioKKZNm0aTJk2oVKmSNL4UhY8+A1a9CQkR4F4JOn6Vs3YSOaHRQPXeMOwQVOoEeh3smgILW0D4acOcQ5gMSSbM0Pfff09qairt2rVjz549hIWFsXnzZtq0aUOpUqWe2dbhv9566y3Onz/PuHHjuHjxIn/++SeLFy8GeO5hqIsWLUrx4sVZuHAhly9fZseOHYwcOTJXxwgICODFF1/krbfe4tChQxw7dozBgwdnaXjq7++PTqfju+++4+rVqyxZsoT58+dnOY6fnx8JCQls376d+/fvk5SUhK+vL7a2tpn7rVu3jkmTJj1XWYUwW3u+hKu7wMZRbSdhmw+1mM6e0Ps3ePkncCgGd0PghxawcwqkSy2gpZBkwgxVqFCBo0ePUq5cOXr16kX58uUZMmQILVq04MCBAxQrVixXxytbtix//vkn69evp0aNGsybNy+ze+nzzo6p1Wr5/fffOXbsGNWqVeODDz5g5syZuT7OokWL8Pb2plmzZnTv3p0hQ4ZkGe+ievXqzJo1i+nTp1OtWjWWLl3K1KlTsxyjYcOGvP322/Tu3Rt3d3dmzJiBu7s7ixcvZvny5VSpUoVp06bx5ZdfPldZhTBLV3fBroeflY6zwKNS/p1Lo4HAHmotReWXQJ8Ou6ertz7unMi/84oCYzITfeWXuLg4XF1ds52kJCUlhWvXrlG2bNlcTdyk1+uJi4vDxcXFouax+HeZJk+ezPz58wkLCzN2aM/N0Nfped8vhqTT6di4cSMdOnSwiPkELK08YCZlio9QR61MvKe2kejy/VM3N3iZzqyGDf8HSVGgsYLGI6DZx2D9fH+8PA+zuE65lB9letpv6L9Zxi+hyLN58+Zx/PjxzFsFM2fOpH///sYOSwhhaBnpsHKwmkh4VFV7bxS0qt1g2GH1fyUD/v4KFjSD28eeva8wSdI1VABqN84vvviC6OhofH19+b//+z/GjBlj7LCEEIa2expc/xtsi6jzbtg4PHuf/OBUAnouVhOKDf8H987Bj62h4fvQfAzYGKf2TzwfqZkQgDok9blz50hKSuLixYt8/vnnuZq7QwhhBi5vUxtdAnT+BkpUMG48AFW6wNBDENhT7Z66bzYsaAJheetRJgqWJBNCCFEYxN6GVUMARZ1zI7CHsSP6h1NxePlHeGUZFCkJ9y/Cz21h62egS372/sLoJJkQQghLl5EOK99QGzx6BkG7qc/exxgqdYShByHoFbWWYv93akPRmweNHZl4BkkmhBDC0u2YBDcPgK2z2k7BlNsjOBaD7gugzx/g7AVRl+HnF2HzGEh7+hD5wngkmRBCCEt2cYvaDgHULqDFyxs1nBwLeBGGHoAarwIKHJwL8xvB9X3GjkxkQ5IJIYSwVDFhsPotdbneW1C1q1HDyTWHotB1Lry6Apy94cFVWNwBNo6CtERjRyf+RZIJIYSwROlpsGIgJEeDdy1oa8bDxVdoA8MOQq3X1ceHF8C8hnDtb+PGJTJJMiGEEJZo+wS4dQTsXaHnogIdXTJf2LvCS9/Ba6vApTREX4dfOqljVKQmGDu6Qk+SCTM0depU6tati7OzMx4eHnTt2pULFy7kaN/mzZvnb3BCCOM7vwEOPBwiu8tcKOpn1HAMyr+V2pai9kD18ZEfYW4Dda4RYTSSTJih3bt3M2zYMA4ePEhwcDA6nY62bduSmJj9PcSLFy/y+++/Z1l3/Phx1q9fXxDhCiEKUvR1WP2OutzgXajcyajh5At7F+g8G15fC66+EHsTfu0Cf42AlDhjR1coSTLxb4qiNurJyT9dUs63zcm/XMy3tnnzZgYMGEDVqlWpXr06ixcv5ubNmxw7lv249iVKlGDnzp306tWLmJgYxo4dy5gxYyhXrlw2L4GCv7//YzNonjx5Eo1Gw+XLl3P3mgohCk56KiwfAKmxULoutB5v7IjyV7nmMHQ/1B2sPj62SK2luLzdqGEVRjJe8r/pkmCK9zM30wJuhj73J3fA1um5do2NjQV44tTjxYoVY8GCBSxcuJDly5dTtWpVtmzZku22Go2GQYMGsWjRIj788MPM9YsWLaJp06b4+/s/V4xCiAKw9XN1Sm+HotBjEVhZxmyYT2XnDB2/gipdYe0wiLkBv3VXZ0NtN1ltayHyndRMmDm9Xs+IESNo1KgR1apVy3ab6Ohohg4dyrZt26hevTrly5enffv2T2xnMWDAAC5cuMDhw4cBdVrbZcuWMWjQoHwrhxAij86sUXs5AHRbAG4+Rg2nwJVtoralqP+2+vjEErWW4lKwceMqJKRm4t9sHNUagmfQ6/XExcfj4uyMVmugfMzG8bl2GzZsGKGhoezdu/eJ20RGRtKkSRP69OlD8+bNmThxIsePH+fixYsEBAQ8tr23tzcdO3bk559/pl69evz111+kpqbSs2fP54pRCJHPoq7A2nfV5UbDoWI748ZjLLZO0H66OnnY2mHquBRLe6gDX7WbrNbYiHxh1JqJPXv20LlzZ7y9vdFoNKxZsybL84qiMHbsWLy8vHBwcKB169ZcunQp/wLSaNQ3Y07+2TjmfNuc/NNoch3uu+++y/r169m5cyelS5d+4nYBAQH06dMny7patWrRuXPnJ+4zePBgfv/9d5KTk1m0aBG9e/fG0fH5Eh4hRD7SpcDy/pAWD74NoOXnxo7I+Mo0hLf3wQvDAA2cXApzXoALm4wdmcUyajKRmJhI9erVmTNnTrbPz5gxg2+//Zb58+dz6NAhnJycaNeuHSkpKQUcqWlRFIV3332X1atXs2PHDsqWLZvjfXft2pWj7Tp06ICTkxPz5s1j8+bNcotDCFO1ZQxEhIBjcejxc+FoJ5ETto7w4hQYtAWK+0NCBPzvFVj1FiQ9MHZ0Fseotznat29P+/bts31OURRmz57NZ599RpcuXQD49ddfKVmyJGvWrOGVV14pyFBNyrBhw1i2bBlr167F2dmZiIgIAFxdXXFwcDDIOaysrBgwYABjxoyhQoUKNGjQwCDHFUIYUMgKOPozoIHuC8Hl2Q3ICx3f+vD2Xtg5GQ7MgdO/w9WdaF6caezILIrJtpm4du0aERERtG7dOnOdq6sr9evX58CBA09MJlJTU0lNTc18HBen9jnW6XTodLos2+p0OhRFQa/Xo9frcxyb8rAb56N9C9q8efOAxweg+umnnxgwYMBzHTO7Mg0cOJApU6YwYMAAo5Qzrwx9nfR6PYqioNPpsLKyyvPxnsej9/B/38vmytLKAwVYpqhLWP/1Phogo9EH6Ms0g3w6p/lfJ2toMQ5NxY5Y/fUemqhLWK94ndpFX0AXWwtcPY0doEHkx3XK6bFMNpl49Nd2yZIls6wvWbJk5nPZmTp1KhMmTHhs/datWx+7529tbY2npycJCQmkpaXlOsb4+Phc72MI0dHRT3zuUfL0vP5dposXL2JjY0PXrl3zfFxjMtR1SktLIzk5mT179pCenm6QYz6v4GDLaqFuaeWB/C2TlT6VJhcm4pqWyL0ilTmQGIiycWO+ne8RS7hO2tIfE2C9hgp3N1A6+iAp8xtywqc/4W51jR2awRjyOiUl5Wzad5NNJp7XmDFjGDlyZObjuLg4fHx8aNu2LS4uLlm2TUlJISwsjCJFimBvb5/jcyiKQnx8PM7Ozmieo+GkKfp3mdLS0rh37x5fffUVPXr0MNuxJQx9nVJSUnBwcKBp06a5er8Ykk6nIzg4mDZt2mBjY/73xi2tPFAwZbJaPxxtShiKkwdug5bT3jl//7K2vOvUldSbR0hbPhiXlNvUu/Yd+spdyGg3HZxKGDu455Yf1ymnf0iabDLh6al+OO7evYuXl1fm+rt371KjRo0n7mdnZ4ed3eMT2tjY2Dz24mZkZKDRaNBqtbnq4vmoyvzRvpbg32X6448/eOONN6hRowa//vqr2ZbR0NdJq9Wi0WiyfS8VNFOIwZAsrTyQj2U6+T84tRTQoHn5B2yKFdx4EhZ1nXzrsjtgIh2KnMFq/zdoz61Fe2MvdPgSqnZ7rh52psKQ1ymnxzHZX4myZcvi6enJ9u3/DIsaFxfHoUOHpDFgPhswYAAZGRkcO3aMUqVKGTscIcQjkedhw8Oa1+aj1eGkxXPTa23QN/8E3twOHlUhKUqdtv3P1yEh0tjhmRWjJhMJCQmcPHmSkydPAmqjy5MnT3Lz5k00Gg0jRozgiy++YN26dYSEhPD666/j7e1N165djRm2EEIUvLREdTwJXZKaRDT9yNgRWQ7vmjBkFzT7GLTWcG4dzKmv9pbJxbxJhZlRb3McPXqUFi1aZD5+1Nahf//+LF68mFGjRpGYmMiQIUOIiYmhcePGbN682eD3qxV5s4gckPeJMBpFgQ3/B/fOQxFP6P4jaI3To8hiWdtCi0+gUidYMxTuhsDKNyB0FXSaBfncLsXcGTWZaN68+VO/oDUaDRMnTmTixIn5cv5H94KSkpIMNj6DsFyPevwYq1uoKMRO/Aan/gcaLfT4CYq4Gzsiy+UVBEN2wt+zYM9MuLABbuxTh+kO6m3WbSnyk8k2wCwIVlZWuLm5ERmp3htzdHTMUat/vV5PWloaKSkpZts48b+kTM8+1r1793B0dMTaulB/bERBiwiFjQ9n8G3xKfg1Nm48hYGVDTT/GCp1hLVDIfwUrH4LzqyGTrPBxeuZhyhsCv234qNeI48SipxQFIXk5GQcHBwsqmuolOnptFotvr6+FvP6CDOQGq+2k0hPAf/W0Hjks/cRhuNZDQZvh33fwO7pcHEzzK0P7aZCjb5SS/EvhT6Z0Gg0eHl54eHhkeORvnQ6HXv27KFp06YW001KyvRstra2FlNrI8yAosBfIyDqMriUgm4LQd5/Bc/KBpp+qNZSrBkKd46rtRVnVkPnb8BVeryBJBOZrKyscnwv3MrKivT0dOzt7S3mh1fKJISJObYIQleAxkqdwMupuLEjKtw8KsMbwXDgO9g5FS4Hw9wX1KnNa/Yr9LUUkuYKIYSpCT8Fm0ary63Hge8Lxo1HqKysofEH8PbfULoupMbBuvfgt+4QE2bs6IxKkgkhhDAlKbHwZ3/ISIWK7aHBe8aOSPyXe4A6tXnbL8DaHq7sgLkN1BlcC2kXckkmhBDCVCiK+pdu9DVw9YWuc6WdhKnSWkHD9+DtfeDzAqTFw/oP4NcuEH3D2NEVOHmXCiGEqTj8A5xdC1ob6LkIHIsZOyLxLCX8YeBGtYeHtQNc263WUhz+AR7OD1QYSDIhhBCm4PYx2PKJutxmIpSuY9x4RM5praDBUHhnH/g2BF2iOjbIry/Bg2vGjq5ASDIhhBDGlhwNyweAXqcO5/zCO8aOSDyP4uVhwAZoPxNsHOH63zCvIRxaYPG1FJJMCCGEMSkKrBkGMTfBrQx0mVPouxmaNa0W6g+Bd/aDXxN1YrZNo2BxR4i6Yuzo8o0kE0IIYUwH56rzP1jZQq9fwMHN2BEJQyhWFl5fBx2/AhsnuLkf5jWCA3NAn2Hs6AxOkgkhhDCWsCMQPFZdbjdFnQpbWA6tFuoOhqEHoGwzSE9W28Usag/3Lxk7OoOSZEIIIYwh6cHDdhLpULWb+qMjLFPRMvD6WnWSMFtnCDsE8xvDvm8tppZCkgkhhChoej2sfhvibkGx8tD5W2knYek0GqgzUK2lKN9Snbwt+HP4uR3cu2Ds6PJMkgkhhCho+7+FS1vAyg56LgZ7F2NHJAqKmw+8tgpe+h7sXODWEZjfBPZ+DRnpxo7uuUkyIYQQBenGAdg+UV1uPx28gowbjyh4Gg3U6gdDD4J/G3Xo9G3j4ac2EHnO2NE9F0kmhBCioCTehxUDQcmAwF5Qe4CxIxLG5FoKXl0OXeeBnas6vfmCprBnJmTojB1drkgyIYQQBUGvh1VDID4cSlSETl9LOwmhvgdq9IVhh6Dii5CRBju+gB9bQUSosaPLMUkmhBCiIOz9Cq5sV+dv6PkL2BUxdkTClLh4QZ/fodtCsHdTp6Ff2Bx2TTeLWgpJJoQQIr9d+xt2TlGXO34JJasYNx5hmjQaqN5braWo1EkdXn3XFPihBYSfNnZ0TyXJhBBC5KeESFj5Bih6qPEq1HzN2BEJU+fsCb1/g5d/AodiEBGiJhQ7p0B6mrGjy5YkE0IIkV/0GWoikXAX3CtDhy+NHZEwFxoNBPZQaykqv6QObrZ7unrr485JY0f3GEkmhBAiv+yeAdf2qHMz9PoFbB2NHZEwN0U8oPcSdTwSx+IQeQZ+aAnbJ0F6qrGjy2TSyURGRgaff/45ZcuWxcHBgfLlyzNp0iQURTF2aEII8VSaa7vVvyRB7bnhHmDcgIR5q9oNhh1W/1cy4O8vYUEzuH3M2JEBJp5MTJ8+nXnz5vH9999z7tw5pk+fzowZM/juu++MHZoQQjyRvS4aqzVvAQrUel1tVCdEXjmVUGsoev0KTu5w7xz82BqCx4EuxaihWRv17M+wf/9+unTpQseOHQHw8/Pjf//7H4cPHzZyZEII8QT6dGpfn4sm6T6UrAbtZxg7ImFpqnSBMo1h88cQshz2zYYLG9F0+tZoIZl0MtGwYUMWLlzIxYsXqVixIqdOnWLv3r3MmjXrifukpqaSmvrPfaS4uDgAdDodOp1h+uo+Oo6hjmcKLK5McbfRbPyIiolF0CU3BSyjT7+lXSdLKw8AO6dQIuECio0T6d1+BKzBzMtnidfJ7Mtk6wIvzUMT0BmrTR+iuX8Rq186UMW9HbrkJoCzQU6T09dHo5hwAwS9Xs8nn3zCjBkzsLKyIiMjg8mTJzNmzJgn7jN+/HgmTJjw2Pply5bh6CiNnwoDjT6dxpcmUyzpCgBx9qU5UWYwMY7ljByZsHQesadocPUrAI74DeVO0ReMHJEoDGzSEwi8tRSf6H3EOviyu+J4FK1h6gqSkpLo27cvsbGxuLg8eUI6k04mfv/9dz766CNmzpxJ1apVOXnyJCNGjGDWrFn0798/232yq5nw8fHh/v37T30hckOn0xEcHEybNm2wsbExyDGNzZLKpN32OVaH5qHYuZCWoWCXHo+isULf4D30TT4Ea3tjh/jcLOk6gYWVJ+421j+2QJP8gGslWlJy0FLzL9NDFnWdHrLEMmWc28iBMzep3+UNg5UpLi6OEiVKPDOZMOnbHB999BGjR4/mlVdeASAwMJAbN24wderUJyYTdnZ22NnZPbbexsbG4G+Y/DimsZl9mc5vgEPzAMjo/D07zsfRTr8d7dnVWO2fjdXFTdB1LpSuY+RA88bsr9N/mH15MnSwZggkP0DxDCK0ZF9Km3uZsmH21ykbFlWmyh2Iu7bRoGXK6XFMujdHUlISWm3WEK2srNDr9UaKSJi06Ouw+h11ucG7KAEdSLNxIaPbD+pock4ecP+COs3v1s9Bl2zUcIUF2T4Rwg6BnQvp3X9Cr7U1dkRCFCiTTiY6d+7M5MmT2bBhA9evX2f16tXMmjWLbt26GTs0YWrSU2H5AEiNhdJ1ofX4rM9X7qyOJBfYSx3WeP+3ML8JhEnPIJFHFzap7yeALt9D0bLGjUcIIzDpZOK7776jR48eDB06lMqVK/Phhx/y1ltvMWnSJGOHJkzN1s/hzglwKAo9FoFVNlVzjsXg5R/glf9BkZIQdQl+agtbPoW0pIKPWZi/mJuw+m11uf7bapc9IQohk24z4ezszOzZs5k9e7axQxGm7MwaOLxAXe62ANx8nr59pQ7g+wJs+QRO/Q8OfK/+ddllDpRpkO/hCguRnqbWhqXEQKna0Eb+yBGFl0nXTAjxTFFXYO276nKjEVCxXc72cywG3eZD3z/B2QseXIFF7WHTaEhLzLdwhQXZNk4dytjeVa0Ns5Z2EqLwkmRCmC9dCizvD2nx4NsAWn6e+2NUbAdDDz6cFlpRe4LMawjX9xo8XGFBzv0FB+eqy13nQ9Eyxo1HCCOTZEKYry1jICJEnUmvx89g9Zx37Rzc1Fscr64El1Jqr5DFHWHDh5CaYMiIhSV4cA3WDFOXG7yr3jYTopDLdTLxyy+/sGHDhszHo0aNws3NjYYNG3Ljxg2DBifEE4WsgKM/Axro/gO4eOf9mBVaq7UUtQeoj4/8APMawNXdeT+2sAxZeg3Ve7zXkBCFVK6TiSlTpuDg4ADAgQMHmDNnDjNmzKBEiRJ88MEHBg9QiMfcvwR/DVeXm34I/q0Md2x7F+j8DfRbDa4+amv9X1+C9R9AarzhziPM05ZPIfwkOBSDnk/oNSREIZTrZCIsLAx/f38A1qxZw8svv8yQIUOYOnUqf//9t8EDFCKLtCT4sz+kJYBfE2j+5Hla8qR8Sxh6AOq8oT4++jPMbQBXdubP+YTpC12l1lYBdF8IrqWNG48QJiTXyUSRIkWIiooCYOvWrbRp0wYAe3t7kpNlREGRzzaNgsgz6miWL/8IWqv8O5edM3SaBa+vA7cyEBsGS7rCuvchJTb/zitMT9QV9boDNP4AKrQxbjxCmJhcJxNt2rRh8ODBDB48mIsXL9Khg9r46MyZM/j5+Rk6PiH+cfJ/cGIJoFETCWfPgjlvuWbwzn6oN0R9fPwXtZbi0raCOb8wLl3yw9qwePBtCC0+M3ZEQpicXCcTc+bMoUGDBty7d4+VK1dSvHhxAI4dO0afPn0MHqAQAESehw0j1eXmY9Qf+IJkVwQ6zIQBG9ThkuNuw9KX1Vb9yTEFG4soWJtHw90QcCyRt15DQliwXH8q3Nzc+P777x9bP2HCBIMEJMRj0hLV8SR0SVCuudro0lj8GsM7+2D7JDg0H07+Ble2q402czpgljAfp/+EY4tRa8N+ABcvY0ckhEl6rnEm/v77b1577TUaNmzI7du3AViyZAl798pAP8LAFAU2/B/cOw9FPKF7PreTyAlbJ2g/DQZugmLlIT4clvVS52hIjjZubMJw7l2Ev0aoy00/UhvlCiGyletkYuXKlbRr1w4HBweOHz9OamoqALGxsUyZMsXgAYpC7sRv6vwZGq1axVzE3dgR/aNMA3h7rzpwERo1zjkvwPmNxo5M5FVa0sPasMSHvYZGGzsiIUxarpOJL774gvnz5/PDDz9gY/NPH+tGjRpx/PhxgwYnCrmIUNj48JZGy8/Ar5Fx48mOrSO0mwxvbIXiFSAhAn7vAyvfhKQHxo5OPK+NH0Hk2Ye9hn4yfm2YECYu18nEhQsXaNq06WPrXV1diYmJMURMQqgDRC3vD+kp4N8GGpn4gGg+9eDtv6HRcLUWJeRPmFNfncNBmJcTS9W2MBot9PgJnEsaOyIhTF6ukwlPT08uX7782Pq9e/dSrlw5gwQlCjlFUe9VR11W58rotgC0ZjCNjI0DtJkIbwSDeyVIjIQ/XoPlAyHxvrGjEzlx96zaRgfUXkNlH//DSQjxuFx/Q7/55psMHz6cQ4cOodFouHPnDkuXLuXDDz/knXfeyY8YRWFzbBGErgCttTq1s1NxY0eUO6XrwJDd0HgkaKzgzCq1luLMGmNHJp4mNeFhbViy2tiyiRF7DQlhZnLdNXT06NHo9XpatWpFUlISTZs2xc7Ojg8//JD33nsvP2IUhUn4Kdj0sLFbq3HgW9+48TwvG3toPQ4qd4a1w9T778v7w5ku0OEr02pIKh72GhoJ9y+Cs5c6eZw51IYJYSJy/WnRaDR8+umnPHjwgNDQUA4ePMi9e/eYNGlSfsQnCpOUWHWkwYxUqNgeGlpAclqqFgzZBU1HqbUUZ9fCnHoQulL9AROm4fivcPoP9Rr1+BmcShg7IiHMynOn3ra2tlSpUoV69epRpEgRQ8YkCiNFgXXvQfQ1cPWFrnNBozF2VIZhbQctP4UhO6FkICQ/gBWD1PYU8XeNHZ2ICFF7b4Daa6hMQ+PGI4QZyvVtjhYtWqB5ypf8jh078hSQKKQO/6D+1a61Uad2dixm7IgMz6s6vLkD9s6CPTPh/Hq4sQ/az4DAnpaTPJmTlLh/asMqtIVGI4wdkRBmKdfJRI0aNbI81ul0nDx5ktDQUPr372+ouERhcvsYbPlEXW47SW3AaKmsbdUBkCp1hDVDIeI0rHoTzqyGTl8X3ORl4mGvoeHw4Aq4lDafXkNCmKBcJxNff/11tuvHjx9PQkJCngMShUxyNCwfAHqd2lix/tvGjqhgeAY+rKWYDbunw4WNai3Fi9Oh+itSS1EQjv6k9rTRWltubZgQBcRgafhrr73Gzz//bKjDicJAUdRZN2NuglsZeOn7wvUjamUDzT6Ct3aDVw21Aeqat9V5PuLuGDs6y3bnBGweoy63Hq8OOiaEeG4GSyYOHDiAvb29oQ4nCoODc+HCBrCyhV6/gIObsSMyjpJVYfB2tSuslS1c2qrO8XHiN+nxkR9SYtXasIw0COjwcG4VIURe5Po2R/fu3bM8VhSF8PBwjh49yueff26wwB65ffs2H3/8MZs2bSIpKQl/f38WLVpEnToWfF+9MAg7AsFj1eV2U8C7pnHjMTYra2gyUv1xWztUbUeydhiEroKXvgXX0saO0DIoivq6Rl8HNwvrNSSEEeU6mXB1dc3yWKvVEhAQwMSJE2nbtq3BAgOIjo6mUaNGtGjRgk2bNuHu7s6lS5coWrSoQc8jCljSg4ftJNKhaneoO9jYEZkOj0owaCscnAM7JsOV7WotRbsvoJY0cM6zQwvU+VK0NtBzMTjId4kQhpDrZGLRokX5EUe2pk+fjo+PT5Zzli1btsDOL/KBXg+r34a4W1CsPHT+Rv4y/C8ra3XCsIrt1b+ibx1Wex2cWQMdZhk7OvN16xhs/UxdbvsFlKpt3HiEsCC5TiYK0rp162jXrh09e/Zk9+7dlCpViqFDh/Lmm28+cZ/U1FRSU1MzH8fFxQFqF1adTmeQuB4dx1DHMwUFVSbtgW+xurQFxcqO9O4/gZUD5NM5zf46uZWFfn+hPbIA7a4paK7uxHpBY/w8e6JLa2Xs6AyiwK5RcjTWy/uj0evQV+pMRq1B8r7LoeikNGZvu8Spy1qiil6nfaAXJYrYGTusPLO06wT5U6acHkujKM9u4VW0aNGnDlT1bw8ePMjRdjnxqEHnyJEj6dmzJ0eOHGH48OHMnz//iWNajB8/ngkTJjy2ftmyZTg6OhosNpF7xRIu0OjSVLToOekzkBslWhg7JLPhlBJOzZs/UTzxIgD3ilTmpO9gkuxkjo9nUhTqXZuNV+wJEm092FVpIulW8l2QE6eiNPx5TUuC7p/vfw0K5V0UahRXqF5MwcXWiAGKfJeUlETfvn2JjY3FxcXlidvlKJn45ZdfcnxiQw5cZWtrS506ddi/f3/muvfff58jR45w4MCBbPfJrmbCx8eH+/fvP/WFyA2dTkdwcDBt2rTBxsbGIMc0tnwvU+J9rH9sjiYhAn21HmS8NC/fb29Y3HVS9CiHFqDdMQlrJQ3Fxgl9y7Hoaw8EjXkOtlQQ10h7cA5W28ehWNmS3n+TOhJpPrKE911UYhqT1p9nQ2gEAOXdHQmwjycsw42QO/GZ22k0ULdMUV6sWpJ2VUvi4Ww+NRaWcJ3+Kz/KFBcXR4kSJZ6ZTOToNoexRrb08vKiSpUqWdZVrlyZlStXPnEfOzs77Owef0Pb2NgY/A2TH8c0tnwpk14Pfw2DhAgoURFt52/Q2hbcnzOWdJ10L7zDrnB7WiasQnvzAFZbPsbq/F/Q5TsoVs7Y4T23fLtGNw/BjokAaF6cio1vwfUCM9f33YbT4YxdG0pUYhpWWg1vNyvHO03Lsn3rZjp0aEBEvI7NoRFsCAnnZFgMh69Hc/h6NJM2nqdumWJ0CPSkfaAXJV3MY6gAc71OT2PIMuX0OHlqM5GSkkJaWlqWdYb66x+gUaNGXLhwIcu6ixcvUqZMGYOdQxSAvV+pvRKsHaDnL2AnE8PlRaJdSTK6rkV78lcIHgc39sLchuqU5/XekiGhH0mMghUDQclQew3VecPYEZm0+wmpjF0bysYQtTYioKQzX/asTmBp1yz3zX2KOfJm03K82bQct2OS2RQSzoaQcE7cjOHw9Qccvv6ACevPUtu3KB0CvWgf6ImXq4OxiiUKSK6TicTERD7++GP+/PNPoqKiHns+IyPDIIEBfPDBBzRs2JApU6bQq1cvDh8+zMKFC1m4cKHBziHy2bU9sHOKutzxKyhZ5enbi5zRaKHem1ChDax9F67/DZtHq5OldZkDxcsbO0Lj0uth9VsQdxuK+6tjdUivoWwpisJfp8MZtzaU6CQd1loNQ5uX592WFbC1fnpiWsrNgcFNyjG4STnuxCSzKTSCjSHhHLsRzdGH/yauP0vtMg8Ti2qeeLtJYmGJcp1MjBo1ip07dzJv3jz69evHnDlzuH37NgsWLGDatGkGDa5u3bqsXr2aMWPGMHHiRMqWLcvs2bN59dVXDXoekU8SImHlYFD0UONVqCnXzeCK+sHr6+DYInUQsJsHYF5DaPk5vPAOaK2MHaFx7JsNl4PB2v5hbZizsSMySZHxKXy2OpStZ+8CUNnLhZk9gqhWyvUZez7O282BNxqX5Y3GZQmPTWZTSASbQsM5eiOaYw//TVp/lpq+bnQM9KJ9oBelJLGwGLlOJv766y9+/fVXmjdvzsCBA2nSpAn+/v6UKVOGpUuXGvyHvlOnTnTq1MmgxxQFQJ8BK9+AhLvgXhk6fGnsiCyXVgt131BrKda9B1d3wdZP/6mlcK9o7AgL1vV9sGOSutx+BnhWM248JkhRFNaevMO4dWeITVZrI95rWYF3mpd/Zm1ETni5OjCocVkGNS7L3bgUNoWEszEkgiM3HnDiZgwnbsbwxYZzVPdxo2OgJ+2reeFTTHrYmLNcJxMPHjygXDm1oZeLi0tmV9DGjRvzzjvvGDY6Yb52z1Bvcdg4qfNu2MoXRb5z84V+a+D4r7DlU3Wwq/mNoeWn6vwThaGWIuEerBik1oYF9YZarxs7IpNzNy6FT1eHsO1cJABVvV2Y2aM6VbwN197t30q62DOgUVkGNCpLZFwKm89EsOF0OIevP+BUWAynwmKYsvE81Uu70iHQiw6BkliYo1wnE+XKlePatWv4+vpSqVIl/vzzT+rVq8dff/2Fm5tbPoQozM6VHeq02gCdZ4N7gFHDKVQ0GqjdH8q3VEfNvLJdvf1xdi10masO122p9Bmw6s2HvYYCoOMsaSfxL4qisPL4bSb+dYa4lHRsrDQMb1WBt5qVx8aqYBrterjY83oDP15v4EdkfApbQiPYGBLBoWtRnLoVy6lbsUzddJ7AUmpi0THQC9/ikliYg1wnEwMHDuTUqVM0a9aM0aNH07lzZ77//nt0Oh2zZslQv4VeXDisfBNQ1LkkgnoZO6LCyc0HXlsJJ5fC5k/UicMWNIHmo6HhcHXIbkvz91dwdSfYOKq1YdJrKFN4bDKfrAph54V7AASVdmVmj+oEeBqvLYmHsz39GvjRr4Ef9+JT2XJGbbx58GoUIbdjCbkdy/TN56nq7ZKZWPiVcDJavOLpcv2N8sEHH2Qut27dmvPnz3Ps2DH8/f0JCgoyaHDCzGSkq+0kku5DyUBoP93YERVuGg3UfO1hLcUIuLQFtk9UJ7rqMteyetZc3Z2115BHZePGYyIURWH50VtMWn+W+NR0bK20jGhTgSFNymFdQLUROeHubMdrL5ThtRfKEJWQypYzd9kYEs6Bq1GcuRPHmTtxzNxygSpeLnQMUnuFlHOXZNGU5DqZCAsLw8fHJ/NxmTJlZNwHodo1BW7sA1tndUZGG2mpbRJcvKHvH3Dqd9j8Mdw5AQuaQrOPofEIsDLzAXvi76q9hlCgxmtQo6+xIzIJt2OSGbMqhD0X1dqIGj5uzOwRRIWSpt2zpXgRO/rW96VvfV8eJKZl1ljsvxLF2fA4zoariUUlT2c6BnrRIciL8pJYGF2ukwk/Pz8aN27Ma6+9Ro8ePWQ6cKG6FKxWM4Pap7+Ev3HjEVlpNFCjD5RrDhtGwoWNsPMLOLcOus4Fz0BjR/h8HvUaSowEjyrQYaaxIzI6RVH4/UgYkzecIyE1HVtrLR+2rcgbjcthpTWvNiTFnGzpU8+XPvV8iU5MY+vZCDaERLD/8n3OR8RzPiKer4IvElDSWb0VEuSJv4dpJ0uWKtf1XEePHqVevXpMnDgRLy8vunbtyooVK7LMhyEKmdhbsGqIulx3MFTrbtx4xJO5eMEry6D7j+BQFCJOw8LmsGsapKc9c3eTs2uaOmCXjZM6nkQh7zUU9iCJfj8dZsyqEBJS06nl68bG95swpGl5s0sk/quoky296/ry66B6HP2sNTN6BNE8wB1rrYYLd+P5ettFWs/aQ9uvdzN720Uu3o1/9kGFweS6ZqJmzZrUrFmTGTNmsGvXLpYtW8aQIUPQ6/V0796dn3/+OT/iFKYqQ6d2xUt+oE6g1G6KsSMSz6LRQFBPKNtUraU4vx52TVXbUnSdm+8TYRnM5e2w52FNROdvCt94Gv+i1yssPXyTaRvPkZiWgZ21lo/aBTCwUVmzTyKy4+ZoS686PvSq40Nsko6tZyPYFBrB35fucfFuAhfvXmL2tkv4exTJbLxZsWSRHM9+LXLvuVvgaDQaWrRowQ8//MC2bdsoW7ZsrmYXFRZi+0QIOwR2rupfhtbmM2tgoedcEnr/Bj1+BsficDcUFraAHV9AuonXNMbdUbuBokDtAWpyVEjdjEri1R8P8fmaUBLTMqjrV5TNI5oyuIn53dZ4Hq6ONvSs48PPA+py9LM2fNWzOq0qeWBrpeVyZALfbr9Eu9l7aD1rN19tvcC58DhyMFm2yKXn7h9269Ytli1bxrJlywgNDaVBgwbMmTPHkLEJU3dhE+z/Vl3uOgeKlTVuPCL3NBqo9jL4NYWNH8LZNepf++c3qKNnlqpl7Agfl5EOK96ApCi1rceLhbPXkF6vsOTgDaZtOk+yLgMHGytGvRhA/wZ+aAtBEpEdVwcbXq5dmpdrlyYuRcf2c3fZcDqCPRfvceVeIt/tuMx3Oy5TroQT7ap6UCQRSSwMJNfJxIIFC1i2bBn79u2jUqVKvPrqq6xdu1Z6dBQ2MTdh9dvqcv13oHJn48Yj8qaIuzo2w5k1sOH/IPIs/NgaGg1Xx6YwpRqnnV/Azf0Pew39AjbmMdW1IV2/n8iolac5fE0dgbh+2WLM6BFEmeIyDsMjLvY2dKtZmm41SxOfomP7uUg2hoSz6+I9rt5PZN7ua4A1f97aR8cgdeTNqt4ucivkOeU6mfjiiy/o06cP3377LdWrm8m9VWFY6WmwfACkxECp2tBmorEjEoZStSv4NYFNH0HoStg7S+350WUulK5t7Ojg4hbY+7W63OW7Qjc7ql6vsHj/dWZsOU+KTo+jrRVj2lfi1fplCm1tRE4429vQtWYputYsRUJqOtvP3WX9qTvsOn+XGw+SmLvrCnN3XaFMcUfaV1PbWFQrJYlFbuQ6mbh582bmC7xv3z7q1KmDnZ0J/dUi8t+2ceqIivZu0GMRWNsaOyJhSE7F1XYUVbvB+pFw7zz81BoavgfNPzFeTUBMmDqtOEDdN9X4CpGr9xIYteI0R29EA9CwfHGmvxwk81jkUhE7a7rUKEWHqh6s/msjtn612HI2kp0XIrkRlcT83VeYv/sKvsUcaR/oSYdqXgSVdpXE4hlynUz8+wVt3749J0+ezJz4SxQC5/6Cg3PV5W7zoajc3rJYlTtDmUaweTSc/gP2faO2k+kyB3zqFWwsmb2GosGrBrSbXLDnN6IMvcLPe6/x5dYLpKbrcbK14pOOlelbz1d+4PLIzgo6BHrStZYPianp7LwQyaaQCHacj+TmgyQW7L7Kgt1XKV3UIXMSsuqSWGQrTwP0S8OVQubBNVgzTF1u+B4EtDduPCL/ORaD7guhSldY/wHcvwg/tYUGw6DlZwU3yum28eosqHauatsOU2rDkY8uRybw0YpTnLgZA0CTCiWY2j2Q0kWlNsLQnOys6RTkTacgb5LS0tl14R4bQsLZcS6SW9HJLNxzlYV7rlLKzYH21TzpEORFTR83SSwessDZfkS+SE9V20mkxoJPfWg1ztgRiYJUqQOUaaBOGnZqGRz4/p9aijIN8vfc5zeo5wO111BRv/w9nwlIz9Dz495rzAq+SFq6niJ21nzWsTK96/rIj1cBcLS1zqyJSE7LYPfFSDaERLD93F1uxyTz495r/Lj3Gt6u9rQP9KJDoCc1fYoW6nYruU4m+vfvzxtvvEHTpk1ZsGABJUuWzI+4hKnZ8imEnwSHYur9dHOfz0HknkNR6DZPbaT51wh4cAUWtYf6b0Orz8E2H3oSRF+HNe+oyy8MLRS9hi7ejeej5ac4dSsWgGYV3ZnaPRBvN5nrxhgcbK14sZoXL1bzIkWXwa4L99gUGs62s3e5E5vCT3uv8dPea3i52vNiNU86BnpRy7fwJRa5TiZiY2Np3bo1ZcqUYcCAAcTExODkJN2RLFroKjjyg7rcfSG4ljZuPMK4KraDoQdg66dw4jc4NA8ublZrKfwaGe486WmwfCCkxEKpOtB6guGObYLSM/Qs2HOVb7ZdIi1Dj7O9NWM7VaFH7dJSG2Ei7G2seLGaJy9W8yRFl8Gei/fYGBLOtnORhMemsGjfdRbtu05JFzvaV1NrNuqUKRyJRa6TiTVr1nDv3j2WLFnCL7/8wvjx42ndujVvvPEGXbp0wcZG/mK1KFFXYN376nLjkVChjXHjEabBwU1NHqp0g7/eh+hrsLgD1Bui3gKzM8AsjsGfw53jaq+hnpbda+h8RBwfLT9NyG21NqJlJQ+mdAvE07XwjaFhLuxtrGhb1ZO2VdXEYu+l+2wMCSf47F3uxqWyeP91Fu+/joezndrGItCLOn7FLHZU0ucaTtvd3Z2RI0dy6tQpDh06hL+/P/369cPb25sPPviAS5cuGTpOYQy6ZPizP6TFq636W3xq7IiEqanQGoYeVIe0Bji8EOY1hGt78nbcM2vg0Hx1udsCcPPN2/FMlC5Dz7fbL9H5u72E3I7Fxd6aWb2q81P/OpJImBF7GytaVynJrN41OPp5a37qX4futUrhbG9NZHwqvxy4Qe+FB3lh6nY+XxPKgStRZOgtqwNDnhpghoeHExwcTHBwMFZWVnTo0IGQkBCqVKnCjBkz+OCDDwwVpzCGzaPhbgg4loCXfwIraa8rsmHvok60VaWLWosVcwN+6Qx13oA2E8Aul1NCP7gK695Tlxu+DwEvGj5mE3D2ThwfrTjFmTtxALSuXJIp3arh4SJJhDmzs7aiVeWStKpckrR0Pfsu32dDSDhbz0RwLz6VJQdvsOTgDUoUsaVdVbWNRb2yxbC2eu6pskxCrn8ddDod69atY9GiRWzdupWgoCBGjBhB3759cXFxAWD16tUMGjRIkglzdvpPOLYY0MDLP6pTVwvxNOVbqm0pgsfB0Z/Uf5eC4aVvoXyLnB1Dl6LWhqXGPew1NDZ/YzaCtHQ9c3ZeZs7Oy6TrFdwcbZjwUlVequ4tbSMsjK21lhaVPGhRyYO0boHsv6LeCtly5i73E9JYeugmSw/dpLiTLe0eNt6sb6aJRa6TCS8vL/R6PX369OHw4cPUqFHjsW1atGiBm5ubAcITRnHvotpaH6DZqJz/EAhh5wydZj2spXhPraVY0hVq9Ye2X6i1GE+z5ROIOP2w19Aii+s1FHo7lg+Xn+J8RDwAL1b1ZGLXqng4S22EpbO11tI8wIPmAR5M7qZn/5UoNp4OZ8vZCKIS01h26CbLDt2kmJMt7aqWpEOgFw3KFTebxCLXycTXX39Nz549sbd/8pvfzc2Na9eu5SkwYSS6JFjeH3SJULYpNPvY2BEJc1SuGbyzH7ZPUNtRHP8FLm+Hl74B/9bZ7xOyQq3NAOj+A7iWKrh481lqegbf77jM3F1XyNArFHOyZWKXqnQM9JLaiELIxkpLs4ruNKvozhcZ1Th4NSqzxuJBYhr/OxzG/w6HUdTRhrZV1AGyGpYvjo0JJxa5jqxfv35PTSTy07Rp09BoNIwYMcIo5y8MrDaPVmeMLFISuv8IWitjhyTMlV0R6DATBmyAomUh7hb89jKsHQbJMVm3jboEfw1Xl5v8n9qw00KcvhXDS9/t47sdl8nQK3QM9GLrB03pFCS3NYSaWDSp4M7U7kEc/qQVSwfXp299X4o72RKdpOOPo2H0//kwdSdvY9SKU+y6EElaut7YYT/GbFrUHTlyhAULFhAUFGTsUCyWT9TfaG8uA41WbXDpLAOSCQPwawzv7IPtk9QeGid+g8s71EabZVug1adhvWowpCVAmcbqZGIWIFWXwdfbr7Bgz1Uy9ArFnWyZ1LUaHQKl/ZHInrWVlkb+JWjkX4KJL1Xl8LUHbAgJZ8uZCO4npPHn0Vv8efQWrg42tKlSko6BXjTyL4GttfFrLMwimUhISODVV1/lhx9+4IsvvjB2OJYp8hxBYb+oy80/gbJNjBuPsCy2TtB+mtqWYu0wdfTMZT2xCuxNjVu30ESfASd3tbGvBfQauh4PXeYd5Mq9RAA6V/dmwktVKeZkuWNlCMOyttLS0L8EDf1LMLFLNQ5fe8DGkHA2hUZwPyGVFcduseLYLZztrTMTi/p+bsaL12hnzoVhw4bRsWNHWrdu/cxkIjU1ldTU1MzHcXFqtyudTodOpzNIPI+OY6jjGV1aAlYrB6JV0sjwa4a+wftg5mU7diOaBXuukRStxfZsBE0rephE9p5XZv/e864Dg3ei3T0N7aF5aEP+wAdQ0JDRZQGKQwmzfu+l6DL4Ovgii0KtUEikRBFbJnSuTNsqai2fuV43s3/fZcPcylTH14U6vi582r4ix25Gszn0LlvORhIZn8qq47dZdfw2znbWVHbR0jI1zWDnzenro1FMfOrP33//ncmTJ3PkyBHs7e1p3rw5NWrUYPbs2dluP378eCZMeHzY3WXLluHoKDPtPUZRqHVjAT7R+0m2KcqugEmk2Tyjxb0JS8uA9WFa9oRrUPjnfrSDlUJgMYUaxRUCXBUsIK8we0UTL1Hzxo84p4ZzzrM7F726GjukPLkWD8suWxGZor7v6pTQ091Pj5NldUgRJkSvqO+7k1FaTkVpiNVp8Cui8EFghsHOkZSURN++fYmNjc0c/iE7Jp1MhIWFUadOHYKDgzPbSjwrmciuZsLHx4f79+8/9YXIDZ1OR3BwMG3atDH74cM1J5ZgvfEDFI0Ve/1HU7vbu2ZbpsPXHzBm9RluPkgGoGt1T6Ii7nAu0Z77Cf9k6s721rQKcOfFaiVp7F8COzPKLCzpvQegS07gwKb/0aDzALMtT3JaBrO3X2bRgRsoCrgXsaVrqWQ+6N3abMv0X5b2vgPLK5Ner3Dk2n0OHj7K0B6Ge+/FxcVRokSJZyYTJn2b49ixY0RGRlKrVq3MdRkZGezZs4fvv/+e1NRUrKyy9jaws7PDzs7usWPZ2NgY/A2TH8csUBEhsGU0APrmn/Igxt8sy5SYms6Mzef55cANALxc7ZnaPZBG5YqyceMt2r3YjNN3EtgYEs7GkHAi41NZcyqcNafCcbazpnUVtU93kwolsLcxj94r5nidsleEBPtSZlueI9cfMGrFaa7dV9tGvFyrNGNerMC+ncFmW6ankTKZtvrl3Ym6oBi0TDk9jkknE61atSIkJCTLuoEDB1KpUiU+/vjjxxIJkQspcepIgxmpUKEt+gbvwqbNxo4q1/Zfuc/HK08T9rA24pW6PnzSsTIu9jaZ9/qstBrqlS1GvbLFGNupCsduRrPhdDibQyOIiEth9YnbrD5xmyJ21rSq7EGHQC+aVXQ3m8RCFLyktHRmbrnA4v3XURTwdFET2BaVPMzmHrwQhmTSyYSzszPVqlXLss7JyYnixYs/tl7kgqKoffofXAGX0upEShrzqeoHSEhNZ9qmc/x28CYApdwcmNo9kKYV3Z+6n1aroa5fMer6qYnFibBoNpyOYFNoOOGxKaw9eYe1J+/gZKuOr98h0JPmAR6SWIhMB69GMWrFaW4+SAKgV53SfNqxCq4OlvHXrRDPw6STCZFPjv4EZ1aB1hp6LgbHYmbVgn7vJbU24naMWhvxan1fRrevhLN97r7MtVoNtcsUo3aZYnzWsTInwmLY9LDr1e2YZNadusO6U3dwtLWiZSUPOgZ60TzAAwdbSSwKo8TUdKZvPs+v/7qdNu3lIJo9I4EVojAwu2Ri165dxg7BvN05AZvHqMutJ4BPXePGkwvxKTqmbDzP/w6rtRGlizow4+UgGvqXyPOx1cSiKLXLFOXTjpU5GRbzsI2FmlisPx3O+tPhONioiUWHQC9aVHLH0dbsPkLiOey/fJ9RK09zK1pNYPvU8+WTDrlPYIWwVPJNWJikxMLyAZCRBgEdocEwY0eUY7sv3mPMytPciU0B4PUGZfj4xUo42Rn+LazRaKjpW5SavkX5pENlTt+KZWNIOBtCwrkVncyGh8v2NlpaBKiJRctKHvkSizCuhNR0pm48x9JD/9xOm/5yEI0r5D2BFcKSyLdfYaEo6siD0dfBzRe6zgEzmBcgLkXH5PXn+ONoGAC+xRyZ/nIQDcoXL5DzazQaqvu4Ud3HjdHtKxFyO5aNIRFsDAnn5oMkNoVGsCk0AjtrNbFoH+hJq8olKSKJhdn77+20117wZXT7ynJthciGfCoKi0ML4NxfoLVR20k4FDV2RM+083wkY1aFEBGXgkYD/Rv4MerFAKPdWtBoNASVdiOotBsfvxjAmTtxbHjY3fRGVBKbz0Sw+YyaWDSr6E7HILXGQqrCzUtcio6pG8/xv8NqAutTTK2NaFheaiOEeBJJJgqDW8dg62fqcrvJUKq2ceN5htgkHRPXn2Xl8VsA+BV3ZEaP6tQrW8zIkf1Do9FQrZQr1Uq5MqpdAGfD4zLbWFy7n8jWs3fZevYuttZamlZwp2OQWmPhIomFSdt1QU1gwx/eThvQ0I+P2gXILSwhnkE+IZYu6YHaTkKvUydZqjfE2BE91bazd/lkdQiR8aloNPBGo7L8X9sAk+5BodFoqOrtSlVvVz5sG8C58Hg2hartKq7eS2TbubtsO3cXWystTSuWoH01L1pXKSldCU1IbLKOL9afZfkxNYEtU9yRGS8HUb9cwdxOE8LcSTJhyR61k4i9CUXLwkvfmWw7iZikNCb8dZbVJ24DUK6EEzN7BlG7jOnURuSERqOhircLVbxdGNmmIhfuxrPxtJpYXLmXyLZzkWw7F4mNlYYmFdzpEOhFG0ksjGrH+buMWRXC3Tg1gR3YsCwftTPtBFYIUyPJhCU78D1c2AhWdtDrF7B3NXZE2dpyJoJPV4dyPyEVrQbebFKOD9pUNPuBojQaDZU8Xajk6cLItgFcvBvPhtNqG4tLkQnsOB/JjvNqYtHIvwQdAr1oW6Ukbo4yTXVBiE3SMWH9GVYdVxPYsiWcmNkjiDp+5pXACmEKJJmwVDcPQfA4dfnFqeBV3bjxZONBYhrj151h3ak7APh7FGFmjyBq+pp+49DnUbGkMxXbOPNBm4pcuhuf2Svkwt14dl24x64L9/hE+yix8KRtFU+KOklikR+Cz97l03/dThvcWL2dZu4JrBDGIsmEJUqMghUDQcmAai9DnUHGjugxG0PCGbs2lPsJaWg18Faz8gxvVaHQfJlXKOnM8JLODG9dgcuR/0xCdj4int0X77H74j0+XR1Kg/LF6RjoRduqnhSTxCLPohPTmPDXGdacVBPY8u5OzOhRndplLDOBFaKgSDJhafR6WP0WxN2G4v7Q+RuTaidxPyGVcWvPsCEkHICKJYsws0d1qvu4GTcwI/L3KML7rSrwfqsKXLmXwKaQcDaERHAuPI6/L93n70v3+XRNKA3KFaddFQ+05jPyuUnZHBrBZ2v+uZ02pGl5RrQuPAmsEPlJkglLs282XA4Ga3vo+QvYORs7IgAURWH96XDGrTvDg8Q0rLQahjYvz7st/bGzli/zR8q7F+HdlhV4t2UFrt1PzKyxOHMnjr2X77P38n20WLHhwVE6BHnzYjVPShSxM3bYJi0qIZVx686w/rSawFbwKMLMntWpUYgTWCEMTZIJS3J9H+yYpC53mAmepjGz6r34VD5fE8rmMxEAVPJ05sue1alWyjQbhJqKsiWcGNbCn2Et/Ll+P5GNoeFsOH2HM3fi2X/1AfuvPmDs2lDqly1OhyAvXqzqibuzJBb/tjEknM/XhBL1MIF9u1k53m9VQRJYIQxMkglLkXAPVgwCRQ9Br0DNfsaOCEVRWHfqDuPWnSEmSYe1VpP542hrbV5TnhubXwknhjb3581GZfh11UZS3Cuz5Wwkp2/FcuBqFAeuRjF2bSj1/IrRMciLF6t54uFsb+ywjeZ+Qipj14ayMURNYANKqglsYGlJYIXID5JMWAJ9Bqx6ExIiwL0SdJpl9HYSkXEpfLomlOCzdwGo4uXCzJ5BVPWWL/O8KmEPHZqUZVjLioQ9SHo4QFYEp8JiOHTtAYeuPWDcujPU9StGh2qetA/0oqRL4UgsHt1OG7s2lOiHCax6O62CJLBC5CNJJizB31/B1Z1g46i2k7B1MlooiqKw+sRtJvx1lthkHTZWGt5rWYF3mpfHxkq+zA3Np5gjQ5qWZ0jT8tyKTmJTSAQbQsI5GRbD4WsPOHztARPWn6VOmaJ0CPSifTUvPF0tM7GIjE/h8zWhbDmjJrCVvVyY2SNIbqcJUQAkmTB3V3fDrqnqcsdZ4FHJaKFExKbwyeoQdpyPBKBaKRe+7FmdSp4uRoupMCld1JE3m5bjzabluB2TzKaHjTeP34zhyPVojlyPZsJfZ6n9MLHoEOiJl6uDscPOM0VRWHvyDuP/+ud22qMEVmojhCgYkkyYs/i7sHKw2k6i5mtQo49RwlAUheXHbjFp/VniU9KxtdIyvHUFhjQtJ7URRlLKzYHBTcoxuEk57sQkszlUHSDr6I1ojj38N2n9WWr5uqk1FoFelHIzv8QiMi6FT1aHsu2cWhtR1duFmT2qU8VbElghCpIkE+ZKnwEr34DESPCoCu1nGiWMOzHJjFkVwu6L9wCoXtqVmT2rU7GkaXRJFeDt5sCgxmUZ1LgsEbEpbAoNz0wsjt+M4fjNGL7YcI4aPm50DPSifaAnpYs6Gjvsp1IUhVXHbzPhrzPEpaRjY6VheKsKvNVMbqcJYQySTJirXdPg+t9gW0Sdd8O2YL/8FUXhjyNhTN5wjvjUdGyttYxsU5HBjctiLV/mJsvT1Z6BjcoysFFZ7salsDlUbWNx5PoDTobFcDIshskbz1G9tOvDWyFe+BQzrcQiIjaFMatOs/OCmsAGlXZlZo/qBHhKAiuEsUgyYY4ub4c9D2siOn8DJSoU6OlvxyQzeuVp/r50H4Cavm7M7FEdf48iBRqHyJuSLvb0b+hH/4Z+RMalsPlMBBtOh3P4+gNO3Yrl1K1Ypm46T9CjxKKaF77FjZdYZHc7bUSbCgxpUk4SWCGMTJIJcxN3R+0GigK1B0JgjwI7taIoLDt8kykbzpGYloGdtZYP2wYwqHFZrLSmM2S3yD0PF3teb+DH6w38iIxPYcuZu2w8Hc6ha1GcvhXL6VuxTNt0nmqlXOgQ6EXHQC/KFC+4XkN3YpIZvSqEPQ9vp9XwcWNmjyAqyO00IUyCJBPmJCMdVrwBSVHgGQgvTiuwU4c9SOLjlafZfyUKgDplijKjRxDl3KU2wtJ4ONvT74Uy9HuhDPfiU9lyJoJNoeEcuBJF6O04Qm/HMWPzBap4udAxSL0VUrZE/iQWiqLw+8PbaQkPb6d92LYibzQuJwmsECZEkglzsvMLuLkfbJ3V8SRs8n+8AL1e4bdDN5i26TxJaRnY22j5qF0lBjT0ky/zQsDd2Y7XXijDay+UISohVa2xCAnnwNUozobHcTY8jplbLlDZy4WOgeoAWeUNlGDeik5izKqQzNtptXzdmCG304QwSZJMmIuLW2Hv1+pyl++hePl8P+WNqERGrTjNoWsPAKjnV4wZPYLwy6e/QoVpK17Ejr71felb35cHiWlsPaM23tx/JYpz4XGcC4/jy60XqeTpnNl483l++PV69Xba1I3/3E77qF0AAxvJ7TQhTJVJJxNTp05l1apVnD9/HgcHBxo2bMj06dMJCAgwdmgFKyYMVg9Rl+sNgapd8/V0er3CLweuM2PzBZJ1GTjYWDG6fSX6vVAGrXyZC6CYky2v1PPllXq+RCemsfVsBBtDIth3+T7nI+I5HxHPrOCLVCxZJLONRU7aN4Q9SGLUitMcuKreTqvrV5QZParn220UIYRhmHQysXv3boYNG0bdunVJT0/nk08+oW3btpw9exYnp0Ly5ZKhUyfwSo4G75rQ9ot8Pd31qEQ+XXOOw9fV2ogXyhVjxsvVjdqKX5i2ok629K7rS++6vsQkpbH1rHorZN/l+1y8m8DFu5eYve0SFTyKZNZYVCxZBM2/5o/R6xV+PXA983aag40Vo14MoH8DP0lghTADJp1MbN68OcvjxYsX4+HhwbFjx2jatKmRoipg28bDrcNg7wo9F4N1/kwxnaFX2HlHw8dzDpCi0+Nka8XoDpV5tZ6vfJmLHHNztKVXHR961fEhNklH8Dk1sfj70j0uRSbwzfZLfLP9EuXdnegY6EXbyu7cT4F+i45y+Ho0APXLqrfTCrK3iBAib0w6mfiv2NhYAIoVK/bEbVJTU0lNTc18HBcXB4BOp0On0xkkjkfHMdTxnkRzYSPWB74HIL3TdyhFSkE+nPPqvUQ+XhXCyVtWgJ6G5YoxuWtVShd1ICMjnYwMg5+yQBTUdSpI5lQmRxvoElSSLkEliUvWsf38PTafucvfl+9z5V4i3+64zLc7LqPBCoVoHG2tGNW2An3q+qDVasyijNkxp2uUU1Im85AfZcrpsTSKoigGO2s+0uv1vPTSS8TExLB3794nbjd+/HgmTJjw2Pply5bh6Gg+VfWOqfdoduFzbDOSuOzejjOlXzX4OfQK7LyjYVOYFp2iwc5KoWsZPQ08FGPPYC4sWHI6hEZrOBml4XyMhnRFQwUXPX3K6ylumROaCmG2kpKS6Nu3L7Gxsbi4PHnOG7NJJt555x02bdrE3r17KV269BO3y65mwsfHh/v37z/1hcgNnU5HcHAwbdq0wcbGxiDHzCIjDatfOqINP4G+VB0y+q0DK1uDnuJyZAKjV5/h1C21tqdRuaK0drtH7075VCYjyPfrZASWVqbohGTWbNnJq51bY2tr2Pe4sVjaNQIpk7nIjzLFxcVRokSJZyYTZnGb491332X9+vXs2bPnqYkEgJ2dHXZ2j7crsLGxMfgbJj+OCcC2zyD8BDgURdtzMVp7w907Ts/Qs/Dvq8zedom0dD3OdtZ83qkKXauXZNOmTflXJiOSMpmuokWgpAPY2tpaRHn+zVKu0b9JmcyDIcuU0+OYdDKhKArvvfceq1evZteuXZQtW9bYIeW/s2vh0Hx1udsCcPMx2KEvRMTz0YpTnH5YG9EiwJ0p3QPxcnWwqPuGQgghCpZJJxPDhg1j2bJlrF27FmdnZyIiIgBwdXXFwcHByNHlgwdXYe276nKj4VCxnUEOq8vQs2D3Fb7ZfgldhoKLvTVjO1fl5VqlsnTPE0IIIZ6HSScT8+bNA6B58+ZZ1i9atIgBAwYUfED5SZcCf/aH1DjwbQAtPzfIYc+Fx/Hh8lOcuaP2amld2YPJ3QIp6SIt3YQQQhiGSScTZtI21DC2fAIRp8GxOPT4Gazydr8rLV3P3F2XmbPzMroMBVcHGya8VJUuNbylNkIIIYRBmXQyUWiErICjPwEa6L4QXLzzdLgzd2L5cPlpzoWrtRFtq5Tki27V8HCW2gghhBCGJ8mEsd2/BH8NV5eb/B/4t37uQ6Wl6/l+xyXm7rpCul6hqKMNE7pUo3OQl9RGCCGEyDeSTBiTLhmWD4C0BPBrAs3HPPehQm7F8tGKU5yPiAegQ6AnE16qhrtz/gy/LYQQQjwiyYQxbRoFd0PByQNe/hGscn85UtMz+Hb7JebvvkqGXqG4ky0Tu1SjY5BXPgQshBBCPE6SCWM59Tsc/xXQwMs/gLNn7g8RFsOHy09xKTIBgE5BXkx4qSrFi0hthBBCiIIjyYQxRJ6H9R+oy81HQ7nmudo9RZfB7G2XWLjnCnoFShSx5Yuu1XixmtRGCCGEKHiSTBS0tERY3h90SWoS0fSjXO1+/GY0Hy0/xZV7iQB0qeHN+M5VKepkGfMaCCGEMD+STBS0DR/CvfNQxBO6/whaqxztlqLL4KutF/hp7zX0Crg72zG5azXaVs397REhhBDCkCSZKEgnfoNTy0CjhR4/QRH3HO129PoDRq04zdX7am1E91qlGNupCm6OUhshhBDC+CSZKCh3z8CG/1OXW3wKfo2fuUtyWgYzt1xg0f5rKAqUdLFjavdAWlYqmc/BCiGEEDknyURBSI1X591IT1EHpWo88pm7HLoaxaiVp7kRlQRAz9ql+axTFVwdLGuqXCGEEOZPkon8pihqz42oS+BSCrotBK32iZsnpaUzY/MFFu+/DoCXqz1TuwfSPMCjgAIWQgghckeSifx2bDGELAeNlTqBl1PxJ266/8p9Pl55mrAHyQC8UteHTzpWxsVeaiOEEEKYLkkm8lP4Kdj0sbrcehz4vpDtZgmp6UzbdI7fDt4EoJSbA1O7B9K0Ys4aaAohhBDGJMlEfkmJU+fdyEiFiu2hwXvZbrbv8n1GrTjN7Ri1NuLV+r6Mbl8JZ6mNEEIIYSYkmcgPigLr3oMHV8HVF7rOfaydRHyKjikbz/O/w2ptROmiDsx4OYiG/iWMEbEQQgjx3CSZyA9HfoSza0BrAz0XgWOxLE/vuXiP0StPcyc2BYDXG5Th4xcr4WQnl0MIIYT5kV8vQ7t9HDY/nEq8zUQoXSfzqbgUHZPXn+OPo2EA+BZzZPrLQTQo/+RGmUIIIYSpk2TCkJJj1HYSeh1U6gQvvJP51M7zkYxZFUJEXAoaDfRv4MeoFwNwtJVLIIQQwrzJL5mhKAqsHQYxN8CtDHSZAxoNsUk6Jq4/y8rjtwDwK+7IjB7VqVe22DMOKIQQQpgHSSYM5eA8OL8erGyh1y/g4Ma2s3f5ZHUIkfGpaDTwRqOy/F/bABxscza5lxBCCGEOJJkwhLAjEPy5utxuCjFuVZnwx0lWn7gNQLkSTszsGUTtMlIbIYQQwvJIMpFXSQ9gxUDQp0PVbmxx7MSns/ZwPyEVrQbebFKOD9pUxN5GaiOEEEJYJkkm8kLRw5p3IDaMjKLlGJM6mD9/Ow6Av0cRZvYIoqZvUSMHKYQQQuSvJ884ZULmzJmDn58f9vb21K9fn8OHDxs7JAC0B+fAxc1kaG3pF/cOf4bGotXAO83Ls/69xpJICCGEKBRMPpn4448/GDlyJOPGjeP48eNUr16ddu3aERkZadS4iiVcRLvzCwA+S+3H/sRSVCxZhNVDG/Hxi5XktoYQQohCw+STiVmzZvHmm28ycOBAqlSpwvz583F0dOTnn382WkxKwj2qX52DRslgdUYj/lRa8V5Lf/56rzHVfdyMFpcQQghhDCbdZiItLY1jx44xZsyYzHVarZbWrVtz4MCBbPdJTU0lNTU183FcXBwAOp0OnU6X55iiElK4v7Af1TKiuaz35pei77Py5bpU9XYBRY9Op8/zOYzh0WtjiNfIVEiZTJ+llQekTOZCypS7Yz6LRlEUxWBnNbA7d+5QqlQp9u/fT4MGDTLXjxo1it27d3Po0KHH9hk/fjwTJkx4bP2yZctwdHTMc0yauJu0vjwJDQozi06gaplSWJt8/Y4QQgiRe0lJSfTt25fY2FhcXFyeuJ1J10w8jzFjxjBy5MjMx3Fxcfj4+NC2bdunvhC5ceBANRLO7eDDfgOwsbGMqcJ1Oh3BwcG0adNGymTCLK1MllYekDKZCylTzjyq3X8Wk04mSpQogZWVFXfv3s2y/u7du3h6ema7j52dHXZ2do+tt7GxMdiL26BBYzZGxxn0mKZCymQeLK1MllYekDKZCynTs4+VEyZdQW9ra0vt2rXZvn175jq9Xs/27duz3PYQQgghhPGYdM0EwMiRI+nfvz916tShXr16zJ49m8TERAYOHGjs0IQQQgiBGSQTvXv35t69e4wdO5aIiAhq1KjB5s2bKVmypLFDE0IIIQRmkEwAvPvuu7z77rvGDkMIIYQQ2TDpNhNCCCGEMH2STAghhBAiTySZEEIIIUSemEWbibx4NMBnTgfeyAmdTkdSUhJxcXEW0z9ZymQeLK1MllYekDKZCylTzjz67XzWYNkWn0zEx8cD4OPjY+RIhBBCCPMUHx+Pq6vrE5836bk5DEGv13Pnzh2cnZ3RaDQGOeajIbrDwsIMNkS3sUmZzIOllcnSygNSJnMhZcoZRVGIj4/H29sbrfbJLSMsvmZCq9VSunTpfDm2i4uLxbwJH5EymQdLK5OllQekTOZCyvRsT6uReEQaYAohhBAiTySZEEIIIUSeSDLxHOzs7Bg3bly2s5OaKymTebC0MllaeUDKZC6kTIZl8Q0whRBCCJG/pGZCCCGEEHkiyYQQQggh8kSSCSGEEELkiSQTQgghhMgTSSaeYM6cOfj5+WFvb0/9+vU5fPjwU7dfvnw5lSpVwt7ensDAQDZu3FhAkeZcbsq0ePFiNBpNln/29vYFGO3T7dmzh86dO+Pt7Y1Go2HNmjXP3GfXrl3UqlULOzs7/P39Wbx4cb7HmRu5LdOuXbseu0YajYaIiIiCCfgZpk6dSt26dXF2dsbDw4OuXbty4cKFZ+5nyp+l5ymTqX+W5s2bR1BQUOZARw0aNGDTpk1P3ceUrxHkvkymfo2yM23aNDQaDSNGjHjqdgV1rSSZyMYff/zByJEjGTduHMePH6d69eq0a9eOyMjIbLffv38/ffr04Y033uDEiRN07dqVrl27EhoaWsCRP1luywTqKGrh4eGZ/27cuFGAET9dYmIi1atXZ86cOTna/tq1a3Ts2JEWLVpw8uRJRowYweDBg9myZUs+R5pzuS3TIxcuXMhynTw8PPIpwtzZvXs3w4YN4+DBgwQHB6PT6Wjbti2JiYlP3MfUP0vPUyYw7c9S6dKlmTZtGseOHePo0aO0bNmSLl26cObMmWy3N/VrBLkvE5j2NfqvI0eOsGDBAoKCgp66XYFeK0U8pl69esqwYcMyH2dkZCje3t7K1KlTs92+V69eSseOHbOsq1+/vvLWW2/la5y5kdsyLVq0SHF1dS2g6PIGUFavXv3UbUaNGqVUrVo1y7revXsr7dq1y8fInl9OyrRz504FUKKjowskpryKjIxUAGX37t1P3MYcPkv/lpMymdNn6ZGiRYsqP/74Y7bPmds1euRpZTKnaxQfH69UqFBBCQ4OVpo1a6YMHz78idsW5LWSmon/SEtL49ixY7Ru3TpznVarpXXr1hw4cCDbfQ4cOJBle4B27do9cfuC9jxlAkhISKBMmTL4+Pg8M6s3daZ+jfKiRo0aeHl50aZNG/bt22fscJ4oNjYWgGLFij1xG3O7TjkpE5jPZykjI4Pff/+dxMREGjRokO025naNclImMJ9rNGzYMDp27PjYNchOQV4rSSb+4/79+2RkZFCyZMks60uWLPnEe9ERERG52r6gPU+ZAgIC+Pnnn1m7di2//fYber2ehg0bcuvWrYII2eCedI3i4uJITk42UlR54+Xlxfz581m5ciUrV67Ex8eH5s2bc/z4cWOH9hi9Xs+IESNo1KgR1apVe+J2pv5Z+reclskcPkshISEUKVIEOzs73n77bVavXk2VKlWy3dZcrlFuymQO1wjg999/5/jx40ydOjVH2xfktbL4WUPF82nQoEGWLL5hw4ZUrlyZBQsWMGnSJCNGJh4JCAggICAg83HDhg25cuUKX3/9NUuWLDFiZI8bNmwYoaGh7N2719ihGExOy2QOn6WAgABOnjxJbGwsK1asoH///uzevfuJP77mIDdlModrFBYWxvDhwwkODjbJxqGSTPxHiRIlsLKy4u7du1nW3717F09Pz2z38fT0zNX2Be15yvRfNjY21KxZk8uXL+dHiPnuSdfIxcUFBwcHI0VlePXq1TO5H+x3332X9evXs2fPHkqXLv3UbU39s/RIbsr0X6b4WbK1tcXf3x+A2rVrc+TIEb755hsWLFjw2Lbmco1yU6b/MsVrdOzYMSIjI6lVq1bmuoyMDPbs2cP3339PamoqVlZWWfYpyGsltzn+w9bWltq1a7N9+/bMdXq9nu3btz/xfluDBg2ybA8QHBz81PtzBel5yvRfGRkZhISE4OXllV9h5itTv0aGcvLkSZO5Roqi8O6777J69Wp27NhB2bJln7mPqV+n5ynTf5nDZ0mv15Oamprtc6Z+jZ7kaWX6L1O8Rq1atSIkJISTJ09m/qtTpw6vvvoqJ0+efCyRgAK+VgZv0mkBfv/9d8XOzk5ZvHixcvbsWWXIkCGKm5ubEhERoSiKovTr108ZPXp05vb79u1TrK2tlS+//FI5d+6cMm7cOMXGxkYJCQkxVhEek9syTZgwQdmyZYty5coV5dixY8orr7yi2NvbK2fOnDFWEbKIj49XTpw4oZw4cUIBlFmzZiknTpxQbty4oSiKoowePVrp169f5vZXr15VHB0dlY8++kg5d+6cMmfOHMXKykrZvHmzsYrwmNyW6euvv1bWrFmjXLp0SQkJCVGGDx+uaLVaZdu2bcYqQhbvvPOO4urqquzatUsJDw/P/JeUlJS5jbl9lp6nTKb+WRo9erSye/du5dq1a8rp06eV0aNHKxqNRtm6dauiKOZ3jRQl92Uy9Wv0JP/tzWHMayXJxBN89913iq+vr2Jra6vUq1dPOXjwYOZzzZo1U/r3759l+z///FOpWLGiYmtrq1StWlXZsGFDAUf8bLkp04gRIzK3LVmypNKhQwfl+PHjRog6e4+6Rf7336My9O/fX2nWrNlj+9SoUUOxtbVVypUrpyxatKjA436a3JZp+vTpSvny5RV7e3ulWLFiSvPmzZUdO3YYJ/hsZFcWIMvrbm6fpecpk6l/lgYNGqSUKVNGsbW1Vdzd3ZVWrVpl/ugqivldI0XJfZlM/Ro9yX+TCWNeK5mCXAghhBB5Im0mhBBCCJEnkkwIIYQQIk8kmRBCCCFEnkgyIYQQQog8kWRCCCGEEHkiyYQQQggh8kSSCSGEEELkiSQTQgghhMgTSSaEEEZ3/fp1NBoNJ0+eNHYoQojnIMmEEEIIIfJEkgkhhBBC5IkkE0KILO7du4enpydTpkzJXLd//35sbW0fm84YoG/fvvTu3TvLOp1OR4kSJfj1118B2Lx5M40bN8bNzY3ixYvTqVMnrly58sQYFi9ejJubW5Z1a9asQaPRZFm3du1aatWqhb29PeXKlWPChAmkp6cD6nTh48ePx9fXFzs7O7y9vXn//fdz9VoIIXJGkgkhRBbu7u78/PPPjB8/nqNHjxIfH0+/fv149913adWq1WPbv/rqq/z1118kJCRkrtuyZQtJSUl069YNgMTEREaOHMnRo0fZvn07Wq2Wbt26odfrnzvOv//+m9dff53hw4dz9uxZFixYwOLFi5k8eTIAK1eu5Ouvv2bBggVcunSJNWvWEBgY+NznE0I8Rb7MRSqEMHtDhw5VKlasqPTt21cJDAxUUlJSst1Op9MpJUqUUH799dfMdX369FF69+79xGPfu3dPAZSQkBBFURTl2rVrCqCcOHFCURRFWbRokeLq6ppln9WrVyv//spq1aqVMmXKlCzbLFmyRPHy8lIURVG++uorpWLFikpaWlqOyyyEeD5SMyGEyNaXX35Jeno6y5cvZ+nSpdjZ2XHz5k2KFCmS+W/KlClYW1vTq1cvli5dCqi1EGvXruXVV1/NPNalS5fo06cP5cqVw8XFBT8/PwBu3rz53PGdOnWKiRMnZonnzTffJDw8nKSkJHr27ElycjLlypXjzTffZPXq1Zm3QIQQhmVt7ACEEKbpypUr3LlzB71ez/Xr1wkMDMTb2ztL981ixYoB6q2OZs2aERkZSXBwMA4ODrz44ouZ23Xu3JkyZcrwww8/4O3tjV6vp1q1aqSlpWV7bq1Wi6IoWdbpdLosjxMSEpgwYQLdu3d/bH97e3t8fHy4cOEC27ZtIzg4mKFDhzJz5kx2796NjY3N874sQohsSDIhhHhMWloar732Gr179yYgIIDBgwcTEhKCh4cH/v7+j23fsGFDfHx8+OOPP9i0aRM9e/bM/MGOioriwoUL/PDDDzRp0gSAvXv3PvX87u7uxMfHk5iYiJOTE8BjY1DUqlWLCxcuZBvPIw4ODnTu3JnOnTszbNgwKlWqREhICLVq1crNyyGEeAZJJoQQj/n000+JjY3l22+/pUiRImzcuJFBgwaxfv36J+7Tt29f5s+fz8WLF9m5c2fm+qJFi1K8eHEWLlyIl5cXN2/eZPTo0U89f/369XF0dOSTTz7h/fff59ChQyxevDjLNmPHjqVTp074+vrSo0cPtFotp06dIjQ0lC+++ILFixeTkZGReazffvsNBwcHypQpk6fXRgiRDWM32hBCmJadO3cq1tbWyt9//5257tq1a4qLi4syd+7cJ+539uxZBVDKlCmj6PX6LM8FBwcrlStXVuzs7JSgoCBl165dCqCsXr068/j8qwGmoqgNLv39/RUHBwelU6dOysKFC5X/fmVt3rxZadiwoeLg4KC4uLgo9erVUxYuXJi5f/369RUXFxfFyclJeeGFF5Rt27bl8dURQmRHoyj/uTEphBBCCJEL0ptDCCGEEHkiyYQQQggh8kSSCSGEEELkiSQTQgghhMgTSSaEEEIIkSeSTAghhBAiTySZEEIIIUSeSDIhhBBCiDyRZEIIIYQQeSLJhBBCCCHyRJIJIYQQQuTJ/wN+KfhnQc3EOQAAAABJRU5ErkJggg==\n" }, "metadata": {} } ] }, { "cell_type": "markdown", "source": [ "We can also create a **scatter plot** with just the points (no line). The function is similar to ``plt.plot()``:\n", "\n", "> **``plt.scatter(X, Y, s=SIZE, c=COLOR, marker=MARKER_STYLE, etc.)``**" ], "metadata": { "id": "xbe69iiiuh-g" } }, { "cell_type": "code", "source": [ "plt.figure(figsize=(6,3))\n", "plt.scatter(x,y,s=100,c='dodgerblue',marker='^');" ], "metadata": { "id": "CeRzx1aXu63M", "colab": { "base_uri": "https://localhost:8080/", "height": 291 }, "outputId": "2eac6218-a906-4507-898a-69cea7ba96a7" }, "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfcAAAESCAYAAADg/JwWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAZQElEQVR4nO3de2wU193G8Wex8RoaewOEiy0vhNwgQIBwlaEtEJwgiqJQvU1TRFNE6SXIKFDUC/xTWkXqEtGQ9IKISxqImlJTEplWaYESCEYNpgYbq4YiCoQGgzFOqnTXOHQh9nn/cHdjG99mvdfj70caybs+4/mdnMw8e2ZmB5cxxggAAFijX6ILAAAA0UW4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwTHq8N9jc3Kza2lplZWXJ5XLFe/MAAKQsY4waGhqUm5urfv06n5/HPdxra2vl9XrjvVkAAKxRU1OjvLy8Tn8f93DPysqS1FJYdnZ2vDcPAEDKCgQC8nq94SztTNzDPXQqPjs7m3AHACAC3V3W5oY6AEhB//0k0RUgmRHuAJBi/nZFmlQklV9JdCVIVoQ7AKSYTUdbZu6bjia6EiQrwh0AUkjZZel4bcvP5bUtr4H2HIf7lStX9NWvflVDhgzRgAED9NBDD+nEiROxqA0A0M4LZVLa/+6lSnNJm8sSWw+Sk6O75T/66CPNnj1b8+bN0969ezV06FCdO3dOgwYNilV9AID/aT1rl6Qm8+nsPb/zrzyjD3IU7s8//7y8Xq+2b98efm/06NFRLwoAcLvQrL3JfPpeaPa++8nE1YXk4+i0/B//+EdNmzZNTz75pIYNG6aHH35Y27Zt63KdYDCoQCDQZgEAOBOatbcOdqnt7B0IcRTu7733nrZu3ar7779f+/fv18qVK/Xss8/qtdde63Qdn88nj8cTXnj0LAA41/pae3tce0d7LmOM6b5Zi4yMDE2bNk1Hj376/Ytnn31Wx48fV1lZx/9nBYNBBYPB8OvQo/P8fj9PqAOAHii7LH3lze7bFf8f195tFwgE5PF4us1QRzP3nJwcjRs3rs17Dz74oC5dutTpOm63O/yoWR45CwDOdTVrD2H2jtYchfvs2bN19uzZNu/985//1KhRo6JaFACgRWfX2tvj2jtacxTu3/nOd3Ts2DH95Cc/0fnz57Vz50796le/UmFhYazqA4A+rSez9hBm7whxFO7Tp09XSUmJfve732nChAl67rnn9NJLL2np0qWxqg8A+qyeztpDmL0jxNENddHQ05sBAKCv+9Ju6USt5OQg7ZI0PZfvvdsqJjfUAQDi4+Nb0sk6Z8EutbSvrJNu3IpFVUgVjp5QBwCIj4H9pfIVUsNN5+tmZUgD+ke/JqQOwh0AktSQgS0L4BSn5QEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyzgK9x/96EdyuVxtlrFjx8aqNgAAEIF0pyuMHz9eb7/99qd/IN3xnwAAADHkOJnT09M1YsSIWNQCAACiwPE193Pnzik3N1f33HOPli5dqkuXLnXZPhgMKhAItFkAAEDsOAr3mTNnaseOHdq3b5+2bt2qixcv6nOf+5waGho6Xcfn88nj8YQXr9fb66IBAEDnXMYYE+nK//nPfzRq1Cht3rxZK1as6LBNMBhUMBgMvw4EAvJ6vfL7/crOzo500wAA9DmBQEAej6fbDO3V3XB33nmnHnjgAZ0/f77TNm63W263uzebAQAADvTqe+7Xr1/XhQsXlJOTE616AABALzkK9+9+97sqLS3Vv/71Lx09elRf/OIXlZaWpiVLlsSqPgAA4JCj0/KXL1/WkiVL9O9//1tDhw7VZz/7WR07dkxDhw6NVX0AAMAhR+FeXFwcqzoAAECU8Gx5AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnBH3Pz3k0RXAADxk8hjHuGOuPjbFWlSkVR+JdGVAEDsJfqYR7gjLjYdbfkUu+looisBgNhL9DGPcEfMlV2Wjte2/Fxe2/IaAGyVDMe8XoX7xo0b5XK5tGbNmiiVAxu9UCaluVp+TnNJm8sSWw8AxFIyHPMiDvfjx4+rqKhIEydOjGY9sEzoE2yTaXndZJi9A7BXshzzIgr369eva+nSpdq2bZsGDRoU7ZpgkdafYEOYvQOwVbIc8yIK98LCQi1atEgFBQXdtg0GgwoEAm0W9A3tP8GGMHsHYKNkOuY5Dvfi4mJVVlbK5/P1qL3P55PH4wkvXq/XcZFITR19gg1h9g7ANsl0zHMU7jU1NVq9erV++9vfKjMzs0frrF+/Xn6/P7zU1NREVChSS2efYEOYvQOwSbId8xyFe0VFherr6zVlyhSlp6crPT1dpaWl+vnPf6709HQ1NTXdto7b7VZ2dnabBfbr6hNsCLN3ALZItmNeupPG8+fPV3V1dZv3li9frrFjx+oHP/iB0tLSolocUlPr73h2pfUn2fy82NcFALGQjMc8R+GelZWlCRMmtHnvM5/5jIYMGXLb++i7Qp9gOzs91Vrok+zuJ2NfFwDEQjIe83hCHaKqu+tO7XHtHUAqS9ZjXq/D/fDhw3rppZeiUAps8EKZ1M1lp9u4xLV3AKkpWY95zNwRNR/fkk7WST38ABtmJFXWSTduxaIqAIiNZD7mObrmDnRlYH+pfIXUcNP5ulkZ0oD+0a8JAGIlmY95hDuiasjAlgUA+oJkPeZxWh4AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDsAAJYh3AEAsIyjcN+6dasmTpyo7OxsZWdnKz8/X3v37o1VbQAAIAKOwj0vL08bN25URUWFTpw4oUceeURPPPGETp8+Hav6AACAQy5jjOnNHxg8eLA2bdqkFStW9Kh9IBCQx+OR3+9XdnZ2bzYNAECf0tMMTY90A01NTdq9e7caGxuVn5/fabtgMKhgMNimMAAAEDuOb6irrq7WHXfcIbfbrWeeeUYlJSUaN25cp+19Pp88Hk948Xq9vSoYAAB0zfFp+Zs3b+rSpUvy+/1644039Morr6i0tLTTgO9o5u71ejktDwCAQz09Ld/ra+4FBQW69957VVRUFNXCAABAWz3N0F5/z725ubnNzBwAACSWoxvq1q9fr4ULF2rkyJFqaGjQzp07dfjwYe3fvz9W9QEAAIcchXt9fb2+9rWv6erVq/J4PJo4caL279+vRx99NFb1AQAAhxyF+69//etY1QEAAKKEZ8sDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAyhDuANv77SaIrANBbhDuAsL9dkSYVSeVXEl0JgN4g3AGEbTraMnPfdDTRlQDoDcIdgCSp7LJ0vLbl5/LaltcAUpOjcPf5fJo+fbqysrI0bNgwLV68WGfPno1VbQDi6IUyKc3V8nOaS9pclth6AETOUbiXlpaqsLBQx44d04EDB3Tr1i099thjamxsjFV9AOIgNGtvMi2vmwyzdyCVuYwxJtKVP/jgAw0bNkylpaX6/Oc/36N1AoGAPB6P/H6/srOzI900gCj60m6p8uqn4S61zN6n5ki7n0xcXQDa6mmGpvdmI36/X5I0ePDgTtsEg0EFg8E2hQFIHq2vtbfWevaenxf/ugBELuIb6pqbm7VmzRrNnj1bEyZM6LSdz+eTx+MJL16vN9JNAoiB1tfa2+PaO5CaIg73wsJCnTp1SsXFxV22W79+vfx+f3ipqamJdJMAoqz9tfb2uPYOpKaIwn3VqlV666239M477ygvr+vzdW63W9nZ2W0WAMmhq1l7CLN3IPU4CndjjFatWqWSkhIdOnRIo0ePjlVdAGKsu1l7CLN3IPU4CvfCwkK9/vrr2rlzp7KyslRXV6e6ujrduHEjVvUBiJGezNpDmL0DqcVRuG/dulV+v19z585VTk5OeNm1a1es6gMQAz2dtYcwewdSi6OvwvXiK/EAksgLZZJLkpM92qWW2TvfeweSH8+WB/qYj29JJ+ucBbvU0r6yTrpxKxZVAYimXj3EBkDqGdhfKl8hNdx0vm5WhjSgf/RrAhBdhDvQBw0Z2LIAsBOn5QEAsAzhDgCAZQh3AAAsQ7gDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyzgO9yNHjujxxx9Xbm6uXC6X9uzZE4OyAABApByHe2NjoyZNmqQtW7bEoh4AANBL6U5XWLhwoRYuXBiLWgAAQBQ4DnengsGggsFg+HUgEIj1JgEA6NNifkOdz+eTx+MJL16vN9abBACgT4t5uK9fv15+vz+81NTUxHqTAAD0aTE/Le92u+V2u2O9GQAA8D98zx0AAMs4nrlfv35d58+fD7++ePGiqqqqNHjwYI0cOTKqxQEAAOcch/uJEyc0b9688Ou1a9dKkpYtW6YdO3ZErTAAABAZx+E+d+5cGWNiUQsAAIgCrrkDAGAZwh0AAMsQ7gAAWIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAliHcAQCwDOEOAIBlCHcAACxDuAMAYBnCHQAAyxDuAABYhnAHAMAy1oT7fz9JdAUAACQHK8L9b1ekSUVS+ZVEVwIAQOJZEe6bjrbM3DcdTXQlAAAkXsqHe9ll6Xhty8/ltS2vAQDoyyIK9y1btujuu+9WZmamZs6cqfLy8mjX1WMvlElprpaf01zS5rKElQIAQFJwHO67du3S2rVrtWHDBlVWVmrSpElasGCB6uvrY1Ffl0Kz9ibT8rrJMHsHAMBxuG/evFnf/OY3tXz5co0bN04vv/yyBg4cqFdffTUW9XWp9aw9hNk7AKCvcxTuN2/eVEVFhQoKCj79A/36qaCgQGVlHSdqMBhUIBBos0RD+1l7CLN3AEBf5yjcP/zwQzU1NWn48OFt3h8+fLjq6uo6XMfn88nj8YQXr9cbebWtdDRrD2H2DgDoy2J+t/z69evl9/vDS01NTa//Zmez9hBm7wCAvsxRuN91111KS0vTtWvX2rx/7do1jRgxosN13G63srOz2yy91dWsPYTZOwCgr3IU7hkZGZo6daoOHjwYfq+5uVkHDx5Ufn5+1IvrSHez9hBm7wCAvsrxafm1a9dq27Zteu2113TmzBmtXLlSjY2NWr58eSzqu01PZu0hzN4BAH1RutMVnnrqKX3wwQf64Q9/qLq6Ok2ePFn79u277Sa7WGj9NLqeaD17z8+LXV0AACQTlzGmmxPc0RUIBOTxeOT3+x1ff//SbulEreSkYJek6bnS7icdbQoAgKTT0wxNmWfLf3xLOlnnLNillvaVddKNW7GoCgCA5OP4tHyiDOwvla+QGm46XzcrQxrQP/o1AQCQjOIe7qGrAJE8qa6/pMGRnGv4RIrSg/EAAEiYUHZ2d0U97uHe0NAgSVF7Uh0AAH1NQ0ODPB5Pp7+P+w11zc3Nqq2tVVZWllyuHn6nrRuBQEBer1c1NTVReUhOMrCtT7b1R6JPqYI+pQbb+hSr/hhj1NDQoNzcXPXr1/mp7LjP3Pv166e8vNh8Ly1aT8BLJrb1ybb+SPQpVdCn1GBbn2LRn65m7CEpc7c8AADoGcIdAADLWBHubrdbGzZskNvtTnQpUWNbn2zrj0SfUgV9Sg229SnR/Yn7DXUAACC2rJi5AwCATxHuAABYhnAHAMAyhDsAAJYh3AEAsEzKhPuWLVt09913KzMzUzNnzlR5eXmX7Xfv3q2xY8cqMzNTDz30kP785z/HqdKec9KnHTt2yOVytVkyMzPjWG3Xjhw5oscff1y5ublyuVzas2dPt+scPnxYU6ZMkdvt1n333acdO3bEvE4nnPbp8OHDt42Ry+VSXV1dfAruhs/n0/Tp05WVlaVhw4Zp8eLFOnv2bLfrJfO+FEmfkn1f2rp1qyZOnBh+sll+fr727t3b5TrJPEaS8z4l+xi1t3HjRrlcLq1Zs6bLdvEcp5QI9127dmnt2rXasGGDKisrNWnSJC1YsED19fUdtj969KiWLFmiFStW6OTJk1q8eLEWL16sU6dOxbnyzjntk9TyGMOrV6+Gl/fffz+OFXetsbFRkyZN0pYtW3rU/uLFi1q0aJHmzZunqqoqrVmzRt/4xje0f//+GFfac077FHL27Nk24zRs2LAYVehMaWmpCgsLdezYMR04cEC3bt3SY489psbGxk7XSfZ9KZI+Scm9L+Xl5Wnjxo2qqKjQiRMn9Mgjj+iJJ57Q6dOnO2yf7GMkOe+TlNxj1Nrx48dVVFSkiRMndtku7uNkUsCMGTNMYWFh+HVTU5PJzc01Pp+vw/Zf/vKXzaJFi9q8N3PmTPPtb387pnU64bRP27dvNx6PJ07V9Y4kU1JS0mWb73//+2b8+PFt3nvqqafMggULYlhZ5HrSp3feecdIMh999FFcauqt+vp6I8mUlpZ22iYV9qXWetKnVNqXQgYNGmReeeWVDn+XamMU0lWfUmWMGhoazP33328OHDhg5syZY1avXt1p23iPU9LP3G/evKmKigoVFBSE3+vXr58KCgpUVlbW4TplZWVt2kvSggULOm0fb5H0SZKuX7+uUaNGyev1dvupN9kl+xj1xuTJk5WTk6NHH31U7777bqLL6ZTf75ckDR48uNM2qTZOPemTlDr7UlNTk4qLi9XY2Kj8/PwO26TaGPWkT1JqjFFhYaEWLVp023//jsR7nJI+3D/88EM1NTVp+PDhbd4fPnx4p9cy6+rqHLWPt0j6NGbMGL366qv6wx/+oNdff13Nzc2aNWuWLl++HI+So66zMQoEArpx40aCquqdnJwcvfzyy3rzzTf15ptvyuv1au7cuaqsrEx0abdpbm7WmjVrNHv2bE2YMKHTdsm+L7XW0z6lwr5UXV2tO+64Q263W88884xKSko0bty4Dtumyhg56VMqjFFxcbEqKyvl8/l61D7e4xT3f/IVkcnPz2/zKXfWrFl68MEHVVRUpOeeey6BlSFkzJgxGjNmTPj1rFmzdOHCBb344ov6zW9+k8DKbldYWKhTp07pr3/9a6JLiZqe9ikV9qUxY8aoqqpKfr9fb7zxhpYtW6bS0tJOwzAVOOlTso9RTU2NVq9erQMHDiTtjX5JH+533XWX0tLSdO3atTbvX7t2TSNGjOhwnREjRjhqH2+R9Km9/v376+GHH9b58+djUWLMdTZG2dnZGjBgQIKqir4ZM2YkXYCuWrVKb731lo4cOaK8vLwu2yb7vhTipE/tJeO+lJGRofvuu0+SNHXqVB0/flw/+9nPVFRUdFvbVBkjJ31qL9nGqKKiQvX19ZoyZUr4vaamJh05ckS//OUvFQwGlZaW1madeI9T0p+Wz8jI0NSpU3Xw4MHwe83NzTp48GCn12vy8/PbtJekAwcOdHl9J54i6VN7TU1Nqq6uVk5OTqzKjKlkH6NoqaqqSpoxMsZo1apVKikp0aFDhzR69Ohu10n2cYqkT+2lwr7U3NysYDDY4e+SfYw601Wf2ku2MZo/f76qq6tVVVUVXqZNm6alS5eqqqrqtmCXEjBOMblNL8qKi4uN2+02O3bsMP/4xz/Mt771LXPnnXeauro6Y4wxTz/9tFm3bl24/bvvvmvS09PNT3/6U3PmzBmzYcMG079/f1NdXZ2oLtzGaZ9+/OMfm/3795sLFy6YiooK85WvfMVkZmaa06dPJ6oLbTQ0NJiTJ0+akydPGklm8+bN5uTJk+b99983xhizbt068/TTT4fbv/fee2bgwIHme9/7njlz5ozZsmWLSUtLM/v27UtUF27jtE8vvvii2bNnjzl37pyprq42q1evNv369TNvv/12orrQxsqVK43H4zGHDx82V69eDS8ff/xxuE2q7UuR9CnZ96V169aZ0tJSc/HiRfP3v//drFu3zrhcLvOXv/zFGJN6Y2SM8z4l+xh1pP3d8okep5QId2OM+cUvfmFGjhxpMjIyzIwZM8yxY8fCv5szZ45ZtmxZm/a///3vzQMPPGAyMjLM+PHjzZ/+9Kc4V9w9J31as2ZNuO3w4cPNF77wBVNZWZmAqjsW+hpY+yXUh2XLlpk5c+bcts7kyZNNRkaGueeee8z27dvjXndXnPbp+eefN/fee6/JzMw0gwcPNnPnzjWHDh1KTPEd6Kgvktr8d0+1fSmSPiX7vvT1r3/djBo1ymRkZJihQ4ea+fPnh0PQmNQbI2Oc9ynZx6gj7cM90ePEv+cOAIBlkv6aOwAAcIZwBwDAMoQ7AACWIdwBALAM4Q4AgGUIdwAALEO4AwBgGcIdAADLEO4AAFiGcAcAwDKEOwAAlvl/51vxxgbNq/MAAAAASUVORK5CYII=\n" }, "metadata": {} } ] }, { "cell_type": "markdown", "source": [ "***Let's bring it all together! Below, try plotting the monthly temperatures in Pasadena, CA and Seattle, WA. Use line plots with circle-shaped markers (or add scatter points separately). Include a legend and label the plot appropriately.***" ], "metadata": { "id": "q-Q6iROxso70" } }, { "cell_type": "code", "source": [ "temp = np.array([[53.6,53.9,57.3,60.5,64.8,70.1,75.7,76.4,74.1,67.3,59.8,52.9], # (Pasadena)\n", " [40.0,40.6,44.2,48.4,54.9,60.2,66.2,66.7,60.5,52.0,44.5,39.6]]) # (Seattle)\n", "\n", "# Write your code below:\n", "months = np.arange(1,13)\n", "plt.plot(months,temp[0,:],marker='o',label='Pasadena, CA')\n", "plt.plot(months,temp[1,:],marker='o',label='Seattle, WA')\n", "plt.legend()\n", "plt.xlabel('Months')\n", "plt.ylabel('Temperature (°F)')\n", "plt.title('Average temperatures')\n", "plt.grid()" ], "metadata": { "id": "pNENXVMUtB3o", "colab": { "base_uri": "https://localhost:8080/", "height": 472 }, "outputId": "25a31d74-9253-4524-8df3-2e082c1b6e4e" }, "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHHCAYAAACle7JuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACb/ElEQVR4nOzdd1hT1xvA8W8S9lYEQUXEiYij7lH3wq3VultX9adVO6yt3a4ubbV2WbW1dqi17qqtWvfe2+IWF+ICWbKT+/vjaiqCCgrcBN7P8/B4c3Nz8+YYwpt73nOOTlEUBSGEEEIIK6TXOgAhhBBCiCcliYwQQgghrJYkMkIIIYSwWpLICCGEEMJqSSIjhBBCCKsliYwQQgghrJYkMkIIIYSwWpLICCGEEMJqSSIjhBBCCKsliYwQQgghrJYkMkLkounTp6PT6ahTp47WoVicTz75hOXLl2sdhsW5evUq48aN4/Dhw1qHIoRVkERGiFw0b948SpUqxd69ezl79qzW4VgUSWQyd/XqVcaPHy+JjBBZJImMELkkLCyMnTt3MnXqVLy8vJg3b16ex2AymUhKSsrz5xX/SUpKwmQyaR2GxcQhRE6TREaIXDJv3jwKFSpEu3bt6NatW7pEJjU1lcKFCzNgwIAMj4uNjcXBwYHRo0eb9yUnJzN27FjKli2Lvb09fn5+vPXWWyQnJ6d7rE6nY8SIEcybN49KlSphb2/PmjVrAPjiiy+oX78+np6eODo6UqNGDRYvXpzh+RMTE3nllVcoUqQIrq6udOzYkfDwcHQ6HePGjUt3bHh4OAMHDqRo0aLY29tTqVIlfvrpp8e2jU6n486dO/zyyy/odDp0Oh39+/fP1nk3b96MTqdj4cKFjB8/nuLFi+Pq6kq3bt2IiYkhOTmZ1157DW9vb1xcXBgwYMAj26tChQo4ODhQo0YNtm7dmiHm7MS0YMEC3n//fYoXL46TkxOxsbFERUUxevRoKleujIuLC25ubrRp04YjR46ke3ytWrUAGDBggLltfv75ZwBKlSqVrp3uadKkCU2aNMlSHAB79uwhJCQEd3d3nJycaNy4MTt27Eh3zri4OF577TVKlSqFvb093t7etGzZkoMHD2b+nyqERmy0DkCI/GrevHk899xz2NnZ0atXL77//nv27dtHrVq1sLW1pUuXLixdupSZM2diZ2dnftzy5ctJTk6mZ8+egHpVpWPHjmzfvp0hQ4ZQsWJFjh07xpdffsnp06czdM9s3LiRhQsXMmLECIoUKUKpUqUA+Oqrr+jYsSN9+vQhJSWFBQsW8Pzzz7Nq1SratWtnfnz//v1ZuHAhL7zwAnXr1mXLli3p7r/n+vXr1K1b15wMeHl5sXr1agYNGkRsbCyvvfbaQ9vmt99+46WXXqJ27doMGTIEgDJlyjzReT/99FMcHR15++23OXv2LN988w22trbo9Xpu377NuHHj2L17Nz///DMBAQF8+OGH6R6/ZcsW/vjjD1555RXs7e2ZPn06ISEh7N27l+Dg4CeKaeLEidjZ2TF69GiSk5Oxs7MjNDSU5cuX8/zzzxMQEMD169eZOXMmjRs3JjQ0lGLFilGxYkUmTJjAhx9+yJAhQ2jYsCEA9evXf2hbPkpmcWzcuJE2bdpQo0YNxo4di16vZ86cOTRr1oxt27ZRu3ZtAIYOHcrixYsZMWIEQUFBREZGsn37dk6cOEH16tWfKB4hcoUihMhx+/fvVwBl3bp1iqIoislkUkqUKKG8+uqr5mPWrl2rAMrKlSvTPbZt27ZK6dKlzbd/++03Ra/XK9u2bUt33IwZMxRA2bFjh3kfoOj1euXff//NEFNCQkK62ykpKUpwcLDSrFkz874DBw4ogPLaa6+lO7Z///4KoIwdO9a8b9CgQYqvr69y69atdMf27NlTcXd3z/B8D3J2dlb69euXYX9Wz7tp0yYFUIKDg5WUlBTzcb169VJ0Op3Spk2bdI+vV6+e4u/vn24foADK/v37zfsuXryoODg4KF26dHnimEqXLp3h9SclJSlGozHdvrCwMMXe3l6ZMGGCed++ffsUQJkzZ06GtvH398+0zRo3bqw0btzYfPthcZhMJqVcuXJK69atFZPJZN6fkJCgBAQEKC1btjTvc3d3V4YPH57huYSwNNK1JEQumDdvHkWLFqVp06aA2oXRo0cPFixYgNFoBKBZs2YUKVKEP/74w/y427dvs27dOnr06GHet2jRIipWrEhgYCC3bt0y/zRr1gyATZs2pXvuxo0bExQUlCEmR0fHdM8TExNDw4YN03UV3OuGevnll9M9duTIkeluK4rCkiVL6NChA4qipIurdevWxMTEPFEXxJOc98UXX8TW1tZ8u06dOiiKwsCBA9MdV6dOHS5fvkxaWlq6/fXq1aNGjRrm2yVLlqRTp06sXbsWo9H4RDH169cvXXsD2Nvbo9erH7lGo5HIyEhcXFyoUKFCrnXXPBjH4cOHOXPmDL179yYyMtL8Ou7cuUPz5s3ZunWruY7Gw8ODPXv2cPXq1VyJTYicIl1LQuQwo9HIggULaNq0KWFhYeb9derUYcqUKWzYsIFWrVphY2ND165dmT9/PsnJydjb27N06VJSU1PTJTJnzpzhxIkTeHl5Zfp8N27cSHc7ICAg0+NWrVrFRx99xOHDh9PViuh0OvP2xYsX0ev1Gc5RtmzZdLdv3rxJdHQ0s2bNYtasWVmKKyue5LwlS5ZMd9vd3R0APz+/DPtNJhMxMTF4enqa95crVy7Dc5QvX56EhARu3ryJXq/PdkyZ/R+YTCa++uorpk+fTlhYmDmhBdLFk5MejOPMmTOAmuA8TExMDIUKFWLy5Mn069cPPz8/atSoQdu2bXnxxRcpXbp0rsQqxJOSREaIHLZx40YiIiJYsGABCxYsyHD/vHnzaNWqFQA9e/Zk5syZrF69ms6dO7Nw4UICAwOpWrWq+XiTyUTlypWZOnVqps/34B/sB68EAGzbto2OHTvSqFEjpk+fjq+vL7a2tsyZM4f58+dn+zXe+9bet2/fh/5RrFKlSp6c12AwZHrcw/YripLrMWX2f/DJJ5/wwQcfMHDgQCZOnEjhwoXR6/W89tprWR5NdH/SeT+j0Zjp630wjnvP8/nnn1OtWrVMz+Xi4gJA9+7dadiwIcuWLeOff/7h888/Z9KkSSxdupQ2bdpkKV4h8oIkMkLksHnz5uHt7c13332X4b6lS5eybNkyZsyYgaOjI40aNcLX15c//viDZ599lo0bN/Lee++le0yZMmU4cuQIzZs3f+gfssdZsmQJDg4OrF27Fnt7e/P+OXPmpDvO398fk8lEWFhYuisVD86B4+XlhaurK0ajkRYtWjxRTJm9lpw4b3bdu0pxv9OnT+Pk5GS+CpYTMS1evJimTZsye/bsdPujo6MpUqSI+faj/o8LFSpEdHR0hv0XL17M0pWSewXVbm5uWXotvr6+vPzyy7z88svcuHGD6tWr8/HHH0siIyyK1MgIkYMSExNZunQp7du3p1u3bhl+RowYQVxcHCtWrABAr9fTrVs3Vq5cyW+//UZaWlq6biVQvxmHh4fzww8/ZPp8d+7ceWxcBoMBnU6XrjvjwoULGUY8tW7dGlBnJL7fN998k+F8Xbt2ZcmSJRw/fjzD8928efOxMTk7O2f4o5wT582uXbt2patRuXz5Mn/++SetWrXCYDDkWEwGgyHD1aBFixYRHh6ebp+zszNApglLmTJl2L17NykpKeZ9q1at4vLly1mKoUaNGpQpU4YvvviC+Pj4DPffey1Go5GYmJh093l7e1OsWLEMQ9iF0JpckREiB61YsYK4uDg6duyY6f1169Y1T453L2Hp0aMH33zzDWPHjqVy5cpUrFgx3WNeeOEFFi5cyNChQ9m0aRMNGjTAaDRy8uRJFi5cyNq1a6lZs+Yj42rXrh1Tp04lJCSE3r17c+PGDb777jvKli3L0aNHzcfVqFGDrl27Mm3aNCIjI83Dr0+fPg2kv1rw2WefsWnTJurUqcPgwYMJCgoiKiqKgwcPsn79eqKioh4ZU40aNVi/fj1Tp06lWLFiBAQEUKdOnac+b3YFBwfTunXrdMOvAcaPH59jrxWgffv2TJgwgQEDBlC/fn2OHTvGvHnzMlxJKVOmDB4eHsyYMQNXV1ecnZ2pU6cOAQEBvPTSSyxevJiQkBC6d+/OuXPnmDt3rvlKy+Po9Xp+/PFH2rRpQ6VKlRgwYADFixcnPDycTZs24ebmxsqVK4mLi6NEiRJ069aNqlWr4uLiwvr169m3bx9TpkzJRusKkQc0Gy8lRD7UoUMHxcHBQblz585Dj+nfv79ia2trHsprMpkUPz8/BVA++uijTB+TkpKiTJo0SalUqZJib2+vFCpUSKlRo4Yyfvx4JSYmxnwc8NAhs7Nnz1bKlSun2NvbK4GBgcqcOXOUsWPHKg9+DNy5c0cZPny4UrhwYcXFxUXp3LmzcurUKQVQPvvss3THXr9+XRk+fLji5+en2NraKj4+Pkrz5s2VWbNmPbatTp48qTRq1EhxdHRUgHTDirNy3ntDjBctWpTuvHPmzFEAZd++fen233utN2/ezNBec+fONbfNM888o2zatClDvE8Tk6Kow6/feOMNxdfXV3F0dFQaNGig7Nq1K8PQaUVRlD///FMJCgpSbGxsMgzFnjJlilK8eHHF3t5eadCggbJ///6HDr/OLA5FUZRDhw4pzz33nOLp6anY29sr/v7+Svfu3ZUNGzYoiqIoycnJyptvvqlUrVpVcXV1VZydnZWqVasq06dPz/R8QmhJpyjZrHwTQhQ4hw8f5plnnmHu3Ln06dNH63ByjE6nY/jw4Xz77bdahyKEeEJSIyOESCcxMTHDvmnTpqHX62nUqJEGEQkhxMNJjYwQIp3Jkydz4MABmjZtio2NDatXr2b16tUMGTIkw1BvIYTQmiQyQoh06tevz7p165g4cSLx8fGULFmScePGZRgWLoQQlkBqZIQQQghhtaRGRgghhBBWSxIZIYQQQlitfF8jYzKZuHr1Kq6urk88vbsQQggh8paiKMTFxVGsWDHzyvGZyfeJzNWrV2WkhRBCCGGlLl++TIkSJR56f75PZFxdXQG1Idzc3DSOJm+lpqbyzz//0KpVK2xtbbUOx2pJO+YMacecIe2YM6Qdc0ZutmNsbCx+fn7mv+MPk+8TmXvdSW5ubgUykXFycsLNzU1+UZ+CtGPOkHbMGdKOOUPaMWfkRTs+rixEin2FEEIIYbUkkRFCCCGE1ZJERgghhBBWK9/XyGSV0WgkNTVV6zByVGpqKjY2NiQlJWE0GrUOx2o9rB1tbW0xGAwaRiaEEKLAJzKKonDt2jWio6O1DiXHKYqCj48Ply9fljl0nsKj2tHDwwMfHx9pXyGE0EiBT2TuJTHe3t44OTnlqz9IJpOJ+Ph4XFxcHjmZkHi0zNpRURQSEhK4ceMGAL6+vlqGKIQQBVaBTmSMRqM5ifH09NQ6nBxnMplISUnBwcFBEpmn8LB2dHR0BODGjRt4e3tLN5MQQmigQP91u1cT4+TkpHEkwlrde+/kt/oqIYSwFgU6kbknP3Unibwl7x0hhNCWJDJCCGEljCaFPWFRHLilY09YFEaTonVIQmiuQNfIiJzTv39/oqOjWb58udahCJEvrTkewfiVoUTEJAEGfj2zH193B8Z2CCIkWIrNRcElV2RygNGksOtcJH8eDmfXuchc/5bUv39/dDodOp0OOzs7ypYty4QJE0hLS8vV57VmmzZtom3btnh6euLk5ERQUBBvvPEG4eHhGY4NDAzE3t6ea9euaRCpEBmtOR7BsLkH7yYx/7kWk8SwuQdZczxCo8iE0J4kMk9pzfEInp20kV4/7ObVBYfp9cNunp20Mdc/WEJCQoiIiODMmTO88cYbjBs3js8//zxXn9NazZw5kxYtWuDj48OSJUsIDQ1lxowZxMTEMGXKlHTHbt++ncTERLp168Yvv/yiUcRC/MdoUhi/MpTMvh7d2zd+Zah0M4kCSxKZp6DltyR7e3t8fHzw9/dn2LBhtGjRghUrVgAwdepUKleujKurK5UqVWL48OHEx8ebH3vx4kU6dOhAoUKFcHZ2plKlSvz999+AOiR90KBBBAQE4OjoSIUKFfjqq6/SPbfRaGTUqFF4eHjg6enJW2+9haKk/xA1mUx8+umn5vNUrVqVxYsXm+/fvHkzOp2ODRs2ULNmTZycnKhfvz6nTp0yH3Pu3Dk6depE0aJFcXFxoVatWqxfvz5b7XTlyhVeeeUVXnnlFX766SeaNGlCqVKlaNSoET/++CMffvhhuuNnz55N7969eeGFF/jpp5+y9VxC5KSYxFQOXbrN52tPZfiMuZ8CRMQksTcsKu+CE8KCSI3MfRRFITE1a1P5G00KY1f8+9BvSTpg3IpQGpQtgkH/+JEtjraGpxoB4+joSGRkJAB6vZ6vv/4af39/jh8/zltvvcVbb73F9OnTARg+fDgpKSls3boVZ2dnQkNDcXFxAdQEpESJEixatAhPT0927tzJkCFD8PX1pXv37gBMmTKFn3/+mZ9++omKFSsyZcoUli1bRrNmzczxfPrpp8ydO5cZM2ZQrlw5tm7dSt++ffHy8qJx48bm49577z2mTJmCl5cXQ4cOZeDAgezYsQOA+Ph42rZty8cff4y9vT2//vorHTp04NSpU5QsWTJL7bJo0SJSUlJ46623Mr3fw8PDvB0XF8eiRYvYs2cPgYGBxMTEsG3bNho0aJDF/wUhssdkUgiPTuT8rTucuxHPuZv3fu5wMy45W+e6EffwZEeI/EwSmfskphoJ+nBtjpxLAa7FJlF53D9ZOj50Qmuc7LL/36EoChs2bGDt2rWMHDkSgNdeew1Qk5LChQszYcIEXn75ZXMic+nSJbp27UrlypUBKF26tPl8tra2jB8/3nw7ICCAXbt2sXDhQnMiM23aNN555x2ee+45AGbMmMHatf+1W3JyMp988gnr16+nXr165ufYvn07M2fOTJfIfPzxx+bbb7/9Nu3atSMpKQkHBweqVq1K1apVzcdOnDiRZcuWsWLFCkaMGJGl9jlz5gxubm5Zmnl3wYIFlCtXjkqVKgHQs2dPZs+eLYlMAWE0KewNi+JGXBLerg7UDiicpS8hWZGYYuT8LTVB+S9huUPYrXiSUk0PfVxRN3uKuNjz79XYxz7H4v1XqObngb+nc47ELIS1kETGSq1atQoXFxdSU1MxmUz07t2bcePGAbB+/Xo+/fRTTp48SWxsLGlpaSQlJZGQkICTkxOvvPIKw4YN459//qFFixZ07dqVKlWqmM/93Xff8dNPP3Hp0iUSExNJSUmhWrVqAMTExBAREUGdOnXMx9vY2FCzZk1z99LZs2dJSEigZcuW6WJOSUnhmWeeSbfv/ue9l2zcuHGDkiVLEh8fz7hx4/jrr7+IiIggLS2NxMRELl26lOV2UhQly1e6fvrpJ/r27Wu+3bdvXxo3bpyha03kP+lHBKmyOyJIURRuxiVz9m6Scv7mf4lLeHTiQx9nZ9BTqogTZbxc1B9vZ8p4uRBQxBlXB1uMJoVnJ23kWkxSpleA79l29hbNpmyhW/USjGxelhKFZKJPUTBIInMfR1sDoRNaZ+nYvWFR9J+z77HH/TygFrUDCmfpubOjadOmfP/999jZ2VGsWDFsbNT/ygsXLtC+fXuGDRvGxIkTsbOz4/DhwwwePJiUlBScnJx46aWXaN26NX/99Rf//PMPn376KVOmTGHkyJEsWLCA0aNHM2XKFOrVq4erqyuff/45e/bsyXJs9+px/vrrL4oXL57uPnt7+3S3bW1tzdv3Eg6TSf2GOnr0aNatW8cXX3xB2bJlcXR0pFu3bqSkpGQ5lvLly5uTr0ddlQkNDWX37t3s3buXMWPGmPcbjUYWLFhAjx49svycwrrcq3V7MEm4V+v2fd/q6ZKZlDQTl6LucPbGnXRdQedvxBOX/PCRg4WcbDMkK2W8XChRyBEbw8PLFQ16HWM7BDFs7kF0kC7Oeyn6mDaB7D4fyeZTN/lj/2WWHrpCz1olGd60LD7uDtluEyGsiSQy99HpdFnu3mlYzgtfd4eHfkvSAT7uDjQs55Vjl6fv5+zsTNmyZTPsP3DgACaTyTwaJzY2ltWrV2c4zs/Pj6FDhzJ06FDeeecdfvjhB0aOHMmOHTuoX78+L7/8svnYc+fOmbfd3d3x9fVlz549NGrUCIC0tDQOHDhA9erVAQgKCsLe3p5Lly6l60bKrh07dtC/f3+6dOkCqAnShQsXsnWObt268fbbbzN58mS+/PLLDPdHR0fj4eHB7NmzadSoEd999126++fMmcOcOXMkkcmnsjIiaMySYxy4eJuwWwmcvxnPxaiEh44Q0uugZOG7V1e8XSjjpSYspb1cKOxs98RxhgT78n3f6hmuGvncd9VoaOMyHLgYxdR1p9lxNpLfdl/kj/2X6VvHn2FNyuDlav+IZxDCekki84Sy8i1pbIegXEliHqVs2bKkpqbyzTff0K5dO9avX8/MmTPTHfPaa6/Rpk0bypcvz+3bt9m0aRMVK1YEoFy5cvz666+sXbuWgIAAfvvtN/bt20dAQID58a+++iqfffYZ5cqVIzAwkKlTpxIdHW2+39XVldGjR/P6669jMpl49tlniYmJYceOHbi5udGvX78svZZy5cqxdOlSOnTogE6n44MPPjBfrckqPz8/vvzyS0aMGEFsbCwvvvgipUqV4sqVK/z666+4uLjw2Wef8dtvvzFhwgSCg4PTPf6ll15i6tSpnDhxIl13msgf9oZFPXJEEKijh37YFpZun4u9DaW97l1VcTYnLv6eTtjb5M7ioSHBvrQM8mHX2Rv8s20PrRrWoV5Z73SfMTX8CzPvpbrsOhfJ1HWn2HfhNj/tCOP3vZd4sb4/QxuVodBTJFRCWCJJZJ5CVr4l5bWqVasydepUJk2axDvvvEP9+vX5+OOP6d+/v/kYo9HI8OHDuXLlCm5uboSEhJivVvzvf//j0KFD9OjRA51OR69evXj55ZfTXdV54403iIiIoF+/fuj1egYOHEiXLl2IiYkxHzNx4kS8vLz49NNPOX/+PB4eHlSvXp133303y69l6tSpDBw4kPr161OkSBHGjBlDbGz6osdx48bx888/P/JKzcsvv0z58uX54osv6NKlC4mJiZQqVYr27dszatQoVqxYQWRkpPnKz/0qVqxIxYoVmTt3riQy+VBWR/o0KleElkFFzQmLt6u9JutsGfQ66gQUJvKEQp1HFCPXK+PJwtL12HbmFlPWnebI5WhmbjnP3F0XGfRsAIMalsbd0TbTxwphbXTKgxOA5DOxsbG4u7sTExODm5tbuvuSkpIICwsjICAAB4cn70fOzdEOT8NkMhEbG4ubmxt6ff6cMqhfv37odDp+/vnnXHuOR7VjTr2HCoLU1FT+/vtv2rZtm642Sku7zkXS64fdjz3u98F1qVfGMw8ierzstqOiKGw8eYOp606bRz+5OdgwuGFpBjwbgIt9wfw+a4nvR2uUm+34qL/f99P0r1upUqXMU+3f/zN8+HAAmjRpkuG+oUOHahlypgx6HfXKeNKpWnHqlfG0iCSmIFAUhc2bNzNx4kStQxFWqnZAYXzcHp6A6lBHL2WlYN9S6XQ6mlcsysoRzzKjb3XKF3UhNimNKetO03DSRmZsOUdCiixvIqyXpqn4vn37MBr/m4Du+PHjtGzZkueff968b/DgwUyYMMF828lJhhQKlU6n4+LFi1qHIayYQa+jZqlCrDqacRZuLWvdcoNerzPX2aw6epWv1p/h/K07fLb6JD9uC2NYkzL0qVMSh2yOoBRCa5omMl5eXuluf/bZZ5QpUybdSBcnJyd8fHzyOjQhRAGwLvS6OYlxd7QlJjHVfJ+WtW65yaDX0alacdpV9mX54at8teE0l6MSmbgqlB+2nmd4s7L0qOmHnU3+7I4W+Y/FdI6mpKQwd+5cRo0ala6Ibt68ecydOxcfHx86dOjABx98IFdlhBBP7eyNeF7/4zAA/er582GHShZZ65ZbbAx6utUoQadqxVh84ArfbDjD1ZgkPlh+nBmbz/FK87I8V70Eto+Y40YIS2Axiczy5cuJjo5ON7qmd+/e+Pv7U6xYMY4ePcqYMWM4deoUS5cufeh5kpOTSU7+b42Se6NcUlNTSU1NTXdsamoqiqJgMpmyPazXGtyr4773GsWTeVQ7mkwmFEUhNTUVg0EuyT/Kvd+/B38PtRCXlMrgX/YRn5xGrVKFGNO6HCZjGjVLugFqUaHJmIYpa0uv5ancaMduz/jSoXJRFh24wvdbwgiPTmTMkmN8t+ksI5uWoUMV33yX1FnS+9Ga5WY7ZvWcFjNqqXXr1tjZ2bFy5cqHHrNx40aaN2/O2bNnKVOmTKbHjBs3Lt1aQffMnz8/w5UcGxsbfHx88PPzw85O5lYQ2ZeSksLly5e5du0aaWlSMGkNTAr8eErPv7f1eNgpjK5ixFUGrZilGGHHdR3rw/XEp6nJS1FHhTYlTFT1VMhn+YywYAkJCfTu3fuxo5YsIpG5ePEipUuXZunSpXTq1Omhx925cwcXFxfWrFlD69aZLyWQ2RUZPz8/bt26lenw68uXL1OqVKl8OXRWURTi4uJwdXXVZM6L/OJR7ZiUlMSFCxfw8/PLl++hnJSamsq6deto2bKlpsNdv9pwlm83n8fORs+Cl2pRubi7ZrE8ibxqxzvJaczdc5kft18g+m7tUGBRF15pVpYWFb2s/jPFUt6P1i432zE2NpYiRYo8NpGxiK6lOXPm4O3tTbt27R553OHDhwEeuWaOvb19hvV8QF3T58FGNhqN6HQ69Hp9vpxn5V43yL3XKJ7Mo9pRr9ej0+kyfX+JzGnZVmv/vca3m88D8GmXylQvVUSTOHJCbrejh60tI5qXp1+DAH7afoEft53n5PV4Xv79MJWLuzOqZXmaVLD+hEZ+d3NGbrRjVs+neSJjMpmYM2cO/fr1My98COr6PvPnz6dt27Z4enpy9OhRXn/9dRo1apRuxWQhhMiKM9fjGHW3uLd//VJ0rVFC24CshKuDLa+2KEe/+v78sO08c3Zc4Fh4DAN+3kf1kh680aoC9ct4mhMaS50gVORfmicy69ev59KlSwwcODDdfjs7O9avX8+0adO4c+cOfn5+dO3alffff1+jSMWjlCpVitdee43XXntN61CEyCAmMZUhvx3gToqROgGFea9dRa1DsjoeTna82TqQgQ0CmLn1PL/uusDBS9H0+XEPdQIK80arCkTdSc6wZItvPh3GLiyH5v0NrVq1QlEUypcvn26/n58fW7ZsITIykqSkJM6cOcPkyZMf2U+mGZMRwrbBscXqv7k81OHmzZsMGzaMkiVLYm9vj4+PD61bt2bHjh05+jylSpVi2rRp6fb9/PPPeHh45OjzZGbGjBm4urqmK6CNj4/H1taWJk2apDt28+bN6HS6dKt079q1C4PB8NjuSpH/mUwKr/9xmLBbdyju4cj0PtVlSPFT8HSx5922Fdn6VlP61y+FnUHPnrAous/cxdC5BzMswnktJolhcw+y5njGSQeFyAny2/y0QlfAtGD4pT0sGaT+Oy1Y3Z9LunbtyqFDh/jll184ffo0K1asoEmTJkRGRubac+a1pk2bEh8fz/79+837tm3bho+PD3v27CEp6b8Py02bNlGyZMl0I9lmz57NyJEj2bp1K1evXs3T2IVl+XL9aTaevIG9jZ6ZL9TA0yVjDZ3IPm9XB8Z1rMSWt5rQq7bfQ4+7N5pk/MpQjCbNx5aIfEgSmacRugIWvgixD/yhjI1Q9+dCMhMdHc22bduYNGkSTZs2xd/fn9q1a/POO+/QsWPHdMcNHjyYsmXL4uHhQbNmzThy5Ij5/nPnztGpUyeKFi2Ki4sLtWrVYv369eb7mzRpwsWLF3n99dfN61xt3ryZAQMGEBMTY943bty4h8b50ksv4eXlhZubW4bnf5wKFSrg6+vL5s2bzfs2b95Mp06dCAgIYPfu3en2N23a1Hw7Pj6eP/74g2HDhtGuXbtcXVBSWLY1xyP4ZuNZAD7rWplgKxuhZA183R3pWLX4I49RgIiYJPaGReVNUKJAkUTmfooCKXey9pMUC6vf4r/vG+lOpP6zZox6XFbOl8VR8C4uLri4uLB8+fJ0w8wf9Pzzz3Pjxg0WLVrEvn37qF69Os2bNycqSv0giY+Pp23btmzYsIFDhw4REhJChw4duHTpEgBLly6lRIkSTJgwgYiICCIiIqhfvz7Tpk3Dzc3NvG/06NGPfP7Vq1dz4MCBDM+fFU2bNmXTpk3m25s2baJJkyY0btzYvD8xMZE9e/akS2QWLlxIYGAgFSpUoG/fvvz0009YwCwDIo+dvh7HqIVq8jywQQBdnpHi3txyIy7p8Qdl4zghskPzYl+LkpoAnxTLoZMp6pWazx5+yTWdd6+CnfNjD7OxseHnn39m8ODBzJgxg+rVq9O4cWN69uxpHs21fft29u7dy7Vr10hOTsbNzY0vvviC5cuXs3jxYoYMGULVqlWpWrWq+bwTJ05k2bJlrFixghEjRlC4cGEMBgOurq7p1rpyd3dHp9M9cv2re89/48YN81D4B58/K5o2bcprr71GWloaiYmJHDp0iMaNG5OamsqMGTMAtRYmOTk5XSIze/Zs+vbtC0BISAgxMTFs2bIlQ22NyL9iElIZ8ut+ElKM1C/jybttA7UOKV/zds3aHEpZPU6I7JArMlaoa9euXL16lRUrVhASEsLmzZupXr26uQvlyJEjxMfH4+XlRYkSJXBzc8PFxYWwsDBzQWx8fDyjR4+mYsWKeHh44OLiwokTJ8xXZJ7Gvef39PQ0X0F68PmzokmTJty5c4d9+/axbds2ypcvj5eXF40bNzbXyWzevJnSpUtTsmRJAE6dOsXevXvp1asXoCZ+PXr0YPbs2U/9uoR1MJoUXv3jEBciEyju4ci3vatjI8W9uap2QGF83R141CBrX3d1KLYQOU2uyNzP1km9MpIVF3fCvG6PP67PYvCvn7XnzgYHBwdatmxJy5Yt+eCDD3jppZcYO3Ys/fv3Jz4+Hl9fXzZu3Eh8fDwuLi7midzujTgaPXo069at44svvqBs2bI4OjrSrVs3UlJSshVHZu49//31LfdkZ8RT2bJlKVGiBJs2beL27dvmVdGLFSuGn58fO3fuZNOmTTRr1sz8mNmzZ5OWlkaxYv9dWVMUBXt7e7799lvc3aVGIr+b8s8pNp+6iYOtWtxb2FmWH8ltBr2OsR2CGDb3IDoy73Af1bK8zCcjcoUkMvfT6bLUvQNAmWbgVkwt7M3011an3l+mGehzfzHBoKAgli9fDkD16tW5du0aNjY2lC5dGjc3twwz0u7YsYP+/fvTpUsXQE0+Lly4kO4YOzs7jEbjY/c96P7nL1Wq1FO9rqZNm7J582Zu377Nm2++ad7fqFEjVq9ezd69exk2bBgAaWlp/Prrr0yZMoVWrVqlO0/nzp35/fffGTp06FPFIyzb38cimL5Zveo3qWsVKe7NQyHBvnzft3qGeWRs9DrSTApbz9zi+ZpZ7GoXIhvkeuuT0hsgZNLdGw9+y7h7O+SzHE9iIiMjadasGXPnzuXo0aOEhYWxaNEiJk+ebF6nqkWLFtSrV4/nnnuOjRs3cuHCBXbu3Ml7771nHs5crlw5li5dyuHDhzly5Ai9e/fOsLJzqVKl2Lp1K+Hh4dy6dcu8Lz4+ng0bNnDr1i0SEhIyxHjv+Tt37sw///yT6fNnVdOmTdm+fTuHDx82X5EBaNy4MTNnziQlJcVcH7Nq1Spu377NoEGDCA4OTvfTtWtX6V7K505di2P0IrW4d3DDADpVe/RIGpHzQoJ92T6mGb8PrstXPavx++C6LBpaD4Nex8ojV1n77zWtQxT5kCQyTyOoI3T/FdwemLHSrZi6P6hj5o97Ci4uLtSpU4cvv/ySRo0aERwczAcffMDgwYP59ttvAXVNoL///puGDRsyYsQIAgMD6dmzJxcvXqRo0aIATJ06lUKFClG/fn06dOhA69atqV69errnmjBhAhcuXKBMmTJ4eXkBUL9+fYYOHUqPHj3w8vJi8uTJGWK89/yNGjViwIABlC9fPsPzX7hwwTyk+1GaNm1KYmIiZcuWNT8W1EQmLi7OPEwb1G6lFi1aZNp91LVrV/bv38/Ro0ez2NLCmsQkpDLkN7W4t0FZT8aESHGvVgx6HfXKeNKpWnHqlfHkmZKFGNKoNADvLTtOdMLTd18LcT+LWP06N8XGxuLu7p7p6plJSUmEhYUREBDwdCsXm4xqzUz8dXApqtbE5EF30mPDMpmIjY3NtGtJa5s2beK5557j/PnzFCpUSOtwHulR7Zhj76ECIDU1lb///pu2bdvm6OJyRpPCgJ/3sfX0TUoUcmTliGcplI/rYnKrHXNTUqqR9t9s5+yNeJ57pjhTe1TTOiSrbEdLlJvt+Ki/3/ezrL9u1kpvgICGULmb+q8FJDGW7u+//+bdd9+1+CRGWL7P155i62m1uHfWCzXzdRJjrRxsDUzuVgW9DpYeCmfjyetahyTyEUlkhCY+//zzdMW7QjyJVUevMmOLWtw7uVtVgopZ4FpsAoDqJQvxUkO1i+mdpceISUzVOCKRX0giI4SwSiciYnlzkVrz9L9GpelYNacmsxS5ZVTL8pQu4sz12GQ+/itU63BEPiGJjBDC6kQnpDDkt/0kphppWK4Ib0lxr1W418Wk08HC/VfYcvqm1iGJfEASGZB1eMQTk/dO3kszmhj5+yEuRyXiV9iRb3o9IxOtWZGapQrTv34pAN5ZcpS4JOliEk+nQCcy9yqsM5sLRYisuPfekVEPeefztafYduYWjrYGZr1QEw8nKe61Nm+2rkDJwk5cjUni09UntQ5HWLkCPbOvwWDAw8ODGzduAODk5IROl3++2ZlMJlJSUkhKSrK44dfWJLN2VBSFhIQEbty4gYeHBwaDjFTLCyuOXGXm1vMAfP58FSr6SnGvNXKys2FS1yr0+mE38/dcon1lX+qXLaJ1WMJKFehEBjCv4nwvmclPFEUhMTERR0fHfJWg5bVHtaOHh8cjVwIXOSf0aixvLVZn7h3auAztq0hxrzWrV8aTF+r689vui7y15ChrX2uEs32B/5MknkCBf9fodDp8fX3x9vYmNTV/9dWmpqaydetWGjVqJF0fT+Fh7WhraytXYvLI7TtqcW9SqolG5b14s3UFrUMSOeDtNoFsPHmDK7cTmbzmJOM7BWsdkrBCBT6RucdgMOS7P0oGg4G0tDQcHBwkkXkK0o7aSjOaGPH7Qa7cTqRkYSe+7llNinvzCWd7tYup7+w9/LLrIm0r+1KntKfWYQkrI4UTQgiLNmnNSXacjcTJzsCsF2tIcW8+82y5IvSqra6K/daSoySmGDWOSFgbSWSEEBbrz8Ph/LAtDIAvnq9KoI8U9+ZH77StiK+7AxcjE/jin1NahyOsjCQyQgiLdDw8hrcWqzP3vtykDG0r+z7mEcJauTnY8ulzlQH4aUcYBy5GaRyRsCaSyAghLE7UnRT+99sBktNMNKngxRutpLg3v2tSwZtuNUqgKPDm4qMkpUoXk8gaSWSEEBYlzWhixPyDhEcnUsrTia96yMy9BcUH7YLwdrXn/M07fLn+tNbhCCshiYwQwqJ8uvokO89F4mxnYNaLNXF3kpFiBYW7ky2fdFG7mH7Yep7Dl6O1DUhYBUlkhBAWY+nBK8zerhb3TulelfJFXTWOSOS1FkFF6VytGCYF3lx0hOQ06WISjyaJjBDCIhwPj+GdpccAGNG0LCHBUtxbUI3tUIkiLvacuRHPNxvOah2OsHCSyAghNBcZn2wu7m1awYvXW5bXOiShoULOdnzUuRIA3285x/HwGI0jEpZMEhkhhKZSjSaG3y3uDSjizLSeUtwrICTYl3ZVfDGaFEYvOkJKmknrkISFkkRGCKGpT/4+we7zUWpx7ws1cHeU4l6hmtCxEoWd7Th5LY7pm6WLSWROEhkhhGaWHLjCnB0XAJjaoxrlpLhX3MfTxZ7xHdUupm83nuVERKzGEQlLJImMEEITR69E884ytbj3lWZlaV3JR+OIhCVqX8WX1pWKkmZSeHPxEVKN0sUk0pNERgiR64wmhT1hURy4pWNPWBTXY5P4328HSEkz0TzQm9daSHGvyJxOp2Ni52A8nGw5Hh7LrK3ntQ5JWBgbrQMQQuRva45HMH5lKBExSYCBX8/sx86gI8WoUNrLmS97VkMvxb3iEbxdHRjbIYjX/zjCV+vP0DKoqMwxJMw0vSJTqlQpdDpdhp/hw4cDkJSUxPDhw/H09MTFxYWuXbty/fp1LUMWQmTDmuMRDJt78G4S858UowLAC3X9cXOQ4l7xeJ2rFad5oDcpRhNvLj5KmnQxibs0TWT27dtHRESE+WfdunUAPP/88wC8/vrrrFy5kkWLFrFlyxauXr3Kc889p2XIQogsMpoUxq8MRXnEMbO2nsdoetQRQqh0Oh0fd6mMq4MNRy5Hm2eAFkLTRMbLywsfHx/zz6pVqyhTpgyNGzcmJiaG2bNnM3XqVJo1a0aNGjWYM2cOO3fuZPfu3VqGLYTIgr1hURmuxDwoIiaJvWFReRSRsHY+7g580D4IgCnrTnPuZrzGEQlLYDE1MikpKcydO5dRo0ah0+k4cOAAqamptGjRwnxMYGAgJUuWZNeuXdStWzfT8yQnJ5OcnGy+HRurDtdLTU0lNTU1d1+Ehbn3egva685p0o5PJiL6TpaPS011y+Vo8o+C/n7sXKUoKw97su1sJG8uOsL8QbWeaALFgt6OOSU32zGr57SYRGb58uVER0fTv39/AK5du4adnR0eHh7pjitatCjXrl176Hk+/fRTxo8fn2H/P//8g5OTU06GbDXuddmJpyPtmD3nY3SA4fHH/XuYv68cyv2A8pmC/H5s7gZ7DQYOXormnTlraOL75N2TBbkdc1JutGNCQkKWjrOYRGb27Nm0adOGYsWKPdV53nnnHUaNGmW+HRsbi5+fH61atcLNrWB960tNTWXdunW0bNkSW1spqHxS0o5PxmhSWDxlK9dikzO9Xwf4uNszokcjWZIgG+T9qDKUuMIHK0JZHW7L8M718ffM3hdVaceckZvteK9H5XEsIpG5ePEi69evZ+nSpeZ9Pj4+pKSkEB0dne6qzPXr1/HxefjEWfb29tjb22fYb2trW2DfrAX5teckacfssQUqFXPnWuyNDPfdS1vGdqiEg71dnsaVXxT092PfeqVYE3qdHWcjeffPUBYMrvtEw/gLejvmlNxox6yezyImxJszZw7e3t60a9fOvK9GjRrY2tqyYcMG875Tp05x6dIl6tWrp0WYQohsmL/nEhtOqkmMxwPrJ/m4O/B93+qEBPtqEZrIB3Q6HZ89VwUnOwN7w6L4bfdFrUMSGtH8iozJZGLOnDn069cPG5v/wnF3d2fQoEGMGjWKwoUL4+bmxsiRI6lXr95DC32FEJZh+5lbfPDncQBGtSzP8KZl2XX2Bv9s20OrhnWoV9ZbupPEU/Mr7MTbbQL58M9/mbTmJM0CvfErXDBrIQsyza/IrF+/nkuXLjFw4MAM93355Ze0b9+erl270qhRI3x8fNJ1PwkhLM/ZG3EMm3cAo0mhyzPFGdmsLAa9jjoBhalRRKFOQGFJYkSO6VvHnzoBhUlIMTJmyVEUReYlKmg0T2RatWqFoiiUL59xrRUHBwe+++47oqKiuHPnDkuXLn1kfYwQQltRd1IY+PN+4pLSqOlfiM+6Vkank6RF5B69XsekrlVwsNWz81wk8/de0jokkcc0T2SEEPlDcpqR//22n0tRCfgVdmTmCzWwt3n88GshnlapIs682ToQgE//Pkl4dKLGEYm8JImMEOKpKYrCO0uOse/CbVztbfipXy08XTKOHhQit/SvX4oa/oWIT07jbeliKlAkkRFCPLXvNp1l6aFwDHod0/tWp5ysTCzymEGvY3K3Ktjb6Nl25haL9l/ROiSRRySREUI8lVVHr/LFP6cBGN+xEg3LeWkckSioyni5MKqlWm858a9Qrj1mrS+RP0giI4R4Yocu3eaNhUcAGNgggL51/TWOSBR0LzUsTVU/D+KS0nh32THpYioAJJERQjyRK7cTGPzrAZLTTDQP9Oa9dhW1DkkIDHodX3Srgp1Bz8aTN1h2KFzrkEQuk0RGCJFtcUmpvPTLfm7FJxPo48pXvZ6RuWGExShX1JVXW5QDYPzKUG7EShdTfiaJjBAiW4wmhVd+P8TJa3F4udrzU/9auNhrPkm4EOkMaVSa4OJuxCSm8v7y49LFlI9JIiOEyJaP/gpl06mb2Nvo+eHFmhTzcNQ6JCEysDXo+bxbVWwNOv4Jvc7KoxFahyRyiSQyQogs+233RebsuADAlz2qUc3PQ9N4hHiUir5uDG9aFoCxfx7nVnyyxhGJ3CCJjBAiS7acvsm4Ff8C8GbrCrStLCtXC8v3cpOyBPq4cjshlbF//qt1OCIXSCIjhHis09fjGDHvIEaTQtfqJXi5SRmtQxIiS+xs9HzxfFUMeh1/HYtg9THpYspvJJERQjzSrfhkBv68j7jkNGqXKswnzwXLQpDCqgQXd2dYYzX5/uDP40TdSdE4IpGTJJERQjxUUqqR//12gCu3E/H3dGKGLAQprNTI5mUpX9SFW/EpjFtxnD1hURy4pWNPWBRGk4xosmaSyAghMqUoCmOWHOXAxdu4Odgwu18tCjvbaR2WEE/E3sbA592qogNWHImg70/7+fWMgb4/7efZSRtZc1y6nKyVJDJCiEx9veEsfx6+io1ex/d9a1DW20XrkIR4KhExiWR27eVaTBLD5h6UZMZKSSIjhMhgxZGrfLleXQhyYudgGpQtonFEQjwdo0lh/MrQTO+7l9yMXxkq3UxWSBIZIUQ6By7eZvQidSHIwQ0D6FW7pMYRCfH09oZFEfGI1bAVICImib1hUXkXlMgRksgIIcwuRyUw5Nf9pKSZaFGxKG+3kYUgLYrJiO7idopH7UJ3cTuYjFpHZDVuxGVtvaWsHicshyyQIoQA1IUgB/2yj8g7KQT5uvFVz2qyEKQlCV0Ba8ZgE3uVmgAXvwe3YhAyCYI6ah2dxfN2dcjR44TlkCsyQgjSjCZGzD/E6evxeLvaM7t/TZxlIUjLEboCFr4IsVfT74+NUPeHrtAmLitSO6Awvu4OPCo193V3oHZA4TyLSeQMSWSEEExcFcqW0zdxsNUzu18tfN1lIUiLYTLCmjGQ6Xibu/vWvC3dTI9h0OsY2yEI4KHJzNgOQXIV0gpJIiNEAffLzgv8susiANN6VKNyCXeNIxLpnN+S8UpMOgrEhsPFnXkWkrUKCfbl+77V8XHPvPvI0U6uQloj+V8TogDbdOoG41eqC+mNCQkkJLgALwRpMqrJQPx1cCkK/vVBn8uzGKelQNxVNVGJCVcTktjwu7evqP/euZG1c8Vfz91Y84mQYF9aBvmw6+wN/tm2h1YN67Dh1C3m7LjAuBX/sua1hjJ7tZWRREaIAurUtThGzj+ESYHuNUswtHFprUPSzt1C2nRXPp62kDYtBeIiMiYm95KVmPCsJylZ4VI0586Vzxn0OuoEFCbyhEKdgMJULVmYVUcjCLt1hx+3hTG8aVmtQxTZIImMEAXQzTh1Icj45DTqli7MR50rF9yFIO8V0j5Yg3KvkLb7rxmTGXOS8kBicv8VlfgbGc+ZGYO9mjS5l1D/dSue/raLL/zQWI3nYedzK65eQRJPxNXBlnfbBvL6H0f4duNZOj9TnOIeUidmLSSREaKASUo1MuS3/YRHJxJQxJkZfWtgZ1NAy+WyUkj753C4sO1u0nI3cclykmJ3Nzm5m5S4F7+bqBT/b9vJEx6XRIZMupts6TJ/3pYTcr8bLJ/rXK04v++5zN4LUXz8VyjT+9TQOiSRRZLICFGAKIrCm4uPcuhSNO6OtszuVxMPpwK8EOTFnY8ppAWSY2HvrIz7zUlK8YxXUe7tcy7y+CQlK4I6qleGHuz+0ulBMcGlXVC529M/TwGm0+kY36kS7b/Zzt/HrrHtzE0alvPSOiyRBZLICFGAfLn+DCuP3FsIsjqlvQr4QpBZLZAtHwJlmt+9inL3CouTJ+jz8EpWUEcIbEfa+a0c3raWag1bY2NKhfnPw74foXRTqNg+7+LJhyr6uvFiPX/m7LjA2BX/subVRgX3aqUVkf8hIQqI5YfC+XrDGQA+6VKZ+mVkIcgsF8jWGwF1hkBgOyj2DLh45W0Sc4/egOL/LOGF66H4PwvlW6mxAawYodbpiKfyesvyFHGx5/zNO8zeHqZ1OCILJJERogDYfyGKtxYfBeB/jUvTvZafxhFZCP/66hWWh9JZfiFt87HgWw0Sb8Oy/8nEeE/JzcGWd9oEAvDNxjNcjU7UOCLxOJLICJHPXYpMYMhvB0gxmmhdqShjWgdqHZLl0Bug5MOSlLu1LSGfWXYhrY0ddPsJbJ3VouTtU7WOyOo9V704tUoVIiHFyMd/ndA6HPEYksgIkY/FJqUy8Jd9RN1JIbi4G1/2qIZepmD/z4Xt8O9SddvBI/19bsUyH3ptiTzLQLsv1O1Nn8LlvdrGY+V0Oh3jOwaj18FfxyLYfuaW1iGJR5BERoh8Ks1oYvi8g5y9EY+PmwOz+9XCSaZg/0/8TVg8SB31U60PvHUe+q2CrrPVf187Zh1JzD1Ve0FwN1CMsGQQJMVoHZFVCyrmxov1SgEwdsVxUtJM2gYkHkoSGSHyIUVRGLfyX7aduYWjrYEf+9WkqFvm68sUSCYTLBsC8dfAKxDafq52HwU0VIcxBzS07O6kzOh00H4qeJSE6Euw6nVQsjDXjXgotfDXjnM37zBnhxT+WirNE5nw8HD69u2Lp6cnjo6OVK5cmf3795vv79+/PzqdLt1PSEiIhhELYfnm7LjA3N2X0Ongq57VCC4uC0Gms30qnNsINo7w/M9g56x1RDnDwR26/gQ6AxxfAofnax2RVXN3tOXtNhUB+GrDGSJipPDXEmmayNy+fZsGDRpga2vL6tWrCQ0NZcqUKRQqVCjdcSEhIURERJh/fv/9d40iFsLyGE0Ku85F8ufhcHadi2R96DU++isUgHfaBNKqko/GEVqYizth08fqdrsvwLuitvHkNL9a0PRddfvvN+HWWW3jsXLPPVOcGv5S+GvJNO0wnzRpEn5+fsyZM8e8LyAgIMNx9vb2+PjIh7EQD1pzPILxK0OJiEky77s3iX3PWn4MbliAF4LMzJ1bsHigWhdTtZdaG5MfPfs6nN+sjmJaMhAGrQMbe62jskp6vY4JnSrR4ZvtrDoaQe86t2QOJgujaSKzYsUKWrduzfPPP8+WLVsoXrw4L7/8MoMHD0533ObNm/H29qZQoUI0a9aMjz76CE9Pz0zPmZycTHJysvl2bGwsAKmpqaSmpubei7FA915vQXvdOc1S23Htv9cZueBIhpV37t2uF1CItLS0vA7roTRvR8WEYckQ9HERKEXKk9bqM7Cg9smqLLdjh+nY/NgIXcQRjOvGYWoxIQ+isx7ZeT+W93Kid20/5u65zIfLj7NieD1sDZpXZliE3Py9zuo5dYqiXTWYg4NafDhq1Cief/559u3bx6uvvsqMGTPo168fAAsWLMDJyYmAgADOnTvHu+++i4uLC7t27cJgyFiMN27cOMaPH59h//z583FycsrdFyREHjEpMP6ggegUMM93ko6Chx2MrW5ERluryl1bSVDEItJ0dmytMI44xxJah5TrfKIPUCfsKwB2lRnNDbcqGkdkvRLS4ONDBuLTdHTyN9KsmBRS57aEhAR69+5NTEwMbm5uDz1O00TGzs6OmjVrsnPnTvO+V155hX379rFr165MH3P+/HnKlCnD+vXrad68eYb7M7si4+fnx61btx7ZEPlRamoq69ato2XLltja2modjtWyxHbcExZF35/2P/a4uQNrUiegcB5E9HhatqPu8m4Mv3VCpxhJa/cVihV3KWW3HfVrxmA4MBvF2Yu0l7aAi3ceRGn5nuT9uPhgOO8s+xdnOwNrX20gIwHJ3d/r2NhYihQp8thERtOuJV9fX4KCgtLtq1ixIkuWLHnoY0qXLk2RIkU4e/ZspomMvb099vYZ+4JtbW0t5o9QXivIrz0nWVI7RiZkrUskMiHNYmK+J8/b8U6kOtRaMUKVHtjU7JczK1JrLMvtGPIxXN6F7kYotn+9Ar0XabNOlIXKzvuxRy1/Fh4I59ClaCb/c5avez2Ty9FZj9z4vc7q+TR9Nzdo0IBTp06l23f69Gn8/f0f+pgrV64QGRmJr69vbocnhMXyds3aN8GsHpdvmUzq+kNxV8GzHLSbmi+SmGyxdVSXMLBxgLPrYfd0rSOyWnq9jomdgtHpYMWRq+w6F6l1SAKNE5nXX3+d3bt388knn3D27Fnmz5/PrFmzGD58OADx8fG8+eab7N69mwsXLrBhwwY6depE2bJlad26tZahC6Gpst4u2Dyi+EUH+Lo7UNtCupU0s/NrOLtO/SPe/Rewd9E6Im14V4TWn6jb68fB1cNaRmPVgou706dOSUCd8TfVKDP+ak3TRKZWrVosW7aM33//neDgYCZOnMi0adPo00ftvzYYDBw9epSOHTtSvnx5Bg0aRI0aNdi2bVum3UdCFAQ34pLo8+Nu0kyZl7fdS2/GdgjCUJArfS/thg13R+q0mQxFK2kbj9ZqDoTA9mBKVYegJ8drHZHVGt2qAoWd7Th9PZ5fdl7QOpwC74lqZFJTU7l27RoJCQl4eXlRuPCTf+tr37497du3z/Q+R0dH1q5d+8TnFiK/uRqdSJ8f9xB26w5F3ewZ2rgMs7aeTzePjI+7A2M7BBESXIC7XxOi7s4XY4TKz0P1F7WOSHs6HXT8BsIPQtQ5WD0GOn+ndVRWycPJjjEhFRiz5BjT1p+hY9VieEvhr2aynMjExcUxd+5cFixYwN69e0lJSUFRFHQ6HSVKlKBVq1YMGTKEWrVq5Wa8QhRYFyPv0PuHPYRHJ1KikCPzX6pLSU8nXqxXir1hUdyIS8LbVe1OKtBXYkwmWDYUYsPBsyy0/7Lg1cU8jFNh6PoD/NweDs+FMk3VtaVEtj1fw4/f917m8OVoPvn7BNN6SuGvVrLUtTR16lRKlSrFnDlzaNGiBcuXL+fw4cOcPn2aXbt2MXbsWNLS0mjVqhUhISGcOXMmt+MWokA5eyOe7jN3ER6dSOkiziz8Xz1KeqrzIhn0OuqV8aRTteLUK+NZsJMYgF3fwJm1YLBX11Gyd9U6IstS6lloNFrdXvU63L6gaTjW6t6MvzodLD98lT3npfBXK1m6IrNv3z62bt1KpUqZ9zHXrl2bgQMHMmPGDObMmcO2bdsoV65cjgYqREEVejWWF2bvIfJOChWKuvLbS7VlNNLDXNoD6+9OiNlmEvhU1jYeS9X4bTi/Ba7shSWDYcBqMGg6G4dVqlLCg961SzJvzyU+/PNfVr3yrMz4q4Estfjvv//+0CTmfvb29gwdOpSBAwc+dWBCCDh8OZqes3YReSeF4OJuLBhSV5KYh7m/Lia4G9Tor3VElstgA11/BHt3NZnZ8pnWEVmtN1tXoJCTLaeux/Hrrotah1MgZTl1PH/+PBpOAixEgbM3LIq+P+4hNimNGv6FmD+4LoWc7bQOyzIpCiwfBrFXoHAZ6DBN6mIep5A/dPhS3d76BYRt0zYeK+XhZMdbIYEATFt3mhtxSY95hMhpWU5kypUrx82bN823e/TowfXr13MlKCEKum1nbvLiT3uIT06jfhlPfh1YGzcHy5qh16Ls+hZOr5G6mOwK7grP9AUUWDpEvaolsq1HTT+qlnAnLjmNz/4+qXU4BU6WE5kHr8b8/fff3LlzJ8cDEqKgWxd6nUE/7ycp1UTTCl781L8WzvZSv/BQl/epk7wBhHwKvrIwYra0mayO7oq7Cn+OUK9uiWxRC3/VGX+XHgpnb5gkhHlJqpKEsCArj1xl2NwDpBhNtAn2YeYLNXGwzbjKu7grIQoWDwBTGlR6Tp30TWSPnTN0nQ16Wzj1F+yfrXVEVqmqnwc9a6kz/n7453HSZMbfPJPlREan06F7oM/5wdtCiCe3+MAVXl1wiDSTQpdnivNNr2ews5HvGg+lKPDncIi5DIVLQ4evpC7mSRWrBi3vjvZa+x5cD9U0HGv1VusKeDjZcvJaHL/tlsLfvJLl69WKotC/f3/z0gBJSUkMHToUZ2fndMctXbo0ZyMUogD4bdcFPvjzXwB61fbj486V0Rf0+WAeZ/d0OPU3GOzUuhgHN60jsm51hsG5jerCkosHwpBN6oKTIssKOdvxZusKvLfsOFP/OU37KsXwcpXldHJblr/u9evXD29vb9zd3XF3d6dv374UK1bMfPvejxAie2ZtPWdOYgY0KMUnXSSJeawr+2Hdh+p260/At6q28eQHej10/h6cveHmCfjnfa0jsko9a5WkcnG18PfT1Se0DqdAyPIVmTlz5uRmHEIUOIqi8PWGs3y5/jQAw5uWYXSrCtJl+ziJt2HR3bqYoM5Q6yWtI8o/XLyhywyY+xzs+xHKNIPAdlpHZVUMeh0TOwfTZfoOlh4Mp3ftktQsVcBXoc9l0gEvhAYUReGzNSfNScybrSvwZutASWIeR1Fg+XCIuQSFAqDj11IXk9PKNod6I9TtP4dDTLi28Vihan4e9KjpB8AHf/4rhb+5LMuJTFJSEp999hlvv/02ERERuRmTEPmayaQwdsW/zNxyHoAP2gcxvGlZjaOyEntmqCNrzHUx0p2dK5qPBd9q6tWvZf8Dk1HriKzOWyGBuDvaciIilnl7LmkdTr6W5URm0KBBnDlzBk9PT1q0aJGbMQmRbxlNCmOWHOXXXRfR6eCTLpUZ9GyA1mFZhysH4J8P1O3Wn6gjbUTusLGDbj+BrTNc2Abbp2odkdUp7GzH6NYVAPjin1PcjEvWOKL8K8uJzKZNmxg1ahRvvvkmZ86c4caNG7kZlxD5TqrRxGt/HGbRgSsY9Dqmdq9K7zoltQ7LOiRGw+L+YEqFoE5SF5MXPMtA28/V7U2fwuW92sZjhXrXLklwcTfiktKYtEZm/M0tWU5kGjduzFdffcUXX3xByZIl8fb2zs24hMhXktOMvDzvICuPXMXWoOPbXs/Q5ZkSWodlHe7NFxN9CQqVgo7fSF1MXqnWW12AUzHCkkGQFKN1RFbFcHfGX1DniTpw8bbGEeVPWU5kZs+eTalSpbh+/TobNmzIzZiEyFcSU4y89Mt+1oVex85Gz6wXatKmsq/WYVmPPTPh5Cp15tluc6QuJi/pdNB+KniUVBPJVa/LEgbZVL1kIbrXVL+0fLD8OEaTtF9Oy3Ii4+TkxLvvvsvnn3+Ov79/bsYkRL4Rn5xGvzl72XbmFk52Bn7uX4umgXI1M8vCD/43n0nrj6F4dW3jKYgc3KHrT6AzwPElcHi+1hFZnTEhgbg52BAaEcu8PTLjb06T4ddC5JKYhFT6/riHvWFRuNrb8Nug2tQvW0TrsKxHYjQs6q/WxVTsALWHaB1RweVXC5q+q27//SbcOqttPFbG08WeN+8V/q49RWS8FP7mpCwlMkOHDuXKlStZOuEff/zBvHnzniooIaxdZHwyvX7YzeHL0Xg42TJ/cF1q+MukWFmmKLBiJERfVLs1On4rdTFae/Z1KNUQUu/AkoGQJn+Ms6N3HX8qFXMjVgp/c1yWEhkvLy8qVapE27Zt+f7779m3bx/h4eFERkZy9uxZVqxYwVtvvUXJkiX58ssvqVy5cm7HLYTFuh6bRI9ZuwmNiKWIiz0LhtSlcgmp68iWvT/AiRVqXczzP4Ojh9YRCb0BnpsFjoUg4ghsmKB1RFbl/sLfhfuvcPCSFP7mlCwlMhMnTuT06dM0aNCA6dOnU7duXfPIpQoVKvDiiy9y/vx5Zs2axe7du6lSpUpuxy2ERbpyO4HuM3dx9kY8vu4OLPxfXQJ9ZDHDbLl6CP55T91uNRGK19A2HvEft2LQ6Tt1e9e3cGa9tvFYmRr+hehWQy38/fBPKfzNKVmukSlatCjvvfcex44d49atWxw8eJAdO3Zw6tQpbt++zeLFiwkJCcnNWIWwaGG37tB9xi4uRibgV9iRhf+rR2kvF63Dsi5JMWpdjDEFAttDnaFaRyQeFNgOag1Wt5cPhXiZUyw73m4TiKuDDcfDY5m/V2b8zQlPVOxbqFAhqlatSt26dSlbtqysDyMKvNPX4+g+cxdXY5Io7eXMov/Vx6+wk9ZhWZd7dTG3L6h1MZ2kLsZitZoI3kFw5yYsHwYmWUsoq4q42DO61X+Fv1F3UjSOyPrJqCUhntLx8Bh6zNzFzbhkAn1c+WNIPXzcHbQOy/rs+xFC/7w7X8zPai2GsEy2juoSBjYOcHY97J6udURWpU+dklT0dSMmMZXJUvj71CSREeIpHLx0m14/7OZ2QipVS7izYEhdvFzttQ7L+lw9DGvvDu9tOR5KSF2MxfOuqK55BbB+nPp/KLLExqBnYqdKACzYd5lDUvj7VCSREeIJ7ToXyQs/7iEuKY1apQox96U6eDjZaR2W9UmK/a8upkJbqPuy1hGJrKo5UK1lMqWqSxgkx2sdkdWoWaowz1UvDsCHf/4rhb9PQRIZIZ7A5lM36D9nL3dSjDxbtgi/DKyNq4Ot1mFZH0WBla/A7TBw91NHxEhdjPXQ6dS1r1yLQeRZWD1G64isyjttKuJqb8Ox8BgW7JPC3yf1RIlMWloa69evZ+bMmcTFxQFw9epV4uMlGxf5i9GksCcsigO3dOwJi8JoUlj77zUG/7qf5DQTLSp682O/mjjZ2WgdqnXaPxv+XQZ6G3UdJSeZNNDqOBWGrj8AOjg8F44uhLBtcGyx+q/JqHWEFsvL1Z5RrcoD8LkU/j6xbH/6Xrx4kZCQEC5dukRycjItW7bE1dWVSZMmkZyczIwZM3IjTiHy3JrjEYxfGUpETBJg4Ncz+/FwtCU2KRWTAu0q+zKtZzVsDXJh84lEHIE1d+tiWoxTp8EX1qnUs9BoNGz9HJYOAe7rJnErBiGTIKijZuFZshfq+vPHvsucvBbH52tP8ulzMg9bdmX7E/jVV1+lZs2a3L59G0dHR/P+Ll26yKrYIt9YczyCYXMP3k1i/hOdqCYxdQIK85UkMU/OXBeTDOXbQL0RWkcknpZ3pbsbD9R6xEbAwhchdEWeh2QNbAx684y/C/Zd5sjlaG0DskLZ/hTetm0b77//PnZ26YsaS5UqRXh4eI4FJoRWjCaF8StDH/w4TudSVILMn5QdJiO6i9spHrUL3YXtsOIViDqv1sV0ni51MdbOZIR/3n3InXd/k9a8Ld1MD1E7oDDPPVMcRVFn/DVJ4W+2ZDuRMZlMGI0Z34xXrlzB1dU1R4ISQkt7w6IyXIl5UERMEnvDovIoIisXugKmBWMztzM1L36PzbzOELoMdHp1LhKpi7F+F3dC7NVHHKBAbLh6nMjU220DcbW34ciVGP7Yf1nrcKxKthOZVq1aMW3aNPNtnU5HfHw8Y8eOpW3bttkOIDw8nL59++Lp6YmjoyOVK1dm//795vsVReHDDz/E19cXR0dHWrRowZkzZ7L9PEJk1Y24Rycx2T2uQAtdoXYrZPZHTjFB3LW8j0nkvPjrOXtcAeTt6sBrLdXC30lrTnJbCn+zLNuJzBdffMGOHTsICgoiKSmJ3r17m7uVJk2alK1z3b59mwYNGmBra8vq1asJDQ1lypQpFCr034yekydP5uuvv2bGjBns2bMHZ2dnWrduTVKS/BERucM7ixPaebvK7L2PZDLCmjFkqJkw00l3Q37hUjRnjyug+tXzp0JRV6ITUpm09iS7zkXy5+Fwdp2LlHlmHiHbo5b8/Pw4cuQIf/zxB0eOHCE+Pp5BgwbRp0+fdMW/WTFp0iT8/PyYM2eOeV9AQIB5W1EUpk2bxvvvv0+nTp0A+PXXXylatCjLly+nZ8+e2Q1fiEe6fSeFn3dceOQxOsDH3YHaAdIl8kjZ6W4IaJhnYYlc4F9fHZ0UG0HmiatOvd+/fl5HZlXUwt9K9Ji1mwV7L7Ng739dTL7uDoztEERIsK+GEVqmbF2RSU1NpUyZMpw5c4Y+ffowefJkpk+fzksvvZTtJAZgxYoV1KxZk+effx5vb2+eeeYZfvjhB/P9YWFhXLt2jRYtWpj3ubu7U6dOHXbt2pXt5xPiUXaevUWbr7axNvQ69wYjPViCeu/22A5BGPRSoPpI0t1QcOgN6hBrIONvDYACIZ+px4lHup2QeZfStZgkhs09yJrjEXkckeXL1hUZW1vbHO3SOX/+PN9//z2jRo3i3XffZd++fbzyyivY2dnRr18/rl1T+8+LFk1/ObJo0aLm+x6UnJxMcnKy+XZsbCygJmGpqak5Frs1uPd6C9rrzq6UNBNfbjjL7B0XUBQoXcSJqc9X4crtRD76+yTXYv97P/m42/Nem0CaVygi7foYOkfPLH3ApDl6okhbZpnF/l6Xa4Ou6xwM/7yLLi79lTjFyYu00s3BgmK2xHY0mhTGrfg30/sU1BRx/Mp/aVLO02K+SOVmO2b1nDpFUbLV8fbJJ59w+vRpfvzxR2xsnm42Uzs7O2rWrMnOnf9Vsr/yyivs27ePXbt2sXPnTho0aMDVq1fx9f3vclr37t3R6XT88ccfGc45btw4xo8fn2H//PnzcXJyeqp4Rf5zPRF+PWPgyh31Q6F+UROd/U3Y3/3iaFLgXKyO2FRws4UybgoW8vlh+RQTIcdGYmeMe9h3dBJtC7Ou0lR1BJPIHxQTnvGncEiNJtXgzDMXZ+FgjOVIiRe54NXi8Y8vwM7E6Pg29PFXrUYEGSnnnv9rZhISEujduzcxMTG4ubk99LhsZyL79u1jw4YN/PPPP1SuXBlnZ+d09y9dujTL5/L19SUoKCjdvooVK7JkyRIAfHx8ALh+/Xq6ROb69etUq1Yt03O+8847jBo1ynw7NjYWPz8/WrVq9ciGyI9SU1NZt24dLVu2xNZW1gG6n6IoLNh/hamrT5GUaqKQky0fd6pEyyDvDMdKOz6hqHPYhJrQGf/7NnmPcveWXceptA1sr0l41so63o///Z/q93vB2jFUub2GoF4Twc75EY/LO5bYjiuPRkDoscceV7pSNdpWsYxamdxsx3s9Ko+T7UTGw8ODrl27ZjugzDRo0IBTp06l23f69Gn8/f0BtfDXx8eHDRs2mBOX2NhY9uzZw7BhwzI9p729Pfb2GUed2NraWsybNa8V5Neemag7KYxZcpR1oWptRsNyRfji+aoUdXv0KCRpx2xIiIKFfSDlDhQujS41EeL+69vXuRWDkM+wkWnrn5jVvB9rDYQ909FFX8T24Gxo+IbWEaVjSe3o65G1JM/Xw9liYr4nN9oxq+fLdiJz/wijp/X6669Tv359PvnkE7p3787evXuZNWsWs2bNAtQ5al577TU++ugjypUrR0BAAB988AHFihWjc+fOORaHKDi2nbnJGwuPcCMuGTuDnrdCKjCwQQB66S/KOWkp6twxkWfVmXsHrAHnIqSd38rhbWup1rA1NqUbSeFnQWFjB03fg2VDYMdXUHMgOBZ6/OMKoNoBhfF1d+BaTNLDxn7JiMlMaNoxXatWLZYtW8bvv/9OcHAwEydOZNq0afTp08d8zFtvvcXIkSMZMmQItWrVIj4+njVr1uDgIHN4iKxLTjPy0apQXpi9lxtxyZT1dmHZ8Pq81LC0JDE5SVHgr1FwYRvYuUCvBeBaFPQGFP9nCS9cD8X/WUliCprK3cA7CJJi1GRGZMqg1zG2g1pu8bC6MhkxmVG2r8gEBAQ8co2Z8+fPZ+t87du3p337h/eR63Q6JkyYwIQJE7J1XiHuOXM9jlcWHOZEhNrf2rduSd5rG4SjnfwxzXE7v4FDv/23/IBPsNYRCUugN0CzD2BBL9g9A+oMBVcfraOySCHBvnzftzrjV4ZmulRKEZesTdhZkGQ7kXnttdfS3U5NTeXQoUOsWbOGN998M6fiEuKpKYrC3N0X+eivEySnmSjsbMfkrlVoESSzi+aKE6tg3YfqdutPoHxrbeMRlqVCGyhRG67shS2Tof1UrSOyWCHBvrQM8mFvWBQ34pLwdnVg8YHLLDkYzpglR/nrlYY42MoXsXuynci8+uqrme7/7rvv0q2RJISWIuOTGbPkKOtP3ADUgt4pz1fF+zEFveIJXT0MSwcDCtQcpH7jFuJ+Oh20GAs/t4ODv0D9EVC4tNZRWSyDXke9Mp7m20G+bmw9c4tzN+/wzcYzvNk6UMPoLEuO1ci0adPGPGxaCC1tOX2T1tO2sf7EDewMej5sH8QvA2pLEpNbYq/C7z0hNQHKNIM2k9U/WkI8qNSzUKY5mNJg06daR2NV3J1smdipEgAztpzn36sxGkdkOXIskVm8eDGFC0sltdBOUqqRCStD6ffTXm7FJ1O+qAt/jmjAwGdlVFKuSbkD83uoQ6u9AuH5n8HwdBNlinyu+d3ux2OL4Hrms9iKzIUE+9K2sg9Gk8Jbi4+SajRpHZJFyPYnzjPPPJOu2FdRFK5du8bNmzeZPn16jgYnRFadvh7HK78f4uS1OEBdRfadthWlHzk3mUywdAhcOwpORaD3H+DgrnVUwtIVqwZBnSF0OWyYCL0XaByQdRnfMZgdZyP592oss7aeZ3jTslqHpLlsJzKdOnVKl8jo9Xq8vLxo0qQJgYHSZyfylqIo/LrrIp/8rRb0FnGx4/NuVWkamHGGXpHDNoyDk6vAYA8950OhUlpHJKxFs/fhxEo4vRou7YaSdbWOyGp4udrzYfsg3lh0hK82nKF1JR/KertoHZamsp3IjBs3LhfCECL7bsYl89biI2w6dROAJhW8+LxbVbxcZXhirjv463/zgXT6DkrW0TYeYV2KlINn+qjvow0ToP9fUleVDc9VL86KI1fZcvomby85ysL/1SvQ3efZrpExGAzcuHEjw/7IyEgMBrmML/LGppM3aPPVVjaduomdjZ7xHSsxp38tSWLyQthWWPW6ut14DFR5Xtt4hHVq/LZ6Ne/iDji7QetorIpOp+OT5yrjbGdg/8Xb/Lb7otYhaSrbiczDFstOTk7Gzs7uqQMS4lGSUo2MW/EvA37ex634FAJ9XFk54ln61S/1yIkaRQ65dRb+eEEddRLcFZq8o3VEwlq5F4fag9XtDePVmiuRZcU9HHm7jVrOMWnNSS5HJWgckXay3LX09ddfA2om+OOPP+Li8l+fnNFoZOvWrVIjI3LVyWuxvPr7YU5dVwt6BzQoxZiQQCnozSsJUTD/eUiKhhK1oNN06Q4QT+fZUXDgF7VgPHQ5BD+ndURWpU8df1YeiWDvhSjeXXaMXwfWLpBf6LKcyHz55ZeAekVmxowZ6bqR7OzsKFWqFDNmzMj5CEWBZzIp/LzzAp+tOUlKmokiLvZ88XwVmlSQgt48k5aiXomJOg/uJdXiXluZl0c8JWdPqD8SNn8CGz+Cih3AYFmrOlsyvV7HZ10rE/LVNraducXiA1d4vqaf1mHluSwnMmFhYQA0bdqUpUuXUqiQrF4qct+NuCRGLzrK1tNqQW/zQG8mdasi643kJUWBVa/Bxe1g56oOs3aRJFLkkHovw95ZEHUODs+DGv21jsiqlPZy4fUW5Zm05iQTV4XSuIIX3q4F60tGtmtkNm3aJEmMyBMbTlwnZNo2tp6+ib2Nnomdg/mxX01JYvLajmnqHxidXp3wrmiQ1hGJ/MTeFRq+oW5vngSpidrGY4UGNwygcnF3YpPS+HB5wZtk8Imm4Lxy5QorVqzg0qVLpKSkpLtv6lRZCExkjdGkpFsUrXZAYQx6HYkpRj75+4S5Er+irxtf96xGuaKuGkdcAIWugPXj1O02k6FcC03DEflUzYGw6zuIvQL7flS7m0SW2Rj0TOpahY7fbmfNv9f4+1gEbSv7ah1Wnsl2IrNhwwY6duxI6dKlOXnyJMHBwVy4cAFFUahevXpuxCjyoTXHIzIsU+/r7sDABgH8sf8yZ2/EA/DSswG8GVIBexsp6M1z4QfVmXsBav/vvxEmQuQ0Wwdo8jasGAHbpkL1F2WW6GwKKubGsCZl+GbjWT788zj1y3ji4VQwRhJnu2vpnXfeYfTo0Rw7dgwHBweWLFnC5cuXady4Mc8/L/NJiMdbczyCYXMPpktiACJikvj47xOcvRGPl6s9vw6szfvtgySJ0UJMOPzeC9ISoWxLaP2J1hGJ/K5qLyhSHhKjYOe3WkdjlUY0K0tZbxduxacwYVWo1uHkmWwnMidOnODFF18EwMbGhsTERFxcXJgwYQKTJk3K8QBF/mI0KYxfGUrmsxGp7G30/P1KQxqV98qzuMR9kuPh9x4Qfw28g6DbT7IQpMh9Bht16QJQu5nib2objxWytzEwqWsVdDpYejCczacyTl6bH2U7kXF2djbXxfj6+nLu3Dnzfbdu3cq5yES+tDcsKsOVmAclp5nMXUsij5mMsOQluHYMnL3uLgTppnVUoqCo2BGKPQOpd2DbFK2jsUo1/AsxoH4AAO8tO058cprGEeW+bCcydevWZfv27QC0bduWN954g48//piBAwdSt64s/CUe7Ubco5OY7B4ncti6D9WF/Az20PN38CipdUSiINHpoPmH6vb+2RB9Sdt4rNTo1uXxK+xIeHQik9ec1DqcXJftRGbq1KnUqaMuEDd+/HiaN2/OH3/8QalSpZg9e3aOByjyl6zOb1DQ5kGwCAd+hl13axO6fA9+tTQNRxRQpZtCqYZgTFGHY4tsc7Kz4bPnqgDw666L7A2L0jii3JWtRMZoNHLlyhVKllS/pTk7OzNjxgyOHj3KkiVL8Pf3z5UgRf6RnGp85Kz2OtTRS7UDCudZTAI4vxn+ujuXR9P31HWUhNCCTgctxqnbR+bDjfx/RSE3NChbhJ611Fl+xyw5SlKqUeOIck+2EhmDwUCrVq24fft2bsUj8imjSWHqutMM+GUfD1l3lHv5zdgOQRgK8JL0ee7mafjjRXUhyCo9oNGbWkckCroSNSGwPSgm2PSR1tFYrXfaVqSomz1ht+4wbf0ZrcPJNdnuWgoODub8+fO5EYvIp27GJfPC7D18veEMigK965Tk657V8HVP333k4+7A932rExJccCZy0tydSHUhyOQY8KsLHb+RhSCFZWj2PqCDEysh/IDW0Vgld0dbPupcGYAftp3n2JUYjSPKHdkeU/nRRx8xevRoJk6cSI0aNXB2dk53v5ubjHAQ/9l1LpJXFhziZlwyTnYGPulSmc7PFAegXZVimc7sK/JIWjL80QduXwAPf+g5D2xk+QdhIbwrQtWecOR32DABXvxT64isUsugorSv4suqoxG8ufgIK0c+i60h29cwLFq2E5m2bdsC0LFjx3TLhSuKgk6nw2jMv/1wIutMJoXvt5xjyj+nMClQvqgL0/vUoKy3i/kYg15HvTKeGkZZgCkKrHwVLu0CezfovRCci2gdlRDpNXkHji1Wa7jOb4bSTTQOyDqN61iJHWdvcfJaHDM2n2Nk83Jah5Sjsp3IbNq0KTfiEPlI1J0UXv/jMFvurljdtXoJJnauhJOdTKpmMbZNUb/p6gzQ/RfwDtQ6IiEyKuSvrsO0d6Z6VSagsXR9PoEiLvaM7VCJ1/44zDcbzxIS7JOv1q7L9l+Wxo0b50YcIp84cDGKEfMPERGTZF6xuntNP63DEvf7dxlsnKhut/0cyjTTNh4hHqXRaDg0V62TObkKKnbQOiKr1KlaMVYcucrGkzd4a8lRFg+tn2+68p+oo2zbtm307duX+vXrEx4eDsBvv/1mnihPFDyKovDjtvP0mLmbiJgkShdxZvnwBpLEWJorB2DZUHW77stQa5C28QjxOC7eUHeYur3xI3X2aZFtOp2Oj7sE42Jvw6FL0fy884LWIeWYbCcyS5YsoXXr1jg6OnLw4EGSk5MBiImJ4ZNPZGG5gigmIZUhvx3go79OkGZS6FC1GCtGPktFXyn8tijRl+H3npCWBOVDoJUMaxVWov5IcPCAmyfh6B9aR2O1fN0deaet2o38xdpTXIpM0DiinJHtROajjz5ixowZ/PDDD9ja2pr3N2jQgIMHD+ZocMLyHb0STftvt7Eu9Dp2BrUr6eue1XCxl3oYi5IcB/N7wJ0bUDQYuv4IellVXFgJRw9oOErd3vSJOuJOPJFetUpSt3RhElONvLPsKMrDJvayItlOZE6dOkWjRo0y7Hd3dyc6OjonYhJWQFEUft11gW7f7+JyVCJ+hR1ZMqw+L9T1TzeaTVgAkxEWD4Ib/4KzN/RaAPb5p9BPFBC1h4CrL8Rchv1ztI7Gaun1Oj57rgoOtnp2nI1k4f7LWof01LKdyPj4+HD27NkM+7dv307p0qVzJChh2eKSUhnx+yE+/PNfUowmWgUVZdXIhlQu4a51aCIz/7wPZ9aCjYOaxHhI3ZKwQraO0PgtdXvr55Acr208VqxUEWfeaFkBgI/+OsH1WOtepDfbiczgwYN59dVX2bNnDzqdjqtXrzJv3jxGjx7NsGHDciNGYUFCr8bS8dsd/HU0Ahu9jg/aBzHzhRq4O9o+/sEi7+2bDbunq9tdZkKJGtrGI8TTeOYFKFwaEm7B7u+1jsaqDWhQiqol3IlLSuO9Zcetuosp24nM22+/Te/evWnevDnx8fE0atSIl156if/973+MHDkyN2IUFkBRFP7Yd4ku03cQdusOxdwdWDi0HoOeDZCuJEt1dgP8fXfdpGYfQKXOmoYjxFMz2KqLmgLs/BoS8veqzrnJxqBncreq2Bp0rD9xnVVHI7QO6YllO5HR6XS89957REVFcfz4cXbv3s3NmzeZOHFibsQnLEBCShpvLDrCmCXHSE4z0bSCF3+90pDqJQtpHZp4mBsnYVF/UIxQtTc0fEPriITIGZWeg6KVITkWtk/VOhqrVsHHlZeblAVg3Ip/ibqTonFET+aJF1yws7PD1dUVX19fXFxcHv+ATIwbNw6dTpfuJzDwvxlGmzRpkuH+oUOHPmnI4gmcvRFHp293sPRgOHodvBVSgdn9alHI2U7r0MQ9JiOEbVOncg/bBnHXYX539YO+ZH3oME1mQxX5h14PzT9Ut/f+ALFXtY3Hyg1vWpYKRV2JvJPChJX/ah3OE8n2GNm0tDTGjx/P119/TXy8Wmzl4uLCyJEjGTt2bLoh2VlRqVIl1q9f/19ANulDGjx4MBMmTDDfdnJyym7I4gktO3SFd5ceJzHViLerPV/3eoa6pWVtJIsSugLWjEn/YW6wA2MKFAqAHnNlIUiR/5RrCSXrqWuFbZkEHb7SOiKrZWejZ1K3Kjw3fQfLD1+lY7ViNAssqnVY2ZLtRGbkyJEsXbqUyZMnU69ePQB27drFuHHjiIyM5Pvvs1eAZWNjg4+Pz0Pvd3JyeuT9IuclpRoZv/Jfft+rDstrUNaTaT2ewctV/iBalNAVsPBF4IEiPePdy8N1hoKzJJ4iH9LpoPlYmBMCB3+D+q+AZxmto7Ja1fw8GPRsAD9sC+PdpcdZN6owrg7WM4Aj24nM/PnzWbBgAW3atDHvq1KlCn5+fvTq1SvbicyZM2coVqwYDg4O1KtXj08//ZSSJUua7583bx5z587Fx8eHDh068MEHHzzyqkxycrJ5tmGA2NhYAFJTU0lNTc1WbNbu3uvNzuu+EHmHkQuOcvJaHDodjGhSmuFNymDQ6wpc+93zJO2Y60xGbFaPARQy6zRSAHZ+Tdoz/S1m4juLbEcrJO14V7GaGMq0QH9uPaYNEzF2+SFbD5d2TG9kk9Ks/fcal6IS+fivUCZ2DMrS43KzHbN6Tp2SzTFX3t7ebNmyhYoVK6bbf+LECRo1asTNmzezfK7Vq1cTHx9PhQoViIiIYPz48YSHh3P8+HFcXV2ZNWsW/v7+FCtWjKNHjzJmzBhq167N0qVLH3rOcePGMX78+Az758+fL91Sj3EoUsfv5/QkG3W42Ci8UM5EoIf1DsnLzzzjTvDs2U8fe9z2su8Q6VrxsccJYY3cEi7R9NT7AGyuMIEYp1LaBmTlzsTo+DZU/eIzIshIOXdtP/8TEhLo3bs3MTExuLk9fMmbbCcyEyZM4OTJk8yZMwd7e7WrITk5mUGDBlGuXDnGjh37xEFHR0fj7+/P1KlTGTQo42J2GzdupHnz5pw9e5YyZTK/jJjZFRk/Pz9u3br1yIbIj1JTU1m3bh0tW7Z8ZO1ScpqJSWtP89vuSwDU9PdgWvcqFHVzyKtQLVpW2zEv6f5dgs3y/z32uLTOM1Eqdc2DiB7PEtvRGkk7pmdYPgT9v0sxlWmBseeCLD9O2jFzH6wIZcG+K5Qs7Miq4fVxtHv0Fd3cbMfY2FiKFCny2EQm211Lhw4dYsOGDZQoUYKqVasCcOTIEVJSUmjevDnPPfec+dhHXTnJjIeHB+XLl8905mCAOnXqADwykbG3tzcnWPeztbUtsG/WR732y1EJjJh/kCNXYgAY1qQMb7Qsj43hiQe05VsW9R5yL56lw2zci4OlxHyXRbWjFZN2vKvZ+3BiBfpz69Ff3Qf+9bP1cGnH9N5tF8TmU7e4FJXIt1vCeLdt1q7o5kY7ZvV82U5kPDw86No1/Tc8P7+cmfI8Pj6ec+fO8cILL2R6/+HDhwHw9fXNkecr6NaFXueNhYeJTUrD3dGWL3tUtbpq9QLLvz64FXvE0FOden82P9SFsDqeZdQZfw/MgfXjYeAamW7gKbg52PLJc8EM/Hk/P247T7vKvlT189A6rEfKdiIzZ07OLdY1evRoOnTogL+/P1evXmXs2LEYDAZ69erFuXPnmD9/Pm3btsXT05OjR4/y+uuv06hRI6pUqZJjMRREqUYTn689xayt5wG1Yv3b3s9QopDUEFkNvQHqv6oOvc7g7od4yGcWU+grRK5qPAaO/A6Xd8OZf6B8a60jsmrNAovSuVoxlh++yluLj7Jy5LPY2VjuVXpNI7ty5Qq9evWiQoUKdO/eHU9PT3bv3o2Xlxd2dnasX7+eVq1aERgYyBtvvEHXrl1ZuXKlliFbDaNJYU9YFAdu6dgTFoXRpJZCRcQk0nPWbnMSM7BBAAv/V0+SGGtjTIWjd+sBDA90pboVg+6/QlDHvI9LCC24+UKduzVjGyaAyaRtPPnAhx0q4elsx6nrcUzfnHm5h6XI9hWZyMhIPvzwQzZt2sSNGzcwPfCGiYrK+toXCxY8vDDLz8+PLVu2ZDc8Aaw5HsH4laFExCQBBn49sx9fdwe6Vi/OvD2XuJ2Qiqu9DZ8/X4WQYOmms0rbpsDVQ+DgDkN3wO0LEH8dXIqq3UlyJUYUNA1eg/0/w/XjcHwJVHle64isWmFnO8Z1rMTI3w/x3aaztAn2pYKPq9ZhZSrbicwLL7zA2bNnGTRoEEWLFpUFAy3MmuMRDJt78MEp0oiISeLbTecAqFTMjel9quPv6Zz3AYqnF34AtkxWt9tNBQ8/9UeIgsypMDQYCRs/gk0fq4ukGqSI92m0r+LLn4evsv7Edd5afISlLzfAoLe8v/nZTmS2bdvG9u3bzSOWCiKjSWFvWBQ34pLwdnWgdkBhi/jPNZoUxq8MzZDE3M/JzsDC/9XD2T7b//XCEqQkwNL/qYtBVnoOKnfTOiIhLEedYbBnJtwOg4O/Qq2M03iIrNPpdHzcJZg9YZEcuRLDT9vDGNyotNZhZZDtv2aBgYEkJibmRixWIX23jcrX3YGxHYLytJsmOc1ITGIqsYmpxNz9OXDxdrq4MpOQYuTolRjqlZGp663S+nEQeQZcfaHdFK2jEcKy2LtAo7dg9ZvqVcuqvcBO6v+eRlE3B95rW5G3lx5jyrpTtAwqSqkilnU1P9uJzPTp03n77bf58MMPCQ4OzjDOOz9POvewbptrMUkMm3uQ7/tWz1Yyk5JmMichMYkp/20npBKTmHbffekTlujEFJJSn7yY7Ubco5MdYaHObYS9M9XtTt+ql9KFEOnV6A+7voHoS+rvy7Ovax2R1etRy4+VR6+y42wkby89yvyX6qK3gF6Ie55oHpnY2FiaNWuWbr+iKOh0OoxGY44FZ0ke1W1zb997y49jq9cTl6wmIdEJqQ9NRmISU0lMfbq20unUMf/ujuqPoigcvxr72Md5u8qMvVYn8TYsH65u13oJyrbQNh4hLJWNHTR5F5YPhe3ToMYAcPTQOiqrptPp+LRLFVpP28ru81Es2HeZ3nVKPv6BeSTbiUyfPn2wtbVl/vz5BarYd29Y1GO7bSLjUxj06/5snVenA1d7Gzyc7MwJibujLW73bd/78XBKf7+rvU26rNhoUnh20kauxSRlmnDpAB93taZHWJm/34K4q1C4DLScoHU0Qli2Kt1hx1dw8wTs/Bqaf6h1RFavpKcTo1tXYOKqUD75+wRNA73wdXfUOizgCRKZ48ePc+jQISpUqJAb8VisrHbHlCjkiL+n030JiF2GhOT+H1cHmxy7RGfQ6xjbIYhhcw+ig3TJzL1nGNshyCIKk0U2/LsMji0EnR66zAQ7y+qfFsLi6A3q0gV/9IHd30Pt/4GrzFr+tPrXL8Wqo1c5dCma95YdZ3a/mlqHBDxBIlOzZk0uX75c4BKZrHbHfN6tqqaFtCHBvnzft3qGgmQfDQqSRQ6Iuwar7vbxN3wD/GppG48Q1iKwHRSvCeH7YdsX0PZzrSOyega9jsldq9Du6+1sPHmD5YfC8XKx5cAtHZ5hUdQr663JF+VsJzIjR47k1Vdf5c0336Ry5coZin3z6/IBtQMK4+vuYBXdNiHBvrQM8mHX2Rv8s20PrRrW0ewNJp6CosCfI9T6GN+q6jTsQois0emgxVj4pQPsnwP1hkOhUlpHZfXKFXVlZLOyTFl3mlGLjqAocP/Eq1p8Yc52ItOjRw8ABg4caN6n0+nyfbGvtXXbGPQ66gQUJvKEQh0LmedGZNP+n+DsOnUJgi6zZHIvIbIroBGUbgrnN8GmT+G5mVpHlC8EeKnd28oD3+qfdATv08p2IhMWFpYbcVgF6bYReSbyHPzzvrrdYix4B2objxDWqvmHaiJz9A9o8CoUDdI6IqtmNCl8/NeJTO9TUL/Yj18ZSssgnzz7Ap3tRMbf3z834rAa97ptLHFmX5FPGNNg2VBITYBSDdXZSoUQT6Z4dQjqBKF/qssX9JqvdURW7XEjeBXUJXH2hkXlWb3oE61+/dtvv9GgQQOKFSvGxYsXAZg2bRp//vlnjgZnqQx6HfXKeNKpWnHqlfGUJEbkrB3T4MpesHeDzt+DXtNF6oWwfk3fV0f9nfoLLu/TOhqrltURvHk58Wq2PyG///57Ro0aRdu2bYmOjjbXxHh4eDBt2rScjk+IgiXiCGz+VN1uM1kWgxQiJ3iVh2q91e0N4zMWd4gsy+oI3ryceDXbicw333zDDz/8wHvvvYfBYDDvr1mzJseOHcvR4IQoUFKTYOkQMKVBxQ5QtafWEQmRfzR+Gwx2cGGbutyHeCL3RvA+rB9Ch7r+YF6O4M12IhMWFsYzzzyTYb+9vT137tzJkaCEKJA2ToSbJ8HZG9pPU4ePCiFyhoefurwHwIYJclXmCd0bwQtkSGa0GsGb7UQmICCAw4cPZ9i/Zs0aKlasmBMxCVHwXNgOu75Ttzt+A85FtI1HiPyo4Rtg5wIRh9Fv+5ziUbvQXdwOpvw5bUhuuTeC18c9ffeRj7tDng+9hmyMWpowYQKjR49m1KhRDB8+nKSkJBRFYe/evfz+++98+umn/Pjjj7kZqxD5U1IsLBsGKFD9RagQonVEQuRPzkWgbEsIXYZh22RqAlz8HtyKQcgkCOqodYRWw5ImXs1yIjN+/HiGDh3KSy+9hKOjI++//z4JCQn07t2bYsWK8dVXX9Gzp/TpC5Fta96GmEvg4Q+tP9E6GiHyr9AVELo84/7YCFj4InT/VZKZbLCUiVeznMgo9/Un9unThz59+pCQkEB8fDze3t65EpwQ+d6JVXB4HqBTF4S0d9U6IiHyJ5MR1oyBTBeZuTuV25q31TWa9IZMjhGWKls1MroHig+dnJwkiRHiScXfgJWvqNsNXgH/etrGI0R+dnEnxF59xAEKxIarxwmrkq2ZfcuXL58hmXlQVFTUUwUkRIGgKLDiFUiIhKLB0PQ9rSMSIn+Lv56zxwmLka1EZvz48bi7u+dWLEIUHIfmwunV6rwWXWaCjb3WEQmRv7kUzdnjhMXIViLTs2dP6UoS4mndvqD2xYN6JcYnWNNwhCgQ/Ouro5NiI8i8TgZwK64eJ6xKlmtkHtelJITIApNRHWqdEg8l60H9kVpHJETBoDeoQ6yBjFO53dXqIyn0tUJZTmQUmQVRiKe361u4tFOdlKvz9/KhKUReCuqoDrF2e2DCNt3dP4Uxl/M+JvHUsty1ZDKZcjMOIfK/a8dh40fqdutPoHCAtvEIURAFdYTAdqSd38rhbWup1rA1NrFXYMUI2DwJKj+vdkEJq5HtJQqEEE8gLRmW/Q+MKVC+jTqDrxBCG3oDiv+zhBeuh+L/LFTrAyVqQ+od+Od9raMT2SSJjBB5YfOncP04OHlCx69lQUghLIleD+2+ULuYji+BsK1aRySyQRIZIXLbpd2w4yt1u8NX4CIj/4SwOL5VoeYgdfvvN8GYqm08IsskkREiNyXHqV1Kigmq9oaKHbSOSAjxMM3eA6cicPMk7JmhdTQiiySRESI3rX1PnTfG3Q/afKZ1NEKIR3EsBC3GqdubP7s754ywdJLICJFbTq+Fg7+o252ng4PMii2ExavWB0rUUud6WveB1tGILJBERojccCcS/hyhbtcdDgGNtI1HCJE1ej20/QLQwbFFELZN64jEY0giI0ROUxRY9RrcuQFegdD8Q60jEkJkR7FqUHOgui2FvxZP00Rm3Lhx6HS6dD+BgYHm+5OSkhg+fDienp64uLjQtWtXrl+XlUmFhTv6B5xYAXobdUFIWwetIxJCZFez98GxMNw8AXtnaR2NeATNr8hUqlSJiIgI88/27dvN973++uusXLmSRYsWsWXLFq5evcpzzz2nYbRCPEb0ZfUbHEDjt9VvdkII6+NUGFqOV7c3fQpx17SNRzxUtla/zpUAbGzw8fHJsD8mJobZs2czf/58mjVrBsCcOXOoWLEiu3fvpm7dunkdqhCPZjLB8mGQHKsWCz77utYRCSGeRrW+cOAXCN8P/3wAXX/QOiKRCc0TmTNnzlCsWDEcHByoV68en376KSVLluTAgQOkpqbSokUL87GBgYGULFmSXbt2PTSRSU5OJjk52Xw7NjYWgNTUVFJTC1Y/573XW9Bed07Lajvq987EcGEbiq0TaR2+BZMCJmn7e+T9mDOkHXNGVttR1+pTDHNaoTu2kLRqfVFK1s+L8KxGbr4fs3pOnaLhstarV68mPj6eChUqEBERwfjx4wkPD+f48eOsXLmSAQMGpEtKAGrXrk3Tpk2ZNGlSpuccN24c48ePz7B//vz5ODk55crrEMIlKZwmJz/EoKRypEQ/Lng11zokIUQOqXJpDgGRm4hx8GNL4AQUnaxanxcSEhLo3bs3MTExuLm5PfQ4TROZB0VHR+Pv78/UqVNxdHR8okQmsysyfn5+3Lp165ENkR+lpqaybt06WrZsia2trdbhWK3HtqMxFcPPIeivHcFUuhnGnn/IWkqZkPdjzpB2zBnZaseEKGxm1EWXGIWx5ceYav8vb4K0Arn5foyNjaVIkSKPTWQ071q6n4eHB+XLl+fs2bO0bNmSlJQUoqOj8fDwMB9z/fr1TGtq7rG3t8fe3j7Dfltb2wL7S1+QX3tOemg7bpsM146Agwf6ztPR29nlfXBWRN6POUPaMWdkqR3di0KLsbDyVQxbJ2Go8jy4Fs2bAK1Ebrwfs3o+zUct3S8+Pp5z587h6+tLjRo1sLW1ZcOGDeb7T506xaVLl6hXr56GUQpxnyv7YdsUdbv9VHDz1TYeIUTueOZFKFZdLeZfJ3NDWRJNE5nRo0ezZcsWLly4wM6dO+nSpQsGg4FevXrh7u7OoEGDGDVqFJs2beLAgQMMGDCAevXqyYglYRlSEmDpEFCMENwNgrtqHZEQIrfo9dDu7oy/RxfAxV1aRyTu0jSRuXLlCr169aJChQp0794dT09Pdu/ejZeXFwBffvkl7du3p2vXrjRq1AgfHx+WLl2qZchC/GfdhxB1DlyL3f2AE0Lka8VrQPUX1e2/R4MxTdt4BKBxjcyCBQseeb+DgwPfffcd3333XR5FJEQWnd0A++7OKdH5O3XVXCFE/td8rDpz9/XjsO9HqDtU64gKPIuqkRHCKiREwZ/D1e1ag6FMM23jEULkHWfP/9ZP2/QxxN/QNh4hiYwQ2fb3aIiLAM+y0HKC1tEIIfJa9X7gW+1u4e9YraMp8CSRESI7ji2G40tAZ4Aus8BOJlkUosDRG6Dd3dGKR+bDpd3axlPASSIjxKOYjOgubqd41C50oStg1Sh1f6PRUKKGtrEJIbRTouZ/hb9/SeGvlixqQjwhLEroClgzBpvYq9QEuPi9ut+jFDR6U8PAhBAWofk49XPi+jHY/xPUGaJ1RAWSXJERIjOhK2DhixB7NeN90Rfg1Oo8D0kIYWGcPaH5B+r2xo8g/qa28RRQksgI8SCTEdaMAR62DJkO1rytHieEKNhqDADfqpAcA+vHaR1NgSSJjBAPurgz8ysxZgrEhqvHCSEKNr0B2t4t/D08Fy7v1TaeAkgSGSEeFH89Z48TQuRvfrXgmb7q9l9vyNXaPCaJjBAPcsniqrZZPU4Ikf+1GA8O7nDtqFr4K/KMJDJCPCg14TEH6MCtOPjXz5NwhBBWwLkINLtX+DsR7tzSNp4CRBIZIe7373JY0Oe+HboHDrh7O+QztW9cCCHuqTkQfKpAkhT+5iVJZIS45+BvsHgAmFIhqDN0mwNuvumPcSsG3X+FoI6ahCiEsGD3z/h76De4vE/beAoImRBPCICd38I/76nb1V+E9tPUD6WgTqSd38rhbWup1rA1NqUbyZUYIcTD+dWGan3g8Dz4+w0YvEk+M3KZXJERBZuiqBNZ3Uti6o+EDl//98GjN6D4P0t44Xoo/s/KB5IQ4vFajAd7d4g4Agd+1jqafE8SGVFwmUyw+i3Y+rl6u9kH0HIi6B6sixFCiGxw8YJm76vbGybAnUht48nnJJERBZMxDZYPg72z1Nttv1AXgpQkRgiRE2oOhKKVISkaNozTOpp8TRIZUfCkJqnrKB1dADoDdJkFtQdrHZUQIj8x2EC7L9Ttg7/BlQPaxpOPSSIjCpbkOJj/PJz6Cwz20GMuVO2hdVRCiPyoZF2o2gtQ1MJfmfE3V0giIwqOhCj4tROEbQU7F+i7GALbah2VECI/azkB7N3g6iE4+KvW0eRLksiIgiE2Aua0hfAD4FgI+q2AgEZaRyWEyO9cvKHp3VGRG8arX6hEjpJERuR/ty/AnBC4eQJcfGDAaiheQ+uohBAFRa2XoGgwJN5WkxmRoySREfnbjRMwu7WazBQqBQPXgHdFraMSQhQkBhtoe3eahwO/QPhBbePJZySREflX+AGY0wbir4FXRRi4FgoHaB2VEKIg8q8PVXoCCvz1hjqPlcgRksiI/ClsG/zSUb2UW7wGDPgbXH20jkoIUZCZC38PwiEp/M0pksiI/OfUapjbFVLi1YLeF/8Ep8JaRyWEKOhci0KTd9Tt9VL4m1MkkRH5y9GFsKAPGJOhQjvovQjsXbWOSgghVLWHgHcQJEbBxolaR5MvSCIj8o+9P8DSIaAY1b7o7r+CrYPWUQkhxH8MNuqSKAD756jzy4inIomMsH6KAlu/gL9HA4r6jafz9+oHhhBCWJpSDaByd9TC39FS+PuUJJER1k1RYN2H/12ibfQWtJkMenlrCyEsWKuJYOcK4fvh8Fyto7Fq8mkvrJfJCCtfhZ1fq7dbfQzN3pMVrIUQls/VB5q8rW6vHyeFv09BEhlhndJSYMkgOPgL6PTQ8VuoP0LrqIQQIuvq/E+d4yohEjZ9rHU0VksSGWF9UhJgQS/4dxnobaHbHKj+gtZRCSFE9hhsod29wt+f4OphTcOxVpLICOuSFANzn4Oz68HGEXovgEqdtY5KCCGeTKlnIbgbKCZ1wIIU/mabxSQyn332GTqdjtdee828r0mTJuh0unQ/Q4cO1S5Ioa34m/Bze7i0C+zd4cXlULaF1lEJIcTTafUR2LnAlX1wZL7W0Vgdi0hk9u3bx8yZM6lSpUqG+wYPHkxERIT5Z/LkyRpEKDQXc0VdwfraUXD2gv6roGRdraMSQoin5+b7X+HvurHq0ioiyzRPZOLj4+nTpw8//PADhQoVynC/k5MTPj4+5h83NzcNohSaunUWfgqByLPgVgIGrAHfjEmvEEJYrTpDwSsQEm7Bpk+0jsaqaJ7IDB8+nHbt2tGiReZdBPPmzaNIkSIEBwfzzjvvkJCQkMcRCk1FHFWvxMRcBs9yMGgtFCmrdVRCCJGzDLbQ9nN1e9+P6mefyBJNpz5dsGABBw8eZN++fZne37t3b/z9/SlWrBhHjx5lzJgxnDp1iqVLlz70nMnJySQnJ5tvx8bGApCamkpqamrOvgALd+/1Wuvr1l3eg+GPXuiSY1GKViat10Jw8oI8fj3W3o6WQtoxZ0g75gyLbMcS9TAEdUYfuhzTqlGYmrwLd26AS1EUv3qgN2gdYQa52Y5ZPadOURQlx589Cy5fvkzNmjVZt26duTamSZMmVKtWjWnTpmX6mI0bN9K8eXPOnj1LmTJlMj1m3LhxjB8/PsP++fPn4+TklGPxi9zlFXuU2ue/xkZJIdK5PLtLv06ajbPWYQkhRK5ySImiRehoDEpauv2JtoU5VqIPER61NIos7yUkJNC7d29iYmIeWVaiWSKzfPlyunTpgsHwX4ZpNBrR6XTo9XqSk5PT3Qdw584dXFxcWLNmDa1bt870vJldkfHz8+PWrVsFrr4mNTWVdevW0bJlS2xtbbUOJ8t0J1ZgWP4/dKZUTKWbY+w2B2y1S0KttR0tjbRjzpB2zBmW2o66k6swLOnPg/OTK3f3GLvOQQlsn/eBPURutmNsbCxFihR5bCKjWddS8+bNOXbsWLp9AwYMIDAwkDFjxmRIYgAOHz4MgK+v70PPa29vj729fYb9tra2FvVmzUsW+9pNRri4E+Kvg0tR8K8Ph+fDylfUORUqdUHfZRZ6GzutIwUsuB2tjLRjzpB2zBkW1Y4mI6x7N9O7dCiADpt170GljhbXzZQb7ZjV82mWyLi6uhIcHJxun7OzM56engQHB3Pu3Dnmz59P27Zt8fT05OjRo7z++us0atQo02HawsqEroA1YyD26n/77N0gWa1povqL0H6axf2yCiFErrm4M/1nYgYKxIarxwU0zLOwLJ2mxb6PYmdnx/r165k2bRp37tzBz8+Prl278v7772sdmnhaoStg4YvAA72a95KYCm2hw9ey+KMQomCJv56zxxUQFpXIbN682bzt5+fHli1btAtG5A6TUb0S82ASc7+II2rXkk6uxgghChCXojl7XAGh+TwyooB57KVT/rt0KoQQBYl/fXArBhlKfe/j6qseJ8wkkRF5Sy6dCiFE5vQGCJl098ZDkhk7Z0hLyrOQrIEkMiJvyaVTIYR4uKCO0P1Xdf2l+7kUVaehiDwLC/uB0YIm8tOYRdXIiHxOUeDK3sccpFMvrcqlUyFEQRXUEQLbZZyeIvwA/NoJzq6D5S9Dl5mgl+sRksiIvJFyB/4cDv8uu2+njvRFv3cvpYZ8JsOuhRAFm96QcYi1X231as3vPeHYQnDyhJBPC/wIT0nlRO6LCoPZrdQkRm8D7aZmfunUrZi6P6ijNnEKIYSlK9cSOn+vbu/5HrZ9oW08FkCuyIjcdW4jLBoASdHg7K0mKv711PsC22e8dCpXYoQQ4tGqdIeEKHUqi40fgVMRqDlA66g0I4mMyB2KAju/gfVj1TlhiteA7r+Be/H/jsns0qkQQojHqzsU7txUr8j8NQqcCkNQJ62j0oQkMiLnpSTAipFwfLF6u1pfaDcFbB20jUsIIfKTZu9DQiQcmANLXgIHDyjdWOuo8pzUyIicdfuCWg9zfLFaD9P2C+j0rSQxQgiR03Q69UtixY5gTIEFveHqIa2jynOSyIicc34zzGoC14+Bsxe8uAJqDy7wFfVCCJFr9Abo+iMENIKUeJjbDW6d1TqqPCWJjHh6igI7v4XfukDibSj2DAzZDKUaaB2ZEELkfzb20HM++FaDhFvqZ/HjloLJRySREU8nJQGWDoF/3lOLeqv2hgGrwb2E1pEJIUTBYe8KfRaDZ1mIuQS/PaeObCoAJJERTy76EvzUWp2YSWeANpOh83SwddQ6MiGEKHhcvKDvUnVhyZsn1InzUhK0jirXSSIjnkzYVrUe5tpRdXbJF/+EOv+TehghhNBSIX81mXHwgMt7YOGL+X5dJklkRPYoCuyaDr92Vof9+VaFIVtkPhghhLAURYOg90KwcVTXZfpzOJhMWkeVaySREVmXmgjLhsLad0AxQpUeMHAtePhpHZkQQoj7layjzqSut4Gjf9ytY1Qe/zgrJImMyJroy/BTCBxdoNbDhHymrrwq9TBCCGGZyrf6b12m3dNh+1Rt48klMrOveLwL22FhP3VYn2Nh6P6LOmeBEEIIy1alu1oG8P/27j4qqvrPA/j7MgzDCAxPyVMyiMqugloYPQj68xQkGekxKctFw3DP2VxIQDM1F8vNZ4/lKY3ENbAt4tiGZvQzJTIN8wElTFcXLRHZEFlTGATBaebuHxemRkUBh7lceL/OmdNwL3Pvm4/ofLr3O9/vNwuBon+XxjQ+NFPuVDbFKzLUPlEEDm8Ctk6Smhi/kcC/7GMTQ0SkJI/NBsbOk54XpAOndsqbx8bYyNDtGZuBHf8K7HpdGg8zYmrreBi93MmIiKiznsgARiVK8319MUv65GkvwUaGblX/v0D2U8DxXEBwAMYvB6ZkAU795E5GRERdIQjAM+8CwyZK6zJ99k9AdZncqWyCjQxZO39Amh+m+idA6ynNRxCZwvlhiIiUzkEFTPkPYOBY4EYD8Ek88Puvcqe6Z2xkSCKKwJHNwMeTgMb/A3xHSOslDX5c7mRERGQraufWdZkeaF2XaTJguCh3qnvCRoak8TA7U4C/vwaY/wCGxwOz9gCeA+VORkREtuasAxK+ALwGSUvNfDJFWvBXodjI9HWGaiDnaeCnT6TxME++DcRv4XgYIqLezLU/MGMH4OoH1J4CcpW7LhMbmb6s8iCwaRzw2zFpXY7pXwBRczgehoioL/AMAmZsB5zdgapDwOczFbkuExuZvkgUgZItwNZngMZawCesdTzME3InIyIie/rrukxndwNfpihuXSY2Mn3NHy3AV3OAr+dK42HCngX+uRDwCpY7GRERyUH/mDRju6CSlqHZ82+KWpeJjUxvZTZBqCzG/VcOQqgsBswmaWR6ThxQ+jEAAYh5C3guG3BykTstERHJ6R9igckfSM8PbQSK35U3TydwraXe6NRO4JsFcDRUIwIAKjOBfvcBZiPQXC/dD33uI2BIjNxJiYiop3jgRWldpt1vAEVLW9dlSpQ71V2xkeltTu0Etr0E4KbLgk2Xpf/qBgCJOwHvwXaPRkREPdzoZKDxsrRSdkEa0M9Lmg24B+Otpd7EbAK+WYBbmpi/Es2cH4aIiNoXvQQY9ZL0fvFfs4CKH+ROdEe8IqNk168CVyqAq+elx4VD0rwwd9JQDVT+CASPtUdCIiJSGkEA4t4Fmq4A/1MAfDYNePlraTbgHoiNTFeYTVIzcO0S4OoLBEVKa1jYmskoLeDY1qhcPQ9c/Uvj0lzfteNeu2SziERE1AupHKXJUT99Djj/g7QuU9LuHjksocc0MqtWrcKiRYuQmpqK9evXAwCam5sxb9485OXloaWlBbGxsfjggw/g6+srX9DWgbRWVz50AcBTq4HQSZ0/3vW6WxuUtkddFSCa7vx6V1/pVpHnQGlm3uOf3f2crjLWj4iIlKFtXaacOKDmZ2ldpqQ9gM5f7mRWekQjU1JSgk2bNmHkyJFW29PT0/H111/j888/h7u7O1JSUjBlyhQcOHBAnqDtDaQ1XJS2T/341mbG9AdguPmqyvk/bwk11935nCrNn43KXx9ewYCH3vqj02YTULGvdQGw242TEaSmKyiyoz8xERH1Zc46adb3j2KBK+ekKzMvfw1oPeVOZiF7I3Pt2jUkJCRg8+bNWLZsmWV7fX09tmzZgtzcXDzxhDTjbHZ2NoYNG4ZDhw7hscces2/QOw6kbd32VSrw+y/SIlxtDUt9lTTx3J24+NzapLQ9d/UDHDo4JttBJV0Z2vYSAOGmrK3LDjy1qntugxERUe/k6iMtZbAlFqj9b2ldphnbe8yafLI3MsnJyYiLi0NMTIxVI3Ps2DEYjUbExPw518nQoUOh1+tx8ODBdhuZlpYWtLS0WL42GAwAAKPRCKOx62tICJXFcLzbQNrrV6TP3t9EVDkBHnqIHgMheg4EPIIgegS1PtcDTq7tH9Nkkh4dFTIBQnw2VHvegNDwZ15RFwDTk8shhkwA7qEOfVHb7829/P4Q62grrKNtsI6d5Ho/MG0bHP9zIoSqQzBvS4RpykcwXTiM+68chOlXFyB4jE3/R7mjfzayNjJ5eXkoLS1FSUnJLftqamrg5OQEDw8Pq+2+vr6oqalp95grV67E0qW3NhN79uxBv35d7x7vv3JQmlzuLn53CcFl12Fo0vigUeODRicfNKs9pPErAGAC8HvrA+dbH7bmAAxeAe9r5XA21qFZ7YHfXf8ROOcAnPt7N5yvbygsLJQ7Qq/AOtoG62gbrGPneAWmIPKXNVD9sgfmtYPgLN6wTLx6Xe2FEwMScNHjYZucq6mpY6txy9bIVFVVITU1FYWFhXB2drbZcRctWoS5c+davjYYDAgMDMT48eOh0+m6fFyhUifNkHsX7s+uhS5oTJfPY0tGYywKCwvx5JNPQq1Wyx1HsYxGI+toA6yjbbCOtsE6dtXTwN5GiD+uh6N4w2qPs/EqHq7YAFN8NsShz9zzmdruqNyNbI3MsWPHUFtbi1GjRlm2mUwm7N+/Hxs2bMDu3btx48YN1NXVWV2VuXTpEvz8/No9rkajgUajuWW7Wq2+t1/WQX+TBsreZSCt46C/9bgxKPf8sxMA1tFWWEfbYB1tg3XsJLMJOLnttrsEiAAEOBYuBsIm3fN7YUf/XGSb2Tc6OhonTpxAWVmZ5REREYGEhATLc7VajaKiIstrysvLceHCBYwePdr+gdsG0gKwDJy14EBaIiLqAyp/vMvEqyJg+E36PjuR7YqMm5sbhg8fbrXNxcUF3t7elu2zZs3C3Llz4eXlBZ1Oh1dffRWjR4+2/yeW2oROkj5ifdt5ZFZ1bR4ZIiIipejohKp2nHhV9k8t3cm7774LBwcHxMfHW02IJ6vQScDQOPvM7EtERNSTdHRCVTtOvNqjGpnvv//e6mtnZ2ds3LgRGzdulCdQexxUXKuIiIj6nqDIDo0XtefEq1z9moiIiDqmB44XZSNDREREHdc2XvTmNZd0Abdfqqeb9ahbS0RERKQAreNF/zi3H2U/7MaDY2Nlm36EV2SIiIio8xxUEIPG4Dev0RCDbLs8QadiyHJWIiIiIhtgI0NERESKxUaGiIiIFIuNDBERESkWGxkiIiJSLDYyREREpFhsZIiIiEix2MgQERGRYrGRISIiIsXq9UsUiKK0OqfBYJA5if0ZjUY0NTXBYDBArVbLHUexWEfbYB1tg3W0DdbRNrqzjm3v223v4+3p9Y1MQ0MDACAwMFDmJERERNRZDQ0NcHd3b3e/IN6t1VE4s9mM6upquLm5QRBuXnK8dzMYDAgMDERVVRV0Op3ccRSLdbQN1tE2WEfbYB1tozvrKIoiGhoaEBAQAAeH9kfC9PorMg4ODhgwYIDcMWSl0+n4F9UGWEfbYB1tg3W0DdbRNrqrjne6EtOGg32JiIhIsdjIEBERkWKxkenFNBoN3nzzTWg0GrmjKBrraBuso22wjrbBOtpGT6hjrx/sS0RERL0Xr8gQERGRYrGRISIiIsViI0NERESKxUaGiIiIFIuNTC+0cuVKPPzww3Bzc4OPjw8mT56M8vJyuWMp3qpVqyAIAtLS0uSOoji//fYbpk+fDm9vb2i1WowYMQJHjx6VO5aimEwmZGRkIDg4GFqtFoMHD8bbb79913Vo+rr9+/dj4sSJCAgIgCAI2LFjh9V+URSxZMkS+Pv7Q6vVIiYmBmfPnpUnbA92pzoajUYsWLAAI0aMgIuLCwICAvDSSy+hurraLtnYyPRC+/btQ3JyMg4dOoTCwkIYjUaMHz8ejY2NckdTrJKSEmzatAkjR46UO4riXL16FVFRUVCr1di1axdOnTqFdevWwdPTU+5oirJ69WpkZmZiw4YNOH36NFavXo01a9bg/ffflztaj9bY2IgHHngAGzduvO3+NWvW4L333sOHH36Iw4cPw8XFBbGxsWhubrZz0p7tTnVsampCaWkpMjIyUFpaivz8fJSXl2PSpEn2CSdSr1dbWysCEPft2yd3FEVqaGgQQ0JCxMLCQnHcuHFiamqq3JEUZcGCBeKYMWPkjqF4cXFxYlJSktW2KVOmiAkJCTIlUh4A4vbt2y1fm81m0c/PT1y7dq1lW11dnajRaMTPPvtMhoTKcHMdb+fIkSMiALGysrLb8/CKTB9QX18PAPDy8pI5iTIlJycjLi4OMTExckdRpJ07dyIiIgLPP/88fHx8EB4ejs2bN8sdS3EiIyNRVFSEM2fOAACOHz+O4uJiTJgwQeZkylVRUYGamhqrv9vu7u549NFHcfDgQRmTKV99fT0EQYCHh0e3n6vXLxrZ15nNZqSlpSEqKgrDhw+XO47i5OXlobS0FCUlJXJHUaxz584hMzMTc+fOxRtvvIGSkhLMmTMHTk5OSExMlDueYixcuBAGgwFDhw6FSqWCyWTC8uXLkZCQIHc0xaqpqQEA+Pr6Wm339fW17KPOa25uxoIFCzBt2jS7LMjJRqaXS05OxsmTJ1FcXCx3FMWpqqpCamoqCgsL4ezsLHccxTKbzYiIiMCKFSsAAOHh4Th58iQ+/PBDNjKdsG3bNnz66afIzc1FWFgYysrKkJaWhoCAANaRegyj0YipU6dCFEVkZmba5Zy8tdSLpaSkoKCgAHv37sWAAQPkjqM4x44dQ21tLUaNGgVHR0c4Ojpi3759eO+99+Do6AiTySR3REXw9/dHaGio1bZhw4bhwoULMiVSpvnz52PhwoV48cUXMWLECMyYMQPp6elYuXKl3NEUy8/PDwBw6dIlq+2XLl2y7KOOa2tiKisrUVhYaJerMQAbmV5JFEWkpKRg+/bt+O677xAcHCx3JEWKjo7GiRMnUFZWZnlEREQgISEBZWVlUKlUckdUhKioqFs+/n/mzBkEBQXJlEiZmpqa4OBg/U+2SqWC2WyWKZHyBQcHw8/PD0VFRZZtBoMBhw8fxujRo2VMpjxtTczZs2fx7bffwtvb227n5q2lXig5ORm5ubn48ssv4ebmZrnX6+7uDq1WK3M65XBzc7tlXJGLiwu8vb053qgT0tPTERkZiRUrVmDq1Kk4cuQIsrKykJWVJXc0RZk4cSKWL18OvV6PsLAw/PTTT3jnnXeQlJQkd7Qe7dq1a/jll18sX1dUVKCsrAxeXl7Q6/VIS0vDsmXLEBISguDgYGRkZCAgIACTJ0+WL3QPdKc6+vv747nnnkNpaSkKCgpgMpks7zteXl5wcnLq3nDd/rkosjsAt31kZ2fLHU3x+PHrrvnqq6/E4cOHixqNRhw6dKiYlZUldyTFMRgMYmpqqqjX60VnZ2dx0KBB4uLFi8WWlha5o/Voe/fuve2/h4mJiaIoSh/BzsjIEH19fUWNRiNGR0eL5eXl8obuge5Ux4qKinbfd/bu3dvt2QRR5LSQREREpEwcI0NERESKxUaGiIiIFIuNDBERESkWGxkiIiJSLDYyREREpFhsZIiIiEix2MgQERGRYrGRIaI+QRAE7NixQ+4YRGRjbGSIqFvNnDkTgiDglVdeuWVfcnIyBEHAzJkzbXa+t956Cw8++KDNjkdEPRsbGSLqdoGBgcjLy8P169ct25qbm5Gbmwu9Xi9jMiJSOjYyRNTtRo0ahcDAQOTn51u25efnQ6/XIzw83LKtpaUFc+bMgY+PD5ydnTFmzBiUlJRY9n///fcQBAFFRUWIiIhAv379EBkZaVldOycnB0uXLsXx48chCAIEQUBOTo7l9ZcvX8azzz6Lfv36ISQkBDt37rTsu3r1KhISEtC/f39otVqEhIQgOzu7G6tCRLbARoaI7CIpKcmqMfjoo4/w8ssvW33P66+/ji+++AJbt25FaWkphgwZgtjYWFy5csXq+xYvXox169bh6NGjcHR0tKwA/cILL2DevHkICwvDxYsXcfHiRbzwwguW1y1duhRTp07Fzz//jKeffhoJCQmWY2dkZODUqVPYtWsXTp8+jczMTNx3333dVQ4ishE2MkRkF9OnT0dxcTEqKytRWVmJAwcOYPr06Zb9jY2NyMzMxNq1azFhwgSEhoZi8+bN0Gq12LJli9Wxli9fjnHjxiE0NBQLFy7Ejz/+iObmZmi1Wri6usLR0RF+fn7w8/ODVqu1vG7mzJmYNm0ahgwZghUrVuDatWs4cuQIAODChQsIDw9HREQEBg4ciJiYGEycONE+xSGiLnOUOwAR9Q39+/dHXFwccnJyIIoi4uLirK54/PrrrzAajYiKirJsU6vVeOSRR3D69GmrY40cOdLy3N/fHwBQW1t71/E2f32di4sLdDodamtrAQCzZ89GfHw8SktLMX78eEyePBmRkZFd/4GJyC54RYaI7CYpKQk5OTnYunWr5XZQV6jVastzQRAAAGazuVOva3tt2+smTJiAyspKpKeno7q6GtHR0Xjttde6nJGI7IONDBHZzVNPPYUbN27AaDQiNjbWat/gwYPh5OSEAwcOWLYZjUaUlJQgNDS0w+dwcnKCyWTqUr7+/fsjMTERn3zyCdavX4+srKwuHYeI7Ie3lojIblQqleU2kUqlstrn4uKC2bNnY/78+fDy8oJer8eaNWvQ1NSEWbNmdfgcAwcOREVFBcrKyjBgwAC4ublBo9Hc9XVLlizBQw89hLCwMLS0tKCgoADDhg3r3A9IRHbHRoaI7Eqn07W7b9WqVTCbzZgxYwYaGhoQERGB3bt3w9PTs8PHj4+PR35+Ph5//HHU1dUhOzu7QxPuOTk5YdGiRTh//jy0Wi3Gjh2LvLy8Dp+XiOQhiKIoyh2CiIiIqCs4RoaIiIgUi40MERERKRYbGSIiIlIsNjJERESkWGxkiIiISLHYyBAREZFisZEhIiIixWIjQ0RERIrFRoaIiIgUi40MERERKRYbGSIiIlIsNjJERESkWP8PsYIc0c0umucAAAAASUVORK5CYII=\n" }, "metadata": {} } ] }, { "cell_type": "markdown", "source": [ "## Part 10: Loading and plotting spreadsheet data (example with R/V Rachel Carson CTD casts)" ], "metadata": { "id": "tYzchKpM7DlA" } }, { "cell_type": "markdown", "source": [ "Up until now, we've been using data that we've typed directly into Python. However, most real-world data is stored in files that we'd like to open using Python.\n", "\n", "The most common type of data file is a **spreadsheet**, which has rows and columns. Generally, the columns will have column labels.\n", "\n", "Spreadsheets are often stored in **comma-separated value (CSV)** format, with the file extension being `.csv`. Data files in this format can be opened using Microsoft Excel or Google Sheets, as well as Python.\n", "\n", "In Python, we use the `pandas` package to work with spreadsheet data. We imported the package earlier using:\n", "\n", "> `import pandas as pd`\n", "\n", "Just like NumPy has arrays, Pandas has two types of objects: `Series` and `DataFrame`. This is what they look like:\n", "![Pandas example.png]()" ], "metadata": { "id": "1BPxKNjg7SZq" } }, { "cell_type": "markdown", "source": [ "For now, we'll just be applying simple operations to read spreadsheet data using `pandas`. But if you would like to learn more, check out these [lesson slides](https://ethan-campbell.github.io/OCEAN_215/materials/lessons/lesson_9.pdf)." ], "metadata": { "id": "HQr4nB64_8p0" } }, { "cell_type": "markdown", "source": [ "First, let's download two `.csv` data files from Google Drive here: https://drive.google.com/drive/folders/1Am6XdlB-APQ3ccOvLeGK8DFPQ2OnPeJD?usp=share_link. Each file is a CTD cast that was collected from the R/V Rachel Carson off of Carkeek Park near Seattle. ***Save these two files to your computer.***\n", "\n", "Next, we can upload the files to this Google Colab notebook. ***Click the sidebar folder icon on the left, then use the page-with-arrow icon at the top to select the files and upload them.*** NOTE: uploaded files will be deleted from Google Colab when you refresh this notebook!\n", "\n", "We will specify each **filepath** using string variables:" ], "metadata": { "id": "czGyp7MTAc5T" } }, { "cell_type": "code", "source": [ "filepath_0 = '/content/2023051001001_Carkeek.csv'\n", "filepath_1 = '/content/2023051101001_Carkeek.csv'" ], "metadata": { "id": "gnrD640dB5ds" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "Now, we can load the files using `pandas`:\n", "\n", "> **`pd.read_csv(FILEPATH, ARGUMENTS...)`**\n", "\n", "This function is very customizable using the many optional `ARGUMENTS`, which allow it to handle almost any file. You can find documentation about the arguments [at this link](https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html).\n", "\n", "***Let's first take a look at the data file using a simple text editor. Notice the long header. What argument can we use to exclude the header from being loaded?***\n", "\n", "Below, we'll load each data file using ``pd.read_csv()`` and store each file into a new variable.\n", "\n", "We can look at the data using **`display()`** (which is a fancy version of `print()` for DataFrames):" ], "metadata": { "id": "XaUCH7ikB6Sy" } }, { "cell_type": "code", "source": [ "data_0 = pd.read_csv(filepath_0,comment='#')\n", "data_1 = pd.read_csv(filepath_1,comment='#')\n", "\n", "display(data_0)" ], "metadata": { "id": "4boQwvSg7R5J" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "The data in a `pandas` DataFrame is similar to a NumPy 2-D array, except we use **column labels** to refer to columns and **index** values to refer to rows.\n", "\n", "To retrieve a specific column, we use bracket notation: **`data_frame[COLUMN_LABEL]`**." ], "metadata": { "id": "HYem5ZznDUfk" } }, { "cell_type": "code", "source": [ "# For example:\n", "data_0['density00']" ], "metadata": { "id": "-k030Au_Dyd_" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "***With these tools, can you make a line plot of temperature vs. depth that includes both CTD casts? (Alternatively, you could try plotting salinity, oxygen, or fluorescence vs. depth.)***\n", "\n", "You may need the following line of code to flip the y-axis so the surface is at the top: `plt.gca().invert_yaxis()`." ], "metadata": { "id": "TDLpAjCnELuY" } }, { "cell_type": "code", "source": [ "# Write your code here:\n" ], "metadata": { "id": "dh6QZ2Np9gXs" }, "execution_count": null, "outputs": [] } ] }